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ABSTRACT

This thesis investigates robust and flexible methods for matrix and tensor analysis, which are funda-

mental in data science. The primary focus of this work is the development of Guaranteed Sampling

Flexibility for Low-Tubal-Rank Tensor Completion, a project aimed at addressing the limitations

of existing sampling methods for tensor completion, such as Bernoulli and t-CUR sampling, which

often lack flexibility across diverse applications.

To overcome these challenges, we introduce Tensor Cross-Concentrated Sampling (t-CCS),

an extension of the matrix Cross-Concentrated Sampling (CCS) model to tensors, and propose

a novel non-convex algorithm, Iterative Tensor CUR Completion (ITCURC), specifically tailored

for t-CCS-based tensor completion. Theoretical analysis provides sufficient conditions for low-rank

tensor recovery and presents a detailed sampling complexity analysis. These findings are further

validated through extensive testing on both real-world and synthetic datasets.

In addition to the main project, this thesis includes another one complementary study. The study

explores the robustness of CCS model for matrix completion, a recent approach demonstrated to

effectively capture cross-concentrated data dependencies. However, its robustness to sparse outliers

has remained underexplored. To address this gap, we propose the Robust CCS Completion prob-

lem and develop a non-convex iterative algorithm, Robust CUR Completion (RCURC). Empirical

results on synthetic and real-world datasets demonstrate that RCURC is both efficient and robust

against outliers, making it a powerful tool for recovering incomplete data.

Collectively, these projects advance the robustness and flexibility of matrix and tensor methods,

enhancing their applicability in complex, real-world data environments.
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INTRODUCTION

1



In an era of unprecedented data generation, extracting meaningful insights from complex, high-

dimensional, and often incomplete datasets has become a cornerstone of data science [24, 37].

Matrix and tensor analysis, as foundational tools, provide versatile frameworks to address these

challenges. Their applications span a diverse range of fields, including image and video process-

ing [102, 73, 66], recommendation systems [74, 98], and scientific simulations [33, 53, 51? , 52].

However, despite their versatility, existing methods often struggle in real-world scenarios charac-

terized by noisy, sparsely observed, or intricately structured data. This thesis focuses on developing

robust and flexible methodologies for matrix and tensor analysis, aiming to enhance their robustness

to noise and outliers, improve their adaptability to diverse applications, and expand their theoretical

underpinnings.

The primary focus of this thesis is on Guaranteed Sampling Flexibility for Low-Tubal-Rank

Tensor Completion [107], addressing the limitations of conventional sampling strategies, such as

Bernoulli [72, 121, 63] and t-CUR sampling [108, 100], which lack adaptability for diverse real-

world applications. To overcome these challenges, this project introduces Tensor Cross-Concentrated

Sampling (t-CCS), a generalization of the CCS model to higher-order tensors. Complementing this

framework is the development of a novel non-convex algorithm, Iterative Tensor CUR Comple-

tion (ITCURC), specifically designed for t-CCS-based tensor completion. The project provides

rigorous theoretical foundations, including sufficient conditions for low-tubal-rank tensor recovery

and a detailed sampling complexity analysis. Extensive evaluations on synthetic and real-world

datasets validate the superior performance of t-CCS and ITCURC in terms of accuracy, flexibility,

and computational efficiency. This work advances tensor analysis by addressing the challenges of

high-dimensional, incomplete, and sparsely observed data.

The second project explores the Robustness of Cross-Concentrated Sampling (CCS) for Matrix

Completion [18], a recent method that leverages cross-sectional dependencies to recover missing

data. While CCS has shown promise in capturing essential patterns in data matrices, its vulnerabil-

ity to sparse outliers—a common challenge in real-world datasets—remains an open question. This

project introduces the Robust CCS Completion (RCURC) framework, extending CCS to handle
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noisy and incomplete data with resilience to outlier corruption. A non-convex iterative algorithm

is developed to solve the RCURC problem, and experimental results on synthetic and real-world

datasets demonstrate the algorithm’s robustness, efficiency, and scalability.

Together, these projects address critical gaps in matrix and tensor analysis, focusing on robust-

ness, flexibility, and efficiency. The methodologies presented in this thesis not only tackle specific

challenges but also provide a foundation for addressing a broader class of problems in data science,

where noise, sparsity, and high dimensionality are pervasive. By proposing novel frameworks,

designing practical algorithms, and establishing comprehensive theoretical insights, this work ad-

vances the state of the art in matrix and tensor analysis, paving the way for their application to

increasingly complex and diverse data environments.

This thesis is structured as follows: Chapter 2 explores Tensor Cross-Concentrated Sampling

and the Iterative Tensor CUR Completion algorithm. Chapter 3 introduces the Robust CCS Com-

pletion framework, detailing its methodology and application to matrix completion problems.
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CHAPTER 2

GUARANTEED SAMPLING FLEXIBILITY FOR LOW-TUBAL-RANK TENSOR
COMPLETION
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ABSTRACT

While Bernoulli sampling is extensively studied in the field of tensor completion, and t-CUR sam-

pling provides a way to approximate low-tubal-rank tensors via lateral and horizontal subtensors,

both methods lack sufficient flexibility for diverse practical applications. To address this, we intro-

duces Tensor Cross-Concentrated Sampling (t-CCS), an innovative and straightforward sampling

model that advances the matrix cross-concentrated sampling concept within a tensor framework.

t-CCS effectively bridges the gap between Bernoulli and t-CUR sampling, offering additional flex-

ibility that can lead to computational savings in various contexts. A key aspect of our work is the

comprehensive theoretical analysis provided. We establish a sufficient condition for the successful

recovery of a low-rank tensor from its t-CCS samples. In support of this, we also develop a the-

oretical framework validating the feasibility of t-CUR via uniform random sampling and conduct

a detailed theoretical sampling complexity analysis for tensor completion problems utilizing the

general Bernoulli sampling model. Moreover, we introduce an efficient non-convex algorithm, the

Iterative Tensor CUR Completion (ITCURC) algorithm, specifically designed to tackle the unique

challenges of t-CCS-based tensor completion. We have intensively tested and validated the ef-

fectiveness of the t-CCS model and the ITCURC algorithm across both synthetic and real-world

datasets.

2.1 Introduction
A tensor, as a multidimensional generalization of matrix, provides an intuitive representa-

tion for handling multi-relational or multi-modal data such as hyperspectral data [16, 131, 142],

videos [80, 103], seismic data [42, 95], DNA microarrays [90]. However, in real-world scenarios,

it is common to encounter situations where only partial observations of the tensor data are available

due to unavoidable or unforeseen circumstances. These limitations can stem from factors such as

data collection issues or errors made during data entry by researchers. The problem of recovering

the missing data by effectively leveraging the available observations is commonly referred to as the

Tensor Completion (TC) problem.

TC is inherently complex and often ill-posed [49, 141], necessitating the exploration of vari-
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ous sampling models and completion techniques. A common and crucial assumption for resolving

TC is the low-rank structure of the tensor, which has been extensively utilized to enhance TC ap-

proaches [5, 80, 138]. However, the concept of tensor rank is not unique and comes with its own

limitations. For example, the CANDECOMP / PARAFAC (CP) rank represents the minimum num-

ber of rank-one tensors required to achieve the CP decomposition, involving summations of these

tensors [60]. Computing the CP rank–an NP-hard problem–presents difficulties in the recovery of

tensors with a low CP rank [68]. Thus, finding the optimal low-CP-rank approximation of the target

tensor is still an open problem [141]. Other tensor ranks, such as Tucker [117], Tensor Train [91],

tubal [69] and Hierarchical-Tucker [48, 54], to name a few, also play prominent roles in the field,

each with its distinct computation and application implications.

In this study, we focus on the low-tubal-rank model for tensor completion. The tubal-rank is de-

fined based on the tensor decomposition known as tensor Singular Value Decomposition (t-SVD),

which employs the tensor-tensor product (t-product) [71]. In t-SVD, a tensor is decomposed into

the t-product of two orthogonal tensors and a 5 -diagonal tensor. The tubal-rank is then determined

by the number of non-zero singular tubes present in the 5 -diagonal tensor. Previous research has

shown that tubal-rank-based tensor models exhibit better modeling capabilities compared to other

rank-based models, particularly for tensors with fixed orientation or specific spatial-shifting char-

acteristics [96, 133]. In low-tubal-rank TC model, we consider T ∈ K=1×=2×=3 with tubal rank A

and the observations are located in the set Ω. TC aims to recover the original tensor T from the

observations on Ω. Mathematically, we aim to solve the following optimization problem:

min
T̃

〈PΩ(T − T̃ ),T − T̃ 〉, subject to tubal-rank(T̃ ) = A, (2.1)

where 〈·, ·〉 denotes the Frobenius inner product and PΩ is the sampling operator defined by

PΩ(T ) =
∑

(8, 9 ,:)∈Ω
[T ]8, 9 ,:E8, 9 ,: (2.2)

where E8, 9 ,: ∈ {0, 1}=1×=2×=3 is a tensor with all elements being zero except for the element at the

position indexed by (8, 9 , :).

6



For successful recovery, the general setting of an efficient solver for (2.1) requires the observa-

tion set Ω to be sampled entry-wise, fiber-wise, or slab-wise through a certain unbiased stochastic

process, including the Bernoulli sampling process as referenced in [101, 104, 113, 120] and the uni-

form sampling process as referenced in [62, 105, 138]. Although extensive theoretical and empirical

studies have been conducted on these sampling settings, their practical applicability is sometimes

limited in certain contexts. For instance, in collaborative filtering applications, each dimension

of the three order tensor data typically represents users, rated items (such as movies or products),

and time respectively. The unbiased sampling models implicitly assume that all users are equally

likely to rate all items over time, a premise that is often unrealistic in real-world scenarios. Let’s

consider the application of Magnetic Resonance Imaging (MRI) as another example. MRI scans

face limitations with certain metal implants and can cause discomfort in prolonged sessions [1].

To address these issues, we propose a generalization of the cross-concentrated sampling model to

the tensor completion setting based on the cross-concentrated sampling model for matrix comple-

tion [19], termed tensor cross-concentrated sampling (t-CCS). t-CCS enables partial observations

on selected horizontal and lateral subtensors, making it more practical in many applications.

2.1.1 Basic Definitions and Terminology

We use K to denote an algebraically closed field, either R or C. We represent a matrix as a

capital italic letter (e.g., �) and a tensor by a cursive italic letter (e.g., T ). The notation [=] denotes

the set of the first = positive integers, i.e., {1, · · · , =}, for any = ∈ Z+. Submatrices and subtensors

are denoted as [�] �,� and [T ] �,�, , respectively, with �, �,  as subsets of appropriate index sets.

In particular, if � is the full index set, we denote [T ]:,�, as [T ] �,�, , and similar rules apply to �

and  . Additionally, |( | denotes the cardinality of the set (. If � is a subset of the set [=], then �û

denotes the set of elements in [=] that are not in �. For a given matrix �, we use �† to denote its

Moore-Penrose inverse and �> for its conjugate transpose. The spectral norm of �, represented by

‖�‖, is its largest singular value. Additionally, the Frobenius norm of � is denoted by ‖�‖F, where

‖�‖F =

√∑
8, 9 |�8, 9 |2, and its nuclear norm, represented by ‖�‖∗, is the sum of all its singular

values.

7



The Kronecker product is denoted by ⊗. The column vector e8 has a 1 in the 8-th position, with

other elements as 0, and its dimension is specified when used. For a tensor T ∈ K=1×=2×=3 , T̂

represents the tensor after applying a discrete Fourier transform along its third dimension. Given a

tensor T ∈ K=1×=2×=3 , we call [T ]8,:,:, [T ]:, 9 ,:, [T ]:,:,: horizontal, lateral, and frontal slice of T for

any 8 ∈ [=1], 9 ∈ [=2], and : ∈ [=3]. Figure 2.1 gives an example of the horizontal, lateral, frontal

slice of a tensor T ∈ K=1×=2×=3 .

Horizontal Slice [T ]=1,:,: Lateral Slice [T ]:,=2,: Frontal Slice [T ]:,:,1

Figure 2.1 Visualization of a horizontal, a lateral, and a frontal slice of a tensor T ∈ K=1×=2×=3 .
The orange region from the leftmost subfigure, middle subfigure, and rightmost subfigure are a
horizontal slice, a lateral slice, and a frontal slice of T respectively.

Given T ∈ K=1×=2×=3 , one can define the associated block circulant matrix obtained from the

mode-3 slabs of T i.e.,

bcirc(T ) :=



T1 T=3 · · · T2

T2 T1 · · · T3
...

...
. . .

...

T=3 T=3−1 · · · T1


∈ K=1=3×=2=3 ,

where T8 := [T ]:,:,8. For the purpose of this section, we will utilize a slight modification of the

unfolding of a matrix along its second mode and we define

unfold(T ) :=
[
T>

1 · · · T>
=3

]>
∈ K=1=3×=2 and fold(unfold(T )) = T .

The t-product of tensors T ∈ K=1×=2×=3 and S ∈ K=2×=4×=3 is denoted by T ∗ S which is a tensor

of dimension =1 × =4 × =3 obtained via circular convolution. Specifically,

T ∗ S = fold(bcirc(T ) · unfold(S)). (2.3)
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The computational cost of the t-product based on Equation (2.3) isO(=1=2=
2
3=4), since bcirc(T )·

unfold(S) is the multiplication of a =1=3 × =2=3 matrix with a =2=3 × =4 matrix.

Define T as

T =
(
�=3 ⊗ �=1

)
· bcirc(T ) ·

(
�−1
=3 ⊗ �=2

)
,

where �= to represents the = × = Discrete Fourier Transform matrix and �−1
= is its matrix inverse.

By the property that a circulant matrix can be block-diagonalized by DFT, we can see that T is a

block-diagonal matrix. Notice that

unfold(S) =



S1

S2
...

S=3


(where S8 = [S]:,:,8)

=



S1 S=3 · · · S2

S2 S1 · · · S3
...

...
. . .

...

S=3 S=3−1 · · · S1


·



�=4

0
...

0


(where �=4 is the =4 × =4 identity matrix)

For simplicity, denote �1 as



�=4

0
...

0


. Hence, T ∗ S can also be expressed as

T ∗ S = fold(bcirc(T ) · unfold(S))

= fold (bcirc(T ) · bcirc(S) · �1)

= fold
((
�−1
=3 ⊗ �=1

)
·
(
�=3 ⊗ �=1

)
· bcirc(T ) ·

(
�−1
=3 ⊗ �=2

)
·
(
�=3 ⊗ �=2

)
· bcirc(S) · �1

)
= fold

((
�−1
=3 ⊗ �=1

)
· T ·

(
�=3 ⊗ �=2

)
· bcirc(S) ·

(
�−1
=3 ⊗ �=1

)
·
(
�=3 ⊗ �=1

)
· �1

)
= fold

((
�−1
=3 ⊗ �=1

)
· T · S ·

(
�=3 ⊗ �=1

)
· �1

)
.

Numerically, we implement the t-product of two tensors based on Algorithm 2.1.
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Algorithm 2.1 t-Product based on Fast Fourier Transform (FFT)
1: Input: T ∈ K=1×=2×=3 ,S ∈ K=2×=4×=3 .
2: T → T̂ := fft(T , [], 3); S → Ŝ := fft(S, [], 3).
3: for each 8 ∈ {1, 2, . . . , =3} do
4: [Ĉ]:,:,8 = [T̂ ]:,:,8 · [Ŝ]:,:,8.
5: end for
6: Output: Z → ifft(Ẑ, [], 3).

Note that the computational costs of fft(T , [], 3), fft(S, [], 3) and ifft(C, [], 3) are =1=2=3 log(=3),

=2=4=3 log(=3) and =1=4=3 log(=3) respectively. Thus, t-product based on FFT takesO(=1=2=3 log(=3)+

=2=4=3 log(=3)+=1=4=3 log(=3)+=1=2=4=3) = O(=1=2=4=3),which is more computational efficient.

Definition 1 (Tensor Frobenius norm). The tensor Frobenius norm ‖T ‖F of a third-order tensor

T ∈ K=1×=2×=3 is defined as ,

‖T ‖F :=
√∑
8, 9 ,:

|T8, 9 ,: |2 =
1

√
=3

‖bcirc(T )‖F.

Before we introduce the tensor spectral norm, let’s discuss mathematical insight to define such

a mathematical object. Suppose that (+, ‖ · ‖+ ) and (,, ‖ · ‖, ) are two finite-dimensional linear

normed space, where ‖ · ‖+ and ‖ · ‖, are two norms defined on + and , respectively. Suppose

! : + → , be a continuous linear operator. The operator norm of ! can be defined as

‖!‖ = sup
‖E‖+≤1

‖! (E)‖, .

Let + = K=1 and, = K=2 . Given a matrix � ∈ K=1×=2 , it is easy to see that operator ! defined as

! : (+, ‖ · ‖+ ) −→ (,, ‖ · ‖, )

E ↦−→ ! (E) = � · E
(2.4)

is a continuous linear operator. Different choices of ‖ · ‖+ and ‖ · ‖, will lead to different matrix

norms induced by the operator norm. For example, if ‖ · ‖+ and ‖ · ‖, are both Frobenius norm,

then the operator norm defined in Equation (2.5) is the same as the matrix spectral norm. Now let’s

suppose + = K=2×1×=3 and, = K=1×1×=3 . Given a tensor A ∈ K=1×=2×=3 , define operator L as

L : (+, ‖ · ‖F) −→ (,, ‖ · ‖F)

V ↦−→ ! (V) = A ∗V .

(2.5)
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It is easy to check the operator L is bounded and linear. The operator norm of L can be computed

as follows.
‖L‖ := sup

‖V‖≤1
‖A ∗ V‖F

= sup
‖V‖F≤1

‖bcirc(A) · unfold(V)‖F

= ‖ bcirc(A)‖

Remember that A =
(
�=3 ⊗ �=1

)
· bcirc(A) ·

(
�−1
=3 ⊗ �=2

)
. Notice that 1√

=3
(�=3 ⊗ �=1)> · 1√

=3
(�=3 ⊗

�=1) = I=1=3 and
√
=3(�−1

=3 ⊗ �=2)> ·
√
=3(�−1

=3 ⊗ �=2) = I=2=3 . Thus, 1√
=3
(�=3 ⊗ �=1) and

√
=3(�−1

=3 ⊗ �=2)

are two unitary orthogonal matrices. Hence, we have

‖A‖ = ‖
(
�=3 ⊗ �=1

)
· bcirc(A) ·

(
�−1
=3 ⊗ �=2

)
‖

= ‖ 1
√
=3

(�=3 ⊗ �=1)> ·
(
�=3 ⊗ �=1

)
· bcirc(A) ·

(
�−1
=3 ⊗ �=2

)
· √=3(�−1

=3 ⊗ �=2)>‖

= ‖(�=3 ⊗ �=1)> ·
(
�=3 ⊗ �=1

)
· bcirc(A) ·

(
�−1
=3 ⊗ �=2

)
· (�−1

=3 ⊗ �=2)>‖

= ‖(�>
=3 ⊗ �=1) ·

(
�=3 ⊗ �=1

)
· bcirc(A) ·

(
�−1
=3 ⊗ �=2

)
· ((�−1

=3 )
> ⊗ �=2)‖

= ‖=3(�−1
=3 ⊗ �=1) ·

(
�=3 ⊗ �=1

)
· bcirc(A) ·

(
�−1
=3 ⊗ �=2

)
· 1
=3

(�=3 ⊗ �=2)‖

= ‖ bcirc(A)‖.

Definition 2 ( 5 -diagonal tensor ). A tensor is called 5 -diagonal if each of its frontal slices is a

diagonal matrix.

Definition 3 (Tensor conjugate transpose). The conjugate transpose of a tensor T ∈ K=1×=2×=3 is

the =2 × =1 × =3 tensor T> obtained by conjugate transposing each of the frontal slice and then

reversing the order of the second to last frontal slices.

Definition 4 (Identity tensor). The identity tensor I ∈ K=×=×=3 is the tensor with the only first

frontal slices [T ]:,:,1 being the = × = identity matrix and with other frontal slices [T ]:,:,8 are all

zeros for 8 = 2, · · · , =3.

Definition 5 (Orthogonal tensor). If a tensor of size = × = × =3 is orthogonal if T> ∗ T = I =

T ∗ T> = I ∈ K=×=×=3
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Definition 6 (Partially orthogonal tensor). If a tensor of size =1 × =2 × =3 is partially orthogonal if

T> ∗ T = I ∈ K=2×=2×=3 or T ∗ T> = I ∈ K=1×=1×=3

Definition 7 (Moore-Penrose inverse [71]). T † ∈ K=2×=1×=3 is said to be the Moore-Penrose inverse

of T ∈ K=1×=2×=3 , if T † satisfies the following four equations,

T ∗ T † ∗ T = T , T † ∗ T ∗ T † = T †,(
T ∗ T †

)>
= T ∗ T †,

(
T † ∗ T

)>
= T † ∗ T .

Algorithm 2.2 Moore-Penrose inverse
1: Input: Z ∈ K=1×=2×=3 .
2: Z → Ẑ = fft(Z, [], 3).
3: for each 8 ∈ =3 do
4: [Ẑ]†:,:,8 = Moore-Penrose-inverse( [Ẑ]:,:,8)
5: end for
6: Output: Z† = ifft(Ẑ†, [], 3)

Definition 8 (Tensor spectral norm and condition number). The tensor spectral norm ‖T ‖2 of a

third-order tensor T is defined as ‖T ‖2 = ‖bcirc(T )‖2. The condition number of T is defined as:

^(T ) = ‖T †‖2 · ‖T ‖2.

Definition 9 (Standard tensor lateral basis). The lateral basis e̊8, is of size =1 × 1 × =3 with only

[e̊8]8,1,1 equal to 1 and the remaining equal to zero.

Definition 10 (Standard tensor tubal basis [109, 138]). A standard tubal basis ¤e: , is a 1 × 1 × =3

third mode tensor where all elements are zero except for a single nonzero element with a value of 1

at the (1, 1, :) entry.

Definition 11 ( Identity tensor). The identity tensor I ∈ K=×=×=3 is the tensor whose first frontal

slice is the = × = identity matrix and other frontal slices are all zeros.

Our research will focus on the subtensors of an underlying tensor with low tubal-rank. To ensure

that this work is self-contained, we will begin by introducing the concept of the sampling tensor as

follows.
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Figure 2.2 A Standard Tensor Lateral Basis. Figure 2.3 A Standard Tubal Basis.

Definition 12 (Sampling tensor). Given a tensor T ∈ K=1×=2×=3 and � ⊆ [=1], the horizontal

subtensor R of T with indices � can be obtained via

R := [T ] �,:,: = [I] �,:,: ∗ T ,

where I is defined in Definition 11.

For convenience, [I] �,:,: will be denoted by S� with the given index set �. Similarly, the lateral

sub-tensor C with indices � ⊆ [=2] can be obtained as C := [T ]:,�,: = T ∗ [I]:,�,:. The subtensor

W of T with horizontal indices � and lateral indices � can be represented as U := [T ] �,�,: =

S� ∗ T ∗ S� .

2.1.2 Tensor decomposition

Tensor decompositions provide a concise representation of the underlying structure of data,

revealing the low-dimensional subspace within which the data resides.

Theorem 2.1 (t-SVD). Let T ∈ K=1×=2×=3 . Then, it can be factored as

T = W ∗ Σ ∗ V>,

where W ∈ K=1×=1×=3 ,V ∈ K=2×=2×=3 are orthogonal and Σ ∈ K=1×=2×=3 is a f-diagonal tensor.

Numerically, we implement t-SVD based on Algorithm 2.3.

Algorithm 2.3 t-SVD
1: Input: T ∈ K=1×=2×=3 .
2: Z → Ẑ := fft(Z, [], 3).
3: for each 8 ∈ =3 do
4: [[Û]:,:,8, [Ŝ]:,:,8, [V̂]:,:,8] = SVD( [Ẑ]:,:,8)
5: end for
6: Output: ifft(Û, [], 3); ifft(Ŝ, [], 3); ifft(V̂, [], 3)
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From Algorithm 2.3, we can see that t-SVD is implemented by performing matrix SVD iter-

atively for a loop of =3 times. Thus, the computational complexity of t-SVD of a =1 × =2 × =3 is

O(min{=2
1=2=3, =1=

2
2=3})

Definition 13 (Tubal-rank andmulti-rank). Suppose the tensorT ∈ K=1×=2×=3 satisfies rank
(
[T̂ ]:,:,:

)
=

A: for : ∈ [=3]. Then ®A =
(
A1, A2, . . . , A=3

)
is called the multi-rank of T , denoted by rank< (T ). In

addition, max{A8 : 8 ∈ [=3]} is called the tubal-rank of T , denoted by rank(T ). We denote tubal-

rank as A or ‖®A ‖∞, and ‖®A ‖1 for the sum of the multi-rank.

Theorem 2.2 (Compact t-SVD). Let T ∈ K=1×=2×=3 with tubal-rank A. Then, it can be factored as

T = W ∗ Σ ∗ V>,

where W ∈ K=1×A×=3 ,V ∈ K=2×A×=3 are partially orthogonal and Σ ∈ KA×A×=3 is a f-diagonal

tensor. Numerically, we implement compact t-SVD based on Algorithm 2.4.

Algorithm 2.4 Compact t-SVD
1: Input: T ∈ K=1×=2×=3 .
2: Z → Ẑ := fft(Z, [], 3).
3: Initialize Ŵ = zeros(=1, A, =3), Ŝ = zeros(A, A, =3) and V̂ = zeros(=2, A, =3).
4: for each 8 ∈ =3 do
5: [,, (,+] = SVD( [Ẑ]:,:,8)
6: [Ŵ]:,:,8 = [,]:,1:A ;
7: [Ŝ]:,:,8 = [(]1:A,1:A ;
8: [V̂]:,:,8 = [+]:,1:A
9: end for

10: Output: W = ifft(Ŵ, [], 3);S = ifft(Ŝ, [], ();V = ifft(V̂, [], 3)

Lemma 2.1. [71, 69] [Best Tubal rank-A approximation]. Let the t-SVD of T ∈ R<×=×: be T =

U ∗S ∗V†. For a given positive integer A, define TA =
∑A
B=1 U(:, B, :) ∗S(B, B, :) ∗V†(:, B, :). Then

TA = argminT∈T | |T − T ||� , where T = {X ∗ Y† |X ∈ K<×A×: ,Y ∈ K=×A×: }.

Note thatS in t-SVD is organized in a decreasing order, i.e., | |S(1, 1, :) | |2 ≥ ||S(2, 2, :) | |2 ≥ ...,

which is implicitly defined in [69]. Therefore, the best rank-A approximation of tensors is similar

to PCA (principal component analysis) of matrices. After we introduce the compact t-SVD, we

introduce two important definitions based on this type of decomposition.
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Definition 14 (Tensor `0-incoherence condition). Given a tubal-rank A tensor T ∈ K=1×=2×=3 with

a compact t-SVD T = W ∗ S ∗ V>, we say T satisfy `0-incoherence condition if for all : ∈

{1 · · · , =3}, the following hold:

max
8=1,2,.,=1




[Ŵ]>:,:,: · e8





F
≤

√
`0A

=1
, max
9=1,2,...,=2




[V̂]>:,:,: · e 9





F
≤

√
`0A

=2
.

In certain instances, to accentuate the incoherence parameter of a specific tensor T , we will rep-

resent this parameter as `T .

In tensor decomposition, t-CUR decomposition, a self-expressiveness tensor decomposition of

a given 3-mode tensor, has received significant attention [4, 28, 56, 109]. Specifically, t-CUR

involves representing a tensor T ∈ K=1×=2×=3 as T ≈ C ∗U ∗ R, with C = [T ]:,�,: and R = [T ] �,:,:

for some � ⊆ [=2] and � ⊆ [=1]. There exist different versions of U. This work focuses on the

t-CUR decomposition of the form T ≈ C ∗ U† ∗ R with U = [T ] �,�,:. Under certain conditions,

this approximation accurately represents T . [28, 56] have detailed the conditions for exact t-CUR

decomposition. We begin by defining the tubal-rank of a 3-mode tensor:

For convenience, we present one theoretical result of t-CUR below.

Theorem 2.3 ( [28, 56]). Let T ∈ K=1×=2×=3 with multi-rank rank< (T ) = ®A . � ⊂ [=1] and � ⊂ [=2]

are two index sets. Denote C = [T ]:,�,:, R = [T ] �,:,:, and U = [T ] �,�,:. Then T = C ∗ U† ∗ R if

and only if rank< (C) = rank< (R) = ®A.

Theorem 2.3 can be visualized as follows.
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Figure 2.4 t-CUR decomposition.

2.1.3 Related work

Kilmer and Martin [71] introduced novel definitions for tensor multi-rank and tubal-rank char-

acterized by the t-SVD. Researchers commonly employ a convex surrogate to tubal-rank function

augmented with regularization of the tensor nuclear norm (TNN), as indicated in [64, 66, 82, 84,

138, 143]. While a pioneering optimization method featuring TNN is initially proposed to tackle

the TC problem in [139], this approach necessitates the simultaneous minimization of all singu-

lar values across tensor slices, which hinders its ability to accurately approximate the tubal-rank

function [61, 130]. To circumvent this challenge, various truncated methods have been introduced

as alternatives. Notably, examples include the truncated nuclear norm regularization [61] and the

tensor truncated nuclear norm (T-TNN) [130]. Furthermore, Zhang et al. [135] introduced a novel

strategy for low-rank regularization, focusing on nonlocal similar patches. However, the aforemen-

tioned tensor completion algorithms are designed based on Bernoulli sampling model. Despite

its foundational role in probability theory and statistics, Bernoulli sampling frequently encounters

practical limitations when applied to real-world data collection scenarios [43, 94]. In the realm of

collaborative filtering, where the tensor’s horizontal and lateral slices denote users and rated ob-

jects (such as movies and merchandise) over a specific time period, the application of the Bernoulli

sampling model is impractical. As this model implicitly assumes that every user has an equal prob-
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ability of rating any given object, an assumption that is seldom valid in real-world scenarios. The

variability in user preferences and interaction patterns makes this equal-probability assumption un-

realistic, thereby challenging the efficacy of the Bernoulli sampling approach in such contexts.

2.2 Proposed sampling model
We aim to develop a sampling strategy that is both efficient and effective for a range of real-

world scenarios. Inspired by the cross-concentrated sampling model for matrix completion [19] and

t-CUR decomposition [28, 56, 109], we introduce a novel sampling model tailored for tensor data,

named Tensor Cross-Concentrated Sampling (t-CCS). The t-CCSmodel extracts samples from both

horizontal and lateral subtensors of the original tensor. Formally, let R = [T ] �,:,: and C = [T ]:,�,:

be the selected horizontal and lateral subtensors of T , determined by index sets � and � respectively.

Next, we sample entries on R and C based on the Bernoulli sampling model. The t-CCS procedure

is detailed in Procedure 2.5. Notably, t-CCS transitions to t-CUR sampling when the samples are

dense enough to fully capture the subtensors and reverts to Bernoulli sampling when all horizontal

and lateral slices are selected. The indices of the cross-concentrated samples are denoted as ΩR

and ΩC , corresponding to the notation used for the subtensors. Our task is to recover an underlying

tensor T with tubal-rank A from the observations on ΩR ∪ΩC:

min
T̃

〈
PΩR∪ΩC (T − T̃ ),T − T̃

〉
, subject to tubal-rank(T̃ ) = A, (2.6)

where 〈·, ·〉 is the Frobenius inner product and PΩR∪ΩC is defined in (2.2).

Algorithm 2.5 Tensor Cross-Concentrated Sampling (t-CCS)
1: Input: T ∈ K=1×=2×=3 .
2: Uniformly select the horizontal and lateral indices, denoted as � and �, respectively.
3: Set R := [T ] �,:,: and C := [T ]:,�,:.
4: Sample entries from R and C based on Bernoulli sampling models. Record the locations of

these samples as ΩR and ΩC for R and C, respectively.
5: Output: [T ]ΩR∪ΩC , ΩR , ΩC , �, �.

This chapter aims to provides a theoretical well-posedness of the t-CCS model, our key theo-

retical contribution, detailed in Theorem 2.6.
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2.3 Theoretical Results
This section is dedicated to providing a theoretical analysis of the well-posedness of the t-CCS

model, which represents our principal theoretical contribution. This analysis is thoroughly detailed

in Theorem 2.6. Before presenting our main theoretical result Theorem 2.6, we firstly introduce two

important supporting theorems, where the proof of main theoretical result rely on. The first theo-

rem, Theorem 2.4, establishes the necessary lower bounds for the number of lateral and horizontal

slices required when uniformly sampling these slices to ensure an exact t-CUR decomposition. The-

orem 2.4 can be seen as an adaptation of [109, Corollary 3.10], featuring a different proof method

specifically designed for uniform sampling and exact t-CUR, and provides a more thorough analysis

for this specific context.

Before presenting Theorem 2.4, let’s briefly review the sampling schemes for matrix CUR de-

composition. Various sampling schemes are designed to ensure the chosen rows and columns val-

idate the CUR decomposition. For example, deterministic methods are explored in works such

as [6, 8, 79]. Randomized sampling algorithms for CUR decompositions and the column subset

selection problem have been extensively studied, as seen in [32, 38, 40, 86, 114, 122]. For a compre-

hensive overview of both approaches, refer to [57]. Hybrid methods that combine both approaches

are discussed in [9, 10, 17].

Particularly, for a rank A matrix in K=1×=2 with `-incoherence, sampling O(`A log(=1)) rows

and O(`A log(=2)) columns is sufficient to ensure the exact matrix CUR decomposition [12, 32].

In this work, we extend the uniform sampling results from the matrix setting to the tensor setting.

Theorem 2.4. Let T ∈ K=1×=2×=3 satisfy the tensor `0-incoherence condition and have multi-rank

®A. The indices � and � are selected uniformly randomly without replacement from [=1] and [=2]

respectively. Set C = [T ]:,�,:, R = [T ] �,:,: and U = [T ] �,�,:. Then T = C ∗ U† ∗ R holds with
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probability at least 1 − 1
=
V

1
− 1
=
V

2
, provided that

|� | ≥ 2V`0‖®A ‖∞ log (=1‖®A ‖1)

|� | ≥ 2V`0‖®A ‖∞ log (=2‖®A ‖1) .

Another important supporting theorem is Theorem 2.5, which adapts [138, Theorem 3.1] for

tensor recovery with tubal-rank A under Bernoulli sampling, essential for Theorem 2.6. Our contri-

bution refines the theorem by explicitly detailing the numerical constants in the original sampling

probability. The proof of Theorem 2.5 is under the same framework as in [84, 138].

Theorem 2.5. Let T ∈ K=1×=2×=3 of tubal-rank A satisfy the tensor `0-incoherence condition. And

its compact t-SVD is T = U ∗ S ∗ V> where U ∈ K=1×A×=3 ,S ∈ KA×A×=3 and V ∈ K=2×A×=3 .

Suppose the entries in Ω are sampled according to the Bernoulli model with probability ?. If

? ≥ 256V(=1 + =2)`0A log2(=1=3 + =2=3)
=1=2

with V ≥ 1, (2.7)

then T is the unique minimizer to

min
T

‖T ‖TNN, subject to PΩ(T ) = PΩ(T ),

with probability at least 1 − 3 log(=1=3+=2=3)
(=1=3+=2=3)4V−2 .

Theorem 2.6. Let T ∈ K=1×=2×=3 satisfy the tensor `0-incoherence condition and have multi-rank

®A with condition number ^. Let � ⊆ [=1], � ⊆ [=2] be chosen uniformly with replacement to yield

R = [T ] �,:,: and C = [T ]:,�,:. And suppose thatΩR andΩC are generated from R and C according

to the Bernoulli distributions with probability ?R and ?C respectively. If

|� | ≥ 3200V`0A^
2 log2(=1=3 + =2=3),

|� | ≥ 3200V`0A^
2 log2(=1=3 + =2=3),

?R ≥ 1600( |� | + =2)`0A^
2 log2((=1 + =2)=3)

|� |=2
,

?C ≥ 1600( |� | + =1)`0A^
2 log2((=1 + =2)=3)

|� |=1
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for some absolute constant V > 1, then T can be uniquely determined from the entries on ΩR ∪ΩC

with probability at least

1 − 1
(=1=3 + =2=3)800V^2 log(=2)

− 1
(=1=3 + =2=3)800V^2 log(=1)

− 3 log(=1=3 + |� |=3)
(=1=3 + |� |=3)4V−2 − 3 log(=2=3 + |� |=3)

(=2=3 + |� |=3)4V−2 .

Remark 1. (i) When =1 = =2 = =, the results in the above theorem can be simplified to that T

can be uniquely determined from the entries onΩR∪ΩC with probability at least 1− 6 log(2==3)
(==3)4V−2 .

(ii) Supposed T with multi-rank ®A of low tubal-rank A is the underlying tensor we aim to re-

cover. Notice that such T is one of feasible solutions to the optimization problem (2.1) since

tubal-rank(T ) = A. Additionally, it is evident that for any T̃ with tubal-rank A ,

〈PΩ(T̃ − T ), T̃ − T )〉 ≥ 0 and 〈PΩ(T − T ),T − T〉 = 0.

Thus, T is a global minimizer to the optimization problem (2.1). According to Theorem 2.6,

T with low tubal-rank A can be reliably recovered using the t-CCS model with high probabil-

ity. Consequently, we can obtain a minimizer for the non-convex optimization problem (2.1)

through samples that are partially observed from the t-CCS model.

Theorem 2.6 elucidates that a sampling complexity of

O(A^2 max{=1, =2}=3 log2(=1=3 + =2=3))

is sufficient for TC on t-CCSmodel. This complexity is a ^2 factor worse than that of the benchmark

provided by the state-of-the-art Bernoulli-sampling-based TC methods, such as the TNN method

detailed by Zhang and Aeron [138], which demands

O(A max{=1, =2}=3 log2(=1=3 + =2=3))

samples. This observation suggests the potential for identifying a more optimal lower bound, which

will leave as a future direction.
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2.4 An efficient solver for t-CCS
In this section, we investigate how to effectively and efficiently solve the t-CCS-based TC prob-

lem. First, we consider directly applying several existing TC algorithms including BCPF [140],

TMac [129], TNN [138], and F-TNN [66] to a t-CCS-based image recovery problem, where BCPF

is CP-based algorithm, TMac is Tucker-based algorithm, TNN and F-TNN are two tubal-rank-based

algorithms. However, it turns out that these methods are not well-suited for the tensor completion

problem based on t-CCS model. As illustrated in Figure 2.5, these approaches fail to yield reliable

visualization outcomes. This indicates the necessity to develop new algorithm(s) for the proposed

t-CCS model.

Ground truth Observed BCPF TMac TNN F-TNN

Figure 2.5 Visual results of color image inpainting using t-CCS samples at an overall sampling rate
of 20% with BCPF, TMac, TNN, and F-TNN algorithms.

2.4.1 Iterative tensor CUR completion algorithm

To efficiently use the t-CCS structure, we develop the Iterative Tensor CURCompletion (ITCURC),

a non-convex algorithm inspired by projected gradient descent. ITCURC updates R, C, and U at

each iteration to preserve the tubal-rank A of T . The update formulas are:

[R:+1]:,�û ,: := [T: ] �,�û ,: + ['
[
PΩR (T − T: )

]
�,�û ,: , (2.8)

[C:+1] �û ,:,: := [T: ] �û ,� + [�
[
PΩ�

(T − T: )
]
�û ,�,: , (2.9)

U:+1 := HA

(
[T: ] �,�,: + [*

[
PΩ'∪Ω�

(T − T: )
]
�,�,:

)
, (2.10)

where [', [� , [* are step sizes, and HA is the truncated t-SVD operator. [R:+1]:,�,: and [C:+1] �,:,:

are updated to U:+1. The algorithm, starting from T0 = 0, iterates until 4: ≤ Y, where Y is a preset
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tolerance and

4: =

〈
PΩR∪ΩC (T − T: ) ,T − T:

〉〈
PΩR∪ΩC (T ),T

〉 . (2.11)

The algorithm is summarized in Algorithm 2.6.

Algorithm 2.6 Iterative CUR tensor completion for t-CCS (ITCURC)
1: Input: [T ]ΩR∪ΩC : observed data; ΩR , ΩC : observed locations; �, � : horizontal and lateral

indexes that define R and C respectively; [', [� , [* : step sizes; A : target tubal-rank; Y :
tolerance level.

2: Set T0 = 0 ∈ K=1×=2×=3 .
3: while 4: > Y do // 4: is defined in (2.11)
4: [R:+1]:,�û ,: = [T: ] �,�û ,: + [' [PΩR ( [T ]ΩR∪ΩC − T: )] �,�û ,:
5: [C:+1] �û ,:,: = [T: ] �û ,�,: + [� [PΩC ( [T ]ΩR∪ΩC − T: )] �û ,�,:
6: U:+1 = HA ( [T: ] �,�,: + [* [PΩR∪ΩC ( [T ]ΩR∪ΩC − T: )] �,�,:)
7: [R:+1]:,�,: = U:+1 and [C:+1] �,:,: = U:+1.
8: Update T:+1// More details see (2.12), (2.13), (2.14)
9: : = : + 1

10: end while
11: Output: C:+1, U:+1 and R:+1

Now let’s outlineAlgorithm 2.6’s implementation and computational costs. Updating [R:+1]:,�û ,:

and [C:+1] �û ,:,: incurs O (|ΩR | + |ΩC | − |ΩU |) flops, focusing only on observed locations (refer

to (2.8) and (2.9)). The update of U:+1, sized |� | × |� | × =3, involves (i) computing Ũ:+1 :=

[T: ] �,�,: + [* [PΩR∪ΩC ( [T ]ΩR∪ΩC − T: )] �,�,: and (ii) finding its tubal-rank A approximation via

t-SVD. The cost for (i) is O(|ΩU |), while (ii) requires max{O(|� | |� |A=3),O(|� | |� |=3 log(=3))},

making the total update cost for U: to be max{O(|� | |� |A=3),O(|� | |� |=3 log(=3))}.

Considering the cost of updating T:+1 in Algorithm 2.6, we focus on [T:+1] �û ,�,:, [T:+1] �,�û ,:,

and [T:+1] �,�,: each iteration. The update for [T:+1] �û ,�,: is:

[T:+1] �û ,�,: = [C: ] �û ,:,: ∗ U
†
:
∗ U: = [C: ] �û ,:,: ∗ [V: ]:,1:A,: ∗ [V: ]>:,1:A,:. (2.12)

where U: = W: ∗ Σ: ∗ V>
:

is U: ’s t-SVD. Given [V: ]:,1:A,:’s size as |� | × A × =3, the compu-

tational cost is O(=1 |� |A=3) flops for (2.12), making the total complexity for updating [T:+1] �û ,�,:
also O(=1 |� |A=3) flops. We update [T:+1] �,�û ,: by

[T:+1] �,�û ,: := [W: ]:,1:A,: ∗ [W: ]>:,1:A,: ∗ [R: ]:,�û ,:. (2.13)
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Similar analysis for updating [T:+1] �,�û ,:, the computational complexity of updating [T:+1] �,�û ,: is

O(=2 |� |A=3). And we update [T:+1] �,�,: by setting

[T:+1] �,�,: := U: . (2.14)

Thus, computational complexity of updating T:+1 is O(|� |A=2=3 + |� |A=1=3).

Computation of the stopping criterion 4: cost O (|Ω' | + |Ω� | − |Ω* |) flops as we only make

computations on the observed locations.

The computational costs per iteration are summarized in Table 2.1, showing a complexity of

O(A |� |=2=3 + A |� |=1=3) when |� | � =1 and |� | � =2.

Table 2.1 A Comprehensive Examination of the Per-Iteration Computational Cost for ITCURC.

Step Computational Complexity

Line 3: Computing the stopping criterion 4: O (|Ω' | + |Ω� | − |Ω* |)
Line 4: [R:+1]:,�û ,: = [T:] �,�û ,: + [' [PΩR ( [T ]ΩR∪ΩC − T:)] �,�û ,: O (|Ω' | − |Ω* |)
Line 5: [C:+1] �û ,:,: = [T:] �û ,� ,: + [� [%ΩC ( [T ]ΩR∪ΩC − T:)] �û ,� ,: O (|Ω� | − |Ω* |)
Line 6: U:+1 = HA ( [T:] �,�,: + [* [PΩR∪ΩC ( [T ]ΩR∪ΩC − T:)] �,�,:) O(max{|� | |� |A=3, |� | |� |=3 log(=3)})

Line 8: Updating T:+1 O(A |� |=2=3 + A |� |=1=3)

2.5 Numerical Experiments
This section presents the performance of our t-CCS based ITCURC through numerical exper-

iments on both synthetic and real-world data. The computations are performed on one of shared

nodes of the ComputingCluster with a 64-bit Linux system (GLNXA64), featuring Intel(R)Xeon(R)

Gold 6148 CPU (2.40 GHz). All experiments are carried out using MATLAB 2022a.

2.5.1 Synthetic data examples

This section evaluates ITCURC for t-CCS tensor completion, exploring the needed sample sizes

and the impact of Bernoulli sampling probability and fiber sampling rates on low-tubal-rank tensor

recovery.

We assess ITCURC’s tensor recovery capability under different combinations of horizontal and

lateral slice numbers |� | = X=1, |� | = X=2 and Bernoulli sampling rates ? on selected subtensors.

The study uses tensors of size 768 × 768 × 256 with tubal-ranks A ∈ {2, 5, 7}. To counteract
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A = 2 A = 5 A = 7

Figure 2.6 (Row 1) 3D and (Row 2) 2D views illustrate ITCURC’s empirical phase transition for
the t-CCS model. X = |� |/768 = |� |/768 shows sampled indices ratios, ? is the Bernoulli sampling
probability over subtensors, and U is the overall tensor sampling rate. White and black in the 768×
768×256 tensor results represent success and failure, respectively, across 25 tests for tubal ranks 2,
5, and 7 (Columns 1-3). The U needed for success remains consistent across different combinations
X and ?.

randomness, we conduct 25 tests for each (X, ?, A) set, a test is successful if

Y: :=




T − C: ∗W†
:
∗ R:





F

‖T ‖F
≤ 10−3.

Our empirical phase transition results are presented in Figure 2.6, with the first row showing a

3D view of the phase transition results and the second row the corresponding 2D view. White and

black pixels in these visuals indicate all tests’ success and failure, respectively. The results highlight

that higher overall sampling rates are needed for successful completion with larger tubal-ranks A.

Importantly, tensor completion is achievable with sufficiently large overall sampling rates, regard-

less of the specific horizontal, lateral slice sizes, and subtensor sampling rates (see the results of 2D

view). This demonstrates ITCURC’s flexibility in sampling low-tubal-rank tensors for successful

reconstruction. Additionally, we include our numerical results for the convergence of TICURC in

the following section. In the following, we include further empirical data demonstrating the conver-
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gence behavior of the ITCURC algorithm within the t-CCS model framework. In this experiment,

we form a low tubal-rank tensor T = A ∗ B ∈ R=1×=2×=3 using two Gaussian random tensors,

where A ∈ R=1×A×=3 and B ∈ RA×=2×=3 . Our objective is to examine the convergence behavior of

the TICURC algorithm under different conditions. For the simulations, we set =1 = =2 = 768 and

=3 = 256, and generate partial observations using the t-CCS model by adjusting the rank A and

configuring the concentrated subtensors as R ∈ RX=1×=2×=3 and C ∈ R=1×X=2×=3 , with 0 < X < 1.

For each fixed A, we maintain a constant overall sampling rate U.

Utilizing the observed data, the TICURC algorithm is then employed to approximate the original

low tubal-rank tensor. The algorithm continues until the stopping criterion Y: ≤ 10−6 is met, where

Y: represents the relative error between the estimate at the :-th iteration and the actual tensor,

defined as Y: = ‖T−T̂: ‖�
‖T ‖� .

For each specified set of parameters (A, X, U), we generate 10 different tensor completion scenar-

ios. The mean relative errors Y: , along with the specific configurations, are reported in Figures 2.7

to 2.10. One can see that TICURC can achieve an almost linear convergence rate.

(a) A = 2, U = 0.15 (b) A = 5, U = 0.25

Figure 2.7 The averaged relative error of TICURC under the t-CCS model with respect to iterations
over 10 independent trials with X = 0.20.
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(a) A = 2, U = 0.15. (b) A = 5, U = 0.25

Figure 2.8 The averaged relative error of TICURC under the t-CCS model with respect to iterations
over 10 independent trials with X = 0.25.

(a) A = 2, U = 0.15 (b) A = 5, U = 0.25

Figure 2.9 The averaged relative error of TICURC under the t-CCS model with respect to iterations
over 10 independent trials with X = 0.30.

2.5.2 Real-world Applications

This section presents an evaluation and comparison between the t-CCSmodel and the Bernoulli

Sampling model through tensor completion tasks across various types of data. Our goal is to ex-

amine assess the practical feasibility and real-world applicability of the t-CCS model, emphasizing

its effectiveness in diverse operational environments. Our experiments are designed to compare the

performance of ITCURC, designed based on t-CCS model, against with established TC methods

designed based on Bernoulli sampling model such as BCPF [140], TMac [129], TNN [138], and
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(a) A = 2, U = 0.15 (b) A = 5, U = 0.25

Figure 2.10 The averaged relative error of TICURC under the t-CCSmodel with respect to iterations
over 10 independent trials with X = 0.35.

F-TNN [66]. Our test metric focuses on the quality and execution time of the reconstruction. Qual-

ity is assessed using the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index

(SSIM) where

PSNR = 10 log10

(
=1=2=3‖T ‖2

∞

‖T − T̃ ‖2
F

)
.

and SSIM evaluates the structural similarity between two images, as detailed in [125]. On account

of that the data are third-order tensors, we report the mean values of SSIM of all the frontal slices.

Higher PSNR and SSIM scores suggest better reconstruction quality.

Our experimental process is as follows. We first generate random observations via the t-CCS

model: uniformly randomly selecting concentrated horizontal (R) and lateral (C) subtensors, de-

fined as R = [T ] �,:,: and C = [T ]:,�,:, with |� | = X=1 and |� | = X=2; entries in R and C are sampled

based on the Bernoulli sampling model with locations of the observed entries denoted by ΩR and

ΩC . The procedure of the t-CCS model results in a tensor that’s only partially observed, primarily

in the R and C. ITCURC is then applied to estimate the missing entries and thus recover the origi-

nal tensor. For comparison, we also generate observations of the entire original tensor T using the

Bernoulli sampling model with a probability ?T := |ΩR∪ΩC |
=1=2=3

. Additionally, we estimate the missing

data using several tensor completion methods: BCPF1, which is based on the CP decomposition
1https://github.com/qbzhao/BCPF
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framework; TMac2, which utilizes the Tucker decomposition framework; and TNN3 and F-TNN4,

which are both grounded in the t-SVD framework. To ensure reliable results, we repeat this entire

procedure 30 times, averaging the PSNR and SSIM scores and the runtime to minimize the effects

of randomness.

2.5.2.1 Color image completion

Color images, viewed as 3D tensors with dimensions for height, width, and color channels, are

effectively modeled as low-tubal-rank tensors [80, 83]. In our tests, we focus on two large-size

images: ‘Building’5 (of size 2579×3887×3) and ‘Window’6 (of size 3009×4513×3). We present

averaged test results over various overall observation rates (U) in Table 2.2, and visual comparisons

at U = 20% in Figure 2.11.

Ground truth BCPF TMac TNN F-TNN ITCURC

Figure 2.11 The visualization of color image inpainting for Building andWindow datasets by setting
tubal-rank A = 35 with the percentage selected horizontal and lateral slices X = 13% with overall
sampling rate 20% for TICUR algorithm, while other algorithms are applied based on Bernoulli
sampling model with the same overall sampling rate 20%. Additionally, t-CCS samples on the
Building for ITCURC are the same as those in Figure 2.5.

Figure 2.11 presents a clear visual comparison of results from different methods at a 20% over-

all sampling rate, where the algorithms BCPF, TMac, TNN, F-TNN are applied on the Bernoulli

Sampling model and ITCURC are applied on t-CCS model. Ground truth is the original image of a

building, and a window. BCPF underperforms in visual effects compared to other methods. TNN

shows slight variations from ground truth, maintaining colors and details with minor discrepancies.
2https://xu-yangyang.github.io/TMac/
3https://github.com/jamiezeminzhang/
4https://github.com/TaiXiangJiang/Framelet-TNN
5https://pxhere.com/en/photo/57707
6https://pxhere.com/en/photo/1421981
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TMac reveals some notable differences. F-TNN improves reflection fidelity and color saturation,

closely resembling ground truth. ITCURC also achieves the high similarity to Ground truth, accu-

rately reproducing colors and details. Moreover, ITCURC significantly outperforms TMac, TNN,

and F-TNN in the t-CCS based color image completion task, evidenced by the unsatisfactory results

of BCPF, TMac, TNN, and F-TNN under t-CCS model, as illustrated in Figure 2.5.

Table 2.2 Image inpainting results on the Building and Window datasets. The best results are
emphasized in bold, while the second-best results are underlined. ITCURC-X refers to the ITCURC
method with the percentages of selected horizontal and lateral slices set at a fixed rate of X%. The
t-CCS based algorithm ITCURC-X%s are performed on t-CCS scheme while other Bernoulli based
algorithms are performed on Bernoulli Sampling scheme.

Dataset Building Window

Overall Observation Rate 12% 16% 20% 12% 16% 20%

PSNR

ITCURC-11 28.9249 31.0050 32.1645 35.2830 36.1611 37.0236
ITCURC-12 28.5518 30.8055 31.9489 35.1195 36.1145 37.0174
ITCURC-13 28.1893 30.7260 31.6825 35.0196 36.1215 36.8885

BCPF 26.7939 28.2949 29.4298 30.1611 33.9990 35.4780
TMac 27.0425 30.1755 32.3632 33.2673 36.6370 37.5877
TNN 26.3466 30.3844 31.7512 31.8747 34.6443 36.7893
F-TNN 28.2529 30.1521 33.1660 35.6747 36.9233 37.2618

SSIM

ITCURC-11 0.8310 0.8880 0.9118 0.8571 0.8738 0.8848
ITCURC-12 0.8172 0.8818 0.9033 0.8535 0.8733 0.8850
ITCURC-13 0.8016 0.8774 0.8954 0.8504 0.8731 0.8837

BCPF 0.8639 0.8761 0.8873 0.8269 0.8554 0.8727
TMac 0.8402 0.8586 0.9111 0.8200 0.8928 0.9035
TNN 0.6458 0.8257 0.8382 0.8333 0.8564 0.8804
F-TNN 0.7583 0.8354 0.8626 0.8745 0.8899 0.9066

Runtime (sec)

ITCURC-11 10.9354 17.3187 18.1098 23.8990 24.1286 25.1853
ITCURC-12 10.7715 19.3517 19.7731 25.5856 26.3275 28.0392
ITCURC-13 12.2208 21.2458 22.0287 28.8653 29.4986 30.8361

BCPF 213.6800 360.2903 613.3072 345.3425 500.3060 1629.8061
TMac 92.9568 104.8518 108.6827 233.8853 242.7499 259.6068
TNN 3651.4556 3289.5535 3004.6557 5801.1631 6572.9697 6690.7945
F-TNN 2642.9409 2692.6197 2267.5622 4739.2703 4134.5206 4105.0327

Table 2.2 shows ITCURC typically offers quality that is comparable to that of Bernoulli Sam-

pling based TC algorithms. In runtime efficiency, ITCURC leveraging the t-CCS model signifi-

cantly surpasses BCPF, TMac, TNN, and F-TNN, all of which are based on the Bernoulli sampling

model. This efficiency enhancement highlights the t-CCS model’s superior performance in prac-

tical applications. Additionally, ITCURC’s consistent performance in delivering similar quality

results across different X, provided the overall sampling rates are consistent. These highlight the
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flexibility and feasibility of the t-CCS model.

2.5.2.2 MRI reconstruction

In this study, we test on a MRI heart dataset7 (of size 320 × 320 × 110), where compact t-SVD

with tubal-rank 35 yields less than 10% error, suggesting low-tubal-rank property of dataset. The

visualization of reconstruction of MRI data using different methods at a 30% overall sampling rate

are presented in Figure 2.12, and reconstruction quality and runtime are detailed in Table 2.3.

Ground truth BCPF TMac TNN F-TNN ITCURC

Figure 2.12 Visualizations of MRI data recovery using ITCURC with tubal rank A = 35, lateral and
horizontal slice selection rate X = 27%, and an overall sampling rate of 30%. Other algorithms are
applied under Bernoulli sampling with the same overall sampling rate. Results for slices 51, 66,
86, and 106 are shown in rows 1 to 4, with a 1.3× magnified area at the bottom left of each result
for clearer comparison.

Figure 2.12 shows recovery results for four frontal MRI slices using BCPF, TMac, TNN, F-TNN

all under Bernoulli sampling model, and ITCURC under t-CCS model. The groundtruth serves as
7http://medicaldecathlon.com/dataaws
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the actual dataset, from which missing values are to be predicted by the different algorithms. BCPF

shows notable artifacts and lacks the sharp edges of the heart’s interior structures. TMac improves

over BCPF but still presents a softer representation of cardiac anatomy. TNN enhances the detail

prediction, resulting in a more accurate completion of the tensor that begins to resemble the ref-

erence more closely. F-TNN maintains improvements on detail prediction, and edges within the

cardiac structure suggest a refined approach to tensor completion. ITCURC shows a reconstruction

where the cardiac structures are clearly defined, reflecting the structure present in the Ground truth

without implying superiority, but rather indicating effectiveness in predicting the missing values.

The highlighted regions of interest (ROIs), marked in blue, allow for a detailed comparison across

the methods. In these regions of interest (ROIs), though ITCURC’s reconstructions may not provide

the most visually appealing results, they demonstrate efficiency in preserving structural integrity

and texture, which are crucial aspects for clinical applications. Table 2.3 effectively demonstrates

the flexibility and feasibility of the t-CCS model and we can see that reconstruction performance

of t-CCS based method ITCURC generally aligns with, or matches, the reconstruction quality of

Bernoulli-sampling-based TC methods. Furthermore, in terms of runtime efficiency, ITCURC, im-

plemented under the t-CCS model, demonstrates a marked superiority by significantly outperform-

ing alternatives such as BCPF, TMac, TNN, and F-TNN, all of which are applied under Bernoulli

sampling scheme. This notable advantage distinctly underscores the enhanced effectiveness of the

t-CCS model in practical applications.

2.5.2.3 Seismic data reconstruction

Geophysical 3D seismic data is often modeled as a tensor with inline, crossline, and depth

dimensions. In our analysis, we focus on a seismic dataset8 of size 51× 191× 146, where compact

t-SVD with tubal-rank 3 yields less than 5% error, suggesting low-tubal-rank property of dataset.

The corresponding results are detailed in Figure 2.13 and Table 2.4.

Figure 2.13 presents the comparative analysis of seismic completion algorithms: BCPF, TMac,

TNN, and F-TNN, applied based on the Bernoulli sampling model, in contrast to ITCURC, which is
8https://terranubis.com/datainfo/F3-Demo-2020
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Table 2.3 The quantitative results for MRI data completion are presented, with the best results in
bold and the second-best underlined. ITCURC-X represents the ITCURC method specifying that
the selected proportion of horizontal and lateral slices is exactly X%. The t-CCS based algorithm
ITCURC-X%s are performed on t-CCS scheme while other Bernoulli based algorithms are per-
formed on Bernoulli Sampling scheme.

Overall Observation Rate 10% 15% 20% 25% 30%

PSNR

ITCURC-23 22.4004 24.3553 26.9104 29.1861 30.3911
ITCURC-25 22.2548 24.0435 26.9940 29.0219 31.1752
ITCURC-27 22.1617 23.9311 27.0871 29.0699 31.2539

BCPF 22.6581 24.5373 25.1663 25.8111 26.2042
TMac 22.8690 25.4225 27.7802 29.1526 31.1648
TNN 23.4779 25.3480 27.9423 28.4522 30.5580
F-TNN 21.8172 25.7453 27.1969 29.3630 31.3651

SSIM

ITCURC-23 0.6020 0.6821 0.7584 0.8160 0.8451
ITCURC-25 0.5990 0.6769 0.7571 0.8084 0.8619
ITCURC-27 0.5990 0.6751 0.7567 0.8086 0.8600

BCPF 0.6817 0.7151 0.7192 0.7301 0.7367
TMac 0.6804 0.7323 0.7873 0.8227 0.8924
TNN 0.6304 0.7494 0.7677 0.7984 0.8793
F-TNN 0.6442 0.7507 0.8181 0.8562 0.8871

Runtime (sec)

ITCURC-23 5.7908 7.0230 4.8030 5.3058 5.9484
ITCURC-25 5.4241 8.3488 5.5303 5.9375 6.7111
ITCURC-27 5.8075 8.8408 6.0685 6.4371 7.4916

BCPF 53.1651 88.2777 111.1949 180.6596 279.2789
TMac 30.4813 28.0944 28.6216 28.9400 30.0219
TNN 87.7591 84.0952 56.9761 57.9823 58.2098
F-TNN 91.2048 86.3112 84.0228 82.2064 81.2119

applied based on the t-CCSmodel. The ground truth serves as the definitive reference, with its stark

textural definition. BCPF falls short of delivering optimal fidelity, with finer details lost in trans-

lation. TMac is commendable for preserving the texture’s integrity, providing a cohesive image.

TNN improves upon this, sharpening textural nuances and closing in on the ground truth’s visual

quality. F-TNN excels visually, capturing essential texture information effectively, a significant ad-

vantage when the emphasis is on recognizing general features. ITCURC demonstrates comparable

visual results though less effective than other methods in terms of PSNR and SSIM.

Table 2.4 shows that the t-CCS based method, ITCURC, achieves the fastest processing speeds

while preserving satisfactory levels of PSNR and SSIM. This underscores the suitability of the t-

CCS model for applications where rapid processing is essential without significant loss in visual
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Ground truth BCPF TMac TNN F-TNN ITCURC

Figure 2.13 Visualization of seismic data recovery results by setting tubal-rank A = 3 for ITCURC
with percentage of selected horizontal and lateral slices X = 17% with overall sampling rate 28%
while other methods are applied based on Bernoulli sampling models with the same overall sam-
pling rate 28%. Displayed are slices 15, 25, and 35 from top to bottom, with a 1.2×magnified area
in each set for clearer comparison.

accuracy. Furthermore, the consistent performance of ITCURC across various subtensor sizes and

sampling rates further emphasizes flexibility and feasibility of the t-CCS model in diverse opera-

tional environments.

Discussions on the results of real-world datasets

From the above results, it is evident that our method surpasses others in runtime with signifi-

cantly lower computational costs. Consider a tensor of dimensions =1 × =2 × =3. When a framelet

transform matrix is constructed using = filters and ; levels, the computational cost per iteration for

framelet-based Tensor Nuclear Norm (F-TNN) is given by O((=;− ; +1)=1=2=3(=3+min(=1, =2))).

This formulation incorporates the processes involved in generating a framelet transform matrix,

as elaborated in seminal works such as [21] and [65]. While enhancing the number of levels

and filters in F-TNN can improve the quality of results, it also escalates the computational bur-

den, particularly for tensors of substantial size. In our experiments, we have set both the framelet

level and the number of filters to 1 for the F-TNN implementation. For comparison, the com-
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Table 2.4 Quantitative results for seismic data completion: TMac, TNN, F-TNN with Bernoulli
sampling, and our method with t-CCS. Best results are in bold, and second-best are underlined.
ITCURC-X refers to the ITCURC method with the percentages of selected horizontal and lateral
slices set at a fixed rate of X%. The t-CCS based algorithm ITCURC-X%s are performed on t-CCS
scheme while other Bernoulli based algorithms are performed on Bernoulli Sampling scheme.

Overall Observation Rate 12 % 16 % 20 % 24 % 28 %

PSNR

ITCURC-15 24.8020 26.4092 27.4143 29.3053 30.6585
ITCURC-16 24.7386 26.1054 27.4737 29.3542 30.6905
ITCURC-17 24.8381 26.1176 27.4768 28.8953 30.5312

BCPF 24.0733 24.1905 24.2084 24.2454 24.3015
TMac 24.8859 26.5349 26.9970 28.4662 30.7237
TNN 23.7395 26.3806 27.7428 29.5430 30.9172
F-TNN 24.0688 27.5890 28.6408 29.7987 31.2791

SSIM

ITCURC-15 0.5732 0.6691 0.7338 0.8143 0.8596
ITCURC-16 0.5691 0.6507 0.7349 0.8129 0.8610
ITCURC-17 0.5724 0.6491 0.7321 0.7939 0.8523

BCPF 0.5304 0.5407 0.5420 0.5494 0.5532
TMac 0.5566 0.6738 0.6962 0.7612 0.8504
TNN 0.5165 0.6442 0.7577 0.8080 0.8486
F-TNN 0.6607 0.7551 0.8142 0.8479 0.8814

Runtime (sec)

ITCURC-15 6.4327 6.7701 6.2598 6.8633 6.8212
ITCURC-16 6.3825 6.3579 6.7522 7.0789 7.0215
ITCURC-17 7.0379 6.6306 6.8325 7.1480 7.3253

BCPF 33.5759 33.1832 32.1258 31.7875 31.2663
TMac 16.6135 14.3412 16.8581 13.7124 13.1142
TNN 34.5718 31.3138 29.2464 26.1727 23.9876
F-TNN 22.1019 21.4482 22.1420 17.8848 18.0547

putational cost per iteration for the TNN is O(min(=1, =2)=1=2=3 + =1=2=3 log(=3)), and for the

TMac, it is O((A1 + A2 + A3)=1=2=3) where (A1, A2, A3) denotes the Tucker rank. As for BCPF, it is

O('3(=1=2=3) + '2(=1=2 + =2=3 + =3=1)), where ' is the CP rank. In contrast, the computational

expense per iteration of our proposed method is significantly reduced to O(A |� |=2=3 + A |� |=1=3),

assuming |� | � =1 and |� | � =2, indicating a substantial efficiency improvement over traditional

methods.

Note that for F-TNN, [66] have formulated the tensor nuclear norm utilizing the"-product [70],

a generalization of the t-product for 3-order tensor. In [66], they have incorporated a tight wavelet

frame (framelet) as the transformation matrix " . This meticulous design of the " transformation

contributes to the superior reconstruction quality of F-TNN. However, the absence of a rapid imple-
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mentation for multiplying the tensor with matrix " along the third mode leads to F-TNN requiring

significantly more computational time compared to other evaluated methods.

It is worth noting that our current approach provides an effective balance between runtime effi-

ciency and reconstruction quality, making it well-suited for potential real-world applications. This

balanced approach is particularly relevant in practical settings where it is essential to consider both

speed and quality in big data applications.

2.6 Proofs of Theoretical Results

2.6.1 Proof of Theorem 2.4

In this section, we provide a detailed proof of Theorem 2.4, which is one of two important

supporting theorems to our main result Theorem 2.6.

Before proceeding to prove Theorem 2.4, we will first introduce and discuss several supporting

lemmas. These lemmas are crucial to establish the foundation for the proof of Theorem 2.4.

Lemma 2.2. Let T ∈ K=1×=2×=3 , � ⊆ [=1] and � ⊆ [=2]. S� and S� are the horizontal and

lateral sampling tensors associated with indices � and � respectively (see Definition 12). Then the

following results hold

S� ∗ T =



[S�]:,:,1 · [T̂ ]:,:,1

[S�]:,:,1 · [T̂ ]:,:,2

. . .

[S�]:,:,1 · [T̂ ]:,:,=3


, (2.15)

T ∗ S� =



[T̂ ]:,:,1 · [S�]:,:,1

[T̂ ]:,:,2 · [S�]:,:,1

. . .

[T̂ ]:,:,=3 · [S�]:,:,1


. (2.16)

Proof. Here, we will only focus on the proof of (2.15). First, it is easy to see that S� ∗ T = S� · T .
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In addition,

S� =



[S�]:,:,1

[S�]:,:,1

. . .

[S�]:,:,1


and

T =



[T̂ ]:,:,1

[T̂ ]:,:,2

. . .

[T̂ ]:,:,=3


.

The result can thus be derived. �

Theorem 2.7 ([115, 116]). Consider a finite sequence {-: } of independent, random, Hermitian

matrices with common dimension 3. Assume that

0 ≤ _min (-: ) and _max (-: ) ≤ ! for each index :.

Set . =
∑
: -: . Let `min and `max be the minimum and maximum eigenvalues of E(. ) respectively.

Then,
P {_min(. ) ≤ (1 − Y)`min} ≤ 3

[
e−Y

(1−Y)1−Y

] `min/!
for Y ∈ [0, 1), and

P {_max(. ) ≥ (1 + Y)`max} ≤ 3

[
eY

(1+Y)1+Y

] `max/!
for Y ≥ 0.

Lemma 2.3. Suppose � is a block diagonal matrix, i.e. � =



�1

�2

. . .

�=3


, where each �8

is a matrix of size =1 × A8, �>8 �8 = IA8 and A8 ≤ =1 for ∀8 ∈ [=3]. Let � be a random subset of [=1].
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Then for any X ∈ [0, 1), the
=3∑
8=1
A8-th singular value of the matrix

# =:



[S�]:,:,1

[S�]:,:,1

. . .

[S�]:,:,1





�1

�2

. . .

�=3


will be no less than

√
(1−X) |� |
=1

with probability at least

1 − ‖®A ‖14

−(X+(1−X) log(1−X)) |� |
=1 max

8∈[=1=3 ]
‖ [�]8,: ‖2

F
.

Proof. Firstly, it is easy to check that

# =
[
I ⊗ (S�):,:,1

]
· � =

∑
8∈�

=3∑
9=1

e( 9−1)=1+8 · [�] ( 9−1)=1+8,:,

where e( 9−1)=1+8 is the standard column basis vector of K=1=3 . Consider
=3∑
8

A8 ×
=3∑
8

A8 Gram matrix

. := #> · # =
∑
8∈�

=3∑
9=1

(e( 9−1)=1+8 · [�] ( 9−1)=1+8,:)> · e( 9−1)=1+8 · [�] ( 9−1)=1+8,:

=
∑
8∈�

=3∑
9=1

[�]>( 9−1)=1+8,: [�] ( 9−1)=1+8,: =:
∑
8∈�
)8,

where )8 =
=3∑
9=1

[�]>( 9−1)=1+8,: [�] ( 9−1)=1+8,:. It is easy to see that . is a random matrix due to random-

ness inherited from the random set �. It is easy to see that each )8 is a positive semidefinite matrix

of size
=3∑
8

A8 ×
=3∑
8

A8. Thus, the random matrix . in fact is a sum of |� | random matrices sampled

without replacement from the set
{
-1, -2, · · · -=1

}
of positive semi-definite matrices. Notice that

_max ()8) = _max
©­«
=3∑
9=1

(e( 9−1)=1+8 · [�] ( 9−1)=1+8,:)> · e( 9−1)=1+8 · [�] ( 9−1)=1+8,:
ª®¬

=

������fmax
©­«
=3∑
9=1

e( 9−1)=1+8 · [�] ( 9−1)=1+8,:
ª®¬
������
2

≤ max
8

‖ [�]8,:‖2
F.

By the orthogonal property of matrix �, it is easy to see that E ()8) = 1
=1
I and thus E(. ) =

|� |
=1
,

where E is the expectation operator. Thus, by the fact that _min(. ) = f2
min(#) and by the Chernoff
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inequality (see Theorem 2.7), we have

P ©­«fmin(#) ≤

√
(1 − X) |� |

=1

ª®¬ ≤ ‖®A ‖14

−(X+(1−X) log(1−X)) |� |
=1 max

8∈[=1=3 ]
‖ [�]8,: ‖2

F
,∀X ∈ [0, 1).

�

In the following, we delve into the proof of Theorem 2.4 to tell about how likely t-CUR decom-

position holds.

The proof of Theorem 2.4. According to Theorem 2.3, T = C∗U†∗R is equivalent to rank< (T ) =

rank< (C) = rank< (R). Therefore, it suffices to prove that rank< (T ) = rank< (C) = rank< (R)

holds with probability at least 1 − 1
=
V1
1

− 1
=
V2
2

with the given conditions. Notice that

T =



[T̂ ]:,:,1

[T̂ ]:,:,2

. . .

[T̂ ]:,:,=3


=



,1Σ1+
>
1

,2Σ2+
>
2

. . .

,=3Σ=3+
>
=3


(2.17)

=



,1

,2

. . .

,=3


·



Σ1

Σ2

. . .

Σ=3


·



+>
1

+>
2

. . .

+>
=3


=: , · Σ · +>,

where ,8Σ8+
>
8

in (2.17) is the compact SVD of [T ]:,:,8 for 8 ∈ [=3]. And R = S�,Σ+>. By the

definition of tensor multi-rank, we have,8 ∈ K=1×A8 , Σ8 ∈ KA8×A8 , +8 ∈ K=2×A8 , W ∈ K=1=3×‖®A ‖1 , Σ ∈

K‖®A ‖1×‖®A ‖1 , and + ∈ K=2=3×‖®A ‖1 .

Consequently, demonstrating that rank(R) = ‖®A ‖1 suffices to ensure the condition that rank< (T ) =
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rank< (R). Observe that Σ is a square matrix with full rank and + has full column rank. By the

Sylvester rank inequality, rank(R) = ‖®A ‖1 can be guaranteed by showing rank(S � ·,) = ‖®A ‖1. By

applying Lemma 2.3, we have that for all X ∈ [0, 1),

P
(
f‖®A ‖1 ((� ·,) ≤

√
(1 − X) |� |/=1

)
≤ ‖®A ‖14

−(X+(1−X) log(1−X)) |� |
`0 ‖ ®A ‖∞ .

|� | ≥ V1`0‖A ‖∞ log(=1‖®A ‖1)
X+(1−X) log(1−X) implies P

(
f‖®A ‖1 ((� ·,) ≤

√
(1 − X) |� |/=1

)
≤ 1

=1
V1 .

Note that

P
(
rank((� ·,) < ‖®A ‖1

)
≤ P ©­«f‖®A ‖1 ((� ·,) ≤

√
(1 − X) |� |

=1

ª®¬ .
We thus have when |� | ≥ V1`0‖A ‖∞ log(=1‖®A ‖1)

X+(1−X) log(1−X) ,

P
(
rank((� ·,) = ‖®A ‖1

)
=1 − P

(
rank((� ·,) < ‖®A ‖1

)
≥1 − P ©­«f‖®A ‖1 ((� ·,) ≤

√
(1 − X) |� |

=1

ª®¬ ≥ 1 − 1
=1V1

.

Similarly, one can show that rank(S� · V) = ‖®A ‖1 holds with probability at least 1 − 1
=2

V2 provided

that |� | ≥ V2`0‖A ‖∞ log(=2‖®A ‖1)
X+(1−X) log(1−X) .

Combining all the statements and setting X = 0.815 and V1 = V2 = V, we conclude that T =

C ∗U† ∗ R holds with probability at least 1 − 1
=
V

1
− 1
=
V

2
, provided that |� | ≥ 2V`0‖®A ‖∞ log (=1‖®A ‖1)

and |� | ≥ 2V`0‖®A ‖∞ log (=2‖®A ‖1). �

2.6.1.1 Some remarks on the proof of Theorem 2.4

Wewish to emphasize that the techniques employed in our proof are not merely straightforward

extensions of the probabilistic estimates used in matrix CUR decompositions since one cannot

directly apply the union of matrix CUR probabilistic estimates to flattened tensors due to ‘‘depen-

dence’’ and ”intertwined” sampling property of each sub block matrix after one flattens a tensor to

a block diagonal matrix in the Fourier domain. We introduce a new tool that offers a probabilistic

estimate for achieving an exact t-CUR decomposition, utilizing a novel proof methodology. The

cornerstone of our approach is to assess the likelihood that multi-rank is preserved when select-

ing horizontal or lateral slices uniformly. This approach distinguishes our method from traditional

techniques applied in matrix settings. Although our method involves converting a third-order tensor
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into a block diagonal matrix, it necessitates the introduction of innovative techniques. These are

required to overcome several challenges that do not arise in matrix-based proofs. Given a three-

order tensor T ∈ R=1×=2×=3 with multi-rank ®A = (A1, A2, · · · , A=3), its flattened version in the Fourier

domain is denoted as

T =



[T̂ ]:,:,1 0 0 · · · 0

0 [T̂ ]:,:,2 0 · · · 0

0 · · · · · · · · · 0
...

...
...

...
...

0 0 0 · · · [T̂ ]:,:,=3


,

where T̂ = FFT(T , [], 3). For simplicity, we denote )8 as [T̂ ]:,:,8 for 8 = 1, · · · , =3. It is easy to

see that sampling horizontal(lateral) slices of tensor T ∈ R=1×=2×=3 with an index set � is equiva-

lent of sampling row(column) vectors of the matrix T̂ with indexes �, =1 + �, · · · , (=3 − 1)=1 + � .

In other words, the process of sampling � horizontal(lateral) slices is the same with sampling �

rows(columns) of )8, for 8 = 1, · · · , =3. Similar arguments for the lateral slice index set �.

Consider the sample space

Ω = {(�, �), � ⊂ {1, · · · , =1}, � ⊂ {1, · · · , =2}}.

Define the events F8 as

{(�, �) ⊂ Ω | [)8] �,� = A8},

for 8 = 1, . . . , =3.

Lemma 2.4.

{(�, �) : [)8] �,� = A8, 8 = 1, · · · , =3} ( F1 ∩ F2 ∩ · · · ∩ F=3 .

Proof. The set {(�, �) : [)8] �,� = A8, 8 = 1, · · · , =3} can be viewed as a product space, i.e.,

{(�, �) × (�, �) · · · × (�, �)︸                           ︷︷                           ︸
n times

: [)8] �,� = A8, 8 = 1, · · · , =3}.

However,

F1 ∩ F2 ∩ · · · F=3 = {(�1, �1) × (�2, �2) × · · · (�=3 , �=3) : (�8, �8) ∈ F8, 8 = 1, · · · , =3}.
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Therefore,

{(�, �) : [)8] �,� = A8, 8 = 1, · · · , =3} ( F1 ∩ F2 ∩ · · · ∩ F=3 .

�

Let G represent the event

{(�, �) ⊂ Ω | |� | ≥ `0 |®A | log(=1) log(A), |� | ≥ `0 |®A | log(=2) log(A)}.

Although one might have that the conditional probability inequality, based on the [32, Theorem

2.1],[19, Theorem 2],

P(F8 |G) ≥ 1 − 4A2

=1=2
,

one can find that based on Lemma 2.4:

P({(�, �) ⊂ Ω : rank< ( [T ] �,�,:) = ®A}|G) = ®A |G) = P({(�, �) ⊂ Ω : [)8] �,� = A8, 8 = 1, · · · , =3}|G)

≤ P(F1 ∩ F2 · · · ∩ F=3 |G)

The probability inequality P({(�, �) ⊂ Ω : rank< ( [T ] �,�,:) = ®A}|G) ≤ P(F1 ∩ F2 · · · ∩ F=3 |G)

directly stops us from applying P(F1 ∩ F2 · · · ∩ F=3 |G) ≥
=3∑
8=1

P(F8 |G) − (=3 − 1). As a result, we

can not get a lower bound of P({(�, �) ⊂ Ω : [)8] �,� = A8, 8 = 1, · · · , =3}|G) = ®A |G) via a direct

union of matrix CUR probabilistic estimate results.

Furthermore, we hope to emphasize that applying the matrix Chernoff inequality to a flatten

tensor also presents numerous challenges. Notice that one flatten tensor T into T in the Fourier

domain, the corresponding sampling index set of rows with respect to T becomes
⋃
8∈�
�8, where

�8 := {8, =1 + 8, 2=1 + 8, · · · , (=3 − 1)=1 + 8}, 8 = 1, · · · , =1,

and the corresponding sampling index of columns with respect to T becomes
⋃
8∈�
�8, where

�8 := {8, =2 + 8, 2=2 + 8, · · · , (=3 − 1)=2 + 8}, 8 = 1, · · · , =2.

Without loss of generality and for the sake of brevity, in the following, we focus solely on the case of

selecting horizontal slices of T , denoted by the sampling index set �. It is easy to find that one can

not directly apply the matrix Chernoff inequality to the finite set of positive-semi-definite matrices

H =
{
"1, "2, · · ·"=3 , "=3+1, "=3+2, · · · , "2=3 , · · · , "=1=3

}
,
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where " 9 = [T ]>
9 ,: · [T ] 9 ,: with 9 = 1, · · · , =1=3 due to the intertwined property of sampling index

set
⋃
8∈�
�8 . Specifically, the intertwined nature of the index set

⋃
8∈�
�8 complicates the estimation of the

spectral bound for the sumof randommatrices. Specifically, the expression |fmax(
=1∑
9=1

e( 9 − 1)=3 + 8·

[T ] ( 9−1)=3+8,:) |2 does not serve as a lower bound for max
8

| [T ]8,: |22.

2.6.2 Proof of Theorem 2.5

In this section, we provides a detailed proof of Theorem 2.5, another important supporting the-

orem to our main theoretical result Theorem 2.6. To the best of our knowledge, there is no existing

tensor version of the result found in [97, Theorem 1.1], which furnishes an explicit expression of

numerical constants within the theorem’s statement. Existing results related to tensor versions, such

as [138, Theorem 3.1] in the context of tensor completion, typically only imply numerical constants

implicitly. One can see that [138, Theorem 3.1] does not give an explicit expression of numerical

constants of 20, 21 and 22.

Theorem 2.8. [138, Theorem 3.1] Suppose M is an =1 × =2 × =3 tensor and its reduced t-SVD

is given by M = U ∗ S ∗ V> where U ∈ R=1×A×=3 , S ∈ RA×A×=3 , and V ∈ R=2×A×=3 . Suppose

M satisfies the standard tensor incoherent condition with parameter `0 > 0. Then there exists

constants 20, 21, 22 > 0 such that if

? ≥ 20
`0A log(=3(=1 + =2))

min{=1, =2}
.

ThenM is the unique minimizer to the follow optimization

min
X

‖X‖TNN

subject to PΩ(X) = PΩ(M),
with probability at least

1 − 21((=1 + =2)=3)−22 .

Our work constitutes a substantial contribution through the meticulous analysis of these numer-

ical constants, yielding explicit formulations for their expressions. The details of these theoretical

advancements are comprehensively elaborated in our theoretical section. Before moving forward,
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let us introduce several notations used throughout the rest of the supplemental material but not

covered in earlier sections.

Definition 15. SupposeT is an =1×=2×=3 tensor and its compact t-SVD is given byT = U∗S∗V>

where U ∈ K=1×A×=3 ,S ∈ KA×A×=3 and V ∈ K=2×A×=3 . Define projection space T as{
A∑
:=1

( [U]:,:,: ∗ X>
: + Y: ∗ [V]>:,:,:) : X: ∈ K=2×1×=3 ,Y: ∈ K=1×1×=3

}
and the orthogonal projection spaceT⊥ is the orthogonal complementT inK=1×=2×=3 . DefinePT(X)

and PT⊥ (X) as

PT(X) = U ∗U> ∗ X + X ∗ V ∗V> −U ∗U> ∗ X ∗ V ∗ V>,

PT⊥ (X) =
(
I=1 −U ∗U>)

∗ X ∗
(
I=2 −V ∗V>)

,

where I=1 is the identity tensor of size =1 × =1 × =3 and I=2 is the identity tensor of size =2 × =2 × =3.

Definition 16. Define the operator RΩ : K=1×=2×=3 → K=1×=2×=3 as:

RΩ(X) =
∑
8, 9 ,:

1
?
X8, 9 ,: [X]8, 9 ,: e̊8 ∗ ¤e: ∗ e̊>9 ,

where [X]8, 9 ,: is the (8, 9 , :)-th entry of a tensor X ∈ K=1×=2×=3 .

Definition 17. Given two tensor A ∈ K=1×=2×=3 and B ∈ K=1×=2×=3 , the inner product of these two

tensors is defined as:

〈A,B〉 = 1
=3

trace
(
B> · A

)
.

Before we introduce tensor operator norm, we need to introduce a transformed version of a

tensor operator. Given a tensor operator, F : K=1×=2×=3 → K=1×=2×=3 , the associated transformed

operator F : B → B, where B =

{
B : B ∈ K=1×=2×=3

}
, is defined as

F (X) = F (X).

Definition 18 (Tensor operator norm). Given a operator F : K=1×=2×=3 → K=1×=2×=3 , the operator

norm ‖F ‖ is defined as ‖F ‖ = ‖F ‖ = max
‖X‖F=1

‖F (X)‖F = max
‖X‖F=1




F (X)





F
.

Definition 19 (;∞,2 norm [138]). Given a tensor X ∈ K=1×=2×=3 , its ;∞,2 norm is defined as

‖X‖∞,2 := max{max
8

√∑
1,:

[X]2
8,1,:

,max
9

√∑
0,:

[T ]2
0, 9 ,:

}.
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Definition 20 (Tensor infinity norm). Given a tensor X ∈ K=1×=2×=3 , the tensor infinity norm of it

is defined as ‖X‖∞ := max
8, 9 ,:

| [X]8, 9 ,: |.

In the following, we will present a formal definition of the tensor completion problem based on

the Bernoulli sampling model. Consider a third-order tensor T ∈ K=1×=2×=3 with tubal-rank A . We

denote Ω as the set of indices of the observed entries. Suppose that Ω is generated according to the

Bernoulli sampling model with probability ?. We define the sampling operator PΩ such that for a

given tensor X in K=1×=2×=3 ,

PΩ(X) =
∑

(8, 9 ,:)∈Ω
[X]8, 9 ,:E8, 9 ,: ,

where E8, 9 ,: is a tensor in {0, 1}=1×=2×=3 and all elements are zero except for the one at the position

indexed by (8, 9 , :). The primary goal of the tensor completion problem is to reconstruct the tensor

T from the entries on Ω. We utilize the approach proposed in the references [84, 138], which

addresses the tensor completion issue through a specific convex optimization problem formulated

as follows:
min
X

‖X‖TNN

subject to PΩ(X) = PΩ(T ).
(2.18)

Notice that TNN is convex but not strictly convex. Thus, there might be more than one local mini-

mizer to the optimization problem (2.18). Therefore, we need to establish conditions to ensure that

our optimization problem has a unique minimizer, which is exactly the tensor we seek to recover.

The question of under what conditions T is the unique minimizer of the optimization problem

(2.18) naturally arises. In response, Proposition 1 gives an affirmative answer. Before proceeding,

it is important to highlight that in the following context, for convenience, we will interchangeably

make use of ‖ · ‖ to denote the tensor spectral norm, tensor operator norm or the matrix spectral

norm, depending on the specific situation.

Proposition 1 ([84]). Assume thatT ∈ K=1×=2×=3 of tubal-rank A satisfies the incoherence condition

with parameter `0 and its compact t-SVD is given by T = U ∗ S ∗ V> where U ∈ K=1×A×=3 ,S ∈

KA×A×=3 andV ∈ K=2×A×=3 . Suppose thatΩ is generated according to the Bernoulli sampling model
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with probability ?. Then tensor T is a unique minimizer of the optimization problem (2.18), if the

following two conditions hold:

Condition 1. ‖PTRΩPT − PT‖ ≤ 1
2

Condition 2. There exists a tensor Y such that PΩ(Y) = Y and

(a) ‖PT(Y) − U ∗V>‖F ≤ 1
4

√
?

=3

(b) ‖PT⊥ (Y)‖ ≤ 1
2

Based on Proposition 1, our main result is derived through probabilistic estimation of the Con-

dition 1 and Condition 2. Throughout this computation, we explicitly determine both the lower

bound of the sampling probability ? and the probability of the exact recovery of T . The architecture

of the entire proof is described as follows.

2.6.2.1 Architecture of the proof of Theorem 2.5

The proof of Theorem 2.5 follows the pipeline developed in [84, 138]. We first state a sufficient

condition for T to be the unique optimal solution to the optimization problem (2.18) via construct-

ing a dual certificate Y obeying two conditions. This result is summarized in Proposition 1. To

obtain our main result Theorem 2.5, we just need to show that the conditions in Proposition 1

hold with a high probability. The Theorem 2.5 is built on the basis of Lemma 2.8, Lemma 2.9,

Lemma 2.10 and Corollary 2.1. A detailed roadmap of the proof towards Theorem 2.5 is outlined

in Figure 2.14.
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Proposition 1

condition I condition II

Lemma 2.8 Lemma 2.9 Lemma 2.10 Corollary 2.1

Theorem 2.5

Figure 2.14 The structure of the proof of Theorem 2.5: The core of the proof for Theorem 2.5 relies
on assessing the probability that certain conditions, specified in Proposition 1, are met. Condition
I and Condition II serve as sufficient criteria to ensure the applicability of Proposition 1. Thus,
the proof of Theorem 2.5 primarily involves determining the likelihood that condition I and II
are satisfied. The probabilistic assessment of condition I utilizes Lemma 2.8 as a fundamental
instrument. Similarly, the evaluation of condition II employs Lemmas 2.8 to 2.10, and Corollary 2.1
as essential tools.

Before delving into the proof of Theorem 2.5, we will introduce several supporting lemmas to

lay the necessary foundation.

2.6.2.2 Supporting lemmas for the proof of Theorem 2.5

Lemma 2.5 (Non-commutative Bernstein inequality [115]). Let -1, -2, · · · , -! be independent

zero-mean random matrices of dimension =1 × =2. Suppose

f2 = max

{




E[ !∑
:=1

-:-
>
: ]






 ,





E[ !∑

:=1
->
: -: ]







}

and ‖-: ‖ ≤ " . Then for any g ≥ 0,

P

(




 !∑
:=1

-:






 ≥ g
)
≤ (=1 + =2) exp

(
−g2/2
f2 + "g

3

)
.

The following lemma is a variant of Non-commutative Bernstein inequality.

Lemma 2.6. Let -1, -2, · · · , -! be independent zero-mean random matrices of dimension =1 ×=2.

Suppose

f2 = max

{




E[ !∑
:=1

-:-
>
: ]






 ,





E[ !∑

:=1
->
: -: ]







}
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and ‖-: ‖ ≤ " , where" is a positive number. If we choose g =
√

22f2 log (=1 + =2)+2" log (=1 + =2),

we have

P

(




 !∑
:=1

-:






 ≥
√

22f2 log (=1 + =2) + 2" log (=1 + =2)
)
≤ (=1 + =2)1−2,

where 2 is any positive number greater than 1. The following fact is very useful and we will make

frequent use of the result for the proofs of Theorem 2.5 and Proposition 1.

Lemma 2.7. Suppose T is an =1 ×=2 ×=3 tensor with its compact t-SVD given by T = U∗Σ ∗V>

and satisfy incoherence condition with parameter `0. Then,

‖PT(e̊8 ∗ ¤e: ∗ e̊>9 )‖2
F ≤ (=1 + =2)`0A

=1=2
.

The following lemma shows how likely that the operator norm PTRΩPT − PT is smaller than
1
2 . Such result will help us calculate how likely the Condition 1 in Proposition 1 holds.

Lemma 2.8. Assume that Ω is generated according to the Bernoulli distribution with probability

?, then

‖PTRΩPT − PT‖ ≤ 1
2

holds with probability at least 1 − 2=1=2=3 exp
(
− 3?=1=2

28(=1+=2)`0A

)
.

The following lemma states that given an arbitrary tensor X ∈ K=1×=2×=3 , tensor spectral norm

of difference between RΩ(X) and X can be bounded with tensor infinity norm and ;∞,2 norm with

a high probability.

Lemma 2.9. Given an arbitrary tensor X ∈ K=1×=2×=3 . Assume that Ω is generated according to

the Bernoulli distribution with probability ?. Then, for any constant 22 > 1, we have

‖RΩ(X) − X‖ ≤ ‖X‖∞,2

√
222
?

log((=1 + =2)=3) +
22 log((=1 + =2)=3)

?
‖X‖∞ (2.19)

holds with probability at least 1 − ((=1 + =2)=3)1−22 .

The following lemma states that given an arbitrary tensor X ∈ K=1×=2×=3 , the bound of ;∞,2

distance between PTRΩ(X) and PT(X) can be controlled by the ;∞,2 norm of X and the tensor

infinity norm of X with a high probability.
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Lemma 2.10. Assume that Ω is generated according to the Bernoulli distribution with probability

?. For any positive number 21 ≥ 2, then we can get

P

(
‖(PTRΩ(X) − PT(X))‖∞,2 ≤

√
421(=1 + =2)`0A log ((=1 + =2)=3)

?=1=2
· ‖X‖∞,2

+ 21 log((=1 + =2)=3)
?

√
(=1 + =2)`0A

=1=2
‖X‖∞ª®¬ ≥ 1 − ((=1 + =2)=3)2−21 .

The following lemma states that, given an arbitrary tensor X ∈ R=1×=2×=3 , the tensor infinity

norm of PTRΩPT(X) − PT(X) can be bounded by the tensor infinity norm of PT(X) with a high

probability.

Lemma 2.11. Assume that Ω is generated according to the Bernoulli distribution with probability

?. For any X ∈ K=1×=2×=3 , then

‖(PTRΩPT − PT) (X)‖∞ ≤ 1
2
‖PT(X)‖∞

holds with probability at least 1 − 2=1=2=3 exp
(

−3?=1=2
16(=1+=2)`0A

)
.

When PT(X) = X, we can easily achieve the following corollary.

Corollary 2.1. Assume thatΩ is generated according to the Bernoulli distribution with probability

@. For any X ∈ K=1×=2×=3 , if PT(X) = X then

(PTRΩC
PT − PT

)
(X)




∞ ≤ 1

2
‖X‖∞

holds with probability at least 1 − 2=1=2=3 exp
(

−3@=1=2
28(=1+=2)`0A

)
.

Corollary 2.1 is used to give a probabilistic estimate towards the lower bound of ‖DC ‖∞, where

DC is defined in Equation (2.22) later. Now we are ready to provide the proof of Theorem 2.5.

Proof of Theorem 2.5. First of all, one can get that the Condition 1 holds with probability at least

1 − 2=1=2=3 exp
(
− 3?=1=2

28(=1 + =2)`0A

)
(2.20)

according to Lemma 2.8.

Next, our main goal is to construct a dual certificate Y that satisfies the condition 2. We do

this using the Golfing Scheme [23, 50]. Choose C0 as

C0 ≥
⌈
log2

(
4
√
=3A

?

)⌉
(2.21)
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where d·e is the ceil function. Suppose that the set Ω of observed entries is generated from Ω =

∪C0
C=1ΩC with P[(8, 9 , :) ∈ ΩC] = @ := 1 − (1 − ?)

1
C0 and is independent of each other. It is easy to

see that for any (8, 9 , :) ∈ [=1] × [=2] × [=3],

P[(8, 9 , :) ∈ Ω] =1 − P[(8, 9 , :) ∉ ∪C0
C=1ΩC]

=1 −
C0∏
C=1

P[(8, 9 , :) ∈ Ω2
C ] = 1 −

C0∏
C=0

(1 − ?)
1
C0 = ?.

Therefore, the construction of Ω =
C0⋃
C=1

ΩC shares the same distribution as that of Ω. Let {AC ∈

K=1×=2×=3 : C = 0, · · · , C0} be a sequence of tensors with A0 = 0 and

AC = AC−1 + RΩC
PT(U ∗ V> − PT(AC−1)),

where RΩC
(T ) :=

∑
8∈[=1], 9∈[=2],:∈[=3]

1
@
1ΩC

(8, 9 , :) [T ]8, 9 ,: e̊8 ∗ ¤e: ∗ e̊>9 . Set Y := AC0 .

Next, our goal is to prove that PΩ(Y) = Y by mathematical induction. For C = 0, PΩ(A0) =

PΩ(0) = 0 = A0. Notice that

A1 = A0 + RΩ1PT(U ∗ V> − PT(A0))

= A0 + RΩ1PT(U ∗ V>)

= RΩ1 (U ∗ U> ∗ (U ∗ V>) + (U ∗ V>) ∗ V ∗ V> −U ∗U> ∗ (U ∗ V>) ∗ V ∗ V>)

= RΩ1 (U ∗ V>).

Due to Ω1 ⊆ Ω, it is easy to see that PΩ(A1) = PΩ(RΩ1 (U ∗ V>)) = RΩ1 (U ∗ V>) = A1.

Assume that for : ≤ C0 − 1, it holds that PΩ(A: ) = A: . By linearity of operator PΩ and ΩC0 ⊆ Ω,

it follows that

PΩ(Y) = PΩ(AC0)

= PΩ(AC0−1 + RΩC0
PT(U ∗ V> − PT(AC0−1)))

= PΩ(AC0−1) + PΩ(RΩC0
PT(U ∗ V> − PT(AC0−1)))

= AC0−1 + RΩC0
PT(U ∗ V> − PT(AC0−1)) = AC0 = Y.

Therefore Y = AC0 is the dual certificate.
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Now let’s prove that ‖PT(Y) − U ∗V>‖F ≤ 1
4

√
?

=3
. For C = 0, 1, · · · , C0, set

DC = U ∗V> − PT(AC). (2.22)

Notice that

@ = 1 − (1 − ?)
1
C0 ≥ 1 − (1 − ?

C0
) = ?

C0
. (2.23)

Thus, one can derive the following results by Lemma 2.8: for each C,

‖DC ‖F ≤


PT − PTRΩC

PT


 ‖DC−1‖F ≤ 1

2
‖DC−1‖F (2.24)

holds with probability at least

1 − 2=1=2=3 exp(− 3@=1=2
28(=1 + =2)`0A

).

Applying (2.24) from C = C0 to C = 1, we will have that

‖PT(Y −U ∗V>)‖F = ‖DC0 ‖F ≤ 1
2
‖DC0−1‖F ≤ · · · ≤ (1

2
)C0 ‖U ∗ V>‖F ≤ (1

2
)C0
√
A (2.25)

holds with probability at least

1 − 2C0=1=2=3 exp(− 3@=1=2
28(=1 + =2)`0A

).

Since C0 ≥
⌈
log2

(
4
√
=3A
?

)⌉
, ‖PT(Y −U ∗V>)‖F ≤ 1

4

√
?

=3
holds with probability at least

1 − 2C0=1=2=3 exp(− 3@=1=2
28(=1 + =2)`0A

). (2.26)

Next, we move on to prove ‖PT⊥ (Y)‖ ≤ 1
2 . Recall that Y =

C0∑
8=1

RΩC
PTDC−1. By applying

Lemma 2.9 for C0 times, we can get

‖PT⊥ (Y)‖

≤
C0∑
C=1



PT⊥
(
RΩC

PT − PT
)
(DC−1)




≤

C0∑
C=1



(RΩC
− I

)
(PT(DC−1))




≤

C0∑
C=1

(
22 log((=1 + =2)=3)

@
‖PT(DC−1)‖∞ +

√
222 log((=1 + =2)=3)

@
‖PT(DC−1)‖∞,2

)
(2.27)

≤
C0∑
C=1

(
22 log((=1 + =2)=3)

@
‖PT(DC−1)‖∞ +

√
222 log((=1 + =2)=3)

@
‖PT(DC−1)‖∞,2

)
(2.28)

=

C0∑
C=1

(
22 log((=1 + =2)=3)

@
‖DC−1‖∞ +

√
222 log((=1 + =2)=3)

@
‖DC−1‖∞,2

)
(2.29)
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holds with probability at least

1 − C0

((=1 + =2)=3)22−1 . (2.30)

(2.28) holds due to (2.23). (2.29) is due to PT(DC) = DC by the construction of DC in Equa-

tion (2.22).

Next, we will bound (2.29) by bounding these two terms:

(i)
C0∑
C=1

22 log((=1+=2)=3)
@

‖DC−1‖∞

(ii)
C0∑
C=1

√
222 log((=1+=2)=3)

@
‖DC−1‖∞,2

via estimating the upper bounds of ‖DC−1‖∞ and ‖DC−1‖∞,2.

By applying Corollary 2.1 for C − 1 times, where 2 ≤ C ≤ C0, we have

‖DC−1‖∞ =


(PT − PTRΩC−1PT

)
· · ·

(
PT − PTRΩ1PT

)
D0




∞

≤
(
1
2

) C−1
‖D0‖∞

holds with probability at least 1 − 2=1=2=3(C − 1) exp
(

−3@=1=2
28(=1+=2)`0A

)
. Therefore,

C0∑
C=1

22 log((=1 + =2)=3)
@

‖DC−1‖∞ ≤ 222 log((=1 + =2)=3)
@

· ‖D0‖∞

holds with probability at least

1 − 2=1=2=3(C0 − 1) exp
(

−3@=1=2
28(=1 + =2)`0A

)
. (2.31)

Now we are going to estimate the upper bound for
C0∑
C=1

√
222 log((=1+=2)=3)

@
‖DC−1‖∞,2 by bounding

‖DC−1‖∞,2. For simplicity of expression, we will denote

0 = 2·
√
21 log((=1+=2)=3)

@

√
(=1+=2)`0A

=1=2
and 1 =

21 (log((=1+=2)=3))
@

√
(=1+=2)`0A

=1=2
. By applying Lemma 2.10

by C − 1 times and considering the fact that PT(DB) = DB for all 0 ≤ B ≤ C0, we obtain

‖DC−1‖∞,2 =


(PT − PTRΩC−1PT

)
(DC−2)




∞,2

≤0‖DC−2‖∞,2 + 1‖DC−2‖∞ ≤ · · · ≤ 0C−1‖D0‖∞,2 + 1
C−2∑
8=0

08‖DC−2−8‖∞

holds with probability at least 1 − C−1
((=1=3+=2=3)21−2 for 2 ≤ C ≤ C0.
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Therefore,
C0∑
C=1

√
222 log((=1 + =2)=3)

@
‖DC−1‖∞,2

≤

√
222 log((=1 + =2)=3)

@

((
C0∑
C=1

0C−1‖D0‖∞,2

)
+

C0∑
C=2

1

C−2∑
8=0

08‖DC−2−8‖∞

)
=

√
222 log((=1 + =2)=3)

@
·
(
‖D0‖∞,2

1 − 0C0
1 − 0 + 1 ·

C0∑
C=2

C−2∑
8=0

08‖DC−2−8‖∞

)

holds with probability at least

1 − C0 − 1
(=1=3 + =2=3)21−2 .

Taking the process of estimating the upper bound for ‖DC ‖∞ into account, we thus have

(2.29) ≤222 log((=1 + =2)=3)
@

· ‖D0‖∞ +

√
222 log((=1 + =2)=3)

@
· ‖D0‖∞,2

1 − 0

+

√
222 log((=1 + =2)=3)

@
· 1 ·

C0∑
C=2

C−2∑
8=0

08
(
1
2

) C−2−8
‖D0‖∞ (2.32)

≤222 log((=1 + =2)=3)
@

· ‖D0‖∞ +

√
222 log((=1 + =2)=3)

@
· ‖D0‖∞,2

1 − 0 (2.33)

+

√
222 log((=1 + =2)=3)

@
· 21

1 − 20
· ‖D0‖∞ (2.34)

holds with probability at least 1− C0−1
(=1=3+=2=3)21−2 −2(C0−1)=1=2=3 exp

(
−3@=1=2

28(=1+=2)`0A

)
when 0 < 0 ≤ 1

4 .

Therefore,

‖PT⊥ (Y) ‖ ≤
C0∑
C=1

(
22 log((=1 + =2)=3)

@
‖DC−1‖∞ +

√
222 log((=1 + =2)=3)

@
‖DC−1‖∞,2

)
≤222 log((=1 + =2)=3)

@
· ‖D0‖∞ +

√
222 log((=1 + =2)=3)

@
· ‖D0‖∞,2

1 − 0

+

√
222 log((=1 + =2)=3)

@
· 21

1 − 20
· ‖D0‖∞

holds with probability at least

1 − C0 − 1
(=1=3 + =2=3)21−2 − 2(C0 − 1)=1=2=3 exp

(
−3@=1=2

28(=1 + =2)`0A

)
− C0

(=1=3 + =2=3)22−1

provided that 0 < 0 ≤ 1
4 .
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Note that ‖D0‖∞ = ‖U ∗ V>‖∞ ≤ (=1+=2)`0A
2=1=2

and ‖D0‖∞,2 = ‖U ∗ V>‖∞,2 ≤
√

(=1+=2)`0A
=1=2

.

And combining (2.30), (2.31), and (2.6.2.2), we thus have

‖PT⊥ (Y) ‖ ≤ 22 log((=1 + =2)=3)
@

· (=1 + =2)`0A

=1=2
+

√
222 log((=1 + =2)=3)

@
·
√
(=1 + =2)`0A

(1 − 0)√=1=2

+

√
222 log((=1 + =2)=3)

@
· 1

1 − 20
· (=1 + =2)`0A

=1=2

≤ 22 log((=1 + =2)=3)
@

· (=1 + =2)`0A

=1=2
+ 4

√
222
3

·

√
log((=1 + =2)=3)

@
· (=1 + =2)`0A

=1=2

+ 221
√

222

(
log((=1 + =2)=3)

@
· (=1 + =2)`0A

=1=2

)3/2

holds with probability at least

1 − C0 − 1
(=1=3 + =2=3)21−2 − 2(C0 − 1)=1=2=3 exp

(
−3@=1=2

28(=1 + =2)`0A

)
− C0

(=1=3 + =2=3)22−1

provided that 0 < 0 ≤ 1
4 .

Since 0 = 2 ·
√
21 log((=1+=2)=3)

@

√
(=1+=2)`0A

=1=2
, the restriction 0 < 0 ≤ 1

4 is equivalent to

@ ≥ 6421 log((=1 + =2)=3) ·
(=1 + =2)`0A

=1=2
.

Notice that

? ≥ 256(=1 + =2)`0VA log2((=1 + =2)=3)
=1=2

.

We thus have

C0 =dlog2

(
4
√
=3A

?

)
e

≤
⌈
log2

(
4
√

=1=2=3

256(=1 + =2)`0V log2((=1 + =2)=3)

)⌉
≤

⌈
1
2

log2

(
=1=2=3

(=1 + =2)`0V

)
− 2

⌉
≤ log((=1 + =2)=3)

In addition @ ≥ ?

C0
, we have

@ ≥256(=1 + =2)`0VA log2((=1 + =2)=3)
=1=2

· 1
log ((=1 + =2)=3)

=
256(=1 + =2)`0VA log((=1 + =2)=3)

=1=2
,

i.e., (=1+=2)`0A log((=1+=2)=3)
@=1=2

≤ 1
256V .

Therefore the condition that @ ≥ 6421 log((=1 + =2)=3) (=1+=2)`0A
=1=2

holds when 21 = 4V. Hence, the
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condition 0 ≤ 1
4 holds. In addition, by setting 22 = 12V, we have

‖PT⊥ (Y) ‖ ≤ 22 log((=1 + =2)=3)
@

· (=1 + =2)`0A

=1=2
+ 4

√
222
3

·

√
log((=1 + =2)=3)

@
· (=1 + =2)`0A

=1=2

+ 221
√

222

(
log((=1 + =2)=3)

@
· (=1 + =2)`0A

=1=2

)3/2

≤ 22
256V

+ 4
√

222
3

√
1

256V
+ 221

√
222

(
1

256V

)3/2
<

1
2
.

with probability at least

1 − log(=1=3 + =2=3)
(=1=3 + =2=3)4V−2 − log(=1=3 + =2=3)

(=1=3 + =2=3)27V−2 − log(=1=3 + =2=3)
(=1=3 + =2=3)12V−1

≥ 1 − 3 log(=1=3 + =2=3)
(=1=3 + =2=3)4V−2 .

Notice that the probabilistic estimation for the validity of the Condition 2 is predicated on the as-

sumption that the Condition 1 holds true, where we show ‖D‖∞ ≤ ( 1
2 )
C−1‖D0‖∞ based on the

Condition 1. Thus, T is the unique minimizer with probability at least

1 − 3 log(=1=3 + =2=3)
(=1=3 + =2=3)4V−2 .

�

2.6.2.3 Proof of supporting lemmas towards Theorem 2.5

Proof of Lemma 2.6. Substitute g =
√

22f2 log (=1 + =2)+2" log (=1 + =2) to −g2/2
f2+"g

3
in Lemma 2.5.

We can get
−g2/2
f2 + "g

3
= −22f2 log(=1 + =2) + 2

√
22 3

2f" log
3
2 (=1 + =2) + 22"2 log2(=1 + =2)

2f2 + 2
√

2
3 2

1
2f" log

1
2 (=1 + =2) + 22"2

3 log (=1 + =2)

≤ −2 log(=1 + =2).

�

Proof of Lemma 2.7.

‖PT(e̊8 ∗ ¤e: ∗ e̊>9 )‖2
F = 〈PT(e̊8 ∗ ¤e: ∗ e̊>9 ),PT(e̊8 ∗ ¤e: ∗ e̊>9 )〉

= 〈PT(e̊8 ∗ ¤e: ∗ e̊>9 ), e̊8 ∗ ¤e: ∗ e̊>9 〉

=


U> ∗ e̊8



2
F +



V> ∗ e̊ 9


2

F −


U> ∗ e̊8 ∗ ¤e: ∗ e̊ 9> ∗ V



2
F ,

≤


U> ∗ e̊8



2
F +



V> ∗ e̊ 9


2

F =
(=1 + =2)`0A

=1=2

�
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In the following context, we use X8, 9 ,: to represent indicator function 1(8, 9 ,:)∈Ω.

Proof of Lemma 2.8. By the fact thatPT is self adjoint and idempotent operator, we can getE[PTRΩPT] =

PT(ERΩ)PT = PT. It is easy to check that

PTRΩPT(X) =
∑
8, 9 ,:

1
?
X8, 9 ,:

〈
X,PT

(
e̊8 ∗ ¤e: ∗ e̊ 9>

)〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
.

Fix a tensor X ∈ K=1×=2×=3 , we can write

(PTRΩPT − PT) (X) =
∑
8, 9 ,:

(
1
?
X8 9 : − 1

) 〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT(X)

〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
=:

∑
8, 9 ,:

H8 9 : (X)

where H8 9 : : K=1×=2×=3 → K=1×=2×=3 is a self-adjoint random operator and X8, 9 ,: is the indicator

function. It is direct to see that E
[
H8 9 :

]
= 0 due to the fact that E( 1

?
X8, 9 ,: −1) = 1

?
E(X8, 9 ,: ) −1 = 0.

Define the operator H 8 9 : : B → B, where B =

{
B : B ∈ K=1×=2×=3

}
denotes the set consists of

block diagonal matrices with the blocks as the frontal slices of B, as

H 8 9 : (X) := H8 9 : (X) = ( 1
?
X8 9 : − 1)

〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT(X)

〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
.

It is easy to check that H 8 9 : is also self-adjoint by using the fact that the operator PT(·) is self-

adjoint. Using the fact that E( 1
?
X8, 9 ,: − 1) = 0 again, we have E

[
H 8 9 :

]
= 0. To prove the result by

the non-commutative Bernstein inequality, we need to bound



H 8 9 :




 and






 ∑
8, 9 ,:

E
[
H2
8, 9 ,:

]




. Firstly,
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we have 


H 8 9 :




 = sup
‖X‖F=1




H 8, 9 ,: (X)





F

= sup
‖X‖F=1





( 1
?
X8 9 : − 1)

〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT(X)

〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)




F

= sup
‖X‖F=1





( 1
?
X8 9 : − 1)

〈
PT(e̊8 ∗ ¤e: ∗ e̊>9 ),X

〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)




F

≤ sup
‖X‖F=1

1
?




PT(e̊8 ∗ ¤e: ∗ e̊>9 )





F
‖X‖F




PT(e̊8 ∗ ¤e: ∗ e̊>9 )





F

= sup
‖X‖F=1

1
?




PT(e̊8 ∗ ¤e: ∗ e̊>9 )





F
‖X‖F

√
=3




PT(e̊8 ∗ ¤e: ∗ e̊>9 )





F

= sup
‖X‖F=1

1
?




PT(e̊8 ∗ ¤e: ∗ ‘e̊>9 )





F
‖X‖F




PT(e̊8 ∗ ¤e: ∗ e̊>9 )





F

=
1
?




PT(e̊8 ∗ ¤e: ∗ e̊>9 )



2

F
≤ `0(=1 + =2)A

=1=2?
.

Next, we move on to bound






 ∑
8, 9 ,:

E
[
H2
8, 9 ,:

]




. By using the fact that PT is a self-adjoint and an

idempotent operator, we can get that

H2
8, 9 ,: (X) =

(
1
?
X8 9 : − 1

)2
〈e̊8 ∗ ¤e: ∗ e̊>9 ,PT(X)〉〈e8 ∗ ¤e: ∗ e̊>9 ,PT(e̊8 ∗ ¤e: ∗ e̊>9 )〉PT

(
e8 ∗ ¤e: ∗ e̊>9

)
.
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Note that E
[(

1
?
X8 9 : − 1

)2
]
=

1−?
?

≤ 1
?
. Notice that





∑8, 9 ,: E

[
H2
8 9 : (X)

]






F

≤ 1
?







∑8, 9 ,:〈e̊8 ∗ ¤e: ∗ e̊>9 ,PT(X)〉〈e̊8 ∗ ¤e: ∗ e̊>9 ,PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
〉PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)






F

=

√
=3

?







∑8, 9 ,:
〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT(X)

〉 〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)






F

≤
√
=3

?







∑8, 9 ,:
〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT(X)

〉 〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)〉
·
(
e̊8 ∗ ¤e: ∗ e̊>9

)






F

≤
√
=3

?
· max
8, 9 ,:

{〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)〉} 





∑8, 9 ,:
〈
e̊8 ∗ ¤e: ∗ e̊>9 ,PT(X)

〉
·
(
e̊8 ∗ ¤e: ∗ e̊>9

)






F

=

√
=3

?
· (max

8, 9 ,:




PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)


2

F
) · ‖PT(X)‖F

≤
√
=3(=1 + =2)`0A

?=1=2
‖PT(X)‖F (By Lemma 2.7)

≤
√
=3(=1 + =2)`0A

?=1=2
‖X‖F =

(=1 + =2)`0A

?=1=2
‖X‖F.

We have operator norm of
∑
8, 9 ,:

E
[
H2
8 9 :

]
is bounded by (=1+=2)`0A

?=1=2
. Thus, we use non-commutative

Bernstein inequality to the following result:

Notice that f2

"
= 1 since f2 = " =

(=1+=2)`0A
?=1=2

. Thus, by Lemma 2.5, we have

P
[
‖PTPΩPT − PT‖ >

1
2

]
= P








∑8, 9 ,:H8 9 :







 > 1
2

 =P








∑8, 9 ,:H 8 9 :







 > 1
2


≤2=1=2=3 exp

(
− 3?=1=2

28(=1 + =2)`0A

)
.

�

Proof of Lemma 2.9. It is easy to check that

RΩ(X) − X =
∑
8, 9 ,:

(
1
?
X8, 9 ,: − 1

)
[X]8, 9 ,: e̊8 ∗ ¤e: ∗ e̊>9 =:

∑
8, 9 ,:

E8, 9 ,: .
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Notice that E[E8, 9 ,: ] = 0 and ‖E8, 9 ,: ‖ ≤ 1
?
‖X‖∞. In order to use the non-commutative Bernstein

inequality, we just need to check uniform boundness of the spectral norm of E( ∑
8, 9 ,:

(E8, 9 ,: )>E8, 9 ,: )

and E( ∑
8, 9 ,:

E8, 9 ,: (E8, 9 ,: )>). Using the fact that e̊:> ∗ e̊: = ¤e>
:
∗ ¤e: = ¤e1,¤e1 ∗ ¤e: = ¤e: , and e̊ 9 ∗ ¤e1 = e̊ 9 ,

we can have the following result:

E>
8, 9 ,: (T ) ∗ E8, 9 ,: (X) =

(
1
?
X8, 9 ,: − 1

)2
[X]2

8, 9 ,:

(
e̊8 ∗ ¤e: ∗ e̊>9

)>
∗

(
e̊8 ∗ ¤e: ∗ e̊>9

)
=

(
1
?
X8, 9 ,: − 1

)2
[X]2

8, 9 ,:

(
e̊ 9 ∗ ¤e>: ∗ e̊>8

)
∗

(
e̊8 ∗ ¤e: ∗ e̊>9

)
=

(
1
?
X8, 9 ,: − 1

)2
[X]2

8, 9 ,: e̊ 9 ∗ ¤e>: ∗
(
e̊>8 ∗ e̊8

)
∗ ¤e: ∗ e̊>9

=

(
1
?
X8, 9 ,: − 1

)2
[X]2

8, 9 ,: e̊ 9 ∗ ¤e>: ∗ (¤e1 ∗ ¤e: ) ∗ e̊>9

=

(
1
?
X8, 9 ,: − 1

)2
[X]2

8, 9 ,: e̊ 9 ∗
(
¤e>: ∗ ¤e:

)
∗ e̊>9

=

(
1
?
X8, 9 ,: − 1

)2
[X]2

8, 9 ,: e̊ 9 ∗ (¤e1) ∗ e̊>9

=

(
1
?
X8, 9 ,: − 1

)2
[X]2

8, 9 ,: e̊ 9 ∗ e̊
>
9 .
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Notice that e̊ 9 ∗ e̊>9 returns a zero tensor except for ( 9 , 9 , 1)th entry being 1. We have





∑8, 9 ,: E[E>
8, 9 ,:E8, 9 ,: ]







 =






∑8, 9 ,: E[E>

8, 9 ,: ∗ E8, 9 ,: ]








≤ 1
?







∑8, 9 ,: [X]2
8, 9 ,: e̊ 9 ∗ e̊

>
9








=

1
?







∑8, 9 ,: [X]2
8, 9 ,: e̊ 9 e̊

>
9







 (by the definition of spectral norm of tensor)

=
1
?






















©­­­­­­­­­­­­­­«

∑
8,:

[X]2
8,1,: ∑

8,:

[X]2
8,2,:

. . . ∑
8,:

[X]2
8,=2,:

$=2 (=3−1)×=2 (=3−1)

ª®®®®®®®®®®®®®®¬





















=

1
?

max
9∈[=3]

{∑
8,:

[X]2
8, 9 ,:

}
=

1
?

max
9∈[=3]



[X]:, 9 ,:


2

F .

Similarly, we can get



∑8, 9 ,: E[E8, 9 ,:E

>
8, 9 ,: ]




 ≤ 1
?

max
8∈[=3]



[X]8,:,:


2

F. Thus,

max
E(

∑
8, 9 ,:

(E8, 9 ,: )>E8, 9 ,: ),E(
∑
8, 9 ,:

E8, 9 ,: (E8, 9 ,: )>)
 ≤ 1

?
‖X‖2

∞,2 .

By Lemma 2.6, for any 2 > 1,

‖RΩ(X) − X‖ =



RΩ − X




 = 





∑8, 9 ,: E8, 9 ,:








≤

√
222
?

‖X‖2
∞,2 log((=1 + =2)=3) +

22 log((=1 + =2)=3)
?

‖T ‖∞

holds with probability at least 1 − ((=1 + =2)=3)1−22 .

Proof of Lemma 2.10 Consider any 1-th lateral column of PTRΩ(X) − PT(X):

(PTRΩ(X) − PT(X)) ∗ e̊1 =
∑
8, 9 ,:

( 1
?
X8, 9 ,: − 1) [X]8, 9 ,:PT(e̊8 ∗ ¤e: ∗ e̊>9 ) ∗ e̊1 =:

∑
8, 9 ,:

a8, 9 ,: ,

where a8, 9 ,: ∈ K=1×1×=3 are zero-mean independent lateral tensor columns.
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Denote ®a8, 9 ,: ∈ K=1=3×1 as the vectorized column vector of a8, 9 ,: . Then, we have

®a8, 9 ,:

 = 

a8, 9 ,:

F ≤ 1
?
| [X]8, 9 ,: |




PT(e̊8 ∗ ¤e: ∗ e̊>9 ) ∗ e̊1





F
≤ 1
?

√
(=1 + =2)`0A

=1=2
‖X‖∞.

We also have������E(∑8, 9 ,: ®a>8, 9 ,: ®a8, 9 ,: )
������ = E(

∑
8, 9 ,:



a8, 9 ,:

2
F) =

1 − ?
?

∑
8, 9 ,:

[X]2
8, 9 ,:




PT(e̊8 ∗ ¤e: ∗ e̊>9 ) ∗ e̊1



2

F
.

By the definition of PT and the incoherence condition, we have:


PT(e̊8 ∗ ¤e: ∗ e̊>9 ) ∗ e̊1)





F

=




(U ∗ U> ∗ e̊8 ∗ ¤e: ) ∗ e̊>9 ∗ e̊1 + (I=1 −U ∗U>) ∗ e̊8 ∗ ¤e: ∗ e̊>9 ∗ V ∗ V> ∗ e̊1





F

≤
√
`0A

=1




e̊>9 ∗ e̊1


F
+



(I=1 −U ∗U>) ∗ e̊8 ∗ ¤e:


 


e̊>9 ∗ V ∗ V> ∗ e̊1





F

≤
√
`0A

=1




e̊>9 ∗ e̊1


F
+




e̊>9 ∗ V ∗ V> ∗ e̊1





F

By Cauchy-Schwartz inequality, we have


PT(e̊8 ∗ ¤e: ∗ e̊>9 ) ∗ e̊1)



2

F
≤ 2`0A

=1




e̊>9 ∗ e̊1


2

F
+ 2




e̊>9 ∗ V ∗ V> ∗ e̊1



2

F
.

Thus,������E(∑8, 9 ,: ®a>8, 9 ,: ®a8, 9 ,: )
������ ≤ 2`0A

?=1

∑
8, 9 ,:

[X]2
8, 9 ,:




e̊>9 ∗ e̊1


2

F
+ 2
?

∑
8, 9 ,:

[X]2
8, 9 ,:




e̊>9 ∗ V ∗ V> ∗ e̊1



2

F

=
2`0A

?=1

∑
8, 9 ,:

[X]2
8, 9 ,:




e̊>9 ∗ e̊1


2

F
+ 2
?

∑
9




e̊>9 ∗ V ∗ V> ∗ e̊1



2

F

∑
8,:

[X]2
8, 9 ,:

≤ 2`0A

?=1

∑
8, 9 ,:

[X]2
8, 9 ,:




e̊>9 ∗ e̊1


2

F
+ 2
?

∑
9




e̊>9 ∗ V ∗ V> ∗ e̊1



2

F
‖X‖2

∞,2

=
2`0A

?=1

∑
8,:

[X]2
8,1,: +

2
?



V ∗V> ∗ e̊1


2

F ‖X‖2
∞,2

≤ 2`0A

?=1
‖X‖2

∞,2 +
2`0A

?=2
‖X‖2

∞,2 ≤ 2(=1 + =2)`0A

?=1=2
‖X‖2

∞,2

Similarly, we can bound

�����E( ∑
8, 9 ,:

®a8, 9 ,: ®a>8, 9 ,: )
����� by the same quantity.

For simplicity, we let " = 1
?

√
(=1+=2)`0A

=1=2
‖X‖∞ and f2 =

2(=1+=2)`0A
?=1=2

‖X‖2
∞,2.
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By Lemma 2.6, for any 21 > 1, we have

P ©­«






∑8, 9 ,: ®a8, 9 ,:







 ≤
√

221f2 log((=1 + =2)=3) + 21" log((=1 + =2)=3)ª®¬
= P ©­«







∑8, 9 ,: ®a8, 9 ,:






 ≤

√
421 log ((=1 + =2)=3) (=1 + =2)`0A

?=1=2
· ‖X‖∞,2

+
21 log((=1 + =2)=3)

√
(=1 + =2)`0A

?
√
=1=2

‖X‖∞

)
≥ 1 − ((=1 + =2)=3)1−21 .

Notice that

‖(PTRΩ(X) − PT(X)) ∗ e̊1‖F =







∑8, 9 ,: a8, 9 ,:








F

=







∑8, 9 ,: ®a8, 9 ,:






 .

Therefore,

P

(
‖(PTRΩ(X) − PT(X)) ∗ e̊1‖F ≤

√
421(=1 + =2) log ((=1 + =2)=3) `0A

?=1=2
· ‖X‖∞,2+

21 log((=1 + =2)=3)
√
(=1 + =2)`0A

?
√
=1=2

‖X‖∞

)
≥ 1 − ((=1 + =2)=3)1−21 .

Using a union bound over all the tensor lateral slices, we have

P

(
max
1

{‖(PTRΩ(X) − PT(X)) ∗ e̊1‖F} ≤

√
421(=1 + =2) log ((=1 + =2)=3) `0A

?=1=2
· ‖X‖∞,2

+
21 log((=1 + =2)=3)

√
(=1 + =2)`0A

?
√
=1=2

‖X‖∞

)
≥ 1 − =2((=1 + =2)=3)1−21 .

Similarly, we can also show that

P

(
max
1

{

e̊>1 ∗ (PTRΩ(X) − PT(X))




F
}
≤

√
421(=1 + =2) log ((=1 + =2)=3) `0A

?=1=2
· ‖X‖∞,2+

21 log((=1 + =2)=3)
√
(=1 + =2)`0A

?
√
=1=2

‖X‖∞

)
≥ 1 − =1((=1 + =2)=3)1−21 .

Thus, we can get

P

(
‖(PTRΩ(X) − PT(X))‖∞,2 ≤

√
421(=1 + =2) log ((=1 + =2)=3) `0A

?=1=2
· ‖X‖∞,2

+
21 log((=1 + =2)=3)

√
(=1 + =2)`0A

?
√
=1=2

‖X‖∞

)
≥ 1 − ((=1 + =2)=3)2−21 .

�
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Proof of Lemma 2.11. Notice that

PTRΩPT(X) = PTRΩ
©­«
∑
8, 9 ,:

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉
e̊8 ∗ ¤e: ∗ e̊>9

ª®¬ (2.35)

= PT
©­«
∑
8, 9 ,:

1
?
X8, 9 ,:

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉
e̊8 ∗ ¤e: ∗ e̊>9

ª®¬
=

∑
8, 9 ,:

1
?
X8, 9 ,:

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
. (2.36)

Equation (2.35) is due to PT(X) = ∑
8, 9 ,:

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉
e̊8 ∗ ¤e: ∗ e̊>9 . Equation (2.36) is due to

linearity of operator PT.

Notice that
PT(X) = PT (PT(X))

= PT
©­«
∑
8, 9 ,:

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉
e̊8 ∗ ¤e: ∗ e̊>9

ª®¬
=

∑
8, 9 ,:

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
Thus, we can have any (0, 1, 2)th entry of PTRΩPT(X) − PT(X) can be given by〈

PTRΩPT(X) − PT(X), e̊0 ∗ ¤e2 ∗ e̊>1
〉

=

〈∑
8, 9 ,:

( 1
?
X8, 9 ,: − 1)

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
, e̊0 ∗ ¤e2 ∗ e̊>1

〉
=

∑
8, 9 ,:

( 1
?
X8, 9 ,: − 1)

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉 〈
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
, e̊0 ∗ ¤e2 ∗ e̊>1

〉
= :

∑
8, 9 ,:

ℎ8, 9 ,: .

It is easy to see that E(ℎ8, 9 ,: ) = 0. Notice that

|ℎ8, 9 ,: | =
����( 1
?
X8, 9 ,: − 1)

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉 〈
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
, e̊0 ∗ ¤e2 ∗ e̊>1

〉����
=

����( 1
?
X8, 9 ,: − 1)

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉 〈
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
,PT

(
e̊0 ∗ ¤e2 ∗ e̊>1

)〉����
≤ 1
?
‖PT(X)‖∞




PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)



F



PT
(
e̊0 ∗ ¤e2 ∗ e̊>1

)


F ≤ (=1 + =2)`0A

?=1=2
‖PT(X)‖∞

It is easy to check that
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������∑8, 9 ,: E[ℎ2
8, 9 ,: ]

������ = E

(����( 1
?
X8, 9 ,: − 1)

〈
PT(X), e̊8 ∗ ¤e: ∗ e̊>9

〉 〈
PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
, e̊0 ∗ ¤e2 ∗ e̊>1

〉����2)
= E

(
( 1
?
X8, 9 ,: − 1)2

���〈PT(X), e̊8 ∗ ¤e: ∗ e̊>9
〉 〈

PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)
, e̊0 ∗ ¤e2 ∗ e̊>1

〉���2)
≤ 1
?
‖PT(X)‖2

∞




PT

(
e̊8 ∗ ¤e: ∗ e̊>9

)


2

F
≤ (=1 + =2)`0A

?=1=2
‖PT(X)‖2

∞ .

Thus, by non-commutative Bernstein inequality, we have

P
[
(PTRΩPT(X) − PT(X))0,1,2 ≥

1
2
‖PT(X)‖∞

]
≤2 exp ©­« −‖PT(X)‖2

∞/8
(=1+=2)`0A
?=1=2

‖PT(X)‖2
∞ + (=1+=2)`0A

6?=1=2
‖PT(X)‖2

∞

ª®¬
=2 exp

(
−3?=1=2

28(=1 + =2)`0A

)
.

Thus, using the union bound on every (0, 1, 2)th entry, we have

‖(PTRΩPT − PT) (PT(X))‖∞ ≤ 1
2
‖PT(X)‖∞

holds with probability at least 1 − 2=1=2=3 exp
(

−3?=1=2
28(=1+=2)`0A

)
.

Lastly, to maintain the integrity of a self-contained exposition, we offer a detailed proof of

Proposition 1 in Section 2.6.2.3, as originally presented in [84]. �

Proof of Proposition 1 In the following context, the symbol T is used to represent the tensor

that we aim to recover in the optimization problem (2.18). Before we delve into the detailed proof

pipeline, we wish to reiterate the purpose of Proposition 1. It asserts that T is a unique minimizer

to the optimization problem (2.18) when Conditions 1 and 2 are met simultaneously.

Notice that T is a feasible solution to the problem (2.18). In order to show T is the unique

minimizer, it suffices to show

‖X‖TNN − ‖T ‖TNN > 0

for any feasible solution X but X ≠ T .

We first show that for any feasible solution X different from T , there exists a tensor M such

that

‖X‖TNN − ‖T ‖TNN ≥
〈
U ∗V> + PT⊥ (T ) (M),X − T

〉
.

63



In this way, we can transform proving ‖X‖TNN − ‖T ‖TNN > 0 into showing〈
U ∗V> + PT⊥ (T ) (M),X − T

〉
> 0.

To prove 〈U ∗ V> + PT⊥ (M),X − T〉 > 0, we split〈
U ∗V> + PT⊥ (M),X − T

〉
into two parts

〈PT⊥ (M),X − T〉 and
〈
U ∗V>,X − T

〉
.

By the construction of M, we can show that

〈PT⊥ (M),X − T〉 = ‖PT⊥ (X − T )‖TNN.

As for the part 〈U ∗ V>,X − T〉 , we need to further split it into two parts by introducing the dual

certification tensor Y:〈
PT(T ) (Y) − U ∗V>,X − T

〉
,
〈
PT⊥ (T ) (Y),X − T

〉
.

The reason of doing such separation is that we can bound these two terms by 1
2 ‖PT⊥ (X − T )‖TNN

and
√

2
4 ‖PT⊥ (X−T )‖TNN respectively. By combining the bound of above three separations together,

we can get

〈U ∗ V> + PT⊥ (M),X − T〉 ≥ 1
8
‖PT⊥ (X − T )‖TNN .

In the end, we prove


PT⊥ (T ) (X − T )




TNN strictly larger than zero by contradiction. Before we

move on to the detailed proof, we will give several useful lemmas which are key to the proof of

Proposition 1. First, we state the characterization of the tensor nuclear norm (TNN) which can be

described as a duality to the tensor spectral norm.

Lemma 2.12. ([84]) Given a tensor T ∈ K=1×=2×=3 , we have

‖T ‖TNN = sup
{Q∈K=1×=2×=3 :‖Q‖≤1}

〈Q,T〉 .

Next, we present a characterization of the subdifferential of TNN, which is useful for proving

the uniqueness of the minimizer to the optimization problem (2.18).

Lemma 2.13 (Subdifferential of TNN [84]). Let T ∈ K=1×=2×=3 and its compact t-SVD be T =

U ∗ Σ ∗ V>. The subdifferential (the set of subgradients) of ‖T ‖TNN is m ‖T ‖TNN = {U ∗ V> +

W|U> ∗W = 0,W ∗V = 0, ‖W‖ ≤ 1}.
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For the proof of Proposition 1, a significant challenge is proving the minimizer’s uniqueness.

This involves ensuring the expression〈
U ∗V> + PT⊥ (T ) (M),X − T

〉
> 0

with M satisfying some conditions.

Lemma 2.14 ( [84]). Assume that Ω is generated according to the Bernoulli sampling with proba-

bility ?. If ‖PTRΩPT − PT‖ ≤ 1
2 , then

‖PT(X)‖F ≤

√
2=3
?

· ‖PT⊥ (X)‖TNN ,

for any X with PΩ(X) = 0.

Proof of Lemma 2.14. Let X be a tensor satisfying PΩ(X) = 0. Using self-adjoint property of the

operator PT, we can have

‖RΩPT(X)‖2
F = 〈RΩPT(X),RΩPT(X)〉

=

〈
RΩPT(X),

∑
8, 9 ,:

1
?
X8, 9 ,: [PT(X)]8, 9 ,: · e̊8 ∗ ¤e: ∗ e̊>9

〉
=

1
?

〈
RΩPT(X),

∑
8, 9 ,:

X8, 9 ,: [PT(X)]8, 9 ,: · e̊8 ∗ ¤e: ∗ e̊>9

〉
=

1
?
〈RΩPT(X),PΩ(PT(X))〉 = 1

?
〈PTRΩPT(X),X〉

=
1
?
〈PTRΩPT(X) − PT(X),X〉 + 1

?
〈PT(X),X〉

=
1
?
‖PT(X)‖2

F +
1
?
〈(PTRΩPT − PT) (X),PT(X)〉

≥ 1
?
‖PT(X)‖2

F −
1
?
‖PTRΩPT − PT‖ 〈X,PT(X)〉

≥ 1
?
‖PT(X)‖2

F −
1
?
‖PTRΩPT − PT‖ · ‖PT(X)‖2

F ≥ 1
2?

‖PT(X)‖2
F .

Notice that if PΩ(X) = 0, then RΩ(X) must be zero tensor. Thus, we have ‖RΩPT(X)‖F =

‖RΩPT⊥ (X)‖F ≤ 1
?
‖PT⊥ (X)‖F = 1

?
√
=3




PT⊥ (X)





F
≤ 1

?
√
=3




PT⊥ (X)




∗
=

√
=3
?

‖PT⊥ (X)‖TNN. As a

result, we have ‖PT(X)‖F ≤
√

2? ‖RΩPT(X)‖F ≤
√

2=3
?

‖PT⊥ (X)‖TNN. �

Proof of Proposition 1. Consider any feasible solution X ≠ T to the optimization problem (2.18)

with PΩ(X) = PΩ(T ). By the duality between the TNN and tensor spectral norm shown in
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Lemma 2.12, we have that there exists a tensor M with ‖M‖ ≤ 1 such that

‖PT⊥ (X − T )‖TNN = 〈M,PT⊥ (X − T )〉

= 〈PT⊥ (M),PT⊥ (X − T )〉 .

Firstly, it is easy to check that U> ∗ PT⊥ (M) = 0 and PT⊥ (M) ∗ V = 0 by the definition of the

operator PT⊥ (·). By Lemma 2.13, we have that U ∗V> + PT⊥ (M) is a subgradient of T in terms

of Tensor nuclear norm. Therefore, we have

‖X‖TNN − ‖T ‖TNN ≥
〈
U ∗V> + PT⊥ (M),X − T

〉
.

To prove ‖X‖TNN − ‖T ‖TNN ≥ 0, it is sufficient to show〈
U ∗V> + PT⊥ (M),X − T

〉
≥ 0.

Notice that for any Y with PΩ(Y) = Y, we have

〈Y,X − T〉 = 〈PΩ(Y),X − T〉 = 〈PΩ(Y),PΩ(X − T )〉 = 0.

We thus have 〈
U ∗V> + PT⊥ (M),X − T

〉
=

〈
U ∗V> + PT⊥ (M) − Y,X − T

〉
.

Furthermore, we have〈
U ∗V> + PT⊥ (M) − Y,X − T

〉
=

〈
U ∗V> + PT⊥ (M) − PT⊥ (Y) − PT(Y),X − T

〉
= 〈PT⊥ (M),X − T〉 −

〈
PT(Y) − U ∗V>,X − T

〉
− 〈PT⊥ (Y),X − T〉

= ‖PT⊥ (X − T )‖TNN −
〈
PT(Y) − U ∗V>,PT(X − T )

〉
− 〈PT⊥ (Y),PT⊥ (X − T )〉

≥ ‖PT⊥ (X − T )‖TNN −


PT(Y) − U ∗V>



F ‖PT(X − T )‖F

− ‖PT⊥ (Y)‖ ‖PT⊥ (X − T )‖TNN

≥ 1
2
‖PT⊥ (X − T )‖TNN − 1

4

√
?

=3
·

√
2=3
?

‖PT⊥ (X − T )‖TNN (2.37)

≥ 1
8
‖PT⊥ (X − T )‖TNN .

Inequality (2.37) results from Condition 1 and Condition 2 and Lemma 2.14. Next, to verify the

completeness of the proof, it suffices to show that ‖PT⊥ (X − T )‖TNN is strictly positive. We show

it by contradiction. Suppose ‖PT⊥ (X − T )‖TNN = 0, then PT(X −T ) = X −T and PTRΩPT(X −
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T) = 0. Therefore, we have

‖X − T ‖ = ‖(PTRΩPT − PT) (X − T )‖ ≤ ‖PTRΩPT − PT‖‖X − T ‖,

which contradicts with the assumption that ‖PTRΩPT−PT‖ ≤ 1
2 . Thus, T is the unique minimizer

to the optimization problem (2.18). �

Next we present a detailed proof of Theorem 2.6, our main theoretical result, demonstrating

that our model ensures tensor recovery in high-probability.

2.6.3 Proof of Theorem 2.6

In this section, we provide a detailed proof of our main theoretical result Theorem 2.6. The

proof is based on our Two-Step Tensor Completion (TSTC) algorithm. For the ease of the reader,

we state the TSTC algorithm in Algorithm 2.7. This algorithm focuses on subtensor completion

before combining results with t-CUR.

Algorithm 2.7 Two-Step Tensor Completion (TSTC)
1: Input: [T ]ΩR∪ΩC : observed data; ΩR ,ΩC: observation locations; �, �: lateral and horizontal

indices; A: target rank; TC: the chosen tensor completion solver.
2: R̃ = TC( [T ]ΩR , A)
3: C̃ = TC( [C]ΩC , A)
4: Ũ = [C̃] �,:,:
5: T̃ = C̃ ∗ Ũ† ∗ R̃
6: Output: T̃ : approximation of T

Based on the idea of TSTC, it is crucial to understand that how the tensor incoherence properties

of the original low tubal-rank tensor transfer to subtensors.

2.6.3.1 Incoherence passes to subtensors

Inspired by [17, Theorem 3.5], we explore how subtensors inherit the tensor incoherence con-

ditions from the original tensor, differing from [99] in tensor norm and the definition of the tensor

incoherence condition. Our focus is on subtensor incoherence due to its impact on the required

sampling rate for accurate low tubal-rank tensor recovery (Theorem 2.5) and our emphasis on com-

pleting subtensors in tensor completion. We begin by examining the relationship between the tensor

incoherence properties of subtensors and the original low tubal-rank tensor.
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Lemma 2.15. Let T ∈ K=1×=2×=3 satisfy the tensor `0-incoherence condition. Suppose that T

has a compact t-SVD T = W ∗ Σ ∗ V> and a condition number ^. Consider the subtensors

C = [T ]:,�,: and R = [T ] �,:,:, each maintaining the same tubal-rank as T . Their compact t-SVDs

are represented as

C = WC ∗ ΣC ∗ V>
C and R = WR ∗ ΣR ∗ V>

R ,

then the following results hold:

`C ≤ ^2



[V]†

�,:,:




2 |� |
=2
`0, and `R ≤ ^2




[W]†
�,:,:




2 |� |
=1
`0.

Proof. First, let’s prove that

max
8




[ŴC
>
]:,:,: · e8





F
≤

√
`0A

=1
.

Notice that C = [T ]:,�,: = W ∗ Σ ∗ [V]>
�,:,:. Assume the compact t-SVD of Σ ∗

(
[V]�,:,:

)> is

Σ∗
(
[V]�,:,:

)>
= P∗S∗Q>. Thus, P ∈ KA×A×=3 is an orthonormal tensor, leading toWC = W∗P

based on the relationship that C = W ∗ P ∗ S ∗ Q>.

P> ∗ P = I implies that [P̂]>:,:,: · [P̂]:,:,: = IA , where IA is the A × A identity matrix for all : ∈ [=3].

Therefore, we can establish that for : ∈ [=3],

max
8

‖ŴC]>:,:,: · e8‖F = max
8

‖ [Ŵ]>:,:,: · e8‖F ≤
√
`0A

=1
. (2.38)

Next, let’s prove max
8

‖ [V̂C
>]:,:,: · e8‖F ≤ ^(T )



( [V]�,:,:)†


√

`0A
=2

. The compact t-SVD of C

implies V>
C = Σ

†
C ∗ W>

C ∗ C. Thus, for each : ∈ [=3], [V̂>
C ]:,:,: = [Σ̂†

C]:,:,: · [Ŵ>
C ]:,:,: · [Ĉ]:,:,:

holds and ‖ [V̂>
C ]:,:,: · e8‖F can be bounded by

‖ [V̂>
C ]:,:,: · e8‖F =‖ [Σ̂†

C]:,:,: · [Ŵ>
C ]:,:,: · [Ĉ]:,:,: · e8‖F

≤‖[Σ̂†
C]:,:,: ‖‖ [ŴC

>
]:,:,: · [Ŵ]:,:,: · [Σ̂]:,:,: · [V̂]>�,:,: · e8‖F

≤



Σ†

C




 


Σ


 ‖ [V̂]>�,:,: · e8‖F

≤‖C†‖ ‖T ‖ ‖[V̂]>:,:,: · e8‖F

=


( [V]>�,:,:)† ∗ Σ† ∗W>

 ‖T ‖ ‖[V̂]>:,:,: · e8‖F

≤


( [V]>�,:,:)†



 ‖T †‖ ‖T ‖ ‖[V̂]>:,:,: · e8‖F ≤ ^


( [V]>�,:,:)†



√
`0A

=2
.
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That is,

max
8

‖ [V̂>
C ]:,:,: · e8‖F ≤ ^




[V]†
�,:,:




√
`0 |� |
=2

√
A

|� | . (2.39)

Combining (2.38) and (2.39), we can conclude that `C ≤ ^2



[V]†

�,:,:




2 |� |
=2
`0.

Applying above process on R, we can get `R ≤ ^2



[W]†

�,:,:




2 |� |
=1
`0. �

Following Lemma 2.15, we explore the incoherence properties of uniformly sampled subten-

sors, with summarized results below.

Lemma 2.16. Let T ∈ K=1×=2×=3 with multi-rank ®A, and let T = W∗Σ ∗V> be its compact t-SVD.

Additionally, T satisfies the tensor `0-incoherence condition, and ^ denotes the condition number

of T . Suppose � ⊆ [=1] and � ⊆ [=2] are chosen uniformly at random with replacement. Then

rank< (R) = rank< (C) = rank< (T ), `C ≤ 25
4
^2`0 and `R ≤ 25

4
^2`0

hold with probability at least 1 − 1
=
V

1
− 1

=
V

2
provided that |� | ≥ 2V`0‖®A ‖∞ log (=1‖®A ‖1) and |� | ≥

2V`0‖®A ‖∞ log (=2‖®A ‖1).

Proof of Lemma 2.16. According to Lemma 2.3 by setting X = 0.815 and V1 = V2 = V, we can

easily get that

P

(
‖ [V]†

�,:,:‖ ≤

√
25=2
4|� | , rank< (C) = rank< (T )

)
≥1 − 1

=
V

2

,

P

(
‖ [W]†

�,:,:‖ ≤

√
25=1
4|� | , rank< (R) = rank< (T )

)
≥1 − 1

=
V

1

.

Therefore,

P
(
`C ≤ 25

4
^2`0, rank< (C) = rank< (T )

)
≥1 − 1

=
V

2

, (2.40)

P
(
`R ≤ 25

4
^2`0, rank< (R) = rank< (T )

)
≥1 − 1

=
V

1

. (2.41)

Combining (2.40) and (2.41), we can conclude that

rank< (R) = rank< (C) = rank< (T ), `C ≤ 25
4
^2`0 and `R ≤ 25

4
^2`0

with probability at least 1 − 1
=
V

1
− 1
=
V

2
provided that

|� | ≥ 2V`0‖®A ‖∞ log (=1‖®A ‖1) and |� | ≥ 2V`0‖®A ‖∞ log (=2‖®A ‖1) .

�
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2.6.3.2 Proof of Theorem 2.6

Proof of Theorem 2.6. Note that � ⊆ [=1] and � ⊆ [=2] are chosen uniformly with replacement.

According to Lemma 2.16, we thus have

rank< (R) = rank< (C) = rank< (T ), `C ≤ 25
4
^2`0 and `R ≤ 25

4
^2`0

hold with probability at least

1 − 1

=
800V^2 log(=1=3+=2=3)
1

− 1

=
800V^2 log(=1=3+=2=3)
2

=1 − 1
(=1=3 + =2=3)800V^2 log(=1)

− 1
(=1=3 + =2=3)800V^2 log(=2)

provided that

|� | ≥ 3200V`0A^
2 log2(=1=3 + =2=3) ≥ 800^2 log(=1=3 + =2=3)V · (2`0‖®A ‖∞ log (=1‖®A ‖1)),

|� | ≥ 3200V`0A^
2 log2(=1=3 + =2=3) ≥ 800^2 log(=1=3 + =2=3)V · (2`0‖®A ‖∞ log (=2‖®A ‖1) .

Additionally, the following statements hold by Theorem 2.5 and the condition that

`C ≤ 25
4 ^

2`0 and `R ≤ 25
4 ^

2`0 :

i) Given C ∈ K=1×|� |×=3 with rank(C) = A,

?C ≥ 1600V(=1 + |� |)`0A^
2 log2(=1=3 + |� |=3)

=1 |� |
for some V > 1 ensures that C is the unique minimizer to

min
X∈K=1×|� |×=3

‖X‖TNN, subject to PΩC (X) = PΩC (C).

with probability at least 1 − 3 log(=1=3+|� |=3)
(=1=3+|� |=3)4V−2 .

ii) Given R ∈ K|� |×=2×=3 with rank(R) = A,

?R ≥ 1600V(=2 + |� |)`0A^
2 log2(=2=3 + |� |=3)

=2 |� |
for some V > 1 ensures that R is the unique minimizer to

min
X∈K |� |×=2×=3

‖X‖TNN, subject to PΩR (X) = PΩR (R).

Once C and R are uniquely recovered from ΩC and ΩR , respectively. Then t-CUR decomposition

can provide the reconstruction of T via T = C∗U†∗R with the condition rank< (R) = rank< (C) =

rank< (T ).
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Combining all the statements above, we can conclude that T can be uniquely recovered from

ΩC ∪ΩR with probability at least

1 − 2
(=1=3 + =2=3)800V^2 log(=2)

− 3 log(=1=3 + |� |=3)
(=1=3 + |� |=3)4V−2 − 3 log(=2=3 + |� |=3)

(=2=3 + |� |=3)4V−2 .

�

2.7 Conclusion
In this work, we present the t-CCS model, an extension of the matrix CCS model to a tensor

framework. We provide both theoretical and experimental evidence demonstrating the flexibility

and feasibility of the t-CCS model. The ITCURC algorithm, designed for the t-CCS model, pro-

vides a balanced trade-off between runtime efficiency and reconstruction quality. While it is not

as effective as the state-of-the-art Bernoulli-Based TC algorithm, it is still comparable in terms of

PSNR and SSIM. Thus, one of directions of our future research will focus on enhancing reconstruc-

tion quality through the integration of the "-product. From theoretical side, our current theoretical

result shows that the t-CUR sampling scheme, as a special case of t-CCSmodel, requires a complex-

ity of O(`0A=3(=2 log(=1=3) + =1 log(=2=3))) is sufficient, which is more sampling-efficient than

that of a general t-CCS scheme. This finding suggests there is potential to further improve the the-

oretical sampling complexity for the t-CCS model, an aspect we plan to explore in our future work.

Additionally, there is a need for comprehensive theoretical analysis on the convergence behavior of

the ITCURC algorithm within the t-CCS model framework. Evaluating the algorithm’s robustness

against additive noise will also be a critical area of focus for future research. Furthermore, while

our current work is limited to third-order tensors, we aim to extend our approach to accommodate

higher-order tensor configurations in subsequent studies.
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CHAPTER 3

ON THE ROBUSTNESS OF CROSS-CONCENTRATED SAMPLING FOR MATRIX
COMPLETION
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ABSTRACT

Matrix completion is essential in data science for recovering missing entries in partially observed

data. Recently, cross-concentrated sampling (CCS), a novel approach to matrix completion, has

gained attention, though its robustness against sparse outliers remains unaddressed. In this chap-

ter, we propose the Robust CCS Completion problem to explore this robustness and introduce a

non-convex iterative algorithm called Robust CUR Completion (RCURC). Our experiments with

synthetic and real-world datasets confirm that RCURC is both efficient and robust to sparse outliers,

making it a powerful tool for Robust Matrix Completion.

3.1 Introduction
The matrix completion problem, first introduced by Candes et al. [25] and Recht [97], aims to

reconstruct a low-rank matrix - from a limited subset of its observed entries. In practice, many

real-world data matrices are highly incomplete, and this problem has emerged as an important

tool for uncovering latent structures in the data. The significance of matrix completion lies in its

broad applicability across numerous domains such as recovering missing data in recommendation

systems [7, 45], improving image quality [29, 61], and enhancing the efficiency and accuracy of

signal processing techniques [22, 13].

In its simplest form, the goal of matrix completion is to estimate the unknown entries of a

matrix - given access only to a small fraction of the entries. Mathematically, this can be described

as solving for - given observations from the set Ω, which contains the indices of known entries

in - . A common assumption is that the matrix - is of low rank, meaning that it can be described

by a small number of underlying factors or components. The challenge arises from ensuring that

the reconstructed matrix accurately captures the underlying low-rank structure without overfitting

to the noise or sparsity of the observations.

Traditional matrix completion methods often rely on uniform or Bernoulli sampling strategies,

where each entry of the matrix is sampled independently with a fixed probability. However, this

approach can be inefficient, particularly when the data exhibits specific structures or when some

rows and columns are more informative than others.
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Recent advancements in the matrix completion field have introduced a novel sampling method

known as CCS [19]. Unlike uniform sampling, which treats all entries equally, CCS focuses on

strategically sampling entries from certain rows and columns to achieve a more informative set of

observations. By concentrating the samples in regions of the matrix that are more likely to contain

useful information, CCS can lead to more accurate matrix recovery with fewer sampled entries.

Algorithm 3.1 outlines the key steps in the CCS procedure.

Algorithm 3.1 Cross-Concentrated Sampling (CCS) [19]
1: Input: the data matrix . .
2: Uniformly select a subset of row indices � and column indices �.
3: Set ' = [. ] �,: (rows indexed by �) and � = [. ]:,� (columns indexed by �).
4: Uniformly sample entries within the selected rows ' and columns �, recording the sampled

locations as ΩR and ΩC, respectively.
5: Output: Return the observed entries [. ]ΩR∪ΩC and the indices ΩR, ΩC, �, �.

(a) Uniform Sampling (b) CCS–Less Concentrated (c) CCS–More Concentrated (d) CUR Sampling

Figure 3.1 [19] Visual comparison of sampling schemes: from uniform to CUR sampling at the
same observation rate. Colored pixels indicate observed entries, black pixels indicate missing ones.

As shown in Figure 3.1, the CCS model bridges two commonly used sampling methods in

matrix completion: Uniform Sampling and CUR Sampling. Uniform sampling randomly selects

entries from the entire matrix, while CUR sampling focuses on selecting entire rows and columns

for observation. The CCS approach can be viewed as a hybrid method, offering additional flexibility

by concentrating samples on selected rows and columns, with a theoretical basis for achieving better

recovery in certain structured datasets.
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Despite the advantages of CCS, matrix completion in real-world applications often encounters

a significant challenge: data corruption by sparse outliers. In many scenarios, the observed matrix

is not simply low-rank but is also corrupted by noise or outliers that are sparsely distributed. Such

outliers can arise from various sources, such as user input errors in recommendation systems or

sensor malfunctions in signal processing. To address this, Robust Matrix Completion methods

have been developed, which introduce a sparse matrix ( to model the outliers, while ensuring that

the underlying low-rank matrix - is accurately recovered.

A crucial question that remains is whether CCS-based matrix completion is robust to sparse

outliers when used with robust recovery algorithms. Specifically, we ask:

Question 1. [18]Is CCS-based matrix completion robust to sparse outliers under some robust al-

gorithms, like the uniform sampling model?

To address this, we examine the Robust CCS Completion problem, where we are given partial

observations PΩ(. ) of a corrupted data matrix . = - + (, where - is a low-rank matrix and (

represents sparse outliers. The objective is to simultaneously recover both - and ( using CCS-

based sampling. The problem is formulated as follows:

min
-,(

1
2
〈PΩ(- + ( − . ), - + ( − .〉

subject to rank(-) = A,

( is U-sparse,
where, the sampling operator PΩ is defined as:

PΩ(. ) =
∑

(8, 9)∈Ω
[. ]8, 9484>9 ,

where Ω denotes the set of observed indices generated by the CCS model. The sparse compo-

nent ( accounts for outliers, enabling more accurate recovery of the underlying low-rank matrix - .

This framework extends the principles of Robust Matrix Completion, incorporating the novel CCS

sampling approach.
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3.1.1 Related Work

The problem of low-rank matrix recovery in the presence of sparse outliers has been well-

studied under the settings of uniform sampling and Bernoulli sampling. This problem is known

as robust principal component analysis (RPCA) when the corrupted data matrix is fully observed,

and it is called Robust Matrix Completion if data is partially observed. The seminal work [23]

considers both RPCA and Robust Matrix Completion problems via convex relaxed formulations

and provides recovery guarantees. In particular, under the `-incoherence assumption for the low-

rank - , [23] requires the positions of outliers to be placed uniformly at random, and at least

0.1=2 entries are observed uniformly at random. Later, a series of non-convex algorithms [31, 78,

89, 132, 137, 12, 112, 20] tackle RPCA and/or Robust Matrix Completion problems with an im-

proved, non-random U-sparsity assumptions for the outlier matrix (. The typical recovery guarantee

shows a linear convergence of a non-convex algorithm, provided U ≤ O(1/poly(`A)); moreover,

O(poly(`A)polylog(=)=) random samples are typically required for the Robust Matrix Comple-

tion cases. Another line of work [30, 22, 136, 11, 13] focuses on the robust recovery of structured

low-rank matrices, e.g., Hankel matrices, and they typically require merely O(poly(`A)polylog(=))

samples by utilizing the structure, even in the presence of structured outliers. More recently, [15,

17, 59] study the robust CUR decomposition problem, that is, recovering the low-rank matrix from

row- and column-wise observations with entry-wise corruptions.

On the other hand, [19] shows that CCS-based matrix completion requires O(`2A2= log2 =)

samples which is only a factor of log = worse than the state-of-the-art result; however, its outlier

tolerance has not been studied.

3.1.2 Notation

For a matrix " , ["]8, 9 , ["] �,:, ["]:,� , and ["] �,� denote its (8, 9)-th entry, its row submatrix

with row indices �, its column submatrix with column indices �, and its submatrix with row indices

� and column indices �, respectively. "† represents the Moore–Penrose inverse of " . We use 〈·, ·〉

to denote the Frobenius inner product. The symbol [=] denotes the set {1, 2, · · · , =} for all = ∈ Z+.

Throughout this chapter, uniform sampling is referred to as uniform sampling with replacement.
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3.1.3 `-incoherence and U-sparsity

In Robust Matrix Completion, we often rely on certain structural assumptions about the matrix

to be recovered. Two such pivotal assumptions are `-incoherence [26] and U-sparsity [23]. These

assumptions play crucial roles in ensuring that the recovery algorithm can effectively reconstruct

the matrix even when a significant portion of its entries are missing or corrupted by noise.

The concept of `-incoherence is pivotal in the field of matrix completion, designed to ensure

a balanced distribution of information across all rows and columns of a matrix. This balance is

crucial for preventing any single row or column from disproportionately influencing the overall

content of the matrix, which is particularly important when attempting to recover or approximate a

matrix from a partial set of its entries.

Informally, a matrix is described as `-incoherent when its singular vectors are such that no indi-

vidual component dominates. This is quantified through boundedness conditions on the entries of

the singular vectors, which ensure that the matrix’s structural information is uniformly distributed.

We formalize this intuitive concept with the following definition:

Definition 21 (`-incoherence [26]). Let - ∈ R=1×=2 be a matrix of rank A. The matrix - is said

to be `-incoherent if the following conditions hold for its compact singular value decomposition

- = *Σ+>:

‖*‖2,∞ ≤
√
`A

=1
and ‖+ ‖2,∞ ≤

√
`A

=2
,

where ‖ · ‖2,∞ represents the maximum ℓ2-norm among the rows of the matrices * and + , respec-

tively, and ` is a positive scalar that quantifies the level of incoherence.

This definition encapsulates how `-incoherence functions as a safeguard against skewed data

representation in matrix completion tasks, facilitating algorithms that require uniformly spread sin-

gular vectors for effective reconstruction.

The U-sparsity assumption plays a critical role in the analysis of matrix structures, particularly

within the domain of Robust Matrix Completion. This assumption pertains to the density of non-

zero entries in the matrix, or more specifically, in its constituent components such as the sparse error
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matrix. The sparsity parameter U serves as a threshold, dictating themaximum allowable proportion

of non-zero entries in each row and each column of the matrix, thus ensuring a controlled spread

of these entries throughout the matrix.

Definition 22 (U-sparsity [23]). Consider a matrix ( ∈ R=1×=2 . We define ( as U-sparse if no more

than an U fraction of its entries in each row and each column are non-zero. Specifically, for every

row index 8 within the set of all row indices [=1] and every column index 9 within the set of all

column indices [=2], the matrix satisfies:

‖ [(]8,:‖0 ≤ U=2 and ‖ [(]:, 9 ‖0 ≤ U=1,

where ‖ · ‖0 represent the number of non-zero entries.

The assumptions of `-incoherence and U-sparsity are crucial because they directly influence

the feasibility and complexity of the matrix recovery process in Robust Matrix Completion. These

conditions ensure that the matrix has a well-distributed singular vector structure and a manageable

number of outliers or corruptions, which are key for successful recovery using optimization-based

methods [23, 26].

3.1.4 CUR Approximation

CUR approximation, also referred to as skeleton decomposition, forms the foundation of our

algorithm design. To provide context, we will briefly review some key concepts of CUR approxi-

mation, which plays a crucial role in matrix dimensionality reduction.

CUR approximation is a powerful and interpretable technique that addresses the challenge of

reducing matrix dimensionality while preserving meaningful structure. Given a rank-A matrix - ∈

R=×=, the matrix can be reconstructed by selecting appropriate rows and columns that span its row

and column spaces, respectively. This method offers an intuitive way to approximate matrices by

extracting representative submatrices. The theoretical underpinnings of this approach have been

established in prior research, as outlined in the following theorem:

Theorem 3.1 ( [87, 58]). Consider row and column index sets �, � ⊆ [=]. Denote the submatrices
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� = [-]:,� ,* = [-] �,� , and ' = [-] �,:. If rank(*) = rank(-), then

- = �*†'.

An extensive body of literature has significantly contributed to the development of sampling

methods in matrix CUR approximation. Key works include those by Achlioptas and McSherry [2],

Ahmadi and Drineas [3], Drineas et al. [41], Boutsidis and Woodruff [10], Hamm and Huang [58],

Cai et al. [19], and Martinsson [88], among many others [76, 123, 35, 85, 126, 119, 87, 128, 111,

77, 67, 127, 36, 92, 106, 27, 44, 124, 93, 39, 134, 34, 46, 47, 118, 55, 75]. In fact, sampling a

sufficient number of rows and columns makes this condition highly likely. An example of such a

sampling strategy is provided in Theorem 3.2.

Theorem 3.2 ( [32, Theorem 1.1]). Let - satisfy Definition 21, and suppose we sample |� | =

O(A log =) rows and |� | = O(A log =) columns uniformly at random. Then rank(*) = rank(-) with

probability at least 1 −$ (A=−2).

3.2 Proposed Algorithm
In this section, we introduce a novel non-convex algorithm for solving the Robust CCS Comple-

tion problem (3.1). The algorithm builds upon the projected gradient descent framework, integrat-

ing the CUR decomposition to efficiently compute low-rank approximations at each iteration. This

approach significantly reduces computational complexity while maintaining robust performance.

The proposed algorithm, named Robust CUR Completion (RCURC), is outlined in Algorithm 3.2.

RCURC leverages the CUR approximation, where selected rows and columns are used to cap-

ture the essential structure of the matrix. By iteratively updating both the sparse and low-rank

components, RCURC aims to solve the matrix completion problem with high efficiency, even in

the presence of sparse outliers. Specifically, in each iteration, the algorithm alternates between

updating the sparse matrix using a thresholding operator and refining the low-rank matrix through

projected gradient updates on the observed data. The method ensures that the low-rank component

is efficiently approximated using the CUR decomposition, which focuses on key rows and columns

to reduce the dimensionality of the problem.
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Algorithm 3.2 Robust CUR Completion (RCURC)
1: Input: [. = - +(]Ω'∪Ω�

: observed data;Ω',Ω� : observation locations; �, �: row and column
indices that define ' and � respectively; [', [� : step sizes; A: target rank; Y: target precision
level; Z0: initial thresholding value; W: thresholding decay parameter.

2: -0 = "0; : = 0
3: while 4: > Y do // 4: is defined in (3.3)
4: // Updating sparse component
5: Z:+1 = W: Z0
6: [(:+1] �,: = TZ:+1 [. − -: ] �,:
7: [(:+1]:,� = TZ:+1 [. − -: ]:,�
8: // Updating low-rank component
9: ':+1 = [-: ] �,: + [' [PΩ'

(. − -: − (:+1)] �,:
10: �:+1 = [-: ]:,� + [� [PΩ�

(. − -: − (:+1)]:,�
11: *:+1 = HA ( [':+1]:,� ] [�:+1] �,:)
12: [':+1]:,� = *:+1 and [�:+1] �,: = *:+1
13: -:+1 = �:+1*

†
:+1':+1 // Do not compute (see (3.2))

14: : = : + 1
15: end while
16: Output: �: ,*: , ': : The CUR components of the estimated low-rank matrix.

We will explain the algorithm step by step in the following paragraphs. For clarity, we begin

with the low-rank component. To leverage the structure of cross-concentrated samples, it is efficient

to enforce the low-rank constraint on - using the CUR approximation technique. Let ' = -�,:,

� = -:,� , and* = -�,� . Applying gradient descent directly on ' and � yields:

':+1 = [-: ] �,: + ['
[
PΩ'

(. − -: − (:+1)
]
�,: ,

�:+1 = [-: ]:,� + [�
[
PΩ�

(. − -: − (:+1)
]

:,� ,

where [' and [� are the step sizes. However, When it comes to the intersection submatrix *,

it is more complicated as Ω' and Ω� can have overlaps. We abuse the notation ] and define an

operator called union sum here:

[
[':+1]:,� ] [�:+1] �,:

]
8, 9

=



[':+1]8, 9 if (8, 9) ∈ Ω' \Ω� ;

[�:+1]8, 9 if (8, 9) ∈ Ω� \Ω';

['[�
['+[�

(
[':+1]8, 9
['

+ [�:+1]8, 9
[�

)
if (8, 9) ∈ Ω� ∩Ω';

0 otherwise.
Basically, we take whatever value we have for the non-overlapped entries and take a weighted aver-
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age for the overlaps where the weights are determined by the stepsizes used in the updates of ':+1

and �:+1. To ensure the rank-A constraint, at least one of �:+1, *:+1 or ':+1 should be rank-A . For

computational efficiency, we choose to put it on the smallest one. Thus,

*:+1 = HA

(
[':+1]:,� ] [�:+1] �,:

)
,

where HA is the best rank-A approximation operator via truncated SVD. After replacing the inter-

section part*:+1 in the previously updated ':+1 and �:+1, we have the new estimation of low-rank

component:

-:+1 = �:+1*
†
:+1':+1. (3.1)

However, (3.1) is just a conceptual step and one should never compute it. In fact, the full matrix

-: is never needed and should not be formed in the algorithm as updating the corresponding CUR

components is sufficient.

We detect the outliers and put them into the sparse matrix ( via hard-thresholding operator:

[TZ (")]8, 9 =


0 if | ["]8, 9 | < Z ;

["]8, 9 otherwise.
The hard-thresholding on residue . − -: , paired with iterative decayed thresholding values:

Z:+1 = W: Z0 with some W ∈ (0, 1),

has shown promising performance in outlier detection in prior art [12, 20, 14]. Notice that we

only need to remove outliers located on the selected rows and columns, i.e., ' and �, since they

are the only components needed to update the low-rank component later. Therefore, for compu-

tational efficiency, we should only compute -: on the selected rows and columns to update (:+1

correspondingly—as said, one should never compute the full -: in this algorithm. In particular,

[-: ] �,: = [�: ] �,:*†
:
': and [-: ]:,� = �:*

†
:
[': ]:,� . (3.2)

The stopping criteria is set to be 4: ≤ Y where Y is the targeted accuracy and the computational

error is

4: =
〈PΩ'∪Ω�

((: + -: − . ), (: + -: − .〉
〈PΩ'∪Ω�

.,.〉 . (3.3)
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The recommended stepsizes are [' = 1
?'

and [� = 1
?�

where ?' and ?� are the observation rates

of Ω' and Ω� respectively. Smaller stepsizes should be used with larger U, i.e., more outliers.

3.3 Numerical Experiments
In this section, we will verify the empirical performance of RCURC with both synthetic and

real datasets. All experiments are implemented using MATLAB Online (R2024a, Update 6) and

executed on a cloud-based Linux environment running Ubuntu 20.04 with kernel version 5.15.0-

1062-AWS.

3.3.1 Synthetic Datasets

In this simulation, we assess the computational efficiency of our algorithm, RCURC, in address-

ing the robust CCS completion problem. We construct . = - + (, a 3 × 3 matrix with 3 = 3000,

where - = ,+> is a randomly generated rank-A matrix. To create the sparse outlier tensor (, we

randomly select U percent entries to form the support of (. The values of the non-zero entries are

then uniformly sampled from the range [−2E(
��[-]8, 9 ��), 2E(��[-]8, 9 ��)]. To generate the robust CCS

completion problems, we set |I|
3
=

|J|
3
= 30%, and |Ω' |

|I|3 =
|Ω� |
|J|3 = 25%. The results are obtained by

averaging over 10 runs and reported in Figure 3.2. Both figures in Figure 3.2 depict the relationship

between the relative error 4: and computational time for our RCURC method with varying rank A

and outlier amplification factor 2. It is noteworthy that RCURC consistently achieves nearly linear

convergence rates across different scenarios. The empirical convergence illustrated in the left sub-

plot of Figure 3.2 shows that smaller r values allow the algorithm to achieve a given relative error

in fewer iterations. This is likely because smaller A values minimize the impact of noise during the

iterative process, enabling the algorithm to concentrate on the dominant low-rank structure of the

matrix, which results in faster convergence.
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Figure 3.2 Empirical convergence of RCURC [18]. Left: c = 10 and varying r. Right: U = 0.2,
A = 5 and varying 2.

3.3.2 Video Background Subtraction

We have applied RCURC under our robust CCSmodel to the problem of background separation.

We evaluated our algorithm on the Train Station dataset [110]. The dataset is of size 173×216×500.

In order to transform this data into a low-rank matrix, a specific reconfiguration process is applied.

This process involves stacking each of the frontal slices of the tensor, which are essentially indi-

vidual frames of the video. To transform high-dimensional video data into a low-rank matrix for

streamlined data processing and analysis, we flatten the height and width dimensions (173 and 216)

into a single dimension while retaining the frame dimension. This reshaping converts the original

3-dimensional tensor into a 2-dimensional matrix, facilitating subsequent computations. The re-

sulting matrix has a size of 37,368 (the product of 173 and 216) by 500 (the number of frames). The

CCS model is constructed by selecting 5% of the rows and 5% of the columns to create subrow and

subcolumn matrices, with a sampling rate of 80% on each submatrices. We selected several bench-

mark algorithms for comparison, including Principal Component Pursuit (RPCA) [23], Stable Prin-

cipal Component Pursuit (SPCP) [144], Low-RankMatrix Factorization (LRMF) [81], Accelerated

Alternating Projection (AccAltProj) [12], Iterated Robust CUR with fixed indices (IRCUR-F) [15],

and Iterated Robust CUR with resampled indices (IRCUR-R) [15]. However, all six benchmark al-

gorithms are operated under the full observation model since we find they do not visually perform
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well on the constructed CCS mdoel. Since IRCUR-F and IRCUR-R are both CUR-based algo-

rithms, we set the sampling parameters for IRCUR-R and IRCUR-F to 1.7732 × 102 and 4.0227,

respectively. This configuration ensures that these two algorithms access 5% of the rows and 5% of

the columns from the full observation data in each iteration. The methods RPCA, SPCP, AccAlt-

Proj, IRCUR-F, IRCUR-R and RCURC are configured to run with a maximum of 50 iterations or

until it meets a convergence tolerance of 10−3, whichever condition is satisfied first. We man-

ually set the regularization parameter for RPCA and SPCP to 0.001, as it yielded the best visual

results during tuning from the values 0.001, 0.01, 0.1, 1, and 10. The LRMF method is configured

to run with a maximum of 5 iterations and a rank of 1. After manual tunings, where the rank pa-

rameter is tested with values 1, 3, and 5, we selected rank 1 as it provided the best balance between

visual quality and runtime efficiency. Increasing the rank provided no significant improvement in

visual quality while substantially increasing the runtime. Similarly, increasing the number of it-

erations beyond 5 does not result in noticeable improvements in visual quality, but significantly

extended the runtime. For AccAltProj, IRCUR-R, IRCUR-F, and RCURC, we select a rank pa-

rameter of 1 as it yields the best visual results. This choice is based on tuning the rank parameter

over the values 1, 3, 5, 7, 9. The visual results are shown in Figure 3.3, consisting of five selected

frames (80th, 160th, 240th, 320th and 400th). We present the corresponding quantitative results

in Table 3.1, where the comparison is performed using the Peak Signal-to-Noise Ratio (PSNR) to

evaluate reconstruction accuracy and computational time to assess efficiency. The PSNR is cal-

culated by comparing reconstructed background, obtained through different methods, against the

ground truth background tensor. The ground truth tensor is created by replicating the first frame,

which represents a static background, across all frames in the dataset. For deterministic algorithms

like RPCA, SPCP, LMRF, each quantitative result is calculated as the average of ten independent

runs to help mitigate errors from machine precision, floating-point arithmetic, or other low-level

numerical issues. In contrast, ICURC-R and ICURC-F involve randomness in row and column

selection under full obeservation during iterations. Our method, based on the inherently random

sampling model—the CCS model, naturally involves randomness. Thus, each quantitative result of
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these three random method is computed as the average of ten independent runs, with the standard

deviation included.

Table 3.1 Comparison of runtime and PSNR among RPCA, SPCP, LRMF, IRCUR-R, IRCUR-F
based on full observation and RCURC based on the CCS model.

RPCA SPCP LRMF AccAltProj IRCUR-R IRCUR-F RCURC

Runtime (sec) 13.55 36.86 41.75 3.32 0.31 ± 0.02 0.18 ± 0.03 0.20 ± 0.05
PSNR 28.35 32.04 34.62 41.65 41.40 ± 0.19 41.06 ± 0.22 40.60 ± 0.58

The visualization results in Figure 3.3 illustrate the performance of various methods in recon-

structing static background components. Rows 3, 4, and 5 highlight the effectiveness of RPCA,

SPCP, and LRMF when applied to full observation. While these methods generally produce con-

sistent and comparable results, subtle imperfections are noticeable in certain frames, such as the

160th frame, where minor blurring or incomplete restoration occurs. Rows 6, 7, and 8, correspond-

ing to AccAltProj, IRCUR-R, and IRCUR-F, demonstrate notable performance in reconstructing

background components. These methods effectively handle the background separation task, deliv-

ering visually satisfactory outputs. It is evident that the our method (last row) performs well in

background subtraction. The results are comparable to other state-of-the-art algorithms under full

observation, indicating the success of the our method in the video background separation task. The

results in Table 3.1 provide a quantitative comparison of runtime and PSNR across various meth-

ods. The RCURC algorithm achieves a runtime of 0.20±0.05 seconds, which is significantly faster

than RPCA (13.55 seconds), SPCP (36.86 seconds), LRMF (41.75 seconds), and AccAltProj (3.32

seconds). When compared to IRCUR-R (0.31±0.02 seconds) and IRCUR-F (0.18±0.03 seconds),

RCURC remains highly competitive in terms of runtime. Regarding PSNR, our method achieves

a value of 40.60 ± 0.58, which is higher than RPCA (28.35), SPCP (32.04), and LRMF (34.62).

Although the PSNR values of IRCUR-R (41.40 ± 0.19) and IRCUR-F (41.06 ± 0.22) are slightly

higher, our method still demonstrates competitive performance.
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80th frame 160th frame 240th frame 320th frame 400th frame

Figure 3.3 Video background subtraction results: Row 1 shows the original images (full obser-
vation) at the corresponding frames, while Row 2 presents the observed images generated by the
CCS model at the respective frames. Rows 3 to 8 showcase the background components extracted
using RPCA, SPCP, LMRF, AccAltProj, IRCUR-R, and IRCUR-F algorithms based on the full ob-
servation model. Row 9 presents the results obtained using the RCURC algorithm under the CCS
model.
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3.4 Conclusion
This chapter introduces a novel mathematical model for robust matrix completion problems

with cross-concentrated samples. A highly efficient non-convex algorithm, dubbed RCURC, has

been developed for the proposed model. The key techniques are projected gradient descent and

CUR approximation. The numerical experiments, with both synthetic and real datasets, show high

potential. In particular, we consistently observe linear convergence on RCURC.

As for future work, we will study the statistical properties of the proposed robust CCS comple-

tion model, such as theoretical sample complexities and outlier tolerance. The recovery guarantee

with a linear convergence rate will also be established for RCURC.Wewill also try to give a theoret-

ical analysis explaining why a smaller rank accelerates the convergence of our RCURC algorithm.

We will also explore other real-world applications that suit the proposed model.
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CHAPTER 4

CONCLUSION
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In this thesis, we have addressed critical challenges in matrix and tensor analysis by develop-

ing robust and flexible methodologies for data recovery tasks in data science. The methodologies

propose in this thesis contribute to the advancement of matrix and tensor analysis, particularly in

scenarios where robustness and flexibility are critical. By addressing the challenges posed by noise,

sparsity, and complex data structures, the propose techniques have the potential to benefit a wide

range of applications, such as image processing. Furthermore, the theoretical foundations estab-

lished for robust sampling and decomposition provide a framework for future extensions in related

fields. Our contributions span two interconnected projects, each tackling fundamental limitations

in existing approaches while extending their applicability to real-world scenarios characterized by

noise, sparsity, and high dimensionality. This chapter summarizes the key contributions of the

thesis.

4.1 Summary of Contributions

Guaranteed Sampling Flexibility for Tensor Completion

In this project, we address the limitations of existing tensor completion methods by introducing

Tensor Cross-Concentrated Sampling (t-CCS), a generalization of CCS to higher-order tensors. Ac-

companying this sampling framework, we develop the Iterative Tensor CURCompletion (ITCURC)

algorithm, which offers theoretical guarantees for low-tubal-rank tensor recovery. Through rigor-

ous theoretical analysis and extensive empirical validation, this project demonstrates the flexibility,

accuracy, and computational efficiency of t-CCS-based model.

Robust CCS Completion for Matrix Analysis

In this project, we explore the robustness of CCS for matrix completion. While CCS has demon-

strated effectiveness in capturing cross-sectional dependencies, its sensitivity to sparse outliers

posed a significant limitation. To address this, we propose the Robust CCS Completion frame-

work, introducing a non-convex iterative algorithm designed to handle noisy and incomplete data.

Experiments on synthetic and real-world datasets validate our algorithm’s efficiency and robustness,

establishing it as a robust tool for practical data completion tasks.
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