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ABSTRACT

NONLINEAR ADIABATIC STABILITY FOR A GENERALIZED
REACTION-DIFFUSION SYSTEM

By

Thomas James Bellsky

We examine a singularly perturbed, coupled, weakly damped, reaction-diffusion sys-

tem in one space dimension. This system is examined in the semi-strong pulse

interaction regime. We rigorously construct a slow manifold of N -pulse solutions.

We identify neutral modes and uncouple them. We solve this reduced nonlinear

N -dimensional system with a fixed point method, which generates an equilibrium

solution for the reduced system. We turn the coupling back on and continue the

slow manifold back to the original system. After analyzing the eigenvalue problem

and using renormalization group methods, we show the approximate invariant mani-

fold for the full system is adiabatically stable. We also derive an explicit formula for

the pulse dynamics. This work is the first rigorous analysis of the weakly damped

regime, in which the essential spectrum approaches the origin.
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Chapter 1

Introduction

The study of self-organizing pattern formation was first considered by Turing [31].

Systems of recent interest are the Gierer-Meinhardt model [18] and the Gray-Scott

model [22]. These reaction-diffusion systems consist of activator components which

drive pattern formation and inhibitor components which curtail the reaction. They

model a variety of chemical reactions, including morphogenesis.

We study two classes of systems, the first encompassing a class of singularly

perturbed reaction-diffusion equations

Ut = ε−2Uxx − εαµU + ε−βUα11V α12 , (1.1a)

Vt = Vxx − V + Uα21V α22 , (1.1b)
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with α11, α21 ≥ 0 and µ > 0, α ≥ 0, β ≥ 0, α12 ≥ 2 and α22 ≥ 2. We study this

system for 0 < ε� 1, which introduces the novelty of an asymptotically small linear

damping for the first component U .

Figure 1.1: A typical quasi-steady solution structure for the coupled system (1.1)
and (1.2). The V component is localized at the pulse positions pj . The U component
has an approximately constant value, qj , on the narrow pulse intervals, and is slowly
varying in between the pulses. For interpretation of the references to color in this and
all other figures, the reader is referred to the electronic version of this dissertation.

The second class of systems we consider is referred to as an activator-inhibitor

system, where the activator component, V , drives the reaction while the inhibitor

component, U , curtails production of V . Many references in the literature, including

[18], have modeled these systems with an equation of the form (1.1), with α21 <

0. However, the singularity in the nonlinear term at U = 0 suggests unlimited

production of the activator when the inhibitor is absent, which has no correspondence
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to chemical reality. To be consistent with the chemical literature, see for example

Chapter 26 of [1], we truncate the singularity and rewrite (1.1) as

Ut = ε−2Uxx − εαµU + ε−βUα11V α12 , (1.2a)

Vt = Vxx − V + κ(U)α21V α22 , (1.2b)

where the function κ is defined as

κ(s) =


s s > 2δ

δ 0 < s < δ

 , (1.3)

where κ is smooth for s ∈ (δ, 2δ). For this modified system, the production rate of

the activator V is bounded by V α22
δα21

. For δ sufficiently small, we will show that the

salient leading order dynamics of (1.1) are unaffected by the modification, while the

artificial singularity at U = 0 has been removed. Combining both systems (and also

the system that allows α11 < 0), we introduce the system

Ut = ε−2Uxx − εαµU + ε−βΓ(U)α11V α12 , (1.4a)

Vt = Vxx − V + Γ(U)α21V α22 , (1.4b)
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where Γ is defined as

Γ(U)r =


Ur r ≥ 0

κ(U)r r < 0

 . (1.5)

We write (1.4) in vector form ~U = (U, V )T :

~Ut = F(~U ). (1.6)

For the system (1.4), we investigate the existence and the dynamics of localized

N -pulse solutions in the second component V coupled via the long-range interac-

tion of the delocalized component U . Within the framework of this singularly per-

turbed fast-slow system, this corresponds to the semi-strong pulse interaction regime,

which is intermediate between the weak interaction regime and the strong interaction

regime. In the weak interaction regime, both components U and V have sufficiently

localized pulse structure, so that the mutual interaction of localized structures in

each component is exponentially weak. Within the weak regime, there is no leading

order influence of pulse location on the shape or the stability of the pulses. The weak

interaction regime has been well-studied in reaction-diffusion systems, see [14], [15],

[29], and [30]. In the context of (1.4), the strong interaction regime corresponds to

the pulses of the V component being sufficiently close together that their point-wise

interaction competes with other effects, leading to possibly self-replication, collision,

or annihilation. There has been little theoretical investigation of the strong interac-
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tion regime, which is typically investigated using numerical techniques.

The semi-strong pulse interaction regime is an intermediate regime between the

weak interaction regime and the strong interaction regime. In a two-component

semi-strong regime, one component is strongly localized and the other component is

delocalized. The semi-strong regime typically arises in systems that are singularly

perturbed, as a result of a dichotomy of scales in the diffusivity coefficients.

In the semi-strong interaction regime, the delocalized component acts as a mean-

field which drives the motion and amplitudes of the localized pulses. In turn, the

localized pulses couple to the delocalized components, in effect generating their own

mean-field. This coupling between the localized and delocalized components has to be

self-consistent. A key ingredient of this thesis is the construction of a self-consistent

approximate invariant manifold for the system (1.4). Moreover, we rigorously reduce

the full partial differential equation system (1.4) to this approximate invariant man-

ifold, deriving leading order ordinary differential equations for the localized pulse

dynamics.

The semi-strong regime has been studied both formally ([9], [10], [11], and [26])

and rigorously ([12] and [32]). These previous works have studied various systems

including the Gierer-Meinhardt model [18] and the Gray-Scott model [22]. An N -

pulse semi-strong interaction regime for the generalized Gierer-Meinhardt model is

examined in [26]. Conditions for stability are established and ordinary differential
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equations for the dynamics of quasi-equilibrium pulse solutions are determined. In

[11], a general system that includes both the Gierer-Meinhardt and the Gray-Scott

model is studied. The semi-strong two-pulse interaction is investigated and formal

results for the asymptotic stability of their solution are determined, along with or-

dinary differential equations governing the dynamics of pulse positions.

Our work extends [12], where a 2-pulse semi-strong interaction regime is rigor-

ously studied for the regularized Gierer-Meinhardt model, which corresponds to our

system (1.4) with α = 0, β = 1, α11 = 0, α21 = −1, and α12 = α22 = 2:

Ut = ε−2Uxx − µU + ε−1V 2 (1.7a)

Vt = Vxx − V +
V 2

κ(U)
. (1.7b)

The work in [12] rigorously determines an equation for pulse dynamics and es-

tablishes an asymptotic stability result for the reduced flow. In [32], the semi-strong

regime is investigated for a 2, 3, or 4-pulse for a three-component coupled system with

two inhibitors components and one activator component. Both of these two previous

works use the renormalization group methodology to establish adiabatic stability of

the quasi-invariant N -pulse manifold. This renormalization group methodology was

developed in [20], and extended in [29]. The techniques in [29] have been applied

to [23], [28], and [32] (for further details on renormalization group methodology see
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[4], [5], [6], [7], [19], and [21]). In the context of [12], the renormalization group

method is a means to obtain appropriate semigroup estimates on families of weakly

time dependent linear operators.

The asymptotically weak linear damping term εαµU present in (1.4) is a central

and novel part of this thesis. For an appropriate linearization of the system, the

asymptotic weakness of the linear damping term is manifested in the essential spec-

trum being asymptotically close to the origin. This thesis derives sufficient conditions

under which the essential spectrum does not impinge upon the reduction of the full

dynamics to a finite dimensional system. In particular, for the case α/2 + β = 1,

subject to the bound on the asymptotic decay rate,

0 ≤ α < 2/3, (1.8)

we derive semigroup estimates which amount to a preservation of normal hyperbolic-

ity despite the impinging essential spectrum. For larger α, our method breaks down

as the flow on the manifold becomes comparable to the asymptotic decay rates; in

other words, we lose normal hyperbolicity in the nonlinear semigroup. We believe

these results are sharp, that is, a reduction to α > 2/3 would require an extension

of the approximate invariant manifold to include parts of the essential spectrum,

which would be manifested as self-like structures (small in L∞, large in L1) in the

localized component V . However, we do not conduct analysis of the α > 2/3 case in
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this thesis.

This work contains the first rigorous construction of an N -pulse adiabatic mani-

fold in the semi-strong regime. We identify the neutral modes of the system (1.4) and

identify sufficient conditions under which they may be uncoupled at leading order

to obtain a reduced formulation of the system. More specifically, we introduce the

pulse positions ~p(t) ∈ Kl0 ⊂ RN and the pulse amplitudes ~q(t) ∈ RN , which evolve

with respect to time. The set Kl0 is defined as

Kl0 =
{
~p
∣∣ |pi − pj | > l0| ln ε|, l0 > 0, ∀i 6= j, 1 ≤ i, j ≤ N

}
, (1.9)

with l0 sufficiently large so that the localized pulse overlap is O(εr) for r ≥ 2. The

N -pulse adiabatic solution is a function of the pulse positions ~p ∈ RN , where the

j-th localized pulse in the V component is centered at pj for j = 1, · · · , N . The

pulse positions are well-ordered, so that pi < pj for i < j. The amplitude of the

delocalized component U at each pulse position pj is denoted by qj , so U(pj) = qj

for j = 1, · · · , N (see Figure 1.1).

For fixed pulse positions ~p, we rigorously determine a self-consistent mean field

for these N -pulse amplitudes ~q = ~q(~p) by a fixed point method. Using the implicit

function theorem, we are able to generate the amplitudes ~q as local smooth functions

of ~p and ε > 0. For each ~p ∈ Kl0 there exists at least one branch ~q(~p), but often

more then one. Also, there exists both a uniform lower and upper bound for at
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least one branch ~q(~p). For any branch with this uniform bound above and below, we

can ignore the δ term in (1.3) (thus contained in the system (1.4)) so long as δ is

chosen smaller then the uniform lower bound. We also formulate a non-bifurcation

condition, that when met, will guarantee the local persistence of a particular branch

~q(~p). Associated to each branch ~q(~p), we construct an adiabatic N -pulse solution to

(1.4) of the form

Φ~p(t)(x) =

 Φ1(x; ~p(t), ~q(t))

Φ2(x; ~p(t), ~q(t))

 , (1.10)

where Φ1 corresponds to the U component and Φ2 corresponds to the V component

(see Section 2.1 and Section 2.2 for the explicit construction of Φ~p(t)). Under appro-

priate restrictions which we detail below, the N -pulse adiabatic solution Φ~p serves

as an adiabatic manifold with boundary for the system, generating a slow flow.

Linearizing the full system (1.4) about the adiabatic N -pulse solution generates

the linearized operator L~p(t) = L (~p(t)) . The heart of the technical elements of this

thesis is a detailed analysis of the linearized operator and the associated semigroup. A

key step is the identification of a reduced linearization L̃~p(t) = L̃ (~p(t)) . In particular,

we show that there exists a ν > 0 independent of ε such that σ
(
L̃
)
∩{Re(λ) > −ν}

can be decomposed into three parts. The first part is the essential spectrum, inde-

pendent of pulse position ~p. The essential spectrum consists of the set (−ν,−εαµ],

which lies within the left-half complex plane. Recall, the asymptotically small damp-
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ing term results in an essential spectrum which is asymptotically close to the origin.

The second part of the spectrum consists of N -point spectra, σ0, which corresponds

to the translational modes of the localized pulses and whose eigenmodes lie in the

tangent plane of the manifold at leading order. By an appropriate restriction on l0,

which controls the localized pulse separation, we can restrict these eigenvalues to

reside within O(εr) of the origin, for any r ≥ 2 that we desire.

Figure 1.2: This figure illustrates the spectral decomposition of the reduced lineariza-
tion for N = 2.

We show that the remainder of the spectrum, which we call the finite rank spec-

trum, σfr, can be characterized as solutions of N algebraic equations which we

associate to the finite rank potentials in the reduced linearization. The finite rank

spectrum evolves at leading order as the pulse positions evolve, and a key issue of this

work is reducing the location of the spectral set σfr to an explicit set of algebraic

equations. The following figure illustrates the evolution of the spectral set σfr for a

2-pulse solution to the regularized Gierer-Meinhardt system in [12] over a wide range

10



of values of the localized two-pulse positions ~p =

 p1

p2

 .

Figure 1.3: This is an illustration of the evolution of the finite rank spectrum for
the 2-pulse regularized Gierer-Meinhardt system, for a variety of pulse positions.
There are four finite rank eigenvalues. As the pulse separation approaches +∞, the
finite rank eigenvalues reside at the left-most point of the loops, corresponding to the
weak regime. As the pulse separation decreases, the finite rank eigenvalues separate,
one traversing the loop, and the other approaching the real axis, colliding with its
complex conjugate, and splitting into a real pair with one approaching the origin and
the other retreating towards the essential spectrum.

A novel feature of our analysis is the identification of a bifurcation parameter

θ ≡ α11 − α12α21/(α22 − 1), (1.11)
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which balances the exponents of the nonlinear terms. We demonstrate the existence

of the N -pulse manifold for θ 6= 1, and numerically we observe a unique nontrivial

N -pulse solution for θ < 1, while for θ > 1, we typically find multiple (up to 2N )

N -pulse solutions. Enumerating all of the branches, for each branch ~q i = ~q i(~p) of

the N -pulse solution we define the adiabatic manifold of N -pulse solutions as

Mi =
{

Φ
(
·; ~p, ~q i(~p)

)
, ~p ∈ K

}
. (1.12)

where the set of admissible pulse positions K ⊂ RN is defined as

K = Ki ≡ Kl0 ∩ K
i
ν , (1.13)

for Kl0 previously defined and Kiν defined as

Kiν =
{
~p
∣∣ maxRe

(
σfr

(
L̃~p

))
< −ν

}
. (1.14)

The set Kiν imposes an explicit stability condition, which localizes the finite rank

spectrum in the left-half complex plane. The stability condition not only rules out

potential Hopf type bifurcation, in which N -pulses become unstable to oscillatory

modes, but also saddle-node type bifurcation, in which a single N -pulse separates

into two (or more) distinct N -pulse solutions. The stability condition is defined in

12



terms of eigenvalues of an explicit N × N matrix, in general the exact nature of

the set Kiν depends sensitively upon the specific system studied. When ~p ∈ Kiν the

finite rank spectrum will never approach the origin, so there can be no splitting of an

amplitude solution ~q i, so as a consequence, the non-bifurcation condition previously

mentioned is enforced.

In order to discuss the possible pulse configurations contained in the set K, we

also introduce the set

Kweak =
{
~p ∈ Rn

∣∣ ε−1−α/2 � pi+1 − pi
}
. (1.15)

For our system (1.4), the set Kweak corresponds to the weak interaction regime,

described earlier. There exists a unique non-degenerate N -pulse solution in the

weak regime which consists of N well-separated copies of the 1-pulse. Since both

localized and delocalized components are well-separated, the point spectrum in the

weak regime consists of N exponentially close copies of the point spectrum of the 1-

pulse. If there exists ν > 0 such that the reduced linearization L̃1 about this 1-pulse

satisfies

σ
(
L̃1

)
\ {0} ⊂

{
λ
∣∣Re(λ) < −ν

}
, (1.16)

then Kweak ⊂ K. A second regime is the tight regime in which all the localized

pulses, while still well-separated, are crowded into a region over which the delocalized
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component is asymptotically constant. The set Ktight is defined as

Ktight =
{
~p ∈ Rn

∣∣∣ l0| ln ε| < pN − p1 � ε−1−α/2
}
. (1.17)

There can be multiple N -pulse branches in this regime, however all the branches

are asymptotically close, that is

|~q i(~p)− ~q j(~p)| � 1 (1.18)

for all branches ~q i, ~q j . Indeed, not only are the branches close, but the spectrum

of the associated linearized operator is insensitive to the localized pulse positions

~p ∈ Ktight, so that either Ktight ⊂ K
i
ν for all branches of the tight regime, or

Ktight ⊂
(
Kiν
)c

for all branches ~q. We refer to the relative complement of the weak

and tight regimes within Kl0 as the dynamic regime Kd. For pulse positions ~p ∈ Kd,

the spectrum changes by O(1) amounts as ~p varies across Kd.

Assumption 1.1. We assume there exists a branch of N-pulse amplitude solutions

~q i = ~q i(~p) and a d0 > 0, independent of ε, and a nonempty open set Ki0 ⊂ K
i,

which consists of pulse configurations, ~p, which are a minimum distance d0 from the

boundary ∂Ki of Ki.
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Specifically, we define Ki0 such that

Ki0 =
{
~p ∈ Ki |d

(
~p, ∂Ki

)
≥ d0

}
, (1.19)

and introduce the adiabatic sub-manifold Mi
0 to be the graph of Φ~p above Ki0. When

i is fixed, we no longer notate it.

Figure 1.4: This figure illustrates, for N = 2 and p1 < p2, the minimum pulse
separation l0| ln ε| and also the pulse classes Ktight, Kd, and Kweak.

To simplify our analysis, we impose the following restriction.
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Simplification 1.1. We assume that α ≥ 0 and β ≥ 0 satisfy

1− α/2− β = 0. (1.20)

This simplification assures that the delocalized component U (and Φ1) is O(1)

in L∞, which simplifies analysis. Coupled with (1.8), this limits β to 2/3 < β ≤ 1.

The main result of this dissertation is an adiabatic stability result, which states

that if the initial data to the system (1.4) begins sufficiently close to the adiabatic

manifold M0, then the full solution will decay to an asymptotically small layer of

the adiabatic manifold M. There is also a time Tb, which is at least O
(
ε−(1+ω)

)
,

for any 0 < ω < 1, and perhaps +∞, for which the full solution will remain inside

this neighborhood of M, before p(t) hits ∂K, the boundary K.

Once the full solution ~U has relaxed to the asymptotically small equilibrium

layer of the adiabatic manifold M, we reduce the leading order pulse dynamics to

an ordinary differential equation on the pulse positions ~p. At leading order, the

evolution of the pulse positions with respect to time depends on the pulse positions

~p and the amplitude branch ~q = ~q(~p) of the delocalized component at each pulse

position.

Assumption 1.1 affords the existence of a branch of adiabatic N -pulse solutions

determined by ~q = ~q(~p) over the domain K = Kl0,ν for some l0, ν > 0 given. The

assumption also provides for a d0 > 0 such that K0 ⊂ K as defined in (1.19) is

non-empty.
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We introduce the spectral subset associated to the temporally decaying solutions

of the semigroup generated by L̃~p :

X~p = {~U
∣∣∣||~U ||X <∞, π~p~U = 0}, (1.21)

where π~p is the spectral projection associated to the N -point spectrum σ0 near zero

and the X-norm is defined in (1.40).

More specifically, we state the adiabatic stability result and a leading order pulse

dynamics result in the following theorem.

Theorem 1.1. Adiabatic stability and leading order pulse dynamics

Let ε > 0 be sufficiently small, while α and β satisfy Simplification 1.1 with α < 2/3.

Fix ω ∈ (0, 1), then the adiabatic manifold of N-pulse solutions (1.12) afforded by

Assumption 1.1 is adiabatically stable up to O
(
ε(1+ω)(1−α/2)

)
. That is, there exist

M,M0, Tb > 0 such that for all initial data ~U0 of (1.4) which lie within M0ε
α| ln ε|−2

of M0 in the X-norm (see (1.40)), the corresponding solutions of the system (1.4)

can be uniquely decomposed as

~U(x, t) = Φ~p(t)(x) +W (x, t), (1.22)

where Φ~p(t) is an adiabatic N-pulse solution and the remainder W ∈ X~p satisfies

||W (t)||X ≤M

(
e
−ε
α
2 µt||W0||X + ε(1+ω)(1−α/2)

)
, (1.23)

for all 0 < t ≤ Tbε
−1−ω. Moreover, during this time interval the pulse dynamics
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reduce to

∂~p

∂t
= ε1+α/2QθA(~p)~q−1 +O

(
ε2, ε||W (t)||X, ||W (t)||2X

)
, (1.24)

where Q is the diagonal matrix of pulse amplitudes ~q = ~q(~p), the exponent is applied

componentwise in ~q−1 =
(
q−1
1 , · · · , q−1

N

)T
, and the antisymmetric matrix A(~p) is

defined in (6.244).

Elements of the Proof:

A key construction of this work is the reduced linearization. The construction of

the reduced linearization allows us to characterize the point spectrum as it evolves

under the pulse evolution. The exact linearization of F about Φ(~p) for ~p ∈ K takes

the form

L~p =

 Le11 + ε−βV11 ε−βV12

V21 L22

 , (1.25)

where Le11 = ε−2∂2
x + εαµ and L22 = ∂2

x − 1 + α22Φ
α21
1 Φ

α22−1
2 . Also V11

and V12 are potentials described in detail in Chapter 4. The point spectrum for

this linearization is not easily characterized. To understand the exact linearization

and the reduced linearization, it is first useful and informative to examine their

reductions. The spectra of the diagonal system

 Le11 0

0 L22

 , (1.26)
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is easy to characterize. The operator Le11 produces only essential spectra, while

σ (L22) consists of N positive ground eigenvalues, N eigenvalues clustered near zero,

and the remainder of the spectrum strictly bounded on the negative real axis. This

linearization generates an unstable flow and coupling is needed to generate stability.

The spectrum is unchanged if we consider the lower-triangular system

 Le11 0

V21 L22

 , (1.27)

for any potential V21. However, systems of the form

L̃~p =

 Le11 + ε−βJ11 ε−βJ12

V21 L22

 , (1.28)

where J11 and J12 are finite rank operators, are sufficiently simple that their spec-

trum can be characterized, but are flexible enough to provide asymptotically accurate

approximations of the full system (1.25). Indeed, since
(
Le11

)−1
is asymptotically

small away from long-wavelength functions, we show that for an appropriate choice

of finite-rank operator J1i (i = 1, 2) the difference
(
Le11

)−1
ε−β

(
J1i − V1i

)
is

small as a map on the weighted-windowed space L1
1,~p

discussed below. This differ-

ence being small allows us to replace L with L̃ without impacting the leading order

dynamics.
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The salient element of the reduction of L to L̃ is to uniformly control the long-

wavelength elements. This is achieved through the weighted L1
1,~p

norm, which

through a partition of unity
{
χj

}N
j=1

centered about each pulse position, introduces

locally weighted norms that control long-wavelength terms, uniformly for ~p ∈ K, in

each χj window about the pulse at pj . Specifically, we define the L1
1,~p

norm as

||f ||
L1

1,~p
=

N∑
j=1

∣∣∣∣∣∣(1 + |x− pj |
)
χjf

∣∣∣∣∣∣
L1 . (1.29)

Figure 1.5: This illustrates the second component pulse paired with the partition of
unity χj at three pulse locations.

Recalling the decomposition U = Φp(t) +W , we may rewrite the evolution equa-

tion (1.4) as an evolution for the remainder W and pulse positions ~p = ~p(t) (analyzed

in Chapter 6),
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Wt +
∂Φ

∂~p
~̇p = R(Φ) + L̃~p0

W + ∆LW +N (W ), (1.30)

where the difference of the exact linearization and the reduced linearization is

denoted ∆ = L̃−L and where W ∈ X~p, for the spectral subset X~p defined in (1.21).

With the complimentary spectral projection π̃~p0
, the W evolution is given by

Wt = −π̃~p0

(
∂Φ

∂~p
~̇p

)
+ L̃~p0

W + π̃~p0
(∆LW +N (W )) . (1.31)

At an initial time tn, the renormalization group process freezes L = L~pn
, evolves

the fast system for a finite time, and then uses a non-linear solve to update the slow

components in a self-consistent way. If the secularity in L~p−L~pn can be controlled,

then uniform estimates are obtained on a finite time interval, and the process may

be iterated. We introduce the renormalization times
{
ti
}∞
i=1, where t0 is the initial

time for (1.31). We introduce the quantity,

T1(t) = sup
ti<s<t

e
εα
2 µ(s−ti)||W (s)||X, (1.32)

for ti < t < ti+1. We are able to reduce (1.31) to the following quadratic inequality,

T1(t) ≤ C| ln ε|
(
T1(ti) + ε1−α/2 + ε−αT1(t)2

)
. (1.33)

For the first iteration, i = 0, we recall the bound T1(t0) ≤ M0ε
α| ln ε|2 imposed

by the initial proximity to M0, and we rewrite the condition (1.33) as a quadratic

inequality g0(r) ≥ 0 for r = T1 where,
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0 ≤ g0(r) = C| ln ε|
(
M0ε

α| ln ε|2 + ε1−α/2
)
− r + C| ln ε|ε−αr2. (1.34)

Figure 1.6: This figure generically illustrates the quadratic inequality (1.34) for α <
2/3, so that r1 > 0 and the remainder can be appropriately bounded. Our analysis
reduces the size of the remainder to a quadratic inequality, so either the remainder
starts smaller than r1 and stays small or it begins larger the r2. The middle interval
(r1, r2) is forbidden.

It follows from the quadratic formula that for M0 < 1/(4C) and α < 2/3 there

are two roots of g0 = 0 for ε� 1. Moreover, with this bound on α we can take the

renormalization group time period ti+1 − ti sufficiently long to obtain decay of W .

Successive iterations start with a smaller bound on T1(ti) and yield tighter estimates

on r1, until a limit is reached and subsequent evolution yields no further decay.

The renormalization group methodology yields the adiabatic stability result. The

leading order pulse dynamics (evolution of ~p) are obtained by projecting equation

(1.30) onto the tangent plane of M. After sufficient decay of the remainder W , the

dominant term is given by the projection of F (Φ(~p)), which yields (1.24). The lower

bound on the time, Tb, is obtained as an upper bound on the pulse dynamics, with
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M0 taken small enough that the remainder W decays to its adiabatic size before the

pulses are within d0/2 of ∂K.

The following figure further illustrates the renormalization group process.

Figure 1.7: This figure illustrates the renormalization group technique. The initial
condition is decomposed as U0 = Φp0 + W0(0), the linearization and associated
spectral projections are frozen for a time interval sufficient to give decay, but not
so long that the secular growth swamps the error. At the end of each renormaliza-
tion interval, U(τ1) = Φ (~p(τ1)) + W (τ1) is reprojected into U(τ1) = Φ (~p1) + W1,
where W1 ∈ X~p1. The process is iterated and the transient associated to the ini-

tial perturbation decays to the level of the accuracy of the approximate adiabatic
solution.

23



1.1 Notation

We define the pulse positions

~p = (p1, . . . , pN )T ∈ RN, (1.35)

where N is the total number of pulses. We define the following norm:

||f ||
W

1,1
ξ

= ||ξf ||
L1 + ||∂xf ||L1 , (1.36)

where ξ is a smooth, positive, compactly supported, mass one function, where

ξj = ξ(x− pj). (1.37)

The Sobolev-like norm W
1,1
ξ

controls L∞, since for any x, y ∈ R,

|u(x)| ≤ |u(y)|+
∫ ∞
−∞
|u′(z)|dz, (1.38)

which uses the fact that u(x)−u(y) =
∫ x
y u′dz. Multiplying by the mass-one function

ξ(y), and integrating over all y ∈ R, we have

|u(x)| ≤ ||u′||
L1 +

∫ ∞
−∞
|ξ(y)u(y)|dy = ||u||

W
1,1
ξ

. (1.39)

24



We define the following norm

||F ||X ≡ ||f1||
W

1,1
ξ

+ ||f2||H1 , (1.40)

for F = (f1, f2)T . We define windowing a function f as

f =
N∑
j=1

fj =
N∑
j=1

fχj. (1.41)

For f ∈
[
L2(R)

]N×k
and g ∈

[
L2(R)

]N×k
, we define the tensor operator f ⊗ g,

acting on h ∈
[
L2(R)

]k
by

f ⊗ g · h =
(

(h, g1)
L2 f1, . . . ,

(
h, gN

)
L2 fN

)T
∈
[
L2(R)

]N×k
, (1.42)

where k denotes the number of components, so k = 2 for our system (1.4), and N is

the number of pulses.
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Chapter 2

Construction of an N-pulse

Invariant Manifold.

In this chapter, we construct an N -pulse invariant manifold for a reduction of the

system (1.1). We fix N -pulse positions at ~p = (p1, . . . , pN )T , and seek a manifold

Φ = Φ(x; ~p) as a graph above an N -dimensional set ~p ∈ K ⊂ RN. More specifically,

we seek Φ which satisfies the invariance condition:

π̃T (~p)F (Φ(~p)) = 0, (2.1)

where π̃T (~p) is the projection complementary to the tangential plane of Φ, at Φ(~p).

The complementary tangential projection is written as π̃T ≡ I−πT , in terms of the
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tangential projection:

πT f ≡
N∑
i=1

(
f,Bi

)
L2 Bi ∈ R2. (2.2)

Here B = (B1, . . . , BN )T ∈
[
L2(R)

]N×2
is a Gram-Schmidt Orthonormalization

of

{
∂Φ
∂pi

}N
i=1

. We assume the family of vectors

{
∂Φ
∂pi

}N
i=1

is linearly independent.

So for each i, j: (
Bi,Bj

)
L2 = δij, (2.3)

where δij is the Kronecker delta:

δij =


1, if i = j

0, if i 6= j

 . (2.4)

It is convenient to introduce the associated vector tangential projection:

πNT f ≡ B ⊗B · f =
(

(f,B1)
L2B1, . . . , (f,BN )

L2BN

)T
∈ RN×2, (2.5)

where B ∈ RN×2 and f ∈ R2.

We show that if Φ satisfies (2.1) then its graph is invariant under the flow. For

our general system (1.1), we decompose ~U as

~U = Φ(~p) +W. (2.6)

27



Using Proposition 6.1, which allows us to determine a base point where πTW = 0,

we choose W to be orthogonal to the tangent plane, so πTW = 0 and π̃TW = W .

We linearize our system:

∇~pΦ · ~̇p+Wt = F(Φ) + LΦW +N (W ). (2.7)

Applying the projection and the complementary projection to (2.7), we have

∇~pΦ · ~̇p+ πTWt =πTF(Φ) + πTLΦW + πTN (W ) (2.8)

π̃TWt =π̃TF(Φ) + π̃TLΦπ̃TW + π̃TN (W ), (2.9)

where, by the construction of πT ,

πT

(
∇~pΦ · ~̇p

)
= ∇~pΦ · ~̇p. (2.10)

Indeed, we can represent each element of ∇~pΦ as

∂Φ

∂pi
=

N∑
k=1

αkBk, (2.11)

so that

πT
∂Φ

∂pi
=

N∑
j=1

 N∑
k=1

αkBk,Bj

Bj =
N∑
j=1

αjBj =
∂Φ

∂pi
. (2.12)

28



Moreover since πTW = 0, it follows that

0 =
∂

∂t

(
W,Bi

)
L2 =

(
Wt,Bi

)
L2 +

(
W,

∂Bi
∂t

)
L2

, (2.13)

from which we conclude

πTWt = −
N∑
i=1

(
W,

∂Bi
∂t

)
L2

Bi. (2.14)

Assuming the invariance condition (2.1) holds, we apply it to (2.9), which yields the

flow

Wt +
N∑
i=1

(
W,

∂Bi
∂t

)
L2

Bi = π̃TLΦπ̃TW + π̃TN (W ). (2.15)

The set W = 0 is invariant under this flow. On the W = 0 manifold, we reduce to

the tangential flow

∇~pΦ · ~̇p = πTF(Φ). (2.16)

Thus a smooth solution Φ1(~p) of (2.1) yields an invariant manifold of the flow to

(1.1), which reduces the flow to the ODE (2.16).

Establishing a solution of (2.1) for our system (1.1) is beyond the scope of this
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work. Instead we introduce the system:

F(~U ; ~p, δ) ≡

 F1(U, V ; ~p, δ)

F2(U, V ; ~p, δ)

 , (2.17)

where

F1 ≡ ε−2Uxx − εαµU + ε−β
(1− δ)

N∑
j=1

χjU(pj)α11 + δUα11

V α12 (2.18a)

F2 ≡ Vxx − V − (1− δ)εK
(
V

ε2

)
+

(1− δ)
N∑
j=1

χjU(pj)α21 + δUα21

V α22 ,

(2.18b)

with

K(y) =

{
√
ye−y, y ∈ [0,∞)

}
. (2.19)

Here {χj}Ni=1 is a partition of unity where each χj is a C∞ function that is 1 on

(sj−1 + 1, sj − 1) with sj =
pj+1−pj

2 , for j = {1, . . . , N − 1} while s0 = −∞

and sN =∞. On (sj−1 − 1, sj−1 + 1] and [sj − 1, sj + 1), χj decays smoothly to

zero. The V component is localized about the N -pulse positions ~p = (p1, . . . , pN )T .

The K(V ) term is added to remove any tail-tail interactions between these localized

components.

We consider δ ∈ [0, 1], where δ = 1 yields the original system (1.1), while δ = 0
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Figure 2.1: Notice the function εK(V/ε2) exponentially decays for V >> ε2/2.

reduces the inter-pulse coupling to a finite rank interaction. In particular

F(~U ; ~p, δ) = (1− δ)F(~U ; ~p, 0) + δF(~U), (2.20)

where F(~U) is the unperturbed system that does not depend explicitly on ~p.

In the remainder of this chapter, we will construct a manifold Φ(~p) which satisfies

F(Φ(~p); ~p, δ = 0) = 0. (2.21)

For δ > 0, we suggest how a contraction mapping argument could generate an

invariant manifold with a slow normal velocity for δ = 1. We leave to posterity the
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verification of this condition. However, after this chapter, we rigorously study the

quasi-invariance of the δ = 0 manifold under the δ = 1 flow.

2.1 Explicit form for Φ2

We set δ = 0 in (2.17), and fix the pulse positions ~p = (p1, . . . , pN )T . We look for

Φ(x; ~p, 0) = (Φ1,Φ2)T which satisfies (2.21), that is,

0 = ε−2∂xxΦ1 − ε
αµΦ1 + ε−β

N∑
j=1

χjΦ1(pj)α11Φ
α12
2 (2.22a)

0 = ∂xxΦ2 − εK(Φ2/ε
2)− Φ2 +

N∑
j=1

χjΦ1(pj)α21Φ2
α22 . (2.22b)

We introduce qj :

qj ≡ Φ1(pj), (2.23)

for j = 1, . . . , N . In this chapter, we solve the system

~q = ~q(~p) = Φ1(~p). (2.24)

We have the following theorem for the existence of this solution.

Theorem 2.1. Self-consistent mean-field theorem

Let δ = 0 for the system (2.18), Φ be defined in (2.44), and ~p ∈ K. Then there
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exists an ε0 > 0 such that for all ε satisfying 0 < ε ≤ ε0, there exists a function

Q(s, ε) : RN × R→ RN which is smooth in s and ε such that

~q = ε−κQ
(
εη~p, ε

)
, (2.25)

where ~q, so defined, solves (2.72), and Φ = Φ (~p, ~q(~p)) solves (2.22). Here κ is defined

as

κ ≡ 1− α/2− β
θ − 1

(2.26)

for θ defined in (2.67), and η is defined as

η ≡ 1 + α/2. (2.27)

Moreover, in the limit as ε→ 0, the rescaled variables q̃ = εκ~q and p̃ = εη~p solve

q̃(p̃) =M(p̃)q̃ θ, (2.28)

where q̃ θ = (q̃θ1, . . . , q̃
θ
N )T and M(p̃) is defined in (2.82).

Furthermore, there exists constants k,K > 0 independent of ε and ~p ∈ K such

that the scaled pulse amplitudes q̃ are uniformly bounded above and below:

k < ||q̃|| < K. (2.29)
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Remark 2.1. After this Chapter, we assume (1.20), which in turn implies that

κ = 0. Thus after Chapter 2, the unscaled pulse amplitudes ~q are equivalent to the

scaled pulse amplitudes q̃, so by (2.29), the unscaled pulse amplitudes ~q are bounded

above and below.

We construct our ansatz where we show (2.22b) has an exact solution of the form

Φ2(x) =
∑N
j=1 φj(x), where each φj is compactly supported on (sj−1 + 1, sj − 1)

and φj satisfies

0 = φ′′j − εK(φj/ε
2)− φj + q

α21
j φj

α22 . (2.30)

This equation has a first integral

φ′2j
2

= H(φj) +
φ2
j

2
−

q
α21
j

α22 + 1
φj
α22+1, (2.31)

where H(x) =
∫ x
0 εK(s/ε2)ds. Isolating the left side, we define the homoclinic

solution φj by the initial value problem


φ′j = Ω(φj) = ±

√
2H(φj) + φ2

j −
2q
α21
j

α22+1φj
α22+1

φj(pj) = φ∗j

 , (2.32)

where Ω(φ∗j ) = 0.
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Figure 2.2: An illustration of the homoclinic orbit of φ′j .

For |φj | � ε2, we consider an asymptotic expansion of φj ,

φj = φ0
j +O(ε). (2.33)

Plugging this expansion into (2.30), at leading order we have

0 = φ0
j
′′ − φ0

j + q
α21
j φ0

j
α22 . (2.34)

We can solve this exactly on (sj−1 + 1, sj − 1):

φ0
j (x) =

φ0(x− pj)

q
α21/(α22−1)
j

, (2.35)
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where φ0(x − pj) is a pulse centered at x = pj . We have that φ0
j (x) << ε2 well

before x nears the boundaries of (sj−1 + 1, sj − 1) as long as the pulse separation is

pj − pj−1 � O(| ln ε|). The set Kl0 where this condition is met is defined in (1.9).

Since φj is homoclinic to zero, we know that φj → 0 as |x − pj | → ∞. Once

φj � ε2, we can expand the exponential part of K about zero:

εK
(
φj/ε

2
)

=
√
φj +O

φ3/2
j

ε2

 . (2.36)

In this regime, (2.22b) will asymptotically scale to

0 = φ′′j −
√
φj. (2.37)

If we multiply by φ′j and integrate, we have

φ′j = −
√

4

3
φ

3/4
j . (2.38)

Separating variables, integrating, and simplifying, leads to

φj(x) = 1/144 (x− c)4 . (2.39)

The above is the tail behavior of φj , giving it compact support on the pulse interval
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(sj−1, sj). When φj(x) = O(ε2), (x− c) = O(ε1/2), where c can be determined

to appropriately match function values. We define Φ2 to be the sum of pulses that

meets these asymptotic conditions:

Φ2 ≡
N∑
j=1

φj(x). (2.40)

Then for any ~p ∈ Kl0 and ~q(~p) ∈ RN , Φ2 is a steady state F(Φ2; ~p, δ = 0) = 0.

Figure 2.3: This is a cartoon of the pulse shape of Φ2 at the pulse position pj . Notice
how it is localized.
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2.2 Explicit form for Φ1

To determine Φ1, we consider (2.22a) with our solution Φ2:

Le11Φ1 =ε−β
N∑
j=1

χjq
α11
j Φ2

α12 (2.41)

=ε−β
N∑
j=1

q
α11
j φ

α12
j (x), (2.42)

where

Le11 = −ε−2∂2
x + εαµ. (2.43)

The inverse of Le11 is denoted L−e11 . We define Φ1 as the solution to (2.42). In

summary, we define Φ to be

Φ(x, ~p, ~q) ≡

 Φ1(x, ~p, ~q)

Φ2(x, ~p, ~q)

 =

 ε−βL−e11

(∑N
j=1 q

α11
j φj

α12(x)
)

∑N
j=1 φj(x)

 , (2.44)

subject to (2.23).
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2.3 Construction of the pulse amplitudes ~q(~p)

The condition qj = Φ(pj), requires ~q to satisfy the system

qk = ε−βL−e11

 N∑
j=1

q
α11
j φj

α12(pk)

 , (2.45)

for k = 1, . . . , N. The Green’s function Gλ(x) associated to Le11 +λ has the property

that (
Le11 + λ

)−1 f =
(
Gλ ∗ f

)
(x). (2.46)

Using the Fourier transformation, Gλ is found to be

Gλ(x) ≡
√
π

2

ε2

kλ
e−kλ|x|, (2.47)

where we introduce,

kλ ≡ ε
√
λ+ εαµ. (2.48)

For λ = 0, we have

G0(x) =

√
π

2µ
ε1−α/2e−ε

1+α/2√µ|x|. (2.49)
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We proceed with an asymptotic reduction of (2.45). Applying (2.46) to (2.45) with

λ = 0, we have

qk = ε−β
G0 ∗

N∑
j=1

q
α11
j φj

α12

 (pk). (2.50)

Writing this in vector form leads to:

~q = ε1−α/2−βG~q α11 , (2.51)

with ~q α11 = (q
α11
1 , . . . , q

α11
N )T and G ∈ RN×N , where

Gj,k = εα/2−1
(
G0 ∗ φ

α12
j

)
(pk), (2.52)

so G has no leading power in ε. We asymptotically expand G by substituting our

asymptotic expansion (2.33) for φj . Here

φj = φ0
j + εφ̃j , (2.53)

where φj has compact support and both φ0
j and φ̃j decay exponentially. We define

G = G0 + εG̃, (2.54)
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where

G0
j,k = εα/2−1

(
G0 ∗ φ

0
j
α12

)
(pk), (2.55)

and from a Taylor expansion and (2.35), we determine

G̃j,k =α12ε
α/2−1

(
G0 ∗

(
φ0
j

)α12−1
φ̃j

)
(pk) +O(ε) (2.56)

=α12ε
α/2−1q

−α21(α12−1)/(α22−1)
j

(
G0 ∗

(
φ0
j

)α12−1
φ̃j

)
(pk) +O(ε).

(2.57)

The extra factors of qj above are a result of replacing
(
φ0
j

)α12−1
via (2.35). We

write this matrix as:

G̃ = G̃redQ−α21(α12−1)/(α22−1), (2.58)

with the N ×N diagonal matrix Qij =
{
qi, i = j

∣∣∣0, i 6= j
}

and

G̃redj,k = α12ε
α/2−1

(
G0 ∗ φ0

α12−1φ̃j

)
(pk). (2.59)
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Substituting G = G0 into (2.51), we have, for any k,

qk =ε−β
G0 ∗

N∑
j=1

qj
α11φ0

j
α12

 (pk) (2.60)

=

√
π

2µ
ε1−α/2−β

∫
e−ε

1+α/2√µ|pk−y|
N∑
j=1

q
α11
j φ0

j
α12(y)dy (2.61)

=

√
π

2µ
ε1−α/2−β

N∑
j=1

∫
e−ε

1+α/2√µ|pk−y|qα11
j φ0

j
α12(y)dy. (2.62)

Next, we Taylor expand e−ε
1+α/2√µ|pk−y| about pj :

e−ε
1+α2

√
µ|pk−y| =e

−ε1+α2
√
µ|pk−pj | (2.63)

−ε1+α2
√
µe−ε

1+α2
√
µ|pk−p

∗|(y − pj) +O(ε2+α). (2.64)

Substituting this into the integral in (2.62) and recalling (2.35), we have that:

∫
e−ε

1+α/2√µ|pk−y|qα11
j φ0

j
α12(y)dy =φ

α12
0 qθj e

−ε1+α/2√µ|pk−pj |

+h(ε, φ0)qθj , (2.65)

where we define the mass f =
∫∞
−∞ f(s)ds. We also have

h(ε, φ0) = O(ε1+α/2), (2.66)

42



since the decay from φ0
j dominates the polynomial terms from the Taylor expansion.

We define

θ ≡ α11 − α12α21/(α22 − 1). (2.67)

Then with the previous reductions, at leading order

~q = ε1−α/2−βM(~p, ε)|~q |θ, (2.68)

where |~q |θ ≡
(
|q1|θ, . . . , |qN |

θ
)T

. The matrix M is defined as

Mj,k(~p, ε) ≡ φ
α12
0 εα/2−1GNij =

√
π

2µ
φ
α12
0 e

−ε1+α/2√µ|pk−pj |, (2.69)

where GN0 = GN0 (~p) is defined as the two-point correlation matrix:

[GN0 ] ≡ GNij =

√
π

2µ
ε1−α/2e−ε

1+α/2√µ|pi−pj |. (2.70)

We include the absolute value in (2.68) because we want to show the existence of

a nontrivial ~q with every component positive. If we return to our exact equation

(2.51), and substitute (2.54) for G, we have

~q = ε1−α/2−βM(~p, ε)|~q |θ + ε2−α/2−β G̃|~q |α11 +O(ε1+α/2)|~q |θ. (2.71)
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To remove any ~q dependence in G̃, we recall (2.58), and rewrite the above as

~q(~p) = ε1−α/2−βM(~p, ε)|~q |θ + ε2−α/2−β G̃red|~q |
θ+

α21
α22−1 +O(ε1+α/2)|~q |θ.

(2.72)

To eliminate the ε1−α/2−β from the leading term above, we rescale the amplitude

variable as

q̃ = εκ~q. (2.73)

We have

κ ≡ 1− α/2− β
θ − 1

, (2.74)

where (2.72) becomes:

q̃ ≡M(~p, ε)|q̃ |θ + ερG̃red(~p, ε)|q̃ |
θ+

α21
α22−1 +O(εα+β)|q̃ |θ, (2.75)

with

ρ = 1 +
α21

α22 − 1

(
1− α/2− β

1− θ

)
. (2.76)

We need the condition that

ρ > 0, (2.77)
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to analyze the appropriate leading order problem. We rescale the pulse position

variable to remove any ε dependence from M(~p, ε) (and also from G̃red):

p̃ = εη~p, (2.78)

with

η = 1 + α/2. (2.79)

With this rescaling, (2.75) becomes

q̃ = A(p̃, q̃, ε), (2.80)

where

A(p̃, q̃, ε) ≡M(p̃)|q̃ |θ + ερG̃red(p̃)|q̃ |
θ+

α21
α22−1 +O(εα+β)|q̃ |θ, (2.81)

and, in the rescaled variable, M(p̃) has the componentwise form

Mj,k(p̃) ≡
√

π

2µ
φ
α12
0 e

−√µ|p̃k−p̃j |. (2.82)
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First we examine the ε = 0 case. The system (2.45), under this rescaling, reduces to

q̃ = A(p̃, q̃, 0) =M(p̃)|q̃|θ. (2.83)

If θ = 0, we have the nontrivial positive solution where for each i:

q̃i =
N∑
j=1

Mi,j. (2.84)

We consider the case when θ 6= 0 and θ 6= 1. Examining (2.82) and (2.83), it is clear

that

Ai(p̃, q̃, 0) =M(p̃)|q̃|θ ≥ 0 (2.85)

for all q̃ ∈ RN and each i ∈ (1, . . . , N). Indeed, from (2.82) we see that every

entry of M is positive and uniformly bounded. This also implies that there exists

0 < k < K, which depend upon p̃, such that

k||q̃||θ ≤ ||A(p̃, q̃, 0)|| ≤ K||q̃||θ (2.86)

for some vector norm || · ||. We define

B(p̃, q̃, 0) ≡ A(p̃, q̃, 0)

||q̃||θ
, (2.87)
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and

S ≡ {q̃ : k ≤ ||q̃|| ≤ K, q̃i ≥ 0, i ∈ (1, . . . , N)}, (2.88)

where q̃ =
(
q̃1, . . . , q̃N

)T . S is compact and B maps S into itself. S is a contractible

Figure 2.4: This is an illustration of S in two space dimensions.

manifold, where a contractible manifold is defined to be a manifold that can be

continuously shrunk to any point inside itself. Moreover, B is continuous on S.

Then by the Eilenberg-Montgomery fixed point theorem (which is a corollary to the

Brouwer fixed point theorem), B has a fixed point q̃∗ ∈ S.

We have that

A(p̃, q̃∗, 0) = ||q̃∗||θq̃∗, (2.89)
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and similarly for any constant s we have that

A(p̃, sq̃∗, 0) = sθA(p̃, q̃∗, 0) = sθ−1||q̃∗||θsq̃∗. (2.90)

We choose

s ≡ ||q̃∗||−θ/(θ−1), (2.91)

so that A has the solution:

A(p̃, q∗, 0) = q∗, (2.92)

where

q∗ ≡ sq̃∗. (2.93)

So there exists a nontrivial solution to (2.83) with every component positive. To

show that solutions to (2.80) are locally unique for ε > 0, we need the non-bifurcation

condition (2.96) that gives generic local continuation. For ~p ∈ Kν , we have a locally

unique solution to (2.80). Doing a continuation argument using the implicit function

theorem, we define

B(p̃, q̃, ε) = q̃ − A(p̃, q̃, ε). (2.94)

We have from (2.92) that B(p̃, q∗, 0) = 0. Differentiating B(p̃, q̃, ε) with respect to q̃,
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evaluated at (q̃, ε) = (q∗, 0):

∇q̃B(p̃, q∗, 0) = I −∇q̃A(p̃, q∗, 0) = I − θM(p̃)|q∗(p̃)|θ−1, (2.95)

where M(p̃) was defined at (2.82). Then the non-bifurcation condition is

det
(
I − θM(p̃)|q∗(p̃)|θ−1

)
6= 0. (2.96)

The set Kν is the maximal open set of all pulse positions ~p beginning in the well-

separated regime, and continuously extended into the semi-strong regime until values

of ~p where (2.96) fails. By the implicit function theorem, for all ~p = ε−ηp̃ ∈ Kν ,

there exists ε0 > 0 such that for ε0 ≥ ε > 0, we may extend:

q̃∗ = q̃∗(p̃, ε), (2.97)

which solves (2.81) smoothly in p̃ and ε. Then in the original variables ~p and ~q, (2.97)

is equivalent to (2.25) in Theorem 2.1, listed again as

~q = ε−κQ
(
εη~p, ε

)
, (2.98)

where Q is equivalent to the continuous extension q̃∗ in (2.97).
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2.4 Existence of an invariant manifold

We continue examining the case δ = 0. From our positive solution q∗ to (2.83), we

construct Φ̃∗(p̃). We have F(Φ̃∗(p̃); p̃, δ = 0) = 0, so

π̃TF(Φ̃∗(p̃); p̃, δ = 0) = 0. (2.99)

Thus we have an invariant manifold for the case δ = 0. This case is even stronger in

that we have a steady state solution, where the N -pulse positions are fixed.

For the case when δ ∈ (0, 1], we want to preserve invariance, so we need (2.1) to

hold. By continuation, we will show a condition that will ensure

π̃T (Φ(~p, δ), ~p) (F (Φ(~p, δ); ~p, δ)) = 0, (2.100)

where π̃T (Φ(~p, δ), ~p) depends on Φ(~p, δ) and ~p. We differentiate the above with

respect to δ:

(
∇Φπ̃T

∂Φ

∂δ

)
(F (Φ(~p, δ); ~p, δ))+ π̃T (Φ(~p, δ), ~p)

(
L~p,δ

∂Φ

∂δ
+
∂F
∂δ

(Φ(~p, δ); ~p, δ)

)
= 0.

(2.101)

At δ = 0, the first term is zero, so

π̃T (Φ(~p, 0), ~p)

(
L~p,0

∂Φ(~p, 0)

∂δ

)
= −π̃T (Φ(~p, 0), ~p)

(
∂F
∂δ

(Φ(~p, 0); ~p, 0)

)
. (2.102)
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This is equivalent to

∂Φ(~p, 0)

∂δ
= −

(
π̃TL~p,0π̃T

)−1
(
∂F
∂δ

(Φ(~p, 0); ~p, 0)

)
. (2.103)

If (2.103) holds, we have the existence of an invariant manifold. A key step is to

characterize the bounded invertibility of the conjugated operator π̃TL~p,0π̃T .

Instead, we will continue our analysis of the case when δ = 1 by using an ap-

proximate solution Φ. This will lead to a quasi-invariant manifold using a spectral

projection defined after we analyze our eigenvalue problem.

51



2.5 Numerical Results

This section contains two numerical results. The first examines (2.22b) with the

values Φ1(pj)α21 = 1 and α22 = 2. We further simplify the system by examining

only one pulse position and replacing Φ2 with Y . This choice of variables leads to:

Yxx = εK(Y/ε2) + Y − Y 2. (2.104)

Our boundary conditions are that Y ′(0) = 0 and Y (10) = 0. We use the fact that

Y = 3
2sech2(Y/2) is a solution to this equation when the K term is not present to

construct a solution to this equation with the K term present. Using the Matlab

boundary value solver bvp4c, and solving for x ∈ [0, 10], we have the following results

in Figure 2.5 and Figure 2.6.

Our second numerical results demonstrates the behavior of the pulses and ampli-

tudes in our system. Given pulse positions ~p, we solve the nonlinear system (2.83) for

the amplitudes ~q. The system we are solving is ~q = M(~p)|~q|θ, for M(~p) defined in

(2.69), and θ applied componentwise. Reducing the problem to three pulses, we take

ε = 0.1, α = 0, and the coefficients of M to be 1. We solve this system beginning

in the well-separated pulse regime, where M is almost diagonal, and continue the

pulse positions closer together. As the Figure 2.7 illustrates, for θ = −1, the pulse

amplitudes converge as the pulse positions converge.
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Figure 2.5: This figure is a graph of the solution to (2.104) without the K term in
blue and the full solution to (2.104) in red. The solution to the full equation decays
faster.

Figure 2.6: The fact that the solution to the full equation decays faster is more
evident in this semi-log plot in the vertical coordinate. Again, the solution to (2.104)
absent the K term is in blue and the solution to the full equation (2.104) is in red.

53



Figure 2.7: Each color is one component of the pulse amplitude, where pulse sep-
aration is varied which results in a change in amplitude. The horizontal axis is a
log-scale of the separation between pulses, continued from a well-separated regime
to a semi-strong regime. The values given are |p2 − p1|. The vertical axis is pulse
amplitude.
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Figure 2.8: These two graphs illustrate the three pulses and their amplitudes for
|p2 − p1| = 33 on the left and |p2 − p1| = 1.6 on the right, corresponding to the
previous figure.
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Chapter 3

Original System: Ansatz and

Residual Estimates

We return to the system (1.1),

∂tU = ε−2Uxx − εαµU + ε−βUα11V α12 (3.1a)

∂tV = Vxx − V + Uα21V α22 . (3.1b)

We show that the invariant manifold we constructed in Chapter 2 for the reduced

system is a sufficiently accurate approximate invariant manifold for the original sys-

tem to capture the leading order dynamics. We construct our ansatz as in the last

chapter, where we solve (3.1b) for V = Φ2 at equilibrium, with U = Φ1 approxi-
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mated by qj = Φ1(pj) at each pulse position. We then solve (3.1a) at equilibrium

for ~q = Φ1(~p). This amounts to solving (2.22) with the −εK(Φ2/ε
2) term dropped.

With this slightly modified construction, we define

Φ ≡

 Φ1

Φ2

 ≡
 ε−βL−e11

(∑N
j=1 q

α11
j φ

α12
j (x)

)
∑N
j=1 φj(x)

 , (3.2)

where φj solves

0 = φ′′j − φj + q
α21
j φ

α22
j . (3.3)

It is also defined to be

φj(x) ≡
φ0(x− pj)

q
α21/(α22−1)
j

, (3.4)

where φ0(x) solves

φ′′0 − φ0 + φ
α22
0 = 0. (3.5)

3.1 Linear estimates

The following lemma contains estimates used to develop resolvent estimates on the

linearization, and thus to derive our semigroup estimates. The following estimates

are used to obtain estimates on Φ1, which lead to residual estimates. Recall the

definition of Le11 = −ε−2∂2
x + εαµ from (2.43), kλ ≡ ε

√
λ+ εαµ defined in (2.48),
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and that the χj ’s form a partition of unity about the pulse positions ~p. We have the

following lemma.

Lemma 3.1. There exists C < ∞ such that for any f ∈ L1(R) or f ∈ W
1,1
ξ

(R)

and λ ∈ C \ (−∞,−εαµ), the following estimates hold:

||(Le11 + λ)−1f ||
W

1,1
ξ

≤ C
ε2

Re(kλ)
||f ||

L1 , (3.6)

||(Le11 + λ)−1f ||
W

1,1
ξ

≤ C
ε2

|kλ|Re(kλ)
||f ||

W
1,1
ξ

, (3.7)

||(Le11 + λ)−1f ||L∞ ≤ C
ε2

|kλ|
||f ||

L1 , (3.8)

||∂x((Le11 + λ)−1f)||L∞ ≤ Cε2||f ||
L1 , (3.9)

||∂x((Le11 + λ)−1f)||
L2 ≤ C

ε2

Re(kλ)1/2
||f ||

L1 , (3.10)

||∂x((Le11 + λ)−1f)||
L1 ≤ C

ε2

Re(kλ)
||f ||

L1 , (3.11)

||(Le11 + λ)−1f ||
L1 ≤ C

ε2

|kλ|Re(kλ)
||f ||

L1 , (3.12)

||(Le11 + λ)−1f ||
L2 ≤ C

ε2

|kλ|Re(kλ)
||f ||

L2 . (3.13)
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Moreover, for any f ∈ L1
1,~p

(R), we have the following estimates

||(Le11 + λ)−1f ||
W

1,1
ξ

≤ C
ε2

Re(kλ)

(
| ⊗ ~χ · f |+

∣∣kλ∣∣||f ||L1
1,~p

)
, (3.14)

||(Le11 + λ)−1f ||L∞ ≤ Cε2

(
1

|kλ|
| ⊗ ~χ · f |+ ||f ||

L1
1,~p

)
. (3.15)

Proof: We define g(x) ≡ (Le11 + λ)−1f = (Gλ ∗ f)(x). Recall that Gλ(x) =√
π

2

ε2

kλ
e−kλ|x|. From the identity g′ = G′λ ∗ f and the Lp convolution estimates

[25], we have

||g′||
L1 ≤ ||G

′
λ||L1||f ||L1 ≤ C

ε2

Re(kλ)
||f ||

L1 . (3.16)

Similarly,

||ξg||
L1 ≤ ||ξ||L1||(Gλ ∗ f)(x)||L∞ ≤ ||Gλ||L∞||f ||L1 ≤ C

ε2

|kλ|
||f ||

L1 . (3.17)

These two estimates establish (3.6). To prove (3.8) we observe that

||g||L∞ = ||(Gλ ∗ f)(x)||L∞ ≤ ||Gλ||L∞||f ||L1 ≤ C
ε2

|kλ|
||f ||

L1 . (3.18)

We have (3.9), since

||g′||L∞ = ||(G′λ ∗ f)(x)||L∞ ≤ ||G
′
λ||L∞||f ||L1 ≤ Cε2||f ||

L1 . (3.19)
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In a similar manner we obtain (3.10), since

||G′λ||L2 = C

∫
ε4e−2kλ|x|dx1/2 ≤ C

ε2

Re(kλ)1/2
. (3.20)

The next inequality (3.11) follows similarly from the estimate

||G′λ||L1 = C

∫
R
ε2e−kλ|x|dx ≤ C

ε2

Re(kλ)
. (3.21)

For (3.12),

||g||
L1 = ||(Gλ ∗ f)(x)||

L1 ≤ ||Gλ||L1||f ||L1 ≤ C
ε2

|kλ|Re(kλ)
||f ||

L1 . (3.22)

Similar to this, for (3.13),

||g||
L2 = ||(Gλ ∗ f)(x)||

L2 ≤ ||Gλ||L1||f ||L2 ≤ C
ε2

|kλ|Re(kλ)
||f ||

L2 . (3.23)

Next we prove (3.7). For this case, we first observe that

||ξg||
L1 ≤||ξ||L1||(Gλ ∗ f)(x)||L∞ (3.24)

≤||Gλ||L1||f ||L∞ (3.25)

≤C ε2

|kλ|Re(kλ)
||f ||

W
1,1
ξ

. (3.26)
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We have our result if we combine the previous line with

||g′||
L1 = ||(Gλ ∗ f

′)(x)||
L1 ≤ ||Gλ||L1 ||f

′||
L1 ≤ C

ε2

|kλ|Re(kλ)
||f ||

W
1,1
ξ

. (3.27)

For the final two estimates, we decompose f as in (1.41), where f =
∑
j fj and

fj = χjf , so that

gj = Gλ ∗ fj (3.28)

satisfies g =
∑
j gj. Moreover using (1.29), we see that

||f ||
L1

1,~p
=
∑
j

||fj ||L1
1,j

, (3.29)

where || · ||
L1

1,j
= ||

(
1 + |x− pj |

)
· ||
L1 . We proceed by decomposing each fj into

a small mass and a massless part:

fj = f̄jξj + y′j, (3.30)

for yj ∈ L1(R) and ξj defined in (1.37). Clearly for any f , ||f ||
L1 ≤ ||f ||L1

1,j
. Next
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we examine

||yj ||L1 =

∫
R

[
∂x(x− pj)

]
|yj |dx (3.31)

≤
∫
R
|(x− pj)y′j |dx (3.32)

=C

∫
R
|(x− pj)

(
fj − f̄jξj

)
|dx (3.33)

≤C

(
||fj ||L1

1,j
+ ||f ||

L1

∫
R
|(x− pj)ξj |dx

)
(3.34)

≤C||fj ||L1
1,j

. (3.35)

We decompose gj = gj,1+gj,0 where gj,1 = f̄jGλ∗ξj and gj,0 = Gλ∗y
′
j = G′λ∗yj .

Estimating gj,1 using (3.6), we have

||gj,1||
W

1,1
ξ

= f̄j ||Gλ ∗ ξj ||W1,1
ξ

≤ C
ε2

Re(kλ)
f̄j ||ξj ||L1 ≤ C

ε2

Re(kλ)
f̄j . (3.36)

The function G′λ has a jump at x = 0. We deduce that

∂xgj,0 = 2G′′λ ∗ yj =
[
G′′λ
]
∗ yj + ε2yj, (3.37)

so that

G′′λ =


[
G′′λ
]

x 6= 0

ε2δx=0 x = 0

 , (3.38)
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where the function
[
G′′λ
]

is the point-wise second derivative of Gλ. Then

||g′j,0||L1 ≤
(
||
[
G′′λ
]
||
L1 + ε2

)
||yj ||L1 ≤ C

|kλ|
Re(kλ)

ε2||fj ||L1
1,j

. (3.39)

Using (3.9),

||ξgj,0||L1 ≤ ||ξ||L1||G
′
λ ∗ yj ||L∞ ≤ C||G′λ||L1 ||yj ||L1 ≤ Cε2||fj ||L1

1,j
. (3.40)

Summing over j, we have (3.14). The final inequality (3.15) follows using (3.9) and

(3.8) respectively:

||gj,0||L∞ =||G′λ ∗ yj ||L∞ ≤ C||G′λ||L∞||yj ||L1 ≤ Cε2||fj ||L1
1,j

(3.41)

||ξgj,0||L∞ =f̄j ||Gλ ∗ ξj ||L∞ ≤ Cf̄j ||Gλ||L∞||ξj ||L1 ≤ C
ε2

|kλ|
f̄j� (3.42)

Recall from the introduction the assumption that 1 − α/2 − β = 0. We use this

assumption and the previous lemma to prove the following bounds on Φ1(~p, δ = 1).

In particular, the lemma assures that Φ1 = O(1) in L∞.
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Lemma 3.2. There exists a constant C <∞ such that

||Φ1||L∞ ≤C (3.43)

||∂xΦ1||L∞ ≤Cε
2−β (3.44)

||Φ1||L1 ≤Cε
β−2 (3.45)

||
∂qj

∂pk
||L∞ ≤Cε

2−β (3.46)

||∂pkΦ1||L1 ≤C (3.47)

||∂pkΦ1||L∞ ≤Cε
2−β. (3.48)

Proof: For the first inequality we use (3.8) and the assumption 1− α/2− β = 0:

||Φ1||L∞ =

∣∣∣∣∣∣
∣∣∣∣∣∣ε−βL−e11

 N∑
j=1

q
α11
j φ

α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞

(3.49)

≤ C

∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=1

q
α11
j φ

α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L1

(3.50)

≤ C. (3.51)
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For (3.44) we have

||∂xΦ1||L∞ ≤ Cε−β
∣∣∣∣∣∣
∣∣∣∣∣∣∂x

L−e11

 N∑
j=1

q
α11
j φ

α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞

(3.52)

≤ Cε2−β
∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=1

q
α11
j φ

α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L1

(3.53)

≤ Cε2−β, (3.54)

where we used (3.9). For (3.45), using (3.12) we have

||Φ1||L1 ≤ Cε−β
∣∣∣∣∣∣
∣∣∣∣∣∣
L−e11

 N∑
j=1

q
α11
j φ

α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L1

(3.55)

≤ Cεβ−2

∣∣∣∣∣∣
∣∣∣∣∣∣
N∑
j=1

q
α11
j φ

α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L1

(3.56)

≤ Cεβ−2. (3.57)

For (3.46), we examine qj from the exact formulation (2.72) at leading order,

||
∂qj

∂pk
||L∞ ≤C

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∂
(
M(~p, ε)|~q |θ

)
j

∂pk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
L∞

(3.58)

≤C
∣∣∣∣∣∣∣∣∂M(~p, ε)

∂pk

∣∣∣∣∣∣∣∣
L∞

(3.59)

≤Cε2−β, (3.60)
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due to the εα/2+1 = ε2−β in the exponent ofM(~p, ε) defined in (2.69). For (3.47),

we have that

∂pkΦ1 =ε−βL−e11 ∂pk

 N∑
j=1

q
α11
j φ

α12
j

 (3.61)

=ε−βL−e11

−qα11
k

∂x

(
φ
α12
k

)
−

N∑
j=1

θqθ−1
j φ

α12
0

∂qj

∂pk

 . (3.62)

Then applying the L1 norm to the above

||∂pjΦ1||L1 ≤ ε−βC||Gλ ∗ ∂x
(
φ
α12
k

)
||
L1 + ε−βC||L−e11

N∑
j=1

θqθ−1
j φ

α12
0

∂qj

∂pk
||
L1 .

(3.63)

For the first term on the right,

ε−βC||Gλ ∗ ∂x
(
φ
α12
k

)
||
L1 =||∂x

(
Gλ ∗

(
ε−βqα11

k
φ
α12
k

))
||
L1 (3.64)

≤Cεβ ||ε−βqα11
k

φ
α12
k
||
L1 (3.65)

≤C, (3.66)

where we applied the estimate (3.11). For the second term on the right in (3.63),
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applying the estimate (3.12) and (3.46) we have

ε−βC||L−e11

N∑
j=1

θqθ−1
j φ

α12
0

∂qj

∂pk
||
L1 ≤ε

−βC
N∑
j=1

||θqθ−1
j φ

α12
0

∂qj

∂pk
||
L1 (3.67)

≤εβ−2C
N∑
j=1

||φα12
0 ||

L1||
∂qj

∂pk
||L∞ (3.68)

≤C. (3.69)

We conclude that

||∂pkΦ1||L1 ≤ C. (3.70)

Proving (3.48) follows similarly where

||∂pjΦ1||L∞ ≤ε
−βC||Gλ ∗ ∂x

(
φ
α12
k

)
||L∞

+ε−βC||L−e11

N∑
j=1

θqθ−1
j φ

α12
0

∂qj

∂pk
||L∞ . (3.71)

The first term on the right follows like above, using (3.9),

ε−βC||Gλ ∗ ∂x
(
φ
α12
k

)
||L∞ =||∂x

(
Gλ ∗

(
ε−βqα11

k
φ
α12
k

))
||L∞ (3.72)

≤Cε2||ε−βqα11
k

φ
α12
k
||
L1 (3.73)

≤Cε2−β. (3.74)
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For the second term on the right in (3.71), applying the estimate (3.8) and (3.46) we

have

ε−βC||L−e11

N∑
j=1

θqθ−1
j φ

α12
0

∂qj

∂pk
||L∞ ≤C

N∑
j=1

||θqθ−1
j φ

α12
0

∂qj

∂pk
||
L1 (3.75)

≤C
N∑
j=1

||φα12
0 ||

L1 ||
∂qj

∂pk
||L∞ (3.76)

≤Cε2−β. (3.77)

Then we conclude

||∂pkΦ1||L∞ ≤ Cε2−β� (3.78)

From the proof of (3.47), we conclude that

∂Φ2
∂pj

= −
∂φj

∂x
+O

(
ε2−β

)
, (3.79)

in any Lp norm. The following corollary will later be used to determine the point

spectrum.

Corollary 3.1. There exists C > 0 such that for all λ ∈ C \ (−∞,−εαµ) and

~p ∈ K, the following holds

∣∣∣((Le11 + λ)−1f, g
)
L2 − (⊗~χ · f)TGNλ ⊗ ~χ · g

∣∣∣ ≤ Cε2||f ||
L1

1,~p
||g||

L1
1,~p

, (3.80)
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for all f, g ∈ L1
1,~p

, where L1
1,~p

is defined in (1.29) and GN0 (for λ = 0) is the

two-point correlation matrix defined in (2.70).

Proof: To show (3.80) we use the Taylor expansion

Gλ(y − x) =Gλ
(
pi − pj + (y − pi)− (x− pj)

)
(3.81)

=Gλ(pi − pj) +G′λ(s)
(
(y − pi)− (x− pj)

)
, (3.82)

for some s ∈ R. Windowing f and g as in (1.41) and substituting the above we have:

(
(Le11 + λ)−1f, g

)
L2 =

N∑
i,j=1

(
(Le11 + λ)−1fi, gj

)
L2 (3.83)

=
N∑

i,j=1

∫ ∫
Gλ(y − x)fi(y)gj(x)dydx (3.84)

=
N∑

i,j=1

∫ ∫
Gλ(pi − pj)fi(y)gj(x)dydx

+
N∑

i,j=1

∫ ∫
G′λ(s)

(
(y − pi)− (x− pj)

)
fi(y)gj(x)dydx

(3.85)

=(⊗~χ · f)TGNλ ⊗ ~χ · g

+G′λ(s)
N∑

i,j=1

∫ ∫ (
(y − pi)− (x− pj)

)
fi(y)gj(x)dydx.

(3.86)
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We rearrange the above terms and apply the absolute value:

∣∣∣((Le11 + λ)−1f, g
)
L2 − (⊗~χ · f)TGNλ ⊗ ~χ · g

∣∣∣ = |Υ|, (3.87)

where

Υ = G′λ(s)
N∑

i,j=1

∫ ∫ (
(y − pi)− (x− pj)

)
fi(y)gj(x)dydx. (3.88)

Using the fact that ||G′λ||L∞ ≤ Cε2, we estimate the last term of (3.87),

|Υ| =

∣∣∣∣∣∣G′λ(s)
N∑

i,j=1

∫ ∫ (
(y − pi)− (x− pj)

)
fi(y)gj(x)dydx

∣∣∣∣∣∣ (3.89)

≤Cε2
N∑

i,j=1

∫ ∫ (
|y − pi|+ |x− pj |

)
|fi(y)gj(x)|dydx (3.90)

≤Cε2
N∑

i,j=1

∫
|(y − pi)fi(y)|dy

∫
|gj(x)|dx+

∫
|(x− pj)gj(x)|dx

∫
|fi(y)|dy

(3.91)

≤Cε2||f ||
L1

1,~p
||g||

L1
1,~p

� (3.92)
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3.2 Residual estimates

The residual is R(Φ) = F(Φ), which takes the form

R(Φ) =

 R1(Φ)

R2(Φ)

 =

 ε−2∂2
xΦ1 − εαµΦ1 + ε−βΦ

α11
1 Φ

α12
2

∂2
xΦ2 − Φ2 + Φ

α21
1 Φ

α22
2

 . (3.93)

We have the following properties for the residual:

Proposition 3.1. Recall the definition of Kl0
in (1.9). Fix l0 from this definition,

then for all ~p ∈ Kl0, the residual has the following asymptotic formula

 R1(Φ)

R2(Φ)

 =

 ε−β
∑N
j=1(Φ

α11
1 − qα11

j )φ
α12
j +O(εr)∑N

j=1

(
Φ
α21
1 − qα21

j

)
φ
α22
j +O(εr)

 , (3.94)

for r = r(l0) > 0 large. Moreover, there exists C > 0, independent of ε and ~p ∈ Kl0
such that for all ~p ∈ Kl0 the following estimates hold,

||R1(Φ)||
L1 ≤ Cεα (3.95)

||R2(Φ)||
L2 ≤ Cε2−β. (3.96)

Proof: We first examine R2(Φ) in the L2 norm. Adding and subtracting like
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terms, we find

||R2(Φ)||
L2 ≤ ||

N∑
j=1

∂2
xφj − φj + q

α21
j φ

α22
j ||

L2

+

∣∣∣∣∣∣
∣∣∣∣∣∣Φα21

1

 N∑
j=1

φj

α22

−
N∑
j=1

φ
α22
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L2

+ ||
N∑
j=1

(
Φ
α21
1 − qα21

j

)
φ
α22
j ||

L2 . (3.97)

The first term above is zero by the definition of φj from (3.3). Next, using (3.43):

∣∣∣∣∣∣
∣∣∣∣∣∣Φα21

1

 N∑
j=1

φj

α22

−
N∑
j=1

φ
α22
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L2

≤ Cεr||Φα21
1 ||L∞ (3.98)

≤ Cεr, (3.99)

since ∣∣∣∣∣∣
∣∣∣∣∣∣
 N∑
j=1

φj

α22

−
N∑
j=1

φ
α22
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L2

≤ Cεr, (3.100)

for r ≥ 2, which follows from the fact that ~p ∈ Kl0. In this space, the pulses are

sufficiently separated so that the tail-tail interaction between φj and φk for j 6= k

is minimal. Finally, for the third term we Taylor expand Φ
α21
1 under the sum at
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x = pj for each j and use (3.44):

||
N∑
j=1

(Φ
α21
1 − qα21

j )φ
α22
j ||

L2 ≤ ||
N∑
j=1

∂x

(
Φ
α21
1

)
(sj)|x− pj |φ

α22
j ||

L2 (3.101)

≤
N∑
j=1

|∂x(Φ
α21
1 )(sj)|

∣∣∣∣∣∣|x− pj |φα22
j

∣∣∣∣∣∣
L2 (3.102)

≤ C
N∑
j=1

||∂x(Φ
α21
1 )||L∞ (3.103)

≤ Cε2−β. (3.104)

For the above, we used (3.43) and (3.44), where sj ∈ R for each j, and the exponential

decay in φ
α22
j dominates the linear growth of |x − pj |. From (3.97), (3.99), and

(3.104), we conclude that

||R2(Φ)||
L2 ≤ Cε2−β, (3.105)

which establishes (3.96). Next, we examine the L1 norm of R1. From (3.94), we find

||R1(Φ)||
L1 ≤|| − L

e
11Φ1 + ε−β

N∑
j=1

q
α11
j φ

α12
j ||

L1

+ε−β ||
N∑
j=1

(Φ
α11
1 − qα11

j )φ
α12
j ||

L1

+ε−β
∣∣∣∣∣∣
∣∣∣∣∣∣Φα11

1

(
N∑
j=1

φj)α12 −
N∑
j=1

φ
α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L1

. (3.106)
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The first normed term above is zero by the definition of Φ1 from (3.2). We estimate

the second and the third terms as we did for Φ2. For the third term, we have that

∣∣∣∣∣∣
∣∣∣∣∣∣
 N∑
j=1

φj

α12

−
N∑
j=1

φ
α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L∞

≤ Cεr, (3.107)

for ~p ∈ Kl0, so

ε−β
∣∣∣∣∣∣
∣∣∣∣∣∣Φα11

1

 N∑
j=1

φj

α12

−
N∑
j=1

φ
α12
j

∣∣∣∣∣∣
∣∣∣∣∣∣
L1

≤εr−β
∣∣∣∣∣∣Φα11

1

∣∣∣∣∣∣
L1 (3.108)

≤Cεr−2, (3.109)

where we used (3.45). As before, we Taylor expand Φ1 in the second term,

||
N∑
j=1

(Φ
α11
1 − qα11

j )φ
α12
j ||

L1 ≤ ||
N∑
j=1

∂x(Φ
α11
1 )(sj)|x− pj |φ

α12
j ||

L1 (3.110)

≤ C
N∑
j=1

|∂x(Φ
α11
1 )(sj)|

∣∣∣∣∣∣|x− pj |φα12
j

∣∣∣∣∣∣
L1

(3.111)

≤ C
N∑
j=1

||∂x(Φ
α11
1 )||L∞ (3.112)

≤ Cε2−β, (3.113)
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with sj ∈ R for each j and again we used (3.43) and (3.44). We deduce that

ε−β ||
N∑
j=1

(Φ
α11
1 − qα11

j )φ
α12
j ||

L1 ≤ Cε2−2β = Cεα. (3.114)

Together (3.106), (3.109), and (3.113) yield

||R1(Φ)||
L1 ≤ Cεα. (3.115)

which establishes (3.95). The asymptotic formula (3.94) for the residual follows by

identifying the leading order terms �
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Chapter 4

Linearized Equation and Spectrum

We decompose solutions of (1.1) as

 U

V

 = Φ~p +W∗(x, t), (4.1)

where W∗ = W + ~Φ1 and the pulse positions are functions of time ~p = ~p(t). We

are in a sense putting a correction term into our ansatz through the term W∗. We

choose ~Φ1 =
(

Φ1,1,Φ1,2

)T
such that

L̃~p0
~Φ1 ≡ −π̃~p0R(Φ), (4.2)
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so

~Φ1 ≡ −L̃
−1
~p0

π̃~p0
R(Φ). (4.3)

L̃ is defined in (4.9) as the reduced linear operator frozen at the point ~p0, and π̃ is an

orthogonal spectral projection defined in (5.13). W = (W1,W2)T is the remainder.

Inserting the decomposition (4.1) into the system (1.1) yields

Wt +

(
∂Φ

∂~p
+
∂~Φ1
∂~p

)
~̇p = R(Φ) + L~p

~Φ1 + L~pW +N (~Φ1,W ), (4.4)

where the residual R(Φ) was defined in (3.93) and the linearized operator L~p is

defined as

L~p ≡


−Le11 + ε−βα11Φ

α11−1
1 Φ

α12
2 ε−βα12Φ

α11
1 Φ

α12−1
2

α21Φ
α21−1
1 Φ

α22
2 ∂2

x − 1 + α22Φ
α21
1 Φ

α22−1
2

 . (4.5)

Up to constants, the nonlinearity is

N (~Φ1,W ) ≡

 N1(~Φ1,W )

N2(~Φ1,W )

 , (4.6)
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where

N1(~Φ1,W ) =ε−βΦ
α11−1
1 Φ

α12−1
2 W∗1W

∗
2 + Φ

α11
1 Φ

α12−2
2 W∗2

2

+ε−βΦ
α11−2
1 Φ

α12
2 W∗1

2 (4.7)

N2(~Φ1,W ) =Φ
α21−1
1 Φ

α22−1
2 W∗1W

∗
2 + Φ

α21
1 Φ

α22−2
2 W∗2

2

+Φ
α21−2
1 Φ

α22
2 W∗1

2, (4.8)

with

 W∗1

W∗2

 =

 Φ1,1 +W1

Φ1,2 +W2

.

4.1 The reduced linearization

To simplify the study of the spectral problem we introduce the reduced linearization

to be:

L̃~p ≡


L̃11 ε−βJ12

J21 L̃22

 =


−Le11 0

J21 L̃22

+ ε−β


J11 J12

0 0

 , (4.9)

where

L̃22 = ∂2
x − I + α22

N∑
j=1

φ
α22−1
0 (x− pj). (4.10)
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We define the J21 component as:

J21 = α21

N∑
j=1

q
α21−1
j φ

α22
j . (4.11)

The potentials J11 and J12 are finite rank projections

J11 =α11
~ξ T ⊗ (Φ

α12
2 Qα11−1~χ) (4.12)

J12 =α12
~ξ T ⊗ (Φ

α12−1
2 Qα11~χ), (4.13)

where Q is the N × N diagonal matrix Qjj = qj for each j. From Weyl’s theorem

on the essential spectra of compact perturbations of operators, we know that the

essential spectrum of L~p and L̃~p coincide with that of Le11:

σess(L~p) = σess(L̃~p) = B =
{
−ε−2k2 − εαµ|k ∈ R

}
. (4.14)

The difference L~p − L̃~p is large, but it will enjoy the enhanced resolvent estimate

(5.17), since the difference L~p − L̃~p has no mass in each window χj of the partition

of unity.

79



4.2 The point spectrum

Proposition 4.1. The spectrum of L̃ can be broken into three parts: an essential

part B, a part from the point spectrum of L̃22, and a part controlled by the finite

rank perturbations:

σ(L̃~p) ⊂
(
B ∪ σp(L̃22) ∪

{
λ| det(I +Nλ(~p)) = 0

})
. (4.15)

The N ×N matrix Nλ is given by (4.25).

Proof: The following eigenvalue problem defines the point spectrum:

(L̃~p − λ)

 Ψ1

Ψ2

 =

 0

0

 . (4.16)

This expands to

−(Le11 + λ)Ψ1 =− ε−β(J11Ψ1 + J12Ψ2) (4.17)

(L̃22 − λ)Ψ2 =− J21Ψ1. (4.18)

Now if λ /∈ σp
(
L̃22

)
∪B, then we can invert L̃22 − λ in the second equation

Ψ2 = −(L̃22 − λ)−1J21Ψ1. (4.19)
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Substituting this into the first equation and inverting Le11 + λ, we arrive at the

following scalar problem:

Ψ1 = ε−β(Le11 + λ)−1
(
J11 − J12(L̃22 − λ)−1J21

)
Ψ1. (4.20)

Recalling (4.12)-(4.13) we regroup the right hand side into a single, finite rank op-

erator,

Ψ1 = ε−β(Le11 + λ)−1JTl ⊗ Jr ·Ψ1, (4.21)

where the left and right components of the tensor product are

Jl =~ξ (4.22)

Jr =(α11Φ
α12
2 Qα11−1 − α12Φ

α12−1
2 (L̃22 − λ)−1J21Q

α11)~χ. (4.23)

We project (4.21) with ⊗Jr

⊗Jr ·Ψ1 = ε−β ⊗ Jr · (Le11 + λ)−1JTl ⊗ Jr ·Ψ1, (4.24)

and introduce the matrix

Nλ(~p) = −ε−β ⊗ Jr · (Le11 + λ)−1JTl , (4.25)

81



so that the eigenvalue problem reduces to

(I +Nλ)⊗ Jr ·Ψ1 = 0. (4.26)

If I +Nλ is invertible, then ⊗Jr ·Ψ1 = 0 which from (4.21) implies Ψ1 = 0, and

from (4.21), we see that Ψ2 = 0.

Conversely if (I +Nλ)~v = 0, then setting ⊗Jr ·Ψ1 = ~v in (4.21) yields

Ψ1 = ε−β(Le11 + λ)−1JTl ~v. (4.27)

Also Ψ2 from (4.19) yields an eigenvector ~Ψ =

 Ψ1

Ψ2

 for the eigenvalue problem

(4.16) for λ /∈ σp
(
L̃22

)
∪B.

Hence λ ∈ C\
(
B ∪ σp(L̃22)

)
is an eigenvalue of L̃ if and only if I + Nλ is

invertible �

Proposition 4.2. Fix l0 > 0. There exists ν > 0 such that for all ~p ∈ Kl0 ,

{Re(λ) > −ν} ∩ σp(L̃~p) = σ0(~p) ∪ σfr(~p), (4.28)

where σ0(~p) consists of N distinct O(εr) eigenvalues which are in σp(L̃22). The set

σfr is induced by the finite rank perturbations, and corresponds, up to multiplicity,
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to the zeros of the N equations

R(λ; ~p) =
1

α12α21

(
α11φ

α12
0 − 1

µj

)
, (4.29)

for all j from 1 to N , where R is an explicitly known meromorphic function on

C\(−∞,−1] given by (4.43). The µj ’s are the N eigenvalues of the square ma-

trix ε−βQθ−1GNλ (~p). Moreover the eigenspace associated to σ0 is contained, up to

O(εr), within the space

V = span


 0

φ′1

 , ...,

 0

φ′N


 . (4.30)

Proof: We define the following reduced self-adjoint operator

L̃k,red = ∂2
x − 1 + α22φ

α22−1
0 (x− pk). (4.31)

For the pulse separation l0 sufficiently large, we can interpret L̃22 as N spatially

disjoint (windowed) operators. We analyze the point spectrum of L̃k,red. We observe

that φ′0(x−pk) is an eigenfunction of L̃k,red corresponding to the eigenvalue λ1 = 0.

This follows from the fact that φk solves (2.34). We can also apply the Sturm-

Liouville Theory to this operator. This operator has real point spectrum, and we

can order the eigenvalues. Since φ′0(x − pk) only has one zero, there is only one
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positive eigenvalue, λ0, the groundstate whose eigenfunction ψ0 has no zeros. This

eigenvalue will also be O(1), since (4.31) does not contain an ε. Similarly, all negative

eigenvalues will be an O(1) distance from λ1 = 0, so there exists some ν > 0 such

that there are only two eigenvalues of L̃k,red where λj > −ν, specifically for j = 0

or j = 1. The spectrum of each reduced operator satisfies

σ
(
L̃k,red

)
⊂ {λ1 = 0, λ0} ∪ (−∞,−ν]. (4.32)

Now we seek to determine our representation for σfr. We simplify the inversion of

(L̃22 − λ) on J21. We write J21 as N well-separated pulses, each localized about

the pulse positions, so the inversion simplifies to

(L̃22 − λ)−1J21 =α21

N∑
k=1

q
α21−1−α21α22

α22−1
k

(L̃k,red − λ)−1φ
α22
0 (x− pk)

+O(εr). (4.33)

We introduce

Ξ0(x− pk) ≡(L̃k,red − λ)−1φ
α22
0 (x− pk) (4.34)

=(d2
x − 1 + α22φ

α22−1
0 (x− pk)− λ)−1φ

α22
0 (x− pk), (4.35)
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so that

(L̃22− λ)−1J21 = α21

N∑
k=1

q
α21−1−α21α22/(α22−1)
k

Ξ0(x− pk) +O(εr). (4.36)

Neglecting the near-neighbor interactions between each localized term, and using our

definition of θ from (2.67) , we may write Jr, defined in (4.23), as

Jr =(α11Φ
α12
2 Qα11−1 − α12Φ

α12−1
2 (L̃22 − λ)−1J21Q

α11)~χ (4.37)

=
N∑
k=1

qθ−1
k

χk

(
α11φ

α12
0 (x− pk)− α12α21φ

α12−1
0 (x− pk)Ξ0(x− pk)

)
.

(4.38)

The functions Ξ0(x − pk) decay at an O(1) rate depending on the distance of λ to

σess(L̃22). Since ~p ∈ Kl0, there exists a minimal pulse separation l0 so that the

products φ
α12−1
0 (x−pj)Ξ0(x−pk) and χjΞ0(x−pk) are uniformly O(εr) for r ≥ 2

when j 6= k. From (4.25) the (i, j) entry of the matrix Nλ is

Ni,j =− ε−β
(
Jri, (L

e
11 + λ)−1Jlj

)
L2 (4.39)

=− ε−βqθ−1
i

(
α11φ

α12
0 (x− pi), (L

e
11 + λ)−1ξj

)
L2

+ε−βqθ−1
i

(
α12α21φ

α12−1
0 (x− pi)Ξ0(x− pi), (L

e
11 + λ)−1ξj

)
L2

(4.40)
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Applying (3.80), we have

Ni,j =ε−βqθ−1
i ⊗ ~χ ·

(
α12α21φ

α12−1
0 (x− pi)Ξ0(x− pi)

)
GNij ⊗ ~χ · ξj

−ε−βqθ−1
i ⊗ ~χ ·

(
α11φ

α12
0 (x− pi)

)
GNij ⊗ ~χ · ξj +O(ε2−β) (4.41)

=− ε−βqθ−1
i

(
α11φ

α12
0 − α12α21R(λ)

)
GNij +O(ε2−β), (4.42)

where we define

R(λ) ≡
(

Ξ0, φ
α12−1
0

)
L2

. (4.43)

We may represent Nλ as

Nλ = −ε−β
(
α11φ

α12
0 − α12α21R(λ)

)
Qθ−1GNλ +O(ε2−β). (4.44)

The condition that I +Nλ has a kernel is exactly (4.29).

Next we address the point spectrum of L̃22. We treat this as a regular eigenvalue

perturbation problem. The point spectrum of L̃22 consists of clusters of N eigenval-

ues an O(εr) distance from λ1 = 0 and λ0, and also negative point spectrum left of

−ν. We label the N eigenvalues near λ0 as λ0,k for k ∈ {1, . . . , N}.

Claim 4.1. For every k, λ0,k is not an eigenvalue for our full eigenvalue problem

(4.17) and (4.18).
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Proof of claim: We have, up to O(ε2−β), that

N∑
j=1

ajφ
′
0(x− pj) ∈ ker(L̃22) (4.45)

N∑
j=1

bj,kψ0(x− pj) ∈ ker(L̃22 − λ0,k). (4.46)

We can apply Sturm-Liouville to order our eigenvalues. We arbitrarily let λ0,1 be

the ground state, so the corresponding eigenfunction has no zeros. Without loss

of generality, we have that bj,1 > 0 for all j. For λ0,2, without loss of generality

bj,2 > 0 for every j except for bN,2 which is negative, since the eigenfunction has

exactly one zero. Due to the linear independence of each ~bi = (b1,i, . . . , bN,i)
T for

i = 1, . . . , N , this argument follows so that if we arrange each ~bi as a column of the

matrix B, the resulting matrix is nonsingular,

B =
(
~b1, . . . ,

~bN

)
∈ RN. (4.47)

Consider the possibility that λ = λ0,k for every k = 1, . . . , N is an eigenvalue for

Figure 4.1: This illustrates the point spectrum of L̃22 that is either positive or near
zero. There are N eigenvalues within O(εr) of both λ1 = 0 and λ0.
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the eigenvalue problem (4.16). From (4.18) we have

(L̃22 − λ0,k)Ψ2 = −J21Ψ1. (4.48)

If we solve for Ψ1 in (4.17) where J11 and J12 are finite rank, we find Ψ1 is in the

span of (Le11 + λ0,k)−1ξi for i = 1, . . . , N . Thus, it is slowly varying in space. By

the Fredholm Alternative, −J21Ψ1 must be orthogonal to everything contained in

ker(L̃22 − λ0,k). Then

O(εr) =<
N∑
j=1

bj,kψ0(x− pj),−J21Ψ1 >, (4.49)

for each k. This is equivalent to

B~v = O(εr), (4.50)

where for each j,

vj =< ψ0(x− pj),−J21Ψ1 > . (4.51)
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B is nonsingular, so for each j,

O(εr) = vj = < ψ0(x− pj),−J21Ψ1 > (4.52)

= < ψ0(x− pj),−α21

N∑
k=1

Ψ1q
α21−1
k

φ
α22
k

> (4.53)

= < ψ0(x− pj),−α21Ψ1q
α21−1
j φ

α22
j > (4.54)

≈− α21Ψ1(pj)q
α21−1−α21α22

α22−1
j < ψ0(x− pj), φ

α22
0 (x− pj) >

(4.55)

=O(1), (4.56)

since Ψ1 is slowly varying, qj and Ψ1(pj) cannot be zero, and ψ0(x − pj) and

φ
α22
0 (x − pj) have no zeros. Then we have a contradiction, so λ0,k cannot be an

eigenvalue for (4.16) for any k�

With the claim proven, we continue proving the proposition. On the other hand,

when N = 1,

 0

φ′0

 and λ1 = 0 are an eigenfunction-eigenvalue pair for our

system, since Ψ2 = φ′0 satisfies (4.18) for Ψ1 = 0. Also (4.17) is satisfied since
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J12φ
′
0 = 0. We show this below:

J12φ
′
0 =α12ξ < (φ

α12−1
0 qα11χ), φ′0 > (4.57)

=α12ξq
α11−α21(α12−1)/(α22−1) < φ

α12−1
0 , φ′0(x− pk) > (4.58)

=0. (4.59)

For N > 1, the eigenvalue λ1 = 0 breaks into N eigenvalues of size O(εr) for

sufficiently large pulse separations. At leading order, the eigenspace associated to

σ0 is V = ker(L̃22). This completes the proof of Proposition 4.2�

4.3 Finite rank spectrum

We have characterized the finite rank spectrum σfr in terms of the matrix Nλ(~p)

defined in (4.25). The set σfr is the spectrum that moves as the pulse positions

evolve. In order to control the evolution of this finite rank spectrum, we need ~p ∈ Kν

to assure that σfr is bounded in the left-half complex plane away from the origin.

From Proposition 4.1, σfr occurs only for λ such that
(
I +Nλ

)
is singular. For all

~p ∈ Kν , we have σfr ⊂ C
∗, where C∗ is appropriately contained in

C∗ ⊂ C, (4.60)
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so that the matrix
(
I +Nλ

)
is invertible in a neighborhood of the contour C. More-

over as |λ| → ∞ along C,
∣∣(I +Nλ)

∣∣−1 → 0. So by the continuity of (I + Nλ), for

all ~p ∈ Kν , there exists C > 0 such that we have the uniform bound,

|(I +Nλ)−1| ≤ C, (4.61)

for all λ ∈ C and all λ to the left of C.

4.4 Adjoint eigenfunction estimates

In this section we develop asymptotic expansions of the eigenfunctions
{

Ψk
}N
k=1

of L̃ that correspond to the algebraically small eigenvalues, and also the adjoint

eigenfunctions
{

Ψ
†
k

}N
k=1

that correspond to L̃†.

Lemma 4.1. For ~p ∈ K, where K is defined in (1.13), the eigenspace corresponding

to the algebraically small eigenvalues σ0 is spanned by

Ψk =

 0

φ′k

+O(εr), (4.62)

for k ∈ {1, . . . , N}. The space of adjoint eigenfunctions is spanned by the set{
(Ψ
†
1,k

,Ψ
†
2,k

)T
}N
k=1

, given by (4.80) and (4.70) which satisfy the following esti-
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mate:

||Ψ†
1,k
||
W

1,1
ξ

+ εβ ||Ψ†
2,k
− φ′k||H1 ≤ Cε2, (4.63)

for some C > 0 independent of ε and ~p ∈ K.

Proof: The previous proposition implies (4.62). The adjoint operator is given by:

L̃† =


−Le11 J21

0 L̃22

+ ε−β


J
†
11 0

J
†
12 0

 , (4.64)

where

J
†
11 = α11~χ

TΦ
α12
2 Qα11−1 ⊗ ~ξ, (4.65)

and

J
†
12 = α12~χ

TΦ
α12−1
2 Qα11 ⊗ ~ξ. (4.66)

The eigenvalue problem for ~Ψ† =
(

Ψ
†
1,Ψ
†
2

)T
is

(L̃† − λ)

 Ψ
†
1

Ψ
†
2

 = 0. (4.67)

Since we consider the small eigenvalues near zero we may neglect λ = O(εr). We
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have the following two equations:

−Le11Ψ
†
1 =− J21Ψ

†
2 − ε

−βJ†11Ψ
†
1 (4.68)

L̃22Ψ
†
2 =− ε−βJ†12Ψ

†
1. (4.69)

Since φ′k ∈ ker L̃22, we form a basis
{

(Ψ
†
1,k

,Ψ
†
2,k

)T
}N
k=1

of solutions to L̃†~Ψ†

where the second component is

Ψ
†
2,k

= φ′k − ε
−βL̃−1

22 J
†
12Ψ
†
1,k

. (4.70)

Using the form of L̃22 and that φk solves (3.3), we reduce to the following

L̃−1
22 φk =

x− pk
2

φ′k +
1

α22 − 1
φk +O(εr), (4.71)

which follows since L̃22φ
′
k = 0 and ~p ∈ K. This is used to demonstrate the uniform

boundedness of (4.100). Substituting (4.70) into (4.68), we have

Ψ
†
1,k

=L−e11 [J21(φ′k − ε
−βL̃−1

22 J
†
12Ψ
†
1,k

) + ε−βJ†11Ψ
†
1,k

] (4.72)

=L−e11 [J21φ
′
k + ε−βJ†Tr ⊗ J†

l
·Ψ†

1,k
], (4.73)
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where J
†
l

= Jl = ~ξ and from (4.23),

J
†
r =

(
α11Φ

α12
2 Qα11−1 − α12J21L̃

−1
22 Φ

α12−1
2 Qα11

)
~χ. (4.74)

Now we project (4.73) with ⊗J†
l

, so

⊗J†
l
·Ψ†

1,k
= ⊗J†

l
· L−e11 [J21φ

′
k + ε−βJ†Tr ⊗ J†

l
·Ψ†

1,k
]. (4.75)

If we rearrange terms, we have

(I − ε−β ⊗ J†
l
· L−e11 J

†T
r )⊗ J†

l
·Ψ†

1,k
= ⊗J†

l
· L−e11 J21φ

′
k. (4.76)

So

⊗J†
l
·Ψ†

1,k
= (I +N

†
λ

)−1 ⊗ J†
l
· L−e11 J21φ

′
k, (4.77)

where

N
†
λ

= −ε−β ⊗ J†
l
· L−e11 J

†T
r . (4.78)

Next, we plug (4.77) into (4.73) and factor to obtain

Ψ
†
1,k

=L−e11 [J21φ
′
k + ε−βJ†Tr (I +N

†
λ

)−1 ⊗ J†
l
· L−e11 J21φ

′
k] (4.79)

=[I + ε−βL−e11 J
†T
r (I +N

†
λ

)−1 ⊗ J†
l
·]L−e11 J21φ

′
k. (4.80)
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Using the estimate (3.14), we have

||L−e11 J21φ
′
k||W1,1

ξ

≤ c

(
εβ | ⊗ ~χ · J21φ

′
k|+ ε2||J21φ

′
k||L1

1,~p

)
, (4.81)

where

J21φ
′
k = α21q

α21−1
k

φ
α22
k

φ′k +O(εr). (4.82)

Due to even-odd parity, this has algebraically small mass so

| ⊗ ~χ · J21φ
′
k| = O(εr). (4.83)

In addition, ||J21φ
′
k||L1

1,~p
= O(1), since J21φ

′
k is exponentially decaying away from

the pulse positions. Then

||L−e11 J21φ
′
k||W1,1

ξ

≤ Cε2. (4.84)

Also for (4.80), we use (3.6) and have

||ε−βL−e11 J
†T
r ||

W
1,1
ξ

≤ C||J†Tr ||L1 (4.85)

≤ C, (4.86)
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since J
†
r is uniformly bounded in L1. Taking the W

1,1
ξ

norm of (4.80), we have

||Ψ†
1,k
||
W

1,1
ξ

=||[I + ε−βL−e11 J
†T
r (I +N

†
λ

)−1 ⊗ J†
l
·]L−e11 J21φ

′
k||W1,1

ξ

(4.87)

≤Cε2 + ||ε−βL−e11 J
†T
r ||

W
1,1
ξ

||(I +N
†
λ

)−1 ⊗ J†
l
· L−e11 J21φ

′
k||L∞

(4.88)

≤Cε2 + ||(I +N
†
λ

)−1||L∞||
∣∣∣ ∫ ~ξL−e11 J21φ

′
kdx

∣∣∣ (4.89)

≤Cε2(1 + ||(I +N
†
λ

)−1||L∞), (4.90)

since ∣∣∣ ∫ ξjL
−e
11 J21φ

′
kdx

∣∣∣ ≤ ||L−e11 J21φ
′
k||W1,1

ξ

≤ Cε2. (4.91)

From (4.61), we similarly have that

||(I +N
†
λ

)−1||L∞ ≤ C, (4.92)

and conclude

||Ψ†
1,k
||
W

1,1
ξ

≤ Cε2. (4.93)
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To achieve the second part of (4.63), we use (4.70) and have

||Ψ†
2,k
− φ′k||H1 =||ε−βL̃−1

22 J
†
12Ψ
†
1,k
||
H1 (4.94)

=||ε−βα12L̃
−1
22

N∑
i

χiΦ
α12−1
2 q

α11
i < Ψ

†
1,k

, ξi > ||H1 (4.95)

=||ε−βα12

N∑
i

< Ψ
†
1,k

, ξi > L̃−1
22 χiΦ

α12−1
2 q

α11
i ||

H1 (4.96)

≤Cε−β
N∑
i

∣∣∣ < Ψ
†
1,k

, ξi >
∣∣∣||L̃−1

22 χiΦ
α12−1
2 q

α11
i ||

H1 (4.97)

≤Cε−β ||Ψ†
1,k
||
W

1,1
ξ

N∑
i

||L̃−1
22 χiΦ

α12−1
2 ||

H1 (4.98)

≤Cε2−β, (4.99)

where as a consequence of (4.71) we have that

L̃−1
22 χiΦ

α12−1
2 =

(
x− pk

2
φ′k +

1

α22 − 1
φk

)
χiΦ

α12−1
2 +O(εr), (4.100)

which is uniformly bounded in H1�
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Chapter 5

Resolvent and Semigroup

Estimates

In this chapter we generate resolvent and semigroup estimates for our reduced oper-

ator L̃~p. We fix a contour C ∈ C. We define C as

C = Cv ∪ Cl− ∪ Cl+ , (5.1)

where Cv =

{
−ε

αµ
2 + is

∣∣∣s ∈ [−b, b]
}

, C
l− =

{
−ib+ se

−i5π6
∣∣∣s ∈ [−∞, 0]

}
, and

C
l+

=

{
ib+ se

i5π
6
∣∣∣s ∈ [−∞, 0]

}
, for b positive, and independent of ε. We pick b

sufficiently large so that
(
L̃22 − λ

)
,
(
L̃22 − λ

)
, and I +Nλ are all invertible on C.

The contour C is illustrated in Figure 5.1.
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Figure 5.1: This is an illustration of our contour C.

Given F = (f1, f2)T and λ ∈ C, we examine the resolvent problem

(L̃~p − λI)

 g1

g2

 =

 f1

f2

 . (5.2)

We invert the equation for g2 and have

g2 = (L̃22 − λ)−1 (f2 − J21g1) . (5.3)
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The equation for g1 is

(
Le11 + λ− ε−βJ11

)
g1 − ε

−βJ12g2 = −f1. (5.4)

If we substitute (5.3) into this and rearrange terms we obtain

(Le11 + λ)g1 − ε
−β

(
J11 − J12(L̃22 − λ)−1J21

)
g1 = −KF, (5.5)

where

KF = f1 − ε
−βJ12(L̃22 − λ)−1f2. (5.6)

Recalling Jl and Jr from (4.22) and (4.23), we simplify (5.5) to

(Le11 + λ)g1 − ε
−βJTl ⊗ Jr · g1 = −KF. (5.7)

If we invert the constant coefficient operator on the left and project with ⊗Jr, we

have

⊗Jr · g1 − ε
−β ⊗ Jr · (Le11 + λ)−1JTl ⊗ Jr · g1 = −⊗ Jr · (Le11 + λ)−1KF. (5.8)
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Recalling the matrix Nλ from (4.25), we write the above as

(
I +Nλ

)
⊗ Jr · (Le11 + λ)−1JTl ⊗ Jr · g1 = −⊗ Jr · (Le11 + λ)−1KF, (5.9)

and inverting we obtain an expression for the projection of g1

⊗Jr · g1 = −(I +Nλ)−1 ⊗ Jr · (Le11 + λ)−1KF. (5.10)

If we substitute this into (5.7) and isolate g1, we establish the closed form expression

g1 = (Le11 + λ)−1
(
ε−βJTl (I +Nλ)−1 ⊗ Jr · (Le11 + λ)−1 − I

)
KF. (5.11)

5.1 Spectral projections

The spectral projection associated to the N -point spectrum σ0 near zero is defined

by

π~p
~U ≡

N∑
j=1

(~U,Ψ
†
j)

(Ψj,Ψ
†
j)

Ψj, (5.12)

and the complementary projection is defined as

π̃~p
~U ≡ I − π~p~U. (5.13)
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Recalling || · ||X defined in (1.40), we define the associated spectral subset that is

associated to the temporally decaying solutions of the semigroup generated by L̃~p:

X~p ≡ {~U
∣∣∣||~U ||X <∞, π~p~U = 0}. (5.14)

5.2 Resolvent estimates

Proposition 5.1. For all λ on C, F ∈ X~p, and all ~p ∈ K, we have the following

resolvent estimates for L̃,

||(L̃− λ)−1F ||X ≤C
ε2−β

Re(kλ)

(
1 +

ε2−β

|kλ|
|(I +Nλ)−1|

)(
εβ ||f1||L1

+ ||f2||L2

)
,

(5.15)

||(L̃− λ)−1F ||X ≤C
ε2

|kλ|Re(kλ)

(
1 +

ε2−β

Re(kλ)
|(I +Nλ)−1|

)
||f1||

W
1,1
ξ

+C
ε2−β

Re(kλ)

(
1 +

ε2−β

Re(kλ)
|(I +Nλ)−1|

)
||f2||L2

. (5.16)
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If in addition the coarse-grained projection of f1 is small, then we have the enhanced

residual estimate

||(L̃− λ)−1F ||X ≤C
ε2−β

Re(kλ)

∣∣(I +Nλ)−1∣∣ ε2
|kλ|
| ⊗ ~χ · f1|+ Cε2||f1||L1

1,~p

+C
ε2−β

Re(kλ)

(
ε2||f1||L1

1,~p
+ εβ | ⊗ ~χ · f1|+ ||f2||L2

)
. (5.17)

Proof: We have that

(L̃− λ)−1F =

 g1

g2

 . (5.18)

We apply the W
1,1
ξ

norm to g1 as represented in (5.11) and also use the estimate

(3.6):

||g1||
W

1,1
ξ

≤C ε2−β

Re(kλ)
||JTl (I +Nλ)−1 ⊗ Jr · (Le11 + λ)−1KF ||

L1

+C
ε2

Re(kλ)
||KF ||

L1 . (5.19)

From the definition of Jl = ~ξ, and the fact that the L1 norm of the components of

~ξ are each one, we have

||JTl (I +Nλ)−1||
L1 ≤ C|(I +Nλ)−1|. (5.20)
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Contained within ⊗Jr is (L̃22 − λ)−1 which is uniformly invertible from L2 to H1

for λ ∈ C since F ∈ X~p. So we have:

|⊗Jr ·(Le11+λ)−1KF | ≤ ||Jr||L1
||(Le11+λ)−1KF ||L∞ ≤ C

ε2

|kλ|
||KF ||

L1 , (5.21)

where we used (3.8) and the fact that:

||Jr||L1 =||(α11Φ
α12
2 Qα11−1 − α12Φ

α12−1
2 (L̃22 − λ)−1J21Q

α11)~χ||
L1 (5.22)

≤C||Φα12
2 ~χ||

L1 + C||Φα12−1
2 (L̃22 − λ)−1J21~χ||L1 (5.23)

≤C
(

1 + ||Φα12−1
2 ||

L2||(L̃22 − λ)−1J21~χ||L2

)
(5.24)

≤C
(

1 + ||J21~χ||L2

)
(5.25)

≤C. (5.26)

Applying (5.20) and (5.21) to (5.19), we have

||g1||
W

1,1
ξ

≤ C
ε2

Re(kλ)

(
ε2−β

|kλ|
|(I +Nλ)−1|+ 1

)
||KF ||

L1 . (5.27)

Estimating the right hand side, we have that

||KF ||
L1 ≤ ||f1||L1 + ε−β ||J12(L̃22 − λ)−1f2||L1 . (5.28)
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Furthermore,

||J12(L̃22 − λ)−1f2||L1 ≤||J12||L2 ||(L̃22 − λ)−1f2||L2 (5.29)

≤C||f2||L2 . (5.30)

Then we have:

||g1||
W

1,1
ξ

≤ C
ε2−β

Re(kλ)

(
ε2−β

|kλ|
|(I +Nλ)−1|+ 1

)(
εβ ||f1||L1 + ||f2||L2

)
.

(5.31)

Next we take the H1 norm of g2 from (5.3):

||g2||H1 =||(L̃22 − λ)−1(f2 − J21g1)||
H1 (5.32)

≤C(||f2||L2 + ||J21g1||L2) (5.33)

≤C(||f2||L2 + ||g1||
W

1,1
ξ

). (5.34)

Applying (5.31) to (5.32), and also combining these bounds, we have (5.15).

For (5.16), we again apply the W
1,1
ξ

norm to g1 from (5.11) and then split the
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estimate into two terms:

||g1||
W

1,1
ξ

≤||(Le11 + λ)−1ε−βJTl (I +Nλ)−1 ⊗ Jr · (Le11 + λ)−1||
W

1,1
ξ

+||(Le11 + λ)−1KF ||
W

1,1
ξ

(5.35)

≤C ε2−β

Re(kλ)
||JTl (I +Nλ)−1 ⊗ Jr · (Le11 + λ)−1KF ||

L1

+||(Le11 + λ)−1KF ||
W

1,1
ξ

, (5.36)

where we applied (3.6) to the first part. Addressing part of this term:

| ⊗ Jr · (Le11 + λ)−1KF | =| < Jr, (L
e
11 + λ)−1KF > | (5.37)

≤||Jr||L1||(L
e
11 + λ)−1KF ||L∞ (5.38)

≤C||(Le11 + λ)−1KF ||
W

1,1
ξ

. (5.39)

Bounding JTl term as in (5.20), we have

||g1||
W

1,1
ξ

≤ C

(
1 +

ε2−β

Re(kλ)
|(I +Nλ)−1|

)
||(Le11 + λ)−1KF ||

W
1,1
ξ

. (5.40)
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Using (3.7) and (3.8) we obtain

||(Le11 +λ)−1KF ||
W

1,1
ξ

≤ C

 ε2

|kλ|Re(kλ)
||f1||

W
1,1
ξ

+
ε2−β

Re(kλ)
||f2||L2

 . (5.41)

Combining these estimates, we have

||g1||
W

1,1
ξ

≤ C
ε2−β

Re(kλ)

(
1 +

ε2−β

Re(kλ)
|(I +Nλ)−1|

) εβ

|kλ|
||f1||

W
1,1
ξ

+ ||f2||L2

 .

(5.42)

We bound ||g2||H1 as in (5.32) to obtain (5.16).

To obtain (5.17), we examine the case when the coarse-grained projection of f1

is small. The bound on the f2 component is the same as in (5.15), so without loss

of generality we consider the case F = (f1, 0)T . Taking the W
1,1
ξ

norm of g1 as

represented in (5.11), we have

||g1||
W

1,1
ξ

=||(Le11 + λ)−1
(
ε−βJTl (I +Nλ)−1 ⊗ Jr · (Le11 + λ)−1 − I

)
f1||

W
1,1
ξ

(5.43)

≤Cε−β ||(Le11 + λ)−1JTl ||W1,1
ξ

∣∣(I +Nλ)−1∣∣| ⊗ Jr · (Le11 + λ)−1f1|

+C||(Le11 + λ)−1f1||
W

1,1
ξ

. (5.44)
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Using (3.15) and the uniform L1 bound on Jr we obtain

| ⊗ Jr · (Le11 + λ)−1f1| ≤||Jr||L1||(L
e
11 + λ)−1f1||L∞ (5.45)

≤C

(
ε2

|kλ|
| ⊗ ~χ · f1|+ ε2||f1||L1

1,~p

)
. (5.46)

From (3.6), we have the bound

||(Le11 + λ)−1JTl ||W1,1
ξ

≤ C
ε2

Re(kλ)
||JTl ||L1 ≤ C

ε2

Re(kλ)
. (5.47)

Finally, applying (3.14) to the remaining term,

||(Le11 + λ)−1f1||
W

1,1
ξ

≤ C

(
ε2

Re(kλ)
| ⊗ ~χ · f1|+ ε2

|kλ|
Re(kλ)

||f1||L1
1,~p

)
. (5.48)

Combining these estimates, we have (5.17) �

We use the previous proposition to obtain the following estimate on ~Φ1.

Lemma 5.1. Fix the pulse separation l0 > 0 sufficiently large, then there exists a

constant C > 0 such that for all ~p ∈ K, we have following estimate:

||~Φ1||X ≤ Cε2−β. (5.49)
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Proof: We apply the resolvent estimate (5.15) to the definition (4.3) of ~Φ1 which

yields

||~Φ1||X =||L̃−1
~p0

(
π̃~p0

R(Φ)
)
||X (5.50)

≤C
(
εβ ||[π̃~p0R(Φ)]1||L1

+ ||[π̃~p0R(Φ)]2||L2

)
. (5.51)

Using the residual estimate (3.95), we have

||[π̃~p0R(Φ)]1||L1
≤||R1(Φ)||L1

+ ||[π~p0R(Φ)]1||L1
(5.52)

≤Cεα + ||[π~p0R(Φ)]1||L1
. (5.53)

However, we have the estimate

||[π~p0R(Φ)]1||L1
=||

N∑
j=1

(R(Φ),Ψ
†
j)

(Ψj,Ψ
†
j)

Ψ1,j ||L1
(5.54)

≤C
N∑
j=1

||R1(Φ)||
L1||Ψ

†
1,j ||L∞||Ψ1,j ||L1

+C
N∑
j=1

||R2(Φ)||
L2||Ψ

†
2,j ||L2||Ψ1,j ||L1

(5.55)

≤Cε2−β, (5.56)

which results from our previous residual estimates and adjoint eigenvector estimates.
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Using the residual estimate (3.96), we have

||[π̃~p0R(Φ)]2||L2
≤||R2(Φ)||L2

+ ||[π~p0R(Φ)]2||L2
(5.57)

≤Cε2−β, (5.58)

since as before

||[π~p0R(Φ)]2||L2
=||

N∑
j=1

(R(Φ),Ψ
†
j)

(Ψj,Ψ
†
j)

Ψ2,j ||L2
(5.59)

≤C
N∑
j=1

||R1(Φ)||
L1||Ψ

†
1,j ||L∞||Ψ2,j ||L2

+C
N∑
j=1

||R2(Φ)||
L2||Ψ

†
2,j ||L2||Ψ2,j ||L2

(5.60)

≤Cε2−β. (5.61)

Since α + β = 2− β from the assumption 1− α/2− β = 0, we have our result

||~Φ1||X ≤ C
(
εβ ||[π̃~p0R(Φ)]1||L1

+ ||[π̃~p0R(Φ)]2||L2

)
≤ Cε2−β� (5.62)
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5.3 Semigroup estimates

For fixed ~p ∈ K, we see from classical results, e.g. [24], since L̃ is sectorial, we can

generate its semigroup from the Laplace transform of its resolvent. With our contour

C, the semigroup S associated to L̃ is given by the contour integral

S(t)F =
1

2πi

∫
C
eλt(λ− L̃)−1Fdλ, (5.63)

where we assume that F ∈ X~p. We have the following estimates on the semigroup.

Proposition 5.2. For any t0 > 0 there exists C > 0 such that for all ~p ∈ K,

F ∈ X~p, and t ≥ t0 the semigroup satisfies

||S(t)F ||X ≤Ce
−ε

α
2 µt

(
εβ ||f1||L1

+ ||f2||L2

)
(5.64)

||S(t)F ||X ≤Ce
−ε

α
2 µt(

ln(ε−α)||f1||
W

1,1
ξ

+ ||f2||L2

)
≤ Ce

−ε
α
2 µt

ln(ε−α)||F ||X.

(5.65)

If in addition the coarse-grained projection of f1 is small, then we have the improved

estimate

||S(t)F ||X ≤ Ce
−ε
α
2 µt

(
εβ | ⊗ ~χ · f1|+ ε2||f1||L1

1,~p
+ ||f2||L2

)
. (5.66)
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Proof: Since ~p ∈ K and from (4.61), we have that (I + Nλ)−1 is uniformly

bounded for all λ ∈ C.

For each of the above semigroup estimates, we apply the appropriate resolvent

estimate from Proposition 5.1, which leads to a class of integrals to bound. For (5.64)

we find,

||S(t)F ||X =|| 1

2πi

∫
C
eλt(λ− L̃)−1Fdλ||X (5.67)

≤C
∫
C
||(λ− L̃)−1F ||X |e

λt|dλ (5.68)

≤C
(
εβ ||f1||L1

+ ||f2||L2

)∫
C
|eλt| ε

2−β

Re(kλ)

(
1 +

ε2−β

|kλ|

)
dλ. (5.69)

Similarly for (5.65) we see that

||S(t)F ||X ≤C
∫
C
||(λ− L̃)−1F ||X |e

λt|dλ (5.70)

≤C||f1||
W

1,1
ξ

∫
C
|eλt| ε

2−β

Re(kλ)

(
1 +

ε2−β

Re(kλ)

)
εβ

|kλ|
dλ

+C||f2||L2

∫
C
|eλt| ε

2−β

Re(kλ)

(
1 +

ε2−β

Re(kλ)

)
dλ. (5.71)
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While for (5.66) we have,

||S(t)F ||X ≤C
∫
C
||(λ− L̃)−1F ||X |e

λt|dλ (5.72)

≤Cε2||f1||L1
1,~p

∫
C
|eλt|

(
1 +

ε2−β

Re(kλ)

)
dλ

+Cεβ | ⊗ ~χ · f1|
∫
C
|eλt| ε

2−β

Re(kλ)

(
1 +

ε2−β

|kλ|

)
dλ

+C||f2||L2

∫
C
|eλt| ε

2−β

Re(kλ)
dλ. (5.73)

The following claim estimates these integrals:

Claim 5.1. Fix the contour C as in (5.1), then for all ~p ∈ K, there exists C > 0

such that

∫
C
ε2−β |eλt|
Re(kλ)

dλ ≤Cε1−βe−
εα
2 µt

(5.74)∫
C
ε4−2β |eλt|
|kλ|Re(kλ)

dλ ≤C
(
εα ln(ε−α)

)
e
−ε
α
2 µt

(5.75)∫
C
ε4−2β |eλt|
Re(kλ)2

dλ ≤C
(
εα ln(ε−α)

)
e
−ε
α
2 µt

(5.76)

∫
C

ε2|eλt|
|kλ|Re(kλ)

dλ ≤C ln
(
ε−α

)
e
−ε
α
2 µt

(5.77)∫
C

ε4−β |eλt|
|kλ|Re(kλ)2

dλ ≤C ln
(
ε−α

)
e
−ε
α
2 µt

. (5.78)

Proof of claim: The two angled parts of the contour C
l− and C

l+
are straight-
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forward to estimate, because the exponential decay is dominant as Re(kλ) → −∞.

Our concern is along the vertical part of the contour Cv =

{
−ε
αµ
2 + is|s ∈ [−b, b]

}
.

On Cv, we have

kλ = ε
√
εαµ+ is = ε

4
√
ε2αµ2 + s2e

i tan−1(sε−α/µ)

2 . (5.79)

Using trigonometric properties,

|kλ| = ε
4
√
ε2αµ2 + s2 (5.80)

Re(kλ) = ε
4
√
ε2αµ2 + s2 cos

(
tan−1(sε−α/µ)

2

)
(5.81)

= ±ε 4
√
ε2αµ2 + s2

√√√√1/2 +
εαµ

2

√
s2 + ε2αµ2

. (5.82)

For µ = 0 we have

|kλ| = ε
√
|s| (5.83)

Re(kλ) = ε

√
|s|
2
. (5.84)
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Applying this to (5.74) we have,

∫
Cv

ε2−β |eλt|
Re(kλ)

dλ (5.85)

≤ε1−βe−
εα
2 µt

(
−
∫ 0

−b

√
2

|s|
ds+

∫ b

0

√
2

|s|
ds

)
(5.86)

≤Ce−
εα
2 µt√

bε1−β. (5.87)

For (5.75), we argue that

∫
Cv

ε4−2β |eλt|
|kλ|Re(kλ)

dλ =

∫
Cv

ε2+α|eλt|
|kλ|Re(kλ)

dλ (5.88)

≤ Ce
−ε
α
2 µt

∫ b

0

εα√
ε2αµ2 + s2

√√√√1/2 +
εαµ

2

√
s2 + ε2αµ2

ds

(5.89)

≤ Ce
−ε
α
2 µt

∫ b

0

εα√
ε2αµ2 + s2

ds (5.90)

= Ce
−ε
α
2 µt

∫ b

0

ds√
µ2 +

( s

εα

)2
(5.91)

= Ce
−ε
α
2 µt

εα
∫ bε−α

0

ds̃√
µ2 + s̃2

, (5.92)
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where we substituted s̃ =
s

εα
. Then for the integral in the previous line, we have

∫ bε−α

0

ds̃√
µ2 + s̃2

=

[
sinh−1

(
s̃

µ

)]bε−α
0

(5.93)

= sinh−1

(
bε−α

µ

)
(5.94)

≤ 2 ln

(
bε−α

µ

)
, (5.95)

for ε sufficiently small

εα <
.475b

µ
. (5.96)

This gives us ∫
Cv

ε4−2β |eλt|
|kλ|Re(kλ)

dλ ≤ Ce
−ε
α
2 µt

(
εα ln(ε−α)

)
. (5.97)

For (5.76), the bound follows as in (5.75), where

∫
C
ε4−2β |eλt|
Re(kλ)2

dλ ≤ Ce
−ε
α
2 µt

(
εα ln(ε−α)

)
. (5.98)

We also have that (5.77) follows like (5.75), so

∫
C

ε2|eλt|
|kλ|Re(kλ)

dλ ≤ Ce
−ε
α
2 µt

ln(ε−α). (5.99)

The final integral to bound is (5.78). Again following the previous methods we have
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that ∫
C

ε4−β |eλt|
|kλ|Re(kλ)2

dλ ≤ Ce
−ε
α
2 µt

ln(ε−α)� (5.100)

With the claim prove, we apply the estimates on these five integrals, which leads

to all three semigroup estimates. Both (5.77) and (5.78) account for the ln(ε−α) in

(5.65) �
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Chapter 6

Nonlinear Adiabatic Stability by

Renormalization Group

In this chapter we prove the adiabatic stability results in (1.23) and derive the

limiting pulse dynamics in (1.24). We assume at a time t0 that our initial data

~U0 = (U0, V0)T satisfies

||~U0 − Φ~p∗||X ≤ δ, (6.1)

for some δ > 0 and ~p∗ ∈ K. The following proposition allows us to choose a base

point ~p0 about which we will develop a local coordinate system.

Proposition 6.1. Fix δ sufficiently small. Given ~p∗ ∈ K for K defined in (1.13)
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and ~U0 satisfying the estimate ||W∗||X ≤ δ for W∗ ≡ ~U0−Φ~p∗, there exists M > 0

and a smooth function H : X → K such that ~p = ~p∗ +H(W∗) satisfies

W0 ≡ ~U0 − Φ~p ∈ X~p, (6.2)

for X~p defined in (5.14). Moreover, if W∗ ∈ Xp̃ for some p̃ ∈ K, then

|~p− ~p∗| ≤M1||W∗||X |~p∗ − p̃|. (6.3)

Proof: We may write U0 = Φ~p∗ +W∗ and U0 = Φ~p +W0, which implies that

W0 = W∗ + Φ~p∗ − Φ~p. (6.4)

The equation (6.2) requires that

0 = π~pW0 = π~p(W∗ + Φ~p∗ − Φ~p), (6.5)

which is equivalent to solving the system ~Λ(~p,W∗) = (Λ1, . . . ,ΛN )T = ~0 where

Λj(~p,W∗) =< W∗ + Φ~p∗ − Φ~p,Ψ
†
j >= 0. (6.6)
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It is clear that

Λ(~p∗, 0) = ~0. (6.7)

We examine the following gradient

∇~pΛ|(~p=~p∗,W∗=0) = −


< ∂p1Φ~p,Ψ

†
1 > · · · < ∂pNΦ~p,Ψ

†
1 >

...
. . .

...

< ∂p1Φ~p,Ψ
†
N > · · · < ∂pNΦ~p,Ψ

†
N >


~p=~p∗

. (6.8)

Using the asymptotic reductions (3.48) and (3.79),

∂pjΦ~p =

 0

φ′j

+O(ε2−β), (6.9)

in L∞. Using (3.47), we have

||∂pjΦ1,~p||L1 = O(1). (6.10)

Also from (3.79),

Ψ
†
j(., pj) =

(
O(ε2), φ′j +O(ε2−β)

)T
, (6.11)
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in L∞. Using these estimates, we reduce (6.8) to

∇~pΛ|~p=~p∗,W∗=0 = −||φ′||2
L2Q

−2α21/(α22−1) +O(ε2−β), (6.12)

where Q is the same diagonal matrix as before. From (2.29) in Theorem 2.1, we have

that ~q is uniformly bounded from zero. Applying the implicit function theorem, we

are guaranteed the existence of a smooth function H : X → K which provides the

solution W0 in a neighborhood about (~p∗, 0).

Also if W∗ ∈ Xp̃ for some p̃ ∈ K, then by definition

< W∗,Ψ
†
j(p̃) >= 0, (6.13)

for all j from 1 to N . By the Mean Value Theorem, there exists ~p ′ such that

|~p− ~p∗||∇~pΛ(~p ′)| = |Λ(~p, 0)− Λ(~p∗, 0)|, (6.14)
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where we have |∇~pΛ(~p ′)| = O(1). Then

|~p− ~p∗| ≤M |Λ(~p∗, 0)− Λ(~p, 0)| (6.15)

=M

∣∣∣∣∣∣∣∣∣∣∣
~0−


...

< Φ~p∗ − Φ~p,Ψ
†
j(~p∗) >

...



∣∣∣∣∣∣∣∣∣∣∣
(6.16)

=M

∣∣∣∣∣∣∣∣∣∣∣


...

< W∗,Ψ
†
j(~p∗)−Ψ

†
j(p̃) >

...



∣∣∣∣∣∣∣∣∣∣∣
, (6.17)

since Φ~p∗ −Φ~p = W0−W∗ and π~pW0 = 0. Using (6.13), the Hölder inequality, and

the fact that the X-norm controls L∞, we have

|~p− ~p∗| ≤M
N∑
j=1

||Ψ†j(~p∗)−Ψ
†
j(p̃)||

L1 ||W∗||L∞ (6.18)

≤M
N∑
j=1

||Ψ†j(~p∗)−Ψ
†
j(p̃)||

L1 ||W∗||X. (6.19)

To finish the proof, we use the Mean Value Theorem

∫
|Ψ†j(~p∗)−Ψ

†
j(p̃)|dx =

∫
|~p∗ − p̃||∇Ψ

†
j(~p ′)|dx (6.20)

≤C|~p∗ − p̃|. (6.21)
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Redefining our constant, we have (6.3)�

6.1 Projected equations

We start the renormalization group procedure by freezing ~p = ~p0 in X~p0
, where

~p0 is the base point provided by Proposition 6.1. Then we rewrite (4.4), inserting

∆L ≡ L~p − L̃~p0, so that the evolution for the remainder W can be represented as

Wt +

(
∂Φ

∂~p
+
∂~Φ1
∂~p

)
~̇p = R(Φ) + L̃~p0

(
~Φ1 +W

)
+ ∆L

(
~Φ1 +W

)
+N (~Φ1,W )

(6.22)

W (x, 0) = W0, (6.23)

where W ∈ X~p0 and ~p = ~p(t). To examine ∆L, we break it into secular and reductive

parts, ∆L = ∆sL+ ∆rL, where

∆sL ≡ L~p − L~p0 (6.24)

∆rL ≡ L~p0
− L̃~p0 . (6.25)
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We recognize from the definition of ~Φ1 in (4.3) that π~p0
L̃~p0

~Φ1 = 0, since π~p0
and

π̃~p0
are orthogonal projections. Similarly, we have

π~p0

∂~Φ1
∂~p

~̇p = 0, (6.26)

since

π~p0

∂~Φ1
∂pj

ṗj =

(
∂~Φ1
∂pj

ṗj ,Ψ
†
j

)
(

Ψj,Ψ
†
j

) Ψj (6.27)

=

(
∂~Φ1
∂pj

,Ψ
†
j

)
(

Ψj,Ψ
†
j

) Ψj ṗj (6.28)

=π~p0

∂~Φ1
∂pj

ṗj (6.29)

=
∂

∂pj

(
π~p0

~Φ1

)
ṗj (6.30)

=0 (6.31)

since π~p0
and L̃~p0

commute, ṗj is independent of x, and π~p0
is frozen, so the

differential term can be removed. We impose the non-degeneracy condition W ∈

X~p0
, which also implies π~p0

Wt = 0, since π~p0
is independent of time. Since W ∈

X~p0
, by definition we have

π~p0
W = 0. (6.32)
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Also we have π~p0
L̃~p0

W = L̃~p0
π~p0

W = 0. Projecting both sides of (6.22) by π~p0
,

and applying the non-degeneracy condition, we have the following N equations:

(
∂Φ

∂~p
~̇p,Ψ
†
j

)
L2

=
(
R(Φ) + ∆L

(
~Φ1 +W

)
+N (~Φ1,W ),Ψ

†
j

)
L2 . (6.33)

Using the L∞ estimate on Ψ
†
j,1 from (4.63), and (3.47), which assures that

∂Φ1
∂pj

is

O(1) in L1, then for the left side of (6.33) we have

(
∂Φ

∂~p
~̇p,Ψ
†
j

)
L2

=
(
−||φ′0||

2
L2Q

−2α21/(α22−1) +O(ε2)
)
~̇p. (6.34)

Then (6.33) is equivalent to

−||φ′||2
L2Q

−2α21
α22−1 +O(ε2)

 ~̇p =


(R(Φ) + ∆LW̃ +N (~Φ1,W ),Ψ

†
1)
L2

...

(R(Φ) + ∆LW̃ +N (~Φ1,W ),Ψ
†
N )

L2

 ,

(6.35)

where W̃ = W + ~Φ1. Returning to (6.22), we apply the complimentary spectral

projection. From our definition of ~Φ1 in (4.3), we have

π̃~p0

(
R + L̃~p0

~Φ1

)
= π̃~p0

(
R− π̃~p0R

)
= π̃~p0

(
R−R + π~p0

R
)

= 0. (6.36)
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So the evolution is given by

Wt = R̃ + L̃~p0
W + π̃~p0

(
∆L

(
W + ~Φ1

)
+N (~Φ1,W )

)
(6.37)

W (x, 0) = W0, (6.38)

where R̃ = −π̃~p0

(
∂Φ

∂~p
~̇p

)
−
∂~Φ1
∂~p

~̇p is the temporal component of the residual.

6.2 Decay of the remainder

In this section we establish uniform estimates on the decay of ||W ||X over the du-

ration of each renormalization interval. We introduce the following two quantities:

T1(t) = sup
t0<s<t

e
εα
2 µ(s−t0)||W (s)||X (6.39)

T2(t) = sup
t0<s<t

|~p(s)− ~p0|. (6.40)

Applying the variations of constants formula to (6.37), we have

W (x, t) = S(t−t0)W0+

∫ t

t0
S(t−s)

(
R̃ + π̃~p0

(
∆L

(
W̃
)

+N (~Φ1,W )
))

ds, (6.41)

where S is the semigroup generated by L̃~p0
, and we recall the notation W̃ = W+~Φ1.

In order to establish estimates on W in || · ||X , we establish the following bounds.
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Lemma 6.1. Fix l0 sufficiently large, then for all ~p ∈ K, there exists C > 0 such

that

||[∆sLW̃ ]1||L1 ≤Cε
−βT2(t)

(
||W ||X + ε2−β

)
(6.42)

||[∆sLW̃ ]2||L2 ≤CT2(t)
(
||W ||X + ε2−β

)
(6.43)

| ⊗ ~χ · [∆rL(W + ~Φ1)]1| ≤Cε
2−β

(
||W ||X + ε2−β

)
(6.44)

||[∆Lr(W + ~Φ1)]1||L1
1,~p
≤Cε−β

(
||W ||X + ε2−β

)
(6.45)

||[∆Lr(W + ~Φ1)]2||L2 ≤Cε
2−β

(
||W ||X + ε2−β

)
(6.46)

||N1( ~Φ1,W )||
L2 ≤C

(
||W ||2X + ε4−2β

)
(6.47)

||N2( ~Φ1,W )||
L2 ≤C

(
||W ||2X + ε4−2β

)
. (6.48)

Proof: As before, we break ∆L into secular and reductive parts. We first examine

the secular term ∆sL:

[∆sLW̃ ]1 =ε−βα11

(
Φ
α11−1
~p,1

Φ
α12
~p,2
− Φ

α11−1
~p0,1

Φ
α12
~p0,2

)
W̃1

+ε−βα12

(
Φ
α11
~p,1

Φ
α12−1
~p,2

− Φ
α11
~p0,1

Φ
α12−1
~p0,2

)
W̃2 (6.49)

[∆sLW̃ ]2 =α21

(
Φ
α21−1
~p,1

Φ
α22
~p,2
− Φ

α21−1
~p0,1

Φ
α22
~p0,2

)
W̃1

+α22

(
Φ
α21
~p,1

Φ
α22−1
~p,2

− Φ
α21
~p0,1

Φ
α22−1
~p0,2

)
W̃2. (6.50)
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The Φ2 terms are rapidly decaying away from each pulse position and Φ1 is slowly

varying. In particular, the Φ2 terms are Lipschitz in ~p with an O(1) constant while

the slowly varying Φ1 terms are Lipschitz in ~p with a small constant. However,

Φ1 always appears multiplied by Φ2, and the larger Lipschitz constant prevails. In

particular, we estimate

||Φα22
~p,2
− Φ

α22
~p0,2
||
H1 + ||Φα22

~p,2
− Φ

α22
~p0,2
||
L1 ≤ C|~p− ~p0|. (6.51)

Recalling the definition of T2 from (6.40), we have

||[∆sLW̃ ]1||L1 ≤Cε
−β

(
||Φα11−1
~p,1

Φ
α12
~p,2
− Φ

α11−1
~p0,1

Φ
α12
~p0,2
||
L1 ||W̃1||L∞

)
+Cε−β

(
||(Φα11

~p,1
Φ
α12−1
~p,2

− Φ
α11
~p0,1

Φ
α12−1
~p0,2

)||
L2||W̃2||L2

)
(6.52)

≤Cε−βT2(t)
(
||W ||X + ε2−β

)
, (6.53)

where

||W̃1||L∞ ≤ ||W1||L∞ + ||Φ1,1||L∞ ≤ ||W ||X + Cε2−β, (6.54)

using the bound (5.49). Then we have established (6.42). The estimate (6.43) follows

in the same manner, where

||[∆sLW̃ ]2||L2 ≤ CT2(t)
(
||W ||X + ε2−β

)
. (6.55)
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Next we examine the reductive term. The difference L~p0
− L̃~p0

is large, but

we are able to estimate this difference with the enhanced residual estimate (5.17).

We choose the reduced linearization so it determines average values over each pulse

region, so the differences of the two operators have little mass over each pulse region.

The reductive term takes the form

[∆rLW̃ ]1 =ε−β
(
α11Φ

α11−1
~p0,1

Φ
α12
~p0,2

− J11(~p0)

)
W̃1

+ε−β
(
α12Φ

α11
~p0,1

Φ
α12−1
~p0,2

− J12(~p0)

)
W̃2 (6.56)

[∆rLW̃ ]2 =

(
α21Φ

α21−1
~p0,1

Φ
α22
~p0,2

− J21(~p0)

)
W̃1

+α22

Φ
α21
~p0,1

Φ
α22−1
~p0,2

−
N∑
j=1

φ
α22−1
0 (x− pj,0)

 W̃2. (6.57)

To show the estimate (6.44), we first define

∫
χj [∆rLW̃ ]1dx = L(W̃1) + R(W̃2), (6.58)

where

L(W̃1) = ε−β
∫
χj

(
α11Φ

α11−1
~p0,1

Φ
α12
~p0,2

− J11(~p0)

)
W̃1dx, (6.59)

and

R(W̃2) = ε−β
∫
χj

(
α12Φ

α11
~p0,1

Φ
α12−1
~p0,2

− J12(~p0)

)
W̃2dx. (6.60)
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Next, we expand the potentials J11 and J12 underneath L(W̃1) and R(W̃2) respec-

tively. For brevity, we only expand the R(W̃2) term.

R(W̃2) =ε−βα12

∫
χj

Φ
α11
~p0,1

Φ
α12−1
~p0,2

W̃2 −
∑
j

∫
χjΦ

α12−1
~p0,2

q
α11
j W̃2dzξj

 dx

(6.61)

=ε−βα12

(∫
χjΦ

α11
~p0,1

Φ
α12−1
~p0,2

W̃2dx− q
α11
j

∫
χjΦ

α12−1
~p0,2

W̃2dx

)
,

(6.62)

since each ξj is mass one, and χj windows all ξk to zero except for k = j. Now we

Taylor expand Φ1 at each pulse location and use the fact that ∂xΦ1 = O(ε2−β) in

L∞ near each pulse position. Again, for brevity, we continue with only the R(W̃2)

term:

R(W̃2) =ε−βα12

∫
χj

(
q
α11
j + ∂x

(
Φ
α11
1

)
(p′)

(
p0,j − pj

))
Φ
α12−1
~p0,2

W̃2dx

−ε−βα12q
α11
j

∫
χjΦ

α12−1
~p0,2

W̃2dx (6.63)

≤Cε−β
∫
χj∂x

(
Φα11

)
(p′)

(
p0,j − pj

)
Φ
α12−1
~p0,2

W̃2dx (6.64)

≤Cε2−β ||χjΦ
α12−1
~p0,2

||
L1||W̃2||L∞ (6.65)

≤Cε2−β
(
||W ||X + ε2−β

)
. (6.66)
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We have that

| ⊗ ~χ · [∆rL(W + ~Φ1)]1| ≤ Cε2−β
(
||W ||X + ε2−β

)
. (6.67)

Next we bound (6.45),

||[∆LrW̃ ]1||L1
1,~p
≤Cε−β ||

(
α11Φ

α11−1
~p0,1

Φ
α12
~p0,2

− J11(~p0)

)
W̃1||L1

1,~p

+Cε−β ||
(
α12Φ

α11
~p0,1

Φ
α12−1
~p0,2

− J12(~p0)

)
W̃2||L1

1,~p
. (6.68)

Since both terms follow similarly, for brevity we examine the first term:

Cε−β ||
(
α11Φ

α11−1
~p0,1

Φ
α12
~p0,2

− J11(~p0)

)
W̃1||L1

1,~p
≤ Cε−β

N∑
j=1

Dj(W̃1), (6.69)

where we notate

Dj(W̃1) =

∫
χj |(1 + |x− pj |)

(
α11Φ

α11−1
~p0,1

Φ
α12
~p0,2

− J11(~p0)

)
W̃1|dx. (6.70)
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Under the summation for any j:

Dj(W̃1) ≤
∫
χj |(1 + |x− pj |)Φ

α11−1
~p0,1

Φ
α12
~p0,2

W̃1|dx

+

∫
χj |(1 + |x− pj |)

∑∫
χiΦ

α12
2 q

α11−1
i W̃1dzξidx (6.71)

≤C||χj(1 + |x− pj |)Φ
α11−1
~p0,1

Φ
α12
~p0,2
||
L1||W̃1||L∞

+C||χjΦ
α12
2 ||

L1||W̃1||L∞
∫
|χj(1 + |x− pj |)ξj |dx (6.72)

≤C
(
||W ||X + ε2−β

)
, (6.73)

where the linear growth term (1+|x−pj |) is dominated by the exponentially decaying

terms in each norm. Connecting the previous estimates we have:

||[∆Lr(W + ~Φ1)]1||L1
1,~p
≤ Cε−β

(
||W ||X + ε2−β

)
. (6.74)

Finally, we bound (6.46)

||[∆LrW̃ ]2||L2 ≤ I(W̃1) + J(W̃2), (6.75)

where we notate

I(W̃1) = ||α21

(
Φ
α21−1
~p0,1

Φ
α22
~p0,2

− J21(~p0)

)
W̃1||L2 , (6.76)
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and

J(W̃2) = ||α22

Φ
α21
~p0,1

Φ
α22−1
~p0,2

−
N∑
j=1

φ
α22−1
0 (x− pj,0)

 W̃2||L2 . (6.77)

For the first term, we again Taylor expand Φ1 underneath the summation:

I(W̃1) =||

α21Φ
α21−1
~p0,1

 N∑
j=1

φ
α22
j +O(εr)

− α21

N∑
j=1

q
α21−1
j φ

α22
j

 W̃1||L2

(6.78)

≤C||

 N∑
j=1

∂x

(
Φ
α21−1
1

)
(p′j)

(
p0,j − pj

)
φ
α22
j

 W̃1||L2 (6.79)

≤C||∂x
(

Φ
α21−1
1

)
||L∞||

N∑
j=1

(
p0,j − pj

)
φ
α22
j W̃1||L2 (6.80)

≤Cε2−β ||W̃1||L∞ . (6.81)
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Now we bound the other term again Taylor expanding Φ1 about the pulse location:

J(W̃2) =||

Φ
α21
~p0,1

N∑
j=1

φ
α22−1
0 q

−α21
j −

N∑
j=1

φ
α22−1
0

 W̃2||L2 (6.82)

=||

 N∑
j=1

φ
α22−1
0

q
α21
j +O(ε2−β)

q
α21
j

−
N∑
j=1

φ
α22−1
0

 W̃2||L2 (6.83)

≤Cε2−β ||
N∑
j=1

φ
α22−1
0 ||

L2||W̃2||L∞ (6.84)

≤Cε2−β
(
||W ||X + ε2−β

)
. (6.85)

This gives us the following estimate:

||[∆Lr(W + ~Φ1)]2||L2 ≤ Cε2−β
(
||W ||X + ε2−β

)
. (6.86)
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We estimate the first estimate on the nonlinearity in (6.47),

||N1(~Φ1,W )||
L1 ≤Cε

−β ||Φα11−1
1 Φ

α12−1
2 W̃1W̃2||L1

+Cε−β ||Φα11
1 Φ

α12−2
2 W̃2

2 ||L1

+Cε−β ||Φα11−2
1 Φ

α12
2 W̃2

1 ||L1|| (6.87)

≤Cε−β
(
||W̃1||L∞||W̃2||L∞ + ||W̃2||

2
L∞ + ||W̃1||

2
L∞

)
(6.88)

≤Cε2−β ||W̃ ||2X (6.89)

≤Cε2−β
(
||W ||2X + ||~Φ1||X ||W ||X + ||~Φ1||

2
X

)
(6.90)

≤Cε2−β
(
||W ||2X + ||~Φ1||

2
X

)
(6.91)

≤Cε2−β
(
||W ||2X + ε4−2β

)
. (6.92)

The next estimate follows in the same manner

||N2( ~Φ1,W )||
L2 ≤ C

(
||W ||2X + ε4−2β

)
� (6.93)

Then with these estimates, we have the following corollary.

Corollary 6.1. Fix l0 sufficiently large, then for all ~p ∈ K, there exists C > 0 such
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that

||S(t− s)
(
π̃~p0

∆sLW̃
)
||X ≤CT2(t)e

−ε
α
2 µ(t−s) (||W ||X + ε2−β

)
(6.94)

||S(t− s)
(
π̃~p0

∆rLW̃
)
||X ≤Ce

−ε
α
2 µ(t−s)

ε2−β
(
||W ||X + ε2−β

)
(6.95)

||S(t− s)
(
π̃~p0
N (~Φ1,W )

)
||X ≤Ce

−ε
α
2 µ(t−s) (||W ||2X + ε4−2β

)
. (6.96)

Proof: The estimate (6.94) is achieved by using the semigroup estimate (5.64)

and the estimates (6.42) and (6.43), where

||S(t− s)
(
π̃~p0

∆sLW̃
)
||X ≤Ce

−ε
α
2 µ(t−s) (

εβ ||[∆sLW̃ ]1||L1 + ||[∆sLW̃ ]2||L2

)
(6.97)

≤Ce−
εα
2 µ(t−s) (||W ||X + ε2−β

)
. (6.98)

To achieve (6.95), we apply (5.66) and recall the estimates (6.44), (6.45), and (6.46).
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This leads to

||S(t− s)
(
π̃~p0

∆rLW̃
)
||X ≤Ce

−ε
α
2 µt

εβ | ⊗ ~χ · [∆rL(W + ~Φ1)]1|

+Ce
−ε
α
2 µt

ε2||[∆Lr(W + ~Φ1)]1||L1
1,~p

+Ce
−ε
α
2 µt||[∆Lr(W + ~Φ1)]2||L2

(6.99)

≤Ce−
εα
2 µt

ε2−β
(
||W ||X + ε2−β

)
. (6.100)

We apply (5.66) to (6.96), recalling the estimates (6.47) and (6.48),

||S(t− s)
(
π̃~p0
N (W̃ )

)
||X ≤Ce

−ε
α
2 µ(t−s) (

εβ ||N1(W̃ )||
L1 + ||N2(W̃ )||

L2

)
(6.101)

≤Ce−
εα
2 µ(t−s) (||W ||2X + ε4−2β

)
� (6.102)

We return to the previous projected equation in (6.35). The next lemma estimates

terms on the right side of (6.35).
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Lemma 6.2. We have the following estimates for any j:

(
R1,Ψ

†
1,j

)
L2 ≤Cε

4−2β (6.103)(
[∆L

(
~Φ1 +W

)
]1,Ψ

†
1,j

)
L2 ≤Cε

2−2β
(
||W ||X + ε2−β

)
(6.104)(

N1(~Φ1,W ),Ψ
†
1,j

)
L2 ≤Cε

2−β
(
||W ||2X + ε4−2β

)
. (6.105)

Proof: For (6.103), we use (3.8) and have

(
R1,Ψ

†
1,j

)
L2 ≤ ||R1||L1||Ψ

†
1,j ||L∞ ≤ Cε4−2β. (6.106)

For (6.104), we write ∆L = ∆sL + ∆rL, and estimate the secular terms first. We

use the estimate (6.42),

(
[∆sLW̃ ]1,Ψ

†
1,j

)
L2 ≤||[∆sLW̃ ]1||L1||Ψ

†
1,j ||L∞ (6.107)

≤Cε2−β
(
||W ||X + ε2−β

)
. (6.108)
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To complete the estimate of (6.104), we apply the estimate (6.45),

(
[∆rLW̃ ]1,Ψ

†
1,j

)
L2 ≤C||[∆rLW̃ ]1||L1||Ψ

†
1,j ||L∞ (6.109)

≤Cε2−β ||[∆rLW̃ ]1||L1
1,~p

(6.110)

≤Cε2−2β
(
||W ||X + ε2−β

)
. (6.111)

To estimate (6.105), we use the estimate (6.47),

(
N1(~Φ1,W ),Ψ

†
1,j

)
L2 ≤||N1(~Φ1,W )||

L1 ||Ψ
†
1,j ||L∞ (6.112)

≤Cε2−β
(
||W ||2X + ε4−2β

)
� (6.113)

Applying the previous lemma and using (4.63) to expand Ψ
†
2,j in (6.33), we have

the following equations for the evolution of the pulse position for each j:

ṗj =−

(
R2(Φ) + [∆L(W + ~Φ1)]2 +N2(~Φ1,W ), φ′j

)
L2

q
−2α21/(α22−1)
j ||φ′0||

2
L2

(
1 +O(ε2)

)

+O(ε4−2β, ε2−2β ||W ||X, ε
2−β ||W ||2X ). (6.114)

Finally, we prove the following reduced residual estimate:
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Lemma 6.3. There exists C > 0 such that

||S(t− s)π̃~p0R̃||X ≤ Cε2e
−ε
α
2 µ(t−s)

. (6.115)

Proof: Using (5.64), we have

||S(t− s)π̃~p0R̃||X ≤Cε
βe
−ε
α
2 µ(t−s)||[π̃~p0

(
∂Φ

∂~p
~̇p

)
+
∂~Φ1
∂~p

~̇p]1||L1

+Ce
−ε

α
2 µ(t−s)||[π̃~p0

(
∂Φ

∂~p
~̇p

)
+
∂~Φ1
∂~p

~̇p]2||L2 . (6.116)

We assume that ~̇p is O(ε2−β) (we justify this later). First we examine the
∂~Φ1
∂~p

terms, where by the definition of ~Φ1,

∂~Φ1
∂~p

=− ∂

∂~p
L̃−1
~p0

(
π~p0

R(Φ)
)

(6.117)

=− L̃−1
~p0

(
π~p0

∂R(Φ)

∂~p

)
, (6.118)

where we can pull the differential through the linear operator and the projection

because they are both frozen at ~p = ~p0. Also, we have

∂~Φ1
∂~p

~̇p =

 N∑
j=1

∂~Φ1,1

∂pj
ṗj ,

N∑
j=1

∂~Φ1,2

∂pj
ṗj

T . (6.119)
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Then using our assumption on the size of ~̇p,

εβ ||[
∂~Φ1
∂~p

~̇p]1||L1 + ||[
∂~Φ1
∂~p

~̇p]2||L2 ≤
N∑
j=1

(εβ ||[
∂~Φ1
∂pj

]1||L1 + ||[
∂~Φ1
∂pj

]2||L2)||ṗj ||L∞

(6.120)

≤Cε2, (6.121)

if for each j from 1 to N :

||[
∂~Φ1
∂pj

]1||L1 ≤C (6.122)

||[
∂~Φ1
∂pj

]2||L2 ≤Cε
β. (6.123)

Examining the first of the two inequalities above, and using (3.12):

||[
∂~Φ1
∂pj

]1||L1 = ||

[
L̃−1
~p0

π~p0

∂R(Φ)

∂pj

]
1

||
L1 ≤ Cε−α||

[
π~p0

∂R(Φ)

∂pj

]
1

||
L1 , (6.124)

141



where

||

[
π~p0

∂R(Φ)

∂pj

]
1

||
L1 ≤C||

N∑
i=1

((
∂R1(Φ)

∂pj
,Ψ
†
i,1

)
+

(
∂R2(Φ)

∂pj
,Ψ
†
i,2

))
Ψi,1||L1

(6.125)

≤C
N∑
i=1

||
∂R1(Φ)

∂pj
||
L1||Ψ

†
i,1||L∞||Ψi,1||L1

+C
N∑
i=1

||
∂R2(Φ)

∂pj
||
L2||Ψ

†
i,2||L2||Ψi,1||L1 (6.126)

≤Cε2||
∂R1(Φ)

∂pj
||
L1 + ||

∂R2(Φ)

∂pj
||
L2 . (6.127)

By expanding the definition of the residuals underneath the norm above, we have

∂pkR1(Φ) =∂pk

−Le11Φ1 + ε−β
N∑
j=1

q
α11
j φ

α12
j


+ε−β∂pk

 N∑
j=1

(Φ
α11
1 − qα11

j )φ
α12
j


+ε−β∂pk

Φ
α11
1

(
N∑
j=1

φj)α12 −
N∑
j=1

φ
α12
j

 . (6.128)

Similar to the proof of the residual estimates in Chapter 3, the first term is 0. Since

everything in the third term is smooth and continuous, it follows as in the previous

residual estimates that this term is O(εr) for r ≥ 2. The middle term remains, where
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as in the residual estimates, we Taylor expand about pj (here ′ denotes the derivative

with respect to x):

(Φ
α11
1 − qα11

j )φ
α12
j = (x− pj)

(
Φ
α11
1

)′
(pj)φ

α12
j + h.o.t.. (6.129)

Then at leading order,

∂pk

 N∑
j=1

(Φ
α11
1 − qα11

j )φ
α12
j

 =∂pk

 N∑
j=1

(x− pj)
(

Φ
α11
1

)′
(pj)φ

α12
j


(6.130)

=∂pk

(
(x− pk)

(
Φ
α11
1

)′
(pk)φ

α12
k

)
(6.131)

=−
(

Φ
α11
1

)′
(pk)φ

α12
k

+(x− pk)∂pk

(
Φ
α11
1

)′
(pk)φ

α12
k

(6.132)

+(x− pk)
(

Φ
α11
1

)′
(pk)∂pkφ

α12
k

. (6.133)

By (3.44), we have

||
(

Φ
α11
1

)′
(pk)φ

α12
k
||
L1 ≤ ||

(
Φ
α11
1

)′
(pk)||L∞||φ

α12
k
||
L1 ≤ Cε2−β. (6.134)
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For the third term in (6.133), we know from (3.79) that in any Lp norm

∂pkφk = −φ′k +O(ε2−β). (6.135)

Then

||
(

Φ
α11
1

)′
(pk)||L∞||(x− pk)

(
Φ
α11
1

)′
(pk)∂pkφ

α12
k
||
L1 ≤ Cε2−β, (6.136)

since the exponential decay in ∂pkφ
α12
k

dominates any linear growth. For the second

term in (6.132), we use (3.48), so we have

||(x− pk)∂pk

(
Φ
α11
1

)′
(pk)φ

α12
k
||
L1 ≤||∂pk

(
Φ
α11
1

)′
(pk)||L∞||(x− pk)φ

α12
k
||
L1

(6.137)

≤Cε2−β. (6.138)

Combining these estimates in (6.128), we have

||∂pkR1(Φ)||
L1 ≤ Cεα. (6.139)

The estimate for the R2 term follows similar to the above, where

||∂pkR2(Φ)||
L1 ≤ Cε2−β. (6.140)
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Combining these estimates, we have

||

[
π~p0

∂R(Φ)

∂pj

]
1

||
L1 ≤ Cε2−β. (6.141)

Then combining these two estimates with (6.125) and (6.124), we have achieved a

stronger condition then (6.122):

||[
∂~Φ1
∂pj

]1||L1 ≤ Cεβ. (6.142)

Next we establish (6.123). Using (3.13):

||[
∂~Φ1
∂pj

]2||L2 = ||

[
L̃−1
~p0

π~p0

∂R(Φ)

∂pj

]
2

||
L2 ≤ Cε−α||

[
π~p0

∂R(Φ)

∂pj

]
2

||
L2 . (6.143)

Similar to the previous term

||

[
π~p0

∂R(Φ)

∂pj

]
2

||
L2 ≤C

N∑
i=1

||
∂R1(Φ)

∂pj
||
L1||Ψ

†
i,1||L∞||Ψi,2||L2

+C
N∑
i=1

||
∂R2(Φ)

∂pj
||
L2||Ψ

†
i,2||L2 ||Ψi,2||L2 (6.144)

≤Cε2||
∂R1(Φ)

∂pj
||
L1 + ||

∂R2(Φ)

∂pj
||
L2 . (6.145)
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The using (6.139) and (6.140), we have (6.123):

||[
∂~Φ1
∂pj

]2||L2 ≤ Cεβ. (6.146)

Now we examine the
∂Φ

∂~p
terms:

||[π̃~p0
∂Φ

∂~p
~̇p]1||L1 =||

∂Φ1
∂~p

~̇p− [π~p0

∂Φ

∂~p
~̇p]1||L1 (6.147)

≤||
∂Φ1
∂~p

~̇p||
L1 + C

N∑
j=1

||
∂Φ1
∂~p

~̇p||
L1||Ψ

†
1,j ||L∞||Ψ1,j ||L1

+C
N∑
j=1

||
∂Φ2
∂~p

~̇p||
L2 ||Ψ

†
2,j ||L2||Ψ1,j ||L1 (6.148)

≤C(1 + ε2)||
∂Φ1
∂~p

~̇p||
L1 + C||

∂Φ2
∂~p

~̇p||
L2 (6.149)

≤C
N∑
j=1

(
||
∂Φ1
∂pj

ṗj ||L1 + ||
∂Φ2
∂pj

ṗj ||L2

)
(6.150)

≤C
N∑
j=1

(
||
∂Φ1
∂pj
||
L1 + ||

∂Φ2
∂pj
||
L2

)
||ṗj ||L∞ (6.151)

≤Cε2−β, (6.152)

using (3.47), (3.79), the form of the small eigenfunctions in (4.62), and the estimates

(4.63) on the adjoint eigenfunctions. From (3.79) and (4.62), we have in any Lp
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norm,

∂Φ2
∂pj

= −Ψ2,j +O(ε2−β). (6.153)

Using this, we have

[π̃~p0

∂Φ

∂~p
~̇p]2 =

∂Φ2
∂~p

~̇p− [π~p0

∂Φ

∂~p
~̇p]2 (6.154)

=−
N∑
j=1

Ψ2,j ṗj −
N∑
j=1

(
∂Φ1
∂~p

~̇p,Ψ
†
1,j

)
+

(
∂Φ2
∂~p

~̇p,Ψ
†
2,j

)
(

Ψ2,j ,Ψ
†
2,j

) Ψ2,j (6.155)

=−
N∑
j=1

Ψ2,j ṗj +

(
∂Φ1
∂~p

~̇p,Ψ
†
1,j

)
(

Ψ2,j ,Ψ
†
2,j

) Ψ2,j

+
N∑
j=1

(
Ψ2,j −O(ε2−β),Ψ

†
2,j

)
ṗj(

Ψ2,j ,Ψ
†
2,j

) Ψ2,j (6.156)

=−
N∑
j=1

(
∂Φ1
∂~p

~̇p,Ψ
†
1,j

)
(

Ψ2,j ,Ψ
†
2,j

) Ψ2,j +O(ε2−β)

(
1,Ψ
†
2,j

)
ṗj(

Ψ2,j ,Ψ
†
2,j

)Ψ2,j . (6.157)
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Then once again in the L2 norm

||[π̃~p
∂Φ

∂~p
~̇p]2||L2 ≤||

N∑
j=1

(
∂Φ1
∂~p

~̇p,Ψ
†
1,j

)
(

Ψ2,j ,Ψ
†
2,j

) Ψ2,j ||L2

+ε2−β ||

(
1,Ψ
†
2,j

)
ṗj(

Ψ2,j ,Ψ
†
2,j

)Ψ2,j ||L2 (6.158)

≤C
N∑
j=1

||
∂Φ1
∂~p

~̇p||
L1||Ψ

†
1,j ||L∞||Ψ2,j ||L2

+ε2−β ||Ψ†2,j ||L1 ||ṗj ||L∞||Ψ2,j ||L2 (6.159)

≤Cε4−β. (6.160)

If we combine these results, we establish this lemma �

To develop estimates on ||W ||X , we take the X-norm of (6.41) and use the

semigroup estimate (5.65) on the initial term. We obtain

||W (t)||X ≤Ce
−ε

α
2 µ(t−t0)

ln(ε−α)||W (t0)||X + C

∫ t

t0
e
−ε
α
2 µ(t−s)||W ||2Xds

+C

∫ t

t0
e
−ε

α
2 µ(t−s) [

ε2 +
(
T2(t) + ε2−β

)(
ε2−β + ||W ||X

)]
ds,

(6.161)

where T2 is defined in (6.40). We evaluate the previous line at t = t′, multiply by

e
εα
2 µ(t′−t0)

, and take the sup over t′ ∈ (t0, t). Recalling the definition of T1 in
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(6.39), we find

T1(t) ≤C

(
| ln(ε−α)|T1(t0) +

∫ t

t0
ε2−β(T2(t) + εβ)e

εα
2 µ(s−t0)

ds

)

+C

(∫ t

t0

(
T2(t) + ε2−β

)
T1(t) + T1(t)2e

εα
2 µ(t0−s)ds

)
(6.162)

≤C

(
| ln(ε−α)|T1(t0) + ε2−β−α

(
T2(t) + εβ

)
e
εα
2 µ(∆t)

)

+C
((
T2(t) + ε2−β

)
∆tT1(t) + ε−αT1(t)2

)
, (6.163)

where ∆t = t− t0. The following lemma allows us to bound T2 in terms of T1, ∆t,

and ε.

Lemma 6.4.

T2(t) ≤ C1(ε2−β∆t+ ε2 + ε−αT2
1 ). (6.164)

Proof: Applying the Mean Value Theorem, to the definition (6.40) of T2, we find

T2(t) ≤
∫ t0+∆t

t0
|~̇p(s)|ds. (6.165)

Recalling (6.114), the residual estimate from (3.96), the estimates on [∆L(W +
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~Φ1)]2 in (6.43) and (6.46), and the estimate on N2(~Φ1,W ) in (6.48), we have

T2(t) ≤C
∫ t0+∆t

t0
||R2(Φ)||

L2 + T1(t)2eε
αµ(t0−s)ds

+C

∫ t0+∆t

t0

(
T2(t) + ε2−β

)
(e
εα
2 µ(t0−s)T1(t) + ε2−β)ds (6.166)

≤C
(
ε2−β∆t+

(
T2(t) + ε2−β

)(
ε−αT1(t) + ε2−β∆t

)
+ ε−αT1(t)2

)
.

(6.167)

To control T2, we impose the following constraint on T1

T1(t) ≤ εα

2C
, (6.168)

where the constant C, from the right side of (6.167), is independent of ~p ∈ K and ε,

but may depend upon l0, the minimal pulse separation. We will show that the set

{
t
∣∣T1(t) ≤ εα

2C

}
, (6.169)

is a forward invariant set under the flow.

Using this constraint (6.168), the ε−αT1(t)T2(t) term may be subtracted from
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both sides, and multiplying by 2, we have

T2(t) ≤ C
(
ε2−β∆t+ ε2−β∆tT2(t) + εβT1(t) + ε4−2β∆t+ ε−αT1(t)2

)
.

(6.170)

Similarly, for ∆t satisfying the constraint

∆t ≤ εβ−2

2C
, (6.171)

we can remove the ε2−β∆tT2(t) term and eliminate T2 from the right side of (6.170).

Using Young’s inequality on the εβT1(t) term, that is

εβT1(t) = εβ+α/2ε−α/2T1(t) = εε−α/2T1(t) ≤ C
(
ε2 + ε−αT1(t)2

)
, (6.172)

we arrive at the statement of the lemma

T2(t) ≤ C1

(
ε2−β∆t+ ε2 + ε−αT1(t)2

)
� (6.173)

Applying Lemma 6.4 to (6.163), we obtain

T1(t) ≤C

(
| ln(ε−α)|T1(t0) + εβ(ε2−β∆t+ ε2 + ε−αT1(t)2 + εβ)e

εα
2 µ(∆t)

)

+C
((
ε−αT1(t)2 + ε2−β(1 + ∆t)

)
∆tT1(t) + ε−αT1(t)2

)
. (6.174)
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To control T1, we fix 0 < ω < 1 and impose an additional, more exigent, con-

straint on ∆t

∆t ≤ 2

µ
ε−α ln

(
ε−ωβ

)
, (6.175)

so that, in particular

e
εα
2 µ(∆t) ≤ ε−ωβ, (6.176)

and from (6.168),

∆tT1 = O (| ln ε|) . (6.177)

Imposing this condition, and keeping only leading order terms in (6.174) we obtain

T1(t) ≤ C| ln ε|
(
T1(t0) + εβ + ε−αT1(t)2

)
. (6.178)

The corresponding quadratic equation in r,

g(r) = C| ln ε|
(
T1(t0) + εβ

)
− r + C| ln ε|ε−αr2, (6.179)

has two positive roots 0 < r1 < r2 if ε is sufficiently small, if

β − α > 0, (6.180)
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and if

ε−αT1(t0)| ln ε|2 (6.181)

is sufficiently small. In light of the assumption that 1 − α/2 − β = 0 from (1.20),

then (6.180) implies

α < 2/3. (6.182)

Figure 6.1: This illustrates the quadratic function g(r), where either the remainder
starts smaller than r1 and stays small or it begins larger the r2. The middle interval
(r1, r2) is forbidden.

The constraint (6.181) becomes

T1(0) ≤
C0ε

α

| ln(ε)|2
, (6.183)
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for C0 sufficiently small, but independent of ε and ~p ∈ K. Under these conditions,

the smaller root at leading order is

r1 = C| ln ε|
(
T1(t0) + εβ

)
, (6.184)

and the region (r1, r2) is excluded for T1(t). In particular if

T1(t0) ≤ r1, (6.185)

then

T1(t) ≤ r1, (6.186)

for ∆t satisfying (6.175). In particular

T1(t) ≤ C| ln ε|
(
T1(t0) + εβ

)
, (6.187)

which in terms of W , for ∆t exactly satisfying (6.175), becomes

||W (t)||X ≤ Cεωβ
(
||W (t0)||X + εβ

)
, (6.188)

for any 0 < ω < 1 and any t ∈ (t0, t0 + ∆t), where the | ln ε| term is absorbed in the

εωβ term by taking ω slightly smaller.

154



6.3 The renormalization group iteration

We can now iterate the estimates above to an equilibrium, much as in the application

of renormalization group methods to statistical mechanics. We break our evolution

equation into a series of initial value problems. We fix ω < 1 and define the renor-

malization times as tn = tn−1 + ∆t, where ∆t is given in (6.175). On the disjoint

intervals In = [tn−1, tn], we have initial data W (tn) ∈ X~pn , with T1,n and T2,n

corresponding to (6.39) and (6.40). The renormalization group map G takes the

initial data Wn−1 = W (tn−1) for the initial value problem on In−1 and pulse posi-

tions ~pn−1 = ~p(tn−1) and returns the initial data Wn = W (tn) and pulse positions

~pn = ~p(tn) for the next initial value problem:

G

 Wn−1

~p(tn−1)

 =

 Wn

~p(tn)

 . (6.189)

This map includes both the evolution under the flow, and a reprojection under Propo-

sition 6.1. The initial data and the new base point ~pn are obtained from W (t−n ),

the right end point of the evolution of W over In−1. This process is illustrated in

Figure 1.1.

To bound the renormalization group map, we must control the secular jump under
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the projection. From Lemma 6.1,

pn = p(t−n ) +H
(
W (t−n )

)
. (6.190)

Since W (t−n ) ∈ Xpn−1, we apply the estimate (6.3), which becomes

|~pn − ~p(t−n )| ≤M1||W (t−n )||XT2(∆t) (6.191)

≤M1||W (t−n )||X
(
εβ + ||W (t−n )||X

)
||W (t−n )||X, (6.192)

where we applied estimates on T2 from (6.164) and ∆t from (6.175). We decompose

the solution at time tn as

~U(tn) = Φ
~p(t−n )

+W (t−n ) = Φ~p(tn) +W (tn). (6.193)

We can bound the jump of W at each renormalization as

||W (tn)−W (t−n )||X =||Φ
~p(t−n )

− Φ~p(tn)||X (6.194)

≤C|~p(t−n )− ~p(tn)| (6.195)

≤M1

(
εβ + ε−αT2

1,n−1

)
||W (t−n )||X (6.196)

≤M1

(
εβ + ||W (t−n )||X

)
||W (t−n )||X, (6.197)
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since Φ is X-Lipschitz in ~p. Since ε−αT2
1 � 1, the renormalization step is asymp-

totically negligible and we recover the estimate

|Wn||X ≤Mεωβ
(
||Wn−1||X + εβ

)
. (6.198)

To control ||W ||X on the long, renormalization group time scale, we may introduce

ηn+1 =Mεωβ
(
ηn + εβ

)
(6.199)

η0 =||W0||X, (6.200)

so that

||Wn||X ≤ ηn. (6.201)

It is easy to verify that

ηn →
M

1− εωβM
ε(1+ω)β, (6.202)

as n→∞ for η0 small enough. The overall evolution for W may be written as

||W ||X ≤M

(
e
−ε
α
2 µt||W0||X + ε(1+ω)β

)
, (6.203)

for any 0 < ω < 1.
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6.4 Long-time asymptotics

After the residual has relaxed into its O
(
ε(1+ω)β

)
equilibrium layer about the

manifold Φ, the pulse dynamics in (6.114) reduce to

ṗj = −

(
R2(Φ) + [∆L(W + ~Φ1)]2 +N2(~Φ1,W ), φ′j

)
L2

q
−2α21/(α22−1)
j ||φ′0||

2
L2

+O
(
ε2
)
. (6.204)

Using (6.175), (6.183), and (6.187) to estimate (6.164), we have

T2(t) ≤C1

(
ε2−β∆t+ ε2 + ε−αT1(t)2

)
(6.205)

≤C
(
εβ + ε2 + ε−α

(
| ln ε|

(
T1(t0) + εβ

))2
)

(6.206)

≤Cεβ, (6.207)

if

T1(t0) ≤ ε
1
2+α4

| ln(ε)|
. (6.208)
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The above it is more exigent then (6.183), so it is the constraint on ||W0||X in

Theorem 1.1. We use (6.43), (6.46), and (6.207) to bound the following:

||[∆LW̃ ]2||L2 ≤C
(
ε2−β + T2(t)

)(
||W ||X + ε2−β

)
(6.209)

≤C
(
ε2 + εβ ||W ||X

)
(6.210)

≤Cε2. (6.211)

Also for the nonlinearity, using (6.48) we have

||N2(W̃ )||
L2 ≤ C

(
||W ||2X + ε4−2β

)
≤ Cε4−2β. (6.212)

So the evolution equation reduces (6.204) to

ṗj = −

(
R2(Φ), φ′j

)
L2

q
−2α21/(α22−1)
j ||φ′0||

2
L2

+O
(
ε2
)
. (6.213)
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Taylor expanding, we can reduce
(
R2(Φ), φ′j

)
L2 to

(
R2(Φ), φ′j

)
L2 =

 N∑
i=1

(
Φ
α21
1 − qα21

i

)
φ
α22
i , φ′j


L2

(6.214)

=

((
Φ
α21
1

)′
(pj)(x− pj)φ

α22
j , φ′j

)
L2

+O
(
ε2
)

(6.215)

=α21Φ
α21−1
1 (pj)Φ′1(pj)

(
(x− pj)φ

α22
j , φ′j

)
L2 +O

(
ε2
)
(6.216)

=α21q
α21−1
j Φ′1(pj)

(
(x− pj)φ

α22
j , φ′j

)
L2 +O

(
ε2
)
. (6.217)

Continuing, we integrate by parts on the above inner product where

(
R2(Φ), φ′j

)
L2 =α21q

α21−1
j Φ′1(pj)

(
(x− pj)φ

α22
j , φ′j

)
L2 +O

(
ε2
)

(6.218)

=− α21q
α21−1
j Φ′1(pj)

1,
φ
α22+1
j

α22 + 1


L2

+O
(
ε2
)

(6.219)

=−
α21

α22 + 1
q
α21−1
j Φ′1(pj)φ

α22+1
j +O

(
ε2
)
. (6.220)
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Substituting the definition φj(x) =
φ0(x− pj)

q
α21/(α22−1)
j

from (3.4), the above expands to

(
R2(Φ), φ′j

)
L2 =

−α21
α22 + 1

q
α21−1
j Φ′1(pj)φ

α22+1
j +O

(
ε2
)

(6.221)

=−
Φ′1(pj)α21

α22 + 1

q
α21−1
j

q
α21(α22+1)/(α22−1)
j

φ
α22+1
0 +O

(
ε2
)

(6.222)

=−
Φ′1(pj)α21

α22 + 1
q
α21−1−α21(α22+1)

α22−1
j ||φ0||

α22+1

Lα22+1 +O
(
ε2
)
.

(6.223)

Now returning to (6.213), and substituting the above, we have

ṗj =−

(
R2(Φ), φ′j

)
L2

q
−2α21/(α22−1)
j ||φ′0||

2
L2

+O
(
ε2
)

(6.224)

=
Φ′1(pj)α21

α22 + 1

||φ0||
α22+1

Lα22+1

||φ′0||
2
L2

q
α21−1−α21(α22+1)

α22−1 +
2α21
α22−1

j +O
(
ε2
)

(6.225)

=
α21

α22 + 1

||φ0||
α22+1

Lα22+1

||φ′0||
2
L2

1

qj
Φ′1(pj) +O

(
ε2
)
, (6.226)
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where

α21 − 1−
α21(α22 + 1)

α22 − 1
+ 2α21/(α22 − 1) =α21 − 1 +

−α21α22 − α21 + 2α21
α22 − 1

(6.227)

=α21 − 1 +
−α21(α22 − 1)

α22 − 1
(6.228)

=− 1. (6.229)

Then we can express the dynamics of the pulse position as

ṗj =
α21

α22 + 1

||φ0||
α22+1

Lα22+1

||φ′0||
2
L2

1

qj
Φ′1(pj) +O

(
ε2
)
. (6.230)

We know from (3.44), that Φ′1(pj) is O(ε2−β) in L∞, so the above will generate

leading order dynamics. We want to determine a representation for Φ′1(pj). We

substitute the definition of φj(x) from (3.4) into the definition of Φ1 in (3.2), where

Φ1 =ε−βL−e11

 N∑
j=1

q
α11
j φ

α12
j (x)

 (6.231)

=ε−βL−e11

 N∑
j=1

q
α11−α21α12/(α22−1)
j φ

α12
0 (x− pj)

 (6.232)
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Differentiating the above, we have

Φ′1 = ε−βα12L
−e
11

 N∑
j=1

qθj φ
α12−1
0 (x− pj)φ′0(x− pj)

 , (6.233)

for θ defined in (2.67). Then substituting the above, we expand term Φ′1(pj) in

(6.230) as

Φ′1(pj) =
(

Φ′1(x), δpj

)
(6.234)

=ε−βα12

 N∑
k=1

qθkφ
α12−1
0 φ′0, L

−e
11 δpj

 (6.235)

=ε−βα12

 N∑
k=1

qθkφ
α12−1
0 φ′0, G0(x− pj)

 (6.236)

=α12

 N∑
k=1

qθkφ
α12−1
0 φ′0,

√
π

2µ
e
−ε1+α/2√µ|x−pj |

 , (6.237)

where G0(x) =

√
π

2µ
ε1−α/2e−ε

1+α/2√µ|x|, the Green’s function defined in (2.49).

We also used the fact that 1−α/2−β = 0. Then continuing the above and integrating
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by parts, we have

Φ′1(pj) =α12

 N∑
k=1

qθkφ
α12−1
0 φ′0,

√
π

2µ
e
−ε1+α/2√µ|x−pj |

 (6.238)

=

√
π

2µ

 N∑
k=1

qθk

(
φ
α12
0 (x− pk)

)′
, e
−ε1+α/2√µ|x−pj |

 (6.239)

=

√
π

2
ε1+α/2

N∑
k=1

qθk

(
φ
α12
0 (x− pk), sign(x− pj)e

−ε1+α/2√µ|x−pj |
)

(6.240)

=

√
π

2
ε2−β

N∑
k=1

qθk

(
φ
α12
0 (x− pk), sign(pk − pj)e

−ε1+α/2√µ|pk−pj |
)

+O
(
ε4−2β

)
(6.241)

=

√
π

2
ε2−βφα12

0

N∑
k=1

qθk

(
sign(pk − pj)e

−ε1+α/2√µ|pk−pj |
)

+O
(
ε4−2β

)
. (6.242)

Combining this with (6.230) in vector form yields the following representation of the

pulse dynamics:

~̇p = ε2−βQθA(~p)~q−1 +O
(
ε2
)

), (6.243)
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where Q is the diagonal matrix of the amplitudes ~q and the antisymmetric matrix

A(~p) is defined componentwise as

Akj =



√
π

2

α21
α22+1

||φ0||
α22+1

Lα22+1

||φ′0||
2
L2

φ
α12
0 e

−ε1+α/2√µ|pk−pj | k > j

0 k = j

−
√
π

2

α21
α22+1

||φ0||
α22+1

Lα22+1

||φ′0||
2
L2

φ
α12
0 e

−ε1+α/2√µ|pk−pj | k < j


.

(6.244)

Then the pulse position dynamics are a function of the amplitudes ~q, where the pulse

amplitudes are a function of the pulse positions ~p.
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Chapter 7

Future Work

In the future, we would like to investigate a more general system and prove sim-

ilar results. The following list is three natural extensions to the research of this

dissertation.

• Extend the adiabatic stability results for very weak damping, that is for α ≥ 2
3.

• Extend the adiabatic stability results for a more general nonlinearity and in-

clude multiple activator components.

• Extend to two space dimensions to investigate the existence of radial spot

solutions and study the interactions of N -spot patterns.

Extending to the case of very weak damping, α ≥ 2
3, requires handling the spec-

trum differently. Our previous methods fail because of a loss of normal hyperbolicity:
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the stable eigenspace becomes too close to the center eigenspace. A methodology

to handle this differently would be to split the essential spectrum into two parts:

(−∞,−ρ) and [−ρ,−εαµ] for ρ > 0, where the smaller interval is called the nose

of the essential spectrum. One would need to introduce two different spectral pro-

jections, developed as appropriate contour-deformation limits of the resolvent. The

semigroup estimates would also be established as a limit in which the contour of

integration relaxes onto the nose the essential spectrum. A key difficulty in this

analysis would be projecting the essential spectrum off of the nose and assuring that

the spectral projection faithfully captures any embedded eigenvalues, uniformly as

ε→ 0+.

The second extension would examine a more general nonlinearity. With a general

nonlinearity, the problem could encompass many equations including the regularized

Gierer-Meinhardt equation and the Gray-Scott equation. The goal would be to

unify previous research and new results under one inclusive work. This would offer

a general system that could be used for many specific reaction-diffusion equations.

One could also also pursue the problem in the case of multiple activator components

to achieve similar results.

The third extension would be to prove the existence of radial spot solutions for

a general equation and study their stability properties. One could also examine the

interaction of multiple spot patterns. Here U and V are functions of two space
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dimensions. Previous results have formally been extended to the two-dimensional

spatial spot problems, including [8], [16], [17], [27], [33], [35], [36], and [37]. Many of

these works include the Gierer-Meinhardt or the Gray-Scott model. In the future,

we hope to rigorously extend similar results to the two-dimensional setting.
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