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ABSTRACT

NONLINEAR ADIABATIC STABILITY FOR A GENERALIZED
REACTION-DIFFUSION SYSTEM

By

Thomas James Bellsky

We examine a singularly perturbed, coupled, weakly damped, reaction-diffusion sys-
tem in one space dimension. This system is examined in the semi-strong pulse
interaction regime. We rigorously construct a slow manifold of N-pulse solutions.
We identify neutral modes and uncouple them. We solve this reduced nonlinear
N-dimensional system with a fixed point method, which generates an equilibrium
solution for the reduced system. We turn the coupling back on and continue the
slow manifold back to the original system. After analyzing the eigenvalue problem
and using renormalization group methods, we show the approximate invariant mani-
fold for the full system is adiabatically stable. We also derive an explicit formula for
the pulse dynamics. This work is the first rigorous analysis of the weakly damped

regime, in which the essential spectrum approaches the origin.
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Chapter 1

Introduction

The study of self-organizing pattern formation was first considered by Turing [31].
Systems of recent interest are the Gierer-Meinhardt model [18] and the Gray-Scott
model [22]. These reaction-diffusion systems consist of activator components which
drive pattern formation and inhibitor components which curtail the reaction. They

model a variety of chemical reactions, including morphogenesis.

We study two classes of systems, the first encompassing a class of singularly

perturbed reaction-diffusion equations

Uy = ¢ 2Upp — ¥ul + ¢ Pudiiyai2, (1.1a)
Vi = Ve — V400211022, (1.1b)
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with oy, ag; > 0and >0, >0, 8 >0, a19 > 2 and a9y > 2. We study this
system for 0 < € < 1, which introduces the novelty of an asymptotically small linear

damping for the first component U.

N I |

Pj_1 Pj Pji1

Figure 1.1: A typical quasi-steady solution structure for the coupled system (1.1)
and (1.2). The V component is localized at the pulse positions pj- The U component
has an approximately constant value, qj, on the narrow pulse intervals, and is slowly
varying in between the pulses. For interpretation of the references to color in this and
all other figures, the reader is referred to the electronic version of this dissertation.

The second class of systems we consider is referred to as an activator-inhibitor
system, where the activator component, V', drives the reaction while the inhibitor
component, U, curtails production of V. Many references in the literature, including
[18], have modeled these systems with an equation of the form (1.1), with a9y <
0. However, the singularity in the nonlinear term at U = 0 suggests unlimited

production of the activator when the inhibitor is absent, which has no correspondence



to chemical reality. To be consistent with the chemical literature, see for example

Chapter 26 of [1], we truncate the singularity and rewrite (1.1) as

Uy = ¢ 2Upp — e¥ul + ¢ Pudiiyai2, (1.2a)

Vi = Vig — V4 w(U)221V022, (1.2b)

where the function s is defined as

s s§>20
K(s) = , (1.3)
0 0<s<d

where £ is smooth for s € (§,20). For this modified system, the production rate of

o
the activator V' is bounded by ¥@—2212‘ For ¢ sufficiently small, we will show that the
salient leading order dynamics of (1.1) are unaffected by the modification, while the
artificial singularity at U = 0 has been removed. Combining both systems (and also

the system that allows o117 < 0), we introduce the system

Up = ¢ 2Upz — Xul + e Pr(U)M11v12, (1.4a)

Vi = Vg —V +T(0)*21V22 (1.4b)



where I' is defined as

L) = B : (1.5)

We write (1.4) in vector form U = (U, V)T:

U, = F(0). (1.6)

For the system (1.4), we investigate the existence and the dynamics of localized
N-pulse solutions in the second component V' coupled via the long-range interac-
tion of the delocalized component U. Within the framework of this singularly per-
turbed fast-slow system, this corresponds to the semi-strong pulse interaction regime,
which is intermediate between the weak interaction regime and the strong interaction
regime. In the weak interaction regime, both components U and V have sufficiently
localized pulse structure, so that the mutual interaction of localized structures in
each component is exponentially weak. Within the weak regime, there is no leading
order influence of pulse location on the shape or the stability of the pulses. The weak
interaction regime has been well-studied in reaction-diffusion systems, see [14], [15],
[29], and [30]. In the context of (1.4), the strong interaction regime corresponds to
the pulses of the V' component being sufficiently close together that their point-wise
interaction competes with other effects, leading to possibly self-replication, collision,

or annihilation. There has been little theoretical investigation of the strong interac-
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tion regime, which is typically investigated using numerical techniques.

The semi-strong pulse interaction regime is an intermediate regime between the
weak interaction regime and the strong interaction regime. In a two-component
semi-strong regime, one component is strongly localized and the other component is
delocalized. The semi-strong regime typically arises in systems that are singularly

perturbed, as a result of a dichotomy of scales in the diffusivity coefficients.

In the semi-strong interaction regime, the delocalized component acts as a mean-
field which drives the motion and amplitudes of the localized pulses. In turn, the
localized pulses couple to the delocalized components, in effect generating their own
mean-field. This coupling between the localized and delocalized components has to be
self-consistent. A key ingredient of this thesis is the construction of a self-consistent
approximate invariant manifold for the system (1.4). Moreover, we rigorously reduce
the full partial differential equation system (1.4) to this approximate invariant man-
ifold, deriving leading order ordinary differential equations for the localized pulse

dynamics.

The semi-strong regime has been studied both formally ([9], [10], [11], and [26])
and rigorously ([12] and [32]). These previous works have studied various systems
including the Gierer-Meinhardt model [18] and the Gray-Scott model [22]. An N-
pulse semi-strong interaction regime for the generalized Gierer-Meinhardt model is

examined in [26]. Conditions for stability are established and ordinary differential
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equations for the dynamics of quasi-equilibrium pulse solutions are determined. In
[11], a general system that includes both the Gierer-Meinhardt and the Gray-Scott
model is studied. The semi-strong two-pulse interaction is investigated and formal
results for the asymptotic stability of their solution are determined, along with or-

dinary differential equations governing the dynamics of pulse positions.

Our work extends [12], where a 2-pulse semi-strong interaction regime is rigor-
ously studied for the regularized Gierer-Meinhardt model, which corresponds to our

system (1.4) with a =0, 8 =1, a;1 =0, g1 = —1, and )9 = a9y = 2:

Up = € 2Upy — wU + e 1y2 (1.7a)
2

Vi = Vep =V )
t TT +K(U>

(1.7b)

The work in [12] rigorously determines an equation for pulse dynamics and es-
tablishes an asymptotic stability result for the reduced flow. In [32], the semi-strong
regime is investigated for a 2, 3, or 4-pulse for a three-component coupled system with
two inhibitors components and one activator component. Both of these two previous
works use the renormalization group methodology to establish adiabatic stability of
the quasi-invariant N-pulse manifold. This renormalization group methodology was
developed in [20], and extended in [29]. The techniques in [29] have been applied

to [23], [28], and [32] (for further details on renormalization group methodology see
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[4], [5], 6], [7], [19], and [21]). In the context of [12], the renormalization group
method is a means to obtain appropriate semigroup estimates on families of weakly

time dependent linear operators.

The asymptotically weak linear damping term ¢®*uU present in (1.4) is a central
and novel part of this thesis. For an appropriate linearization of the system, the
asymptotic weakness of the linear damping term is manifested in the essential spec-
trum being asymptotically close to the origin. This thesis derives sufficient conditions
under which the essential spectrum does not impinge upon the reduction of the full
dynamics to a finite dimensional system. In particular, for the case /2 + = 1,

subject to the bound on the asymptotic decay rate,

0<a<2/3 (1.8)

we derive semigroup estimates which amount to a preservation of normal hyperbolic-
ity despite the impinging essential spectrum. For larger «, our method breaks down
as the flow on the manifold becomes comparable to the asymptotic decay rates; in
other words, we lose normal hyperbolicity in the nonlinear semigroup. We believe
these results are sharp, that is, a reduction to a > 2/3 would require an extension
of the approximate invariant manifold to include parts of the essential spectrum,
which would be manifested as self-like structures (small in L%, large in Ll) in the

localized component V. However, we do not conduct analysis of the o« > 2/3 case in
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this thesis.

This work contains the first rigorous construction of an N-pulse adiabatic mani-
fold in the semi-strong regime. We identify the neutral modes of the system (1.4) and
identify sufficient conditions under which they may be uncoupled at leading order
to obtain a reduced formulation of the system. More specifically, we introduce the
pulse positions p(t) € /CZO c RN and the pulse amplitudes ¢(t) € RV , which evolve

with respect to time. The set X; 0 is defined as

’Clo - {ﬁ\ P = pjl > lplnel, Ip >0, Vi#j, 1<i,j < N}7 (1.9)

with [ sufficiently large so that the localized pulse overlap is O(¢") for r > 2. The
N-pulse adiabatic solution is a function of the pulse positions p € RV , where the
j-th localized pulse in the V' component is centered at Pj for j =1,---,N. The
pulse positions are well-ordered, so that p; < Dj for i« < j. The amplitude of the
delocalized component U at each pulse position Pj is denoted by qj, 8O U (pj) = 4qj
for j=1,--- N (see Figure 1.1).

For fixed pulse positions p, we rigorously determine a self-consistent mean field
for these N-pulse amplitudes ¢ = ¢(p) by a fixed point method. Using the implicit
function theorem, we are able to generate the amplitudes ¢ as local smooth functions
of pand € > 0. For each p' € ICZO there exists at least one branch ¢(p), but often

more then one. Also, there exists both a uniform lower and upper bound for at



least one branch ¢{(p). For any branch with this uniform bound above and below, we
can ignore the 0 term in (1.3) (thus contained in the system (1.4)) so long as ¢ is
chosen smaller then the uniform lower bound. We also formulate a non-bifurcation
condition, that when met, will guarantee the local persistence of a particular branch
q(p). Associated to each branch ¢(p), we construct an adiabatic N-pulse solution to

(1.4) of the form

(I)ﬁ<t) ($) = | 5 (1.10)

where ®1 corresponds to the U component and ®9 corresponds to the V' component
(see Section 2.1 and Section 2.2 for the explicit construction of (I)ﬁ(t))' Under appro-
priate restrictions which we detail below, the N-pulse adiabatic solution CIDﬁ serves

as an adiabatic manifold with boundary for the system, generating a slow flow.

Linearizing the full system (1.4) about the adiabatic N-pulse solution generates
the linearized operator Lﬁ(t) = L (p(t)). The heart of the technical elements of this
thesis is a detailed analysis of the linearized operator and the associated semigroup. A
key step is the identification of a reduced linearization f’ﬁ(t) = L (p(t)) . In particular,
we show that there exists a v > 0 independent of € such that o (i) N{Re(\) > —v}
can be decomposed into three parts. The first part is the essential spectrum, inde-
pendent of pulse position p. The essential spectrum consists of the set (—v, —e%pul,

which lies within the left-half complex plane. Recall, the asymptotically small damp-
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ing term results in an essential spectrum which is asymptotically close to the origin.
The second part of the spectrum consists of N-point spectra, o(), which corresponds
to the translational modes of the localized pulses and whose eigenmodes lie in the
tangent plane of the manifold at leading order. By an appropriate restriction on [,
which controls the localized pulse separation, we can restrict these eigenvalues to

reside within O(e") of the origin, for any r > 2 that we desire.

| o(Lz)

—V —€ [ oo(P)

| Jfr(ﬁ]

Figure 1.2: This figure illustrates the spectral decomposition of the reduced lineariza-
tion for N = 2.

We show that the remainder of the spectrum, which we call the finite rank spec-
trum, o fro can be characterized as solutions of N algebraic equations which we
associate to the finite rank potentials in the reduced linearization. The finite rank
spectrum evolves at leading order as the pulse positions evolve, and a key issue of this
work is reducing the location of the spectral set o fr to an explicit set of algebraic
equations. The following figure illustrates the evolution of the spectral set o fr for a

2-pulse solution to the regularized Gierer-Meinhardt system in [12] over a wide range
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P
of values of the localized two-pulse positions p =

P2

—1 —0.75 —0.5

|
<
o
T

Figure 1.3: This is an illustration of the evolution of the finite rank spectrum for
the 2-pulse regularized Gierer-Meinhardt system, for a variety of pulse positions.
There are four finite rank eigenvalues. As the pulse separation approaches +oo, the
finite rank eigenvalues reside at the left-most point of the loops, corresponding to the
weak regime. As the pulse separation decreases, the finite rank eigenvalues separate,
one traversing the loop, and the other approaching the real axis, colliding with its
complex conjugate, and splitting into a real pair with one approaching the origin and
the other retreating towards the essential spectrum.

A novel feature of our analysis is the identification of a bifurcation parameter

0 = a1 —ajgagy/(ag — 1), (1.11)
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which balances the exponents of the nonlinear terms. We demonstrate the existence
of the N-pulse manifold for § # 1, and numerically we observe a unique nontrivial
N-pulse solution for # < 1, while for § > 1, we typically find multiple (up to oN )
N-pulse solutions. Enumerating all of the branches, for each branch ¢ - q i (p) of

the N-pulse solution we define the adiabatic manifold of N-pulse solutions as
m — {cb (-;ﬁ,q"i(ﬁ)),ﬁe IC}. (1.12)
where the set of admissible pulse positions K C R is defined as
K =K' z/clomciy, (1.13)
for K; 0 previously defined and ICZ'V defined as

IC% = {ﬁ‘ max Re (O’fr <~ﬁ>> < —y}. (1.14)

The set ng imposes an explicit stability condition, which localizes the finite rank
spectrum in the left-half complex plane. The stability condition not only rules out
potential Hopf type bifurcation, in which N-pulses become unstable to oscillatory
modes, but also saddle-node type bifurcation, in which a single N-pulse separates

into two (or more) distinct N-pulse solutions. The stability condition is defined in

12



terms of eigenvalues of an explicit N x N matrix, in general the exact nature of
the set ng depends sensitively upon the specific system studied. When p’ € IC,Z'/ the
finite rank spectrum will never approach the origin, so there can be no splitting of an
amplitude solution ¢ i, so as a consequence, the non-bifurcation condition previously

mentioned is enforced.

In order to discuss the possible pulse configurations contained in the set IC, we

also introduce the set
Kueak = {FER™ e 172 < piy — i} (1.15)

For our system (1.4), the set /., corresponds to the weak interaction regime,
described earlier. There exists a unique non-degenerate N-pulse solution in the
weak regime which consists of N well-separated copies of the 1-pulse. Since both
localized and delocalized components are well-separated, the point spectrum in the
weak regime consists of N exponentially close copies of the point spectrum of the 1-
pulse. If there exists v > 0 such that the reduced linearization Zl about this 1-pulse

satisfies

o (Z1> \ {0} C {A\|Re(N) < —v}, (1.16)

then K. € K. A second regime is the tight regime in which all the localized

pulses, while still well-separated, are crowded into a region over which the delocalized
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component is asymptotically constant. The set Ky, ght is defined as

Ktight = {56 R ‘ lplnel <py —p; < 6_1_0‘/2}. (1.17)

There can be multiple N-pulse branches in this regime, however all the branches

are asymptotically close, that is

() — 37 ()] < 1 (1.18)

for all branches ¢ i, q J. Indeed, not only are the branches close, but the spectrum
of the associated linearized operator is insensitive to the localized pulse positions
JRS Ktighzﬁ so that either ,Ctight - lC,i/ for all branches of the tight regime, or
Ky ght <ICZV> ¢ for all branches ¢. We refer to the relative complement of the weak
and tight regimes within &; 0 8 the dynamic regime K ;. For pulse positions p' € Ky,

the spectrum changes by O(1) amounts as p' varies across K.

Assumption 1.1. We assume there exists a branch of N-pulse amplitude solutions
cfi = cfi(ﬁ) and a dy > 0, independent of €, and a nonempty open set IC% C ICi,
which consists of pulse configurations, p, which are a minimum distance dgy from the

boundary oK' of Kct.
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Specifically, we define IC6 such that
Kk = {ﬁe /c@|d(ﬁ,am) Zdo}, (1.19)

and introduce the adiabatic sub-manifold 93?6 to be the graph of <I>ﬁ above lCé. When

1 is fixed, we no longer notate it.

e 1=al2 < pg—py

K

‘weak

!:)2 o !)1 <& E_l_[-,}__j'fg

/ .
é// Strong Regime

"

Figure 1.4: This figure illustrates, for N = 2 and p; < p9, the minimum pulse

separation [|In €| and also the pulse classes Ktightv Kg and K00k

To simplify our analysis, we impose the following restriction.

15



Simplification 1.1. We assume that o > 0 and 8 > 0 satisfy
l—a/2-p8=0. (1.20)

This simplification assures that the delocalized component U (and ®1) is O(1)
in L°°, which simplifies analysis. Coupled with (1.8), this limits 8 to 2/3 < 8 < 1.

The main result of this dissertation is an adiabatic stability result, which states
that if the initial data to the system (1.4) begins sufficiently close to the adiabatic
manifold 9, then the full solution will decay to an asymptotically small layer of
the adiabatic manifold 9. There is also a time Ty, which is at least O (e_(1+w)>,
for any 0 < w < 1, and perhaps +o0, for which the full solution will remain inside
this neighborhood of 9, before p(t) hits 0K, the boundary K.

Once the full solution U has relaxed to the asymptotically small equilibrium
layer of the adiabatic manifold 9, we reduce the leading order pulse dynamics to
an ordinary differential equation on the pulse positions p. At leading order, the
evolution of the pulse positions with respect to time depends on the pulse positions
p and the amplitude branch ¢ = ¢(p) of the delocalized component at each pulse
position.

Assumption 1.1 affords the existence of a branch of adiabatic N-pulse solutions
determined by ¢ = ¢(p) over the domain K = K; 0.V for some [, v > 0 given. The
assumption also provides for a dy > 0 such that Ky C K as defined in (1.19) is
non-empty.

16



We introduce the spectral subset associated to the temporally decaying solutions
of the semigroup generated by Eﬁ ;

X5 = {0110l < oo, w5l =0}, (1.21)

where T is the spectral projection associated to the N-point spectrum o) near zero
and the X-norm is defined in (1.40).

More specifically, we state the adiabatic stability result and a leading order pulse
dynamics result in the following theorem.
Theorem 1.1. Adiabatic stability and leading order pulse dynamics
Let € > 0 be sufficiently small, while o and 3 satisfy Simplification 1.1 with o < 2/3.
Fiz w € (0,1), then the adiabatic manifold of N-pulse solutions (1.12) afforded by
Assumption 1.1 is adiabatically stable up to O <6(1+w)(1_o‘/2)> . That is, there exist
M, My, Ty, > 0 such that for all initial data (70 of (1.4) which lie within Mpe®|In 6\_2
of My in the X-norm (see (1.40)), the corresponding solutions of the system (1.4)

can be uniquely decomposed as

Uz, t) = ) (@) + Wz, 1), (1.22)

where (I)ﬁ(t) 15 an adiabatic N-pulse solution and the remainder W € Xﬁ satisfies
— St 1+4w) (1—a/2
Wy <M ( Tl + (T Ime/ >) , (1:23)

forall0 <t < Tbe_l_w. Moreover, during this time interval the pulse dynamics

17



reduce to

op

=Tl api Tt o (Fdwolix Iwelk). (124

where Q is the diagonal matrixz of pulse amplitudes ¢ = ¢(p), the exponent is applied
T e T ey | ~\T : , - :
componentwise in q =\ ey , and the antisymmetric matriz A(p) is

defined in (6.244).

Elements of the Proof:

A key construction of this work is the reduced linearization. The construction of
the reduced linearization allows us to characterize the point spectrum as it evolves
under the pulse evolution. The exact linearization of F' about ®(p) for p’ € K takes
the form

L6, + e Py By
L.=| H = 2 (1.25)

p
Va1 Lo
here LS, = ¢ 202 + %y and Loy = 02 — 1 372192271 Al y
where L7, = € r + € 1 an 22 = Oy — 1+ ago®y 9 . so V11
and V19 are potentials described in detail in Chapter 4. The point spectrum for
this linearization is not easily characterized. To understand the exact linearization
and the reduced linearization, it is first useful and informative to examine their

reductions. The spectra of the diagonal system

L¢ 0
1 , (1.26)
0 Loy

18



is easy to characterize. The operator Lfl produces only essential spectra, while
o (L99) consists of N positive ground eigenvalues, N eigenvalues clustered near zero,
and the remainder of the spectrum strictly bounded on the negative real axis. This
linearization generates an unstable flow and coupling is needed to generate stability.

The spectrum is unchanged if we consider the lower-triangular system

LS 0
1 , (1.27)
Vor Log
for any potential V9. However, systems of the form
. LS —|—€_6J11 6_5J12
= , (1.28)

Vo1 Loo

where J11 and Jy9 are finite rank operators, are sufficiently simple that their spec-
trum can be characterized, but are flexible enough to provide asymptotically accurate
approximations of the full system (1.25). Indeed, since (Lfl) s asymptotically
small away from long-wavelength functions, we show that for an appropriate choice
of finite-rank operator Jy; (i = 1,2) the difference (L%)_l e P (J1; — Vy4) is
small as a map on the weighted-windowed space Liﬁ discussed below. This differ-

ence being small allows us to replace L with L without impacting the leading order

dynamics.
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The salient element of the reduction of L to L is to uniformly control the long-

1

wavelength elements. This is achieved through the weighted L1 7 norm, which

N
through a partition of unity {X j} centered about each pulse position, introduces

locally weighted norms that control long-wavelength terms, uniformly for p' € K, in

each X window about the pulse at pj- Specifically, we define the L% i norm as

9.

N
Il =3

H(l—i-’l’—pj’) XijLl. (1.29)
P j:]_

Xj—1 Xj Xj+1

A U A U WA

Pj 1 Si—1 Py 54 Pj+1

Figure 1.5: This illustrates the second component pulse paired with the partition of
unity X at three pulse locations.

Recalling the decomposition U = q)p(t) + W, we may rewrite the evolution equa-
tion (1.4) as an evolution for the remainder W and pulse positions p'= p(t) (analyzed

in Chapter 6),
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Wt+aa_i;%_R@)JriﬁOWJFALWJFN(W), (1.30)

where the difference of the exact linearization and the reduced linearization is

denoted A = L — L and where W € Xﬁ? for the spectral subset Xﬁ defined in (1.21).

With the complimentary spectral projection 7~ , the W evolution is given by

PO
Wy = -7 (225) 4w+ (ALW + N (W)) (1.31)
t= "o \ap?) TP T T ‘ '

At an initial time t5,, the renormalization group process freezes L = Lﬁn’ evolves
the fast system for a finite time, and then uses a non-linear solve to update the slow
components in a self-consistent way. If the secularity in Lﬁ_ Lﬁn can be controlled,
then uniform estimates are obtained on a finite time interval, and the process may
be iterated. We introduce the renormalization times {ti}(l?il’ where t(y is the initial

time for (1.31). We introduce the quantity,

(0%
€ .
T = sup e ZHETD (), (1.32)
tZ'<S<t

fort; <t <t; 1. We are able to reduce (1.31) to the following quadratic inequality,
Ty(t) < Cline| (Ty(t;) + €1 =2 1 =0y (1) (1.33)
1) = 1\% 1 : :

For the first iteration, ¢ = 0, we recall the bound T (tg) < Mpe®|In 6\2 imposed
by the initial proximity to 9y, and we rewrite the condition (1.33) as a quadratic
inequality gg(r) > 0 for » = T where,
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0<gg(r) =C|lne <M0€a| lne|2 + el_a/2> —r+C|In e|e_ar2. (1.34)

golr) /

A e
T

Figure 1.6: This figure generically illustrates the quadratic inequality (1.34) for a <
2/3, so that 71 > 0 and the remainder can be appropriately bounded. Our analysis
reduces the size of the remainder to a quadratic inequality, so either the remainder
starts smaller than rq and stays small or it begins larger the r9. The middle interval
(r1,79) is forbidden.

It follows from the quadratic formula that for My < 1/(4C) and o < 2/3 there
are two roots of gy = 0 for e < 1. Moreover, with this bound on a we can take the
renormalization group time period ¢; 1 — t; sufficiently long to obtain decay of W.
Successive iterations start with a smaller bound on 77 (¢;) and yield tighter estimates
on 71, until a limit is reached and subsequent evolution yields no further decay.

The renormalization group methodology yields the adiabatic stability result. The
leading order pulse dynamics (evolution of p) are obtained by projecting equation
(1.30) onto the tangent plane of 9. After sufficient decay of the remainder W, the
dominant term is given by the projection of F(®(p)), which yields (1.24). The lower

bound on the time, T, is obtained as an upper bound on the pulse dynamics, with
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My taken small enough that the remainder T decays to its adiabatic size before the

pulses are within dp/2 of OK.

The following figure further illustrates the renormalization group process.

P2 p1pi(Ty) o

Figure 1.7: This figure illustrates the renormalization group technique. The initial
condition is decomposed as Uy = @p; + Wy(0), the linearization and associated
spectral projections are frozen for a time interval sufficient to give decay, but not
so long that the secular growth swamps the error. At the end of each renormaliza-
tion interval, U(ry) = ® (p(11)) + W(rq) is reprojected into U(ry) = ® (p1) + W1,
where W7 € Xﬁl' The process is iterated and the transient associated to the ini-
tial perturbation decays to the level of the accuracy of the approximate adiabatic
solution.
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1.1 Notation

We define the pulse positions

ﬁz(p1,---,pN)T€RN, (1.35)

where N is the total number of pulses. We define the following norm:

913 = Vel 1921 1 (1.36)

where £ is a smooth, positive, compactly supported, mass one function, where

£ =E(x—p;). (1.37)

The Sobolev-like norm Wg 1 controls L°°, since for any z,y € R,

)| < futw)] + [ =W @)z, (1.38)

0

which uses the fact that u(z)—u(y) = f; u'dz. Multiplying by the mass-one function

£(y), and integrating over all y € R, we have

0

@)l < 1+ [l - 1 (1.39)
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We define the following norm

IIFIIXE||f1||W§1,1+||f2llH1, (1.40)

for F' = (fq, fQ)T. We define windowing a function f as

N N
f= Z fi=>Ix;j (1.41)

}ka‘

N x
For f € [LQ (R) and g € [LQ (R)} , we define the tensor operator f ® g,

k
acting on h € [LQ(R)] by

f@g-h=((ho) 21 (o) 2 fN)T - [LQGR)]NX]“, (142)

where k denotes the number of components, so k = 2 for our system (1.4), and N is

the number of pulses.
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Chapter 2

Construction of an N-pulse

Invariant Manifold.

In this chapter, we construct an N-pulse invariant manifold for a reduction of the
system (1.1). We fix N-pulse positions at p'= (pq,. .. ,pN)T, and seek a manifold
$ = O(z;p) as a graph above an N-dimensional set p'e K C RV More specifically,

we seek ® which satisfies the invariance condition:

mp()F (2(p) =0, (2.1)

where 7p(p) is the projection complementary to the tangential plane of @, at ®(p).

The complementary tangential projection is written as 70 = I — 7, in terms of the
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tangential projection:

N
mrf =Y (£.B;) 2 B € R (2.2)
i=1
T 9, JNX2 . .
Here B = (By,...,By)" € [L (]R)} is a Gram-Schmidt Orthonormalization
o) N ) N
of {ﬁ}zzl We assume the family of vectors {%}izl is linearly independent.
So for each 1, j:
Q%J%)L2=5U, (2.3)

where 5i j is the Kronecker delta:

1, ifi=j
ij =
0, ifi+j

It is convenient to introduce the associated vector tangential projection:
T
Y F=BoB-f=((fB) 2B (By)2By) eRVE (25
where B € RV*2 and fe R2,

We show that if ¢ satisfies (2.1) then its graph is invariant under the flow. For

our general system (1.1), we decompose U as

U =)+ W. (2.6)
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Using Proposition 6.1, which allows us to determine a base point where 7pW = 0,
we choose W to be orthogonal to the tangent plane, so mpW = 0 and 7pW = W.

We linearize our system:
V- i+ Wi = F(®) + LoW + N(W). (2.7)
Applying the projection and the complementary projection to (2.7), we have

Vﬁq) .5‘4_ ﬂ-TWt :7TT.7:(CI)) + WTﬁq)W + WTN(W) (2.8)

7~TTWt :ﬁ'T.'F((I)) + ﬁ'TECIﬂNTTW + ﬁTN(W), (2.9)
where, by the construction of 7,

np (V@ 5) =V b (2.10)

Indeed, we can represent each element of Vﬁd) as

N

0P
T = > oyBy, (2.11)
Lok=1
so that
N N N
0P 0P
WT? = Z Z akBk’Bj Bj = Z oz]Bj = a— (2.12)
Pi i1 k=1 j=1 Pi
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Moreover since mpW = 0, it follows that

0 OB:
== W.Bj) 2 = B; —L 2.1
0= 5 (WB) o = (VB o+ (W) 21
from which we conclude
N
0B;
Wy =—Y_ (W, 8—;) , Bi (2.14)
i=1 L

Assuming the invariance condition (2.1) holds, we apply it to (2.9), which yields the

flow

0B; . N .
Wt + Z <W, 8_252) 2 Bi = 7TT£(I)7TTW + WTN(W). (2.15)
1

The set W = 0 is invariant under this flow. On the W = 0 manifold, we reduce to
the tangential flow

V7= mpF(®). (2.16)

Thus a smooth solution ®1(p) of (2.1) yields an invariant manifold of the flow to

(1.1), which reduces the flow to the ODE (2.16).

Establishing a solution of (2.1) for our system (1.1) is beyond the scope of this
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work. Instead we introduce the system:

F(U;5.6) = , (2.17)
Fo(U,V;p,9)
where
N
Fl = 2 — QU+ P (1 - Z pj)an 46U | VM2 (2.18a)
v N
j:
(2.18b)
with
K(y) = { Vye Y, ye0,00) } (2.19)

Here {X]} ~1 Is a partition of unity where each x; is a C°° function that is 1 on

. Piy1—Pp . .

(sj—1+1Lsj—1) with s; = %, for j = {1,..., N — 1} while sj = —o0
and sy =00. On (s; 1 —1,5; 1+ 1] and [sj —1,5;4+1), x; decays smoothly to
zero. The V' component is localized about the N-pulse positions p'= (pq,. .. ,pN)T.
The K (V) term is added to remove any tail-tail interactions between these localized

components.

We consider ¢ € [0, 1], where § = 1 yields the original system (1.1), while 6 = 0
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Figure 2.1: Notice the function eK (V/ 62) exponentially decays for V >> €2 /2.

reduces the inter-pulse coupling to a finite rank interaction. In particular

—

F(U;p,6) = (1 —8)F(U;p.0) + 6F(U), (2.20)

where F (lj ) is the unperturbed system that does not depend explicitly on p.

In the remainder of this chapter, we will construct a manifold ®(p) which satisfies

F(@(p);p,6 =0) =0. (2.21)

For 9 > 0, we suggest how a contraction mapping argument could generate an

invariant manifold with a slow normal velocity for 6 = 1. We leave to posterity the
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verification of this condition. However, after this chapter, we rigorously study the

quasi-invariance of the § = 0 manifold under the 6 = 1 flow.

2.1 Explicit form for o,

We set § = 0 in (2.17), and fix the pulse positions p'= (pq,. .. ,pN)T. We look for

®(z:75,0) = (B, Po)T which satisfies (2.21), that is,

N
0 = 5_28$x<1>1 — Y udq + e P Z qu)l(pj)allcbgu (2.22a)
j=1
N
0 = Orx®y — GK(CDQ/GQ) — &9 + Z qu)l(pj>a21 @20522' (2.22b)
J=1
We introduce q;
q; = ®1(pj), (2.23)

for y =1,..., N. In this chapter, we solve the system

7= q(p) = 21(D)- (2.24)

We have the following theorem for the existence of this solution.

Theorem 2.1. Self-consistent mean-field theorem

Let 6 = 0 for the system (2.18), ® be defined in (2.44), and p € K. Then there
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ewists an €y > 0 such that for all € satisfying 0 < e < ¢, there exists a function

Q(s,€) : RN x R — RV which is smooth in s and € such that
g=¢ "0 (enﬁ, 6) , (2.25)

where ¢, so defined, solves (2.72), and ® = ® (p, ¢(p)) solves (2.22). Here k is defined

as

_1-a/2-8

for 6 defined in (2.67), and n is defined as
n=1+a/2 (2.27)
Moreover, in the limit as € — 0, the rescaled variables § = €q and p = €'l solve
i(p) = M(p)q ", (2.28)

where ¢ 0~ (d?, . ,QJHV)T and M(p) is defined in (2.82).

Furthermore, there exists constants k, K > 0 independent of € and p € IC such

that the scaled pulse amplitudes ¢ are uniformly bounded above and below:

k< [|q]] < K. (2.20)
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Remark 2.1. After this Chapter, we assume (1.20), which in turn implies that
k = 0. Thus after Chapter 2, the unscaled pulse amplitudes ¢ are equivalent to the
scaled pulse amplitudes q, so by (2.29), the unscaled pulse amplitudes ¢ are bounded

above and below.

We construct our ansatz where we show (2.22b) has an exact solution of the form
Po(z) = Zévzl qu (x), where each qu is compactly supported on (Sj—l +1, 5 — 1)
and (bj satisfies

0=¢f —eK(6j/*) = 9 +4; 219,022, (2.30)

This equation has a first integral

2 2 a1

' b= q.
J J J a99+1

— = H(¢; L L4 A22 2.31
2 (¢])+ 2 a22+1¢j ’ ( )

where H(x) = féc eK (3/62)0[5. Isolating the left side, we define the homoclinic

solution qu by the initial value problem

a21

2q
— N , 2 1 9o+l
¢of = Qgy) = i\/2H(¢]) +95 a22+1¢3a22 (2.32)

¢j(pj) = ¢;‘~

where Q(gb}") = 0.
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=

+

I‘.
J

Figure 2.2: An illustration of the homoclinic orbit of ¢9'

2

For |gbj| > €“, we consider an asymptotic expansion of gbj,

6; = ¢+ 0(e). (2.33)
Plugging this expansion into (2.30), at leading order we have

_ 070, @21 ,0022

We can solve this exactly on (s; 1 +1,s; —1):

¢o(x —pj)

a9y /(agg—1)’
2

(2.35)

¢ (z) =
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2

where ¢q(x — pj) is a pulse centered at z = p;. We have that qﬁ(}(x) << € well

before x nears the boundaries of (Sj_l +1, 55— 1) as long as the pulse separation is

Pj—Ppj—1> O(|Ine€|). The set ’Clo where this condition is met is defined in (1.9).

Since ¢; is homoclinic to zero, we know that ¢; — 0 as |z — pj] — 00. Once

2

¢j < €“, we can expand the exponential part of K about zero:

5
K (¢j/62) - \/QTJ-+ 0 Z—2 . (2.36)

In this regime, (2.22b) will asymptotically scale to

e RV (2.37)

If we multiply by (259- and integrate, we have

4
¢ =~ §¢§/4- (2.38)

Separating variables, integrating, and simplifying, leads to

6j(x) = 1/144 (z — o)L, (2.39)

The above is the tail behavior of gbj, giving it compact support on the pulse interval
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(sj_l,sj). When gzﬁj(x) = O<€2), (x—c) = 0(61/2>, where ¢ can be determined
to appropriately match function values. We define ®9 to be the sum of pulses that

meets these asymptotic conditions:

b= j(x). (2.40)
j=1

Then for any p' € lClO and ¢(p) € RN, D9 is a steady state F(Po;p,d =0) = 0.

E ———
|
O |
)
i —
012 O(|Ine|) O(eH/2)

Figure 2.3: This is a cartoon of the pulse shape of ®9 at the pulse position pj- Notice
how it is localized.
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2.2 Explicit form for ¢,

To determine ®1, we consider (2.22a) with our solution ®9:

N
_ [0

LY =e¢ p Z X;jd; 11(1)20412 (2.41)

j=1

N « «

=Y g e 2 @), (2.42)

J=1

where

L5 = — 202 + Y. (2.43)

The inverse of L{; is denoted Ll_le' We define ®1 as the solution to (2.42). In

summary, we define ® to be

P 7, —ﬁL—e N q11 19
v g | BETD| | (a5, <@)7 o

By (2, 7. 7) S 6j(@)

subject to (2.23).
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2.3 Construction of the pulse amplitudes ¢(p)

The condition 45 = <I>(pj), requires ¢ to satisfy the system
N o
a = e—ﬁLl—f Z ¢ g 012(p,) |, (2.45)
J=1

for k =1,..., N. The Green’s function G ) (v) associated to L‘il + A has the property

that

(LG + 0T = (G f) (@), (2.46)

Using the Fourier transformation, Gy is found to be

2
_ T —ky |z
Gy(z) =4/5—¢ Al (2.47)
2k
where we introduce,
ky = eV A+ e (2.48)
For A = 0, we have
1+a/2
Go(x) =, /%El_a/2€_€ / valel, (2.49)



We proceed with an asymptotic reduction of (2.45). Applying (2.46) to (2.45) with
A =0, we have

N
_ a
q = € & G * Z g ngﬁjalQ (pg.)- (2.50)
J=1

Writing this in vector form leads to:
§=l—/2=Bgza11 (2.51)
with ¢*11 = (q(llll, . ,q%ll)T and G € RNXN, where
G = /> 1 (Go 612 (o). (2.52)

so G has no leading power in e. We asymptotically expand G by substituting our

asymptotic expansion (2.33) for qzﬁj. Here

=404 0.
where qu has compact support and both qb? and ggj decay exponentially. We define

G=3"+G, (2.54)
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where

G2\ =271 (Go + 6912) (), (2.55)

and from a Taylor expansion and (2.35), we determine

Qj,k =oz1260‘/2_1 (Go * <¢Q>a12_1 c@) (pg) + O(e) (2.56)
—aqpe/271 ]—0421(0412 1)/(ag2—1) (G § <¢o>a12 L5 ) () + 0(6)
(2.57)

aj9—1

The extra factors of ¢; above are a result of replacing ((;59) via (2.35). We

write this matrix as:

G — gredg —agi(agp—1)/(age—1). (2.58)
with the N x N diagonal matrix Qz'j = {qi, i # ]} and
Gre = aq9e2 7L (G + 0912716 (). (2.59)
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Substituting G = G0 into (2.51), we have, for any k,

N
— (6]
g =¢ P | Gy+ 3 qj&11¢9 120 (o) (2.60)
J=1

N

_ T 1—a/2- —61+0‘/2\/ﬁ|pk—y| S 11,012

= 2,u€ e qj <Z5j (y)dy (2.61)
j=1

N

_ [T 1-aj2-8 — /2 gp —y) a1q 0012

=\ 3¢ Y fe k a; 05 (y)dy. (2.62)
j=1

_1+a/2 .
Next, we Taylor expand e © / \//7|pk vl about Py

1+¢ _A+5 .
¢ 2ilpp—yl _,m¢ 2 VElpg—pjl (2.63)

0% 1+Oé *
—dTY e AV ) o( 2. (2.64)

Substituting this into the integral in (2.62) and recalling (2.35), we have that:

_ 1+04/2 —_l « a o9 —61+&/2 —p;
/e ¢ VAP quj“cb? 12(y)dy =¢012q]9-6 Vilp=pj

+h(e, 60)d], (2.65)
where we define the mass f = [ f(s)ds. We also have

hle, 6g) = O(elT/2), (2.66)
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since the decay from ¢(j). dominates the polynomial terms from the Taylor expansion.

We define

0 = ay1 —ajgagy/(ag —1). (2.67)

Then with the previous reductions, at leading order
7= 720 Mg o)), (2.68)

0 _ 0 o\~ : ,
where |7]Y = <|q1| N > . The matrix M is defined as

—— _1+a/2 ,
. Q _ T —€ —
M, 1 (Dr€) = ¢012€a/2 105}[_ 2u¢0126 VilpE=ps) (2.69)

where Gév = Gév (p) is defined as the two-point correlation matrix:

_A+a/2 .
1=l = [ o2 Vilpi=pjl, (2.70)

We include the absolute value in (2.68) because we want to show the existence of
a nontrivial ¢ with every component positive. If we return to our exact equation

(2.51), and substitute (2.54) for G, we have

7= 2B pmp 0)q)0 + £-420G|g1011 1 o/ ). 2
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To remove any ¢ dependence in G, we recall (2.58), and rewrite the above as

(6%
/9 /9 A~ ﬁ9+% .
§(p) = 2P pp )| g + E—/2=Bgredig T aga—1 4 o(lte/2y g0,

(2.72)
To eliminate the el_a/ 2=0 from the leading term above, we rescale the amplitude

variable as

j=€"q (2.73)
We have
KEL:%@EE, (2.74)
where (2.72) becomes:
. 6421
= M(pelg’ + g elal 27 o g, (2m)

with

a9 l—a/2-0
=1 ) 2.
P +Oé22-1< 1-46 (2.76)

We need the condition that

p>0, (2.77)
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to analyze the appropriate leading order problem. We rescale the pulse position

variable to remove any e dependence from M (p;¢€) (and also from

p=¢€p,
with
n=1+a/2
With this rescaling, (2.75) becomes
q=A(p,q,e),

where

. 6421
Ap,d,¢) = MB)a| + PG p)lg) 22271 4 o017,

and, in the rescaled variable, M(p) has the componentwise form

- [T o9 — D1.—D.;
Mj,/{:<p)E Z¢012€ \/ﬁ|pk pj|.

45

éred):

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)



First we examine the € = 0 case. The system (2.45), under this rescaling, reduces to
1= A(p.7.0) = Mp)lal" (2:83)

If 8 = 0, we have the nontrivial positive solution where for each ::

=Y M (2.84)

We consider the case when 6 # 0 and 6 # 1. Examining (2.82) and (2.83), it is clear
that

Ai(7.3.0) = M(@)|g? > 0 (2.85)

for all ¢ € RV and each i € (1,...,N). Indeed, from (2.82) we see that every
entry of M is positive and uniformly bounded. This also implies that there exists

0 < k < K, which depend upon p, such that

Klall” < 114G, .01l < K1la)’ (2:86)
for some vector norm || - ||. We define
. A(p, 4,0
q
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and

S={q:k<||9|| £K,¢ >0,i€(1,...,N)}, (2.88)

where ¢ = (q~1, ce ,qN)T. S is compact and B maps S into itself. S is a contractible

q1

q2

Figure 2.4: This is an illustration of S in two space dimensions.

manifold, where a contractible manifold is defined to be a manifold that can be
continuously shrunk to any point inside itself. Moreover, B is continuous on S.
Then by the Eilenberg-Montgomery fixed point theorem (which is a corollary to the
Brouwer fixed point theorem), B has a fixed point Gx € S.
We have that
A, 3,0) = 11d+/ . (2.89)
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and similarly for any constant s we have that
A, 51,0) = 87 A5, 35, 0) = 5" Y1l P (2:90)

We choose

s = |G| 70/ (0-1), (2.91)

so that A has the solution:

A(P, qx,0) = gx, (2.92)

where

So there exists a nontrivial solution to (2.83) with every component positive. To
show that solutions to (2.80) are locally unique for € > 0, we need the non-bifurcation
condition (2.96) that gives generic local continuation. For p € Ky, we have a locally
unique solution to (2.80). Doing a continuation argument using the implicit function

theorem, we define

B(p, g, €) = q— AP, 4, ). (2.94)

We have from (2.92) that B(p, gx,0) = 0. Differentiating B(p, ¢, €) with respect to ¢,
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evaluated at (G, €) = (gx,0):
VBB, 41, 0) = I = VaAp, q,0) = [ = 0M@las(p) 1, (2.95)
where M(p) was defined at (2.82). Then the non-bifurcation condition is
det (1 —0MB)lg+()" ") # 0. (296)

The set Ky is the maximal open set of all pulse positions p’ beginning in the well-
separated regime, and continuously extended into the semi-strong regime until values
of 7 where (2.96) fails. By the implicit function theorem, for all p = ¢~ "Ip € Ky,

there exists €y > 0 such that for ey > € > 0, we may extend:

Gx = Gx (D, €), (2.97)

which solves (2.81) smoothly in p and e. Then in the original variables p'and ¢, (2.97)

is equivalent to (2.25) in Theorem 2.1, listed again as
7=¢ "Q(pe), (2.98)

where Q is equivalent to the continuous extension gx in (2.97).
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2.4 Existence of an invariant manifold

We continue examining the case 6 = 0. From our positive solution gx to (2.83), we

construct ®*(p). We have F(®*(p); 5,0 = 0) = 0, so
7 F(®*(p); 5,0 = 0) = 0. (2.99)

Thus we have an invariant manifold for the case 6 = 0. This case is even stronger in

that we have a steady state solution, where the N-pulse positions are fixed.

For the case when 6 € (0, 1], we want to preserve invariance, so we need (2.1) to

hold. By continuation, we will show a condition that will ensure

o (B(7.0), 7) (F (2(7,); 5.6)) = 0, (2.100)

where 7 (®(p,9),p) depends on ®(p,d) and p. We differentiate the above with

respect to §:

(Tarrs ) (£ (@0)56)+ 7 (207,09 (L5555 + 55 (@00 5.9)) =

(2.101)

At 0 = 0, the first term is zero, so

77 (B(7,0), p) <Lﬁ’oa¢g§’ 0)) — i (B(5,0),7) (%T (®(F,0); ;7,0)) (2102)
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This is equivalent to

o0(p,0) /. Nl joF
95 __<7TT£1207TT> 25 (2(7,0):0,0) . (2.103)

If (2.103) holds, we have the existence of an invariant manifold. A key step is to

characterize the bounded invertibility of the conjugated operator ﬁTﬁﬁ, 07T
Instead, we will continue our analysis of the case when § = 1 by using an ap-

proximate solution ®. This will lead to a quasi-invariant manifold using a spectral

projection defined after we analyze our eigenvalue problem.
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2.5 Numerical Results

This section contains two numerical results. The first examines (2.22b) with the
values @1(pj)a21 = 1 and a9y = 2. We further simplify the system by examining

only one pulse position and replacing ®9 with Y. This choice of variables leads to:
_ 2 2

Our boundary conditions are that Y/(0) = 0 and Y (10) = 0. We use the fact that
Y = %sech2(Y/ 2) is a solution to this equation when the K term is not present to
construct a solution to this equation with the K term present. Using the Matlab
boundary value solver bvp4c, and solving for x € [0, 10], we have the following results
in Figure 2.5 and Figure 2.6.

Our second numerical results demonstrates the behavior of the pulses and ampli-
tudes in our system. Given pulse positions p, we solve the nonlinear system (2.83) for
the amplitudes ¢. The system we are solving is ¢ = M(ﬁﬂq_]e, for M(p) defined in
(2.69), and 6 applied componentwise. Reducing the problem to three pulses, we take
e = 0.1, « = 0, and the coefficients of M to be 1. We solve this system beginning
in the well-separated pulse regime, where M is almost diagonal, and continue the
pulse positions closer together. As the Figure 2.7 illustrates, for # = —1, the pulse

amplitudes converge as the pulse positions converge.
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Figure 2.5: This figure is a graph of the solution to (2.104) without the K term in
blue and the full solution to (2.104) in red. The solution to the full equation decays
faster.
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Figure 2.6: The fact that the solution to the full equation decays faster is more
evident in this semi-log plot in the vertical coordinate. Again, the solution to (2.104)
absent the K term is in blue and the solution to the full equation (2.104) is in red.
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Figure 2.7: Each color is one component of the pulse amplitude, where pulse sep-
aration is varied which results in a change in amplitude. The horizontal axis is a
log-scale of the separation between pulses, continued from a well-separated regime
to a semi-strong regime. The values given are |pg — p1|. The vertical axis is pulse
amplitude.
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Figure 2.8: These two graphs illustrate the three pulses and their amplitudes for
|[po — p1| = 33 on the left and |[pg — py| = 1.6 on the right, corresponding to the
previous figure.
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Chapter 3

Original System: Ansatz and

Residual Estimates

We return to the system (1.1),

QU = ¢ 2Upz — QU + e Burityer2 (3.1a)

WV = Veg —V +UYR21VA22, (3.1b)

We show that the invariant manifold we constructed in Chapter 2 for the reduced
system is a sufficiently accurate approximate invariant manifold for the original sys-
tem to capture the leading order dynamics. We construct our ansatz as in the last

chapter, where we solve (3.1b) for V' = ®9 at equilibrium, with U = ®; approxi-
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mated by 45 = <I>1(pj) at each pulse position. We then solve (3.1a) at equilibrium
for ¢ = ®1(p). This amounts to solving (2.22) with the —6K(@2/62) term dropped.

With this slightly modified construction, we define

o B 11,012
oo | 1| (2 a1 e 2 @) | .
) SN ()
where ¢>j solves
0=0 —j+q;210, 22, (3:3)
It is also defined to be
() = 0 L) (34)
U0 agy/(age—1)’ '
9
where ¢q(z) solves
o — bp + b 22 = 0. (3.5)

3.1 Linear estimates

The following lemma contains estimates used to develop resolvent estimates on the
linearization, and thus to derive our semigroup estimates. The following estimates

are used to obtain estimates on ®q, which lead to residual estimates. Recall the

definition of L11 = 282 + e%p from (2.43), e/ A+ €Y defined in (2.48),
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and that the y j’s form a partition of unity about the pulse positions p. We have the

following lemma.

Lemma 3.1. There exists C' < oo such that for any f € Ll(R) or f € Wg’l(R)

and A € C \ (—oo, —e*u), the following estimates hold:

gy + 07 it < C%WHLL (3.6)
Ity + 71 < iyt i 7
LSy + 0 oo < C|Z—i’||f||L17 (3.8)
102 (LS + ) Pl oo < CENfII 1, (3.9)
102((L§1 + N )l 2 < Cﬁjwnmﬂ, (3.10)
10((LG + N1 < C%WHLL (3.11)
LS+ 07l < O%MLL (3.12)
|\<L§1+A)—1f\|L2 < C%WHLQ. (3.13)
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Moreover, for any f € L% ﬁ(R), we have the following estimates

2
-1 € .
12§, + ) Myit < Criey <!®X-f|+!kA}|\f|\Liﬁ>, (3.14)

(LS, + M) Il oo

VAN

1 -
o (ol @x-JI+ 1 |- (3.15)
| )\| 1’25'

Proof: We define g(z) = (LT1 + A)_lf = (G * f)(x). Recall that G (z) =

2
g;—e_k)\m. From the identity ¢/ = G/)\ * f and the LP convolution estimates
A
[25], we have
2
/ / €
<||G <(C——F—— . 3.16
I9'll1 < GV 1 < O il (3.16)

Similarly,

2
leoll 1 < Vel 116y = Diwllgoo < 163 Ioolfllyn < il (17

These two estimates establish (3.6). To prove (3.8) we observe that

2
€
gl oo = G\ * F)(@)][ oo < |Gl ol fll 1 < C|k—)\|\|f\|L1- (3.18)
We have (3.9), since
19l oo = I(G) * £ (@)l oo < 1G] ool 1l ;1 < CEQHfHLl- (3.19)
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In a similar manner we obtain (3.10), since

2

o2k |2l 3, 1/2 <

The next inequality (3.11) follows similarly from the estimate

2
Jtei ||L1 /RE e I_CRe(k‘)\)'

For (3.12),

2

€
loll 1 = WG = D@ 1 < 1GA Iy < Ol

Similar to this, for (3.13),

2

€
loll2 = WG = NI 2 < 16N 12 < Ol 2

Next we prove (3.7). For this case, we first observe that

leall 1 <IEll 111Gy * @)l o

<IGxIl 11/l oo

2

< WWH
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(3.23)

(3.24)

(3.25)
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We have our result if we combine the previous line with

2

/ _ o f! / €
o'l 1 = G+ )@ 1 < NGl 1 < O|kA|Re(k:)\)||f|| (3.27)

1,1
W7
£

For the final two estimates, we decompose f as in (1.41), where f = Zj fj and
fj = Xjf> so that

9; =G+ fj (3.28)

satisfies g = Zj 95 Moreover using (1.29), we see that

I =355l (329)
17p ] 7]
where || - HL%j = || (1 + |z —pj|> : HLl' We proceed by decomposing each f; into
a small mass and a massless part:
P— _. . /
fj _fjfj +yj7 (330)

for yj € Ll(R) and fj defined in (1.37). Clearly for any f, ||f||L1 < ||f||L% - Next
2J
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we examine

lojllgr = [, [oata = p)] ojlde
S/R|($—pj)y}|dﬂf
=0 [ @ =p)) (5~ %)) bao
<c(|rfjuL1 Al [ le =) fjrdm)

<Cllfly
2J

(3.31)
(3.32)

(3.33)

(3.34)

(3.35)

We decompose 95 = 95,1+95,0 where 95,1 = ijA *fj and 95,0 = G *y; = G/)\*yj'

Estimating g; 1 using (3.6), we have

ol

2 2

€

€ — _
11 = GGy =€l 11 < O Fillln < O T;

We We

The function Gl)\ has a jump at z = 0. We deduce that

so that

Orgjo = 2G5 *y; = [G'ﬂ *YjF 62-%

14
o [G/\] x#0
AT 9 ’
€“0p—q =0
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where the function [G’)q is the point-wise second derivative of G'y. Then

/ 1" 2 ‘ Exl o .
ool 1 < (1[G3] 1+ €2yl 1 < 02 Wl - 6

Using (3.9),

/ / 2
€950l 1 <Nl 1NG) *yjllpoo < CUGN I p1llyjllp1 < Cemlifjll 1 - (3.40)

bl

Summing over j, we have (3.14). The final inequality (3.15) follows using (3.9) and

(3.8) respectively:

1950l oo =I1GY *y;ll oo < ClIGA I foollyjll 1 < 062||fj||L% O (341)
J
_ ) 2

16950/l 00 =F;11G ) * &jlI o0 < CFlIG I pocll)ll 1 < wajm (3.42)

Recall from the introduction the assumption that 1 — /2 — 8 = 0. We use this
assumption and the previous lemma to prove the following bounds on ®1(p,d = 1).

In particular, the lemma assures that &1 = O(1) in L°°.
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Lemma 3.2. There exists a constant C < oo such that

|®1][ 00 <C (3.43)
102:®1]] 00 <O (3.44)
ICSTIFS! <Cel =2 (3.45)
H%Hpo <ce=H (3.46)
10pg, 1l ;1 <C (3.47)
10p;, P11l oo <o P, (3.48)

Proof: For the first inequality we use (3.8) and the assumption 1 — /2 — 3 = 0:

N
[@1llpo0 = || Ly [ D2 a) et (3.49)
7=1 O
<C ! a11 ,@12
> qu (b] (3.50)
7=1 1
<C. (3.51)
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For (3.44) we have

N
-0 —e @11 ,¥12
102®1 00 < Ce 7|0 | Li§ Z a0 (3.52)
J=1 Loo
23 N aq o
- 11,412
< : : :
< Ce Z a0, (3.53)
7=1 11
< 0B (3.54)
where we used (3.9). For (3.45), using (3.12) we have
N ar] o
1®q[;1 < ce P Lt (2 4 chj 12 (3.55)
j=1 1
3—2 N arq o
- 11,412
< . . .
L (3.56)
j=1 1
< 02 (3.57)
For (3.46), we examine qj from the exact formulation (2.72) at leading order,
04, o (M olal).
= ||f00 <C 3.58
Il o (3.58)
1,0
<C IM@.€) ‘ (3.59)
Opr lipoo
<Ce? 0, (3.60)
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due to the e@/2F1 = 27 in the exponent of M(p, €) defined in (2.69). For (3.47),

we have that

N
(6] «
Opp®1 =¢ P L 0p, Z 11¢> 12 (3.61)

)
. (3.62)

N
ze—ﬁLl—le _qku@x(au) ; 4 1¢04128pk

Then applying the L! norm to the above

9q;
— (0%
13p; @111, 1 < PGy * 00 (01 2) Nl 1+ ﬁCHLleM 0" gl
j_
(3.63)

For the first term on the right,

_ (6% _ (0 (6%
€ ﬂCHG}\ * O <¢k‘12) ||L1 :H@m <G)\ * (6 ﬁqu%lZ)) ||L1 (3.64)
<celle g 12y (3.65)

<0, (3.66)

where we applied the estimate (3.11). For the second term on the right in (3.63),
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applying the estimate (3.12) and (3.46) we have

dq;; dq,;
el v 5309 K 1<e*%7§juee g gl (367

« dq
<ﬂ320§juwﬂ%unkiﬂﬂm (369
j=1

<C. (3.69)

We conclude that

10, @11 < C. (3.70)

Proving (3.48) follows similarly where

- (0%

— dq;;
+edo|Lyf Z 640~ 1¢O‘12 9 ||Loo (3.71)
The first term on the right follows like above, using (3.9),

_ _ (0% (8%
)Gy 02 (6712) oo =10z (G (P16 12) ) llpoe (372)
— (6% (8%
<ol Py lle 12| (3.73)

ce2=P. (3.74)
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For the second term on the right in (3.71), applying the estimate (3.8) and (3.46) we

have
N 0 N 0q;;
B¢ 0—1,012 %95 0—1,12 %95
J= J=
N Oa
«a q
<C > lIog 2l oo
j=1 g
§C€2_ﬁ.

Then we conclude

10py @11l oo < 0700

From the proof of (3.47), we conclude that

oloh _
g%?:_a_;m(g 9,

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

in any LY norm. The following corollary will later be used to determine the point

spectrum.

Corollary 3.1. There exists C > 0 such that for all A € C \ (—oo, —€Yu) and

p € K, the following holds

(5079 o = @X-nTe @ X g <CPfll 1 Dol . (3.80)

Lp Lp
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for all f g € L%ﬁ , where L%ﬁ is defined in (1.29) and G(])V (for X = 0) is the

two-point correlation matriz defined in (2.70).

Proof: To show (3.80) we use the Taylor expansion

Gy\(y — ) =G)\(p; —pj + (y —p;) — (x —pj)) (3.81)

=G\ (pj —pj) + G\()((y = pj) — (@ = 1)), (3.82)

for some s € R. Windowing f and ¢ as in (1.41) and substituting the above we have:

N

((L TRl f79)L2 = Z ((L 11+AN f@',gj>L2 (3.83)
z',jzl

Z //G/\ — ) f;(y)g(x)dydz (3.84)

,Jl

= [ [ 6xi - ppsitwigjwyinas

,Jl

+Z//G’ (i)~ (&~ ) i) @)y

i,7=1
(3.85)

=(®x - f)TGN®X g
G (s Z // y—py) p))) fi(y)g; (@)dyda.

1,j=1
(3.86)
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We rearrange the above terms and apply the absolute value:

(L5 + 07 g) 2 — (@ NTGY @ g| =17 (3.87)
where
T =G\(s y— ;) ) fi(y)g;(x)dyda. (3.88)
;1/ [

Using the fact that ||Gl)\||Loo < Ce?, we estimate the last term of (3.87),

7| = |G\ (s Z // y—pi) = (& = pj)) fi(y)gj(x)dydx (3.89)
,j 1
Z ly = pil + v — ;)| £; ()9 (2)|dydz (3.90)
= [ [ G=ri+ = piisis
21/| y—p)fi(y Idy/lgj Id:v+/| —pj)gj(x Idw/lfz )|dy
7]
(3.91)
<CeIfll, 1 llgllp O (3.92)
17ﬁ 17ﬁ

70



3.2 Residual estimates

The residual is R(®) = F(®), which takes the form

Rq(®) 20201 — O pdy + e Po e 12
S - vl ! L2 | 303
[0 (0
Ro(®) 0309 — By + @] 219,22

We have the following properties for the residual:

Proposition 3.1. Recall the definition of KZO in (1.9). Fiz ly from this definition,

then for all p' e Klo, the residual has the following asymptotic formula

— N a11 11y @12
Ri@) | [ I @ - g e o) G
Ry(®) S (0721 ¢f21) 6722 1 o(en)

forr =r(lg) > 0 large. Moreover, there exists C' > 0, independent of € and p' € ’Clo

such that for all p’ € ’CZO the following estimates hold,

IRy (@)1 < Ce (3.95)

1R (@)]] 9 < C20, (3.96)

Proof: We first examine Ro(®) in the L2 norm. Adding and subtracting like
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terms, we find

N
2 o} «
1Ro(@)ll o< 11D 0565 — 05+, o

J=1
N @22 N
a21 _ _ @22
+ 2 D% > ?;
j=1 j=1 72
(07 « «
+ I Z ( 21 _ 21) ]QQHL (3.97)

The first term above is zero by the definition of ¢; from (3.3). Next, using (3.43):

N @22 N
0% (0] (0%

0] )| = cdleP i (3.99)

< O, (3.99)

since
N (0%
Z % -9 211 <o, (3.100)
j=1 12

for r > 2, which follows from the fact that p € ICZO‘ In this space, the pulses are
sufficiently separated so that the tail-tail interaction between gbj and ¢;. for j # k

is minimal. Finally, for the third term we Taylor expand @?21 under the sum at
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x = pj for each j and use (3.44):

N N
Oz21 0422 0521 . 99
Z %5 ||L2<HZ:16$( ) (sl = 16522112 (3100
=1 J
N
Oé
Z Y[l = pi10 22| o (3102)
- 2921)
¢ Z |02:(®1 )| 00 (3.103)
5062_5 : (3.104)

For the above, we used (3.43) and (3.44), where s j € Rfor each j, and the exponential
decay in ¢?22 dominates the linear growth of |z — pj|. From (3.97), (3.99), and
(3.104), we conclude that

1R (@)]] 2 < C*F, (3.105)

which establishes (3.96). Next, we examine the L1 norm of Rq. From (3.94), we find

N
— (0% (07
1R @)1, <Nl = LG @1+ 0D g5 a7 12

j=1
- 0411 5012
+e€ HZ )0 <l
« N (0]
LB |11 (3" 0j)12 - Z¢ 12 . (3.106)
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The first normed term above is zero by the definition of ®; from (3.2). We estimate

the second and the third terms as we did for ®9. For the third term, we have that

N 412 N
S o, = ¢§‘12 < C€ (3.107)
7=1 j=1 ,o°
for p € IClo, SO
N \Y2 N
—B |01 a9 r—3 a1
e | > o D <e ﬁH@l HLl (3.108)
=1 -1 /1
<Ce" 2, (3.109)

where we used (3.45). As before, we Taylor expand @1 in the second term,

N
B1 - 1012 a9
Z ), ||L1<||Zl(9x Hy(sjle = pjle; 2,1 (3.110)
j=1 J

« (67
<OZ 0r(@ ) sl = pylo7 | 4

(3.111)
N [0
<> 10x(@] )l 700 (3.112)
J=1
ol (3.113)
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with s; € R for each j and again we used (3.43) and (3.44). We deduce that

N

_ [0 « (6% _

IS (@)1 - a; e 2l < 02720 = e, (3.114)
J=1

Together (3.106), (3.109), and (3.113) yield

|R1(®)]] ;1 < Ce™. (3.115)

I,

which establishes (3.95). The asymptotic formula (3.94) for the residual follows by

identifying the leading order terms [J

5



Chapter 4

Linearized Equation and Spectrum

We decompose solutions of (1.1) as

U
=D+ W*(z,1), (4.1)

v

where W* = W + <I_51 and the pulse positions are functions of time p' = p(t). We
are in a sense putting a correction term into our ansatz through the term W*. We

- T
choose &1 = (@171@)172) such that

Lz &1 = 7= R(®), (4.2)



SO

&, = —L-1%- R(®). (4.3)

L is defined in (4.9) as the reduced linear operator frozen at the point p{), and 7 is an
orthogonal spectral projection defined in (5.13). W = (W7, WQ)T is the remainder.

Inserting the decomposition (4.1) into the system (1.1) yields

o> 0Py - . .
— )= R(®)+ LzP1 + L7 P 4.4
Wt+<aﬁ+ aﬁ>p R(®) + Lyby + LW + N (01, W), (4.4)

where the residual R(®) was defined in (3.93) and the linearized operator Lﬁ is

defined as
_ ar1—1 .« _ « a19—1
—L§ + e Pap ol ag12  clapp0] ey 12
L>= (4.5)
-1 —1
ag @21 0y22 0% — 1+ agy®) 21 0522
Up to constants, the nonlinearity is
. [ M@, W)
N(@l, W) f— . 5 (4 6)
No(@1, W)
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where

= _ Baor1— Lol s on | L0112 20 42
Ny (81, W) = P11 00127 wiws + o] o127 Wy

_ —2
+e eIl g 12y (4.7)
z a1 L g1l x| 201 502720 %2
No(Bq, W) =@ ) WiWs + &4, w3
—2
+1 2L e 22y, (4.8)
W O+ W
with | L | = bt
W2* @1’2+W2

4.1 The reduced linearization

To simplify the study of the spectral problem we introduce the reduced linearization

to be:
Ly P —~L{; 0 J11 J19
- - 3
7= = +e : (4.9)
Jo1  L9o Jo1  Log 0 0
where
~ ) N a9o—1
Lyg =05 —T+ag Yy ¢y%*  (x—pj)). (4.10)
Jj=1
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We define the Jo91 component as:
N as1—1 «
Jor =091 Y a0 (4.11)
j=1

The potentials J11 and Jq9 are finite rank projections

a 1.
J1 =o€ @ (25120117 1y (4.12)

at9—1 .
Jig =a1p€T @ (05127 Q1Y) (4.13)

where @ is the N x N diagonal matrix Qj- =4 for each j. From Weyl’s theorem
on the essential spectra of compact perturbations of operators, we know that the

essential spectrum of Lﬁ and f’ﬁ coincide with that of Lflz

O'ess(Lﬁ) = 0'@33( ﬁ) =B = {—6_2]{?2 - EOé,u|k’ € R} . (414)

The difference Lﬁ_ f’ﬁ is large, but it will enjoy the enhanced resolvent estimate
(5.17), since the difference Lﬁ_ Zﬁ has no mass in each window X;j of the partition

of unity:.
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4.2 The point spectrum

Proposition 4.1. The spectrum of L can be broken into three parts: an essential
part B, a part from the point spectrum of E22, and a part controlled by the finite

rank perturbations:

o( ﬁ)c:(BLJap(E22>LJ{Aydmxz-+JvAgn)::o}). (4.15)
The N x N matriz Ny is given by (4.25).

Proof: The following eigenvalue problem defines the point spectrum:

. vy 0
(Ly—A) - . (4.16)
N 0
This expands to
—(L§y + Ny =~ e D0 + Jy9l) (4.17)
(Log — M)W = — Jo1 V1. (4.18)

Now if X\ & oy <E22> U B, then we can invert I~/22 — A in the second equation

Uy = —(Lgg — N Ligy ¥y (4.19)
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Substituting this into the first equation and inverting L‘il + A, we arrive at the

following scalar problem:
Uy =€ ﬁ(Le —i—)\)_l Ji1—J (Z~L —)\)_1J v (4.20)
1 11 11 121522 21) *1- :

Recalling (4.12)-(4.13) we regroup the right hand side into a single, finite rank op-
erator,

— —-1,T
vy =@ w0 ey, (4.21)
where the left and right components of the tensor product are

—

Jy =€ (4.22)

Jr =(a119512Q11 1 - 0412@312_1@22 — )1 QMy. (4.23)
We project (4.21) with ®Jy
ol Uy = Vg (L5 + N1 @ g, (4.24)
and introduce the matrix

NP = - P g (L5 + 0"l (4.25)
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so that the eigenvalue problem reduces to

(I+Ny)® Jp - Wy =0. (4.26)

If I 4 N is invertible, then ®.J;- - W1 = 0 which from (4.21) implies ¥1 = 0, and

from (4.21), we see that W9 = 0.

Conversely if (I + Ny )7 = 0, then setting ®Jr - W1 = ¢ in (4.21) yields

— —-1,T~
vy =P+ (4.27)
- ¥y
Also Uy from (4.19) yields an eigenvector ¥ = for the eigenvalue problem
D

(4.16) for A ¢ op (Lgg) U B.
Hence A € C\ (B U ap(f@?)) is an eigenvalue of L if and only if I + Ny is

invertible [
Proposition 4.2. Fiz Iy > 0. There exists v > 0 such that for all p’ € KZO’
{Re(\) > —v}nN ap(f)ﬁ) = og(P) U T fr (p), (4.28)

where o(y(p) consists of N distinct O(€"") eigenvalues which are in ap(i22). The set

7 fr 15 induced by the finite rank perturbations, and corresponds, up to multiplicity,
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to the zeros of the N equations

RO\ F) = — (an%ﬂ_ L) 7 (4.29)

for all j from 1 to N, where R s an explicitly known meromorphic function on
C\(—o0, —1] given by (4.43). The 1t s are the N eigenvalues of the square ma-
triz 6_6Q9_1G£\V(ﬁ>. Moreover the eigenspace associated to oy is contained, up to
O(€"), within the space

0 0
V = span s . (4.30)

/ /
41 ON
Proof: We define the following reduced self-adjoint operator

= a9o—1
Ly yed = 8% -1+ 0422¢022 (z —pp)- (4.31)

For the pulse separation [y sufficiently large, we can interpret ZQQ as N spatially
disjoint (windowed) operators. We analyze the point spectrum of L kred: We observe
that gb6(m—pk) is an eigenfunction of zk,red corresponding to the eigenvalue A\; = 0.
This follows from the fact that ¢;. solves (2.34). We can also apply the Sturm-
Liouville Theory to this operator. This operator has real point spectrum, and we

can order the eigenvalues. Since ¢6(x — pj.) only has one zero, there is only one
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positive eigenvalue, A, the groundstate whose eigenfunction 1y has no zeros. This
eigenvalue will also be O(1), since (4.31) does not contain an €. Similarly, all negative
eigenvalues will be an O(1) distance from A; = 0, so there exists some v > 0 such
that there are only two eigenvalues of L kored where )‘j > —v, specifically for j =0

or j = 1. The spectrum of each reduced operator satisfies

o (Lyea) € {A1 = 0,70} U (~o0, 1] (4.32)

Now we seek to determine our representation for o fr- We simplify the inversion of
([:22 — A) on Jo1. We write Joq as N well-separated pulses, each localized about

the pulse positions, so the inversion simplifies to

N agy—1-221922
~ -1 a9o—1 = 1 ,«
(Log =N "oy =any Y qp 22 (Lired =M 02 (x — )
k=1
+0(eM). (4.33)
We introduce
—_ ~ — (6%
20— pp) =L peqg — N 10022 (= py.) (4.34)
a99—1 _1,«@
=(d% — 1+ 0998022 (@ —pp) — N 1oy 2@ —pp),  (4.35)
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so that

N

~ _ ao1—1—a91a a99—1)_

(Lyg N Ugy —agy 30 0211 021022/00227 g (o). (4.36)
k=1

Neglecting the near-neighbor interactions between each localized term, and using our

definition of 0 from (2.67) , we may write Jr, defined in (4.23), as

Q _ a1o—1, = _ .
Jr =(a110512QU11 — 1900127 (Log — 3) 7Ly Q¥11)x (4.37)

—1

N
1 a a _
=3y, (an% 2(z — pp) — ag900109 12 (x — pp)Zg(x — pk>> :

k=1
(4.38)

The functions Z(z — py.) decay at an O(1) rate depending on the distance of A to

UQSS(EQQ). Since p € ’CZO’ there exists a minimal pulse separation [ so that the
-1

products ¢312 (x—pj)EO(a:—pk,) and XjEO(:r—pk) are uniformly O(e") for r > 2

when j # k. From (4.25) the (4, j) entry of the matrix N is

_ — (6% _
= — P (a6 12 = ). (£ + N7
_ _ a19—1 — _
+e ﬂqf 1(a12a21¢ol2 (x —p;)Z0(x —p;), (LT + ) 1§j>L2 (4.40)
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Applying (3.80), we have

—B -1 ¢ ajp—1 = N _ -

— P v (a0 2@ —p)) G @ v 00 (a4

[l

™M
)

=
ST

|
[S—y
VRS

T a9 _
a11éy? - 0612042173@)) G +0( o), (4.42)

where we define

R(\) = <50, ¢8‘12_1)L2 . (4.43)

We may represent Ny as
— ein) — —
Ny =—¢ P (a11¢012 - a12a2172(A)> Q' 1aY v o), (4.44)

The condition that I + N has a kernel is exactly (4.29).

Next we address the point spectrum of f)22. We treat this as a regular eigenvalue
perturbation problem. The point spectrum of f/22 consists of clusters of N eigenval-
ues an O(€") distance from Ay = 0 and \(, and also negative point spectrum left of

—v. We label the N eigenvalues near Ay as A ;. for k € {1,..., N}.

Claim 4.1. For every k, Ay j. is not an eigenvalue for our full eigenvalue problem

(4.17) and (4.18).
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Proof of claim: We have, up to O(ez_ﬁ), that

N
Z aj¢6 T — pj S ker(L22) (4'45)
7=1
N
d b jktolz —pj) € ker(Lgg — A0 k) (4.46)
7=1

We can apply Sturm-Liouville to order our eigenvalues. We arbitrarily let )\0’1 be
the ground state, so the corresponding eigenfunction has no zeros. Without loss
of generality, we have that bj’1 > 0 for all j. For /\0’2, without loss of generality
bj72 > 0 for every j except for b N2 which is negative, since the eigenfunction has
exactly one zero. Due to the linear independence of each 5@ = (bl,iv ...,b N,i)T for
t=1,..., N, this argument follows so that if we arrange each Z;,L as a column of the

matrix B, the resulting matrix is nonsingular,
B = (51,...,5N) erV. (4.47)

Consider the possibility that A = A g for every k = 1,..., N is an eigenvalue for

B LAWY AW I AWAWL PAWAW)

MN 0 A AN Ay Aot

Figure 4.1: This illustrates the point spectrum of [:22 that is either positive or near
zero. There are N eigenvalues within O(e”) of both Aj = 0 and \.
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the eigenvalue problem (4.16). From (4.18) we have
(Lgg = Ao ) V2 = —Jo1 V7. (4.48)

If we solve for Wy in (4.17) where J11 and Jy9 are finite rank, we find ¥y is in the
span of (Lﬁl + g k)_lf'i for e = 1,..., N. Thus, it is slowly varying in space. By
the Fredholm Alternative, —J91 ¥ must be orthogonal to everything contained in

ker(Log — )‘O,k)' Then

N
0(67’) =< Z bj7k¢0(w —pj), —J21\I/1 >, (4.49)
J=1
for each k. This is equivalent to
BT = O0("), (4.50)

where for each j,

v; =<dplx —pj), —Jo1 ¥ >. (4.51)
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B is nonsingular, so for each j,

O(") =vj = < ¥yl —pj), —J21¥1 > (4.52)
= < y(z —p;), —a g: w2022 (4.53)
= 0 Pj)s —a21 19 k :

k=1
a91—1 «
= <Yl —pj) —ag1 V14, 21 ¢ 22 > (4.54)
910499
a1 —1=55 a

~ = a1 V(p))e; 2270 <iple—pj), 6y (@ —pj) >
(4.55)

=0(1), (4.56)

since Wy is slowly varying, q; and \Ill(pj) cannot be zero, and g(z — pj) and

¢322(a: — pj) have no zeros. Then we have a contradiction, so )‘O,k cannot be an

eigenvalue for (4.16) for any k]

With the claim proven, we continue proving the proposition. On the other hand,

0
when N = 1, and Ay = 0 are an eigenfunction-eigenvalue pair for our

/
%
system, since Wy = ¢6 satisfies (4.18) for W1 = 0. Also (4.17) is satisfied since
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J12¢6 = 0. We show this below:

Tiadh =a19€ < (6127 g1, ¢ > (4.57)
—apeq@11—a21(a12—1)/(ag2—1) ¢8‘12_1,¢6(x —pp) > (458)

0. (4.59)

For N > 1, the eigenvalue A\{ = 0 breaks into N eigenvalues of size O(e") for
sufficiently large pulse separations. At leading order, the eigenspace associated to

opis V= ker(fj22). This completes the proof of Proposition 4.2[]

4.3 Finite rank spectrum

We have characterized the finite rank spectrum o #p I terms of the matrix Ny (p)
defined in (4.25). The set o fr is the spectrum that moves as the pulse positions
evolve. In order to control the evolution of this finite rank spectrum, we need p € K/
to assure that o fr is bounded in the left-half complex plane away from the origin.
From Proposition 4.1, o fp Occurs only for A\ such that (I + N )\) is singular. For all

p € Ky, we have o fr C C*, where C* is appropriately contained in

c* cc, (4.60)
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so that the matrix (I + N )\) is invertible in a neighborhood of the contour C. More-
over as || — oo along C, ‘(I + NA)’_l — 0. So by the continuity of (I + N}y), for

all p € Ky, there exists C' > 0 such that we have the uniform bound,
I+N5) < (4.61)

for all A € C and all \ to the left of C.

4.4 Adjoint eigenfunction estimates

In this section we develop asymptotic expansions of the eigenfunctions {\Ijk‘}ijvzl
of L that correspond to the algebraically small eigenvalues, and also the adjoint

N .
eigenfunctions ‘II]L that correspond to it
kS k=1

Lemma 4.1. For p € K, where K is defined in (1.13), the eigenspace corresponding

to the algebraically small eigenvalues o is spanned by

U = ’ + O(eh), (4.62)

W,

for k€ {1,...,N}. The space of adjoint eigenfunctions is spanned by the set

N
{(\IJJ{ k,\Ilg k)T}k:—l’ given by (4.80) and (4.70) which satisfy the following esti-
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mate:

H\Iﬂ{,kqu,l T A e (4.63)

for some C > 0 independent of € and p € K.

Proof: The previous proposition implies (4.62). The adjoint operator is given by:

e T
It = +e B , (4.64)
0 I:QQ JIQ 0
where
- o — =
= applef120om 1 o g (4.65)
and
T a19—1 o
Ty =apxlef127 M g & (4.66)
. = EEEAVAS
The eigenvalue problem for Ul = <\I/1, \I/2> is
i vl
-y ' ]=o (4.67)
v}

Since we consider the small eigenvalues near zero we may neglect A\ = O(e’"). We
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have the following two equations:

—15,0] = — g0l — 07wl (4.68)
Lopwh = — Al 0l (4.69)

ince &, i Lt et Y . -
Since qﬁk € ker L9y, we form a basis {(\111 k:’\IJQ k:> }k—l of solutions to LIW¥

where the second component is

T _ 0 —Bi—1 of
W)= e Oi5 T (4.70)

Using the form of E22 and that ¢;. solves (3.3), we reduce to the following

1
0422—1

=1, TPk g
Logbp=—7% 9+

o + O(e"), (4.71)

which follows since I:22¢§€ = (0 and p' € K. This is used to demonstrate the uniform

boundedness of (4.100). Substituting (4.70) into (4.68), we have

‘I’J{k =Ly [J21(9], — 6_5E2_21JI2\I!L€) + 6_@]1[1‘1’];,1{;] (4.72)
=Ly1 /219, + AT e JZT - ‘PL,{J, (4.73)
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where JZT =J; = € and from (4.23),

o _ ~_1.a19—1 .
a7 = <0411<1>212QO‘11 b —a1gJy1 Loy 912 QO‘11> X.

Now we project (4.73) with ®JT, SO

@J) - Lif 1 d) + Pl el el ).

Tyl
®Jl '\II 17]{:

1,k —
If we rearrange terms, we have

+T

— f.o—e R I 1 et A
- Pogl LR ye s vl =esl L7

1k~

So

el vl =1+ N e ] )

where

T__ Bt r—eT
Ny=—e 7@ J) Ly Jp .

Next, we plug (4.77) into (4.73) and factor to obtain

_ _ T _ _
ol =L+ AT e N T e gf L )

B e AT 1 _ /
1+ e PLfata+ N) T e Ly 6
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(4.75)
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(4.77)
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Using the estimate (3.14), we have

11 J21¢k|| 1,1 <€ﬂ|®>Z’-J21¢§€|+62||J21¢2||L1 q), (4.81)
5 Lp
where
(0
Jo16), = ag1qp 2t ¢k22¢ +O("). (4.82)

Due to even-odd parity, this has algebraically small mass so

|® X - Jo16)] = O(). (4.83)

In addition, ||J21¢;€|| 1= O(1), since J21¢§€ is exponentially decaying away from
Lp

.

the pulse positions. Then

LT 10l < Cé. (4.84)
é

Also for (4.80), we use (3.6) and have

—B,—e T T
e Pt nfil < it (485)

HLl

<C, (4.86)
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since J71L is uniformly bounded in Ll Taking the Wg 1 norm of (4.80), we have

_ _ T _ _
e il =+ P a e M) e el @)
5

_ _ T
R ||W1,1||<1+N§> L gl - Ly 8l oo
3

(4.88)
<CE 4 [[(I+N])~ 1||Loo||)/gL € Jo1 ). d (4.89)
<O+ (1 + N]) Y[ oo), (4.90)
since
| [t mdds| < ILTEamofll 11 < Cé (4.91)
6
From (4.61), we similarly have that
1+ N, 00 <C (4.92)
Mo llpee =€ -
and conclude
||x11 A < Cé, (4.93)

mH
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To achieve the second part of (4.63), we use (4.70) and have

w5 = i1 =||e—ﬁi521JIQ\1/§ il (4.94)
=[le” 50412L22 ZX @y 127 1qa11 <l 16 > g1 (495)
Z
—|le” alQZ < \1/1 wéi>1 59 X;®y 12 ! g; Ml (4.96)
<Ce™ 5Z)<\Iflk,£z [zt L )
<ce Pl | glzrwgg 31271 (4.98)

<02, (4.99)

where as a consequence of (4.71) we have that

=1 g12—L _ (T PE g
Log Xi®9 —< 5 %kt

qbk) Xi®y 12 Liow),  @ioo)

which is uniformly bounded in H 10
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Chapter 5

Resolvent and Semigroup

Estimates

In this chapter we generate resolvent and semigroup estimates for our reduced oper-

ator [N’ﬁ' We fix a contour C € C. We define C as

C=CyUC_UC, (5.1)

o _idm
where Cpy = {—E—QH —i—is’s € [—b,b]}, C— = {—ib—l—se 0 ‘3 € [—oo,()}}, and
10T
Cl"‘ = <ib+ SGT‘S € [—00,0] p, for b positive, and independent of €. We pick b
sufficiently large so that (IN/QQ — )\), <i22 — )\), and I + N are all invertible on C.

The contour C is illustrated in Figure 5.1.
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Figure 5.1: This is an illustration of our contour C.

Given F = (f1, f2)T and )\ € C, we examine the resolvent problem

We invert the equation for g9 and have

92 = (Log = N1 (fo = Jo1g1).
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The equation for g7 is
(L% +A- e_ﬁhl) 91— ¢ Phagy =11 (5.4)
If we substitute (5.3) into this and rearrange terms we obtain
(L5 + g1 = 7 (11 = J1a(Lgg = N Va1 ) 91 = —KF, (5.5)

where

KF = f1 = P halloy = 2o (5.6)

Recalling J; and Jp from (4.22) and (4.23), we simplify (5.5) to
(L) + Mgy — ¢ Pal © g g = —KF. (5.7)

If we invert the constant coefficient operator on the left and project with ®Jy, we

have

@Jr gy —€e P @ (L + A)_lJZT ®Jrgy=—®Jr (L5 + N IKF. (5.8)
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Recalling the matrix Ny from (4.25), we write the above as
(I+Ny)@Jr- (LS + NV @dp gy =—0dr - (L5 + NTIKE (5.9)
and inverting we obtain an expression for the projection of gq
@Jr g1 = —(I+Ny) " Ledr (L5 + N IKF (5.10)
If we substitute this into (5.7) and isolate g1, we establish the closed form expression

g = (L5 + 071 (e—ﬁJlT(f +N) e (LY AT - 1) KF.  (5.11)

5.1 Spectral projections

The spectral projection associated to the N-point spectrum o near zero is defined

by

LX)
iU = —{[\Ifj, (5.12)
j=1 (¥}, ¥5)

and the complementary projection is defined as

WﬁU

I— wﬁﬁ. (5.13)
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Recalling || - || x defined in (1.40), we define the associated spectral subset that is

associated to the temporally decaying solutions of the semigroup generated by Eﬁ:

X5={U|Il0llx < oo, m50 = 0}. (5.14)

5.2 Resolvent estimates

Proposition 5.1. For all A on C, I' € Xﬁ, and all p € K, we have the following

resolvent estimates for L,

2— 2—
(- N1y <O ﬁ( 20

e ~1/) (.8
Re(k)) L+ BY (I+Ny) |> (E ||f1||L1+||f2||L2),

(5.15)

1= ey <o (e = Dy )
X = k)| Re(ky) Re(ky) A 11

§
62_6 62_ﬁ 1
i\ R 1T 12y (5.16)
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If in addition the coarse-grained projection of f1 is small, then we have the enhanced

residual estimate

NE =1 FlLy <O 3 o 2l + ORI
e (2 Plex 5.17
+ Re(hy) e|’f1||L%ﬁ+e !®x-f1\+||f2\|L2 . (5.17)
Proof: We have that
: g
L-nTe=| ). (5.18)
92

We apply the ng 1 norm to gy as represented in (5.11) and also use the estimate

(3.6):

<C G
||91||W§, Rely)

2

+C By I (5.19)

1TE(+ Ny "L @ g - (LS +A) ™ KF||L1

From the definition of J; = 5, and the fact that the L1 norm of the components of

¢ are each one, we have

1+ Ny Y g <l Ny, (5.20)
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Contained within ®Jp is (Log — )\)_1 which is uniformly invertible from L2 to H1

for A € C since F' € Xﬁ' So we have:

2

e -1 e -1 €
@ Jr- (L1 +A) T KF < (el (L1 +A) KFHLOOSCWHKFIILL (5.21)

where we used (3.8) and the fact that:

o -1 a19—1, = -1 -
177111 =101 25 2QVITE —ag9@y 12 (Lo = N 91 QYA 1 (5:22)

a19 a19o—1, = _ .
<C||@y 280l 1+ CllDG 2T (Lgg — X)L Xl 4 (5.23)
<0 (1411021271 oli(Egg — N "Ly ¥l (5.24)
= 2 r21l(L22 21X 72 :
<C (141192171 2) (5.25)
<C. (5.26)

Applying (5.20) and (5.21) to (5.19), we have

2

92—
€ € -1
g1l <C (L 4+ N)) 1) [[EF] 1 (5.27)
1 1.1 Re(k’)\) ‘k}\| A Ll

Estimating the right hand side, we have that

1KFI 1 <11l 1+ Pl a(lag = N hll 1 (5.28)
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Furthermore,

1 712(Lag = N fall 1 <12l 2ll(Eag = N fall 1o (5.29)
L L L

<Clifall o (5.30)

Then we have:

ol 11 =0 (S 1) (Bl + i)
€ .
91 Wg,l = " Re(ky) |k)\| A 171 21172
(5.31)
Next we take the H! norm of g9 from (5.3):
llgall ;1 =l1(Laz = N (fa = Jorg1)ll 1 (5.32)
<C(llf2ll ;2 + /2191117 2) (5.33)
<C + . 5.34
(If2ll 2 ||g1||W£1,1) (5.34)

Applying (5.31) to (5.32), and also combining these bounds, we have (5.15).

For (5.16), we again apply the Wg’l norm to gy from (5.11) and then split the
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estimate into two terms:

ol 1,1 IS,y + NP Ny e g (L +A>—1||W1 1

Ve ¢
(LS + A)_lKFHWLl (5.35)
¢
62_ﬁ 1
<CR€( )HJZ (I—FN)\) Q Jp - (L 1—!—)\) KFHLl
I + N TIEF 1 (5:36)
¢

where we applied (3.6) to the first part. Addressing part of this term:

1@ Jp - (L + N TVKF| = < Jr, (LS + A TLKF > | (5.37)
<[Irll 1 IIET + ) LKF|| oo (5.38)
<C||(L§ +NTIKF| 4. (5.39)

We

Bounding JZT term as in (5.20), we have

2—p3
€ —1 e —1
< 1 I+ N L A "KF . 4
loa 1,1_0( S NI |>||< eV R 60
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Using (3.7) and (3.8) we obtain

] 2 2—0
L§1+ N "KF <C|+——7—F—— . (5.41
I KA 1< € sl 1+ g5l |- Ga
We
Combining these estimates, we have
<C ) P T

ol 12 gy (1 i+ 07 = |Hf1H AN

(5.42)

We bound Hg2HH1 as in (5.32) to obtain (5.16).

To obtain (5.17), we examine the case when the coarse-grained projection of fq
is small. The bound on the fo component is the same as in (5.15), so without loss
of generality we consider the case F' = ( fl,O)T. Taking the ng 1 norm of g; as

represented in (5.11), we have

ol 11 =g+ 07 (P TN e e (05 0T ) AL
We 3
(5.43)
<CPNEg + 0T 1l N T e g (2 + 0T A
§

+OWL%;+»—¥ﬁHW§J. (5.44)
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Using (3.15) and the uniform L1 bound on Jr we obtain

|® Jr - (L] +A)7 f1!SHJTHLHI(L%+>\)_1f1|\Loo (5.45)

2
<C @ X f1l+ €||f . 5.46
(\k || |+ € 1|!Lip) (5.46)

From (3.6), we have the bound

2 2

€
(L + 2™ %H 11 < Co |l

wit = et = gy 040

Finally, applying (3.14) to the remaining term,

€ R 9 |kl
g+l 1 0<Rdhﬂ®x¢u+e eyl ) 649

Combining these estimates, we have (5.17) O

We use the previous proposition to obtain the following estimate on (131.

Lemma 5.1. Fix the pulse separation Iy > 0 sufficiently large, then there exists a

constant C' > 0 such that for all p€ K, we have following estimate:

181l < Ce2 0. (5.49)
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Proof: We apply the resolvent estimate (5.15) to the definition (4.3) of Cf;l which

yields

18111y =1Lt (7 (@) l1x

¢ (eﬂu[frﬁoR@muLl g Rl )

Using the residual estimate (3.95), we have

5, R@ll, <IIBU®)Ir, + 1l R@)Iz,

@ g ROl -

However, we have the estimate

(R(@),wl)
—Lwy iy
T) J 1

(), 0

1

<
I
—_

5 B( @)1l

Mz

|| Ry (@ )HLl||‘I’]L]-HLOOH‘I’1,jHL1

7=1

+OZHR2 M p201wh 2119 i,

= |

Cez_ﬁ,

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

which results from our previous residual estimates and adjoint eigenvector estimates.
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Using the residual estimate (3.96), we have

5, R®)l2ll 2, <IIR2(@)I L, + g R@)all,
<P,

since as before

N (R(®) \IJT)
|5, B(®)]all L, —IIZ " Vo llz,

j’ j)

<OZ||R1 19l psl1wa

+cZ\|R2 20198 11 a1 5112,

062_6.

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

Since a + # = 2 — [ from the assumption 1 — «/2 — § = 0, we have our result

15111 < € (P lli7s RO, + 75, R@)allz, ) < €70
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5.3 Semigroup estimates

For fixed p € K, we see from classical results, e.g. [24], since L is sectorial, we can
generate its semigroup from the Laplace transform of its resolvent. With our contour

C, the semigroup S associated to L is given by the contour integral

S(F = /c M= ) LRan, (5.63)

omi

where we assume that F' € X 7 We have the following estimates on the semigroup.

Proposition 5.2. For any ty > 0 there exists C > 0 such that for all p € K,

F e Xﬁ’ and t > t(y the semigroup satisfies

@
IS®FIy <ce” 2 (PNl +11fllL,) (5.64)

Ea Ea
—ut, el
1S()F||x <Ce” 2 (In(e O‘)Ilf1||W1,1+||f2||L2)SC@ 2 (e Y|P x-
(5.65)

If in addition the coarse-grained projection of f1 is small, then we have the improved

estimate

ea
- t —
1S F||x < ce” 2 (eﬁ|®x-f1|+62||f1||L1 +||f2||L2>. (5.66)
Lp

Y
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Proof: Since p' € K and from (4.61), we have that (I + N/\)_1 is uniformly

bounded for all A € C.

For each of the above semigroup estimates, we apply the appropriate resolvent

estimate from Proposition 5.1, which leads to a class of integrals to bound. For (5.64)

we find,
1 .
ISWFIlx Iz [, = Faxl (5.6)
<C [0 = £~ il (5.68)
2—p
ﬁ €
<C (Asllzy + 18Iz, 1M s <1+ = )dA. (5.69)
Similarly for (5.65) we see that
ISWFlx <C [/ 11~ D~ FllxleMjax (5.70)
2—p 2-p B
C At S S )
= Hf1HW£1,1/C\€ |R€(k)\) (H Re(’fA)) 15\
eQ_ﬁ 62_ﬁ
+C||f2||L2/C|e ey <1+ Re(kk)) d. (5.71)
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While for (5.66) we have,

1S(t)Flx <C /C 1= L)~ LE| M jax (5.72)

2-p
2 At €
<Ce”|| 1]l /Ie {1+ dA
iy Je! I Ay

2—13 2-13
Bl v Aty € ¢
+Ce’| @ X f1|/c|e |Re(kA) <1+ N >d)\

2—

At 25
C —dA. 5.73
+ HfQHLQ/C!e ‘Re(/ﬂ) (5.73)
The following claim estimates these integrals:

Claim 5.1. Fiz the contour C as in (5.1), then for all p € IC, there exists C' > 0

such that
23 Mt &
/ Ty <ol B Th (5.74)
¢ Re(ky)
4-283) Mt L
/ < ey <c (6aln(e_a)>e g Mt (5.75)
C [k Re(ky)
4-203) Mt e
/ E—|62|d/\ <C (eoéln(e—@))e ot (5.76)
21 At e
e“le™| —a\  — ot
L <Ol (e @) e 2 (5.77)
/C |l€)\’R€(l€>\) ( >
4-B) Mt &
/ €—|e‘2d>\ <Cln (6—0‘) e TH (5.78)
C |ky|Re(ky)

Proof of claim: The two angled parts of the contour Cl_ and Cl+ are straight-
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forward to estimate, because the exponential decay is dominant as Re(k)y) — —oo.

Our concern is along the vertical part of the contour Cy = ——&2 +is|s € [—b, ] p.

On Cy, we have

itan—1(se=%/p)

k/\:E\/Eau+i5264\/€2aﬂz+52€ 2

Using trigonometric properties,

k| =€ t EQO‘,uQ + 52

1/ —«
Re(ky) = e t 202 + 52 cos (tan (se /M)>

2
— e 202 12 |12 “w
2\/ 52 + €202
For p1 = 0 we have
kAl = ev/ls]
Re(ky) =€ %
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(5.81)

(5.82)

(5.83)
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Applying this to (5.74) we have,

/ 62—ﬁ|6)\t’d/\
Cy Re(ky)

% 0 b
Sel_ﬁe_Tut —/ 3cls%—/ 3als
b\ sl 0\ Isl

et
gCe_Tut\/Eel_ﬁ.

For (5.75), we argue that

/ 64—2ﬁ|6)\t|d)\ _/ €2+a|€)\t| o
Cp 1K) Re(ky) Cy k)| Re(ky)

(5.85)

(5.86)

(5.87)

(5.88)

% b
< CG_T'Mt/
0

o b a
< (Ce T’Mt ¢ ds
0 E20sz2 + g2
«
= C’e_%“t /b ds
O 2 S 2
et <€—a>
% be & z
= Ce_TuteO‘ ds
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S
where we substituted § = —. Then for the integral in the previous line, we have

e

be & z N\ 7be
/ s [smh—l (i)]
0 H/ 10

b —Q
= sinh_1 €
W
—Q
<2In be ,
W

o ATSD

e < —.

for e sufficiently small

This gives us

4-20 Mt e
/C €—|e|d)\ < Ce T Ht <€a ln(e_a)) :

For (5.76), the bound follows as in (5.75), where

4-28) M o
/ e gy < e~ T <ea ln(e_a)) .
C

Re(ky)?

We also have that (5.77) follows like (5.75), so

2 A o
/ Ty < oo TH (),
c [k Re(ky)

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)

The final integral to bound is (5.78). Again following the previous methods we have

116



that

4-B) Mt L
/ €—|€’2dA < ce” T (e (5.100)

With the claim prove, we apply the estimates on these five integrals, which leads
to all three semigroup estimates. Both (5.77) and (5.78) account for the In(e~%) in

(5.65) O
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Chapter 6

Nonlinear Adiabatic Stability by

Renormalization Group

In this chapter we prove the adiabatic stability results in (1.23) and derive the
limiting pulse dynamics in (1.24). We assume at a time t; that our initial data
Uy = (Uy, Vp) ! satisfies

0= (Up, V)" satisfies

100 = @5, l1x <6, (6.1)

for some 0 > 0 and px € K. The following proposition allows us to choose a base

point p(y about which we will develop a local coordinate system.

Proposition 6.1. Fiz § sufficiently small. Given px € K for K defined in (1.13)
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and (70 satisfying the estimate [|Wx||x < 6 for Wy = U_b — i)ﬁ*, there exists M > 0

and a smooth function H : X — K such that p = px + H(Wx) satisfies
WO = UO — (I)ﬁ € Xﬁ’ (6.2)
for Xﬁ defined in (5.14). Moreover, if Wi € Xﬁ for some p € KC, then

|7 — x| < My |[Wl| x [P% — Dl (6.3)

Proof: We may write Uy = @ﬁ* + Wy and Uy = (IDﬁ+ Wy, which implies that
WO =Wk + q)ﬁ* — o (6.4)

p

The equation (6.2) requires that

0= WﬁWO = Wﬁ(W* + (I)ﬁ* — q)ﬁ>’ (6.5)
which is equivalent to solving the system A(f, W) = (Aq,... ,AN)T — 0 where
A5 W) =< Wi + B, — B \IJ}L >=0. (6.6)
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It is clear that

A(p, 0) = 0. (6.7)

We examine the following gradient

1 1
< 8p1®ﬁ,\111 > - < 8qu>ﬁ,\Ifl >

1 1
< Gpl@ﬁ, \I’N > < 3PN<I>17’ \I’N > =i
Using the asymptotic reductions (3.48) and (3.79),
0 23
aqu)ﬁ = + O(e ), (6.9)
/
%]
in L°°. Using (3.47), we have
lop; @1 41,1 = O(L). (6.10)

Also from (3.79),
T

xy;f.(.,pj) = (0(), ¢+ 0(P)) (6.11)
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in L°°. Using these estimates, we reduce (6.8) to
n2 ~H—2 —1 2—
Vihlg—g, wemo = —lI¢112 0@ 2021/ (02271 1 (27F), (6.12)

where @ is the same diagonal matrix as before. From (2.29) in Theorem 2.1, we have
that ¢ is uniformly bounded from zero. Applying the implicit function theorem, we
are guaranteed the existence of a smooth function ‘H : X — K which provides the

solution Wy in a neighborhood about (p, 0).

Also if Wy € Xﬁ for some p € IC, then by definition

< W, qf;(p) ~—0, (6.13)

for all j from 1 to N. By the Mean Value Theorem, there exists 5’ such that

5= 7| [V A7) = [A(5,0) — A%, 0)], (6.14)
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where we have |VﬁA(ﬁ/)| = O(1). Then

P’ — px| <M|A(px, 0) — A(p, 0)| (6.15)
= _'— T 4

M0 < (I)ﬁ* — (I)ﬁ’ \I/](p*) > (616)

=M || <ws, xp}(ﬁg _ \If;[.(ﬁ) > ] (6.17)

since <I>ﬁ>|< — (I)ﬁ = Wy — Wk and WﬁWO = (. Using (6.13), the Hélder inequality, and

the fact that the X-norm controls L>°, we have

N
7= el <M S ) — @)1l oo (6.1)
j=1
N
SIS TGRS (6.19)
j=1

To finish the proof, we use the Mean Value Theorem

[ 19l - wl@lds = [ 15 - 5119 7)o (6.20)

<Cpx — pl. (6.21)
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Redefining our constant, we have (6.3)0

6.1 Projected equations

We start the renormalization group procedure by freezing p' = py in X 5y where

p( is the base point provided by Proposition 6.1. Then we rewrite (4.4), inserting

AL = Lﬁ_ LﬁO’ so that the evolution for the remainder W can be represented as

0P 351 5 7 z b b
(2 280 o+ g, (5 +19) + 0 (5 0) 4 80
(6.22)

where W € X 7 and p'= p(t). To examine AL, we break it into secular and reductive

parts, AL = AsL + Ay L, where

ASL = Lﬁ_ Lﬁo (624)
ArL = LﬁO — LﬁO (625)
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We recognize from the definition of Cﬁl in (4.3) that 7~ L~ (51 = 0, since m> and

PO PO Po
ﬁﬁo are orthogonal projections. Similarly, we have
P -
S 7y = 2
"o op ¥ 0, (6.26)
since
0y . o
5@1 8])] Py J
pi = v (6.27)
Poap T (g wl)
J
L
_1’\IJT.
8pj J ‘
:—T\Ifjpj (6.28)
<\I/j,\11 )
J
9%
=M= —p; 6.29
a —
-2 (Wq @1> B (6.30)
=0 (6.31)

since Wﬁo and LﬁO commute, pj is independent of z, and Fﬁo is frozen, so the

differential term can be removed. We impose the non-degeneracy condition W &

X, which also implies 7> W} = 0, since 7wz is independent of time. Since W €

Py’ PO PO
X o’ by definition we have
> W =0. (6.32)
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Also we have WﬁOLpOW LpOWpOW 0. Projecting both sides of (6.22) by 7 Ty’

and applying the non-degeneracy condition, we have the following N equations:

(6.33)

(am xﬂ)LZ = (R(®)+ AL (&1 + W) + N (&1, W), qz})Lz .

0P
Using the L°C estimate on \I/Jr from (4.63), and (3.47), which assures that 5 L i
7 p,]

O(1) in L1, then for the left side of (6.33) we have
0P -, 7 112 H—2a91/(agy—1) 2\ &
Prel) = (_ 21/ (@22 : 34
(55791) 5 = (<lshi250 ro@)i (630
Then (6.33) is equivalent to

i 5 1
20y (R(®) + ALW + N (@1, W), ¥1) ;2

—[1¢/|125Q227 1 +O(?) | = s ,

(R(®) + ALW + N(@, W), ¥}) o

(6.35)
where W = W + 51. Returning to (6.22), we apply the complimentary spectral

projection. From our definition of 51 in (4.3), we have
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So the evolution is given by

Wi =Rt Ly W+ 75 (AL (W +81) + N3y, W)) (6.37)
W(z,0) = W), (6.38)
- .\ 0D -
where R = —7> 8—417 — —}ﬁ is the temporal component of the residual.
bo \ op op

6.2 Decay of the remainder

In this section we establish uniform estimates on the decay of |[W||y over the du-

ration of each renormalization interval. We introduce the following two quantities:

«
€ _
T = sup e 2P0y (6.39)
t0<8<t
Ty(t) = sup |[p(s) —pp. (6.40)
to<$<t

Applying the variations of constants formula to (6.37), we have

t

W(a,t) = S(t—tO)WO+/ S(t—s) (Rt 75, (AL (W) + My, W) ) ds, (6.41)

to

where S is the semigroup generated by L 7y and we recall the notation W = W+Cf>1.

In order to establish estimates on W in || - || x, we establish the following bounds.
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Lemma 6.1. Fiz ly sufficiently large, then for all p € KC, there exists C' > 0 such

that

I[AsLW 1 <Ce Py (Il x +277)

I[AsLW]al| o <CT3(1) <||W||X + 62—5>
| @ X - [ArL(W + 51)]1| SCEQ_B <||W||X + 62_ﬁ>

AL+ @)l e (Wi +77)
p

Y

AL (W + B)lall 2 <C2F (W1 x +277)

2l
(@1, W)l g <C (W11 +€427)

N (@1, W[ 9 <C (W15 +=27).

I,

(6.42)
(6.43)
(6.44)

(6.45)

(6.46)
(6.47)

(6.48)

Proof: As before, we break AL into secular and reductive parts. We first examine

the secular term AgL:

i —f ajp—l o cagp—1 a9
AsLWlp = Tap (257 255~ P50 P53

—p pM1p12— L _ 5011 g12-1
e a2\ ®p1 O Po.1" 5.2

= ag1—1 _« ao1—1 « ~
[AsLV]y :a21< 21- 15022 _ 5021 22)W1

pl P2 Pl Pp,2

+agg <c1>%21c1>0‘22_1 — 9221 @?22_1) Wo.

pl p2 po.1 P2
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The ®9 terms are rapidly decaying away from each pulse position and ®q is slowly
varying. In particular, the ®9 terms are Lipschitz in p’ with an O(1) constant while
the slowly varying ®; terms are Lipschitz in p" with a small constant. However,
®, always appears multiplied by ®9, and the larger Lipschitz constant prevails. In

particular, we estimate
o o o
12557 = @525l 1 + 119557 = @251 11 < Cl = Ayl (6.51)

Recalling the definition of T5 from (6.40), we have

i =B (1e®11 Lp212 _ g1 15212
AsLWIill 1 <O P (25 @557 = 250 p02!|L1HW1HLOO
pM1gh12—1 g1l go12-1 7
T (e e e PP e
<ce Py (IWllx + 7). (6.53)
where
W1l oo < 1Willpoo + 1121 1]l poo < [[Wilx +Ce* 7, (6.54)

using the bound (5.49). Then we have established (6.42). The estimate (6.43) follows

in the same manner, where
I[AsLW gl 2 < CTy(t) (IWllx +€277). (6.55)
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Next we examine the reductive term. The difference L- — L~ is large, but

PO PO

we are able to estimate this difference with the enhanced residual estimate (5.17).

We choose the reduced linearization so it determines average values over each pulse

region, so the differences of the two operators have little mass over each pulse region.

The reductive term takes the form

~ _ « 1. o
[ATLW]l =€ B <a11®p0111 (I)pé% — J11 po )

— aq] raq19—1
4P (alQCI)pO 1(I)p0 9 — J12(pp )

« 1. « . =
[ArLW]o = (0@1@ 311 q,pgzz - J21(P0)) 41

9] L099—1 agg—1 , 7
+a99 CI) 1(1)]902 Z¢ l‘—pjjo) Wo.

To show the estimate (6.44), we first define
/Xj [ArLW]1dz = £(W7) + R(Wa),

where

- api—lgaig =) 1
S(W =€ Xj Ozll@pol CDP()Q Jll(po) Wldx,

and

a a 1 . x
%(W =€ ﬁ/)(j( 12@ 11@ 12~ J12(p0)) Wde.

0,1 P2
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Next, we expand the potentials J11 and J9 underneath £(W7) and 93(Ws) respec-

tively. For brevity, we only expand the %(WQ) term.

~ _ « « 1 «
R(Woy) =e ﬁalQ/Xj D 0111(1)])522 _Z/Xj p(}22 q 11W2dz§j dx
(6.61)
_.—B a] go12—L o a1 [ @121
=e Pajg XJCIDpO 1<I> 502 de qj X]<I)ﬁ072 Wodx |,
(6.62)

since each £j is mass one, and X windows all £ to zero except for k = j. Now we
Taylor expand ®1 at each pulse location and use the fact that 0, ®1 = 0(62_6 ) in
LOO

near each pulse position. Again, for brevity, we continue with only the QR(WQ)

term:

015 - 1 6100 (8570 0 o -1,)) 5050

e_ﬂanq?ll/xj@gl’%_ Wodzx (6.63)
<Ce 5/X]ax (® 11)(p)(p0’]—pj)<1>‘3‘.122 1W2dx (6.64)
<O Oy ® %l 1 Wl oo (6.65)
<ce P (wix +270) (6.66)
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We have that
1@ ¥ [ArL(W + 39)]y| < 02 (||W||X + 62—5) . (6.67)
Next we bound (6.45),

o 1.«
IALIV I, <Ce 5||(a11<1> 1171012 J11(p0)) |

1
Lp P01 P02 LLA
1
ce P N1l %127 _ W 6.68
+0e ) (arpgl 03137~ 1a(0) gy - (068

Since both terms follow similarly, for brevity we examine the first term:

N

o 1 « . ~ _ -

C | (a1 ad1S — ) ) Will,y <0 Y DT, (669)
Lp '

where we notate

T = [y . ajp—lgagg =\ 1
Dj() = [ 10+ 1o = pyl) (ann gy 8513 ) ) Wilde. (6:70)
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Under the summation for any j:

(G , o neMl Tl g12 5
Dj(1) < [ xjl(1+ be =y gt~ @121 o
a1 agp—ls
+ [ X1+ 2 =pi) Y [ xi®y g, Widz§;dx (6.71)
, o neXMlTlga12 %
§C||Xj(1+|$ p]D(I)ﬁo,l (I)ﬁO’QHLlHWlHLOO
a ~
4Ol 85 21 1 Wl oo [ 1L+ 1o = pjg;ldo (6.72)
<c (Iwllx +e77), (6.73)

where the linear growth term (14|z—p j |) is dominated by the exponentially decaying

terms in each norm. Connecting the previous estimates we have:

IALrOV +8 1)l < ce P (Iwiy +e79). (6.74)
7p

Finally, we bound (6.46)

II[ALrVV]QIILQ < I(W) + J(Wo), (6.75)
where we notate
TN ag1—1 agg S\
1071) = ooy (3210523 — 1oy () ) Wl (6.70
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and

« a 1 o 1 ~
J(Wy) = llagy | @524 0555 qu 22 e —pjo) | Wall ;2. (6.77)

For the first term, we again Taylor expand ®{ underneath the summation:

N N
~ « 1 o ao1—1 « ~

I(Wy) =[] | ag1® 0211 Z¢j22+0(er) —04212%-21 ¢j22 Will; 2
J=1 J=1

(6.78)
« 1 o ~

<c| Zax( 271) 66 (g - y) 6522 | Wl (6.79)
ao1—1 N 99 ~

<ctior (#7271 ) ligooll 32 (5~ y) 652274l (6.50)

j=1
Ce> 01| oo (6.81)
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Now we bound the other term again Taylor expanding ®1 about the pulse location:

N
« o 1 —« a9o—1 1) =+
J(Wo) =l | @524 Z¢ 27 M N 0P | Wl (6.82)
j=1
@] 2—f3 N
agg—194; +0(e ) aoo—1\ -~
= Z¢ 22 G~ 2 %02 | Wallz  (6:83)
7 j=1
« 1 ~
Ce?™ ﬁHZ¢ 270 L2 lWall oo (6.84)
ce2=P (||W||X +e2—5> . (6.85)

This gives us the following estimate:

AL (W + 8ol 2 < C275 (Wl +E277). (6.86)
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We estimate the first estimate on the nonlinearity in (6.47),

- _ at1—1._a19—1 ~ -
N1, W)l 1 <Ce P01 0127 Wi il 4

— « @19—2.5.9

_ a11—2 .19 .~
+0e P 1 <I>21QW12\|L1H (6.87)

<Ce P (Il oo lWall oo + IWallF o0 + [IW]F.00) (6.88)

<o =0 w13 (6.89)
<Ce 0 (W5 + 18] Lx W ILx + 116111% ) (6.90)
<c P (W% + 181 ) (6.91)
<Ce2—h (HWH?X + 64—25) . (6.92)

The next estimate follows in the same manner

N (@1, W)l 2 < C (I +427) 0 (6.93)

Then with these estimates, we have the following corollary.

Corollary 6.1. Fuiz Iy sufficiently large, then for all p € K, there exists C' > 0 such
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that

150 ) (75 ALV ) 1 <CTy(e” 207 (w1 +27) (c.09)

Y
150 — 5) (7, Ar LIV Il <o~ Thl=8) 20 (IWlix +%)  (695)

150~ 5) (7 N (@17 1 e G (1% +42%). (6.96)

Proof: The estimate (6.94) is achieved by using the semigroup estimate (5.64)

and the estimates (6.42) and (6.43), where

3 € } 5
15— 8) (7 AL ) Ly <Ce™ T (Blaseimy )1 +1IAsL T 2)

(6.97)

604
<Ce” THI=S) (||W||X + e2—5> . (6.98)

To achieve (6.95), we apply (5.66) and recall the estimates (6.44), (6.45), and (6.46).
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This leads to

~ = —Eaut 16 - =
15(t = ) (75, ArLW ) [1x <Ce 2MF| @ ¢ [Ar LW + &)

_EaMt 2 -
+Ce ZE[[ALr (W + @1)ly[

Lp
o
—& _ut -
+Ce ZH[ALH(W + @)l (6.99)
o
G
<Ce” TH20 (||W||X + 62_6> . (6.100)

We apply (5.66) to (6.96), recalling the estimates (6.47) and (6.48),

10— ) (7p MOV lx <Ce™ T (BUaq il 1 + W07 2)

(6.101)

(6%
€ _
< T HEs) (HWH?X +e4_25> O (6.102)

We return to the previous projected equation in (6.35). The next lemma estimates

terms on the right side of (6.35).
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Lemma 6.2. We have the following estimates for any j:

(Rl,ﬂ’j)ﬁ <ct20 (6.103)
(a2 (81 + W)y, xp}j)ﬁ <c= 2 (Jwy + ) (6.104)
(Vi @y, ), \pij)LQ <c= 0 (% +4729). (6.105)

Proof: For (6.103), we use (3.8) and have
f f 4-2
(R1w] ;) o < B2l Sllo0 < 0et—20, (6.106)

For (6.104), we write AL = AgL + Ay L, and estimate the secular terms first. We

use the estimate (6.42),

(18211, 9] J) o <ALl 19 Sl 00 (6.107)

<Ce2P (||W||X n 62—5) . (6.108)
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To complete the estimate of (6.104), we apply the estimate (6.45),

(18rLWly, ] ) o <ClNARLW] 1119] 110 (6.109)
< P|arL ]| (6.110)

Lp
<0220 <||W||X + 62—5> . (6.111)

To estimate (6.105), we use the estimate (6.47),

(Wi @1, ) o <ING@ Wl 119 11 (6.112)

<Ce2=P (HWH%( + 64_25) 0 (6.113)

Applying the previous lemma and using (4.63) to expand \Ilg j in (6.33), we have

the following equations for the evolution of the pulse position for each j:

(RQ@) +[AL(W + &;)]5 +N2(51,W)7¢9>L2 (1 o 2))

Z') R
J qf20421/<0422—1)||¢/ 12
J 072
+0(4720, 2728 1w 5, 270 1w %), (6.114)

Finally, we prove the following reduced residual estimate:
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Lemma 6.3. There exists C > 0 such that

(6%
- _€ _
15— )75 Rlly < CcZe =), (6.115)

Proof: Using (5.64), we have

o TS (905 0B (6.116)
‘ o\ap") " ap 212 |
5. 2—0 c . . . 3‘51
We assume that p’is O(e ) (we justify this later). First we examine the 57
p
terms, where by the definition of 51,
851 0 -_1
S —— i (n R(D)) 6.117
o5 a5 i (®) (6.117)
1 OR(?)
=—L_ > 6.118
5o (Wpo o )’ (6.118)

where we can pull the differential through the linear operator and the projection

because they are both frozen at p'= p(y. Also, we have

08, .. [ o® b
il DOk 1S o, i) (6.119)



Then using our assumption on the size of p,

ﬂ _’ N _) 8(1_51
II[ 1511||L1+||[ 8ﬁﬂ2llL SZ (€ || 1||L1 ||[%]2||L2)||pj||1;00
(6.120)
<Cé, (6.121)
if for each j from 1 to N:
8(13
<C 6.122
I, 1l (6122)
851 3
— <Ce”. 6.123
||[ap]_]2”L2— € (6.123)
Examining the first of the two inequalities above, and using (3.12):
0P OR(®) _ OR(®)
= < ~ 124
i, il = [ oo oy | Nt S O 7 T | g (6120
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where

OR(®P) ORy(®) OR9(®) _+
- —— < ! ! .
|| 7Tp0 apj ||L1 CHZ(( apj ) 2’1 + apj ’\IJZ,Q \IJZ,1||L1
(6.125)
N
OR1 (D)
<C Y I e ool il
2—1 J
OR9(P)
+OZ|| ;j 12l ol 211954111 (6.126)
1=
02 5’31( ) 332( )
[ 1+ 1,2 (6.127)

By expanding the definition of the residuals underneath the norm above, we have

N

— (6% (6%

Opy, R1(®) =0p;, | LT ®1 +e¢ ﬁE qj11¢j12
j=1

N
+€—ﬁ8pk qum a11)¢;¥12

+€—ﬁapk o {11 Z )12 qual? : (6.128)

Similar to the proof of the residual estimates in Chapter 3, the first term is 0. Since
everything in the third term is smooth and continuous, it follows as in the previous

residual estimates that this term is O(e") for r > 2. The middle term remains, where
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as in the residual estimates, we Taylor expand about Pj (here ! denotes the derivative

with respect to x):

«Q « «Q « / «Q
(@1 =112 = (2 —p) (‘1’1 11) ()0, 12 + hot. (6.129)

Then at leading order,
5 i@an _ 212 %(w —p) (cpo‘ﬂ)/( 16212
P | 21 T4 )9 PE | . Pj)\*1 Pj)?;
(6.130)

o ((:(; — ) (qffﬂ)/ (pk)qbgm) (6.131)

=~ (2711) (o 12
+(@ — py)0py (qD?H)/ (pk)d)ZlQ (6.132)
=) (271) g opt2 (6.138)

By (3.44), we have

a11y/ o a11\/ o _
(@) oy 2111 < 1 (@7 1) gl poolle 2111 < 7P (6.134)
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For the third term in (6.133), we know from (3.79) that in any LP norm
Opp. 01, = —0, + O(27P). (6.135)
Then
(@) ol ool — ) (271 ) 22111 < 02 (6.136)

since the exponential decay in dp e gbzlz dominates any linear growth. For the second

term in (6.132), we use (3.48), so we have

a11y/ « at1y/ «
@ = pp)opg (2111) r)og 21 <10p, (O711) il ool = pr)oy 2111

(6.137)
<0e2P. (6.138)
Combining these estimates in (6.128), we have
10p, B (@)]] ) < Ce. (6.139)
The estimate for the R9 term follows similar to the above, where
10py Ra(@)]] 1 < C27H. (6.140)
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Combining these estimates, we have

OR(®)

2—0
7Ip0 ; 1= Ce (6 )

I I,

1

Then combining these two estimates with (6.125) and (6.124), we have achieved a

stronger condition then (6.122):
0P 3
H[a—hHL1 < CeP. (6.142)

Next we establish (6.123). Using (3.13):

0P OR(®D) N OR(D)
= < e ) 14
I, 1212 = H[m ooy | 02 <00 |y, | Nz (6149
Similar to the previous term
oR®)| | _sm ORL®) ok
175, 5] 2HL2_ ZH o] 1711195 1 1[pool¥s 2l 72
OR9 (D)
+CZ|| . 2l Wl ol Wiall o (6.144)
/[/_
o2 911(®) IRy (®P)
6.145
1=yl + 115 =g (6.145)
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The using (6.139) and (6.140), we have (6.123):

9%,
i, Hall 2 < ¢ (6.146)
J

od
Now we examine the — terms:

o

i : 0®q -,
750 g1 =l1=557 = [poa—'ﬁ]l”Ll (6.147)
< (jrle OZH 131|L1||\111]||Loo||\111,j|r];1
OZ 122 m\L2||w2]HL2||w1,]HL1 (6.148)
0P OPo -
<O+ |77 1+ Ol 20 2 (6.149)
N
0P
SCZ (”ap il +H p]HLQ) (6.150)
N
aq)l 8@2 .
<C Z (I|WIIL1 + ”W”LQ) 191l 00 (6.151)
<o, (6.152)

using (3.47), (3.79), the form of the small eigenfunctions in (4.62), and the estimates

(4.63) on the adjoint eigenfunctions. From (3.79) and (4.62), we have in any LP
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norm,

AP 2-3
2y, . 1
o, 9. +0(* ) (6.153)
Using this, we have
0D, 0Dy - oD -
- — :—_)— - — ]_ 4:
021 - ot 0%g - ot
Tl ol
g:\p P % (827% 1"7) +<aﬁp’ 1) g (6.155)
- 2,585~ T 2,5 >
j=1 j=1 (v2,:93)
N 015 o
_ B oy NP1
= 2009 T T T 2
‘7:1 ( 2’3’ 27J>
N (W, ; — O2=P), ]
2 , P
S (%2 25) a7 (6.156)
OPq - 7
-y op 1) g ; +0(62—5)< 2’9> Ly (6.157)
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Then once again in the L? norm

0P . N (@@1 WT])
H[ﬁ-@ﬁ]?HLQ <|| Z \1/2,j||L2
g J=1 (W2J’W2J>

1,0l )
ooy (25) 7
ﬁ||—]u Q’jHLQ (6.158)

(WQJ’@2J>

(9(1)

a1l ]l ool 12

+9*W%j@mmmﬂwwﬂu2 (6.159)
<cet=h. (6.160)

If we combine these results, we establish this lemma [J

To develop estimates on [[W]|y, we take the X-norm of (6.41) and use the

semigroup estimate (5.65) on the initial term. We obtain

t

(07 «
— & (t—t _ — & p(t—
Wity <ce” 20 ey ¢ [ T s

0
w0 [ THO 2 (1y0) ¢ 279 (274 il )]

(6.161)

where T5 is defined in (6.40). We evaluate the previous line at t = ¢, multiply by

S
e 2 M (t tO), and take the sup over t/ € (tg.t). Recalling the definition of 77 in
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(6.39), we find

<C <|ln [Ty (tg) +/t =01y 1) +65)e%ﬂ(3—t0>ds>
to
t 9 & (t —8)
+C </to 5) Ty(t) + Ty (t)%e 2 0™ gy (6.162)
<C <| ln _a |T1 to) 62_6_& (TQ(t) + 66) G%M(At)>
+C (( —5) AT (1) + € 0Ty (t)2> , (6.163)

where At =t — (). The following lemma allows us to bound 75 in terms of 17, At,

and e.

Lemma 6.4.

Ty(t) < C (2 Pat+ 2 + 013, (6.164)
Proof: Applying the Mean Value Theorem, to the definition (6.40) of T, we find

tn+AL .
To(t) < /too 15(s)|ds. (6.165)

Recalling (6.114), the residual estimate from (3.96), the estimates on [AL(W +

149



51)]2 in (6.43) and (6.46), and the estimate on NQ(él, W) in (6.48), we have

to+At

1y(0) <C [T IRy(@)l| o + Ty )2 10~

A e
+C/:0+ t<T2(t)+e2_ﬁ> (e 70077y (1) 4+ 2 F)as (6.166)

(6.167)
To control Ty, we impose the following constraint on T
el
Ty (t) < — 6.168
1)< o (6.168)

where the constant C', from the right side of (6.167), is independent of p' € I and e,

but may depend upon [, the minimal pulse separation. We will show that the set

} : (6.169)

DO | ™
ik

{t\Tl(t) <

is a forward invariant set under the flow.

Using this constraint (6.168), the e~ *T7(¢)Ty(t) term may be subtracted from
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both sides, and multiplying by 2, we have

Ty(t) < C <e2—5At + 2By ) + Pryt) + A 20Ar+ oy (t)2> .
(6.170)

Similarly, for At satisfying the constraint

Eﬁ_Q
2C 7

(6.171)

we can remove the ¢2— AtTy(t) term and eliminate 75 from the right side of (6.170).

Using Young’s inequality on the AT 1(t) term, that is
Ty (t) = ST 22 (1) = e /21 (1) < © (62 +emoTy (t)2> . (6.172)
we arrive at the statement of the lemma
Ty(t) < Oy (eQ_BAt +peory (t)2> O (6.173)
Applying Lemma 6.4 to (6.163), we obtain

Ti(t) <€ <| In(e™)|Ty (tg) + (2 TFAL + 2 + 7Ty (1) + eﬁ)e%’u(At)>

+C ((e_O‘TI 2+ 2 P+ At)) AT (t) + e ~OTy (t)2) . (6.174)
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To control T, we fix 0 < w < 1 and impose an additional, more exigent, con-

straint on At

2
< L.« —wf .
At< (e ) , (6.175)
so that, in particular
a
€
e THAY o —wB (6.176)
and from (6.168),
AtT] = O (| 1n¢€]). (6.177)

Imposing this condition, and keeping only leading order terms in (6.174) we obtain
Ty(t) < C|lne| <T1 (to) + € + ey (t)2> . (6.178)
The corresponding quadratic equation in r,
g(r) = C|In¢] (Tl (to) + eﬁ) 4 Cllnele %2, (6.179)
has two positive roots 0 < rq < r9 if € is sufficiently small, if

B—a>0, (6.180)
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and if

e~OT (tg)| In €2 (6.181)

is sufficiently small. In light of the assumption that 1 — a/2 — 5 = 0 from (1.20),
then (6.180) implies

a < 2/3. (6.182)

’ g(r)
r = (__'l In El (Tl (tlD) I_|_ El—all-"i)

g(r)=C|Ine| (Ti(tg) +€7?)—r+C|In e|le %2

Figure 6.1: This illustrates the quadratic function g(r), where either the remainder
starts smaller than r{ and stays small or it begins larger the r9. The middle interval
(rq,r9) is forbidden.

The constraint (6.181) becomes

(6.183)



for C(y sufficiently small, but independent of € and p" € K. Under these conditions,

the smaller root at leading order is
r1 = C|lne| (Tl(to) + eﬁ> :
and the region (rq,7r9) is excluded for T (¢). In particular if
T (tg) <71,

then

Ty(t) <rq,

for At satisfying (6.175). In particular
Ty(t) < Clinel (Ty(tg) +¢7) |
which in terms of W, for At exactly satisfying (6.175), becomes

Wl < ce? (Wl +¢7).

(6.184)

(6.185)

(6.186)

(6.187)

(6.188)

for any 0 < w < 1 and any t € (tq,tg + At), where the |Ine| term is absorbed in the

@B term by taking w slightly smaller.
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6.3 The renormalization group iteration

We can now iterate the estimates above to an equilibrium, much as in the application
of renormalization group methods to statistical mechanics. We break our evolution
equation into a series of initial value problems. We fix w < 1 and define the renor-
malization times as tn = t,,_1 + At, where At is given in (6.175). On the disjoint
intervals I, = [t,,_1,tn], we have initial data W (tp) € Xﬁn’ with Tl,n and T2,n
corresponding to (6.39) and (6.40). The renormalization group map & takes the
initial data W,,_1 = W(t,,_1) for the initial value problem on I,, 1 and pulse posi-
tions py, 1 = p(t,,—1) and returns the initial data Wy = W (tp) and pulse positions
Pn = Pltn) for the next initial value problem:

W, _ W
& R . (6.189)

Pltp—1) pltn)
This map includes both the evolution under the flow, and a reprojection under Propo-
sition 6.1. The initial data and the new base point py are obtained from W (t,, ),
the right end point of the evolution of W over I, 1. This process is illustrated in

Figure 1.1.

To bound the renormalization group map, we must control the secular jump under
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the projection. From Lemma 6.1,

pn = plt) +H (W(t)).

Since W (ty, ) € Xp,, 1, we apply the estimate (6.3), which becomes

|Pn — Dty )| <M [[W ()] | x To(Al)

<My W ()l (7 + 1 (D1 ) W)L

(6.190)

(6.191)

(6.192)

where we applied estimates on T5 from (6.164) and At from (6.175). We decompose

the solution at time ¢y, as

Ulty) = %(tﬁ) + Wity) = @p,) + Wtn).

We can bound the jump of W at each renormalization as

W tn) = Witn)llx =l® 50—y = Py llx
<Clilty) ~ Btn)
vy (F 4ot ) I )lix

<ay (A W) ) W)
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(6.194)

(6.195)
(6.196)

(6.197)



since ® is X-Lipschitz in p. Since e_O‘T12 < 1, the renormalization step is asymp-

totically negligible and we recover the estimate
Wl x < MeP (||Wn_1||X+eﬁ). (6.198)

To control ||W|| x on the long, renormalization group time scale, we may introduce

M1 =M’ (nn + €ﬁ> (6.199)
o =IWollx (6.200)
so that
Wnllx < mn. (6.201)
It is easy to verify that
T — %e(lww, (6.202)

as n — oo for gy small enough. The overall evolution for W may be written as
% '
Wllx <M (e_7“ IWoll x +e(1+w>ﬁ> : (6.203)

for any 0 < w < 1.
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6.4 Long-time asymptotics

After the residual has relaxed into its O (6(1+w>ﬁ > equilibrium layer about the

manifold ®, the pulse dynamics in (6.114) reduce to

<R2((I)) + [AL(W + B1)]g + No(®1, W), ¢})L2

—2a91/(99—1), /12
¢ ||¢>0||L2

pj=- +0(2). (6209

Using (6.175), (6.183), and (6.187) to estimate (6.164), we have

Ty(t) <Cy <€2_6At + 4oy (t)2> (6.205)
<C (eﬁ 2 4@ <| Ine| <T1(t0) + eﬁ>>2) (6.206)
<ce, (6.207)
if
1, «
217
T ¢ 6.208



The above it is more exigent then (6.183), so it is the constraint on [[Wj||x in

Theorem 1.1. We use (6.43), (6.46), and (6.207) to bound the following:

ALWIll o <C (62_5 +T2(t)> (HWHX +€2—ﬁ)

<c(&+wiiy)

SC’ez.
Also for the nonlinearity, using (6.48) we have

N7

So the evolution equation reduces (6.204) to

R (q))v(b/

( 2 ]>L2 L0 (62> _
qf20<21/(0622—1)||¢/ 12
J 02

pj ==
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2 <0 (Wl +20) < o=,

(6.209)
(6.210)

(6.211)

(6.212)

(6.213)



Taylor expanding, we can reduce <R2(<I)), (b;) 2 to

N
AN a1 _ 091\ 092 1
(RQ(CD)» ¢j)L2 = Zzzl <(I>1 —4q; ) CbZ a¢j - (6.214)
/
= ((@?21) (pj)(z - pj)¢?22, qb;-)LQ +0 (62) (6.215)
—ag 8721 (p)) ! (p)) (= —pj)e} 22, cb;)LQ +0(&)
(6.216)

20421(1?21_1@’1 (p}) ((x - pj)czﬁ?”, ¢;~>L2 +0 <€2> . (6.217)

Continuing, we integrate by parts on the above inner product where

AN D) bt S ( 222 /,> (2)
(R2(®)7¢]>L2 =ag1q; % @(py) (2= pj)0;2%.05) o+ 0 () (6218)
a9o+1
= — Oleqj 1P ) agg + 1 + € .
L2
__ . ao—lgr a9l 0(2) 6.220
a99 + 1% 1(p])<b] O\ (6.220)
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ooz —pj)

Substituting the definition ¢ ;(z) =
g i) 221/ (a22-1)

from (3.4), the above expands to

J
/ —a ag1—1 _y a9o+1 2)
(Rg(cb),cbj)LQ :Willq'ﬂ ¥ p)e; 2T +0 <e ) (6.221)
agy—1 _
o/ D)o q;
B 2 J 002 Lo () (6:222)
agy +1 qQé21(a22+1)/(a22—1)
J
agy (ago+1)
- CDll(pj)OQl g1 —1- ago—1 I ||a22—|—1 L0 (€2>
N a9y + 1 qj 0 La22+1 .
(6.223)
Now returning to (6.213), and substituting the above, we have
Ro(®), ’.)
P (R2(®).9 L> +0(&) (6.224)
J —2a91/(92=1) /|12
4 Iégll7 2
ago+l agy(agg+l) = 209
/ =Ll as T/ AL
B T 7 BT (<) (6.225)
a2+l el
0422+1
ooll 5
+1 1
%21 : /L 222 —CI>/1(pj)+O<€2>, (6.226)
02t t legllie 4
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where

a9y (agy + 1) —ajagy — a9y + 2a9q

+2ag1/(agg —1) =ag) — 1+

a9 —1—

a9y — 1 a9y — 1
(6.227)
— -1
—agy — 1+ 021002 7D g o
a9y — 1
=—1. (6.229)
Then we can express the dynamics of the pulse position as
a9o+1
el

a aggtl 1

b= 2J1r 1 L — ) (pj) +0 (2) . (6.230)
22 légll7o 9

We know from (3.44), that Cbll (pj) is 0(62_6) in L, so the above will generate
leading order dynamics. We want to determine a representation for <I>/1 (pj). We

substitute the definition of ¢; (x) from (3.4) into the definition of ®1 in (3.2), where

N
— — [0 (0]
b =L > a e (6.231)
j=1
N
3, — o ag1o « 1) «
— O Yo gfue 12/ (22— )%12(%_%) (6.232)
J=1
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Differentiating the above, we have
N f 1
/ — — - /
P =e 50412L11€ 21 9 602 (x—pj)eplz—pj) |, (6.233)
j:

for 6 defined in (2.67). Then substituting the above, we expand term <I>/1 (pj) in

(6.230) as
1 (p;) = ((P’l(x% 5pj> (6.234)
N p a1o—1
= Pagy [ Y ¢fog 12 qs{),Ll—fapj (6.235)
k=1
N p  a19o—1
—cBagy | 3 qlog 2 6. Golx — ;) (6.236)
k=1
N 1
a19—1 T T2 g
—aqo Zqz%l? gbf)”/ﬂe ¢ vile=pil | (6.237)
k=1

14-a/2
where Gy(z) = 2161_@/26_6 / \/mx’, the Green’s function defined in (2.49).
\/ 2u

We also used the fact that 1—«a/2— (3 = 0. Then continuing the above and integrating
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by parts, we have

N Cd4a)2
] (pj) =19 (Z og12” 1%’\/7# ‘ Vil pJ) (6.238)
k=1
(S0 (002 AN
=\ > qf (% (rc—pm) € J (6.239)
k=1
\/> 1+a/2 Z <¢ 12(; — py), sign(e — p;)e 1+04/2\/ﬁ|x—pj!>
(6.240)
1+a/2
\/;2— Z (¢ 12(5 — py), sign(pg — p)e +a/ \//_L|Pk;—pj|>
L0 (64—%) (6.241)
:\/262_59258612 > z(szgn(pk pjle el \//_ilpk—pﬂ)
k=1
+0 (64_2ﬁ> . (6.242)

Combining this with (6.230) in vector form yields the following representation of the

pulse dynamics:

p=e 0 g+ 0 (62)), (6.243)
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where () is the diagonal matrix of the amplitudes ¢ and the antisymmetric matrix

A(p) is defined componentwise as

a9o+1 )

T a9 Iooll&50+1 75 P N e
2 ago+1 ||¢/ ||2 0
072

‘A/{Zj = 0 k :j
a9o+1
2 a9o+1 H(b/ H2 0 J

J
(6.244)
Then the pulse position dynamics are a function of the amplitudes ¢, where the pulse

amplitudes are a function of the pulse positions p.
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Chapter 7

Future Work

In the future, we would like to investigate a more general system and prove sim-
ilar results. The following list is three natural extensions to the research of this

dissertation.
e Extend the adiabatic stability results for very weak damping, that is for a > %

e Extend the adiabatic stability results for a more general nonlinearity and in-

clude multiple activator components.

e Extend to two space dimensions to investigate the existence of radial spot

solutions and study the interactions of N-spot patterns.

Extending to the case of very weak damping, o > %, requires handling the spec-

trum differently. Our previous methods fail because of a loss of normal hyperbolicity:
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the stable eigenspace becomes too close to the center eigenspace. A methodology
to handle this differently would be to split the essential spectrum into two parts:
(—o0, —p) and [—p, —€Ypu] for p > 0, where the smaller interval is called the nose
of the essential spectrum. One would need to introduce two different spectral pro-
jections, developed as appropriate contour-deformation limits of the resolvent. The
semigroup estimates would also be established as a limit in which the contour of
integration relaxes onto the nose the essential spectrum. A key difficulty in this
analysis would be projecting the essential spectrum off of the nose and assuring that
the spectral projection faithfully captures any embedded eigenvalues, uniformly as

e— 0T,

The second extension would examine a more general nonlinearity. With a general
nonlinearity, the problem could encompass many equations including the regularized
Gierer-Meinhardt equation and the Gray-Scott equation. The goal would be to
unify previous research and new results under one inclusive work. This would offer
a general system that could be used for many specific reaction-diffusion equations.
One could also also pursue the problem in the case of multiple activator components

to achieve similar results.

The third extension would be to prove the existence of radial spot solutions for
a general equation and study their stability properties. One could also examine the

interaction of multiple spot patterns. Here U and V are functions of two space

167



dimensions. Previous results have formally been extended to the two-dimensional
spatial spot problems, including [8], [16], [17], [27], [33], [35], [36], and [37]. Many of
these works include the Gierer-Meinhardt or the Gray-Scott model. In the future,

we hope to rigorously extend similar results to the two-dimensional setting.
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