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ABSTRACT 

Background: Preterm birth (PTB) is a significant cause of neurological or respiratory 

complications and infant death. Early identification of pregnant people at risk for PTB 

enables timely interventions and personalized pregnancy management to prevent 

potential complications. Over the past ten years, the multiracial population in the US has 

experienced significant growth. Multiracial disaggregation has been suggested as a factor 

that could help explain disparities in PTB rates, but it remains unclear whether classifying 

people into granular racial groups helps predict PTB. 

Objectives: This study aims to build four predictive models for preterm birth and to 

investigate which of them are important predictors of PTB across 31 race/ethnicity 

groups that include multiracial identities among nulliparous, singleton birthing people.  

Methods: We used population-based, cross-sectional data from U.S. birth records in 

2019. Medical and socioeconomic factors potentially associated with PTB and 

race/ethnicity groups, including multiracial groups that are available within the first 16 

weeks of pregnancy, were compared between nulliparous, singleton birthing people 

delivering preterm (<37 weeks of gestation) and term (≥37 weeks of gestation). Logistic 

regression with all variables, logistic regression with selected main effect variables and 

two-way interaction variables, Decision Tree, and a Random Forest model were 

employed to build the prediction models. A Random Forest model from an oversampling 

dataset was utilized to assess the relative importance of risk factors. 

Results: 97,555 individuals experienced PTB, and 24,041 were classified as multiracial 

among the analytic sample (N=1,032,465). The ranges of areas under the receiver-

operating-characteristic curves(AUC) of all models with oversampling data were 57. The 

accuracy range of all models with an oversampling dataset was 62 to 65. The mean 

decrease in the accuracy of the importance plot indicated that some multiracial groups 

were important predictors of PTB compared with socioeconomic factors. 

Conclusions: This study's results supported the idea that several granular multiracial 

groups could be considered meaningful predictors of PTB. 
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INTRODUCTION 

 Preterm birth (PTB), which is defined as birth before the completion of 37 weeks of 

gestation (1,2), is the leading cause of infant morbidity and mortality in the world (28). In 

the US, preterm birth affects approximately 10% of live-born deliveries, and recent data 

from the National Vital Statistics System (NVSS) found an increase in preterm birth 

prevalence from 2016 to 2022, even after accounting for variation during COVID-19 (4). 

In addition, infants born prematurely face a heightened risk of immediate health issues, 

including neurodevelopmental disabilities and respiratory and gastrointestinal 

complications, as well as enduring challenges such as cardiovascular and metabolic 

disorders (5). Therefore, identifying risk factors for preterm birth is essential for effective 

early prevention. Early identification of pregnant people at risk for PTB enables timely 

interventions and personalized pregnancy management to prevent potential 

complications. Some proximal factors, including infection or inflammation, vascular 

disease, and uterine overdistension, are suspected to have a relationship with preterm 

birth (3).  

With efforts to identify risk factors, PTB prediction has garnered significant attention in 

recent decades (15,16). According to the American College of Obstetricians and 

Gynecologists (ACOG) clinical management guidelines, it is hard to predict the 

spontaneous PTB of singleton infants in nulliparous people, and there remains 

controversy and uncertainty regarding what screening tests to use (20). For example, 

there appear to be no advantages in using screening tests such as short cervix or 

endovaginal ultrasonography (29, 30). Because of the lack of screening tests, maternal 

demographics like granular race group or socioeconomic factors can become strong 

predictors of PTB in clinical settings. Various risk stratification models have been 

developed based on demographic factors and medical obstetric history (34,35). Since 

these characteristics are readily available, they are easily applicable in clinical practice 

(11).  

One of Healthy People 2030’s objectives is to ‘Eliminate health disparities, achieve 
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health equity, and attain health literacy to improve the health and well-being of all’ (10). 

Race and ethnicity provide one dimension to evaluate health disparities in PTB. For 

example, African American people experience a rate of PTB that is more than 1.5 times 

that of PTB compared with non-Hispanic White women (9.5% vs 14.7%, respectively) 

(41). Additionally, AIAN people experienced higher rates of preterm birth (11.5% vs. 

9.1%) and low birth weight (8.0% vs. 6.9%) compared to non-Hispanic white (NHW) 

infants (42). Although there is a growing body of research on racial and ethnic disparities 

in health outcomes, including PTB, most researchers have studied the health of minority 

monoracial (one race only) groups. A growing demand exists to comprehensively 

understand the health and health outcomes of the multiracial (two or more races) 

population.  

 Over the past ten years, the multiracial population in the US has experienced significant 

growth. According to the U.S. Census Bureau, the number of individuals identifying as 

multiracial increased by 276% between 2010 and 2020, rising from 9 million to 33.8 

million people, and the White alone group decreased by 8.6% since 2010 (9). Multiracial 

disaggregation has been suggested as a factor that could help explain disparities in PTB 

rates (6,12, 22), but studies focusing on the role of multiracial identity in predicting 

preterm birth remain limited. 

Starting in 2016, all 50 states, along with the District of Columbia, Puerto Rico, Guam, 

the Northern Mariana Islands, and the U.S. Virgin Islands, reported race data in 

alignment with the revised 1997 Office of Management and Budget (OMB) standards 

(27). These standards permit reporting of at least five race categories, either as single 

races (i.e., reported alone) or as combinations of multiple races (i.e., more than one race). 

Building upon this change, the 2003 revision of the U.S. Standard Certificate of Live 

Birth allowed the reporting of multiple races for each parent (26). The standards for 

collecting racial information were fully implemented in all U.S. states in 2016, creating 

an environment where multiracial research is more feasible using birth certificates.  

This study aims to build four predictive models for preterm birth and to investigate which 

of the 31 race/ethnicity groups are significant predictors of PTB among nulliparous, 
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singleton birthing people. 
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METHODS 

1 Target Population and Study Sample 

 This study used US nationwide live birth certificates from 2019 provided by the NVSS.  

Observations were included if they were singleton births to nulliparous birthing people 

aged 18-44. The 18–44 age range is used to reflect the natural reproductive age while 

excluding extreme age groups (teenagers and women aged 45 and older) who have a 

significantly higher risk of PTB. Observations were excluded if the number of preterm 

births in each multiracial group was less than 10 or if variables of interest exhibited 

missingness. The analytic sample included 1,032,465 births (Figure 1).  

2 Variables 

 The outcome variable was preterm birth (PTB), defined as less than 37 weeks of 

gestation, estimated as weeks from an obstetric estimate of conception to the delivery 

date. The analyses included 28 variables, 18 of which represented race and ethnicity, and 

10 represented socioeconomic factors or medical conditions that could be risk factors for 

PTB and are available to clinicians for decision-making in the 16th week of pregnancy. 

We use 16 weeks as a reference point because preterm birth prediction models are often 

built using data collected before the first trimester ends (45). The 18 racial/ethnicity 

groups were included among 31 race/ethnicity groups because of the exclusion criteria. 

Racial /ethnic identity were self-reported in the birth certificate dataset. The 10 

socioeconomic factors and medical conditions were included because prior research 

suggests their relationship with PTB and they were included in the dataset (2,19,29,37) 

(Table 1).  

3 Analysis Plan 

3.1 Descriptive study 

 Table 2 presents frequency counts and percentages for all categorical variables. 

3.2 Analytic study 

 To determine which model best fits the data, we created a training dataset comprised of a 

random sample of 80 percent (825,972) of the observed births. The remaining 20 percent 
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of observations were used as the test dataset. We split the data for model evaluation. 

 The oversampling method was used to create models. Oversampling is a technique used 

to equalize the sizes of two groups (those with and without PTB) to help train machine 

learning models more evenly. There was a significant data imbalance because PTB 

occurs in approximately 10% of births. Without the oversampling method, it is hard to 

train PTB’s patterns and decrease the performance of learning algorithms. Therefore, we 

utilized an oversampling method to mitigate the imbalance and improve model 

performance.  

For the first objective, we created four machine learning models. The four statistical 

algorithms compared were: 1) logistic regression model with all variables (logistic 

regression model 1), 2) a logistic regression model with interaction terms (logistic 

regression model 2), 3) a Decision Tree model (DT), and 4) a Random Forest model 

(RF).  The relative performance of the four models in the test dataset was assessed by 

examining overall accuracy, sensitivity, specificity, area under the operating 

characteristic curve (AUC), and balanced accuracy. Accuracy is the number of correct 

predictions over the total number of predictions. Sensitivity is the percentage of true 

positive in a disease. Specificity is the percentage of true negative in non-diseased 

individuals, and balanced accuracy is sensitivity plus specificity divided by 2. Area under 

the operating characteristic curve can be calculated by using the true positive rate(TPR) 

and false positive rate(FPR) at every possible threshold. 

3.2.1 Logistic regression 

 Logistic regression is a widely used statistical method in clinical research to examine the 

relationships between patient characteristics and binary outcomes. These models are a 

specific type of generalized linear model, estimated using maximum likelihood. In 

generalized linear models, the expected outcome is modeled as a function of a linear 

combination of predictor variables, with logistic regression using the logit function (14). 

The logistic regression results provide odds ratios that describe the associations between 

the dependent and independent variables. Additionally, the model generates an estimated 

probability for the outcome, which can be applied for classification and prediction. We 
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used the resulting model for the prediction of PTB.  

 This study included two types of logistic regression models for prediction. Logistic 

regression model 1 included all 28 variables listed in Table 1 as main effects.  The second 

logistic regression included all variables and two-way interactions. A univariable analysis 

was conducted to assess the statistical relationship between each individual, main effects 

variable and PTB, excluding race and ethnicity groups. Variables exhibiting a significant 

relationship with the outcome (alpha ≤0.05) were selected for the final model. Because all 

variables’ p-values were less than the alpha, we included them all.  Spearman’s 

correlations were chosen to evaluate collinearity between variables. Two variables were 

considered correlated when the Spearman’s coefficient was higher than 0.7. No variables 

exhibited correlated relationships. The final logistic model was determined through the 

Akaike Information Criterion (AIC) and a backward stepwise elimination approach, 

where variables with a p-value greater than 0.05 were excluded from the model. All 

variables remained. Finally, two-way interactions between variables with p-values ≤0.05, 

except for the race and ethnicity variables, were evaluated. Of the 45 two-way interaction 

variables assessed, 23 two-way interactions were added to the final logistic regression 

model.  

3.2.2 Decision Tree and Random Forest 

 The third prediction model was a Decision Tree. A Decision Tree is a model developed 

by asking and answering questions about independent variables, where a node represents 

each independent variable. After answering the different questions at each node, the 

algorithm goes to the destination, a leaf, which returns the predicted results. Such a tree is 

fitted by splitting nodes to minimize a particular loss function (17). Hyperparameter 

tuning was used to increase the performance of the Decision Tree (38). Three parameters 

were adjusted in the Decision Tree analysis in this study: complexity parameter, 

minimum observation for splitting a node, and maximum depth of the tree. Through 

cross-validation and grid search, the best combination of complexity parameters, 

minimum observation for splitting a node, and maximum depth of the tree were selected. 

The optimal hyperparameters were chosen based on the AUC metric, which is a helpful 
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measure for evaluating the performance of classification models (13). AUC reflects the 

balance between sensitivity (true positive rate) and specificity (false positive rate) rather 

than just accuracy.  

 Unfortunately, a Decision Tree can have high variance, indicating that its predictions are 

highly sensitive to fluctuations in the training data and thus overfitting. This overfitting 

results in the model capturing noise or random fluctuations in the training data rather than 

the underlying trend, which diminishes its predictive ability. Bootstrap aggregating, or 

bagging, can solve this issue. A bagging method trains multiple trees on different 

bootstrap samples of the same data and then averages these models. This technique 

smooths out the prediction and reduces the variance. We chose a Random Forest model 

as the bagging model, in which Decision Trees are trained with the vital restriction that in 

each step with a new split, only a few randomly selected features become available 

candidates for the split. By aggregating less correlated trees, Random Forest led to a 

possible improvement in variance (17). 

 There were two steps for creating our final classification Random Forest model. First, we 

identified a specific number of trees with bootstrap samples and drew them from the 

training data. Second, the Decision Tree was trained on each bootstrap sample until a 

specific minimum node size that we specified was reached. This second step involved 

randomly selecting m variables that we specified from all the predictor variables, picking 

the best split among these variables, and splitting the node into two according to the best 

split. The predictions of all the trees in the Random Forest get to a prediction for a new 

observation, and a majority vote is utilized to decide on the final prediction (17).  

 Three parameters were adjusted in the Random Forest analysis in our study: the number 

of trees, the number of variables randomly drawn, and a specific minimum node size. As 

for the number of chosen variables, the default in a classification model is the square root 

of the number of variables, so we chose five as the number of variables. The best 

combination of the optimal number of trees and minimum node size was selected through 

cross-validation and grid search. The optimal hyperparameters were chosen based on 

AUC. We chose the mean decrease accuracy as the metric to gauge important figures of a 
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Random Forest. First, it is easy to interpret. For example, if the mean decrease accuracy 

value for a variable called A is 0.3, it means that when the information of variable A is 

removed (i.e., when it is shuffled), the model's accuracy decreases by 0.3 (43). The other 

reason was that the "permutation accuracy importance" measure is an advanced way to 

evaluate variable importance in Random Forests. It works by randomly shuffling the 

values of a predictor variable, disrupting its original relationship with the response 

variable. This disruption leads to a decrease in prediction accuracy, highlighting the 

importance of the variable in the model’s performance (44). 

4 IRB and Statistical packages 

 This research was exempt from IRB oversight because it used publicly available, 

deidentified data, and statistical analyses were conducted using R (v4.4.2 R Foundation 

for Statistical Computing). 
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RESULTS 

1 Descriptive study 

 A total of 1,032,465 birthing people were included in the analysis, of which 97,555 

(9.45%) experienced PTB. Many birthing people were aged between 25 and 29, and they 

were usually born in the US. Birthing people were most often overweight and had private 

insurance. Birthing people also typically visit prenatal care for the first time within 2 

months of the beginning of their pregnancy (Table 2).  

2 Evaluating Preterm Birth Prediction: Methodologies and the Role of Multiracial 

Groups 

2.1 Classification of preterm birth using four methods to identify the best model 

 Table 3 showed the PTB prediction models' accuracy, sensitivity, specificity, AUC, and 

balanced accuracy. Accuracy and AUC from the original dataset had the same value in 

the two logistic regression models and the Random Forest model. The Decision Tree’s 

accuracy was 0.9, similar to other models. Four models using oversampled data showed 

better AUC and sensitivity than four models using the original data. The AUC of the four 

models using the oversampling dataset was 0.57. The accuracy using the oversampling 

dataset was the highest for the Random Forest (0.62, 0.63, 0.62, and 0.65, respectively). 

2.2 Effects of multiracial groups on PTB using a Random Forest model 

 Figure 2 illustrates the ranked importance of variables in the Random Forest model 

derived from an oversampling dataset. Nine race and ethnicity groups had higher mean 

decrease accuracy than insurance type and cigarette smoking before the second trimester. 

Of those nine, five race and ethnicity groups were multiracial (e.g., non-Hispanic Black 

and White, non-Hispanic Asian and White, non-Hispanic Asian and NHOPI and White, 

non-Hispanic AIAN and White). 

 To explore the impact of race on preterm birth probabilities, we created three 

hypothetical observations using the Random Forest model trained on an oversampling 

dataset. The only difference between the three observations was race—non-Hispanic 

Asian, non-Hispanic Black and Asian, non-Hispanic Asian and NHOPI and White—
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while all other variables remained constant. As shown in Table 4, the prediction for non-

Hispanic Asian birthing people indicated no possibility of preterm birth. In other words, 

100% term birth probability. In contrast, for the non-Hispanic Black and Asian birthing 

people, the model predicted a 45.1% probability of PTB despite identical values for all 

other covariates. Moreover, the model predicted a 27.4% PTB for non-Hispanic Asian 

birthing people and non-Hispanic NHOPI and White birthing people.  
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DISCUSSION 

 In this study, we conducted a comprehensive analysis of the determinants of preterm 

birth (PTB) using a population-based, cross-sectional cohort of 1,032,465 people with a 

live birth in the U.S. in 2019, with 28 variables, including sociodemographic factors, 

maternal medical history, and detailed race and ethnicity categories. Using machine 

learning techniques, we established prediction models for PTB and investigated the 

importance of granular racial and ethnic groups. 

 Moreover, this study evaluated the performance of four machine learning models in 

predicting PTB; all except a Decision Tree model had the same accuracy and AUC when 

using the original dataset. However, when using the oversampling dataset, the Random 

Forest had the highest accuracy. Still, the accuracy or AUC’s performance was poor 

across the four machine learning models. One similar study evaluated the clinical 

potential of spontaneous PTB prediction models, and the models’ performances were 

similarly poor (AUC 0.51-0.56) for nulliparous women (39). Generally, a previous PTB 

history is considered the most critical risk factor for a future PTB (40). Indeed, Meertens 

et al. showed that having prior PTB data increases the performance of PTB prediction 

models. Therefore, the lack of previous PTB data in this study could be one reason why 

the predictive ability of our models is much lower, since the target population was 

nulliparous, singleton-birth people. So there is no data about previous PTB for our target 

population. 

 Finally, we identified the order of importance of variables based on results from a 

Random Forest with the oversampling dataset. Among the 28 variables analyzed, non-

Hispanic Black and White, non-Hispanic Asian and White, non-Hispanic Asian and 

NHOPI and White, and non-Hispanic AIAN and White ranked higher than insurance 

types or cigarette smoking before 2nd trimester based on the mean decrease accuracy 

metric. The results of our analysis were similar to a previous study that used 2016-2019 

Medical Expenditures Panel Survey (MEPS) data to predict foregone preventive dental 

care for adults and demonstrated that combining distinct multiracial groups into one 
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group resulted in the lowest model performance among stratified race and ethnicity 

groups (36). Moreover, we used the Random Forest model to create three virtual 

observations to estimate the probability of PTB, holding all other variables constant. We 

estimated that these three observations had substantial racial/ethnic differences in PTB 

probability. Such results would be obscured if aggregated into a single monoracial Asian 

group.  

 This study makes two contributions to the literature. 

 First, several studies demonstrate the importance of race disaggregation for 

understanding many health conditions, such as respiratory diseases or type 2 diabetes 

(7,8,21). Some studies also identify variations in PTB regarding multiracial granular 

categories and show the need for detailed racial/ethnic subcategories (6,12,23). In this 

study, we determined that multiracial groups are essential predictors of PTB. We showed 

that when we use granular race/ethnicity groups to predict PTB, the prediction probability 

changes. Thus, it may be helpful to predict PTB by granular groups. 

 Second, researchers often aggregate multiracial subgroups together due to small sample 

sizes (24).  Two previous studies examining PTB race aggregation used rate comparison 

methods and conventional statistics (6,23). However, we used an oversampling approach 

to balance preterm birth and term birth to avoid the sample size requirements of 

conventional statistics. Moreover, the Random Forest method can handle high-

dimensional data with many variables combined in non-linear fashions to predict 

outcomes or detect new patterns (25). This method can better identify the importance of 

granular racial groups, previously masked due to small sample sizes or data complexity. 

 This study has certain limitations.  

First, we did not conduct subgroup analyses of PTB. Preterm birth can be classified based 

on its etiology or gestational age. In terms of etiology, PTB can be indicated, which 

results from medical intervention due to maternal or fetal complications such as severe 

preeclampsia or non-reassuring fetal heart rate, or spontaneous, which occurs due to 

spontaneous preterm labor or preterm premature rupture of membranes (PPROM). Based 

on gestational age, PTB is further divided into early PTB (birth before 32+0 weeks of 
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gestation) and late PTB (birth between 32+1 and 36+6 weeks of gestation) (31,32).  The 

risk factors of each type of PTB, by etiology or gestational age, could be different since 

the pathophysiology of PTB can differ. If we divide PTB into its subgroups to create a 

prediction model, it is possible that the model's performance will improve. 

 Second, we could not include adequate measurement of relevant socioeconomic or 

medical conditions. We included only the variables that could both be obtained within the 

first 16 weeks of pregnancy (to support clinical relevance of findings) and that are 

included on birth certificates. Other potentially relevant, yet unmeasured, covariates 

include alcohol consumption and previous medical history. Similar to the first limitation, 

adding more variables to the models may further improve the model’s predictive power 

of PTB for nulliparous, singleton birthing people. 

Third, measurement errors may occur. Measurement error is one of the main factors that 

undermine data validity. A previous study found that the sensitivity and positive 

predictive value (PPV) of birth certificate data varied widely across items, ranging from 0% 

to 100% (46), suggesting the presence of inaccuracies that could introduce measurement 

error. We did not explore the impact the measurement error could have introduced into 

this study, but acknowledge its potential role in biasing reported results. 

Fourth, additional machine learning algorithms are available, including diverse 

algorithms, such as the artificial neural network, the support vector machine, the neural 

network algorithm, extreme gradient boosting, and multi-layer perceptron (MLP) (11,33). 

Other machine learning methods might perform better with this data and could be 

explored in future research. 

Lastly, we need to consider what the race/ethnicity category on the birth certificate 

actually represents. Roth discussed the multiple dimensions of race, including racial 

identity, self-classification, observed race, reflected race, phenotype, and racial ancestry 

(47). However, we do not know which of these dimensions people rely on when 

responding to birth certificate questionnaires. There are also some misclassification cases 

between birth certificate data and hospital data (48). Therefore, there is a need to be 

cautious when conducting research that takes race/ethnicity groups into account, as 
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indicated on birth certificates.  
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CONCLUSION 

This study developed four prediction models for preterm birth (PTB) and demonstrated 

that specific multiracial and ethnic groups might serve as meaningful predictors of PTB 

risk among nulliparous, singleton-birthing people. The findings suggest that considering 

granular racial/ethnic identity could enhance the accuracy of PTB risk prediction. 

However, these four models are still hard to apply in a clinical setting. Future 

improvements in these prediction models, incorporating more diverse variables and 

advanced techniques, could better detect possible PTB in clinical settings, enabling more 

personalized and timely interventions for at-risk individuals. 
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APPENDIX A: TABLES 

Table 1. Independent variables 

Number Input variables Conceptualization of 

the variables 

1 Hispanic Yes, No 

2 Non Hispanic American 

Indian/Alska Native (AIAN) 

Yes, No 

3 Non Hispanic AIAN & Asian 

& White (AIAsW) 

Yes, No 

4 Non Hispanic AIAN & White 

(AIW) 

Yes, No 

5 Non Hispanic Asian Yes, No 

6 Non Hispanic Asian & Native 

Hawaiian and other Pacific 

Islander (NHOPI)  (ANH) 

Yes, No 

7 Non Hispanic Asian & White 

(AW) 

Yes, No 

8 Non Hispanic Asian & 

NHOPI & White (AsNHW) 

Yes, No 

9 Non Hispanic Black Yes, No 

10 Non Hispanic Black & AIAN 

(BAI) 

Yes, No 

11 Non Hispanic Black & AIAN 

& White (BAIW) 

Yes, No 

12 Non Hispanic Black & Asian 

(BAs) 

Yes, No 

13 Non Hispanic Black & Asian 

& White (BAsW) 

Yes, No 
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Table 1 (cont’d) 

14 Non Hispanic Black & 

NHOPI (BNH) 

Yes, No 

15 Non Hispanic Black & White 

(BW) 

Yes, No 

16 Non Hispanic NHOPI Yes, No 

17 Non Hispanic NHOPI & 

White (NHW) 

Yes, No 

18 Non Hispanic White Yes, No 

19 Maternal age (1) 18-19 years 

(2) 20-24 years 

(3) 25-29 years 

(4) 30-34 years 

(5) 35-39 years 

(6) 40-44 years 

20 Nativity (1) Born in the U.S. 

(2) Born outside the U.S 

21 Education (1) High school-level 

degree 

(2) More than a High 

school-level degree 

22 Cigarettes snokedbefore 2nd 

trimester 

Yes, No 

23 Body mass index (BMI) (1) Underweight 

(2) Normal 

(3) Overweight 

24 Pre-pregnancy diabetes Yes, No 

25 Pre-pregnancy hypertension Yes, No 
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Table 1 (cont’d) 

26 Insurance type (1) Medicaid 

(2) Private insurance 

(3) Other 

27 Month of 1st prenatal visit  (1) 1-month Visit 

(2) 2-month Visit 

(3) 3-month Visit 

(4) 4-month Visit 

28 Infertility treatment used Yes, No 
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Table 2. Basic characteristics of the analytic population 

Variables Term birth 

N= 934,910  

( ) = proportion of total 

(%) 

Preterm birth 

N= 97,555 

( ) = proportion of total 

(%) 

Age 

18 – 19 years 79,138 (8.5) 10,180 (10.4) 

20 – 24 years 266,841 (28.5) 28,656 (29.4) 

25 – 29 years 280,532 (30) 26,073 (26.7) 

30 – 34 years 221,138 (23.7) 21,318 (21.9) 

35 – 39 years 75,123 (8) 9,242 (9.5) 

40 – 44 years 12,138 (1.3) 2,086 (2.1) 

Nativity 

Born in the U.S. 740,300 (79.2) 78,473 (80.4) 

Born outside the U.S. 194,610 (20.8) 19,082 (19.6) 

High school-level degree 295,986 (31.7) 37,228 (38.2) 

More than a High school-

level degree 

638,924 (68.3) 60,327 (61.8) 

Cigarettes before 2nd trimester 

Yes 54,359 (5.8) 6,914 (7.1) 

Body Mass Index 

Underweight 35,063 (3.8) 4,018 (4.1) 

Normal 434,138 (46.4) 40,256 (41.3) 

Overweight 465,709 (49.8) 53,281 (54.6) 

Pre-pregnancy diabetes 

Yes 6,075(0.65) 2,095 (2.1) 
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Table 2 (cont’d) 

Pre-pregnancy 

hypertension 

  

Yes 14,818 (1.6) 3,869(4) 

Payor at Delivery 

Medicaid 318,412 (34) 39,520 (40.5) 

Private insurance 547,838 (59) 51,358 (52.7) 

Other 68,660 (7) 6,677 (6.8) 

Prenatal Care Visit Timing 

No visit before 16 weeks 108,137 (11.6) 15,303 (15.7) 

 

1-month Visit 52,268 (5.6) 

 

5,855 (6) 

 

2-month Visit 405,069 (43.3) 

 

37,080 (38) 

 

3-month Visit  295,837 (31.6) 

 

29,722 (30.5) 

 

4-month Visit  73,599 (7.9) 

 

9,595 (9.8) 

Infertility treatment used 

Yes 20,020 (2.1) 

 

2,882 (3) 

Race & Ethnicity 

Hispanic 205,153 (21.9) 22,015 (22.6) 

Non Hispanic AIAN 5,514 (0.6) 649 (0.66) 

Non Hispanic AIAN & 

Asian & White (AIAsW) 

90 (0.01) 10 (0.01) 
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Table 2 (cont’d) 

Non Hispanic AIAN & 

White (AIW) 

3,336 (0.36) 338 (0.3) 

Non Hispanic Asian 75,968 (8.1) 6,912 (7.1) 

Non Hispanic Asian & 

NHOPI (ANH) 

460 (0.05) 60 (0.06) 

Non Hispanic Asian & 

White (AW) 

5,163 (0.55) 495 (0.5) 

Non Hispanic Asian & 

NHOPI & White 

(AsNHW) 

524 (0.06) 77 (0.08) 

Non Hispanic Black 110,928 (11.87) 17,699 (18.1) 

Non Hispanic Black & 

AIAN (BAI) 

528 (0.06) 81 (0.08) 

Non Hispanic Black & 

AIAN & White (BAIW) 

638 (0.07) 66 (0.07) 

Non Hispanic Black & 

Asian (BAs) 

624 (0.07) 75 (0.08) 

Non Hispanic Black & 

Asian & White (BAsW) 

230 (0.02) 29 (0.03) 

Non Hispanic Black & 

NHOPI (BNH) 

128 (0.01) 17 (0.02) 

Non Hispanic Black & 

White (BW) 

9,464 (1.01) 1,042 (1.1) 

Non Hispanic NHOPI 1,813 (0.2) 256 (0.26) 

Non Hispanic NHOPI & 

White (NHW) 

522 (0.06) 44 (0.05) 

Non Hispanic White 513,827 (55) 47,690 (48.9) 
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Table 2 (cont’d) 

Values are n (% total) 
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Table 3. Performance of the models when performed on the training data, original and 

oversampling datasets 

Model Measures Original data Oversampling 

Logistic regression 

model 1  

Accuracy 0.91 0.62 

Sensitivity 0.0008 0.50 

Specificity 99.9 0.64 

AUC 0.5 0.57 

Balanced Accuracy 0.5 0.57 

Logistic regression 

model 2 

Accuracy 0.91 0.63 

Sensitivity 0.0002 0.49 

Specificity 99.9 0.65 

AUC 0.5 0.57 

Balanced Accuracy 0.5 0.57 

Decision Tree 

model 

Accuracy 0.9 0.62 

Sensitivity 0.002 0.5 

Specificity 99.9 0.63 

AUC 0.5 0.57 

Balanced Accuracy 0.5 0.57 

Random Forest 

model 

Accuracy 0.91 0.65  

Sensitivity 0 0.47 

Specificity 1 0.67 

AUC 0.5 0.57 

Balanced Accuracy 0.5 0.57 
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Table 4. Predicted probability of preterm birth for three virtual observations 

Observation characteristics Term birth 

probability 

(%) 

Preterm 

birth 

probability 

(%) 

Non Hispanic Asian 

- More than high school education 

- No cigarette smoking before pregnancy 

- Private insurance 

- Age: 30 years 

- Born outside the US 

- First prenatal visit: 3rd month 

- BMI: Normal 

- No diabetes or hypertension history 

- No infertility treatment 

100% 0% 

Non Hispanic Black & Asian  

- More than high school education  

- No cigarette smoking before pregnancy  

- Private insurance  

- Age: 30 years 

- Born outside the US  

- First prenatal visit: 3rd month  

- BMI: Normal  

- No diabetes or hypertension history  

- No infertility treatment 

54.9% 45.1% 
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Table 4 (cont’d) 

Non Hispanic Asian & NHOPI & White  

- More than high school education  

- No cigarette smoking before pregnancy  

- Private insurance  

- Age: 30 years 

- Born outside the US  

- First prenatal visit: 3rd month  

- BMI: Normal  

- No diabetes or hypertension history  

- No infertility treatment 

72.6% 27.4% 
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APPENDIX B: FIGURES 

Figure 1. A snapshot of flow chart for the derivation of the analytic sample 
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Figure 2. Importance figures of a Random Forest model using an oversampling dataset  

 
 


