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ABSTRACT
The nuclear matter equation-of-state (NM-EOS) determines the stability and bulk properties of
nuclear matter, and is thus, directly linked to astrophysical phenomena—e.g., neutron star physics.
Moreover, a tightly constrained NM-EQOS opens an avenue to test and improve nuclear force models.
The NM-EOS is therefore of great interest to the physics community. Recent advances in ab initio
nuclear theory have led to an explosion of nuclear forces amenable to many-body methods that scale
polynomially in time. Some of such methods include Many-Body Perturbation Theory (MBPT),
and non-perturbative approaches: In-Medium Similarity Renormalization Group (IMSRG), and
Coupled-Cluster (CC) theory. Unlike MBPT and CC, the IMSRG has not been applied to study
NM-EOS with realistic nucleon forces. Therefore, we apply the IMSRG to calculate NM-EOS using
multiple realistic forces. To accomplish this goal, we develop a state-of-the-art, high-performant
nuclear matter IMSRG program with access to a multitude of two- and three-body nuclear forces.
We compare NM-EOS obtained from MBPT, IMSRG, and CC to benchmark the methods. And
we observe notable disparities between the methods in symmetric nuclear matter that are due to
non-perturbative physics. IMSRG NM-EOS computations are done at scale, and are therefore,
highly computationally demanding. Consequently, we introduce novel ideas to accelerate IMSRG
computations using Unitary Coupled-Cluster (UCC)-inspired IMSRG generators, and Shanks and
Padé IMSRG extrapolators. We realize that approximate UCC solutions can be used as IMSRG
generators. And, viewing UCC as a nonlinear commutator inversion problem, we realize that UCC
amplitudes are given by a generalized Born series—so long the series converges. Using these
developments, we introduce three IMSRG generators named “Born,” “UCC-Born,” and “Carinae.”
Using the novel generators, we sometimes observe 2—4X IMSRG speedup, particularly when the

IMSRG is slowly convergent.
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CHAPTER 1

BACKGROUND AND INTRODUCTION
“Everything is fine!”

—Periphery

Figure 1.1 Portion of an infinite sea of nucleons happily interacting via nuclear forces.
Nuclear matter is an idealized infinite system composed of N — oo neutrons and Z — oo protons
interacting via nuclear forces without the presence of the electrical force [1]. AlA=N+Z — oo
nucleons are confined in a V — oo volume at a finite density p = A/V. See Figure 1.1 for an
illustration of nuclear matter. The nuclear matter equation-of-state (NM-EOS) is given by E(p)/A,
where E(p) is the total energy of nuclear matter at a nucleon density of p. The NM-EOS is
critically important because of its implications on our understanding of astrophysical phenomena
and nuclear forces. In this chapter, we describe how we can obtain the NM-EOS using a first

principles approach.



1.1 Importance of the NM-EOS

The NM-EOS determines the stability and bulk properties of nuclear matter, such as its response
to gravitational compression. Consequently, it is directly linked to astrophysical phenomena, such
as neutron star physics [2—4]. Neutron stars are primarily composed of neutrons, protons, and
electrons with a ~ 5% proton fraction in their inner crusts and outer cores [5]. Therefore, the
NM-EOS at ~ 5% proton fraction is critical for understanding the bulk properties of neutron star
cores. And the NM-EOS is indicative of possible new states of ultra-compressed matter within the
inner crust of neutron stars [2-5].

Moreover, modern nuclear forces have known deficiencies seen in heavy nuclei (i.e., overbinding
with radii that are too small) that are linked to poor nuclear saturation [6]. A tightly constrained
NM-EOS would, therefore, allow the testing and improvement of nuclear force models to address
these issues [6—8]. The NM-EOS is thus, of great interest to the nuclear physics and astrophysics

community.

1.2 Recent Advances in Ab Initio Nuclear Theory

Ab initio nuclear theory predicts properties of nuclear systems using the most fundamental building
blocks that are accessible to theorists [9, 10]. In this work, we employ an ab initio nuclear many-
body framework to obtain the NM-EOS. This framework is composed of two main parts: we
obtain realistic nuclear forces from Chiral Effective Field Theory (y-EFT) [2,11], then we process
those forces using ab initio many-body methods to calculate many-body observables—such as the
NM-EOS. For a comprehensive review of the ab initio nuclear many-body framework used in this
work, refer to the works of Drischler and Bogner [11], Heiko Hergert [12], Justin Lietz [10], and
Titus Morris [13].

Recent advancements in ab initio nuclear theory have led to an explosion of two- and three-
body nuclear forces from y-EFT that can be used by many-body methods to compute observables
in nuclear systems [2,7,11,12, 14, 15]. Some of such methods include Many-Body Perturbation
Theory (MBPT), and non-perturbative approaches: In-Medium Similarity Renormalization Group

(IMSRG) and Coupled-Cluster (CC) theory. These many-body methods scale polynomially in time
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Figure 1.2 Hergert-plot of ab initio nuclear many-body physics’ progress over the past ~ 25 years
in calculating observables of light and medium-mass nuclei. The exponential scaling methods
include Quantum Monte Carlo (QMC) and the No Core Shell Model (NCSM). These methods are, in
principle, numerically exact but have exponential time complexity as a consequence—Ilimiting their
application to only light nuclei. The polynomially scaling methods are approximate, and can target
medium-mass nuclei. Such methods include MBPT, IMSRG, CC, and the Self-Consistent Green’s
Functions (SCGF) method. The rapid progress starting in 2010 is attributed to the emergence of
soft, and even softer, RG-evolved chiral forces [11]. This figure is obtained courtesy of Heiko
Hergert, Christian Drischler, and Scott K. Bogner [11,12].

(with respect to the size of the single-particle basis), and consequently, have been used to study
medium-mass nuclei [11,12,16]. Figure 1.2 displays the impressive progress of ab initio nuclear
theory in calculating observables of light and medium-mass nuclei over the past ~ 25 years. Unlike
MBPT and CC, the IMSRG has not been applied to study NM-EOS with realistic internucleon
forces from y-EFT. Therefore, the application of the IMSRG in nuclear matter is still in its infancy.
In this work, we develop the IMSRG in nuclear matter using modern chiral forces, thereby bringing

it to the same footing as other many-body methods in nuclear matter.



1.3 Physics and Computational Accomplishments

In this work, we develop a new IMSRG codebase to carry out non-perturbative NM-EOS cal-
culations with realistic internucleon interactions. To perform NM-EOS calculations at scale, we
tackle the computational challenges that limit our achievable A and model space sizes. We subse-
quently calculate NM-EOS at multiple proton fractions using multiple two- and three-body chiral
forces. Lastly, the IMSRG codebase is sufficiently general for future directions such as: NM-EOS
studies with EFT uncertainty quantification, finite temperature IMSRG extensions, and IMSRG

calculations of momentum distributions in nuclear matter.

1.4 Thesis Outline

We introduce the IMSRG in Chapter 2, and detail how it can be applied to study an infinite lattice
of nuclear matter. We subsequently introduce the computer program in Chapter 3 that is used
to perform all nuclear matter IMSRG calculations in this work. And we show the program’s
performance capabilities. In Chapter 4, we calculate and exhibit various NM-EOS using three
chiral forces. Observing the large runtimes needed to obtain NM-EOS using the IMSRG at scale,
we then look towards developing techniques to accelerate IMSRG computations. We introduce
novel physics-motivated techniques to accelerate IMSRG computations in Chapter 5. And in
Chapter 6, we apply established data-driven methods to extrapolate converged IMSRG energies.
This thesis is accompanied by a graphic presentation located in the supplemental materials. The
graphic presentation offers visual explanations of the ideas in this work (some of which are not
included in this written thesis), which may enhance the reader’s understanding. We encourage the

reader to seek it according to their preference.



CHAPTER 2

IMSRG THEORY FOR INFINITE NUCLEAR MATTER

“Sometimes you have to be

willing to accept ‘good

enough’™

—Scott K. Bogner

The In-Medium Similarity Renormalization Group (IMSRG) is a powerful computational tool that
has been used to calculate nuclear structure observables for a wide range of finite nuclei starting
from realistic internucleon forces [12, 16—19]. However, prior to the present work, the IMSRG had
never been adapted to carry out large-scale EOS calculations of infinite nuclear matter starting from
realistic Hamiltontians—it had only been used to perform small, proof-of-principle calculations of
pure neutron matter with the aged and godforsaken Minnesota two-nucleon potential [20,21].! In
this work, we develop a nuclear matter IMSRG program built from the ground up to be performant
and thus, usable for large-scale calculations using modern chiral two- and three-nucleon forces. In
this chapter, we describe the basic formalism of the IMSRG, and how it can be extended and applied
to carry out microscopic EOS calculations of nuclear matter as well as other infinite homogeneous

many-body systems such as the electron gas.

2.1 SRG Theory

The Similarity Renormalization Group (SRG) is the al-Qa’idah (foundation) of the IMSRG. The
SRG performs a sequence of continuous unitary transformations on a given Hamiltonian to con-
struct unitarily equivalent Hamiltonians with desired properties determined by the transformations’

generators. Simply stated, the SRG enables the shaping or manipulation of a given Hamiltonian

'We jest, and hope that the Minnesota force, which has served its role well as a highly simplified (and hence only
semi-realistic) model, is without offense.



while preserving its eigenvalues.> Consider a bare interaction’-*

_ i i v L abalal
H = ZTM apag + —= (2') Z q“ apaqa ar + —— (3') Z pgrstu Gpgdraudas . (2.1)
rq pqrs pqrstu

H is an A-body operator that is truncated at the three-body level. And V® and V) are anti-

symmetrized body-operators. Notice that H is normal-ordered relative to the true vacuum, i.e.,

(0|H|0) = 0
The SRG transforms H via
H(s) = U(s)H(0)U(s)" (2.2a)
Us=0)=1 = H(s=0)=H (2.2b)
U(s)U(s) = U(s)TU(s) = 1 (2.2¢)
1) = 05y = sy (2.24)
dz Es) [ (s), H(s)] (2.2¢)

[23]. Eq. (2.2e) is commonly referred to as the “flow equation.” s is a continuous parameter
that labels the stage of the SRG evolution.> And 7(s) is an anti-Hermitian A-body operator
(17(s) = —n'(s)) that is also truncated at the three-body level. 7(s) is called the generator of the
SRG since it implicitly defines the SRG transformation [24]. Let H(s) = Hy(s) + H,4(s), where
H,(s) and H,4(s) denote the diagonal and off-diagonal sectors of H(s), respectively.® The SRG is
typically used to diagonalize H. To that end, 77(s) is chosen via perturbative analysis of Eq. (2.2¢e)

dH(s)

such that limy_,., H,4(s) = 0. The SRG evolution is then iterated until = 0. Some notable

generators include the White, Imaginary-time, and Wegner generators [24].

2Unitarity in the SRG and IMSRG are theoretically guaranteed. ~However, approximations within each
method—such as many-body truncations for computational feasibility—can break unitarity.

3The two-body and higher-body ranks of H in Eq. (2.1) are typically determined from Chiral Effective Field Theory
(x-EFT) [22].

“The p,...,u subscripts in Eq. (2.1) label single-particle states.

>The flow parameter s, should not be confused with the generic single-particle index s—since the latter will always
be shown as a subscript.

%In the matrix formulation of the SRG, H;(ss) and H,,;(s) correspond to the conventional definition of diagonal and
off-diagonal matrices of H in a given basis, respectively [23]. In this work, the notions of “diagonal” and “off-diagonal”
are kept general. This will be convenient when we employ the minimal decoupling scheme in Subsection 2.2.2.



Although we truncated H at the three-body level, Eq. (2.2e)’s commutator induces many-body

S win

forces above the three-body level in —— dH (S) . If there are A particles in the system of interest,
contain operator ranks up the the A-body level. These induced higher-body operators are not only
computationally troublesome to handle, but can also have important effects on the convergence and
unitarity of the SRG in many-body systems [23]. Therefore, we are motivated to find alternatives
that avoid the explicit handling of such induced higher-body operators. This leads us to the IMSRG,
which we turn to next.

2.2 IMSRG Theory

The IMSRG improves on the SRG by rewriting H = H(0) exactly into a normal-ordered form,

based on a Hartree-Fock reference state—called the Fermi vacuum |®) [24].”

H=EFE + prq : apa 4 Z Lpgrs - ap qa oy . (2.3a)
pq pars
1
+— Z Wogrstu :a;aga:auatay :
pqrstu
1 2 1 3
E = Z Tygng + 3 Z Vq(,;r ngny + 3 Z chrzq,s ngnyng (2.3b)
qrs
3
Jra =Tpq + Z rqr nr + 3 Vp(qurs nyng (2.3c)
2 3
Tpgrs = V2 + Z vlﬁq)t,s, (2.3d)
Wogrstu = V. ¥ parst (2.3¢)
pqrstu pqrstu pgrsiu. .Je

: a'a’ ... aa : denotes the normal-ordered form of a’a’...aa with respect to |®), such that
(®| :a’a’...aa: |®) =0. And np = 0(€epermi — €p) is the occupation of the pth single-particle
state with energy €, embedded in |®) with energy €permi. Since H is normal-ordered relative to
|®), H(s) and 7(s) are likewise normal-ordered relative to |®).® Therefore, the commutator in

Eq. (2.2e) is written to act on normal-ordered operators using Wick’s theorem [16, 19,23-25]. In

"When modeling infinite nuclear matter, f;, = f;; = 0 is guaranteed in Eq. (2.3c) due to momentum conservation
seen in Eqs. (2.15) and (2.17). Therefore, Hartree-Fock conditions on f are automatically satisfied [23].
8See Eqgs. (2.4a-2.4c).



conclusion, the IMSRG solves Eq. (2.2¢e) using a commutator that acts on normal-ordered operators
H(s) and n(s) [16].

By rewriting H into a normal-ordered form in Eq. (2.3), we propagate terms from 7', V(?, and
V3 into their respective lower operator ranks of H. This is the appeal of normal-ordering. If the
target wavefunction |¥), of H is approximated well by |®), we can truncate induced high-body
forces while mitigating the violation of unitarity. Simply stated—for example, the IMSRG allows
the inclusion of three-body forces without explicitly evolving three-body operators [19,23].

In this work, we utilize the IMSRG(2) scheme—meaning that all IMSRG operators and in-
duced commutators are truncated at the two-body level. The IMSRG(2) truncation is employed
because the computational cost needed to store and evolve three-body operators at scale is im-
mense. Additionally, we utilize two normal-ordering truncation schemes denoted “normal-ordered
2NF” and “normal-ordered 3NF.” Within the normal-ordered 2NF scheme, H is truncated at the
two-body level by assuming V® = 0 in Eq. (2.3). Within the normal-ordered 3NF scheme, V) is
preserved in Eqgs.(2.3b)—(2.3e). Consequent to the IMSRG(2) truncation, W is however, discarded
in Eq. (2.3a). Thus, we render the V3 dependence in W, inconsistent with the V(3 dependence
in E, f, and I'. Hence, the IMSRG(2) + normal-ordered 3NF scheme certainly violates unitarity.
Despite this drawback, three-body correlations are still propagated to the lower operator ranks E,
f,and I'.

The IMSRG(2) scales roughly as N°

ocbitals® Where Norbitals 18 the number of single-particle orbitals.

The next level of truncation, the IMSRG(3), is intractable for large scale problems as it scales as

N9

orbitals: TTOWEVeET, recently Stroberg, Morris and He introduced an approximate IMSRG(3) scheme

that captures the dominant three-body correlations and only scales as N7 .
orbitals

[26]. Going forward,
insights from Stroberg et al. [26] will likely improve the handling of three-body correlations in
this work. Lastly, note that the IMSRG(2) + normal-ordered 3NF scheme can also be called the

IMSRG(2) with density-dependent three-body nuclear forces (DD3NF).?

°In Eqgs.(2.3b)—(2.3d), V) enters E, f, and I' with occupation factors (density matrices).



2.2.1 Flow Implementation

Within both normal-ordered 2NF and 3NF IMSRG(2) schemes, H(s), dHLs) " and n(s) are given

ds
byl()

H(s)=E(s) + prq(s) al pdg it 1 Z Lpgrs(s) : a asa,: (2.4a)

pqrs

f(s) I'(s)
dH(s) dE(s) dfpq(s) | Al pgrs(s) St .

= ) = ajag 4 g )~ ajajasay (2.4b)

pq pqrs

1

n(s) = scalar + anq(s) : a;aq D+ 7 Z Npgrs(s) : a;azlasar . (2.4¢)

pq pars

Utilizing Egs. (2.2e, 2.4a-2.4c), and derived expressions for commutators of normal-ordered op-

erators from Hergert ef al. [16], a set of coupled differential equations for the individual body-

pA) o dEG) A6
S

F : 2
€, s g and dd—gs) —called “flow equations,” can be

operator components o

derived [16, 19,23,24].11

dE 1 o
% = Z(”q - I’lr) X g fap + 5 Z NpNgiyitg X Npgrslrspg (2.5a)
Pq pars
df,
f = Z(l + pr]) X Tlprfrq + Zs:(nr - ”ls) X (17” sprq frs']sprq) (2.5b)

1
+ 5 Z(nrnsﬁ, + ﬁ,fzsnt) X (1 + qu) X NiprsLrsiq
rst

drpqrs
ds

—Z 1— rs 771r pqts — ftrﬂpqm)

= Z(l - P ) (nptrtqrs - fptntqrs) (2.5¢)

+ = (1 —ny — l’l,,,) X (npqturturs - pqtuntu”)

\S}

—Z =) X (1= Ppy) X (1= Prg) X ugisTopur -

Note that the flow parameter s, is suppressed in Eq. (2.5) for brevity. The permutation operators P,

and P,,, exchange indices on their operand; e.g., Py X NugrsUtpur = MuptsLigur- And np =1 —n,,.

19The zero-body component of 77(s) does not affect the dynamics of the IMSRG. Since it is has no physical relevance,
it is usually neglected.
""Heinz et al. [19] notably corrected some expressions of three-body commutators from Hergert ez al. [16].



In this work, we chose to instead solve the flow implementation of the IMSRG directly in
Eq. (2.2e)’s form, on the condition that (s) and H(s) are normal-ordered relative to |®). Thus,
we let our highly optimized commutator handle the tensor contractions between the body-operator
components of 77(s) and H(s) seen in the RHS of Eq. (2.5) (see Listing 3.2).

The flow equation is numerically integrated with high-order adaptive ordinary differential
equation solvers to preserve the unitary equivalence between H and H (s). Such high-order solvers
require the storage of multiple solution vectors calculated at different step sizes. The flow imple-
mentation of the IMSRG can therefore be memory expensive, especially in large systems [24]. Also,
the flow equations can become stiff when using potentials with a hard core [23]. Lastly, the flow
equation was specifically engineered to evolve H(s). Therefore, we must simultaneously evolve
other operators beyond H(s) to obtain observables beyond energies [24]. This is prohibitively
expensive since the IMSRG solution vector doubles in size for each additional operator that is
evolved. Observables beyond E (s) may converge at different time scales than E(s). This would
introduce complications in our performance tuning of the IMSRG, since we would like to avoid
storing and evolving operators for observables that are effectively converged. We look towards the
Magnus expansion to cure some of these aforementioned ailments.

2.2.2 Magnus Expansion
We seek to describe the Magnus formulation of the IMSRG, denoted “Magnus-IMSRG,” which
bypasses some issues of the IMSRG flow implementation [24]. Multiplying both sides of Eq. (2.2d)

with U(s), the SRG/IMSRG dynamics can be rewritten

dU(s)
ds

n(s)U(s) = (2.6)

10



If the Magnus expansion is convergent, one can write U(s) = ¢®®) where Q(s) = —Q(s)" and

Q(0) = 0. And Q(s) is obtained by numerically integrating the Magnus series [24]:

Q(s) = ZQM(S) : a;aq D+ % Z Qpgrs(s) - a;a;asa, : (2.7a)
Pq pqrs
dQ(s) < by (m)

= n;m—![sz(s), n(s)| (2.7b)

(m) (m-1)
[Q(s), n(s)] = |Q(s), [Q(s), r](s)] Y1ovms o0 2.7¢)

(0)

|26). 1| =ns). 2:7d)

where b, are Bernoulli numbers of the Ist-kind. Eq. (2.7b) can be integrated with a Ist-order
Euler solver with the benefit of H(s) being unitarily equivalent to H, regardless of errors incurred

in Q(s) [24]."> And the unitary transformed Hamiltonian H(s), is given by the Baker-Campbell-

Hausdorff (BCH) formula
> (m)
H(s) = 20 H(0) e 29 = 3 — [Q(s), H(O)] . 2.8)
~—— =0 m:.
H

In this work, we utilize the minimal decoupling scheme detailed by Jensen et al. [23] to
eliminate all one-particle-one-hole (1p1h) excitations |d)f‘> and 2p2h excitations ‘tbl‘.‘jb > generated
by H acting once on |®).'*> We work in the single reference picture [23]; and the off-diagonal
sectors of H(s) are given by

Hyq(s) = Z (D|H(s) |<I)l“> : aZai D+ % Z <<1>‘H(s)‘d)f’jb> : aZaZajai : +H.c. (2.9)

ai abij
where “H.c.” denotes the Hermitian conjugate of the first two terms in Eq. (2.9). Note that
(D H(s) |<I)§‘> = 0 in infinite nuclear matter—due to momentum conservation seen in Egs. (2.15)

and (2.17) in conjunction with Eq. (2.3c).!* Therefore, |®) is a Hartree-Fock reference state.

2While a nice feature, the built-in unitarity of the Magnus-IMSRG does not permit arbitrarily large errors in
Q(s). This may yield divergent calculations of H(s) that are although unitary, but do not yield physically meaningful
observables.

13 Although we describe the minimal decoupling scheme in this subsection, its use is not restricted to the Magnus-
IMSRG. It can also be applied to the flow implementation of the IMSRG [23].

14The flow equations also preserve momentum conservation.
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Figure 2.1 Schematic of the ground state decoupling of H carried out by the IMSRG(2) within the
single-reference context. H is represented in a basis spanned by Slater determinant |®) and its
particle-hole excitations |<I>l“> In the limit of s — oo, the IMSRG(2) eliminates the coupling of

|®) to |®¢) and ‘QD?]?’ > through H. Since H is truncated at the two-body level in Eq. (2.4a), it can

generate at most 2p2h excitations by acting once on |®). And due to momentum conservation,
H cannot generate 1p1h excitations from |®) in infinite nuclear matter. Consequently, the ground
state energy of H is given by (®|lim;_,., H(s) |®). This figure is obtained courtesy of Jensen et
al. [23].

Figure 2.1 illustrates that so long the ground state wavefunction |‘Pg,s>, of H is approximated well
by |®), we can obtain the ground state energy of H by employing the minimal decoupling scheme.

Consequently,
W) = lim e |) . (2.10)

If the Magnus-IMSRG is convergent—i.e., lim,_,o, H,4(s) = 0, we take the scalar component of

limg_,o, H(s) as the ground state energy of H

Egs = (Ws| H|¥g.) = lim (@] XV He ™ |0) 2.11)
= (®@| lim H(s) |®) = {lim H(s)} = lim E(s).
’ ’ 0-body ’

Therefore, E(s) approximates E, g; and limy_,, E(s) is the ground state energy of H. For brevity

in this work, we sometimes employ the notation: E(o0) = lims_,o E ().

12
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Figure 2.2 Iterative IMSRG(2) approximations to the ground state energy of H for symmetric N =
Z = 66 nuclear matter at density p = 0.11 fm™>. This calculation is done in a model space of size
Nomitals = 3700. We include MBPT(2) correlations AE® (s). Notice that lim_,e AE?® (5) = 0.
Therefore, the IMSRG obviates MBPT(2) correlations as it converges in s.

Figure 2.2 shows iterative IMSRG(2) approximations of the ground state energy. And the zero
temperature (7T = 0) equation-of-state (EOS) is taken as the converged IMSRG ground state energy
per particle E(o0)/A, over various particle densities p. Figure 2.2 includes 2nd-order Many-Body
Perturbation Theory (MBPT) correlations from H(s) to demonstrate that the IMSRG eliminates
said correlations in the limit of s — oo. Therefore, the IMSRG generates a unitary equivalent
H(o0) to H such that 2nd-order MBPT on H (o) is converged [16].

We utilize the Magnus-IMSRG in this work due to its many appealing features.!> By using

a lst-order Euler solver, the Magnus-IMSRG bypasses the needed storage of multiple solution

I5A11 IMSRG results in this work are procured using the Magnus-IMSRG formulation.
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vectors used by high-order solvers [24]. Once limg_,o, Q(s) is computed, it permits unitary
transformations to obtain observables of interest beyond energies [24]. Lastly, similarities between
the Magnus-IMSRG and Unitary Coupled-Cluster (UCC) theory inspire novel IMSRG generators

seen in Chapter 5 of this work.

2.3 Modeling Infinite Nuclear Matter in a Cubic Box
All operators in this work are represented within an infinite matter basis. In this section, we describe

the single-, two-, and three-particle bases—which comprise the infinite matter basis.

2.3.1 Single-Particle Basis

We model nuclear matter following the work of Jensen et al. [23]. All calculations in this work
are performed in a finite 3-dimensional box of volume V = £3 [fm3] with periodic boundary
conditions, containing N identical neutrons and Z identical protons.!® The density of particles in
the box is given by p = A/V [fm_3], where A = N + Z. The single-particle basis is composed of

normalized plane wave states:

—ik-¥

N e
Voo, (1) = X |og) X |75, (2.12)

\a%

——
(&)
loz=1)=1T), [z =0y =11).
=1 =T, l.=0)=1]),

k=0 il < Npmew 7€Z°.

|o;) and |7,) are spin and isospin projection states on the z-axis. 7, = 1 labels proton states, while
7, = 0 labels neutron states. And Npy,x > 0 is a proxy for the upper-bound of momenta k, in the
basis. We work in spin unpolarized systems; therefore, each orbital is at least two-fold degenerate
(e.g., see Table 2.1). Our basis is also isospin unpolarized so long min(N, Z) > 0. If min(N, Z) =0,
we can work in an isospin polarized basis—if we can guarantee that all body-operators built on top

of the basis will conserve total charge. By storing only isospin polarized orbitals, we reduce the

overall basis size by a factor of 2. Furthermore, each orbital 7 (¥), has an associated kinetic
»Y 7502

16We use periodic boundary conditions to model an infinite system. Also, £ denotes the box-size.
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energy €; . . dependent on the nucleon mass m.,

€ = k-k. (2.13)

mr -1 = 938.272 MeV, and m, -9 = 939.565 MeV. And each orbital z//,—{»’o_ﬂz (7), has an associated
occupation number Occ,;’ %Tz—which measures the number of particles located in its respective
orbital. This work is done at zero temperature; therefore, the occupation of all orbitals is binary.

Nmax is used to truncate the size of the single-particle basis into a closed shell structure.!” A
shell is a collection of orbitals with the same momentum norm. And every shell has an associated
modevector norm |7 speyr|| such that ||715hen||2 < Nmax- We choose to either completely fill each
shell with particles, or leave each shell empty. This is done to model the wavefunction when it is
believed to have a closed shell structure. N and Z are magic numbers with sample values: 0, 2,
14, 38, 54, 66, 114, 162, 186, 246, 294, 342, 358, 406, 502, 514, ....'"® And, the total number
of single-particle states in the basis is given by Norpitals = Nholes + Nparticless Where Npoles = A s
the number of occupied orbitals and Nparicles 18 the number of unoccupied orbitals. We include
an example single-particle basis in Table 2.1. Notice, we fill our basis such that all nucleons sit
in orbitals with the lowest possible energies consistent with the Pauli Exclusion Principle. This
is done to model the ground state wavefunction. Thus, the basis contains baked-in information
regarding the overall system’s wavefunction.

Table 2.1 Single-particle basis with Nypitals = 76 containing N = 2 and Z = 14 nucleons in a box

sized £ = 4.308 fm at density p = 0.20 fm™>

Index | Occ | ny | ny | n; | o | 70 | k [fm_l] € [MeV]

0 1 [olo|o|lr]| L] 0000 0.000
2 1 (olo|o|l1T]| 1] 0000 0.000
4 1 [-1lo|o]|11] 1] 1458 | 44.121

Practically, we must truncate the number of orbitals in our basis. This introduces artifacts in our many-body
calculations that we try to minimize using a large number of orbitals.

18Practically, we must truncate the number of particles in our basis. This introduces finite-size artifacts in our
many-body calculations. See Subsection 2.3.3 for how we address this issue.
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Table 2.1 (cont’d)

Index | Occ | ny | ny | n, | o; | 7. | k [fm™!] | € [MeV]
6 | 1 lol-1lo|r| 1] 1458 | 44121
8 | 1 |00 1|11 1| 1458 | 44121
10 |1 [olol 1| 1] 1458 | 44121
2 1ol oly| 1] 1458 | 44121
14 1 [1lololyr| 1] 1458 | 44121
6 | 0 |-1|-1]0|1]1]| 2062 | 88242
18 | 0 |10 |-1|11]1]| 2062 | 88242
20 O |[-1]O0 |1 [ITI7T 2.062 88.242
2 Lo |11 ol 1| 2062 | 88242
2 L0 |0 11| 1| 2062 | 88242
2% | 0 |01 1|11 1] 2062 | 88242
28 | 0 0| 11|11 | 1] 2062 | 88242
30 | 0 o 11|11 |1] 2062 | 88242
32 0 1 [-1]0/[IT|7 2.062 88.242
34 | o 1o ||t 1] 2002 | 88242
36 | 0 1|0 1|11 1] 2002 | 88242
38 | 0 110|171 | 1] 2062 | 88242
40 | 0 |c1lolo| 1] L] 1458 | 44060
2 | o lol-1lo|r] L] 145 | 44060
44 | o Lo o111 ] L] 1458 | 44060
46 0 O[O0 |1 [IT|1{ 1.458 44.060
48 0 O 1]0/[IT|1{ 1.458 44.060
50 0 1 0[O0 [T 1.458 44.060
52 O [ -1]-1]0/IT]|] 2.062 88.121
54 | 0 |-1] 0 |-1]41] L] 2062 | 88121
56 O [-1]0 |1 [IT|] 2.062 88.121
58 O [ -1]1]0/[IT|]!] 2.062 88.121
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Table 2.1 (cont’d)

Index | Occ | ny | ny | n, | o; | 7. | k [fm™!] | € [MeV]
60 | 0 |0 -1|-1|11] L] 2062 | 88121
62 | o o1l 1|11] L] 2062 | 88121
64 | 0 o1 |-1|11| L] 2062 | 88121
66 | 0 0| 1| 1]|11|L] 2062 | 88121
68 0 1 |-1]01T]1 2.062 88.121
70 0 1 [0 |-11T]| 2.062 88.121
72 0 1 {01 [IT]|] 2.062 88.121
74 | o 1|1 lo|r| L] 2062 | 88121

2.3.2 Two- and Three-Particle Bases

The two- and three-particle bases are subsequently built on top of the single-particle basis. The
two-particle basis stores all tuples (p,q) V pq, and categorizes them into blocks that conserve
symmetries of the two-body Hamiltonian. Particularly, two-particle blocks contain two-particle

states (p, g) and (r, s) such that
(12)p + (T2)g = (T2)r + (1), (2.14)
ky+ky=k. +ks Vpgrs. (2.15)
Likewise, the three-particle basis stores all triples (p, g, r) V pgr, and categorizes them into blocks

that conserve symmetries of the three-body Hamiltonian. Particularly, three-particle blocks contain

three-particle states (p, ¢, r) and (s, ¢, u) such that
(Tz)p + (Tz)q +(1)r = (1) + (1)1 + (T)us (2.16)
l;p+l_<)q+l_<)r = l_<)5+l_c)t+lzu Y pqrstu. 2.17)
The two- and three-particle blocks are then used to create block matrices of two- and three-body

operators seen in Chapter 3.'° The two- and three-particle bases also store metadata such as the

number and location of two- and three-particle states for our IMSRG program’s administration.

9The single-particle basis is also used to create one-body operators composed of one matrix block with shape
N orbitals X N orbitals-
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2.3.3 Errors Due to Finite Size and Incomplete Basis Sets

To obtain many-body quantities that are free from finite size and incomplete basis set artifacts, we
must approach the thermodynamic (A — oo and V — oo0) and complete basis set (Norbitals — ©0)
limit [27]. Approaching the thermodynamic limit requires the use of a sufficiently large number of
particles at fixed particle density. Likewise, approaching the complete basis set limit requires the
use of a sufficiently large number of single-particle orbitals. IMSRG calculations with large particle
numbers and basis sizes are computationally expensive. Therefore, we must balance the need to
maximize particle numbers and basis sizes, with constraints from our available computational
resources. Although we do not study how finite size and finite basis errors affect equation-of-state
calculations in this work, we take reasonable measures to reduce such errors. Equations-of-
state are computed in Chapter 4 using A = 66 and A = 132 in pure neutron and symmetric
matter, respectively. This is done following Hagen et al.’s observation that finite size artifacts are
particularly small in pure N = 66 neutron and symmetric N = Z = 66 matter [27].2° Moreover,
we perform IMSRG calculations with large values of Npitals, such that results are obtained within

days using < 1 terabyte memory consumption.

2.4 Summary

We model an infinite lattice of nuclear matter by placing nucleons in a finite-sized box with periodic
boundary conditions. This finite box contains states which form the basis of our calculations.
Nuclear Hamiltonians are thus, represented within the infinite matter basis, and diagonalized using
the IMSRG to extract ground state energies of nuclear matter. Therefore, we can obtain zero
temperature nuclear equations-of-state by computing ground state energies that are normalized to
the number of nucleons in our model (over various nucleon densities). In the following chapter, we

describe the IMSRG program that is used to extract nuclear equations-of-state.

20We only utilize periodic boundary conditions in this work. Following insights from Hagen et al. [27], it might
be lucrative to implement twist-averaged boundary conditions to further reduce finite size effects. We also have the
computational horsepower to perform A ~ 1000 IMSRG(2) calculations—which have significantly less finite size
effects than their A ~ 132 counterparts [27]. However, we believe such calculations might require significantly more
orbitals than their A ~ 132 counterparts—to sufficiently reduce artifacts in our many-body calculations generated by
our use of an incomplete basis. Thus, we consider A ~ 1000 NM-EOS calculations in this work to be preliminary.
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CHAPTER 3

NUCLEAR MATTER IMSRG PROGRAM
““You think too much. Why

not go do something?”

—Donald Fear

We need high performant and reliable codes to achieve our physics objectives. Therefore, we have

developed a C++ IMSRG program (dubbed “SCKY-IMSRG”) that calculates ground state energies

of nuclear matter (NM) with the following features:
1.
2.

7.
8.

1

Carefully designed—yverbose, unit-tested, and sufficiently general for future needs
Compatible with various proton fractions Z/A, and extendable to other systems (e.g., finite

nuclei, e~ gas)

. Based on Eigen C++ library with BLAS, Intel MKL, OpenMP multi-threading, and The

Message Passing Interface (MPI) support”
Optimized for high-performance calculations: ~ 10 hour runtime and < 1 terabyte memory

consumption for A = 132 and Ngpis ~ 3700, without three-body forces

. Integrated with a variety of chiral forces from Drischler et al. [2], including density-dependent

three-body forces
Equipped with canonical and novel generators from Chapter 5
Equipped with Shanks + Padé extrapolators from Chapter 6

Modernized with automated data compilation—file parsing for plots

We detail the most salient components of the SCKY-IMSRG in this chapter.

I'The name SCKY-IMSRG is chosen as a homage to the founders of this project: Yani C. Udiani, Kang Yu,
Christian Drischler and Scott K. Bogner, and the incredible journey we took to complete it.

2 Although available, MPI is not used in this project. Our MPI implementation in the SCKY-IMSRG assumes that
all nodes store all IMSRG operators. Given the high memory demands needed just to do a single large-scale IMSRG
calculation on one node, the use of MPI with multiple nodes is intractable in this project.

19



3.1 SCKY-IMSRG Program Output

Listing 3.1 Example output from the SCKY-IMSRG.

cmd: ./imsrg -N 66 -Z 0 -gen born -rho 0.12 -numshells 1
hostname: Urmum

date (month/day/year): 10/08/2024 : 15:04:23

Warning: EOS_NNPWBASEPATH hasn’t been set.

Warning: EOS_NNEFFPWBASEPATH hasn’t been set.
B L S

overall configuration

B L o

Nttt e e et 66
/450806 060606000000000000080800000000000000060888383600 0
NUMShELlS. ..ttt e e e e e 1
5L 0.12
AR RUER: s cnonooooooaonononnnnnnonanacacaaaaaaonoaa 0
(@S E &0 0 000000000000000000000000000000000000000000 1
USEPH. ..o e e e, 1
DOXDIMENSION. o vttt vttt e e e 3
(B0ac0a0a0a06060606000606068086000000060606000000000000 1
ODE_threshold. ........cuiuieiiiiiininninnnnnnnnns le-06
BESURITEIINCo 0 0 0o onoooo0000000ab00a00a0a000a0000a00000 0
SaVEMISCRESULES . .o v ittt ittt et et e e e narananns 0
EIS¥&0 00 0000000000000 0000000000000000000000000000000 0
DOrNOrder. .. vttt i 5
genRefOrder. . . oo i e et 14
geNTArgOrder. « o vt it i e et et e 14
generator_choice........ocuuiiiiiiiiii i nnranenns 6
ImSTrgRUNCONEIg. oottt et i et e et i e 0
B T3 e Yo J T o 0
A S A Sl 0 0 0o 0000000000 0000A0000000000000000 1
interaction........c.oviiiiiiiiiiianeaas OptimizedN2LO
[NOTIFICATION]: Anti-symmetrized components of all BodyOps will be omitted.
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Listing 3.1 (cont’d)

Neutron number (N): 66

Proton number (Z): 0

Total particle number (A): 66

Neutron fraction (xn): 1

Proton fraction (xp): 0

[NOTIFICATION]: Only storing neutron containing orbitals.

[ACTION]: Generating and populating single particle states (SPS)...

[SUCCESS!]: The single particle basis (SPB) has been constructed.

[UNIT SYSTEM]: Length[fm], Density[fmA-3], Momentum[fmA-1], Mass/Energy[MeV]

[NOTIFICATION]: Using SPB composed of plane waves in a 3-D box with periodic boundary conditions.
Number of shells above max(N,Z) occupied orbits (numShells): 1

SPS obtained using box cutoff: n_x*2 + n_yA2 + n_zA2 <= nmax

Number of single particle states (numSPS): 114

Box size (L): 8.19321271 [fm]

Particle density (A/LA3): 0.12000000 [fmA-3]

Neutron fermi momentum (kfn): 1.53375374 [fm*-1], 302.65099380 [MeV]

Momentum cutoff (kmax): 1.71478881 [fmA-1], 338.37409780 [MeV]

Modevector cutoff: 2 1 0

[NOTIFICATION]: All 66 fermions have the lowest possible kinetic energies consistent with the

exclusion principle.

[NOTIFICATION]: When handling: Two Particle Basis.

The 2-particle basis has been successfully constructed!
Number of stored physical 2-particle states: 6441
Number of blocks in the 2-particle basis: 341

Time taken to create standard basis --- 18.669 --- milliseconds.

[NOTIFICATION]: When handling: A-Body Operator: H

This 0.003973 [GB] HamiltonianOp is populating itself up to at most the 2-Body level.

Time taken to populate HamiltonianOp --- 135.176 --- milliseconds.
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Listing 3.1 (cont’d)

[NOTIFICATION]: When handling: A-Body Operator: H
This ABodyOp is normal ordering itself at the 2-Body level.

Time taken to normal order ABodyOp --- 0.378 --- milliseconds.

[NOTIFICATION]: When handling: A-Body Operator: H

Measuring how much this ABodyOp deviates from its stated hermiticity.
| IH[O]-H[0]*{dag} ||
| [H[1]-H[1]*{dag}|| = 0.000000000000

0.000000000000

| IH[2]-H[2]*{dag}|| = 0.000000000000
| |H-HA{dag}|| = 0.000000000000

[NOTIFICATION]: When handling: A-Body Operator: H

Printing available norms over this ABodyOp’s differing sectors.

[ IH[OT || = 892.54185704
[ |H[1]]| = 316.91701542, ||H[1]_ai|| = 0.00000000, ||H[1](p!=q)|| = 0.00000000
| |H[2]|| = 415.26158947, ||H[2]_abij|| = 111.54291337, ||H[2]_abcj+ijka|| = 258.75293935,

[ I1H[2]_iajb|| = 204.29038345, ||H[2]_abcd|| = 98.37469423, ||H[2]_ijkl|| = 204.04690958

[NOTIFICATION]: When handling: MBPT solver.

Doing many body perturbation theory up to 3rd order.
E_{Reference} / A = (13.52336147,0.00000000)

dE2 / A = (-0.35265909,-0.00000000)

dE3 / A = (0.07796819,-0.00000000)

E_{Correlation} / A = (-0.27469090,-0.00000000)
(E_{Reference} + dE2) / A = (13.17070238,-0.00000000)
(E_{Reference} + dE) / A = (13.24867057,-0.00000000)

Time taken to do MBPT --- 55.860 --- milliseconds.

[NOTIFICATION]: When handling commutator routine.
Constructing particle-hole basis.
Time taken to construct the particle-hole basis --- 40.622 --- milliseconds.

Using mirror block symmetry in particle-hole commutators.

[NOTIFICATION]: When handling: A-Body Operator: Eta

Generating Born generator.

Born series order: 5
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Listing 3.1 (cont’d)

[NOTIFICATION]: When handling: IMSRG ODE Solver.
All 10 needed A-Body operators have been created costing a total 0.043906 [GB].
Time taken to construct operators and commutator --- 208.859 --- milliseconds.

Initiating IMSRG(2) evolution...

Flow (s) E/A (E+DE2) /A (E+DE2+DE3) /A Shanks (1) Pade | |Eta[2]]] | | Gammaod | |
0.00000000 13.52336147  13.22700538 13.26500506 13.22700538  13.22700538  1.52374776  111.54291337
1.00000000 13.23030104 13.23009147 13.23008626  13.23009147 13.23009219 0.05139831  2.33940529
2.00000000 13.23011774 13.23011762  13.23011761 13.23011785 13.23011785 0.00134170 0.04758731

Correlation energy per particle: -0.29324373
Nonperturbativity (smaller is better): 0.40019827

Time taken to perform IMSRG transformations --- 913.521 --- milliseconds.

[NOTIFICATION]: When handling commutator routine.

Printing any existing performance statistics:

Commute(): 35 calls | <duration> = 25.6995 milliseconds | total duration = 899.4820 milliseconds
Commutel_1_0(): 16 calls | 0.0288 % of total duration

Commutel_1_1(): 16 calls | 2.2612 % of total duration

Commutel_2_2(): 32 calls | 0.9749 % of total duration

Commute2_2_0(): 32 calls | 0.1937 % of total duration

Commute2_2_1(): 26 calls | 31.1108 % of total duration

Commute2_2_2(): 29 calls | 65.0163 % of total duration
Commute2_2_2_Ladder(): 29 calls | 48.4970 % of total duration
Commute2_2_2_Ladder()’s DotProd(): 29 calls | 47.5244 % of total duration
Commute2_2_2_Ladder()’s hermitize: 29 calls | 0.4340 % of total duration
Commute2_2_2_PH(): 29 calls | 16.5101 % of total duration
Commute2_2_2_PH()’s DotProd(): 29 calls | 13.9360 % of total duration
PH-Transform: 29 calls | 1.0833 % of total duration

PH-Inverse Transform: 29 calls | 1.4822 % of total duration
Anti-Symmetrization: 26 calls | 0.0002 % of total duration
BornSeriesCommute(): 10 out of 35 Commute() calls | 35.6947 % of total duration
MBPT(2) Commute(): 6 out of 35 Commute() calls | 0.0481 % of total duration
MBPT(3) Commute(): 3 out of 35 Commute() calls | 3.7414 % of total duration
There were 2 Anti-Hermitian commute calls.

There were 33 Hermitian commute calls.

Operators for approximate particle-hole cost a total 0.00824678 [GB].
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Listing 3.1 (cont’d)

[NOTIFICATION]: When handling: Rank 2-Body Operator: 1lst Internal Commutator Temporary
Printing distribution of blocks:

There are a total of 235337 matrix elements.
There are 24 blocks shaped (1, 1)

There are 60 blocks shaped (4, 4)

There are 72 blocks shaped (8, 8)

There are 6 blocks shaped (9, 9)

There are 24 blocks shaped (12, 12)

There are 8 blocks shaped (13, 13)

There are 54 blocks shaped (20, 20)

There are 12 blocks shaped (25, 25)

There are 48 blocks shaped (36, 36)

There are 6 blocks shaped (45, 45)

There are 8 blocks shaped (52, 52)

There are 12 blocks shaped (68, 68)

There are 6 blocks shaped (72, 72)

There is 1 block shaped (113, 113)

Time taken to run entire program --- 1.184 --- seconds.

We include a sample program output in Listing 3.1.> The SCKY-IMSRG is descriptive. For
example, certain class instances are named. This is because the code does runtime checks, and
alerts the user to information unique to each instance. Care is taken to ensure that runtime checks do
not affect the program’s performance. These runtime alerts provide generic information, warnings,
and errors. Alerts with named class instances are incorporated to help developers pinpoint sources
of runtime errors, or worse yet, unusual behaviour. Although mundane, a logging system is
important to give developers runtime debugging tools, in addition to confidence that the program

is working as intended.
3.2 Big Data Management: Parsing IMSRG Outputs
Each IMSRG output contains a trove of interesting data. Moreover, a large amount of IMSRG

output files are created when generating the EOS. It is thus paramount that data are properly

30ne might wonder why MBPT before the IMSRG starts differs from MBPT at s = 0. This is because we employ a
generalized form of MBPT during the IMSRG seen in Appendix H—which depends on the chosen IMSRG generator.
Standard MBPT can be restored using White’s generator.
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labeled, sorted, and accessible to everyone with access to the project. To achieve these goals, the
SCKY-IMSRG is equipped with scripts that label and parse all program outputs, aggregate parsed

data, and plot quantities of interest such as the EOS, performance statistics, and IMSRG flow data.

3.3 Nuclear Forces

The SCKY-IMSRG contains momentum space representations of the One Pion Exchange (OPE)
[28], N2LOgp [27, 29],* and Minnesota [21,23] potentials—implemented directly within a finite
box. Moreover, the SCKY-IMSRG has wrappers to convert free space two- and three-body interac-
tions from Drischler ef al. [2] into their respective box representations (e.g., see Eq. (E.14)). Free
space interactions from Drischler et al. [2] are obtained using the partial wave expansion (PWE).
And the machinery of Drischler ef al. [2] has been validated by comparing matrix elements of the
One Pion Exchange interaction (OPE) summed into a finite box using the PWE from Drischler et
al. [2], to matrix elements of the OPE implemented directly in a finite box—seen in Eq. (D.22).
See Appendices D and E for additional details. Although the PWE is not directly utilized by
the SCKY-IMSRG, we include its derivation for two-body interactions in Appendix E. We hope
that Appendix E clarifies the derivation of the PWE given by Jensen ef al. [23]. In Appendix B,
we derive momentum space representations—within a finite box—of local interactions, originally
given in coordinate space. Subsequently, we derive the momentum space representation of the
Minnesota potential [21] in Appendix C. Although the Minnesota potential is not used in this work,
it is included due its historical significance in nuclear matter calculations [20,23,27]. And, we add
a correction to its momentum space representation within a finite box, given by Jensen et al. [23],

by including the appropriate error functions in Eq. (C.22).

3.4 SCKY-IMSRG Program Hierarchy
The SCKY-IMSRG creates an A-particle basis—which currently stores zero-, one-, two-, and up
to three-particle bases.> The zero-particle basis contratrivially contains only one block with one

state (for scalars). The one-particle basis stores the physical single-particle states, in addition to

4The SCKY-IMSRG uses wrappers to a Fortran implementation of N2LOgpt in a finite box, proudly stolen from
Ekstrom et al. [27,29].
>The three-particle basis is omitted if three-body operators are not present.
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metadata such as the number of occupied (hole) and unoccupied (particle) states in the system,
with locations of hole and particle states. Data from the one-particle basis are propagated to
higher rank bases to form two- and three-particle states, and organize them into blocks according
to symmetries of the Hamiltonian—i.e., center-of-mass momentum and charge conservation. Data
stored in the A-particle basis are then propagated to the program’s many-body functions such as
normal orderings, commutators, generators, and norms for ground state decoupling. Refer to the
comprehensive works of Jensen et al. [23] and Hergert et al. [16] for more details regarding these
many-body functions.

ABodyOps (meaning A-body operators) are the foundational data structure of the SCKY-
IMSRG. Representing a linear combination of body-operators, each ABodyOp stores an array of
BodyOps. BodyOps (meaning body-operators) store blocks of complex-double Eigen matrices [30]
of varying sizes. BodyOps contain block matrices to store only the symmetry preserving parts
of our operators—conserving memory. ABodyOps and BodyOps are imbued with arithmetic
operations for series expansions. And commutators are defined between ABodyOps. ABodyOps
are designed to abstract away administration of the individual body components of the IMSRG
(and UCC). For example, we solve the flow implementation of the IMSRG directly in Eq. (2.2¢e)’s
form, and the Magnus expansion in Eq. (2.7b)’s form. By doing so, we let the commutators handle
the individual components of ABodyOps—so long the input ABodyOps are normal-ordered (see
Listing 3.2). Thus, extensions to four- and higher-body forces can be implemented without rewriting
the SCKY-IMSRG’s administration. Users can specify the individual BodyOp components of an
ABodyOp to be constructed. Therefore, if an ABodyOp is guaranteed to only have one nonzero
BodyOp, users can only store that nonzero rank of the ABodyOp—conserving memory. Moreover,
all ABodyOps provide access to their individual BodyOps for users that need to work directly with

BodyOps. We detail ABodyOps and BodyOps in Figures 3.1 and 3.2, respectively.
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% A-particle basis
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s Commutators defined between ABodyOps
 Arithmetic: += (with ABodyOps), == (with scalars),
¢ Indexing operator [ | to grab a particular BodyOp

¢ Norms, anti-symmetrization

Figure 3.1 Hierarchy of operators in the SCKY-IMSRG. Note, although commutators are actually
defined outside of ABodyOp, they could be placed inside the class!
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Listing 3.2 Commutators handle the individual operator components of ABodyOps.

void Commutator::Commute(const ABodyOp &opl, const ABodyOp &op2, ABodyOp &buffer){
VerifyInputs(op1, op2, buffer);
PrepareBuffer(op1, op2, buffer);
const unsigned maxRank = pBasis—>maxRank;
const std::vector<unsigned> rankStatusl = opl.GetRankStatus();
const std::vector<unsigned> rankStatus2 = op2.GetRankStatus();
for(unsigned i = 0U; i <= maxRank; i++){
for(unsigned j = 0U; j <= maxRank; j++){
if(rankStatusl[i] == 1U and rankStatus2[j] == 1U){

Commute(opl1[il, op2[j], buffer); // Internals of this are skipped for brevity

Transformers are ABodyOps with access to commutators. And commutators are defined in List-
ing 3.2. Using the ABodyOp data structure, series expansions involving nested commutators of
A-body operators (e.g., BCH and Magnus) become easily abstracted. We include the transformation
function used to compute the BCH and Magnus expansions in Listing 3.3.

Listing 3.3 Transform used by Transformers for expansions involving nested commutators.

void Transformer::Transform(const ABodyOp &operand, ABodyOp &buffer,
const std::vector<double> &seriesCoeffs,
const std::vector<double> &coeffsForConvergenceCheck,
const unsigned rankForConvergenceCheck,
const double tolerance, const double seriesCoeffTolerance){
if(temps—>GetNumTemps() < 2U){
Error(std::string("Failure in Transformer::Transform(): temps only contains ")
+ std::to_string(temps—>GetNumTemps())

+ std::string(" ABodyOps. A minimum of 2 is needed to store results

"from the nested commutators.")
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Listing 3.3 (cont’d)

if(seriesCoeffs.empty()){

Error("Failure in Transformer::Transform(): Input series has no coefficients.");
}
if(seriesCoeffs.size() != coeffsForConvergenceCheck.size()){

Error("Failure in Transformer::Transform(): "

"seriesCoeffs.size != coeffsForConvergenceCheck.size().");

}
if(&operand == &buffer and seriesCoeffs[0U] != 1.0){

Error("Failure in Transformer::Transform(): &operand == &buffer,"

" yet seriesCoeffs[0U] != 1.0.");

CollectionOf Temps &arrayOfTemps = =temps; // We’ll treat temps like an array!
const std::vector<double> &cvgCoeff = coeffsForConvergenceCheck;
const unsigned maxOrder = seriesCoeffs.size()—1U;

const unsigned rank = rankForConvergenceCheck;

// Set C=c_ 0 *B
buffer = operand;

buffer = seriesCoeffs[0U];

// Run checks to see if we need to go past Oth order
if(maxOrder == 0U) {return;}

if(maxOrder == 1U and abs(seriesCoeffs[1U]) <= seriesCoeffTolerance) {return;}

// Now, compute 1st order adjoint = [A,B]
ABodyOp &adjoint = arrayOfTemps[0U];
commutator—>Commute(::this, operand, adjoint);
if(maxOrder == 1U){

adjoint == seriesCoeffs[1U];

buffer += adjoint;

return;
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Listing 3.3 (cont’d)

// Now, sum remaining terms into C
for(unsigned n = 2U; n <= maxOrder; n++){
ABodyOp &previousAdjoint = arrayOfTemps[n % 2U]; // Stores [A, B]*(n-1)
ABodyOp &currentAdjoint = arrayOfTemps[(n + 1U) % 2U]; // Ready to store [A, B]*(n)

// Compute [A, [A, B]A(n-1)] if [A, B]A(n-1) != "O"
const auto previNorm = abs(cvgCoeff[n—1U] = previousAdjoint[rank].FrobeniusNorm());
if(prevNorm > tolerance){

commutator—>Commute(:this, previousAdjoint, currentAdjoint);
}
// Sum: C += c_{n-1} * [A, B]A(n-1) if c_{n-1} != "O"
if(abs(seriesCoeffs[n—1U]) > seriesCoeffTolerance){

previousAdjoint == seriesCoeffsi[n—1U];

buffer += previousAdjoint;
}
// If [A, B]A(n-1) = "0", then the series has converged
if(prevNorm <= tolerance) {

break;

// If the series hasn’t yet converged, but we’re at n = maxOrder,
// sum: C += c_{maxOrder} * [A, B]4(maxOrder)
if(n == maxOrder){

if(abs(seriesCoeffsfmaxOrder]) > seriesCoeffTolerance){

currentAdjoint := seriesCoeffs[maxOrder];

buffer += currentAdjoint;
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Listing 3.4 Implementation of the BCH expansion.

void Transformer::BCHOptimized(const ABodyOp &operand, ABodyOp &buffer) {

const unsigned maxOrder = 12U;

const double tolerance = 1.0e—4;

const unsigned rankForConvergenceCheck = 0U;

const double seriesCoeffTolerance = 1.0e—10;

const std::vector<double> expCoeffs = ExpXPowerSeriesCoeffs(maxOrder);

const std::vector<double> invFactorial = this—>ExpXPowerSeriesCoeffs(maxOrder);

this—>Transform(operand, buffer, expCoeffs, invFactorial,

rankForConvergenceCheck, tolerance, seriesCoeffTolerance);

Listing 3.5 Implementation of the Magnus series.

void MagnusOp::MagnusSeriesOptimized(const Generator &Eta, ABodyOp &dOmegads){

const unsigned maxOrder = 12U;
double tolerance = 1e—6;
const unsigned rankForConvergenceCheck = 2U;
const double seriesCoeffTolerance = 1.0e—10;
const std::vector<double> bernoulliCoeffs1stKind = BernoulliCoeffs1stKind(maxOrder);
const std::vector<double> invFactorial = this—>ExpXPowerSeriesCoeffs(maxOrder);
std::vector<double> coeffsForConvergenceCheck = invFactorial;
if(useMorrisBognerTruncation){
tolerance = le—4;
double normOmega = abs((:this)[rankForConvergenceCheck].FrobeniusNorm());
if(normOmega == 0.0){ normOmega = 1.0;}
for(unsigned k = 0U; k <= maxOrder; k++) {
double bernoulliWeight = abs(bernoulliCoeffs1stKind[k]);
if(bernoulliWeight == 0.0){ bernoulliWeight = 1.0;}

coeffsForConvergenceCheck[K] = bernoulliWeight / normOmega;

}
this—>Transform(Eta, dOmegads, bernoulliCoeffs1stKind, coeffsForConvergenceCheck,

rankForConvergenceCheck, tolerance, seriesCoeffTolerance);

With these developments, the BCH and Magnus series are easily given by Listing 3.4 and Listing 3.5,

respectively. We denote the variable “tolerance” as egcy = le—4 and € pagnus = 1e—4 in the BCH

and Magnus series, respectively. We truncate the BCH and Magnus expansions according to Morris
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et al. [24]. The Magnus-IMSRG evolution is likewise, easily implemented in Listing 3.6.

Listing 3.6 Implementation of Magnus-IMSRG Evolution.

for (int i = 0; i < maxiterations; i++){
// Evolve
Omega—>MagnusSeriesOptimized(::Eta, xdOmegads); // Eta initialized outside
xdOmegads == ds;
*Omega += xdOmegads;
Omega—>BCHOptimized(HO0, :xHs); // HO is the original Hamiltonian being diagonalized
Eta—>Update(::Hs);

// Extract energies

E = (x:Hs)[0U][0U](0,0);

mbptResultBuffer = Eta—>DEFromMBPT(::Hs, useGeneralizedMBPT);
DE2 = mbptResultBuffer[2U];

DE3 = mbptResultBuffer[3U];

CheckForImagEnergies(E, DE2 + DE3);

// Print data
PrintFlowResults(i+1, ds, A);

// Convergence check

if (abs(DE2)/abs(E) < epsilon){ // MBPT(3) unused since it is generally bad for UCC generators

break;

3.5 High-Performance Optimizations
It is essential to be efficient with memory and compute utilization to perform large-scale IMSRG
calculations. The SCKY-IMSRG is optimized to that effect. Although we forgo including the
internals of commutators between BodyOps in Listing 3.2 (for brevity), we describe the many
optimizations made to such commutators in this section.

Since we only work with anti-symmetrized two-body operators, we only store one quadrant
of each operator. Consider a two-body operator O. We partition O into Ogored = O p<g,r<s and
Oonmitted € {Op>q,r<ss Op<q,r>s» Op>q,r>s}. This cuts memory costs of the two-body operators by

a factor of 4X. Moreover, we can recover O gmitted USINg O giored With the appropriate sign—if needs
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be. Better yet, if we know the operation (such as a matrix product) that utilizes Ogpited, W€ can
likely determine the result of the operation from Ogoreq With the appropriate sign. This saves an
additional 4X in compute, modulo administrative costs.

Commutators between two-body operators are the most expensive computations in the IMSRG
if no three- or higher-body forces are present. Such commutators can be decomposed between

so-called “ladder” and “particle-hole” terms. Ladder terms given by [16]

[A’ B] += Z (1 —ny— nu) X (qutuBturs - qutuAturs) (31)

pars t<u

are already in matrix multiplication form, and are easily evaluated using Eigen’s optimized
BLAS/MKL interface [30]. Particle-hole terms are not given in matrix multiplication form, making
them much harder to optimize as they need to be rewritten into such a form. We detail the many
optimizations on the particle-hole terms used in the SCKY-IMSRG in Appendix F, in addition to
this thesis” supporting graphic presentation.

Commutators are further optimized using multiple strategies. We strategically reuse data as
much as possible while minimizing function calls. We exploit hermiticity and anti-symmetry to
avoid matrix products that can be deduced through symmetries. We avoid unnecessary copying
of large objects through aliasing; and we write expressions in ways favorable to Eigen’s lazy
evaluator [30]. Moreover, OpenMP multi-threading directives are strategically placed to avoid
threads writing to the same cache line—thus invalidating it. We assume that all BodyOps of
rank 1 are diagonal to eliminate summations in commutators involving one-body operators, while
casting those expressions into more cache friendly forms. Lastly, we store all two-body occupation

operators as diagonal matrices to save memory, and further minimize cache misses.

3.5.1 Performance Results

We perform multiple SCKY-IMSRG calculations while increasing the single-particle basis size
to see general trends of the SCKY-IMSRG’s computational scaling. Results are obtained using
high-performance compute resources provided by the Institute for Cyber-Enabled Research (ICER)
at Michigan State University. The IMSRG outputs for these results are included in the project’s

repository; and the resulting figures are plotted by our automated data managers.
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Figure 3.3 Memory cost of all operators in the SCKY-IMSRG as we increase the basis size. The
majority of the SCKY-IMSRG’s memory requirements come from ABodyOps.

Figure 3.3 displays the growing memory cost needed to create nine ABodyOps, in addition to
all diagonal occupation matrices, and temporaries for particle-hole terms. Three ABodyOps are
internally used to evaluate one commutator.® Two temporaries are needed to cache intermediate
commutator evaluations when doing nested commutators. The remaining four ABodyOps are H,
H(s), n(s) and Q(s).” Additional temporaries are needed to calculate particle-hole terms. Those
temporaries are not written as ABodyOps (or BodyOps) to avoid storing zeros in sectors that can be
eliminated within the particle-hole transformation. The memory cost of particle-hole temporaries
are also included in Figure 3.3. We prefer to store all SCKY-IMSRG objects in random access

memory (RAM) to reduce latency in our calculations. In Figures 3.3 and 3.4, notice that we utilize

%0f the three ABodyOps stored in a commutator, one ABodyOp is used to store a one-body occupation operator.
Only the one-body rank of said ABodyOp is allocated to save memory.

dQls) -
7We store % in7(s).
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Figure 3.4 Growing memory cost needed to do SCKY-IMSRG calculations in model spaces com-
posed of 1030 particles. We can easily need up to 1 terabyte of memory, depending on the basis size.
These calculations use Born’s generator seen in Chapter 5. Born’s generator creates an additional
ABodyOp to store energy denominators used in the generalized Born expansion. Therefore, ten
ABodyOps are created. Here is a fun fact: the IMSRG calculation with Ngpia1s = 3102 stores and
evolves ~ 5e10 complex-double matrix elements.

hundreds of gigabytes of RAM to do IMSRG calculations in large model spaces.

Figure 3.5 shows that we can obtain SNM calculations in large model spaces within hours, so
long density-dependent three-body nuclear forces (DD3NF) are omitted. However, it is apparent in
Figure 3.6 that the use of DD3NF noticeably worsens the performance of the SCKY-IMSRG. This is
partly due to the many invocations of computationally expensive three-body force functions when
normal-ordering. Despite the many optimizations in the SCKY-IMSRG, large-scale NM-EOS
computations using DD3NF still require several days to complete.

Without DD3NF, commutator evaluations account for the majority of IMSRG runtimes. This
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Figure 3.5 Runtime of the SCKY-IMSRG as we increase the basis size. We include the total time
needed to evaluate all commutators in each program, as well as the time needed to normal-order
without three-body forces. We can obtain converged calculations (in terms of the basis size) within
hours when omitting density-dependent three-body forces.

is desired since our commutator implementation is highly optimized. Figure 3.7 exhibits total
commutator runtimes in addition to runtimes needed to evaluate ladder and particle-hole terms.
Runtimes for ladder terms dominate particle-hole terms. This is preferred since particle-hole terms
require significantly more administration (and potential overhead) to implement compared to ladder
terms. Figure 3.7 shows the payoff of the optimizations made in the particle-hole terms.

Given the many optimizations made in the commutators, we can do novel IMSRG(2) calculations
simulating 1030 neutrons in large model spaces.® Figure 3.4 and Figure 3.8 respectively show that

these calculations require hundreds of gigabytes of RAM, and can be completed within a few hours.

8 A = 1030 calculations need not be restricted to pure neutron matter alone!
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Figure 3.6 Runtime of the SCKY-IMSRG, varying the particle density p. We include the total time
needed to evaluate all commutators in each program, as well as the time needed to normal-order
with three-body forces included. Normal-ordering accounts for nearly half of each program’s total
runtime. In theory, the normal-order runtime should remain unaffected by changes in p. This is
largely seen here—barring runtime variability from the operating machines. Likewise, the time
needed to evaluate one commutator should be insensitive to changes in p. However, the number
of iterations (and likewise, commutator evaluations) needed for the IMSRG to converge, can vary
depending on p. Barring variability from the operating machines, variations in total commutator
runtimes are due to the varying amount of IMSRG iterations.
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Figure 3.7 Breakdown of the time taken to evaluate all commutators throughout the lifetime of each
IMSRG program seen in Figure 3.5. Ladder commutators account for the majority of commutator
runtimes, while particle-hole commutators account for a minority of runtimes. This is desired
since ladder commutators primarily involve matrix products optimized by Eigen’s BLAS/MKL
interface [30], while particle-hole commutators require administration to be evaluated as matrix
products.

Figure 3.9 shows that runtime costs of the ladder and particle-hole commutators are comparable
when using 1030 neutrons. This is expected since we optimize particle-hole commutators by
exploiting the fact that the number of orbitals in the basis is typically much larger than the number
of particles.

The largest calculations performed with 1030 neutrons utilize 3102 basis orbitals, requiring
876 gigabytes of RAM (seen in Figure 3.4). By using 1030 particles, we reduce errors in the
IMSRG incurred by the use of a finite number of particles. However, we also reduce the maximum

momentum in the basis—worsening errors in the IMSRG related to the use of a truncated single-
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Figure 3.8 Runtime of the SCKY-IMSRG in model spaces composed of 1030 particles. We can do
these calculations within hours without the presence of density-dependent three-body forces.

particle basis.” Subsequently, we suspect that we need significantly more orbitals than 3102 to
sufficiently reduce artifacts from the incomplete basis. However, such calculations would exceed 1
terabyte of RAM consumption—complicating our ability to obtain the needed resources on ICER.
We expect this barrier to be obviated when clusters with > 1 terabyte of RAM are easily accessible.
We include IMSRG(2) calculations with 1030 particles in this work as a proof-of-principle. There
are ongoing questions regarding the existence of super heavy elements (and isotopes) beyond
the periodic table. The IMSRG may shed light on such questions. Since IMSRG calculations
simulating 1030 particles in infinite nuclear matter are possible, the same may also be possible in

finite nuclear matter!

9The box-size is given by £ = (A/p)'/3. By increasing the number of particles at a fixed particle density, we
subsequently increase the box-size—lowering all momenta in the basis.
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Figure 3.9 Breakdown of the time taken to evaluate all commutators throughout the lifetime of each
IMSRG program seen in Figure 3.8. The gains from the optimizations made in the particle-hole
commutators seen in Eq. (F.9d), are lessened in these systems since the number of particles is
comparable to the number of orbitals. Consequently, runtimes of the ladder and particle-hole
commutators are also comparable.

3.6 Concluding Remarks with Perspectives

We have developed a state-of-the-art, high-performant nuclear matter IMSRG(2) program (dubbed
“SCKY-IMSRG”) with a multitude of two-body and density-dependent three-body forces from
Drischler et al. [2]. The program is verbose, unit-tested, and sufficiently general for future needs.
Moreover, the SCKY-IMSRG is equipped with automated data managers (to ensure that data is
preserved and easily accessible), novel IMSRG generators from Chapter 5, and novel IMSRG
extrapolators seen in Chapter 6. Commutators in the program are highly optimized for large-
scale computations. And such calculations can be executed within hours to days—depending

on the inclusion of density-dependent three-body forces. The SCKY-IMSRG exploits operator
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symmetries to be efficient with memory. Despite memory optimizations, the program consumes
hundreds of gigabytes of computer memory in large systems.

Given the program’s many features, we hope that the SCKY-IMSRG becomes a foundation
for future IMSRG and many-body developments. Operators in the SCKY-IMSRG are versatile,
and can be used to compute quantities beyond energies—e.g., momentum distributions, static
structure factors, etc. Furthermore, the SCKY-IMSRG is written at zero temperature. Future
developers can add finite temperature extensions using insights from Smith e al. [31].!° The
SCKY-IMSRG can also be extended to finite nuclei via a change of basis. Optimizations made in
the program’s commutators enable novel A = 1030 IMSRG(2) calculations. Such calculations in
finite nuclear systems may shed light on the existence of heavy nuclei beyond the periodic table.
Lastly, the SCKY-IMSRG implements 3rd-order Many-Body Perturbation Theory (MBPT) using
nested commutators seen in Appendix H. This enables intermediaries within MBPT(3) diagrams
to be cached and reused—significantly improving the compute performance of MBPT(3). If
higher-order MBPT expressions can be similarly written in terms of commutators, then they can
be implemented without explicit handling of the exploding number of MBPT diagrams [32]. We

exhibit equations-of-state that are calculated from the SCKY-IMSRG program in the next chapter.

10Beware, the distinction between particles and holes that is exploited in Appendix F is lost if occupation operators
become continuously valued.
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CHAPTER 4

NUCLEAR MATTER EQUATION-OF-STATE

“Only when it is dark enough
can you see the stars”

—Carl & MLK, Jr.

We utilize the SCKY-IMSRG to calculate the zero temperature nuclear matter equation-of-state
(NM-EOS) using the N2LO,,, Hebeler, and the N2LO Entem-Machleidt-Nosyk (EMN) internu-
cleon interactions derived from chiral EFT [7,29,33]. We compare results from the IMSRG(2) to
those of Many-Body Perturbation Theory (MBPT). And when necessary, we also make compar-
isons to IMSRG’s non-perturbative relative—Coupled-Cluster (CC) theory. We do so to establish
similarities and differences between the perturbative and non-perturbative many-body methods
using multiple internucleon forces. These interactions are chosen due to their wide use in the
literature [2,27], and because they run the gamut from the very soft and perturbative Hebeler and
N2LO,yy interactions, to the significantly harder and less perturbative EMN potentials.

As will be seen, the disagreement between IMSRG(2) and 3rd-order MBPT (often denoted
“MBPT(3)”) is noticeably larger in symmetric nuclear matter (SNM), as correlations play a much
greater role than they do for pure neutron matter (PNM)—even for soft interactions.! To better
investigate these differences, we include data from CC, whenever available. Particularly, we
include CC results containing doubles excitations “CCD,” and approximate triples excitations
“CCD(T)”—obtained in collaboration with Gaute Hagen.? This serves as a useful consistency
check, as it is empirically known that IMSRG(2) ground state energies almost always fall between
the CCSD and CCSD(T) results in finite nuclei that are of single-reference (i.e., closed-shell)
character [16]. We therefore expect a similar pattern for our nuclear matter calculations, which
are carried out for “magic” particle numbers corresponding to closed-shell configurations in the

periodic box.

IThis is primarily because the iterated tensor force in the 38, = 3D, channel, which is active in SNM but inactive
in PNM, is known to produce significant correlations. Additionally, certain short-range terms vanish in pure neutron
matter due to the Pauli Principle that are non-vanishing in symmetric matter.

2 As a consequence of momentum conservation, singles excitations should be zero in infinite nuclear matter.
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We also include MBPT(4) results to compare against the IMSRG(2) results. MBPT(4) is the
lowest order of perturbation theory that contains triples excitations [32]. If correlations from triples
excitations are large, MBPT might not be well-converged. Lastly, we include results from a reduced
version of MBPT(4)—which subtracts from MBPT(4), diagrams that are excluded or undercounted
by IMSRG(2). This is based on the earlier work of Titus Morris, who carried out a diagrammatic
analysis of the perturbative content of IMSRG(2) [16]. This analysis showed that the IMSRG(2) is
“3rd-order exact,” which means that the IMSRG(2) energy contains all MBPT diagrams up to 3rd-
order.? At 4th-order, the IMSRG(2) starts to miss some diagrams. For instance, MBPT(4) diagrams
that correspond to triples excitations (i.e., 3p3h intermediate states) are missed completely, see
diagrams T; thru T} in Fig. 4.1. Additionally, the so-called asymmetric quadruple-excitation
diagrams, Q1, O, Q¢ and Q7 in Fig. 4.1 are under-counted by a factor of 1/2 [16].

Like the IMSRG(2), CCD can be shown to contain all MBPT(3) contributions, while miss-
ing the MBPT(4) triples-excitation diagrams completely. However, unlike the IMSRG(2), CCD
correctly counts the asymmetric quadruples diagrams Q1, Q2, Q¢ and Q7 with their full weight.
Similarly, CCD(T) can be shown to be “4th-order exact,” as it includes the 4th-order triples-
excitation diagrams. Lastly, we stress that while CCD and CCD(T) are 3rd- and 4th-order exact
from the perspective of MBPT, both also include infinite partial summations of higher-order MBPT
diagrams [32]. For instance, CCD (like the IMSRG(2)) sums up all two-particle ladder and ring
diagrams, while CCD(T) sums up analogous diagrams involving three particles.

We note that the IMSRG(2)’s undercounting of the asymmetric quadruple-excitation diagrams
explains the empirical observation that IMSRG(2) results tend to fall between CCD and CCD(T).
This is because diagrams Q1, Q2, Q¢ and Q7 are positive-definite, while the dominant 4th-order
triples diagrams,4 T15 and T4, can be shown to be negative-definite. Note also that the asymmetric

quadruples diagrams and the two dominant triples diagrams have a similar structure—i.e., they

31t is important to stress that the IMSRG(2) is an intrinsically non-perturbative method. While it correctly includes
MBPT contributions up to 3rd-order, it also includes bits and pieces of all higher-orders of perturbation theory. For
example, it can be shown that particle-particle and hole-hole ladder diagrams, as well as particle-hole ring diagrams,
are summed to all orders in the IMSRG(2).

“For the interactions studied here, these two diagrams accounted for more than 95% of the total triples-excitation
energy contribution.
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Figure 4.1 A subset of the MBPT(4) Hughenholtz diagrams corresponding to irreducible triples
(3p3h) and quadruples (4p4h) excitations. The IMSRG(2) misses the triples diagrams 77-Ti¢
completely, and undercounts the asymmetric quadruples diagrams Q1, Q», Q¢ and Q7 by a factor
of 1/2. This figure is obtained courtesy of Hergert et al. [16].

look like a MBPT(2) diagram where one of the internal lines has a self-energy insertion. Therefore,
undercounting diagrams Q1, Q2, Q¢ and Q7 roughly mimics some of the attraction that would be
gained if the triple-excitation contributions were included.

The reduced version of MBPT(4) is obtained by subtracting from MBPT(4): all diagrams asso-

ciated with triples excitations AEt(rll))les (diagrams T7-Tj¢ in Fig. 4.1), as well as half the asymmetric
4)

asymmQ”*

quadruples contributions (diagrams Q1, Q2, O and Q7 in Fig. 4.1) AE

1

L =AEW _AEW  _AEW 4.1)

4)
AE triples 2 asymmQ °

reduce

We therefore expect the reduced MBPT(4) to yield energies that are closer to that of IMSRG(2) than
the unmodified MBPT(4), since they are now equivalent thru 4th-order. Any discrepancy between
the reduced MBPT(4) and the IMSRG(2) results are therefore due to the higher-order contributions

that are summed by the IMSRG.

45



The true NM-EOS is only obtained with a full accounting of the uncertainties in the nuclear
forces arising from the EFT truncation errors and the uncertainties in the fitted low-energy constants,
as well as the truncation errors in the many-body methods used to calculate the NM-EOS. While
we get a qualitative feeling for the many-body uncertainties by comparing the energies obtained
from different orders and truncations of MBPT, IMSRG, and CC, we do not assess the uncertainties
arising from EFT truncation errors and/or the uncertainties in the low-energy constants that appear
in the chiral interactions. We view calculations provided in this work as the first step towards
obtaining an uncertainty-quantified NM-EOS using the IMSRG. Eventually, we are hopeful that the
uncertainty-quantified NM-EOS using the IMSRG can be obtained by generating sample NM-EOS
calculations for a multitude of forces. Such equations-of-state can then be utilized by the Bayesian
approach of Drischler et al. to determine EFT truncation errors [34]. Moreover, emulation of the
low energy constants of the nuclear force using techniques such as Eigenvector Continuation, will
likely be useful in obtaining an uncertainty-quantified IMSRG-calculated EOS [35,36].

All results presented below are obtained using high-performance compute resources provided
by the Institute for Cyber-Enabled Research at Michigan State University. And, all figures stylized

in Matplotlib’s “ggplot” are plotted by our automated data handlers.’

4.1 Results

We start by discussing our calculations of pure neutron matter, which as mentioned above has much
weaker correlations to contend with compared to symmetric nuclear matter. Figure 4.2 shows that
IMSRG(2) and MBPT(3) with the N2LOg, two-nucleon potential, produce similar NM-EOS in
pure N = 66 neutron matter. This is expected since many-body methods in PNM are considered
to be highly convergent when using most typical chiral EFT interactions.® Likewise, Figure 4.3
shows the near identical NM-EOS produced by IMSRG(2) and MBPT(3) in pure N = 1030 neutron
matter. Consequent to using such a large number of particles, we note that the 3102 orbitals used

are insufficient to eliminate errors due to the truncated single-particle basis. Despite concerns

>The ggplot style is used as a throwback to my early days learning how to program using R!

®Possible exceptions are for chiral interactions at higher resolution scales that are constructed to be local in
coordinate space. Such interactions are generally difficult to handle in CC or IMSRG calculations as they require an
excessively large single-particle basis to reach convergence.
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Figure 4.2 Pure N = 66 neutron matter sample EOS obtained using IMSRG(2) and MBPT(3) with
the N2LOgp two-nucleon potential [29]. In this system, we consider 2618 orbitals to be sufficiently
large to reduce errors due to the truncated single-particle basis. A total of 9.55 hours is taken to
do all seven SCKY-IMSRG calculations over the various density points. And, each calculation
requires the same 432.76 gigabytes amount of memory. MBPT(3), acquired using Algorithm H.4,
tracks IMSRG(2) quite well, with slight discrepancies at low densities.

regarding the sufficiency of the number of orbitals, we include Figure 4.3 to highlight the payoff of
the SCKY-IMSRG optimizations made in Chapter 3.
The MBPT calculated ground state energy per particle in the thermodynamic limit Eg,llglrj%o /A,

and in the finite box EBIOX /A, are defined in Egs. (4.2a) and (4.2b), respectively.

BPT
ENiSor©/A = EGE™JA + AET™™ /A (4.2a)
Engor/A = ERY A + AEP™/A (4.2b)
Epmor/A ~ ERYJA + AET™ /A (4.2¢)
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Figure 4.3 Pure N = 1030 neutron matter sample EOS obtained using IMSRG(2) and MBPT(3)
with the N2LOg, two-nucleon potential [29]. A total of 38.86 hours is taken to do all seven SCKY-
IMSRG calculations over the various density points. And, each calculation requires the same
876.74 gigabytes amount of memory. MBPT(3), acquired using Algorithm H.4, tracks IMSRG(2)
exceedingly well in this system.

The thermodynamic limit and box-acquired Hartree-Fock energies per particle are denoted by
Eftermo /A and EBO*/A, respectively. And the thermodynamic limit and box-acquired MBPT
correlation energies per particle are denoted by AETM™° /A and AEB® /A, respectively. MBPT(3)
was not implemented in the finite box at the time of data collection for this work. However,
EI\TAIE}?%‘O/ A is available through collaboration with Christian Drischler. We can thus approximate
Epcx,./Aby assuming AEB® /A ~ AETh™°/ A in Eq. (4.2¢). All MBPT results in Figures 4.4-4.12
are procured in the finite box using Eq. (4.2¢). After implementing MBPT(3) in the finite box,

we observe differences between the box-acquired MBPT(3) correlation energy per particle and its

thermodynamic limit counterpart to be at most 0.1 MeV per particle using N = 66 and/or Z = 66
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Figure 4.4 Pure N = 66 neutron matter sample EOS for the A = 1.8 fm~! SRG evolved Hebeler force
with Asy = 2.0 fm™! regulator cutoff [7]. The three-body force is used when normal-ordering, but
is subsequently truncated after normal-ordering. In other words, the Hamiltonian is treated at the

normal-ordered two-body (NO2B) approximation. We see excellent agreement between energies
obtained from IMSRG(2) and MBPT(3).

nucleons. Thus, we consider the obtained thermodynamic limit MBPT(3) correlation energies per
particle to be sufficiently representative of their box-acquired counterparts.

The IMSRG(2) and MBPT(3) agreement in pure N = 66 neutron matter is further seen in
Figures 4.4 and 4.5—which feature NM-EOS from the 4 = 1.8 fm™' and A = 2.8 fm™' SRG
evolved Hebeler force, respectively. The A = 2.8 fm~! Hebeler force is less SRG softened than
its 1 = 1.8 fm™' counterpart, and is thus a harder force. Hence, Figures 4.4 and 4.5 show that
IMSRG(2) and MBPT(3) are in excellent agreement in PNM, regardless of the hardness of the
Hebeler force.

Figures 4.6 and 4.7 also feature the same IMSRG(2) and MBPT(3) NM-EOS agreement in
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Figure 4.5 Pure N = 66 neutron matter sample EOS for the 1 = 2.8 fm~! SRG evolved Hebeler
force with Ay = 2.0 fm™' regulator cutoff [7]. This figure compliments Figure 4.4, with the
primary difference being in the utilized Hebeler force with increased SRG resolution scale A. Thus,
see Figure 4.4 for additional details. We see excellent agreement between energies obtained from

IMSRG(2) and MBPT(3).

pure N = 66 neutron matter. Figure 4.6 is obtained using the N2LO EMN potential with low
energy constant cp = 2.5, and a 450 MeV regulator cutoff. Likewise, Figure 4.7 is obtained using
the N2LO EMN potential with cp = —1.5, and a 500 MeV regulator cutoff [33]. The regulator
cutoff is the interaction resolution scale. Thus, the EMN potential is harder using a 500 MeV
regulator cutoff versus a 450 MeV cutoff. Furthermore, given that the EMN potential is not SRG
softened, it is considered to have a harder core than the Hebeler force. Again, consistent with our
expectations, Figures 4.4—4.7 confirm that IMSRG(2) and MBPT(3) coincide in PNM— regardless

of the hardness of the employed internucleon force. We include Figure 4.8 to demonstrate that the
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Figure 4.6 Pure N = 66 neutron matter sample EOS for the N2LO EMN two- and three-nucleon
potential with low energy constants cp = 2.5 and cg = 0.102, and a A = 450 MeV regulator
cutoff [33]. The Hamiltonian is treated at the normal-ordered two-body (NO2B) approximation.
This figure compliments Figure 4.4, with the primary difference being in the harder EMN force
in use. Thus, see Figure 4.4 for additional details. Despite using a harder force than the Hebeler
force, we still see excellent agreement between energies obtained from IMSRG(2) and MBPT(3).

SCKY-IMSRG can compute NM-EOS for nuclear matter beyond PNM and SNM alone.” We again
see excellent agreement between IMSRG(2) and MBPT(3) in nuclear matter with a 0.05 proton
fraction.

The disagreement between IMSRG(2) and MBPT(3) is however, substantially larger in SNM.
This is prominently seen in Figures 4.10—4.12, which employ the Hebeler and harder N2LO EMN

forces. To better investigate these differences, we also make comparisons to CC in Figures 4.9,

"By working in a closed shell system, the SCKY-IMSRG is restricted to only use particle numbers that are magic.
However, by using large particle numbers, we can obtain NM-EOS for a variety of proton fractions. Going forward,
we might be able to interpolate IMSRG-acquired NM-EOS between proton fractions using the insights of Drischler et
al. [34].
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Figure 4.7 Pure N = 66 neutron matter sample EOS for the N2LO EMN two- and three-nucleon
potential with low energy constants cp = —1.5 and cg = —0.612781, and a A = 500 MeV regulator
cutoff [33]. The Hamiltonian is treated at the normal-ordered two-body (NO2B) approximation.This
figure compliments Figure 4.6, with two main differences: the lowered value of ¢ p, and the increased
resolution scale A. Thus, see Figure 4.6 for additional details. Despite increasing A, we still see
excellent agreement between energies obtained from IMSRG(2) and MBPT(3).

4.10, and 4.12.8 Lastly, we include Figure 4.13 to convey the large computational expenses needed
to generate the NM-EOS seen in Figure 4.11. All NM-EOS calculations (particularly for SNM) in
this chapter are highly computationally demanding. Note, for IMSRG(2), and all CC and MBPT
variants, the three-body force is used when normal-ordering, but is subsequently truncated after
normal-ordering. In other words, the Hamiltonian is treated at the NO2B approximation for all
reported calculations.

We summarize some notable differences in NM-EOS calculated from IMSRG(2), CC and MBPT

8CC results are excluded in Figure 4.11 because they are currently unavailable.
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Figure 4.8 N = 38, Z = 2 nuclear matter sample EOS for the 1 = 2.8 fm~' SRG evolved Hebeler
force with Asy = 2.0 fm™! regulator cutoft [7]. The three-body force is used when normal-

ordering, but is subsequently truncated after normal-ordering. And we see excellent agreement
between energies obtained from IMSRG(2) and MBPT(3).

below. We see at most a 1.72 MeV per particle difference between IMSRG and MBPT(3) computed
energies (found in Figure 4.11). Likewise, we see at most a 4.32 MeV per particle difference
between CCD and MBPT(3) computed energies (seen in Figure 4.12). Comparing CCD(T) and
MBPT(4), we observe at most a 0.92 MeV per particle difference in computed energies (seen in
Figure 4.12). Lastly, we observe at most a 3.99 MeV per particle difference between CCD and
CCD(T) computed energies (found in Figure 4.12). These discrepancies between the many-body
methods are significant, and must be understood. Although, we observe discrepancies in energies
computed from the methods, we however, see that all methods share similar predictions of nuclear

saturation. This is noticeably seen in Figures 4.10-4.12, where most many-body methods predict
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Figure 4.9 Symmetric N = Z = 66 nuclear matter sample EOS for the 1 = 1.8 fm~! SRG
evolved Hebeler force with Azy = 2.0 fm™! regulator cutoff [7]. These results are obtained in
the same system as Figure 4.4, with the difference being in the utilized Z = 66 protons and the
sampled density range. As expected, energies of the reduced MBPT(4) are closer to those of
IMSRG(2) than MBPT(4). And, IMSRG(2) energies fall between CCD and CCD(T) energies.
All methods predict energies that saturate near p = 0.19 fm™3, but not at the empirical saturation
point pg = 0.16 fm™. The largest difference in E/A between the methods is 0.67 MeV per
particle—seen between CCD and MBPT(4) at p = 0.08 fm=>. IMSRG(2) and CCD energies
differ from MBPT(3) energies by 0.02-0.14 MeV per particle and 0.21-0.38 MeV per particle,
respectively. CCD(T) and MBPT(4) energies differ by 0.03—0.09 MeV per particle. And CCD(T)
and CCD energies differ by 0.35-0.59 MeV per particle.
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Figure 4.10 Symmetric N = Z = 66 nuclear matter sample EOS for the 1 = 2.8 fm~! SRG
evolved Hebeler force with Asy = 2.0 fm™! regulator cutoff [7]. These results are obtained in
the same system as Figure 4.5, with the difference being in the utilized Z = 66 protons and the
sampled density range. All methods predict nuclear saturation around the empirical saturation
point pg = 0.16 fm™3. The largest difference in E/A between the methods is 1.48 MeV per
particle—seen between CCD and MBPT(4) at p = 0.08 fm™>. This disparity between CCD and
MBPT(4) is more than twice that of the disparity seen in Figure 4.9. Moreover, IMSRG(2) energies
differ from both MBPT(4) and CCD(T) energies by at most 0.54 MeV per particle. Notably,
reduced MBPT(4) energies effectively coincide with IMSRG(2) energies, but differ from both
MBPT(3) and MBPT(4) energies by 0.36—0.55 MeV per particle, while MBPT(3) and MBPT(4)
effectively coincide. IMSRG(2) and CCD energies differ from MBPT(3) energies by 0.5-0.56 MeV
per particle and 1.37-1.49 MeV per particle, respectively. CCD(T) and MBPT(4) energies differ by
0.07-0.6 MeV per particle. CCD(T) and CCD energies differ by 0.88—1.45 MeV per particle. And
IMSRG(2) energies fall between CCD and CCD(T) energies. Notably, energy differences between
CCD and CCD(T) grow in increasing p and are largest at p = 0.22 fm™.
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Figure 4.11 Symmetric N = Z = 66 nuclear matter sample EOS for the N2LO EMN potential
with low energy constants cp = 2.5 and cg = 0.102, and a A = 450 MeV regulator cutoff [33].
These results are obtained in the same system as Figure 4.6, with the difference being in the utilized
Z = 66 protons, and the sampled density range. CCD and CCD(T) results are currently unavailable
in this system. Note, this system’s MBPT(2) energies calculated within a finite box, can also be
seen in Figure 4.13. All methods predict nuclear saturation near the empirical saturation point
Psat = 0.16 fm=>. MBPT(3) and MBPT(4) are nearly converged. And notably, MBPT(3) and
MBPT(4) energies are 0.72—1.72 MeV per particle and 0.63—1.71 MeV per particle more bound
than IMSRG(2), respectively. Using the reduced MBPT(4), we still see 0.3—1.29 MeV per particle
more attraction than IMSRG(2).
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Figure 4.12 Symmetric N = Z = 66 nuclear matter sample EOS for the N2LO EMN potential with
low energy constants cp = —1.5 and cg = —0.612781, and a A = 500 MeV regulator cutoft [33].
These results are obtained in the same system as Figure 4.7, with the difference being in the
utilized Z = 66 protons, and the sampled density range. This figure also compliments Figure 4.11,
with two main differences: the lowered value of cp, and the increased resolution scale A. Most
methods predict nuclear saturation near the empirical saturation point pgy = 0.16 fm™=3, with CCD
being the main exception. MBPT(4) energies are 0.59—1.47 MeV per particle more bound than
IMSRG(2). Using the reduced MBPT(4), we still see 0.23—-0.88 MeV per particle more attraction
than IMSRG(2). IMSRG(2) and CCD energies differ from MBPT(3) energies by 0.73—-1.64 MeV
per particle and 1.85-4.32 MeV per particle, respectively. CCD(T) and MBPT(4) energies differ by
0.16-0.92 MeV per particle. CCD(T) and CCD energies diftfer by 0.77-3.99 MeV per particle. And
IMSRG(2) energies often fall between CCD and CCD(T) energies. Notably, energy differences
between CCD and CCD(T) grow in increasing p, and are largest at p = 0.21 fm™>

57



Nuclear Equation-of-State at T = 0
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Figure 4.13 Symmetric N = Z = 66 nuclear matter sample EOS obtained using IMSRG(2) and
MBPT(2), with the N2LLO EMN potential with low energy constants cp = 2.5 and cg = 0.102, and
a A =450 MeV regulator cutoff [33]. This figure is made in the same system as Figure 4.11. The
three-body force is used when normal-ordering, but is subsequently truncated after normal-ordering.
In this system, we consider 3700 orbitals to be sufficiently large to reduce errors due to the truncated
single-particle basis. A total of 11.01 days is taken to do all eight SCKY-IMSRG calculations over
the various density points. And the breakdown of the runtime is seen in Figure 3.6. Each SCKY-
IMSRG calculation requires the same 867.06 gigabytes amount of memory. MBPT(2), acquired
using Algorithm H.3, predicts saturation near IMSRG(2), but yields energies that significantly
disagree with energies from IMSRG(2). MBPT(3) is not included since these results were obtained
before its implementation.
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saturation near the empirical saturation point pgy = 0.16 fm=>.

Curiously, all methods predict
saturation near p = 0.19 fm™ with the softened A = 1.8 fm~! Hebeler force in Figure 4.9.

Figures 4.9-4.12 confirm that energies from reduced MBPT(4) are indeed closer to those of
IMSRG(2), than energies from MBPT(4). Notably, energies from the reduced MBPT(4) effectively
coincide with IMSRG(2) energies in Figure 4.10. This means that the missing triples and un-
dercounted asymmetric quadruples in IMSRG(2), primarily account for the IMSRG(2)-MBPT(4)
disparity in that system. However, energies from the reduced MBPT(4) do not always coincide
with those of IMSRG(2). This is notably seen in Figure 4.11 where the reduced MBPT(4) yields
energies that are 0.3—1.29 MeV per particle more bound than IMSRG(2) energies. Interestingly,
the disparity between energies from the reduced MBPT(4) and IMSRG(2) is slightly lower when
using the harder N2LO EMN force with an increased resolution scale A = 500 MeV, in Figure 4.12.
However, it should be stressed that the two EMN potentials have different two- and three-nucleon
contact interactions associated with them, so simply comparing the two resolution scales to infer
that one should be more non-perturbative than the other is likely misguided. For instance, the
low-energy 3N constant cp is somewhat stronger for the A = 450 MeV interaction.

As expected, IMSRG(2) energies generally fall between CCD and CCD(T) energies in Fig-
ures 4.9, 4.10, and 4.12. In Figures 4.10 and 4.12, we see that the disagreement between the
many-body methods—with the exception of MBPT(3) and MBPT(4)—tends to widen as the SNM
nucleon density p, is increased. This behavior is prominently seen between CCD and CCD(T)
in Figure 4.12 where energies from both methods differ by at most 3.99 MeV per particle (at
p =0.21 fm™>). This suggests that correlations from triples excitations are increasingly dominant
in CC (and perhaps IMSRG) as p is increased. As seen in Figures 4.9, 4.10, and 4.12, the energies
of IMSRG(2) are close to those of CCD(T) when p < 0.13 fm™>, but with larger deviations at
higher densities—albeit to a smaller extent than CCD. We suspect that triples also account for
the underbinding of IMSRG(2) relative to CCD(T) at higher density. Conversely, energies from
MBPT are farthest from those of CCD(T) at the low-end of the density range p ~ 0.08 fm™,

but become notably closer as p is increased. Recall that CCD(T) contains all MBPT diagrams up
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to 4th-order and includes infinite partial summations of higher-order diagrams [32]. Therefore,
the 0.07-0.6 MeV per particle and 0.16-0.92 MeV per particle disparities between MBPT(4) and
CCD(T) in Figures 4.10 and 4.12, respectively, are due to correlations in CCD(T) beyond 4th-order.
Interestingly, these higher-order correlations in CCD(T) are most dominant when p < 0.13 fm™,
but become less prominent at higher densities p ~ 0.2 fm™>. Turning our attention to IMSRG(2)
and CCD, recall that both methods contain all MBPT diagrams up to 3rd-order and include infinite
partial summations of higher-order diagrams [16,32]. Therefore, the IMSRG(2)-MBPT(3) and
CCD-MBPT(3) disparities seen in Figures 4.9-4.12, are due to correlations in IMSRG(2) and
CCD beyond 3rd-order. Converse to the CCD(T)-MBPT(4) relationship, these higher-order cor-
relations in IMSRG(2) and CCD are most dominant at the high-end of our sampled density range
p ~ 0.2 fm™3, but become less prominent when p < 0.13 fm™.

Unlike CC (and perhaps IMSRG), the net effect of triples correlations in MBPT is generally
small. This is reflected in the decent MBPT convergence from 3rd to 4th-order seen in Fig-
ures 4.9-4.12. For example, MBPT(3) and MBPT(4) are effectively converged in Figure 4.10.
However, energies from the reduced MBPT(4) differ from those of MBPT(3) and MBPT(4) by
0.36-0.55 MeV per particle. This implies that in Eq. (4.1), there are noticeable 0.36—0.55 MeV per

particle cancellations within MBPT(4) between AE ) and AEY. 4+ %AE @

reduced triples asymmQ°

4.2 Discussion

Given the excellent agreement seen between IMSRG(2) and MBPT(3) in PNM, we expect to see
the same agreement when also considering CC and MBPT(3). Therefore, we turn our attention
towards the more interesting SNM results. Consistent with observations in finite nuclei [16],
IMSRG(2) generally falls between CCD and CCD(T) energies in Figures 4.9, 4.10, and 4.12.
We consider this a validation of our IMSRG(2) implementation. As is the case in finite nuclei,
the correlations from 4th-order triples and asymmetric quadruples are attractive and repulsive,
respectively [16]. While both IMSRG(2) and CCD miss attractive correlations from 4th-order
triples, the IMSRG(2) undercounts repulsive asymmetric quadruples—yielding to more attraction

than CCD. Therefore, IMSRG(2) mimics some of the attraction of triples by undercounting the
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repulsive asymmetric quadruples. CCD(T) is exact at 4th-order MBPT and thus includes all
attractive 4th-order correlations due to triples [16]. Consequently, CCD(T) tends to yield more
attraction than both CCD and IMSRG(2).

Figures 4.9, 4.10, and 4.12 imply that correlations from attractive triples become larger in CC
and IMSRG as the density of SNM is increased. This observation can be interpreted using the
old hole-line expansion arguments of Brueckner theory for nuclear matter [37]. Methods like CC
and IMSRG have superseded Brueckner theory in recent years, though intuition from the latter
is still useful since the dominant contributions to CC and IMSRG correlation energies are of the
Brueckner type. Brueckner’s hole-line expansion is an expansion in the “diluteness” of the many-
body system, where the small parameter is the ratio of the range of the repulsive core of the NN
potential divided by the average interparticle spacing. The leading term in the hole-line expansion
sums the particle-particle ladders between pairs of particles to all orders, while the next term in the
expansion treats the particle-particle ladders between interacting triplets of particles to all orders,
and so on. In CC theory, for example, CCD and CCDT reduces to leading-order and next-to-leading
order Brueckner theory if one drops the terms with particle-hole intermediate states. Therefore,
it is quite reasonable that we see the attractive triples contributions becoming rather large as the
density increases, since the expansion parameter of the hole-line expansion is likewise becoming
large.

It is important to mention that we are inclined to most trust CCD(T) results since from the
perspective of MBPT, it completely sums all 4th-order correlations, it partially sums higher-order
correlations, and it incorporates triples excitations. However, the non-iterative implementation of
triples in CCD(T) assumes that the effect of triples in the CC correlation energy is small [27].
This is clearly not the case in Figures 4.10 and 4.12, which show that triples introduce substantial
1.45-3.99 MeV per particle attraction in CCD(T) over CCD. Therefore, a full treatment of triples
in CCDT (or perhaps IMSRG(3)) is needed to properly account for triples correlations using a
non-perturbative method. Unfortunately, it is currently intractable to store and evolve three-body

operators at scale.
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Figures 4.9, 4.10, and 4.12 show that energies from CCD(T) and MBPT(4) are closest (around
p = 0.2 fm™>) when triples correlations are highest in CC. We are unsure of how to interpret this
observation. Given that MBPT seems relatively converged from 3rd- to 4th-order, perhaps both
methods are converging to the true NM-EOS (for the Hebeler and EMN forces) around p = 0.2 fm™.
Or perhaps both methods happen to cross around p = 0.2 fm~>, but may diverge at further densities.
It is important to note that the observed trends between the many-body methods are not guaranteed
to hold outside of our sampled density range. Going forward, it will be interesting to compare the
many-body methods at densities going up to 2pg,. It will also be very interesting to implement the

approximate (and hence computationally viable) IMSRG(3) scheme outlined in Ref. [26].

4.3 Conclusion

We find that NM-EOS computed using IMSRG(2) and MBPT(3) coincide in pure neutron matter,
irrespective of the hardness of the employed internucleon force. And we expect similar agreement
in NM-EOS obtained using CC in PNM. However, within symmetric nuclear matter, we find sub-
stantial disagreements in energies computed from IMSRG(2), MBPT, and CC using the Hebeler
and harder N2LO EMN forces [7,33]. At most, we observe energy differences of 1.72, 4.32, 0.92,
and 3.99 MeV per particle between the following methods, respectively: IMSRG(2)-MBPT(3),
CCD-MBPT(3), CCD(T)-MBPT(4), and CCD(T)—CCD. Despite the significant energy disagree-
ments between the methods, we find that the methods often predict energies that saturate near the
empirical saturation point pg = 0.16 fm™.

Consistent with findings in finite nuclei [16], we observe that IMSRG(2) energies generally fall
between those of CCD and CCD(T). We consider this a validation of our nuclear matter IMSRG(2)
implementation. Therefore, as is the case in finite nuclei, we conclude that the correlations from
4th-order triples and asymmetric quadruples are also attractive and repulsive, respectively in nuclear
matter. And IMSRG(2) correlations are more attractive than CCD correlations, but are generally
more repulsive than CCD(T) correlations. IMSRG(2) and CCD are not only 3rd-order exact
from the perspective of MBPT, but also include infinite partial summations of higher-order MBPT

diagrams [16,32]. Also, CCD(T) is 4th-order exact from the perspective of MBPT and includes
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infinite partial summations of higher-order MBPT diagrams [32]. Hence, we conclude that observed
IMSRG(2)-MBPT(3) and CCD-MBPT(3) energy disparities are due to correlations in IMSRG(2)
and CCD beyond 3rd-order. Likewise, we also conclude that observed CCD(T)-MBPT(4) energy
disparities are due to correlations in CCD(T) beyond 4th-order. Of all utilized many-body methods,
we are most inclined to trust CCD(T) results since CCD(T) is the only non-perturbative method
that is 4th-order exact from the perspective of MBPT. Though, given that triples account for at
most 3.99 MeV per particle more attraction in CCD(T) over CCD, we worry that CCD(T) may not
be fully converged and a full treatment of triples in CCDT may be needed. Lastly, we are curious
to see how the approximate IMSRG(3) arrangement of Stroberg et al. [26] changes our IMSRG(2)
NM-EOS results.

Comparing CCD to CCD(T), we see that correlations from attractive triples become larger
in CC and IMSRG as the density of SNM is increased. We realize that this observation can be
qualitatively understood using Brueckner’s hole-line expansion [37]. We also find that MBPT is
decently converged from 3rd to 4th-order. Though, we see sizable 0.36-0.55 MeV per particle
cancellations between diagrammatic terms of MBPT(4). Notably, we observe that energies from
CCD(T) and MBPT(4) are closest (at the higher-end of our density range) when triples correlations
are dominant in CC. And we are unsure of how to interpret this observation. Given that MBPT
seems relatively converged from 3rd- to 4th-order, perhaps both methods are converging to the true

NM-EOS at the higher-end of our density range. This needs further investigation.

4.4 Outlook

The disparity between energies obtained from IMSRG, CC and MBPT in SNM needs to be further
investigated by extending the sampled density range going up to perhaps 2pg,c. Moreover, all IMSRG
calculations in this work are done using normal-ordered 2NF and 3NF IMSRG(2) schemes. Given
the large discrepancy observed between CCD and CCD(T) calculated NM-EOS in Figures 4.9,
4.10, and 4.12, we look towards a future nuclear matter IMSRG implementation with approximate
triples. And developments from Stroberg ez al. [26] will be useful to this endeavor. We suspect that

the inclusion of approximate triples in the IMSRG should yield more attractive energies at higher
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densities.

NM-EOS are acquired using only three chiral forces at next-to-next-to leading-order (N2LO) of
x-EFT in this work. The true NM-EOS is only obtained with a full accounting of the uncertainties
in the nuclear force. We do no such accounting in this work. Therefore, going forward, IMSRG
computed NM-EOS will be acquired using a much larger number of forces—perhaps ten, with
some at next-to-next-to-next-to leading-order (N3LO) of y-EFT—in the immediate continuation
of this project. Subsequent acquired NM-EOS can then be fed into the Bayesian machine-learning
approach of Drischler ef al. to determine EFT truncation errors [34].

As seen in Figure 4.13, the computational cost needed to obtain NM-EOS using the IMSRG
for one force alone is massive. Therefore, there is great interest in using emulation techniques
including Eigenvector Continuation (EC) [35], Dynamical Mode Decomposition (DMD) [38],
and Parametric Matrix Models (PMMs) [39] to emulate results from the IMSRG, while varying
the low energy constants of the nuclear force. This interest follows the work of Ekstrom and
Hagen [36]—which saw great success emulating binding energies in finite nuclei, obtained from
Coupled-Cluster theory using EC. Perhaps these methods could be applied to obtain an uncertainty-
quantified NM-EQOS that is calculated with the IMSRG—while using less computational resources.
While doing preliminary explorations of a potential EC application in the IMSRG, we realized
that a generalized form of the Baker-Campbell-Hausdorff expansion (BCH) might a useful tool
in such an endeavor. Subsequently, we derive the generalized BCH in Appendix A. Given the
large computational costs needed to obtain NM-EOS using the IMSRG, we also look towards novel
ideas to accelerate IMSRG calculations using Unitary Coupled-Cluster (UCC)-inspired IMSRG

generators in Chapter 5, and Shanks and Padé IMSRG extrapolators in Chapter 6.
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CHAPTER 5

UCC-INSPIRED IMSRG GENERATORS
“I call it Coupled-Cluster
-Fock theory”

—Robert Branson
We view IMSRG generators n(H(s)) as approximate diagonalizers of H(s) within the Mag-
nus—IMSRG formulation. Therefore, the IMSRG’s convergence can be accelerated by improving
the diagonalizing power of 7(H(s)). Given the striking similarities between the Magnus-IMSRG
and Unitary Coupled-Cluster (UCC) theory, we improve on existing IMSRG generators by con-
structing approximate UCC diagonalizers. We view UCC as a nonlinear inverse problem; and
we realize that UCC amplitudes at any order of UCC, are given by a generalization of the Born
series—so long the series converges. We introduce three UCC-inspired IMSRG generators named
the Born, UCC-Born, and Carinae generators, which use regulated Born expansions to approxi-
mately solve UCC. Born’s generator targets 1st-order UCC, while UCC-Born and Carinae target
high-order UCC. UCC-Born is iteratively constructed using a gradient descent based UCC ansitz
seen in Appendix I. Carinae is constructed by iteratively solving UCC with a strict convergence
criterion. UCC-Born and Carinae are obtained using preconditioners to improve the convergence of
the Born series. Using all novel generators with the Magnus-IMSRG, we often observe noticeable
reductions in commutator evaluations needed for IMSRG’s convergence compared to using the
existing White generator—translating to observed IMSRG speedups. We sometimes observe 2—4X
IMSRG speedup using the novel generators, particularly when the IMSRG with White’s generator
is slowly convergent. In all, we connect two historically separate but related theories—IMSRG and
UCC by using approximate UCC solutions as generators of the IMSRG. We introduce the Born
expansion as a tool to solve UCC. And we use preconditioners to aid the convergence of the Born
series. Moreover, we provide an ansitz for a renormalized Hamiltonian in UCC. We hope this work

leads to further development of these methods within many-body physics.
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5.1 Motivation

The IMSRG is a powerful, yet computationally expensive method—especially in large systems. We
dub the “realistic limit” as the combination of the thermodynamic and the complete basis set limit
in infinite nuclear matter calculations. Approaching the realistic limit is essential to obtain results
that are free from finite size and incomplete basis set artifacts, in nuclear matter. Approaching
the realistic limit, we must increase the number of orbitals Nypitars 10 the infinite matter basis and
increase the number of particles—which are computationally costly.

Commutator evaluations are the most computationally limiting operations of the IMSRG and
UCC methods. The computational cost to evaluate a commutator at the two-body level in the
IMSRG and UCC scales as O(Ngrbitals) [23]. Moreover, the IMSRG can sometimes require
hundreds of commutator evaluations to converge, especially in strongly correlated systems. This
can significantly hamper IMSRG runtimes in large systems. Therefore, there is growing interest
in efficiently accelerating the convergence of the IMSRG—obtaining more converged results with
fewer commutator evaluations.

Recent ideas have centered around utilizing data driven methods including the Shanks and
Padé transformation (seen in Chapter 6 of this work), and machine learning to extrapolate on the
IMSRG flow. Yoshida notably used neural networks to accurately extrapolate IMSRG operators
with great success [40]. We aim to expand on this emerging research area by taking a different
approach. Particularly, we combine the IMSRG with UCC in the form of novel UCC-inspired
IMSRG generators. We then introduce physics-motivated techniques in UCC to accelerate the

generator calculations—translating to an efficient IMSRG convergence acceleration. !

I'The computational performance of the IMSRG and UCC at similar truncation levels are generally considered to
be similar. The exact performance difference between both methods is however, not investigated in this work due to the
lack of a computer program using existing state-of-the-art UCC techniques in infinite nuclear matter. The success of
this work is measured by efficient convergence acceleration seen in the IMSRG. We however, suspect that the introduced
UCC techniques should also confer improvements in standard UCC.
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5.2 Assumptions
All generator calculations in this chapter make the following assumptions:

All Hamiltonians H = E + f + I satisfy Assumption 1, and Assumption 2.
Assumption 0 All A-body operators are truncated at the two-body level.
Assumption 1 f,, =6,y X fpq Ypg — Hoa = fzi + Tupij VY abij 2
Assumption 2 Aupij = fua + foo — fii — fi; # 0 Vabij 2

Assumption 3 We denote approximate diagonalizers of H by

n(H) = ZM ala; :+ %Z Navij (H) : alaj}aja,- : —H.c. (5.1)

ai abij

where “H.c.” denotes the Hermitian conjugate of the first two terms in Eq. (5.1). n(H) is assumed
to be zero in its diagonal sectors. We also assume 1,;(H) « f,;, and f,; = 0 under Assumption 1.
5.3 Magnus-IMSRG Convergence Acceleration
Consider a given Hamiltonian H(0). In the Magnus-IMSRG formulation, we iteratively diagonalize
H (0) with unitary transformation H(s) = U(s)H(0)U(s)" by solving*

Y () (5:2)

U(s) = 2, (5.3)

Q(s) is obtained by integrating Eq. (2.7b). n(H(s)) could be considered a driving force in the
diagonalization, and is chosen as an approximate diagonalizer of H(s).> Some existing generators

include the White, Imaginary-Time, and Wegner generators. Using perturbative analysis of the

2 Assumption 1 is partly justified in infinite matter due to momentum conservation, and the spin-diagonal nature
of the nuclear force at NNLO. Though, we observe that Assumption 1 is weakly broken during the Magnus-IMSRG
evolution. As a consequence of Assumption 1 holding exceedingly well in nuclear matter, the one-body components
of all diagonalizers n and Q are negligible.

3 Assumption 2 holds well in our existing single-reference nuclear matter IMSRG. We suspect this is due to the
spin unpolarized nature of the infinite matter basis.

4U(0) = 1. Also note, 5(s) is ultimately dependent on H (s).

>Ideally, one could construct U(ds) (ds is some step-size) where H,;(ds) = 0. However, as we will see, this is
a highly nonlinear problem from the perspective of UCC. Thus, we construct approximate diagonalizers (generators)
of H(s), and integrate them via the Magnus expansion to construct a full diagonalizer of H(0). Note, we view
diagonalizers as operators that eliminate H,;(s) when exponentiated.
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flow equations with the aforementioned generators [23],

Hoa(5) = Tapij (5) ~ Lapij(0) x e~ Aabii*Cabij (5.4a)
Aabij X Gabij >0 — lim HOd(S) =0. (54b)
S—00

Gapij depends on the chosen generator. White’s generator is notable due its observed numerical

stability so long Assumption 2 holds [24,41]. White’s generator is given by®

Y (H(s)) = > mi (H(s)) : aja; : (5.59)
+ % Z ’73;)1'1 (H(s)) : ala}a;a; : - He.
abij
W _ Jats) fafS)
T ) = F0 )~ ) (-3b)
ﬂZaij (H(s)) = Labij(5) _ Loy () (5.5¢)

" faa(s) + Fon(s) = fi(s) = £i(5)  Aapij(s)
Viewing n(H(s)) as an approximate diagonalizer of H(s), we hypothesize that the IMSRG’s
convergence can be accelerated by improving the diagonalizing power of n(H (s)). Given the
similarity of Magnus-IMSRG and UCC theory, we look towards UCC for candidate IMSRG

generators.

®This chapter uses White’s generator with energy denominators from Mgller—Plesset perturbation theory denoted
by . We will occasionally use the term “WhiteMP” to denote "
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5.4 Unitary Coupled-Cluster Theory
Consider a given Hamiltonian H.” Single-reference UCC theory diagonalizes H via the exponential
ansatz U = ¢. Thus, we construct 77 such that [e"He™],; = 0.8 At the two-body level, 7 is given

by Eq. (5.1). Therefore, 7 = —n" and UUT = UTU = 1. Using the Baker-Campbell-Hausdorff

(BCH) formula,
) (m)
, H
[e"He™|,, = [Z % ] =0 (5.62)
m=0 ' od
[7. H]"™ = [n. [n. H/" V], ¥m >0 (5.6b)
[n, H] © - g (5.6¢)

Expanding Eq. (5.6a), then utilizing the linearity of commutators,’

H
[e”He_"] — H, + Zu] ~0 (5.7)
od m!
m=1 od
[ 1@ ¢
noH| o |noH]
_ od od
Hoa= 1. H|,, + 5 R
> [, H]
~Hoq = |0, Y e | (5.8)
— (m+1)!
—_———
HRS (i) lod

Note that Eq. (5.8) is nonterminating due to the excitation (: aZaZa ja; :) and de-excitation (:
ajajabaa ;) structure of 7, enforced by its anti-hermiticity.'® This is unlike standard Coupled-
Cluster (CC) theory, where n has a pure excitation structure that guarantees a fixed termination

order of Eq. (5.8) [32]. Although Eq. (5.8) is nonterminating, we truncate the expansion for HX¢ (1)

"For the remainder of this chapter, we drop the flow parameter s for brevity. We also drop ;’s dependence on H
since that is implied.

8We use od as a subscript to denote the off-diagonal sectors of the transformed Hamiltonian.

9 All commutators are truncated at the two-body level.

10A closed expression of Eq. (5.8) with a maximum power of [17, H] may be possible if the rank of 7 is known [42].
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at some m* such that!!

(5.9)

< €ney -
(m*+1)! } BCH
0-body

The operator {} 0-body projects out the zero-body component of ﬁ [77, H] ") The truncation

/

sen = le—4 is used for this work.'? So long Eq. (5.8) is invertible, the main task of

parameter €
UCC is to approximate HRC (7). In this light, UCC can be viewed as a nonlinear commutator

inversion problem.

5.5 Linearized UCC

It is important to note that n is the solution of Eq. (5.8). n is however, unknown since HRC is
dependent on 1. Moreover, Eq. (5.8) is highly nonlinear in 7. We can however, linearize Eq. (5.8)
using successive approximations to 7. Let k denote an iteration count. Letting 7 = 17t} + 677, we
can approximate HRC (1) ~ HRC (5 {*}) if 67 is sufficiently small. The choice of ¥} is thus of
paramount importance. If 67 is sufficiently small, and 7 is an attractive solution of Eq. (5.8), then

solving

(k1 pRG( (5.10)

—Hgpij = |1 U{k})]

b
abij

for n t*+1} we can expect

gy ey et (5.11)

b

The Born, UCC-Born, and Carinae generators all solve linearized UCC in some form. Notice, 1 {k}

and subsequently, HRC (n %)) = 3 —L— [} H]" are presumed to be known in Eq. (5.10).

m=0 (m+1)!

Thus, Eq. (5.10) is solvable if there exists a way to invert the commutator for 5 K1},

"I'The diagonal sectors of the one- and two-body ranks of m [77, H ] (")

its zero-body rank.
12Eq. (5.9) and €5cy = le—4 is chosen to be consistent with the BCH truncation scheme in the vanilla IMSRG.

are observed to converge at the rate as
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5.6 Commutator Inversion via Born Series

Suppose we are tasked with inverting the following commutator!?

~Hapij = [, HRC] (5.12)

abij *

H is known, and HRC assumed to be known or approximated. Both operators are of the form

H=E+f+I — Hupij = Lupij (5.13a)
HRG = ERG 4 fRG L TRG, (5.13b)
n is to be calculated, and has an operator structure given by Eq. (5.1). Eq. (5.12) can be expanded
~Tavij = [n-E T apij + [n, fRG]abij + [n, FRG]ab,-j~ (5.14)

Assumption 1 implies
7, fRG]abl-j = (fifc + ]!;G — fRG - bR;,G) X Napij = —Afbcij X Tabij » (5.15)

which together with Eq. (5.14) gives

~Lapij = Ay X Mabis + [1, T 1y (5.16)
Af,fﬁj X Navij = Lapij + |71, FRG]abij .
So long Assumption 2 holds,
RG
Lapij [0, T ]abij
Nabij = RG + RG (5.17)
A% .
abij abij
Adopting the following notation for any A-body operator O'4
O apij
(0.) pij = ARG (5.18)
abij

13The view of UCC as a nonlinear commutator inversion problem was partly inspired by Werner Kutzelnigg [43].
Note, HRC’s dependence on 7 is dropped in Eq. (5.12) for brevity. The following derivation of the Born series assumes
HRG is known, if not estimated.

4Note, all sectors of O, other than (0+) 4pij are defined to be zero. For example, (0.)pcq =0 Yabed.
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we can cleanly cast Eq. (5.17) into an operator form
n="T.+[n, [R9] . (5.19)

Eq. (5.19) is the master equation that generates the generalized Born series. It is a Lippmann-

Schwinger type of equation in operator form, and is a fixed point equation for 7. Iterating Eq. (5.19)

yields
n=T.+ |[u+ [n, TRO] , TRC (5.20)
=T, +[[., TRC]_+ [[n, TRC],, TRC| .
Let us define the following adjoint for A-body operators A and B:
(m) _ (m=1)
[A, B]," =||A. B]," ", B|, ¥Ym>1 (5.21a)
(A, B]"=4. (5.21b)
Iterating to nth-order, we assume 7 is given by
9 ! 1
nZ 3 [N, TR 4+ [p, TRO] ™V n o (5.22)

m=0

We seek to prove Eq. (5.22). First, notice Eq. (5.22) cotrivially recovers Eq. (5.19) with n = O:

[T, 06 4 [, 086D =1, 4 |[n, TRO] | RO| =y, (5.23)
—_— «
n
Likewise, Eq. (5.22) recovers Eq. (5.20) with n = 1:
[r.. 026 4 [r,, 726V 4 [, RGP (5.24)
=T, +[[., TRG] 4 |[n, TRO)Y | rRO| =y,

Inserting Eq. (5.19) into the RHS of Eq. (5.22) yields *

n= Z [T, TRG]™ & [+ [, DRG], DRG] (5.25)

m=0
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In Appendix G, we show adjoints of the form [I', + [, TRG]| | RG] inH) can be cleanly separated

using linearity. Utilizing Eq. (G.1),

n (n+1)
n=y [N, TR ™ 4 [r, TR6] " 4 [[n, kG| | RO (5.26)
m=0 *
n+l (m) (n+1)
S K TR
m=0 *
Utilizing Eq. (G.3),
RG RG (D _ RG1(n+2)
[0, TFC], . T = [n, TR, (5.27)
n+l ’ )
n=y [F.. TR 4 [, TRE]™. (5.28)
m=0

Therefore, we have demonstrated if Eq. (5.22) holds for some n > 0, it also holds for n + 1. Since
Eq. (5.22) holds for n = 0 (and n = 1), then it indeed holds for all n > 0.
Exact computation of Eq. (5.22) is nontrivial due to its RHS’s dependence on 1. Practically, we

approximate 77 by summing only the convergent terms of Eq. (5.22) at a potentially high order'>

n~ ) [n. Tr” (5.292)

m=0
o . 1
v |m )] s enom (5.29¢)
\4 - N = NMaxBornOrder - (5.29d)

To clarify, we sum Eq. (5.29a) to some order n, such that either Egs. (5.29b), (5.29c¢), or (5.29d) are
true. Truncation parameter €go = 1e—3 is used for this work. 7 MaxBornOrder 1S @ chosen maximum
order of the Born series. Eq. (5.29) is called the generalized Born series honoring Dr. Max Born

for his perturbative solution to the Lippmann—Schwinger equation [44]. If

T > || [, TR, (5.30)

15¢||.|I”” denotes a Frobenius operator norm. “:” is notation for “such that.” And “V” is the logical “or.” Only a few

terms of the Born series are typically needed to approximate 1st-order UCC well. Born’s generator will be obtained
with 7 MaxBornOrder = 9, While the UCC-Born and Carinae generator will be obtained with 7 MaxBornOrder = 100.

73



the leading term I, will likely be a sufficient commutator inverter, and the Born series is considered
highly perturbative.'® If Eq. (5.30) does not hold, I', will likely be an insufficient commutator
inverter, and the Born series is considered non-perturbative. Hence, the Born series likely improves
on I, when Eq. (5.30) does not hold. Following van der Sijs et al. [45], we introduce the parameter

v to quantify the non-perturbativity of the Born series

H [F* , FRG]

(5.31)
H [T, TkC]

Similar to the geometric series, the Born series converges or divergesif y < 1 ory > 1, respectively
[45].

5.7 Regulating the Born Series

We ultimately aim to exponentiate 17 given by Eq. (5.29) when performing unitary transformations
in the Magnus-IMSRG or UCC. Although BCH transformations with 7 are unitary, we still need
those transformations to eliminate off-diagonal components of the target Hamiltonian. Given the
immense nonlinearity of UCC seen in Eq. (5.8), all methods that are described in this work to
obtain diagonalizers are ultimately approximate. Hence, n is only approximately known. And we
run the risk of introducing large and uncontrollable errors that hamper our diagonalization with

large n.!7 Therefore, to obtain the Born, UCC-Born, and Carinae generators, we regulate Eq. (5.29)

as follows:
n~ Y [r.. TR (5.32a)
m=0

n+1
>, TR s Ayee (5.32b)

m=0
VARER 109 o el 8 1109 i N (5.32c)
v || TR s epon (5.32d)
\4 : n = N MaxBornOrder - (5326)

161f TRG = T, then T, is exactly White’s generator with Mgller—Plesset energy denominators. Moreover, if
Eq. (5.30) holds, then 7 ~ V.

17The regulation of the Born series is due to inspiration from Steven White—who cautioned against the use of large
rotation angles when performing Jacobi canonical diagonalization [41].
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To clarify, we sum Eq. (5.32a) to some order n, such that one or more conditions in Egs.
(5.32b)—(5.32e) are satisfied. Eq. (5.32b) ensures ||57]| < Aucc, so long |T.|| < Aucc.!® Regulator
cutoff Aycc = 8 is used for this work. By using Eq. (5.32) instead of Eq. (5.29), we potentially
worsen our inversion of Eq. (5.12) to avoid large errors in the Magnus-IMSRG and UCC—which
utilize n dependent transformations (such as the BCH expansion). We detail the regulated Born

series in Algorithm 5.1.

Algorithm 5.1 Regulated Born Series

Input: H=FE+ f +T, HRCG = ERG 4 fRG + FRGa N MaxBornOrder

Output: 7 > Approximate solution to —Hp;; = [77, H RG]a bij
1: function GENERATOR::BORNSERIES(H, HRY, nMaxBornOrder)
2 initialization
3 ARG = [RG . pRG _ (RG _ fRG y gpij
4: n =T, > Nabij = rub,-,-/Afgj Y abij
5: ad=rn > Stores Born series adjoints
6 Avucc =8 > Regulator cutoff so 7 stays small
7 €Bom = le—=3 > Truncation parameter for residuals in the Born series
8 end initialization
9 for m < 1 t0 1 MaxBornOrder dO

10: ad previous — ad

1 ad = [ad previous » ['X9],

12: if [lad|| > ||ad previous|| then

13: break > Terminate if subsequent adjoints are increasing in norm
14: end if

15: n +=ad

16: if |7 > Aucc then

17: n —=ad > “Error” correction :)
18: break

19: end if

20: if ||ad|| < €Born then

21: break

22: end if

23: end for

24: return n

25: end function

I8 A better regularization scheme might instead enforce ||7|| /Vy < Avucc, where V,, is the number of nonzero
matrix elements of 7. This regularization scheme would account for changes in the size of the basis—of which 7 is
built upon.
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5.8 Preconditioning the Born Series

All UCC-inspired generators in this work strongly rely on the Born series; therefore, its convergence
behaviour is of paramount importance. We seek to aid its convergence using preconditioning.'’
Suppose we are again tasked with inverting the commutator given by Eq. (5.12). Suppose we have

a reasonable guess n©“°*S as a solution to Eq. (5.12). We can then let = n*** + &,

~Habij = n ., HC (5.33)
N——

nGuess + 577 ab[j

_ (Habij + [nGuess’ HRG]abl-j) — [é‘n, HRG] (534)

abij *

Eq. (5.34) is then another commutator inversion problem that can be solved for 67 via the regulated
Born series. Once 67 is obtained, we reconstruct 7 = n¢4¢ss + §n.20 If nC"ess is reasonable,
then the norm of Eq. (5.34)’s LHS will be reduced—improving the rate of convergence of the
Born expansion for 67. 7¢“¢%S is given by any existing approximation to 77 when computing the

UCC-Born and Carinae generators. We detail the preconditioned Born series in Algorithm 5.2.

Algorithm 5.2 Preconditioned Born Series

. R
Input: nGuess, H, H Ga 1 MaxBornOrder

Output: 7 > Approximate solution to —Hop;j = [, HRC] bij
1: function GENERATOR::BORNSERIES(7C"¢*S, H, HRC | 1 MaxBornOrder)
2 initialization
3 HLHS - H+ [nGuess HRG]
4: end initialization
5 61 = GENERATOR::BORNSERIES (HS | HRC | 11 MaxBornOrder)
6 return n°“*S + 6n
7: end function

9We find it prudent to mention that the preconditioned Born series introduced in this work is somewhat reminiscent
of the Newton-Krylov method in CC, detailed by Yang et al. [46]. Yang et al. also use preconditioning and regularization
in differing contexts from this work [46]. This realization was made after the completion of this work. All insights
contained in this work were independently made.

20We reconstruct n = nC*¢5S + §n without ensuring ||n|| < Aycc. This is observed to be OK.
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5.9 Born Generator

Born

Detailed in Algorithm 5.3, Born’s generator n is obtained by approximating HRC (n) ~ H,

then inverting —Hpi; = [7] Born [y ]abij with the regulated Born expansion. Therefore, Born’s
generator is an approximate 1st-order UCC solution. We observe that only a few terms of the Born
series are typically needed to approximate 1st-order UCC well. Thus, we set 7 MaxBornOrder = J-
Notice, the leading term of the Born series is exactly White’s generator when I'®¢ = I'. Hence,

White’s generator is an approximate solution to 1st-order UCC. We view Born’s generator as an

extension of White’s generator.

Algorithm 5.3 Born generator

Input: H > Hamiltonian to be diagonalized—this is IMSRG’s H (s)
Output: 78" > Approximation to a 1st-order UCC diagonalizer of H

1: function GENERATOR::BORN(H)
2 initialization

3 N MaxBornOrder = J

4: end initialization
5

6
T:

nB"’” = GENERATOR::BORNSERIES(H, H, 1 MaxBornOrder)

return n 5o

end function

5.10 UCC-Born Generator

UCC-Born

The UCC-Born generator n is designed to be a cheap, yet effective high-order UCC

Born Born

diagonalizer. Initially coinciding with Born’s generator 1 , it determines if n is a sufficient
UCC diagonalizer of H using a generalized form of MBPT(2) seen in Algorithm H.6. If 597 is
deemed insufficient, the approximation HX% () ~ 3> _  a, (1) [77 Born g ] . is employed using
the HRG (n) ansiitz seen in Eq. (I.16). The UCC-Born generator is then updated by inverting
—Hgpij = |nUCCBorn HRG (3) i using 778°"" as a preconditioner in the Born expansion. We

detail the construction of the UCC-Born generator in Algorithm 5.4.
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Algorithm 5.4 UCC-Born generator
Input: H > Hamiltonian to be diagonalized—this is IMSRG’s H (s)

Output: 5 YcC-Born > Approximation to a UCC diagonalizer of H
1: function GENERATOR::UCCBoRN(H)
2 initialization
3 18" = GENERATOR::BoRN(H)
4 €rG = le—4 > Cutoff for series in Eq. (1.16)
5: €gMmBpPT = le—3 > MBPT cutoff in case 1st-order UCC is sufficient
6: M MaxBornOrder = 100 > We want a high fidelity inversion for n UCC-Born
7 end initialization
8 > MBPT truncation scheme is detailed in Appendix-Section H.1.
9: if |MBPT2TRUNCATION(T] Born H)| < €egMmBpt then

10: return n 5o

11: end if

2 HRO =3 an (D) [P, 1] fape (D[, H] (m*’}o EL

—“body
13: nUCC‘B”’” = GENERATOR::BORNSERIES (17 39", H, HRG, 1 MaxBornOrder)

14: return p UCC-Born

15: end function

5.11 Carinae Generator

The Carinae generator 1 €“"%¢ is designed to be a potentially expensive and effective UCC diag-
onalizer.?! Initially coinciding with Born’s generator 2°"", the Carinae generator determines if
n 8o is a sufficient UCC diagonalizer of H using a generalized form of MBPT(2) seen in Algo-
rithm H.6. If n8°™ is deemed insufficient, it iterates Eq. (5.10) starting with 1% = B9 The
iteration of Eq. (5.10) is terminated at k™ + 1 using a standard MBPT(2) convergence criterion seen

in Algorithm H.5. To better understand the termination scheme for the Carinae generator, notice

21y Carinae jq potentially expensive since it is designed to yield convergent IMSRG results within one flow step.
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we obtain 7 €@rnae = p{k*+1} by solving
—Hgpij = [U{km}, HRG(U{k*})] 3 (5.35)
N . abij
7Y & on
| H+ [U{k*}, HRG(n{k*})] — [577’ HRG(n{k*})]abij )

HUnitary (n{k‘}) bii
abij

HUnitary(n{k*}) - H+

0 ) g (m)
[77 ] ] (5.36)

(k')
g mz (m+1)!

=0
m!

m=0

Therefore, H Unitary (m {k*}) approximates the unitary transformed Hamiltonian from a converged
UCC calculation! If )MBPTZTRUNCATION (H Unitary (p {k*}))‘ is sufficiently small, we expect
| Unitary (p t€°+1}) (0 be sufficiently diagonal.

Of the three novel generators, the Carinae generator is most traditional because it iteratively
approximates 1 with a strict convergence criterion. So long the Carinae generator is convergent,
we can expect convergence of the IMSRG with this generator within one flow step. We detail the

construction of the Carinae generator in Algorithm 5.5.
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Algorithm 5.5 Carinae generator

Input: H > Hamiltonian to be diagonalized—this is IMSRG’s H (s)

Output: 7 Cerinae > Approximation to a UCC diagonalizer of H
1: function GENERATOR::CARINAE(H)
2 initialization
3 {0 = pBorn — GENERATOR::BORN(H)
4: max; = 100 > Max UCC iterations
5: €pcy = le—4 > Cutoff for HRC series from the BCH expansion
6 egMmapT = le—3 > MBPT cutoff in case 1st-order UCC is sufficient
7 eMBPT = le—6 > MBPT cutoff for UCC transformed Hamiltonian
8 M MaxBornOrder = 100 > We want high fidelity inversions for n {k}
9: end initialization

10: > MBPT truncation schemes are detailed in Appendix-Section H.1.

11: if MBPTZTRUNCATION(T]{O}, H)| < egmapt then

12: return 7 (¥}

13: end if

14: fork<—0tomaxk—1do( ) -

\ g™ Wy g™

15: HRG =30 I (m+1)} : { I (m*+1]! }O_body < €5en

16: HUnitary - H+ [77 {k}’ HRG]

17: n{k“} = GENERATOR::BORNSERIES (7} k) H, HRG, 1 MaxBornOrder)

18: nCarinae — n{k+1}

19: if MBPT2TruNcATION(H Unitary )| < emppr then

20: break

21: end if

22: end for

23: return p C@inac

24: end function

5.12 Results

The success of the Born, UCC-Born, and Carinae generators is measured by their speedup of the
IMSRG relative to the existing White generator while maintaining small discrepancies in final
predicted IMSRG energies. The evaluation of commutators with O(Ngrbitals) time complexity (in
the realistic limit) in both the BCH and Magnus expansions comprises the most computationally
expensive operation of the Magnus-IMSRG in an ideal computer program. In addition, White’s

generator has time complexity O(N* ) in the realistic limit. Therefore, the cost of constructing

orbitals

White’s generator is computationally cheap compared to the rest of the IMSRG. Additionally, the

computational cost of constructing White’s generator is cheap compared to that of the construction
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of all three UCC-inspired generators—which require the same O (N

bitals) COMMutators evaluations

as the IMSRG. Therefore, computational speedup with all novel generators can only be achieved

by reducing the total number of O(N®

obitals) COmmutator evaluations throughout the lifetime of the

IMSRG program, while incurring little additional overhead.

We evaluate the success of this work by comparing Magnus-IMSRG calculations using UCC-
inspired generators versus the current standard in closed shell systems—White’s generator. IMSRG
calculations are performed in infinite nuclear matter over a range of particle numbers A = N + Z
and densities p. All calculations are done within the normal-ordered 2NF IMSRG(2) scheme
using the same Magnus-IMSRG parameters: egcy = le—4, €Magnus = 1le—4, emppr = 1le—6, and
step-size ds = 1. Results are obtained using high-performance compute resources provided by
the Institute for Cyber-Enabled Research at Michigan State University. We measure the runtime
of IMSRG calculations using all generators—since that is a key quantity of interest in this work.
To its detriment, runtime data has intrinsic variability dependent on the machine performing the
IMSRG calculation. Therefore, we also measure the total number of commutator evaluations
throughout the lifetime of each IMSRG program to explain trends in runtime data. We measure
differences in converged IMSRG ground state energies using the UCC-inspired generators versus
White’s generator to establish the extent of agreement in energies between all generators. Lastly,
we measure the convergence profile of IMSRG calculations to establish the extent of convergence
acceleration conferred by the novel generators.

Figures 5.1-5.7 show that using all novel generators, we often observe a reduction in the total
number of commutator evaluations in the IMSRG compared to using White’s generator. This
commutator reduction translates to observed computational speedups of the IMSRG in various
nuclear matter systems. We sometimes observe speedups of 2-4X in some systems—notably seen
in Figures 5.1, 5.5, and 5.6. Figures 5.1-5.7 show that IMSRG speedup is attained using the
UCC-inspired generators by reducing the total number of commutator evaluations in the IMSRG.
The UCC-inspired generators reduce commutator evaluations by accelerating the convergence of

the IMSRG—thereby reducing the number of IMSRG iterations needed for convergence. Notably,
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the UCC-Born generator often yields the best speedup of the IMSRG, as seen in Figure 5.1.
Moreover, we see little discrepancies in converged energies per particle E(sﬁ,ml) = E(Sfina1) /A
between IMSRG calculations using all UCC-inspired generators versus White’s generator. We at
most observe a ~ le—2 MeV per particle discrepancy in E (s fina1) Within N = Z = 14 symmetric
nuclear matter at p = 0.1 fm™> (see Figure 5.6). Curiously, we see the greatest IMSRG speedups
of ~ 3-4X using the UCC-inspired generators in this system. Lastly, we generally observe that the
IMSRG converges using the novel generators, so long y < 0.8. We suspect that this criterion is
related to the convergence criteria of the Magnus expansion [47]. Given these results, we conclude
the Born, UCC-Born, and Carinae generators improve the quality of the IMSRG integration by
accelerating the convergence of the IMSRG, while introducing little deviations in the converged

IMSRG energy.
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Figure 5.1 Comparison of Magnus-IMSRG nuclear matter calculations with the NNLO interac-
tion, N = 66, Z = 0, and Npitais = 1478 using UCC-inspired generators and White’s generator.
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Figure 5.2 Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOgp inter-
action, N = Z = 66, and Nypita1s = 1460 using UCC-inspired generators and White’s generator.
Calculations with p < 0.11 fm™ are not included due to the divergence of the Magnus-IMSRG
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Figure 5.4 Comparison of Magnus-IMSRG nuclear matter calculations with the NNLO,, interac-
tion, N = 66, Z = 38, and Npitals = 1460 using UCC-inspired generators and White’s generator.
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Figure 5.5 Comparison of Magnus-IMSRG nuclear matter calculations with the NNLO, interac-
tion, N = 66, Z = 14, and Npita1s = 1460 using UCC-inspired generators and White’s generator.
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Figure 5.6 Money-plot comparison of Magnus-IMSRG nuclear matter calculations with the
NNLO interaction, N = 14, Z = 14, and Nowpias = 1556 using UCC-inspired generators
and White’s generator.
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Figure 5.7 Comparison of Magnus-IMSRG nuclear matter calculations with the NNLOy interac-
tion, N = 114, Z = 0, and Nrpitals = 1502 using UCC-inspired generators and White’s generator.
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5.13 A Few Remarks

Observed IMSRG speedup with all novel generators is strongly system dependent. We suspect this
system dependence is rooted at the regulation and convergence of the Born series. More work is
currently needed to understand this. The regulation of the Born series in Algorithm 5.1 is rather
crude. While solving linearized UCC, we could perhaps use a more sophisticated regulator by
replacing Eq. (5.10) with —H,p;; x e ~IT/Avcd)™ = fp{ksl} - fRG (n{k})]asz_ solved by an
unregulated Born series. a > 0 can be viewed as a measure of how well HRC (n (e ) approximates
HRG (). 1f HRCO (n%}) = HRG (57), we can likely choose @ = 0 without issue. Lastly, although

three-body forces are not considered in this chapter, we find that the UCC-inspired generators are

still effective when using the IMSRG(2) + normal-ordered 3NF scheme detailed in Chapter 2.

5.14 Summary

Viewing IMSRG generators as diagonalizers of IMSRG flowing Hamiltonians H(s), we looked
towards UCC to efficiently construct approximate diagonalizers of H(s). We therefore introduced
physics-motivated techniques to accelerate our UCC calculations. With inspiration from Werner
Kutzelnigg [43], we introduced the Born expansion as a tool to invert commutators in UCC—so
long a renormalized Hamiltonian HRC (y7) is approximated. And we posed an ansiitz for HRC (1)
utilizing gradient descent in Appendix I. With inspiration from Steven White [41], we regulated
the Born series to improve the convergence of n dependent transformations in UCC and IMSRG.
Lastly, we preconditioned the Born expansion to accelerate its rate of convergence when solving
high-order UCC.

Utilizing these developments, we subsequently introduced three UCC-inspired IMSRG genera-
tors—Born, UCC-Born, and Carinae. Approximately solving 1st-order UCC, Born’s generator is an
extension to the existing White’s generator. The UCC-Born generator, designed to be a cheap high-
order UCC solver, uses Born’s generator in conjunction with the aforementioned HR¢ (n) ansitz to
approximate high-order UCC solutions. The Carinae generator conventionally iterates linearized
UCC until a strict convergence criterion is met. Using these UCC-inspired generators, we often

see noticeable speedups in the IMSRG with little differences in converged energies—sometimes
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amounting to 2—4X in nuclear matter systems.

5.15 Perspectives

Looking forward, we expect the Born, UCC-Born, and Carinae generators to be beneficial in
existing IMSRG(2) implementations—so long Section 5.2’s assumptions are met, if not weakly
broken. Although, not rigorously tested, we observed noticeable speedups in our calculations for
the UCC-Born and Carinae generators by using preconditioners in the Born series. Therefore, we
suspect that the use of preconditioned and regulated Born series may confer computational speedup
in existing UCC implementations—so long all assumptions of Section 5.2 are met, if not weakly
broken.

Future work is needed to construct better regulation schemes of the Born series. Moreover, all
calculations in this chapter were restricted to the two-body level. Going forward, it may be lucrative
to extend the Born series to invert commutators acting on three-body operators. Perhaps, one could
solve the commutator inversion at the two-body level (as is described in this work), then use that
solution to better obtain the three-body commutator inverter. Excitingly, we wonder if the Born
series could be used to implement approximate triples in the IMSRG. In the following chapter, we
apply known data driven methods to accelerate the IMSRG by extrapolating converged IMSRG

energies.
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CHAPTER 6

IMSRG POST-PROCESSORS
“If you don’t know
something, pretend you do.
Then ask, what would be
consequent to you knowing
that? You can work
backwards; and sometimes,
guessing is enough!”
—Hoon Hong
Moving along the IMSRG flow in s, we calculate and store approximations to the converged IMSRG

energy. We store these energies in
C = {E(O) +AEP(0), E(ds) + AE®(ds), ..., E(s) + AE<2>(S)} .

The number of elements in C is denoted by Ngamples = 1 + 5/ds. We include MBPT(2) corrections
on the IMSRG energies to obtain better approximations to the converged IMSRG energy. And the
converged IMSRG energy is given by E (o) + AE?) (c0).!

We introduce the use of the Shanks and Padé methods in the IMSRG, which use elements
of C to extrapolate the converged IMSRG energy. As described in this work, these methods are

post-processors which sit on top of the IMSRG to extrapolate the final IMSRG energy.

6.1 Shanks Transformation

We store the last three energies of C in?

é = {CNsamples_3 ’ CNsamples_z’ C1]Vsamples_1 } ‘ (6 1)

"'As seen in Figure 2.2, AE () (c0) is actually zero.
2We index all arrays starting from 0.
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C holds our best three approximations to the final IMSRG energy as we move along the flow. The
Ist-order Shanks transformation on C is given by [48]
(G, - C))?

S(C Eé_f,
() 2 C2—2C1+C()

(6.2)

and is taken as the extrapolated final IMSRG energy E (o) + AE® (o). A minimum of three
samples are needed for the 1st-order Shanks transform. If Ngamples < 3, no extrapolation is made
and S(C) is programmed to return Cy,,,..~1- The Shanks transform is derived by assuming that
the elements of C are exponentially related [48,49]. By using the Shanks transform in the IMSRG,

we assume that IMSRG energies converge exponentially.

6.2 Padé Approximant

We store energy differences of C along the flow in

5= 9 Cl - C() C2 - Cl CNsamples_l - CNsamples_2
- 0’ 1 ’ 2 >t Nsamples—1 ’
8 8 8 g
. . . . . Niamples—1
where g is some dimensionless parameter for power counting. Notice, Cn -1 = 2,20 0n8"-

Defining M = {%J and L = Ngmples — M — 1, the polynomial coefficients a, and b, of the

Padé approximant are obtained by solving?

L M Nsamples—1
> ang’ = (1 £y bmgm) XY S 6.3)
n=0 m=1 n=0

and crucially, discarding any induced terms with degrees greater than L in Eq. (6.3)’s RHS [50].

And the extrapolated final IMSRG energy is then given by

L
Zn:() al’lgn

P(C) =
< 1+Znﬂf:1bmgm

(6.4)

with g = 1. A minimum of two samples are needed to use the Padé approximant. Whenever
Nsamples < 2, no extrapolation is made and P(C) is programmed to return C Neamples—1 -

6.3 Results

We perform multiple Magnus-IMSRG calculations testing the efficacy of the Shanks and Padé

extrapolators. All calculations are made with step-size ds = 1 using White’s generator with Epstein—

3The polynomial coefficients a,, and b,,, are implicit functions of C.
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Nesbet energy denominators.* The IMSRG outputs for these results are included in the SCKY-
IMSRG repository; and the resulting figures are plotted by our automated data managers. At each
step of the flow, we have three methods which give approximations to the converged IMSRG energy:

Cy _; relative to E(o0) + AE@ (o) to

samples — I

§(C), and P(C). We measure differences of Cy,, ...
establish the baseline convergence of the IMSRG with MBPT(2) contributions. We also measure
differences of S(C) and P(C) relative to E (o) + AE? (c0) to measure the extrapolators’ efficacy.

In Figures 6.1, 6.2, and 6.3, we see that both the Shanks and Padé methods can extrapolate
E(00) + AE® (c0) with impressive accuracy. Notably, we sometimes observe 1-2 orders of mag-
nitude improvement over Cy,,,..~1 using the extrapolators. And both extrapolators tend to track
each other quite well. Unfortunately, both methods have numerical instabilities, notably seen
in Figures 6.3 and 6.4. These instabilities are suspected to occur when these methods become
ill-conditioned—diminishing their reliability.

The accuracy of the Shanks and Padé extrapolators is generally highest halfway through the flow.
Terminating the IMSRG flow when extrapolation accuracies are sufficiently high, and quoting the
extrapolated energies, we could obtain ~ 2X IMSRG speedup. However, it is unclear a priori when
the IMSRG is halfway through the flow, let alone when the Shanks and Padé extrapolation accuracy
is high. Alternatively, we could terminate the IMSRG when the Shanks and Padé extrapolations
are converged. This would yield a more reliable extrapolated energy. But, we would obtain less
than 2X IMSRG speedup since both extrapolators tend to converge much later in the flow.

The extrapolators can yield poor results, particularly seen in IMSRG calculations with the
hard Entem-Machleidt-Nosyk potential [33] (see Figure 6.5). Notably, the IMSRG’s convergence
behaviour is not smooth for the Entem-Machleidt-Nosyk potential with ds = 1, compared to

the softer N2LO,p, potential [29]. Perhaps, the lack of smoothness of Cy,

samples

_1 18 the source
of failure for the Shanks and Padé extrapolators. This hypothesis is consistent with preliminary

explorations—which saw that both extrapolators work best when taking small IMSRG step-sizes.

4Unless otherwise stated, we employ a generalized form of MBPT(2) seen in Algorithm H.I. Our MBPT
expressions are consequently, generator dependent. Using White’s generator with Epstein—Nesbet denominators, we
suspect that MBPT results in this chapter are with the Epstein—Nesbet partitioning.
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Figure 6.1 Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé extrapolators
withN=7Z=14,p =0.11 fm™>, and Nypirars = 228. The Magnus-IMSRG is slowly convergent in
this system—and is divergent with p = 0.1 fm™>. The sharp turning points in the Padé and Shanks
curves at s/ds = 10 and s/ds = 13 respectively, are due to the extrapolators predicting converged
energies that narrowly cross E(26) + AE®)(26) from above. At these turning points, we see 2
orders of magnitude improvement over the IMSRG with MBPT(2). And terminating the IMSRG
at these turning points would confer 2—-2.6X speedup, with little loss in accuracy.
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Figure 6.2 Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé extrapolators
withN=Z=14,p =0.14 fm™3, and Norbitais = 324. The turning points in the Shanks and Padé
curves at s/ds = 6 and s/ds = 7 respectively, are due to the extrapolators predicting converged
energies that narrowly cross E(12) +AE® (12) from above. At these turning points, we see at least
1 order of magnitude improvement over the IMSRG with MBPT(2). And terminating the IMSRG
at these turning points would confer 1.7-2X speedup, with little loss in accuracy.
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Figure 6.3 Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé extrapolators
with N = Z = 66, p = 0.16 fm™>, and Nomitals = 324. We see numerical instabilities in both
extrapolators at s/ds = 3 yielding extrapolations that are roughly 1 order of magnitude further
away from the converged energy than E(3) + AE(?(3). The sharp turning points in the Shanks and
Padé curves at s/ds = 8 are due to the extrapolators predicting converged energies that narrowly
cross E(15) + AE@?(15) from above. At these s/ds = 8 turning points, we see nearly 2 orders
of magnitude improvement over E(8) + AE®(8). And terminating the IMSRG at these turning
points would confer 1.9X speedup, with little loss in accuracy.
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Figure 6.4 Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé extrapolators
with N =Z =66, p =0.16 fm™3, and Norbitals = 684. We see a numerical instability in the Shanks
extrapolator at s/ds = 4 yielding an extrapolation that is 2 orders of magnitude further away from
the converged energy than E (4) + AE () (4). Both extrapolators generally yield small improvements
over the IMSRG with MBPT(2) in this system. However, terminating the IMSRG at s/ds = 4, and
taking the Padé extrapolated energy would confer 2.2X speedup, with little loss in accuracy.
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Figure 6.5 Magnus-IMSRG’s convergence profile using the 1st-order Shanks and Padé extrapolators
with N =Z =66, p =0.13 fm™3, and Nomitals = 3700. This result is obtained with the Entem-
Machleidt-Nosyk potential [33] at the normal-ordered three-body level. Generalized MBPT is not
employed in this system, and MBPT is thus implemented with Mgller—Plesset partitioning. Both
the Shanks and Padé methods are poor extrapolators in this system.
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6.4 Discussion

Given the extrapolation power of the Shanks and Padé methods, we view them as noninvasive
extrapolators that can obtain converged IMSRG energies when the IMSRG’s convergence behavior
is smooth. These extrapolators could be used to invasively accelerate the IMSRG’s convergence by
terminating the flow early. However, one would need a better handle on when these methods fail
in the IMSRG. Moreover, preliminary explorations suggest that the Shanks and Padé methods can
be applied directly on the matrix elements of the Magnus operator Q(s) to successfully extrapolate
Q(0).> This would enable the extrapolation of observables beyond energies at the cost of storing
multiple temporaries of Q(s). A future SCKY-IMSRG implementation of the Shanks and Padé
extrapolations on Q(s) might be lucrative. Future work is needed to understand when these methods

fail in the IMSRG, and when they can be used to terminate the IMSRG early.

6.5 Conclusion and Perspectives

We generally observe that Shanks and Padé transforms can extrapolate converged IMSRG energies
with impressive accuracy. When these methods work, they can extrapolate converged IMSRG
energies within le-2 MeV accuracy. Terminating the IMSRG flow when the Shanks and Padé
extrapolation accuracies are sufficiently high and quoting the extrapolated energies, we could obtain
~ 2X IMSRG speedup. However, we have yet to devise a scheme to reliably do so. Moreover,
these methods are prone to numerical instabilities; and their extrapolation power can markedly vary,
depending on the interaction in use. Thus, more work is needed to understand when these methods
fail in the IMSRG.

Currently, these methods are best seen as noninvasive IMSRG extrapolators which guide users to
potential converged IMSRG energies. Going forward, one could explore ways to reliably terminate
the IMSRG early using the extrapolators. Additionally, preliminary explorations suggest that the
Shanks and Padé transforms can also extrapolate on the Magnus operator Q(s). One could explore

using these methods to invasively accelerate the convergence of the Magnus-IMSRG evolution.

>Care must be taken to avoid extrapolating over matrix elements of Q(s) that are purely zeros. This would produce
zeros in the denominator of Eq. (6.2).
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CHAPTER 7

CLOSING REMARKS
“As an academic, it is
essential for you to have a
broad base of knowledge and
be prepared for anything”
—Hans Hallen
7.1 Summary
The nuclear matter equation-of-state (NM-EOS) is of great interest to the nuclear and astrophysics
community. Recent advances in ab initio theory have led to an explosion of nuclear forces from
Chiral Effective Field Theory (y-EFT) that are amenable to many-body methods [2,7]. Some of
such methods include Many-Body Perturbation Theory (MBPT), and non-perturbative approaches:
In-Medium Similarity Renormalization Group (IMSRG) and Coupled-Cluster (CC) theory. The
IMSRG is a powerful diagonalization method that, until now, has not been applied to study NM-EOS
with y-EFT forces. We have now computed various NM-EOS using the IMSRG with the N2LOpy,
Hebeler, and the harder N2LLO Entem-Machleidt-Nosyk (EMN) interactions [7,29,33] .I' To achieve
this goal, we developed a state-of-the-art, high-performant nuclear matter IMSRG program with
access to a multitude of two-body and density-dependent three-body forces from Drischler et
al. [2]. And we made comparisons to MBPT and CC results, obtained in collaboration with
Christian Drischler and Gaute Hagen, respectively. We qualitatively validated our IMSRG obtained
results with CC, by comparing trends in our data to observed trends seen in finite nuclei—within the
literature. And, we observed the presence of non-perturbative physics when using hard interactions
in symmetric nuclear matter (SNM).
Most IMSRG NM-EOS computations were done at scale, and required days to be completed.
This is due to the high computational demands of the IMSRG in large systems. Therefore, we

constructed novel ideas to accelerate IMSRG computations using Unitary Coupled-Cluster (UCC)-

IEor clarity, we have access to significantly more forces than N2LOgpt, Hebeler, and EMN alone. These forces were
chosen to obtain the first batch of IMSRG calculated NM-EOS due to their existing use with many-body methods [2,27].
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inspired IMSRG generators. In doing so, we made novel insights into the IMSRG and UCC.
Particularly, we realized that approximate solutions of UCC can be used as IMSRG generators.
Viewing UCC as a nonlinear commutator inversion problem, we realized that UCC amplitudes at any
order of UCC are given by a generalization of the Born series—so long the series converges. And
we used preconditioners to accelerate the convergence of the Born series. Moreover, we provided
a gradient descent based ansétz for a renormalized Hamiltonian in UCC seen in Appendix I. Using
these developments, we subsequently introduced three IMSRG generators named “Born,” “UCC-
Born,” and “Carinae.” Notably, we sometimes observed 2—4X IMSRG speedup when using the
novel generators, particularly when the IMSRG was slowly convergent.

We also applied to the IMSRG, known nonlinear methods—i.e., Shanks and Padé trans-
forms—which can remarkably accelerate slowly converging series [48,50]. We saw that both
methods can extrapolate on converged IMSRG energies with impressive le—2 MeV accuracy.
However, we also observed numerical instabilities in the methods. And, we were unable to use the
extrapolators to reliably terminate the IMSRG early, and obtain noticeable speedup. Consequently,
these methods are currently viewed as noninvasive IMSRG extrapolators, which guide users to

potential converged IMSRG energies.

7.2 Outlook

Given the few chiral interactions used in this work, we look forward to IMSRG calculated NM-
EOS with a wider range of interactions. Such calculations using uncertainty quantification tools
from Drischler et al. [34] will provide non-perturbative benchmarks to the existing literature
[34]. Furthermore, we observed the growing importance of triples excitations in CC at higher
densities of SNM. We suspect that triples may likewise be important in the IMSRG at higher SNM
densities—but perhaps to a lesser extent than CC. Thus, we also look forward to incorporating triples
excitations into our nuclear matter IMSRG program. Developments from Stroberg et al. [26] will

be instrumental in this endeavor.
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We have developed an IMSRG program that is versatile, and can be used to study a variety of
interesting physics using an emerging non-perturbative method in nuclear matter. For example,
there are exciting developments on the horizon being made by Kang Yu for IMSRG computed
momentum distributions, static structure factors, and pair correlation functions in nuclear matter.
A finite temperature extension to our IMSRG program can also be implemented using insights
from Smith er al. [31]. Such an implementation would produce an interesting non-perturbative
benchmark to existing finite temperature MBPT results [2].

We connected two historically separate theories—IMSRG and UCC by using approximate
UCC solutions as generators of the IMSRG. We are curious to see the potential performance gains
of the UCC-inspired IMSRG generators in other systems beyond nuclear matter. And, we hope
that insights from this work lead to further developments of UCC and IMSRG within many-body
physics. Moreover, we are interested to see the potential value of the Shanks and Padé IMSRG
extrapolators in other systems beyond nuclear matter. Lastly, our nuclear matter IMSRG program
can also be extended to finite nuclei via a change of basis. Optimizations made in the program’s
commutators enabled novel preliminary A = 1030 IMSRG(2) calculations. Such calculations for

finite nuclei may shed light on the existence of heavy nuclei beyond the periodic table!
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APPENDIX A

GENERALIZED BAKER-CAMPBELL-HAUSDORFF FORMULA

Given recent interests in emulation of the IMSRG, the following quantity is of interest
(Pal H |¥5) = (@] e He " @) . (A1)

A and B are generic A-body operators. |¥4) and |Wp) are correlated wavefunctions associated

with A and B, respectively. And |®) is the usual Fermi vacuum. Let x be a continuous variable.

Consider
F(x) = e He ™ B* (A.2)
d de? de Bx
—F(x) = He B* 4 eMH—— A3
dx (x) dx ¢ ¢ dx ( )

= AeHe ™ B* — eAXHBe B~
Since [A, e = 3%, )Z—T[A, A" =0,

iF(x) = e (AH - HB) e75* . (A.4)
dx

We define the three-argument commutator
[A,H,B] = [A,H,B]'"Y = AH - HB. (A.5)
Then,
d2
@F(x) =e¢" (A[A,H,B] - [A,H,B] B) e~ (A.6)
= e" [A,[A,H,B],B] e 5.
Likewise, we define the two-fold nested three-argument commutator
[A,H,B]® = [A,[A,H,B],B] . (A.7)
In general, the n-fold nested three-argument commutator is given by

[A,H,B]"™ = |A, [A,H,B]" DV ,B|, n>0 (A.82)

[A,H,B]Y =H. (A.8b)
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Assume that for some n > 0,

di’l

F(x) = e™ [A, H,B]™ 75", (A.9)
dx"

Therefore,

da
dx dx"

F(x) =" (A4, H,B]" — [A,H,B]" B) " (A.10)
= e |4, (A, H,B]") B| "

— Ax [A, H, B] (n+1) e—Bx .

Thus, we have demonstrated that if Eq. (A.9) is valid for a given value of n, then the successive
n + 1 derivative of F(x) is also guaranteed by Eq. (A.9). Since we have shown that Eq. (A.9) is
valid for n = 1 (and cotrivially valid for n = 0), then Eq. (A.9) must be valid for all values of n.

Taylor expanding F(x) about x = 0 using Eq. (A.9), yields a modified variant to a famous

expression
> d" > x"[A, H, B]™
F(x):Z —F (x) —:Z—
oy dx 0 o n!
o [A, H,B]™
— F(1)=e*H Z (A.11)
n=0 !
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APPENDIX B

FOURIER TRANSFORM OF LOCAL TWO-BODY FORCE IN A FINITE BOX

In this work, the IMSRG is performed in a finite box, manipulating interactions written in mo-
mentum space. Input interactions (e.g., the Minnesota potential) may be given in coordinate space
representation. Therefore, it is essential that we know how to convert interaction matrix ele-
ments between coordinate and momentum space representations. Consider some momentum space
interaction matrix element <§1122‘V‘1231})4>Dirm, obtained in a box (of volume V = £3 [fm3])
containing normalized single-particle plane wave states given in Eq. (2.12). The subscript “Direct”
is used to denote a matrix element that is not anti-symmetrized. We aim to write the aforementioned
matrix element in a position space representation. For this derivation, we ignore spin and isospin
quantum numbers—as they are irrelevant for understanding how the Fourier transform is performed
in a box.

Inserting four complete sets into <1€11?2‘V(1}} I;4> with basis states specifying the indepen-

Direct

dent location of all incoming and outgoing particles yields

]_6)3]_54> 2/ d373/ d3r4/ d37’1/ d3r2<]_€1]_€)2‘?374> <?1?2
Direct la¥% 8% g% 8%

X <7374|‘7|7172> . (B.1)

- -

<1‘€11‘<’2 % k3k4>

Notice our chosen boundary of integration: we assume that all relevant single-particle wavefunc-

tions exist within our box. We also assume that the interaction is local, i.e.,

VIFif2) = V(71 = F2) [F172) (B.2a)
(F3Pa|VIF17) = V(7| = F2)8(F) — T3)0(Fa — Tg) . (B.2b)

It is important to emphasize that the potential V (7} —7,) is a nuclear interaction, and is thus generated
by the interacting particles. Consequently, V(7| —7,) depends only on the relative distance between
particles. This means that we can confine our particles in any region of space, and the observables

related to V(7 — ) should be unchanged—so long there are no external forces. For convenience
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in this calculation, we place our box with one of its vertices located at the origin

Using Eq. (B.2b), we can simplify the integration:

</_<>1/_<)2 ‘A/ 753];4>Di oot = / d3r1 / d3r2 <]_<>1]_<)2‘7172> <71?2)/_<>3]—€>4> V(?l - 72) . (B.3)
r 4% 4%
Since,
<]_<)1]_€>2 171}72> = Le_il_él'?]Le_ﬂzz'?z (B.4a)
4% VvV
- o 1 2= 1 = -
(Ffafaks) = =BT —— R (B.4b)
% %
we can expand Eq. (B.3)
- - Al=> - 1 T 7 = 7T o
<k1k2‘V‘k3k4> - / &r / Prye-iiiikan) ik fiskety 2 _ 7). (B.S)
Direct (VZ v v

Since the potential is assumed to only depend on the relative distance between incident particles,

it is convenient to transform from lab coordinates into relative coordinates ¥ = ¥ — > and center-

of-mass coordinates R = ”;’2. Then, 7 = R+ 5 and 7, = R — 5. And the new volume element is
given by
d’rid’ry = @ Rd’r|det(J B.6
rd’ry = r|det(J)] . (B.6)
The Jacobian is given by
-8r1x arlx 6r1x 8r1x arlx (9r1x- l ]
OR Ory OR, Ory OR, or, 1 2 0 0 0 0
oryy Oriy Oriy, Oriy, Or;,  Ory 1
ORy ory ORy, ary OR, or, 0 0 1 2 0 0
67‘]1 6"1Z 5]’1Z 6rlz 6"1Z 5]’1Z 1
J= OR, Ory OR, Or, OR, or, | _ 0 0 0 0 1 2 (B.7)
Oryx  Oray  0Orpy  0Oray  Ora,  Oray 1 1 0 0 0 0 ’
OR, Orx OR, Ory OR, ar, 2
6r2y 6}’2), Brzy 0r2y 6r2y Brzy 1
OR ory Ry ary OR, or; 0 0 1 2 0 0
6rzz 6r22 (’)rzz (97’21 6rzz (’)rzz _ 1
| ORx  Orx  ORy Ory OR;  Or; | 00 0 0 1 2

111



with det(J) = 1. Therefore,

- o 1 (T TRAE g [ R 1R [R+E 1= [R=E1) .

k3k4> :—/ d3R/ re P FAE R R R RSy g
Direct (VZ ’ ”

1 (7 7 7 7\ B i(’z3—’24—’;1+’;2)'7 N
_ @/ d3Rez(k3+k4 ki kz)R/ Bre T V()
v ’”

<1€1/€2 1%

where V and V’ are new boundaries of integration. The integration region over R is still restricted
to be within the box, while the integration region over r will lie outside of the box. To see this,

observe that

_ riy + 1oy _L+.£_
max R, = max ( > ) =—F = L (B.9a)
min R, = ? -0 (B.9b)
maxr, =max (rj, —ry,)=L-0 (B.9¢)
minr,=0-L=-L. (B.9d)

Likewise can also be concluded for the y and z Cartesian coordinates. Thus, V'’ = V and

V" =239V . For convenience, let us define the incoming and outgoing relative momenta

> k3—k
k=20 (B.10a)
2
S, ki—k
k=2 (B.10b)
2
The momentum transfer is given by
. _ 2 7z Ki—ky  k3—k
=k'-k= - . B.11
q > > (B.11)
And center-of-mass momenta are given by
K =k + ko (B.12a)
K=Fky+ky. (B.12b)
Thus,
- - Al - 1 [#—_’/-_} —ja-r -
<k1k2Vk3k4> - _/ P ReE K)R/ Pre7 TV (7 . (B.13)
Direct V2 v 23y




Note, the integration boundary 23V, means that Eq. (B.13)’s integration over r is done within the
boundary of a cube (with sides of length 2.£) that is centered at the origin. Eq. (B.13)’s integration

over R can be easily done in Cartesian coordinates

AT L 4 , L , , L , ,
/ d3Rel(K—K )~R _ / dee’(Kx_Kx)Rx/ dRyel(Ky_Ky)Ry/ dRzel(KZ_KZ)RZ ) (B14)
%

0 0 0
L . ) i i(Kx=K} )Ry Re=L
/ dR (K KRy = 1€ 7 77 (B.15)
0 Ky - K)’( Ro—
_ —i (ei(Kx—K;)L _ 1)
Kx - K),c .
Since
, 2n
K, - Kx = k3x + k4x - klx - kzx = f (I’l3x + N4y — N1 — nzx) , (B.16)
we can conveniently define
fly EN3, + N4y — N1y —N2x €2 . (B.17)
Hence,
L _ , . eZm'ﬁx -1
/ deel(Kx_Kx)Rx — l'E ( — ) . (B_18)
0 2r My
Notice that Eq. (B.18) is only nonzero when 7, = 0. Therefore,
L . ) . d o2 _ |
/ AR,/ (KxKORe _ Jiy Z1L 30 ( ; ) (B.19)
0 fix—0 2 Eﬁx
—iL 2ni
=05, 0=—— =Lz, 0=Lk, k. -
2r 1 x
Similarly,
L . ’
/ dRye' K KDRs = £5¢ 1 (B.20a)
0
L . ’
/ dR &' (KK)R: = rop 0. (B.20b)
0
Combining Egs. (B.19) and (B.20) with Eq. (B.14),
i(K-K’)-R
/W PR R F L6z z =V g . (B.21)



Finally, combining Eq. (B.21) with Eq. (B.13),

e - A - - 6‘ 7 7 7 _L 7 __) __> 7 .Q
S T X/ direH Rtk Ty gy (B.22)
Direct % 23y
Og &

=— dPre TV (p).
. ()

Since Eq. (B.22) is derived independent of spin and isospin considerations, we can simply extend it

R - Oz @
V%%%M%m>‘: (B.23)
Direct %
——
Box normalization

3. —idF -
><'/3 d’re™ <0‘Z1T110'Z2T12|V (}’,O‘,T)|0‘Z3TZ30'Z4TZ4>
22V

<klUZl T;, k207, T2,

Free position space representation

A

A 3, > 4 5 -
\% (k Lk, o, T,(V)‘kO'Z3TZSO'Z4TZ4> .

—_— _)/
Y <k0'217210'227zz

Momentum space representation

For generality, Eq. (B.23) is written in a form where V depends on the operators k’ and k, and

acts on two-particle states

1?> and )l;> If the momentum space representation of the interaction

is not obtained using the partial wave expansion (seen in Appendix E), then we can easily write

g

a momentum space representation. Such interactions including the One Pion Exchange (OPE)

A

1% (/?, l_c), 3’, ?,"V))I:> =V (1?, I:, 3‘, 73',(1/). Most interactions used in this work are given in

and chiral forces from Drischler et al. [2] assume that the box-size is infinitely large. We still

convert those interactions into the finite box using Eq. (B.23), and dropping the V dependence in

0(.i.5.5)

7 7 1
<k 072172102, Tz, k0'137130'147'14>'

Finally, the anti-symmetrized variant of Eq. (B.23) is given by

A

\% I;3UZ3TZ3 1_6)40'24714>AS (B.24)

<k10’Z1TZ1 koo, 7o,

A

Vv

= <k10’Z1TZIk20'ZZTZ2 k30‘Z3TZ3k4O'Z4TZ4>

Direct

A

Vv

—<k10'zl7'z1k20'z27z2 k40‘z4TZ4k3O'Z3TZ3>

Direct

ISee Egs. (D.21) and (E.12).
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APPENDIX C

MINNESOTA POTENTIAL IN A FINITE BOX

The Minnesota potential is of the form [21,23]

N - 1 a2 W 2 N
Vrtin (7, &, ) = 5 (Vore ™+ ZLe 1 (1.4 P7) (C.)

Vos  _rari A A A
eI (1 - ) x (1= PLPY)

Vor = 200.0MeV, Vor = —178.0MeV, Vo5 = —91.85MeV, kr = 1.487fm™2, kr = 0.639 fm2,

and kg = 0.465 fm™2. 1’3‘172 and ﬁfz are spin and isospin exchange operators, respectively

A 1 5 5
PY, = 5(1 + 0 - 02) (C.2a)
A 1 3 3
Pl, = 5(1 +7-T) . (C.2b)

13‘172 and ﬁfz act on orthonormal two-particle spin and isospin projection states on the z axis,

respectively in the following manner:

Pl lo, =1, 0 =1) =11, PRI = LD, P ITD =1L, PLUD =11, (C3)
Ph e =1 =1) = 11D, PLIULL = 11D, PLITL = 1D, PLUD =110

And going forward, the following identity will be useful
PLPY, = PL,P, = 1. (C4)

We seek to compute the matrix elements of the Minnesota potential using Eq. (B.23):

5= -
- - A - - K,K’
<k10'm7'21 koo, 72, [VMinn k3O'Z3TZ3k4O'Z4TZ4> ' = (C.5)
Direct %

3 _l'_'.f' 7 - 43 3
X / d’re <O‘ZITZ] 02, Tz, |VMinn (r, o, T)|O'Z3TZ3O'Z4TZ4> .
23y
Since spin and isospin operators act on independent spaces, we can easily factor our analysis.
<0'Z, T2,02, Tz, |VMinn (r, 0, T)|O’Z3TZ3 O'Z4TZ4> (C.6)

= <O'Z1O'Z2| <TZITZZ|VMinn (r,0, ?)|TZ3TZ4> |0'Z30'Z4> .
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First, consider matrix elements between orthonormal isospin states.

1

<TZ|TZ2|VMinn (r,0, 7°)|TZ3TZ4> = E(VORe—kR|7|2

Vi , A
+ %e‘kﬂ”z(l +P7) (C.7)

+ %e_kswp(] - 13?2)) X <TZ1TZZ|1 - 133’213{2|TZ3TZ4> )

For convenience, let us define

Cr = Voge M (C.8a)
Vi , .

Cr= %e‘kﬂr'z(l + P, (C.8b)
Vos —xeiitrs a

Cs = %e ksIFE(1 = PY) (C.8c¢)

Combining Egs. (C.8) and (C.7), we obtain

N 1 -
<TZ1TZZ|VMiIm (r, 0, T)|TZ3TZ4> = E(CR +Cr + CS) <TZITZ2|1 - P?2P71-2|TZ3TZ4> . (C.9)

Using Egs. (C.3) and (C.4) in Eq. (C.9),

Ao AT _ _ po Ar
<TZITZZ|1 - P12P12|TZ3TZ4> = 6TZI,TZ3 5TZ2,TZ4 P, <TZIT22|P12|TZ3TZ4> (C.10)
=0r, 1.0 - P60, .0
Tz1:Tz3 =~ Tz95Tzy 127 T2y 5Ty P T2psTzg

. . AO— AT .
Now, consider matrix elements of <TZITZ2|1 - P12P12|TZ3TZ4> between orthonormal spin states.

Combining Egs. (C.6) and (C.9),

N R 1
<0'ZITZ10'22712|VMim (r,0, T)|0'Z37'Z30'Z4TZ4> =5 <0’ZIO'ZZ| (Cr +Cr +Cy)

(C.11)
X (67'11 »Tz3 6Tz2’7'24 - PcszéTzl sTzy 6Tz2’7'23) |0-Z3 0-Z4> :
Using Egs. (C.3) and (C.4), we can evaluate the individual terms of Eq. (C.11):
(702] Ci (82, 2,00, 2y = PO, 2 0y ) [025072,) (C.12)

— —kgl7? po
- VORe x <O-Zl Oz | 67-21 Tz3 6TZ2 Tzy - P1267—Z1 Tzy 6Tzz Tz3 |O-Z3 O-Z4>

— —kg|F[* _
= VORe X 5721 Tz 61'12,714 50'11 023 60'12,0'14 6721 T2y 6722,713 60'11 0z 60'12 Nor I
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Likewise, the Cr terms are given by

(20| Cr (fSTZl R - 6722,713) En (C.13)
= %e‘krl?P X <0'110'22| (1 + ﬁ(sz) (5TZI,TZS 57@‘&4 - A(1T257Z] ’TZ45TZZ’TZ3) |0‘Z3o'z4>
= %e—kﬂ?lZ X <0'210'Z2| 5721 Tes 5TZZ,TZ4 - A(lrz A(lrz (5711,7-14(5.&2,713
1
(8 Oy, = Oy Oy ) P o)
B %e‘kﬂ?'z % <0—Z10-ZZ| (6TZI’TZS Ory ey ~ 5711,7145712,723) (1+ 13(172) |0-Z3O-Z4>

VOT 212
_ —kr|7] —
- € Tz1:T23 5Tz2 Tzy 5Tz1 Tzy 6712 Tz3 60’11 023 50—12 50z + 50—11 Ozy 50—12 0z3 | °

Lastly, the Cg terms are given by

<0'Z10'22| Cs (5711 oy Oty Ty — A(1r25Tz1 o 6712,713) |0'230'Z4> (C.14)
= %e—kslf"lz X <0'110'zz| (1 - A?z) ((5711,713 6TZ2,TZ4 - A?-ZéTzl,TqéTzz,Tq) |0‘Z30'Z4>
= %e—kslfp X (0'z10'zz| 6TZI’TZ35TZZ’TZ4 + 15(172 "(17'2 67-11 5714(57-12&3
1
= (B Oy + 61 e By ) P 0s)
= T I s (72, | (5 iy Oy, + 0 Oy ) (1= PR) s,
= %e—ksl?l2 (6TZI,TZS 572.2"&4 + 6T217TZ4 6T22’TZ3) (60-21’0-Z3 60}2,%4 — 5O_ZI7O_Z45012,0_13) .

In conclusion, combining Egs. (C.12)—(C.14) into Eq. (C.11), we obtain the spin and isospin matrix

elements of the Minnesota potential:

<0'Zl T,,072, Tz, |VMi1111 (7,0, f)|0'Z3TZ30'Z4TZ4> (C.15)

Vor =12
— JOR —kglF| _
) 4 5711 Tz (5712 T2 5‘711’0'13 50'12,0'14 6711 T2y 5712,713 (So'zl,az4 60'12,0'13

Vor =12

2O —krlF| _

+ 4 € 67'21 T2z 6712,Tz4 67'11 T2y 6712,713 60’z| ) 60}2’0'14 + 60’z1 s0zy 6‘Tz2’0'13
V()S _ =12

20 ksl

+ 4 (57'21 Tz 5Tz2vTZ4 + 5711 Tzy 67'12,‘1'13 ) (50'11 0z3 50—22 Ozy 50—21 30zy 60—Z2’U-Z3 ) .
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Going forward, we consider only pure neutron matter (PNM) calculations. This greatly simplifies

Eq. (C.15).
N A Vor _ioirz . Vos _rarr
<0-Z] l Oz, l|VMinn (r, 0o, T)|0-z3 lo-z4 l> = (TRe krlrl™ 4 TSe ks|7| )
(C.16)
X (50'z1,0'z3 50'12,0'z4 - 50'11,0'1450'@,0'13) .
The Minnesota potential in a finite box is then obtained using Egs. (C.5) and (C.16).
(Froz, L Eaors, U Pasisorzy L Racr, 1) (€17)
Direct
S =
K.K'
= Y ( 0'11,0'1360'12,0'14 _60'11,0'1450'12,0'Z3)
x/ dPreidT (V()Re_kR'?|2 +V05€_k5|?|2) .
23V
Let us consider just the first term of Eq. (C.17)’s integral.
3 —iGF kr|7|? ‘ j krr?
/ dre T Vype FRIFT = VOR/ drye T TER (C.18)
2y -
L ) 5 L ) 5
x/ drye_’qyry_ery/ dr e 9T =kRrz
-£L -£L
Eq. (C.18)’s integral over r, is given by
£ : _ai ] 2Lkg —i 2Lkg+i
/ drxe—qurx—er§ R L v (erf (M) +erf (M)) ) (C.19)
g kr 2 2Vkg 2Vkg

And solutions to Eq. (C.18)’s integral over ry and r;, share the same structure as Eq. (C.19).

Therefore, Eq. (C.18) is given by

3. =ig iy kel Aty
d’re Vore "R = Vor —e kR =3 (C.20)
23y ke 2

2Lkg — iqx) (2£kR + iqx)) ( (2.£kR - iqy) (ZLkR + iqy))
fl—— fl—— fl—— fl——
X (er ( N +er N er N +er N

ZLkR—l'(]Z) (2.£kR+iqZ))
fl—— fl—————1]| .
x(er ( ) kR + er ) kR
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Likewise, the second term of Eq. (C.17)’s integral is given by

2..2..2

a7 2 3 _dirayraz ]
d3re—tq-rV0Se—ks|r|2 = Vos ﬂ_e kg (C.21)

3 3

2y kg 2

X (erf (m) +erf (M)) (erf (M) +erf (—2£k$ i lqy))

2vVksg 2vVkg 2Vks 2Vkgs
2.£kS—iqZ) (2.£k5+iqz))
f|——— fl———|] .
X (er ( 5 kS + er 5 kS

In total, combining Egs. (C.20)—(C.21) into Eq. (C.17), the direct matrix element of the Minnesota

potential for PNM is obtained

<I_€10_zl l 1_520}2 l‘vMinn

_ 5I;|+l_<'2, %3+/_€'4 5 _ 5 é,
= —2£3 021,023 0072,.,07, 021,02, 002,025

31?1 2 —1 2 ]
Vor z?e4g_§(mf(_éﬁg_ﬁa)+eﬁ(_£kgiﬁk))
ke 2 2Vkg 2Vkg
2Lkp —i 2Lkp+i 2Lkp—1i 2Lk ]
X (erf (—R lqy) +er SRy lqy)) (erf (—L R lqz) +erf (—L RY lqz))

Kaor, | e, 1) (C.22)

Direct

X

s
N —_—

2vVkg 2Vkg 2vVkg 2vVkg
3121 2 —iq, 2 1

+ Vs ﬂ—3e (25 3 (erf (—Lks 9 )+erf (—£k3+lq ))
o2 2vEs 2vEs

ZLkS—iqy) (2£k5+iqy))( (2Lk5—iqz) (2Lkg+iqz))]
f|———— fl—— fl——— fl——— .
x(er ( NG +er N er e +er N

Error functions are present in Eq. (C.22) because Eq. (C.17) is integrated within a finite box.
Consequently, Eq. (C.22) differs from the expression given by Jensen et al. [23]—which perform
the Eq. (C.17) integration within an infinite box. Given that we only work in a finite box, we suspect
that Eq. (C.17) should indeed be integrated with finite £. In practice, this is likely a minor issue
since we generally work in large boxes. Note, g o % in Eq. (C.22). Hence, in the limit of large £,
all error functions converge to 1 in Eq. (C.22).

We can finally anti-symmetrize Eq. (C.22) via subtracting the exchange matrix element from
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the direct matrix element

<I_<)10-zl l ]_5)20-12 l‘VMinn

ko, | Kaors, ¢>AS (C.23)

<]_€)10-z| l ;20-22 l‘VMinn

7530-23 ! 1_5)40-24 l>

Direct

- <l_€10-zl ! /;20';7,2 l‘VMinn

]_()40-24 J, /_€)3O'Z3 J,>

Direct
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APPENDIX D

ONE PION EXCHANGE INTERACTION IN A FINITE BOX
Within a finite box, we aim to calculate matrix elements of the leading order contact interaction,

denoted “One Pion Exchange” (OPE).

- - Alﬂ' - -
<k10‘ZITZ1k20'Z2TZZ Vi ‘k30‘Z3TZ3k4O'Z4TZ4>D. vor (D.1)
rec

5= = A
K’,K _)/ Sl _)/ 2> 45 4
= <k O T2 02, T |V k', k,o,7,V
%
Ok § Sr (707 4 5
= — <O'ZITZ10'ZZTZZ|VA (k Jk, o, T,(V)|O'Z3TZ3O'Z4TZ4> ,

%

In this work, all chiral interactions will not depend on the box volume—implying that V — oo.

kO’Z3TZ3O'Z4TZ4>

A A

Thus, the box volume is dropped: VI{” (/?, 1? o, T, ) = V[{” (/2', 12,3-, %) Moreover, the OPE
only depends on the momentum transfer!

]_6)1—]_6)2—]_()3+]_€)4_—> -

qg= 5 ki —ks. (D.2)
Thus, V/{” (l;’ 1? 7. %) = V/{” (E[, . 7%) And the OPE is given by [28]
. A he)3e? . . e AN G4 A _ (heq)t+M2
4Fy q* + (F2)?
M2 "
A(A? = 2M?) + 2\/a M3 e 3 erfc( 2=
co_ ( <) +2\M;, (% . (D.3b)

3A3
ga = 1.267 is the nucleon axial-vector coupling constant. M, = 139.57 MeV is the pion mass.
Fr = 92.4MeV is the pion decay constant, and hAc = 197.33 MeV X fm. The momentum transfer
g, is in units of fm_l; the box volume “V, is in units of fm3; and C is unitless.? And the regulator
cutoff A, is in units of MeV. All spin and isospin Pauli operators are unitless; and ||7_A" || = ||3'|| =1.
Lastly, erfc(%) is the complimentary error function.

Since spin and isospin operators act on two independent spaces, we can easily factor our analysis.

023 T30, Tz, > (D.4)

S - 4 4
<0'Z1 T 0'12T22|VA (q, o, T)

= <0'Zl<rzz| (TZITZZW/{” ((?, 3‘, %)|T13TZ4> |a’z30'z4>

"'Momentum conservation & 1+ l_c)z = 123 + l_<)4, is used to simplify Eq. (D.2).
2We manually set C = 0 in this work.
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We first consider matrix elements between orthonormal isospin states.

Ar (= 5 3 (ﬁc)3gi 53 5
<7'11Tzz|VA (q’ o, T)|TZ3TZ4> = _W <Tz1Tzz|Tl ) TZ3TZ4>
T

A A D.5

GrDGrd) , n x| weetnd >

X + C(o1-0m) | e A2
24 (Mxy2
4q he
Note, the Pauli operators can be written in terms of permutation operators

o1 -0p = 2P7, — 1 (D.6a)
7T =2PT, 1. (D.6b)

P?z and P}z act on orthonormal two-particle spin and isospin projection states on the z axis,

respectively in the following manner:

PYy o =1 o =1) = 11D, PRI = L), PO, ITL =D, PLIUD =11, (D7)
Pl =1 m, =1) = 11D, PLILL = 1L, PL 10D = 1D, PLIUD =11 -

Thus, we can rewrite Eq. (D.5)

IS -3 5 (hc)3g2 A
(7'217'22|V/{7r (‘]’ g, T) TZ3TZ4> == 4F2 . <721722|2PI2 - 1|TZ3TZ4>
Ve
&9 ) regy?ons2 (D-8)
x[ VIRT 9 ) P9 - )| e a2,
24 (Mzy2
g+ (3Z)
where
(T 2P], = Uty 72y) = 261, 2, O v, = O, 22 O, - (D.9)
For brevity, we choose to define the overlap
O(t;) = (1,7, 2P, — 1|,7,) = 261, v, 61,z — Or, 1, O, - (D.10)
Therefore,
A - 5 5 (hc)3g2
<TZITZ2|V/1\T( (QaO',T) TZ3TZ4> == AF2 - O(ry) (D.11)
Vg

(furq)2+M%

+ C(2PY, - 1)] e N

y [(5‘1 §)(32-9)
>+ (52)?
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Revisiting Eq. (D.4), we now consider overlaps between orthonormal spin states.

1 - 3 3
<O'Z1T210'227'22|VA7r ((], g, T) O-Z3T230-Z4TZ4> (D.12)

(he)’gy (1§02 9) A _theaoar}

_<0- 0 | 0(1y) + CQ2PY, - 1)|e A2 |0'O' >
21722 4F,% z L]2+(%)2 12 3Y 24
(he)’g - rea oy G DG D s

- _ 2 T _

— v O(t,)e & <O‘ZIO'ZZ| q2+(%)2 + C(2P), - 1) |0'Z30'Z4> )

(G1- (52 §) 5
(o Zz|[ o, T C@PL-1) o202, (D.13)
q* + (F%)
(1 -T2+ q) 5
= <0-210-22| |O-Z3O-Z4> + C <0-210-22| 2Pi'2 -1 |O-ZSO-Z4> .

My
q* + (ﬁ)2

Reminiscent of Eq. (D.9), the second term of Eq. (D.13) is easily given by
(02 00,2P7, = 1|0230%,) = 260, 02,00, 0, = Oorsy O, - (D.14)

Therefore,

(&1-3) (- )
(o210

5o
g+ (%)2 + C(2P7, 1)] |0-Z30-Z4> (D.15)

1 A oA L
) m <0-210-12| (@1-4)(02-9) |0-230'Z4>
e

+ CX (200,000, = OBy, ) -
Since both interacting particles are described by independent single-particle wavefunctions, we can
easily factor our analysis.
<0'210-22| (3-1 : é))(é-Z ’ 67) |O-Z3O-Z4> = <O-Z|| (3-1 : é)) |0-Z3> <O-Zz| (3-2 : ‘7) |0-Z4>
= [<O_Zl| Oy |O_Z3> gx + <0_Zl|a_y1 |0-23> gy + <0-Zl| 0z |O_Zs> q| (D.16)
X [(0'22| Oy |0'Z4> dx + <0-Zz| Oy, |O_Z4> gy + (0_Zz| 0 |0'Z4> q] -

|oy) and |0'y> are spin projection states along the x-axis and y-axis, respectively. Due to the

uncertainty principle, |o) and |0'y> are unknown if |o) is known. Thus, we must write 0 and &
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in terms of raising and lowering operators that act upon |o-).

A

1
Ox = E(a-++6-_)

PP
Oy = Z(O-Jr -0-),
where?
bi o, o) = o (o +2) — o (0; £2) o, 0, £ 2) .
Therefore,

<0', 0'Z1|6'i |o', o’z3> =00, o2 X Vo (o +2) - o0,

. 1
<0', o'zl|0'x |0', 0'Z3> = —(6%, o2 + 0oy, 013—2) X \o(o+2) - 0,0,

2

R 1
<0', 0'Zl|0'y |0', 0'Z3> = Z(5UZ1,UZ3+2 — 0o, 0y -2) X Vo (o +2) - o0,

(0‘, O'lea'z |0', 0'Z3> = 6%,%3 X 0y -

Using Egs. (D.16) and (D.19),

<O-Z|0-Z2| (3-1 : (7)(3-2 ’ é)) |O-Z3O-Z4>

= lqzobé%, oy F Vo (o +2) - oy,0,

q q
X [?x(do'zl, 0'Z3+2 + 50'11, 0'Z3—2) + 2_;(50'11, a'z3+2 - 50'11, 0'13—2)]]
X|4:02400,), o, + Vo (o +2) - o0,
q q
X _x((SO'Z ,o,42 T 50'Z , 0% —2) + _y.(f()‘a'Z , Oz +2 50'Z , 0% —2) .
2 20 Y24 20 Y24 2i 20 Y24 20 Y24

(D.17a)

(D.17b)

(D.18)

(D.19a)

(D.19b)
(D.19¢)

(D.194d)

(D.20)

3In this appendix, o, = +1 and likewise, 7, = +1. Therefore, spin up and spin down states are separated by 2 units

of spin. The same can also be said for isospin states.
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In conclusion,

V/I\ﬂ)l_{)30-23723]_€40-24714> (D.21)

<k10-Z1T21k20-Z2Tzz .
Direct

_ (ficq)?+M%

(he)*s} 2
_ X 677 X (200, 00y = Or i Brr, ) X € 8

4VF?
<O-Z10-22| (3'1 : C_I))((_}Z -q) |O-Z30-Z4>

My
g%+ (ﬁ)z

+ CX (2 60—11,O'Z450—z2aU'Z3 _60'21’0'2350'12’0'24) ’

where (o7, 07,| (71 -3) (52 - ) |o2,072, ) is given in Eq. (D.20). And the anti-symmetrized OPE is

then given by

- - A lﬂ' - -
<k10’Z]TZIk20'ZzTZZ Vi ‘k3O-Z3TZ3k4O-Z4TZ4>As (D.22)

_ - - Alﬂ' - -
= <k10-21721k20-22722 VA ‘k3O-Z3TZ3k4O-Z4TZ4>

Direct

- - A - -
- <k10’ZlTZ1k20’ZzTZ2 Vi ‘k40’z4rz4k30}3713>

Direct
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APPENDIX E

PARTIAL WAVE EXPANSION FOR TWO-BODY FORCES
Chiral two-body forces are typically given in terms of partial waves where the following quantum
numbers are specified: two-particle total orbital angular momentum L & L’, total spin S & §’, total
isospin 7' & T’ and isospin projection M7 & M7, total momentum J = ||Z + §|| &J = ||Z’ + §’||
and respective projections M; & M}, and norms of relative momenta k = ||/2 || & k' = ||1?'|| for
both incoming and outgoing particles, respectively. Given that we primarily work in a basis where
the quantum numbers of single-particle states are decoupled (called “m-scheme”), it is essential to
know how to convert matrix elements of an interaction given in a coupled representation (called “J-
scheme”) into a decoupled representation. We will do such conversions in this appendix. Moreover,
we will exploit convenient symmetries of the nuclear force such as: charge conservation Mr = M7,
total spin and isospin conservation § = §” and T = 7", total momentum conservation J = J’, and

degeneracy in M;.

In this appendix, we seek to calculate <k’0Zl 7,057,V (k’, k,o,T,V ) ‘kog;m 07, Tz, >—espied

in Eq. (B.23), using the partial wave expansion. In this work, all chiral interactions will not depend

A
A

on the box volume—implying that V — co. The box volume is thus dropped: V (12', ko, 7,V ) =

v (1?, k.G, 7%) Going forward, for brevity, we omit the operator dependence of k', k, &, and 7 in

A
- A -

V since the states k'O’ZlTZIO'ZQTZZ> imply as such. Hence, V = V (k’, ko, 73') Notice,!

A

Vv

lzo'Z3TZSG'Z4TZ4> (E.1)
7).

We first will calculate the spin and isospin matrix elements of V. The spin and isospin wavefunctions

7
<k 0, T7,02,Tz,

—_— _), (7
= <k ‘ <0'ZlTzlO'Z2T12|V|O'Z3TZ3O'Z4TZ4>

are given by

_ TMr _
O'Z3TZ3O'Z4TZ4>— Z c.h |T,MT—TZ3+TZ4>

reqoay 23T
SM.
® ol IS, Ms = oy + 0, - (E.2)

Se{0,1}

! Although Oz, Tzy» Oy, Tg, are typically integers, we use them as half-integers in this appendix.
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Likewise,

* "M *
— T ’ r _
0'117'110'127'12> = E ClT . |T My =1, + Tzz>
z Z
T E(0.1} 2721272
S"M. *
® Y C 5 | Mi=o+0,) (E.3)
§/€10.1} 2921292
SMg . . . . . TMr
C,7>, are Clebsch-Gordan coefficients for spin 1/2 particles. Likewise, C, ",  are Clebsch-
29232024 2T2372 724

Gordan coefficients for isospin 1/2 particles. The nuclear force V, conserves total charge My = My,

total spin § = §” and total isospin 7 = 7". Enforcing the symmetries of V, we obtain

% _ E : TMr SM TMy SMs
<0'ZITZIO'ZZT22 \% O'ZSTZ3O'Z4TZ4> = Cl 1 Cl 1 Cl 1 Cl 1 (E.4)
TE0} 2721272y 2921292 37232724 292329z
5e{0,1}

X (TMrSMg|V|TMrSMs)
Combining Egs. (E.4) and (E.1), we obtain

A

Vv

—>/ -
<k 0, T7,02, Tz, kO’Z3TZ3O'Z4TZ4> (E.5)

™ SM!, TM Y R m
= Z ¢, C ° C 7 CTF X <k'TMTSM§ V‘kTMTSMS> .
TE{Ol} 2%z12%2zp 2Vz12Vzp 27%232%z4 72Vz3202z4
Se{0,1}

Ultimately, ‘I})TMTSMS> is a vector valued function. We can expand the angular components of

this function on a complete basis composed of spherical harmonics. Inserting the identity

1= Z \LMy) (LM, (E.6)

Le[0,00)
—L<M; <L
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into (K'TMySM;

V‘]_C)TMTSM5> from Eq. (E.5), yields

(s | V[T by ss) (E.7)
- Z <1€’TMTSM§ L’Mi> (L'M;|V|LMy) <LML IETMTSMS>
L,L’€[0,00)
-L'<M; <L’
—L<Mp<L

= Y (TMrSM </§’ L’M£> (L'M;| V|LML) <LML /?> T My SMs)

L,L'€[0,00)
~L'<M} <L’
—L<M; <L
- Z (TMTSM§|<I<’ K L’M’L><L’M£|V|LML>
L,L’€[0,00) ~—
-L'sM; <L’ Unit vector
—L<Mp <L

——
Unit vector

><<LMLk Kumit ) 1T M7SMs)

-

-y <1€' kum> (K'TMpSMLL' M|V [kT My SMsLMy),

L'my) (L,

unit
L,L’€[0,00)
~L'<M} <L’
—-L<Mp<L
where <l_<)l’mit L'M ’L> and <LM I %unit> are spherical harmonics
7 ragr \ — —L'vMp 7
(KoL) = 4min vy (R ) (E.8a)
<LML léunit> = 4t (YLML(/?unit)) . (E.8b)
Therefore,
(T arsg|vermrs i) (E.9)
g\ .M - P
=@ Y ()0 )
L,L’€[0,00)
-L'<M; <L’
—-L<Mp<L

X (K'TMpSMyL' M|V |kTMrSMsLMy) .

If V contains a nonzero tensor force, then calculating matrix elements of V in a basis where

orbital angular momentum quantum numbers L & L’ are known will be nonoptimal because
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<...L’M £| V|...LMy) may be nondiagonal in L & L’. However, V is guaranteed to be not only

-

diagonal in a basis of total angular momentum J = L+ S, but also independent of projection

Mj; = My + Mg. Thus, let us transform into total angular momentum coordinates:

ISMsLM) = > C o |(LS)TMy) . (E.10)

|L-S|<J<L+S

Combining Egs. (E.10) and (E.9), we obtain

(eTmrsm

N T_7 M’ =, * =

V’kTMTSMS> =(m? Y () E 0 Reo 1D
L,L’€[0,00)
-L'sM; <L’
—-L<Mp<L

J'M, IM ’ /’ ARS,
x > Cuonttsuy, Cinppsws (K TMr(L'S)J'M;| V IKT My (LS)I M) 65,1
|L-S|<J<L+S

|L'-S|<J'<L'+S

T_7 M’ - M * -
= (47[)2 Z (ZL L ) YL/L(kilnjt)YL t (kunit)
L,L’€[0,00)
-L'<M; <L’
—L<Mp <L
JM’

JM. ’ ’ ’ ’
X D0 Contsw Clirtsuy KTMr(L'S)J|V KTMr(LS)T) (Mj|My)
IL-S|<J<L+S

TJ_T M. - * =
=@m? Y () R0 )
L,L’€[0,00)
-L'<sM, <L’
—L<Mp <L

X Z CZ%SM;CZZZSMS (K'TMp(L'S)J| V |kT My (LS)J) 63y, wssm, - -

|L-S|<J<L+S
Combining Egs. (B.23), (E.5), and (E.11), we obtain the partial wave decomposition for the

momentum space matrix eeelements of V in a finite box:

<klaZlTZ1k20-22Tzz V|k30-23723k40'zﬂz4> , (E.12)
Direct
o= = ,
RS SM
=U—-(n? ) ¢ ¢ clt
% L,L'€[0,00) 57213720 3021302 737233724 30233024
—L<M <L
T,5€{0,1}

T_T’ M, - * =
X () ¥ (R V™ (Runi)

X0 Clou Clitsws K TMr(L'S)J|V KT M7 (LS)J),

|L-S|<J<L+S
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where My, = Mg+ Mp — Mg, and My = M + Mg. The intruder U is an appropriate unit

V‘k30‘z3rz3 k40'z47'z4> is in units of MeV.

conversion factor that ensures that <k1 07, Tz koo, 7o,
Direct

For example, (k’TMr(L'S)J|V |kTMy(LS)J) is given in terms of fm? from Drischler ef al. [2];
therefore, U = hc = 197.33 MeV X fm. We can then anti-symmetrize Eq. (E.12) via subtracting

the exchange matrix element from the direct matrix element

A

Vv

]_6)30}37'23 ]_€)4O'Z4TZ4> (E.13)

<klo'ZszllQO'zzrz2 s

A

Vv

= <k10’Z1TZIk20'ZZTZ2 k30‘Z3TZ3k40'Z4TZ4>

Direct

A

Vv

k40‘z4rz4k3a'z37'm>

- <k10'z1TZ1k2o-ZzTZ2 . :
Direct

Notice the only difference between direct and exchange terms in Eq. (E.12):

-

N
kunit = — kunit

TMT SMS TMT SMS
C L, G

11 1 1 11
27233724 292329724 272423723 292472923

And we can exploit the following identities:

Yiwl‘*(_]_éunit) = (_)LyéwL*(l_éunit)

™ SM. ™ SM.
C, Tl 1 Sl = (_)S+TC.1 g s
27243723 292429723

1
2723372y 2923297

Therefore,
- - NN - Oz ¢ 5
<k10-lezl koo, 7, V‘k30'237'z3k40'24rz4> =U——(4n) (E.14)
AS %
% c™r SM TMy SMg
L.L/€[0.00) %711 %712 %O—Zl %O'Zz %713%724 %‘7’23%‘714
—L<Mp<L
T, Se{0,1}

N M/ _)/ % =
X (lL L ) [1 — (_)L+S+T] YL'L(kunit)YIiVIL (kunit)

JMy JM, TMr ’
X Z CL'MLSMécLMLSMSVL’LSJ(k ’ k)’
|L-S|<J<L+S
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where

Mg =0 +0,
Mg =0y + 0y,
Mr =1, +7;, =75+ 7,
v (k' k) = (K'TMr(L'S)J|V |kT M7 (LS)J)

Mp =Mg+M; — Mg

Mj; =M+ Ms.
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APPENDIX F

OPTIMIZED PARTICLE-HOLE TRANSFORMATION
Commutators between A-body operators A and B generally require the evaluation of so—called

“particle-hole” terms [16]"

A B = 3 (=) X (1= Ppg = Pry + PpgPrs) X ApurBugs: - (1)

pqrs 0

We need only focus on the first term of Eq. (F.1)

A B =3 1= m) ApuurBugsr (F2)

pqrs Iy

The particle-hole term requires careful implementation to be computationally efficient. Ideally, one
would implement Eq. (F.2) maximally utilizing a computer’s cache and multi-threading capabilities.
If the contraction in Eq. (F.2) is written as a matrix product, computational optimizations in the
particle-hole term can be partially offloaded to existing high-performance matrix multiplication

algorithms [23]. Eq. (F.2) can be rewritten by defining a diagonal occupation operator O

Oruwx = (1 — 1) X 61Oy YV tuwx

[Aa B] += Z OtutuApturBuqst . (F3)
tu

pqrs

Constructing auxiliary A-body operators A and B such that?

Aptur = _Aprut Viu (F.4)

Buqst = _Eutsq Vitu,
Eq. (F.3) can be almost cast into a matrix product

I:Aa B] += Z OtutuAprutgutsq . (E.5)
tu

pqrs

'Eq. (F.1) assumes A and B are anti-symmetrized. P pq and P, exchange indices on their operand. For example,
qu X ApturBuqst = AqturBupst-
2A factor of —1 is included in Eq. (F.4) to be consistent with Jensen et al. [23]. This does not affect the product
OB.

D
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Notice the symmetry Oy, = —O . Therefore,

+= Z _Aprutaututgutsq = _(AOB)prsq . (F.6)

tu

4.5
pqrs

The remaining three terms of Eq. (F.1) are easily obtained once AOB is computed

[A, B]pqrs -= (AOE)prsq - (AOE)qrsp - (AOE)psrq + (AOE)qsrp . (F7)

The product AOB can be partially precomputed if there is a distinction between particle and
hole single-particle states (n; = 1 and n, = 0 Vai). If such a distinction exists, A, 0, and
B can be written in an ordered two-body basis B where particle-hole states are separated from

particle-particle and hole-hole states

B={(p.q): |np-ng|=1} | ) {(.@): |np—ng| =0}, (F.8)

P Q

Opp Opg =0
0= (F.9a)

Oqr =0 Oq@qp=0

_ |App AIP(Q

A= i (F.9b)
AqQr AQQ

_ | Bpp BIPQ

B=|_ ] (F.9¢)
Bor Bqq

_ . |App xOpp x Bpp App X Opp X Bpg
AOB = . (F.9d)

AQIP X Opp X B]P]P AQ]P X Opp X EIP(Q

+N?2

holes

dlm(]P) ~ NparticlesXNholes, and dlm(@) ~ N2

particles

. Typically, Nparticles > Nholes, implying
dim(@Q) > dim(P). Utilizing Eq. (F.9d), the most memory and compute demanding operations

involving AQQ, and BQQ are averted. If ||AQP|| is sufficiently small, one can forgo computing
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the second row of Eq. (F.9d) entirely.’> Likewise, if ||EPQ|| is sufficiently small, one can forgo
computing the second column of Eq. (F.9d) entirely.*

Further optimizations can be made by recognizing possible symmetries in the particle-hole
transformation. For example, symmetries in A can manifest in A, albeit differently. Suppose A

conserves center-of-mass momenta, i.e.,

kp+ki #ky+k = Apr=0 ¥ ptur. (F.10)
According to Eq. (F.4), A will then conserve relative momenta

kp—ke #Kky—ki= Apy =0  Vprut. (E.11)

If both A and B conserve relative momenta, one can conveniently decompose the particle-hole

basis
B=| B, (F.12)
m
B = {(p.q): |np—ngl=1Akp—kg=kn} (F.13)

U {(p.q): |np_nq|:O A kp_kq:’?m},
where ¥, denotes the conserved relative momenta of the mth block B,,. AO B can then be evaluated
within relative momenta conserving blocks—further reducing memory and compute costs.
If A and B are anti-symmetrized and have definite hermiticity
qurs = _qurs = _qusr = qusr qurs (F14)
qurs = _qurs = _qusr = qusr qurs
AT =sign, x A

B' = signy x B

3For the Magnus operator, | QQP” is generally observed to be small. Moreover, ||17Qp|| = 0 for most generators,
by construction.

4Such situations can arise in the Magnus series where commutators between the Magnus operator and Magnus-like
operators are evaluated.

SNotice, if A has the same block structure as B, then (p,7), (u,t) and (s,q) must all lie in the same block for a

nonzero contribution to the RHS of Eq. (F.6).
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and O* = O, hermiticity can be easily exploited in Eq. (F.6). In Eq. (F.14), sign, is+1 or -1 if A

is Hermitian or anti-Hermitian, respectively. Permuting p < r and s < ¢, Eq. (F.6) becomes

[A, B] += Z _A~rpul0umtgulqs = —(AOE)rpqs.
u

rspq

Using Eq. (F.4) and Eq. (F.14),

Arput = _Artup = _SignA X A

* —
uprt =

. E _ . 1 *
—sign, X Aputr =signy X Aprtu
*
qtus

*

Buigs = —Busqr = —signg X B}, . = —signg X B;kqsu = signg X By,

Inserting Eq. (F.16) into Eq. (F.15), and exploiting the symmetry O ;,; = —Oyu,

[A’ B] += signA X SignB X Z AN;;,,mOtutugfusq

tu

= sign, X signg X (AOB)

rspq

*
prsq:

(F.15)

(F.16)

(F.17)

If Eq. (F.6) is computed within some block B,, containing (p,r) and (s, g), then one can use

Eq. (F.17) instead of Eq. (F.15). The importance of this is subtle. Notice that (r, p) and (g, s) lie in

a block B,,» where K,» = —K,,. Therefore, one can forgo evaluating AOB in B, entirely—further

reducing memory and compute costs.®

6 A0B = 0 in the block B,, such that &,,, = 0. Due to the shelled nature of our basis, for any two-particle state
(p,q) € B, the p and ¢ single-particle states must be both on the same momentum shell. Since all shells are closed,
hole and particle states are separated in momentum. Therefore, IB,, can only contain hole-hole and/or particle-particle
two-particle states. And the occupation operator O, is zero in these sectors. This may however, not hold when applying

twist-averaged boundary conditions [27].
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APPENDIX G

PROPERTIES OF BORN SERIES ADJOINTS
We seek to prove the linearity of nested commutators of A-body operators A, B, and C utilized by

Chapter 5.6:
[A.+B., c]" 2]aA., c]"+[B.. C]™, nx1. (G.1)

First note, Eq. (G.1) is automatically guaranteed for n = 1 via the linearity of commutators. This is
unaffected by the coefficient-wise division of the energy denominator denoted by “x.” Assuming

Eq. (G.1) holds for some n > 1, then using Eq. (5.21),
[A.+B., Cc]"V = [[A +B.,c|", ¢ (G.2)
[[A*, cl"+ (8.1, c

8. ], C

:[[A*, cl]™, c

_ [A* C](n+1) [B C](n+l)

Jd %

We have thus demonstrated if Eq. (G.1) holds for some n > 1, it also holds for n+1. Since Eq. (G.1)
contratrivially holds for n = 1, then it indeed holds foralln > 1. m

Chapter 5.6 utilizes the following identity:

(n+1) 2 ( +2)
[[A, 8], B] 214, B]"?, nso. G.3)

k

We seek to prove Eq. (G.3). As a base case, observe Eq. (G.3) is guaranteed for n = 0 using

Eq. (5.21)
W ¢)) 2
[[A,B]*,B] :[[A,B]* ,B} =[A, B|,”. (G.4)
Assuming Eq. (G.3) holds for some n > 0, then using Eq. (5.21),
1(n+2) (n+1)
[[A, B| ., B [[A, B|,, B] , B (G.5)
= |[a, B]"?, B| =[a, B]"".
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Therefore, we have demonstrated if Eq. (G.3) holds for some n > 0, it also holds for n + 1. Since

Eq. (G.3) holds for n = 0, then it indeed holds for all n > 0. m
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APPENDIX H

MBPT EXPRESSED IN TERMS OF IMSRG COMMUTATORS
We aim to write MBPT(2) and MBPT(3) evaluated at the two-body level in terms of commutators
between a target Hamiltonian and IMSRG’s White generator. Consequently, we can offload compute
costs—most apparent in MBPT(3)—to an optimized commutator routine. Moreover, we can
consequently cache and reuse a commutator in MBPT(3)—significantly improving MBPT(3)’s
compute performance.
For a target Hamiltonian H = E + f + [', MBPT’ s improvement to the ground state energy £

is given by
E'=E + AED + AE® + AE®) . (H.1)

Momentum conservation in infinite nuclear matter implies AE(") = 0. Going forward, note that the
s dependence of all operators in this appendix are suppressed for brevity. At the two-body level,

2nd-order MBPT corrections to E are given by [51]

y_ 1 |Fahif|2
AE® =2 ) L (H.2)
4 abij Aijab
Aijab = fii + fjj = faa = fop ¥ abij
Aahij = faa +fbb - fii - fjj = _Aijab Vabz]
Aijab = Ajiab = Aijba = ANjipa Y abij

Aabij = Dpaij = Dabji = Dpaji VY abij.
We aim to demonstrate

1
AE®? 2 —{[ r]} . H.3
2 d 0-body (H3)

1 is White’s generator with Mgller—Plesset energy denominators in Eq. (5.5).! And the operator

IFor brevity in this appendix, we do not use the notation n = "V as introduced in Chapter 5. Also, the one-body
component of 7 is assumed to be zero.
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{} 0—body projects out the zero-body component of [n, F]. Using Eq. (A.14) of Hergert et al. [16],

{[77’ F]}O bod 4 Z Nijab Fabl] Fl]ab nablj) (H.4)
Y abij
( z]ab 1—‘abij)
abt] t]ab >~
Uab Aab[j
4 Z ( ljabrablj+rtjabrahlj)
abij l]ab
Z Lijab Uabij Z abu Lavij B Z | ab”l =2AE®
2 abij l]ab 2 abij lj(lb 2 abij ljab

At the two-body level, 3rd-order MBPT corrections to E are given by [51]

1 Lijab Uabca Ucaij 1 ijab Uavkr Ukiij Lijab Vackj Ukbic
3 _ 1 ijab L abe i1 j i j j
AE® = Z + Z Z .

8 Ajjab Aijea Aijab Aklab Aijab Mk jac

abcedij abijkl abcijk

(H.5)

We aim to demonstrate

1
AE® 2 5{[77, [n, r] } , (H.6)
0-body

assuming Im{AE (3)} = 0. 57 is again White’s generator with Mgller—Plesset energy denominators.

Using Eq. (A.14) and Eq. (A.12) of Hergert et al. [16],

{[n, [n’ F] }0 - = - Z (nwb [n, ] [n, F] iiab Uabij) (H.7)

abt/
, r|’
4 L%; (U:;ab [77 ] [’7 abij nzjab)
| o)
4 (;l] (nljab [77 ] (nl_/ab [77 abij )
(3 St (5 St |
= 4 “nl]ab 77’ abij 4 ”nl]ab 77’ abij .
abij abij
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1
[’7’ F] abij ) Z (abpg Upaij = Labpq Mpgij) X (1 = np = ng) (H.8a)

Pq
+ Z = nq) X (pagi Tabpj = Mpbai Tqap; = Mpag Tabpi + Mpbgj Tqapi)
1 1
=3 Z Nabki Ukiij — 3 Z Labed Nedij (H.8b)
kl cd
- Z (ncaki 1—‘kbcj — Ncbki l—‘kacj — Ncakj Dipei + Nebkj Fkaci)
ck
1 Labri FCdl]
= —= Cirij — Uapea — (H.8¢)
2 Aabkl Y 2 Z e Acdl]
caki Fcbkl Iﬂcakj Fcbk]
- Dibej — Dkacj — Dibei Ly
Z( cakl < Acbkl al Acakj “ Acbk] act
1 Capii r + 1 Z r FCdl] (H 8d)
= 3 ~  Lklij T3 bed .
2 Aklab Y 2 e At/cd
caki Fcbkz FC(lk] Fcbkj
- Dibej — Dkacj — Dibei + -—— Tkaci
Z( cakl </ Ac ki al ACazkj “ Acbkj o
1 Lapri 1 chl/
- _ I_‘kl.. + — T bed (ng)
2 Aklab Y 2 Z e Aljcd
acki Upcki Faij Fbij )
- Ukbje = — Tkaje — Ukpic + Dkai
Z( Agcki /¢ Apeki e Aackj lc Abckj “e
Ly Lo o) ] >r Ledi (H.8f)
=5 klij T bed 5% .
2 4= Aviayr T2 — P Nijea
| Tpeki Lack Upek
Z ( = Fkb]c - Fka]c = I_‘kblc il Fkulc
Py kiac kibc kjac kjbc
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Let us focus on the first term of Eq. (H.7).
Uijab Uavri Ui 1 Lijab Uavea Ucaij
4 Z Hijab [77’ ] abij - 8 l]ab Aklab g — Aijab Aijcd (H9)
abij abijcd
+ l 1—‘ijab Lacki 1—‘kbjc _ 1 I_‘ijab Dpcki 1—‘kajc
4 BTk Ajjab Akiac 4 o Ajjab Akibe
Moo 2 Moo 3
_ 1 Z 1—‘ijab Iﬁackj I_‘kbic Z ljab I_‘bckj Tkaic
4 abijck Aijab Akjac 4 abijck l]ab Ak]bc .
Moo 5

Moo 4
Since all indices are summed over in Eq. (H.9), we can freely interchange a <> b andi < j
Cocki T Uiiab Uackj Ukpi
_/Lab ackj 1 kbic ijab Y ackj 1 kbic (HlOa)

F[ jab Iﬁacki I—‘kb ¢
Moo2 = 3 Toale o _ :
abijck Aijab Akiac abijck ]lab Akjac abijck Aijab Akjac
1—‘ijab Upeki Fkajc _ Z I_‘jiba I_‘ackj Lkpic _ Z 1—‘ijab 1—‘ackj [kpic (H 10b)
Aijab Akjac

Moo 3 = Z =
Ajjab Akive BTk Ajiva Akjac ok

abijck
Uiiap Uack i Ukwi
Moo 4 = Yab Zackj _Kbie -, Conveniently kept unchanged! (H.10c)
abijck Aijab Akjac
Moo 5 = Z 1—‘ijab Iﬁbckj [kaic _ Z 1—‘ijba 1—‘ackj 1—‘kbic _ Z l]ab Fack] kbic (H 10d)
abijck Aijab Akjbc abijck Al'jba Akjac abijck l]ab Ak]ac
Moo 2 = -Moo 3 = -Moo 4 =Moo 5 . (H.10e)
Therefore, using Eq. (H.9) and Eq. (H.10)
AE(3) _ 1 Z l—‘ijab 1—‘ab/’cl 1—‘kli] Z l](lb l—‘abcd chlj (Hll)
8 abijkl Aijab Aklab 8 abijed l]ab Al]cd
Ciiab Cack i Tkbi
_ ZJZ..aCAJ_ 16_4277”(1[)[,7’ ]b
abijck ijab Skjac abij Y
Utilizing Eq. (H.7),
{[n, [n, r] } = AED 4 (AEB))* = 2Re{AED)} . (H.12)
0-body
If Im{AE®} =0,
(H.13)

} = 2AE® .
0-body
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]

Using Eq. (H.13), we can cache and reuse [n, F]—signiﬁcantly reducing the compute cost of
MBPT(3). Given these developments, one wonders if higher-order MBPT expressions can also
be written in terms of commutators between IMSRG operators.” Notice that we could relax the
requirement that n is White’s generator with Mgller—Plesset energy denominators. We could use
White’s generator with Epstein—Nesbet energy denominators, perhaps giving canonical MBPT
with Epstein—Nesbet partitioning. We could also use the novel IMSRG generators introduced in
Chapter 5. To this end, we include generalized MBPT functions detailed in Algorithm H.1 and
Algorithm H.2. For completeness, we also include functions for the standard formulation of 2nd-

and 3rd-order MBPT in Algorithms H.3 and H.4.

Algorithm H.1 Generalized MBPT(2)
Imput: n, H=E + f + T > Approximate diagonalizer, and target Hamiltonian

Output: {[n, F] / 2} > Generalized AE
0—body
1: function MBPT2(n, H)

2: return {[n, F]/Z

0-body
3: end function

Algorithm H.2 Generalized MBPT(3)
Imput: n, H=E + f + T > Approximate diagonalizer, and target Hamiltonian

oupu: . [}

/2} > Generalized AE®)
0-body

1: function MBPT3(n, H)
2 return MBPT2(77, [77, r])
3: end function

ZPerhaps, triples excitations present in MBPT(4) may be accounted for by introducing auxiliary commutators (and
potentially departing n from White’s generator), while still truncating 7 at the two-body level.
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Algorithm H.3 Standard MBPT(2)
Input: H=F + f + T > Target Hamiltonian

Output: {[nW(H), F] /2} > Standard AE(?)
0-body
1: function MBPT2(H)
2: return MBPT2(n" (H), H) > Using White’s generator from Eq. (5.5)
3: end function

Algorithm H.4 Standard MBPT(3)
Imput: H=F + f + T > Target Hamiltonian

Output: {

" (H), [ (H), T|

/2} > Standard AE)
0—body

1: function MBPT3(H)
2: return MBPT3 (nW (H), H) > Using White’s generator from Eq. (5.5)
3: end function
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H.1 MBPT Truncation for UCC-Inspired Generators

We utilize 2nd-order many body perturbation theory (MBPT) to terminate iterative calculations
for the UCC-Born and Carinae generators in Chapter 5. Particularly, we use a generalized form
of MBPT(2) seen in Algorithm H.1. And, we detail an overloaded truncation function using the

standard and generalized MBPT(2) in Algorithm H.5 and Algorithm H.6, respectively.

Algorithm H.5 Standard MBPT(2) Truncation

Imput: H=EFE + f + T > Target Hamiltonian for MBPT(2)
Output: {[nW(H), r] /(215)} > AEQ/E
0—body
1: function MBPT2TruncAaTION(H)
2: return MBPT2TruncaTion(nV (H), H) > Using White’s generator from Eq. (5.5)

3. end function

Algorithm H.6 Generalized MBPT(2) Truncation
Imput: n, H=E + f + T > Approximate diagonalizer, and target Hamiltonian

Output: {[n, F] / (ZE)} > Generalized AE® /E
0-body
1: function MBPT2TRruncATION(7, H)
2: return MBPT2(n, H)/E
3: end function
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APPENDIX I

UCC RENORMALIZED HAMILTONIAN ANSATZ
We seek to pose an ansitz for HR%(5) seen in Eq. (5.8). To do so, we must first tabulate
commutator expressions between an approximate diagonalizer n7 and generic Hamiltonians A that
satisfy Assumption 1 of Chapter 5. Let n7 be given by Eq. (5.1). Using Eq. (A.8) and Eq. (A.13) of
Hergert et al. [16],

[1A] == (i) X Ars e (L1a)
aa N——

rs

Arp X Opg
1 _
t3 Z (npngfr + fipiigny) X (Nrapq Apgra = Arapg Tpqra)
pyr
4] == (i) X Ars na (L1b)
ii - _
Ay X Ops
1 o
+ 5 Z (npngity + Apiigng) X (Nripg Apgri = Aripg Mpgri)
par
[n, A]ai - 0. (L1c)
Enforcing the operator structure of 7 seen in Eq. (5.1),
1
[77, A] =3 Z (ﬂbakl Akiba — Abaki ﬂklba) (I.2a)
“ klb
1
[77, A] =7 Z (77jiab Aabji — Ajiab ﬂabji) . (I.2b)
ii Y
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Using Eq. (A.12) of Hergert et al. [16],

[77, A] = (Au+Aj; — Aga — Abb) X Nabij
abij
5 Z (Mabpq Apgij = Aabpg Mpgij) X (1= np = ng)
+ Z X (Mpagi Aqbpj = Npbai Aqapj = Npagj Aqbpi + Tpbgj Aqapi)
[77, A]ak' = (Aii +Ace — Apa — Akk) X Nakic
ic
1
ty Z (Makpq Apgic = Aakpg Mpgic) X (1= np = ng)
+ Z npaqz Aqkpc — Npkqi Aqapc ~ Npagc Aqkpi + Npkgc Aqapi)
[77’ A] = (Acc + Ajj — Aga — Abb) X Nabcj
abcj
1
+ D) (Mabpg Apgej = Aabpg Mpgej) X (1 —np —ng)
pa
+ Z (np = 1q) X (Mpage Aqbps = Mpbgc Aqap; = Npaqj Aqbpe +Npbaj Aqape)
Pq

[77’ A] = (Acc +Ada — Asa — Abb) X Nabed
abcd

| =

+ Z (abpg Apged = Aabpg pgea) X (1= np = ny)
q

P
+ Z (np = ng) X (Mpage Aqbpd = Npbac Aqapd — Npagd Aqbpe + Npbgd Agape)
Pq
[U, A] = (Ai+Aj; — Aga — Ark) X Nakij
akij
1
t3 Z (Makpq Apqij = Aakpq Mpgij) X (1= np = ng)
+ Z (np = nq) X (Mpagi Aqkpj = Npkai Agapj = Npaqj Aqkpi + Npkqj Aqapi)
Pq
[77, A]lkz] = (Au+A;; — A — Ak) X Migij
Z Mkpg Apaij = Alkpg Tpgij) ¥ (1 = np = ng)

+ Z X (Mplgi Aqkpj = Npkai Aqip; = Mplaj Aqkpi + Mpkqj Agipi) -
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Enforcing the operator structure of 7 seen in Eq. (5.1),

[77, A] = (A + Ay~ Aua — Apb) X Nabij
abij

1 1
) Z Nabki Aklij — 3 Z Aabed Nedij
kI cd

- Z (ncaki Akbcj — Ncbki Akacj — Ncakj Agpei + Nebkj Akaci)
ck

|7 4] = i+ Ace = Aua = k) X e
akic
1
t3 Z (ekpg Apgic = Aakpq Npqic) X (1 = np = ng)
Pq

+ Z (_ndajt Jjkde — llpkq/Aqapc ﬂ,pa'quqkpi + Njkde Adaji)
dj

[7]’ A] = (Acc + Ajj - Aaa - Abb) Xﬂ&br/f
abcj

1
2 (nabkl Aklc] - Aabpqllpq'c/)

+ Z (ﬂpaquqbp] _WAqapj + Ndaij Aibde — Ndbij Aiadc)
di

[n, A]ab - (Ace + Add — Aaa — Abb) X Natred

1
~3 Z (Mabki Akica — Aabki Mkicd)
]

+ Z = ng) X (page Agbpd — Npbge Aqapd — Npaga Agbpe + Npbga Aqape)

[n, A]akij = (A +Ajj — Aaa — Ark) X Naki7
1
+ 5 ;: (ﬂakpﬁquij — Agked ncdij)

+ Z (—Ndati Aikdj — Npkgi Agapj + Ndalj Atkdi + Mpkg Aqapi)
dl
[77, A]lkij = (Ai+Aj;j — Ay — Ak) X kij
1

3 (Mikab Aavij — Atkab Nabij)
ab

+ Z = ng) X (Wptgr Aqkpj — Npiar Aqipj — Dptar Agqkpi + pkar Aqipi) -
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(1.4b)

(I.4c)

(1.44d)

(I.4e)

(1.41)



In conclusion, the tabulated one- and two-body components of [n, A] are given by

1
[77’ A] = ) (Ubakl Akiba — Abaki nkzba) (I.5a)
aa
kib
1
[77, A] L= 5 Z (Ujiab Aabji — Ajiab Uabji) (I.5b)
i d
abj
[77, A]abij = (A +Ajj — Aua — App) X Nabij (I.5¢)

1 1
- A a Ai'__ Aac cdij
5 §kl Nabkl Aklij > CEd bed Nedij

- Z (ncaki Akbcj — Ncbki Akacj — Ncakj Akbci + Nebkj Akaci)

ck
[77, A] o= Z (—Ndaji Ajkde + M jkde Adaji) (I.5d)
akic T
1
[77, A] =—z Z Nabkl Aklej + Z (Mdaij Aibde — Navij Aiadc) (I.5e)
abcj 2 7 T
1
, A] - Atted — A L5t
[77 hed > ; (Mavki Akica — Aabki Mkicd) (L.5f)
1
[77, A] =—-= Z Aaked Medij + Z (—Ndati Atkdj + Ndatj Atkai) (L.5g)
akij 2 = T
1
[77, A]lk,_ =5 Z (Mikab Aabij — Atkab Nabij) - (I.5h)
4 ab

Going forward, we use the following notation: 0,4, O4 and Oy to denote linear combinations of

differing sectors of A-body operator O, where'

Ooa = Oai + Oabij (1.6)
O4=04q + Oji + Ouric + Ogpea + Olkij

Og = Oabcj + Oakij .

TAll sectors in Eq. (I.6) include their antisymmetric and/or symmetric counterparts. For example, O 5; j corre-
sponds to all matrix elements O 4p;; and O jqp.
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The UCC constraint in Eq. (5.8) can be rewritten

~Hapij = [n, H {O}Lblj (L.7a)
H — -
H = R L H (L7b)
H E; + |, H®] (L7¢)
H - -
H% ==+ |n, HY (1.7d)
l
n !

. Using Eq. (I.5¢), notice Hd{o} is only relevant in Eq. (I.7a)’s RHS. This implies that H (%} is not

unique.? Therefore,

—Hyy = ,H{O}] =[ ,H{O}] 1.8

d [ od n d od ( )
Hy

n =g ], &

Using Eqgs. (I.5a), (I.5b), (1.5d), (I.5f), and (I.5h), notice that Ho{[}} is only relevant in the RHS of
Eq. (1.9). Therefore,

{0y _ Ha {1}
1 ==L |nom ] (L10)
[ H (m)
rnl, b
(1y _ Hoa d od
H + I.11
od 21 31! mZ:Z (m+2)| ( )
So long 7 satisfies Eq. (5.7),
(m)
S [77, H] d
7. H| = —Hoa= ) ——ot (L12)

m=2

2A similar conclusion can be drawn in the IMSRG. Analyzing the flow equations and also the Magnus expansion,
one can conclude that Hy (s) is irrelevant in the IMSRG evolution when doing ground state decoupling with White’s
generators. Although H (s) is generally nonzero and varies throughout the flow, it is always decoupled from all other
sectors of H(s). Perhaps, this observation can be exploited to avoid tensor contractions with H (s)—accelerating the
performance of the SCKY-IMSRG!
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Let
] (m)

()
Y 2 flod l(—Hod—i’J I ] ) ¥ i G (L.13)

21 3 4 Z4 " (m+2)!
11 m
== - + - , H
(2! 3») od Z((m+2)' 3v><mv [’7

If n fully satisfies Eq. (5.7), then HO{;} and H(;{dl} will be exactly equal. In practice however, 7 is

our best approximation to a solution of Eq. (5.7). Therefore, there will be some deviations between

Hj;} and H(E}. We seek to exploit these deviations using gradient descent. Let

0. | o (m)
U _ 1y 5y _ Hod [ od 1 [ ]m
A TR T 22(3!><m!) L
m=

. . . . 3 {1}
Using gradient descent with step-size dy,” we can extrapolate H_,

ExtrapolatedH(;{;} = Ho{dl} + dy X (5H(;{;} (1.15)

1 dy 1 dy = 1 dy (m)
= (o + 5 ) Hoa + 5+ ) e 7] . 1]
(2! " 3!) od ¥ (3! " 3v) (Al PP Z((m+2)! " 3!><m!) ol

= d (m)
Z((m+2)‘ 3!><Xm')['7’ Hl,,

=0

3Step-size dy = 1.0 is sufficient for this work.
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Revisiting Eq. (I.7), we can now solve

_ Extrapolated ry {1}
“Hy=|n, Hy + [n, wirapolated p {1 ]d (1.16)
od
> 1 dy (m+1)
=|n, H; + + [ , H]
. Z((m+2)! 3!><mz) ol
m=0 od
- 1 dy (m)
= S H, + + [ ) H]
T Hd Z((m+l)! 3!><(m—1)!) Ty
m=1_ ] od
_ i (d )[ H](m)
- 17’ am X 777 d
L m=0 lod
& (m)
= |7, Zam(dx)[n, H]
L m=0 dod

HRG (1) ansiitz

_ 1 dy
am(dy) = ((m+1)! + 3!><(m—1)!)’ Vm > 0. 1.17)

Some numerical values of a,, (dy = 1.0) can be seen in Table I.1.#

Table 1.1 First seven series coefficients for the HRC (1) ansitz

m o] 1 ] 2 [ 3 4 5 6
am(dy =1.0) | 1 2/3 [ 1/3 ] 1/8 ] 13/360 | 1/120 | 1/630

4ay(dy = 1.0) appears in Koide’s formula. Coincidence??!! This remark was originally written as a joke, but
on second thought, this might be worth considering... Perhaps, there exists a theory for subatomic particles beyond
the standard model that diagonalizes some Hamiltonian with a unitary exponential ansidtz. And mass relations from
Koide’s formula and its extensions are coefficients of an expansion involving nested commutators with a diagonalizer
and said Hamiltonian. What degrees of freedom would be used in such a theory? Lastly, it is curious that the mass
ratio for the up, down, and strange quarks Qj;gne ~ 0.57 is approximated well by Euler’s constant. Aliens? Flat sun?
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I.1 A Cute Little Observation
By solving one UCC equation at any order > 1, we actually solve an infinite class of UCC type of

equations. To illustrate this, suppose for example, that we solve 2nd-order UCC

1
_Oz,H_,H] L18
a=n He5 0 H]| (118)
1
[’7 H‘”z [, H1, ]
, Hj+—|n, ] .
[77 d [77 ]d od

If n is indeed a solution to Eq. (I.18), then it must also satisfy
H ! H ! H, 1.19
—I1od = 77, d‘g[n, [77, d+5[77, ]d]Od]d ) ( )

o

[77 Hd_%[ [U’Hd]od-i_%[n’ [”’H”d]d]od]d]
: od

—cute! Eq. (I.19) can be iterated ad infinitum. We suspect that’

Hm m -1)"
Hd+_77 H Zizy))m [77 H E{Z )—%[ﬂ,l‘]]

) ynz2. @.20)

Therefore, by simply approximating a solution to Eq. (I.18), we actually solve an infinite-order
expansion in powers of [77 , H ] Given that UCC is considered a non-perturbative method, this is
not so surprising. Moreover, notice that the first term of Eq. (I.20)’s RHS may be divergent. For
the LHS of Eq. (I.20) to be finite, in the language of renormalization theory, the second term of

Eq. (I.20)’s RHS must be a counterterm to the first term. In this work, we find that inverting

1
[n8o, H] | (1.21)

- =|n, H+ =
od = [n 2! od

with the Born generator yields a good solution to Eq. (I.18).

5Note that Eq. (I1.20) need not hold for the off-diagonal sectors H,; + 57 [77 H ] , since Eq. (I.18) is invariant to
them.
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