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ABSTRACT

Buildings account for a substantial portion of energy consumption due to heating,
ventilation, and air conditioning (HVAC) contributing to a large portion of energy-related
greenhouse gas emissions. Occupant behavior influences this energy usage, particularly HVAC
system energy use to meet occupant needs. Thus, knowledge of occupancy and occupancy
schedules can assist in more efficient building operations. While many studies examine the link
between occupancy, environmental health, and energy efficiency using physics-based modeling,
there have been limitations to capturing the relationship between environmental conditions and
occupancy trends, and to assess their impact on model predictions and accuracy. Thus, this thesis
aims to define the relationship between CO2 concentration and occupancy patterns while capturing
the effect of HVAC operations and environmental conditions, in particular air exchange rates
associated with changing door conditions, as well as occupancy scenarios.

To accomplish this, field data was collected on occupancy, CO2 concentrations, tracer gas
testing, door state, and HVAC operations. Data was then modeled using two physics-based models
for different occupant and ventilation scenarios. These models were then evaluated for accuracy
under varying model assumptions, to assess the relationship between CO2 concentrations and
occupancy. The evaluation included the correlation coefficient between the measured and modeled
CO2 concentrations. Also, regression models were used to determine the relationship between
occupancy and CO2 concentration, assessing fit using the coefficient of determination (r-squared).

Findings reflect that physics-based models can accurately determine CO2 concentrations
within rooms regardless of environmental conditions and occupant trends. This further validates
that physics-based models can be utilized to accurately determine CO2 concentration from
occupant sources. However, findings also imply that the application of box modeling to determine
occupancy trends for energy efficiency purposes based on CO2 concentration is only applicable
during select conditions, limited to high rates of transient occupancy, air exchange, and unknown
sources of CO2 from surrounding classrooms and hallways. This indicates that physics-based
modeling is a useful tool in modeling concentrations of CO2 within spaces however should be
further investigated with other aspects of VAV systems, occupancy conditions, and surrounding
sources of CO2 to assist in the outcome of understanding the applicability of this model for energy

efficiency purposes.
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INTRODUCTION
Background

Buildings account for a substantial portion of energy consumption; in 2023 commercial
buildings alone accounted for 1.72 x 10" joules (16,343 x 102 BTUs) of energy (U.S. EIA, 2024).
This energy usage contributes to a significant amount of greenhouse gas emissions, as
approximately 40% of all energy-related emissions come from buildings (ASHRAE, 2022a). A
large portion of these emissions are due to heating, ventilation and air conditioning (HVAC) which
accounts for 36% of all commercial building energy usage (Kong et al., 2022). Occupant behavior
drives much of building energy usage, particularly HVAC system energy use, which provide
ventilation and temperature controls to meet occupant needs, with the goal of providing occupant
comfort and a healthy indoor environment (Mannan et al., 2021; Kong et al., 2022; Bian et al.,
2024). For this reason, knowledge on occupancy and occupancy schedules can be used to support
more efficient operations of building system, including controls for lighting, thermostat setpoints
and setbacks, outdoor air ventilation requirements, as well as the use and/or automation of operable
windows and shading controls (Yan et al., 2015).

The link between occupancy, environmental health, and energy efficiency has been
increasingly studied in the context of occupant-based controls of buildings (Chu et al., 2022; Kong
et al. 2022; Mitra et al. 2022). Specifically, research has focuses on both developing methods of
occupancy detection and/or counting, as well as research on how occupancy related information
can inform controls to improve building and HVAC energy efficiency and indoor environmental
quality. For occupancy detection and/or counting methods that have been developed in recent
years, these have been characterized and summarized by several recent review papers (Chu et al.,
2022; Li et. al. 2024; Mitra et al. 2022). Common methods discussed include the use of motion-
based, radiofrequency-based, sound wave-based, camera-based, and/or infrared sensors, as well as
through the use of multiple sensing methods, termed “sensor fusion”, combined with predictive
models. Such models are primarily data-driven models, using statistical, regression, machine
learning, and/or artificial intelligence (Al) methods. However, such data-driven methods for
occupancy detection have also struggled with sensor and/or algorithm reliability challenges. This
has been recognized as of sufficient importance for U.S. funding agencies to require independent
testing of occupancy sensors systems that use data-driven methods as a part of occupancy sensor

development (ARPA-E, 2017), and for the support of development of standard methods of testing



occupancy sensor systems’ performance (Kula et al., 2023; Chu et al., 2022) due in part to
inconsistencies in accuracy reporting.

For example, Kong et al. (2022) demonstrated the potential of occupancy-based detection
for improving HVAC energy efficiency and indoor air quality using a combination of a
radiofrequency-based and two motion-based sensors. However, during the study some sensors
required consistent calibration and occupancy detection reliability was low in parts of the study.
Other common methods of occupancy-based detection using motion-based sensors have also been
noted to have the potential for reliability issues as they do not detect periods of fine motion (Yang
etal., 2018). Radiofrequency-based sensors are impacted by noise and require the occupant to have
a device to transmit signals; sound wave sensors could be interfered with by clothing and materials
in the facility, and some infrared sensors require constant motion with unobstructed sight and/or
constant maintenance (Chu et al., 2022; Mitra et al., 2022). There are also concerns about capturing
detailed and personally identifiable information through the use of camera-based methods for
occupancy detection, thereby posing a heightened risk to data security and occupant privacy (Cali
et al. 2014; Huang et al., 2024).

Although there are advantages to data-driven occupancy detection systems, there are also
challenges. In particular there are concerns about trained algorithms being highly dependent on
the environment in which they are placed, making them less useable if removed and placed in a
different space (Mitra et al., 2022). This is consistent with the challenges of the use of data-driven
methods that require a significant period of training data (Gu et al., 2021). In addition, if conditions
change, the algorithm needs to be retrained. The ability of a data-driven model to predict conditions
outside of the scenarios in which it was trained to consider is also typically limited (Miao et al.,
2023). Also, if conditions change which are not captured by the independent variables included in
the data-driven method(s), this can also cause discrepancies between predicted and measured
values (Gu et al., 2021).

As alternative to data-driven models (black-box), the other primary method for predictive
modeling is physics-based (white box) models. In the context of occupancy detection and/or
counting, the primary type of physics-based model that is applicable is the use of mass balance
equations of the building space, primarily associated with indoor air pollutants produced by
occupants. In this case one of the primary pollutant produced reliably by occupancy through human

breathing is carbon dioxide (CO2). Prior studies have used indoor CO2 concentrations as one way



to detect and/or count occupancy, especially in the context of air quality and ventilation controls
(Dedesko et al., 2015; Sun et al., 2011). A summary of such studies is shown in Table 1. This
includes some scenarios in classroom settings. As an example, Zuraimi et al. (2017) compared the
performance of physical and statistical models to predict occupant counts in a high-volume lecture
hall using CO2 sensors. This study found that while the utilized physics-based models’ required a
larger number of inputs, these models were found to be able to adequately predict occupancy
counts in a particular location when environmental factors such as air exchange rates (ACH) are
accurately measured and accounted for.

In a significant number of studies, particularly those focused on indoor air quality (IAQ)
and/or 1IEQ, mass balance modeling was used with occupant generated CO2 (Asif & Zeeshan,
2020; Chang, et al., 2009; Fan et al., 2022; Lawrence & Braun, 2007; Li et al., 2014). Other studies
have utilized physics-based modeling methods for comparing the performance of multiple model
types to predict occupant counts and energy performance (Zuraimi et al., 2017) and to compare
measured CO2 concentrations, volume of room per person, and occupancy for optimal HVAC
periods (Franco & Leccese, 2020). As summarized in this table, prior studies have evaluated this
relationship in buildings with a range of HVAC system types and space sizes. Most studies also
incorporate the use of tracer gas approaches to inform mass balances of CO2, as tracer gas is a
commonly used method to evaluate air exchange rates (Chang et al., 2009; Fan et al., 2022,
Lawrence & Braun, 2007; Zuraimi et al., 2017; Li et al., 2014).

Table 1: Literature summary of physics-based modeling of occupant-based CO2 concentrations
including location, time, characteristics and the associated study

Setting Building Characteristics
Location | Room tvpe Time HVAC Size Oceu- Performance Research
YP Frame System Height | Area | Volume pancy Metric Study
(m) | (m?) (m?)
Pearson’s
Naturally -
Coraten
Primary with split 20.3 - Asif &
Pakistan School 4 h type AC - to - 18to | >0.98 (Mmu_}e-_b ¥ | Zeeshan,
Classrooms months units and 33.9 29 mlnuter\;;aer;tl ation 2020
portable fan
University heaters <0.70 (Averaged
ventilation rate)
Window- One-V\_/ay analysis
Computer type and of variance across
Taiwan Lab and ) water- 296 to 22 to CO2 concentra- Chang, et
Classroom cooled 595 36 tions measured al., 2009
ackage (ANOVA)
packag p<0.001
Maximum
. Research 4 Naturally nonuniformity Fanetal.,
China room weeks ventilated 28 23 644 Oto7 coefficient 2022
5.68%




Table 1 (cont’d)

Linear trend of
University Natural 73 212 7210 CO2 compared Franco &
Italy classrooms 4 months ventilation - to to 366 to volume of Leccese,
336 | 1587 space for each 2020
occupant
12 Naturally Relative error in Lietal
China Dormitory months ventilated 3| 171 | 513 4 ACH 2014 "
1.6% to 7.8%
Constant air .
Less Correlation o
Taiwan Lecture 4 months volume system | _ - 876 than coefficient Zuraimi et
theatre with a var!able 200 0.80 10 0.97 al., 2017
speed drive
- Restaurants Several Demand- 75 . Coefficient of Lawrence
ng::gier:cgal California and School months controlled - to - \;gig variation & Braun,
Y Classrooms to 1 year ventilation 835 4% to 15% 2007

However, limitations of current research include that most studies have used buildings with
natural ventilation (Fan et al., 2022; Franco et al., 2022; Li et al., 2014) and/or relatively short-
term datasets, with most ranging from 4 weeks to 4 months (Asif & Zeeshan, 2020; Fan et al.,
2022; Franco & Leccese, 2020). Additionally, it was noted in these studies that results can be
influenced by multiple factors such as the opening and closing of doors and windows and
variations in occupants. However these factors have not been significantly studied. In addition,
most studies that have compared occupancy and CO2 concentrations use either scenarios with
near-constant occupancy (Chang, et al., 2009; Li et al., 2014) or transient occupancy (Asif &
Zeeshan, 2020; Fan et al., 2022; Franco & Leccese, 2020; Lawrence & Braun, 2007; Zuraimi et
al. 2017). None have evaluated the use of physics-based models that support the prediction of the
relationship between CO2 concentrations and occupancy across a range of types of increasing,
decreasing, and near constant occupancy scenarios all in the same environment or using the same
modeling framework.

Specifically, Asif et. al (2020) calculated the ventilation rate for classroom spaces by
averaging the change of occupant-generated CO2 concentration over time. While variation in the
envelope, doors/windows openings, were included in this average, the direct impact from these
specific parameter’s ventilation variation was not analyzed separately. In the results it was noted
that the CO2 concentration calculated by averaged ventilation rate compared to measured data
resulted in lower performance and the approach could be improved. Furthermore, when the tracer-
gas-concentration decay method to calculate ventilation rate, Chang, et al. (2009), did not account
for changing ventilation rates within the studied space or mention accounting transient occupant
conditions. Additionally, in Li et al. (2014) found infiltration rates did not significantly affect CO2,

however there were limited times when doors/windows were opened. In Zuraimi et al. (2017) it



was noted that the model accuracy was affected by air exchange rates, however this was just noted
to be caused by the method by which sensors collected data affecting how responsive the model
was. Additionally, in Franco & Leccese (2020) environmental factors were also noted to be
important to support mass balance modeling of occupant-based CO2 concentrations. It was
determined that CO2 was directly related to occupancy but the initial CO2 concentration, and the
volume of the room, occupancy count, and air exchange rate were all influential in the results.
Notably the openings of doors/windows were mentioned to influence results, however quantifying
their impact was determined to be challenging.

In summary, as noted in Mitra et al. (2022), methods of occupancy modeling are influenced
by the space within which they are created, and environmental changes can also impact
performance. In addition, as stated in the ASHRAE Position Document on Indoor Carbon Dioxide,
it is essential to assess factors that influence CO2 concentrations within a space (ASHRAE,
2020b). Therefore, further analysis and testing is needed to assess this relationship including the
effect of varying air exchange rates corresponding to variation in opening and closing of
doors/windows and HVAC operation schedules, as well as varying occupancy conditions, and to
assess the impact of the environment on physics-based model predictions and accuracy.

This study thus aims to define the relationship between CO2 concentration and occupancy
patterns and capture the effect of varying HVAC operations, and varying environmental
conditions, in particular air exchange rates associated with changing door conditions, as well as
varying occupancy scenarios. To accomplish this, field data was collected on occupancy, CO2
concentrations, tracer gas test results, door state, and HVAC operations, which is then utilized as
input into physics-based box models. These models are then evaluated for accuracy under varying
environmental conditions and model assumptions, to assess the relationship between CO2
concentrations and occupancy.

The remainder of this research is organized as follows, the methods section discusses the
monitored space, data collection, field testing, the developments of models for analysis, and the
methods for analysis. The results section details model performance and the relationship with the
concentration of CO2 predicted in models to occupancy. The final section includes conclusions

and future work for the study.



METHODS
Overview

To evaluate the relationship between CO2 and occupancy under variable conditions in an
occupied building and the factors that influence this relationship, field data was collected at 1-
minute intervals between June and November 2022. This data included CO2 concentrations at
multiple locations within the space utilized, count of occupants, and building and systems
operations data. This data was then used to develop and validate a physics-based box model of the
tested space.
Description of Monitored Space Used for Field Data Collection

Data was collected from an academic building classroom space located in ASHRAE
Climate Zone 5A in the Midwest area of the United States. The classroom size is approximately
8.2 m (27 ft) by 9.7 m (32 ft) with a ceiling height of 3 m (10 ft), as shown in Figure 1. This
classroom has a rated occupant capacity of 52 people and two interior doors leading to an adjacent
hallway. The classroom is located on the exterior perimeter of the 23,000 m? (250,000 sq ft)
building, on the first floor, with two other classrooms on either side. The ceiling is a drop ceiling
with a plenum space above, which is connected to a return air duct. This space was chosen for field
data collection as it was occupied regularly, typically multiple times per day, between the hours of
operation of the building from 7:00 A.M. to 7:00 P.M Monday through Friday in both the fall

(August to December) and spring (January to May) semesters.
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Figure 1: Exterior view (left) and interior view (right) of the field-testing location, including
CO2 sensors and occupancy cameras (middle)

The heating, ventilation, and air conditioning (HVAC) servicing this room included an air
handling unit (AHU) that serviced this room and three other adjacent classroom spaces on the same
floor. The AHU included a mixing box that allows for some of the return air from the classroom



spaces to be mixed with outdoor air, conditioned, and returned to the spaces as supply air. The
remaining return air was exhausted to the exterior. Once the supply air was ducted through the
supply air ducts, the amount of supply air provided to the classroom was determined via a VAV
box with a damper adjusted using temperature-based controls. This VAV box controlled supply
air to six supply air diffusers evenly spaced throughout the classroom ceiling. When the
temperature of the room reached above the set threshold, the damper was opened automatically to
increase the supply airflow of conditioned air. Once the target temperature was reached, this
damper closed automatically to accommodate the minimum air flow rate. Return air sent back to
the AHU was received through two return air grilles which open to a plenum space above the drop
ceiling. This plenum is connected to a return air duct.

The observed setpoints used in the test space ranged from 20.5 C (69 F) to 23.3 C (74 F)
throughout the test period. Temperatures were observed to be at a minimum of 20.5 C (69 F) during
unoccupied hours and peaked at 23.3 C (74 F) during periods of high occupancy, with at least 30
occupants in the room. During the occupied periods the room most commonly had 1-3 or 16-18
occupants, and temperatures ranged from 21.1 C (70 F) to 22.7 C (73 F). The observed supply air
volume ranged from 0 m3/s to 0.25 m3/s (548 cfm) during occupied periods. The air flow sensor
installed in the VAV box used for these measurements was calibrated prior to the testing period.
Long Term CO2, HVAC, and Occupancy Data Collection

To monitor CO2 concentrations in this space, multiple commercially available CO2 sensors
were installed in various locations throughout the room, including Vaisala GMP252 Probe
(Vaisala, 2023) , Aranet4 Pro (SAF Tehnika JSC, 2025), ACI A/CO2-R2 wall sensor (Automation
Components, Inc., n.d.), and in the supply and return air ducts, Vaisala GMP252 Probe (Vaisala,
2023), as shown in Figure 2. Sensors were calibrated weekly throughout the testing period using
standard CO2 gas cylinders at concentrations of 10 ppm, 400 ppm, and 1000 ppm. The supply and
return air duct CO2 sensors’ data was collected via connection to the building management system
(BMS), as were several of the room sensors; the remaining were collected wirelessly via Bluetooth
every approximately 2 weeks, then combined to create a complete dataset. Figure 2 provides a
diagram showing where each of these sensors were in the test space. For those located inside the
classroom, Table 2 indicates their height above the floor. Table 3 provides the manufacturer-

reported specifications for all sensors.
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Figure 2: Top-down view of the classroom sensor placements are as follows: Sensor 1 — East
wall beside right door of classroom; Sensor 2 — North wall of classroom; Sensor 3 — Northeast
ceiling mounted next to the supply air duct; Sensor 4 — South wall of classroom; Sensor 5 — East
wall beside right door of classroom; Sensor 6 — East ceiling of classroom; Sensor 7 — West
ceiling of classroom

Sensor 1, located next to one of the entry doors into the classroom from hallway, and
Sensors 8 and 9 located in the supply and return air ducts, respectively, were all the same brand of
sensor, and were selected based on comprehensive comparative testing that evaluated how well
the sensors performed under a range of conditions (Cetin et al. 2024). Sensors 2-7 were placed at
various locations on the walls and ceiling of the classroom to assess the spatial distribution in CO2
concentration and level of mixing throughout the space. Throughout the monitoring period, the
CO2 concentrations measured from the supply air duct ranged from 423 ppm to 528 ppm, while
that for return air duct ranged from 408 ppm to 1099 ppm. CO2 concentrations in the classroom

ranged from 415 ppm to 1289 ppm across all the tested sensors.

Table 2: Location and height of placed CO2 sensors

Sensor Name L ocation Approximate Helghtle(c‘e'S)ensor (from Ground
Sensor 1 East wall beside right door of 12m (4 fr)
classroom




Table 2 (cont’d)

Sensor 2 North wall of classroom 0.6 m (2 ft)
Sensor 3 Northeast ceiling m(_)unted next to the 3'm (10 ft)
supply air duct
Sensor 4 South wall of classroom 0.6 m (2 ft)
Sensor 5 East wall beside right door of classroom 1.2m (4 ft)
Sensor 6 East ceiling of classroom 3m (10 ft)
Sensor 7 West ceiling of cla_ssroom near classroom 3'm (10 ft)
window

Table 3. Manufacturer-reported CO2 and temperature sensor accuracy and range

Sensor Name €02 CO2Range Temperature Accuracy | Temperature Range
Accuracy
Sensor 1, 8,9 + 40 ppm 0 ppm - 5000 ppm +0.5°C
0°C-50°C
Sensor 2, 3,4,5,6,7 + 30 ppm 0 ppm - 9999 ppm +0.3°C

To track occupancy and the opening and closing of the hallway doors, two camera modules
connected to custom programmed microcontrollers (Raspberry Pi Foundation, 2024) and were
placed above the room's doorways as shown in Figure 1, such that the cameras could only see the
top of each person’s head that was entering or exiting. Videos were recorded throughout the testing
period for both doorways via the use of a Python code developed and used to store daily videos
with timestamps from each camera. These video files were downloaded weekly then used to
manually count the number of occupants in the space. A spreadsheet was generated for each door,
and every time a person entered or exited through a door, it was manually recorded in the
spreadsheet along with the corresponding timestamp.

After, the data for each door were compiled to compute the occupancy of the classroom
with a 1-minute frequency. In addition, the video data was also used to determine during which
periods the door(s) were open or closed. The opening and closing of the doors were important to
document in order to evaluate how this change in state impacted air exchange rates in the test
space, and thus relationship between occupancy and CO2 concentrations. Based on the data
collected the occupied periods only occurred between the hours of 7:00 A.M. to 7:00 P.M on
weekdays (M-F), which is associated with when the classroom was unlocked. Considering only
the times the classroom was open, it was occupied approximately 33% of the time across the time
of data collection. For the periods where the room was occupied, the distribution of number of
occupants is provided in Figure 3. The classroom occupancy was mainly occupied by 1-3 people

(34%) and 16-18 people (11%) over the monitoring period. For the periods where there were a



smaller number of people, the space was generally being used for cleaning or studying; for the

periods with a larger number of people, the space was being used as a classroom.
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Figure 3: Occupancy distribution of classroom space excluding unoccupied times

Field Data Quality Control & Subdivision of Scenarios

Once all data was compiled into a single combined dataset, the data was quality controlled
across all variables to determine which periods of data across the monitoring period were useable,
free of erroneous data, and included a complete set of data across all variables. Any instances of
missing data arising from factors such as sensor removal for calibration, video errors, or other
scenarios, were removed from the final dataset. Unoccupied intervals shorter than 30 minutes were
also excluded from the dataset. Additionally, time periods with highly variable occupancy with
frequent door openings (occurring in intervals shorter than 30 minutes) were also excluded. The
distribution of CO2 concentrations was also reviewed to assess for anomalies or outliers; however,
none were identified. In total the final dataset includes 1,661 minutes of data, which was used for
analysis.

The data was then sorted into days where the occupancy was greater than zero at some
point during the day, and other days where no occupancy occurred. Days with no occupancy were

also removed from the dataset. Periods of time where occupancy occurred were then further
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divided into multiple scenarios. Division of the data first included dividing the data into periods
where the (i) 0, (ii) 1 or (iii) both classroom-hallway doors were open (3 scenarios). Door
conditions were documented in the datasheets for all occupied periods. Second, the data was
further subdivided to account for the influence of changes in occupancy across the test period.

Three scenarios were considered: (i) steadily decreasing occupancy, (ii) steadily increasing
occupancy, and (iii) near constant occupancy. The data was divided in this way to analyze how
varying occupancy trends impact the accuracy of modeling CO2 in results. Ideally CO2 should be
released and analyzed under steady state conditions however periods of rapid transient conditions
have a potential impact on the rate at which CO2 is released.

Natural Air Exchange Rate

To evaluate the natural air exchange rate of the test space when the HVAC system was
turned off, a tracer gas test method was used. This is a commonly method to evaluate air exchange,
including in university settings in classrooms (Chang et al., 2009; Fan et al., 2022; Li, et al., 2014).
ASTM E741-23 standard was followed to complete this testing. Initially, a blower door test was
performed, however, due to the presence of the plenum space and drop ceiling, the blower door
test could not reach the targeted differential pressure for the system to function while pressurizing
the room. Ceiling tiles were pushed up due to the pressure difference caused by the blower door
in the room. Thus, instead the tracer gas testing method was used.

To ensure accurate testing the space and concentration of the tracer gas should be uniform
(ASHRAE, 2022b; ASTM International, 2023). Multiple tests under various environmental
conditions were conducted in October 2023, January 2024 and February 2024. To ensure no
external influence from surrounding classrooms, testing was performed during a time when no
class sessions were scheduled in the room or the surrounding classrooms serviced by the same air
handling unit. Additionally, to verify the room’s natural air exchange rate was influencing the air
exchange of CO2 in the room, the building management system (BMS) system was used to verify
that the HVAC system was set to the minimum supply air flow during testing dates. This was
verified from the calculation of the air exchange rate based on the average air volume entering the
room from the HVAC system supply duct. HVAC air volume was determined as negligible during
testing as air exchange rates were, on average, 0 ACH or 1.2-1.5 orders of magnitude lower than

the calculated air exchange rate from the tracer gas test (see Appendix Table A.1).
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Five pounds of dry ice was used as the source of CO2 for each test. Previous studies suggest
that the uncertainty of this method in determining the air exchange rate is less than 10% (Cheng &
Li, 2014). All CO2 sensors located in the room were monitored for 20-30 minutes prior to the start
of testing to confirm an even distribution of CO2 and to establish baseline conditions. Then, dry
ice was placed in the classroom to achieve a targeted maximum concentration of 2000 ppm. Dry
ice was equally spaced in three styrofoam containers on three tables around the classrooms with
fans placed next to the dry ice in an effort to evenly disperse the CO2. Once the target CO2
concentration was reached, the dry ice containers were capped to eliminate further release of CO2.
The level of CO2 in the classroom was monitored and measured for up to 2 to 3 hours until CO2
concentrations returned to baseline levels that occurred before testing began.

Three different air exchange rates were measured to ensure a range of anticipated
conditions were captured including (i) both doors to the hallway closed, (ii) one door open and one
closed, and (iii) both doors open. For the scenario where all doors were shut, during testing all
doors were shut and CO2 levels were actively monitored until the room achieved approximately
2000 ppm. The dry ice and fans were then removed from the room and the concentration of CO2
while it decayed was collected. For the scenario where all doors where opened, during testing all
doors were left open and the previous steps were repeated. This was also repeated for conditions
where the left or right doors were open/shut. Data was then analyzed using the linear regression of

the change in rate of CO2 over time (Equation 1). The time interval plot equation is as follows:

Ct = Ca * (1 - eXp(_Inatural * t)) + Ct:o,max * €Xp (_Inatural * t) (1)

Where C; is the concentration of CO2 at time t. C,is the concentration of the pollutant can
be represented as the ambient concentration in the room (%) Lyaturar 1S the infiltration rate from

just the building envelope in air changes per hour (ach). C=g max iS the maximum concentration
of CO2 once the dry ice was removed from the room. Time, t is the time interval since the
occurrence of Cy—g max-

Data was first graphed and regressed separately for Sensors 2-7 to determine if a sensor
was an outlier from the system and did not follow the other sensor trends or if there was incomplete
mixing in the room. The air exchange rate was determined based on the slope of the linear

regression model, reflecting the change in concentration of CO2 overtime. Data was then averaged
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from the sensors with similar calculated air exchange rates. For each field test, all data used to
determine air exchange results was used as input into a linear regression except for Sensor 3 for
all scenarios and Sensor 6 (for one door open and one closed). These were not used because their
values had a significant difference compared to all other sensors used to calculate the air exchange
rates for the same time interval (Appendix Table A.1). Sensor 3 was located closest to the supply
air duct, thus was likely overly influenced by the minimum air flow CO2 concentrations from the
supply air duct; Sensor 6 was directly above one of the containers of dry ice, resulting in higher
CO2 concentrations than other sensors during some scenarios. The average of the calculated air
exchange rate was used for the four tested scenarios, doors open, left door open, right door open,
and doors closed.
Physics-based Box Model Development

To develop a physics-based model of the test space, for use with the field collected data
for validation, a box model was used. This model was created under the assumption that the room
was a well-mixed space, where CO2 was uniformly distributed from the source. This was verified
through the comparison of Sensors 2-7 CO2 measurements which demonstrated that all CO2
concentrations were within 33% when HVAC is on and 32% when the HVAC system was off. It
should be noted that the HVAC system was off (no flow) during the analysis period for
approximately 5% of the time and on, at varying levels of generally low air flow rates, for 95%. It
was assumed that CO2 generated from occupants would be a uniform source distributed
throughout the classroom. This model was based upon the mass-balance principle, the rate of
increase/decrease in concentration of CO2 in the room was equivalent to the difference between
the mass rate of CO2 being generated from students and exiting, under the assumption that CO2
will not decay, expressed as Equation 2 (Asif & Zeeshan, 2020).

% = Qin(Cin) = Qoue (Cour) + E (2)

Whereas V represents the volume of the room (m?). % is the change of pollutant

concentration in respect to time. C;,, is the concentration of pollutant entering the room from both

natural and mechanical ventilation (%). Q,,, is the flow rate of pollutant into/out of the room

3
(mT) E is the source of pollutant (number of persons (n) * generation rate (g * person). The
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generation rate of CO2, n, is based upon the number of people in the room from the collected
occupancy data. The number of people is then multiplied by the average generation rate of CO2

m3 m
(8.3 —2
s*¥person S*¥perso

per person, 4.25 = 107

n) . This was determined based on the assumption that

the classroom demographic was 50% male and 50% female from 20-29, mainly sitting and/or

typing, therefore the average of the two CO2 generation rates under each category were taken

(Yang et al., 2020). C,,; is the concentration of CO2 in the room (%) Whereas, Q =1V

3
(given I is the infiltration rate in air changes per hour (ach) and V is the volume per time (mT)
and C,,; = C,(where C,is the concentration of the pollutant can be represented as the ambient
concentration in the room (%) When integrated to express concentration as a function of time

(from time O to time t) this equation was rewritten as Equation 3:
E
C(t) = L2l (L emtity g _pye it (3)

1-minute frequency was used for all variables to increase accuracy as CO2 concentrations,
amount of people in the room which impacts the source, and the environmental conditions were
observed to change minute-by-minute. C(;_qy is the concentration of CO2 determined by the
previous timestep. I, is used to represent the mechanical (Ig,;,1,) and/or natural (Lygeyrq) air
exchange rate depending on the scenario considered.

Each scenario considers different sources of ventilation within the room. Scenario 1
represents when the HVAC system’s supply air into the room is significantly higher than the
natural air exchange rate determined by the field test. In this case the air exchange rate is only
represented by the volume of air being supplied into the room by the HVAC system. Scenario 2
represents when the natural air exchange rate is significantly higher than the mechanical air
exchange rate. Here, the air exchange rate variable is only represented by the air exchange rate
determined in the field test. Scenario 3 represents a mix of ventilation, when the rate of air
infiltration was approximately equivalent to the mechanical ventilation rate. Each scenario was
compared based on the calculated correlation coefficient between the scenario and the measured

CO2 concentrations from the return duct, as discussed below.
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Scenario 1, Mechanical Ventilation Dominated

The first scenario represents scenarios where the influence of the HVAC system’s
operation and air exchange rate is greater than that of the natural air exchange rate of the room,
thus the model of the room can be represented by the HVAC system’s operation only. For the first
model, Equation 3 is used and the air exchange rate I, is the volume of air being supplied by
the HVAC system. Figure 4 represents the box model of Scenario 1 and Scenario 2.
Scenario 2, Natural Ventilation Dominated

In the second scenario, Equation 3 is also used. In this scenario, the influence of the natural
air exchange rate of the room is dominate over HVAC operations. The air exchange rate is
represented by I,,,+.ra1, @S determined through tracer gas testing. This scenario represents when
the HVAC system is off or very low and/or with relatively low CO2 concentrations in the supply
air. Depending on if no, one or two doors were open this air exchange rate is adjusted throughout

the monitoring period.

Flowrate Into the Room Flowrate out of the Room
Volume, V

Indoor Air Concentration at
the previous timestep t, C,_j,

Isupply (’a (0” Inatural Ca Isupply C(U ({Jl’_} Inatu.ra] Cfl)
Qin Source, E Quvacretum

l

¥

Figure 4: Box model of Scenario 1 and 2 mechanical or natural dominated air exchange

Scenario 3, Mixed Mechanical and Natural Ventilation

In the third scenario, this model represents when both the supply air flow from the HVAC
system and the natural air exchange rate must both be accounted for, for example if both air
exchange rates were a similar level of magnitude with similar levels of CO2 concentrations, and
thus important to account for both. For this scenario a different equation is derived. The flowrate

into the room can be represented using Equation 4.

Qtotal = QHVAC Return — qupply + Qnatural (4)
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3
Where Q;,:4; IS the total flowrate into the room (mT). Quvac return 1S the HVAC return
3 3
flowrate out of the room (mT) Qsupply represent the flow rate of the supply air into the room (mT).

3
Qnaturar 1S the flow rate of the air due to the natural air exchange rate (mT) Giventhat I = %, the

following equation for the mass balance of the room including both mechanical and natural air

exchange can be rewritten as the follows, as shown in Equation 5.

vdc
dt = ( supply Csupply + Inatural Cnatural )V - (IHVAC ReturnCHVAC Return)v +S (5)

And when integrated to express concentration as a function of time (from time 0 to time t)

this equation could be rewritten as Equation 6:

E a 1 Csupply + Inatural Cnatural) _ _
Cc(t) = ( 4 SupPy ) (1 - e Trotarl) 4 Ce—1)e Itotalt (6)
Vitotal ltotal

Whereas I;orq1 = Lsuppty t+ Inaturar (9iven Lis the infiltration rate in air changes per hour

(ach) for both supply and natural values). / represented the HVAC air flow rate data (ach)

upply
and 7I,,.ura; Tepresents the natural air exchange rate, depending on the number of doors to the

hallway that are open. Cg,,p1y is the concentration of CO2 in the supply air (%) Chatural 1S

assumed to be 420 ppm, the average outdoor air concentration of CO2 (ASHRAE 2022b.). See

Figure 5 which represents the box model of Scenario 3.

Flowrate Into the Room Volume, V Flowrate out of the Room

Indoor Air Concentration at
the previous timestep t, C,

Al Al al
Isupply (’supp]y + Inatu.ra] (’natu.m] IH\-"ACRcturn(’{t)
qupp]y + Qnarural SDUI‘CC, E QH\"ACRcrum

¥

Figure 5: Box model of scenario 3 mixed mechanical and natural air exchange rate
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Model Evaluation

Model evaluation was then conducted to define the relationship between CO2
concentration and occupancy patterns and to capture the effect of multiple-space ventilation
systems and varying indoor environmental conditions. Using CO2 as the metric for analysis, the
performance of the physics-based box models was evaluated based on the correlation coefficient
to determine their deviation from the return air concentration of CO2, which represented the
measured amount of CO2 leaving the classroom. This comparison focused on the correlation
coefficient between the three scenarios. Additionally, to compare the CO2 concentration and
occupancy across this period and determine relationship between transient occupancy and model
performance during each period of occupancy (increasing and decreasing), regression models were
used to determine the relationship between occupancy and CO2 concentration, assessing fit using
the coefficient of determination (R?). The r-square comparison was only done during transient
occupancy, as a linear comparison could not be developed if there was minimal variability in
occupancy. The r-square value analyzed was based on the models with the higher correlation
coefficient, whereas the model that best represented the measured data was analyzed.

Through analyzing how the physics-based box models perform under varying
environmental conditions and model assumptions, the applicability of these models for occupancy-
based controls to improve energy savings, occupant comfort and indoor environmental quality was
assessed. This analysis helped determine the suitability of these models, identified the conditions
under which they are accurate for VAV systems, and highlighted the most influential

environmental factors, including potential reasons for their significance.
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RESULTS
Summary of Collected Data

In the initial stage of the data analysis the potential influence of varying environmental
assumptions in models was analyzed through analysis of model performance. Table 4 and
Appendix Table A.1 provide the collected datasets, length of analysis periods, temperature ranges,

occupancy, ventilation rate and average and initial supply and return CO2 concentrations.

Table 4: Data summary of all periods of collected data including air exchange rates and initial
levels of CO2 for the HVAC system supply and return

Natural

Data Time Occupancy Air Mechani_cal Initial Return Initial Supply

Door s (range, Exchange | Ventilation Cco2 co2
et Frame : . .
Status Period | (hr.) c_onstant/mc_reas Rate Rate concentrations | concentrations
' ing/decreasing) (ACH (ACH avg) (ppm) (ppm)
avg)

gg’;:‘s 1 1.3 13 £ 1, constant 0.301 0.91+0.60 659 499
Closed 2 1.0 8, constant 0.301 0.81+0.46 552 487
One 3 2 28 * 2, constant 2.816 3.20+£0.28 835 448
Door 4 15 8, constant 2.816 0.84 £0.27 486 458
Closed 5 0.5 27, constant 2.816 1.00 £0.22 688 461
6 0.9 32 + 2, constant 2.914 1.02+0.34 725 436
7 3.3 2+ 1, constant 2.914 0.80 £0.23 449 442
8 0.5 5, constant 2.914 0.91+£0.57 593 496
9 0.7 3, constant 2.914 0.82+£0.43 574 518
h 10 1 8 + 1, constant 2.914 0.76 £0.45 738 474
gg’;rs 11 1 0-34, increasing | 2914 | 0.800.28 411 429
Open 12 0.8 0-17, increasing 2.914 0.91+0.39 901 518
13 0.6 0-25 increasing 2.914 0.67+0.16 515 445
14 0.6 0-27, increasing 2.914 0.76 £0.41 439 442
15 0.5 28-0, decreasing 2.914 3.31+0.04 744 448
16 0.9 5-0, decreasing 2.914 0.67 +0.48 656 509
17 0.5 8-2, decreasing 2.914 0.94 +0.29 703 490

Model Performance

Table 5 includes the correlation coefficient between the measured and modeled datasets.
By using the correlation coefficient, the findings indicate the level of performance across the
collected datasets. 82% of all models demonstrated strong correlation (> 0.9) between the modeled
and measured data, as shown in Table 5. For Scenario 3, the model with natural and mechanical
ventilation, was the most representative of the data, as 9 periods of collected data represented
model assumptions. Scenarios 1 and 2 were less frequent, with only five and four periods of

collected data that represented model assumptions. Overall findings indicated that regardless of
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door conditions, the number of occupants in the room, temperature, and time frame, most models
performed well. Factors impacting performance were noted to be air exchange rate and high initial

and average supply concentrations of CO2 within the room.

Table 5: Correlation coefficient between the measured and modeled datasets

Correlation Coefficient?
Data
Door Status Set . . Scenario 2 Scenario 3
Period Scena_mo_ 1, Mech_anlcal Natural Ventilation Natural and Mechanical

Ventilation Dominated . .

Dominated Ventilation
Both Doors 1 0.959 0.950 0.966
Closed 2 0.952 0.928 0.961
One Door 3 -0.330 -0.619 0.774
Closed 4 0.828 0.953 0.965
5 0.972 0.990 0.988
6 0.901 0.948 0.973
7 0.360 0.918 0.936
8 0.943 0.909 -0.922
9 0.973 0.596 -0.925
10 -0.134 0.910 0.564
Both Doors 11 0.983 0.992 0.993
Open 12 -0.360 0.422 0.879
13 0.973 0.984 0.942
14 0.990 0.986 0.990
15 0.958 0.965 0.842
16 0.889 0.703 -0.018
17 0.979 0.946 0.911

1 The bold values indicate the model (i.e. Scenario 1, 2 or 3) with the highest correlation coefficient

Scenario 1: Mechanical Ventilation Dominated

In Scenario 1, the influence of the mechanical ventilation was larger than the natural
ventilation of the room. Five periods of collected data represented Scenario 1 with correlation
coefficients higher than Scenario 2 or 3 when comparing modeled CO2 concentrations to measured
CO2 concentrations, periods 8, 9 (Figure 6a), 14 (Figure 6b), 16, and 17 (Figure 6c). All datasets
(excluding period 16) performed well when modeled based on the high correlation coefficients (>
0.9) between the measured and modeled data. Correlation coefficients range from 0.943 to 0.990
(Table 5). Period 16 had the weakest performance with the lowest correlation coefficient at 0.889.
In all scenarios with high performance all doors were closed, average initial supply concentrations
varied (442 ppm to 518 ppm) initial return concentrations varied (439 ppm to 703 ppm), average
supply concentrations ranged from 435 to 503 ppm and average return concentrations ranged from
528 ppm to 670 ppm (Table 4 and Appendix Table A.2.). Furthermore, the amount of occupancy
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in each scenario varied as period 8 and period 9 had similar occupancy (5 people or less), period
14 had a maximum of 27 occupants, and period 17 had a maximum of 8 occupants. Additional
information on these scenarios is also included in Appendix Table A.2.

All scenarios represented different occupancy patterns, including constant (Figure 6a),
increasing (Figure 6b), and decreasing occupancy (Figure 6¢), demonstrating that varying
occupancy conditions showed minimal impact on accuracy of the modeling in most cases. As seen
in Figure 6b and 6¢, compared to the constant occupancy in Figure 6a, the box models did not
track CO2 concentrations as well, with some divergence (over estimation) of CO2 concentrations

particularly for the longer periods of a changing number of occupants.
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Figure 6: Graph of occupancy modeled and measured CO2 concentrations for (a) period
9 with constant occupancy, (b) period 14 with increasing occupancy, and (c) period 17 with
decreasing occupancy for Scenario 1 with high correlation coefficients (Mechanical Ventilation
Dominated)

When comparing a dataset with weaker performance, period 16, as shown in Figure 7a

(correlation coefficient at 0.889) to a similar dataset with stronger performance, period 17,
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(correlation coefficient at 0.979) both datasets have a similar number of occupants (range of 0 to
8) and occupant trends (decreasing occupants) (see Table 4 and Table 5). Additionally, both
datasets have similar return CO2 concentrations (Appendix Table A.2). Periods 16 and 17 have
slight variations in supply CO2 concentration on average (517 ppm) than period 17 (487 ppm),
Table A.2. The main difference between period 16 and period 17 is the air exchange rate from the
mechanical ventilation (Figure 7). Period 16 has a lower average mechanical ventilation rate (0.67
ACH) and a higher standard deviation (0.48) indicating mechanical ventilation rate varies more,
which could affect the accuracy of modeling as the natural ventilation could influence the results
when mechanical ventilation was less dominate (Figure 7). Mechanical ventilation is significantly
different than in period 17 which has a higher mechanical ventilation rate (0.94) with a much lower
standard deviation (0.29). As Scenario 2 is dependent on mechanical ventilation, a higher variation
in ACH would logically affect the accuracy of the modeled data as it varied more. At times where
mechanical air exchange rate was zero, the CO2 concentration within the room could be impacted
by natural ventilation and supply CO2 concentrations, therefore impacting reliability during this
dataset. This was consistent with other datasets with higher performance (periods 8, 9 and 14)

whereas the exchange rate was generally higher (0.76 to 0.91).
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Figure 7: Mechanical and natural air exchange rate, and modeled and measured CO2
concentrations for period 16 (poorer performance), showing higher variability of mechanical
ventilation
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Scenario 2: Natural Ventilation Dominated

In Scenario 2, the natural ventilation was more impactful than the mechanical ventilation
of the room. Four periods of collected data (periods 5, 10 (Figure 8c), 13 (Figure 8b) and 15 (Figure
8a)) represented this scenario with higher correlation coefficients than Scenario 1 and 3 when
comparing modeled CO2 concentrations to measured CO2 concentrations. All modeled periods
had high correlation coefficients (> 0.9) demonstrating a higher level of model performance (Table
5). When comparing datasets most datasets had both doors open (period 10, 13, and 15), while one
data set (period 5) had one door closed. Varying door conditions showed minimal impact on
accuracy of the modeling. Additionally, the number of occupants within the room was generally
higher with a maximum of 25 to 28 occupants during modeling (period 5, 13, and 15), however
period 10 also displayed high correlation for this model and only had 8 + 1 person within the room.
The average initial and supply and return concentrations of CO2 varied within the room (see
Appendix Table A.2 for additional data). Major differences within this scenario were the
occupancy trends, where period 15 (Figure 8a) had decreasing occupancy, period 13 (Figure 8b)
had increasing occupancy, and periods 5 and period 10 (Figure 8c) had constant occupancy. This
indicates that box modeling under Scenario 2 for periods of time when natural ventilation was
more impactful than mechanical ventilation would be able to predict occupancy, regardless of

occupancy levels or door conditions.

22



(a) (b

800 30 300 30
750 750
25 25
E 700 E 00 -
& WE = 20 5
2 650 g 5 650 - E
E 00 158 Eeoo - i5s &
=] | B g | =
3550 10 S & 350 0 g
= 8
2 500 2 500 ;
450 450 e
5:03 PM 5:10 PM 516 PM 5:22PM 5:28 M 5:34 PM S47 AM %S4 AM 10:02AM 10:09 AM L0:16 AM 10:23 AM
Time { 1-min interval)y Time { 1-min mterval)
Measured CO2, BMS Retum Medel 2, Nawral Ventilation - Occupaney Measured CO2, BMS Return Model 2, Natural Ventilation - Occupancy
200 30
750 a5
ETDO _
2
E650 » é
; =
B
(c) £ 600 15 g
E 550 g
Z
2 g
2500
o]
450 3
400 - - - - . —L o
10:10 AM  10:23AM 1036 AM 10:49 AM 11:02AM 11:15 AM

Time { 1-min interval)

Measured CO2, BMS Retum Model 2, Natural Ventilation - Occupaney
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Scenario 3: Both Mechanical and Natural Ventilation

In Scenario 3, the mechanical ventilation and natural ventilation of the room were found to
both be important. Nine periods of collected data represented this scenario, periods 1-4, 6-7, 11-
12, and 14. Periods 1, 2, 4 (Figure 9a), 6, 7, 11 and 14 (Figure 9b) all have a strong correlation
between the modeled and measured data (Table 5). Varying door conditions show minimal impact
on the accuracy of modeling in this scenario. Periods 1 and 2 both have two doors closed and high
correlation coefficients; similarly, period 4 (Figure 9a) has one door closed and a higher correlation
coefficient; furthermore periods 6, 7, 11, and 14 (Figure 9b) have both doors open and high
correlation coefficients (Table 4, Figure 9). Occupancy patterns and the number of occupants in
the room also had minimal impact on the accuracy of modeling in this scenario as periods with
high correlation coefficients have occupancy ranges from scenarios with minimum occupants 2

1 (period 7) to the maximum number of occupants observed within the room, 34 occupants (period
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6 and 11). Additionally, varying natural air exchange rates (0.301 ACH to 2.914 ACH) and
mechanical air exchange rates (0.76 ACH to 1.02 ACH) were observed across all periods with
high correlation coefficients indicating variation with ACH had little effect on model accuracy.
Initial supply CO2 concentrations (436 ppm to 499 ppm) were noted to have some variation within
periods with high correlation coefficients indicating limited impact on model results (Table 4; see
Appendix Table A.2 for additional data). This indicates that box modeling under Scenario 3 for
periods of time when natural ventilation was equivalent to mechanical ventilation influence would

be able to predict occupancy, under these varied occupancy levels and door conditions.
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Figure 9: Occupancy and modeled and measured CO2 concentrations for (a) period 4
with constant occupancy and one door open and (b) period 14 with increasing occupancy and
both doors open for Scenario 3 (Natural and Mechanical Ventilation)

In periods 3 and 12 correlation coefficients showed slightly lower that other scenarios
(0.774 and 0.879), as shown in Table 5. The major difference between periods 3 and 12 (Figure
10b) with scenarios of higher accuracy (Figure 10a) in modeling was that the initial return
concentrations measured within the room were higher than all other datasets within scenario 3 (835
ppm and 901 ppm), which ranged from (411 ppm to 725 ppm) . When comparing period 12 (Figure
10b) to a period with a higher correlation coefficient of similar conditions (period 14), similar
conditions between these datasets where door conditions (all open) and occupancy trends
(increasing). Major differences where greater occupants (27 maximum occupants) in period 14
(Figure 10a) despite the larger number of occupants in period 14 average measured return (582
ppm) and supply (435 ppm) concentrations of CO2 were significantly lower than period 12 (733
ppm and 506 ppm) (see Table 4 and Appendix A.2). This indicates that for period 12, there may
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be other influential factors impacting the conditions in the room and thus the accuracy of the
modeling of this dataset. This may be conditions such as occupants in the hallways or adjacent
classrooms creating higher CO2 concentrations, as this modeled period increases in occupants
from an initial scenario of zero occupants when CO2 concentrations are already higher. When no
occupants are initially in the room, the room should be at lower CO2 concentrations. This trend is

similar to period 3 where initial CO2 concentrations within the room are high.
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Figure 10: Graph of occupancy modeled and measured CO2 concentrations for (a)
period 14 (high performance) and (b) period 12 (poorer performance) for Scenario 3 (Natural
and Mechanical Ventilation)

Relationship Between CO2 Concentration and Occupancy

Datasets with transient occupancy were then also analyzed to examine the relationship
between occupancy and CO2 concentrations during such scenarios using regression models to
assessing fit using the coefficient of determination. The r-square value analyzed was based on the
model with the highest correlation coefficient, whereas the model that best represented the
measured data was analyzed. Overall, findings indicate that the r-squared value of a linear
regression model of occupancy count based on CO2 concentrations was high during low supply
and initial concentrations of CO2 into the room, low mechanical ventilation rates, and periods with
steady increasing occupancy. Accuracy was lower in scenarios where CO2 concentrations were

higher within the room and periods overall, along with decreasing unsteady rates of occupancy.
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Table 6: R-Squared Value of Linear Regression Model of Occupancy vs. CO2 Concentration for

Transient Occupancy Periods
Scenario R-Squared Value?

Data Set Used Based | Measured Scenarip 1, Scenario 2 Scenario 3
Period on CO2 from Mechan[cal Na’gurgl Natural gnd
Correlation BMS Ventilation Ventilation Mechanical
Coefficient Return Dominated Dominated Ventilation

11 3 0.87 0.82 0.88 0.90

12 3 0.68 0.61 0.019 0.23

13 2 0.95 0.96 0.95 0.91

14 lor3 0.96 0.93 0.94 0.94

15 2 0.50 0.71 0.67 0.88

16 1 0.002 0.11 0.32 0.83

17 1 0.16 0.46 0.35 0.43

2Bolded values are analyzed based on the highest correlation coefficient among the three Models (Model 1, 2 and 3)

For Scenario 1 (mechanical ventilation dominated) period 11 and 14 (Figure 6b and 11a)
has a high r-squared value (0.93), for Scenario 2 (natural ventilation dominated) period 13 has a
high r-squared value (0.95), and for Scenario 3 (both mechanical and natural ventilation) period
11 and 14 have high r-squared values (0.90 and 0.94) and directly relates the increase of CO2 to
occupancy (Table 6). All periods with high r-squared values are increasing in occupancy and have
both doors open. Datasets demonstrate that occupancy and CO2 concentration can be directly
related regardless of the number of occupants, where datasets range from 0 to 34 occupants. Other
similarities within these datasets include supply CO2 concentrations, which range from initially
429 ppm to 445 ppm and are on average 432 ppm to 450 ppm (see Appendix A.2 for additional
data).
Scenario 1: Mechanical Ventilation Dominated

Scenario 1 (mechanical ventilation dominated) periods 16 and 17 both show low r-squared
values (0.11 and 0.46) indicating a poor relationship between CO2 and occupancy. When
comparing period 16 and 17 with lower r-squared to a period with high predictive accuracy under
Scenario 1, period 14, (Figure 11) similarities between these datasets include high correlation
coefficients (0.965 to 0.984) between the model and measured data, demonstrating all three
datasets accurately reflect measured data. However, both lower predative datasets demonstrated
that when comparing just the measured CO2 in the room with occupancy there was a low r-squared
value (0.002 and 0.16), indicating that the model did not cause the low predictive accuracy but a

condition within the room.
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Furthermore, period 14 showed a strong correlation between CO2 levels and occupancy,
with high r-squared values with both modeled and measured data (0.93 and 0.96) indicating that
the model accurately predicted occupancy based on CO2 concentration. Comparing period 14 to
16-17 datasets similar mechanical air exchange rates for periods 16 and 14 (0.67 + 0.48 and 0.76
+ 0.41. Period 17 had a slightly higher mechanical air exchange rate 0.94 + 0.29. The similar
mechanical air exchange rates and similar standard deviations demonstrate that variations in
mechanical air exchange rate did not influence results. Major differences for periods with low
predictive accuracy compared to high predictive accuracy are the initial return (656 ppm and 703
ppm) and supply (490 ppm and 509 ppm) concentrations are higher for low predictive accuracy
models compared to period 14, which had a high predictive accuracy model. However, period 16-
17 decreased in occupancy which makes initially high CO2 concentrations within the room more
logical. However, on average, period 14 had a lower measured return (528 ppm) and supply (435
ppm) concentration of CO2 than periods 16 and 17 (return at 657 ppm to 670 ppm and supply at
517 ppm to 487 ppm) despite period 14 having much greater occupancy than periods 16 and 17.
This indicates that there could be another unaccounted for external factor influencing results when
modeled as periods with lower occupancy on average are expected to have lower CO2
concentrations from the return and supply. As the ventilation system supplies a few other

classrooms this could have been the source of error within this scenario.
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Figure 11: Predictive accuracy between occupancy and modeled CO2 concentrations for
period 14 (high predictive accuracy)

Additionally, when analyzing the rate at which people left or entered the room datasets
with low r-squared values showed more drastic change in occupants. For period 17 (Figure 12b),
6 occupants left within the first 5 minutes, however this rate drastically decreased over time and
stayed at 2 occupants for the remainder of the data period. This trend was similar for period 16
(Figure 12a) whereas at 1:21 pm, most occupants (3 occupants) left within the first 1 minute and
the rest of the dataset was fairly stable with 1 or 2 occupants until 2:14 pm. However, for datasets
with high r-squared, it took a longer timeframe to reach the maximum number of occupants. For
example, in period 14 (Figure 6b) it took the entire modeling period to reach max occupants.
Therefore, a low r-squared result is also logical for periods 16 and 17, as the rate at which people
enter/leave the room would affect the rate at which CO2 is released into the room and as box

models assume steady state conditions.
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Figure 12: Modeled and measured CO2 concentrations and occupancy for (a) period 16
(low predictive accuracy) and (b) period 17 (low predictive accuracy) for mechanical air
exchange rate dominated periods

Scenario 2: Natural Dominated Ventilation

For Scenario 2 (natural ventilation dominated) period 15 has a low r-squared value (0.67),
(Figure 12a). Similar to Scenario 1 the low predative datasets demonstrated that when comparing
just the measured CO2 from the return with the relation to occupancy there was a low r-squared
value (0.50), Figure 123, indicating that the model did not cause the low predictive accuracy but a
condition within the room. Supply and return CO2 concentrations where similar to other high
performing datasets (see Appendix A.2 for additional data). Occupancy in this scenario was
decreasing from 28 to 0 occupants over the entire time period (Figure 12b). The major difference
between this dataset and others was that mechanical ACH was high, 3.31 + 0.04 ACH. However,
period 15 did not account for mechanical ACH, was dependent on natural, as the dataset had a
much higher correlation coefficient related to Scenario 2 (natural ventilation dominated). It was
also noted that supply from mechanical ventilation within this room was stable at 466 ppm on
average (Figure 12b). Therefore, the mechanical ventilation and supply into the room from the
HVAC system should not impact this scenario. It is possible that since this model is reliant on
natural ventilation, unaccounted for CO2 sources in external areas not measured (such as hallways)
had higher levels of CO2. Therefore, some lag with concentrations of CO2 not decreasing as
occupancy decreased would be expected, as the CO2 from the natural ventilation could possibly
be high therefore CO2 concentrations would not decrease as rapidly. This can be seen on Figure

12b, where CO2 concentrations slightly decrease just not as drastic with occupancy decrease.
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Figure 12: Comparison of modeled and measured CO2 concentrations with occupancy for (a)
period 15 (lower predictive accuracy), and comparison of modeled and measured supply and
return CO2 concentrations with occupancy changes over time for (b) period 15 (lower predictive
accuracy) during periods dominated by natural air exchange rates

Scenario 3: Both Mechanical and Natural Ventilation

For Scenario 3 (both mechanical and natural air exchange) period 12 has a low r-squared
values (0.23) (Table 6). Period 12 had a low correlation coefficient, discussed above, where
inaccurate modeling could have affected the accuracy of r-squared results. This was further
supported by the results from comparing the results from period 12 Scenario 1 model and the
measured BMS return r-squared values which where both higher (0.61 and 0.68) (Table 6).
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CONCLUSIONS

This study aimed to define the relationship between CO2 concentration and occupancy

patterns in indoor, conditioned environment, while capturing the effect of HVAC operations,

environmental, and occupancy parameters through the collection of data and utilization of physics-

based box models. To accomplish this data was collected on CO2 concentrations, tracer gas test

results, door state, and HVAC operations from an academic classroom during occupied hours.

Field testing using a tracer gas test was performed to determine natural air exchange rate within

the classroom. Data was then modeled using physics-based models for different occupant and

ventilation scenarios.

The following overall conclusions from these results are as follows:

Most scenarios showed strong performance with a correlation coefficient of > 0.9 under

varying environmental conditions such as varied natural ventilation rate from door
openings/closes, length of data analyzed, occupant trends (increasing, decreasing,
constant), and number of occupants in the room. Periods with high rates of transient
occupancy, and varying mechanical ventilation rates performed more poorly in comparison
to other scenarios. Overall, this supports the use of box models for estimating occupancy
trends in indoor environments for some scenarios but not others. Overall, less variable
conditions resulted in better results.
During periods of weaker performance of the correlation coefficient the air exchange rate
in the room was noted to have some affect results. For example, Scenario 2, which was
modeled based on the assumption of a mechanically ventilated dominated system, was
impacted by natural ventilation during a period of poor performance due to the air exchange
rate from the mechanical ventilation system varying greatly.
Other periods with low correlation coefficients, specially discussed during the analysis of
Scenario 3, where impacted by adjacent classrooms as the ventilation system also supplied
other rooms which could have contributed unaccounted sources of CO2 for during
modeling.

Results generally indicated that occupancy trends had a direct relationship with increasing
and decreasing CO2 concentrations in the room for models with high performance.

However, only a few of the time periods across the datasets collected agreed with this. The
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r-squared between occupancy count based on CO2 concentrations was high when all doors

were closed, occupancy was increasing.

e Periods showing a poor relationship between CO2 concentrations and occupancy generally
were due to non-steady state room conditions from occupants and potentially impacted by
adjacent classrooms due to higher levels of CO2 predicted than expected with lower
occupants.

This study had several limitations that should be considered. One limitation that the box
model assumes steady state conditions, however some conditions evaluated were not technically
steady state. This could have had implications on results when comparing accuracy of predicting
the relationship between CO2 and occupancy during periods of transient occupancy, specifically
during times where occupants entered or left the room rapidly or at an unsteady pace there was a
low correlation between CO2 and occupancy due to non-steady state conditions. Additionally, as
noted, the rate of air flow from the hallway was not explicitly measured as compared to the HVAC
air flow rate, nor was the CO2 concentration from the hallway. In this case the CO2 concentration
then had to be assumed, which may have impacted some results. Furthermore, the data to analyze
the r-squared value for transient occupancy periods was a more limited dataset and would benefit
from more data. In addition, many time periods of collected data exhibited similar environmental
conditions such as limited changing of temperature, similar door conditions, and non-transient
occupancy. Future studies would be beneficial to evaluate box models under a broader range of
varying conditions, varying spaces with different HVAC controls and periods of more transient
and constant occupancy. Additionally, further work to include other aspects of VAV systems
should be implemented including other variables to reflect the changing occupancy and
concentrations of CO2 in classrooms and surrounding hallways that use the same HVAC system.
Additionally, the application of physics-based models could be further analyzed through the
implementation of occupancy-based controls using CO2 modeling based on its relation to
occupancy trends under the conditions discussed.

The results of this study have implications that provide further insights into the applications
of physics-based modeling to determine occupancy within indoor environments. Physics-based
models are able to accuracy determine CO2 concentrations within rooms. However, findings imply
that the application of box modeling to determine occupancy trends for energy efficiency purposes

based on CO2 concentrations trends are only applicable during certain conditions and need to be
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further explored. For example, factors such as rate of occupancy change and ventilation rates were
noted to influence the accuracy of results and CO2 could not be directly related to occupancy
trends. This indicates that physics-based modeling is a useful tool in modeling concentrations of
CO2 within spaces and should be further investigated with additional information and scenarios
such as other aspects of VAV systems, occupancy conditions, and surrounding sources of CO2 to

assist in the outcome of understanding the applicability of this model.
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APPENDIX

Table A.1: Field test natural air exchange rate for both doors open, both doors closed, and one
door closed and one door open

Sensor Name

Both Doors Open

Right Door Closed

Left Door Closed

Both Doors Closed

(ACH) (ACH) (ACH) (ACH)
Sensor 2 0.321 + 0.017 2770 +0.168 2,830 + 0.048 3.292 + 0.095
Sensor 3 0.001 +0.161 2,576+ 0.099 2432+ 0.028 0.182 + 0.149
Sensor 4 0.307 + 0.000 2,686 +0.219 3.205 + 0,082 2.853 + 0.090
Sensor 5 0.247 +0.019 2.844 + 0.068 2,558 + 0.038 3.082 +0.126
Sensor 6 0.208 + 0.049 2.947 +0.119 2.749 +0.030 2,014 +0.079
Sensor 7 0.301 +0.023 2.775 + 0,144 2.840 + 0.037 1.017 +0.151
Average 0.3010 + 0.011 2,816 +0.122 2.796 + 0.017 2.914 + 0.042
BMS (ACH, 0 0.11 0.17 0
avg)

Table A.2: Data summary of all periods of collected data including average CO2 concentrations
for both supply and return collected from the BMS and temperature range (C)

Door Status Data_ Set Return CO2 Supply CO2 (ppm) | Temperature range (
Period (ppm) (avg) (avg) C)
Both Doors 1 800 490 2210 22
Closed 2 650 492 21to0 22
One Door 3 799 449 2310 23
Closed 4 562 458 2210 23
5 806 468 2110 22
6 811 445 2210 23
7 478 441 2210 22
8 632 503 2210 22
9 614 510 2110 22
10 672 482 2210 22
Both Doors 11 582 432 211023
Open 12 733 506 2210 22
13 589 450 2110 22
14 528 435 211021
15 721 446 231023
16 657 517 2210 22
17 670 487 2210 22
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