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ABSTRACT 

Buildings account for a substantial portion of energy consumption due to heating, 

ventilation, and air conditioning (HVAC) contributing to a large portion of energy-related 

greenhouse gas emissions. Occupant behavior influences this energy usage, particularly HVAC 

system energy use to meet occupant needs. Thus, knowledge of occupancy and occupancy 

schedules can assist in more efficient building operations. While many studies examine the link 

between occupancy, environmental health, and energy efficiency using physics-based modeling, 

there have been limitations to capturing the relationship between environmental conditions and 

occupancy trends, and to assess their impact on model predictions and accuracy. Thus, this thesis 

aims to define the relationship between CO2 concentration and occupancy patterns while capturing 

the effect of HVAC operations and environmental conditions, in particular air exchange rates 

associated with changing door conditions, as well as occupancy scenarios. 

To accomplish this, field data was collected on occupancy, CO2 concentrations, tracer gas 

testing, door state, and HVAC operations. Data was then modeled using two physics-based models 

for different occupant and ventilation scenarios. These models were then evaluated for accuracy 

under varying model assumptions, to assess the relationship between CO2 concentrations and 

occupancy. The evaluation included the correlation coefficient between the measured and modeled 

CO2 concentrations. Also, regression models were used to determine the relationship between 

occupancy and CO2 concentration, assessing fit using the coefficient of determination (r-squared). 

Findings reflect that physics-based models can accurately determine CO2 concentrations 

within rooms regardless of environmental conditions and occupant trends. This further validates 

that physics-based models can be utilized to accurately determine CO2 concentration from 

occupant sources. However, findings also imply that the application of box modeling to determine 

occupancy trends for energy efficiency purposes based on CO2 concentration is only applicable 

during select conditions, limited to high rates of transient occupancy, air exchange, and unknown 

sources of CO2 from surrounding classrooms and hallways. This indicates that physics-based 

modeling is a useful tool in modeling concentrations of CO2 within spaces however should be 

further investigated with other aspects of VAV systems, occupancy conditions, and surrounding 

sources of CO2 to assist in the outcome of understanding the applicability of this model for energy 

efficiency purposes. 
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INTRODUCTION 

Background 

Buildings account for a substantial portion of energy consumption; in 2023 commercial 

buildings alone accounted for 1.72 × 10¹⁹ joules (16,343 × 1012 BTUs) of energy (U.S. EIA, 2024). 

This energy usage contributes to a significant amount of greenhouse gas emissions, as 

approximately 40% of all energy-related emissions come from buildings (ASHRAE, 2022a). A 

large portion of these emissions are due to heating, ventilation and air conditioning (HVAC) which 

accounts for 36% of all commercial building energy usage (Kong et al., 2022). Occupant behavior 

drives much of building energy usage, particularly HVAC system energy use, which provide 

ventilation and temperature controls to meet occupant needs, with the goal of providing occupant 

comfort and a healthy indoor environment (Mannan et al., 2021; Kong et al., 2022; Bian et al., 

2024). For this reason, knowledge on occupancy and occupancy schedules can be used to support 

more efficient operations of building system, including controls for lighting, thermostat setpoints 

and setbacks, outdoor air ventilation requirements, as well as the use and/or automation of operable 

windows and shading controls (Yan et al., 2015).  

The link between occupancy, environmental health, and energy efficiency has been 

increasingly studied in the context of occupant-based controls of buildings (Chu et al., 2022; Kong 

et al. 2022; Mitra et al. 2022). Specifically, research has focuses on both developing methods of 

occupancy detection and/or counting, as well as research on how occupancy related information 

can inform controls to improve building and HVAC energy efficiency and indoor environmental 

quality. For occupancy detection and/or counting methods that have been developed in recent 

years, these have been characterized and summarized by several recent review papers (Chu et al., 

2022; Li et. al. 2024; Mitra et al. 2022). Common methods discussed include the use of motion-

based, radiofrequency-based, sound wave-based, camera-based, and/or infrared sensors, as well as 

through the use of multiple sensing methods, termed “sensor fusion”, combined with predictive 

models. Such models are primarily data-driven models, using statistical, regression, machine 

learning, and/or artificial intelligence (AI) methods. However, such data-driven methods for 

occupancy detection have also struggled with sensor and/or algorithm reliability challenges. This 

has been recognized as of sufficient importance for U.S. funding agencies to require independent 

testing of occupancy sensors systems that use data-driven methods as a part of occupancy sensor 

development (ARPA-E, 2017), and for the support of development of standard methods of testing 
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occupancy sensor systems’ performance (Kula et al., 2023; Chu et al., 2022) due in part to 

inconsistencies in accuracy reporting.     

For example, Kong et al. (2022) demonstrated the potential of occupancy-based detection 

for improving HVAC energy efficiency and indoor air quality using a combination of a 

radiofrequency-based and two motion-based sensors. However, during the study some sensors 

required consistent calibration and occupancy detection reliability was low in parts of the study. 

Other common methods of occupancy-based detection using motion-based sensors have also been 

noted to have the potential for reliability issues as they do not detect periods of fine motion (Yang 

et al., 2018). Radiofrequency-based sensors are impacted by noise and require the occupant to have 

a device to transmit signals; sound wave sensors could be interfered with by clothing and materials 

in the facility, and some infrared sensors require constant motion with unobstructed sight and/or 

constant maintenance (Chu et al., 2022; Mitra et al., 2022). There are also concerns about capturing 

detailed and personally identifiable information through the use of camera-based methods for 

occupancy detection, thereby posing a heightened risk to data security and occupant privacy (Cali 

et al. 2014; Huang et al., 2024).  

Although there are advantages to data-driven occupancy detection systems, there are also 

challenges. In particular there are concerns about trained algorithms being highly dependent on 

the environment in which they are placed, making them less useable if removed and placed in a 

different space (Mitra et al., 2022). This is consistent with the challenges of the use of data-driven 

methods that require a significant period of training data (Gu et al., 2021). In addition, if conditions 

change, the algorithm needs to be retrained. The ability of a data-driven model to predict conditions 

outside of the scenarios in which it was trained to consider is also typically limited (Miao et al., 

2023). Also, if conditions change which are not captured by the independent variables included in 

the data-driven method(s), this can also cause discrepancies between predicted and measured 

values (Gu et al., 2021).  

As alternative to data-driven models (black-box), the other primary method for predictive 

modeling is physics-based (white box) models. In the context of occupancy detection and/or 

counting, the primary type of physics-based model that is applicable is the use of mass balance 

equations of the building space, primarily associated with indoor air pollutants produced by 

occupants. In this case one of the primary pollutant produced reliably by occupancy through human 

breathing is carbon dioxide (CO2). Prior studies have used indoor CO2 concentrations as one way 
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to detect and/or count occupancy, especially in the context of air quality and ventilation controls 

(Dedesko et al., 2015; Sun et al., 2011). A summary of such studies is shown in Table 1.  This 

includes some scenarios in classroom settings. As an example, Zuraimi et al. (2017) compared the 

performance of physical and statistical models to predict occupant counts in a high-volume lecture 

hall using CO2 sensors. This study found that while the utilized physics-based models’ required a 

larger number of inputs, these models were found to be able to adequately predict occupancy 

counts in a particular location when environmental factors such as air exchange rates (ACH) are 

accurately measured and accounted for.  

In a significant number of studies, particularly those focused on indoor air quality (IAQ) 

and/or IEQ, mass balance modeling was used with occupant generated CO2 (Asif & Zeeshan, 

2020; Chang, et al., 2009; Fan et al., 2022; Lawrence & Braun, 2007; Li et al., 2014). Other studies 

have utilized physics-based modeling methods for comparing the performance of multiple model 

types to predict occupant counts and energy performance (Zuraimi et al., 2017) and to compare 

measured CO2 concentrations, volume of room per person, and occupancy for optimal HVAC 

periods (Franco & Leccese, 2020). As summarized in this table, prior studies have evaluated this 

relationship in buildings with a range of HVAC system types and space sizes. Most studies also 

incorporate the use of tracer gas approaches to inform mass balances of CO2, as tracer gas is a 

commonly used method to evaluate air exchange rates (Chang et al., 2009; Fan et al., 2022, 

Lawrence & Braun, 2007; Zuraimi et al., 2017; Li et al., 2014).  

 

Table 1: Literature summary of physics-based modeling of occupant-based CO2 concentrations 

including location, time, characteristics and the associated study 
Setting 

Location Room type 
Time 

Frame 

Building Characteristics 

Performance 

Metric 

Research 

Study 

University 

 

HVAC 

System 

Size 
Occu-

pancy 
Height 

(m) 
Area 
(m2) 

Volume 
(m3) 

Pakistan 

Primary 

School 

Classrooms 

4 
months 

Naturally 
ventilated 

with split 

type AC 

units and 

portable fan 
heaters 

- 

20.3 

to 

33.9 

- 
18 to 

29 

Pearson’s 

Correlation 

Coefficient 

>0.98 (Minute-by-
minute ventilation 

rate)  
<0.70 (Averaged 

ventilation rate) 

Asif & 

Zeeshan, 

2020 

Taiwan 

Computer 

Lab and 
Classroom 

- 

Window-

type and 

water-
cooled 

package 

- - 
296 to 

595 

22 to 

36 

One-way analysis 
of variance across 

CO2 concentra-

tions measured 

(ANOVA) 

p<0.001 

Chang, et 

al., 2009 

China 
Research 

room 

4 

weeks 

Naturally 

ventilated 
2.8 23 64.4 0 to 7 

Maximum 

nonuniformity 

coefficient 

5.68% 

Fan et al., 

2022 
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Table 1 (cont’d) 

 

Italy 
University 

classrooms 
4 months 

Natural 

ventilation 
- 

73 

to 
336 

212 

to 
1587 

72 to 

366 

Linear trend of 

CO2 compared 

to volume of 
space for each 

occupant 

Franco & 

Leccese, 
2020 

China Dormitory 
12 

months 

Naturally 

ventilated 

 

3 17.1 51.3 4 

Relative error in 

ACH 

1.6% to 7.8% 

Li et al., 

2014 

Taiwan 
Lecture 

theatre 
4 months 

Constant air 

volume system 

with a variable 

speed drive 

- - 876 

Less 

than 
200 

Correlation 

coefficient  
0.80 to 0.97 

Zuraimi et 

al., 2017 

Commercial 

Buildings 
California 

Restaurants 
and School 

Classrooms 

Several 
months 

to 1 year 

Demand-
controlled 

ventilation 

- 
75 
to 

835 

- 
Vari-

able 

Coefficient of 
variation 

4% to 15% 

Lawrence 
& Braun, 

2007 

 

However, limitations of current research include that most studies have used buildings with 

natural ventilation (Fan et al., 2022; Franco et al., 2022; Li et al., 2014) and/or relatively short-

term datasets, with most ranging from 4 weeks to 4 months (Asif & Zeeshan, 2020; Fan et al., 

2022; Franco & Leccese, 2020). Additionally, it was noted in these studies that results can be 

influenced by multiple factors such as the opening and closing of doors and windows and 

variations in occupants. However these factors have not been significantly studied. In addition, 

most studies that have compared occupancy and CO2 concentrations use either scenarios with 

near-constant occupancy (Chang, et al., 2009; Li et al., 2014) or transient occupancy (Asif & 

Zeeshan, 2020; Fan et al., 2022; Franco & Leccese, 2020; Lawrence & Braun, 2007; Zuraimi et 

al. 2017). None have evaluated the use of physics-based models that support the prediction of the 

relationship between CO2 concentrations and occupancy across a range of types of increasing, 

decreasing, and near constant occupancy scenarios all in the same environment or using the same 

modeling framework.  

Specifically, Asif et. al (2020) calculated the ventilation rate for classroom spaces by 

averaging the change of occupant-generated CO2 concentration over time. While variation in the 

envelope, doors/windows openings, were included in this average, the direct impact from these 

specific parameter’s ventilation variation was not analyzed separately. In the results it was noted 

that the CO2 concentration calculated by averaged ventilation rate compared to measured data 

resulted in lower performance and the approach could be improved. Furthermore, when the tracer-

gas-concentration decay method to calculate ventilation rate, Chang, et al. (2009), did not account 

for changing ventilation rates within the studied space or mention accounting transient occupant 

conditions. Additionally, in Li et al. (2014) found infiltration rates did not significantly affect CO2, 

however there were limited times when doors/windows were opened. In Zuraimi et al. (2017) it 
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was noted that the model accuracy was affected by air exchange rates, however this was just noted 

to be caused by the method by which sensors collected data affecting how responsive the model 

was. Additionally, in Franco & Leccese (2020) environmental factors were also noted to be 

important to support mass balance modeling of occupant-based CO2 concentrations. It was 

determined that CO2 was directly related to occupancy but the initial CO2 concentration, and the 

volume of the room, occupancy count, and air exchange rate were all influential in the results. 

Notably the openings of doors/windows were mentioned to influence results, however quantifying 

their impact was determined to be challenging.  

In summary, as noted in Mitra et al. (2022), methods of occupancy modeling are influenced 

by the space within which they are created, and environmental changes can also impact 

performance. In addition, as stated in the ASHRAE Position Document on Indoor Carbon Dioxide, 

it is essential to assess factors that influence CO2 concentrations within a space (ASHRAE, 

2020b). Therefore, further analysis and testing is needed to assess this relationship including the 

effect of varying air exchange rates corresponding to variation in opening and closing of 

doors/windows and HVAC operation schedules, as well as varying occupancy conditions, and to 

assess the impact of the environment on physics-based model predictions and accuracy.  

This study thus aims to define the relationship between CO2 concentration and occupancy 

patterns and capture the effect of varying HVAC operations, and varying environmental 

conditions, in particular air exchange rates associated with changing door conditions, as well as 

varying occupancy scenarios. To accomplish this, field data was collected on occupancy, CO2 

concentrations, tracer gas test results, door state, and HVAC operations, which is then utilized as 

input into physics-based box models. These models are then evaluated for accuracy under varying 

environmental conditions and model assumptions, to assess the relationship between CO2 

concentrations and occupancy. 

The remainder of this research is organized as follows, the methods section discusses the 

monitored space, data collection, field testing, the developments of models for analysis, and the 

methods for analysis. The results section details model performance and the relationship with the 

concentration of CO2 predicted in models to occupancy. The final section includes conclusions 

and future work for the study.  
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METHODS 

Overview 

To evaluate the relationship between CO2 and occupancy under variable conditions in an 

occupied building and the factors that influence this relationship, field data was collected at 1-

minute intervals between June and November 2022. This data included CO2 concentrations at 

multiple locations within the space utilized, count of occupants, and building and systems 

operations data. This data was then used to develop and validate a physics-based box model of the 

tested space. 

Description of Monitored Space Used for Field Data Collection 

Data was collected from an academic building classroom space located in ASHRAE 

Climate Zone 5A in the Midwest area of the United States. The classroom size is approximately 

8.2 m (27 ft) by 9.7 m (32 ft) with a ceiling height of 3 m (10 ft), as shown in Figure 1. This 

classroom has a rated occupant capacity of 52 people and two interior doors leading to an adjacent 

hallway. The classroom is located on the exterior perimeter of the 23,000 m2 (250,000 sq ft) 

building, on the first floor, with two other classrooms on either side. The ceiling is a drop ceiling 

with a plenum space above, which is connected to a return air duct. This space was chosen for field 

data collection as it was occupied regularly, typically multiple times per day, between the hours of 

operation of the building from 7:00 A.M. to 7:00 P.M Monday through Friday in both the fall 

(August to December) and spring (January to May) semesters. 

 

 

Figure 1: Exterior view (left) and interior view (right) of the field-testing location, including 

CO2 sensors and occupancy cameras (middle) 
 

The heating, ventilation, and air conditioning (HVAC) servicing this room included an air 

handling unit (AHU) that serviced this room and three other adjacent classroom spaces on the same 

floor. The AHU included a mixing box that allows for some of the return air from the classroom 
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spaces to be mixed with outdoor air, conditioned, and returned to the spaces as supply air. The 

remaining return air was exhausted to the exterior. Once the supply air was ducted through the 

supply air ducts, the amount of supply air provided to the classroom was determined via a VAV 

box with a damper adjusted using temperature-based controls. This VAV box controlled supply 

air to six supply air diffusers evenly spaced throughout the classroom ceiling. When the 

temperature of the room reached above the set threshold, the damper was opened automatically to 

increase the supply airflow of conditioned air. Once the target temperature was reached, this 

damper closed automatically to accommodate the minimum air flow rate. Return air sent back to 

the AHU was received through two return air grilles which open to a plenum space above the drop 

ceiling. This plenum is connected to a return air duct.  

The observed setpoints used in the test space ranged from 20.5 C (69 F) to 23.3 C (74 F) 

throughout the test period. Temperatures were observed to be at a minimum of 20.5 C (69 F) during 

unoccupied hours and peaked at 23.3 C (74 F) during periods of high occupancy, with at least 30 

occupants in the room. During the occupied periods the room most commonly had 1-3 or 16-18 

occupants, and temperatures ranged from 21.1 C (70 F) to 22.7 C (73 F). The observed supply air 

volume ranged from 0 m3/s to 0.25 m3/s (548 cfm) during occupied periods. The air flow sensor 

installed in the VAV box used for these measurements was calibrated prior to the testing period.  

Long Term CO2, HVAC, and Occupancy Data Collection 

To monitor CO2 concentrations in this space, multiple commercially available CO2 sensors 

were installed in various locations throughout the room, including Vaisala GMP252 Probe 

(Vaisala, 2023) , Aranet4 Pro (SAF Tehnika JSC, 2025), ACI A/CO2-R2 wall sensor (Automation 

Components, Inc., n.d.), and in the supply and return air ducts, Vaisala  GMP252 Probe (Vaisala, 

2023), as shown in Figure 2. Sensors were calibrated weekly throughout the testing period using 

standard CO2 gas cylinders at concentrations of 10 ppm, 400 ppm, and 1000 ppm. The supply and 

return air duct CO2 sensors’ data was collected via connection to the building management system 

(BMS), as were several of the room sensors; the remaining were collected wirelessly via Bluetooth 

every approximately 2 weeks, then combined to create a complete dataset. Figure 2 provides a 

diagram showing where each of these sensors were in the test space. For those located inside the 

classroom, Table 2 indicates their height above the floor. Table 3 provides the manufacturer-

reported specifications for all sensors.  
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Figure 2: Top-down view of the classroom sensor placements are as follows:  Sensor 1 – East 

wall beside right door of classroom; Sensor 2 – North wall of classroom; Sensor 3 – Northeast 

ceiling mounted next to the supply air duct; Sensor 4 – South wall of classroom; Sensor 5 – East 

wall beside right door of classroom; Sensor 6 – East ceiling of classroom; Sensor 7 – West 

ceiling of classroom 
 

Sensor 1, located next to one of the entry doors into the classroom from hallway, and 

Sensors 8 and 9 located in the supply and return air ducts, respectively, were all the same brand of 

sensor, and were selected based on comprehensive comparative testing that evaluated how well 

the sensors performed under a range of conditions (Cetin et al. 2024). Sensors 2-7 were placed at 

various locations on the walls and ceiling of the classroom to assess the spatial distribution in CO2 

concentration and level of mixing throughout the space. Throughout the monitoring period, the 

CO2 concentrations measured from the supply air duct ranged from 423 ppm to 528 ppm, while 

that for return air duct ranged from 408 ppm to 1099 ppm. CO2 concentrations in the classroom 

ranged from 415 ppm to 1289 ppm across all the tested sensors.  

 

Table 2: Location and height of placed CO2 sensors 

Sensor Name Location 
Approximate Height of Sensor (from Ground 

level) 

Sensor 1 
East wall beside right door of 

classroom 
1.2 m (4 ft) 
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Table 2 (cont’d) 
Sensor 2 North wall of classroom 0.6 m (2 ft) 

Sensor 3 
Northeast ceiling mounted next to the 

supply air duct 
3 m (10 ft) 

Sensor 4 South wall of classroom 0.6 m (2 ft) 

Sensor 5 East wall beside right door of classroom 1.2 m (4 ft) 

Sensor 6 East ceiling of classroom 3 m (10 ft) 

Sensor 7 
West ceiling of classroom near classroom 

window 
3 m (10 ft) 

 

Table 3: Manufacturer-reported CO2 and temperature sensor accuracy and range 

Sensor Name 
CO2 

Accuracy 
CO2 Range Temperature Accuracy Temperature Range 

Sensor 1, 8, 9 ± 40 ppm 0 ppm - 5000 ppm ± 0.5°C 
0°C – 50 °C 

Sensor 2, 3, 4, 5, 6 ,7 ± 30 ppm 0 ppm - 9999 ppm ± 0.3°C 

 

To track occupancy and the opening and closing of the hallway doors, two camera modules 

connected to custom programmed microcontrollers (Raspberry Pi Foundation, 2024) and were 

placed above the room's doorways as shown in Figure 1, such that the cameras could only see the 

top of each person’s head that was entering or exiting. Videos were recorded throughout the testing 

period for both doorways via the use of a Python code developed and used to store daily videos 

with timestamps from each camera. These video files were downloaded weekly then used to 

manually count the number of occupants in the space. A spreadsheet was generated for each door, 

and every time a person entered or exited through a door, it was manually recorded in the 

spreadsheet along with the corresponding timestamp.  

After, the data for each door were compiled to compute the occupancy of the classroom 

with a 1-minute frequency. In addition, the video data was also used to determine during which 

periods the door(s) were open or closed. The opening and closing of the doors were important to 

document in order to evaluate how this change in state impacted air exchange rates in the test 

space, and thus relationship between occupancy and CO2 concentrations. Based on the data 

collected the occupied periods only occurred between the hours of 7:00 A.M. to 7:00 P.M on 

weekdays (M-F), which is associated with when the classroom was unlocked. Considering only 

the times the classroom was open, it was occupied approximately 33% of the time across the time 

of data collection. For the periods where the room was occupied, the distribution of number of 

occupants is provided in Figure 3. The classroom occupancy was mainly occupied by 1-3 people 

(34%) and 16-18 people (11%) over the monitoring period. For the periods where there were a 
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smaller number of people, the space was generally being used for cleaning or studying; for the 

periods with a larger number of people, the space was being used as a classroom.  

 

 

Figure 3: Occupancy distribution of classroom space excluding unoccupied times 

 

Field Data Quality Control & Subdivision of Scenarios 

Once all data was compiled into a single combined dataset, the data was quality controlled 

across all variables to determine which periods of data across the monitoring period were useable, 

free of erroneous data, and included a complete set of data across all variables. Any instances of 

missing data arising from factors such as sensor removal for calibration, video errors, or other 

scenarios, were removed from the final dataset. Unoccupied intervals shorter than 30 minutes were 

also excluded from the dataset. Additionally, time periods with highly variable occupancy with 

frequent door openings (occurring in intervals shorter than 30 minutes) were also excluded. The 

distribution of CO2 concentrations was also reviewed to assess for anomalies or outliers; however, 

none were identified. In total the final dataset includes 1,661 minutes of data, which was used for 

analysis.   

The data was then sorted into days where the occupancy was greater than zero at some 

point during the day, and other days where no occupancy occurred. Days with no occupancy were 

also removed from the dataset. Periods of time where occupancy occurred were then further 
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divided into multiple scenarios. Division of the data first included dividing the data into periods 

where the (i) 0, (ii) 1 or (iii) both classroom-hallway doors were open (3 scenarios). Door 

conditions were documented in the datasheets for all occupied periods. Second, the data was 

further subdivided to account for the influence of changes in occupancy across the test period. 

Three scenarios were considered: (i) steadily decreasing occupancy, (ii) steadily increasing 

occupancy, and (iii) near constant occupancy.  The data was divided in this way to analyze how 

varying occupancy trends impact the accuracy of modeling CO2 in results. Ideally CO2 should be 

released and analyzed under steady state conditions however periods of rapid transient conditions 

have a potential impact on the rate at which CO2 is released. 

Natural Air Exchange Rate 

To evaluate the natural air exchange rate of the test space when the HVAC system was 

turned off, a tracer gas test method was used. This is a commonly method to evaluate air exchange, 

including in university settings in classrooms (Chang et al., 2009; Fan et al., 2022; Li, et al., 2014). 

ASTM E741-23 standard was followed to complete this testing. Initially, a blower door test was 

performed, however, due to the presence of the plenum space and drop ceiling, the blower door 

test could not reach the targeted differential pressure for the system to function while pressurizing 

the room. Ceiling tiles were pushed up due to the pressure difference caused by the blower door 

in the room. Thus, instead the tracer gas testing method was used.   

To ensure accurate testing the space and concentration of the tracer gas should be uniform 

(ASHRAE, 2022b; ASTM International, 2023). Multiple tests under various environmental 

conditions were conducted in October 2023, January 2024 and February 2024. To ensure no 

external influence from surrounding classrooms, testing was performed during a time when no 

class sessions were scheduled in the room or the surrounding classrooms serviced by the same air 

handling unit. Additionally, to verify the room’s natural air exchange rate was influencing the air 

exchange of CO2 in the room, the building management system (BMS) system was used to verify 

that the HVAC system was set to the minimum supply air flow during testing dates. This was 

verified from the calculation of the air exchange rate based on the average air volume entering the 

room from the HVAC system supply duct. HVAC air volume was determined as negligible during 

testing as air exchange rates were, on average, 0 ACH or 1.2-1.5 orders of magnitude lower than 

the calculated air exchange rate from the tracer gas test (see Appendix Table A.1). 
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Five pounds of dry ice was used as the source of CO2 for each test. Previous studies suggest 

that the uncertainty of this method in determining the air exchange rate is less than 10% (Cheng & 

Li, 2014). All CO2 sensors located in the room were monitored for 20-30 minutes prior to the start 

of testing to confirm an even distribution of CO2 and to establish baseline conditions. Then, dry 

ice was placed in the classroom to achieve a targeted maximum concentration of 2000 ppm. Dry 

ice was equally spaced in three styrofoam containers on three tables around the classrooms with 

fans placed next to the dry ice in an effort to evenly disperse the CO2. Once the target CO2 

concentration was reached, the dry ice containers were capped to eliminate further release of CO2. 

The level of CO2 in the classroom was monitored and measured for up to 2 to 3 hours until CO2 

concentrations returned to baseline levels that occurred before testing began. 

Three different air exchange rates were measured to ensure a range of anticipated 

conditions were captured including (i) both doors to the hallway closed, (ii) one door open and one 

closed, and (iii) both doors open. For the scenario where all doors were shut, during testing all 

doors were shut and CO2 levels were actively monitored until the room achieved approximately 

2000 ppm. The dry ice and fans were then removed from the room and the concentration of CO2 

while it decayed was collected. For the scenario where all doors where opened, during testing all 

doors were left open and the previous steps were repeated. This was also repeated for conditions 

where the left or right doors were open/shut. Data was then analyzed using the linear regression of 

the change in rate of CO2 over time (Equation 1). The time interval plot equation is as follows:   

 

𝐶𝑡 = 𝐶𝑎 ∗ (1 − exp(−𝐼𝑛𝑎𝑡𝑢𝑟𝑎𝑙 ∗  𝑡)) + 𝐶𝑡=0,𝑚𝑎𝑥 ∗ exp (−𝐼𝑛𝑎𝑡𝑢𝑟𝑎𝑙 ∗ 𝑡) (1) 

 

Where C𝑡 is the concentration of CO2 at time 𝑡. C𝑎is the concentration of the pollutant can 

be represented as the ambient concentration in the room (
𝑚𝑔

𝑚3). 𝐼𝑛𝑎𝑡𝑢𝑟𝑎𝑙  is the infiltration rate from 

just the building envelope in air changes per hour (𝑎𝑐ℎ). 𝐶𝑡=0,𝑚𝑎𝑥 is the maximum concentration 

of CO2 once the dry ice was removed from the room. Time, 𝑡  is the time interval since the 

occurrence of  𝐶𝑡=0,𝑚𝑎𝑥.  

Data was first graphed and regressed separately for Sensors 2-7 to determine if a sensor 

was an outlier from the system and did not follow the other sensor trends or if there was incomplete 

mixing in the room. The air exchange rate was determined based on the slope of the linear 

regression model, reflecting the change in concentration of CO2 overtime. Data was then averaged 
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from the sensors with similar calculated air exchange rates. For each field test, all data used to 

determine air exchange results was used as input into a linear regression except for Sensor 3 for 

all scenarios and Sensor 6 (for one door open and one closed). These were not used because their 

values had a significant difference compared to all other sensors used to calculate the air exchange 

rates for the same time interval (Appendix Table A.1). Sensor 3 was located closest to the supply 

air duct, thus was likely overly influenced by the minimum air flow CO2 concentrations from the 

supply air duct; Sensor 6 was directly above one of the containers of dry ice, resulting in higher 

CO2 concentrations than other sensors during some scenarios. The average of the calculated air 

exchange rate was used for the four tested scenarios, doors open, left door open, right door open, 

and doors closed.  

Physics-based Box Model Development 

To develop a physics-based model of the test space, for use with the field collected data 

for validation, a box model was used. This model was created under the assumption that the room 

was a well-mixed space, where CO2 was uniformly distributed from the source. This was verified 

through the comparison of Sensors 2-7 CO2 measurements which demonstrated that all CO2 

concentrations were within 33% when HVAC is on and 32% when the HVAC system was off. It 

should be noted that the HVAC system was off (no flow) during the analysis period for 

approximately 5% of the time and on, at varying levels of generally low air flow rates, for 95%. It 

was assumed that CO2 generated from occupants would be a uniform source distributed 

throughout the classroom. This model was based upon the mass-balance principle, the rate of 

increase/decrease in concentration of CO2 in the room was equivalent to the difference between 

the mass rate of CO2 being generated from students and exiting, under the assumption that CO2 

will not decay, expressed as Equation 2 (Asif & Zeeshan, 2020).  

 

𝑉𝑑𝐶

𝑑𝑡
= 𝑄𝑖𝑛(C𝑖𝑛) − 𝑄𝑜𝑢𝑡(C𝑜𝑢𝑡) + 𝐸  (2) 

 

Whereas 𝑉  represents the volume of the room (𝑚3 ). 
𝑑𝐶

𝑑𝑡
  is the change of pollutant 

concentration in respect to time. C𝑖𝑛 is the concentration of pollutant entering the room from both 

natural and mechanical ventilation (
𝑚𝑔

𝑚3). Q𝑖𝑛 is the flow rate of pollutant into/out of the room 

(
𝑚3

𝑠
).  𝐸 is the source of pollutant (number of persons (𝑛) * generation rate (

𝑚𝑔

𝑠
∗ 𝑝𝑒𝑟𝑠𝑜𝑛). The 
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generation rate of CO2, 𝑛, is based upon the number of people in the room from the collected 

occupancy data. The number of people is then multiplied by the average generation rate of CO2 

per person, 4.25 ∗ 10−6 𝑚3

𝑠∗𝑝𝑒𝑟𝑠𝑜𝑛
  (8.3

𝑚𝑔

𝑠∗𝑝𝑒𝑟𝑠𝑜𝑛
) . This was determined based on the assumption that 

the classroom demographic was 50% male and 50% female from 20-29, mainly sitting and/or 

typing, therefore the average of the two CO2 generation rates under each category were taken 

(Yang et al., 2020). C𝑜𝑢𝑡  is the concentration of CO2 in the room (
𝑚𝑔

𝑚3). Whereas, 𝑄 = 𝐼 ∗ 𝑉 

(given 𝐼 is the infiltration rate in air changes per hour (𝑎𝑐ℎ) and 𝑉 is the volume per time  (
𝑚3

𝑠
)  

and C𝑜𝑢𝑡 =  C𝑎(where C𝑎is the concentration of the pollutant can be represented as the ambient 

concentration in the room (
𝑚𝑔

𝑚3). When integrated to express concentration as a function of time 

(from time 0 to time t) this equation was rewritten as Equation 3:  

 

𝐶(𝑡)  =  
𝐸

𝑉⁄  + C𝑎𝐼𝑥

𝐼𝑥
 (1 - e−𝐼𝑥𝑡) + 𝐶(𝑡−1)𝑒−𝐼𝑥𝑡  (3) 

 

1-minute frequency was used for all variables to increase accuracy as CO2 concentrations, 

amount of people in the room which impacts the source, and the environmental conditions were 

observed to change minute-by-minute. C(𝑡−1)  is the concentration of CO2 determined by the 

previous timestep. 𝐼𝑥  is used to represent the mechanical (𝐼𝑠𝑢𝑝𝑝𝑙𝑦 ) and/or natural (𝐼𝑛𝑎𝑡𝑢𝑟𝑎𝑙 ) air 

exchange rate depending on the scenario considered.  

Each scenario considers different sources of ventilation within the room. Scenario 1 

represents when the HVAC system’s supply air into the room is significantly higher than the 

natural air exchange rate determined by the field test. In this case the air exchange rate is only 

represented by the volume of air being supplied into the room by the HVAC system. Scenario 2 

represents when the natural air exchange rate is significantly higher than the mechanical air 

exchange rate. Here, the air exchange rate variable is only represented by the air exchange rate 

determined in the field test. Scenario 3 represents a mix of ventilation, when the rate of air 

infiltration was approximately equivalent to the mechanical ventilation rate. Each scenario was 

compared based on the calculated correlation coefficient between the scenario and the measured 

CO2 concentrations from the return duct, as discussed below. 
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Scenario 1, Mechanical Ventilation Dominated 

The first scenario represents scenarios where the influence of the HVAC system’s 

operation and air exchange rate is greater than that of the natural air exchange rate of the room, 

thus the model of the room can be represented by the HVAC system’s operation only. For the first 

model, Equation 3 is used and the air exchange rate 𝐼𝑠𝑢𝑝𝑝𝑙𝑦 is the volume of air being supplied by 

the HVAC system. Figure 4 represents the box model of Scenario 1 and Scenario 2. 

Scenario 2, Natural Ventilation Dominated 

In the second scenario, Equation 3 is also used. In this scenario, the influence of the natural 

air exchange rate of the room is dominate over HVAC operations. The air exchange rate is 

represented by 𝐼𝑛𝑎𝑡𝑢𝑟𝑎𝑙, as determined through tracer gas testing. This scenario represents when 

the HVAC system is off or very low and/or with relatively low CO2 concentrations in the supply 

air. Depending on if no, one or two doors were open this air exchange rate is adjusted throughout 

the monitoring period.  

 

 

Figure 4: Box model of Scenario 1 and 2 mechanical or natural dominated air exchange 

 

Scenario 3, Mixed Mechanical and Natural Ventilation 

In the third scenario, this model represents when both the supply air flow from the HVAC 

system and the natural air exchange rate must both be accounted for, for example if both air 

exchange rates were a similar level of magnitude with similar levels of CO2 concentrations, and 

thus important to account for both. For this scenario a different equation is derived. The flowrate 

into the room can be represented using Equation 4.  

 

𝑄𝑡𝑜𝑡𝑎𝑙 =  𝑄𝐻𝑉𝐴𝐶 𝑅𝑒𝑡𝑢𝑟𝑛 =  𝑄𝑠𝑢𝑝𝑝𝑙𝑦 + 𝑄𝑛𝑎𝑡𝑢𝑟𝑎𝑙  (4) 
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Where 𝑄𝑡𝑜𝑡𝑎𝑙  is the total flowrate into the room (
𝑚3

𝑠
). 𝑄𝐻𝑉𝐴𝐶 𝑅𝑒𝑡𝑢𝑟𝑛 is the HVAC return 

flowrate out of the room (
𝑚3

𝑠
). 𝑄𝑠𝑢𝑝𝑝𝑙𝑦  represent the flow rate of the supply air into the room (

𝑚3

𝑠
). 

𝑄𝑛𝑎𝑡𝑢𝑟𝑎𝑙  is the flow rate of the air due to the natural air exchange rate (
𝑚3

𝑠
). Given that 𝐼 =

𝑄

𝑉
, the 

following equation for the mass balance of the room including both mechanical and natural air 

exchange can be rewritten as the follows, as shown in Equation 5.  

 

𝑉𝑑𝐶

𝑑𝑡
= (I

𝑠𝑢𝑝𝑝𝑙𝑦 
C𝑠𝑢𝑝𝑝𝑙𝑦 + I𝑛𝑎𝑡𝑢𝑟𝑎𝑙 C𝑛𝑎𝑡𝑢𝑟𝑎𝑙 )V − (I

𝐻𝑉𝐴𝐶 𝑅𝑒𝑡𝑢𝑟𝑛
C𝐻𝑉𝐴𝐶 𝑅𝑒𝑡𝑢𝑟𝑛)V + 𝑆 (5) 

 

And when integrated to express concentration as a function of time (from time 0 to time t) 

this equation could be rewritten as Equation 6:  

 

𝐶(𝑡) = (
𝐸

𝑉 I𝑡𝑜𝑡𝑎𝑙
+

(I𝑠𝑢𝑝𝑝𝑙𝑦C𝑠𝑢𝑝𝑝𝑙𝑦 + I𝑛𝑎𝑡𝑢𝑟𝑎𝑙 C𝑛𝑎𝑡𝑢𝑟𝑎𝑙 )

I𝑡𝑜𝑡𝑎𝑙
 ) (1 - e−I𝑡𝑜𝑡𝑎𝑙𝑡) + 𝐶(𝑡−1)𝑒−I𝑡𝑜𝑡𝑎𝑙𝑡 (6) 

 

Whereas I𝑡𝑜𝑡𝑎𝑙 = I𝑠𝑢𝑝𝑝𝑙𝑦 + I𝑛𝑎𝑡𝑢𝑟𝑎𝑙  (given I is the infiltration rate in air changes per hour 

(𝑎𝑐ℎ) for both supply and natural values). I𝑠𝑢𝑝𝑝𝑙𝑦  represented the HVAC air flow rate data (𝑎𝑐ℎ)  

and I𝑛𝑎𝑡𝑢𝑟𝑎𝑙  represents the natural air exchange rate, depending on the number of doors to the 

hallway that are open. C𝑠𝑢𝑝𝑝𝑙𝑦 is the concentration of CO2 in the supply air (
𝑚𝑔

𝑚3). C𝑛𝑎𝑡𝑢𝑟𝑎𝑙  is 

assumed to be 420 ppm, the average outdoor air concentration of CO2 (ASHRAE 2022b.). See 

Figure 5 which represents the box model of Scenario 3. 

 

 

Figure 5: Box model of scenario 3 mixed mechanical and natural air exchange rate 
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Model Evaluation  

Model evaluation was then conducted to define the relationship between CO2 

concentration and occupancy patterns and to capture the effect of multiple-space ventilation 

systems and varying indoor environmental conditions. Using CO2 as the metric for analysis, the 

performance of the physics-based box models was evaluated based on the correlation coefficient 

to determine their deviation from the return air concentration of CO2, which represented the 

measured amount of CO2 leaving the classroom. This comparison focused on the correlation 

coefficient between the three scenarios. Additionally, to compare the CO2 concentration and 

occupancy across this period and determine relationship between transient occupancy and model 

performance during each period of occupancy (increasing and decreasing), regression models were 

used to determine the relationship between occupancy and CO2 concentration, assessing fit using 

the coefficient of determination (R2). The r-square comparison was only done during transient 

occupancy, as a linear comparison could not be developed if there was minimal variability in 

occupancy. The r-square value analyzed was based on the models with the higher correlation 

coefficient, whereas the model that best represented the measured data was analyzed. 

Through analyzing how the physics-based box models perform under varying 

environmental conditions and model assumptions, the applicability of these models for occupancy-

based controls to improve energy savings, occupant comfort and indoor environmental quality was 

assessed. This analysis helped determine the suitability of these models, identified the conditions 

under which they are accurate for VAV systems, and highlighted the most influential 

environmental factors, including potential reasons for their significance. 
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RESULTS 

Summary of Collected Data 

In the initial stage of the data analysis the potential influence of varying environmental 

assumptions in models was analyzed through analysis of model performance. Table 4 and 

Appendix Table A.1 provide the collected datasets, length of analysis periods, temperature ranges, 

occupancy, ventilation rate and average and initial supply and return CO2 concentrations.  

 

Table 4: Data summary of all periods of collected data including air exchange rates and initial 

levels of CO2 for the HVAC system supply and return 

Door 

Status 

Data 

Set 

Period 

Time 

Frame 

(hr.) 

Occupancy 

(range, 

constant/increas

ing/decreasing) 

Natural 

Air 

Exchange 

Rate 

(ACH 

avg) 

Mechanical 

Ventilation 

Rate  

(ACH avg) 

Initial Return 

CO2 

concentrations 

(ppm) 

Initial Supply 

CO2 

concentrations 

(ppm) 

Both 

Doors 

Closed 

1 1.3 13 ± 1, constant 0.301 0.91 ± 0.60 659 499 

2 1.0 8, constant 0.301 0.81 ± 0.46 552 487 

One 

Door 

Closed 

3 2 28 ± 2, constant 2.816 3.20 ± 0.28 835 448 

4 1.5 8, constant 2.816 0.84 ± 0.27 486 458 

5 0.5 27, constant 2.816 1.00 ± 0.22 688 461 

Both 

Doors 

Open 

6 0.9 32 ± 2, constant 2.914 1.02 ± 0.34 725 436 

7 3.3 2 ± 1, constant 2.914 0.80 ± 0.23 449 442 

8 0.5 5, constant 2.914 0.91 ± 0.57 593 496 

9 0.7 3, constant 2.914 0.82 ± 0.43 574 518 

10 1 8 ± 1, constant 2.914 0.76 ± 0.45 738 474 

11 1 0-34, increasing 2.914 0.80 ± 0.28 411 429 

12 0.8 0-17, increasing 2.914 0.91 ± 0.39 901 518 

13 0.6 0-25 increasing 2.914 0.67 ± 0.16 515 445 

14 0.6 0-27, increasing 2.914 0.76 ± 0.41 439 442 

15 0.5 28-0, decreasing 2.914 3.31 ± 0.04 744 448 

16 0.9 5-0, decreasing 2.914 0.67 ± 0.48 656 509 

17 0.5 8-2, decreasing 2.914 0.94 ± 0.29 703 490 

 

Model Performance 

Table 5 includes the correlation coefficient between the measured and modeled datasets. 

By using the correlation coefficient, the findings indicate the level of performance across the 

collected datasets. 82% of all models demonstrated strong correlation (≥ 0.9) between the modeled 

and measured data, as shown in Table 5. For Scenario 3, the model with natural and mechanical 

ventilation, was the most representative of the data, as 9 periods of collected data represented 

model assumptions. Scenarios 1 and 2 were less frequent, with only five and four periods of 

collected data that represented model assumptions. Overall findings indicated that regardless of 
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door conditions, the number of occupants in the room, temperature, and time frame, most models 

performed well. Factors impacting performance were noted to be air exchange rate and high initial 

and average supply concentrations of CO2 within the room.  

 

Table 5: Correlation coefficient between the measured and modeled datasets 

Door Status 

Data 

Set 

Period 

Correlation Coefficient1 

Scenario 1, Mechanical 

Ventilation Dominated 

Scenario 2 

Natural Ventilation 

Dominated 

Scenario 3 

Natural and Mechanical 

Ventilation 

Both Doors 

Closed 

1 0.959 0.950 0.966 

2 0.952 0.928 0.961 

One Door 

Closed 

3 -0.330 -0.619 0.774 

4 0.828 0.953 0.965 

5 0.972 0.990 0.988 

Both Doors 

Open 

6 0.901 0.948 0.973 

7 0.360 0.918 0.936 

8 0.943 0.909 -0.922 

9 0.973 0.596 -0.925 

10 -0.134 0.910 0.564 

11 0.983 0.992 0.993 

12 -0.360 0.422 0.879 

13 0.973 0.984 0.942 

14 0.990 0.986 0.990 

15 0.958 0.965 0.842 

16 0.889 0.703 -0.018 

17 0.979 0.946 0.911 
1 The bold values indicate the model (i.e. Scenario 1, 2 or 3) with the highest correlation coefficient  

 

Scenario 1: Mechanical Ventilation Dominated 

In Scenario 1, the influence of the mechanical ventilation was larger than the natural 

ventilation of the room. Five periods of collected data represented Scenario 1 with correlation 

coefficients higher than Scenario 2 or 3 when comparing modeled CO2 concentrations to measured 

CO2 concentrations, periods 8, 9 (Figure 6a), 14 (Figure 6b), 16, and 17 (Figure 6c). All datasets 

(excluding period 16) performed well when modeled based on the high correlation coefficients (≥ 

0.9) between the measured and modeled data. Correlation coefficients range from 0.943 to 0.990 

(Table 5). Period 16 had the weakest performance with the lowest correlation coefficient at 0.889. 

In all scenarios with high performance all doors were closed, average initial supply concentrations 

varied (442 ppm to 518 ppm) initial return concentrations varied (439 ppm to 703 ppm), average 

supply concentrations ranged from 435 to 503 ppm and average return concentrations ranged from 

528 ppm to 670 ppm (Table 4 and Appendix Table A.2.). Furthermore, the amount of occupancy 
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in each scenario varied as period 8 and period 9 had similar occupancy (5 people or less), period 

14 had a maximum of 27 occupants, and period 17 had a maximum of 8 occupants. Additional 

information on these scenarios is also included in Appendix Table A.2. 

All scenarios represented different occupancy patterns, including constant (Figure 6a), 

increasing (Figure 6b), and decreasing occupancy (Figure 6c), demonstrating that varying 

occupancy conditions showed minimal impact on accuracy of the modeling in most cases. As seen 

in Figure 6b and 6c, compared to the constant occupancy in Figure 6a, the box models did not 

track CO2 concentrations as well, with some divergence (over estimation) of CO2 concentrations 

particularly for the longer periods of a changing number of occupants.  

 

  

Figure 6: Graph of occupancy modeled and measured CO2 concentrations for (a) period 

9 with constant occupancy, (b) period 14 with increasing occupancy, and (c) period 17 with 

decreasing occupancy for Scenario 1 with high correlation coefficients (Mechanical Ventilation 

Dominated) 
 

When comparing a dataset with weaker performance, period 16, as shown in Figure 7a 

(correlation coefficient at 0.889) to a similar dataset with stronger performance, period 17, 
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(correlation coefficient at 0.979) both datasets have a similar number of occupants (range of 0 to 

8) and occupant trends (decreasing occupants) (see Table 4 and Table 5). Additionally, both 

datasets have similar return CO2 concentrations (Appendix Table A.2). Periods 16 and 17 have 

slight variations in supply CO2 concentration on average (517 ppm) than period 17 (487 ppm), 

Table A.2. The main difference between period 16 and period 17 is the air exchange rate from the 

mechanical ventilation (Figure 7). Period 16 has a lower average mechanical ventilation rate (0.67 

ACH) and a higher standard deviation (0.48) indicating mechanical ventilation rate varies more, 

which could affect the accuracy of modeling as the natural ventilation could influence the results 

when mechanical ventilation was less dominate (Figure 7). Mechanical ventilation is significantly 

different than in period 17 which has a higher mechanical ventilation rate (0.94) with a much lower 

standard deviation (0.29). As Scenario 2 is dependent on mechanical ventilation, a higher variation 

in ACH would logically affect the accuracy of the modeled data as it varied more. At times where 

mechanical air exchange rate was zero, the CO2 concentration within the room could be impacted 

by natural ventilation and supply CO2 concentrations, therefore impacting reliability during this 

dataset. This was consistent with other datasets with higher performance (periods 8, 9 and 14) 

whereas the exchange rate was generally higher (0.76 to 0.91). 

 

  

Figure 7: Mechanical and natural air exchange rate, and modeled and measured CO2 

concentrations for period 16 (poorer performance), showing higher variability of mechanical 

ventilation 



 22 

Scenario 2: Natural Ventilation Dominated 

In Scenario 2, the natural ventilation was more impactful than the mechanical ventilation 

of the room. Four periods of collected data (periods 5, 10 (Figure 8c), 13 (Figure 8b) and 15 (Figure 

8a)) represented this scenario with higher correlation coefficients than Scenario 1 and 3 when 

comparing modeled CO2 concentrations to measured CO2 concentrations. All modeled periods 

had high correlation coefficients (≥ 0.9) demonstrating a higher level of model performance (Table 

5). When comparing datasets most datasets had both doors open (period 10, 13, and 15), while one 

data set (period 5) had one door closed. Varying door conditions showed minimal impact on 

accuracy of the modeling. Additionally, the number of occupants within the room was generally 

higher with a maximum of 25 to 28 occupants during modeling (period 5, 13, and 15), however 

period 10 also displayed high correlation for this model and only had 8 ± 1 person within the room. 

The average initial and supply and return concentrations of CO2 varied within the room (see 

Appendix Table A.2 for additional data). Major differences within this scenario were the 

occupancy trends, where period 15 (Figure 8a) had decreasing occupancy, period 13 (Figure 8b) 

had increasing occupancy, and periods 5 and period 10 (Figure 8c) had constant occupancy. This 

indicates that box modeling under Scenario 2 for periods of time when natural ventilation was 

more impactful than mechanical ventilation would be able to predict occupancy, regardless of 

occupancy levels or door conditions. 
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Figure 8: Occupancy modeled and measured CO2 concentrations for (a) period 15 with 

decreasing occupancy, (b) period 13 with increasing occupancy, and (a) period 10 with constant 

occupancy for Scenario 2 (Natural Ventilation Dominated) 

 

Scenario 3: Both Mechanical and Natural Ventilation  

In Scenario 3, the mechanical ventilation and natural ventilation of the room were found to 

both be important. Nine periods of collected data represented this scenario, periods 1-4, 6-7, 11-

12, and 14. Periods 1, 2, 4 (Figure 9a), 6, 7, 11 and 14 (Figure 9b) all have a strong correlation 

between the modeled and measured data (Table 5). Varying door conditions show minimal impact 

on the accuracy of modeling in this scenario. Periods 1 and 2 both have two doors closed and high 

correlation coefficients; similarly, period 4 (Figure 9a) has one door closed and a higher correlation 

coefficient; furthermore periods 6, 7, 11, and 14 (Figure 9b) have both doors open and high 

correlation coefficients (Table 4, Figure 9). Occupancy patterns and the number of occupants in 

the room also had minimal impact on the accuracy of modeling in this scenario as periods with 

high correlation coefficients have occupancy ranges from scenarios with minimum occupants 2 ± 

1 (period 7) to the maximum number of occupants observed within the room, 34 occupants (period 
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6 and 11). Additionally, varying natural air exchange rates (0.301 ACH to 2.914 ACH) and 

mechanical air exchange rates (0.76 ACH to 1.02 ACH) were observed across all periods with 

high correlation coefficients indicating variation with ACH had little effect on model accuracy. 

Initial supply CO2 concentrations (436 ppm to 499 ppm) were noted to have some variation within 

periods with high correlation coefficients indicating limited impact on model results (Table 4; see 

Appendix Table A.2 for additional data). This indicates that box modeling under Scenario 3 for 

periods of time when natural ventilation was equivalent to mechanical ventilation influence would 

be able to predict occupancy, under these varied occupancy levels and door conditions. 

 

 

Figure 9: Occupancy and modeled and measured CO2 concentrations for (a) period 4 

with constant occupancy and one door open and (b) period 14 with increasing occupancy and 

both doors open for Scenario 3 (Natural and Mechanical Ventilation) 

 

In periods 3 and 12 correlation coefficients showed slightly lower that other scenarios 

(0.774 and 0.879), as shown in Table 5. The major difference between periods 3 and 12 (Figure 

10b) with scenarios of higher accuracy (Figure 10a) in modeling was that the initial return 

concentrations measured within the room were higher than all other datasets within scenario 3 (835 

ppm and 901 ppm), which ranged from (411 ppm to 725 ppm) . When comparing period 12 (Figure 

10b) to a period with a higher correlation coefficient of similar conditions (period 14), similar 

conditions between these datasets where door conditions (all open) and occupancy trends 

(increasing). Major differences where greater occupants (27 maximum occupants) in period 14 

(Figure 10a) despite the larger number of occupants in period 14 average measured return (582 

ppm) and supply (435 ppm) concentrations of CO2 were significantly lower than period 12 (733 

ppm and 506 ppm) (see Table 4 and Appendix A.2). This indicates that for period 12, there may 
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be other influential factors impacting the conditions in the room and thus the accuracy of the 

modeling of this dataset. This may be conditions such as occupants in the hallways or adjacent 

classrooms creating higher CO2 concentrations, as this modeled period increases in occupants 

from an initial scenario of zero occupants when CO2 concentrations are already higher. When no 

occupants are initially in the room, the room should be at lower CO2 concentrations. This trend is 

similar to period 3 where initial CO2 concentrations within the room are high. 

 

 

Figure 10: Graph of occupancy modeled and measured CO2 concentrations for (a) 

period 14 (high performance) and (b) period 12 (poorer performance) for Scenario 3 (Natural 

and Mechanical Ventilation) 

 

Relationship Between CO2 Concentration and Occupancy  

 Datasets with transient occupancy were then also analyzed to examine the relationship 

between occupancy and CO2 concentrations during such scenarios using regression models to 

assessing fit using the coefficient of determination. The r-square value analyzed was based on the 

model with the highest correlation coefficient, whereas the model that best represented the 

measured data was analyzed. Overall, findings indicate that the r-squared value of a linear 

regression model of occupancy count based on CO2 concentrations was high during low supply 

and initial concentrations of CO2 into the room, low mechanical ventilation rates, and periods with 

steady increasing occupancy. Accuracy was lower in scenarios where CO2 concentrations were 

higher within the room and periods overall, along with decreasing unsteady rates of occupancy.  
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Table 6: R-Squared Value of Linear Regression Model of Occupancy vs. CO2 Concentration for 

Transient Occupancy Periods 

Data Set 

Period 

Scenario 

Used Based 

on 

Correlation 

Coefficient 

R-Squared Value2 

Measured 

CO2 from 

BMS 

Return 

Scenario 1, 

Mechanical 

Ventilation 

Dominated 

Scenario 2 

Natural 

Ventilation 

Dominated 

Scenario 3 

Natural and 

Mechanical 

Ventilation 

11 3 0.87 0.82 0.88 0.90 

12 3 0.68 0.61 0.019 0.23 

13 2 0.95 0.96 0.95 0.91 

14 1 or 3 0.96 0.93 0.94 0.94 

15 2 0.50 0.71 0.67 0.88 

16 1 0.002 0.11 0.32 0.83 

17 1 0.16 0.46 0.35 0.43 
2 Bolded values are analyzed based on the highest correlation coefficient among the three Models (Model 1, 2 and 3)  

 

For Scenario 1 (mechanical ventilation dominated) period 11 and 14 (Figure 6b and 11a) 

has a high r-squared value (0.93), for Scenario 2 (natural ventilation dominated) period 13 has a 

high r-squared value (0.95), and for Scenario 3 (both mechanical and natural ventilation) period 

11 and 14 have high r-squared values (0.90 and 0.94) and directly relates the increase of CO2 to 

occupancy (Table 6). All periods with high r-squared values are increasing in occupancy and have 

both doors open. Datasets demonstrate that occupancy and CO2 concentration can be directly 

related regardless of the number of occupants, where datasets range from 0 to 34 occupants. Other 

similarities within these datasets include supply CO2 concentrations, which range from initially 

429 ppm to 445 ppm and are on average 432 ppm to 450 ppm (see Appendix A.2 for additional 

data). 

Scenario 1: Mechanical Ventilation Dominated 

Scenario 1 (mechanical ventilation dominated) periods 16 and 17 both show low r-squared 

values (0.11 and 0.46) indicating a poor relationship between CO2 and occupancy. When 

comparing period 16 and 17 with lower r-squared to a period with high predictive accuracy under 

Scenario 1, period 14, (Figure 11) similarities between these datasets include high correlation 

coefficients (0.965 to 0.984) between the model and measured data, demonstrating all three 

datasets accurately reflect measured data. However, both lower predative datasets demonstrated 

that when comparing just the measured CO2 in the room with occupancy there was a low r-squared 

value (0.002 and 0.16), indicating that the model did not cause the low predictive accuracy but a 

condition within the room. 
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Furthermore, period 14 showed a strong correlation between CO2 levels and occupancy, 

with high r-squared values with both modeled and measured data (0.93 and 0.96) indicating that 

the model accurately predicted occupancy based on CO2 concentration. Comparing period 14 to 

16-17 datasets similar mechanical air exchange rates for periods 16 and 14 (0.67 ± 0.48 and 0.76 

± 0.41. Period 17 had a slightly higher mechanical air exchange rate 0.94 ± 0.29. The similar 

mechanical air exchange rates and similar standard deviations demonstrate that variations in 

mechanical air exchange rate did not influence results. Major differences for periods with low 

predictive accuracy compared to high predictive accuracy are the initial return (656 ppm and 703 

ppm) and supply (490 ppm and 509 ppm) concentrations are higher for low predictive accuracy 

models compared to period 14, which had a high predictive accuracy model. However, period 16-

17 decreased in occupancy which makes initially high CO2 concentrations within the room more 

logical. However, on average, period 14 had a lower measured return (528 ppm) and supply (435 

ppm) concentration of CO2 than periods 16 and 17 (return at 657 ppm to 670 ppm and supply at 

517 ppm to 487 ppm) despite period 14 having much greater occupancy than periods 16 and 17. 

This indicates that there could be another unaccounted for external factor influencing results when 

modeled as periods with lower occupancy on average are expected to have lower CO2 

concentrations from the return and supply. As the ventilation system supplies a few other 

classrooms this could have been the source of error within this scenario. 
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Figure 11: Predictive accuracy between occupancy and modeled CO2 concentrations for 

period 14 (high predictive accuracy) 

 

Additionally, when analyzing the rate at which people left or entered the room datasets 

with low r-squared values showed more drastic change in occupants. For period 17 (Figure 12b), 

6 occupants left within the first 5 minutes, however this rate drastically decreased over time and 

stayed at 2 occupants for the remainder of the data period. This trend was similar for period 16 

(Figure 12a) whereas at 1:21 pm, most occupants (3 occupants) left within the first 1 minute and 

the rest of the dataset was fairly stable with 1 or 2 occupants until 2:14 pm. However, for datasets 

with high r-squared, it took a longer timeframe to reach the maximum number of occupants. For 

example, in period 14 (Figure 6b) it took the entire modeling period to reach max occupants. 

Therefore, a low r-squared result is also logical for periods 16 and 17, as the rate at which people 

enter/leave the room would affect the rate at which CO2 is released into the room and as box 

models assume steady state conditions.  
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Figure 12: Modeled and measured CO2 concentrations and occupancy for (a) period 16 

(low predictive accuracy) and (b) period 17 (low predictive accuracy) for mechanical air 

exchange rate dominated periods 

 

Scenario 2: Natural Dominated Ventilation 

For Scenario 2 (natural ventilation dominated) period 15 has a low r-squared value (0.67), 

(Figure 12a). Similar to Scenario 1 the low predative datasets demonstrated that when comparing 

just the measured CO2 from the return with the relation to occupancy there was a low r-squared 

value (0.50), Figure 12a, indicating that the model did not cause the low predictive accuracy but a 

condition within the room. Supply and return CO2 concentrations where similar to other high 

performing datasets (see Appendix A.2 for additional data). Occupancy in this scenario was 

decreasing from 28 to 0 occupants over the entire time period (Figure 12b). The major difference 

between this dataset and others was that mechanical ACH was high, 3.31 ± 0.04 ACH. However, 

period 15 did not account for mechanical ACH, was dependent on natural, as the dataset had a 

much higher correlation coefficient related to Scenario 2 (natural ventilation dominated). It was 

also noted that supply from mechanical ventilation within this room was stable at 466 ppm on 

average (Figure 12b). Therefore, the mechanical ventilation and supply into the room from the 

HVAC system should not impact this scenario. It is possible that since this model is reliant on 

natural ventilation, unaccounted for CO2 sources in external areas not measured (such as hallways) 

had higher levels of CO2. Therefore, some lag with concentrations of CO2 not decreasing as 

occupancy decreased would be expected, as the CO2 from the natural ventilation could possibly 

be high therefore CO2 concentrations would not decrease as rapidly. This can be seen on Figure 

12b, where CO2 concentrations slightly decrease just not as drastic with occupancy decrease.  
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Figure 12: Comparison of modeled and measured CO2 concentrations with occupancy for (a) 

period 15 (lower predictive accuracy), and comparison of modeled and measured supply and 

return CO2 concentrations with occupancy changes over time for (b) period 15 (lower predictive 

accuracy) during periods dominated by natural air exchange rates 

 

Scenario 3: Both Mechanical and Natural Ventilation  

For Scenario 3 (both mechanical and natural air exchange) period 12 has a low r-squared 

values (0.23) (Table 6). Period 12 had a low correlation coefficient, discussed above, where 

inaccurate modeling could have affected the accuracy of r-squared results. This was further 

supported by the results from comparing the results from period 12 Scenario 1 model and the 

measured BMS return r-squared values which where both higher (0.61 and 0.68) (Table 6). 
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CONCLUSIONS 

This study aimed to define the relationship between CO2 concentration and occupancy 

patterns in indoor, conditioned environment, while capturing the effect of HVAC operations, 

environmental, and occupancy parameters through the collection of data and utilization of physics-

based box models. To accomplish this data was collected on CO2 concentrations, tracer gas test 

results, door state, and HVAC operations from an academic classroom during occupied hours. 

Field testing using a tracer gas test was performed to determine natural air exchange rate within 

the classroom. Data was then modeled using physics-based models for different occupant and 

ventilation scenarios. 

The following overall conclusions from these results are as follows:  

•  Most scenarios showed strong performance with a correlation coefficient of ≥ 0.9 under 

varying environmental conditions such as varied natural ventilation rate from door 

openings/closes, length of data analyzed, occupant trends (increasing, decreasing, 

constant), and number of occupants in the room. Periods with high rates of transient 

occupancy, and varying mechanical ventilation rates performed more poorly in comparison 

to other scenarios. Overall, this supports the use of box models for estimating occupancy 

trends in indoor environments for some scenarios but not others. Overall, less variable 

conditions resulted in better results. 

• During periods of weaker performance of the correlation coefficient the air exchange rate 

in the room was noted to have some affect results. For example, Scenario 2, which was 

modeled based on the assumption of a mechanically ventilated dominated system, was 

impacted by natural ventilation during a period of poor performance due to the air exchange 

rate from the mechanical ventilation system varying greatly. 

• Other periods with low correlation coefficients, specially discussed during the analysis of 

Scenario 3, where impacted by adjacent classrooms as the ventilation system also supplied 

other rooms which could have contributed unaccounted sources of CO2 for during 

modeling. 

• Results generally indicated that occupancy trends had a direct relationship with increasing 

and decreasing CO2 concentrations in the room for models with high performance. 

However, only a few of the time periods across the datasets collected agreed with this. The 
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r-squared between occupancy count based on CO2 concentrations was high when all doors 

were closed, occupancy was increasing.  

• Periods showing a poor relationship between CO2 concentrations and occupancy generally 

were due to non-steady state room conditions from occupants and potentially impacted by 

adjacent classrooms due to higher levels of CO2 predicted than expected with lower 

occupants.  

This study had several limitations that should be considered. One limitation that the box 

model assumes steady state conditions, however some conditions evaluated were not technically 

steady state. This could have had implications on results when comparing accuracy of predicting 

the relationship between CO2 and occupancy during periods of transient occupancy, specifically 

during times where occupants entered or left the room rapidly or at an unsteady pace there was a 

low correlation between CO2 and occupancy due to non-steady state conditions.  Additionally, as 

noted, the rate of air flow from the hallway was not explicitly measured as compared to the HVAC 

air flow rate, nor was the CO2 concentration from the hallway. In this case the CO2 concentration 

then had to be assumed, which may have impacted some results. Furthermore, the data to analyze 

the r-squared value for transient occupancy periods was a more limited dataset and would benefit 

from more data. In addition, many time periods of collected data exhibited similar environmental 

conditions such as limited changing of temperature, similar door conditions, and non-transient 

occupancy. Future studies would be beneficial to evaluate box models under a broader range of 

varying conditions, varying spaces with different HVAC controls and periods of more transient 

and constant occupancy. Additionally, further work to include other aspects of VAV systems 

should be implemented including other variables to reflect the changing occupancy and 

concentrations of CO2 in classrooms and surrounding hallways that use the same HVAC system. 

Additionally, the application of physics-based models could be further analyzed through the 

implementation of occupancy-based controls using CO2 modeling based on its relation to 

occupancy trends under the conditions discussed. 

The results of this study have implications that provide further insights into the applications 

of physics-based modeling to determine occupancy within indoor environments. Physics-based 

models are able to accuracy determine CO2 concentrations within rooms. However, findings imply 

that the application of box modeling to determine occupancy trends for energy efficiency purposes 

based on CO2 concentrations trends are only applicable during certain conditions and need to be 
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further explored. For example, factors such as rate of occupancy change and ventilation rates were 

noted to influence the accuracy of results and CO2 could not be directly related to occupancy 

trends. This indicates that physics-based modeling is a useful tool in modeling concentrations of 

CO2 within spaces and should be further investigated with additional information and scenarios 

such as other aspects of VAV systems, occupancy conditions, and surrounding sources of CO2 to 

assist in the outcome of understanding the applicability of this model. 
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APPENDIX 

Table A.1: Field test natural air exchange rate for both doors open, both doors closed, and one 

door closed and one door open 

Sensor Name 
Both Doors Open 

(ACH) 
Right Door Closed 

(ACH) 
Left Door Closed 

(ACH) 
Both Doors Closed 

(ACH) 

Sensor 2 0.321 ± 0.017 2.770 ± 0.168 2.830 ± 0.048 3.292 ± 0.095 

Sensor 3 0.001 ± 0.161 2.576 ±  0.099 2.432 ±  0.028 0.182 ± 0.149 

Sensor 4 0.307 ± 0.000 2.686 ± 0.219 3.225 ± 0.082 2.853 ± 0.090 

Sensor 5 0.247 ± 0.019 2.844 ± 0.068 2.558 ± 0.038 3.082 ± 0.126 

Sensor 6 0.208 ± 0.049 2.947 ± 0.119 2.749 ±0.030 2.014 ± 0.079 

Sensor 7 0.301 ± 0.023 2.775 ± 0.144 2.840 ± 0.037 1.017 ± 0.151 

Average 0.3010 ± 0.011 2.816 ± 0.122 2.796 ± 0.017 2.914 ± 0.042 

BMS (ACH, 

avg)  
0  0.11  0.17  0 

 

Table A.2: Data summary of all periods of collected data including average CO2 concentrations 

for both supply and return collected from the BMS and temperature range (C) 

Door Status 
Data Set 

Period 

Return CO2 

(ppm) (avg) 

Supply CO2 (ppm) 

(avg) 

Temperature range ( 

C ) 

Both Doors 

Closed 

1 800 490 22 to 22 

2 650 492 21 to 22 

One Door 

Closed 

3 799 449 23 to 23 

4 562 458 22 to 23 

5 806 468 21 to 22 

Both Doors 

Open 

6 811 445 22 to 23 

7 478 441 22 to 22 

8 632 503 22 to 22 

9 614 510 21 to 22 

10 672 482 22 to 22 

11 582 432 21 to 23 

12 733 506 22 to 22 

13 589 450 21 to 22 

14 528 435 21 to 21 

15 721 446 23 to 23 

16 657 517 22 to 22 

17 670 487 22 to 22 
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