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ABSTRACT
Due to the rapid development of computational technologies, deep-learning-based approaches
have emerged as practical and promising remedies for a wide range of biomedical applications.
This dissertation demonstrates the utilization of deep learning approaches across multiple
modalities in the field of biomedical applications: histopathology image analysis, multispectral
optoacoustic tomography (MSOT), computed tomography (CT), magnetic particle imaging (MPI),
and Raman spectroscopy. The first deep learning application is convolutional neural networks
(CNNs) for resolution enhancement and nuclei segmentation of hematoxylin and eosin (H&E)
images. This deep learning-based approach could facilitate cancer diagnosis using H&E images
acquired by a low resource setting. The second application is based on hybrid recurrent and
convolutional neural networks to generate sequential cross-sectional MSOT images in order to
reduce the acquisition time. Essentially, the proposed deep learning model can generate the
missing sequential MSOT images in the data acquired by a large step size setting, resulting in a
comparable resolution to the data acquired by a small step size setting. The third application is an
efficient end-to-end deep learning model based on U-Net architecture and a multi-head attention
mechanism for MPI-CT image segmentation. This proposed model can directly segment the MPI
signal from the co-registered MPI-CT image with promising performance. Lastly, it is a custom-
made Raman spectrometer together with computer vision-based positional tracking and monocular
depth estimation using deep learning for the visualization of 2D and 3D surface-enhanced Raman
Scattering (SERS) nanoparticles (NPs) imaging, respectively. The combination of Raman
spectroscopy, image processing, deep learning, and SERS molecular imaging shows the robust

and feasible potential for clinical applications.
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CHAPTER 1: Introduction

1.1 Deep learning overview

Deep learning is one of machine learning approaches that utilize multiple layers of data
representation to effectively capture the unique features of the input data at different stages,
demonstrating exceptional performance in a wide range of applications such as image
classification, image segmentation, natural language processing, data generative, etc. As a result,
deep learning has been rapidly developed in recent years, encompassing methodological
constructions and actual implementation. Indeed, deep learning employs computational models
consisting of numerous layers of processing to acquire and represent data with higher level of
abstraction, and it can implicitly capture complex patterns in extensive datasets. The growing
amount of data that can be gathered through biomedical and clinical data needs the advancement
of deep learning techniques to handle, such as Convolution Neural networks (CNNs), Recurrent
neural networks (RNNSs), Attention mechanisms, and Transformer based neural networks to
process and evaluate the data. Some examples of biomedical devices that commonly apply deep
learning include Computed Tomography (CT), Magnetic Resonance imaging (MRI), Magnetic
Particle imaging (MPI), Ultrasound, photoacoustic tomography, optical microscopy and
tomography and so on. Specifically, this dissertation demonstrates deep learning for biophotonics
and molecular imaging applications, which are multidisciplinary life sciences, combining the
principles of optics, photonics and biology to investigate biological systems at tissue, cellular, and
molecular levels. The field of biophotonics is one of the essential parts for the development of
unprecedented diagnostic and therapeutic approaches in the biomedical field; therefore, it has been
significantly improved over decades, particularly the use of deep learning techniques to empower

biophotonics research by enabling advanced image analysis, improved image and signal



processing, and the ability to comprehensively analyze biophotonics data.

1.2 Organization of the dissertation

This dissertation is divided into four chapters for four different modalities and applications.
Additionally, there is a fifth chapter addressing future research. Chapter 2 demonstrates
approaches based on deep learning for super-resolution and segmentation for histology images.
The two proposed deep learning models in this chapters were jointly trained together to reach the
join optimization to perform both resolution enhancement and segmentation for breast cancer H&E
images. In chapter 3, a deep learning application for generating the sequential multispectral
sequential Multispectral Optoacoustic Tomography (MSOT) Imaging is presented. The aim of this
work is to reduce the acquisition time without any hardware modifications. In this work, the mice
injected with ICG-conjugated superparamagnetic iron oxide nanoworms particles (NWs-ICG)
were scanned under the MSOT system providing three imaging modalities: photoacoustic,
ultrasound, and NWs-ICG acoustic images. The proposed deep learning can reduce the acquisition
time of volumetric imaging for these three modalities. Chapter 4 shows the MPI signal
segmentation of MPI-CT images, which is significantly important for MPI quantification. This
work proposed a novel architecture based on U-Net architecture and attention mechanisms that
can surpass other state-of-the-art models. Lastly, chapter 5 shows the application of depth map
estimation based on deep learning in tandem with surface enhanced Raman scattering (SERS) for
the image-guidance surgery application. With depth information, the SERS is more practical for a
real clinical application. The final chapter concludes the dissertation, on-going work related to

biomedical applications as well as possible future work.



CHAPTER 2: Super-resolution and Segmentation Deep Learning for Breast Cancer
Histopathology Image Analysis

Reprinted with permission from “A. Juhong, et al., “Super-resolution and Segmentation Deep
learning for Breast Cancer Histopathology Image Analysis"”, Biomedical Optics Express, 14.1
(2023): 18-36 " [1], © Optica Publishing Group.

Traditionally, a high-performance microscope with a large numerical aperture is required to
acquire high-resolution images. However, images’ size is typically tremendous. Therefore, they
are not conveniently managed and transferred across a computer network or stored in a limited
computer storage system. As a result, image compression is commonly used to reduce image size
resulting in poor image resolution. Here, we demonstrate custom convolution neural networks
(CNNs) for both super-resolution image enhancement from low-resolution images and
characterization of both cells and nuclei from hematoxylin and eosin (H&E) stained breast cancer
histopathological images by using a combination of generator and discriminator networks so-
called super-resolution generative adversarial network-based on aggregated residual
transformation (SRGAN-ResNeXt) to facilitate cancer diagnosis in low resource settings. The
results provide high enhancement in image quality where the peak signal-to-noise ratio and
structural similarity of our network results are over 30 dB and 0.93, respectively. The derived
performance is superior to the results obtained from both the bicubic interpolation and the well-
known SRGAN deep-learning methods. In addition, another custom CNN is used to perform image
segmentation from the generated high-resolution breast cancer images derived with our model with
an average Intersection over Union of 0.869 and an average Dice Similarity Coefficient of 0.893
for the H&E image segmentation results. Finally, we propose the jointly trained SRGAN-ResNeXt

and Inception U-net Models, which applied the weights from the individually trained SRGAN-



ResNeXt and Inception U-net Models as the pre-trained weights for transfer learning. The jointly
trained model’s results are progressively improved and promising. We anticipate these custom
CNNs can help resolve the inaccessibility of advanced microscopes or whole slide imaging (WSI)
systems to acquire high-resolution images from low-performance microscopes located in remote-
constraint settings.
2.1 Introduction
Pathology diagnosis is routine work usually performed by a skilled pathologist or cytologist. The
diagnosis process begins with staining (typically hematoxylin and eosin or H&E) of a specimen
on a glass slide and observing it under a high-resolution (HR) microscope. Typically, the diagnosis
process for each biopsy slide could take up to 15-20 mins per slide which is very time-consuming.
Pathologists must visually scan over a vast field of view to find any abnormalities on each slide.
Therefore, whole slide imaging (WSI) has been introduced to solve this main problem [1]. The
WSI refers to scanning a complete microscope slide and creating a single high-resolution digital
file. This is commonly achieved by capturing many small HR image tiles or strips and then
montaging them to create a full image of a histological section. The WSI equipped with
pathological image diagnosis software is changing the workflow of many laboratories. Specimens
on glass slides can now be transformed into HR digital files that can be efficiently stored, accessed,
and analyzed. The latter is due to the advancement of computer vision and convolution neural
networks (CNNSs) algorithms in digital pathological image analysis [2, 3].

However, in resource-constraint settings, accessibility of both HR microscope and WSI is a
crucial obstacle to delivering quality health care, frequently resulting in undertreatment and
overtreatment of infectious diseases based on clinical assessment alone [4]. Laboratory

infrastructure is typically clustered in urban settings and is relatively inaccessible in regions where



significant portions of the affected population reside [5]. Many of the neglected diseases in
particular, are more prevalent in rural areas, far from these diagnostic centers [6]. Therefore,
novel, simple, and inexpensive approaches to perform digital pathological diagnoses are needed
in both clinical and public health environments. Potential solutions are to provide a software-
based solution to help transform low-resolution (LR) to either HR or super-resolution (SR) images.

Due to the rapid development of computational technologies, deep-learning-based diagnosis
has become a sought-after technique for digital pathology image analysis implementation [2, 3].
Depending on the analysis, the technique can be divided into supervised and unsupervised
learning. Supervised learning aims to define a function that can map input images to their outputs
or labels (normal cells, abnormal cells, cancer cells, and other parameters) such as classification
or segmentation problems. On the other hand, the purpose of unsupervised learning is to define
another function that can extract the latent features and structures from unlabeled data such as
clustering problems, dimensional reduction, and super-high-resolution problems. Several studies
use CNNs for nuclei segmentation [7-11]. Those methods can surpass the traditional methods such
as Otsu segmentation [12], Watershed method [13], and K-mean clustering [14] since the
traditional methods are sensitive to parameter setting and could be effective for specific data types.
CNNs based approaches have become practical tools for nuclei and cell segmentation tasks as they
can achieve a resounding success. HoverNet [15] is one of the effective CNNs for nuclei
segmentation. The model predicts horizontal and vertical distance between a nucleus centroid to
its corresponding foreground pixels. Masker-controlled watershed is then applied as the post-
processing method to obtain nucleus instances. However, the HoverNet results can be sensitive to
the noise in the distance maps because of the marker-controlled watershed. StarDIST [16] is

another CNNs for nuclei segmentation that predicts centroid probability maps to localize the



nuclei. The predicted centroids are applied to generate polygons to determine the boundary and
the number of the cells. The downside of the StarDIST is that polygons are only predicted using
the centroid pixels' features. These results in a lack of contextual information for large nucleus
instances and could affect prediction accuracy. CPP-Net[17] extends the StarDIST by integrating
the rich contextual information from a sampled point set for each centroid pixel and applying the
Shape-Award Perceptual loss that constrains CPP-Net’s predictions regarding the nucleus shape.

U-net architecture is a renowned convolution neural network architecture for image
segmentation. It is widely used for biomedical image segmentation [18]. Its structure is simple
convolution blocks, and the skip connections are added from decoder to encoder. The U-net
architecture allows for simultaneously using global location and context and it works with very
few samples to improve the model performance. In addition, it is an end-to-end process for the
entire image in the forward pass and directly generates the segmentation image. Its structure is
also simple to be modified or assembled with other models. Potentially, the performance of the U-
net can be improved by using other effective convolution architectures to replace the simple
convolution blocks. In recent years, CNNs have also been applied for super high-resolution
biomedical images with a wide range of imaging modalities [19-25] such as fluorescence imaging,
light-sheet imaging, and color imaging of pathological slides. However, those works employed the
same concept of SRGAN [26] that the generator is built using the ResNet architecture or residual
structure[27]. Indeed, several architectures can surpass the residual structure. Exploring one of
them and applying it to the generative adversarial network (GAN) will be more worthwhile. For
instance, the DenseNet [28] network is applied as the backbone for SGAN namely ESRGAN [29]
showing the impressive result and surpassing the original SRGAN model. According to the Top-

1 and Top-5 accuracy vs. computational complexity testing reported on Benchmark Analysis of



Representative Deep Learning Neural Networks Architectures [30], the ResNeXt CNNs
architectures can outperform state-of-the-art (SOTA) architectures such as ResNet, DenseNet,
Inception, etc., even the complexity of ResNeXt is somewhat less than others. Recently, deep
learning techniques based on transformer architectures [31] have emerged as an alternative to the
CNNs architectures since they can provide better results on large datasets. However, the
transformer architectures are more complicated and require a high computation cost. If the model
is excessively complicated, it will be challenging to build the jointly trained models to
simultaneously update the weights of the joint models due to the restriction of computing resources
(time, memory, speed, etc.).

To overcome limitations in digital pathological diagnosis, we describe a novel method for
transforming LR digital pathological images derived from low-cost microscopes to super-
resolution (SR) images (equivalent to a 40x magnification) with a super-resolution generative
adversarial convolution neural network technique based on ResNeXt architecture [32] (SRGAN-
ResNeXt) [22]. Most SRGAN deep learning works for biomedical image enhancement used a
single residual network (ResNet) in each layer to capture and extract image features, while our
deep learning used the ResNext architecture instead. Typically, the ResNet architecture can
exceptionally perform on very deep convolution layers since the skip connection in the ResNet
adds the input information to the output of the convolution layers. Therefore, the output of ResNet
contains the representative features from the convolution operation and the critical information
from the original input. Moreover, the skip connection allows the gradient to effortlessly
backpropagate and update the weight to minimize the loss value. However, the single residual
block might be insufficient to capture all significant features. Therefore, to increase the model

capability, we apply residual blocks in parallel (stacking the same topology blocks) for each layer



(ResNeXt architecture). Utilizing the ResNeXt architecture not only improves the feature
capturing but also reduces the complexity of the model in preference to make it deeper since hyper-
parameters (width, filter sizes, etc.) are shared. This approach can provide considerable resolution
enhancement for poor-quality images. Training the SRGAN-ResNeXt Model requires a dataset
consisting of high-resolution images (ground truth) and corresponding low-resolution images. We
used a commercial microscope (Nikon Eclipse Ci) to prepare a dataset for training this model.
Peak Signal to Noise Ratio (PSNR) and Structural image similarity method (SSIM) was used to
evaluate the generated images from our model, which are 32.92 dB and 0.93, respectively. These
are promising results as they are higher than the original SRGAN Model’s evaluation results that
were trained on the same data set (H&E images). Furthermore, we applied the Inception U-net
Model [33], the improved U-net Model by using Inception architecture as a backbone in the U-net
network for H&E image segmentation. To train the Inception U-net Model, a large number of
H&E images are required to be accurately masked on nuclei areas which are very time-consuming.
Thus, we used a dataset from a cancer imaging archive [34] to train our Inception U-net Model.
Our inception U-net Model’s Union (IoU) and Dice Similarity Coefficient (DSC) are 0.869 and
0.893, respectively. Since the SRGAN-ResNeXt and Inception U-net model were separately
trained, the performance of both models could be improved by jointly training them together as
the segmentation loss and the generator loss could be effectively back propagated to update the
weights for the generator model and Inception U-net model with a joint optimization.

Figure 1 shows the overall workflow of the models. First, the breast tumor H&E slides were
prepared on biopsy slides (Figure 1(a)-(b)) to be imaged with a 40x magnification (Figure 1(c)),
then acquired the images’ quality was downgraded by downsampling and adding blurring noise.

Therefore, the model has both corresponding ground truth (high-resolution images) and low-



resolution images for training the SRGAN-ResNeXt (Figure 1(d)-(f)). Eventually, the well-trained
generator model from the SRGAN-ResNeXt (Figure 1(h)) was applied to the unseen low-
resolution image (Figure 1(g)) to enhance its quality by generating the high-resolution image
(Figure 1(i)). Furthermore, the generated high-resolution image was characterized as its resolution
was substantially improved and contained considerable details that were impossible to perform
before applying the model. In other words, our approach can tackle those low-resolution images
by applying the Inception U-net Model (Figure 1(j)) to the generated high-resolution images (the
output of the generator model from SRGAN-ResNeXt). As a result, the newly generated image

can be segmented and quantified to characterize the nuclei’s density, size, and morphology.
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Figure 1. The workflow of super-resolution and segmentation deep learning. (a) Fresh breast
tumor tissues. (b) The corresponding H&E stained tissue slides. (¢) A commercial microscope
(Nikon Eclipse Ci) for capturing the H&E stained tissue slide images. (d) High-resolution
images acquired by the microscope. (e) Simulated low-resolution images. (f) The training
SRGAN- ResNeXt network. (g) The unseen low-resolution image. (h) The generator model
from SRGAN-ResNeXt. (i) The generated high-resolution image. (j) The Inception U-net Model
for segmentation. (k) The segmented H&E image.

2.2 Methods
2.2.1 Proposed SRGAN-ResNeXt architecture
Here, we propose SRGAN-ResNeXt architecture built from scratch to synthesize super-resolution

images from low-resolution images. The concept of the SRGAN-ResNeXt is similar to the



traditional GAN that consists of generator and discriminator models. The generator and
discriminator models of our SRGAN-ResNeXt are depicted in Figure 2(a) and Figure 2(b),
respectively. The generator model takes a low-resolution image as the input and generates a high-
resolution image after passing through the convolution, ResNeXt, and upsampling layers. The
discriminator model is utilized to distinguish the generated image from the ground-truth image by
taking them as the input and providing probability as the output. The ultimate goal of SRGAN-
ResNeXt is to train the generator model to synthesize the image that can fool the discriminator
completely. To achieve this, we need to design the generator model properly, use a large number
of images as the dataset to train the models, and fine-tune the hyperparameters thoroughly. To train
SRGAN-ResNeXt, we first trained the discriminator model by freezing the generator model. Next
step, we used an adversarial network to train the generator model. The adversarial network (Figure
2(c)) is the combined models, which are the generator model, discriminator model, and VGG19-
the latter works as the feature extractor [35].

2.2.2 Generator model

The generator network is a deep convolution network containing the pre-residual layer, 16 parallel-
residual layers (ResNeXt), a post-residual layer, two upsampling layers, and the final convolution
layer as shown in Figure 2(a). To assemble the generator model, the pre-residual block is the first
block, which contains a single 2D convolution layer and ReL.U is used as the activation function.
The second block is 16 parallel-residual layers (ResNeXt architecture). Each layer after
convolution layers is followed by a batch normalization with 0.8 of momentum value and the
activation function is also ReLU. For the ResNeXt block, the size of transformation sets or branch
numbers is defined as cardinality. Increasing the number of cardinalities can improve and better

the performance of the convolution neural network. However, the excessive number of
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cardinalities could lead to expensive computation. Thus, we use eight cardinalities for our
generator model [Figure 2(a)], which is the optimal number of our task. The next block is the post-
residual block, the simple convolution layer, and batch normalization (momentum =0.8). After
that, the fourth block is the upsampling block, which has two sub-pixel convolution layers [36],
upsampling the scale by four times. Lastly, the last convolution layer uses the Tanh activation
function to form the generated image with R, G, and B color channels. To train the generator
model, we need to use the joint model, which is the adversarial network [Figure 2(c)]. The
discriminator and VGG19 models are untrainable during training the generator model.

2.2.3 Discriminator model

The discriminator network [37] is a relatively simple convolution network, comprising eight
convolutional layers and two fully connected layers, designed to evaluate the similarity between
the ground truth and generated images. After each convolution block, a batch normalization layer
is used, followed by an activation function named the Leaky ReL U function (¢=0.2). The number
of 3x3 filter kernels increases by a factor of 2 from 64 (the first layer) to 512 (the eighth layer)
kernels similar to the VGG network. The last two layers are dense layers working as a classification
block, predicting the probability of an image being either real or fake. We have to freeze the
generator model or make it untrainable to train the discriminator model. The learning progress of
the discriminator model is remarkably faster than the generator model. Therefore, during the
training generator model, it must be slowed down learning progress which will be further discussed

in the next section below.
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2.2.4 Loss functions

The perceptual loss function (I°R) is highly significant to the performance of the generator model

in the SRGAN-ResNeXt network. It is the weighted sum of a content loss (VGG19 loss, IgR)
SR

and adversarial loss (Discriminator loss, I3e,) as shown in Equation (1) as

ISR = IR + C, IZR.. 1)

The generator exploits this loss function to optimize and update its trainable parameters. To
achieve the well-trained generator model, the weight, C,,, was assigned to the loss value from the
discriminator model to slow down the learning progress since the discriminator model can be
trained faster than the generator model. If the discriminator model can excessively perform well
to distinguish between the generated image and the ground truth image, we would not be able to
come up with the exceptional generator model since the generated image cannot fool the
discriminator model. In the original SRGAN training, C,, is a constant for the whole learning
process. However, this weight started from 0.5 and increased to 0.05 for every 10,000 epochs in
our model. Since the generator model will gradually improve its performance and capability, we
have to balance the performance of both the generator and discriminator models. The total number

of epochs for training our model was 50,000. Therefore, C,, was varied from 0.5 to 0.7.
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Albeit using the pixel-wise mean square error (MSE) to distinguish between the ground truth and
the reconstructed image is undemanding to optimize, it returns a poor-quality image in terms of
human perception. The output of MSE is the average features’ difference of two data. Therefore,
it cannot extract high-dimensional features. However, the content loss or VGG loss (IgR) , is
defined as the Euclidean distance between the feature map of the generated image Gy (I7R) and
the ground truth, IR can help solve this problem. The I¢R loss is based on ReLU activation layers
of the pre-train 19-layer VGG network and it can be calculated following Equation (2) as shown

as

1 WijHij

If;gG = mzle y=1( gL',j(IHR)x,y - ﬂi,j(Gé)G(ILR)x,y), (2)

where W, ; and H;; describe the dimensions of the respective feature maps within the VGG
network. The features map (@;;), can be obtained by the j-th convolution before the
it" maxpooling layer within the VGG19 network. Apart from using a feature map from VGG loss,
the adversarial loss (I3R ) is also employed to differentiate the similarity of the two images. It is
defined as the probabilities varying from 0 to 1, which is the result of the discriminator model

(Dg,, (Gg (1)) as shown in Equation (3) below as

I3en = Zn=1—10gDg, (Ges(I')). ®3)

The perceptual loss effectively leverages the combination of these two loss functions to train the
generator model that can generate high-detailed images.

2.2.5 Dataset for training SRGAN-ResNeXt Model

To obtain breast cancer H&E images, the female MUC1 double-transgenic mice with breast
tumors [38] were euthanized and their tumors were sent out to the histopathology lab (MSU-IHPL

Research facility) to prepare the H&E stained breast tumor slides. All procedures performed on
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animals were approved by the University’s Institutional Animal Care & Use Committee (AUF
06/18-082-00) and were within the guideline of human care of laboratory animals. Four tumor
mice were euthanized, and a tumor of each mouse was surgically removed to prepare four different
tumor H&E slides. The H&E slides were then imaged by the commercial microscope (Nikon
Eclipse Ci) with 40x magnifications to prepare the dataset for training SRGAN-ResNeXt. The size
of each whole slide image is greater than 80,000 x 80,000 pixels and the image patches with a size
of 256 x 256 pixels were extracted from each whole slide image with a 50 % overlapping area.
The data augmentation was applied to these extracted image patches. The total number of image
patches including the augmented images is over 13,000 images, which were used for training only.
To prepare the low-resolution images, we downed sampling 4 times from the original high-
resolution image patch and added blurring noise using the normalized boxed filter with kernel
shown in Equation (4) below. We increased the kernel size until we could not discriminate the
nuclei boundary and the simulated low-resolution images are even worse than some native low-

resolution images.

1 o 1 (&)
K = 1 PR
ksize.widthxksize.height 1 R

1
Where K is the blurring normalized boxed filter, ksize.width is the kernel width, and ksize.height

is the kernel height. Figure 3(a) shows the cropping area from the large FOV H&E images. Figure

3(b) are the small patches that were cropped from the large FOV image.

15



Figure 3. Data set preparation for training SRGAN-ResNeXt, cropped image with 50%
overlapping area. (a) Large field of view H&E image, (b) The small patches of the large image
(a) with 50% overlapping area.

2.2.6 The Inception U-net architecture

The conventional CNNSs for image segmentation tasks have two main components: an encoder and
a decoder. Similarly, the U-net architecture has these two parts, but the skip connection is the
crucial mechanism that allows U-net to surpass the conventional method and perform better. This
concept is akin to the residual block that the input (encoder part) will concatenate to the output
(decoder part) at the same dimension. However, each layer of the original U-net architecture is a
simple convolution block, which might be insufficient to extract some crucial information. For this
reason, the Inception architecture [39] was applied to improve the capability of the U-net Model.
Inception architecture uses a wide range of kernel sizes for the same input to simultaneously extract
global and local features. A larger kernel size is suitable for the information distributed globally,
whereas a smaller kernel size is appropriate for the information distributed locally. Consequently,

the Inception CNN architecture can be satisfactorily performed to extract the feature from the data.
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Here, we applied four different kernel sizes of the Inception blocks in our U-net Model as shown

in Figure 4 below by replacing each convolution block in the original U-net architecture with the

Inception blocks.
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Figure 4. Inception U-net architecture for H&E image segmentation. Every single blue box

corresponds to a multi-channel feature map. The value over the boxes represents the number of

channels.
Figure 4 illustrates the Inception U-net architecture. The first part is the encoder (the left side of
Figure 4) where the Inception convolution blocks are utilized instead of the simple convolution
blocks. All Inception blocks in this part consist of different sizes (3x3, 5x5, and 1x1) parallel filters
(Inception structure) followed by a rectified linear unit (ReLU) and a 2x2 max pooling operation
with the stride of 2 steps for downsampling, respectively and this is the repeated process. The
number of feature channels is double at each downsampling step. The second part is the decoder
(the right side of Figure 4). It consists of a feature map upsampling followed by a 2x2 up-

convolution (halving the number of feature channels), a corresponding concatenation from the

decoder part, and Inception blocks. The ReLU activation is used for each block. The H&E images
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and their corresponding segmentation masks are implemented to train this model as input and
output, respectively. The loss function for U-net is a mean squared error (MSE) function as shown
in Equation (5) shown below as

MSE =5 ZIL,0i = 9%, ()
where the MSE is the average of the squared differences between ground truth (y;) and predicted
value from our model (¥;) and N is the number of samples.
2.2.7 Data set for training the segmentation models
Since image segmentation is a supervised task, the outputs or targets need to be labeled, which is
expensive and time-consuming. Fortunately, several datasets provide the H&E images and their
corresponding nuclei masks. Here, we used the dataset from the cancer imaging archive[34]. This
dataset provides nucleus segmentation for the whole cancer slide over 1,000 images in the cancer
genome atlas (TCGA) repository. These images are from 10 different cancer types such as bladder
urothelial carcinoma (BLCA), invasive breast carcinoma (BRCA), cervical squamous cell
carcinoma, and endocervical adenocarcinoma (CESC).
2.2.8 Jointly trained SRGAN-ResNeXt and Inception U-net Models
The SRGAN-ResNeXt and Inception U-net Models were jointly trained by using the separately
trained weights of the SRGAN-ResNeXt Model and the Inception U-net Model as the pre-trained
weights for transfer learning. Figure 5(a) shows the joint models for training the generator model.
The conception of the jointly trained generator (JTG) Model is akin to the adversarial model shown
in Figure 2(c). Still, the JTG Model employs not only the content loss (returned by the VGG19
Model) and the adversarial loss (returned by the discriminator model) but also the segmentation

loss of the generated high-resolution image and ground truth high-resolution image (returned by
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the jointly trained Inception U-net). The combined loss of the JTG Model is shown in Equation
(6) as

V6 = IgR + C, I35, + Curlihns, ©)

Where I/Sis the combined loss of the jointly trained generator model, IR is the content loss
(VGG19 loss), IgR is the adversarial loss (Discriminator loss), ISES. is the segmentation loss
(Jointly trained Inception U-net loss), and C,, & C,,, are hyperparameters. The VGG19 Model, the
discriminator model, and the jointly trained Inception U-net Model are fixed as untrainable during
training the JTG Model.

The jointly trained Inception U-net (JTIU) Model was trained using the generated high-resolution
image (returned by the JTG Model) and the ground truth of the high-resolution image as the
model’s inputs. The outputs of both inputs have the same ground truth to calculate the loss value.
Therefore, the JTIU can learn how to generate the same quality segmentation image from both
generated high-resolution images and native high-resolution images. During training the JTIU

Model, the JTG Model was fixed as well.
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Flgure 5. Jointly trained SRGAN-ResNeXt Model and Inception U-net Model. (a) The
assembled models for the jointly trained generator (JTG) Model. (b) The assembled models for
the jointly trained Inception U-net (JTIU) Model.

2.2.9 Data set for the jointly trained Models

Two other tumor mice were sacrificed, and a tumor of each mouse was prepared for H&E slides.
Therefore, we have two tumor H&E slides from different mice for training the jointly trained
models. The 220 image patches with a size of 256 x 256 pixels were randomly extracted from
these H&E slides (110 patches per slide). 210 and 10 patches were used for training and testing,
respectively. Each image patch was manually labeled for the ground truth of segmentation. Thus,

this dataset contains low-resolution, high-resolution and segmentation images.
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2.2.10 Training implementations

The separately trained SRGAN-ResNeXt and Inception U-net models were trained on Google
Colaboratory-Pro (or Google Colab-pro) and implemented on the computer with a 9" Gen Intel
Core i7-9750H CPU, 16 GB RAM, and an NVIDIA RTX 2060 graphic card. Since the jointly
trained models require more resources for training due to the combination of several models, they
were trained on Google Colaboratory-Pro+ (Google Colab Pro+), which provides Faster GPUs and
significantly more memory than Google Colab-pro.

2.3 Results and discussion

2.3.1 Super high-resolution image reconstruction and segmentation.

The goal of SRGAN-ResNeXt is to have a well-trained generator model to reconstruct high-
resolution images. We could not feed the large image into the generator model due to the
computation restriction during implementation. Therefore, the large images were divided into
serval small images. Furthermore, the overlapping area between these divided images was required
to stitch them back to obtain the same field of view (FOV) as the original large image. Figure 6
shows the results of applying both the SRGAN-ResNeXt and the Inception U-net Models to a
breast tumor H&E image. Figure 6(al), 6(b1), and 6(cl) are the small patches of the whole slide
image from different areas. All these small images were downscaled and added blurring noise as
shown in Figure 6(a2), 6(b2), and 6(c2). The SRGAN-ResNeXt Model was employed to enhance
these low-resolution images by synthesizing high-resolution images (Figure 6(a3), 6(b3), and
6(c3)). The Inception U-net was then applied to these generated high-resolution images for

segmentation (Figure 6(a4), 6(b4), and 6(c4)).
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Figure 6. The whole slide image (WSI) of a breast tumor H&E slide and the result of our deep
learning model. (al, b1, and c1) The high-resolution images of the WSI from different areas.
(a2, b2, and c2) The low-resolution images. (a3, b3, and c¢3) The reconstructed high-resolution
images using our deep learning model (SRGAN-ResNeXt). (a4, b4, and c4) The corresponding
nuclei segmentation to (a3, b3, and ¢3) using the Inception U-net Model.

Figure 7(al) and 7(bl) show the low-resolution image and the enhanced-resolution image
generated by the SRGAN-ResNeXt model, respectively. They were fed into the Inception U-net
Model for nuclei segmentation. Figure 7(a2) shows the segmentation result of the low-resolution
image and Figure 7(b2) shows the segmentation result of the enhanced image. It is relatively
demanding to perform the image segmentation for the low-resolution image without enhancing its
resolution first. The CNNSs cannot extract meaningful features from the blurry pixels resulting in
unsatisfactory segmentation performance. The mean square error (MSE) of blurry images and
generated high-resolution images are 21.24 and 2.75, respectively. The MSE of the blurry image
is significantly higher than the generated high-resolution image. To circumvent this issue, we
propose to apply the SRGAN-ResNeXt Model to improve the poor-quality image before
characterizing or performing segmentation to obtain better results. Figure 7(c1) and 7(c2) show

the ground truth for high-resolution image and segmentation image, respectively.
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Figure 7. The H&E image segmentation of the low-resolution image and the enhanced-
resolution image. (al-a2) The low-resolution image and its segmentation image (output of the
Inception U-net). (b1-b2) The enhanced-resolution image (output of the SRGAN-ResNeXt) and
its segmentation image (output of the Inception U-net). (c1-c2) The ground truth of the high-
resolution image and the segmentation image. (d) Ground truth preparation for both of the high-
resolution image and the segmented image.

2.3.2. Performance of the SRGAN-ResNeXt Model

Peak signal to noise ratio (PSNR) is one of the ubiquitous methods used to quantify the quality of

the generated image compared to the original image (ground truth) [31]. It is a ratio between the

maximum possible power of a signal and the power of distorting noise, affecting its representation

quality. The higher the PSNR, the better the quality of the generated image. To compute the PSNR,

we have to calculate the mean squire error (MSE) first and use the Equation (7) below to define

PSNR as
PSNR = 20l0g10(7sb) (7
The MSE is defined as the following
MSE = — ST S8 If (L) — 9@ NIIZ, ®)

Where f is the matrix data of the ground truth,
g is the matrix data of the generated image,

m is the number of rows of pixels of the images,
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i represents the index of that row,
n is the number of columns of pixels of the image,
J represents the index of that column, and

MAX; is the maximum signal value that exists in our ground truth.

Structural similarity index measure (SSIM) is a perception-based model. It considers image
distortion in terms of perceived change structural information (loss of correlation, luminance

distortion, and contrast distortion) [40].

(Zuxuy+cl)(20-+cz) (9)
(H,ZC+H§,+C1)(G;2¢+G§1+C2)’

SSIM (x,y) =

Where

u, denotes the average of x,

W, denotes the average of y,

o2 denotes the variance of x,

o5 denotes the variance of y,

o denotes the covariance of x and y,

and c; and c are two variables to stabilize the division with a weak denominator.

Here, we calculated the PSNR [dB] and SSIM index between the generated images reconstructed
by our model and high-resolution images (ground truth) by using data from two different H&E
breast cancer slides, which are not used to train the model (unseen data). For each slide, we used
the random 54 small low-resolution images with a size of 64x64 pixels to reconstruct high-
resolution images with a size of 256x 256 pixels compared to the ground. The results of
PSNR/SSIM are shown in Table 1 below. In order to compare the performance of the generator
models with different backbone architectures (ResNet (original SRGAN), Transformer, DenseNet,

and ResNeXt), we trained them with the same dataset we acquired from the breast cancer H&E
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slides. The proposed model can provide better results, which the average PSNR/SSIM of the data
from both H&E slides is over 30 dB/0.92, whereas the average result from the traditional method
(Bicubic interpolation), the typical SRGAN, SRGAN-DenseNet, and SRGAN-Transformer are
24.10 dB/0.848, 27.51 dB/0.915, 27.55 dB/0.93, and 18.50 dB/0.69, respectively.

Table 1. PSNR/SSIM compares results between the generated high-resolution images and the

ground truth (realistic high-resolution images) from the testing dataset.

PSNR/SSIM Breast cancerl | Breast cancer2 Average
40x 40x
Bicubic 24.13dB/0.84 | 24.07 dB/0.86 24.1 dB/0.85
interpolation
SRGAN Model 27.84dB/0.91 | 27.18dB/0.92 | 27.51 dB/0.915
SRGAN-DenseNet | 27.96 dB/0.93 | 27.15dB/0.93 | 27.55dB/0.93
SRGAN- 18.68 dB/0.69 | 18.33dB /0.68 | 18.50 dB/0.69
Transformer
Our model 32.34dB/0.93 | 31.92dB/0.93 | 32.13dB/0.93
(SRGAN-ResNeXt)
Ground truth oo/1 oo/1 oo/1
(high-resolution
image)

Figure 8 compares the reconstruction results of the typical SRGAN, SRGAN-Transformer,
SRGAN-DenseNet, and our SRGAN-ResNeXt. Figure 8(a) and 8(b) illustrate the original high-
resolution (ground truth) breast tumor H&E image and bicubic interpolation of a low-resolution
image, respectively. Figure 8(c), 8(d), 8(e), and 8(f) show the generated high-resolution H&E
images reconstructed by the traditional SRGAN, the SRGAN-Transformer, the SRGAN-
DenseNet, and our SRGAN-ResNeXt, respectively. The contrast of some areas of SRGAN-
DenseNet results looks slightly better than SRGAN, and SRGAN-ResNeXt results. However,
some small details of the SRGAN-DenseNet results are missing as shown in Figure 8(g) pointed
out by the red arrows. For the SRGAN-Transformer, it cannot surpass the SRGAN based on CNNs
architectures by training with our limited custom dataset and computational resource. The model

based on the Transformer architecture can potentially overcome the CNNs models if the dataset is
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sufficiently large and the computational resources have high performance enough to increase the
model complexity (increasing the number of attention heads, Transformer encoders, multilayer

perceptron, etc.)

| NS M | - i — | S

Figure 8. Comparison of the results for our deep-learning model based on ResNeXt against
bicubic interpolation of the low-resolution image, SRGAN, SRGAN-Transformer, and
SRGAN-DenseNet. (a) The original ground truth image. (b) Bicubic interpolation of the low-
resolution image. (c) The SRGAN result. (d) The SRGAN-Transformer result. () the SRGAN-
DenseNet result. (f) Our model result. (g1-g6) Enlarged image in the red boxes from (a-f),
respectively. (h1-h6) Enlarged images in the yellow boxes from (a-f), respectively.
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2.3.3 Performance of the Inception U-net architecture

Intersection over Union (loU) as known as the Jaccard index is the benchmark used to evaluate
the similarity between a predicted segmentation area and its labeled area (ground truth) [41]. The
concept of loU is to measure of pixels common between the target and predictions mask
(intersection) divided by the total number of pixels present across both the prediction mask and

ground truth (union) as shown in the equation below

__ target nprediction (10)
" target U prediction

IoU

The loU ranges from 0 -1 (0-100%) with 0 indicating that there is no overlapping area, whereas 1
indicates an impeccably overlapping area.
Dice similarity coefficient (DSC) is another well-known parameter used to evaluate the similarity
between the predicted area (our output) and ground truth [32]. The DSC can be calculated
following the equation below

psc =XM1 (11)

|X|+]Y]

It is remarkably similar to the loU. They are positively correlated. The unseen H&E cancer images
from the cancer imaging archive [34] were used to evaluate the performance of our Inception U-
net and the typical U-net Models. Table 2 shows their performance that the loU and DSC from the
Inception U-net Model are higher than the ones from the U-net Model. According to this result,
Inception U-net Model can surpass the original U-net Model by using the Inception architecture
as a core structure instead of a simple convolution block.
Although the Inception U-net can slightly surpass the original U-net, these improvements will have
a tremendous impact on the histopathology analyses because the histopathology image analysis

needs to perform on the vast area of H&E images (whole slide image), the small accurate and

inaccurate segmented nuclei of each small patch will be accumulated and lead to the correct and
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incorrect diagnosis results. For example, one of the criteria to determine tumor stages is the density
of inflammatory cells. The segmentation area can be used to determine it. Suppose there is a small
error in the segmentation of inflammatory cells in every small H&E image patch. In that case, the
total number of inflammatory cells on the whole slide image might be less accurate than the actual
one, so a pathologist could wrongly diagnose the tumor stage.

Table 2. The comparison of tumor cell nuclei segmentation performances using U-net and
Inception U-net architectures.

U-net Inception U-net
loU/Jaccard index 0.720 0.869
DSC/F1score 0.875 0.893

Ground truth Inception U-net

Green = Missing Red=Extra Yellow =Correct

Figure 9. Comparison results between the traditional U-net and Inception U-net by using H&E
images and ground truth from the dataset [34]. (a) A low density of nuclei H&E image. (b) A
high density of nuclei H&E image. The results from both models have been colored code such
that green denotes false negative, yellow denotes true positive, and red denotes false positive
pixels.

2.3.4 Performance of the jointly trained SRGAN-ResNeXt and Inception U-net Models
After jointly training SRGAN-ResNeXt and Inception U-net Models on another unseen dataset,

the performance of the ResNeXt generator was slightly improved due to the limited number of
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data (220 patches). Still, the performance of the Inception U-net was considerably enhanced as

shown in Figure 10, Table. 3, and Table. 4 below.

Jointly trained
ResNeXt Generator Ground truth
Inception U-net models

ResNeXt Generator
Inception U-net models

Low resolution
image

a | | :
r |
bzﬁ |
&

Figure 10. The improvement of the SRGAN-ResNeXt and Inception U-net after training them
jointly. (a) Low-resolution image input. (b1-b2) The ResNeXt generator and Inception U-net
models’ results. (c1-c2) The jointly trained models’ results. (d1-d2) High-resolution and
segmentation ground truth images.

Table 3 and Table 4 show the performance improvement of the jointly trained SRGAN-ResNeXt
and Inception U-net Models, respectively. Since the jointly trained models require to apply the
dataset that contains not only low-resolution and high-resolution images but also the corresponding
segmentation masks, preparing large data is expensive. Although the joint models were trained on
the small dataset (220 patches from two different tumor mice), the results look promising. The
performance of the jointly trained models can be potentially improved by training them on the
larger dataset.
Table 3. PSNR/SSIM compares results between the high-resolution generated and the ground

truth (realistic high-resolution image) dataset of the SRGAN-ResNeXt model and the jointly
trained SRGAN-ResNeXt.

PSNR/SSIM SRGAN-ResNeXt Jointly trained SRGAN-
ResNeXt
PSNR/SIIM 31.56 dB/0.91 31.63 dB/0.92
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Table 4. The comparison of tumor cell nuclei segmentation performances using U-net and
Inception U-net architectures.

Inception U-net Jointly trained Inception
U-net
loU/Jaccard index 0.50 0.84
DSC/Flscore 0.75 0.91

2.4 Conclusion

In this work, we demonstrated a practical approach to enhancing low-resolution H&E stained
images by using the state-of-the-art SRGAN-ResNeXt network. The model can deeply learn how
to map the low-resolution images to their corresponding high-resolution images. Even though cell
images contain sophisticated patterns and structures, the SRGAN-ResNeXt Model can still provide
high-quality reconstruction results. Moreover, it can outperform the original SRGAN Model.
Therefore, we take these advantages to characterize and quantify the nuclei from the generated
high-resolution images. The nuclei from those generated images were segmented using another
neural network: the Inception U-net architecture. Since we have generated both high-resolution
H&E images and their nuclei segmentation, we can derive both nuclei area, pixel intensity, and
other essential parameters to assist pathologists’ diagnosis. If the resolution of H&E images is poor
and unfavorable, the characterization could be inaccurate leading to misdiagnosis. Moreover, the
individually well-trained weights of SRGAN-ResNeXt and Inception U-net Models can be applied
as the pre-trained weights (transfer learning) for the jointly trained SRGAN-ResNeXt and
Inception U-net Models. The performance of the jointly trained models is noticeably improved
and promising. We anticipate this work can be applied in broad applications such as retrieving
image quality from a compressed archiving image for transferring among data networks and
enhancing image quality from a low-cost microscope. For the latter, these custom CNNs can help
solve the inaccessibility of advanced microscopes to acquire high-resolution images from low-

performance microscopes located in most remote clinical settings in developing nations. In future
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work, we intend to apply the proposed CNNs to decrease image acquisition time for a WSI H&E
scanner which typically uses a high NA objective lens in combination with a slow scan to acquire

a high-resolution image.
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CHAPTER 3: Recurrent and Convolution Neural Networks for Sequential Multispectral
Optoacoustic Tomography (MSOT) Imaging

Reprinted with permission from “A. Juhong, et al., “Recurrent and Convolutional Neural
Networks for Sequential Multispectral Optoacoustic Tomography (MSOT) Imaging™, Journal of
Biophotonics, 16, no.11 (2023): 202300142 » [42], © 2023 The Authors, Journal of
Biophotonics published by Wiley-VCH GmbH.

Volumetric optoacoustic imaging is a beneficial technique for diagnosing and analyzing biological
samples since it provides meticulous details in anatomy and physiology. However, acquiring high
through-plane resolution volumetric images is time-consuming, requiring a precise motorized
stage to move samples under the optoacoustic system along the z-axis. Here, we propose deep
learning based on hybrid recurrent and convolution neural networks to generate sequential cross-
sectional optoacoustic images. A multispectral optoacoustic tomography (MSOT) system was
utilized to acquire the dataset from breast tumors for training our deep learning model. This system
can simultaneously acquire the sequential images (cross-sectional images) of MSOT and
ultrasound. Furthermore, it provides a spectral unmixing algorithm applied to the MSOT images
for extracting the sequential images of a specific exogenous contrast agent. This study used ICG-
conjugated superparamagnetic iron oxide nanoworms particles (NWs-1CG) as the contrast agent.
Our deep learning model applies to all three modalities (multispectral optoacoustic imaging at a
specific wavelength, ultrasound, and NWs-ICG optoacoustic imaging). The generated 2D
sequential images were compared to the ground truth 2D sequential images acquired using a small
step size. The results of these three modalities can achieve excellent image quality where the
average of peak-signal-to-noise ratio and summation absolute errors between the ground truths

and the generated images is over 75 dB and less than 2,000. Instead of acquiring seven images
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with a step size of 0.1 mm, we can receive two images with a step size of 0.6 mm as input images
for the proposed deep learning model. The deep learning model can generate or interpolate other
five images with the step size of 0.1 mm between these two input images meaning we can save
acquisition time by approximately 71%.

3.1 Introduction

Multispectral Optoacoustic Tomography (MSOT) is an in vivo optical imaging modality for
molecular, anatomical, and functional imaging Fields [43, 44]. The principle of MSOT is based on
the optoacoustic effect, i.e., a molecule is excited by an ultra-short laser pulse, which can penetrate
through tissue several centimeters [45, 46], resulting in thermoelastic expansion surrounding the
molecule that generates a photoacoustic wave [47]. The ultrasound traducer is then used to detect
this wave as an ultrasound signal. The difference of absorption contrast of tissue in single
wavelength images is employed to reconstruct anatomical images. Using multiple wavelengths to
excite the tissue, we can obtain multispectral images from intrinsic and extrinsic signals. A laser
between 680 nm and 980 nm is the predominant source for intrinsic signals such as deoxygenated
hemoglobin, oxygenated hemoglobin, melanin, myoglobin, bilirubin, fat, etc. Extrinsic signals do
not usually occur in cells, tissue, or animals. Agents that can absorb in the near-infrared (NIR)
range such as indocyanine green, fluorescence proteins, nanoparticles, etc., can increase the
optoacoustic signal (extrinsic signal). Thus, they can be distinguished from intrinsic tissue
background signals by using effective spectral unmixing algorithms such as linear regression,
guided independent comment (ICA), and principal component analysis (PCA) [48, 49]. MSOT is
widely used for several studies such as cancer research [50-54], drug development [55, 56], and
nanoparticle [57-60]. However, using multiwavelength excitation to scan the sample is time-

consuming, especially cross-sectional scanning for 3D image reconstruction. Imaging needs to
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sweep all the wavelengths with every single scanning position. For in vivo experiments, this might
lead to image degradation from motion artifacts and potential lethality from prolonged anesthesia.

In recent years, deep learning-based approaches have played a vital role in optoacoustic
imaging, and they have been widely used in several applications such as image classification,
segmentation [61-65], quantitative photoacoustic imaging [66-70], image enhancement [71-75],
etc. One main advantage of deep learning for those applications is that it depends less on hardware
modifications. In addition, most of those deep learning techniques were designed to use a single
2D image as their input and apply convolution architectures for feature extraction. For instance,
deep learning for automatic segmentation of optoacoustic ultrasound (OPUS) images [76] used the
U-net architecture [18] to perform the image segmentation. U-net is a well-known convolution
neural network (CNN) architecture for image segmentation, particularly biomedical images [77-
80].

Nevertheless, there are no techniques based on deep learning to reduce the acquisition time
of cross-sectional scanning for 3D photoacoustic imaging. Herein, we propose the hybrid
architecture of convolution neural network (CNN) and recurrent neural network (RNN) for
generating sequential optoacoustic, unmixed optoacoustic of a specific contrast agent, and
ultrasound images to extend the stack of cross-sectional images and reduce acquisition time by
approximately 71%. This hybrid architecture is called Inception Generator Long Sort-Term
Memory (I-Gen-LSTM). The Inception Generator is a CNN model designed based on the
Inception U-net architecture. Inception is a convolution layer [81] that convolves the input in
parallel with different kernel sizes extracting more features than a simple convolution layer. RNN
is a robust and effective approach for sequential problems. It is a feed-forward neural network with

internal memory and performs the same function for every data input. In addition, the output of
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the current input depends upon the previous output. However, the original RNN has drawbacks
regarding exploding and vanishing gradients from backpropagation to update weights, particularly
long sequential inputs. Long Short-Term Memory (LSTM) networks [82] are improved RNN
networks capable of learning long-term dependencies by adding a forget gate, input gate, and
output gate. Therefore, we leverage Inception Generator and LSTM networks to generate
sequential images. Our results demonstrate that the 1-Gen-LSTM model is a versatile method that
can generate not only sequential optoacoustic images but also sequential unmixed optoacoustic
and ultrasound images.

3.2 Methods

3.2.1 Data acquisition

A commercial multispectral optoacoustic tomography (MSOT) system (inVision 512-echo, iThera
Medical GmbH, Munich, Germany) was used to acquire the data for training the 1-Gen-LSTM
model. The MSOT system has a 270-degree ultrasound transducer tomographic array, which can
acquire signals from multiple angles around an object. This tomographic array enables the system
for imaging complex shapes since it can capture 2-dimensional signals in the imaging plane. Figure
11(a) shows the detection and illumination geometry in the imaging chamber of the MSOT system.
In addition, this system provides a tunable laser with a range of 660-1,300 nm, which is particularly
suitable for most biological samples. The excitation pulse laser is used to illuminate the sample.
The sample absorbs this pulse and converts it to heat, which results in a transient thermoelastic
expansion that generates an acoustic wave. The ultrasound transducer is then used to detect this
acoustic wave, and the back-projection algorithm [83] is applied to the detected optoacoustic wave
to reconstruct the images. For the dataset preparation, transgenic mice [84] with breast tumors

were intravenously injected with indocyanine green (ICG)-conjugated superparamagnetic iron
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oxide nanoworms (NWs-ICG) [85], which accumulate in tumors longer than pure ICG through the
enhanced permeability and retention (EPR) effect [86]. Twenty-four hours after injection, the mice
were euthanized and the tumors were removed and dissected for this study. All procedures
performed on animals were approved by the University’s Institutional Animal Care & Use
Committee and were within the guidelines of humane care of laboratory animals. To acquire
images of the tumors, 4 mg of agarose powder was dissolved in 40 mL of warm deionized water.
The breast tumor was put in this dissolved agarose solution, allowing approximately 15 minutes
for the solution to solidify. The hardened agarose with the tumor inside shown in Figure 11(b),
was grasped by the holder and then scanned by the inVision MSOT system with the excitation
pulse at wavelengths from 800 nm to 1000 nm (a comprehensive range of the NWs-ICG study).
Since the inVision MSOT system can provide corresponding ultrasound images, NWs-ICG
optoacoustic images obtained through linear spectral unmixing algorithm [87], and each single-
wavelength optoacoustic image, these three imaging modalities were simultaneously acquired in
every scanning position. Figure 11(d1-d4) shows the ultrasound images of the breast tumor with
different scanning positions, Figure 11(el-e4) shows the corresponding NWs-ICG optoacoustic
images reconstructed from multispectral optoacoustic imaging with the excitation pulse at
wavelengths from 800 to 1,000 nm by using the multispectral unmixing algorithm; Figure 11(f1-
f4) shows the corresponding single-wave optoacoustic image at 800 nm excitation; and Figure

11(g1-g4) shows the corresponding overlaid images of these three imaging modalities.
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Figure 11. Ultrasound, NWSs-ICG optoacoustic obtained through multispectral unmixing, and
optoacoustic at 800 nm excitation imaging of an ex vivo breast tumor from a mouse
intravenously injected with NWs-ICG. (a) The detection and illumination geometry in the
imaging chamber of the MSOT system. (b) The breast tumor is embedded in agarose. (c) NWs-
ICG structure. (d1-d4) Ultrasound images of the breast tumor with different step sizes. (el-e4)
The corresponding NWs-ICG optoacoustic images were obtained through multispectral
unmixing. (f1-f4) The corresponding single-wavelength (Aex = 800 nm) optoacoustic images.
(91-g4) with an overlay of the ultrasound, the NWs-1CG optoacoustic(colormap), and the single-
wavelength optoacoustic images.
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3.2.2 1-Gen-LSTM and discriminator models

The 1-Gen-LSTM model comprises three main neural networks depicted in Figure 12(a-c). The
first neural network is the Inception encoder & decoder network based on Inception U-net
architecture. The original U-net architect employs simple convolution blocks with the skip
connection of encoders and decoders at the same dimension helping the model to circumvent the
vanishing and exploding gradients problems. However, the simple convolution blocks might be
insufficient to extract all crucial information comprehensively. Inception architecture is one of the
effective CNNs architectures since it applies a wide range of kernel sizes to extract global and
local features. A large and a small kernel size are tailored to extract information distributed
globally and locally, respectively. With this attribute, the encoder & decoder network was designed
using Inception U-net as its backbone as shown in Figure 2(a), for improving the model capability.
This network takes two 2D images, acquired from an arbitrary consecutive position with a step
size of 0.6 mm, as its inputs (input 1 and input 2, as shown in Figure 12(a)). The encoder shown
on the left side of Figure 12(a) generates encoder outputs (E1n -E5n, where n is the input image
number, i.e., 1 and 2). Inception architecture in the encoder with three different kernel sizes (1x1,
3x3, and 5x5) assembled as the parallel filters are used to extract features from the tensors followed
by a rectified linear unit (ReLU) and a 2x2 max pooling with the stride of 2 steps for
downsampling, respectively. Similarly, Inception architecture is also used in the decoder blocks.
The encoder blocks are used to generate decoder outputs (D1n-D5n, where n is the input image
number, i.e., 1 and 2) as shown in the right side of Figure 12(a) followed by a feature map
upsampling, a 2x2 up-convolution (halving the number of feature channels), and a corresponding

concatenation from the encoder part.
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The second neural network is the convolutional LSTM network (ConvLSTM) [88], a recurrent
neural network for spatio-temporal prediction. It has a convolutional structure in both the input-
to-state and state-to-state transitions as shown in the bottom right of Figure 12(b). In other words,
internal matrix multiplications are exchanged with convolution operations. Consequently, the data
flowing through the ConvLSTM cells keeps the input dimension instead of being a 1D vector with
features. The main equations of ConvLSTM are expressed in Equations (12-16) below, where ‘*’

and ‘o’ represent the convolution operator and the Hadamard product (element-wise matrix

multiplication), respectively. All variables in Equations (12-16) were shown in the “ConvLSTM

block” in Figure 12(b).

ip = oWy *Xe+ Wy *He10Ciq + by) (12)
fo = oWyp*Xe+ Wyex He_q + WepoCrq + by) (13)
¢t =  froCp_q + irotanh (W, * Xy + Wy * Hi_1 + b.) (14)
0r = 0(Wyo*X¢ + Whyo * Heq + WeooCy + D) (15)
H; = ootanh (G;) (16).

The ConvLSTM takes the outputs of the Inception encoder from both input images (E11-E51 and
E12-E52) as its inputs to generate five sequential blocks (Recurrent Convl to Recurrent Convb)
as shown in Figure 12(b). Recurrent Conv 1, 2, 3, 4, and 5 have dimensions of (5x128x128x512),
(5x64x64x512), (5x32x32x512), (5x16x16x512), and (5x8x8x512), respectively. The first
dimension represents the number of output images (five sequential output images). Lastly, it is the
sequential image generator network inspired by U-net architecture. The model takes Recurrent
Conv 1-5, two input images, encoder outputs (E11-E51 and E12-E52), and decoder outputs (D11-
D41 and D12-D42) to reconstruct five sequential images of different scanning positions as shown

in Figure 12(c). The left side of Figure 12(c) shows the concatenated encoder and decoder outputs
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generated by the Inception encoder &decoder (Figure 12(a)). The right side of Figure 12(c) shows
Conv2D transpose and Conv2D operations for the Recurrent Conv 1-5 generated by the
ConvLSTM blocks (Figure 12(b)) and the concatenated encoder & decoder outputs.

All Conv2D transpose, Conv2D blocks utilize ReLU as their activation function except the last
Conv2D* that applies hyperbolic tangent or tanh as its activation function. Indeed, the Recurrent
Conv blocks regulate the gradual change in the sequential output images. In short, the 1-Gen-
LSTM model takes two images acquired by consecutive positions with 0.6 mm steps size and
generates the five sequential images between these two images with gradual change following the
scanning positions (step sizes of 0.1 — 0.5 mm). The ground truth images acquired using a small
step size (0.1-0.5 mm) were used to determine the loss value from these five generated images.

The loss functions will be elucidated in Section 3.2.3.
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E11-E51 are the encoders from Input 1

E12-ES52 are the encoders from Input 2

DI11-D51 are the decoders from Input 1

D12-D52 are the decoders from Input 2

Figure 12. I-Gen-LSTM and discriminator architectures. (a) Inception encoder and decoder
network were applied to both images (inputl and input2). (b) ConvLSTM network for
generating the sequential blocks (Recurrent Conv 1-5) fed to the sequential image generator
network for reconstructing the sequential output images. (¢) The sequential image generator
network. (d) The discriminator network.
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Figure 12 (cont’d).
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The discriminator network shown in Figure 12(d) is a simple convolution network designed to

evaluate the similarity between the ground truths and generated images. The model comprises
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eight convolutional layers and two fully connected layers. After each convolution block, a batch
normalization layer is used, followed by an activation function named the Leaky ReL U function
(0=0.2). The number of 3x3 filter kernels increases by a factor of 2 from 64 (the first layer) to 512
(the eighth layer) kernels. The last two layers are dense layers working as a classification block,
predicting the probability of an image being either real or fake. To train the 1-Gen-LSTM model,
we assemble the models as a generative adversarial network (GAN) [89] shown in Figure 13

below.

. Input images Generated images Ground truth images:

_________

{ )

i b

i ! y

1 T : ,——L——————x e |
E i ' I-Gen-LSTM _,[ Discriminator
E i model modcl

i :

_________

Cor:\blned == ' Content loss and Neighbor loss | & Adversarial loss
0ss _

Figure 13. GAN with the combination of three loss functions (the content loss, the neighbor
loss, and the adversarial loss functions) for training the 1-Gen-LSTM model.

3.2.3 Loss functions

To optimize the I-Gen-LSTM model, we designed custom-made loss functions, namely the content
loss (VGG19 loss, I%) [35], adversarial loss (Discriminator loss, I35 ), and neighbor loss (I3
as shown in Equation (17). Where Cw1, Cw2, and Cws are the hyper-parameters set as 0.7, 0.1, and

0.2, respectively.

155 = Cyilpes + Cuplos, + Cusli® (17)

The content loss or VGG loss (Ij2¢), which is defined as the Euclidean distance between the

feature map of the generated image (Ggg(IX%)) and the ground truth (I5%), can extract high
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dimensional features helping the model to generate the image with perceptually satisfying
solutions without excessively smooth textures. The Iy5. loss is based on the ReLU activation
layers of the pre-train 19-layer VGG network and it can be calculated following Equation (18) as
shown as

;] (18)
2
Ipge = mz Z( B; i (I5)xy — B (Goc(UX5)xy)

Y x=1y=1

where W; ; and H; ; describe the dimensions of the respective feature maps within the VGG
network. The features map (4; ;) can be obtained by the j-th convolution before the i*" maxpooling

layer within the VGG19 network.

Moreover, the adversarial loss (I55,,) is also employed to distinguish the similarity of the two
images. It is defined as the probabilities, varying from 0 to 1, which are the result of the
discriminator model (Dg,, (Gg, (IX5))) as shown in Equation (19). Where IS is the input images,

G, is the generator model, and Dy, is the discriminator model.

v (19
I8, = ) ~logDy, (G, (1)

n=1

Apart from using the content and adversarial losses, the neighbor loss is also applied to optimize
the model. Since the I-Gen-LSTM model generates sequential images, the neighbor loss is
essential to regulate the change of each generated image in the sequence. The concept of the
neighbor loss function is to differentiate between the current generated image and the neighbor
images in the same sequence as expressed in Equation (20) below as

(20)

N
I35 = Z(mse(]n, In_1) + mse(ly, In41))

n=1

The custom-made loss function effectively leverages the combination of these three loss

functions to train the 1-Gen-LSTM model that can generate high-quality sequential images.
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3.2.4 1-Gen-LSTM model for Volumetric Imaging

To collect the database for training the model, 16 breast tumors from mice intravenously injected
with NWs-ICG were acquired by the MSOT system. The data from these tumors were allocated
for training (11 tumors), validation (3 tumors), and testing (2 tumors) datasets. The training time
on Google Colaboratory (CoLab) Pro is approximately 40 hours. After initializing and importing
the model, the 1-Gen-LSTM can generate five sequential images by taking less than 1 second for
the five output images on a personal computer (PC) with an 11" Gen Intel core i7-11700k CPU,

16 GB RAM, and an NVIDIA RTX 3090 graphic card.

3.3 Results and discussion

3.3.1 Sequential NWs-ICG optoacoustic, ultrasound, and optoacoustic (Aex = 800 nm)
image reconstruction.

The breast tumor dissected from an NWs-ICG-injected mouse was scanned under the MSOT
system. Figure 14 shows the generated sequential images generated by the 1-Gen-LSTM model.
Two input images of each modality, acquired from consecutive stage positions with a step size of
0.6 mm, are used as the inputs for the I-Gen-LSTM model. Here, we demonstrate a z-scanning

range from 9.7 mm-10.3 mm with a step size of 0.1 mm as a representative.
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Figure 14. Results of sequential image reconstruction generated by the 1-Gen-LSTM model.
The two input images for each modality simultaneously acquired with a step size of 0.6 mm
were fed into the I-Gen-LSTM model. The green, blue, and violet boxes show generated images
(GEN), ground truth (GT), and the absolute error between GEN and GT images (|GT-GEN])
represented as color map images. The red-dashed boxes show the local features fairly change
along the z-scanning position and the yellow-dashed boxes are the corresponding enlarged
images of the red-dashed boxes. The scale bar is 5 mm. (a) NWs-ICG optoacoustic sequential
image reconstruction result. (b) Ultrasound sequential image reconstruction result. (c) Single-
wavelength optoacoustic (Aex = 800 nm) reconstruction result.
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Figure 14 (cont’d).
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The red-dashed boxes in Figure 14 show local features, which are fairly changing along the z-
scanning position and are somewhat straightforward to observe. The orange-dashed boxes are the
corresponding enlarged images of the red-dashed boxes. Figure 14(a) shows the sequential image
reconstruction result of NWs-ICG optoacoustic imaging, Figure 14(b) shows the result of
ultrasound imaging, and Figure 14(c) shows the result of single-wavelength optoacoustic (Aex =
800 nm) imaging. The average Peak-signal-to-noise ratio (PSNR) dB/ the average summation of
absolute errors (SAE) between the ground truths (GT) and generated images (GEN) for this
scanning range of NWs-ICG optoacoustic, ultrasound, and optoacoustic (Aex = 800 nm) imaging

are 87.72 dB/923.66 ,78.83 dB/4,323.19, 75.60 dB/2,223.40, respectively.
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3.3.2 Three-dimensional reconstruction of the stack 2D NWs-1CG optoacoustic, ultrasound,
and optoacoustic (Aex = 800 nm) images

Since the MSOT system and our deep learning model provide the stack of multiple cross-sectional
images for NWs-1CG optoacoustic, ultrasound, and optoacoustic (Aex = 800 nm) images, we can
use these images to reconstruct three-dimensional (3D) images by using Amira (Mercury
Computer system, Berlin, Germany) software. Figure 15 shows the 3D reconstruction results of
the ground truth and the generated images. Figure 15(a) demonstrates the 3D reconstruction of
generated images from the 1-Gen-LSTM model and Figure 15(b) shows the reconstruction of the
ground truths acquired by mechanical scanning. After finished the experiment, the tumor was
removed from the agarose and sent to the histopathology lab (MSU-IHPL Research facility) to

prepare a Hematoxylin-and-Eosin (H&E) stained breast tumor slide shown in Figure 15(c).
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Flgure 15. 3D image reconstruction of the breast tumor using cross-sectional NWs-ICG
optoacoustic, ultrasound, and optoacoustic (Aex = 800 nm) stacked images. (a) The 3D
reconstruction result of the NWs-ICG optoacoustic, ultrasound, and optoacoustic (hex = 800 nm)
images generated by the I-Gen-LSTM model with a step size of 0.1 mm. (b) The 3D
reconstruction result acquired by mechanical scanning with a step size of 0.1 mm. (c) The
photograph of the corresponding tumor and its H&E slide image.
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3.3.3 Evaluations

The NWs-1CG optoacoustic, ultrasound, and optoacoustic (Aex = 800 nm) images from two tumors
not used for training the model were utilized for the model evaluation. Each tumor was scanned
with a step size of 0.1 mm. Every two-image (with a 0.6 mm scanning step in between) was
assigned as the input for the 1-Gen-LSTM model to generate five sequential images with a step
size of 0.1 mm. Here, the model was evaluated using four quantitative metrics: the average PSNR,
SAE (GEN, GT), SAE (Input,, GT),and SAE (Input,, GT). They were applied to the testing
dataset acquired from the tumors for all scanning positions. A large PSNR and a small SAE (GEN,
GT) imply high-quality generated images. Indeed, if the SAE (GEN, GT) can perform better than
SAE (Inputl-GT) and SAE (Input2-GT), it also means that the model can effectively generate

sequential images. All average evaluation metrics can be calculated following Equation (21-23).

Average PSNR = YY ¥? PSNR;(GEN; ,GT;) (21)
5XN

Average SAE (GEN, GT) = Z?Z?SAE,'(GEM ,GT)) (22)
5XN

Average SAE (Input, ,GT) = Z?’ >? SAE;(Inputy, , GT;) (23)
5XN

Where,
N is the number of scanning positions with a step size of 0.6 mm,

I3t
1

GEN; is the generated image at “i” scanning position in between two input images (acquired with
a step size of 0.6 mm),
GT; is the corresponding ground truth,

Input; images are the two input images (k=1 and 2) acquired from arbitrary consecutive positions

with a step of 0.6 mm.
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Figure 16 shows the representative result from one of the evaluated tumors as the graph of the
average PSNR and SAE (GEN, GT) vs. scanning positions. Table 5 shows the average evaluation
metrics of the generated sequential NWs-1CG optoacoustic, ultrasound, and optoacoustic (Aex= 800
nm) images for all testing datasets. Overall, the average PSNR and SAE between generated images
and ground truths of all modalities are greater than 75 dB and less than 2,000, respectively.

This indicates that the I-Gen-LSTM model can generate sequential images with promising results.
To comprehensively evaluate the model performance, we also compared SAE (GEN, GT) to SAE
(Input,, GT) and SAE( Input,, GT) as the baseline for comparison. The average SAE (GEN, GT)
of optoacoustic (A= 800 nm) and ultrasound imaging performs better than the average
SAE(Input,, GT) and SAE( Input,, GT), but the NWs-ICG optoacoustic imaging does not (the
average SAE (GEN, GT) is slightly higher than the average of SAE(Input,, GT) and SAE(
Input,, GT)) due to the tiny changing features in the sequential NWs-1CG optoacoustic imaging
and the limited number of the training dataset. Although the overall result is favorable and
encouraging, the deep learning model could be improved in future work. We will use a larger
dataset with a larger image size to train the deep learning model so that the convolution/LSTM
blocks can efficiently capture more sequential features, especially in a tiny changing feature
modality such as NWs-1CG optoacoustic imaging.

Table 5. Average quantitative metrics of optoacoustic (Aex = 800 nm), NWs-1CG optoacoustic,
and ultrasound images generated by the proposed deep learning model.

Average quantitative Optoacoustic (Aex = NWs-1CG Ultrasound
metrics 800 nm) optoacoustic
PSNR (dB) 76.53 83.75 80.44
SAE (GEN, GT) 1,706.12 858.54 1,265.87
SAE (Inputy, GT) 6,812.92 406.59 6,695.71
SAE (Input,, GT) 5,294.94 284.02 4,902.67
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Flgure 16. The PSNR and SAE (GEN, GT) evaluation in one of the testing tumors. (a-b) The
graph between the PSNR and SAE (GEN, GT) values vs. scanning positions for all generated
OPUS, NWs-ICG optoacoustic, and optoacoustic (Aex = 800 nm) images, respectively.

3.4 Conclusion

This work demonstrates a deep learning technique based on recurrent and convolution neural
networks for generating sequential NWs-ICG optoacoustic (multispectral unmixing), ultrasound,
and optoacoustic images. It has shown robust and promising performance in the accurate
reconstruction of the sequential images for all modalities, according to the quantitative evaluation
of model performance using the PSNR and SAE for all scanning positions of the generated images
(reconstructed by the deep learning model) and ground truth (acquired by mechanical scanning).
The architecture of our model is versatile since it can promisingly generate sequential cross-
sectional images of three modalities from the commercial MSOT system. Using our deep learning
can substantially reduce acquisition time. However, all the training data were acquired from ex

vivo tissues completely fixed in agarose. Model performance with images acquired in vivo may be
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affected by cardiac and respiratory motion. In the future, we will explore the possibility of
optimizing and applying the model to generate sequential images of in vivo samples with motion

artifacts.
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CHAPTER 4: Multi-head Attention U-Net for MPI-CT Image Segmentation
Reprinted with permission from “A. Juhong, et al., "Multi-head Attention U-Net for Magnetic
Particle Imaging-Computed Tomography image segmentation.” Advanced Intelligent Systems, 6,
no. 10 (2024): 2400007 [90], © 2024 The Author(s), Advanced Intelligent Systems published by
Wiley-VCH GmbH.

Magnetic particle imaging (MPI) is an emerging non-invasive molecular imaging modality with
high sensitivity and specificity, exceptional linear quantitative ability, and potential for successful
applications in clinical settings. Computed tomography (CT) is typically combined with the MPI
image to obtain more anatomical information. Herein, we present a deep learning-based approach
for MPI-CT image segmentation. The dataset utilized in training the proposed deep learning model
is obtained from a transgenic mouse model of breast cancer following administration of
indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoworms (NWs-1CG) as the
tracer. The NWs-ICG particles progressively accumulate in tumors due to the enhanced
permeability and retention (EPR) effect. The proposed deep learning model exploits the
advantages of the multi-head attention mechanism and the U-Net model to perform segmentation
on the MPI-CT images, showing superb results. In addition, we characterized the model with the
different number of attention heads to explore the optimal number for our custom MPI-CT dataset.
4.1 Introduction

MPI is a highly sensitive imaging modality initially introduced in 2005 [91-93]. Unlike traditional
imaging techniques such as magnetic resonance imaging (MRI), sonography, computed
tomography (CT), and X-ray, MPI is not employed for structural imaging purposes. Nevertheless,
it is a tracer imaging modality akin to positron emission tomography (PET) and single photon

emission computed tomography (SPECT). The concept of MPI is to detect the three-dimensional
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distribution of superparamagnetic iron-oxide nanoparticles (SPIONs) with extraordinary contrast
and sensitivity, allowing us to track and quantify the tracer materials effectively. In addition, MPI
signal can only be detected from the administered tracer providing an image without background
as well as improving signal-to-noise ratios. Indeed, the development of MPI involved
strengthening the existing imaging modalities (MRI, PET, SPECT, etc.). For instance, PET and
SPECT tracers typically have half-lives in a range of minutes to hours, whereas the MPI tracer can
last for several days to weeks [94]. Therefore, MPI is more eminently suitable for dynamic imaging
applications than traditional tracer imaging methods. Numerous prototypes and commercial MPI
scanners have demonstrated impressive results in in-vivo studies for vascular imaging [95-97],
oncology [98-100], and cell tracking [101, 102]. The MPI system for humans is under development
and may become available in the near future [103]. Like PET, an MPI image is frequently
combined with a CT image for registering the particle signal (the MPI image) and the anatomical
information (the CT image). This will enhance the diagnostic potential by identifying the precise
location of functional events in the body [104].

Biocompatibility is one of the essential features for using biomaterials, particularly MPI
tracers (iron oxide particles), for in-vivo applications and clinical trials. Nanoworms (NWs) are
biocompatible iron oxide particles widely used for biomedical applications. NWs include a
considerably lower inflammatory response than spherical iron oxide nanoparticles [105]. NWs are
a nanostructure with an elongated assembly of iron oxide (10) [106]. This structure can potentially
augment the nanoparticles’ capability for circulation and tumor targeting. Due to their nanoscale
dimensions, NWs can remain in tumors longer than pure fluorescence contrast agents, also

recognized as the enhanced permeability and retention (EPR) effect [107, 108].
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Recently, image processing based on deep learning has become a promising approach for
medical applications due to the rapid development of computation technologies for image
classification [109-111], regression [112-114], reconstruction [115-117], and segmentation [118-
121]. Deep learning models contain a large number of function approximators. As a result, the
models without further modifications tend to neglect essential parts of the input and focus on
others. The use of the attention mechanism [122] is one of the practical approaches to remedy this
problem. The attention mechanism is an ingenious and powerful technique allowing neural
networks to focus on meaningful parts of an input tensor. This mechanism is the key innovation
behind numerous successful deep learning architectures such as TransUnet [123], BRET [124],
and Swin transformer [125]. Multiplicative attention (Luong attention) [126] and additive attention
(Bahanau attention) [127] are two initial instances of attention sparking the revolution. Since
multiplicative attention implements matrix multiplication for calculating the output, it is more
memory-efficient in practice and faster than additive attention. However, the additive attention can
be superior to the multiplicative attention for large dimensional input features [128]. The U-Net
architecture [129] is a widely recognized convolutional neural network (CNN) that has achieved
prominence in the field of medical image segmentation due to its simplicity and remarkable
performance. The original U-Net architecture contains two main components: an encoder and a
decoder. The skip connection mechanism is added to the same dimensional encoder and decoder.
Essentially, it combines spatial information from the down-sampling path (encoder) with the up-
sampling path (decoder) to retain marvelous spatial information. In addition, the skip connection
mechanism allows the gradient descent to readily propagate back to update the weights (learnable
parameters). However, the skip connection mechanism brings along the poor feature representation

from the encoder path. The attention U-Net architecture [40] can tackle this problem by
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implementing the attention mechanism at the skip connection, allowing the model to actively
suppress actions at irrelevant features. This reduces the computational resources wasted on
irrelevant activations and provides superior network generalization. The attention mechanism
applied in the attention U-Net is called the attention gates (AGs) [130] based on additive attention.
The CNN model with AGs can be easily trained from scratch and boost the model’s performance
by automatically learning to focus on some crucial features without additional supervision.
Available MPI data are remarkably limited for a computational study of robust MPI image
quantification. Herein, we propose a multi-head attention U-Net model for the MPI-CT image
segmentation. The MPI-CT images acquired from mice with breast tumors were manually labeled
as the ground truths for training the model. The attention U-Net model [131] inspires the proposed
model. Still, we apply the attention mechanism in parallel (multi-head attention) to step up the
model capability for focusing on noteworthy features.

4.2 Methods

An extensive overview of the workflow involved in training the proposed multi-head attention U-
Net model is shown in Figure 17 below. First, NWs were synthesized by the co-precipitation
method of Fe?* and Fe** salts with the polysaccharide dextran coating, as depicted in Figure 17(al),
the particles were then conjugated with ICG, resulting in the formation of conjugated
superparamagnetic iron oxide nanoworms referred to as NWs-ICG [85]. In addition, we also
acquired a transmission electron microscopy (TEM) image of NWs-ICG particles as shown in
Figure 17(a2). With this structure, the detection of NWs-ICG can be achieved by fluorescence
imaging and optoacoustic imaging, in addition to the use of MPI as shown in Figure 17(a3). Thus,
this offers captivating prospects for a multimodal imaging study. However, this paper mainly

focuses on MPI. A mouse with breast tumors was injected with NWSs-ICG through the intravenous

57



administration injection method, followed by MPI-CT image acquisition. Figure 17(b1) shows the
MPI and micro-CT image systems used in this work. The fundamental concept of MPl is illustrated
in Figure 17(b2). In short, an intense magnetic field is generated by two permanent magnets, and
the inside of this magnetic field contains a small area with low magnetic field intensity known as
the field-free region (FFR). By rapidly moving the FFR across the imaging volume, the
magnetization of SPIONs passing through the FFR induces a signal (oscillating changes in
magnetization) in the imager’s receive coil. In other words, SPIONs not passing not passing
through the FFR do not generate a signal in the receiver coil due to a strong magnetic field outside
the FFR inhibiting SPIONs from rotating. Lastly, the MPI-CT images were manually labeled as

the ground truths for training the deep learning model as shown in Figure 17(c).
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Figure 17. Overview of MPI-CT image segmentation using the custom dataset. (a) An injected-
NWs-ICG breast tumor mouse; (al) the chemical structure of NWs-ICG; (a2) TEM image of
NWs-ICG particles with a scale bar of 40 nm; (a3) the multimodality imaging (fluorescence,
optoacoustic, and MPI) of the tumor dissected from the NWs-ICG injected mouse. (b) MPI-CT
image acquisition; (b1) MPI scanner and Micro-CT imaging system; (b2) illustration of the MPI
principle. (c) Ground truth labeling in MPI-CT image segmentation.
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4.2.1 Dataset preparation

To acquire a custom MPI-CT image dataset, MMTV-PyMT transgenic mice with breast cancer
were intravenously injected with NWs-ICG at the concentration and volume of 2 mg/mL and 400
pL, respectively. All procedures used in experiments conducted on animals were approved by the
Institutional Animal Care & Use Committee (IACUC) of Michigan State University. The
Momentum MPI scanner (Magnetic Insight, Inc., Alameda, CA, USA) was employed to acquire
the 3D MPI images of the NWs-ICG injected mice. The scanner was configured with the following
parameters: 3D scan mode, Z FOV 10.0 cm, number of projections 21, and selection field gradient
5.7 T/m. The Micro CT system (PerkinElmer, Inc., Hopkinton, MA, USA) with the following
parameters: speed scan mode and voltage of 90 kV was then used to acquire the corresponding CT
images. Finally, 3D MPI-CT images were reconstructed using VivoQuant software (Magnetic
Insight, Inc., Alameda, CA). The imaging was performed at four different time points: 1 hour, 24
hours, 48 hours, and 72 hours after injection. Therefore, with one mouse, we can obtain 3D datasets
at these four different time points. However, we only focus on 2D images in this work. To obtain
the 2D image dataset, the 3D images were rotated with random angles for capturing the 2D images,
and we had to ensure that the perspectives or rotation angles were not the same (0 or 180 degrees
from the existing images) for the data cleaning purpose. Figure 18(a) shows the MPI-CT images
of the NWs-ICG injected mouse 1-72 hours post injection. MPI signal areas from MPI-CT images
were manually labeled as the ground truth for training the segmentation deep learning model.
There are 104 2D MPI-CT images and their corresponding ground truths from four different mice
used for this study (91 images for a training dataset, 4 images for a validation dataset, and 9 images
for a testing dataset). To affirm that there were NWs-ICG particles in the tumor tissues, after

acquiring MPI-CT images, the tissues were dissected from the mice and preserved in a solution of
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10% neutral buffered formalin (NBF). These NBF-fixed tissues were embedded in paraffin,
followed by sectioning with a thickness of 5 um and staining with Prussian Blue to detect ferric
from iron and hematoxylin and eosin (H&E). All histological procedures were carried out by the
Michigan State University investigative histopathology laboratory. Figure 18(c-d) show the
Prussian blue stained histology image of one of the dissected tumors from NWs-ICG injected mice

acquired by a commercially available microscope (Nikon Eclipse Ci, Nikon Inc, Tokyo, Japan).

(a)

1,000 pm

Figure 18. (a) MPI-CT images of the NWs-ICG injected mouse acquired from 1 — 72 hours
post-injection. The yellow-dashed circles (MPI-CT image at 72 h) show the MPI signal of
NWs-1CG from the tumors. (b) Photograph of the NWs-ICG injected mouse. (c-d) Prussian
blue stained histological image of the breast tumor dissected from the NWs-ICG injected
mouse acquired by 10x and 40x magnifications, respectively.
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4.2.2. Multi-head attention U-Net

The main structure of the multi-head attention U-Net model is somewhat similar to the original
attention U-Net model, which consists of the encoder, bottleneck, decoder, and single-head
attention layers. However, the proposed model applies parallel attention gates (AGSs) in each skip
connection from encoder to decoder instead of a single attention head. This modification allows
the model to collect and incorporate more salient information effectively. In addition, employing
parallel AGs enables the model to simultaneously process input from distinct representation
subspaces at numerous locations [31]. Figure 19(a) illustrates the multi-head attention U-Net
architecture. The first part is the encoder (the left side of Figure 19(a)). The input image is
progressively filtered and down-sampled by applying a convolution block, then a rectified linear
unit (ReLU), and max-pooling 2x2 filters with a stride of 2. Furthermore, the number of feature
channels is doubled at each downsampling step. The second part is multi-head attention gates
(MH-AGS). The features propagated through the skip connections are filtered by exploiting these
MH-AGs, which can help the model localize and focus on relevant features without cropping
regions of interest. The third part is the decoder (the right side of Figure 19(a)). It consists of a
concatenation of the attention weights from the MH-AG layer, a convolution block with the ReLU
activation function, and a feature map upsampling followed by a 2x2 up-convolution resulting in
a reduction of the number of feature channels by half. Figure 19(b) shows the MH-AG architecture
employed between the encoder and decoder of the U-Net in Figure 19(a). MH-AG is a parallel
mechanism block that minimizes the need for training a significant number of weights (learnable
parameters) to enhance the performance of the U-Net model further. Moreover, the MH-AG adopts
the same transformation in all branches to minimize the need to adjust hyperparameters in each

branch manually. The output of each branch in MH-AG is obtained by performing element-wise
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multiplication between the input feature maps and attention coefficients (2}, = x/! - a}) allowing
the model to identify salient information. To identify focus areas, a gating vector (g;) is assigned
to each pixel. The gating vector encompasses contextual information utilized to suppress lower-
level feature responses selectively. The gating coefficient is derived through the utilization of

additive attention mathematically represented as follows:

Q(lltt = ¢T(01(WxTxil + Wngi + bg) + bzp), (24)
Uil = 02 (q(lltt(xillgi; @att))r (25)
“Where o, (x;) = Fw—— represents the sigmoid activation function, 0, represents a group of

parameters that comprises linear transformation w, € RF>*Fine, w, € RFo*Fint 4) € RF>*Fine | and
bias terms by, € R, and b, € RFg*Fint_ Channel-wise 1 x 1 x 1 convolutions for the input tensor

are employed for computing the linear transformations.
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Figure 19. Schematic of the multi-head attention U-Net (the proposed model) for MPI-CT
image segmentation. (a) The left side of the schematic represents the encoder blocks; the
tensor is progressively down-sampled by a factor of 2 (e.g., Hi1 = Hs/16); the right side
represents the decoder blocks, the tensor is up-sampled gradually by a factor of 2. The muti-
head attention gates (MH-AGs) are applied between the encoder and decoder to assign
weights (learnable parameters) to noteworthy features. (b) Multi-head attention gate (MH-
AG) architecture (n is the number of attention heads). Input features (x!) are scaled with
attention coefficients (o) computed in each branch of MH-AG. The gating signal (g)
collected from a coarser scale provides activations and contextual information, which is
applied to determine spatial regions. The output of each branch is then concatenated before
feeding to the convolution layer, batch normalization, and sigmoid function to compute the
final result of MH-AG.
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4.2.3 Loss function

Dice loss is widely used for medical image segmentation by comparing the similarity of two binary
images (ground truth segmentation and predicted segmentation). Since our custom MPI-CT image
dataset is limited and we want to prove the concept that multi-head attention can potentially
enhance the model performance for MPI-CT image segmentation, the dice loss is simply used to
train all models for a purpose of performance comparison. Equation 26 shows the dice loss
function.

_ @+ (26)

DiceLoss(y,y) =1 i)’

Where y represents the ground truth and y represents the predicted segmentation generated by a
deep learning model. After assembling all the parts for building the models, the MPI-CT images
and their corresponding segmentation masks were then utilized to train the models as inputs and
ground truths, respectively with the following hyperparameters: an Adam optimizer [132] with an
intimal rate of 5x10, a batch size of 8, and 60 epochs. All the models in this study were trained
on a personal computer equipped with an 11" Gen Intel core i7-11700k CPU, 64 GB of RAM, and
an NVIDIA RTX 3090 graphic card.

4.3 Results and discussion

4.3.1 Gradient-weighted class activation maps (Grad-CAM)

Gradient-weighted class activation mapping (Grad-CAM) [133] is a class-discriminative
localization technique. It can generate a visual representation of any CNN-based model without
altering the model itself. Grad-CAM leverages the gradient information flowing through a specific
convolutional layer to assign crucial weights to each neuron to determine a particular decision of
interest. This gradient information is then used to calculate the localization map visualized as a

heat map image. In short, the intuitive interpretation of Grad-CAM is based on the concept that
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the model must observe some pixels and decide what object is present in the image, which can be
interpreted as a gradient in mathematical terms. To compute Grad-CAM, the equations below are
applied. Equation 27 is used to calculate the neuron’s important weight (ay ) by calculating the
global average pooling of the gradient from backpropagation. «ay, is then employed to calculate

the localization map Grad-CAM as shown in Equation 27 and 28.
1 ay°¢
af =5 (Ti% o) @7
ij

LGraa—cam = ReLU(z “liAk)' (28)
k

Where % is the gradient from backpropagation, A* is feature map activation of a convolutional
i

layer, ay, is neuron import weight, L,.,4—canm 1S localization map Grad-CAM (coarse heat map).

Grad-CAM is applied to each multi-head attention layer (MH-AG layer 1-4) output in order to
characterize and understand the multi-head attention U-Net model behavior. The attention weights
of different MH-AG layers are visualized as shown in Figure 20. Figure 20(a) shows the input
image, ground truth, and the segmentation outputs of 6-head, 4-head, and 2-head attention U-Net
models. Figure 20(b) shows the Grad-CAM results of the corresponding attention U-Net models.
According to these Grad-CAM results and final segmentation outputs, the 4-head attention U-Net
model can exceptionally perform MPI-CT image segmentation and surpass 6-head and 2-head
attention U-Net models since it can focus on more meaningful features and predict a more accurate
result. It is interesting to note that each MH-AG layer output of the 4-head attention U-Net model
pays attention to different meaningful features, the MH-AG layer 4 pays attention to the overall
boundary of the MPI signal, the MH-AG layer 3 focuses on the increasingly precise boundary of
the MPI signal, the MH-AG layer 2 changes the focus from the boundary of the MPI signal to the

skeleton (bone structure, i.e., CT image), and the MH-AG layer 1 entirely focuses on the real target
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MPI signal. With these different meaningful features, the learnable parameters of the model can
be assigned to pay attention to the relevant features and circumvent irrelevant features for the final
prediction. However, the 2-head and 6-head attention U-Net models behave in different ways. The
MH-AG layers 4 and 3 of the 2-head attention U-Net poorly estimate the boundary of the MPI
signal, and the MH-AG layers 2 and 1 focus on somewhat the same features (MPI signal areas).
Although the MH-AG layers 4 and 3 of the 6-head attention U-Net can perform better than the 2-
head attention model, the MH-AG layers 2 and 1 also pay attention to relatively the same features
(MPI signal areas). Indeed, the optimal number of attention heads depends on the tasks we desire
to train the deep learning model and the data features. If there are a larger number of important
features, the higher number of attention heads could potentially help the model perform better by
capturing more essential information. Nevertheless, the excessive number of attention heads could
lead to less impressive performance, according to the Grad-CAM results illustrated in Figure 20

and our quantitative experiment discussed in the next section.
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Figure 20. A comparison of Grad-CAMs results of 2- head attention, 4-head attention, and 6-
head attention U-Net architectures. (a) Input MPI-CT image, segmentation ground truth and
outputs of each attention architecture. (b) The Grad-CAM results of the attention architectures
at different MH-AG layers (MH-AG layer (1-4)).

4.3.2 Implementation and evaluation metrics

Intersection over Union (loU) is commonly used to evaluate the similarity between a predicted
segmentation area and its ground truth [121]. The concept of loU is to quantify the common area
of the ground truth and prediction mask (intersection) divided by the entire number of pixels

present across both the prediction mask and ground truth (union) as shown in the equation below.

68



loU = ground truth N prediction (29)

~ ground truth U prediction
The loU ranges from 0 -1 (0-100%), with 0 indicating no overlapping area, whereas 1 indicates
impeccably overlapping area.

The dice similarity coefficient (DSC) is another well-known parameter used to evaluate the
similarity between the predicted area (our output) and ground truth [32]. The DSC can be
calculated following the equation below.

DSC = 2|ground truth N prediction| (30)

~ |ground truth| + |prediction|
Precision is defined as the ratio of true positive results to the total number of positive results,

which is the summation of true positive and false positive as shown in Equation 31.

.. TP
Precision = , (31)
TP+FP

Sensitivity, also known as Recall, is the number of true positive results over the summation of

true positive and false negative results as shown in Equation 32.

Recall = —F— (32)

TP+4FN'’

Accuracy, also known as the Rand index, is the number of correct predictions divided by the

total number of predictions as shown in Equation 33.

TP+TN
Accuracy = ——— (33)
y TP4+TN+FN+FP'

Where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. As
previously stated, if the number of attention heads is excessive, the performance of a deep learning
model based on the attention heads could deteriorate. Thus, we characterized the number of
attention heads and employed Dice and loU as the representative benchmarks. Figure 21 illustrates
the characterization results of the U-Net based on the different number of attention heads. With

regards to the plot of Dice/loU scores vs the number of attention heads, it begins at 0.889/0.804
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with the 1-head attention architecture, it gradually increases and then reaches the highest score at
0.909/0.835 with the 4-head attention architecture before declining progressively to 0.906/0.829
and 0.901/0.822 with 5 and 6 attention heads, respectively. Therefore, the multi-head attention U-
Net with 4 heads is the optimal model providing the best result for the MPI-CT image

segmentation.
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Figure 21. The performance of the multi-head attention U-Net models with the different number
of attention heads (Dice/loU scores vs the number of attention heads plot).

Table 6 shows the comprehensive characterization results of MPI-CT image segmentation of deep
learning models with different architectures. Apart from using Dice and loU scores as model
evaluation metrics, we also characterized the performance of each model using accuracy,
precision, and recall. Overall, the 4-head attention U-Net model can outperform other multi-head
attention U-Net models including the original U-Net model as well as the state-of-the-art
Transformer U-Net model. The representative visualization MPI-CT image segmentation results,
together with the corresponding input images and ground truths of each architecture are illustrated

in Figure 22.
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Table 6. Quantitative evaluation (average * standard deviation of each metric) of the different

deep learning architectures for MPI-CT image segmentation.

Methods Accuracy Precision Recall Dice loU

U-Net 0.983+ 0.004 | 0.891+0.074 | 0.879+£0.076 | 0.883+0.059 | 0.794%0.089
Transformer U-Net 0.985+ 0.005 | 0.909+ 0.057 | 0.878+0.069 | 0.892+0.053 | 0.809+ 0.083
1-head Attention U-Net 0.984+ 0.005 | 0.892+0.068 | 0.891+ 0.069 | 0.889+0.052 | 0.804% 0.083
2-head Attention U-Net 0.985+ 0.004 | 0.888+0.063 | 0.911+0.057 | 0.897+0.041 | 0.816+ 0.052
3-head Attention U-Net 0.987+ 0.005 | 0.926+0.038 | 0.890+ 0.065 | 0.906+0.039 | 0.830+ 0.063
4-head Attention U-Net 0.987+ 0.005 | 0.920+ 0.040 | 0.902+ 0.058 | 0.909+0.036 | 0.835%0.060
(the proposed model)

5-head Attention U-Net 0.986+ 0.004 | 0.913+0.049 | 0.903+0.060 | 0.906+0.030 | 0.830+ 0.050
6-head Attention U-Net 0.985+ 0.005 | 0.894+0.074 | 0.912+0.053 | 0.901+0.043 | 0.822+0.070

Attention MHA Attention
Ground truth U-Net Trans U-Net

Input image

‘N

FRY
Figure 22. Visualization semantic segmentation results of the proposed model compared to other
traditional U-Net models. From left to right, input MPI-CT images, the ground truth images, the
segmentation results generated by U-Net, Trans-U-Net, Attention U-Net, and our proposed
model (4-head attention), respectively.

4.4 Conclusion

U-Net

U-Net

Since MPI is a novel medical imaging technology, the data are strictly limited for a robust

computation study. This work demonstrates the multi-head attention U-Net model, an efficient

end-to-end deep learning based on U-Net architecture and multi-head attention mechanism, for



MPI-CT image segmentation. The proposed model was trained using a custom MPI-CT image
dataset collected from transgenic mice with breast tumors injected with a promising MPI tracer for
tumor imaging, namely NWs-ICG. To examine the concept of multi-head attention, a simple
convolution block is employed as the backbone structure of the U-Net architecture to minimize
the influence of other factors. Genuinely, the performance of the U-Net architecture can also be
improved by using more efficient convolution blocks as the backbone. The optimal number of
attention heads was experimentally observed in this study. Although an increase in the number of
attention heads can potentially boost the model’s capability, the excessive number of attention
heads results in a decline in capability. Our study shows that the attention U-Net with 4 heads is
the most favorable architecture for MPI-CT image segmentation. In future work, in addition to
improving the model’s performance, we would like to explore the possibility of exploiting deep
learning for 3D MPI segmentation and MPI intensity segmentation. We anticipate this work to
embark on an intensive study for MPI image analysis and implement it on humans in the near

future.
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CHAPTER 5: Monocular Depth Estimation Based on Deep Learning for Intraoperative
Guidance Using Surface-enhanced Raman Scattering (SERS) Imaging

Reprinted with permission from “A. Juhong, et al., "Monocular depth estimation based on deep
learning for intraoperative guidance surface-enhanced Raman scattering (SERS) imaging.”
Photonics Research, 13, no. 2, pp. 550-560 (2025)” [134], © Optica Publishing Group and Chinese
Laser Press.
Imaging of surface-enhanced Raman scattering (SERS) nanoparticles (NPs) has been intensively
studied for cancer detection due to its high sensitivity, unconstrained low signal-to-noise ratios,
and multiplexing detection capability. Furthermore, conjugating SERS NPs with various
biomarkers is straightforward, resulting in numerous successful studies on cancer detection and
diagnosis. However, Raman spectroscopy only provides the spectral data from an imaging area
without co-registered anatomic context. This is not practical and suitable for clinical applications.
Here, we propose a custom-made Raman spectrometer together with computer vision-based
positional tracking and monocular depth estimation using deep learning (DL) for the visualization
of 2D and 3D SERS NPs imaging, respectively. In addition, the SERS NPs used in this study
(hyaluronic acid (HA)-conjugated SERS NPs) showed clear tumor targeting capabilities (target
CD44 typically overexpressed in tumors) by an ex vivo experiment and immunohistochemistry.
The combination of Raman spectroscopy, image processing, and SERS molecular imaging,
therefore, offers a robust and feasible potential for clinical applications.
5.1 Introduction
Surgical resection of a tumor is a standard of care therapy for most solid tumors. The ultimate goal
of surgical resection is to remove the entire tumor with minimal damage to adjacent tissue, an

outcome that strongly correlates with reduced tumor recurrence and improved survival [135, 136].

73



Tumor margins in numerous aggressive cancers are typically indistinct due to the primary tumor’s
propensity to invade into adjacent healthy tissue areas. As a result, defining appropriate margins
for surgical resection remains challenging [137]. There are several modalities used in the clinic to
visualize tumors and facilitate tumor removal such as magnetic resonance imaging (MRI), positron
emission tomography (PET), and computed tomography (CT) [138-141]. However, these imaging
modalities lack sufficient resolution needed to identify and remove microscopic sites of cancer
invasion from the main tumor mass. To achieve precise tumor delineation and complete resection,
a suitable intraoperative tool should meet the following requirements: high sensitivity and
specificity, short acquisition time for real-time or near-real-time intraoperative detection, and high
spatial resolution. With regards to imaging modalities, optical imaging exhibits distinct advantages
compared to the previously mentioned non-optical imaging modalities in several aspects, such as
lack of ionizing radiation, high sensitivity, and excellent spatiotemporal resolution [142-145].
Recently, surface-enhanced Raman spectroscopy (SERS) nanoparticles (NPs) imaging has
increasingly been recognized as a promising molecular imaging technique for clear delineation of
tumor margins and tumor surgical resection due to its exceptional sensitivity, distinctive Raman
signature (fingerprint), multiplexing detection capability [146-152], and lack of autofluorescence
and photobleaching problems associated with fluorescence imaging. SERS NPs are composed of
a gold core, Raman active dye, and silica shell, which have been developed to function as tumor-
targeting beacons showing substantially strong signals due to the surface plasmon resonance (SPR)
effect [153] of the metallic core (gold). In addition, they can be effortlessly conjugated with various
tumor-targeting ligands as well as fabricated with different Raman-active dyes. Each Raman dye
emits a unique Raman spectrum, called “flavor”, facilitating multiplexing. Several research

groups, as well as our group, have demonstrated encouraging results of SERS NPs imaging for ex
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vivo, in vivo, and image-guided surgery experiments [154-158]. However, Raman spectroscopy
predominantly provides spectral data, lacking the capability to co-register and visually represent
anatomic features, limiting applications for image-guided surgery.

To overcome this problem, we propose a custom-made Raman spectroscopy system
together with computer vision-based positional tracking and DL-based techniques to visualize 2D
and 3D SERS NPs imaging, respectively. Specifically, the traditional template matching algorithm
[159] is employed for probe tracking, and the affine transformation [160] is then used to co-register
a 2D SERS image (reconstructed by using the multiplexing algorithm [161, 162]) and a sample
photograph. For 3D imaging, the image is reconstructed based on a deep-learning monocular depth
estimation (distance relative to the camera) of each given pixel in the input image. Multiple Depth
Estimation Accuracy with Single Network (MiDaS) is a promising DL technique that estimates
depth from an arbitrary input image. MiDaS utilizes a conventional encoder-decoder structure to
generate the depth map images. The legacy MiDaS V2.1 model [163] uses a residual network as
the backbone for feature extraction as this network structure is invulnerable to vanishing gradients
and allows MiDaS to extract multi-channel feature maps from input tensors. The vision
transformer (ViT) [164] is the state-of-the-art model employed in computer vision tasks. It can
surpass convolutional neural networks (CNNs)-based models across various domains and settings.
Therefore, the latest MiDaS versions (3.0 [165] and 3.1 [166]) replace the CNNs backbone with
vision transformer networks showing superior results. In this work, we directly utilized the pre-

trained MiDaS 3.1 to reconstruct a 3D mouse image and co-register with the SERS image.
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5.2 Methods

5.2.1 Raman spectrometer

A schematic of the proposed Raman system is illustrated in Figure 23. A 785-nm laser (iBeam
Smart 785, Toptica Photonics, Munich, Germany) is employed for the excitation source, the
custom-made fiber bundle Raman catheter (Fiber guide Industries, Caldwell, ID, USA) is used for
the laser illumination and the Raman spectra collection. A proximal end of the probe is made up
of one single mode fiber (780HP, 4.4 um core diameter) for 785 nm laser illumination and 36
multimode fibers (AFS200/220T, 200-um core) for the Raman spectra collection as shown in
Figure 23(b). The single-mode fiber for illumination is centrally positioned with the probe and
encompassed by the 36 multimode fibers for Raman spectra acquisition. In addition, a fused silica
plano-convex lens (L1, f=6.83 mm, PLCS-4.0-3.1-UV, CVI Laser Optics, Albuquerque, NM,
USA) is placed in front of the probe to collimate the 785 nm laser illumination with a beam
diameter of 1. mm and power of 30 mW on the sample. For the distal end, it is arranged in a vertical
array or linear array for effectively coupling the light to the spectrometer (Kymera 193i-A, Andor
Technology, Belfast, UK) by using optical relay lenses (L2, f = 100 mm, AC254-100-B and L3,
f=80 mm, AC254-080-B, Thorlabs Inc., Newton, NJ, USA). In addition, the Rayleigh scattering
from the collected light is filtered out by a long-pass filter (LPF, A, = 830 nm; BLP01-830R-25,
Semrock, Rochester, NY, USA), placed between the relay lenses. As a result, the light that
traverses the spectrometer is solely subjected to Stokes-Raman scattering. The Stokes-Raman
scattering light from the spectrometer is then collected by a cooled deep-depletion spectroscopic
charge-coupled device (CCD) array (1024 x 256 pixels with a pixel size of 26 um x 26 pm;
DU920P Bx-DD, Andor technology, Belfast, UK) with a wavelength range of 835- 912 nm

(Raman shift of 770 -1777 cm™). To achieve raster scanning, a two-axis translation stage is
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constructed by joining two linear stages in an orthogonal manner (DDS050, Thorlabs Inc., Newton,
NJ, USA). Furthermore, a color monocular camera (ELP 5-50mm, with Sony IMX323 chip,
Shenzhen, China) is applied to track the Raman probe position and capture the sample photograph

to reconstruct the 2D and 3D co-registered SERS images.
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Figure 23. Schematic of the custom-made Raman imaging system together with the visualization
system. (a) The optical diagram of the Raman spectroscopy system. A 785 nm laser is used to
illuminate the sample through a single mode fiber and collimated by an L1 lens. The scattered
light is then collected by the Raman probe, coupled into the spectrometer using the relay optics
(L2 and L3 lenses) with an interchangeable mirror (IM) and a long pass filter (LPF) in between.
The spectrometer consists of a rotatable grating, three mirrors (M1: reflection mirror, M2:
collimating mirror, and M3: focusing mirror), and a back-illuminated deep-depletion CCD. To
perform 2D Raman imaging, the Raman probe is translated by a two-axis motorized stage. (b)
the photograph of the distal and proximal ends of the custom-made fiber bundle. (c) Schematic
of the visualization system for generating the 2D and 3D co-registered SERS imaging.

5.2.2 SERS NPs synthesis

SERS NPs were synthesized using the tris-based assisted synthesis protocol with Au NPs
formation at elevated temperature as shown in Figure 24(a). First, the sodium citrate reduction
approach was employed to prepare 17 nm Au-NP seeds. The seeds were then mixed with tris at 98
°C, followed by adding gold chloride for seed-mediated growth to obtain 50 nm Au-NPs. The

Raman dye was promptly added after the formation of 50 nm Au-NPs, and the solution was stirred

77



for one minute, followed by cooling in an ice bath. To functionalize SERS NPs with biomolecules,
particularly hyaluronic acid (HA) and polyethylene glycol (PEG), thiol groups were employed for
the attachment of these biomolecules and to Au NPs via gold-thiol interaction [167-171] . S420
SERS NPs were mixed with thiolated-HA and this mixture solution was then incubated at 4 °C
overnight. After that, unbounded HA was removed by repeated centrifugation. Likewise, the
procedure to conjugate PEG with S481 SERS NPs is the same as the HA conjugation. The size
and shape of synthesized SERS NPs were characterized by a transmission electron microscope
(TEM; 2200FS, JEOL Ltd., Tokyo, Japan) and a dynamic light scattering particle analyzer (DLS;
Zetasizer Nano ZS, Malvern Panalytical Ltd., Malvern, England, UK). SERS NPs are homogenous
spheres with approximately 50 nm in diameter as shown in Figure 24(b). The DLS result was also
applied to validate the distribution size with a measurement of 56 nm as shown in Figure 24(c).
The comprehensive synthesis protocol and characterization of SERS-NPs are demonstrated in our
previous work [157]. The normalized Raman spectra (acquired by our custom-made Raman
spectrometer) of S420 and S481 SERS NPs with a concentration of 500 pM are demonstrated in

Figure 24(d).
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Figure 24. Synthesis of the SERS NPs. (a) SERS NPs synthesis and HA/PEG conjugation
procedure. First, 17 nm gold seeds (Au NP) are formed. Second, the NPs further grow to 50
nm meanwhile different Raman reporters (S420 and S481) are attached to the gold surface.
Lastly, the SERS NPs are functionalized with HA or PEG. (b) TEM image of the SERS NP
with diameter of approximately 50 nm. (c) DLS result of the corresponding SERS NPs. The
measured size is 56.16 nm in diameter. (d) Normalized Raman spectra of the stock SERS
solution of both flavors (S420 and S481).
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5.2.3 Position tracking and image co-registration algorithms

Before processing the data acquired by a low-cost camera, camera calibration [172, 173] was
applied to correct the image distortion due to the lens quality and optical alignment. Template
matching algorithm [174] is then used to determine the precise position of a Raman probe image
(the template image) in a large surgery area image (the input image). The concept of this algorithm
is to slide the template image over the input image, akin to a 2D convolutional operation, followed
by a comparison of the template and the corresponding patch of the input image, which can be
done by several methods. In this work, we employed a normalized cosine coefficient
(TM_CCOEF_NORMED) implemented in Python using the OpenCV library [175] to calculate
the template matching for the Raman probe detection. With the Raman probe position, the
scanning position can be easily estimated during data acquisition. In addition, to accurately overlay
the SERS image (X) and surgery area image (), an image co-registration algorithm is required

by calculating the geometric transformation matrix (T) as shown in the equations below.

Y = T.X, (34)

X1 Xz v Xp] (35)
X=ly; ¥ Yn |

L1 1 1

-x1 xZ xn' (36)
Y=1|¥y1 Y2 - Wnl

L1 1 ... 1/

Moo M1 My (37)
T = |my my1 myyf,

L 0 0 1

where (x;, , v ) and (x,, y,) are the corresponding positions (n is the number of corresponding
positions) in the input image X and the reference image (), respectively, and m;; is the simplified
transformation matrix parameters derived from the rotation, scaling, shearing, and translation

matrices as shown in the equation below.
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T = —sin(@) cos(68) 0

0 0 1
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[cos(@) sin(6) 0] (38)
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Where the translation matrix: t, and ¢, are the displacement along the x and y axes, respectively,
the scaling matrix: s, and s,, are the scale factors along the x and y axes, respectively, the shear
matrix: sh,. and sh,, are the shear factors along the x and y axes, respectively, and the rotation
matrix: 6 is the angle of rotation. Indeed, T matrix can be estimated by using corresponding points

together with the minimized least square error (¢2) as shown below:

e? =||TX - Y|, (39)

4 _ _XT(Y-TX) =0, (40)
dT

X"y =X"TX , (41)

T = (XTX)™ (XTY). (42)

To obtain a more accurate co-registration result (2D co-registered SERS image), the estimated
transformation matrix (T) is then applied to the reconstructed SERS image (X) derived from the
demultiplexing algorithm. In our case, the raster scan was applied to reconstruct the SERS image
and the fiducial landmarks (four corners of the scanning area) were marked on the sample. Thus,
the four corners of the SERS image were used as the corresponding points to the four fiducial
points on the samples for the image co-registration.

5.2.4 Depth estimation using DL

MiDas is considered as a promising model for performing monocular depth estimation, and the
original MiDaS V 2.1 [163] is based on a CNN backbone, however the newer versions (MiDaS V
3.0 [165] and V 3.1 [166]) employ a transformer architectures as their backbones, which can
significantly outperform the original version. The training protocol of the MiDaS V2.1, 3.0, and

3.1 models are analogous. Breifly, the MiDaS models were trained by using 12 mixing datasets,
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multi-objective optimization [176] with Adam [177], and scale-and-shift-invariant loss [178]. The
encoder and decoder weights were updated by applying the learning rates of le-5 and le-4,
respectively. The models were initially pre-trained on a subset of the datasets for 60 epochs,
followed by training for another 60 epochs on the full dataset. The complete training details are
elucidated in the original MiDaS V 2.1 paper. All DL models demonstrated in this work were
implemented on a personal computer equipped with an 11" Gen Intel core i7-11700k CPU, 64 GB,
and an NVIDIA RTX 3090 graphic processing unit (GPU). Indeed, all MiDas models are built
using encoder and decoder structures. Each MiDaS model differs in the backbone of the encoder
part (variant of CNNs and Transfomer architectures), while the rest of the model remains
consistent. Since the latest MiDaS V 3.1 provides the best result compared to other versions, it is
used in this study. Bi-direction Encoder repression from Image Tranfomers (BEIT) [179] is used
as the backbone of MiDas V 3.1, as shown in Figure 25(a-b). BEIT is a state-of-the-art architecture
that enables self-supervised pretraining of vision transformer (ViT) to surpass supervision
pretraining. The pre-train task in BEIT is the masked image modeling (MIM) head, as shown in
Figure 25(b). The concept of MIM is to recover the original visual tokens based on the corrupted
image patches. In other words, MIM uses two views for each image to train the model. First, the
2D image with a size of HXWXxC is divided into a sequence of HW/P? patches for each channel,
where (H,W) is the image size, C is the number of channels, and (P,P) is the patch size. All the
patches are then flatten into vectors and linearly projected. Second, an image tokenizer converts
the image into a sequence of discrete tokens rather than using raw pixels. Discrete variational
autoencoder (dVAE) [180, 181] is directly used to train this image tokenizer. Indeed, the image

tokenizer is a readily trained token genertor for the input patches.
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Figure 25. (a) Overview of the MiDaS V 3.1 architecture. The input image is embedded with a
positional embedding and a patch-independent readout token (orange) is included. These
patches are fed to four BEIT stages. At each BEIT, the output tensor is passed through the
Reassemble and Fusion blocks to predict the encoder outputs for each stage. (b) BEIT
transformer architecture used in the encoder part in (a). (¢) Reassemble block applied to
assemble the tokens into feature maps with 1/s the spatial resolution of the input image. (d)
Fusion block used to combine the features and upsample the features maps by two times.
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The outputs from the tokenizer and MIM are used to determine the loss value to update the
learnable parameters allowing the network to obtain a deep understanding of underlying image

patterns without the explicit lables. It is important to note that the BEIT was initially designed for
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an image classification problem and does not provide depth estimation functionality. To assemble
MiDaS V 3.1, BEIT is used as a feature extractor and must be appropriately connected to the depth
decoder. Regarding the encoder-decoder in MiDasS, the input is progessively processed for each
encoder stage, similar to the decoder stage. Thus, the BEIT backbone can be integrated by placing
appropriate hooks, meaning a tensor computed in the encoder is taken and available as input for
the decoder at one of its stage. This requires a reassembling process to reshape the tensors to fit
the decoder, as shown in Figure 25(c-d). Essentially, the input image is embedded as the tokens,
which are passed through serval BEIT stages. At each stage, the tokens are ressemable into image-
like represtanion with different resolutions. After that, the fusion module is employed to fuse and
upsample these image-like represtanions in order to generate an exquisite prediction. The final
prediction is then fed to a task-specific ouput head to generate the depthmap image. The depth
map image generated by the MiDaS model is considered as a dispartily-like image (inversely
propotional to the depth map intesnity), which is then projected into 3D space using the
reprojectimageTo3D function in OpenCV [175]. Lastly, The color of each pixel in the 2D co-
registered SERS image is mapped onto the corresponding positions (x-y plane) in the 3D space of
depth map image to obtain the final 3D SERS image.

5.3 Results and discussion

5.3.1 Phantom characterizations

The step-wedge with a height of 9.5 mm of each step, which was constructed from the standard
mounting bases (BALS, Thorlabs Inc., Newton, NJ, USA), was used as a phantom to characterize
the depth estimation DL models. The camera captured this phantom photograph and was used as
the input for the three different MiDaS models (CNN, ViT, and BEIT) to estimate the depth and

compare the performance of each model. To quantify the performance of each model, the depth
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map intensities from step 4 to step 1 (along with the white-dashed line) were plotted as illustrated
in Figure 26(a). The absolute errors were then calculated from the intensity profiles of each model
and the ground truth (the black line). Table 7 shows the average absolute error + standard deviation
results of each model. It shows that the MiDaS model based on BEIT architecture can surpass other

models with the lowest average absolute error of 0.0485 + 0.1737.
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Figure 26. Validation of depth map imaging and Raman spectra at different distances from
a camera and a Raman catheter, respectively. (a) Depth map imaging of a step-wedge
phantom generated by MiDaS models based on three different backbones (CNN, ViT, and
BEIT) and the comparison of the depth map intensity profiles of each model. (b) Depth
map imaging of a tumor phantom with different distances from the camera. (c) The Raman
spectra of S420 SERS NPs characterization at different distances from the Raman catheter
by using the step-wedge phantom. (d) A linearity plot of the highest intensity of S420 (1614
cm?) versus the distances from the Raman catheter.
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Table 7. Depth map intensity characterization results (Average absolute error + Standard
deviation) of MiDaS models with three different architectures: CNN, VIT, and BEIT.

Step number CNN VIiT BEIT
Step 1 0.074 £ 0.56 0.318+0.14 0.051 + 0.56
Step 2 0.070+ 0.046 0.252+ 0.01 0.032 + 0.04
Step 3 0.135+ 0.088 0.018+ 0.016 0.024 £ 0.012
Step 4 0.092+ 0.077 0.161+ 0.10 0.087+ 0.083

Furthermore, a 3D-printed tumor phantom was utilized for thorough characterization of the MiDaS
models, as depicted in Figure 26(b). The distance between the phantom and camera varied from 5
cm to 11 cm with an increment of 2 cm. The phantom depth map images were then generated by
the MiDaS models. The quality images captured at the out-of-focus distances (5 cm and 7 cm) are
unsatisfactory, leading to deterioration of depth map quality, as the models cannot correctly
recognize some poor resolution areas to generate the depth map image, especially the CNN MiDaS
model. Nevertheless, the BEIT model can still generate somewhat decent quality depth map
images. Table 8. shows four evaluation metrics (average value from all distances + standard
deviation): loU, F1-score, Recall, and Precision, of the depth map images and their corresponding
masks. This evaluation shows the overall performance of the MiDaS models for generating depth
map images of the same object with different image quality (in-focus and out-of-focus images),
particularly the BEIT MiDaS model can surpass other models with the promising scores of all
evaluation metrics. In addition, the complexity and average execution time for one input image
were evaluated to assess the feasibility for intraoperative guidance applications. Although we
implemented MiDaS on a moderate-budget GPU (an NVIDIA RTX 3090 GPU), the execution
time is feasible for intraoperative guidance applications. Indeed, the execution time can be

improved by using more powerful GPUs currently available on the market.
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Table 8. Tumor phantom characterization result of the three different MiDaS models

Evaluation CNN ViT BEIT
loU 0.139+ 0.026 0.241+0.018 0.272 £ 0.033
F1-score 0.244+ 0.041 0.389+ 0.024 0.426 + 0.042
Recall 0.262 + 0.024 0.370 £ 0.027 0.402 + 0.029
Precision 0.234 + 0.058 0.421 £ 0.074 0.466 + 0.088
Execution time 0.861 0.998 1.175
(second)
The number of 105 M 334 M 345 M
parameters

In addition to the depth map image characterization, the intensity of Raman spectra of the same
sample at various distances from the Raman catheter was also characterized by using the step-
wedge phantom from Figure 26(a) and S420 SERS NPs solution with a concentration of 500 pM
as shown in Figure 26(c). The SERS NPs solution was dropped on each step with a volume of 20
pL, followed by acquiring the Raman spectra using 30 mW laser power and 1 second exposure
time. The linearity plot of the highest peak of S420 (1614 cm™) and the distance between the
Raman catheter and sample is illustrated in Figure 26(d). The distance between the catheter and
the sample is inversely proportional to the intensity of the Rama spectra. Thus, this has to be
addressed to enhance the accuracy of clinical applications.

5.3.2 Ex-vivo experiment

To validate the targeting capability of the conjugated-HA SERS NPs, we performed an ex-vivo
experiment on tumor tissue and spleen connective tissue (control) harvested from the MUC1 breast
tumor mouse model [38]. All procedures used in experiments conducted on animals were approved
by the Institutional Animal Care & Use Committee (IACUC) of Michigan State University. SERS-
NPs used in this experiment were also published in our previous work [157]. First, we scanned the
background signal from all the tissues. Second, all tissues were incubated with the mixture solution
of S420-HA and S481-PEG SERS NPs with a concentration of 250 pM for 15 minutes. The S481-

PEG was used as a control SERS NPs solution (non-targeting). In the next step, all the tissues were
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rinsed by phosphate-buffered saline (PBS) 4-5 times, followed by acquiring the Raman spectra
and reconstructing the image using the demultiplexing algorithm [161, 162]. This algorithm is
based on the direct classical least squares (DCLS) method, using measured Raman spectra,
reference spectra of SERS NPs of each flavor (spectra of a pure SERS NPs solution at a high

concentration), and background spectra as inputs to estimate the weight of a specific flavor.
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Figure 27. (a) Multiplexed Raman images of tissues topically stained with the mixture of SERS-
HA (CDA44 targeting) and SERS-PEG (control) solution, (al) Photographs of the mouse tumor
tissue and spleen connective tissue (control), and (a2-a4) Raman images of individual channels
and ratiometric results. (b) H&E and IHC-CD44 images of the corresponding tissues. (c)
Representative enlarged IHC images in (b) of the breast tumor and normal tissues. Scale bars in
(a-b) and (c) are 5 mm and 50 um, respectively.

Ideally, by rinsing tissues after incubation, the non-targeting NPs (S481-PEG) should be removed
from the incubated tissues, and the majority of targeting NPs (S420-HA) should remain on the
tumor with overexpressed CD44. However, in the practical experiment, we detected signals from
both S420-HA and S481-PEG in both the tumor and normal tissues, as shown in Figure 27(al-a3),

due to tissue texture and non-specific binding. Therefore, the Raman ratiometric image of S420-
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HA and S481-PEG was applied to evaluate the targeting of the NPs, as shown in Figure 27(a4).
According to the ratiometric result, the ratio of targeting NPs (S420-HA) on the tumor tissue is
significantly stronger than the ratio on the control tissue, which is encouraging and promising.
Furthermore, the H&E and IHC of CD44 of the corresponding tissues were prepared, and the
results are shown in Figure 27(b1-b2), respectively. CD44 is labeled as brown areas, and they are
intense (overexpressed) in the tumor tissue as shown in Figure 27(c). This is also consistent with
the ratiometric result.

5.3.3 Image-guided surgery experiment

In this experiment, we would like to validate the capability of the proposed Raman system and
SERS NPs and closely replicate the clinical conditions of human surgery. A 5-month-old female
C57BL6 double transgenic mouse with breast cancer was used for this experiment. First, the
operative surgery area (tumor area) was defined, followed by acquiring the Raman signal as the
background signal. The mouse was then intratumorally injected with the S420-HA solution with a
concentration of 500 pM, a volume of 100 L, and a depth of injection of approximately 2-3 mm.
42 hours after the injection, the mouse was euthanized by using a table-top research anesthesia
machine (V300PS-PARKLAND SCIENTIFIC, USA) with 10 Ipm of oxygen flow and 1.5% of
anesthetic agent vapor in oxygen during the image-guided surgery imaging. The tumor skin was
then cut open followed by rinsing the tumor area with PBS 4-5 times and acquiring Raman spectra.
After that, the Raman image (weight of S420-HA) of the scanned area was reconstructed and the
tumor was also gradually resected following the white boundaries as shown in Figure 28. It is
important to note that the deeper the resection is performed, the weaker the signal of SERS NPs
is. This is due to the effective working distance of the Raman probe. Therefore, the depth of

information on the operative area is essential for providing additional insights and guidance for
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more effective surgery, and we also demonstrate the concept of the 3D SERS NPs imaging in the
next section.
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Figure 28. SERS image-guided surgery for resection of a mouse with a breast tumor. (a)
Photographs of the tumor during the intraoperative SERS image-guided surgery from the first
removal to the complete removal. (b) the corresponding SERS imaging (weight of S420-HA)
reconstructed by the demultiplexing algorithm. The scale bar is 5 mm, and the white boundaries
depict the resection regions.

5.3.4 2D tracking and 3D SERS imaging

In addition to the image-guided surgery and ex-vivo experiments, we demonstrate our custom-
made Raman system and monocular depth estimation based on DL to visualize the SERS NPs
signal on the sample in 2D and 3D surfaces in the physical world. To simplify the experiment, the
S420-HA solution with a concentration of 500 pM was directly dropped on the cut-open tumor of

another breast tumor mouse with an incubation time of 15 minutes followed by rinsing with PBS
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4-5 times and acquiring Raman spectra, respectively. Before applying this S420-HA solution, the
background Raman signal was also acquired as it is one of the input variables for the SERS image
reconstruction. A color camera was used to record the video of the scanning area and capture the
photograph of the sample to generate the 2D SERS mapping video and the 3D SERS image. To
generate the 2D SERS mapping video, the template matching algorithm was applied to track the
Raman catheter position to estimate the scanning positions. After that, the SERS signals (the
weights of S420-HA) were then generated on these estimated scanning positions as shown in
Figure 29 (a). After completing the scanning, the image co-registration algorithm was applied to
co-register 2D SERS image with the sample photograph and the MiDaS DL based on BEIT was
utilized to generate the depth map image. With these 2D co-registered SERS and depth map
images, the 3D-coregiesterd SERS image was reconstructed and projected as point clouds in the
3D space as shown in Figure 29(b). Since Figure 29(a) shows the Raman catheter tracking with
real-time 2D SERS image reconstruction, the large field of view (FOV) was needed to acquire the
image for covering the catheter and scanning area images. Nevertheless, the smaller FOV was
employed to illustrate greater detail in the 3D SERS image shown in Figure 29(b). According to
these promising results, the proposed method can facilitate 2D and 3D SERS imaging through the
utilization of a Raman catheter system and a simple camera, which can immeasurably improve the
visualization and precision of SERS NPs distribution leading to more efficient clinical
applications. Specifically, it is beneficial for image-guided surgery by assisting surgeons to locate
solid tumors and achieve more precise resections. However, there is an obvious artifact pattern in
3D SERS imaging. It is caused by the large excitation laser (approximately 1 mm). This could be
resolved by improving the optic design of the Raman system to reduce the beam size and adding

a scanner to maintain the acquisition speed, which could be our future work.
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Flgure 29. (a) 2D SERS image during Raman spectra acquisition, (al) before scanning, (a2)
during scanning, and (a3) complete scanning. (b) 3D image of the sample, SERS, and co-
registered SERS reconstructed by using affine transformation and Midas 3.1 DL model with the
BIiET backbone architecture. The scale bars of (al) and (b1) are 10 mm and 8 mm, respectively.

5.4 Conclusion

Intraoperative imaging systems, in tandem with exogenous contrast agents, play a crucial role in
tumor resection by assisting a surgeon to identify tumor areas with a high degree of sensitivity and
specificity. However, traditional imaging systems commonly encounter poor tumor margin
visualization, particularly the weak signal of a tumor at deeper layers. Without depth information,
these weak signals might be neglected, leading to ineffective tumor resection. Therefore, the whole
tumor might not be completely removed, causing tumor recurrence. In recent years, SERS NPs
imaging has been increasingly recognized as an encouraging molecular imaging technique due to

its remarkable sensitivity, multiplexing detection capability, and photostability. In addition, it has
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demonstrated significant potential in cancer detection and enhancing delineation of tumor margin,
as SERS NPs can be easily conjugated with various biomarkers.

In this work, we propose an approach to visualize 2D and 3D SERS imaging. A step-wedge
phantom and a tumor phantom were used to evaluate the depth map estimation performance of
MiDaS models with three different back-bone architectures: CNN, ViT, and BEiT. MiDas based
on BEIT can outperform other models; thus, it was employed for 3D visualization of SERS NPs.
HA-conjugated SERS NPs were evaluated by ex-vivo and image-guided surgery experiments by
using the traditional 2D SERS image reconstruction showing promising results. Nevertheless, it
lacks the depth information for practical clinic applications, affecting surgery outcomes.
Therefore, the proposed approach combines the use of a custom-made Raman spectrometer with
computer vision-based positional tracking for 2D SERS imaging and monocular depth estimation
based on the MiDaS model for 3D SERS imaging. This combination can overcome the
disadvantage of the conventional Raman system, which only provides spectra information and is
unsuitable for clinical applications. The 2D and 3D image co-registration between the Raman
imaging and the sample photograph in the physical world enables better performance and
efficiency of tumor resection, potentially leading to its implementation in human clinical trials in
the near future. Essentially, the proposed method shows a proof-concept study of image-guided
surgery by using 3D and 2D SERS imaging. However, there are some limitations that need to be
improved in the future, particularly the resolution of SERS imaging. The excitation laser beam
diameter in the proposed system is somewhat large (roughly 1 mm), causing the artifact in 3D and
2D image reconstruction, which is unsuitable for small tumor resection. Therefore, the optics part
should be re-designed to obtain smaller beam size for enhanced resolution. In addition, the depth

map estimation using MiDaS can be influenced by the resolution of an input image acquired at an
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out-of-focus distance. Thus, auto-focus approaches, such as resolution enhancement deep learning
or a hardware-based approach, should be considered to avoid this problem. The proposed method

may be more feasible for future clinical applications as a result of these improvements.
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CHAPTER 6: Summary and future work
In this dissertation, a wide range of biomedical applications based on different deep learning
techniques have been presented. Firstly, a practical deep learning model for the resolution
enhancement of H&E-stained images by using the state-of-the-art SRGAN-ResNeXt network has
been demonstrated. The model can deeply learn how to map the low-resolution images to their
corresponding high-resolution images. Even though cell images contain sophisticated patterns and
structures, the SRGAN-ResNeXt model can still provide high-quality reconstruction results.
Moreover, it can outperform the original SRGAN model. Therefore, we take these advantages to
characterize and quantify the nuclei from the generated high-resolution images. Secondly, deep
learning based on recurrent and convolutional neural networks has been demonstrated for
generating sequential NWSs-ICG optoacoustic (multispectral unmixing), ultrasound, and
optoacoustic images. It has shown robust and promising performance in the accurate
reconstruction of the sequential images for all modalities, according to the quantitative evaluation
of model performance using the PSNR and SAE for all scanning positions of the generated images
(reconstructed by the deep learning model) and ground truth (acquired by mechanical scanning).
The architecture of our model is versatile since it can promisingly generate sequential cross-
sectional images of three modalities from a commercial MSOT system. Using our deep learning
can substantially reduce acquisition time. However, all the training data were acquired from ex
vivo tissues completely fixed in agarose. Model performance with images acquired in vivo may be
affected by cardiac and respiratory motion. Thirdly, the proposed multi-head attention U-Net
model, an efficient end-to-end deep learning based on U-Net architecture and multi-head attention
mechanism, was demonstrated for MPI-CT image segmentation. The proposed model was trained

using a custom MPI-CT image dataset collected from transgenic mice with breast tumors injected
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with a promising MPI tracer for tumor imaging, namely NWs-ICG. The optimal number of
attention heads was experimentally observed in this study. Although an increase in the number of
attention heads can potentially boost the model’s capability, the excessive number of attention
heads results in a decline in capability. Our study shows that the attention U-Net with four heads
is the most favorable architecture for MPI-CT image segmentation. Lastly, we propose a method
to generate 2D and 3D SERS imaging. The proposed method integrates the use of a custom-made
Raman spectrometer with image processing and deep learning to generate 2D and 3D SERS image,
which can overcome the drawback of the conventional Raman system, only providing spectra
information. The 2D and 3D image co-registration between the Raman imaging and the sample
photograph in the physical world enables better performance and efficiency of tumor resection,
potentially leading to its implementation in human clinical trials in the near future.

In addition to the applications mentioned above, | am working on virtual H&E images
using deep learning. In this work, the virtual H&E deep learning model is employed to transform
auto-fluorescence images of unstained tissue slides to virtual H&E images. Another deep learning
model is then applied to screening the cancer areas. With this concept, it could potentially shorten
the standard cancer diagnosis and be useful for practical clinical applications. Furthermore, in my
future work, I plan on developing a universal visual-language foundation deep learning model
using a variety of pathology images and biomedical fundamental texts for cancer detection with
several downstream tasks related to pathology images to achieve superb performance on pathology

image classification, segmentation, and biomarker quantitative.

96



10.

BIBLIOGRAPHY

Juhong, A., Li, B., Yao, C.-Y., Yang, C.-W., Agnew, D. W., Lei, Y. L., Huang, X,
Piyawattanametha, W., and Qiu, Z. (2022). Super-resolution and segmentation deep
learning for breast cancer histopathology image analysis. Biomedical Optics Express: 14,
18-36.

Litjens, G., Sanchez, C. I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I.,
Hulsbergen-Van De Kaa, C., Bult, P., Van Ginneken, B., and Van Der Laak, J. (2016).
Deep learning as a tool for increased accuracy and efficiency of histopathological
diagnosis. Scientific reports: 6, 1-11.

Mendez, A. J., Tahoces, P. G., Lado, M. a. J., Souto, M., and Vidal, J. J. (1998). Computer-
aided diagnosis: Automatic detection of malignant masses in digitized mammograms.
Medical Physics: 25, 957-964.

Bogoch, I. 1., Koydemir, H. C., Tseng, D., Ephraim, R. K., Duah, E., Tee, J., Andrews, J.
R., and Ozcan, A. (2017). Evaluation of a mobile phone-based microscope for screening
of Schistosoma haematobium infection in rural Ghana. The American journal of tropical
medicine and hygiene: 96, 1468.

Petti, C. A., Polage, C. R., Quinn, T. C., Ronald, A. R., and Sande, M. A. (2006).
Laboratory medicine in Africa: a barrier to effective health care. Clinical Infectious
Diseases: 42, 377-382.

Colley, D. G., Bustinduy, A. L., Secor, W. E., and King, C. H. (2014). Human
schistosomiasis. The Lancet: 383, 2253-2264.

Irshad, H., Veillard, A., Roux, L., and Racoceanu, D. (2013). Methods for nuclei detection,
segmentation, and classification in digital histopathology: a review—current status and
future potential. IEEE reviews in biomedical engineering: 7, 97-114.

Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., Snead, D. R., Cree, I. A., and Rajpoot,
N. M. (2016). Locality sensitive deep learning for detection and classification of nuclei in
routine colon cancer histology images. IEEE transactions on medical imaging: 35, 1196-
1206.

Song, Y., Zhang, L., Chen, S., Ni, D., Lei, B., and Wang, T. (2015). Accurate segmentation
of cervical cytoplasm and nuclei based on multiscale convolutional network and graph
partitioning. IEEE Transactions on Biomedical Engineering: 62, 2421-2433.

Xing, F., Xie, Y., and Yang, L. (2015). An automatic learning-based framework for robust
nucleus segmentation. IEEE transactions on medical imaging: 35, 550-566.

97



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Xing, F. and Yang, L. (2016). Robust nucleus/cell detection and segmentation in digital
pathology and microscopy images: a comprehensive review. IEEE reviews in biomedical
engineering: 9, 234-263.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
transactions on systems, man, and cybernetics: 9, 62-66.

Yang, X., Li, H., and Zhou, X. (2006). Nuclei segmentation using marker-controlled
watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy. IEEE
Transactions on Circuits and Systems I: Regular Papers: 53, 2405-2414.

Filipczuk, P., Kowal, M., and Obuchowicz, A. (2011) Automatic breast cancer diagnosis
based on k-means clustering and adaptive thresholding hybrid segmentation. Image
processing and communications challenges 3 (Springer), pp. 295-302.

Graham, S., Vu, Q. D., Raza, S. E. A., Azam, A., Tsang, Y. W., Kwak, J. T., and Rajpoot,
N. (2019). Hover-net: Simultaneous segmentation and classification of nuclei in multi-
tissue histology images. Medical Image Analysis: 58, 101563.

Schmidt, U., Weigert, M., Broaddus, C., and Myers, G. (2018). Cell detection with star-
convex polygons. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer: 265-273.

Chen, S., Ding, C., Liu, M., and Tao, D. (2021). CPP-net: Context-aware polygon proposal
network for nucleus segmentation. arXiv preprint arXiv:2102.06867.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, Springer: 234-241.

de Haan, K., Zhang, Y., Liu, T., Sisk, A. E., Diaz, M. F., Zuckerman, J. E., Rivenson, Y.,
Wallace, W. D., and Ozcan, A. (2020). Deep learning-based transformation of the H&E
stain _into special stains improves kidney disease diagnosis. arXiv preprint
arXiv:2008.08871.

Liu, T., De Haan, K., Rivenson, Y., Wei, Z., Zeng, X., Zhang, Y., and Ozcan, A. (2019).
Deep learning-based super-resolution in coherent imaging systems. Scientific reports: 9, 1-
13.

Mukherjee, L., Keikhosravi, A., Bui, D., and Eliceiri, K. W. (2018). Convolutional neural
networks for whole slide image superresolution. Biomedical optics express: 9, 5368-5386.

Rivenson, Y., Gérocs, Z., Gunaydin, H., Zhang, Y., Wang, H., and Ozcan, A. (2017). Deep
learning microscopy. Optica: 4, 1437-1443.

98



23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Wang, H., Rivenson, Y., Jin, Y., Wei, Z., Gao, R., Giinaydin, H., Bentolila, L. A., Kural,
C., and Ozcan, A. (2019). Deep learning enables cross-modality super-resolution in
fluorescence microscopy. Nature methods: 16, 103-110.

Zhang, H., Fang, C., Xie, X., Yang, Y., Mei, W,, Jin, D., and Fei, P. (2019). High-
throughput, high-resolution deep learning microscopy based on reqgistration-free generative
adversarial network. Biomedical optics express: 10, 1044-1063.

Zheng, T., Oda, H., Moriya, T., Sugino, T., Nakamura, S., Oda, M., Mori, M., Takabatake,
H., Natori, H., and Mori, K. (2020). Multi-modality super-resolution loss for GAN-based
super-resolution of clinical CT images using micro CT image database. In Medical Imaging
2020: Image Processing, International Society for Optics and Photonics: 1131305.

Ledig, C., Theis, L., Huszéar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A.,
Tejani, A., Totz, J., and Wang, Z. (2017). Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4681-4690.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 770-778.

landola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., and Keutzer, K. (2014).
Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint
arXiv:1404.1869.

Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., and Change Loy, C. (2018).
Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the
European conference on computer vision (ECCV) workshops, 0-0.

Bianco, S., Cadene, R., Celona, L., and Napoletano, P. (2018). Benchmark analysis of
representative deep neural network architectures. IEEE access: 6, 64270-64277.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, 1. (2017). Attention is all you need. Advances in neural information
processing systems: 30.

Xie, S., Girshick, R., Dollar, P., Tu, Z., and He, K. (2017). Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 1492-1500.

Delibasoglu, 1. and Cetin, M. (2020). Improved U-Nets with inception blocks for building
detection. Journal of Applied Remote Sensing: 14, 044512.

Hou, L., Gupta, R., Van Arnam, J. S., Zhang, Y., Sivalenka, K., Samaras, D., Kurc, T. M.,
and Saltz, J. H. (2020). Dataset of segmented nuclei in _hematoxylin and eosin stained
histopathology images of ten cancer types. Scientific data: 7, 1-12.

99



35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D., and
Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-
pixel convolutional neural network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 1874-1883.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Stergiou, N., Gaidzik, N., Heimes, A.-S., Dietzen, S., Besenius, P., Jakel, J., Brenner, W.,
Schmidt, M., Kunz, H., and Schmitt, E. (2019). Reduced breast tumor growth after
immunization with a tumor-restricted MUC1 glycopeptide conjugated to tetanus toxoid.
Cancer Immunology Research: 7, 113-122.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, 1-9.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing: 13, 600-612.

Chang, H.-H., Zhuang, A. H., Valentino, D. J., and Chu, W.-C. (2009). Performance
measure characterization for evaluating neuroimage segmentation algorithms.
Neuroimage: 47, 122-135.

Juhong, A, Li, B, Liu, Y., Yao, C. Y., Yang, C. W., Agnew, D. W., Lei, Y. L., Luker, G.
D., Bumpers, H., and Huang, X. (2023). Recurrent and convolutional neural networks for
sequential multispectral optoacoustic tomography (MSOT) imaging. Journal of
Biophotonics: 16, €202300142.

Ntziachristos, V. and Razansky, D. (2010). Molecular imaging by means of multispectral
optoacoustic tomography (MSOT). Chemical reviews: 110, 2783-2794.

Wang, L. V. and Hu, S. (2012). Photoacoustic tomography: in vivo imaging from
organelles to organs. science: 335, 1458-1462.

Buehler, A., Kacprowicz, M., Taruttis, A., and Ntziachristos, V. (2013). Real-time
handheld multispectral optoacoustic imaging. Optics letters: 38, 1404-1406.

Dima, A. and Ntziachristos, V. (2016). In-vivo handheld optoacoustic tomography of the
human thyroid. Photoacoustics: 4, 65-69.

100



47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

S57.

Tam, A. C. (1986). Applications of photoacoustic sensing technigues. Reviews of Modern
Physics: 58, 381.

Razansky, D., Distel, M., Vinegoni, C., Ma, R., Perrimon, N., Koster, R. W., and
Ntziachristos, V. (2009). Multispectral opto-acoustic tomography of deep-seated
fluorescent proteins in vivo. Nature photonics: 3, 412-417.

Tzoumas, S., Deliolanis, N. C., Morscher, S., and Ntziachristos, V. (2013). Unmixing
molecular agents from absorbing tissue in multispectral optoacoustic tomography. |IEEE
transactions on medical imaging: 33, 48-60.

Diot, G., Metz, S., Noske, A., Liapis, E., Schroeder, B., Ovsepian, S. V., Meier, R.,
Rummeny, E., and Ntziachristos, V. (2017). Multispectral optoacoustic tomography
(MSOT) of human breast cancer. Clinical Cancer Research: 23, 6912-6922.

Quiros-Gonzalez, 1., Tomaszewski, M. R., Aitken, S. J., Ansel-Bollepalli, L., McDuffus,
L.-A., Gill, M., Hacker, L., Brunker, J., and Bohndiek, S. E. (2018). Optoacoustics
delineates murine breast cancer models displaying angiogenesis and vascular mimicry.
British journal of cancer: 118, 1098-1106.

Ron, A., Dean-Ben, X. L., Gottschalk, S., and Razansky, D. (2019). Volumetric
optoacoustic imaging unveils high-resolution patterns of acute and cyclic hypoxia in a
murine model of breast cancer. Cancer research: 79, 4767-4775.

Taruttis, A., van Dam, G. M., and Ntziachristos, V. (2015). Mesoscopic and macroscopic
optoacoustic imaging of cancer. Cancer research: 75, 1548-15509.

Tomaszewski, M. R., Gehrung, M., Joseph, J., Quiros-Gonzalez, I., Disselhorst, J. A., and
Bohndiek, S. E. (2018). Oxygen-enhanced and dynamic contrast-enhanced optoacoustic
tomography provide surrogate biomarkers of tumor vascular function, hypoxia, and
necrosis. Cancer research: 78, 5980-5991.

Regensburger, A. P., Fonteyne, L. M., Jiingert, J., Wagner, A. L., Gerhalter, T., Nagel, A.
M., Heiss, R., Flenkenthaler, F., Qurashi, M., and Neurath, M. F. (2019). Detection of
collagens by multispectral optoacoustic _tomography as an imaging biomarker for
Duchenne muscular dystrophy. Nature medicine: 25, 1905-1915.

Song, W., Tang, Z., Zhang, D., Burton, N., Driessen, W., and Chen, X. (2015).
Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and
liposomal indocyanine green by multispectral optoacoustic tomography. RSC advances: 5,
3807-3813.

Anani, T., Brannen, A., Panizzi, P., Duin, E. C., and David, A. E. (2020). Quantitative,
real-time in vivo tracking of magnetic nanoparticles using multispectral optoacoustic
tomography (MSOT) imaging. Journal of pharmaceutical and biomedical analysis: 178,
112951.

101



58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Gurka, M. K., Pender, D., Chuong, P., Fouts, B. L., Sobelov, A., McNally, M. W., Mezera,
M., Woo, S. Y., and McNally, L. R. (2016). Identification of pancreatic tumors in vivo
with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral
optoacoustic tomography. Journal of controlled release: 231, 60-67.

Li, D., Zhang, G., Xu, W., Wang, J., Wang, Y., Qiu, L., Ding, J., and Yang, X. (2017).
Investigating the effect of chemical structure of semiconducting polymer nanopatrticle on
photothermal therapy and photoacoustic imaging. Theranostics: 7, 4029.

Wang, S., Zhang, L., Zhao, J., He, M., Huang, Y., and Zhao, S. (2021). A tumor
microenvironment—induced  absorption  red-shifted  polymer  nanoparticle  for
simultaneously activated photoacoustic imaging and photothermal therapy. Science
Advances: 7, eabe3588.

Grohl, J., Schellenberg, M., Dreher, K., Holzwarth, N., Tizabi, M. D., Seitel, A., and Maier-
Hein, L. (2021). Semantic segmentation of multispectral photoacoustic images using deep
learning. arXiv preprint arXiv:2105.09624.

Yuan, A. Y., Gao, Y., Peng, L., Zhou, L., Liu, J., Zhu, S., and Song, W. (2020). Hybrid
deep learning network for vascular segmentation in photoacoustic imaging. Biomedical
Optics Express: 11, 6445-6457.

Luke, G. P., Hoffer-Hawlik, K., Van Namen, A. C., and Shang, R. (2019). O-Net: a
convolutional neural network for quantitative photoacoustic image segmentation and
oximetry. arXiv preprint arXiv:1911.01935.

Lan, H., Jiang, D., Yang, C., and Gao, F. (2019). Y-Net: a hybrid deep learning
reconstruction framework for photoacoustic imaging in vivo. arXiv preprint
arXiv:1908.00975.

Zhang, J., Chen, B., Zhou, M., Lan, H., and Gao, F. (2018). Photoacoustic image
classification and segmentation of breast cancer: a feasibility study. IEEE Access: 7, 5457-
5466.

Chen, T., Lu, T., Song, S., Miao, S., Gao, F., and Li, J. (2020). A deep learning method
based on U-Net for quantitative photoacoustic imaging. In Photons Plus Ultrasound:
Imaging and Sensing 2020, International Society for Optics and Photonics: 112403V.

Bench, C., Hauptmann, A., and Cox, B. T. (2020). Toward accurate quantitative
photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions.
Journal of Biomedical Optics: 25, 085003.

Yang, C., Lan, H., Zhong, H., and Gao, F. (2019). Quantitative photoacoustic blood
oxygenation imaging using deep residual and recurrent neural network. In 2019 IEEE 16th
International Symposium on Biomedical Imaging (ISBI 2019), IEEE: 741-744.

102



69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Grohl, J., Kirchner, T., Adler, T., and Maier-Hein, L. (2019). Estimation of blood
oxygenation with learned spectral decoloring for quantitative photoacoustic imaging
(LSD-gPAI). arXiv preprint arXiv:1902.05839.

Cai, C., Deng, K., Ma, C., and Luo, J. (2018). End-to-end deep neural network for optical
inversion in quantitative photoacoustic imaging. Optics letters: 43, 2752-2755.

Allman, D., Reiter, A., and Bell, M. A. L. (2018). Photoacoustic source detection and
reflection artifact removal enabled by deep learning. IEEE transactions on medical
imaging: 37, 1464-1477.

Davoudi, N., Dedn-Ben, X. L., and Razansky, D. (2019). Deep learning optoacoustic
tomography with sparse data. Nature Machine Intelligence: 1, 453-460.

Hariri, A., Alipour, K., Mantri, Y., Schulze, J. P., and Jokerst, J. V. (2020). Deep learning
improves contrast in low-fluence photoacoustic imaging. Biomedical optics express: 11,
3360-3373.

Lu, T., Chen, T., Gao, F., Sun, B., Ntziachristos, V., and Li, J. (2021). LV-GAN: A deep
learning approach for limited-view optoacoustic imaging based on hybrid datasets. Journal
of biophotonics: 14, e202000325.

Sivasubramanian, K. and Xing, L. (2020). Deep learning for image processing and
reconstruction to enhance led-based photoacoustic imaging. LED-Based Photoacoustic
Imaging: From Bench to Bedside, 203-241.

Lafci, B., Mercep, E., Morscher, S., Dean-Ben, X. L., and Razansky, D. (2020). Deep
learning for automatic segmentation of hybrid optoacoustic ultrasound (OPUS) images.
IEEE transactions on ultrasonics, ferroelectrics, and frequency control: 68, 688-696.

Aydin, M., Kiraz, B., Eren, F., Uysall1, Y., Morova, B., Ozcan, S. C., Acilan, C., and Kiraz,
A. (2022). A Deep Learning Model for Automated Segmentation of Fluorescence Cell
images. In Journal of Physics: Conference Series, IOP Publishing: 012003.

de Haan, K., Ceylan Koydemir, H., Rivenson, Y., Tseng, D., Van Dyne, E., Bakic, L.,
Karinca, D., Liang, K., llango, M., and Gumustekin, E. (2020). Automated screening of
sickle cells using a smartphone-based microscope and deep learning. NPJ digital medicine:
3, 76.

Ibtehaz, N. and Rahman, M. S. (2020). MultiResUNet: Rethinking the U-Net architecture
for multimodal biomedical image segmentation. Neural networks: 121, 74-87.

Punn, N. S. and Agarwal, S. (2022). Modality specific U-Net variants for biomedical image
segmentation: a survey. Artificial Intelligence Review: 55, 5845-5889.

103



81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on

computer vision and pattern recognition, 2818-2826.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation:
9, 1735-1780.

Xu, M. and Wang, L. V. (2005). Universal back-projection algorithm for photoacoustic
computed tomography. Physical Review E: 71, 016706.

Stergiou, N., Gaidzik, N., Heimes, A.-S., Dietzen, S., Besenius, P., Jakel, J., Brenner, W.,
Schmidt, M., Kunz, H., and Schmitt, E. (2019). Reduced Breast Tumor Growth after
Immunization with a Tumor-Restricted MUC1 Glycopeptide Conjugated to Tetanus
ToxoidlImmunization against Tumor-Restricted MUC1 in Breast Cancer. Cancer
Immunology Research: 7, 113-122.

Yang, C.-W., Liu, K., Yao, C.-Y., Li, B., Juhong, A., Qiu, Z., and Huang, X. (2022).
Indocyanine Green-Conjugated Superparamagnetic Iron Oxide Nanoworm _for
Multimodality Breast Cancer Imaging. ACS Applied Nano Materials: 5, 18912-18920.

Greish, K. (2010). Enhanced permeability and retention (EPR) effect for anticancer
nanomedicine drug targeting. Cancer nanotechnology: Methods and protocols, 25-37.

Keshava, N. and Mustard, J. F. (2002). Spectral unmixing. IEEE signal processing
magazine: 19, 44-57.

Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c. (2015).
Convolutional LSTM network: A machine learning approach for precipitation nowcasting.
In Advances in neural information processing systems, 802-810.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath, A. A.
(2018). Generative adversarial networks: An overview. IEEE signal processing magazine:
35, 53-65.

Juhong, A, Li, B., Liu, Y., Yang, C. W., Yao, C. Y., Agnew, D. W., Lei, Y. L., Luker, G.
D., Bumpers, H., and Huang, X. (2024). Multihead Attention U-Net for Magnetic Particle
Imaging—Computed Tomography Image Segmentation. Advanced Intelligent Systems: 6,
2400007.

Bulte, J. W. (2019). Superparamagnetic iron oxides as MPI tracers: A primer and review
of early applications. Advanced drug delivery reviews: 138, 293-301.

Gleich, B. and Weizenecker, J. (2005). Tomographic imaging using the nonlinear response
of magnetic particles. Nature: 435, 1214-1217.

104



93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

Scarfe, L., Brillant, N., Kumar, J. D., Ali, N., Alrumayh, A., Amali, M., Barbellion, S.,
Jones, V., Niemeijer, M., and Potdevin, S. (2017). Preclinical imaging methods for
assessing the safety and efficacy of regenerative medicine therapies. NPJ Regenerative
medicine: 2, 28.

Zheng, B., Vazin, T., Goodwill, P. W., Conway, A., Verma, A., Ulku Saritas, E., Schaffer,
D., and Conolly, S. M. (2015). Magnetic particle imaging tracks the long-term fate of in
vivo neural cell implants with high image contrast. Scientific reports: 5, 14055.

Rahmer, J., Gleich, B., Weizenecker, J., and Borgert, J. (2010). 3D real-time magnetic
particle imaging of cerebral blood flow in living mice. In Proceedings of the International
Society for Magnetic Resonance in Medicine, 714.

Ludewig, P., Gdaniec, N., Sedlacik, J., Forkert, N. D., Szwargulski, P., Graeser, M., Adam,
G., Kaul, M. G., Krishnan, K. M., and Ferguson, R. M. (2017). Magnetic particle imaging
for real-time perfusion imaging in acute stroke. ACS nano: 11, 10480-10488.

Orendorff, R., Keselman, K., and Conolly, S. (2018). Quantitative cerebral blood flow and
volume measurements by magnetic particle imaging. In 13th European Molecular Imaging
Meeting, 20-23.

Fu, A., Wilson, R. J., Smith, B. R., Mullenix, J., Earhart, C., Akin, D., Guccione, S., Wang,
S. X., and Gambhir, S. S. (2012). Fluorescent magnetic nanoparticles for magnetically
enhanced cancer imaging and targeting in living subjects. ACS nano: 6, 6862-6869.

Tomitaka, A., Arami, H., Gandhi, S., and Krishnan, K. M. (2015). Lactoferrin conjugated
iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging.
Nanoscale: 7, 16890-16898.

Finas, D., Baumann, K., Sydow, L., Heinrich, K., Grafe, K., Rody, A., Lidtke-Buzug, K.,
and Buzug, T. (2013). Lymphatic tissue and superparamagnetic nanoparticles-magnetic
particle imaging for detection and distribution in a breast cancer model. Biomedical
Engineering/Biomedizinische Technik: 58, 000010151520134262.

Song, G., Chen, M., Zhang, Y., Cui, L., Qu, H., Zheng, X., Wintermark, M., Liu, Z., and
Rao, J. (2018). Janus iron oxides@ semiconducting polymer nanoparticle tracer for cell
tracking by magnetic particle imaging. Nano letters: 18, 182-189.

Zheng, B., von See, M. P., Yu, E., Gunel, B., Lu, K., Vazin, T., Schaffer, D. V., Goodwill,
P. W., and Conolly, S. M. (2016). Quantitative magnetic particle imaging monitors the
transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics: 6, 291.
Wu, L. C., Zhang, Y., Steinberg, G., Qu, H., Huang, S., Cheng, M., Bliss, T., Du, F., Rao,
J., and Song, G. (2019). A review of magnetic particle imaging and perspectives on
neuroimaging. American Journal of Neuroradiology: 40, 206-212.

105



104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Herz, S., Vogel, P., Dietrich, P., Kampf, T., Ruckert, M. A., Kickuth, R., Behr, V. C., and
Bley, T. A. (2018). Magnetic particle imaging guided real-time percutaneous transluminal
angioplasty in a phantom model. Cardiovascular and interventional radiology: 41, 1100-
1105.

Hossaini Nasr, S., Tonson, A., El-Dakdouki, M. H., Zhu, D. C., Agnew, D., Wiseman, R.,
Qian, C., and Huang, X. (2018). Effects of nanoprobe morphology on cellular binding and
inflammatory responses: hyaluronan-conjugated magnetic _nanoworms for magnetic
resonance imaging of atherosclerotic plaques. ACS applied materials & interfaces: 10,
11495-11507.

Park, J. H., von Maltzahn, G., Zhang, L., Schwartz, M. P., Ruoslahti, E., Bhatia, S. N., and
Sailor, M. J. (2008). Magnetic iron oxide nanoworms for tumor targeting and imaging.
Advanced materials: 20, 1630-1635.

lyer, A. K., Khaled, G., Fang, J., and Maeda, H. (2006). Exploiting the enhanced
permeability and retention effect for tumor targeting. Drug discovery today: 11, 812-818.

Kobayashi, H., Watanabe, R., and Choyke, P. L. (2014). Improving conventional enhanced
permeability and retention (EPR) effects; what is the appropriate target? Theranostics: 4,
81.

Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D., and Chen, M. (2014). Medical image
classification with convolutional neural network. In 2014 13th international conference on
control automation robotics & vision (ICARCV), IEEE: 844-848.

Liu, Q., Yu, L., Luo, L., Dou, Q., and Heng, P. A. (2020). Semi-supervised medical image
classification with relation-driven self-ensembling model. IEEE transactions on medical
imaging: 39, 3429-3440.

Deepa, S. and Devi, B. A. (2011). A survey on artificial intelligence approaches for medical
image classification. Indian Journal of Science and Technology: 4, 1583-1595.

Goldstein, B. A., Navar, A. M., and Carter, R. E. (2017). Moving beyond regression
techniques in cardiovascular risk prediction: applying machine learning to address analytic
challenges. European heart journal: 38, 1805-1814.

Maulud, D. and Abdulazeez, A. M. (2020). A review on linear regression comprehensive
in machine learning. Journal of Applied Science and Technology Trends: 1, 140-147.

Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., and Van
Calster, B. (2019). A systematic review shows no performance benefit of machine learning
over logistic regression for clinical prediction models. Journal of clinical epidemiology:
110, 12-22.

106



115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

Zhang, S., Liang, G., Pan, S., and Zheng, L. (2018). A fast medical image super resolution
method based on deep learning network. IEEE Access: 7, 12319-12327.

Wang, G., Ye, J. C., Mueller, K., and Fessler, J. A. (2018). Image reconstruction is a new
frontier of machine learning. IEEE transactions on medical imaging: 37, 1289-1296.

Lundervold, A. S. and Lundervold, A. (2019). An overview of deep learning in medical
imaging focusing on MRI. Zeitschrift flr Medizinische Physik: 29, 102-127.

Hesamian, M. H., Jia, W., He, X., and Kennedy, P. (2019). Deep learning techniques for
medical image segmentation: achievements and challenges. Journal of digital imaging: 32,
582-596.

Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J. N., Wu, Z., and Ding, X. (2020).
Embracing imperfect datasets: A review of deep learning solutions for medical image
segmentation. Medical Image Analysis: 63, 101693.

Maier, A., Syben, C., Lasser, T., and Riess, C. (2019). A gentle introduction to deep
learning in medical image processing. Zeitschrift fir Medizinische Physik: 29, 86-101.

Wang, R, Lei, T., Cui, R., Zhang, B., Meng, H., and Nandi, A. K. (2022). Medical image
segmentation using deep learning: A survey. IET Image Processing: 16, 1243-1267.

Niu, Z., Zhong, G., and Yu, H. (2021). A review on the attention mechanism of deep
learning. Neurocomputing: 452, 48-62.

Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L., and Zhou, Y.
(2021). Transunet: Transformers make strong encoders for medical image segmentation.
arXiv preprint arXiv:2102.04306.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, 10012-10022.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025.

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-
based models for speech recognition. Advances in neural information processing systems:
28.

Britz, D., Goldie, A., Luong, M.-T., and Le, Q. (2017). Massive exploration of neural
machine translation architectures. arXiv preprint arXiv:1703.03906.

107



129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In Medical image computing and computer-assisted
intervention—-MICCAI 2015: 18th international conference, Munich, Germany, October 5-
9, 2015, proceedings, part I11 18, Springer: 234-241.

Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., and Rueckert,
D. (2019). Attention gated networks: Learning to leverage salient regions in medical
images. Medical image analysis: 53, 197-207.

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K.,
McDonagh, S., Hammerla, N. Y., and Kainz, B. (2018). Attention u-net: Learning where
to look for the pancreas. arXiv preprint arXiv:1804.03999.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017).
Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, 618-626.

Juhong, A., Li, B., Liu, Y., Yao, C.-Y. Yang, C.-W., Atique Ullah, A., Liu, K,
Lewandowski, R. P., Harkema, J. R., and Agnew, D. W. (2025). Monocular depth
estimation based on deep learning for intraoperative guidance using surface-enhanced
Raman scattering imaging. Photonics Research: 13, 550-560.

Lukianova-Hleb, E. Y., Kim, Y.-S., Belatsarkouski, I., Gillenwater, A. M., O'Neill, B. E.,
and Lapotko, D. O. (2016). Intraoperative diagnostics and elimination of residual
microtumours with plasmonic nanobubbles. Nature Nanotechnology: 11, 525-532.

Wang, T., Wang, D., Yu, H., Feng, B., Zhou, F., Zhang, H., Zhou, L., Jiao, S., and Li, Y.
(2018). A cancer vaccine-mediated postoperative immunotherapy for recurrent and
metastatic tumors. Nature communications: 9, 1532.

Anup, N., Gadeval, A., and Tekade, R. K. (2023). A 3D-printed graphene BioFuse implant
for postsurgical adjuvant therapy of cancer: proof of concept in 2D-and 3D-spheroid tumor
models. ACS Applied Bio Materials: 6, 1195-1212.

Aydn, H., Sillenberg, 1., and von Lieven, H. (2001). Patterns of failure following CT-based
3-D irradiation for malignant glioma. Strahlentherapie und Onkologie: 177, 424-431.

Gao, R. W., Teraphongphom, N. T., van den Berg, N. S., Martin, B. A., Oberhelman, N.
J., Divi, V., Kaplan, M. J., Hong, S. S., Lu, G., and Ertsey, R. (2018). Determination of
tumor margins with surgical specimen mapping using near-infrared fluorescence. Cancer
research: 78, 5144-5154.

108



140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

Gao, X, Yue, Q., Liu, Z., Ke, M., Zhou, X, Li, S., Zhang, J., Zhang, R., Chen, L., and
Mao, Y. (2017). Guiding brain-tumor surgery via blood—brain-barrier-permeable gold
nanoprobes with acid-triggered MRI/SERRS signals. Advanced Materials: 29, 1603917.

Kunjachan, S., Ehling, J., Storm, G., Kiessling, F., and Lammers, T. (2015). Noninvasive
imaging of nanomedicines and nanotheranostics: principles, progress, and prospects.
Chemical reviews: 115, 10907-10937.

Kircher, M. F., Mahmood, U., King, R. S., Weissleder, R., and Josephson, L. (2003). A
multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative
optical brain tumor delineation. Cancer research: 63, 8122-8125.

Pal, S., Ray, A., Andreou, C., Zhou, Y., Rakshit, T., Wlodarczyk, M., Maeda, M., Toledo-
Crow, R., Berisha, N., and Yang, J. (2019). DNA-enabled rational design of fluorescence-
Raman bimodal nanoprobes for cancer imaging and therapy. Nature communications: 10,
1926.

Qi, J., Li, J., Liu, R, Li, Q., Zhang, H., Lam, J. W., Kwok, R. T., Liu, D., Ding, D., and
Tang, B. Z. (2019). Boosting fluorescence-photoacoustic-Raman properties in _one
fluorophore for precise cancer surgery. Chem: 5, 2657-2677.

Zysk, A. M., Chen, K., Gabrielson, E., Tafra, L., May Gonzalez, E. A., Canner, J. K.,
Schneider, E. B., Cittadine, A. J., Scott Carney, P., and Boppart, S. A. (2015).
Intraoperative assessment of final margins with a handheld optical imaging probe during
breast-conserving surgery may reduce the reoperation rate: results of a multicenter study.
Annals of surgical oncology: 22, 3356-3362.

Laing, S., Jamieson, L. E., Faulds, K., and Graham, D. (2017). Surface-enhanced Raman
spectroscopy for in vivo biosensing. Nature Reviews Chemistry: 1, 0060.

Langer, J., Jimenez de Aberasturi, D., Aizpurua, J., Alvarez-Puebla, R. A., Auguié, B.,
Baumberg, J. J., Bazan, G. C., Bell, S. E., Boisen, A., and Brolo, A. G. (2019). Present and
future of surface-enhanced Raman scattering. ACS nano: 14, 28-117.

Li, M., Cushing, S. K., and Wu, N. (2015). Plasmon-enhanced optical sensors: a review.
Analyst: 140, 386-406.

Li, D., Hui, H., Zhang, Y., Tong, W., Tian, F., Yang, X., Liu, J., Chen, Y., and Tian, J.
(2020). Deep learning for virtual histological staining of bright-field microscopic images
of unlabeled carotid artery tissue. Molecular imaging and biology: 22, 1301-13009.

Pan, X., Li, L., Lin, H., Tan, J., Wang, H., Liao, M., Chen, C., Shan, B., Chen, Y., and Li,
M. (2019). A graphene oxide-gold nanostar hybrid based-paper biosensor for label-free
SERS detection of serum bilirubin for diagnosis of jaundice. Biosensors and
Bioelectronics: 145, 111713.

109



151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

Shan, B., Pu, Y., Chen, Y., Liao, M., and Li, M. (2018). Novel SERS labels: Rational
design, functional integration and biomedical applications. Coordination Chemistry
Reviews: 371, 11-37.

Wang, Y., Kang, S., Khan, A., Ruttner, G., Leigh, S. Y., Murray, M., Abeytunge, S.,
Peterson, G., Rajadhyaksha, M., and Dintzis, S. (2016). Quantitative molecular
phenotyping with topically applied SERS nanoparticles for intraoperative guidance of
breast cancer lumpectomy. Scientific reports: 6, 21242.

Liang, A., Liu, Q., Wen, G., and Jiang, Z. (2012). The surface-plasmon-resonance effect
of nanogold/silver and its analytical applications. TrAC Trends in Analytical Chemistry:
37, 32-47.

Davis, R. M., Campbell, J. L., Burkitt, S., Qiu, Z., Kang, S., Mehraein, M., Miyasato, D.,
Salinas, H., Liu, J. T., and Zavaleta, C. (2018). A raman imaging approach using CD47
antibody-labeled SERS nanoparticles for identifying breast cancer and its potential to guide
surgical resection. Nanomaterials: 8, 953.

Gao, H. (2016). Progress and perspectives on targeting nanoparticles for brain drug
delivery. Acta Pharmaceutica Sinica B: 6, 268-286.

Huang, R., Harmsen, S., Samii, J. M., Karabeber, H., Pitter, K. L., Holland, E. C., and
Kircher, M. F. (2016). High precision imaging of microscopic spread of glioblastoma with
a targeted ultrasensitive SERRS molecular imaging probe. Theranostics: 6, 1075.

Liu, K., Ullah, A. A., Juhong, A., Yang, C. W., Yao, C. Y., Li, X., Bumpers, H. L., Qiu,
Z., and Huang, X. (2024). Robust Synthesis of Targeting Glyco-Nanoparticles for Surface

Enhanced Resonance Raman Based Image-Guided Tumor Surgery. Small Science,
2300154.

Zavaleta, C. L., Smith, B. R., Walton, I., Doering, W., Davis, G., Shojaei, B., Natan, M. J.,
and Gambhir, S. S. (2009). Multiplexed imaging of surface enhanced Raman scattering
nanotags in living mice using noninvasive Raman spectroscopy. Proceedings of the
National Academy of Sciences: 106, 13511-13516.

Brunelli, R. (2009). Template matching technigues in computer vision: theory and practice.
(John Wiley & Sons).

Mikolajczyk, K. and Schmid, C. (2004). Scale & affine invariant interest point detectors.
International journal of computer vision: 60, 63-86.

Garai, E., Sensarn, S., Zavaleta, C. L., Van de Sompel, D., Loewke, N. O., Mandella, M.
J., Gambhir, S. S., and Contag, C. H. (2013). High-sensitivity, real-time, ratiometric
imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable
Raman endoscope device. Journal of biomedical optics: 18, 096008-096008.

110



162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

Zavaleta, C. L., Garali, E., Liu, J. T., Sensarn, S., Mandella, M. J., Van de Sompel, D.,
Friedland, S., Van Dam, J., Contag, C. H., and Gambhir, S. S. (2013). A Raman-based
endoscopic strategy for multiplexed molecular imaging. Proceedings of the National
Academy of Sciences: 110, E2288-E2297.

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and Koltun, V. (2020). Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. |[EEE
transactions on pattern analysis and machine intelligence: 44, 1623-1637.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Ranftl, R., Bochkovskiy, A., and Koltun, V. (2021). Vision transformers for dense
prediction. In Proceedings of the IEEE/CVF international conference on computer vision,
12179-12188.

Birkl, R., Wofk, D., and Miller, M. (2023). Midas v3. 1--a model zoo for robust monocular
relative depth estimation. arXiv preprint arXiv:2307.14460.

Gotov, O., Battogtokh, G., Shin, D., and Ko, Y. T. (2018). Hyaluronic acid-coated cisplatin
conjugated gold nanoparticles for combined cancer treatment. Journal of industrial and
engineering chemistry: 65, 236-243.

Lee, H., Lee, K., Kim, I. K, and Park, T. G. (2008). Synthesis, characterization, and in
vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes.
Biomaterials: 29, 4709-4718.

Lee, M.-Y., Yang, J.-A., Jung, H. S., Beack, S., Choi, J. E., Hur, W., Koo, H., Kim, K.,
Yoon, S. K., and Hahn, S. K. (2012). Hyaluronic acid—gold nanoparticle/interferon a
complex for targeted treatment of hepatitis C virus infection. ACS nano: 6, 9522-9531.

Li, X., Zhou, H., Yang, L., Du, G., Pai-Panandiker, A. S., Huang, X., and Yan, B. (2011).
Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold
nanoparticles. Biomaterials: 32, 2540-2545.

Xue, Y., Li, X,, Li, H., and Zhang, W. (2014). Quantifying thiol-gold interactions towards
the efficient strength control. Nature communications: 5, 1-9.

Juhong, A., Li, B., Yao, C.-Y., Yang, C.-W., Liu, K., Agnew, D. W., Lei, Y. L., Luker, G.
D., Bumpers, H., and Huang, X. (2023). Cost-Effective Near Infrared Fluorescence Wide-
Field Camera for Breast Tumor Imaging. IEEE Photonics Technology Letters: 35, 813-
816.

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence: 22, 1330-1334.

111



174.

175.

176.

177.

178.

179.

180.

181.

Jurie, F. and Dhome, M. (2001). A simple and efficient template matching algorithm. In
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001,
IEEE: 544-549.

Bradski, G. and Kaehler, A. (2000). OpenCV. Dr. Dobb’s journal of software tools: 3.

Sener, O. and Koltun, V. (2018). Multi-task learning as multi-objective optimization.
Advances in neural information processing systems: 31.

Diederik, P. K. (2014). Adam: A method for stochastic optimization.

Li, Z. and Snavely, N. (2018). Megadepth: Learning single-view depth prediction from
internet photos. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2041-2050.

Bao, H., Dong, L., Piao, S., and Wei, F. (2021). Beit: Bert pre-training of image
transformers. arXiv preprint arXiv:2106.08254.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever,
I. (2021). Zero-shot text-to-image generation. In International conference on machine
learning, Pmir: 8821-8831.

Rolfe, J. T. (2016). Discrete variational autoencoders. arXiv preprint arXiv:1609.02200.

112



