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ABSTRACT 

Due to the rapid development of computational technologies, deep-learning-based approaches 

have emerged as practical and promising remedies for a wide range of biomedical applications. 

This dissertation demonstrates the utilization of deep learning approaches across multiple 

modalities in the field of biomedical applications: histopathology image analysis, multispectral 

optoacoustic tomography (MSOT), computed tomography (CT), magnetic particle imaging (MPI), 

and Raman spectroscopy. The first deep learning application is convolutional neural networks 

(CNNs) for resolution enhancement and nuclei segmentation of hematoxylin and eosin (H&E) 

images. This deep learning-based approach could facilitate cancer diagnosis using H&E images 

acquired by a low resource setting. The second application is based on hybrid recurrent and 

convolutional neural networks to generate sequential cross-sectional MSOT images in order to 

reduce the acquisition time.  Essentially, the proposed deep learning model can generate the 

missing sequential MSOT images in the data acquired by a large step size setting, resulting in a 

comparable resolution to the data acquired by a small step size setting. The third application is an 

efficient end-to-end deep learning model based on U-Net architecture and a multi-head attention 

mechanism for MPI-CT image segmentation. This proposed model can directly segment the MPI 

signal from the co-registered MPI-CT image with promising performance. Lastly, it is a custom-

made Raman spectrometer together with computer vision-based positional tracking and monocular 

depth estimation using deep learning for the visualization of 2D and 3D surface-enhanced Raman 

Scattering (SERS) nanoparticles (NPs) imaging, respectively. The combination of Raman 

spectroscopy, image processing, deep learning, and SERS molecular imaging shows the robust 

and feasible potential for clinical applications. 
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CHAPTER 1: Introduction 

1.1 Deep learning overview  

Deep learning is one of machine learning approaches that utilize multiple layers of data 

representation to effectively capture the unique features of the input data at different stages, 

demonstrating exceptional performance in a wide range of applications such as image 

classification, image segmentation, natural language processing, data generative, etc. As a result, 

deep learning has been rapidly developed in recent years, encompassing methodological 

constructions and actual implementation. Indeed, deep learning employs computational models 

consisting of numerous layers of processing to acquire and represent data with higher level of 

abstraction, and it can implicitly capture complex patterns in extensive datasets. The growing 

amount of data that can be gathered through biomedical and clinical data needs the advancement 

of deep learning techniques to handle, such as Convolution Neural networks (CNNs), Recurrent 

neural networks (RNNs), Attention mechanisms, and Transformer based neural networks to 

process and evaluate the data. Some examples of biomedical devices that commonly apply deep 

learning include Computed Tomography (CT), Magnetic Resonance imaging (MRI), Magnetic 

Particle imaging (MPI), Ultrasound, photoacoustic tomography, optical microscopy and 

tomography and so on.  Specifically, this dissertation demonstrates deep learning for biophotonics 

and molecular imaging applications, which are multidisciplinary life sciences, combining the 

principles of optics, photonics and biology to investigate biological systems at tissue, cellular, and 

molecular levels. The field of biophotonics is one of the essential parts for the development of 

unprecedented diagnostic and therapeutic approaches in the biomedical field; therefore, it has been 

significantly improved over decades, particularly the use of deep learning techniques to empower 

biophotonics research by enabling advanced image analysis, improved image and signal 
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processing, and the ability to comprehensively analyze biophotonics data.  

1.2 Organization of the dissertation  

This dissertation is divided into four chapters for four different modalities and applications. 

Additionally, there is a fifth chapter addressing future research. Chapter 2 demonstrates 

approaches based on deep learning for super-resolution and segmentation for histology images. 

The two proposed deep learning models in this chapters were jointly trained together to reach the 

join optimization to perform both resolution enhancement and segmentation for breast cancer H&E 

images. In chapter 3, a deep learning application for generating the sequential multispectral 

sequential Multispectral Optoacoustic Tomography (MSOT) Imaging is presented. The aim of this 

work is to reduce the acquisition time without any hardware modifications. In this work, the mice 

injected with ICG-conjugated superparamagnetic iron oxide nanoworms particles (NWs-ICG) 

were scanned under the MSOT system providing three imaging modalities: photoacoustic, 

ultrasound, and NWs-ICG acoustic images. The proposed deep learning can reduce the acquisition 

time of volumetric imaging for these three modalities. Chapter 4 shows the MPI signal 

segmentation of MPI-CT images, which is significantly important for MPI quantification. This 

work proposed a novel architecture based on U-Net architecture and attention mechanisms that 

can surpass other state-of-the-art models. Lastly, chapter 5 shows the application of depth map 

estimation based on deep learning in tandem with surface enhanced Raman scattering (SERS) for 

the image-guidance surgery application. With depth information, the SERS is more practical for a 

real clinical application.  The final chapter concludes the dissertation, on-going work related to 

biomedical applications as well as possible future work.  
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CHAPTER 2: Super-resolution and Segmentation Deep Learning for Breast Cancer 

Histopathology Image Analysis 

Reprinted with permission from “A. Juhong, et al., “Super-resolution and Segmentation Deep 

learning for Breast Cancer Histopathology Image Analysis", Biomedical Optics Express, 14.1 

(2023): 18-36 ” [1], © Optica Publishing Group. 

Traditionally, a high-performance microscope with a large numerical aperture is required to 

acquire high-resolution images. However, images’ size is typically tremendous. Therefore, they 

are not conveniently managed and transferred across a computer network or stored in a limited 

computer storage system. As a result, image compression is commonly used to reduce image size 

resulting in poor image resolution. Here, we demonstrate custom convolution neural networks 

(CNNs) for both super-resolution image enhancement from low-resolution images and 

characterization of both cells and nuclei from hematoxylin and eosin (H&E) stained breast cancer 

histopathological images by using a combination of generator and discriminator networks so-

called super-resolution generative adversarial network-based on aggregated residual 

transformation (SRGAN-ResNeXt) to facilitate cancer diagnosis in low resource settings. The 

results provide high enhancement in image quality where the peak signal-to-noise ratio and 

structural similarity of our network results are over 30 dB and 0.93, respectively. The derived 

performance is superior to the results obtained from both the bicubic interpolation and the well-

known SRGAN deep-learning methods. In addition, another custom CNN is used to perform image 

segmentation from the generated high-resolution breast cancer images derived with our model with 

an average Intersection over Union of 0.869 and an average Dice Similarity Coefficient of 0.893 

for the H&E image segmentation results. Finally, we propose the jointly trained SRGAN-ResNeXt 

and Inception U-net Models, which applied the weights from the individually trained SRGAN-
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ResNeXt and Inception U-net Models as the pre-trained weights for transfer learning. The jointly 

trained model’s results are progressively improved and promising. We anticipate these custom 

CNNs can help resolve the inaccessibility of advanced microscopes or whole slide imaging (WSI) 

systems to acquire high-resolution images from low-performance microscopes located in remote-

constraint settings. 

2.1 Introduction 

Pathology diagnosis is routine work usually performed by a skilled pathologist or cytologist. The 

diagnosis process begins with staining (typically hematoxylin and eosin or H&E) of a specimen 

on a glass slide and observing it under a high-resolution (HR) microscope. Typically, the diagnosis 

process for each biopsy slide could take up to 15-20 mins per slide which is very time-consuming.  

Pathologists must visually scan over a vast field of view to find any abnormalities on each slide. 

Therefore, whole slide imaging (WSI) has been introduced to solve this main problem [1]. The 

WSI refers to scanning a complete microscope slide and creating a single high-resolution digital 

file. This is commonly achieved by capturing many small HR image tiles or strips and then 

montaging them to create a full image of a histological section. The WSI equipped with 

pathological image diagnosis software is changing the workflow of many laboratories. Specimens 

on glass slides can now be transformed into HR digital files that can be efficiently stored, accessed, 

and analyzed. The latter is due to the advancement of computer vision and convolution neural 

networks (CNNs) algorithms in digital pathological image analysis [2, 3]. 

However, in resource-constraint settings, accessibility of both HR microscope and WSI is a 

crucial obstacle to delivering quality health care, frequently resulting in undertreatment and 

overtreatment of infectious diseases based on clinical assessment alone [4].  Laboratory 

infrastructure is typically clustered in urban settings and is relatively inaccessible in regions where 
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significant portions of the affected population reside [5]. Many of the neglected diseases in 

particular, are more prevalent in rural areas, far from these diagnostic centers [6].   Therefore, 

novel, simple, and inexpensive approaches to perform digital pathological diagnoses are needed 

in both clinical and public health environments.  Potential solutions are to provide a software-

based solution to help transform low-resolution (LR) to either HR or super-resolution (SR) images. 

Due to the rapid development of computational technologies, deep-learning-based diagnosis 

has become a sought-after technique for digital pathology image analysis implementation [2, 3]. 

Depending on the analysis, the technique can be divided into supervised and unsupervised 

learning. Supervised learning aims to define a function that can map input images to their outputs 

or labels (normal cells, abnormal cells, cancer cells, and other parameters) such as classification 

or segmentation problems. On the other hand, the purpose of unsupervised learning is to define 

another function that can extract the latent features and structures from unlabeled data such as 

clustering problems, dimensional reduction, and super-high-resolution problems.  Several studies 

use CNNs for nuclei segmentation [7-11]. Those methods can surpass the traditional methods such 

as Otsu segmentation [12], Watershed method [13], and K-mean clustering [14]  since the 

traditional methods are sensitive to parameter setting and could be effective for specific data types.  

CNNs based approaches have become practical tools for nuclei and cell segmentation tasks as they 

can achieve a resounding success. HoverNet [15] is one of the effective CNNs for nuclei 

segmentation. The model predicts horizontal and vertical distance between a nucleus centroid to 

its corresponding foreground pixels. Masker-controlled watershed is then applied as the post-

processing method to obtain nucleus instances. However, the HoverNet results can be sensitive to 

the noise in the distance maps because of the marker-controlled watershed. StarDIST [16] is 

another CNNs for nuclei segmentation that predicts centroid probability maps to localize the 
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nuclei. The predicted centroids are applied to generate polygons to determine the boundary and 

the number of the cells. The downside of the StarDIST is that polygons are only predicted using 

the centroid pixels' features. These results in a lack of contextual information for large nucleus 

instances and could affect prediction accuracy. CPP-Net[17] extends the StarDIST by integrating 

the rich contextual information from a sampled point set for each centroid pixel and applying the 

Shape-Award Perceptual loss that constrains CPP-Net’s predictions regarding the nucleus shape.  

U-net architecture is a renowned convolution neural network architecture for image 

segmentation.  It is widely used for biomedical image segmentation [18]. Its structure is simple 

convolution blocks, and the skip connections are added from decoder to encoder. The U-net 

architecture allows for simultaneously using global location and context and it works with very 

few samples to improve the model performance.  In addition, it is an end-to-end process for the 

entire image in the forward pass and directly generates the segmentation image. Its structure is 

also simple to be modified or assembled with other models. Potentially, the performance of the U-

net can be improved by using other effective convolution architectures to replace the simple 

convolution blocks.  In recent years, CNNs have also been applied for super high-resolution 

biomedical images with a wide range of imaging modalities [19-25] such as fluorescence imaging, 

light-sheet imaging, and color imaging of pathological slides. However, those works employed the 

same concept of SRGAN [26] that the generator is built using the ResNet architecture or residual 

structure[27]. Indeed, several architectures can surpass the residual structure. Exploring one of 

them and applying it to the generative adversarial network (GAN) will be more worthwhile.  For 

instance, the DenseNet [28] network is applied as the backbone for SGAN namely ESRGAN [29] 

showing the impressive result and surpassing the original SRGAN model. According to the Top-

1 and Top-5 accuracy vs. computational complexity testing reported on Benchmark Analysis of 
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Representative Deep Learning Neural Networks Architectures [30], the ResNeXt CNNs 

architectures can outperform state-of-the-art (SOTA) architectures such as ResNet, DenseNet, 

Inception, etc., even the complexity of ResNeXt is somewhat less than others. Recently, deep 

learning techniques based on transformer architectures [31] have emerged as an alternative to the 

CNNs architectures since they can provide better results on large datasets. However, the 

transformer architectures are more complicated and require a high computation cost. If the model 

is excessively complicated, it will be challenging to build the jointly trained models to 

simultaneously update the weights of the joint models due to the restriction of computing resources 

(time, memory, speed, etc.).  

To overcome limitations in digital pathological diagnosis, we describe a novel method for 

transforming LR digital pathological images derived from low-cost microscopes to super-

resolution (SR) images (equivalent to a 40x magnification) with a super-resolution generative 

adversarial convolution neural network technique based on ResNeXt architecture [32] (SRGAN-

ResNeXt) [22]. Most SRGAN deep learning works for biomedical image enhancement used a 

single residual network (ResNet) in each layer to capture and extract image features, while our 

deep learning used the ResNext architecture instead.  Typically, the ResNet architecture can 

exceptionally perform on very deep convolution layers since the skip connection in the ResNet 

adds the input information to the output of the convolution layers.  Therefore, the output of ResNet 

contains the representative features from the convolution operation and the critical information 

from the original input. Moreover, the skip connection allows the gradient to effortlessly 

backpropagate and update the weight to minimize the loss value.  However, the single residual 

block might be insufficient to capture all significant features. Therefore, to increase the model 

capability, we apply residual blocks in parallel (stacking the same topology blocks) for each layer 
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(ResNeXt architecture). Utilizing the ResNeXt architecture not only improves the feature 

capturing but also reduces the complexity of the model in preference to make it deeper since hyper-

parameters (width, filter sizes, etc.) are shared. This approach can provide considerable resolution 

enhancement for poor-quality images. Training the SRGAN-ResNeXt Model requires a dataset 

consisting of high-resolution images (ground truth) and corresponding low-resolution images. We 

used a commercial microscope (Nikon Eclipse Ci) to prepare a dataset for training this model. 

Peak Signal to Noise Ratio (PSNR) and Structural image similarity method (SSIM) was used to 

evaluate the generated images from our model, which are 32.92 dB and 0.93, respectively. These 

are promising results as they are higher than the original SRGAN Model’s evaluation results that 

were trained on the same data set (H&E images). Furthermore, we applied the Inception U-net 

Model [33], the improved U-net Model by using Inception architecture as a backbone in the U-net 

network for H&E image segmentation.  To train the Inception U-net Model, a large number of 

H&E images are required to be accurately masked on nuclei areas which are very time-consuming. 

Thus, we used a dataset from a cancer imaging archive [34] to train our Inception U-net Model.  

Our inception U-net Model’s Union (IoU) and Dice Similarity Coefficient (DSC) are 0.869 and 

0.893, respectively.  Since the SRGAN-ResNeXt and Inception U-net model were separately 

trained, the performance of both models could be improved by jointly training them together as 

the segmentation loss and the generator loss could be effectively back propagated to update the 

weights for the generator model and Inception U-net model with a joint optimization. 

Figure 1 shows the overall workflow of the models. First, the breast tumor H&E slides were 

prepared on biopsy slides (Figure 1(a)-(b)) to be imaged with a 40x magnification (Figure 1(c)), 

then acquired the images’ quality was downgraded by downsampling and adding blurring noise. 

Therefore, the model has both corresponding ground truth (high-resolution images) and low-
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resolution images for training the SRGAN-ResNeXt (Figure 1(d)-(f)). Eventually, the well-trained 

generator model from the SRGAN-ResNeXt (Figure 1(h)) was applied to the unseen low-

resolution image (Figure 1(g)) to enhance its quality by generating the high-resolution image 

(Figure 1(i)). Furthermore, the generated high-resolution image was characterized as its resolution 

was substantially improved and contained considerable details that were impossible to perform 

before applying the model. In other words, our approach can tackle those low-resolution images 

by applying the Inception U-net Model (Figure 1(j)) to the generated high-resolution images (the 

output of the generator model from SRGAN-ResNeXt). As a result, the newly generated image 

can be segmented and quantified to characterize the nuclei’s density, size, and morphology.  

 

Figure 1. The workflow of super-resolution and segmentation deep learning. (a) Fresh breast 

tumor tissues. (b) The corresponding H&E stained tissue slides. (c) A commercial microscope 

(Nikon Eclipse Ci) for capturing the H&E stained tissue slide images. (d) High-resolution 

images acquired by the microscope. (e) Simulated low-resolution images. (f) The training 

SRGAN- ResNeXt network. (g) The unseen low-resolution image. (h) The generator model 

from SRGAN-ResNeXt. (i) The generated high-resolution image. (j) The Inception U-net Model 

for segmentation. (k) The segmented H&E image. 

2.2 Methods 

2.2.1 Proposed SRGAN-ResNeXt architecture  

Here, we propose SRGAN-ResNeXt architecture built from scratch to synthesize super-resolution 

images from low-resolution images. The concept of the SRGAN-ResNeXt is similar to the 
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traditional GAN that consists of generator and discriminator models. The generator and 

discriminator models of our SRGAN-ResNeXt are depicted in Figure 2(a) and Figure 2(b), 

respectively. The generator model takes a low-resolution image as the input and generates a high-

resolution image after passing through the convolution, ResNeXt, and upsampling layers. The 

discriminator model is utilized to distinguish the generated image from the ground-truth image by 

taking them as the input and providing probability as the output. The ultimate goal of SRGAN-

ResNeXt is to train the generator model to synthesize the image that can fool the discriminator 

completely. To achieve this, we need to design the generator model properly, use a large number 

of images as the dataset to train the models, and fine-tune the hyperparameters thoroughly. To train 

SRGAN-ResNeXt, we first trained the discriminator model by freezing the generator model. Next 

step, we used an adversarial network to train the generator model. The adversarial network (Figure 

2(c)) is the combined models, which are the generator model, discriminator model, and VGG19-

the latter works as the feature extractor [35].   

2.2.2 Generator model 

The generator network is a deep convolution network containing the pre-residual layer, 16 parallel-

residual layers (ResNeXt), a post-residual layer, two upsampling layers, and the final convolution 

layer as shown in Figure 2(a). To assemble the generator model, the pre-residual block is the first 

block, which contains a single 2D convolution layer and ReLU is used as the activation function. 

The second block is 16 parallel-residual layers (ResNeXt architecture). Each layer after 

convolution layers is followed by a batch normalization with 0.8 of momentum value and the 

activation function is also ReLU. For the ResNeXt block, the size of transformation sets or branch 

numbers is defined as cardinality. Increasing the number of cardinalities can improve and better 

the performance of the convolution neural network. However, the excessive number of 



11 

 

cardinalities could lead to expensive computation. Thus, we use eight cardinalities for our 

generator model [Figure 2(a)], which is the optimal number of our task. The next block is the post-

residual block, the simple convolution layer, and batch normalization (momentum =0.8). After 

that, the fourth block is the upsampling block, which has two sub-pixel convolution layers [36], 

upsampling the scale by four times. Lastly, the last convolution layer uses the Tanh activation 

function to form the generated image with R, G, and B color channels. To train the generator 

model, we need to use the joint model, which is the adversarial network [Figure 2(c)]. The 

discriminator and VGG19 models are untrainable during training the generator model. 

2.2.3 Discriminator model 

The discriminator network [37] is a relatively simple convolution network, comprising eight 

convolutional layers and two fully connected layers, designed to evaluate the similarity between 

the ground truth and generated images. After each convolution block, a batch normalization layer 

is used, followed by an activation function named the Leaky ReLU function (α=0.2). The number 

of 3x3 filter kernels increases by a factor of 2 from 64 (the first layer) to 512 (the eighth layer) 

kernels similar to the VGG network. The last two layers are dense layers working as a classification 

block, predicting the probability of an image being either real or fake. We have to freeze the 

generator model or make it untrainable to train the discriminator model. The learning progress of 

the discriminator model is remarkably faster than the generator model. Therefore, during the 

training generator model, it must be slowed down learning progress which will be further discussed 

in the next section below. 
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2.2.4 Loss functions 

The perceptual loss function (𝐼𝑆𝑅) is highly significant to the performance of the generator model 

in the SRGAN-ResNeXt network. It is the weighted sum of a content loss (VGG19 loss, IX
SR) 

and adversarial loss (Discriminator loss, IGen
SR )  as shown in Equation (1) as  

𝐼𝑆𝑅 = 𝐼𝑋
𝑆𝑅 + 𝐶𝑤𝐼𝐺𝑒𝑛

𝑆𝑅 . (1) 

The generator exploits this loss function to optimize and update its trainable parameters. To 

achieve the well-trained generator model, the weight, 𝐶𝑤, was assigned to the loss value from the 

discriminator model to slow down the learning progress since the discriminator model can be 

trained faster than the generator model. If the discriminator model can excessively perform well 

to distinguish between the generated image and the ground truth image, we would not be able to 

come up with the exceptional generator model since the generated image cannot fool the 

discriminator model. In the original SRGAN training, 𝐶𝑤 is a constant for the whole learning 

process. However, this weight started from 0.5 and increased to 0.05 for every 10,000 epochs in 

our model. Since the generator model will gradually improve its performance and capability, we 

have to balance the performance of both the generator and discriminator models. The total number 

of epochs for training our model was 50,000. Therefore, 𝐶𝑤 was varied from 0.5 to 0.7.  
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Figure 2. Super-resolution generative adversarial network-based on SRGAN-ResNeXt. (a) The 

architecture of the generator. (b) The architecture of the discriminator. (c) The combined models 

so-called adversarial model for training Generator model. 
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Albeit using the pixel-wise mean square error (MSE) to distinguish between the ground truth and 

the reconstructed image is undemanding to optimize, it returns a poor-quality image in terms of 

human perception. The output of MSE is the average features’ difference of two data. Therefore, 

it cannot extract high-dimensional features. However, the content loss or VGG loss (𝐼𝑋
𝑆𝑅) , is 

defined as the Euclidean distance between the feature map of the generated image 𝐺𝜃𝐺(𝐼𝐻𝑅) and 

the ground truth, 𝐼𝐻𝑅, can help solve this problem. The  𝐼𝑋
𝑆𝑅 loss is based on ReLU activation layers 

of the pre-train 19-layer VGG network and it can be calculated following Equation (2) as shown 

as 

                   𝐼𝑉𝐺𝐺
𝑆𝑅 =  

1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑ ∑ (  Ø𝑖,𝑗(𝐼𝐻𝑅)𝑥,𝑦 −  Ø𝑖,𝑗(𝐺𝜃𝐺(𝐼𝐿𝑅)𝑥,𝑦)

𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1 , (2) 

where 𝑊𝑖,𝑗  𝑎𝑛𝑑 𝐻𝑖,𝑗 describe the dimensions of the respective feature maps within the VGG 

network. The features map (Ø𝑖,𝑗), can be obtained by the j-th convolution before the 

𝑖𝑡ℎ maxpooling layer within the VGG19 network. Apart from using a feature map from VGG loss, 

the adversarial loss (𝐼𝐺𝑒𝑛
𝑆𝑅 ) is also employed to differentiate the similarity of the two images. It is 

defined as the probabilities varying from 0 to 1, which is the result of the discriminator model 

(𝐷𝜃𝐷
(𝐺𝜃𝐺

(𝐼𝐿𝑅))) as shown in Equation (3) below as 

                  𝐼𝐺𝑒𝑛
𝑆𝑅 = ∑ −𝑙𝑜𝑔𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐼𝐿𝑅)).𝑁

𝑛=1  (3) 

The perceptual loss effectively leverages the combination of these two loss functions to train the 

generator model that can generate high-detailed images. 

2.2.5 Dataset for training SRGAN-ResNeXt Model 

To obtain breast cancer H&E images, the female MUC1 double-transgenic mice with breast 

tumors [38] were euthanized and their tumors were sent out to the histopathology lab (MSU-IHPL 

Research facility) to prepare the H&E stained breast tumor slides. All procedures performed on 
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animals were approved by the University’s Institutional Animal Care & Use Committee (AUF 

06/18-082-00) and were within the guideline of human care of laboratory animals. Four tumor 

mice were euthanized, and a tumor of each mouse was surgically removed to prepare four different 

tumor H&E slides. The H&E slides were then imaged by the commercial microscope (Nikon 

Eclipse Ci) with 40x magnifications to prepare the dataset for training SRGAN-ResNeXt. The size 

of each whole slide image is greater than 80,000 x 80,000 pixels and the image patches with a size 

of 256 x 256 pixels were extracted from each whole slide image with a 50 % overlapping area. 

The data augmentation was applied to these extracted image patches. The total number of image 

patches including the augmented images is over 13,000 images, which were used for training only. 

To prepare the low-resolution images, we downed sampling 4 times from the original high-

resolution image patch and added blurring noise using the normalized boxed filter with kernel 

shown in Equation (4) below. We increased the kernel size until we could not discriminate the 

nuclei boundary and the simulated low-resolution images are even worse than some native low-

resolution images. 

                  𝐾 =
1

𝑘𝑠𝑖𝑧𝑒.𝑤𝑖𝑑𝑡ℎ∗𝑘𝑠𝑖𝑧𝑒.ℎ𝑒𝑖𝑔ℎ𝑡
[
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

], 
(4) 

Where K is the blurring normalized boxed filter, ksize.width is the kernel width, and ksize.height 

is the kernel height. Figure 3(a) shows the cropping area from the large FOV H&E images. Figure 

3(b) are the small patches that were cropped from the large FOV image.  
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Figure 3. Data set preparation for training SRGAN-ResNeXt, cropped image with 50% 

overlapping area. (a) Large field of view H&E image, (b) The small patches of the large image 

(a) with 50% overlapping area. 

2.2.6 The Inception U-net architecture  

The conventional CNNs for image segmentation tasks have two main components: an encoder and 

a decoder. Similarly, the U-net architecture has these two parts, but the skip connection is the 

crucial mechanism that allows U-net to surpass the conventional method and perform better. This 

concept is akin to the residual block that the input (encoder part) will concatenate to the output 

(decoder part) at the same dimension. However, each layer of the original U-net architecture is a 

simple convolution block, which might be insufficient to extract some crucial information. For this 

reason, the Inception architecture [39] was applied to improve the capability of the U-net Model. 

Inception architecture uses a wide range of kernel sizes for the same input to simultaneously extract 

global and local features. A larger kernel size is suitable for the information distributed globally, 

whereas a smaller kernel size is appropriate for the information distributed locally. Consequently, 

the Inception CNN architecture can be satisfactorily performed to extract the feature from the data. 
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Here, we applied four different kernel sizes of the Inception blocks in our U-net Model as shown 

in Figure 4 below by replacing each convolution block in the original U-net architecture with the 

Inception blocks. 

 
Figure 4. Inception U-net architecture for H&E image segmentation.  Every single blue box 

corresponds to a multi-channel feature map. The value over the boxes represents the number of 

channels.  

Figure 4 illustrates the Inception U-net architecture. The first part is the encoder (the left side of 

Figure 4) where the Inception convolution blocks are utilized instead of the simple convolution 

blocks. All Inception blocks in this part consist of different sizes (3x3, 5x5, and 1x1) parallel filters 

(Inception structure) followed by a rectified linear unit (ReLU) and a 2x2 max pooling operation 

with the stride of 2 steps for downsampling, respectively and this is the repeated process. The 

number of feature channels is double at each downsampling step. The second part is the decoder 

(the right side of Figure 4). It consists of a feature map upsampling followed by a 2x2 up-

convolution (halving the number of feature channels), a corresponding concatenation from the 

decoder part, and Inception blocks. The ReLU activation is used for each block. The H&E images 
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and their corresponding segmentation masks are implemented to train this model as input and 

output, respectively. The loss function for U-net is a mean squared error (MSE) function as shown 

in Equation (5) shown below as   

                   𝑀𝑆𝐸 =
1

𝑁
 ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1 , (5) 

where the MSE is the average of the squared differences between ground truth (𝑦𝑖) and predicted 

value from our model (𝑦̂𝑖) and N is the number of samples. 

2.2.7 Data set for training the segmentation models 

Since image segmentation is a supervised task, the outputs or targets need to be labeled, which is 

expensive and time-consuming. Fortunately, several datasets provide the H&E images and their 

corresponding nuclei masks. Here, we used the dataset from the cancer imaging archive[34]. This 

dataset provides nucleus segmentation for the whole cancer slide over 1,000 images in the cancer 

genome atlas (TCGA) repository. These images are from 10 different cancer types such as bladder 

urothelial carcinoma (BLCA), invasive breast carcinoma (BRCA), cervical squamous cell 

carcinoma, and endocervical adenocarcinoma (CESC). 

2.2.8 Jointly trained SRGAN-ResNeXt and Inception U-net Models 

The SRGAN-ResNeXt and Inception U-net Models were jointly trained by using the separately 

trained weights of the SRGAN-ResNeXt Model and the Inception U-net Model as the pre-trained 

weights for transfer learning. Figure 5(a) shows the joint models for training the generator model. 

The conception of the jointly trained generator (JTG) Model is akin to the adversarial model shown 

in Figure 2(c). Still, the JTG Model employs not only the content loss (returned by the VGG19 

Model) and the adversarial loss (returned by the discriminator model) but also the segmentation 

loss of the generated high-resolution image and ground truth high-resolution image (returned by 
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the jointly trained Inception U-net). The combined loss of the JTG Model is shown in Equation 

(6) as  

                   𝐼𝐽𝐺 = 𝐼𝑋
𝑆𝑅 + 𝐶𝑤𝐼𝐺𝑒𝑛

𝑆𝑅 + 𝐶𝑤2𝐼𝐺𝑒𝑛𝑆
𝑆𝑅𝑆 , (6) 

Where 𝐼𝐽𝐺is the combined loss of the jointly trained generator model, IX
SR is the content loss 

(VGG19 loss), IX
SR is the adversarial loss (Discriminator loss), 𝐼𝐺𝑒𝑛𝑆

𝑆𝑅𝑆  is the segmentation loss 

(Jointly trained Inception U-net loss), and 𝐶𝑤 & 𝐶𝑤2 are hyperparameters. The VGG19 Model, the 

discriminator model, and the jointly trained Inception U-net Model are fixed as untrainable during 

training the JTG Model. 

The jointly trained Inception U-net (JTIU) Model was trained using the generated high-resolution 

image (returned by the JTG Model) and the ground truth of the high-resolution image as the 

model’s inputs. The outputs of both inputs have the same ground truth to calculate the loss value. 

Therefore, the JTIU can learn how to generate the same quality segmentation image from both 

generated high-resolution images and native high-resolution images. During training the JTIU 

Model, the JTG Model was fixed as well.  
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Figure 5. Jointly trained SRGAN-ResNeXt Model and Inception U-net Model. (a) The 

assembled models for the jointly trained generator (JTG) Model. (b) The assembled models for 

the jointly trained Inception U-net (JTIU) Model.  

2.2.9 Data set for the jointly trained Models 

Two other tumor mice were sacrificed, and a tumor of each mouse was prepared for H&E slides. 

Therefore, we have two tumor H&E slides from different mice for training the jointly trained 

models. The 220 image patches with a size of 256 x 256 pixels were randomly extracted from 

these H&E slides (110 patches per slide). 210 and 10 patches were used for training and testing, 

respectively. Each image patch was manually labeled for the ground truth of segmentation. Thus, 

this dataset contains low-resolution, high-resolution and segmentation images. 
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2.2.10 Training implementations  

The separately trained SRGAN-ResNeXt and Inception U-net models were trained on Google 

Colaboratory-Pro (or Google Colab-pro) and implemented on the computer with a 9th Gen Intel 

Core i7-9750H CPU, 16 GB RAM, and an NVIDIA RTX 2060 graphic card. Since the jointly 

trained models require more resources for training due to the combination of several models, they 

were trained on Google Colaboratory-Pro+ (Google Colab Pro+), which provides Faster GPUs and 

significantly more memory than Google Colab-pro.  

2.3 Results and discussion   

2.3.1 Super high-resolution image reconstruction and segmentation. 

The goal of SRGAN-ResNeXt is to have a well-trained generator model to reconstruct high-

resolution images. We could not feed the large image into the generator model due to the 

computation restriction during implementation. Therefore, the large images were divided into 

serval small images. Furthermore, the overlapping area between these divided images was required 

to stitch them back to obtain the same field of view (FOV) as the original large image. Figure 6 

shows the results of applying both the SRGAN-ResNeXt and the Inception U-net Models to a 

breast tumor H&E image. Figure 6(a1), 6(b1), and 6(c1) are the small patches of the whole slide 

image from different areas. All these small images were downscaled and added blurring noise as 

shown in Figure 6(a2), 6(b2), and 6(c2). The SRGAN-ResNeXt Model was employed to enhance 

these low-resolution images by synthesizing high-resolution images (Figure 6(a3), 6(b3), and 

6(c3)). The Inception U-net was then applied to these generated high-resolution images for 

segmentation (Figure 6(a4), 6(b4), and 6(c4)).   
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Figure 6. The whole slide image (WSI) of a breast tumor H&E slide and the result of our deep 

learning model. (a1, b1, and c1) The high-resolution images of the WSI from different areas. 

(a2, b2, and c2) The low-resolution images. (a3, b3, and c3) The reconstructed high-resolution 

images using our deep learning model (SRGAN-ResNeXt). (a4, b4, and c4) The corresponding 

nuclei segmentation to (a3, b3, and c3) using the Inception U-net Model. 

Figure 7(a1) and 7(b1) show the low-resolution image and the enhanced-resolution image 

generated by the SRGAN-ResNeXt model, respectively. They were fed into the Inception U-net 

Model for nuclei segmentation. Figure 7(a2) shows the segmentation result of the low-resolution 

image and Figure 7(b2) shows the segmentation result of the enhanced image. It is relatively 

demanding to perform the image segmentation for the low-resolution image without enhancing its 

resolution first. The CNNs cannot extract meaningful features from the blurry pixels resulting in 

unsatisfactory segmentation performance. The mean square error (MSE) of blurry images and 

generated high-resolution images are 21.24 and 2.75, respectively. The MSE of the blurry image 

is significantly higher than the generated high-resolution image. To circumvent this issue, we 

propose to apply the SRGAN-ResNeXt Model to improve the poor-quality image before 

characterizing or performing segmentation to obtain better results. Figure 7(c1) and 7(c2) show 

the ground truth for high-resolution image and segmentation image, respectively.  
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Figure 7. The H&E image segmentation of the low-resolution image and the enhanced-

resolution image. (a1-a2) The low-resolution image and its segmentation image (output of the 

Inception U-net). (b1-b2) The enhanced-resolution image (output of the SRGAN-ResNeXt) and 

its segmentation image (output of the Inception U-net). (c1-c2) The ground truth of the high-

resolution image and the segmentation image. (d) Ground truth preparation for both of the high-

resolution image and the segmented image. 

2.3.2. Performance of the SRGAN-ResNeXt Model 

Peak signal to noise ratio (PSNR) is one of the ubiquitous methods used to quantify the quality of 

the generated image compared to the original image (ground truth) [31]. It is a ratio between the 

maximum possible power of a signal and the power of distorting noise, affecting its representation 

quality. The higher the PSNR, the better the quality of the generated image. To compute the PSNR, 

we have to calculate the mean squire error (MSE) first and use the Equation (7) below to define 

PSNR as 

                     𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10(
𝑀𝐴𝑋𝑓

√𝑀𝑆𝐸
) .  (7) 

The MSE is defined as the following 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑ ∑ ‖𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)‖2𝑛−1

0
𝑚−1
0 , (8) 

Where f is the matrix data of the ground truth,  

g is the matrix data of the generated image,  

m is the number of rows of pixels of the images, 
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i represents the index of that row, 

n is the number of columns of pixels of the image, 

 j represents the index of that column, and 

𝑀𝐴𝑋𝑓 is the maximum signal value that exists in our ground truth. 

Structural similarity index measure (SSIM) is a perception-based model. It considers image 

distortion in terms of perceived change structural information (loss of correlation, luminance 

distortion, and contrast distortion) [40].  

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =
(2μ𝑥μ𝑦+c1)(2σ+c2)

(μ𝑥
2+μ𝑦

2 +c1)(σ𝑥
2+σ𝑦

2 +c2)
, 

(9) 

Where  

μ𝑥 denotes the average of x,  

μ𝑦 denotes the average of y, 

σ𝑥
2 denotes the variance of x, 

 σ𝑦
2 denotes the variance of y, 

σ denotes the covariance of x and y,  

and c1 and c2 are two variables to stabilize the division with a weak denominator. 

Here, we calculated the PSNR [dB] and SSIM index between the generated images reconstructed 

by our model and high-resolution images (ground truth) by using data from two different H&E 

breast cancer slides, which are not used to train the model (unseen data). For each slide, we used 

the random 54 small low-resolution images with a size of 64x64 pixels to reconstruct high-

resolution images with a size of 256x 256 pixels compared to the ground. The results of 

PSNR/SSIM are shown in Table 1 below. In order to compare the performance of the generator 

models with different backbone architectures (ResNet (original SRGAN), Transformer, DenseNet, 

and ResNeXt), we trained them with the same dataset we acquired from the breast cancer H&E 



25 

 

slides. The proposed model can provide better results, which the average PSNR/SSIM of the data 

from both H&E slides is over 30 dB/0.92, whereas the average result from the traditional method 

(Bicubic interpolation), the typical SRGAN, SRGAN-DenseNet, and SRGAN-Transformer are 

24.10 dB/0.848, 27.51 dB/0.915, 27.55 dB/0.93, and 18.50 dB/0.69, respectively.  

Table 1. PSNR/SSIM compares results between the generated high-resolution images and the 

ground truth (realistic high-resolution images) from the testing dataset. 

PSNR/SSIM Breast cancer1 

40x 

Breast cancer2 

40x 

Average  

Bicubic 

interpolation 

24.13 dB/ 0.84 24.07 dB/0.86 24.1 dB/0.85 

SRGAN Model  27.84 dB/0.91 27.18 dB/0.92 27.51 dB/0.915 

SRGAN-DenseNet 27.96 dB/0.93 27.15 dB/0.93 27.55 dB/0.93 

SRGAN-

Transformer  

18.68 dB / 0.69 18.33 dB /0.68 18.50 dB/ 0.69 

Our model  

(SRGAN-ResNeXt) 

32.34 dB/ 0.93 

 

31.92 dB/0.93 32.13 dB/0.93 

Ground truth 

(high-resolution 

image) 

∞/1 ∞/1 ∞/1 

Figure 8 compares the reconstruction results of the typical SRGAN, SRGAN-Transformer, 

SRGAN-DenseNet, and our SRGAN-ResNeXt. Figure 8(a) and 8(b) illustrate the original high-

resolution (ground truth) breast tumor H&E image and bicubic interpolation of a low-resolution 

image, respectively. Figure 8(c), 8(d), 8(e), and 8(f) show the generated high-resolution H&E 

images reconstructed by the traditional SRGAN, the SRGAN-Transformer, the SRGAN-

DenseNet, and our SRGAN-ResNeXt, respectively. The contrast of some areas of SRGAN-

DenseNet results looks slightly better than SRGAN, and SRGAN-ResNeXt results. However, 

some small details of the SRGAN-DenseNet results are missing as shown in Figure 8(g) pointed 

out by the red arrows. For the SRGAN-Transformer, it cannot surpass the SRGAN based on CNNs 

architectures by training with our limited custom dataset and computational resource. The model 

based on the Transformer architecture can potentially overcome the CNNs models if the dataset is 
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sufficiently large and the computational resources have high performance enough to increase the 

model complexity (increasing the number of attention heads, Transformer encoders, multilayer 

perceptron, etc.)  

 
Figure 8. Comparison of the results for our deep-learning model based on ResNeXt against 

bicubic interpolation of the low-resolution image, SRGAN, SRGAN-Transformer, and 

SRGAN-DenseNet. (a) The original ground truth image. (b) Bicubic interpolation of the low-

resolution image. (c) The SRGAN result. (d) The SRGAN-Transformer result. (e) the SRGAN-

DenseNet result. (f) Our model result. (g1-g6) Enlarged image in the red boxes from (a-f), 

respectively. (h1-h6) Enlarged images in the yellow boxes from (a-f), respectively.  
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2.3.3 Performance of the Inception U-net architecture 

Intersection over Union (IoU) as known as the Jaccard index is the benchmark used to evaluate 

the similarity between a predicted segmentation area and its labeled area (ground truth) [41]. The 

concept of IoU is to measure of pixels common between the target and predictions mask 

(intersection) divided by the total number of pixels present across both the prediction mask and 

ground truth (union) as shown in the equation below 

                     𝐼𝑜𝑈 =
𝑡𝑎𝑟𝑔𝑒𝑡 ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 . (10) 

The IoU ranges from 0 -1 (0-100%) with 0 indicating that there is no overlapping area, whereas 1 

indicates an impeccably overlapping area.  

Dice similarity coefficient (DSC) is another well-known parameter used to evaluate the similarity 

between the predicted area (our output) and ground truth [32]. The DSC can be calculated 

following the equation below  

                     𝐷𝑆𝐶 =
2 |𝑋 ∩ 𝑌|

|𝑋|+|𝑌|
 . (11) 

It is remarkably similar to the IoU. They are positively correlated. The unseen H&E cancer images 

from the cancer imaging archive [34] were used to evaluate the performance of our Inception U-

net and the typical U-net Models. Table 2 shows their performance that the IoU and DSC from the 

Inception U-net Model are higher than the ones from the U-net Model. According to this result, 

Inception U-net Model can surpass the original U-net Model by using the Inception architecture 

as a core structure instead of a simple convolution block.  

Although the Inception U-net can slightly surpass the original U-net, these improvements will have 

a tremendous impact on the histopathology analyses because the histopathology image analysis 

needs to perform on the vast area of H&E images (whole slide image), the small accurate and 

inaccurate segmented nuclei of each small patch will be accumulated and lead to the correct and 
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incorrect diagnosis results. For example, one of the criteria to determine tumor stages is the density 

of inflammatory cells. The segmentation area can be used to determine it. Suppose there is a small 

error in the segmentation of inflammatory cells in every small H&E image patch. In that case, the 

total number of inflammatory cells on the whole slide image might be less accurate than the actual 

one, so a pathologist could wrongly diagnose the tumor stage.  

Table 2. The comparison of tumor cell nuclei segmentation performances using U-net and 

Inception U-net architectures. 

 

 

 

 
Figure 9. Comparison results between the traditional U-net and Inception U-net by using H&E 

images and ground truth from the dataset [34]. (a) A low density of nuclei H&E image. (b) A 

high density of nuclei H&E image. The results from both models have been colored code such 

that green denotes false negative, yellow denotes true positive, and red denotes false positive 

pixels.  

2.3.4 Performance of the jointly trained SRGAN-ResNeXt and Inception U-net Models 

After jointly training SRGAN-ResNeXt and Inception U-net Models on another unseen dataset, 

the performance of the ResNeXt generator was slightly improved due to the limited number of 

 U-net  Inception U-net 

IoU/Jaccard index 0.720 0.869 

DSC/F1score 0.875 0.893 
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data (220 patches). Still, the performance of the Inception U-net was considerably enhanced as 

shown in Figure 10, Table. 3, and Table. 4 below. 

 
Figure 10. The improvement of the SRGAN-ResNeXt and Inception U-net after training them 

jointly. (a) Low-resolution image input. (b1-b2) The ResNeXt generator and Inception U-net 

models’ results. (c1-c2) The jointly trained models’ results. (d1-d2) High-resolution and 

segmentation ground truth images.   

Table 3 and Table 4 show the performance improvement of the jointly trained SRGAN-ResNeXt 

and Inception U-net Models, respectively. Since the jointly trained models require to apply the 

dataset that contains not only low-resolution and high-resolution images but also the corresponding 

segmentation masks, preparing large data is expensive. Although the joint models were trained on 

the small dataset (220 patches from two different tumor mice), the results look promising. The 

performance of the jointly trained models can be potentially improved by training them on the 

larger dataset. 

Table 3. PSNR/SSIM compares results between the high-resolution generated and the ground 

truth (realistic high-resolution image) dataset of the SRGAN-ResNeXt model and the jointly 

trained SRGAN-ResNeXt. 

PSNR/SSIM SRGAN-ResNeXt Jointly trained SRGAN-

ResNeXt 

PSNR/SIIM 31.56 dB/ 0.91 31.63 dB/0.92 
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Table 4. The comparison of tumor cell nuclei segmentation performances using U-net and 

Inception U-net architectures. 

 

 

 

 

2.4.Conclusion 

In this work, we demonstrated a practical approach to enhancing low-resolution H&E stained 

images by using the state-of-the-art SRGAN-ResNeXt network. The model can deeply learn how 

to map the low-resolution images to their corresponding high-resolution images. Even though cell 

images contain sophisticated patterns and structures, the SRGAN-ResNeXt Model can still provide 

high-quality reconstruction results. Moreover, it can outperform the original SRGAN Model. 

Therefore, we take these advantages to characterize and quantify the nuclei from the generated 

high-resolution images. The nuclei from those generated images were segmented using another 

neural network: the Inception U-net architecture. Since we have generated both high-resolution 

H&E images and their nuclei segmentation, we can derive both nuclei area, pixel intensity, and 

other essential parameters to assist pathologists’ diagnosis. If the resolution of H&E images is poor 

and unfavorable, the characterization could be inaccurate leading to misdiagnosis. Moreover, the 

individually well-trained weights of SRGAN-ResNeXt and Inception U-net Models can be applied 

as the pre-trained weights (transfer learning) for the jointly trained SRGAN-ResNeXt and 

Inception U-net Models. The performance of the jointly trained models is noticeably improved 

and promising. We anticipate this work can be applied in broad applications such as retrieving 

image quality from a compressed archiving image for transferring among data networks and 

enhancing image quality from a low-cost microscope. For the latter, these custom CNNs can help 

solve the inaccessibility of advanced microscopes to acquire high-resolution images from low-

performance microscopes located in most remote clinical settings in developing nations. In future 

  Inception U-net Jointly trained Inception 

U-net 

IoU/Jaccard index 0.50 0.84 

DSC/F1score 0.75 0.91 
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work, we intend to apply the proposed CNNs to decrease image acquisition time for a WSI H&E 

scanner which typically uses a high NA objective lens in combination with a slow scan to acquire 

a high-resolution image.  
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CHAPTER 3: Recurrent and Convolution Neural Networks for Sequential Multispectral 

Optoacoustic Tomography (MSOT) Imaging 

Reprinted with permission from “A. Juhong, et al., “Recurrent and Convolutional Neural 

Networks for Sequential Multispectral Optoacoustic Tomography (MSOT) Imaging", Journal of 

Biophotonics, 16, no.11 (2023): e202300142 ” [42], © 2023 The Authors, Journal of 

Biophotonics published by Wiley-VCH GmbH. 

Volumetric optoacoustic imaging is a beneficial technique for diagnosing and analyzing biological 

samples since it provides meticulous details in anatomy and physiology. However, acquiring high 

through-plane resolution volumetric images is time-consuming, requiring a precise motorized 

stage to move samples under the optoacoustic system along the z-axis. Here, we propose deep 

learning based on hybrid recurrent and convolution neural networks to generate sequential cross-

sectional optoacoustic images. A multispectral optoacoustic tomography (MSOT) system was 

utilized to acquire the dataset from breast tumors for training our deep learning model. This system 

can simultaneously acquire the sequential images (cross-sectional images) of MSOT and 

ultrasound. Furthermore, it provides a spectral unmixing algorithm applied to the MSOT images 

for extracting the sequential images of a specific exogenous contrast agent. This study used ICG-

conjugated superparamagnetic iron oxide nanoworms particles (NWs-ICG) as the contrast agent. 

Our deep learning model applies to all three modalities (multispectral optoacoustic imaging at a 

specific wavelength, ultrasound, and NWs-ICG optoacoustic imaging). The generated 2D 

sequential images were compared to the ground truth 2D sequential images acquired using a small 

step size. The results of these three modalities can achieve excellent image quality where the 

average of peak-signal-to-noise ratio and summation absolute errors between the ground truths 

and the generated images is over 75 dB and less than 2,000. Instead of acquiring seven images 
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with a step size of 0.1 mm, we can receive two images with a step size of 0.6 mm as input images 

for the proposed deep learning model.  The deep learning model can generate or interpolate other 

five images with the step size of 0.1 mm between these two input images meaning we can save 

acquisition time by approximately 71%. 

3.1 Introduction  

Multispectral Optoacoustic Tomography (MSOT) is an in vivo optical imaging modality for 

molecular, anatomical, and functional imaging Fields [43, 44]. The principle of MSOT is based on 

the optoacoustic effect, i.e., a molecule is excited by an ultra-short laser pulse, which can penetrate 

through tissue several centimeters [45, 46], resulting in thermoelastic expansion surrounding the 

molecule that generates a photoacoustic wave [47]. The ultrasound traducer is then used to detect 

this wave as an ultrasound signal.  The difference of absorption contrast of tissue in single 

wavelength images is employed to reconstruct anatomical images. Using multiple wavelengths to 

excite the tissue, we can obtain multispectral images from intrinsic and extrinsic signals. A laser 

between 680 nm and 980 nm is the predominant source for intrinsic signals such as deoxygenated 

hemoglobin, oxygenated hemoglobin, melanin, myoglobin, bilirubin, fat, etc.  Extrinsic signals do 

not usually occur in cells, tissue, or animals. Agents that can absorb in the near-infrared (NIR) 

range such as indocyanine green, fluorescence proteins, nanoparticles, etc., can increase the 

optoacoustic signal (extrinsic signal). Thus, they can be distinguished from intrinsic tissue 

background signals by using effective spectral unmixing algorithms such as linear regression, 

guided independent comment (ICA), and principal component analysis (PCA) [48, 49].  MSOT is 

widely used for several studies such as cancer research [50-54], drug development [55, 56], and 

nanoparticle [57-60].  However, using multiwavelength excitation to scan the sample is time-

consuming, especially cross-sectional scanning for 3D image reconstruction. Imaging needs to 
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sweep all the wavelengths with every single scanning position. For in vivo experiments, this might 

lead to image degradation from motion artifacts and potential lethality from prolonged anesthesia.  

In recent years, deep learning-based approaches have played a vital role in optoacoustic 

imaging, and they have been widely used in several applications such as image classification, 

segmentation [61-65], quantitative photoacoustic imaging [66-70], image enhancement [71-75], 

etc. One main advantage of deep learning for those applications is that it depends less on hardware 

modifications. In addition, most of those deep learning techniques were designed to use a single 

2D image as their input and apply convolution architectures for feature extraction.  For instance, 

deep learning for automatic segmentation of optoacoustic ultrasound (OPUS) images [76] used the 

U-net architecture [18] to perform the image segmentation. U-net is a well-known convolution 

neural network (CNN) architecture for image segmentation, particularly biomedical images [77-

80]. 

Nevertheless, there are no techniques based on deep learning to reduce the acquisition time 

of cross-sectional scanning for 3D photoacoustic imaging. Herein, we propose the hybrid 

architecture of convolution neural network (CNN) and recurrent neural network (RNN) for 

generating sequential optoacoustic, unmixed optoacoustic of a specific contrast agent, and 

ultrasound images to extend the stack of cross-sectional images and reduce acquisition time by 

approximately 71%. This hybrid architecture is called Inception Generator Long Sort-Term 

Memory (I-Gen-LSTM). The Inception Generator is a CNN model designed based on the 

Inception U-net architecture. Inception is a convolution layer [81] that convolves the input in 

parallel with different kernel sizes extracting more features than a simple convolution layer. RNN 

is a robust and effective approach for sequential problems. It is a feed-forward neural network with 

internal memory and performs the same function for every data input. In addition, the output of 
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the current input depends upon the previous output. However, the original RNN has drawbacks 

regarding exploding and vanishing gradients from backpropagation to update weights, particularly 

long sequential inputs. Long Short-Term Memory (LSTM) networks [82] are improved RNN 

networks capable of learning long-term dependencies by adding a forget gate, input gate, and 

output gate. Therefore, we leverage Inception Generator and LSTM networks to generate 

sequential images. Our results demonstrate that the I-Gen-LSTM model is a versatile method that 

can generate not only sequential optoacoustic images but also sequential unmixed optoacoustic 

and ultrasound images.  

3.2 Methods 

3.2.1 Data acquisition 

A commercial multispectral optoacoustic tomography (MSOT) system (inVision 512-echo, iThera 

Medical GmbH, Munich, Germany) was used to acquire the data for training the I-Gen-LSTM 

model. The MSOT system has a 270-degree ultrasound transducer tomographic array, which can 

acquire signals from multiple angles around an object. This tomographic array enables the system 

for imaging complex shapes since it can capture 2-dimensional signals in the imaging plane. Figure 

11(a) shows the detection and illumination geometry in the imaging chamber of the MSOT system. 

In addition, this system provides a tunable laser with a range of 660-1,300 nm, which is particularly 

suitable for most biological samples. The excitation pulse laser is used to illuminate the sample. 

The sample absorbs this pulse and converts it to heat, which results in a transient thermoelastic 

expansion that generates an acoustic wave. The ultrasound transducer is then used to detect this 

acoustic wave, and the back-projection algorithm [83] is applied to the detected optoacoustic wave 

to reconstruct the images. For the dataset preparation, transgenic mice [84] with breast tumors 

were intravenously injected with indocyanine green (ICG)-conjugated superparamagnetic iron 
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oxide nanoworms (NWs-ICG) [85], which accumulate in tumors longer than pure ICG through the 

enhanced permeability and retention (EPR) effect [86]. Twenty-four hours after injection, the mice 

were euthanized and the tumors were removed and dissected for this study. All procedures 

performed on animals were approved by the University’s Institutional Animal Care & Use 

Committee and were within the guidelines of humane care of laboratory animals. To acquire 

images of the tumors, 4 mg of agarose powder was dissolved in 40 mL of warm deionized water. 

The breast tumor was put in this dissolved agarose solution, allowing approximately 15 minutes 

for the solution to solidify. The hardened agarose with the tumor inside shown in Figure 11(b), 

was grasped by the holder and then scanned by the inVision MSOT system with the excitation 

pulse at wavelengths from 800 nm to 1000 nm (a comprehensive range of the NWs-ICG study). 

Since the inVision MSOT system can provide corresponding ultrasound images, NWs-ICG 

optoacoustic images obtained through linear spectral unmixing algorithm [87], and each single-

wavelength optoacoustic image, these three imaging modalities were simultaneously acquired in 

every scanning position. Figure 11(d1-d4) shows the ultrasound images of the breast tumor with 

different scanning positions, Figure 11(e1-e4) shows the corresponding NWs-ICG optoacoustic 

images reconstructed from multispectral optoacoustic imaging with the excitation pulse at 

wavelengths from 800 to 1,000 nm by using the multispectral unmixing algorithm; Figure 11(f1-

f4) shows the corresponding single-wave optoacoustic image at 800 nm excitation; and Figure 

11(g1-g4) shows the corresponding overlaid images of these three imaging modalities. 
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Figure 11. Ultrasound, NWs-ICG optoacoustic obtained through multispectral unmixing, and 

optoacoustic at 800 nm excitation imaging of an ex vivo breast tumor from a mouse 

intravenously injected with NWs-ICG. (a) The detection and illumination geometry in the 

imaging chamber of the MSOT system. (b) The breast tumor is embedded in agarose. (c) NWs-

ICG structure. (d1-d4) Ultrasound images of the breast tumor with different step sizes. (e1-e4) 

The corresponding NWs-ICG optoacoustic images were obtained through multispectral 

unmixing. (f1-f4) The corresponding single-wavelength (λex = 800 nm) optoacoustic images. 

(g1-g4) with an overlay of the ultrasound, the NWs-ICG optoacoustic(colormap), and the single-

wavelength optoacoustic images. 
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3.2.2 I-Gen-LSTM and discriminator models  

The I-Gen-LSTM model comprises three main neural networks depicted in Figure 12(a-c). The 

first neural network is the Inception encoder & decoder network based on Inception U-net 

architecture. The original U-net architect employs simple convolution blocks with the skip 

connection of encoders and decoders at the same dimension helping the model to circumvent the 

vanishing and exploding gradients problems.  However, the simple convolution blocks might be 

insufficient to extract all crucial information comprehensively. Inception architecture is one of the 

effective CNNs architectures since it applies a wide range of kernel sizes to extract global and 

local features. A large and a small kernel size are tailored to extract information distributed 

globally and locally, respectively. With this attribute, the encoder & decoder network was designed 

using Inception U-net as its backbone as shown in Figure 2(a), for improving the model capability. 

This network takes two 2D images, acquired from an arbitrary consecutive position with a step 

size of 0.6 mm, as its inputs (input 1 and input 2, as shown in Figure 12(a)). The encoder shown 

on the left side of Figure 12(a) generates encoder outputs (E1n -E5n, where n is the input image 

number, i.e., 1 and 2). Inception architecture in the encoder with three different kernel sizes (1x1, 

3x3, and 5x5) assembled as the parallel filters are used to extract features from the tensors followed 

by a rectified linear unit (ReLU) and a 2x2 max pooling with the stride of 2 steps for 

downsampling, respectively. Similarly, Inception architecture is also used in the decoder blocks. 

The encoder blocks are used to generate decoder outputs (D1n-D5n, where n is the input image 

number, i.e., 1 and 2) as shown in the right side of Figure 12(a) followed by a feature map 

upsampling, a 2x2 up-convolution (halving the number of feature channels), and a corresponding 

concatenation from the encoder part.  
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The second neural network is the convolutional LSTM network (ConvLSTM) [88], a recurrent 

neural network for spatio-temporal prediction. It has a convolutional structure in both the input-

to-state and state-to-state transitions as shown in the bottom right of Figure 12(b). In other words, 

internal matrix multiplications are exchanged with convolution operations. Consequently, the data 

flowing through the ConvLSTM cells keeps the input dimension instead of being a 1D vector with 

features. The main equations of ConvLSTM are expressed in Equations (12-16) below, where ‘*’ 

and ‘๐’ represent the convolution operator and the Hadamard product (element-wise matrix 

multiplication), respectively. All variables in Equations (12-16) were shown in the “ConvLSTM 

block” in Figure 12(b).  

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ 𝐻𝑡−1๐𝐶𝑡−1 + 𝑏𝑖) (12) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑡 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑡๐𝐶𝑡−1 + 𝑏𝑓) (13) 

𝑐𝑡 = 𝑓𝑡๐𝐶𝑡−1 + 𝑖𝑡๐tanh (𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐) (14) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑜๐𝐶𝑡 + 𝑏𝑐) (15) 

𝐻𝑡 = 𝑜𝑡๐tanh (𝐶𝑡) (16). 

The ConvLSTM takes the outputs of the Inception encoder from both input images (E11-E51 and 

E12-E52) as its inputs to generate five sequential blocks (Recurrent Conv1 to Recurrent Conv5) 

as shown in Figure 12(b). Recurrent Conv 1, 2, 3, 4, and 5 have dimensions of (5x128x128x512), 

(5x64x64x512), (5x32x32x512), (5x16x16x512), and (5x8x8x512), respectively. The first 

dimension represents the number of output images (five sequential output images). Lastly, it is the 

sequential image generator network inspired by U-net architecture. The model takes Recurrent 

Conv 1-5, two input images, encoder outputs (E11-E51 and E12-E52), and decoder outputs (D11-

D41 and D12-D42) to reconstruct five sequential images of different scanning positions as shown 

in Figure 12(c). The left side of Figure 12(c) shows the concatenated encoder and decoder outputs 
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generated by the Inception encoder &decoder (Figure 12(a)). The right side of Figure 12(c) shows 

Conv2D transpose and Conv2D operations for the Recurrent Conv 1-5 generated by the 

ConvLSTM blocks (Figure 12(b)) and the concatenated encoder & decoder outputs.  

All Conv2D transpose, Conv2D blocks utilize ReLU as their activation function except the last 

Conv2D* that applies hyperbolic tangent or tanh as its activation function. Indeed, the Recurrent 

Conv blocks regulate the gradual change in the sequential output images.  In short, the I-Gen-

LSTM model takes two images acquired by consecutive positions with 0.6 mm steps size and 

generates the five sequential images between these two images with gradual change following the 

scanning positions (step sizes of 0.1 – 0.5 mm). The ground truth images acquired using a small 

step size (0.1-0.5 mm) were used to determine the loss value from these five generated images. 

The loss functions will be elucidated in Section 3.2.3. 
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Figure 12. I-Gen-LSTM and discriminator architectures. (a) Inception encoder and decoder 

network were applied to both images (input1 and input2). (b) ConvLSTM network for 

generating the sequential blocks (Recurrent Conv 1-5) fed to the sequential image generator 

network for reconstructing the sequential output images. (c) The sequential image generator 

network. (d) The discriminator network. 
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Figure 12 (cont’d). 

 

 

The discriminator network shown in Figure 12(d) is a simple convolution network designed to 

evaluate the similarity between the ground truths and generated images. The model comprises 
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eight convolutional layers and two fully connected layers. After each convolution block, a batch 

normalization layer is used, followed by an activation function named the Leaky ReLU function 

(α=0.2). The number of 3x3 filter kernels increases by a factor of 2 from 64 (the first layer) to 512 

(the eighth layer) kernels. The last two layers are dense layers working as a classification block, 

predicting the probability of an image being either real or fake. To train the I-Gen-LSTM model, 

we assemble the models as a generative adversarial network (GAN) [89] shown in Figure 13 

below.  

 
Figure 13. GAN with the combination of three loss functions (the content loss, the neighbor 

loss, and the adversarial loss functions) for training the I-Gen-LSTM model. 

3.2.3 Loss functions 

To optimize the I-Gen-LSTM model, we designed custom-made loss functions, namely the content 

loss (VGG19 loss, IVGG
𝑆𝑆 ) [35], adversarial loss (Discriminator loss, IGen

SS ), and neighbor loss (IN
SS)  

as shown in Equation (17). Where Cw1, Cw2, and Cw3 are the hyper-parameters set as 0.7, 0.1, and 

0.2, respectively.  

𝐼𝑆𝑆 = 𝐶𝑤1𝐼𝑉𝐺𝐺
𝑆𝑆 + 𝐶𝑤2𝐼𝐺𝑒𝑛

𝑆𝑆 + 𝐶𝑤3𝐼𝑁
𝑆𝑆 (17) 

The content loss or VGG loss (𝐼𝑉𝐺𝐺
𝑆𝑆 ), which is defined as the Euclidean distance between the 

feature map of the generated image (𝐺𝜃𝐺(𝐼𝐿𝑆)) and the ground truth (𝐼𝑆𝑆), can extract high 
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dimensional features helping the model to generate the image with perceptually satisfying 

solutions without excessively smooth textures. The  𝐼𝑉𝐺𝐺
𝑆𝑆  loss is based on the ReLU activation 

layers of the pre-train 19-layer VGG network and it can be calculated following Equation (18) as 

shown as 

𝐼𝑉𝐺𝐺
𝑆𝑅 =  

1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑ ∑(  Ø𝑖,𝑗(𝐼𝑆𝑆)𝑥,𝑦 − Ø𝑖,𝑗(𝐺𝜃𝐺(𝐼𝐿𝑆)𝑥,𝑦)

2

𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1

 

(18) 

where 𝑊𝑖,𝑗  𝑎𝑛𝑑 𝐻𝑖,𝑗 describe the dimensions of the respective feature maps within the VGG 

network. The features map (Ø𝑖,𝑗) can be obtained by the j-th convolution before the 𝑖𝑡ℎ maxpooling 

layer within the VGG19 network. 

Moreover, the adversarial loss (𝐼𝐺𝑒𝑛
𝑆𝑆 ) is also employed to distinguish the similarity of the two 

images. It is defined as the probabilities, varying from 0 to 1, which are the result of the 

discriminator model (𝐷𝜃𝐷
(𝐺𝜃𝐺

(𝐼𝐿𝑆))) as shown in Equation (19). Where 𝐼𝐿𝑆 is the input images, 

𝐺𝜃𝐺
is the generator model, and 𝐷𝜃𝐷

 is the discriminator model.  

𝐼𝐺𝑒𝑛
𝑆𝑆 = ∑ −𝑙𝑜𝑔𝐷𝜃𝐷

(𝐺𝜃𝐺
(𝐼𝐿𝑆))

𝑁

𝑛=1

 

(19) 

Apart from using the content and adversarial losses, the neighbor loss is also applied to optimize 

the model. Since the I-Gen-LSTM model generates sequential images, the neighbor loss is 

essential to regulate the change of each generated image in the sequence. The concept of the 

neighbor loss function is to differentiate between the current generated image and the neighbor 

images in the same sequence as expressed in Equation (20) below as 

𝐼𝑁
𝑆𝑆 = ∑(𝑚𝑠𝑒(

𝑁

𝑛=1

𝐼𝑛, 𝐼𝑛−1) + 𝑚𝑠𝑒(𝐼𝑛, 𝐼𝑛+1)) 

(20) 

The custom-made loss function effectively leverages the combination of these three loss 

functions to train the I-Gen-LSTM model that can generate high-quality sequential images. 
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3.2.4 I-Gen-LSTM model for Volumetric Imaging 

To collect the database for training the model, 16 breast tumors from mice intravenously injected 

with NWs-ICG were acquired by the MSOT system. The data from these tumors were allocated 

for training (11 tumors), validation (3 tumors), and testing (2 tumors) datasets. The training time 

on Google Colaboratory (CoLab) Pro is approximately 40 hours. After initializing and importing 

the model, the I-Gen-LSTM can generate five sequential images by taking less than 1 second for 

the five output images on a personal computer (PC) with an 11th Gen Intel core i7-11700k CPU, 

16 GB RAM, and an NVIDIA RTX 3090 graphic card.  

 3.3 Results and discussion 

3.3.1 Sequential NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) 

image reconstruction. 

The breast tumor dissected from an NWs-ICG-injected mouse was scanned under the MSOT 

system. Figure 14 shows the generated sequential images generated by the I-Gen-LSTM model. 

Two input images of each modality, acquired from consecutive stage positions with a step size of 

0.6 mm, are used as the inputs for the I-Gen-LSTM model. Here, we demonstrate a z-scanning 

range from 9.7 mm-10.3 mm with a step size of 0.1 mm as a representative. 
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Figure 14. Results of sequential image reconstruction generated by the I-Gen-LSTM model. 

The two input images for each modality simultaneously acquired with a step size of 0.6 mm 

were fed into the I-Gen-LSTM model. The green, blue, and violet boxes show generated images 

(GEN), ground truth (GT), and the absolute error between GEN and GT images (|GT-GEN|) 

represented as color map images. The red-dashed boxes show the local features fairly change 

along the z-scanning position and the yellow-dashed boxes are the corresponding enlarged 

images of the red-dashed boxes. The scale bar is 5 mm. (a) NWs-ICG optoacoustic sequential 

image reconstruction result. (b) Ultrasound sequential image reconstruction result. (c) Single-

wavelength optoacoustic (λex = 800 nm) reconstruction result. 

 



47 

 

Figure 14 (cont’d). 

 

The red-dashed boxes in Figure 14 show local features, which are fairly changing along the z-

scanning position and are somewhat straightforward to observe. The orange-dashed boxes are the 

corresponding enlarged images of the red-dashed boxes. Figure 14(a) shows the sequential image 

reconstruction result of NWs-ICG optoacoustic imaging, Figure 14(b) shows the result of 

ultrasound imaging, and Figure 14(c) shows the result of single-wavelength optoacoustic (λex = 

800 nm) imaging. The average Peak-signal-to-noise ratio (PSNR) dB/ the average summation of 

absolute errors (SAE) between the ground truths (GT) and generated images (GEN) for this 

scanning range of NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) imaging 

are 87.72 dB/923.66 ,78.83 dB/4,323.19, 75.60 dB/2,223.40, respectively. 
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3.3.2 Three-dimensional reconstruction of the stack 2D NWs-ICG optoacoustic, ultrasound, 

and optoacoustic (λex = 800 nm) images 

Since the MSOT system and our deep learning model provide the stack of multiple cross-sectional 

images for NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) images, we can 

use these images to reconstruct three-dimensional (3D) images by using Amira (Mercury 

Computer system, Berlin, Germany) software. Figure 15 shows the 3D reconstruction results of 

the ground truth and the generated images. Figure 15(a) demonstrates the 3D reconstruction of 

generated images from the I-Gen-LSTM model and Figure 15(b) shows the reconstruction of the 

ground truths acquired by mechanical scanning. After finished the experiment, the tumor was 

removed from the agarose and sent to the histopathology lab (MSU-IHPL Research facility) to 

prepare a Hematoxylin-and-Eosin (H&E) stained breast tumor slide shown in Figure 15(c). 
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Figure 15. 3D image reconstruction of the breast tumor using cross-sectional NWs-ICG 

optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) stacked images. (a) The 3D 

reconstruction result of the NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) 

images generated by the I-Gen-LSTM model with a step size of 0.1 mm. (b) The 3D 

reconstruction result acquired by mechanical scanning with a step size of 0.1 mm. (c) The 

photograph of the corresponding tumor and its H&E slide image. 
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3.3.3 Evaluations  

The NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex = 800 nm) images from two tumors 

not used for training the model were utilized for the model evaluation. Each tumor was scanned 

with a step size of 0.1 mm. Every two-image (with a 0.6 mm scanning step in between) was 

assigned as the input for the I-Gen-LSTM model to generate five sequential images with a step 

size of 0.1 mm. Here, the model was evaluated using four quantitative metrics: the average PSNR, 

SAE (GEN, GT), SAE (𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇),and SAE (𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇). They were applied to the testing 

dataset acquired from the tumors for all scanning positions. A large PSNR and a small SAE (GEN, 

GT) imply high-quality generated images. Indeed, if the SAE (GEN, GT) can perform better than 

SAE (Input1-GT) and SAE (Input2-GT), it also means that the model can effectively generate 

sequential images. All average evaluation metrics can be calculated following Equation (21-23).  

Average PSNR = ∑ ∑ 𝑃𝑆𝑁𝑅𝑗(𝐺𝐸𝑁𝑖 , 𝐺𝑇𝑖) 5
𝑖

𝑁
𝑗

5 × 𝑁
 

(21) 

Average SAE (GEN, GT) = ∑ ∑ 𝑆𝐴𝐸𝑗(𝐺𝐸𝑁𝑖  , 𝐺𝑇𝑖) 5
𝑖

𝑁
𝑗

5 × 𝑁
 

(22) 

Average SAE (𝐼𝑛𝑝𝑢𝑡𝑘 ,GT) = ∑ ∑ 𝑆𝐴𝐸𝑗(𝐼𝑛𝑝𝑢𝑡𝑘 , 𝐺𝑇𝑖) 5
𝑖

𝑁
𝑗

5 × 𝑁
 

(23) 

Where,  

N is the number of scanning positions with a step size of 0.6 mm, 

𝐺𝐸𝑁𝑖 is the generated image at “i” scanning position in between two input images (acquired with 

a step size of 0.6 mm),   

𝐺𝑇𝑖 is the corresponding ground truth, 

𝐼𝑛𝑝𝑢𝑡𝑘 images are the two input images (k=1 and 2) acquired from arbitrary consecutive positions 

with a step of 0.6 mm. 
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Figure 16 shows the representative result from one of the evaluated tumors as the graph of the 

average PSNR and SAE (GEN, GT) vs. scanning positions. Table 5 shows the average evaluation 

metrics of the generated sequential NWs-ICG optoacoustic, ultrasound, and optoacoustic (λex= 800 

nm) images for all testing datasets. Overall, the average PSNR and SAE between generated images 

and ground truths of all modalities are greater than 75 dB and less than 2,000, respectively.  

This indicates that the I-Gen-LSTM model can generate sequential images with promising results. 

To comprehensively evaluate the model performance, we also compared SAE (GEN, GT) to SAE 

(𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇) and SAE( 𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇) as the baseline for comparison. The average SAE (GEN, GT) 

of optoacoustic (λ= 800 nm) and ultrasound imaging performs better than the average 

SAE(𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇) and SAE( 𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇), but the NWs-ICG optoacoustic imaging does not (the 

average SAE (GEN, GT) is slightly higher than the average of SAE(𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇) and SAE( 

𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇)) due to the tiny changing features in the sequential NWs-ICG optoacoustic imaging 

and the limited number of the training dataset. Although the overall result is favorable and 

encouraging, the deep learning model could be improved in future work. We will use a larger 

dataset with a larger image size to train the deep learning model so that the convolution/LSTM 

blocks can efficiently capture more sequential features, especially in a tiny changing feature 

modality such as NWs-ICG optoacoustic imaging. 

Table 5. Average quantitative metrics of optoacoustic (λex = 800 nm), NWs-ICG optoacoustic, 

and ultrasound images generated by the proposed deep learning model. 

Average quantitative 

metrics 

Optoacoustic (λex = 

800 nm) 

NWs-ICG 

optoacoustic 

Ultrasound 

PSNR (dB) 76.53 83.75 80.44 

SAE (GEN, GT) 1,706.12 858.54 1,265.87 

SAE (𝐼𝑛𝑝𝑢𝑡1, 𝐺𝑇) 6,812.92 406.59 6,695.71 

SAE (𝐼𝑛𝑝𝑢𝑡2, 𝐺𝑇) 5,294.94 284.02 4,902.67 
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Figure 16. The PSNR and SAE (GEN, GT) evaluation in one of the testing tumors. (a-b) The 

graph between the PSNR and SAE (GEN, GT) values vs. scanning positions for all generated 

OPUS, NWs-ICG optoacoustic, and optoacoustic (λex = 800 nm) images, respectively. 

3.4 Conclusion 

This work demonstrates a deep learning technique based on recurrent and convolution neural 

networks for generating sequential NWs-ICG optoacoustic (multispectral unmixing), ultrasound, 

and optoacoustic images. It has shown robust and promising performance in the accurate 

reconstruction of the sequential images for all modalities, according to the quantitative evaluation 

of model performance using the PSNR and SAE for all scanning positions of the generated images 

(reconstructed by the deep learning model) and ground truth (acquired by mechanical scanning). 

The architecture of our model is versatile since it can promisingly generate sequential cross-

sectional images of three modalities from the commercial MSOT system. Using our deep learning 

can substantially reduce acquisition time. However, all the training data were acquired from ex 

vivo tissues completely fixed in agarose. Model performance with images acquired in vivo may be 
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affected by cardiac and respiratory motion. In the future, we will explore the possibility of 

optimizing and applying the model to generate sequential images of in vivo samples with motion 

artifacts. 
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CHAPTER 4: Multi-head Attention U-Net for MPI-CT Image Segmentation 

Reprinted with permission from “A. Juhong, et al., "Multi-head Attention U-Net for Magnetic 

Particle Imaging-Computed Tomography image segmentation." Advanced Intelligent Systems, 6, 

no. 10 (2024): 2400007” [90], © 2024 The Author(s), Advanced Intelligent Systems published by 

Wiley-VCH GmbH. 

Magnetic particle imaging (MPI) is an emerging non-invasive molecular imaging modality with 

high sensitivity and specificity, exceptional linear quantitative ability, and potential for successful 

applications in clinical settings. Computed tomography (CT) is typically combined with the MPI 

image to obtain more anatomical information. Herein, we present a deep learning-based approach 

for MPI-CT image segmentation. The dataset utilized in training the proposed deep learning model 

is obtained from a transgenic mouse model of breast cancer following administration of 

indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoworms (NWs-ICG) as the 

tracer. The NWs-ICG particles progressively accumulate in tumors due to the enhanced 

permeability and retention (EPR) effect. The proposed deep learning model exploits the 

advantages of the multi-head attention mechanism and the U-Net model to perform segmentation 

on the MPI-CT images, showing superb results. In addition, we characterized the model with the 

different number of attention heads to explore the optimal number for our custom MPI-CT dataset. 

4.1 Introduction  

MPI is a highly sensitive imaging modality initially introduced in 2005 [91-93]. Unlike traditional 

imaging techniques such as magnetic resonance imaging (MRI), sonography, computed 

tomography (CT), and X-ray, MPI is not employed for structural imaging purposes. Nevertheless, 

it is a tracer imaging modality akin to positron emission tomography (PET) and single photon 

emission computed tomography (SPECT). The concept of MPI is to detect the three-dimensional 
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distribution of superparamagnetic iron-oxide nanoparticles (SPIONs) with extraordinary contrast 

and sensitivity, allowing us to track and quantify the tracer materials effectively. In addition, MPI 

signal can only be detected from the administered tracer providing an image without background 

as well as improving signal-to-noise ratios. Indeed, the development of MPI involved 

strengthening the existing imaging modalities (MRI, PET, SPECT, etc.). For instance, PET and 

SPECT tracers typically have half-lives in a range of minutes to hours, whereas the MPI tracer can 

last for several days to weeks [94]. Therefore, MPI is more eminently suitable for dynamic imaging 

applications than traditional tracer imaging methods. Numerous prototypes and commercial MPI 

scanners have demonstrated impressive results in in-vivo studies for vascular imaging [95-97], 

oncology [98-100], and cell tracking [101, 102]. The MPI system for humans is under development 

and may become available in the near future [103]. Like PET, an MPI image is frequently 

combined with a CT image for registering the particle signal (the MPI image) and the anatomical 

information (the CT image). This will enhance the diagnostic potential by identifying the precise 

location of functional events in the body [104].   

Biocompatibility is one of the essential features for using biomaterials, particularly MPI 

tracers (iron oxide particles), for in-vivo applications and clinical trials. Nanoworms (NWs) are 

biocompatible iron oxide particles widely used for biomedical applications. NWs include a 

considerably lower inflammatory response than spherical iron oxide nanoparticles [105]. NWs are 

a nanostructure with an elongated assembly of iron oxide (IO) [106]. This structure can potentially 

augment the nanoparticles’ capability for circulation and tumor targeting.  Due to their nanoscale 

dimensions, NWs can remain in tumors longer than pure fluorescence contrast agents, also 

recognized as the enhanced permeability and retention (EPR) effect [107, 108].  
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Recently, image processing based on deep learning has become a promising approach for 

medical applications due to the rapid development of computation technologies for image 

classification [109-111], regression [112-114], reconstruction [115-117], and segmentation [118-

121]. Deep learning models contain a large number of function approximators. As a result, the 

models without further modifications tend to neglect essential parts of the input and focus on 

others. The use of the attention mechanism [122] is one of the practical approaches to remedy this 

problem.  The attention mechanism is an ingenious and powerful technique allowing neural 

networks to focus on meaningful parts of an input tensor. This mechanism is the key innovation 

behind numerous successful deep learning architectures such as TransUnet [123], BRET [124], 

and Swin transformer [125]. Multiplicative attention (Luong attention) [126] and additive attention 

(Bahanau attention) [127]  are two initial instances of attention sparking the revolution. Since 

multiplicative attention implements matrix multiplication for calculating the output, it is more 

memory-efficient in practice and faster than additive attention. However, the additive attention can 

be superior to the multiplicative attention for large dimensional input features [128]. The U-Net 

architecture [129] is a widely recognized convolutional neural network (CNN) that has achieved 

prominence in the field of medical image segmentation due to its simplicity and remarkable 

performance. The original U-Net architecture contains two main components: an encoder and a 

decoder. The skip connection mechanism is added to the same dimensional encoder and decoder. 

Essentially, it combines spatial information from the down-sampling path (encoder) with the up-

sampling path (decoder) to retain marvelous spatial information. In addition, the skip connection 

mechanism allows the gradient descent to readily propagate back to update the weights (learnable 

parameters). However, the skip connection mechanism brings along the poor feature representation 

from the encoder path. The attention U-Net architecture [40] can tackle this problem by 
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implementing the attention mechanism at the skip connection, allowing the model to actively 

suppress actions at irrelevant features. This reduces the computational resources wasted on 

irrelevant activations and provides superior network generalization. The attention mechanism 

applied in the attention U-Net is called the attention gates (AGs) [130]  based on additive attention. 

The CNN model with AGs can be easily trained from scratch and boost the model’s performance 

by automatically learning to focus on some crucial features without additional supervision. 

Available MPI data are remarkably limited for a computational study of robust MPI image 

quantification. Herein, we propose a multi-head attention U-Net model for the MPI-CT image 

segmentation. The MPI-CT images acquired from mice with breast tumors were manually labeled 

as the ground truths for training the model. The attention U-Net model [131] inspires the proposed 

model. Still, we apply the attention mechanism in parallel (multi-head attention) to step up the 

model capability for focusing on noteworthy features. 

4.2 Methods  

An extensive overview of the workflow involved in training the proposed multi-head attention U-

Net model is shown in Figure 17 below. First, NWs were synthesized by the co-precipitation 

method of Fe2+ and Fe3+ salts with the polysaccharide dextran coating, as depicted in Figure 17(a1), 

the particles were then conjugated with ICG, resulting in the formation of conjugated 

superparamagnetic iron oxide nanoworms referred to as NWs-ICG [85]. In addition, we also 

acquired a transmission electron microscopy (TEM) image of NWs-ICG particles as shown in 

Figure 17(a2). With this structure, the detection of NWs-ICG can be achieved by fluorescence 

imaging and optoacoustic imaging, in addition to the use of MPI as shown in Figure 17(a3). Thus, 

this offers captivating prospects for a multimodal imaging study. However, this paper mainly 

focuses on MPI. A mouse with breast tumors was injected with NWs-ICG through the intravenous 
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administration injection method, followed by MPI-CT image acquisition. Figure 17(b1) shows the 

MPI and micro-CT image systems used in this work. The fundamental concept of MPI is illustrated 

in Figure 17(b2). In short, an intense magnetic field is generated by two permanent magnets, and 

the inside of this magnetic field contains a small area with low magnetic field intensity known as 

the field-free region (FFR). By rapidly moving the FFR across the imaging volume, the 

magnetization of SPIONs passing through the FFR induces a signal (oscillating changes in 

magnetization) in the imager’s receive coil. In other words, SPIONs not passing not passing 

through the FFR do not generate a signal in the receiver coil due to a strong magnetic field outside 

the FFR inhibiting SPIONs from rotating. Lastly, the MPI-CT images were manually labeled as 

the ground truths for training the deep learning model as shown in Figure 17(c).  
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Figure 17. Overview of MPI-CT image segmentation using the custom dataset. (a) An injected-

NWs-ICG breast tumor mouse; (a1) the chemical structure of NWs-ICG; (a2) TEM image of 

NWs-ICG particles with a scale bar of 40 nm; (a3) the multimodality imaging (fluorescence, 

optoacoustic, and MPI) of the tumor dissected from the NWs-ICG injected mouse. (b) MPI-CT 

image acquisition; (b1) MPI scanner and Micro-CT imaging system; (b2) illustration of the MPI 

principle. (c) Ground truth labeling in MPI-CT image segmentation. 
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4.2.1 Dataset preparation 

To acquire a custom MPI-CT image dataset, MMTV-PyMT transgenic mice with breast cancer 

were intravenously injected with NWs-ICG at the concentration and volume of 2 mg/mL and 400 

µL, respectively. All procedures used in experiments conducted on animals were approved by the 

Institutional Animal Care & Use Committee (IACUC) of Michigan State University. The 

Momentum MPI scanner (Magnetic Insight, Inc., Alameda, CA, USA) was employed to acquire 

the 3D MPI images of the NWs-ICG injected mice. The scanner was configured with the following 

parameters: 3D scan mode, Z FOV 10.0 cm, number of projections 21, and selection field gradient 

5.7 T/m. The Micro CT system (PerkinElmer, Inc., Hopkinton, MA, USA) with the following 

parameters: speed scan mode and voltage of 90 kV was then used to acquire the corresponding CT 

images. Finally, 3D MPI-CT images were reconstructed using VivoQuant software (Magnetic 

Insight, Inc., Alameda, CA). The imaging was performed at four different time points: 1 hour, 24 

hours, 48 hours, and 72 hours after injection. Therefore, with one mouse, we can obtain 3D datasets 

at these four different time points. However, we only focus on 2D images in this work. To obtain 

the 2D image dataset, the 3D images were rotated with random angles for capturing the 2D images, 

and we had to ensure that the perspectives or rotation angles were not the same (0 or 180 degrees 

from the existing images) for the data cleaning purpose. Figure 18(a) shows the MPI-CT images 

of the NWs-ICG injected mouse 1-72 hours post injection. MPI signal areas from MPI-CT images 

were manually labeled as the ground truth for training the segmentation deep learning model. 

There are 104 2D MPI-CT images and their corresponding ground truths from four different mice 

used for this study (91 images for a training dataset, 4 images for a validation dataset, and 9 images 

for a testing dataset). To affirm that there were NWs-ICG particles in the tumor tissues, after 

acquiring MPI-CT images, the tissues were dissected from the mice and preserved in a solution of 
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10% neutral buffered formalin (NBF). These NBF-fixed tissues were embedded in paraffin, 

followed by sectioning with a thickness of 5 μm and staining with Prussian Blue to detect ferric 

from iron and hematoxylin and eosin (H&E). All histological procedures were carried out by the 

Michigan State University investigative histopathology laboratory. Figure 18(c-d) show the 

Prussian blue stained histology image of one of the dissected tumors from NWs-ICG injected mice 

acquired by a commercially available microscope (Nikon Eclipse Ci, Nikon Inc, Tokyo, Japan).  

 

Figure 18. (a) MPI-CT images of the NWs-ICG injected mouse acquired from 1 – 72 hours 

post-injection. The yellow-dashed circles (MPI-CT image at 72 h) show the MPI signal of 

NWs-ICG from the tumors. (b) Photograph of the NWs-ICG injected mouse. (c-d) Prussian 

blue stained histological image of the breast tumor dissected from the NWs-ICG injected 

mouse acquired by 10x and 40x magnifications, respectively. 
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4.2.2. Multi-head attention U-Net 

The main structure of the multi-head attention U-Net model is somewhat similar to the original 

attention U-Net model, which consists of the encoder, bottleneck, decoder, and single-head 

attention layers. However, the proposed model applies parallel attention gates (AGs) in each skip 

connection from encoder to decoder instead of a single attention head. This modification allows 

the model to collect and incorporate more salient information effectively. In addition, employing 

parallel AGs enables the model to simultaneously process input from distinct representation 

subspaces at numerous locations [31]. Figure 19(a) illustrates the multi-head attention U-Net 

architecture. The first part is the encoder (the left side of Figure 19(a)). The input image is 

progressively filtered and down-sampled by applying a convolution block, then a rectified linear 

unit (ReLU), and max-pooling 2x2 filters with a stride of 2. Furthermore, the number of feature 

channels is doubled at each downsampling step. The second part is multi-head attention gates 

(MH-AGs). The features propagated through the skip connections are filtered by exploiting these 

MH-AGs, which can help the model localize and focus on relevant features without cropping 

regions of interest. The third part is the decoder (the right side of Figure 19(a)). It consists of a 

concatenation of the attention weights from the MH-AG layer, a convolution block with the ReLU 

activation function, and a feature map upsampling followed by a 2x2 up-convolution resulting in 

a reduction of the number of feature channels by half. Figure 19(b) shows the MH-AG architecture 

employed between the encoder and decoder of the U-Net in Figure 19(a). MH-AG is a parallel 

mechanism block that minimizes the need for training a significant number of weights (learnable 

parameters) to enhance the performance of the U-Net model further. Moreover, the MH-AG adopts 

the same transformation in all branches to minimize the need to adjust hyperparameters in each 

branch manually. The output of each branch in MH-AG is obtained by performing element-wise 
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multiplication between the input feature maps and attention coefficients (𝑥𝑛
𝑙 = 𝑥𝑖

𝑙 ∙ 𝛼𝑖
𝑙) allowing 

the model to identify salient information. To identify focus areas, a gating vector (𝑔𝑖) is assigned 

to each pixel. The gating vector encompasses contextual information utilized to suppress lower-

level feature responses selectively. The gating coefficient is derived through the utilization of 

additive attention mathematically represented as follows: 

𝑞𝑎𝑡𝑡
𝑙 = 𝜓𝑇(σ1(𝑊𝑥

𝑇𝑥𝑖
𝑙 + 𝑊𝑔

𝑇𝑔𝑖 + 𝑏𝑔) + 𝑏𝜓), (24) 

𝜎𝑖
𝑙 =  σ2 (𝑞𝑎𝑡𝑡

𝑙 (𝑥𝑖
𝑙 , 𝑔𝑖; 𝛩𝑎𝑡𝑡)), (25) 

“Where σ2(𝑥𝑖) = 
1

1+𝑒𝑥𝑝 (−𝑥𝑖)
 represents the sigmoid activation function, 𝛩𝑎𝑡𝑡 represents a group of 

parameters that comprises linear transformation 𝑤𝑥 ∈ 𝑅𝐹𝑙×𝐹𝑖𝑛𝑡, 𝑤𝑔 ∈ 𝑅𝐹𝑔×𝐹𝑖𝑛𝑡 , 𝜓 ∈ 𝑅𝐹𝑙×𝐹𝑖𝑛𝑡 , and 

bias terms 𝑏𝜓 ∈ 𝑅, and  𝑏𝑔 ∈ 𝑅𝐹𝑔×𝐹𝑖𝑛𝑡 . Channel-wise 1 x 1 x 1 convolutions for the input tensor 

are employed for computing the linear transformations.  
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Figure 19. Schematic of the multi-head attention U-Net (the proposed model) for MPI-CT 

image segmentation. (a) The left side of the schematic represents the encoder blocks; the 

tensor is progressively down-sampled by a factor of 2 (e.g., H1 = H5/16); the right side 

represents the decoder blocks, the tensor is up-sampled gradually by a factor of 2. The muti-

head attention gates (MH-AGs) are applied between the encoder and decoder to assign 

weights (learnable parameters) to noteworthy features. (b) Multi-head attention gate (MH-

AG) architecture (n is the number of attention heads). Input features (𝑥𝑛
𝑙 ) are scaled with 

attention coefficients (α𝑛
𝑙 ) computed in each branch of MH-AG. The gating signal (g) 

collected from a coarser scale provides activations and contextual information, which is 

applied to determine spatial regions. The output of each branch is then concatenated before 

feeding to the convolution layer, batch normalization, and sigmoid function to compute the 

final result of MH-AG. 
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4.2.3 Loss function 

Dice loss is widely used for medical image segmentation by comparing the similarity of two binary 

images (ground truth segmentation and predicted segmentation). Since our custom MPI-CT image 

dataset is limited and we want to prove the concept that multi-head attention can potentially 

enhance the model performance for MPI-CT image segmentation, the dice loss is simply used to 

train all models for a purpose of performance comparison. Equation 26 shows the dice loss 

function.  

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠(𝑦, 𝑦) = 1 −
(2𝑦𝑦+1)

(𝑦+𝑦+1)
, (26) 

Where y represents the ground truth and 𝑦 represents the predicted segmentation generated by a 

deep learning model. After assembling all the parts for building the models, the MPI-CT images 

and their corresponding segmentation masks were then utilized to train the models as inputs and 

ground truths, respectively with the following hyperparameters: an Adam optimizer [132] with an 

intimal rate of 5x10-4, a batch size of 8, and 60 epochs. All the models in this study were trained 

on a personal computer equipped with an 11th Gen Intel core i7-11700k CPU, 64 GB of RAM, and 

an NVIDIA RTX 3090 graphic card.  

4.3 Results and discussion  

4.3.1 Gradient-weighted class activation maps (Grad-CAM) 

Gradient-weighted class activation mapping (Grad-CAM) [133] is a class-discriminative 

localization technique. It can generate a visual representation of any CNN-based model without 

altering the model itself. Grad-CAM leverages the gradient information flowing through a specific 

convolutional layer to assign crucial weights to each neuron to determine a particular decision of 

interest. This gradient information is then used to calculate the localization map visualized as a 

heat map image. In short, the intuitive interpretation of Grad-CAM is based on the concept that 
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the model must observe some pixels and decide what object is present in the image, which can be 

interpreted as a gradient in mathematical terms. To compute Grad-CAM, the equations below are 

applied. Equation 27 is used to calculate the neuron’s important weight (𝛼𝑘
𝑐  ) by calculating the 

global average pooling of the gradient from backpropagation.  𝛼𝑘
𝑐  is then employed to calculate 

the localization map Grad-CAM as shown in Equation 27 and 28.   

𝛼𝑘
𝑐 =

1

𝑍
(∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘𝑗𝑖 ), (27) 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘

𝑐𝐴𝑘

𝑘

),  (28) 

Where  
𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘  is the gradient from backpropagation, 𝐴𝑘 is feature map activation of a convolutional 

layer, 𝛼𝑘
𝑐  is neuron import weight, 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀

𝑐  is localization map Grad-CAM (coarse heat map).  

Grad-CAM is applied to each multi-head attention layer (MH-AG layer 1-4) output in order to 

characterize and understand the multi-head attention U-Net model behavior. The attention weights 

of different MH-AG layers are visualized as shown in Figure 20. Figure 20(a) shows the input 

image, ground truth, and the segmentation outputs of 6-head, 4-head, and 2-head attention U-Net 

models. Figure 20(b) shows the Grad-CAM results of the corresponding attention U-Net models. 

According to these Grad-CAM results and final segmentation outputs, the 4-head attention U-Net 

model can exceptionally perform MPI-CT image segmentation and surpass 6-head and 2-head 

attention U-Net models since it can focus on more meaningful features and predict a more accurate 

result. It is interesting to note that each MH-AG layer output of the 4-head attention U-Net model 

pays attention to different meaningful features, the MH-AG layer 4 pays attention to the overall 

boundary of the MPI signal, the MH-AG layer 3 focuses on the increasingly precise boundary of 

the MPI signal, the MH-AG layer 2 changes the focus from the boundary of the MPI signal to the 

skeleton (bone structure, i.e., CT image), and the MH-AG layer 1 entirely focuses on the real target 
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MPI signal. With these different meaningful features, the learnable parameters of the model can 

be assigned to pay attention to the relevant features and circumvent irrelevant features for the final 

prediction. However, the 2-head and 6-head attention U-Net models behave in different ways. The 

MH-AG layers 4 and 3 of the 2-head attention U-Net poorly estimate the boundary of the MPI 

signal, and the MH-AG layers 2 and 1 focus on somewhat the same features (MPI signal areas). 

Although the MH-AG layers 4 and 3 of the 6-head attention U-Net can perform better than the 2-

head attention model, the MH-AG layers 2 and 1 also pay attention to relatively the same features 

(MPI signal areas). Indeed, the optimal number of attention heads depends on the tasks we desire 

to train the deep learning model and the data features. If there are a larger number of important 

features, the higher number of attention heads could potentially help the model perform better by 

capturing more essential information. Nevertheless, the excessive number of attention heads could 

lead to less impressive performance, according to the Grad-CAM results illustrated in Figure 20 

and our quantitative experiment discussed in the next section. 
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Figure 20.  A comparison of Grad-CAMs results of 2-head attention, 4-head attention, and 6-

head attention U-Net architectures. (a) Input MPI-CT image, segmentation ground truth and 

outputs of each attention architecture. (b) The Grad-CAM results of the attention architectures 

at different MH-AG layers (MH-AG layer (1-4)). 

4.3.2 Implementation and evaluation metrics  

Intersection over Union (IoU) is commonly used to evaluate the similarity between a predicted 

segmentation area and its ground truth [121]. The concept of IoU is to quantify the common area 

of the ground truth and prediction mask (intersection) divided by the entire number of pixels 

present across both the prediction mask and ground truth (union) as shown in the equation below. 
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𝐼𝑜𝑈 =  
𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
  

(29) 

The IoU ranges from 0 -1 (0-100%), with 0 indicating no overlapping area, whereas 1 indicates 

impeccably overlapping area.  

The dice similarity coefficient (DSC) is another well-known parameter used to evaluate the 

similarity between the predicted area (our output) and ground truth [32]. The DSC can be 

calculated following the equation below. 

𝐷𝑆𝐶 =  
2|𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|

|𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ| + |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|
  

(30) 

Precision is defined as the ratio of true positive results to the total number of positive results, 

which is the summation of true positive and false positive as shown in Equation 31. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , (31) 

Sensitivity, also known as Recall, is the number of true positive results over the summation of 

true positive and false negative results as shown in Equation 32. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (32) 

Accuracy, also known as the Rand index, is the number of correct predictions divided by the 

total number of predictions as shown in Equation 33.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
, (33) 

Where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.  As 

previously stated, if the number of attention heads is excessive, the performance of a deep learning 

model based on the attention heads could deteriorate. Thus, we characterized the number of 

attention heads and employed Dice and IoU as the representative benchmarks.  Figure 21 illustrates 

the characterization results of the U-Net based on the different number of attention heads. With 

regards to the plot of Dice/IoU scores vs the number of attention heads, it begins at 0.889/0.804 
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with the 1-head attention architecture, it gradually increases and then reaches the highest score at 

0.909/0.835 with the 4-head attention architecture before declining progressively to 0.906/0.829 

and 0.901/0.822 with 5 and 6 attention heads, respectively. Therefore, the multi-head attention U-

Net with 4 heads is the optimal model providing the best result for the MPI-CT image 

segmentation.  

 

Figure 21. The performance of the multi-head attention U-Net models with the different number 

of attention heads (Dice/IoU scores vs the number of attention heads plot). 

Table 6 shows the comprehensive characterization results of MPI-CT image segmentation of deep 

learning models with different architectures. Apart from using Dice and IoU scores as model 

evaluation metrics, we also characterized the performance of each model using accuracy, 

precision, and recall. Overall, the 4-head attention U-Net model can outperform other multi-head 

attention U-Net models including the original U-Net model as well as the state-of-the-art 

Transformer U-Net model. The representative visualization MPI-CT image segmentation results, 

together with the corresponding input images and ground truths of each architecture are illustrated 

in Figure 22.  
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Table 6. Quantitative evaluation (average ± standard deviation of each metric) of the different 

deep learning architectures for MPI-CT image segmentation. 

Methods Accuracy Precision Recall Dice IoU 

U-Net 0.983± 0.004 0.891± 0.074 0.879± 0.076 0.883± 0.059 0.794± 0.089 

Transformer U-Net 0.985± 0.005 0.909± 0.057 0.878± 0.069 0.892± 0.053 0.809± 0.083 

1-head Attention U-Net 0.984± 0.005 0.892± 0.068 0.891± 0.069 0.889± 0.052 0.804± 0.083 

2-head Attention U-Net 0.985± 0.004 0.888± 0.063 0.911± 0.057 0.897± 0.041 0.816± 0.052 

3-head Attention U-Net 0.987± 0.005 0.926± 0.038 0.890± 0.065 0.906± 0.039 0.830± 0.063 

4-head Attention U-Net 

(the proposed model) 

0.987± 0.005 0.920± 0.040 0.902± 0.058 0.909± 0.036 0.835± 0.060 

5-head Attention U-Net 0.986± 0.004 0.913± 0.049 0.903± 0.060 0.906± 0.030 0.830± 0.050 

6-head Attention U-Net 0.985± 0.005 0.894± 0.074 0.912± 0.053 0.901± 0.043 0.822± 0.070 

 

 
Figure 22. Visualization semantic segmentation results of the proposed model compared to other 

traditional U-Net models. From left to right, input MPI-CT images, the ground truth images, the 

segmentation results generated by U-Net, Trans-U-Net, Attention U-Net, and our proposed 

model (4-head attention), respectively.  

4.4 Conclusion  

Since MPI is a novel medical imaging technology, the data are strictly limited for a robust 

computation study. This work demonstrates the multi-head attention U-Net model, an efficient 

end-to-end deep learning based on U-Net architecture and multi-head attention mechanism, for 
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MPI-CT image segmentation. The proposed model was trained using a custom MPI-CT image 

dataset collected from transgenic mice with breast tumors injected with a promising MPI tracer for 

tumor imaging, namely NWs-ICG.  To examine the concept of multi-head attention, a simple 

convolution block is employed as the backbone structure of the U-Net architecture to minimize 

the influence of other factors. Genuinely, the performance of the U-Net architecture can also be 

improved by using more efficient convolution blocks as the backbone. The optimal number of 

attention heads was experimentally observed in this study. Although an increase in the number of 

attention heads can potentially boost the model’s capability, the excessive number of attention 

heads results in a decline in capability. Our study shows that the attention U-Net with 4 heads is 

the most favorable architecture for MPI-CT image segmentation.  In future work, in addition to 

improving the model’s performance, we would like to explore the possibility of exploiting deep 

learning for 3D MPI segmentation and MPI intensity segmentation. We anticipate this work to 

embark on an intensive study for MPI image analysis and implement it on humans in the near 

future.  
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CHAPTER 5: Monocular Depth Estimation Based on Deep Learning for Intraoperative 

Guidance Using Surface-enhanced Raman Scattering (SERS) Imaging 

Reprinted with permission from “A. Juhong, et al., "Monocular depth estimation based on deep 

learning for intraoperative guidance surface-enhanced Raman scattering (SERS) imaging." 

Photonics Research, 13, no. 2, pp. 550-560 (2025)” [134], © Optica Publishing Group and Chinese 

Laser Press. 

Imaging of surface-enhanced Raman scattering (SERS) nanoparticles (NPs) has been intensively 

studied for cancer detection due to its high sensitivity, unconstrained low signal-to-noise ratios, 

and multiplexing detection capability. Furthermore, conjugating SERS NPs with various 

biomarkers is straightforward, resulting in numerous successful studies on cancer detection and 

diagnosis. However, Raman spectroscopy only provides the spectral data from an imaging area 

without co-registered anatomic context. This is not practical and suitable for clinical applications. 

Here, we propose a custom-made Raman spectrometer together with computer vision-based 

positional tracking and monocular depth estimation using deep learning (DL) for the visualization 

of 2D and 3D SERS NPs imaging, respectively. In addition, the SERS NPs used in this study 

(hyaluronic acid (HA)-conjugated SERS NPs) showed clear tumor targeting capabilities (target 

CD44 typically overexpressed in tumors) by an ex vivo experiment and immunohistochemistry. 

The combination of Raman spectroscopy, image processing, and SERS molecular imaging, 

therefore, offers a robust and feasible potential for clinical applications.  

5.1 Introduction 

Surgical resection of a tumor is a standard of care therapy for most solid tumors. The ultimate goal 

of surgical resection is to remove the entire tumor with minimal damage to adjacent tissue, an 

outcome that strongly correlates with reduced tumor recurrence and improved survival [135, 136]. 
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Tumor margins in numerous aggressive cancers are typically indistinct due to the primary tumor’s 

propensity to invade into adjacent healthy tissue areas. As a result, defining appropriate margins 

for surgical resection remains challenging [137]. There are several modalities used in the clinic to 

visualize tumors and facilitate tumor removal such as magnetic resonance imaging (MRI), positron 

emission tomography (PET), and computed tomography (CT) [138-141]. However, these imaging 

modalities lack sufficient resolution needed to identify and remove microscopic   sites of cancer 

invasion from the main tumor mass. To achieve precise tumor delineation and complete resection, 

a suitable intraoperative tool should meet the following requirements: high sensitivity and 

specificity, short acquisition time for real-time or near-real-time intraoperative detection, and high 

spatial resolution. With regards to imaging modalities, optical imaging exhibits distinct advantages 

compared to the previously mentioned non-optical imaging modalities in several aspects, such as 

lack of ionizing radiation, high sensitivity, and excellent spatiotemporal resolution [142-145].  

Recently, surface-enhanced Raman spectroscopy (SERS) nanoparticles (NPs) imaging has 

increasingly been recognized as a promising molecular imaging technique for clear delineation of 

tumor margins and tumor surgical resection due to its exceptional sensitivity, distinctive Raman 

signature (fingerprint), multiplexing detection capability [146-152], and lack of autofluorescence 

and photobleaching problems associated with fluorescence imaging. SERS NPs are composed of 

a gold core, Raman active dye, and silica shell, which have been developed to function as tumor-

targeting beacons showing substantially strong signals due to the surface plasmon resonance (SPR) 

effect [153] of the metallic core (gold). In addition, they can be effortlessly conjugated with various 

tumor-targeting ligands as well as fabricated with different Raman-active dyes.  Each Raman dye 

emits a unique Raman spectrum, called “flavor”, facilitating multiplexing. Several research 

groups, as well as our group, have demonstrated encouraging results of SERS NPs imaging for ex 
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vivo, in vivo, and image-guided surgery experiments [154-158]. However, Raman spectroscopy 

predominantly provides spectral data, lacking the capability to co-register and visually represent 

anatomic features, limiting applications for image-guided surgery.  

To overcome this problem, we propose a custom-made Raman spectroscopy system 

together with computer vision-based positional tracking and DL-based techniques to visualize 2D 

and 3D SERS NPs imaging, respectively. Specifically, the traditional template matching algorithm 

[159] is employed for probe tracking, and the affine transformation [160] is then used to co-register 

a 2D SERS image (reconstructed by using the multiplexing algorithm [161, 162]) and a sample 

photograph. For 3D imaging, the image is reconstructed based on a deep-learning monocular depth 

estimation (distance relative to the camera) of each given pixel in the input image. Multiple Depth 

Estimation Accuracy with Single Network (MiDaS) is a promising DL technique that estimates 

depth from an arbitrary input image. MiDaS utilizes a conventional encoder-decoder structure to 

generate the depth map images. The legacy MiDaS V2.1 model [163] uses a residual network as 

the backbone for feature extraction as this network structure is invulnerable to vanishing gradients 

and allows MiDaS to extract multi-channel feature maps from input tensors. The vision 

transformer (ViT) [164] is the state-of-the-art model employed in computer vision tasks. It can 

surpass convolutional neural networks (CNNs)-based models across various domains and settings. 

Therefore, the latest MiDaS versions (3.0 [165] and 3.1 [166]) replace the CNNs backbone with 

vision transformer networks showing superior results. In this work, we directly utilized the pre-

trained MiDaS 3.1 to reconstruct a 3D mouse image and co-register with the SERS image.  
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5.2 Methods 

5.2.1 Raman spectrometer  

A schematic of the proposed Raman system is illustrated in Figure 23. A 785-nm laser (iBeam 

Smart 785, Toptica Photonics, Munich, Germany) is employed for the excitation source, the 

custom-made fiber bundle Raman catheter (Fiber guide Industries, Caldwell, ID, USA) is used for 

the laser illumination and the Raman spectra collection. A proximal end of the probe is made up 

of one single mode fiber (780HP, 4.4 µm core diameter) for 785 nm laser illumination and 36 

multimode fibers (AFS200/220T, 200-µm core) for the Raman spectra collection as shown in 

Figure 23(b). The single-mode fiber for illumination is centrally positioned with the probe and 

encompassed by the 36 multimode fibers for Raman spectra acquisition. In addition, a fused silica 

plano-convex lens (L1, f=6.83 mm, PLCS-4.0-3.1-UV, CVI Laser Optics, Albuquerque, NM, 

USA) is placed in front of the probe to collimate the 785 nm laser illumination with a beam 

diameter of 1 mm and power of 30 mW on the sample. For the distal end, it is arranged in a vertical 

array or linear array for effectively coupling the light to the spectrometer (Kymera 193i-A, Andor 

Technology, Belfast, UK) by using optical relay lenses (L2, f = 100 mm, AC254-100-B and L3, 

f=80 mm, AC254-080-B, Thorlabs Inc., Newton, NJ, USA). In addition, the Rayleigh scattering 

from the collected light is filtered out by a long-pass filter (LPF, 𝜆𝑐 = 830 nm; BLP01-830R-25, 

Semrock, Rochester, NY, USA), placed between the relay lenses. As a result, the light that 

traverses the spectrometer is solely subjected to Stokes-Raman scattering. The Stokes-Raman 

scattering light from the spectrometer is then collected by a cooled deep-depletion spectroscopic 

charge-coupled device (CCD) array (1024 x 256 pixels with a pixel size of 26 µm x 26 µm; 

DU920P Bx-DD, Andor technology, Belfast, UK) with a wavelength range of 835- 912 nm 

(Raman shift of 770 -1777 cm-1). To achieve raster scanning, a two-axis translation stage is 
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constructed by joining two linear stages in an orthogonal manner (DDS050, Thorlabs Inc., Newton, 

NJ, USA). Furthermore, a color monocular camera (ELP 5-50mm, with Sony IMX323 chip, 

Shenzhen, China) is applied to track the Raman probe position and capture the sample photograph 

to reconstruct the 2D and 3D co-registered SERS images. 

 
Figure 23. Schematic of the custom-made Raman imaging system together with the visualization 

system. (a) The optical diagram of the Raman spectroscopy system. A 785 nm laser is used to 

illuminate the sample through a single mode fiber and collimated by an L1 lens. The scattered 

light is then collected by the Raman probe, coupled into the spectrometer using the relay optics 

(L2 and L3 lenses) with an interchangeable mirror (IM) and a long pass filter (LPF) in between. 

The spectrometer consists of a rotatable grating, three mirrors (M1: reflection mirror, M2: 

collimating mirror, and M3: focusing mirror), and a back-illuminated deep-depletion CCD. To 

perform 2D Raman imaging, the Raman probe is translated by a two-axis motorized stage. (b) 

the photograph of the distal and proximal ends of the custom-made fiber bundle. (c) Schematic 

of the visualization system for generating the 2D and 3D co-registered SERS imaging. 

5.2.2 SERS NPs synthesis  

SERS NPs were synthesized using the tris-based assisted synthesis protocol with Au NPs 

formation at elevated temperature as shown in Figure 24(a). First, the sodium citrate reduction 

approach was employed to prepare 17 nm Au-NP seeds. The seeds were then mixed with tris at 98 

°C, followed by adding gold chloride for seed-mediated growth to obtain 50 nm Au-NPs. The 

Raman dye was promptly added after the formation of 50 nm Au-NPs, and the solution was stirred 
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for one minute, followed by cooling in an ice bath. To functionalize SERS NPs with biomolecules, 

particularly hyaluronic acid (HA) and polyethylene glycol (PEG), thiol groups were employed for 

the attachment of these biomolecules and to Au NPs via gold-thiol interaction [167-171] . S420 

SERS NPs were mixed with thiolated-HA and this mixture solution was then incubated at 4 °C 

overnight. After that, unbounded HA was removed by repeated centrifugation. Likewise, the 

procedure to conjugate PEG with S481 SERS NPs is the same as the HA conjugation. The size 

and shape of synthesized SERS NPs were characterized by a transmission electron microscope 

(TEM; 2200FS, JEOL Ltd., Tokyo, Japan) and a dynamic light scattering particle analyzer (DLS; 

Zetasizer Nano ZS, Malvern Panalytical Ltd., Malvern, England, UK). SERS NPs are homogenous 

spheres with approximately 50 nm in diameter as shown in Figure 24(b). The DLS result was also 

applied to validate the distribution size with a measurement of 56 nm as shown in Figure 24(c). 

The comprehensive synthesis protocol and  characterization of SERS-NPs are demonstrated in our 

previous work [157]. The normalized Raman spectra (acquired by our custom-made Raman 

spectrometer) of S420 and S481 SERS NPs with a concentration of 500 pM are demonstrated in 

Figure 24(d). 
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Figure 24. Synthesis of the SERS NPs. (a) SERS NPs synthesis and HA/PEG conjugation 

procedure. First, 17 nm gold seeds (Au NP) are formed. Second, the NPs further grow to 50 

nm meanwhile different Raman reporters (S420 and S481) are attached to the gold surface. 

Lastly, the SERS NPs are functionalized with HA or PEG. (b) TEM image of the SERS NP 

with diameter of approximately 50 nm. (c) DLS result of the corresponding SERS NPs. The 

measured size is 56.16 nm in diameter. (d) Normalized Raman spectra of the stock SERS 

solution of both flavors (S420 and S481).  
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5.2.3 Position tracking and image co-registration algorithms 

Before processing the data acquired by a low-cost camera, camera calibration [172, 173] was 

applied to correct the image distortion due to the lens quality and optical alignment.  Template 

matching algorithm [174] is then used to determine the precise position of a Raman probe image 

(the template image) in a large surgery area image (the input image). The concept of this algorithm 

is to slide the template image over the input image, akin to a 2D convolutional operation, followed 

by a comparison of the template and the corresponding patch of the input image, which can be 

done by several methods. In this work, we employed a normalized cosine coefficient 

(TM_CCOEF_NORMED) implemented in Python using the OpenCV library [175] to calculate 

the template matching for the Raman probe detection. With the Raman probe position, the 

scanning position can be easily estimated during data acquisition. In addition, to accurately overlay 

the SERS image (X) and surgery area image (Y), an image co-registration algorithm is required 

by calculating the geometric transformation matrix (T) as shown in the equations below. 

𝑌 =  𝑇. 𝑋, (34) 

𝑋 =  [
𝑥1

′ 𝑥2
′ ⋯ 𝑥𝑛

′

𝑦1
′ 𝑦2

′ … 𝑦𝑛
′

1 1 … 1

], 

 

(35) 

𝑌 =  [
𝑥1 𝑥2 … 𝑥𝑛

𝑦1 𝑦2 … 𝑦𝑛

1 1 … 1
], 

 

(36) 

𝑇 =  [
𝑚00 𝑚01 𝑚02

𝑚10 𝑚11 𝑚12

0 0 1
], 

 

(37) 

where (𝑥𝑛
′  , 𝑦𝑛

′  ) and (𝑥𝑛, 𝑦𝑛) are the corresponding positions (n is the number of corresponding 

positions) in the input image X and the reference image (Y), respectively, and 𝑚𝑖𝑗 is the simplified 

transformation matrix parameters derived from the rotation, scaling, shearing, and translation 

matrices as shown in the equation below.  
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𝑇 =  [
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

] [
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

] [
1 𝑠ℎ𝑥 0

𝑠ℎ𝑦 1 0

0 0 1

] [
cos(𝜃) sin(𝜃) 0

− sin(𝜃) cos(𝜃) 0
0 0 1

] 

(38) 

Where the translation matrix: 𝑡𝑥 and 𝑡𝑦 are the displacement along the x and y axes, respectively, 

the scaling matrix: 𝑠𝑥 and 𝑠𝑦 are the scale factors along the x and y axes, respectively, the shear 

matrix: 𝑠ℎ𝑥  and 𝑠ℎ𝑦 are the shear factors along the x and y axes, respectively, and the rotation 

matrix: 𝜃 is the angle of rotation. Indeed, T matrix can be estimated by using corresponding points 

together with the minimized least square error (𝜀2)  as shown below:  

𝜀2 = ‖𝑇𝑋 − 𝑌‖2, (39) 

𝑑𝜀2

𝑑𝑇
= −2𝑋𝑇(𝑌 − 𝑇𝑋) = 0 , (40) 

𝑋𝑇𝑌 = 𝑋𝑇𝑇𝑋  , (41) 

𝑇 = (𝑋𝑇𝑋)−1  (𝑋𝑇Y). (42) 

To obtain a more accurate co-registration result (2D co-registered SERS image), the estimated 

transformation matrix (T) is then applied to the reconstructed SERS image (X) derived from the 

demultiplexing algorithm. In our case, the raster scan was applied to reconstruct the SERS image 

and the fiducial landmarks (four corners of the scanning area) were marked on the sample. Thus, 

the four corners of the SERS image were used as the corresponding points to the four fiducial 

points on the samples for the image co-registration. 

5.2.4 Depth estimation using DL 

MiDaS is considered as a promising model for performing monocular depth estimation, and the 

original MiDaS V 2.1 [163] is based on a CNN backbone, however the newer versions (MiDaS V 

3.0 [165] and V 3.1 [166])  employ a transformer architectures as their backbones, which can 

significantly outperform the original version. The training protocol of the MiDaS V2.1, 3.0, and 

3.1 models are analogous. Breifly, the MiDaS models were trained by using 12 mixing datasets, 
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multi-objective optimization [176] with Adam [177], and scale-and-shift-invariant loss [178]. The 

encoder and decoder weights were updated by applying the learning rates of 1e-5 and 1e-4, 

respectively. The models were initially pre-trained on a subset of the datasets for 60 epochs, 

followed by training for another 60 epochs on the full dataset. The complete training details are 

elucidated in the original MiDaS V 2.1 paper. All DL models demonstrated in this work were 

implemented on a personal computer equipped with an 11th Gen Intel core i7-11700k CPU, 64 GB, 

and an NVIDIA RTX 3090 graphic processing unit (GPU). Indeed, all MiDas models are built 

using encoder and decoder structures. Each MiDaS model differs in the backbone of the encoder 

part (variant of CNNs and Transfomer architectures), while the rest of the model remains 

consistent. Since the latest MiDaS V 3.1 provides the best result compared to other versions, it is 

used in this study. Bi-direction Encoder repression from Image Tranfomers (BEiT) [179]  is used 

as the backbone of MiDas V 3.1, as shown in Figure 25(a-b). BEiT is a state-of-the-art architecture 

that enables self-supervised pretraining of vision transformer (ViT) to surpass supervision 

pretraining. The pre-train task in BEiT is the masked image modeling (MIM) head, as shown in 

Figure 25(b). The concept of MIM is to recover the original visual tokens based on the corrupted 

image patches. In other words, MIM uses two views for each image to train the model. First, the 

2D image with a size of HxWxC is divided into a sequence of  HW/P2 patches for each channel, 

where (H,W) is the image size, C is the number of channels, and (P,P) is the patch size. All the 

patches are then flatten into vectors and linearly projected. Second, an image tokenizer converts 

the image into a sequence of discrete tokens rather than using raw pixels. Discrete variational 

autoencoder (dVAE) [180, 181] is directly used to train this image tokenizer. Indeed, the image 

tokenizer is a readily trained token genertor for the input patches.  
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Figure 25. (a) Overview of the MiDaS V 3.1 architecture. The input image is embedded with a 

positional embedding and a patch-independent readout token (orange) is included. These 

patches are fed to four BEiT stages. At each BEiT, the output tensor is passed through the 

Reassemble and Fusion blocks to predict the encoder outputs for each stage. (b) BEiT 

transformer architecture used in the encoder part in (a). (c) Reassemble block applied to 

assemble the tokens into feature maps with 1/s the spatial resolution of the input image. (d) 

Fusion block used to combine the features and upsample the features maps by two times.  

The outputs from the tokenizer and MIM are used to determine the loss value to update the 

learnable parameters allowing the network to obtain a deep understanding of underlying image 

patterns without the explicit lables. It is important to note that the BEiT was initially designed for 
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an image classification problem and does not provide depth estimation functionality. To assemble  

MiDaS V 3.1, BEiT is used as a feature extractor and must be appropriately connected to the depth 

decoder. Regarding the encoder-decoder in MiDaS, the input is progessively processed for each 

encoder stage, similar to the decoder stage. Thus, the BEiT backbone can be integrated by placing 

appropriate hooks, meaning a tensor computed in the encoder is taken and available as input for 

the decoder at one of its stage. This requires a reassembling process to reshape the tensors to fit 

the decoder, as shown in Figure 25(c-d). Essentially, the input image is embedded as the tokens, 

which are passed through serval BEiT stages. At each stage, the tokens are ressemable into image-

like represtanion with different resolutions.  After that, the fusion module is employed to fuse and 

upsample these image-like represtanions in order to generate an exquisite prediction. The final 

prediction is then fed to a task-specific ouput head to generate the depthmap image.  The depth 

map image generated by the MiDaS model is considered as a dispartily-like image (inversely 

propotional to the depth map intesnity), which is then projected into 3D space using the 

reprojectImageTo3D function in OpenCV [175]. Lastly, The color of each pixel in the 2D co-

registered SERS image is mapped onto the corresponding positions (x-y plane) in the 3D space of 

depth map image to obtain the final 3D SERS image.  

5.3 Results and discussion 

5.3.1 Phantom characterizations  

The step-wedge with a height of 9.5 mm of each step, which was constructed from the standard 

mounting bases (BA1S, Thorlabs Inc., Newton, NJ, USA), was used as a phantom to characterize 

the depth estimation DL models. The camera captured this phantom photograph and was used as 

the input for the three different MiDaS models (CNN, ViT, and BEiT) to estimate the depth and 

compare the performance of each model. To quantify the performance of each model, the depth 
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map intensities from step 4 to step 1 (along with the white-dashed line) were plotted as illustrated 

in Figure 26(a). The absolute errors were then calculated from the intensity profiles of each model 

and the ground truth (the black line). Table 7 shows the average absolute error ± standard deviation 

results of each model. It shows that the MiDaS model based on BEiT architecture can surpass other 

models with the lowest average absolute error of 0.0485 ± 0.1737.  

   
Figure 26. Validation of depth map imaging and Raman spectra at different distances from 

a camera and a Raman catheter, respectively. (a) Depth map imaging of a step-wedge 

phantom generated by MiDaS models based on three different backbones (CNN, ViT, and 

BEiT) and the comparison of the depth map intensity profiles of each model. (b) Depth 

map imaging of a tumor phantom with different distances from the camera. (c) The Raman 

spectra of S420 SERS NPs characterization at different distances from the Raman catheter 

by using the step-wedge phantom. (d) A linearity plot of the highest intensity of S420 (1614 

cm-1) versus the distances from the Raman catheter. 
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Table 7. Depth map intensity characterization results (Average absolute error ± Standard 

deviation) of MiDaS models with three different architectures: CNN, VIT, and BEiT. 

Step number CNN ViT BEiT 

Step 1 0.074 ± 0.56 0.318 ± 0.14 0.051 ± 0.56 

Step 2 0.070± 0.046 0.252± 0.01 0.032 ± 0.04 

Step 3 0.135± 0.088 0.018± 0.016 0.024 ± 0.012 

Step 4 0.092± 0.077 0.161± 0.10 0.087± 0.083 

Furthermore, a 3D-printed tumor phantom was utilized for thorough characterization of the MiDaS 

models, as depicted in Figure 26(b). The distance between the phantom and camera varied from 5 

cm to 11 cm with an increment of 2 cm. The phantom depth map images were then generated by 

the MiDaS models. The quality images captured at the out-of-focus distances (5 cm and 7 cm) are 

unsatisfactory, leading to deterioration of depth map quality, as the models cannot correctly 

recognize some poor resolution areas to generate the depth map image, especially the CNN MiDaS 

model. Nevertheless, the BEiT model can still generate somewhat decent quality depth map 

images. Table 8. shows four evaluation metrics (average value from all distances ± standard 

deviation): IoU, F1-score, Recall, and Precision, of the depth map images and their corresponding 

masks. This evaluation shows the overall performance of the MiDaS models for generating depth 

map images of the same object with different image quality (in-focus and out-of-focus images), 

particularly the BEiT MiDaS model can surpass other models with the promising scores of all 

evaluation metrics. In addition, the complexity and average execution time for one input image 

were evaluated to assess the feasibility for intraoperative guidance applications. Although we 

implemented MiDaS on a moderate-budget GPU (an NVIDIA RTX 3090 GPU), the execution 

time is feasible for intraoperative guidance applications. Indeed, the execution time can be 

improved by using more powerful GPUs currently available on the market. 

 

 



87 

 

Table 8. Tumor phantom characterization result of the three different MiDaS models 

Evaluation CNN ViT BEiT 

IoU 0.139± 0.026 0.241± 0.018 0.272 ± 0.033 

F1-score 0.244± 0.041 0.389± 0.024 0.426 ± 0.042 

Recall 0.262 ± 0.024 0.370 ± 0.027 0.402 ± 0.029 

Precision 0.234 ± 0.058 0.421 ± 0.074 0.466 ± 0.088 

Execution time 

(second) 

0.861 0.998 1.175 

The number of 

parameters 

105 M 334 M 345 M 

 

In addition to the depth map image characterization, the intensity of Raman spectra of the same 

sample at various distances from the Raman catheter was also characterized by using the step-

wedge phantom from Figure 26(a) and S420 SERS NPs solution with a concentration of 500 pM 

as shown in Figure 26(c).  The SERS NPs solution was dropped on each step with a volume of 20 

µL, followed by acquiring the Raman spectra using 30 mW laser power and 1 second exposure 

time. The linearity plot of the highest peak of S420 (1614 cm-1) and the distance between the 

Raman catheter and sample is illustrated in Figure 26(d). The distance between the catheter and 

the sample is inversely proportional to the intensity of the Rama spectra. Thus, this has to be 

addressed to enhance the accuracy of clinical applications.  

5.3.2 Ex-vivo experiment 

To validate the targeting capability of the conjugated-HA SERS NPs, we performed an ex-vivo 

experiment on tumor tissue and spleen connective tissue (control) harvested from the MUC1 breast 

tumor mouse model [38]. All procedures used in experiments conducted on animals were approved 

by the Institutional Animal Care & Use Committee (IACUC) of Michigan State University. SERS-

NPs used in this experiment were also published in our previous work [157]. First, we scanned the 

background signal from all the tissues. Second, all tissues were incubated with the mixture solution 

of S420-HA and S481-PEG SERS NPs with a concentration of 250 pM for 15 minutes. The S481-

PEG was used as a control SERS NPs solution (non-targeting). In the next step, all the tissues were 
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rinsed by phosphate-buffered saline (PBS) 4-5 times, followed by acquiring the Raman spectra 

and reconstructing the image using the demultiplexing algorithm [161, 162]. This algorithm is 

based on the direct classical least squares (DCLS) method, using measured Raman spectra, 

reference spectra of SERS NPs of each flavor (spectra of a pure SERS NPs solution at a high 

concentration), and background spectra as inputs to estimate the weight of a specific flavor.  

 

Figure 27. (a) Multiplexed Raman images of tissues topically stained with the mixture of SERS-

HA (CD44 targeting) and SERS-PEG (control) solution, (a1) Photographs of the mouse tumor 

tissue and spleen connective tissue (control), and (a2-a4) Raman images of individual channels 

and ratiometric results. (b) H&E and IHC-CD44 images of the corresponding tissues. (c) 

Representative enlarged IHC images in (b) of the breast tumor and normal tissues. Scale bars in 

(a-b) and (c) are 5 mm and 50 μm, respectively. 

Ideally, by rinsing tissues after incubation, the non-targeting NPs (S481-PEG) should be removed 

from the incubated tissues, and the majority of targeting NPs (S420-HA) should remain on the 

tumor with overexpressed CD44.  However, in the practical experiment, we detected signals from 

both S420-HA and S481-PEG in both the tumor and normal tissues, as shown in Figure 27(a1-a3), 

due to tissue texture and non-specific binding. Therefore, the Raman ratiometric image of S420-
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HA and S481-PEG was applied to evaluate the targeting of the NPs, as shown in Figure 27(a4). 

According to the ratiometric result, the ratio of targeting NPs (S420-HA) on the tumor tissue is 

significantly stronger than the ratio on the control tissue, which is encouraging and promising. 

Furthermore, the H&E and IHC of CD44 of the corresponding tissues were prepared, and the 

results are shown in Figure 27(b1-b2), respectively. CD44 is labeled as brown areas, and they are 

intense (overexpressed) in the tumor tissue as shown in Figure 27(c). This is also consistent with 

the ratiometric result. 

5.3.3 Image-guided surgery experiment 

In this experiment, we would like to validate the capability of the proposed Raman system and 

SERS NPs and closely replicate the clinical conditions of human surgery. A 5-month-old female 

C57BL6 double transgenic mouse with breast cancer was used for this experiment. First, the 

operative surgery area (tumor area) was defined, followed by acquiring the Raman signal as the 

background signal. The mouse was then intratumorally injected with the S420-HA solution with a 

concentration of 500 pM, a volume of 100 µL, and a depth of injection of approximately 2-3 mm. 

42 hours after the injection, the mouse was euthanized by using a table-top research anesthesia 

machine (V300PS-PARKLAND SCIENTIFIC, USA) with 10 lpm of oxygen flow and 1.5% of 

anesthetic agent vapor in oxygen during the image-guided surgery imaging. The tumor skin was 

then cut open followed by rinsing the tumor area with PBS 4-5 times and acquiring Raman spectra. 

After that, the Raman image (weight of S420-HA) of the scanned area was reconstructed and the 

tumor was also gradually resected following the white boundaries as shown in Figure 28.  It is 

important to note that the deeper the resection is performed, the weaker the signal of SERS NPs 

is. This is due to the effective working distance of the Raman probe. Therefore, the depth of 

information on the operative area is essential for providing additional insights and guidance for 
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more effective surgery, and we also demonstrate the concept of the 3D SERS NPs imaging in the 

next section.  

 

Figure 28. SERS image-guided surgery for resection of a mouse with a breast tumor. (a) 

Photographs of the tumor during the intraoperative SERS image-guided surgery from the first 

removal to the complete removal. (b) the corresponding SERS imaging (weight of S420-HA) 
reconstructed by the demultiplexing algorithm. The scale bar is 5 mm, and the white boundaries 

depict the resection regions.  

5.3.4 2D tracking and 3D SERS imaging  

In addition to the image-guided surgery and ex-vivo experiments, we demonstrate our custom-

made Raman system and monocular depth estimation based on DL to visualize the SERS NPs 

signal on the sample in 2D and 3D surfaces in the physical world. To simplify the experiment, the 

S420-HA solution with a concentration of 500 pM was directly dropped on the cut-open tumor of 

another breast tumor mouse with an incubation time of 15 minutes followed by rinsing with PBS 
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4-5 times and acquiring Raman spectra, respectively.  Before applying this S420-HA solution, the 

background Raman signal was also acquired as it is one of the input variables for the SERS image 

reconstruction. A color camera was used to record the video of the scanning area and capture the 

photograph of the sample to generate the 2D SERS mapping video and the 3D SERS image. To 

generate the 2D SERS mapping video, the template matching algorithm was applied to track the 

Raman catheter position to estimate the scanning positions. After that, the SERS signals (the 

weights of S420-HA) were then generated on these estimated scanning positions as shown in 

Figure 29 (a). After completing the scanning, the image co-registration algorithm was applied to 

co-register 2D SERS image with the sample photograph and the MiDaS DL based on BEiT was 

utilized to generate the depth map image. With these 2D co-registered SERS and depth map 

images, the 3D-coregiesterd SERS image was reconstructed and projected as point clouds in the 

3D space as shown in Figure 29(b). Since Figure 29(a) shows the Raman catheter tracking with 

real-time 2D SERS image reconstruction, the large field of view (FOV) was needed to acquire the 

image for covering the catheter and scanning area images. Nevertheless, the smaller FOV was 

employed to illustrate greater detail in the 3D SERS image shown in Figure 29(b). According to 

these promising results, the proposed method can facilitate 2D and 3D SERS imaging through the 

utilization of a Raman catheter system and a simple camera, which can immeasurably improve the 

visualization and precision of SERS NPs distribution leading to more efficient clinical 

applications. Specifically, it is beneficial for image-guided surgery by assisting surgeons to locate 

solid tumors and achieve more precise resections. However, there is an obvious artifact pattern in 

3D SERS imaging. It is caused by the large excitation laser (approximately 1 mm). This could be 

resolved by improving the optic design of the Raman system to reduce the beam size and adding 

a scanner to maintain the acquisition speed, which could be our future work.  
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Figure 29. (a) 2D SERS image during Raman spectra acquisition, (a1) before scanning, (a2) 

during scanning, and (a3) complete scanning. (b) 3D image of the sample, SERS, and co-

registered SERS reconstructed by using affine transformation and Midas 3.1 DL model with the 

BiET backbone architecture. The scale bars of (a1) and (b1) are 10 mm and 8 mm, respectively. 

5.4 Conclusion  

Intraoperative imaging systems, in tandem with exogenous contrast agents, play a crucial role in 

tumor resection by assisting a surgeon to identify tumor areas with a high degree of sensitivity and 

specificity. However, traditional imaging systems commonly encounter poor tumor margin 

visualization, particularly the weak signal of a tumor at deeper layers. Without depth information, 

these weak signals might be neglected, leading to ineffective tumor resection. Therefore, the whole 

tumor might not be completely removed, causing tumor recurrence. In recent years, SERS NPs 

imaging has been increasingly recognized as an encouraging molecular imaging technique due to 

its remarkable sensitivity, multiplexing detection capability, and photostability. In addition, it has 
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demonstrated significant potential in cancer detection and enhancing delineation of tumor margin, 

as SERS NPs can be easily conjugated with various biomarkers. 

In this work, we propose an approach to visualize 2D and 3D SERS imaging. A step-wedge 

phantom and a tumor phantom were used to evaluate the depth map estimation performance of 

MiDaS models with three different back-bone architectures: CNN, ViT, and BEiT. MiDas based 

on BEiT can outperform other models; thus, it was employed for 3D visualization of SERS NPs. 

HA-conjugated SERS NPs were evaluated by ex-vivo and image-guided surgery experiments by 

using the traditional 2D SERS image reconstruction showing promising results. Nevertheless, it 

lacks the depth information for practical clinic applications, affecting surgery outcomes. 

Therefore, the proposed approach combines the use of a custom-made Raman spectrometer with 

computer vision-based positional tracking for 2D SERS imaging and monocular depth estimation 

based on the MiDaS model for 3D SERS imaging. This combination can overcome the 

disadvantage of the conventional Raman system, which only provides spectra information and is 

unsuitable for clinical applications. The 2D and 3D image co-registration between the Raman 

imaging and the sample photograph in the physical world enables better performance and 

efficiency of tumor resection, potentially leading to its implementation in human clinical trials in 

the near future. Essentially, the proposed method shows a proof-concept study of image-guided 

surgery by using 3D and 2D SERS imaging. However, there are some limitations that need to be 

improved in the future, particularly the resolution of SERS imaging. The excitation laser beam 

diameter in the proposed system is somewhat large (roughly 1 mm), causing the artifact in 3D and 

2D image reconstruction, which is unsuitable for small tumor resection. Therefore, the optics part 

should be re-designed to obtain smaller beam size for enhanced resolution. In addition, the depth 

map estimation using MiDaS can be influenced by the resolution of an input image acquired at an 
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out-of-focus distance. Thus, auto-focus approaches, such as resolution enhancement deep learning 

or a hardware-based approach, should be considered to avoid this problem. The proposed method 

may be more feasible for future clinical applications as a result of these improvements. 
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CHAPTER 6: Summary and future work 

In this dissertation, a wide range of biomedical applications based on different deep learning 

techniques have been presented. Firstly, a practical deep learning model for the resolution 

enhancement of H&E-stained images by using the state-of-the-art SRGAN-ResNeXt network has 

been demonstrated. The model can deeply learn how to map the low-resolution images to their 

corresponding high-resolution images. Even though cell images contain sophisticated patterns and 

structures, the SRGAN-ResNeXt model can still provide high-quality reconstruction results. 

Moreover, it can outperform the original SRGAN model. Therefore, we take these advantages to 

characterize and quantify the nuclei from the generated high-resolution images. Secondly, deep 

learning based on recurrent and convolutional neural networks has been demonstrated for 

generating sequential NWs-ICG optoacoustic (multispectral unmixing), ultrasound, and 

optoacoustic images. It has shown robust and promising performance in the accurate 

reconstruction of the sequential images for all modalities, according to the quantitative evaluation 

of model performance using the PSNR and SAE for all scanning positions of the generated images 

(reconstructed by the deep learning model) and ground truth (acquired by mechanical scanning). 

The architecture of our model is versatile since it can promisingly generate sequential cross-

sectional images of three modalities from a commercial MSOT system. Using our deep learning 

can substantially reduce acquisition time. However, all the training data were acquired from ex 

vivo tissues completely fixed in agarose. Model performance with images acquired in vivo may be 

affected by cardiac and respiratory motion. Thirdly, the proposed multi-head attention U-Net 

model, an efficient end-to-end deep learning based on U-Net architecture and multi-head attention 

mechanism, was demonstrated for MPI-CT image segmentation. The proposed model was trained 

using a custom MPI-CT image dataset collected from transgenic mice with breast tumors injected 
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with a promising MPI tracer for tumor imaging, namely NWs-ICG.  The optimal number of 

attention heads was experimentally observed in this study. Although an increase in the number of 

attention heads can potentially boost the model’s capability, the excessive number of attention 

heads results in a decline in capability. Our study shows that the attention U-Net with four heads 

is the most favorable architecture for MPI-CT image segmentation.  Lastly, we propose a method 

to generate 2D and 3D SERS imaging. The proposed method integrates the use of a custom-made 

Raman spectrometer with image processing and deep learning to generate 2D and 3D SERS image, 

which can overcome the drawback of the conventional Raman system, only providing spectra 

information. The 2D and 3D image co-registration between the Raman imaging and the sample 

photograph in the physical world enables better performance and efficiency of tumor resection, 

potentially leading to its implementation in human clinical trials in the near future. 

In addition to the applications mentioned above, I am working on virtual H&E images 

using deep learning. In this work, the virtual H&E deep learning model is employed to transform 

auto-fluorescence images of unstained tissue slides to virtual H&E images. Another deep learning 

model is then applied to screening the cancer areas. With this concept, it could potentially shorten 

the standard cancer diagnosis and be useful for practical clinical applications.  Furthermore, in my 

future work, I plan on developing a universal visual-language foundation deep learning model 

using a variety of pathology images and biomedical fundamental texts for cancer detection with 

several downstream tasks related to pathology images to achieve superb performance on pathology 

image classification, segmentation, and biomarker quantitative. 
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