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ABSTRACT

Molecular simulations are essential in computational chemistry, with classical and quantum meth-

ods o!ering complementary approaches to studying molecular structures and interactions. This

thesis explores two distinct projects: classical geometry optimization (Chapter 2) and quantum

computing for electronic structure simulations (Chapters 3 and 4).

Chapter 2 investigates geometry optimization using various open-source optimizers interfaced

with the QUICK program. By analyzing structures from the Baker test set, we compare internal and

Cartesian coordinates, evaluate quasi-Newton strategies, and assess a machine learning-based Gaus-

sian Process Regression (GPR) optimizer. Among the tested methods, ASE/Berny and ASE/Sella

achieve the fastest convergence, making them suitable for large-scale applications.

Chapter 3 presents quantum-centric simulations of noncovalent interactions using sample-based

quantum diagonalization (SQD). We compute the potential energy surfaces of water and methane

dimers on quantum hardware, achieving deviations within 1 kcal/mol from high-accuracy classical

methods. A 54-qubit simulation explores the current limitations of quantum methods in modeling

hydrophobic interactions.

Chapter 4 extends quantum-centric simulations to larger systems by integrating SQD with

density matrix embedding theory (DMET). This hybrid approach e"ciently reduces quantum

resource requirements while maintaining accuracy. Simulations of an 18-atom hydrogen ring

and cyclohexane conformers on the ibm_cleveland quantum device demonstrate the feasibility of

quantum embedding techniques for extended molecular systems.

By advancing classical optimization strategies and demonstrating scalable quantum simulations,

this thesis contributes to the development of computational tools for accurate and e"cient molecular

modeling.
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CHAPTER 1

INTRODUCTION

Electronic structure theory forms the foundation of modern theoretical chemistry, enabling the

accurate prediction of molecular and material properties across diverse scientific fields, including

chemistry, materials science, and drug discovery1–3. At its core, this theory aims to solve the

electronic Schr"odinger equation to determine how electrons propagate in a system, providing in-

sights into molecular stability, reactivity, and spectra. In reaction mechanism studies, electronic

structure calculations have been instrumental in elucidating transition states and activation energies,

as demonstrated in computational studies of enzymatic catalysis4. Similarly, in materials science,

first-principles calculations based on density functional theory (DFT) have guided the design of new

semiconductors and battery materials by predicting electronic conductivity and defect formation

energies5,6. In drug discovery, quantum mechanical approaches, such as free-energy perturbation

(FEP) and quantum mechanics/molecular mechanics (QM/MM) methods, have significantly im-

proved the prediction of binding a"nities, aiding in the rational design of inhibitors for kinase and

protease targets7.

Despite its success, solving the Schr"odinger equation for many-electron systems remains a

formidable challenge due to the complexity of electron-electron interactions and the exponential

computational scaling associated with wavefunction-based methods8,9. While exact methods like

Full Configuration Interaction (FCI) provide benchmark-quality results, their factorial scaling ren-

ders them impractical for all but the smallest molecules10. To address these limitations, modern

electronic structure methods employ sophisticated approximations, such as coupled cluster (CC)

theory for high-accuracy correlated wavefunctions11 and density matrix embedding theory (DMET)

for treating strongly correlated materials12. These advancements have enabled the accurate sim-

ulation of reaction pathways, such as CO2 reduction catalysts, and the discovery of novel organic

semiconductors4,6. Thus, electronic structure theory remains a cornerstone of scientific discov-

ery, bridging fundamental quantum mechanics with practical applications in chemistry, materials

science, and pharmaceutical research.
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1.1 The Many-Body Problem in Quantum Chemistry

The Schrödinger equation governs the behavior of quantum systems and is fundamental to

quantum mechanic and quantum chemistry. In its time-independent form, the equation is given

Eq. (1.1)

𝐿̂ω = 𝑀ω (1.1)

where 𝐿̂ is the Hamiltonian operator, representing the total energy of the system, ω is the wave-

function, which contains all the information about the system, and 𝑀 is the total energy associated

with the system. Solving this equation for many-electron systems is extremely challenging because

of the intricate interactions between the electrons.

For a molecule with 𝑁 electrons and 𝑂 nuclei, the Hamiltonian operator in atomic units (a.u.)

can be represented by Eq. (1.2)

𝐿̂ = →

𝑁∑
𝑃=1

1
2
↑

2
𝑃 →

𝑂∑
𝑄=1

1
2𝑂𝑄

↑
2
𝑄 →

𝑁∑
𝑃

𝑂∑
𝑄

𝑅𝑄

𝑆𝑃𝑄
+

𝑁∑
𝑃< 𝑇

1
𝑆𝑃 𝑇

+

𝑂∑
𝑄<𝑈

𝑅𝑄𝑅𝑈

𝑉𝑄𝑈
(1.2)

where the terms represent the kinetic energy of electrons, the kinetic energy of nuclei, the electron-

nucleus Coulomb interaction, the electron-electron repulsion, and the nucleus-nucleus interaction,

respectively. The Born-Oppenheimer (BO) approximation13 enables the separation of nuclear and

electronic motion by exploiting the significant mass di!erence between nuclei and electrons. Since

electrons move much faster than nuclei, this approximation is valid for many applications, allowing

the electronic Schrödinger equation to be solved independently at fixed nuclear positions. The

resulting electronic Hamiltonian, given in Eq. (1.3), defines the potential energy surface (PES),

which governs nuclear motion and molecular dynamics.

𝐿̂ = →

𝑁∑
𝑃=1

1
2
↑

2
𝑃 →

𝑁∑
𝑃

𝑂∑
𝑄

𝑅𝑄

𝑆𝑃𝑄
+

𝑁∑
𝑃< 𝑇

1
𝑆𝑃 𝑇

(1.3)

However, even with this approximation, solving the full wavefunction for a multi-electron

system remains computationally demanding due to the need to account for all possible electronic

configurations and interactions. The Schrödinger equation, however, can be solved exactly only for

a one-electron system.1
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The computational scaling problem arises from the fact that the number of parameters required

to describe the wavefunction grows exponentially with the number of electrons. As a result, solving

the full wavefunction exactly for very large systems is intractable, making it necessary to develop

approximations and e"cient algorithms to tackle these systems.

1.2 Classical Methods for Electronic Structure Calculations

Classical computational approaches for solving the electronic Schrödinger equation are essential

tools in quantum chemistry, providing approximate yet powerful methods to investigate molecular

properties, reaction dynamics, and fundamental chemical interactions. These methods rely on

a variety of approximations to e"ciently handle the complexities of many-electron systems, as

solving the full electronic wavefunction exactly is only possible for the simplest systems, such

as the hydrogen like atom with a single electron. Broadly, classical methods can be categorized

into wavefunction-based techniques and density-based approaches. Wavefunction-based methods,

such as variational and perturbation theories, approximate the many-electron wavefunction by

constructing systematically improvable solutions. Density-based methods, like density functional

theory (DFT), reformulate the problem in terms of the electron density rather than the wavefunction,

significantly reducing computational cost while capturing essential quantum e!ects.

1.2.1 Wavefunction-Based Methods

Wavefunction-based methods aim to approximate the exact many-body wavefunction of a

quantum system by solving the electronic Schrödinger equation with varying levels of accuracy and

computational cost. These methods play a crucial role in quantum chemistry, providing systematic

ways to incorporate electron correlation e!ects, which are essential for accurate energy predictions.

The most widely used approaches include:

1.2.1.1 Hartree-Fock (HF) Approximation

The Hartree-Fock (HF) method serves as the fundamental starting point for most wavefunction-

based electronic structure calculations1,2. It approximates the many-electron wavefunction as

a single Slater determinant, ensuring the proper antisymmetry required by the Pauli exclusion

principle. In HF theory, each electron is treated as moving in an average potential generated by
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all other electrons, leading to an e!ective mean-field approximation. This reduces the complex

many-body problem into a set of self-consistent, single-particle equations.

Despite its e"ciency, HF su!ers from a major limitation: it completely neglects electron

correlation, meaning it fails to capture the instantaneous interactions between electrons. This

omission leads to significant errors in systems where correlation e!ects are critical, such as transition

metal complexes, dispersion-dominated interactions, and strongly correlated materials. While HF

provides a qualitatively useful starting point, more sophisticated post-HF methods are required for

quantitatively accurate results.14

1.2.1.2 Configuration Interaction (CI) Method

Configuration Interaction (CI) improves upon HF theory by incorporating electron correlation

explicitly through a linear expansion of the wavefunction8. In this approach, the wavefunction of

the system is expressed as a superposition of multiple Slater determinants, constructed by exciting

electrons from the HF reference state:

|ωCI↓ = 𝑊0 |εHF↓ +
∑
𝑃𝑋

𝑊𝑋𝑃 |ε
𝑋
𝑃 ↓ +

∑
𝑃 𝑇𝑋𝑌

𝑊𝑋𝑌𝑃 𝑇 |ε
𝑋𝑌
𝑃 𝑇 ↓ + . . . (1.4)

where the coe"cients 𝑊0, 𝑊𝑋𝑃 , 𝑊
𝑋𝑌
𝑃 𝑇 , etc., are determined by solving the electronic Schrödinger

equation within the chosen basis set.

The most accurate form of CI is Full Configuration Interaction (FCI), which includes all possible

excitations within a given basis set, yielding exact solutions within that basis2. However, FCI is

computationally intractable for large systems due to its factorial scaling of O(𝑍𝑁
), where 𝑍 is the

number of basis functions and 𝑁 is the number of electrons. As a result, truncated CI approaches,

such as CI with Single and Double excitations (CISD), are commonly employed. While these

methods improve accuracy relative to HF, they su!er from a fundamental limitation: CI methods

are not size-extensive, meaning their accuracy does not scale properly with system size8.

In terms of computational achievements, a notable FCI calculation was performed on the

propane molecule (𝑎3𝐿8) using the STO-3G basis set, involving an active space of 26 electrons
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in 23 orbitals, corresponding to a Hilbert space of approximately 1.3 trillion determinants. This

represents one of the largest FCI calculations reported to date.15

1.2.1.3 Coupled-Cluster (CC) Theory

Coupled-Cluster (CC) theory is one of the most powerful and widely used wavefunction-based

methods, o!ering a systematically improvable approach to electron correlation16. Unlike CI, which

employs a linear expansion, CC uses an exponential ansatz to construct the correlated wavefunction:

|ωCC↓ = 𝑏𝑐 |εHF↓, (1.5)

where 𝑐 is the cluster operator, defined as:

𝑐 = 𝑐1 + 𝑐2 + 𝑐3 + . . . , (1.6)

with 𝑐𝑑 representing 𝑑-electron excitations.

The most commonly used approximation, Coupled-Cluster with Single and Double excitations

(CCSD), includes cluster operators from only one- and two-electron excitations. To account for

higher-order e!ects, the CCSD(T) method introduces a perturbative treatment of triple excitations.

This method is often referred to as the “gold standard” of quantum chemistry, as it provides highly

accurate results for a broad range of chemical systems while remaining computationally feasible for

moderately sized molecules17. However, CC methods still su!er from steep computational scaling,

making them impractical for very large systems.

Moreover in systems characterized by strong electron correlation, single-reference coupled-

cluster methods like CCSD(T) often fail to provide accurate results. This failure is particularly

evident in cases where multiple electronic configurations contribute significantly to the wave-

function, rendering a single-reference approach inadequate. A notable example is the symmetric

dissociation of hydrogen rings, such as the 𝐿6 molecule. Studies have shown that as the H–H

bond distances increase, methods like CCSD, CCSDt, and CCSDT exhibit erratic behavior, devi-

ating significantly from Full Configuration Interaction (FCI) benchmarks. For instance, at H–H
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separations of 2.5 Å, these methods can show errors relative to FCI exceeding 200 millihartrees,

indicating a complete breakdown in the strongly correlated regime.18

1.2.2 Density Functional Theory (DFT)

While wavefunction-based approaches provide systematically improvable accuracy, their com-

putational cost scales steeply with system size, limiting their applicability to small and medium-sized

molecules. An alternative approach, Density Functional Theory (DFT), circumvents the need to ex-

plicitly compute the many-body wavefunction by reformulating the problem in terms of the electron

density. According to the Hohenberg-Kohn theorems, the ground-state electron density uniquely

determines all properties of a molecular system19, allowing the total energy to be expressed as a

functional of the density:

𝑀 [𝑒] = 𝑐 [𝑒] +𝑓ext [𝑒] + 𝑀xc [𝑒] (1.7)

where 𝑐 [𝑒] represents the kinetic energy, 𝑓ext [𝑒] accounts for external potential interactions,

and 𝑀xc [𝑒] is the exchange-correlation functional, which encapsulates complex many-body e!ects.

Due to its significantly lower computational cost compared to wavefunction-based methods,

DFT has become the most widely used electronic structure method in chemistry, materials science,

and condensed matter physics20. The accuracy of DFT calculations depends on the choice of the

exchange-correlation functional, with common approximations including:

- Local Density Approximation (LDA): Assumes that the exchange-correlation energy at each

point in space depends only on the local electron density21.

- Generalized Gradient Approximation (GGA): Incorporates the gradient of the density, im-

proving accuracy for molecular and solid-state systems22,23.

- Hybrid Functionals: Incorporate a fraction of exact exchange from HF theory, enhancing

accuracy for a broad range of chemical systems24,25.

Despite its computational e"ciency, Density Functional Theory (DFT) has several inherent

limitations, primarily due to the unknown exact form of the exchange-correlation (XC) functional,

which is often derived semi-empirically26. While DFT performs well for many systems, it fails
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in strongly correlated cases where multiple electronic configurations are important, such as the

dissociation of 𝐿2, where it incorrectly predicts the dissociation energy curve27. Additionally,

DFT su!ers from delocalization and self-interaction errors, leading to inaccuracies in stretched

bonds and charge-transfer systems28.

1.3 Quantum Computing for Electronic Structure Calculations

Quantum computing provides a novel framework for addressing electronic structure problems

by leveraging the principles of quantum mechanics. While classical computers store information in

bits (0s and 1s), quantum computers use qubits, which can exist in superposition states. However,

the final measurement in a quantum computation still yields discrete classical outcomes (0 or 1),

with probabilities determined by quantum amplitudes, allowing for more e"cient encoding of

wavefunction information.

Near-term quantum hardware o!ers advantages primarily in representing and processing corre-

lated electronic states more compactly than classical methods. For instance, representing an 𝑁-qubit

quantum state requires storing 2𝑁 complex amplitudes on a classical computer, whereas a quantum

device inherently encodes this information within its qubits. However, current quantum devices

are limited by noise and hardware constraints, restricting practical applications to variational ap-

proaches, such as the Variational Quantum Eigensolver (VQE), rather than exact diagonalization

via Quantum Phase Estimation (QPE). While QPE theoretically provides exact eigenvalues of the

molecular Hamiltonian, its implementation requires deep circuits and error correction, making it

impractical for near-term quantum processors.

1.3.1 Quantum Algorithms for Electronic Structure

Advancements in quantum computing have led to the development of specialized quantum

algorithms designed to tackle the computational challenges inherent in Configuration Interaction

(CI) methods for large molecules. While CI-based classical approaches, such as Full Configuration

Interaction (FCI), provide exact solutions within a given basis set, their factorial scaling with sys-

tem size renders them infeasible for all but the smallest molecules1,2. Quantum algorithms o!er

an alternative by leveraging superposition and entanglement to encode and manipulate electronic
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wavefunctions more e"ciently, potentially providing a path to scalable electronic structure cal-

culations29,30. Below, we discuss some of the most prominent quantum algorithms developed to

compute molecular electronic energies.

1.3.1.1 Quantum Phase Estimation (QPE)

Quantum Phase Estimation (QPE) is a fully quantum algorithm designed to extract the eigen-

values of a Hamiltonian with high precision31. It works by encoding the phase of an eigenstate of

the Hamiltonian into a quantum register, allowing the eigenvalue to be determined with exponential

precision relative to the number of qubits used. QPE follows these general steps:

1. State Preparation: The algorithm begins with a quantum state that approximates an eigenstate

of the Hamiltonian, often derived from a classical mean-field method, such as Hartree-Fock

(HF).

2. Quantum Fourier Transform (QFT): Ancilla qubits undergo controlled-unitary operations to

encode the phase information of the Hamiltonian. The accuracy of QFT-based algorithms

depends on the number of terms in the Fourier expansion, with truncation leading to errors

in phase estimation and energy calculations29,31.

3. Measurement and Phase Extraction: The output register is measured, and a classical post-

processing step extracts the energy eigenvalue of the system with high accuracy.

One of the key advantages of QPE is its ability to provide eigenvalues with an exponentially

small error, making it an ideal candidate for applications requiring high precision. However, despite

its theoretical appeal, QPE has significant practical limitations:

• High Circuit Depth: The algorithm requires deep quantum circuits consisting of numerous

controlled-unitary operations, imposing stringent coherence time requirements on quantum

hardware29.
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• Error Sensitivity: The presence of gate errors and decoherence a!ects the reliability of

QPE results, making implementation on noisy intermediate-scale quantum (NISQ) devices

di"cult.

• Initial State Preparation: The accuracy of QPE depends on how well the initial quantum

state approximates an eigenstate of the Hamiltonian. Poor state preparation can lead to

convergence issues.

While Quantum Phase Estimation (QPE) is a critical algorithm for fault-tolerant quantum

computing, its implementation on near-term noisy intermediate-scale quantum (NISQ) devices

remains impractical due to several limitations. QPE requires deep quantum circuits with numerous

controlled-unitary operations, leading to high gate depth that exceeds the coherence times of

current quantum hardware. Additionally, the accumulation of gate errors and the lack of fully

error-corrected qubits further degrade its accuracy. The high number of ancilla qubits required for

precise phase estimation also surpasses the capabilities of present-day quantum processors.32

1.3.1.2 Variational Quantum Eigensolver (VQE)

The Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical algorithm designed

specifically for near-term quantum devices33,34. Unlike QPE, which requires deep circuits, VQE

leverages a variational principle that allows for approximate solutions to the ground-state energy

using shorter quantum circuits. The algorithm follows these steps:

1. Ansatz Preparation: A parameterized quantum circuit (ansatz) is chosen to represent the

wavefunction. Common ansätze include hardware-e"cient circuits and chemically motivated

ansätze like the unitary coupled-cluster (UCC) approach35.

2. Energy Expectation Evaluation: The quantum computer prepares the trial wavefunction and

measures the expectation value of the Hamiltonian.

3. Classical Optimization: A classical optimizer (e.g., gradient-based or gradient-free methods)

adjusts the ansatz parameters to minimize the energy expectation value iteratively.
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VQE has several advantages for NISQ devices:

• Shallow Circuit Depth: The algorithm requires significantly shallower circuits than QPE,

reducing susceptibility to decoherence and gate errors.

• Hybrid Approach: The reliance on classical optimization helps mitigate some quantum

hardware limitations.

• Flexibility in Ansatz Choice: Di!erent ansätze can be chosen to improve accuracy for specific

chemical systems.

Despite its advantages, VQE faces significant scalability challenges, particularly due to the

hardware limitations of near-term quantum devices. The number of qubits and constraints on

gate fidelity restrict the size of molecular systems that can be accurately simulated. While VQE

has demonstrated success for small molecules, its applicability to larger systems is hindered by

increasing circuit depth, measurement overhead, and noise accumulation34,36. Additionally, the

computational cost grows as more qubits are required to represent complex electronic states, making

large-scale applications infeasible on current quantum hardware37.

1.3.1.3 Sample-Based Quantum Diagonalization (SQD)

Sample-Based Quantum Diagonalization (SQD) is a recently developed hybrid quantum-

classical method designed to e"ciently compute the electronic structure of molecules38. Unlike

conventional quantum algorithms, which rely on direct Hamiltonian evolution, SQD exploits quan-

tum sampling techniques to generate electronic configurations and reconstruct the wavefunction

using classical diagonalization methods. The SQD algorithm consists of the following key steps:

1. Quantum State Preparation: A quantum circuit is used to prepare an approximate molecular

wavefunction, ω, encoding electronic configurations relevant to the molecule.

2. Quantum Sampling: The wavefunction is sampled multiple times to generate bit strings

corresponding to electronic configurations.
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3. Configuration Recovery: The sampled configurations are processed to recover an approximate

eigenstate representation, grouping configurations into batches for further refinement.

4. Self-Consistent Iteration: The sampled states undergo classical diagonalization using selected

configuration interaction (SCI) methods, iteratively improving until convergence.

Beyond these core algorithms, emerging techniques such as Quantum Embedding Methods

provide new avenues for tackling large-scale electronic structure problems. One of the most

promising approaches is Density Matrix Embedding Theory (DMET), which partitions a large

molecular system into smaller subsystems that can be solved using quantum methods39. This

hybrid approach allows for scalable quantum simulations by embedding quantum computations

within a classical framework, significantly expanding the range of solvable problems.

As quantum hardware continues to advance, these quantum algorithms will become increasingly

viable for large-scale electronic structure calculations. While current limitations such as noise, error

rates, and circuit depth remain challenges, ongoing research in quantum error correction, improved

ansatz design, and hybrid quantum-classical algorithms will drive further progress in quantum

chemistry applications.

1.3.2 Challenges and Current Limitations

Although quantum computing holds great promise for revolutionizing fields such as quantum

chemistry and materials science, it is still in its early developmental stages. As such, several

significant challenges remain that hinder the full realization of its potential for electronic structure

calculations and other complex simulations.

• Noise and Hardware Limitations: Current quantum processors, often referred to as Noisy

Intermediate-Scale Quantum (NISQ) devices, are susceptible to a variety of errors that stem

from both environmental noise and intrinsic imperfections in the hardware40. These errors

manifest as qubit decoherence, gate inaccuracies, and crosstalk between qubits, all of which

limit the depth and accuracy of calculations that can be performed. As a result, the number

of quantum operations that can be executed before error accumulation becomes significant
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is constrained, limiting the complexity of practical calculations on these devices. E!orts

such as error mitigation strategies41,42 and quantum error correction43 are being developed

to overcome these issues.

• Scaling Challenges: Many of the quantum algorithms used in electronic structure calcula-

tions, such as those based on quantum diagonalization or quantum phase estimation, require

large numbers of qubits to encode the quantum state of a system29,30. However, the num-

ber of high-quality qubits available in current quantum processors remains relatively small.

Furthermore, as the number of qubits increases, maintaining high fidelity and reducing noise

become even more challenging44. Achieving the required qubit count with the necessary

quality to simulate large molecular systems remains a major hurdle for quantum computing

to be broadly applicable to real-world chemistry problems.

• Quantum-Classical Integration: Many practical quantum chemistry methods, including the

hybrid approach combining Density Matrix Embedding Theory (DMET) with Sample-Based

Quantum Diagonalization (SQD) explored in this work, continue to rely on quantum-classical

workflows34,45. These methods harness the advantages of both computing paradigms: quan-

tum circuits prepare accurate molecular ground states with a balance between accuracy

and circuit depth, while classical computation processes quantum measurement samples to

extract electronic properties. The classical post-processing step, rooted in selected configu-

ration interaction, performs diagonalization within subspaces defined by computational basis

states, enhancing accuracy and mitigating quantum noise. However, the seamless integration

of quantum and classical resources remains a significant challenge, necessitating e"cient

synchronization, optimized data exchange, and minimal communication overhead33,35.

These challenges underscore the current limitations in the field and highlight the need for

continued advances in quantum hardware, error correction techniques, and algorithmic innovation.

While significant progress is being made, it is clear that overcoming these obstacles will be
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essential for quantum computing to realize its full potential in electronic structure simulations and

other domains.
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CHAPTER 2

GEOMETRY OPTIMIZATION: A COMPARISON OF DIFFERENT OPEN-SOURCE
GEOMETRY OPTIMIZERS

This chapter is reprinted with permissions from J. Chem. Theory Comput. 2023, 19, 21, 7533-7541

Based on a series of energy minimizations with starting structures obtained from the Baker

test set of 30 organic molecules, a comparison is made between various open-source geometry

optimization codes that are interfaced with the open-source QUantum Interaction Computational

Kernel (QUICK) program for gradient and energy calculations. The findings demonstrate how

the choice of the coordinate system influences the optimization process to reach an equilibrium

structure. With fewer steps, internal coordinates outperform Cartesian coordinates while the choice

of the initial Hessian and Hessian update method in quasi-Newton approaches made by di!erent

optimization algorithms also contributes to the rate of convergence. Furthermore, an available

open-source machine learning method based on Gaussian Process Regression (GPR) was evaluated

for energy minimizations over surrogate potential energy surfaces with both Cartesian and internal

coordinates, with internal coordinates outperforming Cartesian. Overall, geomeTRIC and DL-

FIND with their default optimization method as well as with GPR-based model using Hartree–Fock

theory with the 6-31G** basis set, needed a comparable number of geometry optimization steps to

the approach of Baker using a unit matrix as the initial Hessian to reach the optimized geometry.

On the other hand, the Berny and Sella o!erings in ASE outperformed the other algorithms. Based

on this we recommend using the file-based approaches, ASE/Berny and ASE/Sella, for large-scale

optimization e!orts, while if using a single executable is preferable, we now distribute QUICK

integrated with DL-FIND.

2.1 Introduction

The importance of intermolecular interactions in atomistic simulations of materials, chemical

reactions, and biological processes is well known. Optimizing the molecular geometry to find the

stationary points on the potential energy surface, followed by calculation of molecular properties
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and characterization of the interactions at a certain geometry, is a core technique used in theoretical

chemistry to analyze molecular structure and intermolecular interactions1–3. By taking into account

the energy, 𝑀 (𝑔0), at a point 𝑔0 on a potential energy surface, we can use the Taylor series to form

a quadratic approximation to describe the energy at a nearby point, 𝑔 = 𝑔0 + ↔𝑔:

𝑀 (𝑔) = 𝑀 (𝑔0) + 𝑕𝑐0↔𝑔 + 1/2↔𝑔𝑐𝐿0↔𝑔 (2.1)

where 𝑕0 is the gradient vector (𝑖𝑀/𝑖𝑔) at 𝑔0, 𝐿0 is the Hessian matrix (𝑖2𝑀/𝑖𝑔2) at 𝑔0, and

↔𝑔 = 𝑔→𝑔0. Most nonlinear optimization algorithms are based on this local quadratic approximation

of the potential energy surface.4,5 By di!erentiating with respect to the coordinates, one could form

an approximation for the gradient, which is given by:

𝑕(𝑔) = 𝑕0 + 𝐿0↔𝑔 (2.2)

On the potential energy surface, the gradient, 𝑕(𝑔), vanishes at a stationary point, 𝑕(𝑔) ↗ ↑𝑀 =

0. Hence, in the local quadratic approximation of the potential energy surface, the displacement to

the minimum at the stationary point is given by:

↔𝑔 = →𝐿→1
0 𝑕0 (2.3)

This is known as the Newton-Raphson step. It is an integral part of almost all quantum chemistry

geometry optimization approaches. The gradient here can be obtained by di!erentiation of the

energy with respect to the coordinates, and the Hessian can be obtained using numerical or

analytical methods of the second derivative of the energy with respect to the coordinates.

Atomistic studies are of interest for a variety of stationary points, such as minima, transition

states, and conical intersections6–10. The most e!ective and extensively used techniques for iden-

tifying these stationary points are Newton and quasi-Newton techniques, which typically employ

a sequential optimization cycle, in which a guess optimal geometry is steadily enhanced by em-

ploying the gradient and either an exact or an approximate Hessian. For minimization, the Hessian

must contain exclusively positive eigenvalues (i.e., positive definite). If one or more eigenvalues
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are negative, the step will be in the direction of a first-order or higher-order saddle point, which can

be useful when locating a transition state.

The choice of the coordinate system, the optimization algorithm, the quality of the Hessian,

and the algorithm used to determine the step, ↔𝑔, are four factors that influence the e"ciency of a

geometry optimization. Strong coupling between coordinates, narrow gullies, and curved valleys

provide significant hurdles to even the best optimization algorithms, making the choice of a suitable

coordinate system essential to the e"ciency of any optimization. Since the Cartesian coordinate

system is the easiest approach to define the molecular geometry, it is usually used for the evaluation

of the energy and gradient. However, the potential energy surface is strongly nonlinear and

coordinates are coupled, so only small steps can be taken downhill. Cartesian coordinates perform

significantly worse for flexible, acyclic systems than they do for constrained, cyclic molecules. In

Cartesian coordinates, it is also much harder to impose constraints11,12. Internal coordinates on

the other hand are better at reflecting the overall atomic motions. Internal coordinates can describe

displacements along curved pathways and decouple various types of molecular displacements. As

a result, the optimization algorithm can proceed with greater e"ciency13,14.

It is possible to calculate the entire Hessian matrix analytically15 for each step at the current

point on the potential energy surface. Only one step is needed to get to the minimum of the

energy if the local potential energy surface is quadratic. Since actual potential energy surfaces

are rarely quadratic, one must take several Newton-Raphson steps to get at a stationary point. It

is thus often impractical or undesirable to directly calculate the full Hessian due to the amount of

computational work this typically involves. Instead one can resort to quasi-Newton techniques,

whose foundation is a computationally cheap approximation of the Hessian. At each stage of a

quasi-Newton optimization, the Hessian is improved using the di!erence between the calculated

gradient change and the change anticipated by the approximate Hessian.

𝐿new = 𝐿old + ↔𝐿 (2.4)

This updated Hessian can be used to determine the step, ↔𝑔. The Hessian can be updated in a

number of ways, and several algorithmic schemes can be used to determine the step and the new
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coordinate system along the minimum to get at the optimized geometry16–19.

Additionally, the initial estimate of the Hessian or second derivative matrix does have an e!ect

on the performance of geometry optimization with quasi-Newton methods; the more precise the

initial estimate, the faster the convergence2,20,21. One can use an exact Hessian, which is expensive.

However, often the estimate does not have to be extremely precise since the Hessian matrix gradually

improves in quality as it is updated using gradient information during the search for the minimum.

The unit matrix is the most basic and popular approximation, in which case the first optimization

step corresponds to a gradient descent. The nature of the atoms, the bonds connecting them,

and other pertinent structural information about the molecule are all ignored in this case despite

the fact that this is an unbiased choice. All connection between coordinates is initially ignored,

and flexible coordinates (such as torsion and ring deformation) are not separated from sti! modes

(such as bond stretching). At the price of additional optimization steps, this data must be gathered

during the optimization process. For cyclic compounds, whose coordinates are by nature strongly

coupled, this is a poor approximation. Simple schemes to approximate the initial Hessian based

on parameterized values for bond, angle and dihedral force constants have thus been proposed to

reduce the number of required geometry optimization steps2,22,23.

Recently, the integration of machine learning techniques into traditional methods for calculating

potential energy surfaces (PES) has led to even more e"cient optimization approaches. In particular,

machine learning can accelerate the location of minima24,25 and transition states26,27. One of the

most popular approaches in this field is to use surrogate potential energy surfaces. Surrogates are

constructed by fitting a model, such as a Gaussian process regression (GPR) model, to the data points

that have already been evaluated. This model is then used to suggest new geometries for evaluation,

without the need for expensive ab initio calculations. As more data points become available, the

surrogate PES is continuously updated and used to identify the location of the next guess minimum.

This guess point is then subject to single-point energy and gradient evaluations on the true PES

and then added to the dataset. The accuracy of the surrogate PES predicted by a GPR model

heavily relies on the appropriate selection of a kernel function. The kernel function determines
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the covariance between the input space points and directly impacts the accuracy of the predicted

PES. Compared to classical second-order methods, such as the local quadratic approximation

in the quasi-Newton method discussed above, surrogate-based approaches o!er a more accurate

representation of the PES, particularly in regions where the true PES is highly nonlinear or di"cult

to sample. The careful selection of the appropriate kernel function and coordinate system is

essential in constructing an accurate GPR model that can precisely predict the PES and ultimately

reduce the number of required geometry optimization steps.28,29 Further discussion on this topic

will be presented later in the paper.

These algorithmic schemes can be found in most electronic structure software packages. How-

ever, many of these packages are either not open source or their optimized geometry optimization

algorithms are not generally available for inclusion into other open-source projects. Here, we

discuss the performance of various open-source geometry optimization codes including both con-

ventional methods and a GPR-based machine learning method for energy minimization, coupled

with the free and open-source QUantum Interaction Computational Kernel (QUICK) program30 for

energy and gradient calculations. Several of the new GPR models are not available in open-source

software, restricting our exploration to the method that is available in the development version of

DL-FIND. While this model is e!ective, other more e"cient models have been reported in the

literature which, however, are not yet publicly available neither in free and open-source nor com-

mercial software. We compare these results to the legacy optimizer in QUICK, basing results on

the number of iterations it takes to converge geometries of an established test set of representative

molecules.

2.2 Overview of Open-Source Geometry Optimization Software

2.2.1 QUICK–Legacy Optimizer

The QUantum Interaction Computational Kernel (QUICK) program30 is an open-source, GPU

enabled31,32, ab initio and density functional theory program33, which has been developed for

QM and QM/MM calculations with Gaussian basis functions34,35. It contains a limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L–BFGS) optimization algorithm which uses a Cartesian co-
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ordinate system as input. L–BFGS is an optimization technique from the family of quasi-Newton

methods that limits its memory usage while approximating the Broyden-Fletcher-Goldfarb-Shanno

algorithm (BFGS)36,37.

In general, the BFGS update of the inverse Hessian is3:

↔𝐿→1 =
↔𝑔↔𝑔𝑐

↔𝑔𝑐↔𝑕
→
𝐿→1

o𝑗𝑖↔𝑕↔𝑕
𝑐𝐿→1

o𝑗𝑖

↔𝑕𝑐𝐿→1
o𝑗𝑖↔𝑕

(2.5)

where the updated inverse Hessian is used to form the Newton step, ↔𝑔 = 𝐿→1
↔𝑕. The L-BFGS

method avoids the complete Hessian or its inverse from being stored because doing so would need

𝑘 (𝑑2
) memory for 𝑑 variables. Since L-BFGS starts with a diagonal inverse Hessian and only

stores the 𝑔 and 𝑕 vectors from a few prior iterations, the storage requirement is only 𝑘 (𝑑). The

inverse Hessian is expressed as a diagonal Hessian plus the updates using the saved vectors. The

new coordinates, 𝑔n𝑏𝑙 = 𝑔o𝑗𝑖→𝐿→1𝑕o𝑗𝑖 , may be expressed in terms of dot products between vectors,

therefore the product of the updated inverse Hessian and the gradient only requires 𝑘 (𝑑) work.

2.2.2 DL–FIND

DL-FIND is an open-source geometry optimization library that provides methods for local

minimization, conical intersection optimization, population-based (global) optimization, reaction

path optimization, and transition state search making it a versatile choice for molecular codes.38

Cartesian coordinates, redundant internal coordinates, and hybrid delocalized internal coor-

dinates (HDLC) are available options for DL–FIND geometry optimizations. To compare the

optimizers with the GPR model that uses the Matérn kernel39 to build the surrogate potential

energy surface, the development version of DL-FIND was utilized alongside the stable version

utilizing the L–BFGS method. The stable version of DL–FIND with the L–BFGS method has been

the default geometry optimizer in QUICK since version QUICK–22.03.30 The common interface

between both versions and the QUICK optimizer library is as shown in Figure 2.1. The main

DL–FIND geometry optimization driver routine is called from QUICK and does not exit until the

optimization is finished. During the optimization, DL–FIND calls another interface routine when it

needs to exchange information with QUICK during an optimization step. The input parameters are
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obtained from QUICK using the initial interface call. These are the initial coordinates and the user-

specified DL–FIND settings that control the optimization algorithm. The iterative optimization

process then starts, and a new call is placed each time DL–FIND requires an energy or gradient.

DL–FIND provides a set of Cartesian coordinates to QUICK and receives back the required infor-

mation. During each optimization step, relevant information on the progress of the optimization

is printed, and at the end of the geometry optimization, the routine reports the optimized set of

Cartesian coordinates back to QUICK. To employ the GPR model in geometry optimization, a

new surrogate PES is constructed incrementally using a specified coordinate system transformed

from Cartesian coordinates after each ab initio calculation. The conventional L-BFGS algorithm

is used to iteratively locate the minimum on this surrogate PES (micro-iterations), and then another

ab initio calculation is performed in the Cartesian coordinates obtained from back-transformation.

This entire cycle (macro-iterations) is repeated until the ab initio gradient is below the preset

convergence threshold.40

2.2.3 GeomeTRIC

GeomeTRIC is an open-source geometry optimization program that takes input in form of

Cartesian coordinates and executes external electronic structure codes through wrapper functions

with file-based data-exchange to obtain energy and gradients. Translation-rotation-internal coor-

dinates (TRIC), delocalized internal coordinates (DLC), hybrid delocalized internal coordinates

(HDLC), and redundant internal coordinates are all implemented by GeomeTRIC41. The code

supports optimizations with constraints and transition state searches.

Translation-rotation-internal coordinates (TRIC) are created by including translations and rota-

tions in the primitive internal coordinates set coupled with existing delocalization techniques. The

initial Hessian in the space of primitive internal coordinates is a diagonal matrix with a few minor

adjustments adopted from Schlegel’s proposed values42. The translations and rotations, and atomic

Cartesian coordinates are given force constants of 0.05, bonds and angles involving non-covalent

distances are given force constants of 0.1, and dihedral angles have their force constants set to

0.023.
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GeomeTRIC uses a wrapper around QUICK, which is unlike DL–FIND as shown in Figure

2.1. Cartesian coordinates are used as input by GeomeTRIC, which transforms them to internal

coordinates for optimization. After each cycle of optimization, it updates its own Hessian estimate

using the BFGS algorithm. In order to generate an input file for QUICK to obtain the energy and

Cartesian gradient, internal coordinates are converted to Cartesian coordinates at the end of each

cycle. The Cartesian gradient from QUICK is used to calculate the internal coordinates gradient

followed by Hessian update to estimate the search direction and step size.

2.2.4 Atomic Simulation Environment (ASE)

The Python-based Atomic Simulation Environment (ASE) was designed with the goal of

setting up, directing, and analyzing atomistic simulations. Numerous features of ASE include

molecular dynamics with various controls, including thermostats, structure improvement utilizing

atomic forces, saddle point searches on potential energy surfaces, genetic algorithms for structure

or chemical composition optimization, basin hopping or minima hopping algorithms for global

structure optimization, analysis of phonon modes for solids or molecular vibrational modes43.

Here, we focus exclusively on the geometry optimization methods provided by ASE, in partic-

ular the ASE internal L–BFGS optimizer, and the Sella and Berny algorithms. We will emphasize

the Sella and Berny methods more as the L–BFGS approach has previously been summarized. The

Berny geometry optimization algorithm is based on an earlier program written by H. B. Schlegel.44

Sella is an open-source tool used for automating the process of finding saddle points and minimiz-

ing molecular structures.45 It works by converting Cartesian coordinates into internal coordinates,

automatically replacing pathological linear angles with improper dihedrals, and introducing neces-

sary modifications like dummy atoms and constraints to ensure that the dummy atom does not drift

unnecessarily over the course of optimization.46 The algorithm utilizes Hessian diagonalization

based on internal coordinates to determine the direction of minima, leading to a partially-exact

Hessian matrix. This matrix guides the optimization process using a state-of-the-art constrained

partitioned rational function approach, e!ectively steering the system towards local energy minima.

The Berny method utilizes a valence force field to construct an estimate of a Hessian at the start
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of the optimization. This approximation is then updated using the energies and first derivatives

computed along the optimization pathway. The update is typically carried out using an iterative

BFGS algorithm for minimization and a modified version of the original Schlegel update process for

internal coordinate optimizations. It is ideally suited for optimizing covalently bound compounds

since it is based on a redundant set of internal coordinates.

ASE uses the L–BFGS method as its internal optimization method of choice, while wrappers

are used for the Berny optimizer from the PyBerny implementation and for the Sella optimizer. The

actual geometry optimization method as well as the delocalized coordinates, screening functions,

etc. are generated either directly or through PyBerny or Sella by the ASE program, which functions

as a wrapper around the QUICK program with a file-based interface in the same manner as

GeomeTRIC. The ASE program generates all of the QUICK input files and then runs QUICK to

obtain the energy and gradient. The working scheme of ASE with QUICK is depicted in Figure

2.1.

2.3 Methodology

We developed calling interfaces for GeomeTRIC and ASE to execute QUICK by passing Carte-

sian coordinates, writing a QUICK input file, and retrieving energies and Cartesian gradients from

the QUICK output file. While ASE uses the Cartesian coordinate system for the L–BFGS method

with the unit matrix as the intial Hessian and the internal coordinate system for the Berny algorithm

where the Hessian is estimated using Schlegel’s proposed values42 and the internal coordinate

system for the Sella algorithm utilises the scheme of Fischer and Almlof47 to initializes the Hessian

matrix; GeomeTRIC uses Translation-rotation-internal coordinates (TRIC) along with its own Hes-

sian estimate with a few minor adjustments of Schlegel’s proposed values for geometry optimization

using the BFGS algorithm. DL–FIND has been implemented internally within QUICK and makes

use of a non-redundant hybrid-delocalized internal coordinate system and a unit matrix as the

initial Hessian for optimization with the L–BFGS method. The development version of DL–FIND

was used for GPR-based geometry optimizations in either Cartesian or hybrid-delocalized internal

coordinate space. The built-in QUICK–legacy minimizer employs a Cartesian coordinate system

26



Figure 2.1 QUICK interface with the di!erent open-source optimizers. The optimization steps of
various optimizers are indicated by green color boxes where the initial Cartesian coordinates and
gradient are transformed to an internal coordinate system (ICS) and internal gradients respectively
for further optimization. The red box denotes the gradient computation performed by QUICK for
various optimizers. The final coordinates obtained, and the initial coordinates used for calculation
are represented by orange boxes. The yellow box denotes the PyBerny or Sella wrapper used by
ASE for optimization. QUICK utilizes the DL–FIND library for optimization by passing gradient
as required at each iteration. geomeTRIC and ASE carry out optimization independently utilizing
QUICK for gradient calculation at each iteration.

with a unit matrix as the initial Hessian for L–BFGS based optimizations. The tests performed with

these optimizers give us a clear understanding of the di!erences in performance between various

methods that use the Cartesian coordinate system or any other internal coordinate system along

with various Hessian estimations.

All Hartree–Fock (HF) calculations were performed with QUICK using the restricted Hartree–

Fock method with the 6-31G** basis set (HF/6-31G**) for the energy and gradient. Results

obtained with DL-FIND using di!erent basis sets (HF/STO-3G, HF/6-31G, HF-6-31G*, HF/def2-

SVP) as well as a generalized gradient approximation (GGA) and hybrid-GGA density functional

method (BP86/def2-SVP, B3LYP/def2-SVP) are summarized in the Supporting Information. The

convergence criteria for the geometry optimizations were as follows: a maximum gradient compo-

nent of less than 0.00045 au, a change in energy from the previous step of less than 10→6 Hartree,

and a maximum predicted displacement of less than 0.0018 Å per coordinate. These geometry con-
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Figure 2.2 Initial geometries for the molecules in the Baker set. Oxygen is depicted in red, nitrogen
in blue, carbon in gray, sulfur in yellow, fluorine in light blue, silicon in dark cyan, and hydrogen
in white.

vergence criteria have been commonly utilized by the majority of past research that has examined

the benchmark being studied, thus enabling direct comparisons of results. In order to guarantee

accurate gradients, we used the TIGHTINT keyword in QUICK, which requests tight numerical

cuto!s and SCF convergence. With these settings, the root-mean-square (RMS) change in the

density matrix is less than 10→7 au and the maximum change in the density matrix is less than

10→5 au.

2.4 Results and discussion

In order to compare di!erent geometry optimizers, a test suite of 30 molecules as depicted

in Figure 2.2, originally suggested by Baker20, was used as the initial geometry inputs for the
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calculations. The test suite contains a variety of compounds, including fused bi- and tri-cyclics

like ca!eine and difluropyrazine as well as smaller systems like water and ammonia. Input files

containing initial geometries for optimization are available in the Supporting Information. Baker

used the Eigenvector Following (EF) algorithm48 at the restricted Hartree–Fock (RHF) level with the

STO-3G basis set (HF/STO-3G) for optimizations in both Cartesian and internal coordinates with

a convergence criterion for the gradient of 3.0↘ 10→4 au. Table 1 lists the number of steps required

to reach the minima for each of the molecules for a number of di!erent geometry optimization

algorithms in comparison to Baker’s results. The sum of optimization steps for all molecules in

the test suite and the average number of optimization steps per molecule is also reported. Given

the vagaries of examining the data on a molecule-to-molecule basis we feel these averages give the

best overall assessment of the performance of the geometry optimization algorithms investigated

in this work.

With quasi-Newton techniques Baker reported requiring a total of 765 geometry cycles (on

average 26 steps per molecule) with a Cartesian coordinate system while requiring only 371

geometry cycles (on average 12 steps per molecule) with an internal coordinate system. In both

cases Baker employed the unit matrix as the initial Hessian. Using an initial Hessian from a

molecular mechanics model, Baker managed to further reduce the number of steps to 240 (on

average 8 steps per molecule)20. This data is not shown in Table 1 but the numbers should be kept

in mind for the following discussion.

The total number of geometry cycles required to optimize the same set of molecules using the

optimizers tested here ranges from 728 for DL–FIND/GPR-Cartesian, 683 for QUICK–Legacy,

613 for ASE/L–BFGS, 356 for DL–FIND/ L–BFGS, 326 for DL–FIND/GPR-Internal, 287 for geo-

meTRIC, 190 for ASE/Berny, to as low as 187 for ASE/Sella. Geometry optimization in Cartesian

coordinates without sophisticated initial Hessian guess (ASE/L–BFGS, DL–FIND/GPR-Cartesian

and QUICK–Legacy) thereby required between 20 and 24 steps per molecule on average. Opti-

mization in internal coordinate space is much more e"cient, requiring only 11 to 12 optimization

steps (DL-FIND/LBFGS, DL-FIND/GPR-Internal). Using both internal coordinates and a better
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initial Hessian reduces this further to 6 to 10 optimization steps (ASE/Berny, ASE/Sella, GeomeT-

RIC). Here ASE/Berny and ASE/Sella use redundant internal coordinates, while geomeTRIC uses

translation-rotational-internal coordinates, and DL–FIND uses delocalized internal coordinates.

Except for ASE/Berny and geomeTRIC, which use a modified version of the original Schlegel

update process, as well as ASE/Sella, all methods initialize the Hessian to be the unit matrix.

These results reconfirm the two well-known observations that i) internal coordinates outperform

the Cartesian coordinate system for molecular geometry optimizations, and ii) good approximations

to the initial Hessian are also important to reduce the number of required steps.

We finally point out that while Baker used the HF/STO-3G method and we are using HF/6-

31G**, the observed overall trends are comparable (see Table 1). To provide a more comprehensive

understanding of the test suite, we used the DL-FIND/L-BFGS implementation to compare the

e!ect of di!erent levels of theory and basis sets in addition to HF/6-31G**. The results of this

comparison are summarized in Table S1 of the Supporting Information. While there are di!erences

for individual molecules, the total number of steps increases only slightly with increasing flexibility

in the basis set, from 331 for HF/STO-3G to 356 as mentioned above for HF/6-31G**. The

total number of steps remains very similar between HF and representative generalized gradient

approximation (GGA) and hybrid-GGA density functional methods. This comparison allows for a

clearer and more complete picture of the observed overall trends, which are consistent with those

presented in Table 1.

As mentioned above, the number of geometry cycles required to converge to the optimized

geometry can be reduced with a concomitant increase in computational time depending on the

Hessian used. Bakken and Helgaker, for instance, already addressed this problem, where it is

noted that utilizing precise Hessians at each step reduces the number of required iterations while

compromising on total computation time. Only 125 and 111 steps are required for the Baker test

set with HF/STO-3G using Cartesian and redundant internal coordinates, respectively, when using

exact Hessians at each step.21

Baker, in Ref. 20, used natural internal coordinates and the initial Hessian provided by the CVFF
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force field in combination with an eigenvector following (EF) approach to reduce the number of

iterations required for HF/STO-3G geometry optimization to 240 steps. Bakken and Helgaker

managed to optimize the Baker test set in 185 steps using a combination of extra-redundant internal

coordinates, a good approximate initial Hessian with BFGS updates, and optimized step size21. A

slightly larger number of 198 steps was reported when using the more flexible 6-31G* basis set.

Swart and Bickelhaupt managed to further reduce the number of geometry optimization steps using

the delocalized coordinates setup of Baker, a combination of quasi-Newton steps with GDIIS49,

and a modification of Lindh’s force constant model to generate initial Hessians50, resulting in an

impressive 173 steps for the Baker test set using the PW91 density functional and a large triple

zeta Slater type basis set with polarization functions (TZP).2 It therefore stands to reason that

replacing the unit matrix with a better initial Hessian approximation should also reduce the number

of geometry optimization steps required by the L-BFGS optimization employed by DL-FIND.

The use of machine learning models such as GPR with e"cient kernel functions24 in conjunction

with di!erent internal coordinate systems can also reduce the number of required optimization

cycles. For instance, Meyer and Hauser achieved 225 steps for the Baker test set by using reduced

redundancy Z-matrix-derived internal coordinates with HF/STO-3G.28 Raggi et al. introduced a

restricted-variance optimization (RVO) scheme that utilizes a Hessian model function23 to generate

a non-redundant set of internal coordinates for molecular geometries, making the surrogate model

invariant to translations and rotations. With the HF/6-31G basis set, they achieved 225 steps

using RVO, while with DFT(B3LYP)/def2-SVP, they obtained 241 steps.25 Teng, Huang, and Bao

demonstrated that combining the gradient-enhanced universal kriging (GEUK) algorithm with an

adaptive ab initio prior mean function, which incorporates prior physical knowledge into surrogate-

based optimization, and incomplete internal/incomplete Cartesian methods can reduce the number

of steps to 165 as shown for the BP86/def2-SVP level of theory.29

Herein we explored several di!erent open-source quasi-Newton approaches (L-BFGS and

some modified BFGS algorithms) and available machine learning (GPR) models, utilizing various

internal coordinate systems with either the unit matrix as the starting Hessian (as in the L-BFGS
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approaches) or a more sophisticated first estimate (geomeTRIC, ASE/Berny, ASE/Sella). In all

cases, not unexpectedly, internal coordinates outperformed methods using Cartesian coordinates,

but the numerical details of the implementation of the internal coordinate methods make a significant

di!erence (e.g., ASE/Berny versus geomeTRIC). Furthermore, the use of more sophisticated initial

Hessians and geometry update algorithms resulted in a significant reduction of required steps.

Importantly, the open-source implementations that are currently available require approximately

the same number of steps as the best traditional or machine-learning based approaches that have

been reported in the literature o!ering the community state-of-the-art optimizers in an open-source

o!ering.

2.5 Conclusion

We have presented a comparison of di!erent open-source geometry optimization codes available

to the community. The performance of the geometry optimization algorithms implemented in these

codes has been evaluated for a test set of 30 molecules that was originally proposed by Baker.

We find results in line with expectations for the various optimization algorithms. While there

are di!erences for individual molecules, when Cartesian coordinates are used, the optimization

algorithms take at least 20 and in the worst case 24 steps on average per molecule of this test set.

For internal coordinate optimization algorithms, the number of steps is greatly reduced requiring

about 12 steps per molecule when using a unit matrix as initial Hessian and as little as 6 steps

per molecule when using more sophisticated initial Hessians and geometry update algorithms.

Overall, the best performing open-source software in terms of the number of iterations was Sella

and the Berny algorithm as implemented in PyBerny, both o!ered through ASE interfaces, closely

followed by the BFGS method as implemented in geomeTRIC. Additionally, the release version of

DL-FIND, utilizing a conventional L-BFGS algorithm along with delocalized internal coordinates,

also demonstrated commendable performance.

In terms of computational e"ciency, when running QUICK on a single NVIDIA V100 GPU

using the HF/6-31G** level of theory, our assessment revealed notable di!erences in computation

times among the various open-source software packages. Specifically, DL-FIND was the most
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e"cient, averaging 34 seconds per molecule. In contrast, Sella took an average of 81 seconds, and

PyBerny took 198 seconds per molecule. It is important to note that the di!erences in computation

times were observed to vary with the size of the molecule, with a more pronounced gap for smaller

molecules that gradually reduces for larger molecules. Hence, molecules larger than those in the

Baker set will likely show less pronounced di!erences in computation time or tip the scale in favor of

Sella as the QM portion of the calculation will dominate over time spent by the geometry optimizer.

The results of this comparison are summarized in Table 2.A.2 of the Supporting Information. DL-

FIND’s advantage stems from the fact that it is written in Fortran which generates faster code than

Python and that it is built into QUICK as a library, eliminating file-based data exchange and repeated

program startup time compared to the ASE libraries, which require wrappers for data transfer. Sella

and PyBerny also employ more sophisticated Hessian update strategies, which further increases

the computation time.

Given this analysis, we are using the release version of DL–FIND as the default optimizer in

QUICK for simplified distribution within a single binary executable and usage without requiring

Python wrappers. This integration enhances the inherent optimization framework and introduces

supplementary features like conical intersection optimization, reaction path optimization, and

transition state search. Additionally, it is worth noting that the development version of DL-FIND

contains GPR optimization for both local minima and transition state optimization. This upgrade

will be incorporated into QUICK once it becomes the release version. While DL-FIND combined

with QUICK o!ers substantial capabilities, we also do recommend utilizing the Berny algorithm

as implemented in PyBerny or the Sella geometry optimization software for large-scale production

optimization e!orts due to their performance (e.g., in the creation of large synthetic data sets for

ML/AI e!orts). These optimizers are accessible for usage with QUICK through the ASE interface

as mentioned in the Supporting Information. The powerful combination of QUICK with the latest

version of DL-FIND, ASE/Berny or ASE/Sella provides a reliable and robust open-source solution

for e"ciently optimizing molecular geometry based on ab initio and density functional theory

methods, combined with the computational capabilities of graphics processing units (GPUs).

34



BIBLIOGRAPHY

[1] H. Bernhard Schlegel. Exploring potential energy surfaces for chemical reactions: An
overview of some practical methods. Journal of Computational Chemistry, 24(12):1514–
1527, 2003.

[2] Marcel Swart and F. Matthias Bickelhaupt. Optimization of strong and weak coordinates.
International Journal of Quantum Chemistry, 106(12):2536–2544, 2006.

[3] H. Bernhard Schlegel. Geometry optimization. WIREs Computational Molecular Science,
1(5):790–809, 2011.

[4] Robert E. Kass, John E. Dennis, and Robert B. Schnabel. Numerical methods for uncon-
strained optimization and nonlinear equations. Journal of the American Statistical Associa-
tion, 80:247–248, 1985.

[5] L. E. Scales. Introduction to Non-Linear Optimization. Springer-Verlag, 1985.

[6] Satoshi Maeda, Koichi Ohno, and Keiji Morokuma. Automated global mapping of minimal
energy points on seams of crossing by the anharmonic downward distortion following method:
A case study of h2co. Journal of Physical Chemistry A, 113:1704–1710, 2009.

[7] Søren Madsen and Frank Jensen. Locating seam minima for macromolecular systems. Theo-
retical Chemistry Accounts, 123:477–485, 2009.

[8] Bernhard Dick. Gradient projection method for constraint optimization and relaxed energy
paths on conical intersection spaces and potential energy surfaces. Journal of Chemical
Theory and Computation, 5:116–125, 2009.

[9] Weinan E and Eric Vanden-Eijnden. Transition-path theory and path-finding algorithms for
the study of rare events. Annual Review of Physical Chemistry, 61:391–420, 2010.

[10] H. Bernhard Schlegel. Optimization of equilibrium geometries and transition structures.
Journal of Computational Chemistry, 3:214–218, 1982.

[11] Jon Baker. Geometry optimization in cartesian coordinates: Constrained optimization. Jour-
nal of Computational Chemistry, 13:240–253, 1992.

[12] John D. Head. Partial optimization of large molecules and clusters. Journal of Computational
Chemistry, 11:67–75, 1990.

[13] P. Pulay and G. Fogarasi. Geometry optimization in redundant internal coordinates. The
Journal of Chemical Physics, 96:2856–2860, 1992.

[14] Jon Baker, Don Kinghorn, and Peter Pulay. Geometry optimization in delocalized internal

35



coordinates: An e"cient quadratically scaling algorithm for large molecules. Journal of
Chemical Physics, 110:4986–4991, 1999.

[15] J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley. Derivative studies in hartree-fock
and møller-plesset theories. International Journal of Quantum Chemistry, 16:225–241, 1979.

[16] B. A. Murtagh and R. W. H. Sargent. Computational experience with quadratically convergent
minimisation methods. The Computer Journal, 13(2):185–194, 01 1970.

[17] Donald Goldfarb. A family of variable-metric methods derived by variational means. Math-
ematics of Computation, 24(109):23–26, 1970.

[18] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1.
General Considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 03 1970.

[19] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13(3):317–
322, 01 1970.

[20] Jon Baker. Techniques for geometry optimization: A comparison of cartesian and natural
internal coordinates. Journal of Computational Chemistry, 14(9):1085–1100, 1993.

[21] Vebjørn Bakken and Trygve Helgaker. The e"cient optimization of molecular geometries
using redundant internal coordinates. Journal of Chemical Physics, 117:9160–9174, 2002.

[22] Jon Baker, Alain Kessi, and Bernard Delley. The generation and use of delocalized internal
coordinates in geometry optimization. The Journal of Chemical Physics, 105(1):192–212,
1996.

[23] Roland Lindh, Anders Bernhardsson, Gunnar Karlström, and Per Åke Malmqvist. On the use
of a hessian model function in molecular geometry optimizations. Chemical Physics Letters,
241(4):423–428, 1995.

[24] Alexander Denzel and Johannes Kästner. Gaussian process regression for geometry optimiza-
tion. The Journal of Chemical Physics, 148(9):094114, 2018.

[25] Gerardo Raggi, Ignacio Fdez. Galván, Christian L. Ritterho!, Morgane Vacher, and Roland
Lindh. Restricted-variance molecular geometry optimization based on gradient-enhanced
kriging. Journal of Chemical Theory and Computation, 16(6):3989–4001, 2020.

[26] Alexander Denzel and Johannes Kästner. Gaussian process regression for transition state
search. Journal of Chemical Theory and Computation, 14(11):5777–5786, 2018.

[27] Alexander Denzel, Bernard Haasdonk, and Johannes Kästner. Gaussian process regression
for minimum energy path optimization and transition state search. The Journal of Physical
Chemistry A, 123(44):9600–9611, 2019.

36



[28] Ralf Meyer and Andreas W. Hauser. Geometry optimization using gaussian process regression
in internal coordinate systems. The Journal of Chemical Physics, 152(8):084112, 2020.

[29] Chong Teng, Daniel Huang, and Junwei Lucas Bao. A spur to molecular geometry opti-
mization: Gradient-enhanced universal kriging with on-the-fly adaptive ab initio prior mean
functions in curvilinear coordinates. The Journal of Chemical Physics, 158(2):024112, 2023.

[30] M. Manathunga, A. Shajan, T. J. Giese, V. W. D. Cruzeiro, J. Smith, Y. Miao, X. He, K. Ayers,
E. Brothers, A. W. Götz, and K. M. Merz. Quick-22.03, university of california san diego, ca
and michigan state university, east lansing, mi, 2022.

[31] Yipu Miao and Kenneth M. Merz, Jr. Acceleration of high angular momentum electron
repulsion integrals and integral derivatives on graphics processing units. Journal of Chemical
Theory and Computation, 11(4):1449–1462, 2015.

[32] Madushanka Manathunga, Chi Jin, Vinícius Wilian D. Cruzeiro, Yipu Miao, Dawei Mu,
Kamesh Arumugam, Kristopher Keipert, Hasan Metin Aktulga, Kenneth M. Merz, Jr., and
Andreas W. Götz. Harnessing the power of multi-gpu acceleration into the quantum interaction
computational kernel program. Journal of Chemical Theory and Computation, 17(7):3955–
3966, 2021.

[33] Madushanka Manathunga, Yipu Miao, Dawei Mu, Andreas W. Götz, and Kenneth M. Merz,
Jr. Parallel implementation of density functional theory methods in the quantum interaction
computational kernel program. Journal of Chemical Theory and Computation, 16(7):4315–
4326, 2020.

[34] Vinícius Wilian D. Cruzeiro, Madushanka Manathunga, Kenneth M. Merz, Jr., and Andreas W.
Götz. Open-source multi-gpu-accelerated qm/mm simulations with amber and quick. Journal
of Chemical Information and Modeling, 61(5):2109–2115, 2021.

[35] Madushanka Manathunga, Hasan Metin Aktulga, Andreas W. Götz, and Kenneth M. Merz,
Jr. Quantum mechanics/molecular mechanics simulations on NVIDIA and AMD graphics
processing units. Journal of Chemical Information and Modeling, 63(3):711–717, 2023.

[36] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Com-
putation, 35(151):773–782, 1980.

[37] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale opti-
mization. Mathematical Programming, 45:503–528, 1989.

[38] Johannes Kästner, Joanne M. Carr, Thomas W. Keal, Walter Thiel, Adrian Wander, and Paul
Sherwood. Dl-find: An open-source geometry optimizer for atomistic simulations. Journal
of Physical Chemistry A, 113:11856–11865, 2009.

[39] Bertil Matérn. Spatial variation, volume 36. Springer Science & Business Media, 2013.

37



[40] Daniel Born and Johannes Kästner. Geometry optimization in internal coordinates based on
gaussian process regression: Comparison of two approaches. Journal of Chemical Theory
and Computation, 17(9):5955–5967, 2021.

[41] Lee-Ping Wang and Chenchen Song. Geometry optimization made simple with translation
and rotation coordinates. The Journal of Chemical Physics, 144(21):214108, 2016.

[42] H. Bernhard Schlegel. Estimating the hessian for gradient-type geometry optimizations.
Theoretica Chimica Acta, 66:333–340, 1984.

[43] Ask Hjorth Larsen, Jens JØrgen Mortensen, Jakob Blomqvist, Ivano E. Castelli, Rune Chris-
tensen, Marcin Du#ak, Jesper Friis, Michael N. Groves, BjØrk Hammer, Cory Hargus, Eric D.
Hermes, Paul C. Jennings, Peter Bjerre Jensen, James Kermode, John R. Kitchin, Esben Leon-
hard Kolsbjerg, Joseph Kubal, Kristen Kaasbjerg, Steen Lysgaard, Jón Bergmann Maronsson,
Tristan Maxson, Thomas Olsen, Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob
SchiØtz, Ole Schütt, Mikkel Strange, Kristian S. Thygesen, Tejs Vegge, Lasse Vilhelmsen,
Michael Walter, Zhenhua Zeng, and Karsten W. Jacobsen. The atomic simulation environment
- a python library for working with atoms. Journal of Physics Condensed Matter, 29:273002,
2017.

[44] Adam B. Birkholz and H. Bernhard Schlegel. Exploration of some refinements to geometry
optimization methods. Theoretical Chemistry Accounts, 135(4):84, Mar 2016.

[45] Eric D. Hermes, Khachik Sargsyan, Habib N. Najm, and Judit Zádor. Sella, an open-source
automation-friendly molecular saddle point optimizer. Journal of Chemical Theory and
Computation, 18(11):6974–6988, 2022.

[46] Eric D. Hermes, Khachik Sargsyan, Habib N. Najm, and Judit Zádor. Geometry optimization
speedup through a geodesic approach to internal coordinates. The Journal of Chemical
Physics, 155(9):094105, 09 2021.

[47] Thomas H. Fischer and Jan Almlof. General methods for geometry and wave function
optimization. The Journal of Physical Chemistry, 96(24):9768–9774, 1992.

[48] Jon Baker. An algorithm for the location of transition states. Journal of Computational
Chemistry, 7(4):385–395, 1986.

[49] Pál Császár and Péter Pulay. Geometry optimization by direct inversion in the iterative
subspace. Journal of Molecular Structure, 114:31–34, 1984.

[50] Roland Lindh, Anders Bernhardsson, and Martin Schütz. Force-constant weighted redundant
coordinates in molecular geometry optimizations. Chemical physics letters, 303(5-6):567–
575, 1999.

38



APPENDIX

SUPPORTING INFORMATION

2A.1 Geometry optimization with di!erent basis sets and methods

Table 2.A.1 lists the number of steps required to optimize the geometry of the molecules from

the Baker test set with QUICK 23.08 and DL-FIND using the L-BFGS algorithm and delocalized

internal coordinates. Di!erent levels of theory with single- and double-zeta basis sets with and

without polarization functions were used. The same SCF and geometry optimization thresholds as

described in the Methodology section of the manuscript were applied. Geometries were considered

converged with a maximum gradient component of less than 0.00045 au, a change in energy from

the previous step of less than 10→6 Hartree, and a maximum predicted displacement of less than

0.0018 Å. The TIGHTINT keyword was used, which for SCF convergence requests that the RMS

change in the density matrix is less than 10→7 au and the maximum change in the density matrix is

less than 10→5 au.

2A.2 Geometry optimization wall clock time

Table 2.A.2 lists the computation time for optimizing molecular geometry using QUICK 23.08

and the Baker test set with various optimization approaches by Sella, PyBerny, and DL-FIND using

a single NVIDIA V100 GPU, specifically the NVIDIA V100S-PCIe 32GB GPU chipset, and a 2.4

GHz Intel Xeon Platinum 8260 CPU. The quantum mechanical calculations were performed at the

Hartree-Fock (HF) level of theory, employing the 6-31G** basis set. The software stack utilized for

these calculations includes ASE 3.23.0b1, PyBerny 0.6.3, and Sella 2.3.2. Sella 2.3.2 employed the

SciPy 1.10.1, NumPy 1.22.4, JAX and JAXlib 0.4.13 libraries, and the calculations were executed

using Python version 3.8.8. In each optimization approach, the converged electron density from

each step was employed as the initial guess for the subsequent step’s self-consistent field (SCF)

calculation. File input and output operations were carried out on a dedicated fast scratch file system

within the data center.
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Table 2A.2 Wall clock time (seconds) required for geometry optimization of molecules from the
Baker test set using HF theory with the 6-31G** basis set and di!erent optimization methods
implemented by Sella, PyBerny, and DL-FIND, running QUICK on a single NVIDIA V100 GPU.

Molecules Sella PyBernv DL-Find
Water 26 47 5
Ammonia 26 62 5
Ethane 30 71 6
Acetylene 27 92 6
Allene 29 91 7
Hydroxysulfhane 56 115 13
Benzene 22 52 9
Methylamine 36 72 7
Ethanol 62 94 9
Acetone 38 93 11
DisilyI-ether 102 234 21
1,3,5-Trisilacyclohexane 212 597 62
Benzaldehyde 79 196 21
1,3-Difluorobenzene 49 87 15
1,3,5-Trifluorobenzene 39 91 17
Neopentane 24 85 11
Furan 54 106 10
Naphthalene 64 148 26
1,5-Difluoronaphthalene 90 164 32
2-Hydroxybicyclopentane 133 227 42
ACHTAR 10 74 279 29
ACANIL 01 99 232 33
Benzidine 142 311 103
Pterin 148 354 51
Difuropyrazine 132 243 39
Messilyl-oxide 65 183 24
Histidine 219 518 127
Dimethylpentane 43 160 42
Ca!eine 119 426 71
Menthone 205 510 174
Sum 2444 5940 1028
Average 81 198 34
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CHAPTER 3

ACCURATE QUANTUM-CENTRIC SIMULATIONS OF
SUPRAMOLECULAR INTERACTIONS

We present the first quantum-centric simulations of noncovalent interactions using a supramolecular

approach. We simulate the potential energy surfaces (PES) of the water and methane dimers,

featuring hydrophilic and hydrophobic interactions, respectively, with a sample-based quantum

diagonalization (SQD) approach. Our simulations on quantum processors, using 27- and 36-

qubit circuits, are in remarkable agreement with classical methods, deviating from complete active

space configuration interaction (CASCI) and coupled-cluster singles, doubles, and perturbative

triples (CCSD(T)) within 1 kcal/mol in the equilibrium regions of the PES. Finally, we test the

capacity limits of the quantum methods for capturing hydrophobic interactions with an experiment

on 54 qubits. These results mark significant progress in the application of quantum computing

to chemical problems, paving the way for more accurate modeling of noncovalent interactions in

complex systems critical to the biological, chemical and pharmaceutical sciences.

3.1 Introduction

The accurate treatment of noncovalent interactions1,2 is extremely important in the biolog-

ical, chemical, and pharmaceutical sciences3,4. Specifically, non-covalent interactions between

hydrophobic species and hydrogen-bonded pairs play pivotal roles in a myriad of biological pro-

cesses, ranging from protein folding5–9membrane assembly10, cell signaling11 and drug discovery
12–16. The correct modeling of these interactions along with solvation plays a key role in under-

standing many chemical and biological processes 17.

Traditionally, quantum mechanical18,19 methods have been used to study these systems to a

high level of accuracy - so-called chemical accuracy (±1 kcal/mol from experiment). However,

these calculations are quite expensive and approaches to accelerate these calculations continue to

be explored using classical hardware.20–29 Using the results from these calculations, force fields

have been fine-tuned for wide use in molecular simulation studies of chemical and biological

processes30–34. More recently, machine learning35 methods built using accurate quantum chemical
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calculations on thousands of systems have appeared to study largely covalent interactions, but can

be extended to non-covalent interactions at a good level of accuracy, but at a reduced computational

cost. However, these latter methods build models that can can struggle to study diverse systems

outside of the training set and can be subject to overfitting36,37.

Quantum computing based studies of these interactions, to a high level of accuracy and speed,

would revolutionize our ability to understand complex processes like drug binding, but would also

allow for the development of large synthetic datasets that could be used to build even better force

fields and quantum machine learning models. However, to date, quantum hardware has struggled

to address these problems. In this work we demonstrate that quantum-centric supercomputing

(QCSC)38 combined with the sample-based quantum diagonalization (SQD) approach39 allows for

the study of intermolecular interactions.

QCSC is a new computational paradigm, in which a quantum computer operates in concert with

classical high-performance computing (HPC) resources. Classical processing carried out before,

during, and after quantum computations allows for the introduction of quantum subroutines in the

workflow of classical HPC algorithms, to extract and amplify signal from noisy quantum devices,

and to leverage quantum processors to execute a limited number of large quantum circuits.

The QCSC architecture enables scaling of computational capabilities, as exemplified by methods

that use classical diagonalization in subspaces determined by quantum samples such as SQD39 and

QSCI40. The SQD method is developed based on QSCI. The SQD method use a quantum device

to sample electronic configurations from a quantum circuit approximating the ground state of

a molecular Hamiltonian, and use classical distributed HPC resources to post-process quantum

measurements against known symmetries to obtain recovered configurations39, as well as to solve

the Schrödinger equation in the subspace spanned by the recovered configurations. The SQD

method recently allowed us to address instances of the electronic structure problem with up to 36

spatial orbitals using up to 77 qubits39. The QCSC workflows produced significant improvements

over simulations using quantum computers in isolation – which have in the last decade, used up to

a handful of qubits with limited accuracies41–78. The QCSC paradigm coupled with SQD enables
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the study of problems heretofore out of reach of quantum computers including static correlation

in iron-sulfur complexes39 and well as dynamical correlation as exemplified in the intermolecular

interactions studied herein.

Past studies have reported the simulation of noncovalent interactions79,80 using symmetry-

adapted perturbation theory (SAPT). This method expresses the interaction energy through a

perturbative treatment of the intermolecular potential81–83, and requires the simulation of electronic

structure of individual monomers on a quantum computer. In addition Anderson et al. demonstrated

the possibility of simulations of coarse-grained intermolecular interactions on quantum computer as

well.84 However, to date, predicting binding energies between monomers using the supramolecular

approach, where the electronic structure of entire dimer need to be simulated on quantum hardware,

has been an elusive target for quantum simulations, due to lack of accuracy and scale of conventional

quantum approaches.

Herein, we present the first quantum-centric simulation for the modeling of noncovalent hy-

drophilic and hydrophobic interactions with a supramolecular approach. We simulate the potential

energy surfaces (PES) of the water dimer and the methane dimer. Our water dimer simulations

use 27-qubit circuits, while the methane dimer simulations use 36- and 54-qubit circuits. To

assess the accuracy of our quantum solutions, we compare them against heat-bath configuration

interaction (HCI)85–88 in the case of (16e,24o) calculations, complete active space configuration

interaction for the (16e,12o) and (16e,16o) calculations, as well as coupled-cluster singles, doubles

and perturbative triples (CCSD(T))89 performed for all of the studied instances. The latter is widely

recognized as the gold standard for computing intermolecular interactions90 to chemical accuracy.

For the 27-qubit water dimer and the 36-qubit methane dimer simulations, we demonstrate that

SQD energies agree with CASCI nearly exactly, while deviating from CCSD(T) within 1 kcal/mol

in the equilibrium region of the PES. For the 54-qubit simulations of the methane dimer, we observe

how the accuracy of the quantum solution can be systematically improved by increasing the number

of sampled configurations.
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3.2 Methods and Computational Details

3.2.1 Classical benchmark

In the supramolecular approach binding energies between two monomers in a dimer is most

often expressed as

𝑀binding = 𝑀AB → 𝑀A → 𝑀B . (3.1)

In Eq. (3.1) 𝑀AB, 𝑀A, and 𝑀B denote the ground-state energies of the dimer 𝑄𝑈, monomer 𝑄, and

monomer 𝑈, respectively. For calculations utilizing active spaces the highest accuracy obtainable

with the supramolecular approach can be achieved if Eq. (3.1) is instead expressed in terms of the

energy of bound and unbound dimers (𝑀AB→bound and 𝑀AB→unbound). Better accuracy is achieved

within this approximation due to the fact that it allows for a consistent active space in all of the

calculations. Hence, in all of our calculations we express the binding energy as

𝑀binding = 𝑀AB→bound → 𝑀AB→unbound . (3.2)

Here, the 𝑀AB→unbound term of Eq. (3.2) is approximated as two monomers separated by a 48.000 Å

distance, where the chosen distance guarantees the absence of interactions between the monomers.

Table 3.1 Active spaces used in the present work.

species active space AOs Figure
water dimer (16e,12o) O[2s,2p], H[1s] 3.1a
methane dimer (16e,16o) C[2s,2p], H[1s] 3.1b
methane dimer (16e,24o) C[2s,2p,3s,3p], H[1s,2s] 3.1c

Metz et al 91 and Li et al.92 demonstrated that CCSD(T)/aug-cc-pVQZ calculations closely

reproduce the results of the CCSD(T)/complete basis set (CBS) limit for the methane dimer. Metz

et al.91 also demonstrated this for water dimer. All of our simulations are therefore done with the

aug-cc-pVQZ basis set. We simulate the water and methane dimers with the active spaces listed in

Table I.

We construct these active spaces using the atomic valence active space (AVAS) method93 as

implemented in the PySCF 2.6.2 software package94–96, and select active-space orbitals that overlap
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with the atomic orbitals (AOs) listed in column 3 of the table. The active-space orbitals of the water

and methane dimers are shown in Fig. 3.1. Orbital visualization is performed with Pegamoid.97

Figure 3.1 Active spaces used in this work: (A) (16e,12o) of the water dimer, (B) (16e,16o) of the
methane dimer, (C) (16e,24o) of the methane dimer.

In each active space, we perform CCSD and CCSD(T) calculations with PySCF 2.6.2. For

water and methane dimers we also perform CASCI(16e,12o) and CASCI(16e,16o) simulations,

respectively, using PySCF 2.6.2. For the (16e,24o) active space of the methane dimer we perform

HCI calculations with the SHCI-SCF 0.1 interface between PySCF 2.6.2 and DICE 1.085,87,88.

Further details of HCI calculations can be found in the Supplementary Information. Along with

active-space simulations, we perform complete CCSD and CCSD(T) calculations with ORCA

5.0.498. The geometries of equilibrium structures of the water and methane dimer originate from

works by Temelso et al99 and by Rezac and Hobza100, sourced through the BEGDB database101.

We describe the generation of PES geometries for water and methane dimers in the Supplementary

Information.

3.2.2 Quantum Computing

We start from the active-space Hamiltonian, written in second quantization as

𝐿̂ = 𝑀0 +
∑
𝑚𝑆
𝑛

𝑜𝑚𝑆 𝑋̂
†

𝑚𝑛𝑋̂𝑆𝑛 +

∑
𝑚𝑆𝑝𝑞
𝑛𝑟

(𝑚𝑆 |𝑝𝑞)

2
𝑋̂†𝑚𝑛𝑋̂

†

𝑝𝑟𝑋̂𝑞𝑟𝑋̂𝑆𝑛 , (3.3)
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where 𝑋̂† (𝑋̂) are creation (annihilation) operators, 𝑚,𝑆,𝑞, and 𝑝 = 1 . . .𝑂 denote basis set element,

𝑛 and 𝑟 denote spin-𝑠 polarizations, 𝑜𝑚𝑆 and (𝑚𝑆 |𝑝𝑞) are the one- and two-body electronic integrals,

and 𝑀0 is a constant accounting for the electrostatic interactions between nuclei and electrons in

occupied inactive orbitals. We obtain the quantities 𝑀0, 𝑜𝑚𝑆 , and (𝑚𝑆 |𝑝𝑞) for the selected active

spaces using PySCF.

We prepare our wavefuntion guesses |ω↓, used to approximate the ground state of Eq. (3.3),

from a truncated version of the local unitary cluster Jastrow (LUCJ) ansatz102

|ω↓ =
𝑡→1∏
𝑢=0

𝑏𝑍̂𝐿𝑏𝑃𝑣𝐿𝑏→𝑍̂𝐿 |xRHF↓ , (3.4)

where 𝑍̂𝑢 = ϑ𝑚𝑆 ,𝑛𝑍
𝑢
𝑚𝑆 𝑋̂

†
𝑚𝑛𝑋̂𝑆𝑛 are one-body operators, 𝑣𝑢 = ϑ𝑚𝑆,𝑛𝑟𝑣

𝑢
𝑚𝑛,𝑆𝑟𝑑̂𝑚𝑛𝑑̂𝑆𝑟 are suitable (vide

infra) density-density operators, and |xRHF↓ is the restricted closed-shell Hartree-Fock (RHF) state.

We use the Jordan-Wigner (JW) transformation103 to map the fermionic wavefunction Eq. (3.4)

onto a qubit wavefunction that can be prepared executing a quantum circuit. The JW transformation

maps the Fock space of fermions in 𝑂 spatial orbitals onto the Hilbert space of 2𝑂 qubits, where the

basis state |x↓ is parametrized by a bitstring x ≃ {0, 1}2𝑂 and represents an electronic configuration

where the spin-orbital 𝑚𝑛 is occupied (empty) if 𝑔𝑚𝑛 = 1 (𝑔𝑚𝑛 = 0). We prepare the wavefunction

Eq. (3.4) by executing the following quantum circuit: a single layer of Pauli-X gates prepares the

basis state |xRHF↓, a Bogoliubov circuit104 (with linear depth, quadratic number of gates, and a 1D

qubit connectivity) encodes each orbital rotation 𝑏±𝑍̂𝐿 , and a circuit of Pauli-ZZ rotations encodes

each density-density interaction 𝑏𝑃𝑣𝐿 . When 𝑣𝑢 is a dense matrix, Pauli-ZZ rotations are applied

across all pair of qubits, requiring all-to-all qubit connectivity or a substantial overhead of swap

gates. To mitigate these quantum hardware requirements LUCJ imposes a “locality” approximation,

i.e., it assumes 𝑣𝑢𝑚𝑛,𝑆𝑟 = 0 for all pairs of spin-orbitals that are not mapped onto adjacent qubits

under JW102 (as a consequence, a circuit with constant depth and linear number of gates encodes

each 𝑏𝑃𝑣𝐿 operator). Hence, the number of layers (𝑡→1) in Eq. (3.4) is formally equal to 1.5. As the

result the specific form of |ω↓ used in this work is expressed as |ω↓ = 𝑏→𝑍̂2𝑏𝑍̂1𝑏𝑃𝑣1𝑏→𝑍̂1 |xRHF↓. We

parametrize the LUCJ circuit based on amplitudes computed from classical restricted closed-shell
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CCSD within the given active space39, yet a further quantum-classical parameter optimization

could further improve the quality of the ground-state approximation. We produce the LUCJ circuits

using the !sim library105 interfaced with Qiskit 1.1.1104,106.

The qubit layouts of the LUCJ circuits used for (16e,12o) water dimer, (16e,16o) methane dimer,

and (16e,24o) methane dimer simulations are shown in Fig. 3.2a, 3.2b, and 3.2c, respectively. We

execute these circuits on IBM’s 127-qubit Eagle devices ibm_cleveland and ibm_kyiv. In all our

quantum computing experiments, we used gate (not measurement) twirling over random 2-qubit

Cli!ord gates107 and dynamical decoupling108–111 – available through the SamplerV2 primitive of

Qiskit’s runtime library – to mitigate quantum errors.

Figure 3.2 Qubit layouts of LUCJ circuits executed in this work: (A) (16e,12o) water dimer
simulations using 27 qubits on ibm_cleveland, (B) (16e,16o) methane dimer simulations using
36 qubits on ibm_cleveland, and (C) (16e,24o) methane dimer simulations using 54 qubits on
ibm_kyiv. Qubits used to encode occupation numbers of 𝑤 (𝑥) spin-orbitals are shown in red
(blue). Auxiliary qubits used to execute density-density interactions between 𝑤 and 𝑥 spin-orbitals
are marked in green.

Upon executing the LUCJ circuits, we measure |ω↓ in the computational basis. Repeating this

produces a set of measurement outcomes (or “shots”)

𝑦̃ = {x|x ⇐ 𝑚(x)} (3.5)

in the form of bitstrings x ≃ {0, 1}2𝑂 , each representing an electronic configuration (Slater deter-

minants) distributed according to 𝑚(x). While on a noiseless device configurations are distributed

according to |⇒x|ω↓ |
2, on a noisy device they follow a distribution 𝑚(x) ϖ |⇒x|ω↓ |

2. In partic-

ular, 𝑚(x) breaks particle-number conservation and returns configurations with incorrect particle
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Table 3.2 Details of SQD calculations.

species active space | 𝑦̃ | [103
] 𝑍 | 𝑦̃𝑌 | [103

] 𝑖 CPUs, code steps
water dimer (16e,12o) 200 10 10 24.5 · 104 10, PySCF 10
methane dimer (16e,16o) 200 10 20 12.6 · 107 10, PySCF 10
methane dimer (16e,24o) 300 4 8.5 24.9 · 107 16, DICE 5

number. We use a technique called self-consistent configuration recovery39, executed on a classi-

cal computer, to restore particle-number conservation. The associated code is publicly available

in the GitHub repository.112 Within each step of self-consistent recovery, we sample 𝑍 subsets

(or batches) of 𝑦̃ labeled 𝑦̃𝑌 with 𝑌 = 1 . . .𝑍 . Each batch defines – through a transformation39

informed by an approximation to the ground-state occupation numbers 𝑑𝑚𝑛 – a subspace 𝑧(𝑌) of

dimension 𝑖, in which we project the many-electron Hamiltonian as39,40,113

𝐿̂𝑧 (𝑀) = 𝛥̂𝑧 (𝑀) 𝐿̂𝛥̂𝑧 (𝑀) , (3.6)

where the projector 𝛥̂𝑧 (𝑀) is

𝛥̂𝑧 (𝑀) =
∑

x≃𝑧 (𝑀)

|x↓⇒x| . (3.7)

We compute the ground states and energies of the Hamiltonians in Eq. (3.6), |𝛩 (𝑌)
↓ and 𝑀 (𝑌)

respectively, and use the lowest energy across the batches, min𝑌 𝑀 (𝑌) , as the best approximation to

the ground-state energy at the current iteration of the configuration recovery. We use the ground

states |𝛩 (𝑌)
↓ to obtain an updated set of occupation numbers,

𝑑𝑚𝑛 =
1
𝑍

∑
1⇑𝑌⇑𝑍

⇒𝛩 (𝑌)
|𝑑̂𝑚𝑛 |𝛩

(𝑌)
↓ , (3.8)

that we use in the next iteration of configuration recovery to produce the subspaces 𝑧(𝑌) . We repeat

the iterations of self-consistent configuration recovery until convergence of the energy min𝑌 𝑀 (𝑌) . At

the first iteration of self-consistent configuration recovery, we initialize 𝑑𝑚𝑛 from the measurement

outcomes in 𝑦̃ with the correct particle number. We summarize the details of our SQD calculations

in Table II.

We demonstrate that for SQD (16e,16o) simulations of the methane dimer at 3.638 Å a | 𝑦̃𝑌 | =

20.0 · 103 is necessary to reach agreement within 0.010 kcal/mol when compared against CASCI
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(16e,16o). We show how the predicted total energies in these simulations improve with an increase

of | 𝑦̃𝑌 | from 5.0 · 103 to 20.0 · 103 in Figure S3. We also demonstrate that in SQD(16e,16o)

simulations the linear energy-variance relation allows for utilization of energy extrapolation which

reproduces similar binding energies as simulation with | 𝑦̃𝑌 | = 20.0 · 103 while using substantially

lower values of | 𝑦̃𝑌 |. The extrapolation is done for the total energy of the dimer as the function

of the Hamiltonian variance divided by the square of the variational energy, where Hamiltonian

variance (ϱ𝐿) is calculated as ϱ𝐿 = ⇒𝛩 (𝛬)
|𝐿̂2

|𝛩 (𝛬)
↓ → ⇒𝛩 (𝛬)

|𝐿̂ |𝛩 (𝛬)
↓
2. The extrapolation is done

based on three points with | 𝑦̃𝑌 | of 9.0 ·103, 11.0 ·103, and 14.0 ·103, which allows for the reduction

of the maximum | 𝑦̃𝑌 | by 6.0 · 103. This choice of values for | 𝑦̃𝑌 | allows for an even distribution of

ϱ𝐿 values used in extrapolation. The extrapolated energies are compared against CASCI(16e,16o)

simulations and SQD(16e,16o) simulations with | 𝑦̃𝑌 | = 20.0 · 103.

We compute the ground-state eigenpairs of the Hamiltonians Eq. (3.6) using the iterative

Davidson method on 10 CPUs with PySCF’s selected configuration interaction (SCI) solver for

SQD (16e,12o) simulations of the water dimer and SQD (16e,16o) simulations of the methane

dimer. We achieve parallelization across 10 CPUs with Ray 2.33.0114 where the eigenstate solver

within each of the 10 batches is using 1 CPU. For SQD (16e,24o) simulations of the methane dimer,

we utilize the SCI solver of DICE and 16 CPUs, where the eigenstate solver within each of the 4

batches is using 4 CPUs. Further parallelization is possible with the SCI solver of DICE, as was

demonstrated previously39. The SQD (16e,12o) simulations of the water dimer and SQD (16e,16o)

simulations of the methane dimer are done for the distances that are described in the Supplemental

Information while SQD (16e,24o) simulations of the methane dimer are only done for 3.638 Å.

3.3 Results

Figure 3.3 shows the binding energy of the water dimer as a function of the oxygen-oxygen

distance using SQD and CASCI. The SQD and CASCI potential energy surfaces closely align,

deviating from each by less than 0.001 kcal/mol. This close alignment is an indication that both

methods have accurately solved the Schodinger equation in the active space. The active-space

SQD and CASCI calculations cannot capture dynamical correlation from inactive orbitals. To
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quantify the extent of the active-space approximation, we also compute the potential energy surface

using CCSD and CCSD(T) in the full aug-cc-pVQZ basis. The perturbative triples do not have

a drastic e!ect on the binding energy between water monomers and the close agreement between

CCSD and CCSD(T) calculations is shown in Figure 3b. The excellent agreement between CCSD

and CCSD(T) in the full basis and between SQD and CASCI in the active space indicates that

the di!erences between SQD and CCSD(T) are due to the active-space approximation underlying

the former. The CCSD(T) and SQD potential energy curves are in reasonable agreement with

each other, the highest deviation being observed at 1.400 Å and corresponding to 2.263 kcal/mol.

Despite this reasonable agreement and the ability of SQD to capture hydrogen bonding, there are

quantitative di!erences in the predicted binding energies, -5.129 kcal/mol and -4.366 kcal/mol for

CCSD(T) and SQD respectively, and the lowest-energy distances, 1.962 Å and 2.000 Å CCSD(T)

and SQD respectively. The quantitative di!erences between SQD and CCSD and CCSD(T) shown

in Fig. 3 are a consequence of SQD not being carried out in the full basis set.

Figure 3.4 shows the binding energy of the methane dimer – with (16e,16o) active space for

the dimer and monomer respectively – as a function of the carbon-carbon distance using SQD

and HCI. Figure 3.4 focuses on the attractive region, whereas the full curve is shown in Figure

Figure 3.3 Binding energies of the water dimer along the PES, where distances between oxygen
atoms range between 1.400 and 3.500 Å. (A) the entire range of bondlengths, and (B) a magnified
region near equilibrium, highlighted in panel (A) as a black box. Light brown, blue, and magenta
dashed lines with circle, square, and cross markers depict the PES calculated with the CASCI
(16e,12o), CCSD(T), and CCSD methods, respectively. The solid green line with triangular
markers depicts the PES calculated with the SQD (16e,12o).
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Figure 3.4 Binding energies of the methane dimer along the PES, where the distances between the
carbon atoms range between 3.500 and 6.000 Å. Active-space simulations use (16e,16o). (A) the
entire range of bondlengths, and (B) a magnified region near equilibrium, highlighted in panel (A)
as a black box. Light brown, blue, and magenta dashed lines with circle, square, and cross markers
depict the PES calculated with the CASCI (16e,16o), CCSD(T), and CCSD methods, respectively.
The solid green line with triangular markers depicts the PES calculated with the SQD (16e,16o).
The solid blue line represents CCSD(T) (16e,16o) calculations. The black horizontal dashed line
indicates the zero value of the binding energy.

S5 of the SI. The SQD (16e,16o) and CASCI (16e,16o) data are closely aligned, with deviations

below 0.005 kcal/mol. We interpret the excellent agreement between SQD (16e,16o) and CASCI

(16e,16o) as an indication that the active-space Schrodinger equation is solved accurately. SQD

(16e,16o) predicts the interaction between the monomers to be only marginally attractive, with a

binding energy of -0.038 kcal/mol and a lowest-energy distance around 4.500 Å. On the other hand,

full-basis CCSD and CCSD(T) calculations predict binding energies of -0.399 kcal/mol and -0.524

kcal/mol, respectively, at distances 3.834 Å and 3.667 Å, respectively. Despite some di!erences

quantifying the importance of perturbative triple corrections, both full-basis calculations predict

a substantially more pronounced tendency to binding than SQD (16e,16o) and CASCI (16e,16o).

This is because, although SQD (16e,16o) and CASCI (16e,16o) calculations can accurately capture

the active-space electronic correlation, they cannot account for the residual dynamical electron

correlation, unlike full-basis CCSD and CCSD(T).

Before proceeding with the expansion of the active space we first demonstrate that accurate SQD

(16e,16o) calculations can be achieved with a reduced number of samples through the extrapolation
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of the total energies. The exact SQD (16e,16o) calculations require | 𝑦̃𝑌 | = 20.0 · 103 while the

extrapolation is done based on three points with | 𝑦̃𝑌 | of 9.0 · 103, 11.0 · 103, and 14.0 · 103. Hence,

the extrapolation allows for the reduction of the maximum required | 𝑦̃𝑌 | by 6.0 · 103. We show

the SQD (16e,16o) total energy extrapolations for 4.000, 4.250, 4.500, 4.750, 5.000, and 6.000

Å distances in Figure 5a-f, while the extrapolation for the 48.000 Å distance is shown in Figure

Figure 3.5 Extrapolated SQD (16e,16o) energies of the methane dimer along the PES, for the 4.000,
4.250, 4.500, 4.750, 5.000, and 6.000 Å distances between the carbon atoms. Extrapolations are
done using three points with | 𝑦̃𝑌 | of 9.0 · 103, 11.0 · 103, and 14.0 · 103. Hamiltonian variance
(ϱ𝐿) is calculated as ϱ𝐿 = ⇒𝛩 (𝛬)

|𝐿̂2
|𝛩 (𝛬)

↓ → ⇒𝛩 (𝛬)
|𝐿̂ |𝛩 (𝛬)

↓
2. (A) - (F) total energy extrapolations

for methane dimer 4.000, 4.250, 4.500, 4.750, 5.000, and 6.000 Å distances, (G) total energy
extrapolations at 48.000 Å distance, and (H) binding energy in methane dimer calculated with
extrapolated SQD (16e,16o) total energies compared against CASCI (16e,16o) simulations and
SQD (16e,16o) simulations with | 𝑦̃𝑌 | = 20.0 · 103. Green triangles and green dashed lines indicate
SQD (16e,16o) energies calculated with | 𝑦̃𝑌 | = 20.0 · 103. Grey triangles and grey dashed lines
indicate extrapolated SQD (16e,16o) energies. Light brown circles and dashed lines indicate CASCI
(16e,16o) energies. Black horizontal dashed line indicates the zero value of the binding energy.
Error bars indicate magnitude of error estimate in extrapolation.
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5g. The resulting binding energies of the methane dimer are shown in Figure 5h and compared

against the CASCI (16e,16o) simulations and SQD (16e,16o) simulations with | 𝑦̃𝑌 | = 20.0 · 103.

Figure 5g shows that the extrapolated SQD (16e,16o) energies predict a binding energy in good

qualitative agreement with exact SQD (16e,16o) simulations and CASCI (16e,16o). This result is

promising for future simulations with large active spaces, where classical post-processing of SQD

data becomes computationally expensive.

Figure 3.6 Binding energies of the methane dimer along the PES, where the distances between the
carbon atoms range between 3.500 and 6.000 Å. Active-space simulations use (16e,24o) and are
performed over (A) the entire range of bondlengths, and (B) a magnified region near equilibrium,
highlighted in panel (A) as a black box. Blue and magenta dashed lines depict PES calculated with
CCSD(T) and CCSD methods, respectively. The dashed red line depicts the HCI (16e,24o) results.
The solid blue and magenta lines represents CCSD(T) (16e,24o) and CCSD (16e,24o) calculations,
respectively. Black horizontal dashed line indicates the zero value of the binding energy.

Next we analyze the e!ect of extending the active space on the predicted binding energy via

the inclusion of virtual orbitals with carbon 3s and 3p character. First, in Fig. 3.6, we explore

the performance of HCI in this extended (16e,24o) active space. Here, HCI is used in place of

CASCI due to the fact that the (16e,24o) active space is prohibitively expensive in conventional

CASCI simulations. Figure 3.6a shows active-space calculations with HCI, CCSD, and CCSD(T).

The CCSD(T) (16e,24o) curve, in good agreement with CCSD (16e,24o), is substantially more

attractive than in the (16e,16o) active space, predicting a binding energy of -0.136 kcal/mol at 4.000

Å. The size of the (16e,24o) active space prevents us from significantly lowering the parameter

𝛯1 which results in the underestimation of the total energy in HCI (16e,24o) calculations. In
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particular, at 3.834 Å distance the HCI (16e,24o) calculations underestimate the binding energy

by 0.094 kcal/mol comparing to CCSD(T) (16e,24o), as visible in Fig. 3.6b. Note that HCI

(16e,24o) calculations were carried out over four distances (3.667, 3.750, 3.834, and 3.900 Å).

Within the target accuracy of the present work the prediction of HCI (16e,24o) binding energies for

other geometries around the CCSD(T) (16e,24o) minimum is dramatically more computationally

expensive.

Figure 3.7 Extrapolation of SQD (16e,24o) total energies for the methane dimer at 3.638 Å distance
between the carbon atoms. Extrapolations are done using four points with | 𝑦̃𝑌 | of 5.5 ·103, 6.5 ·103,
7.5 · 103, and 8.5 · 103. Hamiltonian variance (ϱ𝐿) is calculated as ϱ𝐿 = ⇒𝛩 (𝛬)

|𝐿̂2
|𝛩 (𝛬)

↓ →

⇒𝛩 (𝛬)
|𝐿̂ |𝛩 (𝛬)

↓
2. Green triangles indicate SQD (16e,24o) energies. Grey dashed lines indicate

extrapolated SQD (16e,24o) energies. Dashed red line indicates HCI (16e,24o) energies. Error
bars indicate magnitude of error estimate in extrapolation.

We show the decrease in the SQD (16e,24o) total energy for the methane dimer at 3.638 Å

with the increase of | 𝑦̃𝑌 | from 5.5 · 103 to 8.5 · 103 in Fig. 3.7. The di!erences between the total

energies predicted with SQD (16e,24o) and HCI (16e,24o) reduce from 31.8 milliHartree to 25.2

milliHartree when the | 𝑦̃𝑞 | is increased from 5.5·103 to 8.5·103. The extrapolated total energy based

on SQD (16e,24o) simulations with | 𝑦̃𝑌 | of 5.5 · 103, 6.5 · 103, 7.5 · 103, and 8.5 · 103 agrees with

HCI (16e,24o) results within 2.12 milliHartree. Magnitude of the error estimate in extrapolation is

± 3.10 milliHartree. We believe that a further increase in the number of samples will allow us to

advance the accuracy of SQD (16e,24o) calculations. To make SQD (16e,24o) calculations of the

methane dimer more computationally feasible we are currently exploring parallelization options
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for calculations on this system as well as the analysis of the configurations with low contributions

to the total energies.

3.4 Conclusions and Outlook

We have presented quantum-centric simulations of the water and methane dimers using a

sample-based quantum diagonalization method on IBM’s Eagle quantum processors. This demon-

stration is a first simulation of noncovalent supramolecular interactions on quantum processors.

The accuracy of SQD and HCI predictions of noncovalent interactions can be systematically im-

proved by the addition of extended shells of virtual orbitals. We anticipate that further expansion

of the active space through the inclusion of the virtual orbitals corresponding to the 3d shell of

the heavy atoms will allow for an even more accurate description of non-covalent interactions with

SQD and HCI, which will be the subject of future studies on quantum processors. Importantly, the

present study lays out a framework for electronic structure calculations of noncovalent interactions

on quantum hardware.

Our findings demonstrate that SQD is capable of capturing noncovalent interactions between

molecules at the level of theory chosen, with potential energy surfaces that closely align with

those obtained through classical computational methods. We examine the binding energies of the

water and methane dimers by comparing SQD with an analogous classical method, namely HCI.

We also compare SQD against the CCSD(T) method, which is considered the gold standard for

calculations of binding energies90. This comparison aims to evaluate the accuracy of SQD and to

understand how the nature of the PES changes with di!erent active-space selections. The ability

of HCI and SQD to recover the dispersion interaction is highly dependent on the size and nature

of the active space, which is especially critical for predicting the binding energy of the methane

dimer. In fact, a previous study by Hapka et al.115 demonstrated that the ability of supramolecular

multiconfigurational interaction calculations to recover the dispersion energy depends on the size

of the active space and can be improved with systematic expansion of the active space.

The results obtained here demonstrate the improvements both in terms of accuracy and scale

of quantum computations on chemical problems, enabling, on current quantum processors, use
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cases previously thought to belong to the fault-tolerant domain, such as the largest active space

considered here for methane, which has 1.3M Pauli operators. Further examples of problems that

coule be enabled by our approach include quantum computing simulations of chemical reactivity

of𝑎𝑘2-fixating ruthenium catalyst proposed by Burg et al.116, Ibrutinib drug simulations proposed

by Blunt et al.117, and the drug-discovery workflows proposed by Pyrkov et al.118 and Kumar et

al.119, as well as multiple stages of drug optimization as described by Bonde et al.120 The SQD

method allows for simulations of systems with qubit counts that is essential for projection-based

embedding algorithm proposed by Ralli et al.121 and can enhance the viability of fragment-based

quantum computing simulations. Previously, VQE-based fragment molecular orbital (FMO),122

divide and conquer (DC),123 and density matrix embedding theory (DMET)65,124 simulations were

limited to very simple illustrative systems. Shang et al. proposed a DMET-based massively parallel

quantum computing approach based on VQE, but execution of their methodology was only possible

on a quantum simulator rather than actual hardware.125

Such limitations in fragment-based VQE simulations are due to the fact that the number

of orbitals that could be described with reasonable accuracy on actual hardware in the VQE

formalism within each fragment is very limited. Fragment-based simulations with SQD would

allow for substantially higher number of orbitals in each individual fragment, making the quantum

computing simulations of proteins and drug molecules possible.

In conclusion, combining quantum and classical computational resources in workflows like SQD

opens the way for the use of current and near-future quantum technology to tackle computational

challenges in small-molecule conformational search, drug-protein interactions and drug discovery.
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APPENDIX

SUPPLEMENTARY INFORMATION

3A.1 Geometries of potential energy surfaces

The PES for the water dimer is calculated for distances between two oxygen atoms ranging

between 1.400 and 3.500 Å. We distribute the points for water dimer PES as 1.400, 1.500, 1.600,

1.700, 1.800, 1.900, 1.962, 2.000, 2.100, 2.200, 2.300, 2.400, 2.500, 3.000, and 3.500 Å. All of

water dimer simulations are done for all of these distances. The PES for the methane dimer is

calculated for the distances between two carbon atoms ranging between 2.500 and 6.000 Å. We

distribute the points for methane dimer PES as 2.500, 2.750, 3.000, 3.167, 3.334, 3.500, 3.667,

3.834, 4.000, 4.250, 4.500, 4.750, 5.000, and 6.000 Å. To calculate the total energy of unbound

dimer we utilize the distance of 48.000 Å for both water and methane dimers. All of CASCI

(16e,16o), CCSD, CCSD(T), CCSD (16e,16o), and CCSD(T) (16e,16o) simulations of methane

dimer as well as SQD (16e,16o) simulations with | 𝑦̃𝑌 | = 20.0 · 103 are done for all of the distances

described earlier. The methane dimer CASCI (16e,16o) simulations and SQD (16e,16o) simulations

with | 𝑦̃𝑌 | = 20.0 · 103 are also performed for an additional distance of 3.638 Å. The SQD (16e,16o)

energy extrapolations using | 𝑦̃𝑌 | of 9.0 · 103, 11.0 · 103, and 14.0 · 103 are done for 4.000, 4.250,

4.500, 4.750, 5.000, 6.000, and 48.000 Å distances. In the case of HCI (16e,24o) simulations of

the methane dimer, we use only distances of 3.638, 3.667, 3.750, 3.834, and 3.900 Å. In case

of SQD (16e,24o) simulations we only use the distance of 3.638 Å. All calculations are done

as single-point energy calculations with no geometry optimizations. To produce the geometries

studies in this work, we start from the equilibrium geometries and change the distance between the

centers of the monomers, with the geometries of the individual monomers fixed.

3A.2 Details of HCI calculations

In HCI simulations instead of generating all of the single and double excitations one generates

only those single and double excitations that correspond to Hamiltonian matrix elements exceeding

a threshold 𝛯. In HCI 𝛯1 controls which determinants will be included in the variational wave

function. In our HCI calculations, we use values of 𝛯1 equal to 5 · 10→6 (during initial variational
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steps) and 1 · 10→6 (during later variational steps). We do not use the non-variational perturbative

correction in our HCI calculations. Hence, our HCI calculations are fully variational, which allows

for more appropriate comparison between the SQD and HCI results.

3A.3 E!ect of number of samples on total energy in SQD(16e,16o)

Figure 3A.1 Total energy of methane dimer predicted with SQD (16e,16o) at 3.638 Å distance
between the monomers as the function of 𝑖 · 107. (A) the entire range of d, and (B) a magnified
region with largest values of d, highlighted in panel (A) as a black box. The secondary x-axis
demonstrates the value of | 𝑦̃𝑌 | · 103 producing the given value of 𝑖 · 107. Solid green line with
triangular markers shows SQD (16e,16o) results. Horizontal dashed light brown line indicates the
total energy from CASCI (16e,16o) calculation.
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3A.4 PES of methane dimer including the repulsive region

Figure 3A.2 Binding energies of the methane dimer along its PES, where the distances between
the centers of methane molecules range between 2.500 and 6.000 Å. Active space simulations are
performed with (16e,16o). Light brown, orange, and blue dashed lines with circle markers depict
PES calculated with CASCI, CCSD, and CCSD(T) methods, respectively. Solid yellow line with
triangular markers depicts the PES calculated with the SQD method. Solid blue line represents
CCSD(T) calculations using an active space. Black horizontal dashed line indicates the zero value
of the binding energy.
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CHAPTER 4

TOWARDS QUANTUM-CENTRIC SIMULATIONS OF EXTENDED MOLECULES:
SAMPLE-BASED QUANTUM DIAGONALIZATION ENHANCED WITH DENSITY

MATRIX EMBEDDING THEORY

Computing ground-state properties of molecules is a promising application for quantum computers

operating in concert with classical high-performance computing resources. Quantum embedding

methods are a family of algorithms particularly suited to these computational platforms: they

combine high-level calculations on active regions of a molecule with low-level calculations on

the surrounding environment, thereby avoiding expensive high-level full-molecule calculations

and allowing to distribute computational cost across multiple and heterogeneous computing units.

Here, we present the first density matrix embedding theory (DMET) simulations performed in

combination with the sample-based quantum diagonalization (SQD) method. We employ the

DMET-SQD formalism to compute the ground-state energy of a ring of 18 hydrogen atoms, and

the relative energies of the chair, half-chair, twist-boat, and boat conformers of cyclohexane. The

full-molecule 41- and 89-qubit simulations are decomposed into 27- and 32-qubit active-region

simulations, that we carry out on the ibm_cleveland device, obtaining results in agreement with

reference classical methods. Our DMET-SQD calculations mark a tangible progress in the size

of active regions that can be accurately tackled by near-term quantum computers, and are an early

demonstration of the potential for quantum-centric simulations to accurately treat the electronic

structure of large molecules, with the ultimate goal of tackling systems such as peptides and proteins.

4.1 Introduction

The accurate treatment of interacting many-electron systems by first-principle computational

methods is a grand challenge of contemporary science. Progress in addressing this challenge

will a!ect diverse fields, including pharmaceutical research and in particular computer-aided drug

design, where it is important to characterize the energy landscape of the conformations of large

molecule and their complexes at room temperature1,2. Existing computational resources, however,

are insu"cient to carry out first-principle electronic structure simulations on many large molecules,

e.g. proteins, by methods beyond the mean-field approximation. For example, the simulation of
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insulin3 using minimal and correlation-consistent cc-pVxZ (x=D,T,Q) basis sets requires 2418

and 7561, 17420, 33559 molecular orbitals (MOs) respectively, at the boundaries of conventional

electronic structure methods4,5.

Some approximations, therefore, are needed to realize quantum mechanical calculations on

such systems. An example is o!ered by the large family of fragment-based electronic structure

methods6–8. These algorithms are based on the decomposition of an intractably large system

into tractable subsystems, and typically employ the quantum embedding scheme, that combines

the treatment of subsystems by a higher-level method (i.e. more accurate and expensive) with

a lower-level computation on the entire system9. They thus o!er an important path to leverage

advances in first-principle electronic structure methods in the modeling of otherwise intractably

large molecules.

Quantum embedding methods are also natural and compelling targets for quantum-centric

supercomputing (QCSC) architectures10, where a quantum computer operates in concert with

classical high-performance computing (HPC) resources. In this framework, high-level quantum

computations can be carried out on subsystems, with HPC resources providing feedback between

the subsystems and their environment. Various authors have recognized this possibility, and have

proposed to integrate quantum computing subroutines in the workflow of quantum embedding

methods11–13 where the feedback between subsystems and their environment is based on the

electronic density, the Green’s function, or the one-particle reduced density matrix (depending

on the specific embedding theory)9. Before the availability of large-scale fault-tolerant quantum

computers, a critical aspect of the application of QCSC to quantum embedding is the optimization

of the resources of near-term quantum computers, limited in both qubit number and quantum circuit

size. Motivated by this consideration, several authors have proposed to use the variational quantum

eigensolver (VQE) method14–16 in combination with the fragment molecular orbital (FMO)17,

divide and conquer (DC)18, many-body expansion (MBE)19, density matrix embedding theory

(DMET)19–25, and other wavefunction-based embedding26–28 methods.

However, there are some drawbacks that are inevitable upon introducing fragmentation ap-
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proximations, that are exacerbated by the constrained size of subsystems accurately tractable by

near-term quantum algorithms and computers: for example, the dispersion and induction of many-

body interactions and the cooperativity of hydrogen bonds are considerably impacted. Therefore,

extending the reach of quantum computers in terms of tractable subsystem sizes and accuracy of

results stands to mitigate the impact of the fragmentation approximation, allowing more meaningful

QCSC applications in the framework of quantum embedding.

The recently introduced sample-based quantum diagonalization (SQD) method29 has allowed

electronic structure simulations for active sites of metallo-proteins using up to 77 qubits (corre-

sponding to 36 MOs), a substantial advancement in application of quantum computers to quantum

chemistry30–33, and for molecular dimers bound by non-covalent interactions34, as well as the large

active space simulations of methylene35. In view of these results, it is timely and compelling to

investigate the use of SQD as a subsystem solver in the framework of the well-established DMET

quantum embedding method. Herein, we present the first DMET-SQD simulations of molecular

systems. We use DMET-SQD to compute the ground-state potential energy curve of a ring of 18

hydrogen atoms, a well-established benchmark test36–39. We then compute the relative energies of

the chair, half-chair, twist-boat, and boat conformers of cyclohexane, the structure and dynamics of

which are important prototypes of a wide range of organic compounds40–43. Our calculations use 27

and 32 qubits for the hydrogen ring and cyclohexane respectively, a substantial reduction from the

41 and 89 qubits required for unfragmented calculations, and are carried out on the ibm_cleveland

quantum computer from IBM’s Eagle processor family. To assess the accuracy of our results, we

compare them against DMET calculations using exact diagonalization (FCI) as a subsystem solver

– to estimate the accuracy of SQD as a subsystem solver – and unfragmented calculations with

heat-bath configuration interaction (HCI) and coupled cluster singles and doubles (CCSD) – to

quantify the accuracy of the fragmentation approximation.
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4.2 Methods

4.2.1 Density matrix embedding theory

DMET44–48 is a wave-function-based quantum embedding method, that allows high-level treat-

ments for multiple subsystems using accurate and expensive beyond mean-field methods in conjunc-

tion with a mean-field calculation on the entire system. Formally, DMET divides the 𝛴-dimensional

Hilbert space of a quantum system into a fragment, i.e. a subspace of dimension 𝑖𝛶 ⇔ 𝛴, and

an environment, i.e. a subspace of dimension 𝛴𝑀 = 𝛴 → 𝑖𝛶 ↖ 𝑖𝛶 . The exact and unknown

ground-state of the system’s Hamiltonian 𝐿̂, |ω↓ =
∑𝑖𝑁

𝛷=1
∑𝛴𝑂

𝑏=1 ω 𝛷 𝑏 | 𝛷 ↓ ↙ |𝑏↓, is written through a

Schmidt decomposition of the matrix ω 𝛷 𝑏 =
∑𝑖𝑁

𝑢=1𝛹𝛷 𝑢𝛺𝑢𝑓𝑢𝑏 as |ω↓ =
∑𝑖𝑁

𝑢=1 𝛺𝑢 |𝛻𝑢↓ ↙ |𝑌𝑢↓. The

states |𝑌𝑢↓ =
∑

𝑏 𝑓𝑢𝑏 |𝑏↓ are called bath states and, although they lie in a 𝛴𝑀 -dimensional subspace,

they span a 𝑖𝛶-dimensional subspace. The ground state of 𝐿̂ is also the ground state of the

subsystem Hamiltonian 𝐿̂𝑏𝛼𝑌 = 𝛥̂𝐿̂𝛥̂, where 𝛥̂ =
∑

𝑢𝛽 |𝛻𝑢↓⇒𝛻𝑢 | ↙ |𝑌𝛽↓⇒𝑌𝛽 | is the projection on a

2𝑖𝛶-dimensional subspace, drastically smaller than the original 𝛴-dimensional space. While this

construction is formally exact and shows that the electronic structure of the entire system can be

described exactly by that of a fragment and its surrounding bath, it is impractical because it assumes

knowledge of the exact ground-state wavefunction and its Schmidt decomposition.

In practical implementations, DMET employs a mean-field approximation to the ground-state

wavefunction46. For a closed-shell system of 𝑁𝑏𝑗𝑏𝑊 electrons in 𝑁𝛾𝑆𝑌 spatial orbitals, this is a Slater

determinant of the form |ε↓ =
∏

𝑃𝑛 𝑋̂†𝑊𝑃𝑛 |∝↓, where |∝↓ is the vacuum state and 𝑋̂†𝑃𝑛 creates a spin-𝑛

electron in the spatial orbital |𝑊𝑃↓ =
∑

𝑚 𝑎𝑚𝑃 |𝑚↓, with 𝑃 = 1 . . . 𝑁𝑏𝑗𝑏𝑊/2 and |𝑚↓ a finite basis set of

𝑁𝛾𝑆𝑌 orthonormal and spatially localized single-electron orbitals. Basis set elements are divided in

fragment (𝑚 ≃ 𝛶) and environment (𝑏 ς 𝛶) orbitals. Diagonalizing the environment-environment

block of the one-particle reduced density matrix, 𝑒𝑏𝑏′ = ⇒ε|𝑀̂ 𝑏
𝑏′ |ε↓ with 𝑀̂ 𝑏

𝑏′ =
∑

𝑛 𝑋̂†𝑏𝑛𝑋̂𝑏′𝑛,

yields a set of eigenpairs,
∑

𝑏′ 𝑒𝑏𝑏′𝛿𝑏′𝑤 = 𝛿𝑏𝑤𝜀𝑤. The eigenvalues 𝜀𝑤 = 0, 0 < 𝜀𝑤 < 2, and

𝜀𝑤 = 2 respectively correspond to virtual environment orbitals, so-called “bath orbitals”, and

occupied environment orbitals. The state |ε↓ can be factored in two terms, respectively containing

occupied orbitals without overlap on 𝛶 (occupied environment) and with overlap on 𝛶 (linear
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combinations of fragment and bath orbitals). Since bath orbitals and local fragment orbitals are

in general partially occupied in the DMET high-level wavefunction, the subsystem Hamiltonian

has the form of a quantum chemistry active-space Hamiltonian45,46 where occupied and virtual

environment orbitals are inactive orbitals. Denoting the electronic Hamiltonian of the full system

as 𝐿̂ =
∑

𝑚𝑆 𝜁𝑚𝑆 𝑀̂
𝑚
𝑆 +

∑
𝑚𝑆𝑝𝑞

(𝑚𝑆 |𝑝𝑞)
2 𝑀̂ 𝑚𝑝

𝑆𝑞 with 𝑀̂ 𝑚𝑝
𝑆𝑞 =

∑
𝑛𝑟 𝑋̂

†
𝑚𝑛𝑋̂

†
𝑝𝑟𝑋̂𝑞𝑟𝑋̂𝑆𝑛, the subsystem Hamiltonian

takes the form

𝐿̂𝑏𝛼𝑌 =
∑
𝜁𝛻

𝜁𝜁𝛻 𝑀̂
𝜁
𝛻 +

∑
𝑚𝑆𝑝𝑞

(𝜁𝛻 |𝜂𝑙)

2
𝑀̂ 𝜁𝜂
𝛻𝑙 ,

𝜁𝜁𝛻 = 𝜁𝜁𝛻 +
∑
𝑏𝑏′

[
(𝜁𝛻 |𝑏𝑏′) → (𝜁𝑏′|𝑏𝛻)

]
𝑒̃𝑏𝑏′ ,

(4.1)

where 𝜁𝛻 range over fragment and bath orbitals (defining the subsystem, also called “impurity”

in the DMET literature), and 𝑒̃𝑏𝑏′ =
∑

𝑤 : 𝜀𝑄=2 𝛿𝑏𝑤𝛿⇓

𝑏′𝑤 is the density matrix of the 𝑁𝑏𝑑𝜂
𝛾𝑊𝑊 occupied

environment orbitals. The lowest-energy eigenvector (with 𝑁𝑏𝑗𝑏𝑊→2𝑁𝑏𝑑𝜂
𝛾𝑊𝑊 electrons) of the subsystem

Hamilonian Eq. (4.1) can be computed with a high-level method like full configuration interaction

(FCI)44,45, density matrix renormalization theory (DMRG)49, complete active space self-consistent

field (CASSCF)48,50, or CCSD51.

Typical DMET calculations employ multiple fragments, in which case multiple subsystem

Hamiltonians are produced and diagonalized, yielding multiple one- and two-body reduced density

matrices that are used to evaluate properties of the full system, e.g. the total energy and electron

number45,46. The partitioning into multiple overlapping fragments can lead to non-variationality

of the DMET energy, and discrepancies between the target (𝑁𝑏𝑗𝑏𝑊) and DMET electron number.

To remedy this deficiency, we follow the strategy of “one-shot” DMET calculations46, where the

subsystem Hamiltonians Eq. (4.1) are modified adding a global chemical potential (i.e. independent

of fragment and orbital indices) for the local fragment orbitals, 𝐿̂𝑏𝛼𝑌 ∞ 𝐿̂𝑏𝛼𝑌 → 𝑢glob
∑

𝛷 ≃𝛶 𝑋̂†𝛷 𝑋̂ 𝛷 ,

optimized to ensure that DMET predicts the correct particle number. Optimization of chemical

potential is done iteratively until the threshold is reached.
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4.2.2 Sample-based quantum diagonalization

SQD29,52,53 is a quantum subspace method54 that uses a quantum circuit |εqc↓ to sample a set

of computational basis states 𝑦 = {x1 . . . x𝑖} from the probability distribution 𝑚(x) = |⇒x|εqc↓ |
2

and a classical computer to solve the Schrödinger equation in the subspace spanned by such

computational basis states. Since in the standard Jordan-Wigner (JW) mapping of fermions to

qubits55–57 a computational basis state parametrizes a Slater determinant, the Slater-Condon rules

allow to e"ciently compute the matrix elements ⇒x𝑃 |𝐿̂ |x 𝑇 ↓ within Davidson diagonalization.

In this work, we use SQD to perform conventional unfragmented active-space calculations29,34,58

and to approximate the ground state of the DMET subspace Hamiltonians (4.1). We sample com-

putational basis states from the following truncated version of the local unitary cluster Jastrow

(LUCJ) ansatz59

|εqc↓ = 𝑏→𝑍̂2𝑏𝑍̂1𝑏𝑃𝑣1𝑏→𝑍̂1 |xRHF↓ , (4.2)

where 𝑍̂1 and 𝑍̂2 are one-body operators, 𝑣1 is density-density operator, and |xRHF↓ is the restricted

closed-shell Hartree-Fock (RHF) state. The parameters defining the LUCJ wavefunction (4.2) are

derived from a classical restricted closed-shell CCSD, as detailed in Ref. 29.

On a noisy quantum device, computational basis states are sampled from a probability distribu-

tion 𝑚(x) that unavoidably di!ers from 𝑚(x) due to quantum noise. As a result, (i) particle number

and total spin-𝑠 may not be conserved, i.e. the sampled computational basis states may correspond

to Slater determinants with incorrect number of spin-up and/or spin-down electrons, and (ii) the

subspace spanned by the sampled computational basis states may not allow to produce eigenstates

of the total spin operator 𝑧2. We emphasize that situations (i) and (ii) may occur also on noiseless

quantum devices, respectively because the quantum circuit ω may break particle-number and spin-𝑠

symmetries (although this is not the case for LUCJ) and Slater determinants are generally not eigen-

states of total spin. To restore the broken particle-number and spin-𝑠 symmetries, Ref. 29 proposed

an iterative self-consistent configuration recovery (S-CORE) procedure. Each iteration of S-CORE

has two inputs: a fixed set of computational basis states 𝑦̃ sampled from a quantum computer, and

an approximation to the ground-state occupation number distribution 𝑑𝑚𝑛 = ⇒ω|𝑋̂†𝑚𝑛𝑋̂𝑚𝑛 |ω↓. In
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each iteration, we randomly flip the entries of the computational basis states in 𝑦̃ based on 𝑑𝑚𝑛 until

particle number and spin-𝑠 assume target values, thereby producing a new set 𝑦̃𝑉. We then sample

𝑍 subsets (batches) from 𝑦̃𝑉, that we label 𝑦̃𝑌 with 𝑌 = 1 . . .𝑍 . Each batch yields a subspace 𝑧(𝑌)

of dimension 𝑖 29, in which we project the many-electron Hamiltonian as

𝐿̂𝑧 (𝑀) = 𝛥̂𝑧 (𝑀) 𝐿̂𝛥̂𝑧 (𝑀) , (4.3)

where the projector 𝛥̂𝑧 (𝑀) is

𝛥̂𝑧 (𝑀) =
∑

x≃𝑧 (𝑀)

|x↓⇒x| . (4.4)

We compute the ground-state wavefunctions and energies of Eq. (4.3), respectively |𝛩 (𝑌)
↓ and

𝑀 (𝑌) , and use the lowest energy across the batches, min𝑌 𝑀 (𝑌) , as the best approximation to the

ground-state energy. We use the wavefunctions |𝛩 (𝑌)
↓ to update the occupation number distribution,

𝑑𝑚𝑛 =
1
𝑍

∑
1⇑𝑌⇑𝑍

⇒𝛩 (𝑌)
|𝑋̂†𝑚𝑛𝑋̂𝑚𝑛 |𝛩

(𝑌)
↓ , (4.5)

and use it as an input in the next S-CORE iteration. At the first S-CORE iteration, we initialize 𝑑𝑚𝑛

by post-selecting60 measurement outcomes in 𝑦̃ with the correct particle number.

While S-CORE restores particle number and spin-𝑠 conservation (and can be immediately gen-

eralized to any other symmetry operator having Slater determinants as eigenstates, e.g., molecular

point-group symmetries in a basis of symmetry-adapted MOs), it does not ensure conservation of

total spin 𝑧2. To mitigate this limitation, in the construction of the subspaces 𝑧(𝑌) , we extend the

set of configurations 𝑦̃𝑌 to ensure its closure under spin inversion symmetry as detailed in Ref. 29.

For this reason, 𝑖 can be larger than | 𝑦̃𝑌 |.

4.2.3 Computational details

Target applications We define the geometries of H18 as R𝛬 = (𝑒 cos(𝛬ϱ𝜃), 𝑒 sin(𝛬ϱ𝜃), 0) with

𝛬 = 1 . . . 18 and ϱ𝜃 = 2𝛱/18, i.e. along a circle of radius 𝑒, chosen so that the distance between

adjacent atoms is 𝑉 = 0.70, 0.85, 1.00, 1.10, and 1.30 Å (see Fig. 4.1). We compute the geometries

of the chair, half-chair, twist-boat, and boat conformers of cyclohexane by performing a geometry

optimization at the MP2/aug-cc-pVDZ level of theory using the ORCA software package61, and
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Figure 4.1 Overview of quantum circuits. (A-C) Qubit layouts of LUCJ circuits for: (A)
DMET-SQD simulations of H18 with H6 fragments and (12e,12o) subsystems using 27 qubits
of ibm_cleveland, (B) unfragmented H18 simulations using 41 qubits, and (C) DMET-SQD sim-
ulations of cyclohexane with CH2 fragments and (14e,14o) subsystems using 32 qubits. Colored
highlights over the molecular structures indicate DMET fragments (red, blue, green for systems
A, B, C respectively). The layout of ibm_cleveland is shown in gray, qubits used to encode
occupation numbers of spin-up/down electrons are marked in light/dark colors, and ancilla qubits
in brown. (D) Number of qubits, 2-qubit gate depth, and CNOT gate count of the LUCJ circuits of
systems A, B, C (red, blue, green columns respectively).

confirming the local minimum and transition-state character of each geometry by a vibrational

frequency analysis.

DMET We perform DMET calculations as implemented in Tangelo 0.4.362, using PySCF

2.6.24,63,64. In our DMET calculations, carried out at the STO-3G level of theory, we localize

orbitals46,48 with the meta-Loẅdin scheme65, and optimize the chemical potential 𝑢glob with a

convergence threshold of 1 · 10→5.

LUCJ We generate the LUCJ circuits in Eq. (4.2) using the !sim library66 interfaced with

Qiskit 1.1.167,68. We execute them on the ibm_cleveland quantum computer, using the qubit

layouts shown in Fig. 4.1A, 4.1B, and 4.1C for DMET calculations on H18 with an H6 fragment,

unfragmented SQD calculations on H18, and DMET calculations on cyclohexane with a CH2

fragment, respectively. To mitigate quantum errors, we use gate twirling (but not measurement
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Table 4.1 Details of SQD and DMET-SQD calculations. Fragments are defined by MOs localized
spatially in the regions highlighted in Fig. 4.1. We use the following abbreviations: “unfrag.” for
unfragmented (i.e. conventional SQD), “AS” for active space (a subsystem, i.e. fragment+bath,
in DMET-SQD calculations) and 𝛴AS for Hilbert-space dimension as determined from the active-
space orbitals and electrons in column 3. 𝑦̃𝑌 and 𝑖 is defined as in the main text, and 𝑖′ is the number
of configurations in an SQD wavefunction |𝛩 (𝑌)

↓ =
∑𝑖

𝛼=1 𝑊𝛼 |x𝛼↓ with amplitudes |𝑊𝛼 |2 ∈ 1 · 10→8.
The values of 𝑖 and 𝑖′ are computed for H18 at bondlength 1.0 Å and for the chair conformation of
cyclohexane, and more extensive studies are reported in the Appendix.

system fragment AS method | 𝑦̃𝑌 | [103
] 𝑖 [105

] 𝑖′ [105
] 𝛴AS [105

]

H18 H6 (12e,12o) DMET-SQD 1 5.0 1.190 8.5
H18 H6 (12e,12o) DMET-SQD 2 6.9 1.723 8.5
H18 H6 (12e,12o) DMET-SQD 3 8.0 2.050 8.5
H18 H6 (12e,12o) DMET-SQD 4 8.3 2.174 8.5
H18 H6 (12e,12o) DMET-SQD 5 8.5 2.224 8.5
H18 unfrag. (18e,18o) SQD 7 1163 0.731 23639
H18 unfrag. (18e,18o) SQD 8 1408 0.825 23639
H18 unfrag. (18e,18o) SQD 9 1712 0.876 23639
H18 unfrag. (18e,18o) SQD 10 2034 0.980 23639
H18 unfrag. (18e,18o) SQD 11 2346 1.048 23639
H18 unfrag. (18e,18o) SQD 12 2656 1.075 23639
C6H12 CH2 (14e,14o) DMET-SQD 6 86.7 0.858 118
C6H12 CH2 (14e,14o) DMET-SQD 7 88.7 0.886 118
C6H12 CH2 (14e,14o) DMET-SQD 8 97.2 0.889 118
C6H12 CH2 (14e,14o) DMET-SQD 9 99.9 0.906 118
C6H12 CH2 (14e,14o) DMET-SQD 10 103.8 0.907 118

twirling) over random 2-qubit Cli!ord gates69 and dynamical decoupling70–73 as available through

the SamplerV2 primitive of Qiskit’s runtime library. The number of qubits, 2-qubit gate depth,

and number of CNOT gates are listed, for the circuits executed in this work, in Fig. 4.1D. Since we

elected to perform “one-shot” DMET calculations, and to optimize 𝑢glob using the configurations

sampled at 𝑢glob = 0 and simply repeating the S-CORE procedure for several values of 𝑢glob, the

total number of circuits executed in this work is 3, 1, and 6 for the systems in Fig. 4.1A, 4.1B, and

4.1C respectively.

SQD We perform SQD calculations using the implementation in the GitHub repository Ref. 74.

In DMET-SQD simulations, we perform 10 and 3 iterations of S-CORE, respectively prior and

during the optimization of the chemical potential. In unfragmented SQD calculations, we perform
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10 iterations of S-CORE. The details of SQD and DMET-SQD calculations performed in this work

are listed in Table 4.1.

Classical benchmarks To assess the accuracy of DMET-SQD calculations, we perform unfrag-

mented calculations using: CCSD, CCSD with perturbative triples (CCSD(T))75 as implemented in

PySCF 2.6.2, and heat-bath configuration interaction (HCI)76–79 as implemented in the SHCI-SCF

0.1 interface between PySCF 2.6.2 and DICE 1.0. In HCI simulations, we fix the parameter 𝛯1

(controlling which determinants are included in the variational wavefunction76) to 5 · 10→6 during

initial variational steps and 1 · 10→6 during later variational steps.

4.3 Results

We now present results for a ring of 18 hydrogen atoms, closely related to the hydrogen chain

described in Ref. 36 and studied at finite lengths and finite basis sets by several groups37,80–84 both

as a benchmark for numerical methods in presence of electronic correlation of varying nature and

strength38 and a model system to investigate a variety of physical phenomena39.

In Fig. 4.2, we show the potential energy curve of the ring from unfragmented restricted closed-

shell HF, CCSD, CCSD(T), SQD, and HCI methods (top) and DMET with CCSD, SQD, and FCI as

subsystem solver (bottom). Correlated methods agree qualitatively for 𝑉 ⇑ 1.0 Å and their potential

energy curves visibly depart from each other for 𝑉 ∈ 1.1Å, as the simultaneous breaking of multiple

bonds leads to stronger electronic correlation e!ects. The di!erent behavior of correlated methods

is analyzed in more detail in the bottom panel of Fig. 4.2, where we show deviations between

computed energies and HCI, taken as reference. As 𝑉 increases restricted CCSD and CCSD(T)

underestimate the ground-state energy by ⇐2 kcal/mol per atom, a phenomenon well-known38,85 to

occur in the presence of static electronic correlation. On the other hand SQD overestimates it by⇐2.5

kcal/mol per atom: as 𝑉 increases, the ground-state wavefunction acquires multireference character,

requiring more configurations for accurate energy estimates, and highlighting the sensitivity of

SQD to several algorithmic elements including the LUCJ circuit, its parametrization via CCSD

amplitudes, and device noise (a!ecting e.g. the quality of the occupation number distribution used
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Figure 4.2 Potential energy curve of a hydrogen ring. Top: ground-state energy per atom along the
symmetric expansion of a ring of 18 hydrogen atoms using various unfragmented (RHF, CCSD,
CCSD(T), SQD, HCI) methods and DMET with CCSD, SQD, and FCI as subsystem solver.
Bottom: deviation between HCI and other potential energy curves. Energies per atom are shown.

in the first iteration of S-CORE).

DMET-CCSD and DMET-SQD yield potential energy curves in better agreement with HCI than

equivalent unfragmented calculations and with considerably lower non-parallelity error (beneficial

in the calculation of energy di!erences and derivatives) and sub-kcal/mol non-variationality biases.

The observed improvements are accounted for by the smaller size of DMET subsystems as compared

to the entire hydrogen ring, which alleviates the breakdown of CCSD in DMET-CCSD calculations,

and the impact of ine"cient configuration sampling in DMET-SQD calculations (the ratio between

the number 𝑖′ of configurations with coe"cients above a given threshold, and the total number 𝑖

of configurations in the SQD wavefunction is higher for DMET-SQD than for unfragmented SQD,
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see Table 4.1 and the Appendix).

Figure 4.3 SQD performance versus number of configurations. Deviations from HCI for unfrag-
mented SQD (top) and DMET-SQD energies (bottom), along the symmetric expansion of a ring of
18 hydrogen atoms, for several values of | 𝑦̃𝑌 |.

In Fig. 4.3, we explore the behavior of SQD and DMET-SQD calculations as a function of the

number of batch configurations | 𝑦̃𝑌 |. As naturally expected, increasing | 𝑦̃𝑌 | leads to increasing

𝑖 (see also Table 4.1) and thus to a closer agreement with HCI and DMET-FCI, respectively.

Increasing | 𝑦̃𝑌 | also reduces fluctuations in SQD energies caused by the randomness of sampled

configurations, which are particularly visible in the bottom panel of Fig. 4.3 (light green curve,

| 𝑦̃𝑌 | = 1 · 103). The rate at which SQD and DMET-SQD results approach HCI and DMET-FCI

counterparts is determined by | 𝑦̃𝑌 | through the ratio between 𝑖 and the dimension of the active
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space and through the ratio between 𝑖′ and 𝑖, which is lower for unfragmented H18 calculations

(see Table 4.1 and the appendix), suggesting ine"cient sampling.

chair half-chair

twist-boat boat

Figure 4.4 Conformations of cyclohexane. Schematic representations of the chair, half-chair, twist-
boat, and boat conformations of cyclohexane (top) and their energies relative to the chair using
DMET-FCI and unfragmented CCSD(T) (bottom).

We now turn our attention to cyclohexane. This compound can adopt several conformations,

illustrated in Fig. 4.4, owing to the flexibility of its carbon-carbon single bonds: (i) in the lowest-

energy “chair” conformation, C atoms are positioned so that C-C ring bonds assume energetically

favorable angles (thereby minimizing angle strain) and C-H ring bonds are staggered (eliminating

torsional strain), (ii) in the less stable “boat” conformation, two C atoms are at the same height,

creating steric strain (and hindrance) due to the proximity of two H atoms bound to them (above the

boat) and creating torsional strain because eight H atoms (below the boat) are forced into eclipsed

positions, (iii) in the “twist-boat” conformation, a slight twisting deformations from the “boat”
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Figure 4.5 DMET-SQD calculations on cyclohexane. Top: comparison between DMET-FCI and
DMET-SQD for several values of | 𝑦̃𝑌 |. Bottom: deviations of DMET-SQD from DMET-FCI.

reduces steric strain by moving H atoms “above the boat” far apart, and eclipsing interactions by

moving H atoms “below the boat” into largely (but not completely) staggered positions, (iv) in the

“half-chair” conformation, cyclohexane assumes a partially planar shape at the cost of significant

ring strain, as in the planar portion the C-C bond angles are forced to energetically unfavorable

angles and the corresponding C-H bonds are fully eclipsed.

Computing energy di!erences between cyclohexane conformations in a qualitatively (i.e. cor-

rectly ranking) and quantitatively accurate way is an important methodological test, particularly

because these energy di!erences are of the order of a few kcal/mol, and a necessary step towards

richer and more realistic studies. In Fig. 4.4, we compare DMET-FCI with unfragmented CCSD(T)

energies of cyclohexane conformations, relative to the chair. As seen, the fragmentation approx-
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imation underlying DMET a!ects energy di!erences rather modestly, well below 1 kcal/mol. In

Fig. 4.5 (top), we compare DMET-FCI and DMET-SQD energy di!erences for several values of

| 𝑦̃𝑌 |, showing deviations between DMET-FCI and DMET-SQD for each conformation in Fig. 4.4

(bottom). For | 𝑦̃𝑌 | ∈ 8 · 103, deviations from DMET-FCI are mostly within 1 kcal/mol and confor-

mations are ordered correctly by DMET-SQD. For | 𝑦̃𝑌 | = 6 · 103, on the other hand, the ordering of

conformations is incorrect, with twist-boat predicted to be the most stable geometry and half-chair

predicted to be more stable than boat.

4.4 Conclusion

In this study, we presented the first DMET calculations using the quantum computing SQD

method as a subsystem solver. We tested the DMET+SQD combination by computing the the

ground-state potential energy curve of a ring of 18 hydrogen atoms, a standard benchmark of first-

principle electronic structure methods, and the relative energies of the conformers of cyclohexane,

a use case of more practical significance to organic chemistry. The relative energies of these

conformations do not results from the breaking and formation of chemical bonds, but from the

delicate balance of electrostatic interactions between molecular moieties in di!erent geometries. In

this aspect, the calculations performed in this work can be considered a severe test of DMET-SQD.

The use of SQD as a subsystem solver allowed the quantum computation of subsystems with

more electrons and orbitals than previously possible, by executing fewer and larger quantum circuits

(as documented in Fig. 4.1) on a quantum processor assisted by classical HPC resources carrying

out pre-, peri-, and post-processing operations (respectively preliminary mean-field calculations

and subsystem Hamiltonian construction, S-CORE and the associate subspace diagonalization, and

computation of system properties such as particle number and ground-state energy by the collation

of results from individual subsystems). In addition, the use of SQD as a subsystem solver allows for

higher accuracy and precision than previously possible in studies involving present-day quantum

computers, due to the noise-resilience properties of the algorithm29.

It is important to continue to expand the application of DMET-SQD to more complex instances

of the electronic structure problem. Continued development in error rates of quantum comput-
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ers, error mitigation techniques, and construction and optimization of quantum circuits for SQD

applications have the potential to improve the e"ciency of sampling computational basis states,

leading to more compact eigenvalues problems. This would in turn improve the accuracy and

time to solution of DMET-SQD, further extending the range of accessible applications and/or the

reliance on computationally expensive HPC peri-processing (especially matrix diagonalization).

Further studies building on the work done here, involving chemical species of greater relevance

to organic and biological chemistry, and non-minimal basis sets necessary for qualitatively correct

and quantitatively accurate results, would also be very desirable.

More generally, our study serves as a proof-of-concept for the concerted use of quantum and

classical computers, as complementary elements of QCSC algorithms and architectures, as an

innovative and promising mode of attack of correlated many-electron systems by first-principle

electronic structure methods, with the ultimate goal to enhance molecular design platforms.
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APPENDIX

ADDITIONAL DATA

In Figs. 4A.1 and 4A.2, we show the number of configurations in an SQD wavefunction |𝛩 (𝑌)
↓ =

∑𝑖
𝛼=1 𝑊𝛼 |x𝛼↓, labeled 𝑖, the number of such configurations with |𝑊𝛼 |2 ∈ 1 · 10→5 labeled 𝑖′, and

the Hilbert space dimension, for H18 as a function of bondlength using | 𝑦̃𝑌 | = 12 · 103 and for

cyclohexane as a function of reaction coordinate using | 𝑦̃𝑌 | = 8 · 103 respectively.

Figure 4A.1 Sparsity of SQD wavefunctions for a hydrogen ring. Hilbert space dimension (dashed
line), number 𝑖 of configurations in the SQD wavefunction (symbols connected by a solid line)
and number 𝑖′ of such configurations with coe"cients above 1 · 10→8 in absolute value squared
(symbols connected by a dashed line), for a ring of 18 hydrogen atoms as a function of bondlength,
studied with SQD (top, red squares) and DMET-SQD (bottom, green triangles).

In Fig. 4A.1, note how 𝑖 is relatively close to the Hilbert space dimension and roughly inde-

pendent of 𝑉, whereas 𝑖′ increases with 𝑉, albeit at di!erent rates for SQD and DMET-SQD.
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Figure 4A.2 Sparsity of SQD wavefunctions for cyclohexane. Hilbert space dimension (dashed
line), number 𝑖 of configurations in the SQD wavefunction (triangles connected by a solid line)
and number 𝑖′ of such configurations with coe"cients above 1.0 · 10→8 in absolute value squared
(triangles connected by a dashed line), for cyclohexane conformations studied with DMET-SQD.
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