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ABSTRACT

Nuclear fission is important for energy production, medicinal applications, nonprolifer-

ation efforts, and nucleosynthesis studies. The rapid neutron capture process (r process)

contributes to observed abundances of medium- and heavy-mass nuclei, and requires fission

data for hundreds of nuclei, most of which lie outside of experimental reach. Therefore,

predictive fission models with quantified uncertainties are required.

In this thesis, spontaneous fission is described as tunneling through an effective barrier

defined using a set collective coordinates, called the potential energy surface (PES), which is

computed using nuclear density functional theory (DFT). The half-life is then determined by

the tunneling pathway, and the primary fragment yields are approximately determined by

its endpoint. Computing uncertainties for these quantities in a Bayesian framework requires

tens- to hundreds-of-thousands of calculations, making it computationally infeasible. This

problem is exacerbated by the large number of nuclei that participate in the r process.

This thesis is divided in two parts. The first discusses the formalism necessary for com-

puting spontaneous fission observables. Improvements to the tunneling pathway calculation

are presented, and the improved methodology is applied to nuclei with competing fission

modes.

The second part discusses two strategies for approximating these observables across the

r process region of the chart, with quantified uncertainties. The first strategy uses neu-

ral networks to emulate the PES. The second uses dimensionality reduction techniques to

propagate statistical uncertainties from the energy density functional posterior parameter

distribution.
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Chapter 1. Introduction

1.1 Nuclear Fission

Nuclear fission, discovered by Otto Frisch, Otto Hahn, Lise Meitner, and Fritz Strassmann

in 1938 [1, 2], is the splitting of a heavy nucleus into multiple smaller nuclei. Today, it is

important for energy production, medicinal applications, and defense initiatives, especially

nonproliferation efforts. It is also a useful testing ground for approaches to the nuclear

quantum many-body problem, and plays an important role in describing the rapid neutron

capture process (the r process) abundances [3].

The fission process takes place on multiple different timescales, each with a set of asso-

ciated observable quantities, see Fig. 2 of Ref. [4]. The first stage is the entrance channel,

which is different for induced, β-delayed, and spontaneous fission. The entrance channel for

induced fission is a particle (e.g. a neutron or a photon) colliding with a heavy nucleus; for

β-delayed fission, it is a heavy nucleus β decaying; and for spontaneous fission, it is a nucleus

sitting in its ground state.

Next, the nucleus rapidly deforms from a compact shape into a peanut-like shape, and

splits into two (rarely, three) fragments. This motion takes place between 10−21 − 10−19

seconds. The resulting distribution is called the primary fragment yields, and may be recon-

structed from experimental data. The kinetic energy of the fragments is also an important

observable.

The emitted fragments are highly excited. Their excitation energy is carried off by

emission of neutrons and gamma radiation, taking place between 10−18−10−7 seconds. The

neutron and gamma ray spectrum can both be measured, along with correlations between

emitted particles. Finally, the fragments (now in their ground state) are unstable and β
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decay towards stability. This last process takes place on timescales from microseconds up to

hours, and leads to cumulative fission yields.

All told, a unified description of fission would require a model that is descriptive from

10−18−103 s. Thus, each stage is treated using a different model, typically with inputs from

the previous stage. This work focuses solely on the collective motion leading to the primary

fragment yields.

1.2 Large Scale Calculations

Fission properties of hundreds of nuclei are important for r process nucleosynthesis [5]. A

large fraction of the relevant nuclei are short-lived, and in fact outside of experimental reach,

even with state-of-the-art facilities such as the Facility for Rare Isotope Beams [6, 7]. It is

desirable to model fission based on (effective) nucleon-nucleon interactions that are able

to describe a wide swath of nuclear observables, rather than phenomenological approaches

tailored to fission and nuclei near stability. Hence, we describe fission using density functional

theory (DFT).

The tradeoff is that DFT is computationally more expensive than phenomenological ap-

proaches. Thus, important observables such as the primary fragment yield distributions tend

to be taken from phenomenological calculations [8, 9]. To make matters worse, meaningful

predictions require theoretical error bars, requiring tens- to hundreds-of-thousands of DFT

calculations for each calculation previously required [10]. Note that this challenge persists

for all applications, including comparison with experimental data [11].

Thus, model emulators are necessary. Model emulators may be understood as approx-

imate, yet fairly accurate, models that are quicker to evaluate than the true model. Ma-

chine learning tools have been successfully used as model emulators in all areas of nuclear
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physics [12]. Recent developments in nuclear theory, including in DFT, have focused on

reducing the number of model calculations required to train emulators. However, continued

development is necessary for realistic calculations of fission properties.

1.3 Organization of this Dissertation

This dissertation is organized as follows. DFT is reviewed in Ch. 2. Chapter 3 connects

DFT to spontaneous fission, and Ch. 4 applies this approach to nuclei with competing

fission modes. These two chapters follow my publications, Refs. [13, 14], respectively. Chap-

ter 5 discusses fission emulation using neural networks, following my publication, Ref. [15].

Ch. 6 discusses DFT emulation using reduced order models, which is ongoing work. Finally,

conclusions and prospects are presented in Ch. 7.
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Chapter 2. Density Functional Theory
Our approach to fission is based on nuclear density functional theory. DFT was introduced

in computational chemistry, see e.g. Refs. [16, 17]. In nuclear DFT, one expresses the total

energy of the nucleus as a functional of local densities and currents: the energy density

functional (EDF), then uses the variational principle to minimize the total energy. Its

use is justified by the Hohenberg-Kohn theorems, which prove that, for every many-body

interaction, there exists an EDF whose lowest-energy configuration has the same energy

as the ground state of the many-body Hamiltonian [18, 19]. DFT has had great success

describing many phenomena, including ground-state properties such as masses and charge

radii, excited states and decay rates, collisions, and fission, see Ref. [20] and references within.

In this chapter, I will provide a brief overview of DFT, focused on the description relevant

for fission. First, I will give a condensed derivation of the Hartree-Fock-Boguliubov (HFB)

equations in terms of a generic EDF. Second, I will describe the EDFs used throughout this

work. And third, I will connect to fission by discussing constrained calculations.

2.1 The HFB Equations

The Hartree-Fock-Boguliubov equations have been studied in many works in nuclear physics,

including but not limited to Refs. [21–28]. Here, I will summarize the features relevant for

this thesis.

Consider a second-quantized interaction, composed of single-particle creation and anni-

hilation operators a
†
i , aj :

Ĥ =
∑
ij

tija
†
iaj +

1

4

∑
ijkl

v̄ijkla
†
ia
†
jalak + · · · (2.1)

The one-body term tij is typically the kinetic energy, and v̄ is the antisymmetrized two-body
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term. The creation and annihilation operators obey the canonical Fermionic anticommuta-

tion rules {ai, a†j} = δij and {ai, aj} = 0. Rather than computing the full spectrum of the

Hamiltonian, we use the Ritz variational principle [22]. For any trial wave function |ϕ⟩ that

is not orthogonal to the true ground state wave function,

Eϕ ≡
⟨ϕ|Ĥ|ϕ⟩
⟨ϕ|ϕ⟩ ≥ Egs, (2.2)

where Egs is the true ground-state energy of the Hamiltonian.

The independent-particle picture is a zero-order depiction of nuclear motion, hence the

success of shell-model-type approaches [29, 30]. As such, an appropriate ansatz for a wave

function is the Slater determinant, which describes nucleons moving independently within a

mean field. Following this line of thought leads to the Hartree-Fock (HF) equations. However,

pairing superfluidity is important for many nuclear properties, such as the well-known odd-

even mass staggering in nuclear binding energies [31]. The simplicity of the independent

particle picture can be retained, even while largely capturing the pairing effects, by instead

discussing the independent quasi -particle picture.

The following derivation largely follows from Ref. [23]. The HFB equations may also

be derived using the Thouless representation of the HFB wave function; see the discussion

in [22].

In mathematical terms, the HFB wave function |HFB⟩ is a Slater determinant expressed

in terms of quasiparticle operators α
†
i , αj via the Boguliubov transformation:

αk =
∑
n

(U∗nkan + V ∗nka
†
n), α

†
k =

∑
n

(Vnkan + Unka
†
n). (2.3)
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Note that these operators also obey the anticommutation rules {αi, α†j} = δij , {αi, αj} = 0

(equivalently, the Boguliubov transformation is unitary), so U, V are not independent. The

HFB wave function |HFB⟩ is a quasiparticle vacuum, i.e. it satisfies αj |HFB⟩ = 0 for all j.

The variational energy can be computed straightforwardly using Wick’s theorem:

EHFB =
⟨HFB|Ĥ|HFB⟩
⟨HFB|HFB⟩ = tr

[(
t+

1

2
Γ

)
ρ

]
− 1

2
tr[∆κ∗]. (2.4)

The particle, ρ, and pairing, κ, one-body densities are defined as

ρij = (V ∗V T )ij , κij = (V ∗UT )ij , (2.5)

and the mean-field potential and pairing field are

Γik ≡
δE

δρki
=
∑
jl

v̄ijklρlj , ∆ij ≡
δE

δκ∗ji
=

1

2

∑
kl

v̄ijklκkl. (2.6)

As the name suggests, the pairing field ∆ describes pairing phenomena, and is not present

in HF theory.

The HFB equations are then derived by varying EHFB with respect to ρ and κ indepen-

dently, with a constraint to preserve unitarity of the Boguliubov transformation. This yields

the self-consistent eigenvalue problem

H

U
V


µ

= Eµ

U
V


µ

, H =

 h ∆

−∆∗ −h∗

 . (2.7)

The matrix H is called the HFB matrix, and it is a functional of one-body densities ρ, κ. Eµ
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is the quasiparticle energy of the µ-th eigenstate. Since time-reversal symmetry is imposed,

each positive eigenvalue Eµ has a corresponding state with negative eigenvalue, −Eµ [24].

In practice, then, only the positive-energy states must be solved for, and the corresponding

negative-energy states are fully occupied in the HFB vacuum. Typically, one considers one

set of equations for protons and neutrons separately, as is done in this work (thus, isoscalar

pairing that mixes proton and neutron channels [32] is ignored).

There are two schematic approaches to solving the HFB equations that are relevant for

this thesis. The first iteratively diagonalizes the HFB matrix, and the eigenvectors at the n-th

iteration are used to construct the HFB matrix at the (n+1)-th iteration. This is the method

used in the axial solver HFBTHO [33] and the 3D solver HFODD [34], for example. The

second approach is to directly minimize the HFB energy using a gradient-based approach,

as has been used in the axial solver HFBAxial [35].

As a terminology aside, DFT may be understood as HF(B) theory where the EDF is

postulated instead of the many-body interaction. Properly, one should denote whether DFT

is carried out at the HF or the HFB level; throughout, we consider DFT at the HFB level.

2.2 The Energy Density Functional

In position space, the total energy EHFB can be written as an integral over the energy

density,

EHFB[ρ, κ] =

∫
d3r E [ρ(r), κ(r)], (2.8)

where E is the EDF. Quite generically, the EDF can be written as

E(r) = Ekin + ECoul + Eph + Epp, (2.9)
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where Ekin and ECoul are the kinetic and Coulomb energy densities, respectively. Eph and Epp

correspond to particle-hole (ph) and particle-particle (pp) interaction terms. Eph depends

only on ρ and its derivatives, while Epp depends on both ρ and κ. Each term will be

explored further below. Note that this separation may lead to divergences in beyond-mean-

field approaches in the event that Eph and Epp are not derived from the same effective

interaction, see the discussion in Ref. [27]. This thesis does not go beyond the mean field

level, and so I will ignore this subtlety.

These terms are composed of local densities and currents. Such densities can be cat-

egorized based on their behavior under time reversal symmetry, although E is even under

time-reversal symmetry. For the ground state of an even-even nucleus, because of time-

reversal symmetry, the time-odd densities vanish [28], so we will only introduce the time-even

densities.

We begin with the one-body density matrix, written in position space as

ρq(rσ, r′σ′) =
∑
k

Vkq(rσ)V ∗kq(r′σ′). (2.10)

The index q labels the nucleon species (q = n, p) and σ, σ′ are the spin indices. Unlike

in HF theory, single-particle states have partial occupancies, i.e. the norm of the lower

components of the eigenvectors, Nkq =
∫
d3r

∑
σ |Vkq(rσ)|2, can take on any value between

0 and 1. Therefore, the sum over k is over all states (at least, all those allowed by the

pairing regularization procedure - see e.g. Ref. [36] for a discussion with a zero-range pairing

interaction). The particle density is further decomposed as

ρq(rσ, r′σ′) =
1

2
ρq(r, r′)δσσ′ +

1

2

∑
µ

(σ|σµ|σ′)ρµ,q(r, r′), (2.11)

8



where the σi are the usual Pauli matrices. The local particle density ρq(r), kinetic energy

density τq(r), and spin-current density Jµν,q(r) are then defined as

ρq(r) = ρq(r, r), (2.12a)

τq(r) = ∇r∇r′ρq(r, r′)|r′=r, (2.12b)

Jµν,q(r) =
1

2i
(∇µ −∇′µ)ρν,q(r, r′)|r′=r. (2.12c)

Upon varying the EDF, one finds a single-particle potential from terms involving ρq, an effec-

tive mass from terms involving τq, and a spin-orbit potential from terms involving Jµν,q [28,

37, 38]. These densities have analogues in the particle-particle channel [24], written in terms

of the pairing density matrix

ρ̃q(rσ, r′σ′) = −
∑
k

Vkq(rσ)U∗kq(r′σ′). (2.13)

It is related to κ Eq. (2.5) by a flip of one of the spin indices, ρ̃q(rσ, r′σ′) = −2σ′κq(rσ, r′σ′).

In place of ∆ we use h̃q(rσ, r′σ′) = −2σ′∆q(rσ, r′σ′). This choice is convenient because ρ̃q

is Hermitian and time-even [24, 36].

The kinetic energy density is simply

Ekin =
∑
q

ℏ2

2mq
τq(r), (2.14)

with mq the nucleon mass. Commonly, one sets ℏ2/(2mq) = 20.73 . . . MeV fm2, to varying

precision depending on the EDF fit (see e.g. Table II of Ref. [28]). Subtracting off the

center-of-mass correction changes 1/m→ 1/m(1− 1/A) [22, 39], although some calibrations

9



such as UNEDF1 [40] and UNEDF2 [41] do not include this correction.

The Coulomb energy density contains the direct and exchange terms,

ECoul ≡ EDCoul + EECoul. (2.15)

The direct term depends on ρp(r), and can be evaluated directly:

EDCoul =
e2

2
ρp(r)

∫
d3r′

ρp(r′)
|r − r′| , (2.16)

where e is the electron charge. Numerical techniques for evaluating this integral have been

discussed in Refs. [25, 36, 38]. The exchange term, on the other hand, is [42, 43]

EECoul(r) = −e
2

2

∑
kk′σσ′

Vkp(rσ)V ∗
k′p(rσ)

∫
d3r′

V ∗kp(r′σ′)Vk′p(r′σ′)
|r − r′| , (2.17)

which depends on ρp(rσ, r′σ′). While some works evaluate this exactly, see e.g. the Fortran

code HFBTHO v4, [44], it is somewhat numerically expensive. Instead, one commonly uses

the Slater approximation to write

EECoul(r) ≈ −3

4
e2
(

3

π

)1/3

ρ
4/3
p (r), (2.18)

and extensions depending on only ρp(r) have been discussed in [45]. Typically, the total

error in the exchange term is of order 0.2-1 MeV [46, 47], even for superheavy nuclei such

as 306126 [45]. Throughout this work, we use the Slater approximation for the exchange

Coulomb term.

Nuclear physics is contained solely in the particle-hole and particle-particle terms, Eph
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and Epp, respectively. Over the last few decades, many EDFs have been developed. The

most common nonrelativistic EDFs are the Skyrme [22, 48] and Gogny [49, 50] functionals,

both of which have many parameterizations that have been developed. Also of note are the

Fayans functionals, which improve on descriptions of surface-based nuclear properties [51,

52] and the BCPM [53] and SeaLL1 [54] functionals, which aim to minimize the total number

of adjustable parameters in their respective EDFs. Efforts are also ongoing to inform EDFs

based on ab initio theory, see e.g. [55–59]. Finally, covariant EDFs have been developed

using the relativistic formulation of DFT [60, 61]. While many of the techniques developed

throughout this thesis apply quite generally, we will focus on the Skyrme- and Gogny-type

EDFs. They are discussed in the following.

2.2.1 The Skyrme EDF

The Skyrme EDF is motivated by the density matrix expansion. For the short ranged

nucleon-nucleon interaction, the full one-body density matrix ρ(r, r′) can be expanded about

r − r′ ≈ 0, see e.g. Ref. [28]. In the particle-hole channel, the (time-even) nuclear part of

the EDF is commonly written in the form [20, 41, 62]

Eph,Sk(r) =
∑
t=0,1

χt(r), (2.19)

which is the sum over the isoscalar (t = 0) and isovector (t = 1) components. These are, in

turn, written as

χt(r) = C
ρρ
t ρ2t + C

ρτ
t ρtτt + CJJ

t

∑
µν

Jµν,tJµν,t + C
ρ∆ρ
t ρt∆ρt + C

ρ∇J
t ρt∇ · Jt. (2.20)
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Here, ∇ ·Jt is shorthand for
∑3

µνη=1 εµνη∂ηJµν,t, with ε being the Levi-Civita tensor. The

coefficients Cuu′
t are real constants, except for the traditional density-dependence in C

ρρ
t ,

C
ρρ
t ≡ C

ρρ
t0 + C

ρρ
t1 ρ

γ . This term descends from a three-body contact force that is equivalent

to a density-dependent two-body force in the case γ = 1, see Ref. [37]. Following Ref. [63],

γ is now taken as an adjustable parameter in the theory.

The original Skyrme EDF was derived and used with HF theory [22, 37, 38, 48], which

does not include pairing effects. Pairing has often been accounted for using simple models

in the Bardeen-Cooper-Schrieffer (BCS) approximation, such as in the SkM∗ parameteri-

zation [64]. On the opposite extreme, the same density matrix expansion can be carried

out in the pairing channel. The end result is that one simply replaces ph-densities with

pp-densities everywhere in Eq. (2.20) except in the density-dependent coefficient C
ρρ
t . Many

modern EDFs, such as the UNEDF series of functionals [39–41], use a simplified local density

dependent pairing EDF:

Epp =
∑
q

Vq
2

[
1− 1

2

(
ρ0(r)

ρc

)β]
ρ̃2q(r), (2.21)

see Ref. [28] and references therein. The isoscalar particle density is ρ0(r) = ρp(r) + ρn(r).

The coefficients Vq, switching density ρc, and exponent β, are additional fit parameters.

Note that this contact pairing leads to divergences in the density matrix as the maximum

quasiparticle energy is increased; this has been addressed in e.g. [24, 25, 36] simply by

cutting off the maximum quasiparticle energy at (typically) 60 MeV. By renormalizing the

pairing strength, the dependence of the HFB energy can be made independent of this cutoff

strength [65].

Over the years, many different parameterizations of the Skyrme EDF have been devel-
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oped. For a non-exhaustive list, see the references in Refs. [28, 66]. A common challenge with

many parameterizations is that they are optimized to ground-state properties, and are there-

fore unsuitable for fission calculations. For instance, both the SkM [67] and UNEDF0 [39]

EDFs predicted actinide fission barriers far below their accepted values (note that fission bar-

riers are not, strictly, observable quantities; nevertheless, they have commonly been treated

as such in the literature). To remedy this, the SkM∗ EDF adjusted the surface parameters

from the original SkM EDF to better reproduce fission barrier heights [64]. Similarly, the

UNEDF1 EDF was calibrated including excitation energies of fission isomers in actinide nu-

clei [40]. Because of these improved fission properties, the SkM∗ and UNEDF1 EDFs are

the only two Skyrme-type EDFs that will be discussed in this work.

2.2.2 The Gogny EDF

The Gogny EDF is a finite-range EDF. The finite range nature was desired initially so

that the same interaction could be used in the ph and the pp channel, without the pairing

divergences of the Skyrme EDF. Instead, the pairing is regularized by the finite-range. For

further discussion, see Ref. [27].

The ph part of the Gogny EDF is typically written in the literature as an effective two-

body interaction, as

V̂ (r1, r2) =
∑
i=1,2

e−(r1−r2)
2/µ2i

(
Wi +BiP̂σ −HiP̂τ −MiP̂σP̂τ

)
(2.22a)

+ t0
(
1 + x0P̂σ

)
ρα
(
r1 + r2

2

)
δ(r1 − r2) (2.22b)

+ iWLS(σ1 + σ2) · (←−∇1 −
←−∇2)× δ(r1 − r2)(

−→∇1 −
−→∇2), (2.22c)

see Refs. [28, 33]. The operators P̂σ, P̂τ are the spin and isospin exchange operators, respec-
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tively. The gradients operate to the left or right corresponding to the direction of the arrow

above them. The terms µi, WiBiHiMi t0, x0, α, and WLS are fit parameters.

This two-body interaction consists of terms that are similar to the Skyrme effective

interaction, which can be found in Ref. [37]. Indeed, expanding the first term, Eq. (2.22a),

about r1 − r2 = 0 precisely gives the contact terms in the Skyrme EDF. The approximate

three-body force, Eq. (2.22b), matches the density-dependent coefficient C
ρρ
t [ρ] in the same

approximation, and Eq. (2.22c) corresponds to the spin-orbit term. An analogous interaction

(switching ρ → ρ̃ and so on) is commonly used in the pp channel, as is the Coulomb

potential [28].

As with the Skyrme EDF, a number of Gogny-EDF parameterizations exist. For a recent

review, see Ref. [27]. Also as with the Skyrme EDF, early parameterizations such as the

original D1 parameterization [68, 69] were fit excluding fission information, leading to a

too-high fission barrier in actinide nuclei. As a result, the D1S parameterization was refit to

match the 240Pu barrier height [70]. The D1S parameters are given in Ref. [71], although the

sign of the spin-orbit coupling WLS is incorrect. Again, as this thesis is primarily concerned

with fission, the D1S parameterization is the only Gogny EDF that will be considered.

2.3 Constrained Calculations

The HFB equations can be solved with various constraints imposed. Typical constraints

relevant for fission include the total number of nucleons, shape deformations such as multipole

moments and the neck width [21], and dynamical pairing fluctuations [72]. Below I describe

these constraints, why they are used, and how they are implemented in this work.

2.3.1 Particle Number

The particle number (PN) operator for nucleonic species q is, in second-quantized form,

N̂q =
∑

k a
†
kqakq. Notice that the HFB wave function is not an eigenstate of this operator,
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i.e. the HFB wave function does not have definite PN. This is problematic for describing

finite nuclei, which have a definite number of nucleons. Exact PN restoration can be carried

out, in which the HFB wave function is projected onto a desired eigenstate of N̂ , see the

discussion in [22, 23]. Certainly, this has been carried out in a number of works, see e.g.

Refs. [44, 73–76].

As discussed in Ref. [76], while exact PN restoration is important for some observ-

ables, ground-state properties of even-even nuclei (binding energies, deformations, etc.) are

fairly insensitive to this symmetry breaking. Further, exact PN restoration (especially the

variation-after-projection approach [22]) is computationally expensive as compared to sin-

gle HFB calculations. Third, there exist problems when applying projection techniques to

EDFs [27, 77]. As such, no EDFs have been calibrated with restored PN. Since the EDF is

calibrated to some experimental data, the choice of many-body method should be considered

as part of the calibration [78], meaning that (for instance) an EDF calibrated without PN

restoration should not be used with PN restoration. Therefore, in this thesis, we do not

consider exact PN restoration.

A first approach to approximate PN symmetry is to constrain the average particle num-

ber, ⟨N̂q⟩, to the desired value. Here and throughout, I use the notation

⟨Ô⟩ ≡ ⟨HFB|Ô|HFB⟩ (2.23)

for a generic operator Ô. This is done for protons and neutrons separately. This has the

effect of replacing the total energy with

EHFB[ρ, κ]→ EHFB[ρ, κ]−
∑
q=n,p

λq(⟨N̂q⟩ −Nq), (2.24)
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with λq the chemical potential (alternatively called the Fermi energy [76]). Following the

discussion in Ref. [24], we consider only cases with negative chemical potential λq < 0, as

nuclei are particle-unbound for λq > 0. States with quasiparticle energy |Eq,µ| < −λq are

discrete, and the upper component Vq,µ is localized. These in turn correspond to a localized

density matrix, which corresponds to a localized nucleus. The continuous spectrum corre-

sponding to |Eq,µ| > −λq is discretized, either in a basis expansion or by a coordinate mesh.

The chemical potential is updated to adjust ⟨N̂q⟩ to the desired value at each iteration [36].

Note that in the Skyrme case, a correct evaluation of the particle number requires the pairing

regularization discussed above.

A next approach to approximate PN symmetry is the Lipkin-Nogami (LN) method [36,

76, 79–82]. In this approach, a particle-number dispersion term is added to the total energy:

EHFB[ρ, κ]→ EHFB[ρ, κ]−
∑
q=n,p

λ2q(⟨N̂2
q ⟩ − ⟨N̂q⟩2). (2.25)

The parameter λ2q is also adjusted iteration-by-iteration, with expressions given in Refs. [36,

81] tending to assume an effective seniority pairing for simplicity. A comparison between LN

and variation-after-PN-projection has been carried out in Ref. [76] for the Ca and Sn isotopic

chains, where the pairing energy difference between the two methods is observed to be fairly

small (between 0.5-1.5 MeV). I note that projection after LN has also been presented in that

work, with an overall improvement of the order of hundreds of keV, but again no EDFs have

been calibrated with the projected-LN approach. In this sense, LN may be concluded as an

adequate approximation of exact PN restoration, especially for ground-state calculations. It

is also of note that this is true even when the HFB equations predict a collapse of pairing

correlations, see Ref. [28] and references within.
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The UNEDF1 functional mentioned above has been calibrated at both the HFB [83] and

the LN [40] level. The fit at the LN level has marginally smaller errors on the observables

used for fitting, although as the authors point out, this is no guarantee that this EDF is

strictly better [83]. In this work, I will distinguish the EDF used, denoting by UNEDF1HFB

(UNEDF1LN) the calibration done at the HFB (LN) level.

2.3.2 The Nuclear Shape

Fission is an example of large-amplitude collective motion, and the motion is assumed to be

driven by a small number of collective coordinates. These coordinates typically parameterize

the shape of the nucleus in some way, thus the HFB equations are solved when the nucleus

is constrained to said shape. It is also worth noting that HFB wave functions corresponding

to different shapes are commonly used in the generator coordinate method approach, and

indeed this approach can be used to describe much of the fission phenomena that will be

described in later chapters, see Ref. [22].

In this thesis, we parameterize the nuclear shape using the multipole moments [84]

Q̂λµ(r, θ, ϕ) = rλY ∗λµ(θ, ϕ), (2.26)

with Yλµ(θ, ϕ) the usual spherical harmonics. There are a number of other parameterizations

used in the literature. Typically these are associated with microscopic-macroscopic models

of the nucleus, which explicitly parameterize the total energy of the system in terms of a

bulk energy term (the “macroscopic” term), and corrections from shell effects (the “micro-

scopic” term). Such parameterizations are often chosen specifically for describing elongated,

asymmetric deformations common to the fission process. For a review of such parameter-

izations, see Refs. [21, 85]. Also common is the neck width, defined in position space as
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Q̂N (r) = exp[−(r−rneck)2/a2], where rneck is the position of the neck and a is an arbitrary

length scale. This is useful especially in elongated configurations near scission; see again

Ref. [21].

We restrict our discussion to axially symmetric configurations, i.e. ⟨Q̂λµ⟩ = 0 for µ ̸= 0.

Note that the triaxial quadrupole moment Q̂22 has been shown to reduce the fission barrier

between the ground state configuration and the fission isomer (FI) [86–88]. This moment is

excluded purely for computational reasons, and as a consequence we do not directly compare

to experimental half-life measurements.

We also restrict the multipolarity of constrained moments to λ ≤ 4, as these moments

have an intuitive connection to fission. The monopole moment ⟨Q̂00⟩ corresponds to the total

particle number, which is already constrained. The dipole moment ⟨Q̂10⟩ ∝ ⟨z⟩ controls the

center-of-mass of the nucleus; it determines whether the nucleus is centered in the coordinate

grid, and should in principle vanish automatically. In practice, sometimes this coordinate

must be constrained explicitly to Q10 = 0 at least for initial iterations of the solver; typically,

once a solution is reached, it is stable without this constraint. The quadrupole moment ⟨Q̂20⟩

controls the elongation of the nucleus. The nuclear ground state is fairly compact, with

⟨Q̂20⟩ increasing during the fission process. The octupole moment ⟨Q̂30⟩ controls the mass

asymmetry of the nucleus. Most nuclei are predicted to have reflection-symmetric ground

states, so that ⟨Q̂30⟩ = 0, although there are exceptions [89]. During the fission process,

actinide nuclei develop nonzero ⟨Q̂30⟩, leading to the well-known asymmetric primary fission

fragment yields, see the discussion in Ref. [90]. Finally, the hexadecapole moment Q̂40 is

responsible for the number of nucleons in the neck region during the deformation process,

see Refs. [14, 91].

These constraints are implemented via the augmented Lagrangian method, which tends
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to be more numerically stable than e.g. a quadratic constraint [92]. The total energy is

modified to

EHFB[ρ, κ]→ EHFB[ρ, κ]−
∑
a

λa(⟨Q̂a0⟩ −Qa0), (2.27)

where Qa0 is the desired multipole moment. The Lagrange multiplier λa is updated using

linear response theory, as if the deviation from the desired multipole moment is due to an

external field [50]. For numerical convenience, the cranking approximation of the quasipar-

ticle random phase approximation (QRPA) matrix is typically used [93] (see also Sec. 3.1.1).

This form is particularly convenient for multiple constraints. Some implementations also

include the Lagrange multipliers in the Broyden scheme implemented in Refs. [94, 95], which

updates the multipliers iteration-by-iteration as the HFB equations are solved.

2.3.3 Dynamical Pairing

As a consequence of broken U(1) particle number symmetry, the HFB ground state may be

viewed as deformed in the corresponding gauge space [96]. This deformation is described by

the distance ∆ (known as the pairing gap [22]) and the angle φ in the gauge space. One can

consider fluctuations around the pairing gap with the minimal HFB energy as an additional

collective coordinate to be constrained.

Pathways exploring large pairing gaps are expected to lower the spontaneous fission

half-life by decreasing the collective inertia tensor, see the discussion in Ch. 3. This has

been explored in microscopic-macroscopic studies, see e.g. Ref. [97] and other references

within [72]. As discussed in Refs. [98, 99], ∆ is closely related to the particle number

dispersion term (∆N̂q)2 = N̂2
q − ⟨N̂q⟩2, see Eq. (2.25). In those works, the constraint is

handled similarly to the shape constraints defined above. Alternative approaches to tuning
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∆ are discussed in Ref. [21].

A constraint on this quantity has been used in HFB studies of fission in Refs. [13, 72].

There, rather than constraining the particle number dispersion to a particular value, the

constraint λ2q was varied to explore the parameter space. Specifically, it is split into the

isoscalar and isovector components λ2n ± λ2p. Setting λ2q = 0 yields the regular HFB-level

pairing. Increasing λ2q increases the dynamical pairing fluctuations. As was demonstrated

in those works, the collective action is lower along the fission trajectories with increased

dynamical fluctuations. The latter work [13] will be discussed further in the next chapter.
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Chapter 3. Spontaneous Fission
It seems reasonable to describe fission in a time-dependent framework. The Runge-Gross

theorem [100] justifies the use of time-dependent DFT (TD-DFT), much as the Hohenberg-

Kohn theorems justify static DFT. Spontaneous fission, however, is a tunneling process, as

evidenced by nuclei being metastable to fission. And, as discussed in Refs. [20, 101], TD-

DFT is unable to describe tunneling processes. One option, then, is to extend TD-DFT

theory using a path-integral approach, although this approach has yet to be used in realistic

calculations; see the discussion in Ref. [21]. Another approach is to reduce the TD-DFT

equations to a collective Hamiltonian and compute an effective fission barrier, for which

tunneling behavior can be studied. That is the approach followed in this thesis.

In this chapter, I will first describe our approach to the tunneling problem, using the

Wentzel-Kramers-Brillouin (WKB) approach. I will next discuss two numerical algorithms

used to determine the tunneling path(s), following Ref. [13]. Finally, I will briefly compare

the two approaches in both toy models and realistic cases.

3.1 The Tunneling Process

To describe spontaneous fission (SF), we must be able to describe tunneling within our theory.

As discussed in [20, 101], one Slater determinant (HF or HFB) describes a single nuclear

shape, and thus the time evolution tracks a wave packet rather than the true nuclear wave

function. In this sense, the theory functions as a classical approximation to the quantum

dynamics, and should not be able to describe tunneling behavior. Tunneling behavior is

described only when this classical theory is re-quantized.

A direct re-quantization of the TD-DFT equations is computationally prohibitive, pre-

venting a re-quantization of the adiabatic TD-DFT equations. With the view of fission as
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an extreme example of large-amplitude collective motion, we may instead consider collective

degrees of freedom, in which the theory may be re-quantized in a computationally approach-

able manner. In this section, I will first derive the collective Hamiltonian. I will then describe

tunneling in the WKB approximation, and conclude with an illustrative example.

3.1.1 The Collective Hamiltonian

This derivation is described in great detail for the HF case in Refs. [22, 101]. It is gener-

alized to the HFB case in Refs. [21, 23, 102]. While in many cases the derivation focuses

on two-body Hamiltonians, the extension to density-dependent forces is straightforward, by

expanding the density dependence to quadratic order in the vicinity of the HF (or HFB) solu-

tion. Note that a similar derivation is given using the framework of the generator coordinate

method [22].

The time-dependent HFB equation is iℏṘ = [H,R], where

R =

 ρ κ

−κ∗ 1− ρ∗

 (3.1)

is the generalized density matrix1. Now, R,H are time-dependent, and the dot is the time

derivative. We assume a perturbation of the density matrix [21]

R(t) = e−iχ(t)R0(t)eiχ(t), where χ =

χ11 χ12

χ21 χ22

 (3.2)

is a perturbation that is assumed small. R0 is the solution of the static HFB equations with

χ = 0 (recall the representation [H,R0] = 0). The block form of χ is similar to that of R,

1Note that I do not distinguish between protons and neutrons here. This distinction appears in R, which
may be split based on isospin index. In Sec. 2.1, this is why the HFB equations appear independently for
protons and neutrons.
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so χ11 (χ12) is a perturbation in the ph (pp) channel.

This form may be interpreted as the interacting-picture representation of the evolu-

tion [103], thus the wave function |ψI(t)⟩ may be written as |ψI(t)⟩ = eiχ(t)|HFB(t)⟩ with

|HFB(t)⟩ the solution to the HFB equations corresponding to generalized densityR0. Expan-

sion of the HFB energy to second order in χ is carried out conveniently using the Thouless

representation of the HFB wave function, see Chapter 9 of Ref. [23]. This leads to the

form [21]

E[R] ≈ E[R0] +
ℏ
2

(
χ12,† χ12,T

) Ṙ12
0

Ṙ12∗
0

 . (3.3)

Note that only the pp perturbation contributes to the evolution at this order, underscoring

the importance of pairing fluctuations. Finally, χ is related to Ṙ via the linear response

matrix M, as

 Ṙ12
0

Ṙ12∗
0

 =M

 χ12

χ12∗

 , (3.4)

leading to the quadratic form of the total energy:

E[R] ≈ V [R0] +
ℏ2

2

(
Ṙ12,†

0 Ṙ12,T
0

)
M−1

 Ṙ12
0

Ṙ12∗
0

 . (3.5)
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The linear response (equivalently, QRPA) matrix

M =

 A B

B∗ A∗

 (3.6)

is defined as2

Ars,mn ≡ δrmδsn(En + Em) +
∂2E

∂κ∗rs∂κmn
, Brs,mn ≡

∂2E

∂κ∗rs∂κ∗mn
, (3.7)

where the derivatives include only terms in the EDF defined in terms of κ. This is written

as a block matrix, with indices rs→ α, mn→ β. Similarly, Ṙ12
0,rs → Ṙ12

0,α [104].

Note that this derivation assumes a small perturbation χ. The appropriate nearby HFB

configuration R0 is not obvious a priori. Solving the unconstrained HFB equations results in

a (local) minimum of the energy landscape, regardless of the initial guess, which may not be

similar to a tunneling configuration. Take, for instance, a configuration at the outer turning

point as shown in Fig. 3.1 - it is totally unlike the ground-state configuration, and thus χ

would be large. The appropriate configuration, therefore, is the solution to the constrained

HFB equations.

Note also that the total energy is now that of a classical system, with coordinates R12
0 .

Thus, one could in principle re-quantize from here and describe the tunneling process, in

effect replacing the following discussion with an extremely high-dimensional analogue. This

is computationally prohibitive, and largely unnecessary. Instead, one assumes that a set of

2Note that some authors represent M using the Thouless representation, and so do not separate out
δrmδsn(En + Em).
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collective coordinates {qα} drives the time evolution of the system. Via the chain rule,

Ṙ0 =
∑
α

∂R0

∂qα
q̇α, (3.8)

the total energy is

E = V (q) +
1

2

∑
αβ

q̇αMαβ(q)q̇β , Mαβ ≡ ℏ2
∑
ab,cd

∂R0,ab

∂qα
M−1ab,cd

∂R0,cd

∂qβ
. (3.9)

The potential energy V (q) is computed using constrained HFB calculations, and is called

the potential energy surface (PES). An illustrative example is presented in Sec. 3.1.3. The

tensor Mαβ is called the collective inertia tensor.

The collective inertia tensor is challenging to compute exactly, as doing so requires invert-

ing the linear response matrix M. Recent work has demonstrated a reduced computational

cost using the finite amplitude method, see Refs. [105, 106], but as yet this has not been

applied to fission calculations. The so-called cranking approximation includes only the quasi-

particle energies Eα, writingMab,cd = (Ea +Eb)δacδbd [102]. The linear response matrix is

then diagonal, and its inversion is trivial. For this reason, we exclusively use the cranking

approximation.

In the quasiparticle basis, we use the shorthand from Refs. [15, 102] to write the collective

inertia tensor as

Mαβ(q) = ℏ2
∑
ij

Fα∗
ij F

β
ij + Fα

ijF
β∗
ij

Ei + Ej
. (3.10)

The matrix elements Fα
ij are computed from derivatives of R0 with respect to the collective
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coordinates, as [104]

Fα = U†
∂ρ

∂qα
V ∗ + U†

∂κ

∂qα
U∗ − V † ∂ρ

∗

∂qα
U∗ − V †∂κ

∗

∂qµ
V ∗. (3.11)

The derivatives are traditionally computed using a three-point Lagrange formula [107–109],

as constrained calculations do not converge to the precisely-desired constraint value. An

alternative to evaluating these derivatives is given by the perturbative cranking approxima-

tion [102, 109, 110], in which the derivatives are approximated by matrix elements of the

deformation operator. The perturbative approximation leads to large differences in the fis-

sion pathway, as well as the tunneling half-life, as compared to the nonperturbative case [109].

Nevertheless, we use both the perturbative and nonperturbative cranking inertia.

So far, the collective coordinates have not been specified. In the classically-allowed region,

E > V (q), the dynamics can be described by either the collective Hamiltonian or the TD-

HFB equations. Hence, one can determine {qα} from the direct time evolution [20, 111].

Alternatively, one may postulate {qα} using some physical intuition. In simple cases, such

as reactions between two α particles, however, there is significant disagreement between the

two approaches, and the postulated coordinate is shown to lead to an incorrect inertia [20].

In the classically forbidden region, E < V (q), since the TD-HFB equations do not hold,

the coordinates must be postulated. Common choices are described in Sec. 2.3. In later

chapters, the choice of collective coordinates will be noted explicitly.

3.1.2 WKB Theory

To describe tunneling behavior, we re-quantize the total energy of the system. Doing so

results in a multidimensional Schrodinger equation in the collective space. Solving this

system for WKB-type wave functions has been formalized in Ref. [112]. However, the tun-
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neling probability is dominated by isolated one-dimensional trajectories, called instanton

trajectories [113, 114]. This is closely related to the path integral formulation, in which the

probability amplitude between two points is dominated by classical trajectories [115, 116].

Thus, we search for one-dimensional tunneling wave functions.

To re-quantize the Hamiltonian, we introduce a one-dimensional coordinate s, and define

the trajectory q(s). The total energy is

E(s) = V (q(s)) +
1

2
Meff(s)ṡ2, where Meff(s) ≡

∑
αβ

dqα
ds

Mαβ(q(s))
dqβ
ds

(3.12)

is the effective mass, and the re-quantized Hamiltonian is

Ĥ(s) = V (q(s))− ℏ2

2Meff(s)

d2

ds2
. (3.13)

We solve this Hamiltonian for WKB-type wave functions [117]

ψ(s) = N(s) e−S[s], where S[s] =
1

ℏ

∫ s
ds′
√

2Meff(s)(V (s)− E0) (3.14)

is the classical action integral. The normalization factorN(s) is neglected in most treatments.

The energy E0 is chosen in this work as the ground-state potential energy, E0 = V (qgs).

Far from the classical turning points, where V (s) = E0, this is an approximate eigenstate of

the collective Hamiltonian, to lowest order in ℏ. Note that some authors add a zero-point

energy correction associated with additional quantum fluctuations [21].

The SF half-life can be estimated as follows: approximate the potential minimum as

quadratic, and consider a classical particle bouncing between the barriers of the well. At

each contact with the outer point, there is a probability to tunnel through the barrier (and

27



the same probability to tunnel back to the ground state). The half-life t1/2 is then determined

by the frequency of assaults on this barrier [118]:

t1/2 =
ln 2

nP
, where P =

1

1 + exp[2S[Lmin]]
(3.15)

is the penetration probability along the least-action path Lmin and n is the number of assaults

on the barrier per unit time. While n may be computed quantum mechanically [118, 119]

we take it to be 1/n = 10−21 s.

It remains to determine the trajectory Lmin along which this wave function is valid.

Lmin is precisely the trajectory that minimizes the classical action S[L], and as such will be

called the least action path (LAP). Before discussing how to compute it, I will present an

illustrative example of the PES, together with the computed LAPs.

3.1.3 An Illustrative Example

Figure 3.1 shows the PES for 256Fm computed using the D1S EDF. This example considers

two collective coordinates, (Q20, Q30), see Sec. 2.3.2. Axial symmetry is enforced, so all

moments Qµλ are zero for λ ̸= 0. All other moments are left unconstrained, and hence are

minimized over.

First, notice the ground state configuration. The density profile is shown; as can be seen,

the ground state is compact and reflection-symmetric. The HFB energy is normalized to

V (qgs) = 0. Next, notice the white curve. It separates the classically forbidden (V (q) > 0)

and classically allowed (V (q) < 0) regions. We refer to this as the outer turning line (OTL).

In higher dimensions, it is a hypersurface; nevertheless I will refer to this as the OTL.

The computed LAPs are shown in red and green. They connect the ground state to the

OTL. The connection points, marked as dots, are called the exit points. The red (green)
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Figure 3.1: An example PES computed using the D1S EDF. Taken from Ref. [13]. See the
text for a detailed description.

path corresponds to symmetric (asymmetric) fission. Density profiles are shown for both

exit points; as can be seen, they are reflection-symmetric (reflection-asymmetric). Notice

also that the nucleus has not yet split into two fragments; this typically occurs at a much

larger elongation than is shown on the figure, at scission points. The identification of scission

points has been discussed considerably in recent years [21].

3.2 Determining the Least Action Path

There are a number of different approaches to computing the LAP. Refs. [120–122] assumed

a parametric form for the LAP, and minimized over the variational parameters. The eikonal

equation has been solved directly, see Refs. [113, 123, 124]. This approach is closely related

to solving the Euler-Lagrange (EL) equations for the trajectory q(s), see Ref. [13]. These

approaches are, however, prone to numerical difficulties [125, 126]. Grid-based methods have
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also been widely used, see [109, 127, 128]. And, recently, we have implemented an iterative

minimization scheme based on the discretization of the LAP, called the nudged elastic band

method [13].

Note that a common approach is to search for minimum energy pathways (MEPs), which

follow the minimum energy valley as the nucleus elongates. This is equivalent to the LAP

when the collective inertia is assumed constant, hence it is also called the static fission

pathway. This has previously been used to study nuclei for which multiple fission valleys

appear, see [91] and Ch. 4. As discussed in Ref. [13], it is only under restrictive conditions

that the LAP is also an MEP, although for nuclei with well-defined fission valleys, the two

pathways tend to be similar.

In this section I will first review two common grid-based approaches, then discuss the

nudged elastic band approach. This content is drawn largely from my publication, Ref. [13].

3.2.1 Grid-Based Approaches

The PES is, strictly speaking, defined as a discretized grid of calculations, with further

evaluations defined via some interpolation scheme. As such, one option for computing the

LAP is to compute the path through the gridpoints that minimizes a discrete approximation

of the action functional between an initial point, qin, and a final point, qfin. These paths

can be defined recursively, following a general strategy known as dynamic programming.

When presenting these algorithms, I will assume a two-dimensional uniformly-spaced grid,

for which a point is labeled qij = (xi, yj), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. Extensions to higher

dimensions and non-uniform grids are conceptually straightforward.

One variant of dynamic programming has been applied to LAP calculations in Refs. [109,

129]. This implementation will be referred to as the dynamic programming method (DPM).

DPM finds paths that traverse diagonally from a given cell: from cell qij , cells qi+1,j can
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Figure 3.2: An example of pathways that may be found using the dynamic programming
method (in black) and the NEB method (red). The common starting point qin is marked in
green. The endpoint qfin is marked in black (red) for DPM (NEB).

be reached for all 1 ≤ j ≤ Ny. Example pathways are shown in Fig. 3.2. This may be

understood physically if x corresponds to the elongation of the nucleus. It seems reasonable

that a fissioning nucleus should only ever increase in its elongation, and hence the LAP

should increase monotonically in x. So, paths that backtrack or stay constant in x need

not be considered. Still, there are approximately NNx
y such paths, which cannot all be

enumerated.

Instead, the LAP from qin to qfin is constructed iteratively. For a cell qij , there are Ny

possible paths, each passing through a cell at xi−1. The LAP from qin to qij is selected

and stored in memory. This is repeated for every cell with x = xi, for a total of Ny possible

paths. Once qfin is reached, there are only NxNy paths, and the LAP is selected from these.

The DPM algorithm is detailed in Algorithm 2 of the supplemental material of Ref. [13].
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The algorithm is closely related to Dijkstra’s algorithm [130]. The principal difference is

the allowed grid paths. While DPM assumes paths that are monotonic in x, it does allow

for nonlocal jumps in y, such as from y1 to yNy . Different grid connections (or “stencils”)

may be considered. An alternate stencil is nearest-neighbors: paths to qij can go through

any point qi±1,j±1 that is not already part of the path. This stencil is also implemented in

Ref. [13]. As will be seen, this stencil tends to predict greater action values than when using

DPM, corresponding to the physical intuition mentioned above.

3.2.2 The Nudged Elastic Band

The grid-based methods previously described have a number of limitations. First, they scale

poorly with both the number of collective coordinates and the number of gridpoints. The

former is problematic because, as discussed in Ch. 2, there are many collective coordinates

important for fission. The latter is problematic because improving the precision of the

lifetime calculations by increasing the density of gridpoints (say, by interpolation) has an

exponential computational cost. Second, grid-based algorithms cannot easily take advantage

of previously-known information. For instance, the MEP mentioned above is typically close

to the LAP, which could help speed up LAP calculations. Third, grid-based algorithms only

compute the global LAP. Many nuclei have competing fission modes (see Ch. 4), each of

which corresponds to a local minimum of the action integral. Grid-based calculations are

unable to describe this phenomenon.

The nudged elastic band (NEB) algorithm addresses each of these challenges. It was

first implemented to describe MEPs in molecular transitions between reactant and product

states [131–133], and refined in Refs. [134, 135]. The NEB algorithm was subsequently mod-

ified to describe LAPs in atomic tunneling [136]. We have implemented it in an open-source

Python package labeled PyNEB (see https://pyneb.dev/) for use in fission calculations, as
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part of the publication of Ref. [13].

The NEB algorithm discretizes the path L into a number of points, called images. The

location of the i’th image will be denoted as qi. The position of each image is updated

according to Newton’s second law, as q̈i = F net
i , as if it were a point mass. The net force

F net
i = F net(qi) is split into two terms:

F net
i = F k

i + g⊥i . (3.16)

The spring force F k
i is defined as

F k
i = k(|qi+1 − qi| − |qi − qi−1|)τi, (3.17)

where τi is the unit vector tangent to the line connecting images i− 1 and i+ 1 [135]. The

spring force on the boundary images is given in Ref. [13]. The spring force keeps the images

from either bunching up or spreading out, hence the images form a band. The parameter

k controls the strength of this force term; we take it to be the same for every image. The

force term gi is taken either as the gradient of the PES itself, gi = −∇V (qi), or the gradient

of the action functional, gi = − ∂S
∂qi

. The former choice corresponds to MEPs, the latter to

LAPs. The contribution to the net force is taken as the component of gi perpendicular to

the path, g⊥i , to help prevent the image from sliding along the path [137].

One subtlety is that the images at the endpoints need not be fixed. This is especially

useful for multidimensional PESs, as the exit point can be determined via the iterative

process itself. An example pathway using NEB is shown in Fig. 3.2: note that the endpoint

qfin is not fixed to a gridpoint. Typically, only the outer image is left free. Then, an
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additional harmonic force term is added to pull the image to the outer turning line [13].

Note that this force term also has parameter controlling its strength.

The particular choice of force update is important for the convergence rate of this algo-

rithm. Originally [131–135], a simple Verlet update was used [138]. While stable, this update

algorithm can require many iterations before convergence is achieved, especially for nearly-

flat PESs. Later, an inertia-based scheme, combined with an adaptive timestep, called the

Fast Inertial Relaxation Engine (FIRE), was introduced [139, 140]. Both schemes are im-

plemented in PyNEB, and indeed the FIRE algorithm requires an order-of-magnitude fewer

iterations than the Verlet optimizer. Note that these optimizers do introduce additional hy-

perparameters. The optimization is largely stable for reasonable choice of hyperparameters,

and future studies will provide guidance on the optimal choice.

3.3 Initial Applications

We have benchmarked PyNEB by comparison with both analytic surfaces and realistic PESs.

A qualitative comparison is obtained simply by looking at the pathways and noting whether

they appear similar. A quantitative estimate is obtained by examining the action values

along the pathways. For the latter, the grid-based algorithms are an especially good point

of comparison, as they provably minimize the action for their choice of stencil.

The analytic surfaces are described in detail in Ref. [13]. For these calculations, the

collective inertia is neglected. The action values are replicated in Table 3.1. Also shown

are the MEP results, labeled NEB-MEP, and the numerical solutions to the EL equations

(determined by the shooting method), labeled EL. The DPM tends to determine paths with

a lower action than both Dijkstra’s algorithm and the EL equations, the latter due in part

to numerical challenges with solving the EL equations. The sole counterexample occurs
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Table 3.1: Action integrals for the 6-Camel-Back (CB-S and CB-A) and Müller-Brown (MB)
surfaces (defined in Ref. [13]). The integrals have been calculated using a linear spline
interpolation evaluated at 500 points along each trajectory.

NEB-MEP NEB-LAP DPM EL Dijkstra
CB-S 5.522 5.518 5.524 5.536 5.563
CB-A 6.793 6.404 6.405 6.407 6.886
MB 28.491 22.875 22.909 22.871 23.427

when the LAP requires a non-monotonic trajectory in the Müller-Brown surface, which is

not expected to occur in fission calculations as discussed above. Note also that the MEP

action values are consistently higher than the LAP action values, indicating the poorness of

the static pathway for these particular surfaces. Finally, for all cases, the NEB algorithm

determines LAPs with a comparable, but slightly lower, action value as compared to DPM.

This indicates that the NEB algorithm indeed is able to accurately determine LAPs.

Next, two actinide nuclei are considered. Figure 3.3 shows 232U in the 2D collective space

(Q20, Q30) using the SkM∗ EDF. As can be seen, the LAPs are all in excellent agreement

with each other. Additionally, the LAPs are quite similar to the MEP, due to the well-

defined fission valley, in contrast to many of the analytic surfaces. Note also that the exit

point also agrees well between the different approaches; the importance of this will be seen

in Ch. 4. And, the action integrals along all pathways, including the MEP, agree to within

approximately 1% (see Ref. [13] for the numerical values). Once again, this demonstrates that

the NEB algorithm is able to determine LAPs comparable to previously-used algorithms.

Finally, 240Pu is considered in the 3D collective space (Q20, Q30, λ2), recall Sec. 2.3.3.

The PES is shown in Fig. 3.4, starting from the fission isomer. Note that the pathways

found using Dijkstra’s algorithm are not shown here; otherwise, the pathways are marked

identically to Fig. 3.3. As can be seen, while the LAPs agree well with constant inertia,

they disagree quite noticeably when the cranking inertia is considered, primarily in the
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Figure 3.3: The PES for 232U computed using the SkM∗ EDF. The OTL is shown in white.
Solid (dotted) lines mark the LAPs and MEP obtained with the constant (nonperturbative)
inertia tensor. The blue, orange, purple and black curves represent the LAPs calculated
using the NEB, DPM, EL, and Dijkstra methods, respectively. The green curve is the MEP
calculated using NEB. Taken from Ref. [13].

dynamical pairing degree of freedom. Curiously, despite the large difference between the

pathways found using DPM and NEB, the action integrals are quite similar. This suggests

that NEB is falling into a local minimum, which was confirmed by initializing NEB with the

DPM pathway. While a possible suggestion was given to use DPM to initialize NEB, this

seems unnecessary in general, given that the action integrals agree at the sub-percent level.

Finally, I note that, while the exit points disagree considerably in the λ2 degree of freedom,

they agree reasonably well in the (Q20, Q30) degree of freedom. Thus, as will be discussed

in the next chapter, the primary fission fragment yields are expected to agree well.
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Figure 3.4: The PES for 240Pu computed using the SkM∗ EDF, normalized to the fission
isomer energy. The outer turning surface is shown as a blue mesh. The coloring of the
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3.4 Conclusion

In this chapter, I have described the tunneling process in spontaneous fission, beginning

from the reduction to collective coordinates, and ending with the practical calculation of

tunneling pathways. As has been established, the nudged elastic band algorithm is indeed

the appropriate tool for computing tunneling paths. Since the initial publication, I have

optimized PyNEB for runtime performance, achieving more than 100-times speedup over

the initial implementation, which has greatly aided the calculations done in later chapters.

A study of the optimal hyperparameters of the algorithm is in progress. Additionally, PyNEB

is currently in use by a number of other research groups, such as the recent publication [141].
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Chapter 4. Multimodal Fission
As discussed in the previous chapter, the nudged elastic band algorithm can identify pathways

that locally minimize the action integral, and hence can be used to study competing fission

modes. This is carried out in my publication, Ref. [14], and is the subject of this chapter.

In the constrained DFT framework described above, multiple fission modes can be seen

as multiple fission valleys in a PES, see Fig. 3.1. These pathways have been identified

numerically using minimum energy trajectories [91, 142, 143]. However, fission pathways

are not observable quantities. Experimentally, one way to distinguish multiple modes is

the primary fission fragment yields (FY), recall the discussion in Ch. 1. In this chapter,

I will discuss how FY can be computed, with a focus on estimating them using the exit

point location. I will then discuss multimodal fission in the Fermium chain in two- and

three-dimensional collective spaces.

4.1 Primary Fission Fragment Yields

There are a number of different models used to compute primary fission fragment yields (FY),

which may be divided into two schematic approaches: those based on phenomenological

approaches to fission, which I have neglected in this thesis so far, and those rooted in the EDF,

primarily in time-dependent frameworks. I will briefly review these different approaches, with

the goal of motivating the approach used in this thesis and Ref. [14]. I will then discuss the

approach we use.

4.1.1 Phenomenological Approaches

Despite the focus on DFT described throughout this work, fission has long been understood

from a more phenomenological point of view, beginning from its description as competition

between surface energy and the Coulomb force. Such approaches are relatively computation-
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ally inexpensive, allowing for calculations across regions of the nuclear chart relevant to the

r process. For a recent review of these approaches, see Ref. [144].

FY are commonly described by assuming dissipative motion outside or above the effective

barrier. This can be understood based on the separation of the nuclear Hamiltonian into

collective and intrinsic parts. The collective part of the Hamiltonian corresponds to the

PES, while the intrinsic part describes excitations on top of the collective deformation. As

the nucleus evolves in time, energy can contribute to either degree of freedom. Considering

only the collective energy, then, energy that goes into intrinsic degrees of freedom may be

interpreted as being lost from the collective degrees of freedom - hence, dissipation [145].

This motivates the Langevin dynamical approach, in which the following stochastic equations

are solved [146]:

dpi
dt

= −pjpk
2

∂

∂qi
M−1jk −

∂

∂qi
V − ηijM−1jk pk + gijΓj(t), (4.1a)

dqi
dt

= M−1ij pj . (4.1b)

Here, p is the conjugate momentum to the collective coordinates q, η is the dissipation

tensor, g is the force-strength tensor, and Γ is a time-dependent Gaussian random variable.

V and M are the PES and collective inertia described above. Via the fluctuation-dissipation

theorem, η and g are related to the nuclear temperature, which itself depends on the level

density of the deformed nucleus.

A common challenge is the specification of the dissipation tensor: while intuition sug-

gests its importance, the precise form is not known from microscopic theory. Nevertheless,

such approaches have met with varying degrees of success [144]. Of particular note is a

global analysis following this approach, the Brownian shape model(BSM) [147], which will
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be discussed in relation to the Fm chain later. A recent application in which V and M

are computed using DFT is presented in Ref. [148]. The location of the FY peaks is some-

what insensitive to both the inertia and the dissipation tensor, although the tails depend

noticeably on both.

Alternative approaches are not based on dissipative dynamics. Two approaches that will

be contrasted with later are instead the general description of fission observables (GEF) [149],

which is based on a number of fairly general theorems combined with empirical data, and the

scission point yield (SPY) [150], which describes fission properties based solely on the nucleus

at scission. While these approaches are reasonably successful at and near stability [144],

there are qualitative differences for many nuclei, such as the number of FY peaks and their

locations [150].

4.1.2 Time-Dependent Approaches

The past decade has seen rapid advancements in modeling FY using time-dependent frame-

works. Modeling of FY can take place entirely within the classically allowed region, allowing

for direct time evolution that is otherwise forbidden. These frameworks, while considerably

more computationally expensive than the above phenomenological approaches, make fewer

assumptions as to the nature of the fission process. For instance, they do not assume adia-

baticity, and recent time-dependent DFT (TD-DFT) studies suggest the evolution is indeed

non-adiabatic [151].

A first approach to FY consists of directly iterating the TD-DFT equations forward

in time, beginning from a highly deformed state outside of the barrier and ending when

the fragments are well separated. Then, properties such as the excitation energy may be

described for each fragment independently.

One known problem is that large fluctuations in observable quantities (such as the par-
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ticle number dispersion from Sec. 2.3.3) are consistently underestimated. A fix appears

with the time-dependent generator coordinate method (TD-GCM), a multi-reference DFT

extension, in which the wave function is, for instance, a linear combination of HFB wave

functions. Evolution of this trial wave function can also be used to compute FY, now with

improved correlations. See Ref. [90] and references within for many references relevant for

this discussion, as well as a successful application of the TD-GCM approach. Recent work

has also extended this approach to odd-mass nuclei [152].

4.1.3 A Hybrid Approach

Direct time-dependent approaches are too computationally expensive for near-term large-

scale calculations. Nevertheless, approaches using DFT input are desirable, to avoid many

of the assumptions present in phenomenological models. A hybrid approach was developed

in Refs. [153, 154], which has been used throughout this thesis. For that reason, I detour to

review it here.

When examining the nuclear configuration at the exit point, it is convenient to use the

nucleon localization functional (NLF) [155, 156],

Cq =

[
1 +

(
τqρq − 1

4 |∇ρq|2
ρqτTFq

)2]−1
, where τTFq =

3

5
(6π2)2/3ρ

5/3
q (4.2)

is the Thomas-Fermi density and is introduced for normalization purposes. The NLF is

related to the conditional probability of finding a nucleon at location r′, given that a nucleon

has been found at location r. This particular form is normalized to lie between 0 and 1,

with 0 (1) representing a low (high) conditional probability [157]. An example is shown in

Fig. 4.1.

Observe that the nucleus appears to have two well-formed prefragments, connected by
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Figure 4.1: The localization functional for 258Fm using the UNEDF1HFB EDF at the sym-
metric exit point. (a) and (b) are proton and neutron localizations, respectively. Horizontal
dashed lines denote the center of the prefragments.

a neck of non-zero width. The prefragments are expected to remain well-formed as the

nucleus splits. The total number of nucleons assigned to each prefragment is determined

by integrating upwards (downwards) in z for the top (bottom) prefragment and doubling

the result. In general, this does not add up to the total number of nucleons in the nucleus,

and the remaining nucleons are assumed to be in the neck region of the nucleus. These

neck nucleons are then distributed between the prefragments according to a microcanonical

probability distribution [158]:

P (A1, A2) ∝

√√√√( (A1A2)8

(A
5/3
1 + A

5/3
2 )3(A1 + A2)2

)
a1a2

(a1 + a2)5

×
(

1− 1

2
√

(a1 + a2)Er

)
E
9/4
r exp[2

√
(a1 + a2)Er]. (4.3)
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Here, ai = Ai/10 MeV−1 is the level-density parameter and Er = −(Eb1 +Eb2 +EC) is the

energy of a given fragment configuration [148]. We take the binding energy of each fragment,

Eb1 and Eb2, to be the liquid-drop binding energy [159], and the Coulomb energy EC to be

that of point charges at the center-of-mass of the fragments. Finally, the mass and charge

yields are convolved with Gaussian distributions; for the charge yield, the odd- and even-Z

yields are convolved individually to characterize the odd-even staggering.

The identification of the prefragments is not entirely a well-posed problem, especially

when one of the prefragments appears to be octupole deformed. When the prefragments are

not octupole deformed, the center of the prefragment is a local extrema of the NLF along

the r = 0 line, and the center is determined by the location of this extremal value [153].

Otherwise, the extremal value does not correspond to the center, and we estimate it following

the discussion in the supplemental material of Ref. [14].

There are a number of assumptions built into this approach. Improvements such as

microscopic level-density parameters or self-consistent binding energies may be considered.

However, a major source of uncertainty is the two-particle uncertainty in the distribution -

that is, the number of neck nucleons is generally not an integer. So, the FY is recomputed for

the configurations (Ni±1, Zi±1), i = 1, 2. This source of uncertainty is typically somewhat

large, and is expected to be larger than the uncertainty from varying Er [153]. Within this

uncertainty, the theoretical FY agree with the experimental values. For these reasons, this

FY model was deemed sufficient for this work.

Finally, when there are multiple fission modes identified, each trajectory has a probability
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Pi given by Eq. (3.15). The relative probability P̄i of the i-th mode is then

P̄i =
Pi∑
j Pj

. (4.4)

We assume that individual fission modes are independent decay channels, which is justified

in the common case in which a high potential barrier separates the two LAPs. Then, the

total FY are determined as Y (A) =
∑

i P̄iYi(A), with Yi(A) the FY along the i-th mode.

4.2 The Fermium Chain

The even-even Fm isotopes with 154 ≤ N ≤ 160 are known to transition from asymmetric to

symmetric fission as N increases towards N = 164. This transition is related to strong shell

effects in the fragments as they approach the doubly magic nucleus 132Sn [160]. Nuclei in

this transition region then undergo bimodal fission, which has been investigated in numerous

papers [91, 124, 142, 153, 154, 161–174]. For this reason, we chose to investigate this isotopic

chain using PyNEB, in Ref. [14]. I note that, in this study, the perturbative cranking

approximation to the collective inertia was used, see Sec. 3.1.1.

4.2.1 Two Collective Coordinates

First, we consider the nuclei 254,256,258,260Fm with the SkM∗, UNEDF1HFB, and D1S EDFs,

in the 2D collective space (Q20, Q30). These PESs are shown in Fig. 4.2. In general, the

topologies of PESs agree well between various EDFs. The fission barriers obtained with SkM∗

and D1S are higher than those of UNEDF1HFB. Except for 260Fm with UNEDF1HFB, all

the PESs predict a fission isomer (FI) at 100 < Q20 < 160 b and Q30 = 0.

Recall that the fission pathway between the ground state and the FI tends to be triaxially

deformed, see Sec. 2.3.2. Since triaxiality is ignored in this study, in most cases, one path

along Q30 ≈ 0 connects the g.s. and the FI. The reflection-symmetric path continues past
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Figure 4.2: Potential energy surfaces of 254,256,258,260Fm (in MeV) calculated using
UNEDF1HFB (left), SkM∗ (center), and D1S (right) EDFs. The symmetric (dashed lines)
and asymmetric (solid and dotted lines) least action paths are drawn from the ground state
(filled circle) to the fission isomer (asterisk), to the exit point (open square). The white
contour denotes the outer turning line Veff = ∆E = 0. Gray contours are marked at 1 MeV
intervals for 0 < Veff < 5 MeV. Taken from Ref. [14].

the FI, and then a bifurcation resulting in a coexistence of symmetric and asymmetric

pathways takes place. The PESs tend to be relatively flat in the region beyond the FI,

leading to straight path segments. For 258Fm calculated with SkM∗, we observe an additional

asymmetric LAP that ends close to the symmetry axis, due to the geometry of the outer

turning surface. However, within our hybrid approach, this exit point corresponds to a wide

45



symmetric yield distribution.
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Figure 4.3: The relative probability of the symmetric mode, P̄s, plotted along the Fm isotopic
chain. Magenta dots, black ×s, and green squares correspond to the UNEDF1HFB, SkM∗,
and D1S EDFs, respectively. Solid (dashed) lines correspond to 2D (3D) collective spaces.

The relative probability P̄s of the symmetric mode is plotted in Fig. 4.3. All EDFs

transition from asymmetric-dominant to symmetric-dominant fission path with increasing

N . Competition between the modes is predicted in 256,258Fm for UNEDF1HFB, 258Fm for

SkM∗, and 256Fm for D1S. This competition is generally consistent with the SkM∗ results of

Refs. [88, 91], in which the fission probabilities were computed along minimum energy path-

ways. The small differences are most likely due to (i) our inclusion of the multidimensional

collective inertia tensor in computing the collective action and (ii) our precise minimization

of S(L).

Figure 4.4 shows the calculated yields, together with experimental data [175–178]. The

experimental data for 254,256Fm show an asymmetric distribution, while for 258Fm, the

yields are primarily symmetric, with a small asymmetric shoulder. The error bands in

the calculated distributions originate from the two-particle uncertainty, see Sec. 4.1.3. Our
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Figure 4.4: Fission fragment mass (left) and charge (right) yields for 254,256,258,260Fm calcu-
lated with UNEDF1HFB (magenta vertical patterns), SkM∗ (black horizontal patterns), and
D1S (green × patterns). Experimental yields (circles) [175–178] are shown where available.
Taken from Ref. [14].

UNEDF1HFB results are in close agreement with the data for 254Fm. Competition between

modes for 256,258Fm is present for each EDF, although the D1S EDF overestimates the

symmetric contribution. All EDFs predict overlapping symmetric yields for 260Fm. The

transition from asymmetric to symmetric fission is clearly present, albeit at different neu-

tron numbers for the EDFs. Despite the overestimation of the symmetric mode for 256Fm,
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UNEDF1HFB provides the best description overall. This may be due to the calibration in-

cluding the fission isomer energy rather than the fission barrier height, as the former is an

observable quantity while the latter is not, see Sec. 2.2.

The charge yields using the D1S EDF are largely consistent with the recent TD-GCM

calculations of Ref. [171], although the contribution to the symmetric mode for 258Fm is

somewhat overestimated in our results. The mass fragment yields agree well with the GEF

results [149], and disagree with both the SPY [150] and BSM [147] results. Both references

discuss this disagreement. In the former, it is attributed to an underestimate of the contri-

bution of two 132Sn fragments. In the latter, a number of model tweaks are suggested, to

both the shell-correction approach and the stochastic dynamics used.

We have also carried out calculations for 258Rf, 262Sg, and 262Hs, for the UNEDF1HFB

and SkM∗ EDFs; the results are presented in Ref. [14]. Similar to the Fm chain, individual

fission modes agree well between EDFs, but the relative probability of each mode differs

drastically between EDFs. As with the Fm chain, large-scale calculations also make dif-

ferent predictions than our approach. The sensitivity of the fragment yields to the EDF

parameterization is, therefore, a potentially useful tool for discriminating between various

EDFs.

4.2.2 Three Collective Coordinates

Next, we include the hexadecapole degree of freedom Q40, see again Sec. 2.3.2. Constraining

this moment resolves fission pathways not seen in the (Q20, Q30) collective space, as has

been demonstrated in Refs. [70, 91, 142, 179–182]. The D1S EDF is not considered in this

section, as it does not predict competing fission modes in the 2D collective space for 258Fm.

First, we consider 254Fm, as a nucleus with a single dominant fission mode. With the

SkM∗ EDF, an additional elongated fission pathway is identified, consistent with Ref. [91],
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while for the UNEDF1HFB EDF, no additional pathway appears. Still, the asymmetric

pathway is the only pathway that contributes to fission as in the 2D collective space, see

Fig. 4.3. The fragment yields are thereby similar between the collective spaces [14]. Similar

results are obtained for the UNEDF1HFB EDF. This demonstrates that individual fission

modes are somewhat robust to the choice of collective coordinates.

Figure 4.5: The least action paths in the 3D collective space for 258Fm using SkM∗ (a) and
UNEDF1HFB (b), starting from the FI. The outer turning surface is shown in purple. A 2D
PES is shown for constant Q40 = 16 b2 (Q40 = 32 b2) for SkM∗ (UNEDF1HFB). Neutron
localization functionals for the identified precission configurations are shown in the insets.
Taken from Ref. [14].

Next, we consider 258Fm. The fission pathways, along with the neutron localization

at the identified exit points, is shown in Fig. 4.5. Again as in Ref. [91], an additional

elongated symmetric fission mode is identified, albeit with relative probability ≈ 0. For the

SkM∗ EDF, the geometry of the outer turning surface is similar to the 2D case, leading

again to a weakly asymmetric exit point that corresponds (in the hybrid yield framework)

to symmetric FY. For the UNEDF1HFB EDF, the asymmetric fission mode is closer to the

Q30 = 0 axis, resulting in a more symmetric contribution to the FY. This worsens agreement

with the tails of the FY distribution, as shown in Fig. 4.6. The relative probability of the

compact symmetric mode is also shown in Fig. 4.3; it corresponds to the symmetric mode
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identified in 2D. For the SkM∗ EDF, P̄s is much larger in 3D than in 2D, resulting in a

better agreement with the experimental data. Taken together, this suggests that additional

collective coordinates should be considered when multiple fission modes are important, as

their addition may induce competition between the modes.
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Figure 4.6: The fragment mass (left) and charge (right) yields for 258Fm using SkM∗ (top)
and UNEDF1HFB (bottom) calculated in the 2D (green solid lines) and 3D (blue dashed
lines) collective spaces. Experimental data from [178] is shown as red filled circles. Taken
from Ref. [14].

4.3 Conclusion

In this chapter, I have presented results in systems with competing fission modes. Different

modes are computable using the nudged elastic band method implemented in Ch. 3, along

with the relative probability of each mode. Using an approximation scheme developed in

Refs. [153, 154], we have estimated the primary fission fragment yields. When two fission

modes compete, these yields strongly depend on the EDF parameterization. They also

weakly depend on the number of collective coordinates, although this warrants further study.

The UNEDF1HFB EDF is shown to be the most accurate EDF of those studied for the Fm

chain.
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The bulk of my contribution to this work was computing the PESs, LAPs, and fragment

yields using the UNEDF1HFB EDF. I have also developed a number of useful software tools

for computing PESs and FYs, and have supported my collaborators in their use.

Finally, previous experimental [183] and theoretical [184] work has suggested a transition

from asymmetric to symmetric fission as temperature increases. Thus, competition between

fission modes with increasing temperature is of interest. I am currently using the approach

from this chapter to study this competition in a number of different systems.
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Chapter 5. Neural Network Emulation
The approach to fission described in the previous chapters is computationally expensive,

primarily due to the HFB calculations that must be carried out. This limits its use in large-

scale calculations, which is especially problematic for the rapid neutron capture process (r

process). The r process involves thousands of heavy, neutron-rich nuclei that are typically

outside of experimental reach. Therefore, fission predictions with quantified theoretical un-

certainties are necessary. This, in turn, necessitates emulation techniques.

In this chapter I will discuss emulation of the PES and collective inertia tensor across the

r process region of the nuclear chart using neural networks (NNs). I will begin with a brief

discussion of the r process and the relevance of fission observables. I will then discuss details

of the NN used, and present the NN results on both the PES and inertia, as well as (proxies

for) observable quantities. The results in this chapter are from my publication, Ref. [15].

5.1 The Rapid Neutron Capture Process

The r process is responsible for the production of roughly half of the abundance of elements

heavier than iron. It occurs in explosive stellar environments with high neutron densities.

Some types of core-collapse supernovae, as well as neutron-star neutron-star (NS-NS) merg-

ers, have long been studied as potential r process sites. Recent observations, especially the

NS-NS merger GW170817, have largely confirmed the latter. For recent reviews of the r

process, see Refs. [5, 185–188].

In an environment with free neutrons, repeated neutron captures and β− decays trace a

pathway through the nuclear chart, resulting in heavier nuclei. For low neutron densities,

this path stays close to the valley of stability, leading to the slow neutron capture process

(the s process). For high neutron densities, this path pushes outward from stability, into
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the neutron rich region of the nuclear chart. Eventually, near A ≈ 260 [188], fission begins

to compete with neutron capture rates, terminating the r process chain. Given enough free

neutrons, the fission fragments capture more neutrons from the environment, repeating the

cycle. This is called fission recycling, and is important for explaining actinide abundances [5].

Finally, after the available neutrons are exhausted, fission participates in the decay chain

back towards stability, thereby affecting the final abundances. Further, recent studies have

shown that fissioning nuclei leave visible signatures in the electromagnetic spectrum released

in NS-NS mergers, due to the large amount of energy released in this decay [189, 190].

As such, fission properties such as half-lives (often parameterized by barrier heights) and

fragment yields are important inputs for r process reaction network calculations. A number

of r process nucleosynthesis studies have been carried out in recent years. Many of them

take fission inputs from phenomenological models such as those discussed in Sec. 4.1.1, see

Refs. [8, 189, 191, 192]. Due to its computational cost, similar calculations using fission

inputs from DFT have been rather limited - for instance, while fission barriers have been

taken from DFT, fission fragment yields have typically been taken from statistical models [9,

193]. Fission inputs from DFT calculations are therefore of great interest for r process

studies.

5.2 The Neural Network Scheme

Machine learning (ML) approaches show promise for speeding up such calculations. ML has

been used extensively within nuclear physics, see Ref. [12] for a recent review. Specifically,

a number of ML tools have been used to emulate PESs in both quantum chemistry [194–

197] and nuclear physics [198, 199]. While these works have focused on PESs for individual

systems, Ref. [200] used a committee of NNs to emulate the PES and collective inertia in
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the space of axial and triaxial quadrupole deformations. The NN results were then able to

predict properties such as the HFB energy to within 500 keV root-mean-square error, along

with many of the low-lying states to within a few percent error. This work demonstrated

that NNs are capable of emulating PESs. It also demonstrated that learning intermediate

terms in a calculation (rather than e.g. just learning the binding energy) may be helpful,

and allows for predictions of quantities beyond what the NN was trained on.

In Ref. [15], we have trained fully-connected feedforward NNs separately on the potential

energy V and the components of the collective inertia M across the r process region of the

nuclear chart. We work in the (Q20, Q30) collective space, using the D1S EDF, using the

solver HFBAxial. M was computed using the nonperturbative cranking approximation. Each

NN takes as input (A,Z,Q20, Q30), specifying the nucleus and deformation, then outputs

the value (either V or one of Mµν) at that point. We linearly rescale the NN inputs to lie

between zero and one using the same rescaling factor for all data points.

Each NN has between 2 and 7 hidden layers, with 200 nodes in the first layer and a

decreasing number of nodes in subsequent layers. We use the RELU activation function,

and train to minimize the root-mean-square error in the desired quantity. For each variant

on the NN depth, we train multiple NNs, forming a committee. The predictions from

each committee member are combined in a weighted average, to reduce the error due to

stochasticity in the training of any individual NN.

As training data, we computed PESs and the collective inertia for 194 nuclei, each on

a regular grid of 4 b for 0 ≤ Q20 ≤ 248 b, and 6 b3/2 for 0 ≤ Q30 ≤ 60 b3/2. These

nuclei are labeled as either training, combining, or validation. The combining and validation

nuclei were sampled from a uniform random distribution, such that no region of the nuclear

chart is overrepresented in either dataset; the remaining nuclei form the training set. These
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different datasets are indicated in Fig. 5.1. For each nucleus, the entire grid is used in the

training/combining/validation. The nuclei in the training set are used to train individual

NNs, the nuclei in the combining dataset are used to combine predictions from the committee

members in a weighted average, and the nuclei in the validation set are used for validation

of the NN predictions. The weights for each committee member are chosen to minimize the

root-mean-square error on the nuclei in the combining dataset. Most of the nuclei (about

70%) are used for training, with the remaining 30% split equally between the combining and

validation datasets. In general, the NN performance is not sensitive to the distribution of

training data, provided the NN does not attempt to extrapolate across the nuclear chart.

No detailed optimization of the choice of training nuclei was carried out.

Recall that the collective inertia depends on the derivatives of ρ and κ with respect

to the collective coordinates, see Eq. (3.11). Thus, due to level crossings, M can develop

discontinuities and rapid variations, meaning that the tensor components can span many

orders of magnitude. To enable the NN to learn the tensor, we consider the eigenvalue

decomposition M = UΣUT . U is the 2 × 2 matrix of eigenvectors and Σ is the diagonal

matrix of eigenvalues. Since U is an orthogonal matrix, we parameterize it by the Euler angle

θ. The NN is then trained on θ and the log of the eigenvalues. Training on this representation

of the tensor is similar to normalizing the network inputs, as both put NN inputs/outputs on

a similar scale. Additionally, this forces the tensor predictions to be positive semi-definite.

5.3 Neural Network Quality

In this section, I discuss the performance of the NN on both the PES and collective inertia,

and on the observable quantities that have been discussed in previous chapters. Through-

out, I will refer to quantities computed using DFT (the NN) as the reference data (NN
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reconstruction).

5.3.1 The Emulated Quantities

For a single nucleus, we define the root-mean-square error (RMSE) ∆V (A,Z) in energy over

the collective domain considered as

∆V (A,Z)2 =
1

n

∑
Q20,Q30

[V DFT(Q20, Q30, A, Z)− V NN(Q20, Q30, A, Z)]2, (5.1)

where n = 693 is the number of gridpoints evaluated in the PES. Figure 5.1 shows ∆V (A,Z)

across the region of the nuclear chart considered, for the deepest NN (7 hidden layers, with

200-175-150-125-100-75-50 hidden units), with rescaled inputs. As can be seen, for most

nuclei, ∆V (A,Z) ≲ 0.5 MeV. Exceptions occur, with most remaining below 1.5 MeV.

120 140 160 180 200 220
N

90

100

110

Z

Training

Combining

Validation

Training

Combining

Validation

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Figure 5.1: ∆V (A,Z) (in MeV) for the deepest NN. The different shapes indicate which
dataset each nucleus belongs to. Taken from Ref. [15].

For some nuclei (e.g. 308Cf, 314Fm, and 318No), relatively poor performance is not

surprising: these nuclei are on the outer edge of the region of the nuclear chart considered,

so the NN is extrapolating away from the training region. For other nuclei (e.g. 232Th,

280Cm), poor performance is unexpected: these nuclei are surrounded by training nuclei,

and so should be emulated fairly well.
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To understand this, Fig. 5.2(a) shows the reference PES for 280Cm, and Fig. 5.2(b) shows

the difference between the reference PES and its NN reconstruction. This nucleus is chosen

because it has ∆V = 2.15 MeV, the largest of all nuclei in the validation set. The difference

is less than 1 MeV across most of the PES, notably in the region relevant for fission (shaded

in gray). The energy difference is large elsewhere, with a difference of more than 5 MeV,

explaining the ∆V value. We conclude that even for nuclei with larger RMSE, NNs could

provide a very reasonable description of the fission path. This aspect will be examined

further in Sec. 5.3.2.
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Figure 5.2: (a): the reference PES for 280Cm in MeV. (b): the difference between the
reference and reconstructed PESs, again for 280Cm, in MeV. The reference ground state
and the reference LAPs are marked with a × symbol and black lines, respectively, in both
panels. The energy range 0.5 ≤ V DFT ≤ 12 MeV is shaded in gray in panel (b). Taken from
Ref. [15].

To assess the sensitivity of our results with respect to the NN architecture, we repeated

our calculations employing different NN sizes and rescaling the inputs. The results are

shown in Fig. 3 of Ref. [15]. As is generally expected, the training dataset has a monotoni-

cally decreasing RMSE as the NN depth increases, due to the increasing number of tunable

parameters in the NN. On the other hand, the RMSE for the combining and validation sets is
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fairly stable with respect to the number of hidden layers of the NN. A general improvement

is observed when rescaling the inputs (A,Z,Q20, Q30) to be between 0 and 1. This is because

(i) the NN weights are not scale-invariant [201], and (ii) neither is the optimization algo-

rithm [202, 203]. We conclude that the NN performance in predicting the PES is relatively

stable with respect to the NN architecture; Sec. 5.3.2 will demonstrate that performance on

this level is adequate for predicting SF observables.

Next, I consider the collective inertia tensor. Figure 5.3 shows the reference inertia

components, plotted against the NN reconstructions, for all nuclei considered. The NN

used is the 7-layer NN with rescaled inputs, with the number of hidden units as described

above. The diagonal components M22 and M33 are predicted fairly well, with distributions in

alignment roughly along the diagonal. It is worth noting that the NN tends to underpredict

relatively large values and overpredict relatively small values, meaning that the NN is slightly

biased towards the mean value of the inertia.

The off-diagonal component |M23| is not aligned along the diagonal. This is because

this component actually varies across almost 10 orders of magnitude (compare to the 4

orders of magnitude for M22 and M33), and so the NN is biased towards predicting the

larger values more accurately. In terms of the angle θ that is actually determined by the

NN, it is difficult to predict both small and large angles, and because θ is allowed to be

negative, a logarithm transform is not possible. Nevertheless, we obtain a reasonable-looking

distribution above |M23| ≳ 10−4 MeV−1 b−5/2, indicating that some learning has indeed

taken place. And, the poorly-learned values below 10−4 MeV−1 b−5/2 are truncated at

values 10−6 − 10−2 MeV−1 b−5/2.

When changing the depth of the NN, performance is similar. For shallow networks,

predictions on the training dataset show a larger bias: the larger (smaller) reference values
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Figure 5.3: The reference components of M , plotted against the NN reconstructions, for all
nuclei considered. The black line is the diagonal, MDFT

µν = MNN
µν . The blue squares/green cir-

cles/orange triangles correspond to the training/combining/validation datasets. Note that,
for use on a log scale, we plot the absolute value of M23 (the other components are nonnega-

tive). M22 is in MeV−1b−2, M23 is in MeV−1b−5/2, and M33 is in MeV−1b−3. Taken from
Ref. [15].

are underestimated (overestimated), to a greater degree than with the deepest network shown

in Fig. 5.3. The validation dataset is aligned similar to the deepest network. As the depth of

the network is increased, the training data points are aligned closer with the diagonal. This

is indicative of the NN tending to overfit on the training data as the number of variational

parameters increases. The distribution of M23 values remains approximately the same when

increasing NN depth. Overall, the NN performance on the validation dataset is mostly

stable when varying the NN depth. The question is whether this performance is sufficient

for predicting observable quantities of interest. As with the PES, this question can be directly

answered by looking at NN predictions of physical observables. Thus, we consider observable
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quantities in the next section.

5.3.2 Relation to Observables

While encouraging, the results discussed above do not give a perfectly clear estimation of

the performance of the NNs. For instance, the NN reconstruction of the PES for 280Cm

may be adequate for reproducing SF observables despite the poor RMSE, since the largest

deviations occur at deformations that will not be explored by LAPs. Similarly, the NN

commonly fails to reproduce the off-diagonal component of the collective inertia, M23, but

primarily for small values of M23.

We consider two quantities: the lifetime-weighted exit point, as a proxy for the fragment

yields, see Ch. 4, and the half-life of the nucleus. For both quantities, we compare three sets

of data: the quantity computed using (i) the reconstructed PES and the identity inertia; (ii)

using the reference PES and the reconstructed inertia; and (iii) the reconstructed PES and

inertia. In this way, we isolate the impact of the PES and inertia emulations, and combine

them to assess the overall error of the emulator. In this section, we use the 7-hidden-layer NN

with rescaled inputs, with a number of hidden units described above. Based on the relative

insensitivity to the depth of the NN, the overall performance is expected to be similar for

different NN depths.

Figure 5.4 shows the difference in the octupole moment of the lifetime-weighted exit

point, for configuration (iii) mentioned above. The octupole moment is chosen because it

is critical for explaining multimodality in SF, recall Sec. 2.3.2. The Q30 error is similar

for the other configurations, and the quadrupole moment is typically within ±1 b for all

configurations. As can be seen, the Q30 error is mostly ±1 b3/2, which we expect results in

similar FY (within the hybrid method of Sec. 4.1.3). The agreement is mainly due to the

accurate PES reconstruction, as previous studies have shown that the exit point location
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Figure 5.4: The Q30 component of the reconstructed lifetime-weighted exit point, minus the
reference Q30 component, in b3/2. These results were computed using configuration (iii),
i.e. the NN was used to reconstruct both the PES and the collective inertia. Taken from
Ref. [15].

is fairly robust with respect to variations in the collective inertia [72, 109, 153, 204]. This

agreement holds even for nuclei whose PES reconstruction has a large error, such as 280Cm,

indicating that the qualitative features shown in Fig. 5.2(a) are indeed reconstructed well

enough to describe multimodality in SF.

Notice that the exit point locations are not reproduced perfectly for some nuclei, espe-

cially in the thorium (Z = 90) chain, where the difference can be as much as 5 b3/2. This

is not due to the PES reconstruction: Fig. 5.1 shows that the thorium isotopes have RMSE

∆V (Z = 90) ≲ 100 keV, and the exit point reconstruction error of configuration (i) is within

1 b3/2. While a side-by-side comparison of the components of M does not show a systematic

deviation between the reference inertia and the NN reconstruction, M is indeed the cause of

the error. Random reconstruction error is present for every deformation considered, and it

is the accumulation of this random error that causes the discrepancy. While the location of

any individual exit point is not sensitive to the collective inertia, the probability of tunneling

to a particular point, Eq. (3.15), is exponentially dependent on the action (and therefore

M), small errors can accumulate and switch the dominant exit point from asymmetric to
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symmetric and vice versa. This is especially important for nuclei with a wide fission barrier,

as the cumulative error along the path is large.

Nevertheless, we observe that both the PES and the collective inertia are emulated well

enough to predict exit points that agree with the reference data. For most nuclei, the

dominant fission mode is also in agreement. Together, this means that the FY largely agree

between the reference data and the NN reconstruction.
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Figure 5.5: The half-life predicted using the DFT reference data, tsf-DFT
1/2

, plotted against the

half-life computed using the NN reconstruction, tsf-NN
1/2

. Panel (a) shows configuration (i), in

which only the PES is emulated; panel (b) shows configuration (iii), in which both the PES
and the collective inertia are emulated. The black line marks the diagonal: tsf-DFT

1/2
= tsf-NN

1/2
.

Gray bars are drawn at tsf-DFT
1/2

× 10±3, i.e. 3 orders of magnitude above and below the

diagonal. Insets show the range 10−5 − 1010 s, to highlight the relevant r-process range.
Taken from Ref. [15].

Next, I consider the SF half-life. Figure 5.5 shows tsf
1/2

computed using the reference data

vs. tsf
1/2

computed using the NN reconstruction, for configurations (i) and (iii) mentioned

above (results for configuration (ii) are similar to those of (iii)). As can be seen, the tsf
1/2

predictions agree well, typically within 3 orders of magnitude across the approximately 80

orders of magnitude under consideration.
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Figure 5.5(a) demonstrates that the PES reconstruction is sufficient to predict tsf
1/2

values

that agree well with the reference values. As with the FY, this is true even for nuclei with a

large ∆V , e.g. 280Cm, once again demonstrating that the PES emulation quality is indeed

sufficient to reproduce SF observables. Figure 5.5(b) includes the collective inertia emulation.

As can be seen, the reproduced tsf
1/2

values agree less well with the reference values, although

the disagreement is still within 3 orders of magnitude for most nuclei. This is not unexpected:

as was discussed above, the collective inertia emulation is not accurate enough for all nuclei

(although it is sufficient for most).

As with the exit points, the disagreement in tsf
1/2

is due to the accumulation of random

errors when the fission pathway goes across the fission barrier. Now, rather than changing

the dominant fission mode, tsf
1/2

is simply changed from the reference value in a more-or-

less random manner. The effect is most prominent for long-lived nuclei, where errors in the

collective inertia add up to a fairly large value as the pathway traverses a wider fission barrier.

This is demonstrated in Fig. 7 of Ref. [15], which plots the ratio of the half-lives against the

barrier width, ∆Q20. As ∆Q20 increases above ∼75 b, the difference between reconstructed

half-lives and the reference half-lives tends to increase. While it may be desirable in principle

to improve the emulation, the nuclei whose tsf
1/2

values are reproduced with a large error are

those predicted to be stable to SF, within the (Q20, Q30) collective space. As such, errors in

the SF observables have little effect on results that are further dependent on tsf
1/2

, such as r

process network calculations.

Finally, the inset panels in Fig. 5.5 magnify the range 10−5 − 1010 s, to highlight the

relevant r process range. As can be seen, almost all nuclei within this range are reproduced

within three orders of magnitude. Therefore, we conclude that NNs are able to reproduce

both the PES and the collective inertia well enough that tsf
1/2

is reproduced within 3 orders
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of magnitude for nuclei for which SF is relevant in the r process region.

5.4 Conclusion

In this chapter, I have discussed the emulation of the PES and collective inertia tensor across

the r process region of the nuclear chart. As has been shown, neural networks are able to

emulate both quantities well, in the deformation region relevant for SF - for instance, the

PES is emulated to within ≲ 1 MeV in the barrier region. I have then demonstrated that

this accuracy translates to reasonable accuracies in the observables discussed in this thesis,

namely the half-life and the primary fission fragment yields.

There are a number of desirable improvements with this approach. The first is that the

emulated quantities only predict the deformation of the nucleus at the exit point. To actually

compute FY, additional HFB calculations are necessary. The second is the amount of training

data used. As can be seen in Fig. 5.1, a large fraction of the r process nuclei considered are

used to train the NN, necessitating tens of thousands of HFB calculations. It is desirable to

reduce this number as much as possible, especially since it scales poorly with the number

of collective coordinates used. Third, while the emulator error is indeed adequate for SF

observables, it is inadequate for uncertainty quantification efforts. For example, propagating

uncertainties from the UNEDF1 calibration leads to statistical uncertainties in the fission

barrier on the order of 1-2 MeV [11]. Additional emulator error of ≲ 0.5 MeV thereby results

in considerably wider uncertainty bands, reducing the apparent reliability of the model.

The next chapter introduces a category of emulators that addresses these issues.
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Chapter 6. Reduced Order Model Emulation
We are interested in computing theoretical uncertainties using Bayesian methods. A Bayesian

approach to model calibration explicitly encodes prior-known information about, and results

in a posterior distribution over, the model (EDF) parameters [205]. Theoretical uncertainties

are then propagated by sampling over the posterior parameter distribution and computing

the quantity of interest for each parameter sample. For a review of Bayesian statistical

approaches, see e.g. [206]. Bayesian methods involve sampling over model parameters, re-

quiring tens- to hundreds-of-thousands of model calculations [10]. To address the resulting

computational cost, emulators are required.

In this chapter, I will discuss a class of emulation techniques known as reduced order

models. I will then present a pair of illustrative examples, and conclude with my recent

applications to configuration-space DFT solvers.

6.1 Reduced Order Models

Reduced order models (ROMs) have been used widely both inside and outside of nuclear

theory. Literature on this subject is commonly called dimensionality reduction [207] or model

order reduction [208]. In the nuclear physics context, eigenvector continuation [209, 210] is

closely related to the reduced basis method [10, 211], which itself falls under the category

of ROMs. The recently-developed parametric matrix models [212] similarly fall under this

label. Even neural-network-based approaches are often included in this category. A number

of textbooks on the subject have been published [207, 213, 214]. For a review article on their

use in nuclear theory, see Ref. [210]. I will not attempt to review ROMs in general, or even

their applications in nuclear physics. Instead, I will simply describe the common philosophy

of such methods.
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The methods can be abstractly described as follows: consider a completely generic equa-

tion of motion F [z;α] = 0, where z, F [z] ∈ RK and α ∈ RM . z is a vector of independent

variables, and α are some model parameters. For the Schrödinger equation for the simple

harmonic oscillator, for instance, z may be the wave function discretized on a coordinate

mesh and α may be the harmonic oscillator width. The goal is to then solve F [z;α] = 0

for a number of different values of α. K is typically large, varying between 100-1000 for

a one-dimensional potential (see the example in Sec. 6.2.2). The number of independent

variables grows exponentially with the dimensionality of the problem - if 100 mesh points

are used in 1 spatial dimension, a naive approach uses 1002, then 1003, for two and three

dimensions, respectively (modern solvers commonly exploit pseudospectral methods [215],

but the point stands). The solution for a parameter α1 tells us some information about the

solution for α2, which tells us additional information about α3, and so on. So, one should

be able to solve F [z;αm] = 0 faster as m increases, using some information from solutions

obtained for i = 1, . . . ,m− 1. A ROM is then a generic label for any approach that uses the

information from previous solutions to approximate the next solution.

6.2 Illustrative Examples

For illustrative purposes, I will first present the one-dimensional Schrödinger equation. I will

then present results for a self-consistent problem, still in one dimension.

6.2.1 The Schrödinger Equation

The time-independent Schrödinger equation for a potential Vα(x) can be written as

Hα|ψα⟩ = ϵα|ψα⟩, where Hα(x) = − ℏ2

2m

d2

dx2
+ Vα(x) (6.1)
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is the Hamiltonian in position space (generalization to a nonlocal potential is straight-

forward). Grid-based solutions discretize the Hamiltonian onto a coordinate mesh x =

(x1, . . . , xN ), and diagonalize the resulting matrix; I will refer to this as the coordinate

space approach. Another common approach is based on the Ritz variational principle. One

expands |ψα⟩ in a basis {|ϕi⟩}ni=1, as

|ψα⟩ ≈
n∑

i=1

ai(α)|ϕi⟩. (6.2)

After writing the Schrödinger equation in this basis, one projects onto ⟨ϕj | for j = 1, . . . , n,

arriving at the system of equations

n∑
i=1

ai(α)⟨ϕj |Hα|ϕi⟩ = ϵaj(α), j = 1, . . . , n. (6.3)

This is an eigenvalue problem for the expansion coefficients a = (a1, . . . , an), and can be

solved straightforwardly. I will refer to this as the configuration space approach.

Both approaches are arbitrarily precise as N, n increase. The total runtime is dominated

by the diagonalization time, which is of order O(N3) and O(n3) respectively. However, the

configuration space approach has an additional numerical cost: the numerical integration

to compute the matrix elements ⟨ϕj |Hα|ϕi⟩, which scales for a local potential as O(n2N)

(an approach using matrix-vector products for the integration actually scales as O((nN)2)).

Thus, even for efficient numerical integration, the coordinate-space approach is faster than

the configuration-space approach, as demonstrated in the example in Sec. 6.2.2.

To understand where possible speedups may be present, I show two cases. First, consider

Vα(x) = αW (x). The simple harmonic oscillator is the example W (x) = x2. Then, the
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expansion in the |ϕi⟩ basis results in

(T + αW )a(α) = ϵa(α), Tij ≡
〈
ϕi

∣∣∣∣−ℏ22m

d2

dx2

∣∣∣∣ϕj〉, Wij ≡ ⟨ϕi|W (x)|ϕj⟩. (6.4)

Note that the matrices T,W can be computed independently of α. This is the key sim-

plification: as the parameter α is changed, the diagonalization problem is faster than in

coordinate space (provided, as is typical, that n < N). Explicitly, this precomputation is

possible because of the affine parameter dependence in the Hamiltonian.

Next, consider a Woods-Saxon type potential,

Vα(x) =
1

1 + ex/α
. (6.5)

This is used prolifically in nuclear physics as a simplified single-nucleon potential [31]. The

parameter dependence is non-affine, prohibiting the decomposition above. Empirical inter-

polation (EI) [216–218] solves this problem by the decomposition

Vα(x) ≈
nei∑
j=1

bj(α)Wj(x). (6.6)

With this affine decomposition, the matrices ⟨ϕi|Wj(x)|ϕk⟩ can be precomputed, and the

speedup is retained.

To compute Wj(x), we evaluate Vαl(x) for a number of parameters {αl}Al=1 on x, then

form the matrix Vij ≡ Vαi(xj). The SVD of V then gives an orthonormal basis informed

by the snapshots. Denote the i-th singular value of V by Σi. The expansion coefficient

bj(α) is expected to be of order Σi for all α within some range of the sample solutions.

This is because this approach projects onto the linear subspace that best describes Vij , and
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hence data similar to the sample solutions. Note that this range may be fairly large [211].

We choose some threshold εei, and only include basis vectors where Σi/Σ0 ≥ εei. This

corresponds to an error in the basis truncation of order O(εei), and hence an error in the

final result on the same order. The singular values tend to decay exponentially [219]. So,

only a few basis functions are necessary (i.e. nei is small, typically nei ≪ N).

To determine the coefficients bj(α), we enforce equality on some subset of the gridpoints

(called the collocation points),

Vα(xi) =

nei∑
j=1

bj(α)Wj(xi), i ∈ {1, . . . N}. (6.7)

This (in general, overdetermined) system can be approximately solved using the Moore-

Penrose inverse. That is, define the matrix Wij ≡ Wj(xi) and the vector vi ≡ Vα(xi). This

is then a linear system Wb(α) = v, whose approximate solution is b = (WTW)−1WTv.

An alternate solution is to evaluate Wj(xi) on exactly nei gridpoints, chosen using the

MaxVol algorithm [220, 221] to maximize the information contained in the matrix Wj(xsi),

i, j = 1, . . . , nei. Both methods lead to the result

bj(α) =
n∑

i=1

MiVα(xi), (6.8)

with the upper bound being n = N (n = nei) for the overdetermined (MaxVol) case. The

advantage of the latter approach is that Vα only has to be evaluated on nei meshpoints,

which is especially useful for self-consistent potentials, see Sec. 6.3.3.

It remains to choose the wave function basis {|ϕi⟩}. A generic basis, such as the harmonic

oscillator, is a common choice. However, in many cases, a basis with fewer elements can be
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determined. Analogous to determining the expansion functions {Wj(x)}, we take the SVD

of the wave functions as α is varied. Note that this introduces another threshold εRBM

that must be chosen to truncate the SVD. This approach is what is often referred to as the

reduced basis method (RBM): it is simply a basis expansion approach, in a tailored basis.

This approach has been applied to self-consistent solvers [10, 211] and widely applied in

other areas of nuclear theory; see the recent review [222]. When multiple eigenstates are

needed, one may either construct a basis for each wave function separately, or construct a

single basis that describes all wave functions simultaneously. The wave function construction

will be discussed further in Sec. 6.3.

6.2.2 A Modified Gross-Pitaevskii Equation

The Gross-Pitaevskii equation was introduced originally to study superfluidity in bosonic

systems [223]. There, the bosons are assumed to have only a contact interaction, plus

perhaps an external confining potential V (r). In the Hartree-Fock approximation, which

for bosons states that the full wave function Ψ(r1, . . . , rA) =
∏A

i=1 ψ(ri), the single-particle

state ψ(r) obeys the equation

[
− ℏ2

2m
∇2 + V (r) + α|ψ(r)|2

]
ψ(r) = Eψ(r). (6.9)

This involves the self-consistent potential |ψ(r)|2, similar to the EDFs considered above,

motivating its choice as a toy model.

To render this model more similar to the Skyrme EDF, we replace the self-consistent

potential with ρσ(r), where

ρ(r) ≡
A∑
i=1

|ψi(r)|2 (6.10)
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is the local single-particle density and σ is a (non-integer) tunable parameter. We then solve

a coupled system of equations for each wave function ψi(r), i = 1, . . . , A. The use of the

density ρ is required to describe fermions rather than bosons. The choice of σ as a free

parameter mimics the similar term in the Skyrme EDF, see Sec. 2.2.1. Finally, we specify

an external harmonic oscillator potential. Explicitly, in this section we solve the system

ĤGPψi(x) = ϵiψi(x), ĤGP ≡ −
d2

dx2
+ kx2 + qρσ, i = 1, . . . , A, (6.11)

and I will refer to this equation as the Gross-Pitaevskii (GP) equation.

The non-integer power introduces complications. To see this, consider first the case with

integer σ, which has been studied in Ref. [211]. Wave functions appear in integer powers,

and hence the multinomial theorem guarantees that the basis expansion matrices can be

precomputed. Thus, the GP equation can still solved entirely within the reduced space

defined by the expansion coefficients. This fails when non-integer σ are considered. I note

that Ref. [211] nevertheless obtains a meaningful computational speedup with non-integer

σ, albeit with the one-dimensional Skyrme EDF instead of ĤGP.

As with the Woods-Saxon potential, the solution is EI. Specifically, we expand the entire

self-consistent potential

f(α;x) ≡ qρσ(x) ≈
nei∑
j=1

bj(q, σ)Wj(x), (6.12)

with the {Wj} defined via the SVD. An apparent snag is the determination of b(q, σ).

With the Woods-Saxon example, the potential is given explicitly, so one may evaluate it

at any pair (q, σ;x) so desired. Here, that is not the case. Recall instead the iterative
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Figure 6.1: A schematic diagram of solving the Gross-Pitaevskii equation using empirical
interpolation. The index ℓ is the self-consistent iteration.

process described in Sec. 2.1, displayed schematically in Fig. 6.1. So, the potential used to

determine b(ℓ+1) may be computed using the wave functions {ψ(ℓ)i }. The iterative scheme is

then deemed convergent when max |b(ℓ)−b(ℓ+1)| ≤ εconv for subsequent iterations (ℓ, ℓ+1),

for a specified tolerance εconv.

To contrast this approach, I first compare to three different solvers: a harmonic oscillator

(HO) basis expansion, a uniform finite-difference grid discretization, and a Chebyshev [215]

grid discretization. All approaches use a linear mixing scheme [95]. In the HO expansion,

the number of oscillator shells is varied from 20 − 150. The grid discretization schemes

increase the number of gridpoints used, between 100−1000 and 20−200 for finite difference

and Chebyshev grids, respectively. As these values increase, the error on the eigenvalues

decreases; conversely, the total runtime increases, as seen in Fig. 6.2(a) for A = 5. As

discussed above, the HO expansion option is slower than the finite difference solver, up to a

crossover runtime of about 1 second. Additionally, the discretized grid based on Chebyshev

meshpoints is faster than the finite difference solver at low accuracy, and scales similar to

the HO expansion at high precision. Note that these three solvers use the same tolerance

72



10−7

10−5

10−3

10−1

(a) HO Expansion

Finite-Difference

Chebyshev

EI

EI+RBM

10−3 10−2 10−1 100 101

Runtime (s)

10−7

10−5

10−3

10−1

(b)

E
ig

en
va

lu
e

R
M

S
E

Figure 6.2: The root-mean-square error on the eigenvalues computed using a number of
different solution methods. (a) considers the first 5 wave functions; (b) considers the first
20. See the text for details.

εconv = 10−8, and the exact eigenvalue is taken from the highest-precision calculation. Thus,

the runtime difference as e.g. the number of HO states increases is due to the increased matrix

size, not the total number of iterations.

Also shown is the EI implementation with both a HO and a reduced wave function

basis (RBM) that describes all A wave functions simultaneously. The EI coefficients are

reconstructed in the overdetermined case. The EI (and RBM) tolerance are varied between

10−3−10−7, which corresponds to increasing the number of basis functions. The convergence

tolerance is set to εconv = 10×max (εei, εRBM), as a smaller tolerance is below the truncation
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error from the expansions. As can be seen, EI in the HO basis is consistently 10 times faster

than the Chebyshev approach, and 100 times faster than the HO expansion, for equivalent

precision. That EI is only one order of magnitude faster than the Chebyshev grid suggests

that pseudospectral methods on tailored grids may provide an additional speedup. The EI

+ RBM approach demonstrates that an additional factor of 5 may be gained with similar

precision.

Figure 6.2(b) is the same as Fig. 6.2(a), except for A = 20. Many of the same conclusions

hold. The notable exception is that the speedup from the tailored wave function basis is

drastically decreased. This is because the wave function basis size must be enlarged to

capture higher-lying states. This suggests that a wave function basis becomes less useful as

more states are desired; we will return to this point in the next section.

Overall, this example demonstrates the effectiveness of the described approach. Next, I

will focus on a realistic case with the HFB equations.

6.3 The Axial HFB Case

Now, we consider the HFB equations, assuming axial and time-reversal symmetry. A com-

mon solution method is to expand in a (transformed) harmonic oscillator basis, as in the

solver HFBTHO [33]. Below, I will comment on some of the subtleties that differentiate this

from the GP equation, then discuss EI for a representative superheavy nucleus, 254Fm.

6.3.1 Subtleties with the HFB Equations

The HFB equations differ considerably from the GP equation discussed in the previous

section. The first consideration is the self-consistent potential: in addition to two species

of particles (protons and neutrons), there are multiple local densities and currents that

contribute to the HFB matrix, and each contributes a term to the self-consistent potential.
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For each local density

O ∈ {ρq,∆ρq, τq,∇ · Jq, . . .}q=n,p, Õ ∈ {ρ̃q, . . .}q=n,p (6.13)

the contribution to the HFB matrix can be written as

hOαβ =

∫ ∞
0

dr r

∫ ∞
−∞

dz fOαβ(r, z)
δEHFB

δO (r, z) (6.14)

for a particular function fOαβ(r, z), and analogous for the pairing channel hÕ. Throughout,

the variations
δEHFB

δO (r, z) will be referred to as fields [36]. For the particle densities, the

fields are related to the central, spin-orbit, and the effective mass [38]. It is, however,

convenient to separate the ρq and ∆ρq terms. Then, the full HFB matrix splits into a

number of terms:

h =
∑
O
hO, h̃ =

∑
Õ
hÕ. (6.15)

When split by nucleon species, the sum is over proton/neutron variations (e.g. hn only

includes variations with respect to neutron densities). Each of these fields must be recon-

structed at every iteration, and the collocation points should be chosen so as to not repeat

calculations. In this work, we use the set-wise union of the collocation points for each field.

The self-consistent solver then determines the expansion coefficients for each field, bO(α) and

bÕ(α). Otherwise, the iterative scheme follows that of Sec. 6.2.2, using Broyden mixing [95].

Next, consider the wave functions. An appealing option is to build an emulator for

each wave function individually, each requiring few basis states, and hope to achieve a

speedup that way. However, this requires tracking wave functions as the EDF parameters
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are changed. In the GP example above, the number of nodes in the wave function determines

which eigenstate is considered (e.g. the ground state or the first excited state) by the well-

known Courant nodal domain theorem [224]. Thus, tracking of states is possible. In the

HFB case, this theorem no longer holds.

Alternatively, one may use clustering techniques to search for similar-looking wave func-

tions. Far from (avoided) level crossings, this is indeed possible. Near the crossing, the

two wave functions occupy the same subspace and thereby look drastically different from

their values far from the crossing. This can be seen in simple two-level systems. The wave

functions can be tracked through the crossing using by calculations near the level crossing,

but crossings are ubiquitous. This makes the number of required calculations large, reducing

the utility of this approach. The only remaining option is to build a reduced basis for all

of the wave functions simultaneously. Typical calculations for superheavy nuclei have many

more wave functions than nucleons, so this option is far from guaranteed to speed up the

calculation.

6.3.2 The Setup

In Ref. [11], statistical uncertainties from the UNEDF1LN calibration were propagated to a

number of observable quantities using Gaussian Process emulators. As part of that work,

1000 sample EDF parameters were obtained from the posterior distribution. For each set of

parameters, we use HFBTHO to compute exact solutions to the HFB equations. We take

100 of these parameters, sampled randomly, as the “training” data. We have checked, and

these parameters are evenly distributed throughout the posterior distribution, i.e. we are

interpolating in parameter space. We then follow the procedure discussed above to generate

EI basis functions, as well as a tailored basis for the single-quasiparticle wave functions. The

emulator has been written in Python.
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Here, I will specifically consider the unconstrained ground state of 254Fm using 25 oscil-

lator shells, at the HFB level. Results when varying the number of major harmonic oscillator

shells from 20-30, considering LN instead of HFB, computing the unconstrained fission iso-

mer instead of the ground state, and studying 236Pu are similar.
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Figure 6.3: The singular values of the fields for the unconstrained ground state of 254Fm
using 25 oscillator shells. The legend displays the field being varied, e.g. ρ corresponds to
δE

δρ
. Solid (dashed) lines correspond to protons (neutrons). The dashed black line indicates

an example threshold εei = 10−5.

The singular values of the fields SVD are displayed in Fig. 6.3. As can be seen, the kinetic

field
δE

δτq
decays rapidly - for the sample threshold, a mere 10 samples are required. This is

due to the constant kinetic energy, Eq. (2.14), whose variation gives a constant ℏ2/(2mq).

Conversely, the singular values for the pairing field
δE

δρ̃q
decay more slowly, requiring 50-60

sample points for this threshold. They decay more rapidly first, such that a threshold of

10−4 requires approximately 20 functions. Thus, the threshold chosen sets a minimum on

77



the total number of data points for which exact calculations must be carried out.

  

Figure 6.4: Panel (a): a sample field
δE

δρp
. Panels (b)-(d): the first three basis field for the

variation with respect to ρp. bz and b⊥ are the oscillator lengths defined in Ref. [36].

For some intuition, Fig. 6.4 shows a sample field
δE

δρp
, along with the first three basis

fields. Note that the basis fields are normalized to one. Observe that the basis fields all share

the same shape as the sample, and decay to zero for similar (r, z) values. This is true despite

the HFB calculations being unconstrained, and is a consequence of the EDF parameters all

predicting a rather similar ground state deformation. Contrast with e.g. taking samples

all across a PES, where the nuclear shape differs considerably (recall Fig. 3.1). Similarly,

the first basis function is essentially the same as the sample field, except for an overall

factor. Next, notice that the second basis function is peaked around the nuclear surface.

This suggests at first that surface properties vary somewhat with changing EDF parameters.

However, the expansion coefficient for this function is rather small, as evidenced by Fig. 6.3.

So, the form of the basis function is not due to surface properties of the nucleus. Rather,

it is a consequence of generating functions orthogonal to Fig. 6.4(b) (consider, for instance,

the spectrum of the harmonic oscillator), and is in fact related to the Courant nodal domain
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theorem mentioned above. The basis functions for other fields follow the same pattern.

6.3.3 The Payoff

Figure 6.5 plots the runtime per iteration against the error in the HFB energy as the two

thresholds εei and εRBM are varied. Also shown are the runtime per iteration of HFBTHO

and a Python axial HFB solver. The overall runtime is determined by (i) the initial guess

and (ii) the convergence tolerance of the iterative procedure. It is not obvious how to obtain

equivalent initial guesses between the true solvers and the emulators. Also, the convergence

tolerance should in principle be chosen based on the desired precision of the solver. Thus, the

overall performance of the emulator may be misrepresented if the total runtime is displayed

in place of the runtime per iteration.
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Figure 6.5: The runtime per iteration for the 25-oscillator-shell unconstrained ground state
of 254Fm. EI is empirical interpolation, RBM uses a tailored basis for the quasiparticle wave
functions, and MaxVol evaluates the fields on a minimal coordinate grid.

First, notice that as the thresholds are increased, the overall error increases, while the
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runtime per iteration remains constant. This is because the runtime per iteration is dom-

inated by the HFB matrix diagonalization and the wavefunction reconstruction, neither of

which depend on the number of EI basis functions. Extremely precise results are obtain-

able, to eV precision - far below both the calibration error of the EDF [40] and the basis

truncation error of the solver [199]. Alternatively, keV precision may be obtained with far

fewer high-fidelity samples, provided they are distributed adequately across the parameter

range (e.g. using a Latin hypercube sampling [221, 225]). This accuracy is attained with an

order-of-magnitude speedup over HFBTHO.

Next, note the lack of speedup obtained using a tailored basis for the single-quasiparticle

wave functions, denoted in Fig. 6.5 with the label “RBM”. This confirms the intuition

mentioned in Sec. 6.3.1. Actually, the performance is often worse: for εRBM ≳ 10−3, high-

lying states are not adequately represented in the reduced basis. This leads to errors in EHFB

of 10s of MeV. Thus, this approach for reducing the diagonalization cost is insufficient in the

best case, and harmful in the worst case. Alternatively, recent work has successfully used

machine learning approaches to obtain orbital-free EDFs [226]. Such an approach avoids

diagonalizing the HFB matrix entirely, and is therefore an interesting avenue for future

research.

Finally, it is worth emphasizing an additional utility of this approach: because the den-

sities and wave functions are computed exactly, downstream quantities are straightforward

to obtain. This includes quantities important for fission calculations, such as the collective

inertia (Sec. 3.1.1) and the localization functional (Sec. 4.1.3). A representative example of

the latter is shown in Fig. 6.6, for the highest-precision emulator. As can be seen, there is no

visible difference between the quantity using the real HFB solver and the emulated result.
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Figure 6.6: The proton localization functional for the 25-oscillator-shell unconstrained
ground state of 254Fm. The left (right) panel uses the densities from the HFB calcula-
tion (the emulator). The oscillator widths are bz = 2.242, b⊥ = 2.464, as determined in
HFBTHO [36].

6.4 Conclusion

In this chapter, I have presented the general philosophy behind reduced order models. I have

demonstrated how projection-based emulators may be modified for use with self-consistent

calculations with non-affine parameter dependence. And, I have demonstrated that this

approach leads to order-of-magnitude speedup in axial HFB calculations, with essentially

exact accuracy.

Explicitly, this approach addresses the concerns raised at the end of Ch. 5. First, the

nucleonic densities and currents are computed, avoiding excess HFB runs once the exit point

is located. Second, the training data consists of fewer than 100 HFB runs, which is promising

despite the more well-constrained parameter region (the EDF parameters, as opposed to

(A,Z,Q20, Q30)). And third, the emulator error is arbitrarily precise. Additionally, the
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emulator error is straightforward to check, whereas with the NN approach it is impossible.

And, the emulator is easy to update as additional training data is generated, as opposed to

retraining a NN.

There are a number of future directions branching from this topic. As far as emula-

tor improvements go, reduced coordinate-space solvers are worth exploring, as mentioned

in Sec. 6.2.2. Also worth considering are approximate orbital-free EDFs as discussed in

Ref. [226]. As far as applications go, one option is to include (A,Z) and shape parame-

ters as additional model parameters, with an eye towards similar large-scale calculations as

described in Ch. 5. Another is applications to other EDFs, as were described in Sec. 2.2.

And, a third is to integrate this approach into existing solvers, so as to enable quicker error

propagation in the tunneling calculations described in Ch. 3.
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Chapter 7. Conclusions and Outlook
In this thesis, we dealt with the implementation and usage of the nudged elastic band method

for fission tunneling pathway calculations, and the development of emulators for use in large-

scale fission studies.

In Ch. 3, I described the tunneling process in spontaneous fission, beginning from the

reduction to collective coordinates, and ending with the practical calculation of tunneling

pathways. I discussed my development and implementation of the NEB algorithm, which

agrees to the percent-level with previously-used algorithms. It also scales well with the

number of collective coordinates, allowing for efficient use with three or more coordinates.

In Ch. 4, I applied NEB to the Fermium chain to study multimodal fission. In addition

to qualitative agreement with previously-identified fission modes, we find that the primary

fission fragment yields are quite sensitive to the EDF of choice when multiple competing

modes are present, with the UNEDF1HFB EDF agreeing the best with experimental data.

The results are only weakly sensitive to the number of collective coordinates used.

A number of future directions for this approach are possible. On the development front,

the optimal NEB hyperparameters have not been determined. It is also interesting to con-

sider fluctuations around the tunneling path, and the impact of additional collective coor-

dinates. On the physics front, it is interesting to apply NEB to tunneling in microscopic-

macroscopic approaches to fission [227]. I am also also applying this approach to induced

fission, where there is evidence suggesting competition between fission modes as the excita-

tion energy of the fissioning nucleus is increased [183, 184].

In Ch. 5, I demonstrated that neural networks are able to emulate the PES to within ≲ 1

MeV across the r process region of the nuclear chart. This accuracy translates to reasonable

accuracies in the half-life and the primary fission fragment yields. And, in Ch. 6, I have
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demonstrated that simple reduced order models may be applied to axial HFB calculations to

achieve an order-of-magnitude speedup with essentially exact accuracy. The latter approach

also requires fewer than 100 HFB calculations as training data, and no additional HFB

calculations are necessary to compute other quantities, such as the collective inertia tensor.

There are many future directions to explore. In regards to emulator development, reduced

coordinate-space solvers are worth exploring, as are approximate orbital-free EDFs [226].

With regards to applications, one option is to include (A,Z) and shape parameters as addi-

tional model parameters, with an eye towards large-scale calculations as described in Ch. 5.

Another is applications to other EDFs, as described in Sec. 2.2. And, a third is to inte-

grate this approach into existing solvers, so as to enable quicker error propagation in PES

calculations.

Finally, there are a number of recent exciting developments in both fission experiment

and theory. On the experimental side, the angular momentum of the primary fragments

has recently been measured [228], as has neutrino-induced fission [229], both of which are

interesting to explore from a theoretical point of view. And, on the theory side, recent

developments on the description of fragment yields [230] and the tunneling process [231] are

also exciting. It is indeed an interesting time to study nuclear fission theory.
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beyond description of nuclear structure with the Gogny force: a review”. In: J. Phys.
G: Nucl. Part. Phys. 46.1 (Jan. 2019), p. 013001. doi: 10.1088/1361-6471/aadebd.

[28] M. Bender, P.-H. Heenen, and P.-G. Reinhard. “Self-consistent mean-field models
for nuclear structure”. In: Rev. Mod. Phys. 75.1 (1 Jan. 2003), pp. 121–180. doi:
10.1103/RevModPhys.75.121.

[29] B. A. Brown and B. Wildenthal. “Status of the nuclear shell model”. In: Annual
Review of Nuclear and Particle Sciences 38.1 (1988), pp. 29–66.

[30] E. Caurier et al. “The shell model as a unified view of nuclear structure”. In: Rev.
Mod. Phys. 77 (2 June 2005), pp. 427–488. doi: 10.1103/RevModPhys.77.427.

[31] A. N. Bohr and B. R. Mottelson. Nuclear Structure (in 2 volumes). World Scientific
Publishing Company, 1998.

[32] D. J. Dean and M. Hjorth-Jensen. “Pairing in nuclear systems: from neutron stars
to finite nuclei”. In: Rev. Mod. Phys. 75 (2 Apr. 2003), pp. 607–656. doi: 10.1103/
RevModPhys.75.607.

[33] R. N. Perez et al. “Axially deformed solution of the Skyrme–Hartree–Fock–Bogolyubov
equations using the transformed harmonic oscillator basis (III) hfbtho (v3.00): A new
version of the program”. In: Computer Physics Communications 220 (2017), pp. 363–
375. doi: 10.1016/j.cpc.2017.06.022.

[34] N. Schunck et al. “Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the
Cartesian deformed harmonic-oscillator basis.: (VII) hfodd (v2.49t): A new version
of the program”. In: Computer Physics Communications 183.1 (2012), pp. 166–192.
doi: 10.1016/j.cpc.2011.08.013.

[35] L. M. Robledo and G. F. Bertsch. “Application of the gradient method to Hartree-
Fock-Bogoliubov theory”. In: Phys. Rev. C 84.1 (July 2011), p. 014312. doi: 10.1103/
PhysRevC.84.014312.

[36] M. Stoitsov et al. “Axially deformed solution of the Skyrme–Hartree–Fock–Bogolyubov
equations using the transformed harmonic oscillator basis. The program HFBTHO
(v1.66p)”. In: Computer Physics Communications 167.1 (2005), pp. 43–63. doi: 10.
1016/j.cpc.2005.01.001.

87

https://doi.org/10.1140/epja/i2001-10218-8
https://doi.org/10.1140/epja/i2001-10218-8
https://doi.org/10.1088/1361-6471/aadebd
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1016/j.cpc.2017.06.022
https://doi.org/10.1016/j.cpc.2011.08.013
https://doi.org/10.1103/PhysRevC.84.014312
https://doi.org/10.1103/PhysRevC.84.014312
https://doi.org/10.1016/j.cpc.2005.01.001
https://doi.org/10.1016/j.cpc.2005.01.001


[37] D. Vautherin and D. M. Brink. “Hartree-Fock Calculations with Skyrme’s Interaction.
I. Spherical Nuclei”. In: Phys. Rev. C 5 (3 Mar. 1972), pp. 626–647. doi: 10.1103/
PhysRevC.5.626.

[38] D. Vautherin. “Hartree-Fock calculations with Skyrme’s interaction. II. Axially de-
formed nuclei”. In: Physical Review C 7.1 (1973), p. 296.

[39] M. Kortelainen et al. “Nuclear energy density optimization”. In: Phys. Rev. C 82 (2
Aug. 2010), p. 024313. doi: 10.1103/PhysRevC.82.024313.

[40] M. Kortelainen et al. “Nuclear energy density optimization: Large deformations”. In:
Phys. Rev. C 85 (2 Feb. 2012), p. 024304. doi: 10.1103/PhysRevC.85.024304.

[41] M. Kortelainen et al. “Nuclear energy density optimization: Shell structure”. In: Phys.
Rev. C 89 (5 May 2014), p. 054314. doi: 10.1103/PhysRevC.89.054314.

[42] J. C. Slater. “A Simplification of the Hartree-Fock Method”. In: Phys. Rev. 81 (3 Feb.
1951), pp. 385–390. doi: 10.1103/PhysRev.81.385.

[43] N. Schunck et al. “Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the
Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version
of the program”. In: Computer Physics Communications 216 (2017), pp. 145–174.
doi: 10.1016/j.cpc.2017.03.007.
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[119] N. G. Kelkar and H. M. Castañeda. “Critical view of WKB decay widths”. In: Phys.
Rev. C 76 (6 Dec. 2007), p. 064605. doi: 10.1103/PhysRevC.76.064605.

[120] T. Ledergerber and H.-C. Pauli. “On the dynamics of fission: The role of reflection
asymmetry in the nuclear shape”. In: Nucl. Phys. A 207.1 (1973), pp. 1–32. doi:
10.1016/0375-9474(73)90022-5.

94

https://doi.org/10.1103/PhysRevC.88.064314
https://doi.org/10.1016/0375-9474(89)90559-9
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/PhysRevA.41.32
https://doi.org/10.1016/0003-4916(86)90096-5
https://doi.org/10.1016/0003-4916(86)90096-5
https://doi.org/10.1016/s0370-1573(99)00036-8
https://doi.org/10.1016/0550-3213(88)90308-2
https://doi.org/10.1103/PhysRevC.94.024329
https://doi.org/10.1103/PhysRevC.94.024329
https://doi.org/10.1103/PhysRevC.76.064605
https://doi.org/10.1016/0375-9474(73)90022-5


[121] A. Baran. “Some dynamical aspects of the fission process”. In: Phys. Lett. B 76.1
(1978), pp. 8–10. doi: 10.1016/0370-2693(78)90085-0.

[122] K. Okada et al. “Cassini-oval description of the multidimensional potential energy
surface for 236U: Role of octupole deformation and calculation of the most probable
fission path”. In: Phys. Rev. C 107 (3 Mar. 2023), p. 034608. doi: 10.1103/PhysRevC.
107.034608.

[123] A. Iwamoto. “Multi-dimensional tunneling and nuclear fission process”. In: Z. Phys.
A 349.3 (1994), p. 265. doi: 10.1007/bf01288972.

[124] G. Scamps, C. Simenel, and D. Lacroix. “Superfluid dynamics of 258Fm fission”. In:
Phys. Rev. C 92 (1 July 2015), 011602(r). doi: 10.1103/PhysRevC.92.011602.

[125] J. Skalski. “Nuclear fission with mean-field instantons”. In: Phys. Rev. C 77 (6 June
2008), p. 064610. doi: 10.1103/PhysRevC.77.064610.

[126] M. Baranger, M. Strayer, and J.-S. Wu. “Nuclear collective motion with full nonlinear-
ity”. In: Phys. Rev. C 67 (1 Jan. 2003), p. 014318. doi: 10.1103/PhysRevC.67.014318.

[127] J. Zhao et al. “Multidimensionally constrained relativistic Hartree-Bogoliubov study
of spontaneous nuclear fission”. In: Phys. Rev. C 92 (6 Dec. 2015), p. 064315. doi:
10.1103/PhysRevC.92.064315.

[128] F. Mercier et al. “Microscopic Description of 2α Decay in 212Po and 224Ra Isotopes”.
In: Phys. Rev. Lett. 127 (1 July 2021), p. 012501. doi: 10.1103/PhysRevLett.127.
012501.

[129] A. Baran et al. “A dynamic analysis of spontaneous-fission half-lives”. In: Nuclear
Physics A 361.1 (1981), pp. 83–101. doi: 10.1016/0375-9474(81)90471-1.

[130] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numer.
Math. 1.1 (1959), pp. 269–271. doi: 10.1007/bf01386390.

[131] G. Mills and H. Jónsson. “Quantum and thermal effects in H2 dissociative adsorption:
Evaluation of free energy barriers in multidimensional quantum systems”. In: Phys.
Rev. Lett. 72 (7 Feb. 1994), pp. 1124–1127. doi: 10.1103/PhysRevLett.72.1124.

[132] G. Mills, H. Jónsson, and G. K. Schenter. “Reversible work transition state the-
ory: application to dissociative adsorption of hydrogen”. In: Surf. Sci. 324.2 (1995),
pp. 305–337. doi: 10.1016/0039-6028(94)00731-4.

[133] H. Jónsson, G. Mills, and K. W. Jacobsen. “Nudged elastic band method for find-
ing minimum energy paths of transitions”. In: Classical and Quantum Dynamics in
Condensed Phase Simulations, pp. 385–404. doi: 10.1142/9789812839664 0016.

95

https://doi.org/10.1016/0370-2693(78)90085-0
https://doi.org/10.1103/PhysRevC.107.034608
https://doi.org/10.1103/PhysRevC.107.034608
https://doi.org/10.1007/bf01288972
https://doi.org/10.1103/PhysRevC.92.011602
https://doi.org/10.1103/PhysRevC.77.064610
https://doi.org/10.1103/PhysRevC.67.014318
https://doi.org/10.1103/PhysRevC.92.064315
https://doi.org/10.1103/PhysRevLett.127.012501
https://doi.org/10.1103/PhysRevLett.127.012501
https://doi.org/10.1016/0375-9474(81)90471-1
https://doi.org/10.1007/bf01386390
https://doi.org/10.1103/PhysRevLett.72.1124
https://doi.org/10.1016/0039-6028(94)00731-4
https://doi.org/10.1142/9789812839664_0016


[134] G. Henkelman, B. P. Uberuaga, and H. Jónsson. “A climbing image nudged elastic
band method for finding saddle points and minimum energy paths”. In: J. Chem.
Phys. 113.22 (2000), pp. 9901–9904. doi: 10.1063/1.1329672.

[135] G. Henkelman and H. Jónsson. “Improved tangent estimate in the nudged elastic
band method for finding minimum energy paths and saddle points”. In: J. Chem.
Phys. 113.22 (2000), pp. 9978–9985. doi: 10.1063/1.1323224.
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