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ABSTRACT

With the opening of new facilities, such as the Facility for Rare Isotope Beams, exotic nuclei

will be increasingly accessible. Many exotic nuclei are strongly coupled to the continuum re-

sulting in interesting structure formations, such as halo nuclear states or nuclear resonances.

In this thesis, the Gamow Shell Model framework is used to describe nuclei as Open

Quantum Systems. This framework is a configuration-interaction shell model implemented

in the Berggren basis which includes bound, resonant, and scattering states on equal foot-

ing. Two case studies are presented to highlight the impact of continuum effects on nuclear

structure. Spectroscopic Factors are calculated for 8,9C, 8B, 8,9Li, and 8He using a tradi-

tional Shell Model approach (ignoring the continuum) and the Gamow Shell Model. The

results from both methods are compared and demonstrate Spectroscopic Factors in these

nuclei are dependent on the continuum. The newly discovered ephemeral nucleus 9N will be

presented, which is unique with over half of its nucleons lying in the continuum. A projection

method will be outlined to extract the continuum effects from the Gamow Shell Model to

understand and directly quantify the effects of continuum coupling. Finally, a new outreach

and community engagement demonstration, designed to educate the general public about

nuclear structure and decays, will be discussed.
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Chapter 1. Introduction

Nuclear physics is a broad discipline ranging from the use of radioisotopes in medical appli-

cations to probing fundamental symmetries with atomic nuclei [1]. Underlying this broad

range of topics is a dependence on nuclear structure information. While experimental data

exists for approximately 3000 known isotopes [2, 3], there are many more unknown nuclei [4].

Predicting behaviors for such unknown nuclei, nuclear structure models are required. In this

work, we are focused on an Open Quantum System (OQS) approach which is implemented

via the Gamow Shell Model (GSM) [5]. First, we will focus on defining general nuclear

attributes important to the discussions within this thesis.

1.1 Nuclear Structure Overview

Nuclei are self-bound clusters of nucleons which interact with each other to produce emergent

phenomena. Some of these phenomena are universal to all nuclei, such as binding energy,

while others, such as magic numbers and nuclear halos, appear only for particular nuclei [6,

7]. Nuclear instability must be properly represented since the mechanisms of decay are

intrinsically tied to their structures.

A general quantity used to explain nuclear instability with respect to particle emission

threshold is the Q-value. This value denotes the energy associated with removing the in-

dicated particle(s); for example, removing one neutron Qn, two protons Q2p, or an alpha

particle Qα. Q-values for one and two-nucleon decays are equal to the negative separation

energy [8]. Fig. 1.1 depicts the various Qn,p and Q2n,2p values for the lithium isotopic chain;

where positive (5Li) and negative (6Li) values correspond to prompt particle emission or a

bound state, respectively. Nuclear states with energies near or above threshold will be ideal

OQS candidates as these systems can be dominated by coupling to decay channels.
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Figure 1.1: Illustration of openness in nuclear systems and the emergence of exotic phe-
nomena at energies closer to threshold. We schematically show various isotopes of lithium
ranging from a proton-resonance 5Li to neutron-unbound 10Li to two-neutron halo 11Li.
Year discovered is presented for each isotope.

Describing nuclear structure requires proper treatment of all interacting nucleons in a

many-body formalism, but many systems cannot be exactly calculated with current com-

putational resources and require approximations. Depending on the region of the nuclear

chart one is working in, the proper choice of model is essential, as some start from a more

microscopic approach while others make assumptions to reduce dimensionality. In the lighter

region of the nuclear chart (Z ≤ 20) the widely-used theoretical approaches are ab initio

or configuration-interaction Shell Model (SM)-based methods [9]. While each are useful in

their own right, in this thesis we will focus on a variant of the SM as outlined in Sec. 2.2.

To calculate nuclei within the shell model, we define a nuclear core to which valence

nucleons are added. Observables can then be calculated relative to this inert core. For

example, calculated nuclei with positive Q-values relative to the core, or a larger subsystem,

would indicate the presence of spontaneous nucleon emission for a chain of nuclei. These
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particle emitting systems for a variety of emissions η can be calculated as

Qη = BE(Nresidue, Zresidue) −BE(N,Z) ≥ 0 (1.1)

using the binding energy of the residual nucleus and decaying system respectively. Chains

of nucleon emitters exist along specific isotopic and isotone lines, and are identifiable with

respect to a residue. For example, there is a well-known chain of proton-emitting nuclei at

the N = 2 isotone, relative to a 4He core, with Q thresholds ranging from Q1p to Q4p, for

5Li and 8C, respectively. Nuclei existing along these ridges are unstable and their lifetimes

(T1/2) are associated with the decay width of a state Γ:

T1/2 =
h̄ ln 2

Γ
. (1.2)

Nuclei existing in these regions can be especially challenging for some nuclear structure mod-

els which do not naturally include decays, such as a traditional SM. This dilemma motivates

the need for a formalism which treats both structure and continuum states explicitly, and in

our case, is accomplished in GSM.

1.2 Closed versus Open Quantum Systems

Quantum-mechanical systems can be divided into two groups: Closed Quantum Systems

(CQS) and OQS. CQS-type problems treat an object as a completely isolated system whose

properties cannot be affected by external factors. OQS-type problems allow for a system

to be affected by its environment and can produce new emergent behaviors, contrary to

CQS. Generally, one may recognize an OQS by identifying an isolated quantum system that

undergoes an irreversible process after coupling to the environment [10]. OQS are featured
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across physics from macroscopic (molecular) systems to mesoscopic (nuclear) systems and

have shared phenomena in the form of resonances and scattering states. A specific example

of coupling with the environment that causes alterations in the system considered is the

decoherence of qubits in quantum computers [11].

In the nuclear physics context, a nucleus (the system) can undergo decay by emitting a

nucleon (the irreversible process) after coupling to the continuum (the environment). OQS

phenomena vary from system to system and are dependent on the environment to different

degrees. The development of any techniques describing OQS can be extended in a variety

of fields, but nuclei are able to produce emergent behaviors seen in larger systems while re-

taining far fewer degrees of freedom. One such example of interdisciplinary OQS phenomena

accessible in nuclei is superradiance [12] which was first discovered in quantum optics [13].

Nuclei also are unique due to the presence of different species of fermions, and the interac-

tions between these fermions is the interplay between strong and electro-weak forces. An

example of probing unique physics with nuclei is tackling the question of non-exponential

decay [14].

Theories that consistently treat nuclear OQS systems will use a formalism incorporat-

ing bound and scattering (continuum) states simultaneously [5, 15]. Experimentally, these

OQS will have a resonance structure or other collective features that appear near or above

threshold. For a more approachable definition of a resonance, one could define it as a specific

energy which produces a substantial increase in the cross section of a nucleus, or the proba-

bility of an interaction occurring. Thus, a resonance is a local band in an energy spectrum

where a projectile can alter the structure of a nucleus without being bound to or knocking

another particle from the target. Essentially, a resonance is a feature in a nucleus where

the lifetime is extended beyond what one might typically assume to be short-lived in the
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scattering process. Additionally, understanding this continuum coupling would allow bet-

ter understanding into the preference in decays of unbound states [16] as a decay could be

considered the time inverse of a capturing reaction.

Although nuclear resonances like 5Li are the systems most commonly associated with

OQS, in reality the entire nuclear landscape should be describable with one coherent frame-

work. If one has a Hamiltonian capable of describing one nucleus, from an OQS perspective,

the same Hamiltonian should also be able to describe any other nucleus by successive chains

of operations like particle capture and decay [17]. A key region where these dynamics are

most clearly at play are in the correlation dominated section of Fig. 1.1 around threshold.

Here, as indicated by the equation Sn ≈ −λn − ∆n, separation energies are on the same

order of magnitude as the single-particle (s.p.) fields λn and many-body effects like pairing

∆n [17], leading to competition between these effects. Emergence of other features like nu-

clear halos are also associated with the competition between coupling to the environment

and coupling between particles inside the system [18]. For this reason, we will explore various

exotic phenomena using a continuum-informed model, GSM.
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Chapter 2. Formalism

The formalism of GSM is fundamentally similar to the implementation of the traditional

SM. Where GSM differs is most obviously in its choice of basis, the Berggren basis [19],

whereas standard SM codes might use a harmonic-oscillator (HO) basis. First, we outline

the motivation for the Berggren basis and the necessary formalism.

2.1 Berggren Basis

As already highlighted, an OQS naturally allows the formation of metastable states that

require decay by particle emission so an OQS must include outgoing scattering states. We

shall assume that outgoing states will not be affected by short-range nuclear forces and they

propagate as a plane wave when the particle is far from the residual nucleus. Ordinary quan-

tum mechanics tends to be formulated in a Hilbert space where Hamiltonians are Hermitian,

but it is not straightforward to implement decay processes in this formalism. To address this

tension, Gamow extended the formalism to the complex plane by introducing an imaginary

damping term (Γ) to the energy to address α-particle emission [20]. The states in this ex-

tended framework belong to a Rigged Hilbert space [21–23] which includes states that obey

the desired outgoing boundary conditions. Rigged quantum mechanics is a natural frame-

work for intrinsically irreversible processes arising from the Hamiltonian itself, as opposed to

extrinsic irreversible processes which occur due to environmental coupling and describable

in a Lindbladian approach [22]. The development of this formalism is supported by the

assumption of a bulk exponential decay property where the complex energy and half-life are

related by:

E = E0 − i
Γ

2
(2.1)
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with energy E0 and decay width Γ as discussed surrounding Eq. 1.2.

Berggren expanded on this framework [19] by including Siegert’s resonance definition [24]

and used the asymptotics for a neutral particle:

Ol(kr) ∼ ei(kr−
lπ
2 ), Il(kr) ∼ e−i(kr−

lπ
2 ) (2.2)

for outgoing and incoming waves respectively. By imposing the boundary conditions:

u(0) = 0; u(a)O′
l(ka) − u′(a)Ol(ka) = 0, or ũ(a)I ′l(k̃a) − ũ′(a)Il(k̃a) = 0, (2.3)

where a corresponds to the radius at which the nuclear potential is effectively zero (for

neutrons) or has long-range Coulomb behavior (for protons), the resonant nature of the

system is respected [19]. Furthermore, this formulation modifies the general properties of

our complex resonant states:

k̃ = −k∗, ũ(r) = u∗(r), and k = κ− iγ (2.4)

with κ and γ being real and imaginary momentum terms, respectively. It should be noted

that there are challenges when using this formalism, mainly that the states can increase

exponentially and are not normalizable. Various approaches exist for normalizing such states,

see Ref. [5] for details. From this point onward, our complex energy will be represented as E

and complex momentum k, and the conjugation within the Berggren basis will be represented

by a tilde.
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2.1.1 One-body states

For the current formalism, we will work in a spherically symmetric basis. This maintains

many symmetry advantages, such as easy handling of the angular momentum and spin.

Decomposing the one-body wave function is standard (including spin χs,ms)

ψ(r, θ, ϕ) = R(r)
[
Yℓ,m ⊗ χs,ms

]j
m
. (2.5)

Taking advantage of the system symmetries for quantum numbers, the general one-body

wave function can be rewritten as [8]

ψ(n, ℓ, j,mj , r⃗) =
uψ(n, ℓ, j, r)

r

∑

mℓ,ms

⟨ℓmℓsms|jmj⟩Yℓmℓ(θ, φ)χs,ms ; (2.6)

where the angular terms are decomposed into the possible components with correct angular

momentum coupling - e.g. those with j⃗ = ℓ⃗+ s⃗ and mj = mℓ +ms [8].

Due to the non-Hermitian nature of the Gamow resonant states (Eq. 2.4) in the com-

plex plane, we illustrate possible solutions to the time-independent Schrödinger equation in

Fig. 2.1. The parameters used can be found in Tab. 2.1 and follow with Ref. [5]. Bound

wave functions are still normalized in the conventional sense as they are square integrable.

An important distinction between different states is their behavior in the asymptotic region.

For example, the narrow resonance in Fig. 2.1a appears to have a similar profile to the well-

bound wave function, yet when extending to a larger radius, we see oscillations appear in

its tail (seen in Fig. 2.1b). Conversely, the loosely bound wave function appears to not be

well-localized, but we see its convergence at a larger radius. Broad resonances have extended

localizations before being quickly dominated by their diverging behavior. Lastly, antibound
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Figure 2.1: (a) Different classifications of one-body wave functions with real (solid lines) and
imaginary (dashed lines) parts. (b) Radial extension of one-body wave functions (similar
to (a)) for well bound, loosely bound, narrow resonance, and antibound states. (c) The
locations in the complex plane of the presented wave functions in panel (a).

Table 2.1: Parameters used to generate the corresponding s.p. states in Fig. 2.1. All wave
functions are for a neutron in a one-body potential of A = 12, diffuseness d = 0.65 fm, and
radius R0 = 3 fm along with the specified Woods-Saxon depth V0 and Spin-Orbit potential
strength VSO. Additional information can be found in Chapter 2 of Ref. [5].

Type V0 (MeV) VSO (MeV) State k (fm)−1

Well Bound 50 7.5 0p3/2 (0, 0.7799)

Loosely Bound 43 0 1s1/2 (0, 0.0149)

Narrow Resonance 63 7.5 0d3/2 (0.0918, -0.0003)

Broad Resonance 50 7.5 0d3/2 (0.4202, -0.0693)

Antibound 40 0 1s1/2 (0, -0.0780)

(also called virtual) states have no sense of localization and diverge immediately. These

states naturally emerge in a potential well without a barrier, leading to an enhancement in

the cross section [25, 26].

States can be more clearly separated by using the energy-momentum relation E ∝ k2.
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Bound states (positive imaginary k) are real and exist on the negative energy axis while

scattering states, which are also real, exist on the positive energy axis. These states lie

on the first, physical, Riemann Sheet. Resonant states and antibound states are complex

energies and lie on a second, sometimes called non-physical, sheet. These states can be

accessed by a number of methods including a deformed contour.

2.1.2 Berggren Completeness Relation

In order to define the completeness relation for GSM, we first demonstrate the minor differ-

ences between a Berggren basis and the more traditional real-energy (Hermitian) complete-

ness relation from basic quantum mechanics. Generally, states in a Hermitian Hamiltonian

will be square integrable and normalizable. For non-square integrable states, a Dirac δ

normalization may be imposed with the condition 2πC+(k)C−(k) = 1 where C±(k) are

constants determined by Jost functions

J±(k) = ±2ikC∓(k) (2.7)

which can be related to the Wronskian of u(k, r) [5, 27, 28]

J±(k) = u(k, r)u±′(k, r) − u′(k, r)u±(k, r). (2.8)

Here, u±(k, r) represent the solutions to the radial Schrödinger equation following incoming

or outgoing boundary conditions. Details can be found in Ref. [5] for both neutral and

charged particles.

Since all states are orthonormal, a completeness relation can be defined. We focus on the
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simpler case of an ℓ = 0 neutron where we consider the integral [5]

I(K) =

∫ K

0

u(k, r)u(k, r′)
2πC+(k)C−(k)

dk. (2.9)

Due to the momentum definition in Eq. 2.4, conjugation of states are invariant to k → −k

thus

u(k, r) = u(−k, r), u±(k, r) = u∓(−k, r), and C±(k) = C∓(−k). (2.10)

By taking advantage of these symmetries, integration bounds can be rewritten as [5, 27, 28]

I(K) =

∫ K

−K
u+(k, r)u(k, r′)

2πC−(k)
dk. (2.11)

Knowing bound state poles only lie on the imaginary k axis in the complex k-plane, this

integral can be simplified with Cauchy’s theorem. Introducing a contour integral along the

upper half plane separates the residues from the non-resonant scattering continuum. Details

can be found in Ref. [5, 27, 28], but the result is the Berggren completeness relation [5]

∑

n

un(r)un(r′) +

∫

L+
uk(r)uk(r′)dk = δ(r − r′). (2.12)

The contour L+ corresponds to the complex-energy scattering states, and the discrete un(r)

are bound and resonant states inside L+. Fig. 2.1 presents the different components which

make up the poles of the S-matrix and are present in Eq. 2.12.
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2.1.3 Numerical Implementation

Retaining the representation of the continuum in practical applications can be difficult as

current computers cannot represent an infinite continuum of states. The contour integral

contributions to the completeness relation in Eq. 2.12 is discretized as

∫

L+
u(k, r)u(k, r′)dk ≃

Nd∑

i=1

ui(r)ui(r
′) (2.13)

where ui(r) =
√

∆ki
u(ki, r) and ∆ki

is the discretization step weight at specific momenta [5].

By ensuring that these ui(r) are orthonormal, the discretized Berggren completeness relation

can be written as

∑

n

un(r)un(r′) +

Nd∑

i=1

ui(r)ui(r
′) ≃ δ(r − r′) (2.14)

In general, the analytic form of Eq. 2.12 would imply any arbitrary contour choice is sufficient

as long as it encompasses the desired poles. With the discretized form, contours should be

chosen such that they are not too close to the pole where numerical noise might lead to

unwanted instability [5, 29–31]. However, the model space dimension d is directly tied to

the number of discretization points chosen by

d ∝ NNv
s (2.15)

where Ns and Nv are the number of states and number of valence nucleons respectively [32].

A tension exists between the number of points required for good numerical completeness and

the desire to keep model spaces within a calculable range. To optimize the computational

resources required, one can reduce the number of discretization points Nd for the contour
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or minimize the number of states considered Nv. By carefully choosing our contour for

each partial wave (ℓ, j), we can minimize the number of states needed while maintaining

computational stability and fidelity.

2.2 Gamow Shell Model

For the Berggren basis to be useful in a SM or configuration-interaction implementation, the

one-body completeness relation must be generalized to a many-body form. This is a result

of SM wave functions being many-body vectors, not simple one-body wave functions. In

order to make the familiar Dirac notation useful in the GSM context, we must make some

modifications.

2.2.1 GSM Completeness Relation

In order to be more amenable to SM formulations, we will work with N -body Slater deter-

minants (SDs)

|Ψn⟩ = |ψi1 , ..., ψiA⟩ =

∣∣∣∣∣∣∣∣∣∣∣

ψi1(r⃗1) ... ψi1(r⃗A)

...
. . .

...

ψiA(r⃗1) ... ψiA(r⃗A)

∣∣∣∣∣∣∣∣∣∣∣

(2.16)

built from the orthonormalized one-body states (|ψi⟩) that make up our Berggren ensemble.

Therefore, any SD built from a set of states |ψk⟩ may contain the bound, decaying resonance,

and scattering s.p. states from the poles and contour. The generalization of the one-body

completeness relation to a many-body representation is [5]:

∑

n

|Ψn⟩ ⟨Ψ̃n| ≃ I, (2.17)

and the derivation starting from the real-energy Newton completeness relation can be found

in Ref [5, 27]. Different state conjugations (Ψ̃) are implemented than in the Hilbert space
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formulation as discussed in Eq. 2.4. These tilde eigenstates represent effects from the time-

reversal operator [33], and the physical connection is that particle-capturing states are rep-

resented as bras and particle-emitting states as kets. Conjugate states belong to the dual

space vectors, see Ref. [5, 34]. By using Eq. 2.17, we can check our system through the sum

over all squared amplitudes of each configuration (not the squared absolute values like in the

traditional SM)

∑

n

c2n = 1. (2.18)

This serves as a useful check to ensure any calculations are being handled properly.

2.2.2 GSM Hamiltonian

The general form of the GSM many-body Hamiltonian [31] is

H =

Nval∑

i

[
p⃗2i
2µi

+ Uc(i)

]
+

Nval∑

i=1,j>i

[
Vi,j +

p⃗ip⃗j
Mc

]
(2.19)

with Nval being the number of valence nucleons and µi and Mc being the reduced mass of

the nucleon and mass of the core respectively [5]. One-body effects are accounted by the

core-nucleon potential Uc and two-body effects via valence nucleon interaction Vi,j . To elimi-

nate center-of-mass motion energy contributions, the Cluster Orbital Shell Model framework

(COSM) is used in Eq. 2.19 to provide a translationally invariant framework [5, 31].

The following Woods-Saxon (WS) form is used for the core-nucleon potential

Uc(r) = V0f(r) − 4Vℓs
1

r

df(r)

dr
ℓ⃗ · s⃗+ UCoul(r) (2.20)

where f(r) = −[1 + exp (r −R0)/a]−1. For neutrons, the one-body potential can be simpli-
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fied by setting UCoul = 0 and obtaining

Uc(r) =
−V0

1 + exp
(
r−R0
a

) − 4Vℓs
1

r

exp
(
r−R0
a

)

a
[
1 + exp

(
r−R0
a

)]2 ℓ⃗ · s⃗ (2.21)

with ℓ⃗ · s⃗ = j(j + 1) − ℓ(ℓ+ 1) − 3
4 . Similarly, the same form can be used for protons along

with the addition of the Coulomb term for a uniformly charged sphere of radius Rp

UCoul (r) =





Ze2

2Rp

(
3 −

(
r
Rp

)2)
r ≤ Rp

Ze2
r r > Rp

. (2.22)

There are many different choices for two-body potentials in GSM, but in the context of

this thesis, we only use the valence nucleon-nucleon interaction

V = Vc + VLS + VT + VCoulomb (2.23)

with the central (c), spin-orbit (LS), tensor (T ), and Coulomb terms. The first three terms

are based on the Furutani-Horiuchi-Tamagaki (FHT) force [35, 36]. These are based on

spin-isospin projectors (ΠST )

Vc(r) = V 11
c f11c (r)Π11 + V 10

c f10c (r)Π10 + V 00
c f00c (r)Π00 + V 01

c f01c (r)Π01,

VLS =
(
L⃗ · S⃗

)
V 11
LSf

11
LS(r)Π11,

VT (r) = Sij

[
VT 11f11t (r)Π11 + V 10

T f10t (r)Π10

]
, (2.24)

where L⃗ is the relative orbital angular momentum, S⃗ = (σ⃗i + σ⃗j)/2, and Sij = 3(σ⃗i · r̂)(σ⃗j ·

15



r̂)− σ⃗i · σ⃗j [37]. The distance between nucleons i and j is represented by rij and r̂ = r⃗ij/rij .

Fundamentally, this interaction is based on a sum of Gaussians approach to include effective

representation of a long-range term to represent pion exchange potentials and a short-range

hard core term [37].

When using the FHT interaction, we note that three of the seven available terms (V 10
c ,

V 01
c , and V 10

T ) appear at leading order in effective field theory arguments with the remaining

being higher order terms [31]. When attempting to adjust these parameters for optimiza-

tion, including only leading order [31] or all [37] terms may provide better reproduction of

spectra, depending on the application. Regardless of the inclusion of higher order terms,

this interaction has been used to successfully calculate different nuclear systems [31, 37–40].
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Chapter 3. Spectroscopic Factors and the Con-

tinuum

Experimentally probing internal features of nuclei is a difficult process, but the data obtained

can elucidate significant physical insight. Measured cross sections of different direct reactions

(without forming any intermediate state) is one such tool that can be used to study nuclear

phenomena. Some quantities discussed commonly by nuclear physicists are non-observables

(or sometimes called unobservables) and are instead dependent on the chosen framework,

see Ref. [41]. Single-particle energies are such quantities originating from a mean-field (shell

model) level and dictate the ordering of energy levels for a specific calculation. In the context

of compatible models, these non-observables can be incredibly useful especially if tied to an

approximate experimental value.

Spectroscopic factors (SFs) are another non-observable quantity which are inferred through

ratios of cross section data. The SFs themselves can be derived via the number operator [8]

under Racah [42] and Wigner’s convention, yet for the current discussion, it is more useful

to discuss SFs in the context of radial overlap integrals. The radial overlap integral can be

expressed as [5]:

Iabc;ℓj(r) =
1√

2Ja + 1

∫∑

B

〈
Ψ̃Ja
a

∥∥∥a†ℓj(B)
∥∥∥Ψ

Jb
b

〉
⟨rℓj | uB⟩ (3.1)

where we consider the overlap between a decaying nucleus a and its products a → b + c,

ultimately summing over all s.p. basis states B. SFs are then defined as the squared norm

of Eq. 3.1 [5]:

S =
1

2Ja + 1

∫∑

B

〈
Ψ̃
JA
A

∥∥∥a†ℓj(B)
∥∥∥Ψ

JA−1
A−1

〉2

. (3.2)
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An additional advantage to these definitions are that using a complete set of Berggren basis

states results in the SF being independent to the choice of basis, whereas other forms have

basis dependence [8, 43, 44]. These SFs can be used to calculate theoretical cross sections

for direct reactions [5, 43–45] and for GSM specifically

σ =
∑

nℓjmj

Snℓjmjσ
nℓjmj
s.p. . (3.3)

These formulations are tied to the notion of the spectator approximation or the approxima-

tion that reactions are simply an A− 1 system with a lone nucleon outside.

This chapter contains my contributions to a larger work focusing on the impact of the

continuum on SFs [46].

3.1 Discrepancy Between Experiment and Theory

Despite being a non-observable quantity, SFs are inferred using the ratio of experimental to

theoretical inclusive cross sections by [44, 47, 48]

Rs =
σexp
σth

. (3.4)

Clearly, model dependence enters the calculation depending on how σth is obtained. Regard-

less of the choice of the model, one could reasonably assume that these ratios would deviate

about some mean value for all reaction probes across different nuclei for the chosen model.

Any deviations in could be attributed to poor reproduction of specific physical behaviors

within the chosen model. Indeed, this exact behavior is seen for the electron-induced knock-

out reactions
(
e, e′p

)
for the stable nuclei considered in Fig. 3.1. However, in a sequence of

papers [44, 47, 50] it was shown that, for knockout reactions in particular, there is a system-
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Figure 3.1: Compiled data of different Rs using data in [44, 49]. We specify select nuclei (tri-
angles) to highlight specific features, yet all available nuclear data can be found in Ref. [44].
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atic linear dependence in Rs(∆S), shown in Fig. 3.1. The quantity ∆S is calculated as the

difference between the separation energy of the particle removed and its opposite species, a

representation of isospin asymmetry [44, 51, 52]. For proton removal ∆S = Sp − Sn and for

neutron removal ∆S = Sn − Sp.

Focusing on either extreme of ∆S, one can notice commonalities between the highlighted

nuclei in Fig. 3.1. For exotic nuclei, like 9C, the values of Rs for proton and neutron knockout

span a large range unlike the stable nuclei like 12C. Additionally, when considering only a

particular type of reaction, say neutron knockout, we can identify two isotopes 32Ar and

46Ar with vastly different Rs seemingly tied to whether the removed neutron was in the

minority or majority nucleon species [51, 52]. Lastly, some nuclei such as the halo nucleus

15C [53] are not exotic nuclei with strong isospin asymmetry, yet 15C could be considered as

a core-spectator system of 14C+n with the core being a magic nucleus of N = 8.

The source of the trend in Rs is still under debate, but it is at least partially due to

structural dependence on the nucleon removed. Specifically, the validity of the spectator ap-

proximation for exotic states is the center of our focus. For many cases, this approximation is

reasonable particularly when removing weakly-bound nucleons from their larger system [45].

One can recognize that a large overlap indicates that the parent and daughter maintain a

largely consistent structure independent of the effects of the removed particle. Removing

well-bound nucleons on the other hand may require strong alterations to the original parent

configuration, making the daughter’s structure different and producing a small overlap. In

each case, the nuclei with strong differences in the proton and neutron separation energies

have Rs values either near one or suppressed strongly towards zero. Nuclei with large ∆S,

tend to have a higher asymmetry of protons to neutrons and, in the case of light nuclei, these

would be deemed “exotic” due to their shorter half-lives. At the extreme ends of the trends
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identified in Fig. 3.1, many of the nuclei are located near dripline regions.

3.2 Continuum Impact on Spectroscopic Factors

Considering nuclei near or beyond the driplines, an OQS formulation is essential due to con-

tinuum dependence of such systems. In GSM, these SFs are determined via the spectroscopic

amplitude [54, 55]

Aℓj(kp) =
⟨ΨA||a+ℓj(kp)||ΨA−1⟩√

2JA + 1
; S2

ℓj =

∫∑
A2
ℓj(kp), (3.5)

which describes similarity of a parent nucleus to its one-nucleon-removed daughter, just

as the traditional SM formulation in Eq. 3.2. The formulation in Eq. 3.5 improves the

structure representation from previous SM calculations since it includes physics associated

with unbound states. To underscore why it is an improvement, we can contrast with known

issues with well-localized bases that work for well-bound nuclear states, but not for weakly-

bound systems without modification. An example focuses on the descriptions of 9−11Li with

localized bases. For these nuclei, localized bases overbind the unbound 10Li and the 2n halo

11Li despite reproducing the structure of the well-bound 9Li subsystem [56, 57]. In this case,

the importance of long-range dynamics has been demonstrated to resolve these issues [58].

These problems are addressed in GSM which can describe the unbound nature of the dripline

systems like 10Li [31]. Although this is an oversimplified picture, the long distance wave

function behavior can inadvertently be truncated using a localized basis, and this lack of

long range components is thought to bind the system [56, 57]. In essence, we can better

inform and represent states when choosing a basis that allows for natural occupations and

avoids any possible discontinuities by treating all possible states on the same footing. Using

the Berggren basis, this can be accomplished while including continuum degrees of freedom
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in GSM which is contrary to the lack of a genuine continuum in a CQS representation.

3.3 Parameters and Model Space

To probe the effects of the continuum on SFs, we perform a series of calculations for specific

nuclei which are likely to be dependent on the continuum such as 8C, 8B, and 9C. The choice

of these nuclei is based on recent experimental evidence from Ref. [49]. Although GSM

does not have explicit control over continuum coupling strength, we enforce openness of the

system by applying truncations on the number of valence particles allowed in the scattering

continuum. For our calculations, we start with a HO basis (no continuum coupling) in a

p-shell model space and ultimately open the system using a full Berggren basis calculation in

a psd-model space with all four valence particles allowed to occupy the continuum for A = 8

nuclei. Berggren-basis calculations using a resonant 0p3/2 basis state were also performed

and are denoted with the subscript “res” to better capture effects tied to width [31]. The

purpose of using a resonant pole is to highlight basis independence of the calculations.

To minimize the effect of core excitations, we selected 4He as the system core due to its

tight binding. The GSM Hamiltonian is as defined in Sec. 2.2.2 using the standard WS with

spin-orbit one-body interaction and the FHT two-body interaction. We used the calibrated

parameters for ps-shell model space nuclei from Ref. [31] when performing the HO basis (SM

analog) and ps Berggren basis calculations. We performed additional calculations with a psd-

shell model space to explore the impact of higher ℓ states. For the ℓ = 2 states the, same

one-body parameters were used as in Ref. [31], but we readjusted the only non-zero two-body

term for homogeneous valence nucleon systems (V STη = V 01
c ) until the ground state (g.s.)

energy of 8C was within 0.2 MeV of the experimental value [2]. This is justified as the goal

of this work is to best reproduce the 8C structure to adequately address continuum effects on
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SFs. After determining our parameters for the two different model spaces in the proton-rich

case, we applied the same parameters to the mirror nuclei 8He, 8Li, and 9Li. In all cases,

the A = 9 nuclei are well-bound systems and were calculated allowing only two particles to

occupy continuum states (Ncont = 2). Since we focused on the continuum impact on the

daughter structure, the A = 8 systems were calculated with varying numbers of particles in

the continuum (up to the maximum of Ncont = 4).

The model space used in this work [46] included pole states for 0p3/2, 0p1/2, and (when

applicable) 0d5/2. For Berggren basis calculations, we use the standard three segment con-

tour form of Eq. 2.17 and each segment was divided into five Gauss-Legendre points. The

segment geometry was chosen to be kpeak = 0.3 fm−1, kmid = 0.4 fm−1, and kmax = 4 fm−1

with imaginary components being increased when needed for resonant systems. Fig. 3.2

shows the resulting spectra for each nucleus in the full possible model space, and the ener-

gies appear to be reasonably well reproduced despite the Coulomb energy difference between

mirror nuclei.

3.4 Impact of Continuum Coupling Calculations

As discussed above, we study the effects of continuum coupling on wave function fragmen-

tation for A = 9 nuclei through knockout of well-bound and weakly-bound nucleons. For

isospin-asymmetric systems, the minority species nucleons will tend to be the well-bound

nucleons while the majority species nucleons will be weakly-bound or even unbound. All

SFs calculated are for parent g.s. to daughter g.s. transitions.

3.4.1 Minority Species Nucleon Removal

First focusing on the minority species removal, we can compute the SF for 9C
(
3/2−

)
→8C

(
0+
)
+

n using the four different model spaces outlined in Sec. 3.3. HO-SM calculations only in-
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Figure 3.2: Energies of 8,9C, 8B, 8He, and 8,9Li calculated in GSM with the psdres-model
space. Figure taken from [46].

cluding p-poles produced a SF of S2 = 0.86 whereas the GSM values range from S2 =

0.67 for ps-shell to S2 = 0.48 for psdres-shell calculations. Similarly, for the knockout in

9Li
(
3/2−

)
→8He

(
0+
)

+ p the SF ranges from S2 = 0.85 for HO-SM to S2 = 0.48 for psdres-

shell calculations. All SF values for the knockout of well-bound nucleons are presented in

Table 3.1.

To understand the reduction of SFs with increasing continuum coupling, we focus on the

changing structure across each model space. By comparing the wave function decomposition

between HO-SM and GSM-psd (Ncont = 4) in Fig. 3.3a, we can deduce the changes from

continuum coupling. For 8C, we note the strong shift between HO-SM and GSM calcu-

lations where the pole locations shift slightly in energy, but the squared amplitude of the

GSM occupations drop significantly. Moreover, the decrease in squared amplitude for pole

configurations is then redistributed among continuum states. This change is unsurprising as

8C is a system beyond the proton dripline, which decays by two steps of 2p emission, and
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Figure 3.3: Squared amplitudes of configurations for the nuclei indicated using HO-SM and
GSM. Shown are the split contributions from the GSM pole space and scattering continuum
along with the occupations in the simpler HO-SM scheme. The energy presented is defined
as the sum of s.p. energies for valence nucleons in each configuration relative to the lowest
energy configuration. Figure taken from Ref. [46].
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Table 3.1: Spectroscopic factors for the knockout of a p3/2 nucleon from the 3/2− g.s. of
9C and 9Li to the g.s. of 8C and 8He and knockout of a p1/2 nucleon to the g.s. of 8B

and 8Li. The experimental neutron and proton separation energies [2] are shown (in MeV).
The Model column indicates the particular model space for the calculation as described in
Sec. 3.3. Ncont is the number of particles allowed in non-resonant continuum of A = 8
nuclei. The last row shows the contribution from the resonant 0p3/2 state. Table taken from

Ref. [46].

Model Ncont
9C→8C 9Li→8He 9C→8B 9Li→8Li

Sn = 14.22 Sp = 13.94 Sp = 1.30 Sn = 4.06

HO-SM 0 0.86 0.85 0.95 0.96
GSM-ps 3 0.67 0.67 0.98 0.98
GSM-psd 3 0.60 0.67 0.89 0.88
GSM-psd 4 0.48 0.65 0.89 0.88

GSM-psdres 4 0.48 0.64 0.84 0.85

an ideal candidate for an OQS description.

For the sake of illustration, we also provide a schematic view of how one may consider the

partially-summed continuum configurations in Fig. 3.4. Partially-summed configurations are

where all continuum states (n excitations) for each partial wave are summed together into one

general scattering contribution. For example, in our case, 0p3/2 is a resonant pole, and the

p3/2 contour is discretized by 15 points numerically, one will have 15 different configurations

of π
(

0p3/2

)3 (
pscat
3/2

)
from π

(
0p3/2

)3 (
1p3/2

)
to π

(
0p3/2

)3 (
16p3/2

)
. The corresponding

squared amplitudes for each distinct configuration can be summed together to provide a

total quantity representing discrete poles coupled with continuum states π
(

0p3/2

)3 (
pscat
3/2

)
.

Based on the schematic view, we illustrate that the change in the dominant HO-SM con-

figuration π
(

0p3/2

)4
= 95% dissipates into a distribution of continuum states. Similarly,

we see the same dissipation occur in the mirror nucleus 8He in Fig. 3.3d. While changes

in configurations between HO-SM and GSM may not be indicative on their own, when we
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Figure 3.4: (Right) Example of the largest four partially-summed configurations contributing
to the (Left) squared amplitude histogram for 8C [46]. We present a generic WS potential
to illustrate bound versus unbound s.p. states within each configuration. The histogram bar
color and meaning is the same as Fig. 3.3.

consider the location and structure of the poles in the parent nuclei 9C and 9Li, we note a

three dominant pole configuration structure (in the HO-SM and GSM poles) whereas 8C and

8He only have two dominant pole configurations. This alteration and reduction of dominant

configurations thus is the driving factor for the suppression of the SFs in our study.

3.4.2 Majority Species Nucleon Removal

We now consider the effects on SFs when removing majority species nucleons from 9C and 9Li

to produce 8B and 8Li respectively. As shown in Table 3.1, increasing the available number

of continuum states in our system does not produce a significant change to the SFs. In fact,

the resulting SFs for weakly-bound nucleon removal saturate at a value near one, indicating

that the assumption of a core-spectator system may be sufficient due to the similarities with

an independent particle model approach.

Focusing on the configurations, we see in Fig. 3.3 that parent and daughter share the
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Figure 3.5: Example of largest 4 partially-summed configurations contributing to the squared
amplitude histogram for 8B [46]. This figure follows the same labeling scheme as Fig. 3.4.

same three dominant pole configurations, indicating less structural changes due to favoring

pole-space occupations. Additionally, the dissipation of these pole states into continuum

contributions is mitigated, as the daughter systems from majority nucleon removal will tend

towards stability (where continuum contributions are unlikely). Again, if we consider a

schematic example for 8B, shown in Fig. 3.5, we note that only one of the dominant four

partially summed configurations contains direct continuum states.

3.5 Conclusions

Using the GSM formalism, we have systematically explored the effects of continuum cou-

pling on SFs. We have demonstrated [46] that continuum coupling contributions can pro-

duce strong suppression, or quenching, of SFs when removing well-bound (minority species)

nucleons. Sources of this difference can be attributed to the appreciable alterations to config-

urations between parent and daughter nuclei. Specifically, when removing a minority species

nucleon, the system moves in the direction of the dripline where continuum effects will sig-
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nificantly alter the configurations. Simultaneously, we have shown that the effects of the

continuum on SFs when removing weakly-bound (majority species) nucleons is rather weak

and quickly saturates to a value not associated with SF suppression. Removal of majority

species nucleons instead will push the remnant nucleus towards stability where continuum

dominated configurations will be least likely to have substantial occupation.

Continuum coupling effects on SFs were also shown to be qualitatively consistent with

GSM using another model, Shell Modle Embedded in the Continuum (SMEC) [46]. The

level of openness in SMEC was controlled by altering the number of decay channels avail-

able, a different mechanism compared to GSM’s indirect basis truncation approach. Further

investigations into the isospin dependence of nucleon-nucleon interaction strength is needed

along with probes into larger angular momentum (ℓ > 3) systems which can also impact

nucleon interactions.

29



Chapter 4. Description of 9N

With the opening of the Facility for Rare Isotope Beams (FRIB) and improvements and

innovations to existing radioactive ion beam facilities, nuclear experimentalists will be able

to probe further into exotic regions of the nuclear chart [4, 59]. These exotic nuclei will

have larger imbalances in the number of their constituent protons and neutrons and will be

found closer to the nuclear driplines, as already demonstrated in recent work [60]. For lighter

nuclei, the limits to the binding of these asymmetric nuclei are well defined experimentally

since the driplines are known; however, beyond the dripline the limits to nuclear existence

are not known experimentally and its definition is subject to debate [61].

This chapter contains my contributions to studying the structural and decaying properties

of the extremely proton-rich nucleus 9N that has been observed recently [62].

4.1 Particle-Emitting Nuclei

For the purposes of this work, we define nuclear existence as the minimum time required to

form a nuclear structure. An estimate of this time can be obtained by determining the period

of a nucleon that traverses a nucleus of a given size, which for A ≈ 10 is roughly T1/2 ≈

10−22 s or a decay width of Γ ≈ 4.5 MeV [63]. If a nucleon can traverse a nucleus within this

temporal boundary, then mean-field formation can occur which is an assumption for many

nuclear structure models. Another benefit to this definition is that nuclear interactions which

produce resonances or bound states should lead to some alteration of an incident particle. If

the length of interaction time within the compound nucleus is too short, then it is virtually

indistinguishable from a scattering state or a background continuum. Nuclear resonances

exist between the driplines and this ephemeral (diffuse) region of the nuclear chart, and

better probing these systems experimentally can give better insight into the edges of the
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nuclear landscape. These ephemeral nuclei located beyond the dripline will primarily decay

by (multi-)nucleon emission.

The lightest section of the nuclear chart contains many nuclei that decay by nucleon

emission and favor decay by steps of one- or two-proton (p or 2p) emission until ending at a

particle-bound residue [64, 65]. Many of these nuclei, which decay by nucleon emission, have

been observed, and more are likely to be discovered [66]. Currently, the list of nuclei which

decay by emitting 3p from the ground state are: 7B, 13F, 17Na, and 31K [67–70] and 4p in

total are: 8C and 18Mg [71, 72]. Although every nucleus is unique, these nucleon emitters

share similar decay behavior. Due to nucleonic pairing, odd-Z proton emitters will favor

single-proton emission while even-Z proton emitters tend to favor 2p emission [64, 65].

Focusing on a particular isotone chain (N = 2) we can better understand these general

effects. Starting from a 4He core, one can build these nuclei by adding one proton (5Li), two

protons (6Be), three protons (7B), and four protons (8C). This chain is of particular interest

as 8C is a system with half of its nucleons in the continuum coupled to an α core. One may

reasonably wonder where the boundary of proton emitters meets its ambiguous end and if

there are any resonant nuclei further up this isotone chain? To address this question, we

presented theoretical predictions of the structure of 9N, the next nucleus in the N = 2 chain

and a 5p emitter, along with experimental observation in Ref. [62]. 9N is an interesting

nucleus as over half of its constituent nucleons sit in the continuum and can be described as

a 8C+p system.

4.2 Nuclear Features

As we have highlighted, the formalism used in GSM naturally includes various complex-

momentum poles of the S-matrix seen in Fig. 2.1. These resonant states are mathematical
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constructs used to describe physical phenomena like resonances and for clarity we note the

mathematical and physical distinction between the two terms. Moreover, careful defini-

tions of features arising from nucleon interactions are paramount, as some nuclear structure

features cannot be classified as resonances or bound states such as antibound states.

Examples of these features can be seen even in simple systems like the dineutron and

diproton. Although the dineutron (a system of two neutrons) is not bound, it is also not

a resonant or scattering state (although closely related to the latter) [25, 73, 74]. Instead,

the dineutron is classified as an antibound (or virtual) state or a state with exponentially

increasing asymptotics as shown in Fig. 2.1 mathematically. Such states arise naturally in

S-matrix formalism and manifest as a enhanced cross section and produce a large positive

value of the phase shift derivative dδ/dk near zero energy [25].

Similarly, a diproton system is neither a bound state nor resonance, and is classified as

a subthreshold resonance [73, 75]. Subthreshold resonances exist in the complex-k plane

below the π/4 line and produce an enhanced scattering length like an antibound state. Both

subthreshold resonances and antibound states can be associated as final state effects. We

will focus on this distinction between these scattering features and resonances in 9N and

9He.

4.3 Structure of 9N

4.3.1 Prediction of 9N Structure

As discussed in Sec. 4.1, 9N is three neutrons away from the lightest bound nitrogen isotope

and is reasonably assumed to be a 8C+p resonance. To provide meaningful theoretical

predictions, we built 9N as a 5p + α system and used the same interaction parameters

and model space as Sec. 3.3 [46] to ensure good reproduction of the 8C g.s., without any
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Figure 4.1: Calculated spectra using GSM. 8C and 9N(a) calculations use the same model
space as Sec. 3.3 and serve as initial predictions. 9N(b) uses a modified model space to
produce the 1/2+ state after comparison with experimental data.

experimental information for 9N. We then applied these parameters to 9N and searched for

a variety of possible Jπ states. Ultimately, we obtained converged predictions as shown in

Fig. 4.1 which could be compared with experimental data.

The experimental data did not contain enough statistics to provide constrained fits [62]

as shown in Fig. 4.2. In particular, only a single-peak fit could be obtained with the available

statistics (Fig. 4.2a), yet this required setting the magnitude of background event to 14% or

lower [62] (an unreasonable assumption [76]). Consequently, we used GSM to provide new

calculations with information from other nuclei to better constrain the experimental results.

Specifically, we turned to the mirror partner 9He [77–82].

9He belongs to the N = 7 isotone chain, which is known to contain low-lying 1/2+ and

1/2− doublets for nuclei with low proton numbers, such as 11Be [83]. In 11Be, an intruder s-

wave state produces the doublet 1/2+ and 1/2− states which are bound and localized [83]. In
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refined GSM energies as vertical orange lines (discussed in Secs. 4.3.2 and 4.3.3) and the
corresponding GSM refined energies. Modified from Ref. [62].
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9He however, only the energy of the 1/2− state has been consistently measured, albeit with

some disagreement on its width [77–79]. In contrast to 11Be, the presence of the 1/2+ feature

in 9He does not have a uniform consensus and only some works indicate its existence [77,

79–82]. We focus on investigating the exotic features in 9He and the implications for the

structure of 9N in the next section.

4.3.2 Refinement of 9N structure using 9He

Despite using a model space which included continuum s-wave states, initial searches for a

1/2+ state were unsuccessful for both 9N and 9He. In the case of 9He, previous Berggren basis

calculations were able to produce a 1/2+ state, yet they did so by including an additional

1s1/2 basis pole. By using this additional pole in their calculations, the 1/2+ state manifested

as an artificially bound state [37, 63] and precluded these works from determining if 9He was

a genuine state or antibound feature. It should be noted that it is theoretically possible to

obtain the same results without including the 1s1/2 basis pole, but it requires a very dense

discretization of the s1/2 contour to meet the unitarity condition [40]. Moreover, it has been

shown that including the bound 1s1/2 pole in the GSM basis can help convergence rates and

accuracy for bound many-body states, yet many-body states with antibound behavior will

not uniformly benefit from this speedup [30].

Great care is warranted when focusing on the unbound 1/2+ states to avoid improper

handling of fragile features such as antibound states. Since reproducing antibound states

without including a 1s1/2 basis pole requires a significant number of non-resonant scattering

continuum states (contour discretization points), we will forgo this approach due to model

space size constraints in favor of including the 1s1/2 basis pole. We checked the effects of

this basis pole on the 1/2+ state by varying the depth of the WS one-body basis potential.

Comparing the calculation results to experimental values for 9He [77], we find that the best
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reproduction of the 1/2+ feature coincides with an antibound 1s1/2 basis pole just before

crossing threshold. It is worth noting that this antibound state is sensitive to the placement

of the 1s1/2 basis pole. This basis dependence, while not ideal, is unsurprising as the use

of the 1s1/2 basis pole supplants the finer contour discretization which would otherwise be

required.

After determining that the best 1/2+ reproduction occurs with a barely-antibound 1s1/2

basis pole, we extended this search procedure to GSM of 9N. Since protons cannot be anti-

bound due to the presence of the Coulomb barrier [84], we cannot use the exact same basis

as 9He in a proton-rich version. The behavior which best reproduced the 1/2+ state 9He

was an antibound 1s1/2 pole nearest threshold; thus, we chose an analogous version for the

proton basis where a narrow resonant 1s1/2 pole was selected.

We can study the effects of this basis choice by comparing these results with that of

a bound basis pole and find that the energy will vary by roughly one MeV but the decay

width may be strongly suppressed (see Fig. 4.3). The effect the choice of basis can have on

the convergence of decay widths of many-body GSM states is well documented [29, 31, 37,

85]. As discussed in the references therein, depending on the goals of the practitioner, one

may favor better energy reproduction over calculating an exact decay width as the later may

require more computational resources. Since the completeness relation holds, if one chooses

enough non-resonant continuum states, the resulting energies will remain albeit with different

occupations than if using an artificial basis pole [85].

For a majority of many-body states, which are bound states or narrow resonances, the

tension of convergence rate to reproducibility of states does not usually pose a significant

dilemma (see the bound states in Fig. 4.3). However, we see in the case of near- or above-

threshold states, the choice of using resonant basis poles can lead to variation in the energy
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Figure 4.3: Calculation of isobaric analog states for the A = 9 chain scaled by a factor of
aZ2 where a = 0.21 to compensate for Coulomb energy corrections. Experimental results
are shown in black and two versions of GSM results are shown in blue with an antibound (a)
basis pole and bound (b) basis pole. States with a gold star above them are those with well

converged energies (
∣∣∣⟨Ψ̃|H |Ψ⟩ − E ⟨Ψ̃|Ψ⟩

∣∣∣ ≤ 10−3) and proper calculation of the expected

isospin ⟨T ⟩. Previous experimental results are shown from Refs. [2, 77], but we do not
include the experimentally estimated 1/2+ energy for 9N as it was determined in this work
(see Fig. 4.5) [62].
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and decay width. This holds true if the contour discretization is insufficient, and computing

the decay width can be unstable [31]. Despite the possible instability associated with using

unbound basis poles, the widths of the 1/2− state in 9He and 9N are well under control for

both bound and resonant basis poles. Using an unbound basis pole causes the 9N
(
1/2+

)

state to be much broader than the bound basis pole calculation (which has an unusually

narrow width).

4.3.3 Implications of 9N Structure

After developing the method to reproduce the structure of 9He and applying it to 9N, we

are able to investigate the dependence of the energies on the choice of basis. As discussed

in the section above, we systematically vary the depth V0(ℓ = 0) of the auxiliary potential

to generate the Berggren basis and track the trajectory of the resulting many-body states

as shown in Fig. 4.4. If we rely on the method developed for 9He, looking for a barely

narrow-resonant 1s1/2 basis pole, we find the value for 1/2+ which best matches this criteria

is around V0(ℓ = 0) = 100.4 MeV. We also note that this basis variation does not impact

the trajectory of the 1/2− state in a meaningful way.

Due to the demonstrated stability of the 1/2− state regardless of basis in Fig. 4.4, the

experimentalists utilized this GSM complex energy to constrain their anti-correlated two-

peak fit (see Fig. 4.2b). By using this GSM 1/2− energy as a constraint, the two-peak

fit produced a significance beyond the capabilities of Monte Carlo [62]. The two-peak-plus-

background hypothesis concludes that the data is highly likely to originate from 9N structures

at a 5σ threshold. Resulting experimentally determined energies and the GSM results using

the refined basis are illustrated in Fig. 4.5.
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4.4 Conclusions

Rare isotopes existing near or beyond the driplines are challenging systems for both ex-

periment and theory. Of this class of nuclei, the 5p-emitting nucleus 9N is a particularly

interesting as over half of its constituent nucleons are unbound as its intermediate state 8C+p

contains another unbound nucleus. We provided theoretical predictions for the structure of

9N and this data assisted in the experimental analysis which determined the presence of 9N

within a ≈ 5σ threshold [62].

Predicted energies for the low-lying doublet structure in 9N are in good agreement with

the experimental energy location of these states. Furthermore, this system is interesting

for mirror (isospin) symmetry as the level inversion in the N = 7 chain continues for 9N’s

mirror, 9He. Interestingly, 9He consists of an antibound 1/2+ and a real resonance 1/2−, and

this doublet is present in 9N. However, the 1/2+ state in the proton-rich nucleus appears to

be transformed into a genuine resonance rather than a scattering feature under the current
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Hamiltonian and GSM framework. Unfortunately, the experimental statistics were low in

this experiment and the two-peak character could not be constrained simultaneously, relying

on a statistical analysis of different theoretically-informed peak profiles. Future experiments

can potentially resolve this issue and more OQS model development is needed to probe these

highly exotic systems where even the current GSM implementation struggles.
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Chapter 5. Projection of the Continuum

5.1 Motivation

Within GSM, the continuum coupling in resonances is not well quantified or understood.

Other nuclear OQS models however incorporate continuum effects via explicit coupling terms.

This class of continuum SM is thus complementary to GSM calculations, as was discussed

for SMEC in Sec. 3.5. Essentially, one model class (GSM) incorporates the continuum in a

“black box” perspective where continuum effects are introduced at a basis level; while the

other model class (SMEC) has tunable parameters for direct manipulation and exploration

of the continuum. Currently, there is no direct quantitative comparison between the two

methods and their relation has been assumed to be valid at a theoretical level. We aim to

provide quantitative evidence to support or dispute these assumptions. Ordinarily, one can

explore the effects of the continuum in GSM only from the many-body structure perspective,

as finer mechanisms associated with direct control of continuum coupling strength are not

accessible in GSM [5, 29] without modification [38, 86]. Of course, this property of GSM

is beneficial as it limits the dimensionality of the same many-body problems which would

otherwise be intractable with other OQS models such as SMEC [29].

5.2 Shell Model Embedded in the Continuum

Before we can formulate any methods to extract quantitative continuum coupling from GSM,

we must first outline the formalism for SMEC to identify possible starting points. SMEC

incorporates OQS nature by dividing the system into two subspaces, a localized space (Q)

with A− 1 bound particles and a continuum space (P ) with the scattering nucleon(s) in the

continuum without coupling to the Q space [18, 87]. This subspace picture was first outlined
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by Feshbach in Refs. [88, 89] as a method to unify nuclear structure and reaction theories.

Since the development of SMEC [90], it has had a long history of highlighting single-particle

continuum effects [18, 90–92], including decay channel effects on exotic states [46, 93, 94],

and highlighting potential effects of two-particle systems [87].

To perform SMEC calculations in the one valence nucleon case, one first needs to generate

wave functions for the total function space. The Q space sets are L2 functions from the

standard SM while the P space sets are s.p. scattering states. Decays for the A-nucleon

system will occur when the scattering states are coupled to the SM states. Both wave

functions can be obtained by solving the Schrödinger equation:

HSM |Φi⟩ = E
(SM)
i |Φi⟩ , for localized space Q (5.1a)

∑

c′

(
E −Hcc′

)
ξ
c′(+)
E = 0, for continuum space P (5.1b)

where Eq. 5.1a corresponds to the discrete SM calculations (CQS picture) and Eq. 5.1b to

the scattering states [87]. The SM Hamiltonian (CQS) is HSM and Hcc′ = H0 + Vcc′ is

the coupled-channel (CC) Hamiltonian. Since the decay mechanisms are directly tied to

the scattering nucleon, the channels are controlled by the nucleon’s relative motion with the

A − 1 residue states |ΦA−1
j ⟩. One can then define projection operators for each space over

their set of states

Q̂ =
N∑

i=1

|ΦAi ⟩ ⟨ΦAi | , P̂ =

∫ ∞

0
dE |ξE⟩ ⟨ξE | (5.2)

such that each projection on a vector from its complement space gives

Q̂ = |ξE⟩ = 0, P̂ |ΦAi ⟩ = 0. (5.3)
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Operators, such as the Hamiltonian, may also be projected such as Q̂HQ̂ = HQQ = HSM

and P̂HP̂ = HPP = Hcc.

One will notice that at the current step in the formulation, we still have two distinct

non-coupled spaces. Assuming that the different spaces follow Q̂+ P̂ = Id, we can calculate

a mixed projection

|ωi⟩ = HPQ |Φi⟩ (5.4)

which produces a third wave function

|ω(+)
i ⟩ = G

(+)
P (E) |ωi⟩ , (5.5a)

G
(+)
P (E) = P̂ (E −HPP ) P̂ . (5.5b)

Eq. 5.5b is the Green’s function of a nucleon’s motion in the scattering space.

We can now write the solution |ΨE⟩ using all three function sets
{
|ΦAi ⟩

}
, {|ξE⟩}, and

{
|ω(+)
i ⟩

}
by expanding |ΨE⟩ = Id |ΨE⟩ = Q̂ |ΨE⟩ + P̂ |ΨE⟩. This wave function can be

operated on by

Q̂ |ΨE⟩ =
(
E −HQQ(E)

)−1
HQP |ξE⟩ ,

P̂ |ΨE⟩ = |ξE⟩ +G
(+)
P (E)HPQQ̂ |ΨE⟩ (5.6a)

which can be expanded to

|ΨE⟩ = |ξE⟩ +
∑

i,k

(
|ΦAi ⟩ + |ω(+)

i (E)⟩
)
⟨ΦAi |

(
E −HQQ(E)

)−1 |ΦAk ⟩ ⟨ΦAk |HQP |ξE⟩ . (5.7)
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We note that in this formalism, an energy dependent effective Hamiltonian is obtained

HQQ(E) = HQQ +HQPG
(+)
P (E)HPQ. (5.8)

which captures the effects of continuum coupling on the CQS Hamiltonian HQQ. Therefore,

HQQ is the OQS Hamiltonian within the Q space, and from this effective, energy-dependent

Hamiltonian we can calculate its eigenvalues to obtain the energies Ẽi(E) and resonance

widths Γ̃i(E):

Ei = Ẽi(E = Ei); Γi = Γ̃i(E = Ei). (5.9)

Formally, we assign the second term of Eq. 5.2 to be the continuum coupling term

WQQ(E) = HQPG
(+)
P (E)HPQ [46]. The continuum coupling term can have different forms,

but in the case of simple interactions the continuum coupling is dependent on some over-

all strength parameter [46, 93]. As a result, the continuum coupling strength is explicitly

dependent on this parameter.

After obtaining the eigenstates of our effective Hamiltonian |ΨJπ
α ⟩, which include coupling

to a specific decay channel
[
A−1Z(Kπ′) ⊗ ℓj

]Jπ
, a continuum-coupling correlation energy

can be calculated to quantify the continuum-induced mixing [93, 95]

EJ
π

corr.,α(E) = ⟨ΨJπ
α (E)|WQQ(E)|ΨJπ

α (E)⟩ = ⟨ΨJπ
α (E)|HQQ(E) −HQQ|ΨJπ

α (E)⟩ . (5.10)
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5.3 Quantifying the Continuum in GSM with Projec-

tion

Aside from the work in Chs. 3 and 4, GSM has been used to study many OQS phenomena

in nuclear physics from threshold effects like Wigner cusps [54] to the structure of exotic nu-

clei [30, 39, 72]. The differences in the formalism of coupling two spaces compared to using a

holistic Rigged Hilbert Space are highlighted in Fig. 5.1. A limitation to GSM is the inability

to control specific phenomena (such as the characterization of individual decay channels) and

the correlation between these phenomena and the strength of continuum coupling, as both

are implicitly handled in GSM. In other words, interesting many-body structural phenomena

can be modeled, but we cannot directly probe or quantify the mechanisms that drive the

desired behavior. This dilemma is the motivation for our work, and our goal is to follow the

Feshbach projection approach of SMEC to isolate the CQS and pure-scattering continuum

terms from the GSM continuum couplings.

5.3.1 Formalism

For well-bound systems, GSM’s results can be indistinguishable from results calculated in a

traditional SM as these nuclei will have little continuum dependence (recall Fig. 3.3). This

conclusion is unsurprising as bound states defined in any similar basis will likely share the

same spatial localization. We take advantage of this property and assume that within a GSM

calculation, there must exist a subspace which is representative of the SM solutions for well-

bound nuclei, see Fig. 5.2. The main question is then, how might we use this assumption to

build operators to project-out the SM-like components of a full GSM calculation? There are

a few possible methods we can practically do this, each with their own particular challenges,
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Figure 5.1: (Top) Representation of different approaches depending on choice of Hilbert
Space (SMEC) or Rigged Hilbert Space (GSM) formalisms. Resonances manifest in both
cases, yet the mechanisms differ by the space choice. (Bottom) We show the functional
“zones” of both approaches. SMEC requires coupling between to separate spaces to produce
the OQS effects. GSM’s Rigged Hilbert Space contains all components for OQS, but it is
difficult to disentangle the continuum coupling effects.

but we will first describe the assumptions we will use to make these operators.

To create a CQS projection operator, we must use some set of localized basis states

to construct a space we believe to be entirely closed, with Dirichlet boundary conditions

imposed. These boundary conditions require that outside of some domain, the wave function

must be zero, such as u(r = 0) = 0 and u(r = Rbox) = 0, and could be considered as imposing

an infinite square well boundary condition where particles cannot enter or escape (decay).
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Figure 5.2: Depiction of isolating a Q space (blue) in GSM by accounting for states gener-
ated in a well-localized basis. The complement space is shown in violet and contains any
features not captured by the Q-space. This figure is an illustration of applying the Feshbach
projection technique onto GSM as presented in Fig. 5.1.

Using these CQS states |Φ⟩, we build a general CQS projector

Q =
N∑

i

|Φi⟩ ⟨Φi| (5.11)

or more generally

A =




| | |

Φ1 Φ2 ... ΦN

| | |




m×N

and Q = A
(
ATA

)−1
AT (5.12)

with vectors Φ having length m. Although we would expect higher energy components of

our system to be associated with continuum effects, it is certainly possible to have high

energy components in Q which happen to coincide with discretized scattering states we are

attempting to isolate. This would be cases where pseudo-continuum states generated from a

CQS basis are similar to select, genuine, scattering states as their boundaries coincide with
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a specific radial point of a node in a scattering state rbox = rnode.

Since OQS by definition have features which cannot be naturally described in a CQS

framework, Q will only act on a subspace of the OQS space; thus, there must be some

complementary space where

I ≈ Q + P ,→ P ≈ I −Q. (5.13)

Here we assume that the working Berggren basis is large enough to encompass long range

effects. In the above equation, I represents the A-body Fock space of the Berggren ensemble

employed in GSM. This I is not a true unity operator, like one finds in a Hilbert space, as

the system is built from a reference core rather than the vacuum.

From the constructed CQS and scattering-space projection operators, any GSM operator

O can be decomposed via

OGSM = (P + Q)OGSM (P + Q)

OGSM = QOGSMQ + POGSMQ + QOGSMP + POGSMP . (5.14)

Continuum coupling for specific observable quantities can be obtained by projecting their

corresponding operators, such as the Hamiltonian:

HGSM = (P + Q)HGSM (P + Q) ,

HGSM = QHGSMQ︸ ︷︷ ︸
CQS

+PHGSMQ + QHGSMP︸ ︷︷ ︸
Coupling

+PHGSMP︸ ︷︷ ︸
Scattering

. (5.15)

As shown, projected energies can be associated as EQQ = QHGSMQ being the CQS-like
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energy, EPP = PHGSMP being the pure-scattering energy, and EPQQP = PHGSMQ +

QHGSMP being the continuum-continuum coupling term. For more manageable notation

we will adopt the following convention:

QHGSMQ = HQQ, PHGSMP = HPP ,

PHGSMQ = HPQ, QHGSMP = HQP .

Considering the typical GSM (Rigged Hilbert space) picture, one would expect the de-

composed version to be of the form of Fig. 5.3. Focusing on the HQQ component, one would

anticipate that the first Riemann energy sheet would only contain few discrete continuum

contributions but have many of the bound states, assuming the localized states used in Q are

a good representation. Additionally, in the second Riemann sheet of HQQ, some low-energy

Gamow states may appear depending on the system and will be shifted onto the real axis as

shown in Fig. 5.3. CQS projection essentially will capture the localized components of the

resonant states with the remainder being left in the P-space.

On the other hand, the HPP component would be expected to contain all pure scatter-

ing terms and perhaps a weakly-bound, or severely radially extended, state. More likely,

we would expect this term to instead collect more Gamow states and retain the coupling

terms that are larger, towards pure continuum states. In either case, we can more easily

see in the second Riemann sheets that these projected systems might still retain some res-

onant (Gamow) states but will only highlight the real-energy and continuum contributions

respectively. The final part, which is the goal of this work, is to then extract the continuum

coupling HQP +HPQ.

Before continuing, we explicitly define the corresponding SDs and bases to avoid any
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Figure 5.3: Illustration of the CQS and pure scattering components of the Hamiltonian after
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two energy Riemann sheets in order to highlight the behaviors we would expect to capture
using the Q and P operators. Riemann Sheet I shows the projection of the physical sheet
and Riemann Sheet II shows the projection onto the non-physical sheet. Resonant states are
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confusion. Single-particle states will be referred to using a lower-case Greek letter (|ϕ⟩ and

|ψ⟩) and any many-body states will be upper-case Greek letters - |Φ⟩ and |Ψ⟩ for CQS and

OQS respectively. Generally, to build a nucleus we apply creation operators to add n valence

nucleons onto a closed shell |c⟩ to form the arbitrary wave function |Ξi⟩ =
[
g
†
1g

†
2...g

†
n

]
i
|c⟩.

In our case we define the SDs as

CQS |Φi⟩ =
[
a
†
1a

†
2...a

†
n

]
i
|c⟩ , i = 1, ...d,

OQS (GSM) |Ψi⟩ =
[
b
†
1b

†
2...b

†
n

]
i
|c⟩ , i = 1, ...d, (5.16)

where a† and b† are the creation operators for the chosen CQS and Berggren bases respec-

tively. Here, d refers to the corresponding quantum numbers for each state. Many-body

basis SDs |ΨB
i ⟩ used in GSM can naturally expand a particular resonant state |Ψν⟩ (an

eigenstate of HGSM) as

|Ψν⟩ =
∑

i

ci |ΨB
i ⟩ . (5.17)
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Note that from now on, for clarity, any state with a B superscript refers to a basis state

and states with Greek letter subscripts (|Ψν⟩) are specific Gamow states (eigenvectors of the

Hamiltonian). We will discuss some additional notation for clarity since we will be working

with two different bases. If any state or operator is surrounded by parenthesis accompanied

by a subscript or just accompanied by a subscript, this indicates the operator is in that

corresponding basis e.g. IΨ = (I)Ψ is in the GSM basis Ψ. This is helpful when an explicit

basis state is not written like |ΨB
i ⟩.

First, we consider the operation of Q on a single GSM basis state

Q |ΨB
j ⟩ =

∑

i

|ΦBi ⟩ ⟨ΦBi |ΨB
j ⟩ =

∑

i

|ΦBi ⟩Mij . (5.18)

A transformation coefficient Mij arises which will allow transformations between Φ and Ψ

basis vectors. This can be expanded into matrix using a complete set of GSM basis vectors

(in other words, the identity)

QIΨ =

(∑

i

|ΦBi ⟩ ⟨ΦBi |
)
∑

j

|ΨB
j ⟩ ⟨Ψ̃B

j |


 =

∑

ij

|ΦBi ⟩ ⟨ΦBi |ΨB
j ⟩ ⟨Ψ̃B

j | =
∑

ij

|ΦBi ⟩Mij ⟨Ψ̃B
j | = M. (5.19)

The Q operator can be applied in the opposite direction and has a slightly different form

IΨQ =


∑

j

|ΨB
j ⟩ ⟨Ψ̃B

j |



(∑

i

|ΦBi ⟩ ⟨ΦBi |
)

=

∑

ij

|ΨB
j ⟩ ⟨Ψ̃B

j |ΦBi ⟩ ⟨ΦBi | =
∑

ij

|ΨB
j ⟩ M̃ij ⟨ΦBi | = M̃. (5.20)
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Here M and M̃ each denote the conjugation status of our GSM state (|ΨB⟩ and ⟨Ψ̃B |). Since

the proper GSM conjugation is simply time reversal (no complex conjugate in Eq. 2.10), we

need this distinction as the CQS state could require a complex conjugation. In the case

where we have only real wave functions, this reduces to a case where M = M̃T , but the most

general definition requires this distinction. The matrix M is NCQS×NGSM and its partner’s

dimensions are swapped. From these expressions, we can write the projection operator Q in

the GSM basis

QΨ = M̃
(
MM̃

)−1
M (5.21)

to create a projection operator with NGSM ×NGSM dimensions.

Because M and M̃ represent the overlaps between SDs in the CQS and GSM bases, we

can express the overlaps as [96–98]

Mi,j = ⟨Φi|Ψj⟩ = ⟨c| ainain−1
...ai1b

†
j1
...b

†
j2
b
†
jn

|c⟩

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨ϕi1 |ψj1⟩ ⟨ϕi2 |ψj1⟩ ... ⟨ϕin |ψj1⟩

⟨ϕi1 |ψj2⟩ ⟨ϕi2 |ψj2⟩ ... ⟨ϕin |ψj2⟩
...

...
. . .

...

⟨ϕi1|ψjn⟩ ⟨ϕi2 |ψjn⟩ ... ⟨ϕin |ψjn⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.22)

with the second line showing the overlaps between each one-body state making up the SDs.
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Likewise, we can calculate

M̃i,j = ⟨Ψ̃i|Φj⟩ = ⟨c| binbin−1
...bi1a

†
j1
...a

†
j2
a
†
jn

|c⟩

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨ψ̃i1 |ϕj1⟩ ⟨ψ̃i2 |ϕj1⟩ ... ⟨ψ̃in |ϕj1⟩

⟨ψ̃i1 |ϕj2⟩ ⟨ψ̃i2 |ϕj2⟩ ... ⟨ψ̃in |ϕj2⟩
...

...
. . .

...

⟨ψ̃i1|ϕjn⟩ ⟨ψ̃i2|ϕjn⟩ ... ⟨ψ̃in |ϕjn⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.23)

which is crucial to get our basis-transformed IΨQIΨ = M̃M . In the following generalized

notation, any reference to Q should be taken as QΨ.

5.3.2 Implementation

Since both GSM and CQS wave functions are spherically symmetric, they have the general

form of Eq. 2.6 and the primary difference is the radial wave function. Use of these occupation

representation M and M̃ operators then provides a convenient feature whereby the overlaps

can be pre-computed on the s.p. level and the matrices can be built by taking determinants

of these scalar values. Calculating these overlaps can be reduced further as each s.p. wave

function overlap would contain

⟨ϕi|ψj⟩ =

∫ rmax

rmin

∫ 2π

0

∫ 1

−1

u∗ϕ(n, ℓ, j, r)

r

uψ(n′, ℓ′, j′, r)
r

×


 ∑

mℓ,ms

C
jm
ℓmℓsms

Y ∗
ℓmℓ

(θ, φ) ⟨s,ms|




×



∑

m′
ℓ
,s′z

C
j′m′
ℓ′m′

ℓ
s′s′z

Yℓ′m′
ℓ
(θ, φ) |s,ms⟩


 r2d(cos θ)dφdr, (5.24)
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and generally for any spherical harmonic overlap

∫ 2π

0

∫ 1

−1
Y ∗
ℓmℓ

(θ, φ)Yℓ′m′
ℓ
(θ, φ)d(cos θ)dφ = δℓℓ′δmℓm′

ℓ

which leads to the reduced form of s.p. overlaps (noting that ⟨s,ms|s′,m′
s⟩ = δss′δmsm′

s
)

⟨ϕi|ψj⟩ =

∫ rmax

rmin

u∗ϕ(n, ℓ, j, r)uψ(n′, ℓ′, j′, r)dr

×
∑

mℓ,ms;m
′
ℓ
,m′
s

C
ℓsj
mℓmsmj

C
ℓ′s′j′
m′
ℓ
m′
sm

′
j
δℓℓ′δmℓm′

ℓ
δss′δmsm′

s
=

⟨uϕi |u
ψ
j ⟩

∑

mℓ,ms;m
′
ℓ
,m′
s

C
ℓsj
mℓmsmj

C
ℓ′s′j′
m′
ℓ
m′
sm

′
j
δℓℓ′δmℓm′

ℓ
δss′δmsm′

s
. (5.25)

For many of the precomputed s.p. overlaps the different values of the δ functions will be

zero and this binary check can prevent any need to compute the radial integrals. Up until

now, we have also been assuming nucleons of the same species but inclusion of isospin Tz

as an extra input quantum number produces the criteria δTzT ′z between the two overlapped

s.p. states.

After the s.p. overlaps are calculated and the M and M̃ operators are computed, GSM

results can be projected. An important feature of projection operators is idempotence,

or that successive operations of a projection operator produce the same result as a single

operation, QQ = Q. Due to potential numerical instabilities, it will be important to check

amongst different operations that idempotence holds by

IΨ = ⟨Ψν |QQ|Ψν⟩ − ⟨Ψν |Q|Ψν⟩ = 0 or IH = ⟨Ψν |QQHQQ|Ψν⟩ − ⟨Ψν |QHQ|Ψν⟩ = 0.

(5.26)
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The complement operator P has the same idempotent criteria. The remaining choice one

must make is which CQS basis to use to generate the projection operators.

5.3.3 Box Basis

Our basis of choice for the purposes of this work is a so-called “box basis” or a basis whereby

we impose Dirichlet boundary conditions on our system. The primary effect of this choice

is that any solutions to the radial wave equation u must follow the boundary conditions

u(r = 0) = u(r = rbox) = 0 at the origin and the edge of the box. From the perspective

of an introductory quantum mechanics course, this would be the same as working from an

infinite square well in spherical coordinates where the potential is zero inside the box and

infinite beyond the rbox.

Infinite wells have a well-known property that the energy excitation spectrum follows a

general relation E ∝ r−2
box [99, 100]. A convenient result of this feature is the level of openness

in the system can be directly controlled by the box radius, and in the limit as rbox → ∞,

the energy level spacing becomes infinitesimally small, a continuum limit. Another effect of

changing box radius is that the number of low-lying energy states will increase and move

down from the high-energy pseudo-continuum.

A limit to this basis choice is the stability of the low-lying wave functions which coin-

cides with the energy of the states. To maintain consistency with the GSM contour, which

represents the maximum energy cutoff, we only use states with energies of 400 MeV or lower

(a typical cutoff value). While this limitation does not allow for a full representation from

the box basis, we have found that the use of a few states is sufficient for projection.
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Figure 5.4: Energies for GSM and HO-SM basis calculations with respect to the WS depth
V0 associated with each calculation crossing threshold. Solid lines indicate real energy while
dashed lines are for imaginary components (if applicable). Note the black dotted lines
highlight where each calculation crosses threshold for the 9He(1/2−) state. We highlight the
lack of a discontinuity in the SF for HO-SM calculations.

5.4 Toy Problem

Before applying the projection code to realistic problems, the projection operator perfor-

mance must first be benchmarked. To avoid cumbersome calculations, or potentially diffi-

cult to interpret results, we will consider a textbook example of the emergence of Wigner

cusps (discontinuities in the SF) for a 9He+n →10He system as the WS depth parameter

(V0) is varied [5]. We show in Fig. 5.4 such effects where the SF becomes discontinuous

across threshold only for the GSM (OQS) calculations. We note in Fig. 5.4 that there is

a bend in the energy of 9He as a result of crossing threshold. This example was selected

as it guarantees a system that exhibits threshold dependence. Additionally, this example

is ideal for benchmarking since it uses a simplified model space consisting of only a single

0p1/2 basis pole, a p1/2 discretized contour with 15 points per segment, and a 8He core.
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Figure 5.5: Projected energies for the considered nuclei. Solid lines indicate real energy while
dashed lines are imaginary components. We show the idempotence check of Eq. 5.26 in the
rightmost panel to verify the projection operators are idempotent. The projection operator
Q was constructed using only the 0p1/2 box state at a box radius of rbox = 3.9 fm.

While this model space is not a realistic representation for the structure for 9He or 10He,

its simplicity will quickly identify if the projection operators capture threshold effects and

remain idempotent.

Following the outline in Eq. 5.15, the projection operators can be applied to the Hamilto-

nian to obtain the projected energy components along with a check to ensure the operators

are idempotent (Eq. 5.26). To start benchmarking with the simplest case, we will use only

the lowest box state (0p1/2) and a box radius of 3.9 fm to compute the projection opera-

tor. Previously, in Fig. 5.4, we noted that the GSM energies did not appear to have strong

changes when crossing threshold, yet in Fig. 5.5 we can clearly see via the projected energies

that effects from the continuum produce discontinuities. Moreover, we find that the contin-

uum coupling energy is less than that of the SM or pure-scattering terms and serves as a

binding effect when only considering this bound basis pole. Taking inspiration from Eq. 5.2,

a similar continuum correlation energy can be obtained for each of the projected components
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(represented generically as XX) by

Ecorr
XX = ⟨Ψ(Jπ)|HGSM

XX (E) −H
CQS
XX |Ψ(Jπ)⟩ . (5.27)

In this form, the OQS and CQS components are projected onto the same subspace, allowing

for a consistent description between the two quantities. This is analogous to taking the

difference between the energy dependent Hamiltonian HQQ(E) and the SM Hamiltonian

HQQ in the SMEC formalism. In cases where the CQS effects across threshold are effectively

constant, we see only slight changes in the projected continuum correlation energies as in

Fig. 5.6.

As discussed in Sec. 5.3.3, the box basis has two adjustable parameters that control the

representation of the Q space, the box radius rbox and the number of excitations included n.

Before applying our method to realistic systems, the effects of changing these two parameters
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Figure 5.7: Projected energies using only the 0p1/2 bound s.p. box state at different values
of box radius. Each set of lines belong to a plane corresponding to an rbox value. The color
scheme is the same as Fig. 5.5 where blue is EQQ, green is EPP , and orange is EPQQP . We
see a general convergence of the values at larger box sizes.

must be benchmarked systematically. We will only focus on the impacts of the projection

of the Hamiltonian only, as projecting SFs requires additional formulation of three different

projection spaces corresponding to the parent, daughter, and free nucleon.

5.4.1 Benchmarking Box Radius Effects

Starting with the box radius, it was demonstrated in Sec. 5.3.3 that the behavior of the box

basis states should follow an infinite square well. Since the box basis is generated using a

WS plus Spin-Orbit (plus Coulomb for protons) potential with Dirichlet boundary conditions

imposed, we should recover any bound states of the WS potential as long as rbox extends far

enough to allow the bound state(s) to form. For this toy system, there is one bound 0p1/2

pole; therefore, increasing rbox should force the projected energies to converge to a specific

value once the bound state is properly accounted for. Indeed, this is what is seen in Fig. 5.7

where the real and imaginary projected components stabilize.

While the convergence of the projection operators when using only bound states is a
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Figure 5.8: Projected energies using the lowest two box states (0p1/2 and 1p1/2) at different
values of box radius. We see that there is no convergence with increasing box radius. The
color scheme is the same as Fig. 5.7.

helpful check, the question of how including higher-order box state excitations (pseudo-

continuum states) will impact the projection operators still remains. In this case, one would

not expect to have perfect convergence to a specific projected value as the pseudo-continuum

(excited box) state will constantly change with box radius, recalling the behavior of an infinite

well. Fig. 5.8 demonstrates this behavior as the inclusion of the next excited state causes

fluctuations in the projected energies above threshold. For the n = 1 box wave function,

the overall behavior does not vary significantly with rbox since it is a pseudo-continuum

state where the number of nodes of the wave function are directly tied to the infinite well

representation. Despite the general line shape similarity, the fluctuations in the projected

energies are a result of how well the box wave function for a given radius happens to coincide

with the GSM s.p. scattering states. This is an obvious model dependence, but it is shared

for many CQS models which use a fixed box boundary to represent a pseudo-continuum.
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5.4.2 Benchmarking Box Excitation Effects

Since Sec. 5.4.1 has demonstrated that the projection operators return sensible results, so

long as box radii are large enough to encompass the WS bound states, impacts and limitations

on the number of box excitation states included can be investigated. Theoretically, there is

no limit to the number of box state excitations one can include so long as the dimensionality

of the box space does not exceed the GSM space. The same holds true for any projections

onto a HO-SM calculation to obtain a continuum correlation energy from Eq. 5.27. As one

can see in Eq. 5.21, if the dimensions change from NGSM > Nbox to NGSM < Nbox then QΨ

will project onto an overcomplete basis since the projection space exceeds the system space.

In this extreme case, the calculation of Eq. 5.21 will likely result in a singular matrix or, at

best, a collapse of idempotence.

In practice, numerical noise will exist and could lead to premature loss of idempotence

of the projection operator. We checked this effect by performing a series of calculations of

the toy model using a range of included maximum excitations. Fig. 5.9 illustrates the degree

to which numerical noise impacts the projection operators. We see in this case that after

including nmax = 5, the idempotence check increases orders of magnitude and it will become

useless after a few more excitations are included. This problem is also present for the 10He

case where the changes in the idempotence check magnitude are even sharper. Constant

checking of the idempotence is imperative as Fig. 5.9 illustrates the system behavior may

not provide obvious indications to the increased loss of idempotence. Thankfully, these

higher excited states at the current box radius coincide with energies far above the typical

GSM energy cutoff. Moreover, the goal of using box states in our projection operator were to

reliably capture any CQS behavior, not have the Q space reproduce the genuine continuum
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Figure 5.9: (Left) Projected imaginary energies including an increasing number of excitations
from the box basis at a consistent rbox = 4 fm. (Right) We note that after including more
excited states, idempotence will fail.

states.

5.5 Realistic Nuclei

For an initial test of GSM projection in a realistic case, we selected the nuclei 5He and

6He which are constructed with valence neutron(s) on a 4He core. These two nuclei have

been studied frequently with methods using the Berggren basis [27–29, 31, 37, 101, 102]

and one-body WS and two-body FHT interactions have been calibrated for these nuclei [31,

37]. For this work, the model space will be reduced to include only p1/2 and p3/2 states

which are necessary to reproduce the states in 5He and are sufficient for calculations of 6He.

The contours will be discretized with 27 points (9 per segment) with the points kpeak =

(0.3,−0.3), kmid = (0.9, 0.0), and kmax = (4.0, 0.0). One-body and two-body parameters are

taken from Ref. [31], as we will use a WS core-nucleon and FHT nucleon-nucleon interaction.

To determine the effects different thresholds have on 5He and 6He, we again vary the WS

depth V0 to transition from artificially bound to unbound cases as shown in Fig. 5.10. This

realistic case provides a new stress-test of the projection operators as it includes different
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Figure 5.10: Left: Calculated energies for the ground states of 5He and 6He. We show the
real (solid) and imaginary (dashed) parts as well as the two thresholds for 5He and 6He
respectively as vertical dotted lines. Right: SFs calculated in GSM with varying WS depth.

j basis states which compete in the structure of the A = 6 system. We highlight that this

case also provides two thresholds to study, the transition from bound to unbound for 5He

and for 6He. Furthermore, the behavior of 6He is that of Borromean system which decays

by 2n emission since 5He is neutron unbound [40, 54, 103, 104]. At each threshold, we

expect the projected components to reveal qualitative energy changes in the system as the

wave functions will transition from being effectively describable with Dirichlet conditions to

outgoing asymptotics. Fig. 5.11 depicts the effects of projection using only the lowest energy

basis poles for the considered partial waves. Again, specific behaviors appear that were also

seen in the toy problem when including only bound states in Q, such as a coalescence of

two projected components (Q and P) at threshold and the binding effect of the coupling

term EPQQP . This behavior continues for the excited 6He(2+) state which is shown in

Fig. 5.12. The excited state of 5He is unbound for the entire domain of the considered V0

parameter, yet the excited state in 6He retains the desired threshold crossing feature. For
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Figure 5.11: Projected ground state (g.s.) energies using the lowest box states (0p1/2 and
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0p3/2) at rbox = 4 fm with respect to the 5He g.s. energy. We show the two thresholds for
5He and 6He respectively.
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Figure 5.13: Variation of box radius from rbox = 1 to rbox = 20 fm. Projected energies for
the ground state of 5He were obtained using the lowest box states (0p1/2 and 0p3/2).

the unbound 6He(2+), we note that at shallow values of V0 the state was not well-converged

(|H |Ψν⟩ − E |Ψν⟩ | > 0.5 MeV) and this is represented in Fig. 5.12 at larger values of

5Heg.s.. Despite the lack of convergence in the GSM calculations, the projection operators

still function well and have little loss in idempotence. Moreover, ignoring the convergence

issues, the resonant state clearly dissolves into the continuum due to the large imaginary

term, yet the projected components still handle these sharp changes well.

We follow the toy model checks to diagnose the stability of the projection operators

in this realistic case. The results of varying the box radius are plotted in Fig. 5.13 and

the impact of changing the number of box excitations included in the projection operator

are shown in Fig. 5.14 for the ground states only. These checks are consistent with what

was observed in the toy model. Specifically, there is convergence of projected components

to certain values when using only bound states in Q with large box radius, and a loss of

idempotence is observed when including higher-lying excited box states in the projection

operator. Both checks illustrate that the projection operators, even in realistic cases, can
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Figure 5.14: Variation of box excitations included from n = 0 to n = 7. Projected energies for
the ground states were obtained using a box radius of rbox = 4 fm. To maintain readability,
only the imaginary part is shown.

reliably provide quantified continuum coupling using localized states and the inclusion of

pseudo-continuum states (E > 0 in the CQS case) is feasible but requires constant checking

of the idempotence. Additionally, with any variation in either box radius or excitations

included, the resulting effects on projected energies appear to pivot about the corresponding

threshold of the system. This indicates that these projection operators respect the thresholds

in GSM.

5.6 Conclusions

Using a set of states generated with Dirichlet boundary conditions, we have demonstrated

that projection of continuum effects in GSM using a CQS basis is possible and determined

possible limitations to this approach. In principle the choice of projection basis is arbitrary,

but in practice the set of states used to generate the projection operator should vary con-

sistently in a parameter space. Further investigations into other realistic systems should be

done across different shells such as 17,18O or 41,42Ca. Investigating these systems will reveal

if the behaviors noted in this work appear across the nuclear landscape, and these general
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features may provide more insight into generic continuum effects. Since these systems will

require different model spaces of higher ℓ states, one can probe other threshold effects. For

example, Wigner cusps do not manifest for ℓ > 1, but discontinuities will appear at higher

order derivatives of the SFs. The order of derivative follows the trend of ℓ − 1 so cusps

appear in ℓ = 2 states at first order derivatives and at second order for ℓ = 2 [54, 105].

Other methods to extract continuum energy correlation factors, like in Ref. [106] which

allow for direct probing of effects such as aligned states, would be complementary to this

work. Direct comparison between such approaches and this projection method should be

done to qualitatively understand how continuum coupling impacts nuclear structures. Ad-

ditionally, combinations of OQS models can be used to provide insight into specific features.

We have shown in this work that topics including SF suppression (Ch. 3) and the structure

of ephemeral nuclei (Ch. 4) are strongly dependent on the continuum. Using the suite of spe-

cialized methods to extract specific aspects of continuum coupling should be used to better

quantify the nature of the continuum. In the case of exotic resonant states, like antibound

states, the use of these projection techniques could also be used to highlight deficiencies in

a CQS basis by generating a projection operator from a chosen basis.
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Chapter 6. Hands-on Nuclear Structure and

Decays

Nuclear science is an ever-evolving field which greatly benefits from new perspectives, and im-

proving accessibility and inclusivity is crucial its continued development [1]. Simultaneously,

pushes to improve the public’s scientific literacy and increase engagement with students will

be crucial for both maintaining public support of scientific programs and for developing fu-

ture workforces. To this end, we have developed a new demonstration [107] that highlights

nuclear structure and decays while aiming to be accessible to a wide audience. Nuclear phe-

nomena are illustrated in this demonstration by layering wooden blocks with a fixed set of

rules emulating nuclear shells.

Providing audiences with opportunities to engage with nuclear science can be difficult

due to the microscopic size of nuclei. Constan developed [108] a method for explaining

reaction mechanisms in accelerator facilities using magnetic marbles, and highlighted the

possible products that can be made from the impact of two nuclei. Whittaker created

a demonstration using magnetic disks to describe static nuclear properties from a quark

level [109]. While both highlight crucial aspects of nuclear formation, building from the

quark level and illustrating statistical reaction processes, there is a gap in the literature

focusing on time-dependent processes like decay. Our demonstration seeks to address this

gap by allowing nuclei to be built from a nucleon level and introducing mechanisms of decay

such as γ-decay, β±-decay, α-emission, and nucleon emission. Fission is not explored in this

demonstration as it occurs in heavy nuclei which have large numbers of nucleons, a scale

that is not conducive for this demonstration.

This chapter contains work submitted to The Physics Teacher and is currently under
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Figure 6.1: Diagram of dimensions for the required blocks and cardboard support pieces.
Nuclear magic numbers are represented by shape A (for the 2 shell closure) and shape B
(the 8 and 20 shell closures). Sides referenced for each block are as shown in the given label.

review [107]. Authors of that manuscript are Joshua Wylie, Pablo Giuliani, Kyle Godbey,

and Sylvester Agbemava.

6.1 Rules

First, we define the basic properties of the demonstration before discussing the physics

concepts covered. The materials required for the demonstration are 1.5cm 2.5cm 7.5cm

wooden blocks, with at minimum 20 painted red (protons) and 28 painted blue (neutrons),

and cardboard shapes cut to the specifications in Fig. 6.1.

The demonstration can be done individually or in a competitive format. In either case,

a set of base rules exists that one must follow, and these are represented in Fig. 6.2 but are

also listed (block sides are labeled in Fig. 6.1):

1. Protons: Must lay on side 1, be spaced ≈ 2 cm apart, and be parallel to each other.
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Example of rules 1-6

Start!

Rule 5 Rule 2c

Rule 1, 3

Rule 3-5

Protons must be on side 1 and spaced 2.5cm 
apart EXCEPT at their ends where they can pair

Rule 1

Spacing

Pairing

No Spacing

Neutrons can be in any 
orientation on side 2

Rule 2

Shared proton 
and neutron 
level (Bad)

Neutron 
perpendicular to 

other neutron 
(Bad)

1) Protons are on side 1, 
parallel, spaced 2cm unless 
paired

2) Neutrons are on side 2, 
perpendicular to protons, and 
can touch

3) Protons start on starting 
platform

4) Build protons or neutrons on 
top of starting proton(s). 
Structure must be free-standing

5) Levels only contain one 
nucleon type (protons or 
neutrons)

6) Magic number pieces added 
when 2, 8, 20, and 28 are 
reached for one nucleon type

Shell closure 
(cardboard 

added)!

H=2.5cm

L=7.5cm

W=1.5cm

2

3 B1
B2

B3

B2
continued

Figure 6.2: Rules of the demonstration accompanied by pictorial representations. We provide
a few starting scenarios to illustrate allowed and forbidden actions within the rules.
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Pairing between two protons is allowed by having sides 3 join together.

2. Neutrons: Must lay on side 2 and can touch in any configuration, but they must be

parallel to one another and perpendicular to protons.

3. The demonstration must begin with placing one proton on the starting platform, shape

A.

4. Subsequent nucleons may be added atop this platform or the starting proton respecting

rules 1-3.

5. Each level can contain only one nucleon species, and no more than two sequential levels

of nucleons of the same species can be on top of each other.

6. When enough nucleons have been added, a player may add a magic number cardboard

stabilizer to the structure.

7. (Optional) Each level of protons or neutrons has a maximum number of blocks allowed.

Isospin symmetry and the presence, or lack, of Coulomb effects due to charge are represented

in the first two rules. Rules 3 and 5 ensure that stable neutron matter or extremely neutron-

rich matter is not a possible outcome of the demonstration. While rule 7 best mimics the

general SM scheme, see Fig. 6.3, it can be complex for younger participants and left optional.

We allow participants to vary the level order (regardless of adherence to rule 7) so they may

represent other nuclear features like islands of inversion.

Finally, after a nucleus has been constructed, and assuming that the nucleus has not

yet collapsed, one can introduce vibrations to the table the nucleus sits on to simulate the

effects of quantum mechanics. The introduction of these effects might induce a decay, where a

nucleon changes orientation, falls, or the entire structure collapses. It is recommended that

participants use something which vibrates the table as a constant frequency and varying

amplitudes to illustrate nucleon motion over time at different energies. If such a tools is
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2 blocks on 0s1/2 Shell

2 blocks on 0s1/2 Shell

4 blocks on 0p3/2 Shell

4 blocks on 0p3/2 Shell

1 block on 0p1/2 Shell

Level 1 (0𝑠1/2): 2 Blocks

Level 2 (0𝑝3/2): 4 Blocks

Level 3 (0𝑝1/2): 2 Blocks

2

8
13C

Figure 6.3: Example of 13C structure in relation to a schematic SM picture.

unavailable, participants can carefully shake or hit the table to accomplish the same purpose.

After introducing quantum effects (vibrations) participants will notice some structure survive

the process while others decay. The goals are to either (1) build the largest, most stable,

nucleus or (2) build the most exotic nucleus. For the purposes of this demonstration, “exotic”

is defined as nuclei with strong isospin asymmetry such as 8C or 28O. Excited states can be

produced by promoting one nucleon to a higher level as depicted in the side branches B1

and B3 of Fig. 6.3.

Additional rules for a competitive version between multiple participants can also be

implemented, and these rules are:

1. Using only one hand, and not touching any additional blocks, players may (a) place a

new nucleon onto the nucleus or (b) excite an existing nucleon by moving it to a higher

level than its current position.
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Scoring:
Point Values for decay types:
• Nucleon emission (N): +1 point
• β or γ-decay (β, γ): +2 points
• Magic Numbers (M): +1 point per board on nucleus

Add all points from decayed nucleons and any magic numbers 
in play. Total goes to the player who played the last stable 
move. GOAL: First to 25 wins!

Ex: It decayed on Orange’s turn, so Blue will get the points. 
We have two protons which fell onto their sides, β-decaying 
into two neutrons. Blue gets 2(β)+2(β)+1(M)=5 points!

1. Using one hand only, players may:

3. Once the minimum number of protons and 
neutrons have been added, a player may add a Magic 

Number board

Add a nucleon Excite an existing 
nucleon

OR

2. Nucleons cannot be de-excited

Example: 8 protons and 8 neutrons

Pair a nucleon by 
sliding it

OR

Extra Rules
i. All players have placed 1 block down making 4He. 

Blue placed magic number
ii. Orange places proton on closed 4He

iv. Grey adds proton on 6Be making 7B

v. Blue excites proton on 7B vi. Orange excites proton on 7B

iii. Green pairs proton on 5Li making 6Be

Example game

vii. Nucleus decays after Orange plays!

Blue wins the round!

Figure 6.4: Depiction of additional competitive rules including an illustration of scoring a
round.

2. Nucleons cannot be de-excited (moved to a lower level).

3. Once the proper nucleon number requirement is met, a player may use their turn to

place a magic number board instead of a nucleon.

4. (Optional) Nucleons cannot be added to levels below a magic number board unless it

is to replace a vacancy left by an excited nucleon.

Examples of these additional rules are provided in Fig. 6.4. A scoring mechanism is also

included to encourage participants to play multiple rounds and to cleverly create unstable

nuclei. Points are awarded to the player which made the last stable move. Points are assigned
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as follows and ends once a player has reached 10 points:

• Nucleon emission: One or more nucleons fall completely off of the nucleus (1 point).

• β-decay: A nucleon falls down to a lower level of the opposite nucleon type or onto the

opposite side it started on, i.e. a proton falls landing on side 2 changes to a neutron

(2 points).

• γ-decay: A nucleon falls down to a lower level of the same nucleon type or falls onto

the same side it started on, i.e. a proton falls landing on side 1 remains a proton (2

points).

• Additional points are added onto the decay score for each Magic Number board on the

nucleus.

Extra points are assigned to decays which are less likely to occur based on the nature of the

demonstration, as (multi-)nucleon emission is the most likely.

6.2 Concepts

As outlined in Sec. 6.1, we retain simple rules associated with protons and neutrons. This is

done to avoid any misconceptions that nuclei form in a sterile environment, contrary to the

dynamic processes in which they actually form, like in stars. Furthermore, capturing emer-

gent behavior from simple rules highlights the ideal balance of maintaining model simplicity

and predictability.

Nucleonic properties are the first focus of this demonstration. We assert that there are

two species of nucleons, one of which can only be near others of the same species as pairs.

Participants may easily recognize this importance as it is associated with electric charge,

which can be compared to the repulsive effects when placing two magnets of the same align-

ment near each other. Starting from these Coulomb and general fermionic properties, one
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can explore a variety of phenomena related to the nuclear chart. Participants frequently

question why the nuclear chart bends to favor an excess of neutrons rather than a constant

N = Z trend. By imposing or neglecting the proton spacing rule (Coulomb effects), partic-

ipants determine that the repulsive nature leads to favoring neutron excess when building

larger nuclei (40Ca or larger). We developed and provide a companion website [110] which

includes a feature to highlight this deviation.

Aside from nucleon properties, nuclear shells are another incredibly important concept

to nuclear structure. Since the introduction of the SM by Maria Goeppert Mayer [111] to

address the presence of magic numbers (also highlighted in the companion website [110]),

many other phenomena have been associated with the presence of shells. This demonstration

allows participants to follow general shell structure to understand how specific shell order-

ings change the accessible nuclei. For example, following the exact level scheme provided,

participants may be able to build 48Ca with ease, yet other exotic nuclei may be difficult

to construct. When participants alter the shell ordering, creating islands of inversion, they

find some nuclei are easier to build. By utilizing the shell structure in this demonstration,

describing excited states becomes a natural extension by allowing lower-lying blocks to be

moved to a higher level. The competitive version in particular encourages such promotion

and can produce some nuclear structures that will not normally be constructed in an isolated

(single-player) view. Promotion of nucleons, or other unstable moves, by other participants

provides an ideal example of external environmental impacts on nuclear structure (OQS).

Lastly, decays are a natural feature of this demonstration. In the cases where the tower

remains stable, requiring additional energy to break it, participants will identify that some

configurations are stronger than others. Even for towers containing the same number of

nucleons, different configurations (ground states or excited states) will be associated with
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Ground state of 11Be

The neutron is now in the 
same orientation and level 

as the protons, so it 
becomes a proton too.

You made 11B!

Quantum Effects 
(vibrations)

β decay

The neutron underwent a 
conversion into a proton, 

electron, and neutrino (not 
shown) to make 11B!

8C (2 neutrons to 6 protons)
Decays with 4 proton 

emission!

Nucleon emission

8C (2 neutrons to 6 protons)
Decays with 4 proton 

emission using two pairs of 2 
protons!

Quantum Effects 
(vibrations)

Figure 6.5: Depictions of two decay modes in the context of this demonstration and relation
to the corresponding decay mode.

different levels of stability. For cases where the nuclear towers do undergo a decay, partici-

pants can learn more about the systems. By leaving holes in lower levels, participants may

learn that some decays become more favorable, such as β± or γ-decays. They can recognize

that different configurations are more likely to produce desired decay properties. These de-

cays are illustrated in the context of the demonstration in Fig. 6.5. A full view of all decay

modes in this demonstration are illustrated in Fig. 6.6 and found on the companion web-

site [46]. γ-decays occur in the demonstration by a nucleon falling from an elevated level onto

its original orientation, whereas a β±-decay arises from a change in orientation. Both require
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Figure 6.6: Screenshot of companion website with all decay modes higlighted for example
nuclei.
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that the nucleon remain on the nuclear tower. Conversely, (multi-)nucleon and α-emission

explicitly require the nucleons to fall completely off of the nucleus. We find these decay pro-

cesses occur within the demonstration. A final mechanism which participants can consider

is partial or total disintegration, whereby part or the entire nuclear tower collapses. This

can be related to catastrophic events which will destroy much of the original nucleus such

as photodisintegration. Typically such events will require significant energy from vibrating

the surface the tower rests on.

6.3 Conclusions

As we have demonstrated in this work, nuclear shell effects and decay properties dramatically

impact nuclear structure. This demonstration was inspired to describe both of these aspects,

similar to how GSM describes structure and reaction properties simultaneously. Using simple

rules mimicking nucleon properties such as Coulomb effects, the Pauli exclusion principle,

and fermionic pairing we can reproduce many emergent behaviors seen in atomic nuclei.

Through this hands-on activity, we aim to improve the accessibility of nuclear physics for

the general public to improve scientific literacy and serve as a new tool for community

engagement and outreach.
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