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ABSTRACT

How can we learn generative models to sample data with arbitrary logical compositions

of statistically independent attributes? The prevailing solution is to sample from distri-

butions expressed as a composition of attributes’ conditional marginal distributions under

the assumption that they are statistically independent. However, we show that standard

conditional diffusion models violate this assumption, even when all attribute compositions

are observed during training. And, this violation is significantly more severe when only a

subset of the compositions is observed. We propose CoInD to address this problem. It

explicitly enforces statistical independence between the conditional marginal distributions by

minimizing Fisher’s divergence between the joint and marginal distributions. The theoretical

advantages of CoInD are reflected in both qualitative and quantitative experiments, demon-

strating a significantly more faithful and controlled generation of samples for arbitrary logical

compositions of attributes. The benefit is more pronounced for scenarios that current solutions

relying on the assumption of conditionally independent marginals struggle with, namely,

logical compositions involving the NOT operation and when only a subset of compositions

are observed during training.

CoInD’s ability to capture the compositional nature of the world, results in faithful and

controlled generation, can be leveraged to address many downstream applications. One such

application is the task of compositional shift. Machine learning systems often struggle with

robustness under subpopulation shifts, especially when only a subset of attribute combinations

is observed during training—a severe form of subpopulation shift referred to as compositional

shift. To address this problem, we ask: Can we improve robustness of downstream classifier

by training on synthetic data that spans all possible attribute combinations? We show that,

CoInD faithfully generates synthetic data, which translates to SoTA worst-group accuracy

on compositional shift tasks on CelebA.

Our code is available at https://github.com/sachit3022/compositional-generation/ . Por-

tions of this thesis are adapted from our accepted publications (Gaudi et al., 2025a,b).

https://github.com/sachit3022/compositional-generation/
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CHAPTER 1

INTRODUCTION
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Figure 1.1: Generative Modeling of Logical Compositions. (a-c) Consider the task
of generating MNIST samples for any logical composition of digits and colors by learning
on observational data of different supports. (d) Standard diffusion models fail to generate
data with arbitrary logical compositions of attributes. We generate data from simple unseen
compositions (row 2), and more complex logical compositions (rows 3,4) through CoInD,
even under non-uniform and partial support.

Many applications of generative models, including image editing (Kim et al., 2022; Brooks

et al., 2023), desire explicit and independent control over statistically independent attributes.

For example, in face generation, one might want to control the amount of hair, smile, etc.,

independently. This challenge relates to the broader task of logical compositionality in

generative models, where the goal is to combine attributes according to logical relations.

Consider the illustrative task in Fig. 1.1 of generating realistic samples of colored handwritten

digits with explicit and independent control over the composition of color and digit. For

example, “generate an image of digit 4 while excluding the colors green and pink". This

composition can be logically expressed as “4∧¬[Green∨Pink]”, where ∧, ∨, and ¬ represent

the three primitive logical operators AND, OR, and NOT, respectively.

Existing solutions (Liu et al., 2022; Du et al., 2020; Nie et al., 2021) realize this goal

by mapping the logical expressions into a probability distribution involving the conditional

marginal distributions p(image | digit = 4), p(image | color ̸= Green), and p(image | color ̸=

Pink), and sampling from it. These marginal distributions are obtained either by learning

separate energy-based models for each compositional attribute (Du et al., 2020; Nie et al.,
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2021) or by factorizing the attributes’ learned joint distribution Liu et al. (2022). Both

approaches, however, are predicated on the critical assumption that the conditional marginal

distributions are statistically independent of each other.

Employing the approaches mentioned above, for instance Liu et al. (2022), to our

illustrative example, we observe that when the conditional diffusion model is learned on data

with non-uniform (Fig. 1.1b) or partial (Fig. 1.1c) support of the compositional attributes, the

models fail to generate realistic samples (columns 3 and 5 of row 2 in Fig. 1.1d) or generate

realistic samples with logically inaccurate compositions (columns 3 and 5 of rows 3 and 4 in

Fig. 1.1d). This is true even for simple unseen logical compositions of attributes (AND in

row 2 of Fig. 1.1d) or for complex logical compositions (rows 3 and 4 of Fig. 1.1d involving a

NOT operation). Such failure under partial support was also observed by Du et al. (2020).

Surprisingly, note that even when all compositions of the attributes are observed, the model

fails to generate realistic samples (column 1 of row 2 in Fig. 1.1d).

These observations naturally raise the following research questions that this paper seeks

to answer:

– (RQ1) Why do standard classifier-free conditional diffusion models fail to generate data with

arbitrary logical compositions of attributes? We hypothesize that violating the assumption

that the conditional marginal distributions are statistically independent of each other will

result in poor image quality, diminished control over the generated image attributes, and,

ultimately, failure to adhere to the desired logical composition. We verify and confirm our

hypothesis through a case study in Chapter 3.

– (RQ2) How can we explicitly enable conditional diffusion models to generate data with

arbitrary logical compositions of attributes? We adopt the principle of independent causal

mechanisms (Peters et al., 2017) to express the conditional data likelihood in terms of

the constituent conditional marginal distributions to ensure that the model does not learn

non-existent statistical dependencies.
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Summary of contributions.

1. In Chapter 3, we show that conditional diffusion models trained to maximize the likelihood

of the observed data do not learn independent conditional marginal distributions, even

when all compositions of the attributes are uniformly (Fig. 1.1a) observed. Furthermore,

this problem is exacerbated in more practical scenarios where we learn from non-uniform

(Fig. 1.1b) or partial (Fig. 1.1c) support of the compositional attributes. Instead, the

models learn non-existent statistical dependencies induced by unknown confounding

factors.

2. Through causal modeling, we derive a training objective, CoInD, comprising the standard

score-matching loss and a conditional independence violation loss required to enforce

the COnditional INdependence relations necessary for enabling logical compositions in

conditional Diffusion models.

3. Strong inductive biases, in the form of the conditional independence relations in CoInD,

enable arbitrary logical compositionality in conditional diffusion models with fine-grained

control over conditioned attributes and diversity for unconditioned attributes. CoInD

achieves these goals while being monolithic and is scalable with the number of attributes.
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CHAPTER 2

LOGICAL COMPOSITIONALITY IN DIFFUSION MODELS

We study the problem of generating data with attributes that satisfy a given logical relation

between them. We consider the case where the attributes are statistically independent of

each other. However, not all attribute compositions may be observed during training. To

study this problem, we first model the underlying data-generation process using a suitable

causal model that relates data and their independently varying attributes.

Notations. We use bold lowercase and uppercase characters to denote vectors (e.g., a)

and matrices (e.g., A) respectively. Random variables are denoted by uppercase Latin

characters (e.g., X). The distribution of a random variable X is denoted as p(X), or as

pθ(X) if the distribution is parameterized by a vector θ. We adopt non-standard terminology

where marginals denote the conditionals p(X | Ci) rather than integrated marginals, p(Ci)

emphasizing their functional role as modular components in our compositional framework.

Correspondingly, joint refers to p(X | C), acknowledging this deliberate departure from

probabilistic conventions due to a lack of better terminology.

Data Generation Process. The data generation process consists of observed data X (e.g.,

images) and its attribute variables C1, C2, . . . , Cn (e.g., color, digit, etc.). To have explicit

X

C1 C2 . . . Cn

XC1 XC2 XCn

(a) True underlying causal
model

X

C1 C2 . . . Cn

XC1 XC2 XCn

Unobserved Confounding

(b) Causal model during
training

Figure 2.1: (a) C1, C2, . . . , Cn vary freely and independently in the underlying causal graph.
(b) However, they become dependent during training due to unknown and unobserved
confounding factors.
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control over these attributes during generation, they should vary independently of each other.

In this work, we limit our study to only those causal graphs in which the attributes are not

causally related and can hence vary independently, as shown in Fig. 2.1a. Each Ci assumes

values from a set Ci and their Cartesian product C = C1 × · · · × Cn is referred to as the

attribute space. Each attribute Ci generates its own observed component XCi
= fCi

(Ci),

which together with unobserved exogenous variables UX form the composite observed data

X = f(XC1 , . . . ,XCi
,UX) (see Fig. 2.1a). We do not restrict f much except that it should

not obfuscate individual observed components in X (Wiedemer et al., 2024). A simple

example of f is the concatenation function. We also assume that all fCi
are invertible and

therefore it is possible to estimate C1, . . . , Cn from X. These assumptions together ensure

that C1, . . . , Cn are mutually independent given X despite being seemingly d-connected.

Problem Statement. When the training data is sampled according to the causal graph

in Fig. 2.1a, all attribute compositions are equally likely to be observed. We refer to this

scenario as uniform support (illustrated in Fig. 1.1a). However, real-world datasets often

deviate from the independence due to unobserved confounders such as sample selection

bias (Storkey, 2008), inducing an attribute shift. As shown in Fig. 2.1b, this shift modifies

the causal structure during training through unobserved confounding relationships, resulting

in non-uniform support (Fig. 1.1b) where attribute compositions exhibit unequal occurrence

probabilities. In extreme cases, this dependence could lead to the training samples consisting

of only a subset of all attribute compositions (Fig. 1.1c), i.e., Ctrain ⊂ C. We refer to this

scenario as partial support. We aim to learn conditional diffusion models under these scenarios

to generate samples with attributes that satisfy a given logical compositional relation between

them.

The attribute space in our problem statement has the following properties. (1) The

attribute space observed during training Ctrain covers C in the following sense:

Definition 1 (Support Cover). Let C = C1 × · · · × Cn be the Cartesian product of n finite

sets C1, . . . , Cn. Consider a subset Ctrain ⊂ C, where |Ctrain| = m. Let Ctrain = {(c1j, . . . , cnj) :
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cij ∈ Ci, 1 ≤ i ≤ n, 1 ≤ j ≤ m} and C̃i = {cij : 1 ≤ j ≤ m} for 1 ≤ i ≤ n. The Cartesian

product of these sets is C̃train = C̃1 × · · · × C̃n. We say Ctrain covers C iff C = C̃train.

Informally, this assumption implies that every possible value that Ci can assume is present

in the training set, and open-set attribute compositions do not fall under this definition. For

instance, in the Colored MNIST example in Fig. 1.1, we are not interested in generating a

digit with an unobserved 11th color. (2) For every ordered tuple c ∈ Ctrain, there is another

c′ ∈ Ctrain such that c and c′ differ on only one attribute. Similar assumptions were discussed

in (Wiedemer et al., 2024).

Preliminaries on Score-based Models. In this work, we train conditional score-based

models (Song et al., 2021b) using classifier-free guidance (Ho and Salimans, 2022) to generate

data corresponding to a given logical attribute composition. Score-based models learn

the score of the observed data distributions ptrain(X) and ptrain(X | C) through score

matching (Hyvärinen, 2005). Once the score of a distribution is learned, samples can be

generated using Langevin dynamics.

For logical attribute compositional generation, the given attribute composition is

decomposed in terms of two primitive logical compositions: (1) AND operation (e.g.,

C1 = c1 ∧ C2 = c2 generates data where attributes C1 and C2 takes values c1 and c2

respectively), and (2) NOT operation (e.g., C1 = ¬c1 generates data where the attribute C1

takes any value except c1). Liu et al. (2022) proposed the following modifications during

sampling to enable AND and NOT logical operations between the attributes, assuming

that the diffusion model learns the conditional independence relations from the underlying

data-generation process, i.e., p(C1, . . . , Cn|X) =
∏n

i=1 p(Ci|X).

Logical AND (∧) operation: Since pθ(C1 ∧ C2 |X) = pθ(C1 |X)pθ(C2 |X) samples are

generated for the logical composition C1 ∧ C2 by sampling from the following score:

∇X log pθ(X | C1 ∧ C2) = ∇X log pθ(X | C1) +∇X log pθ(X | C2)−∇X log pθ(X) (2.1)

Logical NOT (¬) operation: Following the approximation pθ(¬C2 |X) ∝ 1
pθ(C2|X)

, the
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score to sample data for the logical composition C1 ∧ ¬C2 can be expressed as,

∇X log pθ(X | C1 ∧ ¬C2) = ∇X log pθ(X) +∇X log pθ(X | C1)−∇X log pθ(X | C2) (2.2)

Precise Control: To achieve precise control over attribute composition, the hyperparameter

γ is used to modulate the relative intensity of attribute C2 with respect to C1. We sample

from the distribution, ∇X log pθ(X | C1∧ ↑ C2), expressed as

∇X log pθ(X | C1) + γ∇X log pθ(X | C2)− γ∇X log pθ(X) (2.3)

Logical OR (∨) operation: From the rules of Boolean algebra, C1 ∨ C2 operation can be

expressed in terms of ∧ and ¬ as ¬(¬C1 ∧ ¬C2). Following the approximation for ¬ from

above, it follows that p(¬(¬C1 ∧ ¬C2)) ≈ p(C1)p(C2).

For example, to generate colored handwritten digits with the “4∧¬[Green∨Pink]" logical

composition, the score of the logical composition can be decomposed into its constituent

logical primitive operations and further in terms of the score of marginals, which can be

obtained from the trained diffusion models. Therefore, ∇X log pθ(X | 4 ∧ ¬ [G ∨ P]) is given

by:

= ∇X log pθ(X | C1 = 4 ∧ C2 = ¬G) +∇X log pθ(X | C1 = 4 ∧ C2 = ¬P)−∇X log pθ(X)

= 2∇X log pθ(X | C1 = 4)−∇X log pθ(X | C2 = G)−∇X log pθ(X | C2 = P)

+∇X log pθ(X)

Note that the scores to sample from these primitive logical compositions involve conditional

marginal likelihood terms X | Ci. Therefore, to perform logical composition, it is critical to

accurately learn the conditional marginals of the attributes.

Evaluation We evaluate the distributions learned by the model based on their accuracy

in generating images with attributes that align with the desired compositions for a logical

relation. For example, to evaluate AND (∧) composition, consider sampling an arbitrary
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digit and color, represented as C = (4,Cyan). We generate images X̂ by sampling from

Eq. (2.1), and subsequently infer attributes, (ĉ1, ĉ2) = (ϕC1(X̂), ϕC2(X̂)). We then verify if

(ĉ1, ĉ2) ⊆ {4} × {Cyan}, and this process is averaged over all combinations in C to obtain CS.

Conformity Score (CS) To formally define CS: For a logical relation, R. This relation

is defined as a boolean function over the attribute space C, such that R : C → {0, 1}. This

induces a constrained attribute space given by R = {(c1, . . . , cn) | R(c1, . . . , cn) = 1} ⊆ C.

The CS is defined as:

CS(R, θ) := EC∼p(C)EU∼p(U) [1RC
((ϕCi

(gθ(R(C), U)))ni=1)] (2.4)

where R(C) can represent various logical operations such as ∧, ¬, and ∨ on the attribute

space C. Here, gθ(R(C), U) denotes a generative model parameterized by θ, which samples

according to the logical relations specified above. The variable U represents exogenous noise

in the diffusion model. The functions ϕCi
are attribute-specific classifiers that infer attributes

from the generated images. The term 1RC
, is an indicator function, equals 1 if the inferred

attributes (ϕCi
(gθ(R(C), U)))ni=1 ⊆ RC . Further details regarding the Conformity Score can

be found in App. D.6.
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CHAPTER 3

WHY DO CONDITIONAL DIFFUSION MODELS FAIL TO GENERATE
DATA WITH ARBITRARY LOGICAL COMPOSITIONS OF ATTRIBUTES?

To address (RQ1), we utilize the task of generating synthetic images from the Colored

MNIST dataset for any given combination of color and digit, as introduced in Chapter 1.

To study the effect of data support, we consider the three training distributions of attribute

compositions defined in Chapter 2: (1) uniform support, where every ordered pair in C has

an equal chance of being observed (Fig. 1.1a), (2) non-uniform support, where every ordered

pair in C appears but with unequal probabilities (Fig. 1.1b), and (3) partial support, where

only subset of ordered pairs, Ctrain ⊂ C are observed (Fig. 1.1c).

For each support, we train a diffusion model and evaluate the conditional joint, pθ(X | C)

and marginal, pθ(X | Ci) distributions. During inference, the images are separately sampled

from the joint distribution, ∇X log pθ(X | C), and from the product of the learned marginals

as shown in Eq. (2.1). We refer to the former method as joint sampling and the latter as

marginal sampling. To measure the accuracy of the attributes in the generated image in

accordance to the desired attributes, we use conformity score (CS) defined in Chapter 2.

Tab. 3.1 compares the joint and the marginal distributions learned by models trained under

various training scenarios. We draw the following conclusions.

Support Conformity Score JSD ↓
Joint ↑ Marginal ↑

Uniform 99.98 98.15 0.16
Non Uniform 99.98 86.10 0.30
Partial 33.14 7.40 2.75

Table 3.1: Conformity Scores and Jensen-Shannon divergence for samples generated
from joint and marginal distributions learned by models under various support settings for
the Colored MNIST dataset.

Diffusion models struggle to generate unseen attribute compositions. From the

conformity scores of images sampled from the joint distribution, we conclude that while

the models trained with uniform and non-uniform support generate images with accurate

9



attribute compositions, those trained with partial support struggle to generate images for

unseen attribute compositions. The standard training objective of diffusion models is to

maximize the likelihood of conditional generation, for every observed attribute composition,

the model accurately learns ptrain(X | C), i.e., pθ(X | C) ≈ ptrain(X | C) However, with

partial support, the model does not observe samples for every attribute composition from

ptrain(X | C). Therefore, the model does not accurately learn the density of the unobserved

support region.

Diffusion models violate underlying Conditional Independence relations.

Although the diffusion model is trained on all marginals (X | Ci), per the support cover

assumption, marginals samples performs inferior to that of sampling from the joint distribution.

This further drop in conformity score when sampled from the product of marginals ( Eq. (2.1))

for the models trained under non-uniform and partial support settings is due to the disparity

between the joint distribution and the product of marginals, which points to the violation of

independence relations from the underlying data-generation process in the learned model.

Refer to App. B.1 for a detailed proof. To further strengthen the claim, we measure this

violation as the disparity between the conditional joint distribution pθ(C | X) and the

product of conditional marginal distributions
∏n

i pθ(Ci |X) learned by the guidance term in

a model using Jensen-Shannon divergence (JSD):

JSD = EC,X∼pdata

[
DJS

(
pθ(C |X) ||

n∏
i

pθ(Ci |X)

)]
(3.1)

where DJS is the Jensen-Shannon divergence and following (Li et al., 2023) pθ is obtained by

evaluating the implicit classifier learned by the diffusion model. More details can be found in

App. D.7.

A positive JSD value suggests that the model fails to adhere to the independence

relations present in the underlying causal model. Our findings (Tab. 3.1) indicate that

as the training distribution of attribute compositions diverges from the true underlying

distribution – where attributes vary independently – the trained models increasingly violate

independence relations, as reflected by the JSD. These findings demonstrate diffusion models
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lack inherent compositional bias, instead propagate dependencies as present in their training

data.

Training objective of the diffusion models is not suitable for logical compositional-

ity. The objective of the diffusion models trained with classifier-free guidance is to maximize

the conditional likelihood of power-set of attributes. However, due to confounding induced

by the training support (Fig. 2.1b), the attributes become dependent during training, i.e.,

ptrain(C1, . . . , Cn) ̸=
∏n

i=1 ptrain(Ci). As a result, the conditional distribution of marginals does

not match its true underlying distribution. i.e pθ(X | Ci) ≈ ptrain(X | Ci) ̸= pdata(X | Ci)

Refer to App. B.1 for formal proof. Therefore, any method (Nie et al., 2021) that relies on

training on these incorrect marginals or relies on conditional independence (Liu et al., 2022)

is bound to fail. Moreover, even when realistic samples of unseen composition are successfully

generated, it is by accident rather than design.

Failure of Logical Compositionality: Standard conditional diffusion models trained

with classifier-free guidance struggle to generate data with arbitrary logical compositions

of attributes because they violate the independence relations inherent in the causal

data-generation process.

Based on these observations, we propose CoInD to train diffusion models that explicitly

enforce the conditional independence dictated by the underlying causal data-generation

process to encourage the model to learn accurate marginal distributions of the attributes.
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CHAPTER 4

ENFORCING CONDITIONALLY INDEPENDENT MARGINALS TO
ENABLE LOGICAL COMPOSITIONALITY: COIND

In this section, we propose CoInD to answer (RQ2) posed in Chapter 1: How can we explicitly

enable conditional diffusion models to generate data with arbitrary logical compositions of

attributes?

In the previous section, we observed that diffusion models do not obey the underlying causal

relations, learning incorrect attribute marginals, and hence struggling to demonstrate logical

compositionally as we showed in Fig. 1.1. To remedy this, CoInD uses a training objective

that explicitly enforces the causal factorization to ensure that the trained diffusion models obey

the underlying causal relations. From the causal graph Fig. 2.1a, along with the assumption

of C1 ⊥⊥ . . . ⊥⊥ Cn | X mentioned in Chapter 2, we have p(X | C) = p(X)
p(C)

∏n
i

p(X|Ci)p(Ci)
p(X)

.

Note that the invariant p(X | C) is now expressed as the product of marginals employed for

sampling. Therefore, training the diffusion model by maximizing this conditional likelihood

is naturally more suited for learning accurate marginals for the attributes. We minimize the

distance between the true conditional likelihood and the learned conditional likelihood as,

Lcomp =W2

(
p(X | C),

pθ(X)

pθ(C)

∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
(4.1)

where W2 is 2-Wasserstein distance. Applying the triangle inequality to Eq. (4.1) we have,

Lcomp ≤ W2 (p(X | C), pθ(X | C))︸ ︷︷ ︸
Distribution matching

+W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
︸ ︷︷ ︸

Conditional Independence

(4.2)

(Kwon et al., 2022) showed that the Wasserstein distance between p0(X), q0(X) is upper

bounded by the square root of the score-matching objective.

W2 (p0(X), q0(X)) ≤ K
√
Ep0(X) [||∇X log p0(X)−∇X log q0(X)||22]

Distribution matching: Following this result, the first term in Eq. (4.2) is upper

bounded by the standard score-matching objective of diffusion models (Song et al., 2021b),

Lscore = Ep(X,C)∥∇X log pθ(X | C)−∇X log p(X | C)∥22 (4.3)
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Conditional Independence: Similarly, the second term in Eq. (4.2) is upper bounded by

score-matching between the joint and product of marginals

LCI = E∥∇X log pθ(X | C)−∇X log pθ(X)−
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ∥22

(4.4)

Substituting Eq. (4.3), Eq. (4.4) in Eq. (4.2) will result in our final learning objective

Lcomp ≤ K1

√
Lscore +K2

√
LCI (4.5)

where K1, K2 are positive constants, i.e., the conditional independence objective LCI is

incorporated alongside the existing score-matching loss Lscore.

LCI, is the Fisher divergence between the joint and the product of marginals. From the

properties of Fisher’s divergence Sánchez-Moreno et al. (2012). LCI = 0 iff pθ(X | C) =

pθ(X)
pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X)

. Detailed derivation of the upper bound can be found in App. B.2.

Practical Implementation. A computational burden presented by LCI in Eq. (4.4) is

that the required number of model evaluations increases linearly with the number of attributes.

To mitigate this burden, we approximate the mutual conditional independence with pairwise

conditional independence (Hammond and Sun, 2006). Thus, the modified LCI becomes,

LCI = Ep(X,C)Ej,k

∥∥∥∥∥∥∥
∇X log pθ(X | Cj, Ck)−∇X log pθ(X | Cj)

−∇X log pθ(X | Ck) +∇X log pθ(X)

∥∥∥∥∥∥∥
2

2

(4.6)

The weighted sum of the square of the terms in Eq. (4.5) has shown stability. Therefore,

CoInD’s training objective:

Lfinal = Lscore + λLCI (4.7)

where λ is the hyper-parameter that controls the strength of conditional independence. The

reduction to the practical version of the upper bound (Eq. (4.5)) is discussed in extensively

in App. C. For guidance on selecting hyper-parameters in a principled manner, please refer

to App. C.3. Finally, our proposed approach can be implemented with just a few lines of

code, as outlined in Algorithm D.1.
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CHAPTER 5

EXPERIMENTS: DOES COIND IMPROVE THE LOGICAL
COMPOSITIONALITY?

CoInD encourages diffusion models to learn conditionally independent marginals of attributes,

and thereby improve their logical compositionality capabilities. In this section, we design

experiments to evaluate CoInD on two questions: (1) Does CoInD effectively train diffusion

models that obey the underlying causal model?, and (2) Does CoInD improve the logical

compositionality of these models? We measure the JSD of the trained models to answer the

first question. To answer the second question, we use two primitive logical compositional

tasks: (a) ∧ (AND) composition and (b) ¬ (NOT) composition. In each case, the generative

model is provided with a logical relation between the attributes, and the task is to generate

images with attributes that satisfy this logical relation. A more detailed description of task

construction can be found in App. D.2. Beyond improved logical compositionality, we ask:

Does learning conditionally independent marginals lead to greater diversity in uncontrolled

attributes and enhanced controllability of attributes?

Datasets. We use the following image datasets with labeled attributes for our experiments:

(1) Colored MNIST dataset described in Chapter 1, where the attributes of interest are

digit and color, (2) Shapes3d dataset (Kim and Mnih, 2018) containing images of 3D

objects in various environments where each image is labeled with six attributes of interest.

(3) CelebA with gender and smile attributes demonstrates effectiveness of CoInD on

real-world datasets. Refer to App. D.5.

Observed training distributions. We evaluate CoInD on four scenarios where we

Figure 5.1: Orthogonal partial support.
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observe different distributions of attribute compositions during training: (1) Uniform support,

(2) Non-uniform support (3) Diagonal partial support, as defined in Chapter 2. (4) Orthogonal

partial support includes only the attribute compositions along the axes originating from a

corner of the hypercube C, following (Wiedemer et al., 2024) (Fig. 5.1). For Colored MNIST

experiments, we evaluate with uniform, non-uniform, and diagonal partial support. For

Shapes3d experiments, we evaluate with uniform and orthogonal partial support, following

the compositional setup in (Schott et al., 2020). We evaluate CelebA on orthogonal partial

support, where all compositions except unseen male smiling celebrities are observed.

Baselines. LACE (Nie et al., 2021) and Composed GLIDE (Liu et al., 2022) are our

primary baselines. LACE trains distinct energy-based models (EBMs) for each attribute and

combines them following the compositional logic described in Chapter 2 during sampling.

A similar approach was proposed by (Du et al., 2020). However, in our experimental

evaluation for LACE, we train distinct score-based models instead of EBMs. In contrast,

Composed GLIDE samples from score-based models by factorizing the joint distribution into

marginals, assuming these models had implicitly learned conditionally independent marginals

of attributes. Additional details about the baselines are delegated to App. D.3.

Metrics. We assess how accurately the models have captured the underlying data generation

process using the JSD, defined in Chapter 3. To measure the accuracy of the attributes

in the generated image w.r.t. the input logical composition, we use conformity score (CS)

from Chapter 2. As a reminder, CS measures the accuracy with which the model adds the

desired attributes to the generated image using attribute-specific classifiers. In addition

to the conformity score, since the Shapes3d dataset contains unique ground truth images

corresponding to the input logical relation, we directly compare generated samples with

reference images at the pixel level using the variance-weighted coefficient of determination,

R2. Additionally, for CelebA, we measure FID (Seitzer, 2020). We evaluate uniform and

non-uniform support on the generations for the input logical relations correspond to attribute

compositions that span the attribute space C. In other cases, we evaluate models ability
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to generate input logical relations corresponding to the unseen compositional support, i.e.,

C \ Ctrain.

☞ Learning Independent Marginals Enables Logical Compositionality

Support Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑

Uniform

LACE - 96.40 92.56 83.67
Composed GLIDE 0.16 98.15 99.30 81.64
CoInD (λ = 0.2) 0.14 99.73 99.32 84.94
CoInD (λ = 1.0) 0.10 99.99 99.33 89.60

Non-uniform
LACE - 82.61 65.16 69.51
Composed GLIDE 0.30 86.10 81.61 70.44
CoInD (λ = 1.0) 0.15 99.95 92.41 84.98

Partial
LACE - 10.85 9.03 28.24
Composed GLIDE 2.75 7.40 5.09 33.86
CoInD (λ = 1.0) 1.17 52.38 53.28 52.59

(a) Results on Colored MNIST Dataset
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(b) JSD vs CS

Figure 5.2: Results on Colored MNIST dataset. (a) We compare JSD and CS of
CoInD against baselines trained under various settings and on different compositional tasks.
(b) Plotting CS against JSD in the log scale of the models trained under different settings
reveals a negative correlation.

Fig. 5.2a compares CoInD with baselines on ∧ and ¬ composition tasks. The “¬ Color”

task generates images with the negation applied on color attribute, while“¬ Digit” applies

the negation to the digit attribute. From these results, we make the following observations:

Conditional diffusion models do not learn accurate marginals even when all

attribute compositions are observed during training with equal probability. This

is evident from the positive JSD of the methods trained with uniform support. Furthermore,

the conformity score (CS) is lower when JSD is higher. This observation has significant

ramifications for compositional generative models.

This result contradicts the intuitive expectation that uniformly observing the whole com-

positional support during training is sufficient to generate arbitrary logical compositions of

attributes. And, it suggests that even in this ideal yet impractical case, the current objectives

for training diffusion models are insufficient for controllable and accurate closed-set, let

alone open-set, compositional generation. As such, we conjecture that scaling the datasets

without inductive biases (conditional independence of marginals in this case) is insufficient
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for arbitrary logical compositional generation.

Even methods like LACE that train separate models for each attribute fail on ¬ composition

tasks. This suggests that softer inductive biases, such as learning separate marginals for

each attribute without paying heed to the desired independence relations, are insufficient for

logical compositionality.

In the more practical scenarios of non-uniform and partial support, JSD increases with

non-uniform support and worsens further with partial support due to incorrect marginals as

discussed in Chapter 3. This result suggests that current state-of-the-art models learned on

finite datasets likely operate in the non-uniform or partial support scenario and thus may fail

to generate accurate and realistic data for arbitrary logical compositions of attributes.

Logical AND (∧) and NOT (¬) compositionality deteriorates with increasing dependence

between the marginals. The negative correlation between JSD and CS was noted in Chapter 3

and can be observed in Fig. 5.2b, which shows JSD-vs-CS for ∧ compositions across different

methods, and under different settings for observed support. This negative correlation strongly

suggests that violation of conditional independence plays a major role in the diminished

logical compositionality demonstrated by standard diffusion models.

By enforcing conditional independence between the attributes during training, CoInD

achieves lower JSD and improves both ∧ and ¬ compositionality in non-uniform and partial

support. Even when trained on non-uniform support, CoInD matches compositionality with

the uniform support in terms of compositional score. Under partial support setting, CoInD

achieves ≈ 2− 10× fold improvement over the baselines on ∧ and ¬ compositions. These

results demonstrate that enforcing conditional independence between the marginals

is vital for enabling arbitrary logical compositions in conditional diffusion models.

☞ CoInD generates diverse samples. It is desirable that any attribute not part of

the logical composition for generation assumes diverse values in the generated samples to

avoid harmful generated content—including stereotypes (Dehdashtian et al., 2025) and biases

(Luccioni et al., 2024). In Fig. 5.3, we observe that although CoInD does not explicitly
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(a) LACE; H = 1.82 (b) Composed GLIDE; H = 1.71 (c) CoInD; H = 2.63

Figure 5.3: Images generated by CoInD for the logical composition digit = 4 under
non-uniform scenario are significantly diverse compared to the baselines. H is the Shannon
entropy.

optimize for diversity, the samples generated by CoInD for the logical relation digit = 4

are significantly more diverse compared to the baselines. We quantitatively measure the

diversity of these images using the Shannon entropy H of the color attributes in the generated

images. Higher Shannon entropy indicates more diversity. Entropy is maximum for a uniform

distribution with H(uniform) = log2(10) = 3.32, since there are 10 colors. We observe

that H(CoInD) = 2.63, while H(LACE) = 1.82, H(Composed GLIDE) = 1.71. Although

CoInD does not explicitly seek diversity, breaking the dependence induced by unknown

confounders exhibits diversity in attributes.

Support Method JSD ↓ ∧ Composition ¬ Composition

R2 ↑ CS ↑ R2↑ CS↑

Uniform
LACE - 0.97 91.19 0.85 50.00
Composed GLIDE 0.302 0.94 83.75 0.91 48.43
CoInD (λ = 1.0) 0.215 0.98 95.31 0.92 55.46

Orthogonal
LACE - 0.88 62.07 0.70 30.10
Composed GLIDE 0.503 0.86 51.56 0.61 34.63
CoInD (λ = 1.0) 0.287 0.97 91.10 0.92 53.90

(a) Quantitative Results on Shapes3D Dataset

Expected
Composed

GLIDE LACECOIND

Uniform
∧ comp.

Partial
∧ comp.

Partial
¬ comp.

(b) Visual comparison of samples

Figure 5.4: Results on Shapes3d dataset. (a) We compare JSD, R2, and CS of CoInD
against the baselines trained with uniform and partial support on the Shapes3d dataset for ∧
and ¬ composition tasks. (b) Samples generated by CoInD match the expected image in all
cases.

☞ CoInD is scalable with attributes. We use the Shapes3d dataset to evaluate the

scalability of CoInD w.r.t. the number of attributes. As a reminder, every image in the

Shapes3d dataset is labeled with six attributes of interest. For the negation composition

task, the ¬ operator is applied to the shape attribute such that the attribute composition

satisfying this logical relation is unique. Detailed descriptions of the composition tasks are
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Method JSD ↓ “smiling male" “smiling"∧“male"

CS ↑ FID ↓ CS ↑ FID ↓
LACE - - - 24.20 80.40
Composed GLIDE 2.44 2.51 61.21 10.55 95.41
CoInD (λ = 100) 1.82 8.63 43.97 8.79 43.76

Table 5.1: Results on CelebA dataset. CoInD outperforms the baselines on both CS
and FID across various compositionality tasks.

provided in App. D.2.

Fig. 5.4a compares CoInD against the baselines for the uniform and orthogonal partial

support scenarios. CoInD leads to a significant decrease in JSD and, consequently, a

significant increase in the composition score. When trained with orthogonal support, the

performance (CS) of both LACE and Composed GLIDE suffers significantly while CoInD

matches its performance when trained on uniform support. In conclusion, CoInD affords

superior logical compositionality from a single monolithic model in a sample-efficient manner

even as the number of attributes increases.

☞ CoInD generates unseen compositions of real-world face images

We evaluate ability of CoInD to generate unseen “smiling male celebrities". Diffusion

model is trained on all compositions of the CelebA dataset (Liu et al., 2015) except gender =

“male” and smiling = “true”. This is equivalent to the orthogonal support scenario shown in

Fig. 5.1. During inference, the model is asked to generate images with the unseen attribute

combination gender = “male” and smiling = “true” through both joint sampling and ∧

composition.

Tab. 5.1 compares CoInD against baselines in terms of CS and FID. (1) CoInD

outperforms the baseline by > 4× in joint. (2) CoInD generates realistic faces, closer

to smiling male celebrities in the held out set, as measured by FID and displayed in

Fig. 5.5c(γ = 1). In App. E.3, we show that CoInD extends to Text-to-Image models

by fine-tuning Stable Diffusion (Rombach et al., 2022).

☞ CoInD provides fine-grained control over attributes. In addition to merely
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(c) Samples with γ

Figure 5.5: Effect of γ on FID and CS: Varying the amount of smile in a generated image
through γ does not affect the FID of CoInD. However, the smiles in the generated images
become more apparent, leading to easier detection by the smile classifier and improved CS.

generating samples with conditioned attributes, CoInD can also control the amount of

attributes in the sample. For example, in the task of generating face images of smiling male

celebrities, we may wish to adjust the amount of smiling without affecting gender-specific

attributes. To achieve this, we sample from Eq. (2.3), where γ controls the strength of

smile. Fig. 5.5 shows the result of increasing γ to increase the amount of smiling in the

generated image. The subjects in the face images generated by CoInD smile more as γ

increases without any changes to any gender-specific attribute. For instance, the images for

γ = 1 show a soft smile while the subjects in the images for γ = 6 show teeth. However,

those generated by baselines contain gender-specific attributes such as long hair and earrings.

These distinctions are quantified in Figs. 5.5a and 5.5b. Refer to App. E.2 for more analysis.
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CHAPTER 6

APPLICATION: COMPOSITIONAL RISK MINIMIZATION
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Figure 6.1: Training data comprises of all combinations except female blonds. Classifier
trained to predict blond relies on information of gender due to their association in training
data. Standard diffusion model trained on this data also learns this association leading
to incorrect distribution, resulting in unfaithful generation of unseen combinations (female
blondes). Consequently, synthetic data from this model fails to improve downstream classifier
performance. In contrast, CoInD leverages compositional world knowledge to learn the true
distribution, facilitating accurate generation of unseen combinations. This leads to a robust
classifier when trained on synthetic data from CoInD.

Consider CelebA Liu et al. (2015) dataset with 40 binary attributes would require over

1 trillion samples to span all combinations. Collecting such massive data for all attribute

combinations is infeasible; Machine learning systems trained on subset of combinations will

suffer from the problem of compositional shift (Mahajan et al., 2024). Consider a simplified

base case of compositional shift, where female blonds are not observed during training but all

the other combinations of gender, blond are observed as depicted in Fig. 6.1.

Humans can easily synthesize and compose attributes such as blond and gender, and
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therefore able to imagine female blonds from just observing male blonds, female non-blonds,

and male non-blonds (Baroni and Lake, 2023). In this work, we want to learn generative

models that have the capability to imagine. This imagination can be distilled to generate

synthetic samples spanning all combinations. The success of the task depends on the models

ability to faithfully generate unseen compositions. Standard diffusion models Ho et al.

(2020a) are trained with an optimization designed to maximize likelihood, which results in

memorization of training data rather than true generalization (Kamb and Ganguli, 2024).

Diffusion models either fail to respect the gender, or learn incorrect interpolations between

blond and gender attributes. The samples in Fig. 6.1(red box) reveal these limitations.

The difference between humans and diffusion models is that we understand the

compositional nature of the world, allowing us to create complex composites from a set of

primitive components Nye et al. (2020). However, diffusion models learn the associations from

the data. In fact, we verify that diffusion models trained on limited data violate conditional

independence, which is an important assumption in compositionality Nie et al. (2021); Liu

et al. (2021). We point out that this violation stems from the incorrect objective of diffusion

models under limited data. Therefore, we propose CoInD to incorporate compositional

world knowledge into diffusion model training by minimizing the fisher’s divergence between

conditional joint and product of conditional marginals, in addition to maximizing likelihood

on the observed compositions.

CoInD exhibits compositionality, effectively learning the true underlying data distribution.

This results in the faithful generation of previously unseen attribute combinations, as clearly

illustrated in the Fig. 6.1(green box). Notably, classifiers trained on this higher-quality

synthetic data exhibit enhanced robustness and generalization capabilities, compared to

standard diffusion models. These classifiers achieve SoTA results, significantly outperforming

established baselines in subpopulation shift literature. Moreover, CoInD offers a remarkably

simple implementation, requiring only a few additional lines of code to standard diffusion

model training.
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Method JSD ↓ FID ↓ CS↑
Diffusion 0.62 41.80 64.77
CoInD 0.16 21.64 81.05

Table 6.1: JSD, CS, FID for CelebA dataset.

Experimental Setup We perform experiments on the CelebA dataset, downsampled to

64 × 64. pixels. As a remainder, diffusion model was trained on all compositions except

for “blonde females” We followed similar settings for both the standard diffusion model and

CoInD(λ = 100). For detailed experimental settings, please refer to Appendix Section App. D
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Figure 6.2: CoInD enables precise control (Eq. (2.3)) over blondness, while preserving gender
attributes (left). Standard diffusion models exhibit gender bias by conflating blondness with
specific genders due to training data correlations (right).

Compositionality leads to high utility data Our analysis, as shown in Tab. 6.1,

demonstrates that CoInD significantly reduces violations of conditional independence,

resulting in more faithful data generation. Fig. 6.1(highlighted in green) illustrates this

improvement, showcasing CoInD’s ability to accurately synthesize previously unseen “blonde

females" compositions. CoInD adapts hairstyles from female celebrities and blends blonde

shades from male counterparts, producing photorealistic blonde female figures - despite not

being explicitly trained on these examples.
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Data Method Test Acc. Balanced Acc. Worst group Acc.

Real

ERM 87.0 59.3 4.0
G-DRO (Sagawa et al., 2019) 91.7 86.3 71.7
LC (Liu et al., 2023) 88.3 70.7 21.0
sLA (Tsirigotis et al., 2024) 88.3 71.0 21.3
CRM (Mahajan et al., 2024) 93.0 85.7 73.3

Synthetic Diffusion 90.9 80.4 64.0
CoInD 80.6 80.3 76.9

Table 6.2: Classifier trained with synthetic data generated from CoInD achieves
better Worst group Acc. for classifying attribute “blond” attribute of CelebA dataset.

Synthetic Data Sampled from CoInD Yields Robust Classifier Building on the

demonstrated capability of CoInD to generate high-utility synthetic data, this section

addresses the following question: Can leveraging this data enhance classifier robustness

against compositional shifts?

Setup We generate 20,000 samples of synthetic data from the trained diffusion model

by uniformly sampling (Eq. (2.3)) all possible compositions, including “blonde females." We

then train a ResNet-18 classifier on this synthetic data to predict the “blonde" attribute.

To evaluate performance, we measure the test accuracy, balanced test accuracy, and Worst

Group Accuracy (WGA) on the downsampled (64× 64) test set. We compare these results

to the baselines borrowed from (Mahajan et al., 2024).

Discussion CoInD exhibits ≈ 5% higher WGA compared to the baselines(Tab. 6.2),

which makes it robust to compositional shift. However, there is a slight drop in overall test

accuracy. This decrease can be attributed to a trade-off between fidelity (or reconstruction

loss) and conditional independence.
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CHAPTER 7

RELATED WORK

Compositionality in generative models Our work concerns compositional

generalization in generative models, where the goal is to generate data with unseen attribute

compositions expressed through logical relations between attributes. One class of approaches

achieves logical compositionality by combining distinct models trained for each attribute (Du

et al., 2020; Liu et al., 2021; Nie et al., 2021; Du et al., 2023). In contrast, we are interested in

monolithic diffusion models that learn logical compositionality. Besides being expensive and

scaling linearly with the number of attributes, these models fail under practical partial support

scenarios. Liu et al. (2022) studied logical compositionality broadly without differentiating

between attribute supports and proposed methods to represent logical compositions in

terms of marginal probabilities obtained through factorization of the joint distribution.

However, these factorized sampling methods fail since the underlying generative model learns

inaccurate marginals. In comparison, CoInD is trained to obey the independence relations

from the underlying causal graph. Also, (Cho et al., 2024) note that diffusion models lack the

conditional independence needed for controllability and address this with a hyperparameter

during sampling. We argue that, even with disentangled features, learning accurate marginals

tackles the root cause more effectively than such post-hoc adjustments. Encouragingly, Okawa

et al. (2023) shows that compositional abilities emerge multiplicatively, and Liang et al. (2024)

highlights factorization in diffusion models, suggesting they naturally exhibit compositional

capabilities. However, these studies focus on generating from the joint distribution—a special

case of logical compositionality—and are limited to binary attributes. Our work extends these

ideas to more general compositions. Lastly, (Wiedemer et al., 2024) studies compositional

generalization for supervised learning and provides sufficient conditions for compositionality.

Our empirical observations in generative models are consistent with their theoretical results,

suggesting that their findings could perhaps be extended to conditional diffusion models.

Subpopulation shift is a long studied topic. Group DRO (Sagawa et al., 2019), a
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competitive baseline method, minimizes worst-group error as a proxy for generalization.

In contrast, CoInD, enforces independence between spurious and target features in data

generation—a constraint that defines spurious correlation. Compositional Risk Minimization

(CRM) (Mahajan et al., 2024) is closely related to our work. While CRM enforces

compositional constraints on the classifier’s output, CoInD applies these constraints in

the data-generating space, where they originate. Our experimental evaluation directly

borrows baseline results from Mahajan et al. (2024).

Synthetic data for improving downstream models has been discouraged due to

the negative evidence from the modal collapse Alemohammad et al. (2024). This can be

explained because maximum likelihood objective encourages memorization Kamb and Ganguli

(2024). Consequently, no new information is provided for classifiers to improve performance.

While recent studies (Azizi et al., 2023; Tian et al., 2024; Chen et al., 2024) demonstrated

performance improvements using pre-trained generative models for classification. Critically,

these approaches often suffer from potential test information leakage, whereas our method

achieves robust classifier performance without external information.
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CHAPTER 8

CONCLUSION

Conditional diffusion models struggle to generate data for arbitrary attribute compositions,

even when all attribute compositions are observed during training. Existing methods represent

logical relations in terms of the learned marginal distributions, assuming that the diffusion

model learns the underlying conditional independence relations. We showed that this

assumption does not hold in practice and worsens when only a subset of these attribute

compositions are observed during training. To mitigate this problem, we proposed CoInD to

train diffusion models by maximizing conditional data likelihood in terms of the marginal

distributions that are obtained from the underlying causal graph. Our causal modeling

provides CoInD a natural advantage in logical compositionality by ensuring it learns accurate

marginals. Our experiments on synthetic and real image datasets highlight the theoretical

benefits of CoInD. Unlike existing methods, CoInD is monolithic, easy to implement,

and demonstrates superior logical compositionality. CoInD shows that adequate inductive

biases such as conditional independence between marginals are necessary for effective logical

compositionality. For a more comprehensive discussion and analysis of CoInD, including

2D Gaussian experiments App. F.2, extension to flow-based models App. F.3, and its

limitations App. F.5, readers are directed to the relevant appendix sections.

We leverage CoInD, a novel synthetic data generation algorithm, which enhances

compositional capabilities and allows for enforcing constraints in the data generation process.

This approach leads to improved synthetic data quality and enables fine-grained control over

the generation process. The capabilities of CoInD naturally translate to enhanced robustness

of downstream classifiers trained on synthetic data from CoInD against compositional shift.
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APPENDIX A

PRELIMINARIES OF SCORE-BASED MODELS

Score-based models Score-based models (Song et al., 2021b) learn the score of the

observed data distribution, ptrain(X) through score matching (Hyvärinen, 2005). The score

function sθ(x) = ∇x log pθ(x) is learned by a neural network parameterized by θ.

Lscore = Ex∼ptrain

[
∥sθ(x)−∇x log ptrain(x)∥22

]
(A.1)

During inference, sampling is performed using Langevin dynamics:

xt = xt−1 +
η

2
∇x log pθ(xt−1) +

√
ηϵt, ϵt ∼ N (0, 1) (A.2)

where η > 0 is the step size. As η → 0 and T →∞, the samples xt converge to pθ(X) under

certain regularity conditions (Welling and Teh, 2011).

Diffusion models Song and Ermon proposed a scalable variant that involves adding noise

to the data. Ho et al. has shown its equivalence to Diffusion models. Diffusion models

are trained by adding noise to the image x according to a noise schedule, and then neural

network, ϵθ is used to predict the noise from the noisy image, xt. The training objective of

the diffusion models is given by:

Lscore = Ex∼ptrainEt∼[0,T ] ∥ϵ− ϵθ (xt, t)∥2 (A.3)

Here, the perturbed data xt is expressed as: xt =
√
ᾱtx+

√
1− ᾱtϵ where ᾱt =

∏T
i=1 αi, for

a pre-specified noise schedule αt. The score can be obtained using,

sθ(xt, t) ≈ −
ϵθ(xt, t)√
1− ᾱt

(A.4)

Langevin dynamics can be used to sample from the sθ(xt, t) to generate samples from p(X).

The conditional score (Dhariwal and Nichol, 2021) is used to obtain samples from the

conditional distribution pθ(X | C) as:

∇Xt log p(Xt | C) = ∇Xt log pθ(Xt)︸ ︷︷ ︸
Unconditional score

+γ∇Xt log pθ(C |Xt)︸ ︷︷ ︸
noisy classifier
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where γ is the classifier strength. Instead of training a separate noisy classifier, Ho

and Salimans have extended to conditional generation by training ∇Xt log pθ(Xt | C) =

sθ(Xt, t, C). The sampling can be performed using the following equation:

∇Xt log p(Xt | C) = (1− γ)∇Xt log pθ(Xt) + γ∇Xt log pθ(Xt | C) (A.5)

However, the sampling needs access to unconditional scores as well. Instead of modelling

∇Xt log pθ(Xt), ∇Xt log pθ(Xt|C) as two different models Ho and Salimans have amortize

training a separate classifier training a conditional model sθ(xt, t, c) jointly with unconditional

model trained by setting c = ∅.

In the general case of classifier-free guidance, a single model can be effectively trained to

accommodate all subsets of attribute distributions. During the training phase, each attribute

ci is randomly set to ∅ with a probability puncond. This approach ensures that the model learns

to match all possible subsets of attribute distributions. Essentially, through this formulation,

we use the same network to model all the possible subsets of conditional probability.

Once trained, the model can generate samples conditioned on specific attributes, such

as ci and cj, by setting all other conditions to ∅. The conditional score is then computed

as, ∇Xt log pθ(Xt|ci, cj) = xt, c
i,j), where ci,j represents the condition vector with all values

other than i and j set to ∅. This method allows for flexible and efficient sampling across

various attribute combinations.

Estimating Guidance Once the diffusion model is trained, we investigate the implicit

classifier, pθ(C|X), learned by the model. This will give us insights into the learning process

of the diffusion models. (Li et al., 2023) have shown a way to calculate pθ(Ci = ci |X = x),

borrowing equation (5), (6) from (Li et al., 2023).

pθ(Ci = ci | x) =
p(ci) pθ(x | ci)∑
k p(ck) pθ(x | ck)

pθ(Ci = ci | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, c

i)∥2]}
ECi

[exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, ci)∥2]}]
(A.6)
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Likewise, we can extend it to joint distribution by

pθ(Ci = ci, Cj = cj | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, c

i,j)∥2]}
ECi,Cj

[exp{−Et,ϵ[∥ϵ− ϵθ(xt, t, ci,j)∥2]}]
(A.7)

Practical Implementation The authors Li et al.. have showed many axproximations to

compute Et,ϵ. However, we use a different approximation inspired by Kynkäänniemi et al.

(2024), where we sample 5 time-steps between [300,600] instead of these time-steps spread

over the [0, T].
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APPENDIX B

PROOFS FOR CLAIMS

In this section, we detail the mathematical derivations for case study from Chapter 3 in

App. B.1, relate the origin of the conditional independence violation to the unsuitable loss

function of vanilla diffusion models in App. B.1, and then derive the final loss function of

CoInD in App. B.2.

B.1 Proof for the case study in Chapter 3

In this section, we prove that failure of compositionality in diffusion models is due to the

violation of conditional independence.

Following conditional independence relation:

p(C | X) =
∏
i

p(Ci | X) (CI relation)

This CI relation is used by several works (Liu et al., 2022; Nie et al., 2021), including ours, to

derive the expression for the joint distribution p(X | C) in terms of the marginals p(X | Ci)

for logical compositionality. As a reminder, logical compositionality is preferred over simple

conditional generation as it (1) provides fine-grained control over the attributes, (2) facilitates

NOT relations on attributes, and (3) is more interpretable. The joint likelihood is written in

terms of the marginals using the CI relation and the causal factorization as,

p(X | C) =
p(X)

p(C)

∏
i

(
p(X | Ci)p(Ci)

p(X)

)
(JM relation)

Note that CI relation is crucial for JM relation to hold. We sample from joint likelihood using

the score of LHS of JM relation, referred to as joint sampling in Chapter 3. Similarly, we

sample using the score of RHS of JM relation, referred to as marginal sampling in Chapter 3.

If the learned generative model satisfies the JM relation, then there should not be any

difference in the CS between joint sampling and marginal sampling. However, in Tab. 3.1, we

see a drop in CS, implying JM relation is not satisfied in the learned model.

JM relation must hold in the learned generative model if CI relation is true in the learned

generative model. Therefore, we check if the CI relation holds in the generative model by
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measuring JSD between LHS and RHS of CI relation as shown in Eq. (3.1) in the main paper.

The results Tab. 3.1 confirm that the CI relation does not hold in the learned model. This is

a significant finding since existing works (Liu et al., 2022; Nie et al., 2021) blindly trust the

model to satisfy CI relation, leading to severe performance drop when the training support is

non-uniform or partial.

The CI relation is violated in the learned model because the standard training objective

is not suitable for compositionality, as it does not account for the incorrect ptrain(X | Ci).

The proof is detailed in the next section App. B.1. Therefore, we proposed CoInD to ensure

the JM relation was satisfied by explicitly learning the marginal likelihood according to the

causal factorization.

sectionStandard diffusion model objective is not suitable for logical compositionality

This section proves that the violation in conditional independence in diffusion models is

due to learning incorrect marginals, ptrain(X | Ci) under Ci ⊥̸⊥ Cj. We leverage the causal

invariance property: ptrain(X | C) = ptrue(X | C), where ptrain is the training distribution

and ptrue is the true underlying distribution.

Consider the training objective of the score-based models in classifier free

formulation Eq. (A.1). For the classifier-free guidance, a single model sθ(x, C) is effectively

trained to match the score of all subsets of attribute distributions. Therefore, the effective

formulation for classifier-free guidance can be written as,

Lscore = Ex∼ptrainES

[
∥∇x log pθ(x | cS)−∇x log ptrain(x | cS)∥22

]
(B.1)

where S is the power set of attributes.

From the properties of Fisher divergence, Lscore = 0 iff pθ(X | cS) = ptrain(X | cS), ∀S.
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In the case of marginals, pθ(X | Ci) i.e. S = {Ci} for some 1 ≤ i ≤ n,

pθ(X | Ci) = ptrain(X | Ci)

=
∑
C−i

ptrain(X | Ci, C−i)ptrain(C−i | Ci)

=
∑
C−i

ptrue(X | Ci, C−i)ptrain(C−i | Ci)

̸=
∑
C−i

ptrue(X | Ci, C−i)ptrue(C−i) = ptrue(X | Ci)

=⇒ pθ(X | Ci) ̸= ptrue(X | Ci) (B.2)

Where C−i =
∏n

j=1
j ̸=i

Cj, which is every attribute except Ci. Therefore, the objective of the

score-based models is to maximize the likelihood of the marginals of training data and not the

true marginal distribution, which is different from the training distribution when Ci ⊥̸⊥ Cj.

B.2 Step-by-step derivation of CoInD in Chapter 4

The objective is to train the model by explicitly modeling the joint likelihood following

the causal factorization from Eq. (JM relation). The minimization for this objective can be

written as,

Lcomp =W2

(
p(X | C),

pθ(X)

pθ(C)

∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
(B.3)

where W2 is 2-Wasserstein distance. Applying the triangle inequality to Eq. (B.3) we have,

Lcomp ≤ W2 (p(X | C), pθ(X | C))︸ ︷︷ ︸
Distribution matching

+W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)
︸ ︷︷ ︸

Conditional Independence

(B.4)

(Kwon et al., 2022) showed that under some conditions, the Wasserstein distance between

p0(X), q0(X) is upper bounded by the square root of the score-matching objective. Rewriting

Equation 16 from (Kwon et al., 2022)

W2 (p0(X), q0(X)) ≤ K
√
Ep0(X) [||∇X log p0(X)−∇X log q0(X)||22] (B.5)
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Distribution matching Following Eq. (B.5) result, the first term in Eq. (B.4), replacing

p0 as p and q0 as pθ will result in

W2 (p(X | C), pθ(X | C)) ≤ K1

√
Ep0(X) [||∇X log p(X | C)−∇X log pθ(X)||22]

= K1

√
Lscore (B.6)

Conditional Independence Following Eq. (B.5) result, the second term in Eq. (B.4),

replacing p0 as pθ and q0(X) as pθ(X)
pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X)

W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)

≤

√√√√E∥∇X log pθ(X | C)−∇X log
pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)
∥22

Further simplifying and incorporating ∇X log pθ(Ci) = 0 and ∇X log pθ(C) = 0 will result in

W2

(
pθ(X | C),

pθ(X)

pθ(C)

n∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)

)

≤ K2

√√√√√E∥∇X log pθ(X | C)−∇X log pθ(X)−
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] ∥22︸ ︷︷ ︸
LCI

= K2

√
LCI (B.7)

Substituting Eq. (B.6), Eq. (B.7) in Eq. (B.4) will result in our final learning objective

Lcomp ≤ K1

√
Lscore +K2

√
LCI (B.8)

where K1, K2 are positive constants, i.e., the conditional independence objective LCI is

incorporated alongside the existing score-matching loss Lscore.

Note that Eq. (B.7) is the Fisher divergence between the joint pθ(X | C) and the causal

factorization pθ(X)
pθ(C)

∏
i
pθ(X|Ci)pθ(Ci)

pθ(X)
from Eq. (JM relation). From the properties of Fisher

divergence (Sánchez-Moreno et al., 2012), LCI = 0 iff pθ(X | C) = pθ(X)
pθ(C)

∏n
i

pθ(X|Ci)pθ(Ci)
pθ(X)

and

further implying,
∏

i pθ(Ci |X) = ptrain(C |X)
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When Lcomp = 0: Pθ(X | C) = Ptrain(X | C) = P (X | C), and
∏

i pθ(Ci |X) = ptrain(C |

X). This implies that the learned marginals obey the causal independence relations from the

data-generation process, leading to more accurate marginals.
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APPENDIX C

PRACTICAL CONSIDERATIONS

To facilitate scalability and numerical stability for optimization, we introduce two

approximations to the upper bound of our objective function Eq. (4.5).

C.1 Scalability of LCI

A key computational challenge posed by Eq. (4.4) is that the number of model evaluations

grows linearly with the number of attributes. The Eq. (4.4) is derived from conditional

independence formulation as follows:

pθ(C | X) =
∏
i

pθ(Ci | X). (C.1)

By applying Bayes’ theorem to all terms, we obtain,

pθ(X | C)pθ(C)

pθ(X)
=
∏
i

pθ(X | Ci)pθ(Ci)

pθ(X)
(C.2)

Note that this formulation is equal to the causal factorization. From this, by applying

logarithm and differentiating w.r.t. X, we derive the score formulation.

∇X log pθ(X | C) = ∇X log
∑
i

pθ(X | Ci)−∇X log pθ(X) (C.3)

The L2 norm of the difference between LHS and RHS of the objective in Eq. (C.3) is given

by, which forms our LCI objective.

LCI = ∥∇X log pθ(X | C)−
(
∇X log

∑
i

pθ(X | Ci)−∇X log pθ(X)

)
∥22 (C.4)

Due to the
∑

i, in the equation, the number of model evaluations grows linearly with the

number of attributes (n). This O(n) computational complexity hinders the approach’s

applicability at scale. To address this, we leverage the results of (Hammond and Sun, 2006),

which shows conditional independence is equivalent to pairwise independence under large n

to reduce the complexity to O(1) in expectation. This allows for a significant improvement in

scalability while maintaining computational efficiency. Using this result, we modify Eq. (C.1)

to:

pθ(Ci, Cj | X) = pθ(Ci | X)pθ(Cj | X). ∀i, j
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Accordingly, we can simplify the loss function for conditional independence as follows:

LCI = Ep(X,C)Ej,k∥∇X [log pθ(X|Cj, Ck)− log pθ(X|Cj)− log pθ(X|Ck) + log pθ(X)]∥22.

(C.5)

In score-based models, which are typically neural networks, the final objective is given as:

LCI = Ep(X,C)Ej,k∥sθ(X, Cj, Ck)− sθ(X, Cj)− sθ(X, Ck) + sθ(X,∅)∥22 (C.6)

where sθ(·) := ∇X log pθ(·) is the score of the distribution modeled by the neural network.

We leverage classifier-free guidance to train the conditional score sθ(X, Ci) by setting Ck = ∅

for all k ̸= i, and likewise for sθ(X, Ci, Cj), we set Ck = ∅ for all k ̸∈ {i, j}.

C.2 Simplification of Theoretical Loss

In Eq. (4.5), we showed that the 2-Wassertein distance between the true joint distribution

p(X | C) and the causal factorization in terms of the marginals p(X | Ci) is upper bounded

by the weighted sum of the square roots of Lscore and LCI as Lcomp ≤ K1

√Lscore +K2

√LCI.

In practice, however, we minimized a simple weighted sum of Lscore and LCI, given by

Lfinal = Lscore + λLCI as shown in Eq. (4.7) instead of Eq. (4.5). We used Eq. (4.7) to avoid

the instability caused by larger gradient magnitudes (due to the square root). Eq. (4.7)

also provided the following practical advantages: (1) the simplicity of the loss function

that made hyperparameter tuning easier, and (2) the similarity of Eq. (4.7) to the loss

functions of pre-trained diffusion models allowing us to reuse existing hyperparameter settings

from these models. We did not observe any significant difference in conclusion between the

models trained on Eq. (4.5) and Eq. (4.7) as shown in Tabs. C.1 and C.2. Both approaches

significantly outperformed the baselines.

C.3 Choice of Hyperparameter λ

Effect of λ on the Learned Conditional Independence.

CoInD enforces conditional independence between the marginals of the attributes learned

by the model by minimizing LCI defined in Eq. (C.6). Here, we investigate the effect of LCI

on the effectiveness of logical compositionality by varying its strength through λ in Eq. (4.7).
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Support Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑
LACE - 96.40 92.56 83.67
Composed GLIDE 0.16 98.15 99.30 81.64

Uniform Theoretical CoInD Eq. (4.5) 0.12 98.44 100.00 81.25
CoInD (λ = 0.2) 0.14 99.73 99.32 84.94
CoInD (λ = 1.0) 0.10 99.99 99.33 89.60

LACE - 82.61 65.16 69.51
Composed GLIDE 0.30 86.10 81.61 70.44

Non-uniform Theoretical CoInD Eq. (4.5) 0.17 96.88 93.75 72.66
CoInD (λ = 1.0) 0.15 99.95 92.41 84.98

LACE - 10.85 9.03 28.24
Composed GLIDE 2.75 7.40 5.09 33.86

Partial Theoretical CoInD Eq. (4.5) 1.11 23.44 64.84 53.12
CoInD (λ = 1.0) 1.17 52.38 53.28 52.59

Table C.1: Results on Colored MNIST to directly minimize the upper bound (K1 = 1, K2 =
0.1).

Support Method JSD ↓ ∧ Composition ¬ Composition

R2 ↑ CS ↑ R2↑ CS↑
LACE - 0.97 91.19 0.85 50.00
Composed GLIDE 0.302 0.94 83.75 0.91 48.43

Uniform Theoretical CoInD Eq. (4.5) 0.270 0.98 92.19 0.92 64.06
CoInD (λ = 1.0) 0.215 0.98 95.31 0.92 55.46

LACE - 0.88 62.07 0.70 30.10
Composed GLIDE 0.503 0.86 51.56 0.61 34.63

Partial Theoretical CoInD Eq. (4.5) 0.450 0.93 78.13 0.88 51.56
CoInD (λ = 1.0) 0.287 0.97 91.10 0.92 53.90

Table C.2: Results on Shapes3D with the objective of directly minimizing the upper
bound Eq. (4.5) (K1 = 1, K2 = 0.1.)

Figure C.1 plots JSD and CS (∧) as functions of λ for models trained on the Colored MNIST

dataset under the diagonal partial support setting.

When λ = 0, training relies solely on the score matching loss, resulting in higher conditional

dependence between Ci | X. As λ increases, CS improves since ensuring conditional

independence between the marginals also encourages more accurate learning of the true

marginals. However, when λ takes large values, the model learns truly independent conditional

distribution C | X but effectively ignores the input compositions and generates samples
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Figure C.1: Effect of λ on logical compositionality under diagonal partial support on the
Colored MNIST dataset.

based solely on the prior distribution pθ(X). As a result, CS drops.

The value for the hyperparameter λ is chosen such that the gradients from the

score-matching objective Lscore and the conditional independence objective LCI are balanced

in magnitude. One way to choose λ is by training a vanilla diffusion model and setting λ

= Lscore

LCI
. We used two values for λ in our experiments and noticed that they gave similar

results, indicating that the approach was stable for various values of λ.
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APPENDIX D

EXPERIMENT DETAILS

In this section, we outline the high-level design choices of our approach. We provide full

implementation details in our publicly available code and checkpoints at

https://github.com/sachit3022/compositional-generation/.

D.1 CoInD Algorithm

1: repeat
2: (c,x0) ∼ ptrain(c, x)
3: ck ← ∅ with probability puncond ▷ Set element of index,k i.e, ck to ∅ with

puncond∀k ∈ [0, N ] probability
4: i ∼ Uniform({0, . . . , N}), j ∼ Uniform({0, . . . , N} \ {i}) ▷ Select two random attribute

indices
5: t ∼ Uniform({1, . . . , T})
6: ϵ ∼ N (0, I)
7: xt =

√
ᾱtx0 +

√
1− ᾱtϵ

8: ci, cj, ci,j ← c
9: ci ← {ck = ∅ | k ̸= i}, cj ← {ck = ∅ | k ̸= j}, ci,j ← {ck = ∅ | k ̸∈ {i, j}}, c∅ ← ∅

10: LCI = ||ϵθ(xt, t, c
i) + ϵθ(xt, t, c

j)− ϵθ(xt, t, c
i,j)− ϵθ(xt, t, c

∅)||22
11: Take gradient descent step one

∇θ[∥ϵ− ϵθ(xt, t, c)∥2 +λLCI ]
12: until converged

Algorithm D.1: CoInD Training.

To compute pairwise independence in a scalable fashion, we randomly select two attributes,

i and j, for a sample in the batch and enforce independence between them. As the score in

Eq. (A.4) is given by ϵθ(xt,t)√
1−ᾱt

. The final equation for enforcing LCI will be:

LCI =
1

1− ᾱt

∥∥ϵθ(xt, t, c
i) + ϵθ(xt, t, c

j)− ϵθ(xt, t, c
i,j)− ϵθ(xt, t, c

∅)
∥∥2
2

We follow Ho et al. (2020b) to weight the term by 1− ᾱt. This results in an algorithm for

CoInD, requiring only a few modifications of lines from (Ho and Salimans, 2022), highlighted

below.

Practical Implementation In our experiments, we have used puncond = 0.2 and for

Shapes3D instead of enforcing Ci ⊥⊥ Cj | X, for all i, j enforcing Ci ⊥⊥ C−i | X for all i have

led to slightly better results.
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Figure D.1: Image from Shapes3d with attributes c = [6, 8, 4, 6, 2, 11].

D.2 Details of Logical Compositionality Task

We designed the following task to evaluate two primitive logical compositions. (1) AND

Composition ∧, (2) NOT Composition ¬

AND Composition To evaluate the ∧ composition, we apply the ∧ operation over

all the attributes to generate a respective image. Consider an image from the Shapes3D

dataset (see Figure Fig. D.1). The image is generated by some function, f , with the input

c =

[
6 8 4 6 2 11

]
. The following image can be queried using the logical expression

C1 = 6 ∧ . . . ∧ C6 = 11. We follow Equation Eq. (2.1) to sample from the above logical

composition. To reiterate, for the ∧ composition task on Shapes3D, the sampling equation is

given by ∇Xpθ(X | C1 = 6 ∧ . . . ∧ C6 = 11):

∇X log pθ(X) +
∑
i

[∇X log pθ(X | Ci)−∇X log pθ(X)] (D.1)

Similarly, to evaluate the AND composition for the Colored MNIST dataset, we perform the

∧ operation over digit C1 and color C2.

NOT Composition To evaluate the ¬ compositions, the image is queried as an AND on

all the attributes except the object attribute, which is queried by its negation. For example,

consider the same image from Figure Fig. D.1, where the object sphere (C5 = 2) can be

expressed as C5 = ¬[0 ∨ 1 ∨ 3], because the object class can only take four possible values.

Therefore, the same image can be described as C1 = 6 ∧ . . . ∧ C5 = ¬[0 ∨ 1 ∨ 3] . . . ∧ C6 = 11.

The only possible generation that meets these criteria is the image (Fig. D.1) displayed as

expected.
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The sampling equation for a test image with attributes C1, C2, C3, C4, C5, C6 can be written

as C1 = 6∧C2 = 8∧C3 = 4∧C4 = 6∧C5 = ¬[0∨ 1∨ 3]∧C6 = 11. Following Eq. (2.2), the

sampling equation is written as follows:

∇X log pθ(X|C1 = 6) +∇X log pθ(X|C2 = 8) +∇X log pθ(X|C3 = 4)

+∇X log pθ(X|C4 = 6) +∇X log pθ(X|C6 = 11)−∇X log pθ(X|C5 = 0)

−∇X log pθ(X|C5 = 1)−∇X log pθ(X|C5 = 3)−∇X log pθ(X)

Similarly, for Colored MNIST, we perform two kinds of negation operations: one on digit and

another on color. In Section Chapter 2, we have shown negation on color 4∧¬[Green∨Pink],

along with its sampling equation. A similar logic can be followed for negation on color; an

example of negation on digit is ¬[3 ∨ 4] ∧ Pink.

For ∧ and ¬, evaluations are strictly restricted to unseen compositions under orthogonal

partial support for Shapes3D and under diagonal partial support for Colored MNIST. This

approach allows us to explore how effectively the model handles logical operations through

unseen image generation. Additionally, we evaluate compositions observed during training

with less frequency under non-uniform support.

D.3 Training details, Architecture, and Sampling

Training Composed GLIDE & CoInD We train the diffusion model using the DDPM

noise scheduler. The model architecture and hyperparameters used for all experiments are

detailed in Tab. D.1.

Training LACE The LACE method involves training multiple energy-based models for

each attribute and sampling according to logical compositional equations. However, we use

score-based models instead. We follow the architecture outlined in Tab. D.1 for each attribute

to train multiple score-based models. For Colored MNIST, which has two attributes, we

create two models—one for each attribute—using the same architecture as other methods,

effectively doubling the model size. Similarly, for Shapes3D with six attributes, we develop

six models. We reduce the Block Out Channels for each attribute model to fit these into
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memory while keeping all other hyperparameters consistent. Since we train a single model

per attribute, we do not match the joint distribution, preventing us from evaluating it and

measuring the JSD.

Sampling To generate samples for a given logical composition, we sample from equations

from App. D.2 using DDIM (Song et al., 2021a) with 100 steps.

Hyperparameter Colored MNIST Shapes3D

CoInD & Composed GLIDE LACE CoInD & Composed GLIDE LACE

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 2.0× 10−4 2.0× 10−4 2.0× 10−4 2.0× 10−4

Num Training Steps 50000 100000 100000 100000
Train Noise Scheduler DDPM DDPM DDPM DDPM
Train Noise Schedule Linear Linear Linear Linear
Train Noise Steps 1000 1000 1000 1000
Sampling Noise Schedule DDIM DDIM DDIM DDIM
Sampling Steps 150 150 100 100
Model U-Net U-Net U-Net U-Net
Layers per block 2 2 2 2
Beta Schedule Linear Linear Linear Linear
Sample Size 28x3x3 28x3x3 64x3x3 64x3x3
Block Out Channels [56,112,168] [56,112,168] [56,112,168,224] [56,112,168]
Dropout Rate 0.1 0.1 0.1 0.1
Attention Head Dimension 8 8 8 8
Norm Num Groups 8 8 8 8
Number of Parameters 8.2M 8.2M × 2 17.2M 8.2M × 6

Table D.1: Hyperparameters for Colored MNIST and Shapes3D used by CoInD, Composed
GLIDE, and LACE.

CelebA To generate CelebA images, we scale the image size to 128× 128. We use the

latent encoder of Stable Diffusion 3 (SD3) to encode the images to a latent space and perform

diffusion in the latent space. The architecture is similar to the Colored MNIST and Shapes3D,

except that Block out Channels are scaled as [224, 448, 672, 896]. We use a learning rate of

1.0× 10−4 and train the model for 500,000 steps on one A6000 GPU.

FID Measure To evaluate both the generation quality and how well the generated

samples align with the natural distribution of ’smiling male celebrities’, we use the FID

metric (Seitzer, 2020). Notably, we calculate the FID score specifically on the subset of

’smiling male celebrities,’ as our primary objective is to assess the model’s ability to generate

these unseen compositions. We generate 10000 samples to evaluate FID.
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T2I: Finetuning SDv1.5 We finetune SDv1.5 with the data constructed from CelebA,

where the labels are converted to text. For example, a label of (male=1, smiling=1) is

converted to a “photo of a smiling male celebrity."

Training details, Architecture, and Sampling for Compositional Risk Application

To generate CelebA images, we scale the image size to 64× 64. We use the latent encoder

of Stable Diffusion 3 (SD3) (Esser et al., 2024) to encode the images to a latent space and

perform diffusion in the latent space. The model uses an AdamW optimizer with a learning

rate of 1.0 × 10−4 and trains for 500,000 steps. It employs a DDPM train noise scheduler

with a cosine noise schedule and 1000 train noise steps. The architecture is based on a U-Net

model with 2 layers per block and, with block out channels of [224, 448, 672, 896]. It has an

attention head dimension of 8, and 8 norm groups. trained on a A6000 GPU.

Sampling: To generate samples for a composition, we sample from the referenced

equation Eq. (2.1) using γ = 0.46 to achieve more pronounced gender features, employing

the Denoising Diffusion Implicit Models (DDIM) (Song et al., 2021a) for 250 steps. We

apply identical sampling settings across both standard diffusion models and our proposed

method. This configuration was selected because it consistently produces high-fidelity samples,

demonstrating robust performance across both model architectures. By maintaining consistent

sampling parameters, we ensure a fair and comparable evaluation of the generative capabilities

of CoInD.

D.4 Analytical Forms of Support Settings

Below are the analytical expressions for the densities under the various support settings

that we considered in the paper. Let ni be the number of categories for the attribute Ci. For

non-uniform and diagonal partial support settings, we assume that ni = nj = n, ∀i, j, i ̸= j.

• Uniform setting: p(Ci = c1) =
1
ni

and p(Ci = c1, Cj = c2) = p(Ci = c1)p(Cj = c2) =

1
ninj

.
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• Orthogonal support setting: p(Ci = c1, Cj = c2) =


1

ni+nj−1
, c1 = 0 or c2 = 0

0, otherwise

• Non-uniform setting: p(Ci = c1, Cj = c2) =


a, c2 ≤ c1 ≤ c2 + 1

b, otherwise
. where 1

n2 ≤

b ≤ a ≤ 1
2n−1

• Diagonal partial support setting: p(Ci = c1, Cj = c2) =


1

2n−1
, c2 ≤ c1 ≤ c2 + 1

0, otherwise
.

D.5 Datasets

Colored MNIST Dataset In Section Chapter 1, we introduced the Colored MNIST

dataset. Here, we will detail the dataset generation process. We selected 10 visually distinct

colors 1, taking the value C2 ∈ [0, 9]. The dataset is constructed by coloring the grayscale

images from MNIST by converting them into three channels and applying one of the ten

colors to non-zero grayscale values.

The training data is composed of three types of support:

• Uniform Support: A digit and a color are randomly selected to create an image.

• Diagonal Partial Support: A digit is selected, and during training, it is only assigned

one of two colors, C2 ∈ {d, d+1}, except for 9, which only takes one color. This creates

a dataset where compositions observed during training are along the diagonal of the C

space, meaning each digit is seen only with its corresponding colors.

• Non-uniform Support: All compositions are observed, but combining a digit and its

corresponding colors occurs with a higher probability (0.5). The remaining color space

is distributed evenly among other colors, resulting in approximately a 0.25 probability

for each corresponding color and a 0.0625 probability for each remaining color.

1https://mokole.com/palette.html
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Shapes3D Full support for Shapes3D consists of all samples from the dataset. For

orthogonal support, we use the composition split of Shapes3D as described by Schott et al..,

whose code is publicly available 2.

CelebA CelebA consists of 40 attributes, from which we select the "smiling" and "male"

attributes. We train generative models on all combinations of these attributes except

(smiling=1, male=1), resulting in an orthogonal partial support.

D.6 Conformity Score (CS)

In Section 2, we described the Conformity Score (CS) to quantify the accuracy of the

generation per the prompt. To measure the CS, we train a single ResNet-18 (He et al., 2016)

classifier with multiple classification heads, one corresponding to each attribute, and trained

on the full support. This classifier estimates the attributes in the generated image, x, and

extracts these attributes as ϕ(x) = [ĉ1, . . . , ĉn]. These attributes are matched against the

input prompt that generated the image to obtain accuracy.

To explain further, for example, if the prompt is to generate “4 ∧ ¬[Green ∨ Pink]”, the

generated sample will have a CS of 1 if ĉ1 = 4 and ĉ2 ̸∈ {Green,Pink}. We average this

across all the prompts in the test set, which determines the CS for a given task.

The effectiveness of the classifier in predicting the attributes is reported in Table D.2.

Feature Attributes Possible Values Accuracy

C1 Blond 0,1 95.1
C2 color 0,1 98.0

Table D.2: ResNet-18 accuracy of classifying attributes on CelebA Dataset

D.7 Computing JSD

We are interested in understanding the causal structure learned by diffusion models.

Specifically, we aim to determine whether the learned model captures the conditional

independence between attributes, allowing them to vary independently. This raises the

question: Do diffusion models learn the conditional independence between attributes? The

2https://github.com/bethgelab/InDomainGeneralizationBenchmark
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Feature Attributes Possible Values Accuracy

C1 Digit 0-9 98.93
C2 color 10 values 100

(a) Colored MNIST Dataset

Feature Attributes Possible Values Accuracy

C1 Gender {0,1} 98.2
C2 Smile {0,1} 92.1

(b) CelebA Dataset

Feature Attributes Possible Values Accuracy

C1 floor hue 10 values in [0, 1] 100
C2 wall hue 10 values in [0, 1] 100
C3 object hue 10 values in [0, 1] 100
C4 scale 8 values in [0, 1] 100
C5 shape 4 values in [0-3] 100
C6 orientation 15 values in [-30, 30] 100

(c) Shapes3D Dataset

Figure D.2: Independent attribute, their possible values, and the classifier accuracy in
estimating them for different datasets.

conditional independence is defined by:

pθ(Ci, Cj |X) = pθ(Ci |X)pθ(Cj |X) (D.2)

We aim to measure the violation of this equality using the Jensen-Shannon divergence (JSD)

to quantify the divergence between two probability distributions:

JSD = Epdata [DJS (pθ(C |X) || pθ(Ci |X)pθ(Cj |X))] (D.3)

The joint distribution, pθ(Ci, Cj |X), and the marginal distributions, pθ(Ci |X) and pθ(Cj |

X), are evaluated at all possible values that Ci and Cj can take to obtain the probability

mass function (pmf). The probability for each value is calculated using Equation Eq. (A.7)

for the joint distribution and Equation Eq. (A.6) for the marginals.

Practical Implementation For the diffusion model with multiple attributes, the violation

in conditional mutual independence should be calculated using all subset distributions.

However, we focus on pairwise independence. We further approximate this in our experiments

by computing JSD between the first two attributes, C1 and C2. We have observed that

computing JSD between any attribute pair does not change our examples’ conclusion.
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D.8 Measuring Diversity in Attributes

To achieve explicit control over certain attributes during the generation process, these

attributes must vary independently. Therefore, an ideal generative model must be able to

produce samples where all except the controlled attributes take diverse values. This diversity

can be measured by the entropy of the uncontrolled attributes in the generated samples, where

higher entropy suggests greater diversity. Therefore, the accurate generation of controlled

and diverse uncontrolled attributes for the given the underlying data distribution has uniform

attributes indicates that the model has successfully learned when the underlying attribute

distribution is uniform. In contrast, for non-uniform distributions—such as the Gaussian

example discussed in App. G.1—a simple diversity argument no longer applies, and minimum

KL divergence between the model and the true distribution becomes the appropriate measure.

Under a uniform attribute assumption, however, the KL divergence essentially reduces to

maximum entropy.

For example, consider the generation of colored MNIST digits. In this case, controllability

means that the model has learned that digit and color attributes are independent. When

prompted to generate a specific digit (controlled attribute), the model should generate

this digit in all possible colors (uncontrolled attribute) with equal likelihood, implying

maximum entropy for the color attribute and diverse generation. We measure this entropy

by generating samples xi ∼ pθ(X | c1 = 4) and passing them through a near-perfect classifier

to obtain the color predictions p(Ĉ2) = p(ϕ2(x
i)). The diversity is then quantified as:

H = Eĉ2∼p(Ĉ2)
[log2 p(ĉ2)]

Ensuring diversity through explicit control has applications in bias detection and mitigation

in generative models. For example, a biased model may generate images of predominantly

male doctors when asked to generate images of “doctors”. Ensuring diversity in uncontrolled

attributes like gender or race can limit such biases.
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APPENDIX E

COIND FOR FACE IMAGE GENERATION

In Chapter 5, we demonstrated that CoInD outperforms baseline methods on the unseen

logical compositionality task using synthetic datasets. In App. E.1, we showcase the success

of CoInD in generating face images from the CelebA dataset (Liu et al., 2015), where CoInD

demonstrates superior control over attributes compared to the baseline. CoInD also allows

us to adjust the strength of various attributes and thus provides more fine-grained control

over the compositional attributes, as shown in App. E.2. Finally, in App. E.3, we extend

CoInD to text-to-image (T2I) models widely used in practice to generate face images by

providing the desired attributes as logical expressions of text prompts.

Problem Setup We choose the CelebA dataset to evaluate CoInD’s ability to generate

real-world images. We choose the binary attributes “smiling” and “gender” as the attributes

we wish to control. During training, all combinations of these attributes except gender =

“male” and smiling = “true” are observed, similar to the orthogonal support shown in Fig. 5.1.

During inference, the model is tasked to generate images with the attribute combination

gender = “male” and smiling = “true”, which was not observed during training.

Metrics Similar to the experiments on the synthetic image datasets in Chapter 5, we assess

the accuracy of the generation w.r.t. the input desired attribute combination CS (conformity

score). We also measure the violation of the learned conditional independence using JSD. In

addition to CS, we compute FID (Fréchet inception distance) between the generated images

and the real samples in the CelebA dataset where gender = “male” and smiling = “true”. A

lower FID implies that the distribution of generated samples is closer to the real distribution

of the images in the validation dataset.

E.1 CoInD can successfully generate real-world face images

Tab. 5.1 shows the quantitative results of CoInD and Composed GLIDE trained from

scratch in the tasks of joint sampling and ∧ composition. Similar to our observations from

previous experiments, CoInD achieves better CS in both tasks by learning accurate marginals
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as demonstrated by lower JSD. When sampled from the joint likelihood, CoInD achieves a

nearly 4× improvement in CS over the baseline.

E.2 CoInD provides fine-grained control over attributes
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Figure E.1: By adjusting γ, CoInD allows us to the vary the amount of “smile” in the
generated images. However, Composed GLIDE associates the smile attribute with the gender
attribute due to their association in the training data. Hence, the images generated by
Composed GLIDE contain gender-specific attributes such as long hair and earrings.

So far, we studied the capabilities of CoInD to dictate the presence and absence of

attributes in the task of controllable image generation. However, there are applications where

we desire fine-grained control over the attributes. Specifically, we may want to control the

amount of each attribute in the generated sample. We can mathematically formulate this

task by revisiting the formulation of logical expressions of attributes in terms of the score

functions of marginal likelihood. As an example, the ∧ operation can be written as,

∇X log pθ(X | C1 ∧ C2) = ∇X log pθ(X | C1) +∇X log pθ(X | C2)−∇X log pθ(X)

Here, to adjust the amount of attribute added to the generated sample, we can weigh the

score functions using some scalar γ, as follows,

∇X log pθ(X | C1) + γ∇X log pθ(X | C2)− γ∇X log pθ(X) (E.1)

where γ controls for the amount of C2 attribute.
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Figure E.2: Effect of γ on FID and CS: Varying the amount of smile in a generated image
through γ does not affect the FID of CoInD. However, the smiles in the generated images
become more apparent, leading to easier detection by the smile classifier and improved CS.

Fig. E.1 shows the effect of increasing γ to adjust the amount of smiling in the generated

image. Ideally, we expect increasing γ to increase the amount of smiling without affecting

the gender attribute. When γ = 0 (top row), both CoInD and Composed GLIDE generate

images of men who are not smiling. As γ increases, we notice that the samples generated by

CoInD show an increase in the amount of smiling, going from a short smile to a wider smile

to one where teeth are visible. Note that the training dataset did not include any images

of smiling men or fine-grained annotations for the amount of smiling in each image. This

conclusion is strengthened by Fig. E.2b that shows an increase in CS when γ increases. CS

increases when it is easier for the smile classifier to detect the smile. CoInD provides this

fine-grained control over the smiling attribute without any effect on the realism of the images,

as shown by the minimal changes in FID in Fig. E.2a.

In contrast, the images generated by Composed GLIDE show an increase in the amount

of smiling while adding gender-specific attributes such as long hair and makeup. We conclude

that, by strictly enforcing a conditional independence loss between the attributes, CoInD

provides fine-grained control over the attributes, allowing us to adjust the intensity of the

attribute in the image without additional training. As shown in Tab. 5.1, CoInD outperforms
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the baselines for generating unseen compositions. Tuning γ further improves the generation.

E.3 Finetuning T2I models with CoInD improves logical compositionality

“smiling male” “smiling” AND “male” “smiling” NOT “female”

Composed
GLIDE

COIND

Figure E.3: Samples generated after fine-tuning SDv1.5 on CelebA. The first row shows images
generated by SDv1.5 fine-tuned on CelebA, while the second row shows images generated
by SDv1.5 fine-tuned with CoInD. Columns indicate samples generated from the respective
prompts indicated above.

We proposed CoInD to improve control over the attributes in an image through logical

expressions of these attributes. Since larger pre-trained diffusion models such as Stable

Diffusion (Rombach et al., 2022) have become more accessible, we seek to incorporate the

benefits of CoInD in these models. This section shows that text-to-image (T2I) models can

be fine-tuned to generate images using logical expressions of text prompts. Specifically, we use

Stable Diffusion v1.5 (SDv1.5) to generate face images from the CelebA dataset where smiling

and gender attributes can be controlled. We consider both joint and marginal sampling,

similar to our case study in Chapter 3. For joint sampling, we provide SDv1.5 with the

prompt “Photo of a smiling male celebrity”. In the marginal sampling, we provide the values

for smiling and gender attributes using separate prompts – “Photo of a smiling celebrity” ∧

“Photo of a male celebrity”. Then, we sample from these marginal likelihoods resulting from

these prompts following Eq. (2.1). To evaluate ¬ capabilities, we use the prompts “Photo of

a smiling celebrity” ¬ “Photo of a female celebrity” and follow Eq. (2.2).

Discussion

1. In Tab. E.1, CoInD improves performance across all metrics – achieving 3.46× and 2×
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Support Method JSD ↓ Joint ∧ Composition ¬ Composition

CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

Orthogonal Composed GLIDE 0.57 56.57 58.31 14.19 73.53 11.02 115.95
CoInD (λ = 1.0) 0.37 58.57 58.19 49.15 61.16 18.80 86.31

Table E.1: Results on SDv1.5 fine-tuning. CoInD outperforms the baseline on all the
metrics.

improvement in CS over Composed GLIDE in ∧ and ¬ composition tasks. The images

generated by CoInD have better FID than those from the baseline.

2. Visual inspection of the generated samples for the same random seed provides insights

into how Composed GLIDE and CoInD perceive the prompts. Images in columns 1, 3,

and 5 of Fig. E.3 were generated with the same random seed. Similarly, those in columns

2 and 4 share the random seed. We note the following observations:

– Both Composed GLIDE and CoInD generated images with the desired attributes

when sampled from the joint likelihood using “photo of a smiling male celebrity”.

The images generated by these models from the same random seed were also visually

similar. This shows that both models can aptly set attributes in the generated

images and have identical stochastic profiles, leading to unspecified attributes that

assume similar values.

– When the attributes were passed as the ∧ expression “smiling” ∧ “male”, CoInD

generated images that were visually similar to those with matching random seeds

generated from joint sampling. This implies that CoInD learned accurate marginals

that help it to correctly model the joint likelihood.

– When tasked with generating images for “smiling” ∧ “male”, Composed GLIDE

generated images of smiling persons with gender-specific attributes such as thinner

eyebrows, commonly seen in photos of female celebrities. These gender-specific

features increase when the task is to generate images of “smiling” ¬ “female”. In

contrast, CoInD generates images of smiling celebrities while adding attributes
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such as a beard. Thus, we conclude that CoInD offers better control over the

desired attributes without affecting correlated attributes.
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APPENDIX F

DISCUSSION ON COIND

F.1 Connection to compositional generation from first principles

Compositional generation from first principles Wiedemer et al. (2024) have shown that

restricting the function to a certain compositional form will perform better than a single

large model. In this section, we show that, by enforcing conditional independence, we restrict

the function to encourage compositionality.

Let c1, c2, . . . , cn be independent components such that c1, c2, . . . , cn ∈ R. Consider an

injective function f : Rn → Rd defined by f(c) = x. If the components, c are conditionally

independent given x the cumulative functions, F must satisfy the following constraint:

FCi,Cj ,...,Cn|X=x(ci, cj, . . . , cn) =
∏
i

FCi|X=x(ci) (F.1)

F−1
Ci,Cj ,...,Cn|X=x(x) = inf{ci, cj, . . . , cn | F (ci, cj, . . . , cn) ≥ x}, where F−1

ci,cj ,...,Cn|X=x is a

generalized inverse distribution function.

f(ci, cj, . . . , cn) = (f ◦ F−1
ci,cj ,...,Cn|X=x)(

∏
i

FCi|X=x(ci))

= (f ◦ F−1
ci,cj ,...,Cn|X=x ◦ e)(

∑
i

logFCi|X=x(ci))

= g(
∑
i

ϕi(ci))

Therefore, we are restricting f to take a certain functional form. However, it is difficult to

show that the data generating process, f , meets the rank condition on the Jacobian for the

sufficient support assumption Wiedemer et al. (2024), which is also the limitation discussed

in their approach. Therefore, we cannot provide guarantees. However, this section provides a

functional perspective of CoInD.
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Figure F.1: CoInD respects underlying independence conditions thereby generating true
data distribution (d).

F.2 2D Gaussian: Closed-form Analysis of CoInD

In this section, we derive closed-form expressions for the score functions underlying our

method and demonstrate how CoInD leverages conditional independence constraints to

generate the true data distribution.

Data Generation Process We consider data generated from two independent attributes,

C1 and C2, which are binary variables taking values in {−1,+1}. The observed variable X is

defined as:

X = f(C1) + f(C2), (F.2)

where

f(c) = c+ σϵ, ϵ ∼ N (0, I).

Thus, f(C1) produces a Gaussian mixture along the x-axis with means at −1 and +1, and

similarly f(C2) produces a mixture along the y-axis with means at −1 and +1 (see blue plot

on the axis of Figure F.1a). The combination yields a two-dimensional Gaussian mixture

(Figure F.1a).

Training Setup and Orthogonal Support For training, we assume or-

thogonal support where only the following combinations of (C1, C2) are observed:

{(−1,−1), (−1,+1), (+1,−1)}. The model is then tasked with generating samples from the

unseen composition (+1,+1). Recall that our assumptions (see Section 2) are satisfied: C1
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and C2 independently generate X, and all possible values for each attribute are observed at

least once during training.

Score Function Decomposition Let s+1,+1(x) denote the score corresponding to p(x |

C1 = +1, C2 = +1), and let s1,∅(x) denote the marginal score p(x | C1 = +1) (with a similar

definition for s∅,1(x)). Leveraging Eq. (2.1) s+1,+1(x) is decomposed as follows:

s+1,+1(x) = s1,∅(x) + s∅,1(x)− s∅,∅(x), (F.3)

where s∅,∅(x) is the score of the training data and not full data.

For example, when training on the observed combination (+1,−1), the score function of

the s1,∅, s∅,1, is a Gaussian, and written in closed form as

s1,∅(x) =
µ+1,−1 − x

σ2
,

s∅,1(x) =
µ+1,−1 − x

σ2
. (F.4)

In contrast, the score of s∅,∅(x), is the mixture (over the three training components) given as:

s∅,∅(x) =

∑
iN (x;µi, σ

2I)
(
µi−x
σ2

)∑
iN (x;µi, σ2I)

. (F.5)

However, when using Langevin dynamics for sampling (see Eq. (A.2)), the naive

combination in Eq. (F.3) produces an incorrect conditional distribution (Figure F.1c).

Specifically, the generated distribution shows a spurious red blob between the (+1,−1)

and (−1,+1) modes rather than a proper Gaussian centered at (+1,+1). This shows that

Diffusion models interpolate between the modes, rather than following underlying conditional

independence and generalizing to unseen modes.

Correcting with Conditional Independence Constraints Instead of modeling s1,∅(x)

directly, CoInD learns the joint scores for the three observed combinations:

s−1,−1(x), s+1,−1(x), s−1,+1(x).
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These are then combined under the assumption of pairwise conditional independence to infer

the score for the unseen composition:

s−1,−1(x) = s+1,∅(x) + s∅,+1(x)− s∅,∅(x),

s+1,−1(x) = s+1,∅(x) + s∅,−1(x)− s∅,∅(x),

s−1,+1(x) = s−1,∅(x) + s∅,+1(x)− s∅,∅(x), (F.6)

which leads to the following expression for the unseen (+1,+1) composition:

s+1,+1(x) = s+1,∅(x) + s∅,+1(x)− s∅,∅(x)

= s+1,−1(x) + s−1,+1(x)− s−1,−1(x)

=
[µ+1,−1 + µ−1,+1 − µ−1,−1]− x

σ2
. (F.7)

The derivation above shows that CoInD effectively enforces conditional independence

constraints to generate the unseen data distribution. This analysis underscores the necessity

of incorporating conditional independence constraints into diffusion models to faithfully

reproduce the target distribution, particularly when extrapolating to unseen compositions.

F.3 Extension to Gaussian source flow models

Diffusion models can be viewed as a specific case of flow-based models where: (1) the

source distribution is Gaussian, and (2) the forward process follows a predetermined noise

schedule (Lipman et al., 2024). Can we reformulate CoInD in terms of velocity rather than

score, thereby generalizing it to accommodate arbitrary source distributions and schedules?

When the source distribution is gaussian, score and velocity are related by affine transformation

as detailed in Tab. 1 of (Lipman et al., 2024).

stθ(x,C1, C2) = atx+ btu
t
θ(x,C1, C2) (F.8)

replacing stθ(·) into Eq. (C.6)

LCI = Ep(X,C),t∼U [0,1]Ej,k∥stθ(x,Cj, Ck)− stθ(x,Cj)− stθ(x,Ck) + stθ(x)∥22

= Ep(X,C),t∼U [0,1]Ej,k

[
b2t∥ut

θ(x,Cj, Ck)− stθ(x,Cj)− ut
θ(x,Ck) + ut

θ(x)∥22
]

62



However we can ignore b2t , weighting for the time step t.

LCI = Ep(X,C),t∼U [0,1]Ej,k

[
∥ut

θ(x,Cj, Ck)− ut
θ(x,Cj)− ut

θ(x,Ck) + ut
θ(x)∥22

]
(F.9)

Therefore, if the source distribution is gaussian and for any arbitrary noise schedule, constraint

in score translates directly to velocity constraint as given as Eq. (F.9).

F.4 Compositional vs Monolithic models

Our findings echo the prior observations (Du and Kaelbling, 2024) that composite models

consisting of separate diffusion models trained on individual factors (e.g., LACE) demonstrate

better ∧ compositionality under partial support than sampling from factorized distributions

learned by monolithic models (e.g., Composed GLIDE). However, we found that monolithic

models can be significantly improved by enforcing the conditional independence constraints

necessary for enabling logical compositionality. For instance, CoInD achieved a 2.4× better

CS on Colored MNIST with diagonal partial support and a 1.4× improvement on orthogonal

partial support on Shapes3D compared to LACE.

F.5 Limitations

This paper considered compositions of a closed set of attributes. As such, CoInD requires

pre-defined attributes and access to data labeled with the corresponding attributes. Moreover,

CoInD must be enforced during training, which requires retraining the model whenever

the attribute space changes to include additional values. Instead, state-of-the-art generative

models seek to operate without pre-defined attributes or labeled data and generate open-set

compositions. Despite the seemingly restricted setting of our work, our findings provide

valuable insights into a critical limitation of current generative models, namely their failure to

generalize for unseen compositions, by identifying the source of this limitation and proposing

an effective solution to mitigate it.
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APPENDIX G

ADDITIONAL RESULTS AND DISCUSSION ON COIND

G.1 Learning under non-uniform p(Ci)
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Digit (C1)

C
ol

or
(C

2)

(a) Gaussian sup-
port

Method JSD ↓ ∧ (CS) ↑ ¬ Color (CS)↑ ¬ Digit (CS) ↑
LACE - 89.22 58.59 57.81
Composed GLIDE 0.27 91.74 88.91 78.39
CoInD (λ = 1.0) 0.16 99.61 98.51 83.03

(b) Quantitative results for Gaussian support
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Figure G.1: Results on Gaussian support: When the independent attributes have
non-uniform categorical distributions, the joint distribution of attribute combinations is not
uniform. Even in this case, CoInD learns pθ(Ci | Cj) accurately.

In our experiments, we considered the uniform support setting as an example where the

attribute variables are independent of each other in the training data, i.e., C1 ⊥⊥ C2 | X

during training. However, uniform support is not the only scenario that can arise from

independent attribute variables. In this section, we show that CoInD can learn accurate

marginals irrespective of the distribution of Ci.

We designed an experiment using the Colored MNIST images where the attributes C1

and C2 assume values from a non-uniform categorical distribution that resembles a discrete

Gaussian distribution. The resulting joint distribution of the attributes, which we refer to

as Gaussian support, is illustrated in Fig. G.1a. We trained CoInD and baselines on this

dataset and evaluated on ∧ and ¬ compositionality tasks. Apart from comparing the CS of

baselines and CoInD on these compositionality tasks, we also evaluate if CoInD accurately

learns p(Ci) by comparing the learned pθ(Ci | Cj) against the true p(Ci | Cj). Intuitively, this

verifies if CoInD generates images with uncontrolled attributes matching their distribution

in the training dataset.

Fig. G.1b quantitatively compares CoInD against Composed GLIDE on CS in both ∧

and ¬ compositionality tasks. Like our previous experiments, CoInD outperforms Composed
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GLIDE w.r.t. CS in all tasks. In Fig. G.1c, we verify if CoInD has learned pθ(C2 | C1)

accurately by comparing it against the true distribution p(C2 | C1). pθ(C2 | C1 = c∗) =

pϕ(C2 | X)pθ(X | C1 = c∗) is obtained as the histogram density of the attributes that

appear in the generated images when C1 = c∗. We observe that the learned distribution

pθ(C2 | C1 = 4) is close to the true distribution, forming a bell shape.

G.2 Failure examples of CoInD
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Figure G.2: Some samples generated by CoInD where it could not enforce the desired
attributes.

Here, we examine some samples generated by CoInD where it failed to include the desired

attributes. We show these failure cases from each dataset, i.e., Colored MNIST, Shapes3d,

and CelebA datasets. Samples from Colored MNIST and Shapes3d datasets are taken from

the partial support setting, while the ones from the CelebA dataset are taken from the

orthogonal support setting. Fig. G.2a shows some failure samples from the Colored MNIST

dataset. The images in the first row contain digits with colors leaking from the nearby seen

attribute combination. Those in the second row correspond to ¬ approximation and have

wrong attributes due to the approximation in the probabilistic formulation in Eq. (2.2). Some

images, like those in the third row, are unrealistic, although they may contain the desired

attributes. We observe similar failures in Shapes3d samples shown in Fig. G.2b where the
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Figure G.3: Heatmap showing CS for each attribute combination in the ∧ compositionality
task in Colored MNIST generation with partial support (row 10 in Fig. 5.2a).

CoInD deviates from the desired compositions (column 1). Some failed samples from the

CelebA dataset are shown in Fig. G.2c. The samples correspond to the task of “smile” ∧

“male”. In the top image, it is hard to distinguish if the subject is smiling or laughing. In

some samples, we observed only a weak or soft smile. This could be because a smile is difficult

to control due to its limited spatial presence in an image.

G.3 Conformity score for each attribute combination

In all our experiments, we report CS as the primary metric to evaluate if the generative

model produced images with accurate attributes. However, CS is the average accuracy across

all unseen attribute combinations. Not all attribute combinations may be generated with

equal accuracy.

For instance, Fig. G.3 shows the CS for each attribute combination in the ∧

compositionality task in Colored MNIST image generation with partial support setting

(row 10 in Fig. 5.2a). As a reminder, CoInD achieved 52.38% CS on unseen attribute

combinations in this task.

We can see that CoInD can successfully generate all seen attribute combinations that

appear on the diagonal. Some unseen attribute combinations achieve > 90% CS, while others

have nearly 0% CS. We do not observe the model struggling to generate images with any
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specific attribute or digit, although some colors have a generally lower CS than others. For

example, colors 2 and 3 have zero CS with more digits than others. On the other hand, colors

4, 5, and 6 have high CS with all digits. We hypothesize that this disparity in CS could

depend on the nature of attributes and the similarity between the values they can take.

G.4 CoInD also improves conditional generation

Support Configuration CS

Uniform Vanilla 99.98
Uniform CoInD(λ = 1) 100
Non-uniform Vanilla 99.98
Non-uniform CoInD(λ = 1) 99.98

Diagonal partial Vanilla 33.14
Diagonal partial CoInD(λ = 0.5) 68.82

(a) Colored MNIST

Support Configuration R2 CS

Uniform Vanilla 0.99 100
Uniform CoInD(λ = 1) 0.99 100

Orthogonal partial Vanilla 0.97 95.88
Orthogonal partial CoInD(λ = 1) 0.99 99.57

(b) Shapes3D

Table G.1: Overall Performance Metrics for Conditional generation.

Given an ordered n-tuple from the attribute space not observed during training, can

CoInD generate images corresponding to this sampled from joint distribution, Pθ(X|C)? To

answer this question, we train CoInD and the baselines on Colored MNIST and Shapes3d

datasets. Tab. G.1 shows the results. As expected, the vanilla model, under full support,

generates samples corresponding to the joint distribution. However, as demonstrated in

Chapter 3, models trained on partial support fail to generate samples for unseen attribute

compositions. In addition to the improved performance on logical compositionality, enforcing

conditional independence explicitly improves conditional generation as well and produces

better results on partial support compared to vanilla diffusion models for both Colored

MNIST and Shapes3D datasets.

G.5 CoInD can interpolate between discrete attributes

In some cases, it may be necessary to have control over continuous-valued attributes

such as height or thickness. However, the datasets with continuous annotations may not be

available to train such models. Or we may be interested in using a pre-trained model that was

trained to generate images with discrete attributes. In such cases, can we generate samples
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ObservedObserved Interpolated

26◦ 28◦ 30◦

Figure G.4: Although CoInD was only trained to generate images with orientations 26° and
30°, it successfully generated a sample with 28° orientation.

where attributes take arbitrary values that do not belong to the set of training annotations?

We show that CoInD can interpolate between the discrete values of an attribute on which it

was originally trained and thus essentially produce images with continuous-valued attributes.

As mentioned in the main paper, we trained CoInD to generate images from the Shapes3d

dataset using the labels provided in (Kim and Mnih, 2018). The labels provided for the

orientation attribute were discrete, although orientation itself is continuous.

In Fig. G.4, we highlight the images generated by CoInD where the subject has orientations

26° and 30°. We interpolate between observed discrete values linearly and generate the samples

shown in the second column of Fig. G.4. By carefully observing the variation in the gap

between the corner of the cube and the corner of the room, we notice that CoInD generated

an image where the orientation of the cube is midway between those of 26° and 30°. This

demonstrates that CoInD offers a promising direction where training on datasets with

discrete annotations is sufficient to generate samples with continuous-valued attributes.
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