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ABSTRACT 
 

Accelerating genetic gain in plant breeding demands increased selection intensity, 

enhanced selection accuracy, broader genetic diversity, and shortened breeding cycle. As phenomic 

platforms and genomic resources continue to evolve, integrating these complementary datasets 

offers opportunity to improve breeding pipelines. This dissertation explores multiple approaches 

to potentially incorporating phenomic information with genomic data, aiming to increase 

prediction accuracy and selection intensity, and identify genomic regions for economically 

important traits in soft winter wheat.  

Infrared thermal imaging enabled high-resolution differentiation of Fusarium head blight 

(FHB)-resistant and -susceptible genotypes at the single-spike level. However, field-scale 

implementation requires careful consideration due to uncontrolled factors under field conditions, 

where no direct relationship between plot-level infrared thermal readings and FHB-related traits 

was established. Hyperspectral imaging demonstrated superior predictive ability and prediction 

accuracy over genomic prediction alone for deoxynivalenol (DON) content. Integrating phenomic 

and genomic predictions by model blending enhanced prediction accuracy and allowed clustering-

based selection on predicted DON content in F4:5 breeding lines. Additionally, multiple strategies 

for integrating UAV-derived vegetation indices (VIs) to improve genomic prediction accuracy 

were evaluated, with varying degrees of success depending on how UAV-derived information were 

used as fixed effect, as well as training set composition. Beyond enhancing prediction, phenomic 

data facilitated the identification of key genomic regions associated with DON content and grain 

yield, underscoring the potential of phenomic information as a phenotypic input in genome-wide 

association studies. 



Collectively, these findings support the potential application phenomics-genomics 

integration in potentially improving wheat breeding. By enhancing selection accuracy, identifying 

informative genomic regions, and potentially reducing selection intervals, this work lays the 

foundation for a more efficient breeding pipeline. However, careful consideration is essential when 

implementing combined phenomic-genomic approaches to ensure robust, field-applicable results.  
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CHAPTER I: INTRODUCTION 

Global wheat production increased from 640 million metric tons in 2010 to 760 million in 

2020 (FAO, 2022). However, wheat-harvested areas have declined, from 32 million ha in North 

America in 2000 to 25 million in 2020 (FAO, 2022). With the global population projected to reach 

9.7 billion by 2050 (United Nations, 2022), along with reducing production area, developing high-

yielding wheat varieties is crucial to ensure food security. 

A major limitation in wheat production is disease prevalence, particularly Fusarium head 

blight (FHB). Yield losses of 10–70% have been reported due to FHB epidemics (Khan et al., 

2020), with economic losses of up to $7.6 billion in the U.S. from 1993 to 2001 (Khan et al., 2020). 

Mycotoxins produced by FHB pathogens degrade grain quality and pose risks to human and animal 

health (Soni et al., 2020). Thus, breeding FHB-resistant wheat varieties is a key management 

strategy (Dweba et al., 2017; Steiner et al., 2017). 

Developing high-yielding, disease-resistant varieties with superior agronomic traits relies 

on accelerating genetic gain (Poland & Rutkowski, 2016). This requires increasing selection 

intensity, improving heritability through precise phenotyping, maintaining genetic diversity, and 

reducing generation intervals (Falconer & Mackay, 1996; Araus et al., 2018). However, despite 

recent advances, genetic gain has stagnated due to phenotyping limitations (Araus et al., 2018). 

Selection intensity depends on evaluating large numbers of breeding lines to identify 

superior genotypes while maintaining genetic diversity (Poland & Rutkoski, 2016). Field 

evaluation of complex traits like yield and disease resistance remains a bottleneck, affecting 

genetic gain. Accurate phenotyping is crucial, but traditional methods like visual scoring are 

subjective, labor-intensive, and error-prone (Zhang et al., 2020; Su et al., 2021). 
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To overcome phenotyping challenges, breeders have adopted high-throughput imaging 

technologies (Araus & Cairns, 2013). Infrared thermography assesses canopy temperature to 

evaluate stress responses and disease resistance (Pineda et al., 2020). While useful for detecting 

drought and heat stress (Singh et al., 2022; Yao et al., 2018) and diseases like stripe rust and 

powdery mildew (Feng et al., 2021), thermography is extremely sensitive to environmental 

fluctuations (Costa et al., 2013), requiring corrections for accuracy. 

More sophisticated multispectral and hyperspectral imaging have been employed for 

assessing abiotic stress tolerance, nutrient use efficiency, and physiological traits (Araus & Cairns, 

2014; Araus et al., 2018). Spectral data have been used for predicting grain yield (Lopez-Cruz et 

al., 2020; Tao et al., 2020; Moghimi et al., 2020) and detecting FHB resistance (Zelazny et al., 

2021; Alisaac et al., 2018). However, most studies on FHB detection using spectral imaging have 

been conducted in controlled environments (Mahlein et al., 2019; Alisaac et al., 2018). Recent 

field applications have been explored (Ma et al., 2021; Zelazny et al., 2020; Zhang et al., 2020), 

but further research is needed to refine these methods for breeding applications. 

To complement phenotyping, molecular approaches such as genomic selection enhance 

selection intensity and accuracy while reducing generation intervals (Heffner et al., 2009; Poland 

& Rutkoski, 2016). Genomic selection enables early-generation selection, minimizing the number 

of lines progressing to advanced trials. It has been widely applied for improving complex traits, 

including grain yield and FHB resistance in wheat (Rutkoski et al., 2012; Jiang et al., 2014; Mirdita 

et al., 2015; Arruda et al., 2015). 

Despite these advances, further genetic improvement requires identifying novel genes and 

alleles associated with FHB resistance and yield (Poland & Rutkoski, 2016). Given the polygenic 

nature of these traits, stacking QTLs and beneficial alleles is essential (Kushalappa et al., 2016). 
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Numerous QTLs for FHB resistance has been identified (Zheng et al., 2020; Elfatih et al., 2020; 

Petersen et al., 2016; Ruan et al., 2020; Soni et al., 2020; Kage et al., 2017; Gadaleta et al., 2019), 

but the complexity of the wheat genome warrants further exploration. 

QTL identification still depends on accurate phenotypic data, emphasizing the need for 

advanced phenotyping methods to improve gene discovery and breeding applications (Poland & 

Rutkoski, 2016). Hyperspectral imaging has been used in genome-wide association studies 

(GWAS) for sorghum (Miao et al., 2020), rice (Feng et al., 2017; Sun et al., 2019), and barley 

(Herzig et al., 2019; Grieco et al., 2022) but remains underexplored in wheat. 

Therefore, this dissertation aims to explore the potential use of phenomic platforms to 

enhance prediction accuracy and increase objectivity in evaluating major economically important 

traits in wheat – Fusarium head blight resistance and grain yield. Further, this dissertation aims to 

enhance prediction accuracy by integrating phenomic information with genomic information while 

identifying genomic regions with potential association with these economically important 

quantitative traits.  
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CHAPTER II: GENOMIC REGIONS INFLUENCING THE HYPERSPECTRAL 
PHENOME OF DEOXYNIVALENOL INFECTED WHEAT 

 
[Published: Scientific Reports, 14:19340 (2024)] 

 
Abstract 

The quantitative nature of fusarium head blight (FHB) resistance requires further 

exploration of the wheat genome to identify regions conferring resistance. In this study, we 

explored the application of hyperspectral imaging of Fusarium-infected wheat kernels and 

identified regions of the wheat genome contributing significantly to the accumulation of 

Deoxynivalenol (DON) mycotoxin. Strong correlations were identified between hyperspectral 

reflectance values for 204 wavebands in the 397 nm to 673 nm range and DON mycotoxin. 

Dimensionality reduction using principal components was performed for all 204 wavebands and 

38 sliding windows across the range of wavebands. The first principal component (PC1) of all 204 

wavebands explained 70% of the total variation in waveband reflectance values and was highly 

correlated with DON mycotoxin. PC1 was used as a phenotype in a genome wide association study 

and a large effect QTL on chromosome 2D was identified for PC1 of all wavebands as well as 

nearly all 38 sliding windows. The allele contributing variation in PC1 values also led to a 

substantial reduction in DON. The 2D polymorphism affecting DON levels localized to the exon 

of TraesCS2D02G524600 which is upregulated in wheat spike and rachis tissues during FHB 

infection. This work demonstrates the value of hyperspectral imaging as a correlated trait for 

investigating the genetic basis of resistance and developing wheat varieties with enhanced 

resistance to FHB. 
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2.1. Introduction 

Fusarium head blight (FHB) results in significant grain quality and yield reductions that 

limit profits for wheat farmers and presents challenges in managing mycotoxins and affects wheat 

production worldwide. During FHB infection by the ascomycete fungus Fusarium graminearum 

Schwabe, Deoxynivalenol (DON) mycotoxin accumulates in wheat kernels (Mirocha et al., 1994). 

DON is harmful to both humans and animals when ingested (Foroud et al., 2019) and is tightly 

regulated by testing grain at the point of sale prior to entering the marketplace. Increasing the level 

of genetic resistance to FHB through breeding is a highly effective mechanism to minimize DON 

levels on individual farms and limit the amount of mycotoxin entering the grain marketplace 

(Mesterhazy 2014).  

Type III resistance to FHB, resistance to DON accumulation, remains a challenge in FHB-

improvement programs. As a quantitative trait, Type III resistance is controlled by multiple QTLs 

(Bai et al., 2018). Several QTLs for lower DON accumulation have been reported with da Silva et 

al. (2019) reporting a large effect QTL in 5A accounting for 13% phenotypic variation for DON. 

He et al. (2019) identified two major QTLs in 3B, and 3D and Larkin et al. (2020) identified ten 

significant marker trait associations across the genome. Recently, Haile et al. (2023) identified 

nine QTLs associated with DON accumulation using a multi-locus genome wide association study 

(GWAS) model.  

Phenotyping DON mycotoxin in grain samples relies on GC/MS (Gas 

Chromatography/Mass Spectrometry) (Tacke and Casper, 1996) methods that require extensive 

logistics that are time consuming and labor intensive. Obtaining samples for DON analysis 

requires a FHB nursery with disease pressure, extensive sampling in the field followed by 

threshing and milling of grain samples. High throughput imaging technologies have been explored 
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and exploited to improve the overall process and accuracy in phenotyping DON levels in wheat 

kernels (Ropelewska, 2019; Jaillais et al., 2015; Cambaza et al., 2019; Shi et al., 2020). However, 

DON phenotyping remains a bottleneck in elucidating the genetic basis of resistance to DON 

accumulation during FHB infection.  

Recently, hyperspectral imaging has been explored to further increase accuracy and 

intensity in evaluating DON content in barley (Su et al., 2021), oats (Tekle et al., 2015; Teixido-

Orries et al., 2023), and wheat (Femenias et al, 2022). At a single kernel resolution, Shen et al. 

(2022) and Femenias et al. (2022) imaged grain samples using wavebands at the near-infrared 

(NIR) range to quantify DON. Mobile handheld hyperspectral cameras like the Specim IQ 

(Specim, Oulo, Finland) detect reflectance values at wavebands from the visible to near infrared 

(VIS/NIRS) regions (Behman et al., 2018) and have been used for disease detection of root rot in 

grapevine (Calamita et al., 2021), powdery mildew in wild rocket (Pane et al., 2021), and root and 

crown rot in sugar beet (Barreto et al., 2020).   

Phenomics and imaging technologies have been integrated with GWAS to elucidate the 

genetic architecture of quantitative traits (Xiao et al., 2022). Several studies have reported the 

integration of phenomics and high-throughput phenotyping for GWAS in wheat (Jiang et al., 2019; 

Rasheed et al., 2014; Yates et al., 2019), rice (Barnaby et al. 2020; Feng et al., 2017; Sun et 

al.,2019), soybean (Herritt et al., 2016; Dhanapal et al., 2016; Xavier et al., 2017), and maize 

(Muraya et al., 2017; Gage et al., 2018; Wang et al., 2019). While the genetic basis of hyperspectral 

imaging-derived phenotypes has been investigated in rice (Feng et al., 2017; Barnaby et al., 2020), 

and soybean (Wang et al., 2021; Yoosefzadeh-Najafabadi et al., 2021), great potential exists to 

leverage imaging technologies to investigate the genetic basis of quantitative traits.  
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This study leverages hyperspectral imaging in the identification of genomic regions 

associated with DON accumulation in soft winter wheat adapted to the Eastern United States. 

DON-infected wheat kernels of diverse wheat varieties and elite breeding lines were imaged using 

the Specim IQ handheld hyperspectral imaging system. The hyperspectral reflectance values 

generated were used to 1) determine the relationship of the hyperspectral phenome with DON 

mycotoxin levels in wheat kernels and 2) identify genomic regions associated with mycotoxin 

levels and variation in the hyperspectral phenome of DON-infected kernels. 

2.2. Materials and Methods 

2.2.1. Plant materials  

A set of 200 soft red and 114 soft white winter wheat genotypes (n=314), comprised of 

advanced breeding lines and commercial varieties (Supplementary Table 3.1) were used in this 

study. Genotypes MI14W0190 and Ambassador were considered FHB-resistant checks, low DON 

and FHB-susceptible, high DON checks, respectively. Wheat genotypes were planted in a misted 

and inoculated Fusarium screening nursery in East Lasing, MI (º42.69 N, º84.48W, Elevation: 264 

m) in one-meter rows using a completely randomized designed with two to four replicates per 

genotype.  

2.2.2. Fusarium inoculum  

Fusarium graminearum cultures were collected in 2020 from Huron, Ingham, Monroe, 

Tuscola and Sanilac counties in Michigan, USA. Initial cultures were grown by placing infected 

seeds in Nash-Synder Media for 5 to 7 days at room temperature. Isolates for field inoculation were 

cultured in spawn bags with a 0.2-micron filter patch (Unicorn Bags, TX, USA) containing 1.5 kg 

corn kernels. Corn was soaked in deionized water for 24 to 48 hours and autoclaved for 90 minutes 

three times in succession. One culture plate of a four-to-six-day-old culture and 100 ml autoclaved 
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deionized water were added to each spawn bag. Cultures developed over two to three weeks and 

were dried in biohazard hood for 48 hours at ambient temperature. Isolates from different locations 

were cultured separately. After drying, F. graminearum grain spawn cultures from the five 

locations were pooled in equal proportions by weight prior to inoculation. Field inoculation was 

carried out five times beginning at approximately 5 weeks prior to flowering. A misting system 

was run throughout the nursery for 10 minutes every hour for 12 hours, 6 am to 6 pm, to promote 

infection and disease development.  

2.2.3. Deoxynivalenol evaluation  

Wheat heads from the middle 0.3 meter of each row were sampled separately and harvested 

by hand. The heads from each row were threshed together and all seeds were retained. A subsample 

of 10 grams from each row was ball-milled using Restch MM 400 miller (Retsch, PA, USA) to 

generate flour meeting the guidelines set by the US Wheat and Barley Scab Initiative (USWBI) 

(https://scabusa.org/don_labs_umn_testinglab_protocol). Deoxynivalenol concentration of flour 

samples was determined using GC/MS at the Department of Plant Pathology, University of 

Minnesota.  

2.2.4. Hyperspectral image acquisition  

FHB-infected wheat kernels from each genotype sent for DON content measurement were 

imaged using, a handheld, push broom hyperspectral camera, Specim IQ (Specim, Oulo, Finland). 

A sample of 50 to 80 wheat kernels from each replicate of each genotype were imaged. Seeds were 

placed against a black background side-by-side with the white reference panel. Imaging was done 

inside a 51 x 51 x 51-centimeter light box (Finnhomy, USA) using the attached LED light source. 

The hyperspectral camera was mounted on a tripod and angled 45º facing downward over the 
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kernels. Default Recording Mode was used to capture reflectance values from 204 wavebands from 

397 nm to 1004 nm with an integration time of 30 to 40 seconds and focus set at automatic.  

2.2.5. Image processing and reflectance value extraction  

Hyperspectral images were processed using QGIS 3.10.2 (QGIS, 2020). Image files (.dat) 

were imported as raster layer. Rendering was carried out using multiband color with Band 088 

(651.92 nm) as Red Band, Band 057 (560.30 nm) as Green Band, and Band 037 (501.72) as Blue 

Band. Color enhancements were set at Stretch to MinMax and normal blending mode. Raster 

calculation was carried out at 0.3 to 0.8 threshold. Raster calculated images were saved as GeoTIFF 

(.tif) file and converted to vector image (polygonize) using default settings. To determine region of 

interest (wheat kernels) and remove unnecessary features, toggle editing by selecting features was 

used. Vectorized images with region of interest determined were saved as ESRI Shape File (.shp). 

Spectral reflectance values were extracted from each ESRI shape file using “raster” package 

(Hijmans et al., 2023) in R v4.2.2 (R Core Team, 2021) by calculating mean reflectance values in 

each waveband.  

2.2.6. Statistical analysis  

The normality of hyperspectral reflectance data was assessed using Shapiro-Wilk Test and 

variance homogeneity assumption was carried out using Levene’s Test. Wavebands with p-values 

<0.05 failed to meet normality and homogeneity assumption. To test variation among the wheat 

genotypes for DON content and spectral reflectance values in all 204 wavebands, ANOVA was 

carried out for reflectance values at wavebands meeting normality and homogeneity assumptions, 

otherwise non-parametric Kruskal-Wallis Rank Test was employed following the model:   

(1) y = G + e 
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Where y is the DON content or spectral reflectance value of each waveband, G is the fixed effect 

of genotype, and e is the residual. Shapiro-Wilk Test, Levene’s Test, ANOVA F-Test, and Kruskal-

Wallis Rank Test were carried out in R v4.2.2 (R Core Team, 2021).  

Means of DON content and spectral reflectance values for two to four replicates per 

genotype were calculated using the “emmeans” package (Lenth et al., 2018). Pearson’s Correlation 

Coefficient was computed between DON means and spectral reflectance values at all individual 

wavebands.  

2.2.7. Principal Component Analysis (PCA) of wavebands  

PCA was carried out using reflectance values for all wavebands to dimensionally reduce 

the spectral data and identify wavebands potentially associated with DON. To evaluate the 

contribution of waveband ranges across the hyperspectral phenome of DON infected wheat kernels, 

we employed a “Sliding Window” approach where the first twenty wavebands were binned and 

subjected to PCA. The bin was then “slid” at five-waveband intervals and PCs were generated for 

the next twenty wavebands to 1004 nm for a total of 38 windows (binned wavebands). The resulting 

PC1 waveband reflectance values from the 38 windows were then correlated to the GC/MS-derived 

DON content and used as predictors of DON. PCA and correlation was carried out in R v4.2.2 (R 

Core Team, 2021).  

2.2.8. DNA isolation and genotyping  

Tissue was collected from all genotypes evaluated and DNA was isolated according to 

Wiersma et al. (2016). Genotyping-by-sequencing libraries were prepared according to Poland et 

al. (2012) scaled to a 24uL volume in 384-well format. Libraries were sequenced at 384-plex on an 

Illumina HiSeq 4000 instrument. SNPs were called using the TASSEL 5 GBS pipeline (Glaubitz 

et al., 2014). Reads were aligned to the RefSeq v1.0 wheat reference genome assembly 
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(International Wheat Genome Sequencing Consortium) using default parameters. For the 

GBSSeqToTagDBPlugin and ProductionSNPCallerPluginV2 steps, the k-mer length was set to 64 

base pairs and a minimum coverage of five reads was required for each k-mer. Default settings 

were used for all other steps. SNPs were initially called using all families and parents. SNPs were 

subsequently filtered for 0.85 call rate and 0.05 minor allele frequency (MAF).  

2.2.8. Genome wide association mapping  

Phenotypes for GWAS included: 1) GC/MS-derived DON content, 2) PC1 of all 204 

wavebands and 3) PC1 of 38 waveband bins from the “Sliding Window” approach. GWAS was 

carried out using the Bayesian-information and Linkage Disequilibrium Iteratively Nested Keyway 

(BLINK) (Huang et al., 2019) model in GAPIT v3 (Genomic Association and Prediction Integrated 

Tool) (Lipka et al., 2012; latest version: March 12, 2022). A total of 9,961 SNPs across all 21 

chromosomes remained after filtering at MAF < 0.05 and 0.85 call rate. To address potential 

population structure, three principal components were used in GWAS models with the exception 

of two principal components for one phenotypic input, and four principal components for four 

phenotypic inputs (Supplementary Table 2.7). LD between MTAs was investigated using TASSEL 

5 (Glaubitz et al., 2014).  

2.2.9. Candidate gene identification  

Significant SNPs identified in GWAS were assigned to high confidence gene models in 

IWGSC RefSeq Annotation V1.0 (www.wheatgenome.org). Descriptions of putative candidate 

genes were derived from the public wheat expression database Triticeae Multi-omics center 

(http://202.194.139.32) (Ma et al., 2021) and Wheat Expression Browser (Ramirez-Gonzalez et al., 

2021).  
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2.3. Results 

2.3.1. Deoxynivalenol concentration  

Wheat genotypes showed variation for DON concentration (p-value: 3.016x10-7) based on 

non-parametric Kruskal-Wallis Rank Test (Figure 2.1; Supplementary Table 2.2). Pairwise 

comparison of means revealed 227 genotypes (72.3%) having significantly lower DON content in 

comparison with susceptible check Ambassador. In comparison 248 genotypes (79.3%) were not 

significantly different from the resistant check, MI14W0190 and 21 genotypes (6.7%) have 

significantly lower DON content than MI14W0190. 

2.3.2. Hyperspectral reflectance values and dimensionality reduction of  hyperspectral phenome  

Significant variation (p-value: < 0.05) among the genotypes based on Kruskal-Wallis Rank Test 

and ANOVA F-Test for wavebands meeting normality and variance homogeneity assumptions, 

were observed in each of the 204 wavebands generated (Supplementary Table 2.2; Supplementary  

 

  

Figure 2.1. Phenotyping of soft winter wheat genotypes for DON accumulation. Frequency 
distribution of GC/MS-derived DON content of the 314 soft winter wheat genotypes (red line 
represents the population mean DON content).  
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Figure 2.1). Of the 204 wavebands evaluated, only 15 wavebands (7.35%) met the normality and 

variance homogeneity assumptions (Supplementary Table 2.2). Significant positive correlations 

were found between the 204 wavebands generated and DON content, with 97 wavebands in the 

455 nm to 739 nm range demonstrating a correlation of greater than 0.5 with DON content 

(Supplementary Table 2.3). The 584 nm to 673 nm waveband range demonstrated the highest 

correlations with DON greater than 0.6 (Supplementary Table 2.3).  

Principal component analysis (PCA) was performed for all 204 wavebands to 

dimensionally reduce the hyperspectral phenome of the DON infected wheat kernels. The first two 

principal components accounted for 74.0% and 6.0% of variation in hyperspectral reflectance 

values (Supplementary Table 2.6), respectively. Genotypes with lower values in the first principal 

component (PC1) demonstrated lower DON content and PC1 of all wavebands correlated with 

DON at 0.57. The waveband at 502 nm demonstrated the highest component loading (0.101) and 

was also found to be the most discriminatory among the wavebands, followed by 499 nm, 505 nm, 

508 nm, and 511 nm (Supplementary Table 2.4). Wavebands in the 397 nm to 780 nm 

demonstrated higher component loading than most wavebands beyond 780 nm (Supplementary 

Table 2.4).  

 PCA was also carried out for binned wavebands using a sliding window approach. The 

first principal component for each of the 38 binned wavebands (windows) explained 51% to 99% 

of the variation in hyperspectral reflectance values within each bin (Supplementary Table 2.6). 

PC1 of each waveband bin was found to be significantly correlated with DON content (Figure 2.2, 

Supplementary Table 2.7). Windows 1 to 10 spanning wavebands 397 nm to 584 nm demonstrated 

significant positive correlations of 0.50 to 0.58 with GC/MS-derived DON content, while 

Windows 11 to 25 spanning wavebands 542 nm to 810 nm demonstrated a significant negative  
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Figure 2.2. Heatmap of correlations among PC1 between 38 sliding windows (binned wavebands) 
and DON content. 

 

correlation from -0.40 to -0.64 (Figure 2.2; Supplementary Table 2.7). The sign of the correlation 

between waveband window PC1 values and DON inverted six times across the waveband spectrum 

(Figure 2.2). The correlation of PC1 with DON inverted from positive in Window 1 to 10 to 

negative from Windows 11 to 25. Correlation with DON inverted again from Windows 25 to 26, 

27 to 28, 29 to 30 and 33 to 34.  
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Table 2.1. Marker-trait associations identified using GC/MS-derived DON content as 
phenotypic input influencing DON accumulation. 

Significant SNP 
(MTA) 

Chromosome Position 
(mb) 

Allele* p.value Alleles 
Effect 

PVE (%)  

S2A_PART2_18053 2A 642.9 A/G 6.11 x 10-8 3.77 3.85 
S2B_PART2_24719 2B 700.4 T/C 6.68 x 10-7 2.47 1.39 
S3A_PART2_25234 3A 706.4 C/T 6.32 x 10-7 3.64 2.65 
S3A_PART2_25425 3A 708.4 C/T 9.82 x 10-7 4.24 4.03 
S5A_PART1_18813 5A 18.81 C/T 4.65 x 10-7 2.88 1.96 

 *Alleles in bold reduce DON accumulation; PVE = Phenotypic Variance Explained. 
 

 
Figure 2.3. Alleles reducing GC/MS-derived DON identified by GWAS.  

 

2.3.3. Genome wide association study for deoxynivalenol accumulation  

GWAS was performed to identify marker trait associations (MTAs) associated with DON 

content (Supplementary Table 2.8). Five significant MTAs were identified in chromosomes 2A, 

2B, 3A, and 5A explaining 1.96% to 4.03% of the variation in DON (Table 2.1, Supplementary 
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Table 2.8, Supplementary File 2.1). Favorable alleles at all five loci demonstrated a reduction in 

DON content (Figure 2.3).  

GWAS using PC1 of all 204 wavebands identified a single locus (S2D_PART2_15090) at 

613.12 Mb on chromosome 2D  using PC1 that explained 26.4% of the phenotypic variation in the 

hyperspectral phenome of DON-infected wheat kernels (Figure 2.4a and 2.4b). Genotypes carrying 

the A allele demonstrate a 6.3 ppm reduction in DON compared with genotypes bearing the G 

allele (Figure 2.4c, Supplementary Table 2.8). The A allele at the 2D locus is the minor allele with 

a high frequency of 0.47.   

GWAS using the PC1 value for all 38 waveband bins consistently identifies the 2D locus 

in 35 of the 38 waveband bins, explaining 6.4% to 28.3% of the phenotypic variation in PC1. The 

S2D_PART2_15090 single nucleotide polymorphism (SNP) demonstrates a negative allele effect  

 

 
Figure 2.4. Genome wide association using PC1 of the 204 wavebands generated using 
hyperspectral imaging. (a) Manhattan plot identifying the MTA on chromosome 2DL and (b) its 
corresponding quantile-quantile plot, (c) variation in actual DON content of genotypes carrying 
the A and G allele in SNP S2D_PART2_15090. 
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from Windows 1 to 10 (397 nm to 584 nm) and a positive allele effect from Windows 11 to 25 (543 

nm to 811 nm). The inversion of allele effect is consistent with the observed change in sign in the 

correlation between waveband bin PC1 values and DON content.  

An additional 18 MTAs were identified across the hyperspectral phenome of DON infected 

wheat kernels on chromosomes 1A, 1B, 1D, 2B, 2D, 3A, 3B, 4A, 4B, 7A, 7B and 7D 

(Supplementary Table 2.8, Supplementary File 2.1) across different waveband ranges. A locus on 

1B was identified from 396 nm to 467 nm explaining 18.8% and 17.6% of variation in PC1 of 

waveband reflectance values and reducing DON by 2.0 ppm and 2.2 ppm at waveband bins 1 and 

2, respectively (Supplementary Table 2.8). Other MTAs explained 0.2% to 7.6% of variation in 

PC1 of reflectance values within individual waveband bins.  

Several SNPs significantly associated with waveband bin PC1 values were found to be in 

linkage disequilibrium (LD) (Supplementary Table 2.9). On chromosome 2D, the SNPs 

S2D_PART2_13700 and S2D_PART2_15090, were found to be in high LD with r2 = 0.88 at 

substantial distance of 13.9 mb (Supplementary Table 2.9). Weaker LD was detected between SNPs 

S2B_PART2_28124 and S2B_PART2_27654 on chromosome 2B at a distance of 4.69 mb (r2 = 

0.72), and between SNPs S1B_PART2_24837 and S1B_PART2_24652 on chromosome 1B 

(distance: 1.85 mb) (r2=0.25).  

2.3.4. Putative candidate gene identified on chromosome 2D  

The SNP identified on 2D associated with PC1 of the entire hyperspectral phenome of DON 

infected wheat kernels and PC1 of nearly all sliding windows, S2D_PART2_15090, is located in 

the single exon of a 1,104 kb gene, TraesCS2D02G524600, coding for a protein with an F-box 

domain. TraesCS2D02G524600 is upregulated in the spikelets and rachis in response to inoculation 

with F. graminearum in near-isogenic lines (NILs) bearing a 2DL introgression conferring FHB 
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resistance (Biselli et al. 2018) (Supplementary Figure 2.5) and has been implicated in Fhb1 

resistance with higher expression in NILs carrying Fhb1 (Ma et al., 2021) (Supplementary Figure 

2.6). The expression of TraesCS2D02G524600 and 17 adjacent genes within a 2Mb region, 1Mb 

upstream and downstream, was investigated across tissues and developmental stages under F. 

graminearum infection (Wheat Expression Browser, Ramirez-Gonzalez et al., 2021) 

(Supplementary Figure 2.7). TraesCS2D02G524600 is inducible by infection with F. graminearum 

and highly expressed in the spike at the reproductive stage, which is consistent across gene 

expression data sets. Only one gene in the 2Mb interval, TraesCS2D02G524400, located upstream 

of TraesCS2D02G524600, demonstrates the exact same expression profile. TraesCS2D02G524600 

is a likely candidate gene for the large effect locus on 2D that reduces DON accumulation in wheat 

kernels during infection by F. graminearum. 

2.4. Discussion 

Breeding for resistance to FHB requires evaluation of the multiple components of 

resistance (Steiner et al., 2017). Each FHB resistance component has a different relationship to 

DON (Buerstmayr and Lemmens, 2015; Mesterhazy et al., 2015; Paul et al., 2005) and evaluating 

multiple traits can lead to better selection decisions in breeding. Visual observations of FHB 

severity and incidence are used to develop an overall visual FHB index (Steiner et al., 2017). The 

proportion of Fusarium damaged kernels can be estimated on samples of infected grain and a high 

correlation with DON has been demonstrated for this resistance component (Mesterhazy et al., 

2015).  

In this study, we generate multiple visual FHB resistance phenotypes using the 

hyperspectral phenome of DON infected wheat kernels. Reflectance values at individual 

wavebands can be considered unique phenotypes and high correlations were found between DON 
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and reflectance values at individual wavebands, especially at the visible light spectrum range. PC1 

of the reflectance values from all wavebands compresses the entire hyperspectral phenome into a 

single phenotype that incorporates the information from all wavebands. The hyperspectral phenome 

was dissected further into 38 sliding windows and PC1 of each window was used as a separate 

phenotype that is correlated with DON.  

In this study, we identified five MTAs on chromosomes 2A, 2B, 3A, and 5A that co-

localize with previously reported genomic regions conferring resistance to DON (Supplementary 

Table 2.10). Individually, each of the MTAs identified for DON content explain only 1% to 4% of 

the variation in DON and reduce DON by 2.5 ppm to 4.2 ppm. FHB resistance traits can differ in 

their genetic architecture. Developing the hyperspectral phenome into a novel FHB resistance 

phenotype using PC1 of all wavebands, which is correlated to DON, led to identification of a 

comparably large effect locus on 2D explaining 26% of the variation in PC1 and reducing DON by 

6.8 ppm. While several genomic regions were identified across waveband ranges, the 2D locus was 

identified using PC1, further establishing its association with the hyperspectral phenome of DON 

infected wheat kernels. By leveraging the hyperspectral phenome as a correlated trait, we were able 

to identify a locus influencing the target trait, DON mycotoxin content.  

The large effect locus on 2D localizes to the exon of an F-box protein encoding gene and 

captures a large proportion of variation in the hyperspectral phenome of DON infected wheat 

kernels. Two SNPs were identified in the exon of this gene; however, the BLINK algorithm 

removes SNPs that are in LD. Multiple gene expression studies (Biselli et al. 2018; Schweiger et 

al. 2016; Ma et al. 2021) demonstrate the gene TraesCS2D02G524600 is inducible upon infection 

with F. graminearum and is expressed exclusively in tissues of the spike and rachis as a component 
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of the defense response. It may be possible to select for the DON-reducing allele at 2D locus in a 

breeding context using a Kompetitive Allele Specific PCR (KASP) marker assay (He et al., 2014).  

Evaluation of DON production during infection by F. graminearum is an integral part in 

developing wheat varieties with resistance to FHB, which has long been done using GC/MS (Tacke 

and Casper, 1996). Preparation and phenotyping of DON infected wheat kernel samples is time 

consuming, tedious, and labor intensive (Steiner et al., 2017). This study demonstrates that 

hyperspectral imaging can reduce the amount of time and physical resources necessary to make 

selection decisions in breeding for lower DON. 
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CHAPTER III: BLENDED GENOMIC AND HYPERSPECTRAL IMAGING-BASED 
PREDICTIONS ENABLE SELECTION FOR REDUCED  
DEOXYNIVALENOL CONTENT IN WHEAT GRAINS 

 
[Manuscript Submitted: G3 (G3-2024-405605, Reviewed, revisions made)] 

 
Abstract 

Breeding for low deoxynivalenol (DON) mycotoxin content in wheat is challenging due to 

the complexity of the trait and phenotyping limitations. Since phenomic prediction relies on non-

additive effects and genomic prediction on additive effects, their complementarity can improve 

selection accuracy. In this study DON-infected wheat kernels were imaged using a hyperspectral 

camera to generate reflectance values across the spectrum of visible and near infrared light that 

were used in phenomic predictions. Five Bayesian generalized linear regression models, and two 

machine learning models were trained using phenomic and genomic predictions from advanced 

soft winter wheat breeding lines evaluated in 2021 and 2022. Across all training sets and models, 

phenomic predictions using wavebands in the visible light spectrum (400-700 nm) had higher 

predictive ability than genomic predictions or phenomic predictions using the full waveband range 

(400-1000 nm). Forward prediction using 2021 trial, 2022 trial, and combined trials as training set 

was performed using model blending on two sets of F4:5 selection candidates evaluated 

independently in 2022 and 2023. The phenotypic and genetic correlations, as well as indirect 

selection accuracies, of the model averages of phenomic predictions and combined phenomic and 

genomic predictions were higher than genomic predictions alone. Accuracies depended on the 

combination of training set and selection candidates. Unsupervised K-Means clustering using the 

blended predicted values partitioned selection candidates into two groups with high and low mean 

observed DON content. This study demonstrates the potential of hyperspectral imaging-based 



30 
 

phenomic prediction to complement genomic prediction and highlights considerations for 

prediction-based selection of low DON in wheat. 

3.1. Introduction 

Breeding for complex traits like reduced Deoxynivalenol (DON) mycotoxin accumulation, 

known as Type III resistance to Fusarium Head Blight (FHB), presents a significant challenge in 

wheat breeding (Bai et al., 2018). DON is commonly measured using gas chromatography/mass 

spectrometry (GC/MS) (Tacke and Casper, 1996), but this method is often time-consuming and 

labor-intensive due to the nature of sample preparation (Steiner et al., 2017). For breeding 

programs that outsource GC/MS analysis, the time required to generate DON data can extend the 

time frames for selection, potentially impacting decision making and the length of breeding cycles. 

To address these limitations, researchers have explored alternative approaches for DON 

measurement to reduce reliance on GC/MS (Buerstmayr et al., 2019, Alisaac and Mahlein, 2023). 

Since its introduction, genomic prediction has been used extensively to improve complex 

traits (Haile et al., 2021, Shahi et al., 2022), including FHB resistance (Rutkoski et al., 2012), with 

moderate to high prediction accuracies. Genomic prediction enables the estimation of an 

individual's genetic breeding value based on genomic information, often using Single Nucleotide 

Polymorphisms (SNPs) (Heffner et al., 2009). One advantage of genomic prediction is enabling 

early and accurate predictions, thereby accelerating the breeding process and increasing selection 

efficiency, allowing breeders to evaluate a larger number of individuals, and increasing selection 

intensity. (Meuwissen et al., 2001, Heffner et al., 2009, Crossa et al., 2014) However, 

environmental effects and genotype-by-environment interactions still need to be considered for the 

target trait, which remains a weakness of genomic prediction, especially when multiple years and 

environments are considered (Jackson et al., 2023). While costs per sample have decreased 
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significantly, genotyping large numbers of individuals still requires substantial financial resources. 

For breeding programs conducting in-house sampling and DNA extraction, this process can also 

be time-consuming and labor-intensive. 

In recent years, phenomic selection has emerged as a potential alternative to genomic 

prediction, addressing some of its practical challenges, particularly in terms of implementation 

(Rincent et al., 2018). The primary advantage of phenomic selection lies in its ability to achieve a 

comparable, and in some cases higher, level of accuracy than genomic prediction (Rincent et al., 

2018; Ronald et al., 2022). Phenomic selection uses high-throughput phenotyping tools, such as 

near-infrared spectroscopy, to capture detailed phenomic data that reflect the physical and 

biochemical characteristics of the sample (Rincent et al., 2018). In the case of FHB resistance, 

several studies have demonstrated the potential application of image-based phenomic platforms, 

for FHB evaluation (Alisaac et al., 2018; Mahlein et al., 2019; Liang et al., 2024). Despite these 

advancements, phenomic prediction for DON, specifically in comparison with genomic prediction, 

has not been extensively explored, leaving room for further research to leverage its full potential 

in breeding programs targeting DON reduction. 

Recently, efforts have been made to integrate information from varied phenotyping 

platforms to predict and select for traits in breeding programs (Martens et al., 2015; Rutkoski et 

al., 2016; Crain et al., 2018; Galan et al., 2020; Togninalli et al., 2023; Adak et al., 2023; Roth et 

al., 2023), with many using drone-based platforms to evaluate agronomic traits. Thapa et al. (2024) 

recently demonstrated the potential integration of hyperspectral imaging with genomic information 

to predict FHB-related traits, including DON accumulation, using deep learning approaches. Their 
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results demonstrated significant improvements in prediction accuracy compared to genomic 

prediction alone. 

Model ensembling and blending approaches, such as Bayesian model averaging, weighted 

model averaging, and least squares model averaging, have long been used in fields outside of plant 

breeding (Raftery et al., 1997; Wasserman, 2000; Hansen, 2007; Magnus et al., 2010). An 

important contribution to the application of model ensembling in plant breeding was made by Kick 

and Washburn (2023), revealing that combining linear and non-linear models using genomic, 

environmental, and crop management data provided better accuracy than base (or individual) 

models for grain yield. 

This study explores the use of hyperspectral imaging-derived spectral reflectance values in 

the phenomic prediction of DON mycotoxin content in soft winter wheat grains and compares 

phenomic prediction with genomic prediction. Simple model averaging was explored as a model 

blending approach to integrate both types of predictions. The utility of phenomic, genomic and 

blending of both phenomic and genomic predictions models was explored by forward prediction 

in a separate set of F4:5 derived selection candidates. Model blending by unsupervised clustering 

of genotypes based on predicted DON values from various models was explored in a breeding 

selection scheme.  

3.2. Materials and Methods 

3.2.1. Plant materials for training population and field establishment 

A total of 558 soft winter wheat genotypes (430 soft red and 128 soft white) comprised of 

advanced breeding lines and commercially released varieties were evaluated for DON mycotoxin 

content in response to Fusarium Head Blight (FHB) in 2021 (n=307) and 2022 (n=288). The 558 

genotypes served as training populations in subsequent analysis. A set of 37 genotypes were 
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evaluated in both years. Limited overlap between years is due to the use of advanced breeding 

lines from an active breeding program where new entries are cycled through testing stages each 

year. The soft white winter wheat genotype, MI14W0190, was the FHB-resistant, low DON check. 

The soft white winter wheat variety, Ambassador, was the FHB-susceptible, high DON checks. In 

both years, genotypes were evaluated in a misted and inoculated Fusarium screening nursery in 

East Lansing, Michigan using a completely randomized design with two replicates. 

3.2.2. Fusarium inoculum preparation and field inoculation 

Fusarium graminearum cultures were collected in 2020 from Huron, Ingham, Monroe, 

Tuscola, and Sanilac counties and in 2021 from Huron, Ingham, Monroe, and Saginaw counties in 

Michigan, USA for the 2021 and 2022 trials, respectively. Isolates were grown by placing infected 

seeds in Nash-Synder Media for 5 to 7 days at room temperature. Approximately 1.5 kg of corn 

kernels were soaked in deionized water for 24 to 48 hours, placed in spawn bags with 0.2-micron 

filter patch (Unicorn Bags, TX, USA) and autoclaved three times for 90 minutes. A four-to six-

day-old culture and 100 ml autoclaved deionized water were added to each autoclaved spawn bag. 

Isolates from different locations were cultured separately, and after approximately two weeks, 

infected grain spawns were dried in a biohazard hood at ambient temperature. The F. graminearum 

grain spawn cultures were pooled in equal proportions by weight prior to inoculation. Field 

inoculation began five weeks before flowering and grain spawn was applied four to five times. To 

promote proper condition for infection and disease development, a misting system was run 

throughout the nursery ten minutes every hour for 12 hours, 6:00 am to 6:00 pm. 

3.2.3. Deoxynivalenol measurement 

A sample of infected heads were collected from the middle 0.3 meter of each replicate of 

each genotype in the Fusarium screening nursery. A 10-gram subsample of infected wheat kernels 
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was ball-milled using Restch MM 400 miller (Retsch, PA, USA). The flour samples were then sent 

to the Department of Plant Pathology, University of Minnesota for DON concentration 

measurement using GC/MS. 

3.2.4. Hyperspectral imaging and processing 

A sample of 50 to 80 wheat kernels from each replicate of each genotype were placed 

against a dark background side-by-side a white refence panel and were imaged using a mobile, 

handheld hyperspectral camera, Specim IQ (Specim, Oulo, Finland). Imaging was done inside a 

20 x 20 x 20 inches light box (Finnhomy, USA) using the attached LED light source with the 

camera mounted on a tripod and angled 45º facing downward over the kernels and the focus set at 

automatic. To capture the raw reflectance values from 204 wavebands (397 to 1004 nm), the 

camera was set at Default Recording Mode with an integration time of 30 to 40 seconds. 

Hyperspectral image files (.dat) were stored in Specim IQ studio and imported as raster layer to 

QGIS 3.10.2 (QGIS, 2020) for processing. Multiband color was used for rendering, with Band 088 

(651.92 nm) as Red Band, Band 057 (560.30 nm) as Green Band, and Band 037 (501.72) as Blue 

Band. Color enhancements were set at Stretch to MinMax and normal blending mode. Raster 

calculated images at a 0.3 to 0.8 threshold were saved as GeoTIFF (.tif) file and converted to vector 

image (Polygonize) using default settings. Unnecessary features were removed using toggle edit 

to determine the region of interest (wheat kernels) and saved as ESRI shape file (vectorized image) 

(.shp). From the ESRI shape file, spectral reflectance values in each waveband were extracted 

using “raster” package (Hijmans and van Etten, 2012) in R v4.2.2 (R Core Team, 2023). Savitzky-

Golay filter for smoothing for the generated spectral reflectance values across wavebands were 

done at window size of 11 and polynomial degree of 3 (3rd degree) using “signal” package in R 

(signal developers, 2023). 
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3.4.5. Statistical analysis 

ANOVA F-Tests were carried out to assess the variation in DON content and spectral 

reflectance values among the genotypes tested in each year.  Best Linear Unbiased Estimates 

(BLUEs) of DON content and spectral reflectance values in all wavebands generated for all 

genotypes in each year were generated using “lsmeans” package (Length, 2016) following the 

model: 

(1) 𝑌𝑌𝑖𝑖𝑖𝑖  =  𝜇𝜇  +  𝐺𝐺𝑖𝑖  +  𝜀𝜀𝑖𝑖𝑖𝑖 

Where Yij is the response of the i-th genotype in the j-th observation, µ is the overall mean, 

Gi is the fixed effect of the i-th genotype and 𝜀𝜀𝑖𝑖𝑖𝑖 is the residual error for the i-th genotype in the j-

th observation. 

BLUEs of DON content and spectral reflectance values for all wavebands across years 

were modeled using “lme4” package in R (Bates et al., 2014) following the model: 

(2) 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  =  𝜇𝜇  +  𝐺𝐺𝑖𝑖  +  𝑇𝑇𝑗𝑗  +  (𝐺𝐺𝐺𝐺)𝑖𝑖𝑖𝑖  +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 

Where Yijk is the response of the i-th  genotype in the j-th year for the k-th observation, µ 

is the overall mean across genotypes and years, Gi is the fixed effect of the i-th genotype, Tj is the 

random effect of j-th trial, (GT)ij is the random effect of the interaction between the i-th genotype 

and the j-th trial, and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the residual error. Mean DON content and spectral reflectance values 

across years were computed using “lsmeans” package (Lenth, 2016) in R after modeling. Pearson’s 

correlation coefficient was used to assess the relationship between BLUEs of DON content and 

BLUEs of reflectance values at all individual wavebands within and across years. 

3.2.5. Heritability estimation 

 Heritability for DON content based on entry mean within years was calculated based on 

the following equation: 
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(3) 𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2 = 𝜎𝜎𝐺𝐺
2

𝜎𝜎𝐺𝐺
2+𝜎𝜎𝑒𝑒

2

𝑟𝑟

 

Where HGeno
2 is the estimated heritability on an entry mean basis, r is the number of 

replicates per genotype (entry), 𝜎𝜎𝑒𝑒2 is the error variance (residual mean square), and  𝜎𝜎𝐺𝐺2 is the 

genotype (entry) variance calculated following the equation: 

 Heritability based on entry mean across years was calculated based on the following 

equation: 

(4) 𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2 = 𝜎𝜎𝐺𝐺
2

𝜎𝜎𝐺𝐺
2+

𝜎𝜎𝐺𝐺𝐺𝐺
2

𝑟𝑟 +𝜎𝜎𝑒𝑒
2

𝑟𝑟𝑟𝑟

 

Where HGenoT
2 is the estimated heritability on an entry mean basis, r is the number of replicates 

per genotype (entry), N is the number of trials, 𝜎𝜎𝑒𝑒2 is the error variance (residual mean square), and  

𝜎𝜎𝐺𝐺2 is the genotype (entry) variance,  𝜎𝜎𝐺𝐺𝐺𝐺2 is the genotype by trial variance. 

3.2.6. DNA isolation and single nucleotide polymorphisms genotyping 

Tissue was collected from all genotypes evaluated and DNA was isolated according to 

Wiersma et al. (2016). Genotyping-by-sequencing libraries were prepared according to Poland et 

al. (2012) scaled to a 24uL volume in 384-well format. Libraries were sequenced at 384-plex on 

an Illumina HiSeq 4000 instrument. Single nucleotide polymorphisms were called using the 

TASSEL 5 GBS pipeline (Glaubitz et al., 2014). Reads were aligned to the RefSeq v2.0 wheat 

reference genome assembly (International Wheat Genome Sequencing Consortium) using default 

parameters. For the GBSSeqToTagDBPlugin and ProductionSNPCallerPluginV2 steps, the k-mer 

length was set to 64 base pairs and a minimum coverage of five reads was required for each k-mer. 

Default settings were used for all other steps. SNPs were initially called using all families and 

parents. SNPs were subsequently filtered for 0.70 call rate and 0.05 minor allele frequency. A total 

of 15,456 SNPs out of 386,651 SNPs remained after filtering. 
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3.2.7. Univariate genomic and phenomic prediction model assessment 

Two overlapping sets of hyperspectral bands were used in phenomic predictions of DON 

content,  all 204 wavebands from 400 to 1000 nm in the Visible Light and Near Infrared Spectrum 

(VIS/NIR) and wavebands in the Visible light (VIS) region from 400 to 800 nm. Genomic 

predictions were made using 15,456 SNPs across the wheat genome. Both phenomic and genomic 

prediction for DON was assessed using BayesA, BayesB, BayesC, Bayesian-Ridge Regression 

(BRR), and Bayesian LASSO (BayesL) with 50,000 iterations and BurnIn set at 5000, 

implemented in the “BGLR” package (Perez and de los Campos, 2014). Ridge Regression Best 

Linear Unbiased Prediction (RRBLUP) was executed using “rrBLUP” package in R (Endelman, 

2011). Extreme Gradient Boosting (XGBoost) was implemented using the  “xgboost” package 

(Chen and Guestrin, 2016) with parameters eta (learning rate) = 0.01, gamma = 0.2, max_depth 

(maximum tree depth) = 6, min_child_weight (minimum sum of instance weights) = 0.20, 

subsample = 1, and colsample_bytree (fraction of features (columns) used to grow each tree) = 1. 

Random Forrest was executed using the “caret” package (Kuhn, 2008) with default parameters 

(ntree = 500, nodesize = 5, maxnodes = unlimited). A total of 100 individual five-fold cross 

validation was carried out with 80% of the genotypes designated in the training set for all the 

models. Predictive ability of phenomic and genomic prediction for all models were computed as 

the average Pearson’s correlation (predictive ability) between the actual DON content and 

predicted values from all 100 cycles in each model.  

Genetic correlation as the Pearson correlation coefficient between the marker (or waveband 

for phenomic prediction)-based estimated breeding values (EBVs) derived from each models 

tested and the EBVs obtained from best linear unbiased prediction (BLUP) using the realized 

genomic relationship matrix (G). The realized G matrix was computed as the cross-product of 
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standardized marker data, and mixed model solutions were obtained using the “mixed.solve” 

function in the “rrBLUP” package (Endelman, 2011). From here, the genetic variance of the 

predicted and actual DON content, and its corresponding covariance was used to calculate the 

genetic correlation following the formula: 

(5) 𝑟𝑟𝑔𝑔 = 𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋𝑋𝑋
�(𝑉𝑉𝑉𝑉𝑉𝑉𝑋𝑋) (𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼)

 

Where CovXI is the covariance between the observed DON content (X) and the predicted 

DON content (I), VarX is the genetic variance of the observed DON content, VarI is the genetic 

variance of the predicted DON content. 

 Prediction accuracy (Acc(A)) was also calculated from each cross-validation cycle following 

the formula adapted from Wang et al. (2025): 

(6) 𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) =  𝑟𝑟𝐺𝐺�𝐻𝐻𝐴𝐴2 

Where rG is the genetic correlation between predicted and actual DON content, and H2
A is 

the estimated heritability of actual DON content in the testing set calculated by dividing the 

estimated genetic variance of the actual DON content in the testing set (σ2
G_X) by its estimated 

phenotypic variance (σ2
P_X).  

All cross validations, model fitting, heritability estimates, phenotypic and genotypic 

correlations, and prediction accuracy assessment were carried out in R v4.2.2 (R Core Team, 

2023).  

3.2.7. Feature selection 

The most informative wavebands were identified for each of the 2021 and 2022 trials and 

combined trials (across years) using recursive partitioning and regressive tree model with the 

“caret” package (Kuhn, 2008) carried out in R v4.2.2 (R Core Team, 2023). Feature importance 
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score (scaled relative importance percentage) of 100 or closer means higher association with DON 

content, whereas scores of 0 or closer means no or less association with DON.  

3.2.8. Forward prediction 

To test the predictive ability of the trained models, a set of 239 F4:5 generation breeding 

lines evaluated in 2022 and 217 F4:5 breeding lines evaluated in 2023 were used as prediction sets 

of selection candidates. Field establishment, field inoculation, DON measurement, and 

hyperspectral imaging and processing of selection candidates followed the procedures described 

for the 2021 and 2022 training sets. To simulate actual breeding scenarios, models trained using 

2021 and 2022 trials, and  BLUEs generated across years were used to predict the DON content 

of selection candidates. Forward predictions were carried out separately for phenomic and genomic 

predictions using all the models tested and used for cross validation.  

3.2.9. Evaluation of blended predictions using trained models 

Three approaches of  model blending using all the models tested were investigated: 1) 

phenomic predictions of DON content, 2) genomic predictions of DON content, and 3) both 

phenomic and genomic predictions of DON content. Blended forward prediction by model 

averaging was carried out following the formula: 

(7) ŷ = 1
𝑀𝑀
∑ ŷ𝑚𝑚𝑀𝑀
𝑚𝑚=1  

Where ŷ is the blended (averaged) forward prediction, M is the total number of individual 

prediction models, and ŷm
 is the predicted value from the m-th model. 

Phenotypic correlation between predicted and actual DON content in the selection 

candidates were carried out using Pearson’s correlation. Genetic correlation (rG) and prediction 

accuracy (AccA) was also determined following the approach and formula adapted from equations 

5 and 6, respectively. 
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In addition, indirect selection accuracy, Acc(I), of the blended predictions was determined 

based on the formula adapted from Lopez-Cruz et al. (2020): 

(8) 𝐴𝐴𝐴𝐴𝐴𝐴(𝐼𝐼)  =  𝐻𝐻𝐼𝐼(𝑐𝑐𝑐𝑐𝑟𝑟𝑋𝑋𝑋𝑋) 

Where corXI is the genetic correlation between the observed DON content of the selection 

candidates (X) and the predicted DON content of the selection candidates based on blended 

predictions (I), and HI is the square root of the estimated broad sense heritability (HI
2) in the 

predicted DON content of the selection candidates based on blended predictions, where HI
2

 is the 

estimated heritability of the blended DON content predictions of the selection candidates 

calculated by dividing the estimated genetic variance of the blended DON content predictions of 

the selection candidates (σ2
G_I) by its estimated phenotypic variance (σ2

P_I). 

3.2.10 Blended clustering for selection DON content selection 

Unsupervised K-Means Clustering was carried out using the “cluster” package in R 

(Maechler et al., 2023) in selection candidates using three different blending of eight phenomic, 

eight genomic and 16 phenomic and genomic prediction models. Clustering was carried out based 

on the objective function: 

(9) 𝐽𝐽 =  ∑  𝐾𝐾
𝑘𝑘=1 ∑ ‖ŷ𝑖𝑖 − µ𝑘𝑘‖2 

𝑖𝑖∈𝐶𝐶𝑘𝑘  
 

Where J is the within-cluster sum of squares, K is the pre-defined number of clusters, Ck is 

the set of data points assigned to cluster k, ŷi = [ŷi1, ŷi2,…,ŷiM] is the vector of predicted values 

from M different models for data point i, µk is the centroid of cluster k, defined as the mean vector 

of predicted values across all points in Ck. Two clusters were used for clustering (centers=2) as per 

result of Silhouette method employed to identify the optimum number of clusters. Two clusters 

were used for all K-means clustering runs for consistency. 
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3.3. Results 

3.3.1. Deoxynivalenol evaluation 

Significant variation in DON content was observed among the genotypes (p < 0.00001) tested in 

2021 and in 2022 (Figure 3.1). In 2021, 229 genotypes (74.6%) had significantly lower DON 

content than the susceptible check Ambassador, while 194 genotypes (63.5%) were not different 

from the resistant check MI14W0190, and 27 (8.8%) had significantly lower DON content than 

MI14W0190. In 2022, 279 genotypes (96.9%) had significantly lower DON content than 

Ambassador, and 194 (67.4%) demonstrated no difference from MI14W0190. No genotypes in 

2022 had lower DON content than MI14W0190. Across both years, there was significant variation 

in DON due to genotype (p < 0.00001) (Figure 3.1), year (p = 0.0000756) and genotype-by-year 

interaction (p = 0.000174). The entry mean heritability for DON across years at 0.55 was lower 

compared to single-year estimates for 2021 at 0.85 and 2022 at 0.81 (Supplementary Table 3.1.). 

3.3.2. Hyperspectral imaging of deoxynivalenol infected wheat kernels 

Significant correlations were identified between the 204 wavebands in the visible and near-

infrared regions and DON content for 2021, 2022, and across years (Figure 3.3). In 2021, all visible  

 

 

Figure 3.1. Frequency distributions of DON content in genotypes tested in (a) 2021 and (b) 2022. 
(c) 2021 and 2022 combined. Solid red bar represents average DON content among the genotypes 
tested for individual trials and across years. MI14W0190 and Ambassador, resistant and 
susceptible checks respectively, were also highlighted. 
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Figure 3.2. Spectral reflectance profile at the 400 to 100 nm range of genotyped evaluated in (a) 
2021 and (b) 2022, as well as in a (c) combined trials. Spectral profile of FHB-resistant check 
MI14W0190 and FHB-susceptible check Ambassador were highlighted. Broken line represents 
the average spectral profile for all the genotypes tested. 
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Figure 3.3. Pearson’s correlation of spectral reflectance values with Deoxynivalenol for 2021, 
2022 and 2021 and 2022 trials combined. 
 

light wavebands from 409 nm to 763 nm, along with wavebands 896 n to 911 nm in the NIRs 

region, demonstrated correlations of at least 0.5 with DON content. Wavebands from 496 nm to 

703 nm all demonstrated correlations of at least 0.6 (Figure 3.3). In 2022, correlations were lower, 

with only 14 wavebands from 418 nm to 455 nm reaching 0.5, and visible spectrum correlations 

ranged from 0.19 to 0.5. Interestingly, several near-infrared wavebands from 800 nm to 1000 nm 

had higher correlations with DON than those in the visible spectrum (Figure 3.3). Across years, 

correlations ranged from 0.21 to 0.51 in the visible spectrum from 400 nm to 800 nm and 0.09 to 

0.37 in the near-infrared region. A moderate correlation of at least 0.5 was observed in wavebands 

from 461 nm to 525 nm (Figure 3.3). 

3.3.3. Model comparison for deoxynivalenol prediction: predictive ability 

To evaluate and compare DON prediction models trained using phenomic or genomic data, 

a five-fold cross-validation with an 80/20 training/testing split was performed 100 times for each  

model. Using the 2021 trial as the training set, wavebands in the visible light spectrum 

(Phenomic_VIS)outperformed genomic prediction and phenomic prediction using all wavebands 

(Phenomic_VIS/NIR) across models. Bayes B, Bayes C, and RRBLUP achieved the highest  
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Table 3.1. Cross validation predictive abilities (Pearson’s correlation) of phenomic and 
genomic prediction models in 2021, 2022 and combined trials. 

Model Predictor 2021 2022 2021 and 2022 
Combined 

Bayes A 
Geno 0.69 ± 0.058 0.43 ± 0.096 0.61 ± 0.063 
Pheno_V 0.81 ± 0.047 0.65 ± 0.07 0.69 ± 0.049 
Pheno_V/N 0.77 ± 0.057 0.59 ± 0.078 0.68 ± 0.057 

Bayes B 
Geno 0.70 ± 0.065 0.45 ± 0.09 0.61 ± 0.060 
Pheno_V 0.82 ± 0.045 0.67 ± 0.082 0.68 ± 0.063 
Pheno_V/N 0.81 ± 0.046 0.63 ± 0.07 0.69 ± 0.056 

Bayes C 
Geno 0.70 ± 0.062 0.42 ± 0.11 0.62 ± 0.061 
Pheno_V 0.82 ± 0.042 0.63 ± 0.075 0.71 ± 0.052 
Pheno_V/N 0.81 ± 0.054 0.59 ± 0.092 0.68 ± 0.061 

Bayesian 
LASSO 

Geno 0.71 ± 0.059 0.43 ± 0.102 0.61 ± 0.065 
Pheno_V 0.81 ± 0.05 0.65 ± 0.075 0.69 ± 0.050 
Pheno_V/N 0.71 ± 0.068 0.58 ± 0.09 0.64 ± 0.060 

BRR 
Geno 0.70 ± 0.061 0.43 ± 0.088 0.61 ± 0.070 
Pheno_V 0.81 ± 0.051 0.61 ± 0.076 0.69 ± 0.055 
Pheno_V/N 0.67 ± 0.057 0.57 ± 0.096 0.60 ± 0.060 

Random Forest 
Geno 0.71 ± 0.061 0.39 ± 0.087 0.61 ± 0.056 
Pheno_V 0.68 ± 0.062 0.57 ± 0.07 0.66 ± 0.051 
Pheno_V/N 0.69 ± 0.043 0.55 ± 0.075 0.65 ± 0.049 

RRBLUP 
Geno 0.41 ± 0.14 0.68 ± 0.076 0.67 ± 0.062 
Pheno_V 0.82 ± 0.04 0.70 ± 0.069 0.70 ± 0.050 
Pheno_V/N 0.79 ± 0.044 0.63 ± 0.064 0.69 ± 0.049 

XGBoost 
Geno 0.61 ± 0.088 0.33 ± 0.096 0.60 ± 0.076 
Pheno_V 0.64 ± 0.089 0.53 ± 0.095 0.64 ± 0.047 
Pheno_V/N 0.62 ± 0.095 0.49 ± 0.08 0.61 ± 0.062 

Bayesian LASSO – Bayesian Least Absolute Shrinkage and Selection Operator, BRR – Bayesian 
Ridge Regression, RRBLUP – Ridge Regression Best Linear Unbiased Prediction, XGBoost – 
Extreme Gradient Boosting, VIS – Visible Light Spectrum, VIS/NIR – Visible and Near Infrared 
Light Spectrum, Geno = Genomic prediction, Pheno_V = Phenomic prediction using wavebands 
in the visible light spectrum, Pheno_V/N = Phenomic Prediction using wavebands in the visible 
light and near infrared light spectrums 
 

predictive ability at 0.82, followed by Bayes A and Bayesian LASSO (Table 3.1). In the 2022 trial, 

predictive ability was lower across all models and phenomic prediction using wavebands in the 

visible light spectrum again were better predictors of DON. RRBLUP had the highest had the 

highest predictive ability of 0.70 in 2022, followed by Bayes B and Bayes A (Table 3.1).  
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To develop a multi-year prediction, BLUEs were generated from genotypes tested in 2021 

and 2022. Multi-year phenomic predictions consistently outperformed genomic predictions across  

all models (Table 3.1). As with individual trials as training set, wavebands in the visible light 

spectrum had significantly higher predictive ability, with Bayes C achieving the highest at 0.71. 

 

Table 3.2. Genetic correlation from cross validation of phenomic and genomic prediction 
models in 2021, 2022 and combined trials. 

Model Predictor 2021 2022 2021 and 2022 
Combined 

Bayes A 
Geno 0.72 ± 0.068 0.56 ± 0.114 0.69 ± 0.062 
Pheno_V 0.82 ± 0.040 0.66 ± 0.097 0.72 ± 0.055 
Pheno_V/N 0.81 ± 0.047 0.63 ± 0.090 0.71 ± 0.060 

Bayes B 
Geno 0.73 ± 0.057 0.54 ± 0.126 0.68 ± 0.055 
Pheno_V 0.82 ± 0.044 0.67 ± 0.091 0.71 ± 0.053 
Pheno_V/N 0.81 ± 0.048 0.64 ± 0.093 0.71 ± 0.055 

Bayes C 
Geno 0.74 ± 0.057 0.54 ± 0.126 0.69 ± 0.059 
Pheno_V 0.82 ± 0.044 0.64 ± 0.101 0.70 ± 0.060 
Pheno_V/N 0.81 ± 0.050 0.59 ± 0.091 0.70 ± 0.052 

Bayesian 
LASSO 

Geno 0.72 ± 0.057 0.53 ± 0.116 0.68 ± 0.064 
Pheno_V 0.82 ± 0.041 0.66 ± 0.096 0.72 ± 0.046 
Pheno_V/N 0.79 ± 0.046 0.58 ± 0.093 0.71 ± 0.055 

BRR 
Geno 0.72 ± 0.069 0.52 ± 0.133 0.68 ± 0.064 
Pheno_V 0.82 ± 0.041 0.65 ± 0.087 0.72 ± 0.044 
Pheno_V/N 0.81 ± 0.048 0.58 ± 0.104 0.70 ± 0.059 

Random Forest 
Geno 0.74 ± 0.060 0.54 ± 0.101 0.71 ± 0.061 
Pheno_V 0.71 ± 0.059 0.54 ± 0.098 0.67 ± 0.048 
Pheno_V/N 0.70 ± 0.062 0.54 ± 0.089 0.67 ± 0.053 

RRBLUP 
Geno 0.45 ± 0.158 0.73 ± 0.068 0.71 ± 0.062 
Pheno_V 0.83 ± 0.041 0.67 ± 0.080 0.72 ± 0.049 
Pheno_V/N 0.80 ± 0.045 0.61 ± 0.076 0.71 ± 0.048 

XGBoost 
Geno 0.72 ± 0.053 0.47 ± 0.118 0.69 ± 0.065 
Pheno_V 0.66 ± 0.067 0.52 ± 0.099 0.64 ± 0.056 
Pheno_V/N 0.66 ± 0.070 0.49 ± 0.092 0.62 ± 0.054 

Bayesian LASSO – Bayesian Least Absolute Shrinkage and Selection Operator, BRR – Bayesian 
Ridge Regression, RRBLUP – Ridge Regression Best Linear Unbiased Prediction, XGBoost – 
Extreme Gradient Boosting, VIS – Visible Light Spectrum, VIS/NIR – Visible and Near Infrared 
Light Spectrum, Geno = Genomic prediction, Pheno_V = Phenomic prediction using wavebands 
in the visible light spectrum, Pheno_V/N = Phenomic Prediction using wavebands in the visible 
light and near infrared light spectrums 
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3.3.4. Model comparison for deoxynivalenol prediction: genetic correlation 

 Genetic correlation was also assessed to further compare phenomic and genomic prediction 

models from the cross validations.  In the 2021 trial as training set, higher genetic correlations 

were observed in predictions using wavebands in the visible light spectrum (Pheno_VIS) (Table 

3.2). RRBLUP showed the highest genetic correlation (0.83), whereas Bayesian models showed 

slightly lower and similar genetic correlations (0.82) (Table 3.2). Using the 2022 trial, similar 

observations were obtained, where predictions using wavebands in the visible light spectrum 

(Pheno_VIS) showed higher genetic correlations. BayesB and RRBLUP recorded the highest 

genetic correlations (0.67) followed by Bayes A and Bayesian LASSO (Table 3.2).  

Multi-year phenomic predictions outperformed genomic predictions, except in Random 

Forest and XGBoost where genetic correlations from genomic predictions were higher. The highest 

genetic correlations were recorded using Bayes A, Bayesian LASSO, and RRBLUP (Table 3.2). 

3.3.5. Model comparison for deoxynivalenol prediction: prediction accuracy 

 Prediction accuracy, the product between genetic correlations and square root of 

the estimated heritability of the actual DON content in the testing set, was also determined to fully 

assess the potential utility of the trained models for DON prediction. In the 2021 trial, phenomic 

predictions using wavebands in the visible light spectrum (Pheno-VIS) showed higher prediction 

accuracy over using the full waveband ranges or with genomic predictions (0.60 to 0.77) (Table 

3.3). However, in Random Forest and XGBoost, higher prediction accuracy was observed in 

genomic predictions over phenomic predictions (Table 3.3). In the 2022 trial, phenomic predictions 

using the wavebands in the visible light spectrum were higher than genomic prediction, (0.26 to 

0.33), with Bayes C where prediction accuracy being the highest using the full waveband ranges 

(0.49) (Table 3.3). In addition, genomic prediction using RRBLUP resulted in the highest 
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prediction accuracy at 0.50 (Table 3.3).  In the multi-year predictions, phenomic and genomic 

prediction accuracy appears to be somewhat similar, with all of the prediction accuracies, 

regardless of whether it is phenomic or genomic prediction, ranged from 0.48 to 0.57 (Table 3.3) 

 

Table 3.3. Prediction accuracy from cross validation of phenomic and genomic prediction 
models in 2021, 2022 and combined trials. 

Model Predictor 2021 2022 2021 and 2022 
Combined 

Bayes A 
Geno 0.67 ± 0.010 0.22 ± 0.146 0.51 ± 0.101 
Pheno_V 0.76 ± 0.099 0.33 ± 0.201 0.55 ± 0.105 
Pheno_V/N 0.73 ± 0.111 0.31 ± 0.196 0.53 ± 0.120 

Bayes B 
Geno 0.65 ± 0.102 0.26 ± 0.159 0.53 ± 0.103 
Pheno_V 0.76 ± 0.103 0.30 ± 0.189 0.54 ± 0.125 
Pheno_V/N 0.74 ± 0.118 0.30 ± 0.198 0.53 ± 0.117 

Bayes C 
Geno 0.65 ± 0.100 0.24 ± 0.161 0.53 ± 0.095 
Pheno_V 0.74 ± 0.108 0.31 ± 0.188 0.52 ± 0.138 
Pheno_V/N 0.74 ± 0.108 0.49 ± 0.166 0.51 ± 0.104 

Bayesian 
LASSO 

Geno 0.66 ± 0.086 0.25 ± 0.158 0.53 ± 0.095 
Pheno_V 0.77 ± 0.091 0.32 ± 0.188 0.57 ± 0.105 
Pheno_V/N 0.73 ± 0.087 0.29 ± 0.161 0.54 ± 0.107 

BRR 
Geno 0.65 ± 0.101 0.22 ± 0.152 0.53 ± 0.094 
Pheno_V 0.77 ± 0.094 0.31 ± 0.195 0.55 ± 0.105 
Pheno_V/N 0.74 ± 0.097 0.27 ± 0.178 0.54 ± 0.110 

Random Forest 
Geno 0.68 ± 0.082 0.25 ± 0.120 0.52 ± 0.079 
Pheno_V 0.65 ± 0.082 0.27 ± 0.149 0.50 ± 0.089 
Pheno_V/N 0.65 ± 0.075 0.26 ± 0.136 0.50 ± 0.093 

RRBLUP 
Geno 0.32 ± 0.176 0.50 ± 0.176 0.51 ± 0.139 
Pheno_V 0.76 ± 0.083 0.31 ± 0.167 0.54 ± 0.095 
Pheno_V/N 0.74 ± 0.082 0.28 ± 0.149 0.53 ± 0.093 

XGBoost 
Geno 0.66 ± 0.079 0.22 ± 0.107 0.51 ± 0.070 
Pheno_V 0.60 ± 0.088 0.26 ± 0.146 0.49 ± 0.087 
Pheno_V/N 0.60 ±  0.088 0.24 ± 0.129 0.48 ± 0.087 

Bayesian LASSO – Bayesian Least Absolute Shrinkage and Selection Operator, BRR – Bayesian 
Ridge Regression, RRBLUP – Ridge Regression Best Linear Unbiased Prediction, XGBoost – 
Extreme Gradient Boosting, VIS – Visible Light Spectrum, VIS/NIR – Visible and Near Infrared 
Light Spectrum, Geno = Genomic prediction, Pheno_V = Phenomic prediction using wavebands 
in the visible light spectrum, Pheno_V/N = Phenomic Prediction using wavebands in the visible 
light and near infrared light spectrums 
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3.3.6. Feature selection 

Wavebands in the visible light spectrum from 400 nm to 800 nm were identified to have 

the most important wavebands for both individual years and across years using recursive 

partitioning and regressive tree model (Figure 3.4). Specifically, in the 2021 trial, wavebands 622 

nm, 628 nm, 631 nm, 634 nm, and 637 nm, all located in the red-light spectrum, were identified 

as the most informative wavebands having feature importance score of 98 to 100. Interestingly in 

the 2022 trial, wavebands in the blue light spectrum – 426 nm, 429 nm, 431 nm, 435 nm, and 438 

nm – were identified to be the most informative wavebands with feature importance scores ranging 

from 95 to 100. In the combined trials, most informative wavebands having feature importance 

 
Figure 3.4. Feature selection based on recursive partitioning and regressive tree model.  Feature 
importance scores of each of the wavebands in the visible and near infrared regions from the (a) 
2021 trial, (b) 2022 trial, and (c) 2021 and 2022 trials combination. 
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scores of 40 to 100 were identified across the entire spectrum, including four wavebands at the 

near infrared region – 814 nm, 835 nm, 972 nm, and 1004 nm. Majority of the informative 

wavebands still are located in the visible light spectrum – 484 nm, 487 nm, 499 nm, 502 nm, 505 

nm, 619 nm, 622 nm,625 nm, 628 nm, 631 nm, and 772 nm. Overall, wavebands in the red and 

green light spectrum appear to have the most important wavebands associated with DON 

concentration in infected wheat kernels. 

3.3.7. Predictive ability of trained models in F4:5 selection candidates 

After evaluating phenomic and genomic model performance within training sets, we 

evaluated the model predictive ability outside of the training sets on F4:5 selection candidates 

evaluated in 2022 and 2023. All models were used for forward prediction and model blending.  

When using the 2021 training set to predict DON content in the 2022 selection candidates, 

blended phenomic and genomic predictions demonstrated higher phenotypic correlations with  

 

Table 3.4. Variation in correlations, prediction accuracy, and indirect selection accuracy of 
blended phenomic, genomic, and combined phenomic predictions in the selection candidates 
predicted using different training sets. 
Training 

Set 
Sel. 

Cand. 
rP rG H(I) 

2 Acc(I) Acc(A) 
Ph G Ph+G Ph G Ph+G Ph G Ph+G Ph G Ph+G Ph G Ph+G 

2021 
2022 F4:5 0.12 0.15 0.18 0.02 0.28 0.26 0.42 0.34 0.45 0.015 0.16 0.14 0.01 0.12 0.11 

2023 F4:5 0.19 0.21 0.22 0.19 0.43 0.35 0.04 0.03 0.05 0.04 0.08 0.08 0.05 0.12 0.1 

2022 
2022 F4:5 0.49 0.27 0.47 0.33 0.5 0.58 0.51 0.51 0.6 0.24 0.36 0.45 0.14 0.21 0.25 

2023 F4:5 0.52 0.14 0.41 0.47 0.33 0.5 0.13 0.11 0.2 0.17 0.11 0.22 0.13 0.09 0.14 

2021+ 
2022 

2022 F4:5 0.3 0.2 0.31 0.14 0.36 0.38 0.44 0.37 0.5 0.09 0.22 0.27 0.06 0.16 0.16 

2023 F4:5 0.38 0.18 0.31 0.31 0.38 0.41 0.07 0.04 0.08 0.08 0.08 0.12 0.07 0.11 0.12 

Sel. Cand. = Selection Candidates, Ph = Blended Phenomic Predictions, G = Blended Genomic 
Predictions, Ph+G = Blended Phenomic and Genomic Predictions, rP = phenotypic correlation of 
the blended predictions with observed DON content in the selection candidates, H(I)

2
 = estimated 

broad-sense heritability calculated from the blended predicted DON values, Acc(I) = indirect 
selection accuracy, Acc(A) = prediction accuracy 
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observed DON content than the blended genomic predictions and the blended phenomic 

predictions, with the latter having slightly higher phenotypic correlation with DON. A similar 

observation was also obtained when the 2021 training set was used to predict the 2023 selection 

candidates. (Table 3.4). 

Genotypes from the 2022 trial were used to predict DON content in 239 F4:5 breeding lines 

also evaluated in 2022. The blended phenomic predictions had a higher phenotypic correlation 

with observed DON content than the blended genomic predictions and blended phenomic and 

genomic predictions, with the latter having relatively similar phenotypic correlation with blended 

phenomic predictions (Table 3.4). A similar pattern was observed in predicting the 2023 selection 

candidates with 2022 trial as the training set, however the difference between the blended 

phenomic predictions compared to blended phenomic and genomic predictions were more 

profound (Table 3.4). 

When using BLUEs across years for training to predict DON content in the 2022 selection 

candidates, the blended phenomic and genomic predictions demonstrated a slightly higher 

phenotypic correlation with observed DON content, compared to blended genomic predictions and 

blended phenomic predictions (Table 3.4). Using BLUEs across years to predict DON content in 

2023 selection candidates, the blended phenomic predictions had higher phenotypic correlation 

with observed DON content than blended phenomic and genomic predictions. Both outperformed 

the blended genomic predictions (Table 3.4). 

3.3.8. Genetic correlation of predicted and observed deoxynivalenol content in the selection 

candidates 

We evaluated the genetic correlation between predicted DON values and observed DON 

content in the selection candidates. Genomic estimated breeding values (GEBVs) generated from 
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genomic predictions are primarily based on additive genetic effects and assume no environmental 

influence (Meuwissen et al., 2001; Habier et al., 2010). In contrast, phenomic predictions 

incorporate non-additive effects and can include genotype-by-environment interactions and 

typically predict phenotype rather than genetic merit (Rincent et.al., 2018). 

The blended phenomic and genomic predictions demonstrated higher genetic correlation 

with observed DON content (Table 3.4) in 2022 F4:5 selection candidates predicted using the 2022 

trial and combined trials as training set compared to blended phenomic or blended genomic 

predictions. A similar observation was also obtained in the 2023 selection candidates (Table 3.4). 

For both 2022 and 2023 selection candidates, when 2021 trial was used as training set, a higher 

genetic correlation was observed in blended genomic predictions compared to either blended 

phenomic or blended genomic predictions (Table 3.4). Overall, blended phenomic and genomic 

predictions appear to result in higher genetic correlations over either blended genomic or blended 

phenomic predictions. 

3.3.9. Prediction accuracy and indirect selection accuracy estimation from forward prediction of 

DON content in the selection candidates 

For the 2022 selection candidates, a higher prediction accuracy was obtained in the blended 

phenomic and genomic predictions and in blended genomic predictions, with the latter having 

slightly higher prediction accuracy, when 2021 trial was used as training set (Table 3.4). Using the 

2022 trial as training set, higher prediction accuracy was obtained in the blended phenomic and 

genomic predictions, whereas similar prediction accuracies were obtained in blended phenomic 

and genomic predictions and in blended genomic predictions using the combined trials as training 

set (Table 3.4).  
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For the 2023 selection candidates, a higher prediction accuracy was obtained in the 

genomic predictions, when the 2021 trial was used as training set (Table 3.4). When the 2022 trial 

and combined trials were used as training set, the blended phenomic and genomic predictions 

resulted in higher prediction accuracy (Table 3.4). Overall, blended phenomic and genomic 

predictions resulted in higher prediction accuracy, especially over blended phenomic predictions. 

Indirect selection accuracy, derived by multiplying the square root of the estimated broad-

sense heritability of predicted DON content with the genetic correlation between predicted and 

observed DON content in selection candidates. For the 2022 selection candidates, higher indirect 

selection accuracy was observed in blended genomic predictions with 2021 trial as training set, 

whereas higher indirect selection accuracy was observed in the blended phenomic and genomic 

predictions when the 2022 trial and the combined trials were used as training set (Table 3.4). 

 For the 2023 selection candidates, relatively similar indirect selection accuracy was 

obtained in the blended genomic predictions and in the blended phenomic and genomic predictions 

using 2021 trial as training set (Table 3.4). Higher indirect selection accuracy was obtained, 

however, in the blended phenomic and genomic predictions (Table 3.4). Overall, blended 

phenomic and genomic predictions resulted in higher indirect selection accuracy over blended 

phenomic and blended genomic predictions. This is likely due to the estimated heritability of 

predictions from blended phenomic and genomic predictions being relatively higher compared to 

blended phenomic or blended genomic predictions (Table 3.4).  

3.3.10. Unsupervised K-Means clustering of selection candidates using model blending 

Truncation selection can be applied to predicted DON content generated from a single 

phenomic or genomic prediction model. Blending of predictions from multiple models can enable 

classification of selection candidates for selection. We used unsupervised K-Means clustering to 
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separate the selection candidates into groups based on the blending of predictions generated across 

all models evaluated and used. Two groups were used for clustering based on the results of the 

Silhouette method. 

Clustering of the 2022 F4:5 selection candidates with combined phenomic and genomic 

predictions generated two distinct groups, clusters 1 and 2, based on differences in the mean DON 

level of each group. These clusters demonstrated significantly different mean DON content using 

training sets from 2021 (p=0.02294), 2022 (p=1.074x10-11), and the combined 2021 and 2022 trials 

(p=0.002751) (Figure 3.5, Supplementary Tables 3.5 to 3.7). Significant differences between Low 

and High DON groups were also observed from both blended phenomic and blended genomic  

 

 

Figure 3.5. Unsupervised K-means clustering based on blended phenomic and genomic 
predictions of DON content in 2022 F4:5 selection candidates using different training sets. (a, b, c) 
Clustering of 2022 F4:5 selection candidates using genomically and predicted values. (d,e,f) 
Corresponding boxplots showing the actual DON content of the genotypes in Clusters 1 and 2 
grouped based on phenomically and genomically predicted values. White dot represents the mean 
actual DON content of genotypes belonging to Clusters 1 and 2. Means with the same letter are 
not significantly different at alpha 0.05.  
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predictions using the 2022 trial and the combined 2021 and 2022 trials as training sets 

(Supplementary Figures 3.1 and 3.2, Supplementary Tables 3.5 and 3.8).  However, when the 2021 

trial was used as training set to predict 2022 selection candidates using only the blended genomic 

or blended phenomic predictions, no significant difference was observed between Low and High 

DON (Supplementary Figure 3.1 and 3.2, Supplementary Table 3.5). groups. 

Clustering of the 2023 F4:5 selection candidates with combined phenomic and genomic 

predictions also generated two distinct groups with significantly different mean DON content 

using training sets from 2022 (p=3.604x10-6) and combined 2021 and 2022 trials (p=3.605x10-5) 

(Figure 3.6, Supplementary Tables 3.9 and 3.10). Combined phenomic and genomic predictions  

 

 

Figure 3.6. Unsupervised K-means clustering based on blended phenomic and genomic 
predictions of DON content in 2023 F4:5 selection candidates using different training sets. (a, b, c) 
Clustering of 2023 F4:5 selection candidates using genomically and predicted values. (d,e,f) 
Corresponding boxplots showing the actual DON content of the genotypes in Clusters 1 and 2 
grouped based on phenomically and genomically predicted values. White dot represents the mean 
actual DON content of genotypes belonging to Clusters 1 and 2. Means with the same letter are 
not significantly different at alpha 0.05.  
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using the 2021 trial as the training set yielded no significant difference between groups of 2023 

selection candidates (Figure 3.6, Supplementary Table 3.9). However, significant differences 

between groups of 2023 selection candidates were generated from the blended phenomic 

predictions using the 2021 trial (p=0.007936), 2022 trial (p=4.018x10-12) and combined 2021 and  

2022 trials (p=1.536x10-5) as training sets (Supplementary Figure 3.3, Supplementary Tables 3.10 

and 3.11). Significant differences between groups were observed using the blended genomic 

predictions with the 2021 trial as the training set (p=0.02376) (Supplementary Figure 3.4, 

Supplementary Table 3.9).  

3.4. Discussion 

3.4.1. Hyperspectral imaging of DON infected kernels and phenomic prediction 

Hyperspectral imaging offers a rapid, cost-effective, and non-destructive approach to 

evaluate DON content in wheat kernels in comparison to labor and resource intensive chemometric 

approaches (Femenias et al., 2020). Hyperspectral imaging methods produce multi-dimensional 

data from hundreds of wavebands and identifying the key wavebands provides crucial information 

on the basis of observed variation in DON content. In our study, the most important wavebands 

were found in the visible light spectrum, particularly in the red-light range around 600 nm. A 

noticeable noise was observed beyond 750 nm even after smoothing using Savitzky-Golay 

approach could be due to inaccurate spectra collection in this region. In this study, LED was used 

as the light source, potentially affecting the collection in the NIRs region, as most LEDs do not 

emit light beyond the 800 range. Likely, this may have also affected the correlation of the 

wavebands in the NIR regions to be relative lower compared to wavebands in the visible light 

region. Therefore, using light sources emitting or covering the full VIS/NIR range would definitely 

be more advantageous. Notable variation was detected between the 2021 and 2022 trials, reflected 



56 
 

in the wavebands identified as important in each year as well as the differing correlations between 

individual wavebands and DON content.  This variation could be due to the environmental factors 

peculiar to each year or differences in infection levels across the disease nursery which could 

introduce error into observations of DON for individual genotypes. 

Despite the noises in the NIR region and the difference between years, the importance of 

the visible light spectrum between 410 nm and 640 nm is in agreement with previous reports of 

wavebands associated with Fusarium-damaged kernels (Shahin and Symons, 2011; Shahin and 

Symons, 2012, Ropelewska and Zapotoczny, 2018). Cross validations done in this study highlight 

the observation that using only the wavebands in the visible light spectrum would be enough to 

predict DON content, with relatively higher accuracy over using the entire spectrum of visible and 

near infrared light. 

3.4.2. Comparison of phenomic and genomic predictions for deoxynivalenol 

Genomic prediction employs genetic information, usually SNPs, which capture additive 

effects primarily from small effect QTLs (Cerrudo et al. 2018). Since genetic information is stable 

across generations and is essentially unaffected by the environment, genomic prediction enables 

the estimation of a candidate's genetic breeding value or genetic merit (Meuwissen et al. 2001). 

This estimation is essential for ranking and identifying candidates with superior performance and 

for selecting promising parents for population development. Several studies have demonstrated 

the use of genomic prediction for low DON content (Rutkoski et al. 2012, Salam et al. 2015, Gaire 

et al. 2022). The main advantage of genomic prediction is the ability to estimate breeding values 

of selection candidates early in the breeding cycle. However, genomic prediction can be costly due 

to the required genotyping, and environmental effects on the trait of interest must still be 

considered. 
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Phenomic predictions capture phenotypic variation that reflects both genetic and 

environmental factors and account for non-additive effects (Robert et al., 2022, Rincent et al., 

2018). Therefore, phenomic prediction focuses on predicting the phenotype rather than solely the 

genetic merit or breeding value making phenomic prediction an excellent approach for selection 

in complex traits (Zhu et al., 2021), as in the case of DON content. Several works have laid down 

the foundation and demonstrated the potential use of hyperspectral imaging for DON prediction 

(Femenias et al. 2020 and references therein). Among these, Alisaac et al. (2019) demonstrated the 

use of hyperspectral imaging in assessing mycotoxin, including DON, in wheat kernels. However, 

unlike in our study, the wavebands generated were not used as predictors for predicting DON 

content, rather, for direct comparison of spectral signatures in relation to DON content was done. 

Su et al. (2020) did use the spectral reflectance values for DON prediction using locally weighted 

partial least squares regression (LWPLSR) with relative success in barley kernels.  

In this study, phenomic prediction demonstrated higher predictive ability consistent with 

other studies across different crop species (Parmley et al. 2015, Lane et al. 2020, Galan et al. 2020, 

Brault et al. 2022), including wheat (Cuevas et al. 2019, Krause et al. 2019, Liu et al. 2024). 

Bayesian generalized linear regression models (Bayes A, Bayes B, Bayes C, Bayesian LASSO, 

and Bayesian Ridge Regression) demonstrated relatively higher predictive ability in cross-

validation studies compared to the machine learning models Random Forest and Extreme Gradient 

Boosting. Further, our results are in conjunction with the observations made by Zhu et al. (2021) 

where phenomic predictive ability using Ridge Regression Best Linear Unbiased Prediction (RR-

BLUP), Bayes B and Bayes C was higher than random forest and gradient boosting approaches. 

This suggests a linear relationship between the phenomic signals captured by hyperspectral 

imaging and DON content in wheat kernels. 
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Recently, however, Wang et al. (2025) argued that the comparison between genomic and 

phenomic predictions simply by assessing the phenotypic correlation (predictive ability), 

especially from cross validation schemes, could be misleading. As genomic prediction estimates 

the breeding value or genetic merit of the target trait, in our case DON, Wang et al. (2025) proposed 

the comparison of between genomic and phenomic predictions should be assessed using prediction 

accuracy, which takes into account the genetic correlation between the predicted and actual value, 

and the heritability of the target trait, rather than solely relying on Pearson’s correlation between 

observed and predicted phenotypic values. We do agree that using predictive ability, solely, in 

comparing GEBVs with predicted phenotype may be misleading, as predicted phenotypes would 

be more phenotypically correlated to the actual value than GEBVs, especially when the predictors 

used (e.g. phenomic data) have some level of correlation with the target trait, basically further 

inflating the Pearson’s correlation observed. In our case, higher genetic correlations were still 

observed in phenomic predictions compared to genomic predictions. More importantly, overall, 

we have seen a higher prediction accuracy in phenomic prediction compared to genomic 

predictions, especially in the 2021 and 2022 trials when independently used as training set. With 

these addition metrics focusing on evaluating how well phenomic systems may have captured 

genetic signals, thereby representing the actual genetic variation of actual DON content, this 

further demonstrated the potential utility of hyperspectral imaging derived information in 

prediction of DON content in wheat kernels. To our knowledge, this is the first work in DON 

prediction using hyperspectral imaging comparing it with genomic predictions using prediction 

accuracy and genetic correlations as metrics. 
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3.4.3. Training set composition influences forward prediction in selection candidates 

The choice of the training set significantly impacted predictions of DON content in both 

phenomic and genomic predictions. While phenomic prediction generally demonstrated higher 

predictive ability, genetic correlation, and prediction accuracy than genomic prediction, the values 

observed varied depending on the training set used. 

The models trained with phenomic data from the 2022 trial demonstrated relatively higher 

predictive ability in the F4:5  selection candidates compared to models trained with 2021 data and 

the combined 2021 and 2022 BLUEs, especially in the 2022 F4:5 selection candidates. This is likely 

influenced by the training set and selection candidate being in the same environment and receiving 

relatively similar disease pressure. A similar trend was observed for genomic prediction models. 

However, there was a larger difference in prediction accuracy between years in genomic prediction 

models compared to phenomic prediction models.  

We also observed variation in  the genetic correlations between blended predictions (model 

averages) and the actual DON content of the selection candidates, depending on the training set 

used. For the majority of cases, blended genomic predictions had higher genetic correlations over 

blended phenomic predictions, except when 2022 trial was used as training set to predict the 2022 

F4:5 selection candidates. This further establishes that solely relying on phenotypic correlation, both 

in cross validation and forward predictions, may not be enough or even misleading.  

In addition, the predictive abilities and prediction accuracy observed in cross-validation 

studies within training sets did not always translate when models were used to predict a set of 

selection candidates. While cross-validation demonstrated higher predictive abilities and 

prediction accuracy for phenomic predictions using the 2021 trial, this was not reflected in the 
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prediction of the 2023 selection candidates, where the 2022 training set generated better 

phenotypic correlations, genetic correlation, and prediction accuracy with observed DON content. 

These differences could be driven by the variation among the genotypes included in each 

training set and their genetic relatedness to the selection candidates (Zhu et al. 2021). Of the 307 

genotypes evaluated in 2021, only 37 were evaluated in 2022, due to the dynamic nature of active 

breeding programs. The selection candidates in 2022 and 2023 were derived from cross 

combinations of different parental genotypes and therefore have genetic backgrounds differing 

from the training set. Differences in infection levels and the unique environmental parameters 

within each year may have contributed to differences in predictive ability. Indeed, Robert et al. 

(2022) highlight that the environments, years in our case, in which the lines were grown, play a 

crucial role in predictive ability of spectral reflectance data. In addition, relatively different levels 

of correlation were observed in 2021 and 2022 between the wavebands and with DON content, 

likely affecting the performance of phenomic prediction models in forward prediction.  

These variations in predictive ability, genetic correlations, and prediction accuracy 

depending on the predictors used (phenomic or genomic information) and training set used (2021 

trial, 2022 trial, and combined trials) prompted us to explore whether combining phenomic and 

genomic information would be more advantageous. Thapa et al. (2024) demonstrated in their work 

that there is a potential for increasing predictive ability in predicting DON content when phenomic 

and genomic information was combined. However, we wanted to see whether this observation 

could be extended beyond cross validations and observed in forward predictions. In addition, we 

employed a different approach in combining phenomic and genomic information, or rather, the 

phenomic and genomic predictions.  

 



61 
 

3.4.4. Model averaging and complementation of genomic prediction with phenomic predictions 

In this study, all the model used—Bayes A, Bayes B, Bayes C, Bayesian LASSO, Bayesian 

Ridge Regression, Random Forest, RRBLUP, and XGBoost—were used to predict DON content 

in the selection candidates. Given the differing assumptions and fitting in these models, as well the 

varying observations between phenomic and genomic predictions, model averaging approach was 

explored to enhance prediction accuracy. Phenomic predictions estimate the phenotype, which also 

captures the non-additive effects, usually confounded environmental effects, whereas genomic 

predictions estimate the breeding value of candidates independent of environmental influences. In 

our study, we opted to average the predicted values from different models and compared the 

blended predictions from phenomic models to those from genomic models as well as blending 

both phenomic and genomic predictions.  

In the majority of cases, the genetic correlation between the blended predictions from 

phenomic models and observed DON in the selection candidates was higher than that from 

genomic models, as well as its prediction accuracy and indirect selection accuracy. Most 

importantly, the estimated heritability in the predicted values were always higher in the blended 

phenomic and genomic predictions, over the blended phenomic or blended genomic predictions. 

This observation also held true for indirect selection accuracy, suggesting that blending phenomic 

predictions can effectively predict DON content in wheat. Here, we demonstrated the advantage 

and utility, in forward prediction, of combining phenomic and genomic predictions, simply by 

blending the models through simple averaging.  

Considering these observations, both phenomic and genomic predictions can be used 

whenever feasible and when resources allow us to implement a balanced selection approach that 

leverages the strengths of both methods. However, as phenomic information potentially captures 
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non-additive and environmental effects, evaluating models taking into account non-additive effects 

(additive effects and epistatic effects), both phenomic and genomic predictions would give an even 

more compelling comparison between phenomic and genomic predictions as well as between 

models taking into account solely additive effects. In addition to this, we encourage further 

exploration of ways and approaches in integrating phenomic and genomic information such as 

multi-modal neural networks or multi-kernel approaches. We propose, however, to always include 

genetic correlations, prediction accuracy described by Wang et al. (2025) and indirect selection 

accuracy described by Lopez-Cruz et al. (2020) to avoid misleading interpretations, both in cross 

validation and forward predictions, rather than solely relying on predictive ability assessment by 

phenotypic (Pearson’s) correlations.  

3.4.5. Clustering-model blending of selection candidates 

Unsupervised K-Means as a model blending approach was explored to group selection 

candidates based on their predicted DON contents. Rather than applying truncation selection on 

predicted values from multiple phenomic or genomic prediction models, the predictions from 

multiple models were used as variables for clustering. Clustering of selection candidates using 

blended predictions generated two groups which differed significantly for mean observed DON 

content. We assume that this approach shall enhance the reduction of the selection pool, especially 

when dealing with a large number of selection candidates.  

3.5. Conclusion 

Phenomic prediction of DON content in wheat grains using reflectance values derived from 

hyperspectral imaging demonstrated higher predictive ability and prediction accuracy than 

genomic prediction. Phenomic prediction resulted in varying phenotypic correlation, genetic 

correlation, prediction accuracy and indirect selection accuracies depending on the predictor and 
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training set used for forward prediction. Blending phenomic and genomic prediction models 

through simple model averaging is a straightforward mechanism to potentially account for both 

genetic and environmental influences on the trait of interest. Additionally, clustering of selection 

candidates using blended predictions offers an approach to leverage both phenomic and genomic 

predictions in selection decisions. Careful consideration is required for training set design and 

implementation of phenomic predictions as the inflated predictive ability from cross validations 

does not always translate to forward predictions. Additional metrics – genetic correlation, 

prediction accuracy, and indirect selection accuracy – has to be assessed to acquire a proper 

comparison of model and approaches, especially when comparing phenomic and genomic 

predictions. This study highlights a mechanism to develop and leverage both phenomic and 

genomic predictions in selection decisions in an active plant breeding program. 
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CHAPTER IV: UAV-DERIVED INFORMATION AND GENOMIC DATA 
INTEGRATION FORENHANCE GRAIN YIELD PREDICTIONS IN  

SOFT WINTER WHEAT 
 

Abstract 

The rapid advancement of high-throughput phenotyping platforms highlights the need to 

integrate phenomics with genomic information to enhance the prediction accuracy of complex, 

economically important traits such as grain yield. From UAV-based RGB and multispectral 

imaging of yield trials conducted in 2022 and 2023, 30 vegetation indices (VIs) were generated, 

with the majority showing significant phenotypic and genetic correlations with grain yield. Model 

training and predictive ability assessment were done each for 2022 and 2023 trials independently, 

and combined trials. Higher predictive ability was observed in phenomic prediction and upon 

integration of UAV-information with genomic data. Forward prediction in unique genotypes in 

untested environment to test the utility of trained models and prediction accuracies were executed 

in MSU-developed breeding lines evaluated in 2024 preliminary yield trial. Incorporating UAV-

derived vegetation indices individually as fixed effects resulted in increased indirect selection 

accuracy. However, this improvement depends on the vegetation index and its correlation with 

grain yield when compared to genomic prediction models without UAV-derived information and 

phenomic prediction solely using UAV-derived information as predictors. Incorporating multiple 

vegetation indices as fixed effects resulted in varying indirect selection accuracy, with using the 

combined trial as training set shows stable forward prediction performance. While indirect 

selection accuracy depends on the training set used for forward prediction, training sets using best 

linear unbiased estimates (BLUEs) across years appeared to be more stable and produced higher 

prediction accuracy compared to most cases using individual trials as training sets. Overall, the 

study demonstrates the potential of UAV-derived information to improve accuracy for grain yield 
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in soft winter wheat. Nonetheless, careful selection and evaluation of UAV-derived information 

for integration into genomic prediction models remain essential. 

4.1. Introduction 

With the global population projected to reach 9.7 billion by 2050 (United Nations) and 

wheat production, along with total harvest area, declining both in the United States and worldwide 

(FAO, 2024), the development of high-yielding wheat varieties must be accelerated with greater 

precision. However, phenotyping remains a major bottleneck in breeding for quantitative traits 

such as grain yield, due to challenges in acquiring precise and accurate phenotypic data (Araus et 

al., 2018). Additionally, evaluating a large number of breeding lines or selection candidates to 

increase selection intensity remains resource-intensive, requiring substantial land area and labor. 

Given the challenges of traditional phenotyping and the constraints in evaluating a larger 

number of breeding lines, marker-assisted selection (MAS) has been widely used for rapid and 

early-generation selection of economically important traits (Lubberstedt et al., 2023). MAS has 

been successfully employed in improving key traits such as disease resistance (Anderson, 2007; 

Yet et al., 2019; Liu et al., 2020) and grain quality (Gupta et al., 2011; Vishwakarma et al., 2015) 

in wheat. However, MAS is most effective when the target trait is highly heritable, controlled by 

large-effect quantitative trait loci (QTLs), or tightly linked to specific genes (Lubberstedt et al., 

2023) – criteria that do not typically apply to grain yield. 

To overcome the limitations of MAS for complex traits such as yield while enabling rapid 

and early-generation selection (Bonnett et al., 2022), genomic selection (or genome-wide 

prediction) was introduced (Meuwissen et al., 2001). Unlike MAS, genomic selection leverages 

single nucleotide polymorphism (SNP) markers distributed across the genome to estimate genomic 

estimated breeding values (GEBVs) (Meuwissen et al., 2001).  
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Several genomic prediction models have been developed to enhance prediction accuracy. 

Genomic Best Linear Unbiased Prediction (GBLUP) estimates GEBVs using a mixed model 

framework that incorporates genomic relationship matrix derived from SNP marker data 

(VanRaden, 2008). Similarly, ridge regression best linear unbiased prediction (RRBLUP) 

considers genomic relationships rather than pedigree-based relationships, but it differs by 

employing ridge regression to shrink estimated marker effects toward zero, with breeding values 

estimated as the sum of marker effects (Endelman, 2011). Bayesian approaches, including BayesA, 

BayesB, BayesC, Bayesian Ridge Regression (BRR), and Bayesian Least Absolute Shrinkage and 

Selection Operator (LASSO), provide additional flexibility by making different assumptions about 

marker effect distributions, variation of marker effects, and penalization strategies (Perez and de 

los Campos, 2012). More recently, machine learning models such as Random Forest, extreme 

gradient boosting (XGBoost), and support vector machines (SVM) have been explored for 

genomic prediction (Sirsat et al., 2022; Farooq et al., 2023; Laurenco et al., 2024). 

Despite significant advancements in genomic prediction and reduced genotyping costs, 

several challenges remain in accurately predicting complex traits. These include training set size 

and composition, marker density and quality, genetic variability within the breeding population, 

relatedness between training and validation populations, trait heritability, genotype-by-

environment (G×E) interactions, and the quality of phenotypic data used for model training (De 

Roos et al., 2009; Lorenzana and Bernardo, 2009; Luan et al., 2009; Daetwyler et al., 2010; Clark 

et al., 2011; Howard et al., 2014; Crossa et al., 2017; Yoosefzadeh-Najafabadi et al., 2022; 

Montesinos-Lopez et al., 2023). 

To address these limitations, phenomic data from high-throughput sensing technologies 

such as RGB, multispectral, and hyperspectral imaging have been incorporated into breeding 
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programs. These imaging platforms offer precise estimates of complex traits while capturing 

potential G×E interactions (Jackson et al., 2023; Kaur et al., 2024). Furthermore, spectral 

reflectance data collected from these sensors serve as a link between genetic variation and trait 

expression (Osborne, 2006; Robert et al., 2022), providing valuable insights into selection 

candidate performance. 

While phenomic selection has traditionally relied on near-infrared spectroscopy (NIRS) for 

trait prediction (Rincent et al., 2018), recent studies have demonstrated the utility of RGB and 

multispectral imaging for this purpose (Tanebe et al., 2023; Wei et al., 2023; Winn et al., 2023). 

Moreover, phenomic prediction has been shown to enhance trait predictive ability compared to 

genomic prediction alone (Montesinos-Lopez et al., 2023; Winn et al., 2023). 

Although phenomic data improves predictive ability over genomic data alone, integrating 

both genomic and phenomic information provides a more comprehensive framework for trait 

prediction by potentially capturing additive and non-additive genetic effects while linking genetics 

to trait expression. Several studies have demonstrated that incorporating UAV-derived phenomic 

data into genomic prediction improves the predictive ability of quantitative trait prediction in 

wheat, including grain yield (Rutkoski et al., 2016; Montesinos-Lopez et al., 2023; Kaushal et al., 

2024). However, as multi-omics-based breeding remains an emerging field, further exploration is 

needed to optimize strategies for combining genomic and phenomic information in complex trait 

prediction. 

This study aims to further explore the integration of UAV-derived phenomic information 

with genomic data to enhance grain yield estimation. Specifically, the predictive ability and 

indirect selection accuracy of different integration strategies, including using individual and 

dimensionally reduced UAV-derived vegetation indices as fixed effects in a univariate genomic 
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prediction model were evaluated. Through this approach, we seek to develop an improved 

prediction approach that leverages both genomic and phenomic data for more accurate grain yield 

prediction in wheat breeding. 

4.2. Materials and Methods 

4.2.1. Plant materials for yield trials: 2022 - 2023 

 A set of 663 soft red and soft white winter wheat genotypes were evaluated for grain yield 

in 2022 (n=368) and 2023 (n=383) comprised of advanced breeding lines developed by the MSU 

Wheat Breeding and Genetics Program, advanced breeding lines developed by other public wheat 

breeding programs and commercially released varieties. A subset of  only 85 genotypes were 

evaluated in both years since most genotypes were tested as part of an active variety development 

program and experimental breeding lines advanced from 2022 testing to 2023 testing were 

included in both years.   

4.2.2. Field establishment, maintenance, and grain yield Evaluation 

 Genotypes were established in an Alpha Lattice Design with three replicates. Yield plot 

lengths were 3.66 m long plot with 6 rows spaced at 19.05 cm. Planting was done using Almaco 

HD Grain Drill (Almaco, USA) with seeding rates standardized to equate Plots were planted at 1.8 

million seeds per acre. Harvesting was done using Wintersteiger Quantum Plus (Wintersteiger, 

Austria) and yield data was acquired using Harvest Master II (Juniper Systems, USA) weigh 

system and standardized to 13.5% moisture. Details of management and maintenance are presented 

in Supplementary Table 4.1. 
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4.2.3. Unmanned aerial vehicle (UAV) – flight, image processing, and vegetation index 

calculation  

Unmanned aerial vehicle (UAV) flights were carried out at maturity stage. Natural color 

(RGB) imaging was carried out using Autel Evo II Pro with attached XT705 RGB camera (Autel 

Robotics, Shenzhen, China) with 5472x3648 pixel resolution. Flight was carried out at a height of 

200 ft (60.69 m), with a side overlap of 75% and forward overlap of 85%. Multispectral imaging 

was carried out using DJI M210V2 (DJI, Shenzhen, China) with attached Micasense RedEdge MX 

multispectral camera (AgEagle Aerial Systems Inc., Kansas, USA) with 1280 x 960 pixel 

resolution and covers five wavebands: red (668 nm, bandwidth: 10 nm), green (560 nm, 

bandwidth: 20 nm), blue (475 nm, bandwidth: 20 nm), RedEdge (717 nm, bandwidth: 10 nm), and 

near infrared (NIR) (840 nm, bandwidth: 40 nm). Flight was carried out at a height of 200 ft (60.69 

m), with a side overlap of 75% and forward overlap of 80%. Singular flight was done for each trial 

at Feekes 11.02 (06/21/22 for the 2022 yield trial and 06/20/2023 for the 2023 trial) and used for 

downstream analyses. Image processing and orthorectification of collected images were carried 

out using Pix4Dmapper v 4.6.4 (Pix4D Inc, Denver, CO, USA). Orthorectified images were 

imported in Quantum Geographic Information System. Plot identification and generation of plot 

boundaries were carried out using the “grid” plugin in QGIS (Chen and Zhang, 2020) and saved 

as ESRI shapefile. A total of 30 vegetation indices (VIs) were calculated using the formulas 

presented in Supplementary Table 4.2. Zonal statistics plugin in QGIS was used to extract the mean 

calculated VI from all pixels at the plot level.  

4.2.4. Statistical analyses and principal component analysis 

 Plot level grain yield and VIs were spatially adjusted using SpATs (Rodriguez-Alvarez, et 

al. 2018) package in R with genotype as fixed effect, and the range and row as random effect to 



75 
 

account for potential spatial variation. The adjusted plot level values were used in downstream 

analyses.   

Analysis of variance (ANOVA) was carried out to assess the variation in grain yield and 

VIs among the genotypes within years following the model:  

(1) Yij = µ + Gi + eij 

Where Yij represents the observed grain yield response for the i-th genotype in its j-th 

measurement, μ is the overall mean response across all observations, Gi represents the fixed effect 

of the i-th genotype, and eij accounts for the residual error associated with the response of the i-th 

genotype in the j-th observation. Random spatial effects including range, row, complete blocks, 

and incomplete blocks were not incorporated in the model due to plot level spatial effects on grain 

yield being corrected by the SpATs algorithm.  

To account and assess for variation due to year effects and compute multi-year means, best 

linear unbiased estimates (BLUEs) of grain yield and VIs were modeled using “lme4” package in 

R (Bates et al., 2015) following the model: 

(2) Yijk = µ + Gi + Xj + (GX)ij + eijk 

Where, Yijk represents the response of the i-th genotype in the j-th year for the k-th 

observation, μ is the overall mean across all genotypes and years, Gi is the fixed effect of the i-th 

genotype, Xi is the random effect of the j-th year, (GX)ij represents the random interaction between 

the i-th genotype and j-th year, and eijk is the residual error. 

Means for grain yield and VIs as well as the corresponding variance components for each 

trait within and across years were computed using the “lsmeans” package (Lenth, 2016). Pearson’s 

correlation coefficient was computed between BLUEs for grain yield and VIs All analyses were 

carried out in R v4.4.0 (R Core Team, 2023). 
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4.2.5. Feature selection 

Identification of most informative UAV-derived VIs generated from the 2022 and 2023 

trials and combined trials from the generated BLUEs across years were carried out using Recursive 

Feature Elimination following a recursive partitioning and regressive tree model using “caret” 

package (Kuhn, 2008) in R v4.4.0 (R Core Team, 2023). 

4.2.6. Heritability estimation 

Heritability for grain yield and VIs based on entry means for a single year was calculated 

based on the following equation: 

(3) 𝐻𝐻2 = 𝜎𝜎𝐺𝐺
2

𝜎𝜎𝐺𝐺
2+𝜎𝜎𝑒𝑒

2

𝑟𝑟

 

Where H2 is the estimated broad sense heritability on an entry mean basis, r is the number 

of replicates per genotype (entry), 𝜎𝜎𝑒𝑒2 is the error variance (residual mean square), and  𝜎𝜎𝐺𝐺2 is the 

genotype (entry) variance. 

 Heritability based on entry means across years was calculated based on the following 

equation: 

(4) 𝐻𝐻2 = 𝜎𝜎𝐺𝐺
2
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Where H2 is the estimated broad sense heritability on an entry mean basis, r is the number 

of replicates per genotype (entry), T is the number of years, 𝜎𝜎𝑒𝑒2 is the error variance (residual mean 

square), and  𝜎𝜎𝐺𝐺2 is the genotype (entry) variance,  𝜎𝜎𝐺𝐺𝐺𝐺2  is the genotype by year variance. 

4.2.7. Genetic correlation estimation 

 Genetic correlations (rg) to further assess the relationships between grain yield and each of 

the VIs in “sommer” package in R (Covarrubia-Parazan, 2016) following the framework: 
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(5) 𝑦𝑦1 = 𝑋𝑋1𝛽𝛽1 + 𝑍𝑍1𝜇𝜇1 +  𝑒𝑒1 

(6) 𝑦𝑦2 = 𝑋𝑋2𝛽𝛽2 + 𝑍𝑍2𝜇𝜇2 +  𝑒𝑒2 

Where y1 and y2 are vectors of phenotypic values for trait 1 (grain yield) and trait 2 (VI), 

respectively, X1 and X2 are incidence matrices for fixed effects, 𝛽𝛽1 and 𝛽𝛽2 are vectors of fixed 

effects for each trait, Z1 and Z2 are incidence matrices for random effects of the genotypes, µ1 and 

µ2 are genetic effects for each trait which are assumed to follow a multivariate normal distribution 

with covariance structure based on genomic relationship matrix, e1 and e2 are residual error terms 

for each trait.  

 The genetic covariance structure, assuming that random genetic effects µ1 and µ2 have a 

covariance structure following the model: 

(7) �𝜇𝜇1𝜇𝜇2� ~ N �0, �𝐺𝐺11 ∙ 𝐴𝐴 𝐺𝐺12 ∙ 𝐴𝐴
𝐺𝐺12 ∙ 𝐴𝐴 𝐺𝐺22 ∙ 𝐴𝐴�� 

Where G11 and G22 are the genetic variances for trait 1 (grain yield) and trait 2 (VI), 

respectively, G12 is the genetic covariance between traits 1 and 2, A is the genomic relationship 

matrix generated from SNP marker data. 

The genetic correlation (rG) between trait 1 (grain yield) and trait 2 (VI) is then defined by 

the formula: 

(8) rG = 𝐺𝐺12
�(𝐺𝐺11)(𝐺𝐺22)

 

Where G12 is the covariance grain yield and VI, G11 is the genetic variance of grain yield, 

G12 is the genetic variance of the VI.  

4.2.8. Principal component analysis (PCA) of VIs calculated 

Principal Component Analysis was carried out for the 30 generated VIs to dimensionally 

reduce the phenomic data generated and identify the most important VI potentially contributing to 
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the variation observed among the genotypes. BLUEs from spatially adjusted VIs were used. 

Principal component analysis was carried out in base R v4.4.0 (R Core Team, 2023).  

4.2.9. DNA isolation and SNP genotyping 

DNA was extracted from all genotypes following the protocol of Wiersma et al. (2016). 

Genotyping-by-sequencing (GBS) libraries were prepared as described by Poland et al. (2012), 

scaled to a 24 µL volume in a 384-well format. The libraries were sequenced at 384-plex on an 

Illumina HiSeq 4000 system. Single nucleotide polymorphisms (SNPs) were identified using the 

TASSEL 5 GBS pipeline (Glaubitz et al., 2014). Sequencing reads were aligned to the wheat 

reference genome assembly (RefSeq v2.0) from the International Wheat Genome Sequencing 

Consortium, using default parameters. In the GBSSeqToTagDBPlugin and 

ProductionSNPCallerPluginV2 steps, a k-mer length of 64 base pairs was used, with a minimum 

coverage of five reads per k-mer. Default settings were applied for all other steps. SNPs were 

filtered based on a 0.70 call rate and a minor allele frequency (MAF) of 0.05, with 15,456 SNPs 

remaining after filtering.  

4.2.10. Genome wide association mapping 

Genome Wide Association Studies (GWAS) were carried out using the Bayesian-

information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) (Huang et al., 2019) 

model in GAPIT v3 (Genomic Association and Prediction Integrated Tool) (Lipka et al., 2012; 

latest version: March 12, 2022). The VIs and grain yield were used as phenotypic input for GWAS.  

To address potential population structure, principal components were used, and the number of 

principal components used were adjusted based on review of QQ plots.  
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4.2.11. Univariate Genomic Predictions 

Genomic prediction for grain yield was assessed using BayesA, BayesB, BayesC, Bayesian 

Ridge Regression (BRR), and Bayesian LASSO (BayesL) with 50,000 iterations and a burn-in set 

at 5,000, using the “BGLR” package (Perez and de los Campos, 2014). Additionally, Ridge 

Regression Best Linear Unbiased Prediction (RRBLUP) was performed using the “rrblup” 

package (Endelman, 2011), Extreme Gradient Boosting (XGBoost) was conducted using the 

“xgboost” package (Chen and Guestrin, 2016) with parameters eta (learning rate) = 0.01, gamma 

= 0.2, max_depth (maximum tree depth) = 6, min_child_weight (minimum sum of instance 

weights) = 0.20, subsample = 1, and colsample_bytree (fraction of features (columns) used to grow 

each tree) = 1, and Random Forest was utilized with the “caret” package (Kuhn, 2008) with default 

parameters (ntree = 500, nodesize = 5, maxnodes = unlimited) for prediction. A total of 100 

individual five-fold cross-validations were carried out, with 80% of the genotypes designated in 

the training set for all models. The predictive ability of genomic prediction for all models was 

computed as the average Pearson’s correlation between the actual grain yield and the predicted 

values from all 100 cycles in each model. All cross-validations were performed in R version 4.4.0 

(R Core Team, 2023). 

4.2.12. Univariate genomic prediction with selected VIs as fixed effects 

 To assess how fixed effect covariates influence grain yield prediction accuracy, Ridge 

Regression Best Linear Unbiased Prediction (RRBLUP) was used as the base genomic prediction 

model following the model: 

(9) 𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 +  𝜀𝜀 

Where y is the vector of phenotypic observations (n x 1), in this case grain yield, X is the 

matrix of fixed effects or covariates (n x p), β is the vector if fixed effect coefficients (p x 1), Z is 
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the matrix linking observations to genotypes (n x g), µ is the vector of random genetic effects (g x 

1) assuming µ ~ N(0, σ2
uK), where K is the genomic relationship matrix, and Ɛ vector of residuals. 

Fourteen VIs were selected based on the results of feature importance scores from feature 

selection using recursive partitioning and regressive tree model. The VIs was used individually to 

evaluate how each VIs affects grain yield prediction, and with increments to assess how increasing 

the number of VIs used as fixed effect affects grain yield prediction.  

4.2.13. Forward prediction and indirect selection accuracy assessment 

 To test the utility of various approaches and models evaluated in an untested environment 

and unique genotypes, forward prediction of grain yield was executed in MSU-developed breeding 

lines (n = 216) in the 2024 preliminary yield trial. The 2024 trial follows experimental design, field 

establishment, and grain yield evaluation conducted in the 2022 and 2023 trials. Additional details 

on field management and maintenance are presented in Supplementary Table 4.1. In addition, DNA 

isolation and SNP genotyping follows the same protocol as 2022 and 2023 trials. 

 The phenotypic correlation between the predicted grain yield in the 2024 breeding lines 

and the actual grain yield was done using Pearson’s correlation in R. Calculation of genetic 

correlation and broad sense heritability follows the formula presented earlier. Genetic variance of 

predicted and actual grain yield and its covariance was determined by fitting in RRBLUP following 

the model: 

(10) 𝑦𝑦 = 𝑍𝑍𝑍𝑍 +  𝜀𝜀 

Where y is the vector of phenotypic values (predicted or actual grain yield), Z is the design 

matrix for random genetic effects of the genotypes, µ is the vector of random genetic effects 

following the assumption that µ ∼ N(0,Kσg
2), where K is the genomic relationship matrix, σg

2 is 

the genetic variance, and e is the vector of residual errors following the assumption that e ∼ 
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N(0,Iσe
2), where I is the identity matrix, and σe

2 is the residual variance. The variance-covariance 

matrix follows the model:  

(11) �𝜇𝜇1𝜇𝜇2� ~ N �0, �𝐺𝐺11𝐺𝐺12𝐺𝐺12𝐺𝐺11
�⊗ 𝐴𝐴� 

Where µ1 is the genetic values of the actual grain yield of the breeding lines, µ2 is the  

genetic values of the predicted grain yield, G is the genetic variance-covariance matrix, G11 is the 

genetic variance of actual grain yield, G22 is the genetic variance of the predicted grain yield, and 

G12 is the genetic covariance between the actual and predicted grain yield.  

 Indirect selection accuracy, Acc(I) representing prediction accuracy, was computed based 

on the formula adapted from Lopez-Cruz et al. (2020): 

(12) 𝐴𝐴𝐴𝐴𝐴𝐴(𝐼𝐼) = 𝑟𝑟𝐺𝐺(𝐻𝐻𝐼𝐼) 

 Where rG is the genetic covariance between the actual (X) and predicted (I) grain yield and 

HI is the square root of the estimated heritability of the predicted grain yield. 

4.3. Results 

4.3.1. Heritability and phenotypic variance component estimation 

 Relatively high broad sense heritability ranging from 0.44 to 0.96 was estimated for the 

majority of the VIs generated in 2022 while grain yield demonstrated the highest heritability at 

0.96 (Figure 4.1). The VIs CVI and I demonstrated heritabilities similar to grain yield (Figure 4.1). 

The high estimated heritability of grain yield could be attributed to the high percentage of variance 

explained by genotype effects and accurate accounting for spatial variation across the trial, with 

similar observations in CVI and I (Supplementary Figure 4.1). Furthermore, the genotype effects 

accounted for 40% to 90% of the phenotypic variation observed among VIs (Supplementary Figure 

4.1). 
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 Heritability observed for grain yield in 2023 was 0.51, whereas the majority of the VIs  

demonstrated heritability higher than grain yield, ranging from 0.45 to 0.87, with H and CI having 

the highest estimated heritability at 0.87 and 0.64, respectively (Figure 4.1). The lower heritability 

for grain yield in 2023 could be attributed to relatively higher error (residual) variance, accounting 

for 50% to 60% of the phenotypic variation observed, with the exemption of the VI H where more 

than 80% of the phenotypic variation observed is due to genotype effect (Supplementary Figure 

4.1). However, it is also worth noting that most of the genotypes evaluated in 2023 were not 

evaluated in the 2022 trial due to the trials being part of an active winter wheat breeding program. 

Further, 2022 and 2023 have relatively different weather conditions. Therefore, direct comparisons 

of heritability and variance components between 2022 and 2023 trials could be misleading.  

However, the heritability of BLUEs generated across years for all trait was considerably 

lower for grain yield (0.283) and all VIs (0.001 to 0.378) (Figure 4.1). Only two VIs, RGBVI and 

 

 

Figure 4.1. Estimated broad sense heritabilities of grain yield and vegetation indices in 2022 and 
2023 trials separately, and across years. 
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GLI, had higher estimated heritability than grain yield at 0.378 and 0.358, respectively 

(Figure 4.1). The substantial reduction in heritabilities across years can be attributed to year effects 

(Supplementary Figure 4.1) indicating that traits responded differently to the environmental 

conditions present in 2022 compared to 2023. For several of the VIs, almost all of the phenotypic 

variance was entirely due to year variance (Supplementary Figure 4.1). In VIs RGBVI and GLI, 

which demonstrated the highest heritability across years, the variance explained by year effect was 

very low, while variance explained by genotype, genotype by year intection, and residual effect 

were relatively similar (Supplementary Figure 4.1).   

4.4.2 Phenotypic and genotypic correlation between VIs and grain yield 

 In the 2022 trial, 25 of the VIs had significant phenotypic correlations with grain yield 

(Figure 4.2). Of these, 9 demonstrated negative phenotypic correlations with grain yield (-0.56 to 

-0.20). Higher genetic correlations (compared to phenotypic correlations) with grain yield were 

observed for 21 vegetation indices (Figure 4.2). 

 The majority of VIs generated in the 2023 trial demonstrated high phenotypic correlations 

with grain yield. All of the VIs had significant correlations with grain yield (Figure 4.2), of which 

17 VIs recorded higher genetic correlations than phenotypic correlations with grain yield (Figure 

4.2). 

 Trends of phenotypic and genetic correlations with grain yield varied among  BLUEs from 

the combined 2022 and 2023 trials (Figure 4.2). Five VIs had higher positive genetic correlations 

with grain yield compared to individual years, whereas 13 VIs had higher positive phenotypic 

correlations with grain yield (Figure 4.2). Interestingly, the VIs CIrededge, CVI, and EVI had 

positive phenotypic correlation but negative genetic correlations with grain yield, which in contrast 

with that of IF (Figure 4.2). 
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Figure 4.2. Genetic and phenotypic correlations of the vegetation indices with grain yield in 2022 
2023 and across year. 
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 Altogether, 15 VIs demonstrated consistent positive phenotypic and genetic correlation 

with grain yield within and across years, while six VIs demonstrated consistent negative 

correlations (Figure 4.2). It is worth noting that CVI had positive phenotypic and genetic 

correlation with grain yield in 2022 and negative correlation in 2023 (Figure 4.2). In contrast, IPVI 

and MSAVI2 had negative phenotypic and genetic correlation in 2022 and positive correlation in 

2023 (Figure 4.2). 

4.4.3. Principal component analysis of VIs  

 Principal component analysis (PCA) was carried out for dimensionality reduction of VIs 

and to identify VIs contributing most to phenotypic variation observed. Grain yield was not 

included in PCA, therefore the variation observed and explained was solely from the VIs. The first 

three principal components (PC) explain 94.1% of the variation in VIs observed among the 

genotypes in the 2022 trial, with PC1 explaining 63.2% of the variance (Supplementary Figure 

4.2). A total of 21 VIs contributed positively to the observed variation, with RBNDVI, ARVI2, and 

NDVI having the most substantial contributions (Supplementary Figure 4.3).  

In the 2023 trial, the first three PCs explain 94.7% of the variation the VIs observed among 

the genotypes in the 2023 trial, with PC1 explaining 85.2% of the variance observed 

(Supplementary Figure 4.2). A total of 21 VIs contributed positively to the observed variation, with 

RBNDVI, PNDVI, and NDVI having the most substantial contributions (Supplementary Figure 

4.3).  

Similar results were observed when combining vegetative indices across years. The first 

three PCs explain 89.8% of the variation observed in multi-year indices, slightly lower than 

individual years, with PC1 explaining 67.7% of the variations observed (Supplementary Figure 
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4.2). A total of 20 VIs contributed positively to variation in VIs, with GRNDVI, RBNDVI, and 

PNDVI having the most substantial contributions (Supplementary Figure 4.3).  

4.4.4. Feature selection 

 In the 2022 trial, NDRE, NormG, GNDVI, GRNDVI, CIrededge, and NormNIR were 

identified as the most important VIs associated with grain yield using recursive partitioning and 

regressive tree model (Table 4.1). From the 2023 trial, NormNIR, CIrededge, NDVI, ARVI2, 

GRNDVI, NGRDI, RI, VARI, and CTVI were identified as the most important VIs associated with  

grain yield (Table 4.1) Across years, NormNIR, GRNDVI, NDRE, CTVI, NormR, PNDVI, NDVI, 

and ARVI2 were identified as the most important VIs associated with grain yield (Table 4.1). 

Of all the VI selected, GRNDVI and NormNIR was selected consistently, whereas 

CIrededge was  only selected in both 2022 and 2023 trials, but not in the combined trials. NDRE 

 

Table 4.1. Feature importance scores of selected wavebands using recursive partitioning 
and regressive tree model from individual trial (2022, 2023) s and BLUEs from combined 
trials (2022-2023). Empty cells mean the VI was not selected for that year/trial. 

Feature Selected VIs 
Feature Importance Score 

2022 2023 Combined Trials Sum 
GRNDVI  74.72 61.93 97.2 233.85 
NormNIR  22.79 100 100 222.79 
NDRE  100 - 59.73 159.73 
CIrededge  50.28 62.11 - 112.39 
NDVI  - 62.09 38.69 100.78 
ARVI2  - 62.09 36.69 98.78 
CTVI  - 37.91 58.4 96.31 
NormG  75.84 - - 75.84 
GNDVI  74.72 - - 74.72 
NormR - - 57.53 57.53 
PNDVI  - - 38.78 38.78 
NGRDI  - 38.39 - 38.39 
RI  - 38.39 - 38.39 
VARI  - 38.39 - 38.39 
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was selected in from the 2022 trial and using the combined trial, whereas ARVI2, CTVI, GRNDVI, 

and NDVI were all selected from the 2023 trial and using combined trials. NormG, GNDVI, 

NGRDI, RI, and VARI were all selected only once either from the 2022 trial or the 2023 trial. 

Interestingly, NormR and PNDVI were not selected from individual trials, but was selected when 

the trials were combined.      

 These fourteen VIs appear to be good predictors of grain yield based on feature selection 

using reccursive partitioning and regressive model, arramged in descending order of importance 

and concistency of selection based on total importance score: GRNDVI, NormNIR, NDRE, 

CIrededge, NDVI, ARVI2, CTVI, NormG, GNDVI, PNDVI, NGRDI, RI and VARI. 

4.4.5. Grain Yield MTAs 

Genome wide association was carried out to identify significant MTAs potentially 

associated with grain yield. Seven MTAs were mapped in chromosomes 1B, 3A, 5B, 6B, and 7A, 

however, the identified MTAs were not consistent (Supplementary Table 4.7). The MTAs 

S3A_1065055 in chromosome 3A, S5B_607526225 in chromosome 5B, and S7A_54345139 in 

chromosome 7A, explaining 6.35%, 11.05%, and 31.05% of the phenotypic variance explained 

respectively, were only mapped from the 2022 trial (Supplementary Table 4.7). The MTAs 

S1B_686820474 mapped in chromosome 1B and S3A_532458794 in chromosome 3A, explaining 

17.36% and 7.13% of the phenotypic variance observed respectively, were only mapped from the 

2023 trial (Supplementary Table 4.7). Interestingly, the MTAs S3A_551647066 mapped in 

chromosome 3A and S6B_163179890 in chromosome 6B, explaining 8.66% and 6.18% of the 

phenotypic variance observed respectively, were mapped using the BLUEs across years, but were 

not identified from either of the 2022 or 2023 trials alone (Supplementary Table 4.7).  

 



88 
 

4.4.6. MTAs associated with VIs 

Since the VIs are essentially phenotypes, genome wide assoication was conducted for all 

the 30 VIs for 2022 trial, 2023 trial, and combined 2022-2023 trials. A total of 88 MTAs were 

mapped in different VIs and trials (Supplementary Table 4.7). A total of 17 MTAs were found to 

be putatively associated with the VI Hue (H), distributed in various chromosomes (Supplementary 

Table 4.7). Interestingly, the MTAs associated with this VI was not associated or mapped with any 

other vegetation indices, whereas several MTAs identified is associated to multiple vegetation 

indices (Supplementary Table 4.7). Most notably, the 1A SNP at 295.5Mb and the 1D SNP at 

0.5Mb are associated with most VIs, both of which were mapped from 12 different VIs, 

respectively (Supplementary Table 4.7). In addition, several mapped MTAs were mapped using 

BLUEs from combined trials and in the 2022 trial: S1A_312552669 associated with  EVI, 

S1D_38087525 associated with VIs GDVI, IPVI, and MSAVI, and S1D_464487 associated with 

VIs BWDRVI, CIrededge, GBNDVI, and NormG (Supplementary Table 4.7). However, none of 

the MTAs mapped from 2023 trial were mapped in the 2022 trial or in the combined trials. 

4.4.7. Coincident MTA in chromosome 7A 

A conincidental MTA, S7A_54345139 in chromosome 7A, was found to be associated with 

grain yield and with VIs NDRE and IF (Supplementary Table 4.7). This MTA could be considered 

a large effect MTA for grain yield as it explaines 31.05% of the variation observed in grain yield 

in the 2022 trial (Supplementary Table 4.7). The MTA also explains 15.69% and 7.03% of the 

phenotypic variation observed in NDRE and IF in the 2022 trial (Supplementary Table 4.7). 

Interestingly, when looking at the grain yield of the genotypes bearing this allele, we found a 

significant difference between genotypes bearing homozygous G and homozygous T alleles in the 
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2022 trial, 2023 trial, and combined trials. However, the spread or variation in grain yields are still 

wide and not clearcut (Supplementary Figure 4.5). 

4.4.8. Predictive Ability of Univariate Genomic and Phenomic Predictions 

Predictive ability assessment was carried out in a cross-validation scheme within training 

sets using a 80/20 training and testing set split. Each of the 2022 and 2023 trials were considered 

as separate training sets, and the combined trials was considered as another separate training set. 

Predictive ability was determined by calculating the average phenotypic Pearson’s correlation 

between the predicted and actual grain yield in the testing set in 100 cycles of cross validation. 

Eight models, including five Bayesian models, ridge regression best linear unbiased prediction 

(RRBLUP) and two machine learning models, were tested and compared.  

Significant variation for predictive ability was identified among genomic prediction 

models (p= 4.99x10-11) in the 2022 trial, with BayesC having significantly higher predictive ability 

 

Table 4.2. Comparison of predictive abilities of genomic prediction and phenomic prediction 
derived from cross-validation using 2022 trial, 2023 trial, and combined 2022 and 2023 trials. 

Model 
2022 2023 Combined Trials 

Genomic# Phenomic# Genomic# Phenomic# Genomic# Phenomic# 

BayesA 0.402 ± 0.082b 0.709 ± 0.065b 0.277 ± 0.068ab 0.864 ± 0.040ab 0.298 ± 0.124ab 0.862 ± 0.041cd 

BayesB 0.429 ± 0.089cde 0.719 ± 0.058b 0.305 ± 0.086bc 0.868 ± 0.036ab 0.313 ± 0.112bc 0.862 ± 0.039cd 

BayesC 0.444 ± 0.086e 0.719 ± 0.060b 0.303 ± 0.088bc 0.865 ± 0.035ab 0.309 ± 0.122bc 0.866 ± 0.036cd 

BL 0.422 ± 0.095bcde 0.717 ± 0.067b 0.307 ± 0.086bc 0.867 ± 0.031ab 0.301 ± 0.126ab 0.870 ± 0.029d 

BRR 0.437 ± 0.095de 0.709 ± 0.070b 0.289 ± 0.087abc 0.866 ± 0.033ab 0.304 ± 0.110abc 0.861 ± 0.043c 

RF 0.408 ± 0.098bc 0.641 ± 0.057a 0.316 ± 0.073c 0.873 ± 0.030b 0.352 ± 0.014d 0.803 ± 0.027a 

RRBLUP 0.356 ± 0.089a 0.712 ± 0.060b 0.284 ± 0.078ab 0.872 ± 0.026ab 0.283 ± 0.109a 0.814 ± 0.028b 

XGBoost 0.418 ± 0.096bcd 0.649 ± 0.063a 0.268 ± 0.081a 0.863 ± 0.027a 0.325 ± 0.101c 0.805 ± 0.028ab 

BL – Bayesian LASSO, BRR – Bayesian Ridge Regression, RF – Random Forest, RRBLUP – 
Ridge Regression Best Linear Unbiased Prediction, XGBoost – Extreme Gradient Boosting 
#Means with the same letters are not significantly difference at alpha 0.05. Comparisons are within 
columns. 
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(0.444), and RRBLUP having the lowest predictive ability (0.356) (Table 4.2). In the 2023 trial, 

significant variation in predictive ability was also observed among the models (p.value: 0.03566), 

with RF having the highest predictive ability (0.316) and xgBoost having the lowest predictive 

ability (0.268) (Table 4.2). Significant variation among the models was also observed in the 

combined 2022 and 2023 trials as a training set (p.value: 1.53x10-07) with RF having significantly 

highest predictive ability (0.352), whereas RRBLUP showed significantly lower predictive ability 

(0.283) (Table 4.2). Across all the training sets, RRBLUP showed consistently low predictive 

ability. In addition, using the 2022 trial as training set resulted in higher predictive ability compared 

to using 2023 trial or using combined trials (Table 4.2).  

The same models for genomic prediction were used for phenomic prediction, where all the 

30 VIs generated were used as predictors in place of genomic information (SNPs). Significant 

variation in predictive ability was observed with the 2022 trial (p.value: 8.75x10-33). The Bayesian 

models and RRBLUP showed no significant differences while BayesB and BayesC demonstrated 

the highest predictive ability (0.719) and the machine learning models showing significantly lower 

predictive ability (Table 4.2). No significant variation in predictive ability was observed among 

models in the 2023 trial (p.value: 0.32173), however, RF demonstrated the highest predictive 

ability (0.873) (Table 4.2). In the combined trials, BL demonstrated the highest predictive ability 

(0.87), while machine learning models RF and xgBoost demonstrated the lowest predictive ability 

(Table 4.2). Overall, 2022 trial had lower predictive abilities compared to 2023 trial and the 

combined trials (Table 4.2). Surprisingly, machine learning models RF and xgBoost showed 

relatively lower predictive ability compared to Bayesian models, which is most evident in the 2022 

and in the combined trials (Table 4.2).  



91 
 

Phenomic predictions showed higher predictive ability compared to genomic predictoins 

regardless of the training set and model used (Table 4.2). The higher predictive ability of phenomic 

predictions could accounted by the correlation of the VIs  with grain yield. Comparing the training 

sets, 2022 trial recorded higher predictive ability using genomic information, which is in contrast  

with phenomic prediction where the 2022 trial recorded lower overall predictive ability (Table 

4.2). Notably, RRBLUP showed poor predictive ability using genomic information, whereas it 

showed relatively high predictive ability using phenomic information. Bayesian models showed 

consistently good predictive abilities in both genomic and phenomic predictions (Table 4.2).  

4.4.9. Predictive ability of univariate genomic prediction with feature selected VIs as covariates  

To assess the impact of incorporating VIs as fixed effects in genomic predictions, the 13 

feature selected VIs were all tested individually as fixed effects. RRBLUP was chosen as the base 

genomic prediction model due to consistenly poor genomic predictive ability compared with the 

other models. 

Significant variation in genomic predictive ability was identified among VIs used as fixed 

effect in the 2022 trial (p.value: <0.00001). Incorporating NDRE as fixed effect in the RRBLUP 

model demonstrated the highest predictive ability (0.66) and improved the accuracy relative to the 

base model. Incorporating RI, VARI and NGRDI decreased the predictive ability relative to the 

base model (Table 4.3).  

Similarly, significant variation was identified using VIs as a fixed effect (p.value: 3.67x10-

35) in the 2023 trial, however the differences among models were minor (0.828 to 0.875) (Table 

4.3). The highest predictive ability was observed using GRNDVI, PNDVI, NDVI, NormR, and  
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Table 4.3. Comparison of predictive abilities of genomic prediction using RRBLUP 
with selected VIs used individually as fixed effect derived from cross-validation using 
2022 trial, 2023 trial, and combined 2022 and 2023 trials. 

VI 2022# 2023# Combined Trials# 

ARVI2 0.543 ± 0.069cd 0.875 ± 0.026d 0.791 ± 0.024fg 

CIrededge 0.543 ± 0.063cd 0.857 ± 0.034b 0.613 ± 0.041a 

CTVI 0.552 ± 0.068cde 0.869 ± 0.032cd 0.790 ± 0.026fg 

GNDVI 0.573 ± 0.062e 0.862 ± 0.028bc 0.751 ± 0.029d 

GRNDVI 0.566 ± 0.064de 0.875 ± 0.031d 0.786 ± 0.027ef 

NDRE 0.661 ± 0.058f 0.869 ± 0.032cd 0.784 ± 0.028ef 

NDVI 0.543 ± 0.068cd 0.873 ± 0.031d 0.792 ± 0.026fg 

NGRDI 0.268 ± 0.087b 0.864 ± 0.026bc 0.741 ± 0.030c 

NormG 0.561 ± 0.062de 0.828 ± 0.034a 0.641 ± 0.037b 

NormNIR 0.566 ± 0.064de 0.869 ± 0.027cd 0.795 ± 0.025g 

NormR 0.530 ± 0.070c 0.873 ± 0.031d 0.789 ± 0.026fg 

PNDVI 0.549 ± 0.066cde 0.874 ± 0.031d 0.779 ± 0.028e 

RI 0.158 ± 0.087a 0.864 ± 0.026bc 0.747 ± 0.030c 

VARI 0.163 ± 0.099a 0.859 ± 0.026b 0.747 ± 0.037c 

#Means with the same letters are not significantly different at α=0.05. Comparisons are within 
columns. 
 

ARVI  with no significant differences observed in the predictive abilities of these Vis ranging from 

0.87 to  0.88 (Table 4.3).  

Using the combined 2022 and 2023 trials, significant variation was also observed in the 

genomic predictive abilities from incorporating VIs as a fixed effect (p.value: <0.00001). 

Incorporating NormNIR resulted in the highest predictive ability (0.795), with the lowest when 

CIrededge was incorporated (0.613) (Table 4.2). 

Incorporating VIs as fixed effect resulted in the highest predictive abilities in the 2023 trial 

compared to the 2022 trial and in the combined trials (Table 4.3). This is likely due to the higher 

correlation of the VIs with grain yield in 2023. Incorporation of GRNDVI, NDRE, and NormNIR 
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in RRBLUP as fixed effect resulted in high predictive ability, whereas incorporating VARI and 

CIrededge consistently resulted in poor predictive ability regardless of the training set used (Table 

4.3). Overall, predictive ability increases when feature selected VIs are incorporated in RRBLUP 

as fixed effects compared to the base model that includes only genomic information (Table 4.3). 

4.4.10. Predictive ability of univariate genomic prediction incorporating multiple vegetative 

indices as covariates 

To determine if including additional VIs to the base RRBLUP model improve predictive 

ability, GRNDVI  was included as a common fixed effect and an increasing number of VIs were 

added as fixed effects. Predicitve ability of the base model decreased with the addition of two to  

 

Table 4.4. Comparison of predictive abilities of genomic prediction using RRBLUP with multiple 
and increasing number of VIs as fixed effect derived from cross-validation using 2022 trial, 2023 
trial, and combined 2022 and 2023 trials. 
Number of 

VIs 
2022# 2023# Combined Trials# VIs Incorporated as Covariate 

1 0.53 ± 0.198d 0.87 ± 0.026ef 0.79 ± 0.027g GRNDVI 

2 0.61 ± 0.162e 0.88 2± 0.036f 0.77 ± 0.035fg GRNDVI, NDRE 

3 0.56 ± 0.171d 0.87 ± 0.043ef 0.77 ± 0.052fg GRNDVI, NDRE, NDVI 

4 0.55 ± 0.162d 0.85 ± 0.047de 0.75 ± 0.061ef GRNDVI, NDRE, NDVI, CTVI 

5 0.51 ± 0.179cd 0.84 ± 0.055d 0.75 ± 0.060de GRNDVI, NDRE, NDVI, CTVI, 
NormG 

6 0.48 ± 0.188bc 0.80 ± 0.105c 0.73 ± 0.067cd GRNDVI, NDRE, NDVI, CTVI, 
NormG, CIrededge 

7 0.46 ± 0.190abc 0.78 ± 0.109bc 0.72 ± 0.071bc GRNDVI, NDRE, NDVI, CTVI, 
NormG, CIrededge, PNDVI 

8 0.44 ± 0.192ab 0.77 ± 0.112ab 0.71 ± 0.075ab GRNDVI, NDRE, NDVI, CTVI, 
NormG, CIrededge, PNDVI, NGRDI 

9 0.41 ± 0.198a 0.75 ± 0.120a 0.70 ± 0.080a 
GRNDVI, NDRE, NDVI, CTVI, 
NormG, CIrededge, PNDVI, NGRDI, 
VARI 

#Means with the same letters are not significantly difference at alpha 0.05. Comparisons are within 
columns. 
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Table 4.5. Comparison of predictive abilities of genomic prediction using RRBLUP with 
increasing number of principal components (PCs) as fixed effect derived from cross-
validation using 2022 trial, 2023 trial, and combined 2022 and 2023 trials. 

Number of PCs 2022# 2023# Combined Trials# 

1 0.516 ± 0.069b 0.870 ± 0.026b 0.780 ± 0.027 b 
2 0.465 ± 0.143a 0.841 ± 0.055a 0.760 ± 0.045a 
3 0.472 ± 0.168a 0.842 ± 0.047a 0.756 ± 0.76a 

#Means with the same letters are not significantly difference at alpha 0.05. Comparisons are within 
columns. 
 

nine VIs. The trend of decreasing predictive ability as VIs are added was observed for the 2022 

(p=2.90x10-17), 2023 (p=6.54x10-51) and combined years (p=1.45x10-30 ). 

In order to take advantage of the information in all of the VIs simultaneously rather than 

relying solely on one VI or few selected VIs, we added one, two, or three PCs as fixed effects in 

RRBLUP. Consistent with the observation of decreased predictive ability by increasing the number 

of VIs as fixed effect in RRBLUP (Table 4.4), the predictive ability decreased as the number of 

PCs increased in the 2022 (p=0.0158), 2023 (p=1.814x10-6)  and combined years (0.00037) (Table 

4.4). This could potentially be due to the high percentage of variation contributed by the first PC. 

4.4.11. Forward prediction and indirect selection accuracy 

To assess indirect selection accuracy and evaluate the utility of the models and approaches, 

the 2022 and 2023 trials, independently, and combined trials were used as training sets for forward 

prediction of grain yield in a set of genotypes evaluated in 2024, hereby termed testing set. 

Phenotypic and genetic correlations between the predicted and actual grain yield in the testing set 

was evaluated. Indirect selection accuracy was calculated by multiplying the genetic correlation 

between predicted and actual grain yield with the square root of heritability of the predicted values 

in the testing set. 
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4.4.12 Forward prediction: genetic correlation 

Genomically predicted values using 2022 trial as the training set showed a negative genetic 

correlation with actual grain yield in all models, except XGBoost (Table 4.6). Using the 2023 trial, 

the highest genetic correlation was observed from BL (0.346), while the lowest from RRBLUP 

(Table 4.6). When using combined trials,  low genetic correlation was observed, and predicted 

values using RRBLUP showed a negative genetic correlation (Table 4.6). 

Predicted grain yield using VIs (phenomic prediction), with the 2022 trial as the training 

set, showed varied genetic correlations, with the highest observed in XGBoost (0.256), as well as  

when using the 2023 trial as training set (0.392) (Table 4.6). In contrast, negative correlation was 

observed with XGBoost (-0.152) when using combined trials as the training set, whereas highest 

genetic correlation was obtained using RRBLUP (0.330) (Table 4.6). 

 

Table 4.6. Phenotypic and genetic correlations between predicted grain yield from forward 
prediction in genotypes evaluated in 2024 with different training sets and models used. 

Model 

Genetic Correlation Phenotypic Correlation 
Training Set: Training Set: 

2022 2023 Combined Trials 2022 2023 Combined Trials 
Geno. Pheno. Geno. Pheno. Geno. Pheno. Geno. Pheno. Geno. Pheno. Geno. Pheno. 

BayesA -0.225 0.164 0.265 0.117 0.020 0.250 -0.129 0.472 0.045 0.138 -0.100 0.645 
BayesB -0.197 0.142 0.291 0.073 0.016 0.234 -0.121 0.427 0.047 0.038 -0.042 0.639 
BayesC -0.221 0.185 0.277 0.103 0.022 0.239 -0.126 0.495 0.046 -0.241 -0.040 0.639 
BL -0.221 0.113 0.346 0.232 0.019 0.224 -0.126 0.369 0.054 0.367 -0.043 0.643 
BRR -0.221 0.069 0.267 -0.024 0.017 0.238 -0.127 0.281 0.044 -0.067 -0.040 0.644 
RF -0.018 0.170 0.037 0.364 0.022 0.304 -0.020 0.538 -0.065 0.455 -0.047 0.587 
RRBLUP -0.302 0.224 0.025 0.322 -0.001 0.330 -0.164 0.613 0.016 0.510 -0.050 0.557 
XGBoost 0.093 0.256 0.043 0.392 0.00001 -0.152 -0.023 0.571 0.002 0.416 0.005 -0.384 

Geno = genomic prediction, pheno = phenomic prediction, BL = Bayesian Lasso, BRR = Bayesian 
Ridge Regression, RF = Random Forest, RRBLUP = Ridge Regression Best Linear Unbiased 
Prediction, XGBoost = Extreme Gradient Boosting 
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Comparing genomic and phenomic predictions, using the 2023 trial as the training set 

resulted in higher genetic correlations in genomic prediction, whereas using combined trials in 

phenomic prediction resulted in higher genetic correlations (Table 4.6). Interestingly, predicted 

values obtained from genomic prediction using RRBLUP resulted in low genetic correlation, 

whereas predicted values obtained from phenomic prediction using RRBLUP resulted in higher 

genetic correlation (Table 4.7). Overall, phenomically predicted values showed higher genetic 

correlation compared to genomically predicted values (Table 4.7). 

The genetic correlations in the testing set using different training sets and approaches for 

integrating UAV-derived information (VIs) with genomic data for grain yield predictions were also  

evaluated. RRBLUP was used as the base model for genomic prediction of grain yield, with VIs 

as fixed effects. 

Genetic correlations varied depending on the VI used as a fixed effect with the 2022 trial 

as the training set. The highest genetic correlation observed using GNDVI (0.193) and PNDVI 

(0.192), while similar genetic correlations were also observed in several VIs ranging from 0.165 

to 0.189 (Table 4.7). Similarly, the highest genetic correlation was observed using PNDVI with 

the 2023 trial as the training set (0.380) and with combined trials as the training set (0.334) (Table 

4.7). CIrededge resulted in negative genetic correlation using the 2022 trial (-0.307), the 2023 trial 

(-0.213), and combined trials (-0.226) as the training set (Table 4.8). Overall, using the 2023 trial 

resulted in higher genetic correlations compared to using either the 2022 trial or combined trials 

(Table 4.7). 

Genetic correlation of predicted grain yield in the testing set using RRBLUP with multiple  

and increasing number of VIs was also evaluated. The trend observed in the predictive ability 

assessment from cross validation was observed when 2022 and 2023 trial was used as training set 
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independently.  Highest genetic correlation was observed when only one VI (GRNDVI) was used 

as fixed effect using the 2022 trial as training set (Table 4.7). Genetic correlation decreased as 

more VIs were incorporated, with negative correlations observed when six to eight VIs were used 

(Table 4.7). Using the 2023 trial as the training set, highest genetic correlation was observed when 

incorporating two VIs (0.39) (Table 4.7). Relatively similar genetic correlation was observed when 

 

Table 4.7. Phenotypic and genetic correlations between predicted grain yield from forward 
prediction in genotypes evaluated in 2024 with different training sets and different UAV-data 
information integration. 

Model and  
Approach 

Genetic Correlation Phenotypic Correlation 
Training Set: Training Set: 

2022 2023 Combined Trial 2022 2023 Combined Trial 
Selected VIs used Individually as Fixed Effect 
ARVI2 0.171 0.354 0.307 0.387 0.572 0.518 
CIrededge -0.307 -0.213 -0.226 -0.458 -0.558 0.505 
CTVI 0.169 0.358 0.305 0.389 0.573 0.514 
GNDVI 0.193 0.363 0.315 0.468 0.593 0.551 
GRNDVI 0.189 0.364 0.319 0.442 0.596 0.550 
NDRE 0.167 0.279 0.276 0.509 0.113 0.564 
NDVI 0.171 0.354 0.307 0.387 0.572 0.518 
NGRDI 0.046 0.289 0.235 0.097 0.368 0.293 
NormG 0.188 0.344 0.305 0.459 0.573 0.530 
NormNIR 0.189 0.361 0.307 0.442 0.590 0.536 
NormR 0.165 0.350 0.304 0.369 0.563 0.508 
PNDVI 0.192 0.380 0.334 0.425 0.588 0.540 
RI 0.046 0.289 0.235 0.097 0.368 0.293 
VARI 0.045 0.302 0.243 0.084 0.353 0.278 
Multiple and Increasing Number of VIs as Fixed Effect 

1 0.19 0.36 0.32 0.44 0.6 0.55 
2 0.12 0.37 0.29 0.46 0.57 0.57 
3 0.12 0.35 0.26 0.47 0.54 0.56 
4 0.10 0.35 0.26 0.46 0.54 0.57 
5 0.10 0.31 0.19 0.45 0.46 0.43 
6 -0.28 0.24 0.29 -0.24 0.21 0.61 
7 -0.31 -0.3 0.3 -0.31 -0.59 0.61 
8 -0.08 -0.28 0.29 0.08 -0.61 0.61 
9 0.06 -0.32 0.34 0.39 -0.56 0.61 

Multiple and Increasing Number of Dimensionally Reduced VIs (PCs) as Fixed Effect 
1 0.160 -0.205 0.312 0.354 -0.524 0.495 
2 0.180 -0.209 0.313 0.459 -0.503 0.527 
3 0.302 -0.180 0.339 0.425 -0.503 0.511 
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using one to six VIs (Table 4.7). However, genetic correlations began to decrease upon integrating 

seven to nine VIs as fixed effects (Table 4.7). Interestingly, when combined trials were used as the 

training set, genetic correlation was also observed to be similar, with the exemption of when five 

VIs were used as fixed effect  (Table 4.7). 

The 30 VIs generated were dimensionally reduced into PCs, accounting for collinearity 

among some VIs while maximizing the information retained in each VI, and were then used as 

fixed effects (Table 4.7). Highest genetic correlation was observed when the first three PCs were 

used as fixed effect with the 2022 trial as the training set (0.302), increasing from 0.160 using only 

the first PC (Table 4.7). Using the 2023 trial as the training set, negative correlation was observed 

when PCs were used as fixed effect (Table 4.7). With combined trials as the training set, highest 

genetic correlation was observed when the first three PCs were used (0.339) (Table 4.7). Overall, 

genetic correlation increased as more PCs were used as fixed effects (Table 8). Furthermore, 

utilizing PCs from combined trials resulted in higher genetic correlations compared to using either 

of the individual trials (Table 4.7). 

While there were variations on how the predicted values were genetically correlated with 

actual grain yield across in the testing set using different UAV-based information and genomic data 

integration appraoches, models, and training sets, overall, we observed higher genetic correlations 

when UAV and genomic data were integrated compared to using genomic data alone. 

4.4.13. Forward prediction: phenotypic correlation 

Phenotypic correlation between predicted values in the testing set with actual grain yield 

was assessed. Negative phenotypic correlation  was observed in genomically predicted values 

using 2022 trial as training set (Table 4.6). Low phenotypic correlation was also observed in 

genomically predicted values using 2023 trial as training set, with the highest only having a 
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correlation of 0.054 (BL) (Table 4.6). Negative phenotypic correlations was also observed when 

combined trials were used as training set (Table 4.6). 

Using the 2022 trial as training set, phenotypic correlation across models ranged from 

0.281 to 0.613, with the highest observed using RRBLUP (Table 4.6). Similarly, RRBLUP had the 

highest phenotypic correlation when 2023 trial was used as training set (0.510), whereas negative 

phenotypic correlation was observed in BayesC and BRR models (Table 4.6). Using the combined 

trials, bayesian models showed higher phenotypic correlation compared when other models were 

used, with the highest observed using BayesA (0.645) (Table 4.6). Comparing how training set 

affected phenotypic correlation, using combined trials as training set resulted in higher phenotypic 

correlations (Table 4.6). 

Overall, phenomically predicted grain yield showed higher phenotypic correlations 

compared to genomically predicted grain yield.  

 Using VIs individually as fixed effect with 2022 trial as training set, a wider range of 

phenotypic correlation was observed (-0.458 to 0.509) across the different VIs, with the highest 

observed using NDRE (Table 4.7). Using the 2023 trial as training set, relatively similar 

phenotypic correlation was observed in ten VIs, with the highest observed in GRNDVI (0.596) 

(Table 4.7). In both 2022 trial and 2023 trial as training set, incorporating CIrededge as fixed effect 

resulted in negative correlation (Table 4.7). Using the combined trials as training set, eleven VIs 

had relatively similar phenotypic correlations, with the highest observed when NDRE was used 

(Table 4.7). Comparing the training sets, relatively higher phenotypic correlations was observed 

across different VIs when 2023 trial was used as training set, with the exemption of CIrededge 

(Table 4.8). NDRE, interestingly, had the highest phenotypic correlation using 2022 trial and the 
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combined trials as training set, and had one of the lowest phenotypic correlation using 2023 trial 

as training set (Table 4.7). 

Using multiple VIs incorporated in RRBLUP as fixed effect with 2022 trial as training set, 

phenotypic correlation started to decreased from 0.44 using only one VI to –0.31 when seven VIs 

were used (Table 4.7). Interestingly, the phenotypic correlation when nine VIs were used was only 

slightly lower with the phenotypic correlation when one to five VIs were used (Table 4.7). Higher 

phenotypic correlation was observed when one VI (0.6) using the 2023 trial as training set (Table 

4.7). From thereon, phenotypic correlation started to decrease as more number of VIs incorporated 

(Table 4.7). Using the combined trials as training set, phenotypic correlation increased as the 

number of VIs incorporated increased, eventually reaching the highest phenotypic correlation 

using six to nine VIs (0.61) (Table 4.7). While the different training sets used resulted in different 

patterns of how increasing the number of VIs affected phenotypic correlations, higher correlations 

was observed when the combined trial was used compared to using the individual trials as training 

set (Table 4.7). 

Phenotypic correlation increased when the first two (0.459) or the first three (0.425) PCs 

were used as fixed effect in RRBLUP with 2022 trial as training set (Table 4.7). Negative 

phenotypic correlation, however, was observed when the 2023 trial was used as training set (Table 

4.7). Compared to both individual trials, using the combined trial as training set resulted in higher 

phenotypic correlation (Table 4.7). In addition, highest phenotypic correlation was observed when 

two (0.527) or three (0.511) PCs were used as fixed effect (Table 4.7). 

Similar with the obervations in genetic correlation assessment, phenotypic correlations 

varied depending on the training set, model, and UAV-data integration approach used. Comparing 

the different aproaches, RRBLUP with multiple VIs as fixed effect using combined trials as 
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training set resulted in higher phenotypic correlations. Overall, incorporating UAV-information 

with genomic data, regardless of the approach, resulted in higher phenotypic correlations 

compared to using genomic data alone. 

4.4.14. Forward prediction: variation in heritability in predicted grain yield  

Heritability, ratio of estimated genetic variance and estimated phenotypic variance, was 

assessed in the predicted grain yield of the testing set using different training sets, models, and 

approaches used. The square root of heritability, simply termed H from this point forward, was 

computed in predicted values to assess the proportion of variation controled by genetics in forward 

prediction. In a broader sense, this serves as an indirect measure of the accuracy of the models and 

approaches in capturing genetic variance. 

Bayesian models showed higher H in genomically predicted values using the 2022 trial, 

with the highest observed in BayesB (0.63) (Figure 4.3). Using the 2023 trial as training set, H 

ranged from 0.374 to 0.444. Contrary to when the 2022 trial was used, RRBLUP had the highest 

H when 2023 trial was used as training set (0.444) (Figure 4.3). Combined trials as training set 

resulted in H ranging from 0.00003 to 0.473, with the highest observed in BayesC (Figure 4.3). 

Comparing H from different training sets used, the 2022 trial as training set resulted in higher H 

(Figure 4.3). In addition, regardless of the training set used, BayesA, BayesB, BayesC and BRR 

concistently had higher H, whereas xgBoost performed poorly (Figure 4.3). 

Phenomically predicted grain yield with 2022 trial as training set showed higher H when 

Bayesian models were used, with the highest in BRR (0.607), compared to other phenomic 

prediction models (Figure 4.3) Using the 2023 trial as training set, H ranged from 0.481 to 0.660, 

with the highest observed in BayesB (Figure 4.3). With combined trials as training set, H ranged 

from 0.319 to 0.507, with the highest observed in RRBLUP (Figure 4.3). Utilization of the 2023  
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Figure 4.3. Square root of estimated heritability (H) predicted grain yield in the breeding lines 
evaluated in 2024 (testing set) from forward prediction using various models and data integration 
approaches with different training sets. 

 

trial resulted in better H compared to using either the 2022 trial or combined trials as training set 

(Figure 4.3). Interestingly, when individual trials were used as training set, Bayesian models 

performed better (Figure 4.3). However, when combined trials were used as training set, RF, 

RRBLUP, and XGBoost performed better (Figure 4.3). 

Interestingly enough, H was relatively higher in genomically predicted value using 2022 

trial, while H was higher in phenomically predicted values using the 2023 trial as training set 
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(Figure 4.3). In addition, for both phenomically and genomically predited values, Bayesian models 

showed relatively better H compared to RF, RRBLUP, and xgBoost (Figure 4.3). 

The H of predicted values from RRBLUP using individual VIs as fixed effect ranged from 

0.498 to 0.711 when 2022 trial was used as fixed effect, 0.431 to 0.646 when 2023 trial was used, 

and 0.479 to 0.638 when combined trials were used (Figure 4.3). Across all training sets, 

incorporation of NGRDI, RI, and VARI resulted in the highest H, while lowest was obtained when 

NDRE was used as fixed effect (Figure 4.3). 

The H of predicted values from RRBLUP with multiple VIs as fixed effect using the 2022 

trial as training set ranged from 0.510 to 0.714, with an observable increase in H as the number of 

VIs incorporated increased (Figure 4.3). Highest H was obtained when eight VIs were 

incorporated, and lowest using only two VIs (Figure 4.3). Using the 2023 trial, H ranged from 

0.412 to 0.742, with the highest observed when seven VIs were used as fixed effect (Figure 4.3). 

Using combined trials, a different trend was observed. Using the combined trials as training set, 

similar H was observed when one or five VIs were used, whereas the rest gad similar H (Figure 

4.3). Taking the observations alltogether, using individual trials resulted in higher H, with an 

increasing trend as the number of VI as fixed effect increased, as compared to when using 

combined trial as training set (Figure 4.3). 

PCs used as fixed effect showed no disernable pattern in H of predicted values in all of the 

training sets used (Figure 4.3). However, highest H was observed when only the first principal 

component was used as fixed effect when 2022 trial and combined trials were used as training set, 

whereas higher H was observed when two PCs were used in 2023 trial as training set (Figure 4.3). 

In addition, higher H was observed when 2022 trial was used as training set. 
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4.4.15. Forward prediction: indirect selection accuracy 

While other metrics were explored and evaluated in forward prediction, assessing the 

indirect selection accuracy serves as an excellent metric in comparing models and approaches, and 

ultimately, the effectivity and utility of trained models and approaches. Indirect selection accuracy 

was calculated by multiplying the genetic correlations and the square root of heritability of 

predicted grain yield. 

 

 

Figure 4.4. Indirect selection accuracy (Acc(I)) of predicted grain yield in the breeding lines 
evaluated in 2024 (testing set) from forward prediction using various models and data integration 
approaches with different training sets. 
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Low indirect selection accuracy was observed in genomic prediction models using the 2022 

trial as training set (Figure 4.4). However, it is worth noting that the negative indirect selection 

accuracy was a result of the predicted and actual grain yield having negative correlations. Low 

indirect selection accuracy was also observed across models using 2023 trial and combined trials 

as training set (Figure 4.4). Across all models, genomic prediction using the 2023 trial resulted in 

slightly higher indirect selection accuracy (0.011 to 0.130) over genomic prediction using 

combined trials as training set (<-0.0001 to 0.01) (Figure 4.4). 

Overall, phenomic indirect selection accuracy was higher compared to genomic indirect 

selection accuracy. With 2022 trial as training set, phenomic indirect selection accuracy ranged 

from 0.042 to 0.095, whereas using the 2023 trial as training set ranged from –0.015 to 0.197,  and 

–0.067 to 0.168 when combined trials were used as training set (Figure 4.4). Highest indirect 

selection accuracy was observed in BL with 2023 trial as training set using phenomic information, 

which was higher than any other model both in genomic and phenomic prediction (Figure 4.4). 

Indirect selection accuracy varied based on the individual VI used as fixed effect. With the 

2022 trial as training set, indirect selection accuracy ranged from –0.196 to 0.118, -0.092 to 0.208 

using the 2023 trial, and –0.133 to 0.181 using the combined trials (Figure 4.4). Across training 

sets, highest indirect selection accuracy was observed when PNDVI was incorporated (Figure 4.4). 

The negative indirect selection accuracy observed in CIrededge was driven by the negative 

correlation between predicted and actual grain yield values (Figure 4.4). 

Indirect selection accuracy decreased as the number of VIs incorporated increased with the 

2022 trial as training set (Figure 4.4). Uisng the 2023 trial as training set, similar indirect selection 

accuracy was observed upon integration of one to four VIs as fixed effect, and started to decrease 

upon integration of five to nine VIs (Figure 4.4). Using combined trials as training set, the indirect 
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selection accuracies were relatively similar, ranging from 0.13 to 0.17, regardless of the number 

of VIs used as fixed effect, with the exemption however of when five VIs were used as fixed effect 

(Figure 4.4). Overall, using the 2023 trial as training set resulted in higher indirect selection 

accuracy over using either 2022 trial or combined trials as training set. However, similar with the 

trend observed in predictive ability assessment, indirect selection accuracy somehow decreased as 

more VIs were used as fixed effect (Figure 4.4).  

PCs as fixed effect in genomic prediction resulted in varied prediction accuracies. With the 

2022 trial as training set, highest indirect selection accuracy was obtained when the first three PCs 

were used (Figure 4.4). Negative prediction accuracies were obtained when 2023 trial was used as 

training set. Overall, higher prediction accuracies were obtained when combined trials were used 

as training set over using individual trials, with the highest indirect selection accuracy was 

observed when the first three PCs were used as fixed effect (Figure 4.4). 

While the values generated for indirect selection accuracy seem low, it is worth noting that 

the point of reference was the indirect selection accuracy of genomic prediction models, especially 

RRBLUP. Considering this, higher indirect selection accuracies were obtained from phenomic 

prediction using UAV-information. More importantly, indirect selection accuracy was also 

observed in models and approaches where VIs were either incorporated as fixed effect or used as 

secondary trait. However, we would like to point out the obvious differences between the obtained 

indirect selection accuracies, regardless of the model and approach used, between the 2022 and 

2023 trial when used independently as training set. Therefore, using combined trials would be a 

better option to take into account the difference between years. 
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4.4. Discussion 

4.4.5. UAV-based high throughput phenotyping for grain yield in soft winter wheat 

 The heritability of grain yield and vegetation indices (VIs) varied across trials, primarily 

due to differences in the genotypes evaluated in 2022 and 2023. More importantly, environmental 

conditions varied between years. In 2023, drought conditions led to lower soil moisture content, 

particularly toward the harvest stage, along with higher temperatures during plant development 

(Supplementary Table 4.16). A significant portion of the phenotypic variation was attributed to the 

year effect and genotype-by-year interactions. These findings align with previous studies 

emphasizing the impact of genotype-by-environment interactions on wheat grain yield (Nehe et 

al., 2019; Lozada & Carter, 2020; Saeidinia et al., 2023). 

Interestingly, VIs exhibited stronger phenotypic and genotypic correlations with grain yield 

in the 2023 trial, despite greater error variance relative to genotype variance. This suggests that 

VIs may capture more than just yield variation, potentially reflecting other environmental and 

physiological factors. 

Based on phenotypic and genetic correlations, as well as feature selection analyses, several 

VIs demonstrated potential associations with grain yield. NDRE emerged as a particularly 

promising index for indirect yield evaluation and selection. Zhang et al. (2019) demonstrated 

NDRE’s ability to differentiate rice genotypes based on final grain yield under varying nitrogen 

treatments. Similarly, Torino et al. (2014) reported that NDRE provided more accurate yield 

predictions in maize compared to NDVI. In this study, NDRE exhibited higher heritability and 

stronger correlations with grain yield than several other VIs, possibly due to the timing of UAV 

flights at crop maturity. Boiarskii & Hasegawa (2019) noted that different VIs are useful at 

different growth stages, particularly highlighting NDRE’s sensitivity to chlorophyll content at later 
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stages. Similarly, Kanke et al. (2010) suggested that the red-edge wavebands, from which NDRE 

is derived, are more responsive to plant physiological changes during advanced growth stages. 

NormNIR was also consistently selected through feature selection as a potential VI 

associated with grain yield. While no prior studies have directly linked NormNIR to grain yield, 

Mendes dos Santos et al. (2022) found that it effectively distinguished between healthy and leaf 

miner-infected coffee leaves. To our knowledge, this is the first report associating NormNIR with 

grain yield in wheat. 

GRNDVI was another VI consistently identified to be associated with grain yield. It has 

been widely used as an indicator of crop growth (Zhao et al., 2011) and is frequently employed for 

monitoring vegetation development (Fan et al., 2020). In sugarcane, Akbarian et al. (2022) found 

that combining NDRE and GRNDVI yielded the most accurate predictions of biomass-related 

yield. Although sugarcane yield differs from wheat grain yield, NDRE and GRNDVI may capture 

biomass variation in wheat, potentially influencing yield. 

Although NDVI remains one of the most commonly used VIs for grain yield evaluation 

and selection (Wall et al., 2007; Duan et al., 2017; Hassan et al., 2019; Aranguren et al., 2020), its 

phenotypic and genetic correlations with grain yield in this study, along with its heritability, were 

relatively lower than those of NDRE and GRNDVI. This contrasts with several studies where 

NDVI exhibited the strongest correlations with yield (Duan et al., 2017). These results highlight 

the importance of carefully selecting VIs for yield evaluation and indirect selection, rather than 

relying solely on NDVI. 

4.4.2. Genome wide association mapping of VIs and grain yield 

 Significant marker-trait associations (MTAs) were identified for grain yield: three from the 

2022 trial, two from the 2023 trial, and two from BLUEs calculated across years. However, none 
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of these MTAs were consistently detected across multiple trials, suggesting that they may be 

genotype-dependent. This is likely due to differences in the genotypes evaluated each year, as well 

as environmental variations between 2022 and 2023. Nonetheless, two MTAs from the 2022 trial 

exhibited large effects: S5B_607526225, explaining 11.05% of the phenotypic variance, and 

S7A_54345139, explaining 31.05%. 

Interestingly, MTA S7A_54345139, identified in the 2022 trial, was associated with grain 

yield, NDRE, and Shape Index (IF), explaining 31.05%, 15.69%, and 7.03% of the observed 

phenotypic variance, respectively. Notably, in 2022, NDRE exhibited the highest positive 

phenotypic and genotypic correlation with grain yield, whereas IF showed a significant negative 

correlation with yield. Furthermore, MTA S7A_54345139 had negative marker effects for both 

grain yield and NDRE, while exhibiting a positive marker effect for IF—contradicting its 

correlation with grain yield. This suggests that NDRE and IF may share a similar genetic control 

despite being negatively correlated, and both may also be genetically linked to grain yield. 

However, since grain yield is a complex quantitative trait influenced by multiple contributing 

factors, it is essential to determine which specific yield-related traits NDRE and IF are capturing, 

ultimately contributing to yield variation. 

When examining MTAs associated with VIs, we observed that several VIs may share 

common genetic control, even when negatively correlated. For instance, MTA S1A_295503711 

was mapped to 12 VIs in the 2022 trial, with marker effects varying by VI. This MTA had positive 

marker effects for CTVI, NormG, and NormR, but negative marker effects for the remaining eight 

VIs. Notably, CTVI, NormG, and NormR were negatively correlated with both the other VIs and 

grain yield, while the remaining VIs, except for GRNDVI, were positively correlated with grain 

yield. A similar pattern was observed for MTA S6B_18908474. In contrast, MTA S5D_515694610 
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followed a different pattern, exhibiting positive marker effects for BNDVI, GLI, NDVIrededge, 

NGRDI, and VARI, but negative marker effects for CTVI, CVI, EVI, IF, and RI. Interestingly, the 

marker effects of this MTA mirrored the phenotypic correlations of these VIs with grain yield, 

which contrasts with the patterns observed for S1A_295503711 and S6B_18908474. 

Although strong phenotypic and genetic correlations were observed between most VIs and 

grain yield, these results emphasize the complex genetic architecture underlying both grain yield 

and vegetation indices. While the MTAs identified in this study may be associated with grain yield 

in soft winter wheat, many of them did not show a significant yield difference among genotypes 

carrying these MTAs. These findings highlight the challenges of dissecting the genetic basis of 

grain yield and understanding the genetic links between VIs and yield. Further investigation is 

needed to elucidate the shared genetic control between these VIs and grain yield. 

4.4.3. Predictive ability using UAV-derived information and in combination with genomic 

information outperforms predictive ability of genomic prediction 

 Grain yield prediction using genomic information varied across trials, with higher genomic 

predictive ability observed in 2022 compared to 2023 and the combined trials. However, since the 

genotypes evaluated in 2022 and 2023 were largely different, this may have influenced predictive 

ability. Additionally, environmental differences between the two years likely contributed to the 

observed variation in predictive ability (Supplementary Table 4.16). In the 2023 trial and combined 

trials used in cross-validation, Random Forest had the highest predictive ability, although only 

marginally better than other genomic prediction models. This suggests that both linear and non-

linear relationships may exist between genomic information and grain yield, as evidenced by 

BayesC yielding the highest accuracy in the 2022 trial. 
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Using 30 vegetation indices (VIs) as predictors for grain yield resulted in higher predictive 

ability than genomic prediction alone. This finding aligns with Montesinos-Lopez et al. (2023), 

who demonstrated that incorporating VIs derived from multispectral sensors, along with raw 

wavebands, improved predictive ability in wheat. Similarly, Wan et al. (2020) reported enhanced 

grain yield predictive ability in rice when multiple UAV-based multispectral imaging datasets were 

included as input variables in Random Forest. Several other studies have confirmed that UAV-

derived RGB and multispectral imaging data improve grain yield predictive ability in maize (Sunoj 

et al., 2021; Kumar et al., 2023), soybean (Herrero-Huerta et al., 2020; da Silva et al., 2020; 

Maimaitijiang et al., 2020), and sorghum (Galli et al., 2020; Varela et al., 2021). 

While UAV-derived phenomic data, such as VIs, demonstrated higher grain yield predictive 

ability compared to genomic data alone, integrating both data types is essential. Several studies 

have explored integrating UAV-based RGB and multispectral imaging data with genomic 

information to predict grain yield in wheat using various models and approaches (Rutkoski et al., 

2016; Sun et al., 2019; Sandhu et al., 2021; Montesinos-Lopez et al., 2023; Kaushal et al., 2024). 

Genomic selection enables prediction based on genomic estimated breeding values (GEBVs), 

primarily capturing additive effects and genomic relationships among selection candidates 

(Meuwissen et al., 2001; Habier et al., 2010). In contrast, phenomic selection accounts for non-

additive effects, which genomic prediction may miss (Rincent et al., 2018) and incorporates 

environmental and genotype-by-environment interactions, as phenomic data essentially serve as a 

proxy for phenotype (Fernandez et al., 2017). Since both approaches provide complementary 

information, combining genomic and phenomic selection is crucial (Robert et al., 2022). 

Additionally, linking genetic data (genomic) with phenotypic expression (phenomic) ensures that 

no important trait insights are overlooked (Robert et al., 2022). 
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Predictive ability nearly doubled when selected VIs were included as fixed effects in 

RRBLUP, with the highest accuracy achieved when NDRE was used. However, NGRDI, RI, and 

VARI resulted in the lowest predictive abilities and even reduced predictive ability in the 2022 

trial compared to genomic prediction using RRBLUP without fixed effects. This underscores the 

importance of selecting the appropriate VIs as fixed effects to improve grain yield predictive 

ability. 

To leverage the full range of information from all VIs while addressing multicollinearity, 

dimensionality reduction was applied. The first three principal components (PCs) were used as 

fixed effects, resulting in predictive abilities higher than genomic prediction alone and comparable 

to phenomic prediction or the use of individual and multiple VIs as fixed effects. An advantage of 

this approach is that dimensionally reduced phenomic data can capture more environmental and 

physiological effects relevant to grain yield than relying on a small set of individual indices. Given 

this, increasing the number of VIs to capture additional environmental and physiological effects 

could further enhance grain yield prediction when processed through dimensionality reduction 

techniques. However, this approach requires additional data processing, such as principal 

component analysis, and extra computational time to generate and analyze a larger set of VIs. 

4.4.4. Predictive ability of using integrated genomic and UAV-data depends on the correlation of 

vegetation indices with grain yield 

 Several metrics and considerations have been established the potential of phenomic 

information—specifically UAV-derived VIs—to evaluate agronomic traits such as grain yield. 

These include the heritability of phenomic traits and their phenotypic and genetic correlations with 

the target trait. However, our findings suggest that phenotypic correlation is a stronger indicator of 

predictive ability. 
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When NDRE was used as a fixed effect in RRBLUP, the predictive ability was 0.65 in the 

2022 trial, 0.87 in the 2023 trial, and 0.78 in the combined trials. These values closely mirrored 

the phenotypic correlations of NDRE with grain yield, which were 0.66 in the 2022 trial, 0.86 in 

the 2023 trial, and 0.78 in the combined trials. Interestingly, these results contrast with the 

estimated heritability of NDRE, which was 0.85 for the 2022 trial, 0.57 for the 2023 trial, and only 

0.045 across years. Despite this discrepancy, heritability remains a relevant metric for assessing 

the potential of a trait as a predictor. 

Following this, RGBVI should be considered a viable index for evaluating grain yield, 

particularly when accounting for environmental variation (e.g., year effects). Among all VIs and 

grain yield, RGBVI had the highest estimated heritability across years. However, its predictive 

ability when used as a fixed effect in RRBLUP was relatively low: 0.05 in the 2022 trial, 0.77 in 

the 2023 trial, and 0.57 in the combined trials. Despite its lower predictive ability compared to 

other VIs, the trend of predictive ability aligning with phenotypic correlation persisted. The 

phenotypic correlations between RGBVI and grain yield were 0.01 for the 2022 trial, 0.77 for the 

2023 trial, and 0.58 for the combined trials. 

Additionally, when dimensionally reduced vegetation indices were used as secondary traits 

in a multi-trait genomic prediction model with a factor analytic structure, the trend of phenotypic 

correlation influencing predictive ability remained evident. The phenotypic correlation between 

the first principal component (PC1) and grain yield was 0.52 for the 2022 trial, 0.86 for the 2023 

trial, and 0.77 for the combined trials. While the second and third principal components (PC2 and 

PC3) had much lower and non-significant correlations with grain yield, the predictive ability 

followed a similar trend. When the first PCs were used as secondary traits, the predictive abilities 

were 0.65, 0.87, and 0.77 for the 2022 trial, 2023 trial, and combined trials, respectively. When 
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only the first two PCs were used, the predictive abilities were slightly lower at 0.59, 0.87, and 0.77, 

respectively. 

Thus, our results suggest that the phenotypic correlation between the VIs and the target 

trait is a strong predictor of predictive ability, especially when integrated as fixed effect in genomic 

prediction models. 

4.4.5. Increasing the number of covariates in genomic prediction models may reduce predictive 

ability 

Including multiple VIs as fixed effects in RRBLUP initially improved predictive ability 

compared to genomic prediction without fixed effects. However, as more VIs were added, a 

decreasing trend in predictive ability was observed. This suggests that incorporating too many VIs 

may introduce noise into the model due to multicollinearity among some indices, leading to 

redundant information. Therefore, careful selection of fixed effects is crucial when integrating 

multiple VIs into genomic prediction models to maximize predictive ability while minimizing 

potential overfitting or loss of model efficiency. 

4.4.6. Training set using combined trials is more advantageous in forward prediction of unique 

genotypes in untested environment 

 Indirect selection accuracy, defined as the genetic correlation between predicted values 

from forward prediction and actual grain yield, multiplied by the square root of the estimated 

heritability of the predicted values, varied depending on the training set used. Forward prediction 

using the 2023 trial as the training set resulted in higher phenotypic correlation, genetic correlation, 

and indirect selection accuracy, whereas using the 2022 trial generally led to lower values for these 

metrics. The discrepancy between using either of the independent trials as training sets was 

substantial across all metrics. These differences can largely be attributed to the environmental 
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variations between 2022 and 2023 (Supplementary Table 4.16). Additionally, relying on a single 

trial or year may fail to adequately represent the environmental conditions of the target 

environment where forward prediction is conducted. 

Furthermore, the genotypes present in the individual trials were largely different. This 

effect was particularly evident in the indirect selection accuracy and genetic correlation 

assessments when genomic prediction without covariates was used for forward predictions. These 

findings highlight the importance of considering genotype-by-environment interactions when 

training a model for forward prediction. 

Given this, combining trials and training models using the BLUEs calculated across years 

offers clear advantages over relying on a single-year or single-environment trial. In most 

approaches, including phenomic prediction and genomic prediction incorporating multiple VIs or 

principal components as fixed effects, models trained on the combined 2022 and 2023 trials 

exhibited relatively higher phenotypic and genetic correlations, heritability of predicted values, 

and indirect selection accuracy compared to those trained on individual trials, particularly the 2022 

trial. Interestingly, in some cases, the sign of the phenotypic or genetic correlation, as well as 

indirect selection accuracy, flipped between positive and negative depending on which individual 

trial was used as the training set. This was especially evident when principal components were 

used as fixed effects or when multiple VIs were used as fixed effects. This phenomenon likely 

results from differences in how VIs correlated with grain yield in 2022 and 2023, and potentially 

in 2024 as well. 

Thus, combining trials and using BLUEs across years or environments is more 

advantageous, as it accounts for environmental effects not only on the target trait but also on 

predictor variables such as UAV-derived information. Additionally, combining trials increases the 
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number of genotypes used to train the model, which is crucial for capturing genetic variation. Since 

the genotypes used in the trials have different pedigrees and genetic backgrounds, incorporating a 

larger and more diverse training set enhances the model’s ability to account for genotype variation. 

In this study, forward prediction was intentionally conducted on unique genotypes, and it is likely 

that combining trials captured more genotype variance, further improving the model’s ability to 

represent the variation present in the testing set. 

4.4.7. Integrating genomic and UAV-information results in higher indirect selection accuracy  

 Incorporating UAV-derived information into genomic prediction improved indirect 

selection accuracy compared to using either genomic or phenomic prediction alone in forward 

prediction. While differences were observed in the performance of models and approaches 

integrating UAV data with genomic prediction, this overall trend remained consistent. However, 

several considerations must be taken into account depending on how UAV-derived information is 

incorporated into genomic prediction. 

When using an individual vegetation index (VI) as a fixed effect in genomic prediction, 

careful selection is crucial. Feature selection performed in trials prior to cross-validation indicated 

that NDRE was a strong candidate as a fixed effect. However, this did not translate effectively in 

forward prediction, where lower phenotypic and genetic correlations between predicted and 

observed yield were observed. 

As previously noted, the correlation of VIs with grain yield likely influences both 

predictive ability and indirect selection accuracy in forward prediction. For example, when 

RBNDVI was used as a fixed effect, it resulted in higher indirect selection accuracy than NDRE, 

regardless of the training set used. Comparing NDRE and RBNDVI, NDRE exhibited higher 

phenotypic and genetic correlations with grain yield in 2022, whereas RBNDVI showed stronger 
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correlations in 2023 and across years. This pattern likely influenced forward prediction 

performance in the 2024 preliminary yield trial, where NDRE had a higher phenotypic correlation 

with yield (r = 0.62) compared to RBNDVI (r = 0.58). However, this was not always the case. 

For instance, CIrededge exhibited positive phenotypic and genetic correlations with yield 

in the 2022 and 2023 trials and across years. However, in the 2024 trial, CIrededge showed a 

negative phenotypic correlation with yield (r = -0.58). This shift was reflected in the indirect 

selection accuracy when CIrededge was used as a fixed effect in genomic prediction. These 

observations suggest that relying on individual VIs as fixed effects may be problematic in the long 

run due to their varying correlations with the target trait across different years. 

Using multiple VIs as fixed effects could be a potential solution to mitigate the limitations 

of individual VIs. However, indirect selection accuracy remained inconsistent, and in some cases, 

negative correlations between predicted and actual yield were observed. This presents a challenge 

in forward prediction, as it could lead to the unintended selection of low-yielding genotypes for 

advancement instead of high-yielding ones. 

To address these concerns, we propose two key strategies: (1) using training sets from 

combined trials, which have already been shown to be more advantageous than single-year trials, 

and (2) employing dimensionally reduced UAV-derived information for multiple VIs in model 

training. Given the presence of multicollinearity among vegetation indices, dimensionality 

reduction—such as principal component analysis (PCA)—effectively addresses this issue while 

maximizing the variation captured by different VIs. More importantly, using dimensionally 

reduced UAV-derived information from combined trials accounts for differences in how these 

predictors correlate with the target trait. This is particularly crucial, as UAV-derived information 

is highly susceptible to environmental and year-to-year variations. 
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4.5. Conclusion 

Our findings highlight that the phenotypic correlation between vegetation indices (VIs) and 

grain yield is a reliable indicator of predictive ability, regardless of whether VIs are used 

individually or dimensionally reduced into principal components. More importantly, integrating 

UAV-derived information as a fixed effect or secondary trait significantly improves indirect 

selection accuracy compared to using genomic or phenomic predictions alone. The use of 

dimensionally reduced UAV-derived data further enhances indirect selection accuracy by capturing 

comprehensive information within VIs while mitigating multicollinearity. Based on these results, 

we recommend incorporating dimensionally reduced UAV-derived information as a fixed effect 

for genomic prediction models such as RRBLUP. Additionally, training models on BLUEs from 

multiple trials provides a more robust approach than relying on single-trial or single-year data. 

Taken altogether, these strategies offer a more comprehensive and accurate framework for grain 

yield prediction, reinforcing the importance of integrating UAV-derived phenomic data with 

genomic selection. 
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CHAPTER V: EVALUATING CLOSE-RANGE INFRARED THERMAL IMAGING AND 
UNSUPERVISED K-MEANS CLUSTERING FOR FUSARIUM HEAD BLIGHT 

RESISTANCE SELECTION 
 

Abstract 

 Development of Fusarium head blight (FHB)-resistant winter wheat varieties relies heavily 

on large-scale field evaluations, primarily depending on visual scoring of disease severity and 

incidence. However, this manual assessment remains one of the major bottlenecks in FHB 

resistance breeding due to its labor-intensive nature and inherent subjectivity. Close-range infrared 

thermal imaging was explored as a potential alternative for large-scale field evaluations, given its 

demonstrated ability to distinguish resistance and susceptibility at the single-plant and single-spike 

levels. Plot-level infrared thermal imaging was conducted using a handheld infrared thermal 

camera, Flir E60 (Teledyne FLIR, USA), in the Michigan State University Wheat Breeding and 

Genetics FHB nursery from 2022 to 2024, with each trial treated independently. The scalability of 

close-range infrared thermal imaging for field applications remains challenging, as no direct 

relationship was established between plot-level radiometric temperature and FHB-related traits 

under field conditions, despite the clear association observed at the spike level under greenhouse 

conditions. Despite this, plot-level radiometric temperature has shown potential as an additional 

trait in unsupervised K-means clustering, facilitating better reduction of the selection pool 

compared to simple means comparison. The integration of plot-level radiometric temperature into 

clustering analyses resulted in improved selection intensity compared to clustering based solely on 

FHB-related traits. However, further considerations and caution are necessary when attempting to 

scale close-range infrared thermal imaging for large-scale field evaluations, as its applicability 

remains uncertain. 
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5.1. Introduction 

 Fusarium head blight (FHB) remains one of the most economically devastating diseases in 

wheat, primarily caused by Fusarium species (Xu et al., 2008), with F. graminearum being the 

most prevalent in the world, including the United States (McMullen et al., 2012). Each year, FHB 

affects vast wheat-growing regions, leading to significant reductions in yield and grain quality. 

FHB-inflicted losses amounted to approximately $1.2 billion between 2015-2016 (Wilson et al., 

2018), highlighting the persistent threat this disease poses to wheat production. 

Efforts to mitigate FHB rely on an integrated approach combining agronomic practices, 

chemical control, and genetic resistance. However, the most effective and sustainable strategy 

remains to be the development of FHB-resistant wheat varieties (Steiner et al., 2017). Several 

morphological and physiological traits have been targeted to enhance resistance, including 

increased plant height to reduce splash dispersal of Fusarium spores (Mesterhazy, 1995), awn 

reduction to limit spore retention (Mesterhazy, 1995), and shorter flowering duration to minimize 

floret exposure to inoculum (Steiner, et al., 2017). More critically, breeding efforts focus on 

improving five key resistance mechanisms: Type I resistance, which prevents initial infection 

(Schroeder and Christensen, 1963); Type II resistance, which limits fungal spread within the spike 

(Schroeder and Christensen, 1963); Type III resistance, which reduces kernel infection 

(Mesterhazy et al., 1999); Type IV resistance, which enhances tolerance to FHB infection 

(Mesterhazy et al., 1999); and Type V resistance, which mitigates mycotoxin (deoxynivalenol, 

DON) accumulation (Foroud et al., 2019). Among these, Type I and Type II resistance are often 

prioritized in breeding programs. 

Developing FHB-resistant wheat requires extensive phenotypic screening and selection. 

Traditional methods rely on induction of the disease followed by visual assessment of response to 
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the infection (Steiner et al., 2017). Large-scale evaluations are typically conducted in disease 

nurseries under field conditions to further assess resistance and facilitate selection. However, field-

based phenotyping poses additional challenges, including labor demands, time constraints, 

genotype-by-environment interactions, and the subjectivity of visual scoring, which remains a 

major bottleneck in FHB resistance breeding (Miedaner et al., 2008). 

To address these limitations, researchers have increasingly explored the use of imaging 

technologies such as RGB, multispectral, thermal, and hyperspectral imaging for high-throughput 

phenotyping of plant diseases (Mahlein et al., 2016). UAV-based imaging has been particularly 

explored for field-level FHB assessments, providing large-scale, non-destructive disease 

evaluation (Francesconi et al., 2021). Imaging approaches have also been adopted for single-plant 

and single-spike level assessments, offering high-resolution data and improved efficiency (Zhang 

et al., 2019; Mahlein et al., 2019; Mustafa et al., 2023). Among these technologies, close-range 

infrared thermal imaging has shown promise in detecting FHB-related temperature variations 

associated with disease progression at the single plant or spike-level (Masri et al., 2017; Mahlein 

et al., 2019). However, the scalability of close-range infrared thermal imaging for field applications 

remains largely unexplored, as most thermal imaging studies have been conducted using UAVs at 

broader spatial scales. 

This study aims to explore the potential scaling up of close-range infrared thermal imaging 

to plot-level phenotyping under field conditions. By integrating thermal imaging into phenotyping 

pipelines, this research could contribute to more efficient and objective selection strategies for 

developing FHB-resistant wheat varieties. 
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5.2. Materials and Methods 

 5.2.1. Greenhouse experiment – FHB inoculation, experimental design and establishment 

Prior to infrared thermal imaging under field conditions, an initial experiment was done in 

2022 under greenhouse conditions. Known susceptible genotype Ambassador and resistant 

genotype MI14W0190 were subjected to FHB-evaluation under greenhouse conditions to build on 

the hypothesis that radiometric temperature or infrared thermal readings (simply termed “thermal 

readings” from this point forward) could detect response to FHB and delineate resistant and 

susceptible lines. Individual spikes were sprayed with Fusarium graminearum macroconidia at 1 

x 10-5 concentration at flowering stage using Graco TC Pro Cordless Sprayer (Graco Inc., USA) 

sprayer. Sprayed individual spikes were bagged for 3 days to create a suitable humid environment. 

The experiment was laid out in a completely randomized design (CRD) with six individual heads 

per genotype treated as replicates, with two conditions: non-inoculated (control) and inoculated 

(FHB-infected). Spike-Level FHB-severity at a single plant scale were assessed at 4, 8, 12, 16, and 

20 days after inoculation (DAI) following the formula: 

(1) % 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑥𝑥100 

5.2.2. Greenhouse experiment – single spike-level infrared thermal imaging 

Individual spikes from both genotypes and both conditions were imaged at all timepoints, 

where the spikes were detached from the plant and placed against a white background placed inside 

a 20 x 20 x 20 inches photobox (Finnhomy).  Imaging was carried out using Flir E60 Infrared 

Camera (320 x 240 IR resolution, 18 mm focal length) (Teledyne FLIR, USA), with default of 

0.95 emissivity, 1 meter distance, 20ºC external optic temperature.  Images were stored and 

processed in Flir Tools to extract thermal readings with reflectance temperature parameter in Flir 

Tools adjusted based on measured temperature of the white background. Adjustment for all thermal 
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readings was carried out using “emmeans” package in R 4.2.2 using ambient temperature as 

covariate due to sudden change in the temperature in the greenhouse at 16 days after inoculation. 

5.2.3. Greenhouse experiment – statistical analysis 

 Analysis of Variance (ANOVA) was carried out to assess the difference in spike-level FHB-

severity among the genotypes and timepoints following the model: 

(2) 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = µ + 𝐺𝐺𝑖𝑖 + 𝑇𝑇𝑗𝑗 +  (𝐺𝐺𝐺𝐺)𝑖𝑖𝑖𝑖 +  𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

 Where  yijk represents the response (FHB-severity) of the i-th genotype in the j-th timepoint 

for the k-th observation, µ is the overall mean across genotype and timepoints, Gi is the fixed effect 

of the i-th genotype, Tj is the random effect of j-th timepoint, (GTij) represents the random effect 

of the interaction between genotype and timepoints, and eijk is the residual error.  

 To assess the variation in spike-level thermal reading, the data was fitted in a linear mixed 

model: 

(3) 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  µ +  𝐺𝐺𝑖𝑖 + 𝑇𝑇𝑗𝑗 + 𝐶𝐶𝑘𝑘 + 𝐴𝐴 +  (𝐺𝐺𝐺𝐺)𝑖𝑖𝑖𝑖 + (𝐺𝐺𝐺𝐺)𝑖𝑖𝑖𝑖 + (𝑇𝑇𝑇𝑇)𝑗𝑗𝑗𝑗 +  (𝐺𝐺𝐺𝐺𝐺𝐺)𝑖𝑖𝑖𝑖𝑖𝑖 +  𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Where yijkl represents the thermal reading (°C) of the i-th genotype in the j-th timepoint at 

k-th condition (inoculated, non-inoculated), µ is the overall mean across genotypes, timepoints, 

and conditions, Gi is the fixed effect of genotype, Tj is the random effect of timepoints, Ck is the 

fixed effect of conditions (inoculated, non-inoculated), GTij is the random effect of the interaction 

between genotype (G) and timepoint (T), GCik is the fixed effect of the interaction between 

genotype (G) and conditions (C), TCjk is the random effect of the interaction between timepoint (t) 

and conditions (C), GTCijk is the random effect of the interactions between genotype, timepoints, 

and conditions, and eijkl is the residual effect. 
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Analysis was not executed in a repeated measures manner since different observational 

units (single spike) were used at each timepoint, and no repeated measurements for the same 

observational unit was done. 

5.2.4. Plot level infrared thermal imaging FHB evaluation – plant material 

Three separate trials were used to test whether infrared thermal imaging could be leveraged 

under field conditions and its potential application in FHB-resistance selection. The trials were 

composed of soft red and soft white winter wheat genotypes (305 genotypes in 2022, 398 in 2023, 

and 309 in 2024) developed by the Michigan State University Wheat Breeding and Genetics team, 

as well as commercially released varieties and breeding lines developed by various breeding 

programs. In addition, genotypes MI14W0190 and Ambassador were used as resistant and 

susceptible checks, respectively, for all the trials. 

5.2.5. Plot level infrared thermal imaging FHB evaluation – field establishment, inoculation, and 

evaluation 

Fusarium graminearum cultures were collected from multiple locations: Huron, Ingham, 

Monroe, Tuscola, Sanilac, and Saginaw counties in Michigan, and were used the trials. FHB 

nursery was established in a completely randomized design (CRD) with two replications per 

genotype. Preparation of isolates, field inoculation, and maintenance of FHB nursery was carried 

out following the procedure described by Concepcion et al., (2024). 

 FHB related traits were determined by visual and subjective assessment of FHB-severity 

(average % infection in each spike in the plot) and FHB-Incidence (average % of spikes with FHB 

infection in the plot. FHB-Index was calculated following the formula: 

(4) 𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  (𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)
100
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5.2.6. Plot level infrared thermal imaging FHB evaluation – image acquisition and processing 

 Imaging was carried out using the same Flir E60 Infrared Camera (320 x 240 IR resolution, 

18 mm focal length) (Teledyne FLIR, USA) used in the greenhouse experiment, with default of 

0.95 emissivity, 1 meter distance, 20ºC external optic temperature. Images were taken above the 

plots (approximately 175 cm from the bases of the plant) at an angle of approximately 45°C. 

Images were stored and processed in Flir Tools, where the heads were segmented from the rest of 

the plot using the interval option to adjust the upper and lower limit of the temperature range. The 

average between upper and lower limit was generated to determine the estimated plot-level thermal 

readings. 

5.2.7. Plot level infrared thermal imaging FHB evaluation – data analysis and FHB-resistance 

selection 

 Prior to downstream analyses, plot level observations of FHB-severity, FHB-incidence, 

FHB-index, and thermal readings were spatially adjusted, treating range and row as random effect, 

and genotype as fixed effect using the R package “SpATs” (Rodriguez-Alvarez et al., 2018). 

 After spatial adjustment, analysis of variance (ANOVA) was carried out to assess the 

variation in FHB-severity, FHB-incidence, FHB-index, and thermal readings among the genotypes 

following a linear model: 

(5) 𝑦𝑦𝑖𝑖𝑖𝑖 =  µ + 𝐺𝐺𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 

 Where yij is the response of the i-th genotype (G) in the j-th observation, Gi is the fixed 

effect of genotypes, and eij is the residual effect. 

 Performance of the genotypes were compared against the checks Ambassador and 

MI14W0190 using Dunnett’s Test at alpha 0.05 for all FHB related traits and thermal readings. 

Pearson’s and Spearman Rank Correlation were determined to assess the relationship between 
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FHB-related traits and thermal readings. All analyses were conducted in R 4.4.0 (R Core Team, 

2021). 

 Clustering-based selection among the genotypes was carried out using Unsupervised K-

Means clustering using “nbclust” package in R (Charrad et al., 2014) following the formula: 

 

 

Where J is the K-means objective function (within-cluster sum of squared errors), n is the 

total number of data points, K is the number of clusters, xi represents data points or observations, 

µk is the centroid (mean vector) of cluster k, ||xi - µk||2 is the squared Euclidean distance between 

xi and its assigned cluster centroid, wik is the binary indicator variable ensuring that each point 

belongs to only one cluster (1, if xi belongs to cluster k, 0 if otherwise). For consistency, three 

clusters (centers = 3) for all the clustering approaches (trait combinations) conducted.  

Following the clustering, selection differential (S) was determined for each cluster 

following the formula: S =  X̅s - X̅, where X̅s is the mean of phenotype of genotypes in each cluster 

(cluster mean) and X̅ is the mean phenotype of all genotypes. Selection intensity was carried out 

using the formula: 

(7) 𝑖𝑖 =  𝑆𝑆
𝜎𝜎𝑃𝑃

 

Where S is the selection differential and σP is the phenotype standard deviation. Selection 

intensity was calculated separately for severity, incidence, and index for all clusters from all trait 

combinations. 

 

 

 

(6) 𝐽𝐽 =  �  
𝑛𝑛

𝑖𝑖=1

�𝑤𝑤𝑖𝑖𝑖𝑖‖x𝑖𝑖 − µ𝑘𝑘‖2
 𝐾𝐾

𝑘𝑘=1
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5.3. Results 

5.3.1. Spike-level FHB evaluation and infrared thermal imaging 

To evaluate the potential utility of infrared thermal imaging in differentiating the responses 

of resistant and susceptible genotypes to FHB infection, spike-level FHB-severity and thermal 

readings were compared between the resistant genotype MI14W0190 and the susceptible genotype 

Ambassador.  

A rapid progression of FHB infection was observed in Ambassador, with genotype, 

timepoint, and their interaction showing a significant effect on FHB severity (p < 0.0001) (Figure 

5.1a). Compared to MI14W0190, Ambassador exhibited significantly higher FHB severity starting 

at 8 days after inoculation, with differences ranging from 21.02% to 62.36% between the two 

genotypes (Figure 5.1a). 

Consistent with the observations in FHB severity, genotype, timepoint, condition 

(inoculated vs. non-inoculated), and all interactions had a significant effect on variations in thermal 

readings (p < 0.0001) (Figure 5.1b). In addition, the progression of FHB infection was recorded 

and observed using infrared thermal imaging (Figure 5.1b). A significant temperature difference 

of 5.20°C was recorded between the inoculated heads of MI14W0190 and Ambassador  starting at 

eight days after inoculation (Figure 5.1b). 

Notably, at around 16 days after inoculation, greenhouse conditions were less ideal 

compared to other timepoints, as increased temperatures inside the greenhouse affected the thermal 

readings. Despite this, differences between MI14W0190 and Ambassador, as well as between 

inoculated and non-inoculated conditions, remained observable (Figure 5.1b). 
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Figure 5.1. Development and variation of FHB-infection between resistant and susceptible 
genotypes. (a,b) Progression and variation of FHB-infection in resistant genotype MI14W0190 
and susceptible check Ambassador at 4 to 20 days after inoculation. (b) Variation in spike-level 
thermal readings between inoculated (FHB-infected) and non-inoculated spikes of Ambassador 
and MI14W0190 at 4 to 20 days after inoculation. Means of the same letter are not significantly 
different (p.value: <0.05). *Significantly different at alpha 0.1. **Significantly different at alpha 
0.05. Comparisons are within a timepoint. 
 

5.3.2 Field evaluation: FHB-severity 

 Significant variation in FHB-severity was observed among the genotypes in the 2022 trial 

(p.value: <0.0001), 2023 trial (p.value: <0.0001), and 2024 trial (p.value:<0.0001). Across the 

trials, most genotypes exhibited significantly lower FHB-severity than the susceptible check 

Ambassador (p < 0.05). In the 2022 trial, 273 (83%) genotypes had FHB-severity lower than 

Ambassador by 11.13% to 32.99%, while MI21R0256 and MI21R0275 had significantly higher 
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severity. Compared to the resistant check MI14W0190, 188 (57%) showed no significant 

difference. In the 2023 trial, 349 (88%) genotypes had 30% to 49% lower FHB-severity than 

Ambassador, and 328 (83%) showed no difference from MI14W0190. In the 2024 trial, 285 (93%) 

genotypes had significantly lower FHB-severity than Ambassador, while 199 (65%) showed no 

difference from MI14W0190. Overall, most genotypes demonstrated significantly lower FHB-

severity than Ambassador while remaining comparable to MI14W0190. 

5.3.3. Field evaluation: FHB-incidence 

 Significant variation in FHB-incidence was observed among the genotypes in the 2022 trial 

(p.value: <0.0001), 2023 trial (p.value: <0.0001), and 2024 trial (p.value: <0.0001). In the 2022 

trial, 92 (28%) genotypes had significantly lower FHB-incidence than the susceptible check 

Ambassador by 17% to 51% (p < 0.05), while MI210256 and MI21R0038 exhibited significantly 

higher FHB-incidence. Additionally, 42 (13%) genotypes showed no significant difference from 

the resistant check MI14W0190. In the 2023 trial, although most genotypes had lower FHB-

incidence, only 13 (3%) showed significantly lower FHB-incidence compared to Ambassador by 

approximately 50% (p < 0.05), while 382 (96%) genotypes had no significant difference from 

MI14W0190. In the 2024 trial, 152 (49%) genotypes exhibited significantly lower FHB-incidence 

than Ambassador (14% to 43% lower, p < 0.05). Compared to MI14W0190, 220 (71%) showed 

no significant difference, while 54 (17.5%) had significantly lower FHB-incidence.  

5.3.4. Field evaluation: FHB-index 

 Significant variation in FHB-index was observed in the 2022 trial (p.value:<0.0001), 2023 

trial (p.value: <0.0001), and 2024 trial (p.value: <0.0001). In the 2022 trial, 252 (77%) genotypes 

had significantly lower FHB-index than the susceptible check Ambassador by 10 to 28 units, while 

MI21R0256 and MI210275 showed significantly higher values (p < 0.05). Additionally, 130 (40%) 
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genotypes showed no significant difference from the resistant check MI14W0190. In the 2023 

trial, 349 (88%) genotypes exhibited significantly lower FHB-index than Ambassador by 20 to 31 

units (p < 0.05), while 377 (95%) showed no significant difference from MI14W0190. In the 2024 

trial, 288 (94%) genotypes had significantly lower FHB-index than Ambassador by 7 to 26 units 

(p < 0.05), whereas 217 (70%) showed no significant difference from MI14W0190. Overall, most 

genotypes displayed a significantly lower FHB-index than Ambassador while remaining 

comparable to MI14W0190. 

5.3.5. Field Evaluation: plot-level thermal readings 

Significant variation in plot-level thermal readings was observed among the genotypes 

(p.value: <0.0001) in the 2022 trial. However, only MI21R0207 exhibited a significantly lower 

thermal reading than the susceptible check Ambassador by 7°C (p < 0.0001), while 33 (10%) 

genotypes had significantly higher thermal reading than the resistant check MI14W0190 (p < 

0.05). From the 2023 trial no significant variation was observed among the genotypes (p.value: 

0.9967) and no genotypes showed a significant difference from either of the checks (p < 0.05). In 

the 2024 trial, significant variation in plot-level thermal readings was observed (p.value: < 0.0001), 

with 129 (42%) genotypes recording lower thermal readings than Ambassador by 2°C to 7°C (p < 

0.05), while 179 (58%) showed no significant difference from MI14W0190. 

5.3.6. Phenotypic relationship among FHB-related traits and with plot-level thermal readings 

Correlation analysis was conducted to examine the relationship between plot-level thermal 

readings and FHB-related traits—severity, incidence, and index. Both Pearson’s and Spearman’s 

rank correlations were assessed to determine potential linear or non-linear relationships, 

respectively.  
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Figure 5.2. Pearson and spearman rank correlation showing potential relationship between FHB-
related traits and plot-level thermal readings (Plot.Temp) at different trials. 
 

Moderate to high Pearson correlations were observed between FHB-index and FHB-

incidence (0.78 to 0.85) and between FHB-index and FHB-severity (0.80 to 0.96) (Figure 5.2). 

Similarly, Spearman’s rank correlation showed moderate to high correlation for FHB-index with 

FHB-incidence (0.82 to 0.92) and FHB-severity (0.76 to 0.94) (Figure 5.2). These results were 

expected, as FHB-index is a function of FHB-incidence and FHB-severity. Interestingly, higher 
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Spearman’s rank correlations compared to Pearson correlations for FHB-index and FHB-incidence 

suggest a possible non-linear relationship, whereas lower Spearman’s rank correlations for FHB-

index and FHB-severity indicate a predominantly linear association. 

Correlations between plot-level thermal readings and FHB related traits were weak and 

inconsistent, with negative correlations observed in the 2023 trial, suggesting no direct relationship 

under field conditions (Figure 5.2). However, in 2024, a moderately positive Pearson correlation 

(0.36) was observed between FHB-severity and thermal readings, indicating a potential linear 

relationship (Figure 5.2). In 2022, a weak Spearman’s rank correlation (0.29)  between FHB-

incidence and thermal readings suggested a possible non-linear association (Figure 5.2). 

Overall, these findings suggest that under field conditions, plot-level thermal readings may 

not be as reliable for indirect selection alone for FHB resistance evaluation and selection compared 

to spike-level and single-plant scale evaluation under greenhouse conditions. 

5.3.7. Unsupervised K-means clustering  

 Since spike-level radiometric temperature demonstrated strong potential for distinguishing 

between resistance and susceptibility to FHB while potentially lacking a direct relationship with 

FHB-related traits under field conditions, we investigated whether plot-level thermal readings 

could still complement FHB-related traits—severity, incidence, and index—for FHB resistance 

selection. To streamline the selection process, we applied unsupervised K-means clustering using 

various trait combinations. Additionally, we assessed selection intensity each cluster to evaluate 

the effectiveness of this clustering approach in FHB resistance selection. 

Across all trials, the number of genotypes per cluster varied depending on the trait combinations 

used for clustering. A consistent pattern emerged: more genotypes clustered with the resistant  
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Figure 5.3. Differences in the percentage (number) of genotypes belonging to each cluster using 
unsupervised k-means clustering with various trait combinations. AMB – cluster with susceptible 
check Ambassador, W190 – cluster with resistant check MI14W0190, 3RD – third cluster not 
containing either of the checks. 
 

check MI14W0190 in Temp. + Ind. cluster, whereas fewer genotypes clustered with MI14W0190 

in other clusters (Figure 5.3). 

Selection intensity was calculated by dividing the selection differential (presented in 

Supplementary Tables 5.1 to 5.3) by the phenotypic standard deviation. Lower selection intensity 

values were desirable, as FHB resistance selection was based on minimizing FHB severity, 

incidence, and index. 

In the 2022 trial, lower selection intensity values were observed for FHB-related traits in 

clusters Temp+Ind and Temp+Sev. Notably, cluster Temp+Sev+Inc+Ind and Sev+Inc+Ind 

appeared to be the most effective in selecting for lower FHB-severity. Similar trends were observed 

for FHB-incidence and FHB-index (Table 5.1). 

In the 2023 trial, Temp+Sev resulted in lower selection intensity value for FHB severity. For FHB 

incidence, Temp+Inc had the lowest selection intensity value, primarily grouping genotypes with 

reduced FHB incidence. These results align with the expectations, as clustering were done using  
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Table 5.1. Selection intensity in severity, incidence, and index among genotypes evaluated in 
2022 belonging to various K-means derived clusters using different trait combinations. Lower 
selection intensity value is more desirable. 

Trait combinations 
 for clustering 

2022 Trial 

Severity Incidence Index 

AMB W190 3RD AMB W190 3RD AMB W190 3RD 

Temp. + Ind. 1.59 -0.85 0.21 1.10 -0.93 0.42 5.61 -0.91 0.22 

Temp. + Sev. 1.83 -0.81 0.36 0.87 -0.84 0.38 1.76 -0.77 0.33 

Temp. + Inc. 0.56 -1.04 -0.06 0.95 -1.59 -0.18 0.69 -1.19 -0.18 

Temp. + Sev. + Inc. 0.65 -1.09 -0.01 0.99 -1.59 -0.14 0.85 -1.22 -0.19 

Temp. + Sev. +  

Inc. Ind. 
0.72 -1.10 -0.14 0.96 -1.60 -0.14 0.90 -1.23 -0.24 

Sev. + Inc. 0.65 -1.09 -0.07 0.99 -1.57 -0.14 0.85 -1.14 -0.19 

Sev. + Inc. + Ind. 0.72 -1.10 -0.14 0.96 -1.60 -0.14 0.90 -1.23 -0.24 

AMB – cluster with susceptible check Ambassador, W190 – cluster with resistant check 
MI14W0190, 3RD – third cluster not containing either of the checks. Temp. – Plot-level thermal 
readings, Sev. – FHB-Severity, Inc. – FHB-Incidence, Ind. – FHB-Index 
 

 

Table 5.2. Selection intensity in severity, incidence, and index among genotypes evaluated in 
2023 belonging to various K-means derived clusters using different trait combinations. Lower 
selection intensity value is more desirable.  

Trait combinations 
 for clustering 

2023 Trial 

Severity Incidence Index 

AMB W190 3RD AMB W190 3RD AMB W190 3RD 

Temp. + Ind. 2.47 -0.48 0.88 2.15 -0.48 0.96 3.11 -0.50 0.81 

Temp. + Sev. 1.72 -0.78 0.21 1.15 -0.54 0.17 1.63 -0.60 0.00 

Temp. + Inc. 1.20 -0.54 0.12 1.65 -0.85 0.32 1.46 -0.64 0.07 

Temp. + Sev. + Inc. 1.52 -0.57 -0.86 1.69 -0.78 0.42 1.83 -0.64 0.09 

Temp. + Sev. +  

Inc. Ind. 
1.68 -0.57 0.16 1.73 -0.81 0.48 1.50 -0.64 0.13 

Sev. + Inc. 1.61 -0.55 0.13 1.68 -0.78 0.41 1.81 -0.64 0.09 

Sev. + Inc. + Ind. 1.71 -0.57 0.17 1.73 -0.80 0.50 2.03 -0.63 0.14 

AMB – cluster with susceptible check Ambassador, W190 – cluster with resistant check 
MI14W0190, 3RD – third cluster not containing either of the checks. Temp. – Plot-level thermal 
readings, Sev. – FHB-Severity, Inc. – FHB-Incidence, Ind. – FHB-Index 
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Table 5.3. Selection intensity in severity, incidence, and index among genotypes evaluated in 
2024 belonging to various K-means derived clusters using different trait combinations. Lower 
selection intensity value is more desirable.  

Trait combinations 
 for clustering 

2024 Trial 

Severity Incidence Index 

AMB W190 3RD AMB W190 3RD AMB W190 3RD 

Temp. + Ind. 1.48 -0.64 0.12 1.06 -0.78 0.45 1.75 -0.84 0.23 

Temp. + Sev. 1.72 -0.95 0.22 0.46 0.45 0.12 1.40 -0.74 0.14 

Temp. + Inc. 0.35 -0.08 -0.38 1.05 -0.10 -1.35 0.87 -0.17 -0.97 

Temp. + Sev. + Inc. 0.97 -0.45 -0.33 0.88 0.49 -1.07 1.35 -0.09 -0.80 

Temp. + Sev. +  

Inc. Ind. 
1.28 -0.35 -0.36 1.00 0.42 -1.09 1.52 -0.07 -0.84 

Sev. + Inc. 1.26 -0.38 -0.36 0.96 0.42 -1.10 1.48 -0.09 -0.84 

Sev. + Inc. + Ind. 1.28 -0.36 -0.36 1.00 0.41 -1.10 1.52 -0.08 -0.84 

AMB – cluster with susceptible check Ambassador, W190 – cluster with resistant check 
MI14W0190, 3RD – third cluster not containing either of the checks. Temp. – Plot-level thermal 
readings, Sev. – FHB-Severity, Inc. – FHB-Incidence, Ind. – FHB-Index 
 

plot-level thermal readings were done with FHB- severity or -incidence, respectively. For FHB-

index, clusters Temp+Ind, Temp+Sev, and Sve+Inc+Ind showed higher selection intensity values. 

Overall, Temp+Inc consistently yielded low selection intensity value across all traits, whereas 

Temp+Ind performed the worst, with higher selection intensity values (Table 5.2). 

Similar to the 2023 trial, the 2024 trial showed that Temp+Sev had the lowest selection 

intensity value for FHB severity, while Temp+Inc had the lowest selection intensity for FHB 

incidence and FHB index. Interestingly, in 2024, the least favorable clusters (with the highest 

selection intensity values) were Temp+Sev+Inc+Ind, Sev+Inc, and Sev+Inc+Ind (Table 5.3). 

Comparing all trials, Temp+Inc—plot-level thermal readings and FHB-incidence—

emerged as the most effective approach for identifying genotypes with lower FHB severity, 

incidence, or index. In contrast, clusters relying solely on FHB-related traits, performed worse than 
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clusters that incorporated plot-level thermal readings, suggesting that including plot-level thermal 

reading may enhance the identification of resistant genotypes. 

5.4. Discussion 

5.4.1. Infrared thermal imaging discerns susceptible and resistant genotypes at single-spike level 

 Single-plant evaluations have been established for FHB-resistance evaluation and selection 

to increase the number of genotypes evaluated and reduce the spatial resources (e.g., experimental 

field) required. However, this approach requires manual counting of spikelets – both healthy and 

infected – to assess the FHB-resistance, which in turn increases labor intensity and evaluation time. 

Over the years, the use of infrared thermal imaging for FHB-resistance evaluation and selection 

has been explored and demonstrated (Masri et al., 2017; Mahlein et al., 2019). The results of these 

studies were in conjunction with our results where the use of handheld infrared thermal camera 

Flir E60 allowed the delineation between resistant and susceptible genotypes, as early as eight 

days post inoculation which is earlier compared to previous reports (Masri et al., 2017). Thus, this 

solidifies the use of radiometric temperature to select between resistance and susceptible genotypes 

at the single plant and single spike level.  

However, there was a significant drop in radiometric temperature at 16 DAI. This is due to 

the sudden increase in the temperature in the greenhouse during the time of imaging, requiring 

adjustment of the observations based on ambient temperature during the course of the greenhouse 

experiment. When the environmental conditions cannot be fully controlled, as in the case of our 

study, recording and applying ambient temperatures to adjust the radiometric temperatures should 

be done. Provided that all conditions are controlled and consistent throughout the evaluation 

period, we believe that adjustment using ambient temperature should not be necessary. 
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5.4.2. Enhancing selection for FHB resistance using K-means clustering and infrared thermal 

imaging 

Evaluation and selection for Fusarium Head Blight (FHB) resistance in field trials 

primarily rely on two key traits: severity (percentage of infection in spikes) and incidence 

(percentage of spikes infected). While both traits are critical and interconnected, selecting based 

on a single trait is often insufficient. For instance, a genotype may exhibit high incidence but low 

severity, or vice versa, making selection decisions challenging. To address this, the FHB index is 

commonly used to integrate severity and incidence. However, extreme values in one trait can 

disproportionately influence the index, making selection potentially misleading. 

To refine selection, we explored the use of unsupervised k-means clustering, which allows 

simultaneous consideration of multiple FHB traits independently rather than relying solely on the 

FHB index. If selection prioritizes lower severity, for example, a genotype may be chosen if it has 

significantly lower severity than the susceptible check and is comparable to or better than the 

resistant check. However, when selection is based on individual trait means, a large proportion of 

genotypes may still qualify, limiting selection intensity. By contrast, k-means clustering across 

multiple FHB-related traits improves selection efficiency by reducing the number of selected 

genotypes while still prioritizing trait reduction. 

Given the subjective nature of traditional FHB trait evaluation, we sought a more objective 

metric and explored the use of plot-level infrared thermal imaging. Our preliminary findings 

demonstrated that infrared thermal imaging effectively distinguished resistant from susceptible 

genotypes under controlled conditions. To extend this approach, we implemented plot-level 

infrared thermal imaging in the field. While prior studies have used UAV-based imaging for FHB 

evaluation with varying success, handheld infrared thermal imaging offers a more practical and 
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logistically feasible alternative. However, we anticipated a reduced resolution and increased 

variability due to confounding field conditions. This expectation was confirmed, as plot-level 

radiometric temperature showed no direct correlation with FHB-related traits. 

Despite this, we assessed whether plot-level infrared thermal imaging could contribute to 

selection in a novel way—not as a proxy or indirect selection trait, as UAV-derived indices have 

been used (Zhang et al., 2019; Francesconi et al., 2021), but as an independent, uncorrelated trait. 

Surprisingly, despite its lack of direct correlation with FHB traits, incorporating plot-level 

radiometric temperature into unsupervised k-means clustering improved selection intensity for 

FHB resistance. Notably, clustering based on plot-level radiometric temperature and FHB-

incidence enhanced selection not only for reduced FHB incidence but also for lower severity. 

These findings do not suggest prioritizing incidence over severity but may be explained by 

canopy compensation effects during thermal imaging. Higher incidence indicates a higher 

percentage of infected spikes, which could elevate overall plot temperatures, even if severity is 

low. Conversely, in plots with low incidence but high severity, uninfected spikes emitting lower 

temperatures may dilute the thermal signal. 

Despite observations, implementing close-range infrared thermal imaging in field 

conditions requires further refinement. Improved sensitivity and resolution may enhance detection 

of subtle temperature differences among genotypes, while advancements in image processing 

could enhance scalability and implementation. Future research should focus on optimizing these 

aspects to fully leverage infrared thermal imaging as a selection tool for FHB resistance. 

5.4.3. Lack of direct relationship between plot-level thermal readings with FHB-related traits 

Under greenhouse conditions, at a single-spike resolution, we observed the expected 

response: higher radiometric temperature was associated with higher disease severity and 
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increased Fusarium Head Blight (FHB) susceptibility. In field conditions, despite some level of 

correlation between radiometric temperature and FHB severity or incidence in certain trials, no 

direct relationship between radiometric temperature and FHB-related traits could be established. 

Several confounding factors likely contributed to this discrepancy. 

First, imaging resolution played a significant role. At the single-spike level in the 

greenhouse, images were captured at a much closer range, allowing for higher spatial resolution 

and more detailed information in each pixel. In contrast, plot-level imaging in the field required 

an overhead perspective to capture as many spikes as possible. This broader view inherently 

reduced spatial resolution, limiting the ability to extract precise temperature information from 

individual spikes. Additionally, at the plot level, the proportion of pixels representing spike tissue 

decreased, further affecting temperature accuracy. 

Second, features captured in the image varied between conditions. In the greenhouse, 

individual spikes were detached from the plant and imaged against a solid white background, 

minimizing extraneous features that could influence radiometric temperature readings. Since the 

white background maintained a consistent temperature, it had little to no impact on the thermal 

readings of the spikes. However, at the plot level in the field, the imaging frame contained multiple 

additional elements, including foliage, stems, soil, and weeds. These features, which emit and 

absorb heat differently, introduced variability in radiometric temperature readings, ultimately 

influencing the measured temperature of the spikes. 

Third, image segmentation presented a challenge, particularly in infrared thermal imaging. 

Unlike RGB image segmentation, where color differences help distinguish plant parts, thermal 

segmentation is more complex because all pixels represent temperature values. Under field 

conditions, spike pixels may share similar radiometric temperatures with other features, such as 
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senescing foliage. As a result, the final plot-level radiometric temperature reading incorporates 

temperature information from multiple elements. In contrast, at the single-spike level, 

segmentation is more straightforward because the temperature contrast between the wheat spike 

and the white background allows for clear differentiation at the pixel level.   

Fourth, environmental effects  and level of infection. While the majority of the reasons laid 

out here have been on how the imaging side: resolution, confounding factors, and segmentation, 

we cannot oversee the potential environmental effects affecting the trial, more importantly the 

thermal readings. Microclimatic conditions varied across developmental stages and around 

evaluation periods (complete weather data is presented in Supplementary Table 5.4). Variation in 

precipitation, soil and ambient temperature, and relative humidity varied at different 

developmental stages, especially during flowering. As environmental factors affect how thermal 

readings were recorded by the sensor, these microclimatic changes most likely have affected the 

thermal readings as well. Further, microclimatic conditions varied during the field inoculation 

dates, which may have directly affected the level of infection in the FHB nursery and therefore 

may have affected the radiometric temperature emitted by the wheat spikes - regardless of whether 

it is infected or not. 

5.5. Conclusion 

Infrared thermal imaging successfully delineated the response and the progression of FHB-

infection at a single-spike level, showing potential use in single plant evaluations under greenhouse 

conditions. However, the scalability of close-range infrared thermal imaging for plot-level FHB-

evaluation was met with certain challenges, particularly the lack of direct relationship between 

plot-level radiometric temperature with FHB-related traits. Despite this, there is a potential use of 

plot-level radiometric temperature as an uncorrelated and independent trait in unsupervised k-
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means clustering to aid in selection for reduced FHB-related traits resulting in better selection 

intensity. 
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CHAPTER VI: INTEGRATED PHENOMIC AND GENOMICS:  
 PROSPECTS, CAVEATS, IMPLICATION IN GENETIC GAIN AND APPLICATION IN 

WHEAT BREEDING 
 

 This dissertation explored the integration of phenomic information with genomic data to 

enhance prediction accuracy and understand the genetic basis of phenomic traits in soft winter 

wheat. Specifically, this work aimed to (1) increase the prediction accuracy for economically 

important traits (grain yield, Fusarium head blight resistance) and (2) provide insights into the 

potential genetic control of phenomic traits and their associations with these target traits. By 

examining the relationship between high-throughput phenomic data and genomic information, this 

research sought to establish a framework for leveraging multi-omics information in plant breeding. 

An overarching goal of this dissertation was to demonstrate how integrating phenomic and 

genomic data improves genetic gain. Understanding the interplay between phenomic traits and 

genomic information allows for a more precise assessment of genetic potential, ultimately 

enhancing breeding efficiency.  

The following sections present the author’s perspective on multi-omic breeding, 

emphasizing its implications predictive breeding and future advancements in plant breeding. 

6.1. Phenotype vs. Breeding Value: What are we actually predicting? 

 In modern plant breeding, distinguishing between genomic and phenotypic prediction is 

essential for understanding how different types of data contribute to assessing a genotype’s 

potential. When using genomic information, we generate genomically estimated breeding values 

(GEBVs) to assess the genetic potential of individuals for a given trait, independent of 

environmental effects or genotype-by-environment (G×E) interactions. While true breeding values 

remain impossible to predict due to the complexity of inheritance and environmental influences, 

GEBVs provide a powerful approximation of genetic merit. The primary applications of genomic 
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prediction include generation advancement, where superior genotypes are identified for the next 

breeding cycle, and parental selection, which involves choosing individuals with the highest 

breeding potential for population development. Since genomic prediction operates under the 

assumption that genetic effects are stable across environments, it allows breeders to make informed 

long-term genetic improvement decisions. 

In contrast, when using non-genomic information, such as phenomic data from high-

throughput imaging sensors, the focus shifts from predicting breeding values to predicting 

phenotypic performance. The phenotype of an individual is influenced by genetic effects (G), 

environmental effects (E), and their interaction (G×E). Our findings establish that phenomic traits 

exhibit genetic control, as evidenced by the identification of genomic regions associated with 

specific hyperspectral waveband ranges linked to deoxynivalenol accumulation in wheat kernels 

and genomic loci associated with RGB and multispectral vegetation indices (VIs). Furthermore, 

we have demonstrated that year-to-year environmental variability significantly impacts phenomic 

traits, reinforcing their role as a bridge between genetic potential and real-world performance. 

Since phenomic traits potentially captured both genetic and environmental influences, they serve 

as secondary or correlated traits in predictive models for complex traits like grain yield and disease 

resistance. This concept underpins phenomic selection, where phenomic data is used to infer the 

potential performance of genotypes under specific environmental conditions. 

When combining genomic and phenomic information, the objective remains to be 

phenotypic prediction, but with an improved understanding of how genetic potential interacts with 

environmental conditions. Unlike genomic prediction alone, which provides an intrinsic estimate 

of genetic merit, integrating phenomic data allows us to contextualize performance in real-world 

environments. For example, consider a genotype with a GEBV for yield of 80 bu/ac, a 
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phenomically predicted phenotype of 90 bu/ac, and a multi-omic prediction of 85 bu/ac, which 

accounts for both genetic potential and environmental interactions. In this case, the 85 bu/ac 

prediction represents the genotype’s expected performance, integrating its genetic foundation 

(GEBV) and phenotypic expression under the given environmental conditions. If this genotype is 

evaluated under drought stress, its yield is expected to fall below 80–85 bu/ac, whereas if it is 

grown under optimal management conditions, its yield should approach or exceed 80–90 bu/ac. 

This framework highlights the power of multi-omic prediction, which provides a holistic 

assessment of a genotype's potential by simultaneously considering its breeding value and real-

world performance. By leveraging both genomic and phenomic information, breeders can identify 

stable performers, ensuring consistent yield across environments; optimize selection strategies, 

balancing genetic potential with environmental adaptability; and enhance prediction accuracy, 

reducing uncertainty in breeding decisions. Ultimately, the integration of genomics, phenomics, 

and environmental data enables a more precise and dynamic approach to plant breeding, 

accelerating genetic gain while ensuring adaptability to changing agricultural conditions. 

6.2. Implications on Genetic Gain 

 Enhancing genetic gain relies on a few important aspects: increasing prediction accuracy, 

enhancing selection intensity, broadening genetic diversity, and reducing generation interval.  

Enhancing selection intensity follows a simple principle: "more entries, more chances of 

winning." Phenomics enables rapid data collection, reduces labor, and allows for evaluating more 

genotypes, increasing the likelihood of identifying superior candidates. For example, traditional 

deoxynivalenol (DON) content estimation requires grinding samples, sending them to an external 

lab, and waiting for results—often delaying selections until the next trial is already established. In 
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contrast, hyperspectral imaging eliminates the need for sample processing, significantly reducing 

labor and time, enabling the evaluation of more entries, and enhancing selection intensity. 

Integrating phenomic and genomic data enhances prediction accuracy. As demonstrated in 

this dissertation, incorporating UAV-derived information as a fixed effect in genomic prediction, 

or simply averaging phenomic and genomic predictions for deoxynivalenol (DON) content, led to 

improved accuracy. These multi-omic approaches thereby appear to perform better over relying 

solely on genomic or phenomic prediction. Additionally, higher prediction accuracy directly 

translates to increased selection intensity—the more precise the evaluations, the more effective the 

selection process becomes within a larger candidate pool. 

Evaluating a larger number of candidates not only increases selection intensity but also 

enables the assessment of more diverse populations, potentially enhancing genetic diversity within 

breeding programs. Beyond evaluation and selection, identifying key genomic regions and 

significant SNPs means additional QTLs or variants that could be introgressed into breeding 

materials, thereby broadening the genetic background of breeding pools. 

 Taken altogether, an integrated phenomic and genomic breeding approach could have 

positive implications in both short- and long-term genetic gains. 

6.3. Prospects and Application of Integrated Phenomics and Genomics in a Breeding Pipeline 

The introduction of new breeding approaches, such as phenomics-assisted or multi-omic-

based breeding, is often met with skepticism. While further validation and metrics are needed for 

full implementation, we can explore how phenomic information integrates into a genomics-

assisted breeding pipeline.  

Assuming an inbred breeding pipeline where establishment of families are done at F4 to F5 

stages with accompanying genomic selection, or potentially at the preliminary trial, or advanced  
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Figure 6.1. Potential application of genomics and phenomics in a breeding pipeline. 

 

trial. In addition, genotypes selected following genomic prediction are funneled back into 

population development as parents, basically similar to a recurrent selection-based breeding. 

Product development, including field trials, multi-location trials, and regional trials follow after 

family establishment. With this type of breeding pipeline, where does phenomic information fit? 

1. Germplasm Evaluation and Parental Selection – Genomic prediction has significantly 

improved parental selection by assessing genetic merit. However, in breeding programs 

without the capacity to do genomic prediction, phenotypic performance remains a key 

factor in parental selection. Phenomics can augment genomics-based selection by 

providing rapid, high-throughput trait evaluation, enabling breeders to assess a larger 

number of genotypes efficiently. This, in turn, increases the likelihood of identifying 

superior parental lines and enhances genetic diversity within breeding pools. 
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2. Reduction of Selection Pool – At early breeding stages, rapid and accurate phenotype 

estimation is essential for efficiently narrowing the selection pool. Phenomics facilitates 

this by offering non-destructive, high-throughput evaluations that improve selection 

precision. For instance, in this study, deoxynivalenol (DON) content in F4:5 breeding lines 

was predicted using phenomics-assisted, genomics-assisted, and multi-omic-based 

approaches. These findings suggest that integrating phenomic and genomic predictions at 

early generations can accelerate selection decisions and improve breeding efficiency. 

3. Enhancing and Complementing Field Performance Evaluation – Field trials are critical for 

assessing the performance of breeding lines, particularly for complex traits like grain yield. 

Field performance trials, including multi-year and multi environment trials, are essential 

for selecting elite genotypes, but phenomic tools can streamline this process. In this work, 

UAV-based evaluations at the preliminary trial stage, combined with genomic data, 

improved grain yield predictions compared to genomic prediction alone. This approach 

enables the identification of elite genotypes with greater accuracy and reduces evaluation 

time. 

6.4. Caveats and Considerations 

 The application of phenomics in evaluating important traits – raging from disease resistant, 

abiotic stress tolerance, agronomic traits, and quality traits –  there are several considerations that 

must be looked into at when considering using phenomic platforms: 

1. Resources – currently, there is an abundance of genomic resources available to breeders. 

More importantly, the cost of genotyping has significantly gone down, allowing breeders 

to evaluate more genotypes. Therefore, the cost of phenomic platforms is still the biggest 

consideration in adopting phenomic platforms. Currently, some specialized sensors (e.g., 
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hyperspectral camera, 3D sensors) could be expensive and potentially a huge initial 

advancement. A potential trade-off would either be considering a bigger investment up 

front and saving later (in phenomics) or continuously investing lesser resources in every 

trial, saving some resources every trial but would accumulate long term (in genomics). 

2. Plant architecture and the target phenotype – Selecting the appropriate phenomic platform 

depends on how the target trait manifests, particularly for traits like disease resistance. For 

example, infrared thermal imaging is well-suited for Fusarium Head Blight (FHB) 

detection at the spike level, as temperature variations can indicate infection. However, 

applying the same approach for deoxynivalenol (DON) content in post-harvest kernels is 

ineffective, as matured kernels may emit similar radiometric temperatures. Similarly, if a 

disease manifests as discoloration, RGB and hyperspectral imaging are ideal, whereas if it 

leads to tissue necrosis, thermal imaging may be more appropriate. Plant architecture plays 

a crucial role in selecting phenomic platforms. In wheat, handheld, rover-based, and UAV 

systems are effective as they can capture whole plants or entire plots under field conditions. 

However, for taller crops like maize, handheld and rover-based systems pose challenges 

due to plant height, making UAV-based imaging the preferred option. Additionally, the 

spatial expression of traits should guide platform selection. For example, traits expressed 

in kernels, such as DON accumulation, are best captured with close-range imaging systems, 

whereas agronomic traits like yield or plant height are more effectively measured using 

UAV-based systems. Ultimately, selecting the right phenomic platform requires a 

comprehensive understanding of plant architecture, the target trait, and its spatial 

manifestation. This integrated approach ensures optimal sensor selection, enhancing data 

accuracy and efficiency in phenomics-assisted breeding. 
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3. Computational and processing demand – Image processing for complex phenomic data 

presents significant computational and automation challenges. Before adopting high-

dimensional sensors like hyperspectral cameras, it is crucial to assess whether simpler 

alternatives, such as RGB imaging using a mobile phone, can provide sufficient 

information. Simpler approaches should always be prioritized when feasible, as they reduce 

computational overhead, data storage needs, and processing time. As phenomic platforms 

capture higher-dimensional data, computational demands increase significantly. For 

instance, hyperspectral imaging, while highly informative, requires extensive data 

processing and storage, which may not always be practical. Therefore, balancing data 

complexity, ease of processing, and resource availability is essential when integrating 

phenomic tools into breeding programs. Selecting the most efficient yet effective platform 

ensures both scalability and practicality in phenomics-assisted breeding. 

4. Potential trade-offs of multi-omics-based breeding – employing phenomic, genomic, or 

multi-omic approaches involves trade-offs, particularly in terms of time, expertise, and 

cost. While UAV-based imaging for agronomic traits is rapid, processing and analyzing the 

images can be time-intensive. Similarly, while genomic data analysis is well-established, 

it requires specialized expertise, as does phenomic data processing. Thus, breeding 

programs must decide whether to rely on existing expertise, invest in skill development, or 

collaborate with specialists to optimize efficiency. Cost is another critical factor. If 

genotyping becomes more affordable, it may be more practical to genotype more entries 

rather than invest in phenomic approaches. Conversely, if phenomic evaluations help refine 

selection before harvest, leaving unselected entries in the field could be viewed as a waste 

of resources. Balancing these trade-offs requires strategic decision-making, ensuring that 



159 
 

resource allocation aligns with breeding program goals while maximizing efficiency and 

genetic gain. 

6.5. Future Directions in Phenomics and Multi-Omic Breeding 

1. Rapid and More Automated Image Processing – Phenomics is rapidly evolving, with 

significant advancements in image and data processing, particularly for RGB and 

multispectral imaging. However, hyperspectral imaging for instance still requires further 

automation and optimization. The development of efficient, high-throughput processing 

pipelines presents a major opportunity to enhance phenomics’ impact on plant breeding by 

improving data accessibility and reducing processing time. 

2. Cost-Effective and Affordable Phenomics Platforms – Despite its potential, phenomic 

platforms remain costly, especially for advanced sensors. As the field advances, increased 

competition is likely to drive costs down, similar to how genotyping became more 

affordable over time. Additionally, scientists and engineers have opportunities to develop 

lower-cost alternatives that provide the same quality of data, making phenomics more 

accessible for breeding programs. 

3. Integration of Machine Learning and AI – The rapid advancements in machine learning 

and AI provide unprecedented opportunities for improving prediction accuracy and 

complex trait analysis. Neural networks are already enhancing phenomic prediction, 

leading to more precise selection. Furthermore, AI-driven models enable the integration of 

diverse datasets, including environomics, transcriptomics, metabolomics, and ionomics. 

The application of multi-modal neural networks in multi-omics breeding could 

revolutionize the way complex traits are predicted and utilized, paving the way for more 

sophisticated data-driven breeding strategies. 
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While the integration of phenomics into genomics-based breeding is promising, plant 

breeders must critically assess its implementation within existing breeding pipelines. Rather 

than hastily adopting new technologies, it is essential to carefully evaluate the advantages, 

limitations, and feasibility of phenomic approaches. Considerations such as cost, 

computational demand, processing time, and practical application in selection decisions should 

be weighed to ensure that phenomics enhances, rather than complicates, breeding efficiency. 

A strategic and well-integrated approach will maximize the benefits of phenomics while 

maintaining the effectiveness of established breeding programs.
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