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ABSTRACT 

 Previous work on feature-based attention has established two prominent models of the 

selection profile: feature-similarity gain and surround suppression. The former predicts a 

monotonic decrease in task performance as the target feature becomes more different from the 

attended feature, whereas the latter predicts a non-monotonic performance pattern where the 

lowest performance occurs for targets close to the attended feature with a rebound in 

performance for more distant features. While support for both models have been found using 

simple features, it is unclear whether the selection profile for object-based attention aligns with 

either model. The current study assessed the selection profile for simple shapes, as a first step 

toward more parametric investigations of object-based attention. The study used a newly 

developed standardized circular shape space that allowed object difference to be quantitatively 

measured. In two experiments, participants were directed to attend to two target shapes that 

systematically varied along the shape circle. Two distractor shapes then appeared, overlapping 

with the target shapes, and one shape in each pair underwent a brief luminance change. 

Participants reported the status of each target shape (no change, dimmer, brighter). Experiment 1 

used finer sampling of the shape space with a maximum target difference of 90°, and Experiment 

2 used a coarser sampling with maximum target difference of 180°. For both experiments, 

performance accuracy peaked when the two target shapes matched and then decreased in a 

monotonic manner as the two shapes became more different. These results align more with the 

feature-similarity gain model and suggest that an analogous shape-similarity gain effect operates 

at a higher level of complexity. Such a gain effect may support object-based selection to 

differentiate target objects along higher-order, holistic dimensions like shape.  
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INTRODUCTION 

In daily life, our brains sift through vast amounts of perceptual information through a 

process of focusing and filtering. The process of filtering through this information to emphasize 

relevant items is referred to as selective attention. Regarding visual attention specifically, our 

visual system utilizes this process to aid in a variety of visual tasks we might perform, from 

simply looking through cabinets for the right snack to looking for abnormalities in medical 

imaging. For this reason, understanding the complex neural machinery and the behaviors that 

result from this process can have an important impact on both theoretical and applied research. 

While decades of studies have been dedicated to this topic, there are still components of it that 

are not fully understood(Cavanagh et al., 2023; Chapman & Störmer, 2024; Martinez-Trujillo & 

Treue Stefan, 2004). Specifically, study of the profile of selective attention, the way in which 

attention enhances relevant information and suppresses irrelevant information to find a target, 

has been a topic of interest. Behavioral methods that define the shape of this profile have been 

done with location-based attention and feature-based attention; however, there is still a 

significant gap involving object-based attention. The current study helps to fill this gap by 

examining whether object-based attention follows the selection profiles that have been identified 

for feature-based selective attention: feature-similarity gain and surround suppression. 

The dominant model for the profile of selective attention has been the feature-similarity 

gain model, which suggests that when we choose to attend to a feature, for example the color red, 

attention enhances all red colored items in the scene and such enhancement gradually declines as 

an item’s color becomes less similar to red (blue curve in Figure 1)(Martinez-Trujillo & Treue 

Stefan, 2004). However, more recent research has found that selective attention may follow a 

different pattern of results called surround suppression. In this case, instead of decreasing 
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Figure 1 A comparison of hypothetical data patterns for a feature-similarity gain model 
(blue) and surround suppression (red). 
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monotonically, attention most strongly suppresses items that are similar to the attended feature 

but lessens suppression for very dissimilar features to the target (red curve in Figure 1)(Tsotsos, 

1990). While this newer data pattern has been found in simple features like color, orientation, 

and motion direction, as well as for location-based attention, it has yet to be found for object-

based attention (Cavanagh et al., 2023).  

Some of the first evidence for the feature-similarity gain hypothesis was found in single 

unit recording studies done on monkeys (Martinez-Trujillo & Treue Stefan, 2004; Treue & 

Martinez-Trujillo, 1999). These studies found that neurons showed enhanced response when 

attending to an individual neuron’s preferred motion direction and a suppressed response when 

attending to the anti-preferred direction. This effect was even present in neurons whose receptive 

field did not overlap with the attended stimulus but had a probe stimulus moving in various 

directions. This led the researchers to conclude that feature-based attention globally modulates 

neuron behavior in a monotonic fashion, where when a neuron’s preferred feature is similar to an 

attended feature, its activity is enhanced. Conversely, neurons with preferred features less like 

the attended feature, are subject to less enhancement and more suppression. Since then, 

behavioral (Bondarenko et al., 2012; Boynton et al., 2006; Lankheet & Verstraten, 1995; Liu & 

Hou, 2011; Liu & Mance, 2011; Wang et al., 2015; Zhang & Luck, 2008) and neuroimaging (Liu 

et al., 2007; Saenz et al., 2002; Serences & Boynton, 2007) studies have generally found 

supporting evidence for this conclusion in humans. Most of these early studies focused on 

motion (Boynton et al., 2006; Lankheet & Verstraten, 1995; Liu & Mance, 2011; Saenz et al., 

2002; Serences & Boynton, 2007) like in the original monkey studies but, others have used 

features like orientation and color and yielded similar results (Bondarenko et al., 2012; Liu et al., 

2007; Liu & Hou, 2011; Wang et al., 2015; Zhang & Luck, 2008). While not feature specific, 

several studies also found this monotonic pattern of results when examining location-based 

attention, where a cue indicates the likely position of a target and performance is compared 

between neutral, valid, and invalid cues (Bashinski & Bacharach, 1980; Downing, 1988; Handy 

et al., 1996; Hawkins et al., 1990; H. J. Müller & Humphreys, 1991; Posner et al., 1980). The 

most significant drawback of these studies was that their methods typically used a very coarse set 

of stimuli, often a target stimulus and its maximally different counterpart. This limits the 

applicability of the results because it did not explore a finer sampling of feature spaces and 

locations. Studies that did utilize a finer sampling of a studied space yielded results that hinted at 
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a potential nonmonotonic pattern of results (Downing, 1988; Handy et al., 1996; Wang et al., 

2015). This suggests that the feature-similarity gain hypothesis and the similar pattern of results 

for location-based attention may not be a complete picture of the shape of the selection profile 

for attention.  

More recently, behavioral studies using human subjects and finer sampling of feature 

spaces have found a different pattern of results. In this newer research, the decrease in 

performance as the presented feature becomes more different from the attended feature does not 

happen monotonically. This pattern of center-surround suppression is predicted by the Selective 

Tuning Model of attention (Tsotsos, 1990; Tsotsos et al., 1995) which suggests that rather than 

attention to a feature causing inhibition of the feature opposite to the target to create a monotonic 

decrease, attention to a target causes inhibition of similar features/nearby locations which 

decreases as the stimuli become more different from the target. This pattern of results has been 

found for both feature-based attention (Bartsch et al., 2017; Fang et al., 2019; Fang & Liu, 2019; 

Ho et al., 2012; Liu et al., 2023; Störmer & Alvarez, 2014; Tombu & Tsotsos, 2008; Yoo et al., 

2018) and location-based attention (Caputo & Guerra, 1998; Cutzu & Tsotsos, 2003; Fang, 

Ravizza, & Liu, 2019; Hopf et al., 2006, 2010; Mounts, 2000; N. G. Müller et al., 2005; N. G. 

Müller & Kleinschmidt, 2004; Yoo et al., 2018). However, beyond simply exploring a finer 

sampling of stimulus spaces, it has been found that specific components of task design influence 

the presence of the suppressive surround (Hopf et al., 2010; Liu et al., 2023; Tombu & Tsotsos, 

2008; Yoo et al., 2018). Specifically, Liu et al., (2023) found that increasing task difficulty by 

using highly competitive distractors results in a pattern of surround suppression in the same task 

where low competition distractors do not but, that guiding participants to develop a highly 

precise target template also results in a suppressive surround pattern even with low distractor 

competition. The fact that task design influences the presence of surround suppression 

potentially explains why this pattern of results was not found in initial study of this topic, even 

when there was finer sampling of stimulus spaces.  

In addition, it seems the exact location of where within the feature space the inhibitory 

zones occur varies between and within feature-spaces. For example, Störmer & Alvarez (2014) 

found surround suppression at about 30° difference (approximately 17% of the maximum 

possible difference) between two target colors. In contrast, Fang et al. (2019) found the area of 

suppression to be at a 15° (8%), 30° (17%), and 45° (25%) difference for red, green, and blue 
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color categories respectively. Additionally, a pattern consistent with surround suppression has 

been found for orientation, motion direction, and spatial frequency (Fang & Liu, 2019), with 

suppression for orientation and motion direction occurring at 45° (50%) and at 1 octave of offset 

for spatial frequency. This shows that while the presence of near-target inhibition occurs across 

features, it does not necessarily occur in the same relative location in the feature space. Similarly, 

when a stimulus is near an attended target, both in physical space and in feature space, there is 

evidence for stronger suppression than when the stimulus only shares physical proximity with 

the target (Yoo et al., 2018). This suggests that when object-location and object-feature 

information interact, enhancement and suppression effects also interact. While historically 

presented as competing theories, it has also been suggested that both feature-similarity gain and 

center-surround suppression could function in tandem (Fang et al., 2019). This model resembles 

surround suppression near a target with enhancement of the target, suppression of similar 

distractors, and rebound for more dissimilar distractors; however, this hybrid model then predicts 

another decrease in performance beyond the rebound for the most dissimilar distractors, rather 

than a leveling off of performance that a pure surround suppression model would predict. Yoo et 

al. (2021) have described this as a narrow strong enhancement effect at the area of the target with 

a wider and weaker suppression effect centered around the target as well. This reconciliation of 

theories shows that it is possible for both mechanisms to be at play and, together, impact the 

shape of the selection profile. 

Based on this accumulation of evidence, it appears that feature-similarity gain is not the 

only mechanism at play when allocating attention and that a suppressive surround is at least 

present, if not dominant, for feature and location-based attention. The Selective Tuning Model 

suggests that rather than simply enhancing and suppressing specific neural representations based 

on top-down target information, the brain first selects the most salient representations available 

from the initial feedforward (bottom-up) perceptual response at the most complex level of neural 

representation. Then in a feedback process, the brain more carefully narrows down these 

potential targets and suppresses the neural representations not selected. As feedback continues 

through layers of decreasing complexity, more neural representations are attenuated because 

other representations better match the attentional template and this continues until there is only 

one representation, ideally the target, remaining unattenuated (Cutzu & Tsotsos, 2003; Tsotsos, 

1990; Tsotsos et al., 1995). This results in fully irrelevant stimuli not being suppressed because 
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they never passed through any layers in the feedback system, whereas partially relevant or 

similar stimuli may pass through some layers which causes inhibition of those related neurons. 

This is beneficial because it helps isolate a target from distractors that are more likely to cause 

false positives rather than just suppressing distractors that are clearly distinct from a target. 

While the implications of this structure seem easy to imagine for simple location-based and 

feature-based attention (a physical space of suppression surrounding a target area or suppression 

of similar features to a target within a feature space) this seems less clear for objects that are 

potentially composed of multiple complex features and can appear across multiple locations. 

However, the process of moving from more complex to less complex layers of information lends 

itself well to object-based attention by allowing stimuli/neurons to be attenuated at multiple 

layers for both global components of an object and local features.  

Even though the Selective Tuning Model predicts surround suppression in object-based 

attention and seems like a natural extension of the pattern observed for location and feature-

based attention, this has yet to be found (Cavanagh et al., 2023; Tsotsos, 2011). One reason for 

the difficulty in finding this expected effect is that there is no one consensus on what constitutes 

an object or object-based attention (Cavanagh et al., 2023). While it seems easy to know what an 

object is when looking at one, it is not always clear cut. Objects could be defined as a closed area 

of space, but this excludes objects with poorly defined borders or partially occluded objects. 

Even when an object can be clearly defined as separate from others, there is debate over whether 

object-based attention is distinct from feature-based attention or if they are the same process 

operating over different representational spaces (Chapman & Störmer, 2024). Despite this 

difficulty, there have been some experimental paradigms that have proven successful at studying 

object-based attention (Cavanagh et al., 2023; Chapman & Störmer, 2024; Duncan, 1984; Egly et 

al., 1994). From these studies, it is known that cueing an object facilitates identifying orthogonal 

features of that object or features within the space of the object when compared to non-cued 

objects. This demonstrates that objects receive enhanced processing when attended to in a similar 

manner to both features and locations which allows object-based attention to be studied with 

similar experimental designs. The second reason for this difficulty is the lack of a calibrated 

object space that can be used like many standard feature spaces, e.g., color space (360 deg 

around a color wheel) or orientation space (180 deg rotation). While simple shapes can be 

classified as a group of objects, the difference between a triangle and a square is not as cleanly 
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and continuously quantifiable as the difference between a 30° line and a 60° line. However, 

recently, Li et al. (2020) created a “shape wheel” with a similar structure to a standard color 

wheel. This space was created through a process of digital editing of prototype shapes, collection 

of subjective similarity ratings of those shapes, digital reconstruction of the shape space from 

these ratings, and statistical assessments of circularity of the space. This standardized space 

contains 360 shapes that can be used as unique objects whose difference can be measured in the 

same way as color and orientation. Thus, we reasoned that this standardized circular shape space 

can be used to explore the selection profile for visual objects.  

The current study aims to identify a general shape of the selection profile for object-based 

attention. These experiments rely on the idea that when the two object features match, an 

orthogonal task involving both objects can be done most successfully, but when the features do 

not match the attentional templates of those objects conflict, causing interference which 

decreases task performance (Störmer & Alvarez, 2014). This interference increases as the 

features gradually differ until there is a point of maximum interference which is interpreted as 

the area of center-surround suppression (Yoo et al., 2021). Using the shape wheel as a stimulus 

set, two attended target shapes can be made to systematically differ, therefore, changing the level 

of interference at the object level. The experiments also make sure to overlap each target with a 

distractor so that the object itself must be attended and not just the space it occupies, since, when 

two objects overlap, people can more easily identify orthogonal features of one selected object 

than across objects (Duncan, 1984). Combining these principles results in the general design of 

the current experiments, where participants are shown two target shapes overlapped by 

distractors and asked to respond to luminance changes of the targets. In Experiment 1, the 

difference between the two targets could range from 0°-90 ° while in Experiment 2 this range 

was expanded to 0°-180°. It was hypothesized that evidence for both a pattern of feature-

similarity gain, and surround suppression would be found in participants accuracy results. Both 

experiments demonstrated a monotonic decrease in task performance as target offset grew, 

demonstrating that the shape space has a parametric quality, and supporting presence of a 

feature-similarity gain-like model for attentional selection at the object-level which could be 

considered an object-similarity gain effect. No clear surround suppression effect was found. 
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EXPERIMENT 1 

Methods 

Participants 

Participants (N = 16, 10 female, 6 male) were collected primarily from the community of 

undergraduate and graduate students and Michigan State Univeristy and were compensated at a 

rate of $12 per hour. An a priori power analysis for a repeated measures ANOVA was conducted 

using G*Power version 3.1. (Faul et al., 2007) based on data from Störmer & Alvarez (2014), 

which compared target feature (color) offset to task accuracy. The effect size was h2 = 0.42 

(Cohen’s f = 0.85), considered to be large using criteria from Cohen (1988). With a significance 

criterion of α = .05 and power = .80, the minimum sample size needed with this effect size is N = 

16. Thus, the obtained sample size was adequate to test the study hypothesis. Informed consent 

was obtained from every participant. To participate, participants needed to be over the age of 18 

and have normal or corrected-to-normal vision. All experimental protocols were approved by the 

Institutional Review Board at Michigan State University. 

Apparatus 

This study was conducted using Matlab (MathWorks, Natick, MA) with the MGL 

toolbox (Gardner et al., 2018). The stimuli were presented on a 34 in. LCD Ultrawide Display 

Figure 2 An example shape space of stimuli that could appear in the study. This space 
shows 12 shapes all 30° apart from each other, spanning the entire scale of possible shapes. 
This is representative of all shapes that could be used on a single trial but on each trial the 
exact set of possible shapes will be randomly different. 
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(2560 x 1080 pixels, 60hz refresh rate) at a viewing distance of 50cm. The gamma for the 

monitor was set at 2.2 to approximately linearize the display luminance. 

Stimulus 

The stimuli were composed of 360 closed line drawings of 2D shapes (see Fig. 2 for 

examples). They were accessed from the OSF public repository provided by the original authors 

(Li et al., 2020 https://osf.io/d9gyf/).  All shapes were resized to 90% to 110% its size relative to 

the other shapes. The exact resizing parameter for each shape was chosen to minimize the 

number of overlapping pixels among shapes. This was done to make them more distinct when 

overlaid one over another. The background is set at a grayscale value of 127. The original shapes 

had a maximum grayscale value of 255 but this has been decreased using this formula 

𝑓𝑙𝑜𝑜𝑟(&1 + &
(𝑝𝑖𝑥𝑒𝑙!"#$% − 127)

127 1 ∗	 .71 ∗ 127) 

which results in the maximum grayscale value of 216 so shapes could become both brighter and 

dimmer. The shapes to be used in the experiment were chosen randomly on each trial and a 

sample of shapes that could be used in the study can be found in Figure 2. The two target shapes 

varied between ±0-90° difference on the shape wheel in increments of 18°. This created 11 

stimulus groups but since only the absolute value of the target offset was visually 

distinguishable, the trials for the 0° condition were doubled and the other groups were merged 

based on the absolute value of the target offset, leaving 6 groups of trials. The distractor shapes 

were always ±45° different from the location on the shape wheel that is maximally different from 

both target shapes. The distractor that was more different from a particular target appeared 

overlapping that target. 

Procedure 

Participants performed the task in three phases: practice, luminance detection 

thresholding, and main attention task. All three of these phases use the same task structure with 

small differences between them. On a single trial, two target shapes appeared 3.25 degrees to the 

left and right of a central fixation respectively. Participants were told to pay attention to these 

shapes and to respond only to changes that occur to those two target shapes.  After 1000ms of 

these shapes present by themselves, two distractor shapes appeared overlapping the targets. 

Participants were told to ignore these distractor shapes. The four shapes were presented together 

on the screen for a total of 1700 ms. The first luminance change occurred between 600-1200 ms 
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after the appearance of the distractor shapes, an interval with all four shapes unchanged was 

shown for 50-650ms after each luminance change, and the luminance changes themselves lasted 

200ms. After the changes occurred, the participants were prompted to respond randomly to the 

left or right target shape by making key presses that equated to no change, dimmer, or brighter. 

They were then prompted to respond about the other target. The time course of a single trial can 

be found in Figure 3. The luminance change condition varied independently for both the left and 

the right set of shapes to encourage attention to both sets, as attending to only one set did not 

provide information about the other. For all trials within a block, for each side independently, on 

30% of trials the target dimmed, on 30% of trials the target brightened, on 30% of trials the 

distractor changed, and on 10% of trials no luminance change occurred at all. The order of the 

luminance changes between the left and right side varied randomly with half of all trials having 

the luminance change occur first of the left side and the other half occurring first on the right 

1700 ms

Order varied randomly

Matched stimulus order

(200 - 400 ms)

(1000 ms)
shapes offset 0-180 

degrees

(600 - 1200   ms)

(50 - 650 ms)

(200 ms)

(200 ms)

(50 - 650 ms)

Until response

Until response
(400 ms)

Figure 3 The time course of one trial both Experiment 1 and Experiment 2. The trial begins with 
200-400ms of fixation before the two target shapes appear and are present for 1000ms. The 
distractor shapes then overlay the targets. There is then a viewing period (600-1200ms) before 
both potential luminance changes occur (200ms each) and the intervals between and after the 
luminance changes can endure for 50-650ms. This period where all 4 shapes are presented always 
lasts for a total of 1700ms. The two luminance changes occur in a random order. The participants 
are then cued to respond to what type of luminance change occurred for both the left and right side 
(matching the order that the changes themselves occurred) and this cue persists until a response is 
made. There is then an intertrial interval of a blank screen that lasts 400ms.  
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side. The order in which the participant was asked to respond to the left or right stimulus always 

matched the order in which the luminance changes occurred. 

In the practice phase, participants were given the opportunity to practice the task the 

experimenter has explained to them verbally. Participants ran through a block of 22 trials (2 

exemplars of each possible target offset) and were asked if they felt comfortable enough with the 

task structure to move forward. The participant continued practice blocks until they indicated 

they were comfortable with the task structure. 

In the luminance detection threshold blocks, participants performed the same task 

described above but the difficulty of the task was changed based on correctness of response. This 

was done to find a threshold value for both dimming and brightening trials that would result in 

the participants getting approximately 71% of trials correct. This was done with two separate 2-

down 1-up staircasing procedures (Levitt, 1971), one for dimming trials and one for brightening 

trials. The staircases had starting values of .36 with a maximum value of .99 and a minimum 

value of .01. This value represents the percent change from the starting luminance value to the 

maximum brightness or maximum dimness. Participants ran 3 blocks of 60 trials each and, for 

each block, 10 trials for each of the 6 target offset conditions was randomly interleaved 

throughout. 

The main attention task had the same design as the previous two phases, except now the 

luminance change values for dimming and brightening were fixed based on the results of the 

staircasing procedure in the previous phase. Participants completed 4 blocks of 120 trials with a 

programmed break halfway through each block to allow for rest to limit fatigue. Within each 

block, 20 trials of each of the 6 target offset conditions were randomly interleaved. 

Analysis 

To evaluate how shape offset impacts performance, participant task accuracy when 

presented with each of the 6 target offset conditions was compared. Initial analysis was 

conducted using a one-way repeated measures ANOVA to examine if there was an overall effect 

of target offset on task accuracy. Regardless of if the data follow a pattern consistent with the 

feature similarity gain model or a model of center-surround suppression, a main effect of target 

offset is expected, with the 0° offset condition having the highest accuracy. To test this, planned 

comparisons (at alpha level 0.05) with a Bonferroni correction were done for all conditions 

compared to the 0° offset condition. To test for whether a feature-similarity gain or surround 
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suppression model better fits the data, additional planned comparisons would be done between 

key offsets of interest. Relative comparisons would be made with a Bonferroni correction 

between any local minimum and a local maximum value that occurs at a point of greater target 

offset. If these comparisons are present and significant, this would provide support for a surround 

suppression effect for object-based attention. If these comparisons are either not possible to 

perform due to the data pattern or are insignificant, then the data would only support an object-

similarity gain model. 

A complementary analysis approach that may provide additional insight is a model fitting 

approach adapted from Fang et al. (2019). This method used two models, a monotonic 

(Gaussian) and a nonmonotonic (Ricker Wavelet) function, and test whether the data better fits 

one model or the other. The monotonic model expressed by this function: 

𝑃𝑐 =
𝐴
𝑤 𝑒

&	 (
!

)*! + 	𝑏	

where A, w, and b are free parameters of the Gaussian function, x is the target offset, and Pc is 

the accuracy of the task, would analyze whether a feature-similarity gain based model better fits 

the data. The nonmonotonic model expressed by this function: 

𝑃𝑐 =
2𝐴

√3𝑤	𝜋+/-
𝑒&	

(!
)*! 	&1 −	

𝑥)

𝑤)1	

where A and w are free parameters of the Ricker Wavelet function, x is the target offset, and Pc 

is the accuracy of the task, would analyze whether a surround suppression based model better fits 

the data. Non-linear regression was used to find the fit of each model to the data and produce a 

residual sum of squares. To compare these models directly, a Bayes information criterion 

(Raferty, 1995, 1999; Wagenmakers, 2007) was calculated for each model from the residual sum 

of squares and then the two Bayes information criteria were compared to produce a Bayes factor 

(Raferty, 1995, 1999) where a factor greater than 1 would support a monotonic model and a 

factor less than one would support a nonmonotonic model.  

Results 

The trend observed in the data was that, as the difference between the target offset grew, 

task performance decreased monotonically (Figure 4a). At the group level, there was no 

numerical rebound in performance between any tested difference. A one-way repeated measures 

ANOVA was conducted to examine the effect of shape offset on task performance. The main 
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effect of target offset was significant, F(5,75) = 11.09, p <.001. Using follow up, planned 

comparisons, paired samples t-tests with a Bonferroni correction (at alpha level 0.05) were 

conducted. All other groups would be compared to the 0° condition to test for a cueing effect 

expected from both the feature-similarity gain and surround suppression hypotheses and then 

additional comparison tests would compare any local minimum values to any local maximum 

values with a larger target offset value to test for the presence of a suppressive surround 

predicted by the surround suppression hypothesis. The group performed significantly better on 

the  0° condition than the 54°, t(15) = 3.98, p = 0.0012, d = 1.00, CI = (0.030, 0.099), 72°, t(15) 

= 4.76, p = 0.0002, d = 1.19, CI = (0.042, 0.110), and 90°, t(15) = 3.97, p = 0.0012, d = 0.99, CI 

Figure 4 Line graphs of data from both experiments. The line represents group aggregate 
accuracy data for each target offset. The x-axis represents degree of offset between the two 
target shapes and the y-axis represents overall task accuracy. Both graphs show the best 
performance at 0° target offset and a monotonic decline of performance beyond this point. A) 
Results for Experiment 1 who had a maximum target offset of 90° B) Results for Experiment 2 
which had a maximum target offset of 180°. The vertical dotted line is set at 90° to show 
where the stimulus space stopped overlapping with Experiment 1. The data to the left of the 
vertical line generally replicates the findings from Experiment 1 in both overall accuracy and 
slope. 
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= (0.040, 0.135), conditions. Due to the lack of numerical rebound, no other comparison tests 

were performed. 

Additionally, the data was fit to both a monotonic (Gaussian) and non-monotonic (Ricker 

Wavelet) model and the Bayesian Information Criteria for both models were calculated and 

compared to create a Bayes Factor. The Gaussian model (R2 = .987) was favored over the Ricker 

Wavelet model (R2 = .979) by a Bayes Factor of 4.08 which suggests moderate evidence for the 

monotonic model (Raferty, 1999). For individual subjects, the monotonic model was favored by 

8 of the 16 participants.  

Discussion 

In this experiment, we examined the effect of manipulating the distance between two 

target shapes on participants’ accuracy on a luminance change identification task. The 

participants’ accuracy decreased as the difference between the two target shapes grew and a 

significant cueing effect when the two targets matched was found. There was no numerical 

increase in accuracy between any two intervals as the difference between the two shapes grew 

and the group data better fit a monotonic model than a non-monotonic one. This reinforces that 

the shapes used differ from each other parametrically so that observers respond in a predictable 

manner as the shapes become more different, rather than in a way that participant performance 

level randomly fluctuates for visually distinct shapes.  

While these results do suggest a monotonic decline more in line with the feature-

similarity gain model, this design does have a significant limitation in the overall space that it 

covers. Only 50% of the possible difference between the two target shapes is explored. As 

previously mentioned, some feature spaces do not show maximum suppression until this point 

(Fang & Liu, 2019), so it is reasonable that the range of possible differences between target 

shapes was not wide enough to capture the full extent of the enhancement, suppression, and 

rebound. This leaves open the possibility that an area of suppression exists for this space beyond 

the range explored in this experiment. Based on the results from Experiment 1 and the 

expectation of center-surround suppression in object-based attention,  a second experiment was 

conducted, widening the range of possible target differences beyond 90°, to look for a rebound in 

performance at a larger degree of difference.  
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EXPERIMENT 2 

Methods 

Participants 

Participants (N = 16, 9 female, 7 male) were collected primarily from the community of 

undergraduate and graduate students and Michigan State Univeristy and were compensated at a 

rate of $12 per hour. Informed consent was obtained from every participant. To participate, 

participants needed to be over the age of 18 and have normal or corrected-to-normal vision. All 

experimental protocols were approved by the Institutional Review Board at Michigan State 

University. 

Apparatus 

The apparatus used was the same as in Experiment 1. 

Stimulus 

The same shape stimuli from Experiment 1 were used. The two target shapes varied 

between ±0°-180° difference on the shape wheel in increments of 30°. This created 13 stimulus 

groups but since only the absolute value of the target offset was visually distinguishable, the 

trials for the 0° condition were doubled and the other groups were merged based on the absolute 

value of the target offset, leaving 7 groups of trials. The distractor shapes were always ±45° 

different from the location on the shape wheel that is maximally different from both target 

shapes. The distractor that was more different from a particular target appeared overlapping that 

target. 

Procedure 

 Participants performed the same task and three phase procedure as in Experiment 1: 

practice, luminance detection thresholding, and main attention task. In the task design practice 

phase, participants were given the opportunity to practice the task the experimenter has explained 

to them verbally. Participants ran through a block of 26 trials (2 exemplars of each possible 

target offset) and were asked if they felt comfortable enough with the task structure to move 

forward. The participant continued practice blocks until they indicated they were comfortable 

with the task structure. In the luminance detection threshold blocks, participants performed the 

same thresholding task as in Experiment 1. Participants ran 3 blocks of 63 trials each and, for 

each block, 9 trials for each of the 7 target offset conditions was randomly interleaved 

throughout. The main attention task had the same design as in Experiment 1. Participants 
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completed 4 blocks of 140 trials with a programmed break halfway through each block to allow 

for rest to limit fatigue. Within each block, 20 trials of each of the 7 target offset conditions were 

randomly interleaved. 

Analysis 

 To evaluate how shape offset impacts participant performance, participant task accuracy 

when presented with each of the 7 target offset conditions was compared. The same planned 

comparisons procedure and model fitting analysis as in Experiment 1 were used. 

Results 

The trend observed in the data was that, as the difference between the target offset grew, 

task performance decreased monotonically (Figure 4b). At the group level, there was no 

numerical rebound in performance between any tested difference; however, there was almost 

identical performance between the 120° and 150° conditions. A one-way repeated measures 

ANOVA was conducted to examine the effect of shape offset on task performance. The main 

effect of target offset was significant, F(6,90) = 23.19, p <.001. Using follow up, planned 

comparisons, paired samples t-tests with a Bonferroni correction (at alpha level 0.05) were 

conducted. All other groups would be compared to the 0° condition to test for a cueing effect 

expected from both the feature-similarity gain and surround suppression hypotheses. Additional 

comparison tests would compare any local minimum values to any local maximum values with a 

larger target offset value to test for the presence of a suppressive surround predicted by the 

surround suppression hypothesis. The group performed significantly better on the  0° condition 

than the 60°, t(15) = 4.93, p = 1.8e-4, d = 1.23, CI = (0.039, 0.098), 90°, t(15) = 6.16, p = 1.8e-5, 

d = 1.54, CI = (0.054, 0.112), 120°, t(15) = 7.68, p = 1.4e-6, d = 1.92, CI = (0.080, 0.141), 150°, 

t(15) = 7.25, p = 2.8e-6, d = 2.55, CI = (0.080, 0.148), and 180°, t(15) = 10.21, p = 3.8e-8, d = 

2.55, CI = (0.110, 0.168), conditions. Due to the lack of numerical rebound, no other comparison 

tests were performed. 

Additionally, the data was fit to both a monotonic (Gaussian) and non-monotonic (Ricker 

Wavelet) model and the Bayesian Information Criteria for both models were calculated and 

compared for both models to create a Bayes Factor. The Gaussian model (R2 = .967) was favored 

over the Ricker Wavelet model (R2 = .952) by a Bayes Factor of 3.57 which suggests 

moderate/weak evidence for the monotonic model (Raferty, 1999). For individual subjects, the 

monotonic model was favored by 9 of the 16 participants.  
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Discussion 

In this experiment, we examined the effect of manipulating the distance between two 

target shapes on participants’ accuracy on a luminance change identification task for the whole 

range of possible differences in the standardized shape space. The participants’ accuracy 

decreased as the difference between the two target shapes grew and a significant cueing effect 

when the two targets matched was found. Within the range of shape differences tested in 

Experiment 1, the results appeared to replicate the effect found in Experiment 1 for both overall 

accuracy level and slope of the differences. Beyond this range, it appeared that the object-

similarity gain effect continued as target shape offset grew. There was no numerical increase in 

accuracy between any two intervals as the difference between the two shapes grew and the group 

data better fit a monotonic model than a non-monotonic one. These results suggest a monotonic 

decline in line with an object-similarity gain effect across the entire shape space. 
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GENERAL DISCUSSION 

 Throughout both Experiment 1 and 2, a monotonic decline in performance as the two 

target shapes became more different was evident. This pattern demonstrates that the artificially 

constructed space that we used has an architecture akin to a naturally occurring circular feature 

space. While this does not provide evidence for a neural architecture similar to that of features 

like color and orientation, it does suggest that there is some component of this shape space that 

exists on a spectrum to which our brains are sensitive. The gradual decline in accuracy as shapes 

became more different suggests that the neural mechanism of attending to the appropriate shape 

goes beyond mere holistic shape matching. A simple yes/no matching procedure would likely 

result in a much more severe drop off in accuracy once the targets retained little visual similarity 

to each other, leaving only a strong cueing effect and little evidence for extreme difference 

suppression found in the feature-similarity gain model. This would be shown in a leveling off of 

task performance rather than a continual decrease. The graded decrease in performance in this 

task suggests that something graded in the stimuli such as the convexity or concavity of the 

shape parts or even a general property of the holistic object is represented along a continuum in 

our object identification system. Bao et al., 2020 found a potential candidate for what dimension 

our object recognition system is reactive to in the shape space upon finding that macaque 

inferotemporal cortex shows regions distinctly active for “spikey” and “stubby” inanimate 

objects respectively. The shape space itself does seem to vary along this spectrum from “spikey” 

to “stubby” in a general sense. The experimenter and some of the participants noted that an 

effective strategy to maintain attention on the proper target shape was to label each target with a 

descriptor like “star” or “blob” which bring about a “spikey” and “stubby” mental image 

respectively based on these semantic descriptors. While evidence from human fMRI suggests 

that this “spikey-stubby” dimension is not as extensive in our occipitotemporal cortex as it seems 

to be in the macaque IT cortex, it does still seem to play a small role in our object identification 

system (Yargholi & de Beeck, 2023). Further exploration of the shape space, particularly 

defining which shapes can be classified as “spikey” and which as “stubby”, could lead to insight 

as to what extent this object dimension plays in object-based attention.  

 A surprising result from this study was the lack of an area of suppression. A pattern of 

center surround suppression for object-based attention is predicted by the Selective Tuning 

Model of attention (Tsotsos, 2011) and is an expected result from contemporary attention 
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researchers (Cavanagh et al., 2023). Previous research by proponents of both theories have found 

that these two patterns of enhancement and suppression in feature-based attention likely work 

together to produce both the neural and behavioral patterns seen in human and monkey data on 

selective attention (Yoo et al., 2021). It is puzzling that only one and not both of these systems is 

then implemented at the object level. One possible explanation for this is that suppression is 

found for some individuals and not others. For some individual participants, there does appear, 

visually, to be suppression and rebound in performance (Figure 5); however, this area of 

suppression is not consistent, appearing in different places across some participants and is 

Figure 5 Individual participants data for both Experiments. Each colored line represents an 
individual participant’s data on the main attention task. The x-axis represents the degree of 
difference between the two target shapes and the y-axis represents task accuracy. A) The 
individual data for Experiment 1. Some participants show numerical suppression and rebound at 
various target offsets (ex: at 72° for the dark blue line and 36° for the light purple line) B) The 
individual data for Experiment 2. The vertical dotted line is set at 90° to show where the 
stimulus space stopped overlapping with Experiment 1.  Some participants show numerical 
suppression and rebound at various target offsets (ex: at 60° for the bright orange and light blue 
lines and 90° for the dark purple and light red lines). 
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completely absent for others. In Experiment 1, for example, some participants had a dip in 

accuracy at 36° (purple line in Figure 5a), others at 54° (dark red line in Figure 5a), and still 

others at 72° (dark blue line in Figure 5a). For the Experiment 2, similar patterns can be seen at 

60° (dark orange line in Figure 5b), 90°  (dark purple line in Figure 5b), and 120° (light orange 

line in Figure 5b). These instances of suppression and rebound then disappear in the aggregate 

data and the design of the current experiments does not allow us to dissociate between whether 

this pattern in individual data is simply noise or is confounded with another factor that changes 

the exact location of the suppressive surround.  

A potential limitation of these experiments is that the shapes shown to participants were 

fully randomized. It is possible that due to the full randomization of the shape space that possible 

areas of suppression that differ based on category were hidden by the noise of every possible 

shape being shown to participants rather than a subset of similar shapes. A possible confound to 

explain the lack of consistency of the area of suppression is differences in category perception 

within the shape space. The presence of suppression around category boundary is present in 

color space and, for different color categories, the area of suppression varied in distance from a 

category center based on where the category boundary fell (Fang et al.,2019). Categories of 

shapes could exist within the shape wheel that are relatively consistent between individuals but 

less consistent than color categories. If these category boundaries were defined for individuals 

and the task rerun with target shapes focused around an area defined by an individual’s category 

perception, it is possible that a consistent area of suppression would be found. It is unlikely that 

category boundaries in this artificially constructed shape space, that is novel to participants, are 

as consistent as color boundaries with which we have extensive real-world experience 

categorizing and labeling; however, if there is an underlying structural principal within the space 

that our brains are tuned to, some limited consistency seems reasonable. Additionally, previous 

research has shown that task difficulty, stimulus salience, and distractor competition are all 

factors that influence the presence of the suppressive surround (Liu et al., 2023; Yoo et al., 

2021). This implies that differences in understanding the task or being challenged by the task 

could have influenced the presence of center-surround suppression since distractor competition 

was not incredibly high due to distractors only being two overlapping stimuli. 

 Finally, a reasonable interpretation of these results is that they support a feature-similarity 

gain model for selective attention of higher order features, in this case shape, rather than for 
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object-based selective attention. However, this then brings into question where feature-based 

attention ends, and object-based attention begins, as shape could be considered a feature of an 

object or a holistic property of an object itself that goes beyond a definition as a feature. Shape 

could classified as a higher order feature in some instances where shape does not define an 

object’s identity, such as for items like clouds that don’t have to fit one general shape pattern to 

be considered a cloud. However, when shape defines an object, such as for a square or circle 

whose object identity changes if their general shape is changed, shape seems like an object 

property rather than a feature. In these experiments, shape seems more like an object defining 

property than a feature since participants identified targets based on an instance of viewing a 

specific shape that, if changed, would no longer be identifiable as the target. This supports the 

idea that something like an object-similarity gain effect is at play in our object identification 

system that enhances objects similar to a target and suppresses objects very different from that 

target. 

 The current study found that for both a smaller range and a more comprehensive range of 

target shapes, there is evidence of an object-focused similarity gain effect for the artificially 

constructed shape space. While these findings do not explain what underlying mechanisms create 

the effect, it does show that a predictable behavioral effect occurs when attending to different 

shapes within this space. Further research can investigate whether it is also possible to find 

surround suppression in this space and should continue to test the validity of this stimulus space 

for studying object-based attention by using it as a continuous stimulus set in established object-

based attention task paradigms. 
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