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ABSTRACT 

 This dissertation explores the multifaceted development of persuasive writing skills 

among secondary school students, with an emphasis on fostering reasoning and argumentation 

skills essential for targeted writing tasks. Student-constructed essays serve as valuable 

instruments for assessing scientific literacy and higher-order thinking; however, their evaluation 

involves many complexities and is susceptible to potential biases and various sources of 

measurement error. This study addressed two primary objectives. First, it identified key features 

influencing persuasive essay quality by utilizing product-oriented measures to analyze both 

microstructural and macrostructural dimensions of writing. A latent structure of writing 

assessment was established, and measurement invariance was tested across students with 

differing special education statuses. Second, building on insights from this foundational 

investigation, automated feedback prompts were developed and implemented using GPT, 

facilitating AI-based scoring and feedback mechanisms. This research underscores the relevance 

of factor-analytic findings in addressing gaps related to predictive models and AI-driven content-

generation tools, ultimately supporting personalized learning and adaptive written feedback. The 

implications of this study align with AI’s expanding role in education, offering strategic insights 

into maximizing AI’s utility for enhancing educational equity and instructional effectiveness. A 

promising approach involves leveraging factorial models to inform generative AI in delivering 

tailored feedback, thereby enhancing students’ writing proficiency and overall performance. 
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Chapter 1: Introduction 

Effective writing is a foundational and important skill that individuals regularly employ 

across diverse educational and professional contexts (Attard, 2012; Coker Jr. et al., 2018; 

Fitzgerald & Shanahan, 2000; Graham & Alves, 2021; Kent & Wanzek, 2016; Troia, 2014). 

According to established writing models such as the Cognitive Process Theory of Writing 

(Flower & Hayes, 1981), the Simple View of Writing (Berninger et al., 2002), the Not-So-Simple 

View of Writing (Berninger & Winn, 2006), and the Direct and Indirect Effects Model of Writing 

(Y.-S. G. Kim & Graham, 2022), writing proficiency involves a coordinated integration of basic 

component skills (e.g., grammar, spelling, sentence structure), cognitive thinking processes (e.g., 

transcription, ideation, interpretation), executive functions (e.g., attention, goal setting, self-

regulating), various knowledge domains (e.g., text structure, content, genre), and motivational 

attributes (e.g., self-efficacy, goal orientation, task interest and value) that writers engage during 

writing. A competent writer typically begins by acquiring essential skills such as solid 

transcription and ideation (often around grades 3 or 4), and then advances to more strategic 

writing by developing metacognitive abilities and gaining increased knowledge, often through 

instructional practices used at the secondary level. Empirically measuring writing skills presents 

significant challenges due to the complex nature of cognitive processes (e.g., information 

processing, problem solving) and psychological factors (e.g., affective stance, emotional 

regulation) involved. These challenges are particularly pronounced when analyzing open-ended 

responses and constructed essays, where biases may emerge from multiple sources of 

measurement error, including raters’ judgments, the backgrounds of writers and raters, individual 

characteristics of writers, writing prompts employed, and the writing register or genre (Wang & 

Troia, 2023b). Additionally, districts and schools are increasingly expected to utilize assessment 
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data to monitor students’ progress and interpret their responses to core and tiered instruction 

(Bondie et al., 2019). Researchers also call for providing personalized instructional practices 

based on the identification of students’ strengths and weaknesses through assessment (Butterfuss 

et al., 2022; Philippakos & FitzPatrick, 2018; Troia et al., 2022). 

Analyzing students’ writing performance typically involves two major approaches to 

capture the multifaceted features of writing. The first approach involves examining students’ 

writing-related processes and abilities, such as handwriting or typing fluency, spelling, decoding 

and word reading, working memory, background and genre knowledge, and motivation. These 

measures are usually collected through standardized and researcher-designed tasks, tests, and 

surveys, which help observe and understand students’ performance on these features and their 

application in varied writing contexts. These foundational processes and abilities are critical as 

they may influence both the quality and quantity of writing across various tasks. The second 

approach focuses on analyzing students’ prompted writing products by assigning different 

writing tasks, genres, purposes, or scenarios. Researchers then use holistic or analytic scoring 

schemes to quantitatively assess the resultant drafts. Raters and researchers typically examine 

either microstructural or macrostructural elements, or both, of an essay draft, including features 

such as linguistic and rhetorical components, content, structure, tone, and style. This approach 

provides insight into students’ written performance, emphasizing a snapshot of the final product 

rather than the processes activated during the writing phase. 

Today, researchers are exploring the automation of diagnostic processes within formative 

writing assessments using learning analytics tools and techniques. This involves progress 

monitoring on writing abilities (e.g., typing fluency: Truckenmiller et al., 2019; keystroke 

logging: Leijten & Van Waes, 2013; knowledge to marshal text evidence: Correnti et al., 2020), 
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quantifying text-based features (e.g., Crossley et al., 2014; McCaffrey et al., 2022), generating 

macrostructural features (e.g., Edwards, 2003), identifying topical patterns (e.g., Kuzi et al., 

2019), and observing emotional and behavioral engagement in writing activities (e.g., Liu et al., 

2018; Roscoe et al., 2017), with the aim of enhancing evaluative efficiency in writing 

assessments. The predictive aspect of writing scores is not the endpoint of the automated process; 

rather, the understanding gained from the prediction holds empirical significance (Wang & Troia, 

2023b). However, there is a lack of research studies on how the prediction process can be further 

developed for other educational purposes, such as personalizing students’ learning and providing 

feedback based on their current writing performance. Generative AI has the potential to facilitate 

this process. 

1.1 PRESENT STUDY 

Many students struggle with persuasive writing. It is essential to conduct a meaningful 

and informative assessment of persuasive writing performance to understand students’ 

argumentative capacity. While research has explored various factors influencing the quantity and 

quality of persuasive writing – such as linguistic/rhetorical measures (Jo, 2022), argumentative 

structure and substance (P. Stapleton & Wu, 2015), and cohesion and coherence (Andreev & 

Uccelli, 2024) – there remains a significant gap in understanding the internal structural 

relationships among these factors, which is crucial for a comprehensive evaluation of 

argumentative capacity. This study aims to address this gap by introducing a proof of concept for 

assessing persuasive writing through product-oriented measures, focusing on microstructural and 

macrostructural levels of performance. Moreover, AI’s ongoing prominence in our zeitgeist 

emphasizes the importance of maximizing its utility in education. Derived factorial models have 

potential to guide Generative AI in providing written feedback and enhancing students’ 



4 
 

performance, as discussed by Steiss et al. (2024) and Meyer et al. (2024). Specifically, this study 

seeks to answer three research questions: 

1) What textual attributes serve as optimal indicators of persuasive essay quality in 

secondary school students?  

2) To what extent do secondary students with different special needs status (i.e., students 

with versus without an Individualized Education Plan [IEP]) exhibit significant differences in 

their holistic writing scores across latent writing attributes?  

3) Do essays revised by GPT, a Generative AI application, utilizing prompts derived from 

factor analysis, demonstrate enhanced performance compared to the original essays written by 

students? 

1.2 ORGANIZATION OF THE DISSERTATION 

Following this introductory chapter, Chapter Two presents a comprehensive overview of 

the literature pertaining to writing performance, with a specific focus on persuasive writing at the 

secondary education level. The chapter establishes the theoretical frameworks or perspectives 

that underpin the study’s measurement and analysis. Through synthesizing empirical literature, 

the chapter identifies specific linguistic and structural features that characterize persuasive 

writing. Furthermore, it justifies the study’s significance by addressing gaps or problems 

identified in the extant literature. Lastly, the chapter provides a rationale for the study by 

highlighting its educational significance and potential contributions to the field of writing 

education.  

Chapter Three provides a detailed examination of the study’s methodology. This study 

primarily employs a secondary data analysis of an extant dataset (the PERSUADE 2.0 corpus) 

approach grounded in quantitative research methods. The chapter begins by outlining the study 
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purposes and restating the three research questions noted above. It then describes the dataset and 

its variables, including derived variables at both microstructural and macrostructural levels, 

which are employed to analyze persuasive writing samples from secondary students in the 

corpus. Furthermore, the chapter elaborates on the research design employed to address the three 

research questions. 

Chapter Four organizes and reports the study’s major findings. This includes descriptive 

results from the exploratory data analysis and the complete results addressing each of the 

research questions proposed. This chapter also synthesizes and discusses the results in the 

context of the study’s research questions and theoretical background for each research question. 

Chapter Five presents practical implications, concluding statements, and outlines future 

directions. The implications are intended to guide scholars and educators in applying the study’s 

findings to real-world settings. They offer strategies for integrating human intelligence with 

automated methods to design more effective writing prompts and essay evaluation tools that 

facilitate feedback and support accurate quality assessment. The study’s limitations are also 

noted, and recommendations for future research based on the overall results of the dissertation 

are included. 
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Chapter 2: Review Of Literature 

As stated in the preceding chapter, the primary objective of this study is to undertake 

exploratory and confirmatory factor analyses on Microstructural and Macrostructural Features 

that underpin Persuasive written composition (MMFP) and their relations to overall quality of 

persuasive writing. To achieve this aim, the study utilized a large-scale corpus comprising 

persuasive essays written by middle and high school students with diverse sociodemographic 

traits. In addition, as a secondary objective, the study sought to validate the practical application 

of insights derived from MMFP by using them to provide constructive written feedback to 

students using Generative AI (GenAI) systems, thereby potentially enhancing their persuasive 

writing skills and informing future instructional decisions related to revision and editing.  

The initial sections of this chapter offer background information that emphasizes the 

importance of writing in academic and professional contexts and illustrates students’ current 

writing performance broadly across all grade levels, but specifically at the secondary level, with 

a focus on persuasive writing. Subsequently, the chapter also discusses various evaluation 

concerns related to persuasive writing, informed by prior research that includes supporting 

theories, empirical findings, and measurement considerations. Lastly, the chapter concludes by 

discussing research gaps, the study’s approach to addressing these identified gaps, and the 

educational significance of the methodology employed in this investigation.  

2.1 THE ROLE OF WRITING 

2.1.1 General Significance of Writing  

 In contemporary society, the written word functions as a versatile tool for attaining varied 

social and educational objectives (Graham, 2006; Klimova, 2013). For example, correspondence 

mediums such as letters, postcards, and emails can facilitate communication and foster 
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interpersonal bonds when physical distance separates individuals. The practice of maintaining a 

personal diary and engaging in self-reflection is recognized for its capacity to promote 

contemplation on self-identity, develop short/long-term goals, and alleviate feelings of 

loneliness, thereby yielding psychological and physiological benefits (Smyth, 1998). In 

professional spheres, composing well-structured reports and summaries may contribute to 

effective information dissemination and documentation of project outcomes within teams and to 

organizational leadership. Additionally, writing is acknowledged for its capability to influence 

others’ perceptions, emotions, and beliefs (Graham et al., 2012) and serves broader social goals 

such as shaping public opinion (Aldisert, 2009), fostering empathy (Dhurandhar, 2009), and 

advocating for social justice (Singh, 2011).  

 Within the scope of this study, focusing on the educational domain necessitates an 

exploration of the pivotal role that writing assumes in academic success. In the context of K-12 

English Language Arts (ELA) education, students undergo a developmental trajectory marked by 

the acquisition of increasingly proficient and sophisticated writing skills, coupled with cognitive 

and metacognitive strategies, as they progress through grades (Graham & Harris, 2010; G. A. 

Troia et al., 2013; Wang & Troia, 2023a). At the early stages of learning to write, narrative 

writing holds a significant place in the early elementary school curriculum, largely due to its 

resonance with oral language expression (Spencer & Petersen, 2018). Students engage in crafting 

imaginative worlds, constructing plots, and developing characters. These practices have been 

empirically demonstrated to enhance students’ capacities for creative thinking (Eser & Ayaz, 

2021) and storytelling (Rambe, 2017). Narrative writing also serves as a nexus for reinforcing 

basic component skills, including transcription, vocabulary and grammar usage, and sentence 

construction (Olinghouse, 2008; Salas & Silvente, 2020; Wiliana & Djajanegara, 2019). 
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Proficiency in these foundational areas holds considerable implications for overall writing 

quality and establish a robust foundation for the subsequent acquisition of skills in more complex 

writing genres that require advanced writing skills (Deane et al., 2008; Puranik & Lonigan, 

2014).  

 From grades 3 and 4 onwards, students are expected to read and write informational text 

across diverse content areas, and this expectation intensifies as they advance through school 

(Jeong et al., 2010). The significance of the informational genre is underscored by its prevalence 

in many state and national writing assessments. Research indicates that the proportion of 

informational text featured in standardized tests can be as substantial as 70% to 80% (see 

Palumbo & Sanacore, 2009). Students with limited exposure to informational text are prone to 

achieving lower scores on these standardized assessments (Heider, 2009). Prior studies reveal a 

positive correlation between students’ proficiency in writing informational text (including those 

who have received targeted informational writing interventions) and enhanced performance in 

multiple learning dimensions (Graham & Perin, 2007; Graham et al., 2012). This positive 

correlation may be attributed to the fact that informational writing can lead to a better 

understanding of content area concepts (Parson, 2013), increased knowledge about key topics 

(Taboada & Guthrie, 2006), and improved information processing and abstraction (Fox, 2009). 

 Persuasive writing is another essential writing genre systematically incorporated into K-

12 education. The National Assessment of Educational Progress (NAEP) writing report card 

(National Center for Education Statistics [NCES], 2012) underscores that students often 

encounter heightened challenges with persuasive writing more so than narrative, descriptive, or 

expository registers. Within this genre of writing, students are tasked with explaining complex 

and interdisciplinary concepts by incorporating specific, relevant details, substantiating their 
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claims, and effectively convincing their intended audience to align with their stance on a topic. 

By the end of twelfth grade, students are anticipated not only to adhere to the foundational 

aspects of content standards in the Common Core State Standards (CCSS; National Governors 

Association Center for Best Practices [NGACBP] & Council of Chief State School Officers 

[CCSSO], 2010) but also to extend their persuasive composition capabilities, including the 

ability to differentiate claims for alternate or opposing viewpoints, and to clarify the relationships 

between claims and reasons, reasons and evidence, and claims and counterclaims. This increased 

complexity renders persuasive essays more demanding, as outlined in the CCSS in ELA for 

persuasive writing. Mastery in persuasive writing guides students towards nuanced 

argumentation (Brockman, 2020), evidence-based reasoning (Hemberger et al., 2017), and 

effective communication of ideas (F. I. A. Aziz & Ahmad, 2017), thereby fostering a 

comprehensive and higher-order skills set in written expression.  

The act of writing is often considered synonymous with the act of thinking. It is a 

cognitive process, which necessitates the application of analytical thinking skills to creatively 

and critically organize ideas (Flower & Hayes, 1981; Grimberg & Hand, 2009; Menary, 2007). 

Previous research studies have illuminated various educational and psychological benefits 

associated with the act of writing. In the educational realm, as noted earlier, practicing writing 

across different genres has been identified as a means to enhance students’ learning in 

multifaceted ways. The efficacy of writing to learn is increased when students are guided to 

employ specific cognitive and metacognitive strategies of self-regulated learning (Fry & 

Villagomez, 2012; Hübner et al., 2010). Furthermore, aligning writing tasks with students’ 

preferred writing approaches can enhance the effectiveness of this process (Kieft et al., 2008). 

The practice of writing to learn supports students’ active learning, retention, and writing 
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development (Fry & Villagomez, 2012). For instance, research indicates that college students, 

when engaged in process-oriented writing activities, exhibit a higher level of comprehension of 

scientific concepts and greater knowledge acquisition compared to controls using multiple-

choice assessments to evaluate their understanding of the source materials (Royse et al., 2024).  

Moreover, the act of writing proves particularly beneficial in bolstering students’ learning 

outcomes within science, technology, engineering, and math (STEM) disciplines, as it serves as a 

vehicle for thought, reasoning, and knowledge-in-use (Boscolo & Mason, 2001; McNeill & 

Krajcik, 2009). Klein (2006) observed that non-STEM majors at the postsecondary level showed 

greater posttest transfer of scientific concepts when they processed and conveyed new 

information through writing rather than through verbal expression. However, research comparing 

students’ oral and written expression of scientific concepts remains limited, and the reasons for 

the differences between these modalities remain underexplored. Writing often involves the use of 

more precise and sophisticated vocabulary than oral expression, which may explain why writing-

to-learn activities are frequently considered more effective for assessing students’ conceptual 

understanding in disciplinary education (Chen et al., 2023; Royse et al., 2024; Visser et al., 

2018). This potential makes the textual analysis of vocabulary in written form particularly 

pertinent to this study, as vocabulary plays a critical role in carrying meaning at the secondary 

school level. This highlights the importance of written expression as a valuable tool for assessing 

student knowledge. 

From a psychological perspective, writing can promote self-concept and self-efficacy. For 

example, in descriptive writing, where students structure their experiences and derive meaning 

from significant event, the writing process enables their integration of their personal experiences 

into their self-schema, contributing to the development of more positive self-perceptions 
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(Graybeal et al., 2002). In turn, students with enhanced academic self-concept following writing 

tend to achieve greater academic success in subsequent academic years (Muijs, 2011; Pajares et 

al., 1999). This correlation is attributed in part to a clearer self-awareness regarding writing 

strengths and weaknesses, which empowers writers to identify areas for improvement. Writing 

can enhance self-regulation and bolster individuals’ control over challenging thoughts and 

emotions. It allows individuals to actively observe, monitor, and assess their emotional 

expression and regulation (Schmitz & Perels, 2011). The resulting sense of control over emotions 

directly contributes to improved well-being and a reduction in negative emotions (C. M. 

Stapleton et al., 2021).  

2.1.2 Academic Significance of Secondary Writing  

Despite the significant role of writing in educational, psychological, and social domains, 

a substantial number of students in the United States graduate from secondary schools without 

attaining proficiency in writing (Graham et al., 2014). Only 27 % of grade 12 students 

demonstrated performance at or above the “proficient” level in writing according to NAEP 

(NCES, 2012). This indicates a widespread deficiency across the nation in constructing written 

responses that effectively achieve the communicative objectives of writing, with “proficient” 

writing characterized by well-organized and coherent text coupled with appropriate transitions 

and diverse sentence constructions (S. A. Crossley & McNamara, 2016). In addition, half of 

twelfth grade learners grapple with rudimentary aspects of writing, such as employing detailed 

and factual descriptions, making appropriate lexical choices, and utilizing varied sentence 

structures (e.g., Wang & Troia, 2023a). To understand these concerns, it is imperative to 

elucidate the educational significance of writing at the secondary level.  
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2.1.2.1 Academic Writing as a Discipline-Specific Skill 

 Guided by the belief that the responsibility for instructing secondary academic writing 

should be a collaborative effort involving both ELA teachers and educators from other academic 

fields (Russell, 1997), the Writing Across the Curriculum Clearinghouse serves as a publishing 

collaborative that has spurred a reevaluation of secondary student academic writing within 

educational communities. This reconceptualization includes acknowledging students’ literacy 

and language experiences beyond the classroom, incorporating the principles of Writing in the 

Disciplines (WID; Blumner & Childers, 2016). WID is dedicated to developing socially 

mediated communication skills and genre knowledge specific to individual academic disciplines 

(Broadhead, 1999). In fact, there is a noticeable absence of writing or writing instruction in the 

typical ELA middle school classroom (Applebee & Langer, 2015; Graham & Perin, 2007), but 

there has been an intensified focus on writing instruction in other content areas such as science-

related subjects (Miller et al., 2016). Aligned with CCSS objectives, writing can be considered as 

an instrument to facilitate learning across varied content areas, which signifies a significant shift 

in policy and practice within secondary schools in the U.S. The diversity in disciplinary practices 

mandates distinct modes of written communication at the secondary level, such as technical 

writing in the sciences, persuasive writing in business, and argumentative writing in literary 

analysis (Ezza et al., 2020). To conclude, the secondary school environment is characteristically 

“discipline-driven” and “discipline-delineated” (Miller et al., 2016). High school students are 

now required to use writing as a tool for analyzing and reflecting on information in language 

arts, social studies, science, and various technical subjects. 

A substantial body of literature has revealed the instructional practices of writing across 

various disciplinary areas in middle and high school (e.g., Anders & Guzzetti, 2020; Graham et 
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al., 2020; Shemwell, 2020). Drew and colleagues’ (2017) study provides valuable insights into 

the instructional strategies employed in disciplinary classes, specifically focusing on grades 6 to 

12 science classes. Through qualitative analysis of teacher surveys, the study reveals that science 

teachers recognize the alignment of writing with the broader objectives of science education. 

They intentionally choose to integrate writing into their science classes, teaching students how to 

create scientific texts and to acquire and utilize scientific vocabulary, which ultimately supports 

knowledge building and application. The study further emphasizes that teachers who assign 

writing tasks that allow students to analyze and synthesize information while employing 

discipline-specific genres are more likely to promote deep learning in their students. This 

approach not only enhances students’ understanding but also empowers them to contribute to 

effective scientific communication, which is also consistent with the overarching goal of science 

education as outlined by National Research Council (NRC, 2012). Lastly, the study identifies 

evidence-based practices for teaching writing during secondary science classes by demonstrating 

the efficiency of incorporating writing strategy instruction within inquiry-based pedagogy to 

support learners of all proficiency levels.  

Graham and colleagues (2013) offered a comprehensive national overview of middle-

school writing instruction, drawing from participating teachers’ self-reports regarding their 

preparedness to teach writing, beliefs about teaching responsibilities, utilization of evidence-

based writing instruction practices, assessment methods, incorporation of technology, and 

adaptations for struggling writers. A significant finding from this national survey indicates that 

middle school teachers perceive the teaching of writing as both a personal and shared 

responsibility, despite many educators across disciplines lacking sufficient preparation to teach 

writing and facing substantial constraints on instructional time dedicated to writing. Within the 
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limited instructional time available, teachers focus on employing writing activities to enhance 

students’ learning and instruct them on techniques for summarizing material they read. On a 

monthly basis, teachers encourage students to emulate models of proficient writing, provide 

instruction on fundamental writing skills, evaluate students’ writing using rubrics and other 

assessment tools, and teach strategies for planning, revising, and crafting paragraphs. This study 

offers insights into the deficiencies of writing instruction in middle school, highlighting issues 

such as inadequate time allocated for teaching writing and limited opportunities for students to 

engage in writing activities. The study suggests that addressing these gaps requires collaborative 

efforts with educators from various disciplines. 

Academic writing at the secondary level serves as a valuable foundation for content 

learning and is intrinsically linked to subsequent postsecondary pursuits. The overarching 

objective of disciplinary literacy is to equip students with the necessary skills for sophisticated 

literacy demands in college and careers (G. A. Troia & Maddox, 2004). This preparation is 

accomplished through focused instruction on discipline-specific literacy strategies within core 

content-rich areas, such as mathematics, history/social studies, and science, at both the secondary 

and postsecondary levels (Fang & Schleppegrell, 2010; Shanahan & Shanahan, 2008).Teachers 

in various disciplines who adopt WID methodologies, whether intentionally or implicitly, impart 

to their secondary students the expectations and nuances of writing in a collegiate context, which 

can better facilitate students’ smooth transition to postsecondary writing expectations and tasks. 

The strategies, knowledge, and skills derived from secondary academic writing and writing 

instruction can be effectively transferred to ensure success in postsecondary writing endeavors 

(WWC, 2016). 
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2.1.2.2 Writing Using Cognitive and Metacognitive Abilities 

In alignment with the CCSS for ELA standards, secondary school writing necessitates 

students to “write like specialists” (Dressen-Hammouda, 2008). In addition to being discipline-

driven, secondary school writing also requires students to master more sophisticated and higher-

order writing skills, strategies, and conventions in comparison to elementary school-aged 

writing, which often concentrates on basic elements such as spelling, handwriting, grammar, and 

essential text elements and basic genres. The complexity of writing increases for secondary 

school-aged students, demanding not only cognitive resources for organizing, storing, and 

activating knowledge and skills in the composition process (Shen & Troia, 2018; Weinstein & 

Hume, 1998) but also necessitating adequate metacognitive abilities and strategies (Graham & 

Harris, 2010; Yamson & Borong, 2022). These metacognitive skills enable students to monitor 

their writing-related thoughts, emotions, and behaviors, maintain a positive attitude toward 

writing, and optimally utilize cognitive processes to achieve learning objectives (G. Troia, 2014). 

In secondary classrooms, writing tasks often involve limited analysis, interpretation, and 

composition (Applebee & Langer, 2015). For example, students frequently encounter writing 

assignments such as worksheets or brief composing tasks that require reflection on source texts, 

followed by creating mental representations of the texts and producing responses or summaries 

based on these cognitive processes (Cer, 2019). More advanced-level writing in secondary 

education demands that students engage in complex cognitive activities such as estimating the 

needs of one’s audience, setting long- and short-term rhetorical and personal goals, self-

monitoring writing processes and performance over time, and self-evaluating outcomes in 

comparison with established goals (Graham & Harris, 2010). These cognitive and metacognitive 

activities not only assist secondary education students in crafting high-quality texts but also help 
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writers supervise and correct written errors, enhance the overall learning process, and contribute 

to the development and regulation of learners’ awareness at rhetorical and cognitive levels for 

writing (Ramadhanti & Yanda, 2021).  

In the meta-analysis conducted by Dignath and Büttner (2008), it was found that 

metacognitive knowledge and strategies, such as self-regulated learning, can be effectively 

nurtured at both primary and secondary school levels. The overall effect size (ES) of 

interventions/programs on students’ writing performance at the secondary school level (ES = 

0.71) was observed to be slightly higher than that at the primary school level (ES = 0.68). This 

may be attributed to the fact that children entering primary school typically exhibit limited 

reflection and control over their learning compared to their counterparts entering secondary 

school (Paris & Newman, 1990). Research on metacognitive development indicates that younger 

or inexperienced student writers often encounter challenges in utilizing metacognitive strategies. 

This is because they may not have sufficient cognitive capacity available to employ additional 

strategies alongside the demanding tasks of reading or writing (Alexander et al., 1998). In 

contrast, older or mature students who have automated the processes of reading and writing have 

more cognitive capacity available for metacognitive activity. Consequently, they can derive 

greater benefits from strategy training in this context. 

Explicit engagement in cognitive and metacognitive activity through writing instruction 

at the secondary school level yields valuable benefits. It enables students to contemplate their 

individual learning characteristics and aids them in mastering content (Conley, 2014). Through 

the entire process, students can assess their knowledge and skills in specific areas, develop a 

repertoire of strategies to acquire knowledge, and discern appropriate actions for various 

academic tasks (Bürgler et al., 2021; Hartman, 2001). These components, encompassing self-



17 
 

knowledge, reflective thinking, planning and organizing, employing effective strategies, and 

evaluating written products, which all involve metacognition, ultimately contributing to students’ 

success in their postsecondary pursuits (Bauer, 2014; Mytkowicz et al., 2014). 

2.2 AN OVERVIEW OF STUDENT WRITING  

2.2.1 Current State of Writing Performance 

With the widespread adoption of the CCSS across the nation, most states have developed 

or embraced new writing assessments for elementary through high school students (Kelly-Riley, 

2017). The rapid expansion and evolution of educational testing in the United States over the 

past several decades have been significantly influenced by university initiatives aimed at shaping 

secondary-level curriculum to better prepare students for postsecondary-level work (Ramirez et 

al., 2018). Students demonstrate significant variability in their written composition performance, 

with a substantial majority (on average, 73%) performing below proficiency standards across 

elementary, middle, and high school levels (Truckenmiller et al., 2021). Building on the earlier 

discussion regarding the role of writing as an indispensable component of the K-12 curriculum, it 

becomes crucial to assess the current state of students’ writing performance through state and 

national standardized assessments.  

2.2.1.1 State Testing 

Supported by the federal Race to the Top initiative (U.S. Department of Education, 2009), 

two state-led consortia, namely the Smarter Balanced Assessment Consortium (SBAC) and the 

Partnership for Assessment of Readiness for College and Careers (PARCC), launched their novel 

assessments in the spring of 2015, impacting roughly half of the U.S. Even in states not aligned 

with these consortia, new writing assessments were formulated to adhere to the CCSS and vie for 

funding from the Race to the Top program. Over forty-one states include a writing component in 
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their ELA assessments (Jeffery, 2009). In twenty of these states, students must pass the state test 

to graduate from high school (Kober et al., 2011). Nevertheless, numerous high school students 

encounter challenges in writing, particularly those with disabilities. 

In Michigan, the current statewide assessments primarily include the M-STEP (Michigan 

Student Test of Educational Progress), a summative assessment gauging students’ knowledge and 

capabilities based on Michigan’s CCSS-aligned academic standards. Additionally, the PSAT 

(Preliminary Scholastic Assessment Test) assesses eighth grade reading, writing, and math. MI-

Access is another test aligned with Michigan’s alternate content expectations, designed for 

students with significant cognitive disabilities, for whom the M-STEP, even with 

accommodations, is deemed inappropriate. Michigan’s state assessment program aims to furnish 

districts and schools with information about students’ proficiency based on the academic 

standards, aiding in the formulation of continuous improvement goals. These state assessments 

also offer teachers, parents, and other stakeholders’ insights into individual students’ knowledge 

and performance in key content areas, ensuring compliance with the Every Student Succeeds Act 

and the Individuals with Disabilities Education Act. 

Table 2-1 presents the percentage of students across grades 3 to 8 falling into the various 

performance level categories of advanced, proficient, partially proficient, and not proficient for 

M-STEP and PSAT during the 2022-2023 school year. The M-STEP results reveal that only 

20.3% to 27.1% of students in Michigan across grades 3 to 7 achieved the proficient level in 

ELA. Notably, 63.1% of seventh graders are partially or not proficient according to their ELA 

scores. For Grades 3 to 5, over 40% of students achieved advanced or proficient levels, but this 

figure decreases starting from grade 6, where less than 40% of students achieved the advanced or 
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proficient levels. The PSAT results also indicate that 40.3% of eighth-grade students did not 

achieve advanced or proficient levels according to their ELA scores. 

Table 2-1 Grades 3-8 ELA Michigan Testing Performance Level in 2022-2023 

Assessment 
Name 

Grade 
Level 

Content 

Students 
Advanced/ 
Proficient 

Advanced Proficient Partially 
Proficient 

Not 
Proficient 

Partially/Not 
Proficient 

Number 
Assessed 

M-STEP 3rd Grade 40.9% 20.6% 20.3% 24.5% 34.6% 59.1% 98,715 
M-STEP 4th Grade 44.3% 22.7% 21.6% 20.0% 35.6% 55.7% 97,894 
M-STEP 5th Grade 43.9% 17.4% 26.5% 21.3% 34.8% 56.1% 98,403 
M-STEP 6th Grade 37.5% 11.6% 25.9% 26.7% 35.8% 62.5% 99,114 
M-STEP 7th Grade 36.9% 9.8% 27.1% 28.1% 35.0% 63.1% 98,211 
PSAT 8th Grade 59.7% 37.7% 22.0% 15.1% 25.1% 40.3% 98,932 

2.2.1.2 National Testing 

 The NAEP stands as the largest nationally representative assessment of various academic 

subject areas in the United States (Mo & Troia, 2017a). Enhancing the generalizability of NAEP 

results and providing actionable policy implications would significantly augment the value of 

NAEP findings (Williamson, 2006). Specifically, NAEP gauges the writing proficiency of U.S. 

students by administering assessments to sample groups representative of the nation’s student 

population. The most recent available data on students’ writing performance is from the 2011 

school year, sourced from the U.S. Department of Education, Institute of Education Sciences, 

National Center for Education for Writing Assessment. The 2011 writing assessment marked the 

inception of the first NAEP computer-based writing assessment, developed under a new NAEP 

writing framework (National Assessment Governing Board, 2011) where the substantial role of 

computers in the writing process was acknowledged. Students were randomly assigned two 

writing tasks, each requiring 30 minutes for task completion. For eighth-grade students, 35% of 

prompts focused on writing persuasive essays, 35% on explanatory essays, and 30% on narrative 

essays. Grade 12 students were assigned 40% of prompts for persuasive essays, 40% for 

explanatory essays, and 20% for narrative essays. Furthermore, students were expected to engage 
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in various tasks for diverse audiences and participate in processes of generating, revising, and 

editing. 

The results of the 2011 NAEP writing assessment for eighth and twelfth graders are 

detailed in Table 2-2. For eighth graders, 20% scored below basic, 54% were at or above basic 

and below proficient, 24% were at or above proficient and below advanced, and 3% achieved 

advanced. Among twelfth graders, 21% scored below basic, 52% were at or above basic and 

below proficient, 24% were at or above proficient and below advanced, and 3% achieved 

advanced. These findings indicate a significant lack of proficiency in writing among U.S. 

secondary school students, reflecting a decline when compared to the 2007 NAEP assessment 

results (Salahu-Din et al., 2008). This suggests that most secondary school-aged students are not 

adequately equipped with the necessary writing skills and knowledge for postsecondary 

education before high school graduation (Williamson, 2006). 

Table 2-2 Average Scale Scores (Percentages) at Each Achievement Level for NAEP Writing 
Report in 2011 

Grade Level Average Scale Score Below Basic At Basic At Proficient At Advanced 
8th Grade 150 20% 54% 24% 3% 
12th Grade 150 21% 52% 24% 3% 

2.2.2 Secondary Writing Difficulties  

Through state and national assessment outcomes presented in the previous section, it is 

evident that a substantial portion of U.S. students do not attain proficiency in writing before 

graduating from high school. Many of these students, grappling to become more adept users of 

the discourses required for college-level classes, harbor a belief that they lack skills or talents 

needed to write well (National Commission on Writing, 2004). This negative perception often 

leads to a fear of failure in academic writing tasks, resulting in resistance to assignments–

manifested through late submissions, incomplete work, resorting to plagiarism, or even failure or 

withdrawal from the class (Fernsten & Reda, 2011). It is crucial to comprehend the prevalent 
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writing challenges faced by students, particularly those at the secondary school level and, 

importantly, to understand the root causes of these writing difficulties. 

Firstly, student writers, particularly those transitioning to junior high school, may still 

lack maturity in in basic writing skills (Graham et al., 2023). The rapid changes in writing 

demands at the secondary level may reveal gaps in these fundamental skills, impeding students’ 

ability to effectively express their ideas. These gaps may include weak essential skills including 

transcription such as handwriting, typing, spelling, and punctuation, along with challenges in 

sentence construction arising from limited grammar knowledge, vocabulary, and exposure to 

diverse sentence structures (G. A. Troia et al., 2011). These factors significantly impact the 

readability of written text and overall writing performance on composition tasks (Graham et al., 

1991). The transition from elementary to secondary school marks a pivotal phase where students 

are expected to refine their writing capabilities, and the adaptation to these elevated expectations 

can lead to initial struggles.  

Secondly, aside from the basic component skills, students entering secondary school may 

frequently encounter challenges related to higher-order cognitive abilities that are essential for 

tackling the progressively complicated writing tasks demanded at this educational stage 

(Demetriou et al., 2020). According to Hayes’ model of writing (1996), the individual writer’s 

cognitive processes are intricately connected with elements of the task environment, 

encompassing both social factors (e.g., the audience, collaborators, cultural norms) and physical 

elements (the composing medium, text already produced, source materials). However, novice 

writers frequently overlook the importance of engaging in these cognitive writing processes 

(Salas & Silvente, 2020). Instead, they may rely on a retrieve-and-write process, wherein they 

compose solely by “generating or drawing from memory a relevant idea, write it down, and use 
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each preceding phrase or sentence to stimulate the next idea” (cited by Graham & Harris, 1997, 

p. 235). This approach simplifies writing tasks by eliminating the sophisticated advancement of 

rhetorical goals and simultaneously, minimizes the use of planning, monitoring, editing, revising, 

and other strategic behaviors (Graham & Harris, 1997). The neglect of these components may 

limit students’ opportunities to evaluate their ideas and writing goals. Additionally, they are less 

likely to detect written errors and assess the overall organization of their text. In contrast, writers 

who actively engage in these writing processes typically employ more diverse and technical 

vocabulary in their compositions (Koutsoftas & Petersen, 2017) and demonstrate greater 

accuracy in their grammar usage (Mackie & Dockrell, 2004), among other positive attributes.  

Thirdly, students’ knowledge base regarding writing and its genres, devices, and conventions can 

greatly impact their writing and present additional writing challenges (Graham & Harris, 2010). 

As students progress through middle and high school, writing tasks become more demanding 

with increased requirements related to writing conventions, prompts integrating reading sources, 

objectives for intended audiences, etc. (Deane et al., 2008). The process of crafting a coherent 

text involves the utilization of different types of knowledge (Hayes, 1996; Olinghouse & 

Graham, 2009; Saddler & Graham, 2007; Troia et al., 2022), including topic knowledge largely 

derived from source materials, prior knowledge that enables writers to extract and evaluate the 

information mentioned in the source materials, genre knowledge associated with writing 

intentions across genres/registers (e.g., narrative, explanatory, declarative, procedural writing 

knowledge), linguistic knowledge related to mechanics and discourse, and so forth. These 

knowledge sources collectively impact students’ language use in terms of conventions, grammar, 

handwriting, and spelling, as well as guiding their adaptation of writing style, structure, and tone 

to meet the specific requirements of different writing tasks. There is a growing concern among 
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educational scholars that students at the secondary level may struggle to activate and apply their 

knowledge effectively in their writing endeavors (De La Paz & Graham, 2002; Graham et al., 

2014; Trapman et al., 2018). 

Fourthly, a lack of motivation to write represents another important factor that may 

undermine students’ writing abilities. An array of writing motivation (including self-efficacy, 

goal orientation, task interest and value, attributions for outcomes) among secondary school 

students predict their writing competence (Klassen, 2002; Pajares & Johnson, 1994; Troia et al., 

2012). However, students in middle school tend to have diminished self-efficacy beliefs and 

possess lower self-concepts than students in elementary school (Pajares & Valiante, 1999; 2001). 

This decline is linked to their perception of high school classes as emphasizing a performance 

goal orientation and having reduced confidence in their writing abilities, particularly concerning 

grammar, usage, and other mechanical skills appropriate to the complexity of assigned tasks 

(Pajares & Cheong, 2003). The decreasing self-efficacy and persistence toward writing at the 

secondary level renders students pessimistic about their capabilities to generate and organize 

ideas for writing, impeding their ability to transcribe ideas into sentences (Camfield, 2016; 

Pajares, 2003). Additionally, secondary students may lack the stamina and working memory 

capacity needed to both sustain their writing efforts and effectively correct errors in their papers. 

Factors contributing to writing difficulties among secondary school-aged students can be 

attributed to both internal and external factors. Internally, psychological elements, such as 

stereotypes, can affect students from diverse cultural, racial, and educational backgrounds. These 

students may be conscious of stereotypes about themselves, such as being poor communicators, 

which can influence their writing behaviors and self-perceptions. For instance, students of color 

may internalize beliefs that they write less proficiently than their peers from dominant groups, 
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leading to poorer self-perceptions of their writing abilities (Abrahams, 1972). Children identified 

as at-risk in writing or with disabilities may experience diminished self-perceptions, exacerbated 

by comparisons with their peers within the classroom setting (Hamilton, 2011; Wright et al., 

2021). This may deter their engagement with school writing tasks. Additionally, gender 

perceptions can impact students’ writing experiences. Girls may perceive themselves as better 

writers than boys in their class or school, attributing this belief to stronger domain-specific self-

concepts and self-efficacy for self-regulation (Pajares et al., 1999). Female writers also may 

exhibit lower apprehension toward writing tasks (Pajares et al., 1999). These internal factors 

contribute to the complex landscape of writing difficulties among secondary school students.  

External factors also wield considerable influence on what challenges students encounter 

in writing. These factors involve aspects such as teaching styles employed by educators (e.g., 

Ramli et al., 2020), the quality of instructional materials (Wang & Troia, 2023a), the occurrence 

of corrected feedback (M. M. Nelson & Schunn, 2009), and the presence of peer support and 

scaffolding (Taheri & Nazmi, 2021). The absence of writing strategy instruction (Rodríguez-

Málaga et al., 2021; Shen & Troia, 2018), writing process instruction (Graham & Sandmel, 2011; 

Troia & Olinghouse, 2013), and instructional scaffolds for motivation to write (Troia, 2002; 

Troia et al., 2012) can also hinder students’ academic development. Additionally, the lack of 

guidance on utilizing digital writing tools can impede students’ performance across various 

writing tasks (Ekholm et al., 2018). Incorporating these instructional components not only 

benefits students on diverse writing tasks (Troia et al., 2022) but also enables them to self-

monitor and regulate their writing behaviors and outcomes (Graham & Harris, 2010). This, in 

turn, nurtures an awareness of their writing strengths and weaknesses, fostering metacognition as 

students engage in reflective thinking about their writing processes and products. 
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2.3 PERSUASIVE WRITING 

2.3.1 Definition 

The definitions of persuasive writing within rhetorical and educational discourse exhibit a 

degree of uniformity. For instance, Eemeren et al. (2001) characterize persuasion as “a verbal 

and social activity of reason, with the objective of enhancing (or diminishing) the acceptability 

of a contentious standpoint for the audience by presenting a set of propositions designed to 

justify (or refute) the standpoint before a rational judge” (see p. 5). Güneş (2016) posits that 

persuasive writing involves creating texts by specifying, elaborating, predicting, and justifying 

reasons in a manner acceptable to others. Purdue Online Writing Lab defines the persuasive 

essay as a written genre that requires students to explore a topic, gather, generate, and evaluate 

evidence, and succinctly establish a position on the subject. In the most prevalent U.S. English 

language arts standards, persuasive writing involves the writer’s endeavor to convince or 

persuade the audience to adopt a specific point of view or take a particular action through the 

construction of logical arguments and a cohesive summary (CCSS for English Language Arts 

and Literacy in History/Social Studies Science and Technical Subjects, 2010). 

The provided definitions highlight three key aspects of persuasive writing. First, 

composing a persuasive essay is a social activity by nature, involving dialogue among 

individuals (e.g., between audience and authors) who may hold divergent perspectives on an 

issue, aiming to convince each other by providing compelling evidence. Second, the presentation 

of a constellation of propositions suggests that arguments have a discernible structure and 

organization, as evidenced in much of the educational literature (Crammond, 1998; De La Paz et 

al., 2012; Durst et al., 1990; Uccelli et al., 2013). Third, constructing arguments within 

persuasive essays is an act of reasoning, and individuals of reason employ critical standards to 
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assess the acceptability of a standpoint. These critical standards may include criteria such as the 

incorporation of argumentative discourse elements, the writer’s attentiveness to audience 

considerations, and the appropriateness of their argumentative strategies in relation to their 

objectives (Tindale, 2002). It is widely accepted that effectively defending arguments involves 

addressing critical questions about the pertinence of chosen argumentative strategies (Ferretti et 

al., 2009; Johnson, 2014; Walton, 2013).  

2.3.2 Importance 

Persuasive writing is a crucial skill for students to develop, as it is highly regarded in 

higher education contexts (F. I. A. Aziz & Ahmad, 2017). Additionally, persuasive writing is a 

challenging task that necessitates the use of sophisticated language to analyze, discuss, and 

address controversies in a manner that is clear, convincing, and respectful of different 

perspectives. In the educational context, as per the Michigan K-12 Standards for English 

Language Arts (Michigan Department of Education, 2010), which are based closely on the 

CCSS, the academic standards articulate the expected learning progressions for persuasive 

writing in Michigan. These standards serve as a deliberate framework guiding local curriculum 

development and emphasize the increasing proficiency expected of students in writing 

persuasively using various language dimensions as they advance through higher grade levels. 

These dimensions include adept mastery of vocabulary and syntax, development and 

organization of ideas, and engagement with progressively demanding content and sources. 

For instance, when composing persuasive essays, grade 6 students in Michigan are 

required to build arguments supporting claims with clear reasons and relevant evidence by: (a) 

introducing claim(s) and organizing reasons and evidence clearly, (b) supporting claims(s) with 

clear reasons and relevant evidence, using credible sources and demonstrating an understanding 
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of the topic or text, (c) using words, phrases, and clauses to clarify the relationships among 

claim(s) and reasons, (d) establishing and maintaining a formal style, and (e) providing a 

concluding statement or section that follows from the presented argument (Common Core State 

Standards, NGACBP & CCSSO, 2010). 

While grade 11-12 students are expected to adhere to the aforementioned content 

standards, they are additionally tasked with extending and refining their ability to introduce 

precise and knowledgeable claim(s), differentiate the claim(s) from alternate or opposing claims, 

and devise an organization that logically sequences claim(s), counterclaims, reasons, and 

evidence. Moreover, they are required to clarify the relationships between claim(s) and reasons, 

between reasons and evidence, and between claim(s) and counterclaims. A brief examination of 

these standards reveals that Michigan’s standards (and by proxy, the more broadly adopted CCSS 

for ELA) aim to develop heightened proficiency in persuasive writing, guiding students toward 

nuanced argumentation, evidence-based reasoning, and effective communication of ideas.  

Learning to write persuasive essays offers numerous personal and psychological 

advantages. These skills are deemed essential for future academic and career endeavors. Firstly, 

persuasive writing fosters critical thinking as students are prompted to deeply think about and 

provide rationales for various issues and advocate for their beliefs (Giri & Paily, 2020; 

Susilawati et al., 2019). Secondly, it hones students’ ability to effectively and logically articulate 

and organize ideas by leveraging their skills in researching, analyzing, and applying prior 

knowledge to support their main arguments (Kim et al., 2021; Rubiaee et al., 2019). Thirdly, it 

encourages students to consider diverse perspectives, fostering empathy and an understanding of 

the concerns and values of others through perspective-taking approaches (Cho et al., 2021; Hung 

& Wyer, 2014). Additionally, engaging in persuasive writing can enhance students’ confidence in 
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their communication abilities (McElligott, 2014). Moreover, these persuasive, reasoning, and 

analytical skills acquired through persuasive writing during K-12 schooling can be applied across 

various contexts beyond secondary education, contributing to success in different aspects of life 

(Streibel, 2014). 

2.3.3 Performance 

 Composing persuasive papers is universally acknowledged as a challenging mode of 

communication for K-12 students. Consistent findings from national and international 

assessments indicate that students face greater challenges in persuasive writing tasks compared 

to informative or narrative writing tasks (Applebee et al., 1994; Mo & Troia, 2017b). Ferretti  

and Graham  (2019) note the “gradual development” of written persuasion. Nippold and Ward-

Lonergan (2010) also characterize persuasive writing as a “demanding communication task that 

requires sophisticated cognitive and linguistic abilities” (p. 238). Typically, students encounter 

various challenges when tasked with writing persuasive essays, primarily owing to the complex 

nature of this form of discourse.  

One primary factor contributing to these challenges is the limited exposure students have 

to persuasion until the secondary grades. Instructional focus has traditionally been placed on 

narrative writing up to that point (Applebee, 1986). The introduction of persuasive writing 

typically begins in middle school, where students are tasked with constructing persuasive pieces 

supported by evidence to influence a target audience. The experience with persuasive essays 

deviates from everyday language or oral arguments (R. Andrews et al., 2009), making students 

less familiar with the nuances of persuasive text structure and topics. When composing essays, 

students must enhance their awareness of the persuasive intent, standpoint on the given issue, 

context of the argument, and their understanding of the dilemma at hand (Jonassen & Kim, 
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2010). While children exhibit audience awareness in oral argumentation from a young age, the 

shift from oral debate to understanding and articulating written arguments presents challenges 

that are gradually overcome through formal and explicit instruction (Coirier et al., 1999; Stein & 

Bernas, 1999). 

Secondly, writing persuasive essays in secondary school may introduce novel rhetorical 

and linguistic challenges for students. Effective academic persuasive writing often demands 

organizing discourse not merely around a sequence of events but “by employing a stepwise 

argumentative structure to a series of ideas, frequently incorporating later-acquired discourse 

markers” (e.g., nevertheless, on the one hand; Uccelli et al., 2013, p.40). Academic persuasive 

essays also surpass the mere expression of emotions or reactions toward events and necessitate 

that writers articulate their stances toward specific ideas, such as expressing the degree of 

certainty about their assertions (e.g., it might be that, certainly; Berman & Nir-Sagiv, 2004). 

Additionally, a persuasive text, akin to other expository subgenres (i.e., compare/contrast, 

cause/effect, problem/solution), poses inherent challenges related to use of diverse and complex 

sentence structures (Karasinski, 2023; Deng et al., 2022). 

Thirdly, composing a persuasive written argument demands a spectrum of higher-order 

abilities, including perspective-taking, critical thinking, and problem-solving, contingent upon a 

robust understanding of the subject matter (Toulmin, 2003). The acquisition of these is expected 

to lay the foundation for the discipline-specific formal argumentation anticipated in subsequent 

secondary school years (Hillocks, 2002). Interestingly, proficient writers appear to be most 

cognitively engaged when writing persuasive essays and least engaged when writing other genres 

such as descriptive essays, suggesting recruitment of more higher-order intellectual abilities 

(Bouwer et al., 2015). Some persuasive writing tasks also require students to engage in close 
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reading of a source text, followed by comprehending the essence of key ideas, internally 

debating opposing ideas, and integrating ideas from source material into their own writing. 

However, students in middle school are not frequently exposed to reading materials 

incorporating extensive argumentation (Chambliss, 1995), implying that many students will 

struggle with this register.  

Fourthly, young writers in early middle school may experience difficulties in effectively 

translating ideas and knowledge to communicate with a specific group or audience (Scardamalia 

& Bereiter, 1987). In the case of persuasive essays, students are usually required to articulate 

arguments in preparation for a classroom discussion, where other students are identified as the 

intended audience. However, given that the teacher often assumes the role of the discussion 

leader, students might craft argumentative essays with the teacher as the intended audience. This 

potential shift in audience could contribute to variability observed in students’ persuasive writing 

performance. For example, grade 6 students were found to face more challenges when 

composing persuasive papers for their teacher compared to when writing for a peer, resulting in 

increased score variance (Crowhurst & Piche, 1979). Existing scholarly research on writing 

assessment provides conclusive evidence regarding a relationship between various components 

of the writing task, such as communicative purpose and intended audience, and the overall 

quality of writing (e.g., Bouwer et al., 2018). 

Fifthly, students might bring inherent biases to the discussion of a given issue. They 

might hold pre-existing notions about the topic or subject, which poses a challenge in objectively 

assessing viewpoints and opposing views with regard to the evidence presented rather than 

relying on preconceived notions (Perkins et al., 1991). Effectively analyzing, evaluating, and 

generating persuasive texts requires awareness of one’s biases, the capacity to dismantle those 
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biases, questioning the authority of the source material, and discerning biases from within the 

text—a constellation of activities many students find challenging, especially at the middle and 

high school levels (Aziz & Said, 2020; Boyle & Hindman, 2015).  

2.3.4 Theoretical Frameworks 

 In the domain of persuasive writing, some theoretical frameworks or perspectives serve 

as pillars that influence scholarly discourse and provide a structured foundation for framing 

research inquiries. These frameworks/perspectives offer a systematic approach to mapping out 

existing research and streamline the synthesis and assessment of literature pertinent to the 

research questions and design outlined in Chapter Three. Moreover, they facilitate identifying 

gaps and limitations in prior work, providing insights into how these contributions align with the 

broader landscape of writing scholarship. In this section, three prominent theories underpinning 

the inquiry in this area are introduced and elucidated, with relevance to diverse aspects of 

persuasive writing and writing instruction. 

2.3.4.1 Ethos, Logos, Pathos 

 Ethos, logos, and pathos represent the three rudimentary components of persuasive 

rhetoric introduced by the ancient Greek philosopher Aristotle. To achieve rhetorical efficacy and 

persuasive success, an author must engage the audience through a nuanced crafting of their 

argument, strategically considering the means by which audience agreement can be attained 

(Wachsmuth et al., 2018). Aristotle bestowed these modes of engagement with the Greek terms 

we continue to employ today.  

 Logos denotes the realm of logic, reason, and rationality. An author relying on logos 

employs logic, thoughtful structure, and objective evidence to appeal to the audience’s intellect. 

This involves furnishing information amenable to fact-checking and presenting thorough 
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explanations to substantiate key points. Logical appeals rest upon rational modes of thinking, 

including elements such as elaboration, cause/effect, deductive reasoning, inductive reasoning, 

comparison, exemplification, elaboration, and coherent thinking.  

Pathos entails authors tapping into the audience’s emotions to garner agreement with the 

author’s claim. Authors employing pathetic appeals seek to evoke a spectrum of emotions, 

including anger, pride, joy, rage, or happiness. Pathos-based rhetorical strategies aim to induce an 

audience to open up emotionally to the topic, the argument, or the author. By leveraging 

emotions, an author can exploit the audience’s vulnerability, leading them to perceive the 

argument as compelling. This may involve the use of emotionally laden language, expressive 

descriptions, and vivid imagery to immerse the reader in a specific emotional mindset. 

Ethos appeals include audience values and authorial credibility or character. When 

authors make ethical appeals, they seek to resonate with the values or ideologies held by the 

audience. This connection to values can evoke a sense of what is morally right, fostering an 

alignment with the author’s argument. The ethical appeal is intertwined with ethos in the sense of 

authorial credibility. The trustworthiness of the author is determined by their knowledge, 

expertise in the subject matter, and personal history and traits. Figure 2-1 illustrates the 

interconnection among the three persuasive appeals of rhetoric within the context of composing 

persuasive essays. 
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Figure 2-1 Rhetorical Triangle (Ramage et al., 2016, p. 55) 

The introduction of the Aristotelian rhetorical theory in this context arises from the 

recognition that incorporating its three appeals in writing is widely perceived as enhancing the 

effectiveness and persuasiveness of discourse. This observation holds true not only in everyday 

informal writing, e.g., on social media (Marcotte & Stokowski, 2021; Nelzén, 2018) but also in 

formal writing genres like legal discourse (McCormack, 2014; Smith, 2014). It extends into 

educational settings where learners are instructed to manifest writing behaviors and use 

techniques associated with the three appeals (FitzPatrick & McKeown, 2021; Khairuddin et al., 

2021; Mohamad et al., 2022), all aligned with the overarching objective of persuading their 

intended readers.  

Within educational settings, writers seeking to appeal to logos often demonstrate 

proficiency in presenting factual information, statistical data, and various forms of logical 

evidence to substantiate their arguments. The efficacy of these strategies can be assessed through 

a quantitative and sorted framework (e.g., Toulmin’s Model, discussed later in this section) 

which delineates specific elements essential for contributing to the provision of evidence and 

qualifications. To appeal to pathos, writers strategically deploy language choices related to 
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intonation, stylistic components, and emotionally charged vocabulary. This strategic use of such 

linguistic tools can be methodically assessed through sentiment analysis of persuasive essays, 

aiming to elicit an emotional response from the audience. Establishing ethos, on the other hand, 

involves the writer positioning themselves as an authority on the subject matter. This is often 

achieved by expressing sufficient content knowledge and a commitment to good character and 

intentions. Cultivating ethos through discourse relies on the use of rhetorical language to mediate 

between the speaker and the audience, thereby projecting character traits that evince credibility 

(Rideout, 2016).  

Durst et al. (1990) conducted an analysis of persuasive essays composed by high school 

juniors and seniors with the aim of identifying the specific rhetorical and linguistic features that 

contributed to raters’ holistic judgements about the overall quality of the essays. The study 

incorporated three primary persuasive appeals—ethos, logos, and pathos—grounded in 

Aristotle’s rhetorical theory of persuasion. Their analytic system, a variation of the one 

developed by Connor & Lauer (1985), employed 23 persuasive appeals to identify features 

contributing to text persuasiveness. Using a comparable four-point scale to measure students’ 

utilization of the persuasive appeals (refer to Appendix 5: Persuasive Appeals Rubric in their 

study for detailed descriptions), Durst and colleagues found notable relationships in correlation 

analysis with holistic scores. Logical appeals demonstrated a substantial correlation with r = 

0.73, while pathetic appeals exhibited a correlation of r = 0.38, and ethical appeals had a 

correlation of r = 0.27, all statistically significant. In a stepwise regression analysis, the use of 

logical appeals accounted for approximately 53% of the variance in holistic scores. Students 

demonstrated more frequent and effective use of logical appeals compared to ethical or pathetic 

appeals. This discrepancy in appeal usage may be attributed, in part, to teaching practices. The 
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high school writing curriculum placed greater emphasis on the use of logical appeals, with 

significant instruction on the development of robust reasons and convincing arguments. In 

contrast, secondary language arts instruction allocated relatively less attention to engaging 

audience attitudes, values, and emotions, or presenting a caring and knowledgeable image. 

Overall, this study offers a detailed exploration of rhetorical elements to understand the nature of 

persuasive writing among high school students. 

2.3.4.2 Toulmin’s Model of Argumentation 

The Toulmin model of argumentation, originally devised to explicate the macrostructure 

of argumentative essays and nowadays widely adopted as a foundational framework for scientific 

argumentation within the field of postsecondary education, holds a prominent place in this 

section. Its inclusion as one of the significant models is justified by its relevance in examining 

students’ persuasive writing within prior scholarly works (Aziz & Said, 2020; Junaidah Januin, 

2021; Liu & Wan, 2020), and its significance in shaping research study design. Importantly, this 

theoretical model played a pivotal role in the annotation of persuasive elements within the 

PERSUADE 2.0 Corpus (see Crossley et al., 2022, for details), which is the database used in this 

secondary data analysis study.  

Toulmin (1958) formulated his method of argumentation based on a model comprising 

three essential components integral to persuasive essays. According to this model, an individual 

(1) puts forth a claim (or main argument), then (2) provides grounds to substantiate that claim, 

and (3) backs the grounds with a warrant (Karbach, 1987, p.81). Toulmin’s model also further 

incorporates three additional elements: (4) providing supplementary backing to support the 

warrant, (5) acknowledging an alternative viewpoint through rebuttal, and (6) introducing 

qualifiers to indicate that a claim may not universally hold true in all circumstances. These 
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additional elements may be incorporated as necessary. Figure 2-2 illustrates an example of how 

these elements can be depicted in a persuasive essay. 

 

Figure 2-2 Toulmin’s Model of Argumentation with Examples 

In the persuasive genre, developing writers often lack text structure knowledge to 

differentiate a persuasive schema from more prevalent text structures, which may result in 

integrating non-argumentative components when responding to persuasive prompts (Crowhurst, 

1990). Even when children demonstrate awareness of the structural elements inherent in the 

argumentative/persuasive genre, they may still struggle to effectively utilize all the essential 

elements to construct a coherent essay (Wingate, 2012). Moreover, the organization of these 

structural components to establish a logical flow within the paper proves challenging for school-

age writers (Calfee & and Chambliss, 1987). 
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Wolfe et al. (2009) discovered that both persuasiveness and perceived quality of 

persuasion could be enhanced by presenting and rebutting counterarguments. Although 

Toulmin’s framework is significant for emphasizing the importance of addressing alternative 

viewpoints when making claims, researchers face challenges in consistently applying the model. 

This difficulty arises partially because students’ arguments often span multiple elements. For 

example, claims may be implicit in persuasive discourse and require deduction. Ambiguity in 

identifying data, warrants, and backing can lead to coding difficulties and reduced reliability 

(Simon, 2008). Nevertheless, Toulmin’s model of argumentation remains a prominent framework 

for classifying text elements in written persuasion (see Aziz & Ahmad, 2017; Aziz & Said, 2020; 

Magalhães, 2020) and understanding students’ justifications as the basis of their claims and 

conclusions by analyzing the interrelations between surface structure and substance (Stapleton & 

Wu, 2015).  

Zimmerbaum (2014) recognized the necessity for a paradigm shift in ELA classroom 

instruction at the secondary school level. In response, an instructional framework was developed, 

employing a critical questions strategy and the Toulmin model of argument. This framework 

aimed to assist nine eighth-grade participants in developing the essential skills required for 

constructing logical, reasoned arguments within persuasive writing. The analysis of pretest and 

posttest results indicated a notable increase of 1.22 points (on a 5-point scale) in the average 

persuasive writing scores of the nine secondary students. This enhancement was attributed to 

guided discussions and practice sessions focused on gathering evidence, scrutinizing evidence 

for claim development, employing critical questions for claim testing and revision (e.g., Where 

does the topic occur in the text? Whose actions relate to the topic? When do these actions occur?; 

refer to Appendix O in Zimmerbaum, 2014 for details), and utilizing the Toulmin model as a 
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guiding structure to organize their thoughts about a claim. These outcomes suggest that the 

incorporation of the Toulmin model of argumentation can play a pivotal role in aiding secondary 

educators as they nurture the development of argumentative and persuasive skills among their 

students. Persuasive essays rely on the depth of students’ prior knowledge and the research they 

can access and comprehend, as claims and evidence must come from these sources. While the 

Toulmin model helps assess students’ ability to analyze and apply information—particularly in 

evaluating claims, evidence, and rebuttals—it does not fully address how students activate prior 

knowledge or conduct research. The effectiveness of this approach depends heavily on how 

teachers use it to engage students with data and guide them in developing stronger, evidence-

based arguments. 

At the secondary level, persuasive and argumentative essays often find prominence 

within disciplinary content area classrooms, particularly in subjects like social science and 

natural science, where students are instructed to articulate, elaborate, reflect upon, and synthesize 

the laws, theories, principles, and concepts introduced to them (Sampson et al., 2013). 

Recognizing this, some researchers have extended the application of Toulmin’s model to other 

disciplinary classes in secondary schools. For instance, Giri and Paily (2020) conducted a study 

focused on exploring the efficacy of Toulmin's argument structure within the Think-Read-Group-

Share-Reflect (TRGSR) scientific argumentation strategy for enhancing critical thinking among 

secondary students. This quasi-experimental study employed a pretest-posttest control group 

design, involving 50 twelfth-grade students in total. The experimental group received instruction 

on Toulmin’s argumentation, while the control group followed the traditional teaching approach. 

Diverging from previous studies, the primary outcome variable in this research aimed to discern 

differences in students’ critical thinking abilities (measured via multiple choice or true/false 
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items tapping inferencing, deduction, assumptions, interpretation, and evaluation on the Watson-

Glaser critical thinking appraisal Form S) between the two groups. The results revealed a 

demonstrable improvement in critical thinking ability among students in the experimental group. 

The teaching strategy incorporating the Toulmin components proved to be relatively more 

effective (F = 83.12, p < 0.001) compared to the control group’s traditional teaching approach. 

2.3.4.3 Writer(s)-Within-Community Model 

 The Writer(s)-Within-Community Model (WWC; Graham, 2018) posits that writing and 

writing instruction are influenced by the communities or contexts in which they occur, as well as 

by the cognitive abilities and resources of writers and educators involved in writing tasks within 

these settings. Developed writers typically undergo five major production processes to 

accomplish writing tasks (Steiss et al., 2024): conceptualization (creating a mental representation 

of the task), ideation (generating, developing, and conveying new ideas), translation (converting 

thoughts into language), transcription (spelling, handwriting, and keyboarding), and 

reconceptualization (revising and editing). In the current study, the primary focus is on the 

reconceptualization process, which aligns with the secondary purpose of this research to use 

MMFP to structure formative feedback provided by generative artificial intelligence (GenAI, 

specifically GPT). We posit that GPT-generated feedback based on derived MMFP models can 

aid students in refining their drafts by assessing how their writing aligns with ideal genre 

standards and providing specific steps for improvement. This assumption is grounded in 

empirical findings from prior studies, which have shown that writers benefit from multiple 

sources of information regarding revision, including peer review (Wu & Schunn, 2021), self-

assessment (C. S. Johnson & Gelfand, 2013), and teachers’ corrective feedback (Link et al., 
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2022). These approaches have been proven effective in enhancing the quantity and quality of 

revised drafts and overall writing proficiency.  

 Furthermore, the importance of reconceptualization is particularly highlighted for 

secondary students involved in persuasive writing tasks. This cohort of learners is at a critical 

stage in developing persuasive writing skills, which necessitates sophisticated language use and 

advanced cognitive abilities (Masrul & Yuliani, 2023). In addition, the variation in writing 

contexts, such as writing purposes, the perceived value of writing, types of writing tasks, and 

common writing practices, can all significantly influence students’ learning experiences and 

impact the quality of their written products. Effective writing instructions ideally entails teachers 

providing frequent and personalized feedback across multiple drafts; however, this process is 

usually time-consuming and resource intensive. Therefore, well-structured and informative 

written feedback promptly provided by GenAI is presumed to be more advantageous for 

secondary students in enhancing their persuasive writing compared to other approaches.  

2.3.4.4 Genre Pedagogy 

 In addition to the two theoretical frameworks for how to persuade/argue (the Aristotle and 

Toulmin frameworks), it is imperative to delineate an instructional framework in this subsection 

–genre-based pedagogy–which is informed by the sociocognitive pragmatics-based framework 

and other theoretical perspectives such as Halliday’s systemic functional linguistics (1994). The 

sociocognitive pragmatics-based framework regards oral and written language use as 

socioculturally situated cognitive practices (Bazerman & Paradis, 1991; Snow & Uccelli, 2009). 

This perspective implies that, as writers mature and navigate a broadening array of language-

mediated social contexts, they continually acquire new modes of speaking and writing, often 

shaped by linguistic and cognitive demands (Uccelli et al., 2013). Certain text genres are 
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considered more linguistically and cognitively demanding than others, and individuals vary 

significantly in their exposure to different communicative contexts (W. Qin & Uccelli, 2016). As 

a result, it is anticipated that learners may excel in writing within one genre but encounter 

challenges in another. Secondary academic writing, representing a crucial developmental stage in 

education, can thus be conceptualized as integral to the growth of young writers. Secondary 

writing experiences expose students to various disciplinary content areas and help them acquire a 

flexible repertoire of language forms and functions across a broadening range of social contexts, 

thereby preparing them for advancing to post-secondary education (Lavelle et al., 2002). 

 Educational linguists have elaborated on the effectiveness of genre pedagogy in teaching 

learners how to use genre-specific linguistic resources to convey content knowledge, engage in 

interpersonal relationships, and organize texts within the academic genres that adolescents 

encounter (Christie, 1998; Rose & Martin, 2012). For instance, in the study conducted by Ramos 

(2015), researchers implemented a genre-based pedagogy instructional approach that integrated 

components such as building vocabulary knowledge, facilitating understanding and discussion of 

ideas and concepts, and offering explicit instruction on linguistic resources, projecting 

authoritative stances, and constructing well-organized texts. The observed improvement in 

participants’ writing from pretest to posttest in this study was attributed to the students’ enhanced 

control over the linguistic resources required to compose academic persuasive essays. 

In alignment with the Common Core State Standards (NGACBP & CCSSO, 2010), 

which mandate educators to equip all K-12 learners with the skills to cultivate academic literacy 

practices, the adoption of genre pedagogy emerges as a potential avenue to achieve this 

educational objective. In a study conducted by Ramos (2019), twenty students spanning grades 9 

to 12, selected from a U.S. northeastern urban public high school, were subjected to an 
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instructional intervention known as the “reading to learn” approach rooted in genre pedagogy. 

This pedagogical approach involved guiding students through the process of deciphering 

unfamiliar vocabulary, concepts, and idiomatic expressions within persuasive texts. Additionally, 

the intervention sought to foster the development of background knowledge concerning common 

arguments related to the subject topic, along with enhancing students’ linguistic awareness by 

directing their focus towards metalanguage elements (such as nominalization and causal verbs) 

embedded in the reading materials. The results of the study demonstrated a substantial increase 

in participants’ effective utilization of key academic linguistic resources aimed at constructing 

persuasive discourse, as evidenced by the observed shift in the effective use of the 14 linguistic 

resources measured (e.g., nominalization, projection, evaluative language, modality) from pretest 

to posttest. These findings imply that the genre pedagogy-based approach holds promise in 

facilitating the development of academic literacy practices among adolescents. This implication 

also guides this study’s design, as a broad range of genre-specific language features that 

characterize persuasive writing will be explored. These features will be thoroughly addressed in 

the next section. 

2.4 WRITING MEASUREMENT  

2.4.1 Features  

When examining the features of academic writing, educational researchers consistently 

direct their attention to both the cognitive processes involved in writing and the resultant written 

product (S. A. Crossley, 2020; M. D. Johnson, 2014; Torrance et al., 2021). Hayes’ cognitive 

model of writing (1996) outlines three principal stages in the writing process: planning (pre-

writing), drafting (composing or translating), and reviewing (editing or revising). Proficient 

writers demonstrate a capacity to monitor their processes and progress throughout the entire 
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writing endeavor, ultimately producing an acceptable final written product (Graham & Harris, 

2013; Graham & Perin, 2007; Laist, 2021).  

This study’s secondary data analysis specifically emphasizes the attributes of the writing 

product over writing processes due to: (1) the absence of features related to writing processes in 

the PERSUADE 2.0 corpus and (2) the belief that features of the writing product can serve as 

reflections of students’ writing processes, aligning with prior work on the effects of writing 

process instruction on writing outcomes (e.g., Cutler & Graham, 2008; Graham & Sandmel, 

2011; G. A. Troia & Olinghouse, 2013). To delve further, during the pre-writing phase, writers 

who sophisticatedly organize ideas and establish writing goals exhibit a propensity for generating 

a writing product characterized by clarity, well-structured language, technical terminology, and 

creative linguistic choices to explicate the subject matter (De La Paz & Graham, 1997; 

Olinghouse, 2008). Similarly, engagement in the reviewing phases, wherein writers modify their 

drafts, tends to yield a high-quality writing product with fewer language and mechanical errors 

and enhanced coherence (De La Paz & Sherman, 2013; Shen & Troia, 2018b).  

When evaluating written products across various discourse genres, particularly in 

persuasive writing that requires multifaceted writing skills, researchers routinely delve into the 

analysis of microstructural and macrostructural elements (S. Hall-Mills & Apel, 2015; 

Karasinski, 2023; Richards, 2013). Examining discourse elements at both levels within a text 

holds considerable promise for capturing the variations in language features across diverse 

groups in their written expression. The subsequent discussion elaborates on macrostructural and 

microstructural elements due to their significance for feature extraction and selection in the 

subsequent data analysis section.  
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2.4.1.1 Microstructural Elements 

 The examination of microstructure elements in written products involves various levels 

of language, including word, sentence, and discourse levels. Puranik and colleagues (2008) 

identified productivity, accuracy, and complexity as significant dimensions warranting 

investigation in students’ writing. In a study by Troia, Shen, and Brandon (2019), multiple 

measures of written expression were explored as predictors of narrative writing performance for 

362 students in grades 4 through 6. At the word level, the token-type ratio for content lexemes 

indicated word productivity, while mean textual lexical diversity, mean content word frequency, 

and mean syllables per word acted as proxies for word complexity. Word accuracy was reflected 

by the proportion of words absent spelling and/or capitalization errors. Moving to the sentence 

level, metrics such as the percentage of complex sentences, mean words per sentence, and mean 

words before the main verb offered insights into syntactic complexity. Indicators of sentence 

accuracy included the percentage of grammatical sentences and mean punctuation errors in a 

sentence. Finally, at the discourse level, the total number of words written reflected text 

productivity (which was redundant with number of sentences), while the incidence of 

connectives and narrativity score served as indicators of discourse complexity.  

These writing metrics have contributed to a burgeoning body of literature advocating for 

the adoption of a levels of language framework in the assessment of writing quality. The 

utilization of a combination of indices encompassing word, sentence, and discourse levels has 

demonstrated effectiveness in gauging distinctions among written products and the individuals 

accountable for their creation (see Carvalhais et al., 2021; M. Kim & Crossley, 2018; Sarmiento 

et al., n.d.; G. A. Troia et al., 2019; Wang & Troia, 2023b). These findings are consistent with 

existing writing research, highlighting robust correlations between factors such as spelling 
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accuracy, sentence grammaticality, and text length with writing quality. These correlations 

effectively differentiate between mature and immature writers while also showcasing variations 

across different grade levels. The subsequent subsections expound upon the empirical findings 

pertaining to students’ performance at the word, sentence, and discourse levels in their written 

expression, while also examining variations in writing performance among students with diverse 

cultural and language backgrounds.  

Word level 

Hayes’ (1996) cognitive model of writing emphasizes the cognitive and linguistic 

resources essential for producing high-quality text. Long-term memory is a pivotal cognitive 

resource through which writers translate and interpret ideas, experiences, and sensory images 

into linguistic form (Olinghouse & Wilson, 2013). Adept use of vocabulary can facilitate this 

complex process. Another theoretical framework validating the important role of the lexicon in 

text is Scardamalia & Bereiter's (1987) knowledge-telling model, which further elucidates the 

links between vocabulary and long-term memory. For instance, vocabulary can convey content 

knowledge, given that many topics necessitate specialized terminology (Harmon et al., 2005). 

Vocabulary is also implicated in discourse knowledge, with the assumption that it can 

discriminate the characteristics of different genres of text (Biber, 1989; Hasan, 2014). 

The acquisition of vocabulary demands substantial cognitive effort and knowledge 

resources, particularly during middle and high school (Elleman et al., 2019; Groves, 2016). 

However, vocabulary acquisition is further complicated by the diverse nature of words, some of 

which may have different linguistic and grammatical forms, such as polysemous words (Bowers, 

2011). Students may also face challenges when confronted with idiomatic expressions, making it 

difficult for them to choose the appropriate meaning of words (Rohmatillah, 2014). These 
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challenges in vocabulary learning, when coupled with insufficient and ineffective vocabulary 

teaching strategies and interactions, can give rise to more serious problems. These may include 

difficulties in achieving writing proficiency, language-based problems, elevated dropout rates, 

and a substantial word gap compared to peers (Armstrong et al., 2018; Duff & Brydon, 2020; 

Graham et al., 2016). 

Apart from recognizing the cognitive challenges of vocabulary acquisition often 

experienced by students, Olinghouse and Wilson (2013) conducted a quantitative study to 

describe the surface-level characteristics of successful writing concerning vocabulary types. This 

research serves as an empirical guide for understanding aspects vocabulary instruction should 

entail, guiding educators on where to place emphasis when teaching students to enhance their 

vocabulary and evaluate their writing performance. The study investigated the relationship 

between the targeted vocabulary constructs and text quality across three genres (narrative, 

informational, opinion). The findings disclosed variations in the type of vocabulary used by fifth-

grade students across these genres. High-quality narrative writing showcased greater vocabulary 

diversity and maturity but less elaboration and fewer academic words. Conversely, strong 

persuasive compositions featured higher vocabulary diversity and a more formal register. High-

quality informative texts exhibited a greater number of content words, increased elaboration, and 

higher maturity levels. These findings suggest that word selection in writing appears to be 

influenced by genre, with somewhat different vocabulary constructs contributing to writing 

quality depending on the genre being scrutinized.  

In Sarmiento et al.’s (2024) study, researchers extended Olinghouse and Wilson’s (2013) 

investigation by shifting the focus to vocabulary constructs that represent the academic register 

in grades 5 and 8. The online automated text analysis tool Coh-Metrix was employed to extract 
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vocabulary features, including mean lexical diversity, mean number of words per sentence, left 

embeddedness, total number of words, and incidence of causal and adversative connectives. 

These indicators served to assess students’ use of academic language via lexical diversity and 

density. The study also considered long words (words with 7 or more letters) and the frequency 

of academic words within students’ essays to represent their use of complex and academic 

language. Results indicated that diverse vocabulary predicted writing quality in grade 5 but not 

in grade 8, but the number of long words was related to both writing quantity and quality at both 

grades. The researchers suggested that educators can identify characteristics of these long words 

for targeted instruction to enhance students’ academic success. For instance, proper nouns, 

nominalizations, gerunds, hyphenated words, and words with affixations are believed to 

significantly improve both the quality and quantity of students’ academic written language. 

To sum up, the lexicon assumes a pivotal role in both constructing and interpreting 

meaningful text (Engber, 1995, p.141). As academic tasks become increasingly complex 

throughout middle and high school, writers are expected to deploy academic vocabulary 

effectively to achieve success in their scholarly endeavors (W. Nagy & Townsend, 2012). Hence, 

students’ vocabulary knowledge and lexical competence hold a fundamental position in quality 

text production (Maamuujav, 2021). Numerous studies have indicated significant and positive 

associations of various vocabulary-relevant constructs, such as vocabulary size (LAUFER & 

NATION, 1995; Tömen, 2016), lexical diversity (Gómez Vera et al., 2016; Sadeghi & 

Dilmaghani, 2013), use of sophisticated words (Harb, 2018), academic words (Y.-S. Kim et al., 

2013; Sarmiento et al., 2024), and word spelling accuracy (S. Andrews et al., 2020; G. A. Troia 

et al., 2019) with text quality.  
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Prior scholarly research has yielded valuable insights into the types of words deemed 

suitable for instruction in general writing classrooms. However, students from diverse 

populations, especially those facing cognitive and psychological challenges, require a nuanced 

approach to vocabulary learning. For instance, children at risk for learning disabilities often 

manifest neurologically-based developmental delays in perception, short-term and working 

memory, self-regulation, phonological awareness, and orthographic knowledge (Breznitz, 1997; 

Wolf, 1997). These deficiencies can pose challenges in learning vocabulary (e.g., technical 

terminology), making it difficult to comprehend the meanings, relationships, and conceptual 

interpretations of important terms  (Bryant et al., 2003; Kame’enui & Baumann, 2012). Prior 

studies have indicated that children with language-based learning disabilities exhibit lower 

productivity (Mackie & Dockrell, 2004; Scott & Windsor, 2000), reduced lexical diversity (Fey 

et al., 2004), and less grammatical accuracy when using vocabulary with inflectional endings 

(Dockrell et al., 2007; Gillam & Johnston, 1992) compared to their typically achieving peers 

when tasked with composing essays. Similarly, non-native English speakers may confront 

challenges in vocabulary acquisition, influenced by reasons often rooted in cultural factors. 

Understanding a word involves familiarity with its literal meaning, varied connotations, syntactic 

constructions it entails, morphological options it presents, and a rich array of semantic associates 

such as synonyms and antonyms (W. E. Nagy & Scott, 2000). Dobbs and Kearns (2016) found 

that English language learners with limited English proficiency were less likely to use and 

attempt words than their native speaker counterparts when analyzing their language arts 

standardized testing (i.e., Massachusetts Comprehensive Assessment System) results. 
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Sentence level 

Syntax refers to the set of rules governing the arrangement of words into larger 

meaningful units, such as phrases, clauses, and sentences (Kamhi & Catts, 1999). Understanding, 

activating, and applying syntactic knowledge has been linked to enhanced writing quality in 

students (Cain, 2007). This correlation is apparent throughout the school years, starting as early 

as grade 4 when students incorporate more intricate syntactic structures specific to genres in their 

written compositions (Furey et al., 2017). This developmental progression tends to plateau 

around grade 7 or 8 (A. J. Truckenmiller & Petscher, 2020). The coherence of writing relies 

significantly on the adept use of precise and varied grammatical sentence constructions (Witte & 

Faigley, 1981). Hence, students’ proficiency in comprehending and producing diverse 

grammatical structures within sentence contexts plays a pivotal role in achieving this (Catts et 

al., 2006; Cutting & Scarborough, 2006). 

Constructing texts with diverse sentence structures introduces complexity to the writing 

task and provides writers with a means to articulate meanings and intentions precisely (Graham 

& Harris, 2013). Proficient writers skillfully diversify their sentence structures in accordance 

with the writing purpose and intended audience. For example, short and simple sentences with 

minimal variation can facilitate the readability and comprehension of the text for less 

knowledgeable or sophisticated readers, whereas lengthy and complex sentences can prevent 

monotony, infuse rhythm, and present ideas in a coherent manner.  

Depending on the writing purpose and genre, incorporating syntactically sophisticated 

sentences enables the expression of complex ideas within a singular structure and elucidates 

explicit relationships between sentence constituents (Jagaiah, 2017; H. Kim & Ro, 2023; 

Maamuujav, 2021). For example, in persuasive writing, establishing close causal links between 
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facts and claims requires manipulating sentence structures to condense intricate information. 

While complex syntax may present comprehension challenges due to heightened text difficulty, it 

signifies sophistication in written texts (McNamara et al., 2010). However, the imperative to 

employ syntactically complex sentences may not be universally applicable across all writing 

types or registers, given variations in topics, writing purposes, and audiences that impose 

differing syntactic demands on the writer (Jagaiah et al., 2020). Research suggests that 

syntactically complex sentences are often associated with the argumentative or persuasive genre, 

where writers must intricately connect arguments and evidence (Beers & Nagy, 2009). 

Considerable research in writing has consistently substantiated that higher quality writing 

generally incorporates more sophisticated and complex syntactic features (Beers & Nagy, 2011; 

S. A. Crossley, 2020; Deng et al., 2022; Maamuujav, 2022; McNamara et al., 2014), such as 

longer sentences, a greater variety of sentential structures, increased clausal subordination, a 

higher rate of production of dependent clauses, and greater phrasal complexity. An array of 

writing measures that are used to evaluate syntactic structures include clauses per T-unit, words 

per clause, mean clause length, mean number of words per sentence, mean number of words 

prior to the main verb of the main independent clause, etc. However, it is worth noting that some 

studies argue that simple sentences can also be powerful, and the effectiveness may be 

contingent on the genre and task types (Beers & Nagy, 2011). For example, Crowhurst (1980) 

found that persuasive essays with high syntactic complexity scores received significantly higher 

quality ratings than essays with low syntactic complexity in grades 10 and 12, although no 

difference was observed in grade 6. Conversely, for narratives, the only significant finding was 

that, in grade 12, low syntactic complexity was associated with higher quality. This may be 
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attributed to the fact that students by the end of secondary education can strategically vary 

sentence structures to express ideas and captivate their audience. 

Students with low proficiency in writing and limited writing knowledge, particularly 

those with learning disabilities and language impairments, often encounter challenges when 

attempting to craft well-constructed and sophisticated sentences (Saddler & Preschern, 2007). 

Typically, these struggling writers generate sentences that are less syntactically complex and 

exhibit consistent grammatical errors (Myklebust, 1980; Puranik et al., 2007). This assertion is 

supported by previous research; for example, Koutsoftas and Gray (2012) demonstrated that 

students with language learning disabilities exhibited lower sentence complexity in their written 

narrative samples compared to their typically achieving peers. However, the two groups did not 

show a significant difference in sentence complexity measures in expository writing, suggesting 

that expository writing may necessitate writers to produce more complex sentences than 

narrative writing. 

Discourse level 

Analyzing language samples at the discourse level is another vital aspect of assessing 

students’ writing quality. It is important to note that the discourse-level features in this secondary 

data analysis are related to surface-level language features that were validated in a three-level 

language framework using confirmatory factor analysis (Wilson et al., 2017) rather than the 

discourse elements that focus on macrostructural elements to construct the entire text (which will 

be discussed in the next section), despite that some studies may mix these two aspects together.  

Troia, Shen, and Brandon (2019) conducted an analysis of narrative writing samples from 

362 students across grades 4 through 6. The researchers identified discourse-level variables, 

including text productivity (total words written in the entire essay), text complexity (incidence of 
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connectives), narrativity, and writing process use (evidence of planning, drafting, revising, or a 

combination thereof), which were significantly associated with writing quality, explaining 15.5% 

of the variance in quality. It was anticipated that discourse-level features in essay writing 

contribute to macro-level structures such as organization, style, coherence in content, and other 

global language conventions that play a substantial role in shaping the overall appearance of the 

essay.  

2.4.1.2 Macrostructural Elements 

 Macrostructure analysis primarily occurs at the discourse level (Scott, 2009). 

Macrostructure is defined as the “gist,” the “topic of the text,” the “summary,” or the “overall 

notion of what the text is about” (Witte & Faigley, 1981). Unlike microstructure dimensions of 

compositions, which usually involve small-unit and surface-level changes that do not greatly 

impact the overall meaning of a text, macrostructural elements demand changes at the rhetorical 

level of writing (S. S. Hall-Mills, 2009; Karasinski, 2023). These changes contribute to shaping 

global structure and cohesion and can serve as reflections of writers’ techniques and abilities. For 

novice writers, understanding the strategic approach to composing in macrostructural elements 

can be a challenging endeavor.  

Existing literature underscores the significance of discourse knowledge that can largely 

impact the macrostructural levels of text, which varies based on the assigned topic or type of 

writing task, not only in early writing development but also in higher grades (Olinghouse et al., 

2015; Olinghouse & Graham, 2009; Scardamalia & Paris, 1985). Bereiter and Scardamalia 

(1987) proposed the knowledge-telling model, highlighting the significance of discourse 

knowledge in the writing development of young students. According to this model, a child 

develops a mental representation of the writing task by defining the topic and utilizing their 
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discourse knowledge to determine the type of text to be produced. As the child writes, this 

mental framework directs the retrieval of relevant information from long-term memory. The 

retrieved information is then evaluated for its alignment with the topic and text type, with 

discourse knowledge playing a role in this assessment. If the content is deemed suitable, it is 

transcribed into the written text (Olinghouse & Graham, 2009, pp. 39-41). The resulting text then 

prompts a further search of long-term memory. Essentially, when employing the knowledge-

telling approach to writing, young authors likely draw on their understanding of what makes a 

compelling story and effective writing, alongside relevant content knowledge, to shape the 

writing task. They use this mental representation to seek out appropriate content from long-term 

memory. For instance, in Olinghouse and Graham (2009)’s study, an examination was conducted 

to ascertain whether five types of discourse knowledge—substantive, procedural, motivational, 

basic story elements, and irrelevant—made a significant and unique contribution to predicting 

second- and fourth-grade students’ story writing performance. The hierarchical regression 

analyses revealed that the collective contribution of the five types of discourse knowledge 

significantly predicted overall story writing quality, quantity, and lexical diversity. In the 

subsequent subsections, some prominent macrostructural elements are discussed through 

empirical findings.  

Effectiveness of text structure 

Toulmin’s framework of argumentation has predominantly focused on the field-invariant 

features of an argument by highlighting its six structural elements. However, there exists limited 

understanding of the effectiveness of arguments constructed by students even when they have 

adhered to the basic argument structure in their writing. For example, Clark and Sampson (2007) 

found that students’ arguments frequently included incorrect scientific concepts, despite 
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exhibiting a relatively sophisticated argument structure. This discovery aligns with much other 

scholarly research that emphasizes the structure of arguments without delving into the content of 

the argumentation (D. Liu & Wan, 2020; P. Stapleton & Wu, 2015; Zhang, 2018). In response to 

this gap, scholars in the field of formal reasoning and argumentation have proposed three 

criteria–acceptability, relevance, and sufficiency/adequacy–to assess the soundness of arguments 

(Bickenbach & Davies, 1996). Acceptability pertains to premises that are reasonable to accept as 

true; relevance is a prerequisite for something serving as evidence for the conclusion; and 

sufficiency/adequacy implies that all premises, considered collectively, should provide enough 

support to justify belief in the conclusion (see Crossley et al., 2023, for more details). Various 

schemes illustrating different degrees of detail for assessing the quality of reasoning have also 

been proposed (Erduran et al., 2004; Means & Voss, 1996). 

These criteria provide insightful implications for distinguishing between effective and 

ineffective persuasive writing. Firstly, it is essential to present ideas in a manner that effectively 

supports viewpoints, acknowledges alternate perspectives, and illustrates the limited 

persuasiveness of alternate arguments through comparison to the main arguments. Secondly, the 

quality of reasoning in arguments should be relevant, accurate, and structurally logical. In other 

words, both surface structure and substantive content need consideration when evaluating the 

overall quality of a persuasive or argumentative essay. Sandoval and Millwood (2005) provided 

insight into the coordination and quality of claims and evidence. Proficient use of structural 

elements in written argumentation reflects students’ tacit understanding of the meaning of these 

elements and how they support specific claims. Therefore, the orchestration of claims and 

evidence serves as a cognitive skill signifying an understanding of the data or concepts that 

underlie claims. More importantly, it is part of a broader social practice employed to persuade an 
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audience. Students’ argumentation and explanations thus mirror their ideas about what makes an 

argument persuasive to their intended audience. 

Tone 

Tone, in the realm of writing, refers to the use of language tailored to the audience by 

incorporating appropriate seriousness and markers of politeness and degree of certainty 

(Kilgannon, 2022). The CCSS for ELA encompass language standards that emphasize “effective 

choices for meaning or style” (CCSS, 2010; Aull, 2015). Writers are tasked with maintaining an 

appropriate tone that considers the potential audience to mitigate resistance. In persuasive 

writing, the tone serves to convince the audience to align with the author’s perspective, taking on 

an assertive, passionate, or even aggressive quality (Hinkel, 2003; Ho & Li, 2018). The goals of 

the audience influence various aspects of writing tone, prompting the use of respectful, formal 

language, markers of politeness, and qualifications. For instance, Midgette, Haria, and 

MacArthur (2008) present criteria for evaluating the tone of persuasive essays written by fifth- 

and eighth-grade students, illustrating how the use of respectful, formal language and markers of 

politeness significantly influences essay coherence and audience engagement. Notably, their 

study reveals that girls scored higher than boys in persuasive tone, demonstrating greater 

evidence of adapting language to be acceptable to the reader, resulting in a tone that is more 

respectful and less prone to rudeness or expressions of anger.  

Discourse markers 

In persuasive writing, students are expected to adhere to specific language conventions 

and employ organizational markers (Dobbs, 2014; Uccelli et al., 2013) that are precise and 

suitable for the communicative context of discussing issues and arguments, albeit not overly 

specialized to be heavily discipline-specific (Bailey, 2007). Even very young students have 
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demonstrated attempts at utilizing complex language with discourse markers when engaging in 

persuasive writing (Nippold et al., 2005).  

While limited studies have specifically analyzed proficiency in linguistic conventions 

marking textual organization within persuasive writing, an array of factors has been identified as 

contributors to higher quality writing, such as the use of cohesive devices (Crowhurst, 1980), 

rhetorical devices (Connor, 2004), and hedges and (Alward et al., 2012; Durik et al., 2008). In a 

study focusing on the academic persuasive writing of high school students, Uccelli, Dobbs, and 

Scott (2013) found that organizational markers indicating sequences of ideas and certain markers 

of stance, linguistic indicators conveying attitudes toward propositions, contributed to overall 

writing quality beyond the impact of lexical and syntactic variables. This current study aims to 

extend these findings and address a research gap by closely examining the academic language 

resources that middle school students employ in their persuasive writing. 

2.4.2 Issues and Concerns 

The assessment of writing has persistently presented challenges for educators and 

researchers (Fernsten & Reda, 2011; Huot, 1990; Slomp, 2012; Warschauer & Grimes, 2008), 

with significant concerns revolving around the complex nature of writing, the constrained size of 

educational datasets, issues related to scoring validity, and the absence of direct implications for 

instructional practices. Specifically, the growing prevalence of automated essay scoring 

techniques over the past decade, which compels a shift towards reliance on large-scale datasets 

and machine-driven algorithms and a departure from the traditional reliance on human raters, has 

sparked skepticism regarding the robustness and effectiveness of contemporary approaches to 

writing assessment (Deane, 2013; Hannah et al., 2023; Wang & Troia, 2023b).  
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The primary cluster of concerns is derived from the fact that writing, by its nature, is a 

complex, recursive, and sociocognitive activity. This complexity makes it challenging to capture 

the intended purpose of writing and may also indicate a lack of effective writing constructs 

involved in measurement to comprehensively assess writing. Deane (2012) proposed a way 

forward toward a sociocognitive approach to writing analysis. One avenue involves refining the 

restricted constructs currently involved in automated assessment systems to replicate human 

scoring in high-stakes contexts, while another pathway suggests that a richer conception of 

writing should be drawn from various sources that consider the social and cognitive dimensions 

of writing, as suggested by Flower (1994) and Hayes (2012). The constrained viewpoints in 

writing assessment may also be attributed to the inclination of researchers to predominately 

concentrate on scrutinizing microstructural elements, which are frequently identified as 

responsive to developmental changes across all K-12 grade levels (R. Berman & Verhoeven, 

2002) and are deemed more straightforward to identify and extract, in contrast to macrostructural 

features that represent the abstract portrayal of the global meaning structure (Sanders & 

Schilperoord, 2006) and that prove to be a more challenging aspect to capture. 

To capture the complexity of writing, a variety of scoring rubrics such as primary trait, 

analytic, and holistic scoring rubrics are considered for assessing writing quality in distinct ways. 

However, ongoing debates persist regarding the preferred rubric choice, with challenges 

emerging from each method. For instance, analytic scoring, associated with specific rhetorical 

situations and distinct dimensions, encounters difficulties as these dimensions often interrelate 

rather than being clearly distinguishable (Huot, 1990; Lloyd-Jones, 1977). This interdependence 

poses validity concerns for raters and may necessitate a time-consuming and costly scoring 

process (G. A. Troia et al., 2019). Trait scoring rubrics typically employ dichotomous criteria to 
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determine the presence or absence of construct-relevant ideas in student responses (Kaldaras & 

Haudek, 2022). Nevertheless, this scoring schema may give rise to challenges associated with 

imbalanced data (Wang et al., 2024). Conversely, holistic scoring utilizes multi-leveled coding 

schemes with the objective of delivering a singular, overall judgment of students’ writing quality 

(Jescovitch et al., 2021). Yet, this approach may confront issues related to data granularity, 

especially concerning polar scoring levels, where students’ scores often cluster around the middle 

levels. To conclude, the selection of rubrics often leads to controversy, with insufficient evidence 

supporting the universal superiority of one scheme over another in human coding (Tomas et al., 

2019). The choice of a scoring method is highly contingent upon the specific writing constructs 

being assessed and the intended purpose of the overall judgement, yet challenges persist in terms 

of scoring validity and reliability regardless of the chosen scheme.  

Another cluster of concerns centers around the perceived absence of a clearly articulated 

framework for recognizing the interconnections between assessment results and their 

implications for instruction and broader assessment systems. Factors such as types/genres (e.g., 

integrated vs. independent, narrative vs. non-narrative) and purposes of writing assessment tasks 

(e.g., formative vs. summative), along with the location/situation of how the writing activities 

occur (in schools vs. outside-of-school, naturalistic vs. guided), contribute to the diversity and 

complexity of writing assessment. Educators proficient in writing assessment understand the 

purpose of the assessment, the appropriateness of instruments and conditions, and the 

interpretation of assessment data (Inbar-Lourie, 2008). Educators can also play a crucial role in 

bridging the research-practice gaps in writing assessment and shaping assessments aligned with 

realistic classroom contexts. GenAI offers educators a powerful tool for developing “mentor 

texts” that align closely with specific rubrics. This functionality enables educators to illustrate 
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various measurable aspects of writing at both micro- and macrostructural levels in a concrete and 

accessible manner. However, translating assessment data into actionable insights for teachers can 

be challenging. Research has shown that assessment data is intertwined with the thoughts and 

actions of educators, particularly as they model their reasoning processes for students (Ball, 

2000; Schunk & Zimmerman, 2007). Hence, assessment data can be conceptualized as a 

mediator of teaching performance. In the discussion section, this topic will be further explored, 

focusing on how different types of assessment data can prompt educators to customize their 

instructional practices effectively to address specific writing features.  

Contemporary writing assessments often prioritize enhancing modeled performance on 

scores rather than providing constructive feedback, which is a significant reason why 

practitioners may perceive writing assessment as less informative due to inadequate feedback to 

guide students’ improvement (Wilson et al., 2021). Additionally, some assessments encounter 

ethical concerns and measurement bias as they may, intentionally or unintentionally, overlook 

variations related to students’ language background, presentation of presumed racial/ethnic 

identity, and beliefs or conventions specific to a given cultural context (Fan et al., 2019), 

particularly among underrepresented student groups. 

In addition to the aforementioned general measurement issues in writing, the evaluation 

of persuasive essays presents some specific challenges. A critical concern lies in determining the 

validity of persuasive discourse structures, including the assessment of evidence strength, logical 

reasoning, and emotional appeal. Raters often apply distinct criteria in evaluating what qualifies 

as a compelling persuasive element (Christian & Iryna, 2014). Some may utilize a lexicon of 

surface cue words and phrases to delineate arguments at the sentence level, aiding in the 

evaluation of individual argument content and enriching the feature set for precise score 
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determination (Burstein et al., 1998). However, this approach has been heavily criticized, 

asserting the necessity for a more fine-grained analysis of arguments that includes argument 

components and their interrelations. Another interesting facet of persuasive writing assessment is 

its context-dependence, where the effectiveness of persuasive strategies varies based on the 

intended audience. Research has identified that secondary students tend to employ logical 

appeals with more persuasive power than pathetic or ethical appeals (DURST et al., 1990; 

Shermis et al., 2013).  

2.5 RATIONALE FOR THE STUDY 

In this section, the rationale for the study is presented alongside identified research gaps 

and insights gained from the literature review. Additionally, the educational significance that the 

study aims to achieve is discussed.  

2.5.1 Research Gaps 

Given the documented significance of persuasive writing within secondary education for 

a diverse student population (Beyreli & Konuk, 2018; Boyle & Hindman, 2015; Thomas, 2014) 

and its implications for preparing students for postsecondary education and beyond (L. Aull, 

2015; Garwood & Van Loan, 2019), this study aims to contribute to the expanding body of 

literature on persuasive writing assessment and inform pedagogical practices in this domain. The 

study seeks to address several critical gaps in the extant literature. Firstly, there is a dearth of 

scholarship examining students’ writing performance at the middle or secondary school levels, 

particularly in the realm of persuasive writing. Much of the literacy research on existing 

diagnostic measurement historically prioritizes reading over writing (see Paul & Clarke, 2016, 

for a review), and narrative over non-narrative essays (see Graham, Kim et al., 2023, for a 

review). Additionally, research concentrating on evaluating writing abilities among secondary 
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school students often prioritizes objectives such as determining course placement, ensuring 

program effectiveness, or driving curriculum reform (Bishop et al., 2015; Graham et al., 2005; 

McKeown et al., 2020), rather than identifying students who may be struggling with writing. 

These scholarly observations suggest that the available literature in evaluating and addressing 

writing difficulties among secondary students is lacking compared to the extensive literature 

focused on reading, native writing tasks, and writing assessment for purposes other than problem 

identification. 

Another gap in the extant research can be identified as the predominant focus of existing 

diagnostic measures on assessing microstructural elements of writing, such as spelling, 

punctuation, capitalization, and grammar, rather than macrostructural elements such as 

organization and text content. Specifically, in the realm of persuasive writing, prior studies have 

primarily concentrated on evaluating the presence or absence of main elements according to 

Toulmin’s model of argument (F. I. B. A. Aziz & Said, 2020; CRAMMOND, 1998; Junaidah 

Januin, 2021; Sundari & Febriyanti, 2021) without adequately addressing whether these elements 

are effectively articulated. Researchers have noted instances where students may include main 

elements but fail to do so in a manner that enhances persuasiveness (P. Stapleton & Wu, 2015). 

Moreover, existing research tends to neglect the examination of genre-specific features of text, 

such as appropriate persuasive tones and content richness. This oversight is significant given that 

writing standards and admissions tests for college students, such as the ACT, SAT, and GRE, 

place greater emphasis on macrostructural skills than microstructural skills. Consequently, the 

current diagnostic measures in secondary writing inadequately assess the types of writing skills 

that hold utmost importance in university-level writing (Richards, 2013).  
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There is a dearth of research delineating the characteristics of typical and atypical writing 

in secondary school students. While some studies offer norms for various aspects of typical 

secondary level writing (R. Andrews et al., 2009; Uccelli et al., 2013), these norms often exclude 

students who receive special education services. As a result, it becomes challenging to utilize 

existing literature to discern differences between secondary school students with and without 

writing difficulties. A differentiated approach to writing remediation is essential for addressing 

the diverse needs of learners with varying learning profiles. In this context, GenAI has the 

potential to customize remediation plans tailored to the specific levels of individual students. 

Current research also neglects to investigate whether students’ sociocultural backgrounds, such 

as English learner status, might affect the association between writing constructs and essay 

scores.   

In terms of measurement domain, much prior research has concentrated on directly 

examining the raw writing constructs derived from measurement tools and mathematical 

algorithms. However, this approach may not comprehensively address all writing constructs in a 

single investigation and may potentially lead to issues such as multicollinearity, overfitting, and 

unreliability. It is crucial to mitigate these challenges by reducing the multidimensional nature of 

writing constructs and categorizing them into latent structures that can be validated through 

statistical testing methods such as structural equation modeling or machine-based clustering 

algorithms. In this study, this aspect will be addressed by condensing the numerous writing 

measures into several latent writing constructs related to microstructural elements (word, 

sentence, discourse) and macrostructural elements (content, tone/style, structure) through 

exploratory and confirmatory factor analyses. This process will further elucidate the significance 

of these measures specifically tailored for persuasive writing. 
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Finally, it is also worth noting that the current zeitgeist of integrating GenAI into 

schooling has prompted educators to carefully consider its ethical and effective use within 

educational settings. Given the paramount importance of writing in both learning and assessment 

processes, and the strong alignment of writing tasks with GenAI capabilities, there is a critical 

need to make thoughtful and well-informed decisions regarding how GenAI should be leveraged 

to support the development of students’ writing skills (Escalante et al., 2023). In today’s context, 

with the widespread growth of GenAI in various domains, it can be chaotic as GenAI and its 

subfields (e.g., prompt engineering) typically necessitate substantial resources and often bewilder 

users due to their inherent flaws and may potentially undermine public trust. Many scholars are 

endeavoring to explore how to best harness the capabilities of GenAI (Chan & Hu, 2023). The 

study objectives align with discourse on this topic by aiming to contribute insights on structuring 

prompts and optimizing the efficacy of GenAI in educational contexts. This endeavor 

encompasses considerations of ethical usage, effective integration into pedagogical strategies, 

and optimizing its potential benefits for students’ writing development through organizing input 

prompts based on the derived MMFP. 

2.5.2 Educational Significance 

The current study holds significant implications for both researchers and educators in 

advancing the literature on persuasive writing skills among diverse student populations, 

considering factors such as gender, English language proficiency, receipt of special education 

services. Furthermore, this study aims to develop an automated feedback system to inform 

writing performance for diverse student groups. The anticipated findings are poised to contribute 

in the following key ways.  
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Firstly, insights into the writing characteristics influencing student writing quality will 

deepen understanding of secondary school students’ writing abilities, particularly concerning 

common writing activities at this educational level. Additionally, organizing discrete writing 

measures into multidimensional latent writing constructs using exploratory and confirmatory 

methods will bolster subsequent model development and applications, such as validating an 

automated feedback system for delivering differentiated and individualized feedback and 

instruction within a formative assessment context. It is also important to consider how feedback 

is delivered through various practices (e.g., process, strategy, vocabulary, and grammar 

instruction) and pedagogical tools (e.g., graphic organizers, mentor texts). The discussion section 

will further explore how GenAI-based learning systems could be utilized to promote writing and 

examine the potential achievements of our students with this support. Establishing evidence of 

the importance of writing measures is a crucial validation step, as formative writing assessments 

play a pivotal role in furnishing educators with actionable information about students’ current 

and projected levels of achievement. 

Secondly, the study’s comparisons between typical secondary school students and those 

who receive special education services aim to shed light on the similarities and differences 

between these groups, aiding in the identification of atypical writing patterns at the middle and 

high school levels. Furthermore, the study’s exploration of persuasive writing features linked to 

overall writing quality and differences in writing performance across groups seeks to guide 

educators in targeting specific features during intervention to yield significant improvements in 

overall writing proficiency.  
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Chapter 3: Methodology 

Chapter Three provides a comprehensive overview of the study’s objectives and thorough 

descriptions of the persuasive writing corpus to be used and the analysis methods to be employed 

to achieve the objectives. The mechanisms used to prepare the corpus and extract data for 

analysis are described in detail.   

3.1 OBJECTIVES AND RESEARCH QUESTIONS  

Building on theoretical frameworks and empirical evidence discussed in Chapter Two, 

this study investigates the complex dynamics of the existence and effectiveness of language use 

at both microstructural and macrostructural levels, and its significant impact on the persuasive 

writing performance of secondary students. The study is descriptive in nature and employs 

secondary data analysis of an extant large-scale dataset—the PERSUADE 2.0 corpus. The study 

examines the underlying writing constructs within this corpus, which are then employed to 

develop and fine-tune a large language model–Bidirectional Encoder Representations from 

Transformers (BERT)–aimed at predicting human-generated holistic scores of the corpus 

persuasive essays. Additionally, the study addresses the variability in writing constructs and 

persuasive performance among diverse student populations. The resulting language model is 

designed to predict the holistic scores of GPT-revised essays based on specific prompts informed 

by insights from the MMFP (i.e., Microstructural and Macrostructural Features that underpin 

Persuasive written composition) system. These scores are subsequently evaluated to ascertain 

any improvement compared to the original student essay scores. The study addresses the 

following research questions:  

1) What textual attributes serve as optimal indicators of persuasive essay quality in 

secondary school students?  
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2) To what extent do secondary students with different special needs status (i.e., students 

with and without an Individualized Education Plan [IEP]) exhibit significant differences in their 

holistic writing scores across latent writing attributes?  

3) Do essays revised by GPT, a Generative AI application, utilizing prompts derived from 

factor analysis, demonstrate enhanced performance compared to the original essays written by 

students? 

3.2 DATASET 

The K-12 CCSS for ELA highlights the cultivation of argumentation skills in writing 

instruction, emphasizing the need for students to achieve proficiency in using valid reasoning 

and providing relevant and sufficient evidence to support claims. Additionally, more 

sophisticated components such as counterarguments and qualifiers are deemed essential in the 

compositions of proficient writers. However, the 2012 NAEP Writing Report Card reveals that 

only about 25% of students’ argumentative essays were deemed competent. In alignment with 

the current educational paradigm, which acknowledges the potential of machine-based 

algorithms and Natural Language Processing (NLP) tools to analyze large-scale corpora and gain 

nuanced insights into students’ writing performance and capabilities, Dr. Scott Crossley and his 

research team developed and curated the PERSUADE 2.0 (Persuasive Essays for Rating, 

Selecting, Analyzing, and Understanding Discourse Elements) corpus. This corpus provides 

educational researchers with the opportunity to conduct quantitative analyses aimed at 

understanding the connections between the production of argumentative elements, their 

effectiveness, and quality ratings, with the expectation that such investigations will offer 

valuable insights informing classroom practices and assessment. 
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In recent years, approximately 80% of the PERSUADE 2.0 corpus has been made 

publicly accessible on the Kaggle website1, specifically for two NLP related competitions as part 

of the Feedback Prize series. The corpus comprises a collection of ~25,000 argumentative essays 

composed by students in grades 6 through 12 from various regions across the United States. 

Baffour, Saxberg, and Crossley (2023) provided a comprehensive summary of the outcomes 

stemming from the application of large language model solutions within the Feedback Prize 

competition series. Their analysis highlighted the identification of potential biases present in the 

distribution of labels representing outcomes, agreement levels, and demographic representation 

within the corpus. Such insights underscore the ongoing commitment of educational assessment 

researchers to refine and enhance algorithmic models based on the PERSUADE 2.0 corpus. Of 

particular emphasis in these endeavors are considerations related to student demographic factors, 

including but not limited to race/ethnicity, SES, English language proficiency, and participation 

in special education. This study is driven, in part, by the imperative to explore and mitigate such 

considerations within algorithmic modeling frameworks. This study conducts a secondary data 

analysis of the PERSUADE 2.0 database, which contains annotated essays including evaluations 

of argumentative elements, argumentation effectiveness, and holistic writing quality (ranging 

from 1 to 6).  

3.3 PARTICIPANTS 

More than 25,000 persuasive essays (both source text independent and dependent essays) 

were gathered for this corpus. Within the dataset, a specific subset of 20,823 textual records 

incorporates detailed demographic information for individual student writers. The primary focus 

of this study centers on this particular subset of 20,823 essays for secondary analysis, given the 

 
1 https://www.kaggle.com/datasets/nbroad/persaude-corpus-2  

https://www.kaggle.com/datasets/nbroad/persaude-corpus-2
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critical importance of demographic information in achieving the research objectives. It is 

important to note that within this subset of 20,823 essays, a total of 2,979 essays, which contain 

all the necessary features for this investigation, were utilized to conduct factor analysis and 

multigroup structural equation modeling. The remaining essays were used to validate the large 

language model for score prediction and to prompt GPT for essay revision.  

The demographic data encapsulates variables including gender (categorized as male or 

female), grade level (categorized as grade 6, 8, 9, 10, 11, or 12), English language learning status 

(categorized as native English speaker or non-native English speaker), race/ethnicity group 

(categorized as White, Black/African American, Hispanic/Latino, Asian/Pacific Islander, 

American Indian/Alaskan Native, or Multiracial/Other), socioeconomic disadvantage status 

(categorized as economically disadvantaged or not economically disadvantaged; per Crossley, 

Baffour et al., 2022, economic disadvantage refers to student eligibility for federal assistance 

through programs such as free or reduced-price school meals, Temporary Assistance for Needy 

Families [TANF], or Supplemental Nutrition Assistance Programs [SNAP]), and student special 

education status (categorized as having an IEP or not). The exploration of group differences 

grounded in these demographic factors aims to provide valuable insights into distinct sub-

populations, thereby contributing to a nuanced understanding of the persuasive essays within the 

dataset.  

Table 3-1 presents a pivot table delineating the demographic characteristics of students 

included in the corpus disaggregated by grade level. Male and female students are nearly evenly 

distributed, with male students comprising 48.8% (n = 10,170) and female students constituting 

51.2% (n = 10,653) of the cohort. The students are predominantly native speakers of English 

(89.4%). In terms of racial/ethnic composition, 45.1% identify as White, while the remainder 
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constitutes various Black, Indigenous, and People of Color (BIPOC) groups. A majority of 

students, 53.5%, are identified as not economically disadvantaged. Additionally, 12.9% of 

students were identified as having a disability and received corresponding special education 

services during the data collection period. In terms of grade distribution, the cohort includes 

1,372 sixth graders (6.6%), 9,629 eighth graders (46.2%), 20 ninth graders (0.1%), 6,315 tenth 

graders (30.3%), 3,083 eleventh graders (14.8%), and 404 twelfth graders (1.9%). 

Acknowledging the insufficient representation of grade 9 students, which may potentially 

compromise the reliability of findings, the decision was made to exclude all pertinent data and 

corresponding information pertaining to grade 9 to mitigate this issue.  

Chi-square tests were conducted to compare demographics across different grade levels 

(see Table 1). The results indicated significant differences in gender, English language learner 

status, race/ethnicity, socioeconomic status, and special education status among the five grade 

levels. The null hypotheses were rejected, and we can reasonably infer that the distribution of 

students across grades in terms of demographics did not adhere to a uniform pattern.  

It is important to note that, to address the first research question, which aims to 

understand the underlying constructs of persuasive writing essays, a subset of 2,977 essays were 

selected after excluding grade 9 data (n = 2 in the subset). This subset includes all the observed 

language features necessary for conducting factor analysis. No missing data were detected. The 

remaining subset will be utilized to address the second research question, which focuses on 

validating the efficacy of providing improved/revised essays. These essays are derived from 

those written by peers who scored one point higher on the 6-point scale and from GPT-generated 

essays prompted based on the MMFP results. 
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Table 3-1 Demographics and Descriptive Statistics for the Full Sample 

 Grade 6 Grade 8 Grade 10 Grade 11 Grade 12 Grand Total Chi-square tests 

Gender        

Male 633 4573 3158 1588 203 10170 

2(4) = 23.563, p < 0.001 Female 739 5056 3157 1495 201 10653 

Grand Total 1372 9629 6315 3083 404 20823 

ELL Status        

Native English Speakers 1338 9163 5207 2835 24 18584 

2(4) = 3761.4, p < 0.001 Non-native English Speakers 30 455 990 248 380 2106 

Grand Total 1372 9629 6274 3083 404 20782 

Race/Ethnicity Group        

White 732 4741 2600 1290 22 9388 

2(4) = 2390, p < 0.001 

Black/African American 205 1532 1337 538 55 3682 

Hispanic/Latino 332 2230 1701 662 272 5198 

Asian/Pacific Islander 40 722 338 440 50 1591 

American Indian/Alaskan Native 9 55 50 6 0 120 

Multiracial/Other 54 349 289 147 5 844 

Grand Total 1372 9629 6315 3083 404 20823 

SES Status        

Not Economically Disadvantaged 672 5507 2691 2113 121 11116 

2(4) = 8033, p < 0.001 Economically Disadvantaged 700 4058 3624 970 283 9643 

Grand Total 1372 9565 6315 3083 404 20759 

SPED Status        

Not Identified with Disability 1299 8799 4955 2730 336 18135 

2(4) = 657.56, p < 0.001 Identified with Disability 73 830 1360 353 68 2688 

Grand Total 1372 9629 6315 3083 404 20823 

Note. The Race/Ethnicity variable was recoded into a binary format (i.e., White as 0 and all other categories as 1). This recoding was necessary because the chi-square test 
results were not valid due to some cells having fewer than 10 cases, which is inadequate for a reliable chi-square analysis. 
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3.4 CORPUS VARIABLES  

3.4.1 Task Types 

In addition to participant variables, the PERSUADE 2.0 corpus encompasses several 

variables pertinent to the writing task. Specifically, one such variable concerns the type of 

writing assignment. The corpus comprises two distinct sub-corpora, consisting of source-based 

essays (n = 11,953) and independent essays (n = 8,870). Source-based writing requires students 

to refer to a provided text, whereas independent writing excludes this requirement. While 

students may not be required to have specific background knowledge for the independent set, 

their general understanding of the topic could still influence their writing process.   

3.4.2 Prompt Types 

Concerning prompt types, the source-based set derives from seven distinct writing 

prompts and related sources, while the independent set is derived from eight unique writing 

prompts. In total, there are 15 unique writing prompts, and all prompts and sources are accessible 

within the PERSUADE 2.0 corpus.  

3.4.3 Word Count 

 Word count information is also available in the corpus. The mean word count for all 

students’ persuasive essays is 409.23 words, with a standard deviation of 235.78. The minimum 

word count is 146 words, and the maximum is 8,922 words. According to Crossley, Baffour et 

al.’s (2022) description, the PERSUADE corpus was restricted to essays with a minimum of 

~150 words, of which 75% of the words had to correctly spelled American English words. These 

filters were implemented to ensure adequate coverage of argumentative discourse elements in the 

texts and to guarantee that the essays contained sufficient recognizable language output for the 
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development of NLP features to inform algorithm development, as outlined by Crossley & Kyle 

(2018).  

3.4.4 Discourse Elements 

An integral aspect of the PERSUADE 2.0 corpus lies in its incorporation of annotations 

for essential discourse elements within each essay. The process of annotating essays for key 

argumentative elements is of importance to advancing our understanding of the argumentative 

strategies employed by student writers. Furthermore, annotations also help discern how these 

features contribute to successful writing. To facilitate this annotation process, the PERSUADE 

research team developed an annotation rubric, which addresses three key dimensions: (a) the 

identification of argumentative elements in essays; (b) the delineation of relations among these 

elements; and (c) the assessment of the effectiveness of the identified elements.  

Every essay in the corpus underwent human annotation to identify argumentative 

discourse elements and their interrelations. Adopting a double-blind rating methodology ensured 

rigorous evaluation, with each essay independently reviewed by two expert raters, and any 

disparities adjudicated by a third expert rater. A comprehensive exposition of the rating process is 

available in Crossley, Baffour et al. (2022). The annotation rubric, specifically designed for the 

identification and evaluation of discourse elements prevalent in argumentative writing, drew 

inspiration from the seminal works of Nussbaum, Kardash, and Graham (2005) and Stapleton 

and Wu (2015). These annotation schemes represent adapted or simplified versions of the 

Toulmin argumentative framework (1958). The discourse elements that were annotated for each 

essay are:  

• Lead – an introduction begins with a statistic, a quotation, a description, or some 

other device to grab the reader’s attention and point toward the thesis.  
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• Position – an opinion or conclusion on the main question.  

• Claim – a reason that supports the position.  

• Counterclaim – a claim that refutes another claim or gives an opposing reason to the 

position.  

• Rebuttal – a claim that refutes a counterclaim. 

• Evidence – ideas or examples that support claims, counterclaims, rebuttals, or the 

position.  

• Concluding Statement – a concluding statement that restates the position and claims. 

3.4.5 Effectiveness Scores for Discourse Elements 

In addition to being labeled as distinct rhetorical and argumentative elements (i.e., 

discourse elements) by expert raters, the corpus also includes effectiveness scores that gauge the 

quality of these argumentation elements. Raters underwent comprehensive training using a 

standardized rubric, where they were tasked with assigning each element a score of effective, 

adequate, or ineffective. A detailed description accompanied each category, providing an 

illustrative example of a discourse element fitting that specific rating.  

Crossley and his research team annotated a total of 159,228 elements, ensuring at least a 

50% overlap. Among these, ~120,000 elements were scored as adequate, ~32,000 as effective, 

and ~6,000 as ineffective. Two inter-rater reliability (IRR) statistics were computed: exact 

agreement and a weighted Cohen’s kappa. The overall exact agreement for all elements stood 

at .718, with specific elements ranging between .68 and .81. Notably, exact agreement tended to 

be higher for source-based dependent essays compared to independent essays. Cohen’s kappa of 

the effectiveness ratings ranged between .17 and .38 for specific elements, demonstrating a 

comparatively lower level of agreement. Once again, Cohen’s kappa exhibited higher values for 
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dependent essays as opposed to independent essays. The overall Cohen’s kappa for effectiveness 

across all elements was .32, indicating a fair level of agreement. In instances of disparities in 

effectiveness ratings, a third expert rater served as an adjudicator to render a final decision. For 

detailed IRR statistics pertaining to PERSUADE 2.0 effectiveness ratings, refer to Crossley, 

Baffour et al.’s preprint paper. 

3.4.6 Holistic Essay Score 

The primary focus of this investigation centers on the holistic essay score, which serves 

as the dependent variable for statistical analyses and for subsequent language model 

development to predict human-assigned scores accurately. The evaluators responsible for 

annotating discourse elements for the corpus essays and assessing the effectiveness of each 

element also holistically scored each essay. In the case of independent essays, raters underwent 

training utilizing a standardized SAT (i.e., Scholastic Aptitude Test) holistic essay scoring rubric 

with a 1 to 6 scale; a score of 6 signifies an essay demonstrating clear and consistent mastery of 

writing. This SAT rubric was slightly adapted for source-based essays with the inclusion of 

evidence from the source as a criterion for writing quality. An example of the wording for an 

essay scored 6 using the independent essay rubric reads as follows: “A typical essay employs 

clearly appropriate examples, reasons, and other evidence to support its position.” In the case of 

the dependent rubric, the wording was adjusted to state: “A typical essay utilizes clearly 

appropriate examples, reasons, and other evidence taken from the source text(s) to support its 

position.” The objective was to align the two rubrics as closely as possible to ensure 

comparability between scores for independent and source-based essays. 

As with the effectiveness ratings, expert raters employed a double-blind rating process, 

with 100 percent adjudication ensuring that each essay received holistic scores from two raters, 
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with a third rater intervening if necessary. Raters underwent training specific to the prompts and 

essay types used in the PERSUADE 2.0 corpus. Interrater agreement before adjudication 

indicated robust agreement among expert raters, with a weighted kappa of .75 and a Pearson r 

value of .75. The holistic scoring rubrics for both independent and source-based essays are 

provided in the Appendix. The overview of the variables included in the PERSUADE 2.0 corpus, 

along with detailed descriptions, is presented in Table 3-2.  

Table 3-2 Labels and Descriptions of All Corpus Variables 

VARIBLE LABEL DESCRIPTOR 
Essay ID essay_id_comp Unique identifier assigned to anonymized essays in the corpus 

Discourse Text full_text Complete text of each essay composed by participating students 
Holistic Essay Scores holistic_essay_score Holistic scores (ranging from 1 to 6) assigned by human raters for each 

essay 
Word Count word_count Total number of written words in each essay 

Task Type Task Task type for each essay (categorized as independent and source-based 
task) 

Gender Gender Demographic information indicating the gender of students (categorized as 
male or female) 

Grade level grade_level Demographic information indicating the grade level of students 
(categorized as Grade 6, 8, 9, 10, 11, 12) 

English Language 
Learning Status 

ell_status Demographic information indicating the non-native English language 
learner status of students (categorized as Yes or No) 

Racial/Ethnicity Group  race_ethnicity Demographic information indicating the race/ethnic group of students 
(categorized by White, Black/African American, Hispanic/Latino, 
Asian/Pacific Islander, American Indian/Alaskan Native, 
Multiracial/Other) 

Socioeconomic Status economically_disadvantaged Demographic information indicating the socioeconomic status of students 
(categorized as economically disadvantaged or not economically 
disadvantaged) 

Student disability status student_disability_status Demographic information indicating whether students have a disability 
requiring an IEP (categorized as having a disability or not having a 
disability) 

Discourse Start Point discourse_start Starting point of the discourse within the essay for identifying each 
discourse type, denoted by a continuous numerical representation indicating 
the location of the first word occurrence within the entire essay 

Discourse End Point discourse_end Ending point of the discourse within the essay for identifying each 
discourse type, denoted by a continuous numerical representation indicating 
the location of the last word occurrence within the entire essay 

Discourse Type discourse_type Discourse components within the chosen excerpt of the full persuasive 
essay, classified into categories of lead, position, claim, counterclaim, 
rebuttal, evidence, concluding statement, or unannotated segments  

Discourse Type 
Numbers 

discourse_type_num Numerical representation assigned to discourse elements within the chosen 
excerpt of the entire persuasive essay. For instance, if claims appear more 
than once in the full essay, they are designated as “claim 1,” “claim 2,” and 
so forth 

Discourse Effectiveness discourse_effectiveness The effectiveness of discourse elements, as evaluated by human raters, 
categorized into three classifications: ineffective, adequate, and effective 
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3.6 DERIVED VARIABLES 

The investigation of varied linguistic features across diverse student populations and the 

optimization of automated essay scoring systems to improve modeling performance serves as the 

impetus for this investigation. In this section, surface-level (i.e., microstructural) and higher 

meaning-level (i.e., macrostructural) attributes are introduced as derived variables. These 

attributes may play a pivotal role in discerning both shared characteristics and differences among 

student groups. Moreover, they may contribute significantly to the development and refinement 

of large language models for precise score prediction to evaluate GPT-revised essays. The 

models are expected to facilitate the implementation of AI revision systems that offer insightful 

revision suggestions to students on their original drafts. 

3.6.1 Microstructural Elements 

In this study, the primary NLP tool employed for textual analysis is the Coh-Metrix 3.0 

language analysis tool, which was utilized to computationally evaluate each essay within the 

corpus. This tool facilitates the extraction of a diverse set of linguistic and textual features, as 

elucidated by McNamara and Graesser (2012). The software computes 108 linguistic and text-

based features, which can be grouped into 11 broad categories reflecting various aspects of 

written language according to Graesser et al.’s (2004) manual. These categories encompass 

descriptive information, text easability principal component scores, referential cohesion, latent 

semantic analysis, lexical diversity, connectives, situation model, syntactic complexity, syntactic 

pattern density, word information, and readability.  

It is important to note that the computation of these features is not arbitrary but rather 

grounded in educational assessment theories. These theories, rooted in discourse comprehension, 

provide substantive evidence that different dimensions of discourse, such as representations, 
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structures, strategies, and processes, can be systematically measured from surface to deeper 

levels of meaning (McNamara et al., 2010). For example, cohesion and coherence in written 

language can play a significant role in text comprehension. Texts with low cohesion are generally 

more easily understood than those with high cohesion; however, including cohesive elements or 

discourse markers in high-cohesion texts can enhance comprehension, particularly for less 

proficient readers (McCarthy et al., 2019). Numerous studies have demonstrated that Coh-Metrix 

indices, including referential cohesion, latent semantic analysis, and incidence of connectives, 

can be used to evaluate cohesion and coherence in essays (McNamara et al., 2014; McNamara & 

Graesser, 2012).  

  The selection of Coh-Metrix indices is also theoretically justified by the levels-of-

language framework positing that a writer’s proficiency is organized hierarchically across the 

subword/word, sentence, and discourse levels of language. Previous studies, as exemplified by 

the work of Wilson, Roscoe, and Ahmed (2017), have confirmed that nine Coh-Metrix measures 

extracted from middle school students’ timed constructed responses align with word-, sentence-, 

and discourse-level skills, maintaining a consistent latent factor structure across grades.  

 In this study, Coh-Metrix (a research version rather than the openly available online tool) 

was used to evaluate the written texts from the constructed persuasive essays available in the 

PERSUADE 2.0 corpus. Each student essay underwent evaluation using the levels-of-language 

framework (refer to Troia et al., 2019 for details). This helps to establish proof of concept for the 

application of automated measures, grounded in the levels-of-language approach, to facilitate the 

assessment of persuasive essays authored by a large student population.  

In this study, a range of measures were extracted from Coh-Metrix 3.0 to potentially 

evaluate writing skills across word, sentence, and discourse levels of language. The selection of 
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these measures was informed by their relevance as demonstrated in Chapter Two on writing 

measurements and analysis, as well as their plausible connection to the three language levels. 

Table 3-3 provides a summary of the selected indices and their interpretations. 

Word-level indices included nine measures that captured the sophistication and diversity 

of students’ word choice and vocabulary: mean syllables per word, measure of textual lexical 

diversity, mean word concreteness, mean word familiarity, mean word frequency, mean word 

hypernymy, mean word imageability, mean word meaningfulness, and mean word polysemy.  

Sentence-level indices included 11 measures that evaluated the syntactic complexity and 

diversity of sentences within students’ texts and syntactic cohesion: mean sentence length, 

standard deviation of sentence length, mean number of words before main verb, mean number of 

modifiers per noun phrase, mean minimal edit distance for all words, mean syntactic similarity 

for all sentences, incidence of agentless passive voice, noun phrase density, verb phrase density, 

negation density, and referential cohesion.  

Discourse-level indices included 20 measures that examined features related to voice and 

perspective, semantic overlap, discourse cohesion, and coherence: incidence of first-person 

pronouns, incidence of second-person pronouns, incidence of third-person pronouns, argument 

overlap for all sentences, argument overlap for adjacent sentences, LSA overlap of adjacent 

paragraphs, LSA overlap of adjacent sentences, LSA given/new information, narrativity Z-score, 

deep cohesion, total words written, the incidence of all connectives, the incidence of causal 

connectives, the incidence of logical connectives, the incidence of adversative and contrastive 

connectives, the incidence of temporal connectives, the incidence of additive connectives, the 

incidence of positive connectives, the incidence of negative connectives, and readability.  
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3.6.3 Macrostructural Elements 

3.6.3.1 Argument structure elements and effectiveness 

The analysis of argument structure and its effectiveness is integral to the study. As 

aforementioned, the PERSUADE 2.0 corpus is characterized by its inclusion of annotations 

pertaining to argument structure and corresponding effectiveness scores (ineffective, adequate, 

effective) assigned by human raters to each identified element within a student persuasive essay. 

These features served as an important cluster of predictors for holistic scores of persuasive essay 

quality. 

3.6.3.2 Content attributes 

Constructing persuasive arguments represents a pivotal skill for students as it facilitates 

the articulation of their thoughts regarding pertinent issues, grounded in their topical knowledge 

derived either through source material or world knowledge (Duschl & Osborne, 2002). The 

entirety of their essays’ content, particularly the arguments employed to articulate their stance, 

holds significance within the realm of literacy (Evagorou et al., 2023). This significance stems 

from the potential to reflect the students’ depth of understanding and mastery of the subject 

matter, as well as their proficiency in synthesizing and analyzing information effectively. Given 

the persuasive nature of the essays, their content also serves to underscore language proficiency 

in conveying ideas with clarity and persuasiveness, both of which are imperative competencies in 

academic and professional domains for secondary-level students. 

 For this study, a text mining approach was utilized to compute the score point level using 

maximum cosine similarity across all score points and within each prompt to represent the 

content of the essay. This extraction method aligns with the approach utilized in Zupanc and 

Bosnic (2017) and Attali (2011). Cosine similarity measures the similarity between document 
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pairs by assessing the angle between their vectors, with values ranging from 0 to 1. A higher 

value signifies greater semantic and content similarity between the documents. Specifically, the 

cosine similarity of each essay was computed with human-assigned holistic scores ranging from 

1 to 6, respectively, resulting in six content feature scores. The maximum cosine similarity score 

was retained as a metric representing the similarity between the target essay and the comparison 

essays. Because there are fifteen different prompts (with three of these prompts excluded because 

their corresponding texts did not contain all necessary features) in the corpus, cosine similarity 

scores were also calculated separately within each prompt. This approach yielded six content 

feature scores, which depict the content similarity between the target essay and the remaining 

essays across various score levels within the same prompt. 

3.6.3.3 Style/Tone 

Sentiment analysis is a field of measurement that investigates attitudes, opinions, and 

emotions directed towards a specific entity (Mostafa, 2017). It delves into the unique and 

evolving tones adopted by individual writers in relation to their subjects or topics (Shermis et al., 

2013). For instance, when a writer intends to express disagreement with a scenario, sentiment 

analysis sheds light on the negativity, positivity, or neutrality inherent in the language used 

(Janda et al., 2019). In the context of automated essay scoring, sentiment analysis assumes a 

significant role, particularly in persuasive essays. Writers, especially in this genre, must articulate 

and substantiate their viewpoints on a subject, wherein the tone and manner of expressing textual 

sentiment significantly impact their writing.  

When analyzing students’ texts in the PERSUADE 2.0 corpus, well-crafted persuasive 

essays clearly articulate the opinion of the student writer and build support for their standpoint 

by expressing relevant ideas and concepts for their argument. Sentiment expressions unveil a 
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writer’s judgments, evaluations, and feelings, likely used to express a preference for a particular 

position or to highlight the shortcomings of an alternative position. Furthermore, a considerable 

body of prior work has indicated variations in persuasiveness and tones across diverse student 

cohorts. Notably, students with disabilities encounter persistent difficulties in the domain of 

persuasive writing (Gleason, 1999; Nippold et al., 2005). For example, a persuasive essay may 

involve choosing a particular stance, developing structured paragraphs that substantiate facets of 

an opinion or argument, and persuading the reader to align with one’s viewpoint (P.-L. Chuang & 

Yan, 2023; Englert et al., 2009). Specific difficulties exhibited by students with disabilities in 

crafting persuasive (argumentative or opinion) essays include adopting an inappropriate narrative 

writing style, using unsupported or nonexistent evidence, overlooking opposing perspectives, 

and presenting an argument that is consistent with the contrary standpoint (De La Paz et al., 

2012; Gleason, 1999; Wissinger & De La Paz, 2020).  

SEntimental ANalysis and Cognition Engine (hereafter, SEANCE) is a sentiment analysis 

tool used for academic discourse that relies on multiple preexisting sentiment, social-positioning, 

and cognition dictionaries. SEANCE offers a user-friendly interface, featuring 254 core indices 

and 20 component indices based on recent advancements in NLP sentiment analysis. Beyond the 

core indices, SEANCE allows for customization, enabling the inclusion of specific parts of 

speech and control for instances of negation. Notably, in SEANCE, any negated target word is 

disregarded within the relevant category. For instance, in processing the sentence "He is not 

happy," the term "happy" would not be counted as a positive emotion word. This methodology 

has demonstrated efficacy in excluding approximately 90% of negated words (Hutto & Gilbert, 

2014).   
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SEANCE also incorporates the Stanford part of speech (POS) tagger (Toutanova et al., 

2003) as implemented in Stanford CoreNLP (Manning et al., 2014). The POS tagger facilitates 

POS-tagged specific indices for nouns, verbs, and adjectives. This is crucial in sentiment 

analysis, as adjectives, verbs, and adverbs may convey unique aspects of sentiment more 

emphatically (Hatzivassiloglou & McKeown, 1997; Hu & Liu, 2004; Subrahmanian & 

Reforgiato, 2008). SEANCE provides reports on both POS and non-POS variables. Significantly, 

many vectors in SEANCE remain neutral regarding POS, allowing accurate processing of poorly 

formatted texts that may pose challenges for a POS tagger.  

In this study, component scores extracted from the SEANCE analysis tool were used to 

measure aspects of emotion, cognition, and social order within the essays. These scores included 

the component score of negative adjectives (NRC negative adjectives, NRC disgust adjectives, 

NRC anger adjectives, GI negative adjectives, Lu Hui negative adjectives), the component score 

of social order (RC ethics verbs, GI need verbs, and RC rectitude words), the component score of 

positive adjectives (Lu Hui positive adjectives, Bader positive adjectives, GI positive adjectives, 

and Laswell positive affect adjectives), the component score of joy (NRC joy adjectives, NRC 

anticipation adjectives, NRC surprise adjective), and the component score of trust verbs (NRC 

trust verbs, NRC joy verbs, and NRC positive verbs). These scores collectively represent the 

tone of the essays. 

Additionally, effective persuasive writing is accessible to readers because writers adhere 

to shared conventions for organization and signal their stance on a particular topic. In their 

research, Uccelli, Dobbs, and Scott (2013) discovered that the frequency of organizational 

markers and epistemic hedges significantly predicted high school students’ persuasive essay 

writing quality. In academic persuasive writing, students are typically expected to employ 
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language markers that are more precise and suitable for the communicative context than those 

used in everyday interactions. However, these markers should not be overly specialized to the 

point of being discipline-specific (Bailey, 2007). To address this requirement, this study draws 

inspiration from the work of Islam, Xiao, and Mercer (2020), who compiled separate lists of 

hedge words, hedging phrases, and booster words. They also developed a rule-based algorithm 

that detects sentence-level hedges using these lexicons. Their NLP package and language marker 

lists are accessible on GitHub and align with the methodology employed in this study. 

Specifically, the stance markers were categorized into booster words (~128), discourse markers 

(~360), and hedge words (~80). Collectively, these stance markers were identified to enrich the 

analysis of students’ persuasive writing. 

The labels and descriptions of all the derived variables involved can be found in Table 3-

3. 
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Table 3-3 Labels and Descriptions of the Study Variables 

 Coh-Metrix Measure Label Brief Description 
Microstructural Elements 

Word Level 
1 Mean syllables per word DESWLsy Word length, number of syllables, mean 
2 MTLD LDMTLD Lexical diversity, MTLD, all words 
3 Mean word concreteness PCCNCz Text Easability PC Word concreteness, z score 
4 Mean word familiarity  WRDFAMc Familiarity for content words, mean 
5 Mean word frequency  WRDFRQc Average word frequency for content words 
6 Mean word hypernymy  WRDHYPnv Hypernymy for nouns and verbs, mean 
7 Mean word imageability WRDIMGc Imageability for content words, mean 
8 Mean word meaningfulness WRDMEAc Meaningfulness, Colorado norms, content words, mean 
9 Mean word polysemy WRDPOLc Polysemy for content words, mean 
Sentence Level 
10 Mean sentence length DESSL Sentence length, number of words, mean 
11 Standard deviation of sentence length DESSLd Sentence length, number of words, standard deviation 
12 Mean number of words before main verb SYNLE Left embeddedness, words before main verb, mean 
13 Mean number of modifiers per noun phrase SYNNP Number of modifiers per noun phrase, mean 
14 Mean minimal edit distance for all words SYNMEDwrd Minimal edit distance, all words 
15 Mean syntactic similarity for all sentences SYNSTRUTt Sentence syntax similarity, all combinations, across paragraphs 
16 Incidence of agentless passive voice DRPVAL Agentless passive voice density, incidence 
17 Noun phrase density DRNP Noun phrase density, incidence 
18 Verb phrase density DRVP  Verb phrase density, incidence 
19 Negation density DRNEG  Negation density, incidence 
20 Referential Cohesion PCREFz Text easability PC Referential cohesion, z score 
Discourse Level 
21 Incidence of first-person pronouns WRDPRP1s Use of first-person pronouns (personalization) 
22 Incidence of second-person pronouns WRDPRP2 Use of second-person pronouns (informality) 
23 Incidence of third-person pronouns WRDPRP3s Use of third-person pronouns 
24 Argument overlap for all sentences CRFAOa Argument overlap, all sentences, binary, mean 
25 Argument overlap for adjacent sentences CRFAO1 Argument overlap, adjacent sentences, binary, mean 
26 LSA overlap of adjacent paragraphs LSAPP1  Semantic similarity across paragraphs 
27 LSA overlap of adjacent sentences LSASS1  Semantic similarity across sentences 
28 LSA given/new information LSAGN Semantic similarity of new text to prior text 
29 Narrativity Z-score PCNARz Text Easability PC Narrativity, z score 
30 Deep cohesion PCDCz  Underlying conceptual cohesion 
31 TWW DESWC  Total Word Written 
32 All connectives CNCAll All connectives incidence 
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Table 3-3 (cont’d) 

33 Causal connectives CNCCaus Causal connectives incidence 
34 Logical connectives CNCLogic Logical connectives incidence 
35 Adversative and contrastive connectives  CNCADC Adversative and contrastive connectives incidence 
36 Temporal connectives  CNCTemp Temporal connectives incidence 
37 Additive connectives  CNCAdd Additive connectives incidence 
38 Positive connectives  CNCPos Positive connectives incidence 
39 Negative connectives  CNCNeg Negative connectives incidence 
40 Readability RDFRE Flesch Reading Ease 

Macrostructural Elements 
Structure 
41 All elements All_elements Occurrences of all annotated elements 
42 Lead Lead Occurrences of annotated lead 
43 Position Position Occurrences of annotated position 
44 Claim Claim Occurrences of annotated claim 
45 Counterclaim Counterclaim Occurrences of annotated counterclaim 
46 Rebuttal Rebuttal Occurrences of annotated rebuttal 
47 Evidence Evidence Occurrences of annotated evidence 
48 Concluding statement Concluding Statement Occurrences of annotated concluding statement 
49 Total effectiveness score for all elements All_effective_score Effectiveness scores of all annotated elements 
50 Effectiveness score for lead Lead_effective Effectiveness scores of annotated leads 
51 Effectiveness score for position Position_effective Effectiveness scores of annotated positions 
52 Effectiveness score for claim Claim_effective Effectiveness scores of annotated claims 
53 Effectiveness score for counterclaim Counterclaim_effective Effectiveness scores of annotated counterclaims 
54 Effectiveness score for rebuttal Rebuttal_effective Effectiveness scores of annotated rebuttals 
55 Effectiveness score for evidence Evidence_effective Effectiveness scores of annotated evidences 
56 Effectiveness score for concluding statement Concluding_Statement_effective Effectiveness scores of annotated concluding statement 
Content 
57 Content score 1 C1 Maximum similarity score between target essay and other essays 

scored as 1 
58 Content score 2 C2 Maximum similarity score between target essay and other essays 

scored as 2 
59 Content score 3 C3 Maximum similarity score between target essay and other essays 

scored as 3 
60 Content score 4 C4 Maximum similarity score between target essay and other essays 

scored as 4 
61 Content score 5 C5 Maximum similarity score between target essay and other essays 

scored as 5 
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Table 3-3 (cont’d) 

62 Content score 6 C6 Maximum similarity score between target essay and other essays 
scored as 6 

Tone/Style 
63 All stance markers all_markers All stance markers incidence 
64 Booster words booster_words Booster words incidence 
65 Discourse markers discourse_words Discourse markers incidence 
66 Hedge words hedge_words Hedge words incidence 
67 Negative adjectives component Negative_adjectives_component Component score of negative adjectives 
68 Social order component Social_order_component Component score of social order 
69 Positive adjectives component Positive_adjectives_component Component score of positive adjectives 
70 Joy component Joy_component Component score of joy 
71 Trust verbs component Trust_verbs_component Component score of trust verbs 
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3.7 RESEARCH DESIGN 

3.7.1 Data Preparation  

3.7.1.1 Subsample for Factor Analysis  

To ensure data readiness and the accurate extraction of language features, a subset of 

2,977 essays underwent screening and correction for common grammatical and mechanical 

errors by two trained human raters. Interrater reliability for this subset was evaluated using a 

two-way random-effects model with absolute agreement intraclass correlation (ICC). The 

resulting ICC values for all identified errors are reported in this subsection. No missing data was 

detected in the subset.  

Normality assessments were performed using absolute values of skewness and kurtosis 

(z-skew and/or z-kurtosis ≥ |3.29| corresponding to an alpha level of 0.001, as suggested by 

Tabachnick & Fidell (2013), alongside P-P plots. Twenty-seven out of 71 variables exhibited a 

clear departure from normality: LDMTLD, PCCNCz, DESSL, DESSLd, SYNLE, 

SYNMEDwrd, DRPVAL, DRNEG, PCREFz, WRDPRP1s, WRDPRP2, WRDPRP3s, LSASS1, 

LSAGN, PCDCz, DESWC, CNCCaus, CNCADC, CNCTemp, CNCNeg, RDFRE, negative 

component score, joy component score, boosters, hedges, discourse markers, and all markers. It 

is worth noting that transforming these variables may result in the loss of their inherent scaling 

properties. Furthermore, these features are exclusively utilized for factor analysis, and the choice 

to fine-tune the estimator parameter (e.g., maximum likelihood with robust standard errors) to 

address non-normality issues has been made. Hence, it was decided not to transform these 

variables to achieve normality.  
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3.7.1.3 Subsample for Constructing and Validating Large Language Model 

 The remaining subset of the data (n = ~22,000) was dedicated to subsequent phases of 

large language model construction and validation. Specifically, two columns within the subset of 

data were used for this purpose: the first column contains the full text data, which serves as the 

foundation for constructing the large language model. No missing data were identified within 

this subset. The second column used is holistic essay score, which serves as the ground truth for 

model validation by assessing modeling performance. This subset is important in addressing 

RQ3. The fine-tuned model resulting from this process is utilized to predict GPT-revised essays 

based on students’ original essays. To revise the essays, students’ original persuasive essays are 

input into GPT, prompting the system to revise the writing while considering research-based 

traits at the levels of language, tone/style, organization, and content. More specific and 

informative traits will be elaborated upon in Chapter Four based on findings from exploratory 

and confirmatory factor analyses. The prediction scores are then compared with the students’ 

original scores to evaluate the increase in performance. 

3.7.2 Analytic Procedure 

The current study involves a secondary data analysis primarily employing social science 

quantitative research methodologies to investigate three key research questions. This study 

follows the principles of Design-Based Research (DBR; Barab & Squire, 2004). The ultimate 

goal is to examine the effectiveness of machine intelligence techniques within the realm of 

secondary writing assessment design. DBR is characterized by relating learning theories to 

practice and showing improvements of student learning in real-world settings (DBR Collective, 

2003). While this study follows the DBR framework for its core processes, the objective of 

determining whether the collected and analyzed data lead to improved student learning through 
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the instructional tools will be a future endeavor. This aspect is further discussed in the future 

direction section of Chapter Five.  

Reeves & McKenney (2012) outlined three core processes of DBR: (a) analysis and 

exploration, (b) design and construction, and (c) evaluation and reflection. This study follows the 

three processes, and the implementation workflow is presented in Figure 3-4.  
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Figure 3-1 Implementation Workflow and Evaluation Methodology 

Stage 1  
Initial Assessment 

Design

Stage 2  
Automated Essay 

Scoring

Stage 3 
Generative AI 

Feedback System
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Exploratory factor analysis for 
feature reduction

Confirmatory factor analysis for 
model validation

Multigroup SEM analysis for 
demographic differences

Microstructural (word, sentence, 
discourse) and macrostructural 

(content, structure, tone/style) 
writing features identification for 

two purposes: (1) building and 
validating essay scoring model and 

(2) crafting GPT prompts for 
feedback provision

RQ1. What textual attributes serve as 
optimal indicators of persuasive essay 
quality in secondary school students? 

RQ2. To what extent do secondary 
students with varying special needs 

status (i.e., students with an 
Individualized Education Plan [IEP]) 
exhibit significant differences in their 
holistic writing scores across latent 

writing attributes? 

Develop a scoring model based 
on BERT by incorporating the 

identified writing features

Validate the scoring model on a 
separate dataset not used in the 

first stage

Persuasive essay scoring model 
based on key writing dimensions, 
designed for future use without 

requiring any feature extraction on 
new dataset

A refined GPT prompt for 
revising students’ persuasive 
essays aligned with expected 

writing constructs, and an 
evaluation of the effectiveness of 

the GPT prompt in enhancing 
essay revisions

RQ3. Do essays revised by GPT, a 
Generative AI application, utilizing 

prompts derived from factor 
analysis, demonstrate enhanced 
performance compared to the 

original essays written by 
students?

Draft GPT prompt for revising 
students’ persuasive essays

Use validated scoring model to 
evaluate GPT-revised essays

Analysis

Methods: Exploratory and 
confirmatory factor 

analysis; Multigroup SEM 
analysis

Workplaces: SPSS, R

Methods: BERT, prompt 
engineering, and model 

evaluation
Workplaces: PyTorch, GPT 

API
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3.7.2.1 RQ1: What textual attributes serve as optimal indicators of persuasive essay 

quality in secondary school students? 

To address RQ1, I begin by employing exploratory factor analysis (EFA) to uncover 

underlying causal structures. This method allows me to discern the number and nature of latent 

variables that explain shared variability among observed indicators (C. D. Stapleton, 1997). In 

the context of the PERSUADE 2.0 corpus, six dimensions of writing are identified: language 

skills at the word, sentence, and discourse levels, as well as content, structure, and tone/style. 

These constructs encapsulate aspects of students’ language use in response to specific prompts, 

thereby reflecting their writing ability through various writing-related measures in their essays. 

In this study, EFA with varimax rotation method is applied to (1) explain the common variance in 

a group of variables (e.g., DESWLsy, LDMTLD, PCCNCz, WRDFAMc, WRDFRQc, 

WRDHYPnv, WRDIMGc, WRDMEAc, WRDPOLc) by associating their observed scores with a 

reduced number of underlying latent factors (e.g., word level complexity) and (2) derive a 

loading matrix that demonstrates how each variable can be expressed as a linear combination of 

the common factors. These loadings (ranging from -1 to 1) are akin to correlations between the 

variables and the latent factor it represents. The study adheres to established guidelines (Costello 

& Osborne, 2019; Osborne, 2014) (Costello & Osborne, 2019; Osborne, 2014) recommending 

attributing items with absolute loadings of 0.5 or greater to the respective factor, with higher 

loadings indicating stronger associations. The varimax rotation method is employed to enhance 

the interpretability of the factors. Additionally, Kaiser-Meyer-Olkin (KMO) values for each 

category are reported to evaluate the adequacy of the data for EFA analysis.  

Following the EFA, confirmatory factor analysis (CFA) is employed to establish evidence 

of construct validity within the hypothesized structural equation model. CFA facilitates the 
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concept proof of discriminant validity (Wilson et al., 2017), which assesses the differentiation 

among hypothesized levels of factors. In this study, CFA is applied across three distinct models, 

aligning with recommendations by Thompson (2000) and Rodgers et al. (2020). The first model 

(Model 1) is a baseline model where all writing variables are loaded onto a single factor (i.e., 

overall writing). The second model (Model 2) examines a two-factor model where all Coh-

Metrix writing variables are loaded onto a microstructural factor, while other writing measures 

are loaded onto a macrostructural factor. The third model (Model 3) to be tested is a higher-order 

model that explores the possibility of six first-order factors (i.e., word, sentence, discourse, 

content, structure, tone/style) explained by the microstructural and macrostructural factors, 

respectively. Diagrams depicting each tested model are provided in Figure 3-1 for clarity and 

reference. 



93 
 

Figure 3-2 Diagrams for the One-factor, Two-factor, and Higher-order Models Evaluated 

3.7.2.2 RQ2: To what extent do secondary students with different special needs status 

(i.e., students with and without an Individualized Education Plan [IEP]) exhibit 

significant differences in their holistic writing scores across latent writing attributes? 

To address RQ2, multigroup structural equation modeling (multigroup SEM) (Byrne, 

2016) facilitates the comparison of multiple samples across various population groups within the 

identified CFA model from RQ1. This analytical method assesses potential significant 

differences among various groups while assuming their equality and examining the concept of 

invariance. In the present study, the comparison focuses on group differences based on special 

education status. 
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3.7.2.3 RQ3: Do essays revised by GPT, a Generative AI application, utilizing prompts 

derived from factor analysis, demonstrate enhanced performance compared to original 

essays written by students? 

To address RQ3, the study follows a two-step approach. The first step involves 

developing and fine-tuning a large language model customized specifically for this study. This 

model combines features derived from the MMFP with contextualized word embeddings from 

the Bidirectional Encoder Representations from Transformers (BERT) model. BERT has been 

widely acknowledged in prior research for its effectiveness in assessing students’ responses to 

essay prompts and questions (Cochran et al., 2024; Z. Liu et al., 2023). It has emerged as the 

industry standard for a variety of NLP downstream tasks, e.g., score prediction. In addition, 

BERT excels as a contextualized embedding model for domain-specific tasks, which provides 

dynamic contextual representations for words within the essay to preserve both semantic and 

syntactic information (Wang et al., 2024). By fusing BERT-derived features with MMFP-derived 

features, the constructed language model aims to reflect students’ comprehension of designated 

topics, thereby enhancing model performance and advancing our understanding of students’ 

writing proficiency in persuasive writing tasks. This resulting language model is then utilized to 

predict students’ persuasive writing scores. 

In the second step, the GPT model is prompted to revise students’ essays based on their 

original writing. A specific prompt, informed by insights from the MMFP model, is designed and 

integrated into the GPT to generate revised essays. It is hypothesized that the GPT-revised essays 

will demonstrate improvements across dimensions such as word usage, sentence structure, 

discourse organization, content coherence, structural clarity, and tone/style, all derived from the 

MMFP. These revised essays are then scored using the large language model developed in Step 
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1. Subsequently, the scores of the students’ original essays are compared with the scores of the 

GPT-revised essays to evaluate any observed improvements. 

3.7.3 Model Fit 

 To evaluate the fit of estimated EFA, CFA, and multigroup SEM models, two measures of 

absolute fit, the Chi-square test of model fit and the Standardized Root Mean Residual (SRMR), 

are employed. These measures gauge the extent to which the model’s parameter estimates align 

with those derived from the observed data. The SRMR quantifies discrepancies between the 

model’s implied correlations and the actual correlations observed in the raw data. It ranges from 

0 to 1, with a value of 0 indicating a perfect fit and values below 0.08 suggesting good fit. 

Additionally, I evaluate model fit using two incremental/comparative measures: the Comparative 

Fit Index (CFI) and the Tucker-Lewis Index (TLI). These metrics assess how well the postulated 

model fits relative to a more constrained baseline model. CFI and TLI values range from 0 to 1, 

with values approaching 0.9 indicating a relatively good model fit (Bentler, 1990). Acceptable fit 

values lie between 0.90 and 0.95, while values above 0.95 are considered indicative of excellent 

fit. Lastly, a parsimony-adjusted measure of fit, the Root Mean Square Error of Approximation 

(RMSEA) is utilized, which considers the number of estimated parameters in the model. RMSEA 

values below 0.05 indicate well-fitting models, while values exceeding 0.10 suggest poor fit. 

 To validate the constructed language model, performance was assessed using mean 

absolute error (MAE), the standard deviation of MAE, and R-squared (R²), each averaged over a 

tenfold cross-validation. MAE measured the average magnitude of absolute differences between 

predicted and actual values, while the standard deviation of MAE indicated model stability. The 

low MAE values suggested that predicted values closely align with actual values, indicating a 
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high degree of accuracy. R², as a goodness-of-fit measure in regression models, represented the 

proportion of variance in the outcome variable—holistic essay scores—explained by the model. 

3.7.4 Software 

 The analysis was conducted using the R Studio (R Core Team) lavvan (Rosseel, 2012) 

and “psych” package (Revelle, 2015) to conduct exploratory data analysis, EFA, CFA, and 

multigroup SEM with maximum likelihood estimation. The Python library Pytorch was utilized 

for training and evaluating BERT deep learning models. The pretrained BERT model can be 

accessed through the Huggingface library. GPT-3.5, accessed via the OpenAI API, is employed 

to revise students’ essays. 
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Chapter 4: Findings and Discussion 

In this chapter, I conduct a thorough analysis of the findings pertaining to the three 

research questions. Additionally, I interpret these results in relation to the existing literature. This 

section aims to offer an in-depth exploration of the results, emphasizing significant patterns and 

themes that have emerged from the data.  

4.1 DESCRIPTIVE STATISTICS 

Figure 4-1 illustrates the distribution of students across various grade levels sampled 

within each holistic score level (ranging from 1 to 6) of the PERSUADE 2.0 corpus. The 

observed data exhibit statistically significant differences from the expected values, as evidenced 

by Chi-square test for independence concerning grade level and holistic score, 2(20) = 6339.3, p 

< 0.001. Hence, the null hypothesis is rejected, indicating that the data do not adhere to an equal 

distribution and that a relationship exists between grade level and holistic essay score. Grade 

level will not be considered as a grouping variable in the subsequent multigroup analysis and 

will be controlled as a covariate in further data analyses.  

 

Figure 4-1 Distribution of Study Sample Across Holistic Score Levels of the PERSUADE 2.0 
Corpus 
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Table 4-1 presents basic descriptive statistics pertaining to the writing measures under 

investigation in the present study.  

Table 4-1 Means and (Standard Deviations) for Writing-Related Variables 

 Grade 6 Grade 8 Grade 10 Grade 11 Grade 12 
Holistic Score 1.92 (0.82) 3.06 (1.18) 2.59 (1.29) 4.85 (1.12) 2.76 (0.72) 
DESWLsy 1.33 (0.08) 1.36 (0.10) 1.46 (0.11) 1.48 (0.12) 1.36 (0.07) 
LDMTLD 68.0 (18.05) 66.9 (17.9) 75.2 (19.5) 73.2 (16.8) 54.7 (15.0) 
PCCNCz 0.17 (1.05) -0.35 (0.94) -0.25 (0.855) 0.03 (0.62) -0.03 (0.80) 
WRDFAMc 582 (6.67) 583 (6.26) 581 (8.78) 584 (5.66) 590 (3.91) 
WRDFRQc 2.58 (0.17) 2.60 (0.15) 2.46 (0.20) 2.45 (0.15) 2.71 (0.15) 
WRDHYPnv 1.46 (0.17) 1.52 (0.18) 1.54 (0.18) 1.52 (0.12) 1.43 (0.16) 
WRDIMGc 404 (23.67) 393 (21.3) 399 (18.7) 405 (13.6) 400 (19.8) 
WRDMEAc 431 (13.2) 425 (15.9) 426 (15.4) 433 (11.3) 433 (13.7) 
WRDPOLc 4.65 (0.44) 4.81 (0.57) 4.26 (0.51) 4.36 (0.47) 4.92 (0.51) 
DESSL 20.0 (20.7) 22.1 (15.7) 24.1 (15.4) 24.4 (6.02) 29.1 (14.6) 
DESSLd 8.9 (4.45) 11.5 (8.6) 11.4 (10.4) 10.2 (5.31) 16.6 (11.8) 
SYNLE 3.54 (3.50) 4.28 (8.48) 4.40 (3.74) 5.14 (1.66) 4.85 (3.02) 
SYNNP 0.67 (0.15) 0.65 (0.16) 0.75 (0.19) 0.74 (0.14) 0.57 (0.14) 
SYNMEDwrd 0.85 (0.15) 0.82 (0.19) 0.86 (0.13) 0.85 (0.12) 0.85 (0.05) 
SYNSTRUTt 0.10 (0.03) 0.07 (0.03) 0.08 (0.03) 0.08 (0.02) 0.07 (0.03) 
DRPVAL 3.53 (4.61) 5.02 (5.73) 5.48 (5.08) 7.07 (5.02) 1.65 (2.48) 
DRNP 358 (34.6) 342 (31.6) 337 (33.2) 332 (23.6) 352 (27.6) 
DRVP 269 (34.9) 272 (41.3) 255 (40.6) 272 (32.7) 287 (40.2) 
DRNEG 8.7 (8.6) 16.7 (10.3) 11.9 (9.1) 13.5 (6.9) 19.6 (10.1) 
PCREFz 0.64 (1.18) 1.14 (1.30) 0.69 (1.19) 1.33 (1.09) 2.12 (1.43) 
WRDPRP1s 21.65 (27.46) 17.91 (18.14) 8.45 (12.4) 7.37 (12.7) 14.4 (14.0) 
WRDPRP2 34.95 (31.94) 22.7 (24.3) 11.3 (15.9) 6.52 (12.7) 23.9 (25.5) 
WRDPRP3s 22.05 (29.11) 3.14 (8.03) 4.08 (8.93) 4.17 (10.1) 5.79 (13.5) 
CRFAOa 0.56 (0.20) 0.60 (0.19) 0.61 (0.20) 0.72 (0.17) 0.74 (0.20) 
CRFAO1 0.64 (0.20) 0.68 (0.19) 0.68 (0.20) 0.80 (0.15) 0.79 (0.18) 
LSAPP1 0.29 (0.16) 0.34 (0.19) 0.40 (0.21) 0.54 (0.15) 0.46 (0.18) 
LSASS1 0.17 (0.08) 0.24 (0.09) 0.26 (0.10) 0.29 (0.08) 0.30 (0.12) 
LSAGN 0.30 (0.06) 0.34 (0.06) 0.34 (0.06) 0.37 (0.04) 0.39 (0.05) 
PCNARz 1.12 (0.66) 1.10 (0.71) 0.56 (0.77) 0.60 (0.62) 1.45 (0.60) 
PCDCz 0.87 (1.19) 1.72 (1.51) 1.10 (1.23) 1.67 (1.06) 2.67 (1.88) 
DESWC 296 (102) 384 (199) 362 (174) 694 (216) 490 (216) 
CNCAll 94 (21.6) 101 (23.1) 92.7 (20.5) 99.1 (15.5) 110 (24.2) 
CNCCaus 28.6 (13.9) 36.4 (15.6) 30.7 (11.9) 36.7 (11.4) 45.1 (16.5) 
CNCLogic 46.4 (17.8) 57.2 (18.3) 51.0 (17.4) 53.8 (12.9) 67.6 (18.4) 
CNCADC 9.9 (8.5) 19.8 (11.0) 20.1 (9.87) 18.1 (7.01) 20.6 (10.0) 
CNCTemp 13.6 (9.26) 14.9 (9.19) 13.7 (8.61) 16.0 (7.35) 11.9 (6.64) 
CNCAdd 50.6 (16.1) 46.4 (15.5) 45.8 (14.7) 46.7 (12.1) 52.7 (13.1) 
CNCPos 87.5 (22.3) 88.1 (22.6) 79.7 (18.9) 87.3 (15.3) 95.1 (23.0) 
CNCNeg 8.6 (8.05) 15.3 (9.38) 15.0 (8.66) 13.8 (6.00) 18.3 (9.22) 
RDFRE 75.1 (12.0) 69.9 (12.1) 59.7 (13.6) 56.8 (11.3) 62.7 (13.9) 
Lead 0.30 (0.46) 0.53 (0.50) 0.51 (0.50) 0.92 (0.28) 0.54 (0.50) 
Position 0.77 (0.42) 1.00 (0.13) .93 (0.27) 1.00 (0.00) 1.00 (0.17) 
Claim 2.34 (2.11) 2.80 (1.61) 2.53 (1.61) 4.31 (1.64) 3.87 (1.86) 
Counterclaim 0.18 (0.50) 0.36 (0.63) 0.23 (0.57) 0.86 (0.86) 0.96 (1.34) 
Rebuttal 0.13 (0.43) 0.27 (0.54) 0.15 (0.45) 0.69 (0.81) 0.25 (0.47) 
Evidence 2.32 (1.42) 2.91 (1.24) 2.22 (1.25) 3.40 (1.15) 3.94 (1.61) 
Concluding statement 0.56 (0.51) 0.83 (0.38) 0.78 (0.42) 0.98 (0.23) 0.82 (0.39) 
Lead_effective 0.23 (0.47) 0.60 (0.73) 0.50 (0.67) 1.38 (0.71) 0.43 (0.50) 
Position_effective 0.67 (0.54) 1.08 (0.58) 0.81 (0.62) 1.59 (0.48) 0.83 (0.31) 
Claim_effective 0.70 (0.58) 1.38 (0.88) 0.85 (0.62) 1.59 (0.48) 0.83 (0.31) 
Counterclaim_effective 0.13 (0.33) 0.30 (0.54) 0.20 (0.49) 0.96 (0.84) 0.45 (0.49) 
Rebuttal_effective 0.09 (0.28) 0.23 (0.50) 0.14 (0.43) 0.78 (0.85) 0.22 (0.41) 
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Table 4-1 (cont’d) 

Evidence_effective 0.43 (0.44) 1.01 (0.61) 0.75 (0.60) 1.58 (0.53) 0.70 (0.31) 
Concluding_statement_effective 0.50 (0.56) 0.83 (0.70) 0.77 (0.70) 1.54 (0.60) 0.63 (0.52) 
C1 0.29 (0.06) 0.27 (0.01) 0.30 (0.08) 0.26 (0.04) 0.29 (0.04) 
C2 0.33 (0.06) 0.33 (0.01) 0.32 (0.08) 0.37 (0.07) 0.36 (0.06) 
C3 0.36 (0.06) 0.34 (0.02) 0.35 (0.09) 0.39 (0.07) 0.37 (0.06) 
C4 0.37 (0.07) 0.36 (0.00) 0.37 (0.10) 0.42 (0.08) 0.36 (0.06) 
C5 0.38 (0.08) 0.34 (0.10) 0.38 (0.11) 0.44 (0.07) 0.34 (0.06) 
C6 0.39 (0.09) 0.34 (0.10) 0.37 (0.10) 0.45 (0.07) 0.34 (0.06) 
All_markers 10.2 (7.6) 18.4 (12.2) 16.3 (10.3) 31.1 (12.3) 18.3 (9.33) 
Booster_words 1.99 (2.11) 2.71 (3.00) 2.63 (2.40) 4.51 (3.52) 2.37 (2.30) 
Discourse_markers 0.62 (1.11) 1.51 (2.06) 1.51 (1.83) 4.39 (3.15) 1.06 (1.65) 
Hedge_words 7.6 (6.25) 14.2 (9.51) 12.2 (8.16) 22.2 (9.60) 14.9 (7.83) 
Negative_adjectives_component -0.58 (0.94) -0.40 (0.89) -0.07 (0.87) -0.60 (0.61) -0.67 (0.60) 
Social_order_component 0.51 (0.15) 0.55 (0.18) 0.50 (0.15) 0.50 (0.13) 0.60 (0.21) 
Positive_adjectives_component 0.13 (0.27) 0.24 (0.30) 0.10 (0.23) 0.21 (0.20) 0.20 (0.24) 
Joy_component 1.24 (0.80) 1.08 (0.75) 0.93 (0.65) 0.70 (0.42) 0.91 (0.67) 
Trust_verbs_component 0.15 (0.07) 0.16 (0.09) 0.19 (0.10) 0.25 (0.09) 0.18 (0.06) 

Figure 4-2 displays a heatmap showing the unadjusted bivariate correlations between 

student demographic variables, essay scores, and writing measures. The X-axis represents 

various student demographic variables, including gender, grade level, English Language Learner 

(ELL) status, race/ethnicity, income background, disability status, and students’ writing scores. 

The Y-axis includes writing measures at microstructural and macrostructural levels. Spearman or 

point-biserial correlation analyses were used for the categorical variables (e.g., gender, grade, 

ELL status, race/ethnicity, income background, and disability status) in relation to the writing 

elements. Pearson correlation analysis was employed for continuous variables, such as essay 

scores and writing measures. Only correlation coefficients with absolute values greater than 0.30 

are presented in the Figure 4-2, as they indicate a moderate positive or negative linear 

relationship, consistent with standards in social science research (Bujang & Baharum, 2016; S. 

Crossley et al., 2023). P-values for these correlation coefficients are denoted with asterisks and 

interpreted as significantly correlated.  

According to the Figure 4-2, grade level demonstrated significant correlations with 

several writing features, including mean syllables per word (DESWLsy), mean word frequency 

(WRDFRQc), mean word polysemy (WRDPOLc), incidence of first-person pronouns 
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(WRDPRP1s), incidence of second-person pronouns (WRDPRP2), LSA overlap of adjacent 

paragraphs (LSAPP1), and readability (RDFRE). Notably, these correlations are all positive. For 

instance, the positive and moderately strong correlation (r = 0.39, p < 0.001) between grade level 

and DESWLsy indicates that progression from lower grade levels (i.e., Grade 6) to higher grade 

levels (i.e., Grade 12) was moderately associated with an increase in mean syllables per word. 

These findings align with existing literature, suggesting that as students advance through 

secondary education and develop strategies for applying discourse-level knowledge, they tend to 

utilize more diverse lexical and syntactic choices (A. Truckenmiller et al., 2021), enhance their 

discourse cohesion and coherence (Sarmiento et al., 2024), and adopt genre-related rhetorical 

structures (W. Qin et al., 2024). 

Regarding holistic essay scores, most of the structural and content-level features were 

found to be significantly and strongly correlated with paper quality. Some language features, 

such as mean syllables per word (DESWLsy), mean number of words before the main verb 

(SYNLE), LSA overlap of adjacent paragraphs (LSAPP1), LSA given/new information 

(LSAGN), and total word count (DESWC), along with some tone/style features (e.g., booster 

words, discourse markers, and hedge words), exhibit moderate to strong correlations with essay 

quality. These findings aligned with the PERSUADE corpus holistic rating rubric used to 

evaluate student essays, which emphasizes the importance of presenting clear claims, utilizing 

organized evidence to support positions, and demonstrating diverse and appropriate vocabulary 

choices and sentence structures. Existing literature suggests that the organizational features of 

argumentation and the quality of content are strong predictors of writing quality at the secondary 

levels, as these attributes enhance the clarity and persuasiveness of students’ written work (S. A. 

Crossley et al., 2022; Taylor et al., 2019; Uccelli et al., 2013).  
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Figure 4-2 Correlation Heatmap of Writing-Related Variables, Demographic Information, and 
Essay Scores 
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Bivariate correlation coefficients among writing features at both the microstructural and 

microstructural levels were examined (see Table 4-2). As mentioned in Chapter 3 under the 

subsection of Research Design, normality assessments were conducted for all study variables, 

revealing that 27 writing-related variables exhibited non-normal distributions. To account for the 

non-normality, a weighted least square (WLS) estimator was employed for the analyses to extract 

factors and compute robust standard errors (Kline, 2015). This approach is recommended when 

the assumption of multivariate normality is violated according to Fabrigar et al. (1999), as was 

the case in this dataset, where many variables demonstrated skewed distributions.  
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Table 4-2 Correlations Among All Study Writing Related Variables in the Corpus 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
  

1. DESWLsy 1.00 0.45 0.03 -0.46 -0.73 0.47 0.22 0.12 -0.51 -0.10 -0.19 0.03 0.57 0.08 0.20 0.23 0.03 -0.37 -0.29 -0.26 -0.38 -0.32 -0.04   
2. LDMTLD 0.45 1.00 0.09 -0.38 -0.53 0.20 0.16 0.03 -0.37 -0.07 -0.08 0.02 0.38 0.19 -0.02 0.13 0.02 -0.34 -0.16 -0.65 -0.12 -0.16 0.00   
3. PCCNCz 0.03 0.09 1.00 0.03 -0.30 0.43 0.72 0.61 -0.04 0.39 0.14 0.26 0.20 -0.28 -0.20 0.03 0.06 -0.12 -0.34 0.16 -0.14 -0.06 0.05   
4. WRDFAMc -0.46 -0.38 0.03 1.00 0.66 -0.23 -0.17 0.30 0.39 0.05 0.09 -0.01 -0.35 -0.08 -0.05 -0.26 -0.30 0.50 0.15 0.30 0.22 0.25 0.04   
5. WRDFRQc -0.73 -0.53 -0.30 0.66 1.00 -0.54 -0.48 -0.15 0.61 0.06 0.13 -0.04 -0.60 -0.12 -0.13 -0.28 -0.12 0.51 0.34 0.37 0.35 0.29 0.01   
6. WRDHYPnv 0.47 0.20 0.43 -0.23 -0.54 1.00 0.60 0.37 -0.16 -0.05 -0.07 0.01 0.46 -0.01 0.09 0.17 0.09 -0.21 -0.18 -0.05 -0.26 -0.24 -0.04   
7. WRDIMGc 0.22 0.16 0.72 -0.17 -0.48 0.60 1.00 0.55 -0.29 -0.05 -0.07 0.00 0.34 0.04 0.10 0.17 0.16 -0.29 -0.22 -0.12 -0.21 -0.23 -0.01   
8. WRDMEAc 0.12 0.03 0.61 0.30 -0.15 0.37 0.55 1.00 0.00 -0.01 -0.04 0.00 0.08 -0.05 0.04 -0.06 -0.07 0.15 -0.24 0.03 -0.02 0.09 0.05   
9. WRDPOLc -0.51 -0.37 -0.04 0.39 0.61 -0.16 -0.29 0.00 1.00 0.05 0.11 -0.05 -0.43 -0.12 -0.14 -0.15 -0.10 0.48 0.16 0.30 0.21 0.26 -0.01   
10. DESSL -0.10 -0.07 0.39 0.05 0.06 -0.05 -0.05 -0.01 0.05 1.00 0.55 0.62 -0.04 -0.27 -0.50 -0.08 -0.01 0.01 -0.03 0.33 0.03 -0.01 0.07   
11. DESSLd -0.19 -0.08 0.14 0.09 0.13 -0.07 -0.07 -0.04 0.11 0.55 1.00 0.08 -0.10 -0.09 -0.44 -0.10 -0.04 0.04 0.07 0.23 0.10 0.04 0.06   
12. SYNLE 0.03 0.02 0.26 -0.01 -0.04 0.01 0.00 0.00 -0.05 0.62 0.08 1.00 0.05 -0.13 -0.15 0.02 0.02 -0.04 -0.04 0.10 -0.01 -0.04 0.04   
13. SYNNP 0.57 0.38 0.20 -0.35 -0.60 0.46 0.34 0.08 -0.43 -0.04 -0.10 0.05 1.00 0.08 0.10 0.19 -0.08 -0.57 -0.27 -0.32 -0.33 -0.27 -0.01   
14. SYNMEDwrd 0.08 0.19 -0.28 -0.08 -0.12 -0.01 0.04 -0.05 -0.12 -0.27 -0.09 -0.13 0.08 1.00 0.10 0.04 0.03 -0.11 -0.04 -0.54 -0.05 -0.06 0.02   
15. SYNSTRUTt 0.20 -0.02 -0.20 -0.05 -0.13 0.09 0.10 0.04 -0.14 -0.50 -0.44 -0.15 0.10 0.10 1.00 0.08 0.10 -0.06 -0.06 -0.21 -0.10 -0.10 -0.02   
16. DRPVAL 0.23 0.13 0.03 -0.26 -0.28 0.17 0.17 -0.06 -0.15 -0.08 -0.10 0.02 0.19 0.04 0.08 1.00 -0.02 -0.07 -0.04 -0.12 -0.18 -0.24 -0.09   
17. DRNP 0.03 0.02 0.06 -0.30 -0.12 0.09 0.16 -0.07 -0.10 -0.01 -0.04 0.02 -0.08 0.03 0.10 -0.02 1.00 -0.49 -0.19 -0.04 0.01 -0.08 0.02   
18. DRVP -0.37 -0.34 -0.12 0.50 0.51 -0.21 -0.29 0.15 0.48 0.01 0.04 -0.04 -0.57 -0.11 -0.06 -0.07 -0.49 1.00 0.23 0.29 0.20 0.22 -0.03   
19. DRNEG -0.29 -0.16 -0.34 0.15 0.34 -0.18 -0.22 -0.24 0.16 -0.03 0.07 -0.04 -0.27 -0.04 -0.06 -0.04 -0.19 0.23 1.00 0.11 0.16 0.05 -0.05   
20. PCREFz -0.26 -0.65 0.16 0.30 0.37 -0.05 -0.12 0.03 0.30 0.33 0.23 0.10 -0.32 -0.54 -0.21 -0.12 -0.04 0.29 0.11 1.00 0.07 0.12 0.01   
21. WRDPRP1s -0.38 -0.12 -0.14 0.22 0.35 -0.26 -0.21 -0.02 0.21 0.03 0.10 -0.01 -0.33 -0.05 -0.10 -0.18 0.01 0.20 0.16 0.07 1.00 0.15 0.08   
22. WRDPRP2 -0.32 -0.16 -0.06 0.25 0.29 -0.24 -0.23 0.09 0.26 -0.01 0.04 -0.04 -0.27 -0.06 -0.10 -0.24 -0.08 0.22 0.05 0.12 0.15 1.00 -0.01   
23. WRDPRP3s -0.04 0.00 0.05 0.04 0.01 -0.04 -0.01 0.05 -0.01 0.07 0.06 0.04 -0.01 0.02 -0.02 -0.09 0.02 -0.03 -0.05 0.01 0.08 -0.01 1.00   
24. CRFAOa -0.05 -0.36 0.17 0.15 0.13 0.02 -0.04 0.02 0.08 0.28 0.27 0.03 -0.17 -0.15 -0.29 -0.05 -0.04 0.13 -0.03 0.79 -0.05 0.02 -0.01   
25. CRFAO1 -0.05 -0.37 0.16 0.16 0.12 0.03 -0.04 0.06 0.10 0.21 0.23 0.01 -0.15 -0.14 -0.25 -0.05 -0.04 0.14 -0.03 0.76 0.00 0.07 0.04   
26. LSAPP1 0.29 -0.10 -0.06 -0.01 -0.16 0.17 0.05 0.03 -0.13 -0.10 -0.18 -0.01 0.10 0.08 0.17 0.11 -0.03 -0.01 -0.07 0.25 -0.25 -0.13 -0.04   
27. LSASS1 0.09 -0.41 0.10 0.06 0.00 0.15 0.03 0.03 0.05 0.18 0.16 0.02 -0.05 -0.15 -0.12 -0.01 -0.02 0.07 -0.04 0.73 -0.14 -0.06 -0.01   
28. LSAGN 0.09 -0.41 -0.16 0.13 0.08 0.10 -0.05 0.01 0.08 -0.23 -0.17 -0.11 -0.07 0.00 0.20 0.01 -0.03 0.12 0.03 0.55 -0.11 0.00 -0.01   
29. PCNARz -0.73 -0.46 -0.22 0.48 0.71 -0.53 -0.41 -0.12 0.45 0.15 0.32 -0.08 -0.72 0.03 -0.31 -0.32 -0.16 0.54 0.40 0.45 0.46 0.35 0.10   
30. PCDCz -0.22 -0.19 0.03 0.32 0.31 -0.10 -0.22 0.04 0.35 0.22 0.26 0.04 -0.24 -0.11 -0.25 -0.09 -0.18 0.22 0.11 0.34 0.08 0.19 0.00   
31. DESWC 0.25 0.09 0.02 0.05 -0.17 0.17 0.02 0.14 -0.08 0.02 -0.05 0.08 0.12 0.06 -0.02 0.11 -0.12 0.03 -0.05 0.07 -0.09 -0.04 0.10   
32. CNCAll -0.23 -0.15 0.18 0.28 0.25 -0.13 -0.17 0.03 0.27 0.19 0.20 0.05 -0.23 -0.08 -0.28 -0.09 -0.29 0.21 0.08 0.23 0.08 0.19 -0.01   
33. CNCCaus -0.08 -0.19 -0.05 0.23 0.22 -0.07 -0.19 0.10 0.32 0.09 0.07 0.01 -0.22 -0.10 -0.10 -0.05 -0.07 0.20 0.10 0.28 0.07 0.14 -0.02   
34. CNCLogic -0.32 -0.21 -0.02 0.34 0.37 -0.17 -0.23 -0.07 0.17 0.14 0.19 0.01 -0.27 -0.10 -0.21 -0.16 -0.28 0.22 0.24 0.26 0.14 0.19 -0.02   
35. CNCADC -0.10 0.09 0.06 0.03 0.06 -0.13 -0.12 -0.14 -0.04 0.08 0.13 0.00 -0.02 -0.01 -0.20 -0.02 -0.17 -0.03 0.16 -0.03 0.02 0.00 -0.03   
36. CNCTemp -0.03 0.11 0.09 0.03 -0.06 -0.02 -0.02 -0.08 -0.04 -0.01 -0.01 0.06 0.08 0.05 0.02 0.07 -0.12 -0.08 -0.07 -0.09 0.00 0.08 0.03   
37. CNCAdd -0.10 -0.05 0.25 0.10 0.09 -0.06 -0.06 0.02 0.05 0.18 0.21 0.02 -0.09 -0.03 -0.28 -0.12 -0.22 0.10 0.02 0.07 0.02 0.04 0.03   
38. CNCPos -0.21 -0.21 0.11 0.29 0.26 -0.12 -0.19 0.07 0.30 0.16 0.16 0.04 -0.26 -0.09 -0.22 -0.09 -0.26 0.27 0.05 0.27 0.09 0.22 -0.01   
39. CNCNeg -0.18 0.02 0.11 0.13 0.14 -0.13 -0.10 -0.06 0.01 0.10 0.15 0.00 -0.07 -0.02 -0.22 -0.08 -0.18 0.05 0.17 0.01 0.06 0.05 -0.01   
40. RDFRE -0.65 -0.27 -0.29 0.29 0.48 -0.30 -0.11 -0.08 0.33 -0.61 -0.41 -0.27 -0.39 0.11 0.32 -0.10 0.00 0.26 0.24 -0.13 0.26 0.24 -0.03   
41. Lead 0.20 0.07 -0.05 0.01 -0.10 0.08 0.02 0.02 -0.08 -0.10 -0.12 0.00 0.10 0.08 0.07 0.14 0.03 -0.05 -0.05 -0.04 -0.10 -0.02 0.00   
42. Position -0.08 -0.07 -0.09 0.13 0.13 -0.04 -0.11 0.06 0.08 -0.04 -0.04 0.00 -0.14 -0.01 -0.01 0.02 -0.10 0.16 0.11 0.06 0.10 0.03 -0.04   
43. Claim 0.12 -0.06 -0.02 0.13 -0.02 0.16 0.00 0.16 0.04 -0.10 -0.11 0.00 -0.01 0.00 0.10 0.05 -0.13 0.17 -0.01 0.12 -0.10 0.02 0.01   
44. Counterclaim 0.02 0.03 0.02 0.06 0.02 0.08 0.04 0.04 0.00 0.00 0.00 0.00 -0.02 0.02 -0.03 0.06 -0.04 0.05 0.10 0.02 -0.03 -0.06 -0.03   
45. Rebuttal 0.07 0.07 0.01 0.01 -0.03 0.08 0.04 0.03 -0.02 -0.02 -0.04 0.01 0.02 0.03 -0.03 0.11 -0.05 0.02 0.07 -0.02 -0.03 -0.09 -0.04   
46. Evidence 0.06 0.04 -0.04 0.02 -0.02 0.08 0.03 0.07 0.01 -0.10 -0.09 -0.02 -0.01 0.04 0.11 0.05 -0.03 0.05 0.02 -0.02 -0.07 0.00 -0.03   
47. Concluding_Statement 0.12 0.03 -0.13 0.01 -0.02 0.06 -0.06 0.04 -0.03 -0.17 -0.15 -0.05 0.01 0.04 0.11 0.07 -0.05 0.05 0.03 -0.01 -0.04 -0.02 -0.03   
48. Lead_effective 0.28 0.13 -0.01 -0.03 -0.19 0.16 0.04 0.09 -0.11 -0.08 -0.15 0.03 0.15 0.08 0.06 0.17 -0.02 -0.04 -0.07 -0.06 -0.13 -0.06 0.00   
49. Position_effective 0.18 0.07 -0.06 0.01 -0.07 0.15 -0.06 0.11 0.01 -0.08 -0.09 0.00 0.07 0.02 0.01 0.12 -0.13 0.09 0.03 -0.01 -0.02 0.00 -0.01   
50. Claim_effective 0.24 0.07 -0.03 0.06 -0.11 0.24 -0.02 0.17 -0.01 -0.10 -0.12 0.01 0.08 0.03 0.00 0.15 -0.19 0.14 0.00 0.02 -0.05 -0.02 -0.02   
51.Counterclaim_effective 0.13 0.08 0.05 0.03 -0.08 0.16 0.08 0.09 -0.06 0.00 -0.01 0.01 0.04 0.03 -0.03 0.10 -0.08 0.04 0.04 0.00 -0.05 -0.11 -0.03   
52. Rebuttal_effective 0.17 0.11 0.03 0.00 -0.10 0.16 0.07 0.07 -0.07 -0.02 -0.05 0.02 0.08 0.05 -0.02 0.12 -0.06 0.01 0.02 -0.03 -0.06 -0.14 -0.03   
53. Evidence_effective 0.28 0.10 -0.02 0.00 -0.17 0.24 0.01 0.17 -0.04 -0.10 -0.15 0.02 0.11 0.05 0.03 0.15 -0.17 0.10 -0.03 0.00 -0.08 -0.04 0.01   
54.Concl_Sttm_effective 0.33 0.11 -0.03 -0.02 -0.20 0.22 0.02 0.12 -0.09 -0.11 -0.18 0.02 0.17 0.06 0.11 0.19 -0.13 0.02 -0.06 -0.01 -0.16 -0.10 -0.01   
55. C1 -0.04 -0.06 0.00 -0.26 -0.07 0.04 0.09 -0.19 0.08 -0.01 0.00 -0.01 -0.06 -0.01 -0.05 0.03 0.16 -0.12 0.00 0.06 -0.10 -0.04 -0.08   
56. C2 0.04 -0.17 -0.04 -0.03 0.01 0.19 0.05 -0.06 0.10 -0.06 -0.06 -0.03 -0.10 -0.04 -0.04 0.10 -0.01 0.10 0.02 0.27 -0.11 -0.03 -0.16   
57. C3 0.10 -0.10 -0.01 -0.11 -0.06 0.23 0.11 -0.07 0.06 -0.10 -0.10 -0.04 -0.03 -0.03 0.00 0.16 0.00 0.03 0.00 0.21 -0.16 -0.11 -0.18   
58. C4 0.18 -0.07 -0.02 -0.16 -0.14 0.26 0.12 -0.06 0.00 -0.10 -0.13 -0.02 0.03 -0.01 0.02 0.21 -0.01 0.00 -0.04 0.18 -0.20 -0.16 -0.18   
59. C5 0.23 -0.02 0.02 -0.17 -0.19 0.34 0.16 -0.03 -0.03 -0.11 -0.14 -0.01 0.11 -0.01 0.03 0.25 -0.03 -0.03 -0.04 0.14 -0.20 -0.22 -0.16   
60. C6 0.22 0.02 0.03 -0.21 -0.21 0.33 0.18 -0.07 -0.06 -0.10 -0.13 -0.01 0.12 0.02 0.04 0.29 0.02 -0.07 -0.01 0.09 -0.21 -0.26 -0.14   
61. all_markers 0.14 0.05 -0.07 0.18 -0.01 0.05 -0.10 0.17 -0.02 -0.01 -0.06 0.03 -0.03 0.02 0.00 0.05 -0.28 0.25 -0.01 0.10 -0.02 0.06 0.01   
62. booster_words 0.13 0.12 -0.08 0.01 -0.07 -0.04 -0.10 0.04 -0.05 0.00 -0.03 0.02 0.06 0.08 -0.02 0.05 -0.12 0.00 -0.05 -0.03 0.00 0.05 0.05   
63. discourse_markers 0.31 0.21 -0.04 -0.09 -0.23 0.11 -0.02 0.01 -0.17 0.00 -0.07 0.05 0.15 0.06 0.01 0.17 -0.11 -0.06 -0.05 -0.05 -0.10 -0.12 0.01   
64. hedge_words 0.06 -0.03 -0.05 0.25 0.07 0.05 -0.10 0.20 0.04 -0.01 -0.06 0.02 -0.09 -0.01 0.01 0.00 -0.29 0.33 0.02 0.16 0.00 0.09 0.00   
65. neg_adj_comp -0.08 0.01 -0.01 -0.03 -0.01 -0.09 0.03 -0.10 -0.05 0.02 0.06 -0.02 -0.04 0.02 -0.03 0.00 -0.03 -0.03 0.16 -0.03 -0.03 -0.02 0.01   
66. social_order_comp -0.24 -0.17 -0.08 0.17 0.29 -0.06 -0.14 -0.04 0.33 -0.02 0.03 -0.03 -0.22 -0.07 -0.05 -0.15 -0.03 0.27 0.11 0.14 0.07 0.12 -0.02   
67. positive_adj_comp -0.15 -0.14 -0.02 0.26 0.22 -0.01 -0.15 0.27 0.29 -0.01 0.03 -0.03 -0.19 -0.07 -0.09 -0.11 -0.27 0.36 0.03 0.10 0.17 0.20 -0.02   
68. joy_comp -0.28 -0.14 0.00 0.19 0.25 -0.15 -0.07 0.13 0.22 0.00 0.07 -0.05 -0.17 -0.04 -0.04 -0.10 -0.10 0.17 0.08 0.04 0.14 0.13 0.03   
69. trust_verbs_comp 0.51 0.20 0.14 -0.25 -0.44 0.31 0.20 0.26 -0.32 -0.02 -0.11 0.04 0.28 0.01 0.11 0.16 -0.03 -0.12 -0.19 -0.10 -0.18 -0.16 0.02   
70. all_elements 0.13 0.01 -0.03 0.11 -0.03 0.16 0.02 0.14 0.01 -0.11 -0.12 -0.01 0.00 0.04 0.10 0.10 -0.10 0.13 0.04 0.06 -0.10 -0.02 -0.02   
71. all_effective_score 0.32 0.13 -0.01 0.01 -0.19 0.26 0.03 0.16 -0.08 -0.10 -0.15 0.03 0.14 0.06 0.04 0.20 -0.15 0.07 -0.02 -0.02 -0.11 -0.09 -0.02   
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Table 4-2 (cont’d) 
 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46   
1. DESWLsy -0.05 -0.05 0.29 0.09 0.09 -0.73 -0.22 0.25 -0.23 -0.08 -0.32 -0.10 -0.03 -0.10 -0.21 -0.18 -0.65 0.20 -0.08 0.12 0.02 0.07 0.06   
2. LDMTLD -0.36 -0.37 -0.10 -0.41 -0.41 -0.46 -0.19 0.09 -0.15 -0.19 -0.21 0.09 0.11 -0.05 -0.21 0.02 -0.27 0.07 -0.07 -0.06 0.03 0.07 0.04   
3. PCCNCz 0.17 0.16 -0.06 0.10 -0.16 -0.22 0.03 0.02 0.18 -0.05 -0.02 0.06 0.09 0.25 0.11 0.11 -0.29 -0.05 -0.09 -0.02 0.02 0.01 -0.04   
4. WRDFAMc 0.15 0.16 -0.01 0.06 0.13 0.48 0.32 0.05 0.28 0.23 0.34 0.03 0.03 0.10 0.29 0.13 0.29 0.01 0.13 0.13 0.06 0.01 0.02   
5. WRDFRQc 0.13 0.12 -0.16 0.00 0.08 0.71 0.31 -0.17 0.25 0.22 0.37 0.06 -0.06 0.09 0.26 0.14 0.48 -0.10 0.13 -0.02 0.02 -0.03 -0.02   
6. WRDHYPnv 0.02 0.03 0.17 0.15 0.10 -0.53 -0.10 0.17 -0.13 -0.07 -0.17 -0.13 -0.02 -0.06 -0.12 -0.13 -0.30 0.08 -0.04 0.16 0.08 0.08 0.08   
7. WRDIMGc -0.04 -0.04 0.05 0.03 -0.05 -0.41 -0.22 0.02 -0.17 -0.19 -0.23 -0.12 -0.02 -0.06 -0.19 -0.10 -0.11 0.02 -0.11 0.00 0.04 0.04 0.03   
8. WRDMEAc 0.02 0.06 0.03 0.03 0.01 -0.12 0.04 0.14 0.03 0.10 -0.07 -0.14 -0.08 0.02 0.07 -0.06 -0.08 0.02 0.06 0.16 0.04 0.03 0.07   
9. WRDPOLc 0.08 0.10 -0.13 0.05 0.08 0.45 0.35 -0.08 0.27 0.32 0.17 -0.04 -0.04 0.05 0.30 0.01 0.33 -0.08 0.08 0.04 0.00 -0.02 0.01   
10. DESSL 0.28 0.21 -0.10 0.18 -0.23 0.15 0.22 0.02 0.19 0.09 0.14 0.08 -0.01 0.18 0.16 0.10 -0.61 -0.10 -0.04 -0.10 0.00 -0.02 -0.10   
11. DESSLd 0.27 0.23 -0.18 0.16 -0.17 0.32 0.26 -0.05 0.20 0.07 0.19 0.13 -0.01 0.21 0.16 0.15 -0.41 -0.12 -0.04 -0.11 0.00 -0.04 -0.09   
12. SYNLE 0.03 0.01 -0.01 0.02 -0.11 -0.08 0.04 0.08 0.05 0.01 0.01 0.00 0.06 0.02 0.04 0.00 -0.27 0.00 0.00 0.00 0.00 0.01 -0.02   
13. SYNNP -0.17 -0.15 0.10 -0.05 -0.07 -0.72 -0.24 0.12 -0.23 -0.22 -0.27 -0.02 0.08 -0.09 -0.26 -0.07 -0.39 0.10 -0.14 -0.01 -0.02 0.02 -0.01   
14. SYNMEDwrd -0.15 -0.14 0.08 -0.15 0.00 0.03 -0.11 0.06 -0.08 -0.10 -0.10 -0.01 0.05 -0.03 -0.09 -0.02 0.11 0.08 -0.01 0.00 0.02 0.03 0.04   
15. SYNSTRUTt -0.29 -0.25 0.17 -0.12 0.20 -0.31 -0.25 -0.02 -0.28 -0.10 -0.21 -0.20 0.02 -0.28 -0.22 -0.22 0.32 0.07 -0.01 0.10 -0.03 -0.03 0.11   
16. DRPVAL -0.05 -0.05 0.11 -0.01 0.01 -0.32 -0.09 0.11 -0.09 -0.05 -0.16 -0.02 0.07 -0.12 -0.09 -0.08 -0.10 0.14 0.02 0.05 0.06 0.11 0.05   
17. DRNP -0.04 -0.04 -0.03 -0.02 -0.03 -0.16 -0.18 -0.12 -0.29 -0.07 -0.28 -0.17 -0.12 -0.22 -0.26 -0.18 0.00 0.03 -0.10 -0.13 -0.04 -0.05 -0.03   
18. DRVP 0.13 0.14 -0.01 0.07 0.12 0.54 0.22 0.03 0.21 0.20 0.22 -0.03 -0.08 0.10 0.27 0.05 0.26 -0.05 0.16 0.17 0.05 0.02 0.05   
19. DRNEG -0.03 -0.03 -0.07 -0.04 0.03 0.40 0.11 -0.05 0.08 0.10 0.24 0.16 -0.07 0.02 0.05 0.17 0.24 -0.05 0.11 -0.01 0.10 0.07 0.02   
20. PCREFz 0.79 0.76 0.25 0.73 0.55 0.45 0.34 0.07 0.23 0.28 0.26 -0.03 -0.09 0.07 0.27 0.01 -0.13 -0.04 0.06 0.12 0.02 -0.02 -0.02   
21. WRDPRP1s -0.05 0.00 -0.25 -0.14 -0.11 0.46 0.08 -0.09 0.08 0.07 0.14 0.02 0.00 0.02 0.09 0.06 0.26 -0.10 0.10 -0.10 -0.03 -0.03 -0.07   
22. WRDPRP2 0.02 0.07 -0.13 -0.06 0.00 0.35 0.19 -0.04 0.19 0.14 0.19 0.00 0.08 0.04 0.22 0.05 0.24 -0.02 0.03 0.02 -0.06 -0.09 0.00   
23. WRDPRP3s -0.01 0.04 -0.04 -0.01 -0.01 0.10 0.00 0.10 -0.01 -0.02 -0.02 -0.03 0.03 0.03 -0.01 -0.01 -0.03 0.00 -0.04 0.01 -0.03 -0.04 -0.03   
24. CRFAOa 1.00 0.87 0.32 0.68 0.49 0.37 0.27 0.14 0.20 0.21 0.18 0.00 -0.04 0.10 0.21 0.01 -0.31 0.02 0.01 0.11 0.04 0.03 -0.03   
25. CRFAO1 0.87 1.00 0.28 0.68 0.48 0.36 0.26 0.19 0.19 0.20 0.16 -0.01 -0.02 0.08 0.21 0.00 -0.26 0.04 0.02 0.13 0.05 0.03 0.01   
26. LSAPP1 0.32 0.28 1.00 0.43 0.61 -0.16 0.01 0.41 -0.04 0.07 -0.07 -0.09 0.03 -0.09 0.00 -0.12 -0.16 0.26 0.09 0.30 0.10 0.10 0.17   
27. LSASS1 0.68 0.68 0.43 1.00 0.71 0.14 0.23 0.11 0.12 0.20 0.11 -0.04 -0.06 0.02 0.16 -0.06 -0.31 0.01 0.00 0.11 -0.02 -0.04 -0.03   
28. LSAGN 0.49 0.48 0.61 0.71 1.00 0.09 0.17 0.36 0.08 0.21 0.07 -0.10 0.01 -0.08 0.13 -0.11 0.05 0.18 0.09 0.33 0.07 0.05 0.20   
29. PCNARz 0.37 0.36 -0.16 0.14 0.09 1.00 0.37 -0.12 0.32 0.23 0.42 0.09 -0.02 0.14 0.33 0.16 0.34 -0.16 0.13 -0.04 0.01 -0.03 -0.05   
30. PCDCz 0.27 0.26 0.01 0.23 0.17 0.37 1.00 0.08 0.74 0.82 0.72 0.13 0.16 0.19 0.75 0.18 -0.07 -0.05 0.09 0.09 0.05 0.01 0.04   
31. DESWC 0.14 0.19 0.41 0.11 0.36 -0.12 0.08 1.00 0.07 0.07 -0.07 -0.08 0.16 0.02 0.10 -0.09 -0.23 0.40 0.12 0.49 0.26 0.28 0.43   
32. CNCAll 0.20 0.19 -0.04 0.12 0.08 0.32 0.74 0.07 1.00 0.52 0.72 0.31 0.30 0.66 0.89 0.37 -0.02 -0.07 0.08 0.07 0.05 0.01 0.02   
33. CNCCaus 0.21 0.20 0.07 0.20 0.21 0.23 0.82 0.07 0.52 1.00 0.45 -0.04 -0.10 -0.01 0.63 -0.02 -0.03 -0.01 0.08 0.08 0.04 0.01 0.03   
34. CNCLogic 0.18 0.16 -0.07 0.11 0.07 0.42 0.72 -0.07 0.72 0.45 1.00 0.46 0.12 0.38 0.57 0.52 0.09 -0.12 0.11 0.00 0.06 0.01 -0.02   
35. CNCADC 0.00 -0.01 -0.09 -0.04 -0.10 0.09 0.13 -0.08 0.31 -0.04 0.46 1.00 -0.01 0.42 -0.05 0.89 -0.02 -0.07 0.03 -0.12 0.10 0.08 -0.07   
36. CNCTemp -0.04 -0.02 0.03 -0.06 0.01 -0.02 0.16 0.16 0.30 -0.10 0.12 -0.01 1.00 0.03 0.30 -0.01 0.03 0.10 0.01 0.08 0.02 0.04 0.06   
37. CNCAdd 0.10 0.08 -0.09 0.02 -0.08 0.14 0.19 0.02 0.66 -0.01 0.38 0.42 0.03 1.00 0.49 0.49 -0.10 -0.08 0.01 0.02 0.04 0.00 -0.02   
38. CNCPos 0.21 0.21 0.00 0.16 0.13 0.33 0.75 0.10 0.89 0.63 0.57 -0.05 0.30 0.49 1.00 -0.02 0.00 -0.06 0.07 0.12 0.00 -0.03 0.04   
39. CNCNeg 0.01 0.00 -0.12 -0.06 -0.11 0.16 0.18 -0.09 0.37 -0.02 0.52 0.89 -0.01 0.49 -0.02 1.00 0.03 -0.07 0.05 -0.12 0.11 0.07 -0.07   
40. RDFRE -0.31 -0.26 -0.16 -0.31 0.05 0.34 -0.07 -0.23 -0.02 -0.03 0.09 -0.02 0.03 -0.10 0.00 0.03 1.00 -0.07 0.10 -0.02 -0.03 -0.04 0.04   
41. Lead 0.02 0.04 0.26 0.01 0.18 -0.16 -0.05 0.40 -0.07 -0.01 -0.12 -0.07 0.10 -0.08 -0.06 -0.07 -0.07 1.00 0.02 0.17 0.13 0.14 0.08   
42. Position 0.01 0.02 0.09 0.00 0.09 0.13 0.09 0.12 0.08 0.08 0.11 0.03 0.01 0.01 0.07 0.05 0.10 0.02 1.00 0.24 0.09 0.07 0.19   
43. Claim 0.11 0.13 0.30 0.11 0.33 -0.04 0.09 0.49 0.07 0.08 0.00 -0.12 0.08 0.02 0.12 -0.12 -0.02 0.17 0.24 1.00 0.08 0.09 0.49   
44. Counterclaim 0.04 0.05 0.10 -0.02 0.07 0.01 0.05 0.26 0.05 0.04 0.06 0.10 0.02 0.04 0.00 0.11 -0.03 0.13 0.09 0.08 1.00 0.80 0.22   
45. Rebuttal 0.03 0.03 0.10 -0.04 0.05 -0.03 0.01 0.28 0.01 0.01 0.01 0.08 0.04 0.00 -0.03 0.07 -0.04 0.14 0.07 0.09 0.80 1.00 0.16   
46. Evidence -0.03 0.01 0.17 -0.03 0.20 -0.05 0.04 0.43 0.02 0.03 -0.02 -0.07 0.06 -0.02 0.04 -0.07 0.04 0.08 0.19 0.49 0.22 0.16 1.00   
47. Concluding_Statement 0.01 0.02 0.21 -0.01 0.21 -0.07 -0.01 0.30 -0.01 0.03 -0.04 -0.04 0.02 -0.02 0.01 -0.05 0.04 0.20 0.20 0.25 0.13 0.15 0.17   
48. Lead_effective 0.02 0.06 0.31 0.02 0.18 -0.21 -0.03 0.57 -0.03 0.01 -0.12 -0.07 0.14 -0.06 -0.01 -0.08 -0.14 0.75 0.11 0.27 0.15 0.19 0.15   
49. Position_effective 0.02 0.05 0.18 -0.02 0.12 -0.07 0.04 0.38 0.05 0.06 -0.02 -0.03 0.07 -0.01 0.07 -0.04 -0.08 0.20 0.31 0.29 0.12 0.17 0.21   
50. Claim_effective 0.07 0.11 0.29 0.05 0.23 -0.10 0.07 0.57 0.09 0.08 -0.01 -0.06 0.13 0.02 0.11 -0.07 -0.11 0.27 0.26 0.43 0.18 0.23 0.27   
51.Counterclaim_effective 0.05 0.07 0.16 0.00 0.08 -0.06 0.02 0.36 0.03 0.02 0.01 0.06 0.04 0.03 0.00 0.06 -0.11 0.19 0.09 0.12 0.73 0.69 0.16   
52. Rebuttal_effective 0.04 0.05 0.15 -0.01 0.06 -0.09 0.00 0.34 0.00 0.01 -0.02 0.04 0.05 0.00 -0.02 0.03 -0.12 0.18 0.07 0.12 0.61 0.77 0.13   
53. Evidence_effective 0.07 0.12 0.30 0.04 0.22 -0.14 0.03 0.64 0.05 0.05 -0.06 -0.08 0.13 0.00 0.08 -0.09 -0.13 0.31 0.25 0.41 0.18 0.23 0.25   
54.Concl_Sttm_effective 0.06 0.09 0.35 0.06 0.27 -0.23 -0.01 0.60 0.01 0.04 -0.11 -0.08 0.13 -0.04 0.04 -0.11 -0.16 0.35 0.19 0.39 0.15 0.22 0.25   
55. C1 0.07 0.03 0.09 0.15 0.13 -0.03 -0.07 -0.04 -0.08 -0.04 -0.09 0.01 -0.07 -0.01 -0.06 -0.05 0.05 -0.09 -0.08 -0.08 -0.03 -0.03 0.05   
56. C2 0.27 0.23 0.34 0.32 0.41 0.02 0.08 0.26 0.04 0.13 0.03 -0.03 -0.03 -0.01 0.09 -0.08 0.01 0.11 0.08 0.20 0.11 0.10 0.18   
57. C3 0.23 0.18 0.35 0.28 0.39 -0.07 0.01 0.27 -0.01 0.06 -0.04 -0.03 -0.02 -0.03 0.03 -0.09 0.00 0.13 0.09 0.21 0.13 0.13 0.21   
58. C4 0.22 0.18 0.37 0.28 0.39 -0.14 -0.02 0.31 -0.04 0.04 -0.09 -0.06 0.00 -0.05 0.01 -0.13 -0.05 0.16 0.09 0.24 0.12 0.14 0.21   
59. C5 0.19 0.16 0.39 0.25 0.37 -0.20 -0.05 0.38 -0.05 0.00 -0.11 -0.05 0.03 -0.04 -0.01 -0.13 -0.09 0.18 0.11 0.28 0.14 0.17 0.22   
60. C6 0.15 0.12 0.37 0.20 0.33 -0.21 -0.06 0.39 -0.07 -0.02 -0.12 -0.04 0.05 -0.08 -0.05 -0.12 -0.08 0.21 0.11 0.26 0.19 0.22 0.24   
61. all_markers 0.15 0.18 0.33 0.10 0.31 0.04 0.12 0.76 0.13 0.11 0.06 -0.01 0.09 0.03 0.14 -0.01 -0.11 0.28 0.15 0.41 0.23 0.23 0.34   
62. booster_words 0.04 0.08 0.22 0.00 0.16 -0.02 0.00 0.55 0.00 0.01 -0.06 0.02 0.08 -0.03 0.01 -0.02 -0.11 0.24 0.05 0.22 0.12 0.15 0.22   
63. discourse_markers 0.07 0.08 0.27 0.05 0.16 -0.17 0.04 0.58 0.03 0.05 -0.03 0.10 0.13 -0.03 0.01 0.02 -0.24 0.27 0.09 0.25 0.25 0.30 0.19   
64. hedge_words 0.16 0.19 0.30 0.12 0.32 0.10 0.15 0.68 0.16 0.13 0.10 -0.04 0.05 0.05 0.17 -0.01 -0.05 0.22 0.16 0.40 0.19 0.19 0.33   
65. neg_adj_comp -0.01 -0.04 -0.06 -0.04 -0.09 0.05 -0.04 -0.12 -0.01 -0.09 0.02 0.06 -0.04 0.02 -0.06 0.08 0.03 -0.07 -0.06 -0.10 -0.01 -0.01 -0.06   
66. social_order_comp 0.04 0.04 -0.06 0.03 0.08 0.20 0.11 -0.01 0.09 0.11 0.11 0.01 -0.04 0.04 0.10 0.04 0.20 -0.05 0.03 0.03 0.02 -0.01 0.01   
67. positive_adj_comp 0.00 0.02 -0.09 -0.01 0.00 0.23 0.21 0.02 0.20 0.19 0.19 -0.02 0.01 0.07 0.23 0.03 0.12 -0.08 0.15 0.08 0.04 0.04 0.03   
68. joy_comp -0.07 -0.05 -0.18 -0.05 -0.10 0.23 0.09 -0.21 0.09 0.05 0.14 0.03 -0.03 0.05 0.09 0.08 0.20 -0.16 0.03 -0.11 -0.03 -0.05 -0.06   
69. trust_verbs_comp -0.01 0.01 0.17 0.04 0.05 -0.36 -0.12 0.23 -0.10 -0.04 -0.18 -0.09 0.01 -0.03 -0.07 -0.13 -0.34 0.12 0.02 0.15 0.06 0.10 0.09   
70. all_elements 0.06 0.10 0.32 0.04 0.32 -0.06 0.07 0.61 0.05 0.07 0.00 -0.07 0.10 0.00 0.08 -0.06 -0.02 0.33 0.30 0.81 0.51 0.48 0.75   
71. all_effective_score 0.07 0.11 0.35 0.03 0.24 -0.19 0.02 0.69 0.04 0.05 -0.07 -0.05 0.14 -0.01 0.05 -0.06 -0.17 0.46 0.25 0.41 0.41 0.48 0.28   
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Table 4-2 (cont’d) 
 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 
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1. DESWLsy 0.12 0.28 0.18 0.24 0.13 0.17 0.28 0.33 -0.04 0.04 0.10 0.18 0.23 0.22 0.14 0.13 0.31 0.06 -0.08 -0.24 -0.15 -0.28 0.51 0.13 0.32 
2. LDMTLD 0.03 0.13 0.07 0.07 0.08 0.11 0.10 0.11 -0.06 -0.17 -0.10 -0.07 -0.02 0.02 0.05 0.12 0.21 -0.03 0.01 -0.17 -0.14 -0.14 0.20 0.01 0.13 
3. PCCNCz -0.13 -0.01 -0.06 -0.03 0.05 0.03 -0.02 -0.03 0.00 -0.04 -0.01 -0.02 0.02 0.03 -0.07 -0.08 -0.04 -0.05 -0.01 -0.08 -0.02 0.00 0.14 -0.03 -0.01 
4. WRDFAMc 0.01 -0.03 0.01 0.06 0.03 0.00 0.00 -0.02 -0.26 -0.03 -0.11 -0.16 -0.17 -0.21 0.18 0.01 -0.09 0.25 -0.03 0.17 0.26 0.19 -0.25 0.11 0.01 
5. WRDFRQc -0.02 -0.19 -0.07 -0.11 -0.08 -0.10 -0.17 -0.20 -0.07 0.01 -0.06 -0.14 -0.19 -0.21 -0.01 -0.07 -0.23 0.07 -0.01 0.29 0.22 0.25 -0.44 -0.03 -0.19 
6. WRDHYPnv 0.06 0.16 0.15 0.24 0.16 0.16 0.24 0.22 0.04 0.19 0.23 0.26 0.34 0.33 0.05 -0.04 0.11 0.05 -0.09 -0.06 -0.01 -0.15 0.31 0.16 0.26 
7. WRDIMGc -0.06 0.04 -0.06 -0.02 0.08 0.07 0.01 0.02 0.09 0.05 0.11 0.12 0.16 0.18 -0.10 -0.10 -0.02 -0.10 0.03 -0.14 -0.15 -0.07 0.20 0.02 0.03 
8. WRDMEAc 0.04 0.09 0.11 0.17 0.09 0.07 0.17 0.12 -0.19 -0.06 -0.07 -0.06 -0.03 -0.07 0.17 0.04 0.01 0.20 -0.10 -0.04 0.27 0.13 0.26 0.14 0.16 
9. WRDPOLc -0.03 -0.11 0.01 -0.01 -0.06 -0.07 -0.04 -0.09 0.08 0.10 0.06 0.00 -0.03 -0.06 -0.02 -0.05 -0.17 0.04 -0.05 0.33 0.29 0.22 -0.32 0.01 -0.08 
10. DESSL -0.17 -0.08 -0.08 -0.10 0.00 -0.02 -0.10 -0.11 -0.01 -0.06 -0.10 -0.10 -0.11 -0.10 -0.01 0.00 0.00 -0.01 0.02 -0.02 -0.01 0.00 -0.02 -0.11 -0.10 
11. DESSLd -0.15 -0.15 -0.09 -0.12 -0.01 -0.05 -0.15 -0.18 0.00 -0.06 -0.10 -0.13 -0.14 -0.13 -0.06 -0.03 -0.07 -0.06 0.06 0.03 0.03 0.07 -0.11 -0.12 -0.15 
12. SYNLE -0.05 0.03 0.00 0.01 0.01 0.02 0.02 0.02 -0.01 -0.03 -0.04 -0.02 -0.01 -0.01 0.03 0.02 0.05 0.02 -0.02 -0.03 -0.03 -0.05 0.04 -0.01 0.03 
13. SYNNP 0.01 0.15 0.07 0.08 0.04 0.08 0.11 0.17 -0.06 -0.10 -0.03 0.03 0.11 0.12 -0.03 0.06 0.15 -0.09 -0.04 -0.22 -0.19 -0.17 0.28 0.00 0.14 
14. SYNMEDwrd 0.04 0.08 0.02 0.03 0.03 0.05 0.05 0.06 -0.01 -0.04 -0.03 -0.01 -0.01 0.02 0.02 0.08 0.06 -0.01 0.02 -0.07 -0.07 -0.04 0.01 0.04 0.06 
15. SYNSTRUTt 0.11 0.06 0.01 0.00 -0.03 -0.02 0.03 0.11 -0.05 -0.04 0.00 0.02 0.03 0.04 0.00 -0.02 0.01 0.01 -0.03 -0.05 -0.09 -0.04 0.11 0.10 0.04 
16. DRPVAL 0.07 0.17 0.12 0.15 0.10 0.12 0.15 0.19 0.03 0.10 0.16 0.21 0.25 0.29 0.05 0.05 0.17 0.00 0.00 -0.15 -0.11 -0.10 0.16 0.10 0.20 
17. DRNP -0.05 -0.02 -0.13 -0.19 -0.08 -0.06 -0.17 -0.13 0.16 -0.01 0.00 -0.01 -0.03 0.02 -0.28 -0.12 -0.11 -0.29 -0.03 -0.03 -0.27 -0.10 -0.03 -0.10 -0.15 
18. DRVP 0.05 -0.04 0.09 0.14 0.04 0.01 0.10 0.02 -0.12 0.10 0.03 0.00 -0.03 -0.07 0.25 0.00 -0.06 0.33 -0.03 0.27 0.36 0.17 -0.12 0.13 0.07 
19. DRNEG 0.03 -0.07 0.03 0.00 0.04 0.02 -0.03 -0.06 0.00 0.02 0.00 -0.04 -0.04 -0.01 -0.01 -0.05 -0.05 0.02 0.16 0.11 0.03 0.08 -0.19 0.04 -0.02 
20. PCREFz -0.01 -0.06 -0.01 0.02 0.00 -0.03 0.00 -0.01 0.06 0.27 0.21 0.18 0.14 0.09 0.10 -0.03 -0.05 0.16 -0.03 0.14 0.10 0.04 -0.10 0.06 -0.02 
21. WRDPRP1s -0.04 -0.13 -0.02 -0.05 -0.05 -0.06 -0.08 -0.16 -0.10 -0.11 -0.16 -0.20 -0.20 -0.21 -0.02 0.00 -0.10 0.00 -0.03 0.07 0.17 0.14 -0.18 -0.10 -0.11 
22. WRDPRP2 -0.02 -0.06 0.00 -0.02 -0.11 -0.14 -0.04 -0.10 -0.04 -0.03 -0.11 -0.16 -0.22 -0.26 0.06 0.05 -0.12 0.09 -0.02 0.12 0.20 0.13 -0.16 -0.02 -0.09 
23. WRDPRP3s -0.03 0.00 -0.01 -0.02 -0.03 -0.03 0.01 -0.01 -0.08 -0.16 -0.18 -0.18 -0.16 -0.14 0.01 0.05 0.01 0.00 0.01 -0.02 -0.02 0.03 0.02 -0.02 -0.02 
24. CRFAOa 0.01 0.02 0.02 0.07 0.05 0.04 0.07 0.06 0.07 0.27 0.23 0.22 0.19 0.15 0.15 0.04 0.07 0.16 -0.01 0.04 0.00 -0.07 -0.01 0.06 0.07 
25. CRFAO1 0.02 0.06 0.05 0.11 0.07 0.05 0.12 0.09 0.03 0.23 0.18 0.18 0.16 0.12 0.18 0.08 0.08 0.19 -0.04 0.04 0.02 -0.05 0.01 0.10 0.11 
26. LSAPP1 0.21 0.31 0.18 0.29 0.16 0.15 0.30 0.35 0.09 0.34 0.35 0.37 0.39 0.37 0.33 0.22 0.27 0.30 -0.06 -0.06 -0.09 -0.18 0.17 0.32 0.35 
27. LSASS1 -0.01 0.02 -0.02 0.05 0.00 -0.01 0.04 0.06 0.15 0.32 0.28 0.28 0.25 0.20 0.10 0.00 0.05 0.12 -0.04 0.03 -0.01 -0.05 0.04 0.04 0.03 
28. LSAGN 0.21 0.18 0.12 0.23 0.08 0.06 0.22 0.27 0.13 0.41 0.39 0.39 0.37 0.33 0.31 0.16 0.16 0.32 -0.09 0.08 0.00 -0.10 0.05 0.32 0.24 
29. PCNARz -0.07 -0.21 -0.07 -0.10 -0.06 -0.09 -0.14 -0.23 -0.03 0.02 -0.07 -0.14 -0.20 -0.21 0.04 -0.02 -0.17 0.10 0.05 0.20 0.23 0.23 -0.36 -0.06 -0.19 
30. PCDCz -0.01 -0.03 0.04 0.07 0.02 0.00 0.03 -0.01 -0.07 0.08 0.01 -0.02 -0.05 -0.06 0.12 0.00 0.04 0.15 -0.04 0.11 0.21 0.09 -0.12 0.07 0.02 
31. DESWC 0.30 0.57 0.38 0.57 0.36 0.34 0.64 0.60 -0.04 0.26 0.27 0.31 0.38 0.39 0.76 0.55 0.58 0.68 -0.12 -0.01 0.02 -0.21 0.23 0.61 0.69 
32. CNCAll -0.01 -0.03 0.05 0.09 0.03 0.00 0.05 0.01 -0.08 0.04 -0.01 -0.04 -0.05 -0.07 0.13 0.00 0.03 0.16 -0.01 0.09 0.20 0.09 -0.10 0.05 0.04 
33. CNCCaus 0.03 0.01 0.06 0.08 0.02 0.01 0.05 0.04 -0.04 0.13 0.06 0.04 0.00 -0.02 0.11 0.01 0.05 0.13 -0.09 0.11 0.19 0.05 -0.04 0.07 0.05 
34. CNCLogic -0.04 -0.12 -0.02 -0.01 0.01 -0.02 -0.06 -0.11 -0.09 0.03 -0.04 -0.09 -0.11 -0.12 0.06 -0.06 -0.03 0.10 0.02 0.11 0.19 0.14 -0.18 0.00 -0.07 
35. CNCADC -0.04 -0.07 -0.03 -0.06 0.06 0.04 -0.08 -0.08 0.01 -0.03 -0.03 -0.06 -0.05 -0.04 -0.01 0.02 0.10 -0.04 0.06 0.01 -0.02 0.03 -0.09 -0.07 -0.05 
36. CNCTemp 0.02 0.14 0.07 0.13 0.04 0.05 0.13 0.13 -0.07 -0.03 -0.02 0.00 0.03 0.05 0.09 0.08 0.13 0.05 -0.04 -0.04 0.01 -0.03 0.01 0.10 0.14 
37. CNCAdd -0.02 -0.06 -0.01 0.02 0.03 0.00 0.00 -0.04 -0.01 -0.01 -0.03 -0.05 -0.04 -0.08 0.03 -0.03 -0.03 0.05 0.02 0.04 0.07 0.05 -0.03 0.00 -0.01 
38. CNCPos 0.01 -0.01 0.07 0.11 0.00 -0.02 0.08 0.04 -0.06 0.09 0.03 0.01 -0.01 -0.05 0.14 0.01 0.01 0.17 -0.06 0.10 0.23 0.09 -0.07 0.08 0.05 
39. CNCNeg -0.05 -0.08 -0.04 -0.07 0.06 0.03 -0.09 -0.11 -0.05 -0.08 -0.09 -0.13 -0.13 -0.12 -0.01 -0.02 0.02 -0.01 0.08 0.04 0.03 0.08 -0.13 -0.06 -0.06 
40. RDFRE 0.04 -0.14 -0.08 -0.11 -0.11 -0.12 -0.13 -0.16 0.05 0.01 0.00 -0.05 -0.09 -0.08 -0.11 -0.11 -0.24 -0.05 0.03 0.20 0.12 0.20 -0.34 -0.02 -0.17 
41. Lead 0.20 0.75 0.20 0.27 0.19 0.18 0.31 0.35 -0.09 0.11 0.13 0.16 0.18 0.21 0.28 0.24 0.27 0.22 -0.07 -0.05 -0.08 -0.16 0.12 0.33 0.46 
42. Position 0.20 0.11 0.31 0.26 0.09 0.07 0.25 0.19 -0.08 0.08 0.09 0.09 0.11 0.11 0.15 0.05 0.09 0.16 -0.06 0.03 0.15 0.03 0.02 0.30 0.25 
43. Claim 0.25 0.27 0.29 0.43 0.12 0.12 0.41 0.39 -0.08 0.20 0.21 0.24 0.28 0.26 0.41 0.22 0.25 0.40 -0.10 0.03 0.08 -0.11 0.15 0.81 0.41 
44. Counterclaim 0.13 0.15 0.12 0.18 0.73 0.61 0.18 0.15 -0.03 0.11 0.13 0.12 0.14 0.19 0.23 0.12 0.25 0.19 -0.01 0.02 0.04 -0.03 0.06 0.51 0.41 
45. Rebuttal 0.15 0.19 0.17 0.23 0.69 0.77 0.23 0.22 -0.03 0.10 0.13 0.14 0.17 0.22 0.23 0.15 0.30 0.19 -0.01 -0.01 0.04 -0.05 0.10 0.48 0.48 
46. Evidence 0.17 0.15 0.21 0.27 0.16 0.13 0.25 0.25 0.05 0.18 0.21 0.21 0.22 0.24 0.34 0.22 0.19 0.33 -0.06 0.01 0.03 -0.06 0.09 0.75 0.28 
47. Concluding_Statement 1.00 0.23 0.25 0.29 0.16 0.16 0.32 0.56 -0.03 0.17 0.20 0.22 0.25 0.23 0.27 0.17 0.20 0.25 -0.06 0.03 0.05 -0.08 0.11 0.30 0.40 
48. Lead_effective 0.23 1.00 0.40 0.49 0.27 0.27 0.54 0.52 -0.10 0.14 0.16 0.21 0.28 0.30 0.42 0.32 0.42 0.35 -0.11 -0.05 -0.02 -0.20 0.21 0.39 0.71 
49. Position_effective 0.25 0.40 1.00 0.59 0.22 0.23 0.56 0.47 -0.08 0.16 0.19 0.22 0.30 0.29 0.34 0.21 0.28 0.31 -0.12 0.01 0.16 -0.10 0.18 0.35 0.68 
50. Claim_effective 0.29 0.49 0.59 1.00 0.34 0.33 0.77 0.60 -0.09 0.27 0.28 0.33 0.42 0.38 0.51 0.30 0.40 0.47 -0.14 0.04 0.18 -0.16 0.22 0.48 0.82 
51.Counterclaim_effective 0.16 0.27 0.22 0.34 1.00 0.80 0.33 0.28 -0.05 0.17 0.19 0.20 0.24 0.29 0.30 0.18 0.35 0.24 -0.04 -0.01 0.06 -0.07 0.15 0.44 0.62 
52. Rebuttal_effective 0.16 0.27 0.23 0.33 0.80 1.00 0.33 0.29 -0.05 0.15 0.17 0.19 0.24 0.29 0.28 0.19 0.34 0.22 -0.05 -0.03 0.03 -0.09 0.17 0.42 0.63 
53. Evidence_effective 0.32 0.54 0.56 0.77 0.33 0.33 1.00 0.63 -0.09 0.25 0.27 0.33 0.43 0.40 0.54 0.33 0.45 0.49 -0.13 0.03 0.16 -0.15 0.26 0.46 0.83 
54.Concl_Sttm_effective 0.56 0.52 0.47 0.60 0.28 0.29 0.63 1.00 -0.08 0.22 0.26 0.32 0.40 0.39 0.50 0.32 0.44 0.44 -0.13 -0.03 0.08 -0.16 0.26 0.45 0.77 
55. C1 -0.03 -0.10 -0.08 -0.09 -0.05 -0.05 -0.09 -0.08 1.00 0.65 0.68 0.62 0.55 0.46 -0.10 -0.05 -0.06 -0.10 0.00 0.07 -0.04 -0.02 -0.10 -0.06 -0.11 
56. C2 0.17 0.14 0.16 0.27 0.17 0.15 0.25 0.22 0.65 1.00 0.96 0.92 0.86 0.75 0.23 0.11 0.18 0.22 -0.14 0.12 0.09 -0.10 0.01 0.24 0.27 
57. C3 0.20 0.16 0.19 0.28 0.19 0.17 0.27 0.26 0.68 0.96 1.00 0.97 0.92 0.83 0.22 0.12 0.19 0.21 -0.11 0.09 0.05 -0.12 0.05 0.27 0.30 
58. C4 0.22 0.21 0.22 0.33 0.20 0.19 0.33 0.32 0.62 0.92 0.97 1.00 0.95 0.86 0.26 0.15 0.24 0.23 -0.13 0.05 0.04 -0.16 0.10 0.29 0.36 
59. C5 0.25 0.28 0.30 0.42 0.24 0.24 0.43 0.40 0.55 0.86 0.92 0.95 1.00 0.90 0.29 0.17 0.30 0.25 -0.13 0.04 0.04 -0.18 0.13 0.34 0.46 
60. C6 0.23 0.30 0.29 0.38 0.29 0.29 0.40 0.39 0.46 0.75 0.83 0.86 0.90 1.00 0.29 0.18 0.33 0.24 -0.11 -0.01 0.01 -0.14 0.16 0.35 0.46 
61. all_markers 0.27 0.42 0.34 0.51 0.30 0.28 0.54 0.50 -0.10 0.23 0.22 0.26 0.29 0.29 1.00 0.64 0.62 0.95 -0.12 0.03 0.15 -0.10 0.16 0.50 0.58 
62. booster_words 0.17 0.32 0.21 0.30 0.18 0.19 0.33 0.32 -0.05 0.11 0.12 0.15 0.17 0.18 0.64 1.00 0.43 0.43 -0.09 -0.03 0.07 -0.07 0.15 0.30 0.37 
63. discourse_markers 0.20 0.42 0.28 0.40 0.35 0.34 0.45 0.44 -0.06 0.18 0.19 0.24 0.30 0.33 0.62 0.43 1.00 0.43 -0.12 -0.07 0.03 -0.15 0.26 0.36 0.54 
64. hedge_words 0.25 0.35 0.31 0.47 0.24 0.22 0.49 0.44 -0.10 0.22 0.21 0.23 0.25 0.24 0.95 0.43 0.43 1.00 -0.10 0.07 0.17 -0.08 0.10 0.46 0.50 
65. neg_adj_comp -0.06 -0.11 -0.12 -0.14 -0.04 -0.05 -0.13 -0.13 0.00 -0.14 -0.11 -0.13 -0.13 -0.11 -0.12 -0.09 -0.12 -0.10 1.00 -0.07 -0.38 -0.07 -0.18 -0.09 -0.15 
66. social_order_comp 0.03 -0.05 0.01 0.04 -0.01 -0.03 0.03 -0.03 0.07 0.12 0.09 0.05 0.04 -0.01 0.03 -0.03 -0.07 0.07 -0.07 1.00 0.13 0.01 -0.18 0.02 -0.01 
67. positive_adj_comp 0.05 -0.02 0.16 0.18 0.06 0.03 0.16 0.08 -0.04 0.09 0.05 0.04 0.04 0.01 0.15 0.07 0.03 0.17 -0.38 0.13 1.00 0.52 0.11 0.07 0.12 
68. joy_comp -0.08 -0.20 -0.10 -0.16 -0.07 -0.09 -0.15 -0.16 -0.02 -0.10 -0.12 -0.16 -0.18 -0.14 -0.10 -0.07 -0.15 -0.08 -0.07 0.01 0.52 1.00 -0.05 -0.12 -0.19 
69. trust_verbs_comp 0.11 0.21 0.18 0.22 0.15 0.17 0.26 0.26 -0.10 0.01 0.05 0.10 0.13 0.16 0.16 0.15 0.26 0.10 -0.18 -0.18 0.11 -0.05 1.00 0.17 0.29 
70. all_elements 0.30 0.39 0.35 0.48 0.44 0.42 0.46 0.45 -0.06 0.24 0.27 0.29 0.34 0.35 0.50 0.30 0.36 0.46 -0.09 0.02 0.07 -0.12 0.17 1.00 0.59 
71. all_effective_score 0.40 0.71 0.68 0.82 0.62 0.63 0.83 0.77 -0.11 0.27 0.30 0.36 0.46 0.46 0.58 0.37 0.54 0.50 -0.15 -0.01 0.12 -0.19 0.29 0.59 1.00 
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4.2 SAMPLING ADEQUACY 

In order to perform subsequent factor analyses, the Kaiser-Meyer-Olkin (KMO) test for 

sufficiency of sample size for each category was evaluated. The KMO value was 0.68 and 

Bartlett’s chi-square approximation was χ2(2080) = 156181.4, p < .001. A KMO value close to 1 

indicates that the correlation pattern was compact enough to produce distinct and reliable factors. 

The resulting value of 0.68 was considered mediocre as it slightly under 0.70, a typical set 

minimum. It is recommended to make remedial action, which is to remove the variables with low 

values (typically below 0.50) and recalculate the KMO to see if it improves because the variables 

with low KMO values did not contribute to the common variance that other variables share, and 

retaining these variables in the factor analysis may introduce noise and inflate factor loadings 

(Howard, 2016). Thus, SYNLE (KMO = 0.36), SYNMEDwrd (KMO = 0.25), WRDPRP3s 

(KMO = 0.42), and CNCTemp (KMO = 0.27) were removed. The revised KMO value was found 

to be 0.79, which is considered as an average level of sampling adequacy for performing factor 

analysis on the dataset. By looking at the resultant Bartlett’s sphericity test, χ2(1830) = 143358.6, 

p < .001, it was noted that newly acquired values were suitable to perform factor analysis.   

4.3 ERROR CORRECTIONS 

 To ensure the generation of the most accurate writing features using the language analysis 

tool, it is essential to identify and correct spelling and grammatical errors in each writing sample. 

This correction process allows the samples to be accurately processed by Coh-Metrix, SEANCE, 

and semantic analysis tools, thereby enhancing the reliability of the extracted writing features. 

The total number of errors, encompassing both spelling and grammar, was recorded for each 

writing sample, and these combined errors were utilized to calculate inter-rater reliability 

between two raters. 
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The types of errors that require careful attention, as they may affect the ability of NLP 

tools to parse the text, are described as follows: (a) misspellings include obvious spelling 

mistakes (e.g., “becuase” should be corrected to “because”), omissions of parts of words (e.g., 

“in conclu” should be corrected to “in conclusion”), inappropriate acronyms (e.g., “u” should be 

corrected to “you”), and the incorrect separation of compound words (e.g., “class room” should 

be corrected to “classroom”); (b) mechanics errors include misplaced punctuation or the 

omission of necessary punctuation, which can affect the ability of Coh-Metrix to accurately 

count the number of sentences and related features within the text (e.g., “By asking multiple 

friends peers and even family members their thoughts for something that may or may not be 

important, it could help save someone from making a bad choice in the future.” should be 

corrected to “By asking multiple friends, peers, and even family members their thoughts on 

something that may or may not be important, it could help save someone from making a bad 

choice in the future.”); (c) messy codes are a frequent issue encountered by raters, as students 

typing on computers may inadvertently produce nonsensical characters that are difficult to 

interpret (e.g., “Ü Ü Ü Ü, @?@”). Raters systematically removed these extraneous codes. 

 It is noteworthy that errors in other aspects of sentence structure, such as capitalization 

errors, were not considered, as Coh-Metrix does not differentiate between lowercase and 

uppercase letters. Two independent raters conducted the corrections on the writing samples. I 

reviewed a total of 2,977 student essays, while a second rater—who is a doctoral student and 

former ESL teacher—marked corrections on 25% of randomly selected papers (n = 745) from 

the set I reviewed according to established guidelines. The percentage agreement regarding the 

identification of errors for correction was 91%. This figure was calculated by dividing the 

number of errors marked by the first rater by the average total number of errors identified by 
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both raters, as suggested by Polio (1997). A consensus was subsequently reached for the 

corrected versions of the papers. The finalized corrections were then input into Coh-Metrix, 

SEANCE, and content and semantic analysis tools to produce the writing-related variables. 

4.4 MAIN ANALYSES 

4.4.1 RQ1a. Persuasive Writing Features in Secondary School Students’ Papers 

 Parallel analysis (PA) (Horn, 1965) and the scree plot (Cattell, 1966) were used to 

determine the appropriate number of factors to retain. PA compares the observed eigenvalues 

from the correlation matrix with those generated from uncorrelated normal variables. In this 

process, a factor is considered significant if its associated eigenvalue exceeds the 95th percentile 

of those obtained from random uncorrelated data (Glorfeld, 1995). The scree plot method 

provides a visual representation of where the eigenvalues sharply decline. Using both methods 

together helps avoid the risks of over- or under-extracting factors.  

To address part of RQ1, all microstructural-level and macrostructural-level variables were 

loaded into PA software to determine the number of factors to retain. The scree plot from PA for 

the micro- and macrostructural level is presented in Figure 4-3. According to the PA results, 

sixteen factors should be retained, as these sixteen factors explained a substantial portion of the 

variance compared to random data. Collectively, the 16-factor solution accounted for the entirety 

of the variance in the Pearson correlation matrix, with the individual factors explaining 16%, 

11%, 11%, 8%, 8%, 7%, 6%, 6%, 6%, 5%, 4%, 3%, 3%, 3%, 2%, and 2% of variance, 

respectively. However, this result may indicate an overfitting issue, where the algorithm 

identified statistically significant patterns that may not be practically meaningful. Based on the 

strong theoretical foundation outlined in Chapter 2 Literature Review – particularly models such 

as the levels of language framework, which supported a 3-factor model for microstructural 
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features, along with literature that categorized macrostructural features into content, structure, 

and tone/style – a 6-factor solution was imposed. This decision was made despite the screen plot 

and parallel analysis suggesting a higher number of factors, following the recommendations of 

Sürücü et al. (2024).  

 

Figure 4-3 Scree Plot of Parallel Analysis for Microstructural Writing Features 

After completing the preliminary factor analysis and determining the appropriate number 

of factors to retain, a Promax rotation was applied to the 6-factor solution, allowing the factors to 

correlate with each other. This solution accounted for the entire variance in the Pearson 

correlation matrix, with the six factors explaining 24%, 16%, 16%, 10%, 25%, and 10% of the 

total variance, respectively. Figure 4-4 presents the results of EFA, visually displaying the 

interpretation of the six-factor model. Only loadings with an absolute value greater than 0.50 

were represented as edges, while those below the 0.50 threshold were excluded from further 

analyses.  
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Figure 4-4 Exploratory Factor Analysis Plot 
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Table 4-3 presents the factor structure coefficients for the writing features examined in 

this study. The first factor comprised the following variables: DESWLsy, LDMTLD, 

WRDFAMc, WRDFRQc, WRDPOLc, SYNNP, DRPVAL, DRVP, WRDPRP1s, WRDPRP2, 

PCNARz, Readability, social_order_component, positive_adjectives_component, 

joy_component, and trust_verbs_component. Of these 16 variables, seven were excluded due to 

factor loadings below 0.5, indicating insufficient convergent validity as measured by average 

variance extracted. Retaining only variables with higher loadings was deemed beneficial for 

improving estimates of internal consistency reliability. The retained variables were DESWLsy, 

LDMTLD, WRDFAMc, WRDFRQc, WRDPOLc, SYNNP, DRVP, PCNARz, and Readability. 

Factor 1 was labeled Lexical Proficiency, as it captured both lexical complexity (e.g., mean 

syllables per word, mean word frequency, mean number of modifiers per noun phrase) and 

vocabulary diversity and depth (e.g., lexical diversity, mean word polysemy, word 

meaningfulness, mean word familiarity).  

While some variables, such as Readability and Narrativity Z-score, might not seem 

directly aligned with Lexical Proficiency, they in fact underscore the role of lexical features in 

shaping word choice, text complexity, and discourse coherence, thus enhancing narrative 

effectiveness. Empirically, this outcome aligns with previous research (Aryadoust & Liu, 2015; 

Lu, 2017; Wilson et al., 2017) employing structural equation modeling to examine and validate 

NLP-derived writing features, thus informing nuanced analyses of text quality using 

hypothesized constructs. Our results showed that specific lexical features — especially those 

related to word information and vocabulary depth — had high loadings, indicating strong 

associations with the latent construct. Collectively, these lexical features were foundational to 

persuasive writing (i.e., explaining 24% of the variance). However, in contrast to findings from 
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other studies, readability and narrativity demonstrated substantial loadings of 0.64 and 0.76, 

respectively, under the Lexical Proficiency factor. This differs from previous research (Graesser 

et al., 2011; Nkhobo & Chaka, 2023; Plakans & Gebril, 2013), where these features are often 

associated with discourse-level elements. This discrepancy suggests that vocabulary richness and 

diversity notably impact readability and narrative depth in persuasive essays, supporting a more 

refined use of language to improve textual flow (McKeown et al., 2020). 

The second factor included DESSL, DESSLd, SYNSTRUTt, DRNP, PCDCz, CNCAll, 

CNCCaus, CNCLogic, CNCADC, CNCAdd, CNCPos, and CNCNeg. After excluding variables 

with low factor loadings, the retained variables were PCDCz, CNCAll, CNCLogic, CNCAdd, 

CNCPos, and CNCNeg. This factor was labeled Cohesive Devices, capturing the integration of 

grammatical and lexical relationships both within and across sentences. This factor reflects 

cohesive device use, including the repetition of related words and concepts that enables readers 

to connect ideas at the sentence-to-sentence level (Graesser et al., 2011). Tortorelli (2020) 

similarly characterized cohesion as the effective linkage of ideas through referential and lexical 

ties. Our findings indicate that (1) cohesive devices such as reference, substitution, ellipsis, and 

conjunction are crucial for constructing persuasive discourse in writing and (2) the use of these 

cohesive devices collectively accounted for 16% of the variance in persuasive writing.  

The Cohesive Devices factor thus represents explicit linguistic markers that serve to link 

individual sentences, maintain consistent references, reinforce thematic continuity, and facilitate 

a smooth flow of ideas (Kuo, 1995). The use of logical (e.g., thus, as a result, then, hence), 

additive (e.g., in fact, besides, in addition, furthermore), negative (e.g., neither/nor, but, however, 

though, conversely), and positive connectives (e.g., and, or, either/or, moreover, likewise, also) in 

persuasive writing provides linguistic leverage for signaling arguments and ultimately enhancing 
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writing quality (Taylor et al., 2019). Overall, this factor emphasizes the strategic use of discourse 

markers to connect ideas effectively.  

The third factor included PCREFz, CRFAOa, CRFAO1, LSAPP1, LSASS1, LSAGN, C1, 

C2, and C6. After removing variables with low factor loadings, the retained variables were 

PCREFz, CRFAOa, CRFAO1, LSASS1, and LSAGN. The factor was labeled Textual 

Coherence, incorporating both micro- and macro-level cohesion. The key variables in this latent 

construct included LSA given/new information, LSA overlap of adjacent sentences/paragraphs, 

and deep cohesion, all of which contributed to coherence by establishing contextual ties rooted in 

shared knowledge between writer and reader invoking familiar or possible conceptual worlds 

(Widdowson, 1983).  

Distinct from the Cohesive Devices factor, the Textual Coherence factor focuses on 

linking elements based on “thematic development, organization of information, or 

communicative purpose of the particular discourse” (Kuo, 1995, p.48). This factor emphasizes 

maintaining clarity across both small- and large-scale text segments. For example, LSA scores 

for adjacent/all sentences capture cohesion at a local or superficial level, such as repeating the 

same word choices across successive sentences (Roscoe et al., 2015). LSA given/new 

information evaluates the continuity of topic development and avoiding abrupt thematic shifts. 

This factor promotes reader comprehension of each sentence within the broader discourse. This 

finding is consistent with prior research in writing assessment, which posits that cohesion is not 

only syntactic but also semantic, each essential to effective essay composition (Ildikó 

Berzlánovich & Gisela Redeker, 2012; Witte & Faigley, 1981). An essay can be cohesively 

constructed yet lack coherence if it fails to represent shared frames of reference. Conversely, an 

essay may be coherent yet lack cohesive devices, limiting its ability to effectively communicate 
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connections between ideas. Hence, these findings underscore the complexity of cohesion and 

coherence, which together facilitate a deeper understanding of the interrelationships among ideas 

within persuasive writing. 

The fourth factor consisted of PCCNCz, WRDHYPnv, WRDIMGc, and WRDMEAc, 

with DRNEG excluded due to a low loading value. This factor is challenging to categorize, yet I 

propose the label Semantic Richness to reflect its focus on qualities that enhance reader 

visualization and comprehension. Unlike Lexical Proficiency, which captures vocabulary 

complexity and diversity, Semantic Richness emphasizes the vivid, concrete, and meaningful 

aspects of word choice that facilitate sensory engagement and conceptual clarity. This factor 

underscores the ability of words to convey imagery and meaning, as well as their lexical 

hierarchy (such as hypernymy), which is essential in persuasive writing for grounding abstract 

concepts in relatable, vivid language. 

The fifth factor included evidence_effective, claim_effective, 

concluding_statement_effective, lead_effective, position_effective, all_markers, claim, lead, 

position, evidence, concluding_statement, DESWC, booster_words, discourse_markers, and 

negative_adjectives_component. After removing the variables with low loadings, 

evidence_effective, claim_effective, concluding_statement_effective, lead_effective, 

position_effective, all_markers, claim, and DESWC were maintained. These retained variables 

distinctly represent the structural components of persuasive writing along with their respective 

effectiveness scores. Accordingly, this factor was labeled Structural Effectiveness to reflect its 

emphasis on the organization and quality of key argumentative elements within the text. This 

factor accounted for the largest proportion (i.e., 25%) of variance in persuasive writing, 
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indicating the variables involved under this category have a relatively large contribution to 

persuasive writing.  

This finding is consistent with previous research (Kamimura, 2011; Tasya, 2022; Uccelli 

et al., 2013), which highlights that academic writing necessitates not only the mastery of 

language conventions but also advanced language forms and functions. De La Paz and 

colleagues (2012) noted that when composing argumentative essays, students often employed 

relevant evidence and argumentation strategies, effectively contextualizing and corroborating 

their evidence to enhance the overall quality of their writing. Likewise, Dobbs (2014) found that 

writers of all skill levels utilized organizational and stance markers to make claims and construct 

arguments. These findings indicate that effective persuasive writing is bolstered by the strategic 

use of structural and linguistic markers, as well as the effectiveness of discourse elements, all of 

which contribute to clarity, coherence, and engagement in the text. 

The last factor, labeled Refutation Quality, included four variables: rebuttal, 

counterclaim, rebuttal_effective, and counterclaim_effective. These variables were distinguished 

from other elements of argumentation and accounted for 10% of the variance in explaining 

persuasive writing. This finding underscores the significance of argumentation skills in 

persuasive writing, particularly in how effectively writers address opposing viewpoints and 

bolster their arguments through rebuttals and counterclaims. Prior research (S. A. Crossley et al., 

2014; F. Liu & Stapleton, 2014; J. Qin & Karabacak, 2010) has indicated that the incorporation 

of counterclaims and rebuttals in writing is often positively correlated with higher holistic scores 

for persuasive quality. Therefore, the ability to effectively utilize these components is critical for 

enhancing the overall effectiveness of persuasive writing. 
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The six-factor structure derived from the EFA aligns closely with theoretical models of 

persuasive writing that emphasize hierarchical and interdependent competencies (Sanders & 

Wijk, 1996; Wilson et al., 2017). Specifically, the identified factors – Lexical Proficiency, 

Cohesive Devices, Textual Coherence, Semantic Richness, Structural Effectiveness, and 

Refutation Quality – reflect the multidimensional nature of writing posited by cognitive ad 

sociocognitive frameworks, where mastery evolves from foundation linguistic skills (or 

microstructural elements) to advanced rhetorical strategies (or macrostructural elements). For 

example, the first three derived factors (i.e., Lexical Proficiency, Cohesive Devices, Textual 

Coherence) directly map onto the three-level language framework, representing word-level 

features (e.g., vocabulary diversity, polysemy), sentence-level syntactic cohesion (e.g., logical 

connectives, referential ties), and discourse-level thematic continuity (e.g., LSA-based coherence 

metrics). The prominence of Lexical Proficiency (24% variance explained) as a primary factor 

corroborates theoretical claims that vocabulary depth and complexity are foundational to 

persuasive efficacy, as lexical choices shape both local clarity and global argumentativeness 

(Maamuujav, 2022; MacArthur et al., 2019).  

This structure also suggests developmental trajectories in writing proficiency. Early 

writers may rely heavily on Structural Effectiveness and Cohesive Devices to scaffold 

foundational argumentation, while advanced writers increasingly emphasize Textual Coherence 

and Refutation Quality to refine rhetorical nuance and audience engagement (L. L. Aull & 

Lancaster, 2014; Rowe & Wilson, 2015). For example, younger students might focus on 

formulaic templates (e.g., thesis statements, evidence placement) to meet structural expectations, 

whereas older learners integrate Refutation Quality to persuade through critical engagement with 

opposing views. This progression mirrors stage-based theories of writing development (Flower 
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& Hayes, 1981; Scardamalia & Bereiter, 1987; Scardamalia & Paris, 1985), where novices 

prioritize “knowledge-telling” and experts shift toward “knowledge-transforming”.  

Overall, the results derived from the EFA provide a productive framework of writing 

assessment for guiding instructional diagnosis and feedback in a straightforward manner 

(Berninger et al., 1994; N. W. Nelson & Van Meter, 2007; Scott, 2009). This framework not only 

facilitates the identification of key components that contribute to effective writing but also allows 

educators to tailor their feedback to address specific areas of improvement. By focusing on these 

elements, instructors can enhance their teaching strategies, ultimately fostering better writing 

skills among students.  

Statistically, the EFA revealed six empirically grounded dimensions reflecting the 

multifaceted nature of persuasive writing. Subsequently, CFA tested a theoretically informed, 

redesigned model aligned with established argumentative frameworks (Newell et al., 2011). The 

CFA model refined the structure by: (1) combining Structural Effectiveness and Refutation 

Quality into a unified construct, reflecting their shared role in the organizational architecture of 

persuasion; (2) introducing Tone and Content as two separate factors, aligned with their 

theoretical recognition as critical proxies for persuasive efficacy; and (3) simplifying four EFA-

derived microstructural dimensions (Lexical Proficiency, Cohesive Devices, Textual Coherence, 

and Semantic Richness) into three parsimonious categories (word-level, cohesion, and discourse-

level features) to optimize theoretical clarity and operational coherence.  
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Table 4-3 Factor Structure Coefficients for Micro- and Macro-structural Writing Features 
 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Communality Uniqueness Complexity 
DESWLsy -0.76 -0.08 -0.01 0.14 0.32 -0.06 0.702 0.3 1.5 
LDMTLD -0.52 0.03 -0.48 0.02 0.09 0.06 0.515 0.49 2.1 
PCCNCz -0.2 0.25 0.08 0.77 -0.18 0.11 0.748 0.25 1.6 
WRDFAMc 0.66 0.17 0.04 0.15 0.09 0.01 0.495 0.5 1.3 
WRDFRQc 0.84 0.1 0.09 -0.25 -0.11 0.02 0.793 0.21 1.3 
WRDHYPnv -0.42 -0.1 0.1 0.51 0.17 0.07 0.49 0.51 2.4 
WRDIMGc -0.35 -0.18 0.02 0.65 -0.11 0.13 0.607 0.39 1.9 
WRDMEAc 0.1 0 -0.07 0.83 0.14 0.01 0.719 0.28 1.1 
WRDPOLc 0.63 0.08 0.1 0.02 -0.02 -0.03 0.416 0.58 1.1 
DESSL -0.1 0.46 0.21 0.12 -0.22 0.07 0.335 0.67 2.2 
DESSLd 0.02 0.43 0.18 0.01 -0.25 0.07 0.286 0.71 2.1 
SYNNP -0.67 -0.07 -0.14 0.19 0.08 -0.03 0.517 0.48 1.3 
SYNSTRUTt -0.03 -0.48 -0.14 0 0.15 -0.12 0.289 0.71 1.5 
DRPVAL -0.28 -0.1 0 0 0.17 0.07 0.119 0.88 2.1 
DRNP -0.2 -0.28 0.1 -0.01 -0.24 0 0.185 0.81 3 
DRVP 0.65 0.09 0.07 0.04 0.17 0.01 0.47 0.53 1.2 
DRNEG 0.3 0.07 -0.01 -0.32 -0.01 0.12 0.213 0.79 2.4 
PCREFz 0.32 0.21 0.84 0.09 -0.03 0 0.855 0.14 1.5 
WRDPRP1s 0.4 0.05 -0.11 -0.09 -0.1 0.02 0.193 0.81 1.5 
WRDPRP2 0.39 0.11 -0.05 0 -0.01 -0.13 0.186 0.81 1.4 
CRFAOa 0.05 0.27 0.81 0.06 0.03 0.03 0.739 0.26 1.2 
CRFAO1 0.09 0.23 0.76 0.09 0.07 0.02 0.653 0.35 1.3 
LSAPP1 -0.17 -0.12 0.44 -0.03 0.44 -0.01 0.431 0.57 2.5 
LSASS1 -0.04 0.12 0.84 0.08 0.04 -0.08 0.731 0.27 1.1 
LSAGN 0.11 -0.13 0.66 -0.06 0.4 -0.09 0.638 0.36 1.8 
PCNARz 0.76 0.26 0.23 -0.24 -0.15 0.05 0.773 0.23 1.8 
PCDCz 0.33 0.65 0.17 0.04 0.14 -0.14 0.608 0.39 1.9 
DESWC -0.13 0.06 0.14 0.04 0.78 0.15 0.669 0.33 1.2 
CNCAll 0.28 0.82 0.02 0.05 0.14 -0.11 0.779 0.22 1.3 
CNCCaus 0.29 0.39 0.17 0.06 0.18 -0.16 0.325 0.67 3.3 
CNCLogic 0.34 0.68 0.03 -0.12 0.01 -0.03 0.598 0.4 1.5 
CNCADC -0.06 0.48 -0.13 -0.25 -0.1 0.19 0.358 0.64 2.2 
CNCAdd 0.04 0.59 -0.06 0.03 -0.03 0.03 0.352 0.65 1 
CNCPos 0.34 0.62 0.1 0.12 0.19 -0.21 0.6 0.4 2.2 
CNCNeg 0.04 0.51 -0.15 -0.18 -0.12 0.2 0.375 0.63 1.9 
RDFRE 0.64 -0.38 -0.25 -0.17 -0.05 -0.03 0.648 0.35 2.2 
Lead -0.13 -0.09 0.03 -0.04 0.43 0.07 0.216 0.78 1.4 
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Table 4-3 (cont’d) 

Position 0.19 0.03 -0.02 -0.02 0.28 0.04 0.116 0.88 1.9 
Claim 0.07 -0.04 0.12 0.11 0.55 -0.05 0.342 0.66 1.2 
Counterclaim 0.05 0.06 0.02 0.01 0.2 0.77 0.637 0.36 1.2 
Rebuttal 0 0.03 -0.01 0 0.24 0.81 0.71 0.29 1.2 
Evidence 0.04 -0.07 0.02 0.03 0.4 0.08 0.17 0.83 1.2 
Concluding_Statement 0.01 -0.09 0.01 -0.05 0.44 0.05 0.204 0.8 1.1 
Lead_effective -0.18 -0.04 0.01 0.01 0.62 0.08 0.431 0.57 1.2 
Position_effective -0.01 0.02 -0.04 0.04 0.57 0.06 0.33 0.67 1 
Claim_effective -0.02 0.04 0.02 0.1 0.75 0.1 0.582 0.42 1.1 
Counterclaim_effective -0.04 0.06 0.02 0.07 0.33 0.78 0.723 0.28 1.4 
Rebuttal_effective -0.07 0.03 0.01 0.05 0.33 0.75 0.675 0.32 1.4 
Evidence_effective -0.07 0.01 0.02 0.1 0.77 0.1 0.623 0.38 1.1 
Concluding_Statement_effective -0.15 -0.04 0.04 0.05 0.74 0.06 0.581 0.42 1.1 
C1 -0.09 -0.14 0.27 -0.13 -0.1 0.04 0.127 0.87 2.7 
C2 0.01 -0.09 0.45 -0.06 0.3 0.11 0.314 0.69 2 
C6 -0.22 -0.16 0.44 -0.03 0.32 0.21 0.408 0.59 3.3 
all_markers 0.05 0.12 0.09 0 0.73 0.11 0.57 0.43 1.1 
booster_words -0.06 0.05 0 -0.08 0.48 0.07 0.25 0.75 1.2 
discourse_markers -0.24 0.11 0.03 -0.07 0.57 0.21 0.444 0.56 1.8 
negative_adjectives_component -0.05 0.02 -0.02 -0.14 -0.2 0.05 0.064 0.94 2.1 
social_order_component 0.31 0.01 0.06 -0.04 0.02 0 0.104 0.9 1.1 
positive_adjectives_component 0.4 0.12 -0.09 0.22 0.19 -0.02 0.271 0.73 2.4 
joy_component 0.34 0.05 -0.12 0.12 -0.15 -0.02 0.169 0.83 2 
trust_verbs_component -0.36 -0.03 -0.03 0.26 0.29 0.01 0.281 0.72 2.8 

Note. Factor loadings indicate the strength of the relationship between variables and factors. Communality represents the proportion of 

variance in a variable explained by the extracted factors. Uniqueness reflects the variance in a variable not explained by common 

factors. Complexity indicates how many factors are associated with each variable. Bolded values in black indicate the highest absolute 

factor loadings across the three factors, while italic values indicate absolute factor loadings below 0.50, which have been omitted. 
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4.4.2 RQ1b. Latent Structure of Persuasive Writing Data 

As discussed in Chapter 2 Literature Review, various writing frameworks, such as the 

(Not) Simple View of Writing and Levels of Language Framework, represented a spectrum of 

multidimensional elements. However, these models often incorporate writing-related elements 

that have been insufficiently investigated within realistic educational writing datasets, 

particularly those specializing in persuasive writing data (Rodgers et al., 2020). To address the 

second part of my RQ1, I employed CFA to establish evidence of construct validity within the 

hypothesized structural equation model. I hypothesized that a higher-order model comprising six 

first-order factors – word, cohesion, discourse, content, structure, tone/style – would be the most 

appropriate representation of the data, explained by both microstructural and macrostructural 

factors. It is noted that my hypothesized CFA model differs slightly from the findings of the EFA 

presented in RQ1a; nevertheless, I chose to utilize my hypothesis as it is more empirically 

grounded and will inform the subsequent design of the GPT prompts and automated essay 

scoring system.  

I compared this higher-order model to two alternative models: a one-factor model as the 

baseline CFA model and a two-factor CFA model. Model fit statistics for each model are 

presented in Table 4-4. It is important to note that a reduced version of the higher-order model 

was utilized because the full model did not converge. The non-convergence may be attributed to 

the ratio of observations to the number of parameters, as well as ambitious model specifications 

involving complex paths and correlated factors. Consequently, I opted to simplify higher-order 

models by excluding the effectiveness scores of each element at the structural level and 

SEANCE sentimental composite scores. For consistency in model comparison, these variables 
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were also removed from the alternative models to ensure comparable numbers of features across 

models. 

The rationale for removing these variables from all models is twofold. First, these 

variables are either correlated with or derived from other variables, which could lead to 

multicollinearity issues. Such multicollinearity can inflate the standard errors of estimates and 

obscure the true relationships between writing constructs. Second, statistically, the inclusion of 

highly correlated variables may result in overfitting, which may complicate the model without 

significantly improving its explanatory power. By simplifying the model and focusing on 

primary variables that directly contribute to the constructs of interest, I aim to improve model 

stability and interpretability. Therefore, excluding these variables aligns with both theoretical 

considerations and the need for a more parsimonious model that can effectively converge during 

estimation. 

Table 4-4 Comparison of CFA model fit indices 

Fit Index One-Factor  Two-Factor  Higher-Order 
Free parameters 60  61  67 
Chi-Square 43527.447    72162.619  12261.106 
Degree of Freedom (df) 405  404  398 
p-value p < 0.001  p < 0.001  p < 0.001 
CFI 0.399  0.528  0.853 
TLI 0.354  0.492  0.839 
RMSEA 0.194  0.172  0.103 
SRMR 0.191  0.162  0.107 

Note. CFI = Comparative fit index; TLI = Tucker-Lewis index; RMSEA = Root mean square 

error of approximation; SRMR = Standardized root mean square residual.  

The goodness-of-fit statistics for the one-factor model (baseline model) were statistically 

significant, χ2(405) = 43527.447, p < .001, with both the CFI and TLI indicating poor fit at 0.399 

and 0.354, respectively. Similarly, the RMSEA and SRMR were low at 0.194 and 0.191 

respectively, neither of which fell below the desirable cutoff of 0.05, indicating poor model fit. 
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The two-factor model yielded marginal improvements over the one-factor model. The goodness-

of-fit statistics were statistically significant, χ2(404) = 72162.619, p < .001, with CFI and TLI 

values increasing slightly to 0.528 and 0.492, respectively. Additionally, the RMSEA and SRMR 

values were lower for the two-factor model compared to the one-factor model.  

The higher-order model showed a marked improvement in fit indices compared to the 

previous two models, as evidenced by a significant χ2(398) = 12261.106, p < .001. The CFI and 

TLI values substantially increased, both exceeding the 0.80 level, although remaining below the 

0.90 threshold, which is considered as the minimally acceptable threshold in psychometric 

research. The RMSEA and SRMR values were 0.103 and 0.107, respectively. Although these 

values still indicated an undesirable fit, they were approaching the desired cutoff of 0.05. 

Consequently, I argue that the higher-order CFA model was the most suitable based on these 

criteria. Statistically, the higher-order model outperformed the other models across all fit indices 

(i.e., chi-square, CFI, TLI, RMSEA, SRMR).  

The weak fit indices for the hypothesized higher-order model (e.g., CFI = 0.853, RMSEA 

= 0.103) suggest potential misalignment between the theoretical framework and empirical data, 

likely due to the complexity of modeling higher-order latent constructs. This constrained the 

robustness of invariance testing for the RQ2, as poor baseline model fit undermines the validity 

of group comparisons. Future work should prioritize refining the measurement model (e.g., 

testing bifactor structures or simplifying hierarchical assumptions) to strengthen psychometric 

foundations before advancing invariance claims. In this study, the hypothesized higher-order 

structure was retained for theoretical consistency of higher-order structure, despite its constraints 

on invariance testing.  
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The standardized loadings for the higher-order CFA model are provided in Table 4-5. 

Figure 4-5 illustrates the loading estimates for the higher-order model including both 

microstructural and macrostructural writing features.  

Table 4-5 Loading Estimate, Standard Error, Z-Value, and P-Value for the Higher-Order CFA 
Model 

Loadings Estimate SE z-value P(>|z|) 
word =~     
    WRDFAMc 1    
    PCNARz 1.532 0.049 31.048 0.000 
    DESWLsy -1.187 0.041 -28.688 0.000 
    RDFRE 0.621 0.041 15.196 0.000 
    SYNNP -1.246 0.048 -26.236 0.000 
    WRDHYPnv -0.785 0.038 -20.793 0.000 
    WRDPOLc 0.990 0.038 25.847 0.000 
    DRVP 1.054 0.037 28.857 0.000 
    WRDIMGc -0.728 0.038 -18.997 0.000 
sentence =~     
    LSAGN 1   0.000 
    LSASS1 1.211 0.042 28.838 0.000 
    PCREFz 1.527 0.063 24.048 0.000 
    CRFAOa 1.419 0.052 27.411 0.000 
    CRFAO1 1.372 0.051 26.972 0.000 
    LSAPP1 0.505 0027 18.426 0.000 
text =~     
    CNCAll 1    
    CNCAdd 0.484 0.021 23.238 0.000 
    CNCLogic 0.886 0.023 38.213 0.000 
    DESSL 0.251 0.025 9.866 0.000 
    PCDCz 0.949 0.026 36.855 0.000 
    SYNSTRUTt -0.390 0.025 -15.314 0.000 
    CNCPos 0.956 0.015 63.440 0.000 
content =~     
    C1 1    
    C2 1.759 0.063 28.041 0.000 
    C3 1.884 0.065 29.151 0.000 
    C4 1.908 0.068 28.031 0.000 
    C5 1.896 0.068 27.696 0.000 
    C6 1.713 0.065 26.462 0.000 
structure =~     
    Lead 1    
    Position 0.614 0.084 7.356 0.000 
    Claim  1.531 0.107 14.259 0.000 
    Counterclaim 0.878 0.082 10.737 0.000 
    Rebuttal 0.916 0.082 11.144 0.000 
    Evidence 1.400 0.108 13.000 0.000 
    Concluding_Statement 1.143 0.085 13.386 0.000 
tone =~     
    all_markers 1    
    booster_words 0.607 0.027 22.661 0.000 
    discourse_markers 0.744 0.028 26.353 0.000 
micro =~     
    word 1    
    sentence 0.733 0.066 11.112 0.000 
    text 2.160 0.247 8.731 0.000 
macro =~     
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Table 4-5 (cont’d) 

    content 1    
    structure 1.902 0.178 10.698 0.000 
    tone 2.160 0.240 13.302 0.000 
Variances  Estimate SE z-value P(>|z|) 
word =~     
    WRDFAMc 0.620 0.021 30.205 0.000 
    PCNARz 0.109 0.014 7.891 0.000 
    DESWLsy 0.465 0.017 27.039 0.000 
    RDFRE 0.854 0.045 18.847 0.000 
    SYNNP 0.410 0.019 21.910 0.000 
    WRDHYPnv 0.766 0.023 33.566 0.000 
    WRDPOLc 0.628 0.021 29.690 0.000 
    DRVP 0.578 0.020 28.718 0.000 
    WRDIMGc 0.799 0.023 34.835 0.000 
sentence =~     
    LSAGN 0.597 0.032 18.778 0.000 
    LSASS1 0.410 0.018 23.229 0.000 
    PCREFz 0.061 0.022 2.740 0.006 
    CRFAOa 0.190 0.013 14.488 0.000 
    CRFAO1 0.243 0.014 17.875 0.000 
    LSAPP1 0.897 0.024 37.257 0.000 
text =~     
    CNCAll 0.191 0.013 14.331 0.000 
    CNCAdd 0.811 0.026 31.231 0.000 
    CNCLogic 0.365 0.022 16.742 0.000 
    DESSL 0.949 0.250 3.792 0.000 
    PCDCz 0.271 0.021 12.929 0.000 
    SYNSTRUTt 0.877 0.031 18.010 0.000 
    CNCPos 0.261 0.018 14.285 0.000 
content =~     
    C1 0.727 0.028 26.186 0.000 
    C2 0.155 0.008 20.266 0.000 
    C3 0.030 0.003 9.211 0.000 
    C4 0.005 0.004 1.533 0.125 
    C5 0.017 0.005 3.328 0.001 
    C6 0.198 0.024 8.098 0.000 
structure =~     
    Lead 0.860 0.017 50.426 0.000 
    Position 0.947 0.083 11.349 0.000 
    Claim 0.672 0.025 26.311 0.000 
    Counterclaim 0.892 0.051 17.353 0.000 
    Rebuttal 0882 0.056 15.857 0.000 
    Evidence 0.726 0.033 21.761 0.000 
    Concluding_Statement 0.817 0.027 30.165 0.000 
tone =~     
    all markers 0.063 0.030 2.084 0.037 
    booster_words 0.655 0.037 17.588 0.000 
    discourse_markers 0.481 0.033 14.758 0.000 
micro =~     
    word 0.266 0.031 8.474 0.000 
    sentence 0.298 0.075 3.992 0.000 
    text -0.062 0.014 -4.482 0.000 
macro =~     
    content 0.161 0.015 10.643 0.000 
    structure 0.077 0.012 6.184 0.275 
    tone 0.355 0.030 11.712 0.000 
Covariances Estimate SE z-value P(>|z|) 
    micro~~macro 0.284 0.061 4.638 0.000 
Regressions Estimate SE z-value P(>|z|) 
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Table 4-5 (cont’d) 

    micro~essay score -0.209 -0.205 1.020 0.000 
    macro~essay score 2.729 0.939 2.906 0.000 

Note. SE = standard error   

 

Figure 4-5 Diagram of the Higher-Order CFA Model 

4.4.3 RQ2a. Tests of Measurement Invariance Among SPED Groups 

The study employed the four-step approach for testing measurement invariance, as 

outlined by Widaman & Reise (1997), including (1) configural, (2) metric, (3) scalar, and (4) 

residual invariance. This framework was used to assess whether the resulting reduced higher-

order CFA model could detect differences in persuasive writing performance among students 

with different special education (SPED) status. Table 4-6 presents the fit indices for the models 

testing measurement invariance.  
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The analysis began by examining configural invariance, where the same factor structure 

was specified across SPED groups while allowing all other parameters to vary. The fit indices for 

this model were suboptimal, χ2(1246) = 26220.821, RMSEA = 0.136, CFI = 0.648, AIC = 

232549.253, suggesting that students with different SPED status did not uniformly conform to 

the higher-order structure of persuasive writing constructs. However, the baseline model for 

configural invariance was established for each subscale.  

Next, metric invariance was assessed by constraining the same factor structure and 

requiring equal factor loadings across groups, while allowing all other parameters to vary. The fit 

indices for this model still reflected a suboptimal fit, χ2(1281) = 26365.663, RMSEA = 0.135, 

CFI = 0.646, AIC = 232724.053. The changes in CFI (less than 0.01) and RMSEA (less than 

0.015) across different groups (as suggested by Cheung & Rensvold, 2002) supported the 

acceptance of metric invariance. This indicates the relationships between the latent variables and 

the observed indicators are equivalent across SPED groups. 

 Scalar invariance was then tested by constraining the item intercepts to be equivalent 

across the two SPED groups. The fit indices are χ2(1310) = 27151.004, RMSEA = 0.143, CFI = 

0.638, AIC = 233625.797. While the changes in CFI and RMSEA across different groups 

remained within acceptable cutoffs, the decrease in CFI by 0.008 suggests a need for caution. 

Nonetheless, scalar invariance was considered established. 

 Finally, residual invariance was evaluated by constraining the item residuals to be equal 

across the groups. The fit indices, χ2(1346) = 28174.077, RMSEA = 0.136, CFI = 0.616, AIC = 

235719.929, indicated that the changes in CFI (above 0.015) across different groups did not meet 

the required threshold, suggesting that residual invariance was not fully supported. This indicates 
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significant differences in item residuals across SPED groups, and thus residual invariance was 

not achieved.  

 In conclusion, our analysis offers a novel investigation into the measurement invariance 

of microstructural and macrostructural writing constructs across the SPED groups, which to our 

knowledge, has not been previously explored. Although the four tests of measurement invariance 

did not meet the suggested cutoff values for fit indices, the results provide emerging evidence of 

construct and discriminant validity. Specifically, the number of factors and the relationships 

between the latent variables and their indicators remained consistent across SPED groups. This 

suggests that the higher-order CFA model derived from RQ1b is invariant across groups, 

indicating that any observed group differences in writing constructs likely reflect actual 

performance differences rather than variations in how participants interpret the instrument.  
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Table 4-6 Fit indices for the models testing measurement invariance 

Model  Compared Model χ2 df p △χ2 (p) RMSEA △RMSEA CFI △CFI AIC 
A Configural invariance  26220.821 1246 0.000  0.136  0.648  232549.253 

B Metric invariance B vs. A 26365.663 1281 0.000 144.842 (0.000) 0.135 -0.001 0.646 -0.002 232724.053 

C Scalar invariance C vs. B 27151.004  1310 0.000 785.341 (0.000) 0.134 -0.001 0.638 -0.008 233625.797 
D Residual invariance D vs. C 28174.077  1346 0.000 1023.073 (0.000) 0.136 +0.002 0.616 -0.022 235719.929 
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4.4.4 RQ2b. Differences Among the Two SPED Groups 

Table 4-7 presents the values of all measurement parameters, including factor loadings, 

item intercepts, and error variances, for the two SPED groups. In cases where parameters were 

invariant across both groups, a single parameter value is reported in the table; conversely, 

differing parameter values are provided where significant variations across groups were 

observed. This analysis examined the validity of the common assumption of population 

homogeneity within the microstructural and macrostructural writing construct model. The factor 

loadings demonstrated full metric invariance across the SPED groups, indicating that both 

groups utilized the same metric, with the set of factor loadings remaining fully invariant.  

Metric invariance was established, indicating that the factor loadings were consistent 

across groups, which suggests that the same underlying constructs were being measured in the 

same way in each SPED group. However, scalar invariance was also assessed, and while item 

intercepts were generally consistent across groups, a slight decline in model fit (e.g., CFI) was 

observed when scalar invariance was imposed. This indicates that, while the factors maintain 

equivalent meanings across groups, there may be minor baseline differences in item responses 

that slightly affected the overall model fit.  

According to Table 4-7, the item intercepts and error variances revealed substantial 

variability. The presence of differing item intercepts across the SPED groups suggests that, while 

the overall factor structure remains consistent, the starting points (or baselines) of the 

relationships between the latent variables and the observed indicators vary. It is noted that all 

writing-related variables, with the exception of LSASS1 and CRFAOa, exhibited opposite trends, 

indicating that students receiving special education services had lower average response levels 

for the same writing variables. This pattern may reflect lower writing capabilities or experiences 
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among students in this group. This finding aligns with previous research indicating that students 

with disabilities often encounter challenges in various aspects of writing, including vocabulary 

use (Bryant et al., 2003; O’Connor et al., 2019), cohesion and coherence (Koutsoftas & Petersen, 

2017), content development (Graham & Harris, 2010; Monroe & Troia, 2006), structural 

organization (Golley, 2015; G. A. Troia, 2002), and tone/style (Reed et al., 2023).  

The finding that students receiving special education services demonstrated higher 

measurement errors in specific indicators (e.g., RDFRE, LSAPP1, DESSL, SYNSTRUTt, 

position, and concluding statement) implies that these indicators may be less reliable for this 

student population. This variability may indicate that these indicators do not effectively capture 

the constructs for students with special education needs, potentially due to factors such as 

learning differences, instructional practices, or the complexity of the writing tasks.  

 To sum up, the variability observed in the item intercepts and error variances suggests 

that, while both education groups adhere to a shared framework for the writing constructs, 

significant differences exist in how these constructs are manifested in the writing of students 

with varying special education statuses. This finding underscores the necessity for tailored 

assessment strategies that account for these differences, ensuring that evaluations are equitable 

and valid for all students. Recognizing that certain writing indicators may operate differently for 

students in special education can help educators to provide targeted instruction and support. This 

understanding can inform curriculum design, intervention strategies, and the development of 

more effective writing assessment tools that better accommodate the needs of students with 

diverse learning profiles. 
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Table 4-7 Invariant and Non-Invariant Factor Loadings, Item Intercepts, and Error Variances in 
Two SPED Groups 

Latent 
Variable Item Factor Loadings  Item Intercepts  Error Variances 

TAP SPED  TAP SPED  TAP SPED 
Word WRDFAMc 0.446  -0.002 0.007  0.662 0.814 
 PCNARz 0.726  -0.015 0.063  0.175 0.294 
 DESWLsy -0.645  0.03 -0.128  0.363 0.367 
 RDFRE 0.413  0.02 -0.085  0.635 1.269 
 SYNNP -0.634  0.019 -0.082  0.363 0.488 
 WRDHYPnv -0.456  0.064 -0.27  0.643 0.775 
 WRDPOLc 0.46  0.026 -0.11  0.659 0.74 
 DRVP 0.497  0.007 -0.028  0.602 0.693 
 WRDIMGc -0.354  0.004 -0.015  0.805 0.821 
Cohesion LSAGN 0.584  0.064 -0.271  0.45 0.997 
 LSASS1 0.708  0 0.001  0.311 0.512 
 PCREFz 0.77  0.006 -0.024  0.21 0.271 
 LDTTRc -0.499  -0.103 0.435  0.6 0.79 
 CRFAOa 0.779  0 0.001  0.185 0.281 
 CRFAO1 0.767  0.001 -0.005  0.209 0.31 
 LSAPP1 0.359  0.067 -0.285  0.748 1.145 
Text CNCAll 0.872  0.022 -0.093  -0.032 -0.079 
 CNCAdd 0.589  0.003 -0.014  0.517 0.552 
 CNCLogic 0.605  -0.003 0.012  0.465 0.645 
 DESSL 0.121  -0.052 0.221  0.537 2.755 
 PCDCz 0.61  0.01 -0.042  0.452 0.693 
 SYNSTRUTt -0.219  0.01 -0.044  0.822 1.401 
 CNCPos 0.749  0.021 -0.091  0.218 0.295 
Content C1 0.605  0.007 -0.032  0.522 0.682 
 C2 0.852  0.093 -0.392  0.103 0.08 
 C3 0.883  0.108 -0.456  0.021 0.024 
 C4 0.874  0.116 -0.489  0.037 0.02 
 C5 0.828  0.137 -0.581  0.113 0.048 
 C6 0.74  0.132 -0.557  0.303 0.122 
Structure Lead 0.14  0.078 -0.329  0.95 0.973 
 Position 0.076  0.063 -0.268  0.724 2.037 
 Claim 0.099  0.094 -0.397  0.96 0.921 
 Counterclaim 0.891  0.058 -0.246  0.184 0.196 
 Rebuttal 0.862  0.065 -0.274  0.261 0.094 
 Evidence 0.217  0.063 -0.265  0.92 0.998 
 Cncldng_Sttmnt 0.146  0.078 -0.33  0.849 1.383 
Tone/style all_markers 0.694  0.094 -0.397  0.287 0.146 
 booster_words 0.975  0.134 -0.283  0.298 0.123 
 discourse_marker 0.556  0.106 -0.362  0.512 0.530 

* TAP = typically achieving peers; SPED = students who receive special education services 
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4.4.5 RQ3a. Automated Persuasive Writing Scoring Algorithm 

 After addressing the first two research questions, I gained valuable insights into the 

writing features most indicative of persuasive writing quality among secondary school students. 

To investigate RQ3, the first step involves building and validating an automated writing scoring 

system that can provide machine-generated scores for GPT-revised essays based on the identified 

writing constructs. Specifically, the six-level writing features identified in RQ1 represent salient 

characteristics that influence persuasive writing quality. These features were subsequently 

integrated into a pretrained language model, Bidirectional Encoder Representations from 

Transformers (BERT), to facilitate the prediction of persuasive essay scores. 

There are three primary reasons for employing BERT as a baseline model. First, BERT is 

a transformer-based natural language processing model that has become the de facto industry 

standard for a variety of downstream tasks, including text classification and score prediction 

(Cochran et al., 2022). The effectiveness of BERT-based transformers for evaluating student 

responses has been consistently documented (Poulton & Eliens, 2022; Wulff et al., 2023; Zhu et 

al., 2022). Second, BERT’s architecture generates contextualized word embeddings by training 

on extensive unlabeled corpora, allowing it to capture task-specific nuances and contextual 

details effectively (Wang et al., 2024). Third, once the BERT model is successfully trained and 

validated, future datasets can be processed without the need to reintroduce features from external 

sources. Different from other supervised machine learning models, the BERT model can directly 

utilize the embedded contextual information for various tasks. 

 To develop and validate the automated essay scoring model, I utilized the pre-trained 

BERT model from the Huggingface library and configured it to align with the parameter of the 

basic version of Google BERT (Devlin et al., 2019). The model included 12 self-attention layers, 
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12 attention heads, and a hidden dimension of 768 for the embedding vectors. During fine-

tuning, the pre-trained models were concatenated with a text classification model. In the training 

phase, essays (n = ~25,000) from the PERSUADE corpus were input into BERT to generate 

feature vectors. The mean of these vectors was forwarded to the text classification layer to 

generate predictions based on six scoring levels. The cross-entropy loss was then computed by 

comparing the predictions to the ground truth.  

For these experiments, I employed the Adam optimizer with consistent hyperparameters: 

a learning rate of 1e-04, a batch size of 10, an input sequence length of 128, 20 training epochs, a 

weight decay of 0.0005, and a dropout rate of 0.3. The training was performed on an NVIDIA 

1080Ti GPU. All experiments involved training, testing, and validating the model on original 

student essay scores, with a test size of 0.3.  

 In this section, I report key evaluation metrics – MAE, standard deviation of MAE, R2 – 

for evaluating and comparing the performance of the two auto-scoring models in predicting 

persuasive essay scores: (1) the BERT-generic model as the baseline model and (2) the BERT 

model incorporating the EFA-identified writing features. Performance results for all approaches 

are presented in Table 4-8.  

Table 4-8 Results of Two BERT Models on Scoring Prediction Task 

Models MAE (SD) R2 
BERT 0.65 (0.67) 0.66 
BERT+writing features 0.42 (0.33) 0.82 

Note. MAE = Mean Absolute Error, SD = Standard Deviation 

Both BERT models demonstrated strong performance, with BERT model incorporating 

writing features consistently outperforming the generic BERT model across all evaluation 

metrics. The BERT pretraining model with EFA-derived writing features achieved higher scores 

in all metrics, particularly for R2, indicating that 82% of the variance in persuasive essay scores 
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was explained by this model. This finding suggests a robust alignment between machine-

generated scores and human-rated scores, with the model also demonstrating greater stability, 

evidenced by a lower standard deviation of the MAE. Given the successful performance of this 

model on the PERSUADE dataset, I have selected it as the final model for further analyses. This 

model will be used to automatically score GPT-revised essays and compare their performance to 

the original student essays, evaluating improvements in quality based on key writing features. 

Figures 4-6 and 4-7 present scatter plots illustrating the predicted and actual results for the 

BERT-generic model and the BERT model enhanced with writing features, respectively.  

 

Figure 4-6 Predicted and True Values in BERT-Generic Model 
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Figure 4-7 Predicted and True Values in BERT Model Enhanced with Writing Features 

4.4.6 RQ3b. Effectiveness of GPT-Revised Essays 

 The prompt for generating feedback (see Table 4-9) using GPT was developed based on 

the insights gained from the first two RQs and relevant feedback literature (Hattie & Timperley, 

2007; Graham & Sandmel, 2011). Drawing from Meyer et al. (2024), and the prompt instructed 

GPT to provide students with suggestions for improving their text by offering hints and 

examples. Specifically, building on RQ1 and RQ2 findings, GPT was directed to focus feedback 

on six key aspects of persuasive essay quality: lexical proficiency, cohesion and coherence, text 

complexity, structure, content, and tone/style. To minimize cognitive load for students, the 

feedback was required to be structured, with short examples from the student’s own text for 

individualized guidance. Additionally, the prompt incorporated a revised version of the student 

essays to assess whether GPT-revised essays could serve as effective mentor texts aligned with 

the six writing dimensions identified through factor analysis. The GPT settings included the 
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GPT-3.5-turbo model, a temperature of 0.7, and a maximum length of 1800 (see Figure 4-8). 

Examples of the generated feedback are provided in Figure 4-9. 

 The phrasing used in the GPT prompts aligns with the CFA-derived latent constructs (see 

Tables 4–5 and Figure 4–5), which are grounded in the hypothesized theoretical framework. 

Minor terminological divergence (e.g., replacing the factor label “word” with the prompt 

phrasing “lexical proficiency” or “text” with “discourse complexity”) reflects intentional 

adjustments to maintain the theoretical integrity of the constructs while optimizing clarity for 

generative AI applications.
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Table 4-9 Prompt For GPT 

Please read the following instruction step by step: In the following you will read a persuasive essay of a secondary student. Give 
elaborated feedback on the following text on six aspects: (1) lexical proficiency; (2) cohesion and coherence; (3) discourse 
complexity; (4) content; (5) structural efficiency; and (6) tone/style. Give feedback in a highly structured manner displayed as a table 
with one column for the six aspects with one row for each aspect (lexical proficiency, cohesion and coherence; discourse complexity; 
content; structural efficiency; tone/style), one column with hints for improvement on the relevant aspect, and one column with three 
examples for improvement on the relevant aspect. The examples should include SHORT aids to revise the essay, such as sentence 
beginnings or transition words. The examples must NOT contain fully formulated sentences. Provide three examples per aspect. 
Write hints as fully formulated sentences. The suitable examples for the corresponding aspect should be presented as key points. Use 
the following table structure as an example and use the table content as orientation for your own feedback: 
<table class="MsoTableGrid" style="border-collapse:collapse; border:none; line-height: 1.5;" cellpadding="10" > 
 <tbody> 
  <tr> 
   <th style="width: 15%; border:1px solid black;" valign="top">Aspect</th> 
   <th style="width: 50%; border:1px solid black;" valign="top">Hints for improvement</th> 
   <th style="border:1px solid black;" valign="top">Examples for improvement</th> 
  </tr> 
  <tr> 
   <td style="width: 15%; border:1px solid black;" valign="top"> lexical proficiency </td> 
   <td style="width: 35%; border:1px solid black;" valign="top">hint 1 for lexical proficiency/hint 2 for lexical 
proficiency/hint 3 for lexical proficiency</td> 
   <td style="border:1px solid black;" valign="top">example lexical proficiency 1 / example lexical proficiency 2 
/ example lexical proficiency 3</td> 
  </tr> 
  <tr> 
   <td style="width: 15%; border:1px solid black;" valign="top"> cohesion and coherence </td> 
   <td style="width: 35%; border:1px solid black;" valign="top"> hint 1 for cohesion and coherence / hint 2 for 
cohesion and coherence /hint 3 for cohesion and coherence </td> 
   <td style="border:1px solid black;" valign="top">example cohesion and coherence 1 / example cohesion and 
coherence 2 / example cohesion and coherence 3</td> 
  </tr> 
  <tr> 
   <td style="width: 15%; border:1px solid black;" valign="top">discourse complexity</td> 
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Table 4-9 (cont’d)    
<td style="width: 35%; border:1px solid black;" valign="top">hint 1 for language/hint 2 for discourse 

complexity/hint 3 for discourse complexity</td> 
   <td style="border:1px solid black;" valign="top">example discourse complexity 1 / example discourse 
complexity 2 / example discourse complexity 3</td> 
  </tr> 
  <tr> 
   <td style="width: 15%; border:1px solid black;" valign="top"> content </td> 
   <td style="width: 35%; border:1px solid black;" valign="top">hint 1 for content/hint 2 for content/hint 3 for 
content </td> 
   <td style="border:1px solid black;" valign="top">example content 1 / example content 2 / example content 
3</td> 
  </tr> 
  <tr> 
   <td style="width: 15%; border:1px solid black;" valign="top"> structural efficiency </td> 
   <td style="width: 35%; border:1px solid black;" valign="top">hint 1 for structural efficiency/hint 2 for 
structural efficiency/hint 3 for structural efficiency</td> 
   <td style="border:1px solid black;" valign="top">example structural efficiency 1 / example structural efficiency 
2 / example structural efficiency 3</td> 
  </tr> 
  <tr> 
   <td style="width: 15%; border:1px solid black;" valign="top"> tone/style </td> 
   <td style="width: 35%; border:1px solid black;" valign="top">hint 1 for tone and style/hint 2 for tone and 
style/hint 3 for tone and style</td> 
   <td style="border:1px solid black;" valign="top">example tone and style 1 / example tone and style 2 / example 
tone and style 3</td> 
  </tr> 
 </tbody> 
</table 
 
In addition, based on the feedback provided, please revise this student’s persuasive essay according to the six writing aspects. 

Here is the essay: {student_essay}
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Figure 4-8 Settings for GPT API Feedback Generation 
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Figure 4-9 Example 1: A 6th-grade student who is not identified as having disability received a 
score of 3 for the essay (revised essay score = 4.55) 
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Figure 4-9 (cont’d) 
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Figure 4-10 Example 2: A 11th-grade student who is not identified as having disability received a 
score of 6 for the essay (revised essay score = 5.79) 
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Figure 4-10 (cont’d) 
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Figure 4-11 Example 3: A 10th-grade student who is identified as having disability received a 
score of 2 for the essay (revised essay score = 4.52) 
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Figure 4-11 (cont’d) 

 

After obtaining the GPT revised essays, they were then input into the previously built 

automated essay scoring systems in RQ3a and predicted the essay scores. The original essays 

yielded a mean score of 4.49, with a standard deviation of 1.00 and a range from 1 to 6. The 

GPT-revised essays had an increased mean score of 5.33, with a standard deviation of 0.26 and a 

range from 2.63 to 5.95. A paired t-test revealed a highly significant difference between the 

original and GPT-revised scores, t(14998) = 33.21, p < 0.001, indicating a substantial increase in 

scores following the revisions. The effect size, Cohen’s d = 1.063 [0.984, 1.142], demonstrates a 

large effect, reinforcing the effectiveness of the GPT revisions. 
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The results were aligned with my hypothesis that essays revised by GPT based on the 

prompts designed for improving students’ writing in multidimensional levels can be effective as 

mentor texts and supporting students during text revision. This investigation contributes to the 

existing literature by providing empirical evidence of the potential that GPT has for improving 

student persuasive writing with a tailored and efficient way to help students improve their 

writing quality better. The distribution of GPT-revised essay scores by original essay score 

levels, as shown in Figure 4-10, indicates that the majority of GPT-revised essays achieved 

scores exceeding level 4.

 

Figure 4-12 Boxplot of GPT Revised Essay Scores by Original Essay Score Levels 
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Chapter 5: Conclusion 

 This final chapter presents a comprehensive discussion of the study’s implications. It 

further addresses the limitations encountered throughout the research and explores potential 

avenues for future research, suggesting how the findings can be extended or applied in different 

contexts. Lastly, the chapter concludes the thesis by summarizing the key contributions and 

insights gained from the research.  

5.1 IMPLICATIONS 

 This study employed both psychometric approaches and artificial intelligence techniques 

to explore how GPT, when guided by prompts designed through human intelligence, can 

generate revisions for students’ original persuasive texts by considering key writing constructs. 

Specifically, the study addresses three major research questions. The first research question 

aimed to identify the most representative features that capture the quality of students’ persuasive 

essays. This was achieved through exploratory and confirmatory factor analyses, with the 

resulting features serving as foundational predictors for establishing an assessment framework 

based on six writing dimensions. The second research question examined the measurement 

invariance of these writing features across different student populations, specifically comparing 

typically achieving students with those receiving special education services, using multigroup 

confirmatory factor analysis. The third research question explores the integration of human 

intelligence with machine intelligence by prompting GPT to revise student essays in alignment 

with the six dimensions of writing constructs that students are expected to achieve in composing 

persuasive essays. Overall, the findings offer potential avenues for leveraging AI to create low-

cost, accessible learning opportunities for students, particularly in content-rich subjects such as 
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English Language Arts or other disciplines that require writing as a means of activating and 

applying knowledge. 

 The findings from this dissertation offer several practical implications for both teaching 

and assessment. First, regarding writing instruction, the writing features and six constructs 

identified through exploratory and confirmatory factor analyses can inform instructional 

decision-making and guide targeted feedback. These features were selected not only on their 

statistical relevance – where specific writing features were found to significantly impact writing 

quality – but also on a robust theoretical framework that incorporates both microstructural and 

macrostructural aspects of writing from surface-level elements to deeper layers of meaning 

(Aryadoust & Liu, 2015; Siekmann et al., 2022). For example, the factor analysis revealed that 

lexical proficiency explained 17% of the variance in persuasive writing quality, with WRDFRQc 

identified as the highest loading lexical feature. This suggests that the use of rich, appropriate, 

and complex academic vocabulary plays a critical role in persuasive writing, and that a higher 

frequency of content words is a key indicator of lexical proficiency. As a result, educators are 

encouraged to provide comprehensive and individualized vocabulary instruction that focuses on 

improving students’ lexical choices in content-rich persuasive essays.  

Furthermore, the findings from RQ1 and RQ2, which identified six key writing 

dimensions underlying large-scale persuasive writing essays (e.g., lexical proficiency, 

argumentative structure, rhetorical coherence), provide empirically validated insights into the 

latent dimensions of persuasive writing proficiency. These insights enable educators to deliver 

targeted, diagnostic feedback to struggling writers. By pinpointing specific factors – such as 

weak logical sequencing or insufficient use of credible evidence – that underpin a student’s 

writing difficulties, teachers can prioritize interventions that address discrete skill gaps rather 
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than relying on generalized critiques. For example, if students underperform on the content 

dimension – reflecting gaps in domain-specific understanding or factual accuracy – teachers 

might prioritize writing instructional practices such as pre-writing research tasks, collaborative 

fact-checking exercises, or guided source integration to build content knowledge. Deficiencies in 

the cohesion and coherence dimension (e.g., ineffective use of connectives and transitional 

phrasing, fragmented sentence flow) could warrant interventions like sentence-combining 

activities or explicit instruction on paragraph-level coherence. For students with disabilities, 

detecting gaps in cohesion and coherence poses challenges, as they often struggle to 

independently identify disjunctures in logic or tone. To scaffold this process, revising checklists 

derived from these dimensions—for instance, prompts like “Does each paragraph advance my 

central argument?” or “Are ideas linked with appropriate transitional phrases?”—can systematize 

self-assessment protocols and guide structured peer review during revising and editing stages. 

Similarly, weaknesses in the structural efficiency dimension (e.g., disorganized argumentation, 

insufficient evidence support, lack of counterarguments) might necessitate interventions, such as 

scaffolded outlining templates or teachers’ modeling of integrating core argumentative 

components during planning and drafting period. By aligning feedback with factor analysis 

identified skill gaps, educational practitioners can systematically address the hierarchical and 

interdependent nature of persuasive writing competencies, fostering growth in both 

metacognitive awareness and procedural mastery (Negretti, 2012). Second, this study highlights 

the potential benefits of adopting technology to support student learning. Research indicates that 

teachers who effectively integrate technology into their teaching can reduce their workload 

(Gregory & Lodge, 2015; Ming, 2005), enhance student engagement and motivation (Y.-T. 

Chuang, 2014; Williams & Beam, 2019), and provide more individualized learning opportunities 
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(Brown & Green, 2014; Fuchs, 2023; Wang et al., 2023), particularly in complex domains such 

as writing. Given the rapid growth of AI-based technologies and their increasing relevance in the 

digital age, educational researchers have called for the redesign of technology-mediated writing 

instruction to better support students’ writing development (Özer & Yükselir, 2022; Soltyska, 

2024). While a national survey (Graham et al., 2014) noted that middle school teachers rarely 

used technology as part of their writing programs, more recent surveys and case studies 

(Bateman, 2024; Turcotte & Mesa, 2024) have shown that teachers are beginning to recognize 

the benefits of content-generation tools such as ChatGPT in curriculum design, teaching, 

assessment, and feedback. However, concerns remain about potential biases, discrimination due 

to reliance on natural language processing, and the risk of students plagiarizing texts without 

critical analysis (ElSayary, 2024). This study proposes a solution for maximizing the benefits of 

ChatGPT: teachers can provide GPT with a rubric outlining their expectations for student essays, 

and GPT can generate texts aligned with those standards. Additionally, constructive feedback 

comparing the strengths and weaknesses of students’ original essays with the expected revisions 

could foster critical thinking and improve writing skills (Valero Haro et al., 2024). This approach 

has the potential to support personalized learning for struggling writers and students with 

learning difficulties. 

 In practice, teachers can pair their assessment rubrics with AI-generated mentor texts that 

exemplify proficiency in each dimension (e.g., annotated essays demonstrating effective 

transitions or evidence integration) by providing students with concrete models of success. For 

example, a student struggling with cohesion might analyze a mentor text highlighting connective 

language and then apply a rubric-aligned checklist to revise their own transitions. AI-driven tools 

can further leverage these dimensions to generate targeted feedback, such as flagging 
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underdeveloped arguments (weak structural efficiency) or repetitive vocabulary (low lexical 

proficiency) and recommending specific revisions. This approach shifts writing instruction from 

generic feedback to skill-specific interventions, which can empower students to address discrete 

weaknesses and foster self-regulated revision. For learners with disabilities, this granularity can 

reduce cognitive overload by breaking writing into manageable, rubric-anchored tasks. By 

aligning instruction, assessment, and AI content generation tools with empirically validated 

dimensions, teachers can scaffold mastery of complex persuasive writing processes, promoting 

equity through personalized, competency-based support.  

 Finally, in terms of assessment, the integration of representative persuasive writing 

features from factor analysis into a pretrained language model, such as BERT in this study, 

proved to be an effective strategy of scoring prediction. The results showed that the BERT model 

incorporating these writing features outperformed the generic BERT model in predicting 

persuasive writing scores. This enhanced model is well-suited for assessing the quality of student 

persuasive writing by considering six dimensions: word, cohesion, discourse, content, structure, 

and tone/style. In practice, this automated scoring system, combined with GPT’s feedback 

generation, can be preserved for future use. As new essays are submitted, these systems can 

provide instant feedback and revised versions to students, offering tailored support in line with 

individual learning needs and academic goals. 

5.2 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

 This study has several limitations that should be considered when interpreting the 

findings. First, it is important to note that only one form of generative AI, GPT-3.5, was utilized 

in this research. Given the rapid advancements in AI-driven language models, future versions 

may yield different results in terms of essay revisions and feedback. Future research should 
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evaluate the robustness of a variety of AI-based tools by incorporating a broader range of content 

generation technologies and examining their impact on writing education on a larger scale. 

 Second, the feedback prompts used in this study were guided by recent research on AI 

feedback in writing (Meyer et al., 2024; Steiss et al., 2024) and were aligned with key writing 

features identified through exploratory and confirmatory factor analysis, which were deemed 

important for persuasive writing. While my primary goal was to provide the most beneficial 

feedback by focusing on informative writing constructs, effectively incorporating GPT into 

classroom settings will likely require teachers to modify curricula and instructional strategies. 

The success of AI tools in enhancing writing development largely depends on how teachers 

facilitate student use of these technologies (McKnight et al., 2016; Runge et al., 2023). Future 

studies could employ experimental designs or survey-based studies to assess the efficacy of AI-

generated feedback compared to traditional methods, or by examining student perceptions of 

using GPT for essay revisions.  

 Third, AI-generated feedback may not have the same impact across all student 

demographics. For instance, English Language Learners and students with writing difficulties 

might require additional support to fully engage with AI-provided feedback (Warschauer et al., 

2023; Tate et al., 2024). Future studies should consider developing instructional strategies that 

consider individual learning needs, personality traits, and educational goals (Panadero & 

Lipnevich, 2022), while also examining whether AI feedback produces consistent results across 

different student populations. 

 Fourth, the selection of algorithms for auto-scoring persuasive writing may have 

influenced the outcomes of this study. Previous research suggests that transformer-based 

language models, such as BERT, generally outperform other machine learning models in various 
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contexts (Ludwig et al., 2021). However, different evaluation metrics can lead to varying results 

depending on the specific application (Doewes et al., 2023). Consequently, future research 

should explore the development and validation of customized models for different use cases, 

being mindful of potential algorithmic biases when replicating results across datasets. 

 Fifth, the present study did not incorporate certain writing metrics into the design of the 

automated essay scoring algorithms, leaving an opportunity for future research to build on this 

work by integrating additional writing-related features. For instance, measures of conceptual 

density—such as the frequency of Tier 2 and Tier 3 vocabulary within sentences or paragraphs, 

which can reflect students’ writing proficiency—could be explored. Complex sentences, in 

particular, may include academic or discipline-specific vocabulary used relationally within a 

single sentence (Englert et al., 2009). Additionally, content knowledge – another foundational 

element of persuasive writing – was not explicitly investigated in this study. Domain-specific 

understanding enables writers to construct credible arguments, integrate evidence effectively, and 

anticipate counterarguments (Ferretti et al., 2009; Wijekumar et al., 2019). While its influence is 

implicitly reflected in the broader framework of argumentative structure and evidentiary support, 

future research should examine content knowledge as a standalone factor to better understand its 

role in persuasive writing proficiency. These exclusions represent a limitation of the current 

study but also highlight promising directions for advancing both theoretical and practical 

applications of automated writing assessment. 

 Sixth, when preparing the data for factor analysis, detailed information on student 

exclusions is lacking, particularly regarding students who receive Individualized Education Plans 

and English Learners status. Furthermore, the distribution of exclusions by grade level is not 

provided. It is possible that certain groups, such as 6th grade students, especially those with 
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IEPs, EL status, or low socioeconomic status, may have been excluded at higher rates. However, 

due to the absence of this specific data, the potential impact of these exclusions on the results 

cannot be fully evaluated. This limitation hinders our ability to assess the representativeness of 

the sample and the generalizability of the findings across different student populations. 

Seventh, the fit statistics for the factor analysis were relatively marginal, suggesting that 

the model may not have fully captured the underlying data structure as intended. This limitation 

highlights the need for further refinement of the model, e.g., the incorporation of additional 

relevant features and a more careful consideration of measurement inclusion and variable 

selection. Such improvements may enhance model fit and better align the results with established 

benchmarks in the literature. 

5.3 CONCLUSION 

This dissertation contributes to the literature by providing empirical evidence of the 

features that are informative for evaluating persuasive writing quality and the potential of using 

content-generation tools (e.g., GPT) to provide feedback and revise student essays in alignment 

with these features. While our findings demonstrate the promise of AI-driven tools for offering 

individualized writing instruction to students, it is important to acknowledge potential limitations 

(Zhou et al., 2023). Nonetheless, the results highlight the transformative potential of AI in K-12 

writing instruction, offering new opportunities for students to develop their writing skills. This 

study aims to present a viable solution and a starting point for preparing both teachers and 

students to harness the capabilities of emerging technologies in writing instruction and 

assessment. By doing so, it seeks to enhance learning outcomes and foster the growth of student 

writing proficiency. 
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