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ABSTRACT
This thesis is about integral models of Shimura varieties with emphasis on the reduction at
the prime p = 2.

In the first part of the thesis, we construct local models for wildly ramified unitary
similitude groups of odd dimension n > 3 with special parahoric level structure and signature
(n—1,1). We first give a lattice-theoretic description for parahoric subgroups using Bruhat-
Tits theory in residue characteristic two, and apply them to define local models following
the lead of Rapoport-Zink [RZ96] and Pappas-Rapoport [PR09]. In our case, there are two
conjugacy classes of special parahoric subgroups. We show that the local models are smooth
for the one class and normal, Cohen-Macaulay for the other class. We also prove that they
represent the v-sheaf local models of Scholze-Weinstein. Under some additional assumptions,
we obtain an explicit moduli interpretation of the local models.

The second part of the thesis focuses on constructing integral models over p = 2 for some
Shimura varieties of abelian type with parahoric level structure, extending the previous work
of Kim-Madapusi [KM16] and Kisin, Pappas, and Zhou [KP18; KZ24; KPZ24|. For Shimura
varieties of Hodge type, we show that our integral models are canonical in the sense of

Pappas-Rapoport [PR24].



Copyright by
JIE YANG
2025



ACKNOWLEDGEMENTS
Completing this thesis has been a long and challenging journey, and I could not have done
it without the support, guidance, and encouragement of so many people along the way. I
would like to take this opportunity to thank everyone who helped make this thesis possible.

First and foremost, I would like to express my profound gratitude to my advisor, Professor
G. Pappas, for his unwavering support, patience, and guidance throughout my doctoral
studies. His mentorship and constant encouragement have been invaluable in shaping this
thesis and deeply influenced my growth as a mathematician.

I would also like to extend my sincere thanks to professors R. Kulkarni, A. Levin, I.
Rapinchuk, P. Wake. Their courses and our discussion opened my eyes to many new ideas
and inspired me to explore further.

To my peers at MSU, S. Bhutani, P. Coupek, C. Guan, K. Huang, B. Kong, A. Oswal, P.
Qi, A. Roy, J. Ruiter, A. Sathyanarayana, E. Sgallova, Y. Shen, Z. Xiao, S. Xu, thanks for
creating a stimulating and supportive environment. The countless discussions, both formal
and informal, have been a source of inspiration and motivation. Your friendship has been
a source of joy and comfort. I also want to thank my roommate L. Shen for these years of
friendship and support.

My heartfelt thanks go to my family for their unconditional love and encouragement
throughout this journey. Thank you for always being there for me. Your constant support
has been my anchor during the most challenging times.

This dissertation represents not only my efforts but also the collective support, guidance,
and encouragement of many individuals. To everyone who has been part of my academic

and personal growth, thank you from the bottom of my heart!

v



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . 1
1.1 Background . . . . . . ... 1
1.2 Mainresults . . . . . . . L 4
1.3 Organization . . . . . .. . .. . 15
CHAPTER 2 BRUHAT-TITS THEORY FOR UNITARY GROUPS IN RESIDUE
CHARACTERISTIC TWO . . . . . . . ... .. 18
2.1 Notations . . . . . . . . 18
2.2 Bruhat-Tits buildings in terms of norms . . . . .. .. .. .. ... ... 18
2.3 Bruhat-Tits buildings in terms of lattices . . . . . . . . ... ... .... 25
2.4 Parahoric subgroups and lattices . . . . ... ... ... 29
CHAPTER 3 WILDLY RAMIFIED ODD UNITARY LOCAL MODELS . ... 32
3.1 Quadratic extensions of 2-adic fields . . . . . . .. ... ... ... .. .. 32
3.2 Hermitian quadratic modules and parahoric group schemes . . . . . . .. 35
3.3 Construction of the unitary local models . . . . . .. ... .. ... ... 39
3.4 Comparison with the v-sheaf local models . . . . . .. .. ... .. ... 42
CHAPTER 4 THE CASET={0}. ... ... .. ... . . ... ... 46
41 Thecase I ={0}and (R-U) . ... ... ... ... . . .. ...... 46
42 Thecase I ={0}and (R-P) . .. ... ... .. ... . .. ....... 73
CHAPTER 5 THE CASE I ={m} . ... ... . ... ... ... ... ... 79
51 Thecase I ={m}and (R-U) ... .. ... ... ... ... ....... 79
52 Thecase I ={m}and (R-P). . . ... ... .. ... ... ... .... 86
CHAPTER 6 NORMAL FORMS OF HERMITIAN QUADRATIC
MODULES . . . . . . 93
6.1 Hermitian quadratic modules of type A, . . . . . . . . ... ... ... 93
6.2 Hermitian quadratic modules of type Ay . . . . . . . . ... 104
CHAPTER 7 2-ADIC INTEGRAL MODELS OF SHIMURA VARIETIES . .. 110
7.1 p-divisible groups and Lau’s classification . . . . . . . . .. ... .. ... 110
7.2  Deformation theory . . . . . . . ... oo 123
7.3 Integral models of Shimura varieties of abelian type . . . . . . . . . . .. 135
7.4 Bruhat-Tits group schemes and tame Galois fixed points . . . . . . . .. 155
BIBLIOGRAPHY . . . . . 159



CHAPTER 1
INTRODUCTION

1.1 Background

Shimura varieties, first reformulated in a modern framework by Deligne in his seminal
papers [Del71; Del79], are higher dimensional generalizations of modular curves and play a
central role in number theory.

Let p be a prime number. Let A denote the ring of finite adeles over Q, and A? denote
the ring of prime-to-p finite adeles over Q. Let (G, X) be a Shimura datum, i.e., G is a
reductive group over Q, X is a G(RR)-conjugacy class of an algebraic group homomorphism
h:S = Resc/rGn — Gr, and (G, X) satisfies Deligne’s axioms ([Del79, (2.1.1.1)-(2.1.1.3)]).
It follows from these axioms that each connected component of X is a hermitian symmetric
domain. For a sufficiently small open compact subgroup K C G(Ay), the associated Shimura

variety is the double coset space
Shic(G. X) = G(Q\X x G(A)/K,

which naturally carries the structure of a complex analytic space induced by X. By work of
Baily and Borel, Shk(G, X) is in fact a quasi-projective smooth projective variety over C.

Due to Shimura, Deligne, Borovoi, Milne, and others, the system
Sh(G, X) = @ShK(G,X)
K

has a canonical model defined over a number field E, known as the reflex field, which only
depends on the Shimura datum (G, X). The simplest Shimura varieties are the modular
curves, which are given by the Shimura datum (GLy, H*). Here H* = C — R, the union of
upper and lower half planes.

Let v|p be a place of E and E be the completion of E at v. One active area of interest in
the study of Shimura varieties is the construction of integral models. These are schemes over

Opg with generic fiber Shk (G, X)g. Integral models are useful in computing the Hasse-Weil



zeta function of a Shimura variety in terms of automorphic L-functions, which is part of the
Langlands program. The construction of integral models is also a starting point for Kudla’s
program relating special cycles on Shimura varieties and derivatives of Eisenstein series and
L-functions.

Let G be a Bruhat-Tits stabilizer group scheme (see §3.4) over Z, for Gg, with neutral
component G°. Set K, == G(Z,) and K = G°(Z,). Suppose K° C G(Ay) is of the form
K® = K7 K?, where K? C G(Aﬁi) is a sufficiently small open compact subgroup. When (G, X)
is of PEL type, the corresponding Shimura varieties Shk(G, X) are (essentially) moduli
spaces of abelian varieties with polarization, endomorphisms and level structure. Integral
models of these Shimura varieties are studied in [Kot92, §5] and [RZ96, Chapter 6]. More
generally, let (G, X) be a Shimura datum of abelian type, a large class that includes almost
all cases where G is a classical group. Shimura varieties of abelian type are closely related
to those of Hodge type, which can described as moduli spaces of abelian varieties equipped
with families of Hodge tensors. If K, is hyperspecial (which implies that Gg, extends to a
reductive group scheme G over Z, such that G(Z,) = K,,), Kisin [Kis10] and Kim-Madapusi
[KM16] (when p = 2) constructed (smooth) canonical integral models over O of Shk- (G, X),
which are uniquely characterized by Milne’s extension property. If p > 2, Kisin, Pappas and
Zhou [KZ24; KPZ24], following earlier work of Kisin-Pappas [KP18], constructed normal
flat integral models over Og of Shke (G, X) with arbitrary parahoric level structure. Using
Scholze’s theory of p-adic shtukas, Pappas-Rapoport [PR24] and Daniels [Dan23] made the
following conjecture about the existence of the canonical integral model of Shk.(G, X) with

parahoric level structure for any Shimura datum (G, X).

Conjecture 1.1.1 ([PR24, Conjecture 4.2.2],[Dan23, Conjecture 4.5]). There ezists a unique
system {Fko yxr of normal flat schemes over O, extending {Shke (G, X)}kr and equipped

with a p-adic shtuka satisfying the axioms in loc. cit..

By [PR24, Theorem 1.3.2], Conjecture 1.1.1 holds when (G, X) is of Hodge type and

K7 is a stabilizer parahoric subgroup (i.e., K, = K7). Assuming the existence of .o



as in Conjecture 1.1.1, Pappas and Rapoport also conjectured (at least when G satisfies
the blanket assumption in [PR24, §4.1]) that .#k. fits into a scheme-theoretic local model

diagram. Specifically, there should exist a diagram of Og-schemes

Fio 5’2};" - M5§7Hh7

where (15, denotes the geometric cocharacter of Gg, corresponding to the Hodge cocharacter
attached to (G, X), the Op-scheme Mg - denotes the scheme local model used in [PR24,
§4.9.2] (see also Theorem 3.4.4), 7 is a G°-torsor, and ¢ is G°-equivariant and smooth of
relative dimension dim G, such that the compatibility conditions in [PR24, Definition 4.9.1]
are satisfied. For the current status of Conjecture 1.1.1, we refer readers to Daniels-van
Hoften-Kim-Zhang [DvHKZ24] and Daniels-Youcis [DY24], which build upon the work of
Kisin, Pappas and Zhou [KP18; KZ24; KPZ24].

Local models are certain flat projective schemes over the p-adic integers which are ex-
pected to model the singularities of the integral models of Shimura varieties. Rapoport and
Zink studied local models for Shimura varieties of PEL type with parahoric level structure
at p in [RZ96]. Their local models were later called naive local models, since they are not
always flat if the corresponding reductive group is ramified at p as pointed out in [Pap00,
§4]. The construction of the naive local models relies on the lattice-theoretic description of
parahoric subgroups, which is significantly more involved if p = 2 and the group is ramified.
A more general approach is given in [PZ13] (see also a variant in [HPR20]) which constructs
(flat) local models attached to a local model triple (G, {u},G), where G is a tamely ramified
connected reductive group over a p-adic field L, {u} is a geometric conjugacy class of cochar-
acters of G with reflex field F, and G is a parahoric group scheme over O, with generic fiber
G. Subsequent works [Lev16; Lou23; FHLR22] allow us to define local models for all triples
(G, {1}, G) excluding the case that p = 2 and G* contains, as an L-factor, a wildly ramified
unitary group of odd dimension. Here L denotes the completion of the maximal unramified
extension of L in a fixed algebraic closure of L. These constructions a priori depend on

certain auxiliary choices.



Another construction of local models is proposed in [SW20] using v-sheaves. The advan-
tage is that this approach is canonical (without any auxiliary choices) and applies to arbi-
trary triples (G,{u},G), even for wildly ramified groups G and p = 2. It has been proven
in [AGLR22; GL24] that when {x} is minuscule, the v-sheaf local models are representable
by flat normal projective schemes I\\/Jllg"‘; over O with reduced special fibers. Roughly, the
local model Mlgoz is constructed as the weak normalization of certain orbit closure inside a
Beilinson-Drinfeld type affine Grassmannian, extending the construction of Pappas and Zhu
in [PZ13]. Excluding the case that p = 2 and G* contains, as an E-factor, a wildly ramified
unitary group of odd dimension, one can show that the corresponding scheme local models
are Cohen-Macaulay with Frobenius split special fibers. We refer the readers to [FHLR22,
Remark 2.2] for some explanation on this exceptional case. A key aspect of understanding
the special fibers of local models is their identification with a union of (semi-normalizations
of) Schubert varieties in affine flag varieties. It is worth noting that the theory of local
models also has applications in the study of Galois deformation rings, leading to strong re-
sults in modularity lifting theorems, Breuil-Mézard conjecture, etc. See for example [Kis09;
LLHLM23].

In the present thesis, we study the local and integral models of Shimura varieties over

p = 2. Now we explain the main results of our work.
1.2 Main results

1.2.1 2-adic local models
The first part of the thesis focuses on the 2-adic local models for unitary similitude groups
of odd dimension n > 3 with special parahoric level structure when the signature is (n—1, 1).
Let Fy/Qs be a finite extension and F' be a (wildly) ramified quadratic extension of Fj.
For any = € F, we write T for the Galois conjugate of x in F. We can pick uniformizers

m € F and my € Fy such that F'/F, falls into one of the following two distinct cases (see

§3.1):



(R-U) F = Fy(v/0), where 6 is a unit in Op,. The uniformizer 7 satisfies an Eisenstein
equation

2 —tr 471 =0,
where t = 7 + 7 € Op, satisfies mo[t|2. We have v = 1 — 27/t and 6 = 1 — 4m, /t2.

(R-P) F = Fy(/m), where 7 + my = 0.

Let (V, h) be a hermitian space, where V' is an F-vector space of dimension n = 2m+1 > 3
and h : V xV — F is a non-degenerate hermitian form. In this Introduction, we will assume
that h is split, i.e., there exists an F-basis (e;)1<i<n of V such that h(e;, e;) = &; 41— for
1 <14, <n. Let G := GU(V,h) denote the unitary similitude group over Fy attached to

(V,h). Our first result is the lattice-theoretic description of parahoric subgroups of G(Fp).

Theorem 1.2.1 (Proposition 2.4.1). Let I be a non-empty subset of {0,1,...,m}. Define
A= Op(n e, .., T e €igty ey Contls Nemaa, - -, Aey), for 0 <i<m,
where A =T/t in the (R-U) case and \ = 1/2 in the (R-P) case. Then the subgroup
Pr={geG(F) | ghi=N\;, foriel}

is a parahoric subgroup of G(Fy). Furthermore, any parahoric subgroup of G(Fy) is conjugate
to P; for a unique I C {0,1,...,m}. The conjugacy classes of special parahoric subgroups

correspond to the sets I = {0} and {m}.

The proof of Theorem 1.2.1 is based on Bruhat-Tits theory in (residue) characteristic
two. Note that in our case, parahoric subgroups of G(Fp) no longer correspond to self-dual
lattice chains, which causes difficulties in the study of local models.

Given a special parahoric subgroup of G(Fj) corresponding to I = {0} or {m}, we define
in §3.3 the naive local model M}*¥® of signature (n — 1,1), which is an analogue of the naive

unitary local model considered in [RZ96]. To explain the construction, we start with a crucial



but simple observation on the structure of the lattices A; in Theorem 1.2.1. Set

t in the (R-U) case,
£ = (1.2.1)

2 in the (R-P) case.

The hermitian form h defines a symmetric Fy-bilinear form s(—,—) : V x V. — F, and a

quadratic form ¢ : V — Fj via
1
s(x,y) ==& ' Tre/m h(z,y) and q(z) = §s(x,x), for z,y € V. (1.2.2)

Set .Z = ¢7'Op,, which is an invertible O -module. Then for 0 < i < m, the forms in

(1.2.2) induce the Z-valued forms
s: AN x N — ZLand qg: A\, — Z. (1.2.3)

The triple (A;,q,-Z) is an Z-valued hermitian quadratic module over Op, in the sense of
Definition 3.2.1, which roughly means that the quadratic form ¢ is compatible with the
Op-action.

For I = {0} or {m}, denote A; := Ag or A,, respectively. Let
A ={x eV |s(x,A;) COp}

be the dual lattice of A; with respect to the pairing s in (1.2.2). Then we have a perfect
Op,-bilinear pairing
A[ X A? — OFO (124)

induced by the symmetric pairing in (1.2.2), and an inclusion of lattices

w/e if I = {0},

A — alj, where o ==

/e if I ={m}.

We define the naive unitary local model M}® to be the functor

M5¥e : (Sch/Op) — Sets

which sends an Op-scheme S to the set of Og-modules F such that



(1) (m-stability condition) F is an Op ®0p, Os-submodule of A ®op, Os and as an Og-

module, it is a locally direct summand of rank n.

(2) (Kottwitz condition) The action of 7 ® 1 € O ®o, Os on F has characteristic
polynomial
det(T —7@1| F)=(T—m)(T-7)"".
(3) Let F* be the orthogonal complement of F in A$ ®og, Os with respect to the perfect
pairing
(Ar ®oy, Os) x (A] ®op, Os) = Os
induced by the perfect pairing in (1.2.4). We require that the map A; Rog, Os —

alj ®o,, Os induced by A; — aAj sends F to aF ™+, where aF* denotes the image

of F1 under the isomorphism « : Aj ®op, Os — a3 ®op, Os-
(4) F is totally isotropic with respect to the pairing
s (A1 ®oy, Os) x (A1 ®o,, Os) = £ @0y, Os
induced by s in (1.2.3), Le., s(F,F) =0 in £ Qo Os.

The moduli functor M}*¥® is representable by a closed Op-subscheme of the Grassmannian
Gr(n, A7)o,. It turns out that M} is not flat over Or. We define, as in [PR09], the local
model MY to be the flat closure of the generic fiber in M}¥¥°. By construction, we have a

closed immersion
Ml[oc SN Mr]lalve

of projective schemes over Op whose generic fibers are isomorphic to the (n — 1)-dimensional
projective space over F'. We have the following results on further geometric properties of

the scheme M.



Theorem 1.2.2. (1) If I = {0}, then MI{%C} is flat projective of relative dimension n — 1
over Op, normal and Cohen-Macaulay with geometrically integral special fiber. More-

over, Ml{%c} s smooth over O on the complement of a single closed point.

(2) If I = {m}, then Ml{(;z} is smooth projective of relative dimension n — 1 over Op with

geometrically integral special fiber.

Let us explain the strategy of the proof of Theorem 1.2.2 in greater detail. For I = {0}
or {m}, let % denote the group scheme® of similitude automorphisms of the hermitian
quadratic module (A, q,-Z) (resp. (Ao, q,-Z,d)), see Definition 3.2.2 and 3.2.3. Then .77
acts naturally on M3, and hence on MY°. Let k denote the algebraic closure of the residue
field of F. Using the results in Chapter 6, we can show that the (geometric) special fiber
MY® ®p,. k has two orbits under the action of ./ R0, k. One of the orbits consists of
just one closed point. We call it the worst point of the local model. Using this, we are
reduced to proving that there is an open affine subscheme of M*® containing the worst point
and satisfying the geometric properties (normality, Cohen-Macaulayness, etc) as stated in
Theorem 1.2.2.

loc

To get the desired open affine subscheme of M, we introduce a refinement M, as a

closed subfunctor, of the moduli functor M}*® such that
Ml]oc C MI C Mrllaive.

It turns out that the underlying topological space of M; is equal to that of M. For a matrix
A, we will write Op[A] for the polynomial ring over Or whose variables are entries of the
matrix A. Viewing M; as a closed subscheme of the Grassmannian Gr(n, A;)e,, we can find
an open affine subscheme U; of M; which contains the worst point and which is isomorphic
to a closed subscheme of Spec Op[Z], where Z is an n x n matrix, such that the worst point

is defined by Z = 0 and m = 0. Then we explicitly write down the affine coordinate ring of

In Chapter 6, we prove that 7 is smooth over Op, and isomorphic to the parahoric group scheme
attached to Aj.



U; defined by matrix identities. From this, we obtain the affine coordinate ring of U; N MY®

by calculating the flat closure of Uj.

Theorem 1.2.3. Let Y (resp. X) be a 2m X 2m (resp. 2m x 1) matriz with variables as
entries. Let Hs,, denote the 2m x 2m anti-diagonal unit matriz. There is an open affine

subscheme UR® of M'C which contains the worst point and satisfies the following properties.

(1) If I = {0}, then Ul{%c} is isomorphic to

Spec OrlY]X] , in the (R-U) case,
</\2(Y|X), Y — vt (25aY) 4 2 By XXt)
Spec OrlY]X] , in the (R-P) case.

2

(r2(V1X), Y =y, () — )y 4 X XY

(We remark that under the relation Y — YY" = 0, the polynomial tr(Hs,,Y'), which is

the sum of the anti-diagonal entries of Y, is indeed divisible by 2 in Op[Y].)

(2) If I = {m}, then UE(OTZ} is isomorphic to
Op[Y|X]
(r2(v1x), Y = v, (2] 4 )Y + X X)

t

Spec , in the (R-U) case,

Spec Op[X], in the (R-P) case.

Using the above result, we reduce the proof of Theorem 1.2.2 to a purely commutative
algebra problem. We need to show that the affine coordinate rings in Theorem 1.2.3 satisfy
the geometric properties stated in Theorem 1.2.2. The hardest part is to show the Cohen-
Macaulayness when I = {0}, where we use a converse version of the miracle flatness theorem.
We refer to Lemma 4.1.16 for more details.

We can also relate MY® to the v-sheaf local models considered in [SW20, §21.4] (see
also §3.4). By the results in [AGLR22; FHLR22; GL24] (see Theorem 3.4.4), we already
know that the v-sheaf local models in our case are representable by normal projective flat

Op-schemes M (denoted by M€, in §3.4).



Theorem 1.2.4 (Theorem 3.4.5). The local model MY is isomorphic to M;.

As a corollary, our result gives a very explicit construction of M; and a more elementary

proof of the representability of the v-sheaf local models in our setting.

Remark 1.2.5. If F//Fy is of type (R-P), the arguments in [AGLR22] (see the paragraph after
Theorem 1.1 in loc. cit. ) also imply that M is Cohen-Macaulay. However, our methods can

also deal with the (R-U) case, and we are able to give explicit local affine coordinate rings.

It should be pointed out that it could be useful to provide an explicit moduli interpreta-
tion of M'°. As a by-product of our analysis of U’® (see Lemma 4.1.13), we obtain such a

description in a special case.

Theorem 1.2.6. Suppose F/Fy is of type (R-U) and assume that the valuations of t and m,

are equal’. Then M{{%C} represents the functor

(Sch/Op)? — Sets
which sends an Op-scheme S to the set of Og-modules F such that 3

LM1 (m-stability condition) F is an Of ®0y, Os-submodule of Ay ®0g, Os and as an Og-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of 7 ® 1 € O ®o, Os on F has characteristic poly-
nomial

det(T —7®1| F)=(T —7)(T —7)""".

LMS8 Let F* be the orthogonal complement in A ®Rog, Os of F with respect to the perfect
PaLTIng

(Ao @0y, Os) x (A§ ©oy, Os) = Os

2This holds if Fy is unramified over Q,, see some more discussion in Remark 4.1.14.
3As in [Smil5, Lemma 5.2, Remark 5.4], the conditions LM2 and LMS5 are in fact implied by LMS6.

10



induced by the perfect pairing in (1.2.4). We require that the map Ag R0, Os —
TA; ®oy, Os induced by Ao — FA} sends F to XF*L, where ZFL denotes the image of

F+ under the isomorphism A @0y, Os = TAS ®op, Os-

LM} (Hyperbolicity condition) The quadratic form q : Ao R0, Og — f@o% Og induced by
q: N — £ satisfies q(F) = 0.

LM5 (Wedge condition) The action of @1 —1®7 € Op ®o,, Os on F satisfies

Nrel-107 | F)=0.

LMG6 (Strengthened spin condition) The line N"F C W(Ay) ®o, Os is contained in
Im (W(Ao)ﬁil’l Rop OS — W(Ao) RKop Os) .
(See §4.1.1.1 for the explanation of the notation in this condition.)
1.2.2 2-adic integral models
The second part of the thesis focuses on the 2-adic models of Shimura varieties.
Assume p = 2 and that (G, X) is a Shimura datum of abelian type. Let v|p be a place of
E and E be the completion of E at v. Denote by Og (. the localization of Og at v. Denote

by kg the residue field of E and by k the algebraic closure of k. We will construct 2-adic

integral models over Og, () for Shke (G, X) under one of the following assumptions:

(A) (G*, X*) has no factor of type D", Gg, is unramified, and K is contained in some

hyperspecial subgroup;

(B) G = GU(n—1,1) is the unitary similitude group over Q of signature (n—1, 1) for some

odd integer n > 3, G, is (wildly) ramified, and K is a special parahoric subgroup.
Theorem 1.2.7. Assume that either (A) or (B) holds.
(1) The E-scheme

Shis (G, X) = lim Shicsier (G, X)
Kp

11



admits a G(A%)-equivariant extension to a flat normal Og (,)-scheme ks (G, X). Any

sufficiently small KP C G(A%) acts freely on Fxs(G, X), and the quotient
Tk (G, X) =, (G, X)/KP
is a flat normal Og, (v)-scheme extending Shio(G, X).

(2) For any discrete valuation ring R of mized characteristic 0 and p, the map
Fxs (G, X)(R) = Fxs (G, X)(R[1/p])
s a bijection.

(8) There exists a diagram of Op-schemes

F(G, X)o, e

Heh?
where T is a G(A’})—equivamant G%‘io—torsor, q 1s G%ﬁo—equivariant, and for any suf-
ficiently small KP C G(AY), the map %E/KP — Mg, induced by q is smooth of

relative dimension dim G294,

(4) If K is a finite extension of kg and y € Fxs(G, X)(k), then there exists z € Mgs ,,, (%)

such that we have an isomorphism of henselizations

h A
OYKE(G,X),y - OMlgOg,uh,z'

Here in (3), Gazio denotes the parahoric group scheme over Z, with generic fiber Ga‘l,
defined by G° using the map B(Gg,,Q,) — B(G%‘i,Qp) between extended Bruhat-Tits
buildings, see §7.3.2. The proof of Theorem 1.2.7 will be given in §7.3.2.2 and §7.3.3.3.

Remark 1.2.8. (1) When K7 is hyperspecial, Theorem 1.2.7 has been proved by Kim-

Madapusi [KM16]. In loc. cit., (G, X?4) is allowed to have a factor of type D™.

12



(2) We expect that the results of van Hoften [vHof24] and Gleason-Lim-Xu [GLX22] can

be extended to the 2-adic models constructed in this thesis.

Let us give two interesting cases in which Theorem 1.2.7 can be applied to obtain integral
models over Z) for Shkgke(G, X) when K3 is a parahoric subgroup contained in some
hyperspecial subgroup. Let F' be a totally real number field which is unramified at primes

over 2.

(i) G = Resp/oGSpin(V,Q), where GSpin(V,Q) is the spin similitude group over F
attached to a quadratic space (V,Q) of signature (n,2) at each real place (assume
GSpin(V, Q) is unramified over F,, v|2) and X is (a product of) the space of oriented

negative definite planes;

(i) G = Resp/g GU, where GU is the unitary similitude group over F' that is unramified

over F,, v|2. We note that this case is also known by [RSZ21, Appendix A].
As in [KP18, Corolary 0.3], Theorem 1.2.7 implies the following.

Corollary 1.2.9. With the assumptions as in Theorem 1.2.7, the special fiber YK;(G, X)®
kg is reduced, and the strict henselizations of the local rings on ng(G,X) ® kg have irre-
ducible components which are normal and Cohen-Macaulay.

If K5 is associated to a point x € B(Gq,,Q,) which is a special vertex in B(Gg,, Qy"),

then the special fiber ng(G,X) ® kg is normal and Cohen-Macaulay.

We now explain the idea to prove Theorem 1.2.7. The overall strategy follows that of
[KP18] and [KPZ24]. As in loc. cit., the crucial case is when (G, X) is of Hodge type. A
key step in this case involves identifying the formal neighborhood of .7k (G, X) with that
of the local model Mlgoih. For p > 2, this identification is obtained in [KP18; KPZ24| by
constructing a versal deformation of p-divisible groups (equipped with a family of crystalline
tensors) over the formal neighborhood of the local model. The construction of this versal

deformation uses Zink’s theory of Dieudonné displays that classify p-divisible groups. For
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p = 2, we modify Zink’s theory by using Lau’s results from [Laul4], and obtain a similar
deformation theory for 2-divisible groups. A technical requirement arising in this step is that

we need to find a Hodge embedding
t: (G, X) = (GSp(V,¢), 5%),

where V' is a Q-vector space of dimension 2g equipped with a perfect alternating pairing
1, such that 1g, extends to a very good integral Hodge embedding (G, i) < (GL(A), p1g),
where A C Vg, is a self-dual Z,-lattice with respect to .

The concept of very good integral Hodge embeddings was introduced in [KPZ24, §5.2]
for p > 2, refining the notion of good integral Hodge embeddings in [KZ24, Definition 3.1.6].
We generalize the concept to the case p = 2 (see Definition 7.2.13). Roughly speaking, a

good integral integral Hodge embedding is an integral Hodge embedding

e (G, pn) = (GL(A), pg)

extending tg, such that ¢ induces a closed immersion

MIOC

Goun 7 Mlcc;)i(/\),ug ®z, Op = Gr(g,\) ®z, Op

of local models, where Gr(g,A) denotes the Grassmannian of rank g subspaces of A. The
key idea behind very good Hodge embeddings is that certain collection of tensors (s,) in the
tensor algebra A®, cutting out G in GL(A), should satisfy a “horizontal” condition under
the natural connection isomorphism. We refer to §7.2.2 for more details. For a good integral
Hodge embedding 7, Kisin-Pappas-Zhou proved in [KPZ24, Proposition 5.3.1, Lemma 5.3.2]

that this horizontality condition is satisfied in the following two cases (including for p = 2):

(1) For any = € Mg*, (k), the image of the natural map

{feMge, (k[[t]) | fmod(t) =z} — T,Mg°

guufh g:,u'h

spans, as a k-vector space, the tangent space TxI\\/Jllg(’Lh.
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(2) The tensors (sq) C A® are in A @z, AY.

Using this, they can produce sufficiently many very good Hodge embeddings when p > 2.

When p = 2, it is in general difficult to find a very good integral Hodge embedding ¢ for
a Shimura datum of Hodge type. In the present thesis, we establish the existence of very
good Hodge embeddings under the assumption (A) or (B).

For Case (A), by applying [KPZ24, Proposition 5.3.1, Lemma 5.3.2], we are reduced to
presenting the stabilizer group scheme G as (Resp, /ZPH)F, where F'/Q, is a tame Galois
extension with Galois group I' and H is a reductive group over Op. For Case (B), we
directly prove that the tangent space of the local model Mlgoih at any closed point is spanned
by formal curves (see Lemma 7.3.17), using the explicit description of the (local) coordinate

rings of the unitary local models in the first part of the thesis.

1.3 Organization

We now give an overview of the thesis.

In Chapter 2, we discuss Bruhat-Tits theory for (odd) unitary groups in residue charac-
teristic two. In particular, we describe the maxi-minorant norms (norme maziminorante in
French) used in [BT87] in terms of graded lattice chains, and thus obtain a lattice-theoretic
description of the Bruhat-Tits buildings of unitary groups. As a corollary, we deduce Theo-
rem 1.2.1.

In Chapter 3, we first discuss some basic facts about quadratic extensions of 2-adic fields.
Then we equip the lattices A; in Theorem 1.2.1 with the structure of hermitian quadratic
modules. Using this, we define the naive local models M}*"* and local models M}°. In §3.4,
we review the Beilinson-Drinfeld Grassmannian (in mixed characteristic) and v-sheaf local
models of Scholze-Weinstein. Assuming Theorem 1.2.2, we show that the local models in
Theorem 1.2.2 represent the v-sheaf local models, thereby proving Theorem 1.2.4.

In Chapter 4 and 5, we prove Theorem 1.2.2, 1.2.3 and 1.2.6. We address the (R-U)
and (R-P) case separately, although the techniques are very similar. In each chapter, we

introduce the refinement M; of M»*® by imposing certain linear algebraic conditions and
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then explicitly write down the local affine coordinate rings. We then obtain Theorem 1.2.3
by computing the flat closure of these affine coordinate rings. Utilizing the group action on
local models, we finish the proof of Theorem 1.2.2 and Theorem 1.2.6.

In Chapter 6, we show that, under certain conditions, hermitian quadratic modules étale
locally have a normal form up to similitude. Along the way, we prove in Theorem 6.1.13
and Theorem 6.2.8 that the similitude automorphism group scheme of A,, (resp. (A, ¢))
is affine smooth over Op, and is isomorphic to the parahoric group scheme attached to A,,
(resp. Ag). The results in this chapter are used in Chapter 4 and 5.

In Chapter 7, we construct 2-adic integral models of Shimura varieties of abelian type
and prove Theorem 1.2.7. Very often we will refer the readers to corresponding arguments
in [KP18; KPZ24] that are similar or can be directly extended to the case p = 2 without
repeating the proofs.

In §7.1, we review Lau’s results in [Laul4|, which generalizes Zink’s theory of Dieudonné
displays so that we can classify 2-divisible groups over 2-adic rings (see Theorem 7.1.14). A
new feature of the theory of Dieudonné displays in the case p = 2 is the modified Verschiebung
map for the Zink ring (see Lemma 7.1.2). In §7.1.2, we construct the natural “connection
isomorphisms” for Dieudonné pairs when p = 2 (see Lemma 7.1.13), generalizing [KPZ24,
Lemma 5.1.3| for p > 2. In §7.1.4, we compare Lau’s classification of p-divisible groups with
Breuil-Kisin’s classification. This comparison is later used in §7.3.1.2 to construct (Gw, jty)-
adapted deformations of p-divisible groups in the sense of Definition 7.2.17.

In §7.2, we apply Lau’s theory to construct a versal deformation of p-divisible groups,
extending results from [KP18, §3] to the case p = 2. We also generalize the concept of
very good Hodge embeddings, introduced in [KPZ24|, to p = 2. This is used to construct
versal deformations of p-divisible groups with crystalline tensors (see Proposition 7.2.16). In
Proposition 7.2.18, we establish a criterion for determining when a deformation is (Gw, p,)-
adapted, extending [Zho20, Proposition 4.7] to p = 2.

In §7.3, we apply results in §7.2 to construct 2-adic integral models of Shimura varieties
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of abelian type under certain assumptions (see Theorem 7.3.9). The overall strategy follows
that of [KP18; KPZ24]. We first treat the case of Shimura varieties of Hodge type and
then extend to Shimura varieties of abelian type by finding suitable Hodge type lifts while
closely following [KP18]. In §7.3.2.2 and §7.3.3.3, we complete the proof of Theorem 1.2.7
by verifying that the assumptions in Theorem 7.3.9 are satisfied in Case (A) or (B).

In §7.4, we show that, for an unramified group G over a 2-adic field F', if a stabilizer group
scheme G satisfies G(Op) C H for some hyperspecial subgroup H of G(F'), then G can be
written as the tame Galois fixed points of the Weil restriction of scalars of a reductive group

scheme. This result is used in the construction of very good integral Hodge embeddings in

Case (A).
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CHAPTER 2

BRUHAT-TITS THEORY FOR UNITARY GROUPS IN RESIDUE
CHARACTERISTIC TWO

In this chapter, we discuss Bruhat-Tits theory for (odd) unitary groups in residue charac-
teristic two. In particular, we describe the maxi-minorant norms (norme maziminorante in
French) used in [BT87] in terms of graded lattice chains, and thus obtain a lattice-theoretic
description of the Bruhat-Tits buildings of unitary groups. As a corollary, we deduce Theo-

rem 1.2.1 in the Introduction.

2.1 Notations

Let Fy be a finite extension of Qy. Let w : Fy — Z U {+00} denote the normalized
valuation on Fy. Let F'/Fy be a (wildly totally) ramified quadratic extension. The valuation
w uniquely extends to a valuation on F', which is still denoted by w. Denote by o the
nontrivial element in Gal(F'/Fy). For x € F, we will write 27 or T for the Galois conjugate
of x in F. Let O (resp. Opg,) be the ring of integers of F' (resp. Fp) with uniformizer 7
(resp. mp). We assume Np/p,(7) = 7. Let k be the common residue field of F' and Fj.
Let V be an F-vector space of dimension n = 2m + 1 > 3 with a non-degenerate hermitian
form h : V xV — F. We assume that there exists an F-basis (€;)1<i<, of V such that
h(ei,ej) = 0int1—; for 1 < 4,5 < n. In this case, we will say that the hermitian form h is
split, or (V, h) is a split hermitian space.

(We remark that all results in Chapter 2 have analogous (simpler) counterparts when Fy

is a finite extension of Q, for p > 2, see Remark 2.2.6 and 2.2.10.)

2.2 Bruhat-Tits buildings in terms of norms

In this section, we would like to recall the description of Bruhat-Tits buildings of odd
dimensional (quasi-split) unitary groups in residue characteristic two in terms of norms.
The standard reference is [BT87]. There is a summary (in English) in [Lem09, §1]. See also
[Tit79, Example 1.15, 2.10].

Let G :== U(V, h) denote the unitary group over Fy attached to (V,h). Then there is an
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embedding of (enlarged) buildings

Definition 2.2.1. A norm on V is a map o : V — R U {+o0} such that for z,y € V and

A € F, we have
alx +y) > inf {a(z),a(y)}, a(Ar) =w(N) + a(z), and z =0 < a(x) = +oo.

Example 2.2.2. (1) Let V be a one dimensional F-vector space. Then any norm « on V'
is uniquely determined by its value of a non-zero element in V: for any 0 # x € V and
A € F, we have

a(Ax) = w(A) + a(z).

(2) Let V; and V4 be two finite dimensional F-vector spaces. Let «; be a norm on V; for
i =1,2. The direct sum of oy and v, is defined as a norm oy Gag : ViV — RU{+o0}
via

(Oél D 062)(371 + Z‘Q) = inf {ozl(xl), Oég(l’z)} , for x; € ‘/z

Proposition 2.2.3 ([KP23, 15.1.11]). Let a be a norm on V. Then there exists a basis

(€i)1<i<n Of V and n real numbers ¢; for 1 <i <n such that

1<i<n

a(i zie;) = inf {w(x;) —¢}.
i=1
In this case, we say (€;)1<i<n 1S a splitting basis of «, or « is split by (€;)1<i<n-
Denote by N the set of all norms on V. Then N carries a natural GLg(V)(F)-action via
(ga)(z) = a(g~'z), for g € GLp(V)(F) and z € V. (2.2.1)

For each F-basis (6i)1§i§n of V, we have a corresponding maximal F'-split torus 7" of

GLp(V) whose F-points are diagonal matrices with respect to the basis (e;)1<i<n. The
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cocharacter group X.(7') has a Z-basis (p;)1<i<n, where p; : G, p — T is a cocharacter

characterized by
pi(t)e; =t %e;, fort € F* and 1 <i,j < n, (2.2.2)

where 6;; is the Kronecker symbol. Fixing an origin, we may identify the apartment A C

B(GLE(V), F) corresponding to T with X,(T)g.
Proposition 2.2.4 ([BT84b, 2.8, 2.11]). The map

A= X, (T)g — N (2.2.3)

Z Cifli — (Zx e; 1gz1£n {w(x;) — c,}) ,

=1

where c; € R, x; € F and ), xe; € V, extends uniquely to an isomorphism of GLp(V)-sets
B(GLp(V),F) — N.

Moreover, the image of X.(T)r in N is the set of norms on V admitting (e;)1<i<n aS a

splitting basis.

By Proposition 2.2.4, we can identify the building B(GLr(V), F') with the set A/ of norms
on V. Next we will describe the image of the inclusion B(G, Fy) < B(GLp(V), F) = N in
terms of maxi-minorant norms (norme maximinorante in French).

Set F,, = {A— X7 | A € F'}. Then F, is an Fy-subspace of F' and we denote by F'/F, the
quotient space. We can associate the hermitian form h with a map g : V' — F/F,, called

the pseudo-quadratic form in [BT87], defined by
_ 1
q(z) = §h(x,x) + F,, forz € V.
The valuation w induces a quotient norm @ on the Fy-vector space F'/F,:

A+ F,) =sup{wA+p—p) | pe F}, for A€ F.
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Definition 2.2.5. Let a be a norm on V. We say o minorizes (minores in French) (h,q) if

for all z,y € V,
a(z) + aly) < w(h(z,y)) and az) <

Following the terminology of [KP23, Remark 15.2.12], we say « is mazi-minorant (mazimi-

norante in French) for (h,q) if a minorizes (h,q) and « is maximal for this property.

Denote by Nym (C N) the set of maxi-minorant norms for (h,g) on V. One can easily
check that N, carries a G(Fp)-action via (2.2.1). Here we view G(Fp) as a subgroup of
GLp(V).

Remark 2.2.6. Let o be a norm on V. Set
a’(z) = in‘f/ {w(h(z,y)) —a(y)}, forx e V.
ye
Then oV is also a norm on V, called the dual norm of a. We say « is self-dual if o = o¥. If

F has odd residue characteristic, then by [BT87, 2.16], the norm a € N, if and only if «

is self-dual.

Note that for z € V, we have
~ 1 1 i
() = Shie ) + Fy = (Ghw ) +p— 7 | p € F)
={\(z,z) | N€ FA+ )\ =1} € F/F,.
Therefore,

W(q(x)) =sup{w(Ah(z,z)) | A€ FFA+ N =1}

=w(h(z,x)) +sup{w\) | A€ F,A+ A7 =1},
Set
J=sup{w(A) | A€ F,FA+ )\ =1}. (2.2.4)
We obtain that o minores (h,q) if and only if for z,y € V', we have

a(z) + a(y) <w(h(z,y)) and a(z) < %w(h(x,x)) + %5.
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Definition 2.2.7. Let (V. h) be a (split) hermitian F-vector space of dimension n as in §2.1.

(1) A Witt decomposition of V is a decomposition V' = V_ & V; @& V4 such that V_ and
V. are two maximal isotropic subspaces of V', and V; is the orthogonal complement of

V_ @ V. with respect to h. As we assume h is split, we have dimp V_ = dimp V, =m

and dimg Vp = 1.
(2) For any F-basis (e;)1<i<n of V, we put

V_ :=spangp{ei,...,en}, Vo =spanp{emi1}, Vi = spang {emia, ..., €n}.

We say (e;)1<i<n induces a Witt decomposition of V if V_ @ Vy @ V. is a Witt decom-

position of V' and h(e;, e;) = 6; p41—; for 1 <i,j <n.

Let (ei)1<i<n be a basis of V' inducing a Witt decomposition. Such a basis defines a

maximal Fy-split torus S of G whose Fj-points are given by

gei = vie; and T;Tpy1 i = Tpy1 = 1
g € G(Fy) € GLp(V)(F)
for some x; € Fpand 1 <i<n

The centralizer of S in G ®p, F' ~ GLp(V) is T. For m+2 <i <n, let \; : G,,,, 5, = S be

the cocharacter of S defined by

Ni(t)e; =t es, Ni(t)ens1—i = teni1_s, and Ni(t)e; =ej fort € F and j #i,n+1—1i.
(2.2.5)
Then the set (A\;)mi2<i<n forms a Z-basis of X,(S). Fixing an origin, we may identify the
apartment A(G, S) of B(G, Fy) corresponding to S with X, (S)g. Then we have the following

proposition.
Proposition 2.2.8. The map

X.(9)r — Ny (2.2.6)

1
Z Ci\j > <Z$ e; — inf{w(z;) — ¢;,w(Tmi1) + 55 |1<i<nandi#m+ 1}) ,

1=m-+2
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where ¢; = —cpy1-; if 1 < i < m, extends uniquely to an isomorphism of G(Fy)-sets
B(G, Fy) = Nuym.

The image of X.(S)r in N is the set of mazi-minorant norms admitting (e;)1<i<n as a
splitting basis.

Moreover, a norm o« € Ny, s special, i.e., o corresponds to a special point in B(G, Fy),
if and only if there is a basis (f;)1<i<n of V inducing a Witt decomposition and a constant

C e }LZ such that for x; € F, we have
. 1

oz(z z;f;) = inf{w(z;) — C,w(z;) + C,w(Tms1) + 55 | 1<i<m+1landm+1<j<n}.
i=1

Proof. See [BT87, 2.9, 2.12] and [Tit79, Example 2.10]. O

Corollary 2.2.9. Let a« € N. Then a € Ny if and only if there exists a basis ( f;)1<i<n 0of
V inducing a Witt decomposition V.= V_ & Vo & Vi such that o = ay & oy, where ay s
a self-dual norm on V_ @& V. split by the basis (f;)izm+1, and o is the unique norm on Vy

with a(fmi1) = 36.

Proof. (=) We can view X,(S)g as a subset of N, via the map (2.2.6). Using the G(Fp)-
action, we may assume « lies in X, (S)g, say a = > i\ € X, (9)r for ¢; € R. Then
we take (f;) to be (e;), which induces a Witt decomposition V = V_ &V @ V,.. Define the

norm a4 on V_ @V, by

V.V, — RU{+o0}

Z xifi— inf{w(x;)) —¢ |1 <i<nandi#m+ 1}, (2.2.7)

1<i<n,i#m+1
where we define ¢; = —cpy1-; for 1 < i < m. Clearly ay is split by (fi)izms+1. As
h(fi, fas1—j) = 0ij and ¢; = —cpy1—; for 1 < 4,57 < n, we deduce that oy is self-dual by

[KP23, Remark 15.2.7]. Moreover, from the expression of (2.2.6), we immediately see that

a decomposes as @ = a4 D qp.
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(<) Under the assumptions, there exist n real numbers ¢; for 1 < i < n such that
Cni1-i = —¢; and a is given by the norm as in (2.2.7). Let S’ be the maximal Fy-split torus
in G corresponding to the basis (fi)i<i<n. Let (N))mio<i<n be a Z-basis of X,(S) defined
as in (2.2.5). Then « is the norm corresponding to the point " ., ¢\ € X, (S")r via a

similar map as in (2.2.6). In particular, & € Npp. ]

Remark 2.2.10. Assume F' has odd residue characteristic. Then § = 0, and hence «y is self-
dual. Then the norm a4 @ a as in the Corollary 2.2.9 is self-dual. When F' has odd residue
characteristic, any self-dual norm admits a splitting basis inducing a Witt decomposition of
V, see for example [KP23, Proposition 15.2.10]. Then we see again that o € N, if and

only « is self-dual.

Remark 2.2.11. We can define a “twisted” Galois action of Gal(F/Fy) on GLp(V)(F) as

follows: for g € GLp(V)(F), define o(g) to be the element satisfying
h(g™'w,y) = h(z,0(g)y), for z,y € V.

Then we have G(Fp) = GLg(V)(F)°=!, the set of fixed points of o. This twisted Galois
action induces an involution on N = B(GLg(V), F) = B(G ®g, F, F), which is still denoted
by o. Next we give an explicit description of this involution.

Let (e;)1<i<n be a basis inducing a Witt decomposition V. = V_ &V & V,. Let T
be the induced maximal torus of GLp(V). Let A(T) C B(GLp(V), F) be the apartment

corresponding to 7. We can identify A(T") with X,(7T")g through the injection (cf. (2.2.3))

W(Tmi1) = Cmy1 + 50,w(T) — ¢

n n
5 Cilli —> g rie; — inf ,
i=1 i=1

forl1<i<nandi#m+1

where y; is defined as in (2.2.2), z; € F and ), z;¢; € V. As G is quasi-split, we can pick
a o-stable point as the origin such that the twisted o-action on A(T') is transported by the

twisted o-action on X, (T)g. For a € NV, there is a ¢ € GLg(V)(F) such that ga € X.(T)g,
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since GLx(V)(F) acts transitively on the apartments of A/. Then
ga=a; ® (o + C),

where o is a norm on V_ @V, admitting (e;);£m+1 as a splitting basis, oy is the norm on V;
as in the Corollary 2.2.9, and C' € R is a certain constant. The twisted o-action on X,(T")gr

implies that o(a; & (ap + C)) = of @ (ap — C). Hence, we see that o acts on « as
o(a) =0(g™") (& @ (ag—C)).

For a € Ny = B(G, Fy), we may take g € G(Fp) and C' = 0. Thus, we get an inclusion
B(G, Fy) — B(GLp(V), F)°=!.

The inclusion is strict: any norm of the form a4 @ o, where «a; is a self-dual norm on V_ @V,
but not split by any basis of V_ @&V, inducing a Witt decomposition, lies in B(GLp(V), F)°=!
but not in B(G, Fp). Such a norm can only exist when the residue characteristic of F' is two.

For an explicit example, see Example 2.3.7.

2.3 Bruhat-Tits buildings in terms of lattices
In this section, we will translate the results in §2.2 into the language of lattices, which is

more useful in the theory of local models.
Definition 2.3.1. Let V' be a finite dimensional F-vector space.
(1) A lattice L in V is a finitely generated Op-submodule of V' such that L ®p, F = V.

(2) A (periodic) lattice chain of V is a non-empty set L, of lattices in V' such that lattices
in L, are totally ordered with respect to the inclusion relation, and AL € L, for A € F*

and L € L,.

(3) A graded lattice chain is a pair (L,, c), where L, is a lattice chain of V and ¢: Ly — R

is a strictly decreasing function such that for any A € F' and L € L,, we have
c¢(AL) = w(\) + ¢(L).
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The function c is called a grading of L.

(4) An F-basis (e;)1<i<n of V' is called adapted to a graded lattice chain (L, c) of V' if for
every L € L,, there exist z1,...,x, € F such that (x;¢;)1<i<, is an Op-basis of L. In

this case, we also say (L, c) is adapted to the basis (e;)1<i<n-

Remark 2.3.2. Since L, is stable under homothety, the set L, is determined by a finite

number of lattices satisfying

We say (Lo, L1, ..., L,_1) is a segment of L,, and the integer r is the rank of L,.

Denote by GLC the set of graded lattice chains of V. There is a GLp(V)(F')-action on
GLC: for (Le,c) € GLC and g € GLp(V)(F), define g(L,, ¢) = (gLs, gc), where gL, consists
of lattices of the form gL for L € L,, and (gc)(gL) := ¢(L) for L € L,.

Lemma 2.3.3. (1) There is a one-to-one correspondence between N and GLC. More pre-
cisely, given o € N, we can associate a graded lattice chain (Lq, cy), where Ly, is the

set of following lattices
Lo, ={z eV |alx)>r}, forreR,
and the grading c, is defined by
Co(Lay) = ;UGHLIET a(x).
Conversely, given a graded lattice chain (L,,c) € GLC, we can associate a norm

(o)) =sup{c(L) |z € L and L € L,}.

We say the norm « and the graded lattice chain (L, cy) in the above bijection corre-

spond to each other.
(2) The bijection in (1) is GLp(V)(F)-equivariant.
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(3) Let (€;)1<i<n be a basis of V.. Let (Lo, c) be the graded lattice chain corresponding to
a norm « via (1). Then (e;)1<i<n is adapted to (La,c) if and only if (e;)i1<i<n S @

splitting basis of .

Proof. The proof of (1) and (3) can be found in [KP23, Proposition 15.1.21]. The assertion

in (2) can be checked by direct computation. O

Using the above lemma, we can easily extend operations like direct sums or duality on

norms to graded lattice chains.

Lemma 2.3.4. (1) Let'V and V' be two finite dimensional F-vector spaces. Let o and o/
be two norms on V' and V' respectively. Let (Lo, c) and (L,,c) be graded lattice chains
corresponding to o and o/ respectively. Then the graded lattice chain (Lo, c) @ (L,, )
corresponding to o @ o is a pair (Le & L,,c® '), where Lo & L, is the set of lattices
of the form Lo, ® Ly, for v € R, and

(¢c® ) Loy ® L) = inf {c(Loy), ¢ (Lor ) } -

(2) Let (L, c) be the graded lattice chain corresponding to a norm o on' V. Then the dual
norm o corresponds to the graded lattice chain (L),c"), where L] is the set of the

lattices of the form LY == {x € V | h(z,L) € Op} for L € L, and
/(L) = —c(L7) -1,
where L™ is the smallest member of Le that properly contains L.

Proof. The proof of (1) is straightforward. The proof of (2) can be found in [KP23, Fact
15.2.18]. O

We say (L., c) is self-dual if (Le,c) = (L, c").

Proposition 2.3.5. Let (L.,c) € GLC. Then (Lo, c) corresponds to a norm in Ny if and

only if there exists a basis (f;)1<i<n of V inducing a Witt decomposition V =V_& Vo & V,
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and (La,c) decomposes as (LE, c*) @ (L2, P), such that (LE,c*) is a self-dual graded lattice
chain of V_ @& V. adapted to the basis (fi)izm+1, and (L3,c°) is the graded lattice chain

corresponding to the norm aqg on V.
Proof. This is a translation of Corollary 2.2.9 in view of the previous two lemmas. [

Remark 2.3.6. Let (LE, ¢*) be a self-dual graded lattice chain adapted to the basis (f;)izm+1
as in Proposition 2.3.5. Then for any L € LZ, there exist x; € F for i # m + 1 such that
(@i fi)izm+1 forms an Op-basis of L. As h(f;, f;) = i n+1-j, we see that L is isomorphic to an
orthogonal sum of “hyperbolic planes” of the form H (i) (i € Z). Here H (i) denotes a lattice
in a two dimensional hermitian F-vector space (W, h) such that H (i) is Op(x,y) spanned
by some z,y € W with h(z,z) = h(y,y) = 0 and h(z,y) = 7'

A lattice in W which is isomorphic to H (i) for some i € Z is also called a hyperbolic
lattice in the sense of [Kirl7, §2]. For any lattice K in W, define the norm ideal n(K) of
K to be the ideal in O, generated by h(z,z) for € K. Let KV denote the dual lattice
of K with respect to the hermitian form h on W. Then by [Kirl7, §2] (see also [Jac62,
Proposition 9.2 (a)]), any lattice K C W satisfying K = 7’K" (that is, K is 7’-modular)

and n(K) = n(H (7)) is isomorphic to H (7).
Example 2.3.7. Let [y = Qg and F' = @2(\/5) Pick uniformizers 7 = v/3 —1 € F and
T = —2 € Iy so that 2 + 27 — 2 = 0. We have

§ = sup {w(\) | /\EF,A+X’:1}:w(g):—%.

Let (V, h) be a 3-dimensional (split) hermitian F-vector space. Let (e;)1<;<3 be a basis of V'

inducing a Witt decomposition V =V_ @& Vy @ V.. Denote Vi :=V_ @&V, = F(ey,e3). Set
Ji= Wﬁl(ﬁ +e3), fai=ey, f3:= 7T71(‘31 —e3).

Then Ly = Or(f1, f3) is a self-dual lattice in (Vi,h). By [Jac62, Equation (9.1)], the

self-dual hyperbolic plane H(0) in V4 has norm ideal 20p,. On the other hand, we have
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n(Ly) = Op, by direct computation. In particular, the self-dual lattice L; in (Vi,h) is
not isomorphic to H(0), and hence L; is not adapted to any basis of Vi induing a Witt
decomposition.
Now define
L:=L®Opfs.

Then the graded lattice chain (L, c), where L, == {m’L};ez and c(7'L) == £ +

N,
Il
I
S =

defines a norm
a:V — RU{+o0}

3
lef o inf {w(z) — i}.

1<i<3

Then we see « lies in the fixed point set B(GLz(V), F)°=! = N7=! but does not lie in N,

2.4 Parahoric subgroups and lattices

Let us keep the notations as in §2.2. In particular, the set (e;)1<i<, denotes a basis
of V' inducing a Witt decomposition V = V_ &V, & V. and S denotes the corresponding
maximal Fy-split torus of G = U(V,h). Denote by (a;)m+2<i<n € X*(S5) the dual basis of
(Ai)m2<icn € X ().

By the calculations in [Tit79, Example 1.15], the relative root system ® = ®(G, S) is

{xa;, £ a; | m+2<i,j<n,i#jtU{ta;,£2a; | m+2<i<n},
and the affine root system &, is
1 . .,
{j:aij:aj+§Z\m+2§z,j§n,27£j}
1 1 1
U{iai+§5+§Z|m+2§i§n}u{i2ai+§+6+2|m+2§i§n}.

Here 0 is defined as in (2.2.4). These affine roots endow X, (S)r with a simplicial structure.

Following [Tit79, Example 3.11], we pick a chamber defined by the inequalities

15< < < <15+1
— am « o an p— —.
2 +2 2" 4
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Then we obtain m + 1 vertices vy, . .., v, in X,(S)g such that for 0 <i <m,

1) iftm+2<j<n-—i,

N |

a;(vi) =
W+i ifn—i<j<n

Now each v; defines a (maxi-minorant) norm, and hence a graded lattice chain, by Proposition

2.2.8 and Lemma 2.3.3. Let A € F' be an element satisfying w(A) = §. We shall see an explicit

expression of A in Lemma 3.2.4. Define
A= Op(n e, .., T e €ty vy Cmgt, Neman, -5 Aen), (2.4.1)
A= Ope1, -, Cmy Emits Nmiy - oy Nep_iy AT€ni1_is -, A\TER).
Then the graded lattice chain corresponding to v; is of rank 2 and has a segment
TA; C A C A,

Let G = GU(V, h) be the unitary similitude group attached to the hermitian space (V,h).

Let I be a non-empty subset of {0,1,...,m}. Define
P = {g € G(Fy) | ghs = Ay, fori e I}.

As in [PR09, 1.2.3], the Kottwitz map restricted to Py is trivial. In particular, we obtain
that the (maximal) parahoric subgroup of G(Fp) is the stabilizer of v; in G(Fy), which also
equals the stabilizer of A; in G(Fp) (as the stabilizer of A is larger). More generally, we have

the following proposition.

Proposition 2.4.1. Denote G = GU(V,h). The subgroup Py is a parahoric subgroup of
é(FO). Any parahoric subgroup of é(Fg) is conjugate to a subgroup Pr for a unique I C
{0,1,...,m}. The conjugacy classes of special parahoric subgroups correspond to the sets

I ={0} and {m}.

Proof. The results are similar to those in [PR08, §4] and [PR09, 1.2.3]. The first two as-

sertions follow from the observation that é(Fo) acts transitively on the chambers in the
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building, and each I determines a (unique) facet in a chamber. The last assertion follows

from the explicit expressions of the vertices v; and Proposition 2.2.8. O
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CHAPTER 3

WILDLY RAMIFIED ODD UNITARY LOCAL MODELS

In this chapter, we construct local models for unitary similitude groups of odd dimension

n > 3 with special parahoric level structure when the signature is (n — 1, 1).

3.1

Quadratic extensions of 2-adic fields

We start with some basic facts about quadratic extensions of 2-adic fields. The readers

can find more details in [Jac62, §5] and [OMe00, §63].

Proposition 3.1.1. Let E be a finite extension of Qo of degree d with ring of integer Op.

Let e (resp. f) be the ramification degree (resp. residue degree) of the field extension E/Qs.

Note that d = ef.

(1)

(2)

(3)

The map sending a to E(y/a) defines a bijection between E*/(E*)* and the set of
1somorphism classes of field extensions of E of degree at most two. Furthermore, the
cardinality of E* /(E*)? is 224, In particular, we have 2*7¢ — 1 quadratic extensions

of E.

Let U be the unit group of O and w be a uniformizer of Op. For i > 1, let U; =
1+ @O be a subgroup of U. Then U; is contained in U? for i > 2e + 1 and the
quotient Uy, /(Use NU?) has two elements corresponding to the trivial extension and the

unramified quadratic extension of E. Note that Uy, = 1+ 40g.
Any non-trivial element in E* /(E*)?* has a representative of the following three forms:

(i) a unit in Uye — Usery (elements in Uy but not in Useyq ),
(ii) a prime element in E,

(7i) a unit in Uy — Us; for some 1 < i <e.

The corresponding quadratic extensions in (ii) and (iii) are ramified. Following [Jac62,

§5], we will say the (ramified) quadratic extensions in (ii) and (iii) are of type (R-P)
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and (R-U) respectively. There are 2% quadratic extensions of E of type (R-P) and

2144 — 2 quadratic extensions of E of type (R-U).

(4) Let E(vV/8)/E be a quadratic extension of type (R-U) for some unit 6 € Uy — Uy; for

some 1 <1 < e. Then there exists a prime 7 in E(\/@) and a prime my in E satisfying
7t —tr+m =0

for some t € O with ord(t) = e + 1 — i, where ord denotes the normalized valuation

on F.

Proof. (1) The bijection is well-known from Kummer theory. The formula for the cardinality
can be found in [OMe00, 63:9)].

(2) See [OMe00, 63:1, 63:3].

(3) See [OMe00, 63:2]. The number of quadratic extensions of type (R-U) or (R-P) follows
from the cardinality formula of £*/(E*)? in (1).

(4) Let @ be any prime in E. By assumption, § = 1 + @~ !4 for some unit u. Set

S S (TN

o1

Let 7 be the Galois conjugate of m. Then

and 77 = —wu.

T™T+T = -

wz—l

Now take my to be —wu and ¢ to be —%+. Then t € Op, as ord(t) =e+1—i>1, and 7

satisfies

7 —tr+m = 0.
In particular, 7 is a prime element in E(v/8). ]

Example 3.1.2. The (ramified) quadratic extension Qy(v/3)/Qy is of type (R-U), while

Q2(v/2)/Q; is a quadratic extension of type (R-P).
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Let us return to the setting in §2.1. By Proposition 3.1.1, we can find uniformizers m € F'
and mp € Fy such that the quadratic extension F/Fj falls into one of the following two

distinct cases!:

(R-U) F = Fy(v/0), where 6 is a unit in Op,. The uniformizer 7 satisfies
7 —tn +m =0.

Here t € Op, with m[t[2 and w(t) depends only on F. We have v = 1 — 2 and

0=1— 2.
(R-P) F = Fy(/m), where 7 + my = 0.
Lemma 3.1.3. Let F, Fy, 7™ and my be as above.
(1) Suppose F/Fy is of type (R-U). Then the inverse different of F/Fy is 1Op.
(2) Suppose F/Fy is of type (R-P). Then the inverse different of F/Fy is %OF.

Proof. As m satisfies an Eisenstein polynomial f, by [Ser13, Chapter III, §6, Corollary 2] and
[Ser13, Chapter I, §6, Proposition 18|, we obtain that O = Op,[r| and the inverse different
of F/F, is given by

1

-1
O/ p = ) Or.

More precisely,

(1) when F/Fy is of type (R-U), then f(T) = T? — tT + 7 and (5;/1F0 = ﬁ@p = %OF,

as t|2.
(2) when F/F, is of type (R-P), then f(T) =T? + 7 and 5;/1F0 = 5 Op.

]

"'When Fy/Q, is an unramified finite extension, there is a description in [Chol6, §2A] of these two cases
in terms of the ramification groups of Gal(F/Fy).
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3.2 Hermitian quadratic modules and parahoric group schemes
In this section, we define hermitian quadratic modules following [Ans18, §9] and relate
them to parahoric group schemes.

Let R be an Op,-algebra. The non-trivial Galois involution on O extends to a map
OF@OFO R—>0F®0FO R, TRTr+—ITRT

for x € Op and r € R. We will also denote the map by a — @ for a € Op ®o,, R. The norm

map on Op induces the map
NF/FO :Op ®OF0 R — R, a— aa.

Definition 3.2.1 ([Ansl8, Definition 9.1]). Let R be an Op,-algebra. Let d > 1 be an
integer. Consider a triple (M, q,.Z), where M is a locally free Op ®oy, R-module of rank
d, £ is an invertible R-module, and ¢ : M — % is an Z-valued quadratic form. Let
f: MxM — £ denote the symmetric R-bilinear form sending (z,y) € M x M to
f@.y) =q(z+y) —qlz) —qly) € Z.

We say the triple (M, q,.%) is a hermitian quadratic module of rank d over R if for any

a € Op ®oy, R and any z,y € M, we have

4(az) = Niyy(a)g(x) and [(az,y) = f(z,ay). (3.2.1)

A quadratic form ¢ : M — & satisfying (3.2.1) is called an .Z-valued hermitian quadratic
form on M.

Definition 3.2.2. Let (M, q1,-%)) and (Ms, g2,-%,) be two hermitian quadratic modules
over an Op,-algebra R. A similitude isomorphism or simply similitude between (M;, ¢;, %)
for i = 1,2 is a pair (p,7) of isomorphisms, where ¢ : M; — M, is an isomorphism of

Or R0, R-modules and v : 4 — % is an isomorphism of R-modules such that

ga(p(m1)) = y(q1(my)), for any m, € M,.
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We will write
Sim (M, q1, 41), (My, q2, £3)) , or simply Sim (M, My), (3.2.2)

for the functor over R which sends an R-algebra S to the set Sim(M; ®g S, My ®g S) of
similitude isomorphisms between (M; ®g S, ¢ ®r S,.Z;, ®r S) for i = 1,2. In the case
(Ml, q17$1) = (MQ, q2,$2>, we will write

Sim (M, q1, %), or simply Sim(M;), (3.2.3)

for Sim ((My, q1,-4), (Ms, q2, %»)). This is in fact a group functor, and represented by an

affine group scheme of finite type over R.

Definition 3.2.3. Let R be an Opj -algebra. Denote by Cr the category of quadruples
(M, q,%,¢) such that (M, q,.%£) is a hermitian quadratic module over R and ¢ is an R-

bilinear form ¢ : M x M — £ such that for z,y € M , we have
oz, my) = q(z +y) —qlx) —qly), o(mz,y) = o(x,7y),
o) =0 (Zne ), oloa) = Lato)

—q
o
Here t = m + 7. In particular, ¢ = 0 if F//Fy is of type (R-P). We will say an object

(3.2.4)

(M,q,Z,¢) € Cg is a hermitian quadratic module with ¢, or simply a hermitian quadratic
module.

Let (M;,qi, %, ¢i) € Cr for i = 1,2. A similitude isomorphism preserving ¢ between
(M;,q;, %, ¢;) is a pair (p,7) of isomorphisms such that (¢,7) is a similitude between

(M;, gi, %), and for my, m} € My, we have

Ga(p(ma), p(m1)) = (o1 (ma, my)).

We will use a similar notation as in (3.2.2) and (3.2.3) to denote the functor of similitudes
preserving ¢ between two hermitian quadratic modules in Cg.

Recall that we defined in §2.4 lattices A; for 0 < i < m via

-1 -1
Ai:OF<7T €1y...,T €i7€i+17---76m+17)\€m+27---7)\6n>7
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where )\ is an element in F' such that

w(A) = :ilelg{w(a;) |z +T=1}.

The stabilizer of A; is a maximal parahoric subgroup of GU(V, h). We sometimes call these

lattices A; standard lattices. A more explicit expression of A is given as follows.
Lemma 3.2.4. (1) Suppose F/Fy is of type (R-U). Then we may take X = 7.
(2) Suppose F/Fy is of type (R-P). Then we may take X\ = %

Proof. (1) By construction, we have w(\) > w(T) > w(L). Write A = a + bV € F for some

a,b € Fy. Then A = a — bv/f. Since A+ X = 1, we geta:%and
1
w(\) :w(§+b\/§).

If w(}) # w(bVd), then
() = min{u(3),w(VO)} < w(3),

which is a contradiction. Therefore, we may assume w(b) = w(bv/f) = w(}). Then we can

write b = 1u for some unit u in Og,. Then

w()) = w(% + %u(l - 27”)) - w((% )= )

Since w(m) = 1/2, we have w(3 + u) # w(Fu). It implies that

W) = minfw (5 +u),w(5)} < wf

| =

)

Thus, we have w(\) = w(

13

).

(2) By construction, we have w(\) > w(5). Write A = a + b € F for some a,b € F.

1
2
Then A = a — br. Since A+ A = 1, we have a = 1. As w(2) is even and w(br) is odd, they
cannot be equal. We get

w()) = w(% +br) = min{w(%),w(bﬂ)} < w(%).

Thus, we have w(A) = w(s). O

o[
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Set
t in the (R-U) case,
2 in the (R-P) case.

The hermitian form A defines a symmetric Fy-bilinear form s(—,—) : V. x V — Fjy and a

quadratic form ¢ : V' — Fj via
1 1
s(x,y) =¢ " Trp/p h(z,y) and ¢(z) = 53(:1:,3:), for x,y € V.

Set .Z = ¢ 'Op,, which is an invertible Op,-module. Then for 0 < i < m, we obtain induced

forms
s:Nix N, — ZLandq: A\, — Z. (3.2.5)
It is straightforward to verify the following lemma.

Lemma 3.2.5. (1) For 0 < i < m, the triple (A;,q, L) forms an £ -valued hermitian

quadratic module of rank n over O, in the sense of Definition 3.2.1.

(2) Define

¢: Mo X Ao — 'Oy, (z,y) = e Trpyp bz, 77 y).
Then (Mo, q, %L, @) is a hermitian quadratic module with ¢.

Now we state two theorems on hermitian quadratic modules. The proofs will be given in

Chapter 6.

Theorem 3.2.6. The functor Sim(A,,) (resp. Sim(Ag, ¢)) is representable by an affine
smooth group scheme over Og, with generic fiber GU(V, h). Moreover, the scheme Sim(A)

(resp. Sim(Ag, ¢)) is isomorphic to the parahoric group scheme attached to A, (resp. Ao ).

Proof. See Theorem 6.1.13 and 6.2.8, Corollary 6.1.14 and 6.2.9. O
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Theorem 3.2.7 (Theorem 6.1.12, 6.2.7). Let R be an Og,-algebra. Let (M,q, L) (resp.
(N,q,%Z,9)) be a hermitian quadratic module over R of rank n. Assume that (M,q, L)
(resp. (N,q,Z,9)) is of type A, (resp. No) in the sense of Definition 6.1.8 (resp. Defi-
nition 6.2.4). Then the hermitian quadratic module (M, q, L) is étale locally isomorphic to

(A, 0,67 OR,) R0y, R (resp. (Mo, q,67 Or,, ¢) oy, R) up to similitude.

3.3 Construction of the unitary local models

3.3.1 Naive local models
Let I = {0} or {m}. Then I corresponds to a special parahoric subgroup of GU(V, h) by

Proposition 2.4.1. Let A; denote the corresponding lattice, which is either Ay or A,,. Set
Av={z eV | hz,A;) C O}, NS ={zcV |sx,A;)COg}.
The symmetric pairing s on V' induces a perfect Op -bilinear pairing
A x A7 — Op,, (3.3.1)
which is still denotes by s(—, —). By Lemma 3.1.3, one can check that

AP in the (R-U) case,
AS = (3.3.2)
7~ 'A" in the (R-P) case.

Note that

L 1 —1
Ay =0r(N €1,...; N €myCmitl, Cmi2y -y En)s

L —1 —1 _ _
Ay =O0p(X e1,...; N em, mi1, Temi, - ., TEy).

Using (3.3.2) and Lemma 3.2.4, we have
Ay — Ay — %AS, in the (R-U) case, mAj — Ay — gAS, in the (R-P) case,
and
1 _ 1 :
A = Ay, — ;AS in the (R-U) case, 7A;, — A, — =A;,, in the (R-P) case.

m) 2 m’
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In summary, we have an inclusion of lattices

w/e if I = {0},
A — alj, where o ==

1/e it I = {m).

We define the naive unitary local model of type I (and of signature (n —1, 1)) as follows.

Definition 3.3.1. Let M be the functor
ME¥e : (Sch/Op) — Sets
which sends an Op-scheme S to the set of Og-modules F such that

(1) Fis an Op Rop, Og-submodule of A; Rop, Og and as an Og-module, it is a locally

direct summand of rank n.

(2) (Kottwitz condition) The action of m ® 1 € O ®o, Os on F has characteristic
polynomial

det(T —7@1| F)= (T —7)(T -7)"".

(3) Let F* be the orthogonal complement of F in A$ R0y, Os with respect to the perfect
pairing

(A1 ®op, Os) x (A] oy, Os) = Os

induced by (3.3.1). We require that the map A; ®o, Os — aA] ®o, Os induced by
the inclusion A; < @A sends F to aF*, where aF*+ denotes the image of F+ under

the isomorphism « : A} Qop, Os — a3 ®op, Os.

(4) Fis totally isotropic with respect to the form (A;®0, Os)*x (A1®oy Os) = £L®o,, Os

induced by s in (3.2.5), i.e., s(F,F) =0 in & ®op, Os.

Lemma 3.3.2. The functor MY is representable by a projective scheme over Op and the

1

generic fiber is isomorphic to the (n — 1)-dimensional projective space P over F.
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Proof. This is similar to [PR09, 1.5.3]. The representability follows by identifying M*"® with
a closed subscheme of the Grassmannian Gr(n, A;)e, classifying locally direct summands of
rank n in A;.

As 7 ® 1 is a semisimple operator on V ®p, F', we have
V@p F=V®Vz,

where V. (resp. Vi) denotes the m-eigenspace (resp. T-eigenspace) of 7® 1. Both eigenspaces
V. and Vi are n-dimensional F-vector spaces. We claim that V. is totally isotropic for the
induced symmetric pairing, which is still denoted by s(—, —), on V ®p, F. Indeed, for any

x,y € Vi, we have (7 ® 1)z = mz and (7 ® 1)y = my. Then
s(@,y) =7 s(re,my) = 7% (1 ® Dz, (7 @ D)y) = (mo/7%)s(x,y).

So s(x,y) = 0. Similarly, we obtain that Vz is also totally isotropic. It implies that the

induced pairing
$(=, =) Vax Ve— F (3.3.3)

is perfect.

Let P! be the projective space associated with V. For any F-algebra R, define
o : MPY(R) — PLY(R), Frke(rel-1®7|F).

By the Kottwitz condition for F, this is a well-defined map. Conversely, let G € IP’}?_I(R),
i.e., G is a direct summand of rank one of V; ®p R. The perfect pairing (3.3.3) gives a

(unique) direct summand G’ of rank n — 1 of Vz ® p R such that s(G,G’) = 0. Set
F=Gag C V ®pg R.

Then by our construction, we have F € M}¥¥¢(R). This process defines an inverse map of (.

In particular, ¢ is bijective, and hence the generic fiber of M} is isomorphic to Pyt O

Similar arguments as in [Pap00, Proposition 3.8] on the dimension of the special fiber of

M2 show that M3V is not flat over Op.
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3.3.2 Local models
Definition 3.3.3. The local model M'¥° is defined to be the (flat) Zariski closure of the

generic fiber of M7* in M;*.

By construction, the scheme 1\/[11OC is a flat projective scheme of (relative) dimension n — 1
over Op. In Chapter 4-5, we will prove Theorem 1.2.2-1.2.6 in the Introduction. The proof
of Theorem 1.2.2 and 1.2.3 will be divided into four cases, depending on the index set [
and the ramification types of F'/Fy, see §4-5.2. In the course of the proof, we also establish

Theorem 1.2.6.

3.4 Comparison with the v-sheaf local models

In this section, assuming Theorem 1.2.2 and 1.2.3, we relate the local model MY for
I = {0} or {m} to the v-sheaf local models considered in [SW20, §21.4] and [AGLR22]. We
give a proof of Theorem 1.2.4.

We first briefly introduce the v-sheaf local models in the sense of Scholze-Weinstein. Let
G be any connected reductive group over a complete discretely valued field L/Q,, where
p is any prime. Let B(G, L) denote the associated (extended) Bruhat-Tits building, which
carries an action of G(L). For x € B(G, L), the associated Bruhat-Tits stabilizer group
scheme G,, in the sense of [BT84a], is a smooth affine group scheme over Oy, such that the
generic fiber of G, is G and G,(Op) is the stabilizer subgroup of = in G(L). By definition,
the neutral component G is the parahoric group scheme associated to z. Recall that a
smooth affine group scheme G over Oy is quasi-parahoric if the neutral component of G is
a parahoric group scheme and G2(O;) C G(O;) C G,(0Oy) for some Bruhat-Tits stabilizer
group scheme G,. Here L denotes the completion of the maximal unramified extension of L

in the algebraic closure @p of Q.

Definition 3.4.1. A local model triple over L is a triple (G, {u} ,G), where G is a connected
reductive group over L, {u} is the G(L)-conjugacy class of a minuscule cocharacter p :

G,,z — G, and G is a quasi-parahoric group scheme for G.
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We will often write (G, u) (resp. (G, u)) for (G,{u},G) (resp. (G,{n})). A morphism of
local model triples (G, u) — (G', 1) is a group scheme homomorphism G — G’ taking {u} to
[},

Let (G,{u},G) be a local model triple over L. Denote by E the reflex field of {u}. Then
we can form the Beilinson-Drinfeld Grassmannian Grg, which is a v-sheaf over Op. We have

the following properties.

Theorem 3.4.2. (1) The structure morphism Grg — Spd Oy is ind-proper and ind-
representable in spatial diamonds. The generic fiber of Grg can be naturally identified

with the Bix-affine Grassmannian Grg.

(2) If G — H is a closed immersion of parahoric group schemes, then the induced morphism

Grg — Gry is a closed immersion.

Proof. See [SW20, Proposition 20.3.6, Proposition 20.5.4, Theorem 21.2.1], or [AGLR22,
Theorem 4.9, Lemma 4.10]. O

Recall that the Bj-affine Grassmannian Grg is a union of (open) Schubert diamonds
Grg g,y indexed by geometric conjugacy classes {u} of cocharacters of G. Let Grg () denote
the v-closure of Grg; ¢,y If {2} is minuscule with reflex field £, then Grg () is representable
by a projective scheme over E (see [SW20, Proposition 19.4.2]). More precisely, Grg, g,y is

the associated diamond of the flag variety g (1 = G/ Py, where
Py ={g € G| lim p(t)gu(t)"" exists}.
is the parabolic subgroup associated to {i}. Sometimes, we will write p for {u} for simplicity.

Definition 3.4.3. Let Grg o, be the base change of Grg. The v-sheaf local model Mg , is

the v-closure of Grg , inside Grg o,

Recall that given a scheme X proper over Op, there is a functorially associated v-sheaf
X© over Spd Op. For details of the definition, we refer to [AGLR22, §2.2]. We have the

following representability result of the v-sheaf local models.
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Theorem 3.4.4 (Scholze-Weinstein Conjecture). Assume {u} is minuscule. Then there
loc

exists a unique (up to unique isomorphism) flat, projective and normal Og-scheme Mg,

with a closed immersion

1
MY s Grg ®0, O

prolonging ﬁzﬁg’u — Grg, C Grg @LE. In particular, Mg”‘f = Mg,
Proof. See [AGLR22, Theorem 1.1] and [GL24, Corollary 1.4]. ]

We also have Mlgoi = Mg’&u by [SW20, Proposition 21.4.3]. By functoriality, any mor-
phism (G, 1) — (G, 1') of local model triples induces a natural morphism MgS, — Mg, of
local models.

Now we return to the situation in §2.1. In particular, we let G denote the unitary
similitude group GU(V, h) over Fy attached to a split hermitian F'/Fy-vector space (V, h) of
dimension n = 2m+1 > 3, and there is an F-basis (e;)1<i<n of V such that h(e;, e;) = §; ny1-;
for 1 <i,j <mn. Let G be the (special) parahoric group scheme corresponding to the index

set 1 = {0} or {m}. Let T be the maximal torus of G consisting of diagonal matrices with

respect to the basis (€;)1<i<n. Under the isomorphism
GF = GLn,F X Gm,F7

we can identify X, (T") with Z" x Z. Let u = pi,—11 € X.(T') be the (minuscule) cocharacter
corresponding to

(1,0Y 1) € Z" x Z.
We write 0"=1 for a list of n — 1 copies of 0. Then the reflex field E of {u} equals F. Let
M'¢ denote the local model MY¥¢ for I = {0} or {m} constructed in §3.3.2.

Theorem 3.4.5. The scheme M'°° is isomorphic to ML% in Theorem 3.4.4.

Proof. We have shown that the scheme M is normal, flat and projective over Op. By the

uniqueness part of Theorem 3.4.4, it suffices to show that

v loc,$
Gu — M :
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By our concrete description of G in Corollary 6.1.14 and 6.2.9, we have a closed immersion
G — GL(A) ~ GLs, (3.4.1)

over Op,, prolonging the closed immersion G < GLg, (V') ~ GLa, ,, where A is either Aq or
A, depending on what G is. Let 7" be the maximal torus of GLy, g, consisting of diagonal
matrices. Then the map G — GLpg, (V) transports {i,—11} to the geometric conjugacy class
{un} of cocharacters of T". Here, u, corresponds to (1,0M™) € X, (T") ~ Z*". By Theorem

3.4.2 (2), the closed immersion (3.4.1) induces a closed immersion
G = Mép, 0 ®0y O = Gr(n,2n)d,

and we may identify Mg , with the v-closure of ﬁg%# inside Gr(n, 2n)%F
By Lemma 3.3.2, we can identify the generic fiber M'° ®¢,. F with Pt ~ Fla,, and

there exists a closed immersion
yEGﬂu % yEGLQn,Hn,F = Gr(nj Qn)F

induced by the embedding G < GLg, (V). By our construction of M, the scheme M
is the Zariski closure of F¢ 1,y along Fla, — Flai,, pn.r — Gr(n,2n)e,. Applying the
diamond functor, we see that M is the v-closure of 356%7 ., inside Gr(n, 2n)%F Hence, we

have Mg,u = M0, O

This completes the proof of Theorem 1.2.4.

Remark 3.4.6. The proof of the above theorem also gives another proof of the representability

of the v-sheaf local model Mg , in our setting.
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CHAPTER 4
THE CASE I = {0}

4.1 The case [ = {0} and (R-U)
In this section, we will prove Theorem 1.2.2 in the case when I = {0} and the quadratic

extension F/Fj is of (R-U) type. In particular, we have
7% —tr 471 =0,

where t € O, with m|t|2. Consider the following ordered Op,-basis of Ay and A§:

™ ™ 0 U
Ao : TEmE2 s T €L Cny il T2, -y En TEL - e, Temt, (4.1.1)
As t t t ' 4.1.2
[)-em+27"'aena;617"'a;emaem-i-laﬂ_em-i-%"wﬂ-ena €153 1Cm, TCmy1- ( -l )

4.1.1 A refinement of M?gi}ve in the (R-U) case
In this subsection, we will propose a refinement of the functor M?Sive. We first recall the

“strengthened spin condition” raised by Smithling in [Smil5].

4.1.1.1 The strengthened spin condition

Take g1,...,gon to be the ordered F-basis

T T e T
el®1—7re1®7r‘1,...,en®1—7ren®7r*1,7re1®?—el®7°,...,7ren®;—en®70

of V ®p, F. Then with respect to the basis (g;)1<i<on, the symmetric pairing s(—, —) @, F

on V @, F is represented by the 2n x 2n matrix anti-diag(é, ..., 0). Recall § = 1— 42, One

$2

can easily check that
® (gi)1<i<n is a basis for Vi (the T-eigenspace of the operator 7 ® 1 acting on V ®@pg, F),
® (gi)nt1<i<on is a basis for V. (the m-eigenspace of the operator 7®1 acting on V ®pg, F).

Take f1,..., fon to be the ordered Op-basis

T T
61®17"'a6m+1®1a?€m+2®17"'a?6n®17
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s s
7T61®1,...,7T6m+1®1,706m+2®1,...7706n®1

of Ay ®op, Op. This is the base change of the basis in (4.1.1), but in different order. We

have

Im-i-l 0 —WT m+1 0
0 Ll 0 —l,
(917"'a92n>:(f17'-'af2n) . (413)
—2lpi1 O T i1 0
0 -4, 0 = I

As in [Smil5], we use the following convenient notations:

e For an integer ¢, we write
iV=n+1—4, *=2n+1—1.
For S C {1,...,2n} of cardinality n, we write
S*={i*|ie S}, St={1,...,2n}\S".

Let g be the permutation on {1,...,2n} sending {1,...,n} to S in increasing order
and sending {n +1,...,2n} to {1,...,2n}\S in increasing order. Denote by sgn(og) €
{#£1} the sign of og.

o Set W = A"(V ®p, F). For § = {iy <---<i,} C {1,...,2n} of cardinality n, we
write

es = fiy N+ N fi, € W, similarly, gg =g, A---ANg;, € W.
Note that (eg){xs=n} (0r (gs){#s=n}) is an F-basis of V.

e Set

Wy = spang {gs £ sgn(os)gss | S C{1,...,2n} and #S =n}.
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This is a sub F-vector space of W. For any Op-lattice A in V ®p, F, set
W(A) = A" (A @og, Or), W(A)s1 = Wi NW(A).
Then W(A) (resp. W(A)41) is an Op-lattice in W (resp. Wi).
o Set

Wrbt = (NWV) @ (Ve), WETH = Wb AWy, WA = WITH v (A).

Then the strengthened spin condition states that

For any Op-algebra R and F € ?Si}ve(R), the line A"F C W (Ag) ®o, R is contained
in the space

Im (W (A)" 1™ @0, R — W(A) @0, R).

4.1.1.2 The definition of the refinement

Definition 4.1.1. Let Myg be the functor
Moy : (Sch/Op)°® — Sets
which sends an Op-scheme S to the set of Og-modules F such that

LM1 (m-stability condition) F is an Op ®op, Os-submodule of Ay ®o, Os and as an Og-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of m ® 1 € Or ®o, Os on F has characteristic
polynomial

det(T —7@1| F)= (T —7)(T —7)"".

LM3 Let F* be the orthogonal complement in A} R0, Og of F with respect to the perfect
pairing

S(—, —) : (AO ®(9F0 OS) X (A(s) ®OF0 OS) — Os.
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We require the map Ag ®og, Os — (?Ag) ®0y Os induced by Ay — §A8 sends F to

F*, where ?F L denotes the image of F+ under the isomorphism ? t A R0, Og —

[EICET

AS ®OF0 Os.

t

LM4 (Hyperbolicity condition) The quadratic form ¢ : Ag ®0y, Os = £ @0y, Os induced
by q : Ay — & satisfies ¢(F) = 0.

LM5 (Wedge condition) The action of 7®1—1®7 € O ®o,, Os satisfies
Nrel-107 | F)=0.
LMG6 (Strengthened spin condition) The line A"F C W(Ay) ®0, Os is contained in

Im (W (Ag)" 1" ®0, Os = W(A) ®o, Os) .

Then My is representable by a projective Op-scheme, which is a closed subscheme of
M‘{lgi}"e. Note that over the generic fiber of Mgy, the quadratic form g is determined by s via
q(z) = %s(m, x). So, over the generic fiber, the hyperbolicity condition LM4 is implied by
the Condition (3) in Mr{lgive. Similarly as in [PR09, 1.5] and [Smil5, 2.5], we can deduce that
the rest of the conditions of My, do not affect the generic fiber of I{lgi}ve, and hence Mgy
and M?give have the same generic fiber.

Hence, we have closed immersions
loc naive
Moy € Moy € Mgy
of projective schemes over O, where all schemes have the same generic fiber.

4.1.2 An affine chart Uy, around the worst point

Set
JT"() = (7T (%9 1)(A0 ®OF0 k?)

Then we can check that Fy € Mgy (k). We call it the worst point of Myg.
With respect to the basis (4.1.1), the standard affine chart around Fy in Gr(n, Ag)e, is

the Op-scheme of 2n x n matrices ( ii ) We denote by Uygy the intersection of Mygy with
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the standard affine chart in Gr(n, Ag)o,. The worst point Fy of Mg is contained in Uygy
and corresponds to the closed point defined by X = 0 and # = 0. The conditions LM1-6
yield the defining equations for Uyp,. We will analyze each condition in detail. A reader who
is only interested in the affine coordinate ring of Uygy may proceed directly to Proposition

4.1.10.

4.1.2.1 Condition LM1
Let R be an Op-algebra. With respect to the basis (4.1.1), the operator 7 ® 1 acts on

Ao ®oy, R via the matrix

0 —mol,
I, ti,
Then the m-stability condition LIM1 on F means there exists an n x n matrix P € M, (R)
such that
0 —mol, X X
I, tI, I, I,

We obtain P = X + tI, and X? +tX + mol,, = 0.
4.1.2.2 Condition LM2
We have already shown that m ® 1 acts on F via X + ¢I,,. Then the Kottwitz condition
LM2 translates to
det(T — (X +tI,)) = (T —7)(T —7)" .
Equivalently,
det(T — (X +nl,)) = (T+7 —m)T" .

Note that
det(T'— (X +7l,)) = zn:(—l)itr(Ai(X +7L))T

=0

Then by comparing the coefficients of 77~%, the Kottwitz condition LM2 becomes

tr(X +nl,) =7 -7, tr (N(X +7l,)) =0, fori > 2. (4.1.4)
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4.1.2.3 Condition LM3

With respect to the bases (4.1.1) and (4.1.2), the perfect pairing
S(_a _) : (AO ®OF0 R) X (AS ®OF0 R) — R

and the map Ag ®o,, R — FTAj ®o,, R are represented respectively by the matrices

L, 0 0 0 0 0
2Hym 0  Hyp 0 0 —I, 0 0 —tI,, 0
0o 2 0 1 0 0 0 0 0 —t
S = and N = ,
Hy 0 22Hy, 0 0o 0 0 I, 0 0
o 1 0 0 LI, 0 0 =m0
o o Lt o o Lt

™0 e
where H,,, denotes the 2m x 2m anti-diagonal unit matrix, and I,, denotes the m x m

identity matrix.

X X
Then the Condition LM3 translates to S| N = 0, or equivalently,
I, I,
0 B2mpgo 0 2=3m fy 0
tmo m mo m
2Hp 0 0 Hpn 0 0
t
X 0 o L o0 0  E2m| X
0 2 0 = 0. (4.1.5)
I, 0 H,, 0o 0 E=mH, 0 I,
H, 0 0 #H, 0 0
0 0 2 0 0 t
Write
A B FE

>
I
Q
>
g
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where A, B,C, D € M,,(R), E, F € M,,x1(R), G, H € Mx,,(R) and x € R. Then Equation

(4.1.5) translates to

2 . t? —2my t . .

ZOtH, A+ AH,C + ~G'G + H,,C + C'H,, =0,

t tmo o

2 2 —2 t 2 -3 2 -2
“Ct'H,,B + TONH, D+ —G'H+H,D+-—>"2 Aty + o
t tmo o o t
2 2 —2 t 2 —2

SCHH B + "ty P+ LGl + H,, F + Mgt — o,

t tmo o o

2 2 —2 t 2

“D'H, A+ MBH O+ “H'G+ H, A+ D'H, + -~ H, =0,
t t7T0 0 t

2 2 —2 t 2 -3

°D'H, B + "BtH, D+ -~ H'H + H,,B + g, —0,

t tmo o To

2 2 —2 t 2 —2

“D'H,E + OBt P+ aH + H, B+ "0 gt —,

t tmo o o

2 ) t

SFUH, A+ B, C + —2G + 2G + FtH,, = 0,

t t’ﬂ'g 7o

2 2 —2 t 2 —

“F'H, B + Mgt D+ Lol 42l + - gty o,

t tmo ) o

2 2 — t 2 —2

P E+ - ptg P Lo+ T+t =0.

t tT(‘O 0 ™0

4.1.2.4 Condition LM4

Recall .2 = t7'Op,. With respect to the basis (4.1.1), the induced (£ ®o,, R)-valued

symmetric pairing on Ag ®op, R is represented by the matrix

S

0 H, 0 0 £2op,. 0

H,, 0 0 2H, 0 0

B 0 0o 2 0 0 t
- 0 H, 0 0 ToH, 0
E2mp, 0 0 7o, 0 0

0 0 ¢t 0 0 2o

Convention: Throughout the rest of the thesis, we often encounter a matrix M = (M,;) €

Myxo(R) whose diagonal entries are of the form M;; = 2a;; for some a; € R. We then use
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%Mu‘ to denote a;. When we refer to “half of the diagonal of M”, we mean the row matrix
consisting of the entries $M;; for 1 <i < (.

The Condition LM4 translates to

t t

X X X X
S1 = (0 and half of the diagonal of S equals zero.

I, I, I, I,

One can check that the diagonal entries of (¥ )tSl(f(

n

) are indeed divisible by 2 in R.

Equivalently, we obtain the following equations.

2 2
C'H, A+ AUH,,C + 2G'G + ?Hmc + ?Ctﬂm —0, (LM4-1)

277'0 t2 —27T0

C'Hy B+ A'H,,D + 2G'H + =2 H,, D + AtH,, + moH,, =0, (LM4-2)
2
C'H,E + A'H, F + 22G" + %HmF FG =0, (LM4-3)
2 —2 2
D'H,,A+ B'H,,C + 2H'G + NH,, A+ %Dth + o Hy =0, (LM4-4)
t?—2 2 —2
D'H,B + B'H,D + 2H'H + T B+ DptH, =0, (LM4-5)
t t t t* — 2m t
D'H,E + B'H,,F + 2cH" + Hp,E+tH" =0, (LM4-6)
2
F'H, A+ E'H,C + 22G + (G + %Fth =0, (LM4-7)
t ¢ tQ — 271'0 t
F'H,B+ E'H,,D + 2cH + tH + E'H,, =0, (LM4-8)
F'H,E + E'H,,F + 22° 4 2tz + 27y = 0, (LM4-9)
half of the diagonal of matrices in LM4-1,5,9 equals 0. (LM4-10)

4.1.2.5 Condition LM5
We already know from §4.1.2.1 that m ® 1 acts as right multiplication by X + ¢I,, on F.

Thus, the wedge condition LM5 on F translates to
N (X +71,) = 0.

4.1.2.6 Condition LM6

We will use the same notations as in §4.1.1.1. To find the equations induced by the

strengthened spin condition LM6 on F, we need to determine an Op-basis of W(Ao)ﬁzl’l.
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Definition 4.1.2. Let S C {1,...,2n} be a subset of cardinality n.
(1) We say S is of type (n —1,1) if
#SN{1,...;n})=n—Tand #(SN{n+1,...,2n}) = 1.
Such S necessarily has the form {1, ... ,3, ...,n,n+ i} for some i,5 € {1,...,n}.

(2) Let S be of type (n — 1,1). Denote by ig the unique element in SN{n+1,...,2n}.

Define S < St if ig <igu.
Set

B:={Sc{l....2n} | #S=n}, B " :={SeB|Sisof type (n—1,1)},

By={SeB""|S<5"}.

By construction, the F-vector space W(AO)CLIM@@F F equals Wffl’l, which is an F-subspace

of W.
Lemma 4.1.3. (1) The set {es | S € B} (resp.{gs | S € B}) is an F-basis of W.

(2) For S € B, denote
hs = gs — sgn(os)gs--

The set {hg | S € By} is an F-basis of W™

Proof. (1) As W = N"(V ®p, F) by definition, the statement is a standard fact about the
wedge product of vector spaces.

(2) By [Smil5, Lemma 4.2], the F-space W""" is spanned by the set {hg | S € B*11}.
These hg’s are not linearly independent over F. Indeed, for S € B" !, we have hg. =
—sgn(og)hg by using that (St)t = S and sgn(os) = sgn(ogs) (by [Smil5, Lemma 2.8]).
However, the set {hs | S € By} is F-linearly independent, since {gs | S € B} is F-linearly

independent. So the set {hg | S € By} is an F-basis of W" ", O
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Definition 4.1.4. Let w = ZSeB cses € W. The worst term of w is defined to be

WT(U)) = Z Cg€g,
SeB(w)

where B(w) C B consists of elements S € B such that w(cs) < w(er) for all T € B.
Recall v = 1 — 21/t € OF. Using (4.1.3), we immediately obtain the following.

Lemma 4.1.5. Let S € B" V1. Then exactly we have the following siz cases.

)

(1) If S=A{1,...,i,...,n,n+1i} for somei < m+ 1, then
- tm—l
WT(gs) = (-1)"" 1 {20
(2) ]fS:{l,...,;,...,n,n—i-i} for some m+1 <1 <mn, then
- tm_l
WT(gs) =(-1) I Gt am)

(3) [fS:{l,...,},...,n,njLz'} for some 1,5 < m+1 with ¢ # j, then
tm
WT(gs) = V05—

(4) [fS:{l,...,},...,n,njLi} for some i <m+1 < j, then

tmfl
WT(gs) = V0
(5) ]fS:{l,...,jf,...,n,njLi} for some 7 < m+ 1< i, then
tm—i—l
WT(QS):—\/E
(6) ]fS:{l,...,}'\,...,n,n%—i} for some i,j > m + 1 with i # j, then

tm
7T3m7371'0

WT(gs) = -V

Climt1,.ntg, 2}
j

Definition 4.1.6. For S € B*~ 1! the weight vector wg € Z™ attached to S is defined to be

an element of Z" such that the i-th coordinate of wg is #(S N {i,n + i}).
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Note that if S € B 1! then S = {1,... e num+ i} for some 1 <, j < n. Moreover,
we have sgn(og) = (—1)"™*! (see [Smils, Remark 4.3]) and S* = {1,...,4",...,n,j*}.

Similar arguments in [Smil5, Lemma 4.10] imply the following lemma.

Lemma 4.1.7. Let S € By. Then ezxactly we have the following nine cases.

—

(1) S={1,....m+1,....n,n+m+1}. Then S =5+ wg=(1,...,1), and

- th—l

WT(hs) = WT'(2g9s5) = (-1)" ==

(2) Sz{l,...,’ﬁ,...,n,n%—i}forsomei<m+1. Then S = S, wg # (1,...,1), and

2tm—1
ng_ge{i,n+1 ,,,,, *,.,2n}"

WT(hs) = WT(2g5) = —V0

(3) S:{l,...,iAV,...,n,n+i}forsomez'>m+1. Then S = S+, wg # (1,...,1), and

2tm+1

WT(hs) =WT(2gs) = _\/571_37%—_271_0 int, 20}

(4) S:{1,...,/2'\,...,n,n+i}forsomei<m—|—1. Then S # St wg =wgr = (1,...,1),
and

tm

———¢€
7-(-3m72770

WT(hs) = WT(9{1 ..... Bmonti} +9{1 ,,,,, . nz}) = (_1)i_1

(5) S = {1,...,},...,n,n—i—i} for some i < ;¥ < m+1. Then S # S*, wg, wgr and

(1,...,1) are pairwise distinct and

WT(hS)ZWT(Qﬂ ..... G, n,n+i}+(_1)i+j9{1 ..... v, n,j*})

tmfl tmfl

TBm—2 Y AL 20}

= -V any T <_1)i+j+1\/§

7T3m_2 e{z7n+1 7777 @ 7777

(6) S = {1,...,ﬂ7%—\1,...,n,n—l—i} for some i < m+ 1. Then S # S*, wg,wgr and

(1,...,1) are pairwise distinct and

WT(hs) = V[/T(g{1 77777

tm—l

7Tgmee{m+l,n+1 ..... i*,...,2n}
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(7) S = {1,...,5,...,n,n—|—i} for somei < m+1 < jY. Then S # S*, wg,wgr and

(1,...,1) are pairwise distinct and
WT(hs) = WT(g{lw--,;,---,nm—Fi} - (_1)i+j+lg{1,...,fv,,..,n,j*})
tm o tm
- _\/EWSmfle{i,n+1,...,n+j,...,2n} ( 1) J\/a—ﬂgmfgﬁo €LVt i, 2n}

(8) S = {1,...,5,...,n,n+m+1} for some ¥ > m + 1. Then S # S+, wg,wgL and

(1,...,1) are pairwise distinct and

WT(hS) = WT(g{l,...&'\,...,n,n—&-m—i—l} - (_1)m+j+1

_ it

3m—1 Ctmat1,nt 1yt g2}’

9{1,...,rﬁ+\1,---7n,j*})

(9) S = {1,...,3,...,n,n+i} for some j¥ > i > m+ 1. Then S # S*, wg, wgr and

(1,...,1) are pairwise distinct and

WT(hS) = WT(g{l,...,j,...,n,n+i} - (_1)i+j+1g{1,.“,z"\\/,...,j*})

tm—i—l tm—i—l

_1)¢ti+1 - ~

= —Vl———c,. —
\/_,/TSmeﬂ_O {i,;n+1,....,n+j4,...,

Let w € W' "', Recall that {hg |S € By} is an F-basis of W"{ "' by Lemma 4.1.3.
Write

w = Z ashg = Z Z ashs, ag € F.

SeBy weZn SeBy
and wg =w

Then as in the proof of [Smil5, Proposition 4.12], we have

we W(A)" " = Z aghg € W(Ag)"7"!, for each w € Z"

SeBy
and wg = w

We have two distinct situations for w:
Case 1: w # (1,...,1). Then there exists at most one S € By such that wg = w.

Case 2: w = (1,...,1). Then S is necessarily of the form
S; = {1,...,7,...,71,71—1—2’}
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: ~11
an F-basis of W™ .

for some 1 <7 <m+ 1. For any 1 <i < m + 1, we have
hs, = gs, + gs.v
= (=1'g A AG A NG N Aga A9 A G — Giv A Gni)

= (=)'t A AGAAGV A Agy

t2 —m t
A (=tfi N fiv + [iN fir = 2fiv A frgi = — fagi N fir),
o o
and
hSm+1 = 2gSm+l
=—2-GIANANGANANGVNA - AGu A Gnrmar N (gi A giv)
:_2‘91/\"'/\g\i/\"'/\giv/\"'/\gn/\gn+m+1
t t t t
AN=fiNfiv — = [i N e + = fiv A fovi + = fari A i)
T T T T
Define
_ 27hs, + (=1)"*'thg,, ., ifi#m+1,
hsl. =
hs, .\ if i =m+ 1.

Then for 1 < i < m + 1, terms of g, do not contain (multiples of)

m 2t
WT(hs,..) = (=1) 31 G 2n)
and
~ thﬂ'() 2t
WT (hs;) = —Vo 3m Clintl,nti,2n} \/gﬂ.gm_z €1V n+1,...0%,...,2n}

Proposition 4.12] imply the following lemma.

forms an Op-basis of the Op-module W(Ag)"7 "'

o8

(4.1.6)

For S with wg # (1,...,1), we set ES ‘= hg. By Lemma 4.1.3, the set {TLS | S € By} forms

Previous analysis on w together with similar arguments in [Smil5,

Lemma 4.1.8. For each S € By, pick bs € F' such that the worst term WT(bS?LS) 8 a sum

of terms of the form ugper for some unit ur € OF and T € B. Then the set {bsﬁg | S € By}



For the matrix ( ;i ) corresponding to F, denote by v € A"F the wedge product of n-

columns of the matrix in the order from left to right. Then the strengthened spin condition

LMG6 on F amounts to that

v e Im (W(A)" "' ®o, R — W(Ay) @0, R) .

Write v = )¢ g ases for some ag € R. By Lemma 4.1.8, we have

V= Z asts = Z CsbS?LS (4.1.7)

SeB SeBy

for some ¢g € R. By comparing the coefficients of both sides in Equation (4.1.7), we will

obtain the defining equations of the condition LIM6 on the chart Uygy.
Recall
A B FE
X=|C D F|,

G H =z
where A, B,C,D € M,(R), E,F € Mpyx«(R), GGH € Myx,(R) and x € R. In the
following, we use a;; to denote the (i, j)-entry of the matrix A. We use similar notations for
other block matrices in X. For 1 <1 < m + 1, comparing the coefficients of ef,11,.. 2, and

€s, =€ . nntqy 10 (4.1.7), we obtain

th,1

Csmﬂ(—l)mbsmﬂﬁ =1,

2¢m1 2t" ,
CSm+1bSm+1(_1>m+z7T3m_2 + CsibSi <_\/5 ngo) = (_1)1+2dii7

2tm—l 2t™ 4
CSm+1bSm+1(_1>m+lm + CSibSi <_\/§m) = (—1)1+Zam+i_i,m+1_i.

Hence,
o
dii = o Qe 1—imet 1 + V0. (4.1.8)

For 1 < 4,7 < m+ 1 and ¢ # j, by comparing the coefficients of en iy and

oo ey

€LV i+, 5%, 20} WE obtain

tm

_ 145
C{l}nn+z}b{1§nn+z} (_\/EM) = (_1) Jdij)
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7]-3m—371-0

it " i
C{l ..... Jrens n,n-l—i}b{l ..... Jyom ,n—i—i} ((_1)1++]\/§ ):(_1)1+ Am+1—j,m+1—i-

Hence,
M
dij = —gam+1_]~7m+1_i. (419)
T
Combining (4.1.8) and (4.1.9), we obtain
D=20H,A'H, + VoI,
m

Here the matrix H,,A'H,, is the reflection of A over its anti-diagonal. Equivalently,

D+nly =" Hy(A+xl,) H,. (4.1.10)
™
Similarly, we can obtain
t t
B=H,B'H, C=H,C'H,, £E=-H,H" F=-H,G". (4.1.11)
T T
Write
- 0 Hy A B
HQm = s X1 =
“H, 0 C D

Combining (4.1.10) and (4.1.11), we have
Hop (X1 + 7lop) = (Xy + mlo ) HY, . (4.1.12)
4.1.2.7 A simplification of equations

First we can see that under the wedge condition A*(X +nI,,) = 0, the Kottwitz condition

(4.1.4) becomes

tr(X +nl,) =7 —T. (4.1.13)
Next we claim that the equation

X2 +tX +ml, =0 (4.1.14)

of Condition LM1 is implied by the Kottwitz condition LM2 and the wedge condition LM5.

To justify the claim, we need an easy but useful lemma.
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Lemma 4.1.9. Let X be an n x n matriz. Then X? = (tr X)X modulo (A*X).

Proof. The (i, j)-entry of the matrix X? — tr(X)X is

n

> XiXeg = > XueXig = Y (Xn Xy — X X)),
k=1 k=1

k=1

which is a sum of 2-minors of X. O

By Lemma 4.1.9 and the wedge condition LM5, the equation (4.1.14)
X2 4 tX +mol, = (X +7l)? + (t —27)(X +7l,) =0
is equivalent to
tr(X +7L)(X +7l,) + (t —2n)(X +7l,) = (tr(X +7l,)+7—7) (X +nl,) =0,

which is implied by the Kottwitz condition (4.1.13).

Next, we examine the Condition LM3. For the equation (LM3-1), we have

2 t t2 - 27T0 ¢ t ¢ ¢

-C'H,, A+ A'H,C+ —G'G+H,C+C'H,,

t tmo o

2 2 -2 2 2 -2
—ZCO H (A + 7)) + (A4 7)) HoC — ECH,, — ™ H O

t t?TQ t t’ﬂ'o

t
+ —G'G+ H,,C+C'H,,
o

2 2 -2 t
—=C'Hp(A+ 1) + A+ 7l HoC + —G'G + VOC H,, + VO H,,C.

tmo o T

A similar argument as in the proof of Lemma 4.1.9 implies that
C'H,,(A+nl,) = (A+rl,)" H,C modulo (A\*(X +l,)).
Hence, the equation (LM3-1) gives the same restriction on Uyg as the equation

t t
(At L) HyC + —G'G + VOC H,y, + “VOH,C = 0.
o o T

By (4.1.11), we further obtain
t

t t
(A+7l,) H,C + —G'G + —V0H,,C = 0, (4.1.15)
o U T
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(A+nl,)'H,C = (C(A+7l,))" H,.

Again, as in Lemma 4.1.9, the matrix C'(A 4 71,,) is equivalent to tr(A+ «n1,,)C. Thus, the

equation (4.1.15) is equivalent to

t t t
—tr(A 4 7l,)C* H,, + —G'G + =V0H,,C = 0.
o ™

o

Equivalently,

t ((tr<A + )+ VO HC - GtG) —0. (4.1.16)

To
Similarly, under the wedge condition LMJ5 and the strengthened spin condition LM,

one can verify that the equation (LM3-2) can be simplified to

i ((br(A + 71) + TVB) (D + L) + G'H) =0 (4.1.17)

o
the equation (LM3-3) is trivial; the equation (LM3-4) is equivalent to (LM3-2); the equa-

tion (LM3-5) is equivalent to

- ((f tr(A + ml,) +7V0)H, B + HtH) = 0; (4.1.18)

U ™
the rest of the equations are trivial.

Set

A B E
Xl = 7X2 = 7X3 = (G H) 7X4 =
C D F

Then X = (ﬁ; %), and equations (4.1.16), (4.1.17), (4.1.18) translate to

t ~
= (A + 7L + 7VB) Ho(X1 + mhom) + X35 ) = 0.

o
Using similar arguments, one can check that under the wedge condition LM5 and the
strengthened spin condition LM6, equations (LM4-1) to (LM4-9) are implied by the Con-

dition LM3, and the equation (LM4-10) is equivalent to
the diagonal of (tr(A + 71,,) + W\/g)ﬁQm(Xl + 7loy) + X5 X3 equals 0.
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Denote by Or[X] the polynomial ring over O whose variables are entries of the matrix
X. Then we can view the affine chart Uggy C Moy as a closed subscheme of Spec Or[X]. In

summary, we have shown the following.

Proposition 4.1.10. The scheme Uyqy is a closed subscheme' of Uly, = Spec Op[X]/Z,
where I is the ideal of Op[X] generated by:

tr(X +71,) — 7147, ANX +71,), Hom (X1 + 7lom) — (X1 + mlom ) HS

2m>»
t

t t
E — :HmHt, F— —HmGt,
T m o

((tr(A l) 4+ 7V8) Hom (X1 + 7o) + ngg) :

the diagonal of (tr(A + 7L + 7V0) Hop (X1 + wlap) + XiX;.

Set
- - - X,
X1 =Xi+7nly,, A=A+7nl,, X =
X3
As X, and X, are determined by X; and X3 by relations in Z, we obtain the following

proposition.

Proposition 4.1.11. The scheme Ul = Spec Op[X|/T is isomorphic to Spec Or[X]/Z,
where T is the ideal of Op[X|] generated by:
-~ o~~~ t ~ -~
N2 (X), HomX) — XUHE | — ((tr(A) 4 V0) Hop X, + X§X3> ,
To

the diagonal of (tr(A) + 7V0)Ham X1 + XiX;.

Definition 4.1.12. Denote by U?O} the closed subscheme of U, = Spec OF [X]/Z defined
by the ideal " c Op [)~( | that is generated by:

A2 (X), HymXy — XPHL | (tr(A) + 7vV0) Hop X1 + XX

Note that the ideal Z contains Z.

'In fact, we expect that Uiy = Uf{o}. This amounts to saying that the equations obtained by comparing
coefficients of eg in (4.1.7) for S not of type (n — 1,1) are implied by relations in Z.
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4.1.2.8 Geometric properties of Uy, and U?o}
In the following, we write R for the ring O[X]/Z" and R for the ring Op[X]/Z.

Lemma 4.1.13. If w(m) = w(t), then R = RM.

Proof. Note that w(m) = w(t) if and only if ¢/m is a unit in Op. By comparing the lists of

generators of 7 and fﬂ, we immediately see that 7= fﬂ, and hence R = Rf. O

Remark 4.1.14. Since my|t|2, the condition w(t) = w(m) clearly holds if F{/Qs is unramified.
More generally, by applying Proposition 3.1.1 (4) to Fp, we have w(t) = w(m) if and only if
0 € Use_1 — Us.. Namely, given a quadratic extension F' of Fj with a uniformizer 7 satistying
an Eisenstein equation 72 — ¢ + mp = 0, the condition w(t) = w(mp) holds if and only if
F' is of the form FO(\/E) for some unit 8 € Ug.—1 — Uz.. We will count the number of such
extensions F' in the following.

We have a short exact sequence

N UQe N U2e—1 N UQe—l
U2 N Uy U2 N Uze—1 Uze (U2 N Uze—1)

0 — 0. (4.1.19)

We claim that U2NUsy._; C Us,. For any x € U*NUs._1, we can find a € O, and u € U such
that x = 1+75¢ 'a = u%. We want to show w(a) > 1. Set b = u—1. Then b(b+2) = 73¢ 'a.

If w(b) < e =w(2), then w(b+ 2) = w(b) and

As 2e — 1 is odd, this forces w(a) to be odd and in particular w(a) > 1. If w(b) > e, then
w(rgta) = w (b(b+2)) > w(b) +w(2) > 2e.

Again we have w(a) > 1. This proves the claim.

Then we have Us(U? N Usye_1) = Us, and by the short exact sequence (4.1.19),

UZefl
UQe

‘ U2671

=9.92f =olFf
U2 N Uze—1 ’

o UQe
| U2N Uy,
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Uze—1
U?NUze—1

where f denotes the residue degree of Fy/Q,. Note that there are two elements in
defining the trivial extension and the unramified quadratic extension of Fy. Thus, we have

214/ — 2 ramified quadratic extensions of Fy of type (R-U) with w(t) = w(m).

By (4.1.10), we have

tr(X;) = tr(A) + tr(D) = —tr(A).

™

So we can rewrite Rﬁ as

i (’)F[<§§)]
</\2<§; ) : Hop X1 — )?{ﬁ;m, (% tr()?l) + W\/g)ﬁ%njzl + X§X3) |

Let Y i= Hyp,X;. Then X, = %ﬁng and
Orl(%,)]
(/\z ( %}QZY>’Y — Y1 (2 tr(HonY) + 7VO)Y + X§X3)
_ Orl(x,)]
(/\2(}?3 ), Y =Y (& tr(HomY) + 7V0)Y + X§X3>

RE ~

For 1 <i,j < 2m, we denote by y;; the (i, j)-entry of Y and by z; the (1,7)-entry of Xs.

Lemma 4.1.15. The scheme U?o} is irreducible of Krull dimension n and smooth over Op

on the complement of the worst point, which is the closed point defined by Y = X3 =m = 0.

Proof. For 1 < ¢ < 2m, consider the principal open subscheme D(y,) of U?O}, i.e., the locus
where yg, is invertible. Then one can easily verify that D(yy) is isomorphic to the closed
subscheme of

Spec Oplyij, z; | 1 <1i,j < 2m]

defined by the ideal generated by the relations
_ _ T N
Yij = Yjis Yij = yaly&'yzj, Ty = yalfﬂeyeu —33? = (% Zyﬁiy&n—i) + 7“/5?%2-
i=1

Hence, the scheme D(yy) is isomorphic to

Spec OF[xb Yery o5 Yoty - - -5 Yo 2m, yﬁ}l]
(2 + (22000 Yeilen—i) + ™V 0y
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By the Jacobian criterion, D(yy) is smooth over Op of Krull dimension n. Note that the
worst point is defined (set-theoretically) by the ideal generated by m and y, for 1 < ¢ < 2m.
Since the generic fiber of U?O} is smooth, we obtain that U?O} is smooth over Op on the
complement of the worst point. As the generic fiber and all D(yy), for 1 < ¢ < 2m, are

irreducible, we conclude that U?O} is irreducible. ]
Lemma 4.1.16. The scheme U?o} is Cohen-Macaulay.

Proof. Let S denote the polynomial ring Op[y;; | 1 < i < 2m]. Then we have an obvious
ring homomorphism S — R, By the wedge condition LM5 and Y = Y?, for 1 <4, j < 2m,

we have
T m
yi2j = Yij¥ji = Yiyy; and x} = —(% Z YieYin—e) — W\/éyn'
=1

In particular, we deduce that R is integral (also of finite type) over S, and hence R is a
finitely generated S-module. Since S is a domain of the same Krull dimension as R, the
map S — R is necessarily injective. By [Eis13, Corollary 18.17], to show R is Cohen-
Macaulay, it suffices to show that R is a flat S-module. Equivalently, we need to show that
the induced morphism

¥ : Spec RY — Spec S ~ A

is flat. Let P, be the closed point in SpecS corresponding to the maximal ideal my =
(T, Y11, - -, Y2mam). Then ¢ maps the worst point of Spec R to Py and the preimage of
Spec Sly,,'] is the scheme D(yy) considered in the proof of Lemma 4.1.15. As D(yg) is
smooth over Op, by miracle flatness (see [Eis13, Theorem 18.16 b.]), the restriction | p(y,,)
is flat. Similarly, we obtain that v restricted to the generic fiber of U?O} is flat. It remains
to show that 1 is flat at the worst point, i.e., the localization map Sy, — Rglo is flat. The
local ring Sy, has residue field k. Let K denote the fraction field of S,,,. By an application

of Nakayama’s lemma (see [Harl3, Chapter II, Lemma 8.9]), we are reduced to show that
dimg (Rpy, ®s,,, K) = dim(RY, @s,, k)- (4.1.20)
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Note that K is the field F(yi1,...,Y2m2m) of rational functions. By the following Lemma

4.1.17, we have the desired equality (4.1.20) of dimensions. O

Lemma 4.1.17. The K-vector space (resp. k-vector space) 'REIO R, K (resp. erxlm D k)

has a K-basis (resp. k-basis) consisting of (images of) monomials

o, B Be
Li Yiij yzzyz Yiejer

where a, f; €{0,1}, 0 <l <m, and 1 <i<i3 <j1 <ig<Jo<---<ip<jo<2m. Let S

denote the set of these monomials. Then the cardinality #S equals 2°™. In particular,
dimg (Ry, ®s,,, K) = dimg (R, s, k) = 2°™. (4.1.21)

Proof. We first count the cardinality of S. For an integer 0 < ¢ < m, the number of

monomials of the form xzyﬁljlyf]Q x 'yiﬁfje in S is the number of tuples (4,11, ji, - - ., iz, jo)

such that 1 <@ < iy < 1 <19 < Jo < -+ < iy < jp < 2m. It is well-known that the number

is (2m) Here, we set (

2041 = 0 if £ = m. Similarly, the number of monomials of the form

2€+1)

ylﬁllhyzm- yi@é in S is (%) Hence, we obtain that

7 = Z <2€ + 1> Z (22?) - QZm (27> =2

=0
Let :L‘O‘ma yﬁljlym2 . yi‘;[ be a general monomial in Rgo Py K. As yfj = YiiYji = YiiVjj
in RE . we may assume f; for 1 < </ lies in {0,1}. As

— XXy = (2—_tr(H2m Y) + 7o)y

in RA ,» We see z;7; can be expressed by entries in Y. Hence, we may assume o' = 0 and
a € {0,1}. We claim that the monomial &8y, Yisjs - Yipj, for a € {0,1} is generated by
elements in S. By the wedge condition and Y = Y, it is straightforward to check that
the product x,y;;y,, only depends on the indices {r, 1, j, p, ¢}, namely, changing the order of
indices gives the same product in Rﬁo. Since y; € K, we may assume 1 <1 < i3 < j; <

Iog < Jo <+ < 1p < Jp < 2m, and hence we may assume 0 < ¢ < m. Thus, the K-vector
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space ngo ®s,, K is generated by (images of) the elements in S. Now it suffices to show
that these elements are K-linearly independent.

Note that the ring R?no ®s,, I corresponds to the generic point of Spec R Since yq; is
invertible over R ®s, K, the ring RY, ®s, K is in fact the function field of D(y11) in the

proof of Lemma 4.1.15 (take ¢ = 1), and the field

K[?Jm, Y13, - - -5, Y1,2m, xl]

f
Rmo ®Sm0 K - 9 9 9 - m .
<y12 — Y1122, -+ Yiom — Y11Y2m,2m, T + (2 D00 Y1ilin—i) + W\/gyu)

is a compositum of successive quadratic extensions. In particular,
dimg (R ®s, K)=2""
K mo Smo - .

As #8 = 22 elements in S are K-linearly independent, i.e., elements in S form a K-basis
of Rgto ®3m0 K.
Similar arguments (just note that now y; = 0 in k) as before imply that R @5y, K 18

generated by (images of) elements in S. Hence,
dimg (R, @s,, k) < #S = dimg (Ry,, ®s,, K).
On the other hand, by Nakayama’s lemma, we always have
dimy(RY, ®s,, k) > dimg (RE, @s,,, K).
This completes the proof of the lemma. O

Corollary 4.1.18. The scheme U?o} is normal and flat over Op. The geometric special fiber

U?D} ®o, k is reduced and irreducible.

Proof. As U?O} is smooth over O on the complement of a closed point, and Cohen-Macaulay
by Lemma 4.1.15 and 4.1.16, the normality of U?o} follows from the Serre’s criterion for
normality (see [Sta24, 031S]). By Lemma 4.1.15, the scheme U?O} ®o, k is smooth over k on

the complement of the worst point. The proof of Lemma 4.1.15 also implies that U?o} Ro, k
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is irreducible of dimension n — 1. As U?o} is Cohen-Macaulay and Spec Op is regular, then
U?O} is flat over O by the miracle flatness (see [Eis13, Theorem 18.16 b.]).

Since U?O} is Cohen-Macaulay and 7 is not a zero divisor (follows from the flatness),
the scheme U?o} ®o, k is also Cohen-Macaulay. Then U?o} ®o, k is reduced by the Serre’s

criterion for reducedness (see [Sta24, 031R]). O
Lemma 4.1.19. The schemes Uy and U?O} have the same underlying topological space.

Proof. (1) Since Ul is flat over Op, the scheme Ul is the Zariski closure of its generic
{o} {0}

fiber. Then we have closed immersions
Ulgy = Upgy = Ul

where all schemes have the same generic fiber. Then it suffices to prove that the special
fibers of U?o} and U/{o} have the same underlying topological space. Since U?o} ®op k is
reduced, we are reduced to show that Z ®o,. k is contained in the radical of Z ®¢,, k.

If w(mp) = w(t), then the assertion follows from Lemma 4.1.13. We may assume t/m is

not a unit. In this case, we have

tr(Hop Y
1 ®o, k= (/\2()1(/3),1/ —Y"* the diagonal of (%Y + X§X3)>,

Hy,Y)

tr
Iﬂ®OF/<;:</\2(§3),Y—Yt, (2 Y+XgX3).

Let M denote the matrix Z¢2mY)y 4 X!X3. Then for 1 < 14,5 < 2m, the (7, j)-entry M;; of
2 3 J

M is
ay + xixy, o= tr(Hy,Y)/2.
Since char(k) = 2, we obtain M} = oy}, + z725. Therefore, we have

MZ-Qj — Miiij = Ozz(yfj — yn-yjj) — ozx?yjj — oz:v?yii
= 042(%2]* — i) — v Mj; — JEJQM” + 21‘22$?
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In particular, any Mizj for 1 <4,7 < 2m lies in f@oF k. Hence, I ®¢, k is contained in the

radical of Z ®¢,, k. This finishes the proof. m
In summary, we have proven the following.

Proposition 4.1.20. (1) The scheme U?O} is flat over Of of relative dimension n—1. In
particular, U?o} 15 1somorphic to an open subscheme of the local model Ml{%c} containing
the worst point. Furthermore, U?o} is normal, Cohen-Macaulay, and smooth over Op
on the complement of the worst point. The special fiber U?O} ®op k is (geometrically)

reduced and irreducible.
(2) Uy and U?o} have the same underlying topological space.

(3) If w(my) = w(t), then Uggy = U?o}'

4.1.2.9 Global results
Recall that (Ao, q,-Z,¢) is a hermitian quadratic module with ¢ over Og, by Lemma
3.2.5. Let g == Sim((Ao, ¢, -Z, ¢)) be the group scheme over Op, of similitudes preserving

¢ of (Ao, q,-Z,$). By Theorem 6.2.8, 7 is an affine smooth group scheme over Op,.

naive

Lemma 4.1.21. The group scheme oy acts on {0} and Myoy.

Proof. It suffices to show the result for Myp. Let R be an Op-algebra. Let g = (p,7) €
H0y(R) be a similitude preserving ¢. For F € Mg}, we define gF = ¢(F) C Ag ®op, R.
We need to show that gF € Mg (R). It is clear that gF satisfies conditions LM1,2,4.
Recall that ¢ : Ag X Ag — t7'Op, is defined by (z,y) — t ' Trg g h(z, 77 'y). We also use
¢ to denote the base change to Ag ®o,, R. Then we see that J satisfies LM3 if and only if

o(F,F)=0. As g preserves ¢, we have that
O(9F,9F) =vo(F, F) = 0.
So gF satisfies LM3. As g is O ®o,, R-linear by definition, we obtain that
(T®1—-1®Tog=go(n®1—-1Q7).
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By the functoriality of the wedge product of linear maps, we have
NMr@1l-107 | gF)=AN(go(r®1-107) | F)=A(g) oA} (r®1-1®7 | F) =0.

Therefore, gF satisfies the wedge condition LMS5. Since 7y, is smooth over Op,, using a

similar argument of [RSZ18, Lemma 7.1], we can show that the R-submodule
Im (W(Ao)"7 " ®o, R — W(Ag) ®o,. R)

of W(Ap) ®o,. R is stable under the natural action of J#y(R) on the space W(Ag) ®o, R =

A" (Ao ®op, R). It follows that gF satisfies the strengthened spin condition LMS. O

Lemma 4.1.22. Let k be the algebraic closure of the residue field k. Then My ®o5 k has

two 7o) ®0p, k-orbits, one of which consists of the worst point.

Proof. By Lemma 4.1.21, the special fiber Mgy ®o, k has an action of Aoy Rop, k. Let
F € Mgy (k). In particular, the subspace F C (A R0, k) is an n-dimensional k-vector
space. The wedge condition in this case becomes A*(m ® 1 | F) = 0. Therefore, the image
(7 ® 1)F is at most one dimensional. We have the following two cases.
Suppose (1 ® 1)F = 0. Then F = (7 ® 1)(A¢ ®op, k), namely, F is the worst point.
Suppose (7 ®1).F is one-dimensional. Then there exists a vector v € F such that (7®1)v

generates (7 ® 1)F. For simplicity, write  for 7 ® 1. Recall the k-bilinear form

O(—, =) : (Mo ®op, k) X (Ao Qo k) — £ Qop, k
(z,y) = s(z, 7 y) =t Trh(z, 7 y),

where 77!

is the induced isomorphism Ay ®o, k — (77'Ag) ®o,, k. We can identify
Z Qop, k with k by sending t~' ® 1 to 1. Denote by N := k{€y11, Temi1) the submodule
of Ag ®oy, k. Then one can check that the radical of ¢ is contained in N. We claim that

v is not in N. Otherwise, after rescaling, we may assume v = e,,11 ® 1 + mv; for some

v € Ny R0p, k. Then for the quadratic form
q:A0®oFOE—>$®@FOE:E,
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we have
q(v) = q(ems1 @ 1+ 701) = qemp ® 1) + s(em1 ® 1, 701) + q(7vy).

One can check that ¢(e,1 ® 1) = 1 and s(ep1 ® 1,7101) = q(7mv1) = 0. Hence g(v) # 0.
This contradicts the hyperbolicity condition LM4 that ¢(F) = 0. In particular, we obtain
that 7v is not in the radical of ¢. Thus, we can find w € Ay ®op, k such that ¢(w,7v) # 0

in k. By rescaling, we may assume ¢(w, mv) = 1. Note that for a € k,
g(w + av) = q(w) + as(w,v) + a’q(v)
= ¢(w) + ap(w, mv) + 0, since q(v) =0,
=q(w) +a.

Replacing w by w — ¢(w)v, we may assume g(w) = 0. Put b := —¢(w,v). One can check

that ¢(w + bww) = 0. Replacing w by w + bww, we have
4(w) = g(v) = 0, B(w,v) = 0 and $(w, v) = 1.

Denote W := (v, mv, w, mw), the k-subspace of A, Rop, k generated by v, 7v, w, 7w. Then ¢

restricts to a perfect pairing on W;. Now we can write
Ao ®op k=W1 W, (4.1.22)

where W is the orthogonal complement of W; with respect to ¢ whose dimension is 2n — 4
over k. Note that the Condition LM3 in Definition 4.1.1 of Moy implies that ¢(F,F) = 0,
and hence F N (w,7w) = 0. Since (v,7v) C F and ¢(F,F) = 0, we obtain that the k-
dimension of F N W is n — 2 and F N W is contained in 7W = ker(m | W). Therefore,

FNW =xW for dimension reasons. By (4.1.22), we have

disc’(¢) = disc(¢|w, )disc(p|w ).

Here, disc'(¢) is the divided discriminant in the sense of Definition 6.2.4, and we view it as

X

an element in k& by using a basis of Ag ®0p, k. By Example 6.2.6, we have disc’(¢) € k.
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Since ¢ is perfect on Wi, we obtain that disc(d|w,) € &, and hence disc'(¢|w) € k. So
W is a hermitian quadratic module of type Ay over k in the sense of Definition 6.2.4. Set
vy = v and v, = w. By applying Theorem 6.2.7 to W, we deduce that there is an Op Qo k-
basis {v; : 1 <i <n} of Ay ®op, k with the property that q(v,,.1) generates R, q(v;) = 0,
o(vi,v;) = 0 and ¢(v;, mv;) = §; py1—; for all 1 < i < j < n. With respect to this basis, we
have

F=(v,m)® (FNW) = (v,m0) & (7W) = (v1, 701, 70;,2 < i < n—1).
This shows that points F € Mo (k) with dimg 7F = 1 are in the same o, (k)-orbit. [

As U?O} is flat over Op, we may view U?O} as an open subscheme of MI{%C} containing the

worst point. By Lemma 4.1.22, the g -translation of U?o} covers MI{%C}. By Proposition
4.1.20, we have shown Theorem 1.2.6, and Theorem 1.2.2, 1.2.3 in the case I = {0} and
(R-U).

4.2 The case [ = {0} and (R-P)

In this section, we consider the case when F'/Fj is of (R-P) type. In particular, we have
4+ m=0and T = —7.

Consider the following ordered Op,-basis of Ay and Ag:

1 1 s ™
Ay : SEm+2s -+ 5y €Ly Cmy Gl S €mMA2, - 5y TEL - oy T, Tema1, (4.2.1)
At 1, 2 2 -1 2 2 4.2.2
0T ma2y .., T en,%el,...,%em,ﬂ Cmtly Ema2y -« s €y 2€1, oy 26, €ma1.  (4.2.2)

Recall that (Ao, ¢, %) is a hermitian quadratic module for £ = 1Op,.

4.2.1 A refinement of M‘gg}ve in the (R-P) case

Definition 4.2.1. Let Mg, be the functor
Moy : (Sch/Op)°® — Sets

which sends an Og-scheme S to the set of Og-modules F such that
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LM1 (w-stability condition) F is an Op ®0p, Os-submodule of Ay ®op, Os and as an Og-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of 7 ® 1 € Op Rop, Og on F has characteristic
polynomial

det(T —7@1| F)=(T—m)(T-7)"".

LM3 Let F* be the orthogonal complement in A} R0y, Os of F with respect to the perfect
pairing
s(—, =) 1 (Ao ®op, Os) x (A§ ®o,, Os) = Os.
We require the map Ag ®og Os — (5AF) ®op, Os induced by Ao — FA§ sends F

to g]:i, where

I

F* is the image of - under the isomorphism 5 : A§ R0y, Os -~

5AG ®0p, Ogs.

LM4 (Hyperbolicity condition) The quadratic form ¢ : Ay ®op, Os = Z ®op, Os induced
by q : Ay — & satisfies ¢(F) = 0.

LM5 (Wedge condition) The action of 7@ 1 —1®7 € O ®o, Os on F satisfies

Nrel-107 | F)=0.

Then as in the (R-U) case, the functor My, is representable and we have closed immer-
sions
MG, C Moy € My
of projective schemes over O, where all schemes have the same generic fiber.

4.2.2 An affine chart Uy, around the worst point
Set

Fo = (7 ® 1)(Ao ®op, k).

Then we can check that Fy € Moy (k). We call it the worst point of Mgy.
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With respect to the basis (4.2.1), the standard affine chart around Fy in Gr(n, Ag)o, is
the Op-scheme of 2n x n matrices ( i ) We denote by Uygy the intersection of Mygy with
the standard affine chart in Gr(n,Ag)o,. The worst point Fy of Mg is contained in Uygy
and corresponds to the closed point defined by X = 0 and 7 = 0. The conditions LM1-5
yield the defining equations for Ugy. We will analyze each condition as in the (R-U) case.
A reader who is only interested in the affine coordinate ring of Uy, may proceed directly to

Proposition 4.2.2.

4.2.2.1 Condition LM1
Let R be an Op-algebra. With respect to the basis (4.2.1), the operator 7 ® 1 acts on

Ao R0, R via the matrix
0 —7Tgln
I, 0

Then the m-stability condition LIM1 on F means there exists an n x n matrix P € M, (R)

such that

0 —mol, X X
I, 0 I, I,

We obtain P = X and X? 4+ 7y, = 0.

4.2.2.2 Condition LM2
We have already shown that 7 ® 1 acts on F via right multiplication of X. Then as in

the (R-U) case, the Kottwitz condition LM2 translates to

tr(X +nl,) =7 —7 =2, tr (N (X +7I,)) =0, fori>2. (4.2.3)

4.2.2.3 Condition LM3

With respect to the bases (4.2.1) and (4.2.2), the perfect pairing
S(_a _) : (AO ®(9FO R) X (AS ®OFO R) — R
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and the map Ag Rop, I — A% ®oy, R are represented respectively by the matrices

0 0 Hyy O Iy, 0 0 0
0 0 0 1 0 2 0 O
S = and N =
—Hy,, 0 0 O 0 0 Iy, O
0 -1 0 0 0O 0 0 2
t
X X
Then the Condition LM3 translates to SN = 0, or equivalently,
I, I,
0 0 Hsypy O
t
X 0 0 0 2 X
=0. (4.2.4)
I, —Hy,, 0 0 0 I,
0 -2 0 0
Write
X1 X,
X = ,
X3 X

where X1 € My, (R), Xo € Mapmxi1(R), X3 € Mixonm(R) and x € R. Then (4.2.4) translates

to

XtHypy, — Hop Xy 2XE — Hopp Xo

X! Hopm — 2X5 0

4.2.2.4 Condition LM4
Recall & = 10p,. With respect to the basis (4.2.1), the induced £ ®op, It-valued

symmetric pairing on Ag ®oy, R is represented by the matrix

Hy, 0 0 0
0 2 0 0

N
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The Condition LM4 translates to

t t

X X X X
S1 = (0 and half of the diagonal of S equals zero.

I, I, I, L,

One can check that the diagonal entries of (fn)tSl(f

n

) are indeed divisible by 2 in R.

Equivalently, we obtain

XfHQle +2X§X3 +7TOH2m X{HQmXQ—FQZEX?f 0
X;Hngl + 217X3 XéHQmXQ + 21’2 + 27'('0
half of the diagonal of X} Hy,, X + 2X5 X3 + 7o Ha equals 0,
1

3 (X5 Hom Xo + 22° + 2m) = 0.

4.2.2.5 Condition LM5

As m® 1 acts as right multiplication by X on F, the wedge condition on F translates to

N (X +nl,) = 0.

4.2.2.6 A simplification of equations
As in the (R-U) case, we can simplify the above equations and obtain the following

proposition.
Proposition 4.2.2. The scheme Uggy = Spec Op[X|/Z, where I is the ideal generated by:

tI‘(X + 7TIn) - 271', /\2(X + W[n), X{Hgm — HQle, 2X§ — HQmXQ,
(tr( Xy + Tlom) — 27) Hop (X1 + mlop) + 2X5 X3,
half of the diagonal of (tr(X; + 7loy) — 27) Hop (X1 + mlom) + 2XE X,
Set
N N X,
X1 =X1+nl,,, X =
X3

Then we have the following proposition.
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Proposition 4.2.3. The scheme Uy is isomorphic to Spec Op[X]/Z, where T is the ideal

in Op[X] generated by:

/\2 ()?)7 Hgm)?l - X{Hgm, (tr()?l) - 27T)H2m551 + 2X§X3,

half of the diagonal of (tr(X,) — 27) Ham X, + 2X1X5.

Definition 4.2.4. Denote by U?O} the closed subscheme of Ugy = Spec Op[X]/Z defined
by the ideal Z C Op[X] generated by:

~ ~ ~ 1~ ~
/\2 (X), HQle — X{HQm, (étr(Xl) — W)HQle + X§X3
Note that tr()zl) is divisible by 2 by the relation Hgm)?l = X{HQm.

4.2.2.7 Global results

As in the (R-U) case, we can prove the following proposition.

Proposition 4.2.5. (1) The scheme U?O} is flat over Op of relative dimension n — 1.
In particular, U?o} 18 isomorphic to an open subscheme of Ml{%c} containing the worst
point. Furthermore, U?O} 1s normal, Cohen-Macaulay, and smooth over O on the
complement of the worst point. The special fiber U?o} ®oy k is (geometrically) reduced

and trreducible.

(2) Ugoy and U?O} have the same underlying topological space.

Similar arguments as in the proof of Lemma 4.1.22 imply that the special fiber Moy ®0,. k
has only two g (k)-orbits. Together with Proposition 4.2.5, we can deduce Theorem 1.2.2
and 1.2.3 in the case I = {0} and (R-P).
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CHAPTER 5
THE CASE I = {m}

5.1 The case I = {m} and (R-U)
In this section, we will prove Theorem 1.2.2 in the case when F/Fj is of (R-U) type and
I = {m}. In particular, we have

m —tr+ 7 =0,

where t € O, with m|t|2. Consider the following ordered Op,-basis of A,, and A?,:

i T M i

, 1 1 0 0

A, FOmA2 s T T EL o T, Gl €2y -5 Oy €1, - €y Tem (5.1.1)
s — _ t t

A Temia, ..., ey, —€Ly- o —Cm €1, M0Cm2; - - -5 T0Cn, ter, ..., tem, Tem1. (5.1.2)

Recall (A, q,-%) is a hermitian quadratic module for .Z = t'Op,.

5.1.1 A refinement of Ml{lﬁge in the (R-U) case

Definition 5.1.1. Let My,,; be the functor
My : (Sch/Op)°? — Sets
which sends an Op-scheme S to the set of Og-modules F such that

LM1 (w-stability condition) F is an Op ®0y, Os-submodule of A, ®oy Os and as an Og-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of 7 ® 1 € Op Rop, Og on F has characteristic
polynomial

det(T—7®1| F)= (T —=a)(T —7)" .

LM3 Let F* be the orthogonal complement in A?, ®oy, Os of F with respect to the perfect
pairing

S(_a _) : (Am ®(9F0 OS) X (Ain ®(9F0 OS) - OS-

79



We require that the map A,, ®og, Os — (t7TA2) ®og, Os induced by the inclusion
A, = t71AS sends F to t71Ft, where t1F* is the image of F* under the isomor-

phism ¢~ : A$ ®og, Os — t71AS, ®op, Os-

LM4 (Hyperbolicity condition) The quadratic form ¢ : A,, Qop, Og > % Qop, Og induced
by q : A, — & satisfies gq(F) = 0.

LM5 (Wedge condition) The actionof t® 1 —1®7 € Op ®oy, Os on F satisfies

Nrel-1@7 | F)=0.

Then My, is representable and we have closed immersions
loc naive

of projective schemes over O, where all schemes have the same generic fiber.

5.1.2 An affine chart Uy, around the worst point

Set

Fo = (7@ 1)(A, ®op, k).

Then we can check that F, € M,y (k). We call it the worst point of Mg,y .

With respect to the basis (5.1.1), the standard affine chart around Fy in Gr(n, A,,)o, is
the Op-scheme of 2n x n matrices (i) We denote by Uy, the intersection of My, with
the standard affine chart in Gr(n, Ap,)o,. The worst point Fy of My,,y is contained in Ug,,y
and corresponds to the point defined by X = 0 and 7 = 0. The conditions LM1-5 yield
the defining equations for Ug,;. We will analyze each condition as in the case I = {0}. A
reader who is only interested in the affine coordinate ring of Uy,,; may proceed directly to

Proposition 5.1.2.
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5.1.2.1 Condition LM1
Let R be an Op-algebra. With respect to the basis (5.1.1), the operator m# ® 1 acts on

Ay ®0y, R via the matrix

0 —7Tgln
I, tI,

Then the m-stability condition LIM1 on F means there exists an n x n matrix P € M, (R)

such that

We obtain P = X +tI, and X? +tX + mol,, = 0.

5.1.2.2 Condition LM2
We have already shown that 7 ® 1 acts on F via right multiplication of X + t¢I,,. Then

the Kottwitz condition LM2 translates to

tr(X 4+ nl,) =n—7, tr (N(X +7l,)) =0, fori > 2. (5.1.3)

5.1.2.3 Condition LM3

With respect to the bases (5.1.1) and (5.1.2), the perfect pairing
S<_7 _) : (Am ®(9FO R) X (Afn ®(9FO R) — R

and the map A,, Rop, B — %Asm ®oy, R are represented respectively by the matrices

2Hom 0 Hop 0 Ly, 0 0 0

0o 2 0 1 0O ¢t 0 0
S = and N =

Hyy 0 2°H,, 0 0 0 Ly, O

0 1 0 2mo 0 0 0 ¢t
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Then the Condition LM3 translates to S| N = 0, or equivalently,
I, I,
t 2Hym 0 Hyp o 0
X 0 2 0 t X
= 0. (5.1.4)
I, Hyp 0 29H,, 0 I,
0 t 0 2mg
It amounts to the following equation.
Cxtern) | X+xt[ bl = 0. (5.1.5)
t 0 0 ¢ 0 2m
Note that the w-stability condition LM1 on F implies
2 2 2 4
;(Xt)2 +2X" + ?[n =0, and hence (;Xt + 1) =(1- %)Im = 01,.

Multiplying 2X* + I,, on both sides of (5.1.5), we can obtain

H2m O H2m O
X = X!
0 t 0 t
Write
Y X7 X, |
X3 €T

where Xy € My, (R), Xo € Mopxi1(R), X3 € Mixom(R) and z € R. Equivalently, we obtain

Hon X1 = X{Hop, HomXo = tX5.
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5.1.2.4 Condition LM4
Recall & = 1Op,. With respect to the basis (5.1.1), the induced £ ®op, I-valued

symmetric pairing on A, ®oy, R is represented by the matrix

%HQm 0 H2m 0

0 2 0 ¢
Sy = . (5.1.6)

Hy 0 22MHy, 0

The Condition LM4 translates to
t t

X X X X
Sy = 0 and half of the diagonal of Sy equals zero.
I, I, I, I,
Equivalently, we obtain

27‘(’0 2

2
gX{Hngl +2X: X3 + Hyp X1 + X1 Hop + THQm ngHng;), + 22Xt + Hop Xo + X1

Y

%X@mel +22X3 +tX3 + X5Hop %ngHQmX2 + 222 + 2tz + 27
2 2
half of the diagonal of > X{Hay Xy + 2X3Xs + Han X + X{Hop + ?Hm equals 0,
12

§(¥X§H2mX2 + 22% + 2tz + 2mp) = 0.

5.1.2.5 Condition LM5
As m® 1 acts as right multiplication by X + tI,, on F, the wedge condition LM5 on F

translates to
N(X +7l,) =0.
5.1.2.6 A simplification of equations
As in the case I = {0}, we can simplify the above equations and obtain the following.
Proposition 5.1.2. The scheme Uy, = Spec Op[X|/Z, where I is the ideal generated by:
tr(X +nl,) — 7+ 7, AXX +7l,), XiHoy, — Hop X1, tXE — Hyp Xo,

2
half of the diagonal of (; tr( Xy + mlom) + 2V0)Hop (X1 + mlsy) + 2XE X,
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Set
N _ X,
Xy =Xy +7wloy, X =
X3

Then we have the following proposition.

Proposition 5.1.3. The scheme Uy, is isomorphic to Spec OF[)?]/f, where T is the ideal

generated by
. ~ - 92 -
A (X), HopnX1 — X! Hy,,, half of the diagonal of (; tr(Xy) + 2\/§)H2mX1 +2XEX;5.

Definition 5.1.4. Denote by U?m} the closed subscheme of Uy,,; = Spec Op [X]/Z defined
by the ideal 7! C Op[X] generated by

tr(X,)

A2 (X)), HymXy — X! Hop, ( + V) Hyp X1 + XX

Note that Z C 7.

5.1.2.7 Global results

We first give the results for the schemes Uy,,; and U?m}.

Proposition 5.1.5. (1) U?m} is smooth over Op of relative dimension n — 1. The special

fiber is geometrically reduced and irreducible.
2) Ugpr and UL o have the same underlying topological space.
{m} {m}

Proof. The proof of (2) is similar as that of Lemma 4.1.19. Now we prove the smoothness
of U?m}. We use the notation as in the proof of Lemma 4.1.15. In particular,

Orl(X,)]

R = .
(/\2(;}“3 ), Y =Yt (2 tr(HapnY) +VO)Y + X§X3>

Then one can similarly show that D(yy,) for 1 < ¢ < 2m is smooth over Op. Let z =
T tr(HamY) + V. Consider the principal open subscheme D(z) = Spec R?[z7!]. Then we

have in R[z~!] that

Y = —2 ' XLXs,
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Thus, Y is determined by X3 and RY[27!] ~ Or[X3] is smooth over Op. Note that the
scheme U?m} is covered by D(z) and D(ysx) for 1 < ¢ < 2m. Hence, we conclude that
U?m} is smooth over Op. The special fiber is geometrically reduced by the smoothness.
It is geometrically irreducible because the geometric special fibers of D(z) and D(y) for

1 < ¢ < 2m are irreducible. O

Recall (A, q,-Z) is a hermitian quadratic module over Op, for £ = 1Op,. Let

be the group scheme over O, of similitude automorphisms of (A,,,q,-Z). By Theorem
6.1.13, 4y is an affine smooth group scheme over Op,. As in Lemma 4.1.21, the group

scheme J#7,,,; acts on My,,.

Lemma 5.1.6. Let k be the algebraic closure of the residue field k. Then Mmy ®o, k has
two Hmy Rop, k-orbits, one of which consists of the worst point.

Proof. Let F € My (k). In particular, the subspace F C (A, ®op, k) is an n-dimensional
k-vector space. The wedge condition LM5 in this case becomes A2(7®1 | F) = 0. Therefore,
the image (7 ® 1)F is at most one dimensional. We have the following two cases.

Suppose (1 ® 1)F = 0. Then F = (7 ® 1)(An ®op, k), namely, F is the worst point.

Suppose (7 ®1).F is one-dimensional. Then there exists a vector v € F such that (7®1)v
generates (m@1)F. For simplicity, write 7 for 7@1. Let f : (A, ®op, k) x (Am®@FOE) — & ~
k denote the associated symmetric pairing on A,, R0, k. As in the proof of Lemma 4.1.22,
we see that mv is not in the radical of the paring f, because ¢(v) = 0. Then we can find some
w € N ®op, k such that f(w,mv) # 0 in k. By rescaling, we may assume that f(w,7v) = 1.

Similar arguments in Lemma 4.1.22 imply that after some linear transformations, we may

assume

q(w) = q(v) = f(w,v) =0 and f(w,nv) = 1.
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Let W = (v, mv,w,7w). Then f restricts to a perfect symmetric pairing on W;. Now we

can write
A @og k=Wr®W, (5.1.7)

where W is the orthogonal complement of W with respect to f whose dimension is 2n — 4
over k. Since ¢(F) = 0, we have F N (w, 7w) = 0. Hence, we obtain that the k-dimension
of FNWisn—2and FNW C 7W = ker(m | W). Therefore, FNW = 7 for dimension
reasons. Note that the space W carries a structure of hermitian quadratic module. By

(5.1.7), we have

disc’(q) = disc(q|w, )disc’(q|w ).

Here disc’(q) is the divided discriminant in the sense of Definition 6.1.8, and we view it as
an element in k by using a basis of A,, R0, k. By Example 6.1.10, we have disc’(¢) € k.
Since ¢ is perfect on Wy, we obtain that disc(¢|w,) € %, and hence disc'(¢lyw) € k. In
particular, W is a hermitian quadratic module of type A,, over k in the sense of Definition
6.1.8. Applying Theorem 6.1.12 to W and using similar arguments as in the proof of Lemma
4.1.22, we can conclude that points F &€ M{m}(E) with dimg 7F = 1 are in the same orbit

under the action of ) ®o,, k- O

As U?m} is flat over Op, we may view U?m} as an open subscheme of MR;} containing
the worst point. By Lemma 5.1.6, the .77,,,-translation of U?m} covers M?TZ} Together with

Proposition 5.1.5, we have proven Theorem 1.2.2 and 1.2.3 in the case I = {m} and (R-U).

5.2 The case [ = {m} and (R-P)
In this section, we consider the case when F/Fy is of (R-P) type and I = {m}. In
particular, we have

4+ my=0and 7+ 7 =0.

Consider the following ordered Op,-basis of A,, and A}, :

1 1 s s

. -1 -1
Am . §€m+27-"a§en7ﬂ- €1, ., T emvem-l—l;§em+27"'7§€n7€17~--76maﬂ-6m+17 (521)
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s 2 2 -1
A emaa, ., —ClL ey T G, Temya, -, Ten, 261, ..., 2€m, emi1. (5.2.2)

Recall (A, q, %) is a hermitian quadratic module for .£ = 27'Op,.

5.2.1 A refinement of ‘{l%e in the (R-P) case

Definition 5.2.1. Let My,,; be the functor
Mmy : (Sch/Op)° — Sets
which sends an Og-scheme S to the set of Og-modules F such that

LM1 (m-stability condition) F is an Op ®oy, Os-submodule of A, ®o,, Os and as an Og-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of 7 ® 1 € O ®o, Os on F has characteristic
polynomial

det(T —7® 1| F) = (T —a)(T —7)"".

LM3 Let F* be the orthogonal complement in A?, R0, Og of F with respect to the perfect
pairing
S(—, —) : (Am ®OF0 Os) X (Afn ®(9F0 OS) — 05.

We require the map A, ®o, Os — (27'A},) ®o, Og induced by A, — 27'A3,
sends F to 27'F*, where 271 F* denotes the image of F* under the isomorphism

2~ 1. Afn ®(9F0 OS — 2_1Afn ®@F0 05.

LM4 (Hyperbolicity condition) The quadratic form ¢ : A,, R0y, Os = £ ®op, Os induced
by q : A, — & satisfies ¢(F) = 0.

LM5 (Wedge condition) The action of 7® 1 —1®7 € O ®o,, Os satisfies
ANrel-1@7 | F)=0.
LMG6 (Strengthened spin condition) The line A"F C W(A,,) ®p, Og is contained in
Im (W (A,)" 1M ®o, Os = W(A,) @0, Os) .
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Here we use similar notations as in §4.1.1.1.
Then Mg,y is representable and we have closed immersions
My © My © M5
of projective schemes over O, where all schemes have the same generic fiber.

5.2.2 An affine chart Uy, around the worst point
Set
Fo = (7@ 1)(A, ®op, k).
Then we can check that Fy € M,y (k). We call it the worst point of M.

With respect to the basis (5.1.1), the standard affine chart around Fy in Gr(n, A,,)o, is
the Op-scheme of 2n x n matrices (i) We denote by Uy, the intersection of My, with
the standard affine chart in Gr(n, Ap,)o,. The worst point Fy of My, is contained in Ug,,y
and corresponds to the closed point defined by X = 0 and m# = 0. The conditions LM1-6
yield the defining equations for Uy,,;. We will analyze each condition as in the (R-U) case.
A reader who is only interested in the affine coordinate ring of Uy,,; may proceed directly

to Proposition 5.2.2.

5.2.2.1 Condition LM1
Let R be an Op-algebra. With respect to the basis (5.2.1), the operator 7 ® 1 acts on

A, Roy, R via the matrix
0 —7T(]In
I, 0

Then the 7-stability condition LM1 on F means there exists an n X n matrix P € M,(R)

such that

0 —mol, X X
I, 0 I, I,

We obtain P = X and X? + myl,, = 0.
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5.2.2.2 Condition LM2
We have already shown that 7 ® 1 acts on F via right multiplication by X. Then the

Kottwitz condition LM2 translates to

tr(X +nl,) =n—7 =2, tr (N (X +7I,) =0, fori>2. (5.2.3)

5.2.2.3 Condition LM3

With respect to the bases (5.2.1) and (5.2.2), the perfect pairing
S(—, —) : (Am ®OF0 R) X (Afn ®OF0 R) — R

and the map A,,®o 7 %Afn ®op, I are represented respectively by the matrices

0 0 Jon O Ly, 0 0O 0
0 0 0 1 0 0 0 —2m
S = and N = ,
—Jor, 0 0 O 0 0 I, O
0 -1 0 O 0 2 0 0
0 H,
where Jy,, =
—-H, 0
t
X X
Then the Condition LM3 translates to S| N = 0, or equivalently,
I, I,
0 0 Jo, O
t
X 0 2 0 0 X
= 0. (5.2.4)
I, —Jom 0 0 0 I,
0 0 0 2nm
Write
X1 X
X = ,
X3 T
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where X, € My, (R), Xo € Mopxi1(R), X3 € Mixonm(R) and x € R. The Equation (5.2.4)

translates to

2X§X3 + X{JQm - JQle 233X§ - ngXQ 0
20 X3+ Xt o, 222 + 2

5.2.2.4 Condition LM4

Recall & = §Op,. With respect to the basis (5.2.1), the induced £ ®¢, R-valued

symmetric pairing on A,, ®oy, R 1s represented by the matrix

51:

e}
o
e}

_JZm

The Condition LM4 translates to

t t

X X X X
Sh = (0 and half of the diagonal of Sh equals zero.

I I I I,

Equivalently, we obtain

2X§X3 + X{JQm — ngXl 21’X§ — JQmXQ
20 X3+ XL o, 222 + 2m,
2?4+ 7 =0,

half of the diagonal of 2X§X3 + X1 Jom — Jom X1 equals zero.

5.2.2.5 Condition LM5

(5.2.5)

Since 7 ® 1 acts as right multiplication by X on F, the wedge condition LM5 on F

translates to

N (X +7l,) = 0.
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5.2.2.6 Condition LM6

As in §4.1.2.6, the strengthened spin condition LIM6 in this case implies that

Xl = JQmeJQm, 27TX§ = JQmXQ.

5.2.2.7 A simplification of equations

As in the case I = {0}, we can simplify the above equations and obtain the following.

Proposition 5.2.2. The scheme U,y is a closed subscheme of Uy, = Spec Op[X]/Z,

where L 1s the ideal generated by:

tr(X +7l,) — 21, AX(X +7L), Xidom + Jom X1, 20 XE — Jopn Xo,
half of the diagonal of 2X% X3 + XiJom — JomX.
Set
- - [X
X1 = X1 + 7T[2m7 X =
X3
As X5 and z are determined by X; and X3 by relations in Z, we obtain the following

proposition.

Proposition 5.2.3. The scheme U, is isomorphic to Spec Op[X]/Z, where T is the ideal

generated by:
A2 ()N(), ng)Nfl + )N(f(]gm, half of the diagonal of 2X% X5 + )N(fJQm — ng)Nfl.

Definition 5.2.4. Denote by U?m} the closed subscheme of UY,,, = Spec O [X]/Z defined

by the ideal Z! C Or[X] generated by:
N (X)), Jom X1 + XtJom, XEX5+ XEo,.

Note that Z C 7.

91



5.2.2.8 Global results

We first give results for the schemes Uy,,) and U?m}.

Proposition 5.2.5. (1) U?m} is smooth over O of relative dimension n —1 with geomet-

rically integral special fiber.
(2) Ugmy and U?m} have the same underlying topological space.

Proof. The proof of (2) is similar as that of Lemma 4.1.19. Now we prove the smoothness

of Uﬂm}. It is clear from the expression of 7% that X 1 is determined by X3, and hence,
Or[X]/Z" ~ Spec Op[X3] ~ AL,

which is smooth over O of relative dimension n — 1. The special fiber of U?m} is isomorphic

to AZ‘I, which is geometrically integral. O]

As U?m} is flat over Op, we may view U?m} as an open subscheme of M{{‘;fl} containing
the worst point. Then as in Lemma 5.1.6, we can show that the special fiber My,,) ®o,. k
has only two orbits under the action of ;) ®o,, k. Together with Proposition 5.2.5, we

deduce Theorem 1.2.2 and 1.2.3 in the case I = {m} and (R-P).
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CHAPTER 6

NORMAL FORMS OF HERMITTIAN QUADRATIC MODULES
Let us keep the notations as in §3.3. In this chapter, we will show that, under certain
conditions, hermitian quadratic modules étale locally have a normal form up to similitude.
This is a variant of [RZ96, Theorem 3.16] in our setting. This result will be important when
we relate the local models to Shimura varieties.
In the following, we let

Nilp = Nilp, r,

denote the category of noetherian' Op,-algebras such that my is nilpotent. We set
t=m+T.

In particular, ¢t = 0 if F//F} is of (R-P) type. For an Op,-algebra R and a € Op, we will
simply use a to denote the element a ® 1 in Op Rop, R, if there is no confusion. For a
hermitian quadratic module (M, q,.%), we will use f to denote the associated symmetric

pairing on M, as in Definition 3.2.1.

6.1 Hermitian quadratic modules of type A,,
The results in this subsection are essentially contained in [Ans18, §9], with some modifi-

cations to the proof.

Lemma 6.1.1 (cf. [Ansl8, Lemma 9.6]). Let R € Nilp. Let (M,q, R) be an R-valued
hermitian quadratic module over R. Assume there exist v,w € M such that f(v,mw) =1 in

R. Then there exist v',w' in the R-submodule spanned by {v,w, v, 7w} such that
q(v') = q(w') = f(v',w') =0 and f(',7w') = 1.
Proof. For r € R, we have

q(v +rrw) = q(v) + 7 f(v, 7w) + r*meg(w) = (Tog(w))r* + 1 + q(v),

'If R is noetherian, then a finitely generated R-module M is projective if and only if there exists a finite
Zariski open cover {Spec R; }icr of Spec R such that My, is free.

93



which can be viewed as a quadratic function of . As 47, is nilpotent on R by assumption,

there exists a sufficiently large integer N such that the sum

1= 2mgoalw) + 2agalolatu? + -+ 0¥ () a0 Vo(w)®

1/2

12)4N lies in R by a direct computation

in R is a square root of 1 — 4moq(v)g(w). Note that (

of the 2-adic valuation. In particular,

=L (1 Ampg()g(w)
0 2moq(w)

€ R,

and it is a solution for the quadratic equation ¢(v + rrw) = 0. Replacing v by v + romw, we
may assume ¢(v) = 0. Similarly, we may assume ¢(w) = 0 by replacing w by w + r7v for
suitable r in R.

Set r1 = (1 — f(z,y)f(v,7*w)) " and ry = —ry f(v,w). Note that
fv,7*w) = f(v, (tr — m)w) = tf(v,7w) — T f (v, W) =t — 7o f (v, W)

is nilpotent in R, so r; indeed exists in R. Set v’ := riv + romv. Then the straightforward

computation implies that
Fw) =rif(v,w) +rof(@To,w) = rif(v,w) +rof (v, 7w) = rif(v,w) +19 =0
and
fO, mw) = rif (v, 7w) + rof (Tv, Tw) = 11 + rof (v, T°wW) = 1.
O

Lemma 6.1.2. Let R be an Op,-algebra and M be a finite free Op Qo R-module of rank
d>1. Suppose b: M x M — R is a perfect R-bilinear pairing. Then there exists v,w € M

such that b(v, Tw) = 1.

Proof. By assumption, we may choose an R-basis {vy, ..., vy} of M such that vg; = 7v;

for 1 <4 < d. This basis yields a dual basis {vy,...,vy,} of MY := Hompg(M, R) such that
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v

v;

(vj) = b(vi,v;) = d;5. Since b is perfect, we can find elements {wy, ..., ws} in M such

that
b(wi, v;) = v{' (v;) = &y
for 1 <i,5 <2d. Set v = wyy; and w = v;. Then we have
b(v, Tw) = b(Wat1, Var1) = Vgyq(va) = 1.
O

Lemma 6.1.3. Let R be an Op,-algebra and M be a finite free Op ®o,, R-module of rank

d>1. Suppose b: M x M — R is an R-bilinear pairing on M such that
b(’/Tml,mg) = b(ml,ﬁmQ) (611)

for any my and mg in M. Let N be a free (Op Rop, R)-submodule of M such that b restricts

to a perfect pairing on N. Denote by
Nt :={me& M| blm,n)=0 foranyn € N}

the (left) orthogonal complement of N with respect to b.

Then N+ is a projective (Op Qop, R)-module and M = N & N+ as Op Qop, R-modules.
Proof. By construction, we have an exact sequence of R-modules
0— Nt % M 2 Hompg(N, R), (6.1.2)

where « denotes the inclusion map and § denotes the map m +— (n +— b(m,n)) for m € M
and n € N. By (6.1.1), the R-submodule N* is also an O ®op, R-submodule. For any
¢ € Hompg(N, R), define mp € Hompg(N, R) by setting (7p)(n) == p(7n) for n € N. This
endows Hompg (N, R) with the structure of an Op ®oy, R-module, and the exact sequence
(6.1.2) becomes an exact sequence of Op ®oy, R-modules. Since b is perfect on N, the map
3 is surjective with a section Homg(N, R) — N C M. Tt follows that M = N & N* as

Or ®op, I-modules and N L is projective. O

95



Lemma 6.1.4 (cf. [Ansl8, Lemma 9.2]). Let R be an Op,-algebra and let M be a free

Or ®o,, R-module of rank d. Then the functor

HQF(M) : (Sch/R)°® — Sets

S +— {Og-valued hermitian quadratic forms on M @g Og}

is represented by the affine space Ajﬁ; of dimension d* over R.

Proof. Choose a basis eq,...,eq of M over O ®op, R. This is also a basis of M ®r Og. By
the properties of hermitian quadratic forms, we can see that any hermitian quadratic form
q: M ®r Og — Og is determined by values g(e;) for 1 < i < d and f(e;,e;), f(e;, me;) for
1 < i < j < d. More precisely, for any element m = Zle(aiei + bme;) € M ®p Og for
a;,b; € Og, we have

d d d d
q(m) = CI(Z ae;) + f(z a;e;, Z bime;) + Q(Z bire;)

=1

d
:Zafq(ei)#— Z a;a;f(ei,e;) + Z ab; f(e;, me;)

i=1 1<i<y<d 1<4,5<d
d
+ Z’/Tobe(el) + Z ’/Tobibjf(ei, €j). (613)
i=1 1<i<j<d

Note also that for 1 < 1,7 < d, we have

flei,mej) = f(mey,ei) = flej,Tes) = fej, (t —m)es) = tf(ej,e) — flej, me;).

Conversely, given d? elements in Og denoted as A; for 1 < i < d and A;;, Byj for
1 <i < j <d, we can define a hermitian quadratic form on M ®r Og as follows. We first
define two d x d matrices A and B via setting B;; = tA; for 1 <i < d, A;; = Aj; and
B;;j =1tA;; — Bj; for i > j. Then we define a map ¢ as in (6.1.3). We can check that ¢ is an

Og-valued hermitian quadratic form. n

The proof of Lemma 6.1.4 also implies that the scheme HQF(M) is (non-canonically)

isomorphic to Spec R[A, B]/I, where A, B are two d X d matrices, and [ is the ideal generated
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Aij — Aji, By + Bo — tAge, Biy — tA;;
forl1<i,j<dand 1 <k</{<d.

Definition 6.1.5. Let (M, ¢, £) be an £-valued hermitian quadratic module of rank d over
some Op,-algebra R. Then as an R-module, the rank of M is 2d. We define the discriminant

as the morphism
disc(q) : MM — A (MY @ L) ~ AN (M) @p L

induced by the morphism M — MY ®g £, m — f(m,—). Here MY denotes the R-dual
module Hompg (M, R).

Example 6.1.6. Assume d = 1. Let x € M be a generator of M over Or ®o,, R. Then
with respect to the basis {x, 7z}, the symmetric pairing f : M x M — £ associated with ¢

is given by the matrix

2q(x)  tq(x)
tq(z) 2moq(z)
Using the above basis, the discriminant map can be identified with the determinant of the

previous matrix, as an element in .#2. Therefore,
disc(q) = (4w — t*)q(x)>

We find that when d = 1, the discriminant is “divisible” by 4wy — t2. More generally, we

have the following lemma.

Lemma 6.1.7 (cf. [Ans18, Lemma 9.4]). Assumed > 1 is odd. Then there ezists a functorial

factorization

disc(q)

NEM NEMY @p L%

diSC, (q)l /

/\%in XRpr p2d ®OF0 (47T0 — t2)

Here the map j is induced by the natural inclusion of the ideal (4mg — t*) in OF,.
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Proof. 1t suffices to prove this in the universal case, i.e., R is the ring
R = 0Og|A, B|/I,
where [ is the ideal generated by
Aij — Aji, Brg + Bo — tAge, Bis — tA;;

for 1 <i,j <dand 1<k < /{<d, and M is equipped with the universal quadratic form

q: M — R given by
d

q(Z(aiei—l—bmei)) = Z Al-jal-aj—l— Z Bl'jaibj—i—ﬂ'o Z Az’jbz’bj;

i=1 1<i,j<d 1<i,j<d 1<i,j<d

for some R-basis (e;, me;)1<i<q of M. Under the chosen basis, the associated symmetric

bilinear form f is given by the matrix

A B
C = | € M2d72d(R>, (614)

Bt 7TOA

where Z” = 2A, for1 <1 <d, Zij = A;; for i # j, and the transpose matrix Bt of B equals
tA— B. We may identify disc(q) with the determinant of the above matrix C. To finish the
proof, we need to show that the ideal (disc(q)) is contained in the ideal (4w — t?) in R. As
(419 — t*) becomes the unit ideal in R[1/m], it suffices to show that the ideal (disc(q)) is
contained in (4w, — ¢?) in the localization Ry, where m is the ideal (m). Equivalently, we
need to show that disc(q) is divisible by 4wy — % in Ry /mF* for all k > 1.

We will argue by induction on the rank d. If d = 1, this follows by the computation in
Example 6.1.6. Note that in the ring Ry/m*, the element B;; = f(e;, me;) is a unit for i # j
and 7 is nilpotent. In particular, we may assume f(ej,mey) = 1. Then by Lemma 6.1.1, we

may assume [ restricting to the submodule R(ey, eo, ey, mey) is given by the matrix

0 0 0 1
0 0 —-120
0 -1 0 0
10 0 O
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The determinant of the above matrix is one. In particular, f is perfect on R{ey, €9, ey, meg).
Then we can write M = R(ey, eq, mey, mea) @ M', where M’ is the orthogonal complement of
R{ey, eq, mey, mea) in M with respect to f. The rank of M’ over Op ®op, I is d — 2, which
is odd. By induction, disc(g|yr) is divisible by 4wy — t2. Hence, disc(q) = disc(q|as) is also

divisible by 4w, — t2. O

Definition 6.1.8. We call the morphism disc’(¢) in Lemma 6.1.7 the divided discriminant
of q. If disc’(g) is an isomorphism, then we say (M, q,.%Z) is a hermitian quadratic module

of type A,,.
Example 6.1.9 (cf. [Ans18, Definition 9.7]). Let R be an Op,-algebra. Define
Mtz = (OF ®oy, R)(e1,e2)
with hermitian quadratic form ggq2 : Msa2 — R determined by
Ustd2(e1) = qsaz(e2) = 0, faraz(er, e2) =0, faao(er, meg) = 1.
For an odd integer n = 2m + 1, we define
Mygn i= M3y & (Or @oy, Ren

as an orthogonal direct sum and ggqn(€,) = 1. Viewing disc’(ggq,) as an element in R,

then we have

disc’(gstan) = 1.

Hence, (Mstdn, stan, R) is a hermitian quadratic module over R of type A,,.

Example 6.1.10. By direct computation of the determinants of matrices (5.1.6) and (5.2.5),

the hermitian quadratic module (A,,,q,e 'Op,) is of type A,,.

Lemma 6.1.11. Let S be a scheme. Let G be a smooth group scheme over S. Let X be a
scheme over S equipped with a ¢4-action p : 4 xg X — X. Assume p is simply transitive

in the sense that for any S-scheme T', the set X(T') is either empty or the action of 4 (T)
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on X(T) is simply transitive. If the structure morphism X — S is surjective, then X is an

étale & -torsor over S.

Proof. As p is simply transitive, we have an isomorphism ® : 4 xg¢ X — X x5 X, (g9,2) —
(p((g,2)),x) by [Sta24, 0499]. As 4 — S is a smooth cover of S and smoothness is an
fpqc local property on the target, the isomorphism ® implies that X — S is smooth. If
X — S is surjective, then X — S is a smooth cover of S. Let s : X — ¢ xg X be the
morphism induced by the identity section of ¢4. Then the composite ® o s gives a section
of X xg¢ X — X. By [Sta24, 055V], we can find an étale cover {U;};cr of S such that
X xg U; — U; has a section for each ¢ € I. Hence, we deduce that X is an étale ¢-torsor

over S. O]

Theorem 6.1.12 (cf. [Ansl8, Theorem 9.10]). Let (M,q,£) be a hermitian quadratic
module of type A, of rank n = 2m + 1 over R. Then (M, q, L) is étale locally isomorphic
to (Mstan, qstan, R) up to similitude. In particular, (M, q, L) is étale locally isomorphic to

(A, 4,67 OR,) R0y, R up to similitude.
Proof. Denote %, == Sim(Myq,,). It suffices to show that the sheaf
F = Si_HK(Mstd,na qStd,TH R), (M> q, g))

of similitudes is an étale ¥,,-torsor over R.

Clearly, F is represented by an affine scheme of finite type over R. We next prove
that F is smooth over R. Over R[1/m], the quadratic form is determined by the associated
symmetric pairing, and both Mgy and M are self-dual with respect to the symmetric pairing.
Then by the arguments in [RZ96, Appendix to Chapter 3|, we see that F is smooth and
surjective over R[1/m|. Hence, to show the smoothness of F over R, it suffices to prove
that the morphism F — Spec Op is (formally) smooth at points over Spec R/mgR. For any
surjection S — S in Nilp, with nilpotent kernel .J and a similitude (3,7%) € F(S), we need to

show that there exists a lift of (,7) to S. We argue by induction on the rank n. We denote
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by e1,...,e, the standard basis of Myq4,. We reorder the basis such that ¢(e,,4+1) = 1 and
(Op ®0p, R)(ei, ent1-i) =~ Mgqo. We claim that there exist elements vy, ..., v, in M ®g S

and a generator u € £ ®p S such that 7; = 3(¢;) in M ®x S and

Q(Um+1) =u, Q(Uz‘) = f(Uszj) =0 and f(Uz'ﬂWj) = U5i,n+lfj

for 1 <i<j<nandi,j#m+ 1. Then the maps ¢ :e; — v; and 7 : 1 — u define a lift of
(®,7). Thus, it suffices to prove the claim.

Suppose n = 1. Set 7, = §(€7) € M®zS. Then 7, is a generator of M ®pS. Pick any lift
vy € M of v;. As disc’(q) is an isomorphism, q(v;) is a generator of .£. Let u = g(v;). This
proves the claim for n = 1. For n > 3, pick lifts vy, ...,v, in M ®r S such that 7; = §(e;).
Let f be the associated symmetric pairing of M. Then f(vy,7v,) is a generator in £ ®g S,
as its reduction in .2 ®p S is a generator. Set u = f(vy,7v,). Using the generator u, we
may identify £ ®p S with S, and we may assume that f(vy,7v2) = 11in £ ®gS ~ S. Note
that as elements q(v1),q(v2) and f(vi,vs) reduce to zero in S by properties of vy and vy,
they lie in the kernel J. Then the linear transformation in Lemma 6.1.1 does not change the

reduction of v; and vy, and hence, we may assume that

Q(Ul) = Q(UTL) = f(vhvn) =0 and f(Ulaﬂ'Un) =1

Then f is perfect on the S-submodule N generated by vi,v,, 7vi,7v,. Let N+ be the
orthogonal complement of N in M ® S. Then N* ®z S is the Op R0p, S-submodule in
M ®p S generated by Tg,...,Th—1. For 2 < i < n — 1, we can write v; = w' + w, where
w' € N+ and w € N. As 7; is orthogonal to N, we have w is orthogonal to N. Since f is
perfect on N, we obtain w = 0. In particular, we may choose v; in N+ as a lift of ©; for
2 <1 <n—1. Now the claim follows by induction on the rank of M, and we deduce the
(formal) smoothness of F over R.

Note that the same proof implies that the group scheme ¥, is smooth over R. As the
¢ n-action on F is simply transitive by construction, by Lemma 6.1.11, it remains to show

that F is a surjective scheme over R. Since we have already shown that F is surjective over
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R[1/m)], it suffices to prove the surjectivity of F over R/moR. Then we may assume R = k

is the algebraic closure of the residue field k of Op, and . = k. We need to show that there
exists a similitude isomorphism (p,~) between (Mgqn, qstd,n,E) and (M, q,k). For the case
n = 1, we can construct a similitude as in the previous paragraph. For n > 3 odd, we first
claim that there exist v and w in M such that f(v, 7w) = 1. Otherwise, under a basis of the
form (vy,...,v,, Ty, ...,Tv,), the pairing f corresponds to the 2n x 2n matrix

A0
0 0
for some n X n matrix g, where A;; = 2q(v;) =0 for 1 <i <nand Zz.j = f(vi,v;) for i # j.

Suppose for some indices iy # jo, we have f(vj,,vj,) # 0. We may assume f(vy,ve) # 0.

Then by a suitable linear transformation of the basis vy, ..., v,, we may assume that A is of
the form
0 1
0
10
0 |4

In particular, M; = (Op ®0p, k)(vy,ve) and My = (Op R0, k)(vs,...,v,) are orthogonal

complement of each other. Then

disc’(q) = disc(q|as, )disc’(q] s, )-

However,

disc(q|ar, ) = det =0.

0000

This contradicts the assumption that disc’(¢) is a unit. Then we see f(v;,v;) = 0 for any

1 # j, ie., Ais a diagonal matrix. Hence, M is an orthogonal direct sum of rank one
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hermitian quadratic modules. This also contradicts disc’'(q) # 0. Then we conclude that

there exist v and w in M such that f(v,7w) = 1. Then as in Lemma 6.1.1, we may assume

that f restricting to (Or ®o,, k)(v, w) corresponds to the matrix

0 0 0 1
0 0 —-10
0 -1 0 0
1 0 0 O

Hence, (OF ®oy, k){v,w) is isomorphic to Mgyq». Its orthogonal complement is a hermitian
quadratic module of type A,, of rank n — 2. Now we can finish the proof by induction on

the rank of M. ]

Theorem 6.1.13 (cf. [Ans18, Proposition 9.9]). The group functor Sim(A,,) is representable

by an affine smooth group scheme over O, whose generic fiber is GU(V, h).

Proof. By the proof of Theorem 6.1.12, the functor Sim(A,,) is representable by an affine
smooth group scheme of finite type over Op,. It remains to prove the assertion for the generic
fiber. Following the notations in §3.2, we denote by s the symmetric pairing on A,,. For any

Fy-algebra R, we have

¢ is an automorphism of the Op R0, R-module A,, R0, R
Sim(An)(R) = q (9,7) |71 L ®op R — £ @0y R

q(p(2)) = v(q(x)) for z € A, @0, R=V @, R
\
(

v: R R

= ¢ € GLrg, r(V ®F, R)
s(e(@),0(y)) =7 (s(x,y)) for x,y € V &g, R

\

s(p(x), v(y)) = clp)s(z,y)

= 4 ¢ € GLregr(V ®R, F)

for z,y € V ®p, R and some ¢(p) € R*

\ Ve
( 3\

he(x), 0 (y)) = c(p)h(z, y)

for z,y € V ®p, R and some c(p) € R*

\ Ve

= q ¢ € GLrg, r(V @R, I)
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= GU(V,h)(R).
Therefore, the generic fiber of Sim(A,,) is GU(V, h). O

Corollary 6.1.14. The scheme Sim(A,,) is isomorphic to the parahoric group scheme at-

tached to A,,.

Proof. Let Fy denote the completion of the maximal unramified extension of Fy. By con-
struction, we know that Sim(A)(Op ) is the stabilizer of A,, in GU(V, h)(Fy), which is a
parahoric subgroup by Proposition 2.4.1. As Sim(A) is smooth over O, by Theorem 6.1.13,
the corollary follows by [BT84a, 1.7.6]. O

6.2 Hermitian quadratic modules of type Ag

Let R be an Op,-algebra. Recall that in Definition 3.2.3, we have defined the category
Cr of hermitian quadratic modules with ¢. By a similar proof as in Lemma 6.1.4, we can
show that for a fixed free Op ®o,, R-module M of rank d, the moduli functor of all bilinear
forms ¢ and quadratic forms ¢ on M satisfying (3.2.4) in Definition 3.2.3 is representable by
the affine space of dimension d? over R.

Let (M,q, %, ¢) € Cr. Choose a basis (e1,...,eq,meq,...,meq) of M. The pairing ¢ is

then given by the matrix

A B

Y

tA— B Wog

where A"” = (t/ﬂg)q(e,) and Eu = 2(](61) fOI' 1 S 7 S d, A/ij = ¢(€i,€j) and Ez‘j = (b((fi,’ﬂ'ej)

for 1 <i,j <dandi# j, and they satisfy A = —A! + (t/’iTo)E and B = B'.

Definition 6.2.1. Let (M, q,.Z,$) € Cr and the rank of M over R is 2d. We define the

discriminant as the morphism
disc(¢) : AWM — A (MY ®p L) ~ AN (MY) @p L
induced by the morphism M — MY @ £, m — ¢(m, —).
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Example 6.2.2. Assume d = 1. Let x € M be a generator of M over Op ®oy, R. Suppose
(M, q,%) is a hermitian quadratic module. Then we can define a bilinear form ¢ : M x M —

% given by the matrix

t/moq(z) 2q(x)

(t* — 2mg) /moq(z)  tq(x)

with respect to the basis {x, 72}. Equipped with such ¢, we have (M, q, %, ¢) € Cgr. Using
the basis {x, 7z}, we may view the discriminant map disc(¢) as the determinant of the above

matrix. We have
. 47'('0 - t2

disc(@) = a(x)

o

Arguing similarly as in Lemma 6.1.7, we can show the following result.

Lemma 6.2.3. Assume d > 1 is odd. Then there exists a functorial factorization

/\%dM disc(¢) /\%%de ®R $2d

diSCl (¢)J/ /

NEMY @ L7 @0, (4mtl)

0

Here the map j is induced by the natural inclusion of the ideal (%) in OF,.

Proof. As in the proof of Lemma 6.1.7, we can reduce to show that the determinant, which

equals disc(¢), of a matrix of the form

A B
€ Mi04(R),

tA—B Wog

is divisible by (4my — t2)/m in R, where Ay = (t/m)q(e;) and By = 2q(e;) for 1 < i < d,
;fij = ¢(e;,e;) and Eij = ¢(e;,me;) for 1 < 4,5 < d and i # j, and they satisfy A =
—At 4 (t/m)B and B = B!,

If d =1, then the lemma follows by Example 6.2.2. Suppose d > 3. We may assume 7

is nilpotent in R and By = ¢(e;, me2) = 1 as in the proof of Lemma 6.1.7. As in Lemma
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6.1.1, replacing e; by rie; + rome; for suitable r; and 79 in R, we may assume further that

¢(e1,e2) = 0. Then restricting to the submodule (e, e9, meq, meg), the pairing ¢ is given by

the matrix
—a(e) 0 2q(eq) 1
- —q(e2) 1 2q(es)
%q(el) -1 tq(er) 0
t2;07r0 +2 :riwo q(€2) t tq(€2)

By direct computation, the above is an invertible matrix, and hence the pairing ¢ is perfect
on the module (eq, €9, Tey, meg). Therefore, the orthogonal complement M’ of (ey, e, e, Tey)
in M has rank n — 2 over Op Qop, 1, and M’ € Cg. Then we finish the proof by induction
on the rank of M. ]

Definition 6.2.4. Let R be an Op, -algebra. We say that a hermitian quadratic module

(M,q,2,$) € Cr over R is of type Ag if disc’(¢) is an isomorphism.
Example 6.2.5. Let R be an Op,-algebra.

(1) Suppose (M,q, R) is a hermitian quadratic module of rank one. Let x € M be a
generator and assume ¢(x) = 1. We can define a bilinear form ¢4 : M X M — R as
in Example 6.2.2. Then (M, q,Z, ¢sa1) € Cr. Viewing disc’(¢sia,1) as an element in
R, we have disc’(¢gq1) = 1.

(2) Define
Nggo = (Op ®OF0 R)(e1, e2)

with hermitian quadratic form g2 : Ngg2 — R determined by
Ista2(€1) = qstaz(e2) = 0, dsaz(er, €2) = 0, dsraa(er, meg) = 1.
For an odd integer n = 2m + 1, we define
Nstapn = fo% ® (OF ®oy, R)en.
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Here (O ®o,, R)e, is a hermitian quadratic module of rank one as in (1), and the
direct sum is an orthogonal direct sum with respect to ¢4 = <b§%”2 D @sta,1- Viewing

disc’(¢sian) as an element in R, we have

disc’ (¢stan) = 1.
Hence, (Nstan, @stans By ¢stan) is @ hermitian quadratic module over R of type Ay.

Example 6.2.6. Equipped with the following bilinear form
O(— =) Ao x Ng — L =e"'0g,, (v,y) = s(z, 7 y) = Trp/p bz, 7 'y),
the hermitian quadratic module (Ag, ¢, e 'OF,, @) is of type Ag.

Theorem 6.2.7. Let (M,q,.Z,$) be a hermitian quadratic module of type Ao of rank n =
2m+1 over R. Then (M, q,.Z, @) is étale locally isomorphic to (Nstan, qstan: By @stan) up to
similitude. In particular, (M, q, £, ¢) is étale locally isomorphic to (Ao, q,e *OF,, @) Rop, R

up to stmilitude.

Proof. As in the proof of Theorem 6.1.12, it suffices to show that the representable sheaf

f = @((Nstd,ny qgtd,ny R, (bstd,n)? (M7 q, gu (b))

of similitudes is surjective over R and smooth at points over Spec R/mR.

We first check that for any surjection S — S in Nilp, with nilpotent kernel .J and
a similitude (,7) € F(S), there exists a lift of (3,7) to S. We denote by ey,..., e,
the standard basis of Ngg4,. We reorder the basis such that ¢(e,4+1) = 1 and (Op ®0p,
R)(ei,ent1-i) =~ Ngao. We claim that there exist lifts v; € M ®g S of 7; = P(e;) for

1 <i<mn and a generator u € .Z ®g S such that

q(vm+1) = u, q(v;) = ¢(vi, v;) = 0 and ¢(vy, V) = udipt1-;

for 1 <iv<j<mnandi,j#m-+ 1. The the maps ¢ : e; — v; and v : 1 — u defines a lift of

(®,7) and (¢, ) preserves ¢. Thus it suffices to prove the claim.
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Suppose n = 1. Pick any lift v; of 1. As disc’(¢) is an isomorphism, ¢(v;) is a generator
of £ ®rS. Set u = g(vy). This proves the claim for n = 1. For n > 3, pick any lifts
V1,...,U, in M ®g S of v7,...,7,. As in the proof of Theorem 6.1.12, we may assume that
L @p S ~ S and ¢(vy,mv,) = 1in S. Let 1y € R be a solution of the quadratic equation
q(v,)r* + 7 + q(vy) = 0, which exists by arguments in Lemma 6.1.1. Since ¢(v;) and q(v,)
lie in J, we have ry € J. Then v} = vy + rov, and v_’l = 77. So we may find a lift v/, such

that ¢(v},v)) = 1. Set v” = v/, — q(v/)v}. Then ¢(v") = 0 and v/ = v,,. Set
= (1 - gb(“la U,/;)Qb(vl, 7T2U”)) and o = _qub(,Ul? Z)

Since (@,7) preserves ¢, we have (v}, v7) = F(dsian(er, en)) = 0. Thus, ¢(v},v”) and 7y are
in J. Set v/ := r1v} + ry7}. Then v/ = 7. As in Lemma 6.1.1, we have ¢(v}, m0”) = 1 and

o(v],v) = 0. By replacing v; by v{ and v,, by v/, we may assume that

Q(Ul) = Q(Un> = ¢(Ulavn) =0 and ¢(Ul, 7T’Un) =1

Then ¢ is perfect on the S-submodule N generated by vy, v, 7vi,mvs. Let Nt be the
orthogonal complement (with respect to ¢) of N in M ®g S. As in the proof of Theorem
6.1.12, we may assume that lifts v; for 2 < i < n — 1 lie in N*+. The claim follows by
induction on the rank of M, and hence, we deduce the smoothness of F over R.

Next we prove the surjectivity of F over R. It suffices to prove that F has non-empty
fibers over R/myR. Then we may assume R = k is the algebraic closure of the residue
field of Op, and .2 = k. We need to show that there exists a similitude isomorphism
(p,) preserving ¢ between (Nstd’n,qstdm,g, Gstan) and (M, q,k,¢). Suppose n = 1. Then
M ®@g S = (O ®oy, S)v for some v. Define

@1Nstd®RS—>M®RSZ(0F®OFO S)U, v:S— RS

e v, 1+ q(v).

As disc/(¢) is an isomorphism, ¢(v) is a generator. Since ¢ is determined by ¢ in this case by

computation in Example 6.2.2, the similitude (¢, ) preserves ¢. For n > 3 odd, we claim
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that there exist v and w in M ®pg S such that ¢(v, 7w) = 1. This can be done using proof
by contradiction as in Theorem 6.1.12. Set v/ := v + row, where 7y € k is a solution for the

quadratic equation q(v') = q(w)r? +r + q(v). Then
o(v', mw) = ¢(v, Tw) + red(w, Tw) = 1+ 2roq(w) = 1.

The last equality holds since char k = 2. Set w’ := w — g(w)v’. Then g(w') = 0. As in
the previous paragraph, we may find suitable r; and 75 such that v” := riv’ + ro7o’ satisfies
o(v",mw) =1 and ¢(v”,w’) = 0. Replacing v by v" and w by w’, we see that ¢ restricting
to (OF ®op, k)(v,w) acts the same as ¢y 4. In particular, the subspace (Op ®0r, k) (v, w)

is isomorphic to Ngq 2. Its orthogonal complement is a hermitian quadratic module of type

Ay of rank n — 2. Now we can finish the proof by induction on the rank of M. O

Theorem 6.2.8. The group functor Sim((Ag, ¢)) of similitudes preserving ¢ is representable

by an affine smooth group scheme over O, whose generic fiber is GU(V, h).

Proof. By the proof of Theorem 6.2.7, the functor Sim((Ay, ¢)) is representable by an affine
smooth group scheme over Op,. It remains to show the assertion for the generic fiber. Let
R be an F-algebra. For any similitude (¢, ) € Sim(Ag) and z,y € Ay ®o,, B =V ®p, R,

we have

d(e(x), 0(y) = dlp(x), 7(x oY) = qle(x) + e(r'y)) — ale(z)) — qle(r'y))

=gz +7""y) —q(z) —q(x"'y)) = y(d(z,y)).

Hence, over the generic fiber, any similitude of Ay preserves ¢. Then as in the proof of

Theorem 6.1.13, we see that the generic fiber of Sim((Ag, ¢)) is GU(V, h). O
The same argument as in the proof of Corollary 6.1.14 implies the following.

Corollary 6.2.9. The scheme Sim((Ag, ¢)) is isomorphic to the parahoric group scheme

attached to Ay.
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CHAPTER 7

2-ADIC INTEGRAL MODELS OF SHIMURA VARIETIES
In this chapter, we will constuct 2-adic integral models of Shimura varieties of abelian type

with parahoric level structure. Our goal is to prove Theorem 1.2.7 in the Introduction.

7.1 p-divisible groups and Lau’s classification

In this section, we review Lau’s work [Laul4] on the classification of 2-divisible groups
in terms of Dieudonné displays. We generalize the construction of the natural “connection
isomorphisms” for Dieudonné pairs in [KPZ24] to the case p = 2. We also compare Lau’s

classification of p-divisible groups with Breuil-Kisin’s classfication.

7.1.1 Zink rings, frames and windows
Let (R, mg, k) be an artinian local ring (or more generally an admissible ring in the sense
of [Laul4, §1]) with residue field k. Denote by W (R) its associated Witt ring equipped with

Frobenius ¢ and Verschiebung V. By [Laul4, §1B], the exact sequence
0— W(mg) > W(R) = W(k)—0
has a unique ring homomorphism section s : W (k) — W(R), which is ¢-equivariant.

Definition 7.1.1 ([Zin01]). The Zink ring of Ris W(R) = sW(k‘)EBW(mR), where /V[7(mR) C

W (mpg) consists of elements (zg,z1,...) € W(mpg) such that x; = 0 for almost all 1.

The Zink ring W(R) is a p-stable subring of W(R). If p = 2, W(R) is in general not stable
under the Verschiebung V. We need to modify V" as follows. The element p—[p] € W(Z,) lies
in the image of V' because it maps to zero in Z,. Moreover, the element V! (p—[p]) € W(Z,)

is a unit, since it maps to 1 in W(F,). Define
VIi2-[2) ifp=2
1 if p > 3.

The image of uy € W(Z,)* in W(R)* is also denoted by ug. For x € W(R), set

V(z) = V(upz).
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Lemma 7.1.2 ([Laul4, Lemma 1.7]). The map V : W(R) — W(R) satisfies V(W(R)) C

W(R). Moreover, there is an exact sequence
0= W(R) 5 W(R) X% R — 0.
Remark 7.1.3. We will call the map
V: W(R) — W(R)

the modified Verschiebung for W(R). Many statements about W(R) in the case p = 2 are
proven by adapting the corresponding proofs for p > 2, with adjustments for the modified

Verschiebung map.

Now we recall the logarithm coordinates of the Witt ring, see [Laul4, §1CJ. Let (S —
R,6) be a divided power extension of rings with kernel a C S. Denote by a the additive

group [ [,y @, equipped with a W (S)-module structure
zlag, aq, . . .| = [wo(z)ag, wy(x)ay, .. ]

for x € W(S) and [ag,a1,...] € [[,cya. Then the §-divided Witt polynomials wj, define an

isomorphism of W (.S)-modules
Log : W(a) = o
a = (ap,as,...)— [wy(a), wi(a),.. ]

where w!, (Xo, ..., X,) = (p" — Do (Xo) + (p" 1 = Dopn-1(Xy) + -+ - + X,,. For 2 € W(a),
we call Log(x) the logarithmic coordinate of x. In terms of logarithmic coordinates, the

Frobenius and Verschiebung of W (a) act on a as
o(lag, as,...]) = [pai,pas,...], V(lag,as,...]) =10,a0,a1,...]. (7.1.2)
Moreover, Log induces an injective map
Log : W(a) = a®™,
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which is bijective when the divided powers ¢ are nilpotent. Here, the group /W(a) denotes
the set of elements (ag,as,...) € W(a) such that a; = 0 for almost all i, and a®™ C a¥
denotes @,y a. The ideal a C W(.S) is by definition the set of elements whose logarithmic

coordinates are of the form [a,0,0,...], a € a.

Definition 7.1.4. For a (Noetherian) complete local ring R with residue field &, we set
W(R) := lim W(R/mfp).

For a complete local ring R, we can define the modified Verschibung V on W(R) by
passing to the limit. Then W(R) is a subring of W(R) = Hm W(R/m?%), which is stable
under ¢ and V. We also have W(R)/V(W(R)) ~ R, see [Laul4, §1E]. Note that W(R) is
p-adically complete by [Laul4, Proposition 1.14].

Here, we introduce notions of frames and windows following [Laul0, §2] and [Laul4, §2].

Definition 7.1.5. (1) A frame is a quintuple F = (S, I, R, 0,07), where S and R = S/I
are rings, o : S — S is a ring endomorphism with ¢(a) = a? modpS, oy : I — Sis a
o-linear map of S-modules whose image generates S as an S-module, and I+ pS lies in
the Jacobson radical of S. A frame is called a lifting frame if all projective R-modules

of finite type can be lifted to projective S-modules.
(2) A homomorphism of frames
a:F—F =(51T R o, 0

is a ring homomorphism « : S — S with «() C I’ such that ¢’a = ac and oja =
u - oy for a unit v € S’, which is then determined by a. We say that « is a frame

u-homomorphism. If v = 1, then « is called strict.

(3) Let F be a frame. A window over F (or F-window) is a quadruple

P:<M7M1aF7F1)7
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where M is a projective S-module of finite type with a submodule M; such that there
exists a decomposition of S-modules M = L & T with M; = L & IT, called a normal
decomposition, and where F' : M — M and F; : M; — M are o-linear maps of
S-modules with

Fi(az) = o1(a)F(z)
for a € I and z € M, and Fy(M;) generates M as an S-module.

Remark 7.1.6. If F is a lifting frame, then the existence of a normal decomposition in (3)
of the above definition is equivalent to that M /M is a projective R-module. A frame is a

lifting frame if .S is local or I-adic.

A u-homomorphism « : F — F’ induces a base change functor
a, : (windows over F) — (windows over F') (7.1.3)

from the category of windows over F to the category of windows over F’. In terms of normal

representations, the functor «, is given by
(L, T, \I/) — (S/ ®s L, S’ Rs T, \IJ')
with U'(s' @ 1) = uo’(s') ® U(I) and V'(s' @ t) = o’'(s") @ W(t).

Definition 7.1.7. A frame homomorphism « : F — F' is called crystalline if the functor

a, is an equivalence of categories.

Note that for a frame F = (5,1, R,0,07), there is a unique element # € S such that
o(a) = Ooy(a) for all a € I. For an S-module M, we write M) = S ®, ¢ M. Then for a
window P = (M, My, F, F}) over F, by [Laul4, Lemma 2.3|, there exists a unique S-linear

map
VEiM— M@ (7.1.4)

such that V¥(Fi(x)) = 1 ®@ x for x € M;. It satisfies F#V*# = 6 and V¥F# = 0, where

F# . M@ — M is the linearization of F.
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Example 7.1.8. For a complete local ring R with perfect residue field, we will be interested

in the following (lifting) frames:

(1) the Dieudonné frame

DR = (W(R>7 ]IR7 R7 ®, 901)7

where I = ker(wy : W(R) — R) and ¢; : Iz — W(R) is the inverse of V;

(2) assume R = Ok for some finite extension K of Q, with residue field k, choose a
presentation R = &/EGS, where & = W (k)[[u]] and E € & is an Eisenstein polynomial

with constant term p. Define the Breuil-Kisin frame
B = (67 EGa R7 25 gpl)7

where ¢ : & — & acts on W (k) as usual Frobenius and sends u to u”, and ¢, (Fz) =

o(z) for z € 6.

7.1.2 Dieudonné displays and Dieudonné pairs
Let R be a complete local ring with perfect residue field of characteristic p. By Re-
mark 7.1.6, a window over Dg (also called a Dieudonné display over R later) is a tuple

(M, M, F, F}), where
(i) M is a finite free W(R)-module,

(ii) My € M is a W(R)-submodule such that [xpM C M; C M and M/M; is a projective
R-module,

(iii) F: M — M is a ¢-linear map,

(iv) Fy : My — M is a ¢-linear map, whose image generates M as a W(R)-module, and

which satisfies
Fi(V(w)m) = wF(m) (7.1.5)
for any w € W(R) and m € M;.
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Remark 7.1.9. For p > 2, windows over Dy are the same as the Dieudonné displays over R

used in [KP18, 3.1.3], and the ring W(R) here is denoted by W(R) in loc. cit..

For a Dieudonné display (M, M, F, F}), by taking w = 1 and m € M in the equation
(7.1.5), we get

F(m) = Fi(V(1)m) = V(1) Fi(m) = pupFi(m).
Recall that ug € W(R)* is defined by (7.1.1). In particular, we can consider the condition

(iv') Fy : My — M is a p-linear map, whose image generates M as a W(R)-module, and

which satisfies
Fi(V(w)m) = wpugFi(m)
for any w € W(R) and m € M;.
Let ]TJ/I be the image of the homomorphism
©*(1) 1 "My = W(R) @pwr) M1 = ¢"M = W(R) ®@ywr) M

induced by the inclusion ¢ : My < M. Note that Ml and the notion of a normal decompo-

sition depend only on M and My, not on F' and F}.

Lemma 7.1.10. Suppose W(R) is p-torsion free (e.g. if R is p-torsion free, or pR =0 and
R is reduced).

(1) Giving a Dieudonné display (M, My, F, Fy) over R is the same as giving (M, My, F})
satisfying (i), (ii) and (/). In this case, we also refer to the tuple (M, M, F\) as a

Dieudonné display over R.
(2) For a Dieudonné display (M, My, Fy) over R, the linearization F1# of Fy factors as
oMy — My, 5 M
with U a W(R)-module isomorphism.
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(8) Given an isomorphism U : M, — M of W(R)-modules, there exists a unique Dieudonné
display (M, My, Fy) over R, which produces the given (M, My, V) via the construction
in (2).

Proof. The proof closely follows [KP18, §3.1.3, Lemma 3.1.5], with adjustments for the
modified Verschiebung V. We take this lemma as an example to illustrate how we modify
the arguments concerning Dieudonné displays in [KP18] to deal with the case p = 2.

(1) Given the tuple (M, My, Fy), set F(m) = Fy(V(1)m) form € M. Clearly F : M — M

is ¢-linear. Then for w € W(R) and m € M, we have
puoFy(V(w)m) = Fy(V(1)V(w)m) = F(V(w)m) = oV (w)F(m) = pugwF (m).

Since ug € W(R)* and W(R) is p-torsion free, we obtain that W(R) is (pug)-torsion free,
and hence

Fi(V(w)m) = wF(m).

In particular, (M, My, F, F}) is a Dieudonné display.
(2) Let M = L & T be a normal decomposition for M. Since ¢(Ig) = puyW(R) and

W(R) is pug-torsion free, we have

M, = ¢*(L) ® puop™(T) ~ W(R),

where d = rkwry M. Firstly, we show that Fl# factors through ]\71. Let K denote the
kernel of o*(i) : @*M; — ¢*M. Note that F|y, = puoFi, and so pugFf = F# o ¢*(i).
In particular, pqul# vanishes on K. Since W(R) is pug-torsion free, we conclude that Fl#
vanishes on K, and hence Fl# factors through Ml. Since Fl# is surjective by definition, we
obtain a surjective map W : M; — M between free W(R)-modules of the same rank. Hence,
¥ is an isomorphism.

(3) Define Fy : My — M by

Fi(my) = 9(1 ®my),
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where 1 ® m; denotes the image of 1 @ m; € W(R) ®pw(r) M1 = "My in @*M. Then F} is
clearly ¢-linear and its linearization F: 1# is surjective. Thus, we obtain a Dieudonné display

(Ma Mla Fl) L]
Definition 7.1.11 ([Hof23, §1.1]). Let R be a complete local ring.

(1) A Dieudonné pair of type (n,d) over R is a pair (M, M;) of W(R)-modules such that M
is a finite free W(R)-module of rank n, M; is a W(R)-submodule of M and M /M, is a
finite free R-module of rank d. Sometimes, we simply say that (M, M;) is a Dieudonné

pair.

(2) A morphism between two Dieudonné pairs (M, M;) and (M', M7) is a homomorphism
of W(R)-modules f: M — M’ such that f(M;) C Mj.

Lemma 7.1.12. There ezists a functor F : (M, M) — ]TJ/I, from the category of Dieudonné
pairs over R of type (n, d) to the category of finite free W(R)-modules of rank n, such that F is
compatible with base change in R and there is a natural isomorphism My[1/p] = (o* M)[1/p].

If W(R) is p-torsion free, then ]T/[/l 15 given by the construction in Lemma 7.1.10.

Proof. (cf. [KPZ24, §5.1.1].) Let (M, M;) be a Dieudonné pair of type (n,d). Choose a
normal decomposition M = L & T and a basis & = (e, ..., e,) of M such that (eq,...,eq)
is a basis of L and (egy1,...,€,) is a basis of T'. Such a basis & is said to be adapted to the

normal decomposition M = L & T. Set
F((M, M) = My = (¢"L) @ (¢°T),

which is a free W(R)-module of rank n. We denote by B = (p*e1,...,¢%e,) the basis of
M.
Let (M’', M]) be a second Dieudonné pair with a normal decomposition M’ = L' &T" and

an adapted basis ' = (€}, ...,¢€,,). Let f be a morphism between (M, M;) and (M’, M7).

rn
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Using the normal decompositions, we may express f as a block matrix

A B
€ Mn(W(R))
C

with respect to the bases # and %', where the entries of C' are in I. Then we define F(f)

to be the morphism f: MI — M{ given by the block matrix

©(A)  puop(B)
V=HC)  @(D)

in terms of the bases % and %'. Using pugV—1 = ¢, it is straightforward to check that F is
a well-defined functor. By construction, F is compatible with base change in R.

There is a natural isomorphism
M[1/p] = (¢"L)[1/p & (" T)[1/p] = (" M)[1/p] = (¢"L)[1/p] & (¢*T)[1/]
4+t — [+ pugt.
When W(R) is p-torsion free, the above isomorphism restricts to an injective map
Ml = ¢ M,
and we recover the construction of ]\71 in Lemma 7.1.10. O

Lemma 7.1.13 (cf. [KPZ24, Lemma 5.1.3]). Let R be a complete local ring with residue
field k. Suppose that W(R) is p-torsion free. Let (M, M) be a Dieudonné pair over R with

reduction (Mo, Mo1) over k. Set agp = m% + pR. Then there erists a natural isomorphism
C: M071 ®W(k) W(R/QR) ;> M1 ®W(R) W(R/GR),
which s called the “connection isomorphism”, fitting into a canonical commutative diagram

My @wir) W(R/ag) ————— ¢* (Mp/a,)

T \

Mo @wy W(R/ar) — ©*(Mo) Qw ) W(R/ag),
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where Mpjo, = M @wry W(R/ar) and horizontal maps are induced by taking the base

change of the natural maps ]\AI/OJ — ©*(My) and M, — ©*(M).

Proof. Using Lemma 7.1.12, the construction of ¢ and the proof of [KPZ24, Lemma 5.1.3]

(replacing V=1 by V1) also work for p = 2. O

7.1.3 Lau’s classification of p-divisible groups

One of the main results in [Laul4] is the following.

Theorem 7.1.14. Let R be a complete local ring with perfect residue field of characteristic

.
(1) There is an anti-equivalence of exact categories
Or : (p-divisible groups over R) — (Dieudonné displays over R) ,
which is compatible with base change in R.
(2) For any p-divisible group 4 over R, there is a natural isomorphism
Or(¥)/1rOR(¥) ~ D(¥)(R),
where D(¥) denotes the contravariant Dieudonné crystal of 4.

(3) Let & be a p-divisible group over R. Write Or(¥) = (M, My, F,Fy). The Hodge
filtration of ©Or(¥) is defined as

M, /IgM C M/IgM.
Then the isomorphism in (2) respects the Hodge filtrations on both sides.

Remark 7.1.15. For p > 2, the functor ©p recovers the anti-equivalence used in [KP18, 3.1.7]
by sending a p-divisible group ¢ over R to D(¢)(W(R)). Note that when p > 2, W(R) — R
has divided powers on Iy by [Laul4, Lemma 1.16]. For p = 2, O is not as explicit as in the

case p > 2, but see the case when R is a ring of p-adic integers in §7.1.4.
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Proof. (1) For any p-divisible group ¢ over R, set
Or(Y) = Pr(9"),

where ¢* denotes the Cartier dual of & and ®r denotes the equivalence in [Laul4, Corollary
5.4]. Then we see that ©p is an anti-equivalence of exact categories. It commutes with base
change in R by [Laul4, Theorem 3.9, 4.9].

(2) and (3) follow from [Laul4, Corollary 3.22, 4.10]. Note that we use contravariant
Dieudonné crystals following [KP18], while Lau uses covariant Dieudonné crystals in [Laul4].
One can switch between contravariant and covariant Dieudonné crystals by taking Cartier

duals.

7.1.4 Comparison with Breuil-Kisin’s classification
Here the notation is as in Example 7.1.8 (2). In particular, we denote by O the ring
of integers for some finite extension K of QQ, with residue field k. Let 7 be a uniformizer of

Of satisfying E(m) = 0. Then there is a Frobenius-equivariant ring homomorphism
k6 =W(k)|u]] = W(Ok)

sending u to [r], lifting the quotient map & — Ok. Here [-| denotes the Teichmiiller map
Ok — W(Ogk). Moreover, the image of x lies in W(Ok), see [Laul4, Remark 6.3]. Recall
that B denotes the Breuil-Kisin frame in Example 7.1.8 (2). By [Laul4, Theorem 6.6], s

induces a crystalline homomorphism
Kk:B — Do,.
That is, the induced functor k, as in (7.1.3) gives an equivalence
K« : (windows over B) — (windows over Dp,.) = (Dieudonné displays over Ox).
Using the anti-equivalence ©¢, in Theorem 7.1.14, we obtain the anti-equivalence

B(—-) = k' 0 B0, : (p-divisible groups over Of) — (windows over B). (7.1.6)

120



On the other hand, we have, by [Kis10, Theorem 1.4.2], a fully faithful contravariant functor
9M(—) : (p-divisible groups over O) — BTE,

where BTE denotes the category of Breuil-Kisin modules (9, por) of E-height one, i.e., M is
a finite free G-module and gy : P*MNM — N is an G-module homomorphism whose cokernel

is killed by F.

Proposition 7.1.16. There is an equivalence
F :BTE — (windows over B)

such that F o M(—) is the equivalence B(—) in (7.1.6). In particular, M(—) is an anti-

equivalence.

Proof. The proposition is implicitly contained in [Laul0, §6, 7] (see also [KM16, §2]). To
a Breuil-Kisin module (9, por) in BTE, we can associate a triple (M, My, F), where M =
M, My = 9N, viewed as a submodule of M via the unique map Viy : M — ©*M whose
composition with gy is the multiplication by E(u); and Fy : My — M is given by x € 9 —

1 ®x € ™. Then we see
E(u)M C M, C M. (7.1.7)

Define F': M — M by sending m € M to Fi(E(u)m). Then (M, M, F, Fy) defines a window

over B. Hence, we obtain a functor
F : BTE — (windows over B).

The functor F is an equivalence (cf. [Laul0, Lemma 8.2, 8.6]). Its inverse can be described
as follows. Let (M, My, F, F}) be a window over 5. The &-module M is necessarily free, and
hence the surjection F1# t "My — M is an isomorphism. Let ¢ : M; < ¢*M; denote the
composition of the inclusion M; — M with the inverse of Fl# . There is a unique G-linear

map v : ¢*M; — M, such that ¢¢ = E(u). Then (My,1)) defines an object in BTE and the
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functor (M, My, F, Fy) — (M, 1) is the inverse of F. Going through the proof of [KM16,
Theorem 2.12], we have
FoM(—)=B(—).
In particular, 9(—) is also an equivalence. ]
Definition 7.1.17. For (I, par) € BTE, the Hodge filtration of ¢*M is defined as
M/ E(u)g™M C 9" M/ E(u)e™ M,
where the inclusion is induced by (7.1.7).
Corollary 7.1.18. Let 4 be a p-divisible group over Q.
(1) There exists a natural isomorphism
Ok (¥) ~ ¢"M(Y) ®sx W(Ok)
as Dieudonné displays over O .
(2) There exists a natural isomorphism
D(9)(Ok) ~ ¢"M(F) @s Ox = ©"M/E(u)p™M,
which respects the Hodge filtrations on both sides.

Proof. (1) It follows from the equality F o 9M(—) = B(—) in Proposition 7.1.16 and the
definition of base change of Dieudonné displays.
(2) Denote by v the isomorphism in (1). By base change of ¢ along the natural surjection

W(Ok) — Ok, we obtain an isomorphism
©0x(¥) /o O0, (9) ~ ¢*M(Y) [ E(u)p* M.

Since v is an isomorphism of Dieudonné displays, the above isomorphism respects the Hodge

filtrations. By Theorem 7.1.14 (2) and (3), we obtain an isomorphism
D(Z)(Ok) = ¢"M(Y) ©s Ok = @™ M/E(u)p™M

respecting the Hodge filtrations. O
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7.2 Deformation theory

In this section, we extend the deformation theory of p-divisible groups in [KP18, §3] to
the case p = 2. We also generalize the notion of very good Hodge embeddings for p = 2,
allowing us to construct versal deformation of p-divisible groups with crystalline tensors (see
Proposition 7.2.16). In Proposition 7.2.18, we establish a criterion for determining when a

deformation is (G, 1,)-adapted in the sense of Definition 7.2.17.

7.2.1 Versal deformations of p-divisible groups

The notations are as in §7.1. In this subsection, we aim to extend the construction of
the versal deformation space of p-divisible groups in [KP18, §3.1] to the case p = 2.

Firstly we generalize [Zin01, Theorem 3, 4], which deals with the case when R has residue

characteristic p > 2 or 2R = 0.

Theorem 7.2.1. Let k be a perfect field of characteristic p. Let (S — R,d) be a nilpotent
divided power extension of artinian local rings of residue field k, i.e., the kernel a of the

surjection S — R is equipped with nilpotent divided powers §.

(1) Let P = (M, My, F, F\) be a Dieudonné display over S and P = (M, M, F, Fy) be the
reduction of P over R. Denote by ]\//_71 the inverse image of M, under the homomor-

phism

M — M = W(R) @ws) M.
Then Fy : My — M extends uniquely to a W(S)-module homomorphism
]31 : ]/\/[\1 — M
such that Fi(aM) = 0. Therefore, Fy, restricted to /W(a)M is given by

Fi([ag, ay, .. .|x) = [wolug )ay, wi(ugt)as, .. .| F(x)

in logarithmic coordinates.
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(2) Let P = (M, M, F,Fy) (resp. P' = (M', Mj, F', F})) be a Dieudonné display over S.
Let P (resp. f’) be the reduction over R. Assume thatw:P — P is a morphism of

Dieudonné displays over R. Then there exists a unique morphism of quadruples
w: (M, M, F, ) — (M, M, F', F)

lifting w. Hence, we can associate a crystal to a Dieudonné display as follows: Let
P = (M, M, F,F) be a Dieudonné display over R, (T — R,0) be a divided power

extension, then define the Dieudonné crystal D(P) evaluated at (T'— R, ) as

D(P)T) =T Quomer) M,
where P = (M, Ml,f,ﬁl) s any lifting of P over T.

(8) Let C be the category of all pairs (P, Fil), where P is a Dieudonné display over R and
Fil C D(P)(S) is a direct summand lifting the Hodge filtration My /IgM — M /IgM of
D(P)(R). Then the category C is canonically isomorphic to the category of Dieudonné

displays over S.

Remark 7.2.2. The above theorem has a reformulation in terms of relative Dieudonné displays
as in [Lauld, §2D, 2F]: the quadruple (M, ]/\4\1,}7, ]/7\1) defines a window over the relative

Dieudonné frame Dg/p.

Proof. The proof adapts arguments in [Zin01, Theorem 3, 4] and [Zin02, Lemma 38, 42|,
with adjustments for V.

(1) Choose a normal decomposition M = L & T. Then
M, =W(a)M + M, = aT & L & IsT.

Using this decomposition, we can extend F) by setting F\l(aT) = 0. We claim that ﬁl(aL) =
0. Note that by formula (7.1.2), we have ¢(a) = 0. Since F} is p-linear, we have ﬁl(aL) =

¢(a)Fi(L) = 0. Thus, the extension Fy satisfies Fj(aM) = 0. It is unique since M, =
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/W(u)M + My = aM + M,. For any [ao,ay,...| € /W(a) and z € M, we have

~

Fi(lag, ay, .. ]z) = Fi([ag, 0,0, .. ]z) + Fi(V]ai, as, .. ]z)
=0+ F(V(uga, .. ))z) = Fy(V([wo(ug ar, wi (ug as, . . .])x)
= [wo(ug M ay, wi (uy Hay, .. .| F ().
(2) For the uniqueness of u, it is enough to consider the case @ = 0. Recall that for a

Dieudonné display (M, My, F, Fy) over S, we have defined the map V¥ : M — W(S)®gw(s)M

in (7.1.4). For any integer N > 1, we define (VN)* : M — M ®@,~ w(sy M as the composite

# f
M 25 W(S) ©pwis) M 25 W(S) ®@p2 i) M — - = W(S) @ s M.

Similarly, we can define maps (FN)# and (FN)#. As in the proof of [Zin01, Theorem 3], we

have a commutative diagram

M u W(a) M’

(VNW[ T(E’N)#

—~

W(S) @uv wis) M~ W(S) @ (s W(a) M’

By (1), for [ag, ay,...] € W(a) and z € M’, we have

N-1 N

FV(lag, .. Jo) = [ ] wilugaw, [ [ wilug Hanss, .. JFN (x).

i=0 i=1
Since a; = 0 for almost all i, W(a)M " is annihilated by F/N for sufficiently large N. This
shows u = 0 as desired.

For the existence of u, we can repeat the proof of [Zin01, Theorem 3].

(3) Clearly we can get a lifting of the Hodge filtration of D(P)(R) from a Dieudonné
display over S. On the other hand, given (P, F'il) € C, any lifting of P to S gives a unique
quadruple (M, M, F, F}) by (2). Let M; C M, be the inverse image of Fil C M /IsM under
the projection M — M /IgM, then we obtain a Dieudonné display (M, M, F, ﬁl‘Ml) over S.

By (2), these two constructions are mutually inverse. ]
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Now we fix a p-divisible group %, over k, and let (D, Dy, F, F}) be the corresponding
Dieudonné display. Note that D is given by D(%)(W), see [Laul4, Corollary 2.34]. By
Lemma 7.1.10, the Dieudonné display (ID,DD;, F, F}) corresponds to a triple (D, Dy, ¥q) for
an isomorphism W : ]]3)1 s . Next we will construct a versal deformation space of %,
equivalently a versal deformation space of the Dieudonné display (D, Dy, Wy).

Recall there is a canonical Hodge filtration on D @y k = ID(%)(k):
0 — Homy(Lie %, k) - D ®@w k — Lie¥; — 0.

We think of D@y k as a filtered k-module by setting Fil’ (D@ k) = D@w k, Fil'(Dow k) =
Homy(Lie %, k). This filtration corresponds to a parabolic subgroup Py C GL(D ®y k). Fix

a lifting of Py to a parabolic subgroup P C GL(D). Write
M'"® = GL(D)/P and M"* = Spf R, (7.2.1)

where M is the completion of GL(D)/P along the image of the identity in GL(D ®w k).
Then R is a power series ring over W.

Set M = D ®w W(R), and let M; C M/IzM be the direct summand corresponding to
the parabolic subgroup gPg~! C GL(D) over M, where g € (GL(ID)/P)(R) is the universal
point. Let M; C M be the preimage of M; in M and ¥ : M; = M be a W(R)-module
isomorphism reducing to ¥y modulo mg, where Ml is defined as in Lemma 7.1.10. Then the
triple

(M, My, V)

gives a Dieudonné display over R reducing to (D, Dy, ¥y). By Theorem 7.1.14, the Dieudonné
display (M, My, W) corresponds to a p-divisible group ¥z over R, which is a deformation of
-

Set ar :=m% + pR. By Lemma 7.1.13, there exists a natural connection isomorphism

C: ]]Aj)l Rw W(R/GR) ; Ml ®W(R) W(R/QR)
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Definition 7.2.3. The map W is said to be constant modulo ag if the composite map

Dy ®w W(R/ag) < M; @wr W(R/ag) 5 Mp/a, ~ D @w W(R/ag)

is equal to ¥y ® 1.
Lemma 7.2.4. If U is constant modulo ag, then the deformation 9r of 9, is versal.

Proof. Recall that there exists a versal deformation ring RV for ¥, which is a power
series ring over W of the same dimension as R. The deformation ¥% is induced by a map
R™V — R. We want to show this is an isomorphism. It suffices to prove that the induced
map on tangent spaces is an isomorphism.

We have two Dieudonné displays over R/ag. One is obtained from (M, M, Fr, Fr1) (the
Dieudonné display corresponding to (M, My, V)) by the base change along R — R/ag, the
other is obtained from (D, Dy, F, F}) by the base change along k — R/ag.

If ¥ is constant modulo ag, then as in the proof of [KP18, Lemma 3.1.12], we know
ﬁR,l = ]31 on M\R/QRJ, see the notation in Theorem 7.2.1. Hence, these two Dieudonné

displays give rise to the same quadruple
(MR/CIR7 MR/C(R,17 FR/U.R; FR/GR,I)'

Let ¢ be a deformation over the ring k[e] of dual numbers. Since kle] — k has trivial
divided powers, it is a nilpotent divided power extension, then by Theorem 7.2.1 (1) and
(2), the base change of (D, Dy, F, F}) along the natural map k — k[e] gives rise to a quadru-
ple (Mk[e],M\k[em,Fk[e],ﬁk[e],l). By the proof of Theorem 7.2.1 (3), the Dieudonné display

corresponding to ¢ is of the form
(Mpq, Fil, Fyyq, ﬁk[e],1)7

where Fil C ]/\Zk[e],l is the preimage of certain lifting Fil C (D ®yw k) ®x k€] of the Hodge
filtration of D. From the versality of the filtration M; C D®yy, R, there is a map a : R — kle]

(necessarily factors through R/ag) such that the induced map D ®y R — D @y k[e] sends
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M, to Fil. Then by the discussion in the previous paragraph, (Mg, ]?Tl, Fyq, ﬁk[g]vl) is the
base change of (M, M, Fr, Fr,) along . Thus, ¢ is the base change of ¥ along a. In
particular, R"™V — R induces an isomorphism of tangent spaces. Hence, we proved that %5

is versal. O

Remark 7.2.5. Note that the functor F := Isom(Ml, M) of isomorphisms of finite free W(R)-
modules between M, and M is a GL(M )-torsor over W(R). Hence, the surjection W(R) —»
W(R/ag) induces a surjection F(W(R)) - F(W(R/ag)). This implies that an isomorphism

W, which is constant modulo ag, always exists.

7.2.2 Local models and local Hodge embeddings
Before discussing the deformation of p-divisible groups with crystalline tensors, we will

make a digression into local models and local Hodge embeddings in this subsection.

Definition 7.2.6 ([KPZ24, Definition 3.1.2]). Let F'//Q, be a complete discrete valued field.
Let (G,{n},G) be a local model triple over F' (see §3.4).

(1) A pair (G, u) is of (local) Hodge type if there is a closed immersion p : G — GL(V),

where V' is an F-vector space of dimension h, such that

(i) p is a minuscule representation in the sense of [KP18, §1.2.9].

(ii) po p is conjugate to the standard minuscule cocharacter p4 of GL(VE), where
pa(t) = diag(t' D, 1= t ¢ F.

(iii) p(G) contains the scalars.
Such a p will be said to give a (local) Hodge embedding p : (G, n) — (GL(V), uq).

(2) An integral Hodge embedding for (G, ) is a closed immersion p : G < GL(A) over Op,
where A is a finite free Op-module, such that the base change p ®o, F' is a Hodge
embedding for (G, p).
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Lemma 7.2.7. Let (G,{u},G) be a local model triple over F. Suppose p : (G,p) <

(GL(A), pq) is an integral Hodge embedding. Then p induces a closed immersion
XG7M = G/PM — XGL(V)7Md KRF E = Gr(d, V)E,

where Gr(d, V') denotes the Grassmannian classifying subspaces of V' of rank d. Let YG# be
the (reduced) Zariski closure of X, C Gr(d,V)g in Gr(d,A)o-

If YG,M 18 normal, then YG,M is isomorphic to ML, and the closed immersion 7(;7“ —

(N

Gr(d, A)o,, is identified with the natural morphism Mlgo‘/; — I\\/Jllgi(A) . ®op Op induced by p.

oM

Proof. See [KPZ24, Lemma 3.4.1]. Note that by [GL24], the condition in loc. cit. requiring

the special fiber of X, to be reduced is in fact implied by the remaining conditions. m

Definition 7.2.8 ([KPZ24, Definition 3.4.4]). Let p : (G, 1) — (GL(A), a) be an integral

Hodge embedding over Or. We say that p is a good Hodge embedding, if the morphism
Mlgoi — IMIIGoi(/\),ud ®or Op
induced by p is a closed immersion.

By Lemma 7.2.7, p is good if the Zariski closure of X¢ , in Gr(d, A)o, is normal.

From now on, we suppose that F/Q, is unramified and p : (G,p) — (GL(A), pg) is
a good integral Hodge embedding over Op. In particular, we have a closed immersion
MgS, = Gr(d, A)oy-

For any = € Mg¢,(k), where k = F,, we let Rg = R, (tesp. Rg) denote the completion
of Mg"; (resp. Gr(d,A)o,) at x. By our assumptions, Rg is isomorphic to a power series
ring over OgW (k) and R¢ is a (normal) quotient ring of Rg. Then W(Rg) and W(R) are

p-torsion free rings. Set

Let M; ¢ M /I, M = A ®p, Rg be the direct summand corresponding to the universal

Rg-valued point of Gr(d, A). Set

M, := the preimage of M in M.
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Then (M, M) is a Dieudonné pair over Rg. By the base change along Rp — Rg, we
obtain a Dieudonné pair (Mg, Mg, 1) over Rg. By Lemma 7.1.12, we can associate a free

W(Rg)-module MRGJ with

Mpga[1/p] = (9* Mgg)[1/p].

Definition 7.2.9. For any ring A and a finite free A-module N, we denote by N® the direct
sum of all A-modules which can be formed from N by using the operations of taking tensor
products, duals, symmetric and exterior powers. If N is equipped with a filtration, then N®
is equipped with a filtration accordingly.

If (sq) C N® and G C GL(N) is the pointwise stabilizer of s,, we say G is the group

scheme cut out by the tensors s,.

Lemma 7.2.10 ([Kis10, Proposition 1.3.2]). Suppose that A is a discrete valuation ring
of mized characteristic and N is a finite free A-module. If G C GL(N) is a closed A-flat
subgroup whose generic fiber is reductive, then G is cut by a finite collection of tensors in

N®.

Remark 7.2.11. By an argument of Deligne, the tensors in Lemma 7.2.10 can be taken in

the submodule @®,, ,>oN®™ @4 (NV)®". Here, NV denotes the A-dual module Homy (N, A).

Let p: G < GL(A) be a Hodge embedding. Then G C GL(A) (via p) is cut out by a set

of tensors (s,) C A® by Lemma 7.2.10. Set
S0 =501 =¢"(sa ®1) € A® ®o, W(Rg) = "M .

We may view (S,) as tensors in (¢* Mg, )®[1/p] = ]T/[J}?G,l[l/p]. By [KPZ24, §5.2] (and [KP18,

Corollary 3.2.11]), we have the following proposition.

Proposition 7.2.12. Suppose that F/Q, is unramified and p : (G, ) — (GL(A), ua) is a

good integral Hodge embedding over Op. Then s, € Mg@l.
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Denote by s, ¢ the reduction of s, in ]\7(%1, where ]/\\4/071 = MRGJ ®w(re) W (k). By Lemma

7.1.13, we have a connection isomorphism
cg : Moy @wy W(Ra/ars) — Mpg1 @wing W(Ra/ar,)-

Definition 7.2.13. Under the assumptions in Proposition 7.2.12, we say that p is very good
at © € Mg, (k), if ¢g(5a0 ® 1) = 5, ® 1. In this case, we say that the tensors (5,) are
horizontal at z.

We say p is a very good (integral) Hodge embedding if p is very good at every = € Mlgoi(k)

Definition 7.2.14 ([KPZ24, Definition 4.1.4]). For a scheme X over k and = € X (k), we
say that the tangent space T, X of X at x is spanned by smooth formal curves if the images
of the tangent spaces by k-morphisms Spec k[[t]] — X with the closed point mapping to =

generate the k-vector space T, X.
We will use the following lemma in §7.3.3.3.

Lemma 7.2.15 ([KPZ24, Proposition 5.3.10]). Assume p : (G, ) < (GL(A), uq) is a good
integral Hodge embedding over Z,. Let x € Mlgoi(k) be a closed point. If the tangent space
of the special fiber I\\/JILS’Z ®op k at x is spanned by smooth formal curves, then p is very good

at x.

We refer to [KPZ24, §5.3| for more properties of very good Hodge embeddings.

7.2.3 Deformations with crystalline tensors

We continue to use the notation in §7.2.1, and as in [KP18, §3.2, 3.3|, we may assume k
is algebraically closed for simplicity.

Let % be a p-divisible group over k. Denote D = D(%)(W). Let (sa0) C D® be a
collection of ¢-invariant tensors whose images in D(%)(k)® lie in Fil®D(%)(k)®. In this

subsection, we assume the following conditions:

(A1) there is an isomorphism A ®z, W ~ ID for some free Z,-module A such that s, € A%;
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(A2) the stabilizer group scheme G C GL(A) cut out by (s,0) C A® has reductive generic

fiber G and G° is a parahoric group scheme over Z,.

Note that the base change Gy == G ®z, W C GL(D) is cut out by (s40) C D®. In (7.2.1)
of §7.2.1, we have defined M'° and Mloe = Spf R. Let K'/K, be a finite extension and
y : R — K’ be a map such that s, € Fil’(D ®y K')® for the filtration induced by y on
D ®w K'. By [Kisl0, Lemma 1.4.5], the filtration is induced by a G-valued cocoharacter p,,.

We further impose the following assumption:
(A3) there is a very good Hodge embedding (G, u, ') < (GL(A), p14) for d = dimy, Lie %.

Denote by E C K' the local reflex field of the G-conjugacy class of cocharacters {u,}.
Write Mg, for the closure of the G-orbit G.y C M @y E in M"° @y Op. By assumption
(A3) and Lemma 7.2.7, the scheme Mg"; is isomorphic to the local model Mlgoiy_l attached
to the local model triple (G, {s,'},G), and hence M is normal and only depends on the
G-conjugacy class {yu,} (not on y). We denote by ]\7}?; = Spf Rg the completion of Mg?z
along (the image of) the identity in GL(D ®w k). Then R¢ is a normal quotient ring of
R®w Og.

Recall in §7.2.1, we constructed a versal deformation ¢z over R corresponding to a

Dieudonné display (M, My, V), where ¥ is constant modulo ag. Set
Mg, = M @wry W(Rg), Mgy = Mg, @w(rg) W(Rg).

The tensors s, € D® induce tensors in M}%G, still denoted as s, 0. Notice that M, Re1 C
©*Mp,, and (sq,) are g-invariant. By [KP18, Corollary 3.2.11], we have (sa0) C Mg, 1.
(Here we uses [Ans22, Proposition 10.3] to remove the condition (3.2.3) in [KP18].) Recall
that the p-divisible group %, over k corresponds to a Dieudonné display (D, Dy, ¥y, : ]51 = D).

Since Dy = ¢*(D) and (s4,) are g-invariant, we have (sao) C DE. Set

. 2
Apgp = mRE + WERE,
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where mp € Of is a uniformizer. In particular Rg/ag, ~ R/ag. Set
AR, = m%c + g Rq,
Proposition 7.2.16 (cf. [KP18, §3.2.12]). Assume (A1) to (A3).

(1) The scheme
T = ISOIH(Sa’O)(MRg,b MRG)

consisting of isomorphisms respecting tensors sq is a trivial G-torsor over W(Rg).

(2) There exists an isomorphism Vg, : ]/\\/[/RGJ — Mg, respecting sqo which lifts to
an isomorphism Vg, : MREJ — Mpg,, that is constant modulo ag,. Moreover, the p-
divisible group 9r,, over R corresponding to the Dieudonné display (Mg, Mg, 1, Vr,)

is a versal deformation of 4.

Proof. (1) This follows from [KP18, Corollary 3.2.11] and [Ans22, Proposition 10.3].

(2) By assumption (A3), the isomorphism Vg, /.

M1 ®wire) W(Re/apg) < D1 @w W(Ra/ar,) ~2=5 D @w W(Ra/are) = Mrg/jan,

preserves the tensors s, o, and hence defines a point in T (W(Rg/ag,)). Since T is a G-
torsor, we can lift the point to a point in 7 (W(R¢)), which corresponds to an isomorphism
Vg, : ]T/.IJRGJ — Mp,, respecting s,o. By construction, W Re/an,, 18 the reduction of the

isomorphism Vg, /q R

—~ 071 ~
M1 ®w(rg W(Rp/ag,) < Dy @w W(Rg/ag,) — D @w W(Rp/ar,) = Mry/an, -

Denote by F the GL(Mg, )-torsor ISﬂ(MRE,l, Mp,,) over W(Rg). Then g, and Wy /qp
define a point of F valued in W(Rg) Xw(rg/an,) W(RE/ar,) = W(RG XRg/ap, RE/0Ry)-
We can lift this point to an W(Rg)-valued point of F, which corresponds to an isomorphism
Up, - MREJ — Mpg,. Hence, Ug, is constant modulo ag,. By Lemma 7.2.4 and the

discussion in [KP18, §3.2.12], the Dieudonné display (Mg, Mg, 1, Vg, ) is versal. ]
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Following [Zho20, §4], we make the following definition.

Definition 7.2.17. Let ¢ be a p-divisible group over O deforming %,. We say that ¥ is
(Gw, ty)-adapted if the tensors s, ¢ lift to Frobenius invariant tensors s, € Op, (¢)% such

that the following two conditions hold:
(1) There is an isomorphism Op, (4) ~ D @y W(Ok) sending s, t0 Sa0 ® 1.

(2) Under the canonical isomorphism D(¥)(Ok) ®o, K ~ D @y K, the filtration on

D ®w K is induced by a G-valued cocharacter G-conjugate to fi,.

Proposition 7.2.18. Assume (A1) to (A3). View Spf Rg as the versal deformation space
of % by the construction in Proposition 7.2.16 (2). Then for any finite extension K/E, a
map & : Rp — Ok factors through Rq if and only if the p-divisible group 9 = {*Yg,, is

(Gw, ty)-adapted.

Proof. (=) See [Zho20, Proposition 4.7] and [KZ24, Proposition 3.2.7].

(<) The proof goes as in [KP18, Proposition 3.2.17]. For completeness, we recall the
arguments here. Suppose ¥ is (Gw, ity)-adapted. Denote by s, € D(¥4)(Ok)® the image
of 5, modulo Ip, . Then the isomorphism in (1) of Definition 7.2.17 gives an isomorphism
Do, = D @w Ox = D(¥)(Ok) taking s, to s,. Hence, by (2) in Definition 7.2.17,
this isomorphism induces a filtration on Dp, corresponding to a map y' : R — Ok and
50,0 € Fil° D%K. As R¢ depends only on the reduction of y and the conjugacy class of ji,,
we may assume y = ¢y’ (and K’ = K).

The map y : Rg — Ok induces a Dieudonné display (Mo, , Mo, 1, V), and by the con-
struction of Vg, the isomorphism ¥ : MOKJ_ 5 Mo, takes s, to sa0. Since y =7/, the
p-divisible group ¥ corresponds to a Dieudonné display (Mo, Mo, 1,V’). As s, is Frobe-
nius invariant and ¥’ differs from the Frobenius a scalar (contained in G by assumption),
then U’ takes s, to sS40, and reduces to ¥ : ]13)1 5 D.

Now we construct a Dieudonné display over S := Og|[[T]]. First consider the Dieudonné

display (Mg, Mg, V), the base change of (Mo, , Mo, 1,¥) to S. The map S — O x; Ok
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given by T +— (0,7) is surjective, and hence so is W(S) — W(Ok) xw W(Ok). Note that

by Proposition 7.2.16, T is a (trivial) G-torsor. Since G is smooth, we have a surjection
T(W(S)) = T(W(Ok) xw W(Ok)).

That is, there exists an isomorphism Wg : MSJ —s Mg which takes 54,0 t0 540, and
specializes to (¥, ¥') under 7"+ (0, 7). We take Mg to be the Dieudonné display associated
to (Mg, Mg, Vg).

By versality, we may lift the map (y,&) : Rg — Ok X Ok to a map 5: Rr — S which
induces the Dieudonné display Mg and Mg is the base change of Mg, by g Now the rest
of the proof is similar as in [KP18, Proposition 3.2.17]. Then we conclude that §N factors

though Rg, and hence £ does as well. O

In §7.3, we will construct (Gw, 11,)-adapted deformations of p-divisible groups associated
to closed points in integral models of Shimura varieties, and apply Proposition 7.2.18 to

describe the local structure of integral models of Shimura varieties.

7.3 Integral models of Shimura varieties of abelian type

In this section, we will prove Theorem 1.2.7 in the Introduction. Following the strategy of
[KP18; KPZ24], we first consider Shimura varieties Shk (G, X) of Hodge type. We construct
their integral models .7k (G, X) by using the Hodge embeddings into Siegel modular varieties,
as in loc. cit.. Under certain assumptions (see Theorem 7.3.4), we apply the deformation
theory developed in §7.2 to identify the formal neighborhood of .7k (G, X') with that of the
local model. Then we extend this construction of integral models to the case of Shimura
varieties of abelian type by choosing suitable Hodge type lifts under certain conditions (see
Theorem 7.3.9). We complete the proof of Theorem 1.2.7 by showing that these conditions
are satisfied in Case (A) or (B).
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7.3.1 Shimura varieties of Hodge type

Let (G, X) be a Shimura datum, that is, G is a reductive group over Q and X is a
G(R)-conjugacy class of

h :S = Resc/rG, — Gr

satisfying axioms 2.1.1.1-2.1.1.3 in [Del79, §2.1]. Denote by uy, : Guc — Ge the associated
Hodge cocharacter, defined by pup,(2) = he(z,1). Set wy, = g, ' uf " (the weight homomor-
phism), where ¢ denotes the complex conjugation.

Fix a Q-vector space V of dimension 2g with a perfect alternating pairing ¢ : VxV — Q.
Let GSp = GSp(V,v) be the corresponding symplectic similitude group over Q, and let

S* = SE(V, 1) be the Siegel double space consisting of maps h : S — GSpy such that

(1) The map S LN GSpg — GL(VR) gives rise to a Hodge structure of type (—1,0), (0, —1)
on Vg, ie., Vo =V 10g Vot

(2) The pairing (x,y) — (z, h(i)y) is (positive or negative) definite on V.

Then (GSp, S*) is a Shimura datum, which is called a Siegel Shimura datum.
For the rest of the subsection, we assume (G, X) is of Hodge type, i.e., there exists an

embedding of Shimura data
L (G, X) < (GSp(V, ), 5%).

Sometimes we will write G for Gg, for simplicity.

Let E = E(G, X) be the reflex field with ring of integers Og. Let p be a prime number.
Let Ay denote the ring of finite adeles over Q, and A? denote the ring of prime-to-p finite
adeles, which we consider as the subgroup of Ay with trivial component at p. Fix a place
v|p of E, and let E denote the completion of E at v. Denote by Og(, (resp. Op) the
localization (resp. completion) of O at v. We write G for the base change Gq,. Let G be
the Bruhat-Tits group scheme over Z, associated with some z € B(G,Q,), whose neutral

component G° is parahoric. Set K, = G(Z,) or G°(Z,) and K = K,K? with K? C G(A})
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sufficiently small open compact subgroup. By general theory of Shimura varieties, these
data yield a quasi-projective smooth algebraic variety Shi (G, X) canonically defined over

E, whose C-points are given by
Shi(G, X)(C) = GIQ)\X x G(A)/K.
We can also consider the projective limit of E-schemes

Sh(G, X) = lim Shk (G, X), resp. Sh, (G, X) = lim Shg k- (G, X),
K Kp

which carries a natural action of G(Ay) (resp. G(A%)). The projective limit exists since the

transition maps are finite, hence affine.

7.3.1.1 Integral models for level G(Z,): construction

Assume that
(i) Kp = g(Zp>§

(ii) g, extends to a very good integral Hodge embedding 7 : (G, un) — (GL(Vz,), tg),

where V7, C Vo, is a self-dual Z,-lattice with respect to 1.

We let GSP denote the parahoric group scheme associated to the self-dual lattice V7, . Set
V., =V NVz,. Denote by Gz(p) the Zariski closure of GG in GL(VZ(p>), then G is isomorphic
to Gz, ®z,,, Zp- Set K|, == GSP(Z,). Let K” be a small enough open compact subgroup
of GSp(A}) containing K?, which leaves V3, stable. Here 7P = [1rsp Ze Set K" = K K?.

Then the embedding ¢ induces a closed immersion
Shk (G, X) — Shx/(GSp, S*) @9 E

over E. The choice of Vz  gives rise to an interpretation of Shx/(GSp, S*) as a moduli

space of polarized abelian varieties, and hence to a natural integral model % (GSp, S*)

over Zg (cf. [Zho20, §6.3]).
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Definition 7.3.1. The integral model #x (G, X) over Og, . of Shk(G, X) is the normaliza-

tion of the (reduced) Zariski closure % (G, X) of Shx(G, X) in .Yk (GSp, S*) We

Og,(v)*

set

pr(G,X) = I.&IlprKp(G,X).
Kr

The G(A%)-action on Shk, (G, X) extends to “k, (G, X).

7.3.1.2 Hodge tensors and deformation theory

Since Gz, has reductive generic fiber, by Lemma 7.2.10, we can find a finite collection

of tensors

(sa) C VZ@ép) - <VZ\Ep>)®
whose scheme-theoretic stabilizer in GL(Vz,) is Gz,,. Let h: A — (G, X) denote the
pullback of the universal abelian scheme over .#/(GSp, S*). Denote by V = R'h,Q° the
(relative) algebraic de Rham cohomology of A. Then the tensors (s,), by the de Rham
isomorphism, give rise to a collection of (absolute) Hodge cycles s, ar € V¢, where Ve is
the complex analytic vector bundle attached to V, and s, q4r descends to V¥ by [KP18,
Proposition 4.2.6] (i.e., sq,ar can be defined over Og ().

Recall that E denotes the completion of the maximal unramified extension of £ in @p with
residue field k. Let L/E be a finite extension. For a point 2 € Shi(G, X)(L) specializing
to T € S (G, X)(k), we write A, for the pullback of A to z and write ¢, for the p-
divisible group associated with A,. Then s, r pullbacks to s, ar. € Hig(A:)®. We can
also obtain corresponding tensors s, e, in 7,%,’® by the Betti-étale comparison theorem.
Here 1,9, = Homy, (1,%,,Z,). The tensors s, 4, are Galois invariant and their scheme-
theoretic stabilizer is isomorphic to G. Write % for the p-divisible group corresponding to
7 and Dz for D(%)(W). Set V = T,9 ®z, Q,. Then V is a crystalline representation of

I';, = Gal(L/L). The p-adic comparison isomorphism
Bcris ®Zp Tpgx\/ ~ Bcris ®Ko Dcris(v)7 Dcris<v) = (Bcris ®Qp V)FLv

takes the Galois invariant tensors s, ¢, to the p-invariant tensors s, o € Des(V)%.
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Proposition 7.3.2. We have s, € ]D)%, where we view ID)%’ as a W-submodule of the K-

vector space Deis(V)®. Moreover, we have the following properties.

(1) The tensors sao € DE lift to @-invariant tensors 5,. € Oo,(%:)®, which map into
Fil’ D(4,)(O1)® along the natural projection Op, (4,) — D(¥,)(OL) given by Theorem

7.1.14 (2). Denote by Su. the image of Sq 4.

(2) There exists an isomorphism O, (¥,) ~ W(OL) ®z, 1,9, taking 5oz to Saee. In

particular, there exists an isomorphism
Dz ~ W ®z, T,9,
taking sao 10 Sqétq, and an isomorphism
D(%,)(Or) ~D(%) (W) @w Of

taking so. to sao. Therefore, we can identify the group scheme Gy C GL(Dz) defined
by sa,0 with G &z, W, and there exists a Gk, (= Gw ®w Ky )-valued cocharacter ji, such

that

a) The filtration on Dy @w L induced by the canonical isomorphism

is given by a G'g,-valued cocharacter G, -conjugate to .
b) 1y induces a filtration on Dz which lifts the Hodge filtration on Dz Qw k =

D(%) (k).

Proof. As in [KP18, Proposition 3.3.8], the tensors (sq¢t.) C 1,%,’® give rise to p-invariant

tensors 52, C M(¥,)®. The tensors s2', map to tensors 3o, in Op, (%,)® via the isomor-

a,T

phism

Qo () ~ 0" M(Y,) K&,k W(Ok)
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in Corollary 7.1.18 (1). Since the above isomorphism respects the Hodge filtrations by
Corollary 7.1.18 (2), the tensors 3,, map into Fil"ID(%,)(O1)®. The rest of the proof

proceeds as in [KP18, Proposition 3.3.8, Corollary 3.3.10]. ]

The above proposition implies that ¢, is a (Gw, p,)-adapted deformation of % in the

sense of Definition 7.2.17.

7.3.1.3 Integral models for level G(Z,): properties

Fix a parabolic subgroup P C GL(D;3) lifting Py corresponding to the Hodge filtration
of D(%)(k) = Dz @w k. Let y = y(z) € (GL(Dz)/P)) (L) correspond to the cocharacter
i, as in Proposition 7.3.2 (2). Then as in §7.2.3, we obtain from y a closed subscheme

Mg C (GL(Dz)/P)o, and formal local models
MY =Spf R, Mg = Spf Re.

Note that R is a quotient of Ry = R ®w Op. By Proposition 7.3.2 (2) and the Betti-étale

comparison theorem, the scheme Isom(sghsayo)(VZ\; ®z, W,Dz) of tensor-preserving isomor-
phisms is a trivial G-torsor. Then we may choose an isomorphism Vzv,, ®z, W ~ Dz preserving

tensors such that the very good Hodge embedding (by our assumption on )
(G ®2, W, ) = (GL(Vg, @2, W), 1) = (GL(VZ, ®2, W), 1) = (GL(Ds), 1)

induces a closed immersion Mg$, ®o, Oy < (GL(Dz)/P)o, = Gr(g,Dz)o, . Note that the
Hodge filtration on Dz ®y L is induced by a G-valued cocharacter conjugate to /1,:1. Hence,

we can identify M};’Z with Mg’ih ®o, ®0p by Lemma 7.2.7, and so R¢ is normal.

Proposition 7.3.3. Suppose that conditions (i) and (ii) in the beginning of §7.3.1.1 are

satisfied. Let [75 be the completion of . (G, X)@E at . Then the irreducible component of

f]\f containing x is isomorphic to ]\//PGOCy = Spf R as formal schemes over Op.

Proof. We follow the arguments of [KP18, Proposition 4.2.2].
Note that G, C GL(Dz ®z, Q,) contains scalars, since G C GL(Vg) contains the image

of the weight homomorphism wy,. As 1g, extend to a very good Hodge embedding, the
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constructions and results in §7.2 can apply. In particular, by Proposition 7.2.16 (2), we can
view Spf Rg as a versal deformation space of 4. Then the p-divisible group over (//} arising
from the universal abelian scheme A gives rise to a natural map ® : (75 — Spf Rg, which is
a closed embedding by Serre-Tate theorem.

Let Z C Us be the irreducible component containing z. Let 2’ € Z (L") for some finite
field extension L' of E. Then we can argue as in [KP18, Proposition 4.2.2] to show: S, ¢4
corresponds to s, o under the p-adic comparison isomorphism for the p-divisible group %,.
Since the filtration on Dz ®y K’ corresponding to ¥,/ is given by a G-valued cocharacter
which is conjugate to y,, by Proposition 7.3.2, ¢,/ is (Gw, p1,)-adapted. By our assumption
on the integral Hodge embedding ¢ and Proposition 7.3.2, the assumptions in Proposition
7.2.18 are satisfied. Hence, 7’ is induced by a point of Mg by Proposition 7.2.18. Since 2’
is arbitrary, it follows that ®(Z) C ]\/4\5"; They are equal, as Z and ]\75’2 are of the same

dimension. 0
Theorem 7.3.4. Assume the following conditions:
(i) K, = g(Zp){

(ii) 1q, extends to a very good integral Hodge embedding v : (G, pin) — (GL(Vz,), g), where

Vz, C Vo, is a self-dual Z,-lattice with respect to .

Then the Og, v)-schemes Sk (G, X) and Fk,(G, X) constructed in Definition 7.5.1 satisfy

the following properties.

(1) “k,(G,X) is an Og,)-flat, G(A?)-equivariant extension of Shg, (G, X). The integral
model Sk (G, X) is canonical in the sense of [PR2/).

(2) For any discrete valuation ring R of mized characteristic 0 and p, the natural map
i, (G, X)(R) = Fx, (G, X)(R[1/p])
15 a bijection.
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(3) (G, X) fits into a local model diagram

(G, X)o,

yK(G7X)OE Mlgojih,

of Og-schemes, in which 7 is a G-torsor and q is G-equivariant and smooth of relative

dimension dim G'.

(4) If in addition, we have G = G°, then for each x € Sk(G,X)(K') with k'/kg finite,

there is a point y € Mlg‘)ih(k’) such that we have an isomorphism of henselizations

o ~ O .
yK(va)vx ngl»‘«h7y

Proof. Note that under the assumptions of the above theorem, we have Proposition 7.3.3,
which extends [KP18, Proposition 4.2.2] to the case p = 2. Then the proofs of [KP18,
Proposition 4.2.2, 4.2.7] and [KPZ24, Theorem 7.1.3] go through, and we obtain the theorem.
We note that the assumption (B) in [KPZ24, Theorem 7.1.3] is not used in the proof.

The integral model .k (G, X) is canonical by the construction in [PR24]. O

7.3.1.4 Integral models for parahoric level G°(Z,)
Now we use previous results to study integral models with parahoric level structure. That
is, the level at p is given by G°(Z,). Write K = G°(Z,) and K° = K;KP. Note that there is

a natural finite morphism of Shimura varieties Shko (G, X) — Shi (G, X).

Definition 7.3.5. The integral model .%x- (G, X)) for parahoric level K° is the normalization
of Zx(G, X) in Shk.(G, X). We also set

ng(G,X) = l'glngKp(G,X).
Kr

Let G denote the simply connected cover of G and set C = ker(G* — G4°r). For a

finite prime ¢ and ¢ € H'(Q, C), we write ¢, for the image of ¢ in H*(Q,, C). We introduce
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the following assumption:
If c € H'(Q, C) satisfies ¢, = 0 for all £ # p, then ¢, = 0. (7.3.1)

Proposition 7.3.6. Assume that conditions (i) and (ii) in Theorem 7.53.4 and condition

(7.3.1) are satisfied.

(1) Assume KP is sufficiently small. Then the covering .Yx-(G, X) — Sk (G, X) is étale,

and splits over an unramified extension of Og.

(2) The geometrically connected components of Sxs(G,X) are defined over the mazimal

extension of E that is unramified at primes above p.

Proof. The proof follows the same argument as in [KP18, Proposition 4.3.7, 4.3.9]. ]

7.3.2 Shimura varieties of abelian type
Let (G, X) be a Shimura datum of Hodge type with a Hodge embedding ¢ : (G, X) —
(GSp(V, %), S%). Denote by G the base change Gg,. Let G° be the parahoric group scheme

associated to some point = € B(G,Q,). Assume

(ii) ¢g, extends to a very good integral Hodge embedding v : (G, ) — (GL(Vz,), itg),

where V7, C Vo, is a self-dual Z,-lattice with respect to 1;
(iii) G satisfies condition (7.3.1);
(iv) The center Zg of G is an R-smooth torus (see [KZ24, §2.4]).

Assume (Gg, X3) is a Shimura datum of abelian type such that there is a central isogeny
G — GY° inducing an isomorphism of Shimura data (G, X2) =5 (G3d, X34). Here,
X denotes the G*(R)-conjugacy class of h*d : S L Gp — G for some h € X; X34 is

similar.
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As usual, we denote K := G°(Z,) C G(Q,) and Gy = Gy q,. Let x3 € B(Ga, Q) be a lift
of z3% = 7™ in the identification B(G34,Q,) = B(G*!,Q,). Let GS be the parahoric group
scheme associated to xp. Write K5 ) = G5(Z,). Denote by E; the reflex field of (G, X;) and
set E' := E - Ey, recall E denotes the reflex field of (G, X). We fix a place v' of E" above v.
Denote by E’ the completion of E' at v'.

Fix a connected component X* C X. Denote by Sth(G, X)T the geometrically con-

nected component containing the image of X x 1 in
lim G(Q)\X x G(A,)/KK”,
Kp

By Proposition 7.3.6 (2), Shks(G, X)" is defined over the maximal extension E? of E that
is unramified at primes above p. We denote by #ks(G, X)™ the component of ks (G, X)

extending Shis (G, X)*, which is defined over Ogs ().

7.3.2.1 Integral models of Shimura varieties of abelian type

We recall the notation of [Del79]. Let H be a group equipped with an action of a group
A, and let I' C H be a A-stable subgroup. Suppose we are given a A-equivariant map
¢ : I' = A where A acts on itself by inner automorphisms, and suppose that for v € I'; ()
acts on H as conjugation by 7. Then the elements of the form (v, p(v)™!) form a normal

subgroup of the semi-direct product H x A. We denote by
H X1 A

the quotient of H x A by this normal subgroup.
For a subgroup H C G(R), denote by H, the preimage in H of the connected component
G*(R)* of the identity in G*(R). We write G*(Q)* = G*(Q) N G*(R)*.

Lemma 7.3.7. Suppose S is an affine Q-scheme, and let Sz, be a flat affine Z,-scheme
with generic fiber S ®q Qp. Then there exists a Z,-scheme Sz, which is unique up to

isomorphism, with generic fiber S and SZ(p> Rz, Zy = Sz,.
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Proof. Let A (resp. B) be the affine coordinate ring of Sz, (resp. S). By assumption, we
have A ®z, Q, = B®qQ,. Then we can take Sz to be Spec AN B, where the intersection
happens in A®z, Q, = B®gQ,. Any Zy)-scheme T' with generic fiber S and T'®z,,, Ly = NYA

P

is necessarily isomorphic to Spec A N B. O

By applying the above lemma to the group schemes G and G° over Z,, we obtain Z,)-
smooth affine group schemes Gz, and G° = G%(p). Similarly, let G*d° = GaZ‘(i; be the Z,)-
model of the parahoric group scheme associated to z*! € B(G*™,Q,). Let G = Gz, /2,
where Z denotes the Zariski closure in Gz, of the center Z of the Q-group G. As we assume
that the center Zg of G is an R-smooth torus, we have G2 is the neutral component of
G see [KP18, Lemma 4.6.2] and [KZ24, Proposition 2.4.14].

Following [KP18, §4.6.3], we set

fQ{(GZ@)) = G(A@/Z(Z(p))_ *GO(Zp))+/2° (L) Gado(Z(p))+v
A (G) = G(Af)/Z(Q)” *a(),/z@ G(Q)7,
and
%(GZ(M)O = GO(Z(p))-T—/ZO(Z(p))_ *GO(Z<p))+/ZO(Z<p)) GadO(Z(p))'f"
7 (G)° = G(Q);/Z(Q)” *c(),/z@ G (Q)".

Here, G°(Zy)); is the closure of G°(Z,))4 in G(A%), and Z° is the Zariski closure of Z in
G°. Similarly, we have /(Goyz, ) and & (G2z,, ). Since G?® is the neutral component of

ad
G7

) (we assume Z¢ is an R-smooth torus), the action of &/ (G7,, ) on Shks (G, X) extends

to Fxks(G, X). There is an injection by [KP18, Lemma 4.6.10],
(G )\ (Go,)) = A (G)\A (G2) /K3
Let J C G2(Q,) be a set of coset representatives for the image of the above injection.
Definition 7.3.8. The integral model ng,p<G’2,X2) for Sth’p(Gg,Xz) is
[ (G, X)" % o (Ga,))]/ o (Gry))).
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The scheme yK;p<G2,X2) is priori defined over Ogw (), but it descends to an Og (-

scheme with a Go(A%)-action, see [KP18, Corollary 4.6.15].
Theorem 7.3.9. Assume that conditions (i) to (iv) in the beginning of §7.3.2 are satisfied.

(1) The E-scheme Shig (Ga, X2) admits a Go(A})-equivariant extension to a flat normal
Ow (vr)-scheme Fxs (G2, X2). Any sufficiently small Ky C Go(A}) acts freely on

g, (G2, X3), and the quotient
Fxs(Go, X)) = k,, (G2, X2) /K5
is a flat normal O (vy-scheme extending Shig(Ga, X3).
(2) For any discrete valuation ring R of mized characteristic 0 and p, the map
Fics, (G, Xo)(R) = Sz (G, Xo) (R[1 /1)
15 a bijection.

(3) There is a diagram of Og-schemes

!
g, (G2, X2)o, Mgz 1, ©@op, Ok,

where T s a GQ(A?)-equwam'ant Ggfizp—torsor, q is G;?Zp—equivarmnt, and for any suf-
ficiently small Kb C Go(AY), the map yﬁg}p/Kg — I\/[[lgoé?,uh2 ®0p, O induced by q is
smooth of relative dimension dim G, If in addition, we have G = G°, then 7 reduces

to a G&% -torsor.
y=p

Proof. Under the assumptions of the above theorem, we can construct the integral model
ng’p(Gz,Xg) as in Definition 7.3.8. The properties of YKS@(GQ,XQ) are deduced from
Theorem 7.3.4 by following the arguments in [KPZ24, Proposition 7.1.14] (cf. [KP18, §4.4-

4.6]). Note that arguments in [KP18, §4.4-4.6] also work for p = 2. O
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Remark 7.3.10. For a Shimura datum (Ge, Xs) of abelian type as in Theorem 7.3.9, we
expect that the integral model #ks(Ga, X») is canonical in the sense of [PR24], which would
imply that .7ks(Go, X3) is independent of the choice of a Shimura datum (G, X), as well as

the choice of a symplectic embedding (G, X) < (GSp, S*).

7.3.2.2 Proof of Theorem 1.2.7 in Case (A)
Now we start with a Shimura datum (Gq, X5) of abelian type with reflex field E,, and

denote by K3 , C G2(Q,) the parahoric subgroup associated to some z; € B(Ga, Q).

Lemma 7.3.11. Suppose that (G4, X39) has no factor of type DY, Gy is unramified over
Qy, and K3 , is contained in some hyperspecial subgroup. Then there exists a Shimura datum
(G, X) of Hodge type, together with a central isogeny G — G inducing an isomorphism
(G X2d) ~ (G34, X34), such that the following conditions hold.

(1) m (G is trivial.
(2) Any prime vo|p of Eo splits completely in E' = E - Es.

(3) X*(Gab)]@P is torsion free, where G denotes the quotient G/G" and Iy, denotes the

inertia subgroup of Gal(@p/(@p).
(4) Conditions (i) to (iv) in the beginning of §7.3.2 are satisfied.

Proof. As discussed in [KZ24, 2.4.5], the proof of [Edi92, Theorem 4.2] implies that a tamely
ramified torus is R-smooth. As we assume G5 is unramified (in particular, Go is tamely
ramified), by [KP18, Lemma 4.6.22], it remains to show that there exists a Hodge embedding
L (G, X) — (GSp(V,v), S*) satisfying condition (i7) in the beginning of §7.3.2. Since
71 (G9°) is trivial by our choice of (G, X), we may assume that, by Zarhin’s trick and [KP18,
Corollary 2.3.16], there exists a good integral Hodge embedding 7 : (G, un) < (GL(A), py)
extending tq,, where A C Vg, is a self-dual Z,-lattice with respect to 1g,. Denote GSp =

GSp(V,9)q,. By our assumptions and Theorem 7.4.1, there is a tame Galois extension
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F/Q, with Galois group I' such that in the diagram

B(G,Q,) —— B(GSp, Q,)

l l

B(Gr, F) — B(GSpp, I)

of Bruhat-Tits buildings, we have

e the image of x € B(G,Q,) in B(GF, F) is hyperspecial, and determines a reductive

group H over Op satisfying G ~ (ResoF/ZpH)F;

e the point «(x) is hyperspecial corresponding to the self-dual lattice A, and its image
in B(GSppg, F') is hyperspecial corresponding to the lattice A=A ®z, OF, which is

self-dual with respect to the pairing 5.

By [DD11, Lemma 3.1], there exist a totally real number field F/Q and a place w above p
such that F,, ~ F. Let V denote the Q-vector space V ®qF. We pick an element a € I such
that its image in I’ generates the different ideal dp/g,. Then V is equipped with a perfect

alternating pairing given by

U(x,y) = Trrjga™ Yr(z,y))

for z,y € V. Then A is self-dual with respect to 1;, and the closed immersion

1:G <= Resp,jz,H — GL(A)

extends the Hodge embedding G — GSp — GSp(?,@Z}QP C GL(?QP). As 7 (G9T) s
trivial and G is unramified over Q,, the Pappas-Zhu local model for (G, up,) is isomorphic
to Mlgoih, and 7 is a good integral Hodge embedding by [KP18, Proposition 2.3.7]. As
(G314, X39) has no factor of type D¥, the closed immersion Reso, 7, H — GL(A) gives a
very good integral Hodge embedding by [KPZ24, Proposition 5.3.10, Theorem 1.2.3]. Since
G = (Reso,z,H)"', we obtain that 7 is also very good by [KPZ24, Corollary 5.3.4]. We
then obtain a desired Hodge embedding by replacing ¢ by the Hodge embedding (G, X) <

(GSp(V, ), S*(V,4)). m
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Corollary 7.3.12. Under the same assumptions as in Lemma 7.3.11, the integral model
i, (Ga, Xo) constructed in Definition 7.3.8 is defined over Og, (v,) for some fived prime
va|p of Eg. Moreover, we have G = G°, and the conclusions of Theorem 7.3.9 hold. In
particular, if k is a finite extension of k(va) and y € Fxg (G2, X2)(k), then there evists

z € Mg’iuw (k) such that we have an isomorphism of henselizations

h h
O 7 N— O
A Go,X2), loc :
Kg’p( 2,X2),y MQS#}Q 2

Proof. By Theorem 7.3.9 and Lemma 7.3.11 (4), the integer model ngyp(GQ,XQ) is con-
structed using the Shimura datum (G, X) chosen in Lemma 7.3.11. By Lemma 7.3.11 (2),
there exists a prime v, |p of E; extending to the prime v of E/, and we have Og, (,) ~ O/ (v)-
Hence, the scheme Fi3 (G2, X>) is defined over Og, (v,). Since 71 (G9) is trivial by Lemma
7.3.11 (1), we have 7, (G) = X,(G?*"), and m1(G)1g, is torsion-free by Lemma 7.3.11 (3). In

particular, we have G = G°. n

By Theorem 7.3.9 and Corollary 7.3.12, we obtain Theorem 1.2.7 in Case (A). Note that

the group G in Theorem 1.2.7 is denoted by Go here.

7.3.3 Integral models of unitary Shimura varieties
In this subsection, we consider Shimura varieties in Case (B) of §1.2.2. We show that, in
this case, the assumptions in Theorem 7.3.9 are satisfied, allowing us to construct integral

models of Shimura varieties for which the conclusions of Theorem 7.3.9 hold.

7.3.3.1

Let n = 2m + 1 > 3 be an odd integer. Let F/Q be an imaginary quadratic extension
such that 2 is ramified in F. Then F' := F ®g Q2 is a ramified quadratic extension of Q
with residue field Fy. Let (V,h) be an n-dimensional non-degenerate F/Q-hermitian space

of signature (n — 1, 1). Denote by

G = GU(V,h)
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the unitary similitude group over Q attached to (V,h). Suppose that
Ky € G(Qq)

is a special parahoric subgroup in the sense of Bruhat-Tits theory. For an open compact
subgroup of the form K = KyK? C G(Af), where K* C G(A}) is open compact and
sufficiently small, we can associate a Shimura variety Shi (G, X) of level K as in [PR09,
§1.1]. Then Shx(G, X) is a quasi-projective smooth variety of dimension n — 1 over the

reflex field F. Denote by Shk (G, X)r the base change of Shix (G, X) to F.

7.3.3.2 Unitary local models
Note that the vector space V := V@ F' equipped with the F'/Qy-hermitian form h := hg,

defines a unitary similitude group G = Gg, over Qx.
Lemma 7.3.13. For any non-degenerate hermitian form h' on V', we have G ~ GU(V, h').

Proof. By the classification of hermitian spaces over local fields (see, for example, [Jac62,
Theorem 3.1]), there are two isomorphism classes of n-dimensional non-degenerate hermitian
spaces over Q, classified by discriminants in Q5 /Ng/q,(F). Let a € Q5 be an element
not in Npjg,(F*). Define a hermitian form h, on V by setting hq(x,y) = ah(x,y) for
x,y € V. Since disc(h,) = a"disc(h) and n is odd, the hermitian spaces (V, h) and (V, h,)
represent the two isomorphism classes of n-dimensional non-degenerate hermitian spaces over
Q2. Moreover, multiplication by a induces an isomorphism between GU(V, h) and GU(V, h,).

Hence, the lemma follows. O

By Lemma 7.3.13, we may assume that the hermitian form h is split, that is, there exists
an F-basis ej,...,e, of V such that h(e;,e;) = d;n11—j. Then we are in the situation of
the first part of the thesis. Up to conjugation, we may assume that the special parahoric
subgroup Ky C G(Qy) corresponds to I = {0} or {m} by Theorem 1.2.1. Let G; denote the

special parahoric group scheme corresponding to I = {0} or {m}. By [PR09, 1.2.3], ¢; is a
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Bruhat-Tits stabilizer group scheme. Let p denote the geometric cocharacter
Gm,f — Gf ~ Gme X Gm,?

given by z +— (diag(z,1™Y),2). Let Mg¢, be the local model attached to (Gr, ) by
Theorem 3.4.4. By Proposition 3.4.5, this is isomorphic to the unitary local model MY in
Theorem 1.2.2.

Lemma 7.3.14. Let A; C V be the lattice as in Theorem 1.2.1 corresponding to the spe-

cial parahoric subgroup Ko C G(Q3). Then there exists a good integral Hodge embedding
(Gr, 1) = (GL(Ar), ).

Proof. By the concrete description of the parahoric group scheme G; in Chapter 6, there is a
closed immersion ¢ : G; < GL(A;). The base change (g, is the standard Hodge embedding
G = GU(V,h) — GL(V), which sends the conjugacy class {u} to {u,}. As G contains the
scalars, ¢ is an integral Hodge embedding. Moreover, ¢ is good, since it induces a closed

immersion Mlgolc’ = MY® < Gr(n, A;)o, by our construction of M°. ]

The following theorem is a key ingredient in the construction of very good Hodge em-

beddings for (Gr, p).

Theorem 7.3.15. For any closed point x € MY°(k), the tangent space of the special fiber

MY ®0,. k at x is spanned by smooth formal curves (see Definition 7.2.14).

The proof of Theorem 7.3.15 is divided into the following two cases.

The case I = {m}
By Theorem 1.2.2 (2), the local model Ml{‘;‘;} is smooth over Op. Clearly Theorem 7.3.15

holds in this case by the infinitesimal lifting property of smooth morphisms.

The case [ = {0}
By Theorem 1.2.2 (1), MI{%C} is Op-smooth on the complement of a single closed point,
which we will call the worst point. To prove Theorem 7.3.15 in this case, it suffices to prove

the tangent space of MI{%C} ®o, k at the worst point is spanned by smooth formal curves.
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Definition 7.3.16. Let X be an affine scheme of finite type over k. Let = € X (k) be a
k-point. We may express X as a closed subscheme of A? = Spec k[T, ..., T,] defined by an

ideal a C k[T, ..., Ty] such that x is the origin of A?.

(1) For a polynomial f € k[T, ..., Ty, write f = S f; as a decomposition into homo-
geneous polynomials with f, # 0. Denote by f* (resp. f)) the lowest degree term f,

(resp. f1). If r > 2 set f1 = 0.

(2) Denote by a* (resp. a!)) the ideal in k[T, ..., Ty] generated by f* (resp. f1)), for all
f € a. The tangent cone TC,X (resp. schematic tangent space T"X) of X at z is
the scheme Spec k[T, ..., Ty]/a* (resp. Speck[Tt, ..., T,]/a).

Note that the definition of T'C, X (resp. T:"X) is independent of the embeddings of
X in affine spaces. See [Mum99, Chapter 111, §3, 4]. Clearly T X is a linear subspace of
A? and there is a closed immersion TC, X < T"X. Note that there is a natural bijection
between the k-points 7" X (k) and the tangent space T, X, see [Mum99, §4]. Concretely, for
any z € T5" X (k) corresponding to a k-algebra homomorphism z : k[T, ..., Ty]/a®) — k,
we can associate a k-algebra homomorphism ¢, : k[T1, ..., Ty|/a — k[t]/(t?) via T; — z(T;)t.

The morphism ¢, defines a tangent vector of X at z.

Lemma 7.3.17. Let X be a reduced affine scheme of finite type over k. Let x € X(k).
Assume that there exists a closed immersion i : X < A? such that X is defined by a
homogeneous ideal a and i(x) is the origin O of A%. Then the set TC,X (k) spans the k-

vector space T, X.

Proof. Without loss of generality, we may assume that ¢ does not factor through any (proper)
linear subspace of A%, As X is reduced, the image i(X) is not contained in any (proper)
linear subspace of A?. Since a is homogeneous, X is isomorphic to the tangent cone TC, X
and i is identified with the embedding TC, X < T:hX — TgmAd. Let W denote the

subspace in T, X spanned by T'C,X (k). Then we have a linear subspace W*" C A? such
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that W*" (k) = WW. We obtain a factorization
i: X e WEh s TSR X <y A%

Since i : X — A does not factor through any proper linear subspace of A, it forces that

Weeh = Tseh X = A and hence, W = T, X. O]

Corollary 7.3.18. Under the same assumptions as in Lemma 7.5.17, the tangent space T, X

15 spanned by smooth formal curves.

Proof. Denote X = Spec R = Speck[T1,...,T,]/a. By assumption, the tangent cone T'C,, X
is isomorphic to X. Recall that for a k-point z € TC,X (k) corresponding to z : R =
k[Ty,...,Ty]/a — k, the associated tangent vector t, € X (k[t]/(t?)) is given by the k-algebra
homomorphism R — k[t]/(t?) sending T; + z(T;)t. Define a k-algebra homomorphism

t.: k[Tv, ..., Ty — k[[t] via T; — 2(T})t. For any homogeneous polynomial f € a, we have

L(F) = F((Tt, .., 2(T)t) = t987 f(2(T), ..., 2(T})) = 0.

Hence, the map t, factors through R/a. In other words, the tangent vector t, lifts to
the smooth formal curve t, € X(k[[t]]). Now the corollary follows from Lemma 7.3.17

immediately. O

Recall that, by Theorem 1.2.3 (1), there is an open affine neighborhood U%{%C} of Ml{%c}

loc

containing the worst point such that Ufy ®o, k is defined by a homogeneous ideal under

loc

the obvious closed embedding Uy, ®o, k < Spec k[A|B], which sends the worst point to

the origin. By Corollary 7.3.18, we obtain the following.

Corollary 7.3.19. The tangent space of MI{%C} Rop k at the worst point is spanned by smooth

formal curves.

This proves Theorem 7.3.15 in the case I = {0}.

153



7.3.3.3 Proof of Theorem 1.2.7 in Case (B)

Let us keep the notation as in §7.3.3.1. Let a € F* be an element such that a = —a.
Then the hermitian form h on V induces a perfect alternating Q-bilinear form ¢ on V by
setting

Y(z,y) = Trp/g(a” " h(z,y)), for z,y € V.
Denote by GSp(V, ) the symplectic similitude group over Q associated with the above pair-
ing. Then we obtain an embedding ¢; : G < GSp(V, ), which also induces an embedding

of Shimura data
by <G7X> — (GSp(V, ¢>7 Si(va))
By Lemma 7.3.14, there exists a good integral Hodge embedding

0 (G, p) = (GL(AL), pin)

extending ¢; g,. By Theorem 7.3.15 and Lemma 7.2.15, 7; is very good. Denote by Af cV
the dual lattice of A; with respect to ¢. Set A = (A;)* @ (A¥)* € V8. Using Zarhin’s trick
as in the proof of [KPZ24, Proposition 7.2.10 (3)], there exists a non-degenerate alternating
pairing 1" on V8 such that A is self-dual with respect to Yg,, and an embedding of Shimura

data
v: (G, X) < (GSp(VE,¢), S*(VE, )

such that ¢ extends to a very good integral Hodge embedding (Gr, p) < (GL(A), tgn)-
Denote (GSp, S*) = (GSp(V?&,¢'),S*(V® ¢')). Then we obtain an embedding of

Shimura data
1 (G, X) = (GSp, S%).

Moreover, the embedding (g, extends to a very good integral Hodge embedding by previous
discussion. Note that for odd unitary similitude groups, the parahoric group scheme corre-
sponding to Kj is connected by [PR09, 1.2.3]. In particular, the assumptions in Theorem

7.3.4 are satisfied and we obtain the following theorem.

154



Theorem 7.3.20. There exists a normal flat Op-scheme Sk (G, X) exstending Shk (G, X)
such that the conclusions of Theorem 7.8.4 hold for Sk (G, X).

This finishes the proof of Theorem 1.2.7 in Case (B).

7.4 Bruhat-Tits group schemes and tame Galois fixed points

In this section, we show that, for an unramified group G over a 2-adic field F, if a
stabilizer group scheme G satisfies G(Op) C H for some hyperspecial subgroup H of G(F),
then G can be written as the tame Galois fixed points of the Weil restriction of scalars of a
reductive group scheme. This result is used in the proof of Lemma 7.3.11 to construct very
good Hodge embeddings in Case (A).

Let F' be a complete discrete valued field with residue characteristic p = 2. Let G be a
connected reductive group over F. Denote by B(G, F) (resp. B(G, F)) the extended (resp.
“classical”) Bruhat-Tits building. Recall that for a finite tame Galois extension K/F with
Galois group I, the inclusion

B(G, F) — B(G, K)

of buildings identifies the image with the fixed point set B(G, K)''. For z € B(G, F), we use

GX to denote the Bruhat-Tits group scheme over Oy attached to the image of z in B(G, K).

Theorem 7.4.1. Assume G is unramified. Let G = Gg be the Bruhat-Tits group scheme
attached to some facet £ in B(G, F) whose closure contains a hyperspecial point.

Then there exist a point x € B(G, F) and a finite tame Galois extension K/F with Galois
group I' such that G ®p K is split, G = G, and (the image of ) x is hyperspecial in B(G, K).

Moreover, we have an isomorphism of (smooth) Op-group schemes

g~ (ReSOK/OFgaI;()F

extending the isomorphism G ~ (Resg/rGr )"
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The proof of Theorem 7.4.1

We first consider the case when G is split, absolutely simple, and simply connected. Fix
a maximal torus 7" and a Borel subgroup B containing 7. Let A = {a1,...,a,} be the
subset of simple roots with respect to (T, B) in the root system ® = ®(7, B). Denote by

Ot = & N ZspA the set of positive roots. Note that there is a perfect pairing
(— =) Xu(T)x X(T)—> 2

between the cocharacter group X,(7') and the character group X*(7') of T". There is an
isomorphism between the apartment A of B(G, F) corresponding to 7" and V = X, (T)r
such that the origin in V' corresponds to a special vertex, which is also hyperspecial, in A.

Moreover, a chamber C' of A is given by
C={zeV]0<(z,a)<lforalacd’}.

For 1 < i < n, denote by w; € V the fundamental coroot corresponding to a; € A. Then
the chamber C' has n + 1 vertices vy, ..., v,, where vg = 0 and v; = w;/¢; for 1 < i < n,
where ¢; is a positive integer such that " | ¢;o; is the highest root in ®. Since G(F) acts
transitively on the set of chambers in A (see, for example, [Tit79, §1.8]), we may assume that
f is contained in the closure of C. By assumption, the closure f of f contains a hyperspecial
vertex vg. Note that ve is some vertex v; for which ¢; = 1. If f consists of only a single point,
there is nothing to prove. Hence, we may assume that f strictly contains ve. Let y € V be
the barycenter of the (sub)facet determined by the vertices in f except vg. Then y is of the

form

1
y - m2dy17

where m is an odd integer, d > 0 is an integer, and y; € ZA. Set

1 + m2dt! 1 + 2
= v
£ 0dr + 1y m2d+1 4 1 £ odil +1

T m2d+1 + 11)

n

Then z lies in the line segment between v and y, and hence in f. Since G is simply connected,

we have

gm:gf'
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Let F) be a finite extension of F' with ramification index m2%! 4 1. Denote by
p: B(G,F) = B(G, ),
the natural inclusion of buildings. Then we see that
p(x) = ve + 2y € ve + X (T).

Thus, p(x) is a hyperspecial point in B(G, F1). As p = 2, the extension F}/F is tame. Let
K be the Galois closure of Fy/F. Then K is a tame Galois extension of F. Note that the
image of p(z) in B(G, K) is also hyperspecial. The pair (K, z) satisfies the conclusion of
Theorem 7.4.1.

Next we consider the case when G is unramified, absolutely simple and simply connected.
Let F1/F be an unramified Galois extension over which G is split. Denote by I'; the Galois
group of Fy/F. Then the facets in B(G, F') correspond to I'y-invariant facets in B(G, F}).
Let f; be the I'i-invariant facet in B(G, Fy) corresponding to f. The closure of the facet f
contains a hyperspecial point, which is the image of v¢ in B(G, F}). Let y; be the barycenter

of f;. Then y; is a fixed point of I'; and we have
g = (ReS@Fl/ongll)Fl.

Note that y; is of the form

1

Y1 = W(Uf + y2),

where m is odd and yo € X, (T) for a maximal torus 7" in the split group G,. Since y; and

ve are fixed by I'y, so is any point in the line segment of y; and vg. Set

1 L _m2t 3 L2
= v
B a1 T adrt y 1T ot 1

- m2d+1 + ]_U

Ya.

Then z lies in the line segment between y; and ve, and hence is fixed by I'y. We obtain
that = corresponds to a point in B(G, F') and G, = G¢. Let Fy be a finite (tame) extension

of F; with ramification index m2%*! + 1. Then the image of z in B(G, Fy) is of the form
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3ve + 2yo € 3vg + X, (T). Since 3vr is hyperspecial, = is hyperspecial in B(G, F;). Let K
be the Galois closure of F»/F. Then K is a tame Galois extension of F' and the pair (K, x)
satisfies the conclusion of Theorem 7.4.1. In particular, Theorem 7.4.1 holds when G is
unramified, absolutely simple and simply connected.

Following the proof of [KPZ24, Proposition 2.2.2], we see that Theorem 7.4.1 holds when

(G is any unramified group over F.
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