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ABSTRACT

This thesis is about integral models of Shimura varieties with emphasis on the reduction at

the prime p = 2.

In the first part of the thesis, we construct local models for wildly ramified unitary

similitude groups of odd dimension n ≥ 3 with special parahoric level structure and signature

(n−1, 1). We first give a lattice-theoretic description for parahoric subgroups using Bruhat-

Tits theory in residue characteristic two, and apply them to define local models following

the lead of Rapoport-Zink [RZ96] and Pappas-Rapoport [PR09]. In our case, there are two

conjugacy classes of special parahoric subgroups. We show that the local models are smooth

for the one class and normal, Cohen-Macaulay for the other class. We also prove that they

represent the v-sheaf local models of Scholze-Weinstein. Under some additional assumptions,

we obtain an explicit moduli interpretation of the local models.

The second part of the thesis focuses on constructing integral models over p = 2 for some

Shimura varieties of abelian type with parahoric level structure, extending the previous work

of Kim-Madapusi [KM16] and Kisin, Pappas, and Zhou [KP18; KZ24; KPZ24]. For Shimura

varieties of Hodge type, we show that our integral models are canonical in the sense of

Pappas-Rapoport [PR24].
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CHAPTER 1

INTRODUCTION

1.1 Background

Shimura varieties, first reformulated in a modern framework by Deligne in his seminal

papers [Del71; Del79], are higher dimensional generalizations of modular curves and play a

central role in number theory.

Let p be a prime number. Let Af denote the ring of finite adèles over Q, and Ap
f denote

the ring of prime-to-p finite adèles over Q. Let (G, X) be a Shimura datum, i.e., G is a

reductive group over Q, X is a G(R)-conjugacy class of an algebraic group homomorphism

h : S := ResC/RGm → GR, and (G, X) satisfies Deligne’s axioms ([Del79, (2.1.1.1)-(2.1.1.3)]).

It follows from these axioms that each connected component of X is a hermitian symmetric

domain. For a sufficiently small open compact subgroup K ⊂ G(Af ), the associated Shimura

variety is the double coset space

ShK(G, X) := G(Q)\X ×G(Af )/K,

which naturally carries the structure of a complex analytic space induced by X. By work of

Baily and Borel, ShK(G, X) is in fact a quasi-projective smooth projective variety over C.

Due to Shimura, Deligne, Borovoi, Milne, and others, the system

Sh(G, X) := lim←−
K

ShK(G, X)

has a canonical model defined over a number field E, known as the reflex field, which only

depends on the Shimura datum (G, X). The simplest Shimura varieties are the modular

curves, which are given by the Shimura datum (GL2,H±). Here H± = C− R, the union of

upper and lower half planes.

Let v|p be a place of E and E be the completion of E at v. One active area of interest in

the study of Shimura varieties is the construction of integral models. These are schemes over

OE with generic fiber ShK(G, X)E. Integral models are useful in computing the Hasse-Weil
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zeta function of a Shimura variety in terms of automorphic L-functions, which is part of the

Langlands program. The construction of integral models is also a starting point for Kudla’s

program relating special cycles on Shimura varieties and derivatives of Eisenstein series and

L-functions.

Let G be a Bruhat-Tits stabilizer group scheme (see §3.4) over Zp for GQp with neutral

component G◦. Set Kp := G(Zp) and K◦
p := G◦(Zp). Suppose K◦ ⊂ G(Af ) is of the form

K◦ = K◦
pK

p, where Kp ⊂ G(Ap
f ) is a sufficiently small open compact subgroup. When (G, X)

is of PEL type, the corresponding Shimura varieties ShK(G, X) are (essentially) moduli

spaces of abelian varieties with polarization, endomorphisms and level structure. Integral

models of these Shimura varieties are studied in [Kot92, §5] and [RZ96, Chapter 6]. More

generally, let (G, X) be a Shimura datum of abelian type, a large class that includes almost

all cases where G is a classical group. Shimura varieties of abelian type are closely related

to those of Hodge type, which can described as moduli spaces of abelian varieties equipped

with families of Hodge tensors. If Kp is hyperspecial (which implies that GQp extends to a

reductive group scheme G over Zp such that G(Zp) = Kp), Kisin [Kis10] and Kim-Madapusi

[KM16] (when p = 2) constructed (smooth) canonical integral models overOE of ShK◦(G, X),

which are uniquely characterized by Milne’s extension property. If p > 2, Kisin, Pappas and

Zhou [KZ24; KPZ24], following earlier work of Kisin-Pappas [KP18], constructed normal

flat integral models over OE of ShK◦(G, X) with arbitrary parahoric level structure. Using

Scholze’s theory of p-adic shtukas, Pappas-Rapoport [PR24] and Daniels [Dan23] made the

following conjecture about the existence of the canonical integral model of ShK◦(G, X) with

parahoric level structure for any Shimura datum (G, X).

Conjecture 1.1.1 ([PR24, Conjecture 4.2.2],[Dan23, Conjecture 4.5]). There exists a unique

system {SK◦}Kp of normal flat schemes over OE, extending {ShK◦(G, X)}Kp and equipped

with a p-adic shtuka satisfying the axioms in loc. cit..

By [PR24, Theorem 1.3.2], Conjecture 1.1.1 holds when (G, X) is of Hodge type and

K◦
p is a stabilizer parahoric subgroup (i.e., Kp = K◦

p). Assuming the existence of SK◦
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as in Conjecture 1.1.1, Pappas and Rapoport also conjectured (at least when G satisfies

the blanket assumption in [PR24, §4.1]) that SK◦ fits into a scheme-theoretic local model

diagram. Specifically, there should exist a diagram of OE-schemes

SK◦ S̃K◦
πoo

q
//Mloc

G◦,µh
,

where µh denotes the geometric cocharacter of GQp corresponding to the Hodge cocharacter

attached to (G, X), the OE-scheme Mloc
G◦,µh

denotes the scheme local model used in [PR24,

§4.9.2] (see also Theorem 3.4.4), π is a G◦-torsor, and q is G◦-equivariant and smooth of

relative dimension dimG, such that the compatibility conditions in [PR24, Definition 4.9.1]

are satisfied. For the current status of Conjecture 1.1.1, we refer readers to Daniels-van

Hoften-Kim-Zhang [DvHKZ24] and Daniels-Youcis [DY24], which build upon the work of

Kisin, Pappas and Zhou [KP18; KZ24; KPZ24].

Local models are certain flat projective schemes over the p-adic integers which are ex-

pected to model the singularities of the integral models of Shimura varieties. Rapoport and

Zink studied local models for Shimura varieties of PEL type with parahoric level structure

at p in [RZ96]. Their local models were later called naive local models, since they are not

always flat if the corresponding reductive group is ramified at p as pointed out in [Pap00,

§4]. The construction of the naive local models relies on the lattice-theoretic description of

parahoric subgroups, which is significantly more involved if p = 2 and the group is ramified.

A more general approach is given in [PZ13] (see also a variant in [HPR20]) which constructs

(flat) local models attached to a local model triple (G, {µ} ,G), where G is a tamely ramified

connected reductive group over a p-adic field L, {µ} is a geometric conjugacy class of cochar-

acters of G with reflex field E, and G is a parahoric group scheme over OL with generic fiber

G. Subsequent works [Lev16; Lou23; FHLR22] allow us to define local models for all triples

(G, {µ} ,G) excluding the case that p = 2 and Gad contains, as an L̆-factor, a wildly ramified

unitary group of odd dimension. Here L̆ denotes the completion of the maximal unramified

extension of L in a fixed algebraic closure of L. These constructions a priori depend on

certain auxiliary choices.
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Another construction of local models is proposed in [SW20] using v-sheaves. The advan-

tage is that this approach is canonical (without any auxiliary choices) and applies to arbi-

trary triples (G, {µ} ,G), even for wildly ramified groups G and p = 2. It has been proven

in [AGLR22; GL24] that when {µ} is minuscule, the v-sheaf local models are representable

by flat normal projective schemes Mloc
G,µ over OE with reduced special fibers. Roughly, the

local model Mloc
G,µ is constructed as the weak normalization of certain orbit closure inside a

Beilinson-Drinfeld type affine Grassmannian, extending the construction of Pappas and Zhu

in [PZ13]. Excluding the case that p = 2 and Gad contains, as an L̆-factor, a wildly ramified

unitary group of odd dimension, one can show that the corresponding scheme local models

are Cohen-Macaulay with Frobenius split special fibers. We refer the readers to [FHLR22,

Remark 2.2] for some explanation on this exceptional case. A key aspect of understanding

the special fibers of local models is their identification with a union of (semi-normalizations

of) Schubert varieties in affine flag varieties. It is worth noting that the theory of local

models also has applications in the study of Galois deformation rings, leading to strong re-

sults in modularity lifting theorems, Breuil-Mézard conjecture, etc. See for example [Kis09;

LLHLM23].

In the present thesis, we study the local and integral models of Shimura varieties over

p = 2. Now we explain the main results of our work.

1.2 Main results

1.2.1 2-adic local models

The first part of the thesis focuses on the 2-adic local models for unitary similitude groups

of odd dimension n ≥ 3 with special parahoric level structure when the signature is (n−1, 1).

Let F0/Q2 be a finite extension and F be a (wildly) ramified quadratic extension of F0.

For any x ∈ F , we write x for the Galois conjugate of x in F . We can pick uniformizers

π ∈ F and π0 ∈ F0 such that F/F0 falls into one of the following two distinct cases (see

§3.1):
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(R-U) F = F0(
√
θ), where θ is a unit in OF0 . The uniformizer π satisfies an Eisenstein

equation

π2 − tπ + π0 = 0,

where t = π + π ∈ OF0 satisfies π0|t|2. We have
√
θ = 1− 2π/t and θ = 1− 4π0/t

2.

(R-P) F = F0(
√
π0), where π

2 + π0 = 0.

Let (V, h) be a hermitian space, where V is an F -vector space of dimension n = 2m+1 ≥ 3

and h : V ×V → F is a non-degenerate hermitian form. In this Introduction, we will assume

that h is split, i.e., there exists an F -basis (ei)1≤i≤n of V such that h(ei, ej) = δi,n+1−j for

1 ≤ i, j ≤ n. Let G := GU(V, h) denote the unitary similitude group over F0 attached to

(V, h). Our first result is the lattice-theoretic description of parahoric subgroups of G(F0).

Theorem 1.2.1 (Proposition 2.4.1). Let I be a non-empty subset of {0, 1, . . . ,m}. Define

Λi := OF ⟨π−1e1, . . . , π
−1ei, ei+1, . . . , em+1, λem+2, . . . , λen⟩, for 0 ≤ i ≤ m,

where λ = π/t in the (R-U) case and λ = 1/2 in the (R-P) case. Then the subgroup

PI := {g ∈ G(F0) | gΛi = Λi, for i ∈ I}

is a parahoric subgroup of G(F0). Furthermore, any parahoric subgroup of G(F0) is conjugate

to PI for a unique I ⊂ {0, 1, . . . ,m}. The conjugacy classes of special parahoric subgroups

correspond to the sets I = {0} and {m}.

The proof of Theorem 1.2.1 is based on Bruhat-Tits theory in (residue) characteristic

two. Note that in our case, parahoric subgroups of G(F0) no longer correspond to self-dual

lattice chains, which causes difficulties in the study of local models.

Given a special parahoric subgroup of G(F0) corresponding to I = {0} or {m}, we define

in §3.3 the naive local model Mnaive
I of signature (n− 1, 1), which is an analogue of the naive

unitary local model considered in [RZ96]. To explain the construction, we start with a crucial
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but simple observation on the structure of the lattices Λi in Theorem 1.2.1. Set

ε :=


t in the (R-U) case,

2 in the (R-P) case.

(1.2.1)

The hermitian form h defines a symmetric F0-bilinear form s(−,−) : V × V → F0 and a

quadratic form q : V → F0 via

s(x, y) := ε−1TrF/F0 h(x, y) and q(x) :=
1

2
s(x, x), for x, y ∈ V . (1.2.2)

Set L := ε−1OF0 , which is an invertible OF0-module. Then for 0 ≤ i ≤ m, the forms in

(1.2.2) induce the L -valued forms

s : Λi × Λi −→ L and q : Λi −→ L . (1.2.3)

The triple (Λi, q,L ) is an L -valued hermitian quadratic module over OF0 in the sense of

Definition 3.2.1, which roughly means that the quadratic form q is compatible with the

OF -action.

For I = {0} or {m}, denote ΛI := Λ0 or Λm respectively. Let

Λs
I := {x ∈ V | s(x,ΛI) ⊂ OF0}

be the dual lattice of ΛI with respect to the pairing s in (1.2.2). Then we have a perfect

OF0-bilinear pairing

ΛI × Λs
I −→ OF0 (1.2.4)

induced by the symmetric pairing in (1.2.2), and an inclusion of lattices

ΛI ↪→ αΛs
I , where α :=


π/ε if I = {0},

1/ε if I = {m}.

We define the naive unitary local model Mnaive
I to be the functor

Mnaive
I : (Sch/OF )

op −→ Sets

which sends an OF -scheme S to the set of OS-modules F such that
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(1) (π-stability condition) F is an OF ⊗OF0
OS-submodule of ΛI ⊗OF0

OS and as an OS-

module, it is a locally direct summand of rank n.

(2) (Kottwitz condition) The action of π ⊗ 1 ∈ OF ⊗OF0
OS on F has characteristic

polynomial

det(T − π ⊗ 1 | F) = (T − π)(T − π)n−1.

(3) Let F⊥ be the orthogonal complement of F in Λs
I ⊗OF0

OS with respect to the perfect

pairing

(ΛI ⊗OF0
OS)× (Λs

I ⊗OF0
OS)→ OS

induced by the perfect pairing in (1.2.4). We require that the map ΛI ⊗OF0
OS →

αΛs
I ⊗OF0

OS induced by ΛI ↪→ αΛs
I sends F to αF⊥, where αF⊥ denotes the image

of F⊥ under the isomorphism α : Λs
I ⊗OF0

OS
∼−→ αΛs

I ⊗OF0
OS.

(4) F is totally isotropic with respect to the pairing

s : (ΛI ⊗OF0
OS)× (ΛI ⊗OF0

OS)→ L ⊗OF0
OS

induced by s in (1.2.3), i.e., s(F ,F) = 0 in L ⊗OF0
OS.

The moduli functor Mnaive
I is representable by a closed OF -subscheme of the Grassmannian

Gr(n,ΛI)OF
. It turns out that Mnaive

I is not flat over OF . We define, as in [PR09], the local

model Mloc
I to be the flat closure of the generic fiber in Mnaive

I . By construction, we have a

closed immersion

Mloc
I ↪→ Mnaive

I

of projective schemes over OF whose generic fibers are isomorphic to the (n−1)-dimensional

projective space over F . We have the following results on further geometric properties of

the scheme Mloc
I .
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Theorem 1.2.2. (1) If I = {0}, then Mloc
{0} is flat projective of relative dimension n − 1

over OF , normal and Cohen-Macaulay with geometrically integral special fiber. More-

over, Mloc
{0} is smooth over OF on the complement of a single closed point.

(2) If I = {m}, then Mloc
{m} is smooth projective of relative dimension n− 1 over OF with

geometrically integral special fiber.

Let us explain the strategy of the proof of Theorem 1.2.2 in greater detail. For I = {0}

or {m}, let HI denote the group scheme1 of similitude automorphisms of the hermitian

quadratic module (Λm, q,L ) (resp. (Λ0, q,L , ϕ)), see Definition 3.2.2 and 3.2.3. Then HI

acts naturally on Mnaive
I , and hence on Mloc

I . Let k denote the algebraic closure of the residue

field of F . Using the results in Chapter 6, we can show that the (geometric) special fiber

Mloc
I ⊗OF

k has two orbits under the action of HI ⊗OF0
k. One of the orbits consists of

just one closed point. We call it the worst point of the local model. Using this, we are

reduced to proving that there is an open affine subscheme of Mloc
I containing the worst point

and satisfying the geometric properties (normality, Cohen-Macaulayness, etc) as stated in

Theorem 1.2.2.

To get the desired open affine subscheme of Mloc
I , we introduce a refinement MI , as a

closed subfunctor, of the moduli functor Mnaive
I such that

Mloc
I ⊂ MI ⊂ Mnaive

I .

It turns out that the underlying topological space of MI is equal to that of M
loc
I . For a matrix

A, we will write OF [A] for the polynomial ring over OF whose variables are entries of the

matrix A. Viewing MI as a closed subscheme of the Grassmannian Gr(n,ΛI)OF
, we can find

an open affine subscheme UI of MI which contains the worst point and which is isomorphic

to a closed subscheme of SpecOF [Z], where Z is an n× n matrix, such that the worst point

is defined by Z = 0 and π = 0. Then we explicitly write down the affine coordinate ring of

1In Chapter 6, we prove that HI is smooth over OF0
and isomorphic to the parahoric group scheme

attached to ΛI .
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UI defined by matrix identities. From this, we obtain the affine coordinate ring of UI ∩Mloc
I

by calculating the flat closure of UI .

Theorem 1.2.3. Let Y (resp. X) be a 2m × 2m (resp. 2m × 1) matrix with variables as

entries. Let H2m denote the 2m × 2m anti-diagonal unit matrix. There is an open affine

subscheme Uloc
I of Mloc

I which contains the worst point and satisfies the following properties.

(1) If I = {0}, then Uloc
{0} is isomorphic to

Spec
OF [Y |X](

∧2(Y |X), Y − Y t, (π
π
tr(H2mY )

2
+ π
√
θ)Y +XX t

) , in the (R-U) case,

Spec
OF [Y |X](

∧2(Y |X), Y − Y t, ( tr(H2mY )
2

− π)Y +XX t
) , in the (R-P) case.

(We remark that under the relation Y − Y t = 0, the polynomial tr(H2mY ), which is

the sum of the anti-diagonal entries of Y , is indeed divisible by 2 in OF [Y ].)

(2) If I = {m}, then Uloc
{m} is isomorphic to

Spec
OF [Y |X](

∧2(Y |X), Y − Y t, ( tr(H2mY )
t

+
√
θ)Y +XX t

) , in the (R-U) case,

SpecOF [X], in the (R-P) case.

Using the above result, we reduce the proof of Theorem 1.2.2 to a purely commutative

algebra problem. We need to show that the affine coordinate rings in Theorem 1.2.3 satisfy

the geometric properties stated in Theorem 1.2.2. The hardest part is to show the Cohen-

Macaulayness when I = {0}, where we use a converse version of the miracle flatness theorem.

We refer to Lemma 4.1.16 for more details.

We can also relate Mloc
I to the v-sheaf local models considered in [SW20, §21.4] (see

also §3.4). By the results in [AGLR22; FHLR22; GL24] (see Theorem 3.4.4), we already

know that the v-sheaf local models in our case are representable by normal projective flat

OF -schemes MI (denoted by Mloc
G,µ in §3.4).
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Theorem 1.2.4 (Theorem 3.4.5). The local model Mloc
I is isomorphic to MI .

As a corollary, our result gives a very explicit construction of MI and a more elementary

proof of the representability of the v-sheaf local models in our setting.

Remark 1.2.5. If F/F0 is of type (R-P), the arguments in [AGLR22] (see the paragraph after

Theorem 1.1 in loc. cit. ) also imply that MI is Cohen-Macaulay. However, our methods can

also deal with the (R-U) case, and we are able to give explicit local affine coordinate rings.

It should be pointed out that it could be useful to provide an explicit moduli interpreta-

tion of Mloc
I . As a by-product of our analysis of Uloc

I (see Lemma 4.1.13), we obtain such a

description in a special case.

Theorem 1.2.6. Suppose F/F0 is of type (R-U) and assume that the valuations of t and π0

are equal2. Then Mloc
{0} represents the functor

(Sch/OF )
op −→ Sets

which sends an OF -scheme S to the set of OS-modules F such that 3

LM1 (π-stability condition) F is an OF ⊗OF0
OS-submodule of Λ0 ⊗OF0

OS and as an OS-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of π ⊗ 1 ∈ OF ⊗OF0
OS on F has characteristic poly-

nomial

det(T − π ⊗ 1 | F) = (T − π)(T − π)n−1.

LM3 Let F⊥ be the orthogonal complement in Λs
0 ⊗OF0

OS of F with respect to the perfect

pairing

(Λ0 ⊗OF0
OS)× (Λs

0 ⊗OF0
OS)→ OS

2This holds if F0 is unramified over Q2, see some more discussion in Remark 4.1.14.
3As in [Smi15, Lemma 5.2, Remark 5.4], the conditions LM2 and LM5 are in fact implied by LM6.
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induced by the perfect pairing in (1.2.4). We require that the map Λ0 ⊗OF0
OS →

π
t
Λs

0⊗OF0
OS induced by Λ0 ↪→ π

t
Λs

I sends F to π
t
F⊥, where π

t
F⊥ denotes the image of

F⊥ under the isomorphism π
t
: Λs

0 ⊗OF0
OS

∼−→ π
t
Λs

0 ⊗OF0
OS.

LM4 (Hyperbolicity condition) The quadratic form q : Λ0⊗OF0
OS → L ⊗OF0

OS induced by

q : Λ0 → L satisfies q(F) = 0.

LM5 (Wedge condition) The action of π ⊗ 1− 1⊗ π ∈ OF ⊗OF0
OS on F satisfies

∧2(π ⊗ 1− 1⊗ π | F) = 0.

LM6 (Strengthened spin condition) The line ∧nF ⊂ W (Λ0)⊗OF
OS is contained in

Im
(
W (Λ0)

n−1,1
−1 ⊗OF

OS → W (Λ0)⊗OF
OS

)
.

(See §4.1.1.1 for the explanation of the notation in this condition.)

1.2.2 2-adic integral models

The second part of the thesis focuses on the 2-adic models of Shimura varieties.

Assume p = 2 and that (G, X) is a Shimura datum of abelian type. Let v|p be a place of

E and E be the completion of E at v. Denote by OE,(v) the localization of OE at v. Denote

by kE the residue field of E and by k the algebraic closure of kE. We will construct 2-adic

integral models over OE,(v) for ShK◦(G, X) under one of the following assumptions:

(A) (Gad, Xad) has no factor of type DH, GQp is unramified, and K◦
p is contained in some

hyperspecial subgroup;

(B) G = GU(n−1, 1) is the unitary similitude group over Q of signature (n−1, 1) for some

odd integer n ≥ 3, GQp is (wildly) ramified, and K◦
p is a special parahoric subgroup.

Theorem 1.2.7. Assume that either (A) or (B) holds.

(1) The E-scheme

ShK◦
p
(G, X) := lim←−

Kp

ShK◦
pK

p(G, X)

11



admits a G(Ap
f )-equivariant extension to a flat normal OE,(v)-scheme SK◦

p
(G, X). Any

sufficiently small Kp ⊂ G(Ap
f ) acts freely on SK◦

p
(G, X), and the quotient

SK◦(G, X) := SKp(G, X)/Kp

is a flat normal OE,(v)-scheme extending ShK◦(G, X).

(2) For any discrete valuation ring R of mixed characteristic 0 and p, the map

SK◦
p
(G, X)(R)→ SK◦

p
(G, X)(R[1/p])

is a bijection.

(3) There exists a diagram of OE-schemes

S̃ ad
K◦

p

π

yy

q

##

SK◦
p
(G, X)OE

Mloc
G◦,µh

,

where π is a G(Ap
f )-equivariant G

ad◦
Zp

-torsor, q is Gad◦
Zp

-equivariant, and for any suf-

ficiently small Kp ⊂ G(Ap
f ), the map S̃ ad

K◦
p
/Kp → Mloc

G◦,µh
induced by q is smooth of

relative dimension dimGad.

(4) If κ is a finite extension of kE and y ∈ SK◦
p
(G,X)(κ), then there exists z ∈Mloc

G◦,µh
(κ)

such that we have an isomorphism of henselizations

Oh
SK◦

p
(G,X),y ≃ Oh

Mloc
G◦,µh

,z.

Here in (3), Gad◦
Zp

denotes the parahoric group scheme over Zp with generic fiber Gad
Qp
,

defined by G◦ using the map B(GQp ,Qp) → B(Gad
Qp
,Qp) between extended Bruhat-Tits

buildings, see §7.3.2. The proof of Theorem 1.2.7 will be given in §7.3.2.2 and §7.3.3.3.

Remark 1.2.8. (1) When K◦
p is hyperspecial, Theorem 1.2.7 has been proved by Kim-

Madapusi [KM16]. In loc. cit., (Gad, Xad) is allowed to have a factor of type DH.
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(2) We expect that the results of van Hoften [vHof24] and Gleason-Lim-Xu [GLX22] can

be extended to the 2-adic models constructed in this thesis.

Let us give two interesting cases in which Theorem 1.2.7 can be applied to obtain integral

models over Z(2) for ShK◦
2K

2(G, X) when K◦
2 is a parahoric subgroup contained in some

hyperspecial subgroup. Let F be a totally real number field which is unramified at primes

over 2.

(i) G = ResF/QGSpin(V,Q), where GSpin(V,Q) is the spin similitude group over F

attached to a quadratic space (V,Q) of signature (n, 2) at each real place (assume

GSpin(V,Q) is unramified over Fv, v|2) and X is (a product of) the space of oriented

negative definite planes;

(ii) G = ResF/QGU, where GU is the unitary similitude group over F that is unramified

over Fv, v|2. We note that this case is also known by [RSZ21, Appendix A].

As in [KP18, Corolary 0.3], Theorem 1.2.7 implies the following.

Corollary 1.2.9. With the assumptions as in Theorem 1.2.7, the special fiber SK◦
p
(G, X)⊗

kE is reduced, and the strict henselizations of the local rings on SK◦
p
(G, X)⊗ kE have irre-

ducible components which are normal and Cohen-Macaulay.

If K◦
p is associated to a point x ∈ B(GQp ,Qp) which is a special vertex in B(GQp ,Qur

p ),

then the special fiber SK◦
p
(G, X)⊗ kE is normal and Cohen-Macaulay.

We now explain the idea to prove Theorem 1.2.7. The overall strategy follows that of

[KP18] and [KPZ24]. As in loc. cit., the crucial case is when (G, X) is of Hodge type. A

key step in this case involves identifying the formal neighborhood of SK(G, X) with that

of the local model Mloc
G,µh

. For p > 2, this identification is obtained in [KP18; KPZ24] by

constructing a versal deformation of p-divisible groups (equipped with a family of crystalline

tensors) over the formal neighborhood of the local model. The construction of this versal

deformation uses Zink’s theory of Dieudonné displays that classify p-divisible groups. For
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p = 2, we modify Zink’s theory by using Lau’s results from [Lau14], and obtain a similar

deformation theory for 2-divisible groups. A technical requirement arising in this step is that

we need to find a Hodge embedding

ι : (G, X) ↪→ (GSp(V, ψ), S±),

where V is a Q-vector space of dimension 2g equipped with a perfect alternating pairing

ψ, such that ιQp extends to a very good integral Hodge embedding (G, µh) ↪→ (GL(Λ), µg),

where Λ ⊂ VQp is a self-dual Zp-lattice with respect to ψ.

The concept of very good integral Hodge embeddings was introduced in [KPZ24, §5.2]

for p > 2, refining the notion of good integral Hodge embeddings in [KZ24, Definition 3.1.6].

We generalize the concept to the case p = 2 (see Definition 7.2.13). Roughly speaking, a

good integral integral Hodge embedding is an integral Hodge embedding

ι̃ : (G, µh) ↪→ (GL(Λ), µg)

extending ιQp such that ι̃ induces a closed immersion

Mloc
G,µh

↪→Mloc
GL(Λ),µg

⊗Zp OE = Gr(g,Λ)⊗Zp OE

of local models, where Gr(g,Λ) denotes the Grassmannian of rank g subspaces of Λ. The

key idea behind very good Hodge embeddings is that certain collection of tensors (sα) in the

tensor algebra Λ⊗, cutting out G in GL(Λ), should satisfy a “horizontal” condition under

the natural connection isomorphism. We refer to §7.2.2 for more details. For a good integral

Hodge embedding ι̃, Kisin-Pappas-Zhou proved in [KPZ24, Proposition 5.3.1, Lemma 5.3.2]

that this horizontality condition is satisfied in the following two cases (including for p = 2):

(1) For any x ∈Mloc
G,µh

(k), the image of the natural map

{
f ∈Mloc

G,µh
(k[[t]]) | f mod(t) = x

}
→ TxMloc

G,µh

spans, as a k-vector space, the tangent space TxMloc
G,µh

.
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(2) The tensors (sα) ⊂ Λ⊗ are in Λ⊗Zp Λ
∨.

Using this, they can produce sufficiently many very good Hodge embeddings when p > 2.

When p = 2, it is in general difficult to find a very good integral Hodge embedding ι̃ for

a Shimura datum of Hodge type. In the present thesis, we establish the existence of very

good Hodge embeddings under the assumption (A) or (B).

For Case (A), by applying [KPZ24, Proposition 5.3.1, Lemma 5.3.2], we are reduced to

presenting the stabilizer group scheme G as (ResOF /ZpH)Γ, where F/Qp is a tame Galois

extension with Galois group Γ and H is a reductive group over OF . For Case (B), we

directly prove that the tangent space of the local model Mloc
G,µh

at any closed point is spanned

by formal curves (see Lemma 7.3.17), using the explicit description of the (local) coordinate

rings of the unitary local models in the first part of the thesis.

1.3 Organization

We now give an overview of the thesis.

In Chapter 2, we discuss Bruhat-Tits theory for (odd) unitary groups in residue charac-

teristic two. In particular, we describe the maxi-minorant norms (norme maximinorante in

French) used in [BT87] in terms of graded lattice chains, and thus obtain a lattice-theoretic

description of the Bruhat-Tits buildings of unitary groups. As a corollary, we deduce Theo-

rem 1.2.1.

In Chapter 3, we first discuss some basic facts about quadratic extensions of 2-adic fields.

Then we equip the lattices Λi in Theorem 1.2.1 with the structure of hermitian quadratic

modules. Using this, we define the naive local models Mnaive
I and local models Mloc

I . In §3.4,

we review the Beilinson-Drinfeld Grassmannian (in mixed characteristic) and v-sheaf local

models of Scholze-Weinstein. Assuming Theorem 1.2.2, we show that the local models in

Theorem 1.2.2 represent the v-sheaf local models, thereby proving Theorem 1.2.4.

In Chapter 4 and 5, we prove Theorem 1.2.2, 1.2.3 and 1.2.6. We address the (R-U)

and (R-P) case separately, although the techniques are very similar. In each chapter, we

introduce the refinement MI of Mnaive
I by imposing certain linear algebraic conditions and
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then explicitly write down the local affine coordinate rings. We then obtain Theorem 1.2.3

by computing the flat closure of these affine coordinate rings. Utilizing the group action on

local models, we finish the proof of Theorem 1.2.2 and Theorem 1.2.6.

In Chapter 6, we show that, under certain conditions, hermitian quadratic modules étale

locally have a normal form up to similitude. Along the way, we prove in Theorem 6.1.13

and Theorem 6.2.8 that the similitude automorphism group scheme of Λm (resp. (Λ0, ϕ))

is affine smooth over OF0 and is isomorphic to the parahoric group scheme attached to Λm

(resp. Λ0). The results in this chapter are used in Chapter 4 and 5.

In Chapter 7, we construct 2-adic integral models of Shimura varieties of abelian type

and prove Theorem 1.2.7. Very often we will refer the readers to corresponding arguments

in [KP18; KPZ24] that are similar or can be directly extended to the case p = 2 without

repeating the proofs.

In §7.1, we review Lau’s results in [Lau14], which generalizes Zink’s theory of Dieudonné

displays so that we can classify 2-divisible groups over 2-adic rings (see Theorem 7.1.14). A

new feature of the theory of Dieudonné displays in the case p = 2 is the modified Verschiebung

map for the Zink ring (see Lemma 7.1.2). In §7.1.2, we construct the natural “connection

isomorphisms” for Dieudonné pairs when p = 2 (see Lemma 7.1.13), generalizing [KPZ24,

Lemma 5.1.3] for p > 2. In §7.1.4, we compare Lau’s classification of p-divisible groups with

Breuil-Kisin’s classification. This comparison is later used in §7.3.1.2 to construct (GW , µy)-

adapted deformations of p-divisible groups in the sense of Definition 7.2.17.

In §7.2, we apply Lau’s theory to construct a versal deformation of p-divisible groups,

extending results from [KP18, §3] to the case p = 2. We also generalize the concept of

very good Hodge embeddings, introduced in [KPZ24], to p = 2. This is used to construct

versal deformations of p-divisible groups with crystalline tensors (see Proposition 7.2.16). In

Proposition 7.2.18, we establish a criterion for determining when a deformation is (GW , µy)-

adapted, extending [Zho20, Proposition 4.7] to p = 2.

In §7.3, we apply results in §7.2 to construct 2-adic integral models of Shimura varieties
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of abelian type under certain assumptions (see Theorem 7.3.9). The overall strategy follows

that of [KP18; KPZ24]. We first treat the case of Shimura varieties of Hodge type and

then extend to Shimura varieties of abelian type by finding suitable Hodge type lifts while

closely following [KP18]. In §7.3.2.2 and §7.3.3.3, we complete the proof of Theorem 1.2.7

by verifying that the assumptions in Theorem 7.3.9 are satisfied in Case (A) or (B).

In §7.4, we show that, for an unramified group G over a 2-adic field F , if a stabilizer group

scheme G satisfies G(OF ) ⊂ H for some hyperspecial subgroup H of G(F ), then G can be

written as the tame Galois fixed points of the Weil restriction of scalars of a reductive group

scheme. This result is used in the construction of very good integral Hodge embeddings in

Case (A).
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CHAPTER 2

BRUHAT-TITS THEORY FOR UNITARY GROUPS IN RESIDUE
CHARACTERISTIC TWO

In this chapter, we discuss Bruhat-Tits theory for (odd) unitary groups in residue charac-

teristic two. In particular, we describe the maxi-minorant norms (norme maximinorante in

French) used in [BT87] in terms of graded lattice chains, and thus obtain a lattice-theoretic

description of the Bruhat-Tits buildings of unitary groups. As a corollary, we deduce Theo-

rem 1.2.1 in the Introduction.

2.1 Notations

Let F0 be a finite extension of Q2. Let ω : F0 → Z ∪ {+∞} denote the normalized

valuation on F0. Let F/F0 be a (wildly totally) ramified quadratic extension. The valuation

ω uniquely extends to a valuation on F , which is still denoted by ω. Denote by σ the

nontrivial element in Gal(F/F0). For x ∈ F , we will write xσ or x for the Galois conjugate

of x in F . Let OF (resp. OF0) be the ring of integers of F (resp. F0) with uniformizer π

(resp. π0). We assume NF/F0(π) = π0. Let k be the common residue field of F and F0.

Let V be an F -vector space of dimension n = 2m+ 1 ≥ 3 with a non-degenerate hermitian

form h : V × V → F . We assume that there exists an F -basis (ei)1≤i≤n of V such that

h(ei, ej) = δi,n+1−j for 1 ≤ i, j ≤ n. In this case, we will say that the hermitian form h is

split, or (V, h) is a split hermitian space.

(We remark that all results in Chapter 2 have analogous (simpler) counterparts when F0

is a finite extension of Qp for p > 2, see Remark 2.2.6 and 2.2.10.)

2.2 Bruhat-Tits buildings in terms of norms

In this section, we would like to recall the description of Bruhat-Tits buildings of odd

dimensional (quasi-split) unitary groups in residue characteristic two in terms of norms.

The standard reference is [BT87]. There is a summary (in English) in [Lem09, §1]. See also

[Tit79, Example 1.15, 2.10].

Let G := U(V, h) denote the unitary group over F0 attached to (V, h). Then there is an
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embedding of (enlarged) buildings

B(G,F0) ↪→ B(GLF (V ), F ).

Definition 2.2.1. A norm on V is a map α : V → R ∪ {+∞} such that for x, y ∈ V and

λ ∈ F , we have

α(x+ y) ≥ inf {α(x), α(y)} , α(λx) = ω(λ) + α(x), and x = 0⇔ α(x) = +∞.

Example 2.2.2. (1) Let V be a one dimensional F -vector space. Then any norm α on V

is uniquely determined by its value of a non-zero element in V : for any 0 ̸= x ∈ V and

λ ∈ F , we have

α(λx) = ω(λ) + α(x).

(2) Let V1 and V2 be two finite dimensional F -vector spaces. Let αi be a norm on Vi for

i = 1, 2. The direct sum of α1 and α2 is defined as a norm α1⊕α2 : V1⊕V2 → R∪{+∞}

via

(α1 ⊕ α2)(x1 + x2) := inf {α1(x1), α2(x2)} , for xi ∈ Vi.

Proposition 2.2.3 ([KP23, 15.1.11]). Let α be a norm on V . Then there exists a basis

(ei)1≤i≤n of V and n real numbers ci for 1 ≤ i ≤ n such that

α(
n∑

i=1

xiei) = inf
1≤i≤n

{ω(xi)− ci} .

In this case, we say (ei)1≤i≤n is a splitting basis of α, or α is split by (ei)1≤i≤n.

Denote by N the set of all norms on V . Then N carries a natural GLF (V )(F )-action via

(gα)(x) := α(g−1x), for g ∈ GLF (V )(F ) and x ∈ V. (2.2.1)

For each F -basis (ei)1≤i≤n of V , we have a corresponding maximal F -split torus T of

GLF (V ) whose F -points are diagonal matrices with respect to the basis (ei)1≤i≤n. The
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cocharacter group X∗(T ) has a Z-basis (µi)1≤i≤n, where µi : Gm,F → T is a cocharacter

characterized by

µi(t)ej = t−δijej, for t ∈ F× and 1 ≤ i, j ≤ n, (2.2.2)

where δij is the Kronecker symbol. Fixing an origin, we may identify the apartment A ⊂

B(GLF (V ), F ) corresponding to T with X∗(T )R.

Proposition 2.2.4 ([BT84b, 2.8, 2.11]). The map

A = X∗(T )R −→ N (2.2.3)

n∑
i=1

ciµi 7→

(
n∑

i=1

xiei 7→ inf
1≤i≤n

{ω(xi)− ci}

)
,

where ci ∈ R, xi ∈ F and
∑n

i=1 xiei ∈ V , extends uniquely to an isomorphism of GLF (V )-sets

B(GLF (V ), F )
∼−→ N .

Moreover, the image of X∗(T )R in N is the set of norms on V admitting (ei)1≤i≤n as a

splitting basis.

By Proposition 2.2.4, we can identify the building B(GLF (V ), F ) with the set N of norms

on V . Next we will describe the image of the inclusion B(G,F0) ↪→ B(GLF (V ), F ) = N in

terms of maxi-minorant norms (norme maximinorante in French).

Set Fσ := {λ− λσ | λ ∈ F}. Then Fσ is an F0-subspace of F and we denote by F/Fσ the

quotient space. We can associate the hermitian form h with a map q : V → F/Fσ, called

the pseudo-quadratic form in [BT87], defined by

q(x) :=
1

2
h(x, x) + Fσ, for x ∈ V.

The valuation ω induces a quotient norm ω on the F0-vector space F/Fσ:

ω(λ+ Fσ) := sup {ω(λ+ µ− µσ) | µ ∈ F} , for λ ∈ F .
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Definition 2.2.5. Let α be a norm on V . We say α minorizes (minores in French) (h, q) if

for all x, y ∈ V ,

α(x) + α(y) ≤ ω(h(x, y)) and α(x) ≤ 1

2
ω(q(x)).

Following the terminology of [KP23, Remark 15.2.12], we say α is maxi-minorant (maximi-

norante in French) for (h, q) if α minorizes (h, q) and α is maximal for this property.

Denote by Nmm (⊂ N ) the set of maxi-minorant norms for (h, q) on V . One can easily

check that Nmm carries a G(F0)-action via (2.2.1). Here we view G(F0) as a subgroup of

GLF (V ).

Remark 2.2.6. Let α be a norm on V . Set

α∨(x) := inf
y∈V
{ω(h(x, y))− α(y)} , for x ∈ V .

Then α∨ is also a norm on V , called the dual norm of α. We say α is self-dual if α = α∨. If

F has odd residue characteristic, then by [BT87, 2.16], the norm α ∈ Nmm if and only if α

is self-dual.

Note that for x ∈ V , we have

q(x) =
1

2
h(x, x) + Fσ = {1

2
h(x, x) + µ− µσ | µ ∈ F}

= {λh(x, x) | λ ∈ F, λ+ λσ = 1} ∈ F/Fσ.

Therefore,

ω(q(x)) = sup {ω(λh(x, x)) | λ ∈ F, λ+ λσ = 1}

= ω(h(x, x)) + sup {ω(λ) | λ ∈ F, λ+ λσ = 1} .

Set

δ := sup {ω(λ) | λ ∈ F, λ+ λσ = 1} . (2.2.4)

We obtain that α minores (h, q) if and only if for x, y ∈ V , we have

α(x) + α(y) ≤ ω(h(x, y)) and α(x) ≤ 1

2
ω(h(x, x)) +

1

2
δ.
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Definition 2.2.7. Let (V, h) be a (split) hermitian F -vector space of dimension n as in §2.1.

(1) A Witt decomposition of V is a decomposition V = V− ⊕ V0 ⊕ V+ such that V− and

V+ are two maximal isotropic subspaces of V , and V0 is the orthogonal complement of

V− ⊕ V+ with respect to h. As we assume h is split, we have dimF V− = dimF V+ = m

and dimF V0 = 1.

(2) For any F -basis (ei)1≤i≤n of V , we put

V− := spanF {e1, . . . , em} , V0 := spanF {em+1} , V+ := spanF {em+2, . . . , en} .

We say (ei)1≤i≤n induces a Witt decomposition of V if V− ⊕ V0 ⊕ V+ is a Witt decom-

position of V and h(ei, ej) = δi,n+1−j for 1 ≤ i, j ≤ n.

Let (ei)1≤i≤n be a basis of V inducing a Witt decomposition. Such a basis defines a

maximal F0-split torus S of G whose F0-points are given byg ∈ G(F0) ⊂ GLF (V )(F )
for some xi ∈ F0 and 1 ≤ i ≤ n

gei = xiei and xixn+1−i = xm+1 = 1

 .

The centralizer of S in G⊗F0 F ≃ GLF (V ) is T . For m + 2 ≤ i ≤ n, let λi : Gm,F0 → S be

the cocharacter of S defined by

λi(t)ei = t−1ei, λi(t)en+1−i = ten+1−i, and λi(t)ej = ej for t ∈ F×
0 and j ̸= i, n+ 1− i.

(2.2.5)

Then the set (λi)m+2≤i≤n forms a Z-basis of X∗(S). Fixing an origin, we may identify the

apartment A(G,S) of B(G,F0) corresponding to S with X∗(S)R. Then we have the following

proposition.

Proposition 2.2.8. The map

X∗(S)R −→ Nmm (2.2.6)

n∑
i=m+2

ciλi 7→

(
n∑

i=1

xiei 7→ inf{ω(xi)− ci, ω(xm+1) +
1

2
δ | 1 ≤ i ≤ n and i ̸= m+ 1}

)
,
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where ci := −cn+1−i if 1 ≤ i ≤ m, extends uniquely to an isomorphism of G(F0)-sets

B(G,F0)→ Nmm.

The image of X∗(S)R in Nmm is the set of maxi-minorant norms admitting (ei)1≤i≤n as a

splitting basis.

Moreover, a norm α ∈ Nmm is special, i.e., α corresponds to a special point in B(G,F0),

if and only if there is a basis (fi)1≤i≤n of V inducing a Witt decomposition and a constant

C ∈ 1
4
Z such that for xi ∈ F , we have

α(
n∑

i=1

xifi) = inf{ω(xi)− C, ω(xj) + C, ω(xm+1) +
1

2
δ | 1 ≤ i < m+ 1 and m+ 1 < j ≤ n}.

Proof. See [BT87, 2.9, 2.12] and [Tit79, Example 2.10].

Corollary 2.2.9. Let α ∈ N . Then α ∈ Nmm if and only if there exists a basis (fi)1≤i≤n of

V inducing a Witt decomposition V = V− ⊕ V0 ⊕ V+ such that α = α± ⊕ α0, where α± is

a self-dual norm on V− ⊕ V+ split by the basis (fi)i ̸=m+1, and α0 is the unique norm on V0

with α(fm+1) =
1
2
δ.

Proof. (⇒) We can view X∗(S)R as a subset of Nmm via the map (2.2.6). Using the G(F0)-

action, we may assume α lies in X∗(S)R, say α =
∑n

i=m+2 ciλi ∈ X∗(S)R for ci ∈ R. Then

we take (fi) to be (ei), which induces a Witt decomposition V = V− ⊕ V0 ⊕ V+. Define the

norm α± on V− ⊕ V+ by

V− ⊕ V+ −→ R ∪ {+∞}∑
1≤i≤n,i̸=m+1

xifi 7→ inf {ω(xi)− ci | 1 ≤ i ≤ n and i ̸= m+ 1} , (2.2.7)

where we define ci := −cn+1−i for 1 ≤ i ≤ m. Clearly α± is split by (fi)i ̸=m+1. As

h(fi, fn+1−j) = δij and ci = −cn+1−i for 1 ≤ i, j ≤ n, we deduce that α± is self-dual by

[KP23, Remark 15.2.7]. Moreover, from the expression of (2.2.6), we immediately see that

α decomposes as α = α± ⊕ α0.
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(⇐) Under the assumptions, there exist n real numbers ci for 1 ≤ i ≤ n such that

cn+1−i = −ci and α± is given by the norm as in (2.2.7). Let S ′ be the maximal F0-split torus

in G corresponding to the basis (fi)1≤i≤n. Let (λ′i)m+2≤i≤n be a Z-basis of X∗(S
′) defined

as in (2.2.5). Then α is the norm corresponding to the point
∑n

i=m+2 ciλ
′
i ∈ X∗(S

′)R via a

similar map as in (2.2.6). In particular, α ∈ Nmm.

Remark 2.2.10. Assume F has odd residue characteristic. Then δ = 0, and hence α0 is self-

dual. Then the norm α±⊕α0 as in the Corollary 2.2.9 is self-dual. When F has odd residue

characteristic, any self-dual norm admits a splitting basis inducing a Witt decomposition of

V , see for example [KP23, Proposition 15.2.10]. Then we see again that α ∈ Nmm if and

only α is self-dual.

Remark 2.2.11. We can define a “twisted” Galois action of Gal(F/F0) on GLF (V )(F ) as

follows: for g ∈ GLF (V )(F ), define σ(g) to be the element satisfying

h(g−1x, y) = h(x, σ(g)y), for x, y ∈ V .

Then we have G(F0) = GLF (V )(F )σ=1, the set of fixed points of σ. This twisted Galois

action induces an involution on N = B(GLF (V ), F ) = B(G⊗F0 F, F ), which is still denoted

by σ. Next we give an explicit description of this involution.

Let (ei)1≤i≤n be a basis inducing a Witt decomposition V = V− ⊕ V0 ⊕ V+. Let T

be the induced maximal torus of GLF (V ). Let A(T ) ⊂ B(GLF (V ), F ) be the apartment

corresponding to T . We can identify A(T ) with X∗(T )R through the injection (cf. (2.2.3))

X∗(T )R −→ N

n∑
i=1

ciµi 7→

 n∑
i=1

xiei 7→ inf

for 1 ≤ i ≤ n and i ̸= m+ 1

ω(xm+1)− cm+1 +
1
2
δ, ω(xi)− ci


 ,

where µi is defined as in (2.2.2), xi ∈ F and
∑n

i=1 xiei ∈ V . As G is quasi-split, we can pick

a σ-stable point as the origin such that the twisted σ-action on A(T ) is transported by the

twisted σ-action on X∗(T )R. For α ∈ N , there is a g ∈ GLF (V )(F ) such that gα ∈ X∗(T )R,
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since GLF (V )(F ) acts transitively on the apartments of N . Then

gα = α1 ⊕ (α0 + C),

where α1 is a norm on V−⊕V+ admitting (ei)i ̸=m+1 as a splitting basis, α0 is the norm on V0

as in the Corollary 2.2.9, and C ∈ R is a certain constant. The twisted σ-action on X∗(T )R

implies that σ(α1 ⊕ (α0 + C)) = α∨
1 ⊕ (α0 − C). Hence, we see that σ acts on α as

σ(α) = σ(g−1) (α∨
1 ⊕ (α0 − C)) .

For α ∈ Nmm = B(G,F0), we may take g ∈ G(F0) and C = 0. Thus, we get an inclusion

B(G,F0) ↪→ B(GLF (V ), F )σ=1.

The inclusion is strict: any norm of the form α1⊕α0, where α1 is a self-dual norm on V−⊕V+

but not split by any basis of V−⊕V+ inducing a Witt decomposition, lies in B(GLF (V ), F )σ=1

but not in B(G,F0). Such a norm can only exist when the residue characteristic of F is two.

For an explicit example, see Example 2.3.7.

2.3 Bruhat-Tits buildings in terms of lattices

In this section, we will translate the results in §2.2 into the language of lattices, which is

more useful in the theory of local models.

Definition 2.3.1. Let V be a finite dimensional F -vector space.

(1) A lattice L in V is a finitely generated OF -submodule of V such that L⊗OF
F = V .

(2) A (periodic) lattice chain of V is a non-empty set L• of lattices in V such that lattices

in L• are totally ordered with respect to the inclusion relation, and λL ∈ L• for λ ∈ F×

and L ∈ L•.

(3) A graded lattice chain is a pair (L•, c), where L• is a lattice chain of V and c : L• → R

is a strictly decreasing function such that for any λ ∈ F and L ∈ L•, we have

c(λL) = ω(λ) + c(L).
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The function c is called a grading of L•.

(4) An F -basis (ei)1≤i≤n of V is called adapted to a graded lattice chain (L•, c) of V if for

every L ∈ L•, there exist x1, . . . , xn ∈ F such that (xiei)1≤i≤n is an OF -basis of L. In

this case, we also say (L•, c) is adapted to the basis (ei)1≤i≤n.

Remark 2.3.2. Since L• is stable under homothety, the set L• is determined by a finite

number of lattices satisfying

πL0 ⊊ Lr−1 ⊊ Lr−2 ⊊ · · · ⊊ L1 ⊊ L0.

We say (L0, L1, . . . , Lr−1) is a segment of L•, and the integer r is the rank of L•.

Denote by GLC the set of graded lattice chains of V . There is a GLF (V )(F )-action on

GLC: for (L•, c) ∈ GLC and g ∈ GLF (V )(F ), define g(L•, c) := (gL•, gc), where gL• consists

of lattices of the form gL for L ∈ L•, and (gc)(gL) := c(L) for L ∈ L•.

Lemma 2.3.3. (1) There is a one-to-one correspondence between N and GLC. More pre-

cisely, given α ∈ N , we can associate a graded lattice chain (Lα, cα), where Lα is the

set of following lattices

Lα,r = {x ∈ V | α(x) ≥ r} , for r ∈ R,

and the grading cα is defined by

cα(Lα,r) = inf
x∈Lα,r

α(x).

Conversely, given a graded lattice chain (L•, c) ∈ GLC, we can associate a norm

α(L•,c)(x) := sup {c(L) | x ∈ L and L ∈ L•} .

We say the norm α and the graded lattice chain (Lα, cα) in the above bijection corre-

spond to each other.

(2) The bijection in (1) is GLF (V )(F )-equivariant.
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(3) Let (ei)1≤i≤n be a basis of V . Let (L•, c) be the graded lattice chain corresponding to

a norm α via (1). Then (ei)1≤i≤n is adapted to (L•, c) if and only if (ei)1≤i≤n is a

splitting basis of α.

Proof. The proof of (1) and (3) can be found in [KP23, Proposition 15.1.21]. The assertion

in (2) can be checked by direct computation.

Using the above lemma, we can easily extend operations like direct sums or duality on

norms to graded lattice chains.

Lemma 2.3.4. (1) Let V and V ′ be two finite dimensional F -vector spaces. Let α and α′

be two norms on V and V ′ respectively. Let (L•, c) and (L′
•, c

′) be graded lattice chains

corresponding to α and α′ respectively. Then the graded lattice chain (L•, c)⊕ (L′
•, c

′)

corresponding to α⊕ α′ is a pair (L• ⊕ L′
•, c⊕ c′), where L• ⊕ L′

• is the set of lattices

of the form Lα,r ⊕ Lα′,r for r ∈ R, and

(c⊕ c′)(Lα,r ⊕ Lα′,r) := inf {c(Lα,r), c
′(Lα′,r)} .

(2) Let (L•, c) be the graded lattice chain corresponding to a norm α on V . Then the dual

norm α∨ corresponds to the graded lattice chain (L∨
• , c

∨), where L∨
• is the set of the

lattices of the form L∨ := {x ∈ V | h(x, L) ∈ OF} for L ∈ L•, and

c∨(L∨) := −c(L−)− 1,

where L− is the smallest member of L• that properly contains L.

Proof. The proof of (1) is straightforward. The proof of (2) can be found in [KP23, Fact

15.2.18].

We say (L•, c) is self-dual if (L•, c) = (L∨
• , c

∨).

Proposition 2.3.5. Let (L•, c) ∈ GLC. Then (L•, c) corresponds to a norm in Nmm if and

only if there exists a basis (fi)1≤i≤n of V inducing a Witt decomposition V = V− ⊕ V0 ⊕ V+
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and (L•, c) decomposes as (L±
• , c

±)⊕ (L0
•, c

0), such that (L±
• , c

±) is a self-dual graded lattice

chain of V− ⊕ V+ adapted to the basis (fi)i ̸=m+1, and (L0
•, c

0) is the graded lattice chain

corresponding to the norm α0 on V0.

Proof. This is a translation of Corollary 2.2.9 in view of the previous two lemmas.

Remark 2.3.6. Let (L±
• , c

±) be a self-dual graded lattice chain adapted to the basis (fi)i ̸=m+1

as in Proposition 2.3.5. Then for any L ∈ L±
• , there exist xi ∈ F for i ̸= m + 1 such that

(xifi)i ̸=m+1 forms an OF -basis of L. As h(fi, fj) = δi,n+1−j, we see that L is isomorphic to an

orthogonal sum of “hyperbolic planes” of the form H(i) (i ∈ Z). Here H(i) denotes a lattice

in a two dimensional hermitian F -vector space (W,h) such that H(i) is OF ⟨x, y⟩ spanned

by some x, y ∈ W with h(x, x) = h(y, y) = 0 and h(x, y) = πi.

A lattice in W which is isomorphic to H(i) for some i ∈ Z is also called a hyperbolic

lattice in the sense of [Kir17, §2]. For any lattice K in W , define the norm ideal n(K) of

K to be the ideal in OF0 generated by h(x, x) for x ∈ K. Let K∨ denote the dual lattice

of K with respect to the hermitian form h on W . Then by [Kir17, §2] (see also [Jac62,

Proposition 9.2 (a)]), any lattice K ⊂ W satisfying K = πiK∨ (that is, K is πi-modular)

and n(K) = n(H(i)) is isomorphic to H(i).

Example 2.3.7. Let F0 = Q2 and F = Q2(
√
3). Pick uniformizers π =

√
3 − 1 ∈ F and

π0 = −2 ∈ F0 so that π2 + 2π − 2 = 0. We have

δ = sup {ω(λ) | λ ∈ F, λ+ λσ = 1} = ω(
π

2
) = −1

2
.

Let (V, h) be a 3-dimensional (split) hermitian F -vector space. Let (ei)1≤i≤3 be a basis of V

inducing a Witt decomposition V = V− ⊕ V0 ⊕ V+. Denote V± := V− ⊕ V+ = F ⟨e1, e3⟩. Set

f1 := π−1(e1 + e3), f2 := e2, f3 := π−1(e1 − e3).

Then L1 := OF ⟨f1, f3⟩ is a self-dual lattice in (V±, h). By [Jac62, Equation (9.1)], the

self-dual hyperbolic plane H(0) in V± has norm ideal 2OF0 . On the other hand, we have
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n(L1) = OF0 by direct computation. In particular, the self-dual lattice L1 in (V±, h) is

not isomorphic to H(0), and hence L1 is not adapted to any basis of V± induing a Witt

decomposition.

Now define

L := L1 ⊕OFf2.

Then the graded lattice chain (L•, c), where L• := {πiL}i∈Z and c(πiL) := i
2
+ δ

2
= i

2
− 1

4
,

defines a norm

α : V −→ R ∪ {+∞}
3∑

i=1

xifi 7→ inf
1≤i≤3

{ω(xi)−
1

4
}.

Then we see α lies in the fixed point set B(GLF (V ), F )σ=1 = N σ=1, but does not lie in Nmm.

2.4 Parahoric subgroups and lattices

Let us keep the notations as in §2.2. In particular, the set (ei)1≤i≤n denotes a basis

of V inducing a Witt decomposition V = V− ⊕ V0 ⊕ V+ and S denotes the corresponding

maximal F0-split torus of G = U(V, h). Denote by (ai)m+2≤i≤n ∈ X∗(S) the dual basis of

(λi)m+2≤i≤n ∈ X∗(S).

By the calculations in [Tit79, Example 1.15], the relative root system Φ = Φ(G,S) is

{±ai ± aj | m+ 2 ≤ i, j ≤ n, i ̸= j} ∪ {±ai,±2ai | m+ 2 ≤ i ≤ n} ,

and the affine root system Φa is

{±ai ± aj +
1

2
Z | m+ 2 ≤ i, j ≤ n, i ̸= j}

∪{±ai +
1

2
δ +

1

2
Z | m+ 2 ≤ i ≤ n} ∪ {±2ai +

1

2
+ δ + Z | m+ 2 ≤ i ≤ n}.

Here δ is defined as in (2.2.4). These affine roots endow X∗(S)R with a simplicial structure.

Following [Tit79, Example 3.11], we pick a chamber defined by the inequalities

1

2
δ < am+2 < · · · < an <

1

2
δ +

1

4
.
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Then we obtain m+ 1 vertices v0, . . . , vm in X∗(S)R such that for 0 ≤ i ≤ m,

aj(vi) =


1
2
δ if m+ 2 ≤ j ≤ n− i,

1
2
δ + 1

4
if n− i < j ≤ n.

Now each vi defines a (maxi-minorant) norm, and hence a graded lattice chain, by Proposition

2.2.8 and Lemma 2.3.3. Let λ ∈ F be an element satisfying ω(λ) = δ. We shall see an explicit

expression of λ in Lemma 3.2.4. Define

Λi := OF ⟨π−1e1, . . . , π
−1ei, ei+1, . . . , em+1, λem+2, . . . , λen⟩, (2.4.1)

Λ′
i = OF ⟨e1, . . . , em, em+1, λem+2, . . . , λen−i, λπen+1−i, . . . , λπen⟩.

Then the graded lattice chain corresponding to vi is of rank 2 and has a segment

πΛi ⊂ Λ′
i ⊂ Λi.

Let G̃ = GU(V, h) be the unitary similitude group attached to the hermitian space (V, h).

Let I be a non-empty subset of {0, 1, . . . ,m}. Define

PI :=
{
g ∈ G̃(F0) | gΛi = Λi, for i ∈ I

}
.

As in [PR09, 1.2.3], the Kottwitz map restricted to PI is trivial. In particular, we obtain

that the (maximal) parahoric subgroup of G̃(F0) is the stabilizer of vi in G̃(F0), which also

equals the stabilizer of Λi in G̃(F0) (as the stabilizer of Λ
′
i is larger). More generally, we have

the following proposition.

Proposition 2.4.1. Denote G̃ = GU(V, h). The subgroup PI is a parahoric subgroup of

G̃(F0). Any parahoric subgroup of G̃(F0) is conjugate to a subgroup PI for a unique I ⊂

{0, 1, . . . ,m}. The conjugacy classes of special parahoric subgroups correspond to the sets

I = {0} and {m}.

Proof. The results are similar to those in [PR08, §4] and [PR09, 1.2.3]. The first two as-

sertions follow from the observation that G̃(F0) acts transitively on the chambers in the
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building, and each I determines a (unique) facet in a chamber. The last assertion follows

from the explicit expressions of the vertices vi and Proposition 2.2.8.
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CHAPTER 3

WILDLY RAMIFIED ODD UNITARY LOCAL MODELS

In this chapter, we construct local models for unitary similitude groups of odd dimension

n ≥ 3 with special parahoric level structure when the signature is (n− 1, 1).

3.1 Quadratic extensions of 2-adic fields

We start with some basic facts about quadratic extensions of 2-adic fields. The readers

can find more details in [Jac62, §5] and [OMe00, §63].

Proposition 3.1.1. Let E be a finite extension of Q2 of degree d with ring of integer OE.

Let e (resp. f) be the ramification degree (resp. residue degree) of the field extension E/Q2.

Note that d = ef .

(1) The map sending a to E(
√
a) defines a bijection between E×/(E×)2 and the set of

isomorphism classes of field extensions of E of degree at most two. Furthermore, the

cardinality of E×/(E×)2 is 22+d. In particular, we have 22+d − 1 quadratic extensions

of E.

(2) Let U be the unit group of OE and ϖ be a uniformizer of OE. For i ≥ 1, let Ui :=

1 + ϖiOE be a subgroup of U . Then Ui is contained in U2 for i ≥ 2e + 1 and the

quotient U2e/(U2e∩U2) has two elements corresponding to the trivial extension and the

unramified quadratic extension of E. Note that U2e = 1 + 4OE.

(3) Any non-trivial element in E×/(E×)2 has a representative of the following three forms:

(i) a unit in U2e − U2e+1 (elements in U2e but not in U2e+1),

(ii) a prime element in E,

(iii) a unit in U2i−1 − U2i for some 1 ≤ i ≤ e.

The corresponding quadratic extensions in (ii) and (iii) are ramified. Following [Jac62,

§5], we will say the (ramified) quadratic extensions in (ii) and (iii) are of type (R-P)
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and (R-U) respectively. There are 21+d quadratic extensions of E of type (R-P) and

21+d − 2 quadratic extensions of E of type (R-U).

(4) Let E(
√
θ)/E be a quadratic extension of type (R-U) for some unit θ ∈ U2i−1−U2i for

some 1 ≤ i ≤ e. Then there exists a prime π in E(
√
θ) and a prime π0 in E satisfying

π2 − tπ + π0 = 0

for some t ∈ OE with ord(t) = e + 1 − i, where ord denotes the normalized valuation

on E.

Proof. (1) The bijection is well-known from Kummer theory. The formula for the cardinality

can be found in [OMe00, 63:9].

(2) See [OMe00, 63:1, 63:3].

(3) See [OMe00, 63:2]. The number of quadratic extensions of type (R-U) or (R-P) follows

from the cardinality formula of E×/(E×)2 in (1).

(4) Let ϖ be any prime in E. By assumption, θ = 1 +ϖ2i−1u for some unit u. Set

π :=
1−
√
θ

ϖi−1
∈ E(

√
θ).

Let π be the Galois conjugate of π. Then

π + π =
2

ϖi−1
and ππ = −ϖu.

Now take π0 to be −ϖu and t to be 2
ϖi−1 . Then t ∈ OE, as ord(t) = e + 1 − i ≥ 1, and π

satisfies

π2 − tπ + π0 = 0.

In particular, π is a prime element in E(
√
θ).

Example 3.1.2. The (ramified) quadratic extension Q2(
√
3)/Q2 is of type (R-U), while

Q2(
√
2)/Q2 is a quadratic extension of type (R-P).
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Let us return to the setting in §2.1. By Proposition 3.1.1, we can find uniformizers π ∈ F

and π0 ∈ F0 such that the quadratic extension F/F0 falls into one of the following two

distinct cases1:

(R-U) F = F0(
√
θ), where θ is a unit in OF0 . The uniformizer π satisfies

π2 − tπ + π0 = 0.

Here t ∈ OF0 with π0|t|2 and ω(t) depends only on F . We have
√
θ = 1 − 2π

t
and

θ = 1− 4π0

t2
.

(R-P) F = F0(
√
π0), where π

2 + π0 = 0.

Lemma 3.1.3. Let F, F0, π and π0 be as above.

(1) Suppose F/F0 is of type (R-U). Then the inverse different of F/F0 is 1
t
OF .

(2) Suppose F/F0 is of type (R-P). Then the inverse different of F/F0 is 1
2π
OF .

Proof. As π satisfies an Eisenstein polynomial f , by [Ser13, Chapter III, §6, Corollary 2] and

[Ser13, Chapter I, §6, Proposition 18], we obtain that OF = OF0 [π] and the inverse different

of F/F0 is given by

δ−1
F/F0

=
1

f ′(π)
OF .

More precisely,

(1) when F/F0 is of type (R-U), then f(T ) = T 2 − tT + π0 and δ−1
F/F0

= 1
2π−t
OF = 1

t
OF ,

as t|2.

(2) when F/F0 is of type (R-P), then f(T ) = T 2 + π0 and δ−1
F/F0

= 1
2π
OF .

1When F0/Q2 is an unramified finite extension, there is a description in [Cho16, §2A] of these two cases
in terms of the ramification groups of Gal(F/F0).
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3.2 Hermitian quadratic modules and parahoric group schemes

In this section, we define hermitian quadratic modules following [Ans18, §9] and relate

them to parahoric group schemes.

Let R be an OF0-algebra. The non-trivial Galois involution on OF extends to a map

OF ⊗OF0
R→ OF ⊗OF0

R, x⊗ r 7→ x⊗ r

for x ∈ OF and r ∈ R. We will also denote the map by a 7→ a for a ∈ OF ⊗OF0
R. The norm

map on OF induces the map

NF/F0 : OF ⊗OF0
R→ R, a 7→ aa.

Definition 3.2.1 ([Ans18, Definition 9.1]). Let R be an OF0-algebra. Let d ≥ 1 be an

integer. Consider a triple (M, q,L ), where M is a locally free OF ⊗OF0
R-module of rank

d, L is an invertible R-module, and q : M → L is an L -valued quadratic form. Let

f : M × M → L denote the symmetric R-bilinear form sending (x, y) ∈ M × M to

f(x, y) := q(x+ y)− q(x)− q(y) ∈ L .

We say the triple (M, q,L ) is a hermitian quadratic module of rank d over R if for any

a ∈ OF ⊗OF0
R and any x, y ∈M , we have

q(ax) = NF/F0(a)q(x) and f(ax, y) = f(x, ay). (3.2.1)

A quadratic form q : M → L satisfying (3.2.1) is called an L -valued hermitian quadratic

form on M .

Definition 3.2.2. Let (M1, q1,L1) and (M2, q2,L2) be two hermitian quadratic modules

over an OF0-algebra R. A similitude isomorphism or simply similitude between (Mi, qi,Li)

for i = 1, 2 is a pair (φ, γ) of isomorphisms, where φ : M1
∼−→ M2 is an isomorphism of

OF ⊗OF0
R-modules and γ : L1

∼−→ L2 is an isomorphism of R-modules such that

q2(φ(m1)) = γ(q1(m1)), for any m1 ∈M1.
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We will write

Sim ((M1, q1,L1), (M2, q2,L2)) , or simply Sim (M1,M2), (3.2.2)

for the functor over R which sends an R-algebra S to the set Sim(M1 ⊗R S,M2 ⊗R S) of

similitude isomorphisms between (Mi ⊗R S, qi ⊗R S,Li ⊗R S) for i = 1, 2. In the case

(M1, q1,L1) = (M2, q2,L2), we will write

Sim(M1, q1,L1), or simply Sim(M1), (3.2.3)

for Sim ((M1, q1,L1), (M2, q2,L2)). This is in fact a group functor, and represented by an

affine group scheme of finite type over R.

Definition 3.2.3. Let R be an OF0-algebra. Denote by CR the category of quadruples

(M, q,L , ϕ) such that (M, q,L ) is a hermitian quadratic module over R and ϕ is an R-

bilinear form ϕ :M ×M → L such that for x, y ∈M , we have

ϕ(x, πy) = q(x+ y)− q(x)− q(y), ϕ(πx, y) = ϕ(x, πy),

ϕ(x, y) = ϕ

(
π

π
y, x

)
, ϕ(x, x) =

t

π0
q(x).

(3.2.4)

Here t := π + π. In particular, t = 0 if F/F0 is of type (R-P). We will say an object

(M, q,L , ϕ) ∈ CR is a hermitian quadratic module with ϕ, or simply a hermitian quadratic

module.

Let (Mi, qi,Li, ϕi) ∈ CR for i = 1, 2. A similitude isomorphism preserving ϕ between

(Mi, qi,Li, ϕi) is a pair (φ, γ) of isomorphisms such that (φ, γ) is a similitude between

(Mi, qi,Li), and for m1,m
′
1 ∈M1, we have

ϕ2(φ(m1), φ(m
′
1)) = γ(ϕ1(m1,m

′
1)).

We will use a similar notation as in (3.2.2) and (3.2.3) to denote the functor of similitudes

preserving ϕ between two hermitian quadratic modules in CR.

Recall that we defined in §2.4 lattices Λi for 0 ≤ i ≤ m via

Λi = OF ⟨π−1e1, . . . , π
−1ei, ei+1, . . . , em+1, λem+2, . . . , λen⟩,
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where λ is an element in F such that

ω(λ) = δ = sup
x∈F
{ω(x) | x+ x = 1} .

The stabilizer of Λi is a maximal parahoric subgroup of GU(V, h). We sometimes call these

lattices Λi standard lattices. A more explicit expression of λ is given as follows.

Lemma 3.2.4. (1) Suppose F/F0 is of type (R-U). Then we may take λ = π
t
.

(2) Suppose F/F0 is of type (R-P). Then we may take λ = 1
2
.

Proof. (1) By construction, we have ω(λ) ≥ ω(π
t
) > ω(1

2
). Write λ = a+ b

√
θ ∈ F for some

a, b ∈ F0. Then λ = a− b
√
θ. Since λ+ λ = 1, we get a = 1

2
and

ω(λ) = ω(
1

2
+ b
√
θ).

If ω(1
2
) ̸= ω(b

√
θ), then

ω(λ) = min{ω(1
2
), ω(b

√
θ)} ≤ ω(

1

2
),

which is a contradiction. Therefore, we may assume ω(b) = ω(b
√
θ) = ω(1

2
). Then we can

write b = 1
2
u for some unit u in OF0 . Then

ω(λ) = ω(
1

2
+

1

2
u(1− 2π

t
)) = ω((

1

2
+ u)− π

t
u).

Since ω(π) = 1/2, we have ω(1
2
+ u) ̸= ω(π

t
u). It implies that

ω(λ) = min{ω(1
2
+ u), ω(

π

t
)} ≤ ω(

π

t
)

Thus, we have ω(λ) = ω(π
t
).

(2) By construction, we have ω(λ) ≥ ω(1
2
). Write λ = a + bπ ∈ F for some a, b ∈ F0.

Then λ = a− bπ. Since λ + λ = 1, we have a = 1
2
. As ω(1

2
) is even and ω(bπ) is odd, they

cannot be equal. We get

ω(λ) = ω(
1

2
+ bπ) = min{ω(1

2
), ω(bπ)} ≤ ω(

1

2
).

Thus, we have ω(λ) = ω(1
2
).
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Set

ε :=


t in the (R-U) case,

2 in the (R-P) case.

The hermitian form h defines a symmetric F0-bilinear form s(−,−) : V × V → F0 and a

quadratic form q : V → F0 via

s(x, y) := ε−1TrF/F0 h(x, y) and q(x) :=
1

2
s(x, x), for x, y ∈ V .

Set L := ε−1OF0 , which is an invertible OF0-module. Then for 0 ≤ i ≤ m, we obtain induced

forms

s : Λi × Λi −→ L and q : Λi −→ L . (3.2.5)

It is straightforward to verify the following lemma.

Lemma 3.2.5. (1) For 0 ≤ i ≤ m, the triple (Λi, q,L ) forms an L -valued hermitian

quadratic module of rank n over OF0 in the sense of Definition 3.2.1.

(2) Define

ϕ : Λ0 × Λ0 → ε−1OF0 , (x, y) 7→ ε−1TrF/F0 h(x, π
−1y).

Then (Λ0, q,L , ϕ) is a hermitian quadratic module with ϕ.

Now we state two theorems on hermitian quadratic modules. The proofs will be given in

Chapter 6.

Theorem 3.2.6. The functor Sim(Λm) (resp. Sim(Λ0, ϕ)) is representable by an affine

smooth group scheme over OF0 with generic fiber GU(V, h). Moreover, the scheme Sim(Λ)

(resp. Sim(Λ0, ϕ)) is isomorphic to the parahoric group scheme attached to Λm (resp. Λ0).

Proof. See Theorem 6.1.13 and 6.2.8, Corollary 6.1.14 and 6.2.9.
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Theorem 3.2.7 (Theorem 6.1.12, 6.2.7). Let R be an OF0-algebra. Let (M, q,L ) (resp.

(N, q,L , ϕ)) be a hermitian quadratic module over R of rank n. Assume that (M, q,L )

(resp. (N, q,L , ϕ)) is of type Λm (resp. Λ0) in the sense of Definition 6.1.8 (resp. Defi-

nition 6.2.4). Then the hermitian quadratic module (M, q,L ) is étale locally isomorphic to

(Λm, q, ε
−1OF0)⊗OF0

R (resp. (Λ0, q, ε
−1OF0 , ϕ)⊗OF0

R) up to similitude.

3.3 Construction of the unitary local models

3.3.1 Naive local models

Let I = {0} or {m}. Then I corresponds to a special parahoric subgroup of GU(V, h) by

Proposition 2.4.1. Let ΛI denote the corresponding lattice, which is either Λ0 or Λm. Set

Λh
I := {x ∈ V | h(x,ΛI) ⊂ OF} , Λs

I := {x ∈ V | s(x,ΛI) ⊂ OF0} .

The symmetric pairing s on V induces a perfect OF0-bilinear pairing

ΛI × Λs
I → OF0 , (3.3.1)

which is still denotes by s(−,−). By Lemma 3.1.3, one can check that

Λs =


Λh in the (R-U) case,

π−1Λh in the (R-P) case.

(3.3.2)

Note that

Λh
0 = OF ⟨λ

−1
e1, . . . , λ

−1
em, em+1, em+2, . . . , en⟩,

Λh
m = OF ⟨λ

−1
e1, . . . , λ

−1
em, em+1, πem+2, . . . , πen⟩.

Using (3.3.2) and Lemma 3.2.4, we have

Λs
0 ↪→ Λ0 ↪→

π

t
Λs

0, in the (R-U) case, πΛs
0 ↪→ Λ0 ↪→

π

2
Λs

0, in the (R-P) case,

and

Λs
m ↪→ Λm ↪→ 1

t
Λs

m, in the (R-U) case, πΛs
m ↪→ Λm ↪→ 1

2
Λs

m, in the (R-P) case.
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In summary, we have an inclusion of lattices

ΛI ↪→ αΛs
I , where α :=


π/ε if I = {0},

1/ε if I = {m}.

We define the naive unitary local model of type I (and of signature (n− 1, 1)) as follows.

Definition 3.3.1. Let Mnaive
I be the functor

Mnaive
I : (Sch/OF )

op −→ Sets

which sends an OF -scheme S to the set of OS-modules F such that

(1) F is an OF ⊗OF0
OS-submodule of ΛI ⊗OF0

OS and as an OS-module, it is a locally

direct summand of rank n.

(2) (Kottwitz condition) The action of π ⊗ 1 ∈ OF ⊗OF0
OS on F has characteristic

polynomial

det(T − π ⊗ 1 | F) = (T − π)(T − π)n−1.

(3) Let F⊥ be the orthogonal complement of F in Λs
I ⊗OF0

OS with respect to the perfect

pairing

(ΛI ⊗OF0
OS)× (Λs

I ⊗OF0
OS)→ OS

induced by (3.3.1). We require that the map ΛI ⊗OF0
OS → αΛs

I ⊗OF0
OS induced by

the inclusion ΛI ↪→ αΛs
I sends F to αF⊥, where αF⊥ denotes the image of F⊥ under

the isomorphism α : Λs
I ⊗OF0

OS
∼−→ αΛs

I ⊗OF0
OS.

(4) F is totally isotropic with respect to the form (ΛI⊗OF0
OS)×(ΛI⊗OF0

OS)→ L⊗OF0
OS

induced by s in (3.2.5), i.e., s(F ,F) = 0 in L ⊗OF0
OS.

Lemma 3.3.2. The functor Mnaive
I is representable by a projective scheme over OF and the

generic fiber is isomorphic to the (n− 1)-dimensional projective space Pn−1
F over F .
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Proof. This is similar to [PR09, 1.5.3]. The representability follows by identifying Mnaive
I with

a closed subscheme of the Grassmannian Gr(n,ΛI)OF
classifying locally direct summands of

rank n in ΛI .

As π ⊗ 1 is a semisimple operator on V ⊗F0 F , we have

V ⊗F0 F = Vπ ⊕ Vπ,

where Vπ (resp. Vπ) denotes the π-eigenspace (resp. π-eigenspace) of π⊗1. Both eigenspaces

Vπ and Vπ are n-dimensional F -vector spaces. We claim that Vπ is totally isotropic for the

induced symmetric pairing, which is still denoted by s(−,−), on V ⊗F0 F . Indeed, for any

x, y ∈ Vπ, we have (π ⊗ 1)x = πx and (π ⊗ 1)y = πy. Then

s(x, y) = π−2s(πx, πy) = π−2s ((π ⊗ 1)x, (π ⊗ 1)y) = (π0/π
2)s(x, y).

So s(x, y) = 0. Similarly, we obtain that Vπ is also totally isotropic. It implies that the

induced pairing

s(−,−) : Vπ × Vπ → F (3.3.3)

is perfect.

Let Pn−1
F be the projective space associated with Vπ. For any F -algebra R, define

φ : Mnaive
I (R) −→ Pn−1

F (R), F 7→ ker(π ⊗ 1− 1⊗ π | F).

By the Kottwitz condition for F , this is a well-defined map. Conversely, let G ∈ Pn−1
F (R),

i.e., G is a direct summand of rank one of Vπ ⊗F R. The perfect pairing (3.3.3) gives a

(unique) direct summand G ′ of rank n− 1 of Vπ ⊗F R such that s(G,G ′) = 0. Set

F := G ⊕ G ′ ⊂ V ⊗F0 R.

Then by our construction, we have F ∈ Mnaive
I (R). This process defines an inverse map of φ.

In particular, φ is bijective, and hence the generic fiber of Mnaive
I is isomorphic to Pn−1

F .

Similar arguments as in [Pap00, Proposition 3.8] on the dimension of the special fiber of

Mnaive
I show that Mnaive

I is not flat over OF .
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3.3.2 Local models

Definition 3.3.3. The local model Mloc
I is defined to be the (flat) Zariski closure of the

generic fiber of Mnaive
I in Mnaive

I .

By construction, the scheme Mloc
I is a flat projective scheme of (relative) dimension n−1

over OF . In Chapter 4-5, we will prove Theorem 1.2.2-1.2.6 in the Introduction. The proof

of Theorem 1.2.2 and 1.2.3 will be divided into four cases, depending on the index set I

and the ramification types of F/F0, see §4-5.2. In the course of the proof, we also establish

Theorem 1.2.6.

3.4 Comparison with the v-sheaf local models

In this section, assuming Theorem 1.2.2 and 1.2.3, we relate the local model Mloc
I for

I = {0} or {m} to the v-sheaf local models considered in [SW20, §21.4] and [AGLR22]. We

give a proof of Theorem 1.2.4.

We first briefly introduce the v-sheaf local models in the sense of Scholze-Weinstein. Let

G be any connected reductive group over a complete discretely valued field L/Qp, where

p is any prime. Let B(G,L) denote the associated (extended) Bruhat-Tits building, which

carries an action of G(L). For x ∈ B(G,L), the associated Bruhat-Tits stabilizer group

scheme Gx, in the sense of [BT84a], is a smooth affine group scheme over OL such that the

generic fiber of Gx is G and Gx(OL) is the stabilizer subgroup of x in G(L). By definition,

the neutral component G◦x is the parahoric group scheme associated to x. Recall that a

smooth affine group scheme G over OL is quasi-parahoric if the neutral component of G is

a parahoric group scheme and G◦x(OL̆) ⊂ G(OL̆) ⊂ Gx(OL̆) for some Bruhat-Tits stabilizer

group scheme Gx. Here L̆ denotes the completion of the maximal unramified extension of L

in the algebraic closure Qp of Qp.

Definition 3.4.1. A local model triple over L is a triple (G, {µ} ,G), where G is a connected

reductive group over L, {µ} is the G(L)-conjugacy class of a minuscule cocharacter µ :

Gm,L → GL, and G is a quasi-parahoric group scheme for G.
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We will often write (G, µ) (resp. (G, µ)) for (G, {µ} ,G) (resp. (G, {µ})). A morphism of

local model triples (G, µ)→ (G ′, µ′) is a group scheme homomorphism G → G ′ taking {µ} to

{µ′}.

Let (G, {µ} ,G) be a local model triple over L. Denote by E the reflex field of {µ}. Then

we can form the Beilinson-Drinfeld Grassmannian GrG, which is a v-sheaf over OL. We have

the following properties.

Theorem 3.4.2. (1) The structure morphism GrG −→ SpdOL is ind-proper and ind-

representable in spatial diamonds. The generic fiber of GrG can be naturally identified

with the B+
dR-affine Grassmannian GrG.

(2) If G ↪→ H is a closed immersion of parahoric group schemes, then the induced morphism

GrG → GrH is a closed immersion.

Proof. See [SW20, Proposition 20.3.6, Proposition 20.5.4, Theorem 21.2.1], or [AGLR22,

Theorem 4.9, Lemma 4.10].

Recall that the B+
dR-affine Grassmannian GrG is a union of (open) Schubert diamonds

Gr◦G,{µ} indexed by geometric conjugacy classes {µ} of cocharacters of G. Let GrG,{µ} denote

the v-closure of Gr◦G,{µ}. If {µ} is minuscule with reflex field E, then GrG,{µ} is representable

by a projective scheme over E (see [SW20, Proposition 19.4.2]). More precisely, GrG,{µ} is

the associated diamond of the flag variety FℓG,{µ} := G/P{µ}, where

P{µ} := {g ∈ G | lim
t→∞

µ(t)gµ(t)−1 exists}.

is the parabolic subgroup associated to {µ}. Sometimes, we will write µ for {µ} for simplicity.

Definition 3.4.3. Let GrG,OE
be the base change of GrG. The v-sheaf local model Mv

G,µ is

the v-closure of GrG,µ inside GrG,OE
.

Recall that given a scheme X proper over OE, there is a functorially associated v-sheaf

X♢ over SpdOE. For details of the definition, we refer to [AGLR22, §2.2]. We have the

following representability result of the v-sheaf local models.
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Theorem 3.4.4 (Scholze-Weinstein Conjecture). Assume {µ} is minuscule. Then there

exists a unique (up to unique isomorphism) flat, projective and normal OE-scheme Mloc
G,µ

with a closed immersion

Mloc♢
G,µ ↪→ GrG ⊗OL

OE

prolonging Fℓ♢G,µ

∼−→ GrG,µ ⊂ GrG⊗LE. In particular, Mloc♢
G,µ = Mv

G,µ.

Proof. See [AGLR22, Theorem 1.1] and [GL24, Corollary 1.4].

We also have Mloc
G,µ = Mloc

G◦,µ by [SW20, Proposition 21.4.3]. By functoriality, any mor-

phism (G, µ)→ (G ′, µ′) of local model triples induces a natural morphism Mloc
G,µ → Mloc

G′,µ′ of

local models.

Now we return to the situation in §2.1. In particular, we let G denote the unitary

similitude group GU(V, h) over F0 attached to a split hermitian F/F0-vector space (V, h) of

dimension n = 2m+1 ≥ 3, and there is an F -basis (ei)1≤i≤n of V such that h(ei, ej) = δi,n+1−j

for 1 ≤ i, j ≤ n. Let G be the (special) parahoric group scheme corresponding to the index

set I = {0} or {m}. Let T be the maximal torus of G consisting of diagonal matrices with

respect to the basis (ei)1≤i≤n. Under the isomorphism

GF ≃ GLn,F ×Gm,F ,

we can identify X∗(T ) with Zn×Z. Let µ := µn−1,1 ∈ X∗(T ) be the (minuscule) cocharacter

corresponding to

(1, 0(n−1), 1) ∈ Zn × Z.

We write 0(n−1) for a list of n− 1 copies of 0. Then the reflex field E of {µ} equals F . Let

Mloc denote the local model Mloc
I for I = {0} or {m} constructed in §3.3.2.

Theorem 3.4.5. The scheme Mloc is isomorphic to Mloc
G,µ in Theorem 3.4.4.

Proof. We have shown that the scheme Mloc is normal, flat and projective over OF . By the

uniqueness part of Theorem 3.4.4, it suffices to show that

Mv
G,µ = Mloc,♢.

44



By our concrete description of G in Corollary 6.1.14 and 6.2.9, we have a closed immersion

G ↪→ GL(Λ) ≃ GL2n (3.4.1)

over OF0 , prolonging the closed immersion G ↪→ GLF0(V ) ≃ GL2n,F0 , where Λ is either Λ0 or

Λm depending on what G is. Let T ′ be the maximal torus of GL2n,F0 consisting of diagonal

matrices. Then the map G ↪→ GLF0(V ) transports {µn−1,1} to the geometric conjugacy class

{µn} of cocharacters of T ′. Here, µn corresponds to (1(n), 0(n)) ∈ X∗(T
′) ≃ Z2n. By Theorem

3.4.2 (2), the closed immersion (3.4.1) induces a closed immersion

Mv
G,µ ↪→ Mv

GL2n,µn
⊗OF0

OF = Gr(n, 2n)♢OF
,

and we may identify Mv
G,µ with the v-closure of Fℓ♢G,µ inside Gr(n, 2n)♢OF

.

By Lemma 3.3.2, we can identify the generic fiber Mloc ⊗OF
F with Pn−1

F ≃ FℓG,µ, and

there exists a closed immersion

FℓG,µ ↪→ FℓGL2n,µn,F = Gr(n, 2n)F

induced by the embedding G ↪→ GLF0(V ). By our construction of Mloc, the scheme Mloc

is the Zariski closure of FℓG,{µ} along FℓG,µ ↪→ FℓGL2n,µn,F ↪→ Gr(n, 2n)OF
. Applying the

diamond functor, we see that Mloc,♢ is the v-closure of Fℓ♢G,µ inside Gr(n, 2n)♢OF
. Hence, we

have Mv
G,µ = Mloc,♢.

This completes the proof of Theorem 1.2.4.

Remark 3.4.6. The proof of the above theorem also gives another proof of the representability

of the v-sheaf local model Mv
G,µ in our setting.
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CHAPTER 4

THE CASE I = {0}

4.1 The case I = {0} and (R-U)

In this section, we will prove Theorem 1.2.2 in the case when I = {0} and the quadratic

extension F/F0 is of (R-U) type. In particular, we have

π2 − tπ + π0 = 0,

where t ∈ OF0 with π0|t|2. Consider the following ordered OF0-basis of Λ0 and Λs
0:

Λ0 :
π

t
em+2, . . . ,

π

t
en, e1, . . . , em, em+1,

π0
t
em+2, . . . ,

π0
t
en, πe1, . . . , πem, πem+1, (4.1.1)

Λs
0 : em+2, . . . , en,

t

π
e1, . . . ,

t

π
em, em+1, πem+2, . . . , πen, te1, . . . , tem, πem+1. (4.1.2)

4.1.1 A refinement of Mnaive
{0} in the (R-U) case

In this subsection, we will propose a refinement of the functor Mnaive
{0} . We first recall the

“strengthened spin condition” raised by Smithling in [Smi15].

4.1.1.1 The strengthened spin condition

Take g1, . . . , g2n to be the ordered F -basis

e1 ⊗ 1− πe1 ⊗ π−1, . . . , en ⊗ 1− πen ⊗ π−1, πe1 ⊗
π

t
− e1 ⊗

π0
t
, . . . , πen ⊗

π

t
− en ⊗

π0
t

of V ⊗F0 F . Then with respect to the basis (gi)1≤i≤2n, the symmetric pairing s(−,−)⊗F0 F

on V ⊗F0 F is represented by the 2n×2n matrix anti-diag(θ, . . . , θ). Recall θ = 1− 4π0

t2
. One

can easily check that

• (gi)1≤i≤n is a basis for Vπ (the π-eigenspace of the operator π ⊗ 1 acting on V ⊗F0 F ),

• (gi)n+1≤i≤2n is a basis for Vπ (the π-eigenspace of the operator π⊗1 acting on V ⊗F0F ).

Take f1, . . . , f2n to be the ordered OF -basis

e1 ⊗ 1, . . . , em+1 ⊗ 1,
π

t
em+2 ⊗ 1, . . . ,

π

t
en ⊗ 1,
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πe1 ⊗ 1, . . . , πem+1 ⊗ 1,
π0
t
em+2 ⊗ 1, . . . ,

π0
t
en ⊗ 1

of Λ0 ⊗OF0
OF . This is the base change of the basis in (4.1.1), but in different order. We

have

(g1, . . . , g2n) = (f1, . . . , f2n)



Im+1 0 −π0

t
Im+1 0

0 t
π
Im 0 −πIm

− 1
π
Im+1 0 π

t
Im+1 0

0 − t
π2 Im 0 π2

π0
Im


. (4.1.3)

As in [Smi15], we use the following convenient notations:

• For an integer i, we write

i∨ := n+ 1− i, i∗ := 2n+ 1− i.

For S ⊂ {1, . . . , 2n} of cardinality n, we write

S∗ := {i∗ | i ∈ S} , S⊥ := {1, . . . , 2n} \S∗.

Let σS be the permutation on {1, . . . , 2n} sending {1, . . . , n} to S in increasing order

and sending {n+ 1, . . . , 2n} to {1, . . . , 2n} \S in increasing order. Denote by sgn(σS) ∈

{±1} the sign of σS.

• Set W := ∧n(V ⊗F0 F ). For S = {i1 < · · · < in} ⊂ {1, . . . , 2n} of cardinality n, we

write

eS := fi1 ∧ · · · ∧ fin ∈ W, similarly, gS := gi1 ∧ · · · ∧ gin ∈ W.

Note that (eS){#S=n} (or (gS){#S=n}) is an F -basis of W .

• Set

W±1 := spanF {gS ± sgn(σS)gS⊥ | S ⊂ {1, . . . , 2n} and #S = n} .
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This is a sub F -vector space of W . For any OF -lattice Λ in V ⊗F0 F , set

W (Λ) := ∧n
(
Λ⊗OF0

OF

)
, W (Λ)±1 := W±1 ∩W (Λ).

Then W (Λ) (resp. W (Λ)±1) is an OF -lattice in W (resp. W±1).

• Set

W n−1,1 :=
(
∧n−1Vπ

)
⊗F (Vπ), W

n−1,1
±1 := W n−1,1 ∩W±1, W (Λ)n−1,1

±1 := W n−1,1
±1 ∩W (Λ).

Then the strengthened spin condition states that

For any OF -algebra R and F ∈ Mnaive
{0} (R), the line ∧nF ⊂ W (Λ0)⊗OF

R is contained

in the space

Im
(
W (Λ0)

n−1,1
−1 ⊗OF

R→ W (Λ0)⊗OF
R
)
.

4.1.1.2 The definition of the refinement

Definition 4.1.1. Let M{0} be the functor

M{0} : (Sch/OF )
op −→ Sets

which sends an OF -scheme S to the set of OS-modules F such that

LM1 (π-stability condition) F is an OF ⊗OF0
OS-submodule of Λ0 ⊗OF0

OS and as an OS-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of π ⊗ 1 ∈ OF ⊗OF0
OS on F has characteristic

polynomial

det(T − π ⊗ 1 | F) = (T − π)(T − π)n−1.

LM3 Let F⊥ be the orthogonal complement in Λs
0⊗OF0

OS of F with respect to the perfect

pairing

s(−,−) : (Λ0 ⊗OF0
OS)× (Λs

0 ⊗OF0
OS)→ OS.
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We require the map Λ0 ⊗OF0
OS → (π

t
Λs

0)⊗OF0
OS induced by Λ0 ↪→ π

t
Λs

0 sends F to

π
t
F⊥, where π

t
F⊥ denotes the image of F⊥ under the isomorphism π

t
: Λs

0⊗OF0
OS

∼−→
π
t
Λs

0 ⊗OF0
OS.

LM4 (Hyperbolicity condition) The quadratic form q : Λ0 ⊗OF0
OS → L ⊗OF0

OS induced

by q : Λ0 → L satisfies q(F) = 0.

LM5 (Wedge condition) The action of π ⊗ 1− 1⊗ π ∈ OF ⊗OF0
OS satisfies

∧2(π ⊗ 1− 1⊗ π | F) = 0.

LM6 (Strengthened spin condition) The line ∧nF ⊂ W (Λ0)⊗OF
OS is contained in

Im
(
W (Λ0)

n−1,1
−1 ⊗OF

OS → W (Λ0)⊗OF
OS

)
.

Then M{0} is representable by a projective OF -scheme, which is a closed subscheme of

Mnaive
{0} . Note that over the generic fiber of M{0}, the quadratic form q is determined by s via

q(x) = 1
2
s(x, x). So, over the generic fiber, the hyperbolicity condition LM4 is implied by

the Condition (3) in Mnaive
{0} . Similarly as in [PR09, 1.5] and [Smi15, 2.5], we can deduce that

the rest of the conditions of M{0} do not affect the generic fiber of Mnaive
{0} , and hence M{0}

and Mnaive
{0} have the same generic fiber.

Hence, we have closed immersions

Mloc
{0} ⊂ M{0} ⊂ Mnaive

{0}

of projective schemes over OF , where all schemes have the same generic fiber.

4.1.2 An affine chart U{0} around the worst point

Set

F0 := (π ⊗ 1)(Λ0 ⊗OF0
k).

Then we can check that F0 ∈ M{0}(k). We call it the worst point of M{0}.

With respect to the basis (4.1.1), the standard affine chart around F0 in Gr(n,Λ0)OF
is

the OF -scheme of 2n × n matrices
(

X
In

)
. We denote by U{0} the intersection of M{0} with
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the standard affine chart in Gr(n,Λ0)OF
. The worst point F0 of M{0} is contained in U{0}

and corresponds to the closed point defined by X = 0 and π = 0. The conditions LM1-6

yield the defining equations for U{0}. We will analyze each condition in detail. A reader who

is only interested in the affine coordinate ring of U{0} may proceed directly to Proposition

4.1.10.

4.1.2.1 Condition LM1

Let R be an OF -algebra. With respect to the basis (4.1.1), the operator π ⊗ 1 acts on

Λ0 ⊗OF0
R via the matrix  0 −π0In

In tIn

 .

Then the π-stability condition LM1 on F means there exists an n × n matrix P ∈ Mn(R)

such that  0 −π0In

In tIn


X
In

 =

X
In

P.

We obtain P = X + tIn and X2 + tX + π0In = 0.

4.1.2.2 Condition LM2

We have already shown that π ⊗ 1 acts on F via X + tIn. Then the Kottwitz condition

LM2 translates to

det(T − (X + tIn)) = (T − π)(T − π)n−1.

Equivalently,

det(T − (X + πIn)) = (T + π − π)T n−1.

Note that

det(T − (X + πIn)) =
n∑

i=0

(−1)i tr(∧i(X + πIn))T
n−i.

Then by comparing the coefficients of T n−i, the Kottwitz condition LM2 becomes

tr(X + πIn) = π − π, tr
(
∧i(X + πIn)

)
= 0, for i ≥ 2. (4.1.4)
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4.1.2.3 Condition LM3

With respect to the bases (4.1.1) and (4.1.2), the perfect pairing

s(−,−) : (Λ0 ⊗OF0
R)× (Λs

0 ⊗OF0
R)→ R

and the map Λ0 ⊗OF0
R→ π

t
Λs

0 ⊗OF0
R are represented respectively by the matrices

S =



2
t
H2m 0 H2m 0

0 2
t

0 1

H2m 0 2π0

t
H2m 0

0 1 0 2π0

t


and N =



Im 0 0 0 0 0

0 −Im 0 0 −tIm 0

0 0 0 0 0 −t

0 0 0 Im 0 0

0 t
π0
Im 0 0 t2−π0

π0
Im 0

0 0 t
π0

0 0 t2

π0


,

where H2m denotes the 2m × 2m anti-diagonal unit matrix, and Im denotes the m × m

identity matrix.

Then the Condition LM3 translates to

X
In


t

S

N
X
In


 = 0, or equivalently,

X
In


t



0 t2−2π0

tπ0
Hm 0 0 t2−3π0

π0
Hm 0

2
t
Hm 0 0 Hm 0 0

0 0 t
π0

0 0 t2−2π0

π0

0 Hm 0 0 t2−2π0

t
Hm 0

Hm 0 0 2π0

t
Hm 0 0

0 0 2 0 0 t



X
In

 = 0. (4.1.5)

Write

X =


A B E

C D F

G H x

 ,
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where A,B,C,D ∈Mm(R), E,F ∈Mm×1(R), G,H ∈M1×m(R) and x ∈ R. Then Equation

(4.1.5) translates to

2

t
CtHmA+

t2 − 2π0
tπ0

AtHmC +
t

π0
GtG+HmC + CtHm = 0, (LM3-1)

2

t
CtHmB +

t2 − 2π0
tπ0

AtHmD +
t

π0
GtH +HmD +

t2 − 3π0
π0

AtHm +
t2 − 2π0

t
Hm = 0,

(LM3-2)

2

t
CtHmE +

t2 − 2π0
tπ0

AtHmF +
t

π0
Gtx+HmF +

t2 − 2π0
π0

Gt = 0, (LM3-3)

2

t
DtHmA+

t2 − 2π0
tπ0

BtHmC +
t

π0
H tG+HmA+DtHm +

2π0
t
Hm = 0, (LM3-4)

2

t
DtHmB +

t2 − 2π0
tπ0

BtHmD +
t

π0
H tH +HmB +

t2 − 3π0
π0

BtHm = 0, (LM3-5)

2

t
DtHmE +

t2 − 2π0
tπ0

BtHmF +
t

π0
xH t +HmE +

t2 − 2π0
π0

H t = 0, (LM3-6)

2

t
F tHmA+

t2 − 2π0
tπ0

EtHmC +
t

π0
xG+ 2G+ F tHm = 0, (LM3-7)

2

t
F tHmB +

t2 − 2π0
tπ0

EtHmD +
t

π0
xH + 2H +

t2 − 3π0
π0

EtHm = 0, (LM3-8)

2

t
F tHmE +

t2 − π0
tπ0

EtHmF +
t

π0
x2 + 2x+

t2 − 2π0
π0

x+ t = 0. (LM3-9)

4.1.2.4 Condition LM4

Recall L = t−1OF0 . With respect to the basis (4.1.1), the induced (L ⊗OF0
R)-valued

symmetric pairing on Λ0 ⊗OF0
R is represented by the matrix

S1 =



0 Hm 0 0 t2−2π0

t
Hm 0

Hm 0 0 2π0

t
Hm 0 0

0 0 2 0 0 t

0 2π0

t
Hm 0 0 π0Hm 0

t2−2π0

t
Hm 0 0 π0Hm 0 0

0 0 t 0 0 2π0


.

Convention: Throughout the rest of the thesis, we often encounter a matrix M = (Mij) ∈

Mℓ×ℓ(R) whose diagonal entries are of the form Mii = 2aii for some aii ∈ R. We then use
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1
2
Mii to denote aii. When we refer to “half of the diagonal of M”, we mean the row matrix

consisting of the entries 1
2
Mii for 1 ≤ i ≤ ℓ.

The Condition LM4 translates toX
In


t

S1

X
In

 = 0 and half of the diagonal of

X
In


t

S1

X
In

 equals zero.

One can check that the diagonal entries of
(

X
In

)t
S1

(
X
In

)
are indeed divisible by 2 in R.

Equivalently, we obtain the following equations.

CtHmA+ AtHmC + 2GtG+
2π0
t
HmC +

2π0
t
CtHm = 0, (LM4-1)

CtHmB + AtHmD + 2GtH +
2π0
t
HmD +

t2 − 2π0
t

AtHm + π0Hm = 0, (LM4-2)

CtHmE + AtHmF + 2xGt +
2π0
t
HmF + tGt = 0, (LM4-3)

DtHmA+BtHmC + 2H tG+
t2 − 2π0

t
HmA+

2π0
t
DtHm + π0Hm = 0, (LM4-4)

DtHmB +BtHmD + 2H tH +
t2 − 2π0

t
HmB +

t2 − 2π0
t

BtHm = 0, (LM4-5)

DtHmE +BtHmF + 2xH t +
t2 − 2π0

t
HmE + tH t = 0, (LM4-6)

F tHmA+ EtHmC + 2xG+ tG+
2π0
t
F tHm = 0, (LM4-7)

F tHmB + EtHmD + 2xH + tH +
t2 − 2π0

t
EtHm = 0, (LM4-8)

F tHmE + EtHmF + 2x2 + 2tx+ 2π0 = 0, (LM4-9)

half of the diagonal of matrices in LM4-1,5,9 equals 0. (LM4-10)

4.1.2.5 Condition LM5

We already know from §4.1.2.1 that π ⊗ 1 acts as right multiplication by X + tIn on F .

Thus, the wedge condition LM5 on F translates to

∧2(X + πIn) = 0.

4.1.2.6 Condition LM6

We will use the same notations as in §4.1.1.1. To find the equations induced by the

strengthened spin condition LM6 on F , we need to determine an OF -basis of W (Λ0)
n−1,1
−1 .
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Definition 4.1.2. Let S ⊂ {1, . . . , 2n} be a subset of cardinality n.

(1) We say S is of type (n− 1, 1) if

#(S ∩ {1, . . . , n}) = n− 1 and #(S ∩ {n+ 1, . . . , 2n}) = 1.

Such S necessarily has the form {1, . . . , ĵ, . . . , n, n+ i} for some i, j ∈ {1, . . . , n}.

(2) Let S be of type (n − 1, 1). Denote by iS the unique element in S ∩ {n+ 1, . . . , 2n}.

Define S ≼ S⊥ if iS ≤ iS⊥ .

Set

B := {S ⊂ {1, . . . , 2n} | #S = n} , Bn−1,1 := {S ∈ B | S is of type (n− 1, 1)} ,

B0 :=
{
S ∈ Bn−1,1 | S ≼ S⊥} .

By construction, the F -vector spaceW (Λ0)
n−1,1
−1 ⊗OF

F equalsW n−1,1
−1 , which is an F -subspace

of W .

Lemma 4.1.3. (1) The set {eS | S ∈ B} (resp. {gS | S ∈ B}) is an F -basis of W .

(2) For S ∈ B, denote

hS := gS − sgn(σS)gS⊥ .

The set {hS | S ∈ B0} is an F -basis of W n−1,1
−1 .

Proof. (1) As W = ∧n(V ⊗F0 F ) by definition, the statement is a standard fact about the

wedge product of vector spaces.

(2) By [Smi15, Lemma 4.2], the F -space W n−1,1
−1 is spanned by the set {hS | S ∈ Bn−1,1}.

These hS’s are not linearly independent over F . Indeed, for S ∈ Bn−1,1, we have hS⊥ =

−sgn(σS)hS by using that (S⊥)⊥ = S and sgn(σS) = sgn(σS⊥) (by [Smi15, Lemma 2.8]).

However, the set {hS | S ∈ B0} is F -linearly independent, since {gS | S ∈ B} is F -linearly

independent. So the set {hS | S ∈ B0} is an F -basis of W n−1,1
−1 .
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Definition 4.1.4. Let w =
∑

S∈B cSeS ∈ W . The worst term of w is defined to be

WT (w) :=
∑

S∈B(w)

cSeS,

where B(w) ⊂ B consists of elements S ∈ B such that ω(cS) ≤ ω(cT ) for all T ∈ B.

Recall
√
θ = 1− 2π/t ∈ O×

F . Using (4.1.3), we immediately obtain the following.

Lemma 4.1.5. Let S ∈ Bn−1,1. Then exactly we have the following six cases.

(1) If S = {1, . . . , î, . . . , n, n+ i} for some i ≤ m+ 1, then

WT (gS) = (−1)i−1 t
m−1

π3m−1
e{n+1,...,2n}.

(2) If S = {1, . . . , î, . . . , n, n+ i} for some m+ 1 < i ≤ n, then

WT (gS) = (−1)i−1 tm−1

π3m−3π0
e{n+1,...,2n}.

(3) If S = {1, . . . , ĵ, . . . , n, n+ i} for some i, j ≤ m+ 1 with i ̸= j, then

WT (gS) = −
√
θ

tm

π3m−1
e{i,n+1,...,n̂+j,...,2n}.

(4) If S = {1, . . . , ĵ, . . . , n, n+ i} for some i ≤ m+ 1 < j, then

WT (gS) = −
√
θ
tm−1

π3m−2
e{i,n+1,...,n̂+j,...,2n}.

(5) If S = {1, . . . , ĵ, . . . , n, n+ i} for some j ≤ m+ 1 < i, then

WT (gS) = −
√
θ

tm+1

π3m−2π0
e{i,n+1,...,n̂+j,...,2n}.

(6) If S = {1, . . . , ĵ, . . . , n, n+ i} for some i, j > m+ 1 with i ̸= j, then

WT (gS) = −
√
θ

tm

π3m−3π0
e{i,n+1,...,n̂+j,...,2n}.

Definition 4.1.6. For S ∈ Bn−1,1, the weight vector wS ∈ Zn attached to S is defined to be

an element of Zn such that the i-th coordinate of wS is #(S ∩ {i, n+ i}).
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Note that if S ∈ Bn−1,1, then S = {1, . . . , ĵ, . . . , n, n+ i} for some 1 ≤ i, j ≤ n. Moreover,

we have sgn(σS) = (−1)i+j+1 (see [Smi15, Remark 4.3]) and S⊥ = {1, . . . , î∨, . . . , n, j∗}.

Similar arguments in [Smi15, Lemma 4.10] imply the following lemma.

Lemma 4.1.7. Let S ∈ B0. Then exactly we have the following nine cases.

(1) S = {1, . . . , m̂+ 1, . . . , n, n+m+ 1}. Then S = S⊥, wS = (1, . . . , 1), and

WT (hS) = WT (2gS) = (−1)m 2tm−1

π3m−1
e{n+1,...,2n}.

(2) S = {1, . . . , î∨, . . . , n, n+ i} for some i < m+ 1. Then S = S⊥, wS ̸= (1, . . . , 1), and

WT (hS) = WT (2gS) = −
√
θ
2tm−1

π3m−2
e{i,n+1,...,î∗,...,2n}.

(3) S = {1, . . . , î∨, . . . , n, n+ i} for some i > m+ 1. Then S = S⊥, wS ̸= (1, . . . , 1), and

WT (hS) = WT (2gS) = −
√
θ

2tm+1

π3m−2π0
e{i,n+1,...,î∗,...,2n}.

(4) S = {1, . . . , î, . . . , n, n+ i} for some i < m+1. Then S ̸= S⊥, wS = wS⊥ = (1, . . . , 1),

and

WT (hS) = WT (g{1,...,̂i,...,n,n+i} + g{1,...,î∨,...,n,i∗}) = (−1)i−1 tm

π3m−2π0
e{n+1,...,2n}.

(5) S = {1, . . . , ĵ, . . . , n, n+ i} for some i < j∨ < m + 1. Then S ̸= S⊥, wS,wS⊥ and

(1, . . . , 1) are pairwise distinct and

WT (hS) = WT (g{1,...,̂j,...,n,n+i} + (−1)i+jg{1,...,î∨,...,n,j∗})

= −
√
θ
tm−1

π3m−2
e{i,n+1,...,n̂+j,...,2n} + (−1)i+j+1

√
θ
tm−1

π3m−2
e{j∨,n+1,...,î∗,...,2n}.

(6) S = {1, . . . , m̂+ 1, . . . , n, n+ i} for some i < m + 1. Then S ̸= S⊥, wS,wS⊥ and

(1, . . . , 1) are pairwise distinct and

WT (hS) = WT (g{1,...,m̂+1,...,n,n+i} − (−1)m+ig{1,...,î∨,...,n+m+1})

= (−1)m+i
√
θ
tm−1

π3m−2
e{m+1,n+1,...,î∗,...,2n}.
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(7) S = {1, . . . , ĵ, . . . , n, n+ i} for some i < m + 1 < j∨. Then S ̸= S⊥, wS,wS⊥ and

(1, . . . , 1) are pairwise distinct and

WT (hS) = WT (g{1,...,̂j,...,n,n+i} − (−1)i+j+1g{1,...,î∨,...,n,j∗})

= −
√
θ

tm

π3m−1
e{i,n+1,...,n̂+j,...,2n} − (−1)i+j

√
θ

tm

π3m−3π0
e{j∨,n+1,...,î∗,...,2n}.

(8) S = {1, . . . , ĵ, . . . , n, n+m+ 1} for some j∨ > m + 1. Then S ̸= S⊥, wS,wS⊥ and

(1, . . . , 1) are pairwise distinct and

WT (hS) = WT (g{1,...,̂j,...,n,n+m+1} − (−1)m+j+1g{1,...,m̂+1,...,n,j∗})

= −
√
θ

tm

π3m−1
e{m+1,n+1,...,n̂+j,...,2n}.

(9) S = {1, . . . , ĵ, . . . , n, n+ i} for some j∨ > i > m + 1. Then S ̸= S⊥, wS,wS⊥ and

(1, . . . , 1) are pairwise distinct and

WT (hS) = WT (g{1,...,̂j,...,n,n+i} − (−1)i+j+1g{1,...,î∨,...,j∗})

= −
√
θ

tm+1

π3m−2π0
e{i,n+1,...,n̂+j,...,2n} + (−1)i+j+1

√
θ

tm+1

π3m−2π0
e{j∨,n+1,...,î∗,...,2n}.

Let w ∈ W n−1,1
−1 . Recall that {hS |S ∈ B0} is an F -basis of W n−1,1

−1 by Lemma 4.1.3.

Write

w =
∑
S∈B0

aShS =
∑
w∈Zn

∑
S∈B0

and wS = w

aShS, aS ∈ F.

Then as in the proof of [Smi15, Proposition 4.12], we have

w ∈ W (Λ0)
n−1,1
−1 ⇐⇒

∑
S∈B0

and wS = w

aShS ∈ W (Λ0)
n−1,1
−1 , for each w ∈ Zn

We have two distinct situations for w:

Case 1: w ̸= (1, . . . , 1). Then there exists at most one S ∈ B0 such that wS = w.

Case 2: w = (1, . . . , 1). Then S is necessarily of the form

Si :=
{
1, . . . , î, . . . , n, n+ i

}
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for some 1 ≤ i ≤ m+ 1. For any 1 ≤ i < m+ 1, we have

hSi
= gSi

+ gSi∨

= (−1)ig1 ∧ · · · ∧ ĝi ∧ · · · ∧ ĝi∨ ∧ · · · ∧ gn ∧ (gi ∧ gi∗ − gi∨ ∧ gn+i)

= (−1)ig1 ∧ · · · ∧ ĝi ∧ · · · ∧ ĝi∨ ∧ · · · ∧ gn

∧ (−tfi ∧ fi∨ +
t2 − π0
π0

fi ∧ fi∗ − 2fi∨ ∧ fn+i −
t

π0
fn+i ∧ fi∗),

and

hSm+1 = 2gSm+1

= −2 · g1 ∧ · · · ∧ ĝi ∧ · · · ∧ ĝi∨ ∧ · · · ∧ gn ∧ gn+m+1 ∧ (gi ∧ gi∨)

= −2 · g1 ∧ · · · ∧ ĝi ∧ · · · ∧ ĝi∨ ∧ · · · ∧ gn ∧ gn+m+1

∧ (
t

π
fi ∧ fi∨ −

t

π2
fi ∧ fi∗ +

t

π2
fi∨ ∧ fn+i +

t

π3
fn+i ∧ fi∗).

Define

h̃Si
:=


2πhSi

+ (−1)m+ithSm+1 if i ̸= m+ 1,

hSm+1 if i = m+ 1.

Then for 1 ≤ i < m+ 1, terms of h̃Si
do not contain (multiples of)

WT (hSm+1) = (−1)m 2tm−1

π3m−1
e{n+1,...,2n},

and

WT (h̃Si
) = −

√
θ
2tmπ0
π3m

e{i,n+1,...,n̂+i,...,2n} −
√
θ

2tm

π3m−2
e{i∨,n+1,...,î∗,...,2n}. (4.1.6)

For S with wS ̸= (1, . . . , 1), we set h̃S := hS. By Lemma 4.1.3, the set {h̃S | S ∈ B0} forms

an F -basis of W n−1,1
−1 . Previous analysis on w together with similar arguments in [Smi15,

Proposition 4.12] imply the following lemma.

Lemma 4.1.8. For each S ∈ B0, pick bS ∈ F such that the worst term WT (bSh̃S) is a sum

of terms of the form uT eT for some unit uT ∈ O×
F and T ∈ B. Then the set {bSh̃S | S ∈ B0}

forms an OF -basis of the OF -module W (Λ0)
n−1,1
−1 .
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For the matrix
(

X
In

)
corresponding to F , denote by v ∈ ∧nF the wedge product of n-

columns of the matrix in the order from left to right. Then the strengthened spin condition

LM6 on F amounts to that

v ∈ Im
(
W (Λ0)

n−1,1
−1 ⊗OF

R→ W (Λ0)⊗OF
R
)
.

Write v =
∑

S∈B aSeS for some aS ∈ R. By Lemma 4.1.8, we have

v =
∑
S∈B

aSeS =
∑
S∈B0

cSbSh̃S (4.1.7)

for some cS ∈ R. By comparing the coefficients of both sides in Equation (4.1.7), we will

obtain the defining equations of the condition LM6 on the chart U{0}.

Recall

X =


A B E

C D F

G H x

 ,

where A,B,C,D ∈ Mm(R), E,F ∈ Mm×1(R), G,H ∈ M1×m(R) and x ∈ R. In the

following, we use aij to denote the (i, j)-entry of the matrix A. We use similar notations for

other block matrices in X. For 1 ≤ i < m + 1, comparing the coefficients of e{n+1,...,2n} and

eSi
= e{1,...,̂i,...,n,n+i} in (4.1.7), we obtain

cSm+1(−1)mbSm+1

2tm−1

π3m−1
= 1,

cSm+1bSm+1(−1)m+i 2t
m−1

π3m−2
+ cSi

bSi

(
−
√
θ
2tmπ0
π3m

)
= (−1)1+idii,

cSm+1bSm+1(−1)m+i 2t
m−1

π3m−2
+ cSi

bSi

(
−
√
θ

2tm

π3m−2

)
= (−1)1+iam+i−i,m+1−i.

Hence,

dii =
π0
π2
am+1−i,m+1−i + t

√
θ. (4.1.8)

For 1 ≤ i, j < m + 1 and i ̸= j, by comparing the coefficients of e{1,...,̂j,...,n,n+i} and

e{j∨,n+1,...,î∗,...,2n}, we obtain

c{1,...,̂j,...,n,n+i}b{1,...,̂j,...,n,n+i}

(
−
√
θ

tm

π3m−1

)
= (−1)1+jdij,
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c{1,...,̂j,...,n,n+i}b{1,...,̂j,...,n,n+i}

(
(−1)1+i+j

√
θ

tm

π3m−3π0

)
= (−1)1+iam+1−j,m+1−i.

Hence,

dij =
π0
π2
am+1−j,m+1−i. (4.1.9)

Combining (4.1.8) and (4.1.9), we obtain

D =
π0
π2
HmA

tHm + t
√
θIm.

Here the matrix HmA
tHm is the reflection of A over its anti-diagonal. Equivalently,

D + πIm =
π

π
Hm(A+ πIm)

tHm. (4.1.10)

Similarly, we can obtain

B = HmB
tHm, C = HmC

tHm, E =
t

π
HmH

t, F =
t

π
HmG

t. (4.1.11)

Write

H̃2m :=

 0 Hm

π
π
Hm 0

 , X1 :=

A B

C D

 .

Combining (4.1.10) and (4.1.11), we have

H̃2m (X1 + πI2m) = (X1 + πI2m)
tH̃ t

2m. (4.1.12)

4.1.2.7 A simplification of equations

First we can see that under the wedge condition ∧2(X+πIn) = 0, the Kottwitz condition

(4.1.4) becomes

tr(X + πIn) = π − π. (4.1.13)

Next we claim that the equation

X2 + tX + π0In = 0 (4.1.14)

of Condition LM1 is implied by the Kottwitz condition LM2 and the wedge condition LM5.

To justify the claim, we need an easy but useful lemma.
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Lemma 4.1.9. Let X be an n× n matrix. Then X2 ≡ (trX)X modulo (∧2X).

Proof. The (i, j)-entry of the matrix X2 − tr(X)X is

n∑
k=1

XikXkj −
n∑

k=1

XkkXij =
n∑

k=1

(XikXkj −XkkXij) ,

which is a sum of 2-minors of X.

By Lemma 4.1.9 and the wedge condition LM5, the equation (4.1.14)

X2 + tX + π0In = (X + πIn)
2 + (t− 2π)(X + πIn) = 0

is equivalent to

tr(X + πIn)(X + πIn) + (t− 2π)(X + πIn) = (tr(X + πIn) + π − π) (X + πIn) = 0,

which is implied by the Kottwitz condition (4.1.13).

Next, we examine the Condition LM3. For the equation (LM3-1), we have

2

t
CtHmA+

t2 − 2π0
tπ0

AtHmC +
t

π0
GtG+HmC + CtHm

=
2

t
CtHm(A+ πIm) +

t2 − 2π0
tπ0

(A+ πIm)
tHmC −

2π

t
CtHm −

t2 − 2π0
tπ0

πHmC

+
t

π0
GtG+HmC + CtHm

=
2

t
CtHm(A+ πIm) +

t2 − 2π0
tπ0

(A+ πIm)
tHmC +

t

π0
GtG+

√
θCtHm +

π

π

√
θHmC.

A similar argument as in the proof of Lemma 4.1.9 implies that

CtHm(A+ πIm) ≡ (A+ πIm)
tHmC modulo (∧2(X + πIm)).

Hence, the equation (LM3-1) gives the same restriction on U{0} as the equation

t

π0
(A+ πIm)

tHmC +
t

π0
GtG+

√
θCtHm +

π

π

√
θHmC = 0.

By (4.1.11), we further obtain

t

π0
(A+ πIm)

tHmC +
t

π0
GtG+

t

π

√
θHmC = 0, (4.1.15)
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(A+ πIm)
tHmC = (C(A+ πIm))

tHm.

Again, as in Lemma 4.1.9, the matrix C(A+ πIm) is equivalent to tr(A+ πIm)C. Thus, the

equation (4.1.15) is equivalent to

t

π0
tr(A+ πIm)C

tHm +
t

π0
GtG+

t

π

√
θHmC = 0.

Equivalently,

t

π0

(
(tr(A+ πIm) + π

√
θ)HmC +GtG

)
= 0. (4.1.16)

Similarly, under the wedge condition LM5 and the strengthened spin condition LM6,

one can verify that the equation (LM3-2) can be simplified to

t

π0

(
(tr(A+ πIm) + π

√
θ)Hm(D + πIm) +GtH

)
= 0; (4.1.17)

the equation (LM3-3) is trivial; the equation (LM3-4) is equivalent to (LM3-2); the equa-

tion (LM3-5) is equivalent to

t

π0

(
(
π

π
tr(A+ πIm) + π

√
θ)HmB +H tH

)
= 0; (4.1.18)

the rest of the equations are trivial.

Set

X1 :=

A B

C D

 , X2 :=

E
F

 , X3 :=

(
G H

)
, X4 := x.

Then X =
(
X1 X2
X3 X4

)
, and equations (4.1.16), (4.1.17), (4.1.18) translate to

t

π0

(
(tr(A+ πIm) + π

√
θ)H̃2m(X1 + πI2m) +X t

3X3

)
= 0.

Using similar arguments, one can check that under the wedge condition LM5 and the

strengthened spin condition LM6, equations (LM4-1) to (LM4-9) are implied by the Con-

dition LM3, and the equation (LM4-10) is equivalent to

the diagonal of (tr(A+ πIm) + π
√
θ)H̃2m(X1 + πI2m) +X t

3X3 equals 0.
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Denote by OF [X] the polynomial ring over OF whose variables are entries of the matrix

X. Then we can view the affine chart U{0} ⊂ M{0} as a closed subscheme of SpecOF [X]. In

summary, we have shown the following.

Proposition 4.1.10. The scheme U{0} is a closed subscheme1 of U′
{0} := SpecOF [X]/I,

where I is the ideal of OF [X] generated by:

tr(X + πIn)− π + π, ∧2(X + πIn), H̃2m (X1 + πI2m)− (X1 + πI2m)
tH̃ t

2m,

E − t

π
HmH

t, F − t

π
HmG

t,
t

π0

(
(tr(A+ πIm) + π

√
θ)H̃2m(X1 + πI2m) +X t

3X3

)
,

the diagonal of (tr(A+ πIm) + π
√
θ)H̃2m(X1 + πI2m) +X t

3X3.

Set

X̃1 := X1 + πI2m, Ã := A+ πIm, X̃ :=

X̃1

X3

 .

As X2 and X4 are determined by X1 and X3 by relations in I, we obtain the following

proposition.

Proposition 4.1.11. The scheme U′
{0} = SpecOF [X]/I is isomorphic to SpecOF [X̃]/Ĩ,

where Ĩ is the ideal of OF [X̃] generated by:

∧2 (X̃), H̃2mX̃1 − X̃ t
1H̃

t
2m,

t

π0

(
(tr(Ã) + π

√
θ)H̃2mX̃1 +X t

3X3

)
,

the diagonal of (tr(Ã) + π
√
θ)H̃2mX̃1 +X t

3X3.

Definition 4.1.12. Denote by Ufl
{0} the closed subscheme of U′

{0} = SpecOF [X̃]/I defined

by the ideal Ĩfl ⊂ OF [X̃] that is generated by:

∧2 (X̃), H̃2mX̃1 − X̃ t
1H̃

t
2m, (tr(Ã) + π

√
θ)H̃2mX̃1 +X t

3X3.

Note that the ideal Ĩfl contains Ĩ.
1In fact, we expect that U{0} = U′

{0}. This amounts to saying that the equations obtained by comparing
coefficients of eS in (4.1.7) for S not of type (n− 1, 1) are implied by relations in I.
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4.1.2.8 Geometric properties of U{0} and Ufl
{0}

In the following, we write Rfl for the ring OF [X̃]/Ĩfl and R for the ring OF [X̃]/Ĩ.

Lemma 4.1.13. If ω(π0) = ω(t), then R = Rfl.

Proof. Note that ω(π0) = ω(t) if and only if t/π0 is a unit in OF . By comparing the lists of

generators of Ĩ and Ĩfl, we immediately see that Ĩ = Ĩfl, and hence R = Rfl.

Remark 4.1.14. Since π0|t|2, the condition ω(t) = ω(π0) clearly holds if F0/Q2 is unramified.

More generally, by applying Proposition 3.1.1 (4) to F0, we have ω(t) = ω(π0) if and only if

θ ∈ U2e−1−U2e. Namely, given a quadratic extension F of F0 with a uniformizer π satisfying

an Eisenstein equation π2 − tπ + π0 = 0, the condition ω(t) = ω(π0) holds if and only if

F is of the form F0(
√
θ) for some unit θ ∈ U2e−1 − U2e. We will count the number of such

extensions F in the following.

We have a short exact sequence

0→ U2e

U2 ∩ U2e

→ U2e−1

U2 ∩ U2e−1

→ U2e−1

U2e(U2 ∩ U2e−1)
→ 0. (4.1.19)

We claim that U2∩U2e−1 ⊂ U2e. For any x ∈ U2∩U2e−1, we can find a ∈ OF0 and u ∈ U such

that x = 1+π2e−1
0 a = u2. We want to show ω(a) ≥ 1. Set b = u−1. Then b(b+2) = π2e−1

0 a.

If ω(b) < e = ω(2), then ω(b+ 2) = ω(b) and

ω(π2e−1
0 a) = ω (b(b+ 2)) = 2ω(b).

As 2e− 1 is odd, this forces ω(a) to be odd and in particular ω(a) ≥ 1. If ω(b) ≥ e, then

ω(π2e−1
0 a) = ω (b(b+ 2)) ≥ ω(b) + ω(2) ≥ 2e.

Again we have ω(a) ≥ 1. This proves the claim.

Then we have U2e(U
2 ∩ U2e−1) = U2e and by the short exact sequence (4.1.19),∣∣∣∣ U2e−1

U2 ∩ U2e−1

∣∣∣∣ = ∣∣∣∣ U2e

U2 ∩ U2e

∣∣∣∣ ∣∣∣∣U2e−1

U2e

∣∣∣∣ = 2 · 2f = 21+f ,
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where f denotes the residue degree of F0/Q2. Note that there are two elements in U2e−1

U2∩U2e−1

defining the trivial extension and the unramified quadratic extension of F0. Thus, we have

21+f − 2 ramified quadratic extensions of F0 of type (R-U) with ω(t) = ω(π0).

By (4.1.10), we have

tr(X̃1) = tr(Ã) + tr(D̃) =
t

π
tr(Ã).

So we can rewrite Rfl as

Rfl =
OF [

(
X̃1
X3

)
](

∧2
(

X̃1
X3

)
, H̃2mX̃1 − X̃ t

1H̃
t
2m, (

π
t
tr(X̃1) + π

√
θ)H̃2mX̃1 +X t

3X3

) .
Let Y := H̃2mX̃1. Then X̃1 =

π
π
H̃2mY and

Rfl ≃
OF [

(
Y
X3

)
](

∧2
(

π
π
H̃2mY

X3

)
, Y − Y t, (π

2

tπ
tr(H̃2mY ) + π

√
θ)Y +X t

3X3

)
=

OF [
(

Y
X3

)
](

∧2
(

Y
X3

)
, Y − Y t, ( π

2π
tr(H2mY ) + π

√
θ)Y +X t

3X3

) .
For 1 ≤ i, j ≤ 2m, we denote by yij the (i, j)-entry of Y and by xi the (1, i)-entry of X3.

Lemma 4.1.15. The scheme Ufl
{0} is irreducible of Krull dimension n and smooth over OF

on the complement of the worst point, which is the closed point defined by Y = X3 = π = 0.

Proof. For 1 ≤ ℓ ≤ 2m, consider the principal open subscheme D(yℓℓ) of U
fl
{0}, i.e., the locus

where yℓℓ is invertible. Then one can easily verify that D(yℓℓ) is isomorphic to the closed

subscheme of

SpecOF [yij, xi | 1 ≤ i, j ≤ 2m]

defined by the ideal generated by the relations

yij = yji, yij = y−1
ℓℓ yℓiyℓj, xi = y−1

ℓℓ xℓyℓi, −x
2
ℓ = (

π

π

m∑
i=1

yℓiyℓ,n−i) + π
√
θyℓℓ.

Hence, the scheme D(yℓℓ) is isomorphic to

Spec
OF [xℓ, yℓ1, . . . , yℓℓ, . . . , yℓ,2m, y

−1
ℓℓ ]

(x2ℓ + (π
π

∑m
i=1 yℓiyℓ,n−i) + π

√
θyℓℓ)

.
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By the Jacobian criterion, D(yℓℓ) is smooth over OF of Krull dimension n. Note that the

worst point is defined (set-theoretically) by the ideal generated by π and yℓℓ for 1 ≤ ℓ ≤ 2m.

Since the generic fiber of Ufl
{0} is smooth, we obtain that Ufl

{0} is smooth over OF on the

complement of the worst point. As the generic fiber and all D(yℓℓ), for 1 ≤ ℓ ≤ 2m, are

irreducible, we conclude that Ufl
{0} is irreducible.

Lemma 4.1.16. The scheme Ufl
{0} is Cohen-Macaulay.

Proof. Let S denote the polynomial ring OF [yii | 1 ≤ i ≤ 2m]. Then we have an obvious

ring homomorphism S → Rfl. By the wedge condition LM5 and Y = Y t, for 1 ≤ i, j ≤ 2m,

we have

y2ij = yijyji = yiiyjj and x
2
i = −(

π

π

m∑
ℓ=1

yiℓyi,n−ℓ)− π
√
θyii

In particular, we deduce that Rfl is integral (also of finite type) over S, and hence Rfl is a

finitely generated S-module. Since S is a domain of the same Krull dimension as Rfl, the

map S → Rfl is necessarily injective. By [Eis13, Corollary 18.17], to show Rfl is Cohen-

Macaulay, it suffices to show that Rfl is a flat S-module. Equivalently, we need to show that

the induced morphism

ψ : SpecRfl → SpecS ≃ A2m

is flat. Let P0 be the closed point in SpecS corresponding to the maximal ideal m0 :=

(π, y11, . . . , y2m,2m). Then ψ maps the worst point of SpecRfl to P0 and the preimage of

SpecS[y−1
ℓℓ ] is the scheme D(yℓℓ) considered in the proof of Lemma 4.1.15. As D(yℓℓ) is

smooth over OF , by miracle flatness (see [Eis13, Theorem 18.16 b.]), the restriction ψ|D(yℓℓ)

is flat. Similarly, we obtain that ψ restricted to the generic fiber of Ufl
{0} is flat. It remains

to show that ψ is flat at the worst point, i.e., the localization map Sm0 → Rfl
m0

is flat. The

local ring Sm0 has residue field k. Let K denote the fraction field of Sm0 . By an application

of Nakayama’s lemma (see [Har13, Chapter II, Lemma 8.9]), we are reduced to show that

dimK(Rfl
m0
⊗Sm0

K) = dimk(Rfl
m0
⊗Sm0

k). (4.1.20)
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Note that K is the field F (y11, . . . , y2m,2m) of rational functions. By the following Lemma

4.1.17, we have the desired equality (4.1.20) of dimensions.

Lemma 4.1.17. The K-vector space (resp. k-vector space) Rfl
m0
⊗Sm0

K (resp. Rfl
m0
⊗Sm0

k)

has a K-basis (resp. k-basis) consisting of (images of) monomials

xαi y
β1

i1j1
yβ2

i2j2
· · · yβℓ

iℓjℓ
,

where α, βi ∈ {0, 1}, 0 ≤ ℓ ≤ m, and 1 ≤ i < i1 < j1 < i2 < j2 < · · · < iℓ < jℓ ≤ 2m. Let S

denote the set of these monomials. Then the cardinality #S equals 22m. In particular,

dimK(Rfl
m0
⊗Sm0

K) = dimk(Rfl
m0
⊗Sm0

k) = 22m. (4.1.21)

Proof. We first count the cardinality of S. For an integer 0 ≤ ℓ ≤ m, the number of

monomials of the form xiy
β1

i1j1
yβ2

i2j2
· · · yβℓ

iℓjℓ
in S is the number of tuples (i, i1, j1, . . . , iℓ, jℓ)

such that 1 ≤ i < i1 < j1 < i2 < j2 < · · · < iℓ < jℓ ≤ 2m. It is well-known that the number

is
(

2m
2ℓ+1

)
. Here, we set

(
2m
2ℓ+1

)
= 0 if ℓ = m. Similarly, the number of monomials of the form

yβ1

i1j1
yβ2

i2j2
· · · yβℓ

iℓjℓ
in S is

(
2m
2ℓ

)
. Hence, we obtain that

#S =
m∑
ℓ=0

(
2m

2ℓ+ 1

)
+

m∑
ℓ=0

(
2m

2ℓ

)
=

2m∑
i=0

(
2m

i

)
= 22m.

Let xαi x
α′
j y

β1

i1j1
yβ2

i2j2
· · · yβℓ

iℓjℓ
be a general monomial in Rfl

m0
⊗Sm0

K. As y2ij = yijyji = yiiyjj

in Rfl
m0
, we may assume βi for 1 ≤ i ≤ ℓ lies in {0, 1}. As

−X t
3X3 = (

π

2π
tr(H2mY ) + π

√
θ)Y

in Rfl
m0
, we see xixj can be expressed by entries in Y . Hence, we may assume α′ = 0 and

α ∈ {0, 1}. We claim that the monomial xαi yi1j1yi2j2 · · · yiℓjℓ for α ∈ {0, 1} is generated by

elements in S. By the wedge condition and Y = Y t, it is straightforward to check that

the product xryijypq only depends on the indices {r, i, j, p, q}, namely, changing the order of

indices gives the same product in Rfl
m0
. Since yii ∈ K, we may assume 1 ≤ i < i1 < j1 <

i2 < j2 < · · · < iℓ < jℓ ≤ 2m, and hence we may assume 0 ≤ ℓ ≤ m. Thus, the K-vector
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space Rfl
m0
⊗Sm0

K is generated by (images of) the elements in S. Now it suffices to show

that these elements are K-linearly independent.

Note that the ring Rfl
m0
⊗Sm0

K corresponds to the generic point of SpecRfl. Since y11 is

invertible over Rfl
m0
⊗Sm0

K, the ring Rfl
m0
⊗Sm0

K is in fact the function field of D(y11) in the

proof of Lemma 4.1.15 (take ℓ = 1), and the field

Rfl
m0
⊗Sm0

K =
K[y12, y13, . . . , y1,2m, x1](

y212 − y11y22, . . . , y21,2m − y11y2m,2m, x21 + (π
π

∑m
i=1 y1iy1,n−i) + π

√
θy11

) .
is a compositum of successive quadratic extensions. In particular,

dimK(Rfl
m0
⊗Sm0

K) = 22m.

As #S = 22m, elements in S are K-linearly independent, i.e., elements in S form a K-basis

of Rfl
m0
⊗Sm0

K.

Similar arguments (just note that now yii = 0 in k) as before imply that Rfl
m0
⊗Sm0

k is

generated by (images of) elements in S. Hence,

dimk(Rfl
m0
⊗Sm0

k) ≤ #S = dimK(Rfl
m0
⊗Sm0

K).

On the other hand, by Nakayama’s lemma, we always have

dimk(Rfl
m0
⊗Sm0

k) ≥ dimK(Rfl
m0
⊗Sm0

K).

This completes the proof of the lemma.

Corollary 4.1.18. The scheme Ufl
{0} is normal and flat over OF . The geometric special fiber

Ufl
{0} ⊗OF

k is reduced and irreducible.

Proof. As Ufl
{0} is smooth over OF on the complement of a closed point, and Cohen-Macaulay

by Lemma 4.1.15 and 4.1.16, the normality of Ufl
{0} follows from the Serre’s criterion for

normality (see [Sta24, 031S]). By Lemma 4.1.15, the scheme Ufl
{0}⊗OF

k is smooth over k on

the complement of the worst point. The proof of Lemma 4.1.15 also implies that Ufl
{0}⊗OF

k
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is irreducible of dimension n− 1. As Ufl
{0} is Cohen-Macaulay and SpecOF is regular, then

Ufl
{0} is flat over OF by the miracle flatness (see [Eis13, Theorem 18.16 b.]).

Since Ufl
{0} is Cohen-Macaulay and π is not a zero divisor (follows from the flatness),

the scheme Ufl
{0} ⊗OF

k is also Cohen-Macaulay. Then Ufl
{0} ⊗OF

k is reduced by the Serre’s

criterion for reducedness (see [Sta24, 031R]).

Lemma 4.1.19. The schemes U{0} and Ufl
{0} have the same underlying topological space.

Proof. (1) Since Ufl
{0} is flat over OF , the scheme Ufl

{0} is the Zariski closure of its generic

fiber. Then we have closed immersions

Ufl
{0} ↪→ U{0} ↪→ U′

{0}

where all schemes have the same generic fiber. Then it suffices to prove that the special

fibers of Ufl
{0} and U′

{0} have the same underlying topological space. Since Ufl
{0} ⊗OF

k is

reduced, we are reduced to show that Ifl ⊗OF
k is contained in the radical of I ⊗OF

k.

If ω(π0) = ω(t), then the assertion follows from Lemma 4.1.13. We may assume t/π0 is

not a unit. In this case, we have

I ⊗OF
k =

(
∧2
(

Y
X3

)
, Y − Y t, the diagonal of (

tr(H2mY )

2
Y +X t

3X3)

)
,

Ifl ⊗OF
k =

(
∧2
(

Y
X3

)
, Y − Y t,

tr(H2mY )

2
Y +X t

3X3

)
.

Let M denote the matrix tr(H2mY )
2

Y +X t
3X3. Then for 1 ≤ i, j ≤ 2m, the (i, j)-entry Mij of

M is

αyij + xixj, α := tr(H2mY )/2.

Since char(k) = 2, we obtain M2
ij = α2y2ij + x2ix

2
j . Therefore, we have

M2
ij −MiiMjj = α2(y2ij − yiiyjj)− αx2i yjj − αx2jyii

= α2(y2ij − yiiyjj)− x2iMjj − x2jMii + 2x2ix
2
j

= α2(y2ij − yiiyjj)− x2iMjj − x2jMii ∈ Ĩ ⊗OF
k
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In particular, any M2
ij for 1 ≤ i, j ≤ 2m lies in Ĩ ⊗OF

k. Hence, Ifl⊗OF
k is contained in the

radical of I ⊗OF
k. This finishes the proof.

In summary, we have proven the following.

Proposition 4.1.20. (1) The scheme Ufl
{0} is flat over OF of relative dimension n−1. In

particular, Ufl
{0} is isomorphic to an open subscheme of the local model Mloc

{0} containing

the worst point. Furthermore, Ufl
{0} is normal, Cohen-Macaulay, and smooth over OF

on the complement of the worst point. The special fiber Ufl
{0} ⊗OF

k is (geometrically)

reduced and irreducible.

(2) U{0} and Ufl
{0} have the same underlying topological space.

(3) If ω(π0) = ω(t), then U{0} = Ufl
{0}.

4.1.2.9 Global results

Recall that (Λ0, q,L , ϕ) is a hermitian quadratic module with ϕ over OF0 by Lemma

3.2.5. Let H{0} := Sim((Λ0, q,L , ϕ)) be the group scheme over OF0 of similitudes preserving

ϕ of (Λ0, q,L , ϕ). By Theorem 6.2.8, H{0} is an affine smooth group scheme over OF0 .

Lemma 4.1.21. The group scheme H{0} acts on Mnaive
{0} and M{0}.

Proof. It suffices to show the result for M{0}. Let R be an OF -algebra. Let g = (φ, γ) ∈

H{0}(R) be a similitude preserving ϕ. For F ∈ M{0}, we define gF := φ(F) ⊂ Λ0 ⊗OF0
R.

We need to show that gF ∈ M{0}(R). It is clear that gF satisfies conditions LM1,2,4.

Recall that ϕ : Λ0 × Λ0 → t−1OF0 is defined by (x, y) 7→ t−1TrF/F0 h(x, π
−1y). We also use

ϕ to denote the base change to Λ0 ⊗OF0
R. Then we see that F satisfies LM3 if and only if

ϕ(F ,F) = 0. As g preserves ϕ, we have that

ϕ(gF , gF) = γϕ(F ,F) = 0.

So gF satisfies LM3. As g is OF ⊗OF0
R-linear by definition, we obtain that

(π ⊗ 1− 1⊗ π) ◦ g = g ◦ (π ⊗ 1− 1⊗ π).
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By the functoriality of the wedge product of linear maps, we have

∧2(π ⊗ 1− 1⊗ π | gF) = ∧2(g ◦ (π ⊗ 1− 1⊗ π) | F) = ∧2(g) ◦ ∧2(π ⊗ 1− 1⊗ π | F) = 0.

Therefore, gF satisfies the wedge condition LM5. Since H{0} is smooth over OF0 , using a

similar argument of [RSZ18, Lemma 7.1], we can show that the R-submodule

Im
(
W (Λ0)

n−1,1
−1 ⊗OF

R→ W (Λ0)⊗OF
R
)

of W (Λ0)⊗OF
R is stable under the natural action of H{0}(R) on the space W (Λ0)⊗OF

R =

∧n(Λ0 ⊗OF0
R). It follows that gF satisfies the strengthened spin condition LM6.

Lemma 4.1.22. Let k be the algebraic closure of the residue field k. Then M{0} ⊗OF
k has

two H{0} ⊗OF0
k-orbits, one of which consists of the worst point.

Proof. By Lemma 4.1.21, the special fiber M{0} ⊗OF
k has an action of H{0} ⊗OF0

k. Let

F ∈ M{0}(k). In particular, the subspace F ⊂ (Λ0 ⊗OF0
k) is an n-dimensional k-vector

space. The wedge condition in this case becomes ∧2(π ⊗ 1 | F) = 0. Therefore, the image

(π ⊗ 1)F is at most one dimensional. We have the following two cases.

Suppose (π ⊗ 1)F = 0. Then F = (π ⊗ 1)(Λ0 ⊗OF0
k), namely, F is the worst point.

Suppose (π⊗1)F is one-dimensional. Then there exists a vector v ∈ F such that (π⊗1)v

generates (π ⊗ 1)F . For simplicity, write π for π ⊗ 1. Recall the k-bilinear form

ϕ(−,−) : (Λ0 ⊗OF0
k)× (Λ0 ⊗OF0

k) −→ L ⊗OF0
k

(x, y) 7→ s(x, π−1y) = t−1Trh(x, π−1y),

where π−1 is the induced isomorphism Λ0 ⊗OF0
k

∼−→ (π−1Λ0) ⊗OF0
k. We can identify

L ⊗OF0
k with k by sending t−1 ⊗ 1 to 1. Denote by N := k⟨em+1, πem+1⟩ the submodule

of Λ0 ⊗OF0
k. Then one can check that the radical of ϕ is contained in N . We claim that

πv is not in N . Otherwise, after rescaling, we may assume v = em+1 ⊗ 1 + πv1 for some

v1 ∈ Λ0 ⊗OF0
k. Then for the quadratic form

q : Λ0 ⊗OF0
k −→ L ⊗OF0

k ≃ k,
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we have

q(v) = q(em+1 ⊗ 1 + πv1) = q(em+1 ⊗ 1) + s(em+1 ⊗ 1, πv1) + q(πv1).

One can check that q(em+1 ⊗ 1) = 1 and s(em+1 ⊗ 1, πv1) = q(πv1) = 0. Hence q(v) ̸= 0.

This contradicts the hyperbolicity condition LM4 that q(F) = 0. In particular, we obtain

that πv is not in the radical of ϕ. Thus, we can find w ∈ Λ0 ⊗OF0
k such that ϕ(w, πv) ̸= 0

in k. By rescaling, we may assume ϕ(w, πv) = 1. Note that for a ∈ k,

q(w + av) = q(w) + as(w, v) + a2q(v)

= q(w) + aϕ(w, πv) + 0, since q(v) = 0,

= q(w) + a.

Replacing w by w − q(w)v, we may assume q(w) = 0. Put b := −ϕ(w, v). One can check

that ϕ(w + bπw) = 0. Replacing w by w + bπw, we have

q(w) = q(v) = 0, ϕ(w, v) = 0 and ϕ(w, πv) = 1.

Denote W1 := ⟨v, πv, w, πw⟩, the k-subspace of Λ0⊗OF0
k generated by v, πv, w, πw. Then ϕ

restricts to a perfect pairing on W1. Now we can write

Λ0 ⊗OF0
k = W1 ⊕W, (4.1.22)

where W is the orthogonal complement of W1 with respect to ϕ whose dimension is 2n− 4

over k. Note that the Condition LM3 in Definition 4.1.1 of M{0} implies that ϕ(F ,F) = 0,

and hence F ∩ ⟨w, πw⟩ = 0. Since ⟨v, πv⟩ ⊂ F and ϕ(F ,F) = 0, we obtain that the k-

dimension of F ∩ W is n − 2 and F ∩ W is contained in πW = ker(π | W ). Therefore,

F ∩W = πW for dimension reasons. By (4.1.22), we have

disc′(ϕ) = disc(ϕ|W1)disc
′(ϕ|W ).

Here, disc′(ϕ) is the divided discriminant in the sense of Definition 6.2.4, and we view it as

an element in k by using a basis of Λ0 ⊗OF0
k. By Example 6.2.6, we have disc′(ϕ) ∈ k×.
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Since ϕ is perfect on W1, we obtain that disc(ϕ|W1) ∈ k
×
, and hence disc′(ϕ|W ) ∈ k×. So

W is a hermitian quadratic module of type Λ0 over k in the sense of Definition 6.2.4. Set

v1 := v and vn := w. By applying Theorem 6.2.7 toW , we deduce that there is an OF⊗OF0
k-

basis {vi : 1 ≤ i ≤ n} of Λ0 ⊗OF0
k with the property that q(vm+1) generates R, q(vi) = 0,

ϕ(vi, vj) = 0 and ϕ(vi, πvj) = δi,n+1−j for all 1 ≤ i < j ≤ n. With respect to this basis, we

have

F = ⟨v, πv⟩ ⊕ (F ∩W ) = ⟨v, πv⟩ ⊕ (πW ) = ⟨v1, πv1, πvi, 2 ≤ i ≤ n− 1⟩.

This shows that points F ∈ M{0}(k) with dimk πF = 1 are in the same H{0}(k)-orbit.

As Ufl
{0} is flat over OF , we may view Ufl

{0} as an open subscheme of Mloc
{0} containing the

worst point. By Lemma 4.1.22, the H{0}-translation of Ufl
{0} covers Mloc

{0}. By Proposition

4.1.20, we have shown Theorem 1.2.6, and Theorem 1.2.2, 1.2.3 in the case I = {0} and

(R-U).

4.2 The case I = {0} and (R-P)

In this section, we consider the case when F/F0 is of (R-P) type. In particular, we have

π2 + π0 = 0 and π = −π.

Consider the following ordered OF0-basis of Λ0 and Λs
0:

Λ0 :
1

2
em+2, . . . ,

1

2
en, e1, . . . , em, em+1,

π

2
em+2, . . . ,

π

2
en, πe1, . . . , πem, πem+1, (4.2.1)

Λs
0 : π

−1em+2, . . . , π
−1en,

2

π
e1, . . . ,

2

π
em, π

−1em+1, em+2, . . . , en, 2e1, . . . , 2em, em+1. (4.2.2)

Recall that (Λ0, q,L ) is a hermitian quadratic module for L = 1
2
OF0 .

4.2.1 A refinement of Mnaive
{0} in the (R-P) case

Definition 4.2.1. Let M{0} be the functor

M{0} : (Sch/OF )
op −→ Sets

which sends an OF -scheme S to the set of OS-modules F such that
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LM1 (π-stability condition) F is an OF ⊗OF0
OS-submodule of Λ0 ⊗OF0

OS and as an OS-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of π ⊗ 1 ∈ OF ⊗OF0
OS on F has characteristic

polynomial

det(T − π ⊗ 1 | F) = (T − π)(T − π)n−1.

LM3 Let F⊥ be the orthogonal complement in Λs
0⊗OF0

OS of F with respect to the perfect

pairing

s(−,−) : (Λ0 ⊗OF0
OS)× (Λs

0 ⊗OF0
OS)→ OS.

We require the map Λ0 ⊗OF0
OS → (π

2
Λs

0) ⊗OF0
OS induced by Λ0 ↪→ π

2
Λs

0 sends F

to π
2
F⊥, where π

2
F⊥ is the image of F⊥ under the isomorphism π

2
: Λs

0 ⊗OF0
OS

∼−→
π
2
Λs

0 ⊗OF0
OS.

LM4 (Hyperbolicity condition) The quadratic form q : Λ0 ⊗OF0
OS → L ⊗OF0

OS induced

by q : Λ0 → L satisfies q(F) = 0.

LM5 (Wedge condition) The action of π ⊗ 1− 1⊗ π ∈ OF ⊗OF0
OS on F satisfies

∧2(π ⊗ 1− 1⊗ π | F) = 0.

Then as in the (R-U) case, the functor M{0} is representable and we have closed immer-

sions

Mloc
{0} ⊂ M{0} ⊂ Mnaive

{0}

of projective schemes over OF , where all schemes have the same generic fiber.

4.2.2 An affine chart U{0} around the worst point

Set

F0 := (π ⊗ 1)(Λ0 ⊗OF0
k).

Then we can check that F0 ∈ M{0}(k). We call it the worst point of M{0}.
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With respect to the basis (4.2.1), the standard affine chart around F0 in Gr(n,Λ0)OF
is

the OF -scheme of 2n × n matrices
(

X
In

)
. We denote by U{0} the intersection of M{0} with

the standard affine chart in Gr(n,Λ0)OF
. The worst point F0 of M{0} is contained in U{0}

and corresponds to the closed point defined by X = 0 and π = 0. The conditions LM1-5

yield the defining equations for U{0}. We will analyze each condition as in the (R-U) case.

A reader who is only interested in the affine coordinate ring of U{0} may proceed directly to

Proposition 4.2.2.

4.2.2.1 Condition LM1

Let R be an OF -algebra. With respect to the basis (4.2.1), the operator π ⊗ 1 acts on

Λ0 ⊗OF0
R via the matrix  0 −π0In

In 0

 .

Then the π-stability condition LM1 on F means there exists an n × n matrix P ∈ Mn(R)

such that  0 −π0In

In 0


X
In

 =

X
In

P.

We obtain P = X and X2 + π0In = 0.

4.2.2.2 Condition LM2

We have already shown that π ⊗ 1 acts on F via right multiplication of X. Then as in

the (R-U) case, the Kottwitz condition LM2 translates to

tr(X + πIn) = π − π = 2π, tr
(
∧i(X + πIn)

)
= 0, for i ≥ 2. (4.2.3)

4.2.2.3 Condition LM3

With respect to the bases (4.2.1) and (4.2.2), the perfect pairing

s(−,−) : (Λ0 ⊗OF0
R)× (Λs

0 ⊗OF0
R)→ R

75



and the map Λ0 ⊗OF0
R→ π

2
Λs

0 ⊗OF0
R are represented respectively by the matrices

S =



0 0 H2m 0

0 0 0 1

−H2m 0 0 0

0 −1 0 0


and N =



I2m 0 0 0

0 2 0 0

0 0 I2m 0

0 0 0 2


.

Then the Condition LM3 translates to

X
In


t

S

N
X
In


 = 0, or equivalently,

X
In


t



0 0 H2m 0

0 0 0 2

−H2m 0 0 0

0 −2 0 0


X
In

 = 0. (4.2.4)

Write

X =

X1 X2

X3 x

 ,

where X1 ∈ M2m(R), X2 ∈ M2m×1(R), X3 ∈ M1×2m(R) and x ∈ R. Then (4.2.4) translates

to X t
1H2m −H2mX1 2X t

3 −H2mX2

X t
2H2m − 2X3 0

 = 0.

4.2.2.4 Condition LM4

Recall L = 1
2
OF0 . With respect to the basis (4.2.1), the induced L ⊗OF0

R-valued

symmetric pairing on Λ0 ⊗OF0
R is represented by the matrix

S1 =



H2m 0 0 0

0 2 0 0

0 0 π0H2m 0

0 0 0 2π0


.
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The Condition LM4 translates toX
In


t

S1

X
In

 = 0 and half of the diagonal of

X
In


t

S1

X
In

 equals zero.

One can check that the diagonal entries of
(

X
In

)t
S1

(
X
In

)
are indeed divisible by 2 in R.

Equivalently, we obtainX t
1H2mX1 + 2X t

3X3 + π0H2m X t
1H2mX2 + 2xX t

3

X t
2H2mX1 + 2xX3 X t

2H2mX2 + 2x2 + 2π0

 = 0,

half of the diagonal of X t
1H2mX1 + 2X t

3X3 + π0H2m equals 0,

1

2

(
X t

2H2mX2 + 2x2 + 2π0
)
= 0.

4.2.2.5 Condition LM5

As π⊗ 1 acts as right multiplication by X on F , the wedge condition on F translates to

∧2(X + πIn) = 0.

4.2.2.6 A simplification of equations

As in the (R-U) case, we can simplify the above equations and obtain the following

proposition.

Proposition 4.2.2. The scheme U{0} = SpecOF [X]/I, where I is the ideal generated by:

tr(X + πIn)− 2π, ∧2(X + πIn), X
t
1H2m −H2mX1, 2X t

3 −H2mX2,

(tr(X1 + πI2m)− 2π)H2m(X1 + πI2m) + 2X t
3X3,

half of the diagonal of (tr(X1 + πI2m)− 2π)H2m(X1 + πI2m) + 2X t
3X3.

Set

X̃1 := X1 + πI2m, X̃ :=

X̃1

X3

 .

Then we have the following proposition.
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Proposition 4.2.3. The scheme U{0} is isomorphic to SpecOF [X̃]/Ĩ, where Ĩ is the ideal

in OF [X̃] generated by:

∧2 (X̃), H2mX̃1 − X̃ t
1H2m, (tr(X̃1)− 2π)H2mX̃1 + 2X t

3X3,

half of the diagonal of (tr(X̃1)− 2π)H2mX̃1 + 2X t
3X3.

Definition 4.2.4. Denote by Ufl
{0} the closed subscheme of U{0} = SpecOF [X̃]/Ĩ defined

by the ideal Ĩfl ⊂ OF [X̃] generated by:

∧2 (X̃), H2mX̃1 − X̃ t
1H2m, (

1

2
tr(X̃1)− π)H2mX̃1 +X t

3X3.

Note that tr(X̃1) is divisible by 2 by the relation H2mX̃1 = X̃ t
1H2m.

4.2.2.7 Global results

As in the (R-U) case, we can prove the following proposition.

Proposition 4.2.5. (1) The scheme Ufl
{0} is flat over OF of relative dimension n − 1.

In particular, Ufl
{0} is isomorphic to an open subscheme of Mloc

{0} containing the worst

point. Furthermore, Ufl
{0} is normal, Cohen-Macaulay, and smooth over OF on the

complement of the worst point. The special fiber Ufl
{0} ⊗OF

k is (geometrically) reduced

and irreducible.

(2) U{0} and Ufl
{0} have the same underlying topological space.

Similar arguments as in the proof of Lemma 4.1.22 imply that the special fiber M{0}⊗OF
k

has only two H{0}(k)-orbits. Together with Proposition 4.2.5, we can deduce Theorem 1.2.2

and 1.2.3 in the case I = {0} and (R-P).
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CHAPTER 5

THE CASE I = {m}

5.1 The case I = {m} and (R-U)

In this section, we will prove Theorem 1.2.2 in the case when F/F0 is of (R-U) type and

I = {m}. In particular, we have

π2 − tπ + π0 = 0,

where t ∈ OF0 with π0|t|2. Consider the following ordered OF0-basis of Λm and Λs
m:

Λm :
π

t
em+2, . . . ,

π

t
en, π

−1e1, . . . , π
−1em, em+1,

π0
t
em+2, . . . ,

π0
t
en, e1, . . . , em, πem+1, (5.1.1)

Λs
m : πem+2, . . . , πen,

t

π
e1, . . . ,

t

π
em, em+1, π0em+2, . . . , π0en, te1, . . . , tem, πem+1. (5.1.2)

Recall (Λm, q,L ) is a hermitian quadratic module for L = t−1OF0 .

5.1.1 A refinement of Mnaive
{m} in the (R-U) case

Definition 5.1.1. Let M{m} be the functor

M{m} : (Sch/OF )
op −→ Sets

which sends an OF -scheme S to the set of OS-modules F such that

LM1 (π-stability condition) F is an OF ⊗OF0
OS-submodule of Λm ⊗OF0

OS and as an OS-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of π ⊗ 1 ∈ OF ⊗OF0
OS on F has characteristic

polynomial

det(T − π ⊗ 1 | F) = (T − π)(T − π)n−1.

LM3 Let F⊥ be the orthogonal complement in Λs
m⊗OF0

OS of F with respect to the perfect

pairing

s(−,−) : (Λm ⊗OF0
OS)× (Λs

m ⊗OF0
OS)→ OS.

79



We require that the map Λm ⊗OF0
OS → (t−1Λs

m) ⊗OF0
OS induced by the inclusion

Λm ↪→ t−1Λs
m sends F to t−1F⊥, where t−1F⊥ is the image of F⊥ under the isomor-

phism t−1 : Λs
m ⊗OF0

OS
∼−→ t−1Λs

m ⊗OF0
OS.

LM4 (Hyperbolicity condition) The quadratic form q : Λm ⊗OF0
OS → L ⊗OF0

OS induced

by q : Λm → L satisfies q(F) = 0.

LM5 (Wedge condition) The action of π ⊗ 1− 1⊗ π ∈ OF ⊗OF0
OS on F satisfies

∧2(π ⊗ 1− 1⊗ π | F) = 0.

Then M{m} is representable and we have closed immersions

Mloc
{m} ⊂ M{m} ⊂ Mnaive

{m}

of projective schemes over OF , where all schemes have the same generic fiber.

5.1.2 An affine chart U{m} around the worst point

Set

F0 := (π ⊗ 1)(Λm ⊗OF0
k).

Then we can check that F0 ∈ M{m}(k). We call it the worst point of M{m}.

With respect to the basis (5.1.1), the standard affine chart around F0 in Gr(n,Λm)OF
is

the OF -scheme of 2n× n matrices
(

X
In

)
. We denote by U{m} the intersection of M{m} with

the standard affine chart in Gr(n,Λm)OF
. The worst point F0 of M{m} is contained in U{m}

and corresponds to the point defined by X = 0 and π = 0. The conditions LM1-5 yield

the defining equations for U{m}. We will analyze each condition as in the case I = {0}. A

reader who is only interested in the affine coordinate ring of U{m} may proceed directly to

Proposition 5.1.2.
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5.1.2.1 Condition LM1

Let R be an OF -algebra. With respect to the basis (5.1.1), the operator π ⊗ 1 acts on

Λm ⊗OF0
R via the matrix  0 −π0In

In tIn

 .

Then the π-stability condition LM1 on F means there exists an n × n matrix P ∈ Mn(R)

such that  0 −π0In

In tIn


X
In

 =

X
In

P.

We obtain P = X + tIn and X2 + tX + π0In = 0.

5.1.2.2 Condition LM2

We have already shown that π ⊗ 1 acts on F via right multiplication of X + tIn. Then

the Kottwitz condition LM2 translates to

tr(X + πIn) = π − π, tr
(
∧i(X + πIn)

)
= 0, for i ≥ 2. (5.1.3)

5.1.2.3 Condition LM3

With respect to the bases (5.1.1) and (5.1.2), the perfect pairing

s(−,−) : (Λm ⊗OF0
R)× (Λs

m ⊗OF0
R)→ R

and the map Λm ⊗OF0
R→ 1

t
Λs

m ⊗OF0
R are represented respectively by the matrices

S =



2
t
H2m 0 H2m 0

0 2
t

0 1

H2m 0 2π0

t
H2m 0

0 1 0 2π0

t


and N =



I2m 0 0 0

0 t 0 0

0 0 I2m 0

0 0 0 t


.
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Then the Condition LM3 translates to

X
In


t

S

N
X
In


 = 0, or equivalently,

X
In


t



2
t
H2m 0 H2m 0

0 2 0 t

H2m 0 2π0

t
H2m 0

0 t 0 2π0


X
In

 = 0. (5.1.4)

It amounts to the following equation.

(
2

t
X t + In)

H2m 0

0 t

X +X t

H2m 0

0 t

+

2π0

t
H2m 0

0 2π0

 = 0. (5.1.5)

Note that the π-stability condition LM1 on F implies

2

t
(X t)2 + 2X t +

2π0
t
In = 0, and hence (

2

t
X t + In)

2 = (1− 4π0
t2

)In = θIn.

Multiplying 2
t
X t + In on both sides of (5.1.5), we can obtainH2m 0

0 t

X = X t

H2m 0

0 t

 .

Write

X =

X1 X2

X3 x

 ,

where X1 ∈M2m(R), X2 ∈M2m×1(R), X3 ∈M1×2m(R) and x ∈ R. Equivalently, we obtain

H2mX1 = X t
1H2m, H2mX2 = tX t

3.
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5.1.2.4 Condition LM4

Recall L = 1
t
OF0 . With respect to the basis (5.1.1), the induced L ⊗OF0

R-valued

symmetric pairing on Λm ⊗OF0
R is represented by the matrix

S1 =



2
t
H2m 0 H2m 0

0 2 0 t

H2m 0 2π0

t
H2m 0

0 t 0 2π0


. (5.1.6)

The Condition LM4 translates toX
In


t

S1

X
In

 = 0 and half of the diagonal of

X
In


t

S1

X
In

 equals zero.

Equivalently, we obtain2

t
Xt

1H2mX1 + 2Xt
3X3 +H2mX1 +Xt

1H2m +
2π0

t
H2m

2

t
Xt

1H2mX3 + 2xXt
3 +H2mX2 + tXt

3

2

t
Xt

2H2mX1 + 2xX3 + tX3 +Xt
2H2m

2

t
Xt

2H2mX2 + 2x2 + 2tx+ 2π0

 = 0,

half of the diagonal of
2

t
X t

1H2mX1 + 2X t
3X3 +H2mX1 +X t

1H2m +
2π0
t
H2m equals 0,

1

2
(
2

t
X t

2H2mX2 + 2x2 + 2tx+ 2π0) = 0.

5.1.2.5 Condition LM5

As π ⊗ 1 acts as right multiplication by X + tIn on F , the wedge condition LM5 on F

translates to

∧2(X + πIn) = 0.

5.1.2.6 A simplification of equations

As in the case I = {0}, we can simplify the above equations and obtain the following.

Proposition 5.1.2. The scheme U{m} = SpecOF [X]/I, where I is the ideal generated by:

tr(X + πIn)− π + π, ∧2(X + πIn), X
t
1H2m −H2mX1, tX

t
3 −H2mX2,

half of the diagonal of (
2

t
tr(X1 + πI2m) + 2

√
θ)H2m(X1 + πI2m) + 2X t

3X3.
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Set

X̃1 := X1 + πI2m, X̃ :=

X̃1

X3

 .

Then we have the following proposition.

Proposition 5.1.3. The scheme U{m} is isomorphic to SpecOF [X̃]/Ĩ, where Ĩ is the ideal

generated by

∧2 (X̃), H2mX̃1 − X̃ t
1H2m, half of the diagonal of (

2

t
tr(X̃1) + 2

√
θ)H2mX̃1 + 2X t

3X3.

Definition 5.1.4. Denote by Ufl
{m} the closed subscheme of U{m} = SpecOF [X̃]/Ĩ defined

by the ideal Ĩfl ⊂ OF [X̃] generated by

∧2 (X̃), H2mX̃1 − X̃ t
1H2m, (

tr(X̃1)

t
+
√
θ)H2mX̃1 +X t

3X3.

Note that Ĩ ⊂ Ĩfl.

5.1.2.7 Global results

We first give the results for the schemes U{m} and Ufl
{m}.

Proposition 5.1.5. (1) Ufl
{m} is smooth over OF of relative dimension n− 1. The special

fiber is geometrically reduced and irreducible.

(2) U{m} and Ufl
{m} have the same underlying topological space.

Proof. The proof of (2) is similar as that of Lemma 4.1.19. Now we prove the smoothness

of Ufl
{m}. We use the notation as in the proof of Lemma 4.1.15. In particular,

Rfl =
OF [

(
Y
X3

)
](

∧2
(

Y
X3

)
, Y − Y t, (1

t
tr(H2mY ) +

√
θ)Y +X t

3X3

) .
Then one can similarly show that D(yℓℓ) for 1 ≤ ℓ ≤ 2m is smooth over OF . Let z :=

1
t
tr(H2mY ) +

√
θ. Consider the principal open subscheme D(z) = SpecRfl[z−1]. Then we

have in Rfl[z−1] that

Y = −z−1X t
3X3.
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Thus, Y is determined by X3 and Rfl[z−1] ≃ OF [X3] is smooth over OF . Note that the

scheme Ufl
{m} is covered by D(z) and D(yℓℓ) for 1 ≤ ℓ ≤ 2m. Hence, we conclude that

Ufl
{m} is smooth over OF . The special fiber is geometrically reduced by the smoothness.

It is geometrically irreducible because the geometric special fibers of D(z) and D(yℓℓ) for

1 ≤ ℓ ≤ 2m are irreducible.

Recall (Λm, q,L ) is a hermitian quadratic module over OF0 for L = 1
t
OF0 . Let

H{m} := Sim((Λm, q,L ))

be the group scheme over OF0 of similitude automorphisms of (Λm, q,L ). By Theorem

6.1.13, H{m} is an affine smooth group scheme over OF0 . As in Lemma 4.1.21, the group

scheme H{m} acts on M{m}.

Lemma 5.1.6. Let k be the algebraic closure of the residue field k. Then M{m} ⊗OF
k has

two H{m} ⊗OF0
k-orbits, one of which consists of the worst point.

Proof. Let F ∈ M{m}(k). In particular, the subspace F ⊂ (Λm ⊗OF0
k) is an n-dimensional

k-vector space. The wedge condition LM5 in this case becomes ∧2(π⊗1 | F) = 0. Therefore,

the image (π ⊗ 1)F is at most one dimensional. We have the following two cases.

Suppose (π ⊗ 1)F = 0. Then F = (π ⊗ 1)(Λm ⊗OF0
k), namely, F is the worst point.

Suppose (π⊗1)F is one-dimensional. Then there exists a vector v ∈ F such that (π⊗1)v

generates (π⊗1)F . For simplicity, write π for π⊗1. Let f : (Λm⊗OF0
k)×(Λm⊗OF0

k)→ L ≃

k denote the associated symmetric pairing on Λm ⊗OF0
k. As in the proof of Lemma 4.1.22,

we see that πv is not in the radical of the paring f , because q(v) = 0. Then we can find some

w ∈ Λm⊗OF0
k such that f(w, πv) ̸= 0 in k. By rescaling, we may assume that f(w, πv) = 1.

Similar arguments in Lemma 4.1.22 imply that after some linear transformations, we may

assume

q(w) = q(v) = f(w, v) = 0 and f(w, πv) = 1.
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Let W1 := ⟨v, πv, w, πw⟩. Then f restricts to a perfect symmetric pairing on W1. Now we

can write

Λm ⊗OF0
k = W1 ⊕W, (5.1.7)

where W is the orthogonal complement of W1 with respect to f whose dimension is 2n− 4

over k. Since q(F) = 0, we have F ∩ ⟨w, πw⟩ = 0. Hence, we obtain that the k-dimension

of F ∩W is n− 2 and F ∩W ⊂ πW = ker(π | W ). Therefore, F ∩W = πW for dimension

reasons. Note that the space W carries a structure of hermitian quadratic module. By

(5.1.7), we have

disc′(q) = disc(q|W1)disc
′(q|W ).

Here disc′(q) is the divided discriminant in the sense of Definition 6.1.8, and we view it as

an element in k by using a basis of Λm ⊗OF0
k. By Example 6.1.10, we have disc′(q) ∈ k×.

Since ϕ is perfect on W1, we obtain that disc(ϕ|W1) ∈ k
×
, and hence disc′(q|W ) ∈ k

×
. In

particular, W is a hermitian quadratic module of type Λm over k in the sense of Definition

6.1.8. Applying Theorem 6.1.12 to W and using similar arguments as in the proof of Lemma

4.1.22, we can conclude that points F ∈ M{m}(k) with dimk πF = 1 are in the same orbit

under the action of H{m} ⊗OF0
k.

As Ufl
{m} is flat over OF , we may view Ufl

{m} as an open subscheme of Mloc
{m} containing

the worst point. By Lemma 5.1.6, the H{m}-translation of Ufl
{m} covers M

loc
{m}. Together with

Proposition 5.1.5, we have proven Theorem 1.2.2 and 1.2.3 in the case I = {m} and (R-U).

5.2 The case I = {m} and (R-P)

In this section, we consider the case when F/F0 is of (R-P) type and I = {m}. In

particular, we have

π2 + π0 = 0 and π + π = 0.

Consider the following ordered OF0-basis of Λm and Λs
m:

Λm :
1

2
em+2, . . . ,

1

2
en, π

−1e1, . . . , π
−1em, em+1,

π

2
em+2, . . . ,

π

2
en, e1, . . . , em, πem+1, (5.2.1)
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Λs
m : em+2, . . . , en,

2

π
e1, . . . ,

2

π
em, π

−1em+1, πem+2, . . . , πen, 2e1, . . . , 2em, em+1. (5.2.2)

Recall (Λm, q,L ) is a hermitian quadratic module for L = 2−1OF0 .

5.2.1 A refinement of Mnaive
{m} in the (R-P) case

Definition 5.2.1. Let M{m} be the functor

M{m} : (Sch/OF )
op −→ Sets

which sends an OF -scheme S to the set of OS-modules F such that

LM1 (π-stability condition) F is an OF ⊗OF0
OS-submodule of Λm ⊗OF0

OS and as an OS-

module, it is a locally direct summand of rank n.

LM2 (Kottwitz condition) The action of π ⊗ 1 ∈ OF ⊗OF0
OS on F has characteristic

polynomial

det(T − π ⊗ 1 | F) = (T − π)(T − π)n−1.

LM3 Let F⊥ be the orthogonal complement in Λs
m⊗OF0

OS of F with respect to the perfect

pairing

s(−,−) : (Λm ⊗OF0
OS)× (Λs

m ⊗OF0
OS)→ OS.

We require the map Λm ⊗OF0
OS → (2−1Λs

m) ⊗OF0
OS induced by Λm ↪→ 2−1Λs

m

sends F to 2−1F⊥, where 2−1F⊥ denotes the image of F⊥ under the isomorphism

2−1 : Λs
m ⊗OF0

OS
∼−→ 2−1Λs

m ⊗OF0
OS.

LM4 (Hyperbolicity condition) The quadratic form q : Λm ⊗OF0
OS → L ⊗OF0

OS induced

by q : Λm → L satisfies q(F) = 0.

LM5 (Wedge condition) The action of π ⊗ 1− 1⊗ π ∈ OF ⊗OF0
OS satisfies

∧2(π ⊗ 1− 1⊗ π | F) = 0.

LM6 (Strengthened spin condition) The line ∧nF ⊂ W (Λm)⊗OF
OS is contained in

Im
(
W (Λm)

n−1,1
−1 ⊗OF

OS → W (Λm)⊗OF
OS

)
.
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Here we use similar notations as in §4.1.1.1.

Then M{m} is representable and we have closed immersions

Mloc
{m} ⊂ M{m} ⊂ Mnaive

{m}

of projective schemes over OF , where all schemes have the same generic fiber.

5.2.2 An affine chart U{m} around the worst point

Set

F0 := (π ⊗ 1)(Λm ⊗OF0
k).

Then we can check that F0 ∈ M{m}(k). We call it the worst point of M{m}.

With respect to the basis (5.1.1), the standard affine chart around F0 in Gr(n,Λm)OF
is

the OF -scheme of 2n× n matrices
(

X
In

)
. We denote by U{m} the intersection of M{m} with

the standard affine chart in Gr(n,Λm)OF
. The worst point F0 of M{m} is contained in U{m}

and corresponds to the closed point defined by X = 0 and π = 0. The conditions LM1-6

yield the defining equations for U{m}. We will analyze each condition as in the (R-U) case.

A reader who is only interested in the affine coordinate ring of U{m} may proceed directly

to Proposition 5.2.2.

5.2.2.1 Condition LM1

Let R be an OF -algebra. With respect to the basis (5.2.1), the operator π ⊗ 1 acts on

Λm ⊗OF0
R via the matrix  0 −π0In

In 0

 .

Then the π-stability condition LM1 on F means there exists an n × n matrix P ∈ Mn(R)

such that  0 −π0In

In 0


X
In

 =

X
In

P.

We obtain P = X and X2 + π0In = 0.
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5.2.2.2 Condition LM2

We have already shown that π ⊗ 1 acts on F via right multiplication by X. Then the

Kottwitz condition LM2 translates to

tr(X + πIn) = π − π = 2π, tr
(
∧i(X + πIn)

)
= 0, for i ≥ 2. (5.2.3)

5.2.2.3 Condition LM3

With respect to the bases (5.2.1) and (5.2.2), the perfect pairing

s(−,−) : (Λm ⊗OF0
R)× (Λs

m ⊗OF0
R)→ R

and the map Λm⊗OF0
→ 1

2
Λs

m ⊗OF0
R are represented respectively by the matrices

S =



0 0 J2m 0

0 0 0 1

−J2m 0 0 0

0 −1 0 0


and N =



I2m 0 0 0

0 0 0 −2π0

0 0 I2m 0

0 2 0 0


,

where J2m :=

 0 Hm

−Hm 0

.

Then the Condition LM3 translates to

X
In


t

S

N
X
In


 = 0, or equivalently,

X
In


t



0 0 J2m 0

0 2 0 0

−J2m 0 0 0

0 0 0 2π0


X
In

 = 0. (5.2.4)

Write

X =

X1 X2

X3 x

 ,
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where X1 ∈ M2m(R), X2 ∈ M2m×1(R), X3 ∈ M1×2m(R) and x ∈ R. The Equation (5.2.4)

translates to 2X t
3X3 +X t

1J2m − J2mX1 2xX t
3 − J2mX2

2xX3 +X t
2J2m 2x2 + 2π0

 = 0.

5.2.2.4 Condition LM4

Recall L = 1
2
OF0 . With respect to the basis (5.2.1), the induced L ⊗OF0

R-valued

symmetric pairing on Λm ⊗OF0
R is represented by the matrix

S1 =



0 0 J2m 0

0 2 0 0

−J2m 0 0 0

0 0 0 2π0


. (5.2.5)

The Condition LM4 translates toX
In


t

S1

X
In

 = 0 and half of the diagonal of

X
In


t

S1

X
In

 equals zero.

Equivalently, we obtain2X t
3X3 +X t

1J2m − J2mX1 2xX t
3 − J2mX2

2xX3 +X t
2J2m 2x2 + 2π0

 = 0,

x2 + π0 = 0,

half of the diagonal of 2X t
3X3 +X t

1J2m − J2mX1 equals zero.

5.2.2.5 Condition LM5

Since π ⊗ 1 acts as right multiplication by X on F , the wedge condition LM5 on F

translates to

∧2(X + πIn) = 0.
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5.2.2.6 Condition LM6

As in §4.1.2.6, the strengthened spin condition LM6 in this case implies that

X1 = J2mX
t
1J2m, 2πX

t
3 = J2mX2.

5.2.2.7 A simplification of equations

As in the case I = {0}, we can simplify the above equations and obtain the following.

Proposition 5.2.2. The scheme U{m} is a closed subscheme of U′
{m} := SpecOF [X]/I,

where I is the ideal generated by:

tr(X + πIn)− 2π, ∧2(X + πIn), X
t
1J2m + J2mX1, 2πX t

3 − J2mX2,

half of the diagonal of 2X t
3X3 +X t

1J2m − J2mX1.

Set

X̃1 := X1 + πI2m, X̃ :=

X̃1

X3

 .

As X2 and x are determined by X1 and X3 by relations in I, we obtain the following

proposition.

Proposition 5.2.3. The scheme U′
{m} is isomorphic to SpecOF [X̃]/Ĩ, where Ĩ is the ideal

generated by:

∧2 (X̃), J2mX̃1 + X̃ t
1J2m, half of the diagonal of 2X t

3X3 + X̃ t
1J2m − J2mX̃1.

Definition 5.2.4. Denote by Ufl
{m} the closed subscheme of U′

{m} = SpecOF [X̃]/Ĩ defined

by the ideal Ifl ⊂ OF [X̃] generated by:

∧2 (X̃), J2mX̃1 + X̃ t
1J2m, X

t
3X3 + X̃ t

1J2m.

Note that Ĩ ⊂ Ĩfl.
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5.2.2.8 Global results

We first give results for the schemes U{m} and Ufl
{m}.

Proposition 5.2.5. (1) Ufl
{m} is smooth over OF of relative dimension n− 1 with geomet-

rically integral special fiber.

(2) U{m} and Ufl
{m} have the same underlying topological space.

Proof. The proof of (2) is similar as that of Lemma 4.1.19. Now we prove the smoothness

of Ufl
{m}. It is clear from the expression of Ĩfl that X̃1 is determined by X3, and hence,

OF [X̃]/Ĩfl ≃ SpecOF [X3] ≃ An−1
OF

,

which is smooth over OF of relative dimension n−1. The special fiber of Ufl
{m} is isomorphic

to An−1
k , which is geometrically integral.

As Ufl
{m} is flat over OF , we may view Ufl

{m} as an open subscheme of Mloc
{m} containing

the worst point. Then as in Lemma 5.1.6, we can show that the special fiber M{m} ⊗OF
k

has only two orbits under the action of H{m} ⊗OF0
k. Together with Proposition 5.2.5, we

deduce Theorem 1.2.2 and 1.2.3 in the case I = {m} and (R-P).

92



CHAPTER 6

NORMAL FORMS OF HERMITIAN QUADRATIC MODULES

Let us keep the notations as in §3.3. In this chapter, we will show that, under certain

conditions, hermitian quadratic modules étale locally have a normal form up to similitude.

This is a variant of [RZ96, Theorem 3.16] in our setting. This result will be important when

we relate the local models to Shimura varieties.

In the following, we let

Nilp := NilpOF0

denote the category of noetherian1 OF0-algebras such that π0 is nilpotent. We set

t := π + π.

In particular, t = 0 if F/F0 is of (R-P) type. For an OF0-algebra R and a ∈ OF , we will

simply use a to denote the element a ⊗ 1 in OF ⊗OF0
R, if there is no confusion. For a

hermitian quadratic module (M, q,L ), we will use f to denote the associated symmetric

pairing on M , as in Definition 3.2.1.

6.1 Hermitian quadratic modules of type Λm

The results in this subsection are essentially contained in [Ans18, §9], with some modifi-

cations to the proof.

Lemma 6.1.1 (cf. [Ans18, Lemma 9.6]). Let R ∈ Nilp. Let (M, q,R) be an R-valued

hermitian quadratic module over R. Assume there exist v, w ∈M such that f(v, πw) = 1 in

R. Then there exist v′, w′ in the R-submodule spanned by {v, w, πv, πw} such that

q(v′) = q(w′) = f(v′, w′) = 0 and f(v′, πw′) = 1.

Proof. For r ∈ R, we have

q(v + rπw) = q(v) + rf(v, πw) + r2π0q(w) = (π0q(w))r
2 + r + q(v),

1If R is noetherian, then a finitely generated R-module M is projective if and only if there exists a finite
Zariski open cover {SpecRi}i∈I of SpecR such that MRi is free.

93



which can be viewed as a quadratic function of r. As 4π0 is nilpotent on R by assumption,

there exists a sufficiently large integer N such that the sum

1− 2π0q(v)q(w) + 2π2
0q(v)

2q(w)2 + · · ·+ (−1)N
(
1/2

N

)
4NπN

0 q(v)
Nq(w)N

in R is a square root of 1− 4π0q(v)q(w). Note that
(
1/2
N

)
4N lies in R by a direct computation

of the 2-adic valuation. In particular,

r0 :=
−1 + (1− 4π0q(v)q(w))

1/2

2π0q(w)
∈ R,

and it is a solution for the quadratic equation q(v+ rπw) = 0. Replacing v by v+ r0πw, we

may assume q(v) = 0. Similarly, we may assume q(w) = 0 by replacing w by w + rπv for

suitable r in R.

Set r1 := (1− f(x, y)f(v, π2w))
−1

and r2 := −r1f(v, w). Note that

f(v, π2w) = f(v, (tπ − π0)w) = tf(v, πw)− π0f(v, w) = t− π0f(v, w)

is nilpotent in R, so r1 indeed exists in R. Set v′ := r1v + r2πv. Then the straightforward

computation implies that

f(v′, w) = r1f(v, w) + r2f(πv, w) = r1f(v, w) + r2f(v, πw) = r1f(v, w) + r2 = 0

and

f(v′, πw) = r1f(v, πw) + r2f(πv, πw) = r1 + r2f(v, π
2w) = 1.

Lemma 6.1.2. Let R be an OF0-algebra and M be a finite free OF ⊗OF0
R-module of rank

d ≥ 1. Suppose b : M ×M → R is a perfect R-bilinear pairing. Then there exists v, w ∈ M

such that b(v, πw) = 1.

Proof. By assumption, we may choose an R-basis {v1, . . . , v2d} of M such that vd+i = πvi

for 1 ≤ i ≤ d. This basis yields a dual basis {v∨1 , . . . , v∨2d} of M∨ := HomR(M,R) such that
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v∨i (vj) = b(vi, vj) = δij. Since b is perfect, we can find elements {w1, . . . , w2d} in M such

that

b(wi, vj) = v∨i (vj) = δij

for 1 ≤ i, j ≤ 2d. Set v := wd+1 and w := v1. Then we have

b(v, πw) = b(wd+1, vd+1) = v∨d+1(vd) = 1.

Lemma 6.1.3. Let R be an OF0-algebra and M be a finite free OF ⊗OF0
R-module of rank

d ≥ 1. Suppose b :M ×M → R is an R-bilinear pairing on M such that

b(πm1,m2) = b(m1, πm2) (6.1.1)

for any m1 and m2 in M . Let N be a free (OF ⊗OF0
R)-submodule of M such that b restricts

to a perfect pairing on N . Denote by

N⊥ := {m ∈M | b(m,n) = 0 for any n ∈ N}

the (left) orthogonal complement of N with respect to b.

Then N⊥ is a projective (OF ⊗OF0
R)-module and M = N ⊕N⊥ as OF ⊗OF0

R-modules.

Proof. By construction, we have an exact sequence of R-modules

0→ N⊥ α−→M
β−→ HomR(N,R), (6.1.2)

where α denotes the inclusion map and β denotes the map m 7→ (n 7→ b(m,n)) for m ∈ M

and n ∈ N . By (6.1.1), the R-submodule N⊥ is also an OF ⊗OF0
R-submodule. For any

φ ∈ HomR(N,R), define πφ ∈ HomR(N,R) by setting (πφ)(n) := φ(πn) for n ∈ N . This

endows HomR(N,R) with the structure of an OF ⊗OF0
R-module, and the exact sequence

(6.1.2) becomes an exact sequence of OF ⊗OF0
R-modules. Since b is perfect on N , the map

β is surjective with a section HomR(N,R) → N ⊂ M . It follows that M = N ⊕ N⊥ as

OF ⊗OF0
R-modules and N⊥ is projective.
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Lemma 6.1.4 (cf. [Ans18, Lemma 9.2]). Let R be an OF0-algebra and let M be a free

OF ⊗OF0
R-module of rank d. Then the functor

HQF (M) : (Sch/R)op −→ Sets

S 7→ {OS-valued hermitian quadratic forms on M ⊗R OS}

is represented by the affine space Ad2

R of dimension d2 over R.

Proof. Choose a basis e1, . . . , ed of M over OF ⊗OF0
R. This is also a basis of M ⊗ROS. By

the properties of hermitian quadratic forms, we can see that any hermitian quadratic form

q : M ⊗R OS → OS is determined by values q(ei) for 1 ≤ i ≤ d and f(ei, ej), f(ei, πej) for

1 ≤ i < j ≤ d. More precisely, for any element m =
∑d

i=1(aiei + biπei) ∈ M ⊗R OS for

ai, bi ∈ OS, we have

q(m) = q(
d∑

i=1

aiei) + f(
d∑

i=1

aiei,
d∑

i=1

biπei) + q(
d∑

i=1

biπei)

=
d∑

i=1

a2i q(ei) +
∑

1≤i<j≤d

aiajf(ei, ej) +
∑

1≤i,j≤d

aibjf(ei, πej)

+
d∑

i=1

π0b
2
i q(ei) +

∑
i≤i<j≤d

π0bibjf(ei, ej). (6.1.3)

Note also that for 1 ≤ i, j ≤ d, we have

f(ei, πej) = f(πej, ei) = f(ej, πei) = f(ej, (t− π)ei) = tf(ej, ei)− f(ej, πei).

Conversely, given d2 elements in OS denoted as Aii for 1 ≤ i ≤ d and Aij, Bij for

1 ≤ i < j ≤ d, we can define a hermitian quadratic form on M ⊗R OS as follows. We first

define two d × d matrices A and B via setting Bii := tAii for 1 ≤ i ≤ d, Aij := Aji and

Bij := tAij −Bji for i > j. Then we define a map q as in (6.1.3). We can check that q is an

OS-valued hermitian quadratic form.

The proof of Lemma 6.1.4 also implies that the scheme HQF (M) is (non-canonically)

isomorphic to SpecR[A,B]/I, where A,B are two d×d matrices, and I is the ideal generated
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by

Aij − Aji, Bkℓ +Bℓk − tAkℓ, Bii − tAii

for 1 ≤ i, j ≤ d and 1 ≤ k < ℓ ≤ d.

Definition 6.1.5. Let (M, q,L ) be an L -valued hermitian quadratic module of rank d over

some OF0-algebra R. Then as an R-module, the rank ofM is 2d. We define the discriminant

as the morphism

disc(q) : ∧2dRM → ∧2dR (M∨ ⊗R L ) ≃ ∧2dR (M∨)⊗R L 2d

induced by the morphism M → M∨ ⊗R L , m 7→ f(m,−). Here M∨ denotes the R-dual

module HomR(M,R).

Example 6.1.6. Assume d = 1. Let x ∈ M be a generator of M over OF ⊗OF0
R. Then

with respect to the basis {x, πx}, the symmetric pairing f :M ×M → L associated with q

is given by the matrix 2q(x) tq(x)

tq(x) 2π0q(x)

 .

Using the above basis, the discriminant map can be identified with the determinant of the

previous matrix, as an element in L 2. Therefore,

disc(q) = (4π0 − t2)q(x)2.

We find that when d = 1, the discriminant is “divisible” by 4π0 − t2. More generally, we

have the following lemma.

Lemma 6.1.7 (cf. [Ans18, Lemma 9.4]). Assume d ≥ 1 is odd. Then there exists a functorial

factorization

∧2d
RM

disc(q)
//

disc′(q)
��

∧2d
RM

∨ ⊗R L 2d

∧2dRM∨ ⊗R L 2d ⊗OF0
(4π0 − t2)

j

44

Here the map j is induced by the natural inclusion of the ideal (4π0 − t2) in OF0.

97



Proof. It suffices to prove this in the universal case, i.e., R is the ring

R = OF0 [A,B]/I,

where I is the ideal generated by

Aij − Aji, Bkℓ +Bℓk − tAkℓ, Bii − tAii

for 1 ≤ i, j ≤ d and 1 ≤ k < ℓ ≤ d, and M is equipped with the universal quadratic form

q :M → R given by

q(
d∑

i=1

(aiei + biπei)) :=
∑

1≤i,j≤d

Aijaiaj +
∑

1≤i,j≤d

Bijaibj + π0
∑

1≤i,j≤d

Aijbibj,

for some R-basis (ei, πei)1≤i≤d of M . Under the chosen basis, the associated symmetric

bilinear form f is given by the matrix

C :=

 Ã B

Bt π0Ã

 ∈M2d,2d(R), (6.1.4)

where Ãii := 2Aii for 1 ≤ i ≤ d, Ãij := Aij for i ̸= j, and the transpose matrix Bt of B equals

tÃ−B. We may identify disc(q) with the determinant of the above matrix C. To finish the

proof, we need to show that the ideal (disc(q)) is contained in the ideal (4π0 − t2) in R. As

(4π0 − t2) becomes the unit ideal in R[1/π0], it suffices to show that the ideal (disc(q)) is

contained in (4π0 − t2) in the localization Rm, where m is the ideal (π0). Equivalently, we

need to show that disc(q) is divisible by 4π0 − t2 in Rm/m
k for all k ≥ 1.

We will argue by induction on the rank d. If d = 1, this follows by the computation in

Example 6.1.6. Note that in the ring Rm/m
k, the element Bij = f(ei, πej) is a unit for i ̸= j

and π0 is nilpotent. In particular, we may assume f(e1, πe2) = 1. Then by Lemma 6.1.1, we

may assume f restricting to the submodule R⟨e1, e2, πe1, πe2⟩ is given by the matrix

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


.
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The determinant of the above matrix is one. In particular, f is perfect on R⟨e1, e2, πe1, πe2⟩.

Then we can write M = R⟨e1, e2, πe1, πe2⟩ ⊕M ′, where M ′ is the orthogonal complement of

R⟨e1, e2, πe1, πe2⟩ in M with respect to f . The rank of M ′ over OF ⊗OF0
R is d − 2, which

is odd. By induction, disc(q|M ′) is divisible by 4π0 − t2. Hence, disc(q) = disc(q|M ′) is also

divisible by 4π0 − t2.

Definition 6.1.8. We call the morphism disc′(q) in Lemma 6.1.7 the divided discriminant

of q. If disc′(q) is an isomorphism, then we say (M, q,L ) is a hermitian quadratic module

of type Λm.

Example 6.1.9 (cf. [Ans18, Definition 9.7]). Let R be an OF0-algebra. Define

Mstd,2 := (OF ⊗OF0
R)⟨e1, e2⟩

with hermitian quadratic form qstd,2 :Mstd,2 → R determined by

qstd,2(e1) = qstd,2(e2) = 0, fstd,2(e1, e2) = 0, fstd,2(e1, πe2) = 1.

For an odd integer n = 2m+ 1, we define

Mstd,n :=M⊕m
std,2 ⊕ (OF ⊗OF0

R)en

as an orthogonal direct sum and qstd,n(en) := 1. Viewing disc′(qstd,n) as an element in R,

then we have

disc′(qstd,n) = 1.

Hence, (Mstd,n, qstd,n, R) is a hermitian quadratic module over R of type Λm.

Example 6.1.10. By direct computation of the determinants of matrices (5.1.6) and (5.2.5),

the hermitian quadratic module (Λm, q, ε
−1OF0) is of type Λm.

Lemma 6.1.11. Let S be a scheme. Let G be a smooth group scheme over S. Let X be a

scheme over S equipped with a G -action ρ : G ×S X → X. Assume ρ is simply transitive

in the sense that for any S-scheme T , the set X(T ) is either empty or the action of G (T )
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on X(T ) is simply transitive. If the structure morphism X → S is surjective, then X is an

étale G -torsor over S.

Proof. As ρ is simply transitive, we have an isomorphism Φ : G ×S X
∼−→ X ×S X, (g, x) 7→

(ρ((g, x)), x) by [Sta24, 0499]. As G → S is a smooth cover of S and smoothness is an

fpqc local property on the target, the isomorphism Φ implies that X → S is smooth. If

X → S is surjective, then X → S is a smooth cover of S. Let s : X → G ×S X be the

morphism induced by the identity section of G . Then the composite Φ ◦ s gives a section

of X ×S X → X. By [Sta24, 055V], we can find an étale cover {Ui}i∈I of S such that

X ×S Ui → Ui has a section for each i ∈ I. Hence, we deduce that X is an étale G -torsor

over S.

Theorem 6.1.12 (cf. [Ans18, Theorem 9.10]). Let (M, q,L ) be a hermitian quadratic

module of type Λm of rank n = 2m + 1 over R. Then (M, q,L ) is étale locally isomorphic

to (Mstd,n, qstd,n, R) up to similitude. In particular, (M, q,L ) is étale locally isomorphic to

(Λm, q, ε
−1OF0)⊗OF0

R up to similitude.

Proof. Denote Gm := Sim(Mstd,n). It suffices to show that the sheaf

F := Sim((Mstd,n, qstd,n, R), (M, q,L ))

of similitudes is an étale Gm-torsor over R.

Clearly, F is represented by an affine scheme of finite type over R. We next prove

that F is smooth over R. Over R[1/π0], the quadratic form is determined by the associated

symmetric pairing, and bothMstd andM are self-dual with respect to the symmetric pairing.

Then by the arguments in [RZ96, Appendix to Chapter 3], we see that F is smooth and

surjective over R[1/π0]. Hence, to show the smoothness of F over R, it suffices to prove

that the morphism F → SpecOF is (formally) smooth at points over SpecR/π0R. For any

surjection S → S in NilpR with nilpotent kernel J and a similitude (φ, γ) ∈ F(S), we need to

show that there exists a lift of (φ, γ) to S. We argue by induction on the rank n. We denote
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by e1, . . . , en the standard basis of Mstd,n. We reorder the basis such that q(em+1) = 1 and

(OF ⊗OF0
R)⟨ei, en+1−i⟩ ≃ Mstd,2. We claim that there exist elements v1, . . . , vn in M ⊗R S

and a generator u ∈ L ⊗R S such that vi = φ(ei) in M ⊗R S and

q(vm+1) = u, q(vi) = f(vi, vj) = 0 and f(vi, πvj) = uδi,n+1−j

for 1 ≤ i < j ≤ n and i, j ̸= m+ 1. Then the maps φ : ei 7→ vi and γ : 1 7→ u define a lift of

(φ, γ). Thus, it suffices to prove the claim.

Suppose n = 1. Set v1 := φ(e1) ∈M⊗RS. Then v1 is a generator ofM⊗RS. Pick any lift

v1 ∈M of v1. As disc
′(q) is an isomorphism, q(v1) is a generator of L . Let u = q(v1). This

proves the claim for n = 1. For n ≥ 3, pick lifts v1, . . . , vn in M ⊗R S such that vi = φ(ei).

Let f be the associated symmetric pairing of M . Then f(v1, πvn) is a generator in L ⊗R S,

as its reduction in L ⊗R S is a generator. Set u = f(v1, πvn). Using the generator u, we

may identify L ⊗R S with S, and we may assume that f(v1, πv2) = 1 in L ⊗R S ≃ S. Note

that as elements q(v1), q(v2) and f(v1, v2) reduce to zero in S by properties of v1 and v2,

they lie in the kernel J . Then the linear transformation in Lemma 6.1.1 does not change the

reduction of v1 and v2, and hence, we may assume that

q(v1) = q(vn) = f(v1, vn) = 0 and f(v1, πvn) = 1.

Then f is perfect on the S-submodule N generated by v1, vn, πv1, πvn. Let N⊥ be the

orthogonal complement of N in M ⊗R S. Then N⊥ ⊗R S is the OF ⊗OF0
S-submodule in

M ⊗R S generated by v2, . . . , vn−1. For 2 ≤ i ≤ n − 1, we can write vi = w′ + w, where

w′ ∈ N⊥ and w ∈ N . As vi is orthogonal to N , we have w is orthogonal to N . Since f is

perfect on N , we obtain w = 0. In particular, we may choose vi in N⊥ as a lift of vi for

2 ≤ i ≤ n − 1. Now the claim follows by induction on the rank of M , and we deduce the

(formal) smoothness of F over R.

Note that the same proof implies that the group scheme Gm is smooth over R. As the

Gm-action on F is simply transitive by construction, by Lemma 6.1.11, it remains to show

that F is a surjective scheme over R. Since we have already shown that F is surjective over
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R[1/π0], it suffices to prove the surjectivity of F over R/π0R. Then we may assume R = k

is the algebraic closure of the residue field k of OF0 and L = k. We need to show that there

exists a similitude isomorphism (φ, γ) between (Mstd,n, qstd,n, k) and (M, q, k). For the case

n = 1, we can construct a similitude as in the previous paragraph. For n ≥ 3 odd, we first

claim that there exist v and w in M such that f(v, πw) = 1. Otherwise, under a basis of the

form (v1, . . . , vn, πv1, . . . , πvn), the pairing f corresponds to the 2n× 2n matrixÃ 0

0 0


for some n× n matrix Ã, where Ãii = 2q(vi) = 0 for 1 ≤ i ≤ n and Ãij = f(vi, vj) for i ̸= j.

Suppose for some indices i0 ̸= j0, we have f(vi0 , vj0) ̸= 0. We may assume f(v1, v2) ̸= 0.

Then by a suitable linear transformation of the basis v1, . . . , vn, we may assume that Ã is of

the form 
0 1

1 0
0

0 Ã1


In particular, M1 := (OF ⊗OF0

k)⟨v1, v2⟩ and M2 := (OF ⊗OF0
k)⟨v3, . . . , vn⟩ are orthogonal

complement of each other. Then

disc′(q) = disc(q|M1)disc
′(q|M2).

However,

disc(q|M1) = det



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


= 0.

This contradicts the assumption that disc′(q) is a unit. Then we see f(vi, vj) = 0 for any

i ̸= j, i.e., Ã is a diagonal matrix. Hence, M is an orthogonal direct sum of rank one
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hermitian quadratic modules. This also contradicts disc′(q) ̸= 0. Then we conclude that

there exist v and w in M such that f(v, πw) = 1. Then as in Lemma 6.1.1, we may assume

that f restricting to (OF ⊗OF0
k)⟨v, w⟩ corresponds to the matrix

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


.

Hence, (OF ⊗OF0
k)⟨v, w⟩ is isomorphic to Mstd,2. Its orthogonal complement is a hermitian

quadratic module of type Λm of rank n − 2. Now we can finish the proof by induction on

the rank of M .

Theorem 6.1.13 (cf. [Ans18, Proposition 9.9]). The group functor Sim(Λm) is representable

by an affine smooth group scheme over OF0 whose generic fiber is GU(V, h).

Proof. By the proof of Theorem 6.1.12, the functor Sim(Λm) is representable by an affine

smooth group scheme of finite type over OF0 . It remains to prove the assertion for the generic

fiber. Following the notations in §3.2, we denote by s the symmetric pairing on Λm. For any

F0-algebra R, we have

Sim(Λm)(R) =

(φ, γ)

q(φ(x)) = γ(q(x)) for x ∈ Λm ⊗OF0
R = V ⊗F0 R

γ : L ⊗OF0
R

∼−→ L ⊗OF0
R

φ is an automorphism of the OF ⊗OF0
R-module Λm ⊗OF0

R


=

φ ∈ GLF⊗F0
R(V ⊗F0 R)

s(φ(x), φ(y)) = γ (s(x, y)) for x, y ∈ V ⊗F0 R

γ : R
∼−→ R


=

φ ∈ GLF⊗F0
R(V ⊗F0 F )

for x, y ∈ V ⊗F0 R and some c(φ) ∈ R×

s(φ(x), φ(y)) = c(φ)s(x, y)


=

φ ∈ GLF⊗F0
R(V ⊗F0 F )

for x, y ∈ V ⊗F0 R and some c(φ) ∈ R×

h(φ(x), φ(y)) = c(φ)h(x, y)


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= GU(V, h)(R).

Therefore, the generic fiber of Sim(Λm) is GU(V, h).

Corollary 6.1.14. The scheme Sim(Λm) is isomorphic to the parahoric group scheme at-

tached to Λm.

Proof. Let F̆0 denote the completion of the maximal unramified extension of F0. By con-

struction, we know that Sim(Λ)(OF̆0
) is the stabilizer of Λm in GU(V, h)(F̆0), which is a

parahoric subgroup by Proposition 2.4.1. As Sim(Λ) is smooth over OF0 by Theorem 6.1.13,

the corollary follows by [BT84a, 1.7.6].

6.2 Hermitian quadratic modules of type Λ0

Let R be an OF0-algebra. Recall that in Definition 3.2.3, we have defined the category

CR of hermitian quadratic modules with ϕ. By a similar proof as in Lemma 6.1.4, we can

show that for a fixed free OF ⊗OF0
R-module M of rank d, the moduli functor of all bilinear

forms ϕ and quadratic forms q on M satisfying (3.2.4) in Definition 3.2.3 is representable by

the affine space of dimension d2 over R.

Let (M, q,L , ϕ) ∈ CR. Choose a basis (e1, . . . , ed, πe1, . . . , πed) of M . The pairing ϕ is

then given by the matrix  Ã B̃

tÃ− B̃ π0Ã

 ,

where Ãii = (t/π0)q(ei) and B̃ii = 2q(ei) for 1 ≤ i ≤ d, Ãij = ϕ(ei, ej) and B̃ij = ϕ(ei, πej)

for 1 ≤ i, j ≤ d and i ̸= j, and they satisfy Ã = −Ãt + (t/π0)B̃ and B̃ = B̃t.

Definition 6.2.1. Let (M, q,L , ϕ) ∈ CR and the rank of M over R is 2d. We define the

discriminant as the morphism

disc(ϕ) : ∧2dRM → ∧2dR (M∨ ⊗R L ) ≃ ∧2dR (M∨)⊗R L 2d

induced by the morphism M →M∨ ⊗R L , m 7→ ϕ(m,−).
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Example 6.2.2. Assume d = 1. Let x ∈M be a generator of M over OF ⊗OF0
R. Suppose

(M, q,L ) is a hermitian quadratic module. Then we can define a bilinear form ϕ :M×M →

L given by the matrix  t/π0q(x) 2q(x)

(t2 − 2π0)/π0q(x) tq(x)


with respect to the basis {x, πx}. Equipped with such ϕ, we have (M, q,L , ϕ) ∈ CR. Using

the basis {x, πx}, we may view the discriminant map disc(ϕ) as the determinant of the above

matrix. We have

disc(ϕ) =
4π0 − t2

π0
q(x)2.

Arguing similarly as in Lemma 6.1.7, we can show the following result.

Lemma 6.2.3. Assume d ≥ 1 is odd. Then there exists a functorial factorization

∧2d
RM

disc(ϕ)
//

disc′(ϕ)
��

∧2dRM∨ ⊗R L 2d

∧2dRM∨ ⊗R L 2d ⊗OF0
(4π0−t2

π0
)

j

44

Here the map j is induced by the natural inclusion of the ideal (4π0−t2

π0
) in OF0.

Proof. As in the proof of Lemma 6.1.7, we can reduce to show that the determinant, which

equals disc(ϕ), of a matrix of the form Ã B̃

tÃ− B̃ π0Ã

 ∈M2d,2d(R),

is divisible by (4π0 − t2)/π0 in R, where Ãii = (t/π0)q(ei) and B̃ii = 2q(ei) for 1 ≤ i ≤ d,

Ãij = ϕ(ei, ej) and B̃ij = ϕ(ei, πej) for 1 ≤ i, j ≤ d and i ̸= j, and they satisfy Ã =

−Ãt + (t/π0)B̃ and B̃ = B̃t.

If d = 1, then the lemma follows by Example 6.2.2. Suppose d ≥ 3. We may assume π0

is nilpotent in R and B12 = ϕ(e1, πe2) = 1 as in the proof of Lemma 6.1.7. As in Lemma
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6.1.1, replacing e1 by r1e1 + r2πe1 for suitable r1 and r2 in R, we may assume further that

ϕ(e1, e2) = 0. Then restricting to the submodule ⟨e1, e2, πe1, πe2⟩, the pairing ϕ is given by

the matrix 

t
π0
q(e1) 0 2q(e1) 1

t
π0

t
π0
q(e2) 1 2q(e2)

t2−2π0

π0
q(e1) −1 tq(e1) 0

t2−π0

π0

t2−2π0

π0
q(e2) t tq(e2)


.

By direct computation, the above is an invertible matrix, and hence the pairing ϕ is perfect

on the module ⟨e1, e2, πe2, πe2⟩. Therefore, the orthogonal complementM ′ of ⟨e1, e2, πe2, πe2⟩

in M has rank n− 2 over OF ⊗OF0
R, and M ′ ∈ CR. Then we finish the proof by induction

on the rank of M .

Definition 6.2.4. Let R be an OF0-algebra. We say that a hermitian quadratic module

(M, q,L , ϕ) ∈ CR over R is of type Λ0 if disc′(ϕ) is an isomorphism.

Example 6.2.5. Let R be an OF0-algebra.

(1) Suppose (M, q,R) is a hermitian quadratic module of rank one. Let x ∈ M be a

generator and assume q(x) = 1. We can define a bilinear form ϕstd,1 :M ×M → R as

in Example 6.2.2. Then (M, q,L , ϕstd,1) ∈ CR. Viewing disc′(ϕstd,1) as an element in

R, we have disc′(ϕstd,1) = 1.

(2) Define

Nstd,2 := (OF ⊗OF0
R)⟨e1, e2⟩

with hermitian quadratic form qstd,2 : Nstd,2 → R determined by

qstd,2(e1) = qstd,2(e2) = 0, ϕstd,2(e1, e2) = 0, ϕstd,2(e1, πe2) = 1.

For an odd integer n = 2m+ 1, we define

Nstd,n := N⊕m
std,2 ⊕ (OF ⊗OF0

R)en.
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Here (OF ⊗OF0
R)en is a hermitian quadratic module of rank one as in (1), and the

direct sum is an orthogonal direct sum with respect to ϕstd,n := ϕ⊕m
std,2⊕ϕstd,1. Viewing

disc′(ϕstd,n) as an element in R, we have

disc′(ϕstd,n) = 1.

Hence, (Nstd,n, qstd,n, R, ϕstd,n) is a hermitian quadratic module over R of type Λ0.

Example 6.2.6. Equipped with the following bilinear form

ϕ(−,−) : Λ0 × Λ0 −→ L = ε−1OF0 , (x, y) 7→ s(x, π−1y) = ε−1TrF/F0 h(x, π
−1y),

the hermitian quadratic module (Λ0, q, ε
−1OF0 , ϕ) is of type Λ0.

Theorem 6.2.7. Let (M, q,L , ϕ) be a hermitian quadratic module of type Λ0 of rank n =

2m+1 over R. Then (M, q,L , ϕ) is étale locally isomorphic to (Nstd,n, qstd,n, R, ϕstd,n) up to

similitude. In particular, (M, q,L , ϕ) is étale locally isomorphic to (Λ0, q, ε
−1OF0 , ϕ)⊗OF0

R

up to similitude.

Proof. As in the proof of Theorem 6.1.12, it suffices to show that the representable sheaf

F := Sim((Nstd,n, qstd,n, R, ϕstd,n), (M, q,L , ϕ))

of similitudes is surjective over R and smooth at points over SpecR/π0R.

We first check that for any surjection S → S in NilpR with nilpotent kernel J and

a similitude (φ, γ) ∈ F(S), there exists a lift of (φ, γ) to S. We denote by e1, . . . , en

the standard basis of Nstd,n. We reorder the basis such that q(em+1) = 1 and (OF ⊗OF0

R)⟨ei, en+1−i⟩ ≃ Nstd,2. We claim that there exist lifts vi ∈ M ⊗R S of vi := φ(ei) for

1 ≤ i ≤ n and a generator u ∈ L ⊗R S such that

q(vm+1) = u, q(vi) = ϕ(vi, vj) = 0 and ϕ(vi, πvj) = uδi,n+1−j

for 1 ≤ i < j ≤ n and i, j ̸= m+ 1. The the maps φ : ei 7→ vi and γ : 1 7→ u defines a lift of

(φ, γ) and (φ, γ) preserves ϕ. Thus it suffices to prove the claim.
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Suppose n = 1. Pick any lift v1 of v1. As disc
′(ϕ) is an isomorphism, q(v1) is a generator

of L ⊗R S. Set u = q(v1). This proves the claim for n = 1. For n ≥ 3, pick any lifts

v1, . . . , vn in M ⊗R S of v1, . . . , vn. As in the proof of Theorem 6.1.12, we may assume that

L ⊗R S ≃ S and ϕ(v1, πvn) = 1 in S. Let r0 ∈ R be a solution of the quadratic equation

q(vn)r
2 + r + q(v1) = 0, which exists by arguments in Lemma 6.1.1. Since q(v1) and q(vn)

lie in J , we have r0 ∈ J . Then v′1 := v1 + r0vn and v′1 = v1. So we may find a lift v′n such

that ϕ(v′1, v
′
n) = 1. Set v′′n := v′n − q(v′n)v′1. Then q(v′′n) = 0 and v′′n = vn. Set

r1 := (1− ϕ(v′1, v′′n)ϕ(v′1, π2v′′n))
−1 and r2 := −r1ϕ(v′1, v′′n).

Since (φ, γ) preserves ϕ, we have ϕ(v′1, v
′′
n) = γ(ϕstd,n(e1, en)) = 0. Thus, ϕ(v′1, v

′′
n) and r2 are

in J . Set v′′1 := r1v
′
1 + r2πv

′
1. Then v

′′
1 = v. As in Lemma 6.1.1, we have ϕ(v′′1 , πv

′′
n) = 1 and

ϕ(v′′1 , v
′′
n) = 0. By replacing v1 by v′′1 and vn by v′′n, we may assume that

q(v1) = q(vn) = ϕ(v1, vn) = 0 and ϕ(v1, πvn) = 1.

Then ϕ is perfect on the S-submodule N generated by v1, v2, πv1, πv2. Let N⊥ be the

orthogonal complement (with respect to ϕ) of N in M ⊗R S. As in the proof of Theorem

6.1.12, we may assume that lifts vi for 2 ≤ i ≤ n − 1 lie in N⊥. The claim follows by

induction on the rank of M , and hence, we deduce the smoothness of F over R.

Next we prove the surjectivity of F over R. It suffices to prove that F has non-empty

fibers over R/π0R. Then we may assume R = k is the algebraic closure of the residue

field of OF0 and L = k. We need to show that there exists a similitude isomorphism

(φ, γ) preserving ϕ between (Nstd,n, qstd,n, k, ϕstd,n) and (M, q, k, ϕ). Suppose n = 1. Then

M ⊗R S = (OF ⊗OF0
S)v for some v. Define

φ : Nstd ⊗R S −→M ⊗R S = (OF ⊗OF0
S)v, γ :S −→ L ⊗R S

e1 7→ v, 1 7→ q(v).

As disc′(ϕ) is an isomorphism, q(v) is a generator. Since ϕ is determined by q in this case by

computation in Example 6.2.2, the similitude (φ, γ) preserves ϕ. For n ≥ 3 odd, we claim
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that there exist v and w in M ⊗R S such that ϕ(v, πw) = 1. This can be done using proof

by contradiction as in Theorem 6.1.12. Set v′ := v + r0w, where r0 ∈ k is a solution for the

quadratic equation q(v′) = q(w)r2 + r + q(v). Then

ϕ(v′, πw) = ϕ(v, πw) + r0ϕ(w, πw) = 1 + 2r0q(w) = 1.

The last equality holds since char k = 2. Set w′ := w − q(w)v′. Then q(w′) = 0. As in

the previous paragraph, we may find suitable r1 and r2 such that v′′ := r1v
′ + r2πv

′ satisfies

ϕ(v′′, πw) = 1 and ϕ(v′′, w′) = 0. Replacing v by v′′ and w by w′, we see that ϕ restricting

to (OF ⊗OF0
k)⟨v, w⟩ acts the same as ϕstd,2. In particular, the subspace (OF ⊗OF0

k)⟨v, w⟩

is isomorphic to Nstd,2. Its orthogonal complement is a hermitian quadratic module of type

Λ0 of rank n− 2. Now we can finish the proof by induction on the rank of M .

Theorem 6.2.8. The group functor Sim((Λ0, ϕ)) of similitudes preserving ϕ is representable

by an affine smooth group scheme over OF0 whose generic fiber is GU(V, h).

Proof. By the proof of Theorem 6.2.7, the functor Sim((Λ0, ϕ)) is representable by an affine

smooth group scheme over OF0 . It remains to show the assertion for the generic fiber. Let

R be an F -algebra. For any similitude (φ, γ) ∈ Sim(Λ0) and x, y ∈ Λ0 ⊗OF0
R = V ⊗F0 R,

we have

ϕ(φ(x), φ(y)) = ϕ(φ(x), π(π−1φ(y))) = q(φ(x) + φ(π−1y))− q(φ(x))− q(φ(π−1y))

= γ(q(x+ π−1y)− q(x)− q(π−1y)) = γ(ϕ(x, y)).

Hence, over the generic fiber, any similitude of Λ0 preserves ϕ. Then as in the proof of

Theorem 6.1.13, we see that the generic fiber of Sim((Λ0, ϕ)) is GU(V, h).

The same argument as in the proof of Corollary 6.1.14 implies the following.

Corollary 6.2.9. The scheme Sim((Λ0, ϕ)) is isomorphic to the parahoric group scheme

attached to Λ0.
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CHAPTER 7

2-ADIC INTEGRAL MODELS OF SHIMURA VARIETIES

In this chapter, we will constuct 2-adic integral models of Shimura varieties of abelian type

with parahoric level structure. Our goal is to prove Theorem 1.2.7 in the Introduction.

7.1 p-divisible groups and Lau’s classification

In this section, we review Lau’s work [Lau14] on the classification of 2-divisible groups

in terms of Dieudonné displays. We generalize the construction of the natural “connection

isomorphisms” for Dieudonné pairs in [KPZ24] to the case p = 2. We also compare Lau’s

classification of p-divisible groups with Breuil-Kisin’s classfication.

7.1.1 Zink rings, frames and windows

Let (R,mR, k) be an artinian local ring (or more generally an admissible ring in the sense

of [Lau14, §1]) with residue field k. Denote by W (R) its associated Witt ring equipped with

Frobenius φ and Verschiebung V . By [Lau14, §1B], the exact sequence

0→ W (mR)→ W (R)→ W (k)→ 0

has a unique ring homomorphism section s : W (k)→ W (R), which is φ-equivariant.

Definition 7.1.1 ([Zin01]). The Zink ring of R isW(R) = sW (k)⊕Ŵ (mR), where Ŵ (mR) ⊂

W (mR) consists of elements (x0, x1, . . .) ∈ W (mR) such that xi = 0 for almost all i.

The Zink ringW(R) is a φ-stable subring ofW (R). If p = 2, W(R) is in general not stable

under the Verschiebung V . We need to modify V as follows. The element p−[p] ∈ W (Zp) lies

in the image of V because it maps to zero in Zp. Moreover, the element V −1(p−[p]) ∈ W (Zp)

is a unit, since it maps to 1 in W (Fp). Define

u0 :=


V −1(2− [2]) if p = 2,

1 if p ≥ 3.

(7.1.1)

The image of u0 ∈ W (Zp)
× in W (R)× is also denoted by u0. For x ∈ W (R), set

V(x) := V (u0x).
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Lemma 7.1.2 ([Lau14, Lemma 1.7]). The map V : W (R) → W (R) satisfies V(W(R)) ⊂

W(R). Moreover, there is an exact sequence

0→W(R)
V−→W(R)

w0−→ R→ 0.

Remark 7.1.3. We will call the map

V : W(R)→W(R)

the modified Verschiebung for W(R). Many statements about W(R) in the case p = 2 are

proven by adapting the corresponding proofs for p > 2, with adjustments for the modified

Verschiebung map.

Now we recall the logarithm coordinates of the Witt ring, see [Lau14, §1C]. Let (S →

R, δ) be a divided power extension of rings with kernel a ⊂ S. Denote by aN the additive

group
∏

i∈N a, equipped with a W (S)-module structure

x[a0, a1, . . .] := [w0(x)a0, w1(x)a1, . . .]

for x ∈ W (S) and [a0, a1, . . .] ∈
∏

i∈N a. Then the δ-divided Witt polynomials w′
n define an

isomorphism of W (S)-modules

Log : W (a)
∼−→ aN

a = (a0, a1, . . .) 7→ [w′
0(a), w

′
1(a), . . .]

where w′
n(X0, . . . , Xn) = (pn − 1)!δpn(X0) + (pn−1 − 1)!δpn−1(X1) + · · ·+Xn. For x ∈ W (a),

we call Log(x) the logarithmic coordinate of x. In terms of logarithmic coordinates, the

Frobenius and Verschiebung of W (a) act on aN as

φ([a0, a1, . . .]) = [pa1, pa2, . . .], V ([a0, a1, . . .]) = [0, a0, a1, . . .]. (7.1.2)

Moreover, Log induces an injective map

Log : Ŵ (a) ↪→ a(N),
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which is bijective when the divided powers δ are nilpotent. Here, the group Ŵ (a) denotes

the set of elements (a0, a1, . . .) ∈ W (a) such that ai = 0 for almost all i, and a(N) ⊂ aN

denotes
⊕

i∈N a. The ideal a ⊂ W (S) is by definition the set of elements whose logarithmic

coordinates are of the form [a, 0, 0, . . .], a ∈ a.

Definition 7.1.4. For a (Noetherian) complete local ring R with residue field k, we set

W(R) := lim←−
n

W(R/mn
R).

For a complete local ring R, we can define the modified Verschibung V on W(R) by

passing to the limit. Then W(R) is a subring of W (R) := lim←−n
W (R/mn

R), which is stable

under φ and V. We also have W(R)/V(W(R)) ≃ R, see [Lau14, §1E]. Note that W(R) is

p-adically complete by [Lau14, Proposition 1.14].

Here, we introduce notions of frames and windows following [Lau10, §2] and [Lau14, §2].

Definition 7.1.5. (1) A frame is a quintuple F = (S, I, R, σ, σ1), where S and R = S/I

are rings, σ : S → S is a ring endomorphism with σ(a) ≡ apmod pS, σ1 : I → S is a

σ-linear map of S-modules whose image generates S as an S-module, and I+pS lies in

the Jacobson radical of S. A frame is called a lifting frame if all projective R-modules

of finite type can be lifted to projective S-modules.

(2) A homomorphism of frames

α : F −→ F ′ = (S ′, I ′, R′, σ′, σ′
1)

is a ring homomorphism α : S → S ′ with α(I) ⊂ I ′ such that σ′α = ασ and σ′
1α =

u · ασ1 for a unit u ∈ S ′, which is then determined by α. We say that α is a frame

u-homomorphism. If u = 1, then α is called strict.

(3) Let F be a frame. A window over F (or F -window) is a quadruple

P = (M,M1, F, F1),
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where M is a projective S-module of finite type with a submodule M1 such that there

exists a decomposition of S-modules M = L⊕ T with M1 = L⊕ IT , called a normal

decomposition, and where F : M → M and F1 : M1 → M are σ-linear maps of

S-modules with

F1(ax) = σ1(a)F (x)

for a ∈ I and x ∈M , and F1(M1) generates M as an S-module.

Remark 7.1.6. If F is a lifting frame, then the existence of a normal decomposition in (3)

of the above definition is equivalent to that M/M1 is a projective R-module. A frame is a

lifting frame if S is local or I-adic.

A u-homomorphism α : F → F ′ induces a base change functor

α∗ : (windows over F) −→ (windows over F ′) (7.1.3)

from the category of windows over F to the category of windows over F ′. In terms of normal

representations, the functor α∗ is given by

(L, T,Ψ) 7→ (S ′ ⊗S L, S
′ ⊗S T,Ψ

′)

with Ψ′(s′ ⊗ l) = uσ′(s′)⊗Ψ(l) and Ψ′(s′ ⊗ t) = σ′(s′)⊗Ψ(t).

Definition 7.1.7. A frame homomorphism α : F → F ′ is called crystalline if the functor

α∗ is an equivalence of categories.

Note that for a frame F = (S, I, R, σ, σ1), there is a unique element θ ∈ S such that

σ(a) = θσ1(a) for all a ∈ I. For an S-module M , we write M (σ) = S ⊗σ,S M . Then for a

window P = (M,M1, F, F1) over F , by [Lau14, Lemma 2.3], there exists a unique S-linear

map

V ♯ :M −→M (σ) (7.1.4)

such that V ♯(F1(x)) = 1 ⊗ x for x ∈ M1. It satisfies F#V ♯ = θ and V ♯F# = θ, where

F# :M (σ) →M is the linearization of F .
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Example 7.1.8. For a complete local ring R with perfect residue field, we will be interested

in the following (lifting) frames:

(1) the Dieudonné frame

DR := (W(R), IR, R, φ, φ1),

where IR = ker(w0 : W(R)→ R) and φ1 : IR →W(R) is the inverse of V;

(2) assume R = OK for some finite extension K of Qp with residue field k, choose a

presentation R = S/ES, where S = W (k)[[u]] and E ∈ S is an Eisenstein polynomial

with constant term p. Define the Breuil-Kisin frame

B := (S, ES, R, φ, φ1),

where φ : S→ S acts on W (k) as usual Frobenius and sends u to up, and φ1(Ex) :=

φ(x) for x ∈ S.

7.1.2 Dieudonné displays and Dieudonné pairs

Let R be a complete local ring with perfect residue field of characteristic p. By Re-

mark 7.1.6, a window over DR (also called a Dieudonné display over R later) is a tuple

(M,M1, F, F1), where

(i) M is a finite free W(R)-module,

(ii) M1 ⊂ M is a W(R)-submodule such that IRM ⊂ M1 ⊂ M and M/M1 is a projective

R-module,

(iii) F :M →M is a φ-linear map,

(iv) F1 : M1 → M is a φ-linear map, whose image generates M as a W(R)-module, and

which satisfies

F1(V(w)m) = wF (m) (7.1.5)

for any w ∈W(R) and m ∈M1.
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Remark 7.1.9. For p > 2, windows over DR are the same as the Dieudonné displays over R

used in [KP18, 3.1.3], and the ring W(R) here is denoted by Ŵ (R) in loc. cit..

For a Dieudonné display (M,M1, F, F1), by taking w = 1 and m ∈ M1 in the equation

(7.1.5), we get

F (m) = F1(V(1)m) = φV(1)F1(m) = pu0F1(m).

Recall that u0 ∈ W (R)× is defined by (7.1.1). In particular, we can consider the condition

(iv′) F1 : M1 → M is a φ-linear map, whose image generates M as a W(R)-module, and

which satisfies

F1(V(w)m) = wpu0F1(m)

for any w ∈W(R) and m ∈M1.

Let M̃1 be the image of the homomorphism

φ∗(i) : φ∗M1 = W(R)⊗φ,W(R) M1 → φ∗M = W(R)⊗φ,W(R) M

induced by the inclusion i : M1 ↪→ M . Note that M̃1 and the notion of a normal decompo-

sition depend only on M and M1, not on F and F1.

Lemma 7.1.10. Suppose W(R) is p-torsion free (e.g. if R is p-torsion free, or pR = 0 and

R is reduced).

(1) Giving a Dieudonné display (M,M1, F, F1) over R is the same as giving (M,M1, F1)

satisfying (i), (ii) and (iv′). In this case, we also refer to the tuple (M,M1, F1) as a

Dieudonné display over R.

(2) For a Dieudonné display (M,M1, F1) over R, the linearization F#
1 of F1 factors as

φ∗M1 → M̃1
Ψ−→M

with Ψ a W(R)-module isomorphism.
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(3) Given an isomorphism Ψ : M̃1 →M of W(R)-modules, there exists a unique Dieudonné

display (M,M1, F1) over R, which produces the given (M,M1,Ψ) via the construction

in (2).

Proof. The proof closely follows [KP18, §3.1.3, Lemma 3.1.5], with adjustments for the

modified Verschiebung V. We take this lemma as an example to illustrate how we modify

the arguments concerning Dieudonné displays in [KP18] to deal with the case p = 2.

(1) Given the tuple (M,M1, F1), set F (m) := F1(V(1)m) form ∈M . Clearly F :M →M

is φ-linear. Then for w ∈W(R) and m ∈M , we have

pu0F1(V(w)m) = F1(V(1)V(w)m) = F (V(w)m) = φV(w)F (m) = pu0wF (m).

Since u0 ∈ W (R)× and W(R) is p-torsion free, we obtain that W(R) is (pu0)-torsion free,

and hence

F1(V(w)m) = wF (m).

In particular, (M,M1, F, F1) is a Dieudonné display.

(2) Let M = L ⊕ T be a normal decomposition for M . Since φ(IR) = pu0W(R) and

W(R) is pu0-torsion free, we have

M̃1 = φ∗(L)⊕ pu0φ∗(T ) ≃W(R)d,

where d = rkW(R)M . Firstly, we show that F#
1 factors through M̃1. Let K denote the

kernel of φ∗(i) : φ∗M1 → φ∗M . Note that F |M1 = pu0F1, and so pu0F
#
1 = F# ◦ φ∗(i).

In particular, pu0F
#
1 vanishes on K. Since W(R) is pu0-torsion free, we conclude that F#

1

vanishes on K, and hence F#
1 factors through M̃1. Since F#

1 is surjective by definition, we

obtain a surjective map Ψ : M̃1 →M between free W(R)-modules of the same rank. Hence,

Ψ is an isomorphism.

(3) Define F1 :M1 →M by

F1(m1) := Ψ(1⊗m1),
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where 1⊗m1 denotes the image of 1⊗m1 ∈W(R)⊗φ,W(R)M1 = φ∗M1 in φ
∗M . Then F1 is

clearly φ-linear and its linearization F#
1 is surjective. Thus, we obtain a Dieudonné display

(M,M1, F1).

Definition 7.1.11 ([Hof23, §1.1]). Let R be a complete local ring.

(1) A Dieudonné pair of type (n, d) over R is a pair (M,M1) of W(R)-modules such thatM

is a finite free W(R)-module of rank n, M1 is a W(R)-submodule of M and M/M1 is a

finite free R-module of rank d. Sometimes, we simply say that (M,M1) is a Dieudonné

pair.

(2) A morphism between two Dieudonné pairs (M,M1) and (M ′,M ′
1) is a homomorphism

of W(R)-modules f :M →M ′ such that f(M1) ⊂M ′
1.

Lemma 7.1.12. There exists a functor F : (M,M1) 7→ M̃1, from the category of Dieudonné

pairs over R of type (n, d) to the category of finite free W(R)-modules of rank n, such that F is

compatible with base change in R and there is a natural isomorphism M̃1[1/p] = (φ∗M)[1/p].

If W(R) is p-torsion free, then M̃1 is given by the construction in Lemma 7.1.10.

Proof. (cf. [KPZ24, §5.1.1].) Let (M,M1) be a Dieudonné pair of type (n, d). Choose a

normal decomposition M = L⊕ T and a basis B = (e1, . . . , en) of M such that (e1, . . . , ed)

is a basis of L and (ed+1, . . . , en) is a basis of T . Such a basis B is said to be adapted to the

normal decomposition M = L⊕ T . Set

F((M,M1)) = M̃1 = (φ∗L)⊕ (φ∗T ),

which is a free W(R)-module of rank n. We denote by B̃ = (φ∗e1, . . . , φ
∗en) the basis of

M̃1.

Let (M ′,M ′
1) be a second Dieudonné pair with a normal decompositionM ′ = L′⊕T ′ and

an adapted basis B′ = (e′1, . . . , e
′
n). Let f be a morphism between (M,M1) and (M ′,M ′

1).
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Using the normal decompositions, we may express f as a block matrixA B

C D

 ∈Mn(W(R))

with respect to the bases B and B′, where the entries of C are in IR. Then we define F(f)

to be the morphism f̃ : M̃1 → M̃ ′
1 given by the block matrix φ(A) pu0φ(B)

V−1(C) φ(D)


in terms of the bases B̃ and B̃′. Using pu0V−1 = φ, it is straightforward to check that F is

a well-defined functor. By construction, F is compatible with base change in R.

There is a natural isomorphism

M̃1[1/p] = (φ∗L)[1/p]⊕ (φ∗T )[1/p]
∼−→ (φ∗M)[1/p] = (φ∗L)[1/p]⊕ (φ∗T )[1/p]

l + t 7→ l + pu0t.

When W(R) is p-torsion free, the above isomorphism restricts to an injective map

M̃1 ↪→ φ∗M,

and we recover the construction of M̃1 in Lemma 7.1.10.

Lemma 7.1.13 (cf. [KPZ24, Lemma 5.1.3]). Let R be a complete local ring with residue

field k. Suppose that W(R) is p-torsion free. Let (M,M1) be a Dieudonné pair over R with

reduction (M0,M0,1) over k. Set aR := m2
R + pR. Then there exists a natural isomorphism

c : M̃0,1 ⊗W (k) W(R/aR)
∼−→ M̃1 ⊗W(R) W(R/aR),

which is called the “connection isomorphism”, fitting into a canonical commutative diagram

M̃1 ⊗W(R) W(R/aR) // φ∗(MR/aR)

M̃0,1 ⊗W (k) W(R/aR) //

c ≃

OO

φ∗(M0)⊗W (k) W(R/aR),
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where MR/aR := M ⊗W(R) W(R/aR) and horizontal maps are induced by taking the base

change of the natural maps M̃0,1 → φ∗(M0) and M̃1 → φ∗(M).

Proof. Using Lemma 7.1.12, the construction of c and the proof of [KPZ24, Lemma 5.1.3]

(replacing V −1 by V−1) also work for p = 2.

7.1.3 Lau’s classification of p-divisible groups

One of the main results in [Lau14] is the following.

Theorem 7.1.14. Let R be a complete local ring with perfect residue field of characteristic

p.

(1) There is an anti-equivalence of exact categories

ΘR : (p-divisible groups over R)
∼−→ (Dieudonné displays over R) ,

which is compatible with base change in R.

(2) For any p-divisible group G over R, there is a natural isomorphism

ΘR(G )/IRΘR(G ) ≃ D(G )(R),

where D(G ) denotes the contravariant Dieudonné crystal of G .

(3) Let G be a p-divisible group over R. Write ΘR(G ) = (M,M1, F, F1). The Hodge

filtration of ΘR(G ) is defined as

M1/IRM ⊂M/IRM.

Then the isomorphism in (2) respects the Hodge filtrations on both sides.

Remark 7.1.15. For p > 2, the functor ΘR recovers the anti-equivalence used in [KP18, 3.1.7]

by sending a p-divisible group G over R to D(G )(W(R)). Note that when p > 2, W(R)→ R

has divided powers on IR by [Lau14, Lemma 1.16]. For p = 2, ΘR is not as explicit as in the

case p > 2, but see the case when R is a ring of p-adic integers in §7.1.4.
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Proof. (1) For any p-divisible group G over R, set

ΘR(G ) := ΦR(G
∗),

where G ∗ denotes the Cartier dual of G and ΦR denotes the equivalence in [Lau14, Corollary

5.4]. Then we see that ΘR is an anti-equivalence of exact categories. It commutes with base

change in R by [Lau14, Theorem 3.9, 4.9].

(2) and (3) follow from [Lau14, Corollary 3.22, 4.10]. Note that we use contravariant

Dieudonné crystals following [KP18], while Lau uses covariant Dieudonné crystals in [Lau14].

One can switch between contravariant and covariant Dieudonné crystals by taking Cartier

duals.

7.1.4 Comparison with Breuil-Kisin’s classification

Here the notation is as in Example 7.1.8 (2). In particular, we denote by OK the ring

of integers for some finite extension K of Qp with residue field k. Let π be a uniformizer of

OK satisfying E(π) = 0. Then there is a Frobenius-equivariant ring homomorphism

κ : S = W (k)[[u]]→ W (OK)

sending u to [π], lifting the quotient map S → OK . Here [·] denotes the Teichmüller map

OK → W (OK). Moreover, the image of κ lies in W(OK), see [Lau14, Remark 6.3]. Recall

that B denotes the Breuil-Kisin frame in Example 7.1.8 (2). By [Lau14, Theorem 6.6], κ

induces a crystalline homomorphism

κ : B → DOK
.

That is, the induced functor κ∗ as in (7.1.3) gives an equivalence

κ∗ : (windows over B)
∼−→ (windows over DOK

) = (Dieudonné displays over OK).

Using the anti-equivalence ΘOK
in Theorem 7.1.14, we obtain the anti-equivalence

B(−) := κ−1
∗ ◦ΘOK

: (p-divisible groups over OK)
∼−→ (windows over B). (7.1.6)
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On the other hand, we have, by [Kis10, Theorem 1.4.2], a fully faithful contravariant functor

M(−) : (p-divisible groups over OK) −→ BTφ
S,

where BTφ
S denotes the category of Breuil-Kisin modules (M, φM) of E-height one, i.e., M is

a finite free S-module and φM : φ∗M→M is an S-module homomorphism whose cokernel

is killed by E.

Proposition 7.1.16. There is an equivalence

F : BTφ
S −→ (windows over B)

such that F ◦M(−) is the equivalence B(−) in (7.1.6). In particular, M(−) is an anti-

equivalence.

Proof. The proposition is implicitly contained in [Lau10, §6, 7] (see also [KM16, §2]). To

a Breuil-Kisin module (M, φM) in BTφ
S, we can associate a triple (M,M1, F1), where M :=

φ∗M; M1 := M, viewed as a submodule of M via the unique map VM : M → φ∗M whose

composition with φM is the multiplication by E(u); and F1 :M1 →M is given by x ∈M 7→

1⊗ x ∈ φ∗M. Then we see

E(u)M ⊂M1 ⊂M. (7.1.7)

Define F :M →M by sendingm ∈M to F1(E(u)m). Then (M,M1, F, F1) defines a window

over B. Hence, we obtain a functor

F : BTφ
S −→ (windows over B).

The functor F is an equivalence (cf. [Lau10, Lemma 8.2, 8.6]). Its inverse can be described

as follows. Let (M,M1, F, F1) be a window over B. The S-moduleM1 is necessarily free, and

hence the surjection F#
1 : φ∗M1 → M is an isomorphism. Let ϕ : M1 ↪→ φ∗M1 denote the

composition of the inclusion M1 ↪→ M with the inverse of F#
1 . There is a unique S-linear

map ψ : φ∗M1 →M1 such that ψϕ = E(u). Then (M1, ψ) defines an object in BTφ
S and the
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functor (M,M1, F, F1) 7→ (M1, ψ) is the inverse of F . Going through the proof of [KM16,

Theorem 2.12], we have

F ◦M(−) = B(−).

In particular, M(−) is also an equivalence.

Definition 7.1.17. For (M, φM) ∈ BTφ
S, the Hodge filtration of φ∗M is defined as

M/E(u)φ∗M ⊂ φ∗M/E(u)φ∗M,

where the inclusion is induced by (7.1.7).

Corollary 7.1.18. Let G be a p-divisible group over OK.

(1) There exists a natural isomorphism

ΘOK
(G ) ≃ φ∗M(G )⊗S,κ W(OK)

as Dieudonné displays over OK.

(2) There exists a natural isomorphism

D(G )(OK) ≃ φ∗M(G )⊗S OK = φ∗M/E(u)φ∗M,

which respects the Hodge filtrations on both sides.

Proof. (1) It follows from the equality F ◦M(−) = B(−) in Proposition 7.1.16 and the

definition of base change of Dieudonné displays.

(2) Denote by ψ the isomorphism in (1). By base change of ψ along the natural surjection

W(OK)→ OK , we obtain an isomorphism

ΘOK
(G )/IOK

ΘOK
(G ) ≃ φ∗M(G )/E(u)φ∗M.

Since ψ is an isomorphism of Dieudonné displays, the above isomorphism respects the Hodge

filtrations. By Theorem 7.1.14 (2) and (3), we obtain an isomorphism

D(G )(OK) ≃ φ∗M(G )⊗S OK = φ∗M/E(u)φ∗M

respecting the Hodge filtrations.
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7.2 Deformation theory

In this section, we extend the deformation theory of p-divisible groups in [KP18, §3] to

the case p = 2. We also generalize the notion of very good Hodge embeddings for p = 2,

allowing us to construct versal deformation of p-divisible groups with crystalline tensors (see

Proposition 7.2.16). In Proposition 7.2.18, we establish a criterion for determining when a

deformation is (GW , µy)-adapted in the sense of Definition 7.2.17.

7.2.1 Versal deformations of p-divisible groups

The notations are as in §7.1. In this subsection, we aim to extend the construction of

the versal deformation space of p-divisible groups in [KP18, §3.1] to the case p = 2.

Firstly we generalize [Zin01, Theorem 3, 4], which deals with the case when R has residue

characteristic p > 2 or 2R = 0.

Theorem 7.2.1. Let k be a perfect field of characteristic p. Let (S → R, δ) be a nilpotent

divided power extension of artinian local rings of residue field k, i.e., the kernel a of the

surjection S → R is equipped with nilpotent divided powers δ.

(1) Let P = (M,M1, F, F1) be a Dieudonné display over S and P = (M,M1, F, F1) be the

reduction of P over R. Denote by M̂1 the inverse image of M1 under the homomor-

phism

M →M = W(R)⊗W(S) M.

Then F1 :M1 →M extends uniquely to a W(S)-module homomorphism

F̂1 : M̂1 →M

such that F̂1(aM) = 0. Therefore, F̂1 restricted to Ŵ (a)M is given by

F̂1([a0, a1, . . .]x) = [w0(u
−1
0 )a1, w1(u

−1
0 )a2, . . .]F (x)

in logarithmic coordinates.
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(2) Let P = (M,M1, F, F1) (resp. P ′ = (M ′,M ′
1, F

′, F ′
1)) be a Dieudonné display over S.

Let P (resp. P ′
) be the reduction over R. Assume that u : P → P ′

is a morphism of

Dieudonné displays over R. Then there exists a unique morphism of quadruples

u : (M, M̂1, F, F̂1)→ (M ′, M̂ ′
1, F

′, F̂ ′
1)

lifting u. Hence, we can associate a crystal to a Dieudonné display as follows: Let

P = (M,M1, F, F1) be a Dieudonné display over R, (T → R, δ) be a divided power

extension, then define the Dieudonné crystal D(P) evaluated at (T → R, δ) as

D(P)(T ) := T ⊗w0,W(T ) M̃,

where P̃ = (M̃, M̃1, F̃ , F̃1) is any lifting of P over T .

(3) Let C be the category of all pairs (P , F il), where P is a Dieudonné display over R and

Fil ⊂ D(P)(S) is a direct summand lifting the Hodge filtration M1/IRM ↪→M/IRM of

D(P)(R). Then the category C is canonically isomorphic to the category of Dieudonné

displays over S.

Remark 7.2.2. The above theorem has a reformulation in terms of relative Dieudonné displays

as in [Lau14, §2D, 2F]: the quadruple (M, M̂1, F, F̂1) defines a window over the relative

Dieudonné frame DS/R.

Proof. The proof adapts arguments in [Zin01, Theorem 3, 4] and [Zin02, Lemma 38, 42],

with adjustments for V.

(1) Choose a normal decomposition M = L⊕ T . Then

M̂1 = Ŵ (a)M +M1 = aT ⊕ L⊕ IST.

Using this decomposition, we can extend F1 by setting F̂1(aT ) = 0. We claim that F̂1(aL) =

0. Note that by formula (7.1.2), we have φ(a) = 0. Since F1 is φ-linear, we have F̂1(aL) =

φ(a)F̂1(L) = 0. Thus, the extension F̂1 satisfies F̂1(aM) = 0. It is unique since M̂1 =
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Ŵ (a)M +M1 = aM +M1. For any [a0, a1, . . .] ∈ Ŵ (a) and x ∈M , we have

F̂1([a0, a1, . . .]x) = F̂1([a0, 0, 0, . . .]x) + F̂1(V [a1, a2, . . .]x)

= 0 + F1(V(u−1
0 [a1, . . .])x) = F1(V([w0(u

−1
0 )a1, w1(u

−1
0 )a2, . . .])x)

= [w0(u
−1
0 )a1, w1(u

−1
0 )a2, . . .]F (x).

(2) For the uniqueness of u, it is enough to consider the case u = 0. Recall that for a

Dieudonné display (M,M1, F, F1) over S, we have defined the map V ♯ :M →W(S)⊗φ,W(S)M

in (7.1.4). For any integer N ≥ 1, we define (V N)♯ :M →M ⊗φN ,W(S) M as the composite

M
V ♯

−→W(S)⊗φ,W(S) M
1⊗V ♯

−−−→W(S)⊗φ2,W(S) M → · · · →W(S)⊗φN ,W(S) M.

Similarly, we can define maps (FN
1 )# and (F̂N

1 )#. As in the proof of [Zin01, Theorem 3], we

have a commutative diagram

M

(V N )♯

��

u // Ŵ (a)M ′

W(S)⊗φN ,W(S) M
1⊗u
//W(S)⊗φN ,W(S) Ŵ (a)M ′

(F̂
′N
1 )#

OO

By (1), for [a0, a1, . . .] ∈ Ŵ (a) and x ∈M ′, we have

F̂
′N
1 ([a0, . . .]x) = [

N−1∏
i=0

wi(u
−1
0 )aN ,

N∏
i=1

wi(u
−1
0 )aN+1, . . .]F

′N(x).

Since ai = 0 for almost all i, Ŵ (a)M ′ is annihilated by F̂
′N
1 for sufficiently large N . This

shows u = 0 as desired.

For the existence of u, we can repeat the proof of [Zin01, Theorem 3].

(3) Clearly we can get a lifting of the Hodge filtration of D(P)(R) from a Dieudonné

display over S. On the other hand, given (P , F il) ∈ C, any lifting of P to S gives a unique

quadruple (M, M̂1, F, F̂1) by (2). Let M1 ⊂ M̂1 be the inverse image of Fil ⊂M/ISM under

the projection M →M/ISM , then we obtain a Dieudonné display (M,M1, F, F̂1|M1) over S.

By (2), these two constructions are mutually inverse.
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Now we fix a p-divisible group G0 over k, and let (D,D1, F, F1) be the corresponding

Dieudonné display. Note that D is given by D(G0)(W ), see [Lau14, Corollary 2.34]. By

Lemma 7.1.10, the Dieudonné display (D,D1, F, F1) corresponds to a triple (D,D1,Ψ0) for

an isomorphism Ψ0 : D̃1
∼−→ D. Next we will construct a versal deformation space of G0,

equivalently a versal deformation space of the Dieudonné display (D,D1,Ψ0).

Recall there is a canonical Hodge filtration on D⊗W k = D(G0)(k):

0→ Homk(LieG0, k)→ D⊗W k → LieG ∗
0 → 0.

We think of D⊗W k as a filtered k-module by setting Fil0(D⊗W k) = D⊗W k, Fil1(D⊗W k) =

Homk(LieG0, k). This filtration corresponds to a parabolic subgroup P0 ⊂ GL(D⊗W k). Fix

a lifting of P0 to a parabolic subgroup P ⊂ GL(D). Write

M loc = GL(D)/P and M̂ loc = Spf R, (7.2.1)

where M̂ loc is the completion of GL(D)/P along the image of the identity in GL(D ⊗W k).

Then R is a power series ring over W .

Set M = D ⊗W W(R), and let M1 ⊂ M/IRM be the direct summand corresponding to

the parabolic subgroup gPg−1 ⊂ GL(D) over M̂ loc, where g ∈ (GL(D)/P )(R) is the universal

point. Let M1 ⊂ M be the preimage of M1 in M and Ψ : M̃1
∼→ M be a W(R)-module

isomorphism reducing to Ψ0 modulo mR, where M̃1 is defined as in Lemma 7.1.10. Then the

triple

(M,M1,Ψ)

gives a Dieudonné display over R reducing to (D,D1,Ψ0). By Theorem 7.1.14, the Dieudonné

display (M,M1,Ψ) corresponds to a p-divisible group GR over R, which is a deformation of

G0.

Set aR := m2
R + pR. By Lemma 7.1.13, there exists a natural connection isomorphism

c : D̃1 ⊗W W(R/aR)
∼−→ M̃1 ⊗W(R) W(R/aR).
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Definition 7.2.3. The map Ψ is said to be constant modulo aR if the composite map

D̃1 ⊗W W(R/aR)
c−→ M̃1 ⊗W(R) W(R/aR)

Ψ⊗1−−→MR/aR ≃ D⊗W W(R/aR)

is equal to Ψ0 ⊗ 1.

Lemma 7.2.4. If Ψ is constant modulo aR, then the deformation GR of G0 is versal.

Proof. Recall that there exists a versal deformation ring Runiv for G0, which is a power

series ring over W of the same dimension as R. The deformation GR is induced by a map

Runiv → R. We want to show this is an isomorphism. It suffices to prove that the induced

map on tangent spaces is an isomorphism.

We have two Dieudonné displays over R/aR. One is obtained from (M,M1, FR, FR,1) (the

Dieudonné display corresponding to (M,M1,Ψ)) by the base change along R → R/aR, the

other is obtained from (D,D1, F, F1) by the base change along k → R/aR.

If Ψ is constant modulo aR, then as in the proof of [KP18, Lemma 3.1.12], we know

F̂R,1 = F̂1 on M̂R/aR,1, see the notation in Theorem 7.2.1. Hence, these two Dieudonné

displays give rise to the same quadruple

(MR/aR , M̂R/aR,1, FR/aR , F̂R/aR,1).

Let G be a deformation over the ring k[ϵ] of dual numbers. Since k[ϵ] → k has trivial

divided powers, it is a nilpotent divided power extension, then by Theorem 7.2.1 (1) and

(2), the base change of (D,D1, F, F1) along the natural map k → k[ϵ] gives rise to a quadru-

ple (Mk[ϵ], M̂k[ϵ],1, Fk[ϵ], F̂k[ϵ],1). By the proof of Theorem 7.2.1 (3), the Dieudonné display

corresponding to G is of the form

(Mk[ϵ], F̃il, Fk[ϵ], F̂k[ϵ],1),

where F̃il ⊂ M̂k[ϵ],1 is the preimage of certain lifting Fil ⊂ (D ⊗W k) ⊗k k[ϵ] of the Hodge

filtration of D. From the versality of the filtrationM1 ⊂ D⊗W R, there is a map α : R→ k[ϵ]

(necessarily factors through R/aR) such that the induced map D⊗W R → D⊗W k[ϵ] sends
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M1 to Fil. Then by the discussion in the previous paragraph, (Mk[ϵ], F̃il, Fk[ϵ], F̂k[ϵ],1) is the

base change of (M,M1, FR, FR,1) along α. Thus, G is the base change of GR along α. In

particular, Runiv → R induces an isomorphism of tangent spaces. Hence, we proved that GR

is versal.

Remark 7.2.5. Note that the functor F := Isom(M̃1,M) of isomorphisms of finite free W(R)-

modules between M̃1 and M is a GL(M)-torsor over W(R). Hence, the surjection W(R) ↠

W(R/aR) induces a surjection F(W(R)) ↠ F(W(R/aR)). This implies that an isomorphism

Ψ, which is constant modulo aR, always exists.

7.2.2 Local models and local Hodge embeddings

Before discussing the deformation of p-divisible groups with crystalline tensors, we will

make a digression into local models and local Hodge embeddings in this subsection.

Definition 7.2.6 ([KPZ24, Definition 3.1.2]). Let F/Qp be a complete discrete valued field.

Let (G, {µ} ,G) be a local model triple over F (see §3.4).

(1) A pair (G, µ) is of (local) Hodge type if there is a closed immersion ρ : G ↪→ GL(V ),

where V is an F -vector space of dimension h, such that

(i) ρ is a minuscule representation in the sense of [KP18, §1.2.9].

(ii) ρ ◦ µ is conjugate to the standard minuscule cocharacter µd of GL(VF ), where

µd(t) := diag(t(d), 1(h−d)), t ∈ F .

(iii) ρ(G) contains the scalars.

Such a ρ will be said to give a (local) Hodge embedding ρ : (G, µ) ↪→ (GL(V ), µd).

(2) An integral Hodge embedding for (G, µ) is a closed immersion ρ : G ↪→ GL(Λ) over OF ,

where Λ is a finite free OF -module, such that the base change ρ ⊗OF
F is a Hodge

embedding for (G, µ).
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Lemma 7.2.7. Let (G, {µ} ,G) be a local model triple over F . Suppose ρ : (G, µ) ↪→

(GL(Λ), µd) is an integral Hodge embedding. Then ρ induces a closed immersion

XG,µ = G/Pµ ↪→ XGL(V ),µd
⊗F E = Gr(d, V )E,

where Gr(d, V ) denotes the Grassmannian classifying subspaces of V of rank d. Let XG,µ be

the (reduced) Zariski closure of XG,µ ⊂ Gr(d, V )E in Gr(d,Λ)OE
.

If XG,µ is normal, then XG,µ is isomorphic to Mloc
G,µ, and the closed immersion XG,µ ↪→

Gr(d,Λ)OE
is identified with the natural morphism Mloc

G,µ →Mloc
GL(Λ),µd

⊗OF
OE induced by ρ.

Proof. See [KPZ24, Lemma 3.4.1]. Note that by [GL24], the condition in loc. cit. requiring

the special fiber of XG,µ to be reduced is in fact implied by the remaining conditions.

Definition 7.2.8 ([KPZ24, Definition 3.4.4]). Let ρ : (G, µ) ↪→ (GL(Λ), µd) be an integral

Hodge embedding over OF . We say that ρ is a good Hodge embedding, if the morphism

Mloc
G,µ −→Mloc

GL(Λ),µd
⊗OF

OE

induced by ρ is a closed immersion.

By Lemma 7.2.7, ρ is good if the Zariski closure of XG,µ in Gr(d,Λ)OE
is normal.

From now on, we suppose that F/Qp is unramified and ρ : (G, µ) ↪→ (GL(Λ), µd) is

a good integral Hodge embedding over OF . In particular, we have a closed immersion

Mloc
G,µ ↪→ Gr(d,Λ)OE

.

For any x ∈Mloc
G,µ(k), where k = Fp, we let RG = RG,x (resp. RE) denote the completion

of Mloc
G,µ (resp. Gr(d,Λ)OE

) at x. By our assumptions, RE is isomorphic to a power series

ring over OEW (k) and RG is a (normal) quotient ring of RE. Then W(RE) and W(RG) are

p-torsion free rings. Set

M := Λ⊗OF
W(RE).

Let M1 ⊂ M/IRE
M = Λ ⊗OF

RE be the direct summand corresponding to the universal

RE-valued point of Gr(d,Λ). Set

M1 := the preimage of M1 in M .
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Then (M,M1) is a Dieudonné pair over RE. By the base change along RE ↠ RG, we

obtain a Dieudonné pair (MRG
,MRG,1) over RG. By Lemma 7.1.12, we can associate a free

W(RG)-module M̃RG,1 with

M̃RG,1[1/p] = (φ∗MRG
)[1/p].

Definition 7.2.9. For any ring A and a finite free A-module N , we denote by N⊗ the direct

sum of all A-modules which can be formed from N by using the operations of taking tensor

products, duals, symmetric and exterior powers. If N is equipped with a filtration, then N⊗

is equipped with a filtration accordingly.

If (sα) ⊂ N⊗ and G ⊂ GL(N) is the pointwise stabilizer of sα, we say G is the group

scheme cut out by the tensors sα.

Lemma 7.2.10 ([Kis10, Proposition 1.3.2]). Suppose that A is a discrete valuation ring

of mixed characteristic and N is a finite free A-module. If G ⊂ GL(N) is a closed A-flat

subgroup whose generic fiber is reductive, then G is cut by a finite collection of tensors in

N⊗.

Remark 7.2.11. By an argument of Deligne, the tensors in Lemma 7.2.10 can be taken in

the submodule ⊕m,n≥0N
⊗m ⊗A (N∨)⊗n. Here, N∨ denotes the A-dual module HomA(N,A).

Let ρ : G ↪→ GL(Λ) be a Hodge embedding. Then G ⊂ GL(Λ) (via ρ) is cut out by a set

of tensors (sα) ⊂ Λ⊗ by Lemma 7.2.10. Set

s̃α := sα ⊗ 1 = φ∗(sα ⊗ 1) ∈ Λ⊗ ⊗OF
W(RG) = φ∗M⊗

RG
.

We may view (s̃α) as tensors in (φ∗MRG
)⊗[1/p] = M̃⊗

RG,1[1/p]. By [KPZ24, §5.2] (and [KP18,

Corollary 3.2.11]), we have the following proposition.

Proposition 7.2.12. Suppose that F/Qp is unramified and ρ : (G, µ) ↪→ (GL(Λ), µd) is a

good integral Hodge embedding over OF . Then s̃α ∈ M̃⊗
RG,1.
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Denote by s̃α,0 the reduction of s̃α in M̃⊗
0,1, where M̃0,1 = M̃RG,1⊗W(RG)W (k). By Lemma

7.1.13, we have a connection isomorphism

cG : M̃0,1 ⊗W (k) W(RG/aRG
)

∼−→ M̃RG,1 ⊗W(RG) W(RG/aRG
).

Definition 7.2.13. Under the assumptions in Proposition 7.2.12, we say that ρ is very good

at x ∈ Mloc
G,µ(k), if cG(s̃α,0 ⊗ 1) = s̃α ⊗ 1. In this case, we say that the tensors (s̃α) are

horizontal at x.

We say ρ is a very good (integral) Hodge embedding if ρ is very good at every x ∈Mloc
G,µ(k).

Definition 7.2.14 ([KPZ24, Definition 4.1.4]). For a scheme X over k and x ∈ X(k), we

say that the tangent space TxX of X at x is spanned by smooth formal curves if the images

of the tangent spaces by k-morphisms Spec k[[t]] → X with the closed point mapping to x

generate the k-vector space TxX.

We will use the following lemma in §7.3.3.3.

Lemma 7.2.15 ([KPZ24, Proposition 5.3.10]). Assume ρ : (G, µ) ↪→ (GL(Λ), µd) is a good

integral Hodge embedding over Zp. Let x ∈ Mloc
G,µ(k) be a closed point. If the tangent space

of the special fiber Mloc
G,µ ⊗OE

k at x is spanned by smooth formal curves, then ρ is very good

at x.

We refer to [KPZ24, §5.3] for more properties of very good Hodge embeddings.

7.2.3 Deformations with crystalline tensors

We continue to use the notation in §7.2.1, and as in [KP18, §3.2, 3.3], we may assume k

is algebraically closed for simplicity.

Let G0 be a p-divisible group over k. Denote D = D(G0)(W ). Let (sα,0) ⊂ D⊗ be a

collection of φ-invariant tensors whose images in D(G0)(k)
⊗ lie in Fil0D(G0)(k)

⊗. In this

subsection, we assume the following conditions:

(A1) there is an isomorphism Λ⊗Zp W ≃ D for some free Zp-module Λ such that sα,0 ∈ Λ⊗;
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(A2) the stabilizer group scheme G ⊂ GL(Λ) cut out by (sα,0) ⊂ Λ⊗ has reductive generic

fiber G and G◦ is a parahoric group scheme over Zp.

Note that the base change GW := G ⊗Zp W ⊂ GL(D) is cut out by (sα,0) ⊂ D⊗. In (7.2.1)

of §7.2.1, we have defined M loc and M̂ loc = Spf R. Let K ′/K0 be a finite extension and

y : R → K ′ be a map such that sα,0 ∈ Fil0(D ⊗W K ′)⊗ for the filtration induced by y on

D⊗W K ′. By [Kis10, Lemma 1.4.5], the filtration is induced by a G-valued cocoharacter µy.

We further impose the following assumption:

(A3) there is a very good Hodge embedding (G, µ−1
y ) ↪→ (GL(Λ), µd) for d = dimk LieG0.

Denote by E ⊂ K ′ the local reflex field of the G-conjugacy class of cocharacters {µy}.

Write M loc
G,y for the closure of the G-orbit G.y ⊂M loc⊗W E in M loc⊗W OE. By assumption

(A3) and Lemma 7.2.7, the scheme M loc
G,y is isomorphic to the local model Mloc

G,µ−1
y

attached

to the local model triple (G, {µ−1
y },G), and hence M loc

G,y is normal and only depends on the

G-conjugacy class {µy} (not on y). We denote by M̂ loc
G,y = Spf RG the completion of M loc

G,y

along (the image of) the identity in GL(D ⊗W k). Then RG is a normal quotient ring of

R⊗W OE.

Recall in §7.2.1, we constructed a versal deformation GR over R corresponding to a

Dieudonné display (M,M1,Ψ), where Ψ is constant modulo aR. Set

MRE
:=M ⊗W(R) W(RE), MRG

:=MRE
⊗W(RE) W(RG).

The tensors sα,0 ∈ D⊗ induce tensors in M⊗
RG

, still denoted as sα,0. Notice that M̃RG,1 ⊂

φ∗MRG
and (sα,0) are φ-invariant. By [KP18, Corollary 3.2.11], we have (sα,0) ⊂ M̃RG,1.

(Here we uses [Ans22, Proposition 10.3] to remove the condition (3.2.3) in [KP18].) Recall

that the p-divisible group G0 over k corresponds to a Dieudonné display (D,D1,Ψ0 : D̃1
∼→ D).

Since D̃1 = φ∗(D) and (sα,0) are φ-invariant, we have (sα,0) ⊂ D̃⊗
1 . Set

aRE
:= m2

RE
+ πERE,
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where πE ∈ OE is a uniformizer. In particular RE/aRE
≃ R/aR. Set

aRG
:= m2

RG
+ πERG,

Proposition 7.2.16 (cf. [KP18, §3.2.12]). Assume (A1) to (A3).

(1) The scheme

T := Isom(sα,0)
(M̃RG,1,MRG

)

consisting of isomorphisms respecting tensors sα,0 is a trivial G-torsor over W(RG).

(2) There exists an isomorphism ΨRG
: M̃RG,1

∼−→ MRG
respecting sα,0 which lifts to

an isomorphism ΨRE
: M̃RE ,1 → MRE

that is constant modulo aRE
. Moreover, the p-

divisible group GRE
over RE corresponding to the Dieudonné display (MRE

,MRE ,1,ΨRE
)

is a versal deformation of G0.

Proof. (1) This follows from [KP18, Corollary 3.2.11] and [Ans22, Proposition 10.3].

(2) By assumption (A3), the isomorphism ΨRG/aRG

M̃RG,1 ⊗W(RG) W(RG/aRG
)

c−1
G−−→ D̃1 ⊗W W(RG/aRG

)
Ψ0⊗1−−−→ D⊗W W(RG/aRG

) =MRG/aRG

preserves the tensors sα,0, and hence defines a point in T (W(RG/aRG
)). Since T is a G-

torsor, we can lift the point to a point in T (W(RG)), which corresponds to an isomorphism

ΨRG
: M̃RG,1

∼−→ MRG
respecting sα,0. By construction, ΨRG/aRG

is the reduction of the

isomorphism ΨRE/aRE

M̃RE ,1 ⊗W(RE) W(RE/aRE
)

c−1

−−→ D̃1 ⊗W W(RE/aRE
)

Ψ0⊗1−−−→ D⊗W W(RE/aRE
) =MRE/aRE

.

Denote by F the GL(MRE
)-torsor Isom(M̃RE ,1,MRE

) over W(RE). Then ΨRG
and ΨRE/aRE

define a point of F valued in W(RG) ×W(RG/aRG
) W(RE/aRE

) = W(RG ×RG/aRG
RE/aRE

).

We can lift this point to an W(RE)-valued point of F , which corresponds to an isomorphism

ΨRE
: M̃RE ,1

∼−→ MRE
. Hence, ΨRE

is constant modulo aRE
. By Lemma 7.2.4 and the

discussion in [KP18, §3.2.12], the Dieudonné display (MRE
,MRE ,1,ΨRE

) is versal.
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Following [Zho20, §4], we make the following definition.

Definition 7.2.17. Let G be a p-divisible group over OK deforming G0. We say that G is

(GW , µy)-adapted if the tensors sα,0 lift to Frobenius invariant tensors s̃α ∈ ΘOK
(G )⊗ such

that the following two conditions hold:

(1) There is an isomorphism ΘOK
(G ) ≃ D⊗W W(OK) sending s̃α to sα,0 ⊗ 1.

(2) Under the canonical isomorphism D(G )(OK) ⊗OK
K ≃ D ⊗W K, the filtration on

D⊗W K is induced by a G-valued cocharacter G-conjugate to µy.

Proposition 7.2.18. Assume (A1) to (A3). View Spf RE as the versal deformation space

of G0 by the construction in Proposition 7.2.16 (2). Then for any finite extension K/E, a

map ξ : RE → OK factors through RG if and only if the p-divisible group Gξ = ξ∗GRE
is

(GW , µy)-adapted.

Proof. (⇒) See [Zho20, Proposition 4.7] and [KZ24, Proposition 3.2.7].

(⇐) The proof goes as in [KP18, Proposition 3.2.17]. For completeness, we recall the

arguments here. Suppose Gξ is (GW , µy)-adapted. Denote by sα ∈ D(G )(OK)
⊗ the image

of s̃α modulo IOK
. Then the isomorphism in (1) of Definition 7.2.17 gives an isomorphism

DOK
:= D ⊗W OK

∼→ D(G )(OK) taking sα,0 to sα. Hence, by (2) in Definition 7.2.17,

this isomorphism induces a filtration on DOK
corresponding to a map y′ : RG → OK and

sα,0 ∈ Fil0D⊗
OK

. As RG depends only on the reduction of y and the conjugacy class of µy,

we may assume y = y′ (and K ′ = K).

The map y : RG → OK induces a Dieudonné display (MOK
,MOK ,1,Ψ), and by the con-

struction of ΨRG
, the isomorphism Ψ : M̃OK ,1

∼→ MOK
takes sα,0 to sα,0. Since y = y′, the

p-divisible group Gξ corresponds to a Dieudonné display (MOK
,MOK ,1,Ψ

′). As s̃α is Frobe-

nius invariant and Ψ′ differs from the Frobenius a scalar (contained in G by assumption),

then Ψ′ takes sα,0 to sα,0, and reduces to Ψ0 : D̃1
∼→ D.

Now we construct a Dieudonné display over S := OK [[T ]]. First consider the Dieudonné

display (MS,MS,1,Ψ), the base change of (MOK
,MOK ,1,Ψ) to S. The map S → OK ×k OK
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given by T 7→ (0, π) is surjective, and hence so is W(S) → W(OK) ×W W(OK). Note that

by Proposition 7.2.16, T is a (trivial) G-torsor. Since G is smooth, we have a surjection

T (W(S)) ↠ T (W(OK)×W W(OK)).

That is, there exists an isomorphism ΨS : M̃S,1
∼−→ MS which takes sα,0 to sα,0, and

specializes to (Ψ,Ψ′) under T 7→ (0, π). We take MS to be the Dieudonné display associated

to (MS,MS,1,ΨS).

By versality, we may lift the map (y, ξ) : RE → OK ×k OK to a map ξ̃ : RE → S which

induces the Dieudonné display MS and MS is the base change of MRE
by ξ̃. Now the rest

of the proof is similar as in [KP18, Proposition 3.2.17]. Then we conclude that ξ̃ factors

though RG, and hence ξ does as well.

In §7.3, we will construct (GW , µy)-adapted deformations of p-divisible groups associated

to closed points in integral models of Shimura varieties, and apply Proposition 7.2.18 to

describe the local structure of integral models of Shimura varieties.

7.3 Integral models of Shimura varieties of abelian type

In this section, we will prove Theorem 1.2.7 in the Introduction. Following the strategy of

[KP18; KPZ24], we first consider Shimura varieties ShK(G, X) of Hodge type. We construct

their integral models SK(G, X) by using the Hodge embeddings into Siegel modular varieties,

as in loc. cit.. Under certain assumptions (see Theorem 7.3.4), we apply the deformation

theory developed in §7.2 to identify the formal neighborhood of SK(G, X) with that of the

local model. Then we extend this construction of integral models to the case of Shimura

varieties of abelian type by choosing suitable Hodge type lifts under certain conditions (see

Theorem 7.3.9). We complete the proof of Theorem 1.2.7 by showing that these conditions

are satisfied in Case (A) or (B).
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7.3.1 Shimura varieties of Hodge type

Let (G, X) be a Shimura datum, that is, G is a reductive group over Q and X is a

G(R)-conjugacy class of

h : S := ResC/RGm → GR

satisfying axioms 2.1.1.1-2.1.1.3 in [Del79, §2.1]. Denote by µh : GmC → GC the associated

Hodge cocharacter, defined by µh(z) = hC(z, 1). Set wh := µ−1
h µc−1

h (the weight homomor-

phism), where c denotes the complex conjugation.

Fix a Q-vector space V of dimension 2g with a perfect alternating pairing ψ : V ×V → Q.

Let GSp = GSp(V, ψ) be the corresponding symplectic similitude group over Q, and let

S± = S±(V, ψ) be the Siegel double space consisting of maps h : S→ GSpR such that

(1) The map S h−→ GSpR ↪→ GL(VR) gives rise to a Hodge structure of type (−1, 0), (0,−1)

on VR, i.e., VC = V −1,0 ⊕ V 0,−1.

(2) The pairing (x, y) 7→ ψ(x, h(i)y) is (positive or negative) definite on VR.

Then (GSp, S±) is a Shimura datum, which is called a Siegel Shimura datum.

For the rest of the subsection, we assume (G, X) is of Hodge type, i.e., there exists an

embedding of Shimura data

ι : (G, X) ↪→ (GSp(V, ψ), S±).

Sometimes we will write G for GQp for simplicity.

Let E = E(G, X) be the reflex field with ring of integers OE. Let p be a prime number.

Let Af denote the ring of finite adèles over Q, and Ap
f denote the ring of prime-to-p finite

adèles, which we consider as the subgroup of Af with trivial component at p. Fix a place

v|p of E, and let E denote the completion of E at v. Denote by OE,(v) (resp. OE) the

localization (resp. completion) of OE at v. We write G for the base change GQp . Let G be

the Bruhat-Tits group scheme over Zp associated with some x ∈ B(G,Qp), whose neutral

component G◦ is parahoric. Set Kp = G(Zp) or G◦(Zp) and K = KpK
p with Kp ⊂ G(Ap

f )
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sufficiently small open compact subgroup. By general theory of Shimura varieties, these

data yield a quasi-projective smooth algebraic variety ShK(G, X) canonically defined over

E, whose C-points are given by

ShK(G, X)(C) = G(Q)\X ×G(Af )/K.

We can also consider the projective limit of E-schemes

Sh(G, X) = lim←−
K

ShK(G, X), resp. ShKp(G, X) = lim←−
Kp

ShKpKp(G, X),

which carries a natural action of G(Af ) (resp. G(Ap
f )). The projective limit exists since the

transition maps are finite, hence affine.

7.3.1.1 Integral models for level G(Zp): construction

Assume that

(i) Kp = G(Zp);

(ii) ιQp extends to a very good integral Hodge embedding ι̃ : (G, µh) ↪→ (GL(VZp), µg),

where VZp ⊂ VQp is a self-dual Zp-lattice with respect to ψ.

We let GSP denote the parahoric group scheme associated to the self-dual lattice VZp . Set

VZ(p)
:= V ∩VZp . Denote by GZ(p)

the Zariski closure of G in GL(VZ(p)
), then G is isomorphic

to GZ(p)
⊗Z(p)

Zp. Set K′
p := GSP(Zp). Let K′p be a small enough open compact subgroup

of GSp(Ap
f ) containing Kp, which leaves VẐp stable. Here Ẑp :=

∏
ℓ̸=p Zℓ. Set K′ = K′

pK
′p.

Then the embedding ι induces a closed immersion

ShK(G, X) ↪→ ShK′(GSp, S±)⊗Q E

over E. The choice of VZ(p)
gives rise to an interpretation of ShK′(GSp, S±) as a moduli

space of polarized abelian varieties, and hence to a natural integral model SK′(GSp, S±)

over Z(p) (cf. [Zho20, §6.3]).
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Definition 7.3.1. The integral model SK(G, X) over OE,(v) of ShK(G, X) is the normaliza-

tion of the (reduced) Zariski closure S −
K (G, X) of ShK(G, X) in SK′(GSp, S±)OE,(v)

. We

set

SKp(G, X) := lim←−
Kp

SKpKp(G, X).

The G(Ap
f )-action on ShKp(G, X) extends to SKp(G, X).

7.3.1.2 Hodge tensors and deformation theory

Since GZ(p)
has reductive generic fiber, by Lemma 7.2.10, we can find a finite collection

of tensors

(sα) ⊂ V ⊗
Z(p)

= (V ∨
Z(p)

)⊗

whose scheme-theoretic stabilizer in GL(VZ(p)
) is GZ(p)

. Let h : A → SK(G, X) denote the

pullback of the universal abelian scheme over SK′(GSp, S±). Denote by V = R1h∗Ω
• the

(relative) algebraic de Rham cohomology of A. Then the tensors (sα), by the de Rham

isomorphism, give rise to a collection of (absolute) Hodge cycles sα,dR ∈ V⊗
C , where VC is

the complex analytic vector bundle attached to V , and sα,dR descends to V⊗ by [KP18,

Proposition 4.2.6] (i.e., sα,dR can be defined over OE,(v)).

Recall that Ĕ denotes the completion of the maximal unramified extension of E inQp with

residue field k. Let L/Ĕ be a finite extension. For a point x ∈ ShK(G, X)(L) specializing

to x ∈ S −
K (G, X)(k), we write Ax for the pullback of A to x and write Gx for the p-

divisible group associated with Ax. Then sα,dR pullbacks to sα,dR,x ∈ H1
dR(Ax)

⊗. We can

also obtain corresponding tensors sα,ét,x in TpG ∨⊗
x by the Betti-étale comparison theorem.

Here TpG ∨
x := HomZp(TpGx,Zp). The tensors sα,ét,x are Galois invariant and their scheme-

theoretic stabilizer is isomorphic to G. Write Gx for the p-divisible group corresponding to

x and Dx for D(Gx)(W ). Set V := TpG ∨
x ⊗Zp Qp. Then V is a crystalline representation of

ΓL := Gal(L/L). The p-adic comparison isomorphism

Bcris ⊗Zp TpG
∨
x ≃ Bcris ⊗K0 Dcris(V ), Dcris(V ) := (Bcris ⊗Qp V )ΓL ,

takes the Galois invariant tensors sα,ét,x to the φ-invariant tensors sα,0 ∈ Dcris(V )⊗.
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Proposition 7.3.2. We have sα,0 ∈ D⊗
x , where we view D⊗

x as a W -submodule of the K0-

vector space Dcris(V )⊗. Moreover, we have the following properties.

(1) The tensors sα,0 ∈ D⊗
x lift to φ-invariant tensors s̃α,x ∈ ΘOL

(Gx)
⊗, which map into

Fil0D(Gx)(OL)
⊗ along the natural projection ΘOL

(Gx)→ D(Gx)(OL) given by Theorem

7.1.14 (2). Denote by sα,x the image of s̃α,x.

(2) There exists an isomorphism ΘOL
(Gx) ≃ W(OL) ⊗Zp TpG

∨
x taking s̃α,x to sα,ét,x. In

particular, there exists an isomorphism

Dx ≃ W ⊗Zp TpG
∨
x

taking sα,0 to sα,ét,x, and an isomorphism

D(Gx)(OL) ≃ D(Gx)(W )⊗W OL

taking sα,x to sα,0. Therefore, we can identify the group scheme GW ⊂ GL(Dx) defined

by sα,0 with G⊗ZpW , and there exists a GK0(= GW ⊗W K0)-valued cocharacter µy such

that

a) The filtration on Dx ⊗W L induced by the canonical isomorphism

Dx ⊗W L ≃ D(Gx)(OL)⊗OL
L

is given by a GK0-valued cocharacter GK0-conjugate to µy.

b) µy induces a filtration on Dx which lifts the Hodge filtration on Dx ⊗W k =

D(Gx)(k).

Proof. As in [KP18, Proposition 3.3.8], the tensors (sα,ét,x) ⊂ TpG ∨⊗
x give rise to φ-invariant

tensors sMα,x ⊂ M(Gx)
⊗. The tensors sMα,x map to tensors s̃α,x in ΘOL

(Gx)
⊗ via the isomor-

phism

ΘOK
(Gx) ≃ φ∗M(Gx)⊗S,κ W(OK)
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in Corollary 7.1.18 (1). Since the above isomorphism respects the Hodge filtrations by

Corollary 7.1.18 (2), the tensors s̃α,x map into Fil0D(Gx)(OL)
⊗. The rest of the proof

proceeds as in [KP18, Proposition 3.3.8, Corollary 3.3.10].

The above proposition implies that Gx is a (GW , µy)-adapted deformation of Gx in the

sense of Definition 7.2.17.

7.3.1.3 Integral models for level G(Zp): properties

Fix a parabolic subgroup P ⊂ GL(Dx) lifting P0 corresponding to the Hodge filtration

of D(Gx)(k) = Dx ⊗W k. Let y = y(x) ∈ (GL(Dx)/P )) (L) correspond to the cocharacter

µy as in Proposition 7.3.2 (2). Then as in §7.2.3, we obtain from y a closed subscheme

M loc
G,y ⊂ (GL(Dx)/P )OĔ

and formal local models

M̂ loc = Spf R, M̂ loc
G,y = Spf RG.

Note that RG is a quotient of RE = R⊗W OĔ. By Proposition 7.3.2 (2) and the Betti-étale

comparison theorem, the scheme Isom(sα,sα,0)
(V ∨

Zp
⊗Zp W,Dx) of tensor-preserving isomor-

phisms is a trivial G-torsor. Then we may choose an isomorphism V ∨
Zp
⊗ZpW ≃ Dx preserving

tensors such that the very good Hodge embedding (by our assumption on ι̃)

(G ⊗Zp W,µh)
ι̃
↪→ (GL(VZp ⊗Zp W ), µg) ≃ (GL(V ∨

Zp
⊗Zp W ), µg) ≃ (GL(Dx), µg)

induces a closed immersion Mloc
G,µh
⊗OE

OĔ ↪→ (GL(Dx)/P )OĔ

∼→ Gr(g,Dx)OĔ
. Note that the

Hodge filtration on Dx⊗W L is induced by a G-valued cocharacter conjugate to µ−1
h . Hence,

we can identify M loc
G,y with Mloc

G,µh
⊗OE

⊗OĔ by Lemma 7.2.7, and so RG is normal.

Proposition 7.3.3. Suppose that conditions (i) and (ii) in the beginning of §7.3.1.1 are

satisfied. Let Ûx be the completion of S −
K (G, X)OĔ

at x. Then the irreducible component of

Ûx containing x is isomorphic to M̂ loc
G,y = Spf RG as formal schemes over OĔ.

Proof. We follow the arguments of [KP18, Proposition 4.2.2].

Note that GK0 ⊂ GL(Dx⊗Zp Qp) contains scalars, since G ⊂ GL(VQ) contains the image

of the weight homomorphism wh. As ιQp extend to a very good Hodge embedding, the
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constructions and results in §7.2 can apply. In particular, by Proposition 7.2.16 (2), we can

view Spf RE as a versal deformation space of Gx. Then the p-divisible group over Ûx arising

from the universal abelian scheme A gives rise to a natural map Φ : Ûx → Spf RE, which is

a closed embedding by Serre-Tate theorem.

Let Z ⊂ Ûx be the irreducible component containing x. Let x′ ∈ Z(L′) for some finite

field extension L′ of Ĕ. Then we can argue as in [KP18, Proposition 4.2.2] to show: sα,ét,x′

corresponds to sα,0 under the p-adic comparison isomorphism for the p-divisible group Gx′ .

Since the filtration on Dx ⊗W K ′ corresponding to Gx′ is given by a G-valued cocharacter

which is conjugate to µy, by Proposition 7.3.2, Gx′ is (GW , µy)-adapted. By our assumption

on the integral Hodge embedding ι̃ and Proposition 7.3.2, the assumptions in Proposition

7.2.18 are satisfied. Hence, x′ is induced by a point of M̂ loc
G,y by Proposition 7.2.18. Since x′

is arbitrary, it follows that Φ(Z) ⊂ M̂ loc
G,y. They are equal, as Z and M̂ loc

G,y are of the same

dimension.

Theorem 7.3.4. Assume the following conditions:

(i) Kp = G(Zp);

(ii) ιQp extends to a very good integral Hodge embedding ι̃ : (G, µh) ↪→ (GL(VZp), µg), where

VZp ⊂ VQp is a self-dual Zp-lattice with respect to ψ.

Then the OE,(v)-schemes SK(G, X) and SKp(G, X) constructed in Definition 7.3.1 satisfy

the following properties.

(1) SKp(G, X) is an OE,(v)-flat, G(Ap
f )-equivariant extension of ShKp(G, X). The integral

model SK(G, X) is canonical in the sense of [PR24].

(2) For any discrete valuation ring R of mixed characteristic 0 and p, the natural map

SKp(G, X)(R)→ SKp(G, X)(R[1/p])

is a bijection.
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(3) SK(G, X) fits into a local model diagram

S̃K(G, X)OE

π

vv

q

&&

SK(G, X)OE
Mloc

G,µh

of OE-schemes, in which π is a G-torsor and q is G-equivariant and smooth of relative

dimension dimG.

(4) If in addition, we have G = G◦, then for each x ∈ SK(G, X)(k′) with k′/kE finite,

there is a point y ∈Mloc
G,µh

(k′) such that we have an isomorphism of henselizations

Oh
SK(G,X),x ≃ Oh

Mloc
G,µh

,y.

Proof. Note that under the assumptions of the above theorem, we have Proposition 7.3.3,

which extends [KP18, Proposition 4.2.2] to the case p = 2. Then the proofs of [KP18,

Proposition 4.2.2, 4.2.7] and [KPZ24, Theorem 7.1.3] go through, and we obtain the theorem.

We note that the assumption (B) in [KPZ24, Theorem 7.1.3] is not used in the proof.

The integral model SK(G, X) is canonical by the construction in [PR24].

7.3.1.4 Integral models for parahoric level G◦(Zp)

Now we use previous results to study integral models with parahoric level structure. That

is, the level at p is given by G◦(Zp). Write K◦
p = G◦(Zp) and K◦ = K◦

pK
p. Note that there is

a natural finite morphism of Shimura varieties ShK◦(G, X)→ ShK(G, X).

Definition 7.3.5. The integral model SK◦(G, X) for parahoric level K◦ is the normalization

of SK(G, X) in ShK◦(G, X). We also set

SK◦
p
(G, X) := lim←−

Kp

SK◦
pK

p(G, X).

Let Gsc denote the simply connected cover of Gder and set C = ker(Gsc → Gder). For a

finite prime ℓ and c ∈ H1(Q,C), we write cℓ for the image of c in H1(Qℓ,C). We introduce
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the following assumption:

If c ∈ H1(Q,C) satisfies cℓ = 0 for all ℓ ̸= p, then cp = 0. (7.3.1)

Proposition 7.3.6. Assume that conditions (i) and (ii) in Theorem 7.3.4 and condition

(7.3.1) are satisfied.

(1) Assume Kp is sufficiently small. Then the covering SK◦(G, X)→ SK(G, X) is étale,

and splits over an unramified extension of OE.

(2) The geometrically connected components of SK◦
p
(G, X) are defined over the maximal

extension of E that is unramified at primes above p.

Proof. The proof follows the same argument as in [KP18, Proposition 4.3.7, 4.3.9].

7.3.2 Shimura varieties of abelian type

Let (G, X) be a Shimura datum of Hodge type with a Hodge embedding ι : (G, X) ↪→

(GSp(V, ψ), S±). Denote by G the base change GQp . Let G◦ be the parahoric group scheme

associated to some point x ∈ B(G,Qp). Assume

(i) Kp = G(Zp);

(ii) ιQp extends to a very good integral Hodge embedding ι̃ : (G, µh) ↪→ (GL(VZp), µg),

where VZp ⊂ VQp is a self-dual Zp-lattice with respect to ψ;

(iii) G satisfies condition (7.3.1);

(iv) The center ZG of G is an R-smooth torus (see [KZ24, §2.4]).

Assume (G2, X2) is a Shimura datum of abelian type such that there is a central isogeny

Gder → Gder
2 inducing an isomorphism of Shimura data (Gad, Xad)

∼−→ (Gad
2 , X

ad
2 ). Here,

Xad denotes the Gad(R)-conjugacy class of had : S h−→ GR → Gad
R for some h ∈ X; Xad

2 is

similar.
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As usual, we denote K◦
p := G◦(Zp) ⊂ G(Qp) and G2 := G2,Qp . Let x2 ∈ B(G2,Qp) be a lift

of xad2 = xad in the identification B(Gad
2 ,Qp) = B(Gad,Qp). Let G◦2 be the parahoric group

scheme associated to x2. Write K◦
2,p = G◦2(Zp). Denote by E2 the reflex field of (G2, X2) and

set E′ := E · E2, recall E denotes the reflex field of (G, X). We fix a place v′ of E′ above v.

Denote by E ′ the completion of E′ at v′.

Fix a connected component X+ ⊂ X. Denote by ShK◦
p
(G, X)+ the geometrically con-

nected component containing the image of X+ × 1 in

lim←−
Kp

G(Q)\X ×G(Af )/K
◦
pK

p.

By Proposition 7.3.6 (2), ShK◦
p
(G, X)+ is defined over the maximal extension Ep of E that

is unramified at primes above p. We denote by SK◦
p
(G, X)+ the component of SK◦

p
(G, X)

extending ShK◦
p
(G, X)+, which is defined over OEp,(v).

7.3.2.1 Integral models of Shimura varieties of abelian type

We recall the notation of [Del79]. Let H be a group equipped with an action of a group

∆, and let Γ ⊂ H be a ∆-stable subgroup. Suppose we are given a ∆-equivariant map

φ : Γ→ ∆ where ∆ acts on itself by inner automorphisms, and suppose that for γ ∈ Γ, φ(γ)

acts on H as conjugation by γ. Then the elements of the form (γ, φ(γ)−1) form a normal

subgroup of the semi-direct product H ⋊∆. We denote by

H ∗Γ ∆

the quotient of H ⋊∆ by this normal subgroup.

For a subgroup H ⊂ G(R), denote by H+ the preimage in H of the connected component

Gad(R)+ of the identity in Gad(R). We write Gad(Q)+ = Gad(Q) ∩Gad(R)+.

Lemma 7.3.7. Suppose S is an affine Q-scheme, and let SZp be a flat affine Zp-scheme

with generic fiber S ⊗Q Qp. Then there exists a Z(p)-scheme SZ(p)
, which is unique up to

isomorphism, with generic fiber S and SZ(p)
⊗Z(p)

Zp = SZp.
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Proof. Let A (resp. B) be the affine coordinate ring of SZp (resp. S). By assumption, we

have A⊗Zp Qp = B ⊗Q Qp. Then we can take SZ(p)
to be SpecA∩B, where the intersection

happens in A⊗ZpQp = B⊗QQp. Any Z(p)-scheme T with generic fiber S and T⊗Z(p)
Zp = SZp

is necessarily isomorphic to SpecA ∩B.

By applying the above lemma to the group schemes G and G◦ over Zp, we obtain Z(p)-

smooth affine group schemes GZ(p)
and G◦ := G◦

Z(p)
. Similarly, let Gad◦ = Gad◦

Z(p)
be the Z(p)-

model of the parahoric group scheme associated to xad ∈ B(Gad,Qp). Let Gad = GZ(p)
/Z,

where Z denotes the Zariski closure in GZ(p)
of the center Z of the Q-group G. As we assume

that the center ZG of G is an R-smooth torus, we have Gad◦ is the neutral component of

Gad, see [KP18, Lemma 4.6.2] and [KZ24, Proposition 2.4.14].

Following [KP18, §4.6.3], we set

A (GZ(p)
) := G(Ap

f )/Z(Z(p))
− ∗G◦(Z(p))+/Z◦(Z(p)) G

ad◦(Z(p))
+,

A (G) := G(Af )/Z(Q)− ∗G(Q)+/Z(Q) G
ad(Q)+,

and

A (GZ(p)
)◦ := G◦(Z(p))

−
+/Z

◦(Z(p))
− ∗G◦(Z(p))+/Z◦(Z(p)) G

ad◦(Z(p))
+,

A (G)◦ := G(Q)−+/Z(Q)− ∗G(Q)+/Z(Q) G
ad(Q)+.

Here, G◦(Z(p))
−
+ is the closure of G◦(Z(p))+ in G(Ap

f ), and Z
◦ is the Zariski closure of Z in

G◦. Similarly, we have A (G2,Z(p)
) and A (G2,Z(p)

). Since Gad◦ is the neutral component of

Gad
Z(p)

(we assume ZG is an R-smooth torus), the action of A (GZ(p)
) on ShK◦

p
(G, X) extends

to SK◦
p
(G, X). There is an injection by [KP18, Lemma 4.6.10],

A (GZ(p)
)◦\A (G2,Z(p)

) ↪→ A (G)◦\A (G2)/K
◦
2,p.

Let J ⊂ G2(Qp) be a set of coset representatives for the image of the above injection.

Definition 7.3.8. The integral model SK◦
2,p
(G2, X2) for ShK◦

2,p
(G2, X2) is

[[SK◦
p
(G, X)+ ×A (G2,Z(p)

)]/A (GZ(p)
)◦]|J |.
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The scheme SK◦
2,p
(G2, X2) is priori defined over OE′p,(v), but it descends to an OE′,(v′)-

scheme with a G2(Ap
f )-action, see [KP18, Corollary 4.6.15].

Theorem 7.3.9. Assume that conditions (i) to (iv) in the beginning of §7.3.2 are satisfied.

(1) The E-scheme ShK◦
2,p
(G2, X2) admits a G2(Ap

f )-equivariant extension to a flat normal

OE′,(v′)-scheme SK◦
2,p
(G2, X2). Any sufficiently small Kp

2 ⊂ G2(Ap
f ) acts freely on

SK◦
2,p
(G2, X2), and the quotient

SK◦
2
(G2, X2) := SK2,p(G2, X2)/K

p
2

is a flat normal OE′,(v′)-scheme extending ShK◦
2
(G2, X2).

(2) For any discrete valuation ring R of mixed characteristic 0 and p, the map

SK◦
2,p
(G2, X2)(R)→ SK◦

2,p
(G2, X2)(R[1/p])

is a bijection.

(3) There is a diagram of OE′-schemes

S̃ ad
K◦

2,p

π

xx

q

''

SK◦
2,p
(G2, X2)OE′ Mloc

G◦
2 ,µh2

⊗OE2
OE′ ,

where π is a G2(Ap
f )-equivariant G

ad
2,Zp

-torsor, q is Gad
2,Zp

-equivariant, and for any suf-

ficiently small Kp
2 ⊂ G2(Ap

f ), the map S̃ ad
K◦

2,p
/Kp

2 → Mloc
G◦
2 ,µh2

⊗OE2
OE′ induced by q is

smooth of relative dimension dimGad
2 . If in addition, we have G = G◦, then π reduces

to a Gad◦
2,Zp

-torsor.

Proof. Under the assumptions of the above theorem, we can construct the integral model

SK◦
2,p
(G2, X2) as in Definition 7.3.8. The properties of SK◦

2,p
(G2, X2) are deduced from

Theorem 7.3.4 by following the arguments in [KPZ24, Proposition 7.1.14] (cf. [KP18, §4.4-

4.6]). Note that arguments in [KP18, §4.4-4.6] also work for p = 2.
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Remark 7.3.10. For a Shimura datum (G2, X2) of abelian type as in Theorem 7.3.9, we

expect that the integral model SK◦
2
(G2, X2) is canonical in the sense of [PR24], which would

imply that SK◦
2
(G2, X2) is independent of the choice of a Shimura datum (G, X), as well as

the choice of a symplectic embedding (G, X) ↪→ (GSp, S±).

7.3.2.2 Proof of Theorem 1.2.7 in Case (A)

Now we start with a Shimura datum (G2, X2) of abelian type with reflex field E2, and

denote by K◦
2,p ⊂ G2(Qp) the parahoric subgroup associated to some x2 ∈ B(G2,Qp).

Lemma 7.3.11. Suppose that (Gad
2 , X

ad
2 ) has no factor of type DH, G2 is unramified over

Qp, and K◦
2,p is contained in some hyperspecial subgroup. Then there exists a Shimura datum

(G, X) of Hodge type, together with a central isogeny Gder → Gder
2 inducing an isomorphism

(Gad, Xad) ≃ (Gad
2 , X

ad
2 ), such that the following conditions hold.

(1) π1(G
der) is trivial.

(2) Any prime v2|p of E2 splits completely in E′ = E · E2.

(3) X∗(G
ab)IQp

is torsion free, where Gab denotes the quotient G/Gder and IQp denotes the

inertia subgroup of Gal(Qp/Qp).

(4) Conditions (i) to (iv) in the beginning of §7.3.2 are satisfied.

Proof. As discussed in [KZ24, 2.4.5], the proof of [Edi92, Theorem 4.2] implies that a tamely

ramified torus is R-smooth. As we assume G2 is unramified (in particular, G2 is tamely

ramified), by [KP18, Lemma 4.6.22], it remains to show that there exists a Hodge embedding

ι : (G, X) ↪→ (GSp(V, ψ), S±) satisfying condition (ii) in the beginning of §7.3.2. Since

π1(G
der) is trivial by our choice of (G, X), we may assume that, by Zarhin’s trick and [KP18,

Corollary 2.3.16], there exists a good integral Hodge embedding ι̃ : (G, µh) ↪→ (GL(Λ), µg)

extending ιQp , where Λ ⊂ VQp is a self-dual Zp-lattice with respect to ψQp . Denote GSp :=

GSp(V, ψ)Qp . By our assumptions and Theorem 7.4.1, there is a tame Galois extension
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F/Qp with Galois group Γ such that in the diagram

B(G,Qp)
ι //

��

B(GSp,Qp)

��

B(GF , F ) // B(GSpF , F )

of Bruhat-Tits buildings, we have

• the image of x ∈ B(G,Qp) in B(GF , F ) is hyperspecial, and determines a reductive

group H over OF satisfying G ≃ (ResOF /ZpH)Γ;

• the point ι(x) is hyperspecial corresponding to the self-dual lattice Λ, and its image

in B(GSpF , F ) is hyperspecial corresponding to the lattice Λ̃ := Λ ⊗Zp OF , which is

self-dual with respect to the pairing ψF .

By [DD11, Lemma 3.1], there exist a totally real number field F/Q and a place w above p

such that Fw ≃ F . Let Ṽ denote the Q-vector space V ⊗QF. We pick an element a ∈ F such

that its image in F generates the different ideal δF/Qp . Then Ṽ is equipped with a perfect

alternating pairing given by

ψ̃(x, y) := TrF/Q(a
−1ψF (x, y))

for x, y ∈ Ṽ . Then Λ̃ is self-dual with respect to ψ̃, and the closed immersion

ι̃ : G ↪→ ResOF /ZpH ↪→ GL(Λ̃)

extends the Hodge embedding G ↪→ GSp ↪→ GSp(Ṽ , ψ̃)Qp ⊂ GL(ṼQp). As π1(G
der) is

trivial and G is unramified over Qp, the Pappas-Zhu local model for (G, µh) is isomorphic

to Mloc
G,µh

, and ι̃ is a good integral Hodge embedding by [KP18, Proposition 2.3.7]. As

(Gad
2 , X

ad
2 ) has no factor of type DH, the closed immersion ResOF /ZpH ↪→ GL(Λ̃) gives a

very good integral Hodge embedding by [KPZ24, Proposition 5.3.10, Theorem 1.2.3]. Since

G = (ResOF /ZpH)Γ, we obtain that ι̃ is also very good by [KPZ24, Corollary 5.3.4]. We

then obtain a desired Hodge embedding by replacing ι by the Hodge embedding (G, X) ↪→

(GSp(Ṽ , ψ̃), S±(Ṽ , ψ̃)).
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Corollary 7.3.12. Under the same assumptions as in Lemma 7.3.11, the integral model

SK◦
2,p
(G2, X2) constructed in Definition 7.3.8 is defined over OE2,(v2) for some fixed prime

v2|p of E2. Moreover, we have G = G◦, and the conclusions of Theorem 7.3.9 hold. In

particular, if κ is a finite extension of κ(v2) and y ∈ SK◦
2,p
(G2, X2)(κ), then there exists

z ∈Mloc
G◦
2 ,µh2

(κ) such that we have an isomorphism of henselizations

Oh
SK◦

2,p
(G2,X2),y

≃ Oh
Mloc

G◦
2 ,µh2

,z.

Proof. By Theorem 7.3.9 and Lemma 7.3.11 (4), the integer model SK◦
2,p
(G2, X2) is con-

structed using the Shimura datum (G, X) chosen in Lemma 7.3.11. By Lemma 7.3.11 (2),

there exists a prime v2|p of E2 extending to the prime v′ of E′, and we have OE2,(v2) ≃ OE′,(v′).

Hence, the scheme SK◦
2,p
(G2, X2) is defined over OE2,(v2). Since π1(G

der) is trivial by Lemma

7.3.11 (1), we have π1(G) = X∗(G
ab), and π1(G)IQp

is torsion-free by Lemma 7.3.11 (3). In

particular, we have G = G◦.

By Theorem 7.3.9 and Corollary 7.3.12, we obtain Theorem 1.2.7 in Case (A). Note that

the group G in Theorem 1.2.7 is denoted by G2 here.

7.3.3 Integral models of unitary Shimura varieties

In this subsection, we consider Shimura varieties in Case (B) of §1.2.2. We show that, in

this case, the assumptions in Theorem 7.3.9 are satisfied, allowing us to construct integral

models of Shimura varieties for which the conclusions of Theorem 7.3.9 hold.

7.3.3.1

Let n = 2m + 1 ≥ 3 be an odd integer. Let F/Q be an imaginary quadratic extension

such that 2 is ramified in F. Then F := F ⊗Q Q2 is a ramified quadratic extension of Q2

with residue field F2. Let (V,h) be an n-dimensional non-degenerate F/Q-hermitian space

of signature (n− 1, 1). Denote by

G := GU(V,h)

149



the unitary similitude group over Q attached to (V,h). Suppose that

K2 ⊂ G(Q2)

is a special parahoric subgroup in the sense of Bruhat-Tits theory. For an open compact

subgroup of the form K = K2K
2 ⊂ G(Af ), where K2 ⊂ G(A2

f ) is open compact and

sufficiently small, we can associate a Shimura variety ShK(G, X) of level K as in [PR09,

§1.1]. Then ShK(G, X) is a quasi-projective smooth variety of dimension n − 1 over the

reflex field F. Denote by ShK(G, X)F the base change of ShK(G, X) to F .

7.3.3.2 Unitary local models

Note that the vector space V := V⊗FF equipped with the F/Q2-hermitian form h := hQ2

defines a unitary similitude group G = GQ2 over Q2.

Lemma 7.3.13. For any non-degenerate hermitian form h′ on V , we have G ≃ GU(V, h′).

Proof. By the classification of hermitian spaces over local fields (see, for example, [Jac62,

Theorem 3.1]), there are two isomorphism classes of n-dimensional non-degenerate hermitian

spaces over Q2, classified by discriminants in Q×
2 /NF/Q2(F

×). Let a ∈ Q×
2 be an element

not in NF/Q2(F
×). Define a hermitian form ha on V by setting ha(x, y) := ah(x, y) for

x, y ∈ V . Since disc(ha) = andisc(h) and n is odd, the hermitian spaces (V, h) and (V, ha)

represent the two isomorphism classes of n-dimensional non-degenerate hermitian spaces over

Q2. Moreover, multiplication by a induces an isomorphism between GU(V, h) and GU(V, ha).

Hence, the lemma follows.

By Lemma 7.3.13, we may assume that the hermitian form h is split, that is, there exists

an F -basis e1, . . . , en of V such that h(ei, ej) = δi,n+1−j. Then we are in the situation of

the first part of the thesis. Up to conjugation, we may assume that the special parahoric

subgroup K2 ⊂ G(Q2) corresponds to I = {0} or {m} by Theorem 1.2.1. Let GI denote the

special parahoric group scheme corresponding to I = {0} or {m}. By [PR09, 1.2.3], GI is a
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Bruhat-Tits stabilizer group scheme. Let µ denote the geometric cocharacter

Gm,F → GF ≃ GLn,F ×Gm,F

given by z 7→ (diag(z, 1(n−1)), z). Let Mloc
GI ,µ

be the local model attached to (GI , µ) by

Theorem 3.4.4. By Proposition 3.4.5, this is isomorphic to the unitary local model Mloc
I in

Theorem 1.2.2.

Lemma 7.3.14. Let ΛI ⊂ V be the lattice as in Theorem 1.2.1 corresponding to the spe-

cial parahoric subgroup K2 ⊂ G(Q2). Then there exists a good integral Hodge embedding

(GI , µ) ↪→ (GL(ΛI), µn).

Proof. By the concrete description of the parahoric group scheme GI in Chapter 6, there is a

closed immersion ι : GI ↪→ GL(ΛI). The base change ιQp is the standard Hodge embedding

G = GU(V, h) ↪→ GL(V ), which sends the conjugacy class {µ} to {µn}. As G contains the

scalars, ι is an integral Hodge embedding. Moreover, ι is good, since it induces a closed

immersion Mloc
GI ,µ
≃ Mloc

I ↪→ Gr(n,ΛI)OF
by our construction of Mloc

I .

The following theorem is a key ingredient in the construction of very good Hodge em-

beddings for (GI , µ).

Theorem 7.3.15. For any closed point x ∈ Mloc
I (k), the tangent space of the special fiber

Mloc
I ⊗OF

k at x is spanned by smooth formal curves (see Definition 7.2.14).

The proof of Theorem 7.3.15 is divided into the following two cases.

The case I = {m}

By Theorem 1.2.2 (2), the local model Mloc
{m} is smooth over OF . Clearly Theorem 7.3.15

holds in this case by the infinitesimal lifting property of smooth morphisms.

The case I = {0}

By Theorem 1.2.2 (1), Mloc
{0} is OF -smooth on the complement of a single closed point,

which we will call the worst point. To prove Theorem 7.3.15 in this case, it suffices to prove

the tangent space of Mloc
{0} ⊗OF

k at the worst point is spanned by smooth formal curves.
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Definition 7.3.16. Let X be an affine scheme of finite type over k. Let x ∈ X(k) be a

k-point. We may express X as a closed subscheme of Ad = Spec k[T1, . . . , Td] defined by an

ideal a ⊂ k[T1, . . . , Td] such that x is the origin of Ad.

(1) For a polynomial f ∈ k[T1, . . . , Td], write f =
∑N

i=r fi as a decomposition into homo-

geneous polynomials with fr ̸= 0. Denote by f ∗ (resp. f (1)) the lowest degree term fr

(resp. f1). If r ≥ 2, set f1 = 0.

(2) Denote by a∗ (resp. a(1)) the ideal in k[T1, . . . , Td] generated by f ∗ (resp. f (1)), for all

f ∈ a. The tangent cone TCxX (resp. schematic tangent space T sch
x X) of X at x is

the scheme Spec k[T1, . . . , Td]/a
∗ (resp. Spec k[T1, . . . , Td]/a

(1)).

Note that the definition of TCxX (resp. T sch
x X) is independent of the embeddings of

X in affine spaces. See [Mum99, Chapter III, §3, 4]. Clearly T sch
x X is a linear subspace of

Ad and there is a closed immersion TCxX ↪→ T sch
x X. Note that there is a natural bijection

between the k-points T sch
x X(k) and the tangent space TxX, see [Mum99, §4]. Concretely, for

any z ∈ T sch
x X(k) corresponding to a k-algebra homomorphism z : k[T1, . . . , Td]/a

(1) → k,

we can associate a k-algebra homomorphism tz : k[T1, . . . , Td]/a→ k[t]/(t2) via Ti 7→ z(Ti)t.

The morphism tz defines a tangent vector of X at x.

Lemma 7.3.17. Let X be a reduced affine scheme of finite type over k. Let x ∈ X(k).

Assume that there exists a closed immersion i : X ↪→ Ad such that X is defined by a

homogeneous ideal a and i(x) is the origin O of Ad. Then the set TCxX(k) spans the k-

vector space TxX.

Proof. Without loss of generality, we may assume that i does not factor through any (proper)

linear subspace of Ad. As X is reduced, the image i(X) is not contained in any (proper)

linear subspace of Ad. Since a is homogeneous, X is isomorphic to the tangent cone TCxX

and i is identified with the embedding TCxX ↪→ T sch
x X ↪→ T sch

O Ad. Let W denote the

subspace in TxX spanned by TCxX(k). Then we have a linear subspace W sch ⊂ Ad such
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that W sch(k) = W . We obtain a factorization

i : X ↪→ W sch ↪→ T sch
x X ↪→ Ad.

Since i : X ↪→ Ad does not factor through any proper linear subspace of Ad, it forces that

W sch = T sch
x X = Ad, and hence, W = TxX.

Corollary 7.3.18. Under the same assumptions as in Lemma 7.3.17, the tangent space TxX

is spanned by smooth formal curves.

Proof. Denote X = SpecR = Spec k[T1, . . . , Td]/a. By assumption, the tangent cone TCxX

is isomorphic to X. Recall that for a k-point z ∈ TCxX(k) corresponding to z : R =

k[T1, . . . , Td]/a→ k, the associated tangent vector tz ∈ X(k[t]/(t2)) is given by the k-algebra

homomorphism R → k[t]/(t2) sending Ti 7→ z(Ti)t. Define a k-algebra homomorphism

t̃z : k[T1, . . . , Td]→ k[[t]] via Ti 7→ z(Ti)t. For any homogeneous polynomial f ∈ a, we have

t̃z(f) = f(z(T1)t, . . . , z(Td)t) = tdeg ff(z(T1), . . . , z(Td)) = 0.

Hence, the map t̃z factors through R/a. In other words, the tangent vector tz lifts to

the smooth formal curve t̃z ∈ X(k[[t]]). Now the corollary follows from Lemma 7.3.17

immediately.

Recall that, by Theorem 1.2.3 (1), there is an open affine neighborhood Uloc
{0} of Mloc

{0}

containing the worst point such that Uloc
{0} ⊗OF

k is defined by a homogeneous ideal under

the obvious closed embedding Uloc
{0} ⊗OF

k ↪→ Spec k[A|B], which sends the worst point to

the origin. By Corollary 7.3.18, we obtain the following.

Corollary 7.3.19. The tangent space of Mloc
{0}⊗OF

k at the worst point is spanned by smooth

formal curves.

This proves Theorem 7.3.15 in the case I = {0}.
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7.3.3.3 Proof of Theorem 1.2.7 in Case (B)

Let us keep the notation as in §7.3.3.1. Let a ∈ F× be an element such that a = −a.

Then the hermitian form h on V induces a perfect alternating Q-bilinear form ψ on V by

setting

ψ(x, y) := TrF/Q(a
−1h(x, y)), for x, y ∈ V.

Denote byGSp(V, ψ) the symplectic similitude group over Q associated with the above pair-

ing. Then we obtain an embedding ι1 : G ↪→ GSp(V, ψ), which also induces an embedding

of Shimura data

ι1 : (G, X) ↪→ (GSp(V, ψ), S±(V, ψ)).

By Lemma 7.3.14, there exists a good integral Hodge embedding

ι̃1 : (GI , µ) ↪→ (GL(ΛI), µn)

extending ι1,Q2 . By Theorem 7.3.15 and Lemma 7.2.15, ι̃1 is very good. Denote by Λ#
I ⊂ V

the dual lattice of ΛI with respect to ψ. Set Λ := (ΛI)
4 ⊕ (Λ#

I )
4 ⊂ V 8. Using Zarhin’s trick

as in the proof of [KPZ24, Proposition 7.2.10 (3)], there exists a non-degenerate alternating

pairing ψ′ on V8 such that Λ is self-dual with respect to ψ′
Q2
, and an embedding of Shimura

data

ι : (G, X) ↪→ (GSp(V8, ψ′), S±(V8, ψ′))

such that ι extends to a very good integral Hodge embedding (GI , µ) ↪→ (GL(Λ), µ8n).

Denote (GSp, S±) := (GSp(V8, ψ′), S±(V8, ψ′)). Then we obtain an embedding of

Shimura data

ι : (G, X) ↪→ (GSp, S±).

Moreover, the embedding ιQ2 extends to a very good integral Hodge embedding by previous

discussion. Note that for odd unitary similitude groups, the parahoric group scheme corre-

sponding to K2 is connected by [PR09, 1.2.3]. In particular, the assumptions in Theorem

7.3.4 are satisfied and we obtain the following theorem.
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Theorem 7.3.20. There exists a normal flat OF -scheme SK(G, X) extending ShK(G, X)

such that the conclusions of Theorem 7.3.4 hold for SK(G, X).

This finishes the proof of Theorem 1.2.7 in Case (B).

7.4 Bruhat-Tits group schemes and tame Galois fixed points

In this section, we show that, for an unramified group G over a 2-adic field F , if a

stabilizer group scheme G satisfies G(OF ) ⊂ H for some hyperspecial subgroup H of G(F ),

then G can be written as the tame Galois fixed points of the Weil restriction of scalars of a

reductive group scheme. This result is used in the proof of Lemma 7.3.11 to construct very

good Hodge embeddings in Case (A).

Let F be a complete discrete valued field with residue characteristic p = 2. Let G be a

connected reductive group over F . Denote by B(G,F ) (resp. B(G,F )) the extended (resp.

“classical”) Bruhat-Tits building. Recall that for a finite tame Galois extension K/F with

Galois group Γ, the inclusion

B(G,F ) ↪→ B(G,K)

of buildings identifies the image with the fixed point set B(G,K)Γ. For x ∈ B(G,F ), we use

GKx to denote the Bruhat-Tits group scheme over OK attached to the image of x in B(G,K).

Theorem 7.4.1. Assume G is unramified. Let G = Gf be the Bruhat-Tits group scheme

attached to some facet f in B(G,F ) whose closure contains a hyperspecial point.

Then there exist a point x ∈ B(G,F ) and a finite tame Galois extension K/F with Galois

group Γ such that G⊗F K is split, G = Gx, and (the image of) x is hyperspecial in B(G,K).

Moreover, we have an isomorphism of (smooth) OF -group schemes

G ≃ (ResOK/OF
GKx )Γ

extending the isomorphism G ≃ (ResK/FGK)
Γ.
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The proof of Theorem 7.4.1

We first consider the case when G is split, absolutely simple, and simply connected. Fix

a maximal torus T and a Borel subgroup B containing T . Let ∆ = {α1, . . . , αn} be the

subset of simple roots with respect to (T,B) in the root system Φ = Φ(T,B). Denote by

Φ+ = Φ ∩ Z≥0∆ the set of positive roots. Note that there is a perfect pairing

⟨−,−⟩ : X∗(T )×X∗(T )→ Z

between the cocharacter group X∗(T ) and the character group X∗(T ) of T . There is an

isomorphism between the apartment A of B(G,F ) corresponding to T and V := X∗(T )R

such that the origin in V corresponds to a special vertex, which is also hyperspecial, in A.

Moreover, a chamber C of A is given by

C =
{
x ∈ V | 0 < ⟨x, α⟩ < 1 for all α ∈ Φ+

}
.

For 1 ≤ i ≤ n, denote by ωi ∈ V the fundamental coroot corresponding to αi ∈ ∆. Then

the chamber C has n + 1 vertices v0, . . . , vn, where v0 = 0 and vi = ωi/ci for 1 ≤ i ≤ n,

where ci is a positive integer such that
∑n

i=1 ciαi is the highest root in Φ. Since G(F ) acts

transitively on the set of chambers in A (see, for example, [Tit79, §1.8]), we may assume that

f is contained in the closure of C. By assumption, the closure f of f contains a hyperspecial

vertex vf . Note that vf is some vertex vi for which ci = 1. If f consists of only a single point,

there is nothing to prove. Hence, we may assume that f strictly contains vf . Let y ∈ V be

the barycenter of the (sub)facet determined by the vertices in f except vf . Then y is of the

form

y =
1

m2d
y1,

where m is an odd integer, d ≥ 0 is an integer, and y1 ∈ Z∆. Set

x :=
1

m2d+1 + 1
vf +

m2d+1

m2d+1 + 1
y =

1

m2d+1 + 1
vf +

2

m2d+1 + 1
y1

Then x lies in the line segment between vf and y, and hence in f . Since G is simply connected,

we have

Gx = Gf .
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Let F1 be a finite extension of F with ramification index m2d+1 + 1. Denote by

ρ : B(G,F ) ↪→ B(G,F1),

the natural inclusion of buildings. Then we see that

ρ(x) = vf + 2y1 ∈ vf +X∗(T ).

Thus, ρ(x) is a hyperspecial point in B(G,F1). As p = 2, the extension F1/F is tame. Let

K be the Galois closure of F1/F . Then K is a tame Galois extension of F . Note that the

image of ρ(x) in B(G,K) is also hyperspecial. The pair (K, x) satisfies the conclusion of

Theorem 7.4.1.

Next we consider the case when G is unramified, absolutely simple and simply connected.

Let F1/F be an unramified Galois extension over which G is split. Denote by Γ1 the Galois

group of F1/F . Then the facets in B(G,F ) correspond to Γ1-invariant facets in B(G,F1).

Let f1 be the Γ1-invariant facet in B(G,F1) corresponding to f . The closure of the facet f1

contains a hyperspecial point, which is the image of vf in B(G,F1). Let y1 be the barycenter

of f1. Then y1 is a fixed point of Γ1 and we have

G = (ResOF1
/OF
GF1
y1
)Γ1 .

Note that y1 is of the form

y1 =
1

m2d
(vf + y2),

where m is odd and y2 ∈ X∗(T ) for a maximal torus T in the split group GF1 . Since y1 and

vf are fixed by Γ1, so is any point in the line segment of y1 and vf . Set

x :=
1

m2d+1 + 1
vf +

m2d+1

m2d+1 + 1
y1 =

3

m2d+1 + 1
vf +

2

m2d+1 + 1
y2.

Then x lies in the line segment between y1 and vf , and hence is fixed by Γ1. We obtain

that x corresponds to a point in B(G,F ) and Gx = Gf . Let F2 be a finite (tame) extension

of F1 with ramification index m2d+1 + 1. Then the image of x in B(G,F2) is of the form
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3vf + 2y2 ∈ 3vf + X∗(T ). Since 3vf is hyperspecial, x is hyperspecial in B(G,F2). Let K

be the Galois closure of F2/F . Then K is a tame Galois extension of F and the pair (K, x)

satisfies the conclusion of Theorem 7.4.1. In particular, Theorem 7.4.1 holds when G is

unramified, absolutely simple and simply connected.

Following the proof of [KPZ24, Proposition 2.2.2], we see that Theorem 7.4.1 holds when

G is any unramified group over F .
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[Ans22] J. Anschütz. Extending torsors on the punctured Spec(Ainf). J. Reine Angew. Math.
783 (2022), 227–268.

[BT84a] F. Bruhat and J. Tits. Groupes réductifs sur un corps local: II. Schémas en groupes.
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[Zin01] T. Zink. A Dieudonné theory for p-divisible groups. In: Class field theory – its
centenary and prospect. Proceedings of the 7th MSJ International Research Insti-
tute of the Mathematical Society of Japan, Tokyo, Japan, June 3–12, 1998. Tokyo:
Mathematical Society of Japan, 2001, 139–160.

[Zin02] T. Zink. The display of a formal p-divisible group. In: Cohomologies p-adiques et
applications arithmétiques (I). Paris: Société Mathématique de France, 2002, 127–
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