OLISTER: OBSERVING LIDAR-INDUCED SOURCES FOR TRANSFERABILITY,
ESTIMATION AND ROBUSTNESS IN 3D OBJECT DETECTION

By

Onur Can Yiicedag

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Computer Science—Master of Science

2025

ABSTRACT
Unsupervised Domain Adaptation (UDA) for 3D object detection in autonomous driving faces chal-
lenges due to various sources of domain shift, such as differences in LiDAR resolution, the use of
synthetic versus real-world data, scenery variations, and sensor configurations (e.g., sensor place-
ment and number). This thesis systematically investigates these domain shifts through controlled
experiments using synthetic datasets generated via the CARLA simulator, enabling precise isolation
and quantification of each factor. To facilitate these experiments, two software tools are introduced:
carlaSceneCollector, designed for efficient synthetic data generation, and rosbag2nuScenes,
which converts ROSBag data into the widely adopted nuScenes format. The study emphasizes
two critical sources of domain shift: LiDAR resolution and the synthetic-to-real data shift. It
identifies saturation effects at intermediate LiDAR resolutions (32—64 channels) and analyzes how
varying resolution shifts impact detection performance, particularly noting the disproportionate
effects on smaller objects. It evaluates various performance metrics, highlighting the robustness of
the NuScenes Detection Score (NDS) compared to traditional metrics like mean Average Precision
(mAP). Simultaneously, the synthetic-to-real domain shift is analyzed through systematic compar-
isons across the nuScenes, adaScenes, and carlaScenes datasets. This reveals that synthetic-to-real
differences significantly surpass the impact of LiDAR resolution shifts, underscoring profound
discrepancies between simulated and real-world LiDAR point clouds. The thesis further addresses
limitations in the default voxelization settings of the CenterPoint model by proposing adaptive vox-
elization techniques and structural enhancements, enhancing model adaptability across resolutions.
Finally, it examines real-world datasets like nuScenes, highlighting their complexity and diversity

as key factors in achieving robust model performance and improved generalization.

Copyright by
ONUR CAN YUCEDAG
2025

ACKNOWLEDGMENTS
I would like to express my deepest thanks to my supervisor, Prof. Joshua Siegel, for being constantly
supportive and constructive towards my work on this thesis. He has been a true inspiration and a
great teacher to me during my time in the graduate program.

Special thanks to my committee members, Prof. Philip McKinley and Dr. Yu Kong, for their
enthusiasm towards my project and their invaluable expertise and time in evaluating this work.

In addition, I would like to acknowledge Dr. Ali Ufuk Peker, Dr. Kerem Par and ADASTEC
Corp. for encouraging me to pursue graduate studies and for their financial support throughout this
endeavor.

I sincerely thank my friends and colleagues, who have been by my side whenever I needed them
and helped me through times of stress.

Finally, I am incredibly grateful for my loving wife. She is the bright light who guided me

throughout this journey, kept my priorities straight and always there whenever I needed her support.

v

TABLE OF CONTENTS

LIST OF ABBREVIATIONS e vi
CHAPTER 1 INTRODUCTION e 1
CHAPTER 2 BACKGROUND o 4
CHAPTER 3 METHODOLOGY e 13
CHAPTER 4 EVALUATION ANDRESULTS 32
CHAPTER 5 CONCLUSION s 50
BIBLIOGRAPHY e 54

UDA
LiDAR
ROS

Rir

Rsr

Rpp
Ric
mAP
NDS
AP

IoU

LIST OF ABBREVIATIONS
Unsupervised Domain Adaptation
Light Detection and Ranging
Robot Operating System
LiDAR Resolution
Synthetic vs. Real data
Scenery Disparities
Differences in LiDAR Placement
Variations in the Number of LiDAR Sensors
mean Average Precision
NuScenes Detection Score
Average Precision

Intersection over Union

Vi

CHAPTER 1

INTRODUCTION
Autonomous driving depends on a vehicle’s ability to accurately perceive its surroundings. This
perception is achieved through a combination of sensors—LiDAR, radar, and cameras—that work
together to build a detailed understanding of the environment. 3D object detection, a core com-
ponent of this perception, involves identifying and localizing objects in three-dimensional space.
This is crucial for tasks such as path planning, collision avoidance, and decision-making.

LiDAR sensors are indispensable for 3D object detection. They provide accurate and dense
3D measurements in the form of point clouds. Unlike cameras, which primarily capture 2D color
and texture information, LiDAR sensors use laser beams to measure distances, generating a 3D
representation of the environment. This geometric information is essential for accurately localizing
objects, estimating their size and shape, and determining their distance from the vehicle. LiDAR’s
superior spatial resolution is critical for precise 3D object detection, especially in complex and
dynamic environments. However, each LiDAR sensor has unique characteristics based on its
provider, firmware, and measurement mechanism. For instance, mechanical LiDAR products, a
common type, exhibit significant variations in their ray patterns—the specific arrangement and
angles at which laser beams are emitted by a LiDAR sensor. These ray patterns determine how
comprehensively and densely the environment is scanned. Such variations directly impact the
density and distribution of point clouds, which are composite data structures. These structures
consist of two main types of data. First, there are positional fields—X, Y, and Z coordinates—that
indicate each point’s location in space, with errors bounded by the sensor’s resolution. Second,
there are signal noise-related fields that capture additional information about the reflected laser
signal. These include intensity (the strength of the reflected signal), elongation (the stretching of
the return pulse), ambient (background light levels), and reflectivity (how well a surface reflects
the laser). The noise fields are highly provider-dependent, leading to distributional differences in
these values. These noise fields are commonly uncalibrated, meaning that the same surface can

activate different noise signals depending on environmental conditions such as ambient lighting or

weather situations. This lack of standardization poses challenges for models trained on data from
one LiDAR sensor, as they may not generalize well to data from another, even when capturing the
same scene. Even when noise fields are calibrated within a provider, other providers do not follow
the same mechanisms. Consequently, noise channels exhibit different scales and characteristics
across different providers. Finally, variations in how different providers handle outliers further
contribute to performance differences, particularly in adverse weather conditions.

A significant challenge in 3D object detection is domain shift, which occurs when a model’s
performance degrades on data differing from the training set. This is particularly true for LIDAR
data. The sensor-specific characteristics described above, along with variations in sensor config-
uration and environmental conditions, make LiDAR data especially susceptible to domain shift.
For example, a model trained on LiDAR data from an urban setting might perform poorly when
applied to data from a highway setting. In an urban environment, objects like pedestrians, cyclists,
and vehicles are often close together and moving at relatively low speeds. On a highway, however,
objects are spaced farther apart, travel at higher speeds, and include different types of road users,
such as trucks and motorcycles. These differences alter the density and distribution of the point
cloud, making it difficult for the model to accurately detect objects. Another example is a model
trained in clear weather that might fail in fog, where the scattering of laser beams changes the point
cloud’s structure, demonstrating the practical impact of domain shift.

This thesis systematically investigates the impact of domain shift on 3D object detection, with a
particular focus on the effects of LIDAR resolution and the challenges of transferring models trained
on synthetic data to real-world scenarios. To address this, we employ a controlled experimental
framework using synthetic data generated with the CARLA simulator [1]. This framework leverages
two software packages developed as part of this research: carlaSceneCollector, for efficient
synthetic data generation, and rosbag2nuscenes, for conversion into the nuScenes dataset format.
These tools allow us to isolate and quantify the impact of specific domain shift factors.

Our findings indicate that LiDAR resolution has a notable effect on detection performance,

especially for smaller objects. We also observe saturation effects at intermediate resolutions

(32-64 channels) and suggest strategies to mitigate these effects. Furthermore, we quantify the
challenges associated with transferring models trained on synthetic data to real-world scenarios,
noting the effectiveness of the NuScenes Detection Score (NDS) [2] in capturing this impact.

The remainder of this thesis is structured as follows: Chapter 2 contextualizes our work within
the existing literature, providing a review of related work in 3D object detection and domain
adaptation. Chapter 3 outlines the experimental setup, detailing the methodology used for data
generation and experimentation. Chapter 4 presents and analyzes the key findings, presenting the
results of our experiments. Finally, Chapter 5 summarizes the thesis’s contributions and suggests

avenues for future research, concluding the thesis and discussing future research directions.

CHAPTER 2

BACKGROUND

The advent of autonomous vehicles necessitates robust and reliable perception systems capable
of accurately interpreting the surrounding environment. Among the various perception tasks, 3D
object detection from point clouds stands out as a crucial component for ensuring safe navigation
and preventing collisions. This capability allows autonomous vehicles to classify and precisely
locate objects within their three-dimensional surroundings, forming the bedrock for subsequent
tasks like motion planning and decision-making. Consequently, the field of 3D object detection
has witnessed a surge of research interest and significant advancements in recent years. However, a
persistent challenge that hinders the widespread deployment of these systems is the issue of domain
shift.

Domain shift occurs when a model trained on a specific dataset or environment experiences a
significant drop in performance when applied to a different dataset or environment. This discrepancy
often arises due to variations in data characteristics between the training (source) domain and
the operational (target) domain. Understanding and effectively quantifying this domain shift is
paramount for developing adaptable and generalizable 3D object detection systems. Furthermore,
the scarcity and high cost associated with acquiring labeled data in diverse real-world scenarios
underscore the importance of Unsupervised Domain Adaptation (UDA). UDA offers a promising
avenue to bridge the performance gap by adapting models trained on abundant labeled data from a
source domain to an unlabeled target domain.

This background section provides a comprehensive overview of the current research landscape
concerning domain shift quantification in 3D object detection for autonomous driving. It delves into
the fundamental concepts, the various types of domain shift encountered, existing quantification
methods, and the challenges of applying UDA to 3D point clouds. The section also highlights
the pivotal role of datasets like nuScenes, recent advancements in UDA techniques, the impact of
different sensor modalities, the distinction between the semantic gap and feature distribution shift,

and the importance of the structured nature of the nuScenes dataset in facilitating this research.

2.1 Fundamentals of 3D Object Detection from Point Clouds

The task of 3D object detection from point clouds has seen the development of various method-
ologies, broadly categorized based on how the unstructured point cloud data is processed and
represented. General overview of pointcloud processing approaches are shown in 2.1. Here,
"unstructured" means that although a point cloud provides 3D Cartesian coordinates, spatial rela-
tionships between points, such as neighborhood or similarity, are not explicitly defined and require

distance calculations or methods like KD-trees or octrees to be established.

2.1.1 Point-based Methods

Point-based methods directly operates on raw and unprocessed pointcloud data. Pioneering
works of point-based methods, PointNet [3] and a following work PointNet++ [4] employs point-
wise operations such as Multi-Layer Perceptrons (MLPs) and symmetric functions such as sum and
max pooling for generating geometric set of features for each point. The symmetry ensures that the
model is invariant to the order of points in the cloud. PointNet++ [4] extends PointNet and further
built upon this foundation by introducing a hierarchical network structure which enables the model
to capture local spatial patterns at different scales. Operating on different scales is paramount for
pointclouds since range drastically effects the density between point patches. This methodology
significantly enhancing PointNet++ ability to comprehend complex scenes by aggregating features
from neighboring points. Subsequent research has further refined point-based methods to achieve
state-of-the-art performance. PointRCNN [5] incorporated a region proposal network(RPN) to
generate candidate 3D bounding boxes directly from the point cloud, which are then refined for
final detection. 3DSSD [6] focused on improving efficiency by employing sophisticated sampling
strategies to select representative points, reducing the computational burden while maintaining
accuracy.

A key advantage of point-based methods lies in their ability to handle the inherent unstructured
nature of point cloud data without requiring any intermediate representation. However, a notable
drawback is their potential computational intensity, as each point in the cloud often needs to be

processed individually.

2.1.2 Voxel-based Methods

In contrast to point-based approaches, voxel-based methods adopt a strategy of discretizing the
continuous 3D space into a grid of regular voxels. VoxelNet[7] was among the first to demonstrate
the effectiveness of this representation by applying 3D Convolutional Neural Networks (CNNs) to
the voxelized point clouds. This allowed for leveraging the power of CNNs, which have proven
highly successful in 2D image analysis, for the task of 3D object detection. SECONDI8] further
advanced the efficiency of voxel-based methods through the introduction of sparse convolution.
Sparse convolution techniques are designed to operate only on the occupied voxels, significantly
reducing the computational overhead, especially in scenarios with sparse point clouds common in
autonomous driving.

While voxel-based methods benefit from the structured representation that is well-suited for
CNNes, they may suffer from information loss due to the inherent discretization process. Voxelization
strategies are also important for reliable feature extraction from point clouds with varying densities.
These density variations can arise from differences in the range of specific regions or the use of
different LiDAR sensors. This loss can be particularly pronounced when dealing with sparse point

clouds, where fine-grained details might be smoothed out or lost during voxelization.

2.1.3 Hybrid Methods

Hybrid methods seek to capitalize on the complementary strengths of both point-based and
voxel-based approaches. PV-RCNNJ[9] exemplifies this strategy by employing a voxel-based net-
work to efficiently generate high-quality 3D proposals, which are subsequently refined by a point-
based network. This allows the model to exploit the computational efficiency of voxelization for
initial proposal generation while retaining the fine-grained geometric information from the raw
point cloud data during the refinement stage. Similarly, CenterPoint[10] utilizes a Bird’s Eye
View (BEV) representation, which is obtained by projecting the 3D point cloud onto a 2D plane.
This BEV representation offers a compact and efficient way to detect objects, proving particularly
effective for tasks like vehicle detection in autonomous driving scenarios.

By strategically combining different representations and processing techniques, hybrid methods

often achieve superior performance, balancing computational efficiency and representational power.
Voxel-based methods are more sensitive to changes in point cloud density, as the voxelization
process is affected by the number of points within each voxel. Conversely, point-based methods
are more robust to variations in overall point density but more susceptible to noise or outliers.
Therefore, selecting the appropriate method and domain adaptation strategy requires understanding

the expected domain shifts and the inherent vulnerabilities of each detection approach.

Table 2.1 Comparison of Point Cloud Processing Approaches for 3D Detection

Criteria

Point-based Methods

Voxel-based Methods

Hybrid Methods

Data Representation

Feature Extraction

Computational Efficiency

Sensitivity to Density Varia-
tions

Handling of Unstructured
Data

Performance on Sparse Data

Key Advantages

Key Disadvantages

Raw, unstructured point
cloud data

Point-wise operations (e.g.,
MLPs, symmetric functions
like max pooling)

Can be computationally in-
tensive due to processing
each point individually

More robust to overall den-
sity variations but sensitive
to noise and outliers
Directly handles unstruc-
tured data without interme-
diate representations

May struggle with very
sparse data due to lack of lo-
cal context

Handles unstructured data
directly; Can capture fine de-
tails

Computationally intensive;
May overfit to specific point
distributions

Discretized into a 3D grid of
voxels

3D Convolutional Neural
Networks (CNNs) on vox-
elized data

More efficient with sparse
convolution techniques

More sensitive to density
changes due to voxelization
process

Requires conversion to struc-
tured voxel grid

Can lose fine details in sparse
regions due to discretization

Leverages powerful CNNs;
Efficient with sparse convo-
lution

Information loss due to dis-
cretization; Sensitive to den-
sity variations

Combination of voxelized
and raw point cloud data
Voxel-based for initial pro-
posals, point-based for re-
finement

Balances efficiency and de-
tail by using voxelization for
proposals and points for re-
finement

Moderately sensitive, de-
pending on the specific hy-
brid approach

Uses both structured and un-
structured representations

Better at retaining details
in sparse regions through
point-based refinement
Combines efficiency of vox-
elization with detail preser-
vation of point-based meth-
ods

More complex to implement;
May still suffer from some
limitations of both methods

2.2 Unsupervised Domain Adaptation for 3D Object Detection

Unsupervised Domain Adaptation (UDA) is a critical area of research that aims to adapt
machine learning models trained on a source domain, where abundant labeled data is available,
to a target domain, where only unlabeled data exists[11]. This is particularly relevant for 3D
object detection in autonomous driving because acquiring labeled 3D point cloud data in diverse
real-world environments is often a laborious, time-consuming, and expensive endeavor. Therefore,
the ability to effectively transfer knowledge learned from a well-annotated source domain (e.g., a

synthetic dataset or data collected in a specific geographical location under favorable conditions) to

an unlabeled target domain (e.g., real-world data from a new city or collected under adverse weather)
is of paramount importance for the practical deployment of autonomous vehicles[12][13][14][15].

The success of UDA methods often hinges on the assumption that the underlying feature space
between the source and target domains exhibits some degree of similarity [16]. If the fundamental
features representing objects and scenes differ drastically, simple distribution alignment might not
suffice for effective adaptation. While the primary focus of this section is on UDA, it is worth
noting that other forms of domain adaptation exist, including Semi-Supervised Domain Adaptation
(SSDA) [17], where a small fraction of target domain samples are labeled, Weakly Supervised
Domain Adaptation (WSDA) [18], where only weak labels (e.g., image-level tags) are available
in the target domain, and Supervised Domain Adaptation, where labeled data is available in both
the source and target domains. It’s important to note that many of these methods were initially

developed for 2D image data.

2.2.1 Traditional Domain Adaptation

Early UDA methods primarily focused on aligning the feature distributions between the source
and target domains. One prominent example is Domain Adversarial Neural Networks (DANN) [19],
which employed an adversarial training paradigm. In this approach, a feature extractor is trained to
produce features that are not only discriminative for the main task (e.g., object classification) but
also indistinguishable with respect to the domain they originate from (source or target). A domain
classifier is simultaneously trained to distinguish between source and target domain features, and
the gradients from this domain classifier are reversed when updating the feature extractor. This
forces the feature extractor to learn domain-invariant features that can confuse the domain classifier.
However, these traditional methods were primarily designed for 2D image data and often do not
effectively capture the unique characteristics and challenges associated with 3D point cloud data,
such as its sparsity, irregularity, and lack of inherent order.
2.2.2 Adaptation for 3D Object Detection

Recent advancements in Unsupervised Domain Adaptation (UDA) for 3D object detection

have shifted from basic feature alignment to sophisticated techniques that generate robust pseudo-

labels for unlabeled target domains. These approaches leverage temporal, spatial, and synthetic
data to bridge domain disparities, such as variations in LiDAR resolution or differences between
synthetic and real-world environments. A prominent strategy involves self-training, where a
detector pretrained on a labeled source domain produces bounding box predictions for the target
domain. These predictions are refined and filtered into pseudo-labels, iteratively retraining the

model to enhance its adaptability.

2.2.2.1 Tracking-Based Methods

A notable group of UDA techniques utilizes multi-object tracking (MOT) to exploit motion con-
sistency across frames, improving pseudo-label reliability. MS3D++ [20] exemplifies this approach
by combining outputs from an ensemble of pretrained detectors—each trained on distinct source
datasets with varying architectures—using a kernel density estimation (KDE) algorithm. The use
of ensemble of models that have different network architectures and source domain is for reducing
common pitfalls among the detection sets. Examples for common pitfalls could be detecting a
false-positive object in the absence of a pointcloud path because of adverse weather or detecting a
small sized pedestrian around the specific traffic signs which can differ on regions. These fused de-
tections initialize a 3D MOT tracker, built on SimpleTrack [21], yielding consistent pseudo-labels
derived from trajectories, classification scores, and motion cues, with iterative refinement until
performance converges. MS3D++ enhances precision through temporal tactics: retroactive object
labeling propagates dependable labels from later frames to correct earlier, ambiguous detections
impacted by sparse points or occlusions, while static vehicle refinement ensures uniform bounding
boxes for stationary objects, improving shape accuracy and detection coherence.

In contrast, CTRL [18] employs a track-centric backtracking technique, atypical for real-time
applications. Following an initial forward pass, it revisits earlier frames to recover missed detec-
tions, enhancing track continuity and label completeness through bidirectional sequence refinement.
Other methods focuses on quantifying the track reliability, SF-UDA 3D [22] employs sophisticated
track equations for score labeling to reduce false-positive and enforce temporal consistency through-

out the timeline, ST3D++ [23] employs novel voting mechanism powered by hybrid quality-aware

triplet memory (HQTM) to make sure tracklets can explained by their detections consistently.

2.2.2.2 Recent Advancements in UDA Techniques

Beyond tracking-based methods, recent UDA innovations focus on shape preservation, cluster-
ing, and extended sequence processing. Auto4D [24] preserves rigid object shapes by collecting
point clouds in the object’s reference frame, mitigating distortions from shifting centers. A con-
volutional neural network (CNN) derives shape estimates from these dense clouds, polished via
closest-corner alignment. For static objects, aggregating points in world coordinates—enabled by
precise ego-vehicle localization—refines size estimates, minimizing noise from erroneous detec-
tions. Tracking is supported by AB3DMOT [25].

Once Detected, Never Lost [26] adapts the Fully Sparse Detector (FSD) for offline analysis by
incorporating both past and future frames. It uses bidirectional MOT: a forward pass constructs
tracklets, followed by a backward pass that retrieves overlooked detections prior to tracklet initiation.
A specialized module, integrating UNet for sparse feature extraction and PointNet for bounding
box refinement, enhances proposals, with multi-way registration ensuring track consistency as a
final step.

An unsupervised method in [27] applies augmentations like ray dropping to bolster generaliza-
tion, particularly for distant objects. It employs L-shape fitting for box estimation and clustering
to detect objects without labels, providing a straightforward response to domain shifts, though it
omits temporal refinement.

Offboard 3D Object Detection from Point Cloud Sequences [28] enhances detectors like PointR-
CNN for multi-frame analysis, compensating for vehicle motion. Using AB3DMOT [25] for track-
ing, it aggregates point clouds for static objects to form comprehensive shape priors and aligns
trajectories for dynamic objects, refining accuracy with lightweight PointNet-based regression
networks across sequences.

DetZero [29] integrates an offline tracker with a multi-frame detector to ensure trajectory
integrity. An attention-based module sharpens contextual details across extended point cloud

sequences, addressing incomplete trajectories and diverse motion states. Decomposed regression

10

further hones detections, delivering outstanding performance on the Waymo Open Dataset (85.15

mAPH, L.2).

2.3 The nuScenes Dataset Format

The nuScenes dataset[2] uses a structured relational database format to organize its sensor data,
annotations, and metadata. It is composed of multiple interlinked tables that describe different
aspects of the dataset. For example, the category table defines a hierarchical taxonomy of object
classes (e.g., a top-level class “vehicle” with sub-classes like “vehicle.car” or “vehicle.truck™), and
the attribute table specifies mutable properties of objects (for instance, whether a vehicle is
parked or moving, or whether a bicycle has a rider). The sensor table enumerates all sensors
employed (such as the LiDAR and each camera), while the calibrated_sensor table provides
each sensor’s calibration parameters (intrinsic settings and extrinsic pose relative to the vehicle),
ensuring that data from different sensors can be accurately aligned in a common reference frame.
Additionally, the visibility table offers a measure of how well an object is observed in the camera
views, binned into ranges (e.g., 0-40%, 40-80%, etc.), which gives annotators’ assessment of partial
occlusions. The map table stores environmental context in the form of precomputed semantic maps
(such as drivable area masks) associated with each location or log in the dataset. Several tables
capture the dynamic, time-indexed elements of nuScenes. The 1og table contains metadata for each
recording session (each “log” corresponds to a route driven by the data collection vehicle, with
information such as the location, date, and the vehicle used). Each log is subdivided into scenes,
and the scene table defines these distinct 20-second sequences (each scene is a continuous clip
within a log). The sample table represents the key frames sampled at 2,Hz in each scene; each
sample acts as a synchronized snapshot containing one LiDAR sweep and the set of camera images
closest in time, along with all associated annotations. For each sample, the actual recorded sensor
readings are listed in the sample_data table: for example, a LiDAR point cloud file and several
camera image files would be separate entries in sample_data, each linked to a specific sensor and
accompanied by the relevant calibration and the vehicle pose. The vehicle’s pose (position and

orientation) at any timestamp is recorded in the ego_pose table, which gives the location of the

11

“ego” vehicle in a global coordinate frame for each sensor reading or sample. The annotations for
objects are stored in the sample_annotation table, which contains the 3D bounding boxes for
all objects present in each sample (key frame), along with pointers linking each box to a particular
object instance and the object’s category and attributes. nuScenes tracks individual object instances
within a scene using the instance table, which lists unique instance identifiers for objects (each
physical object, such as a specific car, gets an instance ID within a scene). It should be noted that
instances are not tracked across different scenes; if the same physical car appears in two separate
scenes, it will be treated as two distinct instances in the dataset. Together, these tables provide
a comprehensive and well-organized structure for the nuScenes data, enabling efficient lookup of

sensor information and annotations needed for training and evaluating 3D object detection models.

12

CHAPTER 3

METHODOLOGY
In this thesis, we address the challenge of Unsupervised Domain Adaptation (UDA) within the
realm of 3D Object Detection. Our approach begins by systematically identifying and quantifying
potential sources of domain shift, leveraging a carefully curated suite of both tailored and generic
datasets. We also present a novel pipeline for generating domain-specific datasets using the CARLA
simulator, designed to capture and analyze domain shift characteristics. Subsequently, we train our
models on this dataset suite and perform cross-dataset evaluations to uncover key axes of domain
shift. These findings underscore the necessity of an auto-labeling pipeline to effectively mitigate
UDA challenges. In the following sections, we detail a foundational auto-training pipeline, critique
its limitations, and propose targeted enhancements, including an innovative re-detection mechanism

driven by tracking priors.

3.1 Sources of Domain Shift

Feature sets extracted from source datasets encapsulate the distinct intrinsic properties inherent
to each dataset[12]. Within the domain of 3D object detection, these properties may originate from
variations in environmental conditions, scene composition, LIDAR sensor specifications (including
type, placement, and channel count), or the fidelity of sensor data[20], particularly when datasets
are synthetically generated. Depiction of potential domain shifts sources related to the environment
conditions and scene composition between real life datasets shown in 3.1. This study systematically
categorizes the recurring patterns that define these intrinsic attributes, establishing a comprehensive
framework for analyzing domain shift in 3D object detection.

In the UDA framework, we designate the source dataset, denoted §;, as the fully annotated
dataset employed for initial model training, and the target dataset, S;, as the unlabeled dataset
targeted for adaptation, where domain discrepancies must be minimized. The transition §; — §;
represents the process of training a model on §; and evaluating its performance on §;.

To quantify domain shift, we first identify and define potential sources of domain shift. Let

R represent the set of domain shift sources, where R = {Rg, Rsg, Rsc, R p, Rpc}. Here, Rg

13

denotes variations in LiDAR resolution (e.g., 16Ch vs. 32Ch), Rsg indicates the use of synthetic
versus real data in source or target datasets, Rgc refers to scenery disparities (e.g., urban vs. highway
settings), Ry p signifies differences in LiDAR sensor placement, and Ry ¢ reflects variations in the
number of LiDAR sensors between source and target datasets.

Let D denote any performance metric commonly utilized in 3D object detection for autonomous
driving, such as mean Average Precision (mAP), NuScenes Detection Score (NDS), or class-
specific Average Precision at a fixed threshold (e.g., CAR_APgys). The value D55 represents
the performance of a model trained on S; and tested on S;. In the context of UDA, the domain
shift between datasets S; and §; is quantified as the difference between the baseline performance,
D35 (when trained and tested on the source), and the adapted performance, D% 5 (when tested

on the target), expressed as:

ADSi_)Sj — DSi_)Sj _ DSi—>Si

This difference captures the domain shift between source and target datasets as the amount of
variation in the chosen metric, whether positive (indicating improvement) or negative (indicating
performance degradation).

This AD% =5 quantifies the aggregate domain shift projected onto metric D, encompassing
contributions from all potential sources in R. Recognizing ADS =5 as a composite variable
influenced by multiple factors, we decompose it into contributions from individual sources:

ADS™S = Y ADS 7%
R
keR

where AD;‘:S" represents the domain shift attributed to source Ry between datasets S; and S ;.

To isolate and quantify the impact of each Ry, this work employs a strategy of meticulously
tailoring datasets such that only a single domain shift source varies between §; and S, while other
sources remain controlled. For instance, to assess Ryg, we generate datasets differing solely in
LiDAR resolution, holding factors like scenery and sensor count constant. This controlled approach
enables precise measurement of AD;ik_)Sj for each source, facilitating a detailed understanding of

their individual contributions to the total domain shift.

14

(a) Industrial Site (b) Passenger Car

(c) University (d) Highway

(e) Forest (f) Rainy Weather
y

(g) Urban (h) Tunnel
g

Figure 3.1 Various driving scenarios that contributes to domain shift between real-life datasets

15

3.2 Data Collection
To isolate the impact of a single domain shift source, Ry, it is imperative to create tailored
datasets where extraneous domain shift sources do not contribute to the overall domain shift effect.

The design and generation of such datasets hinge on several key considerations and requirements:

1. The datasets must be tailored to the autonomous driving domain, incorporating sensor con-

figurations relevant to this context.

2. They should be straightforward to generate and distribute efficiently.

3. They must be compatible with prevalent 3D object detection frameworks to facilitate seamless

training and evaluation.

4. Ground truth annotations for 3D object detection must be provided to ensure reliable assess-

ment.

After careful evaluation, the nuScenes dataset format was selected as it satisfies all these
criteria. The nuScenes format is widely adopted in the autonomous driving research community,
offering a standardized structure that supports diverse sensor data and comprehensive ground truth
annotations, thereby aligning with the needs of this study. However, a challenge remains: generating
the requisite raw data to populate this format. To address this, we opted for the CARLA simulator as
the primary data generation source. CARLA was chosen due to its extensive community support,
rich ecosystem of libraries, and flexibility in simulating a wide range of autonomous driving
scenarios, making it an ideal tool for producing controlled, high-fidelity sensor data.

While CARLA effectively generates raw data in this work, real-world applications might draw
data from diverse sources, such as physical sensor deployments or other simulators. To address
this heterogeneity and ensure versatility across projects, we advocate for a generalized approach
to raw data storage. We adopt the ROSBag format, a widely recognized standard in robotics
and autonomous systems. ROSBag supports the storage of raw sensor data, including LiDAR

point clouds, camera images, and vehicle pose estimates, alongside metadata like 3D rigid body

16

transformations and camera intrinsic calibration data (e.g., focal length, distortion coefficients).
Compatible with both real-world and simulated data from CARLA, ROSBag offers a flexible,
interoperable solution that maintains spatial and temporal relationships critical for 3D object
detection and localization. To convert this data into the nuScenes format, we introduce two
new packages, carlaSceneCollector and rosbag2nuScenes package, a set of modules that
processes and transforms ROSBag data, including sensor streams, transformations, and localization,

to create tailored datasets for 3D object detection experiments.

3.3 Details on the carlaSceneCollector Package

The CARLA simulator, designed specifically for the autonomous driving domain, benefits
from active maintenance and a robust community of contributors and users, ensuring its reliability
for research purposes. Built on Unreal Engine [30], a high-fidelity game engine widely utilized
across industries, CARLA provides powerful APIs that enable users to interact with its physics-
based environment seamlessly. CARLA supports an extensive array of road agents, configurable
as either the ego vehicle or other road users, and includes an autonomous traffic management
system '. This system simplifies the automation of both the ego vehicle and the surrounding
traffic, enhancing scenario realism. Additionally, CARLA offers a bridge module for integration
with the ROS middleware[31], facilitating data exchange. Spawning agents is straightforward,
as CARLA provides predefined safe spawning points to ensure reliable agent placement. The
carlaSceneCollector package, developed as part of this work, leverages these capabilities by
accepting a configuration file that defines the data collection schema. This file specifies parameters
such as the target ego vehicle, map selection, sensor setup, asset choice for the ego vehicle, and the
number of scenes to collect, where each scene comprises 20 seconds of data formatted according
to the nuScenes standard.

The carlaSceneCollector package integrates a suite of modules to orchestrate data gen-

eration and collection from a running CARLA instance. The setAutopilot module enables or

disables autopilot mode for the ego vehicle, ensuring a safe reset of any residual velocity or acceler-

!CARLA Traffic Manager https://carla.readthedocs.io/en/latest/tuto_G_traffic_manager

17

https://carla.readthedocs.io/en/latest/tuto_G_traffic_manager

ation inputs. The generateTraffic module populates the scene with a user-specified number of
pedestrians, bicycles, motorcycles, buses, cars, and trucks. The removeAllActors module clears
all non-ego actors from the scene, allowing a fresh start for each scenario without carryover from
prior configurations. The setEgoVehicleRandomPose module queries the map for safe spawning
locations and randomly repositions the ego vehicle to one of these points. The collector module
functions as a ROSBag recorder, capturing all sensor data—including LiDAR point clouds, camera
images, and localization ground truth—along with frame transformations such as sensor calibration
and pose information. A runner script within carlaSceneCollector coordinates these modules
to execute the pipeline, achieving the desired number of scenes efficiently. A depiction of the

carlaSceneCollector package’s pipeline is shown in Figure 3.2

3.4 Details on rosbag2nuScenes package

After collecting set of ROSBags, rosbag2nuscenes package is responsible for converting the
raw data to nuScenes format. Package consists of many individual components and also components
that are interactively work with each other in order to distribute single understanding of the entire
dataset. In this chapter, we plan first to explain configuration step of the pipeline.Subsequently,
we elaborate on the generation of metadata tables that establish the dataset’s temporal struc-
ture, namely log, scene, and sample. We then explore the data-related tables, encompassing
sensor, sample_data, calibrated_sensor, and additional tables such as category, ego_-
pose, instance, map and sample_annotation, which collectively define the nuScenes dataset

format.

3.4.1 Configuration

The rosbag2nuscenes package maintains a global parameter set to configure a single dataset
conversion session, designed to process any ROSBag data, not solely those collected from CARLA.
The parameter rosbag_paths specifies a set of ROSBag file paths to be considered for dataset gen-
eration. The annotation_type parameter defines the ROS message type for the annotation topic,
which provides ground truth data including bounding boxes, velocities, and object classifications.

To enhance compatibility, we developed conversion functions that transform various 3D object de-

18

e N |
Iterations
0 | |
R |
: I
: I
: I
: I
: | |
. Initialize Ego Vehicle
: | |
I
i-3
— |
i-1 |
: I
F | Set Ego Vehicle to Random Position |
i+2 I
i+3 | |
: |
: I
; |
- !
. | Generate Traffic |
: |
: I
: | |
: I
: I
. Set Ego Vehicl in AutoPilot |
: I
: |
: I
: |
: I
; | l |
Record Scene |

t < SCENE_DURATION |

Figure 3.2 Depiction of carlaSceneCollector packages pipeline

19

tection message types commonly used in the community into a unified derived_object_array
format. This format is widely adopted and straightforward for ROS developers to utilize.

The parameters global_frame_id and ego_frame_id designate the frame names for the
global reference frame (to which localization messages refer) and the ego vehicle frame, respectively.
The ego frame is defined as the ground projection of the midpoint between the two rear wheels
of the ego vehicle. To prevent unintended domain shifts, we ensured that the ego vehicle frame
remains consistently positioned relative to the vehicle body across all datasets in this study. This
consistency, for instance, maintains ground plane points at a uniform z-coordinate regardless of
sensor configuration. The sensors_of_interest parameter identifies the set of sensors that
rosbag2nuscenes processes.

Additional sensor-specific parameters include modality, topic_name, is_anchor, and an
optional sensor_info_topic. The is_anchor boolean indicates whether a sensor’s times-
tamps serve as the reference for defining a sample. When a sensor is designated as an anchor,
rosbag2nuscenes synchronizes all other sensor data to its timestamps, discarding any sample
where a match cannot be found. Furthermore, we define sample_duration as the maximum
allowable time difference between a message and its nearest anchor timestamp for inclusion in a
sample, and scene_duration as the total duration of a scene, set to 20 seconds in accordance
with the nuScenes standard.

The rosbag2nuscenes package incorporates several post-processing modules to refine sam-
ples, annotations, and point clouds. The annotation_filters module includes a collection
of filters tailored for annotation data, while sample_filters targets the generation of sample
data, and pointcloud_filters focuses on processing point cloud data. These filters are applied
sequentially according to user-defined specifications within the rosbag2nuscenes pipeline.
3.4.2 Pipeline

The pipeline developed in this work is organized into three distinct class categories to facilitate
nuScenes dataset generation. The first category encompasses classes that manage data storage and

mapping for the nuScenes format, the second includes classes that facilitate coordination among

20

Joje[nuiIs YTV Ul suoneIn3yuod [Quueyd Yy LT Ssoloe sasse[d 109[qo juarayip jo uostredwo)) ¢ ¢ a3y

42 821 — dharg (d) U2 $9 — 9[okarg (0) o g¢ — 9[dkorg (u) U2 9] — 9pokorg (w)

U0 871 — UIISAPad (1) U0 $9 — ueLNSIPa] () 4o z¢ — uernsapad (I U9 9] — UBLNSIP (1)

P 8§71 — 1D (1) P 9 — 1) (3) P 7€ — 1) (1) P 9] — s18) (9)

4o 8T — [BI9UdD (P) 0 $9 — [BI9U3D (9) Yo 7€ — [BI9UdD (q) | 4o 9] — [BIOUAD (B)

21

other classes, and the third comprises utility classes that assist in various pipeline operations. For
example, the ContextManager class, part of the second category, oversees the execution flow and
relays critical data between classes to support subsequent tasks. Atinitialization, ContextManager
parses the sensors_of_interest parameter to create Sensor objects for each designated sen-
sor. The Sensor class, an instance of the first category, holds sensor-specific attributes (token,
modality, and channel) and directly aligns them with the nuScenes format without complex pro-
cessing. Subsequently, ContextManager instructs the storage of this data to disk, generating the
sensor. json file. This sensor information, retained in memory by ContextManager, is shared
with later stages, such as the creation of the calibrated_sensor and sample_data tables, en-
suring cohesive dataset assembly. The initial sensor set definition is crucial, as it remains constant
across ROSBags and establishes the dataset’s sensor framework. In scenarios requiring a heteroge-
neous sensor configuration across scenes, rosbag2nuscenes must receive the superset of sensors
during the configuration phase. While autonomous driving datasets typically feature homogeneous
sensor setups, rosbag2nuscenes is fully equipped to handle heterogeneous configurations when
necessary.

After creating the sensor set, ContextManager creates Log object for each of the ROSBag
files. Log class is one of the most complex classes of the rosbag2nuscenes package since it
holds the most generic and interconnected information for the nuScenes dataset. A depiction of the

rosbag2nuscenes package’s pipeline is shown in Figure 3.4

3.4.2.1 Creation of Logs

The Log class handles a ROSBag file by utilizing its file path and a scene_start_index
parameter, an offset that differentiates scenes across various logs to ensure unique name fields
in the nuScenes format, calculated and supplied by the ContextManager to each Log instance.
It segments the ROSBag into uniform portions according to the scene_duration parameter,
keeping any remaining data if the total length isn’t perfectly divisible, thereby retaining all data
rather than omitting leftovers, despite scenes typically lasting 20 seconds for standardization.

Next, it generates EgoPose objects for each piece of localization data in the ROSBag, which

22

Create Sample per each
synchronized pair

For each sensor

: l Sample
data, create !
'

SampleData

%
&

Caibrated
Sensor |

|]
LogManager
g g J

Create Log Data per :
ROSBag

' | ContextManager r
'

LI

LX)

Scene]

[CalibratedSensor]

[EgoPoseManager]

AnnotationManager

Calibrated
Sensor j

EgoPose]

L X An

Calbrated
Sensorj

EgoPose

®b

SampleData

Calbrated
Sensor |

| Invoke Post |
\Processing Filters for!
. Drafted Dataset

I AnnotationFilter l
l PointCloudFilter

K

l SampleAnnotation i

l Instance I

Figure 3.4 Depiction of rosbag2nuscenes packages pipeline

23

&K

K

Match Samples with
Annotations and
create
SampleAnnotation

| Accumulate |
' Annotations and |
! Generate Instance |
i \

supports Scene objects in producing SampleData objects representing raw sensor outputs. The
EgoPose class contains the necessary details to populate the ego_pose table in the nuScenes
format, capturing the ego vehicle’s position relative to a global frame. Following this, the Log
class creates CalibratedSensor objects that define a sensor’s specific state, including intrinsic
and extrinsic details, corresponding to the calibrated_sensor table in nuScenes.

In the nuScenes format, log data represents a continuous data collection session within a global
timeline, encompassing a single interval of recorded activity. While the log spans the entire session,
scenes represent smaller portions within it, meaning a log consists of multiple scenes, so the Log
class manages all ego positions and calibrated sensor information, distributing these details to
individual Scene objects created for each segment, along with the ROSBag object and its specific
start and end times.

The Log class also initiates the AnnotationManager object, which oversees the generation of
the instance and sample_annotation tables that store ground truth object information. Using
the pre-existing list of Scene objects, the Log class activates the AnnotationManager with all
sample data from the current log to connect frame-specific objects in the sample_annotation

table to the comprehensive timeline of road agents in the instance table.

3.4.2.2 Scene, Sample and SampleData

In the nuScenes format, the scene table describes a 20-second portion of a data collection
session, tied to a specific log entry. Each scene identifies a start and end sample, where a sample
captures a single frame in the scene’s timeline and connects to synchronized sensor data stored
in sample_data. For easy navigation, sample includes links to the previous and next samples
within the scene. The sample_data table ties this sensor data to ego_pose and calibrated_-
sensor entries for accurate positioning and calibration. It also contains timestamp (when the
data was captured), filename, and fileformat (indicating the sensor type and data location),
with timestamps that may vary across a sample’s sensors. Additionally, sample_data has an
is_key_frame flag to show if a frame is labeled. While nuScenes collects data at 20 Hz, only 2 Hz

frames are labeled, leaving most with a false is_key_frame value. These unlabeled frames remain

24

useful for multi-frame detection models like CenterPoint, which we explore in later experiments.

To create these tables, the Scene class gathers all sensor messages from the ROSBag between
the given start and end times. It then picks out anchor topic messages based on the is_anchor
setting in the sensor setup, typically the highest-resolution LiDAR in multi-LiDAR cases, as it’s
key for localization when using one LiDAR. Samples are formed by setting a time window around
each anchor message using sample_duration, matching messages from different sensors listed
in sensors_of_interest if their timestamps fit within this window. For 20 Hz data, sample_-
duration is about 0.05 seconds; for 10 Hz, it’s around 0.1 seconds. We opted for 20 Hz data
collection in CARLA to match the nuScenes standard, maintaining timestamp intervals of 0.05
seconds, since we observed that differing frequencies introduce unintended domain shifts in multi-
frame detectors like CenterPoint, which rely on multi-frame data paired with relative timestamp
differences calculated from the earliest point cloud’s timestamp. Adjusting these time gaps isn’t
helpful since CenterPoint also predicts per-object velocity, tied to point feature shifts over specific
time intervals, affecting performance consistency across datasets.

During the pairing of sensor data with the anchor topic, the Scene class creates Sample
and SampleData objects, linking their next and prev fields in a two-way queue structure. The
Scene class also attaches each SampleData object to its corresponding ego_pose entry from the
EgoPose object during this process, while its dual-queue and reference-based design ensures clear
connections between Sample and SampleData objects, making it a key module that manages both
these relationships and its own environmental data for the nuScenes format.

After generating Sample objects, each Sample creates individual SampleData objects for every
piece of synchronized sensor data, linking each one to the corresponding entry in the calibrated_-
sensor table by utilizing the CalibratedSensor object to ensure proper calibration details are
attached. Unlike other components in the rosbag2nuscenes package, the SampleData class is
unique because it directly writes the sensor data to disk instead of holding it in memory, a choice
driven by the num_features configuration parameter that determines the target dimensions of the

point cloud data to be saved, such as deciding whether to include all five fields—x, y, z, intensity,

25

and timestamp—or just a subset like the first three if we exclude intensity. We require this parameter
to be specified because 3D detection frameworks, like mmdetection3d, depend on consistent point
cloud parsing rules for both training and evaluation, and mismatched dimensions can disrupt these
processes. For example, if we don’t need the intensity field, we can set num_features to use
only x, y, and z, tailoring the data to our needs, but this flexibility demands that all input point
clouds share the same field structure across the dataset. To achieve this uniformity, the SampleData
class first reads the incoming point cloud data, then adjusts it by either adding padding or trimming
columns as necessary to match the specified num_features, ensuring every saved point cloud
has the same format. In our work, we set num_features to 5, covering the full set of {x, vy, z,
intensity, timestamp}, since this is a widely used configuration for multi-frame detection models
like CenterPoint, which we explore later, and saving directly to disk after processing helps manage

memory efficiently by avoiding the need to retain the already-processed data in memory.

3.4.2.3 AnnotationManager

The AnnotationManager class is tasked with managing the ground truth data, ensuring it
is properly structured and stored within the sample_annotation and instance tables of the
nuScenes dataset format. It begins this process by collecting all messages published to the topic
specified by the annotation_type parameter, which defines the type of ROS message carrying
annotation information, and then converts these messages into a standardized derived_object_-
array format for consistency across the pipeline. Following this conversion, the class carefully
processes each object message by extracting and storing its id—a unique identifier assigned to
each frame-specific object that corresponds to a specific CARLA agent—into a comprehensive
list; this list serves as the foundation for generating Instance objects, where each Instance
object represents a distinct agent in the dataset, while the sample_annotation messages provide
snapshots of that agent’s state at particular points in time. In the nuScenes framework, every
sample_annotation must be associated with a specific sample entry, which represents a single
frame in the timeline, so the AnnotationManager systematically works through the full list of

instances, gathering all annotations tied to each instance and then pairing these annotations with

26

the appropriate sample entries; it does this by applying a time window defined by the sample_-
duration parameter, matching annotations to samples if their timestamps fall within this window, a
method akin to how samples are initially created from sensor data. This pairing approach, although
thorough, demands significant computational effort because it requires iterating over the entire set
of annotations for each instance and then aligning them with every sample entry in the dataset,
leading to a time complexity of O (n?), where n denotes the total number of annotations or samples,

making it one of the more resource-intensive operations in the pipeline.

3.4.2.4 Post-processing Filters

The rosbag2nuscenes package incorporates three distinct post-processing modules to enhance
the dataset’s quality after it has been saved to disk —AnnotationFilter, SampleFilter, and
PointCloudFilter. These modules are configured using a global parameter list, consistent
with the setup of other components within this package suite, and they operate on the dataset by
leveraging the tools and context provided by the nuScenes-devkit, allowing for additional refinement
of the data entities stored on disk.

The AnnotationFilter module is composed of four specialized submodules designed for
filtering: BoxElevationShiftFilter, RangeFilter, AnnotationRelationCorrector and
PointsFilter. The BoxElevationShiftFilter adjusts the height of ground truth bounding
boxes for specific object classes when necessary, addressing a quirk in CARLA where a bounding
box, defined as bbox = {x,y,z,1,w, h,o}—with x, y, z as the center coordinates, [, w, h as the
length, width, and height, and o as the yaw orientation—positions z at ground level rather than
the box’s center; to align with nuScenes’ center-based standard, it adds 4/2 to the z-coordinate,
ensuring the bboxyy, accurately reflects the box’s midpoint. The RangeFilter is a straightforward
tool that takes min_range and max_range values along with a channel input (defaulting to
LiDAR, though it must match a sensor entry name) to exclude annotations falling outside these
specified distance boundaries, helping to focus on relevant objects within a sensor’s effective range.
The PointsFilter removes annotations that lack sufficient points within their bounding box,

determined by a min_points threshold, and it supports multiple LiDAR inputs via channel _-

27

list, counting the total points inside the box across all listed sensors to ensure meaningful data
density. The AnnotationRelationCorrector is a more intricate submodule that addresses the
ripple effects of prior filters deleting sample_annotation entries; in nuScenes, each instance
entry points to a starting and ending sample_annotation, so if one is removed, the entire instance
can be lost, and consecutive sample_annotation entries rely on next and prev pointers for easy
traversal, which can break when entries disappear; this filter meticulously scans the full sample_-
annotation table to mend these gaps, either by finding the next valid annotation or adjusting
pointers if no further entries exist, marking the current one as the last if needed.

This correction process is both critical and time-intensive because CARLA’s object messages,
which form the initial basis for our ground truth data, list all agents in a scene—whether they’re vis-
ible or not—without checking if sensors can detect them due to occlusions or being out of range, re-
quiring us to refine the dataset post-collection. Additionally, the AnnotationRelationCorrector
evaluates the velocities attached to sample_annotation entries, which the nuScenes-devkit cal-
culates by interpolating the three nearest states of an instance to estimate movement; when an
instance has too few annotations, this can lead to unrealistic velocity values that don’t make sense
geometrically, and in such cases, the filter removes the entire instance from the dataset to preserve
accuracy and reliability, ensuring the ground truth reflects observable and feasible object behavior.

SampleFilter module includes a single submodule, UnsyncedSamplesFilter, which ex-
amines all sample entries to detect those lacking annotations while their previous and next samples
both contain related annotation data. This filter is essential because, in rare instances, all sample_-
annotation entries tied to a sample might be removed—often due to CARLA occasionally re-
peating an object message for the same timestamp, which the AnnotationManager then discards
as duplicates—Ieaving an empty sample that doesn’t reflect meaningful information and could
indicate an outlier rather than valuable data; the SampleFilter identifies such cases, reconnects
the previous and next samples by updating their pointers, and removes the empty sample from the
dataset to maintain its integrity.

PointCloudFilter module features a single submodule called SelfCropBoxFilter, which

28

uses min and max vectors to define a bounding box (bbox) that outlines the ego vehicle’s boundaries,
along with a channel_list parameter to specify which LiDAR sensor or sensors’ data should
be processed, and it removes any points falling within this defined bbox. This filtering step is
necessary because we found that when a model trained on a dataset without visible ego vehicle
parts in the sensor data is tested on a dataset where the ego vehicle is detectable by LiDAR sensors, it
often generates persistent false-positive detections around the ego vehicle’s location; this unwanted
behavior introduces a bias in performance metrics, skewing results in a way we aim to prevent by

ensuring the point cloud data reflects only the external environment and not the vehicle itself.

3.5 Quantification of Domain Shift

To explore domain shift, we carefully selected a subset of potential sources—specifically Ry g
(LiDAR resolution) and Rgg (synthetic versus real data)—and designed our datasets to isolate
their effects. When building datasets to examine Rz (LiDAR resolution), we equipped the ego
vehicle with a sensor setup that includes one RGB camera and four LiDAR sensors, all fixed at the
same position relative to the vehicle’s frame to maintain consistency. Even though these LiDAR
sensors share the same location, they differ in resolution, operating at 16, 32, 64, and 128 channels,
allowing us to test how resolution impacts detection performance. Pointclouds collected from the
CARLA simulator for estimation of Ry shown in Figure 3.3 for comparison. We crafted this
synthetic sensor arrangement within a uniform scenario to remove influences from other domain
shift factors, such as Rgg (synthetic vs. real data), Rgc (variations in scenery), Ry p (differences in
LiDAR placement), and Ry ¢ (number of LiDAR units), ensuring that only Rz drives any observed
domain shift. We created four distinct datasets, each tailored to a specific LiDAR resolution (16,
32, 64, and 128 channels), resulting in the carlaScenes datasets named accordingly—carlaScenes
16, carlaScenes 32, carlaScenes 64, and carlaScenes 128—to assess the individual effect of each
LiDAR’s resolution. This deliberate and controlled approach lets us accurately measure how Ry g
affects key performance metrics in 3D object detection, providing clear insights into its role. To
maintain consistency with the nuScenes dataset, we positioned the LiDAR sensors at the same

location and orientation relative to the ego vehicle frame, which is defined as the ground projection

29

of the midpoint between the two rear wheels, mirrored accordingly. Overall, we gathered 1000
scenes and sampled them to achieve approximately 28,000 samples, aligning with the sample
count of the nuScenes dataset; we further emphasize maintaining a similar or identical number of
training samples across all datasets, and although the sample size alone doesn’t guarantee model
success without considering other hyperparameters, we intentionally standardized this aspect to
ensure more reliable and comparable training sessions. Each scene features a random assortment of
agents—including the ego vehicle—placed and acting unpredictably across the map, which boosts
the dataset’s variety and strength for robust analysis. To investigate Rgg (synthetic vs. real data),
we utilized the nuScenes dataset and created a custom dataset by labeling real-world data from

ADASTEC CORP using Segments.Al. The datasets employed in this work are detailed in Table 3.1.

Table 3.1 Datasets Used in This Study

Dataset Name | Num LiDARs | LiDAR Resolution | Synthetic | Number of Samples
nuScenes 1 32 No 28130
adaScenes 5 128+32 No 19727
carlaScenes 16 1 16 Yes 27902
carlaScenes 32 1 32 Yes 27902
carlaScenes 64 1 64 Yes 27902
carlaScenes 128 1 128 Yes 27902

Although the adaScenes dataset has fewer samples compared to the others, we addressed this
difference by randomly selecting an equal number of samples from the nuScenes and carlaScenes
datasets to match adaScenes’ size, ensuring a fair comparison without the influence of dataset
length. Also, we only used the single top LiDAR data from the adaScenes to not further add
a potential domain shift sources such as Ryp and R;c. Once the datasets were prepared, we
made thoughtful decisions about the 3D detection framework and neural network model for our
experiments, choosing the CenterPoint model within the mmdetection3d library [32], a 3d detection
framework built on PyTorch [33] that simplifies working with pre-trained models across various
architectures and datasets, especially since all our datasets follow the nuScenes format; notably,
CenterPoint already has a pre-trained version for nuScenes, though it relies on the dataset’s inclusion

of point cloud intensity data.

30

The intensity value in a point cloud is a measure of how much a surface reflects the LiDAR
signal, influenced by distance because signal strength weakens over range, but this measurement
varies between LiDAR manufacturers due to differences in their hardware and calibration methods,
making it inconsistent across devices. A key challenge arises with CARLA’s LiDAR simulator,

which assigns intensity using a basic formula, = ¢~¢

, where « is a fixed attenuation rate and
d 1is the point’s distance; this oversimplified approach produces intensity values that don’t match
real-world conditions [34], lacking the complexity of actual sensor behavior [35]. Because of this
limitation and the variability in real LiDAR intensity, we chose to retrain the CenterPoint model
without using the intensity channel, ensuring our results depend on more reliable features like
position and avoid potential inaccuracies introduced by this noisy and simulator-specific data.

For training sessions, we have used in total of 20 epochs with learning rate auto scaling and
only kept the [car, motorcycle, pedestrian] heads during training. This class truncation is done
because CARLA does not provide any distinguishing classes between four wheeled objects such
as truck, bus or two wheeled objects such as bicycle, scooter. For concrete model configuration,
we have used centerpoint_pillar®2_second_secfpn_8xb4-cyclic which corresponds to
the CenterPoint model with Pillar encoding with a 0.2 voxel resolution, SECOND backbone,
SECONDEFPN neck, batch normalization applied throughout the model and a cyclic learning rate
schedule over 20 epochs. Remaining identifier, 8xb4 refers to having 8 samples per GPU across 4

GPUs, which we do share in our training sessions. We have trained and tested all of our models on

machine equipped with 4 x V100 GPU. Execution times are shown in Table 3.2.

Table 3.2 Datasets Used in This Study

Dataset Name | Number of Samples | Number of Epochs | LIDAR Resolution | Time(hours)
nuScenes 28130 20 32 36
adaScenes 19727 20 128 _
carlaScenes 16 27902 20 16 11
carlaScenes 32 27902 20 32 14
carlaScenes 64 27902 20 64 22
carlaScenes 128 27902 20 128 33

31

CHAPTER 4

EVALUATION AND RESULTS
We evaluate model performance across datasets by presenting key metrics, including mean Aver-
age Precision (mAP), NuScenes Detection Score (NDS), and class-specific Average Precision at a
0.5 IoU threshold for cars (Car AP 0.5), pedestrians (Pedestrian AP 0.5), and motorcycles
(Motorcycle AP 0.5), as detailed in Tables 4.1, 4.2, 4.3, 4.4, and 4.5, respectively. To further
assess domain shift impacts, we report the performance differences, ADS™5i in Tables 4.7, 4.6,

4.8, and 4.9, highlighting how these variations influence detection accuracy across datasets.

Table 4.1 Trained/Tested mAP Across Datasets

Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes

carlaScenes 16
carlaScenes 32
carlaScenes 64
carlaScenes 128
nuScenes 0.7134 0.6771 0.5011 0.4957
adaScenes 0.3898 0.4849 0.5201 0.5262 _ 0.542

Table 4.2 Trained/Tested NDS Across Datasets

Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes

carlaScenes 16
carlaScenes 32
carlaScenes 64
carlaScenes 128
nuScenes 0.573 0.5554 0.5743 0.4884

adaScenes [N0B79800 04314 0.4566 04649 [NOB243M 0.5339

Table 4.3 Trained/Tested CAR AP 0.5 Across Datasets

Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes

carlaScenes 16

carlaScenes 32 0.7635

carlaScenes 64 0.6127

carlaScenes 128 0.4639 0.7669

nuScenes 0.5169 0.6036 0.6219 0.5475 0.5220 0.4795

adaScenes [102934 0.3828 0.4388 04394 [OM9EN 0.543

32

Table 4.4 Trained/Tested PEDESTRIAN AP 0.5 Across Datasets

Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes

carlaScenes 16 0.6678 0.6275
carlaScenes 32 0.6181 0.4053

carlaScenes 64 0.6017 0.4951
carlaScenes 128 0.5184 0.5055
nuScenes 0.4167 0.6549 0.704 0.6942
adaScenes 0.3331 0.5816 0.6288

Table 4.5 Trained/Tested MOTORCYCLE Across Datasets

Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes

carlaScenes 16
carlaScenes 32
carlaScenes 64
carlaScenes 128

nuScenes 0.6075 0.5954
adaScenes
Table 4.6 mAP Differences (+) Across Datasets
Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes

carlaScenes 16 -0.1714
carlaScenes 32
carlaScenes 64

carlaScenes 128

-0.1174

nuScenes
adaScenes
Table 4.7 NDS Differences () Across Datasets
Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes

carlaScenes 16
carlaScenes 32
carlaScenes 64
carlaScenes 128
nuScenes
adaScenes

33

Table 4.8 CAR AP 0.5 Differences (+) Across Datasets

Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes
carlaScenes 16 0 -0.0427 -0.0266 -0.054

carlaScenes 32 -0.144 0 0.0261 -0.0004

carlaScenes 64 -0.3384 -0.0963 0 0.0113

carlaScenes 128 -0.4991 -0.1961 -0.0277 0

nuScenes -0.0051 0.0816 0.0999 0.0255

adaScenes -0.2496 -0.1602 -0.1042 -0.1036 -0.3488 0

Table 4.9 PED AP 0.5 Differences () Across Datasets

Train/Test carlaScenes 16 carlaScenes 32 carlaScenes 64 carlaScenes 128 nuScenes adaScenes
carlaScenes 16 0 0.0258 -0.0403 -0.1508 -0.5092
carlaScenes 32 -0.2809 0 0.0228 0.026 -0.4937
carlaScenes 64 -0.3315 -0.0385 0 0.0211 -0.4381
carlaScenes 128 -0.4335 -0.1048 -0.0335 0 -0.4464
nuScenes -0.1633 0.0749 0.1240 0.1681 0.0000 0.1142
adaScenes -0.4357 -0.1872 -0.14 -0.0673 -0.6141 0

The following figures explore how LiDAR resolution influences different performance metrics
within the carlaScenes datasets. In these visualizations, the x-axis represents the LiDAR resolution,
which includes 16, 32, 64, and 128 channels, while the y-axis displays the corresponding metric
values. To emphasize specific results, a marker and an arrow are used to highlight test outcomes
when the training and testing datasets share the same LiDAR resolution. This highlighting is
applied to same-dataset evaluations, such as carlaScenes 16 tested on carlaScenes 16, as well as
cross-dataset evaluations, like nuScenes (with 32 channels) tested on carlaScenes 32, and adaScenes
(with 128 channels) tested on carlaScenes 128, even though these datasets are not identical.

More specifically, Figure 4.3 provides a detailed view for models both trained and tested on
carlaScenes datasets. On the left side, it features a heatmap showing the performance differences
across various carlaScenes train-test pairs, with colors indicating the magnitude of these differences.
On the right side, a line chart illustrates the class-specific Average Precision at 0.5 IoU for cars
(Car AP 0.5), pedestrians (Pedestrian AP 0.5), and motorcycles (Motorcycle AP 0.5). Similarly,
Figures 4.1 and 4.2 present the mean Average Precision (mAP) and NuScenes Detection Score
(NDS), respectively, for models trained and tested on carlaScenes datasets. In both figures, the

left side shows a heatmap representing the performance differences as listed in Tables 4.6 and

34

4.7, while the right side displays a line plot that tracks how these metrics change across different
LiDAR resolutions. Together, these figures demonstrate the effect of LiDAR resolution on model
performance within the carlaScenes dataset family.

On the other hand, Figure 4.4 examines the same set of metrics—mAP, NDS, Car AP 0.5,
Pedestrian AP 0.5, and Motorcycle AP 0.5—but for models trained on nuScenes and adaScenes
and then tested on carlaScenes datasets. This figure also highlights points where the LiDAR
resolutions match between the training and testing datasets, making it easier to spot these specific
comparisons. By doing so, it reveals how performance varies due to domain shift when models are

applied across different datasets, offering insights into the challenges of cross-dataset generalization.

(a) mAP Difference Heatmap 10 (b) mAP Across carlaScenes
X — e — e —

carlaScenes 128

carlaScenes 64

Tested Dataset

carlaScenes 32 -0.013 0.000 -0.055 -0.117

Trained Model
0.0 —e— carlaScenes 16
carlaScenes 16 0.000 -0.169 —e— carlaScenes 32
—o— carlaScenes 64
~e— carlaScenes 128
-02

128

64
o LIDAR Resolution (Channels)

Trained Dataset

Figure 4.1 Heatmap (from Table 4.6) and line plot illustrating the effect of LiDAR resolution (Rzr)
on mean Average Precision (mAP) across carlaScenes datasets, with highlighted points for same-
resolution train-test pairs

(a) NDS Difference Heatmap (b) NDS Across carlaScenes

carlaScenes 128

carlaScenes 64

Tested Dataset

carlaScenes 32

Trained Model
—8— carlaScenes 16
~@— carlaScenes 32
~o— carlaScenes 64
~®— carlaScenes 128

carlaScenes 16

16 32 64 128
LIDAR Resolution (Channels)

Trained Dataset

Figure 4.2 Heatmap (from Table 4.7) and line plot depicting the influence of LiDAR resolution
(Rrr) on NuScenes Detection Score (NDS) across carlaScenes datasets, with highlighted points
for same-resolution train-test pairs

35

(a) CAR AP 0.5 A Heatmap

(b) CAR AP 0.5 Performance
X

1.0 v 3
X . r4
carlaScenes 128 | 0.809 - —®
0.8 / = —eo
E 0.6 1
¥ carlaScenes 64 1 0.836 n
2 o
S < 04
® o«
S < Trained Model
0 carlaScenes 32 1 J
027 —e— carlaScenes 16
—8— carlaScenes 32
carlaScenes 16 0.0 1 —0— carlaScenes 64
—@— carlaScenes 128
-0.2 T T T T
Trained Dataset
(c) PED AP 0.5 A Heatmap (d) PED AP 0.5 Performance
10 X = 8
X oY 3
las 128
carlascenes 081
] 0.6
@ carlaScenes 64 il
o o
S & 04
% g
0 carlaScenes 32 1 0.69%4 o
] 0.2 A
0.0 1
carlaScenes 16 0.668 0.618 0.602
T T T -0.2 T T T T
Trained Dataset
(e) MTR AP 0.5 A Heatmap 10 (f) MTR AP 0.5 Performance v
—o
las 128
carlascenes 081
] 0.6
@ carlaScenes 64 1
3 s
e < 0.4-
b o
% carlaScenes 32 E
@ 0.2 4
0.0 1
carlaScenes 16
-0.2 T T T T
© v > > 16 32 64 128
R 2 © V
& & & P LiDAR Resolution (Channels)
& & & &
& & & &
@ @ & &
& & & &

Trained Dataset

Figure 4.3 Heatmaps and line plots showing the impact of LiDAR resolution (R;g) on class-
specific metrics (Car AP 0.5, Pedestrian AP 0.5, Motorcycle AP 0.5) across carlaScenes datasets,
with highlighted points indicating same-resolution train-test pairs

36

(a) mMAP A Heatmap

carlaScenes 128 0.526
”
[
@ carlaScenes 64 0.520
©
[a]
o
g
& carlaScenes 32 0.485
k]

carlaScenes 16 { 0.557 0.390

T T
Trained Dataset

(c) NDS A Heatmap

carlaScenes 128 1 0.555 0.465

carlaScenes 64 4 0.573 0.457

carlaScenes 32 4 0.569 0.431

Tested Dataset

carlaScenes 16 | 0494 0.380

T T
Trained Dataset

(e) CAR AP 0.5 A Heatmap

carlaScenes 128 4 0.547 0.439

carlaScenes 64 { 0.622 0.439

carlaScenes 32 { 0.604 0.383

Tested Dataset

carlaScenes 16 { 0.517

Trained Dataset
(9) PED AP 0.5 A Heatmap

carlaScenes 128

carlaScenes 64

carlaScenes 32

Tested Dataset

carlaScenes 16

Trained Dataset

(i) MTR AP 0.5 A Heatmap

carlaScenes 128 -

carlaScenes 64 -

carlaScenes 32 1

Tested Dataset

carlaScenes 16

Trained Dataset

Figure 4.4 Heatmaps and line plots showing the performance of models trained on nuScenes and
adaScenes and tested on carlaScenes datasets for mAP, NDS, Car AP 0.5, Pedestrian AP 0.5, and
Motorcycle AP 0.5, with highlighted points for matching LiDAR resolutions

mAP

NDS

CAR AP 0.5

PED AP 0.5

MTR AP 0.5

(b) mAP Performance

1.0

0.8 4

0.6

0.4 4

0.2 4

0.0

-0.2

¥

\
-

Tested Dataset
—8— nuScenes
—®— adaScenes

1.0

(d) NDS Performance

0.8 q

0.6

0.4 4

0.2 4

0.0

-0.2

&«

1.0

(f) CAR AP 0.5 Performance

0.8 q

0.6

0.4 4

0.2 4

0.0 1

-0.2

1.0

(h) PED AP 0.5 Performance

0.8 4

0.6

0.4 1

0.2 q

0.0

o<

-0.2

1.0

(j) MTR AP 0.5 Performance

0.8 q

0.6

0.4 4

0.2 1

0.0

-0.2

«

16 32

37

64
LiDAR Resolution (Channels)

128

4.1 Effect of LIDAR Resolution, R;

To elucidate the influence of LiDAR resolution (Ryg) on detection performance, a detailed
examination of Figures 4.3, 4.1, and 4.2 are warranted. These figures illustrate the performance of
the CenterPoint model across carlaScenes datasets, which share identical environmental settings
but differ in LiDAR resolutions (16, 32, 64, and 128 channels). For aggregate performance metrics
such as mean Average Precision (mAP) and NuScenes Detection Score (NDS)—which combine
detailed measures of detection accuracy across object classes and attributes like translation, scale,
and orientation—a clear trend of logarithmic-like saturation is observed when comparing models
trained and evaluated on their source datasets for carlaScenes 32, 64, and 128. This saturation
indicates that beyond a certain resolution threshold, additional increases in LiDAR channels yield
diminishing improvements in performance. For instance, a model trained on carlaScenes 64
achieves an mAP of 0.9636 on carlaScenes 64 (Table 4.1), with only marginal gains to 0.9727 on
carlaScenes 128, despite the doubled resolution. When assessing the resilience of these models to
resolution shifts in cross-dataset evaluations, single-step changes—such as from 32 to 64 channels
or 64 to 128 channels—demonstrate minimal impact on performance metrics. This is evident in
the results for models trained on carlaScenes 32, which achieve an mAP of 0.9474 on carlaScenes
64 (a single-step increase), compared to 0.9405 on their source dataset (Table 4.1). Similarly,
a carlaScenes 64-trained model maintains an NDS of 0.8017 on carlaScenes 32 (a single-step
decrease), close to its source NDS of 0.8368 (Table 4.2). In contrast, larger resolution changes,
such as two-step shifts (e.g., from 64 to 16 channels or 128 to 32 channels), result in substantial
performance degradation. For example, a carlaScenes 64-trained model, which achieves an mAP
of 0.9636 on its source dataset, drops to an mAP of 0.6618 on carlaScenes 16 (Table 4.1), a
two-step decrease, highlighting a significant loss in detection capability of approximately 0.3018
in mAP. Similarly, a carlaScenes 128-trained model, which achieves an mAP of 0.9721 on its
source dataset, drops to an mAP of 0.8547 on carlaScenes 32 (Table 4.1), a two-step decrease,
reflecting a notable decline of 0.1174 in mAP, though less extreme than the drop observed with

carlaScenes 16. This pattern implies that single-step transitions between typical LiDAR resolutions

38

(e.g., 16 t0 32, 32 to 64, or 64 to 128 channels) do not severely compromise model efficacy, whereas
larger shifts do. A practical illustration is a model trained on 64-channel LiDAR, which performs
robustly on both 32-channel (mAP of 0.9089) and 128-channel (mAP of 0.9727) point clouds, yet
falters significantly on 16-channel data (mAP of 0.6618), as shown in Table 4.1. Consequently,
when designing a training dataset for the CenterPoint model to ensure robust performance across
a spectrum of LiDAR resolutions, these findings suggest that intermediate resolutions, such as 32
or 64 channels, may offer a balanced trade-off between performance and adaptability, with further
analysis to follow.

Nevertheless, an exception to this trend is observed with carlaScenes 16, where the model’s
behavior diverges markedly from the patterns seen in higher-resolution datasets. We hypothesize
that this anomaly stems from the CenterPoint model’s configuration, which struggles to extract
generalizable features from the sparse 16-channel LiDAR data across diverse object classes, lead-
ing to overfitting to the specific point cloud distributions of carlaScenes 16. This overfitting is
particularly pronounced in class-specific metrics for smaller objects, such as pedestrians and mo-
torcycles, as depicted in Figures 4.3(d) and 4.3(f). For instance, a model trained on carlaScenes
16 achieves a Pedestrian AP 0.5 of 0.6678 on its source dataset, but this plummets to 0.518 when
tested on carlaScenes 128—a three-step resolution increase (Table 4.4). Similarly, Motorcycle AP
0.5 drops from 0.8898 on carlaScenes 16 to 0.558 on carlaScenes 128 (Table 4.5). Conversely,
the Car AP 0.5 exhibits greater stability, saturating around 0.82 across resolutions; for example,
it reaches 0.8364 on carlaScenes 64 and 0.809 on carlaScenes 128 for a carlaScenes 16-trained
model (Table 4.3). This resilience likely arises from the larger physical size of car objects, which
ensures their shapes remain discernible even in sparser point clouds, unlike smaller objects that
demand denser data for accurate detection. The saturation of Car AP 0.5, rather than a steep
decline, also sheds light on the limitations of the model’s complexity and its default configuration.
The CenterPoint model employed here mirrors one of the default training setups for the nuScenes
dataset (32 channels) from mmdetection3d, utilizing pillar-based voxelization with fixed parame-

ters: voxel_size = [0.2,0.2,10] and max_voxels = [30000,40000]. For carlaScenes 16, the

39

sparsity of the 16-channel point clouds results in fewer points per voxel, potentially causing the
model to overfit by memorizing resolution-specific patterns rather than learning broadly applica-
ble features. In higher-resolution datasets like carlaScenes 64 and 128, the denser point clouds
overwhelm these fixed parameters. The voxel_size, optimized for 32-channel data, becomes too
coarse for 64- and 128-channel inputs, failing to capture the finer details available in these denser
clouds. Additionally, the max_voxels limit triggers random truncation of points in approximately
30% of object related voxels in these higher-resolution datasets, discarding valuable information.
This truncation skews the model toward learning localized relationships within truncated point cloud
patches, rather than fostering a holistic, resolution-agnostic understanding of object shapes within
the environment. As a result, the model’s generalization across resolutions is impaired, particu-
larly for smaller objects like pedestrians and motorcycles. These findings indicate that modifying
the voxelization parameters—such as adopting a resolution-dependent voxel_size or implement-
ing a dynamic max_voxels threshold—could improve the model’s capacity to learn robust and
transferable features across diverse LiDAR resolutions, thereby alleviating the observed domain
shift effects. However, for a more straightforward solution, we suggest increasing max_voxels to
[100000, 100000] from the default [30000, 40000] to reduce truncation in dense point clouds like
carlaScenes 64 and 128, allowing the model to retain more information from high-resolution data.
Additionally, we propose adjusting voxel_size to [0.1,0.1, 10] from [0.2,0.2, 10], keeping the
z-dimension unchanged. This finer horizontal resolution in x and y enables better capture of small
objects like pedestrians and motorcycles, which benefit from increased cell occupation per object
rather than vertical detail. Since CenterPoint employs pillar-based encoding, where the z-axis is
collapsed into a single pillar, refining the z-resolution offers no advantage and aligns with the pillar
feature encoder’s design, unlike an alternative version of model with voxel feature encoder where
z-resolution might matter. Furthermore, to complement the increased complexity of the feature
extraction process, we propose enhancing the depth of the class-specific SeparateHead compo-
nents within the CenterHead of the CenterPoint model. Specifically, we recommend increasing

the number of convolutional layers—each consisting of Conv + BatchNorm + ReLU—from the

40

original 2 to at least 4. This adjustment provides the model with greater capacity to process and
distill the more intricate feature sets generated by the proposed adaptive feature extraction, thereby
improving its ability to generalize across varying LiDAR resolutions.

In order to find the R; r distribution, we have used the carlaScenes 32 and carlaScenes 128 as
test datasets, renamed as carlasc32 and carlasc128 in this section to avoid clutter, because the
real-life datasets in this work also use the same resolutions. We aim to approximate a Gaussian
distribution for Ry g for each performance metric; to achieve this, we calculate the difference between
the minimum and maximum performance metrics for each trained model across the test datasets
carlasc32 and carlasc128. Here, Ry is an abstract definition representing the domain shift due
to LiDAR resolution, and we assume that any performance metric (e.g., NDS, mAP, Car AP 0.5)
provides an equally acceptable approximation of Ry r. Specifically, for each trained model in the
set {carlasc32, carlasc64, carlasc128}, we compute the difference min D3i—Si —max D575/ where
D is treated as a variable representing the performance metric, and S; € {carlasc32, carlasc128},
excluding carlasc16 due to the model not learning properly, as discussed in previous paragraphs.
These differences form a set of samples used to approximate the Ry p distribution as a Gaussian for
each metric, and ultimately, Ry r relates to these distributions we approximate, providing insight

into the domain shift caused by LiDAR resolution:

Rrr ~ Gaussian ({min D557 — max D55

S;€{carlasc32,carlasc64,carlasc128} (4 1)
Sy S; '

S je{carlasc32,carlasc128}

The Gaussian distributions in Figure 4.6 illustrate the combined effects of LiDAR-resolution
shift (R g) and synthetic vs. real data shift (Rsg) on various performance metrics across datasets.
In the context of Ry g, we observe that NDS exhibits the smallest standard deviation (o = 0.025)
among the metrics, indicating that it is the most consistent in capturing the effect of LiDAR
resolution on performance. This suggests that NDS, despite being a composite metric derived from
multiple true-positive metrics, effectively reflects the performance loss due to domain shift and is
a more reliable choice for comparing domain shifts between dataset pairs when a single metric is

needed. Following NDS, Pedestrian AP 0.5 (oo = 0.032) and Motorcycle AP 0.5 (o = 0.042) also

41

show relatively low deviations, meaning they are more confident in distinguishing the domain shift
between the two LiDAR resolutions. Although their mean differences (¢ = —0.063 for Pedestrian
AP 0.5 and u = —0.089 for Motorcycle AP 0.5) are closer to zero compared to Car AP 0.5, their
smaller standard deviations indicate that these metrics, which focus on smaller objects, are less
variable and thus provide a clearer signal of the domain shift caused by LiDAR resolution. In
contrast, Car AP 0.5 has the largest standard deviation (oo = 0.080) and the furthest mean from
zero (u = —0.101), suggesting greater variability in its estimation of domain shift. We attribute
this higher variability to the two-step resolution jump between carlaScenes 32 and carlaScenes 128
(from 32 to 128 channels). As discussed in previous sections, while car detection performance tends
to saturate between carlaScenes 32 and carlaScenes 64, this larger resolution jump significantly
impacts models trained on high-resolution datasets (e.g., carlaScenes 128) when tested on lower-
resolution datasets (e.g., carlaScenes 32), leading to more pronounced and variable performance

drops for larger objects like cars.

4.2 Thoughts on Performance Metrics

Among the evaluation metrics we consider, the NuScenes Detection Score (NDS) proves sub-
stantially more robust to outliers than mean Average Precision (mAP). To demonstrate this, we
performed a sensitivity analysis by fitting Gaussian curves to each test-column in the performance
difference tables (AD3=5/) for mAP (Table 4.6) and NDS (Table 4.7), and plotting the result-
ing distributions (Figure 4.5). The noticeably narrower distributions for NDS confirm its lower
variability and greater resilience to large performance deviations. Consequently, when comparing
overall 3D detection performance without focusing on a particular object class, NDS is the preferred
metric because it aggregates multiple true-positive sub-metrics into a single, stable score.

The NuScenes Detection Score (NDS) is defined as a weighted sum of mean Average Precision
(mAP) and five true-positive error metrics — mean Average Translation Error (mATE), mean
Average Scale Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity

Error (mAVE), and mean Average Attribute Error (mAAE) — collectively denoted by 7 P:

42

TP = {mATE, mASE, mAOE, mAVE, mAAE}.

NDS = io 5mAP + (1 - min(1, mTP)) 4.2)

1 mTPeTP

Sensitivity Analysis of LiDAR-Resolution Shift Across Metrics
Metric

—— mAP_diff (6=0.121)

— = NDS_diff (c=0.070)

o

[/
1
I
I
I
I
[}
I
[}
I
1
I
[}

Probability Density

N

1
I
I
I
1
1
1

= \
/, \,
-0.50 -0.25 0.00 0.25 0.50
A Metric Value

0.75 1.00

791.00 -0.75

Figure 4.5 Gaussian distributions comparing the variability of performance differences (AD5—~5/)
for mAP and NDS across carlaScenes datasets, illustrating the robustness of NDS to LiDAR-
resolution shift (R g) with standard deviations - = 0.121 for mAP and o = 0.070 for NDS (see

Tables 4.6 and 4.7)

4.3 Effect of Synthetic vs Real Life, Rgr
In addition to the carlaScenes datasets, we incorporated the adaScenes and nuScenes datasets,

which were collected using sensors mounted on ego vehicles operating in real-world environments.
The adaScenes dataset is a custom dataset generated from real-life sensors mounted on a bus mea-
suring 8 meters in length and 2.3 meters in width, equipped with a top-mounted 128-channel LiDAR
sensor, which we exclusively used to avoid introducing Ry ¢ (number of LiDAR units) as an addi-
tional domain shift factor. However, the difference in ego vehicle dimensions between adaScenes

and other datasets, such as nuScenes or carlaScenes, inevitably introduces R;p (differences in

43

Rir Shift and Rsg Margin Across Metrics

1

RSR“=_0-241 :

= o |

1

mAP

1

RSRu=‘O.204 :

1

|

NDS Ripp= — 0.I044

Riro = 0.025

1

|

I

1

1

RSRH='0-328 :

I ® .

]

1

CAR AP 0.5 RLRy— i 101 i
st % Ripo = 0.080
ot ..

1

RSRN='0'209 :

1

|

PED AP 0.5 Ripp= — 0.0I63

Rigo=0.032

1

1

|

1

1

RSRu='0-588 :

1

i

MTR AP 0.5 Ripp= — 0.089I

Rigo = 0.042

1

1

. . . : i

-0.8 -0.6 -0.4 -0.2 0.0

Figure 4.6 Gaussian sensitivity analysis of performance differences (AD5—5/) for multiple metrics
across carlaScenes test resolutions, highlighting the variability in LiDAR-resolution shift (see

Tables 4.6 and 4.7)

Metric Value / R Value

44

LiDAR placement) as a domain shift source. Comparing these real-life datasets (adaScenes and
nuScenes) with the synthetic carlaScenes datasets introduces multiple potential sources of domain
shift, complicating the analysis of performance differences, as detailed in Table 4.10, which lists
the domain shift factors between each pair of datasets. For instance, while the nuScenes dataset
employs a single 32-channel LiDAR, similar to the carlaScenes 32 dataset, a direct comparison
reveals at least two distinct domain shift factors. First, Rgg (synthetic vs. real data) arises because
the carlaScenes 32 dataset is synthetically generated, whereas the nuScenes dataset is derived from
real-world data. Second, Rgc (variations in scenery) emerges due to differences in the environ-
ments: the nuScenes dataset was collected in urban settings across Singapore and Boston, while
carlaScenes 32 was generated using Town 10, a pre-existing map provided by the CARLA simulator,
which mimics a different urban landscape. Similarly, when comparing adaScenes and carlaScenes
128, both equipped with a 128-channel LiDAR, at least two domain shift factors are present: Rgg
(synthetic vs. real data) due to carlaScenes 128 being synthetically generated while adaScenes is
real-world data, and Rgc (variations in scenery) because adaScenes was collected in real-world
environments, while carlaScenes 128 uses the Town1® map in the CARLA simulator, representing
a different urban setting. Beyond these two domain shift sources, additional factors could further
influence the results. For example, Ry p may play a role; although we positioned the LiDAR sensor
in carlaScenes 32 to match the placement in the nuScenes dataset, the ego vehicles in the simulator
and real-world settings differ. These differences affect the relative positioning of the LiDAR sensor
with respect to the ego vehicle’s surface, potentially altering the point cloud data for nearby objects
(e.g., the closest objects and their corresponding point clouds relative to the ego vehicle frame may
vary if the ego vehicle’s boundaries differ). Specifically, the carlaScenes datasets were collected
using an Audi vehicle model within the CARLA simulator, whereas the real-world datasets involve
distinct vehicle models: nuScenes uses a smaller Renault different vehicle, and adaScenes employs

a bus, adding another layer of complexity to the domain shift analysis.

45

Table 4.10 Domain Shift Factors Between Dataset Pairs

Train/Test nuScenes adaScenes carlaScenes 32 carlaScenes 128
nuScenes - Rigr+Rsc+Rrp Rsg + Rsc Rigr + Rsr + Rsc
adaScenes Rir+Rsc+Rip - Rsg+Rsc+Rrp+Rrp Rsp+ Rsc+Rrp
carlaScenes 32 Rsr + Rsc Rsg + Rsc + Ri g+ Rrp - Rir
carlaScenes 128 R + Rsr + Rsc Rsgr + Rsc + Rrp Rir -

To estimate the impact of Rsg, we utilize known domain shift sources across datasets to isolate
its effect. For instance, to eliminate the influence of Rge from ADmMsc—cartase32 e gybtract
ADmuse—adase wwhich introduces additional R; g and R p terms into the equation. To address the
R g component, we incorporate ADcalasc32—carlascl28 oyeraoing the carlaScenes datasets with 32
and 128 channels. Furthermore, to mitigate the R;p term, we include AD?dasc—carlase32 - Tyig
method serves as an approximation to quantify the relative contributions of different domain shift
sources, aiming to understand the extent of challenges each source poses during training and testing
phases. For a more precise calculation of Ry p in the context of Rgg, we propose the creation of a
carlaScenes 128 Bus dataset, which would allow a focused analysis of R;p. However, integrating
a new bus asset into the CARLA simulator presents challenges, as it requires modeling expertise
and familiarity with Unreal Engine. While CARLA provides a pre-existing bus asset, the Fuso
Rosa from Mitsubishi Motors, it differs significantly from the bus in adaScenes. The Fuso Rosa
measures 6.9 meters in length and 2.7 meters in height, whereas the adaScenes bus is 8.3 meters
long, with its LIDAR mounted at 3.1 meters above the ground. These discrepancies suggest that
using the Fuso Rosa as a substitute for the adaScenes bus would introduce further approximations,
potentially increasing ambiguity in estimating Ry p. Therefore, a more accurate representation of

the adaScenes bus is necessary to minimize such uncertainties in the analysis.

46

RSR - ADnusc—>carlasc32 — +Rgg +Rsc

_ ADnusc—)adasc . —Rsc —Rir -RLp

nusc—-carlasc128
- AD «— -Rsr —Rsc —RLR

+ ADadasc—>carlasc32 — +Rsg +Rsc +Rig +Rpp

+ ADcarlasc32—>carla50128 - +RIR

The same estimation of Rgz would also work in reverse order of the datasets:

RSR - ADcarlasc32—>nusc — —Rsg - Rsc
- ADadasc—)nusc “— + RS(' + R]‘R + R]J)
_ ADcarlas0128—>nusc — +Rsp +Rsc +RLR

+ ADcarlasc32—>adasc — —-Rsg -Rsc —Rpgr -Rpp

+ ADcarlasc128—>carlasc32 - —RrR

In Figure 4.6, we can observe that Rsg effect on the amount of metric loss is far greater then the
effect of Rz which suggests LiDAR pointcloud from CARLA simulator differs from the real-life
profoundly. This difference alone shows that for Unsupervised Domain Adaptation problems, it is
better and more reliable to use real-life data as the training source in order to distill information to

the target datasets.

4.4 Generalization of a Dataset

In this study, we explore how well real-world datasets, such as nuScenes, generalize compared to
synthetic datasets in the context of domain shift for autonomous driving applications. The nuScenes
dataset is widely valued within the autonomous driving community for several key reasons. Firstly,
it captures data from diverse locations, featuring a variety of traffic patterns and complex decision-
making scenarios that challenge autonomous vehicles. Secondly, with approximately 28,000

samples, nuScenes occupies a middle ground in terms of dataset size. For comparison, the Waymo

47

dataset[36] contains a much larger 390,000 samples, while the KITTI dataset[37] is smaller with
15,000 samples, and the Lyft dataset[38] is closer to nuScenes with 55,000 samples. This moderate
size makes nuScenes a practical choice for research purposes. Additionally, while the nuScenes
dataset is collected at a high frequency of 20Hz, its annotations are provided at a lower rate of 2Hz.
This difference creates an interesting opportunity for multi-sweep models, which use temporal
information from multiple point cloud sweeps to improve densification. Even though the extra
sweeps between the labeled key frames do not come with their own annotations, this setup can
actually be a strength. It encourages the models to depend on the key frame’s annotations to figure
out object states in the unlabeled intermediate sweeps, helping them learn more robust temporal
patterns. As a result, this feature of nuScenes could make models better at generalizing to real-
world autonomous driving situations, where not every frame has full labels—a common scenario
that tests a model’s adaptability.

Evidence from Tables 4.1 and 4.2 demonstrates that models trained on nuScenes perform
robustly not only on their own dataset but also when evaluated on synthetic datasets, such as
carlaScenes. This strong cross-dataset performance indicates that nuScenes enables models to
learn features that are not overly specific to its own characteristics, suggesting a high capacity for
generalization across different domains. Another compelling indicator of nuScenes’ generalization
is its performance on adaScenes, a distinct real-world dataset. As shown in Tables 4.6 and 4.7,
the performance of nuScenes-trained models on adaScenes remains close to that of models both
trained and tested on adaScenes. For instance, the NDS score for a nuScenes-trained model tested on
adaScenes is 0.4884, which is notably close to the 0.5339 achieved by an adaScenes-trained model
on its own dataset. This relatively small performance gap highlights the ability of nuScenes-trained
models to adapt effectively to other real-world environments.

On the other hand, models trained on synthetic datasets like carlaScenes struggle significantly
when evaluated on real-world datasets such as nuScenes or adaScenes. For instance, a model trained
on carlaScenes 128, which uses the same 128-channel LiDAR as adaScenes, only achieves an NDS

of 0.3031 when tested on adaScenes. This is much lower than the 0.5339 scored by a model trained

48

and tested on adaScenes itself. This notable performance drop emphasizes the challenges synthetic
data faces in matching real-world conditions, even when the LiDAR resolution is identical.

However, it’s important to note that while models trained on nuScenes perform well when
tested on synthetic datasets, their scores don’t match the results of models trained directly on those
synthetic datasets. For example, a nuScenes-trained model tested on carlaScenes 32 earns an NDS
of 0.5691, which is solid but still below the 0.8135 achieved by a model trained and tested on
carlaScenes 32. This difference matters: the real power of nuScenes isn’t in beating synthetic
models on their own turf, but in equipping models to tackle a broad variety of scenarios—both
synthetic and real-world—much better than synthetic-only training can.

Likewise, adaScenes, another real-world dataset, shows some ability to generalize, though not
as strongly as nuScenes. Unlike models trained on synthetic data, which suffer huge performance
drops when tested on real-world sets, adaScenes-trained models hold up better. For example,
when tested on carlaScenes 128—which matches its 128-channel LiDAR—an adaScenes-trained
model scores an NDS of 0.4649. This is decent but well below the 0.8404 of a carlaScenes 128-
trained model, showing that adaScenes offers moderate generalization to synthetic data, though less
effectively than nuScenes. On the flip side, when adaScenes-trained models are tested on nuScenes,
they struggle, achieving an NDS of just 0.3243 compared to 0.5743 for a nuScenes-trained model.
This big gap suggests that nuScenes might have greater complexity—think diverse road users,
varied environments, or unique ego-vehicle movements—that adaScenes lacks. It seems a dataset’s
ability to generalize could hinge on how complex it is: richer datasets like nuScenes train models
that adapt well across domains, while less complex ones like adaScenes leave models less prepared
for tougher, more varied test conditions.

Both nuScenes and adaScenes were collected from multiple cities, exposing their models to a
broad spectrum of environmental conditions and urban layouts. In contrast, carlaScenes is derived
from a single simulated city, potentially limiting the variety of scenarios it represents. This broader
real-world exposure in nuScenes and adaScenes likely aids in training models that learn more robust

and transferable features, better equipping them to handle domain shifts across diverse test datasets.

49

CHAPTER 5

CONCLUSION
This thesis addressed the significant challenge of Unsupervised Domain Adaptation (UDA) within
the domain of 3D object detection, specifically focusing on the systematic quantification and analysis
of domain shifts between datasets. We began by identifying key sources of domain shift relevant
to 3D object detection in autonomous driving, such as LiDAR resolution variations, differences
between synthetic and real-world data, sensor placement, and scenery discrepancies.

To systematically investigate these domain shift sources, we developed a comprehensive method-
ological framework. Central to this framework was the generation of carefully curated datasets
using the CARLA simulator, enabling precise control over domain shift factors. We introduced
two novel packages, carlaSceneCollector and rosbag2nuScenes, specifically designed for
this research. The carlaSceneCollector package streamlines the process of data generation
in CARLA by automating sensor data collection, scenario configuration, and ROSBag recording,
thus facilitating the creation of controlled, synthetic raw data. The rosbag2nuScenes package
provides a unique, generic solution for converting ROSBag data into the widely-used nuScenes
format, accommodating various sensor setups and ensuring compatibility with prevalent 3D de-
tection frameworks. This represents a significant contribution, as no other publicly available tool
currently offers such comprehensive and adaptable functionality, making these packages invaluable
for synthetic data-driven research and development in autonomous systems.

Through rigorous experimentation, we revealed crucial insights into the relationship between
LiDAR sensor resolution (R g) and detection performance. Specifically, we demonstrated a clear
performance saturation effect beyond certain LiDAR resolutions, highlighting that intermediate
resolutions (such as 32 or 64 channels) provide an optimal trade-off between accuracy and gen-
eralizability. However, it is essential to emphasize that this saturation effect is closely related to
the underlying model and its hyperparameters. As such, these findings should not be generalized
universally across all 3D detection models. We also laid out potential sources for this observed

saturation effect and proposed methods to mitigate it, including adaptive voxelization parameters

50

and increased model complexity.

Our investigation also highlighted pronounced differences between synthetic and real-world
datasets (Rsg). Models trained on synthetic CARLA-generated datasets showed substantial perfor-
mance drops when evaluated on real-world datasets (nuScenes and adaScenes). Conversely, models
trained on real-world datasets exhibited considerably better generalization capabilities, reinforcing
the importance of real-world training data for robust adaptation.

Additionally, we identified the NuScenes Detection Score (NDS) as a particularly robust and
reliable metric for capturing the aggregate impact of domain shift. Compared to other metrics such
as mean Average Precision (mAP), NDS proved less susceptible to variability and outliers, making
it well-suited for comparative studies across datasets.

Lastly, the broader generalization capabilities of real-world datasets, particularly nuScenes,
were underlined. This dataset’s diverse real-world scenarios and moderate complexity provided
the foundation for training models with robust adaptability across varied domains, both synthetic
and real. In contrast, simpler datasets like adaScenes demonstrated limited adaptability, emphasiz-
ing that dataset complexity and scenario diversity are critical for fostering model generalization.
Notably, synthetic datasets generated as part of this research (carlaScenes datasets) demonstrated
even lower adaptability compared to adaScenes, suggesting a significant gap in realism and scenario
complexity. This limited adaptability of synthetic datasets can be attributed to the random sampling
approaches used for agent motion, agent count, and ego vehicle movements, as well as the inherent
limitations of the LiDAR simulator, which employs a simplified ray-casting method. Addressing
these limitations and enhancing the realism and complexity of synthetic datasets remain important
areas for future investigation.

In conclusion, this thesis contributes to a deeper understanding of domain shift phenomena in
3D object detection and provides a clear methodology for its quantification. Our findings underscore
the critical importance of careful dataset selection, thoughtful sensor configuration, and robust met-
ric choice when addressing the challenges posed by Unsupervised Domain Adaptation. The novel

software packages developed in this research, carlaSceneCollector and rosbag2nuScenes,

51

significantly enhance the process of dataset generation and conversion, laying a strong foundation
for future synthetic data-driven research and development in autonomous systems. Future research
may explore further refinement of adaptive methodologies, leveraging real-world data more effec-
tively, improving synthetic dataset realism, and extending these insights to broader contexts within

autonomous systems and robotics.

Future Work

Given the observed performance degradation when using synthetic datasets, future work should
prioritize the development and refinement of self-labeling techniques for real-world, unlabeled
datasets. These approaches could leverage the superior generalization capabilities of real-world data
to generate high-quality pseudo-labels, thereby reducing reliance on synthetic data and improving
model adaptability across domains.

Furthermore, the superior generalization observed with the nuScenes dataset compared to both
synthetic datasets and other real-world datasets like adaScenes raises important questions about the
factors that contribute to a dataset’s generalizability. Future research should aim to identify and
quantify these factors—such as scenario diversity, data complexity, and sensor fidelity—and develop
a framework for evaluating and comparing the generalization potential of different datasets. Such a
framework would be invaluable for selecting optimal training datasets and establishing criteria for
the collection of new datasets tailored to specific autonomous driving applications.

Additionally, the logarithmic saturation effect observed in synthetic training performance un-
derscores the need for more sophisticated approaches to dataset creation and model training. Future
work should explore adaptive dataset generation techniques that dynamically adjust to the model’s
learning progress, as well as augmentation strategies that introduce targeted variability to counteract
saturation and enhance model robustness across a wider range of conditions.

To further enhance the applicability of these findings, future studies should incorporate a
diverse array of LiDAR sensors, including solid-state LiDAR, which are becoming increasingly
prevalent in autonomous systems. Moreover, efforts should be directed toward improving the

fidelity of simulated LiDAR data by developing methods to accurately match the ray patterns and

52

noise characteristics of real-world LiDAR sensors, thereby closing the gap between synthetic and
real-world data.

By pursuing these avenues, future research can build upon the insights gained in this thesis,
advancing the field of 3D object detection and contributing to the development of more robust and

adaptable autonomous systems.

53

(1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban driving
simulator,” in Conference on robot learning. PMLR, 2017, pp. 1-16.

H. Caesar, V. Bankiti, A. Lang, S. Vora, V. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving. arxiv,” 2019.

C. Q1, H. Su, K. Mo, and L. Guibas, “Pointnet: Deep learning on point sets for 3d classification
and segmentation, corr abs/1612.00593,” arXiv preprint arXiv:1612.00593, 2016.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning
on point sets in a metric space,” Advances in neural information processing systems, vol. 30,
2017.

S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and detection from
point cloud. corr, vol. abs/1812.04244 (2018),” arXiv preprint arxiv:1812.04244, 2018.

Z. Yang, Y. Sun, S. Liu, and J. Jia, “3dssd: Point-based 3d single stage object detector,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp- 11040-11048.

Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object
detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4490-4499.

Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,” Sensors,
vol. 18, no. 10, p. 3337, 2018.

S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. L. Pv-rcnn, “Pointvoxel feature
set abstraction for 3d object detection. in 2020 ieee,” in CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 10526-10 535.

T. Yin, X. Zhou, and P. Krahenbuhl, “Center-based 3d object detection and tracking,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021,
pp- 11784-11793.

J. Yang, H. Qian, Y. Xu, K. Wang, and L. Xie, “Can we evaluate domain adaptation models
without target-domain labels?” arXiv preprint arXiv:2305.18712, 2023.

Y. Wang, X. Chen, Y. You, L. E. Li, B. Hariharan, M. Campbell, K. Q. Weinberger, and
W.-L. Chao, “Train in germany, test in the usa: Making 3d object detectors generalize,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 713-11723.

Y. You, K. Luo, C. P. Phoo, W.-L. Chao, W. Sun, B. Hariharan, M. Campbell, and K. Q.
Weinberger, “Learning to detect mobile objects from lidar scans without labels,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
1130-1140.

54

[14] Z. Ding, Y. Hu, R. Ge, L. Huang, S. Chen, Y. Wang, and J. Liao, “Ist place solution
for waymo open dataset challenge—3d detection and domain adaptation,” arXiv preprint
arXiv:2006.15505, 2020.

[15] Q. Xie, E. Hovy, M. Luong et al., “Self-training with noisy student improves imagenet
classification. arxiv,” Learning, 2019.

[16] J. Li, R. Xu, X. Liu, J. Ma, B. Li, Q. Zou, J. Ma, and H. Yu, “Domain adaptation
based object detection for autonomous driving in foggy and rainy weather,” arXiv preprint
arXiv:2307.09676, 2023.

[17] S. Ahmed, A. Al Arafat, M. N. Rizve, R. Hossain, Z. Guo, and A. S. Rakin, “Ssda: Secure
source-free domain adaptation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 19 180-19 190.

[18] N. Hanselmann, N. Schneider, B. Ortelt, and A. Geiger, “Learning cascaded detection tasks
with weakly-supervised domain adaptation,” in 2021 IEEE Intelligent Vehicles Symposium
(1V). 1EEE, 2021, pp. 532-539.

[19] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. Lempitsky, “Domain-adversarial training of neural networks (2016),” URL https://arxiv.
org/abs/1505.07818, 2015.

[20] D. Tsai, J. S. Berrio, M. Shan, E. Nebot, and S. Worrall, “Ms3d++: Ensemble of experts for
multi-source unsupervised domain adaptation in 3d object detection,” IEEE Transactions on
Intelligent Vehicles, 2024.

[21] Z. Pang, Z. Li, and N. Wang, “Simpletrack: Understanding and rethinking 3d multi-object
tracking. arxiv,” arXiv preprint arXiv:2111.09621, 2021.

[22] C. Saltori, S. Lathuiliére, N. Sebe, E. Ricci, and F. Galasso, “Sf-uda 3d: Source-free unsuper-
vised domain adaptation for lidar-based 3d object detection,” in 2020 International Conference
on 3D Vision (3DV). 1EEE, 2020, pp. 771-780.

[23] J. Yang, S. Shi, Z. Wang, H. Li, and X. Qi, “St3d++: Denoised self-training for unsupervised
domain adaptation on 3d object detection,” arXiv preprint arXiv:2108.06682, 2021.

[24] B. Yang, M. Bai, M. Liang, W. Zeng, and R. Urtasun, “Auto4d: Learning to label 4d objects
from sequential point clouds,” arXiv preprint arXiv:2101.06586, 2021.

[25] X. Weng, J. Wang, D. Held, and K. Kitani, “3d multi-object tracking: A baseline and new
evaluation metrics,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2020, pp. 10 359-10 366.

[26] L.Fan,Y. Yang, Y. Mao, F. Wang, Y. Chen, N. Wang, and Z. Zhang, “Once detected, never lost:
Surpassing human performance in offline lidar based 3d object detection,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023, pp. 19 820-19 829.

55

[27] L. Zhang, A. J. Yang, Y. Xiong, S. Casas, B. Yang, M. Ren, and R. Urtasun, “Towards
unsupervised object detection from lidar point clouds,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp. 9317-9328.

[28] C.R. Qi, Y. Zhou, M. Najibi, P. Sun, K. Vo, B. Deng, and D. Anguelov, “Oftboard 3d object
detection from point cloud sequences,” in Proceedings of the IEEE/CVF Conference.

[29] T. Ma, X. Yang, H. Zhou, X. Li, B. Shi, J. Liu, Y. Yang, Z. Liu, L. He, Y. Qiao et al.,
“Detzero: Rethinking offboard 3d object detection with long-term sequential point clouds,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp.
6736-67417.

[30] Epic Games, “Unreal engine.” [Online]. Available: https://www.unrealengine.com

[31] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng et al.,
“Ros: an open-source robot operating system,” in ICRA workshop on open source software,
vol. 3, no. 3.2. Kobe, 2009, p. 5.

[32] M. Contributors, “MMDetection3D: OpenMMLab next-generation platform for general 3D
object detection,” https://github.com/open-mmlab/mmdetection3d, 2020.

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W, 2017.

[34] D. Yang, X. Cai, Z. Liu, W. Jiang, B. Zhang, G. Yan, X. Gao, S. Liu, and B. Shi, “Realistic rainy
weather simulation for lidars in carla simulator,” in 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 1EEE, 2024, pp. 951-957.

[35] F. Goudreault, D. Scheuble, M. Bijelic, N. Robidoux, and F. Heide, “Lidar-in-the-loop hyper-
parameter optimization,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023, pp. 13404-13414.

[36] P.Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai,
B. Caine et al., “Scalability in perception for autonomous driving: Waymo open dataset,” in

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2446-2454.

[37] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,”
International Journal of Robotics Research (IJRR), 2013.

[38] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain, S. Omari, V. Iglovikov,
and P. Ondruska, “One thousand and one hours: Self-driving motion prediction dataset,” in
Conference on Robot Learning. PMLR, 2021, pp. 409—418.

56

https://www.unrealengine.com
https://github.com/open-mmlab/mmdetection3d

	List of Abbreviations
	Introduction
	Background
	Methodology
	Evaluation and Results
	Conclusion
	Bibliography

