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ABSTRACT

Understanding and following human instructions is crucial for intelligent agents to interact with

humans in real-world environments. One formal problem setting designed to facilitate advancing

this direction of research is Vision-and-Language Navigation (VLN). VLN requires the agent to

carry out a sequence of actions in a photo-realistic simulated indoor environment in response to

natural language instructions. Although significant progress has been achieved in this direction,

navigation agents still have challenges understanding instructions and accurately grounding them in

their visual perception.

To elaborate, the challenges include 1) lacking explicit learning of spatial semantics in both text

and vision modalities, 2) difficulties in handling ambiguous instructions and the lack of explainability,

and 3) gaps in language understanding for navigation in realistic environments, such as continuous and

3D spaces. In this thesis, we develop new techniques to address these challenges. First, we explicitly

model spatial semantics to improve the navigation agent’s grounding by incorporating navigation

progress, the alignments between textual landmarks and visual objects, and the corresponding

spatial directions. Besides, we design specialized modules to capture distinct semantic aspects

through corresponding pre-training tasks, enabling the effective acquisition of the respective skills.

Second, to help agents deal with ambiguous instructions, we introduce a translator to convert the

original ambiguous instructions into easy-to-following instructions considering recognizable and

distinctive landmarks. The designed translator bridges the gap between the instruction given by

humans and the agent’s visual perception ability. Furthermore, to improve the explainability of the

decisions made by the agent, we introduce a language generator for the navigation agent to equip

it with the ability to generate explanations about navigation progress, navigation difficulties, and

observed visual objects in the selected target view. Such explanations enable the agent to explain

the situation from its own perspective, enhancing its ability to interact with humans effectively.

Third, to advance navigation in a more realistic setting, we contribute to language grounding

in continuous and 3D environments. For navigation in continuous environments, we introduce

a dual-action-perception module that integrates a low-level action decoder, jointly trained with



high-level action prediction. This design enables the VLN agent to learn and ground the selected

visual view to the corresponding low-level controls. Additionally, in 3D environments, we develop

techniques to enhance the agent’s situated spatial understanding, further improving its navigation

capabilities in 3D scenarios. We evaluate our proposed methods across different commonly-used

navigation benchmarks and provide comprehensive quantitative results and qualitative analysis.

The experimental results demonstrate the effectiveness of our explicit grounding modules, the

proposed pre-training tasks, and the synthesized data incorporating recognized and distinctive

landmarks, significantly enhance navigation performance, generalizability, and language grounding

ability. Additionally, our novel architectures designed for continuous and 3D environments push

the boundaries of navigation agent research to real-world scenarios. Notably, these advancements

contribute to improved interpretability of the agent’s decision-making process, offering deeper

insights into the rationale behind its navigational actions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Robot agents capable of interacting with humans provide significant benefits to humans daily

life. Understanding and following natural language instructions is critical for an intelligent agent

to interact with humans and the physical world. One of the designed formal problem settings

to make advancements in this research direction is Vision-and-Language Navigation (VLN) [4].

VLN requires an agent to carry out a sequence of actions in a photo-realistic simulated indoor

environment according to the natural language instructions and observed visual environment. To

conduct this task, the agent should be equipped with three abilities: understanding linguistic

semantics in the instructions, perceiving the visual images in the environment, connecting the two

modalities, and reasoning over both [152, 114]. Unlike other Vision and Language (VL) tasks,

such as Visual Question Answering (VQA), the VLN task is more challenging since the visual

information dynamically changes during navigation. Besides, VLN problem setting can be seen

as a Partially Observable Markov Decision Process (POMDP), where the agent relies heavily on

historical information to make the next action decision.

To be specific, as shown in Fig 1.1, at each navigation step, the agent observes the panoramic

views of the current visual environment and selects an action based on the given instructions.

The task is set in a single-turn scenario, where instructions provide initial guidance and remain

unchanged during the navigation. There are two distinct VLN settings: the Discrete Environment

Setting (VLN-DE) [4] and the Continuous Environment Setting (VLN-CE) [54]. Two settings

employ different simulators: VLN-DE uses Matterport3D [7], while VLN-CE uses Habitat 3D [90].

Another primary difference between these two settings lies in their action space. In VLN-DE,

the action space is the selection of images/views, where the agent selects candidate views from

panoramic views based on the connectivity graph. In VLN-CE, the action space is low-level controls

(LEFT/RIGHT/FORWARD/STOP), which are closer to real-world robot operations.

We use the following formulation of this problem in this thesis: given an instruction with a

1



Go to the clock on the wall. Go between the blue couch 
and counter. Go to the table with a plant on it.

Candidate
View1

VLN-DE 
(MP3D)

Candidate
View2

Candidate
View3

step1

step1

step2

steps

FORWARD
FORWARD

…

FORWARD

FORWARD
FORWARD

VLN-CE 
(HM3D)

[FORWARD, LEFT, 
RIGHT, STOP]

Panoramic
Views:

Instruction:

Figure 1.1 VLN Task Demonstration.

sequence of word tokens, denoted as 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝐿}, where 𝐿 is the number of tokens, the agent

observes a panoramic view including 36 viewpoints1 at each navigation step 𝑡. There are 𝑛 candidate

viewpoints that the agent can navigate to in panoramic images, denoted as 𝐼 = {𝐼1, 𝐼2, · · · , 𝐼𝑛}. The

agent infers an action 𝑎𝑡 that transfers the agent from state 𝑠𝑡 to a new state 𝑠𝑡 . The state consists of

navigation history and current spatial position. The process can be formulated as follows:

𝑠𝑡 , 𝑎𝑡 = NAV(𝑠𝑡−1, 𝑋, 𝐼), (1.1)

where NAV is the navigation agent. The agent needs to execute a sequence of actions close to a goal

destination. The navigation terminates when the navigation agent selects STOP action or reaches a

pre-defined maximum step.

The VLN task has attracted significant attention leading to many methods being proposed

to advance this direction of research [140]. The task is essentially formulated as a Sequence-to-

Sequence problem to generate an action sequence. The types of techniques have evolved dramatically

during the last few years. The baseline was based on Long Short-Term Memory (LSTM) [4, 106]

when the task was initially proposed, and the current state-of-the-art model relies on Transformer

architecture [39, 10]. At present, there is a growing trend towards exploring LLM-based navigation

agents [145, 79]. In a word, the VLN task serves as a valuable test bed for evaluating the effectiveness

of multimodal reasoning and embodied AI.
112 headings and 3 elevations with 30 degree interval.
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Walk past the door on the right of you,  and 
stop beside the table with TV.

Navigation Progress: which sub-instruction?
Landmark: door? table with chair?
Direction: Right? Left?

(a) Explicit Spatial Understanding and Grounding
(a)

Walk past the door on the right of you,  and
stop beside the table with chair.

Navigation Progress: which sub-instruction?
Landmark: door? table with chair?
Direction: Right? Left?

Spatial 
Information

Vision 
Perception

Mixed 
Information

Reach the entrance 
between the kitchen
and the living room.

where?

Enter the door and 
turn right passing 
the wall. which?

Which sub 
instruction need to 

be executed

What are the 
navigation 
difficulties?

What kind of objects 
in the selected view?

Speaker:

(a) Explicit Spatial Understanding and Grounding (b) Modulating Orientation and Visual Capability

(c) Addressing Instruction Ambiguity (d) Generating Explicit Explanations

Language
Grounding

(b)

3D Environment

left

forward

forward

(c)

Figure 1.2 Challenges of Language Grounding in the VLN Task.

1.2 Challenges and Contributions

Although numerous methods are proposed, most of the work focuses mainly on modeling

visual information and training strategies. However, our research primarily addresses improving

the navigation agent’s language understanding and grounding ability. Such ability is important to

help the agent comprehend text components in the instruction and align them within the visual

environment. We summarize the following three challenges for language grounding in the VLN task

and introduce our corresponding solutions in Fig. 1.2, which are also detailed below.

(a) Lacking Explicit Grounding with Entangled Vision and Spatial Understanding. Most

of VLN agents primarily rely on attention mechanisms to implicitly learn the correlation between

vision and text modalities. However, these approaches often mix different semantic elements from

both modalities, leading to an entangled representation that lacks explicit alignment. As shown in

Fig. 1.2 (a), it remains challenging to discern whether the failure of navigation comes from the agent

incorrectly identifying the progress of the navigation, locating the wrong landmark, or heading in

the wrong direction. Distinguishing these different aspects of semantics is important to help the

agent better understand instructions and further improve the interpretability of the agent’s actions.

Contributions. 1) We propose a method to explicitly align the spatial semantics in the linguistic

instructions and the visual environment. We first split a long and complex instruction into spatial

configurations, defined as the smallest spatial units containing various spatial components. We then

select the landmarks the agent should focus on based on navigation progress and align them with

the objects in the visual environment. We also model the spatial relations between landmarks and

the agent’s position. Our experimental results demonstrate that our explicit modeling helps with
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both navigation performance and the interpretability of the navigation agent. 2) Unlike previous

VLN agents that intertwine the learning of orientation and visual signals, we propose a method that

employs specialized modules to learn these signals independently. To achieve this, we introduce

specific pre-training tasks to distill more explicit spatial and visual knowledge, which is then

effectively utilized within the corresponding modules of the navigation agent. Our modular design

interacts with specialized pre-training tasks, enhancing the agent’s ability to adapt to downstream

navigation. Our results surpass the SOTA model on several navigation benchmarks.

(b) Ambiguous Instructions and Lack of Explainability. Although explicit spatial semantics

modeling can help the agent understand instruction, two types of instructions make the grounding

very challenging. First, when the instruction contains landmarks that may not be easily recognizable.

For example, in Fig. 1.2 (b), identifying the “kitchen” and the “living room” in the target view may

be less straightforward than the “sofa” and the “dining table”. Another challenge arises when

instructions contain landmarks that could potentially apply to multiple targets, such as “door” or

“wall”, which are often observed in every scene. These instructions cause the explicit and fine-grained

grounding to be less effective for the VLN task.

Contributions. 1) The first main idea of our work is to introduce a translator module in the

VLN agent, which takes the given instruction and visual environment as inputs and then converts

them to easy-to-follow sub-instruction representations focusing on two aspects. a) Recognizable

landmarks chosen based on the navigation agent’s visual perception ability. b) Distinctive landmarks

chosen to help the navigation agent distinguish the targeted viewpoint from the candidate viewpoints.

The translator enhances the connection between the given instruction and the agent’s observation

of the visual environment. We also construct a high-quality synthetic sub-instruction dataset and

design specialized tasks for pre-training the translator and navigation agent. We evaluate our method

on several navigation benchmarks to show its effectiveness. 2) The translator’s design relies on

implicit learning, making it challenging to explicitly interpret the ambiguities encountered by the

agent. To address this, we use a language model built in our VLN agent and jointly tune it to with

VLN task. We aim to generate natural language explanations that describe the agent’s difficulties
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in understanding instructions within the visual environment. Additionally, the explainer provides

justifications for the agent’s actions based on the navigation process’s rationale. To train the explainer,

we construct a synthetic dataset that aligns landmarks mentioned in the instructions with visible and

distinctive objects in the visual environment. Our empirical results indicate the effectiveness of our

approach and achieve SOTA when evaluated on VLN benchmarks.

(c) Language Understanding for Navigation in Continuous and 3D Environment. The

ultimate goal of VLN is to develop a navigation agent that can be deployed in real-world robot. While

most task settings and simulated environments are discrete, real-world environments are continuous

and require agents to develop a 3D understanding for planning low-level actions (as illustrated in

Fig 1.2 (c)). Recent VLN-CE (Continuous Environment) research has made significant advancements

in building more realistic simulated experimental settings by incorporating continuous environments.

However, existing VLN-CE agents exhibit weak grounding abilities, often overlooking the relationship

between instructions and corresponding low-level actions within the visual environment. Meanwhile,

large language models (LLMs) have shown promise in reasoning over 3D information, making them

a compelling choice for enhancing embodied navigation. Despite this, most current 3D-based LLMs

lack situated understanding—an essential capability for effective navigation in real-world settings.

Contributions. 1) To strengthen the language grounding ability of the VLN-CE agent, we

introduce a dual-action-perception module in which the agent selects high-level viewpoints while

generating low-level action sequences simultaneously. The high-level actions serve as guidance,

facilitating the agent’s understanding of the relationships between low-level actions and navigable

areas indicated by high-level actions. Our design enhances the VLN-CE agent’s spatial grounding

ability to connect actions with visual perception and language understanding. 2) To enhance

situated spatial understanding in 3D-based LLMs, we introduce a scalable LLM-generated dataset

that incorporates diverse situated spatial information, conditioned on the agent’s standpoint and

orientation. By fine-tuning existing 3D-based LLMs with our dataset, we significantly improve

their ability to comprehend spatial relationships in a 3D world. Moreover, the enhanced spatial

understanding shows strong generalization to navigation tasks without training on navigation datasets.
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1.3 Thesis Outline

We organize the thesis based on the challenges and contributions mentioned above.

Chapter 2 provides a comprehensive literature review of the aspects of the embodied AI, Vision

and Language, and the VLN task.

Chapter 3 introduces two methods for modeling explicit spatial semantics for the VLN

agent. First, we present an explicit grounding approach, the Explicit Object Relation Alignment

Agent (EXOR), which models spatial information in both instruction and visual environment explic-

itly. Next, we propose a neural navigation agent, Learning Orientation and Visual Signals (LOViS),

which learns spatial orientation and visual perceptions with disentangled modules. Additionally, we

design novel and specialized pre-training tasks to enhance the learning of these modules.

Chapter 4 introduces two methods to address ambiguous instructions. First, we design a

translator module for the VLN agent, named VLN-Trans, to transfer the original instruction to

the easy-to-follow sub-instructions representations focusing on the recognizable and distinctive

landmarks based on the agent’s visual abilities and observed visual environment. Second, we

introduce a hint generator, named NavHint, which provides detailed natural language descriptions

to assist the navigation agent. NavHint explains the agent’s reasoning process by generating the

rationale behind its actions during navigation.

Chapter 5 presents our advancements in developing navigation agents aimed at real-world

application. We introduce a VLN-CE agent equipped with a dual-action mechanism and a 3D-based

LLM model designed for situated spatial understanding. For the VLN-CE agent, we propose a

low-level action decoder jointly trained with high-level action prediction, allowing the agent to

learn and ground the selected visual view into low-level controls. For 3D-based LLMs, we introduce

Spartun3D (Situated Spatial Understanding of the 3D World), a scalable dataset designed to

enhance situated spatial reasoning in 3D world, thereby advancing navigation in 3D environment.

Chapter 6 provides a comprehensive summary of our research, highlighting key contributions

and insights. Additionally, we explore potential future directions, with an emphasis on leveraging

large generative models and compositional learning to enhance performance in embodied tasks.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides a comprehensive literature review of the background of this research, including

Embodied AI, Vision and Language Learning, Vision and Language Navigation datasets, evaluation

metrics, backbone architectures, and key approaches.

2.1 Embodied AI

Embodied Artificial Intelligence (Embodied AI) enables AI agents to learn through interactions

with their environment from an egocentric perception similar to humans [24]. Different from the

traditional AI algorithms to learn from datasets of images, videos or text collected primarily from

the Internet, Embodied AI aims to acquire knowledge through interaction with the environment

dynamically. Embodied AI has led to significant progress in embodied AI simulators that help

replicate the physical world. These simulators work as virtual testbeds to train and test embodied

AI agents before deploying them into the real world. The popular embodied AI simulators include

MP3D [7], Habitat3D [97, 104], AI2-THOR [50], VirtualHOME [84], iGibson [122], and etc.

Embodied AI simulators have also boosted a series of embodied AI research tasks, including

visual exploration, visual navigation, and embodied QA [24]. The tasks increase in complexity as

they advance from exploration to QA. In visual exploration, an agent gathers information about a 3D

environment through movement and visual perception, done before or concurrently with navigation

tasks. The agent is free to explore the environment with a limited number of steps before the start of

navigation [3] or builds the map as it navigates in an unseen environment [27, 75, 76]. In visual

navigation, an agent navigates in a 3D environment following a natural language instruction [3].

The challenging aspect of visual navigation is it requires agents to make action predictions based

on historical visual information and actions. Embodied QA is currently considered the most

complicated task in embodied AI research since it needs the agent to possess a wired range of

capabilities such as visual recognition, language understanding, question answering, commonsense

reasoning, task planning, and goal-driven navigation. A common framework of Embodied QA can

be divided into a navigation and a QA task, where the navigation is to explore the environment and
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the QA module is executed based on the previous paths when the agent decides to stop.

2.2 Vision and Language Learning

In the past few years, Computer Vision (CV) and Natural Language Processing (NLP) have

played important roles in deep learning research [126, 31, 101, 33, 119]. In addition to the

significant progress in single-modality pre-trained models, there has been an upsurge in this

research focused on pre-training large-scale models on both vision and language modalies, called

Vision-Language Pre-Training Models (VLMs). Such VLPs are supposed to learn universal cross-

modal representations, which are beneficial for achieving strong performance in downstream VL

tasks [133, 127, 32, 22, 140, 82].

Generally speaking, given image-text pairs, VLMs employ a text encoder and an image encoder

to extract image and text features and then learn the vision-language correlation with pre-training or

downstream training objectives. There are two types of mainstream vision and language pre-training

architecture. (1) Single-stream [65, 103, 68] fuses the language and vision representations by the

joint cross-modal encoder directly. Specifically, VisualBERT [65] utilize segment embedding to

indicate input elements from different sources. OSCAR [68] includes object tags detected from the

image rather than just focus on image-text pairs. However, single-stream architecture may neglect

intra-modality interaction since it directly applies self-attention between different modalities. (2)

Double-stream applies intra-modality processing to two modalities separately along with a shared

cross-modal encoder. It assumes that the intra-modal interaction and cross-modal interaction are

better to be separated to learn the corresponding representations. For example ViLBERT [72] utilizes

two transformers to model intra-modality interaction after the cross-modal module. LXMERT [105]

uses a self-attention sub-layer after cross-attention to learn internal connections for each modality.

ALBEF [64] employs two transformer before cross-attention to decouple the learning of modalities

before their interaction.

The VLM pre-training is usually guided by certain vision-language objectives that enable

to learn image-text relations from large scale vision and language dataset [89, 123, 125]. For

example, CLIP [89] utilizes an image-text contrastive objective to learn the representation that pull
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the paired images and texts close and pushing others faraway in the embedding space. This is

helpful to learn representations that perform zero-shot predictions. Following CLIP, the research

mainly focuses on transfer learning to adapt the pre-training VLMs towards various downstream

tasks [148, 147, 26, 131], such as the methods of prompt tuning [148], visual adaption [147], etc.

There is another research working on knowledge distillation to obtain knowledge from VLMs to

downstream tasks for better performance in object detection, semantic segmentation, etc [19, 29, 23].

2.3 Vision and Language Navigation

VLN [3] is a task where agents navigate within the environment by following natural language

instructions. The main challenging part of this task lies in the agent’s requirement to make action

decisions based on visual perception, language understanding, and history memories. Unlike VL

tasks like Visual Question Answering (VQA) and image captioning, which typically take a single

input question and static images as input, the images in the VLN task dynamically change [130].

The VLN agent needs to ground language to new visual information while considering historical

information. The VLN task is crucial for the Intelligent Agent as its broad applications such as

autonomous driving, virtual assistants, and augmented reality. In the following sub-sections, we

introduce VLN from the aspects of its simulator and dataset, evaluation metrics and solutions.

2.3.1 Simulator and Dataset

Our primary focus is the indoor navigation task, leveraging the Matterport3D [7] and Habitat [97]

simulators. Matterport3D [7] contains 10800 panoramic views of 90 scenes, including houses,

apartments, hotels, and offices. It supports the agent collecting surrounding visual information,

including the simulated RGB and depth images, as well as semantic segmentation. Habitat [97]

provides a diverse collection of highly detailed 3D environments, including geometry, texture, and

lighting. It offers the visual details for the navigation agent with RGB images, depth maps, and

semantic segmentation. With the introduction of the simulators, many navigation datasets were

introduced [4, 55, 48, 108]. We mainly work on three VLN datasets: Room-to-Room (R2R) [4],

R4R [48] and R2R-CE [54].

R2R is built upon the Matterport3D dataset. The instructions in the R2R are fine-grained
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navigation commands, such as "Walking pass between the living room and kitchen, and stop beside

the sofa." This dataset has 7198 paths and 21567 instructions with an average length of 29 words.

The whole dataset is partitioned into training, seen validation, unseen validation, and unseen test

set. The seen set shares the same visual environments as the training set, while unseen sets contain

different environments. There are 4675 trajectories and 340 trajectories in 61 visual scenes for the

train set and validation seen set, respectively. Each path is paired with more than 3 instruction. For

the validation unseen set, there are 783 trajectories in 11 scenes.

R4R extends the R2R dataset with longer instructions and trajectories by concatenating two

adjacent tail-to-head trajectories in R2R. Different from R2R, the trajectories in R4R are less biased

as they are not necessarily the shortest path from the start viewpoint to the destination. It also

contains three sets: train (61 scenes, 233, 613 instructions), validation seen (61 scenes, 1, 035

instructions), and validation unseen (11 scenes, 45, 162 instructions).

R2R-CE VLN-CE uses the Habitat 3D [104] to render environment observations based on the

MP3D dataset [7]. The dataset statistics are the same as the R2R.

2.3.2 Evaluation Metrics

Three main metrics are used to evaluate navigation wayfinding performance [4]: (1) Navigation

Error (NE): the mean of the shortest path distance between the agent’s final position and the goal

destination. (2) Success Rate (SR): the percentage of the predicted final position being within

3 meters from the goal destination. (3) Success Rate Weighted Path Length (SPL): normalizes

success rate by trajectory length. Another three metrics are used to measure the fidelity between

the predicted and the ground-truth trajectory. (4) Coverage Weighted by Length Score (CLS) [48]

(6) nDTW [47]: Normalized Dynamic Time Warping: penalizes deviations from the ground-truth

trajectories. (6) Normalized Dynamic Time Warping weighted by Success Rate (sDTW) [47]:

penalizes deviations from the ground-truth trajectories and also considers the success rate.

2.3.3 Main Techniques

The VLN baseline model is first proposed by [4] with the R2R dataset that extends the instruction

following to the photo-realistic simulated environments. Subsequent studies have emerged with
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an emphasis on enhancing navigation performance through multi-modal learning [36, 60, 136,

1, 134], map representation learning [41, 9, 2], graph-based explorations [150, 111, 12], data

augmentation [118, 61, 57, 56, 58, 117], large language modeling [146, 8, 109, 87], and auxiliary

reasoning tasks or pre-training proxy tasks to guide the navigation agent to learn textual and visual

representations [151, 10, 34, 88, 137]. In the following sections, we begin by presenting two basic

architectures (LSTM-based and Transformer-based) of the VLN agent. Then, we introduce works

that focus on enhancing the language grounding and generation ability of the VLN agent.

LSTM-based VLN Agent. The earlier models mostly depend on the LSTM-based based sequence-

to-sequence architecture for encoding the text and visual information, establishing the connections

with the attention mechanism, and decoding the actions [4, 73, 25]. The encoder is a bidirectional

LSTM-RNN with an embedding layer to obtain language representation, denoted as [𝑠1, 𝑠2, · · · , 𝑠𝑙] =

𝐵𝑖𝐿𝑆𝑇𝑀 (𝐹 (< 𝑥1, 𝑥2, · · · , 𝑥𝑙 >), where 𝐹 represents the embedding function. The decoder is also an

attentive LSTM-RNN. At each decoding step 𝑡 of navigation, the agent first attends to the panoramic

image representation 𝑓 𝑝 with the previous hidden context feature ℎ̃𝑡−1. The visual representation

of 𝑖 − 𝑡ℎ panoramic image is denoted as 𝑓 𝑝
𝑖
= [𝑅𝑒𝑠𝑁𝑒𝑡 (𝐼 𝑝

𝑖
); 𝑑𝑖], which is the concatenation of the

ResNet visual features 𝑅𝑒𝑠𝑁𝑒𝑡 (𝑣𝑝
𝑖
) and the corresponding 128 dimensional direction encoding 𝑑𝑖.

The direction encoding for panoramic images 𝑑𝑖 is the replication of [𝑐𝑜𝑠𝜃𝑖, 𝑠𝑖𝑛𝜃𝑖, 𝑐𝑜𝑠𝜙𝑖, 𝑠𝑖𝑛𝜙𝑖] by

32 times, where 𝜃𝑖 and 𝜙𝑖 are the angles of heading and elevation of 𝑖𝑡ℎ panoramic image. The

attentive panoramic visual feature 𝑓 𝑝𝑡 is computed by 𝑓
𝑝
𝑡 = 𝑆𝑜 𝑓 𝑡𝐴𝑡𝑡𝑛(𝑄 = ℎ̃𝑡−1, 𝐾 = 𝑓

𝑝
𝑡 , 𝑉 = 𝑓

𝑝
𝑡 ),

and then is used as input to the LSTM of the decoder to represent the agent’s current state as,

ℎ𝑡 = 𝐿𝑆𝑇𝑀 ( [𝑎𝑡−1; 𝑓 𝑝𝑡 ], ℎ̃𝑡−1), (2.1)

where 𝑎𝑡−1 is the selected action direction of the previous navigation step, and ℎ̃𝑡−1 is the hidden

context after considering the grounded objects.

Transformer-based VLN Agent. Compared with conventional methods, the Transformer-based

model in VL tasks show great improvements [105, 13, 72, 68]. The VLN needs to learn the corre-

spondence between language and dynamic visual observation by interacting with the environment.

In the past few years, the VLN task has been formulated as a dynamic grounding problem between
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texts and images. PRESS [59] firstly fine-tunes a pre-trained language model BERT to obtain the text

representation. PREVALENT [34] trains a VL Transformer with a large amount of image-text-action

triplets to learn cross representations for the navigation task. RecBERT [40] designs a state unit to

store history information and train Transformer recurrently for the direct navigation. HAMT [10]

proposes to explicitly encode all past observations and actions as history. Also, they improve the

performance by changing the fixed vision features to the Vision Transformer, ViT [20].

VLN⟳BERT is the most popular backbone of the Transformer-based navigation agent. It is a

cross-modal Transformer-based navigation agent with a specially designed recurrent state unit. At

each navigation step, the agent takes three inputs: text representation, vision representation, and

state representation. The text representation 𝑋 for instruction𝑊 is denoted as 𝑋 = [𝑥1, 𝑥2, · · · , 𝑥𝐿].

The vision representation 𝑉 for candidate viewpoints 𝐼 is denoted as 𝑉 = [𝑣1, 𝑣2, · · · , 𝑣𝑛]. The

recurrent state representation 𝑆𝑡 stores the history information of previous steps and is updated

based on 𝑋 and 𝑉𝑡 at the current step. The state representation 𝑆𝑡 along with 𝑋 and 𝑉𝑡 are passed to

cross-modal transformer layers and self-attention layers to learn the cross-modal representations and

select an action, as follows:

𝑋̂, 𝑆𝑡 , 𝑉𝑡 = 𝐶𝑟𝑜𝑠𝑠_𝐴𝑡𝑡𝑛(𝑋, [𝑆𝑡 ;𝑉𝑡]), (2.2)

𝑆𝑡+1, 𝑎𝑡 = 𝑆𝑒𝑙 𝑓 _𝐴𝑡𝑡𝑛(𝑆𝑡 , 𝑉𝑡), (2.3)

we use 𝑋̂ , 𝑆𝑡 , 𝑉𝑡 to represent text, recurrent state, and visual representations after cross-modal

transformer layers, respectively. The action is selected based on the self-attention scores between 𝑆𝑡

and 𝑉𝑡 . 𝑆𝑡+1 is the updated state representations and 𝑎𝑡 contains the probability of the actions.

Explicit Grounding in the VLN Agent. Mainstream works use Transformer-based models

to implicitly capture cross-modality information and demonstrate outstanding navigation perfor-

mance [40, 34, 30, 10]. There are works modeling the semantic structure explicitly enhances the

textual-visual matching [36, 37, 86, 134, 59]. RelGraph [36] builds an implicit language-visual

entity relation graph to learn the connection between the text and vision modalities. SpC-NAV [134]

first splits the long instructions into spatial configurations [17, 134, 51]. Then, they explicitly align
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the landmarks and spatial relations in the spatial configuration to the corresponding information

in the visual modality. OAAM [86] attempts to decompose the instruction into action and object

phrases and relate them to the visual environment to make the final decisions. NvEM [1] extends

OAAM to divide the object modules into subject and reference modules and fuse the information

from the neighbor views.

Language-Capable VLN Agent. Equipping the navigation agent with the ability to generate textural

instructions is one of the primary methods to augment data and improve the agent’s generalization

ability and explainability. Early works employ the Speaker-Follower framework [25] to produce

synthetic VLN instructions. In this framework, a speaker is trained offline using annotated R2R

instructions and generates new instructions based on sequences of panoramas along a trajectory.

These generated instructions are subsequently employed as augmented data to train the follower.

[106] then improves such a Speaker-Follower agent by adding noise into the environment so that the

speaker can generate more diverse instructions to further improve the generalizability of the agent.

[71] propose to generate cross-connected house scenes as augmented data via mixuping environment

to construct difficult paths for the follower and generate the paired instructions as augmentation

data. Different from the above-introduced Speaker-Follower methods that integrate the speaker

and follower piplines, there are methods working on optimizing two components simultaneously.

For example, [21] focus on improving the speaker model to generate higher-quality instruction by

directly obtaining feedback from the follower so that the generated instruction is more suitable

for the follower. LANA [113] is a language-capable navigation agent which not only executes

human-written instructions but also provides route descriptions to humans at the same time. [142]

propose an instruction-trajectory compatibility model that operates without reference instruction to

improve instruction evaluation.
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CHAPTER 3

EXPLICIT SPATIAL UNDERSTANDING AND GROUNDING

3.1 Introduction

Many VLN agents have been developed to establish the connection between text and vision

modalities using an attention mechanism to relate the tokens from a given instruction to the images

in a panoramic photo [4, 25, 73, 124]. While these models enhance navigation performance, there

is no clear evidence that the agent can effectively align components of the visual environment with

the natural language instructions [37]. Surprisingly, prior research [45] has shown that successful

navigation is still possible even in the absence of visual information, suggesting that these models

may not rely on multimodal grounding to make action decisions. This observation highlights the

critical need for a more comprehensive investigation into the grounding capabilities of VLN agents,

particularly in their ability to establish explicit correspondences between semantic elements in

navigation instructions and their visual counterparts in the environment.

Two fundamental abilities are crucial for a navigation agent: spatial reasoning and visual

perception. For example, spatial reasoning enables the agent to interpret directional instructions

such as “90-degree left-turn” or “on your right”. Visual perception allows the agent to recognize

and identify landmarks mentioned in the instructions, such as “walk to the sofa” or “pass the

table”. To effectively integrate these capabilities, the agent must align motion-related and landmark-

related tokens with their corresponding visual representations. This requires understanding spatial

relationships to head to the accurate direction and associating objects in the environment with their

textual references. In this chapter, we introduce two neural navigation agents designed to enhance a

VLN agent’s grounding ability from these two perspectives.

The first navigation agent, named Explicit Object Relation Alignment Agent (EXOR) [136] is

developed to explicitly align the spatial semantics between linguistic instructions and the visual

environment. Specifically, we first split the long instruction into spatial configurations [17, 134],

and then we select the important landmarks based on such configurations. After that, in the visual

environment, we retrieve the most relevant objects according to their similarity with the selected
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landmarks in the instructions. Moreover, we obtain textual spatial relation encoding to model

the spatial relations between the agent and landmarks in the textual instructions, and use visual

spatial relation encoding to represent the relation between agent and the image in the visual

environment. We then establish a mapping between the two encodings to achieve a better alignment.

Finally, we use the representations of the aligned objects and spatial relations to enrich the vision

representations.

The second navigation agent, called Learning Orientation and Visual Signals (LOViS) [137],

has different modules to select actions based on orientation and vision perspectives separately.

Moreover, we design specific pre-training tasks to distill spatial and visual knowledge independently,

which is better utilized in the corresponding modules in our navigation agent. This is different from

the majority of methods employing pre-training tasks without considering the needs of the target

downstream tasks. Our modular design interacts with modular pre-training, guiding the agents to

generate specialized representations which can be better adapted to the downstream tasks.

We evaluate our method on the R2R benchmark, and conduct comprehensive ablation studies

to further validate the effectiveness of our proposed grounding components. Additionally, we

provide qualitative examples to illustrate how our agents leverage different semantics to make action

decisions. In summary, our contributions are summarized as follows:

1.We focus on different semantic aspects of instructions, particularly visual perception and

spatial reasoning. We explicitly model these two aspects from both the instructions and the visual

environment, and align them to enhance the agent’s navigation performance and the interpretability

of its actions.

2. We design two separate modules to capture the orientation and visual information signals

for the VLN agent. This enables the agent to select an action more effectively by leveraging both

information sources. We design new pre-training tasks to emphasize (a) learning spatial reasoning

and grounding the orientation information in the environment; (b) learning visual perception and

grounding landmark mentions in the environment. These pre-training representations are utilized in

the corresponding modules in the navigation model.
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(a) Spatial Configuration Scheme

(b) Spatial Configuration Annotation

Figure 3.1 Spatial configuration example.

3. Our experimental results demonstrate that our explicit modeling enhances the VLN agent’s

grounding ability and improves overall navigation performance.

3.2 EXOR: Explicit Object Relation Alignment

Fig 3.2 shows the EXOR model architecture. The model has four sub-modules, (1) Spatial

Configuration (2) Select top-k landmark selection (3) Landmark-Object alignment (4) Landmark-

Object Spatial Relation relation alignment. The text highlighted in green and yellow in (1) shows

motion indicators and landmarks, respectively. The red arrow in (4) is the initial agent heading (i.e.

orientation).

3.2.1 Spatial Configuration

A spatial configuration is the smallest linguistic unit that describes the location/trans-location of

an object with respect to a reference or a path that can be perceived in the environment. It contains

fine-grained spatial roles, such as motion indicator, landmark, spatial indicator, trajector. Essentially,

each spatial configuration forms a sub-instruction in our setting. Fig. 3.1 shows an example of

splitting an instruction into its corresponding spatial configurations and the extracted spatial roles.

The instruction "Move to the table with chair, and stop." can be split into two spatial configurations:

"move to the table with chair" and "stop". In configuration1, "move" is the motion indicator; "to" is

a spatial indicator; "table" is the landmark. "table with a chair" is a nested spatial configuration
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of configuration1. The role of "table" is trajector; "with" is a spatial indicator; and "chair" is a

landmark. In configuration 2, "stop" is a motion indicator. A spatial configuration is the smallest

linguistic unit that describes the location/trans-location of an object with respect to a reference

or a path that can be perceived in the environment. It contains fine-grained spatial roles, such as

motion indicator, landmark, spatial indicator, trajector. Essentially, each spatial configuration forms

a sub-instruction in our setting. Previous research argues representing the semantic structure of the

language could improve the reasoning capabilities of deep learning models [17, 143]. There are

relevant works modeling the meaning of spatial semantics in probabilistic models [49, 107] and

neural models [93, 28]. However, its impact on deep learning models for navigation remains an

open research problem.

To obtain the configurations in a navigation instruction, we first split the instructions into

sentences. Then we design a parser with rules applied on an off-the-shelf dependency parser1 to

extract all the verb phrases and noun phrases in each sentence. In general, each configuration contains

at most one motion indicator. Since we aim to process instructions and look for motions, we split

the sentences with the extracted verb phrases as motion indicators to obtain spatial configurations.

We do not separate the nested configurations with no motion indicator and keep them attached to the

dynamic configurations (i.e. the ones with motion-indicator). As shown in Figure 3.1, "table with

chair" is the nested spatial configuration of "move to the table with chair". Here, we only consider

the prepositions that are attached to verbs, and merge the spatial indicators and motion indicators

such as "move to" and use them together as the motion indicator. After that, we insert a pseudo

delimiter token after each configuration and identify their contained noun phrases as landmarks.

3.2.2 Landmark Selection

Landmark phrases in instructions are split into groups according to the spatial configuration. We

assign the attention weights of each spatial configuration to all its included landmarks. The attention

weights of landmarks are the same once they appear in the same configuration. Then we sort all

weighted landmarks and select the top-𝑘 important ones for the agent to focus on at each navigation
1https://spacy.io/
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Figure 3.2 Model architecture of EXOR.

step. Formally, each configuration contains 𝑛 landmarks, denoted as 𝐿 =< 𝐿1, 𝐿2, · · · , 𝐿𝑛 >. The

total number of landmarks is 𝑚 ∗ 𝑛 in 𝑚 spatial configurations. After sorting all landmarks based

on the spatial configuration weights 𝛽, we can obtain top-𝑘 selected landmark representations, as

𝐿̃ =< 𝐿̃1, 𝐿̃2, · · · , 𝐿̃𝑘 >. We obtain the best result when 𝑘 is 3.

3.2.3 Landmark-Object Alignment

After selecting the top landmarks, the next step is to align them with the corresponding objects in

the image. We use Faster-RCNN to detect 36 objects in each image, and the object representation of

the i-th image is𝑂𝑖 = [𝑜𝑖,1, 𝑜𝑖,2, · · · , 𝑜𝑖,36]. We compute the cosine similarity scores between the j-th

landmark in top-𝑘 landmarks and all objects in the i-th image, and select the object with the highest

similarity score as the most relevant object to the j-th landmark, as 𝑂̂𝑖,𝐿 𝑗
= 𝑚𝑎𝑥(𝑐𝑜𝑠_𝑠𝑖𝑚( 𝐿̃ 𝑗 , 𝑂𝑖)).

The aligned objects in the i-th image are denoted as 𝑂̂𝑖 = [𝑂̂𝑖,𝐿1 , 𝑂̂𝑖,𝐿2 , · · · , 𝑂̂𝑖,𝐿𝑘
]. We get

𝑘 aligned objects since we have top-𝑘 landmarks. Finally, we concatenate the aligned object

representations with the candidate image features 𝑓 𝑐. The 𝑖𝑡ℎ candidate image is represented as

𝑓
𝑝

𝑖
= [𝑅𝑒𝑠𝑁𝑒𝑡 (𝑣𝑐

𝑖
); 𝑑𝑖]. After aligned with the corresponding objects, its representation is updated

as 𝑓 𝑐
𝑖
= [ 𝑓 𝑐

𝑖
; 𝑂̂𝑐

𝑖
].
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3.2.4 Landmark-Object Spatial Relation Alignment

We model both textual spatial relations and visual spatial relations. On the text side, there are

mainly three different cases of spatial relations described in the navigation instructions.

• Case 1. Motions verbs, such as “turn left to the table";

• Case 2. Relative spatial relationships between agent and landmarks, such as “table on your

left";

• Case 3. Spatial relationships between landmarks, such as “vase on the table".

This work mainly investigates the spatial relations from the agent’s perspective, and we only model

the first two cases. We extract "landmark-relation" pairs for each landmark in the instructions (based

on syntactic rules). For Case 1, we pair the spatial relation with all landmarks in the configuration.

For example, “turn left to the table with the chair", the extracted pairs are {table-left} and {chair-left}.

For Case 2, we pair the relation with the related landmark. For example, “go to the sofa on the

right.”, the extracted pair is {sofa-right}.

We encode the spatial relations for the landmarks in six bits [𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑓 𝑟𝑜𝑛𝑡, 𝑏𝑎𝑐𝑘, 𝑢𝑝, 𝑑𝑜𝑤𝑛]

as the textual spatial relation encoding. Each bit is set to 1 for the landmark if its paired relation

has the corresponding relation. On the image side, we encode the same six spatial relations as the

visual spatial relation encoding. We obtain the spatial relations of objects in the visual environment

based on the relative angle, the differences between the agent’s initial direction and the navigable

direction. The spatial relations are the same for all objects if they are in the same image.

Formally, for the obtained top-𝑘 landmarks, we denote their spatial encoding as 𝑅 𝐿̂ =

[𝑅 𝐿̂1 , 𝑅
𝐿̂
2 , · · · , 𝑅

𝐿̂
𝑘
]. For the top-𝑘 objects aligned with those landmarks, the spatial relations

in i-th navigable image are represented as 𝑅𝑂̂
𝑖
= [𝑅𝑂̂

𝑖,1, 𝑅
𝑂̂
𝑖,2, · · · , 𝑅

𝑂̂
𝑖,𝑘
]. We compute the inner product

of the spatial encoding between top-𝑘 landmarks and the top-𝑘 aligned objects to obtain the spatial

similarity score between the instruction and the i-th image, that is, 𝑠𝑖𝑚𝑅
𝑖
= 𝑅 𝐿̂ · 𝑅𝑂̂

𝑖
. Then we

concatenate each aligned object spatial encoding with the corresponding similarity score, denoted as

𝑂̂𝑖,𝑅 = [[𝑅𝑂̂
𝑖,1; 𝑠𝑖𝑚𝑅

𝑖,1], [𝑅
𝑂̂
𝑖,2; 𝑠𝑖𝑚𝑅

𝑖,2], · · · , [𝑅
𝑂̂
𝑖,𝑘

; 𝑠𝑖𝑚𝑅
𝑖,𝑘
]]. Finally, we further concatenate 𝑂̂𝑖,𝑅 with
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the candidate image features 𝑓 𝑐
𝑖

which is concatenated with the aligned object features , and i-th

candidate images features is updated as ˆ̂
𝑓 𝑐
𝑖
= [ 𝑓 𝑐

𝑖
; 𝑂̂𝑖,𝑔]. The updated image representations are

then used to make action decisions for the agent.

3.2.5 Action Prediction

After modeling alignment between landmark tokens in the instruction and visual objects, the

panoramic image feature is enriched with the aligned visual objects, and candidate image feature is

enriched with both visual objects and their spatial relations. Then based on the backbone sequence

to sequence agent, the probability of moving to the k-th navigable viewpoint 𝑝𝑡 (𝑎𝑡,𝑘 ) is calculated

as softmax of the alignment between the navigable viewpoint features and a context-aware hidden

output ℎ̃𝑡 , which can be calculate as

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎ [𝐶̃; ℎ𝑡]) (3.1)

𝑝𝑡 (𝑎𝑡,𝑘 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥( ˆ̂
𝑓 𝑐𝑖 𝑊𝑐 ℎ̃𝑡) (3.2)

where𝑊𝑐ℎ and𝑊𝑐 are learnt weights.

3.3 LOViS: Learning Orientation and Visual Signals

LOViS has three main modules: history module, orientation module, and vision module, as

depicted in Figure 3.3.
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3.3.1 History Module

History Module receives three types of inputs: state representation 𝑠𝑡 (see “state” in Figure 3.3),

text representation 𝑋 , and “vision-orientation” representations. To obtain “vision-orientation”

representation, we feed the concatenation of vision and orientation representations to a “vision-

orientation encoder" (see Figure 3.3). We denote “vision-orientation” representation as ˜𝑉𝑂 =

{𝑣𝑜1, 𝑣𝑜2, · · · , 𝑣𝑜𝑘 }. Then we use cross-modal attention layers and self-attention layers to obtain

the cross representation. In cross-modality attention Transformer layers, one modality is used as a

query and the other as the key to exchange information as follows,

𝑋̂, 𝑠𝑡 , ˆ𝑉𝑂𝑡 = 𝐶𝑟𝑜𝑠𝑠_𝐴𝑡𝑡𝑛(𝑋, [𝑠𝑡 ;𝑉𝑂𝑡 ]), (3.3)

where 𝑋̂ , 𝑠𝑡 , and ˆ𝑉𝑂𝑡 are respectively updated state, text and “vision-orientation” representations

after cross modality attention layers. Then state and “vision-orientation” representations are fed into

self-attention Transformer layers:

𝑠𝑡+1, 𝑝
ℎ
𝑡 = 𝑆𝑒𝑙 𝑓 _𝐴𝑡𝑡𝑛( [𝑠𝑡 ; ˆ𝑉𝑂𝑡 ]) (3.4)

where 𝑠𝑡+1 is the updated state after self-attention layers. 𝑝ℎ𝑡 is the self attention score between

state representations and “vision-orientation” representations. Note that the refinement of the state

representation only happens in the history module.

3.3.2 Orientation Module

Orientation information is vital for the navigation task. For example, the instruction, “turn left"

can assist the agent to ignore the navigable viewpoints on the right side. In our work, we build an

orientation module specifically to encourage the agent to learn the spatial information from the

instructions and ground it in the visual environment. Specifically, we linearly project the orientation

features 𝑂 via the “Orientation Encoder” (see Figure 3.3) to obtain its projected representation,

denoted as 𝑂̃. Then we input the state representation 𝑠𝑡 , text representation 𝑋 , and the projected

orientation representation 𝑂̃ to the cross-modality attention Transformer layer. The orientation

module learns a new state representation, denoted as 𝑠𝑜𝑡 , for orientation information (see “State-O’

21



in Figure 3.3). For cross-model attention layers, we have:

𝑋𝑜, 𝑠𝑜𝑡 , 𝑂̂𝑡 = 𝐶𝑟𝑜𝑠𝑠_𝐴𝑡𝑡𝑛(𝑋, [𝑠𝑜𝑡 ; 𝑂̃𝑡 ]) (3.5)

where 𝑋𝑜, 𝑠𝑜𝑡 , 𝑂̂𝑡 are updated state, text, orientation representations after cross modality attention

layers in the orientation module. Then we use the state representation enriched with the orientation

information to perform self-attention with orientation representations as follows.

𝑝𝑜𝑡 = 𝑆𝑒𝑙 𝑓 _𝐴𝑡𝑡𝑛( [𝑠𝑜𝑡 ; 𝑂̂𝑡 ]) (3.6)

where 𝑝𝑜𝑡 is the attention score between state representation and orientation feature.

3.3.3 Vision Module

Connecting mentioned landmarks in the instruction to the scene and objects in the visual

environment is also important to the navigation task. In the instruction, “enter into the bedroom and

move close to TV.”, The mentioned landmarks, such as “bedroom” and “TV”, provide apparent clues

for the navigation actions. Like the orientation module, we build a vision module to ground the text

landmarks in the visual scene and objects. Specifically, we first project vision representations𝑉 (refer

to the notations in Section 2.3.3) using “Vision Encoder” (see Figure 3.3) to obtain the projected

visual representation, denoted as 𝑉̃ . Then we input the state representation 𝑠𝑡 , text representation

𝑋 , and projected vision representation 𝑉̃ to the cross-modal attention and self-attention layers as

follows,

𝑋̂𝑣 , 𝑠𝑣𝑡 , 𝑉̂𝑡 = 𝐶𝑟𝑜𝑠𝑠_𝐴𝑡𝑡𝑛(𝑋, [𝑠𝑣𝑡 ; 𝑉̃𝑡 ]), (3.7)

𝑝𝑣𝑡 = 𝑆𝑒𝑙 𝑓 _𝐴𝑡𝑡𝑛( [𝑠𝑣𝑡 ; 𝑉̂𝑡 ]), (3.8)

where 𝑠𝑣𝑡 is the new state representation considering visual information (see “State-V” in Figure 3.3).

𝑋𝑣, 𝑠𝑣𝑡 , 𝑉̂𝑡 are updated state, text, vision representations after cross modality attention layers in the

vision module. 𝑝𝑣𝑡 is the attention score between state representation and vision representations.

3.3.4 Action Selection

For each navigable viewpoint, we obtain the self-attention scores from 1) orientation state

representation to its orientation representation (orientation module), 2) vision state representation to
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the vision representation (vision module), 3) state representation to the combined orientation and

visual representations (history module). We combine these scores as follows:

𝑝𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑊𝑎 [𝑝ℎ𝑡 ; 𝑝𝑜𝑡 ; 𝑝𝑣𝑡 ]) (3.9)

where 𝑤𝑎 is the trainable parameter, and 𝑝𝑡 denotes the action probability that weights different

module scores.

3.3.5 Pre-training Tasks

We follow the model architecture of PREVALENT [34] to obtain the joint cross representations

trained on text-image-action triplets, as shown in Figure 3.4. However, the novelty of our pre-training

is that we design new tasks named Vision Matching (VM) and Orientation Matching (OM) to

pretrain for the vision module and orientation module designed in our navigation agent, as shown

in Figure 3.3. Moreover, we improve the existing pre-training tasks of the PREVALENT, Masked

Language Modeling (MLM) and Single Step Action Prediction (SSAP), to obtain a more effective

initialization of our new architecture. Here, we describe the details of all the pre-training tasks. In

the following tasks, we denote each instruction-trajectory pair in training set 𝐷 as < 𝑤, 𝜏 >.

Masked Language Modeling (MLM) Different from PREVALENT [34] masking of random

tokens, we mask direction and landmark tokens with 8% probability and replace them with special

token [𝑀𝐴𝑆𝐾]. The goal is to recover landmark or orientation tokens 𝑤𝑚 by reasoning over the
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surrounding words 𝑤\𝑚, and the orientation and visual observation at the each navigation step. We

denote the combination of orientation and vision features of panorama views as 𝑉𝑂𝑝. Landmark

tokens are usually the token related to scene or objects in the visual environment, such as “ table”,

“sofa”, and “bedroom”. We extract nouns as landmark tokens based on their pos-tag. The direction

tokens usually convey spatial information, such as “left”, “right”, and “forward”. We obtain direction

tokens using a direction dictionary built upon R2R training dataset. The loss of MLM is calculated

as follows,
L𝑀𝐿𝑀 = −E𝑉𝑂𝑝˜𝑃 (𝜏 ) , (𝑤,𝜏 )˜𝐷 log 𝑃(𝑤𝑚 |𝑤\𝑚, 𝑉𝑂 𝑝), (3.10)

Single Step Action Prediction (SSAP) PREVALENT [34] selects actions by mapping the [𝐶𝐿𝑆]

representations to the 36 classes directly, which may cause the loose connection between cross-modal

representations of the viewpoints and the action space. To address this issue, we use the cross

attention distribution from the [𝐶𝐿𝑆] representation to the images in the panoramic view to select

an action. We use the cross-entropy loss to compute the loss of SSAP, as follows,

L𝑆𝑆𝐴𝑃 = −E𝑂𝑉 𝑝˜𝑃 (𝜏 ) , (𝑤,𝜏 )˜𝐷 log 𝑃(𝑎 |𝑤 [𝐶𝐿𝑆 ] , 𝑉𝑂 𝑝), (3.11)

where 𝑎 is the ground-truth action.

Vision Matching (VM) is our novel pre-training specific for initializing our vision module. It

predicts whether the current vision information can match with the instruction. In this task, to

encourage the agent to focus on learning the connection between landmarks in the instruction and

the scene objects in the visual environment, we only use the vision representation (i.e. excluding the

heading and elevation) of viewpoint as the input, denoted as 𝑣𝑝. We generate the negative samples

by replacing the ground-truth images with an images from another environment. We use the output

representation of the [𝐶𝐿𝑆] as the joint representation of textual and visual features to feed to a

fully connected layer with a sigmoid function. This layer predicts the matching score 𝑠(𝑤, 𝑣𝑝). The

loss of SSAP is computed as follows,

L𝑉𝑀 = −E𝑣𝑝˜𝜏,(𝑤,𝜏)˜𝐷 [𝑦 log 𝑃 + (1 − 𝑦) log 𝑃)], (3.12)
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Val Seen Val Unseen Test(Unseen)
Method SR ↑ SPL ↑ SDTW ↑ SR ↑ SPL↑ SDTW↑ SR ↑ SPL ↑

1 Speaker-Follower [25] 0.54 - - 0.27 - - - -
2 Env-Drop [106] 0.55 0.53 - 0.47 0.43 - - -
3 Env-Drop* [106] 0.63 0.60 0.53 0.50 0.48 0.37 0.50 0.47
4 OAAM* [86] 0.65 0.62 0.53 0.54 0.50 0.39 0.53 0.50
5 Entity-Relation [36] 0.62 0.60 0.54 0.52 0.50 0.46 0.51 0.48
6 SpC-NAV [134] 0.65 0.61 - 0.45 0.42 - 0.46 0.44
7 EXOR 0.60 0.58 0.53 0.52 0.49 0.46 0.49 0.46

Table 3.1 Experimental results for EXOR compared to LSTM-based VLN agents.

where 𝑃 = 𝑠(𝑤, 𝑣𝑝), and 𝑦 ∈ {0, 1} indicates whether the sampled viewpoint-instruction pair is

matching.

Orientation Matching (OM) is the second novel pre-training task designed to learn the orientation

representations. We propose to predict the current orientation based on the instruction and the initial

orientation. As described before, the orientation feature 𝑂𝑝 is the combination of the heading 𝛼 and

elevation 𝛽. We use the output representation of [𝐶𝐿𝑆] as the joint representation of instruction

and orientation. Then we feed this to a fully connected layer to predict 4-bits of orientation features.

The loss of OM is computed as follows,

L𝑂𝑀 = −E𝑜𝑝˜𝜏, (𝑤,𝜏 )˜𝐷 log 𝑝(𝑂′ |𝑤 [𝐶𝐿𝑆 ] , 𝑂 𝑝), (3.13)

where 𝑂′ is the ground-truth orientation feature. The full pre-training objective is

L𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 = L𝑀𝐿𝑀 + L𝑆𝑆𝐴𝑃 + L𝑉𝑀 + L𝑂𝑀 . (3.14)

3.4 Experiments

3.4.1 Experimental Results

Table 3.1 shows the performance of EXOR compared with LSTM-based VLN agents on unseen

validation and test set. Notably, EXOR achieves significantly improved navigation performance

compared to the baseline SpC-NAV, which also models explicit grounding between text and vision

modalities. This demonstrates that EXOR not only enhances navigation capabilities but also

strengthens grounding abilities, leading to more effective alignment between linguistic and visual
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Val seen Val Unseen Test(Unseen)
Method NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL ↑

1 PRESS [67] 4.39 0.58 0.55 5.28 0.49 0.45 5.49 0.49 0.45
2 PREVALENT [34] 3.67 0.69 0.65 4.71 0.58 0.53 5.30 0.54 0.51
3 AirBERT [30] 2.68 0.75 0.70 4.01 0.62 0.56 4.13 0.62 0.57
4 RecBERT [40] 2.90 0.72 0.68 3.93 0.63 0.57 4.09 0.63 0.57
5 HAMT [10] - 0.69 0.65 - 0.64 0.58 - - -
6 RecBERT 2.99 0.71 0.66 4.03 0.61 0.56 4.35 0.61 0.57
7 Our pretrain + RecBERT 2.90 0.74 0.69 3.75 0.63 0.58 4.20 0.63 0.57
8 Our pretrain + LOViS (our model) 2.40 0.77 0.72 3.71 0.65 0.59 4.07 0.63 0.58

Table 3.2 Experimental results for LOViS compare to Transformer-based VLN agents.

Val Seen Val Unseen
Method NE↑ SR↑ SPL↑ CLS↑ nDTW↑ sDTW↑ NE↓ SR↑ SPL↑ CLS↑ nDTW↑ sDTW↑

EnvDrop* [106] - 0.52 0.41 0.53 - 0.27 - 0.29 0.18 0.34 - 0.09
OAAM [86] - 0.56 0.49 0.54 - 0.32 - 0.29 0.18 0.34 - 0.11
NvEM [1] 5.38 0.54 0.47 0.51 0.48 0.35 6.80 0.38 0.28 0.41 0.36 0.20

RecBERT [40] 4.82 0.56 0.46 0.50 0.56 0.38 6.48 0.43 0.32 0.41 0.42 0.21
LOViS (our model) 4.16 0.67 0.58 0.56 0.58 0.43 6.07 0.45 0.35 0.45 0.43 0.23

Table 3.3 Experimental Results for comparing LOViS with the baseline Models on R4R dataset.

inputs. EXOR is better than the baseline (Env-Drop) even with their augmented data [106] (Row#3),

showing our improved generalizability. Compared with OAAM (row#4), which learns object-vision

matching with the augmented data, EXOR gets better SDTW, indicating that our agent can genuinely

follow the instructions to the destination. However, Ent-Rel achieves better results than our method.

Table 3.2 shows the experimental results of LOViS compared to other Transformer-based VLN

methods on R2R benchmark. In this table, From row#1 to row#5 are Transformer-based navigation

agents that largely have improved the performance of the LSTM-based agents, as shown in Table ??.

PREVALENT [34] pre-trains the cross-modal representations with text-image-action triplets and

replaces the encoder of Env-Drop [106] to improve its performance. AirBERT [30] is one of the

SOTA methods that train a model on a large scale and diverse in-domain detests. RecBERT[40] ,

our baseline, is also a SOTA method that uses the attention distribution of the history information

on navigation candidates to determine the next action. Row#4 is their own reported results in their

paper, and row#6 shows our best reproduced results which is consistent with the reported results

in [71]. Row#7 and row#8 are the performance of our LOViS model. We first show the effectiveness
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Val Seen Val Unseen
Method SR↑ SPL↑ SDTW↑ SR↑ SPL↑ SDTW↑

1 Env-Dropout [106] 0.55 0.53 0.49 0.47 0.43 0.37
2 Lan-Obj 0.59 0.55 0.52 0.50 0.48 0.43
3 Lan-Obj+Rel 0.60 0.58 0.53 0.52 0.49 0.46
4 Lan-Obj+Rel_v 0.59 0.56 0.52 0.52 0.47 0.44

Table 3.4 Ablation Study for EXOR.

of our pre-training on the baseline model. Our pre-training setting can improve the SR and SPL

of baseline by about 2% in the unseen validation environment. Moreover, we further improve the

performance of the baseline with our designed navigation model and the pre-training setting. The

improvement is about 3% of SR and SPL in the seen environment and 2% of SR in the unseen

validation and test environment. This result indicates our pre-training tasks are more suitable for our

designed navigation model. We also obtain a lower NE showing that our agent navigates closer to

the destination. For HAMT [10], we report their results with ResNet-152 as the vision encoder for a

fair comparison. Table 3.3 shows the performance of LOViS compared various models on R4R

benchmark. Same as R2R, we can better perform in all evaluation metrics. Compared to the our

reproduced results of the RecBERT [36], we can improve 4% of CLS, 1% of nDTW, and 2% of

sDTW in the unseen validation environment, which indicates the better fidelity of our model.

3.4.2 Ablation Study

EXOR. Table 3.4 shows the ablation study results. Row#1 is the baseline model. Row#2 (Lan-

Obj) shows that explicitly modeling important landmarks and aligned objects improves the per-

formance compared to the baseline. Rel (row#3) is the result after modeling the spatial relation

tokens describing the relative relation between agent and landmark. Rel_v (row#4) is the result after

modeling the spatial relations in motions. The improved SDTW shows the modeling of spatial

relations can help the agent to follow the instructions. However, the spatial terms directly describing

the landmark are more helpful than the spatial terms in motions.

Different Pre-training Tasks for LOViS. In Table 3.5, we show the influence of each pre-

training task on both RecBERT and LOViS. For RecBERT baseline model, SSAP shows about

2% of improvement on both seen and unseen environments. Although the tasks of VM and OM
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Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

step1
Viewpoints:

Instructions:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

step3

Viewpoints:

Instructions:

step4
Viewpoints:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.Instructions:

step5
Viewpoints:

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.Instructions:

step2

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.
Instructions:

Viewpoints:

Figure 3.5 An example visualization of the navigation process in EXOR. The green boxes are spatial
configurations; the darker green means higher weights; the yellow boxes are the selected landmarks;

the orange arrows are the path.

independently do not change the performance of MLM+SSAP, the combination of two tasks improves

the performance by about 1%. The same phenomenon happens in LOViS. SSAP improves the

performance by a large margin. Although VM and OM do not show significant improvement when

used separately in the unseen environment, they improve both SR and SPL in the seen environment.

The combination of VM and OM improves the performance significantly, especially in the seen

environment.
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Baseline Model LOViS (Our Model)
Val Seen Val Unseen Val Seen Val Unseen

Tasks SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑
1 MLM 0.712 0.662 0.613 0.562 0.724 0.673 0.621 0.564
2 MLM+SSAP 0.731 0.675 0.619 0.575 0.747 0.695 0.649 0.585
3 MLM+SSAP+VM 0.737 0.683 0.622 0.577 0.755 0.711 0.637 0.581
4 MLM+SSAP+OM 0.730 0.672 0.617 0.574 0.766 0.724 0.629 0.579
5 MLM+SSAP+VM+OM 0.743 0.691 0.632 0.583 0.774 0.722 0.653 0.592

Table 3.5 Ablation study for different pre-training tasks for LOViS.

V1
(1.74, -0.19)

V3
(3.30, -0.08)

V4
(4.17, 0.54)

V5
(5.06, -0.07)

V6
(4.95, 0.20)

Instruction: Continue down the stairs, and take a left. 

Orientation Module

Vision Module

History Module

V2
(2.44, -1.05)

Final Decision

Figure 3.6 A qualitative example to show each module of LOViS.

3.4.3 Qualitative Examples

EXOR. Figure 3.5 illustrates an example of the navigation process, visualized using selected

landmarks based on spatial configurations. The darker green spans in the instruction indicate the

spatial configuration which the agentThe darker green spans in the instruction highlight the spatial

configurations that the agent pays greater attention. Notably, the model’s attention transitions from

the beginning of the instruction to the end as navigation progress. The yellow boxes highlight the

selected landmarks, demonstrating that as the agent navigates, its focus on landmarks dynamically

shifts in response to the navigation progress.

LOViS. Figure 5.10 shows a qualitative example that demonstrates the performance of each

module of LOViS navigation agent. The ground-truth viewpoint is v1. The word “down” and “left”
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are the orientation signals. The word “stairs” is the vision signal. The attention map shows the

score of different candidate viewpoints in each module. The darker color means the higher score.

The numbers below each viewpoint show the orientation information with the format of <relative

heading, relative elevation>. The lower value of each number means the orientation is more towards

left and down respectively. It is evident that the orientation module gives a higher score to the

viewpoints that are left, and their elevation is down. The vision module gives a higher score to the

viewpoints that “stairs” can be seen. The history module also gives a relatively higher score to the

viewpoints on the right side. The final decision is 𝑣1 with its weights of [0.02,−0.03,−0.04] to the

three modules. The example shows that our designed orientation and vision modules can attend to

the viewpoint with the corresponding information.

3.5 Conclusion

We propose two neural agents that integrate the semantic elements of motions and landmarks for

navigation. For EXOR, we first identify key landmarks based on spatial configurations and then guide

the agent to focus on relevant objects in the visual environment. Additionally, we explicitly model

spatial relations between the agent and the landmarks from the agent’s perspective. For LOViS,

we introduce vision and orientation modules in the agent’s neural architecture. These modules

effectively ground landmark mentions and spatial information related to the agent’s orientation, as

expressed in natural language instructions, into the visual environment. To further enhance their

effectiveness, we design new pre-training tasks that equip the agent with spatial reasoning and

visual perception abilities before navigation. We evaluate our models on the R2R and R4R datasets,

achieving SOTA results. Our findings demonstrate that modeling explicit spatial semantics not only

improves navigation accuracy but also enhances the interpretability of navigation agents.
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CHAPTER 4

ADDRESSING AMBIGUOUS INSTRUCTIONS AND IMPROVING EXPLAINABILITY

4.1 Introduction

Although grounding methods that connect textual and visual modalities—by aligning semantic

information help improve navigation performance [36, 86, 1, 136, 137], we observe that two types of

instructions make the grounding in the VLN task quite challenging. First, the instruction contains

landmarks that are not recognizable by the navigation agent. For example, Figure 4.1(a), the agent

can only see the “sofa”, “table” and “chair” in the target viewpoint, based on the learned vision

representations [35, 95, 20]. However, the instructor mentions landmarks of the “living room” and

“kitchen” in the instruction, based on their prior knowledge about the environment, such as relating

“sofa” to “living room”. Given the small size of the dataset designed for learning navigation, it is

hard to expect the agent to gain the same prior knowledge as the instructor. Second, the instructions

contain the landmarks that can be applied to multiple targets, which causes ambiguity for the

navigating agent. In Figure 4.1(b), the instruction “enter the door” does not help distinguish the

target viewpoint from other candidate viewpoints since there are multiple “doors” and “walls” in the

visual environment. As a result, we hypothesize that these types of instructions cause the explicit

and fine-grained grounding to be less effective for the VLN task, as appears in [37, 134] that use

sub-instructions and in [36, 45, 86, 136] that use object-level representations.

Enter the door and turn
right passing the wall.

Enter the shutters.

Reach the entrance
between the kitchen
and the living room.

Reach the entrance
between the sofa and
chairs.

(a)

(b)

Instruction Candidate Views

where

which

Figure 4.1 Instructions that make the grounding in the VLN task challenging.
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Turn around and go straight. Walk towards the wall and stop.Instruction

Candidate
Viewpoints view1

view2

view3

But I can see “wall” in all candidate
viewpoints.

However, there are “large window with 
wooden blinds, glass table with white

chairs, and a ceiling lamp” that are
specific to view3.

“Walk towards the wall” need to be 
executed.

(target)

Sub-Instruction

Landmark Ambiguity

Targeted Distinctive Objects

Action Selection

Hint 
Generator

Figure 4.2 VLN Agent with our hint generator.

To address the aforementioned issues, in this chapter, we first introduce a translator module in

the VLN agent, named VLN-trans [138], which takes the given instruction and visual environment

as inputs and then converts them to easy-to-follow sub-instructions focusing on two aspects: 1)

recognizable landmarks based on the navigation agent’s visualization ability. 2) distinctive landmarks

that help the navigation agent distinguish the targeted viewpoint from the candidate viewpoints.

Consequently, by focusing on those two aspects, the translator can enhance the connections between

the given instructions and the agent’s observed visual environment and improve the agent’s navigation

performance.

Furthermore, we introduce a hint generator for the VLN agent (NavHint) [135], aiming to

generate visual descriptions that serve as indirect supervision to help the navigation agent obtain a

better understanding of the visual environment (as depicted in Fig. 4.2). When the agent navigates

at each step, the hint generator concurrently produces visual descriptions that are consistent with the

agent’s action decision. The hints are designed based on the rationale underlying the navigation

process, including three aspects: Sub-instruction, Landmark Ambiguity and Targeted Distinctive

Objects. Specifically, at each navigation step, first, the hint generator encourages the agent to report

its navigation progress by specifying which part of the sub-instruction it is executing based on the

current visual environment. As depicted in Fig. 4.2, the sub-instruction “walk towards the wall”

needs to be executed. Second, the hint generator directs the agent to have a global view of the
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entire environment and recognize the landmarks mentioned in the instruction from all candidate

viewpoints. The agent is tasked with identifying potential challenges by assessing the visibility of

the landmarks and comparing the landmarks shared among viewpoints. For instance, in the given

example, the landmark "wall" is ambiguous as it appears in multiple views. Third, in scenarios

where challenges exist, the hint generator guides the agent in describing the distinctive visual objects

that only appear in the targeted viewpoint, such as "large window with wooden blinds" in view3 in

Fig 4.2. This aids the agent in deeply looking into the details of its selected viewpoint while globally

comparing it to other candidates.

In summary, our contributions are as follows:

1. We propose a translator module that helps the navigation agent generate easy-to-follow

sub-instructions considering recognizable and distinctive landmarks based on the agent’s visual

ability. We construct a high-quality synthetic sub-instruction dataset and design specific tasks for

training the translator and the navigation agent.

2. We leverage a language model conditioned on the VLN models to design a hint generator that

can be plugged into any VLN agent. This hint generator helps the agent develop a comprehensive

understanding of the visual environment. We construct a synthetic hint dataset to provide the agent

with visual descriptions at each navigation step. The dataset serves as an indirect supervision for

jointly training the navigation agent and the hint generator.

3. We evaluate our method on R2R and R4R datasets, and our method achieves the SOTA results

on all benchmarks. We also provide a detailed analysis of the agent’s grounding ability by analyzing

the translator and the quality of the generated hints, thereby improving the interpretability of the

agent’s decisions.

4.2 VLN-Trans: VLN Agent with a Translator

Fig. 4.3 (a) provides an overall picture of our proposed architecture for the navigation agent.

We use VLN⟳BERT [40] (in Sec. 2.3.3) as the backbone of our navigation agent and equip it

with a novel translator module that is trained to convert the full instruction representation into the

most relevant sub-instruction representation based on the current visual environment. Another key
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Navigation Agent

Translator

Move forward to the hallway.
Enter the door and turn right
passing the wall.

Enter into the
bedroom. 000… 00111…

Move forward to the hallway. Enter the
door and turn right passing the wall.

Enter inside
the hallway.

LSTM

Soft-Attn

MLP

Walk pass the hallway.

Translator
⨁

Action

negative

positive

LSTM

Enter inside
the hallway.

LSTM

Soft-Attn

MLP

Translator

LSTM

Enter inside
the hallway.

DSL

Enter inside
the hallway.

Enter inside
the room.

Walk into
the hallway.anchor

SG

SG SS

sub-
instruction

(a) (b) (c)
Figure 4.3 The overview of the proposed VLN-Trans. (a) Navigation agent with VLN-Trans. (b)
The translator architecture (c) Pre-training the translator. SG:Sub-instruction Generation; DSL:

Distinctive Sub-instruction Learning; SS: Sub-instruction Split.

point of our method is to create a synthetic sub-instruction dataset and design the pre-training tasks

to encourage the translator to generate effective sub-instruction representations. We describe the

details of our method in the following sections.

4.2.1 Synthetic Sub-instruction Dataset (SyFiS)

This section introduces our novel approach to automatically generate a synthetic fine-grained

sub-instruction dataset, SyFiS, which is used to pre-train the translator (described in Sec. 4.2.2)

in a contrastive manner. To this aim, for each viewpoint, we generate one positive sub-instruction

and three negative sub-instructions. The viewpoints are taken from the R2R dataset [4], and the

sub-instructions are generated based on our designed template. Fig. 4.5 shows an example describing

our methodology for constructing the dataset.

The sub-instruction template includes two components: a motion indicator and a landmark. For

example, in the sub-instruction “turn left to the kitchen”, the motion indicator is “turn left”, and the

landmark is “kitchen”. The sub-instruction template is designed based on the semantics of Spatial

Configurations explained in [17].

Motion Indicator Selection. First, we generate the motion indicator for the synthesized

sub-instructions. Following [134], we use pos-tagging information to extract the verbs from
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Motions Vocab
FORWARD go forward to; go forward past; pass; walk pass, walk forward, etc.
DOWN go down; walk straight down; walk down; move forward down, etc.
UP go up; walk up; climb; leading upwards; travel up, etc.
RIGHT turn right to; make a right turn to, go right to, veer right to, etc.
LEFT walk left to, turn left to, go left to, make a left turn to, make a left to, etc.

STOP stay at, stand by, stop by, wait by, stop at, wait on, etc.

Figure 4.4 Motion indicator vocabulary.

instructions in the R2R training dataset and form our motion-indicators dictionary. We divide the

motion indicators to 6 categories of: “FORWARD”, “LEFT”, “RIGHT”, “UP”, “DOWN”, and

“STOP”. Each category has a set of corresponding verb phrases. We refer the Figure 4.4 for more

details about motion indicator dictionary. Given a viewpoint, to select a motion indicator for each

sub-instruction, we calculate the differences between the elevation and headings of the current and

the target viewpoints. Based on the orientation difference and a threshold, e.g. 30 degrees, we

decide the motion-indicator category. Then we randomly pick a motion verb from the corresponding

category to be used in both generated positive and negative sub-instructions.

Landmark Selection. For generating the landmarks for the sub-instructions, we use the

candidate viewpoints at each navigation step and select the most recognizable and distinctive

landmarks that are easy for the navigation agent to follow. In our approach, the most recognizable

landmarks are the objects that can be detected by CLIP. Using CLIP [89], given a viewpoint image,

we predict a label token with the prompt “a photo of label” from an object label vocabulary. The

probability that the image with representation 𝑏 contains a label 𝑐 is calculated as follows,

𝑝(𝑐) = 𝑒𝑥𝑝(𝑠𝑖𝑚(𝑏, 𝑤𝑐)/𝜏1)∑𝑀
𝑖=1(𝑒𝑥𝑝(𝑠𝑖𝑚(𝑏, 𝑤𝑖))/𝜏1)

, (4.1)

where 𝜏1 is the temperature parameter, 𝑠𝑖𝑚 is the cosine similarity between image representation and

phrase representation 𝑤𝑐 which are generated by CLIP [89], 𝑀 is the vocabulary size. The top-𝑘

objects that have the maximum similarity with the image are selected to form the set of recognizable

landmarks for each viewpoint. We filter out the distinctive landmarks from the recognizable

landmarks. The distinctive landmarks are the ones that appear in the target viewpoint and not in
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“room”

“headboard”
“bed frame”
“room”
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hallway

Turn
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frame

Turn
right to
room

Positive Easy
Negative

Hard
Negative

Motion
Vocab Table

v1 (target)

v2

v3
Figure 4.5 Illustration of constructing the SyFiS dataset.

any other candidate viewpoints. For instance, in the example of Fig. 4.5, “hallway” is a distinctive

landmark because it only appears in the v1 (target viewpoint).

Forming Sub-instructions. We use the motion verbs and landmarks to construct sub-instructions

based on our template. To form contrastive learning examples, we create positive and negative

sub-instructions for each viewpoint. A positive sub-instruction is a sub-instruction that includes a

distinctive landmark. The negative sub-instructions include easy negatives and hard negatives. An

easy negative sub-instruction contains irrelevant landmarks that appear in any candidate viewpoint

except the target viewpoint, e.g., in Fig. 4.5, “bed frame” appears in v3 and is not observed in the

target viewpoint. A hard negative sub-instruction includes the nondistinctive landmarks that appear

in both the target viewpoint and other candidate viewpoints. For example, in Fig. 4.5, “room” can

be observed in all candidate viewpoints; therefore, it is difficult to distinguish the target from other

candidate viewpoints based on this landmark.

Statistic of the SyFiS dataset. We construct SyFiS dataset using 1, 076, 818 trajectories, where

7198 trajectories are from the R2R dataset, and 1, 069, 620 trajectories are from the augmented

data [34]. Then we pair those trajectories with our synthetic instructions to construct the SyFiS

dataset based on our pre-defined motion verb vocabulary and CLIP-generated landmarks (in Sec4.2.1).

When we pre-train the translator, we use the sub-instruction of each viewpoint in a trajectory. There
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are usually 5 to 7 viewpoints in a trajectory; each viewpoint is with one positive sub-instruction and

three negative sub-instructions.

4.2.2 Translator Architecture

The translator takes a set of candidate viewpoints and the corresponding sub-instruction as the

inputs and generates new sub-instructions. The architecture of our translator is shown in Fig. 4.3(b).

This architecture is similar to the LSTM-based Speaker in the previous works [106, 25]. However,

they generate full instructions from the whole trajectories and use them as offline augmented data

for training the navigation agent, while our translator adaptively generates sub-instruction during the

agent’s navigation process based on its observations at each step.

Formally, we feed text representations of sub-instruction 𝑋 and the visual representations of

candidate viewpoints 𝑉 into the corresponding LSTM to obtain deeper representation 𝑋̃ and 𝑉̃ .

Then, we apply the soft attention between them to obtain the visually attended text representation

𝑋̃′, as:

𝑋̃′ = 𝑆𝑜 𝑓 𝑡𝐴𝑡𝑡𝑛( 𝑋̃; 𝑉̃ ; 𝑉̃) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥( 𝑋̃𝑇𝑊𝑉̃)𝑉̃ , (4.2)

where𝑊 is the learned weights. Lastly, we use an MLP layer to generate sub-instruction 𝑋′ from

the hidden representation 𝑋̃′, as follows,

𝑋′ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑀𝐿𝑃( 𝑋̃′)) (4.3)

We use the SyFiS dataset to pre-train this translator. We also design two pre-training tasks:

Sub-instruction Generation and Distinctive sub-instruction Learning.

Sub-instruction Generation (SG). We first train the translator to generate a sub-instruction, given

the positive instructions paired with the viewpoints in the SyfiS dataset as the ground-truth. We

apply a cross-entropy loss between the generated sub-instruction 𝑋′ and the positive sub-instruction

𝑋𝑝. The loss function for the SG task is as follows,

𝐿𝑆𝐺 = − 1
𝐿

∑︁
𝐿

𝑋𝑝𝑙𝑜𝑔𝑃(𝑋′) (4.4)

Distinctive Sub-instruction Learning (DSL). To encourage the translator to learn sub-instruction

representations that are close to the positive sub-instructions with recognizable and distinctive
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landmarks, and are far from the negative sub-instructions with irrelevant and nondistinctive

landmarks, we use triplet loss to train the translator in a contrastive way. To this aim, we first design

triplets of sub-instructions in the form of <anchor, positive, negative>. For each viewpoint, we select

one positive and three negative sub-instructions forming three triplets per viewpoint. We obtain

the anchor sub-instruction by replacing the motion indicator in the positive sub-instruction with

a different motion verb in the same motion indicator category. We denote the text representation

of anchor sub-instruction as 𝑋𝑎, positive sub-instruction as 𝑋𝑝, and negative sub-instruction as 𝑋𝑛.

Then we feed them to the translator to obtain the corresponding hidden representations 𝑋̃′
𝑎, 𝑋̃′

𝑝, and

𝑋̃′
𝑛 using Eq. 4.2. The triplet loss function for the DSL task is computed as follows,

𝐿𝐷𝑆𝐿 = 𝑚𝑎𝑥(𝐷 ( 𝑋̃′
𝑎, 𝑋̃

′
𝑝) − 𝐷 (𝑋′, 𝑋̃′

𝑛) + 𝑚, 0), (4.5)

where 𝑚 is a margin value to keep negative samples far apart, 𝐷 is the pair-wise distance between

representations. In summary, the total objective to pre-train the translator is:

𝐿𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 = 𝛼1𝐿𝑆𝐺 + 𝛼2𝐿𝐷𝑆𝐿 (4.6)

where 𝛼1 and 𝛼2 are hyper-parameters for balancing the importance of the two losses.

4.2.3 VLN Agent with Translator

We place the pre-trained translator module on top of the backbone navigation agent to perform the

navigation task. Fig.4.3(a) shows the architecture of our navigation agent. At each navigation step,

the translator takes the given instruction and the current candidate viewpoints as input and generates

new sub-instruction representations, which are then used as additional input to the navigation agent.

Since the given instructions describe the full trajectory, we enable the translator module to focus

on the part of the instruction that is in effect at each step. To this aim, we design another MLP

layer in the translator to map the hidden states to a scalar attention representation. Then we do the

element-wise multiplication between the attention representation and the instruction representation

to obtain the attended instruction representation.

In summary, we first input the text representation of given instruction 𝑋 and visual representation

of candidate viewpoints 𝑉 to the translator to obtain the translated sub-instruction representation
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𝑋̃′ using Eq. 4.2. Then we input 𝑋̃′ to another MLP layer to obtain the attention representation

𝑋′
𝑚, 𝑋′

𝑚 = 𝑀𝐿𝑃( 𝑋̃′). Then we obtain the attended sub-instruction representation as 𝑋′′ = 𝑋′
𝑚 ⊙ 𝑋 ,

where ⊙ is the element-wise multiplication. Lastly, we input text representation 𝑋 along with

translated sub-instruction representation 𝑋̃′ and the attended instruction representation 𝑋′′ into the

navigation agent. In such a case, we update the text representation 𝑋 of VLN⟳BERT as [𝑋; 𝑋̃′; 𝑋′′],

where ; is the concatenation operation.

4.3 NavHint: VLN Agent with a Hint Generator

The hint generator is designed as a Transformer-based decoder that leverages visual output from

the navigation agent to produce corresponding hints. This hint generator can be plugged into any

VLN agent as a language model conditioned on the VLN models. To train the hint generator, we

propose a synthetic navigation hint dataset based on Room2Room (R2R) [4] dataset. Our dataset

provides hints for each step of the trajectory in the R2R dataset. Each hint description includes

sub-instruction, landmark ambiguity, and targeted distinctive objects introduced above. The dataset

serves as an extra supervision to train the navigation agent and the hint generator jointly. Besides,

our constructed dataset can be utilized to explicitly analyze the navigation agent’s grounding ability

by assessing the quality of generated hints. In the following section, we first present our constructed

navigation hint dataset. Then, we introduce the hint generator. The navigation hint dataset is used to

train the navigation agent and the hint generator jointly.

4.3.1 Navigation Hint Dataset

The purpose of constructing the navigation hint dataset is to provide supervision for the hint

generator to generate detailed visual description. The navigation hint dataset is automatically

generated based on instruction and trajectory pairs from the R2R dataset [4]. For every step of the

trajectory, we provide hints that mainly include three key elements, as described below.

Sub-instruction is the first part of the hint that pinpoints to the relevant part of the instruction

(sub-instruction) to be processed at the current step. We obtain the sub-instructions and their

corresponding viewpoints from the FGR2R [37] dataset, which provides human annotations of

sub-instructions and the aligned viewpoints. After obtaining the sub-instruction at each step, we
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Figure 4.6 Navigation hint dataset. An example of a navigation hints with the landmark ambiguity
of “Missing Landmarks”. The sub-instruction is“walk into the hallway”, and the landmark “hallway”
in the instruction is observed in the view1 rather than target view3, which can potentially mislead
the navigation agent. The target distinctive objects "wooden dining table" and "marble countertop."

are then provided. "Blue walls" is non-distinctive as it appears in both view2 and view3.

Ambiguity Category Description Hints
Target Landmarks Landmarks only appear in the target. The {landmarks} are observed.

Multiple Landmarks Landmarks are visible in multiple viewpoints including the target viewpoint. The {landmarks} are observed in multiple viewpoints.
Missing Landmarks Landmarks are visible in other viewpoints except for the target viewpoint. The{landmarks} are misleading.
Invisible Landmark Landmarks are not visible in all viewpoints The{landmarks} are not observed.

No Landmarks No landmarks in sub-instruction. (e.g. “make a right turn”, “turn left”, and “go straight”) ∅

Table 4.1 Landmark ambiguity. The col#1 and col#2 show the categories of landmark ambiguity
and the corresponding descriptions. The col#3 shows the template for generating the hint for each

category.

insert it into our hint template, which is "The {sub-instruction} needs to be executed.". Guiding the

navigation agent to detect the related sub-instruction at each step is crucial since it effectively assists

the agent in tracking its navigation progress.

Landmark Ambiguity is the second part of the hint that describes the commonalities across

multiple views that can result in ambiguity during navigation. This part of hint is achieved by

examining the shared landmarks mentioned in the instruction among the candidate viewpoints.

To automatically generate this part of the hint for building the dataset, we first use spaCy1 to

extract noun phrases from sub-instruction and use them as landmarks. Then, we extract visual

objects in each candidate viewpoint using MiniGPT-4 [149] with a two-step textual prompting. We

choose visual objects generated by MiniGPT-4 instead of Matterport3D object annotations because
1https://spacy.io/
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Matterport3D objects are pretty limited, with only 40 object categories like “doors”, “walls”, and

“floors”. These generic objects are not sufficient for resolving landmark ambiguity. Moreover, the

absence of attribute annotations in Matterport3D poses a challenge for landmark disambiguation,

such as the differences between “wooden table” and “glass table”. In contrast, MiniGPT-4 can

generate such detailed attribute descriptions. Specifically, for each candidate viewpoint, we feed

MiniGPT-4 with the viewpoint image, asking “Describe the details of the image.” and then “List the

objects in the image”. The generated text is in free form, and we post-process it to retrieve a list of

extracted object descriptions. After obtaining textual landmark names and visual objects, we examine

the shared landmarks among the candidate viewpoints. The presence of shared landmarks can pose

ambiguity for the navigation agent. We categorize the ambiguity into: Target Landmarks, Multiple

Landmarks, Missing Landmarks, Invisible Landmarks and No Landmark, and their descriptions

are in Table 4.1. After identifying the category of landmark ambiguity, we construct this part of

the hint using the corresponding templates in col #3 of Table 4.1. Identifying landmark ambiguity

requires the navigation agent to ground the mentioned landmark names in the instruction to the

visual objects in all candidate viewpoints. Guiding the navigation agent to identify such detailed

ambiguities can help enhance its understanding of the connection between the instruction and the

entire visual environment.

Targeted Distinctive Objects is the third part of the hint that describes the distinctive visual

objects specific to the targeted view. The agent should be able to justify its decision by describing

the distinction of the targeted view. We follow the approach of obtaining distinctive objects in the

VLN-Trans [138] that compares the visual objects in the targeted and other candidate viewpoints.

The distinctive objects are the ones that exclusively appear in the targeted viewpoint and do not appear

in other views. The hint template for targeted distinctive objects is “However, {the comma-separated

list of distinctive object names} are in the targeted view.”. We use 3 distinctive objects at most. If

the cases belong to the challenge of “Target Landmark”, there is no need to provide extra distinctive

objects since the landmark is already exclusive to the targeted viewpoint. Describing distinctive

objects is important to obtain a global understanding of the visual environment by highlighting the
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Figure 4.7 Model architecture of NavHint.

differences between the targeted viewpoint and other candidate viewpoints.

4.3.2 VLN Agent with a Hint Generator

We propose a hint generator that can be plugged into any navigation agent easily. We use

VLN⟳BERT [39] as the base model to illustrate our method but noted that the hint generator is

compatible with most of the current agents. Fig. 4.7 shows the model architecture.

Text Encoder. We use BERT [110] to obtain initial text representation of instruction, denoted as

𝑋 = [𝑥1, 𝑥2, · · · , 𝑥𝑙].

Vision Encoder. We follow previous works to concatenate image and relative orientation features

as vision features for each candidate viewpoint. Specifically, we extract the image features from

ResNet-152 [35] pre-trained on the Places365 dataset [144]. The orientation features are derived

from the relative heading denoted as 𝛼 and the elevation denoted as 𝛽. The orientation features

are represented as [sin𝛼; cos𝛼; sin 𝛽; cos 𝛽]. The vision features are then passed through an

MLP (Multilayer Perception) of Vision Encoder to obtain vision representation for each candidate

viewpoint, denoted as [𝑣1, 𝑣2, · · · , 𝑣𝑛].

Navigation Agent. VLN⟳BERT is a cross-modal Transformer model. Besides text and vision

representations, a state representation is introduced in the model to store history information

recurrently, which is denoted as 𝑆. At the 𝑡-th navigation step, the text representation 𝑋 , the visual

representation 𝑉𝑡 and state representation 𝑆𝑡 are input into cross-modal Transformer layers, as

follows,

𝑋̂, 𝑆𝑡 , 𝑉𝑡 = 𝐶𝑟𝑜𝑠𝑠_𝐴𝑡𝑡𝑛(𝑋, [𝑆𝑡 ;𝑉𝑡]), (4.7)
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where 𝑋̂ , 𝑆𝑡 , and 𝑉𝑡 are the learnt contextual text, state representation, and visual representations,

respectively. Then we apply attention layer between state representation 𝑆𝑡 contextual vision

representations 𝑉𝑡 as follows,

𝑆𝑡+1, 𝑎𝑡 = 𝐴𝑡𝑡𝑛(𝑘 = 𝑉𝑡 , 𝑞 = 𝑆𝑡 , 𝑣 = 𝑉𝑡), (4.8)

where 𝑆𝑡+1 is the updated state representation that is passed to the next steps to show the history. 𝑎𝑡

is the attention score over the navigable views to show action probability of the current step.

Hint Generator. Inspired by the idea of prefix engineering [77] that uses the image representation

as the prefix of the text for the image captioning task, we employ a decoder language model (LM)

and use the contextual visual representation of the navigation agent and the original instruction as

the prefix. However, unlike the previous work, rather than just using one image as the prefix, we

input all images of candidate viewpoints to encourage the hint generator to learn the global relations

among views.

Formally, we denote the hint at the 𝑖-th navigation step as 𝐶𝑖 = {𝑐𝑖1, 𝑐
𝑖
2, · · · , 𝑐

𝑖
𝑗
}, where 𝑗 is the

length of the hint. Different from LANA [113] that generates route description after navigation, our

hint generator provides a more in-depth visual description at each step. Our approach requires the

agent to possess a global and deep visual understanding, which can be learnt through the supervision

from our navigation hint dataset explained in Section 4.3.1. We obtain the LM representation

of the original instruction 𝑊 and the hint 𝐶 as 𝑋′ = {𝑥′1, 𝑥
′
2, · · · , 𝑥

′
𝑙
} and 𝑐 = {𝑐1, 𝑐2, · · · , 𝑐 𝑗 }

respectively. Since the semantic structure of our auto-generated dataset can be easily captured, we

use a 1.5B-parameters decoder LM (GPT-2 large) in the hint generator. Note that any larger decoder

language model in the GPT series can be employed.

We use the instruction text representation 𝑋′ as the instruction prefix representation. We use the

weighted vision representations output from the navigation agent as the image prefix representation.

The weighted vision representation is obtained using action probability and the contextual vision

representations as ˆ̂𝑉𝑡 = 𝑎𝑡 ∗𝑉𝑡 . Then we simply employ an MLP to map ˆ̂𝑉𝑡 to LM token space. We

denote such MLP as 𝐹. We obtain prefix embedding that is mapped from visual representation 𝑉̂ as
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Val seen Val Unseen Test Unseen
Method NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL ↑

1 Env-Drop [106] 3.99 0.62 0.59 5.22 0.47 0.43 5.23 0.51 0.47
2 RelGraph [36] 3.47 0.67 0.65 4.73 0.57 0.53 4.75 0.55 0.52
3 NvEM [1] 3.44 0.69 0.65 4.27 0.60 0.55 4.37 0.58 0.54
4 PREVALENT [34] 3.67 0.69 0.65 4.71 0.58 0.53 5.30 0.54 0.51
5 HAMT (ResNet) [10] − 0.69 0.65 − 0.64 0.58 − − −
6 HAMT (ViT) [10] 2.51 0.76 0.72 − 0.66 0.61 3.93 0.65 0.60
7 CITL [69] 2.65 0.75 0.70 3.87 0.63 0.58 3.94 0.64 0.59
8 ADAPT [70] 2.70 0.74 0.69 3.66 0.66 0.59 4.11 0.63 0.57
9 LOViS [137] 2.40 0.77 0.72 3.71 0.65 0.59 4.07 0.63 0.58
10 VLN⟳BERT [40] 2.90 0.72 0.68 3.93 0.63 0.57 4.09 0.63 0.57
11 VLN⟳BERT+(ours) 2.72 0.75 0.70 3.65 0.65 0.60 4.09 0.63 0.57
12 VLN⟳BERT++ (ours) 2.51 0.77 0.72 3.40 0.67 0.61 4.02 0.63 0.58
13 VLN-Trans-R2R (ours) 2.40 0.78 0.73 3.37 0.67 0.63 3.94 0.65 0.59
14 VLN-Trans-FG-R2R (ours) 2.45 0.77 0.72 3.34 0.69 0.63 3.94 0.66 0.60

Table 4.2 Experimental results on R2R Benchmarks in a single-run setting. The best results are in
bold font. + means we add RXR [55] and Marky-mT5 dataset [112] as the extra data to pre-train the
navigation agent. ++ means we further add the SyFiS dataset to pre-train the navigation agent. ViT

means Vision Transformer representations.

follows,

𝑝1, · · · , 𝑝𝑘 = 𝐹 ( ˆ̂𝑉𝑡), (4.9)

where 𝑘 is the prefix length, and 𝑝 is the image prefix representation. We concatenate the

representation of image prefix 𝑝 and instruction prefix 𝑋′, and combine them with the text

representation of hint 𝐶. The hint generator only decodes the hint in an auto-regressive manner at

each step. During training, the parameters of both of MLP and the LM in the hint generator and the

navigator are updated. The training objective is to maximize the likelihood of the next hint token.

The following equation shows the loss of generating the 𝑗-th token of the hint at the 𝑖-th step.

𝐿ℎ𝑖𝑛𝑡 = −
∑︁
𝑖, 𝑗

log 𝑝𝜃 (𝑐𝑖𝑗 |𝑝𝑖1, · · · , 𝑝
𝑖
𝑘 ,

𝑥′1, · · · , 𝑥
′
𝑙 , 𝑐

𝑖
𝑗 , · · · , 𝑐𝑖𝑗−1).

(4.10)
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Validation Unseen Test Unseen
Method NE ↓ SR ↑ SPL↑ sDTW↑ nDTW↑ NE ↓ SR ↑ SPL ↑

1 Seq-to-Seq [4] 7.81 0.22 − − − 7.85 0.20 0.18
2 Self-Monitor [73] 5.52 0.45 0.32 − − 5.67 0.48 0.35
3 AuxRN [73] 5.63 0.51 0.46 − − − − −
4 VLN⟳BERT [39] 3.93 0.63 0.57 − − 4.09 0.63 0.57
5 HAMT (ViT) [10] 3.97 0.66 0.61 − − 3.93 0.65 0.60
6 LANA [113] − 0.66 0.60 − − − 0.64 0.59
7 VLN-SIG (ViT) [56] 3.37 0.68 0.62 0.59 0.70 − 0.65 0.60
8 VLN-trans [138] 3.34 0.69 0.63 0.60 0.70 3.94 0.66 0.60
9 EDrop∗ [106] 5.49 0.55 0.47 0.42 0.58 5.60 0.51 0.49
10 EDrop + Hint. (NavHint) 5.44 0.55 0.47 0.44 0.60 5.47 0.53 0.49
11 VLN⟳BERT++ [138] 3.40 0.67 0.61 0.58 0.69 4.02 0.63 0.58
12 VLN⟳BERT++ + Hint. (NavHint) 3.23 0.69 0.65 0.61 0.72 4.00 0.65 0.60

Table 4.3 Experimental results on R2R dataset. ViT: uses Vision Transformer representations. Hint.:
uses our hint generator.

4.4 Experiments

4.4.1 Experimental Results

Table 4.2 shows the model performance of VLN-Trans on the R2R benchmarks. Row #4 to

row#9 are Transformer-based navigation baseline with pre-trained cross-modality representations,

and such representations greatly improve performance of LSTM-based VLN models (row #1 to

row#3). It is impressive that our VLN-Trans model’s performance (row #13 and row #14) on

both validation seen and unseen performs 2%-3% better than HAMT [10] when it even uses more

advanced ViT [20] visual representations compared with ResNet. Our performance on both SR

and SPL are still 3%-4% better than the VLN agent using contrastive learning: CITL [69] (row

#7) and ADAPT [70] (row #8). LOViS [137] (row #9) is another very recent SOTA improving

the pre-training representations of the navigation agent, but we can significantly surpass their

performance. Lastly, compared to the baseline (row #10), we first significantly improve the

performance (row #11) by using extra augmented data, Room-across-Room dataset (RXR) [55]

and the Marky-mT5 [112], in the pre-training of navigation agent. The performance continues to

improve when we further include the SyFiS dataset in the pre-training, as shown in row #12, proving

the effectiveness of our synthetic data. Row #13 and row #14 are the experimental results after

incorporating our pre-trained translator into the navigation model. First, for a fair comparison with
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Model Val Seen Val Unseen
Bleu-1 Bleu-4 Bleu-1 Bleu-4

EDrop + Hint. (ours) 0.74 0.62 0.72 0.60
VLN⟳BERT+++ Hint. (ours) 0.76 0.64 0.74 0.62

Table 4.4 Bleu score for the generated sub-instruction on the R2R dataset.

Dataset Method Tasks Val Seen Val Unseen
SG DSL SS SR↑ SPL↑ SR↑ SPL↑

R2R

VLN⟳BERT++ 0.767 0.722 0.672 0.611
1 ✔ 0.764 0.721 0.673 0.623
2 ✔ ✔ 0.780 0.728 0.674 0.627
3 ✔ ✔ ✔ 0.772 0.720 0.690 0.633

Table 4.5 Ablation study for training tasks for the translator.

other models, we follow the baseline [40] to train the navigation agent using the R2R [4] dataset

and the augmented data from PREVALENT [34]. As shown in row #13, our translator helps the

navigation agent obtain the best results on the seen environment and improves SPL by 2% on the

unseen validation environment, proving that the generated sub-instruction representation enhances

the model’s generalizability. However, FG-R2R [37] provides human-annotated alignments between

sub-instructions and viewpoints for the R2R dataset, and our SyFiS dataset also provides synthetic

sub-instructions for each viewpoint. Then we conduct another experiment using FG-R2R and SyFiS

datasets to train the navigation agent. Simultaneously, we optimize the translator using the alignment

information with our designed SG and SS losses during the navigation process. As shown in row

#13, we further improve the SR and SPL on the unseen validation environment. This result indicates

our designed losses can better utilize the alignment information.

Table 4.3 shows the performance of NavHint on validation unseen and test of the R2R dataset. To

verify the adaptability of our approach, we evaluate it using both LSTM-based and Transformer-based

navigation agents. Since Transformer-based methods are pre-trained on large vision-language

datasets and have a more complex model architecture, they achieve a higher performance than

LSTM-based methods. For the LSTM-based model, we use EDrop [106] which uses CLIP [89]

visual representations without augmented data during training. For the Transformer-based model,

we use the VLN⟳BERT++ (row#11) as the baseline.
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Method Hints Val Unseen
Sub. L-A. TD-Obj. Obj. SR↑ SPL↑ nDTW↑

VLN⟳BERT++ 0.665 0.607 0.685
1 ✔ 0.671 0.612 0.690
2 ✔ 0.673 0.613 0.687
3 ✔ 0.677 0.624 0.702
4 ✔ 0.676 0.621 0.698
5 ✔ ✔ 0.674 0.614 0.709
6 ✔ ✔ ✔ 0.681 0.632 0.694
7 ✔ ✔ ✔ 0.692 0.647 0.724

Table 4.6 Ablation study for different parts of hint. Sub.:sub-instruction; L-A.:Landmark
Ambiguity; TD-Obj: Target Distinctive Objects. Obj:Top-3 objects.

Row#1 to row#3 in Table 4.3 show other LSTM-based methods and row#4 to row#8 are the

SOTA Transformer-based methods. Row#9 shows the performance of the LSTM baseline EDrop.

Row#10 shows the results after equipping the EDrop with our designed hint generator. The improved

sDTW and nDTW on the validation unseen proves that the hint generator helps the navigation

agent follow the instructions. Moreover, our hint generator on top of the VLN⟳BERT++ (row#12)

significantly improves both wayfinding metrics (SP and SPL) and fidelity metrics (sDTW and

nDTW) of the baseline model, indicating that our hint generator not only assists the agent in reaching

the correct destination but also encourages the agent to follow the original instructions. Improving

both LSTM-based and Transformer-based navigation agents shows the generalization ability of the

navigation agent with our designed hint generator.

We use Bleu score [80] as an evaluation metric to assess whether the navigation agent can identify

sub-instruction accurately. We conduct experiments on both LSTM-based and Transformer-based

navigation agents, as shown in Table 4.4. The generated sub-instruction from the Transformer-based

navigation agent can obtain a relatively high Bleu score compared to the LSTM-based agent. This

result demonstrates that a more robust navigation agent achieves a stronger alignment between

the instruction and visual modality for identifying the relevant part of the instruction to track the

progress.
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Figure 4.8 Qualitative examples to show how the translator helps the navigation agent. The red
boxes and green boxes show the distinctive and the nondistinctive landmarks; the green arrow and

red arrow show the target and the predicted viewpoints.

4.4.2 Ablation Study

VLN-Trans. In Table 4.5, we show the performance after ablating different tasks in the baseline

model on the R2R and R2R-Last datasets. We compared with VLN⟳BERT++, which is our improved

baseline after adding extra pre-training data to the navigation agent. First, we pre-train our translator

with SG and DSL tasks and incorporate the translator into the navigation agent without further

training. For both the R2R dataset and R2R-Last, SG and DSL pre-training tasks can incrementally

improve the unseen performance (as shown in method 1 and method 2 for R2R and R2R-Last). Then

we evaluate the effectiveness of the SS task when we use it to train the translator together with the

navigation agent. For the R2R dataset, the model obtains the best result on the unseen environment

after using the SS task. However, the SS task causes the performance drop for the R2R-Last dataset.

This is because the R2R-Last dataset merely has the last single sub-instruction in each example and
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there is no other sub-instructions our model can identify and learn from.

NavHint. Table 5.4 reports the ablation analysis. From row#1 to row#3, we individually

include sub-instruction, landmark ambiguity, and targeted distinctive objects to the hint. All

navigation performance metrics improve gradually compared to the baseline. In another experiment

(row#4), we attempt to describe the visual environment by identifying only top-3 recognized objects

(using MiniGPT-4) in the targeted viewpoint without differing them from other viewpoints. The

navigation results still improve, indicating that visual descriptions of the objects benefit the overall

navigation performance. Row#5 shows that combining sub-instruction and landmark ambiguity

further improves the baseline, particularly in the nDTW metric. In row#6, when we combine

sub-instruction, landmark ambiguity and top-3 objects, we observe improvement in the goal-related

metrics (SR and SPL), but the model’s ability to faithfully follow the instruction is somewhat

compromised (lower nDTW). The best result is obtained when we replace the above top-3 objects

with distinctive ones (row#7), indicating our designed hint’s effectiveness in describing the targeted

view from a global perspective.

4.4.3 Translator Analysis

Our translator can relate the mentioned landmarks in the instructions to the visible and distinctive

landmarks in the visual environment. In Fig. 4.8 (a), “tables” and “chairs” are not visible in three

candidate viewpoints (v1-v3). However, our navigation agent can correctly recognize the target

viewpoint using the implicit instruction representations generated by the translator. We assume

the most recognizable and distinctive landmark, that is, the "patio" here in the viewpoint v3 has

a higher chance to be connected to a “table” and a “chair” based on our pre-training, compared

to the landmarks in the other viewpoints. In Fig. 4.8 (b), both candidate viewpoints v2 and v3

contain kitchen (green bounding boxes); hence it is hard to distinguish the target between them.

However, for the translator, the most distinctive landmark in v3 is the “cupboard” which is more

likely to be related to the “kitchen”. Fig. 4.8(c) shows a failure case, in which the most distinctive

landmark in candidate viewpoint v1 is “oven”. It is more likely for the translator relates “oven” to

the “kitchen” compared to “countertop”, and the agent selects the wrong viewpoints. In fact, we
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(a) EDrop+Hint. (b) VLN⟳BERT+++Hint. (c) Correct Sub.
Figure 4.9 Accuracy of the landmark ambiguity in generated hints.

observe that the R2R validation unseen dataset has around 300 instructions containing “kitchen”.

For corresponding viewpoints paired with such instructions, our SyFiS dataset generates 23 and 5

sub-instructions containing “oven” and “countertop”, respectively, indicating the trained translator

more likely relates “oven” to “kitchen”.

4.4.4 Generated Hints Analysis

Landmark Ambiguity Analysis. We assess the accuracy of four categories of landmark ambiguity

in the generated hints. Specifically, We extract the part of the landmark ambiguity from the generated

hint and check its accuracy in the visual environment. In Fig. 4.9, the TOTAL in the y-axis shows

the total number of navigation steps that include each ambiguity category, shown on the x-axis. The

TRUE (green) indicates the percentage of navigation steps when the corresponding ambiguity truly

exists. We evaluate both LSTM-based and Transformer-based agents, and the result shows that

Transformer-based agents can achieve higher accuracy of landmark ambiguity. We conclude that

accurate landmark ambiguity detection is positively correlated with better navigation performance.

In Fig. 4.9 (c), we evaluate the generated hint for the examples in which the sub-instruction is

generated correctly, as indicated by a Bleu-4 score of 1.0. In those examples, the accuracy of

identifying each category of landmark ambiguity is also higher. This result shows accurately locating

the sub-instruction positively impacts landmark ambiguity detection.

Targeted Distinctive Objects Analysis. We report the accuracy of identifying the targeted distinctive

objects in the generated hints when landmark ambiguity exists, as shown in Fig. 4.10. The generated

hints are from the model of VLN⟳BERT++ with our designed hint generator. We provide two
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Figure 4.10 Accuracy of the distinctive objects for each landmark ambiguity in the targeted

viewpoint.

types of comparisons, exact phrase matching and object token matching while performing both

wrong and right actions. Exact matching evaluates the detection of distinctive object tokens and the

attribute descriptions in the whole referring phrase. Object matching only evaluates the detection

of distinctive object tokens. The result shows that the accuracy in generating distinctive objects is

generally higher when the action is correct than when it is wrong. Also, the agent tends to generate

distinctive objects that align with its targeted viewpoint, as indicated by an accuracy exceeding 90%,

even when the action is incorrect. The lower accuracy of exact matching also aligns with the fact

that generating the whole referring expression, including the correct attributes, is more challenging.

Generated Hints. Fig. 4.11 demonstrates a few examples of the generated descriptions. The first

two examples show successful cases where the agent makes a correct decision. The first example

shows the agent can accurately identify the sub-instruction and notice the ambiguous landmark

“kitchen”. Then, it correctly pinpoints the distinctive object “stove”, which only appears in the

target viewpoint. In fact, our targeted distinctive object design can help connect the specific object

(e.g. stove, refrigerator, counter table) to more general scene objects (e.g. kitchen). Also, the

second example shows the agent accurately points out the “table” in the instruction that appears

in multiple viewpoints and refers to the “sideboard” in the target viewpoint. The third example

shows a failure case in which the agent makes a wrong decision. The sub-instruction is correctly

identified, but the agent should turn around towards the counter table and proceed to the sofa rather

than walk to the sofa directly. This further indicates that our descriptor pushes the model to focus on
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Figure 4.11 Qualitative examples for NavHint. The green and orange arrows show the ground truth
and the predicted viewpoints, respectively.

landmarks directly and ignore the directions and motions in the instruction. Despite this, our model

can generate a description consistent with its selection.

4.5 Conclusion

In the VLN task, instructions often include landmarks that are not recognizable to the agent or

are not distinctive enough to specify the target based on the agent’s vision perception. Our novel idea

to solve these issues is to include a translator module in the navigation agent that converts the given
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instruction representations into effective sub-instruction representations at each navigation step. To

train the translator, we construct a synthetic dataset and design pre-training tasks to encourage the

translator to generate the sub-instruction with the most recognizable and distinctive landmarks. Our

method achieves the SOTA results on navigation dataset. We also provide a comprehensive analysis

to show the effectiveness of our translator. Furthermore, we enhance the navigation agent with a

hint generator that provides explicit explanations for its actions, grounded in its visual perception.

During navigation, the agent generates natural language descriptions about its visual environment at

each step, including comparing various views and explaining ambiguities in recognizing the target

destination. Empirical results show that visual description generation improves both navigation

performance and the interpretability of actions taken by the navigation agent.
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CHAPTER 5

ADVANCING VLN FOR REAL-WORLD CHALLENGES:
NAVIGATION IN CONTINUOUS AND 3D ENVIRONMENTS

5.1 Introduction

The ultimate goal of VLN agent agent is to be deployed on a real robot for practical, everyday

use in realistic environments. However, most existing experimental setups focus on navigation

within discrete, graph-based environments, which are often far from real-world scenarios. In

practical applications, a VLN agent must operate in a continuous, unstructured environment, where

it relies on low-level control commands to navigate instead of predefined waypoints. Moreover,

real-world navigation requires a robust understanding of 3D spatial relationships. Unlike simulated

environments that often rely on 2D image-based navigation, a real-world VLN agent must perceive

and reason about depth, obstacles, and spatial relationships to make action decisions. Bridging the gap

between simulation and real-world challenges is crucial for advancing VLN research toward practical

deployment. In this chapter, we address these challenges from two key perspectives: transitioning

from discrete to continuous navigation and enhancing spatial reasoning in 3D environment.

For VLN-CE (continuous environment), recent research has made significant progress in

improving navigation within continuous environments. Current VLN-CE navigation agents are

typically equipped with a waypoint predictor, which is primarily trained to focus on high-level

viewpoint selection while relying on an offline controller to execute low-level action execution

within the environment. However, this approach overlooks including low-level actions as part of

the training signal. Consequently, the navigation agent misses spatial information embedded in

low-level actions, thereby affecting the grounding of different modalities of textual instructions,

visual images, and physical spatial motions. Furthermore, existing waypoint predictors mainly use

raw RGB and depth images, overlooking a thorough exploration of object semantic attributes, which

are important for assessing the feasibility of the physical actions, such as recognizing that walls

are impassable. To address the above-mentioned issues in the VLN-CE agents with a waypoint

predictor, we first introduce a dual-action module in which the agent selects high-level viewpoints
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Situation1: You are standing beside a 
trash bin while there is a toilet in front 
of you.

Question：what should you do to wash hands? 

3D LLMs: Scrub your hands with 
soap and water.

Spartun3D: You can use the sink on 
the right. 

Situation2: You are standing beside a 
trash bin while there is a toilet behind
 you.

3D LLMs: Go to the sink and wash 
your hands.

Spartun3D: You can use the sink on 
the left. 
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Figure 5.1 Illustration of situated scene understanding of Spartun3D-LLM compared to other
3D-based LLMs.

while generating low-level action sequences simultaneously [139]. The high-level actions serve

as guidance, facilitating the agent’s understanding of the relationships between low-level actions

and navigable areas indicated by high-level actions. This enhances the agent’s spatial grounding

ability to connect action with visual perception and language understanding. Second, to address

the issue of the waypoint predictor neglecting object semantic information, we incorporate visual

representations with rich object semantics and explicit obstacle masking based on prior knowledge

of object possibility.

For spatial understanding in 3D environment, existing studies mainly focus on integrating various

3D scene representations into LLMs, enabling the models to perform 3D grounding and spatial

reasoning through natural language. For example, 3D-LLM [42] utilizes multi-view images to

represent 3D scenes, pioneering a new direction in this field, while LEO [46] further pushes the

boundary by directly injecting 3D point clouds into LLMs, aiming to develop a generalist embodied

agent capable of 3D grounding, embodied reasoning, and action planning. Despite the promising

progress, current 3D-based LLMs still fall short in situated understanding, a fundamental capability

for completing embodied tasks, such as Embodied Question Answering [18], Vision and Language

Navigation [5], robotic manipulation [99], and many others. Situated understanding refers to the

ability to interpret and reason about a 3D scene from a dynamic egocentric perspective, where

the agent must continuously adjust understanding based on its changing position and evolving
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environment around it. This capability is crucial because an agent’s reasoning and response to

the same question can vary depending on its current situation [83]. For example, as shown in

Fig 5.1, given the same question “What should you do to wash hands?”, the agent might need to

answer “use the sink on the right” or “use the sink on the left”, depending on the agent’s current

perspective and location relative to the “sink”. To address the aforementioned issues, we propose

two key innovations: we first introduce a scalable, LLM-generated dataset named Spartun3D [141],

consisting of approximately 133k examples. Different from datasets used by previous 3D-based

LLMs [153, 46, 42], Spartun3D incorporates various situated spatial information conditioned on

the agent’s standing point and orientation within the environment, consisting of two situated tasks:

situated captioning and situated QA. Situated captioning is our newly proposed task that requires

generating descriptions of the surrounding objects and their spatial direction based on the agent’s

situation. Situated QA is designed with different types of questions targeting various levels of

spatial reasoning ability for embodied agents. Furthermore, based on Spartun3D, we propose a new

3D-based LLM, Spartun3D-LLM, which is built on the most recent state-of-the-art 3D-based LLM,

LEO [46], but integrated with a novel situated spatial alignment module that explicitly aligns 3D

visual objects, their attributes and spatial relationship to surrounding objects with corresponding

textual descriptions, with the goal of better bridging the gap between the 3D and text spaces.

In summary, our contributions is summarized as follows.

1. We introduce a dual-action module for VLN-CE agents to ground high-level visual perception

into low-level spatial actions. This design empowers the agent with the flexibility to select high-level

viewpoints and generate low-level action sequences. We enhance the waypoint predictor with

visual representations containing rich object semantics and explicit prior knowledge about objects’

passability attributes. We adapt our method to several VLN-CE agents. The experimental results

show the effectiveness of our approach in waypoint predictor, as well as high-level and low-level

navigation performance.

2. We propose a method to address the limitation of situated understanding of the 3D-based LLMs

from two perspectives. We construct an LLM-generated dataset based on our designed situated scene
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graph. Then, we propose an explicit situated spatial alignment on the 3D-LLM to encourage the

model to learn alignment between 3D object and their textual representations directly. We provide

comprehensive experiments to show our proposed Spartun3D improve situated understanding of

SQA3D and navigation. We also provide analysis to show our proposed explicit alignment module

helps spatial understanding.

5.2 Narrowing the Gap between Vision and Action for the VLN-CE Agent

We enhance the existing VLN-CE agent by introducing an obstacle-aware waypoint predictor

and a dual-action module for navigation. The waypoint predictor enables the agent to generate

waypoints in open areas rather than obstacles, while the dual-action module allows for flexible

execution of both high-level and low-level navigation actions simultaneously. In the following

sections, we first introduce the Transformer-based VLN-CE agent, which serves as our baseline. We

then detail our improvements, beginning with the obstacle-aware waypoint predictor, followed by

the dual-action module. Fig. 5.2 shows the main architecture.
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5.2.1 VLN-CE Agent

The backbone comprises two primary components: the waypoint predictor and the navigator.

The waypoint predictor is trained offline to generate navigable viewpoints, which are applied to the

navigator for view selection.

Text Encoder. We use BERT [110] to obtain initial text representation of instruction 𝑤, denoted as

𝑋 = [𝑥1, 𝑥2, · · · , 𝑥𝑙].

Vision Encoder. In the baseline, different RGB vision encoders are used for the waypoint predictor

and navigator. The waypoint predictor utilizes ResNet-152 [35] as its vision encoder, pre-trained

on the ImageNet dataset [96], Meanwhile, the navigator uses the InternVideo [115] as the vision

encoder, pre-trained on large video-text datasets. Formally, the obtained visual representations of

RGB images are denoted as 𝑣𝑟𝑔𝑏 = {𝑣𝑟𝑔𝑏1 , 𝑣
𝑟𝑔𝑏

2 , · · · , 𝑣𝑟𝑔𝑏12 }. The depth images are fed into DD-PPO

ResNet-50 [120], which is trained for point-goal navigation, represented as 𝑣𝑑 = {𝑣𝑑1 , 𝑣
𝑑
2 , · · · , 𝑣

𝑑
12}.

Waypoint Predictor. We follow the waypoint predictor designed in [38], which is a multi-layer

Transformer with a non-linear classifier. All 12 RGB image representations 𝑣𝑟𝑔𝑏 and depth image

representations 𝑣𝑑 are concatenated and then input into the waypoint predictor to predict a heatmap

of 120 angles-by-12 distances. Each angle is 3 degrees, and distances range from 0.25 to 3.00

meters with an interval of 0.25 meters. The heatmap is represented as a Gaussian distribution with a

variance of 1.75m and 15◦ to expand the prediction range. The waypoint predictor is pre-trained

based on the navigable connectivity graph from MP3D [7]. During inference, non-maximum

suppression (NMS) is used to sample 𝐾 neighboring waypoints, which are utilized as the candidate

views for the following navigator.

Navigator. Our method is designed to be model-agnostic, allowing it to be applied to any VLN-CE

navigation agent based on a waypoint predictor. In this paper, we utilize HAMT [10] as the

navigator backbone. HAMT is a multimodal Transformer-based navigator that can memorize history

information. Specifically, HAMT uses a sequence of panorama images as the navigation history

during the navigation trajectory; then it applies Transformers to encode the observations on the

trajectory to memorize temporal information. Formally, at each navigation step 𝑡, the waypoint
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predictor generates 𝐾 candidate views, and their observation representations are denoted as 𝑂𝑡 .

Also, the history representation is denoted as 𝐻𝑡 . HAMT concatenates history and observation

as the vision modality and uses a cross-modal transformer to learn the connection between text

presentation 𝑋 and visual representation [𝐻𝑡 ;𝑂𝑡]. The actions are predicted by selecting the highest

similarity score between observation encoding 𝑂𝑡 and <CLS> token containing instruction-trajectory

information.

5.2.2 Obstacle-Aware Waypoint Predictor

Object semantics in the visual environment is expected to play an important role in predicting

navigable viewpoints, especially in the sense of open and obstacle areas. Objects have attributes

that determine whether they should be labeled as passable or impassable. For example, the agent is

not supposed to traverse beneath a “table” or on the “bed”. However, the current methods mainly

leverage visual information from RGB and depth images and neglect further exploration of the

object semantics and their attributes related to passibility.

To overcome this limitation, we first enhance the current waypoint predictor with vision

representation from the VLPMs [89, 91, 115], which contain much more comprehensive object

semantics than ResNet in the baseline’s waypoint predictor. We employ vision representations

from different VLPMs to assess their influence on the waypoint predictor’s performance, and

please see Table 5.5 for our detailed analysis. Second, we introduce an obstacle mask mechanism

based on semantic segmentation within the visual environment and our prior knowledge about

impassable objects. We utilize semantic segmentation provided by MP3D with approximately 40

object categories. To identify open areas, we define a vocabulary with open areas objects, such as

"floor", "stairs", and "door", and we mask semantic segments that are not within this vocabulary.

Table 5.6 in the Appendix shows how different open-area vocabularies affect the performance of the

waypoint predictor.

Formally, we denote the visual representation from VL pre-trained models of panoramic images

as 𝑣𝑟𝑔𝑏𝑐 = {𝑣𝑟𝑔𝑏
𝑐1 , 𝑣

𝑟𝑔𝑏

𝑐2 , · · · , 𝑣
𝑟𝑔𝑏

𝑐12}. For each image, we obtain the corresponding obstacle mask based

on semantic segmentation. We assign a label of 1 to object areas in the open vocabulary and 0
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otherwise. The resulting obstacle masks are represented as 𝑚 = {𝑚1, 𝑚2, · · · , 𝑚12}. Subsequently,

we apply obstacle masks to the RGB images and obtain the masked RGB representation, 𝑣𝑐𝑚 = 𝑣𝑐 ∗𝑚,

which is then concatenated with depth visual representation 𝑣𝑑 . This combined representation is

input to the waypoint predictor to generate views at each navigation step. We train the waypoint

predictor with enhanced visual representation and obstacle-masked image. Then, we employ it in

the navigator for offline usage to generate navigable views.

5.2.3 Dual-Action Prediction for the Navigator

High-level Action is to select a view based on the similarity between the observation 𝑂𝑡 and the

hidden states from the cross-modal Transformer, which is represented as follows,

𝑝ℎ𝑡 = Softmax( [𝐻𝑡 ;𝑂𝑡] ∗ ℎcls𝑡 ), (5.1)

where ℎcls is the <CLS> token representation from navigator at step 𝑡, and 𝑝ℎ𝑡 is the probability

of high-level action. Once the most similar viewpoint is selected, the agent employs an offline

controller to navigate to the corresponding position. While high-level actions effectively boost

navigation performance, the training mechanism primarily focuses on view selection, neglecting the

spatial information in the low-level action sequence. Additionally, it is challenging for a real-world

robot to navigate to a precise angle and distance in a realistic environment. Real-world robots

typically operate with very limited action sets, such as FORWARD 0.25m.

Low-level Action Challenges. The previous approach uses a non-linear classifier to predict an

action class at each navigation step as follows,

𝑝𝑙𝑡 = Softmax(ℎcls𝑡 𝑊𝑐), (5.2)

where𝑊𝑐 projects the <CLS> token representation to four low-level actions, and 𝑝𝑙𝑡 is the probability

of low-level actions. While low-level actions are closer to real-world robotic behavior, directly

modeling the agent to generate such actions results in a cost-training process. This is because the

episodes for low-level actions are around 10 times longer than high-level actions (around 56 steps

for low-level action steps, compared to 4 − 6 for high-level episodes). Additionally, the performance

drops substantially when training the agent with a low-level action classifier [38, 41].

60



Navigation 
Agent

low actions: 

Causal 
Self-Attention

prompt

Text Decoder

Left Left Left Forward

Auto-regression Low-Level Action Labels

left, left, left, forward

15°
15°

15°
10°

Heading Label
[Left,Left,Left]

0.25m

Distance Label
[Forward]

0.08m

Initial 
heading

Figure 5.3 Low-Level Action Decoder.

Dual-Actions. We enable the VLN-CE agent to navigate simultaneously using high-level and low-

level actions. Built upon the existing VLN-CE agent that predicts high-level actions, we introduce

a decoder to simultaneously generate the corresponding low-level action sequence. Specifically,

instead of generating one low-level action using an action classifier at each navigation step, our

agent is trained to generate a low-level action sequence. We formulate low-level action prediction

as the textual sequence generation task. As shown in Fig. 5.3, we introduce a Transformer-based

text decoder to generate the low-level action sequences with the prompt of “low actions:”. At each

navigation step, the agent selects a high-level view, and at the same time, it is trained to generate the

corresponding low-level sequence of action tokens auto-repressively. We input the text decoder with

<CLS> representation from the navigator and textual prompt representation. The training objective

is to maximize the likelihood of the next low-level action token. The following equation shows the

loss of generating 𝑗-th token in the action sequence.

L𝑙𝑜𝑤 = −
∑︁
𝑗

log 𝑝𝜃 (𝑎𝑙𝑗 |𝑎𝑙1, · · · , 𝑎
𝑖
𝑚), (5.3)

where 𝑚 is the length of the sequence.

We jointly train low-level action decoders and high-level selection. The labels for the low-level

action sequence are obtained from the heading and distance differences between the initial view

and the selected views in the high-level action. When the agent selects a high-level view at each
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Q: Where is the desk located?
A: Behind you

Q: I need to check my appearance. Where should I 
go?
A: You should go to the mirror behind you.

Q: I want to make the room brighter and then sit 
down to relax. What should I do?
A: Turn to your left and head towards the 
window. Open the curtains to let in more natural 
light. After adjusting the curtains, head towards 
the sofa chair on your left side to sit and 
relax. You may need to pass other chairs and 
a desk in your path.
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octagon wide bed that is messy 
while there is a window on the left. Object Attribute and Relation

Object Affordance

Situated Planning

Situated Captioning

Q: Describe the scene from your current 
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A: In front, there's a rectangular box and 
a big picture that can be hung or moved. 
Nearby, there's a tall nightstand beside the 
bed. To the right, there's a tall pillow 
close to another pillow and a blanket. 
Behind, a polished mirror and a flexible 
bag are near a closed door with hanging 
clothes. On the left, there's an artificial 
lamp and a desk close to a sofa chair and 
trash bin, a curtain, another lamp, and a 
tall wardrobe near a cabinet.

Situated QA

Other Views

Figure 5.4 Examples of two tasks in Spartun3D Benchmark. The green bounding box and arrow in
the 3D scene demonstrate the standing point and orientation.

navigation step, the corresponding low-level sequence label is created. Specifically, we initially

calculate the degree difference in headings and divide it by 15 to determine the number of rotation

steps the agent takes. The direction (LEFT or RIGHT) is determined based on the smaller rotations.

A similar process is applied to distance: we calculate the distance between the start point and the

selected view and divide it by 0.25. We ignore the remaining if the heading or distance is not

perfectly divisible. For instance, as shown in Fig. 5.3, the distance between the start point and the

target view is 0.33m, and the low action is just one FORWARD (0.25m).

5.3 Spartun3D: Situated Spatial Understanding in 3D World

We first introduce a scalable, LLM-generated dataset named Spartun3D, incorporates various

situated spatial information. Furthermore, based on Spartun3D, we propose a new 3D-based LLM,

Spartun3D-LLM, which is built on the most recent state-of-the-art 3D-based LLM, LEO [46],

but integrated with a novel situated spatial alignment module that explicitly aligns 3D visual

objects, their attributes and spatial relationship to surrounding objects with corresponding textual

descriptions, with the goal of better bridging the gap between the 3D and text spaces.

5.3.1 Spartun3D Dataset Construction

To better equip 3D-based LLMs with the capability of understanding situated 3D scenes, we

introduce Spartun3D, a diverse and scalable situated 3D dataset. To ensure the scalability of

Spartun3D, we carefully design an automatic pipeline that leverages the strong capabilities of
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GPT-4o [78], with three key stages: (1) Designing diverse situations that specify the agent’s standing

point and orientation given a 3D scene as input (Sec. 5.3.1.1); (2) Constructing situated scene graphs

to describe the spatial relationships between the agent and objects in the environment conditioned on

the agent’s situations (Sec. 5.3.1.2) ; and (3) Prompting LLMs to generate dataset based on situated

scene graphs (Sec. 5.3.1.3).

5.3.1.1 Situation Design

The 3D scenes in Spartun3D are taken from 3RScan [121], which provides a diverse set of

realistic 3D environments. Given a particular 3D scene with all the objects labeled by humans from

3RScan, our first step is to generate diverse situations for the agent. To construct the situation, we

begin by identifying the standing point and orientation and then complete a situation description

accordingly using the following template: “You are standing beside {pivot object name}, and there

is {referent object name} on the {left/right/front/backward}.” The elements within {} specify the

key components that together define the situation. Below, we define the agent’s standing point and

orientation and explain how these elements are obtained to construct diverse and reliable situations.

Standing Point and Orientation. We begin with determining the agent’s standing point and

orientation within the 3D scene. Our approach is to place the agent beside an object, ensuring a

clear reference for orientation when interacting with the environment. Specifically, we project all

objects from 3D space onto a 2D plane, focusing only on the x and y coordinates to construct a

bird-eye-view of the scene. From this projected 2D scene, we randomly select an object from the set

of segmented objects within the 3D scene. To ensure the constructed situation remains realistic, we

exclude objects that are positioned too high to avoid unnatural situations like “standing beside the

lamp on the ceiling”. As a result, we limit the selection to objects whose z-axis is below the average

height of all objects in the scene. Then, we choose a midpoint from two sides of the selected object’s

bounding box that are closest to the center of the scene, as shown in Fig. 5.5. By prioritizing the side

closest to the center, we minimize this risk and keep the agent within the scene’s boundaries. Finally,

the selected midpoint will be used as the agent’s standing point. In addition, we need to determine

the agent’s orientation. We assume the agent’s orientation is always facing forward to the center of
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Figure 5.5 Standing Point and Orientation Selection.

the selected object. This guarantees that the selected object remains within the agent’s field of view.

Pivot and Referent Object. Once the agent’s standing point and orientation are determined, we

refer to the object that the agent stands beside as the “pivot object”, and other objects surrounding

the pivot object are potential referent objects. A referent object is then randomly selected, and its

relative position (left/right/front/backward), with respect to the agent’s standing point and orientation,

is used to generate the description of the situation.

5.3.1.2 Situated Scene Graph Construction

Building on the agent’s situation, we further construct a situated scene graph that captures the

comprehensive spatial relationships between the agent and its surrounding objects. Existing 3D-

based LLMs [153, 46] represent scenes in a structured manner using JSON-formatted scene graphs,

including detailed scene context of object attributes and relative spatial relationships between objects.

However, their spatial relations are based on a global view, such as a bird-view-eye perspective (as

shown in Fig. 5.6). To enable situated understanding, we introduce a situated-scene-graph adapted

from the original global scene graph to capture all relative spatial relationships between the agent’s

standing point and surrounding objects as follows:

Rotation Angles. We calculate rotation angles that reorient the agent from its orientation to the

surrounding objects. Specifically, we first calculate the horizontal angle between the standing point

and the center of the pivot object. Next, we calculate the horizontal angle between the standing

point and a surrounding object. The rotation angle is determined by the difference between these

two angles. We further normalize the rotation angles such that larger values correspond to a greater
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degree of rightward rotation.

Direction. We classify the object’s rotation angles to the agent into four directional categories

according to a predefined standard: [front, right, backward, left] (see Fig. 5.6 (b)). For instance, an

object is categorized as “right” if the turn angle falls within the range of [45-135] degrees relative to

the agent’s forward-facing orientation.

Distance. We compute the Euclidean distance between the agent’s standing point and the center

of the bounding boxes of surrounding objects.

Passby Objects. We assess whether the agent can move freely from its standing point to other

objects. We draw a straight line from the agent’s standing point to the center of the referenced object.

If this line intersects any other objects in the scene, those objects are considered “passby objects”.

For example, as illustrated in Fig 5.6 (d), the “table” is a passby object between the agent and the

“kitchen cabinet”. We explictly include the information of passby objects to help the agent build

awareness of objects that might influence its path while navigating.

After gathering the spatial information described above, we organize it into a JSON format (shown

in Fig. 5.6 (e)), which is then used as input to prompt LLMs to generate our datasets.

5.3.1.3 LLMs prompting

We design specific instructions to prompt GPT-4o [78] for two situated tasks: Situated

Captioning and Situated QA. For both tasks, we ask GPT-4o to provide responses considering
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situated spatial information, and examples of the generated dataset are shown in Fig. 5.4.

Situated Captioning is our newly introduced task, aiming to generate brief situated descriptions of

the surrounding objects as the agent performs a 360◦ clockwise rotation starting from its standing

point and orientation. The motivation for introducing this task stems from its crucial role in

embodied tasks, such as navigation, where the agent must interpret and reason about its environment

from 360◦ panoramic views to make decisions about movement and interaction [146]. Therefore,

we guide GPT-4o to generate descriptions progressively, starting from lower rotation angles and

moving toward higher angles in each direction.

Situated QA. We design three types of questions for the Situated QA task, each targeting a different

aspect of spatial reasoning for embodied agents. Unlike previous works that rely on a single generic

prompt for all question types, we develop tailored prompting strategies for each question type,

encouraging LLM to generate QA pairs focusing on different levels of reasoning.

Object Attribute and Relations include questions about objects attributes, such as color, shape,

and size, while also incorporating situated spatial information. For instance, the questions to identify

“the color of the table positioned to the left”, and determine “how many pictures are hanging on the

wall to the right”.

Object Affordance focuses on the function utility of the objects, often based on common sense

knowledge about how objects are used. Similarly, we require situated spatial information to be part

of the answer. For example, when asked “Where can you check your appearance?", the correct

answer should be “mirror on your left”, specifying both the object name (mirror) and its spatial

location from the agent.

Situated Planning is the most challenging task, as it requires the agent to perform multi-hop

situated spatial reasoning. The agent must not only recognize its surroundings but also plan and

execute a series of actions across multiple steps, where each subsequent action depends on the

outcome of the previous one. In our dataset, we implement 2-hop reasoning, which requires the

agent to perform a sequence of two continuous actions. For example, given the example in Fig. 5.4,

“make the room brighter and then sit down to relax.”, the agent needs to first turn left from its
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Figure 5.7 Human Evaluation of Spartun3D.

orientation to face and move toward the window, open it to brighten the room, then based on its new

position, the agent continues turning left toward the sofa chairs and sits down.

5.3.1.4 Dataset Statistics and Quality Control

In total, we collect approximately 10k situated captions and 123k QA pairs. For the tasks of

object attribute and relation and the tasks of affordance, we sampled around 10 situations per scene.

For captioning and planning tasks, we sample around 5 situations per scene due to the increasing

cost of longer token sequences required for these tasks. For each task, we split the data instances

into a Training and Test set. Table 5.1 shows the statistics of our dataset.

We conduct a comprehensive human evaluation to manually assess the quality of Spartun3D,

introducing human scores based on two key criteria: language naturalness, which evaluates whether

the text reads as if it were naturally written by a human, and spatial fidelity, which ensures that the

data accurately reflects the 3D scene with correct spatial relationships. Each criterion is rated on a

scale from 1 to 5, and the average of these two scores is the overall human score. We randomly

select 50 examples from each task and compute human scores of situation, question, and answer,

respectively. As shown in Fig. 5.7 (a), the average scores align with the complexity of each task, with

relatively lower scores for captioning and planning tasks. To assess how our generated data compares

to human-annotated data, we sampled 50 examples from SQA3D and mix them with our dataset.

We focus on the human score of different types of questions, as shown in Fig. 5.7 (b). We also

evaluate how different prompting strategies influence the quality of the data. We experiment with

two types of prompts for representing spatial information to prompt GPT-4o: Cord-prompt, which

consists of object center coordinates, standing point, orientation, and instructions for calculating
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Tasks # of Examples Train/Test

Captioning ∼ 10K 8, 367/1, 350
Attr. & Rel. ∼ 62K 61, 254/8, 168
Affordance ∼ 40K 35, 070/5, 017
Planning ∼ 21K 19, 434/2, 819

Table 5.1 Dataset statistics of Spartun3D and human validation results.

distances and rotation angles, and Spa-prompt, consisting of the calculated angles and distance

based on the approaches we described in Sec. 5.3.1.3. Fig.5.7 (c) shows the percentage of examples

with high human scores (≥ 4) for each prompt across tasks. The results indicate that Cord-prompt

yields unsatisfactory results, revealing that LLMs lack strong 3D spatial reasoning capabilities

when interpreting raw spatial coordinates. Our Spa-prompt significantly improves the quality of the

generated dataset by providing qualitative spatial relations (e.g. distance, direction).

5.3.2 Model Architecture

In addition to enhancing the situated understanding of 3D-based LLMs with Spartun3D, we also

propose a new 3D-based LLM, named Spartun3D-LLM, which integrates a novel Situated Spatial

Alignment module to strengthen the alignment between the situated 3D visual features and their

corresponding textual descriptions. Spartun3D-LLM is built upon LEO [46], which represents the

most recent and state-of-the-art 3D-based LLM, and directly takes 3D point cloud data as input,

making it well-suited for spatial reasoning tasks in 3D environments. Fig. 5.8 illustrates the overview

architecture of Spartun3D-LLM.

5.3.2.1 Background

Problem Formulation. We formally define the input as a triple < 𝐶, 𝑆, 𝑄 >, where 𝐶 is the 3D

scene context, 𝑆 is the situation, and 𝑄 is a question. The situation 𝑆 can be further denoted as

𝑆 =< 𝑆𝑡 , 𝑆𝑝, 𝑆𝑟 >, where 𝑆𝑡 is a textual situation description, and 𝑆𝑝 and 𝑆𝑟 are the standing points

and orientation, respectively. Specifically, 𝑆𝑝 is a 3D coordinate in the form < 𝑥, 𝑦, 𝑧 > and 𝑆𝑟 is the

quaternion < 𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑤 >, where < 𝑞𝑥, 𝑞𝑦, 𝑞𝑧 > is the rotation axis and 𝑤 is the rotation angle.

For simplicity, we define 𝑧 = 0 to calculate the rotation angle on a 2D plane. The task is to generate

a textual answer, denoted as 𝐴, given scene context 𝐶, situation 𝑆, and question 𝑄. During training,
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Figure 5.8 Spartun3D-LLM Model Architecture.

𝑆𝑝 and 𝑆𝑟 are provided to the agent to rotate and translate the environment, while during testing,

only questions and situations are provided.

Backbone. LEO [46] takes the text, 2D image (optional), and 3D point clouds as input and formulate

comprehensive 3D tasks as autoregressive sequence generation. Specifically, data from different

modalities are converted into a sequence of tokens as input to the LLM. The text tokens include

system messages (e.g., “You are an AI visual assistant situated in a 3D scene.”), situations, and

questions. These tokens are then embedded into vector representations using an embedding look-up

table. For 3D point clouds, LEO first applies segmentation masks to extract the point clouds of

individual objects in the 3D scenes. Then, the sampled points of each object are input into a

object-centric point cloud encoder, PointNet++ [85] pre-trained on ScanNet [16], to obtain the

object-level representations.

Formally, we denote the representation of input text tokens as W = [w1,w2, ...,w𝑀] ∈ R𝑀×𝐷

, where 𝑀 denotes the number of input tokens, and 𝐷 represents the dimensionality of each

token’s embedding. Additionally, the input object visual representations are expressed as O =

[o1, o2, ..., o𝐾] ∈ R𝐾×𝐷 , where 𝐾 is the number of extracted objects from the scene. Finally, the

output answer are represented as A = [a1, a2, ..., a𝑁 ], where 𝑁 is the number of tokens in the

response. The model’s objective is to generate the answer given these combined inputs. The loss for
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generating the 𝑖-th token of the output answer is formulated as follows:

LLM(𝜃) =
∑︁
𝑖

𝑙𝑜𝑔𝑝𝜃 (a𝑖 |a𝑖−1,WS, o). (5.4)

LEO can integrate various LLM backbones, including OPT1.3B [132] and Vicuna-7B [15]. In

our experiments, we fine-tune LEO with different LLM backbones on our proposed dataset via

LoRA [44].

5.3.2.2 Situated Spatial Alignment Module

Situated tasks require robust spatial reasoning abilities to comprehend the position, orientation,

and spatial relationships of objects within a 3D environment. Existing 3D-based LLMs typically

process inputs by concatenating output representations from various modality encoders. While this

method facilitates the integration of data across different modalities, it does not inherently ensure

that the 3D visual representations encode situated spatial information or effectively align with textual

descriptions, which potentially limits the model’s ability to perform tasks that require precise spatial

understanding. To tackle this challenge, we introduce a novel Situated Spatial Alignment Module

to improve the alignment between the object-centric 3D visual representations and their situated

textual descriptions. The process begins by generating detailed situated textual descriptions for

each object. Subsequently, an alignment loss is introduced, which directs the model in effectively

learning the 3D visual representations based on these situated textual descriptions.

Situated Textual Descriptions. For each object, we construct a comprehensive situated textual

description based on a template that captures the object’s name, attributes, and spatial relations with

nearby objects, as “Stand besides {object name} and facing the center of the {object name}, in front,

there are {a list of nearby objects}; on the right, ...; behind ...; and on the left...”. The object’s

attributes are also considered (e.g., “white chair”). We consider up to five objects per direction. If

no object is present in a specific direction, the description explicitly states this, ensuring to provide

complete information about the 3D environment.

3D Object-Text Alignment. Inspired by the success of 2D Visual-Language models, which

effectively leverage semantically aligned text and visual features to excel in downstream tasks [89,

63, 62, 115], we aim to enhance the 3D visual representations so that they can better encode the
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situated spatial information and effectively align with the textual descriptions. Specifically, we

introduce a 3D object-text alignment loss to guide the learning process of point cloud encoders

within 3D-based LLMs, leveraging the robust language representations captured by pre-trained text

encoders. We experiment with various text encoders, and CLIP achieved the best performance.

More formally, we obtain the text representations of situated textual description for each

object from pre-trained text encoders, denoted as W = [w1,w2, ...,w𝑘 ] ∈ R𝐾×𝐷 . For object

visual representations O, we employ spatial self-attention layers [11] to learn spatial-aware object

representations. Specifically, a pairwise spatial feature matrix F ∈ R𝐾×𝐾×5 is introduced to represent

relative spatial relations between objects. For example, for each object pairs o𝑖 and o 𝑗 , we construct

pairwise spatial feature as f𝑖 𝑗 = [𝑑𝑖 𝑗 , 𝑠𝑖𝑛(𝜃ℎ), 𝑐𝑜𝑠(𝜃ℎ), 𝑠𝑖𝑛(𝜃𝑣), 𝑐𝑜𝑠(𝜃𝑣)] ∈ R1×5, where 𝑑𝑖 𝑗 is

Euclidean distance between two objects, and 𝜃ℎ and 𝜃𝑣 are horizontal and vertical angles connecting

bounding box centers of o𝑖 and o 𝑗 , respectively. Then, we inject F into the self-attention of the

object as,

O′ = softmax(QK𝑇

√
𝑑ℎ

+ MLP(F))V,where 𝑄 = 𝑊𝑄𝑂;𝐾 = 𝑊𝐾𝑂,𝑉 = 𝑊𝑉𝑂, (5.5)

where O′ ∈ R𝐾×𝐷 denotes the spatial-aware object representation; Then we use a Mean Squared

Error (i.e., MSE) as the objective function to minimize the distance between the object representation

O′ and the corresponding situated textual embedding W, denoted as Lalign = MSE(o′,w𝑡). The

model is trained to jointly optimize both the alignment loss and the language modeling loss (Eq. 5.4)

as L = L𝐿𝑀 + Lalign.

5.4 Experiments for VLN-CE

5.4.1 Experimental Results on High-Level and Low-Level Action Performance

We evaluate our method on top of three VLN-CE agents: WP-VLN-BERT [38], WP-HAMT [115],

and ETPNav [2]. These VLN-CE agents are all Transformer-based models and employ a waypoint

predictor to discretize the visual environment for navigation in the continuous setting. WP-VLN-

BERT represents historical information using implicit state representations, whereas WP-HAMT

uses explicit panoramic images in the traversed path. ETPNav is a graph-based VLN agent, which
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Validation Unseen Test Unseen
Model nDTW↑ SR↑ SPL↑ SR↑ SPL ↑

1 Waypoint Models [52] - 0.36 0.34 0.32 0.30
2 CWP-CMA [38] 0.55 0.41 0.36 0.38 0.33
3 Sim2Sim [53] - 0.43 0.36 0.44 0.37
4 VLN-BERT+Ego2-Map [41] 0.60 0.52 0.46 0.47 0.41
5 WP-VLN-BERT [38] 0.54 0.44 0.39 0.42 0.36
6 WP-VLN-BERT+Ours 0.55 0.46 0.41 0.44 0.38
7 WP-HAMT [115] 0.60 0.52 0.47 0.49 0.45
8 WP-HAMT+Ours 0.62 0.54 0.49 0.52 0.47
9 ETPNav [2] - 0.57 0.49 0.55 0.48
10 ETPNav+Ours 0.62 0.58 0.49 0.56 0.48

Table 5.2 Experimental results on high-level action evaluated on the R2R-CE validation unseen and
test dataset.

differs slightly from the standard navigation setting. The other two agents can only select local

navigable viewpoints connected to the current viewpoint. However, graph-based agents like ETPNav

can jump back to the previously explored viewpoints, often resulting in a higher success rate. We

integrate our dual-action module and enhanced waypoint predictor into the three baseline backbones

introduced above and evaluate navigation performance on both high-level and low-level actions as

follows.

High-Level Action Performance. Table 5.2 presents the navigation performance using high-level

actions on the validation unseen and test unseen sets. All VLN-CE agents in Table 5.2 first employ

a waypoint predictor to generate navigable viewpoints and then select a view from these viewpoints.

We improve high-level action performance for all baselines by incorporating our obstacle-aware

waypoint predictor and dual-action modules. Specifically, we improve WP-VLN-BERT almost 2%

on all navigation metrics on both validation and test unseen sets, as shown in row#6. WP-HAMT

utilizes visual representation from InternVideo [115] to strengthen the model’s performance. We

mainly compare with InternVideo base weights because of the computation cost limitation. In terms

of the navigation performance of this baseline, we especilly improve 3% of the success rate on the

test unseen (row#8). In addition to enhancing the standard Transformer-based navigation agent, our

method can also increase the success rate of the graph-based agent ETPNav, as shown in row#10.

Low-Level Action performance. Table 5.3 shows the navigation performance with low-level
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Methods nDTW↑ SR ↑ SPL ↑
1 CMA+PM+DA+Aug [54] 0.51 0.32 0.30
2 LAW [92] 0.54 0.35 0.31
3 WS-MGMap [9] - 0.39 0.34
4 CWP-CMA [38] 0.49 0.27 0.25
5 VLN-BERT+Ego2-Map [41] 0.52 0.30 0.29
6 WP-VLN-BERT [38] 0.48 0.23 0.22
7 WP-VLN-BERT+Ours 0.54 0.28 0.27
7 WP-HAMT* [115] 0.54 0.35 0.32
9 WP-HAMT+Ours 0.55 0.44 0.38
10 ETPNav+Ours 0.58 0.48 0.42

Table 5.3 Experimental results of low-level actions on the R2R-CE validation unseen set. * means
our implementation for low-level action prediction, as most VLN-CE agents do not report their

low-level performance. We train the VLN agent with a low-level action classifier for fair
comparison.

movement actions. The existing methods mainly compare the results of the validation unseen for

low-level actions. The models in row#1 to row#3 are based on LSTM architecture to frame the

navigation as a sequence-to-sequence task and predict low-level actions directly. The models from

row#4 to row#6 are models using a waypoint predictor. They add an action classifier to the navigator

and train the model to select one low-level action at each navigation step. Another noticeable

difference between the models from row#1 to row#3 and others is that the agent in these methods

can only observe the current view rather than the whole panoramic view at each navigation step. As

shown in Table 5.3, we observe that some Transformer-based navigators with much more powerful

pre-trained visual representations and complex model architecture, such as the approaches in row#5

and row#6, their low-level action navigation performance could not compete with LSTM-based

models (row#1 to row#3). Specifically, for the baseline model WP-VLN-BERT, although our method

can significantly improve it (row#7), it is still far behind LSTM-based models. However, we can

achieve SOTA after applying our method on WP-HAMT and ETPNav, as shown in row#9 and

row#10, respectively. It is worth noting that the majority of VLN-CE agents do not report their

low-level action performance. To ensure a fair comparison, we follow the method of low-level action

prediction in WP-VLN-BERT to add a non-linear classifier on top of WP-HAMT [115] to adapt it

to low-level action prediction. In general, our method’s performance is aligned with the VLN-CE
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Method High Low
CLIP Ob-Mask Dual-Action nDTW↑ SR↑ SPL↑ nDTW↑ SR↑ SPL↑

Baseline 0.60 0.52 0.47 0.54 0.35 0.32
1 ✔ 0.60 0.52 0.47 0.55 0.43 0.36
2 ✔ 0.61 0.53 0.47 - - -
3 ✔ ✔ 0.61 0.53 0.48 - - -
4 ✔ ✔ ✔ 0.62 0.54 0.49 0.55 0.44 0.38

Table 5.4 Ablation study on different components of our method. The baseline is WP-HAMT, and
the Ob-mask is the obstacle mask.

navigator’s performance. This correlation is expected, as the low-level action sequence is trained

using the hidden state representation from the corresponding baseline, and stronger representations

yield better performance when training low-level actions.

5.4.2 Ablation Study

In this section, we conduct an ablation analysis of the waypoint predictor and for waypoint

predictor and the effectiveness of different components in our method.

Waypoint Predictor Performance. The waypoint predictor is trained offline to generate

navigable viewpoints. We enhance the baseline waypoint predictor from the aspects of stronger

visual representations and explicit object masks, and Table 5.5 shows our results on R2R-CE

validation unseen set. The main metrics to evaluate the waypoint predictor’s performance are as

follows: |Δ| measures the difference in the number of target waypoints and predicted waypoints.

%Open is the ratio of predicted waypoints in open space. 𝑑𝑐 and 𝑑𝐻 are the Chamfer and Hausdorff

distances, respectively, to measure the distance between point clouds.

We experiment with visual representations from different Vision and Language Pre-trained

Models (VLMs) and test their influence on the performance of the waypoint predictor. As shown

in Table 5.5, the waypoint predictor achieves the best performance when utilizing CLIP vision

representations. However, we cannot conclude that more powerful vision representations lead to

better waypoint-predicting performance since the representations from InterVideo seem to hurt the

waypoint predictor. This result suggests that different pre-trained visual encoders possess varying

capacities to influence the agent’s ability to recognize open and obstacle areas. The better result is

achieved when both CLIP representation and our designed obstacle mask are applied. Compared
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Waypoint Predictor
Visual Encoder |Δ| %Open↑ 𝑑𝐶 ↓ 𝑑𝐻 ↓

1 ResNet [38] 1.40 0.80 1.07 2.00
2 InternVideo [115] 1.44 0.65 1.15 2.04
3 DenseCLIP [91] 1.41 0.81 1.05 2.01
4 CLIP [89] 1.38 0.83 1.04 2.00
5 CLIP+ Obstacle Mask 1.38 0.85 1.04 1.94

Table 5.5 Evaluation of different visual encoders.

to ResNet (row#1), CLIP improves the open area prediction by about 3%, demonstrating that rich

semantics in visual representation in CLIP aids the waypoint predictor in learning the open and

obstacle objects. After applying our designed obstacle mask, the accuracy of open area prediction

gained an additional improvement of 2%, emphasizing the effectiveness of the prior knowledge in

encouraging the waypoint predictor to better focus on open area spaces.

Different Components. The results of the ablation study in Table 5.4 demonstrate the influence

of each component of our proposed method on both high-level and low-level navigation. The

components in our method include dual-action for the navigator and the enhanced waypoint predictor

with CLIP visual representations and the obstacle mask. The analyzed navigator is WP-HAMT, which

uses visual representation obtained from InternVideo base weights. We report results on the R2R-CE

validation unseen dataset. In row#1, we integrate the low-level action decoder with the baseline

navigator and jointly train it with high-level actions, and the low-level action navigation performance

is significantly improved (about 4% on SPL). In row#2, we train the waypoint predictor with only

CLIP representations and apply it to the baseline navigator without dual-action training. Notably,

the enhanced waypoint predictor already contributes to better high-level navigation performance,

indicating that CLIP’s rich object semantic representation boosts overall navigation. Row#3 shows

the effectiveness of the obstacle mask in enhancing the SPL for high-level action. In row#4, we train

the waypoint predictor with both CLIP and obstacle mask, and we apply this enhanced predictor to

the navigator with the dual-action module. We achieve the best results in this setting. Compared to

row#3, we conclude that the spatial information incorporated into the low-level action benefits the

high-level viewpoint selection. Similarly, compared to row#1, enhanced waypoint prediction not
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Waypoint Predictor
Ob-Mask Vocab |Δ| %Open↑ 𝑑𝐶 ↓ 𝑑𝐻 ↓

No Mask 1.38 0.83 1.04 2.00
1 Floor 1.38 0.84 1.07 2.00
2 Stairs 1.40 0.82 1.04 2.00
3 Doors 1.40 0.80 1.04 1.94
4 Floor+Stairs+Doors 1.38 0.85 1.04 1.94

Table 5.6 Analysis of the influence of various open-area vocabularies on the waypoint predictor.

only enhances high-level viewpoint selection but also benefits low-level action generation.

5.4.3 Qualitative Analysis

In this section, we provide a qualitative analysis from the perspectives of low-level actions and

obstacle masks.

Low-Level Actions Generation. In Fig. 5.9 (1), we show an example of our generated low-level

action sequences that lead the agent to the destination. However, we have observed cases where the

agent generates a low-level action sequence that reaches the destination but does not fully follow

the instruction, as shown in Fig. 5.9 (2). This issue also occurs in other VLN-CE agents when

modeling low-level action predictions. We assume the reason is the inherent challenges in building

the VLN-CE dataset. It transfers the instructions and trajectories from VLN-DE. When the simulator

executes the low-level actions, especially rotations, there is no human evaluation process to confirm

whether the low-level actions align with the instruction. The actions are generated based on minimal

required rotations when the selected view is given to the simulator. Training the agent to learn

low-level actions in these scenarios is more challenging compared to directly training with view

selection.

Open-area Vocabulary. In Table 5.6, we provide an analysis of object semantics and their

relation with the performance of the waypoint predictor. We select open-area vocabularies based

on our prior knowledge. The baseline we used is the waypoint predictor trained with CLIP visual

representations. Given the semantic segmentation from the simulated environment, we mask other

object areas except the semantic areas in open-area vocabularies. Then, we input the masked image

into the waypoint predictor. The experimental results demonstrate that different object semantics

76



0 30 60 120-30-60

(1) Instruction: Turn around stairs, and walk towards the living room.

Low Action: forward, forward, forward, forward, forward.

-30 0 60 120-60-90

(2)   Instruction: Turn around the table and turn left to the kitchen.

Low Action: left, left, left, left, forward, forward, forward, forward, forward, forward, forward, forward.

Figure 5.9 Examples of generated low-level actions. 0 denotes the current direction, while − means
LEFT turn. The number represents the rotation degree. The yellow bounding box indicates the

target.

show varying influences on the waypoint predictor. For instance, the %open is low when we mask

objects other than “door”, indicating the presence of closed or blocked doors (row#3). We can get

the best results when our open-area vocabularies contain “floor”, “stairs”, and “doors” (row#4).

Qualitative Examples for Obstacle Mask. In Fig. 5.10, we show an example to demonstrate

the different generated waypoint heatmaps between an RGB image with (Fig. 5.10 (2)) and without

(Fig. 5.10 (1)) obstacle mask. The image shows the corresponding views based on the headings

of the highlighted areas in the heatmap. It is evident that the waypoint predictor samples more

viewpoints (5 viewpoints) from image (a) and image (b) when an obstacle mask is applied, both of

which contain large open areas. In contrast, RGB images without obstacle masks sample relatively

fewer viewpoints on images (a) and (b), but they sample viewpoints from (c) and (d), although

(c) is not included in the ground truth. This example illustrates that the obstacle mask aids the

waypoint predictor in concentrating mainly on large open areas but falls short in narrow open areas.

However, based on the final navigation result in Table 5.4, the obstacle mask ultimately contributes

to navigation performance.
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(2) RGB Image with Obstacle Mask

(1) RGB Image 

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 5.10 An example of a generated waypoint heatmap given an RGB image with and without
obstacle mask.

Models LLMs Attributes and Relations Affordance Situated Planning

C B-4 M R EM C B-4 M R S C B-4 M R S

LEO zero-shot 100.3 0.00 17.4 39.1 42.7 13.3 0.00 3.00 5.00 32.3 0.00 0.00 7.00 15.3 59.2

LEO+Spartun3D OPT1.3B 121.3 7.0 20.1 45.3 47.7 224.6 30.6 24.9 53.2 66.9 229.7 44.8 32.1 60.9 83.8
Vicuna7B 125.4 10.1 22.1 46.7 52.1 238.9 32.1 24.4 55.0 68.3 242.1 46.5 35.2 63.1 84.3

LEO*+Spartun3D Vicuna7B 129.2 10.4 23.0 48.1 53.2 211.3 32.1 24.6 55.0 67.8 247.1 47.5 36.2 65.1 85.8

Spartune3D-LLM OPT1.3B 124.1 9.2 21.0 47.3 49.4 227.2 31.4 26.3 54.1 68.2 232.3 45.2 33.2 62.1 85.4
Vicuna7B 131.2 10.3 24.3 48.8 53.7 240.4 32.1 25.0 55.3 68.7 244.0 47.1 36.4 64.0 86.8

Spartune3D-LLM* Vicuna7B 135.4 10.7 24.9 51.3 56.9 254.7 32.9 26.7 57.3 69.7 252.1 47.6 36.2 65.4 88.7

Table 5.7 Experimental Results on Spartun3D Situated QA Tasks. ∗ represents the model initialized
with LEO instruction-tuned weights. [Keys: C: CIDER; B-4: BLEU-4; M: METEOR; R: ROUGE;

Sim: Sentence Similarity; EM: Exact Match; Bold: best results].
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5.5 Experiments for Spartun3D

5.5.1 Experimental Setup

To demonstrate the effectiveness of our proposed Spartun3D-LLM, we conduct experiments

on two situated understanding datasets, including Spartun3D and SQA3D [74]. For SQA3D, we

evaluate under two conditions: object proposals in 3D are derived either from Mask3D [98] or

ground-truth annotations. Also, we assess the transferability of our method on the navigation

task using MP3D ObjNav [97]. Following LEO [46], we report the performance using standard

generation metrics, including CIDEr, METEOR, BLEU-4, and ROUGE_L, sentence similarity [94]

for captioning task. For SQA3D and situated QA tasks of questions about attributes and relations,

we also report an additional metric of exact-match accuracy. We leverage LEO as baseline. Since

the training stage in LEO has covered most of the evaluation tasks, we experiment with models

initialized from scratch to ensure a fair comparison in the zero-shot setting. For other settings, we

report the performance of models initialized both from scratch and from the instruction-tuned LEO.

To distinguish between the two, models initialized from the instruction-tuned LEO are marked with

an asterisk (∗).

5.5.2 Experimental Results on Different Tasks

Spartun3D Benchmark We evaluate the performance of both the LEO model and Spartun3D-LLM

after fine-tuning them on our proposed Spartun3D dataset. The fine-tuned LEO model is referred to

as LEO+Spartun3D. Table 5.7 and Table 5.8 show the experimental results on Situated Captioning

and Situated QA tasks, respectively. We experiment with two different LLM backbones: Opt1.3B and

Vicuna7B. Our experiments show that Spartun3D-LLM consistently outperforms LEO+Spartun3D

across all question types (around 2% − 3% across all metrics), regardless of the LLM backbone

used, indicating the effectiveness of our explicit alignment module. We observe that initializing our

model with LEO pre-trained weights improves performance. Notably, without fine-tuning, LEO

performs reasonably well on attribute and relation questions in a zero-shot setting but struggles with

other situated tasks.

SQA3D Performance. We evaluate our method on the SQA3D dataset, whose scenes are derived
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Models LLMs C B-4 M R S

LEO zero-shot 0.00 0.00 9.00 15.3 51.9

LEO+Spartun3D OPT1.3B 5.9 15.3 17.7 31.2 67.3
Vicuna7B 6.7 15.8 18.7 32.3 70.4

LEO+Spartun3D* Vicuna7B 14.1 17.2 22.6 32.1 76.3

Spartun3D-LLM OPT1.3B 6.4 15.7 18.5 31.2 68.6
Vicuna7B 8.5 16.4 19.6 32.5 72.5

Spartun3D-LLM* Vicuna7B 14.6 19.3 23.3 33.4 78.1

Table 5.8 Experimental Results on Spartun3D Situated Captioning Task.

# Methods Mask3D [98] GT

C M R EM C M R EM

Zero-shot 1 LEO [46] 14.2 6.4 8.2 12.4 15.3 6.7 8.6 13.9
2 LEO+Spartun3D 82.3 14.2 32.8 34.7 83.1 15.2 33.7 35.9
3 Spartun3D-LLM 83.5 15.7 34.7 36.2 85.6 16.6 35.8 37.1

Fine-tune

4 3D-Vista [153] - - - 48.5 - - - -
5 3D-LLM [42] - - - 50.2 - - - -
6 LEO [46] 132.0 33.0 49.2 52.4 132.3 34.3 51.4 52.5
7 LEO*+Spartun3D 134.0 34.6 52.2 53.5 135.3 34.2 52.1 54.2
8 Spartun3D-LLM* 138.2 35.3 53.4 54.8 138.3 35.4 53.7 55.0

Table 5.9 Experimental Results on SQA3D given the 3D objects from Mask3D and Ground-truth.

from ScanNet [16]. Their scenes differ from those in Spartun3D, which are sourced from 3RScan.

We experiment with two settings: zero-shot and fine-tuning. In the zero-shot setting, we re-trained

LEO on their dataset (row#1) only constructed from 3RScan excluding all dataset constructed from

ScanNet to ensure a fair comparison with our method. As shown in Table 5.9, LEO performs poorly

on SQA3D in the zero-shot setting, suggesting its limitations in learning situated understanding from

its original dataset. In contrast, LEO trained on Spartun3D (row#2) shows significant improvement,

demonstrating the effectiveness of our dataset. Further comparisons of Spartun3D-LLM with

LEO+Spartun3D demonstrate a better zero-shot learning (i.e., generalization) capability of our

model. In the fine-tuning setting, Spartun3D-LLM continues to outperform LEO across all metrics.

Navigation Performance. To demonstrate the effectiveness of our approach on downstream

embodied tasks, we evaluate it on the object navigation tasks. Specifically, we randomly select

5 scenes that contain around 1000 examples from the MP3D ObjNav dataset. In this task, we

additionally input 2D ego-centric images to both LEO and Spartun3D-LLM for comparison. There
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LEO Spartun3D-LLM

Zero-shot 0 20.3

Table 5.10 Navigation Performance (Accuracy%).

Methods Scan2Cap ScanQA

LEO + Spartun3D 54.2 46.3
Spartun3D-LLM 55.7 48.6

Table 5.11 Spatial Alignment Evaluation on Other Benchmarks. The metric is Sentence Similarity.

are four types of navigation actions: turn left, turn right, move forward, and stop. We evaluate

whether the model generates correct action at each step. We conduct the experiment in a zero-shot

setting, and Table 5.10 shows the accuracy of the model’s performance. The baseline model, LEO,

struggles to generate the required action-related text to guide navigation steps without fine-tuning

specifically for navigation tasks. In contrast, our model demonstrates strong transferability to

generate correct actions. Fig 5.13 (e) showcases a qualitative example, illustrating how our model

effectively generates accurate navigation actions without task-specific fine-tuning.

5.5.3 Ablation Study and Extra Analysis

Explicit Alignment Enhances General Spatial Understanding. We evaluate the effectiveness

of our proposed situated spatial alignment module on general scene understanding tasks, such as

Scan2Cap [14] and ScanQA [6]. In line with our approach for situated tasks, we construct textual

descriptions for each object based on its attributes and spatial relations to others from a top-view

perspective. As shown in Tab. 5.11, by incorporating the explicit spatial alignment module, our

model shows better results, indicating that our proposed alignment module not only improves

situated understanding but also enhances general 3D scene understanding.

Figure 5.11 Scaling Effects.

Ground-truth LEO LEO+Spartun3D Spartun3D-LLM

Figure 5.12 SQA3D Labels Distribution.
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Improved Situated Understanding. To analyze the model’s situated understanding ability further,

we visualize the distribution of model responses generated for questions requiring strong spatial

understanding from SQA3D. Specifically, we extract questions starting with “which direction".

Fig. 5.12 illustrates the distribution of generated “directions”, including “left”, “right”, “forward”

and “backward”. We observe that LEO is biased towards generating “left” 97% of the time.

However, the ground-truth distribution of “left” and “right” should be balanced, suggesting that

LEO may have a limited understanding of situated spatial relationships. The bias is significantly

mitigated when LEO is trained on our dataset (LEO+Spartun3D). While adding our alignment

loss (Spartun3D-LLM) helps futher, our dataset is the primary factor in addressing the bias.

Scaling Performance. We conduct scaling experiments to demonstrate how model performance

improves with the addition of Spartun3D datasets. As shown in Fig. 5.11, we evaluate performance

on SQA3D and observe consistent improvement as the dataset scales, highlighting the potential for

dataset expansion using our proposed method.

Qualitative Examples. In Fig. 5.13, we showcase several successful examples to demonstrate the

effectiveness of Spartun3D-LLM across various situated tasks. Notably, in Fig 5.13 (c), the model

without an explicit alignment module tends to generate more general or vague spatial descriptions,

such as “turn around”. In contrast, with the alignment module, the model produces more specific

details, including terms like “turn slightly right”. To verify this, we examine 30 examples from

both situated planning and situated captioning tasks and observe this phenomenon in 17 of them.

This highlights how the proposed spatial alignment module enhances the generation of fine-grained

spatial information, leading to more precise and contextually accurate outputs.

5.6 Conclusion

In this chapter, we bridge the gap between simulation and real-world challenges from two key

perspectives: transitioning from discrete to continuous navigation and improving spatial reasoning

in 3D environments. For VLN-CE agents, we focus on narrowing the gap between visual perception

and action grounding. We introduce a dual-action module that enables the current VLN-CE agent,

equipped with the waypoint predictor, to train jointly for both high-level and low-level actions.
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LEO: In the laundry basket.

Situation: You are standing beside 
sink while there is a potted plant 
on your left.
Question: Where can you put your 
dirty laundry?

LEO: Two

Spa3D-LLM: Three, a door 
and two cabinets.

Situation: You are standing beside 
tv stand while there is a pillow on 
your left.
Question: how many objects are 
white to your right?

In front of me, there is no object. To 
my right, there is no object.  Behind 
me, there is a wardrobe, followed by a 
closed rectangular glass window for 
looking outside.  To my left, there's a 
desk  for placing items in or on.

Situation: You are standing beside 
toilet while there is a trash bin 
behind you.
Question: You need to clean the sink 
and then adjust the shower curtain. 
how should you proceed ?

Spa3D-LLM: In the laundry 
basket on your left.

Spa3D-LLM (w/o align.): Turn to your 
right and head towards the sink to 
clean it. After that, turn around and 
head towards the shower curtain to 
adjust it.

Spa3D-LLM: Turn to your right and 
head towards the sink to clean it. Then, 
turn slightly to your right and head 
towards the shower curtain to adjust it

Turn to your left, head 
towards the chest of 
drawer. You may pass 
chair on your way.

Turn to your left, head 
towards the chest of 
drawer.You may pass 
chair on your way.

Turn to your right, 
head towards the 
chest of drawer.

Situation: You ou are standing beside stool 
while there is a printer on your left.
Describe the scene from your position.

…
LEFT LEFT RIGHT

Target: Find the chest of drawer.

(a) (b)

(c)

(d) (e)
Figure 5.13 Qualitative Examples. (a), (c), (c) situated qa examples of object attribute and relation,
object affordance, and situated planning. (d) situated captioning example. (e) navigation example in

a zero-shot setting.

This joint optimization encourages the agent to learn to ground the high-level visual perception

and view selection into physical actions and spatial motions. Second, we enhance the existing

waypoint predictors by incorporating rich object semantic representations and knowledge about

object properties. This helps the model to consider the feasibility of actions in their navigation

decisions. For spatial understanding in 3D world, we tackle the limitations of 3D-based LLMs

in situated understanding from two perspectives. First, we propose a method to construct an

LLM-generated dataset based on our designed situated scene graph. Then, we propose an explicit

situated spatial alignment on the 3D-LLM to encourage the model to learn alignment between 3D

object and their textual representations directly. Finally, we provide comprehensive experiments to

show our own benchmark improve situated understanding of SQA3D and navigation.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we aim to enhance the language grounding capabilities of VLN agents. These

agents interpret natural language instructions and align them with their visual observations to make

accurate action decisions. Effective language grounding is essential for improving both navigation

performance and the interpretability of the agent’s decision-making process. The key contributions

of this thesis are summarized as follows.

6.1 Summary of Contributions

Enhancing VLN Agent Grounding via Explicit Modulation of Spatial Semantics. Most VLN

agents overlook explicit spatial semantics modeling, relying primarily on implicit representation

learning to align semantics across different modalities. While these methods significantly enhance

navigation performance, they compromise the interpretability of the agent’s decision-making process.

To address this challenge, we primarily focus on the spatial semantics of motion-related and

landmark-related information, and introduce two neural navigation agents with modular designs

tailored to effectively learn these key semantics. The first method segments long instructions into

spatial-semantic units, each consisting of motions and landmarks. We then identify key landmarks

based on navigation progress and align them with the most relevant objects in the environment.

Additionally, we model spatial relations between the landmark and the agent across both textual and

visual modalities. The second method involves designing two independent modules to separately

learn orientation (motion) and vision (landmarks). To achieve this, we introduce novel pre-training

tasks tailored for orientation learning and visual perception. These tasks enhance the model’s

ability to understand different semantics effectively, which are subsequently leveraged within their

respective modules to improve overall performance.

Aligning Instructions with Agent Perception and Explaining Decision-Making. Although

our explicit grounding methods enhance the navigation agent’s language understanding and align

corresponding semantics with the visual environment, we observe ambiguities in instructions,

particularly when they contain landmarks that are either unrecognized or indistinctive from the
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agent’s vision perception. Such ambiguities negatively impact the language grounding ability, leading

to challenges in improving navigation performance. To address this challenge, we first introduce a

translator module to convert the original ambiguous instructions into easy-to-follow sub-instruction

representations. Our design encourages the agent to interpret instructions in alignment with its

visual perception. However, the translator’s design relies on implicit learning, making it challenging

to explicitly understand the agent’s difficulties in interpreting human instructions. To address this,

we further design an explainer module for the VLN agent, utilizing a language model to generate

explanations that describe the ambiguity in instructions and the rationale behind the agent’s action

decisions.

Advancing VLN for Real-World Challenges: Navigation in Continuous and 3D Environments.

We advance research on enhancing the applicability of navigation agents to real-world robotic

systems from two key perspectives. First, we address navigation in continuous and unstructured

environments, where agents must operate using low-level control commands rather than predefined

high-level actions. Despite recent progress, existing navigation agents in continuous environments

often overlook the crucial role of language grounding, particularly in the execution of low-level

actions. To address this gap, we introduce a dual-action-perception module that connects linguistic

instructions to the agent’s low-level action space. Second, we extend navigation capabilities to 3D

environments, where agents must reason about spatial relationships in three-dimensional space rather

than relying solely on 2D image. While LLMs have demonstrated strong reasoning capabilities in 3D

spatial contexts, they lack the essential ability for situated spatial understanding—a key requirement

for navigation tasks. To address this limitation, we propose a scalable, LLM-generated dataset

enriched with situated spatial information and introduce a spatial alignment module to improve

the correspondence between 3D visual representations and their textual descriptions. Our method

significantly enhances the LLM’s situated spatial understanding ability in the 3D world, ultimately

improving navigation performance.
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6.2 Future Directions

This section highlights several promising avenues for future research that extend our findings

and methodologies. Beyond the work presented in this thesis, we outline potential future directions

from the following aspects.

Structured and Interpretable Planning with Foundation Models. Large generative models have

demonstrated strong generalization capabilities across various domains. Integrating these models

with planning strategies has significantly improved performance across various embodied tasks,

such as robotic navigation [146], object manipulation [66], and interactive task execution [116].

However, while foundation models excel at generating natural language outputs, they inherently

struggle to produce structured representations such as graphs, decision trees, or task flows. These

structured outputs are crucial for downstream tasks, as they facilitate transparent, interpretable,

and hierarchically organized reasoning. Therefore, we should focus on equipping large generative

models with the ability to generate structured representations, thereby addressing key challenges

in decision support for embodied navigation agents. Specifically, developing models that can

decompose high-level goals into executable subtasks—represented as hierarchical workflows or

decision trees—could significantly improve task planning and execution [129]. Such models can be

explored and validated using various embodied benchmarks like ALFRED [100], BEHAVIOR [102],

and VirtualHome [84], which offer controlled and diverse environments for evaluating embodied

task performance.

Adaptive Usage of Foundation Models. Inspired by [81], which use LLMs to generate plans

by dynamically decomposing complex sub-tasks as needed, we emphasize the importance of

leveraging foundation models more strategically in embodied agents. An interesting future direction

would be using foundation models as auxiliary systems that provide guidance and decision-making

support when necessary. Specifically, future efforts could focus on two key aspects: 1) Difficulty

Analysis: Developing systematic methods to analyze the challenges faced by the model in specific

scenarios, such as ambiguous instructions/descriptions. 2) Query Mechanisms: Designing intelligent

mechanisms that enable the agent to “ask for help" from the foundation model only when necessary.
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This includes determining when and how to formulate queries and integrating responses seamlessly

into the model’s decision-making pipeline.

Compositional Learning. Another interesting direction is compositional learning, where the

goal is to decompose complex tasks into smaller and reusable skills [43, 128]. Instead of learning

complex embodied tasks, the model can be designed to acquire key concepts in both language and

vision. Specifically, it converts language into structured representations, such as programming

languages, and uses more formal methods to represent visual concepts like objects and their attributes.

We can also develop “action concepts" to learn fundamental units of action policies. This line of

research holds a potential to bridge high-level reasoning with low-level execution, enabling the

model to tackle different tasks with greater adaptability and robustness.
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