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ABSTRACT
This thesis considers three algebraically motivated combinatorics questions on partially ordered
sets (posets) and graphs. In the process, we consider rooted tree posets, inflated rooted tree posets,
shoelace posets, (3 + 1)-free posets, as well as incomparability graphs of a given poset.

Rooted trees are posets whose Hasse diagram is a graph-theoretic tree having a unique minimal
element. We study rowmotion on antichains and lower order ideals of rooted trees. Recently
Elizalde, Roby, Plante, and Sagan considered rowmotion on fences which are posets whose Hasse
diagram is a path (but permitting any number of minimal elements). They showed that in this case,
the orbits could be described in terms of tilings of a cylinder. They also defined a new notion
called homometry where a statistic takes a constant value on all orbits of the same size. This is a
weaker condition than the well-studied concept of homomesy which requires a constant value for
the average of the statistic over all orbits. Rowmotion on fences is often homometric for certain
statistics, but not homomesic. We introduce a tiling model for rowmotion on rooted trees. We
use it to study various specific types of trees and show that they exhibit homometry, although not
homomesy, for certain statistics.

We also study Defant and Kravitz’s generalization of Schiitzenberger’s promotion operator to
arbitrary labelings of finite posets. Defant and Kravitz showed that applying the promotion operator
n — 1 times to a labeling of a poset on n elements always gives a natural labeling of the poset and
called a labeling tangled if it requires the full n — 1 promotions to reach a natural labeling. They
also conjectured that there are at most (n — 1)! tangled labelings for any poset on n elements.
We propose a strengthening of their conjecture by partitioning tangled labelings according to the
element labeled n — 1 and prove that this stronger conjecture holds for inflated rooted forest posets
and a new class of posets called shoelace posets. We also introduce sorting generating functions
and cumulative generating functions for the number of labelings that require k applications of the
promotion operator to give a natural labeling. We prove that the coeflicients of the cumulative
generating function of the ordinal sum of antichains are log-concave and obtain a refinement of the

weak order on the symmetric group.



We also consider (3 + 1)-free posets, motivated by a reduction of the Stanley-Stembridge
conjecture posited by Foley, Hoang, and Merkel (2019), stating that the twinning operation on
graphs preserves e-positivity of the chromatic symmetric function. A counterexample to this
general conjecture was given by Li, Li, Wang, and Yang (2021). We prove that e-positivity is
preserved by the twinning operation on cycles, by giving an e-positive generating function for the
chromatic symmetric function, as well as an e-positive recurrence. We derive similar e-positive
generating functions and recurrences for twins of paths. Our methods make use of the important

triple deletion formulas of Orellana and Scott (2014), as well as new symmetric function identities.
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CHAPTER 1

INTRODUCTION

This dissertation explores several attributes of enumerative and algebraic combinatorics, on both
partially ordered sets (posets) and graphs. A brief outline of the chapters is as follows. We start by
exploring posets through an algebraic lens, focusing on a group action called rowmotion and how
the orbits of this action can demonstrate nice combinatorial properties when examining a particular
family of posets. Then, we shift to studying an operation called extended promotion on labelings
of particular families of posets, strengthening a conjecture posited last year. Finally, we transition
to more questions related to graphs, motivated by incomparability graphs of posets. We evaluate
how the twinning operation on graphs affects the e-positivity of a graph, determining several new
results in a rich field of combinatorics. We now give a more detailed outline of each chapter.

In Chapter 2, we will start by investigating the group action rowmotion on rooted tree posets,
analyzing the orbits for particular combinatorial properties known as homomesy and homometry.
The action of rowmotion has been rediscovered and renamed many times, appearing in the literature
as the Fon-der-Flaass action [42], the Panyushev action and complement [4, 7], among other
references [1, 9, 21, 26, 52, 38]. We will follow the conventions of Striker and Williams in [56] and
refer to the action as rowmotion due to its nature of working across “rows” of posets. This action
relates to many other mathematical objects, such as flag simplicial complexes, representation finite
algebras, trim lattices, Auslander—Reiten translation on certain quivers, Zamolodchikov periodicity,
and totally symmetric self-complementary plane partitions, among many others [36] [57][56]. We
will consider the action on both antichains and lower order ideals of rooted trees, specifically
searching for examples of homomesy and homometry under different statistics.

Homomesy has been studied rather extensively in recent years; the term was coined in 2013
by Jim Propp and Tom Roby [39], but an example was conjectured in 2009 by Panyushev and
proven in 2013 by Armstrong, Stump, and Thomas [38][4]. A statistic on a combinatorial object
is homomesic if, for a given group action on these objects, the average value of the statistic is the

same over all orbits. In this chapter, we use rowmotion as our group action and examine cardinality



statistics on rooted tree posets. Furthermore, we dive into the newer, more broad phenomenon
known as homometry. Given a group action on a set of combinatorial objects, a statistic on these
objects is considered homometric if its value is the same over all orbits of the same cardinality.
Elizalde, Roby, Plante, and Sagan introduced this new concept in 2021 and found many examples
of homometry demonstrated by the cardinality statistic on orbits of rowmotion on fence posets [23].

We present several new results concerning homomesy and homometry by restricting ourselves
to a well-known family of posets. A tree can be defined as a graph in which any two vertices are
connected by exactly one path. A rooted tree is a tree where one vertex is designated as the “root.”
Rooted trees have been well-studied in graph theory, dating as far back as 1857 [11]. A rooted tree
can be specialized further by assigning the edges of the rooted tree with a natural orientation, either
towards or away from this root. More recently, these types of trees have heavily influenced data
science methods through decision trees, tree data structures, and mathematical modeling, among
other applications. Orienting the edges of a rooted tree naturally turns our graph into a poset, where
the edges represent the covering relations of the partial order and the vertices represent the objects
of that partial order. In Chapter 2, we will orient our rooted trees away from the root, where the
root becomes the minimum element in our poset. This is called an arborescence, or out-tree. In
our case, we will just call them rooted trees.

We conclude that for rooted tree posets, we can visualize the orbits of rowmotion by using a
tiling model, and we can therefore count cardinality statistics using that tiling model. This tool
allows us to present several natural homometry results concerning specific families of rooted tree
posets, such as stars, trees with three leaves, combs, and zippers. We also provide an example of a
rooted tree where the cardinality statistics do not exhibit any homometry or homomesy.

In Chapter 3, we transition to an investigation of extended promotion on labelings of posets. A
labeling of a poset P with n elements is a bijection from P to {1,2,...,n}. Alabeling is considered
natural if it respects the partial order of P. In 1972, Schiitzenberger introduced the promotion
operator on natural labelings of posets [44]. The motivation for the promotion operator comes from

an earlier paper of Schiitzenberger [43], in which he defines a related operator, evacuation, to study



the celebrated RSK algorithm. Promotion and evacuation were subsequently studied by Stanley
in relation to Hecke algebra products [52], by Rhoades in relation to cyclic sieving phenomena
[40], and by Striker and Williams in relation to rowmotion and alternating sign matrices [56].
Traditionally, promotion was only considered on the set of natural labelings of posets. In their
2023 paper, Defant and Kravitz introduced the notion of extended promotion, which acts on the
set of all labelings of a poset [19]. They determined that extended promotion will eventually turn
any labeling of a poset into a natural labeling, sorting the labeling with respect to the partial order.
They showed that any labeling of an n element poset will become a natural after n — 1 applications
of extended promotion, and we call labelings that take exactly that long tangled. They conjectured
that for a poset P on n elements, there are no more than (n — 1)! tangled labelings. They proved
this conjecture for inflated rooted forests, which is a large class of posets related to rooted trees. In
this case, we will orient the edges of a rooted tree towards the root. This orientation transforms the
root into the maximum element in our poset, an example of an anti-arborescence, or in-tree [20].
We will also refer to these as rooted trees, with orientation made clear by context.

We refine this conjecture and prove our refinement for both inflated rooted forests as well as
a new family of posets, called shoelaces. Additionally, we follow the lead of both [32] and [19]
in investigating properties of the sorting time of various labelings. We count labelings by the
number of extended promotion steps needed to yield a natural labeling, and we define two related
generating functions on P in order to examine how these generating functions change if we attach
some minimal elements to P. Our result provides a simple and unified proof of enumerating tangled
labelings and quasi-tangled labelings in [19] and [32].

In Chapter 4, we will shift our attention to a different type of generating function related to a
graph called its chromatic symmetric function, and examine the twinning operation in relation to
this formal power series. To fully introduce the chromatic symmetric function, we must start by
defining a proper coloring of a graph. A graph G = (V, E) with vertex set V and edge set E is
colored when one assigns labels (called colors) to each vertex in V. A coloring on G is proper

if no two vertices connected by an edge share the same color. The chromatic number of G is the



smallest number of colors that can be used in a proper coloring. The chromatic number of a graph
is one of the most well-studied invariants in graph theory. The Four Color Theorem states that if
a graph G can be drawn in the plane without any edge crossings, then its chromatic number is at
most four [3]. Famously, this theorem was a conjecture for over 100 years, and was one of the first
theorems proven by using extensive computer assistance.

The chromatic polynomial of a graph is a closely related function that enumerates proper
colorings of a graph. Birkhoft defined the chromatic polynomial, P(G;t), to be the number of
proper colorings of G with ¢ colors [8]. This polynomial has various properties that seem a bit

miraculous at first glance. For example, Stanley [50] proved theat if G has n vertices, then
P(G,—-1) = (—1)"(the number of acyclic orientations of G)

It is not intuitively clear what it means to color a graph with —1 colors, but this result (among
others) implies a deep mathematical significance to the polynomial.
Generalizing the chromatic polynomial further, Stanley defined the chromatic symmetric func-

tion of a graph G = (V, E) to be

Xg(x) = Z HXK(V),

Kk veV

where x = {x1,x2,...} is a countably infinite set of variables, and the sum is over all proper
colorings k : V — Z.¢ of G by positive integers [47]. This made it possible to make new and
unexpected connections betweeen graph coloring, the theory of symmetric functions, and even
algebraic geometry (Hessenberg varieties). Stanley proved that the chromatic symmetric functions
of paths and cycles are e-positive, that is, their expansion in the basis of elementary symmetric
functions has nonnegative coeflicients. The result for paths is originally due to Carlitz, Scoville, and
Vaughan in a different context [10, p.242]. More generally, much of the research on the chromatic
symmetric function has centered around the incomparability graph Inc(P) of a (3 + 1)-free poset P,
defined as a poset containing no induced subposet isomorphic to the disjoint union of a 3-chain and
a 1-chain. This direction is motivated by the famous Stanley-Stembridge Conjecture, stating that

if P is a (3 + 1)-free poset, then Xi,c(p)(X) is e-positive. This conjecture had been standing since



1993, though Hikita recently proved it in his preprint [31]. The work in Chapter 4 was completed
prior to the appearance of this proof.

Given a graph G and a vertex v, the twin of G at v is the graph, denoted by G,, obtained by
adding a new vertex v’ and connecting v’ to v and to all of its neighbors. We refer to this operation
as the rwinning of a graph and to the resulting graph G, as the twinned graph. Twinning is a natural
operation considered often in graph theory, usually aiding in evaluating graph isomorphisms and
subgraph inclusion. It is then reasonable to ask how twinning a graph might affect its chromatic
symmmetric function.

Specifically, we investigate the change in X (x) when one twins a vertex v of a graph G.
We determine explicit e-positive formulas for the generating function of the chromatic symmetric
function of four types of twinned graphs, as well as e-positive recurrence relations for five different

graph families.



CHAPTER 2

ROWMOTION ON ROOTED TREES
Let S be a set with #S finite where the hash symbol denotes cardinality. A statistic on S is a function

st : § — Z where Z is the integers. We extend St to subsets R C § by letting

stR:Zstr.

Now suppose that G is a finite group acting on S. Statistic st is said to be homomesic if, for any

orbit O of G, we have
stO
#O

for some constant ¢. To be more specific, we say in this case that this statistic is c-mesic. Homomesy

C

is a well-studied property; see the survey articles of Roby [41] or Striker [55]. Recently Elizalde,
Roby, Plante, and Sagan [23] introduced a weaker notion which is exhibited by certain actions
and statistics. We say that a statistic St is homometric if for any two orbits O; and O, of the
same cardinality we have stO; = st0,. We will see numerous examples of statistics which are
homometric but not homomesic in the present work.

Now consider a finite partially ordered set, often abbreviated to poset, (P, <). An antichain of

Pisa A C P such that no two elements of A are comparable. We denote the set of all antichains as
A(P) ={A C P | Ais an antichain}.
A lower order ideal of Pis L C P suchthatif y € L and x < y then x € L. We will use the notation
L(P)={L C P| L is alower order ideal}.
The lower order ideal generated by any Q C P is
Ql={xeP|x<yforsomeyeQ}.

We also let min Q and max Q be the sets of minimal and maximal elements of Q, respectively. We

now define rowmotion on antichains to be the action generated by p : A(P) — A(P) where

p(A) =min{x & (A ])}.



Similarly, rowmotion on ideals has generator p : L(P) — L(P) with

p(L) = p(max L) | .

We will usually use a hat to distinguish a notation on ideals from the corresponding one on
antichains. More information about rowmotion can be found in the aforementioned survey articles.

The paper of Elizalde et al. was devoted to the study of rowmotion on fences. A fence is a
poset whose Hasse diagram is a path. They showed that the antichain orbits can be modeled using
certain tilings of a cylinder. This tool permitted them to prove a number of homometries which
were not homomesies. In the present work we will consider rowmotion on rooted trees. In this
chapter, we will orient our poset away from a minimum element. We consider a poset T" as a rooted
tree if its Hasse diagram is a tree in the graph theory sense of the term and it has a unique minimal
element called the root and denoted 0. Note that these posets are more general than fences in that
the tree need not be a path, but also more restricted in that fences can have any number of minimal
elements. We will assume all our trees are rooted.

The rest of this chapter is structured as follows. In the next section we will show that rowmotion
on antichains of a rooted tree can also be viewed in terms of certain cylindrical tilings. The
following three sections will apply this tiling model to three different families of trees: stars, trees
with three leaves, and finally combs and zippers. We end with a section with comments and open
questions.

2.1 Tilings

We will show that rowmotion orbits on antichains can be more easily viewed as certain tilings
of a cylinder. Given a rooted tree T we will fix an embedding of the Hasse diagram of 7 in the
plane and label its leaves (maximal elements) as 1,2, ..., n from left to right. See the tree on the
left of Figure 2.1 for an example where n = 5.

For nonnegative integers m, n we use interval notation

[m,n] ={m,m+1,...,n}



(12.2].3) (13.31.2) ([5.51.2)

(©.11.2 I<[4,4],1>I
I °
/y = X[3,5].1
([1,2],1)e ([3,5],2)

X = X[3,5],2

([1,5],2)1

I(T)

Figure 2.1 The intervals, branches, and S-values of a tree T

and abbreviate [n] = [1, n]. Associate with each vertex x in T the set of all labels of leaves z such
that z > x. Note that by our choice of labeling, this set will be an interval /. And the set of all
x with interval I form a path called the branch corresponding to I and denoted B;. On the right
in Figure 2.1, T has been decomposed into branches with each labeled by a pair where the first
component is the interval / of B;. For example, nodes x and y are exactly the ones below all three
leaves 3,4,5. So their associated interval is I = [3,5] and Bz 5] = {x,y}. We will also label the
vertices on the branch for 7 as x7 1, x72, ..
Returning to our example, y = x[3 51,1 and x = x[3 5] 2. Note the following two simple but important

properties of this family of intervals.

. starting with the maximal element and working down.

(I1) The singleton intervals [Z,{] are in this family for all i € [n].

(I2) The family is nested in the sense that if /, J are in the family with #/ < #J then either I C J

orINJ=0.

Given an interval I, let

Br=pBi1(T) =#By.
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Figure 2.2 Rowmotion on antichains in terms of tilings

Returning to our usual example, for I = [3, 5] we saw that B3 5] = {x, y} which implies B35 = 2.

A crucial tool in defining the tilings will be the set
I(T) ={(1,By) | Iis the interval of some branch of nodes in T'}.

On the right in Figure 2.1, the elements of 7 (T') are displayed next to their corresponding branches.
We will abuse notation and write / € 7 (T) to mean that (1, 8;) € I(T).

We will need to consider partitions of intervals. A partition of an interval I is a collection of
nonempty subintervals Iy, . . ., I; whose disjoint union is /. We say that another partition Jy, ..., J;
of I is a refinement of the first if for every J; there is an I; with J; C I;. The refinement is proper if
the two collections of subintervals are not the same. Refinement is a partial order on partitions. If
all the intervals of the partition come from 7 (7') then it is called an I (T')-partition.

We now describe the procedure to produce a tiling 7 from an orbit O of rowmotion on antichains
of arooted tree 7. Consider a column of n boxes where the ith box corresponds to the leaf labeled
i in the embedding of 7. The first column in Figure 2.2 is so labeled. Given an antichain A, we
take each x € A and consider the interval 7 of its branch. The boxes labeled by the elements of /
are then covered by a black tile. All other boxes are covered by a single yellow tile. Note that these
boxes are exactly the ones in rows i such that there is no element of A below the leaf labeled i.

Returning to Figure 2.2, consider the antichain A = {u,x} and the leftmost column of tiles. Since



u has interval [1, 1], the box in row 1 gets a black tile. Similarly, x’s interval is [3, 5] so the rows
for this interval also receive a black tile. The remaining square in row 2 then receives a yellow
tile. The reader should now not find it hard to verify that p(A) = {v, y} and that this antichain
corresponds to the second column in the figure. We now paste the columns for all antichains in the
orbit O together in the same order that they appear in the orbit to get a tiling 7 = 7(O) of a cylinder.
Note that when pasting, if there are two consecutive columns with black tiles coming from the same
interval I then these tiles are combined into one. Returning to our perennial example, the two tiles
for I = [3, 5] become one tile as seen in the final diagram. And if there were more elements on the
branch corresponding to /, they would fatten the tile further. Three tilings corresponding to full
orbits are shown in Figure 2.3. The vertical sides of these rectangles are identified to make them
into cylinders. Also note that, in the middle tiling, a black tile in the second row stretches over this
boundary as indicated by having it protrude beyond the sides of the rectangle.

We wish to characterize the possible 7(Q). In the definition below, an I X b tile is a tile which
covers the rows indexed by / and b columns. Also, the maximal partitions used are maximal with
respect to the refinement order. They exist because property (I1) implies that any interval / has a
partition using intervals in 7 (T') since all singletons are intervals. And property (I2) guarantees

that among all such partitions of / there is a maximal one.

Definition 2.1.1. Given a rooted tree T, an 1 (T')-tiling is a tiling of a cylinder using I X B; black

tiles and 7 X 1 yellow tiles if #1 = 1, satisfying the following two properties.

(t1) An I x B; black tile is followed by a yellow tile if #/ = 1, or by black tiles corresponding to

the intervals in a maximal proper 7 (T')-partition of I if #1 > 2.

(t2) If J is a maximal interval of yellow tiles in a column, then they are followed by black tiles

corresponding to the intervals in a maximal 7 (7)-partition of J.

Theorem 2.1.2. Given a rooted tree, T, the map O — 1(QO) is a bijection between the antichain

rowmotion orbits of T and the possible I (T)-tilings.

10



Proof. We must first show that this map is well defined in that 7 = 7(O) has tiles satisfying (t1) and
(t2) and of the correct shape. We will do this by studying how rowmotion affects various elements
of T.

Consider A € O and any x € A which is not maximal in its branch and let / be the associated
interval. Then there is a unique element y which covers x and it is in the same branch. Furthermore
y € p(A). Since x and y correspond to the same interval /, it follows that the tile covering those
rows in the column for A extends into the column for p(A). By induction, this tile extends into a
column for an antichain containing the maximal element on the branch.

Now suppose that x € A is maximal in its branch. If #/ = 1 then x is maximal in 7. So in p(A)
the branch will be empty and the algorithm will place a yellow tile in the corresponding row and
column. This proves the first case in (t1). On the other hand, if #/ > 2 then x is covered by at least
two elements yy, ..., yx. So the column for p(A) will contain tiles in the corresponding intervals
Iy, ..., I, which is a proper I (T)-partition of / since k > 2. And it is maximal since if there is
some J € 7 (T) containing two or more of the /; then there would have to be at least one element
between x and the corresponding y;’s. This completes the proof of (t1).

For (t2), we will assume for simplicity that 1,n ¢ J where n is the number of leaves of T. The
cases when J contains one or both of these special values is similar. Say J = [m, n]. Then by our
assumption, there are black tiles covering rows m — 1 and n + 1 in the column for J. Let x and y
be the corresponding elements of A. Removing the O—x and O—y paths from 7' breaks the lower
order ideal generated by the leaves in J into rooted subtrees. Let zy, ..., zx be their roots with
corresponding intervals /1, . .., Ix. Then p(A) contains these z; and so its column contains tiles for
the intervals /; which form a partition of J. Maximality is obtained by the same argument as in the
previous paragraph.

To complete showing that 7 is well defined, we must check the shape of the tiles. Yellow tiles
are of the correct shape by definition of the algorithm. As far as the black tiles, they cover rows
indexed by intervals in 7 (T') by definition. So it suffices to show that a tile in the rows indexed by

I has the correct length. From the previous two paragraphs we see that the tiles in the partitions

11



following the maximal element of a black tile or following an interval of yellow tiles all begin with
the minimal elements of their respective branches. And by the second paragraph, such a tile will
extend to the maximal element on its branch. So the tile will have length §;, the length of the
branch.

To show that this map is a bijection, we construct its inverse. So given an 1 (T)-tiling 7, we
must construct a corresponding orbit O. For each column of 7 we form an antichain A as follows.
For each interval I covered by a black tile, suppose the given column is the ith in that tile. Then
add the ith smallest element on the branch for / to A. Now arrange the antichains in the same
order as the columns of the tiling to get an orbit. The demonstration that this map is well defined
is similar to the one just given. And the two functions are inverses since the algorithms described

are step-by-step reversals. This completes the proof. O

We will often call the tiles of shape I X S; simply I-tiles. As a first application of the tiling
model, we will use it to compute various statistics on rowmotion orbits. It will also give us a simple

proof of our first homomesy. Given x € T we have the statistic on antichains A € A(T) given by

1 ifxeA,
)(x(A) =
0 ifx ¢ A.
If we want to count the size of antichains we use the statistic

X(A) =) xu(A) = #4.

xeT

The corresponding statistics for ideals are denoted x, and ¥. Given a 1 (T)-tiling T we will use the
notation

my = m;(7t) = number of /-tiles in 7.

Corollary 2.1.3. Let T be a rooted tree and T be a I (T)-tiling corresponding to a rowmotion orbit

O on T. The following hold.

(a) If x € T has interval I then

Xx(0) = my.
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(b) We have
x(0)= " Bimy.

1€I(T)

(c) If x = xqj then
Xx(0) = J-mp+cy

where c is the number of columns of T intersecting a J-tile for J C 1I.

(d) We have

0= Y|P3 i e

1€ (T)

(e) If x,y are in the same branch then y, — x, is 0-mesic.
Proof. (a) This follows from the fact that v is represented by a single column in each /-tile of 7.

(b) Since I-tiles have length 5; = #B; we get by summing (a)

x(0) =" x:(0)

xeT

mp
I1eI(T) xeB;

(c) For a lower order ideal L we have that x € L if and only if x < y for some y € A where
A = max L. Note also that if y has interval J then y > x implies J C . If J = [ then there are j
choices for y and so j - m; counts the total number of columns containing such an element. And ¢,

accounts for the columns intersection some J-tile where J C 1.

(d) This result follows from (c) in much the same way that (b) followed from (a). So the proof

is left to the reader.

(e) Let the common branch be B;. Using (a) one last time we get
Xx(0) = xy(O) =m;—m; =0

which implies the homomesy. O
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S(3,3,2)
Figure 2.3 The star S(3, 3, 2) and its tilings

We end this section with a recursive formula for the number of antichains in a rooted tree T
which will be useful in the sequel. We use 7'\ {0} for the forest of rooted trees obtained by removing

0 from T.

Lemma 2.1.4. Let T be a rooted tree. If #T = 1 then #A(T) = 2. If #T > 2 then let T\, ..., T} be
the rooted tree components of T \ {0}. In this case
k
BA(T) = 1+ n#ﬂ(n).
i=1
Proof. If#T = 1 then T has antichains @ and {0}. When #T > 2, let A be an antichain of 7. Either
A= {f)}, corresponding to the 1 is the sum, or A C W;7;. In the latter case the restriction A; of A

to 7; is an antichain and the product counts the possible A;. O

2.2 Stars

A star, S, is a rooted tree with n leaves and

2(S) ={([1,11.81), ..., ([n,n], Bn), ([n], D)}

where we are using the abbreviation §; = 5|; ;1. We will use the same abbreviation for other notation
involving a subscript [i, ], for example x; ; = x[;;1,;. So S is the result of taking n chains of length
Bi, ..., By and identifying their minimal elements. Note that all tiles in a corresponding tiling will
only cover one row, except for the tile corresponding to 0. We denote this star by S(a1, .. ., @)
where a; = B; + 1 for i € [n]. The reason for this change of variables is because it will make our

results easier to state since a; is the length of a black tile followed by a yellow tile in row i. The
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star S(3, 3,2) and its tilings are found in Figure 2.3. Given an orbit O we will use the notation

1
d=

0

Theorem 2.2.1. Consider the star S = S(aj,

if0 o0,
if0 ¢ O.

...,ay) and an orbit O of rowmotion on S. Let

[ =lecm(ay,...,a,).
(a) We have
#O=1+06
and the number of orbits is ay - - - a, /1.

(b) Foranyx € S,

l/a; ifx € B;,
Xxx(0) =

0 ifx=0.

(c) We have

X(0) =5+ Y (o= 1).
=1 !

Thus y is homometric but not homomesic.

(d) Foranyx € S

(e) We have

Thus x is homometric but not homomesic.

Proof. (a) Consider the tiling 7 = 7(Q). For all i € [n] the corresponding interval / = [, ] has

#I = 1. So, by condition (t1) in Definition 2.1.1, each black tile in that row is followed by a yellow

tile. And this pair of tiles has length 8; + 1 = «;.
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Now consider the case when 0 ¢ O. So no tile spans more than one row. Now the previous
paragraph and (t2) imply that the black and yellow tiles alternate in row i. So the length of that row
is divisible by ;. Since this is true for all i we must have that / divides #O. But since / is the least
common multiple, a given column will recur after / steps. So we must have #O = [. When 0 € O
then the same reasoning as above applies to the tiling once the column for 0 is removed. So in this
case #O = [ + 1.

Now let k£ be the number of orbits. From what we have just proved, #A(S) = 1 + kl. Also, it
follows easily from Lemma 2.1.4 that #A(S) = 1 + a1 - - - @;,. Equating the two expressions results

in the desired count.

(b) We will consider the case x € B; as the other is trivial. Consider the tiling 7 = 7(Q). From
the proof of (a), we see that row i has / columns which are tiled by a pair of consecutive black and

yellow tiles of combined length @;. So the number of black tiles in that row is
m,-:l/ozi. (21)

We are now done by Corollary 2.1.3 (a).

(c) Using part (b) and Corollary 2.1.3 (b) we obtain

n n l
X(0) = Bramiuy + 3 Bimi =6+ Y —(ai = 1).
i=1 =1

(d) Again, this is easy to see if x = 0. If x = x; j then there is no J C [i,i] in 7(S). So by

Corollary 2.1.3 (¢) and equation (2.1)
X:(0) =j-m;=jl/a;.

(e) It suffices to calculate the terms in the sum of Corollary 2.1.3 (d). We will do the case when
0 ¢ O as the unique orbit when 0 € O is done similarly. We first look at the term for I = [n].
In this case B[,] = 1 and m[,] = 0 by the choice of O. Since [i,i] C [n] for all i and there is no

column for the empty antichain we have c[,] = [, the number of columns of the tiling. So the term
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$2(3,3,2)

Figure 2.4 The extended star S»(3, 3, 2) and its tilings

for I = [n] reduces to [. Now consider the summand for [7,i]. We have 8; + 1 = @; and m; = [/ «;
by equation (2.1). Furthermore, there is no J C [i,i] so ¢; = 0. Thus the term for I = [i,{] is the

ith one in the sum given in (e), as desired. O

Stars exhibit a number of homomesies. The following results are all gotten by simple manipu-

lation of the formulas for y and y in the previous theorem, so we suppress the demonstration.
Corollary 2.2.2. Consider the star S = S(ay, ..., ay).

(a) If x € By, then a;xx + x; is 1-mesic.

(b) If x € Biand y € B; then a;xx — @; xy is 0-mesic.

(c) If x = x; then a; X — k x; is O-mesic.

(d) If x =x; and y = xj i, then a;Xx — a; Xy is 0-mesic. O

It is easy to generalize Theorem 2.2.1 to the case where b(,) > 1 so that one has a fatter [n]-tile.
More generally, we will describe what happens to any tree where 0 is covered by a single element.

An example can be obtained by comparing Figures 2.3 and 2.4.

Proposition 2.2.3. Suppose T \ {0} = T’ is a rooted tree with n leaves. Let the I (T)-tilings be
T1, T2, ..., Tk Where Ty is the tiling for the orbit of(A). Then the I (T’)-tilings are T{, T, ..., Tk where

7| is obtained from T by widening the [n]-tile by one column.
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Proof. Since T \ {0} = T", the intervals of T and 7" are the same. Also

, Bi(T) if I # [n],
Bi(T") =
,B[n](T) +1 ifI= [n]
Definition 2.1.1 now shows that the tilings transform as desired. O

For a positive integer b the b-extended star, Sp(ay, . . ., @), is the rooted tree with

I(Sb) :{([1’1]’ﬁ1)’ SRR ([n,n],ﬁn), ([I’l],b)}

and @; = B; + 1 for i € [n]. So we recover ordinary stars when b = 1. We see S$,(3,3,2) in
Figure 2.4. The next result follows easily from Theorem 2.2.1 and Proposition 2.2.3 and so the

proof is omitted.

Corollary 2.2.4. Consider the extended star S, = Sp(ay, . . ., a,) and an orbit O of rowmotion on
Sp. Letl =1lcm(ay, ..., ay).
(a) We have
#O =1+ 6b

and the number of orbits is ay - - - a, /1.

(b) Foranyx € S,
l/a; ifx € By,
Xxx(0) =
0 ifx € B[n].
(c) We have
n
[
=6b —(a; = 1).
x(0) *;ai(“ )

Thus y is homometric but not homomesic.

(d) Foranyx € S
Jl/ @i ifx=x;

[+6(j—1) ifx =X,

Xx(0) =

18



T =T" T=7 Hh=70

IE =
| |
I' 1
H B H
T

12 7'2’1
1 1

Figure 2.5 The trees 77, T”, T and their tilings

(e) We have
N _ b < [ i
X(O)_lb+5(2)+;;i(2)_

Thus y is homometric but not homomesic. m|

2.3 Trees with Three Leaves

The special case n = 3 of Corollary 2.2.4 gives information about the rowmotion orbits on trees
that have three leaves whose branches have minimal elements covering a single vertex of the tree.
Up to isomorphism, there is only one other arrangement of branches in a tree with three leaves and
this section is devoted to studying this case. First, we will prove a result about removing the branch
containing 0 from a certain type of tree.

Proposition 2.2.3 describes the tilings of a tree T whose 0 is covered by a single element. We
will determine what happens when it is covered by two elements or, more generally, when removing
the branch of 0 leaves exactly two rooted trees remaining. It is possible to derive a similar result
for any number of rooted subtrees, but the notation becomes cumbersome and we will only need

the case of two subtrees in the sequel.
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In order to state our result we will need some notation. Let T be a rooted tree such that
T\ B = T’ wT” where B is the branch of 0 and 7”, T” are rooted trees. Suppose that 7" has n’ leaves
and tilings 7y, .. ., 7y where 77 is corresponds to the orbit containing 0/, the minimal element of 7”.
Further, let ¢’ be the number of columns of 7/ for i € [s]. Notation used previously for 7" will be
given a single prime when applied to 7”. Similarly, let 7” have n” leaves and tilings 7/, ..., 7/
with the same conventions about the tilings and other notation except with a double prime. An

example of this construction can be found in Figure 2.5.
Theorem 2.3.1. Let T be a rooted tree with T \ B =T' W T"” as above.

(a) The tilings of T can be described as follows. For all (i,j) € [n’] X [n”] there are tilings
T,l;;j for1 <m < g;; = ged(c, c}’). Unlessi = j = m = 1, we have that T,i;j consists of
consecutive copies of T; in the first n’ rows, consecutive copies of T]’.’ in the last n” rows,
and has 1; j := lem(c!, c;.’ ) columns. Tiling ‘rl1 Uis as in the previous sentence except that
one copy of | and one of t{’ align so that their columns of all yellow tiles coincide, and an
[+ n”] X b black tile is inserted directly after that column to make the total length of the

orbit l11 + b where b = #B.

(b) Let O, 0}’, and O, be the orbits corresponding to tilings T, T]’.’, and 1,/ respectively. For

anyx €T
Lix:(O)/c,  ifxeT),
(O3 = 1O e ifx e T,
0 ifx €B.
(c) We have

x(0)) = 6b +1;,,x(O)) [ + 1, x (O)) /.
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(d) Foranyx €T
li,j)?x(oi,)/cg ifxeT,

(0] = LR (O] ifx eT”,

li,j + 6(.] - 1) l:fx = X[w+n"],j-
(e) We have

~ ] b ~ ’ ’ A ” ”

Proof. We will only prove (a), as once this is established then the other parts of the theorem follow
from straight-forward computations similar to those already seen in Theorem 2.2.1. Let O be an
antichain orbit of 7. Pick an antichain A in O which does not contain an element of B, so that it
can be written as A = A’ W A” where A’ = ANT and A” = ANT”. Let O’ and O” be the orbits
of A’ and A” in T’ and T"”, respectively.

First consider the case when (at least) one of O’ and O” does not contain the empty antichain.
It follows that as p is applied to A, the antichains A" and A” will describe their respective orbits
O and O in T and T”. If ¢’ = #O’ and ¢” = #O” then, in order for both orbits to return to
A’ and A” at the same time, we must have #O = lcm(c’, ¢”). And since there are ¢’c¢” ways to
pair an antichain in Q" with one in O”, the total number of orbits obtained from such pairs is
c’c” [lem(c’, ¢”) = ged(c’, ¢”). This description matches the one given for the tilings T]i’j for as
long as we donothavei = j = 1.

In the case when both O’ and O” contain the empty antichain, the argument of the previous
paragraph goes through with one exception. Suppose the elements of O’ and O” are repeated in
O in such a way that at some point the empty antichain of 7 is reached. Then 0 will be followed
by the elements of B in increasing order. This, in turn, will be followed by the antichain {6’, @”}
which will cause the orbits O’ and O” to continue. This orbit corresponds to the tiling Tll’l and

completes our description of the orbits and their tilings. O

Now consider a tree T with three leaves which is not an extended star. It follows that, using a
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I3
Figure 2.6 The tree T3

suitable embedding, we will have

I(T) = {([3].a), (12]. ), ([1.1],¢), ([2,2].d), (I3,3].e)}

fora,b,c,d,e > 1. A particular tree of this form is shown in Figure 2.6. Although we can use
the previous theorem to calculate the orbits and their statistic values for arbitrary a, b, ¢, d, e the
resulting formulas are not very enlightening. So we will concentrate on a specific tree of this type.

Define the three-leaf tree 7} to be the one with

I(T) = {([3]7k)’ ([2]7k)7 ([1’ l]7k - 1)’ ([2’2]’]( - 1)’ ([373]’k - 1)}

The tree in Figure 2.6 is T3.

Theorem 2.3.2. The orbits of rowmotion on Ty can be partitioned by length into three sets S (for

small), M (for medium), and L (for large) with the following properties.

(a) We have
#S=k(k-1), #M=k-1, #L=1,
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and

k ifOesS,

#0 =12k ifO e M,

3k ifOe L.

(b) We have
3k-3 ifO €S,

X(0)={5k-4 ifOeM,

6k —4 ifOe L.

Thus y is homometric but not homomesic.

(c) We have

XO)=1Lk2 3k ifoeM,

Thus x is homometric but not homomesic.

Proof. (a) Let B = Bzj and b = #B = k. Then T} \ B = Si(k, k) W S(k) is a disjoint union of
two (extended) stars. Clearly T” = S(k) has only one orbit which contains 0. By Corollary 2.2.4,
T’ = Sy (k, k) has orbits of size Icm(k, k) = k and the total number of orbitsis (k-k)/k = k. So one
of these orbits contains 0 and the other k — 1 do not, and they will have lengths given by k + 6k. It
follows that the latter will be of length k while the former is of length 2k. Applying Theorem 2.3.1,
Ty will have k(k — 1) orbits O%' withi # 1 and these will have length Iem(k, k) = k. These are the
orbits in S. There will also be the orbits O for m € [2, k] which gives k — 1 possible values for
m. Here the length is lem(2k, k) = 2k. These are the orbits in M. Finally, the unique orbit 011’1 is
of length 2k + b = 2k + k = 3k and this describes L.
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C3 C3,2

Figure 2.7 The comb C3 and extended comb C3

(b) We will do the case of 011 1 the unique element of L, as the others are similar. Applying

Corollary 2.2.4 (c) to orbit O] of 7" = S (k, k) gives
2\ k
O)=k+ ) —(k-1)=3k-2
x(0) Zl L (k=1)
Similarly, for O in T” = §(k) we have
x(07)=k-1.
Now applying Theorem 2.3.1 (c) with /1 = lem(2k, k) = 2k yields

x (O} = k +2k(3k —2)/(2k) + 2k (k — 1) /k = 6k — 4.

(c) The computations are like those in (b) except using Theorem 2.3.1 (e), so the details are

omitted. O

2.4 Combs and Zippers

Combs are a particularly simple type of binary tree. They are useful in understanding the
structure of the free Lie algebra as shown, for example, in the work of Wachs [60]. In this section
we will compute the orbit structure of combs, combs with an extended backbone, and zippers which

are constructed by pasting together combs.
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It will be convenient to consider combs which have n + 1 leaves. Specifically, the comb, C,,, is

the rooted tree with

I(Cy) ={([n+1],1), ([n], 1), ..., ([2]. D, ([1,1],1), ([2,2],1), ..., ([n+ 1,n+1],1)}.
The comb C;3 is shown on the left in Figure 2.7.

Theorem 2.4.1. The orbits of rowmotion on C,, can be partitioned into two sets S and L having

the following properties.

(a) We have
#S =21 #r=1,
and
2 ifo eSS,
#0O =
2l 1 ifOe L.
(b) We have
n+1 ifO €S,
x(0) =

Q2n+ 121 ifO e L.

Thus y is homometric but not homomesic.

(c) We have

3n+1 ifO € S,
X(0) =
2"1(6n-5)+3 ifOe L.

Thus x is homometric but not homomesic.

Proof. (a) We induct on n where the result is easy to check if n = 1. Assume the orbits are as stated
for C, and that the unique orbit in £ is the one containing 0. We see that Cy1 \ {0} = C, W {v}

where v is the leaf labeled n + 2. We will subscript notation with n or n + 1 to make it clear which

comb is meant.
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Now 7" = {v} has only one orbit of length 2. By Theorem 2.3.1, this combines with each of
the orbits in S, to give orbits of length lcm(2,2) = 2. Also, there will be gcd(2,2) = 2 orbits in
8,41 for every one in S, for a total of 2 - 2"~! = 2" orbits. Thus the information about S, is as
desired.

The one orbit in £, will combine with the one for {v} to give ged(2,2™! — 1) = 1 orbit which
must be the one containing 0. So its length will be lem(2,2"*! — 1) + 1 = 2*2 — 1, which finishes

the induction.

(b) Again we induct, only providing details for the orbit of 0 in £. Using the notation for

Theorem 2.3.1 we have ¢ = 27+l _ 1 and c{ =2. Soly = cc} and the formula in part (c) of that

theorem becomes
x(O) =1+2Q2n+1)2" 1+ 2" —1)- 1= (2n+3)2"

as it should be.

(c) This demonstration is similar to that of (b) above using Theorem 2.3.1 (d) and so is

omitted. O

We can generalize these comb results as follows. The backbone of a comb is the set of elements
which are not leaves. So C,, has an n-element backbone and each element is an interval in 7 (C},).
We will extend each of these intervals, except for the one corresponding to 0, so that they have k

elements. Formally, the extended comb, C, x, is defined as the tree with

I(Cy)={([n+1],1), ([n],k), ..., ([2].k),([1,1],1), ([2,2],1), ..., ([n+1,n+1],1)}.
On the right in Figure 2.7 is the extended comb C3». Note that C,,; = C,,.

Theorem 2.4.2. The orbits of the extended comb C,j can be partitioned into two sets S and L
when k is odd, and inton+ 1 sets S|, S», ..., S,, and L when k is even. The orbits have properties

given by the following tables for k odd:
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k odd S L

#0 2 (k+1)2" =2k +1
number of O 21 1
x(0) n+1 (k+Dn+1)2"""—k+1

x(0) (2k + Dn =2k +3 | (2k + 1) (k + D)n2""" = (5k? + 3k — 3)2""1 + 3k?

and for k even:

k even S, fori € [n] L
#0 k(i—1)+2 k(n—1)+3
number of O on—i 1
x(0) MEDR), k(2 - 5i+4)+1 kp2 y 3tdy 19
2(0) (2k+l)(k2(i—1)+2)n B k(212+1)l.2 NET (k;Z) wnz B 41{27#” + (kgz)

Thus x and y are homometric on Cy .

Proof. We will just verify the orbit structure as, once that is done, the calculation of y and y are
routine using Proposition 2.2.3 and Theorem 2.3.1. We will induct on n where the base case is
easy. Note that Cpy1x \ {6} = C,’l’k @ {v} where v is the leaf labeled n + 2 and C;z,k is Cp x with
its O-interval replaced by one with k elements. It follows from Proposition 2.2.3 that the orbits
of these two posets are identical except for the orbit of O whose [n + 1]-tile has been widened by
adding k£ — 1 columns.

We now consider what happens when k is odd. The orbits of length 2 for C,’L , combine with
the orbit of length 2 for {v} in exactly the same way as in the proof of Theorem 2.4.1. As far as the

orbit containing 0 in C’ ,» by induction and the last sentence of the previous paragraph it has length
[(k+1)2"-2k+1]+k—-1=(k+1)2" -k
which is odd by the parity of k. So, by Theorem 2.3.1, the orbit containing 0 in Cy+1.x has length

lem((k+ 12" —k,2)+ 1 =2[(k+ 12" —k]+1 = (k+ D2" =2k + 1
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Figure 2.8 The zipper Z3

which is the desired quantity.

When £ is even we have, by induction, that all the orbits of C, ; have even length except for the
orbit of 0 whose length is odd. It follows that all the orbits of Cr’l’ . are of even length. So, when
each non-0 is combined with v’s orbit of length 2, this will result in two orbits of the same length.

This accounts for the orbits in S; of Cy41  fori < n. The 0-orbit of C; ; Will have length
[k(n=1)+3]+k—-1=kn+2.

Since this is even, when it combines with v’s orbit it will produce ged(kn + 2,2) = 2 orbits for
Cp+1.k- One of these will be of size lcm(kn +2,2) = kn + 2 and that one will take care of S,,. The

other will have length one more and will be the orbit in L. m|

Another way to modify combs is by combining them together. If 7 is a rooted tree and

T\ {0} =T & T” then we will also write T = T’ & T”. Define the zipper, Z,, to be
Zn = Cl’l &) Cn
A picture of Z3 will be found in Figure 2.8.

Theorem 2.4.3. The orbits of Z, can be partitioned into four sets S, M, L, and G (for gigantic).

The properties of the orbits is summarized in the following table:
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S M L G

#0O 2 2n+1 -1 2n+1 2n+2 )
number of O | 22"~ PUARI) 1 2"
x(0) 2n+2 2"(2n+1) 2"2n+ 1)+ 1 2"(4n+3)—-n-1

1 (0) on+4|3-2"Qn-1+51[3-2"2n-1)+5 | 2" 1(51n - 25) +3

Thus x and yx are homometric on Z,,.

Proof. As usual, we will just give details about the orbit structure. Since Z, \ {0} is a disjoint union
of two copies of C,, we use Theorems 2.4.1 and 2.3.1. Let 8’ and £’ refer to the orbit partition of
C,, and use unprimed notation for Z,.

Combining two orbits from S’ gives gcd(2,2) = 2 orbits of Z, of length lcm(2,2) = 2. Since

#S’ = 2" the total number of orbits formed in this way is
7. 2n—1 X 2n—1 — 22n—1

These are the orbits of S.
Putting together an orbit from S’ with the unique orbit in £’ results in ged(2,2"! — 1) = 1

orbit of size lem(2, 2! — 1) = 2"*2 — 2. Now the total number of orbits is
2.2 1 =2n
and they are the orbits in G.
Finally, the combination of the orbit in £’ with itself gives ged(2*! — 1,21 — 1) = 2n+1 — |
orbits. All of these orbits will have length lem(2"*! — 1,2"*! — 1) = 2! — | except for the one

containing 0 which will have one more element. These orbits are precisely the ones in M & £, and

so we are done. O

2.5 Comments and Open Questions

2.5.1 Other Trees
The trees considered in the previous section had such nice homometry properties that one

might ask if the same is true for other binary trees. In particular, one could consider the complete
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Figure 2.9 A complete binary tree

binary trees which are those all of whose leaves are at the same rank. Such a tree is displayed
in Figure 2.9. Unfortunately, homometry fails for this example tree. Consider the orbit O which
contains the antichain {x, y} as well as the one O’ which contains {z}. Then it is easy to verify that

#O =#0O' = 4. But

¥(0) =15 # 14 = x(0) and §(0) = 35 # 26 = $(0").

As mentioned in the introduction, Elizalde et al. [23] considered fences whose Hasse diagrams
are paths with any number of minimal elements. Here we have concentrated on arbitrary trees,
but insisted that there be a unique minimal element. In Chapter 3, we define a family of posets
called shoelaces, which are a generalization of fences. It would be interesting to study homomesy

in shoelaces, or other general poset structures.

2.5.2 Piecewise-linear and Birational Rowmotion

There are two generalizations of rowmotion which have also been studied and which have
consequences for trees. We first need to describe rowmotion in terms of toggles. In the discussion
which follows we will just write ideal for lower order ideal.

If (P, <p) is a finite poset and x € P then the corresponding toggle map is t, : L(P) — L(P)

defined by

La{x} if LA{x} € L(P),
(L) =
L else
where A denotes symmetric difference of sets. A linear extension of P is a listing of P’s elements

X1,X2,...,Xp such that x; <p x; implies x; is weakly left of x; in the sequence, that is, i < j.
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Cameron and Fon-Der-Flaass showed that rowmotion on ideals can be broken into a sequence of

toggles. In what follows we compose functions right to left.

Theorem 2.5.1 ([9]). For any finite poset P and any linear extension x1,x2, . .., X, of P we have
ﬁ:txltxZ--~lxp. O
Stanley [51] introduced the order polytope as a way to use geometry to study posets. Poset

P ={x1,...,x,} has order polytope

I(P) = {(f(x1),.... f(xp)) € [0,1]” | x; <p x; implies f(x) < f(y)}.

So II(P) is a subpolytope of the p-dimensional unit cube. Also note that every ideal L of P has a

corresponding point of IT(P) defined by the function

0 ifxéeP,
flx) =
1 ifxeP.

Einstein and Propp [22] extended rowmotion to IT(P). Write x < y if x is covered by y in P, that is
x <p yand thereisno z withx <p z <p y. If f € II(P) and x € P then define the piecewise-linear

toggle o of f atxtobe g = o f € I1(P) where

M+m-— f(x) ifv=x,

g(v) = (2.2)
f() ifv#x
using the notation
M = max f(y) and m = min f(z). (2.3)
y<x >X

It is not hard to verify from the definitions that g € II(P). One can also show that o is an
involution just like 7., and o is also piecewise-linear as a function. Finally, one defines piecewise-

linear rowmotion, pp, : I1(P) — I1(P), by
PPL = 0x 0%, "+ Ox,

where x1,x2,...,x, is a linear extension of P. It is true, but not obvious from the equation just

given, that ppy is well defined in that it does not depend on the chosen linear extension. Since I1(P)
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has an infinite number of points, it is very possible for orbits of ppr, to be infinite. However, in
certain cases the orbits are nice. Take, for example, the poset [p] X [¢g] which is the poset product

of a p-element chain and a g-element chain.
Theorem 2.5.2 ([22]). The order of ppL. on [p] X [q] is p + q. O

One can extend piecewise-linear rowmotion even further to the birational realm by detropi-
calizing as done by Grinberg and Roby [29, 28]. This means that in equations (2.2) and (2.3)
sum becomes product, difference becomes quotient, and maximum become sum. To take care
of the minimum, we use the previous dictionary and the fact that for any set S of real numbers
min S = —max(—S) where —S = {—s | s € S}. Now let P be a finite poset and let P be P with
a minimum element 0 and a maximum element 1 added. Let F be a field and consider a function

f : P — F. The birational toggle of f atx € Pis g = Ty f where

Zy<xf(y) iy =
gy =4 [ X f(D) ,
f(v) ifv #x.

One can verify that 7 is an involution, is a birational function, and that the following is well defined.

Define birational rowmotion on functions f : P — F as

PB = TXlsz Ty

p

where, as usual, x1, x2, ..., X, is a linear extension of P. It is even more surprising when birational
orbits are finite. Indeed, pg being of finite order implies this is true for ppr. Again, everything

works well for rectangular posets.
Theorem 2.5.3 ([28]). The order of pg on [p] X [q] is p + q. O

Call a poset P graded if all chains from a minimal element of P to a maximal element have
the same length. Grinberg and Roby consider a class of inductively defined posets which they
call skeletal and includes graded rooted forests, that is, disjoint unions of rooted trees such that all

leaves have the same rank. In this context, they prove the following result.
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Theorem 2.5.4 ([29]). If P is a skeletal poset then pg has finite order.

They also give a formula for order of pp in the case that P is a graded rooted forest which
agrees with the results in Corollary 2.2.4 for graded extended stars. A natural question is whether
pB has finite order for any rooted trees which are not graded. Computer experiments suggest that
this is not the case, although we have not been able to provide a proof. Specifically, 200 trials were
run on 16 posets, and in all but one case the orbit had not repeated after 1,000, 000 iterations of

rowmotion.
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CHAPTER 3

EXTENDED PROMOTION
A labeling of a poset P with n elements is a bijection from P to [n]. P is naturally labeled if the
labeling respects the ordering on elements of P. In 1972, Schiitzenberger introduced the promotion
operator on natural labelings of posets [44].

As originally defined, promotion applies only to natural labelings of posets. Defant and Kravitz
generalized the notion of promotion to operate on arbitrary poset labelings and referred to their
generalization as extended promotion [19]. Given a labeling L of a poset, the extended promotion
of L is denoted L. A key property of extended promotion is that applying it to a labeling yields
a new labeling that is closer to a natural labeling. This property is quantified precisely in the

following theorem.

Theorem 3.0.1 ([19, Theorem 2.81). For any labeling L of an n-element poset, the labeling 0"~ 'L

is a natural labeling.

When applied to an arbitrary poset labeling, extended promotion will always result in a natural
labeling after a maximum of n—1 applications. Applied to a natural labeling of a poset, the extended
promotion will always produce another natural labeling. Defant and Kravitz [19] define a tangled
labeling of an n-element poset as a labeling that requires n — 1 promotions to give a natural labeling.
Intuitively, the tangled labelings of a poset are those that are furthest from being sorted by extended
promotion; they require the full n — 1 applications of extended promotion in theorem 3.0.1. Defant
and Kravitz studied the number of tangled labelings of a poset and conjectured the following upper

bound on the number of tangled labelings.
Conjecture 3.0.2 ([19, Conjecture 5.1]). An n-element poset has at most (n—1)! tangled labelings.

Defant and Kravitz proved an enumerative formula for a large class of posets known as inflated

rooted forest posets (see section 3.2 for details). This formula was used by Hodges to show
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conjecture 3.0.2 holds for all inflated rooted forest posets. Furthermore, Hodges conjectured a

stronger version of conjecture 3.0.2.

Conjecture 3.0.3 ([32, Conjecture 31]). An n-element poset with m minimal elements has at most

(n —m)(n —2)! tangled labelings.

Both [19] and [32] also considered counting labelings by the number of extended promotion
steps needed to yield a natural labeling. In the preprint [19], Defant and Kravitz proposed the

following, listed as Conjecture 5.2. Hodges further examined this conjecture.

Conjecture 3.0.4 ([32, Conjecture 29]). Let P be an n-element poset, and let ay(P) denote the
number of labelings of P requiring exactly k applications of the extended promotion to be a natural

labeling. Then the sequence ao(P), . .., a,—1(P) is unimodal.

In this chapter, we study the number of tangled labelings of posets by partitioning tangled
labelings according to which poset element has label n — 1. We propose the following new

conjecture.

Conjecture 3.0.5 (The (n — 2)! Conjecture). Let P be an n-element poset with n > 2. For all

x € P, let |7 (P)| denote the number of tangled labelings of P such that x is labeled n — 1. Then

|7:(P)| < (n —2)! with equality if and only if there is a unique minimal element y € P such that

y <pX.

By results in section 3.1, both conjecture 3.0.2 and conjecture 3.0.3 follow from the (n — 2)!
conjecture. In theorem 3.2.14 and theorem 3.3.4, we prove that the (n — 2)! conjecture holds for
inflated rooted forest posets and for a new class of posets that we call shoelace posets. Furthermore,
the conjecture has been computationally verified on all posets with nine or fewer elements.

Following [32], we also consider the sorting time for labelings that are not tangled and introduce
associated generating functions. In remark 3.5.4, we give a poset on six elements that is a
counterexample to conjecture 3.0.4. Our results completely determine the generating functions

for ordinal sums of antichains. We introduce a related generating function called the cumulative
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generating function and prove log-concavity of the cumulative generating function for ordinal sums
of antichains.

In section 3.1 we review the basic properties of extended promotion. In section 3.2 we prove
that inflated rooted forest posets satisfy the (n —2)! conjecture. In section 3.3 we prove that inflated
shoelace posets satisfy the (n — 2)! conjecture and give an exact enumeration for the number of
tangled labelings of a particular type of shoelace poset called a W-poset. In section 3.4 we study
the generating function of the sorting time of labelings of the ordinal sum of a poset P with the
antichain 7y on k elements. In section 3.5 we show that the cumulative generating function for
ordinal sums of antichains are log-concave and use the cumulative generating functions to introduce
a new partial order on the symmetric group S,,. In section 3.6 we propose future directions to

explore.

3.1 Definitions and Properties of Extended Promotion
In this section, we review and prove some properties of the extended promotion operator that
will be used in later sections. Many of the definitions and results in this section come from [19]

and are cited appropriately.

3.1.1 Notation and Terminology

Let [n] = {1,2,...,n}. For a partially ordered set (or poset) P, the partial order on P will be
denoted <p. An element y € P is said to cover x € P, denoted x <p y, if x <p y and there does
not exist an element z € P such thatx <p z <p y. A lower (resp. upper) order ideal of P is a set
X C P with the property thatif y € X and x <p y (resp. x >p y) then x € X also. For an element
y € P, the principal lower order ideal of y is denoted | y = {x € P : x <p y}. A poset P is said
to be connected if its Hasse diagram is a connected graph. In this chapter, we only consider finite
posets and assume the reader is familiar with standard results on posets as can be found in [53,
Chapter 3].

A labeling of a poset P with n elements is a bijection from P to [n]. A labeling L of P is a natural
labeling if the sequence L~'(1), L7'(2),..., L~ (n) is a linear extension of P. Equivalently, for

any elements x,y € P, if x <p y then L(x) < L(y). Given a poset P, the set of all labelings of P
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will be denoted A(P). The set of all natural labelings (equivalently, linear extensions) of P will be

denoted L(P).

Definition 3.1.1 ([19, Definition 2.1]). Let P be an n-element poset and L € A(P). The extended

promotion of L, denoted dL, is obtained from L by the following algorithm:

1. Repeat until the element labeled 1 is maximal: Let x be the element labeled 1 and let y be

the element with the smallest label such that y >p x. Swap the labels of x and y.
2. Simultaneously replace the label 1 with n and replace the label i withi — 1 for all i > 1.

In what follows, we will refer to extended promotion simply as promotion. For i > 0, the
notations L; and d'L are used interchangeably to denote the ith promotion of L. By convention,
Lo and 0°L denote the original labeling L. Promotion can be loosely thought of as “sorting” a

labeling L so that dL is closer to being a natural labeling.

Definition 3.1.2 ([19, Section 2]). Let L € A(P). The promotion chain of L is the ordered set
of elements of P whose labels are swapped in the first step of definition 3.1.1. The order of the

promotion chain is the order in which the labels were swapped in the first step of definition 3.1.1.

Example 3.1.3. fig. 3.1 shows the promotion algorithm applied to a labeling L of a 6-element poset
P. The promotion chain of L is the ordered set {L~'(1), L~!(2), L71(5)}. A sequence of five
promotions of L is shown in fig. 3.2. Observe that L; is not a natural labeling for 0 < i < 5 but
Ls is a natural labeling. Since the poset P has six elements and it takes five promotions to reach a

natural labeling, the labeling L is tangled.

5 5 1 6
3 3 I3 50,2 4
1 4 2 4 2 4 1 3
6 6 5

L oL

Figure 3.1 One promotion of the labeling L on poset P. Swapped labels are shown in red

37



Definition 3.1.4 ([19, Section 1.1]). Let P be an n-element poset and L € A(P). The order
or sorting time of L, denoted or(L), is the smallest integer k > 0 such that Ly € L(P). If

or(L) =n — 1, then L is a tangled labeling. The set of all tangled labelings of P is denoted 7 (P).

6 5 6 6 5
2 4 6 3 5 4 4 5 6 4
}\5?)3 - E§<E§>2 D T E%(%S@3‘° 55155@2
5 4 3 2 1
oL 'L L

O%L O3L

Figure 3.2 Promotions of the labeling L in fig. 3.1. Elements enclosed in a box are frozen

Definition 3.1.5. Let P be an n-element poset and x € P. A labeling L of P is said to be an

x-labeling if L(x) = n — 1. The set of all tangled x-labelings of P is denoted 7;(P).

For a poset P, the set of tangled labelings 7 (P) is the disjoint union of 7;(P) as x ranges over
elements in P. Thus, the number of tangled labelings of P is equal to the sum

T (P)| = > 1T(P)|. (3.1)

xeP

We shall see that no tangled labeling has label » — 1 on a minimal element of P. Thus, it follows
that the (n — 2)! conjecture implies conjecture 3.0.2. While investigating this conjecture, we will

occasionally want to consider a labeling restricted to a subposet.

Definition 3.1.6 ([19, Section 1.3]). Let P be an n-element poset, Q be an m-element subposet of
P, and L € A(P). The standardization of L on Q is the unique labeling st(L) : Q — [m] such

that st(L)(x) < st(L)(y) if and only if L(x) < L(y) for all x,y € Q.

Definition 3.1.7 ([19, Section 2]). Let P be an n-element poset and x € P. The element x is said
to be frozen with respect to a labeling L € A(P) if L' ({a,a + 1,...,n}) is an upper order ideal

for every a such that L(x) < a < n. The set of frozen elements of L will be denoted ¥ (L).

Equivalently, if x is frozen, then the standardization of L on the subposet L~'({L(x), L(x) +

1,...,n}) is anatural labeling. Thus, L is a natural labeling of P if and only if 7 (L) = P. Observe
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that by definition 3.1.1, for any labeling L of an n-element poset P, the element labeled nin L = 0L
is a maximal element of P. More generally, by [19, Lemma 2.7], LJ‘.ll(n — j) is frozen, so the
elements of P with labels {n— j,n—j+1,...,n} are “sorted.” The standardization of L, on the

subposet of P whose elements have L, -labelsin {n — j,n— j+1,...,n} is a natural labeling.

Example 3.1.8. In fig. 3.2, the frozen elements of each labeling are enclosed in boxes. Observe
that once an element is frozen, it remains frozen in subsequent promotions. Figure 3.3 shows a

subposet Q and the standardization of the labeling L in fig. 3.1 on Q.

Figure 3.3 The standardization of the labeling L in fig. 3.1 on the subposet in the dotted box

We conclude this subsection by introducing funnels and basins. The basin elements of a poset
are a subset of its minimal elements. In proposition 3.1.17, we will see that for tangled labelings,

basins are the appropriate subset of minimal elements to pay attention to.
Definition 3.1.9. Let x € P be a minimal element. The funnel of x is

fun(x) = {y € P : x <p y and x is the unique minimal element in | y}.
Definition 3.1.10. A minimal element x € P is a basin if fun(x) # @.

Example 3.1.11. Let P be the poset with Hasse diagram in fig. 3.4. The basin elements in P are g
and i. Their funnels are fun(g) = {d} and fun(i) = {f, ¢}, respectively. There are two basins g, i

in the lower order ideal | a and a single basin i in the lower order ideal | c.

In the terminology of this section, Defant’s and Kravitz’s characterization of tangled labelings

is as follows.

Theorem 3.1.12 ([19, Theorem 2.10]). A poset P has a tangled labeling if and only if P has a

basin.
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Figure 3.4 A poset with two basin elements g and i

3.1.2 Properties of Extended Promotion
In this subsection, we provide some general lemmas on extended promotion and tangled label-
ings. We begin with a lemma implicit in [19] that gives a useful criterion for checking whether or

not a labeling is tangled.

Lemma 3.1.13. Let P be a poset on n elements and L € A(P). The labeling L is tangled if and

only if both of the following conditions are met:
1. L™Y(n) is minimal in P,
2. L' (n) <p L1, (1).

Proof. First, we will prove that conditions (1) and (2) together are sufficient for L to be tangled. Let
x denote L~!(n). By condition (1), x is minimal so L;,,(x) = L;(x) —r whenever L;(x) > r. Since
L(x) = n, it follows that L,_»(x) = 2 and hence Lr_liz(Z) = L~!(n). Substituting into condition (2)
yields L-1 (2) <p L;!,(1). Thus, L, is not yet sorted, and so L is tangled.

By [19, Lemma 3.8], condition (1) is necessary for L to be tangled. Thus, it remains to show
that condition (2) follows from assuming that L is tangled and that condition (1) holds. By [19,
Lemma 2.7], L;E2(3), el L;lz(n) are frozen with respect to L,—,. Since L is tangled, L, is
not sorted, which may occur only if L;}Z(Z) <p L;i2(1). Because L~!(n) is minimal, we may

substitute L~!(n) = L~1,(2) to yield condition (2). O

As a consequence of condition (2), the element labeled n — 1 cannot be minimal in a tangled

labeling of P. If an n-element poset P has m minimal elements, then conjecture 3.0.5 would imply
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that the number of tangled labelings of P is at most (n — m)(n — 2)!. Therefore, conjecture 3.0.5

also implies conjecture 3.0.3.

Lemma 3.1.14. Let P be a poset on n elements and L € A(P). Then for all 2 < i < n and
0<j<n-1,

L} G—1) <p L7'().
Proof. 1f i is not the label of an element in the promotion chain of L, then the element LJ‘.1 (7) will
be labeled i — 1 in L1, so Ljfil(i -1) = LJ_.I(i). If LJ_.I(i) is in the promotion chain of L}, let x
denote the element immediately preceding LJ‘.1 () in the promotion chain of L;. Such an element

exists since i > 2 so LJ‘.l(i) cannot be the first element in the promotion chain. It follows that

LJ‘.+11(i ~1)=x<p L7'(i). O
A consequence of lemma 3.1.14 is that forall 2 <7 < n,
L () <p...<pLT'(i-1) <p L7I(0), (3.2)
Setting i = n — 1 gives, in particular,
L) <pL(2) <p ... <p L' (n=2) <p L' (n - 1). (3.3)

Corollary 3.1.15. Let P be a poset on n elements and let L € L(P) be a tangled labeling. For
r=0,1,...,n-2,

Lr_l(n —r) <p Lr_l(n —1-r).
In particular, L™'(n) <p L™ (n - 1).
Proof. Bylemma3.1.14, L-'(n—r) <p L™'(n), and by (2) in Lemma 3.1.13, L~!(n) <p Lr_le(l)'
Additionally, by eq. (3.3), L;lz(l) <p L,‘ll3(2) <p -+- <p L' (n =1 - r). Combining these

inequalities yields the desired result L' (n —r) <p L7'(n — 1 —r). If we set r = 0, then we see

that L~!'(n) <p L™'(n - 1). O
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In [19, Corollary 3.7], Defant and Kravitz showed that any poset with a unique minimal element
satisfies conjecture 3.0.2. We strengthen this result to show that posets with any number of minimal
elements—but only one basin—also satisfy conjecture 3.0.2. We will need the following lemma

that is the key tool in Defant and Kravitz’s proof of theorem 3.0.1.

Lemma 3.1.16 ([19, Lemma 2.6]). Let P be an n-element poset and let L € A(P) \ L(P). Then
F(L) C F(AL).

Proposition 3.1.17. If L is a tangled labeling of P, then L™ (n) is a basin. In particular, if P has

exactly one basin, then |7 (P)| < (n— 1)

Proof. We first show that for any minimal element x € P that is not a basin, there is no tangled
labeling L with L(x) = n. Suppose to the contrary that there exists such a tangled labeling L. Let
w = L;iz(l). By lemma 3.1.13, x <p w. Since x is not a basin, fun(x) = @. Hence, there exists a
minimal element z # x such that z <p w.

Since w = L', (1) and x = L™ (n) = L;!,(2), it follows that z = L., (m) for some m > 3.
The elements L;i2(3), cees L;iz (n) are frozen as a consequence of lemma 3.1.16. Recall that the
set of frozen elements is an upper order ideal. Since z is a frozen element and z <p w, w must also
be a frozen element, which is a contradiction since L,_; is not a natural labeling. Therefore if L is
a tangled labeling and L~ (#) is a minimal element of P, then L~!(n) must be a basin.

Finally, suppose P has a unique basin x. Then any tangled labeling L of P must satisfy L(x) = n.

There are (n — 1)! labelings L that satisfy L(x) =n,so |[T(P)| < (n—1).. O

The following two lemmas relate tangled labelings and funnels of posets. They will be used in

section 3.3 to prove that shoelace posets satisfy the (n — 2)! conjecture.

Lemma 3.1.18. Let x be a basin of P and let L be a labeling such that L™ (n) = x and L' (n—1) €

fun(x). Then L is tangled.

Proof. 1t is clear from the definition of basins that condition (1) of lemma 3.1.13 is satisfied. So it

suffices to show that L~!(n) <p (L,-»)~'(1). From eq. (3.3) and the condition that L™'(n — 1) €
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fun(x),

x <p (Lya)™'(1) <p L7 (n = 1).

Furthermore,

x=L""(n) = (Ly-2)"'(2) # (Lu-2) ' (1).

Thus, we have the strict inequality x = L™'(n) <p (L,_2)~'(1), which is precisely condition (2) of

lemma 3.1.13. O

Lemma 3.1.19. Let P be a poset on n elements and L a tangled labeling of P. Let x,y € P such
that x is a minimal element and x <p y. If L(x) = n and L(y) = n — 1, then there exists z € fun(x)

such that z <p y.

Proof. Letz = L;lz(l). Byeq. (3.3),z= Lr_llz(l) <p L' (n—1)=y. Thus, z <p y. Since Lis a
tangled labeling, lemma 3.1.13 implies that x = L;}2(2) <p L,‘llz(l) = z. There are at least n — 2
frozen elements with respect to L,,_», but x and z are not frozen with respect to L,_,. Since the set
of frozen elements with respect to a labeling form an upper order ideal, it follows that z covers x

and no other elements. Hence, z € fun(x). |

Lemma 3.1.20. Let P; be a poset with ny elements and Py a poset with ny elements. If conjec-

ture 3.0.5 holds for Py and P,, then conjecture 3.0.5 also holds for the disjoint union P, U P.

Proof. Letx € Py U Py and L be an x-labeling of P (i.e., L(x) =n—1). If x € Py and n| > 2, then
by [19, Theorem 3.4], L is tangled if and only if L~!(n) € Py and st(L|p,) € 7 (P;). Thus, the
tangled x-labelings of P LI P, are enumerated by a choice of one of the |7 (P )| tangled x-labelings
of Py, one of the (" 1;1"_22_ %) assignments of the labels L~'(P)\ {n, n— 1}, and one of the n,! labelings

on P,. Since P; satisfies conjecture 3.0.5, |7 (P1)| < (n; — 2)!. Therefore,

n+n —2
|7§(P1UP2)|=|7§(P1)|'112!-(1 : )
l’l1—2
<(n=2)!ny!- i tny =2 (3.4)
n1—2

= (n1 +n2—2)!.
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If x € Py and n; < 2, then by the contrapositive of corollary 3.1.15, L is not tangled. In
this case, tangled x-labelings of P; U P, do not exist, so |7x(P; U Py)| < (n; + ny — 2)! clearly.
Equality in eq. (3.4) holds if and only if |7;(P;)| = (n; — 2)!. Since P; satisfies conjecture 3.0.5,
|7:(P1)| = (n1 —2)! if and only if there is a unique minimal element z € Py such that z <p, x. It
follows that equality in eq. (3.4) holds if and only if there is a unique minimal element z € Py LI P;
such that z <p,p, x. If x € P», then by an identical argument, |7, (P U P2)| < (n +ny —2)!, with
equality if and only if there is a unique minimal element z € P, such that z <p,.,p, x. Therefore,

P U P, satisfies conjecture 3.0.5. O

By lemma 3.1.20, it suffices to show the (n — 2)! conjecture for connected posets. Thus, for the
remainder of the paper, we will assume our posets are connected.
3.2 Inflated Rooted Forest Posets

In [19], a large class of posets known as inflated rooted forest posets was introduced and it
was shown in [32] that conjecture 3.0.2 holds for inflated rooted forest posets. In this section, we

strengthen this result by showing that conjecture 3.0.5 holds for inflated rooted forest posets.

Definition 3.2.1 ([19, Definition 3.2]). Let P, Q be finite posets. The poset P is an inflation of Q

if there exists a surjective map ¢ : P — Q that satisfies the following two properties:
1. For any x € Q, the preimage ¢! (x) has a unique minimal element in P.
2. For any x,y € P such that ¢(x) # ¢(y), x <p y if and only if p(x) <g ¢(y).
Such a map ¢ is called an inflation map.

Example 3.2.2. In fig. 3.5 the poset P is an inflation of the poset Q. The inflation map ¢ is constant
on each colored box in P and maps to the corresponding element in Q pointed to by the arrow.
For example, the element labeled u; in Q corresponds to the subposet go‘l(ul,l) in P outlined
in green. In general, the preimage of an element in Q must have a unique minimal element, by

definition, but may have multiple maximal elements.
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...... ///—\

PT=UL2 = U2
SU31=u4

Figure 3.5 A rooted tree Q and its inflation P. The inflation map ¢ is represented by the arrows
from P to QO

Definition 3.2.3 ([19, Definition 3.1]). A rooted tree poset Q is a finite poset satisfying the following

two properties:
1. There is a unique maximal element of Q called the root of Q.
2. Every non-root element in Q is covered by exactly one element.

Notice here that we are taking the convention of an anti-arborescence, where the root is a
maximal element, the opposite orientation of a rooted tree in Chapter 2. A rooted forest poset is
defined to be a finite poset that can be written as the disjoint union of rooted tree posets. The posets
P and Q in fig. 3.5 are examples of an inflated rooted tree poset and a rooted tree poset, respectively.
Throughout the rest of this section, unless otherwise specified, Q will denote a rooted tree poset
and P will denote an inflation of Q with inflation map ¢.

The following definitions on inflated rooted tree posets can be found in [19]. We reproduce
them here for the reader’s convenience and to state lemma 3.2.5 precisely. Let r be the root of Q
and let x be a non-root element of Q. The unique element y that covers x in Q is called the parent
of x. The minimal elements of Q are called leaves. A rooted tree poset is said to be reduced if

every non-leaf element covers at least 2 elements. By [19, Remark 3.3], every inflated rooted tree
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poset can be obtained as an inflation of a reduced rooted tree poset, so in the following we will
generally restrict ourselves to reduced rooted tree posets.
Let ¢y, ..., ¢, denote the leaves of Q, where m is the number of leaves. For eachi € [m], we

have a unique maximal chain from ¢; to r
bi=uip<guiy <@ <QUiw =T, (3.5)

where w; denotes the length of the chain. Recall that u; o <o u; | means that u;; covers u; o in Q.
Fori € [m] and j € [w;], define the two quantities

bij= ). le' ol

v=QUi j-1

cij= ), le7' ol

v<Qui,j

(3.6)

. bij . . ..
The fraction = therefore represents the fraction of elements in P below the minimal element of
L]
N ;) that lie on the preimage of the maximal chain from ¢; to r. When it is necessary to specify
the rooted tree poset O, we shall do so by indicating Q in parentheses. For example, we will write

u; ;j(Q) instead of u; ; or w;(Q) instead of w;.

Example 3.2.4. The vertices of Q in fig. 3.5 are labeled in accordance with our definitions above.
For example, the maximal chain from €] tor is {1 = u1 g<upj<ujy = r. Thelength of this maximal
chain is w1 = 2. As another example, the maximal chain from & toris &r =uz g <uzj <uzp =r.
Notice that u; ; may refer to the same element in Q for distinct 7 and j. For example, u | = uy,; in
fig. 3.5, and the root r is equal to u 2, uz2, u3,1, and uy 1.

The quantity b1, can be computed by

bi= ), le7' 0l =le7 (o)l =4.
v<olt1,0

Similarly, the quantity c1,; can be computed by

ci= ), le ) =1le™ o)l + e~ (u20)| = 6.

v<oQui,1
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Therefore ICJ;—’; = % of the elements in P below the minimal element of ¢! (u 1.1) lie in the direction

of 7 (£1).

The following technical lemma provides a useful bound for the formula in theorem 3.2.13. The
left side of eq. (3.7) appears in [19, Theorem 3.5], and a similar term also appears in [32, Theorem

9].

Lemma 3.2.5. Let Q be a reduced rooted tree poset with m leaves and let P be an inflation of Q

with n elements. Then

iw,(Q) bi;(Q) -1 L 1 ifn=1,
=1 CtJ(Q)_l n—m

=l j "

(3.7
otherwise.

Proof. We will prove the bound by inducting on £(Q) = max{w;(Q), ..., w,(Q)}. The base case
is when A(Q) = 0. In this case, there is a single leaf so m = 1 and w;(Q) = 0. Thus, the left
side of the inequality is the sum of a single empty product which is equal to 1. The right side is 1
regardless of whether n = 1 or n > 1, so the inequality holds when A(Q) =0

Now, suppose i(Q) > 0 and that the lemma holds for all rooted tree posets Q" with h(Q’) <
h(Q). Since h(Q) > 0, n > 1. Now, let r denote the root of Q and let ¢4, ..., g; be the elements
covered by r. Recall that for an element x in a poset, | x denotes the set of elements less than
or equal to x. The subposets Q; = | g are all rooted tree posets with h(Qy) < h(Q) — 1, and
P = ¢~ (Qy) is an inflation of Q. Let ny = |¢™'(Qx)| so thatn — |¢~ ' (r)| = ny +-- - +ny, and let
my. denote the number of leaves of O so that m = m + - - - + m,. For convenience, let M denote
the kth partial sum m + - -- + my and let My = 0. Without loss of generality, order the leaves
ty, ..., 4y, of Q such that the leaves of Qy are {ag, 41, ..., Cuy-

Observe that for My_1 +1 <i < My, w;i(Qx) = wi(Q) —1,and for 1 < j < w;(Qx), b; ;(Qk) =

bi;(Q) and ¢; j(Qx) = ¢;;(Q). Additionally, b; . (0)(Q) = ng and ¢;u,0)(Q) = n — ¢~ (r)|.

47



Thus,

ﬁiT%bu@D—lzi: gi‘“@bugn—l
= o @ -1 FH\ i e (@1
(0)-1
N fi m -1 _“%ﬁ biy(Q) -1
Ci\ e =l l-1 L G-
X ng — 1 _ i wﬁ") bij(Qk) -1
Zn—le -1 &, LD aien-T
Foreach 1 < k <1t,if ny = my = 1, then we clearly have
ng — 1 . f‘: wﬁk) bij(Qr) — 1 ny — my

il -1 | a0 =T T sl Tl -1

as both sides of the inequality are 0. If n; > 1

M wi(Qk)

, then by the inductive hypothesis we also have

ng —1 _ Z 1—[ b j(Qk) -1 ng —1 N —mg
n=le T =1\, L a0 =T1) T nlg Tl =1 =1
_ ng —mg
n—le l(r)| -1
Thus, we conclude that
iwﬁ)bl](Q)_l<Zt: ng —mg
Sl e, (0-17 Gn-le (-1
_n-lpT' () -m (3.8)
n—le t(r)] -1
n—m
< .
n-1
O

Remark 3.2.6. Since |¢~!(r)| > 0, the final inequality in eq. (3.8) is strict form > 1. If m = 1,

then there is only one leaf in Q, so by ;(Q) = c1;(Q) for 1 < j < w1(Q) and equality holds. In

particular, the upper bound in lemma 3.2.5 is never sharp for m > 1.

Definition 3.2.7. Let P be an n element poset and X C P. A partial labeling of P is an injective

map M : X — [n]. Alabeling L : P — [n] is an extension of M if L|x = M. The set of extensions

of M is denoted A(P, M).
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Definition 3.2.8. Let P be a poset and x € P. The element x is lower order ideal complete
(LOI-complete) if any element that is comparable to some element in | x is also comparable to x

itself.

P 0

Figure 3.6 A rooted tree poset Q and an inflation P of Q. The LOI-complete elements in P are
colored black

Example 3.2.9. Consider the rooted tree poset Q and its inflation P in fig. 3.6. In P, the elements
¢, f, g, and j are all LOI-complete, since for each of those elements, all elements comparable to
le,l f,l g and | j are also comparable to ¢, f, g, and j, respectively. The elements a, b, d, e,
h, and i, colored in red, are not LOI-complete. For example, b is not LOI-complete because the

element a is comparable to ¢ €| b but a is not comparable to b.

Lemma 3.2.10. Let Q be a rooted tree poset and let P be an inflation of Q with inflation map

¢ : P — Q. Forany q € Q, the unique minimal element of ¢~'(q) is LOI-complete in P.

Proof. Denote the unique minimal element of ¢~ !(¢) by x. Let y €| ¢~!(¢) and suppose z € P
is comparable to y. If y = x then z and x are comparable by definition. Otherwise, if y # x, then
@(y) <@ ¢(x) = g since x is the unique minimal element of ¢~ (g). Since z € P is comparable to
y and P is a rooted tree poset, ¢(z) and ¢(y) are comparable and hence ¢(z) and ¢ is comparable.

If (z) <@ ¢, then z <p x by definition 3.2.1. If ¢(z) = g, then x <p z since x is the unique
minimal element of ¢~'(g). If ¢ <¢ ¢(z), then x <p z. In each case, z is comparable to x.

Therefore x is LOI-complete in P. O
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We will need the following probability lemmas from [19], so we have reproduced them for

convenience.

Lemma 3.2.11 ([19, Lemma 3.10]). Let P be an n element poset and x € P be LOI-complete. Let
X =] x\{x}. For L € A(P)and k > 0, the set Ly(X) depends only on the set L(X) and the
restriction L|p\x. It does not depend on the way in which labels in L(X) are distributed among the

elements of X.

Lemma 3.2.12 ([19, Lemma 3.11]). Let P be an n element poset and x € P be LOI-complete. Let

X = | x\ {x} and suppose that X +# &. Let A C X have the property that no element of A is

comparable with any element in X \ A and let M : P\ X — [n] be a partial labeling such that

L;} (1) € X for every extension L of M. If a labeling L is chosen uniformly at random from the
|A|

extensions in A(P, M), then the probability that L;lll (I)e Ais X

By suitably modifying the proof of [19, Theorem 3.5], one can strengthen it to obtain theo-
rem 3.2.13. The following proof is self-contained, but the interested reader may wish to refer to

[19, Section 3] for further details.

Theorem 3.2.13. Let Q be a reduced rooted tree poset with m leaves and let P be an inflation
of Q with n elements, with inflation map ¢ : P — Q. For a nonminimal element x € P, let
t(x) ={i € [m] : {; <p @(x)} and w;, = max{j : u;; <p ¢(x)}. Then the number of tangled

x-labelings of P is given by

™ bij(Q) - 1
|7:(P)] = (n—2)! — =

Proof. Fix a leaf £; of Q and let xo be the unique minimal element of ¢~'(£;). We will count the
number of tangled labelings L such that L™'(n) = xg and L™'(n — 1) = x. By corollary 3.1.15, if
L is tangled, then xo = L' (n) <p L™'(n— 1) = x. Thus, we need only consider leaves ¢; such that

{i <¢ ¢(x). Furthermore, since Q is reduced, L is tangled if and only if L;}z(l) e o l(8).

wix bij(Q)-1
Jj=1 ¢ j(0)-1

all x-labelings L such that L= (n) = xq are tangled.

is the empty product 1. In this case, x € ¢~!(£) so

If w;x = 0, then the product []
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Now, assume w;, > 1 and choose a labeling L € A(P) uniformly at random among the (n —2)!
labelings that satisfy L™!(n) = xo and L™'(n — 1) = x. We will proceed to compute the probability
that L is tangled. Let P =P\ {x} and @ = ¢| 5. For 1 < j < wjy, let x; be the unique minimal
element of @~ ! (u;, ), and define the sets

X;=lx;\{x;}and A; = U 7).
VSQUi,j-1
The sizes of the sets are | X;| = b; ;(Q) — 1 and [A;| = ¢; ;(Q) — 1.

For any partial labeling M : P\ Xuw; — [n—1] such that M (x) = n— 1 and any extension L of
M, the condition L' (1) € X,,, , holds since x € ¢~ (u;, ). Furthermore, since P is an inflated
rooted forest poset and x; is the unique minimal element of N i), xj is LOI-complete, and no
element of A; is comparable with any element of X; \ A;. Thus, the poset P, the subsets Xw, . and
Ay, .~ and the partial labeling M satisfy the conditions in lemma 3.2.12. Applying the lemma tells

us that the probability that L', (1) € A, , is

|Awi,x| _ bi,w,’,x(Q) -1
|Xwi,x| Ci,wi,x(Q) -1

Furthermore, lemma 3.2.11 tells us that the occurrence of this event only depends on L | P, -

This process can be continued for j = w;x — 1,...,1 to deduce that the probability that
L;}Z(l) € ¢ '(u;) is the product |
-1 bi,;(Q) - 1
(@) -1
Summing over all the leaves such that ; <p ¢(x) yields the result. O

Theorem 3.2.14. If P is an inflated rooted forest poset on n elements and x € P, then |7;(P)| <

(n —2)\. Equality holds if and only if there is a unique minimal element z € P such that z <p x.

Proof. We first consider the case of an inflated rooted tree poset. Let Q be a reduced rooted tree

poset and P an inflation of Q with |P| = n. For an element x of P, theorem 3.2.13 implies that

T bi(0) -1
|7:(P)| = (n - 2)! e
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The subposet 0 :=| @(x) is also a rooted tree poset. Let P := ¢ 1(Q) and @ be the restriction ¢| 7

Then P is an inflated rooted tree poset, so lemma 3.2.5 gives the upper bound

1 bi i (0) - 1
—-— < 1. 3.9
ie%;) g ci,j(Q) -1

Therefore, |7;(P)| < (n — 2)! in the case of an inflated rooted tree poset.

Let m denote the number of leaves in the subposet 0. By remark 3.2.6, the inequality in eq. (3.9)
is strict if and only if m > 1. The number of leaves in the subposet Q is precisely the number of
minimal elements in P. By definition of P, the minimal elements in P are precisely the minimal
elements z € P that satisfy z <p x. Thus, equality in eq. (3.9) holds if and only if there is a unique
minimal element z € P that satisfies z <p x.

The general case of an inflated rooted forest poset follows from lemma 3.1.20, since an inflated

rooted forest poset is a disjoint union of inflated rooted tree posets. O

3.3 Shoelace Posets

In this section, we will study tangled labelings on a new family of posets called shoelace posets
and show that the (n — 2)! conjecture holds for them. The proof involves a careful analysis of
the number of tangled labelings where a fixed element in the poset is labeled n — 1. We note that
in general, shoelace posets are not the inflation of any rooted forest poset. We will also examine
a specific subset of shoelace posets called W-posets, and enumerate the exact number of tangled

labelings of these posets.

Definition 3.3.1. A shoelace poset P is a connected poset defined by a set of minimal elements
{x1,...,x¢}, asetof maximal elements {y{,...,yn,},andaset S(P) C {x1,...,x¢}X{V1,..., Vm}

such that the following three conditions hold:

1. For every (i, j) € [£] X [m], the elements x; and y; are comparable in P if and only if

(xi,yj) € S(P).

2. For every (x;,y;) € S(P), the open interval (x;,y;)p is a (possibly empty) chain, denoted
cl.

1
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3. For distinct pairs (x;,y;), (xi7, ;) € S(P), the chains Cl.j and CIJ, are disjoint.
We will use the following notation

S/(P) = {xi: (xi,y;)) € S(P)},  Si(P)={y; : (xiy)) € S(P)}.

The funnels of a shoelace poset can be described fairly simply. The funnel of a minimal element
x; consists of the elements in C IJ for y; € S;(P), along with the maximal elements y; fory; € S;(P)

that satisfy S/ (P) = {x;}.

Example 3.3.2. fig. 3.7 depicts a shoelace poset P with 3 minimal elements and 4 maximal

elements. In this example,

S(P) = {(x1,y2), (x1,¥3), (x1,¥4), (x2,¥1), (x2,¥3), (x3,¥3), (X3, ¥4)}.

The elements of the chain Cg‘ are highlighted in red and the chain Cf is empty. Notice also that

S1(P) = {y2,y3,y4} and S*(P) = {x1}.

J1 y2 Y3 Y4

4
C3
X1 X) X3

Figure 3.7 An example of a shoelace poset

In order to prove that shoelace posets satisfy the (n —2)! conjecture, we will partition labelings
according to the location of the label n — 1, and bound |7;(P)| for the various elements x.
For the following lemma, we use the following notation: for S a set and f a function whose

codomain is well-ordered, argming f is the element x € S such that f(x) is minimal.

Lemma 3.3.3. Let P be a shoelace poset with minimal elements x1, . .. ,x; and maximal elements
Yis---sYm- Let L € T(P), i € [t], and j € [m] such that L(y;) = n— 1 and L(x;) = n. If

|S/(P)| > 2, then x; € S/(P), Cl.j #+ &, and

argminL € Cl’
W\S/(P)
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Proof. Since L is tangled, L~!(n) <p L™'(n — 1) by corollary 3.1.15. Therefore, x; <p yj, which
implies i € S8/ (P). By lemma 3.1.19, there exists z € fun(x;) such that z <p y;. By the assumption
that | S/ (P)| > 2, we observe that y; ¢ fun(x;). Therefore, x; <p z <p y;, so Cl.j + J.

Next, let r be the smallest positive integer such that the rth promotion chain ends in y;. Denote
the rth promotion chain by (zi,...,2,,y;). Since r is the smallest such positive integer, y,; does
not lie on the gth promotion chain for ¢ < r, and hence Lr‘_ll (n—=1-(r—1)) = y;. Then, after the

rth promotion, L-!(n — 1 —r) = z,. Since L is a tangled labeling, corollary 3.1.15 implies that
xi=L'(n—r)y<p Ly (n—1-7r) =2z,

Therefore, z,, € Cl.j . Since z; <p ... <p Zn-1, the remaining elements zi,...,zZ,- in the rth
promotion chain are also on C lj .

Now, letz €] y; \ S/(P) and let t = L(z). Then either Ll__l1 (1) = z and the tth promotion chain
endsiny;, or Lt‘_l1 (1) <p z and the #'-th promotion chain ends in y; for some ¢’ < ¢. In either case,
it follows that r < ¢. Since the starting element of the rth promotion chain lies in C l] , we conclude

that argmin L € Cl’ O
Wyj\8/(P)

Essentially, if a labeling on a shoelace poset is tangled, and L(y;) = n— 1, then the element with
smallest label in | y; \ S7(P) must be above the element labeled n. This is therefore a necessary

condition for a labeling on a shoelace poset to be tangled. This will be instrumental in proving the

following theorem.

Theorem 3.3.4. If P is a shoelace poset on n elements and z € P, then |7,(P)| < (n—2)!. Equality

holds if and only if there is a unique minimal element x <p z.

Proof. Let x1,...,x, be minimal elements of P, and yj,...,y, be maximal elements of P. The
element z can either be a minimal element, an element on a chain C l] for some i and j, or a maximal
element. There is a unique minimal element x <p z only if z € Cl.j or if z is one of the maximal
elements y; and |S/(P)| = 1. For convenience, we set s := |S/(P)|. Below, we separate the cases

mentioned above and claim that equality holds only in Case 2 and Case 3.
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Case 1: Suppose 7z is a minimal element. In this case, it is impossible to find an element
labeled n such that L=!(n) <p L™'(n — 1) = z. So by corollary 3.1.15, |7Z(P)| = 0.

Case 2: Suppose 7 lies on some chain Cl.j . In this case there is a unique basin x; that in | z.
Any tangled labeling L € 7;(P) must satisfy L(z) = n—1 and L(x;) = n. There are at most (n—2)!
such labelings, and by lemma 3.1.18 all such labelings are tangled so |7;(P)| = (n — 2)!.

Case 3: Suppose 7 is a maximal element y; and s = 1. Since s = 1, for any tangled labeling
L, L' (n) must be the unique x; satisfying x; <p yj = z. There are (n — 2)! such labelings, and by
lemma 3.1.18 all such labelings are tangled. Thus, |7;(P)| = (n — 2)!.

Case 4: Suppose z is a maximal element y; and s > 2. Partition A(P) into equivalence
classes, where two labelings L and L’ belong to the same equivalence class if and only if they
restrict to the same labeling on P \ S/(P). Labelings in 7;(P) require y j to be labeled n — 1 and
some element in S/ (P) to be labeled n. The number of equivalence classes where this is possible
is (n—2)(n—3)---s. In each such equivalence class, the tangled labelings L have only one choice
of L~ (n) according to lemma 3.3.3. Therefore, at most (s — 1)! labelings in each equivalence class
are tangled. Consequently, |7(P)| < (n—=2)(n—=3)---s(s— 1! =(n—-2).

With a little more careful analysis, one can conclude that at least one of the equivalence classes
has strictly fewer than (s — 1)! labelings. Consider an equivalence class where the label 1 is in
S/(P) and the label 2 is in | y; \ S/(P). Then in this equivalence class, there is the additional
restriction L™'(1) #p L~1(2). Thus, there are strictly fewer than (s — 1)! tangled labelings, so

|7.(P)| < (n—2)". O

Notice that theorem 3.3.4 shows that shoelaces satisfy conjecture 3.0.5, and therefore also
satisfy conjecture 3.0.3 and conjecture 3.0.2.

We have proven an upper bound on the number of tangled labelings of shoelaces, but we are
also able to enumerate the exact number of tangled labelings for a specific subfamily of shoelace
posets called W-posets. In general, few explicit formulas for tangled labelings are known. The

proof of this formula will also involve counting the number of tangled labelings by fixing the label
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n-1.

Definition 3.3.5. Given a,b,c,d € Zso, the W-poset W, .4 is aposeton a+b+c+d+3
elements: aq,...,@q Bi1s--->Bbs V1s--->Yes 01,---,04, X,¥,z. The partial order has covering
relations @; <w @iv1, Bi <w Birt, Yi <w Yirls 0i <w Oix1, X <w @1, X <w B1, Bo <w Y, Ye <w Y,

7 <w Y1, and z <y 9.

The poset W, 5, .4 can be viewed as the shoelace poset with the set of minimal elements {x, z},

the set of maximal elements {a,, y, 64} and the relations S(P) = {(x, @,),(x,y),(z,¥),(z,04) }.

Example 3.3.6. The Hasse diagram for W, 11 is shown in fig. 3.8. There are 34,412 tangled

labelings of this poset.

@ B
Y1 01
@] Bi

X V4

Figure 3.8 The poset W22 1.1

Theorem 3.3.7. Let a, b, ¢, d be four positive integers and n =a + b +c+d + 3. Let

n-2\8 & _ i+j+c—1
X:( ) Z(d—]+1)( ),and

a == i,j,c—1
— S +j+b—1
Z:("d ) (a—j+1)(l_J_b 1 )
i=0 j=0 LD~

Then the number of tangled labelings of W, p.c.q is given by (n —2)(n=2)! —a!b!c!d! (X + Z).

Proof. Fix a,b,c,d and write W = W, ;, . 4. By eq. (3.1), it suffices to compute |7,(W)| as p
ranges over elements of W. If p = x or p = z, then |7,(W)| = 0 due to Case 1 in the proof of

theorem 3.3.4. If p = @; or p = (3;, then this belongs to Cases 2 and 3 in the proof of theorem 3.3.4,
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and so |7,(W)| = (n —2)!. Similarly, if p = y; or p = 6;, then |7,(W)| = (n — 2)!. With the
exception of p =y, we have counted (a +b +c+d)(n—2)! = (n—3)(n —2)! tangled labelings.

Let us now count the number of tangled labelings L that satisfy L(y) = n — 1. Observe that
permuting the labels L(«ay), ..., L(a,) does not change whether or not L is tangled. Similarly, per-
muting the labels L(B)), ..., L(B5), the labels L(y1),..., L(y.), and the labels L(d1), ..., L(d4)
among themselves does not change whether or not L is tangled. Thus, we will additionally im-
pose the conditions L(a;) < --- < L(a,), L(B1) < --- < L(Bp), L(y1) < --- < L(y.), and
L(81) < --- < L(d4). To obtain the total number of tangled labelings, we will count the number
of such tangled labelings L satisfying these conditions and then multiply by a!b!c!d!.

We split into two cases. The first case is where L(B1) < L(y1). Let mg = L(B1). In this
case, a necessary condition for L to be tangled is that L(x) = n. To see this, suppose otherwise
that L(z) = n. Then note that L,;L (n—1-mg) € [x,y). This is because for the first mg
promotions, the only promotion chains ending in y are those that begin with some element in [x, y)
and furthermore, there exists at least one promotion chain ending in y, namely the mg-th one. It

follows that L;lz(l) #w z so L cannot be tangled if L(z) = n (lemma 3.1.13).

Now, the total number of labelings that satisfy all these conditions is given by %(a g’;zd 1), since
it amounts to choosing a of the labels in [n — 2] for a1, . . ., @4, b of the labels for the s and so on.

To account for the condition L(8;) < L(y;), we divide by 2 because there is an involution swapping
L(B1) and L(y;). We will now subtract the number of labelings satisfying these conditions that
are not tangled.

Given that L satisfies all the conditions above, L is not tangled if and only if L(z) < L(f;)
and there do not exist ¢; such that L(B1) < L(6;) < L(y;). To see this, observe that L is not
tangled if and only if there is some j < mg where the jth promotion chain begins with an element
in [z,y) and ends in y. Since L(B]) < L(y1), this can occur only if L(z) < L(B;). Now,
let 6; <w i1 <w --- <w 0, be all the §’s with labels in between L(z) and L(y1). Then the
L(z),L(6;),...,L(d;-1)th promotion chains would all begin with z and end with some 6y, and the

L(6;)th promotion chain would begin with z and end with y. Thus, in order for L to not be tangled
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we must have L(6;) < L(1). And conversely, if we do have L(6;) < L(B1) then L is not tangled
since the L(6;)th promotion chain would start with z and end with y.

Now, we wish to count the number of such labelings L. To do so, observe that the labels of the
a’s are subject to no constraints. We will suppose that L(61) < --- < L(d4-j) < L(B1) < --- <

L(Bp-i) < L(y;) andsumover0 <i<b-1land0<j <d.

i+j+c-1

For each i, j there are (d — j + 1) choices of what L(z) could be and (ij 1

) choices for the

labels greater than L(vy1). This yields

X:(n;z)j

-1 d i+j+c—1
(d—j+1)( / )
i=0 j=0

i,j,c—1
By a similar argument, if L(y;) < L(B;) then a necessary condition for L to be tangled is

L(z) = n. The number of labelings satisfying these conditions is %(g g’;zd 1) and the number of

these labelings that are not tangled is

c—-1 a . .
-2 b—-1
Z:(”d ) (a—j+1)(’T’.; 1 )
=0 =0 b0

1

Let E = a!b!c!d!. Then, the number of tangled labelings L that satisfy L(y) =n — 1 is

E(E(a,b,c,d,l)_X+§(a,b,c,d,1)_Z) _E(a,b,c,d,l)_E(X"'Z)

=(n-2)-EX+2).

Adding this to the (n — 3)(n — 2)! tangled labelings where L~!(n — 1) # y yields the desired

formula. O

In principle, one could compute the exact number of tangled labelings for various subsets of
shoelace posets in this way. Even for the class of W-posets, however, the computations appear

rather unwieldy.

3.4 Generating Functions
In the previous sections, we focused on counting the number of tangled labelings of various

posets and analyzed their upper bounds. In this section, we are interested in exploring the number
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of labelings of a poset P on n elements that have a fixed order k. Recall that the order of a labeling
L is the minimal integer k > O such that Ly is sorted. Such labelings we will call k-sorted; see
definition 3.4.1. Dual to k-sorted labelings are k-tangled labelings that have order n — k — 1.
We define two kinds of generating functions (definition 3.4.2) on P and investigate how these
generating functions change if we attach some minimal elements to P. Our result provides a simple
and unified proof of enumerating tangled labelings and quasi-tangled labelings in [19] and [32]

(see remark 3.4.11).

Definition 3.4.1. Let P be an n-element poset. A labeling L € A(P) is said to be k-sorted if

or(L) = k and is said to be k-tangled if or(L) =n —k — 1.

Observe that natural labelings are synonymous with O-sorted labelings and tangled labelings
are synonymous with O-tangled labelings. Quasi-tangled labelings introduced in [32] correspond

exactly to 1-tangled labelings.

Definition 3.4.2. Let P be an n-element poset. The sorting generating function of P is defined to

be
n—1
felg) = D, =) ad,
LEA(P) i=0

where a; counts the number of i-sorted labelings of P. The cumulative generating function of P is

defined to be
n-1
gr(q) = Z biq',
i=0

where b; '=ag +a; + - - - + a; is the partial sum of g;’s. In particular, b,_; = n!.

Example 3.4.3. We list all the six labelings and their orders of the A-shaped poset P in table 3.1.
The sorting generating function and cumulative generating function of P are given by fp(q) = 2+4q

and gp(gq) = 2 + 6g + 64°.

We now define precisely what it means to attach k£ minimal elements to a poset. The operation

we need is the ordinal sum of two posets P and Q.
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1 1 2 2 3 3

I VAV DVANS BVAVE PYAVE EVAVE BVAN

Oder | 1 | 1 | 1 | 1 | 0 | O

Table 3.1 The six labelings and their corresponding orders for the A-shaped poset

Definition 3.4.4. Let P and Q be two posets. The ordinal sum of P and Q is the poset P @ Q on
the elements of the disjoint union P LI Q such that s < 7 in P @ Q if and only if at least one of the

following conditions hold:
1. s,te Pands <p t, or
2. s,te€Qands <pt,or
3. se Pandt € Q.

The n-element chain will be denoted C,, and the k-element antichain will be denoted 7. In
the language of ordinal sums, we can view C, as the ordinal sum of n copies of C;’s and we can
view attaching k minimal elements to a poset P as the ordinal sum 73 @ P. Our main result in this
section provides a way to compute the sorting generating function f7,¢p(g) from fp(q).

Define a lower-triangular n X n matrix X, (k) whose (i, j) entry x;; is given by

k(52 ifi >,

Xij = k(MY ifi =,

0 otherwise.

Recall that given a labeling on a poset, the standardization of the restricted labeling on a

subposet Q shifts the labels to those from 1 to |Q|; see definition 3.1.6.

Theorem 3.4.5. Let P be an n-element poset and fp(q) = lr.‘z_ol a;q" be the sorting generating
function of P. Write the sorting generating function of Ty ® P as fr,epr(q) = :":(;‘_1 a;qi. Let
v = (ao,ai, .. .,an-1)7 bethe columnvector of the coefficients of fp(q) andv' = (aj, a’,...,a,_ )7

the column vector of the first n coefficients of fr,ep(q). Then
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1. X,(k)v =V,

2. a, =nlk! ("5, and

3.a;=0fori=n+1,n+2,...,n+k -1

Proof. Let x1,x2,...,x; be the elements of T;. Since the roles of the x;’s are symmetrical, it
follows that permuting the labels of the x;’s on any labeling L € A(T; & P) doesn’t change or(L).
Therefore, we will compute the number of labelings that satisfy L(x;) < L(x2) < --- < L(xy) and
then multiply by k!.

Now, we will define a procedure that, given a labeling L € A(P) and a k-tuple of distinct
numbers I = (iy, ..., i) € [n+ k]¥, produces a labeling L’ € A(T; @ P) such that L’ (x,) = i, for
1 <5 < k. Since we are counting labelings where the labels of the x;’s are increasing, we will
assume that i} < i < --- < i} for the rest of the proof.

To obtain L/, first define labelings of L0 LY ... . L¥of P,where L = Landfors=1,..., k,
recursively define L® by

L x)+1 if L7N(x) > i,
L(x) =

L 1(x) otherwise.

Then define L on T ® P by

; Iy if x = xg,
L' (x) = (3.10)

L¥(x) ifxeP.
In fig. 3.9, we give an example of defining L’ of T3 ® P on a 7-element poset P and with
I =(2,4,7). The labeling of P is given in the left figure, and the middle three figures illustrate the
process mentioned above. The right figure is the resulting labeling L’ of T3 & P.
One can check that ateach step s = 1, . . ., k the standardization St(L*) is precisely L. Therefore,

the standardization of L!|p is st(L!|p) = st(L*) = L. In other words, L' is the unique labeling in
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oy oy oy 7

LY € A(P) L! L2 L3 € A(T; ® P)

Figure 3.9 Defining L! of T3 @ P with I = (2,4,7)

A(Ty ® P) that assigns the label i to x; for s = 1, ..., k and whose standardization when restricted
to P is L. As a consequence, the set of labelings A(T; @ P) can be partitioned as

AT o P) = | | {LU] I ([Z])} (.11)

LeA(P)
where L] contains the labeling L’ and the labelings obtained from L’ by permuting all the labels
of the x;’s.
Next, we proceed with the following two claims.

Claim 1. Given L € A(P) and I = (i1, ...,iy), the standardization of L!|p is preserved under a
sequence of promotions:

st((L})[p) = L. forall j € Zs. (3.12)

Proof of Claim 1. We will show Claim 1 by induction. When j = 0, the identity holds by the
definition of L. Suppose it holds for some j and consider L§ o If L§ (xs) > 1foralls =1,2,...,k,
then these minimal elements x;’s are not in the (j + 1)-th promotion chain and the claim holds.
On the other hand, if there exists an s such that L§ (x5) = 1, then the (j + 1)-th promotion begins
at x;. Since x; < x for all x € P, the next element in the promotion chain is (Lj.)‘l(y), where
y = min{Lj.(z) : z € P}. This element is exactly (Lj.)_l(y) = (Lj)_l(l). From this point on,
the rest of the promotion chain is the same in Lj. and L;. Therefore, st((L§)| p) = L; for all

J € Zxo. ]

Claim 2. Given L € A(P) and I = (i1, ..., i), the order of L' is given by

or(L") = max(ix — k,or(L)). (3.13)
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Proof of Claim 2. We observe that for some nonnegative integer j, L5 is a natural labeling if and

only if two conditions are satisfied:
1. the set of labels {L;(xl), ... ,L§ (xx)} is [k], and
2. (Lj.)lp is a natural labeling.

By eq. (3.12), the second condition is satisfied if and only if j > or(L). On the other hand, we
show below that the first condition is satisfied if and only if j > i} — k.

To see this, we notice that the first i; — 1 promotions only decrement the labels of x, ..., x.
LetS; = {L§ (x1),..., Lj. (xx)} and let s; be the maximum value (possibly 0) such that [s;] € S;.
Then the minimum label in L§|p is 5+ 1 and in the (j + 1)-th promotion, (Lj.)‘l(sj + 1) is part
of the promotion chain, so S;41 = [s;]U{y—1:y € S;\ [s;]}. Note that s;,; > s; if and only
ifs;+1 e€{y—-1:y¢€S8;\[s;]}. Thus, it follows by an inductive argument that s; > ¢ if and
only if j > i; — ¢t which yields the desired result. Combining these two conditions implies that

or(L') = max(iy — k,or(L)). O

We are now ready to prove the first statement, in which we show that for 1 < s < n, k! times
the number of labelings in A(T; @ P) with order m — 1 is equal to the mth row of X,(k)v. By
eq. (3.11), we can sum over all labelings L € A(P) and count the number of I € ([Z]) such that
or(L") = m — 1. We proceed by cases analysis of or(L).

* Suppose or(L) < m — 1. Then in order for or(L’) = max(iy — k,0r(L)) = m — 1 to hold,

k+m—2

it must be that iy — k = m — 1. Fixing iy = k + m — 1, there are (*}"|") ways to choose

il,...,ix—1 such thator(L)) =m — 1.

* Suppose or(L) = m — 1. Then in order for or(L’) = max(i; — k,or(L)) = m — 1 to hold,
it must be that iy — k < m — 1. Thus, ix < k +m — 1 so there are (**"~!) ways to choose

i1,...,ix such thator(L!) =m — 1.

* Suppose or(L) > m — 1. Then or(L’) = max(ix — k,0r(L)) > m — 1 so there are no choices

of I that yield or(L!) = m — 1.
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After multiplying by k! to account for the fact that permuting the labels of x1, . . ., xx do not change
the order of a labeling of T} @ P, the first case yields the (m, j) entry of X,,(k) when j < m, the
middle case yields the (m,m) entry of X,,(k), and the last case yields the (m, j) entry of X,,(k)
when j > m. This completes the proof of the first statement.

To prove the second statement, observe that since or(L) < n — 1 for any L € A(P), then

or(L") = max(ix — k,or(L)) = n if and only if iy — k = n. Fixing iy = k + n, there are (";2/:1)
choices for iy, ..., iy, regardless of or(L). Multiplying by k! to account for permuting the labels
of xi,...,xy yields
+k-1 +k-1
a, = k!(”k_ { )(ao+a1 +-t+ay-1) :n!k!(nk_ | )

This completes the proof of the second statement.

Finally to prove the last statement, first observe that iy < k+n since there are only k +rn elements
in Ty @ P. Thus, iy — k < n. In addition, any labeling L € A(P) has or(L) < n — 1. It follows that
or(L") < n for any choice of L € A(P) and I € (["Zk]). Thus, there do not exist labelings T & P
with order greater than n and hence a; =0fori=n+1,n+2,...,n+k — 1. This completes the

proof of the last statement. O
We would like to point out that if & > 2, then 7} @ P has no tangled labelings.

Example 3.4.6. Let P be as in example 3.4.3. The sorting generating function of P is given by
fr(q) =2 +4q. Let v be the column vector (2,4,0)T. We show below how to obtain the sorting
generating function of posets shown in fig. 3.10 from theorem 3.4.5.

ForT, @ P,

1 0 0})(2 2
X3(v=|1 2 of|l4]|=|10|andas=1(2+4+0) =6.

1 1 3/10) \6
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Then friep(q) =2+ 10g + 6¢% + 6¢°. For T, & P,

2.0 0f[2) [4
X;2)v=|4 6 0 ||4|=|32]|anda}=8(2+4+0)=48.
6 6 12/{0] |36

Then fr,ep(q) = 4+ 32q + 36¢> + 48¢°>. Finally, for T3 & P,

6 0 01}(2 12
X33)v=]18 24 0 ||4]|=]132|and a; =60(2+4 +0) = 360.
36 36 60/\0 216

Then fr,ep(q) = 12 + 132 + 2164> + 3604°.

AYORAN

T, e P T,®P P

Figure 3.10 The posets obtained from P by attaching 1,2 and 3 minimal elements

An analogous result for the cumulative generating function g7,¢p(g) is stated below.

Theorem 3.4.7. Let P be an n-element poset and gp(q) = Z?z_ol biq' the cumulative generating
function of P. Assume gr,ep(q) = Z"+k ! b’q’ Letw = (bg, by, ...,bu_1)7T be the column vector of
the coefficients of gp(q) and w’ = (by, b\, ..., b’ )T be the column vector of the first n coefficients

of grer(q). Then

1. Y, (k)w = w’, where Y,(k) is the n X n diagonal matrix, the ith diagonal entry given by

(k+i—1)!
G- -

2. bi=(n+k)! fori=nn+1,...,n+k—1.
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Proof. Let R, be the lower triangular matrix of size n whose lower triangular entries (including the
diagonal entries) are 1. If v = (ag, ay, ..., a,—1)7 is the column vector of the coefficients of fp(qg),
then it is easy to see that R,v = w. One can also check that Y,,(k)R, = R, X, (k).

By theorem 3.4.5, the first part of the statement follows from the identities below.
Yn(k)w = Yn(k)RnV = Ran(k)v = an/ = w’,

Since a; =O0fori =n+1,n+2,...,n+k -1, this implies that b’ = (n+k)! fori =n,n+1,...,n+

k—1. m|

We close this section with a special family of posets which are obtained from a given n-element
poset P by attaching the chain with ¢ elements below P, that is, (@le Tl) @ P. For convenience,
we denote it by PO, Note that P(©) has n + £ elements.

We assume that the sorting and cumulative generating functions of P(©) are written as fro(q) =

Zn+f 1 (5) [ n+€ 1b(£) i

and gp)(q) = , respectively. Two propositions are stated below.

Proposition 3.4.8. Let P be an n-element poset and P¥) the poset obtained from P by attaching
the chain with € elements below P. The last € + 1 coefficients of the cumulative generating function
gpw (q) are given by

By yary = (M H C=1) (n+L=1), (3.14)

forO<r<t

Moreover, PO satisfies conjecture 3.0.2 if and only if
b > (n=1)* (n-1). (3.15)
Proof. Applying theorem 3.4.7 with k = 1 repeatedly, we obtain

b\ = (n+¢-r)pt"" =(n+€-r)p""

n+l—(r+1) n+— (r+1) n+l—(r+1)’

for 0 < r < ¢ and for some non-negative integer t. When (n+¢— (r+1)) — ({ —t) = n— 1, that is,

(4’ t)
{—(r+1)

Therefore, b(+)[ (ril) = =(n+f—-r)(n+€-r).

is the leading coefficient of the gp- (g). Hence, ph =(n+l-r).

whent =r,b, n+l—(r+1)
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conjecture 3.0.2 implies that a,,—; < (n — 1)!. Since b,,—1 = by, + a,-1,

byo=b,1—a,.1=2n'—(n—-1!=m-1)(n-1).

We again apply theorem 3.4.7 with k = 1 repeatedly, then

b = (-1 = = (= 1)byn = (n = 1) (- 1)1,
The converse statement is argued in a similar way and will be omitted here. O

We then state below the counterpart result of Proposition 3.4.8.

Proposition 3.4.9. Let P be an n-element poset. For 0 < r < € — 1, the number of r-tangled

labelings of PO is given by

SO0 ((Hf_r)m _(n+[_(r+1))r+1)(n+€—(r+l))!. (3.16)

nl—(r+1) —

Moreover, PO satisfies conjecture 3.0.2 if and only if

a0 < (n“l —(n- 1)“1) (n-1). 3.17)
Proof. Notice that b, =50 =a') . for0<r<{-1. Theneq.(3.16) follows

n+l—(r+1)

immediately from eq. (3.14).
By eq. (3.14) with r = £, b'”| = n’n!. Then eq. (3.17) is obtained from a\”, = 5'” ~ 5 and

n—

eq. (3.15). The converse statement can be argued similarly and is omitted here. m|
We next show that our poset P(¥) satisfies [32, Conjecture 23]. This conjecture states that for an

n-element poset P, the number of labelings L € A(P) such that L,_3 ¢ L(P) has an upper bound
3(n—1).

Corollary 3.4.10. Let P be an n-element poset and € > 1. The number of labelings L € A(P))
such that L3 ¢ L(PY), that is, the total number of tangled and quasi-tangled labelings of P(0,

equals

3+l = (n+0-2)! <3(n+—-1),
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Proof. By proposition 3.4.9 with = 0, the number of tangled labelings of P(*) is

a =(m+e-1).

n+f—1

Take r = 1 in proposition 3.4.9, we obtain the number of quasi-tangled labelings of P(©), which is

given by
a®) = ((n+€— 1)? - (n+£—2)2) (n+-2)!
=Q2n+t-1)-1)(n+€-2)!
=2n+l-1D!—(n+t-2)
Summing these two numbers gives the desired result. O

Remark 3.4.11. Let P be an n-element poset. We are able to give a simple and unified proof of

some results given by Defant and Kravitz in [19] and by Hodges in [32].

* Take ¢ = I, the poset P(!) has one minimal element. By proposition 3.4.9 with r = 0, the

number of tangled labelings of P(!) is given by

afll)z(n+1—n)n!:n!.

This gives an alternative proof of [19, Corollary 3.7] (for a connected poset).

* Take £ = 2, the poset P\?) has one minimal element and this minimal element has exactly
one parent. By proposition 3.4.9 with r = 1, the number of quasi-tangled labelings of P(?) is
given by

aSLZ) _ ((n +1)2 - nZ) n!'=2n+ )n! =2(n+1)! —nl.

This gives a simpler proof of [32, Corollary 10].

3.5 Ordinal Sum of Antichains
In this section, we consider a family of posets consisting of the ordinal sum of antichains. Let

C = (c1,¢2,...,c,) be an ordered sequence of r positive integers. Throughout this section, we
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write Pc =T., &1, , &---® T, for the ordinal sum of antichains of C. We completely determine

the cumulative generating function of this family of posets. We also show various properties and a
poset structure of its cumulative generating function.

The cumulative generating function of the k-element antichain Ty is g7, (q) = k!(1 + ¢ + ¢* +
-+ ¢* 1. To find gr.(g), we start from the antichain 7, and let w = (c1!,...,c1!)7T be the
column vector consisting of the coefficients of 8T, (g). We next attach ¢, minimal elements to 7, ;

the cumulative generating function g7, er,, (g) is obtained by theorem 3.4.7. Recall that Y., (c2)

(Cz+i—1)!

(-1

multiplication Y., (c2)w gives the first ¢ coefficients of 81, 8T, (g) and the rest of coeflicients are

denotes the ¢; X ¢; diagonal matrix whose ith diagonal entry is given by . The matrix

given by (c1 +¢2)!. As a consequence, we can obtain gp,. by applying theorem 3.4.7 repeatedly in

this way. The explicit formula of gp_.(g) is summarized in the following proposition.

Proposition 3.5.1. Let P¢ be the ordinal sum of antichains of C, where C = (c1,¢2,...,¢y) is

cr+ter =1 p

an ordered sequence of r positive integers. Write gp.(q) = X 1,

sq° for the cumulative

generating function of Pc. Foreach O < s < ci+---+c,, let j € [r] be the unique integer such

that
J-1 J
Z cp <5< ch.
k=1 k=1
Then
1 (cp+5)!
by=(cr+cr+--+cj)! ]_[ e (3.18)
m=j+1

We now present the following symmetry property for the poset B, x = T, ® Ci+1, where Ciyq

is the chain of k + 1 elements and n, k € Z>(. This poset is sometimes called a broom.

n+k

Proposition 3.5.2. Let n,k € Zso. Write fp, (q) = X2y as(n, k)q* for the sorting generating

function of B x. Then

m+)N s+ D15 —(n+s = DK fors=0,1,..., k+1,
as(n, k) = (3.19)

0, fors=k+2,k+3,..., n+k.
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In particular, we have the symmetry property
ay(n, k) =ay(k,n), forO <n <k (3.20)

Proof. By proposition 3.5.1 withc; = ¢ = --- = cx41 = 1 and cg42 = n, the cumulative generating

function of 7, ® Cy. is given by g7,ec,,,(q) = ZZ‘;’(I)‘ bs(n, k)q®, where

(n+s)!

== (n+9)!(s + k1=,
S

by(n, k) = (s +1)!(s + 1)k

fors=0,1,...,k. We also have by(n, k) =(n+k+1) fors=k+1,k+2,...,n+k.
Then eq. (3.19) follows immediately from the fact that as(n, k) = by(n, k) — bs_1(n, k). The
symmetry property (eq. (3.20)) can be verified directly using eq. (3.19). This completes the proof

of proposition 3.5.2. O

We next study problems originally proposed by Defant and Kravitz!. Given an n-element poset
P, are the coeficients of the sorting generating function fp(g) and the cumulative generating func-
tion gp(qg) unimodal or log-concave? We prove that the coeflicients of the cumulative generating
function are log-concave for the ordinal sum of antichains and provide a counterexample to the
conjecture that the coefficients of the sorting generating function of a general poset are unimodal.

Recall that a sequence of real numbers (a;)., is called unimodal if there is an index j such that
ap<ay<ay<---<aj>ajy > -+ 2 a,. We say this sequence is log-concave ifal.2 > a;i_1041
fori =1,2,...,n— 1. Note that a positive sequence is log-concave implies that this sequence is
unimodal.

We show below that the coefficients of the cumulative generating function of P are log-concave.

Proposition 3.5.3. Let P¢ be the ordinal sum of antichains of C, where C = (c1,¢2,...,Cy) is

C]+"'+Cr—1 b

a sequence of r positive integers. Let gp.(q) = 2.1,

sq° be the cumulative generating

Cc1+...4+Cp—

1.
0 is log-concave.

function of Pc. Then the sequence (by)

'The problems are stated as Conjecture 5.2 and Problem 5.3 in their 2020 preprint, but not in the published version
[19].
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Proof. We will show that >1fors=1,2,. 1+ - -+c¢, —2 by direct computation using

by b
eq. (3.18). Forj =1,2,...,r, letI] ={s: X i <s< Zi:l cx}. The proof is based on the
following four cases of the index s. We present the calculation for the first two cases below; the

other two cases can be proved similarly and we leave them to the reader.

Casel: s—1,5,5+1 € I; for some j. In this case

2
!
% ((Cl +o A ) T (CWSS).)
= (cmts—D!(cpts+1)!
bs-1bs+1 ((Cl +. +C])') m=j+1 - (i—l)!(?ﬂ)sl

(s+1)(cpm+5)
s(cm+s+1)

m=j+1

r 2
1—[ SCpy+S“+c, + S8
2
pmjr1 SCm ST ES
since ¢, and s are positive integers and thus the denominator is always smaller than the numerator.

Case2: s—1,s € Zjand s+ 1 € Z;, for some j. In this case, s = {;:1 cy — 1, and

2
Cm !
b% ((Cl +...+c))! Hm 4l ( ;S) )

. . r m+s—1)! r 'm 1
Datbust (et e T 5] (Cer o ) Tl 225550

(et +ep)! .(cj+1+s)!(cj+1+s)!(s—1)!. ﬁ (s+1D(cm+5)
- (cr+...+cj)! (cjs1 +s—1)lsls! s(cm+s+1)

m=j+2

(et (cj+1+s)!-(cj+1+s) (s+l)(cm+s)
_(c1+...+c]~+1)! sles rl s(cm+s+1)

m=j+2

~ (s+ 1! (cj+1+s)!o(c_,-+1+s) l—[ (s+D(em+s)

(s+1+cjp)! sl-s 2 s(cm+s+l)

B (s+1)(cj+1+s) l_l (s+ 1D (cm+5) 51

B s(cjpp+s+1) s(cm+s+1)

by similar reasoning as in Case 1.

We omit the calculation of showing bsjim > 1 for the last two cases, since they can be proved
similarly.

Case3: s—1€Jjands,s+1 € 1;, for some j. In this case, s = {;:1 Ck.

Case 4: s—1¢€ I;, s € Ijyy and s+ 1 € I;;, for some j. In this case, cj;; = 1 and

_ o+l
§ = 2 Ck- O
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Remark 3.5.4. For the poset P = T, @ T, @ T, the sorting generating function is fp(q) = 8 +
64q +216¢% + 192¢> + 2404* and the cumulative generating function is gp(q) = 8 + 72g +288¢% +
4804g° +720g* + 7204°. One can see that the coefficients of fp(g) are not unimodal, which gives a
counterexample to [32, Conjecture 29] (see also Conjecture 5.2 in the 2020 preprint of [19]). One

can also check that the coefficients of gp(g) are log-concave.

We close this section with a new direction for studying the cumulative generating function of
the ordinal sum of antichains Pc. One can ask: how do the cumulative generating functions gp..(q)
and gp.., (¢) compare when C’ is a permutation of elements of C? Given an ordered sequence of
r distinct positive integers C = (cy,¢2,...,c,) and a permutation 7 in the symmetric group on
r elements S,, define 7(C) = (cq(1),Cr(2)--->Cx(r))- The collection of the coefficients of the
cumulative generating function of P, (c) for all ¥ € &, is defined to be

|C|-1
B(C) = {bn = (bo, b1, .- -, bic|-1) : 8Py (@) = Z(; biq' form € 6r},

where |C| = X/, ¢;. A natural partial order on B(C) is given by the following dominance relation.

Definition 3.5.5. For a pair of integer sequences b = (b, by,...,b,) and b’ = (b], bi,..., b)),

we say b’ dominates b, denoted by b < b’, if b; < b fori =0, 1,...,n.

If b and b’ denote the coefficients of the cumulative generating function of P and P’ respectively,
then the relation b <X b’ can be interpreted as saying that the labelings of P’ require fewer promotions

to be sorted compared to those of P. It is easy to check that < is a partial order on the set B(C).

Example 3.5.6. For C = (1,2,3), the cumulative generating functions P,) for 7 € S3 are

computed and their coefficients listed below:

b1z = (12, 144,360, 720, 720, 720), b3 = (12, 144, 288, 480, 720, 720),
ba1s = (12,96, 360, 720, 720, 720), bas1 = (12,96, 360, 480, 600, 720),
bs1a = (12,72,216,480, 720, 720), b = (12,72, 216,480, 600, 720).
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The Hasse diagram of (B(C), <) is shown in the left of fig. 3.11. Observe that the subgraph
consisting of all the black edges forms the Hasse diagram of the dual to the weak order on S5 (see
for instance [53, Exercises 3.183 and 3.185] for the definition of weak and strong order on &,,).
The red edge (bz12 < by13) shows a new cover relation which does not occur in the weak order on
S3.

Moreover, we draw the Hasse diagram of (B(C), <) where C = (1,2, 3,4) in the right picture
of fig. 3.11. Similarly, the subgraph consisting of black edges forms the Hasse diagram of the
dual to the weak order on ©4 while the red edges show new cover relations in our poset structure

compared to the weak order of S4. We formulate this observation more generally in the following

theorem.
bio3
bi32 b3
bsio bos;
b3oy

Figure 3.11 The Hasse diagram of (B(C), <) where C = (1,2,3) (left) and C = (1,2,3,4)
(right), which contains a subposet (shown as a subgraph consisting of all the black edges) that is
isomorphic to the weak order of S3 (left) and Sy (right). The new cover relations in our poset
structure compared to the weak order of &3 (left) and &4 (right) are drawn in red

Theorem 3.5.7. Given an ordered sequence of r distinct positive integers C = (c1,ca,...,cy). Let

ICl-1
B(C) = {bn = (bo, b1, ..., b|C\—l) : an(c)(q) = Z biqlforﬂ € 6}’},
i=0
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where |C| = 3.7_, ci. Then the poset (B(C), X) is isomorphic to a refinement of the poset (S,, <),

where < is the weak order on S,.
We first prove the following lemma which will be used to prove theorem 3.5.7.

Lemma 3.5.8. Given an ordered sequence of r distinct positive integers C = (cy,¢2,...,¢,). Let
n=(i,i+1) € S, be a transposition. Letb = (b, ...,b¢+. +c,—1) and by = (by, . . ., b/cl+...+cr—l)

be the coefficients of the cumulative generating functions gp.(q) and gp, ., (q), respectively. If

ci < Cit1, thenby <bfori=1,2,...,r - 1.

Proof. For convenience, we write 7(C) = (dy,d>, . ..,d,), where d; = ¢;4+1, di+1 = ¢; and dy = ¢,
fork #i,i+1. Forj=1,2,...,r,let1; = {s: Z,’; cp <s< Zi:] cryand 77 = {s: Z{(j d; <
s < Zf;:l dr}. Since c; = dy only differ for k = i and k = i + 1, proposition 3.5.1 implies that
by = b\ fors € I; where j #1,i+ 1.

Notice that 7; U ;;; = I/ U I, and I; C I/, so it remains to check b{/bs < 1 holds for the
following three cases: (1) s € 1;, 2) s € I’; \ Z;, and (3) s € I’;;1. This will imply that b, < b.
For the last case, we obtain the equality by = b/, by proposition 3.5.1 immediately. The calculation
for the first two cases is presented below.

Let x" = [T}, (x + k — 1) denote the rising factorial of x.

Case 1: s € 7;. We may write s =c1+...+c;—1 +t, where 0 < ¢ < ¢; — 1. Then for each such

b; (di+...+d)'TT, (dm+s)!

Ys _ m=i+1 s!
- r (cmts)!
by (cr+. ) Tmir =55

(et ot el (e +9)!
S (e1H. . Hcisi ) (civg +5)!
(et tep) ettt e +t)!
C(e1 .. Hci ) (Cr . HCing g +1)!

3 (Cl+...+cioi+ci+ 1)

= - <1,
(c1+...+ci1+cipp + 1)

because ¢; < ¢j41.
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Case2: s € 7';\ ;. Wemay write s =c1+...+c;+t, where 0 <t < ¢;y; — ¢; — 1. Then for

each such ¢,
r (dn1+s)!
b_/ B (d] +"'+di)!Hm:i+l T
b. - ) r (cm+s)!
$ (Cl oot Cl"'l)! l_[m:i+2 s!
_ (Cl +...+Ci1 + Ci+1)!(Ci + S)!
(c1+...+cip1)!s!
(ci1+...+cis1+ci)!(c1+...+ci+ci+1)!
(cr1+...+ci+ciz)l(c1+...+ci+1)!
(cr+...4cim1+ci+1+ 1)t 1
(cr+...+ci+ci+t+1)cm—ca-t
by the same reasoning in Case 1. This completes the proof of lemma 3.5.8. O

Proof of theorem 3.5.7. Without loss of generality, we assume the elements of C are written in the
increasing order, ¢; < ¢ < --- < ¢,. The permutations 7 € &, in this proof will be written in the
one-line notation 7 = p1p3 - - p,.

Define the map ¢ : (S,, <) — (B(C), X) by sending a permutation 7 = p1p> ... p, t0 brey(x),
where rev(m) = p,p,_1 ... p1 is the reverse of 7, and byey(r) is the sequence of the coefficients of
8Prev(myc) (@) Let o be the adjacent transposition that swapped the elements at positions i and i + 1.
Let 7 € &, be a permutation such that 7 < or in the weak order. One may write 7 = p1ps...p,
with p; < piy1,and o = py ... pi-1Pi+1PiPis2 - - - Dr-

We show thatif 7 < o in (S,, <), then () X ¢(on) in (B(C), <). Intuitively, rev(x)(C) =
{cp,s . scp yand rev(om)(C) = {cp,.---1sCpiasCpi> CpissCpii>---»Cpy }- Since p; < pi1 and
Cp; < Cp,,, (by the assumption that ¢;’s are increasing as i increases), by lemma 3.5.8, we obtain
brev(z) X Prev(on)-

Therefore, ¢ (1) = brev(r) = brev(or) = ¢(om). The poset (B(C), <) is thus isomorphic to a

refinement of (S,, <). O

We would like to point out that (B(C), <) is not a subposet of the strong order of S, in general.

Take C = (1,2,3,4) as an example (see the right picture of fig. 3.11 again); the cover relation
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b4123 = b3314, under the inverse of the map ¢ defined in the proof of theorem 3.5.7, does not relate

in the strong order of S4. One can also check that (B(C), <) is not graded in general.

3.6 Future Work

We present some future directions from this work. In this chapter, we propose the (n — 2)!
conjecture (conjecture 3.0.5), stating that the number of tangled x-labelings (the label of x fixed as
n — 1) of an n-element poset P is bounded by (n — 2)!. In section 3.2 and section 3.3, we prove
that inflated rooted forest posets and shoelace posets satisfy the (n —2)! conjecture. We also obtain
the exact enumeration of tangled labelings of the W-poset (a special case of the shoelace poset)
in theorem 3.3.7. One can define inflated shoelace posets in analogy with inflated rooted forest
posets. An interesting question would be to investigate whether inflated shoelace posets satisfy the
(n—2)! conjecture. Other general classes of posets that would be of interest to study include posets
related to Young tableaux.

In section 3.4, we explicitly determine the number of k-sorted labelings of the poset 75 @ P from
P (attach s minimal elements to P) via the matrix multiplication stated in theorem 3.4.5. However,
obtaining the number of k-sorted labelings of the poset P & T, from P (attach s maximal elements
to P) does not seem to have such a nice pattern. There may exist some other ways to express them.
We leave this direction to be pursued by the interested reader.

In section 3.5, we introduce the new poset structure (B(C), <) and show that it contains a
subposet which is isomorphic to the weak order of the symmetric group (theorem 3.5.7). It would

be an interesting follow-up to fully characterize our poset (B(C), <) as a poset on permutations.
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CHAPTER 4

TWINNING AND THE CHROMATIC SYMMETRIC FUNCTION
The chromatic symmetric function of a graph G = (V, E) is defined by Stanley [47] to be

X6 (x) = Z HXK(V),

K vevV

where the sum is over all proper colorings k : V — Z( of G by positive integers. The goal of this
chapter is to study the effect that a small change to the graph G has on X (x). Specifically, we
look at the change in X (x) when one twins (or clones) a vertex v of a graph G, that is, when one
adds a vertex v’ incident to v and all its neighbors, to produce a new graph G,. Precise definitions

of this operation and related terms appear in Section 4.1.

Question 4.0.1. For a given vertex v of a graph G, how are the polynomials X (x) and X¢(x)

related?

In the seminal paper [47], Stanley proved that the chromatic symmetric functions of paths and
cycles are e-positive, that is, their expansion in the basis of elementary symmetric functions has
nonnegative coefficients. As observed in [47], the result for paths is originally due to Carlitz,
Scoville, and Vaughan in a different context [10, p.242]. More generally, spurred by the following
conjecture of Stanley and Stembridge, much of the research on the chromatic symmetric function
has centered around the incomparability graph Inc(P) of a (3 + 1)-free poset P, defined as a poset
containing no induced subposet isomorphic to the disjoint union of a 3-chain and a 1-chain. We

note that Hikita did very recently prove the Conjecture in [31].
Conjecture 4.0.2 ([47, 49]). If P is a (3 + 1)-free poset, then Xinc(p)(X) is e-positive.

To twin a poset P at a vertex v, producing P,, is to add an element v’ such that v’ is incomparable
to w if and only if either w = v or w is incomparable to v. Note that if G = Inc(P), then
Inc(P,) = G,. This next simple lemma is the main motivation for considering the twinning

operation. Its proof is immediate from the fact thatif u < v, thenu < v’, and if v < w then v’ < w.
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Lemma 4.0.3. The twin of a (3 + 1)-free poset is (3 + 1)-free.

One can therefore make a weakened version of the Stanley—Stembridge conjecture, first appear-

ing in the work of Foley, Hoang, and Merkel [24].

Conjecture 4.0.4 ([24]). If P is (3+1)-free and Xyue(p) (X) is e-positive, then Xy (p,)(X) is e-positive

foranyv € P.

Remark 4.0.5. Li, Li, Wang, and Yang [33, Theorem 3.6] prove that the twinning operation on
graphs does not always preserve e-positivity. They give an example of a graph G [33, Theorem
4.1] that is not an incomparability graph of a (3 + 1)-free poset, but whose chromatic symmetric
function X (x) is e-positive, and show that for a certain vertex v of G, the chromatic symmetric
function for the twinned graph G, does not expand positively even in the Schur basis, and so it
cannot be e-positive. This suggests that there is something special about the twinning operation on

(3 + 1)-free posets.

In 2001, Gebhard and Sagan [27] introduced the stronger notion of (e)-positivity of chromatic
symmetric functions in noncommuting variables. This implies e-positivity for chains of complete
graphs [27, Corollary 7.7], and includes twins of paths as a special case. Later, Dahlberg and van
Willigenburg [14] gave a direct proof of e-positivity for lollipop graphs, which are a special case
of [27, Corollary 7.7], and which again include paths twinned at a leaf.

Throughout the chapter, we refer to a property of the chromatic symmetric function of the graph
G as being a property of the graph G. For instance, we use interchangeably the phrases “the
generating function of the chromatic symmetric function of a graph” and “the generating function
of a graph”. Similarly, we use “the chromatic symmetric function of the graph G is e-positive” and
“the graph G is e-positive” interchangeably.

This chapter studies the effect of twinning on the e-expansions of the chromatic symmetric
function of certain graphs. We specifically look at twins of path and cycle graphs, a few of which

are shown in Figure 4.2. A summary of our progress on Question 4.0.1 follows.
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Our first main contribution is a series of explicit e-positive formulas for the generating function

of the following families of twinned graphs:
1. The path twinned at one leaf (Proposition 4.2.9)
2. The path twinned at both leaves (Theorem 4.2.14)
3. The path twinned at an interior vertex (Theorem 4.2.24)
4. The cycle twinned at a vertex (Theorem 4.2.29)

The fourth family, examined in detail in Section 4.2.3, and culminating in Theorem 4.2.29, was not
known to be e-positive until now. The first three families appear in [27] and were shown to have
the stronger property of (e)-positivity of their chromatic symmetric functions with noncommuting
variables [27, Theorems 7.6 and 7.8]. The e-positivity of the first graph was later re-established
directly in [14]. The explicitly e-positive expressions for the generating functions that we give
in Proposition 4.2.9, Theorem 4.2.14 and Theorem 4.2.24 are special cases of K-chains and slightly
melting K-chains considered by Foster Tom in [58]. In Corollary 4.2.4 we provide a new e-positive
expression for the generating function of the path that isolates the terms containing e;. Our
derivations make crucial use of the triple deletion formula of Orellana and Scott [37].

For all but the third family, the expression we obtain for the generating function has the form

Z XG,7" = 7 Jo +he

=~ Ziza(i = Deid!

where f; and hg are some e-positive functions depending on the family and /¢ has finite degree.

The third family has 4 with infinite degree. Note that the denominator in the rational expression
above coincides with the denominator in the generating function for both the path and the cycle
(see Theorem 4.2.1). This allows us to easily obtain explicit formulas for the coefficients of the
elementary symmetric functions (see Corollary 4.2.10, Corollary 4.2.15, Corollary 4.2.30). We
state our formulas for the coefficients using a new statistic (1) associated with a partition A
(see Section 4.1.3). This statistic appears naturally when computing the e-coefficients of the path

and cycle, and appears to be of independent interest.
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The identities presented in Section 4.2.1, particularly in Lemma 4.2.3 and its proof, are the
starting point for our e-positivity results. They also seem interesting in their own right.

Our second main contribution is an e-positive recurrence relation for each of the families listed
above, as well as a graph appearing in the computation for the twinned cycle that we call the moose

graph, which has been shown to be e-positive as a special case of hat graphs [63, Theorem 3.9].

—_—

. The path twinned at one leaf (Proposition 4.3.2)

2. The path twinned at both leaves (Proposition 4.3.3)

W

. The path twinned at an interior vertex (Theorem 4.3.4)
4. The cycle twinned at a vertex (Theorem 4.3.6)

5. The moose graph (Proposition 4.3.7)

4.1 Preliminaries

In this section, we define the basic notions used throughout the chapter, as well as discuss
previous results. We assume a familiarity with symmetric functions as in [48, Chapter 7] or [35].

A graph G is a pair of sets (V, E) where V is the set of vertices and E is a set of 2-element
subsets of vertices, called edges. We denote edges by {u, v} or simply by uv. We assume that V
and E are both finite, and that the graph is simple (i.e., there are no loops and no multiple edges).
A leaf of a graph is a vertex contained within exactly one edge. An internal vertex is a vertex
contained within at least two edges. Two graphs that are important for this chapter are the path P,,
which has vertex setV = [n] ={1,...,n} and edge set E = {{i,i+ 1} | i € [n — 1]}, and the cycle
C,, which also has vertex set V = [n] and edge set E = {{i,i + 1} | i € [n— 1]} U {l,n}. We
illustrate them in Figure 4.1.

A proper coloring of a graph G = (V,E) is a function « : V — Z.¢ such that if uv € E,

then x(u) # k(v). Let x = (x1,x2,...) be an infinite set of commuting variables. The chromatic
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(a) Path P, (b) Cycle Cy,

Figure 4.1 The path and cycle graphs

symmetric function of a graph G = (V, E) is defined to be

X6 = Xg(x) = Z ka(v)7

Kk veV

where the sum is over all proper colorings « of G. This symmetric function was first introduced
by Stanley in [47] and has been studied by numerous authors since then. One central goal has
been to characterize graphs G for which Xg is e-positive, i.e., X has nonnegative coefficients in
the elementary symmetric function basis. We give an overview of the previous e-positivity results

in Section 4.1.2.

4.1.1 Graph Operations

We begin by defining the two operations on graphs that appear in this chapter.

Given an edge € of a graph G, the deletion of € in G is the graph, denoted by G — €, obtained by
removing the edge € from G. The following formulas of Orellana and Scott are used extensively in

our arguments and we refer to them as the triple deletion arguments.

Proposition 4.1.1 (Triple Deletion Formula [37, Theorem 3.1]). Let G be any graph. Suppose

edges €1, €3, €3 form a triangle in G. Then,
XG = XG—El + XG—EZ - XG—{El,Ez}'

Notice that Proposition 4.1.1 requires the graph to contain a triangle. However, one can use this
formula to derive other relations for graphs that do not necessarily contain a triangle. An example

of such a relation is the following.
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Corollary 4.1.2 ([37, Corollary 3.2]). Let €, = vv| € E, €y = vv, € E and suppose €3 =viv, ¢ E.

Then

XG = X(G—Sl)UE3 + XG—Ez - X(G—{El,éz})UEy
We now introduce the main operation studied in this chapter.

Definition 4.1.3. Given a graph G and a vertex v, the twin of G at v is the graph, denoted by G,
obtained by adding a new vertex v’ and connecting v’ to v and to all of its neighbors. We refer to
this operation as the twinning of a graph and to the resulting graph G, as the twinned graph. By

extension, G, ,, denotes the graph G twinned at the vertices v and w in succession.

A simple example is the complete graph G = K, on n vertices. For any vertex v, (K,), is the
complete graph K,,;1. We illustrate in Figure 4.2 the twinned path at a leaf and at an interior vertex,

and the twinned cycle.

’

v
—eo—o
W
v
v/
T\
u v w
(a) Twin paths Py, ,, (b) Cp,v

Figure 4.2 Twinning of the path and cycle graphs

Twinning a non-isolated vertex always produces a triangle, so the triple deletion argument is a

natural method to reduce the twinned graph back to the original one, as the following result shows.

Corollary 4.1.4. Let H be a graph on n vertices and let u be a vertex of H. Let H' be the graph
obtained by adding a new vertex v and the edge uv to H and let H” be the graph obtained by adding
a new vertex w and the edge vw to H'. Finally let H), be the graph H' twinned at vertex v, with v’
denoting the new vertex. Then

XH") = 2(XH~ - €2XH).
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Proof. This is clear by the triple deletion argument using the edges uv, uv’ of the triangle {u, v, v’}

as shown in Figure 4.3. Note also that Xp, = 2e. O
v w w
U u u I
V > S
H{, H” HuP,

Figure 4.3 The triple deletion argument used in Corollary 4.1.4

4.1.2 Known e-positivity Results

Stanley defined the chromatic symmetric function X of a graph G in 1995. Since then, many
families of graphs have been examined. We provide an extensive, but by no means exhaustive, list
of known e-positivity results as of May 2024 in Table 4.1. We do not define these classes of graphs,
but instead provide references containing their definitions as well as proofs of their e-positivity
classification. By convention, a family of graphs listed as “not e-positive” means that there is at
least one graph in that class that is not e-positive. The table is roughly sorted chronologically by

reference, and it is condensed so that some subclasses of other results are omitted.
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H Graph Positivity Reference H

Paths e-positive [47, Proposition 5.3]

Cycles e-positive [47, Proposition 5.4]
Complete graphs e-positive [49, Equation 3.1]
Co-triangle-free graphs e-positive [49, Theorem 4.3]
K,-chains e-positive [27, Corollary 7.7]
Diamond and path chains e-positive [27, Theorem 7.8]
(claw, P4)-free graphs e-positive [59, Theorem 1.4]

(claw, diamond)-free graphs

not e-positive

[30, Lemma 7]

(claw, co-claw)-free graphs

not e-positive

[30, Lemma 7]

(claw, K4)-free graphs

not e-positive

[30, Lemma 7]

(claw, 4K)-free graphs

not e-positive

[30, Lemma 7]

(claw, 2K5)-free graphs

not e-positive

[30, Lemma 7]

(claw, Cy)-free graphs

not e-positive

[30, Lemma 7]

(claw, paw)-free graphs e-positive [30, Theorem 3]
(claw, co-paw)-free graphs e-positive [30, Theorem 4]
Generalized bull graphs e-positive [12, Theorem 3.7]
Lollipops and lariats e-positive [14, Theorem 9]
Ps-free graphs e-positive [24, Theorem 5]

(claw, K3)-free graphs e-positive [24, Theorem 5]
(claw, co-P3)-free graphs e-positive [24, Theorem 5]
(co-claw)-free unit interval graphs e-positive [24, Theorem 18]
Generalized pyramid graphs e-positive [34, Theorem 7]
2K,-free unit interval graphs e-positive [34, Theorem 13]
Triangular ladders e-positive [13, Theorem 22]

Star graphs

not e-positive

[16, Example 11]

Saltire and augmented saltire graphs

not e-positive

[15, Lemmas 4.4, 4.9]

Triangular tower graphs

not e-positive

[15, Lemma 5.4]

Tadpole graphs e-positive [33, Theorem 3.1]
Line graphs of tadpole graphs e-positive [62, Corollary 3.3]
Cycle-chord graphs e-positive [61], [62, Corollary 4.6]
Kayak paddle graphs e-positive [2, Proposition 6.7]
Generalized nets not e-positive [25, Theorem 1]
Melting K, -chains e-positive [58, Corollary 4.18]

Table 4.1 Known e-positivity results and their references
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4.1.3 A New Statistic on Partitions

In this subsection, we introduce a new statistic on the set of partitions that will allow us to
describe e-coeflicients more compactly.

Recall that a partition A of n, written A + n, is a weakly decreasing sequence of positive
integers A4 = (A41,...,4¢) that sum to n, that is, }; 4; = n. We write £ = {(A) for the length
of the partition, that is, the number of entries in the sequence. A partition A of n can also be
written as 4 = (1"1,2™2 .. n"), where m; = m;(1) > 0 denotes the multiplicity of the part
i in A. The support of A, denoted supp(A), is the set of distinct parts appearing in A, that is,
supp(A) = {i € Zso : mi(A) > 1}.

Now we are ready to introduce the new statistic.

Definition 4.1.5. For a partition A, define £(A) to be the quantity

(j = hmt

D1 with  &(0) = 1. 4.1)

e(d) = £(Q)! ]_[

J€supp(d)

Moreover, for a partition A of n and a part a such m,(1) > 1, let A — a denote the partition of
n — a obtained by deleting one part equal to @ from A. By convention, if a is not a part of 4, we set

g(l-a)=0.

For example, €((n)) = n — 1 and £((2")) = 1 for any positive integer n. Additionally, €(1) =0
if A contains a 1. In Table 4.2, we include several examples of partitions A together with their

statistic £(A).

A QB3| @22 G ]3B2)|(®6)]| 4233|222

s [T 23] 1 4 4 [ 5] 6 4 1

1 TG EDNTG2TE) 62 ]G3 @4 ] @422 332 ] (222.2)
e[ 6| 8 12 6 7110 | 16 | 9 9 12 1

Table 4.2 Examples of £(1) for some partitions A

Remark 4.1.6. Note that in (4.1),

£(2)! _( ()
m;(D)! \mi(Q),...,mu(D))
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which is always a nonnegative integer. Thus, £(1) is also a nonnegative integer. In fact, £(1) =0

if and only if 1 is a partin 4, i.e., m;(2) > 1.
Next, we present other properties of £(A).

Lemma 4.1.7. Let A and u be partitions of n and m, respectively. Then, we have the following:

1. For j € supp(d), (] = De(d = ) = m; (D5
2. () = E:(j—ndﬂ—ﬂumd
Jé€supp(d)

fuuﬂ»* r] (mﬂﬂum
() Jj€supp(Aup) m; ()
n + m formed by listing the parts of A and u together in decreasing order.

3. e(Ve(u) =AU /,t)( ) where A U u is the partition of

Proof. 1. Note first that both sides are identically zero if 1 € supp(1). For j € supp(4) with

J # 1, this identity follows from the definition by noticing that

e()=(j-1) t(A) (j - l)mj(/l)—l 1_[ = l)ml(/l) (€)= 1)!

() Y (A= 1) [Ty (D)

2. This identity follows from the definition of £(1), using Z m;(A) = ().
Jjesupp(d)
3. This identity follows by expanding £(AU u), using m j(AUpu) = m;(A)+m;(p) and £(AUp) =
() + (). O

Remark 4.1.8. Intuitively, the formula for £(1) can be interpreted as the number of pairs (w, f)
of words w on the set {1, ...,£(1)} of type 4, i.e. with A; occurrences of the letter 7, together with
afunction f : {1,...,€(1)} — Zsatisfying 1 < f(j) <A; —1foreach j € {1,...,£(1)}. These
are exactly the codes of Stembridge [54] with no fixed points and can be used to prove Lemma 4.1.7
combinatorially. For example, the right-hand side of part (b) can be interpreted as the number of

ways of making a code of type A from a code whose type has length £(1) — 1.
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4.2 e-positivity via Generating Functions
For given family of graphs G = {G, },>0, one can show e-positivity of X, by showing that its
generating function

Xo(2) = ) X6, 2"

n>0
can be written in the form
P(z)
1-0(2)°

where P(z) and Q(z) are e-positive formal power series in z. For the path P, and the cycle C,,, it

Xg(z) = 4.2)

is known from Stanley’s original paper [47] that this can be done. (See also [10, p.242] for paths.)

Theorem 4.2.1 ([47, Propositions 5.3 and 5.4]).

2i>0 ez’
1 - Y1 (i — 1)eizi”

Yisai(i = 1)ei
X, = Xc 7" = = -
@ nZzz @t T 2is1(i = 1)e; 7!

Xp(2) := ZXann =

n>0

Note in particular that Xp, = 1.

In this section, we establish identities of the form (4.2) for several families of twinned graphs by
applying generating function techniques to the relations obtained from the triple deletion argument.

It is useful to convert the preceding result to a recurrence relation for the chromatic symmetric
function as follows. We will use this formulation several times in this chapter, notably in the proofs

of Lemma 4.2.23 and Proposition 4.2.25, as well as in Section 4.3 .
Proposition 4.2.2. We have the following recurrence relations:

1. Forn > 3,

n—1

Xp, =nes+ » (j = 1)e;Xp,
=2

n-2
=ne, + Z(n —i—1)e,—i Xp,,
i=1

with initial conditions Xp, = 1, Xp, = e; and Xp, = 2e.
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2. Forn > 4,

n-2

Xc, =n(n—1)e, + Z(j - 1e;Xc, ;s
=2

with initial conditions Xc, = 0, X¢, = 2e;, and Xc, = 6e3.

4.2.1 Symmetric Function Identities and Technical Lemmas

In this section, we examine more closely the relationship between the generating function E (z)
for the elementary symmetric functions, and the generating functions Xp(z) and X¢(z) for the
chromatic symmetric functions of the path and the cycle. We also present some formulas for
several families of coefficients appearing in the e-expansion of Xp(z) and Xc(z). We start by
introducing some definitions and notation to facilitate our study.

Let E(z) := Y50 €z’ be the generating function for the elementary symmetric functions and

define
D(z) =E(z) - zE'(2) = 1 — Z(i ~1ei7'.

i>2

Theorem 4.2.1 can then be rewritten as:

E(2)
D(z)

2
and Xc(z) = Z;E(Z()Z)

XP(Z) = (4-3)

It will be useful for our study to collect here the definitions of several e-positive series and their

truncations and tails. Considering k > 2 whenever it appears, we define

Esi(2)=) e,

i~k
K(2)=ieid Kai(2)= ) e,
i>2 i~k (4'4)
G()=1-D()=) (i-De,  Gax(x) = Y (i=Deid,
i>2 i~k
55 IS G0= 3 (i Ve =G ()=Gai (2

The next lemma collects some e-positivity results concerning the generating functions intro-

duced above.
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Lemma 4.2.3.
1. The following expressions are e-positive:
a) Z2E"(z) — zE'(2) + e12;
b) 272E"(z) — 3zE’(z) + 3e1z + 2e22%; and
c) zzE”(z) —3zE'(z2) +3E(z) + er72.
2. The following expressions can be written as rational functions with e-positive numerators:
a) Xp(z) — (1 +e12); and
b) (1+e12)Xc(z) —Xp(z) +1+e1z.
Proof.
1. The e-positivity results follow, respectively, from the identities:
a) Z2E"(2) = zE'(2) = —e1z+ Li»3i(i = 2)ei';
b) 272E"(z) — 3zE’(z) = —3e12 — 2e22> + ¥,;53(2i* — 5i)e;z'; and
¢) 22E”(z) —3zE'(2) +3E(2) =3 — €22 + Yo (i — 1) (i — 3)e;2'.
2. For the results concerning e-positive numerators, we have that:

a) By (4.3),

ZE'(z) + e12[z2E'(z) — E(2)]
D(z)

_ Yisnie +e12 Yiso(i — e

B D(z) '

Xp(z) —(1+ez) =

b) By the previous item,

2n _ ’
(1 +e12)Xe(2) = Xp(2) + 1+ 12 = S AITE (ZL(SE (2)] +e1zE(2)

_(+ez)Fi(z) +e1z(E(z) — 1 —e12)
- D(z) ’
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where Fi(z) = Y;»3i(i —2)e;7 and E(z) — 1 — ejz = Y,;»5 €,7’ are e-positive. O

Using Lemma 4.2.3, we get an e-positive expression for the generating function for paths that

isolates those terms containing e and that is different from the one in Theorem 4.2.1.

Corollary 4.2.4. We have

K(z) eZG(Z)
D(z) " ""D(2)

Xp(2) = +(1+e12).
We now analyze these generating functions to extract closed formulas for the coefficients in the
e-expansions. Recall the statistic on partitions £(A) introduced in Section 4.1.3.

in

1
We start with a result that shows the relation between the coefficients of G(z)* and D)
b4

their e-expansion and &(1).

Lemma 4.2.5. The coefficient of e 2V in G(2)* is £(1) and hence

% = > e(exd,
A

where the sum is over all partitions A.

Proof. This follows by manipulating the formal series directly:

k
G(Z)"=(Z(i—1)e,~z") = Z e/lzwrl(i—l)m"(/l): Z e(Dez. .

i>2 Al i>2 2
D)=k t()=k
We end this subsection by showing that several families of coefficients in the e-expansion of

Xp(z) and X¢(z) can be expressed compactly in terms of £(1). (See also [64].)

Proposition 4.2.6. Given a graph G, let ¢, be the coefficient of 2 e in Xg, thatis, Xg = Y, c .z,

Then, we have the following:

1. ForG =P, cy=¢e(1)+ Z e(l—a)= Z ag(d—a).

aesupp(d) aesupp(d)
In particular, if A = 1 U u for some partition u, then c) = Z (a—=1)e(u—a).

aesupp(u)
a>?2
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Moreover, we can also extract particular coefficients like

C(n) = N, C(n-1,1) =N —2, cory=2, and cprpy=1.

2. For G = C,, we have that

cy= Z a(a—-1)&e(d-a).

aesupp(Q)

Proof. We use the generating functions in (4.3).

1. The first expression comes directly from the path generating function Xp(z) and the second
expression also follows from Lemma 4.2.3. The equality of the two expressions and the case

when 4 = 1 U y follow using Lemma 4.1.7.

2. The formula for this coefficient comes directly from the cycle generating function X¢(z). O

4.2.2 Generating Functions for Twinned Paths
In this section, we focus on studying the various ways to twin a path. The following is a key

result.

1 -G« (2)

Lemma 4.2.7. For k > 2, the rational function D)
<

and the function Xp(z)(1 — G<;(2))

are e-positive.

Proof. For the rational function, we have that

1-Gak(d) _1-G@+Gain(@) _ |, Gzinn() 4.5)

D(z) 1-G(2) D(2)

. 1
This is e-positive since Gsi41(2) = Z (i — 1)e;z" and
i>k+1 D(Z)

of G(z). The e-positivity of the second function follows from (4.3) and the identity

expands e-positively in powers

Xp(2) (1 = G« (2)) = E(2) + Xp(2) Gk41(2)- m
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4.2.2.1 Paths Twinned at a Leaf

The recurrence for the chromatic symmetric function of twinned paths at a leaf (i.e., a vertex of
degree 1) appears in Dahlberg and van Willigenburg [14, Equation 5], where the graph P, , with v
a leaf is called the lariat graph L,,3. Its chromatic symmetric function had been considered earlier
by Wolfe in [64], and e-positivity was first established by Gebhard and Sagan in [27, Corollary
7.7].

Proposition 4.2.8. Let v be a leaf of the path P,. The generating function for the chromatic
symmetric function of the twin P, , of a path on n vertices satisfies the following identity:

2+42e12+ ) Xp,, " =2(1 - e22°)Xp(2).

n>1

Proof. By [14, Equation 5], the chromatic symmetric function of P, ,, with n > 1, is given by

Xp,  =2Xp. —Xp,Xp, . (4.6)

n,

The proof now follows by using the generating function Xp(z). O

Now we are ready to derive a generating function for paths twinned at a leaf. Although the
e-positivity was established in [27, Corollary 7.7] and again in [14], as mentioned earlier, our

contribution here is to give the manifestly e-positive generating function below for Xp , using

n,v?

only symmetric functions, which enables a more efficient coefficient extraction.

Proposition 4.2.9. Let Xp (z) be the generating function for the twinned path at a leaf, that is,
Xp, = o1 Xp,, 2" Then

G>3(2)
D(z)

G .
+elzG(z)%§)+egz2+ E ie;z +e12G>3(z2).
i>3

$Xp, () = K(2)
In particular Xp, , is e-positive, and the initial values are
Xp,, =2e2, Xp,, =2(3e3), Xp,,6 =2(4es+2e1e3), Xp, K =2(4eres+3ejeq+Ses).
An e-positive expression without denominators in terms of the path generating function Xp is

2K, () = Xe()Ga() + Y erdl

i>2
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Proof. By Lemma 4.2.7 and Corollary 4.2.4, we have that

2
%XPV(Z):(1—€2ZZ)XP—(1+€1Z) K(Z) D() +e1zG(z) D() = ey (1+e12)
- (K@ + 16 2 4 (K () +126() - a1 e
G>3(2)

= (K(2) +€12G(z)) +(K(2) - e22%) + 12(G(2) = e22”).

D(z)
Since K (z) — €27 = €27 + Y>3 0,7 and G(z) — e27> = Y,;53(i — 1)e;Z', the result follows.
The second expression is obtained from the first by rewriting the formula in Corollary 4.2.4 as

follows:
K(z) +e12G(2)
D(z)

Corollary 4.2.10. Let ¢, be the coefficient of e 2 in Xp,, that is Xp, = . cre2) where v is a

Xp(2) =

+(1+e12). O

leaf of the path P,,. The following is a list of closed formulas for all the coefficients c, involved in

the general expression of Xp,(z):
1. cqy =2k, k >3, and cp) = 2;
2. cp-11)=2(k=2), k> 4;
3. ck-22)=4(k—=3), k>5;
4. oy =20(j - D) +2j(i-1)=2Qij—i—j)i>j>=3;
5. cup=2i(i—1),i>3.
6. ci3pny =8and cizoryy =4, k > 2.

7. If ciuu # 0 and €(p) > 2, then 1 ¢ supp(u) and there exists a > 3 such that a € supp(u).
In particular cx 1y = 0. The coefficient of ey, is equal to twice the coefficient of e, in
G(2)Gx3(2) G(2)!W2, and it equals

2 ), (a=Db-De((u-a)-b).

(a.b)

a,besupp ()
a>2,b>3
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8. Assume 1 ¢ supp(A) and £(A) > 2. If ¢y # 0, then A contains at least one part of size at

least 3. In particular ¢k = 0. The coefficient c, is equal to twice the coefficient of e, in
K(2)G»3(z) G(2)!D72 and it equals
2 Z a(b - 1)e((1—a) - b).
(a.b)

a,besupp()
a>2,b>3

Note that cases (c)-(f) are particular cases of (g) and (h).

4.2.2.2 Paths Twinned at Both Leaves

In this section, we consider the twinned path P, ,, , at both leaves, which we label with w and
v. The e-positivity of its chromatic symmetric function is a consequence of [27, Corollary 7.7],
whose proof relies on the theory of symmetric functions in noncommutating variables. Here we
derive an e-positive generating function using only symmetric function identities.

Unlike the other families of graphs, here one needs to pay special attention to the smaller
values of n. We consider the special case of the path on two vertices first. Twinning both vertices
produces the twin of the cycle graph C; at one vertex, which is also the complete graph Ky, as

shown in Figure 4.4, and therefore we have the following.

Lemma 4.2.11. For the path P, twinned at both vertices, Xp, ,,, = Xc;, = 24e4.

1% % 1%
w’ u
P2,v P2,v,w C3,v

Figure 4.4 Demonstration that P, ,, = C3,

For the general case, we start with a consequence of the triple deletion argument.
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Corollary 4.2.12. Let v, w be the two leaves of the path P,, and let P, ,, be the path twinned at

both leaves. Then, for n > 3,

Xp, .. =2Xp,.., —2e2Xp, |, =4(Xp,, — 2e2Xp, + e3Xp, ,). (4.7)

n,v,w n+l,v

This relation allows us to give the following generating function identity.

Pl‘OpOSitiOIl 4.2.13. For the graph Pn,v,w , we have
—1 E Xp Zn+2 = (1 - 62Z2) —1 Xp + —1 (04 (4 8)
n>3 o 2 ' 2 ’ '

where @ = Ze%z4 - (Se4z4 +4dese 7t + 6es37> + 262z2).

Proof. Multiply both sides of the first equality in Corollary 4.2.12 by z"*? and sum for n > 3:

n+2 _ n+2 n+2
Z Xpyyw? =2 Z Xp,2 2 Z XP, 1,2

n>3 n>3 n>3
+1 2 +1
=2 Z Xpn’vzn —2es7 Z XPn’VZn
n>4 n>2

=2(1 - e2z2?)Xp, — 2(Xp3’vz4 + sz’vz3 + Xpl’vz2 - Zezszpl,vzz)

=2(1- ezzz)z\’pv —2[(8es + deze)z* + 6e37° + 227> — 2e%z4]
where the computations for Xp, , follow from Proposition 4.2.9. O
The next theorem follows from Corollary 4.2.12 and manipulation of the formal series.

1
Theorem 4.2.14. The generating function 1 Z Xp,, 2"*? has the following e-positive expansion:

W

n>3
1 G3(2)?
LS X, = (K(2) +e126(2) Z2E 4 12622
4 n>3 D(Z)
+|Gx3(2) Z ie,-zi +e1z Z(l - l)e,-zi + €2Z2 Z(l - 2)eizi + Z ieizi.
i>3 i>4 i3 i>5

An e-positive expression without denominators in terms of the path generating function Xp is

Xp(2)G25(2) + K5(2) + G23(2) ) iz +€12G2a(2) + €22 ) (i = 2)eid.

i>3 i>3
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Proof. We use the generating function in Proposition 4.2.9 to expand %(1 —e279)X Py, @S

G>3(2)

—(l—ezz )Xp, =(1 = €22°) (K(2) +2¢1G(2)) ———~ D)

+ (1 —e2z?) (62Z2 + Z ie;2' +2e1G>3(2) | .

i>3
1 —er7? G
By 4.5), D(ez)z =1+ Dzz(f)’ and we can rewrite the above expression as
z Z
1 G
: D(2)

€2z’ + Z ie;7 +z¢1G>3(2) | .

i>3

+(1 - 6222)

Next, we arrange the expression above so that the term ——a appears:

2
%(1 — e22%)Xp, = (K(2) +z¢1G(2)) oo la’ + Z ie;7' + elZZ(i ~ e

D(Z) 2 i>5 i>4
+(K(2) +261G(2)) G23(2) — €22 ) ieiz' — e22(2¢1)G23(2).
i>3
Thus, we have that
1 ) 1
42 Pra? 25(1—622 )Xp, + Sa
n>3
G»3(2)? . :
= (K(z) +ze1G(z2)) 12)3(Z) + Z ie;7' +e1z2 Z(l —1)e;7 4.9)
@ 3 =
+(K(2) +21G(2)) G23(2) — €22 ) ieiz' — 222 (ze1)Gx3(2),  (4.10)

i>3
where the terms in line (4.9) are e-positive. Thus, we only need to show that the terms in line (4.10)

are also e-positive. Note that

G>3(2) = 2€22°G33(2) + G>3(2) Z ie; 7.

i>3

K(Z)GZ3(Z) = (2€2Z2 + Z ie,‘Zi

i>3
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Together with the fact that G(z) — e2z> = G»3(z), line (4.10) can be written as

(K(2) +261G(2)) G23(2) — €22 ) ieiz’ - e22(2¢1)G23(2)

>3
= G>3(2) Z iei7 +exz? ZZ(i — ez - Z ie;7' | +€12(G(2) — €22°)G»3(2)
>3 >3 >3
= G23(2) Z ie;7 +er7? Z(i —)eir +e12G3(2)% (4.11)

i>3 i>3

Since the expression in (4.11) is also e-positive, the result follows.

The second expression involving Xp follows as in the proof of Proposition 4.2.9. O
In particular, we can extract the following formulas for the coefficients.

Corollary 4.2.15. Let c, be the coefficient of e 2V in Xp. , that is, Xp,, =2 c ez, We have

v,w?

the following list of closed formulas:

1. Fork >3, c(x42) = 4(k +2), c(kp) = 4(k = 2), and c(j41,1) = 4k.
2. Fori>3,ciy=4(—1Di,andfori,j>3,i# j ci;=4—-1Di+4(i-1)j.

3. Fori,j >3,1# ], ciin =40~ 1)?, cijy =80-1)(-1),1i,j=3,i# j, and zero

otherwise.
4. If ciuy # 0, then 1 ¢ supp(u).
5. Forall k > 0, 0(32,2k+1) =32 and C(32’2k+171) = 16.

4.2.2.3 Paths Twinned at an Interior Vertex

In this section, we establish an e-positive generating function for the path P, , twinned at an
interior vertex ¢, where we label the vertices of P, by 1, 2,...,n from left to right. As stated in
the introduction, the e-positivity can also be deduced from [27, Theorem 7.8].

As in the preceding section, we first derive a triple deletion formula for the chromatic symmetric
function of P, , (Proposition 4.2.19), and then deduce an e-positive generating function for its

chromatic symmetric function (Theorem 4.2.24). We begin with some definitions.
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Definition 4.2.16. Forn >2and 1 <{ <n -1, let Tn,g (T for triangle) denote the graph obtained
from the path graph P, by adding a vertex adjacent to both £ and € + 1. Forn > 1 and 1 < ¢ < n,

let F,, ¢ (F for flagpole) denote the graph obtained from P, by adding a vertex adjacent to £.
By the triple deletion argument illustrated in Figure 4.5, we have the following result.

Lemma 4.2.17. Forn >3 and?2 <€ <n-—1, we have

XPM = 2XTn,f—1 - XT(,&AXPH—K'

f/
Pnf €1
o .. Ag .
1 -1 t +1 n
g’
Th-1
R < I . -
1 -1 t (+1 n
f’
Tre 1 U P,y
o o I o .
1 -1 t +1 n

Figure 4.5 The triple deletion argument applied as in Lemma 4.2.17

By carefully applying the triple deletion argument to various P, ¢, we can deal with the triangles
T;,,g by “shifting” them around. Note that 7~",1,g has a triangle, and so the triple deletion argument
applies to two different sets of edges, to which we refer as left and right shifts. We illustrate them

on the left-hand side and right-hand side of Figure 4.6, respectively.
Lemma 4.2.18 (Left and Right Shift Lemma). Forn >3 and2 < { < n — 1, we have

Xf,,,f = XF o + XPy — Xpp Xp, XTM = XF,en + Xp,. — Xp, Xp

n—{+1
Left shift Right shift

Our next step is to use Lemma 4.2.18 to obtain a formula equivalent to that in Lemma 4.2.17

which does not involve twinning paths.
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~ (€+1y ~ c+1)y
The €3 € Y €] €
R .g/Il o . .g/I

1 ¢+ n 1 ¢ +1
(C+1) (L+1)
Fur Foea
o o : . o . I
1 r 0+1 n 1 r 0+1
(+1) (L+1)
P}’H—l Pl’l+1
R o I . o o I
1 C +1 n 1 £ C+1
+1y &+1y
Peyr U Py / Pe U Ppgy
R - . o .
1 {0+ n 1 0 +1

Figure 4.6 Illustration of Lemma 4.2.18

Proposition 4.2.19. Forn >3 and?2 < { < n— 1, we have

Xpn,(, = _ZXP5_1XP,1_(>+2 + 261Xpn +4Xp - 2XP[XP

n+l

Proof. Applying the Left and Right Shift Lemmas at £ — k — 1 implies that

XFn,H = XFn,K—k—l + XP[?—k—IXPn—€+k+2 - XPK—kXPn—€+k+1'

By applying (4.12) repeatedly, we get that

S
8]

XFn,f = XFn,I + (pr—k—IXPn—€+k+2 - XPf—kXPn—{+k+1) .

=~
I
(e}

Since F, 1 is precisely P,41, we can telescope the sum in (4.13) to obtain

XFn,[ =Xp +Xp]Xpn —Xp(,XP

n+l n—{+1"*

Recall the formula in Lemma 4.2.17:

Xp,, =2Xz —Xz Xp, .

Th,e-1 Ty,e-1

nots1 T 2e2XP[—1XPn—t’ - 2XP[+1XPn—{,"

(4.12)

(4.13)

(4.14)

We apply the Left Shift Lemma to X7 . and the Right Shift Lemma to Xz, , ,»and obtain

XPn,(’ =2 (XFn,(’—I + XPn+l - XP[XPn—(’H) - (XF[,Z + XP(’+1 - XP5-1XP2) XPn—l"
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Since Fy ¢ is Pry1, we can rewrite the last equation as:

XPn,r =2 (XFn,f—l + XPn+l - XP{’XPn—KH) - (2XP€+| - Xszflez) XPn—é’

= 2XF,,’(,1 + [2Xp - 2XP€XP +Xp[/,71XP2Xpn7€ - 2XP€+1XP’17€] .

n+l n—-0+1

Substituting in (4.14) for Xf, ,_,, we have:

Xp,. =2 (Xp,., + Xp, Xp, = Xp,_ Xp, )

n+l

+ [ZXP - 2Xp€Xp + XPg,1XP2XP,,,g - 2Xp[+1Xpn7€] .

n+l n—{+1

Finally, the formula in the statement follows by collecting all the terms and evaluating Xp, = e

and Xp, = 2e>. O

Now we investigate the generating function of Xp, ,. For this, we introduce two families of

polynomials in the variable z with coefficients in the ring of symmetric functions.

Definition 4.2.20. 1. For ¢ > 2, we define the following polynomial of degree £ + 1 in z:

Je(z) =2+e1z— XP5_1Z€_1(1 - 82Z2) - XPezf - XP{+1Z€+1'

2. For ¢ > 2, we define the following polynomial of degree £ + 1 :

l =2
g(2) === ) Xp,2l = (1+e12) ) Xp,7/=(Xp,,, = e2Xp, )"
=0 =0

The following result gives an identity for the generating function for the chromatic symmetric
function of the twinned path in terms of the generating function for the chromatic symmetric

function of the path and the new families of polynomials introduced.

Proposition 4.2.21. Let 2 < { < n — 1. The generating function for the chromatic symmetric
function of the twinned path P, ¢, twinned at vertex {, can be written in terms of the path generating

function Xp as follows:

Z Xp, 2" =2Xp(2) f1(2) +280(2). (4.15)

n>0+1
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Proof. We reorder the terms appearing in the recurrence in Proposition 4.2.19 to make the source

of the factor fy(z) accompanying Xp more transparent:

Xpn,g :4Xp +2€1Xpn _ZXP{e_l(XP - €2Xpn_[) —2XP[XP _ZXP[HXP,L_(»- (416)

n+l n—{+2 n—{+1

Multiplying by z"*! and summing over n > £ + 1 gives

Z XPn,f ZI’l+1

n>0+1

= 2[2 +e17— Xp(,_,zf_l(l —e7%) - Xp[zf - z“lXle]Xp

4 -1
—4 Z Xp,z/ - 2ze Z Xp,z/ +2277 (1 + ze1) Xp,_, +2Xp, 2 =2(Xp,,, — e2Xp,_)2".
j=0 j=0

Here we have made the substitutions Z?:O ijzj = 1+e12+2er72, ]1~=o ijzj =1+e;z and
Xp, = 1.
The expression for fy(z) follows immediately from the first line above.

Now rewrite the second line as

=2 (=2
4Xp, 7t —4Xp, 271 -4 Xp z/ —27feX 2 Xp 7/
- P, 2 — Pr_1 2 - P;30 — el €1Ap, | — 2Z€] P;Z
j=0 Jj=0

+2Xp, 271 +2e1Xp, ' +2Xp, 2" -2(Xp,,, — e2Xp, )2,
which in turn yields the expression for g;(z) in Definition 4.2.20. i
Although f7(z) is not e-positive, we can conclude the following.
Corollary 4.2.22. The e-positivity of Xp, , is equivalent to the e-positivity of Xp(z) fe(z).

Proof. The degree of g;(z) as a polynomial in z is £+ 1, while the left-hand side of (4.15) has lowest
degree £ + 2 in z. We conclude that all terms in g/(z) are necessarily canceled out by identical

terms in Xp(z) f7(z). O

Our next result rewrites fz(z) as a positive expansion of other functions that were introduced

in (4.4).
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Lemma 4.2.23. For € > 2, we have

+1 =2

fe(z) = Z(i ~2)e;7 +2(D + Gxpi2) + Z(D +Gsp2-) Xp, 2. 4.17)
i3 i=1

Proof. By Definition 4.2.20,
fi(z) =2+e1z+ Xp, €22 = Xp, 27" = Xp, 2" = Xp,, 2

For ¢ = 2, recall that Xp, = eze1 + 3e3, and Xp, = e and Xp, = 2e>. Then we have

frlz)=2- 2e2z2 — 3e3z3 =2(1- ezzz — 2€3Z3) + 63Z3
=2(1 - G(2) + G24(2)) + €32° = 2(D(2) + G34(2)) + e32°.

Let ¢, denote the right-hand side of (4.17). We show that ¢, and f; satisfy the same recurrence

relation. It is straightforward to see that for £ > 2,
42 42 t+1 -1
fre1 — fo = Xp,e22" = Xp,, 2 — Xp, €22 + Xp, 2. (4.18)

Next we look at ¢/.1 — . Observe from (4.4) that Gsy41 — Gy = —(m — 1)e,, 2. We therefore

have
+2 . -1 .
gen = (i = 2eid +2(D +Gza3) + Y (D +Graz)Xp,2
i=3 i=1
+1 . ) .
pr=) (i-2)eid +2(D +Gzpa) + ) (D +Grar i) Xp,2'
i=3 i=1

and hence we obtain, for £ > 2,
(=2
Qe — o = Lepz™ = 2(0+ 1)epsnz™ - Z(f +1—i)epai2™ 7 Xp,2 + (D +Gza)Xp, 2.
i=1
The path recurrence relation in Proposition 4.2.21 tells us that
=2
XP5+2 = (f + 2)6[.,.2 + Z(f+ 1- j)eg+2_jij + 2€3Xp€71 + erp[.
j=1

Together with D + G4 =1 -G3=1— €272 — 2e37°, this gives

1

1252+ (1 — ex7? - 2egz3)Xp[_]zf_ .

Qe+l — P = (_XP[+2 + 263XP[_1 + eZXP[
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The terms containing e3Xp, , cancel, and the remaining expression coincides with the one for
fe+1 — frin (4.18). Hence ¢, and f; satisfy the same recurrence relation. Since their initial values

also coincide, the claim follows. O

The preceding efforts culminate in the following e-positivity result, as announced at the start of

this section.

Theorem 4.2.24. For { > 2, we have the e-positive expansion

41 -2
Xpfr=Xp Z(l 2)eiz' +2(E + XpGspio) + Z(E +XpGp2-1) Xp, 7' 4.19)
=3 i=1

Hence the generating function )¢, X lonfzn+1 is e-positive.

Proof. The expression for f; in Lemma 4.2.23 immediately allows us to conclude (4.19), using the
factthat Xp(z)D(z) = E(z). Itthen suffices to observe that the generating function 3,5 ,,; Xp, 21

is comprised precisely of all the terms of degree > ¢ + 2 in the e-positive rational expression

2F
2 = 2
041 | ) |
2E Z(f —2)eiz' +Gxpa + Z Gxe42-iXp, 7 -
i=3 i=0 :
= ' , +2(1+E) ) Xp7'. m|
1 =2z = Ve ;

From Theorem 4.2.24 and a tedious computation of Xpf, + g¢, we obtain the following
cancellation-free e-positive expression for % 2inser1 Xp, , 2", (Note that the sum is zero if the

range of summation is empty.)

Proposition 4.2.25. Forintegersn > 3and?2 < € < n—1, the twin P, ¢ of the path P, at the degree

2 vertex { is e-positive. In particular, we have

1 -2 . 14 . i-4
B Z XPn,onH :€€€+IZ[+1 ZXPiZl +Z(l - 1)e;z’ ZXPt 2 ng o + Espi
n>0+1 i=1 i=3 j=
{+1
+Esri ZXP 7+ Z Xp.7' Z(l — 2)elzl)
i>{—-1

+2XpG s + Xp Z Gxr42-iXp,Z'
i=1
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4.2.3 Generating Function for Twinned Cycles

In this section, we establish a new result, the e-positivity of the chromatic symmetric function
of the twinned cycle. Again, our goal of obtaining an e-positive generating function for the twinned
cycle will begin with a formula for the chromatic symmetric function of the twinned cycle, which
is derived using the triple deletion formula.

We start by introducing two more families of graphs. Consider the twinned cycle graph C, ,
where v’ is the twinned vertex of v and u and w are the adjacent vertices to v and v'. Let D, be
the graph obtained from C,,, by removing the edge uv and let Tad,.; be the graph obtained from

Cp, by removing the edges uv and vv’. We illustrate these two definitions in Figure 4.7.

(@) G,y (b) D1 (¢) Tad41
Figure 4.7 C,,.y, Dp+1, and Tad,,41

Lemma 4.2.26. Forn > 3:

Xc, = 4-ch+1 + 261ch - 6XPn+l + 262Xpn_].

n,v

Proof. Consider n > 3. By the triple deletion argument applied to €; = uv and €, = uv’, we get
that

XCn,v = 2XD - Xp = 2XD - 2Xp + XP2XPn7] . (420)

n+l n,v n+l n+l

In D41, applying the triple deletion argument to €; = vw and e, = vv’ gives

XD = 2XTadn+| — €1XCn, (4.21)

n+l

while applying the triple deletion argument to €; = vw and €, = v'w gives

XD, = XTad, + Xc, — Xp

n+l n+l*
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Subtracting both expressions for Xp, ., we obtain that

XTad,,, = Xc,,, +€1Xc, — Xp

n+l n+l?

and therefore

Xp,., =2Xc,,, +e1Xc, —2Xp,,,. (4.22)
Finally, putting together (4.20) and (4.22), we have
Xc,., =4Xc,,, +2e1Xc, - 6Xp,. +2e2Xp, |,
as claimed. O

Let Xc, be the generating function for the twinned cycle, that is, X¢,(z) = X3 Xc,, 7

By Lemma 4.2.26 we have the following expression for Xc,.

Corollary 4.2.27. The generating function of the twinned cycle can be written as
Xc,(z2) =22+ e12)Xc —2(3 - e222)Xp +6(1 + 12) + 222> — 6e32°.

Proof. The generating function follows by multiplying the formula in Lemma 4.2.26 by z"*! and
summing over all n > 3. In particular, taking into account the initial terms that do not appear and
using the initial values X¢, = 0, Xp, = ey, X¢, = 2e2 = Xp,, Xc, = 6e3, and Xp, = eze; + 3e3, we

get the following expressions in terms of the generating functions for the cycle and the path:

1. 43,55 Xc,,, 2™ = 4(Xc - 22 Xc, - 22 Xcy),
2. 2(e12) Yps3 X, 2" = 2e12(Xc - 22 Xc,),
3. 6,53 Xp,., 7" =6(Xp — 1 - zXp, — 2> Xp, — 2°Xp,), and

4. 2e22% Y53 Xp, 2" = 2e22%(Xp — 1 - 2Xp)).

Putting all this together gives the generating function as stated. O
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Consider the following e-positive generating functions that appear in the proof of Lemma 4.2.3:

Fy = Z(Ziz ~50)e; and  Fy= Z[(z’ ~1)(i - 3)]e;Z

i>3 i>4

Our goal is to show that the expression given in Corollary 4.2.27 is indeed e-positive.

Lemma 4.2.28. The twinned cycle generating function, scaled by %, can be written as

%Xcv = ﬁ[Fz +e1zF3 + ezzz(E —1-e12)] - le)z(zzz) + ezz2 - 3e3z3.
Proof. By Corollary 4.2.27,
%XCV = (2+e12)Xc —3(Xp — 1 —e12) + €22 (Xp + 1) — 3e3z’. (4.23)
From the proof of Lemma 4.2.3, we have the following
Xp— (1+e17) = z(1+ e1z)Pj)’(é)) —eazE(@) Xe = ZZDE;()Z)
and by definition Xp(z) = 2E ()Z) Substituting these into (4.23), we get
%X Dt )[(2+ e12)7°E"(2) = 3(zE'(2) + €1 E'(2) — €12E(2)) + €22°E(2)] + €22” — 3e32°
D( ) ——[(RZ2E” = 3zE") + e12(z*E” = 3e1zE’ + 3E) + 22°E(2)] + e22> — 3e32°
Dzz) [Fr —3e1z — 2e22° + e12(F3 — €22 +3) + €222 E(2)] + €22> — 3e32°,

where the final equality comes from Lemma 4.2.3. The statement then follows after further algebraic

manipulations. O

Theorem 4.2.29. The generating function for %ch,v has the following e-positive rational expres-

sion:

e+ Fr Y s(i—1)eiz +e 212 —6i +2e
ZXC”Z Z(Ziz—Si)eiz’+ 1273 22’23( Jeiz' + ez’ Xins(2i i+2) ,z
n>3 iz4 — Yis2(i = De;z!

Proof. LetEsy :=E —1—e1z= 3,5, e;z". Then by Lemma 4.2.28, we have

1 1 ez’ 2
X, :—(F +e1zF3 + ey7°E )— +e072 —3e3z’
SXe. D) 2+eizf3+ez’Exy D) 2 3
e1zl3 1 6222E>2 6222 )
= F) —3e3z° + + || — 1]+ g +er7”|. 4.24
2779 T D) 2(D(z) ) D(z) D(z) * (4.24)
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The first two terms in (4.24) can be written as:

F>—3e37’ = Z(zﬂ ~5i)e7. (4.25)
>4

For the generating function in the brackets of (4.24), we have

2 2

e27°Esy  erz 2
Fl— -1+ — +er7
2(D(Z) ) D(z) DGk

=F ) GX+erl?Esr ) GF—ert? ) GF

k>1 k>0 k>1
=F Z G* + ezzzEzz Z G* 1 - ezz2 Z G*
k=1 k=1 k=1
= 3 G (GFy — e22X(G - E2))
k>1
= Z G*1 GF, — e2z2F2 + e2z2F2 - 62Z2 Z(i - 2)e,~zi)
k=1 i>3
- Z G F,Gss + e22? Z(zi2 — 6 + 2)e,-zi)
k=1 i23
_ FGx+ €27 Y53 (2i% — 6i +2)e;7

D) , (4.26)

where the penultimate equality follows from the definitions of G >3 and F,. Combining (4.24), (4.25),

and (4.26), we obtain the desired expression. O

From the generating function in Theorem 4.2.29, we can readily extract the e-coefficients of

Xc,.,-

Corollary 4.2.30. Let A be a partition of k > 3, A = (1"™,2™2 ... k"), and let c, be the

coefficient of ez in %XCV. We have the following list of expressions for the coefficients:
1. ¢y =k(2k =5).
2. If my > 1, then c, = 0.
3. Ifmy=1and A =pu U1 (sothat mi(u) =0), then

cx= ), (i=D=3)e(u-1).
i>4
iesupp(u)
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Note that this is 0 unless A has a part of size at least 4.

4. If my =my =0, then

cy= Z (2a® — 5a)e(A - a).
aesupp(A)

5. If my =0and my = €(Q), then c; = 0.

6. Ifmi =0and 1 < my < €(Q), then

cQ= Z e(l—a—-b)(2a*-5a)(b—-1) + Z e(d—c—2)(2¢% - 6¢ +2)
a,b>3 c>3
(a,b)esupp() cesupp(A)

where (a, b) € supp(A) means both a and b are in supp(Q) ifa # b, and m, > 2 ifa = b.

4.3 e-positivity via Recurrences

In this section, we reprove several e-positivity results for certain classes of graphs by exhibiting
an e-positive recurrence relation. The recurrence relations for paths and cycles from Proposi-
tion 4.2.2 serve as the model for those of this section, and in fact will play a key role in our
derivations. We will also need explicit expressions for some coefficients, which are readily ex-

tracted from Proposition 4.2.2. These are recorded in the next result.

Corollary 4.3.1. Givena graph G, let [e ] X denote the coefficient of e, in the chromatic symmetric

function of G, Xg.
e Forn>2, [e,)Xp, =n, [ep—1€1]1Xp, =n—2, and [e,] Xc, = n(n —1).
e forn =5, [ep—2e2]1Xp, =3n -8 and [e,—2e2]Xc, = n(n - 3).
e Fork >2andr > 1, [(ex)" )1 Xp,, = k(k —1)""" and ek ] Xc,, = k(k—1)".
) [e%]XC4 =2.

The rest of this section follows the structure of Section 4.2.
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4.3.1 Recurrences for Twinned Paths
In this section we derive recurrence formulas for the chromatic symmetric function for a path

twinned at one or both leaves or at an internal vertex.

4.3.1.1 Paths Twinned at a Leaf

In the next proposition, we give formulas for the chromatic symmetric function Xp, , of the path
twinned at a leaf, one in terms of the path chromatic symmetric function, and the other a recurrence

in the spirit of Proposition 4.2.2. The recurrence given below makes the e-positivity transparent.

Proposition 4.3.2. Let v be a leaf of the path P,,. Then, for n > 4,

n
Xp,, =2(n+ Dent +2 ) (= DejXp,.,_,.
j=3

Thus Xp, , is e-positive. Moreover, for n > 4, Xp, = satisfies the e-positive recurrence

n,v

n-2

Xp,, = Z(] - 1)€jXpn7j’V +2(n+1)eu1 +2(n—1)eye; +2(n—3)e, 102,
=

with initial values Xp, , = 2e3, Xp, , = 6e3, and Xp, , = 8e4 + 4eze;.

Proof. The first expression follows from Proposition 4.2.21 and Proposition 4.2.8, noting that
n
Xp,, =2Xp,., — Xp,Xp, | = 2(n+ 1)ep +2 Z( j=Ve;Xp,,, , —2e:Xp, |
j=2

n
=2(n+ Dew1 +2 ) (j = 1)e;Xp,., , +2e2Xp, , = 2e2Xp, .
=3

For the second recurrence, we apply the triple deletion argument to P, , followed by Proposi-
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tion 4.2.21 to both terms. Thus,

XPn,v = 2)(Pn+l - XPZXPn—I = 2)(Pn+l - 282XPn—I
n n-2
=2(n+ Dens + 22(] ~1)e;Xp,,,_, —2e2 |(n—1eny + Z(j ~1)e;Xp,
=2 =2
n-2
=2(n+ Depst —2(n— De,_ren + 22(]' ~1e; [2Xp,,,_, —2e2Xp, ]
=2
+ 2(1’! - 2)€n_1Xp2 + 2(71 - 1)enXP1
n-2
=2(n+1)e,y + ZZ(]' - 1)€jXPn7j’V +2(n—1)e e +2(n—3)e,_1e7,
=2

where the final step follows by the triple deletion argument applied to P,,_; . As thisis an e-positive
recursion with e-positive initial conditions, by induction it follows that Xp, , is e-positive for all

n. O

4.3.1.2 Paths Twinned at Both Leaves

Our new contribution is the e-positive recurrence below.

Proposition 4.3.3. For n > 6, the chromatic symmetric function Xp_ . for the path P, twinned at

n,v,w
both leaves v, w satisfies the recurrence

ly BE
4 Pn,v,w_4.
J

gl

(] - l)erPn—j,v,w

Il
w

+(n+2ep2+neyier +3(n—2e1e3+2(n—3)e,neze; +4(n—3)e,neq

1
+e ZXP,,,Z,V,W —2e,— (n—4)ep2er— (n—2)ep1e1|,

with the initial conditions

Xp,\.w = 24e4, Xp,,, =24e3 +8eser + 16ese) +24es,

Xps,,, =4ezer + 12e4e1 +20es, Xps,,, = l6ezeze; +68eqe3 + 12ese7 +20ee + 28e7.

Moreover, despite the negative terms, the expression is e-positive.
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Proof. By the triple deletion argument, we have that

XPn,v,w = 2)(Pn+l,v - 262)(1')r1—1,\»'

Applying the triple deletion argument again to both twinned terms, we have that Xp,,,  =2Xp, , —

2e2Xp, and Xp =2Xp, —2e2Xp, ,. Thus, forn > 3,

n—1,v

1
-Xp

2 XPu +e3Xp, , — 2e2Xp,. (4.27)

n+2
Now we prove the recurrence relation by strong induction on n. The initial conditions are
checked directly. For n > 6, using repeatedly (4.27) and Proposition 4.2.21, we write

1

1 XPuv = XPoy = 2€2Xp, + e3Xp,
n+l n-3
=(n+2)en + Z(] - l)erpmH. +(n— 2)en_2e§ + e% (Jj- l)erpnfzfj
j=2 j=2
n—1
—2ne,es —2es Z(j - 1)erpn7j
=2

ST

n-3
Z(.] - l)erPn—j,v,w
j=2

+(n+2)epa +neyie) +3(n—2)e,—1e3+2(n—3)e,neze; +4(n—3)e,neq

—2e,e2 — (n - 4)en_2e§ —(n-2)e,_1e2e].

To rearrange this into the announced form, we peel off the j = 2 term from the sum and group it

with the negative terms:

1

n-3
1 :
ZXPn,v,w - Z 123(] - l)erPnfj,v,W

+(n+2)epr +neyie;+3(n—2)e,—1e3+2(n—3)e,neze) +4(n—3)e,neq

1
+ 62 ZXPn—Lv,w

—2e,— (n—4)ey, 263 — (n— 2)€n-1€1] -

Next we prove that the term within brackets

[lXp —2e,—(n—4%4)e,0er — (n— 2)en_1el] (4.28)

4 n-2,v,w
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is e-positive. This follows by comparing the coefficients of the e-functions involved. Con-

sider (4.27) applied to %X P and use the coeflicients described in Corollary 4.3.1. We obtain

n-2,v,w?

the following formulas for the coefficients:
1 - 1 —n- 1 =n-
n-2,v,w n-2,v,w n-2,v,w
[en]4XP n, [en—lel]4XP 2 n 2’ and [en—262]4XP 2 n—4.

In particular, notice that the coefficients of e, and e,_;e; are zero and that the coefficient of ¢, e;
is n — 2, which is positive for n > 6. Thus, the negative terms appearing in (4.28) are absorbed by

terms in }tX P and (4.28) is e-positive.

n-2,v,w?

Finally, as this is an e-positive recurrence with e-positive initial conditions, by induction it

follows that Xp is e-positive for all n. O

n,v,w

4.3.1.3 Paths Twinned at an Interior Vertex

Next we provide an e-positive recurrence relation for path graphs twinned at an interior vertex.

Theorem 4.3.4. The chromatic symmetric function Xp, , for the path P, twinned at the interior

vertex { satisfies the e-positive recurrence for { > 2, n > €+ 1, and n > 4,

n—{—1 n—1
Xp,, = Z (J—De;jXp,_;, +4(n+ 1)eu1 +2neje, +2e Z (J—De;Xp,_;
j=2 j=n—t+2
n n—0+2
+4 > (G=DeiXp, ,+2 > (j=2ejXp,, +(n-C=2ex(Xp,,.
Jj=n—{+3 j=n—t+1

Thus, forn 2 3and2 < £ <n -1, Xp, , is e-positive.

Proof. Fix £ > 2, and consider n > ¢ + 1 with n > 4. We start with the recurrence relation in the

statement of Proposition 4.2.19. This can be rewritten as

Xpn,[ :4XP +2€1Xpn +2€2Xp€_1Xpn_(,

n+l

(4.29)

- 2Xp,,, Xp, , —2Xp,Xp -2Xp, , Xp

n—{€+1 n—{+2"*
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From (4.29) and using Proposition 4.2.21, we have that

n n—1
Xp,, = 4n+1)en +4Z(j - l)eran_j +2e; |ne, + Z(] - l)erpn_j
j=2 j=2
n—{—1
+2e2Xp, , |(n=Oene+ D (= 1DejXp, ,
=2
n—{—1
-2Xp,,, [(n=0)enr + Z (J - l)erPn—[—j
=2
n—{
=2Xp, |(n+ 1= Oepac+ ) (i = DejXp,, (4.30)
=2
n—{+1
—2Xp, , |(n+2=Oenac+ D (G =DeiXpn, | 4.31)
j=2

Notice that, in the six summands above, for each fixed j, the terms attached to the factor (j — 1)e;,
when collected together, match the six terms in the right-hand side of the recurrence (4.29) applied

to Xp Grouping the remaining terms into an expression Y if they have a positive sign, or Z if

n—j,t*
they have a negative sign, we obtain

n—{—1
Xp,,= Y (j=DejXp, ,, +Y-Z.
J=2

The positive terms Y are given by
Y =4(n+1)eps) +2ne, e +2e2Xp, (n—)e,—¢

n n—1
+4 > (G- DejXp,, +2e1 > (j=1e;Xp,

j=n—t j=n—{
n n—1
=4(n+1)eys1 +2ne e +4 Z (J —De;Xp,,,_, +2e Z (J—De;Xp,_;
J=n—{+3 Jj=n—{+2
n—{+2 n—{+1
+4) (j = 1ejXp,, ,+2e1 ) (j = DejXp, , +2e2Xp, , (n = Oenr,

j=n—{ Jj=n—t

Y
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where the last line is obtained by splitting the summations. The negative terms Z are given by

Z=2Xp, (n=0)e,—¢+2Xp,(n+1—=0)epr1—¢+2Xp, |(n+2—"C)ep2—¢

n—C+1

+2Xp,(n = €= DenXp, +2Xp,, D (j = 1)e;Xp, , s
j=n—¢t

where the last two terms come from the sums in (4.30) and (4.31). We rewrite Z so that Y — Z is

easier to analyze.

n—0+2

Z = 2 Z jerPIHI*./'
j=n—{

+ ZXPg (I’l—f— 1)en_gXp1 + 2Xp€_1 (n - f)en—ﬁlXPl + 2Xp[_1 (l’l—f— l)en_gsz

n—{+2 n—{+1
=2 Z jeran_j +2e Z (] - l)erpn_j + 2Xp2pr_1(n—f—1)€n_g
jzn—f j:n—f

Using Xp, = 2e2, we have

n—0+2

Y] -7Z=2 Z (] - 2)erPn+l—j — 2Xp[_1(n - - 2)6,,_[62,
j=n—t

because the terms with the factor e; = Xp, can be seen to vanish identically. By splitting the sum,

Y, — Z can be rewritten as

n—{+2

Yi-Z=2 Z (j = 2)e;Xp,, ; +2(n— € —2)eni(Xp,,, —e2Xp, ).
j=n—{+1

In the last term on the right-hand side, the factor of 2(Xp,,, —e2Xp,_,) = 2Xp,,, — Xp,Xp,_, = Xp,,
is precisely the chromatic symmetric function of the path P, twinned at a leaf. Thus, putting all of
this together, we obtain the recurrence relation from the statement.

Finally, we can deduce the e-positivity. For the initial values n = € + 1,{ +2,£ + 3, Xp,,
is e-positive by Proposition 4.2.25. We proceed by strong induction on n to show the claimed
e-positivity for Xp,, for n > € + 4. Our induction hypothesis is that Xp,, , is e-positive for all
m < n,m > ¢+ 1. We only need to look at Y; — Z since that is the part containing negative
terms. By Proposition 4.3.2 we know that Y; — Z is e-positive. Hence, by induction the proof is

complete. O
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As an application of the preceding recurrence, we have the following corollary.

Corollary 4.3.5 (See also [27, Theorem 7.8]). Consider the path P,, on n vertices, withn > 4. Let

2 <t <n-2andletv be the leaf n. Then the chromatic symmetric function of P, ¢, is e-positive.

Proof. The triple deletion argument implies that

Xp =2Xp - XP2XPn7|,r = 2(XPn+I,€ - eZXPn—l,é’)'

n,l,v n+l,0

Examining the recurrence for Xp, , in Theorem 4.3.4 one sees that, when n — ¢ — 1 > 2, the initial

term in the first sum in the expression for Xp, , is e2Xp, ,,, making Xp, , — e2Xp, ,, e-positive.

Replacing n by n + 1 now gives e-positivity of Xp ,, — e2Xp forn—¢ > 2. O

n+l,¢ n—1,0

4.3.2 Recurrence for Twinned Cycles
In this section we derive an e-positive recursive formula for the twinned cycle, analogous to
those for the twinned path from the last section. We give a similar formula for another family of

graphs that we call moose graphs.

4.3.2.1 Twinned Cycles

We start with the cycle graph.

Theorem 4.3.6. The chromatic symmetric function Xc, , for the cycle Cy, twinned at a vertex v is
e-positive. For n > 5, it satisfies the e-positive recurrence

n—-2
Xc,, = Y (k= DeiXc, ., +2(n+1)(2n=3)en +2(n = 1)(n - 3)eqer
k=3

+ e [chfz,v -2(n- 3)6,,_1] ,

with initial conditions
XCI,V = 262, XCz,v = 663, XC3,V = 2464, and XC4,V = 5065 + 66461 + 46362.

Proof. We proceed by induction on n. The initial cases n < 4 are verified by direct computation

using Theorem 4.2.1 and Lemma 4.2.26. Note that these initial terms are all e-positive.
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Assume we have shown the claim to be true for X, , for all m < n. Now we rewrite the

expression in Lemma 4.2.26 using Proposition 4.2.2 to obtain:

n—1
Xc,, =4+ Dnegs +4 Y (k= DeeXc,,,
k=2
n—2 ]
+2eq |n(n—1)e, + Z(k - DexXc, .
k=2 i
=6 [(n+ Denr + Y (k= 1DexXp,,,
k=2 |
n—-2
+2¢3 [(n=Degy+ ) (k= DexXp, |- (4.32)
k=2

Applying Lemma 4.2.26 again, we can collect the four summations above into one sum and
three additional terms as follows:

n-2

Z(k — ey [4Xc,,,, +2e1Xc,., — 6Xp,.._, +2e2Xp, ]
k=2

+4(n—-2)ey-1Xc, —6(n—2)e -1 Xp, —6(n—1)e, Xp,

\8]

S

= (k - l)ekXCn—k,v + 4(n - 2)€n—1XC2 - 6(1’1 - 2)en_1Xp2 - 6(I’l - l)enXpl .

m
[\e]

Combining this expression with the remaining terms from (4.32), we obtain

n-2

Xc,, = ) (k= DeiXc, ., +2(n+1)(2n = 3)en +2(n = 1)(n = 3eyey
k=2
—2(n—-3)e,_1e2. (4.33)

We isolate the term k& = 2 from the summation and regroup it with the last term in (4.33), so
that it becomes

n-2

Xc,, = Z(k - DerXc, ., +2(n+1)(2n - 3)eu1 +2(n = 1)(n - 3)eyeq
k=3
+ e [XQHM -2(n- 3)6,,-1] ,

as stated in the theorem.
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Now we want to show e-positivity. By the induction hypothesis, only the last term requires
scrutiny. Using Corollary 4.3.1 and Lemma 4.2.26, the coefficientof e, in X¢,_, , is 2(n—1)(2n—
7). Therefore, the coefficient of e,y in Xc, ,, —2(n —3)e,—1is 2(n = 1)(2n - 7) = 2(n - 3) =

4(n?® - 5n + 5), which is nonnegative for n > 4. Thus, by the induction hypothesis, the formula in

the statement for Xc, , is indeed an e-positive recurrence for the twinned cycles for n > 5. ]

4.3.2.2 The Moose Graph
We define the moose graph A, to be the graph on n + 2 vertices and n + 1 edges, obtained

from the cycle graph C,, by attaching a leaf to each of the vertices v, w of an edge vw in C,,,

Figure 4.8 The moose graph A,

We provide an e-positive recurrence relation for the chromatic symmetric function of the moose
graph. This graph was shown to be e-positive as a special case in [63, Theorem 3.9]. We omit the

proof.

Proposition 4.3.7. For n > 2, the chromatic symmetric function of the moose graph A, is

e-positive. For n > 4, it satisfies the e-positive recurrence

n-2
XArH—Z = Z(-] - ]‘)erArHZ*f
=2

+(n+2)(n—1Depn +2e1ep1(n>—n—1)+(n—-1)(n - 2)6%6,1 +2esey,
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with initial values

XA4 = Xp4 = 26% + 2e3e) +4ey,
Xas = 2636% + 2e3ey + 10e4eq + 10e5,

X = 2e§ +2ezezeq + 6646% + 6e4er + 22e5¢e1 + 18eq.

4.4 Future Directions

This work and the work of Tom [58] provide explicit e-positive generating functions for the
chromatic symmetric function of twinned paths and cycles, and suggests that it may be worthwhile
to undertake a similar study for twins of other graph families.

More generally, an examination of Table 4.1 shows that much of the recent literature focuses on
establishing Gebhard and Sagan’s (e)-positivity of the chromatic symmetric function in noncom-
muting variables. Although (e)-positivity implies e-positivity as a symmetric function in ordinary
commuting variables, in such cases an explicit e-positive generating function or recurrence would

be desirable. We propose the following future investigations in this direction:

1. For the twinned cycle graph, is the chromatic symmetric function in noncommuting variables

(e)-positive?

2. Are there pleasing e-positive symmetric function expansions for those families whose e-
positivity is known only via the stronger (e)-positivity property? Specific examples that may
admit nice generating functions are the triangular ladder [13, 48], the kayak paddle graphs

[2] and the tadpole graph [27, 33].

It would also be interesting to examine twinning for the chromatic quasisymmetric function of
Shareshian and Wachs [45, 46] since the main class of posets of study for these, whose incom-
parability graphs are unit interval graphs, is also closed under the appropriately defined twinning

operation for labeled graphs.
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