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ABSTRACT

Artificial intelligence (AI) and machine learning (ML) have significantly impacted many aspects

of daily life, with numerous methods involving structural graph data. Graphs, which model

relationships between different entities, are widely used to represent real-world data, including

social networks, transportation systems, chemical molecules, power and communication networks,

and user-item interactions in recommendation systems. A fundamental task in graph data analysis

is link prediction, which predicts connections between entities and is essential for understanding

their relationships. For example, link prediction allows us to determine whether two individuals

are friends in a social network or if a user will purchase an item in a recommendation system.

Consequently, link prediction is crucial for advancing graph-based applications in real-world ML

applications. However, several challenges impede progress in this area. Specifically, 1) existing

evaluation settings are not unified or rigorous, leading to inconsistent and sometimes suboptimal

results, and 2) graph nodes are frequently associated with textual attributes containing rich semantic

information, and this data has become increasingly abundant. Language models excel at processing

textual data to capture semantic insights. However, effectively integrating textual information with

graph data to enhance real-world applications remains under-explored.

In light of these challenges, this dissertation seeks to advance link prediction from two main

perspectives: 1) identifying evaluation pitfalls across various graph types to inspire more advanced

methods for link prediction, and 2) leveraging language models in synergy with link prediction

techniques to enhance a range of real-world applications. From the first perspective, we investigate

evaluation pitfalls in both uni-relational and multi-relational graphs. Based on these findings, we

propose methods to mitigate the identified issues or develop more effective and efficient models.

From the second perspective, we explore the use of language models to improve link prediction in

recommendation systems, and conversely, apply link prediction techniques to enhance language

models in query understanding tasks. By working on these two perspectives, this dissertation not

only contributes to the development of more robust link prediction methods but also facilitates their

application in practical, real-world scenarios.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Graph is a universal data structure used to model relationships between different entities.

Due to its ubiquitous nature, numerous artificial intelligence and machine learning methods

have been developed to leverage structural graph data. Graphs are widely used to represent

real-world applications such as social networks [95], transportation infrastructures [87], chemical

molecules [120], and recommendation systems [125]. A fundamental task in graph data analysis is

link prediction [62, 74, 101], which aims to predict potential connections between entities and is

critical for understanding the underlying relationships. Link prediction plays a central role in many

real-world applications. For example, recommending friends in social networks [95] or predicting

whether a user will purchase an item in recommendation systems [125]. As such, link prediction is

essential for the development of graph-based machine learning applications. To handle this task, a

large body of work has focused on graph neural networks (GNNs) [128], which have demonstrated

strong performance in learning from graph-structured data.

However, several challenges hinder progress in this area. Specifically: 1. evaluation settings

are often neither unified nor rigorous, resulting in inconsistent and sometimes suboptimal findings.

Since model performance is assessed and interpreted based on these evaluations, rigorous evaluation

protocols are essential for accurate analysis. Nevertheless, existing literature [117, 146, 110, 15]

primarily focuses on designing novel model architectures to address various challenges, while issues

related to evaluation settings are largely overlooked. For example, due to non-rigorous evaluation,

we find that a commonly believed key component has limited impact in knowledge graph completion

tasks. 2. Graph nodes are often associated with rich textual attributes, and such information is

increasingly abundant. For instance, users in social networks typically have profiles, and items in

e-commerce systems are described by titles and descriptions. This textual information is particularly

valuable for nodes with sparse connectivity, which constitute a large portion of real-world graphs [72],

as it offers complementary semantic context beyond the structural information provided by the
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graph. Language models [50] excel at capturing semantic representations from text. However,

integrating textual information with graph data to improve performance in practical applications

remains under-explored.

To address these challenges, we aim to advance link prediction from two main perspectives.

First, we identify evaluation pitfalls across various graph types to advance the development of

more rigorous and effective link prediction methods. Our analysis spans both uni-relational and

multi-relational graphs, uncovering several unexpected findings. These insights can inform the

design of more robust models and help align link prediction techniques more closely with real-world

applications. Second, we investigate the integration of language models with link prediction

techniques to enhance practical performance across diverse domains. Specifically, we explore the

use of language models to improve link prediction in recommendation systems, as well as the use of

link prediction to support language models in query understanding tasks. Through working on these

two lines, our work offers new perspectives and insights that can guide the development of more

effective link prediction methods and facilitation their applicability in real-world scenarios.

1.2 Contributions

We summarize the major contributions of this proposal as follows:

• In chapter 2, we identify several evaluation pitfalls in uni-relational graph [62] settings and

developed a comprehensive benchmark spanning a wide range of datasets and methods. Based

on several limitations observed in existing evaluation procedures, I proposed a more practical

evaluation framework called HeaRT (Heuristic Related Sampling Technique). By enabling a more

rigorous and realistic assessment, HeaRT provides a foundation for guiding the field towards

developing more effective models, thereby advancing the state of the art in link prediction.

• In chapter 3, we surprisingly find that MLP-based models achieve competitive performance

compared to three MPNN-based models across various datasets [61]. Additionally, scoring and

loss functions were identified as having a significant impact on performance. Building on these

insights, I developed an ensemble-based MLP model that not only delivers stronger performance

but also offers greater computational efficiency.
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• In chapter 4, we identify an imbalance issue in the traditional framework for integrating graph and

text information [59]. To address this challenge, I propose a novel approach, AlterRec, which

employs an alternative training strategy. This strategy enables implicit interactions between ID

and textual features, fostering mutual learning and significantly enhancing overall performance.

• In chapter 5, we propose a pre-training framework, GE-BERT [63], designed to preserve both

semantic information and query graph structure. This framework is further fine-tuned for query

understanding tasks. Extensive experiments on both offline and online benchmarks demonstrate

the superior performance of GE-BERT compared to existing methods.
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CHAPTER 2

EVALUATION PITFALLS IN UNI-RELATIONAL GRAPH

Link prediction attempts to predict whether an unseen edge exists based on only a portion of edges

of a graph. A flurry of methods have been introduced in recent years that attempt to make use

of graph neural networks (GNNs) for this task. Furthermore, new and diverse datasets have also

been created to better evaluate the effectiveness of these new models. However, multiple pitfalls

currently exist that hinder our ability to properly evaluate these new methods. These pitfalls mainly

include: (1) Lower than actual performance on multiple baselines, (2) A lack of a unified data

split and evaluation metric on some datasets, and (3) An unrealistic evaluation setting that uses

easy negative samples. To overcome these challenges, we first conduct a fair comparison across

prominent methods and datasets, utilizing the same dataset and hyperparameter search settings. We

then create a more practical evaluation setting based on a Heuristic Related Sampling Technique

(HeaRT), which samples hard negative samples via multiple heuristics. The new evaluation setting

helps promote new challenges and opportunities in link prediction by aligning the evaluation with

real-world situations.

2.1 Introduction

The task of link prediction is to determine the existence of an edge between two unconnected

nodes in a graph. Existing link prediction algorithms attempt to estimate the proximity of different

pairs of nodes in the graph, where node pairs with a higher proximity are more likely to interact [71].

Link prediction is applied in many different domains including social networks [17], biological

networks [55], and recommender systems [41].

Graph neural networks (GNNs) [128] have gained prominence in recent years with many new

frameworks being proposed for a variety of different tasks. Corresponding to the rise in popularity

of GNNs, there has been a number of studies that attempt to critically examine the effectiveness of

different GNNs on various tasks. This can be seen for the task of node classification [98], graph

classification [27], knowledge graph completion (KGC) [93, 2, 105], and others [25].

However, despite a number of new GNN-based methods being proposed [145, 15, 143, 117] for
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link prediction, there is currently no work that attempts to carefully examine recent advances in link

prediction methods. Upon examination, we find that there are several pitfalls in regard to model

evaluation that impede our ability to properly evaluate current methods. This includes:

1. Lower than Actual Performance. We observe that the current performance of multiple models

is underreported. For some methods, such as standard GNNs, this is due to poor hyperparameter

tuning. Once properly tuned, they can even achieve the best overall performance on some metrics

(see SAGE [33] in Table 2.1). Furthermore, for other methods like Neo-GNN [143] we can

achieve around an 8.5 point increase in Hits@50 on ogbl-collab relative to the originally reported

performance. This results in Neo-GNN achieving the best overall performance on ogbl-collab

in our study (see Table 2.2). Such problems obscure the true performance of different models,

making it difficult to draw reliable conclusions from the current results.

2. Lack of Unified Settings. For Cora, Citeseer, and Pubmed datasets [135], there exists no

unified data split and evaluation metrics used for each individually. For the data split, some

works [112, 157] use a single fixed train/valid/test split with percentages 85/5/10%. More recent

works [15, 117] use 10 random splits of size 70/10/20%. In terms of the evaluation metrics, some

studies [15, 117] use ranking-based metrics such as MRR or Hits@K while others [52, 157]

report the area under the curve (AUC). This is despite multiple studies that argue that AUC is a

poor metric for evaluating link prediction [133, 42]. Additionally, for both the planetoid (i.e.,

Cora, Citeseer and Pubmed) and ogbl-collab datasets, some methods incorporate the validation

edges during testing [15, 39], while others [143, 117] don’t. This lack of a unified setting makes

it difficult to draw a comparison and hampers our ability to determine which methods perform

best on these datasets.

3. Unrealistic Evaluation Setting. During the evaluation, we are given a set of true samples (i.e.,

positive samples) and a set of false samples (i.e., negative samples). We are tasked with learning

a classifier 𝑓 that assigns a higher probability to the positive samples than the negatives. The

current evaluation setting uses the same set of randomly selected negative samples for each

positive sample. We identify two potential problems with the current evaluation procedure. (1) It
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(a) ogbl-collab (b) ogbl-ppa (c) ogbl-citation2

Figure 2.1 Common neighbor distribution for the positive and negative test samples for the
ogbl-collab, ogbl-ppa, and ogbl-citation2 datasets under the existing evaluation setting.

is not aligned with real-world settings. In a real-world scenario, we typically care about predicting

links for a specific node. For example, in friend recommendations, we aim to recommend friends

for a specific user 𝑢. To evaluate such models for 𝑢, we strive to rank node pairs including 𝑢.

However, this does not hold in the current setting as 𝑢 is not included in most of the negative

samples. (2) The current evaluation setting makes the task too easy. As such, it may not reflect the

model performance in real-world applications. This is because the nodes in a randomly selected

negative “node pair” are likely to be unrelated to each other. As shown in Figure 2.1, almost all

negative samples in the test data have no common neighbors, a typically strong heuristic, making

them trivial to classify them.

To account for these issues, we propose to first conduct a fair and reproducible evaluation

among current link prediction methods under the existing evaluation setting. We then design a new

evaluation strategy that is more aligned with a real-world setting and detail our results. Our key

contributions are summarized below:

1. Reproducible and Fair Comparison. We conduct a fair comparison of different models across

multiple common datasets. To ensure a fair comparison, we tune all models on the same set

of hyperparameters. We further evaluate different models using multiple types of evaluation

metrics. For the Planetoid datasets [135], we further use a unified data split to facilitate a

point of comparison between models. To the best of our knowledge, there are no recent efforts

to comprehensively benchmark link prediction methods (several exist for KGC [105, 2, 93]).
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Furthermore, we open-source the implementation in our analysis to enable others in their analyses.

2. New Evaluation Setting. We recognize that the current negative sampling strategy used in

evaluation is unrealistic and easy. To counter these issues, we first use a more realistic setting

of tailoring the negatives to each positive sample. This is achieved by restricting them to be

corruptions of the positive sample (i.e., containing one of its two nodes as defined in Eq. (2.3)).

Given the prohibitive cost of utilizing all possible corruptions, we opt instead to only rank

against 𝐾 negatives for each positive sample. In order to choose the most relevant and difficult

corruptions, we propose a Heuristic Related Sampling Technique (HeaRT), which selects them

based on a combination of multiple heuristics. This creates a more challenging task than the

previous evaluation strategy and allows us to better assess the capabilities of current methods.

The rest of the paper is structured as follows. In Section 2.2 we introduce the models, datasets, and

settings used for conducting a fair comparison between methods. In Section 2.3 we show the results

of the fair comparison under the existing evaluation setting and discuss our main observations.

Lastly, in Section 2.4 we introduce our new evaluation setting. We then detail and discuss the

performance of different methods using our new setting.

2.2 Preliminaries

2.2.1 Task Formulation

In this section we formally define the task of link prediction. Let G = {V, E} be a graph where

V and E are the set of nodes and edges in the graph, respectively. Furthermore, let 𝑋 ∈ R |𝑉 |×𝑑 be a

set of 𝑑-dimensional features for each node. Link prediction aims to predict the likelihood of a link

existing between two nodes given the structural and feature information. For a pair of nodes 𝑢 and 𝑣,

the probability of a link existing, 𝑝(𝑢, 𝑣), is therefore given by:

𝑝(𝑢, 𝑣) = 𝑝(𝑢, 𝑣 | G, 𝑋). (2.1)

Traditionally, 𝑝(𝑢, 𝑣) was estimated via non-learnable heuristic methods [76, 66]. More recently,

methods that use learnable parameters have gained popularity [145, 15]. These methods attempt to
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estimate 𝑝(𝑢, 𝑣) via a learnable function 𝑓 such that:

𝑝(𝑢, 𝑣) = 𝑓 (𝑢, 𝑣 | G, 𝑋,Θ), (2.2)

where Θ represents a set of learnable parameters. A common choice of 𝑓 are graph neural

networks [53]. In the next subsection we detail the various link prediction methods used in this

study.

2.2.2 Link Prediction Methods

In this section we given an overview of the different methods used in this study. Conventional

methods [76, 66] often exploit hand-craft graph structural properties (i.e., heuristics) between node

pairs. GNNs attempt to learn the structural information to facilitate link prediction [146, 117, 15].

Given the strong performance of pairwise-based heuristics [143, 117], some recent works use both

GNNs and pairwise information, demonstrating strong performance.

For our study, we consider both traditional and state-of-the-art GNN-based models. They can

be roughly organized into four categories. 1) Heuristic methods: Common Neighbor (CN) [80],

Adamic Adar (AA) [1], Resource Allocation (RA) [155], Shortest Path [66], and Katz [49]. These

methods define a score to indicate the link existence based on the graph structure. Among them, CN,

AA, and RA are based on the common neighbors, while Shortest Path and Katz are based on the path

information. 2) Embedding methods: Matrix factorization (MF) [76], Multilayer Perceptron (MLP)

and Node2Vec [31]. These methods are trained to learn low-dimensional node embeddings that are

used to predict the likelihood of node pairs existing. 3) GNN methods: GCN [137], GAT [112],

SAGE [33], and GAE [52]. These methods attempt to integrate the multi-hop graph structure

based on the message passing paradigm. 4) GNN + Pairwise Information methods: Standard

GNN methods, while powerful, are not able to capture link-specific information [146]. As such,

works have been proposed that augment GNN methods by including additional information to better

capture the relation between the nodes in the link we are predicting. SEAL [146], BUDDY [15],

and NBFNet [157] use the subgraph features. Neo-GNN [143], NCN [117], and NCNC [117] are

based on common neighbor information. Lastly, PEG [114] uses the positional encoding derived

from the graph structure.
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2.2.3 Datasets and Experimental Settings

In this section we summarize the datasets and evaluation and training settings. We note that the

settings depend on the specific dataset. More details are given in Appendix A.3.

Datasets. We limit our experiments to homogeneous graphs, which are the most commonly used

datasets for link prediction. This includes the small-scale datasets, i.e., Cora, Citeseer, Pubmed [135],

and large-scale datasets in the OGB benchmark [39], i.e., ogbl-collab, ogbl-ddi, ogbl-ppa, and

ogbl-citation2. We summarize the statistics and split ratio of each dataset in Appendix A.3.

Metrics. For evaluation, we use both the area under the curve (AUC) and ranking-based

metrics, i.e., mean reciprocal rank (MRR) and Hits@K. For Cora, Citeseer, and Pubmed we adopt

𝐾 ∈ {1, 3, 10, 100}. We note that 𝐾 = 100 is reported in some recent works [15, 117]). However

due to the small number of negatives used during evaluation (e.g., ≈ 500 for Cora and Citeseer)

𝐾 = 100 is likely not informative. For the OGB datasets, we adopt 𝐾 ∈ {20, 50, 100} to keep

consistent with the original study [39]. Please see Appendix A.2.1 for the formal definitions of the

various evaluation metrics.

Hyperparameter Ranges. We conduct a grid hyperparameter search across a comprehensive

range of values. For Cora, Citeseer, and Pubmed this includes: learning rate (0.01, 0.001), dropout

(0.1, 0.3, 0.5), weight decay (1e-4, 1e-7, 0), number of model layers (1, 2, 3), number of prediction

layers (1, 2, 3), and the embedding size (128, 256). Due to the large size of the OGB datasets, it’s

infeasible to tune over such a large range. Therefore, following the most commonly used settings

among published hyperparameters, we fix the weight decay to 0, the number of model and prediction

layers to be 3, and the embedding size to be 256. The best hyperparameters are chosen based on the

validation performance. We note that several exceptions exist to these ranges when they result in

significant performance degradations (see Appendix A.3 for more details). We further follow the

existing setting and only sample one negative sample per positive sample during training.

Existing Evaluation Settings. In the evaluation stage, the same set of randomly sampled

negatives are used for all positive samples. We note that one exception is ogbl-citation2, where they

randomly sample 1000 negative samples per positive sample. For Cora, Citeseer, and Pubmed the
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Table 2.1 Results on Cora, Citeseer, and Pubmed(%) under the existing evaluation setting.
Highlighted are the results ranked first (green), second (blue), and third (orange).

Models Cora Citeseer Pubmed
MRR AUC MRR AUC MRR AUC

Heuristic

CN 20.99 70.85 28.34 67.49 14.02 63.9
AA 31.87 70.96 29.37 67.49 16.66 63.9
RA 30.79 70.96 27.61 67.48 15.63 63.9

Shortest Path 12.45 81.08 31.82 75.5 7.15 74.64
Katz 27.4 81.17 38.16 75.37 21.44 74.86

Embedding
Node2Vec 37.29 ± 8.82 90.97 ± 0.64 44.33 ± 8.99 94.46 ± 0.59 34.61 ± 2.48 93.14 ± 0.18

MF 14.29 ± 5.79 80.29 ± 2.26 24.80 ± 4.71 75.92 ± 3.25 19.29 ± 6.29 93.06 ± 0.43
MLP 31.21 ± 7.90 95.32 ± 0.37 43.53 ± 7.26 94.45 ± 0.32 16.52 ± 4.14 98.34 ± 0.10

GNN

GCN 32.50 ± 6.87 95.01 ± 0.32 50.01 ± 6.04 95.89 ± 0.26 19.94 ± 4.24 98.69 ± 0.06
GAT 31.86 ± 6.08 93.90 ± 0.32 48.69 ± 7.53 96.25 ± 0.20 18.63 ± 7.75 98.20 ± 0.07
SAGE 37.83 ± 7.75 95.63 ± 0.27 47.84 ± 6.39 97.39 ± 0.15 22.74 ± 5.47 98.87 ± 0.04
GAE 29.98 ± 3.21 95.08 ± 0.33 63.33 ± 3.14 97.06 ± 0.22 16.67 ± 0.19 97.47 ± 0.08

GNN+Pairwise Info

SEAL 26.69 ± 5.89 90.59 ± 0.75 39.36 ± 4.99 88.52 ± 1.40 38.06 ± 5.18 97.77 ± 0.40
BUDDY 26.40 ± 4.40 95.06 ± 0.36 59.48 ± 8.96 96.72 ± 0.26 23.98 ± 5.11 98.2 ± 0.05

Neo-GNN 22.65 ± 2.60 93.73 ± 0.36 53.97 ± 5.88 94.89 ± 0.60 31.45 ± 3.17 98.71 ± 0.05
NCN 32.93 ± 3.80 96.76 ± 0.18 54.97 ± 6.03 97.04 ± 0.26 35.65 ± 4.60 98.98 ± 0.04

NCNC 29.01 ± 3.83 96.90 ± 0.28 64.03 ± 3.67 97.65 ± 0.30 25.70 ± 4.48 99.14 ± 0.03
NBFNet 37.69 ± 3.97 92.85 ± 0.17 38.17 ± 3.06 91.06 ± 0.15 44.73 ± 2.12 98.34 ± 0.02

PEG 22.76 ± 1.84 94.46 ± 0.34 56.12 ± 6.62 96.15 ± 0.41 21.05 ± 2.85 96.97 ± 0.39

number of negative samples is equal to the number of positive samples. For the OGB datasets, we

use the existing fixed set of randomly chosen negatives found in [39]. Furthermore, for ogbl-collab

we follow the existing protocol [39] and include the validation edges in the training graph during

testing. This setting is adopted on ogbl-collab under both the existing and new evaluation setting.

2.3 Fair Comparison Under the Existing Setting

In this section, we conduct a fair comparison among link prediction methods. This comparison

is spurred by the multiple pitfalls noted in Section 2.1, which include lower-than-actual model

performance, multiple data splits, and inconsistent evaluation metrics. These pitfalls hinder our

ability to fairly compare different methods. To rectify this, we conduct a fair comparison adhering

to the settings listed in section 2.2.3.

The results are split into two tables. The results for Cora, Citeseer, and Pubmed are shown

in Table 2.1 and OGB in Table 2.2. For simplicity, we only present the AUC and MRR for Cora,

Citeseer, and Pubmed. For OGB datasets, we include AUC and the original ranking metric reported

in [39] to allow a convenient comparison (Hits@20 for ogbl-ddi, Hits@50 for ogbl-collab, Hits@100
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Table 2.2 Results on OGB datasets (%) under the existing evaluation setting. Highlighted are the
results ranked first (green), second (blue), and third (orange).

Models ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
Hits@50 AUC Hits@20 AUC Hits@100 AUC MRR

Heuristic

CN 61.37 82.78 17.73 95.2 27.65 97.22 74.3
AA 64.17 82.78 18.61 95.43 32.45 97.23 75.96
RA 63.81 82.78 6.23 96.51 49.33 97.24 76.04

Shortest Path 46.49 96.51 0 59.07 0 99.13 >24h
Katz 64.33 90.54 17.73 95.2 27.65 97.22 74.3

Embedding
Node2Vec 49.06 ± 1.04 96.24 ± 0.15 34.69 ± 2.90 99.78 ± 0.04 26.24 ± 0.96 99.77 ± 0.00 45.04 ± 0.10

MF 41.81 ± 1.67 83.75 ± 1.77 23.50 ± 5.35 99.46 ± 0.10 28.4 ± 4.62 99.46 ± 0.10 50.57 ± 12.14
MLP 35.81 ± 1.08 95.91 ± 0.08 N/A N/A 0.45 ± 0.04 90.23 ± 0.00 38.07 ± 0.09

GNN

GCN 54.96 ± 3.18 97.89 ± 0.06 49.90 ± 7.23 99.86 ± 0.03 29.57 ± 2.90 99.84 ± 0.03 84.85 ± 0.07
GAT 55.00 ± 3.28 97.11 ± 0.09 31.88 ± 8.83 99.63 ± 0.21 OOM OOM OOM
SAGE 59.44 ± 1.37 98.08 ± 0.03 49.84 ± 15.56 99.96 ± 0.00 41.02 ± 1.94 99.82 ± 0.00 83.06 ± 0.09
GAE OOM OOM 7.09 ± 6.02 75.34 ±15.96 OOM OOM OOM

GNN+Pairwise Info

SEAL 63.37 ± 0.69 95.65 ± 0.29 25.25 ± 3.90 97.97 ± 0.19 48.80 ± 5.61 99.79 ± 0.02 86.93 ± 0.43
BUDDY 64.59 ± 0.46 96.52 ± 0.40 29.60 ± 4.75 99.81 ± 0.02 47.33 ± 1.96 99.56 ± 0.02 87.86 ± 0.18

Neo-GNN 66.13 ± 0.61 98.23 ± 0.05 20.95 ± 6.03 98.06 ± 2.00 48.45 ± 1.01 97.30 ± 0.14 83.54 ± 0.32
NCN 63.86 ± 0.51 97.83 ± 0.04 76.52 ± 10.47 99.97 ± 0.00 62.63 ± 1.15 99.95 ± 0.01 89.27 ± 0.05

NCNC 65.97 ± 1.03 98.20 ± 0.05 70.23 ± 12.11 99.97 ± 0.01 62.61 ± 0.76 99.97 ± 0.01 89.82 ± 0.43
NBFNet OOM OOM >24h >24h OOM OOM OOM

PEG 49.02 ± 2.99 94.45 ± 0.89 30.28 ± 4.92 99.45 ± 0.04 OOM OOM OOM

for ogbl-ppa, and MRR for ogbl-citation2). We use “>24h" to denote methods that require more

than 24 hours for either training one epoch or evaluation. OOM indicates that the algorithm requires

over 50Gb of GPU memory. Since ogbl-ddi has no node features, we mark the MLP results with

a “N/A". Additional results in terms of other metrics are presented in Appendix A.6. We have

several noteworthy observations concerning the methods, the datasets, the evaluation settings, and

the overall results. We highlight the main observations below.

Observation 1: Better than Reported Performance. We find that for some models we are able to

achieve superior performance compared to what is reported by recent studies. For instance, in our

study Neo-GNN [143] achieves the best overall test performance on ogbl-collab with a Hits@50 of

66.13. In contrast, the reported performance in [143] is only 57.52, which would rank seventh under

our current setting. This is because the original study [143] does not follow the standard setting of

including validation edges in the graph during testing. This setting, as noted in Section 2.2.3, is used

by all other methods on ogbl-collab. However it was omitted by [143], resulting in lower reported

performance. Furthermore, on ogbl-citation2 [39], our results for the heuristic methods are typically

around 75% MRR. This significantly outperforms previously reported results, which report an

MRR of around 50% [146, 15]. The disparity arises as previous studies treat the ogbl-citation2 as a
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Table 2.3 Comparison of ours and the reported results for GCN and GAE. Most of results are
under-reported.

ogbl-collab ogbl-ppa ogbl-ddi ogbl-citation2 Cora Citeseer Pubmed
GCN Hits@50 Hits@100 Hits@20 MRR GAE AUC AUC AUC

Reported 47.14 ± 1.45 18.67 ± 1.32 37.07 ± 5.07 84.74 ± 0.21 Reported 91.00 ± 0.01 89.5 ± 0.05 96.4 ± 0.00
Ours 54.96 ± 3.18 29.57 ± 2.90 49.90 ± 7.23 84.85 ± 0.07 Ours 95.08 ± 0.33 97.06 ± 0.22 97.47 ± 0.08

directed graph when applying heuristic methods. However, for GNN-based methods, ogbl-citation2

is typically converted to a undirected graph. We remedy this by also converting ogbl-citation2 to an

undirected graph when computing the heuristics, leading to a large increase in performance.

Furthermore, with proper tuning, conventional baselines like GCN [53] and GAE [52] generally

exhibit enhanced performance relative to what was originally reported across all datasets. For

example, we find that GAE can achieve the second best MRR on Citeseer and GCN the third best

Hits@20 on ogbl-ddi. A comparison of the reported results and ours are shown in Table 2.3. We

note that we report AUC for Cora, Citeseer, Pubmed as it was used in the original study. These

observations suggest that the performance of various methods are better than what was reported in

their initial publications. However, many studies [15, 117, 146] only report the original performance

for comparison, which has the potential to lead to inaccurate conclusions.

Observation 2: Divergence from Reported Results on ogbl-ddi. We observe that our results

in Table 2.2 for ogbl-ddi differ from the reported results. Outside of GCN, which reports better

performance, most other GNN-based methods report a lower-than-reported performance. For

example, for BUDDY we only achieve a Hits@20 of 29.60 vs. the reported 78.51 (see Appendix A.4

for a comprehensive comparison among methods). We find that the reason for this difference

depends on the method. BUDDY [15] reported 1 using 6 negatives per positive sample during

training, leading to an increase in performance. Neo-GNN [143] first pretrains the GNN under

the link prediction task, and then uses the pretrained model as the initialization for Neo-GNN.2

For a fair comparison among methods, we only use 1 negative per positive sample in training and

we don’t apply the pretraining. For other methods, we find that a weak relationship between the

validation and test performance complicates the tuning process, making it difficult to find the optimal
1https://github.com/melifluos/subgraph-sketching
2https://github.com/seongjunyun/Neo-GNNs
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hyperparameters. Please see Appendix A.5 for a more in-depth study and discussion.

Observation 3: High Model Standard Deviation. The results in Tables 2.1 and 2.2 present the

mean performance and standard deviation when training over 10 seeds. Generally, we find that for

multiple datasets the standard deviation of the ranking metrics is often high for most models. For

example, the standard deviation for MRR can be as high as 8.82, 8.96, or 7.75 for Cora, Citeseer,

and Pubmed, respectively. Furthermore, on ogbl-ddi the standard deviation of Hits@20 reaches as

high as 10.47 and 15.56. A high variance indicates unstable model performance. This makes it

difficult to compare results between methods as the true performance lies in a larger range. This

further complicates replicating model performance, as even large differences with the reported

results may still fall within variance (see observation 2). Later in Section 2.4.3 we find that our new

evaluation can reduce the model variance for all datasets (see Table 2.6). This suggests that the high

variance is related to the current evaluation procedure.

Observation 4: Inconsistency of AUC vs. Ranking-Based Metrics. The AUC score is widely

adopted to evaluate recent advanced link prediction methods [52, 157]. However, from our results

in Tables 2.1 and 2.2 we observe that there exists a disparity between AUC and ranking-based

metrics. In some cases, the AUC score can be high when the ranking metric is very low or even

0. For example, the Shortest Path heuristic records a Hits@K of 0 on ogbl-ppa. However, the

AUC score is > 99%. Furthermore, even though RA records the third and fifth best performance

on ogbl-ppa and ogbl-collab, respectively, it has a lower AUC score than Shortest Path on both.

Previous works [42, 133] argued that AUC is not a proper metric for link prediction. This is due to

the inapplicability of AUC for highly imbalanced problems [18, 94].

2.4 New Evaluation Setting

In this section, we introduce a new setting for evaluating link prediction methods. We first

discuss the unrealistic nature of the current evaluation setting in Section 2.4.1. Based on this, we

present our new evaluation setting in Section 2.4.2, which aims to align better with real-world

scenarios. Lastly, in Section 2.4.3, we present and discuss the results based on our new evaluation

setting.
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2.4.1 Issues with the Existing Evaluation Setting

The existing evaluation procedure for link prediction is to rank a positive sample against a set of

𝐾 randomly selected negative samples. The same set of 𝐾 negatives are used for all positive samples

(with the exception of ogbl-citation2 which uses 1000 per positive sample). We demonstrate that

there are multiple issues with this setting, making it difficult to properly evaluate the effectiveness of

current models.

Issue 1: Non-Personalized Negative Samples. The existing evaluation setting uses the same set of

negative samples for all positive samples (outside of ogbl-citation2). This strategy, referred to as

global negative sampling [118], is not a commonly sought objective. Rather, we are often more

interested in predicting links that will occur for a specific node. Take, for example, a social network

that connects users who are friends. In this scenario, we may be interested in recommending new

friends to a user 𝑢. This requires learning a classifier 𝑓 that assigns a probability to a link existing.

When evaluating this task, we want to rank links where 𝑢 connects to an existing friend above those

where they don’t. For example, if 𝑢 is friends with 𝑎 but not 𝑏, we hope that 𝑓 (𝑢, 𝑎) > 𝑓 (𝑢, 𝑏).

However, the existing evaluation setting doesn’t explicitly test for this. Rather it compares a true

sample (𝑢, 𝑎) with a potentially unrelated negative sample, e.g., (𝑐, 𝑑). This is not aligned with the

real-world usage of link prediction on such graphs.

Issue 2: Easy Negative Samples. The existing evaluation setting randomly selects negative samples

to use. However given the large size of most graphs (see Table A.1 in Appendix A.3), randomly

sampled negatives are likely to choose two nodes that bear no relationship to each other. Such node

pairs are trivial to classify. We demonstrate this by plotting the distribution of common neighbors

(CN), a strong heuristic, for all positive and negative test samples in Figure 2.1. Almost all the

negative samples contain no CNs, making them easy to classify. We further show that the same

problem afflicts even the smaller datasets in Figure A.1 in Appendix A.1.

These observations suggest that a more realistic evaluation strategy is desired. At the core of

this challenge is which negative samples to use during evaluation. We discuss our design for solving

this in the next subsection.
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(a) Negative sample genera-
tion for one positive sample.

(b) Process of determining negative samples that contain a node 𝑎.

Figure 2.2 Pipeline for generating the hard negative samples for a positive sample (a, b). We employ
multiple heuristics to obtain the hard negative samples.

2.4.2 Heuristic Related Sampling Technique (HeaRT)

In this subsection, we introduce new strategy for evaluating link prediction methods. To address

the concerns outlined in Section 2.4.1, we design a new method for sampling negatives during

evaluation. Our strategy, HeaRT, solves these challenges by: (a) personalizing the negatives to each

sample and (b) using heuristics to select hard negative samples. This allows for the negative samples

to be directly related to each positive sample while also being non-trivial. We further discuss how to

ensure that the negative samples are both personalized and non-trivial for a specific positive sample.

From our discussion in Section 2.4.1, we are motivated in personalizing the negatives to

each positive sample. Since the positive samples in the current datasets are node pairs, we seek

to personalize the negatives to both nodes in the positive sample. Extending our example in

Section 2.4.1, this is analogous to restricting the negatives to contain one of the two users from the

original friendship pair. As such, for a positive sample (𝑢, 𝑎), the negative samples will belong to

the set:

𝑆(𝑢, 𝑎) = {(𝑢′, 𝑎) | 𝑢′ ∈ V} ∪ {(𝑢, 𝑎′) | 𝑎′ ∈ V}, (2.3)

where V is the set of nodes. This is similar to the setting used for knowledge graph completion

(KGC) [7] which uses all such samples for evaluation. However, one drawback of evaluating each

positive sample against the entire set of possible corruptions is the high computational cost. To

mitigate this issue we consider only utilizing a small subset of 𝑆(𝑢, 𝑎) during evaluation.

The key challenge is how to generate a subset of 𝑆(𝑢, 𝑎). If we randomly sample from 𝑆(𝑢, 𝑎),
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Table 2.4 Results on Cora, Citeseer, and Pubmed (%) under HeaRT. Highlighted are the results
ranked first (green), second (blue), and third (orange).

Models Cora Citeseer Pubmed
MRR Hits@10 MRR Hits@10 MRR Hits@10

Heuristic

CN 9.78 20.11 8.42 18.68 2.28 4.78
AA 11.91 24.10 10.82 22.20 2.63 5.51
RA 11.81 24.48 10.84 22.86 2.47 4.9

Shortest Path 5.04 15.37 5.83 16.26 0.86 0.38
Katz 11.41 22.77 11.19 24.84 3.01 5.98

Embedding
Node2Vec 14.47 ± 0.60 32.77 ± 1.29 21.17 ± 1.01 45.82 ± 2.01 3.94 ± 0.24 8.51 ± 0.77

MF 6.20 ± 1.42 15.26 ± 3.39 7.80 ± 0.79 16.72 ± 1.99 4.46 ± 0.32 9.42 ± 0.87
MLP 13.52 ± 0.65 31.01 ± 1.71 22.62 ± 0.55 48.02 ± 1.79 6.41 ± 0.25 15.04 ± 0.67

GNN

GCN 16.61 ± 0.30 36.26 ± 1.14 21.09 ± 0.88 47.23 ± 1.88 7.13 ± 0.27 15.22 ± 0.57
GAT 13.84 ± 0.68 32.89 ± 1.27 19.58 ± 0.84 45.30 ± 1.3 4.95 ± 0.14 9.99 ± 0.64
SAGE 14.74 ± 0.69 34.65 ± 1.47 21.09 ± 1.15 48.75 ± 1.85 9.40 ± 0.70 20.54 ± 1.40
GAE 18.32 ± 0.41 37.95 ± 1.24 25.25 ± 0.82 49.65 ± 1.48 5.27 ± 0.25 10.50 ± 0.46

GNN+Pairwise Info

SEAL 10.67 ± 3.46 24.27 ± 6.74 13.16 ± 1.66 27.37 ± 3.20 5.88 ± 0.53 12.47 ± 1.23
BUDDY 13.71 ± 0.59 30.40 ± 1.18 22.84 ± 0.36 48.35 ± 1.18 7.56 ± 0.18 16.78 ± 0.53

Neo-GNN 13.95 ± 0.39 31.27 ± 0.72 17.34 ± 0.84 41.74 ± 1.18 7.74 ± 0.30 17.88 ± 0.71
NCN 14.66 ± 0.95 35.14 ± 1.04 28.65 ± 1.21 53.41 ± 1.46 5.84 ± 0.22 13.22 ± 0.56

NCNC 14.98 ± 1.00 36.70 ± 1.57 24.10 ± 0.65 53.72 ± 0.97 8.58 ± 0.59 18.81 ± 1.16
NBFNet 13.56 ± 0.58 31.12 ± 0.75 14.29 ± 0.80 31.39 ± 1.34 >24h >24h

PEG 15.73 ± 0.39 36.03 ± 0.75 21.01 ± 0.77 45.56 ± 1.38 4.4 ± 0.41 8.70 ± 1.26

we risk only utilizing easy negative samples. This is one of the issues of the existing evaluation

setting (see Issue 2 in Section 2.4.1), whereby randomly selecting negatives, they unknowingly

produce negative samples that are too easy. We address this by selecting the negative samples via a

combination of multiple heuristics. Since heuristics typically correlate well with performance, we

ensure that the negative samples will be non-trivial to classify. This is similar to the concept of

candidate generation [32, 26], which only ranks a subset of candidates that are most likely to be true.

An overview of the generation process is given in Figure 2.2. For each positive sample, we

generate 𝐾 negative samples. To allow personalization to both nodes in the positive sample equally,

we sample 𝐾/2 negatives with each node. For the heuristics, we consider RA [155], PPR [9],

and feature similarity. A more detailed discussion on the negative sample generation is given in

Appendix A.7. It’s important to note that our work centers specifically on negative sampling during

the evaluation stage (validation and test). This is distinct from prior work that concerns the negatives

sampled used during the training phase [134, 91]. As such, the training process remains unaffected

under both the existing and HeaRT setting.
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2.4.3 Results and Discussion

In this subsection we present our results when utilizing HeaRT. We follow the parameter ranges

introduced in Section 2.2.3. For all datasets we use 𝐾 = 500 negative samples per positive sample

during evaluation. Furthermore for ogbl-ppa we only use a small subset of the validation and test

positive samples (100K each) for evaluation. This is because the large size of the validation and test

sets (see Table A.1 in Appendix A.3) makes HeaRT prohibitively expensive.

The results are shown in Table 2.4 (Cora, Citeseer, Pubmed) and Table 2.5 (OGB). For simplicity,

we only include the MRR and Hits@10 for Cora, Citeseer, Pubmed, and the MRR and Hits@20 for

OGB. Additional results for other metrics can be found in Appendix A.9. We note that most datasets,

outside of ogbl-ppa, exhibit much lower performance than under the existing setting. This is though

we typically use much fewer negative samples in the new setting, implying that the negative samples

produced by HeaRT are much harder. We highlight the main observations below.

Observation 1: Better Performance of Simple Models. We find that under HeaRT, “simple"

baseline models (i.e., heuristic, embedding, and GNN methods) show a greater propensity to

outperform their counterparts via ranking metrics than under the existing setting. Specifically, we

focus on MRR in Table 2.1, 2.4, and 2.5, and the corresponding ranking-based metrics in Table 2.2.

Under the existing setting, such methods only rank in the top three for any dataset a total of 5

times. However, under HeaRT this occurs 10 times. Furthermore, under the existing setting only

1 “simple" method ranks best overall while under HeaRT there are 4. This suggests that recent

advanced methods may have benefited from the easier negative samples in the existing setting.

Another interesting observation is that on ogbl-collab, heuristic methods are able to outperform

more complicated models by a large margin. Specifically, we find that Katz is the best ranked

method, Shortest Path the second, and RA the fourth. Furthermore, the MRR gap between the

second ranked method (Shortest Path) and the third (BUDDY) is very large at 14.29 points. We

observe that this result is caused by the dynamic nature of the graph, where node pairs that are

linked in the training data may also be present as positive samples in the test. We further expound

on this observation in Appendix A.8.
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Table 2.5 Results on OGB datasets (%) under HeaRT. Highlighted are the results ranked first
(green), second (blue), and third (orange).

Models ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
MRR Hits@20 MRR Hits@20 MRR Hits@20 MRR Hits@20

CN 12.60 27.51 6.71 38.69 25.70 68.25 17.11 41.73
AA 16.40 32.65 6.97 39.75 26.85 70.22 17.83 43.12
RA 28.14 41.16 8.70 44.01 28.34 71.50 17.79 43.34

Shortest Path 46.71 46.56 0 0 0.54 1.31 >24h >24h
Katz 47.15 48.66 6.71 38.69 25.70 68.25 14.10 35.55

Node2Vec 12.10 ± 0.20 25.85 ± 0.21 11.14 ± 0.95 63.63 ± 2.05 18.33 ± 0.10 53.42 ± 0.11 14.67 ± 0.18 42.68 ± 0.20
MF 26.86 ± 1.74 38.44 ± 0.07 13.99 ± 0.47 59.50 ± 1.68 22.47 ± 1.53 70.71 ± 4.82 8.72 ± 2.60 29.64 ± 7.30

MLP 12.61 ± 0.66 23.05 ± 0.89 N/A N/A 0.98 ± 0.00 1.47 ± 0.00 16.32 ± 0.07 43.15 ± 0.10

GCN 18.28 ± 0.84 32.90 ± 0.66 13.46 ± 0.34 64.76 ± 1.45 26.94 ± 0.48 68.38 ± 0.73 19.98 ± 0.35 51.72 ± 0.46
GAT 10.97 ± 1.16 29.58 ± 2.42 12.92 ± 0.39 66.83 ± 2.23 OOM OOM OOM OOM
SAGE 20.89 ± 1.06 33.83 ± 0.93 12.60 ± 0.72 67.19 ± 1.18 27.27 ± 0.30 69.49 ± 0.43 22.05 ± 0.12 53.13 ± 0.15
GAE OOM OOM 3.49 ± 1.73 17.81 ± 9.80 OOM OOM OOM OOM

SEAL 22.53 ± 3.51 36.48 ± 2.55 9.99 ± 0.90 49.74 ± 2.39 29.71 ± 0.71 76.77 ± 0.94 20.60 ± 1.28 48.62 ± 1.93
BUDDY 32.42 ± 1.88 45.62 ± 0.52 12.43 ± 0.50 58.71 ± 1.63 27.70 ± 0.33 71.50 ± 0.68 19.17 ± 0.20 47.81 ± 0.37

Neo-GNN 21.90 ± 0.65 38.40 ± 0.29 10.86 ± 2.16 51.94 ± 10.33 21.68 ± 1.14 64.81 ± 2.26 16.12 ± 0.25 43.17 ± 0.53
NCN 17.51 ± 2.50 37.07 ± 2.97 12.86 ± 0.78 65.82 ± 2.66 35.06 ± 0.26 81.89 ± 0.31 23.35 ± 0.28 53.76 ± 0.20

NCNC 19.02 ± 5.32 35.67 ± 6.78 >24h >24h 33.52 ± 0.26 82.24 ± 0.40 19.61 ± 0.54 51.69 ± 1.48
NBFNet OOM OOM >24h >24h OOM OOM OOM OOM

PEG 15.68 ± 1.10 29.74 ± 0.95 12.05 ± 1.14 50.12 ± 6.55 OOM OOM OOM OOM

Observation 2: Lower Model Standard Deviation. We observed earlier that, under the existing

evaluation setting, the model variance across seeds was high (see observation 3 in Section 2.3).

This complicates model comparison as the model performance is unreliable. Interestingly, we find

that HeaRT is able to dramatically reduce the variance for all datasets. We demonstrate this by first

calculating the mean standard deviation across all models on each individual dataset. This was done

for both evaluation settings with the results compared. As demonstrated in Table 2.6, the mean

standard deviation decreases for all datasets. This is especially true for Cora, Citeseer, and Pubmed,

which each decrease by over 85%. Such a large decrease in standard deviation is noteworthy as it

allows for a more trustworthy and reliable comparison between methods.

We posit that this observation is caused by a stronger alignment between the positive and

negative samples under our new evaluation setting. Under the existing evaluation setting, the same

set of negative samples is used for all positive samples. One consequence of this is that a single

positive sample may bear little to no relationship to the negative samples (see Section 2.4.1 for

more discussion). However, under our new evaluation setting, the negatives for a positive sample

are a subset of the corruptions of that sample. This allows for a more natural comparison via
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Table 2.6 Mean model standard deviation for the existing setting and HeaRT. We use Hits@20 for
ogbl-ddi, Hits@50 for ogbl-collab, Hits@100 for ogbl-ppa, and MRR otherwise.

Dataset Existing HeaRT % Change

Cora 5.19 0.79 -85%
Citeseer 5.94 0.88 -85%
Pubmed 4.14 0.35 -92%
ogbl-collab 1.49 0.96 -36%
ogbl-ppa 2.13 0.36 -83%
ogbl-ddi 6.77 3.49 -48%
ogbl-citation2 1.39 0.59 -58%

ranking-based metrics as the samples are more related and can be more easily compared.

Observation 3: Lower Model Performance. We observe that the majority of datasets exhibit a

significantly reduced performance in comparison to the existing setting. For example, under the

existing setting, models typically achieve a MRR of around 30, 50, and 30 on Cora, Citeseer, and

Pubmed (Table 2.1), respectively. However, under HeaRT the MRR for those datasets is typically

around 20, 25, and 10 (Table 2.4). Furthermore for ogbl-citation2, the MRR of the best performing

model falls from a shade under 90 on the existing setting to slightly over 20 on HeaRT. Lastly, we

note that the performance on ogbl-ppa actually increases. This is because we only utilize a small

subset of the total test set when evaluating on HeaRT, nullifying any comparison between the two

settings.

These outcomes are observed despite HeaRT using much fewer negative samples than the

original setting. This suggests that the negative samples generated by HeaRT are substantially more

challenging than those used in the existing setting. This underscores the need to develop more

advanced methodologies that can tackle harder negatives samples like in HeaRT.

2.5 Conclusion

In this work we have revealed several pitfalls found in recent works on link prediction. To

overcome these pitfalls, we first establish a benchmarking that facilitates a fair and consistent

evaluation across a diverse set of models and datasets. By doing so, we are able to make several

illuminating observations about the performance and characteristics of various models. Furthermore,

based on several limitations we observed in the existing evaluation procedure, we introduce a more
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practical setting called HeaRT (Heuristic Related Sampling Technique). HeaRT incorporates a more

real-world evaluation setting, resulting in a better comparison among methods. By introducing a

more rigorous and realistic assessment, HeaRT could guide the field towards more effective models,

thereby advancing the state of the art in link prediction.
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CHAPTER 3

EVALUATION PITFALLS IN KNOWLEDGE GRAPH

Knowledge graphs (KGs) facilitate a wide variety of applications. Despite great efforts in creation

and maintenance, even the largest KGs are far from complete. Hence, KG completion (KGC)

has become one of the most crucial tasks for KG research. Recently, considerable literature in

this space has centered around the use of Message Passing (Graph) Neural Networks (MPNNs),

to learn powerful embeddings. The success of these methods is naturally attributed to the use

of MPNNs over simpler multi-layer perceptron (MLP) models, given their additional message

passing (MP) component. In this work, we find that surprisingly, simple MLP models are able to

achieve comparable performance to MPNNs, suggesting that MP may not be as crucial as previously

believed. With further exploration, we show careful scoring function and loss function design has a

much stronger influence on KGC model performance. This suggests a conflation of scoring function

design, loss function design, and MP in prior work, with promising insights regarding the scalability

of state-of-the-art KGC methods today, as well as careful attention to more suitable MP designs for

KGC tasks tomorrow.

3.1 Introduction

Knowledge graphs (KGs) [5, 14] are a type of knowledge base, which store multi-relational

factual knowledge in the form of triplets. Each triplet specifies the relation between a head and

a tail entity. KGs conveniently capture rich structured knowledge about many types of entities

(e.g. objects, events, concepts) and thus facilitate numerous applications such as information

retrieval [129], recommender systems [116], and question answering [121]. To this end, the adopted

KGs are expected to be as comprehensive as possible to provide all kinds of required knowledge.

However, existing large-scale KGs are known to be far from complete with large portions of triplets

missing [5, 14]. Imputing these missing triplets is of great importance. Furthermore, new knowledge

(triplets) is constantly emerging even between existing entities, which also calls for dedicated efforts

to predict these new triplets [30, 47]. Therefore, knowledge graph completion (KGC) is a problem

of paramount importance [67, 140]. A crucial step towards better KGC performance is to learn
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low-dimensional continuous embeddings for both entities and relations [8].

Recently, due to the intrinsic graph-structure of KGs, Graph Neural Networks (GNNs) have

been adopted to learning more powerful embeddings for their entities and relations, and thus

facilitate the KGC. There are mainly two types of GNN-based KGC methods: Message Passing

Neural Networks (MPNNs) [96, 110] and path-based methods [157, 149, 156]. In this work,

we focus on MPNN-based models, which update node features through a message passing (MP)

process over the graph where each node collects and transforms features from its neighbors. When

adopting MPNNs for KGs, dedicated efforts are often devoted to developing more sophisticated MP

processes that are customized for better capturing multi-relational information [110, 96, 138]. The

improvement brought by MPNN-based models is thus naturally attributed to these enhanced MP

processes. Therefore, current research on developing better MPNNs for KGs is still largely focused

on advancing MP processes.

Present Work. In this work, we find that, surprisingly, the MP in the MPNN-based models

is not the most critical reason for reported performance improvements for KGC. Specifically,

we replaced MP in several state-of-the-art KGC-focused MPNN models such as RGCN [96],

CompGCN [110] and KBGAT [79] with simple Multiple Layer Perceptrons (MLPs) and achieved

comparable performance to their corresponding MPNN-based models, across a variety of datasets

and implementations. We carefully scrutinized these MPNN-based models and discovered they also

differ from each other in other key components such as scoring functions and loss functions. To better

study how these components contribute to the model, we conducted comprehensive experiments

to demonstrate the effectiveness of each component. Our results indicate that the scoring and loss

functions have stronger influence while MP makes almost no contributions. Based on our findings,

we develop ensemble models built upon MLPs, which are able to achieve better performance than

MPNN-based models; these implications are powerful in practice, given scalability advantages of

MLPs over MPNNs [147].
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3.2 Related Work

There are mainly two types of GNN-based KGC models: MPNN-based models and path-based

models. When adopting MPNNs for KG, recent efforts have been made to deal with the multi-

relational edges in KGs by designing MP operations. RGCN [96] introduces the relation-specific

transformation matrices. CompGCN [110] integrates neighboring information based on entity-

relation composition operations. KBGAT [79] learns attention coefficients to distinguish the role

of entity in various relations. Path-based models learn pair-wise representations by aggregating

the path information between the two nodes. NBFNet [157] integrates the information from all

paths between the two nodes. RED-GNN [149] makes use of the dynamic programming and

A∗Net [156] prunes paths by prioritizing important nodes and edges. In this paper, we focus on

investigating how the MP component in the MPNNs affects their performance in the KGC task.

Hence, we do not include these path-based models into the comparison. A concurrent work [150]

has similar observations as ours. However, they majorly focus on exploring how the MP component

affects the performance. Our work provides a more thorough analysis on the major contributors for

MPNN-based KGC models and proposes a strong ensemble model based upon the analysis.

3.3 Preliminaries

Before moving to main content, we first introduce KGC-related preliminaries, five datasets and

three MPNN-based models we adopt for investigations.

3.3.1 Knowledge graph completion (KGC)

The task of KGC is to infer missing triplets based on known facts in the KG. In KGC, we aim

to predict a missing head or tail entity given a triplet. Specifically, we denote the triplets with

missing head (tail) entity as (ℎ, 𝑟, ?) ((?, 𝑟, 𝑡)), where the question mark indicates the entity we aim

to predict. Since the head entity prediction and tail entity prediction tasks are symmetric, in the

following, we only use the tail entity prediction task for illustration. When conducting the KGC task

for a triplet (ℎ, 𝑟, ?), we use all entities in KG as candidates and try to select the best one as the

tail entity. Typically, for each candidate entity 𝑡′, we evaluate its score for the triplet (ℎ, 𝑟, 𝑡′) with

the function 𝑠ℎ,𝑟 (𝑡′) = 𝑓 (ℎ, 𝑟, 𝑡′), where 𝑠ℎ,𝑟 (𝑡′) is the score of 𝑡′ given the head entity ℎ and the
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Figure 3.1 A general MPNN framework for KGC. It has three key components: message passing,
scoring function and loss function.

relation 𝑟 , and 𝑓 is a scoring function. We choose the entity 𝑡′ with the largest score as the predicted

tail entity. 𝑓 (·) can be modeled in various ways as discussed later.

Datasets. We use five well-known KG datasets, i.e., FB15k [8], FB15k-237 [109, 108], WN18 [96],

WN18RR [21] and NELL-995 [130] for this study. The detailed descriptions and data statistics

can be found in Appendix B.1. Following the settings in previous works [110, 96], triplets in

these datasets are randomly split into training, validation, and test sets, denoted D𝑡𝑟𝑎𝑖𝑛,D𝑣𝑎𝑙 ,D𝑡𝑒𝑠𝑡 ,

respectively. The triplets in the training set are regarded as the known facts. We manually remove

the head/tail entity of the triplets in the validation and test sets for model selection and evaluation.

Specifically, for the tail entity prediction task, given a triplet (ℎ, 𝑟, 𝑡∗), we remove 𝑡∗ and construct a

test sample (ℎ, 𝑟, ?). The tail entity 𝑡∗ is regarded as the ground-truth for this sample.

Evaluation Metrics. When evaluating the performance, we focus on the predicted scores for the

ground-truth entity of the triplets in the test setD𝑡𝑒𝑠𝑡 . For each triplet (ℎ, 𝑟, ?) in the test set, we sort

all candidate entities 𝑡 in a non-increasing order according to 𝑠ℎ,𝑟 (𝑡). Then, we use the rank-based

measures to evaluate the prediction quality, including Mean Reciprocal Rank (MRR) and Hits@N.

In this work, we choose 𝑁 ∈ {1, 3, 10}. See Appendix B.2 for their definitions.

3.3.2 MPNN-based KGC

Various MPNN-based models have been utilized for KGC by learning representations for the

entities and relations of KGs. The learnt representations are then used as input to a scoring function

𝑓 (·). Next, we first introduce MPNN models specifically designed for KG. Then, we introduce

scoring functions. Finally, we describe the training process, including loss functions.
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3.3.2.1 MPNNs for learning KG representations

KGs can be naturally treated as graphs with triplets being the relational edges. When MPNN

models are adapted to learn representations for KGs, the MP process in the MPNN layers is tailored

for handling such relational data (triplets). In this paper, we investigate three representative MPNN-

based models for KGC, i.e., CompGCN [110], RGCN [96] and KBGAT [79], which are most widely

adopted. As in standard MPNN models, these models stack multiple layers to iteratively aggregate

information throughout the KG. Each intermediate layer takes the output from the previous layer as

the input, and the final output from the last layer serves as the learned embeddings. In addition to

entity embeddings, some MPNN-based models also learn relation embeddings. For a triplet (ℎ, 𝑟, 𝑡),

we use x(𝑘)
ℎ

, x(𝑘)𝑟 , and x(𝑘)𝑡 to denote the head, relation, and tail embeddings obtained after the 𝑘-th

layer. Specifically, the input embeddings of the first layer x(0)
ℎ

, x(0)𝑟 and x(0)𝑡 are randomly initialized.

RGCN aggregates neighborhood information with the relation-specific transformation matrices.

CompGCN defines direction-based transformation matrices and introduces relation embeddings

to aggregate the neighborhood information. It introduces the composition operator to combine

the embeddings to leverage the entity-relation information. KBGAT proposes attention-based

aggregation process by considering both the entity embedding and relation embedding. More details

about the MP process for CompGCN, RGCN and KBGAT can be found in Appendix B.3. For

MPNN-based models with 𝐾 layers, we use x(𝐾)
ℎ

, x(𝐾)𝑟 , and x(𝐾)𝑡 as the final output embeddings and

denote them as xℎ , x𝑟 , and x𝑡 for the simplicity of notations. Note that RGCN does not involve

relation embedding x𝑟 in the MP process, which will be randomly initialized if required by the

scoring function.

3.3.2.2 Scoring functions

After obtaining the final embeddings from the MP layers, they are utilized as input to the scoring

function 𝑓 . Various scoring functions can be adopted. Two widely used scoring functions are

DistMult [131] and ConvE [21]. More specifically, RGCN adopts DistMult. In CompGCN, both

scoring functions are investigated and ConvE is shown to be more suitable in most cases. Hence, in

this paper, we use ConvE as the default scoring function for CompGCN. See Appendix B.4 for
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Figure 3.2 KGC results (%) of CompGCN/CompGCN-MLP, RGCN/RGCN-MLP, and
KBGAT/KBGAT-MLP on FB15K-237. The MLP counterparts achieve compare performance as
the corresponding MPNN models.

more scoring function details.

3.3.2.3 Training MPNN-based models for KGC

To train the MPNN model, the KGC task is often regarded as a binary classification task to

differentiate the true triplets from the randomly generated “fake” triplets. During training, all triplets

in D𝑡𝑟𝑎𝑖𝑛 and the corresponding inverse triplets D′
𝑡𝑟𝑎𝑖𝑛

= {(𝑡, 𝑟𝑖𝑛, ℎ) | (ℎ, 𝑟, 𝑡) ∈ D𝑡𝑟𝑎𝑖𝑛} are treated

as positive samples, where 𝑟𝑖𝑛 is the inverse relation of 𝑟. The final positive sample set can be

denoted as D∗
𝑡𝑟𝑎𝑖𝑛

= D𝑡𝑟𝑎𝑖𝑛
⋃D′

𝑡𝑟𝑎𝑖𝑛
. Negative samples are generated by corrupting the triplets in

D∗
𝑡𝑟𝑎𝑖𝑛

. Specifically, for a triplet (𝑒1, 𝑟𝑒𝑙, 𝑒2) ∈ D∗𝑡𝑟𝑎𝑖𝑛, we corrupt it by replacing its tail entities

with other entities in the KG. More formally, the set of negative samples corresponding to the

triplet (𝑒1, 𝑟𝑒𝑙, 𝑒2) is denoted as: C(𝑒1,𝑟𝑒𝑙,𝑒2) = {(𝑒1, 𝑟𝑒𝑙, 𝑒
′
2) |𝑒

′
2 ∈ V, 𝑒

′
2 ≠ 𝑒2} where V is the set

of entities in KG. CompGCN uses C(𝑒1,𝑟𝑒𝑙,𝑒2) as the negative samples. However, not all negative

samples are utilized for training the RGCN model. Instead, for each positive sample triplet in

D∗
𝑡𝑟𝑎𝑖𝑛

, they adopt negative sampling to select 10 such samples from C(𝑒1,𝑟𝑒𝑙,𝑒2) , and use only these

for training. Also, for RGCN, any relation 𝑟 and its inverse relation 𝑟𝑖𝑛 share the same diagonal

matrix for DistMult in Eq. (B.5) in Appendix B.4. Both CompGCN and RGCN adopt the Binary

Cross-Entropy (BCE) loss. More details are given in Appendix B.5.

3.3.2.4 Major differences between MPNNs

We demonstrate an overview of MPNN-based model frameworks for the KGC task in Figure 5.1.

Specifically, the framework consists of several key components including the MP (introduced in
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Section 3.3.2.1), the scoring function (Section 3.3.2.2), and the loss function (Section 3.3.2.3).

Training can typically be conducted end-to-end. Both RGCN and CompGCN follow this framework

with various designs in each component. We provide a more detailed comparison about them later

in this section. However, KBGAT adopts a two-stage training process, which separates the training

of the MP process (representation learning) and the scoring function. KBGAT achieves strong

performance as reported in the original paper [79], which was later attributed to a test leakage

issue [105]. After addressing this test leakage issue, we found that fitting KBGAT into the general

framework described in Figure 5.1 leads to much higher performance than training it with the

two-stage process (around 10% improvement on FB15K-237). Hence, in this paper, we conduct

analyses for KBGAT by fitting its MP process (described in Appendix B.3) into the framework

described in Figure 5.1.

We summarize the major differences between RGCN, CompGCN, and KBGAT across three

major components: (1) Message Passing. Their MP processes are different as described in

Section 3.3.2.1 and detailed in Appendix B.3. (2) Scoring Function. They adopt different scoring

functions. RGCN adopts the DistMult scoring function while CompGCN achieves best performance

with ConvE. Thus, in this paper, we use ConvE as its default scoring function. For KBGAT, we

adopt ConvE as its default scoring function. (3) Loss Function. As described in Section 3.3.2.3,

CompGCN utilizes all entities in the KG as negative samples for training, while RGCN adopts a

negative sampling strategy. For KBGAT, we also utilize all entities to construct negative samples,

similar to CompGCN.

3.4 What Matters for MPNN-based KGC?

Recent efforts in adapting MPNN models for KG mostly focus on designing more sophisticated MP

components to better handle multi-relational edges. These recently proposed MPNN-based methods

have reported strong performance on the KGC task. Meanwhile, RGCN, CompGCN and KBGAT

achieve different performance. Their strong performance compared to traditional embedding based

models and their performance difference are widely attributed to the MP components [96, 110, 79].

However, as summarized in Section 3.3.2.4, they differ from each other in several ways besides MP;
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little attention has been paid to understand how each component affects these models. Thus, what

truly matters for MPNN-based KGC performance is still unclear. To answer this question, we design

careful experiments to ablate the choices of these components in RGCN, CompGCN and KBGAT to

understand their roles, across multiple datasets. All reported results are mean and standard deviation

over three seeds. Since MP is often regarded as the major contributor, we first investigate: is MP

really helpful? Subsequently, we study the impact of the scoring function and the loss function.

Table 3.1 KGC results (%) with various scoring functions. Models behave differently with different
scoring functions.

FB15K-237 WN18RR NELL-995
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN DistMult 33.7± 0.1 24.7±0.1 36.9±0.2 51.5±0.2 42.9±0.1 39.0±0.1 43.9±0.1 51.7±0.3 32.3±0.5 24.3±0.6 36.1±0.4 47.4±0.2
ConvE 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4± 0.5 42.2±0.3 52.9± 0.1

RGCN DistMult 29.6±0.3 19.1±0.5 34.0± 0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
ConvE 29.6±0.4 20.3± 0.4 32.7±0.5 47.9±0.6 28.9± 0.7 17.4± 0.8 36.9±0.5 48.8±0.5 31.7±0.2 23.3±0.2 35.3±0.3 48.5± 0.2

KBGAT DistMult 33.4±0.1 24.5±0.1 36.6±0.1 51.3±0.5 42.1±0.4 38.7±0.4 43.1± 0.6 49.6±0.6 33.0±0.2 25.5± 0.1 36.8± 0.5 47.3±0.5
ConvE 35.0±0.3 26.0±0.3 38.5± 0.3 53.1± 0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4± 0.8 52.0±0.4

Table 3.2 KGC results (%) with various loss functions. The loss function significantly impacts
model performance.

FB15K-237 WN18RR NELL-995
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN with 31.5±0.1 22.2±0.1 34.8±0.2 49.6±0.2 32.9± 0.9 24.4± 1.5 39.0±0.5 46.7±0.4 32.0±0.2 23.8±0.2 35.7±0.1 48.1±0.2
w/o 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4± 0.5 42.2±0.3 52.9± 0.1

RGCN with 29.6±0.3 19.1±0.5 34.0±0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
w/o 33.4 ± 0.1 24.3± 0.1 36.7±0.1 51.4± 0.2 44.5± 0.1 40.9±0.1 45.5± 0.1 51.8± 0.2 34.6± 0.6 27.0± 0.6 38.3± 0.6 49.4± 0.6

KBGAT with 30.1± 0.3 21.0± 0.3 33.2± 0.4 48.1± 0.3 30.1± 0.2 18.6 ±0.3 37.8±0.3 49.8±0.2 32.6 ± 0.3 24.3± 0.3 36.3± 0.4 48.7± 0.5
w/o 35.0±0.3 26.0±0.3 38.5± 0.3 53.1± 0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4± 0.8 52.0±0.4

3.4.1 Does Message Passing Really Help KGC?

For RGCN and CompGCN, we follow the settings in the original papers to reproduce their

reported performance. For KBGAT, we follow the same setting of CompGCN as mentioned in

Section 3.3.2.4. Specifically, we run these three models on datasets in their original papers. Namely,

we run RGCN on FB15K-237, WN18and FB15K, CompGCN on FB15K-237and WN18RR, and

KBGAT on FB15K-237, WN18RRand NELL-995. To understand the role of the MP component,

we keep other components untouched and replace their MP components with a simple MLP, which

has the same number of layers and hidden dimensions with the corresponding MPNN-based models;

note that since an MPNN layer is simply an aggregation over the graph combined with a feature

transformation [73], replacing the MP component with MLP can also be achieved by replacing the
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adjacency matrix of the graph with an identity matrix. We denote the MLP models corresponding to

RGCN, CompGCN and KBGAT as RGCN-MLP, CompGCN-MLP and KBGAT-MLP, respectively.

We present results for CompGCN, RGCN and KBGAT1 on the FB15K-237in Figure 3.2. Due

to the space limit, we present results on other datasets in Appendix B.6. We summarize the key

observation from these figures:

Observation 1 The counterpart MLP-based models (RGCN-MLP, CompGCN-MLP and KBGAT-

MLP) achieve comparable performance to their corresponding MPNN-based models on all datasets,

suggesting that MP does not significantly improve model performance.

To further verify this observation, we investigate how the model performs when the graph structure

utilized for MP is replaced by random generated graph structure. We found that the MPNN-based

models still achieve comparable performance, which further verifies that the MP is not the major

contributor. More details are in Appendix B.7.

Moreover, comparing RGCN with CompGCN on FB15K-237in Figure 3.2, we observe very

different performances, while also noting that Observation 1 clarifies that the difference in MP

components is not the main contributor. This naturally raises a question: what are the important

contributors? According to Section 3.3.2.4, RGCN and CompGCN also adopt different scoring and

loss functions, which provides some leads in answering this question. Correspondingly, we next

empirically analyze the impact of the scoring and the loss functions with comprehensive experiments.

Note that FB15Kand WN18suffer from the inverse relation leakage issue [108, 21]: a large number

of test triplets can be obtained from inverting the triplets in the training set. Hence, to prevent

these inverse relation leakage from affecting our studies, we conduct experiments on three datasets

NELL-995, FB15K-237and WN18RR, where FB15K-237and WN18RR are the filtered versions

of FB15K and WN18 after addressing these leakage issues.
1We conduct a similar experiment using the setting in the original KBGAT paper. We find that KBGAT and KBGAT-

MLP have similar performance on FB15K-237, WN18RRand NELL-995, which is consistent with Observation
1.
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Table 3.3 KGC results (%) with varying number of negative samples in the loss function. Generally,
utilizing 10 negative samples is not enough. For different datasets and methods, the optimal number
of negative samples varies.

FB15K-237 WN18RR NELL-995
#Neg MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN

10 31.5±0.1 22.2± 0.1 34.8± 0.2 49.6±0.2 32.9± 0.9 24.4±1.5 39.0± 0.5 46.7± 0.4 32.0± 0.2 23.8± 0.2 35.7± 0.1 48.1±0.2
50 34.3± 0.1 24.7± 0.1 38.1± 0.1 53.0± 0.1 40.0± 0.4 33.0±0.7 44.0±0.2 51.6± 0.1 37.2± 0.9 28.7±0.9 41.6± 0.9 53.1± 1.0
200 35.3±0.3 25.5± 0.1 39.2 ± 0.1 53.8± 0.1 43.6± 0.5 39.2±0.7 45.3± 0.2 52.3± 0.5 39.2± 0.3 31.0± 0.3 43.6± 0.2 54.3 ± 0.2
0.5𝑁 34.6 ±0.1 25.3±0.1 38.3± 0.1 52.7±0.1 44.0± 0.5 40.6±0.6 45.1± 0.6 50.9± 0.3 40.7±0.2 33.4± 0.2 44.4± 0.3 54.7±0.2
𝑁 34.2±0.1 25.0±0.2 37.9± 0.3 52.2± 0.1 44.0±0.3 40.7 ±0.2 45.1± 0.3 50.8±0.5 40.3± 0.5 33.0± 0.5 44.0± 0.5 54.4±0.4

RGCN

10 29.6± 0.3 19.1±0.5 34.0± 0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
50 32.5±0.2 22.5±0.3 36.7±0.1 52.0± 0.4 43.9± 0.1 39.6± 0.1 45.6±0.2 51.8± 0.2 29.6±0.3 21.7± 0.3 33.2± 0.3 44.6±0.3
200 33.2±0.1 23.2± 0.1 37.6±0.2 52.2±0.3 44.1±0.2 39.9± 0.4 45.7±0.2 52.0± 0.2 30.0±0.3 21.7±0.2 34.3±0.4 45.7±0.3
0.5𝑁 33.3±0.2 24.3±0.3 36.9±0.1 50.9±0.2 44.4±0.2 40.7± 0.3 45.5±0.2 52.0± 0.3 33.6±0.3 26.7± 0.3 37.2±0.2 46.7±0.2
𝑁 33.0±0.4 23.9±0.6 36.5± 0.3 50.5±0.3 44.5±0.2 40.6±0.2 45.8± 0.2 52.4±0.3 33.7± 0.0 26.9± 0.0 37.0± 0.1 46.4± 0.2

KBGAT

10 30.1±0.3 21.0± 0.3 33.2± 0.4 48.1± 0.3 30.1± 0.2 18.6 ±0.3 37.8±0.3 49.8±0.2 32.6 ±0.3 24.3±0.3 36.3±0.4 48.7±0.5
50 33.6±0.2 24.2±0.3 37.3±0.3 51.9±0.2 35.6±0.5 25.7±0.9 42.6±0.3 51.3±0.1 37.4±0.3 29.0±0.3 41.9±0.2 53.6±0.3
200 34.7±0.2 25.1±0.2 38.8±0.2 53.3±0.2 39.6±2.3 32.7±3.7 43.4±0.8 51.6± 0.4 39.2±0.2 31.0± 0.3 43.6±0.1 54.3±0.1
0.5𝑁 34.0± 0.1 24.7± 0.1 37.7±0.1 52.2±0.1 44.3±0.1 40.8± 0.3 45.5± 0.2 51.1± 0.3 40.1±0.1 33.2±0.1 43.5±0.2 53.2±0.2
𝑁 33.6±0.1 24.4±0.2 37.3±0.2 52.0±0.3 43.8± 0.9 40.1± 1.4 45.3± 0.5 51.1± 0.4 39.6± 0.2 32.8± 0.3 43.0±0.3 52.9±0.1

3.4.2 Scoring Function Impact

Next, we investigate the impact of the scoring function on CompGCN, RGCN and KBGAT while

fixing their loss function and experimental setting mentioned in Section 3.3.2.4. The KGC results

are shown in Table 3.1. In the original setting, CompGCN and KBGAT use ConvE as the scoring

function while RGCN adopts DistMult. In Table 3.1, we further present the results of CompGCN

and KBGAT with DistMult and RGCN with ConvE. Note that we only make changes to the scoring

function, while fixing all the other settings. Hence, in Table 3.1, we still use RGCN, CompGCN and

KBGAT to differentiate these three models but use DistMult and ConvE to indicate the specific

scoring functions adopted.

From this table, we have several observations: (1) In most cases, CompGCN, RGCN and KBGAT

behave differently when adopting different scoring functions. For instance, CompGCN and KBGAT

achieve better performance when adopting ConvE as the scoring function in three datasets. RGCN

with DistMult performs similar to that with ConvE on FB15K-237. However, it dramatically

outperforms RGCN with ConvE on WN18RRand NELL-995. This indicates that the choice of

scoring functions has strong impact on the performance, and the impact is dataset-dependent.

(2) Comparing CompGCN (or KBGAT) with RGCN on FB15K-237, even if the two methods

adopt the same scoring function (either DistMult or ConvE), they still achieve quite different

performance. On the WN18RRdataset, the observations are more involved. The two methods achieve
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similar performance when DistMult is adopted but behave quite differently with ConvE. Overall,

these observations indicate that the scoring function is not the only factor impacting the model

performance.

3.4.3 Loss Function Impact

In this subsection, we investigate the impact of the loss function on these three methods while

fixing the scoring function and other experimental settings. As introduced in Section 3.3.2.3, in the

original settings, CompGCN, RGCN and KBGAT adopt the BCE loss. The major difference in the

loss function is that CompGCN and KBGAT utilize all negative samples while RGCN adopts a

sampling strategy to randomly select 10 negative samples for training. For convenience, we use

w/o sampling and with sampling to denote these two settings and investigate how these two settings

affect the model performance.

3.4.3.1 Impact of negative sampling

To investigate the impact of negative sampling strategy, we also run CompGCN and KBGAT

under the with sampling setting (i.e., using 10 negative samples as the original RGCN), and RGCN

under the w/o sampling setting. The results are shown in Table 3.2, where we use “with” and “w/o”

to denote these two settings. From Table 3.2, we observe that RGCN, CompGCN and KBGAT

achieve stronger performance under the “w/o sampling” setting on three datasets. Specifically, the

performance of CompGCN dramatically drops by 30.3% from 47.2 to 32.9 when adopting the

sampling strategy, indicating that the sampling strategy significantly impacts model performance.

Notably, only using 10 negative samples proves insufficient. Hence, we further investigate how the

number of negative samples affects the model performance in the following subsection.

3.4.3.2 Impact of number of negative samples

In this subsection, we investigate how the number of negative samples affects performance

under the “with sampling” setting for both methods. We run RGCN, CompGCN and KBGAT with

varyinng numbers of negative samples. Following the settings of scoring functions as mentioned in

Section 3.3.2.4., we adopt DistMult for RGCN and ConvE for CompGCN and KBGAT as scoring

functions. Table 3.3 shows the results and #Neg is the number of negative samples. Note that in
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Table 3.3, 𝑁 denotes the number of entities in a KG, thus 𝑁 differs across the datasets. In general,

increasing the number of negative samples from 10 to a larger number is helpful for all methods.

This partially explains why the original RGCN typically under-performs CompGCN and KBGAT.

On the other hand, to achieve strong performance, it is not necessary to utilize all negative samples;

for example, on FB15K-237, CompGCN achieves the best performance when the number of

negative samples is 200; this is advantageous, as using all negative samples is more expensive. In

short, carefully selecting the negative sampling rate for each model and dataset is important.

3.5 KGC without Message Passing

It is well known that MP is the key bottleneck for scaling MPNNs to large graphs [46, 147, 151].

Observation 1 suggests that the MP may be not helpful for KGC. Thus, in this section, we investigate

if we can develop MLP-based methods (without MP) for KGC that can achieve comparable or even

better performance than existing MPNN methods. Compared with the MPNN models, MLP-based

methods enjoy the advantage of being more efficient during training and inference, as they do not

involve expensive MP operations. We present the time complexity in Appendix B.8. The scoring

and loss functions play an important role in MPNN-based methods. Likewise, we next study the

impact of the scoring and loss functions on MLP-based methods.

Table 3.4 KGC results (%) of MLP-based methods with different combinations of scoring and loss
functions. Both the scoring and loss functions impact the performance of MLP-based models.

FB15K-237 WN18RR NELL-995
#Neg MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult

10 29.1±0.3 19.1±0.4 32.7±0.4 48.9±0.3 44.0± 0.0 39.5±0.5 45.7± 0.3 51.9±0.5 27.5±0.2 20.0±0.1 30.9±0.1 42.0±0.3
50 31.3±0.2 21.2±0.3 35.4±0.3 51.1±0.1 42.5± 0.4 38.3±0.5 43.9±0.4 51.1±0.2 27.5± 0.4 19.4±0.6 31.7±0.3 42.7±0.1
200 32.5±0.3 22.3±0.3 37.1±0.3 52.0± 0.2 41.5± 0.5 37.6±0.5 42.6± 0.6 49.6 ± 0.6 29.1±0.2 21.1±0.2 33.2±0.0 43.9 ±0.3
0.5𝑁 32.8±0.2 23.4±0.3 36.8± 0.1 50.7± 0.1 41.3±0.6 38.0±0.4 42.4±0.7 48.5±1.5 31.5± 0.2 23.9±0.2 35.5± 0.2 45.3±0.3
𝑁 32.7± 0.1 23.5 ±0.1 36.5±0.1 50.4± 0.1 41.4±0.2 38.4±0.2 42.2±0.2 47.7±0.2 31.0±0.1 23.4±0.3 34.8±0.3 45.1±0.4

w/o 33.4±0.2 24.5 ± 0.2 36.6± 0.2 51.1± 0.2 43.3± 0.1 39.9± 0.1 44.6±0.2 50.7 ±0.9 32.8±0.2 25.0±0.2 36.5 ± 0.3 47.7 ± 0.3

ConvE

10 30.3 ±0.4 21.1 ±0.5 33.6 ±0.4 48.6 ±0.4 35.5 ±5.8 27.6 ± 8.4 40.5 ±3.7 49.3 ± 1.2 31.6 ±0.6 23.5 ±0.5 35.0 ± 0.7 47.2 ±0.6
50 34.0± 0.3 24.5± 0.3 37.9± 0.2 52.6±0.2 42.1±0.1 36.3±0.2 45.0±0.1 52.4±0.1 37.0± 0.3 28.6± 0.4 41.4±0.3 53.1±0.1
200 35.0±0.0 25.5±0.1 39.0± 0.1 53.4±0.1 44.2±0.3 39.9± 0.4 45.7± 0.3 52.6±0.1 38.9±0.3 30.8±0.4 43.3±0.4 54.0±0.1
500 35.3±0.0 25.7±0.0 39.2± 0.2 53.6±0.2 44.5±0.3 40.6±0.4 45.7± 0.2 52.3±0.2 39.3±0.3 31.6±0.3 43.5 ±0.4 53.6±0.3
0.5𝑁 34.3±0.1 25.0± 0.2 38.1± 0.0 52.4±0.0 45.4±0.2 41.8±0.3 46.4±0.3 52.6±0.2 40.0 ± 0.1 33.3± 0.2 43.3±0.1 52.9±0.1
𝑁 34.0±0.1 24.8±0.2 37.7± 0.1 51.9±0.1 45.4±0.2 41.8±0.2 46.5±0.3 52.4 ± 0.1 39.7±0.2 33.0± 0.1 43.1±0.2 52.5± 0.1

w/o 35.5 ± 0.2 26.4±0.2 38.9±0.2 53.7±0.1 47.3± 0.1 43.7±0.2 48.8 ±0.1 54.4±0.1 38.1 ±0.5 30.4±0.5 42.1±0.5 52.5±0.5

3.5.1 MLPs with various scoring and loss

We investigate the performance of MLP-based models with different combinations of scoring

and loss functions. Specifically, we adopt DistMult and ConvE as scoring functions. For each
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Table 3.5 KGC results (%) of the ensembled MLP-based methods, which outperform the
MPNN-based models.

FB15K-237 WN18RR NELL-995
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4± 0.5 42.2±0.3 52.9± 0.1
RGCN 29.6± 0.3 19.1±0.5 34.0± 0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3

KBGAT 35.0±0.3 26.0±0.3 38.5± 0.3 53.1± 0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4± 0.8 52.0±0.4

MLP-best 35.5 ± 0.2 26.4±0.2 38.9±0.2 53.7±0.1 47.3± 0.1 43.7±0.2 48.8 ±0.1 54.4±0.1 40.0 ± 0.1 33.3± 0.2 43.3±0.1 52.9±0.1
MLP-ensemble 36.9 ±0.2 27.5±0.2 40.8±0.2 55.4±0.1 47.7±0.3 43.9 ±0.4 48.9±0.1 55.4±0.1 41.7±0.2 34.7±0.2 45.1±0.0 55.2±0.1

scoring function, we try both the with sampling and w/o sampling settings for the loss function.

Furthermore, for the with sampling setting, we vary the number of negative samples. The results of

MLP-based models with different combinations are shown in Table 3.4, which begets the following

observations: (1) The results from Table 3.4 further confirm that the MP component is unnecessary

for KGC. The MLP-based models can achieve comparable or even stronger performance than GNN

models. (2) Similarly, the scoring and the loss functions play a crucial role in the KGC performance,

though dataset-dependent. For example, it is not always necessary to adopt the w/o setting for strong

performance: On the FB15K-237dataset, when adopting ConvE for scoring, the MLP-based model

achieves comparable performance with 500 negative samples; on WN18RR, when adopting DistMult

for scoring, the model achieves best performance with 10 negative samples; on NELL-995, when

adopting ConvE for scoring, it achieves the best performance with 0.5𝑁 negative samples.

Given these observations, next we study a simple ensembling strategy to combine different

MLP-based models, to see if we can obtain a strong and limited-complexity model which can

perform well for various datasets, without MP. Note that ensembling MLPs necessitates training

multiple MLPs, which introduces additional complexity. However, given the efficiency of MLP, the

computational cost of ensembling is still acceptable.

3.5.2 Ensembling MLPs

According to Section 3.5.1, the performance of MLP-based methods is affected by the scoring

function and the loss function, especially the negative sampling strategy. These models with various

combinations of scoring function and loss functions can potentially capture important information

from different perspectives. Therefore, an ensemble of these models could provide an opportunity to

combine the information from various models to achieve better performance. Hence, we select some
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MLP-based models that exhibit relatively good performance on the validation set and ensemble

them for the final prediction. Next, we briefly describe the ensemble process. These selected models

are individually trained, and then assembled together for the inference process. Specifically, during

the inference stage, to calculate the final score for a specific triplet (ℎ, 𝑟, 𝑡), we utilize each selected

model to predict a score for this triplet individually and then add these scores to obtain the final

score for this triplet. The final scores are then utilized for prediction. In this work, our focus is to

show the potential of ensembling instead of designing the best ensembling strategies; hence, we opt

for simplicity, though more sophisticated strategies could be adopted. We leave this to future work.

We put the details of the MLP-based models we utilized for constructing the ensemble model

for these three datasets in Appendix B.9. The results of these ensemble methods are shown

in Table 3.5, where we use MLP-ensemble to generally denote the ensemble model. Note that

MLP-best in the table denotes the best performance from individual MLP-based methods from

Table 3.4. From the table, we can clearly observe that MLP-best can achieve comparable or even

slightly better performance than MPNN-based methods. Furthermore, the MLP-ensemble can

obtain better performance than both the best individual MLP-based methods and the MPNN-based

models, especially on FB15K-237and NELL-995. These observations further support that the

MP component is not necessary. They also indicate that these scoring and loss functions are

potentially complementary to each other, and as a result, even the simple ensemble method can

produce better performance.

3.6 Discussion

Key Findings: (1) The MP component in MPNN-based methods does not significantly contribute

to KGC performance, and MLP-based methods without MP can achieve comparable performance;

(2) Scoring and the loss function design (i.e. negative sampling choices) play a much more crucial

role for both MPNN-based and MLP-based methods; (3) The impact of these is significantly

dataset-dependent; and (4) Scoring and the loss function choices are complementary, and simple

strategies to combine them in MLP-based methods can produce better KGC performance.

Practical Implications: (1) MLP-based models do not involve the complex MP process and thus
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they are more efficient than the MPNN-based models [147]. Hence, such models are more scalable

and can be applied to large-scale KGC applications for practical impact; (2) The simplicity and

scalability of MLP-based models make ensembling easy, achievable and effective (Section 3.5.2); and

(3) The adoption of MLP-based models enables us to more conveniently apply existing techniques

to advance KGC. For instance, Neural Architecture Search (NAS) algorithms [158] can be adopted

to automatically search better model architectures, since NAS research for MLPs is much more

extensive than for MPNNs.

Implications for Future Research: (1) Investigating better designs of scoring and loss functions

are (currently) stronger levers to improve KGC. Further dedicated efforts are required for developing

suitable MP operations in MPNN-based models for this task; (2) MLP-based models should be

adopted as default baselines for future KGC studies. This aligns with several others which suggest

the underratedness of MLPs for vision-based problems [68, 107]; (3) Scoring and loss function

choices have complementary impact, and designing better strategies to combine them is promising;

and (4) Since KGC is a type of link prediction, and many works adopt MPNN designs in important

settings like ranking and recommendations [139, 28, 116], our work motivates a pressing need to

understand the role of MP components in these applications.

3.7 Conclusion

In this paper, we surprisingly find that the MLP-based models are able to achieve competitive

performance compared with three MPNN-based models (i.e., CompGCN, RGCN and KBGAT)

across a variety of datasets. It suggests that the message passing operation in these models is not the

key component to achieve strong performance. To explore which components potentially contribute

to the model performance, we conduct extensive experiments on other key components such as

scoring function and loss function. We found both of them play crucial roles, and their impact varies

significantly across datasets. Based on these findings, we further propose ensemble methods built

upon MLP-based models, which are able to achieve even better performance than MPNN-based

models.
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CHAPTER 4

LANGUAGE MODEL-ENHANCED LINK PREDICTION.

Session-based recommendation systems have recently attracted considerable interest, aiming to

provide personalized recommendations by analyzing users’ historical activities within sessions.

While ID-based methods have shown considerable promise, they often struggle with long-tail

items and fail to consider other forms of information, such as valuable textual information. To

incorporate text information, various approaches have been proposed, generally employing a naive

fusion framework. Interestingly, it appears that combining ID and text using the naive fusion does

not consistently surpass the performance of the best single-modality approach. Further exploration

indicates a potential imbalance issue in the naive fusion method, where the ID tends to overshadow

the text and the text is undertrained. This issue indicates that the naive fusion method might not be

as effective in combining ID and text as once believed. To address these challenges, we introduce

an alternative training approach, AlterRec, which separates the training of ID and text to prevent

the previously observed imbalance issue. AlterRec also designs an innovative strategy to enhance

the interaction between the two modalities, facilitating mutual interaction and more effective text

integration. Extensive experiments demonstrate the effectiveness of AlterRec in session-based

recommendation.

4.1 Introduction

In recent years, predicting the next item in user-item interaction sequences, such as clicks or

purchases, has gained increasing attention [126, 58, 81, 37]. This practice is prevalent across various

online platforms, including e-commerce, search engines, and music/video streaming sites. These

sequences are created during user-item interactions in sessions. They encode user preferences which

are dynamic and evolve over time [106]. Moreover, in many systems, only the user’s behavior history

during an ongoing session is accessible. Therefore, analyzing interactions in active sessions becomes

essential for real-time recommendations. This need has spurred the development of session-based

recommendations [126, 37], which utilizes the sequential patterns in a session to understand and

predict the latest user preferences.
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Figure 4.1 An illustration of a naive fusion framework. It has two encoders to extract the ID and text
information.

In this domain, ID-based methods [48, 103, 126] have become the predominant approach,

significantly influencing the recommendation paradigm [142, 64]. These methods involve assigning

unique ID indexes to users and items, transforming them into vector representations. Their popularity

stems from their simplicity and effectiveness across various applications [64]. Despite their proven

effectiveness, these methods still have limitations. One drawback is their heavy reliance on the

ID-based information. They tend to overlook other forms of valuable data, notably rich text

information. This exclusion of textual data can result in less informative representations. It can be

problematic in scenarios with limited interactions between users and items. However, most items

experience sparse interactions, known as long-tail items [82], which presents a challenge for these

methods.

Recognizing these limitations, there has been a shift towards integrating text data for recommen-

dations. The surging volume of text data emphasizes the crucial role of text in various domains,

such as news recommendation [57, 123] and e-commerce [45]. These systems aim to match user

preferences by processing and encoding textual content like user reviews, product descriptions, and

news articles. Recent trends indicate an increasing reliance on language models [50, 11, 119, 35]

for extracting semantic information due to their exceptional ability to encode text effectively. This

progress has sparked considerable interest in enhancing recommendation beyond traditional user-item

interaction data.

The prevailing approach in current literature for combining ID and text typically employs a naive
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fusion framework [38, 148, 119], as shown in Figure 4.1. It involves generating embeddings from

ID and text encoders, merging them, and using this for loss computation. However, our preliminary

study in section 4.3.2 reveals that the naive fusion may not be as effective as previously believed

in combining ID and text information. 1) Notably, it shows that independent training on just the

ID information can yield performance comparable to, or even better than, the naive fusion model.

This implies that the naive fusion model may not necessarily enhance, and could potentially reduce

the overall performance. This finding aligns with the studies in multi-modal learning [40, 115, 23],

which indicates that the fusion of multiple modalities doesn’t always outperform the best single

modality. 2) We further explore one naive fusion implementation as an example to have a deeper

understanding of this finding. The exploration suggests a potential imbalance issue: the model

heavily relies on the ID component, while the text component appeared undertrained. This imbalance

implies that the unexpected finding might be a result of the naive fusion framework’s inability to

balance the contributions of the two types of information effectively, thereby hindering optimal

overall performance.

The imbalance issue identified in the naive fusion models significantly hinders the accurate

integration of textual data. Despite increased efforts to integrate textual content, these methods

often fail to effectively capture essential semantic information. It results in a considerable loss

of valuable information. This realization shifts our focus towards independent training, which

does not exhibit this issue. However, independent training overlooks the potential for ID and

text to provide complementary information that could be mutually learning. To address these

challenges, we propose a novel Alternative training strategy to combine the ID and text components

for session-based Recommendation (AlterRec). This approach separates the training of ID and text

and thereby avoiding the imbalance issue. Additionally, it goes beyond simple independent training

by enabling implicit interactions between these two modalities, thereby allowing them to inform and

learn from each other. We conduct comprehensive experiments to validate the superior effectiveness

of AlterRec over a variety of baselines in real-world datasets.
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Figure 4.2 Session-based recommendation results (%) on the Amazon-French dataset. We compare
the models combing ID and text against models trained independently on either ID or text
information alone.

4.2 Related Work

ID-based Methods. These methods [36] convert each user or item into a vector representation using

unique ID indices. More recent advancements have seen the adoption of sophisticated architectures

as encoders. For instance, SASRec [48] and BERT4Rec [103] employ the Transformer architecture

to delineate user preferences within sequences. SR-GNN [126] and HG-GNN [81] construct graphs

from the user-item interaction data to capture complex patterns across multiple sessions. However,

these methods overlook additional valuable text information, potentially leading to less informative

representations.

Text-Integrated Methods. These methods combine the text information to perform recommenda-

tions. For instance, FDSA [148] leverages concatenation and S³-Rec [153] uses self-supervised tasks

to combining textual information. UniSRec [38] employs the BERT model and LLM2BERT4Rec [35]

uses the text feature from by the large language model (LLMs) as initialization. RLMRec [90] and

LLMRec [119] both use LLMs for generating user/item profiles. Among the methods discussed, the

majority follows the naive fusion framework [148, 38, 119], which may not effectively incorporate

text as identified in the section 4.3.2.

4.3 Preliminaries

4.3.1 Session-based Recommendation

Consider a set of users and items, denoted asU andV, respectively. Let S denote the set of

user-item interaction sequences (or sessions). We use s = {𝑠1, 𝑠2, , ..., 𝑠𝑛} ∈ S to represent one of
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the sequences, where 𝑠𝑖 ∈ V is the 𝑖-th item interacted with the same user in session s, and 𝑛 is

the total number of interactions. The number of users and items are represented by |U| and |V|,

respectively. Each item 𝑖 in V is associated with text information, such as product descriptions,

titles, or taxonomies, denoted by 𝑡𝑖 = {𝑤1, 𝑤2, ..., 𝑤𝑐}. Here, each word 𝑤 𝑗 belongs to a shared

vocabulary, and 𝑐 represents the truncated length of the text. Given an item sequence, the objective

of session-based recommendation is to predict the next item in the current sequence. Formally, this

involves generating a ranking list y𝑠 for all candidate items, where ys = [𝑦s,1, ..., 𝑦s,|V|] and each

𝑦s,𝑖 is a score indicating the likelihood of item 𝑖 being the next interacted item given a session s.

The Naive Fusion Framework. In session-based recommendation tasks, ID-based and text-based

information can be combined to potentially improve the overall performance. The majority of existing

methods employ a naive fusion approach combined with a joint training strategy [38, 148, 119], as

illustrated in Figure 4.1. Specifically, this approach involves generating two types of embeddings X𝐼𝐷

and X𝑡𝑒𝑥𝑡 using ID and text encoders, respectively. These two embeddings which can be item-level

or session-level, are then merged into a final embedding Z, through methods such as summation or

concatenation. This final embedding is used to calculate a relevance score between a given session

and the candidate item, estimating the likelihood of the item being the next choice. Throughout this

paper, the term naive fusion is used to refer to this framework. Notably, existing methods such as

UniSRec [38], FDSA [148], and LLMRec [119] follow this approach. We implemented a naive

fusion method which is named NFRec and more details are in section C.1 in the Appendix.

4.3.2 Preliminary Study

In this subsection, motivated by multi-modal learning [115, 40, 83], we conduct a preliminary

study to investigate potential challenges in combining ID and text information for session-based

recommendation, aiming to inspire more effective integration strategies.

In the naive fusion framework, the ID and text can be treated as two different types of modality

that work together to improve the overall performance. However, studies in the multi-modal learning

[115, 23, 40, 83] reveals a phenomenon: fusing two modalities does not usually outperform

the best single modality trained independently. In other words, combining modalities may not
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enhance, and could potentially reduce, overall performance. Various studies have focused on this

phenomenon, offering analysis from different perspectives, such as greedy learning [124], modality

competition [40] and modality laziness [24]. To effectively merge ID and text information for

session-based recommendations, we conduct an investigation to first verify the presence of this

phenomenon and then explore its underlying causes.

4.3.2.1 Naive Fusion vs. Independent Training

To examine if the phenomenon mentioned above exists in session-based recommendation, this

investigation aims to compare the performance of naive fusion models including our implementation

NFRec, UniSRec [38] and FDSA [148] against their corresponding two single modality models (ID

and text) that are trained independently. To ensure a fair comparison, we employ the same ID/text

encoder, scoring function, and loss function across both naive fusions and independent training

frameworks. More details are given in section C.1 in the Appendix.

The results on Amazon-French (detailed in the section 4.5.1.1) are presented in Figure 4.2 ,

where “ID only” and “text only” denote the respective ID and text only models that are trained

independently, “sum” and “concat” represent our naive fusion implementations using summation and

concatenation respectively to combine ID and text. We employ two widely used metrics Hits@20

and NDCG@20, where higher scores indicate better performance. We also investigated on the HD

dataset in Figure C.1 in the Appendix which shows similar phenomenon. We have the following

observations:

Observation 2 Training solely with ID information independently can often achieve performance

comparable to, or even better than, naively fusing both ID and text. It indicates the ineffectiveness

of naive fusion for combining ID and text.

Observation 3 The text only model generally results in the worst performance, often exhibiting a

substantial performance gap compared to the ID only approach.

The first observation aligns with findings in multi-modal learning studies [83, 40], indicating a

similar phenomenon. This suggests that the integration of ID and text is not as effective as expected
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Figure 4.3 Test performance in terms of Hits@20 (%) and training loss comparison on the
Amazon-French dataset.

in the session-based recommendation. To gain a more comprehensive understanding of this issue,

we will delve into NFRec, which are elaborated in the following subsection.

4.3.2.2 Exploration of NFRec

In our exploration, we aim to understand how ID and text components perform under NFRec,

shedding light on why their combination in a naive fusion framework may not yield the expected

improvement. To this end, we take NFRec applying concatenation for fusing ID and text information

as one example. NFRec can be conceptually divided into two segments: the ID component and the

text component (further details are in section C.2 in the Appendix). Test performance and training

loss on the Amazon-French dataset are shown in Figure 4.3, with the components labeled as “ID in

NFRec" and “text in NFRec." We observe a similar phenomenon on the HD dataset, as shown in

Figure C.2 in the Appendix.

Figure 4.3 reveals a significant imbalance issue in NFRec: the performance and loss of the ID

component are almost overlapping with those of NFRec, which indicates a heavy reliance on the

ID component. The ID dominates the overall performance and loss, and the text component has

limited contributions. This suggests that the Observation 1 may stem from the nature of naive

fusion. Specifically, it appears incapable of balancing the modalities to achieve optimal overall

performance and tends to overly depend on the stronger ID modality (as noted in the Observation 2).

Supporting this hypothesis is from various studies [83, 40, 115, 124] in multi-modal learning which

offer empirical and theoretical insights. Further investigation to identify more concrete causes of
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Figure 4.4 An Overview of AlterRec. (a), (b): two key components – the ID and text uni-modal
networks. (c): These networks are trained alternately, learning from each other through predictions
generated by the other network.

this phenomenon is designated as one future work.

4.4 Framework

Having identified the potential imbalance issue with the naive fusion framework in the previous

section, we explore to combine ID and text information by training them separately. However, simply

training ID and text independently may not fully exploit their potential to provide complementary

information. To address these challenges, we introduce AlterRec, a novel alternative training method,

as illustrated in Figure 4.4. The model comprises two key components: the ID and text uni-modal

networks, designed to capture ID and semantic information respectively. We employ the predictions

from one network as training signals for the other, facilitating interaction and mutual learning

through these predictions. AlterRec separates the training of ID and text, effectively avoiding the

imbalance issue. Moreover, it goes beyond independent training by facilitating interaction between

ID and text, enabling them to learn mutually beneficial information and incorporate the text more

effectively.

4.4.1 ID and Text Uni-modal Networks

The ID and text unimodal networks share similar architectures. Each has respective ID/text

encoders to generate ID and text embeddings. Based on these embeddings, a scoring function is
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adopted to calculate the relevance between given session and candidate items. We first introduce

two encoders, and then show how to define the scoring function.

4.4.1.1 ID Encoder

The ID encoder is designed to create a unique embedding for each item based on its ID index.

This is achieved using an ID embedding matrix X ∈ R|V|×𝑑 , where 𝑑 is the size of the embedding.

Each row, X𝑖, corresponds to the ID embedding of item 𝑖. Notably, this matrix is a learnable

parameter and updated during the optimization.

4.4.1.2 Text Encoder

The text encoder is designed to extract textual information from items. Leveraging the advanced

language modeling capabilities, we utilize the Sentence-BERT [89] in this work. For item 𝑖,

represented by a text sequence 𝑡𝑖 = {𝑤1, 𝑤2, ..., 𝑤𝑐}, the Sentence-BERT processes the input

sentence to generate token embeddings and output a comprehensive embedding for the entire

sentence. We further use a MLP [20] to transform the embeddings from the Sentence-BERT into a

𝑑−dimensional matrix. Formally:

H𝑖 = MLP(SBERT(𝑤1, 𝑤2, ..., 𝑤𝑐)), (4.1)

where H ∈ R|V|×𝑑 and each row H𝑖 corresponds to the text embedding of item 𝑖. Considering

practical constraints, we fix the language model which isn’t updated during the optimization process

due to the high training cost.

4.4.1.3 Scoring Function

In the context of session-based recommendation, our objective is to predict the next item in

a sequence of items interacted with the same user, denoted as s = {𝑠1, 𝑠2, ..., 𝑠𝑛}. To accomplish

this, we generate a prediction score, 𝑦s, 𝑗 , for each candidate item 𝑗 . These scores are then used to

rank all candidate items, with the top-ranked item predicted as the next item. The process begins

with obtaining the session embedding qs ∈ R𝑑 for session s, which encodes the user’s interaction

behavior. The relevance between the session embedding and each candidate item’s embedding is

calculated and used as the score for that item.
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Session&Item Relevance. The session embedding is derived from the embeddings of the items

within the session, either ID or text embeddings. We use the ID embedding as an example since it’s

similar for the text embedding. Formally, we define a function 𝑔 to generate the session embedding:

qs = 𝑔(X𝑠1 ,X𝑠2 ,X𝑠𝑛). A simple yet effective approach is the mean function which calculates the

mean of the item embeddings. Alternatively, the Transformer architecture [111] can be employed

to capture item-item transition patterns. When using transformer, we use the embedding of the

last item in the sequence as the session embedding, as it encapsulates information from all items.

The session embedding can be derived using either of these functions based on their empirical

performance. We determine the relevance between the session and each candidate item using

vector multiplication: 𝑦𝐼𝐷s,𝑖 = X𝑇
𝑖
qs. Similarly, we can get the score 𝑦𝑡𝑒𝑥𝑡s,𝑖 = H𝑇

𝑖
q̂s based on the text

embedding, where q̂s = 𝑔(H𝑠1 ,H𝑠2 ,H𝑠𝑛).

4.4.2 Alternative Training

The ID and text data offer different information. Our goal is to facilitate their interaction,

enabling mutual learning and thereby enhancing overall performance. To this end, we propose an

alternative training strategy to use predictions from one uni-modal network to train the other network.

These predictions encode information of one modality, allowing one network to learn information

from the other. We leverage the predictions from one modality to the other in two aspects. 1) First,

we select top-ranked items as augmented positive training samples. These items with top scores are

likely very relevant to the current session from the perspective of one modality that could provide

more training signals for the other modality especially for items with fewer interactions. 2) Second,

we choose other high-scored items as negative samples. These items are ranked higher but not the

most relevant ones for one modality and we aim to force the other modality to distinguish them from

positive samples. Such negative samples are much harder to be distinguished compared to those

from traditional random sampling [92]. Thus, we refer to them as hard negative samples in this

work.

Hard Negative Samples. To illustrate, we use the predictions from the ID uni-modal network to

train the text uni-modal network as an example. We first generate predictions from the ID uni-modal
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network for a given session s. Then we rank the scores of all candidate items in descending order

𝑟 𝐼𝐷s = argsort(𝑦𝐼𝐷s,1 , 𝑦
𝐼𝐷
s,2 , ..., 𝑦

𝐼𝐷
s,|V|) where 𝑟 𝐼𝐷s denotes the sequence of ID indices corresponding to

the sorted scores. We select items ranked from 𝑘1 to 𝑘2, represented as 𝑟 𝐼𝐷s [𝑘1 : 𝑘2], as the hard

negative samples for training the text uni-modal network. It enables the text uni-modal network to

learn from the patterns identified by the ID uni-modal network. These hard negatives play a crucial

role in defining the loss function. For a given session s with 𝑠𝑡 as the target item, we use the cross

entropy as the loss function by following most of the related works [38, 126, 81]:

𝐿𝑡𝑒𝑥𝑡 = −
∑︁
s∈S

log( 𝑓 (𝑦𝑡𝑒𝑥𝑡s,𝑠𝑡 )) (4.2)

where 𝑓 is the Softmax function applied over the target item 𝑠𝑡 and the negative samples in

𝑟 𝐼𝐷s [𝑘1 : 𝑘2].

Similarly, we can use the hard negative sample 𝑟 𝑡𝑒𝑥𝑡s [𝑘1 : 𝑘2] derived from the text uni-modal net-

work by sorting the scores and identifying the ranking ID index 𝑟 𝑡𝑒𝑥𝑡s = argsort(𝑦𝑡𝑒𝑥𝑡s,1 , 𝑦
𝑡𝑒𝑥𝑡
s,2 , ..., 𝑦

𝑡𝑒𝑥𝑡
s,|V|).

We define the loss function to train the ID uni-modal network as follows:

𝐿 𝐼𝐷 = −
∑︁
s∈S

log( 𝑓 (𝑦𝐼𝐷s,𝑠𝑡 )) (4.3)

where the Softmax function is applied over the target item 𝑠𝑡 and the negative samples in 𝑟 𝑡𝑒𝑥𝑡s [𝑘1 : 𝑘2].

Positive Sample Augmentation. To train the text uni-modal network, we utilize 𝑟 𝐼𝐷s [1 : 𝑝] as

additional positive samples which serves as ground-truth target items. Similarly, 𝑟 𝑡𝑒𝑥𝑡s [1 : 𝑝] is used

as supplementary positive samples for training the ID uni-modal network. Typically, we set 𝑝 < 𝑘1.

Accordingly, the losses in Eq. (4.2) and (4.3) are modified as follows:

𝐿𝑡𝑒𝑥𝑡𝑎 = −
∑︁
s∈S

(
log( 𝑓 (𝑦𝑡𝑒𝑥𝑡s,𝑠𝑡 )) + 𝛽 ∗

∑︁
𝑠𝑘∈𝑟 𝐼𝐷s [1:𝑝]

log( 𝑓 (𝑦𝑡𝑒𝑥𝑡s,𝑠𝑘 ))
)

(4.4)

𝐿 𝐼𝐷𝑎 = −
∑︁
s∈S

(
log( 𝑓 (𝑦𝐼𝐷s,𝑠𝑡 )) + 𝛽 ∗

∑︁
𝑠𝑘∈𝑟 𝑡𝑒𝑥𝑡s [1:𝑝]

log( 𝑓 (𝑦𝐼𝐷s,𝑠𝑘 ))
)

(4.5)

Here, 𝛽 is a parameter to adjust the importance of the augmented samples. Note that within each

network, these augmented samples are paired with the same corresponding hard negative samples as

the target item 𝑠𝑡 .
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Algorithm 4.1 Alternative Training

Require: User-item interaction set S, epoch number using random negatives 𝑚𝑟𝑎𝑛𝑑𝑜𝑚, maximum
epoch number 𝑚𝑚𝑎𝑥 , gap epoch number 𝑚𝑔𝑎𝑝

Ensure: Converged models 𝜃 𝐼𝐷 , 𝜃𝑡𝑒𝑥𝑡
1: Random initialize two uni-modal networks 𝜃 𝐼𝐷 , 𝜃𝑡𝑒𝑥𝑡
2: for i = 1, 2, . . . , 𝑚𝑟𝑎𝑛𝑑𝑜𝑚 do
3: Train 𝜃 𝐼𝐷 using random negatives
4: end for
5: for i = 1, 2, . . . , 𝑚𝑟𝑎𝑛𝑑𝑜𝑚 do
6: Train 𝜃𝑡𝑒𝑥𝑡 using random negatives
7: end for
8: for i = 0, 1, . . . , 𝑚𝑚𝑎𝑥 − 2 ∗ 𝑚𝑟𝑎𝑛𝑑𝑜𝑚 do
9: if 𝑖 mod (2 ∗ 𝑚𝑔𝑎𝑝) < 𝑚𝑔𝑎𝑝 then

10: Compute loss in Eq. (4.3)
11: Update 𝜃 𝐼𝐷 : 𝜃 𝐼𝐷 ← 𝜃 𝐼𝐷 − 𝛼∇𝐿 𝐼𝐷
12: else
13: Compute loss in Eq. (4.2)
14: Update 𝜃𝑡𝑒𝑥𝑡 : 𝜃𝑡𝑒𝑥𝑡 ← 𝜃𝑡𝑒𝑥𝑡 − 𝛼∇𝐿𝑡𝑒𝑥𝑡
15: end if
16: end for

Training Algorithm. This algorithm focuses on facilitating the interaction between two networks,

and we use the Figure 4.4(c) as a more straightforward illustration. We present the pseudo code

in Algorithm 4.1. The parameters within the ID and text uni-modal networks are denoted as 𝜃 𝐼𝐷

and 𝜃𝑡𝑒𝑥𝑡 , respectively. As indicated in line 1, both networks are randomly initialized. The training

process consists of two stages. 1) Initially, due to the lower quality of the learned embeddings, we

don’t employ interaction between two networks. Thus, we apply random negative samples during the

first 𝑚𝑟𝑎𝑛𝑑𝑜𝑚 epochs, as indicated in line 2-7. This involves replacing the hard negatives in Eq. (4.2)

and Eq. (4.3) with randomly selected negatives with equal number. 2) Subsequently, we shift to

training with hard negatives. We start by training the ID uni-modal network using hard negatives

derived from the text uni-modal network, as described in lines 9 to 11. After 𝑚𝑔𝑎𝑝 epochs, the

training focus shifts to the text uni-modal network, which is trained using hard negatives from the ID

uni-modal network, as shown in lines 12-15. Following another 𝑚𝑔𝑎𝑝 epochs, we resume training

the ID uni-modal network and repeat this alternating process. Notably, for AlterRec_aug, we replace

the loss function in line 10 and 13 as Eq. (4.5) and Eq. (4.4) respectively. This approach ensures that
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each network continually learns from the other, thereby potentially improving overall performance.

Upon convergence of both networks, we generate a final relevance score by combining the

relevance scores from each network and weighting their contributions. This score is used during the

inference stage and is defined as:

𝑦s,𝑖 = 𝛼 ∗ 𝑦𝐼𝐷s,𝑖 + (1 − 𝛼) ∗ 𝑦𝑡𝑒𝑥𝑡s,𝑖 (4.6)

Here, 𝑦s,𝑖 is the final score for the candidate item 𝑖 given session s, and 𝛼 is a pre-defined parameter.

Table 4.1 Data statistic of the session datasets. The Amazon-M2 datasets don’t involve users.
#Train, #Val, and #Test denote the number of sessions in the train, validation, and test.

Dataset #User #Item #Train #Val #Test

HD 145,750 39,114 182,575 2,947 5,989
Amazon-Spanish - 38,888 75,098 7,900 6,237
Amazon-French - 40,258 96,245 10,507 8,981
Amazon-Italian - 45,559 102,923 11,102 10,158

4.5 Experiment

In this section, we conduct comprehensive experiments to validate the effectiveness of AlterRec.

In the following, we will introduce the experimental settings, followed by the results and their

analysis.

4.5.1 Experimental Settings

4.5.1.1 Datasets

We adopt two real-world session recommendation datasets including textual data and the data

statistic is presented in Table 4.1. HD: It is from an e-commerce company that is derived from user

purchase logs on its website. Amazon-M2 [45]: It’s a multilingual dataset. For the purpose of this

study, which does not focus on multilingual data, we extracted unilingual sessions to create individual

datasets for three languages: Spanish, French, and Italian. They are denoted as Amazon-Spanish,

Amazon-French, and Amazon-Italian, respectively.

The HD dataset is a sampled dataset of purchase logs from the Home Depot’s website. We

include sessions where all items have textual data, i.e., titles, descriptions, and taxonomy. Items in
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each session is interacted by the same user, who may have engaged in several sessions at distinct

timestamps. For the purposes of validation and testing, we select the most recent sessions from

different users. Specifically, 10% of these sessions are designated for validation and 20% for testing,

with the remainder allocated to training sessions. Typically, the sessions in validation appear after

those in the training set, and the sessions for testing appear after those in the validation set. For

the three Amazon-M2 datasets, since there is no original validation set, we use about 10% of the

training set to create a validation set.

4.5.1.2 Baselines

In our study, we refer to the model without augmentation as AlterRec and the augmented

version as AlterRec_aug. We include several baseline methods: CORE [37], SASRec [48],

BERT4Rec [103], SR-GNN [126], and HG-GNN [81] as ID-based methods. Text-integrated

methods include LLM2BERT4Rec [35], UniSRec [38], FDSA [148], and S³-Rec [153]. Notably,

UniSRec (FHCKM) refers to the model pretrained on the FHCKM dataset [38], while UniSRec in

this work denotes the model pretrained on our datasets (HD and Amazon-M2). LLM2BERT4Rec

uses BERT4Rec as a backbone model, and we also test LLM2SASRec, which uses SASRec. To

ensure fairness, each baseline method uses the same input features as AlterRec, except for UniSRec

(FHCKM), which is pretrained with fixed dimension sizes.

4.5.1.3 Settings

Empirically, for the HD dataset, we use the mean function for ID session embedding and

Transformer for text session embedding. For Amazon-M2, Transformer is used for both ID and

text session embeddings. Model performance is evaluated using Hits@K and NDCG@K, with

K set to 10 and 20. Higher scores indicate better performance. We set the parameters as follows:

𝑚𝑟𝑎𝑛𝑑𝑜𝑚 = 2, 𝑚𝑔𝑎𝑝 = 2, 𝑚𝑚𝑎𝑥 = 30, 𝛼 = 0.5, 𝛽 = 0.5, 𝑝 = 5. Additionally, for HD, we set 𝑘1 = 6,

𝑘2 = 2000, and for the Amazon-M2 datasets, 𝑘1 = 20, 𝑘2 = 20000 are used.

We search the learning rate in {0.01, 0.001} and dropout in {0.1, 0.3, 0.5}, and we set hidden

dimension as 300, and number of Transformer layer to be 2, for all models. The test results we

report are based on the model that achieves the best performance during the validation phase. For
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text feature extraction in the HD dataset, we utilize Sentence-BERT with the all-MiniLM-L6-v2

model1. In contrast, for the three Amazon-M2 datasets, we employ Sentence-BERT with the

distiluse-base-multilingual-cased-v1 model2, due to its proficiency in handling multiple languages

including Spanish, French, and Italian. For each item in the HD dataset, we use title, description,

and taxonomy as the textual data. For the Amazon-M2 datasets, we use the title and description as

textual data. All baseline methods employ the cross entropy as loss function and are implemented

based on the RecBole 3. All the experiments except for the industrial setting are conducted on the

NVIDIA L4 GPUs with 24Gb.

Table 4.2 Performance Comparison (%) on the HD and three Amazon-M2 datasets. All reported
results are mean and standard deviation over three seeds. The best results are highlighted in bold,
and the second-best results are underlined.

HD Amazon-Spanish
Hits@10 Hits@20 NDCG@10 NDCG@20 Hits@10 Hits@20 NDCG@10 NDCG@20

SASRec 33.58 ± 0.27 40.93 ± 0.14 18.23 ± 0.06 20.09 ± 0.06 70.95 ± 0.32 80.46 ± 0.32 44.88 ± 0.33 47.29 ± 0.34
BERT4Rec 26.06 ± 0.26 31.85 ± 0.45 15.61 ± 0.3 17.08 ± 0.35 64.6 ± 0.13 74.0 ± 0.33 44.6 ± 0.16 46.98 ± 0.18

SRGNN 30.09 ± 0.07 36.0 ± 0.19 15.31 ± 0.13 15.73 ± 0.13 67.02 ± 0.29 76.37 ± 0.12 46.75 ± 0.33 49.12 ± 0.26
HG-GNN 33.17 ± 0.13 40.72 ± 0.20 18.27 ± 0.49 20.19 ± 0.51 N/A N/A N/A N/A

CORE 37.04 ± 0.11 44.73 ± 0.06 19.86 ± 0.14 21.81 ± 0.14 71.83 ± 0.15 81.14 ± 0.17 41.05 ± 0.06 43.41 ± 0.08
UnisRec (FHCM) 36.03 ± 0.12 43.67 ± 0.06 20.14 ± 0.79 22.08 ± 0.77 72.15 ± 0.01 81.3 ± 0.02 44.87 ± 0.1 47.2 ± 0.1

UnisRec 34.56 ± 0.23 42.19 ± 0.16 19.01 ± 0.08 20.92 ± 0.08 72.33 ± 0.06 81.42 ± 0.16 45.51 ± 0.05 47.82 ± 0.06
FDSA 32.1 ± 0.34 39.11 ± 0.2 20.44 ± 0.1 22.21 ± 0.06 70.55 ± 0.24 79.84 ± 0.08 49.83 ± 0.15 52.18 ± 0.13
S³-Rec 26.69 ± 0.1 33.04 ± 0.34 16.01 ± 0.14 17.62 ± 0.11 69.61 ± 0.4 78.85 ± 0.62 47.25 ± 0.45 49.6 ± 0.4

LLM2SASRec 34.12 ± 0.29 42.13 ± 0.18 18.69 ± 0.26 20.72 ± 0.22 71.55 ± 0.06 80.68 ± 0.12 48.45 ± 0.15 50.77 ± 0.17
LLM2BERT4Rec 29.51 ± 0.35 37.3 ± 0.33 16.25 ± 0.3 18.22 ± 0.3 66.47 ± 0.2 76.95 ± 0.27 40.29 ± 0.32 42.95 ± 0.35

AlterRec 38.25 ± 0.14 46.31 ± 0.11 20.72 ± 0.06 22.76 ± 0.06 72.41 ± 0.17 81.49 ± 0.09 50.59 ± 0.14 52.9 ± 0.12
AlterRec_aug 38.46 ± 0.1 46.37 ± 0.08 20.74 ± 0.05 22.75 ± 0.03 72.47 ± 0.19 81.45 ± 0.04 50.58 ± 0.02 52.86 ± 0.05

Amazon-French Amazon-Italian
Hits@10 Hits@20 NDCG@10 NDCG@20 Hits@10 Hits@20 NDCG@10 NDCG@20

SASRec 69.2 ± 0.15 78.4 ± 0.1 44.89 ± 0.43 47.23 ± 0.44 68.25 ± 0.08 78.37 ± 0.06 43.24 ± 0.18 45.81 ± 0.18
BERT4Rec 63.01 ± 0.11 72.47 ± 0.15 43.84 ± 0.04 46.24 ± 0.07 62.24 ± 0.26 72.38 ± 0.13 42.42 ± 0.15 44.99 ± 0.11

SRGNN 65.61 ± 0.09 74.93 ± 0.09 46.27 ± 0.1 48.64 ± 0.08 65.62 ± 0.26 75.2 ± 0.15 44.85 ± 0.17 47.28 ± 0.15
CORE 69.93 ± 0.02 79.32 ± 0.1 39.4 ± 0.05 41.79 ± 0.07 69.42 ± 0.12 79.4 ± 0.1 39.27 ± 0.05 41.8 ± 0.05

UniSRec (FHCM) 70.35 ± 0.04 79.73 ± 0.13 43.99 ± 0.12 46.37 ± 0.1 69.95 ± 0.06 79.84 ± 0.07 42.97 ± 0.18 45.48 ± 0.2
UniSRec 70.54 ± 0.09 79.74 ± 0.03 44.5 ± 0.06 46.84 ± 0.06 69.99 ± 0.07 79.63 ± 0.03 43.42 ± 0.08 45.87 ± 0.06
FDSA 68.94 ± 0.29 78.16 ± 0.13 48.62 ± 0.11 50.96 ± 0.08 67.88 ± 0.07 77.97 ± 0.11 47.04 ± 0.11 49.6 ± 0.12
S³-Rec 62.82 ± 1.78 72.85 ± 1.01 40.84 ± 2.57 43.39 ± 2.37 60.6 ± 2.92 71.67 ± 2.19 37.88 ± 3.42 40.69 ± 3.22

LLM2SASRec 70.01 ± 0.1 79.15 ± 0.08 48.13 ± 0.08 50.45 ± 0.11 69.2 ± 0.14 79.11 ± 0.06 46.22 ± 0.39 48.73 ± 0.4
LLM2BERT4Rec 65.48 ± 0.02 75.91 ± 0.08 39.8 ± 0.16 42.45 ± 0.15 64.88 ± 0.44 75.9 ± 0.14 31.23 ± 0.26 32.0 ± 0.24

AlterRec 70.61 ± 0.03 79.75 ± 0.07 49.53 ± 0.02 51.86 ± 0.01 69.98 ± 0.01 79.75 ± 0.05 47.87 ± 0.14 50.35 ± 0.14
AlterRec_aug 70.82 ± 0.09 79.84 ± 0.1 49.56 ± 0.06 51.86 ± 0.07 70.13 ± 0.03 79.86 ± 0.11 47.87 ± 0.13 50.34 ± 0.15

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
2https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
3https://recbole.io/index.html
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4.5.2 Performance Comparison

The comparison results are presented in Table 4.2. Since the Amazon-M2 dataset lacks user

information, it is not feasible to obtain results for HG-GNN [81], which are denoted as “N/A”.

Our observations are as follows: 1) Alter_aug consistently outperforms other baseline models

across a range of datasets, with AlterRec often achieving the second-best performance, hightlighting

the effectiveness of our alternative training strategy. Moreover, it demonstrates that integrating

augmentation data can further enhance performance. Although UniSRec and FDSA exhibit

strong performance in some cases, they do not consistently excel across all metrics. In contrast,

AlterRec maintains a balanced and superior performance in both Hits@N and NDCG@N. For

instance, AlterRec shows about a 10% relative improvement over UniSRec based on NDCG@10 and

NDCG@20 on Amazon-M2 datasets. Additionally, it achieves approximately 19% and 2% relative

improvements over FDSA based on Hits@10 and Hits@20 on the HD and Amazon-M2 datasets.

2) Models incorporating text data, like AlterRec, UniSRec, and FDSA, generally outperform

ID-based models, indicating that text information offers complementary benefits and enhances

overall performance.

Table 4.3 Ablation study on key components. Reported results (%) are mean value over three seeds.

HD Amazon-French
Methods Hits@10 Hits@20 Hits@10 Hits@20

AlterRec 38.25 46.31 70.61 79.75
AlterRec_random 37.41 45.41 70.46 79.64
AlterRec_w/o_text 35.64 42.95 68.26 77.23
AlterRec_w/o_ID 30.05 38.73 66.96 76.85

4.5.3 Ablation Study

In this subsection, we evaluate the effectiveness of key components in our model: hard negative

samples and the ID and text uni-modal networks. Table 4.3 presents the ablation study results

for the following model variants: “AlterRec_random" for training with random negative samples,

“AlterRec_w/o_text" for the model without the text uni-modal network, and “AlterRec_w/o_ID"

for the model excluding the ID uni-modal network. AlterRec_w/o_text and AlterRec_w/o_ID are

trained on a single modality.
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Figure 4.5 Test performance during the alternative training. AlterRec can mitigate the imbalance
issue.

The results in Table 4.3 show that using random negative samples hurts performance, as it behave

likes independent training and lacks interaction between the two modalities. This underscores the

effectiveness of AlterRec over independent training, which benefits from hard negative samples

to enhance learning between the two uni-modal networks. Furthermore, AlterRec significantly

outperforms model variants that rely only on ID information, i.e., AlterRec_w/o_text. For instance,

AlterRec achieves relative improvements of 7.82% and 3.26% in terms of Hits@20 on the HD

and Amazon-French datasets, respectively. These findings highlight AlterRec’s superior ability to

integrate text information over naive fusion methods.

Additionally, we present the performance of AlterRec in Figure 4.5, including the individual

performance of the ID and text components within AlterRec across epochs. These components

are denoted as "ID in AlterRec" and "text in AlterRec", respectively. The overall performance of

AlterRec is based on the score 𝑦s,𝑖 in Eq. (4.6). The performance of "ID in AlterRec" and "text in

AlterRec" are derived from the scores 𝑦𝐼𝐷s,𝑖 and 𝑦𝑡𝑒𝑥𝑡s,𝑖 within 𝑦s,𝑖. Figure 4.5 demonstrates that both

ID and text components are effectively trained in our model, and crucially, AlterRec does not exhibit

the imbalance issue commonly associated with naive fusion.

4.5.4 Performance on Long-tail Items

Textual data offers valuable semantic information that can be used to enhance long-tail items

in session-based recommendation. To validate this, we divide the test data into groups based on

the popularity of the ground-truth item in the training data. We then compare the performance of
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Figure 4.6 Performance comparison w.r.t. long-tail items. The bar graph depicts the proportion of
sessions in the test data for each group. The line chart illustrates the improvement ratios for
Hits@20 and NDCG@20 relative to BERT4Rec.

various methods in each group against the ID-based method BERT4Rec. The comparative result is

presented in Figure 4.6, where we also show the proportion of each group. This figure reveals that a

majority of items have sparse interactions (long-tail items). In most cases, AlterRec outperforms

other baselines particularly on long-tail items.

For instance, AlterRec achieves the best performance in the [0,30] group on the HD and

Amazon-French. It indicates that AlterRec effectively captures textual information, enhancing its

performance on long-tail items.

Table 4.4 Comparison results (%) under the industrial setting. AlterRec achieves better performance
than the deployed model.

HD-industry
Methods Hits@10 Hits@20 NDCG@10 NDCG@20

Deployed_baseline 28.87 34.12 19.26 20.59
AlterRec 29.74 35.31 19.68 21.09
Improv. 3.01% 3.49% 2.18% 2.42%

4.5.5 Performance under the Industrial Setting

We further deploy our model in an industrial setting, training it on over 60 million sessions

spanning the past two years and evaluating it on a validation set containing 0.6 million sessions from

53



the following month. The training set includes over 1 million unique items, while the validation

set contains more than 0.1 million items. We compare our model, AlterRec, with the previously

deployed baseline model at The Home Depot, as reported in Table 4.4. The new dataset is referred

to as "HD-Industry," the relative improvement is denoted as "Improv.," and the deployed baseline

model is referred to as "Deployed_baseline." From the results, AlterRec demonstrates significantly

better performance. For example, it achieves a 3.49% relative improvement over the baseline in

terms of Hits@20. This highlights the effectiveness of AlterRec in industrial applications. In the

following paragraph, we provide further details of model deployment.

Deployment. Our model has the same deployed setting with the baseline deployed model.

AlterRec is deployed on Vertex AI 4, a fully managed machine learning platform on Google

Cloud. The model is hosted and served via auto-generated APIs, enabling real-time inference

and seamless integration with external applications. For inference, CPU instances are used to

ensure a cost-effective and scalable deployment, maintaining low response times, while GPU

instances are leveraged during training to accelerate model development. The model can be regularly

retrained with fresh data using Google Cloud’s AI Platform, with automated hyperparameter tuning

incorporated to continuously optimize performance. Vertex AI’s built-in tools can be used to track

key metrics such as latency, accuracy, and conversion rates, with alerts set up for any anomalies.

To handle cold-start items, when a new item is introduced to the system, an item representation is

built online using item descriptions and titles—without requiring historical interaction data. This

allows the system to generate recommendations for new items immediately. During periodic model

retraining, ID-based embeddings can be constructed for items, providing a richer, more robust

representation by learning from user-item interactions over time.

4.5.6 Parameter Analysis

In this subsection, we analyze the sensitivity of four key hyper-parameters: the parameter 𝛼

which adjusts the contribution of ID and text scores in Eq. (4.6), 𝛽 which is the weight assigned

to the loss of augmented positive samples in Eq. (4.4) and Eq. (4.5); 𝑘1 and 𝑘2 which are
4https://cloud.google.com/vertex-ai/?hl=en
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Figure 4.7 Performance of AlterRec by varying 𝛼, 𝛽, 𝑘1 and 𝑘2. AlterRec remains stable across a
range of values.

the starting and end index used for selecting hard negative samples respectively, as discussed in

Section 4.4.2. The results for Hits@20 and NDCG@20 on HD and Amazon-French are presented

in Figure 4.7. Generally, AlterRec maintains stable performance across a range of hyper-parameter

values, indicating that the model can achieve promising results with lightweight parameter tuning.

Regarding 𝛼, an increase in performance is observed as 𝛼 rises from 0.1 to 0.5, followed by a

decrease when 𝛼 is increased from 0.5 to 0.9. This suggests that an 𝛼 value of 0.5 typically yields

the best performance, indicating equal contributions from ID and text. For 𝑘2, there is an increasing

trend in NDCG@20 on Amazon-French and a decreasing trend in Hits@20 on HD as 𝑘2 increases.

This indicates that the Amazon-French may benefit from relatively more hard negatives, whereas

HD does not require as many.

4.6 Conclusion

In this work, we explore an effective method for combining ID and text information in session-

based recommendation. We have identified an imbalance issue in the widely-used naive fusion

framework, which leads to insufficient integration of text information. To address this, we introduce a

novel approach AlterRec employing the alternative training strategy that enables implicit interactions

between ID and text, thereby facilitating their mutual learning and enhancing overall performance.

Specifically, we develop separate uni-modal networks for ID and text to capture their respective

information. By employing hard negative samples and augmented training samples from one network

to train the other, we facilitate the exchange of information between the two, leading to improved
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overall performance. The effectiveness of AlterRec is validated through extensive experiments

on various datasets against state-of-the-art baselines. In the future, we plan to investigate more

advanced models, such as LLaMA, as the text encoders in AlterRec.
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CHAPTER 5

LINK PREDICTION-ENHANCED LANGUAGE MODEL

Query understanding plays a key role in exploring users’ search intents. However, it is inherently

challenging since it needs to capture semantic information from short and ambiguous queries and

often requires massive task-specific labeled data. In recent years, pre-trained language models (PLMs)

have advanced various natural language processing tasks because they can extract general semantic

information from large-scale corpora. However, directly applying them to query understanding is

sub-optimal because existing strategies rarely consider to boost the search performance. On the

other hand, search logs contain user clicks between queries and urls that provide rich users’ search

behavioral information on queries beyond their content. Therefore, in this paper, we aim to fill

this gap by exploring search logs. In particular, we propose a novel graph-enhanced pre-training

framework, GE-BERT, which leverages both query content and the query graph to capture both

semantic information and users’ search behavioral information of queries. Extensive experiments

on offline and online tasks have demonstrated the effectiveness of the proposed framework.

5.1 Introduction

Query understanding [102] plays a crucial role in information retrieval. It aims to learn the intentions

of a search query, and provides useful information to advance downstream applications such as

document retrieval and ranking [44]. Many types of tasks have been developed to facilitate query

understanding such as query classification [13, 99], query matching [56], and query expansion [152].

The challenges for these tasks are mainly from two aspects. First, search queries are often short

and ambiguous; as a result, it is hard to capture the semantic meanings of queries only relying on

their content. Second, the majority of existing solutions [13, 4] often train models from scratch in a

supervised way, which require a large number of task-specific labeled data. However, obtaining such

labeled data is labour intensive and usually costs tremendous money.

Recent years we have witnessed immense efforts in developing pre-trained language models

(PLMs) [97, 43] such as BERT [22] and its variants [104, 136, 70]. These PLMs are trained on

large-scale unlabeled corpora where they can extract general semantic information. Thus, they pave
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a way to help specific NLP tasks even when only a small amount of task-specific labeled data is

available. However, directly applying these PLMs to query understanding can be sub-optimal. First,

the goal of query understanding is to boost the search performance but the current PLMs seldom

incorporate this goal into their pre-training strategies. Second, queries are different from normal

natural languages because they are usually short.

To enhance the PLMs towards query understanding, one natural direction is to design domain-

adaptive pre-training strategies with domain data [152, 78, 16, 69]. The search log is a commonly

used domain data for query understanding, which is often denoted as a query-url bipartite click

graph [44]. The graph encodes user search behaviors and provides rich information about queries

beyond their content. Thus, it is appealing to explore this click graph to advance PLMs. However,

BERT and its variants cannot directly process such graph data and dedicated efforts are desired.

In this paper, we propose a novel graph-based domain adaptive pre-training framework, named

Graph Enhanced BERT(GE-BERT), which enjoys both advantages of the PLMs and the domain

knowledge, i.e. click graph, for query understanding. To evaluate its effectiveness, we first fine-tune

GE-BERT and compare it with representative baselines on two offline tasks, i.e., query classification

and query clustering. Then we demonstrate the superiority of the fine-tuned GE-BERT on the online

deployment based on the the medical query searching.

5.2 Related Work

In this section, we briefly reviews related work, including the query understanding tasks, general

pre-training models, and various graph neural networks.

5.2.1 Query Understanding

To explore users’ query intents, researchers have conducted extensive studies from different

perspectives, such as query classification [99, 154], query matching [56], query suggestion [122, 3,

75], query expansion [152], etc. Among them, query classification is an efective way to understand

queries, which can straightforwardly improve the quality of Web search results. Query classification

tries to categorize a query into a predefined taxonomy based on the topic [4, 13, 10, 132, 100].

Furthermore, query matching is another practical task for search engines, which aims to predict if
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two given queries have similar semantic meaning.

5.2.2 Pre-training Techniques

Strategies for learning pre-training language representations can be divided into two categories:

feature-based and fine-tuning. Feature-based methods [77, 84, 85] generally adopt features to learn

word embeddings. For example, ELMo [85] takes the pre-training representatios as additional

features and generates high-quality deep context-aware emebddings, in which the word polysemy

issue has been addressed. For fine-tuning based methods [86, 22], the goal is to provide a good

pre-trained architecture that is used as a starting point for specific downstream tasks. The pre-trained

model captures rich semantic patterns by training on large-scale corpus. Recent works [141, 88]

have shown their effectiveness in various natural language processing areas. A notable example

is BERT [22], which is built on the transformer architecture [111]. Recently, the effectiveness of

BERT has also been explored in query understanding tasks [152, 78, 16, 69]. For example, Zheng

et al. [152] proposed a query expansion model that leverages BERT to select relevant document

chunks for expansion. Mustar et al. [78] showed that BERT exhibits more robust to noise and has a

better understanding of complex queries than conventional methods for the query suggestion task.

5.2.3 Graph Neural Networks

Classical GNNs [12, 19, 54] are typically based on spectral methods, which generally define the

convolutional operations in the Fourier domain. An efficient and simplified example is GCN [54],

which extends the convolution operator by approximating the first-order Chebyshev expansion.

Modern GNNs [34, 113] are built upon neural networks that learn representation vectors on the

graph-structured data. They generally pass information from a target node to the next layer via

propagation and aggregation on its neighbors. Among them, Velickovic et al. [113] proposed

the GAT model that applies the attention mechanism to aggregate representations on the entire

neighborhood. Inspired by the great success of GNNs, we adopt GNN to integrate the query graph

information for accurately modeling.
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Figure 5.1 Illustration of pre-training and fine-tuning process. The Transformer module capture
both the semantic and graph structural information after pretraining.

5.3 The Proposed Framework

In this section, we present the details of the proposed framework. Before that, we firstly introduce

some key concepts and notations. The query graph is built from the query-url bipartite graph [44],

where two queries are connected if they share at least one url in the bipartite graph. Formally, we

denote the query graph as G = (V, E), whereV = {𝑣1, 𝑣2, ..., 𝑣𝑛} is the set of |V| = 𝑛 query nodes,

and E is the set of edges connecting nodes amongV. Furthermore, the query graph can also be

described by an adjacency matrix A ∈ R𝑛×𝑛, where A𝑖 𝑗 = 1 if the nodes 𝑣𝑖 and 𝑣 𝑗 are connected and

A𝑖 𝑗 = 0 otherwise. Each query node 𝑣𝑖 in the graph represents a query 𝑞𝑖 = {𝑐𝑖1, . . . , 𝑐
𝑖
𝑡}, which

consists of a sequence of tokens. Here 𝑐𝑖
𝑗

indicates the 𝑗-th token in 𝑞𝑖, and 𝑡 is the number of

tokens.

Based on the query graph, we propose a pre-training framework GE-BERT to integrate the graph

information into BERT, which can be further fine-tuned for downstream query understanding tasks.

An illustration is shown in Figure 5.1. In particular, the pre-training framework in Figure 5.1(a)

consists of three modules – the Transformer module, the GNN module and the Transfer module.

The graph semantics captured from the GNN module is transferred through the Transfer module to

the Transformer module. An illustration of the downstream task is presented in Figure 5.1(b).

60



Notably, we inject the query graph information into the Transformer module to perform

downstream tasks, instead of using both the Transformer module and the GNN module to build the

downstream model due to two reasons: 1) First, the GNN module is only trained on the existing

query graph and thus it cannot handle new coming queries without any connection to the existing

graph. The Transformer module, on the other hand, has the flexibility to generate embeddings for

new queries. 2) Second, the complexity of the GNN module for fine-tuning and online deployment

is significantly higher than that of the Transformer module, while the Transformer module provides

more practical flexibility. Next, we introduce details of the three modules in the proposed pre-training

framework and discuss pre-training strategies.

5.3.1 The Transformer Module

In the Transformer module, we adopt the Transformer encoder of the BERT model to learn

representations of queries. The encoder is pre-trained on a large scale corpus and thus has strong

ability to capture semantic information in natural language. The Transformer encoder takes a

sequence of tokens as input and outputs a sequence of their corresponding final embeddings, i.e., one

embedding for each token. To feed the queries into the Transformer encoder, we tokenize each query

into a sequence of tokens based on the WordPiece method [127]. Following the original BERT [22],

for each query, we add a special token [CLS] at the beginning of the token sequence; thus the query

𝑞𝑖 is denoted as: 𝑞𝑖 = {[𝐶𝐿𝑆], 𝑐𝑖1, . . . , 𝑐
𝑖
𝑡}. We specifically denote the input embedding and output

embedding for a token 𝑐𝑖
𝑗

in query 𝑞𝑖 as E𝑐𝑖
𝑗

and E′
𝑐𝑖
𝑗

, respectively. Formally, we summarize the

aforementioned process into the following formulation:

{E′
𝐶𝐿𝑆𝑖

,E′
𝑐𝑖1
, . . . ,E′

𝑐𝑖𝑡
} = Transformer({E𝐶𝐿𝑆𝑖 ,E𝑐𝑖1 , . . . ,E𝑐𝑖𝑡 }). (5.1)

Finally, we use the output embedding of the [CLS] token E′
𝐶𝐿𝑆𝑖

as the final embedding of the entire

query. For convenience, we denote the final embedding output from the Transformer module for

query 𝑞𝑖 as H𝑖 = E′
𝐶𝐿𝑆𝑖

.
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5.3.2 The GNN Module

To capture the graph information in the query graph, we propose the GNN module which takes

the query graph as input. The node’s initial embedding is represented by the output embedding from

the Transformer module for the specific query. The GNN module consists of several GNN layers,

where each layer updates the node embedding by aggregating information from its neighborhood.

Specifically, the GNN model is able to capture the 𝐾-hop neighborhood information after 𝐾 layers.

Formally, the 𝑘-th GNN layer can be generally defined as follows:

H̃𝑘 = GNN(A, H̃𝑘−1) (5.2)

where GNN(·) denotes a general GNN layer, A is the adjacency matrix and H̃𝑘 ∈ R𝑛×𝑑𝑘 is the output

embedding of all nodes in the 𝑘-th layer. We use H̃𝑖 ∈ R𝑑𝐾 to denote the final output embedding of

the node 𝑣𝑖 after a total of 𝐾 iterations, i.e., H̃𝑖 = H̃𝐾
𝑖

. Specifically, the node embedding is initialized

with the output from the Transformer module, i.e., H̃0
𝑖
= H𝑖.

In this paper, we adopt two representative GNN models, i.e., GCN [54] and GAT [113], to capture

the query graph information. To preserve the graph information and train the GNN parameters, we

use the output node embeddings from the GNN module to reconstruct the query graph. In particular,

given two nodes 𝑣𝑖 and 𝑣 𝑗 , we define a probability score 𝑠𝑖 𝑗 = sigmoid(H̃𝑖 · H̃ 𝑗 ) to predict if they

have a link in the query graph where sigmoid(·) is the sigmoid function. The loss of the graph

reconstruction is defined as follows:

L𝐺𝑁𝑁 = −
∑︁
𝑖

∑︁
𝑗∈(N𝑖∪N ′𝑖 )

A𝑖 𝑗 log 𝑠𝑖 𝑗 + (1 − A𝑖 𝑗 ) log(1 − 𝑠𝑖 𝑗 ) (5.3)

where N𝑖 is the set of neighbors of 𝑣𝑖, N ′𝑖 is the set of negative samples that are not connected with

node 𝑣𝑖, and |N ′
𝑖
| = |N𝑖 |.

5.3.3 The Transfer Module

The Transfer module is proposed to fuse the graph information captured by the GNN module to

the Transformer module. In the literature, minimizing the KL divergence between prior and posterior

distributions is demonstrated to be an effective way for knowledge transfer [144, 65]. Inspired by this,
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we define the prior distribution based on the Transformer module since it only utilizes query content:

𝑝(A𝑖 𝑗 |H𝑖,H 𝑗 ) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (H𝑖 ·H 𝑗 ). The posterior distribution is obtained from the GNN module as

it involves additional information from users’ search behaviors: 𝑝(A𝑖 𝑗 |H̃𝑖, H̃ 𝑗 ) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (H̃𝑖 · H̃ 𝑗 ).

The loss to minimize the distance between these two distributions is defined as follows:

L𝐾𝐿 =
∑︁
𝑖

∑︁
𝑗∈ (N𝑖∪N′𝑖 )

(
𝑝(A𝑖 𝑗 |H̃𝑖 , H̃ 𝑗) log

𝑝(A𝑖 𝑗 |H̃𝑖 , H̃ 𝑗)
𝑝(A𝑖 𝑗 |H𝑖 ,H 𝑗)

+ (1 − 𝑝(A𝑖 𝑗 |H̃𝑖 , H̃ 𝑗)) log
1 − 𝑝(A𝑖 𝑗 |H̃𝑖 , H̃ 𝑗)
1 − 𝑝(A𝑖 𝑗 |H𝑖 ,H 𝑗)

)
The prior and posterior distributions essentially predict if two nodes are connected. Optimizing

this loss potentially drives the Transformer module to achieve similar graph reconstruction result

with the GNN module, i.e., the Transformer module could naturally capture the graph information

guided by the GNN module.

5.3.4 Pre-training Strategies

We propose two strategies for the pre-training process, i.e., stage-by-stage and joint training. 1)

In the stage-by-stage strategy, we separate the training processes of the Transformer module and

the GNN module. In the stage of training the GNN module, we fix the parameters of the Transformer

module and update the GNN module by the loss L𝐺𝑁𝑁 . In the stage of training the Transformer

Module, we fix the GNN module and transfer the information captured by the GNN module into the

Transformer module by the loss L𝐾𝐿 . 2) In the joint training strategy, the proposed modules are

trained simultaneously. The loss function is defined by combining two losses: L𝐽 = L𝐺𝑁𝑁 + 𝜆L𝐾𝐿 ,

where 𝜆 is a pre-defined parameter to balance the two losses. For both strategies, the trained

Transformer module can be used to build models for downstream tasks.

5.4 Experiment

In this section, we aim to validate the effectiveness of GE-BERT. We first fine-tune it on two

offline query understanding tasks, i.e., query classification and query matching tasks. Then, we

further demonstrate the effectiveness of the fine-tuned model in the online search system based on

the medical query searching.
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5.4.1 Datasets

We use different datasets according to the tasks. 1) For the pre-training, the model is trained

on the query graph which is built on a large query log data generated by the Baidu search engine1

with millions of users. We collected the initial search log data within a week to construct the query

graph which consists of 92, 413, 932 query nodes and 957, 210, 956 edges. 2) In the offline query

classification task, we predict the label for the input query. Each query is associated with a label

such as music and medical care. There are 100, 887 queries with 30 classes in total. 3) In the

offline query matching task, we predict if the input query pairs have similar semantic meaning

or not. Each query pair is associated with a label which is 1 when the two queries have similar

semantic meanings, and 0 otherwise. There are 108, 615 query pairs with 2 classes in total. We

adopt 60%, 20%, 20% for the training/validation/test split for offline tasks.

5.4.2 Offline tasks

5.4.2.1 Baselines and Model Variants

We consider two baselines based on the BERT model [22]. The first one directly uses BERT

model in the downstream task, denoted as BERT. The second one further trains on the query graph

under the graph reconstruction task, and we denote it as BERT+Q. Namely, different from the

BERT, BERT+Q further trains the BERT parameters on the query graph by the loss function which

has the same form as Eq.(5.3). BERT+Q is a baseline to evaluate the effectiveness of the GNN

module to capture query graph information. Two variants are GE-BERT-J which jointly trains all

proposed modules and GE-BERT-S which uses the stage-by-stage pre-training strategy.

5.4.2.2 Experimental Settings

For pre-training tasks, the number of stages in GE-BERT-S is set to be 4, and 𝜆 in GE-BERT-J

is set to be 1. For the two downstream tasks, we utilize the Transformer module to build models.

Specifically, for the query classification task, given a query, we feed the query embedding from the

Transformer Module into a Multi-Layer Perceptron (MLP) for classification. For the query matching

task, given a query pair, we feed their embeddings into a MLP and then calculate the inner product
1https://www.baidu.com/
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Table 5.1 Performance of the offline query classification task. The split of the dataset is
60%, 20%, 20% for training,validation and test, respectively.

Methods ACC Precision Recall F1

BERT 0.6728 0.5941 0.5604 0.5722
BERT+Q 0.6862 0.6162 0.5708 0.5863

GAT-based GE-BERT-J 0.6897 0.6215 0.5702 0.5874
GE-BERT-S 0.7033 0.6308 0.5835 0.5997

GCN-based GE-BERT-J 0.6945 0.6292 0.5758 0.5923
GE-BERT-S 0.7034 0.6227 0.5978 0.6034

Table 5.2 Performance of the offline query matching task. The split of the dataset is 60%, 20%, 20%
for training,validation and test, respectively.

Methods ACC Precision Recall F1

BERT 0.6232 0.7825 0.6282 0.5661
BERT+Q 0.6254 0.7842 0.6303 0.5691

GAT-based GE-BERT-J 0.6388 0.7887 0.6436 0.5891
GE-BERT-S 0.6370 0.7881 0.6418 0.5865

GCN-based GE-BERT-J 0.6425 0.7899 0.6472 0.5944
GE-BERT-S 0.6312 0.7861 0.6317 0.5779

followed by the sigmoid function to generate the score for final prediction.

5.4.2.3 Performance

The experiment results are shown in Table 5.1 and Table 5.2 respectively. From these tables,

we can make the following observations: 1) BERT+Q outperforms BERT consistently which

demonstrates that incorporating query graph information can enhance Transformer to perform

better. 2) In general, the proposed GE-BERT variants achieve better performance than BERT+Q,

which indicates that the GNN module can capture the query graph information more effectively

than pre-training with simple graph reconstruction task, which facilitates the performance. It also

suggests that KL-divergence can indeed facilitate the process of transfer the information from the

GNN module to the Transformer module.

5.4.3 Online task

In this subsection, we conduct an online A/B testing to validate the effectiveness of our models

in the Baidu search engine. It is based on the final ranked results for medical query searching, which

is an important search scenario in the Baidu search engine. A crucial step for the medical query
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searching is to identify medical queries first. To achieve this goal, we treat it as a classification

task and directly utilize the fine-tuned model (including the MLP layer) from the offline query

classification task to perform the classification. In particular, given an input query, the fine-tuned

model is able to tell whether it is a medical query or not. We have designed many strategies for

medical queries to facilitate their ranking performance. Thus, different fine-tuned models might

have different classification performance, which leads to different final ranked results on the search

engine. We evaluate the model performance by comparing their ranked results. Due to the high cost

of deploying multiple models, we evaluate the fine-tuned GE-BERT-S with GCN (GE-BERT-S+F)

and make a comparison with the fine-tuned BERT+Q model (BERT+Q+F)

5.4.3.1 Experimental Settings and Result

We randomly sample a certain number of queries from the search log, and we apply GE-BERT-

S+F and BERT+Q+F to identify the medical queries. Then we obtain 6, 268 queries which are

predicted as medical queries by as least one of the two models. Among these queries, they make

different predictions on 964 queries, i.e., the difference ratio is 964/6268 = 15.38%.

To compare the performance of GE-BERT-S+F and BERT+Q+F online, we compare their

ranked results obtained from the search engine for these 964 queries, and use the (Good vs. Same

vs. Bad) GSB [159] as the metric. More specifically, given a query, the annotators are provided

with a pair (𝑟𝑒𝑠𝑢𝑙𝑡1, 𝑟𝑒𝑠𝑢𝑙𝑡2) where 𝑟𝑒𝑠𝑢𝑙𝑡1 is the ranked result from GE-BERT-S+F and 𝑟𝑒𝑠𝑢𝑙𝑡2

is the ranked result from BERT+Q+F. The result consists of multiple URLs. The annotators who

don’t know which model the result is generated are asked to rate the result independently: Good

(𝑟𝑒𝑠𝑢𝑙𝑡1 is better), Bad (𝑟𝑒𝑠𝑢𝑙𝑡2 is better), and Same (they are equally good or bad) by considering

the relevance between the ranked result and the given query. To quantify the human evaluation, the

ΔGSB is defined by combining these three indicators:

Δ𝐺𝑆𝐵 =
#Good − #Bad

#Good + #Same + #Bad
(5.4)

The statistic for computing the Δ𝐺𝑆𝐵 is shown in Table 5.3. We can observe that GE-BERT-S+F

brings in substantial improvement and the advantage of GSB is 3.20%, which shows the superiority

of our model to advance the online medical query searching.
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Table 5.3 Results of the online A/B testing. Our fine-tuned model achieves better results than the
baseline model.

diff_ratio # Good # Same # Bad Δ𝐺𝑆𝐵

15.38% 57 881 26 3.20%

Table 5.4 Case study of query classification for the online task. Our fine-tuned model achieves
better results than the baseline model.

Query Label GE-BERT-S+F BERT+Q+F

What’s the weight of Nini people people medical care

Dead Cells the fisherman games games medical care

Which eyedrops is good for
long-term use for students medical care medical care product

What are the pros and cons
of drinking soy milk medical care medical care parenting

5.4.3.2 Case Study

In this section, we further analyze the fine-tuned model by practical cases in query classification.

They are presented in Table 5.4 where the second column is the true label of the query, the third

and the forth column are predicted labels from GE-BERT-S+F and BERT+Q+F respectively. We

have the following observations: 1) For the first two queries, BERT+Q+F wrongly predicts them as

medical queries. The potential reason might come from two misleading words weight and Cells

because they are related to medical care. However, the first query is more about the word Nini (a

famous actress in China) and Dead Cells in the second query is a video game. 2) For the third

and the forth query, BERT+Q+F wrongly predicts them as other categories instead of the medical

query. However, the word eyedrops in the third query is not simply a product but more related to

the medical care. In the forth query, the word milk might be misleading so BERT+Q+F predicts

it as parenting. In fact, the user cares more about the function of the soy milk so it’s a medical

query. Generally, these queries are difficult ones containing the misleading words. GE-BERT-S+F

is able to make the right predictions. The potential reason is that the GNN utilizes the information

of neighboring queries which can help to distinguish the misleading words.
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5.5 Conclusion

In this paper, we introduce GE-BERT, a novel pre-training framework preserving both the

semantic information and query graph information, which is further fine-tuned in the query

understanding tasks. Specifically, we devise three modules: a Transformer module for extracting the

semantic information of query content, a GNN module for capturing the query graph information,

and a Transfer module to transfer the graph information from the GNN module to the Transformer

module. To train the GE-BERT, two strategies are proposed: stage-by-stage strategy by separating

the training of the Transformer module and the GNN module, and joint training by training all

modules simultaneously. Comprehensive experiments in offline and online tasks demonstrate the

superiority of GE-BERT.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we summarize the research results of this dissertation, discuss their broader impact

and highlight promising research direction.

6.1 Summary

In this dissertation, we study to address critical challenges in link prediction, a foundational task in

graph data analysis with extensive real-world applications. By identifying and addressing evaluation

pitfalls across diverse graph types, this work seeks to establish a more rigorous and unified framework

for assessing link prediction methods. Additionally, by leveraging the capabilities of language

models to integrate textual attributes with graph data, we try to enhance the semantic understanding

and practical performance of link prediction in various domains. Ultimately, these contributions will

not only advance the field of graph machine learning but also foster the development of more robust

and impactful applications in areas such as social networks, recommendation systems, and beyond.

6.2 Future Work

In the future, we plan to further explore from the following perspectives:

• I am interested in integrating graphs with large language models (LLMs) [60] to drive advancements

in AI applications. Compared to the smaller language models used in my previous research,

LLMs are significantly larger and more powerful, though they also present new challenges. For

instance, LLMs may suffer from hallucination issues, as they rely on learned patterns without true

factual understanding. A promising solution involves using graph structures for retrieval, which

can help LLMs capture more reliable, contextually relevant information and improve multi-hop

reasoning. LLMs also offer substantial benefits for graph-based tasks. Their proficiency with text

data can enhance embedding representations, feature enrichment, feature generation, and graph

construction.

• I aim to leverage my expertise in AI and ML to make a positive societal impact through

interdisciplinary research that drives innovation and contributes to social good. I’m interested in

exploring AI4Science, applying AI and ML to accelerate scientific discovery across disciplines such
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as biology, medicine, and environmental science. By integrating multi-modal data, such as text and

images, and employing advanced multi-modal models, I aim to advance various interdisciplinary

applications, contributing to innovations in areas such as healthcare, environmental science, and

education.
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APPENDIX A

EVALUATION PITFALLS IN UNI-RELATIONAL GRAPH

A.1 Common Neighbor Distribution

In Figure 2.1 we demonstrate the common neighbor (CN) distribution among positive and

negative test samples for ogbl-collab, ogbl-ppa, and ogbl-citation2. These results demonstrate that a

vast majority of negative samples have no CNs. Since CNs is a typically good heuristic, this makes

it easy to identify most negative samples.

We further present the CN distribution of Cora, Citeseer, Pubmed, and ogbl-ddi in Figure A.1.

The CN distribution of Cora, Citeseer, and Pubmed are consistent with our previous observations on

the OGB datasets in Figure 2.1. We note that ogbl-ddi exhibits a different distribution with other

datasets. As compared to the other datasets, most of the negative samples in ogbl-ddi have common

neighbors. This is likely because ogbl-ddi is considerably denser than the other graphs. As shown

in Table A.1, the average node degree in ogbl-ddi is 625.68, significantly larger than the second

largest dataset ogbl-ppa with 105.25. Thus, despite the random sampling of negative samples, the

high degree of node connectivity within the ogbl-ddi graph predisposes a significant likelihood for

the occurrence of common neighbors.

We also present the CN distributions under the HeaRT setting. The plots for Cora, Citeseer,

Pubmed are shown in Figure A.2. The plots for the OGB datasets are shown in Figure A.3. We

observe that the CN distribution of HeaRT is more aligned with the positive samples. This allows

for a fairer evaluation setting by not favoring models that use CN information.

A.2 Additional Definitions

A.2.1 Evaluation Metrics

In this section we define the various evaluation metrics used. Given a single positive sample

and 𝑀 negative samples, we first score each sample and then rank the positive sample among the

negatives. The rank is then given by rank𝑖. I.e., a rank of 1 indicates that the positive sample has

a higher score than all negatives. The hope is that the positive sample ranks above most or all

negative samples. Various metrics make use of this rank. We use 𝑁 to denote the number of positive
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(a) Cora (b) Citeseer

(c) Pubmed (d) ogbl-ddi

Figure A.1 Common neighbor distribution for the positive and negative test samples for the Cora,
Citeseer, Pubmed, and ogbl-ddi under the existing evaluation setting.

samples.

Hits@K. It measures whether the true positive is within the top K predictions or not: Hits@K =

1
𝑁

∑𝑁
𝑖=1 1(rank𝑖 ≤ K). rank𝑖 is the rank of the 𝑖-th sample. The indicator function 1 is 1 if rank𝑖 ≤ K,

and 0 otherwise.

Mean Reciprocal Rank (MRR). It is the mean of the reciprocal rank over all positive samples:

MRR = 1
𝑁

∑𝑁
𝑖=1

1
rank𝑖 , where rank𝑖 is the rank of the 𝑖-th sample.

AUC. It measures the likelihood that a positive sample is ranked higher than a random negative

sample: AUC =

∑
𝑖∈D0

∑
𝑗∈D1 1(rank𝑖<rank 𝑗 )
|D0 |·|D1 | , where D0 is the set of positive samples, D1 is the set

of negative samples, and rank𝑖 is the rank of the 𝑖-th sample. The indicator function 1 is 1 if

rank𝑖 < rank 𝑗 , and 0 otherwise.
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(a) Cora (b) Citeseer (c) Pubmed

Figure A.2 Common neighbor distribution for the positive negative samples under both evaluation
settings for Cora, Citeseer, Pubmed.

A.2.2 Negative Sampling

Since only positive links are observed, there is a need to generate negative links (i.e., edges

that don’t exist in G) to both train and evaluate different models. We detail how these samples are

generated in both training and evaluation.

Training Negative Samples. During training, the negative samples are randomly selected, with

all nodes being equally likely to be selected. Let V and E be the set of nodes and edges in G.

Furthermore, we define 𝑣 ∈ Rand(V) as returning a random node inV. A single negative sample

(𝑎−, 𝑏−) is given by:

(𝑎−, 𝑏−) = (Rand(V),Rand(V)) . (A.1)

Typically one negative sample is generated per positive sample.

Evaluation Negative Samples. For the existing setting, a fixed set of randomly selected samples

are used as negatives during evaluation. Furthermore, the same set of negative samples are used for

each positive sample. This is equivalent to Eq. (A.1). The only exception is the ogbl-citation2 [39]

dataset. For ogbl-citation2, each positive sample is only evaluated against its own set 1000 negative

samples. For a positive sample, its negative samples are restricted to contain one of its two nodes

(i.e., a corruption). The other node is randomly selected fromV. This is equivalent to selecting a

set of random samples from the set 𝑆(𝑎, 𝑏) as defined in Eq. (2.3).
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(a) ogbl-collab (b) ogbl-ddi

(c) ogbl-ppa (d) ogbl-citation

Figure A.3 Common neighbor distribution for the positive negative samples under both evaluation
settings for the OGB datasets.

Table A.1 Statistics of datasets. The split ratio is for train/validation/test. #Nodes: number of nodes,
#Edges: number of edges.

Cora Citeseer Pubmed ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2

#Nodes 2,708 3,327 18,717 235,868 4,267 576,289 2,927,963
#Edges 5,278 4,676 44,327 1,285,465 1,334,889 30,326,273 30,561,187

Mean Degree 3.9 2.81 4.74 10.90 625.68 105.25 20.88
Split Ratio 85/5/10 85/5/10 85/5/10 92/4/4 80/10/10 70/20/10 98/1/1

A.3 Datasets and Experimental Settings

A.3.1 Datasets

The statistics of datasets are shown in Table A.1. Generally, Cora, Citeseer, and Pubmed are

smaller graphs, with the OGB datasets having more nodes and edges. We adopt the single fixed

train/validation/test split with percentages 85/5/10% for Cora, Citeseer, and Pubmed. For OGB
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datasets, we use the fixed splits provided by the OGB benchmark [39].

A.3.2 Experimental Settings

Training Settings. We use the binary cross entropy loss to train each model. The loss is

optimized using the Adam optimizer [51]. During training we randomly sample one negative

sample per positive sample. Each model is trained for a maximum of 9999 epochs, with the process

set to terminate when there are no improvements observed in the validation performance over 𝑛

checkpoints. The choice of 𝑛 is influenced by both the specific dataset and the complexity of the

model. For smaller datasets, such as Cora, Citeseer, and Pubmed, we set 𝑛 = 50 uniformly across

models (except for NBFNet and SEAL where 𝑛 = 20 due to their computational inefficiency). When

training on larger OGB datasets, we use a stratified approach: 𝑛 = 100 for the simpler methods (i.e.,

the embedding and GNN-based models) and 𝑛 = 20 for the more advanced methods. This is due to

the increased complexity and runtime of more advanced methods. An exception is for ogbl-citation2,

the largest dataset. To accommodate for its size, we limit the maximum number of epochs to the

recommended value from each model’s source code. Furthermore, we set 𝑛 = 20 for all models.

In order to accommodate the computational requirements for our extensive experiments, we

harness a variety of high-capacity GPU resources. This includes: Tesla V100 32Gb, NVIDIA RTX

A6000 48Gb, NVIDIA RTX A5000 24Gb, and Quadro RTX 8000 48Gb.

Table A.2 Hyperparameter search ranges on all datasets we used. #Model Layers: number of model
layers, #Prediction Layers: number of prediction layers.

Dataset Learning Rate Dropout Weight Decay # Model Layers # Prediction Layers Embedding Dim

Cora (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
Citeseer (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
Pubmed (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
ogbl-collab (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256
ogbl-ddi (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256
ogbl-ppa (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256
ogbl-citation2 (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 128

Hyperparameter Settings. We present the hyparameter searching range in Table A.2. For the

smaller graphs, Cora, Citeseer, and Pubmed, we have a larger search space. However, it’s not feasible

to tune over such large space for OGB datasets. By following the most commonly used settings

among published hyperparameters, we fix the weight decay, number of model and prediction layers,
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and the embedding dimension. Furthermore, due to GPU memory constraints, the embedding size

is reduced to be 128 for the largest dataset ogbl-citation2.

We note that several exceptions exist to these ranges when they result in significant performance

degradations. In such instances, adjustments are guided by the optimal hyperparameters published

in the respective source codes. This includes:

• PEG [114]: Adhering to the optimal hyperparameters presented in the source code,1 when training

on ogbl-ddi we set the number of model layers to 2 and the maximum number of epochs to 400.

• NCN/NCNC [117]: When training on ogbl-ddi, we adhere to the suggested optimal hyperparame-

ters used in the source code.2 Specifically, we set the number of model layers to be 1, and we

don’t apply the pretraining for NCNC to facilitate a fair comparison.

• NBFNet [157]: Due to the expensive nature of NBFNet, we further fix the weight decay to 0 when

training on Cora, Citeseer, and Pubmed. Furthermore, we follow the suggested hyperparameters 3

and set the embedding dimension to be 32 and the number of model layers to be 6.

• SEAL [145]: Due to the computational inefficiency of SEAL, when training on Cora, Citeseer

and Pubmed we further fix the weight decay to 0. Furthermore, we adhere to the published

hyperparameters 4 and fix the number of model layers to be 3 and the embedding dimension to be

256.

• BUDDY [15]: When training on ogbl-ppa, we incorporate the RA and normalized degree as input

features while excluding the raw node features. This is based on the optimal hyperparameters

published by the authors.5

A.4 Reported vs. Our Results on ogbl-ddi

In Section 2.3 (see observation 2), we remarked that there is divergence between the reported

results and our results on ogbl-ddi for some methods. A comprehensive comparison of this

discrepancy is shown in Table A.3. The reported results for Node2Vec, MF, GCN, and SAGE are
1https://github.com/Graph-COM/PEG/
2https://github.com/GraphPKU/NeuralCommonNeighbor/
3https://github.com/DeepGraphLearning/NBFNet/
4https://github.com/facebookresearch/SEAL_OGB/
5https://github.com/melifluos/subgraph-sketching/
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taken from [39]. The results for the other methods are from their original paper: SEAL [146],

BUDDY [15], Neo-GNN [143], NCN [117], NCNC [117], and PEG [114].

Table A.3 Comparison results between ours and reported results on ogbl-ddi (Hits@20). Most of
baseline results are under-reported.

Node2Vec MF GCN SAGE SEAL BUDDY Neo-GNN NCN NCNC PEG

Reported 23.26 ± 2.09 13.68 ± 4.75 37.07 ± 5.07 53.90 ± 4.74 30.56 ± 3.86 78.51 ± 1.36 63.57 ± 3.52 82.32 ± 6.10 84.11 ± 3.67 43.80 ± 0.32
Ours 34.69 ± 2.90 23.50 ± 5.35 49.90 ± 7.23 49.84 ± 15.56 25.25 ± 3.90 29.60 ± 4.75 20.95 ± 6.03 76.52 ± 10.47 70.23 ± 12.11 30.28 ± 4.92

A.5 Additional Investigation on ogbl-ddi

In this section, we present the additional investigation on the ogbl-ddi dataset. In Section A.5.1 we

examine under the existing evaluation setting, there exists a poor relationship between the validation

and test performance on ogbl-ddi for many methods. We then demonstrate in Section A.5.2 that

under HeaRT this problem is lessened.

A.5.1 Existing Evaluation Setting

Upon inspection, we found that there is a poor relationship between the validation and test

performance on ogbl-ddi. Since we choose the best hyperparameters based on the validation set, this

makes it difficult to properly tune any model on ogbl-ddi. To demonstrate this point, we record the

validation and test performance at multiple checkpoints during the training process. The experiments

are conducted over 10 seeds. To ensure that our results are not caused by our hyperparameter settings,

we use the reported hyperparameters for each model. Lastly, we plot the results for GCN, BUDDY,

NCN, and Neo-GNN in Figure A.4. It is clear from the results that there exists a poor relationship

between the validation and test performance. For example, for NCN, a validation performance of 70

can imply a test performance of 3 to 80. Further investigation is needed to uncover the cause of this

misalignment.

A.5.2 New Evaluation Setting

Under our new setting, we find that the validation and test performance have a much better

relationship. In Section A.5.1 we observed that there exists a poor relationship between the validation

and test performance on ogbl-ddi under the existing evaluation setting. This meddles with our ability

to choose the best hyperparameters for each model, as good validation performance is not indicative

of good test performance. However, this does not seem to be the case under the new evaluation
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Figure A.4 Validation vs. test performance for GCN, BUDDY, NCN and Neo-GNN on ogbl-ddi
under the existing evaluation setting.
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Figure A.5 Validation vs. test performance when utilizing HeaRT for GCN, BUDDY, NCN and
Neo-GNN on ogbl-ddi. We find they have a much stronger relationship than under the existing
setting (see Figure A.4).

setting. In Figure A.5 we plot the relationship between the validation and test performance by

checkpoint for various models. Compared to the same plots under the existing setting (Figure A.4),

the new results display a much better relationship.

While it’s unclear what is the cause of the poor relationship between the test and validation

performance under the existing setting, we conjecture that tailoring the negatives to each positive

sample allows for a more natural comparison between a positive sample and its negatives. This

may help produce more stable evaluation metrics, thereby strengthening the alignment between the

validation and test performance.

A.6 Additional Results Under the Existing Setting

We present additional results of Cora, Citeseer, Pubmed and OGB datasets in Tables A.4-A.7

under the existing setting. We also omit the MRR for ogbl-collab, ogbl-ddi, and ogbl-ppa. This is

because the large number of negative samples make it very inefficient to calculate.
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Table A.4 Additional results on Cora(%) under the existing evaluation setting. Highlighted are the
results ranked first (green), second (blue), and third (orange).

Models Hits@1 Hits@3 Hits@10 Hits@100

Heuristic

CN 13.47 13.47 42.69 42.69
AA 22.2 39.47 42.69 42.69
RA 20.11 39.47 42.69 42.69

Shortest Path 0 0 42.69 71.35
Katz 19.17 28.46 51.61 74.57

Embedding
Node2Vec 22.3 ± 11.76 41.63 ± 10.5 62.34 ± 2.35 84.88 ± 0.96

MF 7.76 ± 5.61 13.26 ± 4.52 29.16 ± 6.68 66.39 ± 5.03
MLP 18.79 ± 11.40 35.35 ± 10.71 53.59 ± 3.57 85.52 ± 1.44

GNN

GCN 16.13 ± 11.18 32.54 ± 10.83 66.11 ± 4.03 91.29 ± 1.25
GAT 18.02 ± 8.96 42.28 ± 6.37 63.82 ± 2.72 90.70 ± 1.03
SAGE 29.01 ± 6.42 44.51 ± 6.57 63.66 ± 4.98 91.00 ± 1.52
GAE 17.57 ± 4.37 24.82 ± 4.91 70.29 ± 2.75 92.75 ± 0.95

GNN+heuristic

SEAL 12.35 ± 8.57 38.63 ± 4.96 55.5 ± 3.28 84.76 ± 1.6
BUDDY 12.62 ± 6.69 29.64 ± 5.71 59.47 ± 5.49 91.42 ± 1.26

Neo-GNN 4.53 ± 1.96 33.36 ± 9.9 64.1 ± 4.31 87.76 ± 1.37
NCN 19.34 ± 9.02 38.39 ± 7.01 74.38 ± 3.15 95.56 ± 0.79

NCNC 9.79 ± 4.56 34.31 ± 8.87 75.07 ± 1.95 95.62 ± 0.84
NBFNet 29.94 ± 5.78 38.29 ± 3.03 62.79 ± 2.53 88.63 ± 0.46

PEG 5.88 ± 1.65 30.53 ± 6.42 62.49 ± 4.05 91.42 ± 0.8

Table A.5 Additional results on Citeseer(%) under the existing evaluation setting. Highlighted are
the results ranked first (green), second (blue), and third (orange).

Models Hits@1 Hits@3 Hits@10 Hits@100

Heuristic

CN 13.85 35.16 35.16 35.16
AA 21.98 35.16 35.16 35.16
RA 18.46 35.16 35.16 35.16

Shortest Path 0 53.41 56.92 62.64
Katz 24.18 54.95 57.36 62.64

Embedding
Node2Vec 30.24 ± 16.37 54.15 ± 6.96 68.79 ± 3.05 89.89 ± 1.48

MF 19.25 ± 6.71 29.03 ± 4.82 38.99 ± 3.26 59.47 ± 2.69
MLP 30.22 ± 10.78 56.42 ± 7.90 69.74 ± 2.19 91.25 ± 1.90

GNN

GCN 37.47 ± 11.30 62.77 ± 6.61 74.15 ± 1.70 91.74 ± 1.24
GAT 34.00 ± 11.14 62.72 ± 4.60 74.99 ± 1.78 91.69 ± 2.11
SAGE 27.08 ± 10.27 65.52 ± 4.29 78.06 ± 2.26 96.50 ± 0.53
GAE 54.06 ± 5.8 65.3 ± 2.54 81.72 ± 2.62 95.17 ± 0.5

GNN+heuristic

SEAL 31.25 ± 8.11 46.04 ± 5.69 60.02 ± 2.34 85.6 ± 2.71
BUDDY 49.01 ± 15.07 67.01 ± 6.22 80.04 ± 2.27 95.4 ± 0.63

Neo-GNN 41.01 ± 12.47 59.87 ± 6.33 69.25 ± 1.9 89.1 ± 0.97
NCN 35.52 ± 13.96 66.83 ± 4.06 79.12 ± 1.73 96.17 ± 1.06

NCNC 53.21 ± 7.79 69.65 ± 3.19 82.64 ± 1.4 97.54 ± 0.59
NBFNet 17.25 ± 5.47 51.87 ± 2.09 68.97 ± 0.77 86.68 ± 0.42

PEG 39.19 ± 8.31 70.15 ± 4.3 77.06 ± 3.53 94.82 ± 0.81
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Table A.6 Additional results on Pubmed(%) under the existing evaluation setting. Highlighted are
the results ranked first (green), second (blue), and third (orange).

Models Hits@1 Hits@3 Hits@10 Hits@100

Heuristic

CN 7.06 12.95 27.93 27.93
AA 12.95 16 27.93 27.93
RA 11.67 15.21 27.93 27.93

Shortest Path 0 0 27.93 60.36
Katz 12.88 25.38 42.17 61.8

Embedding
Node2Vec 29.76 ± 4.05 34.08 ± 2.43 44.29 ± 2.62 63.07 ± 0.34

MF 12.58 ± 6.08 22.51 ± 5.6 32.05 ± 2.44 53.75 ± 2.06
MLP 7.83 ± 6.40 17.23 ± 2.79 34.01 ± 4.94 84.19 ± 1.33

GNN

GCN 5.72 ± 4.28 19.82 ± 7.59 56.06 ± 4.83 87.41 ± 0.65
GAT 6.45 ± 10.37 23.02 ± 10.49 46.77 ± 4.03 80.95 ± 0.72
SAGE 11.26 ± 6.86 27.23 ± 7.48 48.18 ± 4.60 90.02 ± 0.70
GAE 1.99 ± 0.12 31.75 ± 1.13 45.48 ± 1.07 84.3 ± 0.31

GNN+heuristic

SEAL 30.93 ± 8.35 40.58 ± 6.79 48.45 ± 2.67 76.06 ± 4.12
BUDDY 15.31 ± 6.13 29.79 ± 6.76 46.62 ± 4.58 83.21 ± 0.59

Neo-GNN 19.95 ± 5.86 34.85 ± 4.43 56.25 ± 3.42 86.12 ± 1.18
NCN 26.38 ± 6.54 36.82 ± 6.56 62.15 ± 2.69 90.43 ± 0.64

NCNC 9.14 ± 5.76 33.01 ± 6.28 61.89 ± 3.54 91.93 ± 0.6
NBFNet 40.47 ± 2.91 44.7 ± 2.58 54.51 ± 0.84 79.18 ± 0.71

PEG 8.52 ± 3.73 24.46 ± 6.94 45.11 ± 4.02 76.45 ± 3.83

Table A.7 Additional results on OGB datasets(%) under the existing evaluation setting. Highlighted
are the results ranked first (green), second (blue), and third (orange).

ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
Hits@20 Hits@100 Hits@50 Hits@100 Hits@20 Hits@50 Hits@20 Hits@50 Hits@100

CN 49.98 65.6 26.51 34.52 13.26 19.67 77.99 77.99 77.99
AA 55.79 65.6 27.07 36.35 14.96 21.83 77.99 77.99 77.99
RA 55.01 65.6 19.14 31.17 25.64 38.81 77.99 77.99 77.99

Shortest Path 46.49 66.82 0 0 0 0 >24h >24h >24h
Katz 58.11 71.04 26.51 34.52 13.26 19.67 78 78 78

Node2Vec 40.68 ± 1.75 55.58 ± 0.77 59.19 ± 3.61 73.49 ± 3.18 11.22 ± 1.91 19.22 ± 1.69 82.8 ± 0.13 92.33 ± 0.1 96.44 ± 0.03
MF 39.99 ± 1.25 43.22 ± 1.94 45.51 ± 11.13 61.72 ± 6.56 9.33 ± 2.83 21.08 ± 3.92 70.8 ± 12.0 74.48 ± 10.42 75.5 ± 10.13

MLP 27.66 ± 1.61 42.13 ± 1.09 N/A N/A 0.16 ± 0.0 0.26 ± 0.03 74.16 ± 0.1 86.59 ± 0.08 93.14 ± 0.06

GCN 44.92 ± 3.72 62.67 ± 2.14 74.54 ± 4.74 85.03 ± 3.41 11.17 ± 2.93 21.04 ± 3.11 98.01 ± 0.04 99.03 ± 0.02 99.48 ± 0.02
GAT 43.59 ± 4.17 62.24 ± 2.29 55.46 ± 10.16 69.74 ± 10.01 OOM OOM OOM OOM OOM
SAGE 50.77 ± 2.33 65.36 ± 1.05 93.48 ± 1.36 97.37 ± 0.55 19.37 ± 2.65 31.3 ± 2.36 97.48 ± 0.03 98.75 ± 0.03 99.3 ± 0.02
GAE OOM OOM 12.39 ± 8.74 14.03 ± 9.22 OOM OOM OOM OOM OOM

SEAL 54.19 ± 1.57 69.94 ± 0.72 43.34 ± 3.23 52.2 ± 1.78 21.81 ± 4.3 36.88 ± 4.06 94.61 ± 0.11 95.0 ± 0.12 95.37 ± 0.14
BUDDY 57.78 ± 0.59 67.87 ± 0.87 53.36 ± 2.57 71.04 ± 2.56 26.33 ± 2.63 38.18 ± 1.32 97.79 ± 0.07 98.86 ± 0.04 99.38 ± 0.03

Neo-GNN 57.05 ± 1.56 71.76 ± 0.55 33.88 ± 10.1 46.55 ± 13.29 26.16 ± 1.24 37.95 ± 1.45 97.05 ± 0.07 98.75 ± 0.03 99.41 ± 0.02
NCN 50.27 ± 2.72 67.58 ± 0.09 95.51 ± 0.87 97.54 ± 0.7 40.29 ± 2.22 53.35 ± 1.77 97.97 ± 0.03 99.02 ± 0.02 99.5 ± 0.01

NCNC 54.91 ± 2.84 70.91 ± 0.25 92.34 ± 2.42 96.35 ± 0.52 40.1 ± 1.06 52.09 ± 1.99 97.22 ± 0.78 98.2 ± 0.71 98.77 ± 0.6
NBFNet OOM OOM >24h >24h OOM OOM OOM OOM OOM

PEG 33.57 ± 7.40 55.14 ± 2.10 47.93 ± 3.18 59.95 ± 2.52 OOM OOM OOM OOM OOM
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A.7 Additional Details on HeaRT

As described in Section 2.4.2, given a positive sample (𝑎, 𝑏), we seeks to generate 𝐾 negative

samples to evaluate against. The negative samples are drawn from the set of possible corruptions

of (𝑎, 𝑏), i.e, 𝑆(𝑎, 𝑏) (see Eq. (2.3)). Multiple heuristics are used to determine which 𝐾 negative

samples to use. Furthermore, the negative samples are split evenly between both nodes. That is,

we generate 𝐾/2 negative samples that contain either node 𝑎 and 𝑏, respectively. This process

is illustrated in Figure 2.2. The rest of this section is structured as follows. In Section A.7.1 we

describe how we use multiple heuristics for estimating the difficulty of negative samples. Then in

Section A.7.2 we describe how we combine the ranks given by different heuristic methods.

A.7.1 Determining Hard Negative Samples

We are first tasked with how to choose the negative samples. As discussed and shown in

Section 2.4.2, we want to select the negative samples from 𝑆(𝑎, 𝑏) such that they are non-trivial

to classify. Hence, as inspired by the candidate generation process in real-world recommender

systems [32, 26], we aim to select a set of ’hard’ negative samples that are more relevant to the

source node. The candidate generation process is typically based on some primitive and simple link

prediction heuristics. These heuristics can be also treated as link prediction methods (see Tables 2.1

and 2.2).

We use multiple heuristics that capture a variety of different information. Most link prediction

heuristics can be categorized into two main categories: local heuristics and global heuristics [71].

Local heuristics attempt to capture the local neighborhood information that exists near the node pair

while global heuristics attempt to use the whole graph structure. To capture the local information we

use resource allocation (RA) [155], a CN-based approach. Existing results show that RA can achieve

strong performance on most datasets (see Tables 2.1 and 2.2). To measure the global information

we use the personalized pagerank score (PPR) [9]. Random walk based methods are commonly

used for candidate generation [32, 26]. Lastly, we further include the cosine feature similarity for

the Cora, Citeseer, and Pubmed datasets. This is due to the strong performance of a MLP on those

datasets. By combining these heuristics, we are able to generate a diverse set of negative samples
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for each positive sample.

For each heuristic we then rank all the possible negative samples. We first denote the score of a

heuristic 𝑖 for a pair of nodes 𝑎 and 𝑏 as ℎ𝑖 (𝑎, 𝑏). Let’s say we want to rank all negative samples

that contain a node 𝑎, i.e., (𝑎, ∗). The rank across all nodes is given by:

𝑅𝑖 = ArgSort
𝑣∈𝑉̄

ℎ𝑖 (𝑎, 𝑣), (A.2)

where 𝑅𝑖 denotes the ranking for heuristic 𝑖 and and 𝑉̄ is a subset of the set of nodes in the graph

𝑉 . We note that all training samples, self-loops, and the sample itself are not able to be chosen as

negative samples. Furthermore, when choosing negative samples for the test samples, we disallow

validation samples to be chosen as well. As such, we only consider a subset of nodes 𝑉̄ ∈ 𝑉 . This is

analogous to the filtered setting used in KGC [7].

We now have all possible negative samples ranked according to multiple heuristics. However, it

is unclear how to choose the negative samples from multiple ranked lists. In the next subsection we

detail how we combine the ranks according to each heuristic. This will give us a final ranking, of

which we can choose the top 𝐾/2 as the negative samples for that node.

A.7.2 Combining Heuristic Ranks

Algorithm A.1 Generating Negative Samples of Form (𝑎, ∗)

Require:
𝑎 = Node to generate samples for
𝑉̄ = Possible nodes to use for negative samples
H = {ℎ1, ℎ2, · · · , ℎ𝑚} ⊲ Set of 𝑚 heuristics

1: for 𝑖 ∈ |H | do
2: 𝑅𝑖 = ArgSort

𝑣∈𝑉̄
ℎ𝑖 (𝑎, 𝑣) ⊲ Sort by each heuristic individually

3: end for
4: for 𝑣 ∈ 𝑉̄ do
5: 𝑅total(𝑎, 𝑣) = min (𝑅1(𝑎, 𝑣), 𝑅2(𝑎, 𝑣), · · · , 𝑅𝑚 (𝑎, 𝑣)) ⊲ Combine the rankings
6: end for

7: 𝑅 𝑓 = ArgSort
𝑣∈𝑉̄

𝑅total(𝑎, 𝑣) ⊲ Sort by combined ranking

8: return 𝑅 𝑓 [: 𝐾/2] ⊲ Return the top K/2 ranked nodes
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In this subsection we tackle the problem of combing the negative sample ranks given by multiple

heuristics. More concretely, say we use 𝑚 heuristics and rank all the samples according to each. We

want to arrive at a combined ranking 𝑅total that is composed of each rank,

𝑅total = 𝜙(𝑅1, 𝑅2, · · · , 𝑅𝑚). (A.3)

We model 𝜙 via Borda’s method [6]. Let 𝑅𝑖 (𝑎, 𝑣) be the rank of the node pair (𝑎, 𝑣) for heuristic 𝑖.

The combined rank 𝑅total(𝑎, 𝑣) across 𝑚 ranked lists is given by:

𝑅total(𝑎, 𝑣) = 𝑔 (𝑅1(𝑎, 𝑣), 𝑅2(𝑎, 𝑣), · · · , 𝑅𝑚 (𝑎, 𝑣)) , (A.4)

where 𝑔 is an aggregation function. We set 𝑔 = min(·). This is done as it allows us to capture a

more distinct set of samples by selecting the “best" for each heuristic. This is especially true when

there is strong disagreement between the different heuristics. A final ranking is then done on 𝑅total

to select the top nodes,

𝑅 𝑓 = ArgSort
𝑣∈𝑉̄

𝑅total, (A.5)

where 𝑅 𝑓 is the final ranking. The highest 𝐾/2 nodes are then selected from 𝑅 𝑓 . Lastly, we note

that for some nodes there doesn’t exist sufficient scores to rank 𝐾/2 total nodes. In this case the

remaining nodes are chosen randomly. The full generation process for a node 𝑎 is detailed in

Algorithm A.1.

A.8 Additional Investigation on ogbl-collab

In Section 2.4.3 we observed that under HeaRT, both the Shortest Path and Katz perform

considerably well on ogbl-collab under the HeaRT setting. Specifically, the MRR gap between the

second-ranked method (Shortest Path) and the third (BUDDY) is 14.29. Since we do not observe

this under the existing setting, we further investigate the reason.

We analyzed the performance of both methods on the ogbl-collab dataset. Interestingly, we find

that it is due to the dataset being a dynamic graph. In this dataset, nodes represent authors and

edges represent a collaboration between two authors. Each edge further includes an attribute that

specifies the year of collaboration. Specifically, each edge takes the form of (Author 1, Year, Author
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Table A.8 Results on ogbl-collab under HeaRT with new hard negative samples. Highlighted are the
results ranked first (green), second (blue), and third (orange).

MRR Hits20 Hits50 Hits100

CN 4.20 16.46 30.52 42.80
AA 5.07 19.59 33.74 45.20
RA 6.29 24.29 36.68 46.42

Shortest Path 2.66 15.98 33.77 45.85
Katz 6.31 24.34 39.18 48.80

Node2Vec 4.68 ± 0.08 16.84 ± 0.17 28.56 ± 0.17 41.84 ± 0.25
MF 4.89 ± 0.25 18.86 ± 0.40 30.83 ± 0.22 43.23 ± 0.34

MLP 5.37 ± 0.14 16.15 ± 0.27 28.88 ± 0.32 46.83 ± 0.33

GCN 6.09 ± 0.38 22.48 ± 0.81 35.29 ± 0.49 50.83 ± 0.21
GAT 4.18 ± 0.33 18.30 ± 1.42 32.92 ± 1.41 46.71 ± 0.84
SAGE 5.53 ± 0.5 21.26 ± 1.32 33.48 ± 1.40 48.33 ± 0.49
GAE OOM OOM OOM OOM

SEAL 6.43 ± 0.32 21.57 ± 0.38 33.57 ± 0.84 43.06 ± 1.09
Neo-GNN 5.23 ± 0.9 21.03 ± 3.39 36.11 ± 2.36 49.25 ± 0.81
NBFNet OOM OOM OOM OOM
BUDDY 5.67 ± 0.36 23.35 ± 0.73 39.04 ± 0.11 50.49 ± 0.09

PEG 4.83 ± 0.21 18.29 ± 1.06 30.12 ± 0.63 45.40 ± 0.66
NCN 5.09 ± 0.38 20.84 ± 1.31 34.53 ± 0.98 45.69 ± 0.42

NCNC 4.73 ± 0.86 20.49 ± 3.97 34.96 ± 3.80 46.93 ± 2.04

2). The task is to predict collaborations in 2019 (test) based on those until 2017 (training) and 2018

(validation).

We found that of the positive samples in the test set, around 46% also appear as positive samples

in the training set. In particular, an edge (Author 1, 2017, Author 2) in the training data may also

“appear” in the test data in the form of (Author 1, 2019, Author 2). This is because two authors who

collaborated in the past often tend to collaborate again in the future. As such, when evaluating

the test sample (Author 1, 2019, Author 2), there is a path of length 1 between the two authors.

Furthermore, this co-occurrence phenomenon is common among positive samples but not observed

among negatives. This is because we exclude the positive training samples when generating the

negative samples for evaluation. As a result of this exclusion, the presence of a direct link (i.e., a

shortest path of length 1) between two authors suggest a positive sample, while its absence

often corresponds to a negative sample. This explains why methods like Shortest Path and Katz

can achieve good performance on ogbl-collab.

To mitigate this issue, we introduce a new set of hard negatives, permitting the negative

samples to also exhibit a shortest path of 1. We do so by not excluding the positive training samples
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when generating the negative samples for validation and test. We note that we also do not exclude

positive validation edges when generating the negatives for test. In simpler terms, when creating

negative samples for testing, both positive samples from training and validation are considered. This

means that negative samples during testing could present in the training and validation positive

samples. This approach is reasonable and well-aligned with the real-world scenario in the context of

collaboration graphs. Specifically, authors who collaborated in the past might not do so in the future.

For instance, just because the positive sample (Author 2, 2017, Author 3) exists, it does not imply

that (Author 2, 2019, Author 3) is also true. However, our previous setting assumed so.

Results using the new hard negatives are presented in Table A.8. We observe that the Shortest

Path no longer demonstrates the best performance. In contrast, both Katz and RA perform notably

well, underscoring the significance of the common neighbors information (i.e., paths of length 2).

Since Katz considers all paths between two nodes, it might benefit from the effective performance

of methods based on common neighbors. Additionally, the overall results are inferior to those using

the old hard negatives, as seen in Table 2.5. For instance, the MRR values in Table 2.5 exceed 10,

the highest MRR in Table A.8 is just approximately 6, suggesting the increased difficulty introduced

by the new hard negative strategy.

A.9 Additional Results Under HeaRT

We present additional results of Cora, Citeseer, Pubmed, and OGB datasets under HeaRT in

Table A.9 and Table A.10. These results include other hit metrics not found in the main tables.

A.10 Limitation

One potential limitation of HeaRT lies in the generation of customized negative samples for each

positive sample. This design may result in an increased number of negative samples compared to the

existing setting. Although this provides a more realistic evaluation, it could have an impact on the

efficiency of the evaluation process, especially in scenarios where a significant number of positive

samples exist. Nonetheless, this limitation does not detract from the potential benefits of HeaRT

in providing a more realistic and meaningful link prediction evaluation setting. Furthermore, as

each evaluation node pair is independent, it offers scope for parallelization, mitigating any potential
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Table A.9 Additional results on Cora, Citeseer, and Pubmed(%) under HeaRT. Highlighted are the
results ranked first (green), second (blue), and third (orange).

Cora Citeseer Pubmed
Models Hits1 Hits3 Hits100 Hits1 Hits3 Hits100 Hits1 Hits3 Hits100

CN 3.98 10.25 38.71 2.2 9.45 33.63 0.47 1.49 19.29
AA 5.31 12.71 38.9 3.96 12.09 33.85 0.74 1.87 20.37
RA 5.31 12.52 38.52 4.18 11.21 34.07 0.72 1.78 20.04

Shortest Path 0.57 2.85 55.6 0.22 3.52 53.85 0 0.02 21.57
Katz 4.64 11.95 59.96 3.74 11.87 55.82 0.74 2.12 32.78

Node2Vec 5.69 ± 0.81 15.1 ± 0.99 77.21 ± 2.34 9.63 ± 0.82 23.5 ± 1.37 84.46 ± 1.86 0.75 ± 0.14 2.4 ± 0.32 52.27 ± 0.65
MF 1.46 ± 0.8 5.46 ± 1.67 59.68 ± 3.41 2.68 ± 0.92 7.25 ± 0.98 53.25 ± 2.91 1.13 ± 0.24 3.25 ± 0.44 50.56 ± 1.11

MLP 5.48 ± 0.99 14.15 ± 1.56 77.0 ± 1.02 10.44 ± 0.82 26.46 ± 1.24 86.83 ± 1.36 1.28 ± 0.22 4.33 ± 0.28 76.34 ± 0.79

GCN 7.59 ± 0.61 17.46 ± 0.82 85.47 ± 0.52 9.27 ± 0.99 23.19 ± 0.98 89.1 ± 2.13 2.09 ± 0.31 5.58 ± 0.27 73.59 ± 0.53
GAT 5.03 ± 0.81 13.66 ± 0.67 80.87 ± 1.32 8.02 ± 1.21 20.09 ± 0.82 86.83 ± 1.09 1.14 ± 0.16 3.06 ± 0.36 67.06 ± 0.69
SAGE 5.48 ± 0.97 15.43 ± 1.07 81.61 ± 0.96 8.37 ± 1.62 23.74 ± 1.62 92.33 ± 0.68 3.03 ± 0.46 8.19 ± 1.0 79.47 ± 0.53
GAE 9.72 ± 0.73 19.24 ± 0.76 79.66 ± 0.95 13.81 ± 0.82 27.71 ± 1.34 85.49 ± 1.37 1.48 ± 0.23 4.05 ± 0.39 59.79 ± 0.67

SEAL 3.89 ± 2.04 10.82 ± 4.04 61.9 ± 13.97 5.08 ± 1.31 13.68 ± 1.32 68.94 ± 2.3 1.47 ± 0.32 4.71 ± 0.68 65.81 ± 2.43
BUDDY 5.88 ± 0.60 13.76 ± 1.03 82.46 ± 1.79 10.09 ± 0.50 26.11 ± 1.26 92.66 ± 0.92 2.24 ± 0.17 5.93 ± 0.21 72.01 ± 0.46

Neo-GNN 5.71 ± 0.41 13.89 ± 0.82 80.28 ± 1.08 6.81 ± 0.73 17.8 ± 1.19 85.51 ± 1.01 1.90 ± 0.24 6.07 ± 0.47 76.57 ± 0.58
NCN 4.85 ± 0.81 14.46 ± 0.98 84.14 ± 1.24 16.77 ± 2.05 30.51 ± 0.97 90.42 ± 0.98 1.13 ± 0.18 3.95 ± 0.24 71.46 ± 0.97

NCNC 4.78 ± 0.71 14.72 ± 1.24 85.62 ± 0.83 11.14 ± 0.82 27.21 ± 0.96 92.73 ± 1.16 2.73 ± 0.49 7.05 ± 0.72 79.22 ± 0.96
NBFNet 5.31 ± 1.16 14.95 ± 0.72 76.24 ± 0.68 5.95 ± 1.06 14.53 ± 1.19 72.66 ± 0.95 >24h >24h >24h

PEG 6.98 ± 0.57 14.93 ± 0.61 82.52 ± 1.28 9.93 ± 0.6 21.91 ± 0.59 90.15 ± 1.43 0.88 ± 0.18 2.61 ± 0.39 64.95 ± 1.81

Table A.10 Additional results on OGB datasets(%) under HeaRT. Highlighted are the results ranked
first (green), second (blue), and third (orange).

ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
Models Hits50 Hits100 Hits50 Hits100 Hits50 Hits100 Hits50 Hits100

CN 38.39 47.4 70.12 86.53 80.53 86.51 57.56 68.04
AA 42.61 50.25 71.08 87.36 81.93 87.55 58.87 69.39
RA 46.9 51.78 76.39 90.96 81.65 86.84 58.88 68.83

Shortest Path 46.97 48.11 0 0 1.34 1.4 >24h >24h
Katz 51.07 54.28 70.12 86.53 80.53 86.51 54.97 67.56

Node2Vec 35.49 ± 0.22 46.12 ± 0.34 98.38 ± 0.7 99.91 ± 0.01 69.94 ± 0.06 81.88 ± 0.06 61.22 ± 0.16 77.11 ± 0.13
MF 43.62 ± 0.08 51.75 ± 0.14 95.52 ± 0.72 99.54 ± 0.08 83.29 ± 3.35 89.75 ± 1.9 29.64 ± 7.3 65.87 ± 8.37

MLP 35.32 ± 0.74 51.09 ± 0.37 N/A N/A 5.36 ± 0.0 22.01 ± 0.01 61.29 ± 0.07 76.94 ± 0.1

GCN 43.17 ± 0.36 54.93 ± 0.14 97.65 ± 0.68 99.85 ± 0.06 81.48 ± 0.48 89.62 ± 0.23 70.77 ± 0.34 85.43 ± 0.18
GAT 42.07 ± 1.51 53.45 ± 0.64 98.15 ± 0.24 99.93 ± 0.02 OOM OOM OOM OOM
SAGE 43.02 ± 0.63 54.38 ± 0.27 99.17 ± 0.11 99.98 ± 0.01 81.84 ± 0.24 89.46 ± 0.13 71.91 ± 0.1 85.86 ± 0.09
GAE OOM OOM 28.29 ± 13.65 48.34 ± 15.0 OOM OOM OOM OOM

SEAL 43.5 ± 1.75 49.25 ± 1.39 82.42 ± 3.37 92.63 ± 2.05 87.34 ± 0.49 92.45 ± 0.26 65.11 ± 2.33 77.64 ± 2.43
BUDDY 50.57 ± 0.18 55.63 ± 0.68 97.81 ± 0.31 99.93 ± 0.01 82.5 ± 0.51 88.36 ± 0.32 67.47 ± 0.32 81.94 ± 0.26

Neo-GNN 46.93 ± 0.17 53.81 ± 0.19 83.45 ± 11.03 94.7 ± 4.82 81.21 ± 1.39 88.31 ± 0.19 62.14 ± 0.51 79.13 ± 0.42
NCN 45.89 ± 1.11 52.36 ± 0.33 98.43 ± 0.22 99.96 ± 0.01 89.37 ± 0.28 93.11 ± 0.27 71.56 ± 0.03 84.01 ± 0.05

NCNC 44.76 ± 4.64 52.41 ± 2.09 >24h >24h 91.0 ± 0.24 94.72 ± 0.18 72.85 ± 0.9 86.35 ± 0.51
NBFNet OOM OOM >24h >24h OOM OOM OOM OOM

PEG 38.71 ± 0.17 49.34 ± 0.70 84.21 ± 9.2 95.76 ± 3.48 OOM OOM OOM OOM
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efficiency concerns to a large extent. Future work can investigate ways to optimize this process.

A.11 Social Impact

Our method HeaRT harbors significant potential for positive societal impact. By aligning the

evaluation setting more closely with real-world scenarios, it enhances the applicability of link

prediction research. This not only contributes to the refinement of existing prediction methods but

also stimulates the development of more effective link prediction methods. As link prediction has

far-reaching implications across numerous domains, from social network analysis to recommendation

systems and beyond, improving its performance and accuracy is of paramount societal importance.

We also carefully consider the broader impact from various perspectives such as fairness, security,

and harm to people. No apparent risk is related to our work.
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APPENDIX B

EVALUATION PITFALLS IN KNOWLEDGE GRAPH

B.1 Dataset

We use five well-known KG datasets – Table B.1 details their statistics:

• FB15k [8] is a subset of the Freebase database [5] containing general facts. It is constructed by

selecting a subset of entities that are both in the Wikilinks database1 and Freebase.

• FB15k-237 [109, 108] is a subset of the FB15k which removes the inverse relations from FB15Kto

prevent direct inference.

• WN18 [96] is subset of the WordNet database [29] which contains lexical relations between words.

• WN18RR [21] is a subset of the WN18. WN18 contains triplets in the test set that are generated

by inverting triplets from the training set. WN18RR is constructed by removing these triplets to

avoid inverse relation test leakage.

• NELL-995 [130] is constructed from the 995-th iteration of the NELL system [14] which

constantly extracts facts from the web.

B.2 Evaluation Metrics

We use the rank-based measures to evaluate the quality of the prediction including Mean

Reciprocal Rank (MRR) and Hits@N. Their detailed definitions are introduced below:

• Mean Reciprocal Rank (MRR) is the mean of the reciprocal predicted rank for the ground-truth

entity over all triplets in the test set. A higher MRR indicates better performance.

Table B.1 Data statistics for four datasets. Train edges, Val. edges, Test edges: number of train
edges/validation edges/test edges.

Datasets Entities Relations Train edges Val. edges Test edges

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59, 071
NELL-995 75.492 200 126,176 13,912 14,125

1https://code.google.com/archive/p/wiki-links/
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• Hits@N calculates the proportion of the groundtruth tail entities with a rank smaller or equal to

𝑁 over all triplets in the test set. Similar to MRR, a higher Hits@N indicates better performance.

These metrics are indicative, but they can be flawed when a tuple (i.e., (ℎ, 𝑟) or (𝑟, 𝑡)) has

multiple ground-truth entities which appear in either the training, validation or test sets. Following

the filtered setting in previous works [8, 96, 110], we remove the misleading entities when ranking

and report the filtered results.

B.3 Message Passing in MPNN-based KGC

For a general triplet (ℎ, 𝑟, 𝑡), we use x(𝑘)
ℎ

, x(𝑘)𝑟 , and x(𝑘)𝑡 to denote the head, relation, and tail

embeddings obtained after the 𝑘-th layer. Specifically, the input embeddings of the first layer x(0)
ℎ

,

x(0)𝑟 and x(0)𝑡 are randomly initialized. Next, we describe the information aggregation process in the

(𝑘 + 1)-th layer for the studied three MPNN-based models, i.e., CompGCN, RGCN and KBGAT.

• RGCN [96] aggregates neighborhood information with the relation-specific transformation

matrices:

x(𝑘+1)
ℎ

= 𝑔(
∑︁
(𝑟,𝑡)∈Nℎ

1
𝑐ℎ,𝑟

W(𝑘)
𝑟 x(𝑘)𝑡 +W(𝑘)

𝑜 x(𝑘)
ℎ
) (B.1)

where W(𝑘)
𝑜 ∈ R𝑑𝑘+1×𝑑𝑘 and W(𝑘)

𝑟 ∈ R𝑑𝑘+1×𝑑𝑘 are learnable matrices. W(𝑘)
𝑟 corresponds to the

relation 𝑟, Nℎ is the set of neighboring tuples (𝑟, 𝑡) for entity ℎ, 𝑔 is a non-linear function, and

𝑐ℎ,𝑟 is a normalization constant that can be either learned or predefined.

• CompGCN [110] defines direction-based transformation matrices and introduce relation embed-

dings to aggregate the neighborhood information:

x(𝑘+1)𝑡 = 𝑔
©­«

∑︁
(ℎ,𝑟)∈N𝑡

W(𝑘)
𝜆(𝑟) 𝜙(x

(𝑘)
ℎ
, x(𝑘)𝑟 )

ª®¬ , (B.2)

where N𝑡 is the set of neighboring entity-relation tuples (ℎ, 𝑟) for entity 𝑡, 𝜆(𝑟) denotes the

direction of relations: original relation, inverse relation, and self-loop. W(𝑘)
𝜆(𝑟) ∈ R

𝑑𝑘+1×𝑑𝑘 is the

direction specific learnable weight matrix in the 𝑘-th layer, and 𝜙(·) is the composition operator

to combine the embeddings to leverage the entity-relation information. The composition operator

𝜙(·) is defined as the subtraction, multiplication, or cross correlation of the two embeddings

[110]. CompGCN generally achieves best performance when adopting the cross correlation.
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Hence, in this work, we use the cross correlation as its default composition operation for our

investigation. CompGCN updates the relation embedding through linear transformation in each

layer, i.e., x(𝑘+1)𝑟 = W(𝑘)
𝑟𝑒𝑙

x(𝑘)𝑟 where W(𝑘)
𝑟𝑒𝑙

is the learnable weight matrix.

• KBGAT [79] proposes attention-based aggregation process by considering both the entity

embedding and relation embedding:

x(𝑘+1)
ℎ

= 𝑔
©­«

∑︁
(𝑟,𝑡)∈Nℎ

𝛼
(𝑘)
ℎ,𝑟,𝑡

𝑐
(𝑘)
ℎ,𝑟,𝑡

ª®¬ (B.3)

where 𝑐(𝑘)
ℎ,𝑟,𝑡

= W(𝑘)
1 [x

(𝑘)
ℎ
| |x(𝑘)𝑡 | |x𝑟], | | is the concatenation operation. Note that the relation

embedding is randomly initilized and shared by all layers, i.e, 𝑥 (𝑘)𝑟 = 𝑥𝑟 . The coefficient 𝛼(𝑘)
ℎ,𝑟,𝑡

is

the attention score for (ℎ, 𝑟, 𝑡) in the 𝑘-th layer, which is formulated as follows:

𝛼
(𝑘)
ℎ,𝑟,𝑡

=
exp(LR(W(𝑘)

2 𝑐
(𝑘)
ℎ,𝑟,𝑡
))∑

(𝑟,𝑡′)∈Nℎ exp(LR(W(𝑘)
2 𝑐

(𝑘)
ℎ,𝑟,𝑡′))

(B.4)

where LR is the LeakyReLU function, W(𝑘)
1 ∈ R𝑑𝑘+1×3𝑑𝑘 , W(𝑘)

2 ∈ R1×𝑑𝑘+1 are two sets of learnable

parameters.

For GNN-based models with 𝐾 layers, we use x(𝐾)
ℎ

, x(𝐾)𝑟 , and x(𝐾)𝑡 as the final embeddings and

denote them as xℎ , x𝑟 , and x𝑡 for the simplicity of notations. Note that RGCN does not involve 𝑥𝑟 in

the aggregation component, which will be randomly initialized if required by the scoring function.

Table B.2 KGC results (%) with random graph structure for message passing process. The
MPNN-based models still can achieve comparable performance.

FB15K-237 WN18RR NELL-995
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CompGCN Original 35.5±0.1 26.4±0.1 39.0±0.2 53.6±0.3 47.2±0.2 43.7±0.3 48.5±0.3 54.0±0.0 38.1±0.4 30.4± 0.5 42.2±0.3 52.9± 0.1
Random 35.3±0.1 26.3±0.1 38.7±0.1 53.4 ±0.2 47.3±0.0 44.0±0.2 48.5±0.2 53.8±0.3 38.8±0.1 31.1±0.0 42.8±0.1 53.3±0.1

RGCN Original 29.6±0.3 19.1±0.5 34.0± 0.2 50.1±0.2 43.0±0.2 38.6±0.3 45.0±0.1 50.8±0.3 27.8±0.2 19.9±0.2 31.4±0.0 43.0±0.3
Random 28.6±0.5 18.8±0.5 32.4±0.8 48.2±0.7 43.0±0.3 38.7±0.1 45.0±0.5 50.8±0.6 27.7±0.2 19.6±0.2 31.4±0.3 43.3±0.2

KBGAT Original 35.0±0.3 26.0±0.3 38.5± 0.3 53.1± 0.3 46.4±0.2 42.6±0.2 47.9±0.3 53.9±0.2 37.4±0.6 29.7±0.7 41.4± 0.8 52.0±0.4
Random 35.6±0.1 26.5±0.1 39.0±0.2 53.7±0.1 46.8±0.2 43.2±0.5 48.1±0.1 53.8±0.1 38.2±0.3 30.6±0.3 42.1±0.4 52.8±0.2
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B.4 Scoring Function

Two widely used scoring function are DistMult [131] and ConvE [21]. The definitions of these

scoring functions are as follows.

𝑓 𝐷𝑖𝑠𝑡𝑀𝑢𝑙𝑡 (ℎ, 𝑟, 𝑡) = xℎR𝑟x𝑡 (B.5)

𝑓 𝐶𝑜𝑛𝑣𝐸 (ℎ, 𝑟, 𝑡) = 𝑔(vec(𝑔( [xℎ | |x𝑟] ∗ 𝜔))W)x𝑡 (B.6)

R𝑟 ∈ R𝑑𝑘×𝑑𝑘 in Eq. (B.5) is a diagonal matrix corresponding to the relation 𝑟. In Eq. (B.6), xℎ

denotes a 2D-reshaping of xℎ, 𝜔 is the convolutional filter, and W is the learnable matrix. vec(·)

is an operator to reshape a tensor into a vector. | | is the concatenation operator. ConvE feeds the

stacked 2D-reshaped head entity embedding and relation embedding into convolution layers. It is

then reshaped back into a vector that multiplies the tail embedding to generate a score.

For DistMult, there are different ways to define the diagonal matrix R𝑟 : For example, in RGCN,

the diagonal matrix is randomly initialized for each relation 𝑟 , while CompGCN defines the diagonal

matrix by diagonalizing the relation embedding x𝑟 .

B.5 Loss Function

We adopt the Binary cross-entropy (BCE) as the loss function, which can be modeled as follows:

L = −
∑︁

(𝑒1,𝑟𝑒𝑙,𝑒2)∈D∗𝑡𝑟𝑎𝑖𝑛

(
log𝜎( 𝑓 (𝑒1, 𝑟𝑒𝑙, 𝑒2))+∑︁

(𝑒1,𝑟𝑒𝑙,𝑒
′
2)∈C(𝑒1 ,𝑟𝑒𝑙,𝑒2 )

log(1 − 𝜎( 𝑓 (𝑒1, 𝑟𝑒𝑙, 𝑒
′
2)))

)
. (B.7)

where 𝑓 (·) is the scoring function defined in the appendix B.4, and 𝜎 is the sigmoid function.

B.6 Does Message Passing Really Help KGC?

In section 3.4.1, We replace the message passing with the MLP while keeping other components

untouched in CompGCN, RGCN and KBGAT. Due to the space limit, we only present the resutls

on the FB15K-237dataset in section 3.4.1. In this section, we include additional results on other

datasets. Specifically, we include results of CompGCN/CompGCN-MLP on the WN18RRdataset,

RGCN/RGCN-MLP on the WN18and FB15Kdataset, KBGAT/KBGAT-MLP on the WN18RRand

NELL-995in Figure B.1, Figure B.2 and Figure B.3 respectively. All the counterpart MLP-based
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Figure B.1 KGC results of CompGCN and CompGCN-MLP on WN18RR. On this dataset,
CompGCN-MLP achieves compare performance as CompGCN.
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Figure B.2 KGC results of RGCN and RGCN-MLP on FB15Kand WN18. On all three datasets,
RGCN-MLP achieves comparable performance as RGCN.

models achieve similar performance with the corresponding MPNN-based models, which show

similar observations with the FB15K-237datasets in section 3.4.1.

B.7 MPNNs with random graph structure for message passing

In this section, we investigate how the performance perform when we use random generated

graph structure in the message passing process. The number of random edges is the same as the

ones in the original graph. When training the model by optimizing the loss function, we still use the

original graph structure, i.e., D∗
𝑡𝑟𝑎𝑖𝑛

in Eq. (B.7) is fixed in Appendix B.5. Note that if the message

passing has some contribution to the performance, aggregating the random edges should lead to the

performance drop.
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Figure B.3 KGC results of KBGAT and KBGAT-MLP on WN18RRand NELL-995. On all three
datasets, KBGAT-MLP achieves comparable performance as KBGAT.

We present the results of CompGCN, RGCN and KBGAT on various datasets in Table B.2. We

use “Original", “Random" to denote the performance with the original graph structure and random

edges respectively. From Table B.2, we observe that using the noise edges achieves comparable

performance, which further indicates that the message passing component is not the key part.

B.8 Time Complexity

We first define the sizes of weight matrices and embeddings of a single layer. We denote the

dimension of entity and relation embeddings as 𝑑. The weight matrices in RGCN and CompGCN

(shown in Eqs. (B.1) and (B.2) respectively in Appendix B.3. ) are 𝑑 × 𝑑 matrices. In KBGAT

(Eq. (B.3) in Appendix B.3), there are two weight matrices W1 and W2 of size 𝑑 × 3𝑑 and 1 × 𝑑,

respectively. Thus, the time complexity of RGCN, CompGCN, KBGAT for a single layer is

𝑂 ( |𝐸 |𝑑2 + 𝑛𝑑2), 𝑂 ( |𝐸 |𝑑2 + 𝑛𝑑2), 𝑂 (3|𝐸 |𝑑2 + 𝑛𝑑2 + |𝐸 |𝑑), respectively, where |𝐸 | is the number

of edges and 𝑛 is the number of nodes. While MLP doesn’t have the message passing operation, the

time complexity in a single layer is 𝑂 (𝑛𝑑2). Note |𝐸 | is usually much larger than 𝑛, thus the MLP is

more efficient than MPNN.

B.9 Ensembling MLPs

We briefly introduce the MLP-based models we utilized for constructing the ensemble model in

section 3.5.2 for the three datasets as follows:

• For the FB15K-237dataset, we ensemble the following models: DistMult + w/o sampling;

DistMult + with sampling (two different settings with the number of negative samples as 0.5𝑁
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and 𝑁 , respectively); ConvE + w/o sampling; ConvE + with sampling (five different settings with

the number of negative samples as 50, 200, 500, 0.5𝑁 and 𝑁 , respectively).

• For the WN18RRdataset, we ensemble the following models: DistMult + w/o sampling; ConvE+

w/o sampling; ConvE+ with sampling (one setting with the number of negative samples as 𝑁).

• For theNELL-995dataset, we ensemble the following models: ConvE+ w/o sampling; ConvE+with

sampling (five settings with the number of negative samples as 50, 200, 500, 0.5𝑁 and 𝑁).
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APPENDIX C

LANGUAGE MODEL-ENHANCED LINK PREDICTION.

C.1 Implementation of Naive Fusion

In this section, we give more details of the naive fusion methods in section 4.3.2.1: NFRec,

UnisRec [38], and FDSA [148].

NFRec: It consists of several key components. We give more details of these components.

ID and text encoder: We employ the same ID and text encoder as AlterRec which is introduced

in section 4.4.1.1 and section 4.4.1.2, respectively. Through these two encoders, we obtain the

item-level ID embedding X and text embeddings H. Fusion operation: We fuse the ID and text

item embeddings to form a final embedding Z via summation or concatenation to as mentioned

in section 4.3.2.1. Scoring function: For a given session s, we apply the mean function based on

the fused item embedding to get the session embedding qs = 𝑔(s,Z), and then we use the vector

multiplication between session embedding and the candidate item’s fused embedding to get the

score 𝑦s,𝑖 = Zi
𝑇qs. Loss function: We use the cross entropy as the loss function, which follows

similar form with Eq. (4.3).

UniSRec [38]: The model employs the same ID encoder as NFRec, which utilizes a learnable

embedding for the ID representation. For text encoder, it leverages a language model enhanced

by the proposed adaptor to extract textual information. After pretraining the adaptor using two

contrastive loss functions, it merges the ID and text embeddings through summation. UniSRec

adopts the same cross-entropy loss function as used in NFRec. We use the official code of UnisRec
1 as the implementation.

FDSA [148]: The ID encoder generates ID embeddings using learnable embeddings. The text

encoder employs a MLP and an attention mechanism to produce text embeddings. The Transformer

is applied to items within a session to create ID and text session embeddings, which are then

concatenated to form the final session embedding. Similar with NFRec and UniSRec, FDSA utilizes

cross-entropy as the loss function. For the implementation of FDSA, we utilize code from the
1https://github.com/RUCAIBox/UniSRec/tree/master
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Figure C.1 Session recommendation results (%) on the HD. We compare the models combing ID
and text against models trained independently on either ID or text information alone.
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Figure C.2 Test performance in terms of Hits@20 (%) and training loss comparison on the HD
dataset.

UniSRec’s repository, which includes the implementation details for FDSA.

C.2 More Details when exploring NFRec

In this section, we give more details for the exploration conducted in section 4.3.2.2. We

elucidate the process of dividing the NFRec into its ID and text components, and describe how

we evaluate the performance and obtain the loss of "ID in NFRec" and "text in NFRec." Details

on the implementation of the NFRec are provided in the Appendix C.1. For any given item 𝑖, we

derive the ID embedding X𝑖 and text embedding H𝑖 from the corresponding ID and text encoders.

These two embeddings are then concatenated to form a final embedding Z𝑖 = [X𝑖,H𝑖]. For a session

s = {𝑠1, 𝑠2, ..., 𝑠𝑛}, the session embedding is obtained by applying the mean function to the final

embeddings of the items within session s: qs = 𝑔𝑚𝑒𝑎𝑛 (s,Z). This session embedding is represented
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as a concatenation of two parts derived from the ID and text embeddings, respectively:

qs = [q𝐼𝐷s , q𝑡𝑒𝑥𝑡s ] = [
1
|s|

∑︁
𝑠𝑖∈s

X𝑠𝑖 ,
1
|s|

∑︁
𝑠𝑖∈s

H𝑠𝑖 ]

The relevance score between a session and an item is then decomposed into two parts:

𝑦𝑠,𝑖 = Z𝑇𝑖 q𝑠 = [X𝑖,H𝑖]𝑇 [q𝐼𝐷s , q𝑡𝑒𝑥𝑡s ]

= X𝑇
𝑖 q𝐼𝐷s +H𝑇

𝑖 q𝑡𝑒𝑥𝑡s = 𝑦𝐼𝐷𝑠,𝑖 + 𝑦𝑡𝑒𝑥𝑡𝑠,𝑖 (C.1)

Thus, the relevance score in NFRec can be decomposed as the summation of the ID and text scores.

Accordingly, we evaluate the performance and obtain the loss of “NFRec”, “ID in NFRec” and

“text in NFRec” based on 𝑦𝑠,𝑖, 𝑦𝐼𝐷𝑠,𝑖 and 𝑦𝑡𝑒𝑥𝑡
𝑠,𝑖

in Eq. (C.1), respectively. For the loss function, the

cross-entropy is employed.

C.3 Additional Results in Preliminary Study

Additional results on the HD dataset for investigations in sections 4.3.2.1 are displayed in

Figure C.1 and Figure C.2, respectively. These figures indicate a trend similar to that observed with

the Amazon-French dataset. Specifically, Figure C.1 reveals that models trained independently on

ID data can achieve performance comparable to, or even surpassing, that of naive fusion methods.

Furthermore, models relying solely on text information tend to perform the worst. In Figure C.2, it is

observed that the ID component dominates the performance and loss. These findings are consistent

with observations made with the Amazon-French dataset, suggesting that the phenomenon identified

in observations 1 and 2 in section 4.3.2.1, as well as the imbalance issue in NFRec, may be prevalent

across various datasets.
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