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ABSTRACT

A sweeping process typically refers to a dynamical system represented by a differential in-

clusion in which the set-valued map is the normal cone to a “nicely” moving closed set called

the sweeping set. Although the sweeping process was originally developed for elastoplas-

ticity applications, it has been widely recognized for its application in many other fields,

including hysteresis, ferromagnetism, electric circuits, phase transitions, traffic equilibrium,

economics, population motion in confined spaces, and other areas of applied sciences and op-

erations research. Due to the nonstandard differential inclusions involved—with unbounded

and discontinuous right-hand sides produced by the normal cone—classical results from the

literature on differential inclusions are not applicable. In this dissertation, the study of

nonsmooth optimal control problems (P ) involving a controlled sweeping process with three

main characteristics is launched. First, the sweeping sets are nonsmooth, time-dependent,

and uniformly prox-regular. Second, the sweeping process is coupled with a controlled dif-

ferential equation. Third, a joint-state endpoints constraint set S is present. This general

model incorporates various significant controlled submodels, such as a class of second or-

der sweeping processes, and coupled evolution variational inequalities. A full form of the

nonsmooth Pontryagin maximum principle for strong local minimizers in (P ) is derived for

bounded or unbounded moving sweeping sets satisfying local constraint qualifications (CQ)

without any additional restriction. The existence and uniqueness of a Lipschitz solution for

the Cauchy problem of our dynamic is established and the existence of an optimal solution

for (P ) is obtained. Two of the novelties in achieving the first goal are (i) the construc-

tion of a problem over truncated sweeping sets and truncated joint endpoints constraint set

preserving the same strong local minimizer of (P ) while automatically satisfying (CQ), and

(ii) the complete redesign of the exponential-penalty approximation technique for problems

with moving sweeping sets that do not require any assumption on the sets, their corners, or

on the gradients of their generators. The utility of the optimality conditions is illustrated

with an example.
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CHAPTER 1

INTRODUCTION

1.1 Intersectionality of different fields

The research in this thesis centers around different fields of mathematics: control theory,

optimization, dynamical systems, nonsmooth analysis, set-valued analysis, and functional

analysis.

1.1.1 Control theory

If you are reading this thesis as a non-mathematician or as a mathematician from a differ-

ent field, this section provides everything you need to know about control theory, including

its foundational concepts and its applications in everyday life. A friend shared a fascinating

map of mathematics with me (see Figure 1.1), and I invite you to take a moment to explore

it and see where control theory fits within the mathematical landscape.

Figure 1.1 Placement of key areas mentioned above on the map of mathematics
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Control theory is one of the most interdisciplinary areas of research, serving as a critical

intersection between mathematics and engineering. It is a subfield of mathematics that fo-

cuses on using feedback to influence the behavior of dynamical systems—whether physical,

biological, or otherwise—to achieve specific goals. Before emerging as a distinct field in the

late 1950s and early 1960s, control theory was deeply connected to other areas of mathemat-

ics, such as calculus of variations and differential equations. Early research often adapted

classical theories and techniques from these fields to address control problems, laying the

groundwork for the development of modern control theory. I discovered a map of control

theory itself, which I invite you to explore as it highlights the different structures and con-

nections within this field (See Figure 1.2).

Figure 1.2 Map of control theory

This field can be broadly divided into two branches: linear control systems and nonlinear

control systems. While linear control systems are foundational and often easier to analyze,
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all real-world control systems exhibit nonlinear behavior, making nonlinear control systems

more applicable to practical scenarios. Control system theory can contribute to1:

• Developing mathematical models to describe system dynamics.

• Simulating and predicting system behavior under various scenarios.

• Analyzing and understanding dynamic interactions within complex systems.

• Filtering and rejecting noise to enhance signal clarity and system accuracy.

• Selecting and designing appropriate hardware to implement control strategies.

• Testing and validating system performance in unpredictable environments.

• Gaining foundational insights into system behavior and functionality.

A controller (see Figure 1.3) operates through different types of feedback loops. As discussed

in this article2 on the difference between open-loop and closed-loop systems, an open-

loop controller, also known as feedforward, does not use any information about the current

state or output of the system to influence its control actions. In contrast, a closed-loop con-

troller, also known as a feedback controller, incorporates feedback into its decision-making

process. Closed-loop controllers can be further categorized based on the type of feedback

they use: system feedback controllers, which rely on feedback from the internal state of the

system, and output feedback controllers, which utilize feedback from the system’s output.

Figure 1.3 Open loop system versus closed loop system 2

1The following was adapted from educational materials presented by Brian Douglas on his YouTube
channel.

2https://www.ntchip.com/electronics-news/difference-between-open-loop-and-closed-loop.
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Open-loop control systems are typically used for simple processes with well-defined input-

output relationships. For instance, consider a dishwasher. The objective of the dishwasher

(the plant) is to clean dishes (the output). Once the user sets the wash time (the input),

the dishwasher will operate for the specified duration, regardless of the actual cleanliness of

the dishes. If the dishes were already clean at the start, the dishwasher would still run for

the full prescribed time. Similarly, a dryer operates on the same principle. The user sets the

drying time (the input), which determines how long the dryer runs. This duration is fixed

and unaffected by whether the clothes are already dry.

On the other hand, a closed-loop control system dynamically adjusts its operation based

on feedback from its output. The system continuously monitors the output, compares it to

the desired outcome, and adjusts the input accordingly to minimize any discrepancies. For

example, consider a dryer equipped with a sensor that measures the dryness of the clothes.

This sensor provides feedback that is compared to a reference signal representing the desired

dryness level (set by the manufacturer or the user). The difference between the measured

and desired levels generates an error term, which is sent to a controller. The controller uses

this feedback to determine when to shut off the dryer, ensuring the clothes are dried to the

desired level (see Figure 1.4).

Figure 1.4 Closed loop system in a dryer 2

Control theory finds extensive applications across diverse fields, including biology (e.g.

optimal vaccination strategies) , physics (e.g. spacecraft control), engineering (e.g. robotics),
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economics (economic growth models), medicine (e.g. drug target identification in cancer re-

search), and finance (e.g. risk management).

It is important to note that a mathematical solution to a control problem may not always ex-

ist. In the late 1950s, rigorous conditions for existence were established, with controllability

being a key criterion, ensuring that some form of control is possible. Optimal control fo-

cuses on finding a control law for a given system that satisfies a specified optimality criterion.

It involves a cost functional, which depends on the state and control variables. An optimal

control solution consists of differential equations that describe the evolution of the control

variables to minimize the cost function. Such solutions can be derived using Pontryagin’s

Maximum Principle or by solving the Hamilton-Jacobi-Bellman equation.

1.1.2 Nonsmooth analysis

Nonsmooth analysis, which can be considered a subdomain of nonlinear analysis,

refers to differential analysis without the differentiability. It concerns the local description of

nondifferentiable functions and sets lacking smooth boundaries, in terms of generalizations of

classical concepts of derivatives, normals and tangents. Although this subject has traditional

roots, it is only over the last few decades that it has developed rapidly. The reason behind

this progress is the acknowledgment of the importance of nondifferential setting, its universal

presence and its direct relation with some unusual behaviors such as chaos and catastrophes.

It can be viewed, within differential (functional) analysis, as a topic in itself. However,

it has also gained a major part in several applications such as optimization and control

theory. Among F. Clarke and R. T. Rockafellar, many more such as J. Borwein, A. D.

Ioffe, B.Mordukhovich and R. B. Vinter have contributed in its development. The need for

nonsmooth analysis in control theory is connected to finding proofs of necessary conditions

for optimal control, in particular with the use of Pontryagin Maximum Principle. In general,

nonsmooth analysis intervenes when considering nonlinear problems (studying the sensitivity

of the problems, deriving necessary conditions or applying sufficient conditions).

5



1.2 Sweeping process

As mentioned above, optimal control theory involves minimizing an objective function

subject to a given control system. The specific system I focus on in this thesis is known as

the sweeping process. My work centers on studying the dynamics of the sweeping process

and addressing optimal control problems governed by such systems. For readers unfamiliar

with the sweeping process, this section provides a brief introduction to its background.

1.2.1 Definition, interpretation, and applications

J.J. Moreau introduced the sweeping process as being a differential inclusion in which

the set-valued map is the normal cone to a nicely moving non-empty closed set C(t), called

the sweeping set (see [49, 50, 51]). The simplest form of the sweeping process is given by

ẋ(t) ∈ −NC(t)(x(t)), a.e. t ∈ [0, T ]. (1.1)

When the set C(t) is convex, NC(t) corresponds to the normal cone of convex analysis.

However, when C(t) is non-convex, then it is taken to be uniformly prox-regular, in which

case NC(t) is the Clarke normal cone. When we add a perturbation or external force f to

(1.1), we call the dynamic a perturbed sweeping process, and when f depends on a control

u, we call it a perturbed controlled sweeping process.

To understand what the word “sweeping” means, we can think of a large ring moving while

containing a small ball inside. The ring starts moving at t = 0, and the movement of the

ball depends on how the ring interacts with it. If the ball is not hit by the ring, it remains

stationary. However, if the ring hits the ball, the ball is “swept” towards the inside of the

ring. The main idea here is that the velocity of the ball must point inwards so that the ball

does not escape the ring’s bounds (See Figure 1.5).
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Figure 1.5 Sweeping process interpretation

Sweeping processes have various applications in different fields including elastoplasticity,

hysteresis, ferromagnetism, electric circuits, phase transitions, and traffic equilibrium (see,

for example, [1, 4, 7, 45, 67]). In the past decade, interest in sweeping processes has grown

due to their significant role in emerging applications such as mobile robot models [27], and

pedestrian traffic flow models [27]. In these contexts, the primary goal is to efficiently control

the state of events by optimizing a specific objective function over the controlled sweeping

process.

One of the most fascinating applications of sweeping process is the crowd motion models for

emergency evacuation [14, 10]. In case of an emergency evacuation, we want to find the most

effective way to leave the room. While we would prefer to move at our “desired” velocity, we

need to take into account the direct contact between each other, as well as our contact with

different objects and obstacles present in the room. Thus, our “actual” velocity—the closest

achievable velocity to our desired one while accounting for direct contact with others—is

determined by a sweeping process dynamic.

Figure 1.6 Emergency evacuation
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1.2.2 Theoretical results

Due to the unboundedness and discontinuity of the normal cone in in (1.1), standard

results involving differential inclusions cannot be used for sweeping processes. Extensive

literature exists on the question of existence and uniqueness of an absolutely continuous or

Lipschitz solution for the Cauchy problem associated with different forms of the following

perturbed controlled sweeping process

ẋ(t) ∈ f(t, x(t), u(t)) −NC(t)(x(t)) a.e. t ∈ [0, T ], x(0) = x0 ∈ C(0), (1.2)

in which the constraint x(t) ∈ C(t) is implicit. Initially, such results commonly required

the absolute or Lipschitz continuity of the set-valued map C(·) (see, e.g., [36]). However,

motivated by the need to consider set-valued map C(·) for which these conditions are too

strong (see [65]), similar results are derived by merely assuming the same conditions on the

ρ-truncated set-valued map C(·)∩ρB̄ (see e.g., [52, 64, 65]). In [41], when C(t) is polyhedral,

a constraint qualification is shown to besufficient for those conditions to be satisfied on the

ρ-truncated polyhedral sets.

Numerous efforts have been made to derive existence theory for optimal solutions and/or

optimality conditions in terms of Euler-Lagrange equation or Pontryagin-type maximum

principle for optimal control problems driven by variants of (1.2). The main approach used

to solve different versions of such an optimal control problem is the method of approximation,

either discrete (see, e.g., [12, 13, 10, 11, 23, 25, 26, 28]), or continuous (see, [6, 30, 33, 34, 55,

57, 58, 70]). Our focus in this paper is on the latter, and more specifically, on the exponential

penalty-type.

1.2.2.1 Selected results for constant sweeping set C.

Work of dePinho et al. in [30, 31]

The exponential penalization technique was first used in [30, 31] to derive existence of solution

of (1.2), existence of optimal solution and Pontryagin-type maximum principle for global

minimizers of a Mayer problem over (1.2), in which:
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• f is smooth and convex,

• C is a constant compact set defined as the zero-sublevel set of a C2-convex function ψ

satisfying a constraint qualification on Rn,

• with initial state-constraint set C0 ⊂ C and free final state.

The novelty of this technique resides in approximating NC(·) by the exponential penalty

term γke
γkψ(·)∇ψ(·) such that the so-obtained approximating dynamic is a standard control

system without state constraints for which C is shown to be invariant:

ẋ(t) = f(t, x(t), u(t)) − γke
γkψ(x(t))∇ψ(x(t)) a.e., x(0) = x0 ∈ C. (1.3)

The absence in (1.3) of the explicit state constraint, x(t) ∈ C, that is implicitly present

in (1.2), has also been shown to be instrumental in constructing numerical algorithms for

controlled sweeping processes (see [32, 56, 59]).

In summary, the exponential penalization technique works as follows: rather than deriving

necessary conditions for optimal solutions of a problem (P ), governed by (1.2), directly, we

approximate (P ) with a sequence of standard optimal control problems (Pk) governed by

(1.3). Using existing results, we determine necessary conditions for (Pk), and by analyzing

the limit as k → ∞, we then obtain necessary conditions for (P ) (see Figure 1.7).

Figure 1.7 Exponential penalization technique
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Work of Zeidan et al. in [70, 55, 58]

The domain of applicability of the exponential penalization technique for the results in

[30, 31] was later enlarged in [70, 55, 58], to include strong local minimizers for controlled

sweeping processes having:

• nonsmooth perturbation f,

• a constant sweeping set C that is nonsmooth prox-regular (i.e., C is the intersection of

a finite number of zero-sublevel sets of C1,1-generators ψ1(x), · · · , ψr(x) near C), and

the functions ψi’s satisfy a constraint qualification on the set C,

• a final state constraint set CT ⊂ Rn, the cost depends on both state-endpoints.

Furthermore, therein:

• the normal cone, NC , in (1.2) is replaced by a subdifferential, ∂φ, of a function φ with

domain C, and it is shown that such a system is equivalent to (1.2) with a different f .

Indeed, the function φ is extended to a function ϕ that is C1,1 on Rn and that enjoys a

globally Lipschitz gradient. Using a formula recently established in [35] for the Clarke

subdifferential of an amenable function, the following formula is obtained

∂φ(x) = {∇ϕ(x)} +NC(x), ∀x ∈ C.

Using this formula, the dynamic can be rephrased as the original sweeping process

ẋ(t) ∈ fϕ(t, x(t), u(t)) −NC(x(t)), (1.4)

where fϕ(t, x, u) = f(t, x, u) − ∇ϕ(x).

• When CT ⊊ Rn, the convexity of the sets f(t, x, U(t)) is required in [55, 58].

• When C is unbounded, a restrictive assumption, (A2.4), is imposed in [58] on the set

C and is shown to hold for convex, compact boundary, or polyhedral sets, but not for

general prox-regular sets.

• Note that the nontriviality condition in the maximum principle of [55] is simply λ +

∥p(T )∥ = 1 and does not invoke the total variation of the measure.
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• New subdifferentials are used that are strictly smaller than the Clarke and Mor-

dukhovich subdifferentials. The key for this surprising result is the design of an ap-

proximating problem whose optimal state remains entirely in the interior of the set

C.

• Note that in the case when r > 1, the invariance of C itself is not always valid, but

requires extra restrictive hypothesis (see [34]). However, as shown in [58], the invariance

of C itself is not essential for the success of this method, as it suffices to establish the

invariance of certain ingenuous approximations of C from its interior, namely, Cγk , the

zero-sublevel set of a special single function ψγk approximating ψ := max{ψi}, and the

corresponding Cγk(k) ⊂ Cγk . Furthermore, the uniform bounded variation property

for the adjoint variables pγk of the approximating problems, was cleverly established

by employing the strict diagonal dominance condition on the Gramian matrix for the

gradients of the active constraints at the prescribed optimal solution x̄ of the original

problem.

1.2.2.2 Selected results for time-dependent sweeping set C(t).

Work of dePinho et. al in [33, 34]

In [33] and later in [34] (independently from [58]), the authors extended their previous

smooth Pontryagin principle for global minimizers in [30], using the exponential penalty-

type technique, to the case where:

• the perturbation f(t, ·, u) is smooth, f(t, x, U) is convex,

• the sweeping set C(t) is time-dependent and nonsmooth,

• Gr C(·) is compact,

• the sweeping sets are assumed to have C2- generators (ψi(t, x))ri=1 satisfying a global

constraint qualification, and a global diagonal dominance condition on the Gramian

matrix for the gradients of the active constraints is imposed,

• other demanding conditions are assumed on the set C(t):

• ∇xψi(t, ·) = 0 on the complement in C(t) of a uniform band around the boundary
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of C(t),

• ⟨∇xψi(t, x),∇xψj(t, x)⟩ ≥ 0 in a band around the boundary of C(t), that is, all

the corners of C(t) must have obtuse angles. In particular, this last assumption

excludes many important sets, including simple ones, like triangles, polytopes or

sets with one or more acute angles, etc,

• the initial and final state sets are compact.

• In [33], their exponential penalty technique here deviated from (1.3) by using instead

of ψ(t, x), the function ψ(t, x) − σk, where σk ↘ 0, and hence, C(t) is approximated

by sets Ck(t) ⊃ C(t) from the outside and not from the interior of C(t).

Work of Hermosilla-Palladino in [42]

In [42], a different approach is used to establish a variant of nonsmooth Pontryagin-type

maximum principle for strong local minimizers in a controlled sweeping process when:

• the moving set C(t) is, as in [58, 34], nonsmooth and non-convex,

• the set C(t) is uniformly prox-regular,

• the generating functions hi together with ∇hi are Lipschitz on a neighborhood of Gr

x̄, and (∇hi)i=ri=1 satisfy a positive linear independence constraint qualification,

• the multifunction C(·) is Lipschitz continuous,

• the initial state is fixed and the final state is free,

• unlike the expected nontriviality condition (λ = 1 in their case), an atypical nonde-

generacy condition is obtained which would require further understanding,

• the results involve the standard Clarke and Mordukhovich subdifferentials.

The authors constructed a sequence of standard optimal control problems having auxiliary

controls and explicit state constraints emanating from the sweeping set, such that all admit

the same optimal solution as the original problem.
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1.3 Results and outline of this dissertation

1.3.1 Gaps in the literature and answering open questions

We summarize key results from the existing literature in the following comparison tables.

These tables will help identify gaps in the past research, that will be addressed once the dis-

sertation results are presented. Table 1.1 and Table 1.2 serve as a foundation for identifying

open questions and demonstrating how this dissertation contributes to filling those gaps.

Table 1.1 Comparison of data in [58], [34], and [42]

Data: let x̄ the prescribed optimal solution of the original problem

Reference Assumptions on

the perturbation

f

Assumptions on the

sweeping set

Other assump-

tions on the

data

[58] f(t, ·, u) Lipschitz

on a neighborhood

of x̄

C is constant nonsmooth prox-

regular, and the generators ψi’s

C1,1 on a neighborhood of C

and satisfy a constraint quali-

fication on the set C

Initial state C0 is

closed

[58] When CT ⊊ Rn,

the convexity of the

sets f(t, x, U(t)) is

required

When C is unbounded, a re-

strictive assumption is im-

posed on the set C and is

shown to hold for convex, com-

pact boundary, or polyhedral

sets, but not for general prox-

regular sets

Final state CT is

closed, and the cost

depends on both

state-endpoints
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Table 1.1 (cont’d)

Reference Assumptions on

the perturbation

f

Assumptions on the

sweeping set

Other assump-

tions on the

data

A strict local diagonal dom-

inance condition on the

Gramian matrix for the gradi-

ents of the active constraints

is imposed at x̄

U(t) is time-

dependent, closed

and uniformly

bounded in t

[34] f(t, ·, u) is C1 C(t) is time-dependent, nons-

mooth, prox-regular (implied),

and the generators ψi’s C2 and

satisfy a constraint qualifica-

tion

Initial state C0 is

compact

f(t, x, U) convex Gr C(·) is compact Final state CT is

compact

A global diagonal dominance

condition on the Gramian ma-

trix for the gradients of the

active constraints is imposed,

∇xψi(t, ·) = 0 on the comple-

ment in C(t) of a uniform band

around the boundary of C(t),

⟨∇xψi(t, x),∇xψj(t, x)⟩ ≥ 0 in

a band around the boundary of

C(t), that is, all the corners of

C(t) must have obtuse angles

U is constant com-

pact
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Table 1.1 (cont’d)

Reference Assumptions on

the perturbation

f

Assumptions on the

sweeping set

Other assump-

tions on the

data

[42] f(t, ·, u) Lipschitz

on a neighborhood

of x̄

C(t) is time-dependent, non-

smooth, prox-regular, and the

generators hi’s C1,1 locally and

satisfy a local constraint quali-

fication

Initial state is fixed

f(t, x, U(t)) not

necessarily convex

The set-valued map C(·) is

Lipschitz

Final state is free

U(t) is time-

dependent and

not necessarily

unifromly bounded

in t.

Table 1.2 Comparison of results in [58], [34] and [42]

Results

Reference Pontryagin’s maximum principle Existence results

[58] Exponential penalty approximation

method

Existence solution of the sweep-

ing process, and existence of op-

timal solution

Typical non-triviality condition

Subdifferentials smaller than standard

subdifferentials are used
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Table 1.2 (cont’d)

Reference Pontryagin’s maximum principle Existence results

[34] Exponential penalty approximation

method

No existence results

Typical non-triviality condition

Standard subdifferentials are used

[42] Different approximation method No existence results

Atypical non-triviality condition

Standard subdifferentials are used

Conclusion I. Therefore, the question of establishing a Pontryagin maximum

principle in its expected form (i.e., standard nontriviality condition, adjoint equa-

tion, transversality condition, and the maximality condition on the Hamiltonian)

for optimal control problems over the sweeping process (1.2), remains open in each

of the following settings:

(i) when the nonsmooth moving sweeping sets C(t) are bounded and general (no

restriction);

(ii) when the general nonsmooth sweeping sets are unbounded (constant or mov-

ing);

(iii) when joint state endpoints constraint set is present, the convexity of

f(t, x, U(t)) is absent, or the global constraint qualification is only local, for

all types of sweeping sets: smooth, nonsmooth, constant, moving, bounded, or

unbounded.

In addition to the open problems in Conclusion I, new challenges arise when coupling (1.2)

with a standard controlled differential equation, and when the joint endpoints constraint is
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on both states. So, throughout this thesis, we work on the optimal control problem (P ),

introduced in Chapter 4, governed by the following coupled dynamic (D), where x(t) ∈ Rn,

y(t) ∈ Rl, and u(t) ∈ U(t) a.e.,

(D)


ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)(x(t)), a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)), a.e. t ∈ [0, T ],

(x(0), y(0), x(T ), y(T )) ∈ S.

Our model incorporates different controlled submodels as particular cases:

• coupled evolution variational inequalities (see [1], [3], [6]),

• a subclass of Integro-Differential sweeping processes of Volterra type (see [5]),

• second order sweeping processes, in which the sweeping set is solely time-dependent

(see, e.g., [53] for the general setting),

• and Bolza-type problems associated to (P ).

In other words, optimal control problems governed by either of the four submodels can readily

be formulated as a special case of (P ) to which all the results of this thesis are applicable.

In [23], necessary conditions in the form of a weak maximum principle are derived for a

certain form of a Bolza problem over a sweeping process. Excluding the part of their integrand

involving ẋ that is not covered in our setting, the remaining problem, therein, can be phrased

as a special form of our problem (P ) over a coupled sweeping process (D), where the sweeping

set is a constant polyhedron, and the state endpoints are at most periodic.

On the other hand, in [6], a smooth Pontryagin maximum principle in its expected form is

derived for a special case of our problem (P ), namely, where the sweeping set is constant,

smooth, and strictly convex, the perturbation f is linear in u, the function g = (g1, g2) in the

coupled controlled differential equations has g1 linear in u and g2 is quadratic and convex in

u, the initial state is fixed, and the final state is free. The authors of [6] clearly noted that

their method of standard smooth penalization does not apply even for the case of a constant

polyhedron (which is a particular case of our general sweeping sets), and that including an
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“additional terminal constraint”, a fortiori joint endpoints constraint, causes issues that are

not treated therein.

Conclusion II. Therefore, all the problems stated in Conclusion I are open

when replacing the sweeping process (1.2) by (D), even when the sweeping set is

constant polyhedral.

1.3.2 Findings and results of this thesis

In Chapters 3-4, we resolve all the aforementioned open problems in Conclusions I

and II, while also establishing existence results for solutions to (D) and (P ). In Chapter 5,

we illustrate these theoretical results with an example and present several models that our

findings can help solve.

1.3.2.1 Chapter 3

Chapter 3 is divided into local and global sections.

The local sections focus on analyzing the dynamic (D) and the sweeping set C(t), as

well as developing and studying a truncated dynamic (D̄) and a truncated sweeping set

C(t) ∩ B̄ε̄(x̄(t)) under local assumptions on the data. Two key local results in this chapter

are Theorem 3.2.14, which approximates the truncated dynamic (D̄) using a sequence of

standard control systems (D̄γk), and Corollary 3.2.16, which establishes the existence and

uniqueness of Lipschitz solutions to the Cauchy problem associated with (D̄).

The main result of the global section, Theorem 3.3.7, proves the existence and uniqueness

of a Lipschitz solution for the Cauchy problem corresponding to our dynamic (D) without

requiring any Lipschitz behavior on the nonsmooth moving sets C(t). Instead, we assume Gr

C(·) is bounded and the gradients of the active generators are positively linear independent

(A3.2)G. Note that this is the first result of its kind for general nonsmooth moving sweeping

sets, even for system (1.2), that is based on the method of exponential penalty approximation.

It is essential for developing a numerical algorithm to solve optimal control problems over
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such sweeping processes, which is the topic of our forthcoming project.

1.3.2.2 Chapter 4

The only global result of Chapter 4 is Theorem 4.1.1, which establishes the existence of

a global optimal solution for our problem (P ) over (D) with joint endpoints constraint set S.

This result justifies the pursuit of a Pontryagin maximum principle for an optimal solution

of (P ).

The main result of Chapter 4, which is local, answers collectively all the open questions dis-

played above and generalizes all previously known results on Pontryagin maximum principle

in multiple ways. More specifically, in Theorem 4.2.11 we derive under minimal assumptions

on the data, a complete set of necessary conditions in the form of nonsmooth Pontryagin

maximum principle for a strong local minimizer ((x̄, ȳ), ū) of the Mayer problem (P ) gov-

erned by the coupled sweeping system (D) together with the joint endpoints constraint set

S. The moving sweeping sets C(t) are general, nonsmooth, bounded or unbounded, uniformly

prox-regular, and defined as the intersection of a finite number of zero sub-level sets of the

generators (ψi(t, ·))ri=1. Note the following.

• The optimal control problems studied in [34, 58] are over (1.2) and not over the general

system (D).

• Noteworthy, unlike the result derived in [34] where the sweeping sets are not only

assumed to be bounded, but satisfy restrictive assumptions on their corners (obtuse

angles) and on the gradients of their generators (∇xψi(t, ·) = 0 in a zone in C(t)), no

such restrictive assumptions are required in our result over (D), whether the nonsmooth

moving sweeping sets C(t) are bounded or unbounded. While when C(t) ≡ C is a

constant set, this corner assumption in [34] was removed in [58], its removal is far more

intricate when C(t) are moving sets (see Section 3.2.2 and Theorem 3.2.14).

• In contrast of the result in [58] established for a restrictive class of constant unbounded

sweeping sets, our result here is valid for general unbounded, moving, and prox-regular

sets that do not necessarily satisfy the restrictive assumption (A2.4) of [58].
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• In addition, the convexity assumption of the sets f(t, x, U(t)) in [34] and [58] is now

discarded and not only for the separable endpoints case treated therein, but also for

general joint endpoints constraints.

• Furthermore, as opposed to the global constraint qualification on the generators of the

sweeping set C in [58] and of C(t) in [34], our constraint qualifications are required to

only hold at x̄(t) (see (A3.2) and (A3.3)), where (A3.3) is vacuous in the smooth case

(r = 1).

• Our nontriviality condition is simply λ+ ∥p(T )∥ = 1 and does not invoke the measure

corresponding to x(t) ∈ C(t). This is the expected form in a Pontryagin maximum

principle for problems over controlled sweeping processes (see [55, 58, 34]).

• In our adjoint inclusion and transversality condition we employ the recently introduced

subdifferentials in [55] that are strictly smaller than the Clarke and Mordukhovich

subdifferentials.

1.3.2.3 Chapter 5

In this chapter, we provide an example that highlights the significance of our initial model

and the practical utility of our results.

1.3.3 Novelty of the methods employed.

There are three separate matters to tackle when establishing a Pontryagin maximum

principle for a δ̄-minimizer ((x̄, ȳ), ū) of our problem (P ).

1. The first matter is the possible unboundedness of the moving sweeping sets C(t) and

the joint endpoints set S, and the unboundedness of Rl (the sweeping set for the

coupled controlled ODE).

2. The second, which is present even if C(t) is bounded and/or the sweeping process is

taken to be (1.2) instead of (D), is that the constraint qualification, (A3.2), on the

active generators of C(t) is only valid at x̄.

3. The third is the absence of a Pontryagin maximum principle in its expected form for

a Mayer problem over (1.2), where the nonsmooth moving sweeping sets are general
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and bounded.

The two diagrams in the following pages (see Figures 1.8-1.9) outline the key steps of our

approach for the maximum principle, illustrating how we transition from working on the

problem (P ) to defining a new truncated problem (P̄δ,δ) to establishing a nonsmooth Pon-

tryagin maximum principle for this truncated problem. We encourage the reader to first

examine the two diagrams before proceeding to the following paragraphs. In addition to the

techniques shown in the diagrams, we also present the following additional techniques:

• To avoid imposing ∇xψi(t, ·) = 0 on the complement in C(t) of a uniform band around

the boundary of C(t), and to establish the uniform bounded variation property of the

adjoint variable for the approximating problem, we construct a modified version of ψi,

ψ̂i, that preserves the original constraint set C(t) and the properties of ψi, and whose

gradient is zero in certain areas.

• Another useful technique for the uniform bounded variation property of the adjoint

variable for the approximating problem is to construct another transformation ψ̃i of ψi

such that the Gramian matrix of the gradients of ψ̃i is strictly diagonally dominant,

a condition stronger than the local strict diagonal dominance of the Gramian matrix

corresponding to the gradients of the active constraints assumed for ψi at x̄ ((A3.3)).

After formulating the max principle in terms of ψ̂i and ψ̃i, we then translate the

conditions to be formulated in terms of ψi.

• To remove the convexity assumption on (f, g)(t, x, y, U(t)), we extend the relaxation

technique from [70] to address: (a) strong local minimizers, (b) time-dependent sweep-

ing sets, C(t), not necessarily moving in an absolutely continuous way, and (c) general

joint state endpoints constraint set S.

In our case, obtaining the necessary conditions via the penalty-type approximating technique,

can be summarized in Figure 1.10. Using our approach to the exponential penalty method

without truncating C(t), we prove in Section 3.3.2 the existence and uniqueness of a Lipschitz

solution to the Cauchy problem associated with (D), Theorem 3.3.7. The existence of an
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optimal solution for the problem (P ), Theorem 4.1.1 employs general results developed in

the Appendix.

We first introduce a new dynamic of sweep-
ing processes, (D̄) (see (3.29)), obtained from
(D) by truncating the given prox-regular
nonsmooth moving sweeping sets C(t) and
the space Rl using the balls B̄ε̄(x̄(t)) and
B̄δ̄(ȳ(t)). Note that the system (D̄) takes
the form of (1.2), where the state’s dimen-
sion is n+ l.

The radius ε̄ ∈ (0, δ̄) is chosen via (A3.2) so
that:
• the bounded truncated sets C(t)∩B̄ε̄(x̄(t))

are uniformly prox-regular,
• and their (r+ 1) generators satisfy a uni-

form constraint qualification (see (3.34)).
Here, ψr+1(t, x) (see (3.30)) is the genera-
tor of the ball B̄ε̄(x̄(t)).

When restricting our domain to the trun-
cated sweeping sets, several properties are es-
tablished, such as uniqueness and Lipschitz
properties of the solutions to (D) and (D̄),
and explicit forms of the normal cones NC(t)
and NC(t)∩B̄ε̄(x̄(t)) in terms of the generators
of the corresponding sweeping sets.

Next, in (4.9), we define for any δ ∈ (0, ε̄),
a compact truncation Sδ,δ of S, and we show
that the same ((x̄, ȳ), ū) is a δ-strong local
minimizer for the problem (P̄δ,δ), whose ob-
jective function is the same as (P ), but its
dynamic is (D̄) and its joint endpoint set is
Sδ,δ (see Remark 4.2.6).

At this point, our attention completely shifts
away from ((x̄, ȳ), ū) being δ̄-strong local
minimizer for (P ) over (D) and S, to being
a δ-strong local minimizer for the problem
(P̄δ,δ) over (D̄) and Sδ,δ, where the moving
sweeping sets ¯N(ε̄,δ̄)(t) := [C(t) ∩ B̄ε̄(x̄(t))] ×
B̄δ̄(ȳ(t)) are bounded and nonsmooth, and
Sδ,δ is compact.

Observe that our truncation approach always
leads to moving sweeping sets even when
C(t) ≡ C is constant, and hence, it cannot be
employed if we only admit constant sweeping
sets, as in [58]. This fact is behind the need
to impose in [58] the unnatural assumption
(A2.4), which is not needed here due to our
form of the truncation approach.

Our main objective now is to obtain the nonsmooth Pontryagin maximum principle for (P ) via
that for (P̄δ,δ), for one δ ∈ (0, ε̄). However, in the literature, there is no Pontryagin maximum
principle in its expected form that applies to problems like (P̄δ,δ). This is so, not only because
of the presence of the joint endpoints constraint set, but because such a result does not exist for
sweeping processes in the form of (1.2), where C(t) is a general, nonsmooth, bounded, and moving
sweeping set (see Conclusion I). This is the third matter stated above.

Figure 1.8 Flowchart of addressing the first and second matters above
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To resolve this matter, for a specific choice
δo of δ, we establish a nonsmooth Pontrya-
gin maximum principle for the δo-strong lo-
cal minimizer ((x̄, ȳ), ū) of (P̄δo,δo) that does
not require any demanding conditions like
the ones in [34] described prior to Conclu-
sion I.

As such, we derive this result for problems
over (1.2) with general nonsmooth, bounded,
and moving sweeping sets, including the joint
state endpoints constraints. This is accom-
plished by developing a complete new design
of the method of exponential penalty approx-
imation that drastically differs from the one
in [34] and generalizes the one in [58] to the
complex setting of time-dependent sweeping
sets and to joint endpoint constraints.

We then produce a carefully crafted se-
quence of smooth sets, (C̄γk(t) × B̄ρ̄k(ȳ(t)))k
(see (3.59)), approximating our nonsmooth
moving sweeping set ¯N(ε̄,δ̄)(t) := [C(t) ∩
B̄ε̄(x̄(t))]× B̄δ̄(ȳ(t)) from its interior, and we
show that this smooth sequence (as opposed
to the sweeping set itself) is actually invari-
ant (see Remark 3.2.15) for our approximat-
ing dynamic (D̄γk).

This is different than [34] and far more intri-
cate than [58]. Observe that in [34], the strin-
gent condition on the corners is imposed so
that the exponential penalty method works
for nonsmooth bounded moving sweeping
sets in the same manner as it did for smooth
sets in [33], that is, by forcing their sweeping
set C(t) itself to be invariant for their ap-
proximating dynamic.

To obtain the boundedness of the multipli-
ers for the approximated normal cones in
our approximating dynamic, we construct
another smooth approximation Ā (t, k) of

¯N(ε̄,δ̄)(t), from its interior, where Ā (t, k) :=
C̄γk(t, k)×B̄ρ̄k(ȳ(t)) ⊂ int C̄γk(t)×B̄ρ̄k(ȳ(t)).
We then show that Ā (t, k) is invariant for
our approximated dynamic, the multipliers
therein are bounded, and its solutions approx-
imate the solutions to the original dynamic.

Whereas the authors in [34] approximated
C(t) from the outside by a sequence of invari-
ant sets (as they did for the smooth bounded
sets in [33]).

As our sweeping sets and their approxima-
tions are time dependent, the derivation of
these results turns out to be quite involved
and challenging in comparison with the con-
stant sweeping set C treated in [58] (see sec-
tion 3.2.2 and Theorem 3.2.14).

To address the presence of joint endpoint
constraints, we pick carefully the value δo of
δ so that we can successfully craft an approx-
imation Sγk(k) of Sδo,δo such that for k large,
any solution of (D̄γk) with state endpoints in
Sγk(k) remains at all times in the invariant
set Ā (t, k).

At this point, we are ready to design for (P̄δo,δo) an approximating problem (Pα,β
γk

), defined over
(D̄β

γk
) (closely related to (D̄γk)) and the joint endpoints constraint set Sγk(k), whose optimal solution

converges to ((x̄, ȳ), ū), see Proposition 4.2.8. Using intricate calculations, we showed that the
corresponding adjoint variable sequence is uniformly of bounded variation, without assuming any
restrictive condition like ∇xψi(t, ·) = 0 in the zone of C(t). A careful analysis of the limit as k → ∞
to the standard maximum principle for (Pα,β

γk
) leads to our nonsmooth Pontryagin principle.

Figure 1.9 Flowchart of addressing the third matter above
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Figure 1.10 Exponential penalization technique in our setting
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CHAPTER 2

PRELIMINARIES

In this chapter, we review foundational concepts, definitions, and key theorems from func-

tional analysis, nonsmooth analysis, and control theory as presented in the literature, which

we will use throughout this thesis.

2.1 Basic notions and concepts

In the first section, we present the basic notations and concepts used in the thesis.

• We denote by ∥ · ∥ and ⟨·, ·⟩ the Euclidean norm and the usual inner product, respec-

tively.

• For x ∈ Rn and a > 0, we denote, respectively, by Ba(x) and B̄a(x) the open and

closed ball centered at x and of radius a. More particularly, B and B̄ represent the

open unit ball and the closed unit ball, respectively.

• A vector function f = (f1, · · · , fn) : [0, T ] −→ Rn is said to be positive if fi is positive

for each i = 1, · · · , n.

• R+ denotes the set of positive real numbers.

• We use Mm×n[a, b] to indicate the set of m × n-matrix functions on [a, b]. For r ∈ N,

we denote the identity matrix in Mr×r by Ir×r.

• The interior, boundary, closure, convex hull, and complement of a set S ⊂ Rn are

represented by intS, bdryS, cl S, convS and Sc, respectively.

• We note that ∇f of a function f is taken here to be a column vector, that is, the

transpose of the standard gradient vector.

• For a set valued-map S(·) : [0, T ]⇝ Rn, Gr S(·) denotes its graph.

Definition 2.1.1. A matrix A = (aij) of size n× n is said to be strictly diagonally

dominant if it satisfies the following condition:

|aii| >
∑
j ̸=i

|aij| for all i = 1, 2, . . . , n.
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Lemma 2.1.2. By the Levy–Desplanques theorem, any strictly diagonally dominant

matrix is nonsingular. Hence, its rows and columns form a basis in Rn.

Limits of sets

Definition 2.1.3 (Limit of sets in the Kuratowski sense). Let (Sk)k a sequence

of nonempty subsets of Rn. We say that (Sk)k converges in the Kuratowski sense, or simply

converges, to S whenever lim infk→∞ Sk = lim supk→∞ Sk = S.

This lemma can be found in [62, Exercise 4.3].

Lemma 2.1.4 (Limits of monotone and sandwiched sequences). We have that:

(a) limk Sk = cl⋃k∈N Sk whenever Sk ↗, meaning Sk ⊂ Sk+1 ⊂ · · · ;

(b) limk Sk = ⋂
k∈N clSk whenever Sk ↘, meaning Sk ⊃ Sk+1 ⊃ · · · ;

(c) Sk → S whenever S1
k ⊂ Sk ⊂ S2

k with S1
k → S and S2

k → S.

This definition can be found in [62, Example 4.13].

Definition 2.1.5 (Pompeiu-Hausdorff distance). For C,D ⊂ Rn closed and nonempty,

the Pompeiu-Hausdorff distance between C and D is the quantity

d∞(C,D) := sup
x∈Rn

|dC(x) − dD(x)|,

where the supremum could equally be taken just over C∪D, yielding the alternative formula

d∞(C,D) = inf
{
η ≥ 0

∣∣∣∣ C ⊂ D + ηB, D ⊂ C + ηB
}
.

Definition 2.1.6 (Limit of sets in the Hausdorff sense). Let (Sk)k a sequence

of nonempty closed subsets of Rn. We say that (Sk)k converges with respect to Pompeiu-

Hausdorff distance to S when d∞(Sk, S) → 0.

Support function of a set

We introduce definitions and results related to the support function of a set S.
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Definition 2.1.7 (Support function of a set S). Let S ⊂ Rn be nonempty. The

support of S is σ(·, S) : Rn → R ∪ {∞} defined by

σ(s∗, S) := sup{⟨s∗, s⟩ | s ∈ S}. (2.1)

Lemma 2.1.8. Let S be a closed and convex set of Rn. Then

s ∈ S ⇐⇒ ⟨s∗, s⟩ ≤ σ(s∗, S) ∀s∗ ∈ Rn. (2.2)

Lemma 2.1.9 (Limits of sets and their support functions). Let (Sk)k a sequence

of nonempty compact convex subsets of Rn. Then

(Sk)k converges to S, as k → ∞ ⇐⇒ σ(s∗, Sk) −→ σ(s∗, S), as k → ∞, ∀s∗ ∈ Rn. (2.3)

Lemma 2.1.10 (Hausdorff limits of sets and their support functions). Let

(Sk)k a sequence of nonempty closed convex subsets of Rn. We have, by [63, Theorem 6],

that

(Sk)k Hausdorff−−−−−→
k→∞

S ⇐⇒ σ(s∗, Sk) unif in s∗
−−−−−→
k→∞

σ(s∗, S), ∀s∗ ∈ Rn : ∥s∗∥ ≤ 1. (2.4)

2.2 Nonsmooth analysis

Normal cones: proximal, limiting, and Clarke

Some of the definitions and results in this section are adapted from [17]. For standard

references, see the monographs [18, 22, 48, 62, 66].

Proximal normal cone

Let S ⊂ Rn a nonempty closed set. For x ∈ Rn, we recall that the distance from x to S

is defined by

dS(x) := inf
s∈S

∥x− s∥.

We can verify that dS(·) is 1-Lipschitz on Rn, and that there exists at least one point s ∈ S

such that

dS(x) = ∥x− s∥.
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This point s is called closest point or projection of x onto S. We note that all closest

points form a set denoted by projS(x), see Figure 2.1. For x ∈ Rn \ S and s ∈ projS(x), we

have:

• The vector x− s is called a proximal normal direction to S at s.

• For all t > 0 any vector ζ = t(x− s) is called proximal normal vector to S at s.
 

Figure 2.1 Proximal normal cone 1

Definition 2.2.1. The set of all nonnegative multiple ζ of x−s is called the proximal

normal cone to S at s and is denoted by NP
S (s), see Figure 2.1. Thus

NP
S (s) := {t(x− s) : s ∈ projS(x) and t ≥ 0}.

We can also characterize the proximal normal cone analytically and geometrically through

the following two representations. Let s ∈ S.

ζ ∈ NP
S (s) ⇐⇒ ∃λ > 0 such that projS(s+ λζ) = {s}

⇐⇒ ∃ σ = σ(ζ, s) ≥ 0 s.t. ⟨ζ, s′ − s⟩ ≤ σ∥s′ − s∥2 ∀s′ ∈ S

⇐⇒ ∃ σ = σ(ζ, s) ≥ 0, η > 0 s.t. ⟨ζ, s′ − s⟩ ≤ σ∥s′ − s∥2 ∀s′ ∈ B
(
s, η) ∩ S

⇐⇒ ∃ r = r(ζ, s) > 0 s.t. B
(
s+ r

ζ

∥ζ∥
; r
)

∩ S = ∅,

i.e. ζ is realized by an r-sphere (ball characterization, see Figure 2.2)

1This image was generated by Dr. Chadi Nour.
2This image was generated by Dr. Chadi Nour.
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Figure 2.2 Ball characterization 2

Remark 2.2.2. We have the following:

• NP
S (s) = {0} if s ∈ S is not the projection of any point x /∈ S onto S. Hence,

NP
S (s) = {0} when s ∈ intS.

• The proximal normal cone is a convex cone. It is not necessarily open nor closed.

Proposition 2.2.3 (Convex cone). Let S ⊂ Rn be a nonempty, closed and convex

set. Thus

ζ ∈ NP
S (s) ⇐⇒ ⟨ζ, s′ − s⟩ ≤ 0 ∀s′ ∈ S. (2.5)

In this case

• If s ∈ bdry S then NP
S (s) ̸= {0}.

• For s ∈ bdry S

0 ̸= ζ ∈ NP
S (s) ⇐⇒ ζ is realized by an r-sphere ∀ r > 0. (2.6)

Lemma 2.2.4 (Local property of limiting normal cone). We deduce from the

third equivalence in Definition 2.2.1 that the P -normality is a local property, meaning that

the proximal normal cones NP
S1(s) = NP

S2(s) if S1 and S2 are the same in a neighborhood of

s.
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Limiting or Mordukhovich normal cone

Definition 2.2.5. The Limiting or Mordukhovich normal cone to S at s, NL
S (s),

is defined as

NL
S (s) := {v ∈ Rn : ∃ si

S−→ s,∃ vi −→ v, vi ∈ NP
S (si)},

where si S−→ s means that si −→ s and si ∈ S ∀i.

Figure 2.3 Limiting normal cone 3

Remark 2.2.6. We have the following:

• If s ∈ bdryS, then NL
S (s) ̸= {0}.

• The limiting normal cone is a closed cone. It is not necessarily convex.

Clarke normal cone

Definition 2.2.7. The Clarke normal cone to S at s, NS(s), is defined as

NS(s) := conv {v ∈ Rn : ∃ si
S−→ s, ∃ vi −→ v, vi ∈ NP

S (si)}.

Remark 2.2.8. We have the following:

• The Clarke normal cone is a closed convex cone.

3This image is taken from [66].
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Lemma 2.2.9 (Monotonicity of the normal cone operator). If S ⊆ C, then the

normal cone satisfies the inclusion:

NS(x) ⊇ NC(x) for all x ∈ S.

This means that if S is a subset of C, then any normal vector to C at a point in S is also a

normal vector to S.

Definition 2.2.10. We say that a given set of vectors {xi : i = 1, 2, · · · , k} in X is

positively linearly independent if the following implication holds:
k∑
i=1

λixi = 0, λi ≥ 0 =⇒ λi = 0 ∀i ∈ {1, 2, · · · , k}.

Lemma 2.2.11. [19, Corollary 10.44] Consider a set S ⊂ Rn, given by

S = {x ∈ Rn : fi(x) ≤ 0, i = 1, 2, · · · , k},

where each function fi is C1 (locally, at least). Let x ∈ S, and assume I(x) := {i : fi(x) = 0}

is a nonempty set, and {f ′
i(x) : i ∈ I(x)} is positively linearly independent (we say that the

active constraints are positively linear independent). Then,

NS(x) = {
∑
i∈I(x)

λif
′
i(x) : λi ≥ 0}.

Proximal, Limiting, Clarke subdifferentials

We start some definitions and assumptions on an extended real-valued function f .

Definition 2.2.12. Let X ⊂ Rn and f : X → (−∞,∞].

• f is lower semicontinuous (lsc) at x0 ∈ X iff

f(x0) ≤ lim inf
n→∞

f(xn), for all (xn)n ∈ X with xn → x0.

• f is upper semicontinuous (usc) at x0 ∈ X iff −f is lsc at x0.

• The effective domain of f is the set

dom f := {x ∈ X : f(x) < +∞}.
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• The epigraph of f is the subset of Rn+1 given by

epi f := {(x,w) ∈ X × R : x ∈ dom f, f(x) ≤ w}.

• The graph of f is the subset of Rn+1 given by

Gr f := {(x, f(x)) ∈ X × R : x ∈ dom f}.

Proximal subgradient

In the following X ⊂ Rn is an open set. We have f : Rn → R ∪ {+∞} lsc on X such

that X ∩ dom f ̸= ∅, and x ∈ X ∩ dom f .

Definition 2.2.13. We denote by ∂Pf(x) the proximal subdifferential of f at x.

We have

ζ ∈ ∂Pf(x) ⇐⇒ (ζ,−1) ∈ NP
epi f (x, f(x))

⇐⇒ ∃ σ ≥ 0 and η > 0 such that for all y ∈ B
(
x, η

)
∩X,

f(y) ≥ f(x) + ⟨ζ, y − x⟩ − σ∥y − x∥2

ζ is said to be a proximal subgradient of f at x, see Figure 2.4.

Figure 2.4 Proximal subgradient 4

4This image was generated by Dr. Chadi Nour.
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Remark 2.2.14. Note the following properties of the proximal subdifferential.

• ∂Pf(x) is convex, however, it is not necessarily open, closed or nonempty.

• For all c > 0, we have ∂P (cf)(x) = c∂Pf(x).

• ∂Pf(x) + ∂Pg(x) ⊂ ∂P (f + g)(x).

Remark 2.2.15. Let U ⊂ X be open.

• If f is Gateaux differentiable at x ∈ U , then ∂Pf(x) ⊂ {f ′
G(x)}.

• If f ∈ C2(U), then

∂Pf(x) = {f ′(x)} ∀x ∈ X.

Proposition 2.2.16. We assume that X is as well a convex set. Then f is K-Lipschitz

on X iff

∥ζ∥ ≤ K ∀ζ ∈ ∂Pf(x) ∀x ∈ X.

Limiting subgradient

In the following X ⊂ Rn is an open set. We have f : Rn → R ∪ {+∞} lsc on X such

that X ∩ dom f ̸= ∅, and x ∈ X ∩ dom f .

Definition 2.2.17. We denote by ∂Lf(x) the limiting subdifferential of f at x. We

have

ζ ∈ ∂Lf(x) ⇐⇒ (ζ,−1) ∈ NL
epi f (x, f(x)).

ζ is said to be a limiting subgradient of f at x. Equivalently, we have

∂Lf(x) := { lim
i→+∞

ζi : ζi ∈ ∂Pf(xi), xi
f→ x},

where xi
f→ x means that xi → x and f(xi) → f(x).

Remark 2.2.18. Note the following properties of the limiting subdifferential.

• ∂Lf(x) is closed for every x, and the multifunction ∂Lf(·) has a closed graph.

• For all c > 0, we have ∂L(cf)(x) = c∂Lf(x).

• If one f, g is Lipschitz near x, then ∂L(f + g)(x) ⊂ ∂Lf(x) + ∂Lg(x).
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Clarke generalized gradient, Hessian and Jacobian

Definition 2.2.19. Assume that f : Rn → R∪ {∞} has dom f closed with non-empty

interior, and that f is locally Lipschitz on int (dom f). We denote by ∂f(x) the Clarke

subdifferential or Clarke generalized gradient of f at x ∈ int (dom f). We have

ζ ∈ ∂f(x) ⇐⇒ (ζ,−1) ∈ Nepi f (x, f(x))

⇐⇒ ⟨ζ, v⟩ ≤ f ◦(x; v) ∀v ∈ Rn,

where

f ◦(x; v) := lim sup
y→x, h↓0

f(y + hv) − f(y)
h

.

Equivalently, we have

∂f(x) = conv ∂Lf(x),

and

∂f(x) = conv
{

lim
i→+∞

∇f(xi) : xi O−→ x,∇f(xi) exists ∀i
}
,

where O is any full-measure subset of int (dom f).

Proposition 2.2.20. Take a lower semicontinuous function f : Rn → R∪{+∞} and a

point x̄ ∈ Rn. Assume that f is Lipschitz continuous on a neighborhood of x̄ with Lipschitz

constant K. Then:

∂f(x̄) ⊂ KB.

Definition 2.2.21. Assume that f is C1,1 on int (dom f). We denote by ∂2f(x) the

Clarke generalized Hessian of f at x ∈ int (dom f). We have

∂2f(x) = conv
{

lim
i→+∞

∇2f(xi) : xi O−→ x,∇2f(xi) exists ∀i
}
,

where O is any full-measure subset of int (dom f).

Remark 2.2.22. Notice that
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• ∂f(·) and ∂2f(·) are locally bounded and measurable multifunctions with closed graph,

and their values are nonempty, compact and convex.

Definition 2.2.23. Assume that g : Rn → Rn be a Lipschitz function near x ∈ Rn,

i.e. Lipschitz on a open set Ω containing x. We denote by ∂g(x) the Clarge generalized

Jacobian of g at x. We have

∂g(x) = conv
{

lim
i→+∞

Jg(xi) : xi O−→ x, Jg(xi) exists ∀i
}
,

where O is any full-measure subset of Ω, and J is the Jacobian operator.

Remark 2.2.24. Notice that

• The multifunction ∂g(·) is measurable and has closed graph. Its values are nonempty,

convex, and compact in the space of n× n matrices.

Non-standard notions of subdifferentials

In [70], and later in [55], Zeidan, Nour and Saoud extended the notions of Limiting

subdifferential, Clarke generalized gradient, Hessian and Jacobian to nonstandard notions

for subdifferentials that are strictly smaller than their standard counterparts.

Extended Limiting subdifferential, Clarke generalized gradient, Hessian and Ja-
cobian

Definition 2.2.25. Let f : Rn → R ∪ {∞} be a lsc function and S ⊂ dom f be a

closed set with int (dom f) ̸= ∅. For x ∈ cl (intS), we denote by ∂Ll f(x) to be the limiting

subdifferential of f relative to intS at x, and we have:

∂Ll f(x) := { lim
i→+∞

ζi : ζi ∈ ∂Pf(xi), xi ∈ intS, xi
f→ x}.

Remark 2.2.26. We have that

• The multifunction ∂Ll f(·) has closed graph, and closed values.

• If f Lipschitz on intS, then for any x ∈ cl (intS), ∂Ll f(x) is nonempty and compact.

• For all x ∈ S, we have ∂Ll f(x) ⊂ ∂Lf(x), and equality holds when x ∈ intS.
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Definition 2.2.27. Assume that f : Rn → R∪{∞} is locally Lipschitz on int (dom f) ̸=

∅. We denote by ∂lf(x) the Extended Clarke generalized gradient of f at x ∈

cl (int (dom f)). We have

∂lf(x) = conv
{

lim
i→+∞

∇f(xi) : xi O−→ x,∇f(xi) exists ∀i
}
,

where O is any full-measure subset of int (dom f).

Definition 2.2.28. Assume that f : Rn → R ∪ {∞} is C1,1 on int (dom f) ̸= ∅. We

denote by ∂2
l f(x) the Extended Clarke generalized Hessian of f at x ∈ cl (int (dom f)).

We have

∂2
l f(x) = conv

{
lim
i→+∞

∇2f(xi) : xi O−→ x,∇2f(xi) exists ∀i
}
,

where O is any full-measure subset of int (dom f).

Remark 2.2.29. Notice that

• ∂lf(·) and ∂2
l f(·) are measurable multifunctions with closed graph, and their values

are nonempty, compact and convex.

• We have ∂lf(x) ⊂ ∂f(x) and ∂2
l f(x) ⊂ ∂2f(x), with equalities holding when x ∈

int (dom f).

Definition 2.2.30. Assume that g : Rn → Rn be a Lipschitz function on a closet set

S ⊂ Rn. We denote by ∂lg(x) the Extended Clarke generalized Jacobian of g at x ∈ S

that extends the Clarke generalized Jacobian to the boundary of S . We have

∂lg(x) = conv
{

lim
i→+∞

Jg(xi) : xi O−→ x, Jg(xi) exists ∀i
}
,

where O is any full-measure subset of intS, and J is the Jacobian operator.

Remark 2.2.31. Notice that

• The multifunction ∂lg(·) is measurable and has closed graph. Its values are nonempty,

convex, and compact in the space of n× n matrices.
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• We have ∂lg(x) ⊂ ∂g(x), with equality holding when x ∈ intS.

Definition 2.2.32. Assume that h : Rn → R be C1,1 on an open set containing a closet

set S ⊂ Rn. We denote by ∂2
l h(x) the Clarke generalized Hessian of h relative to int

S at x ∈ S. We have

∂2
l h(x) = conv

{
lim
i→+∞

∇2h(xi) : xi O−→ x,∇2h(xi) exists ∀i
}
,

where O is any full-measure subset of intS.

Remark 2.2.33. Notice that

• ∂2
l h(·) is a measurable multifunction with closed graph, and its values are nonempty,

compact and covex.

• We have ∂2
l h(x) ⊂ ∂2h(x), with equality holding when x ∈ intS.

Prox-regular sets

We proceed to define the φ0-convexity property and the prox-regularity of a set. A

detailed analysis of this may be found in [21, 29]. For other related properties, we refer the

reader to [60, 61, 62, 8, 9] and the references therein.

Definition 2.2.34. Suppose S ⊂ Rn is closed. S is said to be φ-convex, where φ is

taken to be a continuous function from S to [0,+∞), if

⟨ζ, y − x⟩ ≤ φ(x)∥ζ∥∥y − x∥2,

for all x ∈ bdry S, y ∈ S and 0 ̸= ζ ∈ NP
S (x).

Definition 2.2.35. Suppose S ⊂ Rn is closed. S is said to be φ0-convex if we can

find φ0 ≥ 0 such that

⟨ζ, y − x⟩ ≤ φ0∥ζ∥∥y − x∥2, (2.7)

for all x ∈ bdry S, y ∈ S and 0 ̸= ζ ∈ NP
S (x).

Remark 2.2.36. We remark that S is φ-convex iff S is φ0-convex locally.
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Definition 2.2.37. Let S ⊂ Rn a closed set. We say that S is r-proximally smooth

or r-prox-regular iff there exists r > 0 such that for all x ∈ bdryS and ζ ∈ NP
S (x)

⟨ζ, y − x⟩ ≤ 1
2r∥ζ∥∥y − x∥2 ∀y ∈ S.

Equivalently, S is r-proximally smooth if and only if for all x ∈ bdry S and 0 ̸= ζ ∈ NP
S (x), ζ

is realized by an r-sphere, i.e.

B
(
s+ r

ζ

∥ζ∥
; r
)

∩ S = ∅.

Remark 2.2.38. Notice the following:

• For φ0 > 0, S is φ0-convex ⇐⇒ S is 1
2φ0

-prox-regular (or has positive reach with

radius 1
2φ0

) (see Figure 2.5).

• S is convex ⇐⇒ S is 0-convex ⇐⇒ S is r-prox-regular for all r > 0.

! 

 

 
! 

 

 
!!!! 
! 

S
S

S S

S is not '0-convex S is not '0-convexS is '0-convex S is '0-convex

Figure 2.5 φ0-convexity 5

Proposition 2.2.39. Let S be r-prox-regular set in Rn, with r > 0. Then we have:

(i) [21, Corollary 4.15] For all x ∈ S,

NS(x) = NP
S (x) = NL

S (x),

and for all x ∈ bdryS, we have

NP
S (x) ̸= {0}.

(ii) [21, Theorem 4.8] Let r′ ∈ (0, r). Then πS(·) is Lipschitz of rank r
r−r′ on {u ∈ Rn : 0 <

dS(u) < r′}, where πS(·) is the projection map into S.
5This image was generated by Dr. Chadi Nour.
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(iii) The normal cone NP
S (·) is hypomonotone, i.e. for every x1, x2 ∈ S, for every ξ1 ∈

NP
S (x1), ξ2 ∈ NP

S (x2), ξ1, ξ2 unit vectors, we have

⟨ξ2 − ξ1, x2 − x1⟩ ≥ −1
r

∥x2 − x1∥2 . (2.8)

The following result holds for uniform prox-regular sets S(t). It is an extension of a

special case of [55, Lemma 3.2] from a constant compact set S to the case of set-valued maps

S(·) with non-compact values. It requires NS(·)(·) to have closed graph.

Lemma 2.2.40. Let S(·) : [0, T ]⇝ Rn be such that, for all t ∈ [0, T ], S(t) is nonempty,

closed, and uniformly ρ∗-prox-regular, for some ρ∗ > 0. Let x̄ ∈ C([0, T ],Rn) with x̄(t) ∈ S(t)

for all t ∈ [0, T ]. Assume that for some δ ∈ (0, ρ∗), the map (t, y) → NS(t)(y) has closed

graph on the domain Gr
(
S(·) ∩ B̄δ(x̄(·))

)
.Then, the following holds.

(i) Let t ∈ [0, T ], and y ∈ S(t) ∩ B̄δ(x̄(t)). Then

NP
S(t)(y) ∩ −NP

B̄δ(x̄(t))(y) = {0}.

(ii) There exists ρδ > 0 such that for all t ∈ [0, T ] the set S(t)∩ B̄δ(x̄(t)) is ρδ-prox-regular.

(iii) For t ∈ [0, T ], π(t, ·) := π(S(t)∩B̄δ(x̄(t)))(·) is well-defined on
(
S(t) ∩ B̄δ(x̄(t))

)
+ρδB and

2-lipschitz on
(
S(t) ∩ B̄δ(x̄(t))

)
+ ρδ

2 B̄.

Proof. (i)-(ii): The results are derived by following the proof of [55, Lemma 3.2], where for

t ∈ [0, T ], we take S := S(t) and x := x̄(t), and hence, Nx and ρx there , are respectively

Nt := Nx̄(t) and ρt := ρx̄(t). It follows that ρ there is now ρ̂ := inf{ρt : t ∈ [0, T ]}. Following

the rest of the proof there, and employing that the map (t, y) → NS(t)(y) has closed graph

on the domain Gr
(
S(·) ∩ B̄δ(x̄(·))

)
, we conclude that ρ̂ > 0. Thus, for all t ∈ [0, T ], we

deduce that S(t) ∩ B̄δ(x̄(t)) is ρδ-prox regular, where ρδ := ρ∗ρ̂
2 .

(iii): It follows from (ii) and Proposition 2.2.39(ii).

We now present Theorem 9.1 in [2].
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Theorem 2.2.41. Let gk : [0, T ] × Rn → R with k = 1, . . . ,m be functions such that,

for each t ∈ [0, T ], the set

S(t) = {x ∈ Rn : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0} (2.9)

is nonempty. Assume that there exists some ρ ∈]0,+∞] such that:

(i) for all t ∈ [0, T ], for all k ∈ {1, . . . ,m}, gk(t, ·) is of class C1 on {x ∈ Rn : d(x, S(t)) <

ρ};

(ii) there exists a real γ > 0 such that, for all t ∈ [0, T ], for all x ∈ bdryS(t), for all

y ∈ {y ∈ Rn : d(y, S(t)) < ρ}, for all k ∈ {1, . . . ,m} with gk(t, x) = 0,

⟨∇gk(t, ·)(y) − ∇gk(t, ·)(x), y − x⟩ ≥ −γ∥y − x∥2.

Assume also that there is a real δ > 0 such that, for any (t, x) ∈ [0, T ]×Rn with x ∈ bdryS(t)

and any ζ ∈ conv{∇gk(t, ·)(x) : k ∈ K(t, x)} where K(t, x) := {k ∈ {1, . . . ,m} : gk(t, x) =

0}, there exists v(t, x, ζ) ∈ B̄ satisfying

⟨ζ, v(t, x, ζ)⟩ ≤ −δ.

Then, for all t ∈ [0, T ], the set S(t) is r-prox-regular with r = min
{
ρ, δ

γ

}
.

Amenable and Epi-Lipschitzian sets

The following definitions and properties can be found in [22, 62].

Definition 2.2.42. Let S ⊂ Rn. The set S is amenable at one of its points x̄ if there

exists an open neighborhood V of x̄, a C1 mapping F from V into a space Rm, and a closed,

convex set D ⊂ Rm such that

S ∩ V = {x ∈ V | F (x) ∈ D}, (2.10)

with

the only vector y ∈ ND(F (x̄)) with ∇F (x̄)Ty = 0 is y = 0. (2.11)
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Lemma 2.2.43. Let S = {x ∈ X | F (x) ∈ D} for closed, convex sets X,D, and a C1

mapping F . The set S is amenable at any of its points x̄ where the constraint qualification

holds, meaning that the only y ∈ ND(F (x̄)) with −∇F (x̄)Ty ∈ NX(x̄) is y = 0.

Definition 2.2.44. For a strictly continuous function f : Rn → R, let S = {x | f(x) ≤

ᾱ} and consider a point x̄ of S with f(x̄) = ᾱ. S is said to have an epi-Lipschitzian

boundary at x̄ if

0 /∈ conv ∂f(x̄). (2.12)

Lemma 2.2.45. Let S := {x : f(x) ≤ 0}, where f : Rn → R is Lipschitz near x and

0 ∈ ∂f(x). Then, S is epi-Lipschitzian at x.

Lemma 2.2.46. (i) A set S ⊂ Rn with boundary point x̄ is epi-Lipschitzian at x̄

if and only if S is locally closed at x̄ and the normal cone NS(x̄) is pointed, i.e. NS(x̄) ∩

−NS(x̄) = {0}.

(ii) If the set S is epi-Lipschitzian at every x ∈ S, then S = cl intS.

Lemma 2.2.47. [57, Remark 4.8(ii)] If the lower semicontinuous multifunction F has

closed and r-prox-regular values, for some r > 0, (as opposed to convex), then

conv
(
N̄L
F (t)(·)

)
= NP

F (t)(·) = NL
F (t)(·) = NF (t)(·),

and this cone is pointed at x ∈ F (t) if and only if F (t) is epi-Lipschitz at x. Here, N̄L
F (t)(y)

stands for the graphical closure at (t, y) of the multifunction (t, y) 7→ NL
F (t)(y), that is, the

graph of N̄L
F (·)(·) is the closure of the graph of NL

F (·)(·).

Sub-level sets of a function

The following is adapted from Lemma 3.3-3.4, Theorem 3.1 in [55], and Proposition 3.1

in [70].

Lemma 2.2.48. Let S be a nonempty set given by

S := {x ∈ Rn : ψ(x) ≤ 0}, (2.13)
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where ψ is C1,1 on S + ρB, for some ρ > 0, ψ is coercive (i.e. lim∥x∥→∞ ψ(x) = +∞) or S

bounded, and there is a constant η > 0 such that

ψ(x) = 0 =⇒ ∥∇ψ(x)∥ > 2η.

Part I. Let 2Mψ be the Lipschitz constant of ∇ψ(·) over the compact set S + ρ
2B̄ such that

Mψ ≥ 4η
ρ
. Then,

(i) bdry S ̸= ∅ and bdry S = {x ∈ Rn : ψ(x) = 0}.

(ii) int S ̸= ∅ and int S = {x ∈ Rn : ψ(x) < 0}.

(iii) The nonempty set S is compact, amenable (in the sense of [62]), epi-Lipschitzian,

S = cl(intS), (2.14)

and S is η
Mψ

-prox-regular.

(iv) For all x ∈ bdryS we have

NS(x) = NP
S (x) = NL

S (x) = {λ∇ψ(x) : λ ≥ 0}. (2.15)

Part II. For k ∈ N, we define the set S(k) by

S(k) := {x ∈ S : ψ(x) ≤ −αk}, (2.16)

where (αk)k the real sequence defined by

αk :=
ln
(
ηγk
2M

)
γk

, k ∈ N,

M > 0 positive constant, (γk)k a sequence satisfying γk >
2M
η

for all k ∈ N, and γk →

∞ as k → ∞. Then, we have

(i) For all k, the set S(k) ⊂ int S and is compact,

(ii) bdry S(k) = {x ∈ Rn : ψ(x) = −αk} and int S(k) = {x ∈ Rn : ψ(x) < −αk} for k

sufficiently large,;

(iii) int S(k) is nonempty, C(k) is amenable, epi-Lipschitzian, n
2Mψ

-prox-regular, S(k) =

cl int C(k), and

∀x ∈ bdry S(k), NS(k)(x) = NP
S(k)(x) = NL

S(k)(x) = {λ∇ψ(x) : λ ≥ 0}. (2.17)
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(iv) There exist ro > 0 and k̄ ∈ N such that

[
S ∩ B̄ro(c)

]
− ρk

∇ψ(c)
∥∇ψ(c)∥ ⊂ intS(k), ∀k ≥ k̄ and ∀c ∈ bdryS. (2.18)

In particular, we have(
c− ρk

∇ψ(c)
∥∇ψ(c)∥

)
∈ intS(k), ∀k ≥ k̄ and ∀c ∈ bdryS. (2.19)

Other important results

The following theorem can be found in [66, Theorem 3.3.1].

Theorem 2.2.49 (Ekeland variational principle). Take a complete metric space

(X, d(·, ·)), a lower semicontinuous function f : X → R ∪ {+∞}, a point x0 ∈ dom f , and

numbers α > 0 and λ > 0. Assume that

f(x0) ≤ inf
x∈X

f(x) + λα.

Then there exists x̄ ∈ X such that

(i) f(x̄) ≤ f(x0),

(ii) d(x0, x̄) ≤ λ,

(iii) f(x̄) ≤ f(x) + αd(x, x̄) for all x ∈ X.

This result can be found in [47].

Lemma 2.2.50. Let

F (x) = max
1≤i≤m

fi(x), for x ∈ X. (2.20)

Define the smooth approximation:

Fp(x) = 1
p

ln
(

m∑
i=1

exp (pfi(x))
)
. (2.21)

Then, for x ∈ X, Fp(x) is a monotonically decreasing function in terms of p, and the following

inequality holds:

F (x) ≤ Fp(x) ≤ F (x) + ln(m)
p

. (2.22)
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2.3 Differential equations, set-valued analysis, and control theory

Existence of ODE

Theorem 2.3.1 (Existence and Uniqueness for ODE). Consider the (IVP) system
ẋ(t) = f(t, x)

x(t0) = x0.

If f is continuous in (t, x) in a rectangle D = {(t, x) : t0 −δ < t < t0 +δ, x0 −b < x < x0 +b},

and f(t, x) lipschitz with respect to x on R = {(t, x) : t0 − a < t < t0 + a, x0 − b < x <

x0 + b, a < δ}, then the solution in R of the (IVP) exists and shall be unique.

The following is found in [39, Theorem 5.3].

Definition 2.3.2 (Carathéodory function). Suppose D is an open set in Rn+1. The

function f : D → Rn is said to satisfy the Carathéodory conditions on D, if:

• f(t, x) is measurable in t for each fixed x,

• f(t, x) is continuous in x for each fixed t,

• For each compact set U ⊂ D, there exists an integrable function mU(t) such that

|f(t, x)| ≤ mU(t), (t, x) ∈ U. (2.23)

Theorem 2.3.3 (Existence and Uniqueness for ODE). Suppose D is an open set

in Rn+1. Assume that the function f : D → Rn satisfies the Carathéodory conditions on D

(see Definition 2.3.2). Additionally, for each compact set U ⊂ D, there exists an integrable

function kU(t) such that

|f(t, x) − f(t, y)| ≤ kU(t)|x− y|, (t, x), (t, y) ∈ U. (2.24)

Then, for any (t0, x0) ∈ U , there exists a unique solution x(t, t0, x0) of the initial value

problem

ẋ = f(t, x), x(t0) = x0, (2.25)

passing through (t0, x0). The domain E of definition of x(t, t0, x0) in Rn+2 is open, and

x(t, t0, x0) is continuous in E.
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Existence of optimal solution for optimal control problems

The following is Theorem 23.10 in [19].

Theorem 2.3.4 (Existence of optimal solution for optimal control problem).



Minimize J(x, u) = ℓ(x(a), x(b))

subject to x′(t) = f(t, x(t), u(t)) a.e.

u(t) ∈ U(t) a.e.

(t, x(t)) ∈ Q ∀t ∈ [a, b], (x(a), x(b)) ∈ E.

(OC1)

Let the data of (OC1) satisfy the following hypotheses:

(a) f(t, x, u) is continuous in (x, u) and measurable in t;

(b) U(·) is measurable and compact-valued;

(c) f has linear growth on Q: there is a summable function M such that

(t, x) ∈ Q, u ∈ U(t) =⇒ |f(t, x, u)| ≤ M(t)(1 + |x|);

(d) For each (t, x) ∈ Q, the set f(t, x, U(t)) is convex;

(e) The sets Q and E are closed, and ℓ : Rn × Rn → R is lower semicontinuous;

(f) The following set is bounded:

{α ∈ Rn : (α, β) ∈ E for some β ∈ Rn}.

Then, if there is at least one admissible process for the problem, it admits a solution.

Other results

We now present Filippov Selection Theorem (see Theorem 2.3.13 in [66]).

Theorem 2.3.5 (Filippov Selection Theorem). Let T > 0. Consider a nonempty

multifunction X : [0, T ]⇝ Rs, a function H : [0, T ]×Rs → Rd, and a function v(·) : [0, T ] →

Rd satisfying

(i) The set Gr X is L × Bs measurable;
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(ii) The function H is L × Bs measurable;

(iii) The function v(·) is a measurable function such that v(t) ∈ {H(t, λ) : λ ∈ X (t)} a.e.

Then, there exists a measurable function λ : [0, T ] → Rs such that

u(t) ∈ X (t) a.e.

and

H(t, λ(t)) = v(t) a.e.

2.4 Functional analysis

We first start by general notations and concepts in functional analysis.

• For S ⊂ Rn compact, C(S;Rn) denotes to the set of continuous functions from S

to Rn.

• The class of all functions Lipschitz on S with Lipschitz constant k ≥ 0 is denoted by

Lip
k (S).

• C1,1([a, b];Rn) is the space of continuously differentiable functions f whose derivative

ḟ is Lipschitz continuous.

• The set of all absolutely continuous functions f : [a, b] −→ Rn is denoted by

AC([a, b];Rn).

• We say that a function f is absolutely continuous on [a, b] if for every positive

number ε > 0, there exists δ > 0, such that whenever a finite sequence of pairwise

disjoint sub-intervals (ai, bi) of [a, b] with ai < bi satisfies ∑N
i=1(bi − ai) < δ, then

N∑
i=1

(f(bi) − f(ai)) < ε.

• Equivalently, we say that f is absolutely continuous if f has a derivative ḟ a.e.,

ḟ is Lebesgue integrable, and

f(t) = f(a) +
∫ t

a
ḟ(s)ds, ∀t ∈ [a, b].

• The set of all functions f : [a, b] −→ Rn of bounded variations is denoted by

BV ([a, b];Rn).
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• The total variation of f is given by

V b
a (f) = sup

P∈P

nP−1∑
i=0

|f(xi+1) − f(xi)|,

where the supremum is taken over the set

P = {P = {x0, . . . , xnP } | P is a partition of [a, b] satisfying xi ≤ xi+1 for

0 ≤ i ≤ nP − 1} of all partitions of the interval considered.

• If f is differentiable and its derivative is Riemann-integrable, then its total vari-

ation is

V b
a (f) =

∫ b

a
|f ′(x)| dx.

• For a function f , we say that

f ∈ BV ([a, b];Rn) ⇐⇒ V b
a (f) < +∞.

• The Lebesgue space of p-integrable functions f : [a, b] −→ Rn is denoted by

Lp([a, b];Rn), where the norms in Lp([a, b];Rn) and L∞([a, b];Rn) (or C([a, b];Rn)) are

written as ∥ · ∥p and ∥ · ∥∞, respectively, where for f ∈ Lp([a, b];Rn), we have

∥f∥p =
(∫ b

a
|f |pdx

) 1
p

,

and for f ∈ L∞([a, b];Rn),

∥f∥∞ = inf {C ≥ 0 : |f(x)| ≤ C a.e. x ∈ [a, b]} .

• The Sobolev space W 1,p([a, b];Rn) denotes the set of continuous functions f : [a, b] →

Rn having ḟ ∈ Lp([a, b];Rn). More specifically, we have:

• If f ∈ W 1,1([a, b];Rn), then f continuous and ḟ ∈ L1([a, b];Rn). Hence,

W 1,1([a, b];Rn) is the set of all absolutely continuous functions from [a, b] to Rn.

• If f ∈ W 1,2([a, b];Rn), then f continuous and ḟ ∈ L2([a, b]). The norm on

W 1,2([a, b];Rn) is

∥f(·)∥W 1,2 := ∥f(·)∥∞ + ∥ḟ(·)∥2.
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• Denote M(S), M+(S), and M1
+(S) to be, respectively, the set of Radon, positive

Radon, and probability measures on S. Note that by Radon measure on S, we mean

a finite regular measure on B(S), the σ-algebra generated by the Borel subsets of S.

• The space C∗([a, b];Rn) denotes the dual of C([a, b];Rn) equipped with the supremum

norm. C∗([a, b];Rn) consists of all bounded linear functionals from C([a, b];Rn) to R.

• We denote by ∥ · ∥T.V. the induced norm on C∗([a, b];Rn).

• For ν ∈ C∗([a, b];Rn), its support is denoted by supp {ν}, and it is the smallest

closed subset A ⊂ [a, b] with the property that for all relativey open subsets

B ⊂ [a, b] \ A, we have ν(B) = 0.

• By Riesz representation theorem, each element in C∗([a, b];R) can be interpreted

as an element in M([a, b]), the space of finite signed Radon measures on [a, b]

equipped with the weak* topology. In other words, every Λ bounded linear func-

tional on C([a, b];R) is represented as an integral against a finite signed Radon

measure ν:

Λ(f) =
∫ b

a
f(x)dν(x),

and

∥Λ∥ = ∥ν∥T.V.

• The set of elements in C∗([a, b];R) taking non-negative values on nonnegative-

valued functions in C([a, b];R) is denoted by C⊕(a, b).

• For ν ∈ C⊕(a, b), ∥ν∥T.V., as defined above, coincides with the total variation of

ν, i.e.

∥ν∥T.V. =
∫

[a,b]
ν(ds).

Important results

We start by Gronwall’s Lemma, see [66, Lemma 2.4.4].
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Lemma 2.4.1. Take an absolutely continuous function z : [S, T ] → Rn. Assume that

there exist nonnegative integrable functions k and v such that∣∣∣∣∣ ddtz(t)
∣∣∣∣∣ ≤ k(t)|z(t)| + v(t) a.e. t ∈ [S, T ].

Then

|z(t)| ≤ exp
(∫ t

S
k(σ)dσ

) [
|z(S)| +

∫ t

S
exp

(
−
∫ τ

S
k(σ)dσ

)
v(τ)dτ

]
for all t ∈ [S, T ].

This lemma can be found in see [69, equation (3.1)].

Lemma 2.4.2. If the function W (·, ·) is lipschitz and x(·) is an absolutely continuous

arc, then W (·, x(·)) is absolutely continuous, and we have

d

dt
W (t, x(t)) ∈ ∂W (t, x(t)).(1, ẋ(t)) a.e.

The following can be found in [43, Theorem 1], and it basically says that a function that

is Lipschitz on S ⊂ E could be extended to the whole space E by preserving a Lipschitz

condition.

Theorem 2.4.3. Let S ⊂ E non-empty. If f ∈ Lip
k (S), then fS,k ∈ Lip

k (E) and

coincides with f on S, where

fS,k(x) = inf
u∈S

{f(u) + k∥x− u∥} for all x ∈ E. (2.26)

Lemma 2.4.4. Let S ⊂ Rn be a compact set, and f : S → R ∪ {∞} a lower semicon-

tinuous function, and assume there exists x0 ∈ S such that f(x0) < ∞. Then, infx∈S exists

and is finite.

We now present Arzelà–Ascoli theorem.

Theorem 2.4.5 (Arzelà–Ascoli theorem). Let {fk} a sequence of continuous func-

tions on [0, T ]. If {fk} is uniformly bounded and uniformly equicontinuous, then there exists

a subsequence of {fk} (we do not relabel) that converges uniformly to a function f .
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Theorem 2.4.6 (Helly theorems). Let {fk} be a sequence of bounded variation on

[a, b]. Assume there is a constant M such that V b
a (fk) ≤ M and ∥fk∥∞ ≤ M for all k. Then:

(i) Helly’s first theorem. There is a subsequence of {fk} which converges pointwise

everywhere to a function f of bounded variation, with V b
a (f) ≤ M and ∥f∥∞ ≤ M .

(ii) Helly’s second theorem. We have:∫ b

a
g dfk →

∫ b

a
g df for all g ∈ C([a, b]).

Strong convergence, weak convergence, weak* convergence

A significant portion of this section is adapted from Evans lecture notes [37], with further

reference to his textbook [38].

Definition 2.4.7. Let p ∈ [1,∞]. We say that a sequence {fk} converges strongly

to f in Lp if

∥fk − f∥p → 0, as k → ∞.

Definition 2.4.8 (When p ∈ [1,∞)). Let U an open, bounded, smooth subset of Rn,

with n ≥ 2. We assume that 1 ≤ p < ∞, and let q be the conjugate exponent, i.e. 1
p

+ 1
q

= 1,

(q := ∞ when p = 1.) A sequence {fk} ∈ Lp(U) converges weakly to f ∈ Lp(U), in which

case, we write

fk ⇀ f in Lp(U),

if ∫
U
fkgdx →

∫
U
fgdx, ∀g ∈ Lq(U).

Definition 2.4.9 (When p = ∞). Let U an open, bounded, smooth subset of Rn,

with n ≥ 2. A sequence {fk} ∈ L∞(U) converges weakly* to f ∈ L∞(U), in which case,

we write

fk
∗
⇀ f in L∞(U),

if ∫
U
fkgdx →

∫
U
fgdx, ∀g ∈ L1(U).
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Theorem 2.4.10 (Boundedness of weakly converging sequence). Suppose 1 ≤

p < ∞ and fk ⇀ f in Lp(Ω) ( ∗
⇀ in L∞(Ω) if p = ∞). Then, fk is bounded in Lp(Ω) and

∥f∥Lp(Ω) ≤ lim inf
k→∞

∥fk∥Lp(Ω).

Theorem 2.4.11 (Weak convergence in Lp). Suppose 1 < p < ∞ and the sequence

{fk}k≥1 is bounded in Lp(U). Then there is a subsequence, still denoted by {fk}k≥1, and a

function f ∈ Lp(U) such that

fk ⇀ f in Lp(U).

If p = ∞, the result still holds with ⇀ replaced by ∗
⇀.

Theorem 2.4.12. Let {fk} be a sequence of functions that converges pointwise to f

and is uniformly bounded in L∞, i.e., there exists M > 0 such that ∥fk∥L∞ ≤ M for all k.

Suppose that {Ak} is a sequence in L2 that converges weakly to A in L2, i.e.,

Ak ⇀ A in L2.

Then, the sequence {Akfk} converges weakly to Af in L2, i.e.,

Akfk ⇀ Af in L2.

We now prove the following theorem.

Theorem 2.4.13. Let {fk}k sequence of functions in W 1,2([0, T ];Rn) (respectively

W 1,∞([0, T ];Rn)) such that

∥fk∥∞ ≤ M and ∥ḟk∥2 ≤ M (respectively ∥ḟk∥∞ ≤ M).

Then, along a subsequence (we do not relabel), we deduce that there exists a function

f ∈ W 1,2([0, T ];Rn) (respectively f ∈ W 1,∞([0, T ];Rn)) such that

fk(·)
unif−−→ f(·) and ḟk(·) ⇀ ḟ(·) weakly in L2 (respectivelyḟk(·) ∗

⇀ ḟ(·) weakly* in L∞).
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Proof. Let ε > 0 and let 0 ≤ t1, t2 ≤ T such that t2 − t1 ≤ ε2

M2 (respectively ≤ ε
M

). Hence,

for every k, we have that

||fk(t2) − fk(t1)|| = ||
∫ t2

t1
ḟk(s)ds||

≤
∫ t2

t1
||ḟk(s)||ds

≤
√
t2 − t1

(∫ t2

t1
||ḟk(s)||ds

) 1
2 (

respectively (t2 − t1)||ḟk||∞
)

≤
√
t2 − t1 M (respectively (t2 − t1)M)

≤ ε.

This shows that (fk(·))k is equicontinuous. In addition, we have that (fk(·))k is uniformly

bounded. We deduce from Arzela-Ascoli theorem (Theorem 2.4.5) that along a subsequence

of fk(·) (we do not relabel), we have fk converges uniformly to an absolutely continuous

function f .

Since (ḟk(·))k is uniformly bounded in L2 (respectively in L∞), we conclude that we can

extract a subsequence where fk converges weakly in L2 to a limit g (respectively weakly* in

L∞) (see Theorem 2.4.11). Now, for such subsequence (we do not relabel), we have

fk(t) = fk(0) +
∫ t

0
ḟk(s)ds −−−→

k→∞
f(0) +

∫ t

0
g(s)ds,

we deduce that

f(t) = f(0) +
∫ t

0
g(s)ds,

that is, f(·) is absolutely continuous and ḟ(t) = g(t) a.e. t ∈ [0, T ].

The following is Theorem [66, Proposition 9.2.1].

Theorem 2.4.14 (Convergence of measures). Take a weak* convergent sequence

{µi} in C⊕(S, T ), a sequence of Borel measurable functions γi : [S, T ] → Rn, and a sequence

of closed sets {Ai} in [S, T ] × Rn. Take also a closed set A in [S, T ] × Rn, and a measure

µ ∈ C⊕(S, T ).
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Assume that A(t) is convex for each t ∈ dom A(·) and that the sets A and A1, A2, . . . are

uniformly bounded. Assume further that

lim sup
i→∞

Ai ⊂ A,

γi(t) ∈ Ai(t) µi a.e. for i = 1, 2, . . .

and

µi
∗
⇀ µ0 weakly*.

Define ηi ∈ C∗([S, T ];Rk) by

ηi(dt) := γi(t)µi(dt).

Then, along a subsequence,

ηi
∗
⇀ η0 weakly*,

for some η0 ∈ C∗([S, T ];Rk) such that

η0(dt) = γ0(t)µ0(t),

in which γ0 is a Borel measurable function that satisfies

γ0(t) ∈ A(t) µ0 a.e.

The following is Theorem 6.39 in [19].

Theorem 2.4.15 (Weak-closure theorem). Let [a, b] be an interval in R and Q a

closed subset of [a, b] × Rn. Let Γ(t, u) be a multifunction mapping Q to the closed convex

subsets of Rn. We assume that

(a) For each t ∈ [a, b], the set

G(t) = {(u, z) : (t, u, z) ∈ Q× Rn, z ∈ Γ(t, u)}

is closed and nonempty;
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(b) For every measurable function u on [a, b] satisfying (t, u(t)) ∈ Q a.e. and every p ∈ Rn,

the support function map

t → HΓ(t,u(t))(p) = sup{⟨p, v⟩ : v ∈ Γ(t, u(t))}

is measurable;

(c) For a summable function k, we have Γ(t, u) ⊂ B(0, k(t)) ∀(t, u) ∈ Q.

Let ui be a sequence of measurable functions on [a, b] having (t, ui(t)) ∈ Q a.e. and converging

almost everywhere to u∗, and let zi : [a, b] → Rn be a sequence of functions satisfying

|zi(t)| ≤ k(t) a.e. whose components converge weakly in L1(a, b) to those of z∗. Suppose

that, for certain measurable subsets Ωi of [a, b] satisfying limi→∞ meas Ωi = b− a, we have

zi(t) ∈ Γ(t, ui(t)) +B(0, ri(t)), t ∈ Ωi a.e.,

where ri is a sequence of nonnegative functions converging in L1(a, b) to 0. Then we have in

the limit

z∗(t) ∈ Γ(t, u∗(t)), t ∈ [a, b] a.e.
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CHAPTER 3

STUDY OF A COUPLED SWEEPING PROCESS DYNAMIC (D)

In this chapter, we study the following dynamic (D) given by a sweeping process coupled

with a differential equation:

(D)


ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)(x(t)), a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)), a.e. t ∈ [0, T ],
(3.1)

where T > 0 is fixed, f : [0, T ] × Rn × Rl × Rm −→ Rn, g : [0, T ] × Rn × Rl × Rm −→ Rl,

C(t) is the intersection of the zero-sublevel sets of a finite sequence of functions ψi(t, ·) where

ψi : [0, T ] × Rn −→ R, i = 1, . . . , r, NC(t) is the Clarke normal cone to C(t),

U(·) : [0, T ] ⇝ Rm is nonempty, closed, and Lebesgue- measurable set-valued map, and the

set of control functions U is defined by

U := {u : [0, T ] −→ Rm : u is measurable and u(t) ∈ U(t), a.e. t ∈ [0, T ]}. (3.2)

We first introduce the following assumptions on C(·) and U(·) which will be used at different

points of the chapter.

(A1) Assumption on U(·): The measurable set-valued map U(·) has compact images.

(A2) Assumption on C(·): For t ∈ [0, T ], the set C(t) is nonempty, closed, uniformly

ρ-prox-regular, for some ρ > 0, and is given by

C(t) :=
r⋂
i=1

Ci(t), where Ci(t) := {x ∈ Rn : ψi(t, x) ≤ 0} ⊂ Rn, (3.3)

where (ψi)1≤i≤r is a family of continuous functions ψi : [0, T ] × Rn −→ R.

We shall use the following notations. For x(·) ∈ C([0, T ];Rn) such that x(t) ∈ C(t) ∀t ∈

[0, T ], and for (τ, z) ∈ Gr C(·), we define

I -
i (x) := {t ∈ [0, T ] : x(t) ∈ intCi(t)} and I0

i (x) := [0, T ] \ I -
i (x), ∀i = 1, . . . , r,(3.4)

I -(x) :=
r⋂
i=1

I -
i (x) = {t ∈ [0, T ] : x(t) ∈ intC(t)}, (3.5)

I0(x) := {t ∈ [0, T ] : x(t) ∈ bdryC(t)} = [0, T ] \ I -(x) = {t : I0
(t,x(t)) ̸= ∅}, (3.6)

where I0
(τ,z) := {i ∈ {1, . . . , r} : ψi(τ, z) = 0}. (3.7)
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We now introduce some local assumptions on C(·), f and g.

For a given pair (x̄, ȳ) ∈ C([0, T ];Rn×Rl) such that x̄(t) ∈ C(t) ∀t ∈ [0, T ], and for a constant

δ̄ > 0, we say that the following assumptions hold true at ((x̄, ȳ); δ̄) if the corresponding

conditions hold true.

(A3) Local assumptions on the functions ψi at (x̄; δ̄):

(A3.1) There exist ρo > 0 and Lψ > 0 such that, for each i, ∇xψi(·, ·) exists on

Gr
(
C(·) ∩ B̄δ̄(x̄(·))

)
+{0} × ρoB, and ψi(·, ·) and ∇xψi(·, ·) satisfy,

for all (t1, x1), (t2, x2) ∈ Gr
(
C(·) ∩ B̄δ̄(x̄(·))

)
+ {0} ×

ρo

2 B̄,

max {|ψi(t1, x1) − ψi(t2, x2)|, ∥∇xψi(t1, x1) − ∇xψi(t2, x2)∥} ≤ Lψ( |t1 − t2| + ∥x1 − x2∥).

(A3.2) For every t ∈ I0(x̄), the following constraint qualification at x̄(t) holds: ∑
i∈I0

(t,x̄(t))

λi∇xψi(t, x̄(t)) = 0, with each λi ≥ 0

 =⇒
[
λi = 0, ∀i ∈ I0

(t,x̄(t))

]
.

For the given δ̄ and for any a, b > 0, we introduce the following sets

Cx̄ :=
⋃

t∈[0,T ]

[
C(t) ∩ B̄δ̄(x̄(t))

]
, Bȳ :=

⋃
t∈[0,T ]

B̄δ̄(ȳ(t)), U :=
⋃

t∈[0,T ]
U(t),(3.8)

¯N(a,b)(t) :=
[
C(t) ∩ B̄a(x̄(t))

]
× B̄b(ȳ(t)), for t ∈ [0, T ]. (3.9)

(A4) Local assumptions on h(t, x, y, u) := (f, g)(t, x, y, u) at ((x̄, ȳ); δ̄):

(A4.1) For (x, y, u) ∈ Cx̄ × Bȳ × U, h(·, x, y, u) is Lebesgue-measurable and,

for a.e. t ∈ [0, T ], h(t, ·, ·, ·) is continuous on ¯N(δ̄,δ̄)(t)×U(t). There exist Mh > 0,

and Lh ∈ L2([0, T ];R+), such that, for a.e. t ∈ [0, T ], for all (x, y), (x′, y′) ∈

¯N(δ̄,δ̄)(t) and u ∈ U(t),

∥h(t, x, y, u)∥ ≤ Mh and ∥h(t, x, y, u) − h(t, x′, y′, u)∥ ≤ Lh(t)∥(x, y) − (x′, y′)∥.

(A4.2) The set h(t, x, y, U(t)) is convex for all (x, y) ∈ ¯N(δ̄,δ̄)(t) and t ∈ [0, T ] a.e. 1

1This condition is not needed for Theorem 4.2.11.
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3.1 Study of the dynamic (D) under local assumptions

We start by presenting some properties pertaining to the sweeping set C(t) and the

sweeping process (D). For the reader’s convenience, Table 3.1 at the end of this subsection

summarizes all the results presented here.

The following lemma provides an equivalent condition to (A3.2) which allows to obtain the

formula for the normal cone to C(t) at points x in C(t) near x̄(t) (Lemma 3.1.3).

Lemma 3.1.1 (Assumption (A3.2)). Let C(·) satisfying (A2) for ρ > 0. Consider

x̄ ∈ C([0, T ];Rn) with x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1) holds at (x̄; δ̄).

Then, the validity of assumption (A3.2) at x̄ is equivalent to the existence of 0 < εo < δ̄ and

ηo > 0 such that∥∥∥∥∥∥∥
∑

i∈I0
(t,c)

λi∇xψi(t, c)

∥∥∥∥∥∥∥ > 2ηo, ∀(t, c) ∈
{
(τ, x) ∈ Gr

(
C(·) ∩ B̄εo(x̄(·)

)
: I0

(τ,x) ̸= ∅
}
, (3.10)

where I0
(τ,x) is defined in (3.7) and (λi)i∈I0

(t,c)
is any sequence of nonnegative numbers satis-

fying ∑i∈I0
(t,c)

λi = 1.

Proof. It suffices to show that (A3.2) implies (3.10). If not, then there exist sequences

tn ∈ [0, T ], cn ∈ C(tn) ∩ B̄ 1
n
(x̄(tn)) with I0

(tn,cn) ̸= ∅, and (λni )i∈I0
(tn,cn)

with ∑i∈I0
(tn,cn)

λni = 1

and λni ≥ 0, for all i ∈ I0
(tn,cn) and n ∈ N, such that

∥∥∥∥∑i∈I0
(tn,cn)

λni ∇xψi(tn, cn)
∥∥∥∥ ≤ 2

n
,∀n ∈ N.

As up to a subsequence, (tn, cn) → (to, co) := (to, x̄(to)), Lemma .0.1 yields the existence of

∅ ≠ Jo ⊂ {1, . . . , r} and a subsequence of (tn, cn)n we do not relabel, such that I0
(tn,cn) =

Jo ⊂ I0
(to,co) for all n ∈ N. It follows that∥∥∥∥∥∥

∑
i∈Jo

λni ∇xψi(tn, cn)
∥∥∥∥∥∥ ≤ 2

n
,
∑
i∈Jo

λni = 1 (∀n ∈ N), and, λni ≥ 0 (∀i ∈ Jo,∀ n ∈ N). (3.11)

Hence, after going to a subsequence if necessary, it follows that for all i ∈ Jo, λni → λoi ≥ 0

with ∑i∈Jo λ
o
i = 1. Upon taking the limit as n → ∞ in (3.11) and by defining λ0

i = 0 for all

i ∈ I0
(to,co) \ Jo, (A3.1) implies ∑i∈I0

(to,co)
λoi∇xψi(to, co) = 0, which contradicts (A3.2).
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Remark 3.1.2. We can prove that (A3.1) and equation (3.10) imply that for all

(t, x) ∈ Gr
(
C(·) ∩ B̄εo(x̄(·)

)
such that I0

(t,x) ̸= ∅, the family of vectors {∇xψi(t, x)}i∈I0
(t,x)

is positively linearly independent. Indeed, assume there exist (t, x) ∈ Gr
(
C(·) ∩ B̄εo(x̄(·)

)
such that I0

(t,x) ̸= ∅, (λi)i∈I0
(t,x)

≥ 0 such that ∑i∈I0
(t,x)

λi∇xψi(t, x) = 0. If there exists i

such that λi ̸= 0, then ∑
i∈I0

(t,x)
λi ̸= 0, and we have ∑i∈I0

(t,x)

λi∑
i∈I0

(t,x)
λi

∇xψi(t, x) = 0. This

contradicts (3.10).

Lemma 3.1.3. Let C(·) satisfying (A2) for ρ > 0. Consider x̄ ∈ C([0, T ];Rn) with

x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1) and (A3.2) hold at (x̄; δ̄). Let εo be

the constant from Lemma 3.1.1. Then, we have

NC(t)(x) = NP
C(t)(x) = NL

C(t)(x), ∀x ∈ C(t),

and, for all (t, x) ∈ Gr
(
C(·) ∩ B̄εo(x̄(·)

)
,

NC(t)(x) =



∑i∈I0
(t,x)

λi∇xψi(t, x) : λi ≥ 0
 ̸= {0} if x ∈ bdry C(t)

{0} if x ∈ int C(t).
(3.12)

Proof. Notice that C(t) is prox-regular. By applying Proposition 2.2.39(i) ([21, Corollary

4.15]), we conclude that the limiting, Clarke and proximal normal cones are all equal to each

other. Now, to prove equation (3.12), we apply Lemma 2.2.11 ([19, Corollary 10.44]) and

Remark 3.1.2.

Lemma 3.1.4 (Equivalence). Let C(·) satisfying (A2) for ρ > 0. Consider

(x̄, ȳ) ∈ C([0, T ];Rn × Rl) with x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1)

holds at (x̄; δ̄), and (A4) is satisfied by (f, g) at ((x̄, ȳ); δ̄). Let (x, y) ∈ W 1,1([0, T ];Rn+l) be

a pair such that (x(t), y(t)) ∈ ¯N(δ̄,δ̄)(t) ∀t ∈ [0, T ]. The following equivalences hold true.

There exists u ∈ U such that
ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)(x(t)) a.e. t ∈ [0, T ]

ẏ(t) = g(t, x(t), y(t), u(t)) a.e. t ∈ [0, T ]
(3.13)
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(I)⇐⇒ There exist u ∈ U and (λ1(·), · · · , λr(·)) non-negative measurable functions such that

for every i ∈ {1, · · · , r}, λi(t) = 0 for t ∈ I -
i (x) and

ẋ(t) = f(t, x(t), y(t), u(t)) −∑r
i=1 λi(t)∇xψi(t, x(t)) a.e. t ∈ [0, T ]

ẏ(t) = g(t, x(t), y(t), u(t)) a.e. t ∈ [0, T ]
(3.14)

(II)⇐⇒ There exist (λ1(·), · · · , λr(·)) non-negative measurable functions such that for every

i ∈ {1, · · · , r}, λi(t) = 0 for t ∈ I -
i (x) and

(ẋ(t), ẏ(t)) ∈ h(t, x(t), y(t), U(t)) −
(

r∑
i=1

λi(t)∇xψi(t, x(t)), 0
)

(3.15)

(III)⇐⇒ There exist (λ1(·), · · · , λr(·)) non-negative measurable functions such that for every

i ∈ {1, · · · , r}, λi(t) = 0 for t ∈ I -
i (x) and ∀z ∈ Rn × Rl,

⟨z, (ẋ(t), ẏ(t))⟩ ≤ σ(z, h(t, x(t), y(t), U(t))) − ⟨z, (
r∑
i=1

λi(t)∇xψi(t, x(t)), 0)⟩ a.e. (3.16)

Proof. Equivalences (I) and (II) hold true by applying Filipov Selection Theorem, see The-

orem 2.3.5 ([66, Theorem 2.3.13]), and using equation (3.12) for (I). Whereas equivalence

(III) holds true by applying the support property in (2.2) on the compact and convex set

S = h(t, x(t), y(t), U(t)).

An important consequence of Lemma 3.1.1 and Lemma 3.1.3 is manifested in the following

result that establishes the Lipschitz continuity and the uniqueness of the solutions near

(x̄, ȳ) for the Cauchy problem of (D) via its equivalent form. We note that, under global

assumptions, the existence of a solution for the Cauchy problem of (D) is given in Theorem

3.3.7, which will be established in Section 3.3.2. First, define µ to be

µ := Lψ(1 +Mh). (3.17)

Lemma 3.1.5. Let C(·) satisfying (A2) for ρ > 0. Consider (x̄, ȳ) ∈ C([0, T ];Rn ×Rl)

with x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1) and (A3.2) hold at (x̄; δ̄),

and (A4.1) is satisfied by (f, g) at ((x̄, ȳ); δ̄). Let u ∈ U and (x0, y0) ∈ ¯N(ε0,δ̄)(0) be fixed.
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Then, a pair (x, y) ∈ W 1,1([0, T ];Rn+l), such that (x(t), y(t)) ∈ ¯N(ε0,δ̄)(t) ∀t ∈ [0, T ], is a

solution of (D) corresponding to ((x0, y0), u) if and only if there exist measurable functions

(λ1, · · · , λr) such that, for all i = 1, · · · , r, λi(t) = 0 for t ∈ I -
i (x), and ((x, y), u) together

with (λ1, · · · , λr) satisfies

ẋ(t) = f(t, x(t), y(t), u(t)) −∑
i∈I0

(t,x(t))
λi(t)∇xψi(t, x(t)) a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)), a.e. t ∈ [0, T ],

(x(0), y(0)) = (x0, y0).

(3.18)

Furthermore, we have the following bounds
∥λi∥∞ ≤ ∥∑r

i λi∥∞ ≤ µ
4η2

0
, ∀i = 1, · · · , r,

∥ẋ∥∞ ≤ Mh + µ
4η2

0
Lψ, ∥ẏ∥∞ ≤ Mh.

(3.19)

Consequently, (x, y) is the unique solution of (D) in ¯N(ε0,δ̄)(·) corresponding to ((x0, y0), u).

In particular, if ((x̄, ȳ), ū) solves (D), then (x̄, ȳ) is Lipschitz and is the unique solution of

(D) corresponding to ((x̄(0), ȳ(0)), ū).

Proof. The equivalence in the first part of this lemma follows immediately from Filippov

selection theorem and the normal cone formula in (3.12) (see Lemma 3.1.4). Now, we proceed

to prove the bounds in (3.19). Since for all i = 1, · · · , r, ψi(·, x(·)) ∈ W 1,1
(
ψi(·, ·) is lipschitz

and x(·) is absolutely continuous
)

, then d
dt
ψi(t, x(t)) exists for almost all t ∈ [0, T ]. Using

assumption (A3.1) and Lemma 2.4.2 (see [69, equation (3.1)]), we deduce that, ∀i = 1, · · · , r,

d

dt
ψi(t, x(t)) ⊂ ∂(t,x)ψi(t, x(t)).(1, ẋ(t)).

But,

∂(t,x)ψi(t, x(t)) = conv
{
lim ∇(t,x)ψi(tj, xj) : (tj, xj) O−→ (t, x(t))

}
= conv

{
lim(∇tψi(tj, xj),∇xψi(tj, xj)) : (tj, xj) O−→ (t, x(t))

}
= ∂̂tψi(t, x(t)) × ∇xψi(t, x(t)), (3.20)
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where O is full- measure subset of a neighborhood of (t, x(t)), and for (t, z) ∈ Gr(C(·) ∩

B̄δ̄(x̄(·))),

∂̂tψi(t, z) := conv{ lim
j→∞

∇tψi(tj, zj) : (tj, zj) → (t, z)}. (3.21)

Hence,

d

dt
ψi(t, x(t)) ⊂ ∂(t,x)ψi(t, x(t)).(1, ẋ(t)) = ∂̂tψi(t, x(t)) + ⟨∇xψi(t, x(t)), ẋ(t)⟩, t ∈ [0, T ] a.e.,

Thus, there exist measurable θi(·) ∈ ∂̂tψi(·, x(·)) a.e., such that

d

dt
ψi(t, x(t)) = θi(t) + ⟨∇xψi(t, x(t)), ẋ(t)⟩ a.e. t ∈ [0, T ], ∀i = 1, · · · , r. (3.22)

Note that, by (A3.1), we have, for t ∈ [0, T ] a.e., for all θi(t) ∈ ∂̂tψi(t, x(t)), and for all

i = 1, · · · , r,

|θi(t) + ⟨∇xψi(t, x(t)), f(t, x(t), y(t), u(t))⟩| ≤ Lψ(1 + ∥f(t, x(t), y(t), u(t))∥). (3.23)

Define in [0, T ] the set of full measure:

T := {t ∈ (0, T ) : ẋ(t) and d

dt
ψi(t, x(t)) exist, ∀i = 1, · · · , r}. (3.24)

Let t ∈ I -(x) ∩ T . Then, I0
(t,x(t)) = ∅, and hence, ∀i = 1, · · · , r, λi(t) = 0. This implies that

ẋ(t) = f(t, x(t), y(t), u(t)), and hence ∥ẋ(t)∥ ≤ Mh.

Let t ∈ I0(x) ∩ T with ∑
i∈I0

(t,x(t))
λi(t) ̸= 0; otherwise we join the conclusion of the pre-

vious case. Since for all i ∈ I0
(t,x(t)), we have ψi(t, x(t)) = 0 and x(s) ∈ C(s) ∀s ∈ [0, T ],

it follows that d
dt
ψi(t, x(t)) = 0, for all i ∈ I0

(t,x(t)). Hence, for the finite sequence (θi)ri=1 in

(3.22), we have

0 = θi(t) + ⟨∇xψi(t, x(t)), ẋ(t)⟩. (3.25)

Multiplying (3.25) by λi(t), and using the fact that x(·) satisfies the first equation of (3.18),

we get that

0 = λi(t)θi(t) + λi(t)
〈

∇xψi(t, x(t)), f(t, x(t), y(t), u(t)) −
∑

j∈I0
(t,x(t))

λj(t)∇xψj(t, x(t))
〉
.(3.26)
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Summing (3.26) over all i ∈ I0
(t,x(t)) and using (3.23), we deduce that

∥
∑

i∈I0
(t,x(t))

λi(t)∇xψi(t, x(t))∥2 =
∑

i∈I0
(t,x(t))

λi(t) (θi(t) + ⟨∇xψi(t, x(t)), f(t, x(t), y(t), u(t))⟩)

≤ Lψ(1 + ∥f(t, x(t), y(t), u(t))∥)
∑

i∈I0
(t,x(t))

λi(t).

Hence, utilizing (3.10) on the term on the left hand side, and then dividing by∑i∈I0
(t,x(t))

λi(t) ̸=

0 the last inequality, we deduce from (3.17) that

∑
i∈I0

(t,x(t))

λi(t) ≤ Lψ
4η2

0
(1 + ∥f(t, x(t), y(t), u(t))∥)

(A4.1)
≤ µ

4η2
0
. (3.27)

Therefore, ∥∑r
i=1 λi∥∞ ≤ µ

4η2
0
. Finally, employing (A4.1) for f and g, along with (3.18), the

bounds on ∥ẋ∥∞ and ∥ẏ∥∞ follow.

For the uniqueness, let X := (x, y), X̃ := (x̃, ỹ) in ¯N(ε0,δ̄)(·) be two solutions of (D) corre-

sponding to ((x0, y0), u), and let (λi)ri=1, (λ̃i)ri=1 be their corresponding multipliers satisfying

(3.18). Using the hypomonoticity of the normal cone to the ρ-prox-regular sets C(t) (see

Proposition 2.2.39(iii)), the Lh-Lipschitz property of h(t, ·, ·, u(t)), and the bounds in (3.19)

for the multipliers, we deduce that

1
2
d

dt
(∥X(t) − X̃(t)∥2) = ⟨Ẋ(t) − ˙̃X(t), X(t) − X̃(t)⟩

≤ (Lh(t) + µ

4ρη2
o

Lψ)∥X(t) − X̃(t)∥2 := κ(t)∥X(t) − X̃(t)∥2. (3.28)

Hence using Gronwall’s lemma (see Lemma 2.4.1), we deduce that

∥X(t) − X̃(t)∥2 ≤ e2
∫ t

0 κ(s)ds∥X(0) − X̃(0)∥2 = 0.

Then, X(t) = X̃(t) ∀t ∈ [0, T ], and the uniqueness is proved.

Now, we arrive at the table promised earlier, summarizing all the results from this sub-

section.
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Table 3.1 Summary of results from Subsection 3.1 .

Result Description

Lemma 3.1.1
We provide an equivalent condition to (A3.2) that allows to obtain the

formula for the normal cone to C(t) at points x in C(t) near x̄(t).

Remark 3.1.2

We prove that for all (t, x) ∈ Gr
(
C(·) ∩ B̄εo(x̄(·)

)
such that I0

(t,x) ̸= ∅,

the family of vectors {∇xψi(t, x)}i∈I0
(t,x)

is positively linearly

independent.

Lemma 3.1.3
We use Lemma 3.1.1 to obtain the formula for the normal cone to C(t)

at points x in C(t) near x̄(t).

Lemma 3.1.4
We prove an equivalence between the system (D) and three other

systems of equations.

Lemma 3.1.5

We use Lemma 3.1.1 and Lemma 3.1.3 to establish the Lipschitz

continuity and the uniqueness of the solutions near (x̄, ȳ) for the

Cauchy problem of (D) via its equivalent form.

3.2 Development and study of a new truncated dynamic (D̄) under local
assumptions

3.2.1 Preliminary results

To avoid imposing the boundedness of GrC(·) and a global constraint qualification on

the sweeping sets C(t) of (D), we shall truncate C(t) by a ball around x̄(t) of a specific

radius ε̄ (that will be determined in Remark 3.2.2), so that the uniform prox-regularity

of C(t) ∩ B̄ε̄(x̄(t)) is ensured, its constraint qualification is satisfied, and its normal cone

explicit formula is valid (see Remark 3.2.2 and Lemmas 3.2.4-3.2.6). After establishing

certain properties of the truncated sweeping set C(t) ∩ B̄ε̄(x̄(t)), we now turn our focus

to the associated truncated dynamic (D̄). Our goal is to derive analogous results to those

presented in Section 3.1, but now in the context of the truncated sweeping set C(t)∩B̄ε̄(x̄(t))

and the truncated dynamic (D̄). See Table 3.2 for summary of the results.
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A key element to proving the uniform prox-regularity of the truncated sweeping set C(t) ∩

B̄ε̄(x̄(t)) is the following lemma, which uses Lemma 3.1.1 to prove the closed graph property

of NC(·)(·) in the domain where (3.12) is valid.

Lemma 3.2.1. Let C(·) satisfying (A2) for ρ > 0. Consider x̄ ∈ C([0, T ];Rn) with

x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1) and (A3.2) hold at (x̄; δ̄). Then, for

εo obtained in Lemma 3.1.1, the set-valued map (t, y) → NC(t)(y) has closed graph on the

set Gr
(
C(·) ∩ B̄εo(x̄(·))

)
.

Proof. Let vn ∈ NC(tn)(yn) such that vn → vo and (tn, yn) → (to, yo) in Gr
(
C(·) ∩ B̄εo(x̄(·))

)
.

We shall prove that vo ∈ NC(to)(yo). If vo = 0 then obviously vo ∈ NC(to)(yo). Now, let vo ̸= 0,

then for n large enough, vn ̸= 0, and hence, equation (3.12) implies that yn ∈ bdryC(tn) and

vn = ∑
i∈I0

(tn,yn)
λni ∇xψi(tn, yn) for some (λni )i ≥ 0. By Lemma .0.1, we deduce the existence

of ∅ ̸= Jo ⊂ {1, . . . , r} and a subsequence of (tn, yn)n we do not relabel, such that we have

I0
(tn,yn) = Jo ⊂ I0

(to,yo) for all n ∈ N. Hence, for n large enough, vn = ∑
i∈Jo λ

n
i ∇xψi(tn, yn)

and ∑
i∈Jo λ

n
i > 0 (since vn ̸= 0). Define, for each i ∈ Jo, the bounded sequence (βni )n,

where βni := λni∑
j∈Jo

λnj
≥ 0. Since also ∑i∈Jo β

n
i = 1 for all n, then for each i ∈ Jo, along a

subsequence (we do not relabel), βni → βi ≥ 0 with ∑i∈Jo βi = 1. Using (A3.1) and Lemma

3.1.1, we have 0 ̸= ∑
i∈Jo β

n
i ∇xψi(tn, yn) → ∑

i∈Jo βi∇xψi(to, yo) ̸= 0. By writing

vn =
( ∑
j∈Jo

λnj
)( ∑

i∈Jo
βni ∇xψi(tn, yn)

)
,

and using the fact that vn → vo ̸= 0, we deduce that ∑j∈Jo λ
n
j is convergent to a limit βo > 0.

Hence, vo = ∑
i∈Jo βoβi∇xψi(to, yo). Now, define

αi :=


βoβi if i ∈ Jo

0 if i ∈ I0
(to,yo) \ Jo.

Then, vo = ∑
i∈I0

(to,yo)
αi∇xψi(to, yo) ∈ NC(to)(yo).

Combining Lemma 3.2.1 with Lemma 2.2.40 immediately produces a range for ε̄ > 0

ensuring the uniform prox-regularity of the truncated sets C(t) ∩ B̄ε̄(x̄(t)).
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Remark 3.2.2. Let C(·) satisfying (A2) for ρ > 0. Consider x̄ ∈ C([0, T ];Rn) with

x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1) and (A3.2) hold at (x̄; δ̄). Then, for

ε̄ ∈ (0, ρ) ∩ (0, εo], where εo is given in Lemma 3.1.1, there exists ρε̄ > 0, obtained from

Lemma 2.2.40, such that for all t ∈ [0, T ], C(t) ∩ B̄ε̄(x̄(t)) is ρε̄-prox-regular.

Introducing the new truncated sweeping process (D̄)

Now, our attention shifts from the dynamic (D) to working on the dynamic (D̄) obtained

from (D) by replacing the sweeping set C(t) by the truncated sweeping set C(t) ∩ B̄ε̄(x̄(t)),

where ε̄ ∈ (0, ρ) ∩ (0, εo], and by adding −NB̄δ̄(ȳ(t)) to the right hand side of the differential

equation, which becomes a differential inclusion as a result. Denote by (D̄) the aforemen-

tioned truncated system obtained from (D) by localizing C(·) around x̄ and Rl around ȳ,

that is,

(D̄)


ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)∩B̄ε̄(x̄(t))(x(t)), a.e. t ∈ [0, T ],

ẏ(t) ∈ g(t, x(t), y(t), u(t)) −NB̄δ̄(ȳ(t))(y(t)), a.e. t ∈ [0, T ].
(3.29)

Notice that the truncated sweeping set for x, C(t) ∩ B̄ε̄(x̄(t)), is the sub-level set of

ψ1(t, ·), · · · , ψr(t, ·), and ψr+1(t, ·), where ψr+1 is given by

ψr+1(t, x) = ψr+1(t, x; x̄, ε̄) := 1
2[∥x− x̄(t)∥2 − ε̄2]. (3.30)

Therefore, for Cr+1(t) := B̄ε̄(x̄(t)) = {x ∈ Rn : ψr+1(t, x) ≤ 0},

C(t) ∩ B̄ε̄(x̄(t)) = C(t) ∩ Cr+1(t) =
r+1⋂
i=1

{x ∈ Rn : ψi(t, x) ≤ 0},

and hence, it is always generated by at least two functions. On the other hand, the truncated

sweeping set for y, B̄δ̄(ȳ(t)), is generated by a single function φ : [0, T ] × Rl −→ R , where

φ(t, y) = φ(t, y; ȳ, δ̄) := 1
2[∥y − ȳ(t)∥2 − δ̄2], (3.31)

i.e. B̄δ̄(ȳ(t)) = {y ∈ Rl : φ(t, y) ≤ 0}. (3.32)

The following remark shows the relation between pairs that are admissible for (D) and those

admissible for (D̄).
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Remark 3.2.3. We have:

• Any admissible pair ((x, y), u) for (D) such that (x(t), y(t)) ∈ ¯N(ε̄,δ̄)(t) for all

t ∈ [0, T ], is also admissible for (D̄). This is due to Lemma 2.2.9.

• On the other hand, any admissible pair ((x, y), u) for (D̄) such that

(x(t), y(t)) ∈ ¯N(δ1,δ2)(t) with δ1 < ε̄ and δ2 < δ̄ is also admissible for (D). This is due

to the fact that if ∀t ∈ [0, T ], (x(t), y(t)) ∈ Bε̄(x̄(t)) × Bδ̄(ȳ(t)), then, using the local

property of the proximal normal cone, we have NP
C(t)(x(t)) = NP

C(t)∩B̄ε̄(x̄(t))(x(t)) and

{0} = NP
B̄δ̄(ȳ(t))(y(t)).

• In particular, ((x̄, ȳ), ū) solves (D) if and only if it solves (D̄).

For x(·) ∈ C([0, T ];Rn) such that x(t) ∈ C(t) ∩ B̄ε̄(x̄(t)) ∀t ∈ [0, T ],

and (τ, z) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·))

)
, we define the following sets obtained through adding to

those in (3.4)-(3.7) the extra constraint produced by ψr+1:

I -
r+1(x) := {t ∈ [0, T ] : x(t) ∈ Bε̄(x̄(t))} and I0

r+1(x) := [0, T ] \ I -
r+1(x),

Ī -(x) :=
r+1⋂
i=1

I -
i (x) = {t ∈ [0, T ] : x(t) ∈ intC(t) ∩Bε̄(x̄(t))}

= I -(x) ∩ {t ∈ [0, T ] : x(t) ∈ Bε̄(x̄(t))},

Ī0(x) = [0, T ] \ Ī -(x) = I0(x) ∪ {t ∈ [0, T ] : ∥x(t) − x̄(t)∥ = ε̄} = {t ∈ [0, T ] : Ī0
(t,x(t)) ̸= ∅},

where Ī0
(τ,z) := {i ∈ {1, . . . , r, r + 1} : ψi(τ, z) = 0}. (3.33)

Since x̄(t) ∈ Bε̄(x̄(t)), then ψr+1(t, x̄(t)) < 0 and hence, Ī0(x̄) = I0(x̄) and, for t ∈ Ī0(x̄),

Ī0
(t,x̄(t)) = I0

(t,x̄(t)).

The following lemma provides a second condition, (3.34), equivalent to (A3.2) which, unlike

(3.10), validates the formula for the normal cone to the uniform prox-regular truncated sets

C(t) ∩ B̄ε̄(x̄(t)), obtained in Remark 3.2.2, (see Lemma 3.2.6 stated below). Note that since

ψr+1, given by (3.30), is a function of ε̄, this lemma is of a different nature than Lemma

3.1.1. Observe that, for any given ε̄ > 0, we have that ψr+1(t, x) and ∇xψr+1(t, x) := x− x̄(t)

exist and continuous everywhere.
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Lemma 3.2.4 (Assumption (A3.2)). Let C(·) satisfying (A2) for ρ > 0. Consider

x̄ ∈ C([0, T ];Rn) with x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1) holds at

(x̄; δ̄). Then, (A3.2) is satisfied at x̄ if and only if for ε̄ ∈ (0, ρ)∩ (0, εo] and its corresponding

ψr+1 given by (3.30), there exists η̄ ∈ (0, η0) (without loss of generality η̄ ≤ ε̄
2) such that∥∥∥∥∥∥∥

∑
i∈Ī0

(t,c)

λi∇xψi(t, c)

∥∥∥∥∥∥∥ > 2η̄, ∀(t, c) ∈ {(τ, x) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·)

)
: Ī0

(τ,x) ̸= ∅}, (3.34)

where (λi)i∈Ī0
(t,c)

is any sequence of nonnegative numbers satisfying ∑i∈Ī0
(t,c)

λi = 1, and Ī0
(τ,x)

is given by (3.33).

Proof. We only need to show that (A3.2) yields (3.34). For this, assume (A3.2) is valid and

let ε̄ ∈ (0, ρ) ∩ (0, εo]. From Lemma 3.1.1, it follows that, for any η̄ ∈ (0, ηo), (3.34) holds for

all (t, c) ∈ {(τ, x) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·)

)
: Ī0

(τ,x) ̸= ∅} such that (r + 1) /∈ Ī0
(t,c). It remains to

prove that (3.34) is valid for all (t, c) such that (r + 1) is necessarily in Ī0
(t,c), that is, when

Ī0
(t,c) = I0

(t,c) ∪ {r + 1} and λr+1 ̸= 0. Arguing by contradiction, then there exist sequences

tn ∈ [0, T ], cn ∈ C(tn) with ∥cn− x̄(tn)∥ = ε̄, and (λni )i∈Ī0
(tn,cn)

with λni ≥ 0, for all i ∈ I0
(tn,cn),

λnr+1 > 0, and

(
∑

i∈I0
(tn,cn)

λni ) + λnr+1 = 1, (3.35)

such that
∥∥∥∥∑i∈I0

(tn,cn)
λni ∇xψi(tn, cn) + λnr+1(cn − x̄(tn))

∥∥∥∥ ≤ 2
n
, ∀n ∈ N. Using the compact-

ness of [0, T ], (A3.1), and the continuity of x̄, it follows that up to subsequences, tn → to ∈

[0, T ] and cn → co ∈ C(to) with ∥co−x̄(to)∥ = ε̄. Note that I0
(tn,cn) ̸= ∅, since otherwise, (3.35)

yields λnr+1 = 1, and in this case the above inequality becomes ∥cn − x̄(tn)∥ ≤ 2
n
, which is in-

valid for n large. Thus, by Lemma .0.1, for some ∅ ≠ Jo ⊂ {1, . . . , r}, I0
(tn,cn) = Jo ⊂ I0

(to,co),

for n large. This implies that, for n large enough,∥∥∥∥∥∥
∑
i∈Jo

λni ∇xψi(tn, cn) + λnr+1(cn − x̄(tn))
∥∥∥∥∥∥ ≤ 2

n
, (3.36)

∑
i∈Jo

λni + λnr+1 = 1, λnr+1 > 0, and λni ≥ 0 ∀i ∈ Jo.
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Hence, up to a subsequence, λni → λoi ≥ 0 for all i ∈ Jo, and λnr+1 → λor+1 ≥ 0. Upon taking

the limit as n → ∞ in (3.36), (A3.1) yields that

∑
i∈Jo

λoi∇xψi(to, co) + λor+1(co − x̄(to)) = 0,
∑
i∈Jo

λoi + λor+1 = 1, λoi ≥ 0 ∀i ∈ Jo ∪ {r + 1}.

(3.37)

From (3.37) and Lemma 3.1.1 we get that λor+1 > 0. As ∥co − x̄(to)∥ = ε̄, (3.37) is translated

to saying

0 ̸= v :=
∑
i∈Jo

λoi∇xψi(to, co) = −λor+1(co − x̄(to)),

and hence, per (3.12), 0 ̸= v ∈ NP
C(to)(co) ∩ −NP

B̄ε̄(x̄(to))(co). As ε̄ ∈ (0, ρ), then, this inclusion

contradicts Lemma 2.2.40.

Remark 3.2.5. We can prove that (A3.1) and equation (3.34) imply that for all

(t, x) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·)

)
such that Ī0

(t,x) ̸= ∅, the family of vectors {∇xψi(t, x)}i∈Ī0
(t,x)

is

positively linearly independent.

Important consequences of Lemma 3.2.4 are the following explicit formulae for the normal

cone to the truncated sets C(t) ∩ B̄ε̄(x̄(t)) and for their prox-regularity constant, which shall

replace ρε̄. Assume without loss of generality that Lψ ≥ 4η̄
ρo

, where ρo is the constant from

(A3.1).

Lemma 3.2.6. Let C(·) satisfying (A2) for some ρ > 0. Consider x̄ ∈ C([0, T ];Rn)

with x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1) and (A3.2) hold at (x̄; δ̄). Let

ε̄ ∈ (0, ρ) ∩ (0, εo] with its corresponding ψr+1, given by (3.30), and η̄ from Lemma 3.2.4.

Let ρε̄ be the uniform prox-regular constant of C(t) ∩ B̄ε̄(x̄(t)) obtained from Remark 3.2.2.

For all (t, x) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·)

)
,

NC(t)∩B̄ε̄(x̄(t))(x) = NP
C(t)∩B̄ε̄(x̄(t))(x) = NL

C(t)∩B̄ε̄(x̄(t))(x),
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and

NC(t)∩B̄ε̄(x̄(t))(x) =


{
∑

i∈Ī0
(t,x)

λi∇xψi(t, x) : λi ≥ 0} ≠ {0} if x ∈ bdry(C(t) ∩ B̄ε̄(x̄(t)))

{0} if x ∈ int(C(t) ∩ B̄ε̄(x̄(t))).
(3.38)

Furthermore, C(t)∩ B̄ε̄(x̄(t)) is uniformly 2η̄
Lψ

-prox-regular, C(t)∩ B̄ε̄(x̄(t)) is epi-lipschitzian

at every x ∈ C(t) ∩ B̄ε̄(x̄(t)), and

cl
(
int

(
C(t) ∩ B̄ε̄(x̄(t))

))
= C(t) ∩ B̄ε̄(x̄(t)). (3.39)

Proof. Since C(t) ∩ B̄ε̄(x̄(t)) is prox-regular, we apply Proposition 2.2.39(i) ([21, Corollary

4.15]), and we conclude that the limiting, Clarke and proximal normal cones are all equal

to each other. To prove equation (3.38), we apply Lemma 2.2.11 ([19, Corollary 10.44])

and Remark 3.2.5. Now, we prove that C(t) ∩ B̄ε̄(x̄(t)) is uniformly 2η̄
Lψ

-prox-regular using

Theorem 2.2.41 (see [2, Theorem 9.1]). Indeed, in Theorem 2.2.41, take m := r+ 1, gi := ψi,

S(t) := C(t)∩B̄ε̄(x̄(t)). Notice that ∇xψr+1(t, x) = x− x̄(t) and condition (A3.1) is satisfied,

hence conditions (i)-(ii) of Theorem 2.2.41 are satisfied for ρ := ρo
2 , and γ := Lψ. Finally,

Lemma 3.2.4 implies that the last condition of Theorem 2.2.41 is satisfied by translating [58,

Lemma 6.1] to our setting. As a result, for all t ∈ [0, T ], we have C(t) is prox-regular with

constant min
{
ρo
2 ,

2η̄
Lψ

}
= 2η̄

Lψ
(since Lψ ≥ 4η̄

ρo
). To prove that C(t)∩B̄ε̄(x̄(t)) is epi-lipschitzian

for every x ∈ C(t)∩B̄ε̄(x̄(t)) and that (3.39) is satisfied, we use Lemma 2.2.46, and equations

(3.34)-(3.38).

We now prove an equivalence between the system (D̄) and three other systems.

Lemma 3.2.7 (Equivalence). Consider C(·) satisfying (A2) for ρ > 0. Consider

(x̄, ȳ) ∈ C([0, T ];Rn × Rl) with x̄(t) ∈ C(t) for all t ∈ [0, T ]. Let δ̄ > 0 such that (A3.1) and

(A3.2) hold at (x̄; δ̄) and (A4) is satisfied by (f, g) at ((x̄, ȳ); δ̄), and let ε̄ ∈ (0, ρ) ∩ (0, εo]

with its corresponding ψr+1 given by (3.30). Let (x, y) ∈ W 1,1([0, T ];Rn+l) be a pair such

that (x(t), y(t)) ∈ ¯N(ε̄,δ̄)(t) ∀t ∈ [0, T ]. The following equivalences hold true.
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There exists u ∈ U such that
ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)∩B̄ε̄(x̄(t))(x(t)), a.e. t ∈ [0, T ],

ẏ(t) ∈ g(t, x(t), y(t), u(t)) −NB̄δ̄(ȳ(t))(y(t)), a.e. t ∈ [0, T ]
(3.40)

(I)⇐⇒ There exist u ∈ U and there exist measurable functions (λ1, · · · , λr+1) and ζ such

that, ∀i = 1, · · · , r + 1, λi(t) = 0 ∀t ∈ I -
i (x), ζ(t)φ(t, y(t)) = 0 ∀t ∈ [0, T ], and ((x, y), u),

(λi)r+1
i=1 , and ζ satisfy

ẋ(t) = f(t, x(t), y(t), u(t)) −∑r+1
i=1 λi(t)∇xψi(t, x(t)) a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)) − ζ(t)∇yφ(t, y(t)), a.e. t ∈ [0, T ].
(3.41)

(II)⇐⇒ There exist measurable functions (λ1, · · · , λr+1) and ζ such that, ∀i = 1, · · · , r + 1,

λi(t) = 0 ∀t ∈ I -
i (x), ζ(t)φ(t, y(t)) = 0 ∀t ∈ [0, T ], and

(ẋ(t), ẏ(t)) ∈ h(t, x(t), y(t), U(t)) −
(
r+1∑
i=1

λi(t)∇xψi(t, x(t)), ζ(t)∇yφ(t, y(t))
)

(3.42)

(III)⇐⇒ There exist measurable functions (λ1, · · · , λr+1) and ζ such that, ∀i = 1, · · · , r + 1,

λi(t) = 0 ∀t ∈ I -
i (x), ζ(t)φ(t, y(t)) = 0 ∀t ∈ [0, T ], ∀z ∈ Rn × Rl,

⟨z, (ẋ(t), ẏ(t))⟩ ≤ σ(z, h(t, x(t), y(t), U(t)))−
〈
z,

(
r+1∑
i=1

λi(t)∇xψi(t, x(t)), ζ(t)∇yφ(t, y(t))
)〉

a.e.

(3.43)

Parallel to Lemma 3.1.5, and based on Lemma 3.2.4 and Lemma 3.2.6, we shall obtain

here the Lipschitz continuity and the uniqueness of the solutions of the Cauchy problem

corresponding to the truncated system (D̄), defined in (3.29). We note that the existence of

a solution for this more general Cauchy problem is obtained in Corollary 3.2.16.

Lemma 3.2.8. Consider C(·) satisfying (A2) for ρ > 0. Consider (x̄, ȳ) ∈ C([0, T ];Rn×

Rl) with x̄(t) ∈ C(t) for all t ∈ [0, T ] and (x̄(·), ȳ(·)) is L(x̄,ȳ)-Lipschitz on [0, T ] for some

constant L(x̄,ȳ) ≥ 1. Let δ̄ > 0 such that (A3.1) and (A3.2) hold at (x̄; δ̄) and (A4.1) is
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satisfied by (f, g) at ((x̄, ȳ); δ̄), and let ε̄ ∈ (0, ρ)∩(0, εo] with its corresponding ψr+1 given by

(3.30). Fix u ∈ U as well as (x0, y0) ∈ N(ε̄,δ̄)(0). Then, a pair (x, y) ∈ W 1,1([0, T ];Rn+l), such

that (x(t), y(t)) ∈ ¯N(ε0,δ̄)(t) ∀t ∈ [0, T ], solves the system (D̄) associated with ((x0, y0), u) if

and only if there exist measurable functions (λ1, · · · , λr+1) and ζ such that, ∀i = 1, · · · , r+1,

λi(t) = 0 ∀t ∈ I -
i (x), ζ(t)φ(t, y(t)) = 0 ∀t ∈ [0, T ], and ((x, y), u), (λi)r+1

i=1 , and ζ satisfy

ẋ(t) = f(t, x(t), y(t), u(t)) −∑
i∈Ī0

(t,x(t))
λi(t)∇xψi(t, x(t)) a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)) − ζ(t)∇yφ(t, y(t)), a.e. t ∈ [0, T ],

(x(0), y(0)) = (x0, y0).

(3.44)

Furthermore, we have the following bounds

max{∥∑r+1
i=1 λi∥∞, ∥ζ∥∞} ≤ µ̄

4η̄2 , max{∥ẋ∥∞, ∥ẏ∥∞} ≤ Mh + µ̄
4η̄2 L̄, (3.45)

max{∥ẋ(t) − f(t, x(t), y(t), u(t))∥, ∥ẏ(t) − g(t, x(t), y(t), u(t))∥} ≤ µ̄
4η̄2 L̄, t ∈ [0, T ] a.e.,(3.46)

where

L̄ := max{Lψ, δ̄L(x̄,ȳ)} ≥ δ̄, µ̄ := L̄(1 +Mh) ≥ µ. (3.47)

Consequently, (x, y) is the unique solution of (3.29) corresponding to ((x0, y0), u).

Proof. The equivalence follows from Filippov Selection theorem, the normal cone formula in

(3.38), and the fact that NB̄δ̄(ȳ(t))(y) equals {0} if φ(t, y) < 0, and equals {λ(y−ȳ(t)) : λ ≥ 0}

if φ(t, y) = 0 (see Lemma 3.2.7).

For the bounds pertaining ∥∑r+1
i=1 λi∥∞ and ∥ ˙̄x∥∞, we follow the same steps as in proof of

Lemma 3.1.5, with the main difference here is that we add an extra constraint to C(t),

namely, ψr+1(t, x) ≤ 0. For this reason, it suffices to show that (3.22) and (3.23), where Lψ

is enlarged to L̄, are also valid for i = r + 1, and that the set T can be modified to take

into account the addition of ψr+1. Once these goals are achieved, the proof follows from that

of Lemma 3.1.5, where Ī0
(t,x(t)), Lemma 3.2.4, η̄, and µ̄ are used instead of I0

(t,x(t)), Lemma

3.1.1, η0, and µ, respectively.
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Note that, by (3.30), ∇xψr+1(t, z) = z − x̄(t) exists for all (t, z) ∈ [0, T ] × Rn. Furthermore,

as x̄ is L(x̄,ȳ)-Lipschitz, we have, on Gr C(·) ∩ B̄ε̄(x̄(·)), that ψr+1(·, ·) is ε̄L(x̄,ȳ)-Lipschitz,

∇xψr+1(·, ·) is bounded by ε̄ ≤ L̄, and ∂̂tψr+1(·, ·), defined via (3.21) for i = r + 1, satisfies

∂̂tψr+1(t, z) = ⟨z − x̄(t),−∂x̄(t)⟩ = ∂tψr+1(t, z), ∀(t, z) ∈ Gr C(·) ∩ B̄ε̄(x̄(·)), (3.48)

and hence, ∀θr+1 ∈ ∂̂tψr+1(t, z), |θr+1| ≤ ε̄L(x̄,ȳ) ≤ L̄. Thus, for t ∈ [0, T ] a.e., and for all

θr+1(t) ∈ ∂̂tψr+1(t, x(t)), we have

|θr+1(t) + ⟨∇xψr+1(t, x(t)), f(t, x(t), y(t), u(t))⟩ ≤ L̄(1 + ∥f(t, x(t), y(t), u(t))∥).(3.49)

Therefore, (3.23) and (3.49) yield that (3.23) holds up to i = r+ 1, that is, for t ∈ [0, T ] a.e.,

for all θi(t) ∈ ∂̂ψi(t, x(t)), we have for i = 1, · · · , r + 1

|θi(t) + ⟨∇xψi(t, x(t)), f(t, x(t), y(t), u(t))⟩| ≤ L̄(1 + ∥f(t, x(t), y(t), u(t))∥). (3.50)

On the other hand, from (3.30), (3.48), and the fact that ˙̄x(t) ∈ ∂x̄(t) a.e., we have

d

dt
ψr+1(t, x(t)) = ⟨x(t) − x̄(t),− ˙̄x(t) + ẋ(t)⟩, t ∈ [0, T ] a.e., (3.51)

= θr+1(t) + ⟨∇xψr+1(t, x(t)), ẋ(t)⟩, t ∈ [0, T ] a.e., (3.52)

where θr+1(t) = ⟨x(t) − x̄(t),− ˙̄x(t)⟩ ∈ ∂̂tψr+1(t, x(t)) a.e.

Therefore, (3.22) holds up to i = r + 1, that is, ∀i, there is measurable θi(·) ∈ ∂̂tψi(·, x(·))

a.e., with

d

dt
ψi(t, x(t)) = θi(t) + ⟨∇xψi(t, x(t)), ẋ(t)⟩, a.e., ∀i = 1, · · · , r + 1. (3.53)

Instead of the set T given in (3.24) in the proof of Lemma 3.1.5, we use the following

modified set T̄ that involves ˙̄x and on which d
dt
ψr+1(·, x(·)) readily exists,

T̄ := {t ∈ (0, T ) : ẋ(t), ˙̄x(t), and d

dt
ψi(t, x(t)) exist, ∀i = 1, · · · , r}.

Therefore, similarly to (3.27) we obtain

∑
i∈Ī0

(t,x(t))

λi(t) ≤ L̄

4η̄2 (1 + ∥f(t, x(t), y(t), u(t))∥)
(A4.1)

≤ µ̄

4η̄2 , (3.54)
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implying, via first equation of (3.44) and (A4.1), the required bound in (3.45) for ∥ẋ∥∞ and

the first bound in (3.46).

For the bounds of ζ and ẏ in (3.45), we use the full- measure set Ā := {t ∈ (0, T ) :

˙̄y(t) and ẏ(t) exist}. If t ∈ Ā and φ(t, y(t)) < 0, then ζ(t) = 0 and the bound on ẏ follows

using (A4.1). If t ∈ Ā and φ(t, y(t)) = 0, then ∥y(t) − ȳ(t)∥ = δ̄ and, since φ(·, y(·)) ≤ 0,
d
dt
φ(t, y(t)) = 0. Hence, as (3.31) implies that

d

dt
φ(t, y(t)) = ⟨y(t) − ȳ(t),− ˙̄y(t) + ẏ(t)⟩, t ∈ [0, T ] a.e., (3.55)

then, using η̄ < ε̄
2 < δ̄

2 (by Lemma 3.2.4), second equation of (3.44), L(x̄,ȳ) ≥ 1, and

δ̄L(x̄,ȳ) ≤ L̄ (by (3.47)), we get that for t ∈ [0, T ] a.e.,

4η̄2ζ(t) ≤ δ̄2ζ(t) = ⟨y(t) − ȳ(t), g(t, x(t), y(t), u(t)) − ˙̄y(t)⟩ ≤ L̄(1 + ∥g(t, x(t), y(t), u(t))∥).

(3.56)

Therefore, by (A4.1) we have, ∥ζ∥∞ ≤ µ̄
4η̄2 , which when combined with the second equation

of (3.44), yields the bound on ∥ẏ∥∞ in (3.45) and the second bound in (3.46).

The uniqueness proof of (x, y) is similar to that in Lemma 3.1.5, where system (D) is replaced

by (D̄), the ρ-prox-regularily of C(t) is replaced by the 2η̄
Lψ

-prox-regularity of C(t) ∩ B̄ε̄(x̄(t))

obtained in Lemma 3.2.6, and (3.18)-(3.19), µ, ηo, and Lψ, are replaced by (3.44)-(3.45),

µ̄, η̄, and L̄, respectively. The ∞-prox-regularity of B̄δ̄(ȳ(t)) keeps the inequality in (3.28)

valid.

The following table summarizes the results of this subsection.

Table 3.2 Summary of results from Subsection 3.2.1 .

Result Description

Lemma 3.2.1
We use Lemma 3.1.1 to prove the closed graph property of NC(·)(·) in

the domain where (3.12) is valid.
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Table 3.2 (cont’d)

Result Description

Remark 3.2.2

We use Lemma 3.2.1 with Lemma 2.2.40 to produce a range for ε̄ > 0

ensuring the uniform prox-regularity of the truncated sets

C(t) ∩ B̄ε̄(x̄(t)).

Remark 3.2.3
We show the relation between pairs that are admissible for (D) and

those admissible for (D̄).

Lemma 3.2.4

We provide a second condition equivalent to (A3.2) which validates the

formula for the normal cone to the uniform prox-regular truncated sets

C(t) ∩ B̄ε̄(x̄(t)).

Remark 3.2.5
We prove that for (t, x) ∈ Gr

(
C(·) ∩ B̄ε̄(x̄(·)

)
such that Ī0

(t,x) ̸= ∅, the

family of vectors {∇xψi(t, x)}i∈Ī0
(t,x)

is positively linearly independent.

Lemma 3.2.6
We use Lemma 3.2.4 to derive explicit formulae for the normal cone to

the truncated sets C(t) ∩ B̄ε̄(x̄(t)) and for their prox-regularity constant.

Lemma 3.2.7
We prove an equivalence between the system (D̄) and three other

systems of equations.

Lemma 3.2.8

We use Lemma 3.2.4 and Lemma 3.2.6 to obtain the Lipschitz

continuity and the uniqueness of the solutions of the Cauchy problem

corresponding to the truncated system (D̄), defined in (3.29). This is

parallel to Lemma 3.1.5.

3.2.2 Exponential penalty approximation for the system (D̄)

This section aims to establish the relationship between (D̄) and its approximating stan-

dard control system (D̄γk), as well as the existence and uniqueness of Lipschitz solutions to

the Cauchy problem associated with (D̄). Throughout this whole section, we assume C(·)

satisfying (A2) for ρ > 0, and (x̄, ȳ) ∈ C([0, T ];Rn × Rl) with x̄(t) ∈ C(t) for all t ∈ [0, T ],

and (x̄(·), ȳ(·)) is L(x̄,ȳ)-Lipschitz on [0, T ] for some L(x̄,ȳ) ≥ 1. Let δ̄ > 0 be such that (A3.1)
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and (A3.2) hold at (x̄; δ̄) and (A4.1) is satisfied by (f, g) at ((x̄, ȳ); δ̄). Fix 0 < ε̄ < δ̄, its cor-

responding ψr+1 given by (3.30), and η̄ ∈ (0, ε̄2), such that ε̄, ψr+1, and η̄ satisfy Lemma 3.2.4.

Assuming that Lψ ≥ 4η̄
ρo

, set ρ̄ := 2η̄
Lψ

, the prox-regular constant for the sets C(t) ∩ B̄ε̄(x̄(t))

from Lemma 3.2.6.

We start by extending the function h(t, x, ·, u) from B̄δ̄(ȳ(t)) to Rl so that this extension

satisfies for all y ∈ Rl, (A4.1), and also (A4.2) whenever it is satisfied by h. This extension

shall be later used in Theorem 3.2.14.

Remark 3.2.9 (Extension). For t ∈ [0, T ] a.e., x ∈
[
C(t) ∩ B̄δ̄(x̄(t))

]
, and for u ∈

U(t), it is possible to extend the function h(t, x, ·, u) := (f, g)(t, x, ·, u) so that, whenever

h satisfies (A4) (including (A4.2)), its extension also satisfies (A4) for all y ∈ Rl. Indeed,

the convexity for all t ∈ [0, T ] of B̄δ̄(ȳ(t)) yields that π(t, ·) := πB̄δ̄(ȳ(t))(·) is well-defined and

1-Lipschitz on Rl.

Define for a.e. t ∈ [0, T ], and (x, y, u) ∈
[
C(t) ∩ B̄δ̄(x̄(t))

]
× Rl × U(t),

h̄(t, x, y, u) := h(t, x, π(t, y), u).

Whenever h satisfies (A4) at ((x̄, ȳ), δ̄), arguments similar to those in [55, Remark 4.1]

show that h̄ (whose name we keep as h) also satisfies (A4), where ¯N(δ̄,δ̄)(t), which is[
C(t) ∩ B̄δ̄(x̄(t))

]
× B̄δ̄(ȳ(t)), is now replaced by

[
C(t) ∩ B̄δ̄(x̄(t))

]
× Rl.

The following notations, which depend on (x̄; ε̄) and (ȳ; δ̄), will be used in the proofs

of the results that follow as well as the proof of Theorem 4.2.11. They are instrumental in

constructing a dynamic (D̄γk) that approximates (D̄) and has rich properties.

• Let L̄ and µ̄ be the constants given in (3.47). Define a sequence (γk)k such that, for all

k ∈ N, γk >
2µ̄
η̄2 e (> e

δ̄
) and γk → ∞ as k −→ ∞, and the real sequences (ᾱk)k, (σ̄k)k,

and (ρ̄k)k by

ᾱk := 1
γk

ln
(
η̄2γk
2µ̄

)
; σ̄k := (r + 1)L̄

2η̄2

(
ln(r + 1)

γk
+ ᾱk

)
; ρ̄k :=

√
δ̄2 − 2ᾱγk . (3.57)
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Our choice of γk with the fact that µ̄ > δ̄ > η̄ yield that δ̄2 >
2 ln

(
γkδ̄

)
γk

> 2ᾱγk , and

γke
−γkᾱk = 2µ̄

η̄2 , (ᾱk, σ̄k, ρ̄k) > 0 ∀ k ∈ N, ᾱk ↘ 0, σ̄k ↘ 0 and ρ̄k ↗ δ̄. (3.58)

• For each t ∈ [0, T ] and k ∈ N, we define the compact sets

C̄γk(t) :=
{
x ∈ Rn :

r+1∑
i=1

eγkψi(t,x) ≤ 1
}

⊂ intC(t) ∩Bε̄(x̄(t)), (3.59)

C̄γk(t, k) :=
{
x ∈ Rn :

r+1∑
i=1

eγkψi(t,x) ≤ 2µ̄
η̄2γk

= e−γkᾱk

}
⊂ int C̄γk(t). (3.60)

• For u ∈ U , the approximation dynamic (D̄γk) of (D̄) is defined by

(D̄γk)


ẋ(t) = f(t, x(t), y(t), u(t)) −

r+1∑
i=1

γke
γkψi(t,x(t))∇xψi(t, x(t)), a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)) − γke
γkφ(t,y(t))∇yφ(t, y(t)), a.e. t ∈ [0, T ].

(3.61)

Using Lemma 3.2.4, a translation of [58, equation (8)], and arguments parallel to those used

in the proofs of [58, Propositions 4.4 & 4.6] and [59, Proposition 5.3], it is not difficult

to derive the following properties for our sets C̄γk(t) and C̄γk(t, k), knowing that the sets

C(t) ∩ B̄ε̄(x̄(t)) are 2η̄
Lψ

- prox-regular. Notice, from (3.59) and (3.60), that these sets here are

time-dependent, uniformly localized near x̄(t), and are defined not only via ψ1, · · · , ψr but

also via the extra function ψr+1. For completeness, we provide the adjusted proofs below.

Proposition 3.2.10. The following holds true.

(i) There exist k1 ∈ N and r1 ∈ (0, ρo2 ], such that ∀k ≥ k1, ∀(t, x) ∈ {(t, x) ∈ [0, T ] × Rn :∑r+1
i=1 e

γkψi(t,x) = 1}, and ∀ (τ, z) ∈ B2r1(t, x), we have∥∥∥∥∥
r+1∑
i=1

eγkψi(τ,z)∇xψi(τ, z)
∥∥∥∥∥ > 2η̄

r+1∑
i=1

eγkψi(τ,z). (3.62)

(ii) There exists k2 ≥ k1 and ϵ̄o > 0 such that for all k ≥ k2 we have

[
x ∈ C̄γk(t) & ∥

r+1∑
i=1

eγkψi(t,x)∇xψi(t, x)∥ ≤ η̄
r+1∑
i=1

eγkψi(t,x)
]
=⇒

[
r+1∑
i=1

eγkψi(t,x) < e−ϵ̄oγk

]
. (3.63)
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(iii) For all t ∈ [0, T ], for all k, C̄γk(t) ⊂ int
(
C(t) ∩ B̄ε̄(x̄(t))

)
and C̄γk(t, k) ⊂ int C̄γk(t),

and these sets are uniformly compact. Moreover, there exists k3 ∈ N such that for

k ≥ k3, for all t ∈ [0, T ], we have

C̄γk(t) = cl
(
int C̄γk(t)

)
,

C̄γk(t, k) = cl
(
int C̄γk(t, k)

)
,

bdry C̄γk(t) :=
{
x ∈ Rn :

r+1∑
i=1

eγkψi(t,x) = 1
}

̸= ∅,

int C̄γk(t) :=
{
x ∈ Rn :

r+1∑
i=1

eγkψi(t,x) < 1
}

̸= ∅,

bdry C̄γk(t, k) :=
{
x ∈ Rn :

r+1∑
i=1

eγkψi(t,x) = 2µ̄
η̄2γk

= e−γkᾱk

}
̸= ∅,

int C̄γk(t, k) :=
{
x ∈ Rn :

r+1∑
i=1

eγkψi(t,x) <
2µ̄
η̄2γk

= e−γkᾱk

}
̸= ∅.

Furthermore, C̄γk(t) and C̄γk(t, k) are amenable, epi-Lipschitz, and are respectively
η̄
Lψ

- and η̄
2Lψ

-prox-regular.

(iv) (C̄γk(t))k and (C̄γk(t, k))k are nondecreasing sequences whose Painlevé-Kuratowski

limit is C(t) ∩ B̄ε̄(x̄(t)) and satisfy

int
(
C(t) ∩ B̄ε̄(x̄(t))

)
=
⋃
k∈N

int C̄γk(t) =
⋃
k∈N

C̄γk(t) =
⋃
k∈N

int C̄γk(t, k) =
⋃
k∈N

C̄γk(t, k).(3.64)

(v) For c ∈ bdry
(
C(0) ∩ B̄ε̄(x̄(0))

)
, there exist kc ≥ k3, rc > 0, and a vector dc ̸= 0 such

that ([(
C(0) ∩ B̄ε̄(x̄(0))

)
∩ B̄rc(c)

]
+ σ̄k

dc
∥dc∥

)
⊂ int C̄γk(0, k), ∀k ≥ kc. (3.65)

In particular, for k ≥ kc we have(
c+ σ̄k

dc
∥dc∥

)
∈ int C̄γk(0, k). (3.66)

Proof. (i). If this statement is not true, then there exist (γkn)n with kn ≥ n, (tγkn , xγkn ) ∈

[0, T ] × Rn with ∑r+1
i=1 e

γknψi(tγkn ,xγkn ) = 1, and (τγkn , zγkn ) ∈ B 2
n
(tγkn , xγkn ) such that for all
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n > 2
ρo

we have

∥
r+1∑
i=1

eγkψi(τγkn ,zγkn )∇xψi(τγkn , zγkn )∥ ≤ 2η̄
r+1∑
i=1

eγkψi(τγkn ,zγkn ). (3.67)

Now, let ψ̄(t, x) := max
1≤i≤r+1

{ψi(t, x)}. Using Lemma 2.2.50, we have that

ψ̄(tγkn , xγkn ) ≤ 1
γkn

ln
(
r+1∑
i=1

eγkψi(tγkn ,xγkn )
)

= 0 ≤ ψ̄(tγkn , xγkn ) + ln(r + 1)
γkn

. (3.68)

Using the fact that ψi(tγkn , xγkn ) ≤ 0, for all i = 1, · · · , r + 1, we deduce that the sequence

(tγkn , xγkn ) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·))

)
and hence, there exists a subsequence, we do not relabel,

of (γkn)n along which the sequences (tγkn , xγkn )n and (τγkn , zγkn )n converge to the same el-

ement (to, zo) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·))

)
. Taking n −→ ∞ in (3.67)-(3.68) and using the fact

that eγknψi(τγkn ,zγkn ) −→ 0 whenever ψi(to, zo) < 0, we get the existence of a sequence of

nonnegative numbers (λi)i∈Ī0
(to,zo)

such that

ψ̄(to, zo) = 0 and

∥∥∥∥∥∥∥
∑

i∈Ī0
(to,zo)

λi∇xψi(τo, zo)

∥∥∥∥∥∥∥ ≤ 2η̄ with
∑

i∈Ī0
(τo,zo)

λi = 1.

This contradicts Lemma 3.2.4 since ψ̄(to, zo) = 0 is equivalent to Ī0
(to,zo) ̸= ∅.

(ii). If this statement is not true, there exist (γkn)n with kn ≥ n and (tγkn , xγkn ) ∈ [0, T ]×Rn

such that

e−
γkn
n ≤

r+1∑
i=1

eγknψi(tγkn ,xγkn ) ≤ 1, (3.69)

∥
r+1∑
i=1

eγkψi(tγkn ,xγkn )∇xψi(tγkn , xγkn )∥ ≤ η̄
r+1∑
i=1

eγkψi(tγkn ,xγkn ). (3.70)

This yields that (tγkn , xγkn ) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·))

)
. Using (3.68)-(3.69), we deduce that

ψ̄(tγkn , xγkn) −→ 0. Since Gr
(
C(·) ∩ B̄ε̄(x̄(·))

)
is compact, we can assume that

(tγkn , xγkn ) −→ (to, xo) ∈ Gr
(
C(·) ∩ B̄ε̄(x̄(·))

)
, and hence ψ̄(to, zo) = 0. Taking n −→ ∞ in

(3.70) and using that eγknψi(tγkn ,xγkn ) −→ 0 whenever ψi(to, xo) < 0, we get the existence of

a sequence of nonnegative numbers (λi)i∈Ī0
(to,xo)

such that∥∥∥∥∥∥∥
∑

i∈Ī0
(to,xo)

λi∇xψi(to, zo)

∥∥∥∥∥∥∥ ≤ η̄ and
∑

i∈Ī0
(to,xo)

λi = 1.
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This contradicts Lemma 3.2.4, since ψ̄(to, zo) = 0 implies that Ī0
(to,zo) ̸= ∅.

(iii). To prove this part, we define for every k ∈ N, the function ψγk : [0, T ] × Rn → R such

that

ψγk(t, x) := 1
γk

ln
(
r+1∑
i=1

eγkψi(t,x)
)
.

In that case,

∇xψγk(t, x) =
∑r+1
i=1 e

γkψi(t,x)∇xψi(t, x)∑r+1
i=1 e

γkψi(t,x) .

Notice that, for each t ∈ [0, T ], for each k, ψγk(t, ·) is C1,1 on C̄γk(t) + ρoB. Translating (i)

and applying it to a particular case, we deduce that

for every (t, x) ∈ bdry C̄γk(t), we have ∥∇xψγk(t, x)∥ > 2η̄. (3.71)

So, in summary, for each t ∈ [0, T ], we apply Lemma 2.2.48 (part I.), for S := C̄γk(t),

and ψ(·) := ψγk(t, ·). This proves all the properties in (iii) pertaining to C̄γk(t), except the

uniform constant for the prox-regularity. To prove that, we follow the same steps to prove

the second part of (c) in [59, Proposition 5.3]. Now, to prove the properties pertaining to

C̄γk(t, k), we use Lemma 2.2.48 (part II.), for S(k) := C̄γk(t, k). We use arguments similar

to those used in the proof of the second part of (c) in [59, Proposition 5.3] to show that the

prox-regular constant of C̄γk(t, k) is uniform and equal to η̄
2Lψ

.

(iv). Fix t ∈ [0, T ]. Let x ∈ int
(
C(t) ∩ B̄ε̄(x̄(t))

)
, then ψ̄(t, x) < 0. Since ᾱk → 0, γk → ∞,

then there exists kx ∈ N, such that for all k ≥ kx, we have

ᾱkx + ln(r + 1)
γkx

< −ψ̄(t, x).

Then, using Lemma 2.2.50, we have that

ψ̄(t, x) ≤ 1
γkx

ln
(
r+1∑
i=1

eγkxψi(t,x)
)

≤ ψ̄(t, x) + ln(r + 1)
γkx

< −ᾱkx . (3.72)

Hence, ∑r+1
i=1 e

γkxψi(t,x) < e−γkx ᾱkx , and hence x ∈ int C̄γk(t, k). Then,

int
(
C(t) ∩ B̄ε̄(x̄(t))

)
⊂

⋃
k∈N

int C̄γk(t, k) ⊂
⋃
k∈N

C̄γk(t, k)

⊂
⋃
k∈N

int C̄γk(t) ⊂
⋃
k∈N

C̄γk(t) ⊂ int
(
C(t) ∩ B̄ε̄(x̄(t))

)
.
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This proves that (3.64) is satisfied.

Using Lemma 2.2.50, we notice that for each (t, x), the function ψγk(t, x) is non-increasing in

k, and hence for each t, the sequence (C̄γk(t))k is non-decreasing. As a result, using Lemma

2.1.4, we show that the Painlevé-Kuratowski limit is

lim
k→∞

C̄γk(t) = cl
⋃
k∈N

C̄γk(t)
 .

However, using (3.64) and (3.39), we deduce that

cl
⋃
k∈N

C̄γk(t)
 = cl int

(
C(t) ∩ B̄ε̄(x̄(t))

)
= C(t) ∩ B̄ε̄(x̄(t)).

On the other side, since for each (t, x), the function ψγk(t, x) is non-increasing in k and the

sequence ᾱk is decreasing, then (C̄γk(t, k))k is nondecreasing. Then, using Lemma 2.1.4, we

show that the Painlevé-Kuratowski limit is

lim
k→∞

C̄γk(t, k) = cl
⋃
k∈N

C̄γk(t, k)
 = C(t) ∩ B̄ε̄(x̄(t)).

(v). We follow the same steps to prove Proposition 4.6(iii) in [58] replacing C, by C(0) ∩

B̄ε̄(x̄(0)), I0
c by Ī0

(0,c), r by r+ 1, αk by ᾱk, σk by σ̄k, ψi(·) by ψi(0, ·), M̄ψ by L̄, η by η̄.

Remark 3.2.11. We deduce, from Proposition 3.2.10, that for any c ∈ C(0)∩B̄ε̄(x̄(0)),

there exists a sequence (cγk)k such that, for k large enough, cγk ∈ int C̄γk(0, k) ⊂ int C̄γk(0),

and cγk −→ c. Indeed:

(i) For c ∈ bdry
(
C(0) ∩ B̄ε̄(x̄(0))

)
, we choose cγk := c + σ̄k

dc
∥dc∥ for all k. For k ≥ kc, we

have from (3.66) that cγk ∈ int C̄γk(0, k). Moreover, since σ̄k −→ 0 we have cγk −→ c.

(ii) For c ∈ int
(
C(0) ∩ B̄ε̄(x̄(0))

)
, Proposition 3.2.10(iv) yields the existence of k̂c ∈ N,

such that c ∈ int C̄γk(0, k) for all k ≥ k̂c. Hence, there exists r̂c > 0 satisfying

c ∈ B̄r̂c(c) ⊂ int C̄γk(0, k), ∀k ≥ k̂c.

In this case, we take the sequence cγk ≡ c ∈ int C̄γk(0, k) that converges to c.

On the other hand, for the ball B̄δ̄(ȳ(0)) generated by the single function φ(0, ·) in (3.31)-

(3.32), we have the following property.
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Proposition 3.2.12. There exists ko ∈ N such that

B̄δ̄(ȳ(0)) ∩ B̄ δ̄
4
(d) − 2ᾱk

δ̄
V (d) ∈ Bρ̄k(ȳ(0)), ∀k ≥ ko and ∀d ∈ bdry B̄δ̄(ȳ(0)), (3.73)

where V (d) := ∇yφ(0,d)
∥∇yφ(0,d)∥ = d−ȳ(0)

δ̄
.

Proof. This property follows by applying Lemma 2.2.48 (Part II)(iv) (or Theorem 3.1(iii)

of [55]) to S := B̄δ̄(ȳ(0)), ro := δ̄
4 , and η := δ̄

2 , and by noting the triangle inequality with

∥∇yφ(0,d)∥ = δ̄ gives

∥∇yφ(0, z)∥ > δ̄

2 and ⟨∇yφ(0, z),V (d)⟩ > δ̄

2 , ∀d ∈ bdry B̄δ̄(ȳ(0)) and ∀z ∈ B δ̄
2
(d).

Parallel to Remark 3.2.11 and using Proposition 3.2.12, we deduce the following.

Remark 3.2.13. For any d ∈ B̄δ̄(ȳ(0)), there exists a sequence (dγk)k such that, for k

large enough, dγk ∈ int B̄ρ̄k(ȳ(0)), and dγk −→ d. Indeed:

(i) As ρ̄k ↗ δ̄, we deduce from (3.73) that for any d ∈ bdry B̄δ̄(ȳ(0)), there exists a

sequence (dγk)k such that, for k large enough, dγk ∈ Bρ̄k(ȳ(0)) ⊂ Bδ̄(ȳ(0)), and dγk −→

d.

(ii) For d ∈ int B̄δ̄(ȳ(0)), there exists kd ∈ N, such that d ∈ int B̄ρ̄k(ȳ(0)) for all k ≥ kd.

Hence, there exists rd > 0 satisfying

d ∈ B̄rd(d) ⊂ int B̄ρ̄k(ȳ(0)), ∀k ≥ kd.

In this case, we take the sequence dγk ≡ d ∈ int B̄ρ̄k(ȳ(0)) that converges to d.

The next theorem is fundamental for the thesis, as it illustrates two key ideas. First,

it highlights the invariance for (D̄γk) of C̄γk(·, k) × B̄ρ̄k(ȳ(·)) ⊂ int C̄γk(·) × Bδ̄(ȳ(·)). More

precisely, for k large, if the initial condition is in C̄γk(0, k) × B̄ρ̄k(ȳ(0)), then (D̄γk) has a

unique solution which is uniformly Lipschitz and remains in C̄γk(t, k)× B̄ρ̄k(ȳ(t)) ∀t ∈ [0, T ].

This result extends that in [55, 58] in two directions: (i) when the original problem has
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coupled sweeping processes, and (ii) when the sweeping set is time-dependent and localized

near (x̄, ȳ). Second, it shows that the solution of (D̄γk) uniformly approximates that of (D̄).

Theorem 3.2.14. Let (cγk , dγk)k be such that (cγk , dγk) ∈ C̄γk(0, k) × B̄ρ̄k(ȳ(0)) for

every k, and (cγk , dγk) −→ (x0, y0) ∈ ¯N(ε̄,δ̄)(0). Let uγk be a given sequence in U . The

following results hold:

(I). [Existence of solution to (D̄γk) and Invariance]

For k large enough, the Cauchy problem of the system (D̄γk) corresponding to (x(0), y(0)) =

(cγk , dγk), and u = uγk , has a unique solution (xγk , yγk) ∈ W 1,∞([0, T ];Rn × Rl) such that

(xγk(t), yγk(t)) ∈ C̄γk(t, k) × B̄ρ̄k(ȳ(t)) ∀t ∈ [0, T ], (3.74)

max{∥ξγk∥∞, ∥ζγk∥∞} ≤ 2µ̄
η̄2 , max{∥ẋγk∥∞, ∥ẏγk∥∞} ≤ Mh + 2µ̄

η̄2 L̄, (3.75)

where ξγk(·) and ζγk(·) are the positive continuous functions on [0, T ] corresponding respec-

tively to the solutions xγk and yγk via the formulae

ξγk(·) :=
r+1∑
i=1

ξiγk(·); ξiγk(·) := γke
γkψi(·,xγk (·)) (i = 1, . . . , r + 1); and ζγk(·) := γke

γkφ(·,yγk (·)).

(3.76)

(II). [Solution of (D̄γk) converges to a unique solution of (D̄)]

There exist (x, y) ∈ W 1,∞([0, T ];Rn × Rl) and (ξ1, · · · , ξr, ξr+1, ζ) ∈ L∞([0, T ];Rr+2
+ ) such

that a subsequence of ((xγk , yγk), (ξ1
γk
, · · · , ξrγk , ξ

r+1
γk

, ζγk)) (we do not relabel) satisfies

(xγk , yγk)
unif−−→ (x, y), (ẋγk , ẏγk)

w∗−−−→
in L∞

(ẋ, ẏ), ξiγk
w∗−−−→

in L∞
ξi (∀i), ζγk

w∗−−−→
in L∞

ζ, (3.77)

and ξγk converges weakly* in L∞([0, T ];R+) to ξ := ∑r+1
i=1 ξ

i. Moreover,

(x(t), y(t)) ∈ ¯N(ε̄,δ̄)(t) := (C(t) ∩ B̄ε̄(x̄(t))) × B̄δ̄(ȳ(t)) ∀t ∈ [0, T ], (3.78)

max{∥ξ∥∞, ∥ζ∥∞} ≤ 2µ̄
η̄2 , max{∥ẋ∥∞, ∥ẏ∥∞} ≤ Mh + 2µ̄

η̄2 L̄, (3.79)
ξi(t) = 0 for all t ∈ I -

i (x), i ∈ {1, · · · , r, r + 1},

ξ(t) = 0 for all t ∈ Ī -(x), and ζ(t) = 0 for all t such that φ(t, y(t)) < 0.
(3.80)
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If uγk admits a subsequence that converges a.e. to some u ∈ U , or if (A1) and (A4.2) hold,

then there exists u ∈ U such that (x, y) is the unique solution of (D̄) corresponding to

((x0, y0), u), and, for almost all t ∈ [0, T ],

ẋ(t) = f(t, x(t), y(t), u(t)) −
r+1∑
i=1

ξi(t)∇xψi(t, x(t)), (3.81)

= f(t, x(t), y(t), u(t)) −
∑

i∈Ī0(t,x(t))

ξi(t)∇xψi(t, x(t)), (3.82)

ẏ(t) = g(t, x(t), y(t), u(t)) − ζ(t)∇yφ(t, y(t)). (3.83)

Proof. Part (I).

Step I.1. A unique solution (xγk , yγk) of (D̄γk) exists on a certain interval [0, T̂ ).

Recall that in Remark 3.2.9, for t ∈ [0, T ] a.e., x ∈
[
C(t) ∩ B̄ε̄(x̄(t))

]
, and for u ∈ U(t), we

extended h(t, x, ·, u) := (f, g)(t, x, ·, u) so that (A4.1) holds true for all y ∈ Rl. Hence, for

fixed k ∈ N and for u := uγk , the system (D̄γk) is well defined on the set

D := {(t, x, y) ∈ [0, T ] × Rn × Rl : x ∈ int
(
C(t) ∩ B̄ε̄(x̄(t))

)
, y ∈ B2δ̄(ȳ(t))}. (3.84)

As (0, cγk , dγk) ∈ D , standard local existence and uniqueness results from ordinary differential

equations (see Theorem 2.3.3 or [39, Theorem 5.3]) confirm that for some T1 ∈ (0, T ],

the Cauchy problem (D̄γk) with (x(0), y(0)) = (cγk , dγk) has a unique solution (xγk , yγk) ∈

W 1,1([0, T1];Rn × Rl) such that (s, xγk(s), yγk(s)) ∈ D for all s ∈ [0, T1]. Set

T̂ := sup{T1 : (x, y) solves (D̄γk) on [0, T1] with (x(0), y(0)) = (cγk , dγk)

and (t, x(t), y(t)) ∈ D ∀t ∈ [0, T1]}. (3.85)

The uniqueness of the solution yields that a solution (xγk , yγk) of (D̄γk) with (x(0), y(0)) =

(cγk , dγk) exists on the interval [0, T̂ ), and we have (t, xγk(t), yγk(t)) ∈ D , ∀t ∈ [0, T̂ ).

Step I.2. On [0, T̂ ], (xγk(t), yγk(t)) ∈ C̄γk(t) × B̄δ̄(ȳ(t)), and T̂ = T .

Notice that xγk(0) = cγk ∈ C̄γk(0, k) ⊂ int C̄γk(0) implies that the function ∆(·) given by

∆(τ) := ∑r+1
i=1 e

γkψi(τ,xγk (τ)) − 1 has ∆(0) < 0. If for some t1 ∈ (0, T̂ ), ∆(t1) = 0, let t > t1

close enough to t1 so that t ∈ (0, T̂ ). Then, from (3.53) and (3.50), we deduce that for
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i = 1, · · · , r + 1, there exists θiγk(·) ∈ ∂̂sψi(·, xγk(·)) a.e., such that

d

ds
ψi(s, xγk(s)) = θiγk(s) + ⟨∇xψi(s, xγk(s)), ẋγk(s)⟩, s ∈ [t1, t] a.e., (3.86)∣∣∣θiγk(s) + ⟨∇xψi(s, xγk(s)), f(s, xγk(s), yγk(s), uγk(s))⟩

∣∣∣ ≤ L̄(1 +Mh) = µ̄, a.e. s ∈ [t1, t].

(3.87)

Then, using the first equation of (D̄γk), we obtain

∆(t) − ∆(t1)=
r+1∑
i=1

∫ t

t1
γke

γkψi(s,xγk (s)) d

ds
ψi(s, xγk(s))ds

(3.86)=
∫ t

t1

(
r+1∑
i=1

γke
γkψi(s,xγk (s))

(
θiγk(s) + ⟨∇xψi(s, xγk(s)), f(s, xγk(s), yγk(s), uγk(s))⟩

)

−⟨
r+1∑
i=1

γke
γkψi(s,xγk (s))∇xψi(s, xγk(s)),

r+1∑
j=1

γke
γkψj(s,xγk (s))∇xψj(s, xγk(s))⟩

 ds
(3.87)
≤

∫ t

t1

r+1∑
i=1

γke
γkψi(s,xγk (s))µ̄−

∥∥∥∥∥
r+1∑
i=1

γke
γkψi(s,xγk (s))∇xψi(s, xγk(s))

∥∥∥∥∥
2 ds (3.88)

(3.62)
≤

∫ t

t1

(
r+1∑
i=1

γke
γkψi(s,xγk (s))

(
µ̄− 4η̄2γk

r+1∑
i=1

eγkψi(s,xγk (s))
))

ds

≤
∫ t

t1

r+1∑
i=1

γke
γkψi(s,xγk (s))(µ̄− 2η̄2γk)ds < 0,

the third and the second to last inequality are due to the fact that we can choose t close

enough to t1 so that, for s ∈ [t1, t], xγk(s) ∈ B2r1(t1, xγk(t1)) (so we apply (3.62)) and∑r+1
j=1 γke

γkψj(s,xγk (s)) > 1
2 , and the last inequality follows from γk >

µ̄
2η̄2 . This shows that,

∀t1 ∈ (0, T̂ ) with ∆(t1) = 0, ∆(t) < 0 for all t > t1 close enough to t1. Whence, the

continuity of ∆(·) on [0, T̂ ) and ∆(0) < 0 yield that ∆(t) ≤ 0 for all t ∈ [0, T̂ ), that is,

xγk(t) ∈ C̄γk(t) ⊂ int
(
C(t) ∩ B̄ε̄(x̄(t))

)
∀t ∈ [0, T̂ ).

On the other hand, as yγk(0) = dγk ∈ B̄ρ̄k(ȳ(0)) ⊂ Bδ̄(ȳ(0)), we have φ(0, yγk(0)) < 0.

If for some t1 ∈ (0, T̂ ), φ(t1, yγk(t1)) = 0, that is, ∥yγk(t1) − ȳ(t1)∥ = δ̄, choose t > t1

close enough to t1 so that, ∀s ∈ [t1, t], eγkφ(s,yγk (s)) > 1
2 and ∥yγk(s) − ȳ(s)∥ > δ̄

2 . Hence,

(3.55), (D̄γk), (A4.1), (3.47), yγk(·) ∈ B2δ̄(ȳ(·)), and η̄ < δ̄
2 (by Lemma 3.2.4), yield that, for
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s ∈ [t1, t] a.e.,

d

ds
φ(s, yγk(s)) = ⟨yγk(s) − ȳ(s),− ˙̄y(s) + g(s, xγk(s), yγk(s), uγk(s))⟩

−γkeγkφ(s,yγk (s))∥yγk(s) − ȳ(s)∥2

≤ ∥yγk(s) − ȳ(s)∥ L(x̄,ȳ)(1 +Mh) − γke
γkφ(s,yγk (s))∥yγk(s) − ȳ(s)∥2 (3.89)

< 2µ̄− γk
2 η̄

2 < 0,

the last inequality follows from γk >
2µ̄
η̄2 e. Hence, for all t close enough to t1, we have

φ(t, yγk(t)) = φ(t, yγk(t)) − φ(t1, yγk(t1)) =
∫ t

t1

d

ds
φ(s, yγk(s))ds < 0.

This shows that yγk(t) ∈ B̄δ̄(ȳ(t)) for all t ∈ [0, T̂ ).

Since for t ∈ [0, T̂ ), (t, xγk(t), yγk(t)) remains in the compact set Gr
(
C̄γk(·) × B̄δ̄(ȳ(·))

)
then

it is possible to extend in this compact set the solution (xγk , yγk) to the whole interval [0, T̂ ].

If T̂ < T , the local existence of a solution starting at T̂ contradicts the definition of T̂ ,

proving that T̂ = T . This completes Step I.2.

Step I.3. Invariance of C̄γk(t, k) × B̄ρ̄k(ȳ(t)), i.e., (3.74) is valid.

As cγk ∈ C̄γk(0, k), we have ∑r+1
i=1 e

γkψi(0,cγk ) ≤ 2µ̄
η̄2γk

. Since γk → ∞, there exists k4 ∈ N large

enough such that for all k ≥ k4, we have that

2µ̄
η̄2γk

≥ max{e− γkϵ̄o
2 ,

r+1∑
i=1

eγkψi(0,cγk )}, (3.90)

where ϵ̄o the constant from (3.63). Fix k ≥ k4. Let t1 ∈ [0, T ) such that ∑r+1
i=1 e

γkψi(t1,xγk (t1)) =
2µ̄
η̄2γk

. Let ϵ̄k = min{ ϵ̄o2 ,
ln 2
2γk

}. Using the continuity of xγk and ψi(·, ·), we can choose t close

enough to t1 such that for all s ∈ [t1, t],
r+1∑
i=1

eγkψi(s,xγk (s)) ≥
r+1∑
i=1

eγkψi(t1,xγk (t1))e−γk ϵ̄k= 2µ̄
γkη̄2 e

−γk ϵ̄k (3.91)

(3.90)
≥ e− γkϵ̄o

2 e−γk ϵ̄k ≥ e− γkϵ̄o
2 e− γkϵ̄o

2 = e−γk ϵ̄o .

Hence, by Proposition 3.2.10(ii), and the fact that xγk(τ) ∈ C̄γk(τ) for all τ ∈ [0, T ] (see

Step I.2), we have

∥
r+1∑
i=1

eγkψi(s,xγk (s))∇xψi(s, xγk(s))∥ > η̄
r+1∑
i=1

eγkψi(s,xγk (s)), ∀s ∈ [t1, t]. (3.92)
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Thus, for ∆̄(·) := ∑r+1
j=1 e

γkψj(·,xγk (·)) − 2µ̄
η̄2γk

, we have

∆̄(t) − ∆̄(t1) =
r+1∑
i=1

eγkψi(t,xγk (t)) −
r+1∑
i=1

eγkψi(t1,xγk (t1))

(3.88)
≤

∫ t

t1

r+1∑
i=1

γke
γkψi(s,xγk (s))µ̄−

∥∥∥∥∥
r+1∑
i=1

γke
γkψi(s,xγk (s))∇xψi(s, xγk(s))

∥∥∥∥∥
2 ds

(3.92)
≤

∫ t

t1

(
r+1∑
i=1

γke
γkψi(s,xγk (s))

(
µ̄− η̄2γk

r+1∑
i=1

eγkψi(s,xγk (s))
))

ds

(3.91)
≤

∫ t

t1

r+1∑
i=1

γke
γkψi(s,xγk (s))µ̄

(
1 − 2e−γk ϵ̄k

)
ds < 0,

the last inequality follows from the definition of ϵ̄k. This proves that xγk(t) ∈ C̄γk(t, k) for

all t > t1 close enough to t1. Whence, similarly to Step I.2, the continuity of ∆̄(·) and

∆̄(0) ≤ 0 imply that xγk(t) ∈ C̄γk(t, k), ∀t ∈ [0, T ].

On the other hand, having yγk(0) = dγk ∈ B̄ρ̄k(ȳ(0)), where ρ̄k is given in (3.57), means

that φ(0, yγk(0)) ≤ −ᾱk. Since ᾱk → 0, and ᾱk > 0 for all k, then we can find k5 ≥ k4 such

that

ᾱk ≤ min
{
δ̄2

4 ,−φ(0, dγk)
}

for all k ≥ k5.

Define ϵ̂k := min{ δ̄2

8 ,
ln 2
2γk

}. If for some t1 ∈ [0, T ), φ(t1, yγk(t1)) = −ᾱk, let t > t1 close

enough to t1 such that

φ(s, yγk(s)) ≥ −ᾱk − ϵ̂k, ∀s ∈ [t1, t]. (3.93)

Then, for all s ∈ [t1, t], we have

∥yγk(s) − ȳ(s)∥2 ≥ δ̄2 − 2ᾱk − 2ϵ̂k ≥ δ̄2

4 ≥ η̄2. (3.94)

Hence, using, respectively, (3.89), yγk(·) ∈ B̄δ̄(ȳ(·)), (3.47), (3.93), first equation in (3.58),
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and (3.94), we deduce that

φ(t, yγk(t)) − φ(t1, yγk(t1)) =
∫ t

t1

d

ds
φ(s, yγk(s))ds

≤
∫ t

t1

(
µ̄− γke

−γkᾱke−γk ϵ̂k∥yγk(s) − ȳ(s)∥2
)
ds

≤
∫ t

t1

(
µ̄− 2µ̄

η̄2 e
−γk ϵ̂k η̄2

)
ds

=
∫ t

t1
µ̄
(
1 − 2e−γk ϵ̂k

)
ds < 0

proving that φ(t, yγk(t)) < −ᾱγk . Thus, the continuity of φ(·, yγk(·)) yields, yγk(t) ∈ B̄ρ̄k(ȳ(t))

∀t ∈ [0, T ].

Step I.4. (xγk , yγk , ξγk , ζγk) satisfy equation (3.75).

So far, we proved that a solution (xγk , yγk) of the Cauchy problem of (D̄γk) exists and

satisfies (3.74). Hence, the definitions of C̄γk(t, k) and ξγk given in (3.60) and (3.76), respec-

tively, yield that ∥ξγk∥∞ ≤ 2µ̄
η̄2 . On the other hand, the definition of B̄ρ̄k(ȳ(t)) yields that

φ(t, yγk(t)) ≤ −ᾱk, and thus, the same bound is immediately obtained for the norm of ζγk ,

defined in (3.76). Whence, the first inequality in (3.75) is satisfied. Employing this latter in

(D̄γk) and then calling on the definition of L̄ in (3.47), we obtain that the second inequality

in (3.75) is valid.

Part (II).

Step II.1. Existence of (ξ1, · · · , ξr+1, ζ) and (x, y) satisfying (3.77)-(3.80).

Using (3.74)-(3.75), it follows that (.1) holds for R := r + 1 and

(xk, yk, ξik, ζk) := (xγk , yγk , ξiγk , ζγk). Hence, by Lemma .0.2(i), there is a subsequence (not

relabeled) of (xγk , yγk), (ξ1
γk
, · · · , ξr+1

γk
, ζγk), that converges, respectively, to some (x, y) ∈

W 1,∞([0, T ];Rn+l), (ξ1, · · · , ξr+1, ζ) ∈ L∞([0, T ];Rr+2
+ ), such that (3.77) and (3.79) are sat-

isfied. Moreover, (3.78) follows from (3.74), (3.58), and Proposition 3.2.10 (iv).

Now, we show that (3.80) holds. Let i ∈ {1, · · · , r+ 1} and t ∈ I -
i (x), that is, ψi(t, x(t)) < 0.

Then, by (A3.1) and the uniform convergence of xγk to x, there exist kt ∈ N, αt > 0, and
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τt > 0 such that ∀k ≥ kt, we have

ψi(s, xγk(s)) < −αt
2 , ∀s ∈ (t− τt, t+ τt) ∩ [0, T ].

Hence, ξiγk(s) < γke
−γk

αt
2 −−−→

k→∞
0, uniformly on (t − τt, t + τt) ∩ [0, T ] and ξi(t) = 0. Let

t ∈ Ī -(x), then t ∈ I -
i (x) ∀i ∈ {1, · · · , r + 1}, and hence, ξi(t) = 0 ∀i ∈ {1, · · · , r + 1},

implying that also ξ(t) = 0. Similarly, let t ∈ [0, T ] such that φ(t, y(t)) < 0. The same

arguments now applied to φ(t, y(t)) yield the existence of k̂t ∈ N, α̂t > 0 and τ̂t > 0 such

that, ∀s ∈ (t− τ̂t, t+ τ̂t) ∩ [0, T ],

ζγk(s) := γke
γkφ(s,yγk (s)) < γke

−γkα̂t
2

uniformly−−−−−→
k→∞

0, and hence, ζ(t) = 0.

Step II.2. Existence of u ∈ U : ((x, y), u) & (ξi, ζ) satisfy (D̄) and (3.81)-(3.83), (x, y)

unique.

Whether uγk admits a subsequence that converges to some u ∈ U , for t ∈ [0, T ] a.e., or

assumptions (A1) and (A4.2) are satisfied, apply in each of the two cases the corresponding

result in Lemma .0.2(ii) to Q(·) := C(·) ∩ B̄ε̄(x̄(·)), R := r + 1, qi(·, ·) := ψi(·, ·), and to

the sequences ((xk, yk), uk) := ((xγk , yγk), uγk), ξik := ξiγk , and ζk := ζγk in (3.76), and their

respective limits (x, y), ξi and ζ. Then, there exists u(·) such that ((x, y), u), ξi (i = 1, · · · , r+

1) and ζ satisfy (3.81)-(3.83). The facts that (x, y) is a solution of (D̄) corresponding to

((x0, y0), u) and is unique follow now directly from Lemma 3.2.8. This completes the proof

of this Theorem.

Remark 3.2.15. Similar arguments to steps I.2-3 in the proof of Theorem 3.2.14 also

show the invariance of the larger sets C̄γk(t)× B̄ρ̄k(ȳ(t)); this means that if (cγk , dγk) is taken

in C̄γk(0) × B̄ρ̄k(ȳ(0)), then for all t ∈ [0, T ], (xγk(t), yγk(t)) ∈ C̄γk(t) × B̄ρ̄k(ȳ(t)).

The following corollary is an immediate consequence of Theorem 3.2.14, in which we

take uγk = u for all k, and hence, neither (A1) nor (A4.2) is required. It also consists of a

Lipschitz-existence and uniqueness result for the Cauchy problem of (D̄) via the solution of

the Cauchy problem of (D̄γk), whose initial condition is carefully chosen.
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Corollary 3.2.16. For given (x0, y0) ∈ ¯N(ε̄,δ̄)(0) and u ∈ U , the system (D̄) cor-

responding to ((x0, y0);u) has a unique solution (x, y), and hence it is Lipschitz and sat-

isfies (3.44)-(3.46). This solution is the uniform limit of a subsequence (not relabeled ) of

(xγk , yγk)k, which is obtained via Theorem 3.2.14 as the solution of (D̄γk) with ((x(0), y(0));u) =

((cγk , dγk);u), where cγk and dγk are the sequences from Remarks 3.2.11 and 3.2.13 corre-

sponding to c = x0 and d = y0, respectively. Hence, for k sufficiently large, we have that

(xγk(t), yγk(t)) ∈ C̄γk(t, k) × B̄ρ̄k(ȳ(t)) ∀t ∈ [0, T ], (xγk , yγk)k is uniformly lipschitz, and all

conclusions of Theorem 3.2.14 hold.

We now present the table summarizing the results of Subsection 3.2.2.

Table 3.3 Summary of results from Subsection 3.2.2 .

Result Description

Remark 3.2.9

We extend the function h(t, x, ·, u) from B̄δ̄(ȳ(t)) to Rl so that this

extension satisfies for all y ∈ Rl, (A4.1), and also (A4.2) whenever it is

satisfied by h. This extension shall be later used in Theorem 3.2.14.

Proposition

3.2.10
We derive properties for the sets C̄γk(t) and C̄γk(t, k).

Remark

3.2.11

We approximate any c ∈ C(0) ∩ B̄ε̄(x̄(0)) by a sequence

cγk ∈ int C̄γk(0, k) ⊂ int C̄γk(0) such that cγk −→ c.

Proposition

3.2.12

We derive properties for the ball B̄δ̄(ȳ(0)) generated by the single

function φ(0, ·).

Remark

3.2.13

We approximate any d ∈ B̄δ̄(ȳ(0)) by a sequence dγk ∈ int B̄ρ̄k(ȳ(0))

such that dγk −→ d.

Theorem

3.2.14

We highlight the invariance for (D̄γk) of

C̄γk(·, k) × B̄ρ̄k(ȳ(·)) ⊂ int C̄γk(·) ×Bδ̄(ȳ(·)), and show that the solution

of (D̄γk) uniformly approximates that of (D̄).
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Table 3.3 (cont’d)

Result Description

Remark

3.2.15
We highlight the invariance of the larger sets C̄γk(t) × B̄ρ̄k(ȳ(t)).

Corollary

3.2.16

This is an immediate consequence of Theorem 3.2.14 and consists of a

Lipschitz-existence and uniqueness result for the Cauchy problem of

(D̄) via the solution of the Cauchy problem of (D̄γk), whose initial

condition is carefully chosen.

3.3 Study of the dynamic (D) under global assumptions

We now introduce the following global versions of the previous assumptions that shall be

used for the global results in this section. For completeness and the reader’s convenience,

we include them here. (A3.1)G and (A4)G are, respectively, assumptions (A3.1) and (A4)

when satisfied for δ̄ = ∞ (the same constants’ labels are kept), that is, x̄, ȳ and the balls

around them are not involved therein, and (A3.2)G is a global version of (A3.2) which will

imply the uniform prox-regularity of C(t).

(A3)G Global assumptions on the functions ψi:

(A3.1)G There exist ρo > 0 and Lψ > 0 such that, for each i, ∇xψi(·, ·) exists on

Gr (C(·)) +{0} × ρoB, and ψi(·, ·) and ∇xψi(·, ·) satisfy, for all

(t1, x1), (t2, x2) ∈ Gr (C(·)) + {0} ×
ρo

2 B̄,

max {|ψi(t1, x1) − ψi(t2, x2)|, ∥∇xψi(t1, x1) − ∇xψi(t2, x2)∥} ≤ Lψ( |t1 − t2| + ∥x1 − x2∥).

(A3.2)G For every (t, x) ∈ Gr C(·) with I0
(t,x) ̸= ∅ we have ∑

i∈I0
(t,x)

λi∇xψi(t, x) = 0, with each λi ≥ 0

 =⇒
[
λi = 0, ∀i ∈ I0

(t,x)

]
.

(A4)G Global assumptions on h(t, x, y, u) := (f, g)(t, x, y, u):

(A4.1)G For (x, y, u) ∈ ⋃
t∈[0,T ]

C(t) × Rl × U, h(·, x, y, u) is Lebesgue-measurable and,
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for a.e. t ∈ [0, T ], h(t, ·, ·, ·) is continuous on C(t) × Rl × U(t). There exist Mh > 0,

and Lh ∈ L2([0, T ];R+), such that, for a.e. t ∈ [0, T ], for all (x, y), (x′, y′) ∈ C(t) ×Rl

and u ∈ U(t),

∥h(t, x, y, u)∥ ≤ Mh and ∥h(t, x, y, u) − h(t, x′, y′, u)∥ ≤ Lh(t)∥(x, y) − (x′, y′)∥.

(A4.2)G The set h(t, x, y, U(t)) is convex for all (x, y) ∈ C(t) × Rl and t ∈ [0, T ] a.e. 2

3.3.1 Preliminary results

The compactness of Gr C(·) assumed in the following lemma allows us to easily imitate

the proof of Lemma 3.1.1 and produce the following equivalence between (A3.2)G and a

global version of condition (3.10), namely, (3.95), in which x̄ and the localization around it

are absent.

Lemma 3.3.1. Assume that ψi(·, ·) is continuous and, for all t ∈ [0, T ], the set C(t)

is nonempty, closed, and given by (3.3). Assume that (A3.1)G holds and that Gr C(·) is

compact. Then (A3.2)G is equivalent to the existence of a constant η > 0 such that∥∥∥∥∥∥∥
∑

i∈I0
(t,c)

λi∇xψi(t, c)

∥∥∥∥∥∥∥ > 2η, ∀(t, c) ∈ {(τ, x) ∈ Gr C(·) : I0
(τ,x) ̸= ∅}, (3.95)

where I0
(τ,x) is defined in (3.7) and (λi)i∈I0

(t,c)
is any sequence of nonnegative numbers satis-

fying ∑i∈I0
(t,c)

λi = 1.

As a consequence of Lemma 3.3.1, we obtain the uniform prox-regularity of C(t), as well

as a formula for the normal cone to C(t). For Lψ the common bound of {∥∇xψi(·, ·)∥}ri=1 and

the common Lipschitz constant of {∇xψi(·, ·)}ri=1 on the compact set Gr C(·) + {0} × ρo
2 B̄,

we assume without loss of generality that Lψ ≥ 8η
ρo

.

Lemma 3.3.2. Assume that ψi(·, ·) is continuous and, for all t ∈ [0, T ], the set C(t)

is nonempty, closed, and given by (3.3). Assume that (A3.1)G and (A3.2)G hold, and that
2This condition is only needed for the existence of an optimal solution,Theorem 4.1.1, and not for

Theorem 3.3.7.
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Gr C(·) is compact. Then, for all t ∈ [0, T ], C(t) is amenable (in the sense of [62]), epi-

lipschitzian, C(t) = cl (intC(t)), and is uniformly 2η
Lψ

-prox-regular. In this global setting,

the normal cone formula (3.12) is now valid for all (t, x) ∈ Gr C(·). In particular,

NC(t)(x) = NP
C(t)(x) = NL

C(t)(x) =


∑

i∈I0
(t,x)

λi∇xψi(t, x) : λi ≥ 0

 ̸= {0}, ∀x ∈ bdryC(t).

(3.96)

Proof. We use condition (3.95), Lemma 2.2.41 ([2, Theorem 9.1]) (with min{ρo, 2η
Lψ

} = 2η
Lψ

),

Lemma 2.2.11, Lemma 2.2.46, and Lemma 2.2.43.

Remark 3.3.3. Since C(t) is 2η
Lψ

-prox-regular, then each point in C(t) + 2η
Lψ
B has a

unique projection on C(t). Define for a.e. t ∈ [0, T ], and (x, y, u) ∈
[
C(t) + η

Lψ
B
]
×Rl×U(t),

ĥ(t, x, y, u) := h(t, π1(t, x), y, u),

where π1(t, ·) := πC(t)(·). Notice that ĥ is well-defined, and π1(t, ·) is 2-lipschitz on C(t) +
η
Lψ
B (see Proposition 2.2.39(ii)). This means that the function ĥ (which we relabel h)

satisfies (A4.1)G, where C(t) is now replaced by C(t) + η
Lψ
B, and Lh(t) is now replaced by

2Lh(t). On the other hand, we note that since η
Lψ

< ρo
2 , then ψ1, · · · , ψr satisfy (A3.1)G on

Gr (C(·)) + {0} × η
Lψ
B̄.

The following lemma, which requires GrC(·) bounded, is a global version of Lemma 3.1.5.

Lemma 3.3.4. Assume that ψi(·, ·) is continuous and, for all t ∈ [0, T ], the set C(t)

is nonempty, closed, and given by (3.3). Assume that (A3.1)G, (A3.2)G and (A4.1)G hold,

and that Gr C(·) is compact. Let u ∈ U , (x0, y0) ∈ C(0) × Rl be fixed, and (x(·), y(·)) ∈

W 1,1([0, T ];Rn × Rl) with (x(0), y(0)) = (x0, y0) and x(t) ∈ C(t), ∀t ∈ [0, T ]. Then, (x, y)

solves (D) corresponding to ((x0, y0), u) if and only if there exist measurable functions

(λ1(·), · · · , λr(·)) such that, for all i = 1, · · · , r, λi(t) = 0 for t ∈ I -
i (x), and ((x, y), u)
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together with (λ1, · · · , λr) satisfies

ẋ(t) = f(t, x(t), y(t), u(t)) −∑
i∈I0

(t,x(t))
λi(t)∇xψi(t, x(t)) a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)), a.e. t ∈ [0, T ],

(x(0), y(0)) = (x0, y0),

(3.97)

and, we have the following bounds
∥λi∥∞ ≤ ∥∑r

i λi∥∞ ≤ µ
4η2 , ∀i = 1, · · · , r,

∥ẋ∥∞ ≤ Mh + µ
4η2Lψ, ∥ẏ∥∞ ≤ Mh.

(3.98)

Furthermore, (x, y) is the unique solution of (D) corresponding to ((x0, y0), u).

Proof. We follow the same proof of Lemma 3.1.5 using the normal cone formula in (3.96)

instead of (3.12), Lemma 3.3.1 instead of Lemma 3.1.1, and the prox-regularity constant 2η
Lψ

provided by Lemma 3.3.2 instead of ρ.

We now introduce the following notations that are going to be used in our proofs.

• Recall from (3.17) that µ := Lψ(1 + Mh). Define a sequence (γk)k such that, for all

k ∈ N, γk >
2µ
η2 e and γk → ∞ as k −→ ∞, and the real sequences (αk)k,and (σk)k

by

αk := 1
γk

ln
(
η2γk
2µ

)
; σk := rLψ

2η2

(
ln(r)
γk

+ αk

)
. (3.99)

Our choice of γk yields that

γke
−γkαk = 2µ

η2 , (αk, σk) > 0 ∀ k ∈ N, αk ↘ 0, σk ↘ 0. (3.100)

• For each t ∈ [0, T ] and k ∈ N, we define

Cγk(t) :=
{
x ∈ Rn :

r∑
i=1

eγkψi(t,x) ≤ 1
}

⊂ intC(t) for r > 1, & Cγk(t) := C(t) for r = 1,(3.101)

Cγk(t, k) :=
{
x ∈ Rn :

r∑
i=1

eγkψi(t,x) ≤ 2µ
η2γk

= e−αkγk

}
⊂ intCγk(t). (3.102)
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Under the assumptions of Lemma 3.3.2, Proposition 3.2.10 and Remark 3.2.11 hold true in a

global setting, that is, the ball around x̄ is now omitted in those statements. More precisely,

the summations therein are only up to r instead of r + 1 terms, with Cγk(t, k), Cγk(t), and

C(t) replacing C̄γk(t, k), C̄γk(t), and C(t) ∩ B̄ε̄(x̄(t)), respectively. For the convenience of

our readers, we present those results here.

Proposition 3.3.5. Assume that ψi(·, ·) is continuous and, for all t ∈ [0, T ], the set

C(t) is nonempty, closed, and given by (3.3). Assume that (A3.1)G and (A3.2)G hold, and

that Gr C(·) is compact. The following holds true.

(i) There exist k1 ∈ N and r1 ∈ (0, ρo2 ], such that ∀k ≥ k1, ∀(t, x) ∈ {(t, x) ∈ [0, T ] × Rn :∑r
i=1 e

γkψi(t,x) = 1}, and ∀ (τ, z) ∈ B2r1(t, x), we have∥∥∥∥∥
r∑
i=1

eγkψi(τ,z)∇xψi(τ, z)
∥∥∥∥∥ > 2η

r∑
i=1

eγkψi(τ,z). (3.103)

(ii) There exists k2 ≥ k1 and ϵo > 0 such that for all k ≥ k2 we have

[x ∈ Cγk(t) & ∥
r∑
i=1

eγkψi(t,x)∇xψi(t, x)∥ ≤ η
r∑
i=1

eγkψi(t,x)
]
=⇒

[
r∑
i=1

eγkψi(t,x) < e−ϵoγk

]
.(3.104)

(iii) For all t ∈ [0, T ], for all k, Cγk(t) ⊂ intC(t) for r > 1 and Cγk(t, k) ⊂ intCγk(t),

and these sets are uniformly compact. Moreover, there exists k3 ∈ N such that for

k ≥ k3, these sets are the closure of their interiors, their boundaries and interiors are

non-empty, and the formulae for their respective boundaries and interiors are obtained

from their own definitions in (3.101) and (3.102) by replacing the inequalities therein

by equalities and strict inequalities, respectively. Furthermore, Cγk(t) and Cγk(t, k)

are amenable, epi-Lipschitz, and are respectively η
Lψ

- and η
2Lψ

-prox-regular.

(iv) For every t ∈ [0, T ], (Cγk(t))k and (Cγk(t, k))k are nondecreasing sequences whose

Painlevé-Kuratowski limit is C(t) and satisfy

intC(t) =
⋃
k∈N

intCγk(t) =
⋃
k∈N

Cγk(t) =
⋃
k∈N

intCγk(t, k) =
⋃
k∈N

Cγk(t, k). (3.105)

(v) For c ∈ bdryC(0), there exist kc ≥ k3, rc > 0, and a vector dc ̸= 0 such that([
C(0) ∩ B̄rc(c)

]
+ σk

dc
∥dc∥

)
⊂ intCγk(0, k), ∀k ≥ kc.
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In particular, for k ≥ kc we have(
c+ σk

dc
∥dc∥

)
∈ intCγk(0, k). (3.106)

Remark 3.3.6. We deduce, from Proposition 3.3.5, that for any c ∈ C(0), there

exists a sequence (cγk)k such that, for k large enough, cγk ∈ intCγk(0, k) ⊂ intCγk(0), and

cγk −→ c. Indeed:

(i) For c ∈ bdryC(0), we choose cγk := c + σk
dc

∥dc∥ for all k. For k ≥ kc, we have from

(3.106) that cγk ∈ intCγk(0, k). Moreover, since σk −→ 0 we have cγk −→ c.

(ii) For c ∈ intC(0), Proposition 3.3.5(iv) yields the existence of k̂c ∈ N, such that c ∈

intCγk(0, k) for all k ≥ k̂c. Hence, there exists r̂c > 0 satisfying

c ∈ B̄r̂c(c) ⊂ intCγk(0, k), ∀k ≥ k̂c.

In this case, we take the sequence cγk ≡ c ∈ intCγk(0, k) that converges to c.

3.3.2 Existence and uniqueness of solution corresponding to (D)

We now prove Theorem 3.3.7, which says that under global assumptions, the Cauchy

problem corresponding to (D) has a unique solution that is Lipschitz. Similar to the proof

of Corollary 3.2.16, the proof of Theorem 3.3.7 follows closely the arguments used to prove

Theorem 3.2.14 after removal of the truncation on C(t) and Rl. However, doing so requires

important modifications. For instance, removing the truncation on C(t) in the set D defined

in (3.84), makes it unsuitable for the global setting, and hence, it will have to be redefined

(see (3.108)). This discrepancy is due to having C(t) ∩ B̄ε̄(x̄(t)) always generated by at least

two functions, and hence, C̄γk(t) ⊂ intC(t) is always valid. While in the global setting, for

the case r = 1, (3.101) yields that Cγk(t) = C(t) and hence, D must be modified to include

Gr C(·).

Theorem 3.3.7 (Existence & uniqueness of Lipschitz solutions for (D)). As-

sume that ψi(·, ·) continuous, and, for t ∈ [0, T ], C(t) is non-empty, closed, and given by

(3.3). Assume that (A3.1)G, (A3.2)G and (A4.1)G are satisfied, and that GrC(·) is bounded.
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Given (x0, y0) ∈ C(0) × Rl and u ∈ U , the Cauchy problem corresponding to (D) and

((x(0), y(0));u) = ((x0, y0);u) has a unique solution (x, y), which is Lipschitz and is the

uniform limit of a subsequence (not relabeled) of (xγk , yγk)k, where (xγk , yγk) is the solution

of a standard control system corresponding to u with xγk(t) ∈ intC(t), for all t ∈ [0, T ].

Proof. We denote by MC the bound of Gr C(·). Consider the Cauchy problem (D) corre-

sponding to ((x(0), y(0));u) = ((x0, y0);u) ∈ (C(0)×Rl)×U . The existence of a solution that

is Lipschitz and unique, will be shown by approximating (D) with (Dγk), defined below as the

global version of (D̄γk). Let cγk∈ Cγk(0, k) be the sequence from Remark 3.3.6 corresponding

(and converging) to c = x0. We now proceed with the proof by imitating the same steps

of the proof of Theorem 3.2.14, in which we employ (cγk , dγk) := (cγk , y0) and we make the

following notable modifications. Using Remark 3.3.3, we can extend h = (f, g)(t, ·, y, u) from

C(t) to C(t) + η
Lψ
B such that h satisfy (A4.1)G, where C(t) is now replaced by C(t) + η

Lψ
B.

For fixed k ∈ N large enough, we consider the system (Dγk) corresponding to ((cγk , y0), u) to

be

(Dγk)


ẋ(t) = f(t, x(t), y(t), u(t)) −

r∑
i=1

γke
γkψi(t,x(t))∇xψi(t, x(t)), a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)), a.e. t ∈ [0, T ].
(3.107)

This system is well defined on the following modified version of the set D , given in (3.84),

DG := {(t, x, y) ∈ [0, T ] × Rn × Rl : x ∈ C(t) + η

Lψ
B}. (3.108)

As (0, cγk , y0) ∈ DG, we follow steps similar to the ones used to reach (3.85), and we deduce

that a solution (xγk , yγk) of (Dγk) with (x(0), y(0)) = (cγk , y0) exists on the interval [0, T̂G) ⊂

[0, T ], and (t, xγk(t), yγk(t)) ∈ DG, ∀t ∈ [0, T̂G), where T̂G is given by

T̂G := sup{T1 : (x, y) solves (Dγk) on [0, T1] with (x(0), y(0)) = (cγk , y0)

and (t, x(t), y(t)) ∈ DG ∀t ∈ [0, T1]}. (3.109)

Simlarily to Step I.2 in the proof of Theorem 3.2.14, we conclude that xγk(t) ∈ Cγk(t)

for all t ∈ [0, T̂G). On the other hand, since φ is absent in (Dγk) and g is bounded by
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Mh (from (A4.1)G), we immediately obtain that, for t ∈ [0, T̂G), yγk(t) ∈ M0B̄, where

M0 := ∥y0∥ +MhT . The boundedness of Gr C(·) byMC guarantees that the solution remains

in the bounded set MCB̄×M0B̄ and hence, T̂G = T . By mimicking Step I.3. of the proof of

Theorem 3.2.14, we obtain the invariance of Cγk(t, k) in x for (Dγk), and hence, our solution

(xγk , yγk) for the Cauchy problem (Dγk) with ((cγk , y0), u), also satisfies (xγk(t), yγk(t)) ∈

Cγk(t, k) × M0B̄ for all t ∈ [0, T ]. Thus, the definition of Cγk(t, k) and ξiγk (i = 1, · · · , r)

given in (3.102) and (3.76), respectively, and ξγk(·) := ∑r
i=1 ξ

i
γk

(·), yield that ∥ξγk∥∞ ≤
2µ
η2 . Employing this bound of ξγk in (Dγk), we obtain that max{∥ẋγk∥∞, ∥ẏγk∥∞} ≤ Mh +
2µ
η2Lψ. It follows that (.1) holds for R := r and (xk, yk, ξik, ζk) := (xγk , yγk , ξiγk , 0). Whence,

Lemma .0.2(i) together with Proposition 3.3.5(iv) implies that a subsequence of (xγk , yγk),

and ξiγk (∀i = 1, · · · , r) converge respectively to some (x, y) ∈ W 1,∞([0, T ];Rn × Rl), and

(ξ1, · · · , ξr) ∈ L∞([0, T ];Rr
+), satisfying

(xγk , yγk)
unif−−→ (x, y), (ẋγk , ẏγk)

w∗−−−→
in L∞

(ẋ, ẏ), ξiγk
w∗−−−→

in L∞
ξi (∀i = 1, · · · , r),

(x(t), y(t)) ∈ C(t) ×M0B̄ ∀t ∈ [0, T ]; max{∥ẋ∥∞, ∥ẏ∥∞} ≤ Mh + 2µ
η2 Lψ; ∥

r∑
i=1

ξi∥∞ ≤ 2µ
η2 ,

ξi(t) = 0 for all t ∈ I -
i (x), i ∈ {1, · · · , r}, ξ(t) :=

r∑
i=1

ξi = 0 for all t ∈ I -(x),

the validation of the last equations is similar to that for (3.80). We now apply the dominated

convergence theorem to (Dγk) at ((xγk , yγk), uγk := u) (as done in the proof of Case 1 in

Lemma .0.2 (ii)), and we deduce that ((x, y), u) and λi = ξi satisfy (3.97). By means

of Lemma 3.3.4, we conclude that (x, y) is the unique solution of (D) corresponding to

((x0, y0), u) and is Lipschitz.

97



The following table summarizes the results of Section 3.3.

Table 3.4 Summary of results from Section 3.3 .

Result Description

Lemma 3.3.1
We use the compactness of Gr C(·) to produce an equivalence between

(A3.2)G and a global version of condition (3.10), namely, (3.95).

Lemma 3.3.2
We use Lemma 3.3.1 to obtain the uniform prox-regularity of C(t), as

well as a formula for the normal cone to C(t).

Remark 3.3.3 We extend h to a function that satisfies (A4.1)G on C(t) + η
Lψ
B.

Lemma 3.3.4

We use Lemma 3.3.1 and Lemma 3.3.2 to establish the Lipschitz

continuity and the uniqueness of the solutions for the Cauchy problem

of (D) via its equivalent form.

Proposition

3.3.5
We derive properties for our sets Cγk(t) and Cγk(t, k).

Remark 3.3.6
We approximate any c ∈ C(0) by a sequence

cγk ∈ intCγk(0, k) ⊂ intCγk(0) such that cγk −→ c.

Theorem

3.3.7

We prove that the Cauchy problem corresponding to (D) has a unique

solution that is Lipschitz.
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CHAPTER 4

OPTIMAL CONTROL PROBLEM (P ) OVER A COUPLED SWEEPING
PROCESS DYNAMIC (D)

The aim of this chapter is to derive global existence of optimal solutions and necessary

conditions in the form of a maximum principle for a strong local minimizer of the fixed time

Mayer problem (P ) given by the following:

(P )



minimize J(x(0), y(0), x(T ), y(T ))

over ((x, y), u) ∈ W 1,1([0, T ],Rn × Rl) × U such that

(D)


ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)(x(t)), a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)), a.e. t ∈ [0, T ],

(x(0), y(0), x(T ), y(T )) ∈ S, (B.C.)

where T > 0 is fixed, J : Rn ×Rl ×Rn ×Rl −→ R∪ {∞}, f : [0, T ] ×Rn ×Rl ×Rm −→ Rn,

g : [0, T ] × Rn × Rl × Rm −→ Rl, C(t) is the intersection of the zero-sublevel sets of a finite

sequence of functions ψi(t, ·) where ψi : [0, T ] × Rn −→ R, i = 1, . . . , r, NC(t) is the Clarke

normal cone to C(t), S ⊂ C(0)×Rl×Rn×Rl is closed, U(·) : [0, T ]⇝ Rm is nonempty, closed,

and Lebesgue- measurable set-valued map, and the set of control functions U is defined by

U := {u : [0, T ] −→ Rm : u is measurable and u(t) ∈ U(t), a.e. t ∈ [0, T ]}. (4.1)

A pair ((x, y), u) is admissible for (P ) if ((x, y), u) ∈ W 1,1([0, T ];Rn × Rl) × U satisfies the

dynamic (D) and the boundary conditions (B.C.).

An admissible pair ((x̄, ȳ), ū) is said to be a δ̄-strong local minimizer for (P ), for some δ̄ > 0,

if for all ((x, y), u) admissible for (P ) and satisfying ∥(x, y) − (x̄, ȳ)∥∞ ≤ δ̄, we have

J(x̄(0), ȳ(0), x̄(T ), ȳ(T )) ≤ J(x(0), y(0), x(T ), y(T )).

4.1 Existence of optimal solution for (P ) under global assumptions

In this section, we demonstrate the global existence of an optimal solution for (P ) when

the global assumptions are satisfied, see Theorem 4.1.1. Recall assumptions (A1), (A3.1)G,
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(A3.2)G, and (A4)G from Chapter 3.

Theorem 4.1.1 (Global existence of optimal solutions for (P )). Assume that

(A1) holds, ψi(·, ·) continuous, and, for t ∈ [0, T ], C(t) is non-empty, closed, and given by

(3.3). Assume that (A3.1)G, (A3.2)G and (A4)G are satisfied, and that GrC(·) and π2(S) are

bounded, where π2 is the projection of S into the second component. Let J : Rn×Rl ×Rn×

Rl → R ∪ {∞} be merely lower semicontinuous. Then, (P ) has a global optimal solution if

and only if it has at least one admissible pair ((x, y), u) with (x(0), y(0), x(T ), y(T )) ∈ dom J .

Proof. Let MC and Mπ2(S) be the bounds of Gr C(·) and π2(S), respectively. Observe that

((x, y), u) is admissible for (P ) is equivalent to ((x, y), u) solving (D) and

(x(0), y(0), x(T ), y(T )) ∈ SG := S ∩ (C(0) ×Mπ2(S) × C(T ) ×MB̄),

where M := Mπ2(S) + TMh.

Since (P ) has an admissible solution with (x(0), y(0), x(T ), y(T )) ∈ dom J , J is lower semi-

continuous, and SG is compact, then the infimum of J over ((x, y), u) satisfying (D) and

(B.C.) exists (see Lemma 2.4.4). Let ((xn, yn), un) be a minimizing sequence for (P ). Then,

for each n ∈ N, ((xn, yn), un) satisfies (D), starting at (x0, y0) := (xn(0), yn(0)), and (B.C.).

Hence, by Lemma 3.3.4, there exists a sequence of (λni )ri=1 such that, for all i = 1, · · · , r,

λni ∈ L∞([0, T ];R+), λni = 0 on I -
i (xn), and, (λni )ri=1 with ((xn, yn), un) satisfy (3.97) and

the bounds in (3.98). Apply lemma .0.2(i) to R := r, (xn, yn), ξin := λni , ζn := 0, M1 :=

max{MC ,M}, M2 := Mh + µ
4η2Lψ, and M3 := µ

4η2 , we obtain (x̂, ŷ) ∈ W 1,∞, (λ1, · · · , λr) ∈

L∞([0, T ];Rr
+), ζ := 0, and subsequences (not relabeled) of (xn, yn)n and (λni )n such that

(xn, yn) unif−−→ (x̂, ŷ), (ẋn, ẏn) w∗−−−→
in L∞

( ˙̂x, ˙̂y), λni
w∗−−−→

in L∞
λi, for all i = 1, · · · , r, and ( ˙̂x, ˙̂y) and

(λ1, · · · , λr) satisfy the bounds in (.2). Furthermore, we have (x̂(0), ŷ(0), x̂(T ), ŷ(T )) ∈ S.

On the other hand, as ((xn, yn), un) and (λni )ri=1 satisfy (3.97), this means that they solve (.3)

for ζ := 0, qi := ψi, and Q(t) := C(t). Noting that (A1) and (A4.2)G hold, then by applying

the global version of Lemma .0.2 (ii) (see Remark .0.3), we obtain û ∈ U such that ((x̂, ŷ), û)

and (λi)ri=1 also satisfy (.3), which is (3.97). Thus, to prove that ((x̂, ŷ), û) is admissible for
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(D), it suffices by the equivalence in Lemma 3.3.4 to show that for all i = 1, · · · , r, λi is

supported on I0
i (x̂), knowing that for all i = 1, · · · , r, λni (t) = 0 for t ∈ I -

i (xn). Fix t ∈ I -
i (x̂),

then, ψi(t, x̂(t)) < 0. Since xn converges uniformly to x̂ and ψi(·, ·) is continuous, we can find

δ̂ > 0 and n̂ ∈ N such that ∀s ∈ (t−δ̂, t+δ̂)∩[0, T ] and for all n ≥ n̂, we have ψi(s, xn(s)) < 0

and hence λni (s) = 0. Thus, as n → ∞, 0 = λni (·) → 0 on (t − δ̂, t + δ̂) ∩ [0, T ], and so

λi(t) = 0. Therefore, Lemma 3.3.4 yields that ((x̂, ŷ), û) is admissible for (D). Using the

lower semicontinuinity of J , we deduce that

J(x̂(0), ŷ(0), x̂(T ), ŷ(T )) ≤ lim
n→∞

J(xn(0), yn(0), xn(T ), yn(T ))

= inf
((x,y),u) admissible for (P )

J(x(0), y(0), x(T ), y(T )),

showing that ((x̂, ŷ), û) is optimal for (P ) over all admissible pairs ((x, y), u).

Table 4.1 Summary of results from Section 4.1 .

Result Description

Theorem

4.1.1
We demonstrate the global existence of an optimal solution for (P ).

4.2 Pontryagin maximum principle for (P ) under local assumptions

In this section, we present the maximum principle for the problem (P ). We employ a

modification of the exponential penalization technique used in [30, 70, 55] for special cases

of (P ). We first approximate the given optimal solution of (P ) with optimal solutions for

some approximating problems having joint-endpoint constraints, (Pα,β
γk

), which are standard

optimal control problems involving exponential penalty terms (Proposition 4.2.8). Then, we

find necessary conditions for the approximating problems (Proposition 4.2.9), and we finally

conclude the necessary conditions for (P ) by taking the limit of the necessary conditions for

(Pα,β
γk

).

For a given pair (x̄, ȳ) ∈ C([0, T ];Rn × Rl) such that x̄(t) ∈ C(t) ∀t ∈ [0, T ], and for a

constant δ̄ > 0, we adopt all the local assumptions introduced at the beginning of Chapter
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3 and introduce two additional ones. We say that the following assumptions hold true at

((x̄, ȳ); δ̄) if the corresponding conditions hold true.

(A3.3) There exists a positive Lipschitz function β̄(·) = (β̄1(·), · · · , β̄r(·)) : [0, T ] −→ Rr such

that

∑
j∈I0

(t,x̄(t))
j ̸=i

β̄j(t)|⟨∇xψj(t, x̄(t)),∇xψi(t, x̄(t))⟩| < β̄i(t)∥∇xψi(t, x̄(t))∥2, ∀t ∈ I0(x̄), ∀i ∈ I0
(t,x̄(t)).

For a > 0, b > 0 given, we recall the following set, given in (3.9), by

¯N(a,b)(t) :=
[
C(t) ∩ B̄a(x̄(t))

]
× B̄b(ȳ(t)), for t ∈ [0, T ],

and we introduce a new set

B̄a := B̄a(x̄(0)) × B̄a(ȳ(0)) × B̄a(x̄(T )) × B̄a(ȳ(T )). (4.2)

(A5) Local assumption on J at ((x̄, ȳ); δ̄): There exist ρ1 > 0 and LJ > 0 such that J is

LJ -Lipschitz on S(δ̄), where

S(δ̄) :=
([
S ∩ B̄δ̄

]
+ ρ1B̄

)
∩
( ¯N(δ̄,δ̄)(0) × ¯N(δ̄,δ̄)(T )

)
.

4.2.1 Preliminary results

We start the first subsection by presenting consequences of (A3.3) that shall be crucial for

our approximating problem and the proof of the maximum principle. For this subsection, let

C(·) satisfying (A2) for ρ > 0. Consider x̄ ∈ C([0, T ];Rn) with x̄(t) ∈ C(t) for all t ∈ [0, T ],

and δ̄ > 0 such that (A3.1) holds at (x̄; δ̄).

The next remark discusses the significance of (A3.3) in the proof of the maximum principle.

In particular, it highlights why it is sufficient to prove the maximum principle (Theorem

4.2.11) under a stronger assumption.

Remark 4.2.1 (Assumption (A3.3)). Note that when r = 1, the sets C(t) are

smooth and condition (A3.3) trivially holds. Let r > 1, then the sets C(t) are nonsmooth.

In this case, a condition closely related to (A3.3), see [46, Theorem 1.3.1], has been first
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mentioned in [40] to be useful when sweeping (or reflected) processes over nonsmooth sets

are studied. For t ∈ I0(x̄), denote by Gψ(t) the Gramian matrix of the vectors {∇xψi(t, x̄(t)) :

i ∈ I0
(t,x̄(t))}, i.e. (Gψ(t))ij = ⟨∇xψi(t, x̄(t)),∇xψj(t, x̄(t))⟩.

• If for all i ∈ I0
(t,x̄(t)), we have (A3.3) holds for β̄i(t) ≡ 1, then the matrix Gψ(t) is

strictly diagonally dominant (see Definition 2.1.1) .

• For the general case, (A3.3) says that for some positive Lipschitz vector function, β̄(·),

the matrix Gψ(t)Dβ̄(t)(t) is strictly diagonally dominant for all t ∈ I0(x̄), where Dβ̄(t)(t)

is the diagonal matrix whose diagonal entries are (β̄i(t))i∈I0
(t,x̄(t))

, and (Gψ(t)Dβ̄(t)(t))ij =

β̄j(t)⟨∇xψi(t, x̄(t)),∇xψj(t, x̄(t))⟩.

Thus,

(i) (A3.3) yields that the vectors {∇xψi(t, x̄(t)) : i ∈ I0
(t,x̄(t))} are linearly independent,

and hence, when (A3.3) is assumed to hold, (A3.2) is automatically satisfied;

(ii) Setting ψ̃i(t, x) := β̄i(t)ψi(t, x), it easily follows that C(t) is also the zero-sublevel sets

of (ψ̃i(t, ·))ri=1, for i = 1, · · · , r, for some Lψ̃ > 0, ψ̃i satisfies (A3.1) for all i = 1, · · · , r,

and condition (A3.3) is equivalent to saying that for t ∈ I0(x̄), the Gramian matrix

Gψ̃(t) of the vectors {∇xψ̃i(t, x̄(t)) : i ∈ I0
(t,x̄(t))} is strictly diagonally dominant; a fact

that shall be used in the proof of the maximum principle;

(iii) From parts (i)−(ii) of this remark, we have ψ̃1, · · · , ψ̃r satisfy (A3.2), and hence, (3.34)

of Lemma 3.2.4 is valid at ψ̃1, · · · , ψ̃r, ψr+1 when replacing η̄ by η̃ := η̄ bβ̄, where

bβ̄ := min
{
1,min{β̄i(t) : t ∈ [0, T ], i = 1, · · · , r}

}
.

Equivalent forms for the strict diagonally dominance of Gψ(t) are given in the following

lemma.

Lemma 4.2.2. The following assertions are equivalent:

(i) For all t ∈ I0(x̄), the Gramian matrix Gψ(t) of the vectors {∇xψi(t, x̄(t)) : i ∈ I0
(t,x̄(t))},

is strictly diagonally dominant.
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(ii) There exists b ∈ (0, 1) such that, for all t ∈ I0(x̄) and for all i ∈ I0
(t,x̄(t)), we have

∑
j∈I0

(t,x̄(t))
j ̸=i

|⟨∇xψj(t, x̄(t)),∇xψi(t, x̄(t))⟩| ≤ b∥∇xψi(t, x̄(t))∥2. (4.3)

(iii) There exist c̄ > 0, b̄ ∈ (0, 1), and ā > 0 such that ∀(t, x) ∈ GrC(·) ∩ B̄c̄(x̄(·)) with

I ā(t,x) ̸= ∅, and ∀ i ∈ I ā(t,x), we have

∑
j∈Iā(t,x)
j ̸=i

|⟨∇xψj(t, x),∇xψi(t, x)⟩| ≤ b̄∥∇xψi(t, x)∥2, (4.4)

where I ā(t,x) := {i ∈ {1, . . . , r} : −ā ≤ ψi(t, x) ≤ 0}. (4.5)

Proof. (i) =⇒ (ii): For t ∈ I0(x̄) and i ∈ I0
(t,x̄(t)), we define

b(t, i) := 1
∥∇xψi(t, x̄(t))∥2

∑
j∈I0

(t,x̄(t))
j ̸=i

|⟨∇xψj(t, x̄(t)),∇xψi(t, x̄(t))⟩| < 1, (4.6)

and set b := sup
{
b(t, i) : t ∈ I0(x̄) and i ∈ I0

(t,x̄(t))

}
. Then, (4.3) holds true. To show that

b < 1, use an argument by contradiction, together with Lemma .0.1 and inequality (4.6).

(ii) =⇒ (iii): We fix b̄ ∈ (b, 1) and we use an argument by contradiction in conjunction

with Lemma .0.1.

(iii) =⇒ (i): Follows directly by taking ā := c̄ := 0, x = x̄(t) and using b̄ < 1.

The following result, which will be used in the proof of the maximum principle, is an

immediate consequence of Lemma 3.2.4 obtained via a simple argument by contradiction and

the continuity in (A3.1) of (ψi)1≤i≤r and (∇xψi)1≤i≤r on the compact set Gr
(
C(·) ∩ B̄ε̄(x̄(·)

)
.

Lemma 4.2.3. Let C(·) satisfying (A2) for some ρ > 0. Consider x̄ ∈ C([0, T ];Rn)

with x̄(t) ∈ C(t) for all t ∈ [0, T ], and δ̄ > 0 such that (A3.1) and (A3.2) hold at (x̄; δ̄).

Then, for ε̄ ∈ (0, ρ)∩(0, εo], and its corresponding ψr+1 and η̄ from Lemma 3.2.4, there exists

ao > 0 such that for all i ∈ {1, . . . , r + 1} we have

[
(t, x) ∈ Gr

(
C(·) ∩ B̄ε̄(x̄(·)

)
and ∥∇xψi(t, x)∥ ≤ η̄

]
=⇒ ψi(t, x) < −ao. (4.7)
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Table 4.2 Summary of results from Section 4.2.1.

Result Description

Remark 4.2.1

We discuss the significance of (A3.3) in the proof of the maximum

principle. In particular, it highlights why it is sufficient to prove the

maximum principle (Theorem 4.2.11) under a stronger assumption.

Lemma 4.2.2
We provide equivalent forms for the strict diagonally dominance of the

Gramian matrix Gψ(t) of the vectors {∇xψi(t, x̄(t)) : i ∈ I0
(t,x̄(t))}.

Lemma 4.2.3
We prove that there exists ao such that

[
(t, x) ∈

Gr
(
C(·) ∩ B̄ε̄(x̄(·)

)
and ∥∇xψi(t, x)∥ ≤ η̄

]
=⇒ ψi(t, x) < −ao.

4.2.2 Study of approximating problems for (P )

Assume that (A1)-(A2) are satisfied, and ((x̄, ȳ), ū) is an admissible solution for (P )

with δ̄ > 0 such that (A3.1), (A3.2), (A4) and (A5) are satisfied at ((x̄, ȳ); δ̄). Throughout

the rest of this chapter, let ε̄ ∈ (0, δ̄), ψr+1, η̄ and ρ̄ = 2η̄
Lψ

be fixed as in Subsection 3.2.2,

with Lψ ≥ 4η̄
ρo

. Let L(x̄,ȳ) denote the Lipschitz constant of (x̄, ȳ), which, by Lemma 3.1.5,

is Lipschitz and uniquely solves (D) corresponding to ((x̄(0), ȳ(0)), ū). Without loss of

generality, we assume L(x̄,ȳ) ≥ 1. Therefore, all the results of Subsection 3.2.2 are valid for

the systems (D̄) and (D̄γk), given respectively by (3.29) and (3.61).

For given δ ∈ (0, ε̄], define the problem (P̄δ) to be the problem (P ), in which (D) is replaced

by (D̄), and S is replaced by Sδ, where

Sδ := S ∩ B̄δ, and B̄δ is defined in (4.2). (4.8)

When Sδ is replaced by the following set Sδ,δ,

Sδ,δ = S ∩ [ ¯N(δ,δ)(0) × ¯N(δ,δ)(T )] ⊂ S(δ̄) ⊂ domain of J, (4.9)
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the resulting problem is named (P̄δ,δ).

For clarity and better visualization, we present the problems below in a structured form.

(P )



minimize J(x(0), y(0), x(T ), y(T ))

over ((x, y), u) ∈ W 1,1([0, T ],Rn × Rl) × U such that

(D)


ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)(x(t)), a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)), a.e. t ∈ [0, T ],

(x(0), y(0), x(T ), y(T )) ∈ S. (B.C.)

(P̄δ)



minimize J(x(0), y(0), x(T ), y(T ))

over ((x, y), u) ∈ W 1,1([0, T ],Rn × Rl) × U such that

(D̄)


ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)∩B̄ε̄(x̄(t))(x(t)), a.e. t ∈ [0, T ],

ẏ(t) ∈ g(t, x(t), y(t), u(t)) −NB̄δ̄(ȳ(t))(y(t)), a.e. t ∈ [0, T ].

(x(0), y(0), x(T ), y(T )) ∈ Sδ = S ∩ B̄δ.

(P̄δ,δ)



minimize J(x(0), y(0), x(T ), y(T ))

over ((x, y), u) ∈ W 1,1([0, T ],Rn × Rl) × U such that

(D̄)


ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)∩B̄ε̄(x̄(t))(x(t)), a.e. t ∈ [0, T ],

ẏ(t) ∈ g(t, x(t), y(t), u(t)) −NB̄δ̄(ȳ(t))(y(t)), a.e. t ∈ [0, T ].

(x(0), y(0), x(T ), y(T )) ∈ Sδ,δ = S ∩ [ ¯N(δ,δ)(0) × ¯N(δ,δ)(T )] ⊂ S(δ̄).

Notice that (P̄δ,δ) and (P̄δ) have the same sets of admissible and optimal solutions.

The following is an existence result of an optimal solution for (P̄δ) (and, hence, of (P̄δ,δ))

without requiring (A5).

Theorem 4.2.4 (Global existence of optimal solution for (P̄δ)). Assume that

all the aforementioned assumptions in the beginning of this subsection are satisfied except
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for (A5). Let J : Rn × Rl × Rn × Rl → R ∪ {∞} be merely lower semicontinuous on S(δ̄)

with domain of J contains (x̄(0), ȳ(0), x̄(T ), ȳ(T )). Then, for any δ ∈ (0, ε̄], (P̄δ) has a global

optimal solution.

Proof. Fix δ ∈ (0, ε̄]. Being admissible for (P ), ((x̄, ȳ), ū) is also admissible for (P̄δ), due

to Remark 3.2.3 and that (x̄(0), ȳ(0), x̄(T ), ȳ(T )) ∈ Sδ. As any admissible ((x, y), u) to (P̄δ)

also satisfies (x(0), y(0), x(T ), y(T )) ∈ Sδ,δ ⊂ S(δ̄), then, the lower semicontinuity of J on

S(δ̄) and the compactness of Sδ,δ yield the infimum of J over ((x, y), u) satisfying (D̄) and

having its states endpoints in Sδ, is finite. Let ((xn, yn), un) be a minimizing sequence for

(P̄δ). The proof from this point on continues as done in the proof of Theorem 4.1.1, in

which (D) and S are now (D̄) and Sδ, respectively, and we use Lemma 3.2.8, system (3.44),

and the bounds in (3.45) instead of Lemma 3.3.4, system (3.97), and the bounds in (3.98),

respectively, and we apply Lemma .0.2 itself, where R = r + 1, Q(t) := C(t) ∩ B̄ε̄(x̄(t)) and

ζn and ζ are present, instead of its global version that was used for R := r, Q(t) := C(t)

and ζn = ζ = 0. We deduce the existence of ((x̃δ, ỹδ), ũδ) optimal for (P̄δ).

Remark 4.2.5. Note that Theorem 4.2.4 remains valid if we replace the objective

function of (P̄δ), J(x(0), y(0), x(T ), y(T )), by J(x(0), y(0), x(T ), y(T ))+
∫ T

0 L(t, x(t), y(t)) dt,

where L is a Carathéodory function (see Definition 2.3.2) satisfying, for some σ ∈ L1([0, T ],R+),

|L(t, x, y)| ≤ σ(t), ∀(x, y) ∈ ¯N(ε̄,δ̄)(t), and t ∈ [0, T ]. (4.10)

This is so, because for any u ∈ U , the solution (x, y) of (D̄) belongs to the uniformly bounded

set valued map ¯N(ε̄,δ̄)(·), and L is a Carathéodory function (see Definition 2.3.2) satisfying

(4.10), and does not explicitly depend on the control. Indeed, in the proof of Theorem 4.2.4,

the existence of a minimizing sequence ((xn, yn), un) for (P̄δ), in which this change is imple-

mented, remains valid, and the limit as n → ∞ of the added term is
∫ T

0 L(t, x̃δ(t), ỹδ(t))dt,

by the dominated convergence theorem.

The following remark establishes a connection between a strong local minimizer for (P )

and a strong local minimzer for (P̄δ).
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Remark 4.2.6. Using Theorem 4.2.4 and Remark 3.2.3, we have the following.
(i) If ((x̄, ȳ), ū) is a δ̄-strong local minimizer for (P ), then, for any δ ∈ (0, ε̄), ((x̄, ȳ), ū) is

a δ-strong local minimizer for (P̄δ), and hence for (P̄δ,δ).

This fact motivates formulating in Proposition 4.2.8 the approximating problem for

(P ) near ((x̄, ȳ), ū) as being that for (P̄δo,δo), where δo is chosen strictly less than ε̄. It

also plays a key role in step 4 of the proof of Theorem 4.2.11 by relaxing instead of

(P ), the problem (P̄), which is (P̄ δ
2
) with extended J and added L.

(ii) Conversely, given δ ∈ (0, ε̄], if ((x̄, ȳ), ū) is a δ̂-strong local minimum for (P̄δ) for

δ̂ ∈ (0, δ], then ((x̄, ȳ), ū) is a δ̂-strong local minimum for (P ).

For the rest of the chapter, ((x̄, ȳ), ū) is taken to be a δ̄-strong local minimum

for (P ).

We shall employ the following notations.

• If x̄(0) ∈ intC(0), then, x̄(0) ∈ int (C(0) ∩ B̄ε̄(x̄(0))), and hence, taking c := x̄(0) in

Remark 3.2.11(ii), we deduce that there exist k̂x̄(0) ∈ N and r̂x̄(0)∈ (0, ε̄), satisfying

x̄(0) ∈ B̄r̂x̄(0)(x̄(0)) ⊂ int C̄γk(0, k), ∀k ≥ k̂x̄(0). (4.11)

If x̄(0) ∈ bdryC(0), then x̄(0) ∈ bdry (C(0) ∩ B̄ε̄(x̄(0))), and hence, taking c := x̄(0)

in Proposition 3.2.10(v), we deduce that there exist a vector dx̄(0) ̸= 0, kx̄(0) ≥ k3, and

rx̄(0)∈ (0, ε̄), such that(
C(0) ∩ B̄rx̄(0)(x̄(0))

)
+ σ̄k

dx̄(0)

∥dx̄(0)∥
⊂ int C̄γk(0, k), ∀k ≥ kx̄(0). (4.12)

• Since ȳ(0) ∈ int B̄δ̄(ȳ(0)), then taking d := ȳ(0) in Remark 3.2.13(ii), we deduce that

there exist kȳ(0) ∈ N and rȳ(0) > 0 satisfying

ȳ(0) ∈ B̄rȳ(0)(ȳ(0)) ⊂ int B̄ρ̄k(ȳ(0)), ∀k ≥ kȳ(0). (4.13)

• Motivated by Remark 4.2.6(i), and equations (4.11)-(4.13), let δo > 0 to be the fixed

constant

δo :=


min

{
ε̄
2 , r̂x̄(0), rȳ(0)

}
if x̄(0) ∈ intC(0)

min
{
ε̄
2 , rx̄(0), rȳ(0)

}
if x̄(0) ∈ bdryC(0).

(4.14)

108



• For β ∈ (0, 1], we define for t ∈ [0, T ] a.e., and (x, y, u) ∈ ¯N(δ̄,δ̄)(t) × U(t) :

fβ(t, x, y, u) := (1 − β)f(t, x, y, ū(t)) + βf(t, x, y, u),

gβ(t, x, y, u) := (1 − β)g(t, x, y, ū(t)) + βg(t, x, y, u).

Note that also hβ := (fβ, gβ) satisfy (A4) as h does, and hence, all the results of Section

3.2 of Chapter 3 hold true for (D̄β) and (D̄β
γk

), which are respectively obtained from

(D̄) and (D̄γk) by replacing h by hβ. Observe that hβ(t, x, y, ū(t)) = h(t, x, y, ū(t)).

• Let (x̄γk , ȳγk) the solution of (D̄β
γk

) corresponding to ((c̄γk , ȳ(0)), ū), where, for k large

enough, c̄γk ∈ int C̄γk(0, k) is the sequence corresponding (and converging) to c = x̄(0)

via Remark 3.2.11, namely,

c̄γk =


x̄(0) if x̄(0) ∈ intC(0)

x̄(0) + σ̄k
dx̄(0)

∥dx̄(0)∥ if x̄(0) ∈ bdryC(0),

where dx̄(0) is the vector from Proposition 3.2.10(v) corresponding to x̄(0). Then,

by Corollary 3.2.16, along a subsequence, (x̄γk , ȳγk) converges uniformly to (x̄, ȳ) and

satisfies all conclusions of Theorem 3.2.14. In particular, we have that (x̄γk(t), ȳγk(t)) ∈

C̄γk(t, k) × B̄ρ̄k(ȳ(t)) ∀t ∈ [0, T ] and (x̄γk , ȳγk)k is uniformly lipschitz.

• We define for all k ∈ N

Sγk(k) :=


[Sδo + (0, 0, ēγk , ω̄γk)] ∩ [ ¯N(ε̄,δ̄)(0) × ¯N(ε̄,δ̄)(T )], if x̄(0) ∈ intC(0)

[Sδo + (σ̄k
dx̄(0)

∥dx̄(0)∥ , 0, ēγk , ω̄γk)] ∩ [ ¯N(ε̄,δ̄)(0) × ¯N(ε̄,δ̄)(T )], if x̄(0) ∈ bdryC(0),
(4.15)

where, Sδo is defined in (4.8), and

(ēγk , ω̄γk) := (x̄γk(T ) − x̄(T ), ȳγk(T ) − ȳ(T )) −−−→
k→∞

(0, 0).

Remark 4.2.7. Our sets Sγk(k) satisfy the following properties:

∀k ∈ N, Sγk(k) is closed, and Sγk(k) ⊂ S(δ̄), for k sufficiently large, (4.16)

{(c, d) : (c, d, e, ω) ∈ Sγk(k)} ⊂ int C̄γk(0, k) × int B̄ρ̄k(ȳ(0)) ⊂ int ¯N(ε̄,δ̄)(0) for k large,(4.17)

lim
k→∞

Sγk(k) = Sδo,δo , (4.18)

(c̄γk , ȳ(0), x̄γk(T ), ȳγk(T )) ∈ Sγk(k), for k sufficiently large. (4.19)
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Using the local property of limiting normal cone (see Lemma 2.2.4), we know that, for any

element (c, d, e, ω) ∈ Sγk(k) with (e, ω) ∈ int ¯N(ε̄,δ̄)(T ) = (intC(T ) ∩ Bε̄(x̄(T ))) × Bδ̄(ȳ(T )),

we have

NL
Sγk (k)(c, d, e, ω) =



NL
S (c, d, e− ēγk , ω − ω̄γk) if x̄(0) ∈ intC(0) and

(c, d, e− ēγk , ω − ω̄γk) ∈ int B̄δo

NL
S (c− σ̄k

dx̄(0)
∥dx̄(0)∥ , d, e− ēγk , ω − ω̄γk) if x̄(0) ∈ bdryC(0) and

(c− σ̄k
dx̄(0)

∥dx̄(0)∥ , d, e− ēγk , ω − ω̄γk) ∈ int B̄δo .

(4.20)

This next proposition provides a sequence of optimal control problems with specific joint

endpoint constraints that approximates our initial problem (P ) near ((x̄, ȳ), ū), that is, the

problem (P̄δo,δo).

Proposition 4.2.8 (Approximating problems for (P )). For all α > 0 and

β ∈ (0, 1], there exists a subsequence of (γk)k (we do not relabel) and a sequence

(cγk , dγk , eγk , ωγk ;uγk) ∈ Sγk(k) × U such that the associated problem (Pα,β
γk

) defined by:

(Pα,β
γk

) : Minimize J(x(0), y(0), x(T ), y(T )) + α∥u− uγk∥1

+ α ∥ (x(0), y(0), x(T ), y(T )) − (cγk , dγk , eγk , ωγk) ∥,

over ((x, y), u) such that u(·) ∈ U and

(D̄β
γk

)


ẋ(t) = fβ(t, x(t), y(t), u(t)) −∑r+1

i=1 γke
γkψi(t,x(t))∇xψi(t, x(t)) a.e. t ∈ [0, T ],

ẏ(t) = gβ(t, x(t), y(t), u(t)) − γke
γkφ(t,y(t))∇yφ(t, y(t)) a.e. t ∈ [0, T ],

(x(t), y(t)) ∈ B̄δo(x̄(t), ȳ(t)) ∀t ∈ [0, T ], (S.C),

(x(0), y(0), x(T ), y(T )) ∈ Sγk(k),

has an optimal solution ((xγk , yγk), uγk) such that

(xγk(0), yγk(0), xγk(T ), yγk(T )) = (cγk , dγk , eγk , ωγk)
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and (xγk)k and (yγk)k are uniformly Lipschitz. Moreover,

(xγk(0), yγk(0), xγk(T ), yγk(T )) ∈ (Sδo + ρ1B) ∩ int
( ¯N(ε̄,δ̄)(0) × ¯N(ε̄,δ̄)(T )

)
⊂ intS(δ̄), (4.21)

(xγk(t), yγk(t)) ∈ C̄γk(t, k) × B̄ρ̄k(ȳ(t)), ∀t ∈ [0, T ], (4.22)

(xγk , yγk)
unif−−→ (x̄, ȳ), uγk

strongly−−−−→
in L1

ū, and (ẋγk , ẏγk)
w∗−−−→

in L∞
( ˙̄x, ˙̄y). (4.23)

The functions ξiγk (i = 1, · · · , r+ 1) and ζγk , corresponding to xγk and yγk via (3.76), satisfy

(3.75) and there exists (ξ1, · · · , ξr) ∈ L∞([0, T ],Rr
+) such that

ξiγk
w∗−−−→

in L∞
ξi, ξi = 0 on I -

i (x̄) (∀i = 1, · · · , r), ∥
r∑
i=1

ξi∥∞ ≤ 2µ̄
η̄2 , (γkξr+1

γk
, γkζγk)

unif−−→ 0,(4.24)

and ((x̄, ȳ), ū) together with (ξ1, · · · , ξr) satisfies

˙̄x(t) = f(t, x̄(t), ȳ(t), ū(t)) −∑r
i=1 ξ

i(t)∇xψi(t, x̄(t)) a.e. t ∈ [0, T ],

˙̄y(t) = g(t, x̄(t), ȳ(t), ū(t)) a.e. t ∈ [0, T ],

ψi(t, x̄(t)) ≤ 0, ∀t ∈ [0, T ], ∀i ∈ {1, · · · , r}.

(4.25)

Proof. Step 1: (P 0,β
γk

) admits an optimal solution ((x̂γk , ŷγk), ûγk).

Given that (x̄γk , ȳγk) is the solution of (D̄β
γk

) corresponding to ((c̄γk , ȳ(0)), ū), the inclusion

(4.19) holds, and (x̄γk , ȳγk) → (x̄, ȳ), then for k large enough, the sequence ((x̄γk , ȳγk), ū)

is admissible for (Pα,β
γk

) for every α ≥ 0 and β ∈ (0, 1]. In particular, for k large enough,

((x̄γk , ȳγk), ū) is admissible for (P 0,β
γk

). We fix k large enough and β ∈ (0, 1]. We then apply

Theorem 2.3.4 ([19, Theorem 23.10]) to (P 0,β
γk

), withQ = Gr
(
B̄δo(x̄(·), ȳ(·)) ∩ C(·) × Rl

)
and

E = Sγk(k). Notice that conditions (a), (b), (c), (d), (e), and (f) of this theorem are satisfied

due to the validity of assumptions (A1), (A3.1), (A4), and (A5), along with the properties

of Sγk(k). Hence, (P 0,β
γk

) admits an optimal solution ((x̂γk , ŷγk), ûγk). Using equations (4.16)

and (4.18), we deduce that there exists (c, d, e, ω) such that, up to a subsequence

(x̂γk(0), ŷγk(0), x̂γk(T ), ŷγk(T )) −→ (c, d, e, ω) ∈ Sδo,δo .

Step 2: Convergence of (x̂γk , ŷγk) to an admissible solution for (P̄δo,δo) with δo

distance to (x̄, ȳ).
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As (x̂γk(0), ŷγk(0)) ∈ C̄γk(0, k)×B̄ρ̄k(ȳ(0)) (see equation (4.17)) and its limit (c, d) ∈ ¯N(ε̄,δ̄)(0),

then, applying Theorem 3.2.14(I) to ((x̂γk(0), ŷγk(0)), ûγk), we deduce that the resulting

unique solution of (D̄β
γk

) is (x̂γk , ŷγk) and satisfies (3.74)-(3.76), and hence, by (A1), (A4.2),

and Theorem 3.2.14(II), there exists ((x̂, ŷ), u), such that along a subsequence of (x̂γk , ŷγk)

(we do not relabel), we have (x̂γk , ŷγk)
unif−−→ (x̂, ŷ), (x̂(t), ŷ(t)) ∈ ¯N(ε̄,δ̄)(t) for all t ∈ [0, T ],

and ((x̂, ŷ), u) uniquely solves (D̄β) starting at (c, d). It follows that (x̂(T ), ŷ(T )) = (e, ω).

Moreover, as (x̂γk , ŷγk) satisfies (S.C), then we have (x̂(t), ŷ(t)) ∈ B̄δo(x̄(t), ȳ(t)) for all

t ∈ [0, T ]. Using (A4.2) and Filippov Selection Theorem (see Theorem 2.3.5), we can find

û ∈ U such that ((x̂, ŷ), û) satisfies (D̄), and hence ((x̂, ŷ), û) is admissible for (P̄δo,δo) with

∥(x̂, ŷ) − (x̄, ȳ)∥∞ ≤ δo.

Step 3: (Pα,β
γkn

) defined by means of (cγkn , dγkn , eγkn , ωγkn ;uγkn), has ((xγkn , yγkn), uγkn)

as optimal solution.

Since ((x̄, ȳ), ū) is a δ̄-strong local minimizer for (P ), then, by Remark 4.2.6(i) and δo < ε̄,

((x̄, ȳ), ū) is a δo-strong local minimizer for (P̄δo) and hence for (P̄δo,δo), and hence, we have

J(x̄(0), ȳ(0), x̄(T ), ȳ(T )) ≤ J(x̂(0), ŷ(0), x̂(T ), ŷ(T )).

On the other hand, ((x̂γk , ŷγk), ûγk) is an optimal solution for (P 0,β
γk

) for which ((x̄γk , ȳγk), ūγk)

is admissible, we deduce that

J(x̂γk(0), ŷγk(0), x̂γk(T ), ŷγk(T )) ≤ J(x̄γk(0), ȳγk(0), x̄γk(T ), ȳγk(T )).

Combining the above two inequalities and using the continuity of J(·, ·, ·, ·), we deduce that

lim
k→∞

[
J(x̄γk(0), ȳγk(0), x̄γk(T ), ȳγk(T )) − J(x̂γk(0), ŷγk(0), x̂γk(T ), ŷγk(T ))

]
= 0.

Thus, for fixed α > 0, there exists an increasing sequence (kn)n such that ∀ n ≥ 1, ∀ kn > n,

J(x̄γkn(0), ȳγkn(0), x̄γkn(T ), ȳγkn(T )) ≤ J(x̂γkn(0), ŷγkn(0), x̂γkn(T ), ŷγkn(T )) + α

n
.

The rest of the proof follows from imitating the proof of [55, Proposition 6.2], and applying

Ekeland Variational Principle (Theorem 2.2.49 or [66, Theorem 3.3.1]), to the following

version of the data corresponding to our problem:
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• X = {(c, d, e, ω;u) ∈ Sγk(kn) × U : the unique solution ((x, y), u) of (D̄β
γkn

) with

(x(0), y(0)) = (c, d) satisfies (x(T ), y(T )) = (e, ω) and (x(t), y(t)) ∈ B̄δo(x̄(t), ȳ(t)) ∀t}.

• For (c, d, e, ω;u), (c′, d′, e′, ω′;u′) ∈ X, we define the distance

D ((c, d, e, ω;u), (c′, d′, e′, ω′;u′)) := ∥u− u′∥L1 + ∥(c, d, e, ω) − (c′, d′, e′, ω′)∥.

• For (c, d, e, ω;u) ∈ X, F(c, d, e, ω;u) := J(c, d, e, ω).

• α := α and λ := 1
n
.

Notice that (X,D) is a non-empty complete metric space, and F is continuous on X. There-

fore, we deduce the existence of (cγkn , dγkn , eγkn , ωγkn ;uγkn) ∈ X such that, for (xγkn , yγkn),

the solution of (D̄β
γkn

) corresponding to ((cγkn , dγkn), uγkn), satisfies (xγkn(T ), yγkn(T )) =

(eγkn , ωγkn) and (xγkn(t), yγkn(t)) ∈ B̄δo(x̄(t), ȳ(t)) ∀t, and the following holds:

J(xγkn(0), yγkn(0), xγkn(T ), yγkn(T )) ≤ J(x̄γkn(0), ȳγkn(0), x̄γkn(T ), ȳγkn(T )), (4.26)

∥uγkn − ū∥L1 + ∥
(
cγkn , dγkn , eγkn , ωγkn

)
−
(
c̄γkn , ȳ(0), x̄γkn(T ), ȳγkn(T )

)
∥ ≤ 1

n
, (4.27)

and for all ((c, d, e, ω);u) ∈ X, we have

J(xγkn(0), yγkn(0), xγkn(T ), yγkn(T )) ≤ J(x(0), y(0), x(T ), y(T ))

+α(∥u− uγkn∥L1 + ∥ (c, d, e, ω) −
(
cγkn , dγkn , eγkn , ωγkn

)
∥, (4.28)

where ((x, y), u) is the unique solution of (D̄β
γkn

) starting with (x(0), y(0)) = (c, d) and sat-

isfying (x(T ), y(T )) = (e, ω) and (x(t), y(t)) ∈ B̄δo(x̄(t), ȳ(t)) ∀ t ∈ [0, T ].

Hence, for n large, the problem (Pα,β
γkn

) defined by means of (cγkn , dγkn , eγkn , ωγkn ;uγkn), has

((xγkn , yγkn), uγkn) as optimal solution satisfying

(xγkn(0), yγkn(0), xγkn(T ), yγkn(T )) = (cγkn , dγkn , eγkn , ωγkn) −−−→
n→∞

(x̄(0), ȳ(0), x̄(T ), ȳ(T )) ∈ S,

uγkn
strongly−−−−→
L1

ū, (xγkn , yγkn) unif−−−→
n→∞

(x̄, ȳ),

and all conclusions of Theorem 3.2.14. Hence, (4.23) is valid, and, for (ξiγk)
r+1
i=1 and ζγk

corresponding to (xγk , yγk) via (3.76), there exist (ξi)r+1
i=1 and ζ such that (3.75), (3.77), (3.79),
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(3.80), and (3.81)-(3.83) hold. Notice that, as ψr+1(t, x̄(t)) = − ε̄2

2 < 0 and φ(t, ȳ(t)) = − δ̄2

2 <

0 ∀t ∈ [0, T ], we have that ξr+1 ≡ 0, ζ ≡ 0, and, for some k̃ ∈ N, ψr+1(t, xγk(t)) ≤ − ε̄2

4 and

φ(t, yγk(t)) ≤ − δ̄2

4 , ∀k ≥ k̃ and ∀t ∈ [0, T ], and hence,

γkξ
r+1
γk

(t) ≤ γ2
ke

−γk ε̄
2
4 and γkζγk(t) ≤ γ2

ke
−γk δ̄

2
4 , ∀k ≥ k̃, and ∀t ∈ [0, T ]. (4.29)

That is, (γkξr+1
γk

, γkζγk)
unif−−→ 0, and thus, (4.24) holds. Furthermore, since hβ(t, x̄(t), ȳ(t), ū(t))

= h(t, x̄(t), ȳ(t), ū(t)), it follows that ((x̄, ȳ), ū) and (ξ1, · · · , ξr) satisfy (4.25).

Finally, (4.21) is also valid, due to having (xγkn(0), yγkn(0), xγkn(T ), yγkn(T )) ∈ Sγk(kn),

σ̄kn → 0, (ēγkn , ω̄γkn) → (0, 0) (as n → ∞), and (xγkn(t), yγkn(t)) ∈ C̄γkn(t, k) × B̄ρ̄kn
(ȳ(t)) ⊂

int ¯N(ε̄,δ̄)(t).

The next result is obtained as a direct application of the nonsmooth Pontryagin maximum

principle for state constrained problems to each of the approximating problem (Pα,β
γk

) defined

in Proposition 4.2.8.

Proposition 4.2.9 (Maximum principle for the approximating problems (Pα,β
γk

)).

Let α > 0 and β ∈ (0, 1] be fixed. Let ((xγk , yγk), uγk) be the sequence from Proposi-

tion 4.2.8 which is optimal for (Pα,β
γk

) and satisfying lim
k→∞

(xγk(0), yγk(0), xγk(T ), yγk(T )) =

(x̄(0), ȳ(0), x̄(T ), ȳ(T )). Then, for each k ∈ N, there exist pγk = (qγk , vγk) ∈ W 1,1([0, T ];Rn×

Rl) and a scalar λγk ≥ 0 such that

(i) Nontriviality condition For all k ∈ N, we have

∥pγk∥∞ + λγk = 1. (4.30)

(ii) Transversality equation

(pγk(0),−pγk(T )) ∈ λγk∂
LJ(xγk(0), yγk(0), xγk(T ), yγk(T )) + (4.31)

αB̄ +NL
Sγk (k) (xγk(0), yγk(0), xγk(T ), yγk(T )) .

(iii) Maximization condition

max
u∈U(t)

{
⟨(qγk(t), vγk(t)), (f, g)(t, xγk(t), yγk(t), u))⟩ − λγkα

β
∥u− uγk(t)∥

}
(4.32)

is attained at u = uγk(t) a.e. t ∈ [0, T ].
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(iv) Adjoint equation For almost all t ∈ [0, T ],

−ṗγk(t) =

−q̇γk(t)

−v̇γk(t)

 ∈ (1 − β)(∂(x,y)f(t, xγk(t), yγk(t), ū(t)))T qγk(t)

+β(∂(x,y)f(t, xγk(t), yγk(t), uγk(t)))T qγk(t)

+(1 − β)(∂(x,y)g(t, xγk(t), yγk(t), ū(t)))Tvγk(t)

+β(∂(x,y)g(t, xγk(t), yγk(t), uγk(t)))Tvγk(t)

−


(
∂x
(∑r+1

i=1 γke
γkψi(t,xγk (t))∇xψi(t, xγk(t))

))T
qγk(t)(

∇y

(
γke

γkφ(t,yγk (t))∇yφ(t, yγk(t))
))T

vγk(t)

 , (4.33)

where,

∂x
(
r+1∑
i=1

γke
γkψi(t,xγk (t))∇xψi(t, xγk(t))

)
⊂

r+1∑
i=1

γke
γkψi(t,xγk (t))∂xxψi(t, xγk(t))

+
r+1∑
i=1

γ2
ke
γkψi(t,xγk (t))∇xψi(t, xγk(t))∇xψi(t, xγk(t))T ,

∇y

(
γke

γkφ(t,yγk (t))∇yφ(t, yγk(t))
)

= γke
γkφ(t,yγk (t)) Il×l

+γ2
ke
γkφ(t,yγk (t))∇yφ(t, yγk(t))∇yφ(t, yγk(t))T .

Proof. As (Pα,β
γk

) is a standard optimal control problem with implicit state constraints, we

shall apply [66, Theorem 9.3.1 and P.332] for the optimal solution ((xγk , yγk), uγk) of (Pα,β
γk

)

obtained in Proposition 4.2.8. The proof is obtained from translating the conditions of [66,

Theorem 9.3.1] to our data, and using the standard state augmentation technique.

Step 1. All assumptions of [66, Theorem 9.3.1 and P.332] are satisfied.

Applying the state augmentation technique, our optimal solution is (xγk , yγk , zγk), where

(xγk , yγk) is the optimal solution from Proposition 4.2.8, zγk(t) :=
∫ t

0 ∥uγk(s)−uγk(s)∥ds = 0,

and uγk is the optimal control.

Assumptions (H1), (H2) and (H3) of [66, Theorem 9.3.1] are satisfied because assumptions

(A2), (A3), (A4), and (A5) hold true, (xγk , yγk) converges uniformly to (x̄, ȳ) and (4.21) is

satisfied. Note that for k large enough, the required constraint qualification (CQ) in [66,

Page 332] is satisfied by the multifunction B̄δo(x̄(·), ȳ(·)) at (xγk(t), yγk(t)). In other words,

we need to show that
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1. B̄δo(x̄(·), ȳ(·)) is lower semicontinuous multifunction,

2. conv (N̄L
B̄δo (x̄(t),ȳ(t))(xγk(t), yγk(t))) is pointed ∀t ∈ [0, T ], where the graph of

N̄L
B̄δo (x̄(·),ȳ(·))(·) is defined to be the closure of the graph of NL

B̄δo (x̄(·),ȳ(·))(·).

This is due to (xγk , yγk) converging uniformly to (x̄, ȳ) and to B̄δo(x̄(·), ȳ(·)) being lower

semicontinuous, with closed, convex, and nonempty interior values (hence epi-Lipschitz),

(see Lemma 2.2.47 or [57, Remark 4.8(ii)]).

Step 2: The measure corresponding to the state constraint (S.C) is null.

Notice that the measure ηγk ∈ C∗([0, T ],Rn+l) corresponding to the state constraint (S.C)

produced by [66, Theorem 9.3.1], is actually null. This is due to the fact that its support

satisfies

supp {ηγk} ⊂ {t ∈ [0, T ] : (t, xγk(t), yγk(t)) ∈ bdry Gr B̄δo(x̄(·), ȳ(·))},

= {t ∈ [0, T ] : (t, xγk(t), yγk(t)) ∈ ∪t∈[0,T ]{t} × Sδo(x̄(t), ȳ(t))}

= ∅,

where Sδo(x̄(t), ȳ(t)) = {(x, y) : ∥(x, y) − (x̄(t), ȳ(t))∥ = δo}. The last equality follows from

the uniform convergence to (x̄, ȳ) of (xγk(t), yγk(t)), (4.23).

Step 3. Deriving the transversality condition.

Let qγk , vγk and eγk adjoint vectors corresponding to the optimal states xγk , yγk and zγk

respectively. We translate equation (iii) in [66, Theorem 9.3.1] to our data. First, notice

that

eγk(T ) = −λγkα.

In addition, we have, for pγk = (qγk , vγk), that

(pγk(0),−pγk(T )) ∈ λγk∂
LJ(xγk(0), yγk(0), xγk(T ), yγk(T )) +

αB̄ +NL
Sγk (k)(xγk(0), yγk(0), xγk(T ), yγk(T )).
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Step 4. Deriving the adjoint equation.

We note that the Hamiltonian is given by

H(t, (x, y, z), (q, v, e), u) = ⟨q, fβ(t, x, y, u) −
r+1∑
i=1

γke
γkψi(t,x)∇xψi(t, x)⟩

+ ⟨v, gβ(t, x, y, u) − γke
γkφ(t,y)∇yφ(t, y)⟩ + ⟨e, ∥u− uγk(t)∥⟩.

Using equation (ii) in [66, Theorem 9.3.1], we deduce that equation (4.33) is satisfied, and

ėγk(t) = 0 for t ∈ [0, T ] a.e. Now, we use the transversality condition to deduce that for a.e

t ∈ [0, T ], eγk(t) = eγk(T ) = −λγkα.

Step 5. Deriving the Maximization condition.

Applying equation (iv) in [66, Theorem 9.3.1] to our data, with the fact that eγk(t) = −αλγk

a.e. t ∈ [0, T ], we deduce that

max
u∈U(t)

{
⟨qγk(t), f(t, xγk(t), yγk(t), u)⟩ + ⟨vγk(t), g(t, xγk(t), yγk(t), u)⟩ − λγkα

β
∥u− uγk(t)∥

}
(4.34)

is attained at u = uγk(t) a.e. t ∈ [0, T ].

Step 6. Nontriviality condition.

Since ηγk is null everywhere, we deduce from the nontriviality condition of Theorem 9.3.1

that (pγk , eγk , λγk) ̸= 0. But eγk = −αλγk then the transversality condition translates to

∥pγk∥∞ + λγk ̸= 0.

Remark 4.2.10. We note the following.

• We will prove in the maximum principle (see equation (4.41)) that there exists M̃p > 0

such that

∥pγk(t)∥ ≤ M̃p∥pγk(T )∥, ∀t ∈ [0, T ], ∀k ∈ N. (4.35)

Hence, we can replace the nontriviality condition (i) by

∥pγk(T )∥ + λγk = 1. (4.36)
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This is particularly useful for us when taking the limit of the non-triviality condition

in the proof of the maximum principle. As we will see, pγk converges pointwise to a

function p, allowing us to take the limit in (4.36).

• In addition, if S = C0 ×Rn+l for a closed C0 ⊂ C(0) ×Rl, then λγk ̸= 0 and it is taken

to be 1 and the nontriviality condition (i) is eliminated. Indeed, if λγk = 0, then using

transversality condition (ii), we deduce that pγk(T ) = 0. Thus, using equation (4.35),

we deduce that pγk is null. Hence, (pγk , λγk) = 0 which contradicts the non-triviality

condition.

Table 4.3 Summary of results from Subsection 4.2.2.

Result Description

Theorem

4.2.4

We provide an existence result of an optimal solution for the truncated

optimal control problem (P̄δ).

Remark 4.2.5

We provide an existence result of an optimal solution for a truncated

optimal control problem, which is identical to (P̄δ) except for the

addition of an integral term involving a Carathéodory function in its

objective function.

Remark 4.2.6
We establish a connection between a strong local minimizer for (P ) and

a strong local minimzer for (P̄δ).

Remark 4.2.7 We provide properties for the sets Sγk(k).

Proposition

4.2.8

We provide a sequence of optimal control problems with specific joint

endpoint constraints that approximates our initial problem (P ) near

((x̄, ȳ), ū), that is, the problem (P̄δo,δo).

Proposition

4.2.9

We provide necessary conditions to each of the approximating problems

(Pα,β
γk

) defined in Proposition 4.2.8.

Remark

4.2.10
We provide conditions that could replace the non-triviality condition.
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4.2.3 Maximum principle for (P )

The following result provides necessary conditions, in the form of an extended Pontrya-

gin’s maximum principle, for a δ̄-strong local minimizer ((x̄, ȳ), ū) for the problem (P ). We

start by proving the theorem under the temporary assumption (A4.2), and without assuming

any uniform bound on the sets U(t) (Step I). In Step II, we show that, when the compact

sets U(t) are uniformly bounded, the convexity assumption (A4.2) can be removed. First, we

introduce the following nonstandard notions of subdifferentials that shall be used in Theorem

4.2.11.

• ∂
(x,y)
ℓ h(t, ·, ·, u) denotes the extended Clarke generalized Jacobian of h(t, ·, ·, u) that ex-

tends from the interior to the boundary of ¯N(δ̄,δ̄)(t) : =
[
C(t) ∩ B̄δ̄(x̄(t))

]
×B̄δ̄(ȳ(t)) the

notion of the Clarke generalized Jacobian (see Definition 2.2.30 or [55, Equation(11)]),

• ∂xxℓ ψi(t, ·) is the Clarke generalized Hessian relative to int [C(t) ∩ B̄δ̄(x̄(t))] of ψi(t, ·)

(see Definition 2.2.32 or [55, Equation(12)]),

• ∂Lℓ J(·, ·, ·, ·) is the limiting subdifferential of J(·, ·, ·, ·) relative to intS(δ̄) (see Definition

2.2.25 or [55, Equation(8)]).

Theorem 4.2.11 (Generalized Pontryagin principle for (P )). Assume that (A1)-

(A2) are satisfied. Let ((x̄, ȳ), ū) be a δ̄-strong local minimizer for (P ) such that (A3.1),

(A3.3), (A4.1) and (A5) are satisfied at ((x̄, ȳ); δ̄). Then, whenever (A4.2) holds true,

or if sets U(t) are uniformly bounded, there exist an adjoint vector p = (q, v) with q ∈

BV ([0, T ];Rn) and v ∈ W 1,2([0, T ];Rl), finite signed Radon measures (νi)ri=1 on [0, T ], non-

negative functions (ξi)ri=1 in L∞([0, T ];R+), L2-measurable functions Ā(·) in Mn×n([0, T ]),

Ē(·) in Mn×l([0, T ]), Ā(·) in Ml×n([0, T ]), and Ē(·) in Ml×l([0, T ]), L∞-measurable functions

(ϑi(·))ri=1 in Mn×n([0, T ]), and a scalar λ ≥ 0, satisfying the following:
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(i) Primal-dual admissible equation

˙̄x(t) = f(t, x̄(t), ȳ(t), ū(t)) −∑r
i=1 ξ

i(t)∇xψi(t, x̄(t)) a.e. t ∈ [0, T ],

˙̄y(t) = g(t, x̄(t), ȳ(t), ū(t)) a.e. t ∈ [0, T ],

ψi(t, x̄(t)) ≤ 0, ∀t ∈ [0, T ], ∀i ∈ {1, · · · , r}.

(ii) Non-triviality condition

λ+ ∥p(T )∥ = 1.

(iii) Adjoint equations

For any z(·) ∈ C([0, T ],Rn)

∫
[0,T ]

⟨z(t), dq(t)⟩ =
∫ T

0
⟨z(t),−Ā(t)T q(t)⟩dt+

∫ T

0
⟨z(t),−Ā(t)Tv(t)⟩dt

+
r∑
i=1

(∫ T

0
ξi(t)⟨z(t), ϑi(t)q(t)⟩dt+

∫ T

0
⟨z(t),∇xψi(t, x̄(t))⟩dνi(t)

)
,

v̇(t) = −Ē(t)T q(t) − Ē(t)Tv(t),

where for all t ∈ [0, T ] a.e.,

(Ā(t), Ē(t)) ∈ ∂
(x,y)
ℓ f(t, x̄(t), ȳ(t), ū(t)), (Ā(t), Ē(t)) ∈ ∂

(x,y)
ℓ g(t, x̄(t), ȳ(t), ū(t)),

ϑi(t) ∈ ∂xxℓ ψi(t, x̄(t)), for i = 1, · · · , r.

(iv) Maximization condition

max
u∈U(t)

{
⟨q(t), f(t, x̄(t), ȳ(t), u)⟩ + ⟨v(t), g(t, x̄(t), ȳ(t), u)⟩

}

is attained at u = ū(t) for a.e. t ∈ [0, T ].

(v) Complementary Slackness condition For i = 1, · · · , r, we have:

ξi(t) = 0 ∀t ∈ I -
i (x̄), and ξi(t)⟨∇xψi(t, x̄(t)), q(t)⟩ = 0 a.e. t ∈ [0, T ].

(vi) Measures Properties For i = 1, · · · , r, we have:

supp {νi} ⊂ I0
i (x̄) and the measure ⟨q(t),∇xψi(t, x̄(t))⟩dνi(t) is nonnegative.
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(vii) Transversality condition

((q, v)(0),−(q, v)(T )) ∈ λ ∂Lℓ J((x̄, ȳ)(0), (x̄, ȳ)(T )) +NL
S ((x̄, ȳ)(0), (x̄, ȳ)(T )).

In addition, if S = C0 ×Rn+l, for a closed C0 ⊂ C(0)×Rl, then λ = 1, and the non-triviality

condition is discarded.

Proof. Step I. Assume for now the temporary assumption (A4.2) holds true. All

the previous results including the consequences in subsection 4.2.2 are valid. In particular,

(x̄, ȳ) is L(x̄,ȳ)-Lipschitz with L(x̄,ȳ) ≥ 1. Assume as well that the additional assump-

tions, (A3.3)′, is satisfied.

(A3.3)′ ∀t ∈ I0(x̄), Gψ(t), the Gramian matrix of the vectors {∇xψi(t, x̄(t)) : i ∈ I0
(t,x̄(t))}, is

strictly diagonally dominant.

Since {ψi}ri=1 satisfy (A3.3)′, then by Lemma 4.2.2, there exist 0 < ā ≤ 2ao, 0 < b̄ < 1, and

c̄ > 0 such that (4.4) is satisfied, where ao is the constant in Lemma 4.2.3.

We begin our proof by introducing the function ψ̂i, which we will work with in place of

ψi, in order to establish that the function q̂γk has uniformly bounded variation in Step I.2.

After formulating the Pontryagin Maximum Principle in terms of ψ̂i, we will translate the

necessary conditions in terms of ψi (see Step I.3.4).

Define the following function ψ̂i(·, ·) on the same domain of ψi(·, ·) as

ψ̂i(t, x) :=



ψi(t, x) if − ā
2 ≤ ψi(t, x) ≤ 0 or ψi(t, x) > 0

s(ψi(t, x)) if − ā ≤ ψi(t, x) < − ā
2

s(−ā) if ψi(t, x) < −ā,

where

s(z) := −3
4 ā+ 1

ā
(z + ā)2, for − ā ≤ z ≤ − ā

2 .

Notice that s(·) is a quadratic function with:

• s(−ā) = −3
4 ā and s(− ā

2) = − ā
2 .

• s′(−ā) = 0 and s′(− ā
2) = 1.
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• 0 ≤ s′(z) ≤ 1 for all −ā ≤ z ≤ − ā
2 .

We also have

∇xψ̂i(t, x) :=



∇xψi(t, x) if − ā
2 ≤ ψi(t, x) ≤ 0 or ψi(t, x) > 0

s′(ψi(t, x)).∇xψi(t, x) if − ā ≤ ψi(t, x) < − ā
2

0 if ψi(t, x) < −ā.

Notice the following:

• {x ∈ Rn : ψ̂i(t, x) ≤ 0,∀i = 1, · · · , r} = {x ∈ Rn : ψi(t, x) ≤ 0,∀i = 1, · · · , r} = C(t).

• Since {ψi}ri=1 satisfy (A3.1) and (A3.2), then {ψ̂i}ri=1 satisfy (A3.1) and (A3.2) with

Lψ̂ = Lψ(1 + 2
ā
Lψ) replacing Lψ.

• All results of Subsection 4.2.2, including Proposition 4.2.8 and Proposition 4.2.9, can

now be formulated in terms of ψ̂i (i = 1, · · · , r) instead of ψi (i = 1, · · · , r).

• Since {ψi}ri=1 satisfy (A3.3)′, and equation (4.4) is satisfied, we deduce that ∀(t, x) ∈

GrC(·) ∩ B̄c̄(x̄(·)) with I
ā
2

(t,x) ̸= ∅, and ∀ i ∈ I
ā
2

(t,x), we have

∑
j∈Iā(t,x)
j ̸=i

∣∣∣⟨∇xψ̂j(t, x),∇xψ̂i(t, x)⟩
∣∣∣ ≤ b̄∥∇xψ̂i(t, x)∥2. (4.37)

This is due to the fact that ψ̂i(t, x) = ψi(t, x) for i ∈ I
ā
2

(t,x), and s′(z) ≤ 1 ∀ − ā ≤ z ≤

− ā
2 .

Step I.1. Results from Proposition 4.2.8 and Proposition 4.2.9 and formulating

the primal-dual admissible equation for fixed (α, β).

Fix α > 0 and β ∈ (0, 1]. Recall from proposition 4.2.8 that there exist a subsequence of

(γk)k (we do not relabel), an optimal solution ((xγk , yγk), uγk) for (Pα,β
γk

) with corresponding

(ξ̂1
γk
, · · · , ξr+1

γk
, ζγk) via (3.76), and (ξ̂1, · · · , ξ̂r) ∈ L∞([0, T ];Rr

+), such that (4.21)-(4.25) hold
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and ((x̄, ȳ), ū) together with (ξ̂1, · · · , ξ̂r) satisfies the primal-dual admissible equation


˙̄x(t) = f(t, x̄(t), ȳ(t), ū(t)) −∑r
i=1 ξ̂

i(t)∇xψ̂i(t, x̄(t)) a.e. t ∈ [0, T ],

˙̄y(t) = g(t, x̄(t), ȳ(t), ū(t)) a.e. t ∈ [0, T ],

ψ̂i(t, x̄(t)) ≤ 0, ∀t ∈ [0, T ], ∀i ∈ {1, · · · , r}.

(4.38)

Moreover, Proposition 4.2.9 produces ∀k ∈ N, p̂γk = (q̂γk , v̂γk) ∈ W 1,1([0, T ];Rn × Rl), and

λ̂γk ≥ 0 such that equations (4.30)-(4.33) are valid. For simplicity, the (α, β)-dependency

shall only be made visible at the stage when the limit in (α, β) is performed.

Since (xγk(t), yγk(t)) ∈ int
(
C(t) ∩ B̄δ̄(x̄(t))

)
×Bδ̄(ȳ(t)) for all t ∈ [0, T ], then

∂(x,y)(f, g)(t, xγk(t), yγk(t), uγk(t)) = ∂
(x,y)
ℓ (f, g)(t, xγk(t), yγk(t), uγk(t)),

∂(x,y)(f, g)(t, xγk(t), yγk(t), ū(t)) = ∂
(x,y)
ℓ (f, g)(t, xγk(t), yγk(t), ū(t))

∂xxψ̂i(t, xγk(t)) = ∂xxℓ ψ̂i(t, xγk(t)) for i = 1, · · · , r,

∂xxψr+1(t, xγk(t)) = ∂xxℓ ψr+1(t, xγk(t)).

Also, (xγk(0), yγk(0), xγk(T ), yγk(T )) ∈ intS(δ̄), yields

∂LJ(xγk(0), yγk(0), xγk(T ), yγk(T )) = ∂Lℓ J(xγk(0), yγk(0), xγk(T ), yγk(T )).

Using (A4.1), first equation of (4.23), and Filippov Selection Theorem (Theorem 2.3.5),

equation (4.33) yields the existence of measurable ˆ̄Aγk(·), Âγk(·) in Mn×n[0, T ], ˆ̄Eγk(·), Êγk(·)

in Mn×l[0, T ], ˆ̄Aγk(·), Âγk(·) in Ml×n[0, T ], Êγk(·),
ˆ̄Eγk(·) in Ml×l[0, T ], ϑ̂iγk(·), ϑ

r+1
γk

(·) in

Mn×n[0, T ] such that for almost all t ∈ [0, T ],

( ˆ̄Aγk ,
ˆ̄Eγk)(t) ∈ ∂

(x,y)
ℓ f(t, xγk(t), yγk(t), ū(t)), (Âγk , Êγk)(t) ∈ ∂

(x,y)
ℓ f(t, xγk(t), yγk(t), uγk(t));

( ˆ̄Aγk ,
ˆ̄Eγk)(t) ∈ ∂

(x,y)
ℓ g(t, xγk(t), yγk(t), ū(t)), (Âγk , Êγk)(t) ∈ ∂

(x,y)
ℓ g(t, xγk(t), yγk(t), uγk(t));

ϑ̂iγk(t) ∈ ∂xxℓ ψ̂i(t, xγk(t)) for i = 1, · · · , r, ϑr+1
γk

(t) = In×n;

max
{

∥( ˆ̄Aγk ,
ˆ̄Eγk)∥2, ∥(Âγk , Êγk)∥2, ∥( ˆ̄Aγk ,

ˆ̄Eγk)∥2, ∥(Âγk , Êγk)∥2

}
≤ ∥Lh∥2;

∥ϑ̂iγk∥∞ ≤ Lψ̂ for i = 1, · · · , r, ∥ϑr+1
γk

∥∞ = 1, and
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˙̂qγk(t) = −
[
(1 − β) ˆ̄ATγk(t) + βÂTγk(t)

]
q̂γk(t) −

[
(1 − β) ˆ̄Aγk(t)T + βÂT

γk
(t)
]
v̂γk(t)︸ ︷︷ ︸

Qγk(t)

+
r∑
i=1

γke
γkψ̂i(t,xγk (t))ϑ̂iγk(t)q̂γk(t) + γke

γkψr+1(t,xγk (t))q̂γk(t)︸ ︷︷ ︸
Xγk(t)

+
r∑
i=1

γ2
ke
γkψ̂i(t,xγk (t))∇xψ̂i(t, xγk(t))⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩︸ ︷︷ ︸

Yγk (t)

+ γ2
ke
γkψr+1(t,xγk (t))∇xψr+1(t, xγk(t))⟨∇xψr+1(t, xγk(t)), q̂γk(t)⟩︸ ︷︷ ︸

Zγk (t)

, (4.39)

˙̂vγk(t) = −
[
(1 − β) ˆ̄Eγk(t)T + βÊγk(t)T

]
q̂γk(t) −

[
(1 − β) ˆ̄Eγk(t)T + βÊγk(t)T

]
v̂γk(t)

+γkeγkφ(t,yγk (t))v̂γk(t) + γ2
ke
γkφ(t,yγk (t))∇yφ(t, yγk(t))⟨∇yφ(t, yγk(t)), v̂γk(t)⟩. (4.40)

Step I.2. Uniform boundedness of {p̂γk}, {∥ ˙̂vγk∥2}, and {∥ ˙̂qγk∥1}.

The proof of this step is a generalization to our general setting of the proof for the cor-

responding step in [58, Theorem 3.1]. We first start by proving that {p̂γk} is uniformly

bounded. We have

1
2
d

dt
∥p̂γk(t)∥2 = ⟨q̂γk(t), ˙̂qγk(t)⟩ + ⟨v̂γk(t), ˙̂vγk(t)⟩

(4.39)+(4.40)=
〈
q̂γk(t),−[βÂγk(t)T + (1 − β) ˆ̄Aγk(t)T ]q̂γk(t) − [βÂγk(t)T + (1 − β) ˆ̄Aγk(t)T ]v̂γk(t)

〉

+
r∑
i=1

γke
γkψ̂i(t,xγk (t))

⟨q̂γk(t), ϑ̂iγk(t)q̂γk(t)⟩ + γk|⟨q̂γk(t),∇xψ̂i(t, xγk(t))⟩|2︸ ︷︷ ︸
positive term


+ γke

γkψr+1(t,xγk (t))∥q̂γk(t)∥2 + γ2
ke
γkψr+1(t,xγk (t))|⟨q̂γk(t),∇xψr+1(t, xγk(t))⟩|2︸ ︷︷ ︸
positive term

+
〈
v̂γk(t),−[βÊγk(t)T + (1 − β) ˆ̄Eγk(t)T ]q̂γk(t) − [βÊγk(t)T + (1 − β) ˆ̄Eγk(t)T ]v̂γk(t)

〉
+ γke

γkφ(t,yγk (t))∥v̂γk(t)∥2 + γ2
ke
γkφ(t,yγk (t))|⟨v̂γk(t),∇yφ(t, yγk(t))⟩|2︸ ︷︷ ︸

positive term

≥
[
−2Lh(t) − Lψ̂

2µ̄
η̄2

]
∥p̂γk(t)∥2 := −Lp(t)∥p̂γk(t)∥2,

where (3.75) is employed and Lp(·) ∈ L2([0, T ],R+). Using Gronwall’s Lemma (Lemma
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2.4.1), we deduce that there exists a constant Mp > 0 such that

∥p̂γk(t)∥ ≤ e∥Lp(·)∥1∥p̂γk(T )∥ ≤ Mp, ∀t ∈ [0, T ], ∀k ∈ N, (4.41)

where the last inequality is due to the uniform boundedness of ∥p̂γk(T )∥ obtained from the

nontriviality condition (4.36) when S has a general form, and to the transversality condition

(4.31), λ̂γk = 1, and equation (4.20), when S = C0 × Rn+l.

We proceed to prove the uniform boundedness of {∥ ˙̂vγk∥2} and {∥ ˙̂qγk∥1}. From (4.40), (4.41),

(3.75), and (4.29), there exist Lv(·) ∈ L2([0, T ],R+) and kv ∈ N, such that for k ≥ kv we

have

∥ ˙̂vγk(t)∥ ≤ ∥
[
(1 − β) ˆ̄Eγk(t)T + βÊγk(t)T

]
q̂γk(t) +

[
(1 − β) ˆ̄Eγk(t)T + βÊγk(t)T

]
v̂γk(t)∥

+ 2µ̄
η̄2 Mp + γ2

ke
−γk δ̄

2
4 δ̄2Mp ≤ Lv(t)Mp, ∀t ∈ [0, T ].

Thus, for all k ≥ kv, ( ˙̂vγk) is uniformly bounded in L2 by a constant Mv.

We now proceed to prove that ( ˙̂qγk) is uniformly bounded in L1. Observe that (4.29) together

with (4.22) and (4.41), yields that for some k̄1 ∈ N, k̄1 ≥ kv, we have

∥Qγk(t)∥ ≤ 2Lh(t)Mp; ∥Xγk(t)∥ ≤ 2µ̄
η̄2 max{1, Lψ̂}Mp; ∥Zγk(t)∥ ≤ γ2

k e
−γk ε̄

2
4 ε̄2 Mp. (4.42)

Hence, using (4.39) and (4.42), we can see {q̂γk} is of uniformly bounded variation once we

prove

∫ T

0
∥Yγk(t)∥dt =

∫ T

0

r∑
i=1

γ2
ke
γkψ̂i(t,xγk (t))∥∇xψ̂i(t, xγk(t))∥

∣∣∣⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩
∣∣∣dt

is uniformly bounded.

Denote by

I āk = I ā(t,xγk (t)) = {i ∈ {1, . . . , r} : −ā ≤ ψi(t, xγk(t)) ≤ 0} (4.43)

and define

I ā(xγk) := {t ∈ [0, T ] : I ā(t,xγk (t)) ̸= ∅}. (4.44)
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Using the definition of I ā(xγk), I āk and I
ā
2
k , we deduce that

∀t ∈ [I ā(xγk)]c, ∀i = 1, · · · , r, ψ̂i(t, xγk(t)) = −3ā
4 , ∇xψ̂i(t, xγk(t)) = 0, (4.45)

∀t ∈ I ā(xγk), ∀i ∈ [I āk ]c, ψ̂i(t, xγk(t)) = −3ā
4 , ∇xψ̂i(t, xγk(t)) = 0, (4.46)

∀t ∈ I ā(xγk), ∀i ∈ I
ā
2
k , ψ̂i(t, xγk(t)) = ψi(t, xγk(t)), ∇xψ̂i(t, xγk(t)) = ∇xψi(t, xγk(t)),(4.47)

∀t ∈ I ā(xγk), ∀i ∈ I āk \ I
ā
2
k ,

ψ̂i(t, xγk(t)) < − ā
2 ,

∇xψ̂i(t, xγk(t)) = s′(ψi(t, xγk(t)))∇xψi(t, xγk(t)).
(4.48)

As a result of (4.45)-(4.48) and the fact that 0 ≤ s′(z) ≤ 1 for all −ā ≤ z ≤ − ā
2 , to prove∫ T

0 ∥Yγk(t)∥dt is uniformly bounded, it remains to prove that

I1 :=
∫
I ā(xγk )

∑
i∈I

ā
2
k

γ2
ke
γkψi(t,xγk (t))∥∇xψi(t, xγk(t))∥|⟨∇xψi(t, xγk(t)), q̂γk(t)⟩|dt ≤ M1, (4.49)

for a certain constant M1 > 0. For that, it is sufficient to prove that there exists M2 > 0

such that

I2 :=
∫
I ā(xγk )

∑
i∈I

ā
2
k

γ2
ke
γkψi(t,xγk (t))∥∇xψi(t, xγk(t))∥2|⟨∇xψi(t, xγk(t)), q̂γk(t)⟩|dt ≤ M2. (4.50)

Indeed, for t ∈ I ā(xγk) and i ∈ I
ā
2
k , we have ψi(t, xγk(t)) ≥ − ā

2 ≥ −ao, and hence the

uniform convergence of xγk to x̄ and Lemma 4.2.3 yield the existence of k̄2 ∈ N such that for

all k ≥ k̄2, we have ∥∇xψi(t, xγk(t))∥ > η̄. Thus, if I2 is uniformly bounded by a constant

M2, then it follows that I1 ≤ M2
η̄

, for k large enough.

We proceed to prove that (4.50) holds true. Using Lemma 2.4.2, we first calculate for each

j = 1, · · · , r and t ∈ [0, T ]:

d

dt

∣∣∣⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩
∣∣∣ = ⟨ ˙̂qγk(t),∇xψ̂j(t, xγk(t))⟩sjγk(t)

+ ⟨q̂γk(t),Θj
γk

(t).(1, ẋγk(t))⟩sjγk(t), a.e. (4.51)
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where sjγk(t) is the sign of ⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩ and Θj
γk

(t) ∈ ∂(t,x)∇xψ̂j(t, xγk(t)).

Using equation (4.39) in (4.51), we get

d

dt

∣∣∣⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩
∣∣∣ =

⟨Qγk(t) + Xγk(t) + Zγk(t),∇xψ̂j(t, xγk(t))⟩sjγk(t) + ⟨q̂γk(t),Θj
γk

(t).(1, ẋγk(t))⟩sjγk(t)

+
r∑
i=1

γ2
ke
γkψ̂i(t,xγk (t))⟨∇xψ̂i,∇xψ̂j⟩|(t,xγk (t))⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩sjγk(t) a.e. (4.52)

Let t ∈ I ā(xγk). Summing the previous equality over j ∈ I āk , we obtain that:

J1 :=
∑
j∈Iā

k

r∑
i=1

γ2
ke
γkψ̂i(t,xγk (t))⟨∇xψ̂i,∇xψ̂j⟩|(t,xγk (t))⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩sjγk(t)

=
∑
j∈Iā

k

d

dt

∣∣∣⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩
∣∣∣− ∑

j∈Iā
k

⟨Qγk(t) + Xγk(t) + Zγk(t),∇xψ̂j(t, xγk(t))⟩sjγk(t)

−
∑
j∈Iā

k

⟨q̂γk(t),Θj
γk

(t).(1, ẋγk(t))⟩sjγk(t) a.e. (4.53)

On the other hand, splitting in the definition of J1 the summation over i and switching the

order of summation between i and j, we have

J1 =
r∑
i=1

∑
j∈Iā

k

γ2
ke
γkψ̂i(t,xγk (t))⟨∇xψ̂i,∇xψ̂j⟩|(t,xγk (t)) ⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩sjγk(t)

=
∑
i∈Iā

k

∑
j∈Iā

k

γ2
ke
γkψ̂i(t,xγk (t))⟨∇xψ̂i,∇xψ̂j⟩|(t,xγk (t)) ⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩sjγk(t)

=
∑
i∈I

ā
2
k

∑
j∈Iā

k

γ2
ke
γkψ̂i(t,xγk (t))⟨∇xψ̂i,∇xψ̂j⟩|(t,xγk (t)) ⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩sjγk(t)

+
∑

i∈Iā
k

\I
ā
2
k

∑
j∈Iā

k

γ2
ke
γkψ̂i(t,xγk (t))⟨∇xψ̂i,∇xψ̂j⟩|(t,xγk (t)) ⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩sjγk(t)

=
∑
i∈I

ā
2
k

γ2
ke
γkψ̂i(t,xγk (t))

∥∇xψ̂i(t, xγk(t))∥2 +

∑
j∈Iāk
j ̸=i

sjγk(t)s
i
γk

(t)⟨∇xψ̂i(t, xγk(t)),∇xψ̂j(t, xγk(t))⟩
 |⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩|

+
∑

i∈Iā
k

\I
ā
2
k

∑
j∈Iā

k

γ2
ke
γkψ̂i(t,xγk (t))⟨∇xψ̂i,∇xψ̂j⟩|(t,xγk (t)) ⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩sjγk(t).
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Using the fact that xγk converges uniformly to x̄, we deduce from equation (4.37) that, there

exists k̄3 ∈ N such that for k ≥ k̄3, we have for i ∈ I
ā
2
k ,

∑
j∈Iāk
j ̸=i

sjγk(t)s
i
γk

(t)⟨∇xψ̂i(t, xγk(t)),∇xψ̂j(t, xγk(t))⟩ ≥ −b̄∥∇xψ̂i(t, xγk(t))∥2.

Then,

J1 ≥ (1 − b̄)
∑
i∈I

ā
2
k

γ2
ke
γkψ̂i(t,xγk (t))∥∇xψ̂i(t, xγk(t))∥2|⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩|

+
∑

i∈Iā
k

\I
ā
2
k

∑
j∈Iā

k

γ2
ke
γkψ̂i(t,xγk (t))⟨∇xψ̂i,∇xψ̂j⟩|(t,xγk (t)) ⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩sjγk(t)

︸ ︷︷ ︸
J2

.

Hence, (recalling (4.47)) we have

∑
i∈I

ā
2
k

γ2
ke
γkψi(t,xγk (t))∥∇xψi(t, xγk(t))∥2|⟨∇xψi(t, xγk(t)), q̂γk(t)⟩| ≤ 1

1 − b̄
(J1 − J2). (4.54)

Integrating the last inequality over I ā(xγk), we deduce from the definition of I2 that

0 ≤ I2 ≤ 1
1 − b̄

∫
I ā(xγk )

(J1 − J2) dt ≤ 1
1 − b̄

∣∣∣∣∣
∫
I ā(xγk )

J1 dt

∣∣∣∣∣+ 1
1 − b̄

∫
I ā(xγk )

|J2|dt.

Using (4.48), we deduce that, there exists k̄4 ∈ N, there exists constant M3 > 0 such that

for all k ≥ k̄4, we have

∫
I ā(xγk )

|J2|dt ≤
γ2
ke

−γk ā2L3
ψr

2MpT

1 − b̄
≤ M3. (4.55)

Hence,

0 ≤ I2 ≤ 1
1 − b̄

∣∣∣∣∣
∫
I ā(xγk )

J1 dt

∣∣∣∣∣+M3, ∀k ≥ k̄4. (4.56)

Note that, (4.53) yields that the uniform boundedness of
∣∣∣∫I ā(xγk ) J1 dt

∣∣∣ is equivalent to that
of ∣∣∣∣ ∫

I ā(xγk )

∑
j∈Iā

k

d

dt
|⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩| dt

∣∣∣∣,
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since
∣∣∣∣ ∫
I ā(xγk )

∑
j∈Iā

k

⟨q̂γk(t),Θj
γk

(t).(1, ẋγk(t))⟩sjγk(t)dt
∣∣∣∣ ≤ MpLψ(1 +Mh + 2µ̄

η̄2 L̄)rT,

∣∣∣∣ ∫
I ā(xγk )

∑
j∈Iā

k

⟨Qγk(t) + Xγk(t) + Zγk(t),∇xψ̂j(t, xγk(t))⟩sjγk(t)dt
∣∣∣∣

≤
[
(2Lh(t)Mp) + (2µ̄

η̄2 max{Lψ, 1}Mp) + (γ2
ke

−γk ε̄
2
4 ε̄2Mp)

]
LψrT.

We now proceed to prove the boundedness of
∣∣∣∣ ∫
I ā(xγk )

∑
j∈Iā

k

d

dt
|⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩| dt

∣∣∣∣.
Using the Fundamental Theorem of Calculus, we have that

∣∣∣∣ ∫ T

0

r∑
j=1

d

dt
|⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩| dt

∣∣∣∣ ≤ 2rLψMp. (4.57)

Using (4.45), (4.46), (4.52), and the uniform boundedness of (ẋγk), we deduce that that there

exists a constant M4 > 0 such that
∣∣∣∣ ∫

[I ā(xγk )]c

r∑
j=1

d

dt
|⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩| dt

∣∣∣∣ ≤ M4, (4.58)
∣∣∣∣ ∫
I ā(xγk )

∑
j∈[Iā

k
]c

d

dt
|⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩| dt

∣∣∣∣ ≤ M4. (4.59)

Hence, combining (4.57) and (4.58), we conclude that there exists a constant M5 > 0 such

that ∣∣∣∣ ∫
I ā(xγk )

r∑
j=1

d

dt
|⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩| dt

∣∣∣∣ ≤ M5.

This last inequality with (4.59) yield that there exists a constant M6 > 0 such that
∣∣∣∣ ∫
I ā(xγk )

∑
j∈Iā

k

d

dt
|⟨q̂γk(t),∇xψ̂j(t, xγk(t))⟩| dt

∣∣∣∣ ≤ M6.

Hence,
∣∣∣∫I ā(x̄) J1 dt

∣∣∣ is uniformly bounded, and by (4.56), I2 is uniformly bounded. Hence,

{∥ ˙̂qγk∥1} uniformly bounded by a constant Mq.

Step I.3. Construction of p = (q, v), λ ≥ 0, ϑi (for each i), νi (for each i ), Ā, A, Ā,
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A, Ē, Ē, E, E for each fixed (α, β) satisfying some necessary conditions.

In Step I.1, we proved the existence of (ξ̂i)ri=1 in L∞([0, T ];R+) such that condition (i) is

satisfied. We now follow steps similar to steps 3-10 in the proof of [55, Theorem 6.1].

Step I.3.1 Construction of p̂ = (q̂, v̂).

From Step I.2, we find that q̂γk ∈ W 1,1 satisfies, for k large enough,

∥q̂γk∥∞ ≤ Mp and V 1
0 (q̂γk) = ∥ ˙̂qγk∥1 ≤ Mq. (4.60)

Hence, by Helly first theorem (see Theorem 2.4.6(i)), we deduce that q̂γk admits a pointwise

convergent subsequence, whose limit q̂ ∈ BV ([0, T ];Rn), with

∥q̂∥∞ ≤ Mp and V 1
0 (q̂) ≤ Mq. (4.61)

By Helly second theorem (see Theorem 2.4.6(ii)), we deduce that for any z ∈ ([0, T ];Rn),

we have

lim
k→∞

∫ T

0
⟨z(t), ˙̂qγk(t)⟩dt =

∫
[0,T ]

⟨z(t), dq̂(t)⟩. (4.62)

By Step I.2, we also find that v̂γk ∈ W 1,2 satisfies, for k large enough,

∥v̂γk∥∞ ≤ Mp and ∥ ˙̂vγk∥2 ≤ Mv. (4.63)

Hence, by Theorems 2.4.10-2.4.13, we deduce that v̂γk admits a pointwise convergent subse-

quence to a function v̂(·) ∈ W 1,2([0, T ];Rl) such that

v̂γk(·)
unif−−→ v̂(·), ˙̂vγk(·)

w−→
L2

˙̂v(·),

∥v̂∥∞ ≤ Mp, ∥ ˙̂v∥2 ≤ Mv,

and for any z(·) ∈ C([0, T ],Rl), we have

lim
k→∞

∫ T

0
⟨z(t), ˙̂vγk(t)⟩dt =

∫
[0,T ]

⟨z(t), ˙̂v(t)⟩dt. (4.64)

Step I.3.2 Construction of ˆ̄A, Â, ˆ̄A, Â, ˆ̄E, ˆ̄E, Ê, Ê, ϑ̂i (for i = 1, · · · , r), ν̂i (for

i = 1, · · · , r) and formulating adjoint equations for fixed (α, β).
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It follows from (4.62), that, for any z(·) ∈ C([0, T ],Rn), we have
∫

[0,T ]
⟨z(t), dq̂(t)⟩ = lim

k→∞

∫ T

0
⟨z(t), ˙̂qγk(t)⟩dt

= lim
k→∞

∫ T

0
⟨z(t),Qγk(t)⟩dt+ lim

k→∞

∫ T

0
⟨z(t),Xγk(t)⟩dt

+ lim
k→∞

∫ T

0
⟨z(t),Yγk(t)⟩dt+ lim

k→∞

∫ T

0
⟨z(t),Zγk(t)⟩dt.

We will work on each of these limits above separately. Since

max
{

∥( ˆ̄Aγk ,
ˆ̄Eγk)∥2, ∥(Âγk , Êγk)∥2, ∥( ˆ̄Aγk ,

ˆ̄Eγk)∥2, ∥(Âγk , Êγk)∥2

}
≤ ∥Lh∥2

then, using Theorem 2.4.11, along a subsequence, we do not relabel, ( ˆ̄Aγk ,
ˆ̄Eγk), (Âγk , Êγk),

( ˆ̄Aγk ,
ˆ̄Eγk), (Âγk , Êγk) converge weakly in L2 to some ( ˆ̄A, ˆ̄E), (Â, Ê), ( ˆ̄A, ˆ̄E), (Â, Ê) respec-

tively. Using Theorem 2.4.15, we conclude that

( ˆ̄A, ˆ̄E)(t) ∈ ∂
(x,y)
ℓ f(t, x̄(t), ȳ(t), ū(t)),

( ˆ̄A, ˆ̄E)(t) ∈ ∂
(x,y)
ℓ g(t, x̄(t), ȳ(t), ū(t)).

We also know that q̂γk and v̂γk are uniformly bounded in L∞ and converge pointwise to q̂(·)

and v̂(·) respectively. We then conclude using Theorem 2.4.12 that

ˆ̄Aγk(t)T q̂γk(t)
weakly−−−→
L2

ˆ̄A(t)T q̂(t)

Âγk(t)T q̂γk(t)
weakly−−−→
L2

Â(t)T q̂(t)

ˆ̄Aγk(t)T v̂γk(t)
weakly−−−→
L2

ˆ̄A(t)T v̂(t)

Âγk(t)T v̂γk(t)
weakly−−−→
L2

Â(t)T v̂(t). (4.65)

Then, for any z(·) ∈ C([0, 1],Rn), we have

lim
k→∞

∫ T

0
⟨z(t),Qγk(t)⟩dt

=
∫ T

0

〈
z(t),−

[
(1 − β) ˆ̄AT (t) + βÂT (t)

]
q̂(t) −

[
(1 − β) ˆ̄A(t)T + βÂT (t)

]
v̂(t)

〉
.

Now, for each i, the sequence of positive and continuous functions ξ̂iγk produces a sequence of

bounded linear functionals in C⊕(0;T ) to which it corresponds a sequence of finite positive
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Radon measure µ̂iγk ∈ M+([0, T ]) such that for all B ∈ B([0, T ]) and for all z ∈ C([0, T ],R),

we have

µ̂iγk(B) =
∫
B
ξ̂iγk(t) dt,

∫
[0,T ]

zdµ̂iγk =
∫ T

0
z(t)ξ̂iγk(t) dt.

Using the fact that ξ̂iγk uniformly bounded in L∞ and converges weakly* in L∞ to ξ̂i, we

conclude from the second equation of (4.66) that µ̂iγk converges weakly* to µ̂io, the element in

M+([0, T ]) corresponding to ξ̂i. Now, using the fact that ∥ϑ̂iγk∥∞ ≤ Lψ̂ (for i = 1, · · · , r), we

apply Theorem 2.4.14 and we follow the same arguments as those used in Step 3 of the proof

of Theorem 5.1 in [70] to deduce that there exist (ϑ̂i(·))ri=1 such that ϑ̂i(t) ∈ ∂xxl ψ̂i(t, x̄(t))

a.e. t ∈ [0, 1] and for any z(·) ∈ C([0, 1];Rn), we have

lim
k→∞

∫ T

0

r∑
i=1

γke
γkψ̂i(t,xγk (t))⟨z(t), ϑ̂iγk(t)q̂γk(t)⟩dt =

∫ T

0

r∑
i=1

ξ̂i(t)⟨z(t), ϑ̂i(t)q̂(t)⟩dt. (4.66)

Using (4.24) in which we have γkξ
r+1
γk

−→ 0 uniformly, we deduce that, for all z(·) ∈

C([0, T ];Rn), we have

lim
k→∞

∫ T

0
⟨z(t), γkeγkψr+1(t,xγk (t))q̂γk(t)⟩dt = 0, (4.67)

lim
k→∞

∫ T

0
γ2
ke
γkψr+1(t,xγk (t))⟨∇xψr+1(t, xγk(t)), q̂γk(t)⟩⟨z(t),∇xψr+1(t, xγk(t))⟩dt = 0. (4.68)

This means that for any z(·) ∈ C([0, 1],Rn), we have

lim
k→∞

∫ T

0
⟨z(t),Xγk(t)⟩dt =

∫ T

0

r∑
i=1

ξ̂i(t)⟨z(t), ϑ̂i(t)q̂(t)⟩dt,

lim
k→∞

∫ T

0
⟨z(t),Zγk(t)⟩dt = 0.

We now work on the last term of our limit taking process:

lim
k→∞

∫ T

0

r∑
i=1

γ2
ke
γkψ̂i(t,xγk (t))⟨z(t),∇xψ̂i(t, xγk(t))⟩⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩dt.

Let ν̂iγk the finite signed Radon measure on [0, T ], corresponding to the bounded linear

functional on C([0, 1];R) defined by γkξ̂iγk(t)⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩, t ∈ [0, 1], i.e.

dν̂iγk(t) := γkξ̂
i
γk

(t)⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩dt, i = 1, · · · , r. (4.69)
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This means that, for all z ∈ C([0, T ];R), we have

⟨ν̂iγk , z⟩ =
∫

[0,T ]
z dν̂iγk =

∫ T

0
z(t)γkξ̂iγk(t)⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩dt.

Using steps similar to step above, we can prove that there exists a constant M7 > 0 such

that for k large enough

∫ T

0
γkξ̂

i
γk

(t)⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩dt ≤ M7. (4.70)

Thus,

∥ν̂iγk∥T.V. ≤ M7.

Hence, along a subsequence (we do not relabel), the sequence (ν̂iγk)k converges weakly* to a

finite signed Radon measure

ν̂i supported in {t ∈ [0, T ] : ψ̂i(t, x̄(t)) = 0} = {t ∈ [0, T ] : ψi(t, x̄(t)) = 0} = I0
i (x̄) and

∥ν̂i∥T.V. ≤ M7.

Using Theorem 2.4.14, and the fact that ∇xψ̂i(t, xγk) is uniformly bounded and converges

uniformly to ∇xψ̂i(t, x̄), we deduce that ∇xψ̂i(t, xγk)ν̂iγk converges weakly* to ∇xψ̂i(t, x̄)ν̂i,

which means that for all z(·) ∈ C([0, 1],Rn), we have

lim
k→∞

∫ T

0
⟨z(t),Yγk(t)⟩dt

= lim
k→∞

∫ T

0

r∑
i=1

γ2
ke
γkψ̂i(t,xγk (t))⟨z(t),∇xψ̂i(t, xγk(t))⟩⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩dt

=
∫ T

0

r∑
i=1

⟨z(t),∇xψ̂i(t, x̄(t))⟩dν̂i(t).

Hence,

∫
[0,T ]

⟨z(t), dq̂(t)⟩

=
∫ T

0

〈
z(t),−

[
(1 − β) ˆ̄AT (t) + βÂT (t)

]
q̂(t) −

[
(1 − β) ˆ̄A(t)T + βÂT (t)

]
v̂(t)

〉
+
∫ T

0

r∑
i=1

ξ̂i(t)⟨z(t), ϑ̂i(t)q̂(t)⟩dt+
∫ T

0

r∑
i=1

⟨z(t),∇xψ̂i(t, x̄(t))⟩dν̂i(t). (4.71)
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Now, notice from (4.64), that for any z(·) ∈ C([0, T ];Rl), we have∫
[0,T ]

⟨z(t), ˙̂v(t)⟩dt = lim
k→∞

∫ T

0
⟨z(t), ˙̂vγk(t)⟩dt

= lim
k→∞

∫ T

0
⟨z(t),−

[
(1 − β) ˆ̄Eγk(t)T + βÊγk(t)T

]
q̂γk(t)⟩dt

+ lim
k→∞

∫ T

0
⟨z(t),−

[
(1 − β) ˆ̄Eγk(t)T + βÊγk(t)T

]
v̂γk(t)⟩dt

+ lim
k→∞

∫ T

0
γke

γkφ(t,yγk (t))⟨z(t), v̂γk(t)⟩dt

+ lim
k→∞

∫ T

0
γ2
ke
γkφ(t,yγk (t))⟨∇yφ(t, yγk(t)), v̂γk(t)⟩⟨z(t),∇yφ(t, yγk(t))⟩dt.

Using (4.24), we have γkζγk −→ 0 uniformly. Hence, for all z(·) ∈ C([0, T ];Rl), we have

lim
k→∞

∫ T

0
⟨z(t), γkeγkφ(t,yγk (t))v̂γk(t)⟩dt = 0, (4.72)

lim
k→∞

∫ T

0
γ2
ke
γkφ(t,yγk (t))⟨∇yφ(t, yγk(t)), v̂γk(t)⟩⟨z(t),∇yφ(t, yγk(t))⟩dt = 0. (4.73)

We also know that q̂γk and v̂γk are uniformly bounded in L∞ and converge pointwise to q̂(·)

and v̂(·) respectively. We then conclude that

ˆ̄Eγk(t)T q̂γk(t)
weakly−−−→
L2

ˆ̄E(t)T q̂(t)

Êγk(t)T q̂γk(t)
weakly−−−→
L2

Ê(t)T q̂(t)

ˆ̄Eγk(t)T v̂γk(t)
weakly−−−→
L2

ˆ̄E(t)T v̂(t)

Êγk(t)T v̂γk(t)
weakly−−−→
L2

Ê(t)T v̂(t)

Hence, we have that
∫

[0,T ]
⟨z(t), ˙̂v(t)⟩dt =

∫ T

0
⟨z(t),−

[
(1 − β) ˆ̄E(t)T + βÊ(t)T

]
q̂(t)⟩dt

+
∫ T

0
⟨z(t),−

[
(1 − β) ˆ̄E(t)T + βÊ(t)T

]
v̂(t)⟩dt. (4.74)

Step I.3.3 Formulating non-triviality condition, maximization condition, com-

plementary slackness, measure properties, and transversality condition for fixed

(α, β).

For condition (vi), equation (4.69) yields the following
〈
q̂γk(t),∇xψ̂i(t, xγk(t))

〉
dν̂iγk(t) = γkξ̂

i
γk

(t)⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩2 ≥ 0,
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and hence, upon taking the limit, we get

〈
q̂(t),∇xψ̂i(t, x̄(t))

〉
dν̂i(t) ≥ 0.

For condition (ii), since λ̂γk ∈ [0, 1] then, along a subsequence, λ̂γk converges pointwise to a

limit λ̂ ∈ [0, 1]. Taking the limit of (4.36), we deduce that

λ̂+ ∥p̂(T )∥ = 1.

For condition (iv), we know by (4.32) that for t ∈ [0, T ], u ∈ U(t),

⟨q̂γk(t), f(t, xγk(t), yγk(t), u)⟩ + ⟨v̂γk(t), g(t, xγk(t), yγk(t), u)⟩ − λ̂γkα

β
∥u− uγk(t)∥

≤ ⟨q̂γk(t), f(t, xγk(t), yγk(t), uγk(t))⟩ + ⟨v̂γk(t), g(t, xγk(t), yγk(t), uγk(t))⟩ a.e. t ∈ [0, 1].

Taking the limit when k → ∞ of this last inequality, we conclude that for t ∈ [0, T ], u ∈ U(t),

⟨q̂(t), f(t, x̄(t), ȳ(t), u)⟩ + ⟨v̂(t), g(t, x̄(t), ȳ(t), u)⟩ − λ̂α

β
∥u− ū(t)∥

≤ ⟨q̂(t), f(t, x̄(t), ȳ(t), ū(t))⟩ + ⟨v̂(t), g(t, x̄(t), ȳ(t), ū(t))⟩ a.e. t ∈ [0, 1].

This is equivalent to saying that

max
u∈U(t)

{
⟨q̂(t), f(t, x̄(t), ȳ(t), u)⟩ + ⟨v̂(t), g(t, x̄(t), ȳ(t), u)⟩ − λ̂α

β
∥u− ū(t)∥

}

is attained at u = ū(t) for a.e. t ∈ [0, T ].

For condition (v), we have ξ̂i ≥ 0 (i = 1, · · · , r), and ξ̂i(t) = 0 ∀t ∈ I -
i (x̄). We also have

using equation (4.70) that
∫ T

0
ξ̂iγk(t)|⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩|dt ≤ 1

γk

∫ T

0
γkξ̂

i
γk

(t)⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩dt ≤ M7

γk
.

(4.75)

Hence,

lim
k→∞

∫ T

0
ξ̂iγk(t)|⟨∇xψ̂i(t, xγk(t)), q̂γk(t)⟩| = 0.

And thus, ∫ T

0
ξ̂i(t)|⟨∇xψ̂i(t, x̄(t)), q̂(t)⟩| = 0.
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We conclude that

ξ̂i(t)⟨∇xψ̂i(t, x̄(t)), q̂(t)⟩ = 0 a.e. t ∈ [0, 1].

Finally, for condition (vii), by equation (4.31), we have that

(p̂γk(0),−p̂γk(T )) ∈ λ̂γk ∂
L
l J(xγk(0), yγk(0), xγk(T ), yγk(T )) +

αB̄ +NL
Sγk (k) (xγk(0), yγk(0), xγk(T ), yγk(T )) . (4.76)

This is equivalent to saying that there exist

(z1
γk
, z2
γk
, s1
γk
, s2
γk

) ∈ ∂Ll J(xγk(0), yγk(0), xγk(T ), yγk(T )),

(w1
γk
, w2

γk
,m1

γk
,m2

γk
) ∈ NL

Sγk (k)(xγk(0), yγk(0), xγk(T ), yγk(T )), oγk ∈ B̄ such that

(p̂γk(0),−p̂γk(T )) = λ̂γk(z1
γk
, z2
γk
, s1
γk
, s2
γk

) + αoγk + (w1
γk
, w2

γk
,m1

γk
,m2

γk
). (4.77)

• As we have seen before, since λ̂γk ∈ [0, 1], then, along a subsequence, λ̂γk converges

pointwise to a limit λ̂ ∈ [0, 1]. We also have ∥(z1
γk
, z2
γk
, s1
γk
, s2
γk

)∥ ≤ Lg, then, along a

subsequence,

(z1
γk
, z2
γk
, s1
γk
, s2
γk

) −→ (z1, z2, s1, s2).

Since ∂Ll J(·, ·, ·, ·) has closed graph with nonempty and compact values then, using the

fact that (xγk(0), yγk(0), xγk(T ), yγk(T )) −→ (x̄(0), ȳ(0), x̄(T ), ȳ(T )), we get

(z1, z2, s1, s2) ∈ ∂Ll J(x̄(0), ȳ(0), x̄(T ), ȳ(T )).

• Since ∥oγk∥ ≤ 1, then, along a subsequence, we have that oγk −→ o ∈ B̄.

• We also have (p̂γk(0),−p̂γk(T )) −→ (p̂(0),−p̂(T )).

• We deduce from (4.77) that (w1
γk
, w2

γk
,m1

γk
,m2

γk
) must converge to (w1, w2,m1,m2)

respectively.

We now show that (w1, w2,m1,m2) ∈ NL
S (x̄(0), ȳ(0), x̄(T ), ȳ(T )). Indeed,

(xγk(0), yγk(0), xγk(T ), yγk(T )) ∈ Sγk(k),

(xγk(0), yγk(0), xγk(T ), yγk(T )) ∈ (Sδo + ρ1B) ∩ int
( ¯N(ε̄,δ̄)(0) × ¯N(ε̄,δ̄)(T )

)
⊂ intS(δ̄).
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We now have two cases:

Case 1: x̄(0) ∈ intC(0).

Since (xγk(0), yγk(0), xγk(T ) − ēγk , yγk(T ) − ω̄γk) ∈ int B̄δo , then

NL
Sγk (k)(xγk(0), yγk(0), xγk(T ), yγk(T )) = NL

S (xγk(0), yγk(0), xγk(T ) − ēγk , yγk(T ) − ω̄γk).

Case 2: x̄(0) ∈ bdryC(0).

Since (xγk(0) − σ̄k
dx̄(0)

∥dx̄(0)∥ , yγk(0), xγk(T ) − ēγk , yγk(T ) − ω̄γk) ∈ int B̄δo , then

NL
Sγk (k)(xγk(0), yγk(0), xγk(T ), yγk(T )) = NL

S (xγk(0)−σ̄k
dx̄(0)

∥dx̄(0)∥
, yγk(0), xγk(T )−ēγk , yγk(T )−ω̄γk).

In both cases, since (w1
γk
, w2

γk
,m1

γk
,m2

γk
) → (w1, w2,m1,m2), and NL

S (·) has closed values

and closed graph, then

(w1, w2,m1,m2) ∈ NL
S (x̄(0), ȳ(0), x̄(T ), ȳ(T )).

Consequently, the limit of (4.76) is

(p̂(0),−p̂(T )) ∈ λ̂ ∂Ll J(x̄(0), ȳ(0), x̄(T ), ȳ(T )) + αB̄ +NL
S (x̄(0), ȳ(0), x̄(T ), ȳ(T )).

Step I.3.4 Formulating the necessary conditions for each fixed (α, β) in terms of

ψi.

Notice that ν̂i and ξ̂i are supported in {t ∈ [0, T ] : ψ̂i(t, x̄(t)) = 0} = {t ∈ [0, T ] : ψi(t, x̄(t)) =

0} = I0
i (x̄), and on this set, ∇xψ̂i(t, x̄(t)) = ∇xψi(t, x̄(t)). Hence, all the previous necessary

conditions can be formulated in terms of ψi by simply taking q := q̂, v := v̂, p := p̂, λ := λ̂,

Ā := ˆ̄A, A := Â, Ā := ˆ̄A, A := Â, Ē := ˆ̄E, Ē := ˆ̄E , E := Ê, E := Ê , ξi := ξ̂i (for

i = 1, · · · , r), ϑi := ϑ̂i (for i = 1, · · · , r) and νi := ν̂i (for i = 1, · · · , r).

Step I.4. Taking α → 0.

All the boxed equations above depend on α and β. As the first step, we take the limit

α → 0, while keeping β fixed. To explicitly indicate the dependence on α in our notation,

we introduce a subscript αj, where αj ∈ (0, 1] and αj → 0.

First, for each j, (ξ1
αj
, · · · , ξrαj) ∈ L∞([0, T ],Rr

+) such that

ξiαj = 0 on I -
i (x̄) (∀i = 1, · · · , r), ∥

r∑
i=1

ξiαj∥∞ ≤ 2µ̄
η̄2 , (4.78)
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and 

˙̄x(t) = f(t, x̄(t), ȳ(t), ū(t)) −∑r
i=1 ξ

i
αj

(t)∇xψi(t, x̄(t)) a.e. t ∈ [0, T ],

˙̄y(t) = g(t, x̄(t), ȳ(t), ū(t)) a.e. t ∈ [0, T ],

ψi(t, x̄(t)) ≤ 0, ∀t ∈ [0, T ], ∀i ∈ {1, · · · , r}.

(4.79)

Thus, for each i = 1, · · · , r, there exists a subsequence of ξiαj (we do not relabel) that

converges weakly* (and hence weakly in L2) to a non-negative function ξi ∈ L∞([0, T ],R),

with ξi = 0 on I -
i (x̄). Moreover, using the fact that for each i ∈ {1, · · · , r},

∫ T

0
ξiαj(t)∇xψi(t, x̄(t)) −→

∫ T

0
ξi(t)∇xψi(t, x̄(t)),

we deduce that condition (i) of our theorem is satisfied (with no dependency on α).

We now show the dependency on αj in the adjoint equation. For each j, we have

∫
[0,T ]

⟨z(t), dqαj(t)⟩

=
∫ T

0

〈
z(t),−

[
(1 − β)ĀTαj(t) + βATαj(t)

]
qαj(t) −

[
(1 − β)Āαj(t)T + βAT

αj
(t)
]
vαj(t)

〉
+

∫ T

0

r∑
i=1

ξiαj(t)⟨z(t), ϑ
i
αj

(t)qαj(t)⟩dt+
∫ T

0

r∑
i=1

⟨z(t),∇xψi(t, x̄(t))⟩dνiαj(t),

∫
[0,T ]

⟨z(t), v̇αj(t)⟩dt =
∫ T

0
⟨z(t),−

[
(1 − β)Ēαj(t)T + βEαj(t)T

]
qαj(t)⟩dt

+
∫ T

0
⟨z(t),−

[
(1 − β)Ēαj(t)T + βEαj(t)T

]
vαj(t)⟩dt.

Using the results of Steps I.3.1 and I.3.2 with the subscript γk being replaced by the subscript

αj, we deduce that there exist a function q(·) of bounded variation, an absolutely continuous

function v(·), such that the previous two equations are satisfied with no αj-dependency.

By step I.3.3, we deduce that λαj + ∥pαj(T )∥ = 1. Then, along a subsequence, λαj converges

to λ ∈ [0, 1] and λ+ ∥p(T )∥ = 1. We also have that

max
u∈U(t)

{
⟨qαj(t), f(t, x̄(t), ȳ(t), u)⟩ + ⟨vαj(t), g(t, x̄(t), ȳ(t), u)⟩ −

λαjαj

β
∥u− ū(t)∥

}
(4.80)
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is attained at u = ū(t) for a.e. t ∈ [0, 1]. Hence, taking the limit when αj → 0, we deduce

that

max
u∈U(t)

{
⟨q(t), f(t, x̄(t), ȳ(t), u)⟩ + ⟨v(t), g(t, x̄(t), ȳ(t), u)⟩

}
(4.81)

is attained at u = ū(t) for a.e. t ∈ [0, 1].

As, for each i = 1, · · · , r, ξiαj converges weakly* in L∞ to ξi and ξiαj(t)⟨∇xψi(t, x̄(t)), qαj(t)⟩ =

0 a.e. t ∈ [0, T ], then

0 = lim
j→∞

∫ T

0
ξiαj(t)|⟨∇xψi(t, x̄(t)), qαj(t)⟩|dt =

∫ T

0
ξi(t)|⟨∇xψi(t, x̄(t)), q(t)⟩|dt.

Hence,

ξi(t)⟨∇xψi(t, x̄(t)), q(t)⟩ = 0 a.e. t ∈ [0, T ].

Finally, for the transversality condition, we have

(pαj(0),−pαj(T )) ∈ λαj ∂
L
l J(x̄(0), ȳ(0), x̄(T ), ȳ(T )) + αjB̄ +NL

S (x̄(0), ȳ(0), x̄(T ), ȳ(T )) .

Then, using similar steps used to derive the transversality condition for fixed (α, β) in Step

I.3.3, we deduce that

(p(0),−p(T )) ∈ λ ∂Ll J(x̄(0), ȳ(0), x̄(T ), ȳ(T )) +NL
S (x̄(0), ȳ(0), x̄(T ), ȳ(T )) .

Step I.5. Taking β → 0.

In this step, we explicitly indicate the dependence on β in our notation, and we introduce a

subscript βj, where βj ∈ (0, 1] and βj → 0. Deriving all the conditions except for the adjoint

equation follows a similar process to Step I.4, replacing the subscript αj by the subscript βj.

Below, we present our derivation for the adjoint equation. For each j, we have
∫

[0,T ]
⟨z(t), dqβj(t)⟩

=
∫ T

0

〈
z(t),−

[
(1 − βj)ĀTβj(t) + βjA

T
βj

(t)
]
qβj(t) −

[
(1 − βj)Āβj(t)T + βjAT

βj
(t)
]
vβj(t)

〉
+

∫ T

0

r∑
i=1

ξiβj(t)⟨z(t), ϑ
i
βj

(t)qβj(t)⟩dt+
∫ T

0

r∑
i=1

⟨z(t),∇xψi(t, x̄(t))⟩dνiβj(t), (4.82)
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∫
[0,T ]

⟨z(t), v̇βj(t)⟩dt =
∫ T

0
⟨z(t),−

[
(1 − βj)Ēβj(t)T + βEβj(t)T

]
qβj(t)⟩dt

+
∫ T

0
⟨z(t),−

[
(1 − βj)Ēβj(t)T + βjEβj(t)T

]
vβj(t)⟩dt, (4.83)

where

max
{
∥(Āβj , Ēβj)∥2, ∥(Aβj , Eβj)∥2, ∥(Āβj , Ēβj)∥2, ∥(Aβj , Eβj)∥2

}
≤ ∥Lh∥2,

(Āβj , Ēβj)(t) ∈ ∂
(x,y)
ℓ f(t, x̄(t), ȳ(t), ū(t)),

(Āβj , Ēβj)(t) ∈ ∂
(x,y)
ℓ g(t, x̄(t), ȳ(t), ū(t)),

∥qβj∥∞ ≤ Mp and V 1
0 (qβj) = ∥q̇βj∥1 ≤ Mq,

∥vβj∥∞ ≤ Mp and ∥v̇βj∥2 ≤ Mv,

∥νiβj∥T.V. ≤ M7, for i = 1, · · · , r,

∥ϑiβj∥∞ ≤ Lψ, for i = 1, · · · , r.

Taking βj → 0, and following steps similar to Steps I.3.1 and I.3.2, we obtain the adjoint

equations (condition (iii) of our theorem).

Step II. We have concluded proving the theorem under the temporary assumptions (A4.2)

and (A3.3)′. The goal of Step II is to remove those two temporary assumptions.

Step II.1. Removing assumption (A3.3)′.

In this step, we remove (A3.3)′, and we simply assume that (A3.3) is satisfied for some β̄(·)

positive. We use arguments similar to those at the last step of the proof of [58, Theorem

3.1], as well as Remark 4.2.1(ii)-(iii). We first define ψ̃i(t, x) := β̄i(t)ψi(t, x). Notice that

• C(t) is also the zero-sublevel sets of (ψ̃i(t, ·))ri=1, for i = 1, · · · , r.

• For some Lψ̃ > 0, ψ̃i satisfies (A3.1) for all i = 1, · · · , r.

• Condition (A3.3) is equivalent to saying that for t ∈ I0(x̄), the Gramian matrix Gψ̃(t)

of the vectors {∇xψ̃i(t, x̄(t)) : i ∈ I0
(t,x̄(t))} is strictly diagonally dominant.

• ψ̃1, · · · , ψ̃r satisfy (A3.2), and hence, (3.34) of Lemma 3.2.4 is valid at ψ̃1, · · · , ψ̃r, ψr+1

when replacing η̄ by η̃ := η̄ bβ̄, where

bβ̄ := min
{
1,min{β̄i(t) : t ∈ [0, T ], i = 1, · · · , r}

}
.
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We denote by (P̃ ) the version of (P ) in which the functions ψi are replaced by ψ̃i. Note that

(P ) and (P̃ ) coincide, and ((x̄, ȳ), ū) is a strong local minimizer for (P̃ ). Furthermore, the

data of (P̃ ) satisfy the assumptions required for the proven maximum principle (established

in Step II.1). Therefore, we apply the proven version of the maximum principle to (P̃ ),

and we get the existence of an adjoint vector p̃ = (q̃, ṽ) with q̃ ∈ BV ([0, T ];Rn) and ṽ ∈

W 1,2([0, T ];Rl), finite signed Radon measures (ν̃i)ri=1 on [0, T ], nonnegative functions (ξ̃i)ri=1

in L∞([0, T ];R+), L2-measurable functions ˜̄A(·) in Mn×n([0, T ]), ˜̄E(·) in Mn×l([0, T ]), ˜̄A(·)

in Ml×n([0, T ]), and ˜̄E(·) in Ml×l([0, T ]), L∞-measurable functions (ϑ̃i(·))ri=1 in Mn×n([0, T ]),

and a scalar λ̃ ≥ 0 that satisfy conditions (i)-(vii). To express those conditions in terms of

the original data of (P ), we replace ψ̃i(t, x) by β̄i(t)ψi(t, x), and we take p := p̃, q := q̃, v :=

ṽ, ξi(·) := β̄i(·)ξ̃i(·), λ := λ̃, Ā(·) := ˜̄A(·), Ē(·) := ˜̄E(·), Ā(·) := ˜̄A(·), Ē(·) := ˜̄E(·), dνi(·) =

β̄i(·)dν̃i(·), and ϑi(·) := 1
β̄i(·)

ϑ̃i(·).

Step II.2. Removing assumption (A4.2) when the sets U(t) are uniformly bounded.

In this step, we remove (A4.2) (so assume h does not satisfy (A4.2)), and we assume that

the sets U(t) are uniformly bounded. To remove (A4.2), that is, the convexity assumption

of h(t, x, y, U(t)) for (x, y) ∈ ¯N(δ̄,δ̄)(t) and t ∈ [0, T ] a.e., we shall extend the relaxation tech-

nique in [70, Section 5.2], developed for global minimizers of Mayer optimal control problems

over sweeping processes having constant compact sweeping sets and constant control set U, to

the case of strong local minimizers, the sweeping sets are ¯N(ε̄,δ̄)(t), which are time-dependent

and not necessarily moving in an absolutely continuous way, U is time-dependent, and joint-

endpoints constraint S δ
2
, where δ ∈ (0, ε̄) is fixed.

Step II.2.1. (X̄ := (x̄, ȳ), ū) is a δ-strong local minimizer for (P̄δ) with extended J.

Fix δ ∈ (0, ε̄). Using Theorem 2.4.3, there is an LJ -Lipschitz function J̄ : Rn+l × Rn+l → R

that extends J to R2(n+l) from S(δ̄). By Remark 4.2.6(i), ((x̄, ȳ), ū) being a δ̄-strong local

minimizer for (P ), then it is also a δ-strong local minimum for (P̄δ) in which we use the

extension J̄ instead of J .
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Step II.2.2. (X̄, ū) is a global minimum for a problem (P̄).

Performing appropriate modifications to the technique presented in the proof of [55, Theorem

6.2], we are then able to formulate the following problem (P̄) associated with (P̄δ) for which

the same solution (X̄, ū) is a global minimum:

(P̄)



minimize J̄(X(0), X(T )) + K̄
∫ T

0 L(t,X(t)) dt

over X := (x, y) ∈ W 1,1([0, T ],Rn+l), u ∈ U , such that

(D̄)
{
Ẋ(t) ∈ h(t, x(t), y(t), u(t)) −NN̄(ε̄,δ̄)(t)(X(t)), a.e. t ∈ [0, T ],

(X(0), X(T )) ∈ S δ
2

= S ∩ B̄ δ
2
,

where L : [0, T ] × Rn+l → R and K̄ > 0 are defined by

L(t,X) = L(t, x, y) := max{∥x− x̄(t)∥2 − δ2

4 , ∥y − ȳ(t)∥2 − δ2

4 , 0} > 0, (4.84)

K̄ := 512M̄ℓMJ

5δ3 ,where 2M̄ℓ := max{L(x̄,ȳ), Mh + µ̄

4η̄2 L̄}, MJ := max
S(δ̄)

|J(X1, X2)|, (4.85)

and hence, as L(t, X̄(t)) ≡ 0, we deduce min(P̄) = J(X̄(0), X̄(T )).

We now show that (X̄, ū) is a global minimum for (P̄). Indeed, let (X, u) be admissible for

(P̄).

Case 1: ∥X − X̄∥∞ ≤ δ.

Then, (X, u) being admissible for (P̄δ), and (X̄, ū) being a δ-strong local minimum for (P̄δ),

yield that

J̄(X(0), X(T )) + K̄
∫ T

0
L(t,X(t)) dt = J(X(0), X(T )) + K̄

∫ T

0
L(t,X(t)) dt

≥ J(X(0), X(T )) ≥ J(X̄(0), X̄(T )) = J̄(X̄(0), X̄(T )) + K̄
∫ T

0
L(t, X̄(t)) dt.

Case 2: ∥X − X̄∥∞ > δ.

Given that (X(0), X(T )) ∈ S δ
2
, there exists t̄ ∈ [0, T ] such that ∥X(t̄) − X̄(t̄)∥ = δ. Using

that the function t 7→ ∥X(t)−X̄(t)∥ is Lipschitz continuous with Lipschitz constant 4M̄ℓ (see

equation (3.45)), and the fact that ∥X(0)− X̄(0)∥ ≤ δ
2 , we get that the Lebesgue measure of
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{
t ∈ [0, T ] : ∥X(t) − X̄(t)∥ ≥ 3δ

4

}
≥ δ

16M̄ℓ
. Hence,

J̄(X(0), X(T )) + K̄
∫ T

0
L(t,X(t)) dt ≥ −MJ + K̄

∫ T

0
L(t,X(t)) dt

≥ −MJ + K̄
δ

16M̄ℓ

(3δ
4

)2

− δ2

4


= MJ ≥ J(X̄(0), X̄(T )) = J̄(X̄(0), X̄(T )) + K̄

∫ T

0
L(t, X̄(t)) dt.

This proves that (X̄, ū) is a global minimum for (P̄).

Step II.2.3. (X̄, w̄) := (X̄, ((
n+l+1︷ ︸︸ ︷
ū, ..., ū), (

n+l+1︷ ︸︸ ︷
1, 0, ..., 0))) is a global minimum for (P̃).

Define the problem (P̃)

(P̃)



minimize J̄(X(0), X(T )) + K̄
∫ T

0 L(t,X(t)) dt

over X := (x, y) ∈ W 1,1([0, T ],Rn+l),

w(·) :=
(
(u0(·), · · · , un+l(·)), (λ0(·), · · · , λn+l(·))

)
∈ W such that

˜(D)
{
Ẋ(t) ∈ h̃(t,X(t), w(t)) −NN̄(ε̄,δ̄)(t)(X(t)), a.e. t ∈ [0, T ],

(X(0), X(T )) ∈ S δ
2
,

where

h̃ : Gr [ ¯N(δ̄,δ̄)(·) × (U(·))n+l+1] × Λ → Rn+l defined as h̃(t,X,w) :=
n+l∑
i=0

λih(t,X, ui), (4.86)

Λ :=
{
(λ0, · · · , λn+l) ∈ Rn+l+1 : λi ≥ 0 for i = 0, ..., n+ l and

n+l∑
i=0

λi = 1
}
,

W :=
{
w : [0, T ] −→ R(m+1)(n+l+1) measurable : w(t) ∈ W (t) := (U(t))n+l+1 × Λ a.e..

}
First, we note the following two facts that are going to be useful for our goal:

• Notice that h̃ satisfies (A4.1), and hence, Corollary 3.2.16 yields that forX0 = (x0, y0) ∈

¯N(ε̄,δ̄)(0), and for w ∈ W , (D̃) has a unique solution X(·) corresponding to (X0, w)

which is (Mh + µ̄
4η̄2 L̄)-Lipschitz and satisfies (3.44)-(3.46).

• Using that 0 < δ < ε̄ < δ̄ and that X̄ := (x̄, ȳ) is L(x̄,ȳ)-Lipschitz, then the function L,

defined in (4.84), is Lipschitz on Gr ¯N(δ̄,δ̄)(·) and satisfies

L ≡ 0 on Gr ¯N( δ2 ,
δ
2 )(·), and |L| ≤ δ̄2 on Gr ¯N(δ̄,δ̄)(·). (4.87)
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Hence, by the convexity of h̃(t,X,W (t)) (so h̃ satisfy (A4)), and by Remark 4.2.5,

where L := K̄ L, it follows that (P̃) admits a global optimal minimizer (X̃, w̃).

We show that min(P̃) = min(P̄) and, (X̄, w̄) is optimal for (P̃). Let U defined in (3.8),

the compact set V := cl U, and

R :=
{
σ : [0, T ] → M1

+(V) : σ is measurable and σ(t)(U(t)) = 1, t ∈ [0, T ]
}
.

This set of relaxed controls satisfies R ⊂ L1 ([0, T ], C(V;R))∗, which is endowed with the

weak* topology. Each regular control function u ∈ U is identified with its associated Dirac

relaxed control σ(·) = δu(·), and thereby U ⊂ R (see e.g., [68]). Define hσ(t,X) and the

problem (P)r by

hσ(t,X) :=
∫
U(t)

h(t,X, u)σ(t)(du), ∀(t,X) ∈ Gr ¯N(δ̄,δ̄)(·), σ ∈ R,

(P)r



minimize J̄(X(0), X(T )) + K̄
∫ T

0 L(t,X(t)) dt

over X := (x, y) ∈ W 1,1([0, T ],Rn+l), σ ∈ R, such that

(D)r
{
Ẋ(t) ∈ hσ(t,X(t)) −NN̄(ε̄,δ̄)(t)(X(t)), a.e. t ∈ [0, T ],

(X(0), X(T )) ∈ S δ
2
.

Since h satisfies (A4.1) and σ(t)(U(t)) = 1 (∀t ∈ [0, T ]), then hσ(t,X) is uniformly bounded

by Mh, a Carathéodory function in (t,X), and Lh(t)-Lipschitz in X, for all t, that is, hσ(t,X)

satisfies (A4.1).

Using Corollary 3.2.16 for X0 = (x0, y0) ∈ ¯N(ε̄,δ̄)(0), σ ∈ R, and (f, g)(t,X, u) = h(t,X, u) :=

hσ(t,X), the Cauchy problem of (D)r corresponding to (X0, σ) admits a unique solution

which is Lipschitz and satisfies (3.44)-(3.46). It follows that the results in [70, Lemmas 5.1

&5.2] remain valid for the systems (D̃), and (D)r, defined here, and also for the corresponding

(D)c, where

(D)c
{
Ẋ(t) ∈ convh(t,X(t), U(t)) −NN̄(ε̄,δ̄)(t)(X(t)), a.e. t ∈ [0, T ].

144



Therefore, for X := (x, y) ∈ W 1,1([0, T ],Rn+l) and X(0) ∈ ¯N(ε̄,δ̄)(0), we have

(X,w) satisfies (D̃), for some w ∈ W ⇐⇒ (X, σ) satisfies (D)r for some σ ∈ R

⇐⇒ X satisfies (D)c.

Furthermore, due to having (3.46) satisfied by the solutions of (D)r and due to the hy-

pomonotonicity property of the uniform prox-regular sets ¯N(ε̄,δ̄)(t) (which we recall it to be

the product of the uniform 2η̄
Lψ

-prox-regular set C(t)∩ B̄ε̄(x̄(t)) with B̄δ̄(ȳ(t))), it follows that

[36, Theorem 2] (also [15, Proposition 3.5]) is valid. Hence, using that (X̃, w̃) is optimal for

(P̃), the proof of [70, Proposition 5.2] holds true for our setting, and therefore, as (X̄, ū) is

optimal for (P̄), we conclude that

min(P)r = min(P̃) = min(P̄) = J(X̄(0), X̄(T )). (4.88)

Now, since (X̄, w̄) is admissible for (P̃) at which the objective value is J(X̄(0), X̄(T )), we

deduce that (X̄, w̄) is a global minimum for (P̃). This terminates proving Key Step 4(c).

Step II.2.4. ((x̄, ȳ), w̄) is a δ
2-strong local minimum for (P̃ ) to which we apply

Theorem 4.2.11.

As (X̄, w̄) is a global minimizer for (P̃), it follows that it is also a δ
2 -strong local minimum

for (P̃), which, by the first equation of (4.87), has now J̄(X(0), X(T )) as objective function.

Hence, we conclude that ((x̄, ȳ), w̄) is a δ
2 -strong local minimum for the problem (P̃ )

(P̃ )



minimize J̄(x(0), y(0), x(T ), y(T ))

over X := (x, y) ∈ W 1,1([0, T ],Rn+l),

w(·) :=
(
(u0(·), · · · , un+l(·)), (λ0(·), · · · , λn+l(·))

)
∈ W such that

˜(D)


ẋ(t) ∈ f̃(t, x(t), y(t), w(t)) −NC(t)(x(t)), a.e. t ∈ [0, T ],

ẏ(t) = g̃(t, x(t), y(t), w(t)), a.e. t ∈ [0, T ],

(x(0), y(0), x(T ), y(T )) ∈ S δ
2
,

where (f̃ , g̃) = h̃ defined in (4.86), that is,
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f̃(t, x, y, w) :=
n+l∑
i=0

λif(t, x, y, ui), and g̃(t, x, y, w) :=
n+l∑
i=0

λig(t, x, y, ui).

Clearly (P̃ ) is of the form of (P ), where f(t, x, y, u) := f̃(t, x, y, w), g(t, x, y, u) := g̃(t, x, y, w),

S := S δ
2
, U(t) := W (t), and J := J̄ . Furthermore, the associated h̃(t, x, y, u) = (f̃ , g̃)(t, x, y, w)

satisfies that h̃(t, x, y,W (t)) convex for each (t, x, y) ∈ Gr ¯N(δ̄,δ̄)(·). Thus, assumptions (A1)-

(A5) hold at the strong local minimizer ((x̄, ȳ), w̄) for (P̃ ) to which the already proven

(i)-(vii) of Theorem 4.2.11 apply. Doing so, and noticing these facts:

• J̄ = J on S(δ̄), and hence, ∂Lℓ J̄(x̄(0), ȳ(0), x̄(T ), ȳ(T )) = ∂Lℓ J(x̄(0), ȳ(0), x̄(T ), ȳ(T )),

• h̃(t, x̄(t), ȳ(t), w̄(t)) = h(t, x̄(t), ȳ(t), ū(t)),

• ∂
(x,y)
ℓ f̃(t, x̄(t), ȳ(t), w̄(t)) ⊂ ∂

(x,y)
ℓ f(t, x̄(t), ȳ(t), ū(t)),

• ∂
(x,y)
ℓ g̃(t, x̄(t), ȳ(t), w̄(t)) ⊂ ∂

(x,y)
ℓ g(t, x̄(t), ȳ(t), ū(t)),

• ⟨h̃(t, x̄(t), ȳ(t), w), p(t)⟩ = ⟨h(t, x̄(t), ȳ(t), u), p(t)⟩, ∀w = ((u, ..., u), (1, 0, ..., 0)) ∈

Un+l+1 × Λ,

• NL
S δ

2
(x̄(0), ȳ(0)) = NL

S (x̄(0), ȳ(0)),

we conclude that Theorem 4.2.11 holds for (P ) without assumption (A4.2).

Step II.3 Proof of the “In addition” part of the theorem.

When S = C0 × Rn+l, for C0 ⊂ C(0) × Rl closed, Remark 4.2.10 yields that λ = 1.

This completes the proof of the theorem.

Table 4.4 Summary of results from Section 4.2.3 .

Result Description

Theorem

4.2.11

We provide necessary conditions, in the form of an extended

Pontryagin’s maximum principle, for a δ̄-strong local minimizer

((x̄, ȳ), ū) for the problem (P ).
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CHAPTER 5

VALIDATING THEORETICAL RESULTS USING AN EXAMPLE

Consider the problem (P ) with the following data.

• The perturbation mappings f : [0, π2 ]×R3×R×R −→ R3 and g : [0, π2 ]×R3×R×R −→ R

are defined by

f (t, (x1, x2, x3), y, u) = (x1 − x2 − u+ y2, x1 + x2 + u+ y3, x3 + t− π − 1);

g (t, (x1, x2, x3), y, u) = x2
1 + x2

2 − 16 + u+ y.

• The two functions ψ1, ψ2 : [0, π2 ] × R3 −→ R are defined by

ψ1(t, x1, x2, x3) := x2
1 + x2

2 + 32
π
x3 + 32

π
t− 48,

ψ2(t, x1, x2, x3) := x2
1 + x2

2 − 32
π
x3 − 32

π
t+ 16,

and hence, for each t ∈ [0, π2 ], the set C(t) is the nonsmooth, convex and bounded set

(see Figure 5.1)

C(t) = C1(t) ∩ C2(t)

:= {(x1, x2, x3) : ψ1(t, x1, x2, x3) ≤ 0} ∩ {(x1, x2, x3) : ψ2(t, x1, x2, x3) ≤ 0}.

• The objective function J : R8 −→ R ∪ {∞} is defined by

J(x1, x2, x3, y1, x4, x5, x6, y2) :=


−x2

4 − x2
5 + 16 +

∣∣∣π2 − x6

∣∣∣ (x4, x5, x6) ∈ C(π2 ),

∞ Otherwise.

• The control multifunction is the constant U(t) := [0, 1] for all t ∈ [0, π2 ].

• The set S is given by

S := {(x1, x2, x3, y1, x4, x5, x6, y2) ∈ R8 : x2
1 + x2

2 = 16, x3 = π, x2 + x2
6 = π2

4 ,

x2
1

8 + x4 = 2, y1 + x2
2 = 0}.
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Figure 5.1 The sweeping set C(to) at a certain time to ∈ (0, π2 )

Define, for each t ∈ [0, π2 ], the curve

Γ(t) :=
{
(x1, x2, x3) : x2

1 + x2
2 = 16 and x3 = π − t

}
= (bdryC1(t) ∩ bdryC2(t)) ⊂ bdryC(t).

Since S ⊂ Γ(0) × R × R3 × R and J vanishes on R3 × R × Γ(π2 ) × R and is strictly positive

elsewhere in R3 × R × C(π2 ) × R, we may seek for (P ) a candidate ((x̄, ȳ), ū) for optimality

with x̄(t) := (x̄1(t), x̄2(t), x̄3(t)) belonging to Γ(t) for every t, if possible, and hence we have

x̄2
1(t) + x̄2

2(t) = 16 and x̄3(t) = π − t ∀t ∈ [0, π2 ] and

x̄1(t) ˙̄x1(t) + x̄2(t) ˙̄x2(t) = 0 a.e. and

(x̄(0)T, ȳ(0)T, x̄(π2 )T, ȳ(π2 )T) ∈ {(4, 0, π, 0, 0, 4, π2 , a), (−4, 0, π, 0, 0, 4, π2 , b),

(4, 0, π, 0, 0,−4, π2 , c), (−4, 0, π, 0, 0,−4, π2 , d); a, b, c, d ∈ R}.

(5.1)

One can readily verify that all assumptions of Theorem 4.2.11 are satisfied for any choice of
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(x̄, ȳ) such that x̄(t) ∈ Γ(t) for all t, with (A3.3) being satisfied for β̄ = (1, 1). Applying1

Theorem 4.2.11 to such candidate ((x̄, ȳ), ū), we obtain the existence of an adjoint vector

p = (q, v) where q := (q1, q2, q3) ∈ BV ([0, π2 ];R3), v ∈ W 1,1([0, π2 ];R), two finite signed Radon

measures ν1, ν2 on
[
0, π2

]
, ξ1, ξ2 ∈ L∞([0, π2 ];R+), and λ ≥ 0, such that when incorporating

equations (5.1) into Theorem 4.2.11(i)-(vii), we obtain

(a) ∥p(π2 )∥ + λ = 1.

(b) The admissibility equation holds, that is, for t ∈ [0, π2 ] a.e.,

˙̄x1(t) = x̄1(t) − x̄2(t) − ū(t) + ȳ2(t) − 2x̄1(t)(ξ1(t) + ξ2(t)),

˙̄x2(t) = x̄1(t) + x̄2(t) + ū(t) + ȳ3(t) − 2x̄2(t)(ξ1(t) + ξ2(t)),

˙̄x3(t) = x̄3(t) + t− π − 1 − 32
π

(ξ1(t) − ξ2(t)),

˙̄y(t) = x̄2
1(t) + x̄2

2(t) − 16 + ū(t) + ȳ(t).

(c) The adjoint equation is satisfied, that is, for t ∈ [0, π2 ],

dq(t) =


−1 −1 0

1 −1 0

0 0 −1

 q(t) dt +


−2x̄1(t)

−2x̄2(t)

0

 v(t)dt

+ (ξ1(t) + ξ2(t))


2 0 0

0 2 0

0 0 0

 q(t) dt +


2x̄1(t)

2x̄2(t)
32
π

 dν1 +


2x̄1(t)

2x̄2(t)

−32
π

 dν2,

v̇(t) =
(

0 0 0
)
q(t) dt − v(t)

(d) The complementary slackness condition is valid, that is, for t ∈ [0, π2 ] a.e.,

ξ1(t)(2q1(t)x̄1(t) + 2q2(t)x̄2(t) + 32

π
q3(t)) = 0,

ξ2(t)(2q1(t)x̄1(t) + 2q2(t)x̄2(t) − 32
π
q3(t)) = 0.

1Note that for (x1, x2, x3) ∈ Γ(t) with −
√

3
2 < x1 <

√
3

2 , we have ⟨∇ψ1(x1, x2, x3),∇ψ2(x1, x2, x3)⟩ =
4x2

1 − 3 < 0, and hence, the maximum principle of [34] cannot be applied to this sweeping set C(t).
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(e) The transversality condition holds, that is,

(q(0), v(0),−q(π2 ),−v(π2 ))T ∈ λ{(0, 0, 0, 0, 0,−8, α, 0) : α ∈ [−1, 1]}

+{(8α1 + α4, α3, α2, α5, α4, 0, α3π, 0) : α1, α2, α3, α4, α5 ∈ R}

if (x̄(0)T, ȳ(0)T, x̄(π2 )T, ȳ(π2 )T) ∈ {(4, 0, π, 0, 0, 4, π2 , a) : a ∈ R}.

Similarly, we work on deriving transversality conditions for each of the four cases in

(5.1).

(f) max{u (−q1(t) + q2(t) + v(t)) : u ∈ [0, 1]} is attained at ū(t) for t ∈ [0, π2 ] a.e.

We temporarily assume that

−q1(t) + q2(t) + v(t) < 0, ∀t ∈ [0, π2 ] a.e. (5.2)

This gives from (f) that ū(t) = 0 for t ∈ [0, π2 ] a.e. Now solving the differential equations of

(b) and using (5.1), we obtain that

ξ1(t) = ξ2(t) = 1
4 , x̄(t)T = (4 cos t, 4 sin t, π − t)2, and ȳ(t) = 0 ∀t ∈ [0, π2 ].

Hence, from (d), we deduce that q3(t) = 0 for t ∈ [0, π2 ] a.e., and

cos t q1(t) + sin t q2(t) = 0, ∀t ∈ [0, π2 ] a.e., (5.3)

and the adjoint equation (c) simplifies to the following

v̇(t) = −v(t),

dq1(t) = (−q1(t) − q2(t))dt− 8 cos t v(t)dt+ q1(t) dt+ 8 cos t (dν1 + dν2),

dq2(t) = (q1(t) − q2(t))dt− 8 sin t v(t)dt+ q2(t) dt+ 8 sin t (dν1 + dν2),

dq3(t) = −q3(t) dt+ 32
π

(dν1 − dν2).

(5.4)

2Note that another possible choice for x̄(·) is x̄(t)T = (−4 cos t,−4 sin t, π − t).
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Since v(π2 ) = 0 then v(t) = 0 ∀t ∈ [0, π2 ]. Using (a), (5.3), (e), and (5.4), one can get the

following 

λ = 2π
2π+

√
1+(16π)2

and A = 1
2π+

√
1+(16π)2

,

q(t)T = (A sin t,−A cos t, 0) on [0, π2 ), q(π2 )T = (A, 16Aπ, 0),

dν1 = dν2 = Aπδ{π
2

},
where δ{a} denotes the unit measure concentrated on the point a. Note that for all t ∈ [0, π2 ],

we have −q1(t) + q3(t) + v(t) < 0, and hence, the temporary assumption (5.2) is satisfied.

Therefore, the above analysis, realized via Theorem 4.2.11, produces an admissible pair

((x̄, ȳ), ū), where

x̄(t)T = (4 cos t, 4 sin t, π − t), ȳ(t) = 0, and ū(t) = 0, ∀t ∈ [0, π2 ],

which is optimal for (P ).

Figure 5.2 The solution x̄(t) (in green) evolving on the set C(t) = C1(t) ∩ C2(t) over
different time instances.
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CHAPTER 6

CONCLUSION AND POSSIBLE FUTURE DIRECTIONS

6.1 Conclusion

In this dissertation, we employ the exponential penalty-type approximation method to

launch the study of a general model (P ) given by:

(P )



minimize J(x(0), y(0), x(T ), y(T ))

over ((x, y), u) ∈ W 1,1([0, T ],Rn × Rl) × U such that

(D)


ẋ(t) ∈ f(t, x(t), y(t), u(t)) −NC(t)(x(t)), a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)), a.e. t ∈ [0, T ],

(x(0), y(0), x(T ), y(T )) ∈ S,

where, for t ∈ [0, T ], the set C(t) is defined as the intersection of a finite number of zero

sub-level sets of (ψi(t, ·))ri=1, referred to as generators.

One of the main results of our work, which is global, encompasses the existence and unique-

ness of a Lipschitz solution for the Cauchy problem corresponding to our dynamic (D)

without requiring any Lipschitz property on C(·)—a condition commonly required in the

literature (see e.g., [36]). Instead, we assume Gr C(·) is bounded and the gradients of the

active generators are positively linear independent. Note that this is the first such a result

for general nonsmooth moving sweeping sets, even for the uncoupled sweeping process, which

is based on the method of exponential penalty approximation.

Another global main result encompasses the global existence of optimal solution for our

problem (P ) under global assumptions. We note that this constitutes the first attempt to

prove existence result of optimal solutions for time-dependent general sweeping set.

The main local result consists of deriving under minimal assumptions on the data, a com-

plete set of necessary conditions in the form of nonsmooth Pontryagin maximum principle

for strong local minimizers of the problem (P ) via developing the exponential penalization

technique. Our Pontryagin maximum principle generalizes previously known Pontryagin
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maximum principle results ([30, 31, 33, 34, 70, 55, 58]). In fact, we establish a Pontryagin

maximum principle in its expected form (i.e., standard nontriviality condition, adjoint equa-

tion, transversality condition, and the maximality condition on the Hamiltonian) for optimal

control problems over the sweeping process (1.2) in each of the following settings:

(i) When the nonsmooth moving sweeping sets C(t) are bounded and general (no restriction

on the corners);

(ii) When the general nonsmooth sweeping sets are unbounded (constant or moving);

(iii) When joint state endpoints constraint set is present, the convexity of f(t, x, U(t)) is

absent, or the global constraint qualification is only local, for all types of sweeping sets:

smooth, nonsmooth, constant, moving, bounded, or unbounded;

(iv) When the sweeping process is coupled with a differential equation.

6.2 Future directions

In this section, we outline several promising future directions that stem from our current

work on optimal control problems over sweeping processes. We will focus on five key areas:

extending the model to include state constraints, developing a numerical algorithm to solve

our model, incorporating control into the sweeping set, exploring the bilateral minimal time

function in the context of sweeping processes, and applying these results to real-world sce-

narios.

Project 1: Adding state constraint

We are currently working on extending the techniques discussed earlier to address problems

that include explicit external state constraints: ω(t, x(t), y(t)) ≤ 0. This implies that our

approximating problems differ from those in Chapter 4 due to the presence of an additional

explicit state constraint. This introduces challenges when attempting to prove the bound-

edness of the adjoint vector for the approximating problem, which subsequently complicates

the limit-taking process. It is worth noting that adding a state constraint to the sweeping

process has been addressed in the literature, as seen in [44] for example, but only for a special

case of our model.
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Project 2: Numerical algorithm

We are interested in constructing a numerical algorithm to solve our Mayer problem (P ), as

in [32, 56, 59]. We plan to expand the domain of applicability of the numerical method to:

• Time-dependent sweeping set C(t),

• Initial state set C0 instead of fixed x0,

• Final endpoint CT instead of free final endpoint.

Project 3: The sweeping set is controlled and is of the form C(t) + u(t)

A potential future direction for this work would involve exploring the effects of introducing

a control function into the sweeping set. Specifically, one could investigate how our results

would change when the sweeping set is defined as C(t) := C + v(t) where v(·) is a control

function belonging to W 1,2.

Project 4: Finding the bilateral minimal time function for the sweeping process

The bilateral minimal time function, introduced by Clarke and Nour in [20], defines T (α, β)

as the minimum time taken by a trajectory to go from α to β. In my master’s thesis, I worked

on studying the variational analysis and the sensitivity relations of the bilateral minimal time

functions in order to study the regularity of this function for nonlinear control system. The

results we obtained, published in [16], extends the main result of [54] where a similar result

is obtained for the linear case. We can integrate the study of the bilateral minimal time

function with the sweeping process. More specifically, we can study the bilateral minimal

time function when the set-valued map that defines the trajectory is given as a sweeping

process. This would build on the work done in [24], where the authors have worked on the

unilateral minimal time function within the context of sweeping process.

Project 5: Real-life applications of the sweeping process

Another promising future direction involves validating both the numerical and theoretical

results of optimal control problems governed by sweeping process using real-life case study

models and experimental setups, such as crowd motion models in emergency evacuations,

robotics models, marine surface vehicle modeling, and nanoparticle modeling.
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APPENDIX

APPENDIX TO CHAPTERS 3-4

Translating Lemma 6.2 in [58] to our setting gives us the following lemma.

Lemma .0.1. Assume that ψi is continuous for all i = 1, . . . , r. Let αn ≥ 0, for all

n ∈ N, with αn −→ αo and let (tn, cn) ∈ Gr C(·) be a sequence such that Iαn(tn,cn) ̸= ∅, for all

n ∈ N, and (tn, cn) −→ (to, co). Then, Iαo(to,co) ̸= ∅ and there exist ∅ ≠ Jo ⊂ {1, . . . , r} and a

subsequence of (αn, tn, cn)n we do not relabel, such that

Iαn(tn,cn) = Jo ⊂ Iαo(to,co) for all n ∈ N.

In particular, for all a ≥ 0, for any continuous function x : [0, T ] −→ Rn such that x(t) ∈ C(t)

for all t ∈ [0, T ], we have Ia(x) is closed, and hence compact.

This result shall be used in different places of the thesis.

Lemma .0.2. (i) Let (xn, yn) ∈ W 1,∞([0, T ];Rn+d), (ξ1
n, · · · , ξR

n , ζn) ∈ L∞([0, T ],RR+1
+ ),

be such that, for some positive constants M1,M2,M3 we have, ∀n ∈ N and ∀i ∈ {1, · · · ,R},

∥(xn, yn)∥∞ ≤ M1, ∥(ẋn, ẏn)∥∞ ≤ M2, ∥(ξin, ζn)∥∞ ≤ M3. (.1)

Then, there exist (x, y) ∈ W 1,∞([0, T ];Rn+d) and (ξ1, · · · , ξR, ζ) ∈ L∞([0, T ];RR+1
+ ) such

that (xn, yn), and (ξ1
n, · · · , ξR

n , ζn) admit a subsequence (not relabeled) satisfying

∀i ∈ {1, · · · ,R},
(xn, yn) unif−−→ (x, y), (ẋn, ẏn) w∗−−−→

in L∞
(ẋ, ẏ), (ξin, ζn) w∗−−−→

in L∞
(ξi, ζ),

∥(x, y)∥∞ ≤ M1, ∥(ẋ, ẏ)∥∞ ≤ M2, ∥(ξi, ζ)∥∞ ≤ M3.

(.2)

(ii) For given qi : [0, T ] × Rn −→ R, let Q(t) := ∩R
i=1{x ∈ Rn : qi(t, x) ≤ 0} and (x̄, ȳ) ∈

C([0, T ];Rn × Rl) be such that x̄(t) ∈ Q(t) ∀t ∈ [0, T ]. Assume (A2) is satisfied by C(t) :=

Q(t), and, for some δ̄ > 0, (A3.1) and (A4.1) hold at ((x̄, ȳ); δ̄) respectively by ψi := qi and

h = (f, g) : [0, T ] × Rn × Rl × Rm −→ Rn × Rl. Let (xn, yn) and (ξn, · · · , ξR
n , ζn) be such
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that (xn(t), yn(t)) ∈ [Q(t) ∩ B̄δ̄(x̄(t))] × B̄δ̄(ȳ(t)) (∀t ∈ [0, T ]) and (.1) is satisfied, and let

(x, y, ξi, ζ) be their corresponding limits via (.2). Consider un ∈ U such that, for all n ∈ N,

((xn, yn), un), and (ξ1
n, · · · , ξR

n , ζn) satisfy
ẋ(t) = f(t, x(t), y(t), u(t)) −∑R

i=1 ξ
i(t)∇xqi(t, x(t)) a.e. t ∈ [0, T ],

ẏ(t) = g(t, x(t), y(t), u(t)) − ζ(t)∇yφ(t, y(t)) a.e. t ∈ [0, T ],
(.3)

where φ is given by (3.31).Then, in either of the following cases, there exists u ∈ U such

that ((x, y), u), and (ξ1, · · · , ξR, ζ) also satisfy system (.3).

Case 1. If there exists a subsequence of un that converges pointwise a.e. to some u ∈ U .

Case 2. If (A1) and (A4.2) are satisfied.

Proof. (i): By (.1), the sequence (xn, yn)n is equicontinuous and uniformly bounded. Hence,

using Arzela-Ascoli theorem and that (ẋn, ẏn) is uniformly bounded in L∞, it follows that

there exists (x, y) ∈ W 1,∞([0, T ];Rn+d) such that along a subsequence (we do not relabel)

of (xn, yn), we have (xn, yn) unif−−→ (x, y), (ẋn, ẏn) w∗−−−→
in L∞

(ẋ, ẏ), with (x, y) and (ẋ, ẏ) satisfy

the bounds in (.2) (see Theorem 2.4.13). As ∥(ξin, ζn)∥∞ ≤ M3 for all i = 1, · · · ,R and for

all n ∈ N, some subsequences of (ξ1
n, · · · , ξR

n , ζn) converge in the weak∗-topology to some

(ξ1, · · · , ξR, ζ) ∈ L∞ which satisfy the required bound in (.2) (see Theorem 2.4.11).

(ii) Case 1. Let t ∈ [0, T ) lebesgue point of ẋ(·), ẏ(·), f(·, x(·), y(·), u(·)), G(·, x(·), y(·), u(·)),

ξi(·) for all i = 1, · · · ,R and ζ, and let τ ∈ (0, T − t). Then, (.3) implies
xn(t+τ)−xn(t)

τ
= 1

τ

∫ t+τ
t

[
f(s, xn(s), yn(s), un(s)) −∑R

i=1 ξ
i
n(s)∇xqi(s, xn(s))

]
ds,

yn(t+τ)−yn(t)
τ

= 1
τ

∫ t+τ
t [g(s, xn(s), yn(s), un(s)) − ζn(s)∇yφ(s, yn(s))] ds.

(.4)

Using Dominated Convergence Theorem, and taking the limit as n → ∞ of (.4), we deduce

that 
x(t+τ)−x(t)

τ
= 1

τ

∫ t+τ
t [f(s, x(s), y(s), u(s)) −∑R

i=1 ξ
i(s)∇xqi(s, x(s))]ds,

y(t+τ)−y(t)
τ

= 1
τ

∫ t+τ
t [g(s, x(s), y(s), u(s)) − ζ(s)∇yφ(s, y(s))] ds.

(.5)
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Now, let τ → 0 in (.5), we get that (.3) is satisfied for every t lebesgue point, hence it hold

for a.e. t ∈ [0, T ].

(ii) Case 2. For s ∈ [0, T ] a.e., define in Rn × Rl the sets Sn(s) := h(s, xn(s), yn(s), U(s))

and S(s) := h(s, x(s), y(s), U(s)). Using (A1), the continuity of h(s, ·, ·, ·) in (A4.1), and

the convexity assumption (A4.2), it follows that Sn(s) and S(s) are nonempty closed convex

sets and Sn(s) Hausdorff-converges to S(s). Hence, Filippov Selection Theorem yields that

((xn, yn), un) and (ξin, ζn) satisfying (.3) is equivalent to, ∀z ∈ Rn+d and s ∈ [0, T ] a.e.,

⟨z, (ẋn(s), ẏn(s))⟩ ≤ σ(z, h(s, xn(s), yn(s), U(s)))

−⟨z, (
R∑
i=1

ξin(s)∇xqi(t, xn(s)), ζn(s)∇yφ(s, yn(s)))⟩. (.6)

Furthermore, by (2.4) and the positive homogeneity of σ(·, Sn) and σ(·, S), we deduce that

σ(z, h(s, xn(s), yn(s), U(s))) −−−→
k→∞

σ(z, h(s, x(s), y(s), U(s))), ∀z ∈ Rn+d and s ∈ [0, T ] a.e.,

and the bound of h in (A4.1) gives that, for z ∈ Rn+d,

|σ (z, h(s, xn(s), yn(s), U(s))) | ≤ 2∥z∥Mh.

Thus, for t ∈ [0, T ) a lebesgue point of ξi(·), ζ(·), ẋ(·), ẏ(·), σ(z, h(·, x(·), y(·), U(·))), and for

τ ∈ (0, T − t), when integrating (.6) on [t, t + τ ] and then taking the limit as n → ∞, the

Dominated Convergence Theorem yields that, ∀z = (z1, z2) ∈ Rn × Rl,∫ t+τ

t
⟨z, (ẋ(s), ẏ(s))⟩ds

≤
∫ t+τ

t
[σ(z, h(s, x(s), y(s), U(s))) − ⟨z, (

R∑
i=1

ξi(s)∇xqi(s, x(s)), ζ(s)∇yφ(s, y(s)))⟩]ds.

Dividing the last equation by τ and taking the limit when τ → 0, we get that, ∀z ∈ Rn ×Rl,

and for t lebesgue point,

⟨z, (ẋ(t), ẏ(t))⟩ ≤ σ(z, h(t, x(t), y(t), U(t))) − ⟨z, (
R∑
i=1

ξi(t)∇xqi(t, x(t)), ζ(t)∇yφ(t, y(t)))⟩,

and hence this inequality is valid for t ∈ [0, T ] a.e. Therefore, by means of Filipov Selection

Theorem, there exists u ∈ U , such that ((x, y), u), and (ξ1, · · · , ξR, ζ) satisfy system (.3).
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Remark .0.3. When δ̄ = ∞, Lemma .0.2 remains valid with (x̄, ȳ) and the assumptions

involving them are now superfluous. In this case, recall that (A3.1),(A4.1), and (A4.2) are

replaced by (A3.1)G, (A4.1)G, and (A4.2)G, respectively.
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