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ABSTRACT

The Jones-Wenzl projectors are particular elements of the Temperley-Lieb algebra essential to

the construction of quantum 3-manifold invariants. As a first step toward categorifying quantum

3-manifold invariants, Cooper and Krushkal categorified these projectors. In another direction,

Naisse and Putyra gave a categorification of the Temperley-Lieb algebra compatible with odd

Khovanov homology, introducing new machinery called grading categories.

The first goal of this thesis is to provide a generalization of Naisse and Putyra’s work in the spirit

of Bar-Natan’s canopolies or Jones’s planar algebras, replacing grading categories with grading

multicategories. From this updated viewpoint, we describe an invariant of diskular tangles from

odd Khovanov homology, naturally extending Naisse and Putyra’s tangle theory.

In this thesis, the main application of our theory for diskular tangles is a proof of the existence

and uniqueness of categorified Jones-Wenzl projectors in odd Khovanov homology. These results

have a nearly immediate award: the existence of a new, “odd” categorification of the colored Jones

polynomial.

Finally, a major motivation to develop a tangle theory for odd Khovanov homology is to

ultimately determine the state of its functoriality. In forthcoming work by the author, we study this

question by approximating Khovanov’s argument for the original theory. In doing so, we develop a

theory of Hochschild homology for modules and algebras graded by categories, indicating that the

new constructions offered by grading categories are also deserving of study.



Copyright by
DEAN DEMETRI SPYROPOULOS
2025



For my father, and in loving memory of Paul Spyropoulos.

iv



ACKNOWLEDGEMENTS

It is a pleasure to thank my advisors, Efstratia Kalfagianni and Matthew Stoffregen, for their

guidance and support. Both have been fervent advocates for me, remaining constantly accessible

and eternally encouraging—whatever success I am blessed to garner as a research mathematician

will be owed to their many hours of assistance. I would also like to thank the remainder of my

guidance committee, Teena Gerhardt and Matthew Hedden, for their interest in my research as well

as their teaching insight. I am extremely grateful to have been part of the excellent topology group

at MSU, of which these four are the backbone.

I am indebted to Adam Lowrance for his advice and friendship, and for setting the example of

the mathematician I aspire to be. Thanks are also due to Grégoire Naisse, Krzysztof Putyra, David

Rose, Pedro Vaz, Stephan Wehrli, and Michael Willis for helpful conversations and suggestions

related this thesis.

I wish to thank my other collaborators—Amey Joshi, Rithwik Vidyarthi, and Chen Zhang—for

their friendship (and their patience while I completed this thesis). Thank you to Joe Melby, Tristan

Wells, Zhonghui Sun, and all the friends I’ve made at MSU. Thank you to Laura, Taylor, Alyssa,

and the rest of the Math Department’s staff for their kindness and help in diffusing administrative

issues.

Finally, thank you to Elena, Charlie, Steve, my friends, and my family.

v



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Unified projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A gluing theorem for diskular tangles . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Future goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2 CLASSICAL CATEGORIFICATIONS OF 𝑇𝐿𝑛 AND
PROJECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Temperley-Lieb algebras and Jones-Wenzl projectors . . . . . . . . . . . . . . 15
2.2 Categorifications of the Temperley-Lieb algebra . . . . . . . . . . . . . . . . . 17
2.3 Cooper-Krushkal projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 3 THE ODD SETTING: CHRONOLOGIES AND G-GRADED
STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Chronological cobordisms and changes of chronology . . . . . . . . . . . . . . 29
3.2 Unified arc algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 A brief outline of C-graded structures . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 4 GRADING MULTICATEGORIES AND PLANAR ARC
DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 (Grading) multicategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 G as a grading multicategory . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Generalities on modules graded by grading multicategories . . . . . . . . . . . 59
4.4 G -graded arc modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER 5 C -SHIFTING SYSTEMS AND COBORDISMS . . . . . . . . . . . . . 68
5.1 A system of grading shifting functors for G . . . . . . . . . . . . . . . . . . . 68
5.2 Generalities on shifting systems for grading multicategories . . . . . . . . . . . 78
5.3 Homogeneous maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Changes of chronology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

CHAPTER 6 TANGLES, DG-MULTIMODULES, AND MULTIGLUING . . . . . . . 98
6.1 C -graded dg-multimodules and related concepts . . . . . . . . . . . . . . . . . 98
6.2 Resolution of diskular tangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 dg-C -graded multimodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

CHAPTER 7 AN INVARIANT OF DISKULAR TANGLES . . . . . . . . . . . . . . 120
7.1 Quick computations in unified Khovanov homology . . . . . . . . . . . . . . . 120
7.2 Tangle invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

CHAPTER 8 UNIFIED AND ODD PROJECTORS . . . . . . . . . . . . . . . . . . . 141
8.1 Operations defined via multigluing . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2 Duals and mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

vi



8.3 Definition and properties of unified projectors . . . . . . . . . . . . . . . . . . 159
8.4 Explicit computations for the 2-stranded projector . . . . . . . . . . . . . . . . 162
8.5 Existence of unified projectors . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.6 A unified colored link homology . . . . . . . . . . . . . . . . . . . . . . . . . 174

CHAPTER 9 TOWARD A HOCHSHILD (CO)HOMOLOGY FOR C-GRADED
ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.1 More on C-graded algebras and bimodules . . . . . . . . . . . . . . . . . . . . 180
9.2 A C-graded bar resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9.3 The universal trace and C-graded Hochschild homology . . . . . . . . . . . . . 198

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

vii



CHAPTER 1

INTRODUCTION

The Temperley-Lieb algebras, 𝑇𝐿𝑛, are diagrammatic algebras originating from operator alge-

bra theory which entered low-dimensional quantum topology with the construction of the Jones

polynomial via representations of the braid group [Jon87]. Elements of particular importance

are special idempotents of the Temperley-Lieb algebra, 𝑝𝑛 ∈ 𝑇𝐿𝑛, called Jones-Wenzl projec-

tors. These projectors have been studied extensively, and they are vital to the construction of the

colored Jones polynomials and the skein theoretic construction of the Witten-Reshetikhin-Turaev

3-manifold invariants (cf. [Lic97], Chapter 13).

In [Kho00], Khovanov provided a homological invariant of links whose graded Euler charac-

teristic 𝜒 was the Jones polynomial, initiating the study of categorification. Since then, a major

motivating question has been whether Khovanov’s categorification can be extended to a categorifi-

cation of quantum 3-manifold invariants. It would stand to reason that the first step in replicating the

procedures of the decategorified setting would be to construct categorical lifts of the Jones-Wenzl

projectors, living in some categorification of the Temperley-Lieb algebra.

A categorification of the Jones-Wenzl projectors was achieved by Cooper and Krushkal in

[CK12]. First, Bar-Natan [BN05] provided a categorification of the Temperley-Lieb algebra in the

sense that he constructed a category Kom(𝑛) whose Grothendieck group 𝐾0 was isomorphic to𝑇𝐿𝑛.

Cooper and Krushkal then prove the existence of objects 𝑃CK
𝑛 of Kom(𝑛) which satisfy [𝑃CK

𝑛 ] = 𝑝𝑛,

for [𝑃CK
𝑛 ] the equivalence class of 𝑃CK

𝑛 in 𝐾0(Kom(𝑛)). Said another way, 𝜒(𝑃CK
𝑛 ) = 𝑝𝑛. Rozansky

[Roz14] has also given a construction of categorified projectors using the Khovanov complex

associated to an infinite torus braid. For recent progress toward the categorification of quantum

3-manifold invariants from Khovanov homology, see [HRW22].

In this thesis, we initiate an investigation of similar phenomena for a different categorification

of the Jones polynomial, called odd Khovanov homology. Suppose 𝐿 is a link. In [OS05], Ozsváth

and Szabó constructed a spectral sequence converging to the Heegaard Floer homology of the

double branched cover of 𝐿,”HF(Σ(−𝐿);Z/2Z), with 𝐸2 page the (reduced) Khovanov homology of
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𝐿, K̃h(𝐿;Z/2Z). In an attempt to lift the spectral sequence to Z coefficients, Ozsváth, Rasmussen,

and Szabó realized that the 𝐸2 page could no longer be ordinary reduced Khovanov homology.

Instead, they produced a new candidate, another homological link invariant categorifying the Jones

polynomial, closely related to Khovanov’s construction (indeed, necessarily agreeing over Z/2Z

coefficients).

Ozsváth, Rasmussen, and Szabó’s new construction [ORS13] is called odd Khovanov homol-

ogy, which we denote by Kh𝑜 in this introduction; to avoid confusion, the original theory of

[Kho00] has been retroactively declared even Khovanov homology, denoted Kh𝑒. While agree-

ing in Z/2Z coefficients, there exist pairs of links 𝐿1 ≠ 𝐿2 for which Kh𝑒(𝐿1;Z) � Kh𝑒(𝐿2;Z),

but Kh𝑜(𝐿1;Z) ≇ Kh𝑜(𝐿2;Z), and vice-versa; see [Shu11]. We remark that spectral sequences

from odd Khovanov homology to flavors of Floer homology have been discovered: Daemi [Dae15]

showed that there is a spectral sequence from odd Khovanov homology to the plane Floer homology

of the double branched cover, and Scaduto [Sca15] showed that another spectral sequence starting

at odd Khovanov homology converges to the framed instanton homology of the double branched

cover.

Recall that even Khovanov homology is built from a functor F𝑒 with source the category

whose objects are closed 1-manifolds and whose morphisms are embedded cobordisms, and a

target category of K-modules, for some ring K. In the literature, a functor of this form is called

a (1 + 1)-dimensional TQFT. Likewise, the original definition of odd Khovanov homology is built

from a (perhaps misleadingly named) “projective TQFT”—that is, a TQFT well-defined only up

to sign—of embedded cobordisms. Indeed, the TQFT of [ORS13], which we will denote by F𝑜,

depends on some additional information. Using notation which will be introduced later (§3.1), this

is pictured as

F𝑜

á
𝑎𝑖 𝑎𝑖+1

𝑎

ë
= −F𝑜

á
𝑎𝑖 𝑎𝑖+1

𝑎

ë
. (1.0.1)

Moreover, F𝑜 is known to be sensitive to the exchange of critical points in embedded cobordisms

between 1-manifolds.
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Putyra, first in his Master’s thesis [Put10] and then in [Put14], introduced a refinement of the

source category so that F𝑜 may be improved to a genuine functor. By a chronological cobordism,

we mean a cobordism endowed with a framed Morse function, called a chronology, separating

critical points; see §3.1. The chronology induces an orientation on each unstable manifold of

index 1 and 2 critical points, which we draw as an arrow (as shown in (1.0.1) for an index 1

case). Consequently, F𝑜 is upgraded to a genuine functor: the equality above is reinterpreted as

a relation between the maps on modules associated with two distinct chronological cobordisms.

Going forward, functors from a category of chronological cobordisms to the category ofK-modules

will be called chronological TQFTs. Also introduced in [Put14] is the notion of a unified Khovanov

complex, which is a complex over the ground ring

𝑅 = Z[𝑋,𝑌, 𝑍±1]
/

(𝑋2 = 𝑌2 = 1).

The homology of this complex is called unified (also called covering or generalized in the literature)

Khovanov homology. The unified Khovanov complex has the incredibly desirable feature of

specializing to the even theory if one sets 𝑋 = 𝑌 = 𝑍 = 1, and to the odd theory by setting

𝑋 = 𝑍 = 1 and 𝑌 = −1. We use F (see §3.2) to denote the chronological TQFT for unified

Khovanov homology.

1.1 Unified projectors

As in Cooper and Krushkal’s work, our projectors will live in a categorification of the Temperley-

Lieb algebra, which we denote by Chom(𝑛)G
𝑅

. Specifically, Chom(𝑛)G
𝑅

is the category of G -graded

𝐻𝑛-modules all of whose entries come from flat diskular tangles (see Figure 1.2 for an example of

a non-flat diskular tangle). The algebra 𝐻𝑛 is the 𝑛th unified arc algebra; we review Khovanov’s arc

algebras in §2.2.2 and unified arc algebras in §3.2. The notation “Chom” is meant to impress that

we think of this category like the category “Kom” of [BN05], but with chronological cobordisms

present. The notation G refers to the new grading essential to this thesis; we defer an introduction

to G momentarily. The G -grading determines an integral 𝑞-grading (see §7.2.1). We let 𝐾𝑞0

denote the Grothendieck group which remembers only the 𝑞-grading and not the whole G -grading
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information. Then, Chom(𝑛)G
𝑅

categorifies 𝑇𝐿𝑛 in the sense that

𝐾
𝑞

0 (Chom(𝑛)G𝑅 ) � 𝑇𝐿𝑛

as Z[𝑞, 𝑞−1]-algebras; see Definition 8.1.2 of §8.1.

Specializing the ground ring 𝑅 by 𝑋,𝑌, 𝑍 = 1 defines a forgetful functor from Chom(𝑛)G
𝑅

to the category Kom(𝐻𝑛PMod), another categorification of 𝑇𝐿𝑛 compatible with even Khovanov

homology. This is the categorification of Khovanov, provided in [Kho02], using projective 𝐻𝑛-

modules. Indeed, we will see that the G -grading is not essential to the even case—the objects

of Kom(𝐻𝑛PMod) are not G -graded. Likewise, specializing by 𝑋, 𝑍 = 1 and 𝑌 = −1 induces a

forgetful functor from Chom(𝑛)G
𝑅

to what we’ll denote by Chom(𝑛)G𝑜 , a categorification of 𝑇𝐿𝑛

implicit in the work of Naisse and Putyra. We call these the even and odd forgetful functors, and

denote them by 𝜋𝑒 and 𝜋𝑜 respectively. Notice that the Z/2Z-reductions of both Kom(𝐻𝑛PMod) and

Chom(𝑛)G𝑜 agree; we denote by Kom(𝐻𝑛PMod)Z/2Z the corresponding category. The G -grading is

also nonessential to the Z/2Z-reduction. We’ll denote the corresponding forgetful functors by 𝔣.

Then 𝔣 ◦ 𝜋𝑒 = 𝔣 ◦ 𝜋𝑜; i.e., the diagram

Chom(𝑛)G
𝑅

Kom(𝐻𝑛PMod) Chom(𝑛)G𝑜

Kom(𝐻𝑛PModZ/2Z)

𝜋𝑜𝜋𝑒

commutes. The following is proven in Chapter 8 as a combination of Proposition 8.3.5 and Theorem

8.5.3.

Theorem A. There exist categorifications of the Jones-Wenzl projectors, called unified projectors,

𝑃𝑛 in Chom(𝑛)G
𝑅

, which are unique up to chain-homotopy equivalence. By a categorification, we

mean that [𝑃𝑛] ∈ 𝐾𝑞0 (Chom(𝑛)G
𝑅

) is equal to 𝑝𝑛 ∈ 𝑇𝐿𝑛 (for a complete description, see Definition

8.3.3). On one hand, 𝜋𝑒(𝑃𝑛) is a categorified projector in Kom(𝐻𝑛PMod), and 𝜋𝑒(𝑃𝑛) = 𝑃CK
𝑛 . On

the other, under the odd forgetful functor, 𝜋𝑜(𝑃𝑛) is a new categorification of the 𝑛th Jones-Wenzl

projector in Chom(𝑛)G𝑜 . They both agree after reduction to Z/2Z-coefficients: 𝔣(𝑃𝑜𝑛) = 𝔣(𝑃CK
𝑛 ).
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We will write 𝑃𝑜𝑛 to denote 𝜋𝑜(𝑃𝑛). We remark that Cooper and Krushkal’s projectors actually

live in Bar-Natan’s category Kom(𝑛), but it is known that this category is equivalent to Khovanov’s

categorification of 𝑇𝐿𝑛, Kom(𝐻𝑛PMod).

Following Section 6.4 of [NP20], we define a (diskular) tangle invariant Kh𝑞 in §7.2 which

specializes to unified Khovanov homology when the tangle is a closed link. The caveat is that Kh𝑞

lives in a category Chom(𝑛)𝑞
𝑅
; in general, Kh is not a tangle invariant in the category Chom(𝑛)G

𝑅
,

so we must “collapse” the G -grading to an integral 𝑞-grading (see §7.2.1—the term “collapse”

is slightly misleading). Regardless, by construction Kh𝑞 specializes to the even Khovanov tangle

invariant, denoted Kh𝑒𝑞, along with an odd Khovanov tangle invariant Kh𝑜𝑞.

In analogy with Section 5 of [CK12], the existence of these tangle invariants, together with

Theorem A, is immediately useful. Namely, as the Jones-Wenzl projectors are vital to the construc-

tion of the colored Jones polynomials 𝐽(𝐿; m)(𝑞), the existence of categorified projectors quickly

implies the existence of a categorification of the colored Jones polynomial. Using the new categori-

fication of the Jones-Wenzl projectors (compatible with odd Khovanov homology), we construct a

new, “odd” categorification of the colored Jones polynomial. First, if 𝐿 is an 𝑛-component link and

m = (𝑚1, . . . , 𝑚𝑛) ∈ N𝑛, denote by 𝑇m
𝐿

the result of taking 𝑚𝑖 parallel copies of the 𝑖th component

of 𝐿 for each 𝑖 = 1, . . . , 𝑛 and then removing a small diskular region from each of the original

components (see Figure 1.1). Then, set

Πm(𝐿) := (𝑃𝑚1 , . . . , 𝑃𝑚𝑛
) ⊗(𝐻𝑚1 ,...,𝐻𝑚𝑛 ) Kh𝑞(𝑇m

𝐿 )

where each of the 𝑃𝑚𝑖
is viewed as an object of Chom(𝑚𝑖)

𝑞

𝑅
. This has the effect of inserting

projectors into the tangle diagram 𝑇m
𝐿

; again, consult Figure 1.1 for a schematic. See §1.2 for

introductory remarks regarding this tensor product.

Let Πm
𝑒 (𝐿) and Πm

𝑜 (𝐿) denote the complexes obtained by specializing 𝑅 by 𝑋 = 𝑌 = 𝑍 = 1,

and 𝑋 = 𝑍 = 1, 𝑌 = −1 respectively. We call each of Πm(𝐿), Πm
𝑒 (𝐿), and Πm

𝑜 (𝐿) the unified, even,

and odd m-colored Khovanov complexes of 𝐿, respectively. Finally, we define the unified, even,

and odd m-colored Khovanov or link homologies of 𝐿 to be the homology of these complexes; we

denote them byH (𝐿; m),H𝑒(𝐿; m), andH𝑜(𝐿; m) respectively. We emphasize that we define the
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Figure 1.1 Schematic for Πm(𝐿), where 𝐿 is the 3-component link L11n314 of the Thistelthwaite
link table, and m = (3, 2, 2).

even and odd colored link homology by specializing 𝑅 before taking homology. Also, notice that

H (𝐿; m) has coefficients in 𝑅, whileH𝑒(𝐿; m) andH𝑜(𝐿; m) have coefficients in Z.

Let 𝜒𝑞 denote the graded Euler characteristic which records only the 𝑞-grading associated to a

particular G -grading or G -grading shift. Then, the following is proven in §8.6.

Theorem B. For any colored link (𝐿; m), the chain-homotopy equivalence type of the m-colored

Khovanov complex Πm(𝐿) is an invariant of (𝐿; m). Thus, the m-colored Khovanov homologies

H (𝐿; m),H𝑒(𝐿; m), andH𝑜(𝐿; m) are invariants of (𝐿; m). Moreover, the even and odd homologies

categorify the colored Jones polynomial in the sense that

𝜒𝑞(H𝑒(𝐿; m)) = 𝐽(𝐿; m)(𝑞) = 𝜒𝑞(H𝑜(𝐿; m)).

On one hand,H𝑒(𝐿; m) is the colored link homology of Cooper and Krushkal. However, there are

colored links (𝐿; m) for which H𝑜(𝐿; m) ≠ H𝑒(𝐿; m), so we obtain a new categorification of the

colored Jones polynomial.

To see that the two categorifications are distinct, we compute the unified Khovanov homology

of the full trace of 𝑃2 (see §8.4.1 and, in particular, Equation (8.4.2)), which coincides with the

unified colored link homology of the 2-colored unknot. We obtain the even and odd colored link

homologies of the 2-colored unknot by taking homology after specializing the complex of Equation

(8.4.1) to the even and odd settings. See Table 1.1 for the even (left) and odd (right) colored link

homologies of the 2-colored unknot, where we have expressed the homology in terms of quantum

grading 𝑞 and homological grading ℎ.
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𝑞

ℎ 0 −1 −2 −3 −4 −5

2 Z

0 Z

−2 Z

−4 Z/2
−6 Z Z

−8 Z/2
−10 Z

. . .

𝑞

ℎ 0 −1 −2 −3 −4 −5

2 Z

0 Z

−2 Z

−4 Z Z

−6 Z Z

−8 Z Z

−10 Z
. . .

Table 1.1 H𝑒(𝑈; 2) and H𝑜(𝑈; 2), respectively, where ℎ is homological grading and 𝑞 is quantum
grading

Interestingly, the 2-colored unknot has no torsion. However, using computations provided by

Schütz (see Theorem 8.2 and Figure 9 of [Sch22]), the odd colored homology of the 3-colored

unknot, H𝑜(𝑈; 3), contains Z/3Z-torsion, whereas H𝑒(𝑈; 3) contains no Z/3Z-torsion. Finally,

note that the graded Euler characteristics of both sides agree.

1.2 A gluing theorem for diskular tangles

The majority of this thesis is devoted to developing a framework for the construction and

calculation of unified projectors. This will entail setting up a tangle theory that is both compatible

with unified Khovanov homology and will also allow for a very flexible notion of composition

for tangles. Thankfully, the work of Naisse and Putyra [NP20] (to which we will keep returning)

accomplishes the former goal—thus, our goal is a generalization of their work which allows for this

“more flexible gluing property.”

To be clear, recall that Khovanov’s theory for knots and links has been extended to tangles via

at least two methods, by both Khovanov [Kho02] and Bar-Natan [BN02, BN05] (see Chapter 2 for

a review). In the former, Khovanov extended his work to tangles with an even number of endpoints,

showing that the homotopy type of the complex he associates to each tangle is an invariant of the

tangle. Furthermore, for each tangle 𝑇 , the complex Kh(𝑇) has an interpretation as a graded dg-

bimodule over the so-called arc algebras, 𝐻𝑛. Paramount among the properties of these bimodules

is the gluing result, which states that, for stackable tangles 𝑇 and 𝑆,

Kh(𝑇) ⊗𝐻𝑛 Kh(𝑆) � Kh(𝑇𝑆).
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While Khovanov and Bar-Natan were able to describe an up-to-homotopy invariant complex

associated to a tangle soon after the discovery of Khovanov homology, an analogue for odd

Khovanov homology remained elusive for thirteen years after its discovery. Our work will employ

the first known solution, provided by Naisse and Putyra in [NP20]. Before detailing their solution,

we remark that, in [Vaz20], Vaz constructed a supercategory and derived from it a homological

invariant of tangles which supercategorified the Jones polynomial. While he proved that his

invariant was distinct from even Khovanov homology, it was not evident that his theory was

isomorphic to odd Khovanov homology when restricted to links until the recent work of Schelstraete

and Vaz in [SV23]. There, Schelstraete-Vaz provided another lift of odd Khovanov homology to

tangles (indeed, their work succeeded in providing the first representation theoretic construction of

odd Khovanov homology) which coincided with the “not even Khovanov homology” of [Vaz20].

Naisse and Putyra conjectured that their tangle invariant is isomorphic to Vaz’s, and thus to

Schelstraete-Vaz’s, but this remains an open question.

Naisse and Putyra’s lift of odd Khovanov homology to tangles [NP20] involves the introduction

of objects called grading categories which allow one to define categories of (dg-) bimodules graded

by a selected grading category. The grading category for the problem at hand is a category G whose

morphisms are given by a pair of a flat tangle (with even inputs and even outputs) and an element

of Z × Z. Viewing the unified arc algebra as a G-graded algebra, 𝐻𝑛 becomes graded-associative

(associativity fails before this change; see §3.2 and 3.3, and [NV18] for more detail). In the context

of grading categories, it is more difficult to define what is meant by a grading shift. In order to

accomplish this, Naisse and Putyra implement shifting systems which can be assigned to a grading

category; in the case of G, a shifting system is provided by a pair of a chronological cobordism and

a shift in the Z × Z-grading. See §3.3 for a more thorough introduction to grading categories and

shifting systems.

For Naisse and Putyra, all this work meant that one could mimic the constructions of Khovanov

in [Kho02] in a graded-associative context, yielding a tangle version of unified Khovanov homology

which respects the gluing property. Continuing the analogy, the goal of the majority of this thesis
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is to provide a generalization of the gluing result of [NP20] in the spirit of Bar-Natan’s canopolies

[BN05] or of Jones’s planar algebras [Jon22]. While the extension is minor and well known in the

even setting (see a description in Section 4 of [LLS22]), realizing the analogous result in the odd

setting, in this thesis, means adapting the flat tangles of Naisse and Putyra to planar arc diagrams.

In particular, the grading category G is upgraded to what we call a grading multicategory, denoted

G . Then, the work of Naisse and Putyra provide us with a roadmap for proving what we refer to

as “multigluing,” Theorem 6.2.4. The following is a statement of multigluing in lesser generality

than we prove it. Recall that F is the unified chronological TQFT.

Theorem C. Suppose 𝑇 is a diskular tangle of type (𝑚1, . . . , 𝑚𝑘 ; 𝑛) (see Definition 4.0.1) and 𝑇𝑖 is

a tangle diagram in a disk with 2𝑚𝑖 points on its boundary for each 𝑖 = 1, . . . , 𝑘 . Then there is an

isomorphism (
F (𝑇1), . . . , F (𝑇𝑘 )

)
⊗(𝐻𝑚1 ,...,𝐻𝑚𝑘 ) F (𝑇) � F (𝑇(𝑇1, . . . , 𝑇𝑘 )).

The notation ⊗(𝐻𝑚1 ,...,𝐻𝑚𝑘 ), as well as the map inducing this isomorphism, is described in depth

in Chapter 4. The idea of this theorem is that, given a tangle with some holes punched out,

and compatible tangles 𝑇1, . . . , 𝑇𝑘 , we can define a tensor product so that some tensor product of

the dg-modules associated to 𝑇1, . . . , 𝑇𝑘 (denoted by (𝑇1, . . . , 𝑇𝑘 )) tensored with the multimodule

associated to 𝑇 is isomorphic (as G -graded dg-modules) to the dg-module associated to 𝑇 filled by

the tangles 𝑇1, . . . , 𝑇𝑘 . See Figure 1.2.

1.3 Other applications

While our main motivation for this thesis is a proof of existence for unified projectors and a

new categorification of the colored Jones polynomial, there are other notable benefits of a more

flexible gluing theorem; we will describe a few in our paper. To start, we can use Theorem 6.2.4 to

define operations on G -graded dg-modules (e.g., a vertical stacking operation ⊗, juxtaposition ⊔,

and a partial trace Tr) in exactly the same way as [SW24], see §8.1. Defining these operations is

essential as, without them, we cannot define categorified projectors. Of particular interest are our

lifts of well-known adjunction statements provided by Hogancamp [Hog20, Hog19].
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Figure 1.2 Multigluing schematic. Here, we assume 𝑇1, 𝑇2, and 𝑇3 are each tangles in disks with 4
points on their boundary.

Theorem 8.1.5. If 𝐴 and 𝐵 are G -graded dg-modules coming from tangle diagrams on 𝑛 − 1 and

𝑛 strands respectively, then

Hom𝑛

Ñ
𝐴 ⊔ 1, 𝜑Å

B , (0,1)
ã𝐵é � Hom𝑛−1(𝐴,Tr(𝐵){−1, 0}).

See the statement of Theorem 8.1.5 found in Chapter 8 for more details. The notation Hom𝑛

denotes the complex of maps of homogeneous bidegree; see §5.3 and 6.1. Notice the G -grading

shift which is invisible to 𝑞-degree. We also obtain a more familiar statement, which we use in the

proof of uniqueness for unified projectors:

Hom𝑛(𝐴 ⊗ F (𝛿), 𝐵) � Hom𝑛(𝐴, 𝐵 ⊗ F (𝛿∨))

where 𝛿 is a flat tangle. It comes as a corollary of another familiar “duality” statement; see Theorem

8.2.3.

We remark that, in §8.5, we construct 𝑃𝑛 as arising from an infinite torus braid, as in [Roz14]

and Section 5 of [SW24]. This description awards us with another, inductive description of 𝑃𝑛 as a

filtered chain complex, inducing a spectral sequence. Explicitly, if 𝑃𝑛 and 𝑃𝑛−1 are projectors, we
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have that

𝑃𝑛 =

𝑃𝑛−1

· · ·

· · ·
...

where the wrap-around repeats indefinitely. It follows that 𝑃𝑛 is the colimit of a filtered chain

complex of the following form.

𝑃𝑛−1

· · ·

· · ·

𝑃𝑛−1

· · ·

· · ·

· · ·
𝑃𝑛−1

· · ·

· · ·

𝑃𝑛−1

· · ·

· · ·

· · ·

The filtration on 𝑃𝑛 induces one on its full trace, and using results of §8.3, we conclude that

Hom𝑛(𝑃𝑛, 𝑃𝑛) is a filtered complex. We will investigate the associated graded of this filtration in

future work.

1.4 Future goals

Further motivation for our work was provided by some questions left unanswered in this thesis.

We conclude the introduction by outlining a few of them.

Periodicity of projectors and a GOR conjecture

We note (see Corollary 8.3.7) that the existence of unified projectors (Theorem 8.5.3), together

with an adjunction statement (Theorem 8.1.5), implies that

𝐻∗Hom𝑛(𝑃𝑛, 𝑃𝑛) � 𝑞−𝑛H (𝑈; 𝑛). (1.4.1)

In [Hog19], Hogancamp uses the specialization of Equation (1.4.1) to the even setting in order

to construct particular elements 𝑈𝑛 ∈ Hom𝑛(𝑃CK
𝑛 , 𝑃CK

𝑛 ) to make substantial progress toward a

conjecture of Gorsky-Oblomkov-Rasmussen [GOR13, GORS14]. The chain maps 𝑈𝑛 take the

form 𝑡2−2𝑛𝑞2𝑛𝑃CK
𝑛 → 𝑃CK

𝑛 and satisfy Cone(𝑈𝑛) ≃ 𝑄𝑛 (for a particular complex 𝑄𝑛), showing

that 𝑃CK
𝑛 is a periodic chain complex built from copies of 𝑄𝑛. Interestingly, in [Sch22], Schütz

computes the first few odd projectors 𝑃𝑜2 and 𝑃𝑜3 algorithmically and shows that, while odd 𝑃𝑜2 is
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also periodic of period 2, odd 𝑃𝑜3 is periodic of period 8, unlike even 𝑃CK
3 which has period 4 (cf.

Section 4.4 of [CK12]). We hope to use results of this thesis to prove that 𝑃𝑛 remains periodic in

the unified and odd settings, and to determine the period of 𝑃𝑛 for arbitrary 𝑛.

Odd Khovanov spectra for tangles

The idea for generalizing the work of Naisse-Putyra via dg-multimodules associated to diskular

tangles came largely from observations of the utility of spectral multimodules in the work of

Lawson-Lipshitz-Sarkar [LLS23, LLS22] and Stoffregen-Willis [SW24]. Now, an odd (indeed,

unified) Khovanov homotopy type is known [SSS20], but it has yet to be lifted to the setting of

tangles—we hope that our work might be melded with that of [LLS23] and [SSS20] to produce a

unified homotopy type for tangles. If this is accomplished, it is also our hope that the work here

will allow for the arguments of [LLS22] to lift, proving that homotopy functoriality holds in higher

generality. It is also interesting to note that the spectral projector on three strands of [SW24] is

periodic of period 8, like the odd projector on three strands of [Sch22], but unlike the three-stranded

even projector.

Investigating functoriality

The last two chapters in this Thesis are addenda regarding the investigation of functoriality

for odd Khovanov homology. In the fall of 2024, Migdail and Wehrli [MW24] gave the first

proof that odd Khovanov homology is functorial up-to-sign, without passing to a tangle theory. In

forthcoming work [Spy25], introduced in Chapter 9, we note that there is a natural definition of a

C -graded bar resolution and Hochschild homology for C -graded algebras. Using this result, we

may mimic Khovanov’s proof of functoriality [Kho02] (see [LLS22] for an excellent outline) in the

unified setting to obtain a second proof of up-to-unit functoriality for unified Khovanov homology,

and thus up-to-sign functoriality for odd Khovanov homology.

Perhaps more interesting (especially if aiming for a Lasagna-type invariant coming from a

functorial invariant of links in 𝑆3 [MWW22, MWW24]) is the development of a functorial “oriented

model” [Bla10] for odd Khovanov homology. Such a model is provided in [SV23], but the question

of functoriality remains open. In forthcoming joint work with Matthew Stoffregen [SS25], we
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consider an alternative approach to obtaining a functorial-with-signs model for odd Khovanov

homology, using the existence of a spectral sequence from odd Khovanov homology to plane Floer

homology [Dae15] (the latter is known to be functorial). Indeed, in [SS25], we prove a conjecture of

Migdail and Wehrli from [MW24]: that odd Khovanov homology any 2-knot 𝜁 counts the number

of spin𝑐-structures on the branched double cover of 𝜁 branched along 𝑆4. We omit a discussion of

our work from this thesis.

1.5 Outline

Chapters 2 and 3 of this thesis are preparatory and intended as introductions for the uninitiated;

experts should feel free to skip them. In Chapter 2, we start by recalling the definition of the

Temperley-Lieb algebra and its special elements, the Jones-Wenzl projectors. Then, we recall basic

features of the categorifications of𝑇𝐿𝑛 by both of Bar-Natan [BN02, BN05] and Khovanov [Kho02].

Finally we review some facts about the first categorification of Jones-Wenzl projectors, following

[CK12]. Chapter 3 is devoted to reviewing some of the work of Putyra regarding categories of

chronological cobordisms [Put10, Put14]. We end Chapter 3 by presenting an outline of C-graded

structures, for a grading category C, as in [NP20]—the hope is that §3.3 might give the reader a

bird’s-eye view of the goals of Chapters 4, 5, and 6.

Chapters 4, 5, and 6 are the technical heart of this thesis, wherein we introduce grading multi-

categories, shifting 2-systems for those grading multicategories, and apply the general framework

constructed to prove multigluing, Theorem 6.2.4. Again, see §3.3 for a more complete outline.

In Chapter 7, we use multigluing to obtain an invariant of (diskular) tangles, slightly generalizing

a result of [NP20]. As in the cited paper, the grading system is, perhaps, too sensitive for the complex

associated to a (diskular) tangle diagram to be invariant under each of the Reidemeister moves (see

Lemmas 7.2.3, 7.2.4, and 7.2.6). However, it is invariant up to a grading shift in which the number

of saddles in the cobordism component is equal to the sum of the entries of the Z × Z component.

Hence, we can “collapse” the G -degree to an integral 𝑞-grading in to obtain a tangle invariant. We

remark that, however slight the generalization, the added flexibility is necessary for our final result

in §8.6 (additionally, we believe the differences in our proof to be notable).
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Finally, in Chapter 8, we define and prove the existence and uniqueness of categorifications

of the Jones-Wenzl projectors living in a category of G -graded dg-modules, specializing to the

projectors of [CK12], but also to “odd” projectors which, prior to this thesis, had only been

computed up to three or so strands (cf. [Sch22]). Other highlights of this section are the proofs of

the aforementioned duality and adjunction results, which we hope to be useful in future work. In

conclusion, we point out that the existence of unified projectors, together with multigluing and the

tangle invariant of Chapter 7, imply the existence of a unified colored link homology, specializing

to the colored link homology of, say, [CK12], but also to a new, “odd” categorification of the

colored Jones polynomial.

The final chapter is an addendum initiating further investigation into C-graded structures,

especially motivated by questions related to the functoriality of odd Khovanov homology, since

[MW24]. In Chapter 9, we provide a careful study of grading categories to develop a general theory

of Hochschild homology for algebras graded by grading categories. This chapter is a portion of the

forthcoming work [Spy25], in which we apply the general framework introduced here to the odd

arc algebras.
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CHAPTER 2

CLASSICAL CATEGORIFICATIONS OF 𝑇𝐿𝑛 AND PROJECTORS

In this chapter, we survey attributes of the even setting which we hope to lift—in one way or

another—to the odd setting. In §2.1, we briefly discuss the decategorified setting. In §2.2, we

recall the even categorifications of the Temperley-Lieb algebras due to Bar-Natan [BN05] and

Khovanov [Kho02]. We conclude by providing Cooper and Krushkal’s categorification of the

Jones-Wenzl projectors in §2.3, as we hope to compare their results with our work in §8.

2.1 Temperley-Lieb algebras and Jones-Wenzl projectors

The Temperley-Lieb algebras 𝑇𝐿𝑛 arise naturally as the𝑈𝑞(𝔰𝔩2)-equivariant endomorphisms of

𝑛-fold tensor powers of the fundamental representation of 𝑈𝑞(𝔰𝔩2). As a unital Z[𝑞, 𝑞−1]-algebra,

𝑇𝐿𝑛 is generated by 𝑛 elements 1𝑛, 𝑒1, . . . , 𝑒𝑛−1 subject to the relations

1. 𝑒𝑖𝑒 𝑗 = 𝑒 𝑗𝑒𝑖 if |𝑖 − 𝑗 | ≥ 2,

2. 𝑒𝑖𝑒𝑖±1𝑒𝑖 = 𝑒𝑖, and

3. 𝑒2
𝑖
= (𝑞 + 𝑞−1)𝑒𝑖.

The first relation is referred to as “distant commutativity.” We will make use of the quantum integer

notation

[𝑘] =
𝑞𝑘 − 𝑞−𝑘

𝑞 − 𝑞−1

so that, for example, the third relation can be rewritten 𝑒2
𝑖
= [2]𝑒𝑖.

𝑇𝐿𝑛 can be given a diagramatic description, where the generating elements are presented by

1𝑛 = · · · and 𝑒𝑖 = · · · · · ·

𝑖 𝑖 + 1

with multiplication given by top-to-bottom vertical stacking. Therefore, 𝑇𝐿𝑛 can be viewed as the

linear skein of the disk with 2𝑛 distinguished points on its boundary, where we regard this disk

as a square with 𝑛 marked points on the top and 𝑛 marked points on the bottom. It is in this way
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that every (𝑛, 𝑛)-tangle may be assigned an element of 𝑇𝐿𝑛; indeed, given an oriented tangle, the

relations

= 𝑞 − 𝑞2 and = 𝑞−2 − 𝑞−1

yield the Jones polynomial up to normalization.

In [Lic93], it was shown that the Witten-Reshetikhin-Turaev 3-manifold invariants ([Wit89,

RT91]) may be constructed combinatorially via the Kauffman bracket. Key ingredients of this

construction are the Jones-Wenzl projectors, which we recall now.

Definition 2.1.1. The Jones-Wenzl projectors, denoted by 𝑝𝑛, are particular elements of 𝑇𝐿𝑛,

defined by the recursion

𝑝1 = 11 and 𝑝𝑛+1 = (𝑝𝑛 ⊔ 1) −
[𝑛]

[𝑛 + 1]
(𝑝𝑛 ⊔ 1)𝑒𝑛−1(𝑝𝑛 ⊔ 1).

It is common to depict 𝑝𝑛 by a box

𝑝𝑛 = 𝑛

in which case the recursion appears as

1 = and 𝑛 + 1 = 𝑛 −
[𝑛]

[𝑛 + 1]
𝑛

𝑛

.

The Jones-Wenzl projectors are well-studied. They may be defined equivalently as the unique

elements of 𝑇𝐿𝑛 for which

(JW1) (𝑝𝑛 − 1𝑛) belongs to the algebra generated by {𝑒1, . . . , 𝑒𝑛−1}, and

(JW2) 𝑝𝑛𝑒𝑖 = 𝑒𝑖𝑝𝑛 = 0 for all 𝑖 = 1, . . . , 𝑛 − 1.

These properties immediately imply that the projectors are idempotents. One can also check that

upon taking the Markov closure of the projectors, the Kauffman bracket evaluates them as a quantum

integer:

⟨𝑝̂𝑛⟩ = [𝑛 + 1].
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The purpose of listing these well-known properties of the Jones-Wenzl projectors is that their

categorifications satisfy analogues in the categorified setting. We will use these properties fre-

quently in what follows.

2.2 Categorifications of the Temperley-Lieb algebra

We start by reviewing a construction of Bar-Natan [BN02, BN05] which categorifies 𝑇𝐿𝑛.

Consequently, we may determine the Khovanov complex for a tangle, which turns out to be a tangle

invariant up to homotopy. Afterwards, we describe another categorification of Khovanov, which

has a known analogue in the odd setting. In the broader context of this thesis, we wish to review

Bar-Natan’s categorification to motivate our grading multicategory G , defined in Chapter 4.

Recall that a pre-additive category C is a category such that

1. for every 𝑋,𝑌 ∈ ob(C), HomC(𝑋,𝑌 ) is an abelian group, and

2. morphism composition distributes over the abelian group’s addition rule.

Additionally, a monoidal category C is a category endowed with a functor ⊗ : C × C → C, a

distinguished object 1 ∈ ob(C), and natural isomorphisms 𝛼 (called the associator) and left- and

right-unitors 𝜆 and 𝜌 satisfying the triangle and pentagon identities.

Given a pre-additive category C, we may define the (split) Grothendieck group of C to be the

free abelian group generated by isomorphism classes in C, with the added relation that [𝐴 ⊕ 𝐵] =

[𝐴] + [𝐵]:

𝐾0(C) = Z⟨C⟩
/ [𝐴] = [𝐵] if 𝐴 � 𝐵

[𝐴 ⊕ 𝐵] = [𝐴] + [𝐵]

 .

It is common to take the Grothendieck group of pre-addivive monoidal categories—in this case,

the tensor product induces an algebra structure on 𝐾0(C).

For us, to categorify 𝑇𝐿𝑛 means to define a pre-additive monoidal category C for which

𝐾0(C) � 𝑇𝐿𝑛. Here is an outline of the construction provided by Bar-Natan.

Step 1: Let pre-Cob(𝑛) denote the cateory whose
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• objects are isotopy classes of formally 𝑞-graded Temperley-Lieb diagrams with 2𝑛 boundary

points, and

• Hom(𝑞𝑖𝐴, 𝑞 𝑗𝐵) is the free Z-module spanned by isotopy classes of orientable cobordisms

from 𝐴 to 𝐵.

Note that pre-Cob(𝑛) is pre-additive by definition. All of our cobordisms will be oriented upwards

(from bottom to top). It is also naturally monoidal via stacking in 𝑇𝐿𝑛. It is clear that if𝐶 : 𝐴→ 𝐵

and 𝐶′ : 𝐴′→ 𝐵′, then there is a cobordism 𝐶 ⊗ 𝐶′ : 𝐴 ⊗ 𝐴′→ 𝐵 ⊗ 𝐵′.

Definition 2.2.1. The degree of a cobordism 𝐶 : 𝑞𝑖𝐴→ 𝑞 𝑗𝐵 is the value

deg(𝐶) = deg𝑡(𝐶) + deg𝑞(𝐶)

where

(i) deg𝑡(𝐶) = 𝜒(𝐶) − 𝑛 is called the topological degree of 𝐶, and

(ii) deg𝑞(𝐶) = 𝑗 − 𝑖 is called the quantum degree of 𝐶.

It is common practice to fix 𝑞-gradings on the Temperley-Lieb elements so that deg(𝐶) is always

zero.

There are a few special cobordisms which we highlight here. Their frequent use necessitates

additional (but commonplace) notation.

(1) Cobordisms in this category may be decorated by dots, which correspond to hollow handle

attachments up to multiplication by 2.

=: 2 • = 2 •
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(2) Saddles will have the following shorthand.

=

Note that, for example

deg𝑡

Ñ
•

é
= 𝜒
Ä
𝑆1 ∨ 𝑆1

ä
− 1 = −2

since the dotted identity has the same homotopy type as the punctured torus, and

deg𝑡

Ñ é
= 𝜒
Ä
D2
ä
− 2 = −1.

Therefore, we will take dots to increase quantum degree 2 and saddles to increase quantum degree

1.

Step 2: Pass to the matrix category Mat(pre-Cob(𝑛)), whose objects are vectors of objects in

pre-Cob(𝑛) and whose morphisms are matrices of morphisms in pre-Cob(𝑛). Observing the

defining relations in 𝑇𝐿𝑛, to construct a category C for which 𝐾0(C) � 𝑇𝐿𝑛, the object represented

by ⃝ in C must be isomorphic to the sum of two empty objects in degree ±1:

⃝ � 𝑞−1 ∅ ⊕ 𝑞 ∅.

We accomplish this by defining delooping operations. Consider the morphisms

𝜑 : ⃝

à
•

í
−−−−−−−−−−→ 𝑞−1 ∅ ⊕ 𝑞 ∅

and

𝜓 : 𝑞−1 ∅ ⊕ 𝑞 ∅

Ö
•

è
−−−−−−−−−−−−−−−→ ⃝.
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We impose the isomorphism above by defining the relations implied by 𝜑 ◦ 𝜓 = idZ⊗Z and

𝜓 ◦ 𝜑 = id⃝. On one hand,

𝜑 ◦ 𝜓 =

à
•

•
• •

í
.

On the other,

𝜓 ◦ 𝜑 =
•
+ • .

In conclusion, we define Cob(𝑛) to be the quotient of pre-Cob(𝑛) by the relations

= 0, • = 1, •• = 0, and

•
+ • = .

The first three relations are called the sphere relations (referred to as S0, S1, and S2 respectively),

and the last relation is called the tube-cutting relation. Interestingly, the sphere with three dots does

not have an evaluation. The most general remedy is cosmetic, and it is treated as a free variable.

Explicitly, in Cob(𝑛), we declare a fourth sphere relation by setting

••• = 𝛼.

However, in what follows, we will take 𝛼 to be zero; that is, we will replace the last sphere relation

(S2) with the relation

•
• = 0.

Lemma 2.2.2. There is an isomorphism of Z[𝑞, 𝑞−1]-algebras

𝐾0(Cob(𝑛)) � 𝑇𝐿𝑛.

Proof. Multiplication by 𝑞 defines an endofunctor Cob(𝑛)→ Cob(𝑛), which in turn determines an

endomorphism on 𝐾0(Cob(𝑛)), making it a Z[𝑞, 𝑞−1]-algebra. Then the result is immediate. □
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Step 3: Finally, we’d like a way to assign to a tangle in the 3-ball with 2𝑛 marked points some

collection of objects in Cob(𝑛).

Definition 2.2.3. Let

Kom(𝑛) = Kom(Mat(Cob(𝑛)))

denote the category of partially bounded chain complexes of finite direct sums of objects in

Cob(𝑛). In this thesis, we allow complexes with unbounded negative homological degree in

keeping with [Hog19], but opposed to, for example, [CK12].

The tensor product of chain complexes extends ⊗ in Cob(𝑛) to Kom(𝑛): schematically,

𝐶 ⊗ 𝐷 =

(
· · · 𝐶2 𝐶1 𝐶0

)
⊗
(
· · · 𝐷2 𝐷1 𝐷0

)

= · · ·
𝐶2

𝐷0
⊕

𝐶1

𝐷1
⊕

𝐶0

𝐷2

𝐶1

𝐷0
⊕

𝐶0

𝐷1

𝐶0

𝐷0
.

Indeed, passing to the homotopy category of a pre-additive category does not change the

Grothendieck group up to isomorphism; see Section 2.7.1. of [CK12] for a full discussion.

Lemma 2.2.4. There is an isomorphism of Z[𝑞]J𝑞−1K-algebras

𝐾0(Kom(𝑛)) � 𝑇𝐿𝑛.

Let J𝑇K denote the complex corresponding to a tangle 𝑇 , obtained by the skein relations

r z
= 𝑞 𝑞2 and

r z
= 𝑞−2 𝑞−1

where the underlined term is in homological degree zero. For example,

u

w
v

}

�
~ = 𝑞−1 𝑞0

á
⊕

ë
𝑞

Ö è⊤ Ö è
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Notice that there is a free loop in homological grading zero, hence we may apply the delooping

operations to yield the complex

𝑞−1 𝑞−1 ⊕ 𝑞0 ⊕ 𝑞1 𝑞
𝐴⊤ 𝐵 (2.2.1)

where

𝐴⊤ =

Ç å⊤
◦ 𝜑 =

Ç
id

å⊤
and

𝐵 = 𝜓 ◦
Ç å

=

Ç
id
å
.

2.2.1 Chain homotopy lemmas

In [BN07], delooping was introduced alongside the following lemma from homotopy theory to

simplify computations in Khovanov homology.

Lemma 2.2.5 (Simultaneous Gaussian elimination). SupposeA is a pre-additive category, and let

𝐾∗ be an object of Kom(A) of the form

𝐴0 ⊕ 𝐶0 𝐴1 ⊕ 𝐵1 ⊕ 𝐶1 𝐴2 ⊕ 𝐵2 ⊕ 𝐶2 · · ·𝑀0 𝑀1 𝑀2

where 𝑀0 =

à
𝑎0 𝑐0

𝑑0 𝑓0

𝑔0 𝑗0

í
and 𝑀𝑖 =

à
𝑎𝑖 𝑏𝑖 𝑐𝑖

𝑑𝑖 𝑒𝑖 𝑓𝑖

𝑔𝑖 ℎ𝑖 𝑗𝑖

í
for all 𝑖 > 0. If 𝑎2𝑖 : 𝐴2𝑖 → 𝐴2𝑖+1 and

𝑒2𝑖1 : 𝐵2𝑖+1 → 𝐵2𝑖+2 are isomorphisms for all 𝑖 ≥ 0, then the chain complex 𝐾∗ is homotopy

equivalent to the complex

𝐶0 𝐶1 𝐶2 · · ·𝑄0 𝑄1 𝑄2

where


𝑄2𝑖 = 𝑗2𝑖 − 𝑔2𝑖𝑎

−1
2𝑖 𝑐2𝑖

𝑄2𝑖+1 = 𝑗2𝑖+1 − ℎ2𝑖+1𝑒−1
2𝑖+1 𝑓2𝑖+1

.

Proof. This is an application of the simpler “Gaussian elimination,” see [CK12]. □
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As an application, note that we may apply simultaneous Gaussian elimination to the complex

(2.2.1). The result is that the complex
s {

is homotopy equivalent (hereinafter written ≃) to the

chain complex 0 0 ; i.e., the complex J𝑇K is invariant, up to chain homotopy equivalence,

under Reidemeister II moves for tangles. The following is due to Bar-Natan.

Theorem 2.2.6 (Theorem 1 of [BN05]). The homotopy class of the complex J𝑇K regarded in

Kom(𝑛) is an invariant of the tangle 𝑇 .

To conclude this subsection, we note that there is a notion of a zero object in Kom(𝑛): we call

a chain complex 𝐾∗ contractible if 𝐾∗ ≃ 0. The following is well known.

Lemma 2.2.7 (Big collapse). A chain complex 𝐾∗ of contractible chain complexes is, itself,

contractible.

2.2.2 Khovanov’s arc algebras

Another categorification, provided by Khovanov [Kho02], is given by the category of complexes

of 𝐻𝑛-modules, where 𝐻𝑛 is the 𝑛th arc algebra, described below. These can be generalized to the

unified setting; see [NV18] for a thorough discussion. We will use arc algebras to describe odd

Khovanov complexes for tangles, following [Put14] and [NP20]. A large portion of this thesis is

devoted to providing a small generalization Naisse-Putyra’s construction, allowing one to perform

Bar-Natanesque computations in a particular category of 𝐻𝑛-modules.

Consider the Temperley-Lieb 2-category TL, whose

• objects are natural numbers,

• 1-morphisms HomTL(𝑚, 𝑛) are isotopy classes of crossingless tangles embedded in the

square with 2𝑚 marked points on the [0, 1]×{0} axis and 2𝑛marked points on the [0, 1]×{1}

axis, and

• 2-morphisms HomTL(𝑡, 𝑠) are cobordisms with corners from the crossingless tangle 𝑡 to 𝑠.
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Write 𝐵𝑛𝑚 = HomTL(𝑚, 𝑛). In the case that 𝑚 = 0, we write 𝐵𝑛 (respectively, 𝑛 = 0 is written 𝐵𝑚);

this is the collection of crossingless matchings of 𝑛 points fixed on the top axis (resp., 𝑚 on the

bottom axis). We will write |𝑎 | = 𝑛 for 𝑎 ∈ 𝐵𝑛. Composition of 1-morphisms is given by stacking:

𝐵
𝑝
𝑛 × 𝐵𝑛𝑚 → 𝐵

𝑝
𝑚 is given by (𝑠, 𝑡) ↦→ 𝑡𝑠. There is also a mirroring operation, · : 𝐵𝑛𝑚 → 𝐵𝑚𝑛 , which

flips tangles about the line [0, 1] × {1/2}.

Let 𝑎 ∈ 𝐵𝑚, 𝑏 ∈ 𝐵𝑛, and 𝑡 ∈ 𝐵𝑛𝑚. Then 𝑎𝑡𝑏 is a closed 1-manifold. Let 𝑠 ∈ 𝐵𝑝𝑛 and 𝑐 ∈ 𝐵𝑝.

Consider the cobordism

(𝑎𝑡𝑏)(𝑏𝑠𝑐)→ 𝑎(𝑡𝑠)𝑐

given by contracting symmetric arcs of 𝑏𝑏. We denote this cobordism by𝑊𝑎𝑏𝑐(𝑡, 𝑠). It is minimal

in the sense that its Euler characteristic is −|𝑏 |.

The last ingredient required for defining the arc algebra is Khovanov’s Frobenius TQFT. Let

𝑉 = Z⟨𝑣+, 𝑣−⟩ denote the free abelian group generated by 𝑣+ and 𝑣−, and impose a grading on 𝑉

by |𝑣+ | = 1 and |𝑣− | = −1. Consider the functor F𝑒 : Pre-Cob(0)→ ZMod defined as follows. On

objects,

F𝑒(⃝ ⊔ · · · ⊔ ⃝︸            ︷︷            ︸
𝑛

) = 𝑉⊗𝑛.

For morphisms, recall that any surface decomposes into a sequence of 2-dimensional 0-, 1- and

2-handles. There are two types of 1-handles, which we refer to as merges and splits; they are

evaluated by F𝑒 as listed below.

F𝑒

Ñ é
: 𝑉 ⊗ 𝑉 → 𝑉 =


𝑣+ ⊗ 𝑣+ ↦→ 𝑣+, 𝑣+ ⊗ 𝑣− ↦→ 𝑣−,

𝑣− ⊗ 𝑣− ↦→ 0, 𝑣− ⊗ 𝑣+ ↦→ 𝑣−,

F𝑒

Ñ é
: 𝑉 → 𝑉 ⊗ 𝑉 =


𝑣+ ↦→ 𝑣− ⊗ 𝑣+ + 𝑣+ ⊗ 𝑣−,

𝑣− ↦→ 𝑣− ⊗ 𝑣−.

Additionally, 0- and 2-handles, called births and deaths respectively, have the following evaluation
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by F𝑒.

F𝑒
( )

: Z→ 𝑉 =

®
1 ↦→ 𝑣+,

F𝑒
( )

: 𝑉 → Z =


𝑣+ ↦→ 0,

𝑣− ↦→ 1.

For example, a cylinder with a hole in it can be decomposed into a split followed by a merge.

Clearly, this maps 𝑣+ ↦→ 2𝑣− and 𝑣− ↦→ 0. So, altering Cob so that objects can be decorated by

dots, we have that

F𝑒

Ñ
•

é
: 𝑉 → 𝑉 =


𝑣+ ↦→ 𝑣−,

𝑣− ↦→ 0.

F𝑒 extends to Mat(Pre-Cob(𝑛)), and one can easily verify that F𝑒 satisfies the each of the sphere

and tube-cutting relations.

Let 𝑡 ∈ 𝐵𝑛𝑚. The arc space of 𝑡 is defined

F𝑒(𝑡) =
⊕

𝑎∈𝐵𝑚,𝑏∈𝐵𝑛

F𝑒(𝑎𝑡𝑏).

Given another tangle 𝑠 ∈ 𝐵𝑝𝑛 , define the composition map

𝜇[𝑡, 𝑠] : F𝑒(𝑎𝑡𝑏) ⊗ F𝑒(𝑏′𝑠𝑐)→ F𝑒(𝑎(𝑡𝑠)𝑐)

by 𝜇[𝑡, 𝑠] =


0 if 𝑏 ≠ 𝑏′

F𝑒(𝑊𝑎𝑏𝑐(𝑡, 𝑠)) if 𝑏 = 𝑏′

for 𝑏′ ∈ 𝐵𝑛 and 𝑐 ∈ 𝐵𝑝.

Definition 2.2.8. The arc algebra 𝐻𝑛 is the arc space

𝐻𝑛 = F (1𝑛) =
⊕

𝑎∈𝐵𝑚,𝑏∈𝐵𝑛

F𝑒(𝑎1𝑛𝑏)

with multiplication 𝜇[1𝑛, 1𝑛].
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It is more work, but the category of left 𝐻𝑛-modules provides another categorification of the

Temperley-Lieb algebra; see Section 5.2 of [Kho02] for details.

Lemma 2.2.9. There is an isomorphism of Z[𝑞, 𝑞−1]-algebras

𝐾0(𝐻𝑛PMod) � 𝑇𝐿𝑛 and 𝐾0(Kom(𝐻𝑛PMod)) � 𝑇𝐿𝑛.

for 𝐻𝑛PMod the category of projective 𝐻𝑛-modules.

2.3 Cooper-Krushkal projectors

The first categorification of Jones-Wenzl projectors was described by Cooper and Krushkal

in [CK12]. Their definition mirrors that of the Jones-Wenzl projectors, and they are uniquely

defined in Kom(𝑛) (that is, up to homotopy equivalence). Everything presented here still holds if

we replace Kom(𝑛) with Kom(𝐻𝑛PMod).

Definition 2.3.1. A negativiely graded chain complex (𝐶∗, 𝑑∗) ∈ Kom(𝑛) with degree zero differ-

ential and is called a Cooper-Krushkal projector if it satisfies the following axioms:

(CK1) 𝐶0 = 1𝑛 and the identity does not appear in any other homological degree.

(CK2) 𝐶∗ is contractible under turnbacks: for any 𝑒𝑖 ∈ 𝑇𝐿𝑛, 𝐶∗ ⊗ 𝑒𝑖 ≃ 𝑒𝑖 ⊗ 𝐶∗ ≃ 0.

The second axiom is referred to as “turnback killing.”

Notice that, by construction, if 𝐶 ∈ Kom(𝑛) is a Cooper-Krushkal projector, then [𝐶] ∈

𝐾0(Kom(𝑛)) � 𝑇𝐿𝑛 satisfies (JW1) and (JW2), so [𝐶] = 𝑝𝑛 ∈ 𝑇𝐿𝑛.

Like the Jones-Wenzl projectors, homotopy uniqueness of the Cooper-Krushkal projectors

follows from little work. The main tool is the following generalization of idempotence (whose

analogue also holds for Jones-Wenzl projectors).

Proposition 2.3.2. Suppose 𝐶 ∈ Kom(𝑚) and 𝐷 ∈ Kom(𝑛) are Cooper-Krushkal projectors with

0 ≤ 𝑚 ≤ 𝑛. Then

𝐶 ⊗ (𝐷 ⊔ 1𝑛−𝑚) ≃ 𝐶 ≃ (𝐷 ⊔ 1𝑛−𝑚) ⊗ 𝐶.
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Homotopy idempotence and uniqueness are then corollaries.

Proof. See Proposition 3.3 of [CK12]. □

The main theorem of [CK12] is the following.

Theorem 2.3.3 (Theorem 3.2 of [CK12]). For each 𝑛 > 0, there exists a chain complex𝐶 ∈ Kom(𝑛)

that is a Cooper-Krushkal projector.

We will write 𝑃CK
𝑛 to denote the 𝑛th Cooper-Krushkal projector (or a representative of it), so

that [𝑃CK
𝑛 ] = 𝑝𝑛. We represent Cooper-Krushkal projectors via numbered boxes, as we did the

Jones-Wenzl projectors. For example, here is a Jones-Wenzl projector when 𝑛 = 2:

2 = · · · 𝑞−5 𝑞−3 𝑞−1𝐶−4 𝐶−3 𝐶−2 𝐶−1

where

𝐶𝑖 =



𝑖 = −1

• − • 𝑖 = −2𝑘

• + • 𝑖 = −2𝑘 − 1

for all positive integers 𝑘 . It is straightforward to check that this is an element of Kom(𝑛), and that

it satisfies axioms (CK1) And (CK2).

This categorification succeeds in possessing many properties analogous to the original object.

In particular, if Tr𝑛 denotes the (complete) Markov trace applied to each entry and differential in

the chain complex, we have that the graded Euler characteristic of the homology of the trace of

each projector is a quantum integer; i.e.,

𝜒(𝐻∗(Tr𝑛(𝑃CK
𝑛 ))) = [𝑛 + 1].
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For example, it is also straightforward to verify that, for 𝑘 a positive integer and 𝛼 ≡ 0,

𝐻𝑛(Tr2(𝑃CK
2 )) =



𝑞2Z ⊕ Z 𝑛 = 0

0 𝑛 = −1

𝑞−4𝑘+2Z ⊕ 𝑞−4𝑘Z/2Z 𝑛 = −2𝑘

𝑞−4𝑘−2Z 𝑛 = −2𝑘 − 1

It is interesting that the homology of Tr𝑛(𝑃CK
𝑛 ) is not spanned only by classes which correspond to

coefficients of the graded Euler characteristic. This turns out to be the case for the projectors of

odd Khovanov homology as well. Moreover, the two homologies disagree (for example, there is no

torsion for the odd, 2-stranded projector) but their graded Euler characteristics coincide.
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CHAPTER 3

THE ODD SETTING: CHRONOLOGIES AND G-GRADED STRUCTURES

In this chapter, we provide a modern introduction to odd Khovanov homology. That is, rather

than detailing the projective TQFT of Ozsváth-Rasmussen-Szabó, we discuss Putyra’s 2-category

of chronological cobordisms and its linearlization over the ground ring 𝑅 := Z[𝑋,𝑌, 𝑍±1]/(𝑋2 =

𝑌2 = 1) in §3.1. In §3.2, we attempt to mimic the constructions of [Kho02], as outlined briefly in

§2.2.2. Here, we discover the challenges motivating the next few chapters of our work: unified arc

algebras are not associative in this context, and the composition maps 𝜇 are not degree-preserving.

Finally, in §3.3, we give a description of the solution posed by Naisse and Putrya in [NP20]. We

hope that §3.3 serves as a roadmap and extended outline of Chapters 4 and 5.

3.1 Chronological cobordisms and changes of chronology

First introduced by Putyra [Put10, Put14], we will proceed using the definition of chronological

cobordisms provided by Schütz in [Sch22].

Definition 3.1.1. A chronological cobordism between closed 1-manifolds 𝑆0 and 𝑆1 is a cobordism

𝑊 between 𝑆0 and 𝑆1 embedded into R2 × [0, 1] such that

(i) there is an 𝜖 > 0 such that

𝑊 ∩ (R2 × [0, 𝜖]) = 𝑆0 × [0, 𝜖] and 𝑊 ∩ (R2 × [1 − 𝜖, 1]) = 𝑆1 × [1 − 𝜖, 1]

and

(ii) the height function 𝜏 : 𝑊 → [0, 1] given by projection onto the third coordinate is a Morse

function for which #(𝜏−1({𝑐}) ∩ 𝐶) = 1 whenever 𝑐 is a critical value of 𝜏 and 𝐶 is the

collection of critical points for 𝜏. We call such a Morse function separative.

Next, a framing on a chronological cobordism is a choice of orientation of a basis for each

unstable manifold 𝑊𝑝 ⊂ 𝑊 , for 𝑝 a critical point of 𝜏 of index 1 or 2. We will assume all

chronological cobordisms to be framed. Since a framing is determined by a choice of tangent vector

on each unstable manifold determined by a critical point, it is standard to visualize the framing by
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an arrow through critical points. We’ll adapt the 2-dimensional notation to 1-dimensional diagrams

appropriately; for example,

= and = .

Naturally, two chronological cobordisms are considered equivalent if they can be related by a

diffeotopy 𝐻𝑡 , 𝑡 ∈ [0, 1], so that projection of 𝐻𝑡(𝑊) onto the third coordinate is a separative Morse

function at each time 𝑡. This is a much more strict equivalence relation than that of the even case.

To account for this, Putyra introduces the following action/relation. A change of chronology is a

diffeotopy 𝐻𝑡 such that projection of 𝐻𝑡(𝑊) onto the third coordinate is a generic homotopy of

Morse functions, together with a smooth choice of framings on 𝐻𝑡(𝑊). Two changes of chronology

between equivalent cobordisms are equivalent if they are homotopic in the space of oriented Igusa

functions after composing with the equivalences of cobordisms; for a thorough description, consult

[Put14]. We write 𝐻 : 𝑊1 ⇒ 𝑊2 for a change of chronology 𝐻 between chronological cobordisms

𝑊1 and𝑊2.

Definition 3.1.2. A change of chronology 𝐻 on a chronological cobordism 𝑊 is called locally

vertical if there is a finite collection of cylinders {𝐶𝑖}𝑖 in R2 × 𝐼 such that 𝐻 is the identity on

𝑊 −⋃𝑖 𝐶𝑖.

We will use locally vertical changes of chronology frequently. Their main utility stems from

the fact that they are unique up to homotopy.

Proposition 3.1.3 (Proposition 4.4 of [Put14]). If 𝐻 and 𝐻′ are locally vertical changes of chronol-

ogy (with respect to the same cylinders) with the same source and target, then they are homotopic

in the space of framed diffeotopies.

There are two different ways of composing changes of chronology. First, given a sequence

of cobordisms 𝐴
𝑊−→ 𝐵

𝑊 ′−−→ 𝐶, and changes of chronology 𝐻 on 𝑊 and 𝐻′ on 𝑊′, there is a

change of chronology 𝐻′ ◦ 𝐻 on 𝑊′ ◦ 𝑊 . Second, given a sequence of changes of chronology

𝑊
𝐻
==⇒ 𝑊′

𝐻′
==⇒ 𝑊′′, we will denote their composition by 𝐻′ ★𝐻.
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On the other hand, we may completely describe the elementary chronological cobordisms

between closed 1-manifolds:

with an additional twisting (transposing) identity cobordism. Together, these observations im-

ply that we may decompose all changes of chronology into sequences of elementary changes of

chronologies. These are exactly those pairs of cobordisms described in the commutation chart

(Figure 2) of [ORS13].

At this point, we have defined a 2-category whose objects are closed 1-manifolds, with chrono-

logical cobordisms as 1-morphisms and changes of chronology as 2-morphisms. This 2-category

is simplified by the following procedure: for 𝑅 = Z[𝑋,𝑌, 𝑍±1]/(𝑋2 = 𝑌2 = 1), define the map 𝜄

which assigns to each elementary change of chronology a monomial, as pictured in Figure 3.1.1

Indeed,

𝜄(𝐻′ ◦ 𝐻) = 𝜄(𝐻′)𝜄(𝐻) and 𝜄(𝐻′ ★𝐻) = 𝜄(𝐻′)𝜄(𝐻)

so 𝜄 assigns to every change of chronology a monomial in 𝑅; for more on the map 𝜄 (e.g., well-

definedness and multiplicativity), see [Put14].

Finally, as in the even case, we will eventually allow chronological cobordisms to be decorated

by finitely many dots as long as each dot never shares the same level set as another dot or critical

point. Precisely, let 𝐶 denote the critical points of 𝜏 and 𝐷 denote the dots on 𝑊 . Both are

taken to be finite. Then, a dotted chronological cobordism is a chronological cobordism for which

𝜏(𝑥) ≠ 𝜏(𝑦) whenever 𝑥, 𝑦 ∈ 𝐶 ∪ 𝐷 are distinct. In [Put14], Putyra shows that if 𝐻 is a change of

chronology which does nothing but move one dot past another with respect to the Morse function,

then 𝜄(𝐻) = 𝑋𝑌 .

A subtle but important distinction of the setup is the degree; define the Z × Z-degree of a

cobordism𝑊 by

|𝑊 | = (#births − #merges − #dots, #deaths − #splits − #dots).
1For those elementary cobordisms 𝐻 with 𝜄(𝐻) = 𝑍 , it is assumed that 𝐻 takes a merge followed by a split to a

split followed by a merge. If the opposite is true, 𝜄(𝐻) = 𝑍−1.

31



𝑋 𝑌

𝑍 1 𝑋𝑌

Figure 3.1 This is the collection of elementary changes of chronologies, together with their eval-
uation by 𝜄. Notice that taking 𝑋 = 𝑍 = 1 and 𝑌 = −1 yields the commutation chart of [ORS13].
Framings are omitted if evaluation by 𝜄 does not depend on them.

Note that the sum of the entries of |𝑊 | is the topological degree det𝑡(𝑊) from §2.2. Moreover,

define 𝜆 : (Z × Z)2 → 𝑅 to be the bilinear map given by

𝜆((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 𝑋𝑥1𝑥2𝑌 𝑦1𝑦2𝑍𝑥1𝑦2−𝑦1𝑥2 .

Suppose 𝐻 is a change of chronology moving two cobordisms𝑊 and𝑊′ past one another; e.g., 𝐻

looks like

𝑊′

𝑊 𝐻
===⇒

𝑊′

𝑊
or

𝑊′

𝑊 𝐻
===⇒

𝑊′

𝑊
.

Then,

𝜄(𝐻) = 𝜆
Ä
|𝑊 | ,

��𝑊′��ä .
Note that this agrees with and generalizes the statement about changes of chronologies which move

dots past one another. Putyra also provides the following, extremely helpful change of framing
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relations.

= 𝑋 = 𝑌 = 𝑌

In summary, we let ChCob•(0) (or just ChCob•) denote the graded monoidal category whose

• objects are formally Z × Z-graded closed 1-manifolds (i.e., a pair of a closed 1-manifold and

an element of Z × Z) and

• Hom((𝑥1, 𝑦1)𝐴, (𝑥2, 𝑦2)𝐵) is the free Z-module spanned by isotopy classes of (dotted) chono-

logical cobordisms𝑊 from 𝐴 to 𝐵 with degree

|𝑊 | = (𝑥1 − 𝑥2, 𝑦1 − 𝑦2),

modulo the change of framing and change of chronology relations: 𝑊′ = 𝜄(𝐻)𝑊 for each

change of chronology 𝐻 : 𝑊 ⇒ 𝑊′.

3.2 Unified arc algebras

In this section, we consider the unified arc algebras 𝐻𝑛 over 𝑅, as provided by [NV18] and

[NP20] (there, referred to as “covering” arc algebras). This is done in spirit of [Kho02], as in

§2.2.2, using the “chronological TQFT” provided in [Put14]. There are a number of challenges

presented by this construction: for example, the unified arc algebras are non-associative, and the

composition map 𝜇[𝑡, 𝑠] do not preserve Z×Z-degree. The solution we study, provided in [NP20],

is to use the structure of a grading category, described in §3.3.

We must be a bit more careful when setting up the unified arc algebras. Still, for 𝑎 ∈ 𝐵𝑚,

𝑏 ∈ 𝐵𝑛, and 𝑡 ∈ 𝐵𝑛𝑚, 𝑎𝑡𝑏 is a closed 1-manifold; for 𝑠 ∈ 𝐵𝑝𝑛 and 𝑐 ∈ 𝐵𝑝, we can still define a

cobordism

(𝑎𝑡𝑏)(𝑏𝑠𝑐)→ 𝑎(𝑡𝑠)𝑐

but we specify a chronology when we do so. The cobordism is still obtained by contracting

symmetric arcs of 𝑏𝑏, and we fix the chronology by taking saddles from right-to-left and choosing

the “upwards” framing. This is the chronological cobordism denoted by𝑊𝑎𝑏𝑐(𝑡, 𝑠).
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Next, define the “chronological” TQFT F : ChCob• → 𝑅Mod. Set

F (⃝ ⊔ · · · ⊔ ⃝︸            ︷︷            ︸
𝑛

) = 𝑉⊗𝑛.

where 𝑉 = 𝑅⟨𝑣+, 𝑣−⟩ and, now in this Z × Z-graded landscape, we set

deg𝑅(𝑣+) = (1, 0) and deg𝑅(𝑣−) = (0,−1).

so that deg𝑅(𝑢) = (#𝑣+(𝑢),−#𝑣−(𝑢)) where 𝑣±(𝑢) denotes the collection of copies of 𝑣± appearing

in 𝑢. Finally, on elementary cobordisms, set

F

Ñ é
: 𝑉 ⊗ 𝑉 → 𝑉 =


𝑣+ ⊗ 𝑣+ ↦→ 𝑣+, 𝑣+ ⊗ 𝑣− ↦→ 𝑣−,

𝑣− ⊗ 𝑣− ↦→ 0, 𝑣− ⊗ 𝑣+ ↦→ 𝑋𝑍𝑣−, and

F

Ñ é
: 𝑉 → 𝑉 ⊗ 𝑉 =


𝑣+ ↦→ 𝑣− ⊗ 𝑣+ + 𝑌𝑍𝑣+ ⊗ 𝑣−,

𝑣− ↦→ 𝑣− ⊗ 𝑣−

F
( )

: 𝑅 → 𝑉 =

®
1 ↦→ 𝑣+,

F
Å ã

: 𝑉 → 𝑅 =


𝑣+ ↦→ 0,

𝑣− ↦→ 1.

To obtain a complete description on elementary chronological cobordisms, we apply the change of

framing local relations and map the twisting cobordism to a symmetry 𝜏, defined by 𝜏(𝑎 ⊗ 𝑏) =

𝜆(deg𝑅(𝑎), deg𝑅(𝑏))𝑏 ⊗ 𝑎. For more on 𝜏, see Section 3.3 of [NP20]; in addition, see Section 10

of [Put14] for a definition of chronological Frobenius systems.

Now, notice that a cylinder with a hole evaluates to either
𝑣+ ↦→ 𝑍(𝑋 + 𝑌 )𝑣−

𝑣− ↦→ 0
or


𝑣+ ↦→ 𝑍(𝑋𝑌 + 1)𝑣−

𝑣− ↦→ 0

34



depending on the framing. Therefore, unfortunately, we are not able to think of dots as 1/2 of a

hole anymore; we define F on dots by setting

F

Ñ
•

é
: 𝑉 → 𝑉 =


𝑣+ ↦→ 𝑣−,

𝑣− ↦→ 0.

as before. Again, it is easy to check that F observes the sphere and tube cutting relations.

Finally, for 𝑡 ∈ 𝐵𝑛𝑚, the unified arc space is defined

F (𝑡) =
⊕

𝑎∈𝐵𝑚,𝑏∈𝐵𝑛

F (𝑎𝑡𝑏).

Given another tangle 𝑠 ∈ 𝐵𝑝𝑛 , define the composition map

𝜇[𝑡, 𝑠] : F (𝑎𝑡𝑏) ⊗ F (𝑏′𝑠𝑐)→ F (𝑎(𝑡𝑠)𝑑)

by 𝜇[𝑡, 𝑠] =


0 if 𝑏 ≠ 𝑏′

F (𝑊𝑎𝑏𝑐(𝑡, 𝑠)) if 𝑏 = 𝑏′

where 𝑏′ ∈ 𝐵𝑛 and 𝑐 ∈ 𝐵𝑝. Note that, as promised, 𝜇[𝑡, 𝑠] does not preserve Z × Z-degree.

Definition 3.2.1. The unified arc algebra, which we still denote 𝐻𝑛, is the unified arc space

𝐻𝑛 = F (1𝑛) =
⊕

𝑎∈𝐵𝑚,𝑏∈𝐵𝑚

F (𝑎1𝑛𝑏)

with multiplication 𝜇[1𝑛, 1𝑛].

3.3 A brief outline of C-graded structures

In this section, we review the motivation for and construction of G-graded 𝑅-modules given in

[NP20]. In the following chapters, we provide a thorough description of a slight generalization of

the procedure introduced here.

It has been shown (cf. [NV18] Proposition 3.2) that the multiplication as defined above is not

associative in the unified arc algebra. This presents the main difficulty—in [Kho02], Khovanov

provides that

F (𝑡) ⊗𝐻𝑛 F (𝑠) � F (𝑡𝑠)
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declaring that (𝑢′ · ℎ) ⊗ 𝑢 = 𝑢′ ⊗ (ℎ · 𝑢). The assumption that multiplication in 𝐻𝑛 is associative is

implicit here.

On the other hand, the failure of associativity is controlled by the cobordisms involved. Explic-

itly, observe the square

𝜇𝑎𝑏𝑐[𝑡, 𝑡′](𝑥, 𝑦) ∈ F𝑐(𝑎𝑡𝑡′𝑐)

𝑧 ∈ F𝑐(𝑐𝑡′′𝑑)

𝑥 ∈ F𝑐(𝑎𝑡𝑏)

𝑦 ∈ F𝑐(𝑏𝑡′𝑐)

𝑧 ∈ F𝑐(𝑐𝑡′′𝑑)

𝜇𝑎𝑐𝑑[𝑡𝑡′, 𝑡′′](𝜇𝑎𝑏𝑐[𝑡, 𝑡′](𝑥, 𝑦), 𝑧)

𝜇𝑎𝑏𝑑[𝑡, 𝑡′𝑡′′](𝑥, 𝜇𝑏𝑐𝑑[𝑡′, 𝑡′′](𝑦, 𝑧))
∈ F𝑐(𝑎𝑡𝑡′𝑡′′𝑑)

𝑥 ∈ F𝑐(𝑎𝑡𝑏)

𝜇𝑏𝑐𝑑[𝑡′, 𝑡′′](𝑦, 𝑧) ∈ F𝑐(𝑏𝑡′𝑡′′𝑑)

In general,

𝜇𝑎𝑐𝑑[𝑡𝑡′, 𝑡′′] ◦ (𝜇𝑎𝑏𝑐[𝑡, 𝑡′] ⊗ 1𝑧) ≠ 𝜇𝑎𝑏𝑑[𝑡, 𝑡′𝑡′′] ◦ (1𝑥 ⊗ 𝜇𝑏𝑐𝑑[𝑡′, 𝑡′′]),

but the failure is witnessed by the degree of the cobordisms involved: 𝑊𝑎𝑐𝑑(𝑡𝑡′, 𝑡′′) and𝑊𝑎𝑏𝑐(𝑡, 𝑡′),

and𝑊𝑎𝑏𝑑(𝑡, 𝑡′𝑡′′) and𝑊𝑏𝑐𝑑(𝑡′, 𝑡′′). The degree of elements also have effect.

In the literature, Majid and Albuquerque [AM99] show that the octonions O, while non-

assoicative, admit a grading by the group (Z/2Z)3, and the gradings witness the failure of associa-

tivity. That is, they show that O is quasi-associative; in general, a 𝐺-graded K-algebra 𝐴 is called

quasi-associative (or graded associative) if there is a 3-cocycle 𝛼 : 𝐺[3] → K× for which

𝑎 · (𝑏 · 𝑐) = 𝛼
(
|𝑎 | ,|𝑏 | ,|𝑐 |

)
(𝑎 · 𝑏) · 𝑐

for all homogeneous elements 𝑎, 𝑏, 𝑐 ∈ 𝐴 (here, | · | : 𝐴→ 𝐺 is the grading).

Naisse and Putyra [NP20] generalize the notion of quasi-associativity. Remarking that the

3-cocycle condition is exactly the pentagon relation for a monoidal category, their first goal is to

provide similar definitions for modules and algebras graded by categories.
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Definition 3.3.1. By a grading category, we will mean a category C endowed with a 3-cocycle

𝛼 : C[3] → K×, referred to as the associator. Then, a C-graded K-module is a K-module 𝑀 which

admits a decomposition

𝑀 =
⊕

𝑔∈Mor(C)
𝑀𝑔 .

By “𝑔 ∈ Mor(C)”, we just mean that 𝑔 is any morphism of C. This generalizes gradings by a

group by delooping: we can view any group𝐺 as a category with a single object •with End(•) = 𝐺.

A C-graded map 𝑓 : 𝑀 → 𝑁 between C-graded modules is just one which preserves grading:

𝑓 (𝑀𝑔) ⊂ 𝑁𝑔.

Define the category ModC of C-graded K-modules with morphisms being graded maps. It is a

monoidal category where the decomposision of 𝑀′ ⊗ 𝑀 =
⊕

𝑔∈Mor(C)(𝑀
′ ⊗ 𝑀)𝑔 is given by

(𝑀′ ⊗ 𝑀)𝑔 =
⊕
𝑔=𝑔2◦𝑔1

𝑀′𝑔2
⊗K 𝑀𝑔1

for composable 𝑔1 and 𝑔2 (revealing a slightly different feature of the C-graded setting). The

coherence isomorphism is then given by the associator:

(𝑀3 ⊗ 𝑀2) ⊗ 𝑀1
𝛼−→ 𝑀3 ⊗ (𝑀2 ⊗ 𝑀1)

(𝑧 ⊗ 𝑦) ⊗ 𝑥 ↦→ 𝛼(|𝑧 | ,
��𝑦�� ,|𝑥 |) 𝑧 ⊗ (𝑦 ⊗ 𝑥)

for homogeneous elements 𝑥, 𝑦, and 𝑧. The C-graded K-module
⊕

𝑋∈Ob(C)KId𝑋 is the unit object,

and the unitors for this tensor product may also be defined via the associator. We will describe this

process explicitly in slightly more generality later on.

With this language, Naisse and Putyra are able to define C-graded algebras and bimodules as

well. First, aC-gradedK-algebra 𝐴 is aC-gradedK-module with a graded associative multiplication

map 𝐴 ⊗ 𝐴 → 𝐴 such that 𝐴𝑔 · 𝐴𝑔′ ⊂ 𝐴𝑔′◦𝑔, where 𝐴𝑔′◦𝑔 = {0} whenever 𝑔′ ◦ 𝑔 is undefined.

Similarly, for two C-graded algebras 𝐴1 and 𝐴2, a C-graded 𝐴2–𝐴1-bimodule 𝑀 is a C-graded

module 𝑀 with graded, K-linear left and right actions 𝐴2 ⊗ 𝑀 → 𝑀 and 𝑀 ⊗ 𝐴1 → 𝑀 satisfying

the usual bimodule conditions, twisted by the associator: for example, these actions respect

(𝑦 · 𝑚) · 𝑥 = 𝛼
Ä��𝑦�� ,|𝑚 | ,|𝑥 |ä 𝑦 · (𝑚 · 𝑥)
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for all 𝑦 ∈ 𝐴2, 𝑚 ∈ 𝑀 and 𝑥 ∈ 𝐴1. In this section, we will denote the category of C-graded 𝐴2–

𝐴1-bimodules by BimodC(𝐴2, 𝐴1). The morphisms of this category will be graded maps between

𝐴2–𝐴1-bimodules which preserve the left and right actions.

We employ the associator to see that, given 𝑀′ ∈ BimodC(𝐴3, 𝐴2) and 𝑀 ∈ BimodC(𝐴2, 𝐴1),

𝑀′⊗K𝑀 ∈ BimodC(𝐴3, 𝐴1): the left and right actions are the horizontal maps making the following

diagrams commute.

𝐴3 ⊗ (𝑀′ ⊗ 𝑀) 𝑀′ ⊗ 𝑀

(𝐴3 ⊗ 𝑀′) ⊗ 𝑀
𝛼−1

(𝑀′ ⊗ 𝑀) ⊗ 𝐴1 𝑀′ ⊗ 𝑀

𝑀′ ⊗ (𝑀 ⊗ 𝐴1)
𝛼

Then, we can define the tensor product over the intermediary algebra 𝐴2 via the coequalizer:

explicitly,

𝑀′ ⊗𝐴2 𝑀 = 𝑀′ ⊗K 𝑀
/(

(𝑚′ · 𝑥) ⊗ 𝑚 − 𝛼
Ä��𝑚′�� ,|𝑥 | ,|𝑚 |ä 𝑚′ ⊗ (𝑥 · 𝑚)

)
with left 𝐴3- and right 𝐴1-actions induced by the ones on 𝑀′ ⊗K 𝑀 .

Now, with the goal of showing that the unified arc algebra 𝐻𝑛 is graded associative, we must

build a suitable grading category (G, 𝛼). Let 𝐵• =
⊔
𝑛≥0 𝐵

𝑛 denote the collection of all crossingless

matchings. Given a flat tangle 𝑡, we write 𝑡̂ or 𝑡∧ to mean the tangle 𝑡 with all free loops removed;

𝐵𝑛𝑚 denotes the collection of planar tangles with no free loops. Let G denote the category where

• Ob(G) = 𝐵•, and whose

• morphisms are formally Z × Z-graded planar tangles; that is,

HomG(𝑎, 𝑏) = 𝐵𝑛𝑚 × Z2

for any 𝑎 ∈ 𝐵𝑚 and 𝑏 ∈ 𝐵𝑛.

The composition, for (𝑡, 𝑝) ∈ HomG(𝑎, 𝑏) and (𝑡′, 𝑝′) ∈ HomG(𝑏, 𝑐), is defined

(𝑡′, 𝑝′) ◦ (𝑡, 𝑝) = (“𝑡𝑡′, 𝑝 + 𝑝′ +��𝑊𝑎𝑏𝑐(𝑡, 𝑡′)
��) ∈ HomG(𝑎, 𝑐).
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Note that, since𝑊𝑎𝑏𝑐(𝑡, 𝑡′) consists of only saddle moves,��𝑊𝑎𝑏𝑐(𝑡, 𝑡′)
�� = (−#merges in𝑊𝑎𝑏𝑐(𝑡, 𝑡′),−#splits in𝑊𝑎𝑏𝑐(𝑡, 𝑡′)).

So, it follows that the identity morphism for any crossingless matching 𝑎 ∈ 𝐵𝑚 is Id𝑎 = (1𝑚, (𝑚, 0)).

Henceforth, to make life easier, given objects 𝑎 ∈ 𝐵𝑚 and 𝑏 ∈ 𝐵𝑛, we’ll write 𝑎𝑡𝑏 when, really, we

mean 𝑎𝑡𝑏.

We will omit a description of the associator until defining our own in the generalized setting—it

will be apparent how to specialize ours to the current situation. Instead, we describe the way in

which way elements of 𝐻𝑛, or F (𝑡) in general, are G-graded. For 𝑢 ∈ F (𝑎𝑡𝑏), we set

degG(𝑢) = (̂𝑡, deg𝑅(𝑢)) ∈ HomG(𝑎, 𝑏).

Hopefully this explains the choice to remove free loops from tangles: they are not involved in

composition maps between arc algebras, and are extraneous information in light of the second entry

of the grading.

Secondly, this presents a solution to the first problem for unified arc algebras: 𝜇𝑎𝑏𝑐[𝑡, 𝑠] preserves

the G-grading. Suppose 𝑢 ∈ F (𝑎𝑡𝑏) and 𝑣 ∈ F (𝑏𝑠𝑐), so degG(𝑢) = (𝑡, deg𝑅(𝑢)) ∈ Hom(𝑎, 𝑏) and

degG(𝑣) = (𝑠, deg𝑅(𝑣)) ∈ Hom(𝑏, 𝑐). Their composition in unified arc spaces is given by the map

𝜇𝑎𝑏𝑐[𝑡, 𝑠]. Recall that in the definition of the chronological TQFT F , each merge decreases the

number of copies of 𝑣+ by 1, and each split increases the number of copies of 𝑣− by 1; consequently

degG(𝜇𝑎𝑏𝑐[𝑡, 𝑠](𝑢, 𝑣)) =
(
𝑡𝑠, deg𝑅(𝑢) + deg𝑅(𝑣) +|𝑊𝑎𝑏𝑐(𝑡, 𝑠)|

)
= degG(𝑣) ◦ degG(𝑢)

as desired.

Finally, we can prove that

𝜇𝑎𝑐𝑑[𝑡𝑡′, 𝑡′′]
(
𝜇𝑎𝑏𝑐[𝑡, 𝑡′](𝑥, 𝑦), 𝑧

)
= 𝛼
Ä
|𝑥 | ,

��𝑦�� ,|𝑧 |ä 𝜇𝑎𝑏𝑑[𝑡, 𝑡′𝑡′′]
(
𝑥, 𝜇𝑎𝑏𝑑[𝑡′, 𝑡′′](𝑦, 𝑧)

)
for any 𝑥 ∈ F (𝑎𝑡𝑏), 𝑦 ∈ F (𝑏𝑡′𝑐) and 𝑧 ∈ F (𝑐𝑡′′𝑑). In particular, Naisse and Putyra provide the

following (for a discussion on unitality, see [NP20] Proposition 6.2).

Proposition 3.3.2. 𝐻𝑛 is a unital, associative, G-graded 𝑅-algebra.
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It is routine to check that, for 𝑡 ∈ 𝐵𝑛𝑚, F (𝑡) is an (𝐻𝑚, 𝐻𝑛)-bimodule: the left 𝐻𝑚-action is given

by 𝜇[1𝑚, 𝑡] and the right 𝐻𝑛-action is given by 𝜇[𝑡, 1𝑛]. Naisse and Putyra then provide the desired

properties of these bimodules, in the sense that it mirrors results of [Kho02].

Proposition 3.3.3. Let 𝑡 ∈ 𝐵𝑛𝑚. ThenF (𝑡) is an (𝐻𝑚, 𝐻𝑛)-bimodule. It is also sweet as an (𝐻𝑚, 𝐻𝑛)-

bimodule; that is, it is projective as a left 𝐻𝑚-module and as a right 𝐻𝑛-module. Moreover, given

𝑠 ∈ 𝐵𝑝𝑛 , there is an isomorphism

F (𝑡) ⊗𝐻𝑛 F (𝑠) � F (𝑡𝑠)

induced by 𝜇[𝑡, 𝑠] : F (𝑡) ⊗𝑅 F (𝑠)→ F (𝑡𝑠).

3.3.1 G-shifting system

So far, we have successfully defined the relevant algebraic objects in the G-graded setting.

However, we have glossed over the important discussion of graded maps. In particular, given

𝑡, 𝑠 ∈ 𝐵𝑛𝑚, so that F (𝑡), F (𝑠) ∈ Ob
Ä

BimodG(𝐻𝑚, 𝐻𝑛)
ä
, can we describe those relevant morphisms

between F (𝑡) and F (𝑠) in this category? Of course, any cobordism 𝑊 : 𝑡 → 𝑠 induces a map

F (𝑊) : F (𝑡)→ F (𝑠), but this map is clearly not graded! There must be a fix if we are to interpret

cubes of resolutions with this approach; in particular, the only graded map between F
( )

and

F
( )

is the zero map. The solution of Naisse and Putyra is the introduction of grading shifting

functors via a G-shifting system. Here is the idea of a C-shifting system; a more precise, expanded

definition is given in Section 5.

Definition 3.3.4. A C-shifting system is a pair (𝐼,Φ) consisting of a monoid (𝐼, •, 𝑒) and a collection

Φ = {𝜑𝑖}𝑖∈𝐼 of families of maps

𝜑𝑖 = {𝜑𝑋,𝑌𝑖 : D𝑋,𝑌
𝑖
→ HomC(𝑋,𝑌 )}𝑋,𝑌∈Ob(C)

for D𝑋,𝑌
𝑖
⊂ HomC(𝑋,𝑌 ). These families of maps 𝜑𝑖 are called C-grading shifts, and they are

required to satisfy the property that, for each 𝑖, 𝑗 ∈ 𝐼 and 𝑋,𝑌 ∈ Ob(C), the following diagram
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commutes.
HomC(𝑌, 𝑍) × HomC(𝑋,𝑌 ) HomC(𝑋, 𝑍)

HomC(𝑌, 𝑍) × HomC(𝑋,𝑌 ) HomC(𝑋, 𝑍)

◦

𝜑 𝑗×𝜑𝑖 𝜑 𝑗•𝑖

◦

It is not immediate that a C-shifting system (𝐼,Φ) is compatible with the associator 𝛼; a major

portion of [NP20], and now our work, has to do with this observation.

If 𝑆 = (𝐼, {𝜑𝑖}𝑖∈𝐼) is a C-shifting system compatible with 𝛼, then for each 𝑖 ∈ 𝐼, 𝜑𝑖 :

ModC → ModC is a functor, called the grading shift functor, and is defined as follows. For

𝑀 =
⊕

𝑔∈Mor(C) 𝑀𝑔 ∈ Ob(ModC), put

𝜑𝑖(𝑀) =
⊕
𝑔∈D𝑖

𝜑𝑖(𝑀)𝜑𝑖(𝑔)

where 𝜑𝑖(𝑀)𝜑𝑖(𝑔) = 𝑀𝑔. In other words, this grading shift functor turns elements of degree 𝑔 ∈ D𝑖

into elements of degree 𝜑𝑖(𝑔); elements whose degree is not in D𝑖 are sent to zero.

We will see that the witnesses to compatibility between a given C-shifting system and associator

imply the existence of canonical isomorphisms

𝜑 𝑗 (𝑀′) ⊗ 𝜑𝑖(𝑀)→ 𝜑 𝑗•𝑖(𝑀′ ⊗ 𝑀).

Indeed, there is a natural transformation 𝜑 𝑗 (−) ⊗ 𝜑𝑖(−) ⇒ 𝜑 𝑗•𝑖(− ⊗ −). From here, under a

certain assumption, it is easy to define shifted bimodules. In summary, this is to say that the

shifting functor 𝜑𝑖 : ModC → ModC further induces a shifting functor 𝜑𝑖 : BimodC(𝐴2, 𝐴1) →

BimodC(𝐴2, 𝐴1). The shifting functor also respects tensor products: for 𝑀′ ∈ BimodC(𝐴3, 𝐴2)

and 𝑀 ∈ BimodC(𝐴2, 𝐴1),

𝜑 𝑗 (𝑀′) ⊗𝐴2 𝜑𝑖(𝑀) � 𝜑 𝑗•𝑖(𝑀′ ⊗𝐴2 𝑀).

Returning to the situation at hand, our goal is to define a G-shifting system (compatible with

𝛼). The G-shifting system we will use is given simply by weighted cobordisms (𝑊, 𝑣) where

𝑣 ∈ Z × Z. Explicitly, to construct the monoid in this shifting system, recall that given two

cobordisms 𝑊1 : 𝑡 → 𝑡′ for 𝑡, 𝑡′ ∈ 𝐵𝑛𝑚 and 𝑊2 : 𝑠 → 𝑠′ for 𝑠, 𝑠′ ∈ 𝐵𝑛
ℓ
, we obtain a cobordism

𝑊1 •𝑊2 : 𝑡𝑠→ 𝑡′𝑠′ by horizontal stacking.
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Now, given weighted cobordisms (𝑊1, 𝑣1) and (𝑊2, 𝑣2), define (𝑊1, 𝑣1) • (𝑊2, 𝑣2) to be (𝑊1 •

𝑊2, 𝑣1+𝑣2) whenever𝑊1 •𝑊2 is defined, and zero otherwise. The monoid of the G-shifting system

will be the collection of weighted cobordisms together with formal identity absorbing elements

{(𝑊, 𝑣)} ⊔ {𝑒, 0} under the operation •. Finally, given 𝑡, 𝑡′ ∈ 𝐵𝑛𝑚 and (𝑊 : 𝑡 → 𝑡′, 𝑣), given any

𝑎 ∈ 𝐵𝑚 and 𝑏 ∈ 𝐵𝑛 we define

𝜑
𝑎,𝑏

(𝑊,𝑣)(̂𝑡, 𝑝) = (𝑡′, 𝑝 + 𝑣 +|1𝑎𝑊1𝑏 |)

where 1𝑎𝑊1𝑏 is the cobordism𝑊 capped off by 𝑎×[0, 1] on one side and 𝑏×[0, 1] (really, 𝑏×[0, 1])

on the other. Since Ob(G) = 𝐵•, we can write 𝜑(𝑊,𝑣) =
¶
𝜑
𝑎,𝑏

(𝑊,𝑣)

©
𝑎∈𝐵𝑚,𝑏∈𝐵𝑛

; we will often abuse

notation and write 𝜑(𝑊,𝑣) when it does not present confusion. Clearly, the domain of 𝜑𝑎,𝑏(𝑊,𝑣) is

simply D𝑎,𝑏

(𝑊,𝑣) = {(̂𝑡, 𝑝) ∈ HomG(𝑎, 𝑏) : 𝑝 ∈ Z × Z}. We’ll write 𝜑𝑊 sometimes when 𝑣 can be left

ambiguous; however, in computations, this notation means 𝑣 = (0, 0). Finally, for a flat tangle 𝑡, let

1𝑡 denote the identity cobordism on 𝑡. Consider the collection of identity cobordisms 1 = {1𝑡}𝑡 .

Then there is an identity shift functor given by 𝜑id =
⊕

1
𝜑1𝑡

.

In practice, it is beneficial to view weighted cobordisms (𝑊, 𝑣) as two separate shifts; the first

on a given planar tangle and the second on the Z×Z degree associated to that tangle. Unfortunately,

to determine compatibility maps one must choose an order: we will always shift first by the

chronological cobordism 𝑊 and second by the Z × Z-degree. The opposite choice can also be

made, and leads to small differences in the theory—for example, see Proposition 7.1.5. In this way,

Naisse and Putyra show that this G-shifting system is compatible with the associator defined above;

for more details, see [NP20].

Of course, there is also the possibility of vertically composing cobordisms. This is to say that

the G-shifting system may be extended to a shifting 2-system (again, defined by Naisse-Putyra).

Explicitly, in the monoid defined above, we define vertical composition in the same spirit as

horizontal composition: for𝑊1 : 𝑡 → 𝑡′ and𝑊2 : 𝑠→ 𝑠′,

(𝑊2, 𝑣2) ◦ (𝑊1, 𝑣1) =


(𝑊2 ◦𝑊1, 𝑣2 + 𝑣1) if 𝑡′ = 𝑠

0 otherwise.
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Compatibility maps are constructed via the change of chronology

𝐻 : (𝑊′2 ◦𝑊2) • (𝑊′1 ◦𝑊1)⇒ (𝑊′2 •𝑊
′
1) ◦ (𝑊2 •𝑊1).

With this structure in place, we will see that any cobordism with corners 𝑊 : 𝑡 → 𝑠 induces a

graded map F (𝑊) : 𝜑𝑊 (F (𝑡))→ F (𝑠), as desired.
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CHAPTER 4

GRADING MULTICATEGORIES AND PLANAR ARC DIAGRAMS

In this chapter, we generalize the work of Naisse and Putyra to provide a category compatible with

“multigluing”; i.e., a framework for replacing flat tangles 𝑡 with planar arc diagrams 𝐷. We note

that the content of this chapter and the next will come as little surprise to readers familiar with

[NP20], outside of complications and additional structure associated with multicategories.

We start by extending the definition of F to planar arc diagrams, defined momentarily. In §4.1,

we review multicategories, define grading multicategories, and construct the grading multicategory

G utilized throughout this thesis. In §4.2, we verify that G is indeed a grading multicategory. Then,

§4.3 is dedicated to establishing some properties of modules graded by multicategories which we

use extensively. We conclude with §4.4, wherein we list consequences of observations made in

§4.3 for G -graded multimodules associated to planar arc diagrams by F .

Definition 4.0.1. An (𝑚1, . . . , 𝑚𝑘 ; 𝑛)-planar arc diagram 𝐷 is a disk 𝐷 with 𝑘 interior disks

removed, together with a proper embedding of disjoint circles and closed intervals, so that there are

2𝑚𝑖 endpoints on the boundary component corresponding to the 𝑖th removed disk, and 2𝑛 endpoints

on the outer boundary of 𝐷. Note that planar arc diagram 𝐷 comes with an ordering on the removed

inner disks. Each boundary component carries a basepoint, disjoint from the endpoints of intervals,

denoted by ×. We say that 𝐷 is oriented if the embedded circles and intervals are oriented. Both

oriented and unoriented planar arc diagrams are considered up to planar isotopy. The collection

of planar arc diagrams of type (𝑚1, . . . , 𝑚𝑘 ; 𝑛) is denoted by D(𝑚1,...,𝑚𝑘 ;𝑛). Similarly “D(𝑚1,...,𝑚𝑘 ;𝑛) is

the collection of (𝑚1, . . . , 𝑚𝑘 ; 𝑛)-planar arc diagrams with free loops removed.

For example, pictured below is an oriented (1, 1, 1, 2; 3)-planar arc diagram. We can compose

planar arc diagrams by filling the 𝑖th empty region of one planar arc diagram with a (· · · ;𝑚𝑖) planar

arc diagram. That is, given planar arc diagrams 𝐷𝑖 of type (ℓ𝑖1, . . . , ℓ𝑖𝛼𝑖 ;𝑚𝑖) for 𝑖 = 1, . . . , 𝑘 and 𝐷

of type (𝑚1, . . . , 𝑚𝑘 ; 𝑛), we set

𝐷 ◦ (𝐷1, . . . , 𝐷𝑘 ) = 𝐷(𝐷1, . . . , 𝐷𝑘 ;∅).

44



There is also a pairwise composition

𝐷 ◦𝑖 𝐷𝑖 = 𝐷(∅, . . . , 𝐷𝑖, . . . ,∅;∅).

To the author’s knowledge, this notation was first introduced in [LLS22] (we will adapt this definition

to diskular tangles in Section 6.2). Note that the two notions of composition are related by

𝐷 ◦ (𝐷1, . . . , 𝐷𝑘 ) = (· · · ((𝐷 ◦𝑘 𝐷𝑘 ) ◦𝑘−1 𝐷𝑘−1) ◦𝑘−2 · · · ) ◦1 𝐷1

If 𝐸 is a planar arc diagram with an interior boundary component with 2𝑛 endpoints, we’ll write

𝐷(𝐷1, . . . , 𝐷𝑘 ; 𝐸) to denote the resulting planar arc diagram. Otherwise, we frequently drop the

last ∅ from the notation.

×
1 ×

4×

3×

2 ×

On one hand, it is clear that any crossingless matching 𝑎 ∈ 𝐵𝑛 uniquely defines a planar arc

diagram of type (; 𝑛). We choose the association

×
••

• •
⇝

• • • •

so that, if we are being careful, the inner disks of a planar arc diagram can be filled with crossingless

matchings belonging to 𝐵• and can be closed on the outside by a crossingless matching belonging

to 𝐵•.

Thus, if 𝐷 is a (𝑚1, . . . , 𝑚𝑘 ; 𝑛) planar arc diagram, we define

F (𝐷) =
⊕

𝑥𝑖∈𝐵𝑚𝑖 :𝑖=1,...,𝑘
𝑦∈𝐵𝑛

F (𝐷(𝑥1, . . . , 𝑥𝑘 ; 𝑦))
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where F is the unified chronological TQFT. It is a (𝐻𝑚1 ⊗ · · · ⊗ 𝐻𝑚𝑘 , 𝐻𝑛)-bimodule by the

compositions

𝜇[(1𝑚1 , . . . , 1𝑚𝑘
);𝐷] and 𝜇[𝐷; 1𝑛].

These composition maps are defined just as before: for compatible 𝐷𝑖, we define

𝜇[(𝐷1, . . . , 𝐷𝑘 );𝐷] :
𝑘⊗
𝑖=1
F (𝐷𝑖) ⊗ F (𝐷)→ F (𝐷(𝐷1 . . . , 𝐷𝑘 ))

component-wise, as follows. For the time being, all tensor products are taken over 𝑅. Working

with planar arc diagrams necessitates some burdensome notation. Notice that potentially far

more closures are necessary: each 𝐷𝑖 requires, say, 𝛼𝑖-many inner closures which we denote

by 𝑥(𝑖,1), . . . , 𝑥(𝑖,𝛼𝑖), and one outer closure 𝑦𝑖. On the other hand, 𝐷 requires 𝑘 inner closures

𝑦′1, . . . , 𝑦
′
𝑘

and one outer closure 𝑧. Let ®𝑥 denote the entire collection of crossingless matchings

{𝑥(1,1), . . . , 𝑥(𝑘,𝛼𝑘)}. In the future, ®· will always denote the entire collection of crossingless

parings of that label. If ®· has a subscript 𝑖, we mean all corssingless parings of that label whose

first entry of their subscript is 𝑖; e.g., ®𝑥𝑖 = {𝑥(𝑖,1), . . . , 𝑥(𝑖,𝛼𝑖)}. With this notation in place, we define

𝜇[(𝐷1, . . . , 𝐷𝑘 );𝐷] component-wise by

𝜇®𝑥®𝑦𝑧[(𝐷1, . . . , 𝐷𝑘 );𝐷] :
𝑘⊗
𝑖=1
F (𝐷𝑖(®𝑥𝑖; 𝑦𝑖)) ⊗ F (𝐷( ®𝑦′; 𝑧))→ F (𝐷(𝐷1(®𝑥1), . . . , 𝐷𝑘 (®𝑥𝑘 ); 𝑧)

where we can interpret 𝐷𝑖(®𝑥𝑖) := 𝐷𝑖(®𝑥𝑖;∅) as a crossingless matching, and

𝜇®𝑥®𝑦𝑧[(𝐷1, . . . , 𝐷𝑘 );𝐷] =


0 if 𝑦𝑖 ≠ 𝑦′𝑖 for some 𝑖;

F (𝑊®𝑥®𝑦𝑧((𝐷1, . . . , 𝐷𝑘 );𝐷)) if 𝑦𝑖 = 𝑦′𝑖 for all 𝑖.

Elements of
Ä⊗𝑘

𝑖=1 F (𝐷𝑖)
ä
⊗ F (𝐷) are written (𝑢1, . . . , 𝑢𝑘 ) ⊗ 𝑢 or, frequently, ®𝑢 ⊗ 𝑢. The last

thing we must do is describe the chronological cobordism𝑊®𝑥®𝑦𝑧((𝐷1, . . . , 𝐷𝑘 ), 𝐷). This cobordism

is (as one would expect, comparing to Sections 2.2.2 and 3.2) defined by contracting the symmetric

arcs of 𝑦𝑖. The chronology is chosen by moving counter-clockwise from the basepoint of the 𝑖th

removed disk of 𝐷 and contracting symmetric arcs outwardly, starting at 𝑖 = 1 and progressing to

𝑖 = 𝑘 . Use Figure 4.1 for reference. In this example, 𝑊®𝑥®𝑦𝑧((𝐷1, 𝐷2, 𝐷3), 𝐷) is the chronological
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𝐷

×

𝐷1

××

𝐷2

× ×

𝐷3
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× ×

×

××

𝑧
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𝑥(1,1)
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•
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•

1

2

3

4

5

Figure 4.1 An example of a chronological coboridm𝑊®𝑥®𝑦𝑧((𝐷1, 𝐷2, 𝐷3), 𝐷).

cobordism obtained by contracting the symmetric arcs of ®𝑦 as specified by the gray arrows in

the numbered order. So, it is a merge, followed by a split, and then three more merges. Notice

that 𝑊®𝑥®𝑦𝑧((𝐷1, . . . , 𝐷𝑛), 𝐷) has Euler characteristic −∑𝑖

��𝑦𝑖�� (recall that
��𝑦�� = 𝑐 whenever 𝑦 ∈ 𝐵𝑐).
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As we proceed, we will use the notation ®𝑦𝐷𝑧 to mean 𝐷(®𝑦; 𝑧). This seems redundant, but it

is especially helpful to write ®𝑥(𝐷1, . . . , 𝐷𝑘 )®𝑦, or even ®𝑥 ®𝐷′®𝑦 for ®𝐷′ = (𝐷1, . . . , 𝐷𝑘 ), rather than

(𝐷1(®𝑥1; 𝑦1), 𝐷2(®𝑥2; 𝑦2), . . . , 𝐷𝑘 (®𝑥𝑘 ; 𝑦𝑘 )).

Let ®𝐷′ = (𝐷1, . . . , 𝐷𝑘 ). We will frequently refer to the chronolonological cobordism above via

the (upwardly oriented) schematic

®𝐷′ 𝐷

where the trivalent vertex represents the cobordism𝑊®𝑥,®𝑦,𝑧((𝐷1, . . . , 𝐷𝑘 ), 𝐷). In following sections,

we’ll have to consider the compositions of such cobordisms, but it is not immediately clear how

the chronology is defined. Let ®𝐷′′ = (𝐷(1,1), . . . , 𝐷(1,𝛼1), . . . , 𝐷(𝑘,𝛼𝑘)), so that ®𝐷′′
𝑖

are the planar arc

diagrams filling 𝐷𝑖. While we can interpret

®𝐷′′ ®𝐷′ 𝐷

as a chronological cobordism using our rules above, we’d like to consider compositions of the form

®𝐷′′ ®𝐷′ 𝐷

as well. In the latter, notice that the leftmost trivalent vertex is a collection of chronological

cobordisms, 𝑊 ®𝑤𝑖 ®𝑥𝑖𝑦𝑖 ((𝐷(𝑖,1), . . . , 𝐷(𝑖,𝛼𝑖))). So, we will define the order of these chronological

cobordisms to follow the index 𝑖 = 1, . . . , 𝑘—the same idea applies to larger compositions. Denote

48



the composition of these chronological cobordisms by𝑊 ®𝑤,®𝑥,®𝑦( ®𝐷′′, ®𝐷′), and the corresponding map

as 𝜇[ ®𝐷′′, ®𝐷′]. To be explicit,

𝜇[ ®𝐷′′, ®𝐷′] :

Ñ
𝑘⊗
𝑖=1

𝛼𝑖⊗
𝑗=1
F (𝐷𝑖 𝑗 )

é
⊗

Ñ
𝑘⊗
𝑖=1
F (𝐷𝑖)

é
→

𝑘⊗
𝑖=1
F (𝐷𝑖(𝐷𝑖1, . . . , 𝐷𝑖𝛼𝑖 ))

interpreting 𝜇[ ®𝐷′′, ®𝐷′] =
⊗𝑘

𝑖=1 𝜇[(𝐷𝑖1, . . . , 𝐷𝑖𝛼𝑖 ), 𝐷𝑖]. We shorten the expression above to

𝜇[ ®𝐷′′, ®𝐷′] : F ( ®𝐷′′) ⊗ F ( ®𝐷′)→ F ( ®𝐷′( ®𝐷′′)).

Finally, while we will almost always use the composition maps 𝜇®𝑥,®𝑦,𝑧( ®𝐷, 𝐷) moving forward,

we note that the flexibility of planar arc diagrams allows for a few more composition maps. First,

note that one may fill the 𝑖th hole of 𝐷 by 𝐷𝑖, leaving the other holes unchanged, by considering the

composition 𝜇[(1𝑛1 , . . . , 𝐷𝑖, . . . , 1𝑛𝑘 );𝐷]. On the other hand, we could also define a composition

map which only fills one hole of 𝐷 without reference to the others. Consider the map

𝜇[𝐷𝑖;𝐷] : F (𝐷𝑖) ⊗ F (𝐷)→ F (𝐷(∅, . . . , 𝐷𝑖, . . . ,∅))

defined componentwise as

𝜇(𝑦′1,...,®𝑥𝑖 ,...,𝑦
′
𝑘
),𝑦𝑖 ,𝑧[𝐷𝑖;𝐷] :F (𝐷𝑖(®𝑥𝑖; 𝑦𝑖)) ⊗ F (𝐷(®𝑦′; 𝑧))→ F (𝐷(𝑦′1, . . . , 𝐷𝑖(®𝑥𝑖), . . . , 𝑦

′
𝑘 ))

𝜇(𝑦′1,...,®𝑥𝑖 ,...,𝑦
′
𝑘
),𝑦𝑖 ,𝑧[𝐷𝑖;𝐷] =


0 if 𝑦′

𝑖
≠ 𝑦𝑖

F (𝑊(𝑦′1,...,®𝑥𝑖 ,...,𝑦
′
𝑘
),𝑦𝑖 ,𝑧(𝐷𝑖;𝐷)) if 𝑦′

𝑖
= 𝑦𝑖

where 𝑊(𝑦′1,...,®𝑥𝑖 ,...,𝑦
′
𝑘
),𝑦𝑖 ,𝑧(𝐷𝑖;𝐷) is the chronological cobordism which simply contracts symmetric

arcs of 𝑦𝑖𝑦𝑖 counter-clockwise with respect to the basepoint, with closures specified by the other

indices. Then, notice that

𝜇[(𝐷1, . . . , 𝐷𝑘 );𝐷]

= 𝜇[𝐷𝑘 ;𝐷(𝐷1, . . . , 𝐷𝑘−1,∅)] ◦ · · · ◦
(
𝜇[𝐷2;𝐷(𝐷1,∅, . . . ,∅)] ⊗ Id𝐷3 ⊗ · · · ⊗ Id𝐷𝑘

)
◦
(
𝜇[𝐷1;𝐷] ⊗ Id𝐷2 ⊗ · · · ⊗ Id𝐷𝑘

)
where Id𝐷𝑖

means the identity on elements living in components corresponding to closures of 𝐷𝑖.
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4.1 (Grading) multicategories

Recall that a (small) multicategory C consists of

1. a set of objects Ob(C ),

2. for each 𝑘 ≥ 0 and objects 𝑥1, . . . , 𝑥𝑘 , 𝑦 ∈ Ob(C ), a set Hom(𝑥1, . . . , 𝑥𝑘 ; 𝑦) of multimorphisms

from (𝑥1, . . . , 𝑥𝑘 ) to 𝑦,

3. a composition map

Hom(𝑦1, . . . , 𝑦𝑘 ; 𝑧) ×
𝑘∏
𝑖=1

Hom(𝑥𝑖1, . . . , 𝑥𝑖𝛼𝑖 ; 𝑦𝑖)→ Hom(𝑥11, . . . , 𝑥𝑘𝛼𝑘 ; 𝑧),

and

4. a distinguished element Id𝑥 ∈ Hom(𝑥; 𝑥) for each 𝑥 ∈ Ob(𝑥) called the identity of 𝑥

defined so that composition is associative, in the sense that the following diagram commutes:

Hom(𝑦1, . . . , 𝑦𝑘 ; 𝑧)

×∏𝑘
𝑖=1 Hom(𝑥𝑖1, . . . , 𝑥𝑖𝛼𝑖 ; 𝑦𝑖)

×∏𝑘
𝑖=1

∏𝛼𝑖
𝑗=1 Hom(𝑤𝑖 𝑗1, . . . , 𝑤𝑖 𝑗 𝛽𝑖 𝑗 ; 𝑥𝑖 𝑗 )

//

��

Hom(𝑥11, . . . , 𝑥𝑘𝛼𝑘 ; 𝑧)

×∏𝑘
𝑖=1

∏𝛼𝑖
𝑗=1 Hom(𝑤𝑖 𝑗1, . . . , 𝑤𝑖 𝑗 𝛽𝑖 𝑗 ; 𝑥𝑖 𝑗 )

��Hom(𝑦1, . . . , 𝑦𝑘 ; 𝑧)

×∏𝑘
𝑖=1 Hom(𝑤𝑖11, . . . , 𝑤𝑖𝛼𝑖𝛽𝑖𝛼𝑖 ; 𝑦𝑖)

// Hom(𝑤111, . . . , 𝑤𝑘𝛼𝑘𝛽𝑘𝛼𝑘 ; 𝑧).

In addition, we require that the identity elements are both right and left identities for composition.

Proceeding, for a multimorphism 𝑓 : (𝑥1, . . . , 𝑥𝑘 ) → 𝑦, we set dom( 𝑓 ) := (𝑥1, . . . , 𝑥𝑘 ) and

codom( 𝑓 ) := 𝑦.

Example. Planar arc diagrams comprise a multicategory important to the work that follows. Let

𝑝T denote the multicategory whose

• objects are the natural numbers, including zero,
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• Hom𝑝T(𝑚1, . . . , 𝑚𝑘 ; 𝑛) is the collection of (𝑚1, . . . , 𝑚𝑘 ; 𝑛) planar arc diagrams, which we

will denote by D(𝑚1,...,𝑚𝑘 ;𝑛).

Composition in 𝑝T is composition of planar arc diagrams, as defined at the beginning of this section.

It follows immediately that 𝑝T is a multicategory with identity elements 1𝑛, which is just a circle

with 𝑛 marked points times the interval. Note that we can view 𝑝T as a multicategory enriched

in categories since D(𝑚1,...,𝑚𝑘 ;𝑛) can be viewed as a category whose morphisms are (potentially

chronological) cobordisms between planar arc diagrams of type (𝑚1, . . . , 𝑚𝑘 ; 𝑛).

A very similar multicategory, G , will be the main object of study for the rest of this section.

The objects of G will be crossingless matchings rather than natural numbers, but the more striking

difference between G and 𝑝T is the composition rule.

Definition 4.1.1. Define the multicategory G whose

• objects are crossingless matchings, Ob(G ) = 𝐵•;

• for crossingless matchings 𝑥𝑖 ∈ 𝐵𝑚𝑖 , 𝑖 = 1, . . . , 𝑘 , and 𝑦 ∈ 𝐵𝑛, set

HomG (𝑥1, . . . , 𝑥𝑘 ; 𝑦) = “D(𝑚1,...,𝑚𝑘 ;𝑛) × Z2.

Then, composition

Hom(𝑦1, . . . , 𝑦𝑘 ; 𝑧) ×

Ñ
𝑘∏
𝑖=1

Hom(𝑥𝑖1, . . . , 𝑥𝑖𝛼𝑖 ; 𝑦𝑖)

é
→ Hom(𝑥11, . . . , 𝑥𝑘𝛼𝑘 ; 𝑧)

is defined by

(“𝐷, 𝑝)◦
Ä

(”𝐷1, 𝑝1), · · · , (”𝐷𝑘 , 𝑝𝑘 )
ä
=

Ñ
𝐷(𝐷1, . . . , 𝐷𝑘 ;∅)∧, 𝑝 +

𝑘∑︁
𝑖=1

𝑝𝑖 +
���𝑊®𝑥®𝑦𝑧((𝐷1, . . . , 𝐷𝑘 );𝐷)

���é
where 𝐷(𝐷1, . . . , 𝐷𝑘 ;∅)∧ means 𝐷(𝐷1, . . . , 𝐷𝑘 ;∅) with all closed loops removed. Finally,

the distinguished identity element Id𝑥 associated to each crossingless matching 𝑥 is given by

(1|𝑥 |, (|𝑥 | , 0)) ∈ Hom(𝑥; 𝑥).

Proposition 4.1.2. G is a multicategory; in particular, composition in G is associative.
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Proof. Consider the following compositions of multimorphisms.

(𝑤111, · · · , 𝑤11𝛽11) × · · · × (𝑤1𝛼11, · · · , 𝑤1𝛼1𝛽1𝛼1
)

(𝑤𝑘11, · · · , 𝑤𝑘1𝛽𝑘1) × · · · × (𝑤𝑘𝛼𝑘1, · · · , 𝑤𝑘𝛼𝑘𝛽𝑘𝛼𝑘
)

(𝑥𝑘1, · · · , 𝑥𝑘𝛼𝑘 )

(𝑥11, · · · , 𝑥1𝛼1)

×

×

... (𝑦1, · · · , 𝑦𝑘 ) 𝑧

𝐷11
𝐷1𝛼1

𝐷𝑘1
𝐷𝑘𝛼𝑘

𝐷1

𝐷𝑘

𝐷 (4.1.1)

Our goal is to verify the associativity of these compositions in G ; i.e.,

𝑘∏
𝑖=1

𝛼𝑖∏
𝑗=1

(𝐷𝑖 𝑗 , 𝑝𝑖 𝑗 ) ◦

Ñ
𝑘∏
𝑖=1

(𝐷𝑖, 𝑝𝑖) ◦ (𝐷, 𝑝)

é
=

Ñ
𝑘∏
𝑖=1

𝛼𝑖∏
𝑗=1

(𝐷𝑖 𝑗 , 𝑝𝑖 𝑗 ) ◦
𝑘∏
𝑖=1

(𝐷𝑖, 𝑝𝑖)

é
◦ (𝐷, 𝑝).

In either case, the composition yields

𝐷
(
𝐷1(𝐷11, . . . , 𝐷1𝛼1), 𝐷2(𝐷21, . . . , 𝐷2𝛼2), . . . , 𝐷𝑘 (𝐷𝑘1, . . . , 𝐷𝑘𝛼𝑘 )

)∧
in the first coordinate. In the former case, the composition yields

𝑝 +
𝑘∑︁
𝑖=1

𝑝𝑖 +
𝑘∑︁
𝑖=1

𝛼𝑖∑︁
𝑗=1

𝑝𝑖 𝑗 +
���𝑊®𝑥®𝑦𝑧((𝐷1, . . . , 𝐷𝑘 );𝐷)

���
+
��𝑊 ®𝑤®𝑥𝑧((𝐷11, . . . , 𝐷𝑘𝛼𝑘 );𝐷(𝐷1, . . . , 𝐷𝑘 ))

�� (4.1.2)

in the second coordinate. In the latter case, the composition yields

𝑝 +
𝑘∑︁
𝑖=1

𝑝𝑖 +
𝑘∑︁
𝑖=1

𝛼𝑖∑︁
𝑗=1

𝑝𝑖 𝑗 +
𝑘∑︁
𝑖=1

���𝑊 ®𝑤𝑖 ®𝑥𝑖𝑦𝑖 ((𝐷𝑖1, . . . , 𝐷𝑖𝛼𝑖 );𝐷𝑖)
���

+
���𝑊 ®𝑤®𝑦𝑧((𝐷1(𝐷11, . . . , 𝐷1𝛼1), . . . , 𝐷𝑘 (𝐷𝑘1, . . . , 𝐷𝑘𝛼𝑘 ));𝐷)

��� (4.1.3)

in the second coordinate since, for each 𝑖 = 1, . . . , 𝑘 ,
𝛼𝑖∏
𝑗=1

(𝐷𝑖 𝑗 , 𝑝𝑖 𝑗 ) ◦ (𝐷𝑖, 𝑝𝑖) =

Ñ
𝐷𝑖(𝐷𝑖1, . . . , 𝐷𝑖𝛼𝑖 ), 𝑝𝑖 +

𝛼𝑖∑︁
𝑗=1

𝑝𝑖 𝑗 +
���𝑊 ®𝑤𝑖 ®𝑥𝑖𝑦𝑖 ((𝐷𝑖1, . . . , 𝐷𝑖𝛼𝑖 ), 𝐷𝑖

���é .

The values (4.1.2) and (4.1.3) are equivalent since the total number of merges and splits of the se-

quence of cobordisms is unchanged; otherwise, the minimality condition on the Euler characteristic

is contradicted. □
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By a multipath, we mean a sequence of collections of composable multimorphisms. Explicitly,

a multipath of length 𝑛 is a sequence of sequences of multimorphismsÄ
( 𝑓 1
𝑖1

)𝑖1 , ( 𝑓
2
𝑖1𝑖2

)𝑖1𝑖2 , . . . , ( 𝑓
𝑛
𝑖1𝑖2...𝑖𝑛

)𝑖1𝑖2...𝑖𝑛
ä

with ranges 𝑖1 = 1, . . . , 𝑘 , 𝑖2 = 1, . . . , 𝑘𝑖1 , up to 𝑖𝑛 = 1, . . . , 𝑘𝑖1𝑖2...𝑖𝑛−1 such that

dom( 𝑓 𝑡𝑖1...𝑖𝑡 ) =
(

codom( 𝑓𝑖1...𝑖𝑡1)𝑡+1, . . . , codom( 𝑓 𝑡+1𝑖1...𝑖𝑡 𝑘𝑖1 ...𝑖𝑡
)
)

for each 𝑡 = 1, . . . , 𝑛. Denote by C [𝑛] the collection of multipaths of length 𝑛. As we proceed, we

frequently confound terminology and refer to the sequence of multimorphisms obtained by taking

the composites of a multipath as a multipath. For example, suppose thatÄ
( 𝑓 1
𝑖1

), ( 𝑓 2
𝑖1𝑖2

), ( 𝑓 3
𝑖1𝑖2𝑖3

)
ä
∈ C [3]

with 𝑖1 = 1, . . . , 𝑘 , 𝑖2 = 1, . . . 𝑘𝑖1 , and 𝑖3 = 1, . . . , 𝑘𝑖1𝑖2 . We’ll denote by

( 𝑓 1
𝑖1

) ◦ ( 𝑓 2
𝑖1𝑖2

) ◦ ( 𝑓 3
𝑖1𝑖2𝑖3

) (4.1.4)

the sequence of composites

𝑓 1
1 ◦
ÅÄ

𝑓 2
11 ◦ ( 𝑓 3

111, . . . , 𝑓
3
11𝑘11

)
ä
, . . . ,

(
𝑓 2
1𝑘1
◦ ( 𝑓 3

1𝑘11, . . . , 𝑓
3
1𝑘1𝑘1𝑘1

)
)ã

,

𝑓 1
2 ◦
ÅÄ

𝑓 2
21 ◦ ( 𝑓 3

211, . . . , 𝑓
3
21𝑘21

)
ä
, . . . ,

(
𝑓 2
2𝑘2
◦ ( 𝑓 3

2𝑘21, . . . , 𝑓
3
2𝑘2𝑘2𝑘2

)
)ã

, . . . ,

𝑓 1
𝑘 ◦
ÅÄ

𝑓 2
𝑘1 ◦ ( 𝑓 3

𝑘11, . . . , 𝑓
3
𝑘1𝑘𝑘1

)
ä
, . . . ,

(
𝑓𝑘𝑘𝑘 ◦ ( 𝑓 3

𝑘𝑘𝑘1, . . . , 𝑓
3
𝑘𝑘𝑘 𝑘𝑘𝑘𝑘

)ã
.

Then, this sequence is frequently referred to as a multipath of length 3, when it is really a composite

of such a multipath. Finally, distilling notation further, we’ll write ®𝑓 1 := ( 𝑓 1
1 , . . . , 𝑓

1
𝑘

), ®𝑓 2
𝑖

:=

( 𝑓 2
𝑖1, . . . , 𝑓

2
𝑖𝑘𝑖

) and similarly for ®𝑓 3
𝑖 𝑗

, and write the sequence of composites of multimorphisms (4.1.4)

as

®𝑓 1 ◦

Ñ
𝑘∏
𝑖=1

®𝑓 2
𝑖

é
◦

Ñ
𝑘∏
𝑖=1

𝑘𝑖∏
𝑗=1

®𝑓 3
𝑖 𝑗

é
. (4.1.5)

We will replace 𝑘𝑖 with the notation 𝛼𝑖, and similarly the notation 𝑘𝑖 𝑗 with the notation 𝛽𝑖 𝑗 . This

runs the risk of presenting confusion in light of the associator and compatibility maps introduced

momentarily—we hope that the meaning of notation is clear presented in context.
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We remark that if ®𝑓 1 is a single multimorphism, then the multipath (4.1.5) can be pictured as

(4.1.1) from the previous proof. In general, ®𝑓 may consist of many multimorphisms, and we can

think of a multipath as a collection of such diagrams—in other words, multipaths can be viewed as

trees and forests.

Definition 4.1.3. A grading multicategory is pair (C , 𝛼) where C is a multicategory and 𝛼 :

C [3] → K× is a 3-cocycle, meaning that for allÖ
®𝑓 ,

Ñ
𝑘∏
𝑖=1
®𝑔𝑖

é
,

Ñ
𝑘∏
𝑖=1

𝛼𝑖∏
𝑗=1

®ℎ𝑖 𝑗

é
,

Ñ
𝑘∏
𝑖=1

𝛼𝑖∏
𝑗=1

𝛽𝑖 𝑗∏
𝑘=1

®ℓ𝑖 𝑗 𝑘

éè
∈ C [4]

(shortened to ®𝑓 , ®𝑔, ®ℎ, ®ℓ ∈ C [4]), 𝛼 satisfies the expression

𝑑𝛼(®ℓ, ®ℎ, ®𝑔, ®𝑓 ) := 𝛼(®ℓ, ®ℎ, ®𝑔)𝛼(®ℓ, ®ℎ, ®𝑓 ®𝑔)−1𝛼(®ℓ, ®𝑔®ℎ, ®𝑓 )𝛼(®ℎ ®ℓ, ®𝑔, ®𝑓 )−1𝛼(®ℎ, ®𝑔, ®𝑓 ) = 1.

We call such an 𝛼 an associator.

4.2 G as a grading multicategory

Our goal is to show that there exists a suitable associator 𝛼 endowing G with the structure of a

grading multicategory. We will define 𝛼 to be the product of two values associated to changes of

chronologies, one explicit and the other implicit.

We’ll use the notation ®𝐷, ®𝐷′, and so on to denote collections of planar arc diagrams which

form a multipath in 𝑝T. If ®𝐷 is a single planar arc diagram 𝐷, and ®𝐷′ = (𝐷1, . . . , 𝐷𝑛), then their

composition, which will in general be denoted ®𝐷( ®𝐷′), is denoted 𝐷(𝐷1, . . . , 𝐷𝑛). In the general

setting, the constituents of a multipath 𝑔, 𝑔′, 𝑔′′, 𝑔′′′ ∈ G [4] will be written

𝑔 = ( ®𝐷, ®𝑝) =
∏
𝑖

(𝐷𝑖, 𝑝𝑖)

𝑔′ = ( ®𝐷′, ®𝑝′) =
∏
𝑖, 𝑗

(𝐷𝑖 𝑗 , 𝑝𝑖 𝑗 )

𝑔′′ = ( ®𝐷′′, ®𝑝′′) =
∏
𝑖, 𝑗 ,𝑘

(𝐷𝑖 𝑗 𝑘 , 𝑝𝑖 𝑗 𝑘 )

𝑔′′′ = ( ®𝐷′′′, ®𝑝′′′) =
∏
𝑖, 𝑗 ,𝑘,ℓ

(𝐷𝑖 𝑗 𝑘ℓ, 𝑝𝑖 𝑗 𝑘ℓ).
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On one hand, our indexing notation allows us to write ®𝐷′
𝑖
=
∏

𝑗 (𝐷𝑖 𝑗 , 𝑝𝑖 𝑗 ). Then, ®𝐷( ®𝐷′) denotes the

collection (𝐷1( ®𝐷′1), . . . , 𝐷𝑛( ®𝐷′𝑛). We could also use our indexing notation to write, for example, 𝑔′′′

as
∏
𝑖, 𝑗 ,𝑘 ( ®𝐷′′′𝑖, 𝑗 ,𝑘 , ®𝑝

′′′
𝑖, 𝑗 ,𝑘

). Finally, we will denote by 𝑃 the sum of the entries of ®𝑝 (that is, 𝑃 =
∑
𝑖 𝑝𝑖)

and similarly for the other cases; e.g., 𝑃′′′ = ®𝑝′′′ · ⟨1, . . . , 1⟩ = ∑
𝑖, 𝑗 ,𝑘,ℓ 𝑝𝑖 𝑗 𝑘ℓ.

As we proceed, we will make use of the following lemma. It is implicit in the proof of

Proposition 4.1.2, but we restate it here.

Lemma 4.2.1. For any multipath of planar arc diagrams ®𝐷, ®𝐷′, and ®𝐷′′ as above,���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� +���𝑊 ®𝑤®𝑥®𝑧( ®𝐷′′, ®𝐷( ®𝐷′))

��� = ���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� +���𝑊 ®𝑤®𝑦®𝑧( ®𝐷′( ®𝐷′′), ®𝐷)
��� .

Proof. The compositions 𝑊 ®𝑤®𝑥®𝑧( ®𝐷′′, ®𝐷( ®𝐷′)) ◦𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷) and 𝑊 ®𝑤®𝑦®𝑧( ®𝐷′( ®𝐷′′), ®𝐷) ◦𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)

(we assume the first cobordisms in both composites are the identity elsewhere) have the same source

and target. Thus they are isotopic cobordisms—if this were not the case, the minimality condition

on the Euler characteristic would be contradicted. □

To construct our associator, consider the change of chronology

®𝑤 ®𝐷( ®𝐷′( ®𝐷′′))®𝑧

®𝑤 ®𝐷′′®𝑥 ⊗ ®𝑥𝐷( ®𝐷′)®𝑧
𝐻𝛼

===⇒ ®𝑤 ®𝐷′( ®𝐷′′)®𝑦 ⊗ ®𝑦 ®𝐷®𝑧

®𝑤 ®𝐷′′®𝑥 ⊗ ®𝑥 ®𝐷′®𝑦 ⊗ ®𝑦 ®𝐷®𝑧

𝑊 ®𝑤 ®𝑥®𝑧( ®𝐷′′, ®𝐷( ®𝐷′)) 𝑊 ®𝑤 ®𝑦®𝑧( ®𝐷′( ®𝐷′′), ®𝐷)

𝑊 ®𝑤 ®𝑥 ®𝑦( ®𝐷′′, ®𝐷′)⊗1®𝑦 ®𝐷®𝑧1 ®𝑤 ®𝐷′′ ®𝑥⊗𝑊 ®𝑥 ®𝑦®𝑧( ®𝐷′, ®𝐷)

Define 𝛼1(𝑔′′, 𝑔′, 𝑔) to be the evaluation of this change of chronology 𝜄(𝐻𝛼)—notice that this

component of 𝛼 does not see the second coordinates of its inputs. Secondly, take

𝛼2(𝑔′′, 𝑔′, 𝑔) = 𝜆

Ñ���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� ,∑︁
𝑖, 𝑗 ,𝑘

𝑝𝑖 𝑗 𝑘

é
= 𝜆

(���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� , 𝑃′′) .
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Then, set

𝛼 = 𝛼2𝛼1.

Remark 4.2.2. This definition is clearly motivated by and generalizes the associator presented in

[NP20]. A property we will use frequently is that the degree of cobordisms decomposes into a sum

of constituents; notice, for example, that

𝛼2(𝑔′′′, 𝑔′′, 𝑔′) = 𝜆
(���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� , 𝑃′′′)

= 𝜆

Ñ∑︁
𝑖

���𝑊 ®𝑤𝑖 ®𝑥𝑖 ®𝑦𝑖 ( ®𝐷
′′
𝑖 ,
®𝐷𝑖)

��� , 𝑃′′′é
(We could rewrite the last line as

∏
𝑖 𝜆

(���𝑊 ®𝑤𝑖 ®𝑥𝑖 ®𝑦𝑖 ( ®𝐷′′𝑖 , ®𝐷𝑖)
��� , 𝑃′′′), invoking the bilinearity of 𝜆,

although there might be slight confusion with this rewriting since 𝑃′′′ is a sum involving the index

𝑖—indeed, the second coordinates of each term in this product are equivalent.) Finally, we remark

that we can view 𝛼 as coming from the following sequence of schematics, just as in [NP20] (pictured

for the case we have just described).

𝑔′′′
𝑔′′
𝑔′
𝑔

𝛼1(𝑔′′′, 𝑔′′, 𝑔′)
𝑔′′′
𝑔′′
𝑔′
𝑔

𝛼1(𝑔′′′, 𝑔′′, 𝑔′)𝛼2(𝑔′′′, 𝑔′′, 𝑔′) 𝑔′′′

𝑔′′
𝑔′
𝑔

Proposition 4.2.3. The map 𝛼 : G [3] → 𝑅 is a 3-cocycle.

Proof. This proof is completely analogous to the proof of Proposition 5.4 in [NP20]—we represent

their proof in the context of grading multicategories. As in the original case, 𝑑𝛼(𝑔′′′, 𝑔′′, 𝑔′, 𝑔)
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computes the difference between the paths of the diagram below.

𝑔′′′

𝑔′′
𝑔′
𝑔

𝑔′′′

𝑔′′
𝑔′
𝑔

𝑔′′′
𝑔′′
𝑔′
𝑔

𝑔′′′
𝑔′′

𝑔′
𝑔

𝑔′′′

𝑔′′

𝑔′
𝑔

𝛼(𝑔′′′,𝑔′′𝑔′,𝑔)

𝛼(𝑔′′,𝑔′,𝑔)𝛼(𝑔′′′,𝑔′′,𝑔′)

𝛼(𝑔′′′𝑔′′,𝑔′,𝑔) 𝛼(𝑔′′′,𝑔′′,𝑔′𝑔)

⇒ 𝑑𝛼 (4.2.1)

On one hand, we are comparing two locally vertical changes of chronology with the same source

and target, so the following diagram commutes by Proposition 3.1.3.

®𝐷′′′®𝐷′′ ®𝐷′ ®𝐷 ®𝐷′′′®𝐷′′ ®𝐷′ ®𝐷

®𝐷′′′®𝐷′′ ®𝐷′ ®𝐷 ®𝐷′′′®𝐷′′ ®𝐷′ ®𝐷

®𝐷′′′®𝐷′′ ®𝐷′ ®𝐷 ®𝐷′′′®𝐷′′ ®𝐷′ ®𝐷

𝛼1
Ä
®𝐷′′′, ®𝐷′( ®𝐷′′), ®𝐷

ä
𝛼1( ®𝐷′′, ®𝐷′, ®𝐷)𝛼1( ®𝐷′′′, ®𝐷′′, ®𝐷′)

𝛼1
Ä
®𝐷′′( ®𝐷′′′), ®𝐷′, ®𝐷

ä
𝜅

𝛼1( ®𝐷′′′, ®𝐷′′, ®𝐷( ®𝐷′))

Since the corresponding change of chronology consists only of the sliding of two chronological

cobordisms past one another, we know by work in Section 3.1 that 𝜅 is

𝜆

(���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� ,���𝑊®𝑣 ®𝑤®𝑥( ®𝐷′′′, ®𝐷′′)���) .

Thus, the contribution of 𝛼1 in equation (4.2.1) is

top = 𝜅 bot.
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On the other hand, we can compute and compare the contributions of 𝛼2 on the top and bottom

path of (4.2.1). The top path evaluates to

𝜆

(���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� , 𝑃′′′) · 𝜆 (���𝑊 ®𝑤,®𝑦,®𝑧( ®𝐷′( ®𝐷′′), ®𝐷)
��� , 𝑃′′′) · 𝜆 (���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� , 𝑃′′)
or, applying bilinearity of 𝜆,

𝜆

(���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� +���𝑊 ®𝑤®𝑦®𝑧( ®𝐷′( ®𝐷′′), ®𝐷)
��� , 𝑃′′′) · 𝜆 (���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� , 𝑃′′) . (4.2.2)

The bottom path is slightly trickier to evaluate, since the second coordinate of 𝛼2(𝑔′′′𝑔′′, 𝑔′, 𝑔)

requires a computation. As in the proof of Proposition 4.1.2, this comes from summing the second

coordinates of 𝑔′′′ and 𝑔′′ and the cobordisms among their coordinates; explicitly,

𝛼2(𝑔′′′𝑔′′, 𝑔′, 𝑔) = 𝜆

Ñ���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� , 𝑃′′′ + 𝑃′′ +∑︁

𝑖, 𝑗

���𝑊®𝑣(𝑖, 𝑗) ®𝑤𝑖 𝑗 ®𝑥𝑖 𝑗 ( ®𝐷
′′′
𝑖 𝑗 ,
®𝐷′′𝑖 𝑗 )

���é .

The last summation in the second coordinate can be rewritten as in Remark 4.2.2: we find that the

bottom path evaluates to

𝜆

(���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� , 𝑃′′′ + 𝑃′′ +���𝑊®𝑣 ®𝑤®𝑥( ®𝐷′′′, ®𝐷′′)���) · 𝜆 (���𝑊 ®𝑤®𝑥®𝑧( ®𝐷′′, ®𝐷( ®𝐷′))

��� , 𝑃′′′) .
Decomposing via bilinearity yields

𝜆

(���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� , 𝑃′′′) · 𝜆 (���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� , 𝑃′′) · 𝜆 (���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� ,���𝑊®𝑣 ®𝑤®𝑥( ®𝐷′′′, ®𝐷′′)���)

· 𝜆
(���𝑊 ®𝑤®𝑥®𝑧( ®𝐷′′, ®𝐷( ®𝐷′))

��� , 𝑃′′′) .
Combining the first and last term, and reordering suggestively, gives the product

𝜆

(���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
��� ,���𝑊®𝑣 ®𝑤®𝑥( ®𝐷′′′, ®𝐷′′)���) · 𝜆 (���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� +���𝑊 ®𝑤®𝑥®𝑧( ®𝐷′′, ®𝐷( ®𝐷′))
��� , 𝑃′′′)

· 𝜆
(���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� , 𝑃′′) .
In this rewriting, the first term is 𝜅. Moreover, by Lemma 4.2.1, the first coordinate of the second

term is equivalent to the fist coordinate of the first term of (4.2.2). Thus, the overall contribution

of 𝛼2 in equation (4.2.1) is

𝜅 top = bot.

Together, this provides that 𝑑𝛼 = 1, as desired. □
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4.3 Generalities on modules graded by grading multicategories

Before proceeding with the grading multicategory at hand, we note generalities of C -graded

modules. That is, we consider the ways in which results of Section 4 of [NP20] lift to the setting of

grading multicategories. Throughout, C is a grading multicategory with associator 𝛼 over a unital,

commutative ring K.

By a C -graded K-module, we mean a K-module 𝑀 with decomposition 𝑀 =
⊕

𝑔∈Mor(C ) 𝑀𝑔

where 𝑔 is a multimorphism of C . As before, we write |𝑥 | = 𝑔 whenever 𝑥 ∈ 𝑀𝑔. This generalizes

the notion of grading by a category, introduced in [NP20], which in turn generalized the notion of

grading by a group (take the category consisting of a single element★ and End(★) = 𝐺). Of course,

we are interested in the case C = G and K = 𝑅.

Tensor products in this setting are rather odd in the sense that their graded structure has a few

different interpretations. This choice should be clear given the context. In one case, if 𝑀 and 𝑀′

are two C -graded K-modules, then we can define

𝑀′ ⊗ 𝑀 =
⊕

ℎ∈Mor(C )

(𝑀′ ⊗ 𝑀)ℎ

where

(𝑀′ ⊗ 𝑀)ℎ =
⊕
ℎ=𝑔◦𝑔′

𝑀′𝑔′ ⊗K 𝑀𝑔 .

Notice that this definition does not make full use of the flexibility offered by a grading multicategory.

On the other hand, for C -graded modules 𝑀1, . . . , 𝑀𝑘 , 𝑀 , we can view the tensor product over K

as C -graded by defining

(𝑀1 ⊗ · · · ⊗ 𝑀𝑘 ) ⊗ 𝑀 =
⊕

ℎ∈Mor(C )

[(𝑀1 ⊗ · · · ⊗ 𝑀𝑘 ) ⊗ 𝑀]ℎ

where

[(𝑀1 ⊗ · · · ⊗ 𝑀𝑘 ) ⊗ 𝑀]ℎ =
⊕

ℎ=𝑔◦(𝑔1,...,𝑔𝑘)
(𝑀1,𝑔1 ⊗ · · · ⊗ 𝑀𝑘,𝑔𝑘 ) ⊗ 𝑀𝑔 .

Notice that 𝑀1⊗ · · · ⊗𝑀𝑘 is interpreted as a collection of C -graded modules, but not as a C -graded

module itself. Rather, 𝑀1 ⊗ · · · ⊗ 𝑀𝑘 in the above scenario is viewed as C 𝑘 = C × · · · ×C -graded
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in the sense that

𝑀1 ⊗ · · · ⊗ 𝑀𝑘 =
⊕

(𝑔1,...,𝑔𝑘)∈Mor(C 𝑘)

𝑀1,𝑔1 ⊗ · · · ⊗ 𝑀𝑘,𝑔𝑘 .

We will always abbreviate 𝑀1 ⊗ · · · ⊗ 𝑀𝑘 (without interpretation as a C -graded module itself)

by (𝑀1, . . . , 𝑀𝑘 ) or, more succinctly, ®𝑀 to avoid confusion. For example, the above scenario

will be written (𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀 or, succinctly, ®𝑀 ⊗ 𝑀 . Likewise, by ®𝑀′ ⊗ ®𝑀 we mean

( ®𝑀′1 ⊗ 𝑀1, . . . , ®𝑀′𝑘 ⊗ 𝑀𝑘 ).

Denote by ModC
K , or just ModC , the category of C -graded K-modules, whose morphisms are

K-linear maps which preserve grading. That is, for 𝑓 : 𝑀 → 𝑁 , we have 𝑓 (𝑀𝑔) ⊂ 𝑁𝑔 for each

𝑔. We call such maps C -graded, or just graded. The associator of the grading multicategory C

provides a coherence isomorphism

( ®𝑀′′ ⊗ ®𝑀′) ⊗ 𝑀 ®𝑀′′ ⊗ ( ®𝑀′ ⊗ 𝑀)

( ®𝑚′′ ⊗ ®𝑚′) ⊗ 𝑚 𝛼
Ä�� ®𝑚′′�� ,�� ®𝑚′�� ,|𝑚 |ä ®𝑚′′ ⊗ ( ®𝑚′ ⊗ 𝑚)

where ®𝑚′ (and, similarly, ®𝑚′′) is comprised of tensored homogeneous elements 𝑚𝑖 ∈ (𝑀𝑖)|𝑚𝑖 |, and�� ®𝑚′�� = (|𝑚1 | , . . . ,|𝑚𝑘 |) is the corresponding collection of multimorphisms (that is, C -gradings).

Since the number of modules involved in a tensor product can vary, we have a collection of

unit objects, one for each 𝑘 , all defined as the tensor product of a single module: let 1 denote the

C -gradedK-module
⊕

𝑋∈Ob(C )(K)1𝑋 . Then, 1⊗𝑘 is a unit object in the sense that there are (graded)

isomorphisms (i.e., left- and right-unitors)

L : 1⊗𝑘 ⊗ 𝑀 � 𝑀 and R : 𝑀 ⊗ 1 � 𝑀

of C -graded modules which satisfy the triangle identityÄ
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 1⊗𝑘

ä
⊗ 𝑀 (𝑀1, . . . , 𝑀𝑘 ) ⊗

Ä
1
⊗𝑘 ⊗ 𝑀

ä
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

𝛼

∏
𝑖 R𝑖⊗id𝑀

∏
𝑖 id𝑀𝑖

⊗L

where R𝑖 means the right unitor applied to 𝑀𝑖. The left- and right-unitors we pick are determined

by the associator: if each 𝑚𝑖 in 𝑚1 ⊗ · · · ⊗ 𝑚𝑘 ∈ 𝑀1 ⊗ · · · ⊗ 𝑀𝑘 is homogeneous (with, say,
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|𝑚𝑖 | : (𝑥𝑖1, . . . , 𝑥𝑖𝛼𝑖 ) ↦→ 𝑦′
𝑖
), and similarly for 𝑐1 ⊗ · · · ⊗ 𝑐𝑘 ∈ 1

⊗𝑘 and 𝑚 ∈ 𝑀 (with, say,

|𝑚 | : (𝑦1, . . . , 𝑦𝑘 ) ↦→ 𝑧), we can choose left-unitor given by

(𝑐1 ⊗ · · · ⊗ 𝑐𝑘 ) ⊗ 𝑚 ↦→ 𝛼((1𝑦1 , . . . , 1𝑦𝑘 ), (1𝑦1 , . . . , 1𝑦𝑘 ),|𝑚 |)−1𝑐1 · · · 𝑐𝑘𝑚

and right-unitor by

(𝑚1⊗· · ·⊗𝑚𝑘 )⊗(𝑐1⊗· · ·⊗𝑐𝑘 ) ↦→ 𝛼((|𝑚1 | , . . . ,|𝑚𝑘 |), (1𝑦1 , . . . , 1𝑦𝑘 ), (1𝑦1 , . . . , 1𝑦𝑘 ))𝑚1𝑐1⊗· · ·⊗𝑚𝑘𝑐𝑘 .

To see why this satisfies the triangle identity, take 𝑦𝑖 = 𝑦′
𝑖

so that
�� ®𝑚′�� and |𝑚 | are composable

multimorphisms, and consider the path of length 4 given by

®𝑥
(|𝑚1 |,...,|𝑚𝑘 |)−−−−−−−−−→ ®𝑦

(1𝑦1 ,...,1𝑦𝑘
)

−−−−−−−−→ ®𝑦
(1𝑦1 ,...,1𝑦𝑘

)
−−−−−−−−→ ®𝑦

|𝑚 |
−−→ 𝑧.

Then, the cocycle condition of 𝛼 establishes that

1 = 𝑑𝛼(
�� ®𝑚′�� , 1®𝑦, 1®𝑦,|𝑚 |)

= 𝛼(
�� ®𝑚′�� , 1®𝑦, 1®𝑦)𝛼(

�� ®𝑚′�� , 1®𝑦,|𝑚 |)−1𝛼(1®𝑦, 1®𝑦,|𝑚 |).

This gives the triangle identity after re-arranging.

Since the cocyle requirement of the associator of a grading multicategory is exactly the pen-

tagonal relation of monoidal categories, it follows from the work above that ModC
K has a structure

resembling a monoidal category.

Finally, we briefly describe two important types of C -graded modules: algebras and multimod-

ules. A C -graded algebra is a C -gradedK-module 𝐴 =
⊕

𝑔∈Mor(C ) 𝐴𝑔, supported only in gradings

𝑔 which are single-input multimorphisms (i.e., morphisms) of C , with a K-linear multiplication

map 𝜇 : 𝐴 ⊗ 𝐴→ 𝐴 and a unit 1𝑋 ∈ 𝐴Id𝑋 for each 𝑋 ∈ Ob(C ) such that

(i) 𝜇 is graded: 𝜇(𝐴𝑔′ , 𝐴𝑔) ⊂ 𝐴𝑔◦𝑔′ for all 𝑔′, 𝑔 ∈ C ,

(ii) 𝜇 is graded-associative: 𝜇(𝜇(𝑧, 𝑦), 𝑥) = 𝛼(|𝑧 | ,
��𝑦�� ,|𝑥 |)𝜇(𝑧, 𝜇(𝑦, 𝑥)), and

(iii) 𝜇(1𝑌 , 𝑥) = L(Id𝑌 ,|𝑥 |) 𝑥 and 𝜇(𝑥, 1𝑋) = R(|𝑥 | , Id𝑋) 𝑥 for all 𝑥 ∈ 𝐴|𝑥 |:𝑋→𝑌 .
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Before proceeding, we emphasize that C -graded algebras are supported by single-input multimor-

phisms exclusively—really, C -graded algebras are hardly different than the C-graded algebras (C

a category) of [NP20].

We’ll write 𝜇(𝑥, 𝑦) as 𝑥 · 𝑦 when it is clear which multiplication is in use. Going on, we will only

consider the tensor product (𝐴1, . . . , 𝐴𝑘 )—that is, 𝐴1 ⊗ · · · ⊗ 𝐴𝑘 viewed as C 𝑘 -graded—with mul-

tiplication (𝑎′1, . . . , 𝑎
′
𝑘
) · (𝑎1, . . . , 𝑎𝑘 ), or, concisely, ®𝑎′ · ®𝑎, defined as (𝜇𝐴1(𝑎′1, 𝑎1), . . . , 𝜇𝐴𝑘

(𝑎′
𝑘
, 𝑎𝑘 )).

Suppose 𝐴1, . . . , 𝐴𝑘 , 𝐵 are C -graded algebras. Then, a C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodule

is a C -graded K-module 𝑀 =
⊕

𝑔∈Mor(C ) 𝑀𝑔 with graded, K-linear left and right actions

𝜌𝐿 : (𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝑀 → 𝑀 and 𝜌𝑅 : 𝑀 ⊗ 𝐵→ 𝑀

such that

(i) 𝜌𝐿((®𝑎′ · ®𝑎), 𝑚) = 𝛼(
��®𝑎′�� ,��®𝑎�� ,|𝑚 |)𝜌𝐿(®𝑎′, 𝜌𝐿(®𝑎, 𝑚)),

(ii) 𝜌𝑅(𝜌𝑅(𝑚, 𝑏′), 𝑏) = 𝛼(|𝑚 | ,|𝑏 |′ ,|𝑏 |)𝜌𝑅(𝑚, 𝑏′ · 𝑏),

(iii) 𝜌𝑅(𝜌𝐿(®𝑎, 𝑚), 𝑏) = 𝛼(
��®𝑎�� ,|𝑚 | ,|𝑏 |)𝜌𝐿(®𝑎, 𝜌𝑅(𝑚, 𝑏)), and

(iv) 𝜌𝐿((1𝑌 , . . . , 1𝑌 ), 𝑚) = L((1𝑌 , . . . , 1𝑌 ),|𝑚 |)𝑚 and 𝜌𝑅(𝑚, 1𝑋) = R(|𝑚 | , Id𝑋) for all 𝑚 ∈

𝑀|𝑚 |:𝑋→𝑌

for all ®𝑎′, ®𝑎 ∈ (𝐴1, . . . , 𝐴𝑘 ), 𝑏′, 𝑏 ∈ 𝐵, and 𝑚 ∈ 𝑀 .

One should take caution: again, we are viewing (𝐴1, . . . , 𝐴𝑘 ) as a collection of C -graded

algebras, not as a single C -graded object. In particular, a C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodule

is, perhaps surprisingly, not equivalent to the notion of a C -graded (𝐴1 ⊗K · · · ⊗K 𝐴𝑘 , 𝐵)-bimodule.

In particular, the left action 𝜌𝐿 is graded in the sense that

𝜌𝐿((𝐴1,𝑔1 ⊗ · · · ⊗ 𝐴𝑘,𝑔𝑘 ) ⊗ 𝑀𝑔) ⊂ 𝑀𝑔◦(𝑔1,...,𝑔𝑘)

and not in the sense that

𝜌𝐿((𝐴1,𝑔1 ⊗ · · · ⊗ 𝐴𝑘,𝑔𝑘 ) ⊗ 𝑀𝑔) ⊂ 𝑀𝑔◦𝑔𝑘◦···◦𝑔1 .
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We define a C -graded (𝐴, 𝐵)-bimodule as a C -graded (𝐴; 𝐵)-multimodule for C -graded algebras

𝐴 and 𝐵.

A graded map of (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodules is a graded, K-linear map satisfying

𝑓 (𝜌𝐿(®𝑎, 𝑚)) = 𝜌𝐿(®𝑎, 𝑓 (𝑚)) and 𝑓 (𝜌𝑅(𝑚, 𝑏)) = 𝜌𝑅( 𝑓 (𝑚), 𝑏)

for all ®𝑎, 𝑚, and 𝑏. Denote the category of C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodules, cumbersomely,

by MultiModC
𝑅 (𝐴1, . . . , 𝐴𝑘 ; 𝐵). As always, if it is clear what algebras we’re working over, we denote

this category by MultiModC .

Take 𝑀 ∈ MultiModC (𝐵1, . . . , 𝐵𝑘 ;𝐶) and 𝑀𝑖 ∈ MultiModC (𝐴𝑖1, . . . , 𝐴𝑖ℓ𝑖 ; 𝐵𝑖) for each 𝑖 =

1, . . . , 𝑘 . Then (𝑀1, . . . , 𝑀𝑘 )⊗𝑀 has the structure of a C -graded (𝐴11, . . . , 𝐴𝑘ℓ𝑘 ;𝐶)-multimodule

by defining left- and right-actions so that the diagrams

(𝐴11, . . . , 𝐴𝑘ℓ𝑘 ) ⊗ ((𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀) (𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

((𝐴11, . . . , 𝐴𝑘ℓ𝑘 ) ⊗ (𝑀1, . . . , 𝑀𝑘 )) ⊗ 𝑀
𝛼−1 ∏

𝜌𝐿⊗1

and
((𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀) ⊗ 𝐶 (𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

(𝑀1, . . . , 𝑀𝑘 ) ⊗ (𝑀 ⊗ 𝐶)

𝛼
1⊗𝜌𝑅

commute, interpreting ((𝐴11, . . . , 𝐴𝑘ℓ𝑘 ) ⊗ (𝑀1, . . . , 𝑀𝑘 )) as

((𝐴11, . . . , 𝐴1ℓ1) ⊗ 𝑀1, . . . , (𝐴𝑘1, . . . , 𝐴𝑘ℓ𝑘 ) ⊗ 𝑀𝑘 ).

Explicitly, the left action is given by

(𝑎11, . . . , 𝑎𝑘ℓ𝑘 )·( ®𝑚⊗𝑚) := 𝛼−1(
��®𝑎�� ,�� ®𝑚�� ,|𝑚 |)(𝜌1

𝐿((𝑎11, . . . , 𝑎1ℓ1), 𝑚1), . . . , 𝜌𝑘𝐿((𝑎𝑘1, . . . , 𝑎𝑘ℓ𝑘 ), 𝑚𝑘 ))⊗𝑚

where 𝜌𝑖
𝐿

is meant to denote the left action for the multimodule 𝑀𝑖. The right is just

( ®𝑚 ⊗ 𝑚) · 𝑐 := 𝛼(
�� ®𝑚�� ,|𝑚 | ,|𝑐 |) ®𝑚 ⊗ (𝜌𝑅(𝑚, 𝑐)).
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Finally, we note that the tensor product of (𝑀1, . . . , 𝑀𝑘 ) with 𝑀 over C -graded algebras

(𝐵1, . . . , 𝐵𝑘 ), denoted (𝑀1, . . . , 𝑀𝑘 ) ⊗(𝐵1,...,𝐵𝑘) 𝑀 , is defined as

(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀
/(

(𝜌1
𝑅(𝑚1, 𝑏1), . . . , 𝜌𝑘𝑅(𝑚𝑘 , 𝑏𝑘 )) ⊗ 𝑚

− 𝛼(
�� ®𝑚�� ,���®𝑏��� ,|𝑚 |)(𝑚1, . . . , 𝑚𝑘 ) ⊗ 𝜌𝐿((𝑏1, . . . , 𝑏𝑘 ), 𝑚)

)
where 𝜌𝑖

𝑅
is meant to denote the right action for the multimodule 𝑀𝑖. This is to say that the tensor

product of (𝑀1, . . . , 𝑀𝑘 ) with 𝑀 over (𝐵1, . . . , 𝐵𝑘 ) is defined as the coequializer of the diagram(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ (𝐵1, . . . , 𝐵𝑘 )

)
⊗ 𝑀

(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

(𝑀1, . . . , 𝑀𝑘 ) ⊗
(
(𝐵1, . . . , 𝐵𝑘 ) ⊗ 𝑀

)
𝛼

∏
𝜌𝑖
𝑅
⊗1𝑀

∏
1𝑀𝑖
⊗𝜌𝐿

in the category of C -graded modules. Given 𝑓 : 𝑀 → 𝑁 and 𝑓𝑖 : 𝑀𝑖 → 𝑁𝑖 for all 𝑖 = 1, . . . , 𝑘 , we

define the tensor product of maps

( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 : (𝑀1, . . . , 𝑀𝑘 ) ⊗(𝐵1,...,𝐵𝑘) 𝑀 → (𝑁1, . . . , 𝑁𝑖) ⊗(𝐵1,...,𝐵𝑘) 𝑁

by
(
( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓

) (
(𝑚1, . . . , 𝑚𝑘 ) ⊗ 𝑚

)
= ( 𝑓1(𝑚1), . . . , 𝑓𝑘 (𝑚𝑘 )) ⊗ 𝑓 (𝑚).

4.4 G -graded arc modules

If 𝐷 is a planar arc diagram of type (𝑚1, . . . , 𝑚𝑘 ; 𝑛), F (𝐷) is a G -graded 𝑅-multimodule where,

for 𝑢 ∈ F (𝐷(𝑥1, . . . , 𝑥𝑘 ; 𝑦)) ⊂ F (𝐷),

degG (𝑢) = (“𝐷, deg𝑅(𝑢)) ∈ HomG (𝑥1, . . . , 𝑥𝑘 ; 𝑦).

Then, the following lemmas are apparent.

Lemma 4.4.1. The composition maps 𝜇[(𝐷1, . . . , 𝐷𝑘 );𝐷] preserve G -grading.

Proof. This is by definitions: recall the composition maps

𝜇[(𝐷1, . . . , 𝐷𝑘 );𝐷] :
(
F (𝐷1), . . . , F (𝐷𝑘 )

)
⊗ F (𝐷)→ F (𝐷(𝐷1, . . . , 𝐷𝑘 ))
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from the beginning of this section. Now, an element (𝑢1, . . . , 𝑢𝑘 )⊗𝑢 living in the source has degree

(𝐷∧, deg𝑅(𝑢))◦
(
(𝐷∧1 , deg𝑅(𝑢1)), . . . , (𝐷∧𝑘 , deg𝑅(𝑢𝑘 ))

)
=

Ñ
𝐷(𝐷1, . . . , 𝐷𝑘 )∧, deg𝑅(𝑢) +

𝑘∑︁
𝑖=1

deg𝑅(𝑢𝑖) +
���𝑊®𝑥®𝑦𝑧((𝐷1, . . . , 𝐷𝑘 );𝐷)

���é
where |𝑢𝑖 | : ®𝑥𝑖 → 𝑦𝑖 and |𝑢 | : ®𝑦 → 𝑧. On the other hand,

degG

(
𝜇[(𝐷1, . . . , 𝐷𝑘 );𝐷]((𝑢1, . . . , 𝑢𝑘 ) ⊗ 𝑢)

)
is, by the definition of the degree of cobordisms, the second coordinate of the pair above. □

Lemma 4.4.2. For 𝑢𝑖 𝑗 ∈ F (𝐷𝑖 𝑗 ), 𝑢𝑖 ∈ F (𝐷𝑖), and 𝑢 ∈ F (𝐷),

𝜇[ ®𝐷′( ®𝐷′′), 𝐷]
Ä
𝜇[ ®𝐷′′, ®𝐷′](®𝑢′′, ®𝑢′), 𝑢

ä
= 𝛼
Ä��®𝑢′′�� ,��®𝑢′�� ,|𝑢 |ä 𝜇[ ®𝐷′′, 𝐷( ®𝐷′)]

Ä
®𝑢′′, 𝜇[ ®𝐷′, 𝐷](®𝑢′, 𝑢)

ä
.

Proof. This is immediate by the construction of the 𝜇 composition maps and the associator 𝛼,

recalling that ChCob• has the relation that 𝑊′ = 𝜄(𝐻)𝑊 for each change of chronology 𝐻 : 𝑊 ⇒

𝑊′. □

Proposition 4.4.3. The arc algebra F (1𝑛) = 𝐻𝑛 is unital and associative as a G -graded 𝑅-algebra.

Proof. Recall that the multiplication in 𝐻𝑛 is 𝜇[1𝑛, 1𝑛], so Lemma 4.4.1 implies that the multiplica-

tion in 𝐻𝑛 is G -graded, while Lemma 4.4.2 implies that it is graded associative. Since we defined

the left- and right-unitors via the associator, the third requirement of G -graded algebras is also

satisfied by Lemma 4.4.2, and we conclude that 𝐻𝑛 is a G -graded algebra. Associativity follows

from Lemma 4.4.2 as well; for a proof of unitality, see the proof of Proposition 6.2 in [NP20]. □

Proposition 4.4.4. Suppose 𝐷 is a planar arc diagram of type (𝑚1, . . . , 𝑚𝑘 ; 𝑛). Then F (𝐷) is a

G -graded (𝐻𝑚1 , . . . , 𝐻𝑚𝑘 ;𝐻𝑛)-multimodule with left action

𝜌𝐷𝐿 = 𝜇[(1𝑚1 , . . . , 1𝑚𝑘
), 𝐷] : (𝐻𝑚1 , . . . , 𝐻𝑚𝑘 ) ⊗ F (𝐷)→ F (𝐷)

and right action

𝜌𝐷𝑅 = 𝜇[𝐷, 1𝑛] : F (𝐷) ⊗ 𝐻𝑛 → F (𝐷).
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Proof. Just as the previous proposition, this follows by applying Lemmas 4.4.2 and 4.4.1, now

knowing that 𝐻𝑛 is a G -graded algebra for each 𝑛. □

Recall that if ®𝐷 = (𝐷1, . . . , 𝐷𝑘 ) is a collection of planar arc diagrams of type (ℓ𝑖1, . . . , ℓ𝑖𝛼𝑖 ;𝑚𝑖)

for each 𝑖 = 1, . . . , 𝑘 , then each of F (𝐷𝑖) in F ( ®𝐷) =
(
F (𝐷1), . . . , F (𝐷𝑘 )

)
is a G -gradedÄ

𝐻ℓ𝑖1 , . . . , 𝐻ℓ𝑖𝛼𝑖 ;𝐻𝑚𝑖

ä
-multimodule with left-aciton

𝜇[(1ℓ𝑖1 , . . . , 1ℓ𝑖𝛼𝑖 );𝐷𝑖]

and right action

𝜇[𝐷𝑖; 1𝑚𝑖
].

Then, using results of §4.3, we can view
(
F (𝐷1), . . . , F (𝐷𝑘 )

)
⊗F (𝐷) as an

Ä
𝐻ℓ11 , . . . , 𝐻ℓ𝑘𝛼𝑘 ;𝐻𝑚

ä
-

multimodule. Similarly, comparing with the general case, we can define the tensor product

F ( ®𝐷) ⊗(𝐻𝑚1 ,...,𝐻𝑚𝑘 ) F (𝐷) as F ( ®𝐷) ⊗ F (𝐷) quotiented by

(𝜇[𝐷1, 1𝑚1](𝑢1, 𝑥1), . . . , 𝜇[𝐷𝑘 , 1𝑚𝑘
](𝑢𝑘 , 𝑥𝑘 )) ⊗ 𝑢

− 𝛼(
��®𝑢�� ,��®𝑥�� ,|𝑢 |)(𝑢1, . . . , 𝑢𝑘 ) ⊗ 𝜇[(1𝑚1 , . . . , 1𝑚𝑘

);𝐷](®𝑥, 𝑢)
(4.4.1)

for ®𝑢 ∈ F ( ®𝐷′), ®𝑥 ∈ (𝐻𝑛1 , . . . , 𝐻𝑛𝑘 ), and 𝑢 ∈ F (𝐷).

Mimicking [Kho02], we note each of the following. See also Section 6.1 of [NP20]. The proofs

of these statements are essentially identical to those found in Sections 2.6 and 2.7 of Khovanov’s

paper, and would take us too far afield to prove here—we leave them to the reader.

Proposition 4.4.5. F (𝐷) is sweet: it is projective as a left (𝐻𝑚1 , . . . , 𝐻𝑚𝑘 )-module and as a right

𝐻𝑛-module.

Proposition 4.4.6. If 𝐷𝑖 is a planar arc diagram of type (ℓ𝑖1, . . . , ℓ𝑖𝛼𝑖 ;𝑚𝑖) for each 𝑖 = 1, . . . , 𝑘

and 𝐷 is a planar arc diagram of type (𝑚1, . . . , 𝑚𝑘 ; 𝑛), then there is an isomorphism of G -graded

(𝐻ℓ11 , . . . , 𝐻ℓ𝑘𝛼𝑘 , 𝐻𝑛)-multimodulesÑ
𝑘⊗
𝑖=1
F (𝐷𝑖)

é
⊗(𝐻𝑚1 ,...,𝐻𝑚𝑘 ) F (𝐷) � F (𝐷(𝐷1, . . . , 𝐷𝑘 ;∅))
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induced by 𝜇[(𝐷1, . . . , 𝐷𝑘 ), 𝐷]. (The first collection of tensor products in the formula above are

taken over 𝑅.)

We note that the sweetness proposition is important for the proof of the latter; again, see Sections

2.6 and 2.7 of [Kho02]. Note also that 𝜇[ ®𝐷′, 𝐷] : F ( ®𝐷′) ⊗ F (𝐷) → F (𝐷( ®𝐷′)) induces a maps

F ( ®𝐷′) ⊗(𝐻𝑚1 ,...,𝐻𝑚𝑘 ) F (𝐷)→ F (𝐷( ®𝐷′)) by the universal property of the coequalizer. To see this,

use Lemma 4.4.2: for ®𝑢′ ∈ F ( ®𝐷′), ®𝑥 ∈ (𝐻𝑚1 , . . . , 𝐻𝑚𝑘 ), and 𝑢 ∈ F (𝐷), we have that

𝜇[ ®𝐷′, 𝐷]
(
𝜇[ ®𝐷′, (1𝑚1 , . . . , 1𝑚𝑘

)](®𝑢′, ®𝑥), 𝑢
)
= 𝛼(

��®𝑢′�� ,��®𝑥�� ,|𝑢 |)𝜇[ ®𝐷′, 𝐷]
(
®𝑢′, 𝜇[(1𝑚1 , . . . , 1𝑚𝑘

), 𝐷](𝑥, 𝑢)
)
.

Then, compare with equation (4.4.1).

Sometimes, we will write “⊗𝐻” as shorthand when its meaning is clear given context. For

example, in the lemma below, the “⊗𝐻” on the left means “⊗(𝐻ℓ11 ,...,𝐻
ℓ𝑘𝛼𝑘 )” and the “⊗𝐻” on the

right means “⊗(𝐻𝑚1 ,...,𝐻𝑚𝑘 ).” We will also sometimes write “𝜇[ ®𝐷′, 𝐷]” to mean “the isomorphism

of G -graded bimodules induced by 𝜇[ ®𝐷′, 𝐷].”

Lemma 4.4.7. The following diagram commutes for all ®𝐷′′, ®𝐷′, and 𝐷.Ä
F ( ®𝐷′′) ⊗𝐻 F ( ®𝐷′)

ä
⊗𝐻 F (𝐷) F ( ®𝐷′( ®𝐷′′)) ⊗𝐻 F (𝐷)

F (𝐷( ®𝐷′( ®𝐷′′)))

F ( ®𝐷′′) ⊗𝐻
Ä
F ( ®𝐷′) ⊗𝐻 F (𝐷)

ä
F ( ®𝐷′′) ⊗𝐻 F (𝐷( ®𝐷′))

𝜇[ ®𝐷′′, ®𝐷′]⊗1

𝛼

𝜇[ ®𝐷′( ®𝐷′′),𝐷]

1⊗𝜇[ ®𝐷′,𝐷]
𝜇[ ®𝐷′′,𝐷( ®𝐷′)]

Proof. This is immediate from the definition of 𝛼 and 𝜇, following Lemma 4.4.2 in the language

of Proposition 4.4.6. □
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CHAPTER 5

C -SHIFTING SYSTEMS AND COBORDISMS

Usually, grading shifts for graded algebraic objects are defined by way of the additive structure of

Z. This raises the question of how one should define grading shifts in a C -graded setting. In the

G -graded case, we will see that the naive guess (i.e., a chronological cobordism in the first entry

plus a Z × Z-shift in the second) is adequate. The general definition of a C -shifting system is

rather dense, so we introduce the more concrete G -shifting system alongside the general definition,

hoping it gives a helpful model for the reader. These definitions are provided in §5.1, wherein we

also describe the compatibility conditions required of a shifting system associated to a particular

grading category. In §5.2, we address generalities of shifting systems before investigating the

theory of homogeneous maps for C -graded multimodules in §5.3 (indeed, what does it mean for

a map 𝑓 : 𝑀 → 𝑁 of C -graded multimodules to be homogeneous?). This includes the extension

of our shifting system to a so-called “shifting 2-system” so that, in our context, we can interpret

a composition of grading shifts as related to the grading shift associated to a composition of

chronological cobordisms. Finally, G -shifting systems are peculiar in the sense that changes of

chronology induce natural transformations of grading shifts, which we detail in §5.4.

5.1 A system of grading shifting functors for G

SupposeΔ : 𝐷 → 𝐷′ is a chronological cobordism of planar arc diagrams 𝐷, 𝐷′ ∈ D(𝑚1,...,𝑚𝑘 ;𝑛).

If 𝑥𝑖 ∈ 𝐵𝑚𝑖 for all 𝑖 = 1, . . . , 𝑘 and 𝑦 ∈ 𝐵𝑛, then Δ induces a map from some subset of

HomG (𝑥1, . . . , 𝑥𝑘 ; 𝑦) to HomG (𝑥1, . . . , 𝑥𝑘 ; 𝑦). Explicitly, given 𝑣 ∈ Z × Z, the pair (Δ, 𝑣) induces a

map

𝜑(Δ,𝑣) : {(𝐷, 𝑝) ∈ HomG (𝑥1, . . . , 𝑥𝑘 ; 𝑦)} → HomG (𝑥1, . . . , 𝑥𝑘 ; 𝑦)

defined by

𝜑(Δ,𝑣)(𝐷, 𝑝) = (𝐷′, 𝑝 + 𝑣 +
��Δ(1𝑥1 , . . . , 1𝑥𝑘 ; 1𝑦)

��)
where Δ(1𝑥1 , . . . , 1𝑥𝑘 ; 1𝑦) is the cobordism Δ corked by thickenings of the relevant crossingless

matchings. We will see that any cobordism of planar arc diagrams (potentially paired with a Z×Z-
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degree, in which case we call the cobordism weighted) constitutes what we will call a G -grading

shift.

In general, a collection ((Δ1, 𝑣1), . . . , (Δ𝑘 , 𝑣𝑘 )) of chronological cobordisms of planar arc dia-

grams induces a grading shift on ((𝐷1, 𝑝1), . . . , (𝐷𝑘 , 𝑝𝑘 )). Viewing the former as a disjoint union

of chronological cobordisms, there is ambiguity as to what chronology to pick. Hereafter, we fix

a chronology which applies Δ1 on its component, then Δ2, . . . , then Δ𝑘 , followed by the iden-

tity cobordism weighed by 𝑣1 on its component, then 𝑣2, . . . , and finally 𝑣𝑘 . A picture is more

descriptive of the situation:

· · ·
Δ1

Δ2
Δ𝑘

𝑣1
𝑣2

𝑣𝑘

This is the chronology we mean when we write (®Δ, ®𝑣). We choose this particular chronology so that

our arguments appear similar to those found in [NP20]. Later on, we’ll denoteΔ(1𝑥1 , . . . , 1𝑥𝑘 ; 1𝑦) by

1®𝑥Δ1𝑦. Again, this is especially helpful when dealing with a collection of cobordisms (Δ1, . . . ,Δ𝑛).

The degree
���1®𝑥(Δ1, . . . ,Δ𝑛)1®𝑦

��� is defined as the sum
∑𝑛
𝑖=1

��1®𝑥𝑖Δ𝑖1𝑦𝑖 ��.
Now, for each 𝑖 = 1, . . . , 𝑘 , suppose Δ𝑖 : 𝐷𝑖 → 𝐷′

𝑖
is a chronological chobordism for 𝐷𝑖, 𝐷′𝑖 ∈

D(ℓ𝑖1,...ℓ𝑖𝛼𝑖 ;𝑚𝑖). We denote by (Δ1, . . . ,Δ𝑘 ) • Δ the chronological cobordism

(Δ1, . . . ,Δ𝑘 ) • Δ : 𝐷(𝐷1, . . . , 𝐷𝑘 )→ 𝐷′(𝐷′1, . . . , 𝐷
′
𝑘 )

with chronology, as usual, dependant on indexing (first Δ, then Δ1, and so on). If each of these

cobordisms has a Z × Z weight, we’ll set

((Δ1, 𝑣1), . . . , (Δ𝑘 , 𝑣𝑘 )) • (Δ, 𝑣) =

Ñ
(Δ1, . . . ,Δ𝑘 ) • Δ, 𝑣 +

∑︁
𝑖

𝑣𝑖

é
for cases like the one above. Otherwise, ((Δ1, 𝑣1), . . . , (Δ𝑘 , 𝑣𝑘 )) • (Δ, 𝑣) = 0. This multiplication

defines what we will call a multimonoid, whose elements are cobordisms of planar arc diagrams

together with a neutral element 𝑒 and absorbing element 0, with composition defined as above.
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The collection of maps induced by cobordisms of planar arc diagrams {𝜑(Δ,𝑣)} constitutes a

generalization of a shifting system, in the sense of [NP20]. Explicitly, suppose C is a grading

multicategory; a C -grading shift 𝜑 is a collection of maps

𝜑 = {𝜑 ®𝑋→𝑌 : D ®𝑋→𝑌 ⊂ HomC ( ®𝑋;𝑌 )→ HomC ( ®𝑋;𝑌 )} ®𝑋,𝑌∈Ob(C )

where ®𝑋 = (𝑋1, . . . , 𝑋𝑘 ) for 𝑋1, . . . , 𝑋𝑘 ∈ Ob(C ). We write 𝜑(𝑔) to mean 𝜑 ®𝑋→𝑌 (𝑔) whenever

𝑔 ∈ D ®𝑋→𝑌 . We write D to stand for “domain”, and use the sans serif font to differentiate these from

our notation for planar arc diagrams. In addition, let Σmin denote the category obtained from C by

purging all multimorphisms besides the commuting endomorphisms: that is,

• Ob(Σmin) = Ob(C ) and

• HomΣmin(𝑋1, . . . , 𝑋𝑘 ;𝑌 ) =


∅ 𝑘 > 1 or 𝑋1 ≠ 𝑌

Z(EndC (𝑌 ;𝑌 )) otherwise

Where Z stands for the center. Finally, by a multimonoid I , we mean a set equipped with an

associative multiplication law

• : I 𝑘 ×I → I

for each 𝑘 ≥ 1, and a neutral element 𝑒 so that 𝑒𝑘 • 𝑖 = 𝑖 for each 𝑘 and 𝑖 • 𝑒 = 𝑖 for all 𝑖 ∈ I . A

multimonoid may also have an absorbing element 0, so that ( 𝑗1, . . . , 𝑗𝑘 )• 𝑖 = 0 if any of 𝑗1, . . . , 𝑗𝑘 , 𝑖

are 0.

Definition 5.1.1. Suppose Σ is a wide subcategory of C with at least all the morphisms of Σmin. A

C -shifting system 𝑆 = (I ,Φ) relative Σ for a grading multicategory C is a multimonoid I and a

collection of C -grading shifts Φ = {𝜑𝑖}𝑖∈I such that

• 𝜑𝑒, called the neutral shift, has

D ®𝑋→𝑌𝑒 = HomΣ( ®𝑋;𝑌 ) and 𝜑
®𝑋→𝑌
𝑒 = IdD ®𝑋→𝑌

𝑒
;
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• given 𝜑(𝑥11,...,𝑥1𝛼1 ;𝑦1)
𝑗1

, . . . , 𝜑
(𝑥𝑛1,...,𝑥𝑛𝛼𝑛 ;𝑦𝑛)
𝑗𝑛

and 𝜑(𝑦1,...,𝑦𝑛;𝑧)
𝑖

, we have that

D(𝑦1,...,𝑦𝑛;𝑧)
𝑖

◦
𝑛∏
𝑘=1

D(𝑥𝑘1,...,𝑥𝑘𝛼𝑘 ;𝑦𝑘)
𝑗𝑘

⊂ D(𝑥11,...,𝑥𝑛𝛼𝑛 ;𝑧)
( 𝑗1,..., 𝑗𝑛)•𝑖

and the diagram

D(𝑦1,...,𝑦𝑛;𝑧)
𝑖

×∏𝑛
𝑘=1 D(𝑥𝑘1,...,𝑥𝑘𝛼𝑘 ;𝑦𝑘)

𝑗𝑘
D(𝑥11,...,𝑥𝑛𝛼𝑛 ;𝑧)

( 𝑗1,..., 𝑗𝑛)•𝑖

Hom(𝑦1, . . . , 𝑦𝑛; 𝑧) ×
∏𝑛
𝑘=1 Hom(𝑥𝑘1, . . . , 𝑥𝑘𝛼𝑘 ; 𝑦𝑘 ) Hom(𝑥11, . . . , 𝑥𝑛𝛼𝑛 ; 𝑧)

◦

(𝜑𝑖 ,
∏

𝑘 𝜑 𝑗𝑘
) 𝜑( 𝑗1 ,..., 𝑗𝑛)•𝑖

◦

commutes;

• there is a subset Iid ⊂ I such that for all 𝑘 and all 𝑋1, . . . , 𝑋𝑘 , 𝑌 ∈ Ob(C ) there is a partition

HomC (𝑋1, . . . , 𝑋𝑘 ;𝑌 ) =
⊔
𝑖∈Iid

D(𝑋1,...,𝑋𝑘)→𝑌
𝑖

for which 𝜑𝑖 = IdD ®𝑋→𝑌
𝑖

for all 𝑖 ∈ Iid;

• if I contains an absorbing element 0, then 𝜑0, called the null shift, always has D ®𝑋→𝑌0 = ∅.

Remark 5.1.2. We will frequently write D ®𝑋→®𝑌®𝑖
, or just D®𝑖, to denote

∏
ℓ D ®𝑋ℓ→𝑌ℓ

𝑖ℓ
. Then, writing

𝑔 ∈ D®𝑖 means 𝑔 is an ordered tuple of morphisms as one expects. Similarly, 𝜑®𝑖(𝑔) is understood

component-wise. Also, we note that 𝜑𝑒 is assumed only to preserve Σ. We refer the reader to

Remark 4.10 of [NP20] for a more detailed discussion.

For example, take I to be the multimonoid {(Δ, 𝑣)}Δ,𝑣 ⊔ {𝑒, 0} with multiplication • defined

above. Taking C = G , notice that Σmin is the subcategory whose objects are crossingless matchings

and whose morphisms are identity (𝑛; 𝑛)-planar arc diagrams (1𝑛, 𝑝) : 𝑎 → 𝑎 for 𝑎 ∈ 𝐵𝑛, viewed

only as endomorphisms. We will take Σ to be the slightly larger category which allows for

morphisms (1𝑛, 𝑝) : 𝑎 → 𝑏 for potentially distinct 𝑎, 𝑏 ∈ 𝐵𝑛. Using the notation of the above

definition, to a chronological cobordism of planar arc diagrams Δ : 𝐷 → 𝐷′, 𝐷, 𝐷′ ∈ D(𝑚1,...,𝑚𝑘 ;𝑛)

and 𝑣 ∈ Z×Z, we have a G -grading shift 𝜑(Δ,𝑣) so that for any crossingless matchings 𝑥1, . . . , 𝑥𝑘 , 𝑦

with |𝑥𝑖 | = 𝑚𝑖 and
��𝑦�� = 𝑛,
D(𝑥1,...,𝑥𝑘)→𝑦

(Δ,𝑣) = {(𝐷∧, 𝑝) ∈ HomG (𝑥1, . . . , 𝑥𝑘 ; 𝑦) : 𝑝 ∈ Z × Z}.
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Proposition 5.1.3. The multimonoid I = {(Δ, 𝑣)}Δ,𝑣 ⊔ {𝑒, 0} together with the induced G -grading

shifts {𝜑𝑖}𝑖∈I form a G -shifting system.

Proof. We define 𝜑𝑒 and 𝜑0 so that the first and last points are satisfied. The second point is straight-

forward. Finally, for the third point, we take Iid = {(1𝐷∧ , (0, 0)) : 𝐷 is a planar arc diagram},

where 1𝐷 is the identity cobordism on 𝐷. □

The definition of a C -shifting system made no reference to the associator of the grading category

C . We say that a C -shifting system 𝑆 is compatible with the associator 𝛼 of C if there is a family

of maps

𝛽
®𝑥®𝑦®𝑧
( ®𝑗1,..., ®𝑗𝑛),®𝑖

:
𝑛∏
𝑘=1

D(®𝑥𝑘1,...,®𝑥𝑘𝛼𝑘 ;®𝑦𝑘)
®𝑗𝑘

× D(®𝑦1,...,®𝑦𝑛;®𝑧)
®𝑖

→ K×,

for each ®𝑤, ®𝑥, ®𝑦, ®𝑧 consisting of objects of C and ®𝑖, ®𝑗 consisting of objects in I , called compatibility

maps granted they satisfy the relations

𝛼(𝑔′′, 𝑔′, 𝑔)𝛽 ®𝑤®𝑥®𝑧®𝑘• ®𝑗 ,®𝑖(𝑔
′′𝑔′, 𝑔)𝛽®𝑥®𝑦®𝑧®𝑘, ®𝑗 (𝑔

′′, 𝑔′)

= 𝛽
®𝑤®𝑦®𝑧
®𝑘, ®𝑗•®𝑖

(𝑔′′, 𝑔′𝑔)𝛽 ®𝑤®𝑥®𝑦®𝑗 ,®𝑖 (𝑔′, 𝑔)𝛼
Å
𝜑
®𝑦®𝑧
®𝑘

(𝑔′′), 𝜑®𝑥®𝑦®𝑗 (𝑔′), 𝜑 ®𝑤®𝑥®𝑖 (𝑔)
ã
,

(5.1.1)

for all valid 𝑔′′, 𝑔, 𝑔 and ®𝑖, ®𝑗 , ®𝑘 , and 𝛽𝑒,𝑒 = 𝛽(𝑒,...,𝑒),(𝑒,...,𝑒) = 1. Diagrammatically, this is to say that

the following picture commutes (here, the boxed number 𝑛 refers to the C -grading shift, and we

suppress burdensome indices).

𝑔′′

𝑔′

𝑔

3

2

1

𝑔′′

𝑔′

𝑔

3 • 2

1
𝑔′′

𝑔′
𝑔

3 • 2 • 1

𝑔′′

𝑔′

𝑔

3

2

1

𝑔′′

𝑔′

𝑔

3

2 • 1

𝑔′′

𝑔′
𝑔

3 • 2 • 1

𝛽(𝑔′′, 𝑔′)

𝛼(𝜑3(𝑔′′), 𝜑2(𝑔′), 𝜑1(𝑔))

𝛽(𝑔′′𝑔′, 𝑔)

𝛼(𝑔′′, 𝑔′, 𝑔)

𝛽(𝑔′, 𝑔) 𝛽(𝑔′′, 𝑔′𝑔)

(5.1.2)
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For (G , 𝛼), we will define the compatibility maps 𝛽 in a way analogous to the presentation in

[NP20]. Suppose

𝑔′ = ( ®𝐷′, ®𝑝′) =
∏
𝑖

( ®𝐷′𝑖, ®𝑝′𝑖) =
∏
𝑖, 𝑗

(𝐷𝑖 𝑗 , 𝑝𝑖 𝑗 )

and

𝑔 = ( ®𝐷, ®𝑝) =
∏
𝑖

(𝐷𝑖, 𝑝𝑖)

constitute a multipath of length two; 𝑔 ◦ 𝑔′ ∈ G [2]. Again, denote by 𝑃 ∈ Z × Z the sum of

the entries of ®𝑝 and 𝑃′ the sum of the entries of ®𝑝′. Write ®𝐷 = (𝐷1, . . . , 𝐷𝑘 ), and suppose that

(®Δ, ®𝑣) = ((Δ1, 𝑣1), . . . , (Δ𝑘 , 𝑣𝑘 )) is a collection of cobordisms for 𝑔. We’ll write

(®Δ, ®𝑣)( ®𝐷, ®𝑝) = (®Δ( ®𝐷), ®𝑣 + ®𝑝)

where ®Δ( ®𝐷) = (Δ1(𝐷1), . . . ,Δ𝑘 (𝐷𝑘 )) and Δ𝑖(𝐷𝑖) denotes the boundary of Δ𝑖 other than 𝐷𝑖. Finally,

𝑉 and 𝑉 ′ ∈ Z × Z will denote the sums of the entries of ®𝑣 and ®𝑣′ respectively.

The value 𝛽 will be defined as the product of four values. First, consider the change of

chronology

®𝑥 ®Δ( ®𝐷)
Ä
®Δ′( ®𝐷′)

ä
®𝑧

®𝑥 ®𝐷( ®𝐷′)®𝑧
𝐻𝛽

===⇒ ®𝑥 ®Δ′( ®𝐷′)®𝑦 ⊗ ®𝑦®Δ( ®𝐷)®𝑧

®𝑥 ®𝐷′®𝑦 ⊗ ®𝑦 ®𝐷®𝑧

1 ®𝑥
Ä
®Δ′•®Δ

ä
1®𝑧 𝑊 ®𝑥 ®𝑦®𝑧( ®Δ′( ®𝐷′), ®Δ( ®𝐷))

1 ®𝑥 ®Δ′1®𝑦⊔1®𝑦 ®Δ1®𝑧𝑊 ®𝑥 ®𝑦®𝑧( ®𝐷′, ®𝐷)

Set 𝛽1 = 𝜄(𝐻𝛽). Then, set

𝛽2 = 𝜆

( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))
��� , 𝑉 ′ +𝑉) ,

𝛽3 = 𝜆

( ���1®𝑥 ®Δ′1®𝑦��� , 𝑉) , and

𝛽4 = 𝜆

(
𝑃′,

���1®𝑦 ®Δ1®𝑧
��� +𝑉) .
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We define

𝛽 = 𝛽4𝛽3𝛽2𝛽1.

Naisse and Putyra describe this shift diagrammatically as follows.

𝑔′
Δ′
𝑉 ′

𝑔

Δ

𝑉

= 𝛽4

𝑔′

Δ′
𝑉 ′

𝑔

Δ

𝑉 = 𝛽4𝛽3

𝑔′

Δ′

𝑉 ′

𝑔

Δ

𝑉

= 𝛽4𝛽3𝛽2

𝑔′

Δ′

𝑉 ′ +𝑉

𝑔

Δ
= 𝛽4𝛽3𝛽2𝛽1

𝑔′

Δ′ • Δ
𝑉 ′ +𝑉

𝑔

Lemma 5.1.4. If 𝐷 ∈ D(𝑚1,...,𝑚𝑘 ;𝑛) and ®𝐷 = (𝐷1, . . . , 𝐷𝑘 ) for 𝐷𝑖 ∈ D(ℓ𝑖1,...,ℓ𝑖𝛼𝑖 ;𝑚𝑖). Moreover, let

Δ be a cobordism on 𝐷 and ®Δ′ be a collection of cobordisms for ®𝐷′. Then, for any ®𝑥 ∈ ∏𝑖, 𝑗 𝐵ℓ𝑖 𝑗 ,

®𝑦 ∈ ∏𝑖 𝐵𝑚𝑖
and 𝑧 ∈ 𝐵𝑛, we have that���1®𝑦Δ1𝑧

��� +���1®𝑥 ®Δ′1®𝑦��� +���𝑊®𝑥®𝑦𝑧(®Δ′( ®𝐷′),Δ(𝐷))
��� = ���𝑊®𝑥®𝑦𝑧( ®𝐷′, 𝐷)

��� +���1®𝑥(®Δ′ • Δ)1𝑧
���

Notice that this lemma immediately applies to the cases when 𝐷 is actually a collection

®𝐷 =
∏
𝑖 𝐷𝑖 and ®𝐷′ = ∏

𝑖, 𝑗 𝐷𝑖 𝑗 .

Proof. Exactly as in [NP20], there is a diffeomorphism between the cobordisms below, so they

must have the same degree.

®𝐷′ ®𝐷

®Δ′
®Δ

�

®𝐷′ ®𝐷

®Δ′ • ®Δ

□

Proposition 5.1.5. The G -shifting system of Proposition 5.1.3 is compatible with the associator of

Proposition 4.2.3 through the compatibility map 𝛽 defined above.

Proof. The following follows closely the proof of [NP20]. We will show that 𝛽 satisfies equation

(5.1.1). The first step is to document the contributions of 𝛼1 and 𝛽1. To do this, consider the
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following diagram of cobordisms.

3
2

1

3 • 2

1

3 • 2
1

3 • 2 • 1

3
2

1

3

2
1

3
2 • 1

3 • 2 • 1

𝛽1

𝛼1

𝜁 𝛽1

𝛼1

𝜂 𝛽1 𝛽1

where

𝜁 = 𝜆

( ���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� , ���1®𝑦 ®Δ1®𝑧
���) and 𝜂 = 𝜆

( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))
��� , ���1 ®𝑤 ®Δ′′1®𝑥 ���) .

Comparing with diagram (5.1.2), we see that

𝜁 × (Left of (5.1.1)) = 𝜂 × (Right of (5.1.1)).

Next, we have to compare the contributions of 𝛼2, 𝛽2, 𝛽3, and 𝛽4. First, for the left side of

(5.1.1) (or, the top-and-then-down path in (5.1.2)), we have the following.

𝜆

( ���𝑊 ®𝑤®𝑥®𝑦(®Δ′′( ®𝐷′′), ®Δ′( ®𝐷′)��� , 𝑉 ′′ +𝑉 ′) · 𝜆 ( ���1 ®𝑤 ®Δ′′1®𝑦��� , 𝑉 ′) · 𝜆 (𝑃′′,���1®𝑥 ®Δ′1®𝑦��� +𝑉 ′) 𝛽2,3,4(𝑔′′, 𝑔′)

· 𝜆
( ���𝑊 ®𝑤®𝑦®𝑧((®Δ′′ • ®Δ′)( ®𝐷′( ®𝐷′′)), ®Δ( ®𝐷))

��� , 𝑉 ′′ +𝑉 ′ +𝑉) · 𝜆 ( ���1 ®𝑤(®Δ′′ • ®Δ′)1®𝑦
��� , 𝑉)︸                           ︷︷                           ︸

(∗)

· 𝜆
(
𝑃′ + 𝑃′′ +

���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� ,���1®𝑦 ®Δ1®𝑧
��� +𝑉)︸                                                    ︷︷                                                    ︸

(∗∗)

𝛽2,3,4(𝑔′′𝑔′, 𝑔)

· 𝜆
( ���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� , 𝑃′′) 𝛼2(𝑔′′, 𝑔′, 𝑔)

Turn your attention to the term marked (∗). By application of Lemma 5.1.4, we can write

𝜆

( ���1 ®𝑤(®Δ′′ • ®Δ′)1®𝑦
��� , 𝑉) = 𝜆

( ���1®𝑥 ®Δ′1®𝑦��� +���1 ®𝑤 ®Δ′′1®𝑥 ��� , 𝑉) · 𝜆 ( ���𝑊 ®𝑤®𝑥®𝑦(®Δ′′( ®𝐷′′), ®Δ′( ®𝐷′))��� , 𝑉)
· 𝜆
( ���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� , 𝑉)−1

.
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On the other hand, using linearity, we can rewrite the term marked (∗∗) as

𝜆

(
𝑃′ + 𝑃′′ +

���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� ,���1®𝑦 ®Δ1®𝑧
��� +𝑉) = 𝜆

(
𝑃′ + 𝑃′′ +

���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� ,���1®𝑦 ®Δ1®𝑧
���)

· 𝜆
(
𝑃′ + 𝑃′′, 𝑉

)
· 𝜆
( ���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� , 𝑉)

The last terms in the past two expansions cancel, and we can rewrite the contributions of 𝛼2, 𝛽2, 𝛽3,

and 𝛽4 on the left side of (5.1.1) as

𝜆

( ���𝑊 ®𝑤®𝑥®𝑦(®Δ′′( ®𝐷′′), ®Δ′( ®𝐷′)��� , 𝑉 ′′ +𝑉 ′ +𝑉) · 𝜆 ( ���1 ®𝑤 ®Δ′′1®𝑦��� , 𝑉 ′) · 𝜆 (𝑃′′,���1®𝑥 ®Δ′1®𝑦��� +𝑉 ′)
· 𝜆
( ���𝑊 ®𝑤®𝑦®𝑧((®Δ′′ • ®Δ′)( ®𝐷′( ®𝐷′′)), ®Δ( ®𝐷))

��� , 𝑉 ′′ +𝑉 ′ +𝑉) · 𝜆 (���1®𝑥 ®Δ′1®𝑦��� +���1 ®𝑤 ®Δ′′1®𝑥 ��� , 𝑉 )
· 𝜆
(
𝑃′ + 𝑃′′, 𝑉

)
· 𝜆
(
𝑃′ + 𝑃′′,

���1®𝑦 ®Δ1®𝑧
���) · 𝜆 ( ���𝑊 ®𝑤®𝑥®𝑦( ®𝐷′′, ®𝐷′)��� ,���1®𝑦 ®Δ1®𝑧

���)︸                                  ︷︷                                  ︸
𝜁

· 𝜆
( ���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� , 𝑃′′) .
The process above could be described as “simplifying” 𝛽2,3,4(𝑔′′𝑔′, 𝑔).

Likewise, on the right side of (5.1.1) (or, the down-and-then-bottom path in (5.1.2)), we have

the following.

𝜆

( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))
��� , 𝑃′′ +𝑉 ′′ +���1 ®𝑤 ®Δ′′1®𝑥 ���)︸                                                           ︷︷                                                           ︸

(★)

𝛼2(𝜑(𝑔′′), 𝜑(𝑔′), 𝜑(𝑔))

· 𝜆
( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))

��� , 𝑉 ′ +𝑉)︸                                         ︷︷                                         ︸
(★★)

·𝜆
( ���1®𝑥 ®Δ′1®𝑦��� , 𝑉) .

· 𝜆
(
𝑃′,

���1®𝑦 ®Δ1®𝑧
��� +𝑉) . 𝛽2,3,4(𝑔′, 𝑔)

· 𝜆
( ���𝑊 ®𝑤®𝑥®𝑧(®Δ′′( ®𝐷′′), (®Δ′ • ®Δ)( ®𝐷( ®𝐷′)))

��� , 𝑉 ′′ +𝑉 ′ +𝑉)
· 𝜆
( ���1 ®𝑤 ®Δ′′1®𝑥 ��� , 𝑉 +𝑉 ′) · 𝜆 (𝑃′′,���1®𝑥(®Δ′ • ®Δ)1®𝑧

��� +𝑉 +𝑉 ′)︸                                     ︷︷                                     ︸
(★★★)

𝛽2,3,4(𝑔′′, 𝑔′𝑔)

Notice that the term (★) has three “parts.” The 𝑉 ′′ part can be absorbed into the term (★★); the rest

can be written

𝜆

( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))
��� , 𝑃′′) · 𝜆 ( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))

��� ,���1 ®𝑤 ®Δ′′1®𝑥 ���) .
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The (★★★) term decomposes into parts

𝜆

(
𝑃′′,

���1®𝑥(®Δ′ • ®Δ)1®𝑧
���) · 𝜆 (𝑃′′, 𝑉 +𝑉 ′) .

Again, applying Lemma 5.1.4, we can write

𝜆

(
𝑃′′,

���1®𝑥(®Δ′ • ®Δ)1®𝑧
���) = 𝜆

(
𝑃′′,

���1®𝑦 ®Δ1®𝑧
��� +���1®𝑥 ®Δ′1®𝑦���) · 𝜆 (𝑃′′,���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))

���)
· 𝜆
(
𝑃′′,−

���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)
���) .

The middle term after the equality cancels with first term in the rewriting of (★). The last term can be

rewritten as 𝜆
( ���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� , 𝑃′′). All together, this means that we can rewrite the contributions

of 𝛼2, 𝛽2, 𝛽3, and 𝛽4 on the right side of (5.1.1) as

𝜆

( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))
��� ,���1 ®𝑤 ®Δ′′1®𝑥 ���)︸                                            ︷︷                                            ︸

𝜂

· 𝜆
( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))

��� , 𝑉 ′′ +𝑉 ′ +𝑉) · 𝜆 ( ���1®𝑥 ®Δ′1®𝑦��� , 𝑉) · 𝜆 (𝑃′, ���1®𝑦 ®Δ1®𝑧
��� +𝑉) .

· 𝜆
( ���𝑊 ®𝑤®𝑥®𝑧(®Δ′′( ®𝐷′′), (®Δ′ • ®Δ)( ®𝐷( ®𝐷′)))

��� , 𝑉 ′′ +𝑉 ′ +𝑉) · 𝜆 ( ���1 ®𝑤 ®Δ′′1®𝑥 ��� , 𝑉 +𝑉 ′)
· 𝜆
(
𝑃′′, 𝑉 +𝑉 ′

)
· 𝜆
(
𝑃′′,

���1®𝑦 ®Δ1®𝑧
��� +���1®𝑥 ®Δ′1®𝑦���) · 𝜆 ( ���𝑊®𝑥®𝑦®𝑧( ®𝐷′, ®𝐷)

��� , 𝑃′′)
Compare the simplifications of contributions from each side. One one hand,

𝜆

( ���𝑊 ®𝑤®𝑥®𝑦(®Δ′′( ®𝐷′′), ®Δ′( ®𝐷′)��� , 𝑉 ′′ +𝑉 ′ +𝑉) · 𝜆 ( ���𝑊 ®𝑤®𝑦®𝑧((®Δ′′ • ®Δ′)( ®𝐷′( ®𝐷′′)), ®Δ( ®𝐷))
��� , 𝑉 ′′ +𝑉 ′ +𝑉)

is equal to

𝜆

( ���𝑊®𝑥®𝑦®𝑧(®Δ′( ®𝐷′), ®Δ( ®𝐷))
��� , 𝑉 ′′ +𝑉 ′ +𝑉) · 𝜆 ( ���𝑊 ®𝑤®𝑥®𝑧(®Δ′′( ®𝐷′′), (®Δ′ • ®Δ)( ®𝐷( ®𝐷′)))

��� , 𝑉 ′′ +𝑉 ′ +𝑉)
by Lemma 4.2.1. On the other hand, careful observation reveals that, via bilinearity of 𝜆 alone,

the two collections of terms apart from these, and the terms marked 𝜁 and 𝜂, are equivalent. The

conclusion is that

𝜂 × (Left of (5.1.1)) = 𝜁 × (Right of (5.1.1)).

This completes the proof. □

77



As we proceed, for simplicity of exposition (and because it is the only situation which matters

in our application) we will only consider multipaths which end in a single multimorphism; we have

shown in the previous arguments how the situation is generalized without problem.

5.2 Generalities on shifting systems for grading multicategories

We conclude this discussion by detailing the generalities of C -shifting systems. These are

results of [NP20] which lift to the setting of grading multicategories. Throughout, let C be a

grading multicategory with associator 𝛼, and 𝑆 = {I , {𝜑𝑖}𝑖∈I } a C -shifting system compatible

with 𝛼 through compatibility maps 𝛽.

Just as in the non-multi setting, we define for each 𝑖 ∈ I a grading shift functor 𝜑𝑖 : ModC →

ModC by putting

𝜑𝑖(𝑀) =
⊕
𝑔∈D𝑖

𝜑𝑖(𝑀)𝜑𝑖(𝑔)

for 𝜑𝑖(𝑀)𝜑𝑖(𝑔) := 𝑀𝑔; that is, 𝜑𝑖 sends elements in degree 𝑔 ∈ D𝑖 to elements in degree 𝜑𝑖(𝑔), and

elements whose degree does not belong to D𝑖 to zero. Sometimes we call 𝜑𝑖 a C -grading shift or

just a grading shift.

Now, if 𝑀, 𝑀1, . . . , 𝑀𝑘 are C -graded modules, there is a canonical isomorphism

𝛽( 𝑗1,..., 𝑗𝑘),𝑖 :
(
𝜑 𝑗1(𝑀1), . . . , 𝜑 𝑗𝑘 (𝑀𝑘 )

)
⊗ 𝜑𝑖(𝑀)

∼−→ 𝜑( 𝑗1,..., 𝑗𝑘)•𝑖
(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)
by (𝑚1, . . . , 𝑚𝑘 ) ⊗ 𝑚 ↦→ 𝛽( 𝑗1,..., 𝑗𝑘),𝑖(

�� ®𝑚�� ,|𝑚 |)(𝑚1, . . . , 𝑚𝑘 ) ⊗ 𝑚.
(5.2.1)

The compatibility requirement, equation (5.1.1), ensures that this isomorphism is compatible with

the coherence isomorphism given by 𝛼. Moreover, since grading shift functors do not have effect

on graded maps, the compatibility maps 𝛽 ®𝑗 ,𝑖 define natural isomorphisms (denoted by the same

symbol) of multifunctors

𝛽 ®𝑗 ,𝑖 :
(
𝜑 𝑗1(−), . . . , 𝜑 𝑗𝑘 (−)

)
⊗ 𝜑𝑖(−)

∼−→ 𝜑 ®𝑗 ,𝑖
(
(−, . . . ,−),−

)
(5.2.2)

for all 𝑗1, . . . , 𝑗𝑘 , 𝑖 ∈ I .

We define the identity shift functor 𝜑Id as
⊕

𝑖∈IId
𝜑𝑖; thus, 𝜑id(𝑀) � 𝑀 . In general, the identity

shift and the neutral shift are not the same (see, for example, [NP20], Remark 4.10). We’ll consider

the set Ĩ , defined to be I ⊔ {Id}. We do not think of Ĩ as a multimonoid—writing it this way
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just helps to simplify notation. For example, we will write 𝜑 𝑗•Id to mean
⊕

𝑖∈IId
𝜑 𝑗•𝑖. Similarly,

𝜑 ®Id•𝑖 means
⊕
®𝑗∈𝐽 𝜑 ®𝑗•𝑖 where 𝐽 = {( 𝑗1, . . . , 𝑗𝑘 ) : 𝑗ℓ ∈ IId for all ℓ = 1, . . . , 𝑘}. To extend the

compatibility maps 𝛽 to Ĩ , define 𝛽 ®Id,𝑖(𝑔
′, 𝑔) = 𝛽 ®𝑗 ,𝑖(𝑔

′, 𝑔) where 𝑔′ ∈ D ®𝑗 and ®𝑗 ∈ IId; similarly

𝛽 𝑗 ,Id(𝑔′, 𝑔) = 𝛽 𝑗 ,𝑖(𝑔′, 𝑔) where 𝑔 ∈ D𝑖, 𝑖 ∈ IId. Lastly, we fix 𝛽 ®Id,Id = 1.

5.2.1 Shifting multimodules

To continue in the general setting, we must make the following assumption.

Assumption: Hereafter, all C -graded algebras 𝐴 are supported only in Σ; that is, 𝐴𝑔 = 0

whenever 𝑔 ∉ HomΣ

Thus, for C -algebras 𝐴 which satisfy this assumption, we have that 𝜑𝑒(𝐴) � 𝐴 (really, 𝜑𝑒(𝐴) =

𝐴, since 𝜑𝑒 acts as the identity wherever defined). Recall that, since

𝐻𝑛 = F (1𝑛) =
⊕
𝑎,𝑏∈𝐵𝑛

F (𝑎1𝑛𝑏)

any 𝑚 ∈ 𝐻𝑛 has degree degG (𝑚) = (1𝑛, deg𝑅(𝑚)) : 𝑎 → 𝑏; that is, arc algebras are G -graded

algebras supported only in Σ.

If 𝑀 is a C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodule, and 𝜑𝑖 is a C -grading shifting functor, then

we can view 𝜑𝑖(𝑀) as a C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodule by defining left- and right-acitons

𝜑𝑖𝜌𝐿 : (𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑖(𝑀)→ 𝜑𝑖(𝑀)

by 𝜑𝑖𝜌𝐿(®𝑎, 𝜑𝑖(𝑚)) = 𝛽(𝑒,...,𝑒),𝑖(
��®𝑎�� ,|𝑚 |)𝜑𝑖(𝜌𝐿(®𝑎, 𝑚))

and

𝜑𝑖𝜌𝑅 : 𝜑𝑖(𝑀) ⊗ 𝐵→ 𝜑𝑖(𝑀)

by 𝜑𝑖𝜌𝑅(𝜑𝑖(𝑚), 𝑏) = 𝛽𝑖,𝑒(|𝑚 | ,|𝑏 |)𝜑𝑖(𝜌𝑅(𝑚, 𝑏)).

In other words, 𝜑𝑖𝜌𝐿 and 𝜑𝑖𝜌𝑅 are defined as the composites

(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑖(𝑀) 𝜑𝑖(𝑀)

(
𝜑𝑒(𝐴1), . . . , 𝜑𝑒(𝐴𝑘 )

)
⊗ 𝜑𝑖(𝑀)

𝜑(𝑒,...,𝑒)•𝑖
(
(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝑀

)
𝜑(𝑒,...,𝑒)•𝑖(𝑀)

★

𝛽®𝑒,𝑖

𝜌𝐿
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and
𝜑𝑖(𝑀) ⊗ 𝐵 𝜑𝑖(𝑀)

𝜑𝑖(𝑀) ⊗ 𝜑𝑒(𝐵)

𝜑𝑖•𝑒 (𝑀 ⊗ 𝐵) 𝜑𝑖•𝑒(𝑀)

★

𝛽𝑖,𝑒

𝜌𝑅

where the maps labeled★ are isomorphisms thanks to the assumption from the start of the section.

We’ll breifly describe why 𝜑𝑖(𝑀) is indeed a C -graded multimodule. First, notice that 𝜑𝑖𝜌𝐿

and 𝜑𝑖𝜌𝑅 are both graded maps. To illustrate for the left action, if (𝑎1, . . . , 𝑎𝑘 ) ⊗ 𝑚 has grading

𝑔 ◦ (𝑔1, . . . , 𝑔𝑘 ) in (𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝑀 , it has grading 𝜑𝑖(𝑔) ◦ (𝑔1, . . . , 𝑔𝑘 ) in (𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑖(𝑀).

Thanks to the assumption from the start of the section, 𝑔𝑖 = 𝜑𝑒(𝑔𝑖) since all algebras in sight are

supported only in Σ, and thus 𝜑𝑒 acts as the identity map. Applying the natural isomorphism

(5.2.2) provides the desired result. To see that requirements (i)-(iv) of the definition of C -graded

multimodules holds, one must simply apply equation (5.1.1) and 𝛽(𝑒,...,𝑒),(𝑒,...,𝑒) = 1 in each of the

scenarios.

Thus, grading shift functors are also functors for categories of multimodules. In conclusion,

we have the following.

Proposition 5.2.1. Let 𝑀 ∈ MultiModC (𝐵1, . . . , 𝐵𝑘 ;𝐶) and 𝑀𝑖 ∈ MultiModC (𝐴𝑖1, . . . , 𝐴𝑖𝛼𝑖 ; 𝐵𝑖)

for each 𝑖 = 1, . . . , 𝑘 . Then, for each 𝑖, 𝑗1, . . . , 𝑗𝑘 ∈ I , there is an isomorphism of C -graded

(𝐴11, . . . , 𝐴𝑘𝛼𝑘 )-multimodules

𝛽( 𝑗1,..., 𝑗𝑘),𝑖 :
(
𝜑 𝑗1(𝑀1), . . . , 𝜑 𝑗𝑘 (𝑀𝑘 )

)
⊗(𝐵1,...,𝐵𝑘) 𝜑𝑖(𝑀)

∼−→ 𝜑( 𝑗1,..., 𝑗𝑘)•𝑖
(
(𝑀1, . . . , 𝑀𝑘 ) ⊗(𝐵1,...,𝐵𝑘) 𝑀

)
induced by the canonical isomorphism (5.2.1).

Proof. We direct the reader to [NP20] Proposition 4.18 for a complete proof; the one here is

completely analogous. □

5.3 Homogeneous maps

One of the goals of this thesis is to prove an adjunction for unified Khovanov homology,

generalizing Theorem 2.31 of [Hog19]. This means we must define HOM-complexes which, in

80



our case, necessitates defining what is meant by maps of homogeneous G -degree. This opens a

whole can of worms, which most of the rest of this section is devoted to describing. We proceed

with the same assumptions as before: (C , 𝛼) is a grading multicategory, and 𝑆 = (I , {𝜑𝑖}𝑖∈I ) is a

shifting system compatible with 𝛼 through maps 𝛽. Moreover, all C -graded algebras are assumed

to be supported entirely in Σ so that previous results hold.

Definition 5.3.1. Suppose 𝑀 and 𝑁 are C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodules. A K-linear map

𝑓 : 𝑀 → 𝑁 is called purely homogeneous of degree 𝑖 (for 𝑖 ∈ I ⊔ {Id}) if, for all 𝑚 ∈ 𝑀 ,

(i) 𝑓 (𝑚) = 0 if |𝑚 | ∉ D𝑖,

(ii)
�� 𝑓 (𝑚)

�� = 𝜑𝑖(|𝑚 |) if |𝑚 | ∈ D𝑖,

(iii) 𝜌𝐿(®𝑎, 𝑓 (𝑚)) = 𝛽(𝑒,...,𝑒),𝑖(
��®𝑎�� ,|𝑚 |) 𝑓 (𝜌𝐿(®𝑎, 𝑚) for all ®𝑎 ∈ (𝐴1, . . . , 𝐴𝑘 ), and

(iv) 𝜌𝑅( 𝑓 (𝑚), 𝑏) = 𝛽𝑖,𝑒(|𝑚 | ,|𝑏 |) 𝑓 (𝜌𝑅(𝑚, 𝑏)) for all 𝑏 ∈ 𝐵.

A map 𝑓 : 𝑀 → 𝑀 is called homogeneous if it is a finite sum of purely homogeneous maps,

written 𝑓 =
∑
𝑗 𝑓

𝑗 . We’ll write
�� 𝑓 �� = 𝑖 if 𝑓 is a purely homogeneous map of degree 𝑖.

Importantly, we do not require that a purely homogeneous map preserve C -degree; however,

every purely homogeneous map of degree 𝑖, 𝑓 : 𝑀 → 𝑁 , induces a graded one, 𝑓 : 𝜑𝑖(𝑀) → 𝑁 ,

by setting 𝑓 (𝜑𝑖(𝑚)) = 𝑓 (𝑚).

Using the shifting system and compatibility maps, we can define the tensor product of ho-

mogeneous maps. Let 𝑓𝑖 : 𝑀𝑖 → 𝑁𝑖 for 𝑖 = 1, . . . , 𝑘 and 𝑓 : 𝑀 → 𝑁 be (not necessarily

purely) homogeneous maps of (𝐴𝑖1, . . . , 𝐴𝑖𝛼𝑖 ; 𝐵𝑖)-multimodules and (𝐵1, . . . , 𝐵𝑘 ;𝐶)-multimodules

respectively. Then, define

( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 : (𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀 → (𝑁1, . . . , 𝑁𝑘 ) ⊗ 𝑁

by setting ( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 =
∑
𝑗 [( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 ] 𝑗 where

[( 𝑓1, . . . , 𝑓𝑘 )⊗ 𝑓 ] 𝑗 ((𝑚1, . . . , 𝑚𝑘 )⊗𝑚) =
∑︁

(𝑖1,...,𝑖𝑘)•𝑖= 𝑗
𝛽��� ®𝑓 ���,| 𝑓 |(�� ®𝑚�� ,|𝑚 |)−1

Ä
𝑓
𝑖1
1 (𝑚1), . . . , 𝑓 𝑖𝑘

𝑘
(𝑚𝑘 )
ä
⊗ 𝑓 𝑖(𝑚)
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for all homogeneous elements ®𝑚 ∈ (𝑀1, . . . , 𝑀𝑘 ), 𝑚 ∈ 𝑀 .

First, notice that homogeneous maps behave well with respect to this tensor product (or,

horizontal composition).

Proposition 5.3.2. If 𝑓1, . . . , 𝑓𝑘 , 𝑓 are purely homogeneous maps of degrees 𝑖1, . . . , 𝑖𝑘 and 𝑖 re-

spectively, then ( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 is purely homogeneous of degree (𝑖1, . . . , 𝑖𝑘 ) • 𝑖.

Proof. For requirement (i), recall that |(𝑚1, . . . , 𝑚𝑘 ) ⊗ 𝑚 | = 𝑔 ◦ (𝑔1, . . . , 𝑔𝑘 ). The assumption that�� ®𝑚 ⊗ 𝑚�� ∉ D®𝑖•𝑖 implies that either 𝑔 ∉ D𝑖, hence 𝑓 (𝑚) = 0 since 𝑓 is homogeneous of degree 𝑖, or

𝑔ℓ ∉ D𝑖ℓ for some ℓ, in which case 𝑓 (𝑚ℓ) = 0 for the same reason. Thus
(
( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓

)
( ®𝑚⊗𝑚) =

0.

For (ii), we compute��(( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 ) ( ®𝑚 ⊗ 𝑚)
�� = 𝛽®𝑖,𝑖 Ä�� ®𝑚�� ,|𝑚 |ä−1��( 𝑓1(𝑚1), . . . , 𝑓𝑘 (𝑚𝑘 )

)
⊗ 𝑓 (𝑚)

��
= 𝛽®𝑖,𝑖

Ä�� ®𝑚�� ,|𝑚 |ä−1 (
𝜑𝑖1(|𝑚1 |), . . . , 𝜑𝑖𝑘 (|𝑚𝑘 |)

)
◦ 𝜑𝑖(|𝑚 |)

= 𝜑®𝑖•𝑖

Ä�� ®𝑚 ⊗ 𝑚��ä
as desired.

For (iii),

𝜌𝐿

Ä
®𝑎,
(
( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓

)
( ®𝑚 ⊗ 𝑚)

ä
= 𝛽®𝑖,𝑖

Ä�� ®𝑚�� ,|𝑚 |ä−1
𝜌𝐿

Ä
®𝑎,
(
( 𝑓1(𝑚1), . . . , 𝑓𝑘 (𝑚𝑘 )

)
⊗ 𝑓 (𝑚)

ä
= 𝛽®𝑖,𝑖

Ä�� ®𝑚�� ,|𝑚 |ä−1
𝛼(
��®𝑎�� , ��� ®𝑓 ( ®𝑚)

���︸  ︷︷  ︸
=𝜑®𝑖(| ®𝑚 |)

,
�� 𝑓 (𝑚)

��︸  ︷︷  ︸
=𝜑𝑖(|𝑚 |)

)−1
Ä
𝜌1
𝐿

(
®𝑎1, 𝑓1(𝑚1)

)
, . . . , 𝜌𝑘𝐿

(
®𝑎𝑘 , 𝑓𝑘 (𝑚𝑘 )

)ä
⊗ 𝑓 (𝑚)

= 𝛽®𝑖,𝑖

Ä�� ®𝑚�� ,|𝑚 |ä−1
𝛼(
��®𝑎�� , 𝜑®𝑖(�� ®𝑚��), 𝜑𝑖(|𝑚 |))−1𝛽®𝑒,®𝑖(

��®𝑎�� ,�� ®𝑚��)( 𝑓1 Ä𝜌1
𝐿(®𝑎1, 𝑚1)

ä
, . . . , 𝑓𝑘

Ä
𝜌𝑘𝐿(®𝑎𝑘 , 𝑚𝑘 )

ä)
⊗ 𝑓 (𝑚)

= 𝛽®𝑒,®𝑖•𝑖(
��®𝑎�� ,�� ®𝑚�� ◦|𝑚 |)𝛼(

��®𝑎�� ,�� ®𝑚�� ,|𝑚 |)−1𝛽®𝑒•®𝑖,𝑖(
��®𝑎�� ◦�� ®𝑚�� ,|𝑚 |)−1

(
𝑓1
(
𝜌1
𝐿(®𝑎1, 𝑚1)

)
, . . . , 𝑓𝑘

(
𝜌𝑘𝐿(®𝑎𝑘 , 𝑚𝑘 )

))
⊗ 𝑓 (𝑚)

= 𝛽®𝑒,®𝑖•𝑖(
��®𝑎�� ,�� ®𝑚�� ◦|𝑚 |)𝛼(

��®𝑎�� ,�� ®𝑚�� ,|𝑚 |)−1 (( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 ) (Ä𝜌1
𝐿(®𝑎1, 𝑚1), . . . , 𝜌𝑘𝐿(®𝑎𝑘 , 𝑚𝑘 )

ä
⊗ 𝑚

)
= 𝛽®𝑒,®𝑖•𝑖(

��®𝑎�� ,�� ®𝑚�� ◦|𝑚 |) (( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 ) (𝜌𝐿(®𝑎, ®𝑚 ⊗ 𝑚)
)
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The first equality is by definition and K-linearity of the left action. The second equality is by the

definition of the C -graded multimodule left-action on (𝑀1, . . . , 𝑀𝑘 )⊗𝑀 . The third equality follows

from the assumption that
�� 𝑓ℓ�� = 𝑖ℓ. The fourth equality follows from equation (5.1.1). Finally, the

fifth and sixth equalities follow from unraveling definitions; in particular, the fifth follows since��®𝑎�� ◦ �� ®𝑚�� = ���Ä𝜌1
𝐿
(®𝑎1, 𝑚1), . . . , 𝜌𝑘

𝐿
(®𝑎𝑘 , 𝑚𝑘

ä��� and the sixth invokes the K-linearity of ( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 .

Finally, this gives us the desired result since
�� ®𝑚�� ◦|𝑚 | = �� ®𝑚 ⊗ 𝑚��: we have

𝜌𝐿

Ä
®𝑎,
(
( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓

)
( ®𝑚 ⊗ 𝑚)

ä
= 𝛽®𝑒,®𝑖•𝑖(

��®𝑎�� ,�� ®𝑚 ⊗ 𝑚��) (( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 ) (𝜌𝐿(®𝑎, ®𝑚 ⊗ 𝑚)
)
.

Showing that (iv) holds is completely analogous (and easier)—we leave it to the reader. □

On the other hand, we do not yet have a method for composing grading shifts vertically, so that

we cannot define the composition of homogeneous maps. We introduce the fix in the following

section.

5.3.1 Extension to a shifting 2-system

As before, we will consider the G -graded situation and then present generalities. Thankfully, the

extension of a C -shifting system to a C -shifting 2-system is almost exactly like the categorically-

graded situation.

Suppose Δ1 : 𝐷1 → 𝐷′1 and Δ2 : 𝐷2 → 𝐷′2 are cobordisms of planar arc diagrams, so that

(Δ1, 𝑣1) and (Δ2, 𝑣2) induce grading shift functors for any 𝑣1, 𝑣2 ∈ Z ⊕ Z; that is, they belong to the

multimonoid I of G . Define a binary operation, which we call vertical composition,

◦ : I ×I → I

by stacking: set

(Δ2, 𝑣2) ◦ (Δ1, 𝑣1) =


(Δ2 ◦ Δ1, 𝑣2 + 𝑣1) if 𝐷′1 = 𝐷2, and

0 otherwise.

In our multivariable setting, vertical composition must be extended to a family of vertical compo-

sitions for each 𝑘 ≥ 1,

◦ : I 𝑘 ×I 𝑘 → I 𝑘 .
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So, if ®Δ𝑖 = (Δ𝑖1, . . . ,Δ𝑖𝑘 ) for 𝑖 = 1, 2 and 𝐷1 𝑗
Δ1 𝑗−−→ 𝐷′1 𝑗 and 𝐷2 𝑗

Δ2 𝑗−−→ 𝐷′2 𝑗 for 𝑗 = 1, . . . , 𝑘 , we set

(®Δ2, ®𝑣2) ◦ (®Δ1, ®𝑣1) =


(®Δ2 ◦ ®Δ1, ®𝑣2 + ®𝑣1) if 𝐷′1 𝑗 = 𝐷2 𝑗 for all 𝑗 , and

0 otherwise.

The nonzero term on the right is given a chronology as follows.

· · ·
Δ11

Δ12
Δ1𝑘

Δ21
Δ22

Δ2𝑘

· · ·
𝑣11

𝑣12
𝑣1𝑘

𝑣21
𝑣22

𝑣2𝑘

®Δ2 ◦ ®Δ1

®𝑣2 + ®𝑣1

Again, we choose this particular chronology so that the arguments of [NP20] lift to our setting.

In general, if 𝑆 = {I , {𝜑𝑖}} is already a C -shifting system, equipping I with a vertical

composition map I 𝑘 × I 𝑘 → I 𝑘 of this form constitutes what is called a C -shifting 2-system,

granted it satisfies the following requirements:

(i) 𝑒 ◦ 𝑒 = 𝑒,

(ii) D 𝑗◦𝑖 = D𝑖 ∩ 𝜑−1
𝑖

(D 𝑗 ),

(iii) 𝜑 𝑗◦𝑖 = 𝜑 𝑗 |𝜑𝑖(D𝑖)∩D 𝑗
◦ 𝜑𝑖 |D 𝑗◦𝑖 , and

(iv) 𝜑(( 𝑗1,..., 𝑗𝑘)◦(𝑖1,...,𝑖𝑘))•( 𝑗◦𝑖) = 𝜑(( 𝑗1,..., 𝑗𝑘)• 𝑗)◦((𝑖1,...,𝑖𝑘)•𝑖) for all 𝑗1, . . . , 𝑗𝑘 , 𝑗 , 𝑖1, . . . , 𝑖𝑘 , 𝑖 ∈ I .

The first three requirements are written in the single-input case to ignore burdensome notation

and should be extended to the 𝑘-input cases. To elucidate the above requirements notice that (in

particular, if 𝑗 ◦ 𝑖 is nonzero) 𝜑 𝑗 and 𝜑𝑖 must be defined on (frequently distinct) subsets of the same

hom-set. In the G -graded case, this causes no confusion: D 𝑗◦𝑖 = D𝑖 since cobordisms which start
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at 𝐷1 and factor through 𝐷′1 = 𝐷2 still start at 𝐷1. In general, we should be a little more careful:

D𝑖 HomC (𝑋1, . . . , 𝑋𝑘 ;𝑌 ) ⊃ D 𝑗 HomC (𝑋1, . . . , 𝑋𝑘 ;𝑌 )
𝜑𝑖 𝜑 𝑗

so, in general, 𝜑 𝑗◦𝑖 is defined only on the subset D𝑖 ∩ 𝜑−1
𝑖

(D 𝑗 ), as in (ii) and (iii). Condition (iv) just

ensures that vertical composition and horizontal composition play nicely together—(iv) obviously

holds in the G -setting for weighted cobordisms of planar arc diagrams.

For completeness, we include a description of compatibility maps. We say that a C -shifting

2-system 𝑆 = {I , {𝜑𝑖}𝑖∈I } is compatible with the associator 𝛼 of C if there are (𝛽, 𝛾,Ξ) such that

the underlying C -shifting system is compatible with 𝛼 through 𝛽, and 𝛾 and Ξ are as follows. First,

𝛾 stands for a collection of maps

𝛾
®𝑋→𝑌
𝑖, 𝑗 : D ®𝑋→𝑌𝑖 → K×

for all 𝑖, 𝑗 ∈ I and ®𝑋,𝑌 ∈ C satisfying 𝛾𝑖, 𝑗 = 1 whenever 𝑖 ∈ Iid, 𝑗 ∈ Iid, or 𝑖 = 𝑗 = 𝑒. More

generally, we construct multivariable functions

𝛾
®𝑋→®𝑌
®𝑖, ®𝑗

:
𝑘∏
ℓ=1

D ®𝑋𝑖→𝑌𝑖
𝑖ℓ

→ K×

with analogous requirements (𝛾®𝑖, ®𝑗 = 1 whenever each entry of ®𝑖 belongs to IId, each entry of ®𝑗

belongs to IId, or ®𝑖 = ®𝑗 = ®𝑒). We do not require that 𝛾 ®𝑋→®𝑌®𝑖, ®𝑗
= 𝛾

®𝑋1→𝑌1
𝑖1, 𝑗1

· · · 𝛾 ®𝑋𝑘→𝑌𝑘
𝑖𝑘 , 𝑗𝑘

. For example, this

is not the case for the G -graded setting, at least the way we’ve set things up. Second, Ξ stands for

a collection of invertible scalars

Ξ
®𝑋→®𝑌→𝑍
𝑖,®𝑖
𝑗 , ®𝑗

∈ K×

satisfying (i) Ξ
𝑖,®𝑖
𝑗 , ®𝑗

= 1 whenever ( ®𝑗 ◦ ®𝑖) • ( 𝑗 ◦ 𝑖) = ( ®𝑗 • 𝑗) ◦ (®𝑖 • 𝑖) and (ii) Ξ
𝑖,®𝑖
𝑗 , ®𝑗

is invariant when

exchanging elements of Iid out with other elements of Iid. We often write Ξ
𝑖,®𝑖
𝑗 , ®𝑗

(𝑔′𝑔) for Ξ ®𝑋→®𝑌→𝑍
𝑖,®𝑖
𝑗 , ®𝑗

when ®𝑋
𝑔′

−→ ®𝑌
𝑔
−→ 𝑍 , or Ξ

𝑖,®𝑖
𝑗 , ®𝑗

(𝑔) for Ξ ®𝑋→𝑌
𝑖,®𝑖
𝑗 , ®𝑗

when ®𝑋
𝑔
−→ 𝑌 . Finally, we say that the shifting 2-system

is compatible with 𝛼 through (𝛽, 𝛾,Ξ) if, in addition, the two following equations hold. The first

reads

𝛾®𝑖•𝑖, ®𝑗• 𝑗 (𝑔
′𝑔)𝛽

𝑖,®𝑖(𝑔
′, 𝑔)𝛽

𝑗 , ®𝑗 (𝜑®𝑖(𝑔
′), 𝜑𝑖(𝑔)) = Ξ

𝑖,®𝑖
𝑗 , ®𝑗

(𝑔′𝑔)𝛽
𝑗◦𝑖, ®𝑗◦®𝑖(𝑔

′, 𝑔)𝛾®𝑖, ®𝑗 (𝑔
′)𝛾𝑖, 𝑗 (𝑔), (5.3.1)
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for all 𝑔′ ∈ D ®𝑍→®𝑌®𝑖
and 𝑔 ∈ D ®𝑋→𝑌

𝑖
. Again, this looks burdensome, but it is just to say that 𝛾 and Ξ

are chosen so that the following diagram commutes.

𝑔′

𝑔

®𝑗
®𝑖

𝑗

𝑖 𝑔′

𝑔

®𝑖

𝑖

®𝑗 • 𝑗

𝑔′
𝑔

®𝑖 • 𝑖

®𝑗 • 𝑗

𝑔′

𝑔

®𝑗 ◦ ®𝑖

𝑗 ◦ 𝑖 𝑔′
𝑔

( ®𝑗 ◦ ®𝑖) • ( 𝑗 ◦ 𝑖)

𝑔′
𝑔

( ®𝑗 • 𝑗) ◦ (®𝑖 • 𝑖)

𝛽
𝑗, ®𝑗 (𝜑®𝑖(𝑔

′), 𝜑𝑖(𝑔))

𝛾®𝑖, ®𝑗 (𝑔
′) 𝛾𝑖, 𝑗 (𝑔)

𝛽
𝑖, ®𝑖(𝑔

′, 𝑔)

𝛾®𝑖•𝑖, ®𝑗• 𝑗 (𝑔
′𝑔)

𝛽
𝑗◦𝑖, ®𝑗◦®𝑖(𝑔

′, 𝑔)
Ξ
𝑖, ®𝑖
𝑗 , ®𝑗

(𝑔′𝑔)

The second requirement reads

𝛾𝑖,𝑘◦ 𝑗 (𝑔)𝛾 𝑗 ,𝑘 (𝜑𝑖(𝑔)) = 𝛾 𝑗◦𝑖,𝑘 (𝑔)𝛾𝑖, 𝑗 (𝑔) (5.3.2)

for all 𝑔 ∈ D ®𝑋→𝑌
𝑖

which, a little more obviously, is to say the following diagram commutes.

𝑔

𝑖

𝑗

𝑘

𝑔

𝑖 ◦ 𝑗

𝑘

𝑔

𝑖

𝑘 ◦ 𝑗

𝑔

𝑘 ◦ 𝑗 ◦ 𝑖

𝛾𝑖, 𝑗 (𝑔)

𝛾 𝑗, 𝑘(𝜑𝑖(𝑔)) 𝛾 𝑗◦𝑖, 𝑘(𝑔)

𝛾𝑖, 𝑘◦ 𝑗 (𝑔)
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So, to extend the G -shifting system we have to a G -shifting 2-system, we choose compatibility

maps

𝛾
(𝑥1,...,𝑥𝑘)→𝑦
(Δ1,𝑣1),(Δ2,𝑣2)(𝐷, 𝑝) = 𝜆

Ä��1®𝑥Δ21𝑦
�� , 𝑣1
ä

or, in general, 𝛾
®𝑥→®𝑦
(®Δ1,®𝑣1),(®Δ2,®𝑣2)

( ®𝐷, ®𝑝) = 𝜆
(���1®𝑥 ®Δ21®𝑦

��� , 𝑉1

)
where 𝑉1 is the sum of entries in ®𝑣1, and

Ξ
®𝑥→®𝑦→𝑧
(Δ1,𝑣1),(®Δ1,®𝑣1)
(Δ2,𝑣2),(®Δ2,®𝑣2)

= 𝜄(®𝑥𝐻𝑧)𝜆(𝑉1, 𝑣2)

where 𝐻 : (®Δ2 ◦ ®Δ1) • (Δ2 ◦ Δ1) ⇒ (®Δ2 • Δ2) ◦ (®Δ1 • Δ1) and 𝑉1, as before, means the sum of the

entries of ®𝑣1. We refer to the first factor of Ξ by Ξ1 and the second factor by Ξ2. Of course, the

definitions above only hold if the cobordisms involved are vertically composable with respect to

the chosen order; otherwise, these maps are zero.

To understand where these choices come from, notice that (Δ2, 𝑣2) ◦ (Δ1, 𝑣1) can be rewritten

schematically as

𝑔

Δ1

𝑣1

Δ2

𝑣2

= 𝜆(
��1®𝑥Δ21𝑦

�� , 𝑣1)

𝑔

Δ1

Δ2

𝑣1

𝑣2

for 𝑔 : ®𝑥 → 𝑦. That is, (Δ2, 𝑣2) ◦ (Δ1, 𝑣1) = 𝜆(
��1®𝑥Δ21𝑦

�� , 𝑣1)(Δ2 ◦ Δ1, 𝑣2 + 𝑣1), so we hope 𝛾 has the

form above. For Ξ, we can start by recognizing that, schematically (and thanks to our chronology

conventions), (®Δ2 ◦ ®Δ1) • (Δ2 ◦ Δ1) looks like

𝑔

®1 • Δ1

®1 • Δ2

®Δ1 • 1

®Δ2 • 1

Where “1” and “®1” just stand for the identity cobordism on their respective components (in partic-
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ular, an element of IId).On the other hand, (®Δ2 • Δ2) ◦ (®Δ1 • Δ1) looks like

𝑔

®1 • Δ1

®1 • Δ2

®Δ1 • 1

®Δ2 • 1

So, we have that

(®Δ2 ◦ ®Δ1) • (Δ2 ◦ Δ1) = 𝜄(®𝑥𝐻𝑧)(®Δ2 • Δ2) ◦ (®Δ1 • Δ1)

where 𝐻 : (®Δ2 ◦ ®Δ2) • (Δ2 ◦Δ1)⇒ (®Δ2 •Δ2) ◦ (®Δ1 •Δ1) is the locally vertical change of chronology

which simply pushes Δ2 past the cobordisms involved in ®Δ1. So that Ξ satisfies equation (5.3.1),

we must also multiply by 𝜆(𝑉1, 𝑣2).

Proposition 5.3.3. The G -shifting 2-system 𝑆 defined above is compatible with 𝛼 through (𝛽, 𝛾,Ξ).

Proof. We know that the underlying shifting system is compatible with 𝛼 through 𝛽 by Proposition

5.1.5. Since

Iid = {(1𝐷∧ , (0, 0)) : 𝐷 is a planar arc diagram},

it is clear that 𝛾 and Ξ as chosen satisfy preliminary requirements; all we need to do is verify

equations (5.3.1) and (5.3.2). Verifying (5.3.2) is easy: computing both sides yields

𝜆(
��1®𝑥(Δ3 ◦ Δ2)1𝑦

�� , 𝑣1)𝜆(
��1®𝑥Δ31𝑦

�� , 𝑣2) = 𝜆(
��1®𝑥Δ31𝑦

�� , 𝑣1 + 𝑣2)𝜆(
��1®𝑥Δ21𝑦

�� , 𝑣1)

which is true since
��1®𝑥(Δ3 ◦ Δ2)1𝑦

�� = ��1®𝑥Δ31𝑦
�� +��1®𝑥Δ21𝑦

��; applying bilinearity shows that both sides

are equal to 𝜆(
��1®𝑥Δ31𝑦

�� , 𝑣1)𝜆(
��1®𝑥Δ31𝑦

�� , 𝑣2)𝜆(
��1®𝑥Δ21𝑦

�� , 𝑣1).

Verifying equation (5.3.1) looks a lot like the proofs of Propositions 4.2.3 and 5.1.5. Again,

start by considering the contributions of 𝛽1 and Ξ1 only. To do this, one can consider the two
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sequences of changes of chronology encoded by the diagram below.

®2
®1

2
1

®2
2

®1
1

®𝑖

𝑖

®𝑗 • 𝑗
®𝑖 • 𝑖

®𝑗 • 𝑗

®𝑗 ◦ ®𝑖

𝑗 ◦ 𝑖

( ®𝑗 ◦ ®𝑖) • ( 𝑗 ◦ 𝑖) ( ®𝑗 • 𝑗) ◦ (®𝑖 • 𝑖)

𝜁 𝛽1 𝛽1

𝛽1 Ξ1

where

𝜁 = 𝜆

(���1®𝑥 ®Δ11®𝑦
��� ,���1®𝑦Δ21𝑧

���) .
Thus, by Proposition 3.1.3, we see that the contributions of 𝛽1 and Ξ1 in equation (5.3.1) is

𝜁 × (Left of (5.3.1)) = (Right of (5.3.1)).

The remainder of the proof is computing the contributions of 𝛽2, 𝛽3, 𝛽4, 𝛾, and Ξ2. The

contributions of these on the left-hand side of (5.3.1) are

𝜆

(���𝑊®𝑥®𝑦𝑧((®Δ2 ◦ ®Δ1)( ®𝐷), (Δ2 ◦ Δ1)(𝐷))
��� , 𝑉2 + 𝑣2

)
· 𝜆
(���1®𝑥 ®Δ21®𝑦

��� , 𝑣2

)
(𝛽2,3,4)

𝑗 , ®𝑗 (𝜑®𝑖(𝑔
′), 𝜑𝑖(𝑔))

· 𝜆
(���1®𝑥 ®Δ11®𝑦

��� + 𝑃 +𝑉1,
���1®𝑦Δ21𝑧

��� + 𝑣2

)
︸                                           ︷︷                                           ︸

(∗)

𝜆

(���𝑊®𝑥®𝑦𝑧(®Δ1( ®𝐷),Δ1(𝐷))
��� , 𝑉1 + 𝑣1

)
· 𝜆
(���1®𝑥 ®Δ11®𝑦

��� , 𝑣1

)
(𝛽2,3,4)

𝑖,®𝑖(𝑔
′, 𝑔)

· 𝜆
(
𝑃,

���1®𝑦Δ11𝑧
��� + 𝑣1

)
𝜆

(���1®𝑥(®Δ2 • Δ2)1𝑧
��� , 𝑉1 + 𝑣1

)
︸                                 ︷︷                                 ︸

(∗∗)

𝛾®𝑖•𝑖, ®𝑗• 𝑗 (𝑔
′𝑔)
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We rewrite this product by expanding (∗) via bilinearity, expanding (∗∗) via Lemma 5.1.4 and

bilinearity, and then performing the obvious cancellations; the result is the following.

𝜆

(���𝑊®𝑥®𝑦𝑧((®Δ2 ◦ ®Δ1)( ®𝐷), (Δ2 ◦ Δ1)(𝐷))
��� , 𝑉2 + 𝑣2

)
· 𝜆
(���1®𝑥 ®Δ21®𝑦

��� , 𝑣2

)
· 𝜆
(
𝑃,

���1®𝑦Δ21𝑧
��� + 𝑣2

)
· 𝜆
(���1®𝑥 ®Δ11®𝑦

��� ,���1®𝑦Δ21𝑧
���)︸                         ︷︷                         ︸

𝜁

·𝜆
(���1®𝑥 ®Δ11®𝑦

��� , 𝑣2

)
· 𝜆(𝑉1, 𝑣2)

𝜆

(���1®𝑥 ®Δ11®𝑦
��� , 𝑣1

)
· 𝜆
(
𝑃,

���1®𝑦Δ11𝑧
��� + 𝑣1

)
𝜆

(���𝑊®𝑥®𝑦𝑧((®Δ2 ◦ ®Δ1)( ®𝐷), (Δ2 ◦ Δ1)(𝐷))
��� , 𝑉1 + 𝑣1

)
· 𝜆
(���1®𝑦Δ21𝑧

��� , 𝑣1

)
· 𝜆
(���1®𝑥 ®Δ21®𝑦

��� , 𝑉1

)
· 𝜆
(���1®𝑥 ®Δ21®𝑦

��� , 𝑣1

)
On the other hand, the contributions of 𝛽2, 𝛽3, 𝛽4, 𝛾 and Ξ2 on the right-hand side of (5.3.1) are

𝜆

(���1®𝑥 ®Δ21®𝑦
��� , 𝑉1

)
· 𝜆
(���1®𝑦Δ21𝑧

��� , 𝑣1

)
𝛾®𝑖, ®𝑗 (𝑔

′) · 𝛾𝑖, 𝑗 (𝑔)

𝜆

(���𝑊®𝑥®𝑦𝑧((®Δ2 ◦ ®Δ1)( ®𝐷), (Δ2 ◦ Δ1)(𝐷))
��� , 𝑉1 +𝑉2 + 𝑣1 + 𝑣2

)
(𝛽2,3,4)

𝑗◦𝑖, ®𝑗◦®𝑖(𝑔
′, 𝑔)

· 𝜆
(���1®𝑥(®Δ2 ◦ ®Δ1)1®𝑦

��� , 𝑣2 + 𝑣1

)
· 𝜆
(
𝑃,

���1®𝑦(Δ2◦Δ1)1𝑧

��� + 𝑣2 + 𝑣2

)
𝜆 (𝑉1, 𝑣2) Ξ2

Comparing the updated form of the left-hand side with this, we see that everything cancels except

for the 𝜁 term present in the former. Thus, we conclude that the contributions of 𝛽2, 𝛽3, 𝛽4, 𝛾 and

Ξ2 in equation (5.3.1) is

(Left of (5.3.1)) = 𝜁 × (Right of (5.3.1)),

which completes the proof. □

5.3.2 C -graded vertical composition

As before, we construct natural isomorphisms 𝜑 𝑗 ◦ 𝜑𝑖 ⇒ 𝜑 𝑗◦𝑖 or 𝜑 ®𝑗 ◦ 𝜑®𝑖 ⇒ 𝜑 ®𝑗◦®𝑖 given by

(𝜑 𝑗 ◦ 𝜑𝑖)(𝑀)→ 𝜑 𝑗◦𝑖(𝑀)

𝑚 ↦→ 𝛾𝑖, 𝑗 (|𝑚 |)𝑚
or, in general,

(𝜑 ®𝑗 ◦ 𝜑®𝑖)( ®𝑀)→ 𝜑 ®𝑗◦®𝑖( ®𝑀)

®𝑚 ↦→ 𝛾®𝑖, ®𝑗 (
�� ®𝑚��) ®𝑚
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respectively, and 𝜑( ®𝑗◦®𝑖)•( 𝑗◦𝑖) ⇒ 𝜑( ®𝑗• 𝑗)◦(®𝑖•𝑖) by

(𝜑( ®𝑗◦®𝑖)•( 𝑗◦𝑖))(𝑀)→ 𝜑( ®𝑗• 𝑗)◦(®𝑖•𝑖)(𝑀)

𝑚 ↦→ Ξ
𝑖,®𝑖
𝑗 , ®𝑗

(|𝑚 |)𝑚

for all homogeneous 𝑚 ∈ 𝑀 . In terms of these natural isomorphisms, equations (5.3.1) and (5.3.2)

translate to mean that the diagram

𝜑 ®𝑗• 𝑗

Ä
𝜑®𝑖(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝜑𝑖(𝑀)

ä
𝜑 ®𝑗 ◦ 𝜑®𝑖(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝜑 𝑗 ◦ 𝜑𝑖(𝑀) 𝜑 ®𝑗• 𝑗 ◦ 𝜑®𝑖•𝑖

(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)

𝜑 ®𝑗◦®𝑖(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝜑 𝑗◦𝑖(𝑀) 𝜑( ®𝑗• 𝑗)◦(®𝑖•𝑖)
(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)

𝜑( ®𝑗◦®𝑖)•( 𝑗◦𝑖)
(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)

𝛽
𝑖,®𝑖𝛽

𝑗 , ®𝑗

𝛾®𝑖, ®𝑗⊗𝛾𝑖, 𝑗 𝛾®𝑖•𝑖, ®𝑗• 𝑗

𝛽
𝑗◦𝑖, ®𝑗◦®𝑖 Ξ

𝑖,®𝑖
𝑗 , ®𝑗

commutes for all C -graded multimodules 𝑀1, . . . , 𝑀𝑘 , 𝑀 , and

𝜑𝑘 ◦ 𝜑 𝑗 ◦ 𝜑𝑖(𝑀) 𝜑𝑘 ◦ 𝜑 𝑗◦𝑖(𝑀)

𝜑𝑘◦ 𝑗 ,𝑖(𝑀) 𝜑𝑘◦ 𝑗◦𝑖(𝑀)

𝛾𝑖, 𝑗

𝛾 𝑗 ,𝑘 𝛾 𝑗◦𝑖,𝑘

𝛾𝑖,𝑘◦ 𝑗

commutes for each C -graded multimodule 𝑀 .

Before moving on, we note that a shifting 2-system may be extended to Ĩ . In particular, since

𝜑Id acts as the identity, we can extend vertical composition itself by declaring Id ◦ 𝑖 = 𝑖 = 𝑖 ◦ Id. If

Id appears in the subscript of Ξ, it can be replaced by an compatible element in IId.

Finally, we can properly define a vertical composition of homogeneous maps. Suppose 𝑓 :

𝑀 → 𝑁 is homogeneous of degree 𝑖, and 𝑔 : 𝑁 → 𝐿 is homogeneous of degree 𝑗 . Define their

C -graded composition as

(
𝑔 ◦C 𝑓

)
(𝑚) = 𝛾𝑖, 𝑗 (|𝑚 |)−1 (𝑔 ◦ 𝑓 ) (𝑚).
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Proposition 5.3.4. With the assumptions above, 𝑔 ◦C 𝑓 is purely homogeneous of degree 𝑗 ◦ 𝑖.

Proof. Requirement (i) of Definition 5.3.1 follows easily since D 𝑗◦𝑖 = D𝑖 ∩ 𝜑−1
𝑖

(Dj). Additionally,�� 𝑓 �� = 𝑖 so
�� 𝑓 (𝑚)

�� = 𝜑𝑖(|𝑚 |), and
��𝑔�� = 𝑗 so

��𝑔( 𝑓 (𝑚))
�� = 𝜑 𝑗 ◦ 𝜑𝑖(|𝑚 |). Thus,��(𝑔 ◦C 𝑓

)
(𝑚)

�� = 𝛾𝑖, 𝑗 (|𝑚 |)−1𝜑 𝑗 ◦ 𝜑𝑖(|𝑚 |) = 𝜑 𝑗◦𝑖(|𝑚 |),

so (ii) is satisfied.

For (iii) we claim that, for any ®𝑎 = (𝑎1, . . . , 𝑎𝑘 ) ∈ (𝐴1, . . . , 𝐴𝑘 ),

𝛾𝑖, 𝑗 (|𝑚 |)−1𝛽®𝑒,𝑖(
��®𝑎�� ,|𝑚 |)𝛽®𝑒, 𝑗 (��®𝑎�� , 𝜑𝑖(|𝑚 |)) = 𝛽®𝑒, 𝑗◦𝑖(��®𝑎�� ,|𝑚 |)𝛾𝑖, 𝑗 Ä��𝜌𝐿(®𝑎, 𝑚)

��ä−1

where ®𝑒 = (𝑒, . . . , 𝑒) as usual. The desired result follows easily from here, since

𝜌𝐿
(
®𝑎, (𝑔 ◦C 𝑓 )(𝑚)

)
= 𝜌𝐿

Ä
®𝑎, 𝛾𝑖, 𝑗 (|𝑚 |)−1𝑔( 𝑓 (𝑚))

ä
by definition,

= 𝛾𝑖, 𝑗 (|𝑚 |)−1𝜌𝐿
(
®𝑎, 𝑔( 𝑓 (𝑚))

)
by K-linearity of 𝜌𝐿 ,

= 𝛾𝑖, 𝑗 (|𝑚 |)−1𝛽®𝑒, 𝑗 (
��®𝑎�� ,�� 𝑓 (𝑚)

��︸  ︷︷  ︸
=𝜑𝑖(|𝑚 |)

)𝑔
(
𝜌𝐿(®𝑎, 𝑓 (𝑚))

)
since

��𝑔�� = 𝑗 ,

= 𝛾𝑖, 𝑗 (|𝑚 |)−1𝛽®𝑒, 𝑗 (
��®𝑎�� , 𝜑𝑖(|𝑚 |))𝛽®𝑒,𝑖(��®𝑎�� ,|𝑚 |)𝑔 Ä 𝑓 (𝜌𝐿(®𝑎, 𝑚)

)ä
since

�� 𝑓 �� = 𝑖 & 𝑔 is K-linear,

= 𝛽®𝑒, 𝑗◦𝑖(
��®𝑎�� ,|𝑚 |)𝛾𝑖, 𝑗 Ä��𝜌𝐿(®𝑎, 𝑚)

��ä−1
(𝑔 ◦ 𝑓 )

(
𝜌𝐿(®𝑎, 𝑚)

)
by the claim, and

= 𝛽®𝑒, 𝑗◦𝑖(
��®𝑎�� ,|𝑚 |) (𝑔 ◦C 𝑓

)
(𝜌𝐿(®𝑎, 𝑚)) by definition.

To prove the claim, we apply equation (5.3.1) when ®𝑗 = ®𝑖 = ®𝑒 and 𝑔′ =
��®𝑎�� and 𝑔 = |𝑚 |; it reads

𝛾®𝑒•𝑖,®𝑒• 𝑗 (
��®𝑎�� ◦|𝑚 |)𝛽®𝑒,𝑖(��®𝑎�� ,|𝑚 |)𝛽®𝑒, 𝑗 (𝜑 ®𝑒(��®𝑎��), 𝜑𝑖(|𝑚 |)) = Ξ𝑖,®𝑒

𝑗 ,®𝑒
(
��®𝑎�� ◦|𝑚 |)𝛽(®𝑒◦®𝑒), 𝑗◦𝑖(

��®𝑎�� ,|𝑚 |)𝛾®𝑒,®𝑒(��®𝑎��)𝛾𝑖, 𝑗 (|𝑚 |).
Now, Ξ 𝑖,®𝑒

𝑗 ,®𝑒
= 1 since (®𝑒 ◦ ®𝑒) • ( 𝑗 ◦ 𝑖) = ®𝑒 • ( 𝑗 ◦ 𝑖) = 𝑗 ◦ 𝑖 = (®𝑒 • 𝑗) ◦ (®𝑒 • 𝑖). Moreover, by our

working assumption that all C -graded algebras are supported entirely in Σ, 𝜑 ®𝑒(
��®𝑎��) =

��®𝑎��. Then,

noting 𝛾®𝑒,®𝑒 = 1, the equation above may be rewritten

𝛾𝑖, 𝑗 (
��®𝑎�� ◦|𝑚 |)𝛽®𝑒,𝑖(��®𝑎�� ,|𝑚 |)𝛽®𝑒, 𝑗 (��®𝑎�� , 𝜑𝑖(|𝑚 |)) = 𝛽®𝑒, 𝑗◦𝑖(��®𝑎�� ,|𝑚 |)𝛾𝑖, 𝑗 (|𝑚 |).
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Note that
��𝜌𝐿(®𝑎, 𝑚)

�� = ��®𝑎�� ◦ |𝑚 |, since the action maps of multimodules are C -graded—thus, rear-

ranging provides the desired result. Requirement (iv) is proven in exactly the same manner, noting

that Ξ𝑒,𝑖
𝑒, 𝑗

= 1. □

In general, suppose 𝑀ℓ

𝑓ℓ−→ 𝑁ℓ
𝑔ℓ−→ 𝐿ℓ is a composition of purely homogeneous maps of degree

𝑖ℓ and 𝑗ℓ respectively, for ℓ = 1, . . . , 𝑘 . We say that ®𝑓 is purely homogeneous of degree ®𝑖, and ®𝑔 is

purely homogeneous of degree ®𝑗 . Then, for ®𝑚 ∈ (𝑀1, . . . , 𝑀𝑘 ), we define

(®𝑔 ◦C ®𝑓 )( ®𝑚) = 𝛾®𝑖, ®𝑗 (
�� ®𝑚��)−1(®𝑔 ◦ ®𝑓 )( ®𝑚)

= 𝛾®𝑖, ®𝑗 (
�� ®𝑚��)−1(𝑔1( 𝑓1(𝑚1)), . . . , 𝑔𝑘 ( 𝑓𝑘 (𝑚𝑘 ))).

The proof above extends to this situation without trouble, so (®𝑔 ◦C ®𝑓 ) is purely homogeneous of

degree ®𝑗 ◦ ®𝑖.

Proposition 5.3.5. C -graded vertical composition is associative.

Proof. Suppose 𝑀
𝑓
−→ 𝑁

𝑔
−→ 𝐿

ℎ−→ 𝐾 are purely homogeneous of degrees
�� 𝑓 �� = 𝑖,��𝑔�� = 𝑗 , and |ℎ | = 𝑘 .

On one hand,

(
ℎ ◦C (𝑔 ◦C 𝑓 )

)
(𝑚) = 𝛾𝑖, 𝑗 (|𝑚 |)−1 (ℎ ◦C 𝑔 𝑓 ) (𝑚) = 𝛾𝑖, 𝑗 (|𝑚 |)−1𝛾 𝑗◦𝑖,𝑘 (|𝑚 |)−1ℎ𝑔 𝑓 (𝑚).

On the other,Ä(
ℎ ◦C 𝑔

)
◦C 𝑓

ä
(𝑚) = 𝛾 𝑗 ,𝑘

Ä�� 𝑓 (𝑚)
��ä−1 (

ℎ𝑔 ◦C 𝑓
)

(𝑚) = 𝛾 𝑗 ,𝑘
Ä�� 𝑓 (𝑚)

��ä−1
𝛾𝑖,𝑘◦ 𝑗 (|𝑚 |)−1ℎ𝑔 𝑓 (𝑚).

Since
�� 𝑓 (𝑚)

�� = 𝜑𝑖(|𝑚 |), associativity follows from equation (5.3.2). □

Propositions 5.3.2 and 5.3.4 imply that the C -graded composition and tensor product of homo-

geneous maps is again a homogeneous map. The last thing we must do is check the compatibility

of ⊗ and ◦C .

Proposition 5.3.6. Suppose 𝑓 : 𝑀 → 𝑁 and { 𝑓𝛼 : 𝑀𝛼 → 𝑁𝛼}𝛼=1,...,𝑘 are purely homogeneous

maps of degree 𝑖 and 𝑖𝛼 respectively, and similarly 𝑔 : 𝑁 → 𝐿 and {𝑔𝛽 : 𝑁𝛽 → 𝐿𝛽}𝛽=1,...,𝑘 are
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purely homogeneous maps of degree 𝑗 and 𝑗𝛽 respectively. Then(
(𝑔1 ◦C 𝑓1), . . . , (𝑔𝑘 ◦C 𝑓𝑘 )

)
⊗ 𝑔 ◦C 𝑓 = Ξ

𝑖,®𝑖
𝑗 , ®𝑗

(
(𝑔1, . . . , 𝑔𝑘 ) ⊗ 𝑔

)
◦C
(
( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓

)
.

Proof. We will just unravel both sides of the equation above. The equality will follow from equation

(5.3.1). On one hand,

(((𝑔1 ◦C 𝑓1), . . . , (𝑔𝑘 ◦C 𝑓𝑘 )) ⊗ 𝑔 ◦C 𝑓 )( ®𝑚 ⊗ 𝑚)

= 𝛽 ®𝑗◦®𝑖, 𝑗◦𝑖(
�� ®𝑚�� ,|𝑚 |)−1 ((𝑔1 ◦C 𝑓1)(𝑚1), . . . , (𝑔𝑘 ◦C 𝑓𝑘 )(𝑚𝑘 )

)
⊗ (𝑔 ◦C 𝑓 )(𝑚)

= 𝛽 ®𝑗◦®𝑖, 𝑗◦𝑖(
�� ®𝑚�� ,|𝑚 |)−1

Ä
𝛾𝑖1, 𝑗1(|𝑚1 |)−1(𝑔1 ◦ 𝑓1)(𝑚1), . . . , 𝛾𝑖𝑘 , 𝑗𝑘 (|𝑚1 |)−1(𝑔𝑘 ◦ 𝑓𝑘 )(𝑚𝑘 )

ä
⊗ 𝛾𝑖, 𝑗 (|𝑚1 |)−1(𝑔 ◦ 𝑓 )(𝑚)

= 𝛽 ®𝑗◦®𝑖, 𝑗◦𝑖(
�� ®𝑚�� ,|𝑚 |)−1𝛾®𝑖, ®𝑗 (

�� ®𝑚��)−1𝛾𝑖, 𝑗 (|𝑚 |)−1 ((𝑔1 ◦ 𝑓1)(𝑚1), . . . , (𝑔𝑘 ◦ 𝑓𝑘 )(𝑚𝑘 )
)
⊗ (𝑔 ◦ 𝑓 )(𝑚).

The first equality follows from Proposition 5.3.4 since each 𝑔ℓ ◦ 𝑓ℓ is purely homogeneous of degree

𝑗ℓ ◦ 𝑖ℓ, so
(
(𝑔1 ◦C 𝑓1), . . . , 𝑔𝑘 ◦C 𝑓𝑘

)
is purely homogeneous of degree ®𝑗 ◦ ®𝑖. The second equality

follows from the definition of ◦C , while the third is just a rewriting step. On the other hand,

(((𝑔1, . . ., 𝑔𝑘 ) ⊗ 𝑔) ◦C ( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 ))( ®𝑚 ⊗ 𝑚)

= 𝛾®𝑖•𝑖, ®𝑗• 𝑗 (
�� ®𝑚 ⊗ 𝑚��)−1 (((𝑔1, . . . , 𝑔𝑘 ) ⊗ 𝑔) ◦ (( 𝑓1, . . . , 𝑓𝑘 ) ⊗ 𝑓 )

)
( ®𝑚 ⊗ 𝑚)

= 𝛾®𝑖•𝑖, ®𝑗• 𝑗 (
�� ®𝑚 ⊗ 𝑚��)−1((𝑔1, . . . , 𝑔𝑘 ) ⊗ 𝑔)

Ä
𝛽®𝑖,𝑖(

�� ®𝑚�� ,|𝑚 |)−1( 𝑓1(𝑚1), . . . , 𝑓𝑘 (𝑚𝑘 )) ⊗ 𝑓 (𝑚)
ä

= 𝛾®𝑖•𝑖, ®𝑗• 𝑗 (
�� ®𝑚 ⊗ 𝑚��)−1𝛽®𝑖,𝑖(

�� ®𝑚�� ,|𝑚 |)−1𝛽 ®𝑗 , 𝑗 (
��� ®𝑓 ( ®𝑚)

��� ,�� 𝑓 (𝑚)
��)−1 (𝑔1( 𝑓1(𝑚)), . . . , 𝑔𝑘 ( 𝑓𝑘 (𝑚𝑘 ))

)
⊗ 𝑔( 𝑓 (𝑚)).

The first equality follows from Proposition 5.3.2, and the second and third follow from the definition

of the tensor product of homogeneous maps. As suggested, the equality follows from equation

(5.3.1), taking 𝑔′ =
�� ®𝑚�� and 𝑔 = |𝑚 |—we must only compensate by Ξ

𝑖,®𝑖
𝑗 , ®𝑗

. □

5.4 Changes of chronology

An important feature of G -shifting systems in particular is that changes of chronology induce

natural transformations of grading shift functors. Recall that we have a few different notions of

composition for changes of chronolology:
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• to a sequence of chronological cobordisms 𝐴
𝑊−→ 𝐵

𝑊 ′−−→ 𝐶 and changes of chronology 𝐻 on

𝑊 and 𝐻′ on𝑊′, there is a change of chronology 𝐻′ ◦ 𝐻 on𝑊′ ◦𝑊 ;

• A sequence of changes of chronology 𝑊1
𝐻1
==⇒ 𝑊2

𝐻2
==⇒ 𝑊3 is itself a change of chronology,

denoted 𝐻2 ★𝐻1.

The compositions ◦ and ★ extend to chronological cobordisms with corners Δ in the obvious

way. In this setting we obtain another way of composing changes of chronology. Suppose

Δ,Δ1, . . . ,Δ𝑘 are chronological cobordisms with corners so that (Δ1, . . . ,Δ𝑘 ) • Δ is nonzero,

and suppose 𝐻, 𝐻1, . . . , 𝐻𝑘 are changes of chronology on Δ,Δ1, . . . ,Δ𝑘 . Then we denote by

(𝐻1, . . . , 𝐻𝑘 ) • 𝐻 the change of chronology on (Δ1, . . . ,Δ𝑘 ) • Δ defined by applying the 𝐻𝑖 and

the 𝐻 in order according to the chronology. Indeed, we could define the • operation in terms of

successive applications of the ◦ operation after extending each change of chronology to be trivial

outside of its original component.

Now, each change of chronology 𝐻 : Δ→ Δ′ of chronological cobordisms with corners extends

to a change of chronology without corners given appropriate crossingless matchings 𝑥1, . . . , 𝑥𝑘 , 𝑦.

The latter is denoted by

®𝑥𝐻𝑦 : 1®𝑥Δ1𝑦 → 1®𝑥Δ′1𝑦 .

We claim that this observation induces a natural transformation of grading shift functors

𝜑𝐻 : 𝜑Δ ⇒ 𝜑Δ′

defined on each 𝑀 ∈ Ob(MultiModG ) by

𝜑𝐻(𝑀) : 𝜑Δ(𝑀)→ 𝜑Δ′(𝑀)

𝜑Δ(𝑚) ↦→ 𝜄(𝐻(|𝑚 |))−1𝜑Δ′(𝑚)

where 𝐻(|𝑚 |) means ®𝑥𝐻𝑦 for |𝑚 | : ®𝑥 → 𝑦. In general,

𝜑(𝐻1,...,𝐻𝑘) : 𝜑(Δ1,...,Δ𝑘) ⇒ 𝜑(Δ′1,...,Δ
′
𝑘
)
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where

𝜑(𝐻1,...,𝐻𝑘) : (𝜑Δ1(𝑀1), . . . , 𝜑Δ𝑘
(𝑀𝑘 ))→ (𝜑Δ′1(𝑀1), . . . , 𝜑Δ′

𝑘
(𝑀𝑘 ))

is given by

𝜑®Δ( ®𝑚) ↦→
𝑘∏
𝑖=1

𝜄(𝐻𝑖(|𝑚𝑖 |))−1𝜑®Δ′( ®𝑚).

We abbreviate
∏𝑘
𝑖=1 𝜄(𝐻𝑖(|𝑚𝑖 |))−1 to 𝜄( ®𝐻(

�� ®𝑚��))−1. Sometimes, we write 𝜑𝐻 when we mean 𝜑𝐻(𝑀).

Proposition 5.4.1. The diagram(
𝜑Δ1(𝑀1), . . . , 𝜑Δ𝑘

(𝑀𝑘 )
)
⊗ 𝜑Δ(𝑀) 𝜑(Δ1,...,Δ𝑘)•Δ

(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)
Ä
𝜑Δ′1(𝑀1), . . . , 𝜑Δ′

𝑘
(𝑀𝑘 )

ä
⊗ 𝜑Δ′(𝑀) 𝜑(Δ′1,...,Δ

′
𝑘
)•Δ′
(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)(𝜑𝐻1 , ..., 𝜑𝐻𝑘
)⊗𝜑𝐻

𝛽(Δ1 ,...,Δ𝑘 ),Δ

𝜑(𝐻1 , ..., 𝐻𝑘 )•𝐻

𝛽(Δ′1 ,...,Δ
′
𝑘

),Δ′

commutes. Thus, 𝜑𝐻(𝑀) is a map of G -graded multimodules and, in particular, 𝜑𝐻 is a natural

transformation of MultiModG (𝐴1, . . . , 𝐴𝑘 ; 𝐵) functors.

Proof. Assume that the gradings of (𝑚1, . . . , 𝑚𝑘 ) ∈ (𝑀1, . . . , 𝑀𝑘 ) and 𝑚 ∈ 𝑀 are compatible in

the sense that |𝑚𝑖 | ∈ Hom(𝑥𝑖1, . . . , 𝑥𝑖𝛼𝑖 ; 𝑦𝑖) for each 𝑖 = 1, . . . , 𝑘 and |𝑚 | ∈ Hom(𝑦1, . . . , 𝑦𝑘 ; 𝑧).

Recall that 𝛽 is defined as the composite 𝛽1𝛽2𝛽3𝛽4 and notice that (𝛽𝑖)(Δ1,...,Δ𝑘),Δ = (𝛽𝑖)(Δ′1,...,Δ
′
𝑘
),Δ′

for 𝑖 = 2, 3, and 4. Denote by 𝐻𝛽 and 𝐻𝛽′ the changes of chronology used to define (𝛽1)(Δ1,...,Δ𝑘),Δ

and (𝛽1)(Δ′1,...,Δ
′
𝑘
),Δ′ respectively. Also, consider the changes of chronology

®𝑥
(
(𝐻1, . . . , 𝐻𝑘 ) • 𝐻

)
𝑧

: 1®𝑥(®Δ • Δ)1𝑧 ⇒ 1®𝑥(®Δ′ • Δ′)1𝑧,

which we abbreviate to 𝐻•, and

(
®𝑥1(𝐻1)𝑦1 , . . . , ®𝑥𝑘 (𝐻𝑘 )𝑦𝑘

)
⊔ ®𝑦𝐻𝑧 : 1®𝑥 ®Δ1®𝑦 ⊔ 1®𝑦Δ1𝑧 ⇒ 1®𝑥 ®Δ′1®𝑦 ⊔ 1®𝑦Δ′1𝑧,

which we abbreviate to 𝐻⊔. Then we have the following sequences of changes of chronology.Ä
1®𝑥(®Δ • Δ)1𝑧

ä
◦𝑊®𝑥®𝑦𝑧( ®𝐷, 𝐷) 𝑊®𝑥®𝑦𝑧(®Δ( ®𝐷),Δ(𝐷)) ◦

Ä
1®𝑥 ®Δ1®𝑦 ⊔ 1®𝑦Δ1𝑧

ä
Ä

1®𝑥(®Δ′ • Δ′)1𝑧
ä
◦𝑊®𝑥®𝑦𝑧( ®𝐷, 𝐷) 𝑊®𝑥®𝑦𝑧(®Δ′( ®𝐷),Δ′(𝐷)) ◦

Ä
1®𝑥 ®Δ′1®𝑦 ⊔ 1®𝑦Δ′1𝑧

ä
𝐻𝛽1

𝐻•◦Id Id◦𝐻⊔
𝐻𝛽1
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Then, proposition 3.1.3 implies that

𝜄(𝐻⊔)𝛽®Δ,Δ(
�� ®𝑚�� ,|𝑚 |) = 𝛽®Δ′,Δ′(�� ®𝑚�� ,|𝑚 |)𝜄(𝐻•).

On the other hand,

(
(𝜑𝐻1 , . . . , 𝜑𝐻𝑘

) ⊗ 𝜑𝐻
)

(
�� ®𝑚�� ⊗ |𝑚 |) = 𝜑 ®𝐻(

�� ®𝑚��)𝜑𝐻(|𝑚 |) = 𝜄( ®𝐻(
�� ®𝑚��))−1𝜄(𝐻(|𝑚 |))−1 = 𝜄(𝐻⊔)−1

and

𝜑(𝐻1,...,𝐻𝑘)•𝐻(|𝑚 | ◦
�� ®𝑚��) = 𝜄(𝐻•)−1,

which concludes the proof. □

Proposition 5.4.2. We have that

𝜑𝐻′ ◦ 𝜑𝐻 � 𝜑𝐻′★𝐻

Proof. This is immediate, since 𝜄(®𝑥𝐻′𝑦 ◦ ®𝑥𝐻𝑦) = 𝜄(®𝑥𝐻′𝑦)𝜄(®𝑥𝐻𝑦) = 𝜄(®𝑥𝐻′𝑦 ★ ®𝑥𝐻𝑦). □
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CHAPTER 6

TANGLES, DG-MULTIMODULES, AND MULTIGLUING

In this chapter, we finally prove multigluing in generality upon detailing our method for associating

to a diskular tangle a G -graded dg-multimodule; see §6.2. This is preceded by §6.1 wherein we

define C -graded dg-multimodules, whose differential preserves C -degree. We also define the

HOM-complex associated to C -graded dg-multimodules, important to Chapter 8. Finally, in §6.3,

we also discuss graded commutativity and analogues of Naisse-Putyra’s “dg-C-graded” bimodules,

whose differential is C -homogeneous. We do this mostly for completeness, and cite §6.3 very

sparingly in successive sections.

6.1 C -graded dg-multimodules and related concepts

We remark that we only consider the situation of C -graded dg-multimodules over C -graded

algebras, rather than over C -graded dg-algebras.

Definition 6.1.1. If 𝐴1, . . . , 𝐴𝑘 , 𝐵 are C -graded algebras, we define a C -graded dg-(𝐴1, . . . , 𝐴𝑘 ; 𝐵)-

multimodule (𝑀, 𝑑𝑀) as a Z × C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodule 𝑀 =
⊕

𝑛∈Z,𝑔∈Mor(C ) 𝑀
𝑛
𝑔

together with a K-linear map 𝑑𝑀 : 𝑀 → 𝑀 satisfying

(i) 𝑑𝑀(𝑀𝑛
𝑔 ) ⊂ 𝑀𝑛+1

𝑔 ,

(ii) 𝑑𝑀(𝜌𝐿(®𝑎, 𝑚)) = 𝜌𝐿(®𝑎, 𝑑𝑀(𝑚)),

(iii) 𝑑𝑀(𝜌𝑅(𝑚, 𝑏)) = 𝜌𝑅(𝑑𝑀(𝑚), 𝑏), and

(iv) 𝑑𝑀 ◦ 𝑑𝑀 = 0.

for all ®𝑎 ∈ (𝐴1, . . . , 𝐴𝑘 ), 𝑏 ∈ 𝐵, and 𝑚 ∈ 𝑀 . The Z-grading is called the homological grading;

the homological grading of 𝑚 ∈ 𝑀 is denoted |𝑚 |ℎ. We assume the left and right action on a

multimodule preserves homological grading; i.e.,
��𝜌𝐿(®𝑎, 𝑚)

��
ℎ
= |𝑚 |ℎ. A map of C -graded dg-

bimodules 𝑓 : 𝑀 → 𝑁 will always mean a K-linear chain map (i.e., it commutes with the

differentials) which preserves both homological and C -grading.
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Given C -graded dg-(𝐴𝑖1, . . . , 𝐴𝑖𝛼𝑖 ; 𝐵𝑖)-multimodules (𝑀𝑖, 𝑑𝑀𝑖
) for each 𝑖 = 1, . . . , 𝑘 and a C -

graded dg-(𝐵1, . . . , 𝐵𝑘 ;𝐶)-multimodules (𝑀, 𝑑𝑀), we define the C -graded dg-(𝐴11, . . . , 𝐴𝑘𝛼𝑘 ;𝐶)-

multimodule(
(𝑀1, 𝑑𝑀1), . . . , (𝑀𝑘 , 𝑑𝑀𝑘

)
)
⊗(𝐵1,...,𝐵𝑘) (𝑀, 𝑑𝑀) =

Ä
(𝑀1, . . . , 𝑀𝑘 ) ⊗(𝐵1,...,𝐵𝑘) 𝑀, 𝑑 ®𝑀⊗𝑀

ä
where

𝑑 ®𝑀⊗𝑀( ®𝑚 ⊗ 𝑚) =
𝑘∑︁
𝑖=1

(−1)
∑𝑖−1

𝑗=1|𝑚 𝑗 |ℎ(𝑚1, . . . , 𝑑𝑀𝑖
(𝑚𝑖), . . . , 𝑚𝑘 ) ⊗ 𝑚 + (−1)

∑𝑘
𝑖=1|𝑚𝑖 |ℎ ®𝑚 ⊗ 𝑑𝑀(𝑚).

We will sometimes denote the first large summation, perhaps confusingly, by simply 𝑑 ®𝑀( ®𝑚).

Proposition 6.1.2. The tensor product of C -graded dg-multimodules, as defined above, is a C -

graded dg-multimodule.

Proof. The requirement (i) is obvious. Also, it is routine (but tedious) to check requirement (iv),

that 𝑑2
®𝑀⊗𝑀

= 0. To see requirements (ii) and (iii), note that 𝑑𝑀𝑖
preserves C -grading, so for any 𝑖,��(𝑚1, . . . , 𝑑𝑀𝑖

(𝑚𝑖), . . . , 𝑚𝑘 )
�� = |(𝑚1, . . . , 𝑚𝑖, . . . , 𝑚𝑘 )|

thus, in particular,

𝛼(
��®𝑎�� ,�� ®𝑚�� ,|𝑚 |) = 𝛼(

��®𝑎�� ,�� ®𝑚�� ,|𝑑𝑀(𝑚)|) = 𝛼(
��®𝑎�� ,��(𝑚1, . . . , 𝑑𝑀𝑖

(𝑚𝑖), . . . , 𝑚𝑘 )
�� ,|𝑚 |).

We leave the rest of the proof to the reader. □

The homology of a C -graded dg-multimodule (𝑀, 𝑑𝑀) is the C × Z-graded multimodule

𝐻(𝑀, 𝑑𝑀) = ker(𝑑𝑀)
/

im(𝑑𝑀). We call a map of C -graded dg-multimodules 𝑓 : (𝑀, 𝑑𝑀) →

(𝑁, 𝑑𝑁 ) a quasi-isomorphism if the induced map 𝑓∗ : 𝐻(𝑀, 𝑑𝑀)→ 𝐻(𝑁, 𝑑𝑁 ) is an isomorphism.

We define the mapping cone of a map of C -graded dg-multimodules as follows. First, recall the

homological shifting functor [𝑘] which sends the dg-multimodule (𝑀, 𝑑𝑀) to (𝑀[𝑘], 𝑑𝑀[𝑘]) where

𝑀[𝑘]𝑛𝑔 = 𝑀𝑛−𝑘
𝑔 , 𝑑𝑀[𝑘] = (−1)𝑘𝑑𝑀 , and 𝑀[𝑘] inherits the left and right actions of 𝑀 . Then the

mapping cone of 𝑓 : (𝑀, 𝑑𝑀)→ (𝑁, 𝑑𝑁 ) is the C -graded dg-multimodule

Cone( 𝑓 ) = (𝑀[−1] ⊕ 𝑁, 𝑑Cone( 𝑓 )) where 𝑑Cone( 𝑓 ) =

Ö
−𝑑𝑀 0

𝑓 𝑑𝑁

è
.
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We also define the HOM complex of C -graded dg-multimodules. Suppose 𝑀 and 𝑁 are

two C -graded dg-(𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodules. Let HOM(𝑀, 𝑁) denote the chain complex of

bihomogeneous (that is, homogeneous in homological degree and purely homogeneous in Ĩ -

degree) maps 𝑓 of arbitrary (Z × Ĩ )-degree, with differential

𝐷( 𝑓 ) = 𝑑𝑁 ◦ 𝑓 − (−1)| 𝑓 |ℎ 𝑓 ◦ 𝑑𝑀 .

Thus, 𝐷 preserves the Ĩ -degree of a bihomogeneous map, but increases the homological degree

by one. For example, if 𝑓 has degree (𝑘, 𝑖) ∈ Z × Ĩ , then the differential of HOM(𝑀, 𝑁) simply

takes the difference of the following paths.

𝑀𝑛
𝑔 𝑁𝑛+𝑘

𝜑𝑖(𝑔)

𝑀𝑛+1
𝑔 𝑁𝑛+𝑘+1

𝜑𝑖(𝑔)

𝑓

𝑑𝑀 𝑑𝑁

𝑓

Recall that each purely homogeneous map of degree 𝑖 induces a graded map 𝑓 : 𝜑𝑖(𝑀) → 𝑀 .

Moreover, C -grading preserving maps can be viewed as purely homogeneous of degree Id ∈ Ĩ ;

indeed, purely homogeneous maps of degree Id induce maps graded maps 𝜑Id(𝑀) → 𝑁 , but,

𝜑Id(𝑀) = 𝑀 . This (tautological) correspondence allows us to view the HOM complex as a

bigraded abelian group

HOM(𝑀, 𝑁)𝑘𝑖 �
∏
𝑛∈Z

HomMultiModC (𝜑𝑖(𝑀𝑛), 𝑁𝑛+𝑘 )

with differential of bidegree (1, 𝑒).

6.2 Resolution of diskular tangles

A diskular (𝑚1, . . . , 𝑚𝑘 ; 𝑛)-tangle is a tangle diagram 𝑇 in D2 − (𝐷̊1 ∪ · · · ∪ 𝐷̊𝑘 ), where each

of the 𝐷𝑖 are disjoint disks lying within the interior of D2, each of the form {𝑧 ∈ D2 : |𝑧 − 𝑧𝑖 | ≤ 𝑟𝑖}

for some 𝑧𝑖 ∈ D̊2 and 𝑟𝑖 > 0, so that

• Each 𝐷𝑖 has 2𝑚𝑖 marked points on its boundary, all disjoint from a fixed basepoint in 𝜕𝐷𝑖,

and
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• D2 itself has 2𝑛 marked points on its boundary, all disjoint from a fixed basepoint on 𝜕D2.

By “𝑇 is a tangle diagram in D2 − (𝐷̊1 ∪ · · · ∪ 𝐷̊𝑘 ),” we mean that the interval components of 𝑇 all

have endpoints lying on the marked points of D2 − (𝐷̊1 ∪ · · · ∪ 𝐷̊𝑘 ). We view the disks 𝐷1, . . . , 𝐷𝑘

as ordered.

As with planar arc diagrams, if 𝑆𝑖 is a diskular (ℓ𝑖1, . . . , ℓ𝑖𝛼𝑖 ;𝑚𝑖)-tangle for each 𝑖 = 1, . . . , 𝑘 ,

we denote by 𝑇(𝑆1, . . . , 𝑆𝑘 ) the diskular (ℓ11, . . . , ℓ𝑘𝛼𝑘 ; 𝑛)-tangle obtained by filling the 𝑖th removed

disk with 𝑆𝑖, identifying distinguished points and basepoints appropriately. Again, there is also a

pairwise composition, which we write as 𝑇 ◦𝑖 𝑆𝑖, and the two are related by

𝑇(𝑆1, . . . , 𝑆𝑘 ) = (· · · ((𝑇 ◦𝑘 𝑆𝑘 ) ◦𝑘−1 · · · ) ◦1 𝑆1.

A diskular (; 𝑛)-tangle is referred to as a diskular 𝑛-tangle.

Let 𝑐(𝑇) denote the number of crossings in 𝑇 and take an ordering 𝜒(𝑇) = {𝜒1, . . . , 𝜒𝑐(𝑇)} of

the crossings of 𝑇 . Let 𝑣 = (𝑣1, . . . , 𝑣𝑐(𝑇)) : 𝜒(𝑇) → {0, 1}𝑐(𝑇) be an assignment of 0 or 1 to each

crossing of 𝑇 . To each 𝑣, thought of as the coordinates of the vertices of the hypercube [0, 1]𝑐(𝑇),

we associate a planar arc diagram 𝑇𝑣 of type (𝑚1, . . . , 𝑚𝑘 ; 𝑛) by resolving each crossing according

to the following rule.

𝜒𝑖
𝑣𝑖=0 𝑣𝑖=1

We call 𝑇𝑣 a resolution of 𝑇 . As this procedure associates planar arc diagrams to each vertex of the

cube [0, 1]𝑐(𝑇), we can associate to each edge a cobordism of planar arc diagrams. First, to ensure

this cobordism comes with a chronology, we require that 𝑇 come labeled with one of

or

at each crossing. For each 𝑣𝑖 = 0 in some vertex 𝑣, we write 𝑣 + 𝑖 to denote the vertex which is

identical to 𝑣 except that (𝑣+𝑖)𝑖 = 1. Introduce a direction on the edges of the cube so that 𝑣 → 𝑣+𝑖.
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Finally, to each of these edges, we associate the chronological cobordism

𝑊𝑣,𝑖 : 𝑇𝑣 → 𝑇𝑣+𝑖

obtained by putting a saddle in a small cylinder above the 0-resolution of the 𝑖th crossing with

chronology determined by the labeling, and taking the identity everywhere outside of this cylinder.

Our goal is to assign a G -graded dg-(𝐻𝑚1 , . . . , 𝐻𝑚𝑘 ;𝐻𝑛)-multimodule F (𝑇) to each diskular

(𝑚1, . . . , 𝑚𝑘 ; 𝑛)-tangle 𝑇 . We have already seen that F (𝑇𝑣) is a G -graded (𝐻𝑚1 , . . . , 𝐻𝑚𝑘 ;𝐻𝑛)-

multimodule for each resolution 𝑇𝑣 of 𝑇 . Also, to each edge cobordism 𝑊𝑣,𝑖 : 𝑇𝑣 → 𝑇𝑣+𝑖, we can

associate a G -graded map

F (𝑊𝑣,𝑖) : 𝜑𝑊𝑣,𝑖
(F (𝑇𝑣))→ F (𝑇𝑣+𝑖).

We will need a slightly different graded map, achieved by constructing another family of chronolog-

ical cobordisms for each 𝑣. Denote by 1 the “all one” vertex (1, . . . , 1). Recursively, set𝑊1 = 1𝑇1 ,

the identity cobordism of 𝑇1. For 𝑣 ≠ 1, let ℓ denote the lowest integer so that 𝑣ℓ = 0. Then, define

𝑊𝑣 := 𝑊𝑣+ℓ ◦𝑊𝑣,ℓ

which has path 𝑇𝑣
𝑊𝑣,ℓ−−−→ 𝑇𝑣+ℓ

𝑊𝑣+ℓ−−−→ 𝑇1. Additionally, notice that for each 𝑣 𝑗 = 0, there is a locally

vertical change of chronology

𝐻𝑣, 𝑗 : 𝑊𝑣 ⇒ 𝑊𝑣+ 𝑗 ◦𝑊𝑣, 𝑗

obtained by pushing the saddle over the 𝑗 th crossing to the beginning of the sequence of saddles.

Now, set

𝐶(𝑇)𝑟 =
⊕
|𝑣 |=𝑟

𝐶(𝑇)𝑣[𝑟] where 𝐶(𝑇)𝑣 = 𝜑𝑊𝑣
(F (𝑇𝑣)).

Here, 𝑟 is the homological index of the dg-bimodule we are building. The first step in defining the

differential is to associate to each edge 𝑣 → 𝑣 + 𝑗 the G -graded map

𝑑𝑣, 𝑗 = F (𝑊𝑣, 𝑗 ) ◦ 𝜑𝐻𝑣, 𝑗
(F (𝑇𝑣)) : 𝐶(𝑇)𝑣 → 𝐶(𝑇)𝑣+ 𝑗 .

Perhaps this doesn’t seem to make sense. Indeed, there should be an intermediary 𝛾𝑊𝑣+ 𝑗 ,𝑊𝑣, 𝑗
for the

composition to parse:

𝜑𝑊𝑣
(F (𝑇𝑣))

𝜑𝐻𝑣, 𝑗
(F (𝑇𝑣))

−−−−−−−−−−→ 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
(F (𝑇𝑣))

𝛾𝑊𝑣+ 𝑗 ,𝑊𝑣, 𝑗−−−−−−−−→ 𝜑𝑊𝑣+ 𝑗 (𝜑𝑊𝑣, 𝑗
(F (𝑇𝑣)))

F (𝑊𝑣, 𝑗 )−−−−−−→ 𝜑𝑊𝑣+ 𝑗 (F (𝑇𝑣+ 𝑗 )).
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However, by our definition of these compatibility maps, 𝛾𝑊𝑣+ 𝑗 ,𝑊𝑣, 𝑗
= 1 since both cobordisms in-

volved are unweighted. Actually, the grading shifting system imposed on this grading multicategory

implies that 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
= 𝜑𝑊𝑣+ 𝑗 ◦ 𝜑𝑊𝑣, 𝑗

.

Lemma 6.2.1 ([NP20], Lemma 6.7). The diagram

𝐶(𝑇)𝑣+𝑖

𝐶(𝑇)𝑣 𝐶(𝑇)𝑣+𝑖+ 𝑗

𝐶(𝑇)𝑣+ 𝑗

𝑑𝑣+𝑖, 𝑗𝑑𝑣,𝑖

𝑑𝑣, 𝑗 𝑑𝑣+ 𝑗 ,𝑖

commutes for all 𝑣 and 𝑖, 𝑗 for which 𝑣𝑖 = 𝑣 𝑗 = 0.

The proof of this Lemma is exactly as Naisse-Putyra. Indeed, the validity of this Lemma,

without sign assignments, is the first meaningful benefit of working with grading (multi)categories.

Finally, define 𝑑𝑟 : 𝐶(𝑇)𝑟 → 𝐶(𝑇)𝑟+1 by setting

𝑑𝑟 |𝐶(𝑇)𝑣 =
∑︁
{ 𝑗 :𝑣 𝑗=0}

(−1)𝑝(𝑣, 𝑗)𝑑𝑣, 𝑗

for all 𝑣 with |𝑣 | = 𝑟, where 𝑝(𝑣, 𝑗) = {ℓ : 𝑗 < ℓ ≤ 𝑐(𝑇) and 𝑣ℓ = 1} counts the number of

1-resolutions occurring after the 𝑗 th entry of 𝑣. In conclusion, we set

F (𝑇) =

(⊕
𝑟

𝐶(𝑇)𝑟 , 𝑑 =
∑︁
𝑟

𝑑𝑟

)
.

The following is apparent, but we write it as a proposition for future reference.

Proposition 6.2.2. Suppose 𝑇 is a diskular tangle. Given a specified crossing of 𝑇 , write 𝑇𝑖, for

𝑖 = 0, 1, to denote the diskular tangles resulting from taking the 𝑖th resolution of this crossing.

Write 𝜎 to denote the saddle from 𝑇0 to 𝑇1. Then,

F (𝑇) � Cone
Å
𝜑𝜎F (𝑇0)

F (𝜎)−−−−→ F (𝑇1)
ã
.

Equivalently, we have an exact triangle

F (𝑇1)→ F (𝑇)→ 𝜑𝜎F (𝑇0)[1].
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Less apparent is the fact that F (𝑇) is actually a C -graded dg-multimodule.

Proposition 6.2.3. If 𝑇 is a diskular (𝑚1, . . . , 𝑚𝑘 ; 𝑛)-tangle, F (𝑇) has the structure of a G -graded

dg-(𝐻𝑚1 , . . . , 𝐻𝑚𝑘 ;𝐻𝑛)-multimodule.

Proof. It is clear that 𝑑(F (𝑇)ℓ𝑔) ⊂ F (𝑇)ℓ+1𝑔 and 𝑑2 = 0 by definition. We will show that

𝑑(𝜌𝐿(®𝑎, 𝑢)) = 𝜌𝐿(®𝑎, 𝑑(𝑢)); the requirement for the right action follows by a similar argument.

By linearity, it suffices to show that the diagram

(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣
(F (𝑇𝑣)) 𝜑𝑊𝑣

(F (𝑇𝑣))

(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣+ 𝑗 (F (𝑇𝑣+ 𝑗 )) 𝜑𝑊𝑣+ 𝑗 (F (𝑇𝑣+ 𝑗 ))

1⊗𝑑𝑣, 𝑗

𝜑𝑊𝑣 𝜌
𝑣
𝐿

𝑑𝑣, 𝑗

𝜑𝑊𝑣+ 𝑗 𝜌
𝑣+ 𝑗
𝐿

commutes, where 𝜌𝑣
𝐿

denotes 𝜇[(1𝑚1 , . . . , 1𝑚𝑘
);𝑇𝑣]. By definition of 𝑑𝑣, 𝑗 and left actions on shifted

multimodules, this diagram factors as follows (we’ve refrained from labeling arrows to avoid clutter.

𝜑 ®𝑒(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣
(F (𝑇𝑣)) 𝜑𝑊𝑣

((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣)) 𝜑𝑊𝑣
(F (𝑇𝑣))

𝜑 ®𝑒(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
(F (𝑇𝑣)) 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗

((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣)) 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
(F (𝑇𝑣))

𝜑 ®𝑒(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣+ 𝑗 (F (𝑇𝑣+ 𝑗 )) 𝜑𝑊𝑣+ 𝑗 ((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣+ 𝑗 )) 𝜑𝑊𝑣+ 𝑗 (F (𝑇𝑣+ 𝑗 ))

1 2

3 4

Here, we are using the fact that (𝐴1, . . . , 𝐴𝑘 ) = 𝜑 ®𝑒(𝐴1, . . . 𝐴𝑘 ). We will show that the original

diagram commutes by showing that squares 1 – 4 commute up to constants which cancel with

one another.

Square 1 ,

𝜑 ®𝑒(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣
(F (𝑇𝑣)) 𝜑𝑊𝑣

((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣))

𝜑 ®𝑒(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
(F (𝑇𝑣)) 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗

((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣))

1⊗𝜑𝐻𝑣, 𝑗
(F (𝑇𝑣))

𝛽®𝑒,𝑊𝑣

𝜑𝐻𝑣, 𝑗
(F (𝑇𝑣))

𝛽®𝑒,𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
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commutes on the nose by Proposition 5.4.1, taking ®Δ = ®𝑒 and Δ = 𝑊𝑣. Technically, if ℎ is the “do

nothing” change of chronology, we are acting by 𝜑®ℎ( ®𝐴) on the left terms, but this is clearly equal

to 1. Similarly, the vertical arrow on the right should be 𝜑®ℎ•𝐻𝑣, 𝑗
.

Square 2 ,

𝜑𝑊𝑣
((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣)) 𝜑𝑊𝑣

(F (𝑇𝑣))

𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣)) 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗

(F (𝑇𝑣))

𝜑𝐻𝑣, 𝑗
(F (𝑇𝑣))

𝜌𝑣
𝐿

𝜑𝐻𝑣, 𝑗
(F (𝑇𝑣))

𝜌𝑣
𝐿

commutes by the naturality of 𝜑𝐻𝑣, 𝑗
; again, see Proposition 5.4.1.

Square 3 ,

𝜑 ®𝑒(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
(F (𝑇𝑣)) 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗

((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣))

𝜑 ®𝑒(𝐴1, . . . , 𝐴𝑘 ) ⊗ 𝜑𝑊𝑣+ 𝑗 (F (𝑇𝑣+ 𝑗 )) 𝜑𝑊𝑣+ 𝑗 ((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣+ 𝑗 ))

1⊗F (𝑊𝑣, 𝑗 )

𝛽®𝑒,𝑊𝑣+ 𝑗◦𝑤𝑣, 𝑗

1⊗F (𝑊𝑣, 𝑗 )

𝛽®𝑒,𝑊𝑣+ 𝑗

commutes up to a factor of 𝛽®𝑒,𝑊𝑣, 𝑗
(
��®𝑎�� ,|𝑢 |), where we’ve fixed ®𝑎 ∈ (𝐴1, . . . , 𝐴𝑘 ) and 𝑢 ∈ F (𝑇𝑣).

To see this, recall that 𝛽 decomposes into 4 terms, 𝛽1–𝛽4, and that here 𝛽2 = 𝛽3 = 1 for both

compatibility maps since all cobordisms involved are unweighted. Otherwise, suppose|𝑎𝑖 | : 𝑥𝑖 → 𝑦𝑖

and |𝑢 | : (𝑦1, . . . , 𝑦𝑘 ) → 𝑧. Note that if |𝑢 | : ®𝑦 → 𝑥 then
��𝜑𝑊 (𝑢)

�� : ®𝑦 → 𝑥 and |F (Δ)(𝑢)| ®𝑦 → 𝑥, as

long as the values are nonzero. ThenÄ
𝛽®𝑒,𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗

(
��®𝑎�� ,|𝑢 |)ä

4
= 𝜆(𝑃′,

���1®𝑦(𝑊𝑣+ 𝑗 ◦𝑊𝑣, 𝑗 )1𝑧
���)

and Ä
𝛽®𝑒,𝑊𝑣+ 𝑗 (

��®𝑎�� ,��F (𝑊𝑣, 𝑗 )(𝑢)
��)ä

4
= 𝜆(𝑃′,

���1®𝑦(𝑊𝑣+ 𝑗 )1𝑧
���)

where 𝑃′ is the sum of the second coordinaters of ®𝑎𝑖 for 𝑖 = 1, . . . , 𝑘 . Bilinearity of 𝜆 implies that

the contribution from the 𝛽4 terms is

𝜆(𝑃′,
���1®𝑦(𝑊𝑣, 𝑗 )1𝑧

���) × (down, then right) = (right, then down).

105



On the other hand, the 𝛽1 terms are computed via changes of chronology. Similar to before, we

have that Ä
𝛽®𝑒,𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗

(
��®𝑎�� ,|𝑢 |)ä

1
=
Ä
𝛽®𝑒,𝑊𝑣, 𝑗

(
��®𝑎�� ,|𝑢 |)ä

1
×
Ä
𝛽®𝑒,𝑊𝑣+ 𝑗 (

��®𝑎�� ,��F (𝑊𝑣, 𝑗 )(𝑢)
��)ä

1
.

The easiest way to see this is by noticing that the change of chronology on the left factors into

changes of chronologies corresponding to the right terms.

(1𝑚1 , . . . , 1𝑚𝑘
) 𝑇𝑣

𝑊𝑣, 𝑗

𝑊𝑣+ 𝑗

(1𝑚1 , . . . , 1𝑚𝑘
) 𝑇𝑣

𝑇𝑣+ 𝑗

𝑊𝑣+ 𝑗

𝑊𝑣, 𝑗

(1𝑚1 , . . . , 1𝑚𝑘
) 𝑇𝑣

𝑇𝑣+ 𝑗
𝑊𝑣, 𝑗

𝑊𝑣+ 𝑗

Together, this means thatÄ
𝛽®𝑒,𝑊𝑣, 𝑗

(
��®𝑎�� ,|𝑢 |)ä × (down, then right) = (right, then down).

Finally, square 4 ,

𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣)) 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗

(F (𝑇𝑣))

𝜑𝑊𝑣+ 𝑗 ((𝐴1, . . . , 𝐴𝑘 ) ⊗ F (𝑇𝑣+ 𝑗 )) 𝜑𝑊𝑣+ 𝑗 (F (𝑇𝑣+ 𝑗 ))

1⊗F (𝑊𝑣, 𝑗 )

𝜌𝑣
𝐿

F (𝑊𝑣, 𝑗 )

𝜌
𝑣+ 𝑗
𝐿

commutes up to a factor of 𝛽®𝑒,𝑊𝑣, 𝑗
(
��®𝑎�� ,|𝑢 |). To see this, recall that F (𝑊𝑖, 𝑗 ) is homogeneous of degree

𝑊𝑖, 𝑗 , hence

𝜌
𝑣+ 𝑗
𝐿

(®𝑎, F (𝑊𝑣, 𝑗 )(𝑢)) = 𝛽®𝑒,𝑊𝑣, 𝑗
(
��®𝑎�� ,|𝑢 |)F (𝑊𝑣, 𝑗 )(𝜌𝑣𝐿(®𝑎, 𝑢)).

These two contributions of 𝛽®𝑒,𝑊𝑣, 𝑗
cancel each other out, which concludes the proof. □

106



6.2.1 Multigluing

Finally, we prove that F behaves as we hope with respect to composition of tangles; this

isomorphism is referred to as multigluing.

Theorem 6.2.4. Suppose𝑇 is a diskular (𝑚1, . . . , 𝑚𝑘 ; 𝑛)-tangle and𝑇𝑖 is a diskular (ℓ𝑖1, . . . , ℓ𝑖𝛼𝑖 ;𝑚𝑖)

tangle for each 𝑖 = 1, . . . , 𝑘 . Then there is an isomorphism

(
F (𝑇1), . . . , F (𝑇𝑘 )

)
⊗(𝐻𝑚1 ,...,𝐻𝑚𝑘 ) F (𝑇) � F (𝑇(𝑇1, . . . , 𝑇𝑘 ))

induced by 𝜇[((𝑇1)𝑣1 , . . . , (𝑇𝑘 )𝑣𝑘 );𝑇𝑣].

Proof. Recall that 𝐶(𝑇)𝑣 = 𝜑𝑊𝑣
F (𝑇𝑣) and 𝐶(𝑇𝑖)𝑣𝑖 = 𝜑𝑊𝑣𝑖

F (𝑇𝑖)𝑣𝑖 . We’ll write ⊗(𝐻𝑚1 ,...,𝐻𝑚𝑘 ) as ⊗ ®𝑚.

First, notice that

(𝜑𝑊𝑣1
F (𝑇1)𝑣1 , . . . , 𝜑𝑊𝑣𝑘

F (𝑇𝑘)𝑣𝑘 ) ⊗ ®𝑚 𝜑𝑊𝑣
F (𝑇𝑣)

𝛽(𝑊𝑣1 ,...,𝑊𝑣𝑘
),𝑊𝑣

−−−−−−−−−−−−−→ 𝜑(𝑊𝑣1 ,...,𝑊𝑣𝑘
)•𝑊𝑣

((F (𝑇1)𝑣1 , . . . , F (𝑇𝑘)𝑣𝑘 ) ⊗ ®𝑚 F (𝑇𝑣))
𝜇[((𝑇1)𝑣1 ,...,(𝑇𝑘 )𝑣𝑘 );𝑇𝑣]
−−−−−−−−−−−−−−−−−−→ 𝜑(𝑊𝑣1 ,...,𝑊𝑣𝑘

)•𝑊𝑣
F (𝑇𝑣((𝑇1)𝑣1 , . . . , (𝑇𝑘)𝑣𝑘 ))

is an isomorphism thanks to Proposition 4.4.6. This composition is what we mean by “the map

induced by 𝜇[((𝑇1)𝑣1 , . . . , (𝑇𝑘 )𝑣𝑘 );𝑇𝑣]”; we will denote it by 𝜇★ when there is no confusion. Notice

that the target of this composition can be rewritten

𝜑𝑊(𝑣,𝑣1 ,...,𝑣𝑘 )F (𝑇(𝑇1, . . . , 𝑇𝑘 )(𝑣,𝑣1,...,𝑣𝑘)) = 𝐶(𝑇(𝑇1, . . . , 𝑇𝑘 ))(𝑣,𝑣1,...,𝑣𝑘)

where we’ve ordered the crossings of𝑇(𝑇1, . . . , 𝑇𝑘 ) by the crossings of𝑇 first, and then the crossings

of 𝑇1, 𝑇2, and so on. So, to conclude the proof, we need only show the diagrams(
𝐶(𝑇1)𝑣1 , . . . , 𝐶(𝑇𝑖)𝑣𝑖 , . . . , 𝐶(𝑇𝑘 )𝑣𝑘

)
⊗ ®𝑚 𝐶(𝑇)𝑣 𝐶(𝑇(𝑇1, . . . , 𝑇𝑘 ))(𝑣,𝑣1,...,𝑣𝑖 ,...,𝑣𝑘)

(
𝐶(𝑇1)𝑣1 , . . . , 𝐶(𝑇𝑖)𝑣𝑖+ 𝑗 , . . . , 𝐶(𝑇𝑘 )𝑣𝑘

)
⊗ ®𝑚 𝐶(𝑇)𝑣 𝐶(𝑇(𝑇1, . . . , 𝑇𝑘 ))(𝑣,𝑣1,...,𝑣𝑖+ 𝑗 ,...,𝑣𝑘)

𝜇★

(1,...,𝑑𝑣𝑖 , 𝑗 ,...,1)⊗1 𝑑(𝑣,𝑣1 ,...,𝑣𝑘 ),𝑐+𝑐1+...+𝑐𝑖−1+ 𝑗

𝜇★

(where 𝑐 is the number of crossings of 𝑇 and 𝑐𝑖 is the number of crossings of 𝑇𝑖) and(
𝐶(𝑇1)𝑣1 , . . . , 𝐶(𝑇𝑘 )𝑣𝑘

)
⊗ ®𝑚 𝐶(𝑇)𝑣 𝐶(𝑇(𝑇1, . . . , 𝑇𝑘 ))(𝑣,𝑣1,...,𝑣𝑘)

(
𝐶(𝑇1)𝑣1 , . . . , 𝐶(𝑇𝑘 )𝑣𝑘

)
⊗ ®𝑚 𝐶(𝑇)𝑣+ 𝑗 𝐶(𝑇(𝑇1, . . . , 𝑇𝑘 ))(𝑣+ 𝑗 ,𝑣1,...,𝑣𝑘)

𝜇★

(1,...,1)⊗𝑑𝑣, 𝑗 𝑑(𝑣,𝑣1 ,...,𝑣𝑘 ), 𝑗

𝜇★
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commute. As in the proof of Proposition 6.2.3, we will show that each square factors into squares

which commute up to values which cancel.

We introduce the following notation: we’ll write

• 𝜑𝑊𝑣𝑖
= 𝜑𝑖 and F (𝑇𝑖)𝑣𝑖 = 𝐶𝑖, so that 𝐶(𝑇𝑖)𝑣𝑖 = 𝜑𝑊𝑣𝑖

F (𝑇𝑖)𝑣𝑖 can be written 𝜑𝑖𝐶𝑖;

• 𝜑𝑊𝑣
= 𝜑0 and F (𝑇)𝑣 = 𝐶0, so that 𝐶(𝑇)𝑣 = 𝜑𝑊𝑣

F (𝑇)𝑣 can be written 𝜑0𝐶0;

• 𝜑𝑊𝑣𝑖+ 𝑗◦𝑊𝑣𝑖 , 𝑗
= 𝜑𝑖′ and 𝜑𝑊𝑣𝑖+ 𝑗

= 𝜑𝑖′′ . Similarly, 𝜑𝑊𝑣+ 𝑗◦𝑊𝑣, 𝑗
= 𝜑0′ and 𝜑𝑊𝑣+ 𝑗 = 𝜑0′′ .

• 𝐶 = F (𝑇𝑣((𝑇1)𝑣1 , . . . , (𝑇𝑖)𝑣𝑖 , . . . , (𝑇𝑘 )𝑣𝑘 )), 𝐶′ = F (𝑇𝑣((𝑇1)𝑣1 , . . . , (𝑇𝑖)𝑣𝑖+ 𝑗 , . . . , (𝑇𝑘 )𝑣𝑘 )), and

𝐶′′ = F (𝑇𝑣+ 𝑗 ((𝑇1)𝑣1 , . . . , (𝑇𝑘 )𝑣𝑘 )).

Other notation is defined accordingly; for example, 𝜑(𝑊𝑣1 ,...,𝑊𝑣𝑖
,...,𝑊𝑣𝑘

)•𝑊𝑣
is rewritten 𝜑(1,...,𝑖,...,𝑘)•0,

and so on. The maps involved also adapt, including the writing of 𝜑𝐻𝑖
for 𝜑𝐻𝑣𝑖 , 𝑗

, and F𝑖 and F ′
𝑖

for

F (𝑊𝑣𝑖 , 𝑗 ) and F (𝑊(𝑣,𝑣1,...,𝑣𝑘),𝑐+𝑐1+···+𝑐𝑖−1+ 𝑗 ).

With this new notation, the first diagram factorizes as follows.

(
𝜑1𝐶1, . . . , 𝜑𝑖𝐶𝑖, . . . , 𝜑𝑘𝐶𝑘

)
⊗ ®𝑚 𝜑0𝐶0 𝜑(1,...,𝑖,...,𝑘)•0 (𝐶0, . . . , 𝐶𝑖, . . . , 𝐶𝑘 ) ⊗ ®𝑚 𝐶0 𝜑(1,...,𝑖,...,𝑘)•0𝐶

(
𝜑1𝐶1, . . . , 𝜑𝑖′𝐶𝑖, . . . , 𝜑𝑘𝐶𝑘

)
⊗ ®𝑚 𝜑0𝐶0 𝜑(1,...,𝑖′,...,𝑘)•0 (𝐶0, . . . , 𝐶𝑖, . . . , 𝐶𝑘 ) ⊗ ®𝑚 𝐶0 𝜑(1,...,𝑖′,...,𝑘)•0𝐶

Ä
𝜑1𝐶1, . . . , 𝜑𝑖′′𝐶

′
𝑖
, . . . , 𝜑𝑘𝐶𝑘

ä
⊗ ®𝑚 𝜑0𝐶0 𝜑(1,...,𝑖′′,...,𝑘)•0

Ä
𝐶0, . . . , 𝐶

′
𝑖
, . . . , 𝐶𝑘

ä
⊗ ®𝑚 𝐶0 𝜑(1,...,𝑖′′,...,𝑘)•0𝐶′

1

𝛽(1,...,𝑖,...,𝑘),0

(1,...,𝜑𝐻𝑖
,...,1)⊗1 2

𝜇

𝜑(1,...,𝐻𝑖 ,...,1)•1 𝜑(1,...,𝐻𝑖 ,...,1)•1

3

𝛽(1,...,𝑖′ ,...,𝑘),0

(1,...,F𝑖 ,...,1)⊗1 4

𝜇

(1,...,F𝑖 ,...,1)⊗1 F ′
𝑖

𝛽(1,...,𝑖′′ ,...,𝑘),0 𝜇

Squares 1 and 2 both commute by Proposition 5.4.1. Comparing the horizontal arrows, square

3 commutes up to a factor of 𝛽(1,...,𝑊𝑣𝑖 , 𝑗
,...,1),1, in the sense that

𝛽(1,...,𝑊𝑣𝑖 , 𝑗
,...,1),1 × (down, then right) = (right, then down).

Notice that the 𝛽2 and 𝛽3 terms are both equal to 1, since all cobordisms involved are unweighted.

Moreover, the 𝛽4 term is equal to 1 since
��1®𝑥11𝑦

�� = (0, 0) given any closures ®𝑥, 𝑦. Thus, the two
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sides differ by a value given by a single change of chronology

𝛽(1,...,𝑊𝑣𝑖 , 𝑗
,...,1),1 = 𝜄

á
𝑊𝑣𝑖 , 𝑗

⇒
𝑊𝑣𝑖 , 𝑗

ë
as in the definition of the compatibility maps 𝛽. Of course, we should view the 𝑊𝑣𝑖 , 𝑗 on the left

as (1, . . . ,𝑊𝑣𝑖 , 𝑗 , . . . , 1) • 1, and the𝑊𝑣𝑖 , 𝑗 on the right as (1, . . . ,𝑊𝑣𝑖 , 𝑗 , . . . , 1). On the other hand,

square 4 commutes up to the value

𝜄

á
𝑊𝑣𝑖 , 𝑗

⇒
𝑊𝑣𝑖 , 𝑗

ë
= (𝛽(1,...,𝑊𝑣𝑖 , 𝑗

,...,1),1)−1

in the sense that

(𝛽(1,...,𝑊𝑣𝑖 , 𝑗
,...,1),1)−1 × (down, then right) = (right, then down).

Thus, the former diagram commutes.

There are subtle differences in validating the commutativity of the latter diagram—in particular,

the 𝛽4 term in the analogue to square 3 is nontrivial. Anyway, the diagram in question factorizes

as follows.(
𝜑1𝐶1, . . . , 𝜑𝑘𝐶𝑘

)
⊗ ®𝑚 𝜑0𝐶0 𝜑(1,...,𝑘)•0 (𝐶0, . . . , 𝐶𝑘 ) ⊗ ®𝑚 𝐶0 𝜑(1,...,𝑘)•0𝐶

(
𝜑1𝐶1, . . . , 𝜑𝑘𝐶𝑘

)
⊗ ®𝑚 𝜑0′𝐶0 𝜑(1,...,𝑘)•0′ (𝐶0, . . . , 𝐶𝑘 ) ⊗ ®𝑚 𝐶0 𝜑(1,...,𝑘)•0′𝐶

(
𝜑1𝐶1, . . . , 𝜑𝑘𝐶𝑘

)
⊗ ®𝑚 𝜑0′′𝐶

′
0 𝜑(1,...,𝑘)•0′′ (𝐶0, . . . , 𝐶𝑘 ) ⊗ ®𝑚 𝐶′0 𝜑(1,...,𝑘)•0′′𝐶′′

1′

𝛽(1,...,𝑘),0

(1,...,1)⊗𝜑𝐻 2′

𝜇

𝜑(1,...,1)•𝐻 𝜑(1,...,1)•𝐻

3′

𝛽(1,...,𝑘),0′

(1,...,1)⊗F0 4′

𝜇

(1,...,1)⊗F0 F ′0

𝛽(1,...,𝑘),0′′ 𝜇

Again, squares 1′ and 2′ commute thanks to Proposition 5.4.1, and square 3′ commutes up to

a factor of 𝛽®1,𝑊𝑣, 𝑗
in the sense that

𝛽®1,𝑊𝑣, 𝑗
× (down, then right) = (right, then down).
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Indeed, the 𝛽2 and 𝛽3 terms are trivial, but otherwise we have

𝛽®1,𝑊𝑣, 𝑗
= 𝜄

á
𝑊𝑣, 𝑗

⇒
𝑊𝑣, 𝑗

ë
× 𝜆
(
𝑃′,

���1®𝑦𝑊𝑣, 𝑗1𝑧
���) .

Then again, the coherence isomorphisms specify that

𝑊𝑣, 𝑗

= 𝛽®1,𝑊𝑣, 𝑗
×
𝑊𝑣, 𝑗

which is precisely

(down, then right) = 𝛽®1,𝑊𝑣, 𝑗
× (right, then down)

for square 4′ . Thus the latter diagram commutes, concluding the proof. □

6.3 dg-C -graded multimodules

In [NP20], Naisse and Putrya provide a second notion of C -graded dg-multimodules with

differential which is C -homogeneous rather than C -grading preserving: they are distinguished

from the former notion by calling them dg-C -graded multimodules. The only difference lies

in the differential. This section is devoted to showing that the analogous objects exists in the

multicategorically graded setting. However, along the way, we develop the notion ofC -commutative

diagrams (see §6.3.2). While almost all succeeding work in this thesis does not rely on anything

proven in this section, we will use C -commutative diagrams (especially Proposition 6.3.3) briefly

in the discussion of duality (§8.2) and very minimally in the proof of properties of unified projectors

(§8.3). The author suggests proceeding to Chapter 7 and referring back to this section as necessary.

Definition 6.3.1. Assume 𝐴1, . . . , 𝐴𝑘 , 𝐵 are C -graded algebras. A dg-C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-

multimodule (𝑀, 𝑑𝑀) is a Z × C -graded (𝐴1, . . . , 𝐴𝑘 ; 𝐵)-multimodule 𝑀 =
⊕

𝑛∈Z,𝑔∈C 𝑀
𝑛
𝑔 along

with a homogeneous differential 𝑑𝑀 , written
∑
𝑗 𝑑

𝑗

𝑀
, satisfying 𝑑𝑀 ◦ 𝑑𝑀 = 0.1 Again, we assume

1Really, we could have written 𝑑𝑀 ◦C 𝑑𝑀 = 0, but clearly this is the case if and only if 𝑑𝑀 ◦ 𝑑𝑀 = 0, since 𝛾 does
not take 0 for a value.
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that the left and right action preserves homological grading. A map of dg-C -graded multimodules

𝑓 : 𝑀 → 𝑁 means a K-linear map which preserves homological grading and C -graded commutes

with the differentials.

To be explicit, since 𝑑𝑀 =
∑
𝑗 𝑑

𝑗

𝑀
is homogeneous, we know that it isK-linear, the sum is finite,

and for all 𝑚 ∈ 𝑀 it satisfies

(i) 𝑑 𝑗
𝑀

(𝑀𝑛
𝑔 ) ⊂ 𝑀𝑛+1

𝜑 𝑗 (𝑔) if 𝑔 ∈ D 𝑗 and 𝑑 𝑗
𝑀

(𝑀𝑛
𝑔 ) = 0 otherwise,

(ii) 𝑑 𝑗
𝑀

(𝜌𝐿(®𝑎, 𝑚) = 𝛽®𝑒, 𝑗 (
��®𝑎�� ,|𝑚 |)−1𝜌𝐿(®𝑎, 𝑑 𝑗

𝑀
(𝑚)) for all ®𝑎 ∈ (𝐴1, . . . , 𝐴𝑘 ), and

(iii) 𝑑 𝑗
𝑀

(𝜌𝑅(𝑚, 𝑏)) = 𝛽 𝑗 ,𝑒(|𝑚 | ,|𝑏 |)𝜌𝑅(𝑑 𝑗
𝑀

(𝑚), 𝑏) for all 𝑏 ∈ 𝐵.

Note that we do not require maps of dg-C -graded multimodules to preserve C -grading. The

rest of this section is devoted to understanding what we mean by C -graded commutativity; see

[NP20] for more details.

A commutativity system on {I ,Φ} is a collection

T =
{(

(𝑖, 𝑗), (𝑖′, 𝑗 ′)
)
∈
(
I 𝑚

)2 ×
(
I 𝑚

)2
}

(that is, each of 𝑖, 𝑗 , 𝑖′, 𝑗 ′ may be 𝑚-vectors) such that

• if
(
(𝑖, 𝑗), (𝑖′, 𝑗 ′)

)
∈ T, then

(a) 𝜑 𝑗◦𝑖 = 𝜑 𝑗 ′◦𝑖′ , and

(b)
(
(𝑖′, 𝑗 ′), (𝑖, 𝑗)

)
∈ T

and

• for any 𝑘 ≥ 1, if
Ä

(𝑖1, 𝑗1), (𝑖′1, 𝑗
′
1)
ä
, . . . ,

Ä
(𝑖𝑘 , 𝑗𝑘 ), (𝑖′𝑘 , 𝑗

′
𝑘
)
ä
,
(
(𝑖, 𝑗), (𝑖′, 𝑗 ′)

)
∈ T, then

(
((𝑖1, . . . , 𝑖𝑘 ) • 𝑖, ( 𝑗1, . . . , 𝑗𝑘 ) • 𝑗), ((𝑖′1, . . . , 𝑖

′
𝑘 ) • 𝑖

′, ( 𝑗 ′1, . . . , 𝑗
′
𝑘 ) • 𝑗

′)
)
∈ T.

We abbreviate the last requirement to
Ä

(®𝑖, ®𝑗), (®𝑖′, ®𝑗 ′)
ä
,
(
(𝑖, 𝑗), (𝑖′, 𝑗 ′)

)
∈ T =⇒ (®𝑖 • 𝑖, ®𝑗 • 𝑗).
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For simplicity of exposition, assume 𝑖, 𝑗 , 𝑖′, 𝑗 ′ are single-entry. To witness the commutativity

system, we introduce a collection of scalars

𝜏
®𝑋→𝑌
𝑖,𝑖′

𝑗 , 𝑗 ′
∈ K×

for each 𝑋1, . . . , 𝑋𝑘 , 𝑌 ∈ Ob(C ) and
(
(𝑖, 𝑗), (𝑖′, 𝑗 ′)

)
∈ T, satisfying

(i) 𝜏 ®𝑋→𝑌
𝑖,𝑖′

𝑗 , 𝑗 ′
= 1 whenever 𝑗 ◦ 𝑖 = 𝑗 ′ ◦ 𝑖′, and

(ii)

Ñ
𝜏
®𝑋→𝑌
𝑖,𝑖′

𝑗 , 𝑗 ′

é−1

= 𝜏
®𝑋→𝑌
𝑖′,𝑖
𝑗 ′, 𝑗

for each
(
(𝑖, 𝑗), (𝑖′, 𝑗 ′)

)
∈ T.

If
(
(𝑖, 𝑗), (𝑖′, 𝑗 ′)

)
∉ T, then we declare 𝜏 𝑖,𝑖′

𝑗 , 𝑗 ′
to be zero. We will write 𝜏 ®𝑋→®𝑌®𝑖,®𝑖′

®𝑗 , ®𝑗 ′
for the scalar witness

when 𝑚 ≠ 1—the above definition of 𝜏 extends to the case where 𝑖, 𝑗 , 𝑖′, 𝑗 ′ are vectors, requiring

𝜏
®𝑋→®𝑌
®𝑖,®𝑖′
®𝑗 , ®𝑗 ′

= 1 whenever ®𝑗 ◦ ®𝑖 = ®𝑗 ′ ◦ ®𝑖′, interpreted correctly. As earlier, we write 𝜏 𝑖,𝑖′
𝑗 , 𝑗 ′

(𝑔) to mean 𝜏 ®𝑋→𝑌
𝑖,𝑖′

𝑗 , 𝑗 ′

whenever 𝑔 : ®𝑋 → 𝑌 . Finally, we say that a commutativity system T is compatible with a shifting

2-system through 𝜏 if two equations are satisfied. The first is

𝜏 ®𝑖1•𝑖1,®𝑖2•𝑖2
®𝑗1• 𝑗1, ®𝑗2• 𝑗2

(𝑔′𝑔)Ξ
𝑖1,®𝑖1
𝑗1, ®𝑗1

(𝑔′𝑔)𝛽 ®𝑗1◦®𝑖1, 𝑗1◦𝑖1(𝑔′, 𝑔) = Ξ
𝑖2,®𝑖2
𝑗2, ®𝑗2

(𝑔′𝑔)𝛽 ®𝑗2◦®𝑖2, 𝑗2◦𝑖2(𝑔′, 𝑔)𝜏®𝑖1,®𝑖2
®𝑗1, ®𝑗2

(𝑔′)𝜏𝑖1,𝑖2
𝑗1, 𝑗2

(𝑔) (6.3.1)

which translates to the following diagram.

𝑔′

𝑔

®𝑗1
®𝑖1

𝑗1

𝑖1
𝑔′

𝑔

®1•𝑖1

®1• 𝑗1

®𝑖1•1

®𝑗1•1

𝑔′
𝑔

®1•𝑖1

®1• 𝑗1

®𝑖1•1

®𝑗1•1

𝑔′

𝑔

®𝑗2
®𝑖2

𝑗2

𝑖2
𝑔′

𝑔

®1•𝑖2

®1• 𝑗2

®𝑖2•1

®𝑗2•1

𝑔′
𝑔

®1•𝑖2

®1• 𝑗2

®𝑖2•1

®𝑗2•1

𝛽 ®𝑗1◦®𝑖1, 𝑗1◦𝑖1
(𝑔′, 𝑔)

𝜏®𝑖1, ®𝑖2
®𝑗1, ®𝑗2

(𝑔′) 𝜏𝑖1, 𝑖2
𝑗1, 𝑗2

(𝑔)

Ξ
𝑖1, ®𝑖1
𝑗1, ®𝑗1

(𝑔′𝑔)

𝜏 ®𝑖1•𝑖1, ®𝑖2•𝑖2
®𝑗1• 𝑗1, ®𝑗2• 𝑗2

(𝑔′𝑔)

𝛽 ®𝑗2◦®𝑖2, 𝑗2◦𝑖2
(𝑔′, 𝑔)

Ξ
𝑖2,®𝑖2
𝑗2, ®𝑗2

(𝑔′𝑔)
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The second equation establishes consistency between 𝜏 and Ξ: we require that

𝜏®Id•𝑖, ®𝑗•Id
®𝑗•Id, ®Id•𝑖

= ΞId, ®𝑗
𝑖, ®Id

Ξ−1
𝑖, ®Id
Id, ®𝑗

. (6.3.2)

In particular, notice that in order to conclude that
Ä

( ®Id • 𝑖, ®𝑗 • Id), ( ®𝑗 • Id, ®Id • 𝑖)
ä
∈ T, where any Id

may be replaced by any element of IId, it is sufficient if ((𝑖′, Id), (Id, 𝑖′)) ∈ T for any 𝑖′ ∈ I —this

will clearly be the case in the G -graded setting. This equation translates to the following diagram.Ä
®𝑗 • Id

ä
◦
Ä
®Id • 𝑖
ä Ä

®Id • 𝑖
ä
◦
Ä
®𝑗 • Id

ä
Ä
®𝑗 ◦ ®Id

ä
•
(
Id ◦ 𝑖

) Ä
®Id ◦ ®𝑗

ä
•
(
𝑖 ◦ Id

)

𝜏®Id•𝑖, ®𝑗•Id
®𝑗•Id, ®Id•𝑖

Ξ−1

𝑖, ®Id
Id, ®𝑗

ΞId, ®𝑗
𝑖, ®Id

6.3.1 G -graded commutativity

As before, one last time, we will describe the G -graded setting before passing on to generalities.

We will not consider dg-G -graded multimodules explicitly, but we can construct them using the

information of this section. See [NP20] for more generalities of these objects. We’ll write Δ𝑣 for

(Δ, 𝑣) ∈ I to reduce the number of nested ordered pairs. We’ll describe the non-vectorized setting

first. Let T denote the collection of all pairs
ß(

(Δ𝑣1
1 ,Δ

𝑣2
2 ), (Δ′𝑣

′
1

1 ,Δ
′𝑣′2
2 )
)™

for which

• there exists a locally vertical change of chronology 𝐻 : Δ2 ◦ Δ1 ⇒ Δ′2 ◦ Δ
′
1, and

• 𝑣1 = 𝑣′2 and 𝑣2 = 𝑣′1.

Similarly, in the vecotrized setting,
Å

(®Δ®𝑣1
1 ,
®Δ®𝑣2

2 ), (®Δ′®𝑣
′
1

1 , ®Δ′®𝑣
′
2

2 )
ã

is in T if there are locally vertical

changes of chronology 𝐻ℓ : Δ2,ℓ ◦Δ1,ℓ ⇒ Δ′2,ℓ ◦Δ
′
1,ℓ for all ℓ and ®𝑣1 = ®𝑣′2 and ®𝑣2 = ®𝑣′1. Notice that T

satisfies the criteria of a commutativity system since cobordisms which differ only with respect to a

locally vertical change of chronology induce the same G -grading shift, locally vertical changes of

chronology are invertible, and locally vertical changes of chronology are well behaved with respect

to horizontal composition of cobordisms.
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Next, we set

𝜏
®𝑥→𝑦
(Δ1,𝑣1),(Δ′1,𝑣

′
1)

(Δ2,𝑣2),(Δ′2,𝑣
′
2)

= 𝜄(®𝑥𝐻𝑦)𝜆(𝑣2, 𝑣1)

again, where𝐻 is the locally vertical change of chronology𝐻 : Δ2◦Δ1 ⇒ Δ′2◦Δ
′
1. In the vectorized

setting, we set

𝜏
®𝑥→®𝑦
(®Δ1,®𝑣1),(®Δ′1,®𝑣

′
1)

(®Δ2,®𝑣2),(®Δ′2,®𝑣
′
2)

=
∏
ℓ

𝜄(®𝑥ℓ (𝐻ℓ)𝑦ℓ )𝜆(𝑉2, 𝑉1)

where 𝑉2, 𝑉1 denote the sums of the entries of ®𝑣2 and ®𝑣1 respectively. We will write 𝜏 = 𝜏1𝜏2, for

𝜏1 the part coming from the change of chronology and 𝜏2 the other.

Notice that if (Δ2, 𝑣2)◦(Δ1, 𝑣1) = (Δ′2, 𝑣
′
2)◦(Δ1,

′ 𝑣′1), then𝐻 is the identical change of chronology,

and 𝑣1 = 𝑣′2 = 𝑣2 = 𝑣′1 so 𝜆(𝑣2, 𝑣1) = 1, hence 𝜏®𝑥→𝑦(Δ1,𝑣1),(Δ′1,𝑣
′
1)

(Δ2,𝑣2),(Δ′2,𝑣
′
2)

= 1. Also, if 𝐻 : Δ′2 ◦ Δ
′
1 ⇒ Δ2 ◦ Δ1 is

also a locally vertical change of chronology (guaranteed to exist by the existence of 𝐻) then

𝜏
®𝑥→𝑦
(Δ′1,𝑣

′
1),(Δ1,𝑣1)

(Δ′2,𝑣
′
2),(Δ2,𝑣2)

= 𝜄(®𝑥𝐻𝑦)𝜆(𝑣′2, 𝑣
′
1) = 𝜄(®𝑥𝐻𝑦)−1𝜆(𝑣1, 𝑣2) =

Ö
𝜏
®𝑥→𝑦
(Δ1,𝑣1),(Δ′1,𝑣

′
1)

(Δ2,𝑣2),(Δ′2,𝑣
′
2)

è−1

as desired.

Proposition 6.3.2. This commutativity system T is compatible with the G -grading shifting 2-system

defined previously, through the scalars 𝜏.

Proof. The validity of (6.3.2) is simple: recall that IId consists of elements (1𝐷∧ , (0, 0)) for any

planar arc diagram 𝐷. Thus

𝜏
®𝑥→𝑦
Id•(Δ,𝑣),(®Δ,®𝑣•Id)
(®Δ,®𝑣)•Id, ®Id•(Δ,𝑣)

= 𝜄(®𝑥𝐻𝑦)𝜆(𝑉, 𝑣)

where 𝑉 is the sum of entries of ®𝑣 and 𝐻 : ((®Δ, ®𝑣) • Id) ◦ ( ®Id • (Δ, 𝑣))⇒ ( ®Id • (Δ, 𝑣)) ◦ ((®Δ, ®𝑣) • Id).

On the other hand,

ΞId,(®Δ,®𝑣)
(Δ,𝑣), ®Id

Ξ−1
(Δ,𝑣), ®Id
Id,(®Δ,®𝑣)

=
Ä
𝜄(®𝑥𝐻′′𝑦 )𝜆(𝑉, 𝑣)

ä
·
Ä
𝜄(®𝑥𝐻′𝑦)𝜆((0, 0)(0, 0))−1

ä
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where

((®Δ, ®𝑣) • Id) ◦ ( ®Id • (Δ, 𝑣))
𝐻′
==⇒ ((®Δ, ®𝑣) ◦ ®Id) • (Id ◦ (Δ, 𝑣)) = ( ®Id ◦ (®Δ, ®𝑣)) • ((Δ, 𝑣) ◦ Id)

𝐻′′
===⇒ ( ®Id • (Δ, 𝑣)) ◦ ((®Δ, ®𝑣) • Id).

Since 𝐻 and 𝐻′′ ◦ 𝐻′ are locally vertical changes of chronology with the source and target,

Proposition 3.1.3 implies that 𝜄(®𝑥𝐻𝑦) = 𝜄(®𝑥(𝐻′′ ◦ 𝐻′)𝑦) = 𝜄(®𝑥𝐻′′𝑦 )𝜄(®𝑥𝐻′𝑦), so equation (6.3.2) is

satisfied.

To check equation (6.3.1), we apply familiar arguments. Actually, the computation is fairly

simple compared to the previous proofs of this type. On one hand, ignoring Z × Z-degree to start,

consider the diagram

®𝑗1
®𝑖1

𝑗1

𝑖1

®1•𝑖1

®1• 𝑗1

®𝑖1•1

®𝑗1•1

®1•𝑖1

®1• 𝑗1

®𝑖1•1

®𝑗1•1

®𝑗2
®𝑖2

𝑗2

𝑖2

®1•𝑖2

®1• 𝑗2

®𝑖2•1

®𝑗2•1

®1•𝑖2

®1• 𝑗2

®𝑖2•1

®𝑗2•1

(
𝛽 ®𝑗1◦®𝑖1, 𝑗1◦𝑖1

)
1

Ü
𝜏®𝑖1, ®𝑖2
®𝑗1, ®𝑗2

ê
1

Ñ
𝜏𝑖1, 𝑖2
𝑗1, 𝑗2

é
1

Ü
Ξ
𝑖1, ®𝑖1
𝑗1, ®𝑗1

ê
1

Ü
𝜏 ®𝑖1•𝑖1, ®𝑖2•𝑖2
®𝑗1• 𝑗1, ®𝑗2• 𝑗2

ê
1

(
𝛽 ®𝑗2◦®𝑖2, 𝑗2◦𝑖2

)
1

Ü
Ξ
𝑖2,®𝑖2
𝑗2, ®𝑗2

ê
1

where 𝑖1 = Δ1, 𝑗1 = Δ2, 𝑖2 = Δ′1, 𝑗2 = Δ′2, and so on. The two paths trace out changes of chronology

with the same source and target, so we conclude that the contributions of 𝜏1, Ξ1, and 𝛽1 from

equation (6.3.1) agree on the nose.

On the other hand, since ®Δ1 ◦ ®Δ2 and ®Δ′1 ◦ ®Δ
′
2, as well as Δ2 ◦ Δ1 and (Δ′2 ◦ Δ

′
1), differ only by

a locally vertical changes of chronology, plus 𝑣1 + 𝑣2 = 𝑣′2 + 𝑣
′
1 and 𝑉1 + 𝑉2 = 𝑉 ′2 + 𝑉

′
1, it is easy to

find that Ä
𝛽(®Δ2◦®Δ1,®𝑣1+®𝑣2),(Δ2◦Δ1,𝑣1+𝑣2)

ä
2,3,4

=

(
𝛽(®Δ′2◦®Δ

′
1,®𝑣
′
1+®𝑣
′
2),(Δ′2◦Δ

′
1,𝑣
′
1+𝑣
′
2)

)
2,3,4

.
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If these conditions were not true, then the 𝜏 maps involved would be zero, and equation (6.3.1)

would hold trivially. Moreover, we computeÖ
𝜏(®Δ1•Δ1,𝑉1+𝑣1),(®Δ′1•Δ

′
1,𝑉
′
1+𝑣
′
1)

(®Δ2•Δ2,𝑉2+𝑣2),(®Δ′2•Δ
′
2,𝑉
′
2+𝑣
′
2)

è
2

= 𝜆(𝑉2 + 𝑣2, 𝑉1 + 𝑣1) = 𝜆(𝑉2, 𝑉1) · 𝜆(𝑉2, 𝑣1) · 𝜆(𝑣2, 𝑉1) · 𝜆(𝑣2, 𝑣1)

and Ñ
Ξ(Δ1,𝑣1),(®Δ1,®𝑣1)

(Δ2,𝑣2),(®Δ1,®𝑣2)

é
2

= 𝜆(𝑉1, 𝑣2)

on one side, and Ö
𝜏(®Δ1,®𝑣1),(®Δ′1,®𝑣

′
1)

(®Δ2,®𝑣2),(®Δ′2,®𝑣
′
2)

è
2

= 𝜆(𝑉2, 𝑉1),Ñ
𝜏(Δ1,𝑣1),(Δ′1,𝑣

′
1)

(Δ2,𝑣2),(Δ′2,𝑣
′
2)

é
2

= 𝜆(𝑣2, 𝑣1),

and Ö
Ξ(Δ′1,𝑣

′
1),(®Δ′1,®𝑣

′
1)

(Δ′2,𝑣
′
2),(®Δ′1,®𝑣

′
2)

è
2

= 𝜆(𝑉 ′1, 𝑣
′
2) = 𝜆(𝑉2, 𝑣1)

on the other. Since 𝜆(𝑉1, 𝑣2) = 𝜆(𝑣2, 𝑉1)−1, these computations tell us that the contributions of 𝜏2,

Ξ2, and 𝛽2,3,4 from equation (6.3.1) also agree on the nose, concluding the proof. □

There may be other choices of commutativity systems compatible with the G -grading shifting

2-system. However, this doesn’t matter so much: the existence of a commutativity system is more

important than the commutativity system itself.

6.3.2 Generalities of commutativity systems

As before, we obtain natural transformations 𝜑 𝑗◦𝑖 ⇒ 𝜑 𝑗 ′◦𝑖′

𝜑 𝑗◦𝑖(𝑀)→ 𝜑 𝑗 ′◦𝑖′(𝑀)

𝑚 ↦→ 𝜏 𝑖,𝑖′
𝑗 , 𝑗 ′

(|𝑚 |)𝑚
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or, more generally, 𝜑 ®𝑗◦®𝑖 ⇒ 𝜑 ®𝑗 ′◦®𝑖′ given by

𝜑 ®𝑗◦®𝑖(𝑀1, . . . , 𝑀𝑘 )→ 𝜑 ®𝑗 ′◦®𝑖′(𝑀1, . . . , 𝑀𝑘 )

®𝑚 ↦→ 𝜏®𝑖,®𝑖′
®𝑗 , ®𝑗 ′

(
�� ®𝑚��) ®𝑚

Then, the compatibility equations (6.3.1) and (6.3.2) imply the following commutative diagrams in

categories of G -graded multimodules.

𝜑 ®𝑗1◦®𝑖1(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝜑 𝑗1◦𝑖1(𝑀) 𝜑( ®𝑗1◦®𝑖1)•( 𝑗1◦𝑖1)
(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)
𝜑( ®𝑗1• 𝑗1)◦(®𝑖1•𝑖1)

(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)

𝜑 ®𝑗2◦®𝑖2(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝜑 𝑗2◦𝑖2(𝑀) 𝜑( ®𝑗2◦®𝑖2)•( 𝑗2◦𝑖2)
(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)
𝜑( ®𝑗2• 𝑗2)◦(®𝑖2•𝑖2)

(
(𝑀1, . . . , 𝑀𝑘 ) ⊗ 𝑀

)
𝜏®𝑖1,®𝑖2
®𝑗1, ®𝑗2

⊗𝜏𝑖1,𝑖2
𝑗1, 𝑗2

𝛽 ®𝑗1◦®𝑖1 , 𝑗1◦𝑖1

Ξ
𝑖1,®𝑖1
𝑗1, ®𝑗1

𝜏 ®𝑖1•𝑖1,®𝑖2•𝑖2
®𝑗1• 𝑗1, ®𝑗2• 𝑗2

𝛽 ®𝑗2◦®𝑖2 , 𝑗2◦𝑖2

Ξ
𝑖2,®𝑖2
𝑗2, ®𝑗2

𝜑( ®𝑗•Id)◦( ®Id•𝑖)(𝑀) 𝜑( ®Id•𝑖)◦( ®𝑗•Id)(𝑀)

𝜑( ®𝑗◦ ®Id)•(Id◦𝑖)(𝑀) 𝜑 ®𝑗•𝑖(𝑀) 𝜑( ®Id◦®𝑗)•(𝑖◦Id)

Ξ
𝑖, ®Id
Id, ®𝑗

𝜏®Id•𝑖, ®𝑗•Id
®𝑗•Id, ®Id•𝑖

ΞId, ®𝑗
𝑖,Id

Consider a diagram of purely homogeneous maps, with degrees pictured.

𝑀12

𝑀11 𝑀22

𝑀21

𝑓∗2

𝑗 ′
𝑓1∗

𝑖′

𝑓∗1

𝑖

𝑓2∗

𝑗

We say that the diagram is C -graded commutative if
(
(𝑖, 𝑗), (𝑖′, 𝑗 ′)

)
∈ T, and

(
𝑓2∗ ◦C 𝑓∗1

)
= 𝜏 𝑖,𝑖′

𝑗 , 𝑗 ′

(
𝑓∗2 ◦C 𝑓1∗

)
.

Note that
(
𝑓∗2 ◦C 𝑓1∗

)
has degree 𝑗 ′ ◦ 𝑖′ and

(
𝑓2∗ ◦C 𝑓∗1

)
has degree 𝑗 ◦ 𝑖, so 𝜏 𝑖,𝑖′

𝑗 , 𝑗 ′
ensures their C -

degrees agree. This situation is abbreviated by including an arrow ⇒ as in the following proposition.
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Proposition 6.3.3. Given C -graded commutative diagrams

𝑀12

𝑀11 𝑀22

𝑀21

𝑓∗2𝑓1∗

𝑓∗1 𝑓2∗

and

(𝑀12)1

(𝑀11)1 (𝑀22)1

(𝑀21)1

( 𝑓∗2)1( 𝑓1∗)1

( 𝑓∗1)1 ( 𝑓2∗)1

, . . . ,

(𝑀12)𝑘

(𝑀11)𝑘 (𝑀22)𝑘

(𝑀21)𝑘

( 𝑓∗2)𝑘( 𝑓1∗)𝑘

( 𝑓∗1)𝑘 ( 𝑓2∗)𝑘

the diagram (
(𝑀12)1, . . . , (𝑀12)𝑘

)
⊗ 𝑀12

(
(𝑀11)1, . . . , (𝑀11)𝑘

)
⊗ 𝑀11

(
(𝑀22)1, . . . , (𝑀22)𝑘

)
⊗ 𝑀22

(
(𝑀21)1, . . . , (𝑀21)𝑘

)
⊗ 𝑀21

®𝑓∗2⊗ 𝑓∗2®𝑓1∗⊗ 𝑓1∗

®𝑓∗1⊗ 𝑓∗1 ®𝑓2∗⊗ 𝑓2∗

is C -graded commutative. Here, ®𝑓1∗ ⊗ 𝑓1∗ is shorthand for
(
( 𝑓1∗)1, . . . , ( 𝑓1∗)𝑘

)
⊗ 𝑓1∗, and so on.

Proof. This is simple, given Proposition 5.3.6 and equation (6.3.1). We drop some notation in
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what follows; hopefully it is clear:

(( ®𝑓∗2 ⊗ 𝑓∗2) ◦C ( ®𝑓1∗ ⊗ 𝑓1∗))( ®𝑚 ⊗ 𝑚) = Ξ−1
𝑖′,®𝑖′
𝑗 ′, ®𝑗 ′

Ä
( ®𝑓∗2 ◦C ®𝑓1∗) ⊗ ( 𝑓∗2 ◦C 𝑓1∗)

ä
( ®𝑚 ⊗ 𝑚)

= Ξ−1
𝑖′,®𝑖′
𝑗 ′, ®𝑗 ′

𝛽−1
®𝑗 ′◦®𝑖′, 𝑗 ′◦𝑖′(

®𝑓∗2 ◦C ®𝑓1∗)( ®𝑚) ⊗ ( 𝑓∗2 ◦C 𝑓1∗)(𝑚)

= Ξ−1
𝑖′,®𝑖′
𝑗 ′, ®𝑗 ′

𝛽−1
®𝑗 ′◦®𝑖′, 𝑗 ′◦𝑖′𝜏

−1
®𝑖,®𝑖′
®𝑗 , ®𝑗 ′
𝜏−1
𝑖,𝑖′

𝑗 , 𝑗 ′
( ®𝑓2∗ ◦C ®𝑓∗1)( ®𝑚) ⊗ ( 𝑓2∗ ◦C 𝑓∗1)(𝑚)

= 𝜏−1
®𝑖•𝑖,®𝑖′•𝑖′
®𝑗• 𝑗 , ®𝑗 ′• 𝑗 ′

Ξ−1
𝑖,®𝑖
𝑗 , ®𝑗

𝛽−1
®𝑗◦®𝑖, 𝑗◦𝑖(

®𝑓2∗ ◦C ®𝑓∗1)( ®𝑚) ⊗ ( 𝑓2∗ ◦C 𝑓∗1)(𝑚)

= 𝜏−1
®𝑖•𝑖,®𝑖′•𝑖′
®𝑗• 𝑗 , ®𝑗 ′• 𝑗 ′

Ξ−1
𝑖,®𝑖
𝑗 , ®𝑗

Ä
( ®𝑓2∗ ◦C ®𝑓∗1) ⊗ ( 𝑓2∗ ◦C 𝑓∗1)

ä
( ®𝑚 ⊗ 𝑚)

= 𝜏−1
®𝑖•𝑖,®𝑖′•𝑖′
®𝑗• 𝑗 , ®𝑗 ′• 𝑗 ′

(( ®𝑓2∗ ⊗ 𝑓2∗) ◦C ( ®𝑓∗1 ⊗ 𝑓∗1))( ®𝑚 ⊗ 𝑚).

□
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CHAPTER 7

AN INVARIANT OF DISKULAR TANGLES

In this chapter, we describe an invariant of diskular tangles. In §7.1, we describe useful compu-

tational tools necessary to successive work, inspired by [BN07] but paying particular attention to

the “simplification” of G -grading shifts. We remark that, as in [NP20], our G -grading system is a

little too sensitive for the G -graded dg-multimodule we associate to a diskular tangle to be invariant

under each Reidemeister move. However, we also describe a procedure (important to the results

of chapter 8) which collapses G -grading to a 𝑞-grading, in which case we obtain an honest tangle

invariant. The work here is motivated by and serves as a generalization of [NP20]. Recall that

we write Kom(·) to indicate the category of complexes which are bounded below in homological

degree and of finite rank in each quantum or G degree.

7.1 Quick computations in unified Khovanov homology

To begin, we will describe a few tools which will allow for quick computations in the homotopy

category of G -graded 𝐻𝑛-modules, Kom
Ä
𝐻𝑛ModG

𝑅

ä
. In particular, we hope to use the methods

introduced in [BN07], but must develop others to deal with problems posed by G -shifts.

7.1.1 Delooping

As an internal check, we can derive a formula for delooping in the current setting. A birth

: ∅ → ⃝ induces a graded map F
( )

: 𝜑 (𝑅) → 𝑉 , since F (∅) = 𝑅 and F (⃝) = 𝑉 .

Notice that this G-grading shift functor has only the effect of adding (1, 0) in the second coordinate

(free loops are ignored in the first coorinate): 𝜑 � {1, 0}. So we have a graded map

F
( )

: 𝑅{1, 0} → 𝑉.

Similarly,

F
(
•
)

: 𝑅{0,−1} → 𝑉

is a graded map. The grading shift functors {𝑢, 𝑣} have clear inverses given by {−𝑢,−𝑣}. This

fact, together with similar analysis on graded maps induced by deaths, yields the following array
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of graded maps:

F (⃝)

F (∅){1, 0}

F (∅){0,−1}

F (⃝)⊕

•

•

(7.1.1)

It might seem pedantic, but we note that the arrows on the left-hand side of (7.1.1) should be

precomposed with the isomorphisms coming from natural transformations of grading shift functors

Id⇒ {1, 0} ◦ {−1, 0}

and

Id⇒ {0,−1} ◦ {0, 1}

respectively, so that the maps on the left are graded with respect to our conventions. We will neglect

writing these isomorphisms outside of special situations (e.g., the proof of Theorems 8.1.5 and

8.2.3).

Proposition 7.1.1 (Delooping). F (⃝) � F (∅){0,−1} ⊕ F (∅){1, 0}.

Proof. This follows directly from the definition of F . For example, the composition shown in

diagram 7.1.1 reads

F

Ñ
•

é
+ F

Ñ
•
é

= F

Ñ é
.

One can verify this by checking that a dotted cylinder, followed by a positive death, and then a birth

maps 𝑣+ to 𝑣+ and 𝑣− to zero, while a positive death, followed by a birth, and then a dotted cylinder

maps 𝑣+ to zero and 𝑣− to 𝑣−. The other composition is also the identity: this amounts to showing

that

F
Ç å

= F
(
•
•

)
= 0, and F

Ç
•

å
= 1.

That is, the tube-cutting and sphere relations hold in the category 𝐻𝑛ModG
𝑅 .
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We should expect the gradings as they are since deg𝑅(𝑣+) = (1, 0) and deg𝑅(𝑣−) = (0,−1), with

𝑉 = 𝑅⟨𝑣+, 𝑣−⟩. □

7.1.2 Simplifying grading shift functors

In the even setting, delooping and Gaussian elimination allowed us to perform quick compu-

tations. To perform similar computations in the unified setting, we need to develop a system for

simplifying G -shifts. In the best cases, this means that𝑊 consists of no ambiguous saddles, and is

equivalent to a grading shift supported entirely in the Z×Z component; for example, we previously

used that 𝜑 � {1, 0}. Usually this is not the case. Instead, given a cobordism 𝑊 : 𝑡 → 𝑡′, we’d

like to equate 𝜑(𝑊,𝑣) with 𝜑(𝑊̌,𝑢) for some 𝑢 ∈ Z × Z where 𝑊̌ is minimal. Recall that if 𝑊 is not

minimal, it fails to be so up to some addition of tubes. Therefore, to approach the problem of

simplify grading shift functors, it makes sense to ask how 𝜑(𝑊,𝑣) behaves under tube-cutting.

Proposition 7.1.2. Let𝑊 : 𝑡 → 𝑡′ be a cobordism. There is a minimal cobordism 𝑊̌ : 𝑡 → 𝑡′ which

is isotopic to𝑊 outside of finitely many tubes. Denote the number of tubes in𝑊 by 𝜏𝑊 . Then

𝜑(𝑊,𝑣) � 𝜑(𝑊̌,𝑣+𝜏𝑊 (−1,−1)).

Proof. Any tube in𝑊 is either unambiguous (it is a split followed by a merge or vice versa) or it is

ambiguous (it is impossible to determine the order of elementary cobordisms which constitute the

tube without a given closure). Consider the (locally vertical) change of chronology 𝐻 : 𝑊 ⇒ 𝑊′

which changes all ambiguous tubes into unambiguous tubes, e.g.,

𝐻 : ⇒

wherever ambiguous tubes are present. From our analysis earlier, there is an induced natural

transformation 𝜑𝐻 : 𝜑𝑊 ⇒ 𝜑𝑊 ′ . Note that deg(1𝑎𝑊1𝑏) = deg(1𝑎𝑊′1𝑏) since any tube in 𝑊

corresponds to the addition of (−1,−1) in degree on any closure, ambiguous or not. This implies

that 𝜑(𝑊,𝑣) � 𝜑(𝑊 ′,𝑣). Since each tube in𝑊′ is unambiguous, we know that each tube in𝑊′ acts as

a degree (−1,−1) shift, so the result follows. □

122



A consequence of this proposition is that all grading shift functors have inverses, not just {𝑢, 𝑣}.

Corollary 7.1.3. For any pair (𝑊 : 𝑡 → 𝑡′, 𝑣), 𝜑(𝑊,𝑣) has a left inverse

𝜑−1
(𝑊,𝑣) = 𝜑(𝑊,−𝑣+𝜏

𝑊◦𝑊 (1,1))

(where𝑊 : 𝑡′→ 𝑡 is the mirror image of𝑊) in the sense that

𝜑−1
(𝑊,𝑣) ◦ 𝜑(𝑊,𝑣) � 𝜑1𝑡

.

Proof. If the composition𝑊 ◦𝑊 produces any tubes, the contribution by these tubes on the second

coordinate are killed by the addition of the term 𝜏
𝑊◦𝑊 (1, 1). □

Example. An elementary saddle cobordism : → induces the graded map

F
( )

: 𝜑 F
( )

→ F
( )

.

Consider the isomorphism induced by change of chronology:

𝜑𝐻 : Id⇒ 𝜑−1 ◦ 𝜑 .

Then, precomposing with 𝜑𝐻 , the saddle can be reinterpreted as the following graded map.

F
( )

◦ 𝜑𝐻 : F
( )

→ 𝜑−1 F
( )

.

We compute that 𝜑−1 = 𝜑Å
, (1,1)

ã since ◦ produces a tube. In general,

𝜑−1Å
, (𝑢,𝑣)

ã = 𝜑Å
, (1−𝑢,1−𝑣)

ã.
Remark 7.1.4. Returning to diagram (7.1.1), we see that the natural transformations of grading

shifting functors actually take the forms

𝜑𝐻 : Id⇒ 𝜑−1
• ◦ 𝜑 • � {1, 0} ◦ {−1, 0}

and

𝜑𝐻 : Id⇒ 𝜑−1 ◦ 𝜑 � {0,−1} ◦ {0, 1}.

123



The dismissal of free loops by theG-shifting system leads to another possibility for simplification

of grading shift functors. We will frequently use the following simplification while cooking up

projectors; see [NP20] for a proof.

Proposition 7.1.5. Suppose 𝑊 : 𝑡 → 𝑡′ is a cobordism and 𝑡 contains a free loop ℓ. Then there is

a natural isomorphism

𝜑(𝑊,(𝑢,𝑣)) � 𝜑(𝑊 ′,(𝑢−1,𝑣)) by 𝑚 ↦→ 𝜆((1, 0), deg(1𝑎𝑊1𝑏))𝑚

where 𝑊′ : 𝑡 − ℓ → 𝑡′ is given by gluing a birth under the free loop in 𝑡, and 𝑚 ∈ 𝑀𝑔:𝑎→𝑏. If, on

the other hand, 𝑡′ contains the free loop, the natural isomorphism is on the nose:

𝜑(𝑊,(𝑢,𝑣)) � 𝜑(𝑊 ′′,(𝑢,𝑣−1))

and𝑊′′ : 𝑡 → 𝑡′ − ℓ is given by gluing a death above𝑊 .

Example. Here is a way we may use the preceding proposition. Consider the G -grading shifting

map 𝜑 (the choice of chronology is unimportant). Then Proposition 7.1.5 says that this grading

shift is isomorphic to the grading shift 𝜑(𝑊 ′,(−1,0)), where𝑊′ is pictured below.

Of course, 𝑊′ is isotopic to an elementary saddle , so Proposition 7.1.2 allows us to conclude

that

𝜑 � 𝜑Ä
,(−1,0)

ä.
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The examples of this subsection illustrate a peculiarity of computations in Kom(𝐻𝑛ModG
𝑅 )—

that a G -grading shift has a few different representatives. A difficulty in coming work (cf. the proof

of Lemma 7.2.6) is choosing the correct representative.

7.2 Tangle invariant

In this section, we finally construct an invariant of diskular tangles, motivated by and general-

izing Section 6.4 of [NP20].

Suppose 𝑇 is a diskular (𝑛1, . . . , 𝑛𝑘 ;𝑚)-tangle with 𝑐-many crossings. We will continue under

the assumption that 𝑇 carries an orientation. Then 𝑇 defines an oriented (2, . . . , 2︸     ︷︷     ︸
𝑐 times

, 𝑛1, . . . , 𝑛𝑘 ;𝑚)-

planar arc diagram 𝐷𝑇 by replacing each crossing of 𝑇 with a new diskular region with four

endpoints; consult the schematic below.

⇝ × ⇝

Denote the crossings of 𝑇 by 𝑥1, . . . , 𝑥𝑐 and define the complex

Kh(𝑇) :=
(
Kh(𝑥1), . . . ,Kh(𝑥𝑐)

)
⊗(𝐻2,...,𝐻2) F (𝐷𝑇 )

where

Kh
Ç å

:= Cone

Ö
𝜑 F

Ç å F
Å ã
−−−−−−−→ F

Ç åè
{−1, 0}, and

Kh
Ç å

:= Cone

Ö
F
Ç å F

Å ã
◦𝜑𝐻

−−−−−−−−−−−→ 𝜑−1 F
Ç åè

{0, 1},

for 𝜑𝐻 : Id⇒ 𝜑−1 ◦ 𝜑 . Recall that the underlined entry is in homological degree zero.

The reader should compare this with the unoriented case, where we have

F (𝑇) �
(
F (𝑥1), . . . , F (𝑥𝑐)

)
⊗(𝐻2,...,𝐻2) F (𝐷𝑇 )

by Theorem 6.2.4. So, we would expect the following lemma.

Lemma 7.2.1. For any diskular tangle 𝑇 , there exists a shifting functor 𝜑 and integer ℓ such that

Kh(𝑇) � 𝜑(F (𝑇))[ℓ]
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Proof. Recall that the dg-multimodule associated to a single crossing is given by

F
Ç å

= Cone

Ö
𝜑 F

Ç å F
Å ã
−−−−−−−→ F

Ç åè
.

On one hand, it is obvious that

Kh
Ç å

� F
Ç å

{−1, 0}[−1].

On the other hand, the diagram

F
Ç å

𝜑−1 F
Ç å

𝜑−1 ◦ 𝜑 F
Ç å

𝜑−1 F
Ç å

F
( )

◦ 𝜑𝐻

𝜑𝐻

F

Ñ é
commutes tautologically. The bottom line is exactly 𝜑−1 F

Ç å
, so we conclude that

Kh
Ç å

� 𝜑−1 F
Ç å

{0, 1}.

Then the desired result follows from the definition of Kh and Theorem 6.2.4. □

Unfortunately, Kh is not an invariant of oriented tangles in the G -graded sense; rather, Kh will

be an invariant of diskular tangles up to G -grading shift (Theorem 7.2.8). We break the computation

up into three lemmas of increasing difficulty.

Remark 7.2.2. Notice that invariance under planar isotopy is immediately apparent in the G -graded

setting, in contrast to [NP20], since F (𝐷𝑇 ) � F (𝐷𝑇 ′) if 𝑇 ′ is obtained from 𝑇 via planar isotopy.

Moreover, in our setup, we no longer have to assume 𝑇 is presented in a generic position.

Lemma 7.2.3. There are isomorphisms

Kh
Ç å

� Kh
Ç å

� Kh
Ç å

in Kom(𝐻1ModG
𝑅 ) (here, the choice of orientation does not matter).
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Proof. Picking an orientation for the right handed twist, we compute

Kh
Ç å

�

Ü
F
( )

𝜑−1 F
( )◦ 𝜑𝐻

ê
{0, 1}

�


⊕

F
( )

{0,−1}

F
( )

{1, 0}

F
( )

{1, 0}

𝑋𝑍𝜑𝐻

𝜑𝐻


{0, 1}

� Kh
Ç å

.

The second isomorphism is by delooping, noticing that 𝜑−1 is isomorphic to {1, 0} as shifting

functors. Additionally, the maps are obtained from the former by precomposing with a birth or a

dotted birth. The third isomorphism is by Gaussian elimination. The reader may verify that the

computation for Kh
Ç å

is duplicate.

Doing the same for the left handed twist,

Kh
Ç å

�

Ö
𝜑 F

( )
F
( )è

{−1, 0}

�


⊕F

( )
{0,−1}

F
( )

{0,−1}

F
( )

{1, 0}

1

𝑌𝑍


{−1, 0}

� Kh
Ç å

follows by the same reasoning, and the computation for Kh
Ç å

is its doppelgänger. □
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Lemma 7.2.4. There are isomoprhisms

Kh

( )
� Kh

( )
{−1, 1} � Kh

( )

and

Kh

( )
� 𝜑Å

, (0,1)
ãKh

( )
� Kh

( )
in Kom(𝐻2ModG

𝑅 ). We call the first pair of isomorphisms RII+ and the second pair RII−.

Proof. By definition, Kh

( )
is the complex

⊕

𝜑 F
( )

F
( )

𝜑 ◦ 𝜑−1 F
( )

𝜑−1 F
( )◦ 𝜑𝐻1

◦ 𝜑𝐻2

with a global shift by {−1, 1}. However, up to isomorphism, we can rewrite the grading shifts on

the 01 and 11 resolutions suggestively, so that the complex takes the form

⊕

𝜑 F
( )

F
( )

𝜑Å
, (0,1)

ã F ( )
𝜑Å

, (1,1)
ã F ( )◦ 𝜑𝐻1

◦ 𝜑𝐻2

again, with a global shift by {−1, 1}. Now, by delooping,

𝜑Å
, (0,1)

ã F ( )
� 𝜑 F

( )
⊕ 𝜑Å

, (1,1)
ã F ( )

.

Moreover, the maps F
( )

◦ 𝜑𝐻1 and F
( )

compose with the delooping isomorphism to

yield invertible maps where desired, so that Gaussian elimination tells us that the entire complex is
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homotopy equivalent to Kh

( )
{−1, 1}, as desired. Duplicate this work for the other side

of RII+.

We play the exact same game for RII−: Kh

( )
is

⊕

𝜑 F
( )

𝜑 ◦ 𝜑−1 F
( )

F
( )

𝜑−1 F
( )

◦ 𝜑𝐻′1

◦ 𝜑𝐻′2

with a global shift of {−1, 1}. By grading shift arethmetic, we know

𝜑 � {0,−1}, 𝜑−1 � 𝜑Å
(1,1)
ã, and 𝜑−1 � {1, 0},

so that the complex may be rewritten

⊕

F
( )

{0,−1} 𝜑Å
(1,0)
ãF ( )

F
( )

F
( )

{1, 0}

◦ 𝜑𝐻′1

◦ 𝜑𝐻′2

Delooping the 01 entry and applying Gaussian elimination, we conclude that the entire complex

is homotopy equivalent to 𝜑Å
, (1,0)

ãKh

( )
{−1, 1} ; i.e., 𝜑Å

, (0,1)
ãKh

( )
, as

desired. Again, the other side of RII− is similar. □

Remark 7.2.5. Lemma 7.2.4 establishes that the grading shift coming from Reidemeister II moves

is dependent on orientation. This, together with Lemma 7.2.3, implies that Reidemeister III moves

must—at least, sometimes—come at the cost of a nontrivial grading shift. For example, if this was
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not the case, the sequence of isomorphisms

𝜑Å
, (0,1)

ãKh

( )
Kh

( )
Kh

( )

Kh

( )
{−1, 1} Kh

( )
{−1, 1} Kh

( )

RII−1
− RI−1

★

RI RII+

would yield a contradiction. Notice that the vertical arrow is an Reidemeister III move of type

⇝ .

Lemma 7.2.6. We have the following isomorphisms in Kom(𝐻3ModG
𝑅 ):

Kh

Ñ é
� Kh

Ñ é
, Kh

Ñ é
� 𝜑 ◦ 𝜑−1 Kh

Ñ é
,

Kh

Ñ é
� Kh

Ñ é
, Kh

Ñ é
� 𝜑 ◦ 𝜑−1 Kh

Ñ é
,

Kh

( )
� Kh

( )
, Kh

( )
� 𝜑 ◦ 𝜑−1 Kh

( )
,

Kh

( )
� Kh

( )
, Kh

( )
� 𝜑 ◦ 𝜑−1 Kh

( )
.

Proof. We will describe the proof by illustrating one of the isomorphisms on the left-hand side and

its counterpart on the right-hand side. Each computation is slightly different, but we hope that this

discussion sates the reader, or illuminates the procedure enough so that they might check the others

on their own.

The idea for any isomorphism on the left-hand side is to expand each complex and apply

Gaussian elimination carefully. If Gaussian elimination is done properly, the two complexes are

isotopic. If we do the same procedure for complexes appearing on the right-hand side, we will find

that the entries of the complex are isotopic, but the grading shifts disagree. In this case, we will

130



argue that one is taken to the other by applying the grading shifts provided in the statement of the

Lemma.

Observe the complex associated to Kh

( )
.

𝜑 𝜑 (1,1)

𝜑 𝜑 (1,1)

𝜑 𝜑 (1,1)

𝜑 (1,1)

◦ 𝜑𝐻1

◦ 𝜑𝐻3

◦ 𝜑𝐻4

◦ 𝜑𝐻2

Eyeing the boxed vertex, we have that

𝜑Ö
, (1,1)

è � 𝜑Ö
, (0,1)

è
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and, moreover, the delooping isomorphism provides that

𝜑Ö
, (0,1)

è � 𝜑 ⊕ 𝜑Ö
, (1,1)

è .

Now, we apply Gaussian elimination, so that the northwest and southeast vertices of the forward-

facing face cancel with the northeast vertex which we just delooped. Here is the resulting complex.

𝜑 𝜑 (1,1)

𝜑 𝜑 (1,1)

◦ 𝜑𝐻1

◦ 𝜑𝐻3

−

Now we do the same thing for Kh

( )
. We will refrain from writing out the initial cube

this time. Mirroring the previous argument—delooping and then applying Gaussian elimination

to toss three of the four terms appearing in the forward-facing face—this complex is homotopy

equivalent to the following.
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𝜑 𝜑

𝜑 (1,1) 𝜑 (1,1)

◦ 𝜑𝐻′1 ◦ 𝜑𝐻′2

−

Finally, notice that

𝜑Ö
, (1,1)

è � 𝜑
and

𝜑Ö
, (1,1)

è � 𝜑
as grading shift functors. From here, it is straight forward to verify that the complexes are homotopy

equivalent, showing that

Kh

( )
� Kh

( )
.

On the other hand, working the same program for Kh

( )
and Kh

( )
we obtain
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the following complexes.

𝜑 {0,−1}

𝜑Ö
, (1,1)

è 𝜑Ö
, (1,0)

è

𝜑Ö
, (1,0)

è◦ 𝜑𝐻1
◦ 𝜑𝐻2

− ◦ 𝜑𝐻3

𝜑 𝜑Ö
, (1,1)

è

{0,−1} 𝜑Ö
, (1,0)

è

𝜑Ö
, (1,0)

è

◦ 𝜑𝐻′1

◦ 𝜑𝐻′3 − ◦ 𝜑𝐻′2
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Again, we know these complexes are not homotopy equivalent by, for example, Remark 7.2.5.

Instead, we will show that the latter is taken to the former by a global grading shift of

𝜑 ◦ 𝜑−1 .

First, recall that 𝜑−1 may be written as 𝜑Ö
, (1,1)

è (up to equivalence of grading shift

functors). On the other hand, 𝜑 and 𝜑−1Ö
, (−1,−1)

è are isomorphic as grading shift

functors.

(i) Northwest vertex. As a warm-up, notice that 𝜑 has two isomorphic representatives

important to understanding the intermediate complex. They are hardly different, but making

a choice here is one way to describe two representatives of the G -grading shift obtained after

the first global shift:

𝜑Ö
, (1,1)

è ◦


𝜑Ö
, (0,−1)

è
𝜑Ö

, (0,−1)

è

�



𝜑Ö
, (1,0)

è
𝜑Ö

, (1,0)

è

.

Of course, yet another representative of this grading shift, encapsulating both of these

representatives, is 𝜑Ö
, (1,1)

è. Anyway, applying the final global shift to the second

representative above, we obtain the grading shift 𝜑Ö
, (0,−1)

è = 𝜑Ö
, (0,−1)

è
which, similarly, is a representative of the grading shift 𝜑 .

(ii) Southwest vertex. This is the trickiest since it is the vertex with one of its arrows altered by

Gaussian elimination. On one hand, obviously if we apply 𝜑Ö
, (1,1)

è to {0,−1}
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we are left with 𝜑Ö
, (1,0)

è. At first, this may not seem to square with the other arrow

out of the vertex. To see that this questionable arrow is still a graded map, one may

draw the original cube and trace it through the Gaussian elimination; we leave this as an

exercise. Moving on, rewrite the grading shift as 𝜑Ö
, (1,0)

è and apply 𝜑 to

obtain 𝜑Ö
, (1,0)

è. This is a representative of the grading shift 𝜑Ö
, (1,1)

è as we

hoped.

(iii) Northeast vertex. From 𝜑Ö
, (1,1)

è, we will consider the representatives 𝜑Ö
, (1,0)

è
and 𝜑Ö

, (1,0)

è. Then,

𝜑−1 ◦



𝜑Ö
, (1,0)

è
𝜑Ö

, (1,0)

è

�



𝜑Ö
, (1,0)

è
𝜑Ö

, (1,0)

è

.

The reader is invited to check that both representatives are used in the intermediary complex.

Picking the latter and composing with 𝜑−1Ö
, (−1,−1)

è, we obtain the grading shift {0,−1}.

(iv) Southeast vertex. This is the most straightforward: applying the first global shift to

𝜑Ö
, (1,0)

è yields a shift by {1, 0}. Redrawing as , it is apparent that

applying the second global shift provides 𝜑Ö
, (1,0)

è, as desired.

□
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Remark 7.2.7. In light of Lemma 7.2.6, the sequence of Remark 7.2.5 is recitfied: notice that

Kh

( )
� 𝜑 ◦ 𝜑−1 Kh

( )

� 𝜑Å
, (1,0)

ãKh

( )
.

Composing with the grading shift by {−1, 1} and one last Reidemeister I move gives the desired

grading shift by 𝜑Å
, (0,1)

ã.
Theorem 7.2.8. If 𝑇 and 𝑆 are isotopic diskular tangles, then there exists a grading shifting functor

𝜑Δ𝑣 so that

𝜑Δ𝑣Kh(𝑇) � Kh(𝑆).

Proof. In general, if one decomposes a diskular tangle 𝑇 into 𝑇𝐴(𝑇𝐵), as pictured below, then

Theorem 6.2.4 tells us that F (𝑇) � F (𝑇𝐵) ⊗𝐻𝑛 F (𝑇𝐴). By Lemma 7.2.1, there is a shifting functor

𝜑 and ℓ ∈ Z such that Kh(𝑇) � 𝜑(F (𝑇))[ℓ]. By the coherence isomorphisms 𝛽, we have that

𝜑(F (𝑇𝐵) ⊗𝐻𝑛 F (𝑇𝐴)) � 𝜑𝐵F (𝑇𝐵) ⊗𝐻𝑛 𝜑𝐴F (𝑇𝐴)

for 𝜑𝐴 and 𝜑𝐵 restrictions of 𝜑 to the regions 𝐴 and 𝐵. Moreover, as described in the proof of

Lemma 7.2.1, the G -grading and homological-grading shifts here are determined by local crossing

information, so it follows similarly that

𝜑(F (𝑇))[ℓ] � 𝜑𝐵F (𝑇𝐵)[ℓ𝐵] ⊗𝐻𝑛 𝜑𝐴F (𝑇𝐴)[ℓ𝐴]

for those particular ℓ𝐴, ℓ𝐵 ∈ Z satisfying ℓ𝐴 + ℓ𝐵 = ℓ. Indeed, since each 𝜑𝐴, 𝜑𝐵, ℓ𝐴, ℓ𝐵

coming from 𝜑 and ℓ are the same as the shifts coming from the proof of Lemma 7.2.1, we have

𝜑𝐵F (𝑇𝐵)[ℓ𝐵] � Kh(𝑇𝐵) and 𝜑𝐴F (𝑇𝐴)[ℓ𝐴] � Kh(𝑇𝐴). Summarizing, we have that

Kh(𝑇) � Kh(𝑇𝐵) ⊗𝐻𝑛 Kh(𝑇𝐴).
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𝑇𝐴

𝑇𝐵

𝑇

If 𝑇 and 𝑆 are isotopic, then 𝑆 is obtained from 𝑇 by a finite sequence of Reidemeister moves.

For each move in this sequence, apply the isomorphism above to the diskular region containing

the Reidemeister move. Then, the theorem follows by applying this isomorphism, invoking one of

Lemmas 7.2.3, 7.2.4, and 7.2.6, and repeating as needed. □

7.2.1 Collapse to 𝑞-grading

To obtain a genuine tangle invariant, we will perform the same trick as is in Section 6.5 of

[NP20]. Define the degree collapsing map

𝜅 :HomG → Z

(𝐷, (𝑝1, 𝑝2)) ↦→ 𝑝1 + 𝑝2

which forgets the planar arc diagram input of a G -grading and sums the entries of the second

coordinate. We will use 𝜅 to notice that the G -grading of any G -graded object induces a coarser

integral grading. First, by F𝑞(𝐷), we mean the multimodule F (𝐷) with an additional Z-grading

determined by its G -grading: fix

degZ×G (𝑢) :=

Ñ
𝜅(degG (𝑢)) +

𝑘∑︁
𝑖=1

𝑚𝑖, degG (𝑢)

é
.

This additional Z-degree, determined by G -degree, is called the quantum degree, or 𝑞-degree; we

denoted it by deg𝑞(𝑢).

Notice that the composition maps 𝜇 preserve quantum degree. Furthermore, any cobordism

Δ : 𝐷𝑑 → 𝐷′ induces a map F (Δ) : F𝑞(𝐷)→ F𝑞(𝐷′) which is homogeneous of 𝑞-degree

deg𝑞(F (Δ)) = #births + #deaths − #saddles.
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Sometimes we just write deg𝑞(Δ) for deg𝑞(F (Δ)).

Finally, we reinterpret a grading shift functor 𝜑Δ𝑣 in the Z × G -graded setting by

deg𝑞
(
𝜑Δ(𝑣1 ,𝑣2)(𝑚)

)
:= deg𝑞(𝑚) + deg𝑞(Δ) + 𝑣1 + 𝑣2.

This is to say that any cobordism Δ induces a Z × G -graded map F (Δ) : 𝜑ΔF𝑞(𝐷)→ F𝑞(𝐷′).

In conclusion, all results in the G -graded setting extend to the Z × G -graded setting with no

change to the compatibility maps: all isomorphisms involved are graded with respect to quantum

degree. In particular, each 𝑑𝑣, 𝑗 preserves 𝑞-degree, so we can define F𝑞(𝑇) as a Z × G -graded

dg-multimodule, using F𝑞(𝑇𝑣) in the place of F (𝑇𝑣); define Kh𝑞(𝑇) similarly.

Suppressing notation, we let MultiMod𝑞 denote the category whose objects are the same as

MultiModG except we record the quantum degree (that is, objects are Z × G -graded multimodules

obtained from the regular G -graded ones) but now, maps are only required to be homogeneous

with respect to G -degree, with the caveat that they must preserve quantum degree. By collapsing

to 𝑞-degree, we just mean that we are working in the category MultiMod𝑞 rather than MultiModG .

This is perhaps misleading, as the G -degree is still present—what we mean to relay is that we

have relaxed the requirement of G -degree preservation to G -degree homogeneity up to 𝑞-degree

preservation.

We think of Kh𝑞(𝑇) as an object of Kom(MultiMod𝑞). In the final chapter, we are mostly

interested in objects of Kom(𝐻𝑛ModG
𝑅 ), which we say descend to objects of Kom(𝐻𝑛Mod𝑞

𝑅
),

and also to Kom(𝐻𝑛Mod𝑞𝑒 ) and Kom(𝐻𝑛Mod𝑞𝑜), specializing 𝑋,𝑌, 𝑍 = 1 and 𝑋, 𝑍 = 1, 𝑌 =

−1 respectively. We call these objects of Kom(𝐻𝑛Mod𝑞) the image of whatever object(s) of

Kom(𝐻𝑛ModG ) which descends to it.

Notice that a gluing property holds for F𝑞(𝑇) and Kh𝑞(𝑇), as before. Again, the benefit of

working in Kom(MultiMod𝑞) is that Kh𝑞 becomes an honest tangle invariant.

Theorem 7.2.9. If 𝑇 and 𝑆 are isotopic diskular tangles, then

Kh𝑞(𝑇) � Kh𝑞(𝑆).
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Proof. This follows as long as the homotopy equivalences of Lemmas 7.2.3, 7.2.4, and 7.2.6

are graded with respect to quantum degree. For Reidemeister I moves, this is trivial, as the

homotopy equivalence was already graded with respect to G -degree. For Reidemeister II moves,

deg𝑞({−1, 1}) = 0 obviously, and

deg𝑞

Ñ
𝜑Å

, (0,1)
ãé = 1 + deg𝑞

( )
= 1 + (−1) = 0.

Similarly, it is clear that the 𝑞-degree of 𝜑 ◦𝜑−1 is zero. Therefore, the grading shift appearing

in Theorem 7.2.8 has deg𝑞(𝜑𝑊𝑣 ) = 0, and the result follows. □

Remark 7.2.10. If 𝑇 is a link, then the homology of Kh𝑞(𝑇) is isomorphic to the unified Khovanov

homology of 𝑇 , as constructed in [Put14]; see [NP20] for a proof. In particular, setting 𝑋 = 𝑍 = 1

and 𝑌 = −1 (before taking homology), we get a tangle invariant for odd Khovanov homology, as

desired.
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CHAPTER 8

UNIFIED AND ODD PROJECTORS

Finally, we apply Theorem 6.2.4 (multigluing) to mimic the constructions of Cooper-Krushkal

[CK12] and produce projectors living in Kom(𝐻𝑛ModG
𝑅 ). Our work in this chapter follows an

outline similar to [SW24], since we exploit the flexibility provided by diskular tangles, as Stoffregen

and Willis do in the spectral setting.

More explicitly, in §8.1, we use multigluing to define the stacking ⊗, juxtaposing ⊔, and

partial trace Tr operations, and the category Chom(𝑛)G (which we conjecture is the same as

Kom(𝐻𝑛PModG ), as in [Kho02]). We also take this opportunity to prove an adjunction, generalizing

a theorem of Hogancamp [Hog19]. The next section, §8.2, is mostly stand-alone: the main takeaway

for this thesis is Corollary 8.2.4, which we use in the proof of Lemma 8.3.4, itself used in the proofs

of Proposition 8.3.5 and Corollary 8.3.7. In §8.3, we define unified projectors as in [Hog19], though

our proofs follow the methods outlined in [SW24], as their setting most resembles our own. We

hope to illuminate preceding and successive work by computing the 2-stranded unified projector

two different ways in §8.4. We also compute the homology of the closure of 𝑃2 (cf. Section 4.3.1

of [CK12]), which we will use to show that our categorification of the colored Jones polynomial

is distinct from that of [CK12]. Finally, we prove the existence of unified projectors (using the

same procedure as [SW24]) in §8.5, and the existence of a unified colored link homology (which

collapses to the categorification of the colored Jones polynomial of [CK12] on one hand, and to a

new categorification on the other) in §8.6.

We establish some notation. Proceeding, for 𝐴, 𝐵 ∈ Kom(𝐻𝑛ModG ), we will denote the HOM-

complex of 𝐴 and 𝐵 by Hom𝑛(𝐴, 𝐵). If 𝐴 and 𝐵 are (non-dg) G -graded 𝐻𝑛 modules, we’ll write

Hom𝑛(𝐴, 𝐵) as shorthand for Hom𝐻𝑛𝑀𝑜𝑑G (𝐴, 𝐵).

8.1 Operations defined via multigluing

As far as the existence of projectors is concerned, the main payoff of multigluing in the unified

setting is that we can develop a notion for stacking and juxtaposing complexes of G -graded modules.

We can also use multigluing to define a partial trace for these complexes, allowing for an adjunction
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statement.

Given a diskular 𝑛-tangle𝑇 , we’ll view it as a tangle in a rectangle as follows: traveling counter-

clockwise from the basepoint along the boundary, place the first 𝑛 endpoints along the top of the

rectangle and the last 𝑛 endpoints along the bottom. For this reason, flat diskular 𝑛-tangles are also

called a Temperley-Lieb 𝑛-diagrams, i.e., each resolution of 𝑇 is a Temperley-Lieb diagram.

Definition 8.1.1 (Stacking). Vertical composition is the operation

⊗ : Kom(𝐻𝑛ModG
𝑅 ) × Kom(𝐻𝑛ModG

𝑅 )→ Kom(𝐻𝑛ModG
𝑅 )

defined as follows: given complexes 𝐴, 𝐵 ∈ Kom(𝐻𝑛ModG
𝑅 ), 𝐴 ⊗ 𝐵 is the complex

(𝐴, 𝐵) ⊗(𝐻𝑛,𝐻𝑛) F (𝐷⊗𝑛 )

where 𝐷⊗𝑛 is the (𝑛, 𝑛; 𝑛)-planar arc diagram

1

2

×

×
×

· · · 𝑛 · · ·

· · · 𝑛 · · ·

· · · 𝑛 · · ·

with removed disks ordered as shown. In particular, if 𝑇1 and 𝑇2 are both diskular 𝑛-tangles,

Theorem 6.2.4 says that

F (𝑇1) ⊗ F (𝑇2) � (F (𝑇1), F (𝑇2)) ⊗(𝐻𝑛,𝐻𝑛) F (𝐷⊗𝑛 ) � F (𝐷⊗𝑛 (𝑇1, 𝑇2)).

We say that this complex is the result of stacking F (𝑇1) and F (𝑇2).

Definition 8.1.2. Consider the full subcategory Chom(𝑛)G of Kom(𝐻𝑛ModG ) consisting of (par-

tially unbounded) G -graded dg-modules whose entries are all direct sums of G -graded modules

associated to flat diskular 𝑛-tangles.

In analogy with [Kho00], we expect that the subcategory Chom(𝑛)G is just the category

Kom(𝐻𝑛PModG ) for 𝐻𝑛PModG the category of projective G -graded 𝐻𝑛-modules, although this
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seems worthy of further study. Additionally, we expect that vertical composition ⊗ for this subcat-

egory is a monoidal product with monoidal identity

I𝑛 := · · · 𝑛 · · · ×

(that is, I𝑛 is the dg-module associated to the picture above), with monoidal structure provided by

multigluing (Theorem 6.2.4). We let Chom(𝑛)𝑞 denote the image of Chom(𝑛)G in Kom(𝐻𝑛Mod𝑞)

after collapsing to 𝑞-degree, §7.2.1. By definition, for 𝐾𝑞0 the Grothendieck group which records

only the 𝑞-degree of G -graded objects, we have that

𝐾
𝑞

0 (Chom(𝑛)G ) � 𝐾𝑞0 (Chom(𝑛)𝑞) � 𝑇𝐿𝑛.

Just as stacking can be realized as a multigluing operation, the horizontal juxtaposition can as

well.

Definition 8.1.3 (Juxtaposing). Horizontal composition is the operation

⊔ : Kom(𝐻𝑛1ModG
𝑅 ) × Kom(𝐻𝑛2ModG

𝑅 )→ Kom(𝐻𝑛1+𝑛2ModG
𝑅 )

defined as follows: for complexes 𝐴 ∈ Kom(𝐻𝑛1ModG
𝑅 ) and 𝐵 ∈ Kom(𝐻𝑛2ModG

𝑅 ), 𝐴 ⊔ 𝐵 is the

complex

(F (𝑇1), F (𝑇2)) ⊗(𝐻𝑛1 ,𝐻𝑛2 ) F (𝐷⊔(𝑛1,𝑛2))

where 𝐷⊔(𝑛1,𝑛2) is the (𝑛1, 𝑛2; 𝑛1 + 𝑛2)-planar arc diagram

× × ×

𝑛1

𝑛1

𝑛2

𝑛2

If 𝑇𝑖 a diskular 𝑛𝑖-tangle, we’ll write F (𝑇1) ⊔ F (𝑇2) to denote the tensor product

(F (𝑇1), F (𝑇2)) ⊗(𝐻𝑛1 ,𝐻𝑛2 ) F (𝐷⊔(𝑛1,𝑛2)) � F (𝐷⊔(𝑛1,𝑛2)(𝑇1, 𝑇2)).

We say that this complex is the result of juxtaposing F (𝑇1) and F (𝑇2).
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8.1.1 Adjunction

First, consider the following operation on complexes in Kom(𝐻𝑛ModG
𝑅 ).

Definition 8.1.4. (Trace) The trace is an operation

Tr : Kom(𝐻𝑛ModG
𝑅 )→ Kom(𝐻𝑛−1ModG

𝑅 )

defined as follows: for 𝐴 ∈ Kom(𝐻𝑛ModG
𝑅 ), Tr(𝐴) is the complex

𝐴 ⊗𝐻𝑛 F (𝐷Tr
𝑛 )

where 𝐷Tr
𝑛 is the (𝑛; 𝑛 − 1)-planar arc diagram

× ×

𝑛 − 1

𝑛 − 1

If 𝑇 is a diskular 𝑛-tangle, we’ll write Tr(F (𝑇)) to denote the complex

F (𝑇) ⊗𝐻𝑛 F (𝐷Tr
𝑛 ) � F (𝐷Tr

𝑛 (𝑇)).

By the 𝑘th partial trace of 𝐴, we mean the complex obtained from applying the partial trace 𝑘

times to obtain Tr𝑘 (𝐴) ∈ Kom(𝐻𝑛−𝑘ModG
𝑅 ). The 𝑛th partial trace of 𝐴 is known simply as the trace

or closure of 𝐴.

In [Hog19], we saw that the operations − ⊔ 1 and Tr(−) were adjoint. Impressively, we can

prove that a generalization of this adjunction exists in the G -graded setting!

Theorem 8.1.5. Suppose 𝐴 ∈ Kom(𝐻𝑛−1ModG
𝑅 ) and 𝐵 ∈ Kom(𝐻𝑛ModG

𝑅 ). Then we have the

following isomorphisms of complexes.

Hom𝑛

Ñ
𝐴 , 𝜑Å

B , (0,1)
ã 𝐵

é
� Hom𝑛−1

(
𝐴 , 𝐵 {−1, 0}

)

and

Hom𝑛

Ñ
𝜑Å

B , (0,1)
ã 𝐵 , 𝐴

é
� Hom𝑛−1

(
𝐵 , 𝐴 {0,−1}

)
.
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Proof. Unlike the analogues of this result for even Khovanov homology [Hog19] and even Kho-

vanov spectra [SW24], the fact that certain maps occur in disjoint disks does not mean that they

commute, but rather that swapping the two changes the overall composition by an isomorphism

induced by a locally vertical change of chronology. We will see that our G -shifting 2-system ac-

counts for this difference, so that the above result holds with little alterations to the aforementioned

proofs.

We will prove the first isomorphism, leaving the second to the reader—notice that the grading

shift by {−1, 0} in the former is replaced by a grading shift by {0,−1} in the latter. Suppose that

𝑓 ∈ Hom𝑛

Ñ
𝐴 ⊔ 1, 𝜑Å

B , (0,1)
ã𝐵é has homogenous I -degree Δ𝑣, so it is realized as a G -graded

map 𝑓 : 𝜑Δ𝑣𝐴 ⊔ 1→ 𝜑Å
B , (0,1)

ã𝐵 (we do not have to pay attention to the homological degree).

Define 𝜙( 𝑓 ) ∈ Hom𝑛−1(𝐴,Tr(𝐵){−1, 0}) to be the composition

𝜑Δ𝑣 𝐴 𝜑Δ𝑣+(−1,0) 𝐴 𝐵 {−1, 0}
𝜆𝜙( 𝑓 ) ◦ F

Ä ä
◦ 𝜑𝐻𝐵 Tr( 𝑓 )

where

𝜑𝐻𝐵
: Id⇒ 𝜑−1 ◦ 𝜑−1 � {−1, 0} ◦ {1, 0}.

and 𝜆𝜙( 𝑓 ) is shorthand for the isomorphism which pushes the {−1, 0} shift after Δ𝑣; that is,

𝜆𝜙( 𝑓 ) = 𝛾(−1,0),Δ𝑣 ◦ 𝜆(𝑣, (−1, 0)). Schematically,

𝜆𝜙( 𝑓 ) :
(−1, 0)

Δ

𝑣

⇒
Δ

𝑣

(−1, 0)
.

Lastly, by Tr( 𝑓 ) we just mean 𝑓 ⊗ 1𝐷Tr
𝑛

. Notice that 𝜙( 𝑓 ) has the desired form since

B • 1𝐷Tr
𝑛
= B

is a split, so the shifting functor associated to it is the Z × Z-grading shift {0,−1}, thus canceling

with the original Z × Z-grading shift of {0, 1}. Said another way, Tr( 𝑓 ) ∈ Hom𝑛

(
𝐴 ⊔ ⃝,Tr(𝐵)

)
.
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Next, let 𝑔 ∈ Hom𝑛−1(𝐴,Tr(𝐵){−1, 0}) and denote the I -degree of 𝑔 by E𝑤. We define

𝜓(𝑔) ∈ Hom𝑛

Ñ
𝐴 ⊔ 1, 𝜑Å

B , (0,1)
ã𝐵é to be the composition

𝜑E𝑤 𝐴 𝐵 {−1, 0} {−1, 0} ◦ 𝜑−1

B
𝐵

𝑔 ⊔ 1
◦ 𝜑𝐻𝑆

where

𝜑𝐻𝑆
: Id⇒ 𝜑−1

𝐵

◦ 𝜑
𝐵

.

Then, 𝜓(𝑔) has the desired form since

𝜑−1

𝐵

= 𝜑Ñ
𝐵 , (1,1)

é
composed with {−1, 0} is 𝜑Å

B , (0,1)
ã.

Now, we compute 𝜓(𝜙( 𝑓 )) as the composition

𝜑Δ𝑣 𝐴 𝜑Δ𝑣+(−1,0) 𝐴 𝐵 {−1, 0}

𝜑Å
B , (0,1)

ã 𝐵

𝜆𝜙( 𝑓 ) ◦ F
Ä ä

◦ 𝜑𝐻𝐵 Tr( 𝑓 ) ⊔ 1

◦ 𝜑𝐻𝑆

If we slide 𝑓 past the saddle, then the above complex is equivalent to the following one, where we
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have compensated for the slide by a change of chronology 𝜑𝐻1 .

𝜑Δ𝑣 𝐴 𝜑Δ𝑣+(−1,0) 𝐴

{−1, 0} ◦ 𝜑−1

𝐵

◦ 𝜑
𝐵

◦ 𝜑Δ𝑣 𝐴

{−1, 0} ◦ 𝜑−1

𝐵

◦ 𝜑Δ𝑣 ◦ 𝜑
𝐴

𝐴

𝜑Å
B , (0,1)

ã ◦ 𝜑Δ𝑣 ◦ {−1, 0} 𝐴

𝜑Å
B , (0,1)

ã ◦ 𝜑Δ𝑣 𝐴𝜑Å
B , (0,1)

ã 𝐵

𝜆𝜙( 𝑓 ) ◦ F
Ä ä

◦ 𝜑𝐻𝐵 𝜑𝐻𝑆

𝜑𝐻1

𝑓

The key observation is that 𝜆𝜙( 𝑓 )—which corresponds to sliding a shift by {−1, 0} through Δ𝑣—and

𝜑𝐻1—which corresponds to a change of chronology which pushes a saddle through Δ𝑣, at which

point it is realized as a merge (and the grading shift associated to merges is {−1, 0})—are inverse

to one another. After this, the birth and merge cancel with one another, and we conclude that

𝜓(𝜙( 𝑓 )) = 𝑓 .

We play a similar game for 𝜙(𝜓(𝑔)): it is computed as

𝜑E𝑤 𝐴 𝜑E𝑤+(−1,0) 𝐴 𝐵 {−2, 0}

𝜑−1

𝐵

𝐵 {−2, 0}
𝐵 {−1, 0}

𝜆𝜓(𝑔) ◦ F
Ä ä

◦ 𝜑𝐻𝐵 Tr(𝑔 ⊔ 1)

◦ 𝜑𝐻𝑆
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where the last equality follows because 𝜑−1

𝐵

� {1, 0}. Now, slide 𝑔 before the birth; as

before, to do so, we have to compensate by 𝜑𝐻2 : 𝜑E𝑤 ◦ {1, 0} ⇒ {1, 0} ◦𝜑E𝑤 . Here is the resulting

composition.

𝜑E𝑤 𝐴 𝜑E𝑤 ◦ {−1, 0} ◦ {1, 0} 𝐴

{−1, 0} ◦ 𝜑E𝑤 ◦ {1, 0} 𝐴

{−1, 0} ◦ {1, 0} ◦ 𝜑E𝑤 𝐴

{−2, 0} ◦ {1, 0} 𝐵

𝐵 {−2, 0}𝐵 {−1, 0}

𝜑𝐻𝐵
𝜆𝜙( 𝑓 )

𝜑𝐻2

𝑔

F
Ä ä◦ 𝜑𝐻𝑆

Now,𝜆𝜙( 𝑓 ) and 𝜑𝐻2 are inverse to one another, since𝜆((𝑎, 𝑏), (−1, 0)) = 𝑋−𝑎𝑍𝑏 and𝜆((𝑎, 𝑏), (1, 0)) =

𝑋𝑎𝑍−𝑏. Again, the birth cancels with the merge, and we have that 𝜙(𝜓(𝑔)) = 𝑔, concluding the

proof. □

Remark 8.1.6. Since

deg𝑞

Ñ
𝜑Å

B , (0,1)
ãé = 0

this result descends to Theorem 2.31 of [Hog19] if we collapse the G -grading to the 𝑞-grading.

8.2 Duals and mirrors

Suppose 𝑅, 𝑆, and𝑇 are C -graded algebras. Per usual, we expect that if 𝑀 is a C -graded (𝑅; 𝑆)-

multimodule, and 𝑁 is a C -graded (𝑅;𝑇)-multimodule, then Hom𝑅(𝑀, 𝑁) is an (𝑆;𝑇)-multimodule
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by

𝜌Hom
𝐿 (𝑠, 𝑓 )(𝑚) := 𝑓 (𝜌𝑀𝑅 (𝑚, 𝑠)) and 𝜌Hom

𝑅 ( 𝑓 , 𝑡)(𝑚) := 𝜌𝑁𝑅 ( 𝑓 (𝑚), 𝑡)

for each 𝑓 ∈ Hom𝑅(𝑀, 𝑁), 𝑚 ∈ 𝑀 , 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . However, Hom𝑅(𝑀, 𝑁) does not satisfy the

axioms of a C -graded multimodule: by definition, Hom𝑅(𝑀, 𝑁) is graded by Ĩ ×Z = (I ⊔{Id})×Z,

and the reader is invited to verify that

• 𝜌Hom
𝐿

(𝑠1 · 𝑠2, 𝑓 )(𝑚) = 𝛼
(
|𝑚 | ,|𝑠1 | ,|𝑠2 |

)−1
𝜌Hom
𝐿

(𝑠1, 𝜌
Hom
𝐿

(𝑠2, 𝑓 ))(𝑚),

• 𝜌Hom
𝑅

(𝜌Hom
𝑅

( 𝑓 , 𝑡1), 𝑡2)(𝑚) = 𝛼
Ä�� 𝑓 (𝑚)

�� ,|𝑡1 | ,|𝑡2 |ä 𝜌Hom
𝑅

( 𝑓 , 𝑡1 · 𝑡2)(𝑚), and

• 𝜌Hom
𝑅

(𝜌Hom
𝐿

(𝑠, 𝑓 ), 𝑡)(𝑚) = 𝜌Hom
𝐿

(𝑠, 𝜌Hom
𝑅

( 𝑓 , 𝑡))(𝑚).

Despite this ambiguity, we are able to give a type of duality statement which turns out to be

a generalization of Theorem 4.12 in [Hog20]. This implies a unified analogue to Lemma 4.14 of

[SW24], which is all we will need to prove the uniqueness of unified Cooper-Krushkal projectors.

We dualize a flat diskular (𝑚; 𝑛)-tangle 𝑇 by the following operation, flipping radially,

𝑇 =

T

· · · 2𝑛· · ·

· · · 2𝑚· · ·

×

×

dualize−−−−−→

T

· · · 2𝑚· · ·

· · · 2𝑛· · ·

×

×

= 𝑇∨

to obtain a diskular (𝑛;𝑚)-tangle. Notice that if 𝑇 is a flat diskular 𝑛-tangle, then 𝑇∨ is a flat

diskular (𝑛; 0)-tangle; this is the case we are most interested in. On cobordisms of 𝑇 embedded in

[0, 1]3, (−)∨ acts by the transformation (𝑥, 𝑦, 𝑧) ↦→ (𝑥, 1 − 𝑦, 1 − 𝑧).

Now we describe how (−)∨ establishes a contravariant functor Chom(𝑛)G → Chom(𝑛)G . On

objects (which are chain complexes of summands of G -graded 𝐻𝑛-modules associated to flat

diskular 𝑛-tangles with a differential of matrices of cobordisms), (−)∨ applies (−)∨ on each entry,

reverses homological degree (i.e., (𝐴∨)𝑘 := (𝐴−𝑘 )∨), applies (−)∨ on each cobordism and takes the

transpose of each matrix of cobordisms, and reverses G -degree. By this last point, we mean that
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each cobordism shift𝑊 is dualized (note that if𝑊 : 𝑎 → 𝑏, then𝑊∨ : 𝑏∨ → 𝑎∨) and Z×Z-degree

is reversed: {𝑣1, 𝑣2}∨ = {−𝑣2,−𝑣1}.

In particular, if 𝑑𝐴 is the differential for 𝐴 ∈ Chom(𝑛)G , then (abusing notation), fix

𝑑𝐴∨ = −(𝑑𝐴)∨ ◦ 𝜑𝐻

where 𝜑𝐻 means that we are applying the change of chronology

𝜑𝐻 : Id⇒ 𝜑−1
(𝑑𝐴)∨ ◦ 𝜑(𝑑𝐴)∨

on each entry of each matrix comprising 𝑑𝐴∨ . For example, the dual of the complex

𝜑 F
Ç å

{−1, 0}
F
Å ã
−−−−−−−→ F

Ç å
{−1, 0}

is the complex

F
Ç å

{0, 1}
F
Å ã

◦𝜑𝐻
−−−−−−−−−−−→ 𝜑−1 F

Ç å
{0, 1}

for 𝜑𝐻 : Id⇒ 𝜑−1 ◦ 𝜑 . In particular, this is to say that

Kh
Ç

×
å∨

= Kh
Ç

×
å

as one might hope.

Finally, on morphisms, to 𝑓 ∈ Hom𝑘
Chom(𝑛)(𝜑𝑊,(𝑣1,𝑣2)𝐴, 𝐵) (where 𝑘 is the homological degree

and (𝑊, (𝑣1, 𝑣2)) is the Ĩ -degree) we define 𝑓 ∨ ∈ Hom𝑘
Chom(𝑛)(𝜑𝑊∨,(𝑣2,𝑣1)𝐵

∨, 𝐴∨) to be

( 𝑓 ∨)𝑖 = (−1)𝑖𝑘 ( 𝑓−𝑖−𝑘 )∨

following the commutativity of the square

(𝐵∨)𝑖 (𝐴∨)𝑖+𝑘

(𝐵−𝑖)∨ (𝐴−𝑖−𝑘 )∨

( 𝑓 ∨)𝑖

(−1)𝑖𝑘( 𝑓−𝑖−𝑘)∨
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As consequence of reversing G -degree, the Ĩ -degree of compositions of morphisms is also

reversed; this is to say that (for, say, maps of homological degree zero) (𝑔 ◦G 𝑓 )∨ = 𝜑𝐻 𝑓 ,𝑔
𝑔∨ ◦G 𝑓 ∨

where 𝜑𝐻 𝑓 ,𝑔
denotes the change of chronology prioritizing the degree shift of 𝑔 before that of 𝑓 .

Then, we have the following standard lemma.

Lemma 8.2.1. For 𝐴, 𝐵 and 𝑓 , 𝑔 as above,

1. (−)∨ induces a degree-zero chain map

HomChom(𝑛)(𝐴, 𝐵)→ HomChom(𝑛)(𝐵∨, 𝐴∨);

2. (𝑔 ◦G 𝑓 )∨ = 𝜑𝐻 𝑓 ,𝑔
(−1)| 𝑓 |ℎ|𝑔 |ℎ 𝑓 ∨ ◦G 𝑔∨.

The purpose of the rest of this section is to prove that

Hom𝑛(𝐴 ⊗ 𝛿, 𝐵) � Hom𝑛(𝐴, 𝐵 ⊗ 𝛿∨)

for any 𝐴, 𝐵 ∈ Chom(𝑛) and 𝛿 any flat diskular 𝑛-tangle. In order to describe our logical process

for proving this statement, we will introduce yet another tensor product which will not reappear

anywhere else in this thesis.

Definition 8.2.2. Suppose 𝐴, 𝐵 ∈ Chom(𝑛)G . Recall that we may represent, for example, 𝐴 and

𝐴∨ as

𝐴 =
A

· · · 2𝑛· · ·
×

and 𝐴∨ =

A

· · · 2𝑛· · ·
×

.

We define two natural operations. By 𝐴 | 𝐵∨, we mean the tensor 𝐴 ⊗𝐻𝑛 𝐵∨; on the other hand, by

𝐴∨ | 𝐵, we mean the tensor 𝐴∨ ⊗𝐻0 𝐵. Diagramatically,

𝐴 | 𝐵∨ �

A

· · · 2𝑛· · ·

B

and 𝐴∨ | 𝐵 �
B

· · · 2𝑛· · ·

A

· · · 2𝑛· · ·

×

×
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by Theorem 6.2.4.

Theorem 8.2.3 (cf. Theorem 4.12, [Hog20]). Suppose 𝐴, 𝐵 ∈ Chom(𝑛)G . Then there is an

isomorphism of complexes

Hom𝑛(𝐴, 𝐵) � Hom0(∅, 𝐵 | 𝐴∨{−𝑛, 0}).

This Theorem implies our goal for the section.

Corollary 8.2.4. Suppose 𝛿 is a flat diskular 𝑛-tangle. Then

Hom𝑛(𝐴 ⊗ F (𝛿), 𝐵) � Hom𝑛(𝐴, 𝐵 ⊗ F (𝛿∨)).

Proof. Writing 𝛿 for F (𝛿), we have

Hom𝑛(𝐴 ⊗ 𝛿, 𝐵) � Hom0(∅, 𝐵 | (𝐴 ⊗ 𝛿)∨{−𝑛, 0})

� Hom0(∅, 𝐵 | (𝛿∨ ⊗ 𝐴∨){−𝑛, 0})

� Hom0(∅, (𝐵 ⊗ 𝛿∨) | 𝐴∨{−𝑛, 0})

� Hom𝑛(𝐴, 𝐵 ⊗ 𝛿∨).

The first and last isomorphisms are provided by Theorem 8.2.3, while the second follows from the

definition of (−)∨ and the third is an application of Theorem 6.2.4. □

We prove Theorem 8.2.3 in two steps. First, we prove an analogue of Theorem 8.2.3 for

crossingless matchings. Then, we argue that this implies the general statement.

Definition 8.2.5. Suppose 𝑎 is a crossingless matching on 2𝑛 points; i.e., a planar diskular 𝑛-tangle.

In this definition, we will assume 𝑎 is indecomposable; that is, 𝑎 is void of circle components.

1. Define 𝜂𝑎 as the map

𝜂𝑎 : ∅
𝜑𝐻𝜂𝑎−−−−→ {−𝑛, 0} ◦ {𝑛, 0}∅ −→ {−𝑛, 0} 𝑎 | 𝑎∨

consisting of 𝑛-many births (since 𝑎 | 𝑎∨ is exactly 𝑛-many circles).
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2. Let 𝑠𝑎 denote the map

𝑠𝑎 : 𝜑Σ𝑎
𝑎∨ | 𝑎 → 1𝑛

defined by the minimal chronological cobordism Σ𝑎 given by contracting symmetric arcs,

right-to-left, with framing pointed upwards.

The following lemma is apparent.

Lemma 8.2.6. Fix indecomposable crossingless parings on 2𝑛-points 𝑎, 𝑏.

1. (1𝑎 | 𝑠𝑎) ◦ (𝜂𝑎 | 1𝑎) = 1𝑎 and (𝑠𝑎 | 1𝑎∨) ◦ (1𝑎∨ ◦ 𝜂𝑎) = 1𝑎∨ .

2. Suppose 𝑏 | 𝑎∨ consists of ℓ-many circles, 1 ≤ ℓ ≤ 𝑛 (note that ℓ = 𝑛 if and only if 𝑏 = 𝑎).

Then

1𝑏 | 𝑠𝑎 : 𝑏 | 𝑎∨ | 𝑎 → 𝑏

consists of ℓ-many merges followed by a minimal cobordism𝑊 : 𝑎 → 𝑏.

Note that𝑊 consists of (𝑛− ℓ)-many saddles. We’ll write
��𝑏 | 𝑎∨�� to denote the number of loops

in 𝑏 | 𝑎∨ (above,
��𝑏 | 𝑎∨�� = ℓ). We’ll denote crossingless matchings, pictorially, as

𝑎 = 𝑎 and 𝑎∨ =
𝑎∨ .

For example, part 2 of Lemma 8.2.6 describes a cobordism

𝑎

𝑎∨

𝑏

1𝑏 |𝑠𝑎−−−−→

𝑏

= 𝑏 .

While these pictures are a departure from the planar arc diagrams we are accustomed to, they are a

little more natural for the proof of the following proposition.

Proposition 8.2.7 (cf. Proposition 4.8, [Hog20]). Suppose 𝑎 and 𝑏 are crossingless matchings on

2𝑛 points (not necessarily indecomposable) and fix a minimal cobordism 𝑊 : 𝑎 → 𝑏̂, where 𝑎, 𝑏̂

are 𝑎 and 𝑏 with circle components removed. Then

Hom𝑛

Ç
𝜑(

𝑊,(𝑛−
���𝑏̂ |𝑎���,0)

) 𝑎, 𝑏
å
� Hom0

(
∅, 𝑏 | 𝑎∨{−𝑛, 0}

)
.
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In pictures,

Hom𝑛

Ç
𝜑(

𝑊,(𝑛−
���𝑏̂ |𝑎���,0)

) 𝑎 , 𝑏

å
� Hom0

Ö
∅,

𝑎∨

𝑏

{−𝑛, 0}

è
.

Proof. First, we can assume without loss of generality that 𝑎 and 𝑏 are both indecomposable—the

general result follows immediately by delooping.

Proceeding, we will frequently denote 𝜑(
𝑊,(𝑛−

���𝑏̂ |𝑎���,0)
) by 𝜑𝑊𝑁 . Notice that the Ĩ -degree of any

𝑓 ∈ Hom𝑛

(
𝜑𝑊𝑁 𝑎, 𝑏

)
can be chosen to be described purely by a Z × Z-degree, since 𝑊 : 𝑎 → 𝑏

is minimal. Recall that this is also the case for any 𝑔 ∈ Hom0
(
∅, 𝑏 | 𝑎∨ {−𝑛, 0}

)
since any

grading shift associated to a cobordism between closed diagrams is canonically isomorphic to a

pure Z × Z-shift. Thus, we will denote the homogeneous degree of 𝑓 and 𝑔 by 𝑣 𝑓 and 𝑤𝑔 ∈ Z × Z

respectively.

The rest of this proof proceeds like the proof of Theorem 8.1.5. To any 𝑓 ∈ Hom𝑛

(
𝜑𝑊𝑛𝑎, 𝑏

)
,

define 𝜙( 𝑓 ) ∈ Hom0(∅, 𝑏 | 𝑎∨ {−𝑛, 0}) as the composition

𝑣 𝑓 ∅ 𝑣 𝑓 ◦ {−𝑛, 0}
𝑎∨

𝑎

{−𝑛, 0} ◦ 𝑣 𝑓
𝑎∨

𝑎

{−𝑛, 0}
𝑎∨

𝑏𝜂𝑎 𝜆(𝑣 𝑓 , (−𝑛, 0)) 𝑓 | 1𝑎∨

To clear up any confusion, notice that the minimal cobordism𝑊 : 𝑎 → 𝑏, which has
Ä
𝑛 −

��𝑏 | 𝑎∨��ä-
many saddles, extends to a cobordism𝑊 • 1𝑎∨ : 𝑎 | 𝑎∨ → 𝑏 | 𝑎∨ in which all saddles are realized

as merges. Thus 𝜑(𝑊•1𝑎∨ )𝑁 � Id.

Next, to 𝑔 ∈ Hom0(∅, 𝑏 | 𝑎∨ {−𝑛, 0}), define 𝜓(𝑔) ∈ Hom𝑛(𝜑𝑊𝑁 𝑎, 𝑏) by

𝑤𝑔 ◦ 𝜑𝑊𝑁
𝑎 𝜑𝑊𝑁 ◦ 𝑤𝑔

𝑎
𝜑𝑊𝑁 ◦ {−𝑛, 0}

𝑎

𝑎∨

𝑏

𝜑Ä
𝑊,(−|𝑏 |𝑎∨ |,0)

ä
𝑎

𝑎∨

𝑏

𝑏

𝜆𝜓(𝑔) 𝑔 | 1𝑎 𝛾𝑊,{−𝑛,0}

1𝑏 | 𝑠𝑎
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where we set

𝜆𝜓(𝑔) := 𝛾𝑊𝑁 ,𝑤𝑔
◦ 𝜆(𝑁, 𝑤𝑔).

Note that the last map is G -graded by part 2 of Lemma 8.2.6.

We compute 𝜓(𝜙( 𝑓 )) as the composition

𝑣 𝑓 ◦ 𝜑𝑊𝑁
𝑎 𝜑𝑊𝑁 ◦ 𝑣 𝑓

𝑎
𝜑𝑊𝑁 ◦ 𝑣 𝑓 ◦ {−𝑛, 0}

𝑎

𝑎∨

𝑎

𝜑𝑊𝑁 ◦ {−𝑛, 0} ◦ 𝑣 𝑓

𝑎

𝑎∨

𝑎

𝜑𝑊𝑁 ◦ {−𝑛, 0}
𝑎

𝑎∨

𝑏

𝜑Ä
𝑊,(−|𝑏 |𝑎∨ |,0)

ä
𝑎

𝑎∨

𝑏

𝑏

𝜆𝜓(𝜙( 𝑓 )) 𝜂𝑎

𝜆(𝑣 𝑓 , (−𝑛, 0))

𝑓 | 1𝑎 |𝑎∨𝛾𝑊,{−𝑛,0}1𝑏 | 𝑠𝑎

or

𝑣 𝑓 ◦ 𝜑𝑊𝑁
𝑎 𝜑𝑊𝑁 ◦ 𝑣 𝑓

𝑎
𝜑𝑊𝑁 ◦ 𝑣 𝑓 ◦ {−𝑛, 0}

𝑎

𝑎∨

𝑎

𝜑𝑊𝑁 ◦ {−𝑛, 0} ◦ 𝑣 𝑓
𝑎

𝑎∨

𝑎

𝑣 𝑓 ◦ 𝜑𝑊𝑁 ◦ {−𝑛, 0}
𝑎

𝑎∨

𝑎

𝑣 𝑓 ◦ 𝜑𝑊𝑁
𝑎𝑏

𝜆𝜓(𝜙( 𝑓 )) 𝜂𝑎

𝜆(𝑣 𝑓 , (−𝑛, 0))

𝜑𝐻11𝑎 | 𝑠𝑎𝑓
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obtained by sliding 𝑓 past the saddle, which introduces a change of chronology 𝜑𝐻1 which in turn

cancels with 𝜆(𝑣 𝑓 , (−𝑛, 0)) and 𝜆𝜓(𝜙( 𝑓 )). A discerning eye notices that this change of chronology

also kills the 𝛾𝑊,{−𝑛,0} term, since the roles of 𝜑𝑊𝑁 and {−𝑛, 0} are interchanged during this change

of chronology. Now, notice that 1𝑎 | 𝑠𝑎 consists of 𝑛 merges, so the penultimate arrow makes

sense. Then, 1. of Lemma 8.2.6 gives us that 𝜓(𝜙( 𝑓 )) = 𝑓 .

On the other hand, 𝜙(𝜓(𝑔)) is rather easy to compute; the reader is invited to verify that this

composition simplifies to

𝑤𝑔∅ 𝑤𝑔 ◦ {−𝑛, 0}
𝑎∨

𝑎

{−𝑛, 0} ◦ 𝑤𝑔

𝑎∨

𝑎 {−2𝑛, 0}

𝑎∨

𝑎

𝑎∨

𝑏

{−𝑛, 0}
𝑎∨

𝑏

𝜂𝑎 𝜆(𝑤𝑔, (−𝑛, 0)) 𝑔 | 1𝑎 |𝑎∨

1𝑏 | 𝑠𝑎 | 1𝑎∨

Then, pushing 𝑔 before the birth introduces a change of chronology 𝜑𝐻2 equal to 𝜆((−𝑛, 0), 𝑤𝑔).

This is inverse to 𝜆(𝑤𝑔, (−𝑛, 0)), so that the new composition is

𝑤𝑔∅ {−𝑛, 0} 𝑎∨

𝑏

{−2𝑛, 0}

𝑎∨

𝑎

𝑎∨

𝑏

{−𝑛, 0}
𝑎∨

𝑏𝑔 1𝑏 |𝑎∨ | 𝜂𝑎 1𝑏 | 𝑠𝑎 | 1𝑎∨

which simplifies to 𝑔 by Lemma 8.2.6. This concludes the proof. □

Remark 8.2.8. Since a minimal cobordism 𝑎 → 𝑏 consists of (𝑛 −
��𝑏 | 𝑎∨��)-many saddles,

deg𝑞

Ç
𝜑(

𝑊,(𝑛−
���𝑏̂ |𝑎���,0)

)å = 0
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and we obtain a generalization of Proposition 4.8 in [Hog20].

Proof of Theorem 8.2.3. Recall that Hom𝑛(𝐴, 𝐵), for 𝐴 and 𝐵 G -graded dg-𝐻𝑛-modules, is the

chain complex of bihomogeneous (that is, homogeneous in homological degree and purely homo-

geneous in Ĩ -degree) maps 𝑓 of arbitrary (Z × Ĩ )-degree. So, we can view Hom𝑛-complexes as

bigraded abelian groups

Hom𝑛(𝐴, 𝐵)𝑘(𝑊,𝑣) �
∏
ℓ∈Z

Hom𝑛

Ä
𝜑(𝑊,𝑣)𝐴

ℓ, 𝐵ℓ+𝑘
ä
.

However, notice that for each ℓ, 𝑘 , and (𝑊, 𝑣), Proposition 7.1.2 says that 𝜑(𝑊,𝑣) � 𝜑(𝑊 𝑘
ℓ
,𝑣′) for𝑊 𝑘

ℓ
a

minimal cobordism 𝐴ℓ → 𝐵ℓ+𝑘 and 𝑣′ = 𝑣 + 𝜏𝑊 (−1,−1). This means that Hom𝑛(𝜑(𝑊,𝑣)𝐴
ℓ, 𝐵ℓ+𝑘 ) is

canonically isomorphic to Hom𝑛

(
𝜑(𝑊 𝑘

ℓ
,𝑣′)𝐴

ℓ, 𝐵ℓ+𝑘
)

. Set 𝑣𝑘
ℓ

:= (𝑛−
���𝐴ℓ | (𝐵ℓ+𝑘 )∨��� , 0); we conclude

that

Hom𝑛

Ä
𝜑(𝑊,𝑣)𝐴

ℓ, 𝐵ℓ+𝑘
ä
� Hom𝑛

(
𝜑(𝑊 𝑘

ℓ
,𝑣𝑘

ℓ
)𝐴

ℓ {𝑣′ − 𝑣𝑘ℓ }, 𝐵
ℓ+𝑘
)
.

Thus, in the G -graded case, we can absorb the first coordinate of the Ĩ -grading into the homological

degree and view Hom𝑛(𝐴, 𝐵) as bigraded by Z × Z2. Then

Hom𝑛 (𝐴, 𝐵)𝑘 �
∏
ℓ∈Z

Hom𝑛

(
𝜑(𝑊 𝑘

ℓ
,𝑣𝑘

ℓ
)𝐴

ℓ, 𝐵ℓ+𝑘
)

�
∏
ℓ∈Z

Hom0
Ä
∅, 𝐵ℓ+𝑘 | (𝐴ℓ)∨ {−𝑛, 0}

ä
� Hom0

(
∅, 𝐵 | 𝐴∨ {−𝑛, 0}

)
where the second isomorphism follows from Proposition 8.2.7.

This proves the isomorphism on the level of bigraded abelian groups. The rest of the statement

follows from the argument provided in the proof of Theorem 4.12 in [Hog20]. We will not review

the proof here, but for the argument to apply we must show that

(𝑔 | 1𝑎∨) ◦G 𝜙( 𝑓 ) = 𝜙(𝑔 ◦G 𝑓 ) = (1𝑐 | 𝑓 ∨) ◦G 𝜙(𝑔)

where 𝑓 ∈ Hom𝑛(𝜑(𝑊1,𝑁1)𝑎, 𝑏), 𝑔 ∈ Hom𝑛(𝜑(𝑊2,𝑁2)𝑏, 𝑐), and 𝜙 : Hom𝑛(𝜑𝑊𝑁 𝑎, 𝑐) → Hom0(∅, 𝑐 |

𝑎∨ {−𝑛, 0}) is the isomorphism from the proof of Proposition 8.2.7. Here, 𝑊1 : 𝑎 → 𝑏 and
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𝑊2 : 𝑏 → 𝑐 are minimal cobordisms, and 𝑁1 = (𝑛 −
��𝑏 | 𝑎∨�� , 0) and 𝑁2 = (𝑛 −

��𝑐 | 𝑏∨�� , 0), thus

𝑔 ◦G 𝑓 ∈ Hom𝑛

(
𝜑(𝑊2◦𝑊1,𝑁1+𝑁2)𝑎, 𝑐

)
. The equality on the left-hand side is immediate. We will

content ourselves by proving the right-hand side.

To start, we claim that

( 𝑓 | 1𝑎∨) ◦ 𝜂𝑎 = (1𝑏 | 𝑓 ∨) ◦ 𝜂𝑎 .

Notice that the claim holds trivially when 𝑓 is a dot. When 𝑓 is a saddle, both 𝑓 and 𝑓 ∨ are

necessarily merge, and their Ĩ -degree is Id. Thus, in this case, isotopy invariance implies the

equality. Indeed, for any 𝑓 ∈ Hom𝑛(𝜑(𝑊1,𝑁1)𝑎, 𝑏), the Ĩ -degree of 𝑓 | 1𝑎∨ is supported entirely in

the Z × Z-coordinate; the same is true for 1𝑏∨ | 𝑓 ∨. We denote this degree by 𝑣 𝑓 and, in this case,

we have that 𝑣 𝑓 = 𝑣 𝑓 ∨ . To conclude the proof of the claim, we have to show the equality holds for

compositions 𝑔 ◦G 𝑓 , for 𝑓 and 𝑔 as above. First, notice that

(𝑔 ◦G 𝑓 ) | 1𝑎∨ = (𝑔 | 1𝑎∨) ◦G ( 𝑓 | 1𝑎∨)

by Proposition 5.3.6 (here, Ξ = 1 since 1𝑎∨ is two of the four inputted maps). On the other hand,

(𝑔 | 1𝑎∨) ◦G ( 𝑓 | 1𝑎∨) = (𝑔 | 1𝑎∨) ◦ ( 𝑓 | 1𝑎∨)

since each map in the composite has trivial Ĩ -degree. So, we have

(𝑔 | 1𝑎∨) ◦ ( 𝑓 | 1𝑎∨) ◦ 𝜂𝑎 = (𝑔 | 1𝑎∨) ◦ (1𝑏 | 𝑓 ∨) ◦ 𝜂𝑏

= (1𝑐 | 𝑓 ∨) ◦ (𝑔 | 1𝑏∨) ◦ 𝜆(𝑤𝑔, 𝑣 𝑓 ) ◦ 𝜂𝑏

= (1𝑐 | 𝑓 ∨) ◦ (1𝑐 | 𝑔∨) ◦ 𝜆(𝑤𝑔, 𝑣 𝑓 ) ◦ 𝜂𝑐 .

The first and last equalities are by assumption. The second equality follows from applying a change

of chronology. Notice that 𝜆(𝑤𝑔, 𝑣 𝑓 ) is, in this setting, equal to the value 𝜑𝐻 𝑓 ,𝑔
. Then, again

applying Proposition 5.3.6, we conclude that

((𝑔 ◦G 𝑓 ) | 1𝑎∨) ◦ 𝜂𝑎 = (1𝑐 | ( 𝑓 ∨ ◦G 𝑔∨)) ◦ 𝜑𝐻 𝑓 ,𝑔
◦ 𝜂𝑐

= (1𝑐 | (𝑔 ◦G 𝑓 )∨) ◦ 𝜂𝑐 .
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We leave it to the reader to verify that one application of this claim implies that

𝜙(𝑔 ◦G 𝑓 ) = (1𝑐 | 𝑓 ∨) ◦G 𝜙(𝑔)

concluding our proof. □

8.3 Definition and properties of unified projectors

Recall that the through-degree of a Temperley-Lieb diagram 𝛿, denoted 𝜏(𝛿), is the number of

strands with endpoints on opposite ends of the disk. We say that 𝐴 ∈ Chom(𝑛)G has through-degree

less than 𝑘 if 𝐴 is homotopy equivalent to a colimit of G -graded dg-modules F (𝛿) for Temperley-

Lieb diagramas 𝛿 with 𝜏(𝛿) < 𝑘 . In this case, we also write 𝜏(𝐴) < 𝑘 . Since the tensor product

commutes with colimits, we have that 𝜏(𝐴 ⊗ 𝐵) ≤ min{𝜏(𝐴), 𝜏(𝐵)}.

Definition 8.3.1. We say that 𝐴 ∈ Chom(𝑛)G kills turnbacks from above if, for each 𝐵 ∈ Chom(𝑛)G

with 𝜏(𝐵) < 𝑛, we have 𝐵 ⊗ 𝐴 ≃ ∗. Similarly, 𝐴 ∈ Chom(𝑛) kills turnbacks from below if, for each

𝐵 with 𝜏(𝐵) < 𝑛, 𝐴 ⊗ 𝐵 ≃ ∗.

Since all Temperley-Lieb diagrams with through-degree less than 𝑘 can be built by stacking

various generators 𝑒𝑖 of the Temperley-Lieb algebra, we have the following (stated without proof).

Proposition 8.3.2. Let 𝑒𝑖 denote a standard generator of the Temperley-Lieb algebra. Then any

object 𝐴 of Chom(𝑛)G kills turnbacks from above (resp. below) if and only if F (𝑒𝑖) ⊗ 𝐴 ≃ ∗ (resp.

𝐴 ⊗ F (𝑒𝑖) ≃ ∗.

Definition 8.3.3. A unified Cooper-Krushkal projector (or simply unified projector) is a pair (𝑃𝑛, 𝜄)

consisting of an object 𝑃𝑛 ∈ Chom(𝑛)G and a morphism 𝜄 : I𝑛 → 𝑃𝑛, called the unit of the

projector, so that

(CK1) Cone(𝜄) has through-degree less than 𝑛, and

(CK2) the G -graded dg-module 𝑃𝑛 kills turnbacks (from above and below).
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Lemma 8.3.4. If (𝑃𝑛, 𝜄) is a unified projector, there is a homotopy equivalence

Hom𝑛(𝑃𝑛, 𝑃𝑛)→ Hom𝑛(I𝑛, 𝑃𝑛)

induced by 𝜄.

Proof. Specifically, we will show that the pullback 𝜄∗ : Hom𝑛(𝑃𝑛, 𝑃𝑛) → Hom𝑛(I𝑛, 𝑃𝑛) is a

homotopy equivalence. It suffices to show that Cone(𝜄∗) is contractible. We compute

Cone(𝜄∗) ≃ Hom𝑛(Cone(𝜄), 𝑃𝑛)

≃ Hom𝑛(colim(F (𝛿)𝑖), 𝑃𝑛) (CK1), 𝜏(𝛿) < 𝑛 for all 𝑖

≃ lim←−−(Hom𝑛(F (𝛿)𝑖, 𝑃𝑛))

≃ lim←−−(Hom𝑛(I𝑛, 𝑃𝑛 ⊗ F (𝛿∨)𝑖)) Corollary 8.2.4

≃ lim←−−(Hom𝑛(I𝑛, ∗)) (CK2)

≃ ∗

as desired. □

Proposition 8.3.5 (Properties of unified projectors). Suppose (𝑃𝑛, 𝜄) and (𝑃′𝑛, 𝜄′) are two unified

projectors of Chom(𝑛)G .

1. (Uniqueness) 𝑃𝑛 ≃ 𝑃′𝑛 ⊗ 𝑃𝑛 ≃ 𝑃′𝑛, and there is a homotopy equivalence ℎ : 𝑃𝑛 → 𝑃′𝑛

satisfying ℎ ◦ 𝜄 ≃ 𝜄′.

2. (Idempotence) (𝑃𝑛 ⊗ 𝑃𝑛, 𝜄 ⊗ 𝜄) is a projector; thus, by uniqueness, 𝑃𝑛 ⊗ 𝑃𝑛 ≃ 𝑃𝑛.

3. (Generalized absorbtion) More generally, for ℓ ≤ 𝑛

𝑃𝑛 ⊗
(
𝑃ℓ ⊔ I𝑛−ℓ

)
≃ 𝑃𝑛 ≃

(
𝑃ℓ ⊔ I𝑛−ℓ

)
⊗ 𝑃𝑛.
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Proof. Consider the following G -graded commutative diagram.

𝑃𝑛 I𝑛 ⊗ 𝑃𝑛

I𝑛 I𝑛 ⊗ I𝑛 𝑃′𝑛 ⊗ 𝑃𝑛

𝑃′𝑛 𝑃′𝑛 ⊗ I𝑛

𝜄′⊗id𝑃𝑛𝜄

𝜄′

idI𝑛⊗𝜄

𝜄′⊗𝜄

𝜄′⊗idI𝑛 id𝑃′𝑛⊗𝜄

The unmarked arrows are isomorphisms coming from multigluing (or, if one likes, the probable

the monoidal structure of Chom(𝑛)G ). Since this diagram is G -graded commutative, it commutes

up to homotopy, which is all we need going forward.

For the proof of uniqueness, notice that 𝜄′⊗ id𝑃𝑛
is a homotopy equivalence, as Cone(𝜄′⊗ id𝑃𝑛

) ≃

Cone(𝜄′) ⊗ 𝑃𝑛 ≃ ∗, using (CK1) and (CK2). By the same reasoning, id𝑃′𝑛 ⊗ 𝜄 is a homotopy

equivalence, thus

𝑃𝑛 ≃ 𝑃′𝑛 ⊗ 𝑃𝑛 ≃ 𝑃′𝑛.

Then, since both these maps are homotopy equivalences, choosing a homotopy inverse for, say,

id𝑃′𝑛 ⊗ 𝜄 induces a (class of) homotopy equivalence(s) ℎ : 𝑃𝑛 → 𝑃′𝑛 satisfying ℎ ◦ 𝜄 ≃ 𝜄′. To see that

ℎ is unique up to homotopy, suppose ℎ1, ℎ2 are two homotopy equivalences satisfying, for 𝑖 = 1, 2,

ℎ𝑖 ◦ 𝜄 ≃ 𝜄′, and that ℎ2 is a homotopy inverse for ℎ2. Then (𝜄 − ℎ2 ◦ ℎ1 ◦ 𝜄) = (id𝑃𝑛
− ℎ2 ◦ ℎ1) ◦ 𝜄 ∈

Hom𝑛(I𝑛, 𝑃𝑛) is nullhomotopic, so Lemma 8.3.4 implies that id𝑃𝑛
− ℎ2 ◦ ℎ1 is as well; thus ℎ1 ≃ ℎ2.

For idempotence, replace 𝑃′𝑛 in the diagram with 𝑃𝑛 everywhere. Then we have that 𝑃𝑛 ⊗ 𝑃𝑛 ≃

𝑃𝑛. More generally, that 𝑃𝑛 ⊗ 𝑃𝑛 kills turnbacks is clear by the monoidal structure of Chom(𝑛).

Then, since 𝜄⊗ id𝑃𝑛
is a homotopy equivalence, the homotopy commutativity of the diagram implies

that Cone(𝜄 ⊗ 𝜄) ≃ Cone(idI𝑛 ⊗ 𝜄) ≃ ∗.

More generally, for ℓ < 𝑛, 𝑃ℓ comes equipped with unit 𝜄ℓ : Iℓ → 𝑃ℓ. Then, it is clear that

id𝑃𝑛
⊗ (𝜄ℓ ⊔ idI𝑛−ℓ ) : 𝑃𝑛 ⊗ (𝑃ℓ ⊔ I𝑛−ℓ) −→ 𝑃𝑛 ⊗ I𝑛 ≃ 𝑃𝑛

is a homotopy equivalence (its cone is contractible by (CK2)). The other homotopy equivalence is

analogous. □
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Remark 8.3.6. We can define projectors for the category Chom(𝑛)𝑞 similarly. Notice that projec-

tors of Chom(𝑛)G descend to projectors of Chom(𝑛)𝑞; in addition, given any (𝑊, 𝑣) ∈ I with

deg𝑞(𝜑𝑊𝑣 ) = 0, 𝜑𝑊𝑣𝑃𝑛 defines a projector of Chom(𝑛)𝑞.

In future work, we hope to find particular elements 𝑈𝑛 ∈ Hom𝑛(𝑃𝑛, 𝑃𝑛) coming from an

action on 𝑃𝑛, as in [Hog19]. Fundamental to this study is the homotopy equivalence between the

endomorphism complex of 𝑃𝑛 and (a shift of) the closure of 𝑃𝑛. We point out that Theorem 8.1.5

and Lemma 8.3.4 imply a generalization of this result in the unified setting; we state it for the

𝑞-graded category. For 𝐴, 𝐵 G -graded dg 𝐻𝑛-modules let Hom𝑞
𝑛(𝐴, 𝐵) denote the HOM-complex

Hom𝑛(𝐴, 𝐵) obtained by collapsing G -grading.

Corollary 8.3.7. If 𝑃𝑛 is a unified projector, it descends to a projector in Chom(𝑛)𝑞. We have that

Hom𝑞
𝑛(𝑃𝑛, 𝑃𝑛) � 𝑞−𝑛Tr𝑛(𝑃𝑛).

Proof. Apply Lemma 8.3.4 and then apply Theorem 8.1.5 𝑛-times. □

8.4 Explicit computations for the 2-stranded projector

Finally, our previous work allows us to mimic [CK12] in the G -graded (that is, unified) setting.

Consider the complex we will call 𝑃2, which has the form

· · · 𝜑Ä
, (−2,−2)

ä 𝜑Ä
, (−1,−1)

ä 𝜑
𝐶−4 𝐶−3 𝐶−2 𝐶−1

where

𝐶𝑖 =



𝑖 = −1

• − • 𝑖 = −2𝑘

• + 𝑋𝑌 • 𝑖 = −2𝑘 − 1

for all 𝑖 < 0. Notice that taking 𝑋,𝑌, 𝑍 ↦→ 1 recovers a 2-strand projector of [CK12]; taking

𝑋, 𝑍 ↦→ 1 and 𝑌 ↦→ −1 recovers the one of [Sch22].

Proposition 8.4.1. 𝑃2 ∈ Chom(2)G .
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Proof. For the first case, notice that 𝐶−1 ◦ 𝐶−2 = 0 just as in the even case: passing a dot below a

saddle and then back up the opposing side introduces two changes of chronology whose evaluations

are inverse to one another, since 𝜆(𝑣, 𝑢) = 𝜆(𝑢, 𝑣)−1.

The other two cases are slightly different since dots may not move past each other freely, but

rather by multiplication by 𝑋𝑌 :(
• + 𝑋𝑌 •

)
◦
(
• − •

)

=
•
•

top bot

−
•
• + 𝑋𝑌

•
• − 𝑋𝑌

•
•

= −𝑋𝑌
•

• + 𝑋𝑌
•

•

as desired, recalling that two dots are evaluated as zero. The other composition is the same. □

Proposition 8.4.2. The chain complex 𝑃2 ∈ Chom(2)G is a unified Cooper-Krushkal projector.

Proof. (CK1) is satisfied clearly. We must check (CK2), that 𝑃2 is killed by turnbacks. We will

show that 𝑒1 ⊗ 𝑃2 ≃ 0; the other direction is totally similar.

We have

𝑒1 ⊗ 𝜑Ä ,(−𝑛,−𝑛)
ä � 𝜑Ç

,(−𝑛,−𝑛)
å .

Thus, the previously ambiguous saddles appearing in the shifting functors of 𝑃2 are seen to be a

merge upon tensoring with 𝑒1. Merges have the effect of shifting Z × Z degree by (−1, 0), so we

conclude that

𝜑Ç
,(−𝑛,−𝑛)

å � {−(𝑛 + 1),−𝑛}.

Consequently, the chain complex 𝑒1 ⊗ 𝑃2 has the form

· · ·
{−3,−2} {−2,−1} {−1, 0}

•
+ 𝑋𝑌 • •

− •

.
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Delooping yields the complex

· · ·
{−3,−3}

⊕

{−2,−2}

{−2,−2}
⊕

{−1,−1}

{−1,−1}
⊕

𝑌𝑍−1 •

𝑋𝑍−1 •
𝑋𝑌

𝑌𝑍−1 •

𝑋𝑍−1 •
−1

𝑋𝑍−1 •

1

where each of the maps down and to the right are zero and are therefore not pictured. Simplifying

the maps after delooping is not difficult—one need only take caution when applying the S1 relation.

Noting that each of the nonzero, diagonal maps are invertible, simultaneous Gaussian elimination

(Proposition 2.2.5) implies that this complex is homotopy equivalent to the zero complex. □

8.4.1 Homology of the trace

As in the even case, the unified projector satisfies a categorification of the closure property

⟨Tr(𝑝𝑛)⟩ = [𝑛 + 1]. In the 𝑛 = 2 case, notice that

𝜑Ç
,(−𝑛,−𝑛)

å = {−𝑛,−(𝑛 + 1)}

because the typically ambiguous saddle is a split after taking closure. Then, we see that the complex

Tr2(𝑃2) has the form

· · ·
{−2,−3} {−1,−2} {0,−1}

(1 + 𝑋𝑌 ) • 0 . (8.4.1)

Then we compute

𝐻𝑛(Tr2(𝑃2)) =



𝑅{2, 0} ⊕ 𝑅{1,−1} 𝑛 = 0

0 𝑛 = −1

𝑅{−2𝑘 + 2,−2𝑘} ⊕ 𝑅
(1+𝑋𝑌 )𝑅 {−2𝑘 + 1,−2𝑘 − 1} 𝑛 = −2𝑘

(1 − 𝑋𝑌 )𝑅{−2𝑘 + 1,−2𝑘 − 1} ⊕ 𝑅{−2𝑘,−2𝑘 − 2} 𝑛 = −2𝑘 − 1

(8.4.2)
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whenever 𝑘 > 0. Note that we recover the solution in the even case (see Section 4.3.1 of [CK12])

when 𝑋,𝑌, 𝑍 ↦→ 1. In the odd case, we see that it is important to specialize coefficients before

taking homology, since the dotted map is killed by setting 𝑌 = −1. In either case , the Euler

characteristic reproduces [3] = 𝑞2 + 1 + 𝑞−2, despite infinite homology.

8.4.2 Unified Khovanov homology of the infinite 2-twist

While we have succeeded in constructing a representative for the second projector by guessing

based on the result in the even case, we will prove the existence of unified projectors in the following

section based on the suspicion that it ought to correspond to the Khovanov complex of an infinite

twist ([Roz14, Wil18, SW24]).

We’ll illustrate this fact in the 𝑛 = 2 case, using multigluing to compute the Khovanov complex

for 2-strand torus braids, yielding a unified Cooper-Krushkal projector. Perhaps it is interesting

that the projector obtained in this way has a slightly different appearance compared to 𝑃2 in the

previous sections, although the homotopy equivalence is obvious.

To a single (negative) crossing we associate the complex

𝜑

Thus, to the torus 2-braid with two negative crossings we assoiciate the complex(
𝜑

)
⊗
(
𝜑

)
,

which is isomorphic to

𝜑 𝜑

𝜑

⊕
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Focusing on the leftmost vertex, we’ve shown that 𝜑 � 𝜑Ä
,(−1,0)

ä. Moreover, delooping tells us

that we have the following isomorphism for any 𝑛:

𝜑Ä
,(−𝑛,1−𝑛)

ä

𝜑Ä
,(−𝑛,−𝑛)

ä 𝜑Ä
,(1−𝑛,1−𝑛)

ä⊕
•

•

Thus the original complex is isomorphic to the following complex.

𝜑Ä
,(−1,−1)

ä
𝜑

𝜑

𝜑

⊕

𝑋𝑍 •

𝑋𝑍 •

1
1

⊕

The 𝑋𝑍 = 𝜆((−1, 0), (−1,−1)) factor comes from sliding a dot past a merge:

•
= 𝜆((−1, 0), (−1,−1))

•

= 𝑋𝑍 •

Then, applying Gaussian elimination, we obtain the following complex.

𝜑Ä
,(−1,−1)

ä
𝜑

𝑋𝑍 • − 𝑋𝑍 •

To stack with another crossing means to tensor this complex with the original single crossing

complex. After delooping, this complex has the following form (arrows which are not pictured are
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zero; dotted arrows are ones which die during Gaussian elimination).

𝜑Ä
,(−2,−2)

ä
𝜑Ä

,(−1,−1)
ä

𝜑Ä
,(−1,−1)

ä
𝜑

𝜑Ä
,(−1,−1)

ä
𝜑

𝜑

𝑋𝑌𝑍2 •

−𝑋𝑍

1

𝑋𝑍 • 𝑋𝑍 •

1 𝑋𝑍 •

1

The arrows in the left-most column are obtained by applying sphere relations. Note that we can

apply S1 and dot-sliding relations to obtain the following equivalences.

•

• = 𝑌𝑍
• and •

•

= 𝑋𝑍
•

Applying Gaussian elimination, the above complex is homotopy equivalent to the following.

𝜑Ä
,(−2,−2)

ä 𝜑Ä
,(−1,−1)

ä
𝜑

𝑋𝑌𝑍2 • + 𝑍2 • 𝑋𝑍 • − 𝑋𝑍 •

At this point a pattern emerges which controls the complex for any two stranded braid (although

this might be easier to see computing the next case; we leave it to the reader). The complex has the

form

· · · 𝜑Ä ,(−3,−3)
ä 𝜑Ä

,(−2,−2)
ä 𝜑Ä

,(−1,−1)
ä

𝜑
𝐶−4 𝐶−3 𝐶−2 𝐶−1

167



where

𝐶𝑖 =



𝑖 = −1

𝑋𝑍2𝑘−1
(
• − •

)
𝑖 = −2𝑘

𝑍2𝑘
(
𝑋𝑌 • + •

)
𝑖 = −2𝑘 − 1

for all 𝑖 < 0. As promised, this complex is homotopy equivalent to the 𝑃2 we guessed earlier on.

8.5 Existence of unified projectors

In [Roz14], Rozansky showed that the Khovanov complex associated to an infinte twist on 𝑛

strands is a Cooper-Krushkal projector. In [Wil18], Willis generalized this argument to the spectral

setting. His argument was further generalized in [SW24] for the setting of spectral multimodules.

We will adapt the arguments of [SW24] to prove that unified Cooper-Krushkal projectors exist.

As in the work of Stoffregen-Willis, the left-handed fractional twist complex, denoted T𝑛, is the

complex associated to the diskular 𝑛-tangle shown below.

· · ·
...

· · ·

Superscripts will indicate stacking:

T𝑚𝑛 = T𝑛 ⊗ · · · ⊗ T𝑛︸            ︷︷            ︸
𝑚-times

with T 0
𝑛 = I𝑛. Notice that T 𝑛𝑛 can be viewed as a pure braid; we call this the left-handed full twist

complex. Finally, for any 𝑛 ∈ N, the left-handed infinite twist complex, denoted T∞𝑛 , is defined as

the colimit of the sequence

T∞𝑛 = colim
Ä
T 0
𝑛 → T 1

𝑛 → · · · T𝑚𝑛 → · · ·
ä

where each arrow comes from compositions of maps arising from the cofibration sequence

F
Å ã

−→ F
Å ã

−→ 𝜑 F
Å ã

[1]
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of Proposition 6.2.2. By the same proposition,

T 𝑛𝑘+𝑟𝑛

· · ·

= Cone

𝜑 · · ·
T 𝑛𝑘+𝑟𝑛

· · ·

−−−−−−−−−→ T 𝑛𝑘+𝑟𝑛

· · ·

· · ·


We start our argument by computing a simplification of the term T 𝑛𝑘+𝑟𝑛 ⊗ 𝑒𝑖, for 0 ≤ 𝑟 < 𝑛 and

1 ≤ 𝑖 ≤ 𝑛 − 1. Note that

F
Å ã

� F
Å ã

{−1,−1} and F
Å ã

� 𝜑 F
Å ã

by delooping and Gaussian elimination.

We’ll write 𝑒𝑖 as 𝑒top
𝑖
⊗ 𝑒bot

𝑖
, although this tensor product is not exactly the same as the one in

Definition 8.1.1; we do not belabor the point. Assume that 𝑟 = 0. Then T 𝑛𝑘𝑛 is 𝑘-full twists, and

we have that

T 𝑛𝑘𝑛 ⊗ 𝑒𝑖 = 𝑒top
𝑖′ ⊗ 𝜑𝑊𝑛𝑘

𝑛
T (𝑛−2)𝑘
𝑛−2 {−2𝑘,−2𝑘} ⊗ 𝑒bot

𝑖

where𝑊𝑛𝑘
𝑛 is a cobordism consisting of 2𝑘(𝑛 − 2) saddles (for the 2𝑘(𝑛 − 2)-many Reidemeister II

moves performed) and 𝑖′ = 𝑖 + 𝑟 mod 𝑛. There are also 2𝑘 Reidemeister I moves, accounting for

the Z × Z-shift. To aid in comprehending 𝜑𝑊𝑛𝑘
𝑛

, consider Figure 8.1. We remark that the tensor

on the left is vertical stacking as in definition 8.1.1, and the one on the right is as in the writing of

𝑒
top
𝑖
⊗ 𝑒bot

𝑖
. Notice that 𝑒top

0 is allowed; by this we mean the following picture.

𝑒
top
0 :=

· · ·

Now, for 1 ≤ 𝑟 < 𝑛, there are three cases.

1. If 𝑖 < 𝑛− 𝑟, the extra isotopy contains no Reidemeister I moves, but it does consist of 𝑟-many

Reidemeister II moves.

2. If 𝑖 = 𝑛 − 𝑟, the isotopy contains (𝑟 − 1) more Reidemeister II moves and exactly 1 more

Reidemeister I move. Note that 𝑖′ = 0 in this case.

169



{−1,−1}

{−1,−1}{−1,−1}{−2,−2}

RII RII RI

RII

RIIRI

Figure 8.1 Computing the grading shift on T 4
4 ⊗ 𝑒1.

3. If 𝑖 > 𝑛 − 𝑟, the isotopy contains the addition of a sequence of (𝑟 − 2) many Reidemeister

II moves, then 1 Reidemeister I move, followed by (𝑛 − 2) more Reidemeister II moves, and

another lone Reidemeister I move; that is, (𝑛+𝑟−4) Reidemeister II moves and 2 Reidemeister

I moves.

So, we have proven the following.

Lemma 8.5.1. For any 0 ≤ 𝑟 < 𝑛 and 0 < 𝑖 < 𝑛,

T 𝑛𝑘+𝑟𝑛 ⊗ 𝑒𝑖 ≃ 𝑒top
𝑖′ ⊗ 𝜑𝑊𝑛𝑘+𝑟

𝑛
T (𝑛−2)𝑘+𝑟𝑖
𝑛−2 {−(2𝑘 + 𝑘𝑖),−(2𝑘 + 𝑘𝑖)} ⊗ 𝑒bot

𝑖
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where 𝑖′ = 𝑖 + 𝑟 mod 𝑛 and

1. if 𝑖 < 𝑛 − 𝑟,𝑊𝑛𝑘+𝑟
𝑛 consists of 2𝑘(𝑛 − 2) + 𝑟 saddles, 𝑟𝑖 = 𝑟, and 𝑘𝑖 = 0;

2. if 𝑖 = 𝑛 − 𝑟,𝑊𝑛𝑘+𝑟
𝑛 consists of 2𝑘(𝑛 − 2) + (𝑟 − 1) saddles, 𝑟𝑖 = 𝑟 − 1, and 𝑘𝑖 = 1;

3. if 𝑖 > 𝑛 − 𝑟,𝑊𝑛𝑘+𝑟
𝑛 consists of 2𝑘(𝑛 − 2) + (𝑛 + 𝑟 − 4) saddles, 𝑟𝑖 = 𝑟 − 2, and 𝑘𝑖 = 2.

In each of these cases,𝑊𝑛𝑘+𝑟
𝑛 is a cobordism in the style of Figure 8.1.

We’ll denote by 𝑠𝑖 the number of additional saddles depending on 𝑟 . That is,𝑊𝑛𝑘+𝑟
𝑛 consists of

2𝑘(𝑛 − 2) + 𝑠𝑖 saddles, where

1. 𝑠𝑖 = 𝑟 if 𝑖 < 𝑛 − 𝑟;

2. 𝑠𝑖 = 𝑟 − 1 if 𝑖 = 𝑛 − 𝑟;

3. 𝑠𝑖 = 𝑛 + 𝑟 − 4 if 𝑖 > 𝑛 − 𝑟.

Note that our 𝑠𝑖 is not the same as the one appearing in [SW24].

We will use this Lemma to prove the existence of projectors. First, we would like to draw

some connections between our work and computations found in Section 5 of [SW24]. Consider the

complex C𝑚+1 defined as the cone

C𝑚+1 := Cone(T𝑚𝑛 → T𝑚+1𝑛 ).

Then, C𝑚+1 looks like (that is, is homotopy equivalent to) a cube of resolutions for T 1
𝑛 with T𝑚𝑛

stacked on top, modulo the identity term, which is taken to be zero. Any entry of the cube

of resolutions for T𝑛 (apart from the identity entry, which we have avoided) is isomorphic to

F (𝑒𝑖) ⊗ F (𝛿) for some flat diskular 𝑛-tangle 𝛿 and 1 ≤ 𝑖 ≤ 𝑛 − 1. Dropping the F notation, this is

to say that C𝑚+1 is homotopy equivalent to a colimit in which all nontrivial terms are of the form

𝜑𝛼1
𝑛
T𝑚𝑛 ⊗ 𝑒𝑖 ⊗ 𝛿
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where 𝜑𝛼1
𝑛

denotes the grading shift coming from the cube of resolutions forT 1
𝑛 . Writing𝑚 = 𝑛𝑘+𝑟,

Lemma 8.5.1 says that this term is equivalent to

𝜑𝛼1
𝑛

Ä
𝑒

top
𝑖′ ⊗ 𝜑𝑊𝑛𝑘+𝑟

𝑛
T (𝑛−2)𝑘+𝑟𝑖
𝑛−2 {−(2𝑘 + 𝑘𝑖),−(2𝑘 + 𝑘𝑖)} ⊗ 𝑒bot

𝑖

ä
⊗ 𝛿. (8.5.1)

As in [SW24], we want to provide a bound on grading shifts. On one hand, given a G -graded

dg 𝐻𝑛-module 𝐴, by a global upper 𝑞-bound on G -grading shifts, we mean some 𝐵 ∈ Z so that, for

each entry 𝐴𝑖 of 𝐴 with grading shift 𝜑𝑊𝑣 , deg𝑞(𝜑𝑊𝑣 ) ≤ 𝐵. For example, we can compute an upper

bound of a complex with G -grading finding the minimum number of saddles appearing in each

grading shift and maximizing the Z × Z-degree. We define global lower bounds similarly. This

definition extends to a stricter notion on objects of Kom(𝐻𝑛ModG ) by taking the minimum (resp.

maximum) among all global upper (resp. global lower) bounds for each complex 𝐴′ homotopy

equivalent to 𝐴.

Referring again to Proposition 6.2.2, to any diskular tangle 𝑇 , F (𝑇) has an entry with trivial

G -grading; this is to say that a global upper bound on F (𝑇) is 0. Similarly, a global lower bound

is given by −𝑐(𝑇), for 𝑐(𝑇) the number of crossings in the diagram for 𝑇 .

Note that 𝜑𝛼1
𝑛

always consists of at least one saddle, by construction. Then, we can compute

the 𝑞-grading shift on (8.5.1) on a case-by-case basis via Lemma 8.5.1 and conclude that C𝑚+1 is

homotopy equivalent to a complex with global upper bound on G -grading

𝑏𝜖 ≤ 𝐵𝑚+1 := −2𝑛𝑘 − 𝑟 − 1.

Observe that this bound is similar to the one provided in [SW24].

Remark 8.5.2. As in [SW24], we can present a model in which T∞𝑛 is an iterated mapping cone.

Start by setting A1 = T 1
𝑛 and, inductively, assume A2, . . . ,A𝑚 have been constructed, each

satisfying Aℓ ≃ T ℓ𝑛 . We construct A𝑚+1 as follows. From the definition of C𝑚+1, there is an exact

triangle

T𝑚𝑛 T𝑚+1𝑛 C𝑚+1,

thus there is a map 𝜓𝑚 so that T𝑚+1𝑛 ≃ Cone(C𝑚+1
𝜓𝑚−−→ T𝑚𝑛 ).
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Now, using Lemma 8.5.1, we have argued that C𝑚+1 is homotopy equivalent to a complex we’ll

call C′
𝑚+1 with glabal upper bound 𝐵𝑚+1. Let 𝜓′𝑚 denote the map defined by the commutative square

C𝑚+1 T𝑚𝑛

C′
𝑚+1 A𝑚

𝜓𝑚

∼

𝜓′𝑚

∼

where each vertical arrow is a homotopy equivalence. Then, set

A𝑚+1 := Cone(C′𝑚+1
𝜓′𝑚−−→ A𝑚).

Unfurling definitions and homotopy equivalences, it follows that A𝑚+1 ≃ T𝑚+1𝑛 .

In particular,A𝑚+1 is obtained fromA𝑚 by including finitely many new entries with G -grading

shifts bounded from above by 𝐵𝑚+1. As 𝑚 → ∞, 𝐵𝑚+1 → −∞, and we obtain a model for

T∞𝑛 ≃ A∞ as an iterated mapping cone.

On the other hand, define a global upper Z×Z-bound on G -grading shifts to be some (𝐵1, 𝐵2) ∈

Z × Z so that, for each 𝐴𝑖 of 𝐴 with grading shift 𝜑𝑊 (𝑣1 ,𝑣2) , we can find a simplification of 𝜑𝑊 (𝑣1 ,𝑣2) ,

written 𝜑
𝑊̌

(𝑣′1 ,𝑣
′
2) , in which 𝑣′1 ≤ 𝐵1 and 𝑣′2 ≤ 𝐵2. By a simplification, we that 𝜑𝑊 (𝑣1 ,𝑣2) � 𝜑

𝑊̌
(𝑣′1 ,𝑣

′
2)

for 𝑊̌ a minimal cobordism void of births, deaths, and unambiguous saddles.

Notice that, since 𝜑𝑊𝑛𝑘+𝑟
𝑛

consists only of saddles, we have that (−2𝑘,−2𝑘) provides a global

upper Z × Z-bound on G -grading shifts for a complex homotopy equivalent to T 𝑛𝑘+𝑟𝑛 ⊗ 𝑒𝑖.

Theorem 8.5.3. For each 𝑛, T∞𝑛 is a unified projector.

Proof. Recall that T∞𝑛 is defined as the colimit

T∞𝑛 = colim
Ä
T 0
𝑛 → T 1

𝑛 → · · · T𝑚𝑛 → · · ·
ä

which we’ll write colim(T 𝑛𝑘+𝑟𝑛 ). Axiom (CK1) is apparent by definition, so we will content

ourselves with a proof of (CK2). First, notice that

colim(T 𝑛𝑘+𝑟𝑛 ) ⊗ 𝑒𝑖 ≃ colim(T 𝑛𝑘+𝑟𝑛 ⊗ 𝑒𝑖)
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so if the homology of the colimit on the right-hand side is trivial, we can conclude that the colimit

itself is contractible, thus T∞𝑛 ≃ ∗. Recall that any homology class of the colimit arises as a

homology class in a piece of the colimit. However, by Lemma 8.5.1, this colimit is built from

complexes with a global upper Z × Z-bound of (−2𝑘,−2𝑘). As 𝑚 → ∞, 𝑘 → ∞, and the global

upper bound goes to (−∞,−∞), so any nontrivial homology class must die in the colimit. □

8.6 A unified colored link homology

With very little work, the existence of unified projectors (together with multigluing) implies

the existence of a unified colored link homology specializing to an even one ([CK12], see also

[Kho05, BW08] by way of [BHPW23]), but also specializing to a new odd version. Recall the

following definition, adapted from Definition 5.1 of [CK12].

Definition 8.6.1. For any 𝑛 ∈ N and m = (𝑚1, . . . , 𝑚𝑛) ∈ N𝑛, we denote by Chomm(𝑛)G the

category where

• ob(Chomm(𝑛)G ) = ob(Chom(𝑛)G ) and

• HomChomm(𝑛)G (𝐴, 𝐵) = HomChom(𝑀𝑛)G (Πm(𝐴),Πm(𝐵))

where 𝑀 =
∑
𝑖 𝑚𝑖 and Πm replaces the 𝑖th strand in each diagram with its 𝑚𝑖th parallel composed

with a copy of the 𝑚𝑖th projector. We define Chomm(𝑛)𝑞 by taking objects and morphisms of

Chomm(𝑛)G and collapsing degree, as usual.

We will represent projectors by small boxes, e.g., 𝑃𝑛 = 𝑛 . We will define the operation Π𝑚

on links, via operations on diskular tangles, as follows. As an example, if 𝐾 is a knot, let 𝐾̊ denote

the diskular 1-tangle 𝐾 × and suppose 𝐾̊𝑚 denotes its 𝑚th parallel. Then

Π𝑚(𝐾) = Tr𝑚(Kh𝑞(𝐾̊𝑚) ⊗ 𝑃𝑚)

More generally, if 𝐿 is an 𝑛-component link, we use multigluing. Let m = (𝑚1, . . . , 𝑚𝑛) ∈ N𝑛, and

denote by 𝑇m
𝐿

the result of taking 𝑚𝑖 parallel copies of the 𝑖th component of 𝐿 and then removing
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a small diskular region from each of the original components (again, see Figure 1.1). Then, set

Πm(𝐿) := (𝑃𝑚1 , . . . , 𝑃𝑚𝑛
) ⊗(𝐻𝑚1 ,...,𝐻𝑚𝑛 ) Kh𝑞(𝑇m

𝐿 )

where each of the 𝑃𝑚𝑖
is viewed as an object of Chom(𝑚𝑖)

𝑞

𝑅
.

Lemma 8.6.2. We have the following isomorphisms in Kom(𝐻𝑚+𝑛Mod)G :

𝑚
�

𝑚

𝑚 � 𝑚

and

𝑛 �
𝑛

𝑛 �
𝑛

That is, free (parallel) strands can be moved over or under projectors in Kom(𝐻2𝑛Mod)G .

Proof. We’ll explain the first homotopy equivalence; the others are proven with the same procedure.

The trick is to start with the middle complex: using (CK1),
𝑚

𝑚 is homotopy equivalent to the

complex of complexes
𝑚
−→

𝑚

𝑐

where 𝑐 = Cone(𝜄). Again by (CK1), 𝑐 has through degree < 𝑚, so it contains some turnback.

Pushing the turnback through the parallel overstrands induces nontrivial G -grading shifts (see

Lemma 7.2.4), but after it passes through all 𝑛 overstrands, (CK2) tells us that that the entire

complex on the right is contractible, and we’re done. □

Using this Lemma, together with multiguling (Theorem 6.2.4) and idempotence (Proposition

8.3.5), Πm can be described up to homotopy as sending

↦→ 𝑚𝑖 and ↦→
𝑚
𝑖

𝑚
𝑗𝑚

𝑖

𝑚
𝑗

on the 𝑖th strand and each crossing of the 𝑖th strand under the 𝑗 th.

Theorem 8.6.3. The category Komm(𝑛)𝑞 contains invariants of framed tangles.
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Proof. ApplyingΠm to the following typical diskular 2-tangle and applying idempotence (𝑃𝑛⊗𝑃𝑛 ≃

𝑃𝑛) and Lemma 8.6.2, we obtain

↦→ ≃ .

Taking Kh (after picking any orientation), we know that

Kh

( )
≃ 𝜑𝑊𝑣Kh

Ç å
≃ 𝜑𝑊𝑣Kh

Ç å
where 𝜑𝑊𝑣 is the grading shift obtained by 𝑚𝑖𝑚 𝑗 Reidemeister II moves (appeal to Lemma 7.2.4

for an exact value, if desired). We have that deg𝑞(𝜑𝑊𝑣 ) = 0 by Theorem 7.2.9 which concludes the

argument for the first framed tangle move. The argument for Reidemeister III moves is similar and

left to the reader. □

If 𝐿 is a link, we denote byH (𝐿; m) the homology of Πm(𝐿). Moreover, denote by Πm
𝑒 (𝐿) and

Πm
𝑜 (𝐿) the complexes obtained from Πm(𝐿) by taking 𝑋,𝑌, 𝑍 ↦→ 1 and 𝑋, 𝑍 ↦→ 1 and 𝑌 ↦→ −1

respectively. These complexes are also invariants of the framed link (𝐿; m); denote their respective

homology byH𝑒(𝐿; m) andH𝑜(𝐿; m). We write 𝜒𝑞 to denote the graded Euler characteristic which

records only the 𝑞-grading associated to a particular G -grading or G -grading shift. By definition,

𝜒𝑞(H𝑒(𝐿; m)) = 𝐽(𝐿; m)(𝑞) = 𝜒𝑞(H𝑜(𝐿; m))

where 𝐽(𝐿; m)(𝑞) denotes the colored Jones polynomial with indeterminate 𝑞. While H𝑒(𝐿; m)

is the colored link homology of [CK12], H𝑜(𝐿; m) provides a new categorification of the colored

Jones polynomial of 𝐿. To verify that the two homologies are distinct, recall that the computation

in §8.4.1 implies thatH𝑒(𝑈; 2) ≇ H𝑜(𝑈; 2) for𝑈 the unknot.
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CHAPTER 9

TOWARD A HOCHSHILD (CO)HOMOLOGY FOR C-GRADED ALGEBRAS

We conclude this thesis with a chapter initiating future investigations concerning C-graded struc-

tures. Namely, in this chapter, we provide a generalization of Hochschild homology which extends

to C-graded algebras 𝐴 with coefficients in a C-graded (𝐴, 𝐴)-bimodule. This work is presented

in more detail in [Spy25], where the constructions are applied to the unified Khovanov theory for

tangles, C = G. In this chapter, we assume that (C, 𝛼) is a grading category.

As a lead-in, we will eventually need to assume that our unitors are picked in a canonical

manner. Recall that the category ModC is monoidal: define a monoidal product 𝑀 ⊗ 𝑁 by

𝑀 ⊗ 𝑁 :=
⊕

𝑔∈Mor(C)
(𝑀 ⊗ 𝑁)𝑔 where (𝑀 ⊗ 𝑁)𝑔 :=

⊕
𝑔=𝑔2◦𝑔1

𝑀𝑔1 ⊗ 𝑁𝑔2 .

The coherence isomorphism is induced by the associator: fix𝛼 : (𝑀1⊗𝑀2)⊗𝑀3 → 𝑀1⊗(𝑀2⊗𝑀3)

by

(𝑥 ⊗ 𝑦) ⊗ 𝑧 ↦→ 𝛼(|𝑥 | ,
��𝑦�� ,|𝑧 |)𝑥 ⊗ (𝑦 ⊗ 𝑧)

for homogeneous elements 𝑥, 𝑦, and 𝑧. The fact that 𝛼 satisfies the pentagon relation follows

directly from the cocycle condition of the grading category. The unit object is given by

𝐼C :=
⊕

𝑋∈Ob(C)
KId𝑋

where Id𝑋 denotes the identity morphisms in C on 𝑋 . In general, left- and right-unitors L :

𝐼C ⊗𝑀 → 𝑀 and R : 𝑀 ⊗ 𝐼C → 𝑀 are given by any isomorphisms satisfying the triangle relation:

(𝑀 ⊗ 𝐼C) ⊗ 𝑁 𝑀 ⊗ (𝐼C ⊗ 𝑁)

𝑀 ⊗ 𝑁

𝛼

R⊗1𝑁 1𝑀⊗L

When needed, we will denote the chosen unitors for ModC by LC and RC . Indeed, the unitors can

be chosen to be induced by the associator. For example, one can take

• L : 𝐼C ⊗ 𝑀 → 𝑀 by (𝑘 ⊗ 𝑚) ↦→ L(|𝑘 | ,|𝑚 |)𝑘𝑚, fixing

L(|𝑘 | ,|𝑚 |) := 𝛼(Id𝑋 , Id𝑋 ,|𝑚 |)−1, (9.0.1)
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and

• R : 𝑀 ⊗ 𝐼C → 𝑀 by (𝑚 ⊗ 𝑘) ↦→ R(|𝑚 | ,|𝑘 |)𝑘𝑚, fixing

R(|𝑚 | ,|𝑘 |) := 𝛼(|𝑚 | , Id𝑌 , Id𝑌 ), (9.0.2)

where |𝑚 | : 𝑋 → 𝑌 . To see that the triangle relation is satisfied, notice that for 𝑋
𝑔
−→ 𝑌

ℎ−→ 𝑍 ,

1 = 𝑑𝛼(𝑔, Id𝑌 , Id𝑌 , ℎ) = 𝛼(𝑔, Id𝑌 , Id𝑌 )𝛼(𝑔, Id𝑌 , ℎ)−1𝛼(Id𝑌 , Id𝑌 , ℎ).

Notice that, in general, the cocycle relation implies 𝛼(𝑔, 𝑔, 𝑔) = 1 for any loop morphism

𝑔 : 𝑋 → 𝑋 . In the case of the above choice of unitors, this means that whenever |𝑚 | = Id𝑋 for any

𝑋 ∈ ob(C), we have that L(𝑘 ⊗𝑚) = 𝑘𝑚 = R(𝑚 ⊗ 𝑘). Provided that the coherence isomorphism of

ModC is chosen to be the one induced by 𝛼, we say that the choice of unitor is typical if it satisfies

L ≡ 1 and R ≡ 1 on any elements 𝑚 ∈ 𝑀Id𝑋 ⊂ 𝑀 for any 𝑋 ∈ ob(C). In general, the requirement

that

(1𝑀 ⊗ L) ◦ 𝛼 = R ⊗ 1𝑁

implies only that the values associated to L and R agree on 𝑚 ∈ 𝑀 with |𝑚 | = Id𝑋 . We call the

unitors given by equations (9.0.1) and (9.0.2) above the typical unitors induced by 𝛼.

In conclusion, we list a few quick computations regarding the associator which help to have in

one’s back-pocket.

Lemma 9.0.1. Let 𝑔, ℎ ∈ Mor(C) and 𝑔 : 𝑋 → 𝑌 and ℎ : 𝑌 → 𝑍 . We have the following

equivalences, with their paths pictured.

(i) 𝛼(Id𝑋 , 𝑔, Id𝑌 ) = 1

𝑋 𝑌
𝑔

Id𝑋 Id𝑌

(ii) 𝛼(Id𝑋 , Id𝑋 , ℎ ◦ 𝑔) = 𝛼(Id𝑋 , 𝑔, ℎ)𝛼(Id𝑋 , Id𝑋 , 𝑔)

𝑋 𝑌 𝑍
𝑔

Id𝑋

ℎ
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(iii) 𝛼(ℎ ◦ 𝑔, Id𝑍 , Id𝑍 ) = 𝛼(𝑔, ℎ, Id𝑍 )𝛼(ℎ, Id𝑍 , Id𝑍 )

𝑋 𝑌 𝑍
𝑔 ℎ

Id𝑍

(iv) 𝛼(𝑔, Id𝑌 , ℎ) = 𝛼(𝑔, Id𝑌 , Id𝑌 )𝛼(Id𝑌 , Id𝑌 , ℎ)

𝑋 𝑌 𝑍
𝑔 ℎ

Id𝑌

Proof. Each of these are routine; we will prove (ii) as demonstration. We have

1 = 𝑑𝛼(Id𝑋 , Id𝑋 , 𝑔, ℎ) = 𝛼(Id𝑋 , Id𝑋 , 𝑔)𝛼(Id𝑋 , Id𝑋 , ℎ ◦ 𝑔)−1𝛼(Id𝑋 , 𝑔, ℎ)

as desired. □

The construction of the Hochschild complex is simple: given an algebra 𝐴, there is a special

(𝐴, 𝐴)-bimodule B(𝐴), called the bar resolution of 𝐴. Since (𝐴, 𝐴)-bimodules are equivalent to

𝐴 ⊗ 𝐴op-modules, we can define

𝐻𝐶(𝐴, 𝑀) := B(𝐴) ⊗𝐴⊗𝐴op 𝑀

for any (𝐴, 𝐴)-bimodule 𝑀 . So, in the C-graded scenario, there are three things to check:

1. There is some notion of C-graded 𝐴 ⊗ 𝐴op-modules equivalent to that of C-graded (𝐴, 𝐴)-

bimodules;

2. There is a C-graded bar resolution B(𝐴) which has the structure of a C-graded DG (𝐴, 𝐴)-

bimodule;

3. There is a notion of tensor product over 𝐴 ⊗ 𝐴op.

These, respectively, are the subject of the next three sections.
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9.1 More on C-graded algebras and bimodules

For convenience, we relist the axioms of a C-graded algebra here. A C-graded algebra is a

C-graded K-module 𝐴 =
⊕

𝑔∈Mor(C) 𝐴𝑔 endowed with a K-linear multiplication 𝜇𝐴 : 𝐴 ⊗ 𝐴 → 𝐴

and unit element 1𝑋 ∈ 𝐴Id𝑋 for each 𝑋 ∈ ob(C) which satisfy each of the following.

(A.I) 𝜇𝐴 is a graded map; that is, for each homogeneous 𝑥, 𝑦 ∈ 𝐴,
��𝜇𝐴(𝑥, 𝑦)

�� = ��𝑦�� ◦|𝑥 |.
(A.II) 𝜇𝐴 is graded associative; that is, for each homogeneous 𝑥, 𝑦, 𝑧 ∈ 𝐴,

𝜇𝐴(𝜇𝐴(𝑥, 𝑦), 𝑧) = 𝛼(|𝑥 | ,
��𝑦�� ,|𝑧 |)𝜇𝐴(𝑥, 𝜇𝐴(𝑥, 𝑦)).

(A.III) For each homogeneous 𝑥 ∈ 𝐴,

𝜇𝐴(1𝑋 , 𝑥) = L(Id𝑋 ,|𝑥 |)𝑥 and 𝜇𝐴(𝑥, 1𝑌 ) = R(|𝑥 | , Id𝑌 )𝑥

where |𝑥 | : 𝑋 → 𝑌 .

Notice that if our choice of unitors in ModC is typical, we have that 𝜇𝐴(1𝑋 , 1𝑋) = 1𝑋 .

Some of the usual operations performed on small categories can be extended to grading cat-

egories. For motivation, suppose 𝐴 is a C-graded algebra, and consider 𝐴op. Recall that 𝐴op is

simply 𝐴 but with multiplication defined by

𝜇𝐴op(𝑥, 𝑦) := 𝜇𝐴(𝑦, 𝑥).

Then, notice that 𝐴op fails to be a C-graded algebra.

However, 𝐴op has a natural description as a Cop-graded algebra. Recall that the category

opposite C, denoted Cop, is the category with

• ob(Cop) = ob(C), and

• HomCop(𝑋,𝑌 ) = HomC(𝑌, 𝑋).

Notice that, if 𝑋
𝑓
−→ 𝑌

𝑔
−→ 𝑍 is a sequence of morphisms in C, then (𝑋

𝑓
−→ 𝑌

𝑔
−→ 𝑍)op = 𝑍

𝑔op

−−→

𝑌
𝑓 op

−−→ 𝑋 . That is, the functor op : C → Cop is contravariant, and (Cop)op = C.
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Definition 9.1.1. Let (C, 𝛼) be a grading category. Let (C, 𝛼)op := (Cop, 𝛼op) denote the opposite

grading category, with 𝛼op : (Cop)[3] → K× defined by

𝛼op( 𝑓 op
3 , 𝑓

op
2 , 𝑓

op
1 ) := 𝛼( 𝑓1, 𝑓2, 𝑓3)−1.

Remark 9.1.2. Notice that there is no real significance of change the underlying category—if 𝐴 is

(C, 𝛼)-graded, we will see in the proof of the following proposition that 𝐴op is naturally (C, 𝛼−1)-

graded. We make the choice to work with Cop so that there is no confusion when we say that

something is a Cop-graded module/algebra.

Proposition 9.1.3. Assume (C, 𝛼) is a grading category and 𝐴 is a C-graded algebra. Then (C, 𝛼)op

is a grading category, and 𝐴op is a Cop-graded algebra.

Proof. For the first claim, note that 𝑑(𝛼op)( 𝑓 op
4 , 𝑓

op
3 , 𝑓

op
2 , 𝑓

op
1 ) = 𝑑𝛼( 𝑓1, 𝑓2, 𝑓3, 𝑓4)−1, and the result

follows by assumption that (C, 𝛼) is a grading category. For the second, given a decomposition

𝐴 =
⊕

𝑔∈Mor(C) 𝐴𝑔, choose the decomposition 𝐴op =
⊕

𝑔op∈Mor(Cop). Requirement (A.I) is satisfied

since ��𝜇𝐴op(𝑥, 𝑦)
��
Cop =

Ä��𝜇𝐴(𝑦, 𝑥)
��
C

äop
=
Ä
|𝑥 |C ◦

��𝑦��Cäop
=
��𝑦��Cop ◦|𝑥 |Cop

using the fact that (|𝑥 |C)op = |𝑥 |Cop . Requirement (A.II) is similar:

𝜇𝐴op(𝜇𝐴op(𝑥, 𝑦), 𝑧) = 𝜇𝐴(𝑧, 𝜇𝐴(𝑦, 𝑥))

= 𝛼(|𝑧 |C ,
��𝑦��C ,|𝑥 |C)−1𝜇𝐴(𝜇𝐴(𝑧, 𝑦), 𝑥)

= 𝛼op(|𝑥 |Cop ,
��𝑦��Cop ,|𝑧 |Cop)𝜇𝐴op(𝑥, 𝜇𝐴op(𝑦, 𝑧)).

Notice that this is why we must invert the associator to obtain a graded structure on 𝐴op. Finally,

for (A.III), notice that the unit object 𝐼Cop is exactly 𝐼C . Then, sufficient unitors for ModC
op

are

provided by fixing LCop = RC and RCop = LC . □

Indeed, as remarked earlier, notice that the categories ModC and ModC
op

differ cosmetically by

reversing arrows in the grading structure, and substantively by inverting the coherence isomorphism.
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Now, suppose 𝐴 and 𝐵 are C-graded andD-graded algebras respectively. Abusing notation, we

will write 𝐴 ⊗ 𝐵 to denote the tensor product of 𝐴 and 𝐵 as K-modules. The graded structure on 𝐴

and 𝐵 induces one on 𝐴 ⊗ 𝐵 as follows. Recall that the product category C × D of two categories

C and D is the one with

• ob(C × D) = ob(C) × ob(D),

• HomC×D((𝑋1, 𝑋2), (𝑌1, 𝑌2)) = HomC(𝑋1, 𝑌1) × HomD(𝑋2, 𝑌2),

• composition defined by ( 𝑓2, 𝑔2) ◦ ( 𝑓1, 𝑔1) = ( 𝑓2 ◦ 𝑓1, 𝑔2 ◦ 𝑔1), and

• identity morphisms Id(𝑋,𝑌 ) = (Id𝑋 , Id𝑌 ).

Definition 9.1.4. Given grading categories (C, 𝛼) and (D, 𝛽), define the product grading category

(C, 𝛼) × (D, 𝛽) := (C × D, 𝛼 × 𝛽) where

(𝛼 × 𝛽)(( 𝑓1, 𝑔1), ( 𝑓2, 𝑔2), ( 𝑓3, 𝑔3)) := 𝛼( 𝑓1, 𝑓2, 𝑓3)𝛽(𝑔1, 𝑔2, 𝑔3).

Proposition 9.1.5. If (C, 𝛼) and (D, 𝛽) are grading categories, then so is (C×D, 𝛼×𝛽). Moreover,

if 𝐴 is a (C, 𝛼)-graded algebra and 𝐵 is a (D, 𝛽)-graded algebra, then 𝐴 ⊗ 𝐵 is a (C × D, 𝛼 × 𝛽)-

graded algebra.

Proof. Again, the first claim is immediate. The second is routine: in general, we interpret 𝐴 ⊗ 𝐵

as a (C × D)-graded algebra by taking |𝑎 ⊗ 𝑏 |C×D := (|𝑎 |C ,|𝑏 |D) and defining the multiplication

𝜇𝐴⊗𝐵 : (𝐴 ⊗ 𝐵) ⊗ (𝐴 ⊗ 𝐵)→ 𝐴 ⊗ 𝐵 as

𝜇𝐴⊗𝐵(𝑎1 ⊗ 𝑏1, 𝑎2 ⊗ 𝑏2) := 𝜇𝐴(𝑎1, 𝑎2) ⊗ 𝜇𝐵(𝑏1, 𝑏2).

Then, for example, check (A.I) by computing��𝜇𝐴⊗𝐵(𝑎1 ⊗ 𝑏1, 𝑎2 ⊗ 𝑏2)
��
C×D =

��𝜇𝐴(𝑎1, 𝑎2) ⊗ 𝜇𝐵(𝑏1, 𝑏2)
��
C×D

=
Ä��𝜇𝐴(𝑎1, 𝑎2)

��
C ,
��𝜇𝐵(𝑏1, 𝑏2)

��
D

ä
=
(
|𝑎2 |C ◦|𝑎1 |C ,|𝑏2 |D ◦|𝑏1 |D

)
= (|𝑎2 |C ,|𝑏2 |D) ◦ (|𝑎1 |C ,|𝑏1 |D) =: |𝑎2 ⊗ 𝑏2 |C×D ◦|𝑎1 ⊗ 𝑏1 |C×D .
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Checking (A.II) is also routine. To check (A.III), we note that, as ModC×D inherits its coherence

isomorphism from ModC and ModD , its unitors may also be chosen from these categories, defining

LC×D := LC×LD , and similarly for the right unitor RC×D . Also fix unit elements 1(𝑋,𝑌 ) ∈ 𝐴Id(𝑋,𝑌 )

to be 1𝑋 ⊗ 1𝑌 , recalling that, by definition, Id(𝑋,𝑌 ) = (Id𝑋 , Id𝑌 ). Then the checks required for (A.III)

are also routine: for example,

𝜇𝐴⊗𝐵(1(𝑋,𝑌 ), 𝑎 ⊗ 𝑏) = 𝜇𝐴(1𝑋 , 𝑎) ⊗ 𝜇𝐵(1𝑌 , 𝑏)

= LC(Id𝑋 ,|𝑎 |C)LD(Id𝑌 ,|𝑏 |D)𝑎 ⊗ 𝑏

= LC×D((Id𝑋 , Id𝑌 ), (|𝑎 |C ,|𝑏 |D))𝑎 ⊗ 𝑏

= LC×D(Id(𝑋,𝑌 ),|𝑎 ⊗ 𝑏 |C×D)𝑎 ⊗ 𝑏.

The check for RC×D is totally analogous. □

Now, recall the definition of a C-graded bimodule. Suppose 𝐴 and 𝐵 are C-graded algebras.

We define a C-graded (𝐴, 𝐵)-module as a C-graded K-module with graded, K-linear actions

𝜌𝐿 : 𝐴 ⊗ 𝑀 → 𝑀 and 𝜌𝑅 : 𝑀 ⊗ 𝐵→ 𝑀

which which satisfy the following axioms for each of 𝑎, 𝑎′ ∈ 𝐴, 𝑏, 𝑏′ ∈ 𝐵, and 𝑚 ∈ 𝑀 .

(B.I) 𝜌𝐿(𝜇𝐴(𝑎, 𝑎′), 𝑚) = 𝛼(|𝑎 | ,|𝑎′| ,|𝑚 |)𝜌𝐿(𝑎, 𝜌𝐿(𝑎′, 𝑚));

(B.II) 𝜌𝑅(𝜌𝑅(𝑚, 𝑏), 𝑏′) = 𝛼(|𝑚 | ,|𝑏 | ,|𝑏′|)𝜌𝑅(𝑚, 𝜇𝐴(𝑏, 𝑏′));

(B.III) 𝜌𝑅(𝜌𝐿(𝑎, 𝑚), 𝑏) = 𝛼(|𝑎 | ,|𝑚 | ,|𝑏 |)𝜌𝐿(𝑎, 𝜌𝑅(𝑚, 𝑏));

(B.IV) 𝜌𝐿(1𝑋 , 𝑚) = L(Id𝑋 ,|𝑚 |)𝑚 and 𝜌𝑅(𝑚, 1𝑌 ) = R(|𝑚 | , Id𝑌 )𝑚.

We define a C-graded left 𝐴-module (resp. right 𝐵-module) as a C-graded (𝐴, 𝐼C)-bimodule (resp.

(𝐼C , 𝐵)-bimodule)—in this case, the 𝜌𝑅 (resp. 𝜌𝐿) action is trivial.

Equivalently, we can think of a left (resp. right) C-graded 𝐴-module as a C-graded K-module

with a single graded, K-linear action 𝜌𝐿 (resp. 𝜌𝑅) satisfying (B.I) (resp. (B.II)) and the first (resp.

second) half of (B.IV).
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Proposition 9.1.6. 𝑀 is a C-graded left (resp. right) 𝐴-module if and only if it is a Cop-graded

right (resp. left) 𝐴op-module.

Proof. Assuming 𝑀 is a C-graded left 𝐴-module means that it has a left action 𝜌𝐿 : 𝐴 ⊗ 𝑀 → 𝑀

which satisfies

𝜌𝐿(𝜇𝐴(𝑥, 𝑦), 𝑚) = 𝛼(|𝑥 |C ,
��𝑦��C ,|𝑚 |C)𝜌𝐿(𝑥, 𝜌𝐿(𝑦, 𝑚))

and

𝜌𝐿(1𝑌 , 𝑚) = L(Id𝑌 ,|𝑚 |C)𝑚.

We want to show that 𝑀 has a natural definition as a Cop-graded right 𝐴op-module. First, if 𝑀 =⊕
𝑔∈Mor(C) 𝑀𝑔, reverse arrows, as before, to get an induced grading by Cop; i.e., 𝑀 =

⊕
𝑔op∈Mor(Cop).

Then, define 𝜌op
𝑅

: 𝑀 ⊗ 𝐴op → 𝑀 by 𝜌op
𝑅

(𝑚, 𝑎) := 𝜌𝐿(𝑎, 𝑚). We compute

𝜌
op
𝑅

(𝜌op
𝑅

(𝑚, 𝑥), 𝑦) = 𝜌𝐿(𝑦, 𝜌𝐿(𝑥, 𝑚))

= 𝛼(
��𝑦��C ,|𝑥 |C ,|𝑚 |C)−1𝜌𝐿(𝜇𝐴(𝑦, 𝑥), 𝑚)

= 𝛼op(|𝑚 |Cop ,|𝑥 |Cop ,
��𝑦��Cop)𝜌op

𝑅
(𝑚, 𝜇𝐴op(𝑥, 𝑦))

and

𝜌
op
𝑅

(𝑚, 1𝑋) = 𝜌𝐿(1𝑋 , 𝑚) = LC(Id𝑋 ,|𝑚 |C)𝑚 = RCop(|𝑚 |Cop , Id𝑋)𝑚

as desired. The other checks are analogous. □

Assume 𝐴 and 𝐵 are both C-graded algebras. To conclude this section, we want there to be an

equivalence between C-graded (𝐴, 𝐵)-bimodules and C-graded left 𝐴⊗𝐵op-modules. The problem

is that our current definition of modules assumes that the algebra and the module share the same

grading category—in the latter instance, 𝐴 ⊗ 𝐵op is a C × Cop-graded algebra. This prompts the

following definition.

Definition 9.1.7. Fix C-graded algebras 𝐴 and 𝐵. Define a C-graded left 𝐴 ⊗ 𝐵op-module to be a

C-graded K-module 𝑀 with a left, K-linear action map

𝜌𝑒𝐿 : (𝐴 ⊗ 𝐵op) × 𝑀 → 𝑀
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which is graded in the sense that
���𝜌𝑒𝐿(𝑎 ⊗ 𝑏, 𝑚)

��� = |𝑏 |C ◦|𝑚 |C ◦|𝑎 |C , and the following hold.

(E.I) For 𝑎1, 𝑎2 ∈ 𝐴, 𝑏1, 𝑏2 ∈ 𝐵op, and 𝑚 ∈ 𝑀 homogeneous,

𝜌𝑒𝐿(𝜇𝐴⊗𝐵op(𝑎1 ⊗ 𝑏1, 𝑎2 ⊗ 𝑏2), 𝑚) = Δ(|𝑎1 ⊗ 𝑏1 |C×Cop ,|𝑎2 ⊗ 𝑏2 |C×Cop ,|𝑚 |C)

𝜌𝑒𝐿(𝑎1 ⊗ 𝑏1, 𝜌
𝑒
𝐿(𝑎2 ⊗ 𝑏2, 𝑚));

(E.II) for (𝑋,𝑌 ) ∈ ob(C × Cop),

𝜌𝑒𝐿(1(𝑋,𝑌 ), 𝑚) = LC(Id𝑋 ,|𝑚 |C)RC(|𝑚 |C , Id𝑌 )𝑚

where Δ(|𝑎1 ⊗ 𝑏1 |C×Cop ,|𝑎2 ⊗ 𝑏2 |C×Cop ,|𝑚 |C) is taken to be the value

𝛼(|𝑎1 | ,|𝑎2 | ,|𝑚 |)𝛼(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | ,|𝑏2 | ,|𝑏1 |)−1𝛼(|𝑎1 | ,|𝑚 | ◦ |𝑎2 | ,|𝑏2 |)

with all gradings taken in C, fixing |𝑏 |C := (|𝑏 |Cop)op. When 𝐵 = 𝐴, we write 𝐴𝑒 := 𝐴 ⊗ 𝐴op.

Note that under the canonical identification |𝑚 |C𝑜𝑝 := (|𝑚 |C)op,

LC(Id𝑋 ,|𝑚 |C)RC(|𝑚 |C , Id𝑌 ) = LC×Cop(Id(𝑋,𝑌 ),|𝑚 |C×Cop).

Also note that the value for Δ can be obtained many different ways, and the cocycle relation implies

that they all are equivalent. For example, the two paths

((𝑎1𝑎2)𝑚)(𝑏2𝑏1) (𝑎1(𝑎2𝑚))(𝑏2𝑏1) 𝑎1((𝑎2𝑚)(𝑏2𝑏1)) 𝑎1(((𝑎2𝑚)𝑏2)𝑏1)

((𝑎1(𝑎2𝑚))𝑏2)𝑏1 (𝑎1((𝑎2𝑚)𝑏2))𝑏1

𝛼 𝛼

𝛼−1

𝛼−1

𝛼−1

𝛼

yield equivalent values—the value provided in the definition is based on the lower path.

Proposition 9.1.8. Suppose that 𝐴 and 𝐵 are C-graded algebras, and that the unitors of ModC

are the typical unitors induced by 𝛼. Then, every C-graded left 𝐴 ⊗ 𝐵op-module can be given the

structure of a C-graded (𝐴, 𝐵)-bimodule, and vice-versa.
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Proof. The backwards direction is rigged to work. Given a C-graded (𝐴, 𝐵)-bimodule 𝑀 , we give

it the structure of a C-graded left 𝐴 ⊗ 𝐵op-module by defining 𝜌𝑒
𝐿

: (𝐴 ⊗ 𝐵op) ⊗ 𝑀 → 𝑀 by

𝜌𝑒𝐿(𝑎 ⊗ 𝑏, 𝑚) := 𝜌𝑅(𝜌𝐿(𝑎, 𝑚), 𝑏).

To verify (E.I), we compute

𝜌𝑒𝐿(𝜇𝐴⊗𝐵op(𝑎1 ⊗ 𝑏1, 𝑎2 ⊗ 𝑏2), 𝑚) = 𝜌𝑅(𝜌𝐿(𝜇𝐴(𝑎1, 𝑎2), 𝑚), 𝜇𝐴(𝑏2, 𝑏1))

= 𝛼(|𝑎1 | ,|𝑎2 | ,|𝑚 |)𝜌𝑅(𝜌𝐿(𝑎1, 𝜌𝐿(𝑎2, 𝑚)), 𝜇𝐴(𝑏2, 𝑏1))

= 𝛼(|𝑎1 | ,|𝑎2 | ,|𝑚 |)𝛼(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | ,|𝑏1 | ,|𝑏2 |)−1

𝜌𝑅(𝜌𝑅(𝜌𝐿(𝑎1, 𝜌𝐿(𝑎2, 𝑚)), 𝑏2), 𝑏1)

= 𝛼(|𝑎1 | ,|𝑎2 | ,|𝑚 |)𝛼(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | ,|𝑏1 | ,|𝑏2 |)−1

𝛼(|𝑎1 | ,|𝑚 | ◦ |𝑎2 | ,|𝑏2 |)𝜌𝑅(𝜌𝐿(𝑎1, 𝜌𝑅(𝜌𝐿(𝑎2, 𝑚), 𝑏2)), 𝑏1)

= Δ(|𝑎1 ⊗ 𝑏1 | ,|𝑎2 ⊗ 𝑏2 | ,|𝑚 |)𝜌𝑒𝐿(𝑎1 ⊗ 𝑏1, 𝜌
𝑒
𝐿(𝑎2 ⊗ 𝑏2, 𝑚))

as desired. For (E.II), setting |𝑚 | : 𝑋 → 𝑌 ,

𝜌𝑒𝐿(1(𝑋,𝑌 ), 𝑚) = 𝜌𝑒𝐿(1𝑋 ⊗ 1𝑌 , 𝑚) = L(Id𝑋 ,|𝑚 |)R(|𝑚 | , Id𝑌 )𝑚

as well.

For the other direction, assume 𝑀 is a C-graded 𝐴 ⊗ 𝐵op-module. If |𝑚 | : 𝑋 → 𝑌 , define

𝜌𝐿(𝑎, 𝑚) := R(|𝑚 | ◦|𝑎 | , Id𝑌 )−1𝜌𝑒𝐿(𝑎 ⊗ 1𝑌 , 𝑚) and 𝜌𝑅(𝑚, 𝑏) := L(Id𝑋 ,|𝑚 |)−1𝜌𝑒𝐿(1𝑋 ⊗ 𝑏, 𝑚)

First we check that the axioms of a C-graded (𝐴, 𝐵)-bimodule are satisfied. We take the time to

perform the checks arduously as to not take the result for granted, although the entire proof might

be a bit pedantic. To check (B.I), assume that 𝑎1, 𝑎2 ∈ 𝐴 and 𝑚 ∈ 𝑀 are homogeneous so that

𝑊 𝑋 𝑌 𝑍
|𝑎1 | |𝑎2 | |𝑚 |
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We compute

𝜌𝐿(𝜇𝐴(𝑎1, 𝑎2), 𝑚) = R(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | , Id𝑧)−1𝜌𝑒𝐿(𝜇𝐴(𝑎1, 𝑎2) ⊗ 1𝑍 , 𝑚)

= R(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | , Id𝑧)−1𝜌𝑒𝐿(𝜇𝐴(𝑎1, 𝑎2) ⊗ 𝜇𝐴op(1𝑍 , 1𝑍 ), 𝑚)

= R(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | , Id𝑧)−1𝜌𝑒𝐿(𝜇𝐴⊗𝐴op(𝑎1 ⊗ 1𝑍 , 𝑎2 ⊗ 1𝑍 ), 𝑚)

= R(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | , Id𝑧)−1Δ(|𝑎1 ⊗ 1𝑍 | ,|𝑎2 ⊗ 1𝑍 | ,|𝑚 |)

𝜌𝑒𝐿(𝑎1 ⊗ 1𝑍 , 𝜌𝑒𝐿(𝑎2 ⊗ 1𝑍 , 𝑚))

= R(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | , Id𝑧)−1Δ(|𝑎1 ⊗ 1𝑍 | ,|𝑎2 ⊗ 1𝑍 | ,|𝑚 |)R(|𝑚 | ◦ |𝑎2 | , Id𝑍 )

R(
��𝜌𝑒𝐿(𝑎2 ⊗ 1𝑍 , 𝑚)

�� ◦|𝑎1 | , Id𝑍 )𝜌𝐿(𝑎1, 𝜌𝐿(𝑎2, 𝑚)).

Notice that the second equivalence assumes that the unitors are typical. The first and the last term

written as a function of R cancel each other since
���𝜌𝑒𝐿(𝑎1 ⊗ 1𝑍 , 𝑚)

��� = |𝑚 | ◦ |𝑎2 |. Expanding the

remaining terms, Δ(|𝑎1 ⊗ 1𝑍 | ,|𝑎2 ⊗ 1𝑍 | ,|𝑚 |) and R(|𝑚 | ◦ |𝑎2 | , Id𝑍 ), in terms of 𝛼 (using the fact

that the right unitor is the typical one induced by 𝛼), we obtain

𝛼(|𝑎1 | ,|𝑎2 | ,|𝑚 |)𝛼(|𝑚 | ◦ |𝑎2 | ◦ |𝑎1 | , Id𝑍 , Id𝑍 )−1𝛼(|𝑎1 | ,|𝑚 | ◦ |𝑎2 | , Id𝑍 )𝛼(|𝑚 | ◦ |𝑎2 | , Id𝑍 , Id𝑍 )︸                                                                                              ︷︷                                                                                              ︸
(∗)

.

Then, the terms labeled (∗) cancel by (iii) of Lemma 9.0.1, and we have that

𝜌𝐿(𝜇𝐴(𝑎1, 𝑎2), 𝑚) = 𝛼(|𝑎1 | ,|𝑎2 | ,|𝑚 |)𝜌𝐿(𝑎1, 𝜌𝐿(𝑎2, 𝑚))

as desired.

Axiom (B.II) is very similar. Assume that 𝑏1, 𝑏2 ∈ 𝐵 and 𝑚 ∈ 𝑀 are homogeneous so that

𝑊 𝑋 𝑌 𝑍
|𝑚 | |𝑏2 | |𝑏1 |

We leave it to the reader to verify that

𝜌𝑅(𝜌𝑅(𝑚, 𝑏2), 𝑏1) = L(Id𝑊 ,|𝑚 |)−1L(Id𝑊 ,|𝑏2 | ◦ |𝑚 |)−1Δ(|1𝑊 ⊗ 𝑏1 | ,|1𝑊 ⊗ 𝑏2 | ,|𝑚 |)−1L(Id𝑊 ,|𝑚 |)

𝜌𝑅(𝑚, 𝜇𝐴(𝑏2, 𝑏1)).
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The first and the last term which appear as a function of L cancel. Then, expanding the rest in

terms of 𝛼 gives

𝛼(Id𝑊 , Id𝑊 ,|𝑏2 | ◦ |𝑚 |)𝛼(Id𝑊 , Id𝑊 ,|𝑚 |)−1︸                                                 ︷︷                                                 ︸
(∗)

𝛼(|𝑚 | ,|𝑏2 | ,|𝑏1 |)𝛼(Id𝑊 ,|𝑚 | ,|𝑏2 |)−1︸                   ︷︷                   ︸
(∗)

The terms labeled (∗) cancel by (ii) of Lemma 9.0.1, so we are left with the desired result.

Axiom (B.III) is exactly the same idea, but requires a little more computation. Now, pick 𝑎 ∈ 𝐴,

𝑏 ∈ 𝐵, and 𝑚 ∈ 𝑀 homogeneous so that

𝑊 𝑋 𝑌 𝑍
|𝑎 | |𝑚 | |𝑏 |

We want to show that

𝜌𝑅(𝜌𝐿(𝑎, 𝑚), 𝑏) = 𝛼(|𝑎 | ,|𝑚 | ,|𝑏 |)𝜌𝐿(𝑎, 𝜌𝑅(𝑚, 𝑏)).

We compute

𝜌𝑅(𝜌𝐿(𝑎, 𝑚), 𝑏) = R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1L(Id𝑊 ,|𝑚 | ◦ |𝑎 |)−1𝜌𝑒𝐿(1𝑊 ⊗ 𝑏, 𝜌𝑒𝐿(𝑎 ⊗ 1𝑌 , 𝑚))

= R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1L(Id𝑊 ,|𝑚 | ◦ |𝑎 |)−1Δ(|1𝑊 ⊗ 𝑏 | ,|𝑎 ⊗ 1𝑌 | ,|𝑚 |)−1

𝜌𝑒𝐿(𝜇𝐴⊗𝐴op(1𝑊 ⊗ 𝑏, 𝑎 ⊗ 1𝑌 ), 𝑚)

= R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1L(Id𝑊 ,|𝑚 | ◦ |𝑎 |)−1Δ(|1𝑊 ⊗ 𝑏 | ,|𝑎 ⊗ 1𝑌 | ,|𝑚 |)−1

𝜌𝑒𝐿(𝜇𝐴(1𝑊 , 𝑎) ⊗ 𝜇𝐴(1𝑌 , 𝑏)), 𝑚)

= R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1L(Id𝑊 ,|𝑚 | ◦ |𝑎 |)−1Δ(|1𝑊 ⊗ 𝑏 | ,|𝑎 ⊗ 1𝑌 | ,|𝑚 |)−1L(Id𝑊 ,|𝑎 |)

L(Id𝑌 ,|𝑏 |)𝜌𝑒𝐿(𝑎 ⊗ 𝑏, 𝑚).

Expanding the values on the last line in terms of 𝛼, we find

𝛼(|𝑚 | ◦ |𝑎 | , Id𝑌 , Id𝑌 )−1︸                         ︷︷                         ︸
(∗)

𝛼(Id𝑊 , Id𝑊 ,|𝑚 | ◦ |𝑎 |)︸                       ︷︷                       ︸
(∗∗)

𝛼(Id𝑊 ,|𝑎 | ,|𝑚 |)−1︸                  ︷︷                  ︸
(∗∗)

𝛼(|𝑚 | ◦ |𝑎 | , Id𝑌 ,|𝑏 |)︸                    ︷︷                    ︸
(∗)

𝛼(Id𝑊 ,|𝑚 | ◦ |𝑎 | , Id𝑌 )−1︸                          ︷︷                          ︸
(∗∗∗)

𝛼(Id𝑊 , Id𝑊 ,|𝑎 |)−1︸                  ︷︷                  ︸
(∗∗)

𝛼(Id𝑌 , Id𝑌 ,|𝑏 |)−1︸                 ︷︷                 ︸
(∗)

.
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The terms marked by (∗) cancel by (iv) of Lemma 9.0.1, those marked by (∗∗) cancel by (ii), and

the (∗ ∗ ∗) is trivial by (i). On the other hand, one can verify in the same way that

𝜌𝐿(𝑎, 𝜌𝑅(𝑚, 𝑏)) = L(Id𝑋 ,|𝑚 |)−1R(|𝑏 | ◦ |𝑚 | ◦ |𝑎 | , Id𝑍 )−1Δ(|𝑎 ⊗ 1𝑍 | ,|1𝑋 ⊗ 𝑏 | ,|𝑚 |)−1R(|𝑎 | , Id𝑋)

R(|𝑏 | , Id𝑍 )𝜌𝑒𝐿(𝑎 ⊗ 𝑏, 𝑚).

Then, expanding in terms of 𝛼, we have

𝛼(Id𝑋 , Id𝑋 ,|𝑚 |)︸               ︷︷               ︸
(∗)

𝛼(|𝑏 | ◦ |𝑚 | ◦ |𝑎 | , Id𝑍 , Id𝑍 )−1︸                                ︷︷                                ︸
(∗∗)

𝛼(|𝑎 | , Id𝑋 ,|𝑚 |)−1︸                 ︷︷                 ︸
(∗)

𝛼(|𝑚 | ◦ |𝑎 | ,|𝑏 | , Id𝑍 )︸                     ︷︷                     ︸
(∗∗)

𝛼(|𝑎 | ,|𝑚 | |𝑏 |)−1︸               ︷︷               ︸
(∗∗∗)

𝛼(|𝑎 | , Id𝑋 , Id𝑋)︸               ︷︷               ︸
(∗)

𝛼(|𝑏 | , Id𝑍 , Id𝑍 )︸               ︷︷               ︸
(∗∗)

.

The terms marked (∗) cancel by (iv) and the terms marked by (∗∗) cancel by (iii) of Lemma 9.0.1.

The term marked (∗ ∗ ∗) remains, and we are left with the desired equality.

Checking axiom (B.IV) is quickly verified. If |𝑚 | : 𝑋 → 𝑌 , recall that 1𝑋 ⊗ 1𝑌 = 1(𝑋,𝑌 ) and

𝜌𝑒𝐿(1(𝑋,𝑌 ), 𝑚) = L(Id𝑋 ,|𝑚 |)R(|𝑚 | , Id𝑌 )𝑚.

Then

𝜌𝐿(1𝑋 , 𝑚) = R(|𝑚 | , Id𝑌 )−1𝜌𝐿(1𝑋 ⊗ 1𝑌 , 𝑚) = L(Id𝑋 ,|𝑚 |)𝑚

and

𝜌𝑅(𝑚, 1𝑌 ) = L(Id𝑋 ,|𝑚 |)−1𝜌𝑒𝐿(1𝑋 ⊗ 1𝑌 , 𝑚) = R(|𝑚 | , Id𝑌 )𝑚

as desired.

Finally, we check that this assignment is inverse to the one 𝜌𝑒
𝐿
(𝑎 ⊗ 𝑏, 𝑚) := 𝜌𝑅(𝜌𝐿(𝑎, 𝑚), 𝑏).

Per usual, one direction is rigged to work: we have

𝜌𝐿(𝑎, 𝑚) = R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1𝜌𝑒𝐿(𝑎 ⊗ 1𝑌 , 𝑚) = R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1𝜌𝑅(𝜌𝐿(𝑎, 𝑚), 1𝑌 ) = 𝜌𝐿(𝑎, 𝑚),

since
��𝜌𝐿(𝑎, 𝑚)

�� = |𝑚 | ◦ |𝑎 |, and

𝜌𝑅(𝑚, 𝑏) = L(Id𝑋 ,|𝑚 |)−1𝜌𝑒𝐿(1𝑋 ⊗ 𝑏, 𝑚) = L(Id𝑋 ,|𝑚 |)−1𝜌𝑅(𝜌𝐿(1𝑋 , 𝑚), 𝑏) = 𝜌𝑅(𝑚, 𝑏).
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For the other direction, we have to assume that the unitors are the typical ones induced by 𝛼. We

assume the relevant gradings fit into the diagram

𝑊 𝑋 𝑌 𝑍
|𝑎 |

Id𝑊

|𝑚 | |𝑎′ |

Id𝑌

First, we compute

𝜌𝑒𝐿(𝑎 ⊗ 𝑏, 𝑚) = 𝜌𝑅(𝜌𝐿(𝑎, 𝑚), 𝑏)

= L(Id𝑊 ,|𝑚 | ◦ |𝑎 |)−1𝜌𝑒𝐿(1𝑊 ⊗ 𝑏, 𝜌𝐿(𝑎, 𝑚))

= L(Id𝑊 ,|𝑚 | ◦ |𝑎 |)−1R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1𝜌𝑒𝐿(1𝑊 ⊗ 𝑏, 𝜌𝑒𝐿(𝑎 ⊗ 1𝑌 , 𝑚))

= L(Id𝑊 ,|𝑚 | ◦ |𝑎 |)−1R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1Δ(|1𝑊 ⊗ 𝑏 | ,|𝑎 ⊗ 1𝑌 | ,|𝑚 |)−1

𝜌𝑒𝐿(𝜇𝐴⊗𝐵op(1𝑊 ⊗ 𝑏, 𝑎 ⊗ 1𝑌 ), 𝑚)

= L(Id𝑊 ,|𝑚 | ◦ |𝑎 |)−1R(|𝑚 | ◦ |𝑎 | , Id𝑌 )−1Δ(|1𝑊 ⊗ 𝑏 | ,|𝑎 ⊗ 1𝑌 | ,|𝑚 |)−1L(Id𝑊 ,|𝑎 |)

L(Id𝑌 ,|𝑏 |) 𝜌𝑒𝐿(𝑎 ⊗ 𝑏, 𝑚)

where all gradings are taken in C, apart from the first two entries of Δ as per usual. Now we rewrite

all the terms of the last line in terms of the associator to get the product

𝛼(Id𝑊 , Id𝑊 ,|𝑚 | ◦ |𝑎 |)︸                       ︷︷                       ︸
(∗)

𝛼(|𝑚 | ◦ |𝑎 | , Id𝑌 , Id𝑌 )−1︸                         ︷︷                         ︸
(∗∗)

𝛼(Id𝑊 ,|𝑎 | ,|𝑚 |)−1︸                  ︷︷                  ︸
(∗)

𝛼(|𝑚 | ◦ |𝑎 | , Id𝑌 ,|𝑏 |)︸                    ︷︷                    ︸
(∗∗)

𝛼(Id𝑊 ,|𝑚 | ◦ |𝑎 | , Id𝑌 )−1︸                          ︷︷                          ︸
(∗∗∗)

𝛼(Id𝑊 , Id𝑊 ,|𝑎 |)−1︸                  ︷︷                  ︸
(∗)

𝛼(Id𝑌 , Id𝑌 ,|𝑏 |)−1︸                 ︷︷                 ︸
(∗∗)

Then, the terms labeled (∗) cancel by (ii) of Lemma 9.0.1, the terms labeled (∗∗) cancel by (iv) of

Lemma 9.0.1, and the term labeled (∗ ∗ ∗) is trivial by (i) of Lemma 9.0.1. □

We note that one can define C-graded right 𝐴 ⊗ 𝐵op-modules similarly, and it follows from the

arguments above that they are equivalent to the notion of C-graded (𝐴, 𝐴)-modules.
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9.2 A C-graded bar resolution

We will use the following trivial example of a grading category to define C-graded differentially

graded objects.

Example 9.2.1. Consider the category Z := 𝐵Z with a single object ★ and HomZ(★,★) = Z.

ExtendZ to a grading category trivially: that is, take 𝛼 ≡ 1. Thus, for the grading category (Z, 1),

a Z-graded object is the same thing as a Z-graded object. In general, if 𝐵𝐺 denotes the category

with a single object ★ and Hom𝐵𝐺(★,★) = 𝐺 for 𝐺 a group, then we recover grading by arbitrary

groups, as defined by Albequerque and Majid [AM99].

In addition, we will see that specializing C toZ will recover the ordinary Hochschild homology.

Definition 9.2.2. A C-graded DG-(𝐴, 𝐵)-bimodule is a pair (𝑀, 𝜕𝑀) of a Z × C-graded (𝐴, 𝐵)-

bimodule 𝑀 =
⊕

𝑛∈Z,𝑔∈Mor(C) 𝑀
𝑛
𝑔 and a K-linear map 𝜕𝑀 : 𝑀 → 𝑀 , called the differential,

satisfying the following:

(DG.I) 𝜕𝑀(𝑀𝑛
𝑔 ) ⊂ 𝑀𝑛−1

𝑔 ;

(DG.II) 𝜕𝑀(𝜌𝐿(𝑎, 𝑚)) = 𝜌𝐿(𝑎, 𝜕𝑀(𝑚));

(DG.III) 𝜕𝑀(𝜌𝑅(𝑚, 𝑏)) = 𝜌𝑅(𝜕𝑀(𝑚), 𝑏);

(DG.IV) 𝜕𝑀 ◦ 𝜕𝑀 = 0,

for each 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, and 𝑚 ∈ 𝑀 . If 𝑚 ∈ 𝑀 is homogeneous with |𝑚 | = (|𝑚 |Z ,|𝑚 |C), we call

|𝑚 |Z ∈ Z the homological degree of 𝑚. We call (𝑀, 𝜕𝑀) a C-graded chain complex if 𝐴 = 𝐵 = 𝐼C ,

so that the left- and right-actions are just scalar multiplication.

A C-graded left DG-𝐴 ⊗ 𝐵op-module is a pair (𝑀, 𝜕𝑀) of aZ×C-graded left 𝐴 ⊗ 𝐵op-module

which is defined exactly the same way, except that axioims (DG.II) and (DG.III) are replaced by

the single axiom

(DG.II’) 𝜕𝑀(𝜌𝐿(𝑎 ⊗ 𝑏, 𝑚)) = 𝜌𝐿(𝑎 ⊗ 𝑏, 𝜕𝑀(𝑚)).
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Axiom (DG.I) says that the differential decreases homological degree by 1 and doesn’t have

an effect on C-degree. For clarity, we note that we could have just as easily defined C-graded

DG-(𝐴, 𝐵)-bimodules where axiom (DG.I) is replaced with the requirement that 𝜕𝑀(𝑀𝑛
𝑔 ) ⊂ 𝑀𝑛+1

𝑔

(see, for example, Definition 4.24 of [NP20]). The offered definition simply agrees with usual

conventions for the bar resolution, defined shortly. Finally, note that, given a C-graded DG-(𝐴, 𝐵)-

bimodule (𝑀, 𝜕𝑀), its homology 𝐻(𝑀, 𝜕𝑀) = ker(𝜕𝑀)/im(𝜕𝑀) is aZ × C-graded bimodule.

Proposition 9.2.3. Suppose 𝐴 and 𝐵 are C-graded algebras, and that the unitors of ModC are

the typical unitors induced by 𝛼. Then every C-graded left DG-𝐴 ⊗ 𝐵op-module can be given the

structure of a C-graded DG-(𝐴, 𝐵)-bimodule, and vice-versa.

Proof. This is a direct consequence of Proposition 9.1.8 and the proof thereof. It is an easy exercise,

left to the reader, to verify that the actions defined there satisfy the new conditions. □

Let 𝐴 be a C-graded algebra. We introduce the bar resolution B(𝐴) of 𝐴 as a primary example

of a C-graded DG-(𝐴, 𝐴)-bimodule. As a complex, it takes the following form.

B(𝐴) := · · · (𝐴 ⊗ 𝐴) ⊗ 𝐴 𝐴 ⊗ 𝐴 0

with differential 𝜕 : 𝐴⊗(𝑛+2) → 𝐴⊗(𝑛+1) given by

𝜕(𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1) =
𝑛∑︁
𝑖=0

(−1)𝑖𝛼(|𝑎𝑖−1 | ◦ · · · ◦|𝑎0 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)𝑎0 ⊗ · · · ⊗ 𝜇𝐴(𝑎𝑖, 𝑎𝑖+1)⊗ · · · ⊗ 𝑎𝑛+1

where we fix 𝛼(∅,|𝑎0 | ,|𝑎1 |) = 1 in the 𝑖 = 0 summand. The tensor product in 𝐴⊗𝑛 is the monoidal

product of ModC; in particular, 𝐴⊗𝑛 is C-graded. We will view B(𝐴) asZ × C-graded taking

|𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1 |Z×C = (𝑛 + 1,|𝑎𝑛+1 |C ◦ · · · ◦ |𝑎1 |C ◦|𝑎0 |C).

Then, we have that (B(𝐴), 𝜕) satisfies (DG.I) clearly.

Lemma 9.2.4. If 𝐴 is a C-graded algebra, B(𝐴) is a chain complex; that is, 𝜕 ◦ 𝜕 = 0.

Proof. Consider 𝜕(𝜕(𝑎0 ⊗ · · · ⊗ 𝑎𝑛+1). We will denote summands in the ensuing expansion by

pairs (𝑖, 𝑗), for 𝑖 = 0, 1, . . . , 𝑛 coming from the first differential and 𝑗 = 0, 1, . . . 𝑛 − 1 coming from
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the second. Then, fixing 𝑖 ≤ 𝑗 , observe that in the proof that the original bar complex is a chain

complex, the (𝑖, 𝑗) summand cancels with the ( 𝑗 + 1, 𝑖) summand. We claim that this is also how

terms cancel in the C-graded setting. Thus, since the signs are as they appear in the original setting,

we do not need to keep track of them. There are three cases to consider.

The first is when (𝑖, 𝑗) = (0, 0). This term is always

𝜇(𝜇(𝑎0, 𝑎1), 𝑎2) ⊗ 𝑎3 ⊗ · · · ⊗ 𝑎𝑛+1

and it clearly cancels with the ( 𝑗 + 1, 𝑖) = (1, 0) term

𝛼(|𝑎0 | ,|𝑎1 | ,|𝑎2 |)𝜇(𝑎0, 𝜇(𝑎1, 𝑎2)) ⊗ 𝑎3 ⊗ · · · ⊗ 𝑎𝑛+1.

For the second case, assume that 𝑖 < 𝑗 . Then the (𝑖, 𝑗) term is

𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)𝛼(
��𝑎 𝑗 �� ◦ · · · ◦��𝜇(𝑎𝑖, 𝑎𝑖+1)

�� ◦ · · · ◦ |𝑎0 | ,
��𝑎 𝑗+1�� ,��𝑎 𝑗+2��)

times 𝑎0 ⊗ · · · ⊗ 𝜇(𝑎𝑖, 𝑎𝑖+1) ⊗ · · · ⊗ 𝜇(𝑎 𝑗+1, 𝑎 𝑗+2) ⊗ · · · ⊗ 𝑎𝑛+1. The ( 𝑗 + 1, 𝑖) term is clearly alike,

with coefficient

𝛼(
��𝑎 𝑗 �� ◦ · · · ◦ |𝑎0 | ,

��𝑎 𝑗+1�� ,��𝑎 𝑗+2��)𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)

Thus, these two terms cancel, as
��𝜇(𝑎𝑖, 𝑎𝑖+1)

�� = |𝑎𝑖+1 | ◦ |𝑎𝑖 |.
Finally, suppose that 𝑖 = 𝑗 > 0. Then, the (𝑖, 𝑖)-term is

𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,
��𝜇(𝑎𝑖, 𝑎𝑖+1)

�� ,|𝑎𝑖+2 |)
times 𝑎0 ⊗ · · · ⊗ 𝜇(𝜇(𝑎𝑖, 𝑎𝑖+1), 𝑎𝑖+2) ⊗ · · · ⊗ 𝑎𝑛+1, and the (𝑖 + 1, 𝑖)-term is

𝛼(|𝑎𝑖 | ◦ |𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖+1 | ,|𝑎𝑖+2 |)𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 | ,
��𝜇(𝑎𝑖+1, 𝑎𝑖+2)

��)
times 𝑎0 ⊗ · · · ⊗ 𝜇(𝑎𝑖, 𝜇(𝑎𝑖+1, 𝑎𝑖+2)) ⊗ · · · ⊗ 𝑎𝑛+1. Write 𝑓 = |𝑎𝑖−1 | ◦ · · · ◦|𝑎0 |, 𝑔 = |𝑎𝑖 |, ℎ = |𝑎𝑖+1 | and

ℓ = |𝑎𝑖+2 |. Then, the cocycle relation 𝑑𝛼( 𝑓 , 𝑔, ℎ, ℓ) = 1 implies that these two terms are equivalent,

since

𝜇(𝜇(𝑎𝑖, 𝑎𝑖+1), 𝑎𝑖+2) = 𝛼(|𝑎𝑖 | ,|𝑎𝑖+1 | ,|𝑎𝑖+2 |)𝜇(𝑎𝑖, 𝜇(𝑎𝑖+1, 𝑎𝑖+2)).

This concludes the proof. □
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Suppose 𝑎, 𝑎0, 𝑎1, . . . , 𝑎𝑛+1 ∈ 𝐴. We define the following values: let

Φ(|𝑎 | ,|𝑎0 | ,|𝑎1 | , . . . ,|𝑎𝑛+1 |) :=
𝑛+1∏
𝑖=1

𝛼(|𝑎 | ,|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 |)−1

and

Ψ(|𝑎0 | , . . . ,|𝑎𝑛 | ,|𝑎𝑛+1 | ,|𝑎 |) := 𝛼(|𝑎𝑛 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛+1 | ,|𝑎 |).

Proposition 9.2.5. If 𝐴 is a C-graded algebra, (B(𝐴), 𝜕) is a C-graded DG-(𝐴, 𝐴)-bimodule, with

left-action

𝜌𝐿(𝑎, 𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1) := Φ(|𝑎 | ,|𝑎0 | ,|𝑎1 | , . . . ,|𝑎𝑛+1 |)𝜇𝐴(𝑎, 𝑎0) ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1

and right-action

𝜌𝑅(𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1, 𝑎) := Ψ(|𝑎0 | , . . . ,|𝑎𝑛 | ,|𝑎𝑛+1 | ,|𝑎 |)𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝜇𝐴(𝑎𝑛+1, 𝑎).

Proof. After Lemma 9.2.4, we need to verify axioms (B.I)–(B.IV) and axioms (DG.II) and (DG.III).

Like many proofs to this point, the argument is straightforward, but tedious. We’ll verify the more

difficult (B.I), (B.III), and (DG.II), leaving the rest to the reader. These three are more tedious

because of the involvement of the right-action.

For (B.I), we must show that

𝜌𝐿(𝜇(𝑎, 𝑎′), 𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1) = Φ(
��𝜇(𝑎, 𝑎′)

�� ,|𝑎0 | , . . . ,|𝑎𝑛+1 |)𝜇(𝜇(𝑎, 𝑎′), 𝑎0) ⊗ 𝑎1 ⊗ . . . ⊗ 𝑎𝑛+1

is equal to

𝛼(|𝑎 | ,
��𝑎′�� ,|𝑎0 ⊗ · · · ⊗ 𝑎𝑛+1 |)𝜌𝐿(𝑎, 𝜌𝐿(𝑎′, 𝑎0 ⊗ . . . ⊗ 𝑎𝑛+1))

= 𝛼(|𝑎 | ,
��𝑎′�� ,|𝑎0 ⊗ · · · ⊗ 𝑎𝑛+1 |)Φ(|𝑎 | ,

��𝜇(𝑎′, 𝑎0)
�� ,|𝑎1 | , . . . ,|𝑎𝑛+1 |)Φ(

��𝑎′�� ,|𝑎0 | , . . . ,|𝑎𝑛+1 |)

𝜇(𝑎, 𝜇(𝑎′, 𝑎0)) ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1

Thus, it suffices to prove that

𝛼(|𝑎 | ,
��𝑎′�� ,|𝑎0 ⊗ · · · ⊗ 𝑎𝑛+1 |)×

Φ(
��𝜇(𝑎, 𝑎′)

�� ,|𝑎0 | , . . . ,|𝑎𝑛+1 |)−1Φ(|𝑎 | ,
��𝜇(𝑎′, 𝑎0)

�� ,|𝑎1 | , . . . ,|𝑎𝑛+1 |)Φ(
��𝑎′�� ,|𝑎0 | , . . . ,|𝑎𝑛+1 |)
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is equal to 𝛼(|𝑎 | ,|𝑎′| ,|𝑎0 |). This can be seen via an iterative process. Start with the “𝑛 + 1” terms

from the expansions of each of the Φ products. These look like

𝛼(
��𝑎′�� ◦|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦|𝑎0 | ,|𝑎𝑛+1 |)𝛼(|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦|𝑎0 | ◦

��𝑎′�� ,|𝑎𝑛+1 |)−1𝛼(
��𝑎′�� ,|𝑎𝑛 | ◦ · · · ◦|𝑎0 | ,|𝑎𝑛+1 |)−1.

Taking 𝑓 = |𝑎 |, 𝑔 = |𝑎′|, ℎ = |𝑎𝑛 | ◦ · · · ◦ |𝑎0 |, and ℓ = |𝑎𝑛+1 |, inspecting the cocycle relation for

𝑑𝛼( 𝑓 , 𝑔, ℎ, ℓ), we see that the above is equal to

𝛼(|𝑎 | ,
��𝑎′�� ,|𝑎𝑛+1 | ◦ |𝑎𝑛 | ◦ · · · ◦ |𝑎0 |)−1𝛼(|𝑎 | ,

��𝑎′�� ,|𝑎𝑛 | ◦ |𝑎𝑛−1 | ◦ · · · ◦ |𝑎0 |).

On one hand, the first term cancels with the original 𝛼(|𝑎 | ,|𝑎′| ,|𝑎0 ⊗ · · · ⊗ 𝑎𝑛+1 |) term. On the

other, consider the product of the second term with the “𝑛” terms from the Φ-expansions: these

look like

𝛼(
��𝑎′�� ◦|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦|𝑎0 | ,|𝑎𝑛+1 |)𝛼(|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦|𝑎0 | ◦

��𝑎′�� ,|𝑎𝑛+1 |)−1𝛼(
��𝑎′�� ,|𝑎𝑛 | ◦ · · · ◦|𝑎0 | ,|𝑎𝑛+1 |)−1.

Then, taking 𝑓 = |𝑎 |, 𝑔 = |𝑎′|, ℎ = |𝑎𝑛−1 |◦· · ·◦|𝑎0 |, and ℓ = |𝑎𝑛 |, the cocycle relation for 𝑑𝛼( 𝑓 , 𝑔, ℎ, ℓ)

tells us that this product is equal to

𝛼(|𝑎 | ,
��𝑎′�� ,|𝑎𝑛−1 | ◦ |𝑎𝑛−2 | ◦ · · · ◦ |𝑎0 |).

To conclude the proof, iterate this process, which terminates with leftover term 𝛼(|𝑎 | ,|𝑎′| ,|𝑎0 |).

The proof of (B.II) is far easier given that Ψ is expressed by only one 𝛼 term. It follows by only

one application of the cocycle relation. Similarly, though there are more terms, the proof of (B.III)

requires only one application of the cocycle relation. Both are left to the reader.

The proof of the first part of (B.IV) requires an iteration. By definition, we have

𝜌𝐿(1𝑋 , 𝑎0 ⊗ · · · ⊗ 𝑎𝑛+1) = Φ(Id𝑋 ,|𝑎0 | , . . . ,|𝑎𝑛+1 |)𝜇(1𝑋 , 𝑎0) ⊗ 𝑎1 ⊗ . . . ⊗ 𝑎𝑛+1

= Φ(Id𝑋 ,|𝑎0 | , . . . ,|𝑎𝑛+1 |)L(Id𝑋 ,|𝑎0 |)𝑎0 ⊗ · · · ⊗ 𝑎𝑛+1
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By assumption, L(Id𝑋 ,|𝑎0 |) = 𝛼(Id𝑋 , Id𝑋 ,|𝑎0 |)−1. Expanding Φ, we have

𝛼(Id𝑋 ,|𝑎𝑛 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛+1 |)−1 · · · 𝛼(Id𝑋 ,|𝑎1 | ◦ |𝑎0 | ,|𝑎2 |)−1𝛼(Id𝑋 ,|𝑎0 | ,|𝑎1 |)−1𝛼(Id𝑋 , Id𝑋 ,|𝑎0 |)−1

= 𝛼(Id𝑋 ,|𝑎𝑛 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛+1 |)−1 · · · 𝛼(Id𝑋 ,|𝑎1 | ◦ |𝑎0 | ,|𝑎2 |)−1𝛼(Id𝑋 , Id𝑋 ,|𝑎1 | ◦ |𝑎0 |)
...

= 𝛼(Id𝑋 , Id𝑋 ,|𝑎𝑛+1 | ◦ · · · ◦ |𝑎0 |)−1

= L(Id𝑋 ,|𝑎0 | ⊗ · · · ⊗ |𝑎𝑛+1 |)

by iterative applications of (ii) from Lemma 9.0.1. Similarly, the proof of the second half of (B.IV)

follows from a single application of (iii) from Lemma 9.0.1

We proceed to proving the DG-axioms. As noted earlier, (DG.I) is immediate, and (DG.IV) is

Lemma 9.2.4. Checking (DG.II) directly, we compute that

𝜕(𝜌𝐿(𝑎, 𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1))

= 𝛼(|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛+1 |)−1𝛼(|𝑎 | ,|𝑎𝑛−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛 |)−1 · · · 𝛼(|𝑎 | ,|𝑎0 | ,|𝑎1 |)−1

𝜕(𝜇(𝑎, 𝑎1) ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1)

= 𝛼(|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛+1 |)−1𝛼(|𝑎 | ,|𝑎𝑛−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛 |)−1 · · · 𝛼(|𝑎 | ,|𝑎0 | ,|𝑎1 |)−1

𝜇(𝜇(𝑎, 𝑎0), 𝑎1) ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛+1

+ 𝛼(|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛+1 |)−1𝛼(|𝑎 | ,|𝑎𝑛−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛 |)−1 · · · 𝛼(|𝑎 | ,|𝑎0 | ,|𝑎1 |)−1

𝑛∑︁
𝑖=1

(−1)𝑖𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ◦ |𝑎 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)𝜇(𝑎, 𝑎0) ⊗ · · · ⊗ 𝜇(𝑎𝑖, 𝑎𝑖+1); ⊗ · · · ⊗ 𝑎𝑛+1.

On the other hand,

𝜌𝐿(𝑎, 𝜕(𝑎0 ⊗ 𝑎1 ⊗ · · · ⊗ 𝑎𝑛+1))

= 𝜌𝐿(𝑎, 𝜇(𝑎0, 𝑎1) ⊗ · · · ⊗ 𝑎𝑛+1)

+
𝑛∑︁
𝑖=1

(−1)𝑖𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)𝜌𝐿(𝑎, 𝑎0 ⊗ · · · ⊗ 𝜇(𝑎𝑖, 𝑎𝑖+1) ⊗ · · · ⊗ 𝑎𝑛+1)
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which is equal to

𝛼(|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛+1 |)−1𝛼(|𝑎 | ,|𝑎𝑛−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛 |)−1 · · · 𝛼(|𝑎 | ,|𝑎1 | ◦ |𝑎0 | ,|𝑎2 |)−1

𝜇(𝑎, 𝜇(𝑎0, 𝑎1)) ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛+1

+
𝑛∑︁
𝑖=1

(−1)𝑖𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)𝛼(|𝑎 | ,|𝑎𝑛 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑛+1 |)−1 · · ·

𝛼(|𝑎 | ,|𝑎𝑖+1 | ◦ |𝑎𝑖 | ◦ |𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖+2 |)−1𝛼(|𝑎 | ,|𝑎𝑖−1 | ◦ · · ·|𝑎0 | ,|𝑎𝑖+1 | ◦ |𝑎𝑖 |)−1

𝛼(|𝑎 | ,|𝑎𝑖−2 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖−1 |)−1 · · · 𝛼(|𝑎 | ,|𝑎0 | ,|𝑎1 |)−1𝜇(𝑎, 𝑎0) ⊗ · · · ⊗ 𝜇(𝑎𝑖, 𝑎𝑖+1) ⊗ · · · ⊗ 𝑎𝑛+1

There are two cases to consider. First, observe that the coefficients leading the 𝑖 = 0 summands

in both expansions are exactly the same outside of the 𝛼(|𝑎 | ,|𝑎0 | ,|𝑎1 |)−1 appearing in front of the

first, but not the second. But this is as we hoped, as

𝜇(𝜇(𝑎, 𝑎0), 𝑎1) ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛+1 = 𝛼(|𝑎 | ,|𝑎0 | ,|𝑎1 |)𝜇(𝑎, 𝜇(𝑎0, 𝑎1)) ⊗ 𝑎2 ⊗ · · · ⊗ 𝑎𝑛+1.

In the second case, we can consider any of the summands when 𝑖 ≥ 1. The coefficients of these

summands are exactly the same outside of the appearance of the terms

𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)𝛼(|𝑎 | ,|𝑎𝑖 | ◦ |𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖+1 |)−1𝛼(|𝑎 | ,|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 |)−1

appearing in the first expansion, and the terms

𝛼(|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖 | ,|𝑎𝑖+1 |)𝛼(|𝑎 | ,|𝑎𝑖−1 | ◦ · · · ◦ |𝑎0 | ,|𝑎𝑖+1 | ◦ |𝑎𝑖 |)−1

appearing tin the second. However, these values are equivalent by the cocycle condition. The proof

of (DG.III) is similar but much less tedious, and is left to the reader. □

Remark 9.2.6. The Φ and Ψ terms are decided naturally by the following processes. The Φ term is

chosen by following the path.

𝑎(((𝑎0𝑎1)𝑎2) · · · 𝑎𝑛) (𝑎((𝑎0𝑎1)𝑎2) · · · )𝑎𝑛 · · · (((𝑎(𝑎0𝑎1))𝑎2) · · · 𝑎𝑛)

((((𝑎𝑎0)𝑎1)𝑎2) · · · )𝑎𝑛

𝛼−1

Φ

𝛼−1 𝛼−1

𝛼−1

Accordingly, the Ψ term is much simpler, since the necessary path is of length one.

Ψ:((((𝑎0𝑎1)𝑎2) · · · )𝑎𝑛)𝑎′ (((𝑎0𝑎1)𝑎2) · · · )(𝑎𝑛𝑎′)𝛼
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9.3 The universal trace and C-graded Hochschild homology

Recall that, in general, the Hochschild homology of an algebra 𝐴 with coefficients in and

(𝐴, 𝐴)-bimodule 𝑀 can be taken as the homology of the complex

B(𝐴) ⊗𝐴⊗𝐴op 𝑀.

Naisse and Putyra [NP20] describe the tensor product of twoC-graded modules over an intermediary

algebra. Suppose 𝐴, 𝐵, and 𝐶 are C-graded algebras, and that 𝑀 is a C-graded (𝐴, 𝐵)-bimodule

and 𝑁 is a C-graded (𝐵,𝐶)-bimodule. We view 𝑀 ⊗ 𝑁 as a C-graded (𝐴,𝐶)-bimodule by defining

actions

𝐴 ⊗ (𝑀 ⊗ 𝑁) 𝑀 ⊗ 𝑁

(𝐴 ⊗ 𝑀) ⊗ 𝑁
𝛼−1

𝜌𝑀⊗𝑁
𝐿

𝜌𝑀
𝐿
⊗1𝑁

and
(𝑀 ⊗ 𝑁) ⊗ 𝐶 𝑀 ⊗ 𝑁

𝑀 ⊗ (𝑁 ⊗ 𝐶)
𝛼

𝜌𝑀⊗𝑁
𝑅

1𝑀⊗𝜌𝑁𝑅

We define the tensor product of 𝑀 and 𝑁 over the intermediary algebra 𝐵 as

𝑀 ⊗𝐵 𝑁 := 𝑀 ⊗ 𝑁/
Ä
𝜌𝑀𝑅 (𝑚, 𝑏) ⊗ 𝑛 − 𝛼(|𝑚 | ,|𝑏 | ,|𝑛|)𝑚 ⊗ 𝜌𝑁𝐿 (𝑏, 𝑛)

ä
for any 𝑚 ∈ 𝑀 , 𝑏 ∈ 𝐵, and 𝑛 ∈ 𝑁 . The C-graded (𝐴,𝐶)-bimodule structure on 𝑀 ⊗ 𝑁 induces one

on 𝑀 ⊗𝐵 𝑁 . Finally, if 𝑀 and 𝑁 are C-graded DG-bimodules, we define their tensor product over

𝐵 as

(𝑀, 𝜕𝑀) ⊗𝐵 (𝑁, 𝜕𝑁 ) := (𝑀 ⊗𝐵 𝑁, 𝜕⊗)

where

𝜕⊗(𝑚 ⊗ 𝑛) := 𝜕𝑀(𝑚) ⊗ 𝑛 + (−1)|𝑚 |Z𝑚 ⊗ 𝜕𝑁 (𝑛).

The issue with ⊗𝐴⊗𝐴op is that 𝐴 ⊗ 𝐴op is not canonically C-graded, but C × Cop-graded.

Explicitly, to define a tensor product over 𝐴 ⊗ 𝐴op, we would like to take the coequalizer of the

diagram, where 𝑀 (resp. 𝑁) is a C-graded right (resp. left) 𝐴 ⊗ 𝐴op-module.(
𝑀 × (𝐴 ⊗ 𝐴op)

)
⊗ 𝑁

𝑀 ⊗ 𝑁

𝑀 ⊗
(
(𝐴 ⊗ 𝐴op) × 𝑁

)

𝜌𝑒
𝑅
⊗1𝑁

Θ

1𝑀⊗𝜌𝑒𝐿
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However, the connecting map Θ cannot be as simple as 𝛼: in the tensor product over 𝐴 ⊗ 𝐴op, we

hope to identify

𝜌𝑒𝑅(𝑚, 𝑎 ⊗ 𝑎′) ⊗ 𝑛 ∼ 𝑚 ⊗ 𝜌𝑒𝐿(𝑎 ⊗ 𝑎′, 𝑛)

up to some witness Θ. However the former has grading

|𝑛| ◦ |𝑎 | ◦ |𝑚 | ◦
��𝑎′��

while the latter has grading ��𝑎′�� ◦|𝑛| ◦ |𝑎 | ◦ |𝑚 | .
We see this as having two consequences. First, this means that the gradings of the elements

involved must form a loop of length four:

•

•

•

•

|𝑎 |

|𝑛||𝑎′|

|𝑚 |

else they are killed in the tensor over 𝐴⊗ 𝐴op. More interestingly, this also means that 𝑀 ⊗𝐴⊗𝐴op 𝑁 ,

if it is definable, is not C-graded, but rather graded by the universal trace of C:

Tr(C) :=
∐

𝑋∈Ob(C)
EndC(𝑋)

/
𝑔 ◦ 𝑓 ∼ 𝑓 ◦ 𝑔.

Remark 9.3.1. The first of the two consequences is interesting, as it means that the “size” of the

tensor product over 𝐴 ⊗ 𝐴op (and, thus, the Hochschild homology) in the C-graded setting depends

largely on the abundance of loops in C. Notice that this doesn’t have any impact on the Z- or

𝐺-graded settings, as all paths are loops in 𝐵𝐺, thus nothing “extra” dies in the tensor.

Fix a grading category (C, 𝛼). There is a canonical quotient map

𝑞 :
∐

𝑋∈ob(C)
EndC(𝑋)→ Tr(C).
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We’ll write 𝑋̂ := 𝑞 |EndC(𝑋) to denote the components of 𝑞. By the definition of the universal trace,

we have that the diagram

HomC(𝑋,𝑌 ) × HomC(𝑌, 𝑋) HomC(𝑌, 𝑋) × HomC(𝑋,𝑌 )

EndC(𝑋) EndC(𝑌 )

Tr(C)

◦ ◦

𝑋̂ 𝑌

(9.3.1)

commutes; in other words, for 𝑓 ∈ HomC(𝑋,𝑌 ) and 𝑔 ∈ HomC(𝑌, 𝑋), 𝑞(𝑔 ◦ 𝑓 ) = 𝑞( 𝑓 ◦ 𝑔). To

extend to grading categories, we need a witness to the above diagram, extending the role played by

the associator 𝛼. Let Ω𝑛C denote paths of length 𝑛 in C which form loops.

Definition 9.3.2. A looper for a grading category (C, 𝛼) is a function 𝜀 : Ω2C → K× for which

(i) 𝜀( 𝑓 , 𝑔)−1 = 𝜀(𝑔, 𝑓 ), and

(ii) 𝜀 is coherent with 𝛼; that is, if ℎ ◦ 𝑔 ◦ 𝑓 is a loop of length three in C, then

𝛼( 𝑓 , 𝑔, ℎ)𝜀( 𝑓 , ℎ ◦ 𝑔)𝛼(𝑔, ℎ, 𝑓 )𝜀(𝑔, 𝑓 ◦ ℎ)𝛼(ℎ, 𝑓 , 𝑔)𝜀(ℎ, 𝑔 ◦ 𝑓 ) = 1 (9.3.2)

If such an 𝜀 exists, we say that (C, 𝛼) admits a looper.

𝑍𝑍

𝑌
𝑌

𝑋
𝑋

𝑔

𝑓

ℎ

𝑍𝑍

𝑌
𝑌

𝑔

𝑓
◦ ℎ

𝑍𝑍

𝑋
𝑋

𝑔 ◦
𝑓

ℎ

𝑌
𝑌

𝑋
𝑋

𝑓

ℎ ◦ 𝑔

𝑍𝑍

𝑔 ◦ 𝑓 ◦ ℎ

𝑌
𝑌

𝑓 ◦ ℎ ◦ 𝑔

𝑋
𝑋

ℎ ◦ 𝑔 ◦ 𝑓

𝛼(𝑔, ℎ, 𝑓 )

◦

◦

◦

◦

◦

◦

◦

◦

◦

𝑍̂

𝑌

𝑋̂𝛼( 𝑓 , 𝑔, ℎ)

𝛼(ℎ, 𝑓 , 𝑔) 𝜀(𝑔, 𝑓 ◦ ℎ)

𝜀( 𝑓 , ℎ ◦ 𝑔)

𝜀(ℎ, 𝑔 ◦ 𝑓 )
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The the formula (9.3.2) above is called 𝛼-𝜀 coherence. It comes from the observation that the

choices in “smoothing” a loop should be witnessed, and that the choice should ultimately be

coherent with other choices. We view 𝛼-𝜀 coherence as instructions on the preceding cube, starting

at the dotted path. As a natural extension of 𝛼 for loops, 𝛼-𝜀 coherence states that the following

hexagon commutes:

(ℎ ◦ 𝑔) ◦ 𝑓 𝑓 ◦ (ℎ ◦ 𝑔)

ℎ ◦ (𝑔 ◦ 𝑓 ) ( 𝑓 ◦ ℎ) ◦ 𝑔

(𝑔 ◦ 𝑓 ) ◦ ℎ 𝑔 ◦ ( 𝑓 ◦ ℎ)

𝜀( 𝑓 , ℎ◦𝑔)

𝛼(𝑔, ℎ, 𝑓 )𝛼( 𝑓 , 𝑔, ℎ)

𝜀(𝑔, 𝑓 ◦ℎ)𝜀(ℎ, 𝑔◦ 𝑓 )

𝛼(ℎ, 𝑓 , 𝑔)

It is very useful to encode the binary matchings above via pictures, as so:

•

••
𝑓

𝑔

ℎ

•

••
𝑓

𝑔

ℎ
•

••
𝑓

𝑔

ℎ

•

••
𝑓

𝑔

ℎ

•

••
𝑓

𝑔

ℎ
•

••
𝑓

𝑔

ℎ

𝛼( 𝑓 , 𝑔, ℎ)

𝜀( 𝑓 , ℎ ◦ 𝑔)

𝛼(𝑔, ℎ, 𝑓 )

𝜀(𝑔, 𝑓 ◦ ℎ)

𝛼(ℎ, 𝑓 , 𝑔)

𝜀(ℎ, 𝑔 ◦ 𝑓 )

Definition 9.3.3. We will call an element of Ω𝑛C an 𝑛-partitioning of a loop it represents in Tr(C).

A presentation of an 𝑛-partition with a choice of 𝑛 − 1 binary matchings (frequently depicted as

above) is called a topography on the 𝑛-partitioned loop. Denote the set of topographies on an

arbitrary 𝑛-partition by 𝑇(𝑛).

Lemma 9.3.4. Counting from one, the number of topographies on an 𝑛-partitioned loop is the 𝑛th

central binomial coefficient:

|𝑇(𝑛)| =
Ç

2(𝑛 − 1)
𝑛 − 1

å
.
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Proof. Choose a basepoint of an 𝑛-partitioned loop (there are 𝑛 choices). Doing so represents that

loop as an element of EndC(𝑋) for some 𝑋 ∈ ob(C). Then, a choice of binary matchings after this

first choice is equivalent to the number of distinct full binary trees on 𝑛 leaves, which is equal to

the 𝑛 − 1st Catalan number. Thus |𝑇(𝑛)| = 𝑛 · 𝐶𝑛−1 =
(2(𝑛−1)
𝑛−1

)
, as desired. □

The witnesses 𝛼 and 𝜀 satisfy another relation, which is perhaps obvious. This is, for paths

large enough (at least 5), there are squares appearing of the following form:

((𝑎(𝑏𝑐))𝑑)𝑒

(((𝑎𝑏)𝑐)𝑑)𝑒 (𝑎(𝑏𝑐))(𝑑𝑒)

((𝑎𝑏)𝑐)(𝑑𝑒)

𝛼(𝑐◦𝑏◦𝑎, 𝑑, 𝑒)

𝛼(𝑐◦𝑏◦𝑎, 𝑑, 𝑒)

𝛼(𝑎, 𝑏, 𝑐)

𝛼(𝑎, 𝑏, 𝑐)

Now, this diagram commutes by the well-definedness of 𝛼, and the fact that it takes values in

a commutative ring. We call this property distant commutativity for 𝛼. Similarly, there is 𝛼-𝜀

distant commutativity; for a loop partitioned into enough morphisms (at least four), diagrams of

the following form start to appear.

•

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔

𝛼( 𝑓 , 𝑔, ℎ)

𝜀(ℎ ◦ 𝑔 ◦ 𝑓 , ℓ)

𝜀(ℎ ◦ 𝑔 ◦ 𝑓 , ℓ)

𝛼( 𝑓 , 𝑔, ℎ)

We refer to both properties

𝛼(𝑎, 𝑏, 𝑐)𝛼(𝑐 ◦ 𝑏 ◦ 𝑎, 𝑑, 𝑒) = 𝛼(𝑐 ◦ 𝑏 ◦ 𝑎, 𝑑, 𝑒)𝛼(𝑎, 𝑏, 𝑐)

𝛼( 𝑓 , 𝑔, ℎ)𝜀(ℎ ◦ 𝑔 ◦ 𝑓 , ℓ) = 𝜀(ℎ ◦ 𝑔 ◦ 𝑓 , ℓ)𝛼( 𝑓 , 𝑔, ℎ)
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ambiguously as distant commutativity.

Definition 9.3.5. We denote by T (𝑛) the space of topographies associated to an arbitrary 𝑛-

partitioned loop, defined as the following 2-dimensional CW-complex:

1. T (𝑛)0 := 𝑇(𝑛);

2. T (𝑛)1 is an (𝑛−1)-valent graph with |𝑇(𝑛)|-many vertices corresponding to changing a single

binary matching (𝑛−2 correspond to a single application of 𝛼, and one of which corresponds

to a basepoint change, i.e., an application of 𝜀);

3. T (𝑛)2 = T (𝑛) is obtained by gluing 2-cells along all words corresponding to

a) the cocycle condition on 𝛼,

b) 𝛼-𝜀 coherence, or

c) distant commutativity.

Theorem 9.3.6. Assume that (C, 𝛼) is a grading category admitting a grading by its trace via a

looper 𝜀. Suppose that 𝐴 is a C-graded algebra and 𝑀 and 𝑁 are C-graded (𝐴, 𝐴)-bimodules,

interpreting 𝑀 as a right C-graded 𝐴 ⊗ 𝐴op-module and 𝑁 as a left C-graded 𝐴 ⊗ 𝐴op-module.

Assume Θ(|𝑚 | ,|𝑎 ⊗ 𝑎′|C×Cop ,|𝑛|) witnesses a path from

|𝑛| ◦
Ä(
|𝑎 | ◦ |𝑚 |

)
◦
��𝑎′��ä→ Ä��𝑎′�� ◦ (|𝑛| ◦ |𝑎 |)ä ◦|𝑚 |

or, in terms of topographies,

Θ(|𝑚 | ,|𝑎 ⊗ 𝑎′|C×Cop ,|𝑛|):
•
•

•
•

|𝑎 |

|𝑛 |
��𝑎′��
|𝑚 | •

•
•

•
|𝑎 |

|𝑛 |
��𝑎′��
|𝑚 |

Then, 𝑀 ⊗𝐴⊗𝐴op 𝑁 is a Tr(C)-graded module, where

𝑀 ⊗𝐴⊗𝐴op 𝑁 := 𝑀 ⊗ 𝑁
/ Ä
𝜌𝑒𝑅(𝑚, 𝑎 ⊗ 𝑎′) ⊗ 𝑛 −Φ(|𝑚 | ,

��𝑎 ⊗ 𝑎′��C×Cop ,|𝑛|)𝑚 ⊗ 𝜌𝑒𝐿(𝑎 ⊗ 𝑎′, 𝑛)
ä
.
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Proof. The result holds as long as the value Θ is well-defined. This holds as long as T (4) is simply

connected. We can compute that T (4) ≃ 𝑆2; see Figure 9.1. By Lemma 9.3.4, we know that T (4) is

a polyhedron with
(6

3
)
= 20 vertices. We count twelve faces: four square, four pentagonal, and four

hexagonal. Each square face is seen to commute by 𝛼-𝜀 distant commutativity, each pentagonal

face commutes by the cocycle condition, and each hexagonal face commutes by 𝛼-𝜀 coherence. □

Corollary 9.3.7. If (C, 𝛼) admits a looper, and 𝐴 is a C-graded algebra, then the Hochschild

complex

𝐻𝐶(𝐴, 𝑀) := B(𝐴) ⊗𝐴⊗𝐴op 𝐴

is a well-defined (Z × Tr(C))-graded chain complex.
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•

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

•

•

•

•

ℎ

ℓ𝑓

𝑔 •

•

•

•

ℎ

ℓ𝑓

𝑔

𝛼(𝑔 ◦ 𝑓
, ℎ,

ℓ) 𝛼( 𝑓 , 𝑔, ℓ ◦ ℎ)

𝛼(𝑔, ℎ, ℓ)𝛼( 𝑓 , 𝑔, ℎ)

𝛼( 𝑓 , ℎ ◦ 𝑔, ℓ)

𝜀

𝛼( 𝑓 , 𝑔, ℎ)
𝜀 𝜀

𝜀

𝛼(𝑔, ℎ, ℓ)

𝛼(ℓ, 𝑓 , 𝑔)

𝛼
(ℓ
,
𝑔
◦
𝑓
,
ℎ

)

𝛼( 𝑓 ◦ ℓ, 𝑔, ℎ)

𝛼(ℓ, 𝑓 , ℎ ◦ ℎ)

𝛼
(𝑔
,
ℓ
◦
ℎ
,
𝑓)

𝛼(ℎ, ℓ, 𝑓 )

𝛼(ℎ ◦ 𝑔, ℓ, 𝑓 )

𝛼(𝑔, ℎ, 𝑓 ◦ ℓ)

𝛼(ℓ, 𝑓 , 𝑔)
𝜀

𝜀 𝜀

𝛼(ℎ, ℓ, 𝑓 )
𝜀

𝛼(ℎ, 𝑓 ◦ ℓ, 𝑔)

𝛼(ℓ ◦ ℎ, 𝑓 , 𝑔)𝛼(ℎ, ℓ, 𝑔 ◦ 𝑓 )

𝜀

𝜀

Figure 9.1 The space of topographies for a 4-partitioned loop, T (4).
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