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ABSTRACT
The Jones-Wenzl projectors are particular elements of the Temperley-Lieb algebra essential to
the construction of quantum 3-manifold invariants. As a first step toward categorifying quantum
3-manifold invariants, Cooper and Krushkal categorified these projectors. In another direction,
Naisse and Putyra gave a categorification of the Temperley-Lieb algebra compatible with odd
Khovanov homology, introducing new machinery called grading categories.

The first goal of this thesis is to provide a generalization of Naisse and Putyra’s work in the spirit
of Bar-Natan’s canopolies or Jones’s planar algebras, replacing grading categories with grading
multicategories. From this updated viewpoint, we describe an invariant of diskular tangles from
odd Khovanov homology, naturally extending Naisse and Putyra’s tangle theory.

In this thesis, the main application of our theory for diskular tangles is a proof of the existence
and uniqueness of categorified Jones-Wenzl projectors in odd Khovanov homology. These results
have a nearly immediate award: the existence of a new, “odd” categorification of the colored Jones
polynomial.

Finally, a major motivation to develop a tangle theory for odd Khovanov homology is to
ultimately determine the state of its functoriality. In forthcoming work by the author, we study this
question by approximating Khovanov’s argument for the original theory. In doing so, we develop a
theory of Hochschild homology for modules and algebras graded by categories, indicating that the

new constructions offered by grading categories are also deserving of study.
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CHAPTER 1

INTRODUCTION

The Temperley-Lieb algebras, TL,, are diagrammatic algebras originating from operator alge-
bra theory which entered low-dimensional quantum topology with the construction of the Jones
polynomial via representations of the braid group [Jon87]. Elements of particular importance
are special idempotents of the Temperley-Lieb algebra, p, € TL,, called Jones-Wenzl projec-
tors. These projectors have been studied extensively, and they are vital to the construction of the
colored Jones polynomials and the skein theoretic construction of the Witten-Reshetikhin-Turaev
3-manifold invariants (cf. [Lic97], Chapter 13).

In [Kho0O0], Khovanov provided a homological invariant of links whose graded Euler charac-
teristic y was the Jones polynomial, initiating the study of categorification. Since then, a major
motivating question has been whether Khovanov’s categorification can be extended to a categorifi-
cation of quantum 3-manifold invariants. It would stand to reason that the first step in replicating the
procedures of the decategorified setting would be to construct categorical lifts of the Jones-Wenzl
projectors, living in some categorification of the Temperley-Lieb algebra.

A categorification of the Jones-Wenzl projectors was achieved by Cooper and Krushkal in
[CK12]. First, Bar-Natan [BNOS5] provided a categorification of the Temperley-Lieb algebra in the
sense that he constructed a category Kom(n) whose Grothendieck group Ky was isomorphic to 7'L,,.
Cooper and Krushkal then prove the existence of objects PS¥ of Kom(n) which satisfy [P$X] = p,,,
for [PS¥] the equivalence class of PSX in Ko(Kom(n)). Said another way, y(P$¥) = p,.. Rozansky
[Roz14] has also given a construction of categorified projectors using the Khovanov complex
associated to an infinite torus braid. For recent progress toward the categorification of quantum
3-manifold invariants from Khovanov homology, see [HRW22].

In this thesis, we initiate an investigation of similar phenomena for a different categorification
of the Jones polynomial, called odd Khovanov homology. Suppose L is a link. In [OS05], Ozsvath
and Szabd constructed a spectral sequence converging to the Heegaard Floer homology of the

double branched cover of L, ﬁF(Z(—L); Z7]27), with E, page the (reduced) Khovanov homology of



L, fh(L; Z/27Z). In an attempt to lift the spectral sequence to Z coeflicients, Ozsvath, Rasmussen,
and Szabo realized that the E, page could no longer be ordinary reduced Khovanov homology.
Instead, they produced a new candidate, another homological link invariant categorifying the Jones
polynomial, closely related to Khovanov’s construction (indeed, necessarily agreeing over Z/27Z
coefficients).

Ozsvath, Rasmussen, and Szabd’s new construction [ORS13] is called odd Khovanov homol-
ogy, which we denote by Kh, in this introduction; to avoid confusion, the original theory of
[KhoOO] has been retroactively declared even Khovanov homology, denoted Kh,. While agree-
ing in Z/27Z coefficients, there exist pairs of links L # L; for which Kh,(L{;Z) = Kh.(L,;2),
but Kh,(L;2) 22 Kh,(L>;Z), and vice-versa; see [Shull]. We remark that spectral sequences
from odd Khovanov homology to flavors of Floer homology have been discovered: Daemi [Dael5]
showed that there is a spectral sequence from odd Khovanov homology to the plane Floer homology
of the double branched cover, and Scaduto [Scal5] showed that another spectral sequence starting
at odd Khovanov homology converges to the framed instanton homology of the double branched
cover.

Recall that even Khovanov homology is built from a functor ¥, with source the category
whose objects are closed 1-manifolds and whose morphisms are embedded cobordisms, and a
target category of K-modules, for some ring K. In the literature, a functor of this form is called
a (1 + 1)-dimensional TQFT. Likewise, the original definition of odd Khovanov homology is built
from a (perhaps misleadingly named) “projective TQFT”—that is, a TQFT well-defined only up
to sign—of embedded cobordisms. Indeed, the TQFT of [ORS13], which we will denote by 7,
depends on some additional information. Using notation which will be introduced later (§3.1), this

is pictured as

ai  4i+] ai  dj+]
7, =-F, ) (1.0.1)
a a
Moreover, ¥, is known to be sensitive to the exchange of critical points in embedded cobordisms

between 1-manifolds.



Putyra, first in his Master’s thesis [Put10] and then in [Put14], introduced a refinement of the
source category so that #, may be improved to a genuine functor. By a chronological cobordism,
we mean a cobordism endowed with a framed Morse function, called a chronology, separating
critical points; see §3.1. The chronology induces an orientation on each unstable manifold of
index 1 and 2 critical points, which we draw as an arrow (as shown in (1.0.1) for an index 1
case). Consequently, ¥, is upgraded to a genuine functor: the equality above is reinterpreted as
a relation between the maps on modules associated with two distinct chronological cobordisms.
Going forward, functors from a category of chronological cobordisms to the category of K-modules
will be called chronological TQFTs. Also introduced in [Put14] is the notion of a unified Khovanov

complex, which is a complex over the ground ring
R=Z[X,Y,Z*"/(X* =Y*=1).

The homology of this complex is called unified (also called covering or generalized in the literature)
Khovanov homology. The unified Khovanov complex has the incredibly desirable feature of
specializing to the even theory if one sets X = Y = Z = 1, and to the odd theory by setting
X=Z=1andY = —-1. We use ¥ (see §3.2) to denote the chronological TQFT for unified

Khovanov homology.

1.1 Unified projectors

Asin Cooper and Krushkal’s work, our projectors will live in a categorification of the Temperley-
Lieb algebra, which we denote by Chom(n)f. Specifically, Chom(n)f is the category of ¢-graded
H"-modules all of whose entries come from flat diskular tangles (see Figure 1.2 for an example of
a non-flat diskular tangle). The algebra H" is the nth unified arc algebra; we review Khovanov’s arc
algebras in §2.2.2 and unified arc algebras in §3.2. The notation “Chom” is meant to impress that
we think of this category like the category “Kom™ of [BNOS5], but with chronological cobordisms
present. The notation ¢ refers to the new grading essential to this thesis; we defer an introduction
to ¢4 momentarily. The ¢-grading determines an integral g-grading (see §7.2.1). We let Kg

denote the Grothendieck group which remembers only the g-grading and not the whole ¢-grading



information. Then, Chorn(n)% categorifies TL, in the sense that
K{(Chom(n)}) = TL,

as Z[q, g~ ']-algebras; see Definition 8.1.2 of §8.1.

Specializing the ground ring R by X,Y,Z = 1 defines a forgetful functor from Chorn(n)flf
to the category Kom(H"PMod), another categorification of 7L, compatible with even Khovanov
homology. This is the categorification of Khovanov, provided in [Kho02], using projective H"-
modules. Indeed, we will see that the ¢-grading is not essential to the even case—the objects
of Kom(H"PMod) are not ¢-graded. Likewise, specializing by X,Z = 1 and Y = —1 induces a
forgetful functor from Chom(n)’(;f to what we’ll denote by Chom(n)f, a categorification of 7L,
implicit in the work of Naisse and Putyra. We call these the even and odd forgetful functors, and
denote them by 7, and 7, respectively. Notice that the Z/2Z-reductions of both Kom(H"PMod) and
Chom(n)f agree; we denote by Kom(H"PMod)z/»7 the corresponding category. The ¢-grading is
also nonessential to the Z/2Z-reduction. We’ll denote the corresponding forgetful functors by f.

Then f o 1, = f o m,; i.e., the diagram

/

Kom(H"PMod)

—

Kom(H"PModz,»7)

Chom(n)y

Chom(n)?

commutes. The following is proven in Chapter 8§ as a combination of Proposition 8.3.5 and Theorem

8.5.3.

Theorem A. There exist categorifications of the Jones-Wenzl projectors, called unified projectors,
P, in Chom(n)?, which are unique up to chain-homotopy equivalence. By a categorification, we
mean that [P,] € Kg (Chom(n)f) is equal to p, € TL, (for a complete description, see Definition
8.3.3). On one hand, n.(P,) is a categorified projector in Kom(H"PMod), and n.(P,) = PSK. On
the other, under the odd forgetful functor, n,(P,) is a new categorification of the nth Jones-Wenzl

projector in Chom(n)f. They both agree after reduction to Z/2Z-coefficients: f(P9) = f(P,SK).



We will write P, to denote m,(P,). We remark that Cooper and Krushkal’s projectors actually
live in Bar-Natan’s category Kom(n), but it is known that this category is equivalent to Khovanov’s
categorification of 7'L,, Kom(H"PMod).

Following Section 6.4 of [NP20], we define a (diskular) tangle invariant Kh, in §7.2 which
specializes to unified Khovanov homology when the tangle is a closed link. The caveat is that Kh,
lives in a category Chom(n)%; in general, Kh is not a tangle invariant in the category Chom(n)?,
so we must “collapse” the ¢-grading to an integral g-grading (see §7.2.1—the term “collapse”
is slightly misleading). Regardless, by construction Kh, specializes to the even Khovanov tangle
invariant, denoted thj, along with an odd Khovanov tangle invariant th.

In analogy with Section 5 of [CK12], the existence of these tangle invariants, together with
Theorem A, is immediately useful. Namely, as the Jones-Wenzl projectors are vital to the construc-
tion of the colored Jones polynomials J(L; m)(g), the existence of categorified projectors quickly
implies the existence of a categorification of the colored Jones polynomial. Using the new categori-
fication of the Jones-Wenzl projectors (compatible with odd Khovanov homology), we construct a
new, “odd” categorification of the colored Jones polynomial. First, if L is an n-component link and
m = (my,...,m,) € N, denote by T;" the result of taking m; parallel copies of the ith component
of L foreachi = 1,...,n and then removing a small diskular region from each of the original

components (see Figure 1.1). Then, set

Hm(L) = (Pmp MR Pmn) ®(Hml Hm") th(TLI,n)

.....

where each of the P, is viewed as an object of Chom(mi);’e. This has the effect of inserting
projectors into the tangle diagram 7"; again, consult Figure 1.1 for a schematic. See §1.2 for
introductory remarks regarding this tensor product.

Let II"(L) and I1J*(L) denote the complexes obtained by specializing Rby X =Y =Z =1,
and X = Z =1, Y = —1 respectively. We call each of II™(L), I1}"(L), and I1*(L) the unified, even,
and odd m-colored Khovanov complexes of L, respectively. Finally, we define the unified, even,
and odd m-colored Khovanov or link homologies of L to be the homology of these complexes; we

denote them by H(L; m), H,(L;m), and H,(L; m) respectively. We emphasize that we define the
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Figure 1.1 Schematic for [IT™(L), where L is the 3-component link L.11n314 of the Thistelthwaite
link table, and m = (3, 2, 2).

even and odd colored link homology by specializing R before taking homology. Also, notice that
H (L; m) has coefficients in R, while H,(L; m) and H,(L; m) have coeflicients in Z.
Let y, denote the graded Euler characteristic which records only the g-grading associated to a

particular ¢-grading or ¢-grading shift. Then, the following is proven in §8.6.

Theorem B. For any colored link (L; m), the chain-homotopy equivalence type of the m-colored
Khovanov complex IT™(L) is an invariant of (L;m). Thus, the m-colored Khovanov homologies
H(L;m), H,(L;m), and H,(L; m)are invariants of (L; m). Moreover, the even and odd homologies

categorify the colored Jones polynomial in the sense that

Xq(He(L;m)) = J(L;m)(q) = xq(Hy(L; m)).

On one hand, H,(L;m) is the colored link homology of Cooper and Krushkal. However, there are
colored links (L; m) for which H,(L;m) # H,(L;m), so we obtain a new categorification of the

colored Jones polynomial.

To see that the two categorifications are distinct, we compute the unified Khovanov homology
of the full trace of P, (see §8.4.1 and, in particular, Equation (8.4.2)), which coincides with the
unified colored link homology of the 2-colored unknot. We obtain the even and odd colored link
homologies of the 2-colored unknot by taking homology after specializing the complex of Equation
(8.4.1) to the even and odd settings. See Table 1.1 for the even (left) and odd (right) colored link
homologies of the 2-colored unknot, where we have expressed the homology in terms of quantum

grading ¢ and homological grading h.
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Table 1.1 H,(U;2) and H,(U;?2), respectively, where & is homological grading and ¢ is quantum
grading

Interestingly, the 2-colored unknot has no torsion. However, using computations provided by
Schiitz (see Theorem 8.2 and Figure 9 of [Sch22]), the odd colored homology of the 3-colored
unknot, H,(U; 3), contains Z/3Z-torsion, whereas H,(U;3) contains no Z/3Z-torsion. Finally,

note that the graded Euler characteristics of both sides agree.

1.2 A gluing theorem for diskular tangles

The majority of this thesis is devoted to developing a framework for the construction and
calculation of unified projectors. This will entail setting up a tangle theory that is both compatible
with unified Khovanov homology and will also allow for a very flexible notion of composition
for tangles. Thankfully, the work of Naisse and Putyra [NP20] (to which we will keep returning)
accomplishes the former goal—thus, our goal is a generalization of their work which allows for this
“more flexible gluing property.”

To be clear, recall that Khovanov’s theory for knots and links has been extended to tangles via
at least two methods, by both Khovanov [Kho02] and Bar-Natan [BN02, BNOS5] (see Chapter 2 for
areview). In the former, Khovanov extended his work to tangles with an even number of endpoints,
showing that the homotopy type of the complex he associates to each tangle is an invariant of the
tangle. Furthermore, for each tangle 7', the complex Kh(7') has an interpretation as a graded dg-
bimodule over the so-called arc algebras, H". Paramount among the properties of these bimodules

is the gluing result, which states that, for stackable tangles T and S,

Kh(T) ®4n Kh(S) = Kh(TS).



While Khovanov and Bar-Natan were able to describe an up-to-homotopy invariant complex
associated to a tangle soon after the discovery of Khovanov homology, an analogue for odd
Khovanov homology remained elusive for thirteen years after its discovery. Our work will employ
the first known solution, provided by Naisse and Putyra in [NP20]. Before detailing their solution,
we remark that, in [Vaz20], Vaz constructed a supercategory and derived from it a homological
invariant of tangles which supercategorified the Jones polynomial. While he proved that his
invariant was distinct from even Khovanov homology, it was not evident that his theory was
isomorphic to odd Khovanov homology when restricted to links until the recent work of Schelstraete
and Vaz in [SV23]. There, Schelstraete-Vaz provided another lift of odd Khovanov homology to
tangles (indeed, their work succeeded in providing the first representation theoretic construction of
odd Khovanov homology) which coincided with the “not even Khovanov homology” of [Vaz20].
Naisse and Putyra conjectured that their tangle invariant is isomorphic to Vaz’s, and thus to
Schelstraete-Vaz’s, but this remains an open question.

Naisse and Putyra’s lift of odd Khovanov homology to tangles [NP20] involves the introduction
of objects called grading categories which allow one to define categories of (dg-) bimodules graded
by a selected grading category. The grading category for the problem at hand is a category G whose
morphisms are given by a pair of a flat tangle (with even inputs and even outputs) and an element
of Z x Z. Viewing the unified arc algebra as a G-graded algebra, H" becomes graded-associative
(associativity fails before this change; see §3.2 and 3.3, and [NV 18] for more detail). In the context
of grading categories, it is more difficult to define what is meant by a grading shift. In order to
accomplish this, Naisse and Putyra implement shifting systems which can be assigned to a grading
category; in the case of G, a shifting system is provided by a pair of a chronological cobordism and
a shift in the Z X Z-grading. See §3.3 for a more thorough introduction to grading categories and
shifting systems.

For Naisse and Putyra, all this work meant that one could mimic the constructions of Khovanov
in [Kho02] in a graded-associative context, yielding a tangle version of unified Khovanov homology

which respects the gluing property. Continuing the analogy, the goal of the majority of this thesis



is to provide a generalization of the gluing result of [NP20] in the spirit of Bar-Natan’s canopolies
[BNOS5] or of Jones’s planar algebras [Jon22]. While the extension is minor and well known in the
even setting (see a description in Section 4 of [LLS22]), realizing the analogous result in the odd
setting, in this thesis, means adapting the flat tangles of Naisse and Putyra to planar arc diagrams.
In particular, the grading category G is upgraded to what we call a grading multicategory, denoted
¢/. Then, the work of Naisse and Putyra provide us with a roadmap for proving what we refer to
as “multigluing,” Theorem 6.2.4. The following is a statement of multigluing in lesser generality

than we prove it. Recall that ¥ is the unified chronological TQFT.

Theorem C. Suppose T is a diskular tangle of type (m1, . .., my;n) (see Definition 4.0.1) and T; is
a tangle diagram in a disk with 2m; points on its boundary for eachi = 1, ..., k. Then there is an
isomorphism

(FM), ..., F(T0) Swm ... .y F(T) = FA(T, ..., Tx)).

The notation ®ymi .. pgmi), as well as the map inducing this isomorphism, is described in depth
in Chapter 4. The idea of this theorem is that, given a tangle with some holes punched out,
and compatible tangles 71, ..., T, we can define a tensor product so that some tensor product of
the dg-modules associated to 71, . .., Ty (denoted by (77, ..., T;)) tensored with the multimodule
associated to 7 is isomorphic (as ¢-graded dg-modules) to the dg-module associated to T filled by

the tangles 71, . . ., Ty. See Figure 1.2.

1.3 Other applications

While our main motivation for this thesis is a proof of existence for unified projectors and a
new categorification of the colored Jones polynomial, there are other notable benefits of a more
flexible gluing theorem; we will describe a few in our paper. To start, we can use Theorem 6.2.4 to
define operations on ¢-graded dg-modules (e.g., a vertical stacking operation ®, juxtaposition LI,
and a partial trace Tr) in exactly the same way as [SW24], see §8.1. Defining these operations is
essential as, without them, we cannot define categorified projectors. Of particular interest are our

lifts of well-known adjunction statements provided by Hogancamp [Hog20, Hog19].



Figure 1.2 Multigluing schematic. Here, we assume 77, 7>, and 73 are each tangles in disks with 4
points on their boundary.

Theorem 8.1.5. If A and B are 9-graded dg-modules coming from tangle diagrams on n — 1 and

n strands respectively, then

Hom, | AU, B | =2 Hom,,_1(A, Tr(B){-1,0}).
90('1:#:@’(0’1)) n-1( (B){ 3]

See the statement of Theorem 8.1.5 found in Chapter 8 for more details. The notation Howm,,
denotes the complex of maps of homogeneous bidegree; see §5.3 and 6.1. Notice the ¢-grading
shift which is invisible to g-degree. We also obtain a more familiar statement, which we use in the

proof of uniqueness for unified projectors:
Hom,(A ® F(6), B) = Hom,(A,B® F(6"))

where ¢ is a flat tangle. It comes as a corollary of another familiar “duality” statement; see Theorem
8.2.3.

We remark that, in §8.5, we construct P, as arising from an infinite torus braid, as in [Roz14]
and Section 5 of [SW24]. This description awards us with another, inductive description of P, as a

filtered chain complex, inducing a spectral sequence. Explicitly, if P, and P,_; are projectors, we

10



have that
| o oo |

Pnl

where the wrap-around repeats indefinitely. It follows that P, is the colimit of a filtered chain

P, =

complex of the following form.

Pn—l Pn—l Pn—l

ENEE T S )

The filtration on P, induces one on its full trace, and using results of §8.3, we conclude that

Howm, (P,, P,) is a filtered complex. We will investigate the associated graded of this filtration in

future work.

1.4 Future goals
Further motivation for our work was provided by some questions left unanswered in this thesis.

We conclude the introduction by outlining a few of them.

Periodicity of projectors and a GOR conjecture
We note (see Corollary 8.3.7) that the existence of unified projectors (Theorem 8.5.3), together

with an adjunction statement (Theorem 8.1.5), implies that
H*Howm,, (P, P,) = ¢ "H(U;n). (1.4.1)

In [Hog19], Hogancamp uses the specialization of Equation (1.4.1) to the even setting in order
to construct particular elements U, € HOMn(P,(EK, PSK) to make substantial progress toward a

conjecture of Gorsky-Oblomkov-Rasmussen [GOR13, GORS14]. The chain maps U, take the

t2—2n 2n PSK

form - PSK and satisfy Cone(U,) ~ Q, (for a particular complex Q,), showing

q
that PSK is a periodic chain complex built from copies of Q. Interestingly, in [Sch22], Schiitz

computes the first few odd projectors PJ and P; algorithmically and shows that, while odd P7 is

11



also periodic of period 2, odd Pf is periodic of period 8, unlike even P3CK which has period 4 (cf.
Section 4.4 of [CK12]). We hope to use results of this thesis to prove that P, remains periodic in

the unified and odd settings, and to determine the period of P, for arbitrary n.

Odd Khovanov spectra for tangles

The idea for generalizing the work of Naisse-Putyra via dg-multimodules associated to diskular
tangles came largely from observations of the utility of spectral multimodules in the work of
Lawson-Lipshitz-Sarkar [LL.S23, LLS22] and Stoffregen-Willis [SW24]. Now, an odd (indeed,
unified) Khovanov homotopy type is known [SSS20], but it has yet to be lifted to the setting of
tangles—we hope that our work might be melded with that of [LLS23] and [SSS20] to produce a
unified homotopy type for tangles. If this is accomplished, it is also our hope that the work here
will allow for the arguments of [LLS22] to lift, proving that homotopy functoriality holds in higher
generality. It is also interesting to note that the spectral projector on three strands of [SW24] is
periodic of period 8, like the odd projector on three strands of [Sch22], but unlike the three-stranded

even projector.

Investigating functoriality

The last two chapters in this Thesis are addenda regarding the investigation of functoriality
for odd Khovanov homology. In the fall of 2024, Migdail and Wehrli [MW24] gave the first
proof that odd Khovanov homology is functorial up-to-sign, without passing to a tangle theory. In
forthcoming work [Spy25], introduced in Chapter 9, we note that there is a natural definition of a
¢ -graded bar resolution and Hochschild homology for %-graded algebras. Using this result, we
may mimic Khovanov’s proof of functoriality [Kho02] (see [LLS22] for an excellent outline) in the
unified setting to obtain a second proof of up-to-unit functoriality for unified Khovanov homology,
and thus up-to-sign functoriality for odd Khovanov homology.

Perhaps more interesting (especially if aiming for a Lasagna-type invariant coming from a
functorial invariant of links in $> [MWW22, MWW24]) is the development of a functorial “oriented
model” [Blal0] for odd Khovanov homology. Such a model is provided in [SV23], but the question

of functoriality remains open. In forthcoming joint work with Matthew Stoffregen [SS25], we
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consider an alternative approach to obtaining a functorial-with-signs model for odd Khovanov
homology, using the existence of a spectral sequence from odd Khovanov homology to plane Floer
homology [Dael5] (the latter is known to be functorial). Indeed, in [SS25], we prove a conjecture of
Migdail and Wehrli from [MW24]: that odd Khovanov homology any 2-knot { counts the number
of spin¢-structures on the branched double cover of ¢ branched along S*. We omit a discussion of

our work from this thesis.

1.5 Outline

Chapters 2 and 3 of this thesis are preparatory and intended as introductions for the uninitiated;
experts should feel free to skip them. In Chapter 2, we start by recalling the definition of the
Temperley-Lieb algebra and its special elements, the Jones-Wenzl projectors. Then, we recall basic
features of the categorifications of 7'L,, by both of Bar-Natan [BN02, BN0O5] and Khovanov [Kho02].
Finally we review some facts about the first categorification of Jones-Wenzl projectors, following
[CK12]. Chapter 3 is devoted to reviewing some of the work of Putyra regarding categories of
chronological cobordisms [Putl10, Put14]. We end Chapter 3 by presenting an outline of C-graded
structures, for a grading category C, as in [NP20]—the hope is that §3.3 might give the reader a
bird’s-eye view of the goals of Chapters 4, 5, and 6.

Chapters 4, 5, and 6 are the technical heart of this thesis, wherein we introduce grading multi-
categories, shifting 2-systems for those grading multicategories, and apply the general framework
constructed to prove multigluing, Theorem 6.2.4. Again, see §3.3 for a more complete outline.

In Chapter 7, we use multigluing to obtain an invariant of (diskular) tangles, slightly generalizing
aresult of [NP20]. Asin the cited paper, the grading system is, perhaps, too sensitive for the complex
associated to a (diskular) tangle diagram to be invariant under each of the Reidemeister moves (see
Lemmas 7.2.3, 7.2.4, and 7.2.6). However, it is invariant up to a grading shift in which the number
of saddles in the cobordism component is equal to the sum of the entries of the Z X Z component.
Hence, we can “collapse” the ¢-degree to an integral g-grading in to obtain a tangle invariant. We
remark that, however slight the generalization, the added flexibility is necessary for our final result

in §8.6 (additionally, we believe the differences in our proof to be notable).

13



Finally, in Chapter 8, we define and prove the existence and uniqueness of categorifications
of the Jones-Wenzl projectors living in a category of ¢-graded dg-modules, specializing to the
projectors of [CK12], but also to “odd” projectors which, prior to this thesis, had only been
computed up to three or so strands (c¢f. [Sch22]). Other highlights of this section are the proofs of
the aforementioned duality and adjunction results, which we hope to be useful in future work. In
conclusion, we point out that the existence of unified projectors, together with multigluing and the
tangle invariant of Chapter 7, imply the existence of a unified colored link homology, specializing
to the colored link homology of, say, [CK12], but also to a new, “odd” categorification of the
colored Jones polynomial.

The final chapter is an addendum initiating further investigation into C-graded structures,
especially motivated by questions related to the functoriality of odd Khovanov homology, since
[MW24]. In Chapter 9, we provide a careful study of grading categories to develop a general theory
of Hochschild homology for algebras graded by grading categories. This chapter is a portion of the
forthcoming work [Spy25], in which we apply the general framework introduced here to the odd

arc algebras.
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CHAPTER 2

CLASSICAL CATEGORIFICATIONS OF TL,, AND PROJECTORS
In this chapter, we survey attributes of the even setting which we hope to lift—in one way or
another—to the odd setting. In §2.1, we briefly discuss the decategorified setting. In §2.2, we
recall the even categorifications of the Temperley-Lieb algebras due to Bar-Natan [BNOS5] and
Khovanov [Kho02]. We conclude by providing Cooper and Krushkal’s categorification of the

Jones-Wenzl projectors in §2.3, as we hope to compare their results with our work in §8.

2.1 Temperley-Lieb algebras and Jones-Wenzl projectors
The Temperley-Lieb algebras T'L,, arise naturally as the U, (s]»)-equivariant endomorphisms of
n-fold tensor powers of the fundamental representation of U,(sl). As a unital Z[g, g~ ']-algebra,

TL, is generated by n elements 1, e1, ..., e,—1 subject to the relations
1. eiej =eje;if i — j| > 2,
2. ejejr1e; = e;, and
3. el.2 =(q+ q_l)e,-.

The first relation is referred to as “distant commutativity.” We will make use of the quantum integer

notation
qk _ q—k
Cgq-q!
so that, for example, the third relation can be rewritten e? =[2]e;.

TL, can be given a diagramatic description, where the generating elements are presented by

1n:...’ and €i:---%---’

i i+1
with multiplication given by top-to-bottom vertical stacking. Therefore, 7L, can be viewed as the
linear skein of the disk with 2n distinguished points on its boundary, where we regard this disk

as a square with n marked points on the top and n marked points on the bottom. It is in this way

15



that every (n, n)-tangle may be assigned an element of 7L,,; indeed, given an oriented tangle, the

Vo) (R N )

yield the Jones polynomial up to normalization.

relations

In [Lic93], it was shown that the Witten-Reshetikhin-Turaev 3-manifold invariants ([Wit89,
RT91]) may be constructed combinatorially via the Kauffman bracket. Key ingredients of this

construction are the Jones-Wenzl projectors, which we recall now.

Definition 2.1.1. The Jones-Wenzl projectors, denoted by p,, are particular elements of TL,,

defined by the recursion

[n]

[n+1]

p1 =1y and Pnr1 = (ppul) - (pn U Dey—1(pp U 1).

It is common to depict p, by a box

pn:

in which case the recursion appears as

The Jones-Wenzl projectors are well-studied. They may be defined equivalently as the unique

elements of T'L,, for which
(JW1) (p, — 1,) belongs to the algebra generated by {ey,...,e,—1}, and
JW2) pyei=eip,=0foralli=1,...,n—1.

These properties immediately imply that the projectors are idempotents. One can also check that
upon taking the Markov closure of the projectors, the Kauffman bracket evaluates them as a quantum
integer:

(Pny =[n+1].
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The purpose of listing these well-known properties of the Jones-Wenzl projectors is that their
categorifications satisfy analogues in the categorified setting. We will use these properties fre-

quently in what follows.

2.2 Categorifications of the Temperley-Lieb algebra

We start by reviewing a construction of Bar-Natan [BNO02, BNOS5] which categorifies TL,,.
Consequently, we may determine the Khovanov complex for a tangle, which turns out to be a tangle
invariant up to homotopy. Afterwards, we describe another categorification of Khovanov, which
has a known analogue in the odd setting. In the broader context of this thesis, we wish to review
Bar-Natan’s categorification to motivate our grading multicategory ¢, defined in Chapter 4.

Recall that a pre-additive category C is a category such that
1. forevery X,Y € ob(C), Hom¢(X,Y) is an abelian group, and
2. morphism composition distributes over the abelian group’s addition rule.

Additionally, a monoidal category C is a category endowed with a functor ® : C X C — C, a
distinguished object 1 € ob(C), and natural isomorphisms « (called the associator) and left- and
right-unitors A and p satisfying the triangle and pentagon identities.

Given a pre-additive category C, we may define the (split) Grothendieck group of C to be the
free abelian group generated by isomorphism classes in C, with the added relation that [A © B] =

[A] +[B]:

[A]=[B]ifA =B
Ko(C) = Z(C) /
[A ® B] = [A] +[B]

It is common to take the Grothendieck group of pre-addivive monoidal categories—in this case,
the tensor product induces an algebra structure on Ko(C).
For us, to categorify TL, means to define a pre-additive monoidal category C for which

Ko(C) = TL,. Here is an outline of the construction provided by Bar-Natan.

Step 1: Let pre-Cob(n) denote the cateory whose
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* objects are isotopy classes of formally g-graded Temperley-Lieb diagrams with 2n boundary

points, and

» Hom(q'A, g/ B) is the free Z-module spanned by isotopy classes of orientable cobordisms

from A to B.

Note that pre-Cob(n) is pre-additive by definition. All of our cobordisms will be oriented upwards
(from bottom to top). It is also naturally monoidal via stacking in T'L,,. Itis clear thatif C : A — B

and C’ : A” — B’, then there is a cobordismC® C’': A A’ - B® B’.
Definition 2.2.1. The degree of a cobordism C : g'A — ¢/ B is the value
deg(C) = deg,(C) + degq(C)
where
(1) deg,(C) = x(C) — n s called the topological degree of C, and
(i1) degq(C ) = j —i is called the quantum degree of C.

It is common practice to fix g-gradings on the Temperley-Lieb elements so that deg(C) is always
ZEero0.
There are a few special cobordisms which we highlight here. Their frequent use necessitates

additional (but commonplace) notation.

(1) Cobordisms in this category may be decorated by dots, which correspond to hollow handle

attachments up to multiplication by 2.
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(2) Saddles will have the following shorthand.

Note that, for example
deg, | / ) =x(stvst)—1==-2

since the dotted identity has the same homotopy type as the punctured torus, and

deg, I =x (Dz) -2=-1.

Therefore, we will take dots to increase quantum degree 2 and saddles to increase quantum degree

1.

Step 2: Pass to the matrix category Mat(pre-Cob(n)), whose objects are vectors of objects in
pre-Cob(n) and whose morphisms are matrices of morphisms in pre-Cob(n). Observing the
defining relations in 7L, to construct a category C for which Ky(C) = TL,, the object represented

by O in C must be isomorphic to the sum of two empty objects in degree +1:
O = q_l I & qJ.

We accomplish this by defining delooping operations. Consider the morphisms

&
&

¢:0 o ®qo

and

= <)

Vgl o ® qo O.
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We impose the isomorphism above by defining the relations implied by ¢ o ¢ = idzgz and

(99

NN/

bov= ey
In conclusion, we define Cob(n) to be the quotient of pre-Cob(n) by the relations

Cro G G
& O i
+ = .
DT

The first three relations are called the sphere relations (referred to as SO, S1, and S2 respectively),

¥ o ¢ =idp. On one hand,

o}

On the other,

and the last relation is called the tube-cutting relation. Interestingly, the sphere with three dots does
not have an evaluation. The most general remedy is cosmetic, and it is treated as a free variable.

Explicitly, in Cob(n), we declare a fourth sphere relation by setting

(s00)=a.

However, in what follows, we will take « to be zero; that is, we will replace the last sphere relation

g:o.

Lemma 2.2.2. There is an isomorphism of Z[q, g~ 1-algebras

(S2) with the relation

Ky(Cob(n)) = TL,.

Proof. Multiplication by g defines an endofunctor Cob(n) — Cob(n), which in turn determines an

endomorphism on Ky(Cob(n)), making it a Z[q, q‘l]—algebra. Then the result is immediate. O
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Step 3: Finally, we’d like a way to assign to a tangle in the 3-ball with 2n marked points some

collection of objects in Cob(n).

Definition 2.2.3. Let

Kom(n) = Kom(Mat(Cob(n)))

denote the category of partially bounded chain complexes of finite direct sums of objects in
Cob(n). In this thesis, we allow complexes with unbounded negative homological degree in

keeping with [Hog19], but opposed to, for example, [CK12].

The tensor product of chain complexes extends ® in Cob(n) to Kom(n): schematically,

C®D:<~--—> — o — >®(~--—> @; — @g — éﬂ )
C C C C C C,
_ L Bl . |
"o ® %ol T T b
Indeed, passing to the homotopy category of a pre-additive category does not change the

Grothendieck group up to isomorphism; see Section 2.7.1. of [CK12] for a full discussion.

Lemma 2.2.4. There is an isomorphism of Z[q1[q~']-algebras
Ko(Kom(n)) = TL,.

Let [T] denote the complex corresponding to a tangle T, obtained by the skein relations

[[y\ﬂ:qzmgif% and HXH:q—z% dq_l <

where the underlined term is in homological degree zero. For example,

; Q) N\ Qo
(\ = q‘VMqO ® () Mq/zg
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Notice that there is a free loop in homological grading zero, hence we may apply the delooping

operations to yield the complex

A4 K AN AN 5
q”! Sz —=— q! @ ¢° ® g —= g (2.2.1)
7\ VAR RN
where
o\ T o\ T
(R R) (e 2 )
and

(G B)-( 309

2.2.1 Chain homotopy lemmas
In [BNO7], delooping was introduced alongside the following lemma from homotopy theory to

simplify computations in Khovanov homology.

Lemma 2.2.5 (Simultaneous Gaussian elimination). Suppose A is a pre-additive category, and let

K. be an object of Kom(A) of the form

Ag @ Cy &AlﬁaBléBCl &AZ@BZ@CQ &

ap o a; bi c;
where My = do fo and M; = d; e f foralli > 0. If ay; : Ayi — A1 and
8o Jo g hi Ji

ez, - Baix1 — Bajyp are isomorphisms for all i > 0, then the chain complex K. is homotopy

equivalent to the complex

Co Q0>C1 Q1>C2 Qz>
Q2 = joi — 82145, €2
where
Q2ie1 = joie1 — hais1€5) | foisi
Proof. This is an application of the simpler “Gaussian elimination,” see [CK12]. O
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As an application, note that we may apply simultaneous Gaussian elimination to the complex
A

(2.2.1). The result is that the complex Hbﬂ is homotopy equivalent (hereinafter written =) to the
A

chain complex 0 + ) ( + 0 ;i.e., the complex [T7] is invariant, up to chain homotopy equivalence,

under Reidemeister II moves for tangles. The following is due to Bar-Natan.

Theorem 2.2.6 (Theorem 1 of [BNO5]). The homotopy class of the complex [T| regarded in

Kom(n) is an invariant of the tangle T.

To conclude this subsection, we note that there is a notion of a zero object in Kom(n): we call

a chain complex K. contractible if K, ~ 0. The following is well known.

Lemma 2.2.7 (Big collapse). A chain complex K. of contractible chain complexes is, itself,

contractible.

2.2.2 Khovanov’s arc algebras

Another categorification, provided by Khovanov [Kho02], is given by the category of complexes
of H"-modules, where H" is the nth arc algebra, described below. These can be generalized to the
unified setting; see [NV 18] for a thorough discussion. We will use arc algebras to describe odd
Khovanov complexes for tangles, following [Put14] and [NP20]. A large portion of this thesis is
devoted to providing a small generalization Naisse-Putyra’s construction, allowing one to perform
Bar-Natanesque computations in a particular category of H"”-modules.

Consider the Temperley-Lieb 2-category 7 L, whose
* objects are natural numbers,

* l-morphisms Homg(m, n) are isotopy classes of crossingless tangles embedded in the
square with 2m marked points on the [0, 1]x {0} axis and 2n marked points on the [0, 1] x {1}

axis, and

* 2-morphisms Homg (%, s) are cobordisms with corners from the crossingless tangle  to s.
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Write B!, = Homg £ (m, n). In the case that m = 0, we write B" (respectively, n = 0 is written B,,);
this is the collection of crossingless matchings of n points fixed on the top axis (resp., m on the
bottom axis). We will write |a| = n for a € B". Composition of 1-morphisms is given by stacking:
B! x B". — B!, is given by (s, 1) > ts. There is also a mirroring operation, = : B" — B™, which
flips tangles about the line [0, 1] x {1/2}.

Leta € B", b € By, and t € Bj,. Then atb is a closed 1-manifold. Let s € Bl and ¢ € B,.
Consider the cobordism

(atb)(Esc) — a(ts)c

given by contracting symmetric arcs of bb. We denote this cobordism by W,,.(z, s). It is minimal
in the sense that its Euler characteristic is —|b|.

The last ingredient required for defining the arc algebra is Khovanov’s Frobenius TQFT. Let
V = Z{v4,v_) denote the free abelian group generated by v, and v_, and impose a grading on V
by |v4+| = 1 and |v_| = —1. Consider the functor ¥, : Pre-Cob(0) — ZMod defined as follows. On
objects,

Fe(OU---LQ) =V
~———

For morphisms, recall that any surface decomposes into a sequence of 2-dimensional 0-, 1- and
2-handles. There are two types of 1-handles, which we refer to as merges and splits; they are

evaluated by 7, as listed below.
(
Vi@Vib> vy, ViQV_ b V_,
Fe i i VeV -sV=
vo®v_m— 0, v_oQvi>v_,
\
(

Vi Vo Qv+ vy Qv
F. V-oVeV=
Vo Vo Q@ V_.

\

Additionally, O- and 2-handles, called births and deaths respectively, have the following evaluation
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by %..

7 (©):z=v={im.,

For example, a cylinder with a hole in it can be decomposed into a split followed by a merge.
Clearly, this maps v; +— 2v_ and v_ +— 0. So, altering Cob so that objects can be decorated by

dots, we have that

~— Vi v,
Fol|o V-oV=

v_ 0.

¥ extends to Mat(Pre-Cob(n)), and one can easily verify that F, satisfies the each of the sphere
and tube-cutting relations.

Let ¢ € B),. The arc space of t is defined

Fty= P Felarh).

a€B™ beB,,
Given another tangle s € BY, define the composition map
ult, s1: Felath) ® Fo(b'sc) — Felal(ts)c)
0 if b # b’
by ulz, s] = _
FeWape(t,5)) ifb=10

forb’ € B"and c € B,.

Definition 2.2.8. The arc algebra H" is the arc space

H'=F(l)= P Felalb)

a€B™ beB,,

with multiplication u[1,, 1,].
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It is more work, but the category of left H"-modules provides another categorification of the

Temperley-Lieb algebra; see Section 5.2 of [Kho02] for details.

Lemma 2.2.9. There is an isomorphism of Z[q, q~'1-algebras
Ko(H"PMod) = TL, and Ko(Kom(H"PMod)) = TL,.
for H"PMod the category of projective H"-modules.

2.3 Cooper-Krushkal projectors

The first categorification of Jones-Wenzl projectors was described by Cooper and Krushkal
in [CK12]. Their definition mirrors that of the Jones-Wenzl projectors, and they are uniquely
defined in Kom(n) (that is, up to homotopy equivalence). Everything presented here still holds if

we replace Kom(n) with Kom(H"PMod).

Definition 2.3.1. A negativiely graded chain complex (C., d.) € Kom(n) with degree zero differ-

ential and is called a Cooper-Krushkal projector if it satisfies the following axioms:
(CK1) Cp = 1,, and the identity does not appear in any other homological degree.
(CK2) C. is contractible under turnbacks: for any ¢; € TL,,C. ® ¢; ~ ¢; ® C, ~ 0.
The second axiom is referred to as “turnback killing.”

Notice that, by construction, if C € Kom(n) is a Cooper-Krushkal projector, then [C] €
Ko(Kom(n)) = TL, satisfies JW1) and JW2), so [C] = p,, € TL,.

Like the Jones-Wenzl projectors, homotopy uniqueness of the Cooper-Krushkal projectors
follows from little work. The main tool is the following generalization of idempotence (whose

analogue also holds for Jones-Wenzl projectors).

Proposition 2.3.2. Suppose C € Kom(m) and D € Kom(n) are Cooper-Krushkal projectors with
0 <m < n. Then

CeoeDul,y)=C=DuUl,,)eC.
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Homotopy idempotence and uniqueness are then corollaries.
Proof. See Proposition 3.3 of [CK12]. O
The main theorem of [CK12] is the following.

Theorem 2.3.3 (Theorem 3.2 of [CK12]). Foreachn > 0, there exists a chain complex C € Kom(n)

that is a Cooper-Krushkal projector.

We will write PS¥ to denote the nth Cooper-Krushkal projector (or a representative of it), so
that [PS¥] = p,. We represent Cooper-Krushkal projectors via numbered boxes, as we did the

Jones-Wenzl projectors. For example, here is a Jones-Wenzl projector when n = 2:

B o )
where .
W i=-—1
/2R
Ci=<S\o/_\_J ;__
PNT AN T
\o/ .\ ;= ok

for all positive integers k. It is straightforward to check that this is an element of Kom(7), and that
it satisfies axioms (CK1) And (CK2).

This categorification succeeds in possessing many properties analogous to the original object.
In particular, if Tr" denotes the (complete) Markov trace applied to each entry and differential in
the chain complex, we have that the graded Euler characteristic of the homology of the trace of

each projector is a quantum integer; i.e.,

X(H(T(PTY) = [0+ 1].
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For example, it is also straightforward to verify that, for k a positive integer and a = 0,
(

Ay n=0

2, pCK 0 n=-l
H,(Tr (P2 ) =

g *27 @ g *7/22 n=-2k

g *-27 n=-2k-1

\
It is interesting that the homology of Tr"(P$X) is not spanned only by classes which correspond to
coefficients of the graded Euler characteristic. This turns out to be the case for the projectors of
odd Khovanov homology as well. Moreover, the two homologies disagree (for example, there is no

torsion for the odd, 2-stranded projector) but their graded Euler characteristics coincide.
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CHAPTER 3

THE ODD SETTING: CHRONOLOGIES AND G-GRADED STRUCTURES
In this chapter, we provide a modern introduction to odd Khovanov homology. That is, rather
than detailing the projective TQFT of Ozsvath-Rasmussen-Szabd, we discuss Putyra’s 2-category
of chronological cobordisms and its linearlization over the ground ring R := Z[X,Y, Z=N/(X? =
Y2 =1)in §3.1. In §3.2, we attempt to mimic the constructions of [Kho02], as outlined briefly in
§2.2.2. Here, we discover the challenges motivating the next few chapters of our work: unified arc
algebras are not associative in this context, and the composition maps u are not degree-preserving.
Finally, in §3.3, we give a description of the solution posed by Naisse and Putrya in [NP20]. We

hope that §3.3 serves as a roadmap and extended outline of Chapters 4 and 5.

3.1 Chronological cobordisms and changes of chronology
First introduced by Putyra [Put10, Put14], we will proceed using the definition of chronological

cobordisms provided by Schiitz in [Sch22].

Definition 3.1.1. A chronological cobordism between closed 1-manifolds Sy and S is a cobordism

W between Sy and S; embedded into R? x [0, 1] such that
(1) there is an € > 0 such that
WN®R>x[0,e])=Sox[0,e] and WNR*x[1-¢1])=5; x[1—¢,1]
and

(i1) the height function 7 : W — [0, 1] given by projection onto the third coordinate is a Morse
function for which #(7~!({c}) N C) = 1 whenever c is a critical value of 7 and C is the

collection of critical points for 7. We call such a Morse function separative.

Next, a framing on a chronological cobordism is a choice of orientation of a basis for each
unstable manifold W, C W, for p a critical point of 7 of index 1 or 2. We will assume all
chronological cobordisms to be framed. Since a framing is determined by a choice of tangent vector

on each unstable manifold determined by a critical point, it is standard to visualize the framing by
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an arrow through critical points. We’ll adapt the 2-dimensional notation to 1-dimensional diagrams

appropriately; for example,

D - D

Naturally, two chronological cobordisms are considered equivalent if they can be related by a
diffeotopy H;, t € [0, 1], so that projection of H;(W) onto the third coordinate is a separative Morse
function at each time ¢. This is a much more strict equivalence relation than that of the even case.
To account for this, Putyra introduces the following action/relation. A change of chronology is a
diffeotopy H; such that projection of H;(W) onto the third coordinate is a generic homotopy of
Morse functions, together with a smooth choice of framings on H,;(W). Two changes of chronology
between equivalent cobordisms are equivalent if they are homotopic in the space of oriented Igusa
functions after composing with the equivalences of cobordisms; for a thorough description, consult
[Putl4]. We write H : W = W), for a change of chronology H between chronological cobordisms

W] and WZ .

Definition 3.1.2. A change of chronology H on a chronological cobordism W is called locally
vertical if there is a finite collection of cylinders {C;}; in R? x I such that H is the identity on

W— Ui C[.

We will use locally vertical changes of chronology frequently. Their main utility stems from

the fact that they are unique up to homotopy.

Proposition 3.1.3 (Proposition 4.4 of [Put14]). If H and H' are locally vertical changes of chronol-
ogy (with respect to the same cylinders) with the same source and target, then they are homotopic

in the space of framed diffeotopies.

There are two different ways of composing changes of chronology. First, given a sequence
of cobordisms A v, B Y, C, and changes of chronology H on W and H" on W’, there is a
change of chronology H’ o H on W/ o W. Second, given a sequence of changes of chronology

’

H H
W = W — W”, we will denote their composition by H" x H.
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On the other hand, we may completely describe the elementary chronological cobordisms

between closed 1-manifolds:

N © BB

with an additional twisting (transposing) identity cobordism. Together, these observations im-
ply that we may decompose all changes of chronology into sequences of elementary changes of
chronologies. These are exactly those pairs of cobordisms described in the commutation chart
(Figure 2) of [ORS13].

At this point, we have defined a 2-category whose objects are closed 1-manifolds, with chrono-
logical cobordisms as 1-morphisms and changes of chronology as 2-morphisms. This 2-category
is simplified by the following procedure: for R = Z[X,Y, Z*!]/(X?> = Y? = 1), define the map ¢
which assigns to each elementary change of chronology a monomial, as pictured in Figure 3.1.!
Indeed,

(H o H)=«H)WH) and  «(H * H) = «(H)(H)

so ¢ assigns to every change of chronology a monomial in R; for more on the map ¢ (e.g., well-
definedness and multiplicativity), see [Putl14].

Finally, as in the even case, we will eventually allow chronological cobordisms to be decorated
by finitely many dots as long as each dot never shares the same level set as another dot or critical
point. Precisely, let C denote the critical points of 7 and D denote the dots on W. Both are
taken to be finite. Then, a dotted chronological cobordism is a chronological cobordism for which
7(x) # 7(y) whenever x,y € C U D are distinct. In [Putl4], Putyra shows that if H is a change of
chronology which does nothing but move one dot past another with respect to the Morse function,
then «(H) = XY.

A subtle but important distinction of the setup is the degree; define the Z X Z-degree of a

cobordism W by

|W| = (#births — #merges — #dots, #deaths — #splits — #dots).

IFor those elementary cobordisms H with «(H) = Z, it is assumed that H takes a merge followed by a split to a
split followed by a merge. If the opposite is true, (H) = Z~!.
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OO0 OO
OO0 D
O CHO

GOD ¢ Gy
OO

Figure 3.1 This is the collection of elementary changes of chronologies, together with their eval-
uation by ¢. Notice that taking X = Z =1 and Y = —1 yields the commutation chart of [ORS13].
Framings are omitted if evaluation by ¢ does not depend on them.

Note that the sum of the entries of |W]| is the topological degree det,(W) from §2.2. Moreover,

define A : (Z X Z)*> — R to be the bilinear map given by
A(x1, y1), (x2, y)) = XF1R2y Y12 ZX¥1y2=yixe,

Suppose H is a change of chronology moving two cobordisms W and W’ past one another; e.g., H

N (UWU) H (UW'U .

;)-

Note that this agrees with and generalizes the statement about changes of chronologies which move

looks like

Then,

L(H)Z/l(

dots past one another. Putyra also provides the following, extremely helpful change of framing
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relations.

R WS e

In summary, we let ChCob,(0) (or just ChCob,) denote the graded monoidal category whose

* objects are formally Z x Z-graded closed 1-manifolds (i.e., a pair of a closed 1-manifold and

an element of Z X Z) and

* Hom((x1, y1)A, (x2, y2)B) is the free Z-module spanned by isotopy classes of (dotted) chono-

logical cobordisms W from A to B with degree
(W] = (x1 —x2,y1 = y2),

modulo the change of framing and change of chronology relations: W' = «(H)W for each

change of chronology H : W = W’.

3.2 Unified arc algebras

In this section, we consider the unified arc algebras H" over R, as provided by [NV18] and
[NP20] (there, referred to as “covering” arc algebras). This is done in spirit of [Kho02], as in
§2.2.2, using the “chronological TQFT” provided in [Putl4]. There are a number of challenges
presented by this construction: for example, the unified arc algebras are non-associative, and the
composition map u[¢, s] do not preserve Z X Z-degree. The solution we study, provided in [NP20],
is to use the structure of a grading category, described in §3.3.

We must be a bit more careful when setting up the unified arc algebras. Still, for a € B™,
b € B,,and t € By, atb is a closed 1-manifold; for s € B and ¢ € B,, we can still define a
cobordism

(atb)(bsc) — a(ts)c

but we specify a chronology when we do so. The cobordism is still obtained by contracting
symmetric arcs of bb, and we fix the chronology by taking saddles from right-to-left and choosing

the “upwards” framing. This is the chronological cobordism denoted by W, (¢, ).
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Next, define the “chronological” TQFT ¥ : ChCob, — RMod. Set

FOU---uQ) =V
———

n

where V = R(v,v_) and, now in this Z X Z-graded landscape, we set
degp(vy) =(1,0) and degp(v-) = (0, -1).

so that degp(u) = (#v.(u), —#v_(u)) where v, (1) denotes the collection of copies of v, appearing

in u. Finally, on elementary cobordisms, set

(

Vi®Vyi> vy, ViQ®V_Vv_,
F VeV -oV=

v_®v_r—0, v_®vy> XZv_, and
\
4

Vi V_Q®Vv,y+YZv,®V_,
F Vo VeV=
Vo Vo Qv

\

(D) ko= {1

?‘(g):v—m: e

v_ - 1.

To obtain a complete description on elementary chronological cobordisms, we apply the change of
framing local relations and map the twisting cobordism to a symmetry 7, defined by 7(a ® b) =
A(deggr(a), degr(b))b ® a. For more on 7, see Section 3.3 of [NP20]; in addition, see Section 10
of [Putl4] for a definition of chronological Frobenius systems.

Now, notice that a cylinder with a hole evaluates to either

vib Z(X+ YY) vib Z(XY + 1)v_
or

v_i—=0 v_1—=0
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depending on the framing. Therefore, unfortunately, we are not able to think of dots as 1/2 of a
hole anymore; we define # on dots by setting

(@) v+ - v_’

Flle Vo V=

ve - 0.

as before. Again, it is easy to check that ¥ observes the sphere and tube cutting relations.
Finally, for ¢ € B}, the unified arc space is defined

F(t) = EB F(ath).

aeB™ beB,

Given another tangle s € B, define the composition map
ult, s1: F(atb) ® F(b'sc) — F(a(ts)d)

0 ifh#b
by ult, s] = ~
F(Wape(t,s)) ifb=0b

where b’ € B" and ¢ € B,,. Note that, as promised, u[t, s] does not preserve Z x Z-degree.

Definition 3.2.1. The unified arc algebra, which we still denote H", is the unified arc space

H'=F()=  Flal.b)

aeB™ beB,,

with multiplication u[1,, 1,].

3.3 A brief outline of C-graded structures

In this section, we review the motivation for and construction of G-graded R-modules given in
[NP20]. In the following chapters, we provide a thorough description of a slight generalization of
the procedure introduced here.

It has been shown (c¢f. [NV 18] Proposition 3.2) that the multiplication as defined above is not
associative in the unified arc algebra. This presents the main difficulty—in [Kho02], Khovanov

provides that

F(t) ®gn F(s) = F(ts)
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declaring that (u’ - h) ® u = u’ ® (h - u). The assumption that multiplication in H" is associative is
implicit here.
On the other hand, the failure of associativity is controlled by the cobordisms involved. Explic-

itly, observe the square

Habelt, P'1(x,y) € Fe(att'c)

z € Fo(ct”d)
- ﬁ(atb) / \
y € Fo(bt'c) € F(att't"d)

7 € Fe(ct"d)

/’lacd[lt,’ t”](,uabc [t’ t,](x’ )’), Z)
Habalt, t't"1(x, upealt’, 110y, 2))

x € Fe(atb)

Upealt' 1"1(y, 2) € Fo(bt't"d)
In general,
Macaltt’st"] o (ape[t, '] ® 12) # papalt, 1't"] 0 (1 ® ppealt’,t"]),

but the failure is witnessed by the degree of the cobordisms involved: W,.4(tt’,t") and W.(2,1’),
and W,p4(2,'t”) and Wp4(t',t”). The degree of elements also have effect.

In the literature, Majid and Albuquerque [AM99] show that the octonions O, while non-
assoicative, admit a grading by the group (Z/2Z)>, and the gradings witness the failure of associa-
tivity. That is, they show that O is quasi-associative; in general, a G-graded K-algebra A is called

quasi-associative (or graded associative) if there is a 3-cocycle @ : G131 — KX for which
a-(b-c)=a(al.lbl.lcl) @ b)-c

for all homogeneous elements a, b, ¢ € A (here,| - | : A — G is the grading).
Naisse and Putyra [NP20] generalize the notion of quasi-associativity. Remarking that the
3-cocycle condition is exactly the pentagon relation for a monoidal category, their first goal is to

provide similar definitions for modules and algebras graded by categories.
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Definition 3.3.1. By a grading category, we will mean a category C endowed with a 3-cocycle
a : CBl - KX, referred to as the associator. Then, a C -graded K-module is a K-module M which

admits a decomposition

M= P M,

geMor(C)

By “g € Mor(C)”, we just mean that g is any morphism of C. This generalizes gradings by a
group by delooping: we can view any group G as a category with a single object @ with End(e) = G
A C-graded map f : M — N between C-graded modules is just one which preserves grading:
f(Mg) C Nq.

Define the category Mod® of C-graded K-modules with morphisms being graded maps. It is a
monoidal category where the decomposision of M’ @ M = geMorc)M "® M), is given by

M oMy, = P M, ecM
8=82°81

for composable g; and g, (revealing a slightly different feature of the C-graded setting). The

coherence isomorphism is then given by the associator:

(M; ® My) @ My < M; ® (My ® M)

for homogeneous elements x, y, and z. The C-graded K-module &5 xeob(c) Kidy 1s the unit object,
and the unitors for this tensor product may also be defined via the associator. We will describe this
process explicitly in slightly more generality later on.

With this language, Naisse and Putyra are able to define C-graded algebras and bimodules as
well. First, a C-graded K-algebra A is a C-graded K-module with a graded associative multiplication
map A ® A — A such that A, - Ay C Agroq, Where Agro = {0} whenever g’ o g is undefined.
Similarly, for two C-graded algebras A; and A,, a C-graded A;—A-bimodule M is a C-graded
module M with graded, K-linear left and right actions A, ® M — M and M ® A1 — M satistying

the usual bimodule conditions, twisted by the associator: for example, these actions respect
(v-m)-x=a(y|mllxl) y-m-x)
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forall y € Ay, m € M and x € A;. In this section, we will denote the category of C-graded A,—
Aj-bimodules by Bimod®(A4,, A;). The morphisms of this category will be graded maps between
As—Aj-bimodules which preserve the left and right actions.

We employ the associator to see that, given M’ € BimodC(A3, Ar)and M € BimodC(Az, Al),
M’®xM € Bimod® (A3, A)): the left and right actions are the horizontal maps making the following

diagrams commute.

A QM QM) ——— MM MOIMRA —— MM

o~ NS

(A3M)Ye M M ® (M A

Then, we can define the tensor product over the intermediary algebra A, via the coequalizer:

explicitly,

M’®A2M:M’®KM/ <(m’-x)®m—a<|m’

Sl Jm]) o' @ (xm) )

with left A3- and right A-actions induced by the ones on M’ ®x M.

Now, with the goal of showing that the unified arc algebra H" is graded associative, we must
build a suitable grading category (G, «). Let B® = | |, B" denote the collection of all crossingless
matchings. Given a flat tangle 7, we write 7 or " to mean the tangle ¢ with all free loops removed,;

§% denotes the collection of planar tangles with no free loops. Let G denote the category where
e Ob(G) = B°®, and whose
* morphisms are formally Z X Z-graded planar tangles; that is,
Homg(a, b) = B", x Z?
forany a € B" and b € B".
The composition, for (¢, p) € Homg(a, b) and (¢', p’) € Homg(b, ¢), is defined

(', p") o (t,p) = (it', p + P’ +[Wapc (1, 1')]) € Homg(a, ).
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Note that, since W, (¢,t") consists of only saddle moves,
|Wape(t, 1) = (—#merges in Wap(t, 1), —#splits in Wype(2,1)).

So, it follows that the identity morphism for any crossingless matching a € B™ isId, = (1,,,, (m, 0)).
Henceforth, to make life easier, given objects a € B and b € B", we’ll write atb when, really, we
mean atb.

We will omit a description of the associator until defining our own in the generalized setting—it
will be apparent how to specialize ours to the current situation. Instead, we describe the way in

which way elements of H", or ¥ (¢) in general, are G-graded. For u € ¥ (atb), we set

degg(u) = (7, degg(u)) € Homg(a, b).

Hopefully this explains the choice to remove free loops from tangles: they are not involved in
composition maps between arc algebras, and are extraneous information in light of the second entry
of the grading.

Secondly, this presents a solution to the first problem for unified arc algebras: p,p.[t, s] preserves
the G-grading. Suppose u € ¥ (atb) and v € F(bsc), so degg(u) = (, degg(u)) € Hom(a, b) and
degg(v) = (s,degg(v)) € Hom(b, ¢). Their composition in unified arc spaces is given by the map
Uabelt, s]. Recall that in the definition of the chronological TQFT ¥, each merge decreases the

number of copies of v, by 1, and each split increases the number of copies of v_ by 1; consequently

degg(Uapelt, s1(u, v)) = (Is, degg(u) + degr(v) +[Wapc(1, 5)|) = degg(v) o degg(u)

as desired.

Finally, we can prove that

Hacdltt'. 1) (papelt. 1106, 9. 2) = @ (ix]y]J2l) tapalt. 0171 (2. papalt’. 271y, 2))

for any x € F(ath),y € F(bt'c) and z € F(ct”d). In particular, Naisse and Putyra provide the

following (for a discussion on unitality, see [NP20] Proposition 6.2).

Proposition 3.3.2. H" is a unital, associative, G-graded R-algebra.
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It is routine to check that, for t € B” , F(¢) is an (H™, H")-bimodule: the left H"-action is given
by u[1,,, ] and the right H"-action is given by u[¢, 1,]. Naisse and Putyra then provide the desired

properties of these bimodules, in the sense that it mirrors results of [Kho02].

Proposition 3.3.3. Lett € B. Then F(t)isan (H", H")-bimodule. Itis also sweet as an (H", H")-
bimodule; that is, it is projective as a left H" -module and as a right H"-module. Moreover, given

s € BY, there is an isomorphism
F (1) ®un F(s) = F(ts)
induced by ult, s] : ¥(t) Qg F(s) — F(t3).

3.3.1 G-shifting system

So far, we have successfully defined the relevant algebraic objects in the G-graded setting.
However, we have glossed over the important discussion of graded maps. In particular, given
t,s € B, sothat (1), F(s) € Ob (Bimodg (H™, H")), can we describe those relevant morphisms
between ¥ (¢) and ¥ (s) in this category? Of course, any cobordism W : t — s induces a map
F(W): F(t) = F(s), but this map is clearly not graded! There must be a fix if we are to interpret
cubes of resolutions with this approach; in particular, the only graded map between F () <> and
7 (i) is the zero map. The solution of Naisse and Putyra is the introduction of grading shifting

functors via a G-shifting system. Here is the idea of a C-shifting system; a more precise, expanded

definition is given in Section 5.

Definition 3.3.4. A C-shifting system is a pair (I, @) consisting of a monoid (/, e, ¢) and a collection

@ = {¢; }ics of families of maps

¢ ={g"": D,X’Y — Hom¢ (X, Y)}x yeon(c)

1

for Df’Y C Hom¢(X,Y). These families of maps ¢; are called C-grading shifts, and they are

required to satisfy the property that, for each i, j € I and X,Y € Ob(C), the following diagram
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commutes.
Hom¢ (Y, Z) X Home(X,Y) —— Home(X, Z)

90./><<Pfl \Lsﬂj-i

Hom¢ (Y, Z) X Home(X,Y) —— Home(X, Z)
It is not immediate that a C-shifting system (/, @) is compatible with the associator a; a major
portion of [NP20], and now our work, has to do with this observation.
It S = (I,{¢i}icr) is a C-shifting system compatible with @, then for each i € I, ¢; :
Mod® — Mod€ is a functor, called the grading shift functor, and is defined as follows. For
M = B, cnorc) Ms € Ob(Mod©), put

pi(M) = @ Pi(M)g:(e)

g<Dh;
where ¢;(M), o) = Mg. In other words, this grading shift functor turns elements of degree g € D;
into elements of degree ¢;(g); elements whose degree is not in D; are sent to zero.
We will see that the witnesses to compatibility between a given C-shifting system and associator

imply the existence of canonical isomorphisms
@;i(M") ® pi(M) = ¢jei(M' ® M).

Indeed, there is a natural transformation ¢;(—) ® ¢@;(=) = @je(— ® —). From here, under a
certain assumption, it is easy to define shifted bimodules. In summary, this is to say that the
shifting functor ¢; : Mod® — ModC further induces a shifting functor ¢; : Bimod®(A,, A;) —
BimodC(Az, A1). The shifting functor also respects tensor products: for M’ € BimodC(A3, A»)

and M € Bimod®(A4,, A)),
@i (M) @, pi(M) = @oi(M' @4, M).

Returning to the situation at hand, our goal is to define a G-shifting system (compatible with
a). The G-shifting system we will use is given simply by weighted cobordisms (W, v) where
v € Z X Z. Explicitly, to construct the monoid in this shifting system, recall that given two
cobordisms W : t — ¢ fort,# € B and W, : s — s for 5,5 € B;‘, we obtain a cobordism

W, e W, : ts — t’'s’ by horizontal stacking.
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Now, given weighted cobordisms (W1, vy) and (W>, v,), define (Wi, v;) e (W, v7) to be (W) e
Wy, vi+v,) whenever W e W, is defined, and zero otherwise. The monoid of the G-shifting system
will be the collection of weighted cobordisms together with formal identity absorbing elements
{(W,v)} U {e, 0} under the operation e. Finally, given ¢, € B and (W : t — ¢’,v), given any

a € B™ and b € B" we define

b -
Py @ P) = (@, p+v +]1,W 1))

where 1,W1;, is the cobordism W capped off by a X [0, 1] on one side and b X [0, 1] (really, bXx [0,1])

on the other. Since Ob(G) = B®, we can write pw,,) = {goz‘f V)} cpm pepns WE will often abuse
. a m n

a,b is

notation and write ¢w,) when it does not present confusion. Clearly, the domain of ¢y, 1

a,b

Wy = {(t, p) € Homg(a, b) : p € Z x Z}. We'll write gy sometimes when v can be left

simply D
ambiguous; however, in computations, this notation means v = (0, 0). Finally, for a flat tangle ¢, let
1, denote the identity cobordism on ¢. Consider the collection of identity cobordisms 1 = {1,},.
Then there is an identity shift functor given by ¢iq = P 1,

In practice, it is beneficial to view weighted cobordisms (W, v) as two separate shifts; the first
on a given planar tangle and the second on the Z X Z degree associated to that tangle. Unfortunately,
to determine compatibility maps one must choose an order: we will always shift first by the
chronological cobordism W and second by the Z X Z-degree. The opposite choice can also be
made, and leads to small differences in the theory—for example, see Proposition 7.1.5. In this way,
Naisse and Putyra show that this G-shifting system is compatible with the associator defined above;
for more details, see [NP20].

Of course, there is also the possibility of vertically composing cobordisms. This is to say that
the G-shifting system may be extended to a shifting 2-system (again, defined by Naisse-Putyra).
Explicitly, in the monoid defined above, we define vertical composition in the same spirit as
horizontal composition: for Wy : ¢t — ' and W : s — &/,

WyoWi,va+vy) ift'=s
(W2, vp) o (Wy,vy) =

0 otherwise.
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Compatibility maps are constructed via the change of chronology
H:(W,oW,)e (Wi oW;)= (W, eW))o(WreWp).

With this structure in place, we will see that any cobordism with corners W : t — s induces a

graded map F (W) : ow(F (1)) — F(s), as desired.
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CHAPTER 4

GRADING MULTICATEGORIES AND PLANAR ARC DIAGRAMS
In this chapter, we generalize the work of Naisse and Putyra to provide a category compatible with
“multigluing”; i.e., a framework for replacing flat tangles ¢ with planar arc diagrams D. We note
that the content of this chapter and the next will come as little surprise to readers familiar with
[NP20], outside of complications and additional structure associated with multicategories.

We start by extending the definition of F to planar arc diagrams, defined momentarily. In §4.1,
we review multicategories, define grading multicategories, and construct the grading multicategory
¢ utilized throughout this thesis. In §4.2, we verify that ¢ is indeed a grading multicategory. Then,
§4.3 is dedicated to establishing some properties of modules graded by multicategories which we
use extensively. We conclude with §4.4, wherein we list consequences of observations made in

§4.3 for ¢-graded multimodules associated to planar arc diagrams by 7.

Definition 4.0.1. An (m,...,my;n)-planar arc diagram D is a disk D with k interior disks
removed, together with a proper embedding of disjoint circles and closed intervals, so that there are
2m; endpoints on the boundary component corresponding to the ith removed disk, and 2n endpoints
on the outer boundary of D. Note that planar arc diagram D comes with an ordering on the removed
inner disks. Each boundary component carries a basepoint, disjoint from the endpoints of intervals,
denoted by X. We say that D is oriented if the embedded circles and intervals are oriented. Both
oriented and unoriented planar arc diagrams are considered up to planar isotopy. The collection

.....

the collection of (my, ..., my;n)-planar arc diagrams with free loops removed.

For example, pictured below is an oriented (1, 1, 1, 2; 3)-planar arc diagram. We can compose
planar arc diagrams by filling the ith empty region of one planar arc diagram with a (- - - ; m;) planar
arc diagram. That is, given planar arc diagrams D; of type ({1, ..., {io;;m;) fori=1,..., k and D

of type (my, ..., mg;n), we set

Do(Dy,...,Dy)=D(Dy,...,Dy; D).
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There is also a pairwise composition

Do, D;,=D@@,...,D;,...,J,9).

To the author’s knowledge, this notation was first introduced in [LLS22] (we will adapt this definition

to diskular tangles in Section 6.2). Note that the two notions of composition are related by

Do(Dy,....,Di)=(--((Dog D)oy Di-1) ok—2--+) o1 Dy

If E is a planar arc diagram with an interior boundary component with 2n endpoints, we’ll write
D(Dy, ..., Dy; E) to denote the resulting planar arc diagram. Otherwise, we frequently drop the

last @ from the notation.

On one hand, it is clear that any crossingless matching a € B" uniquely defines a planar arc

diagram of type (;n). We choose the association

so that, if we are being careful, the inner disks of a planar arc diagram can be filled with crossingless
matchings belonging to B® and can be closed on the outside by a crossingless matching belonging
to B..
Thus, if D is a (my, ..., my;n) planar arc diagram, we define
FD)= B FO@,...x:y)

x;€BMizi=1,...k
YeB,
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where ¥ is the unified chronological TQFT. It is a (H™ ® --- ® H™*, H")-bimodule by the
compositions

plLpys ooy Iy );D1 - and p[D51,].

These composition maps are defined just as before: for compatible D;, we define

ul(Dy,...,Dy); D] : FD)F(D)— F(D(Dy...,Dy))

k
i=1

component-wise, as follows. For the time being, all tensor products are taken over R. Working
with planar arc diagrams necessitates some burdensome notation. Notice that potentially far

more closures are necessary: each D; requires, say, a;-many inner closures which we denote

by X( 1), ..., X@q)> and one outer closure y;. On the other hand, D requires k inner closures
¥i»--.,Y; and one outer closure z. Let X denote the entire collection of crossingless matchings
{xa,1) -+ Xk,ap)}- In the future, ~ will always denote the entire collection of crossingless

parings of that label. If ~ has a subscript i, we mean all corssingless parings of that label whose
first entry of their subscript is i; e.g., X; = {x(.1), - - - » X(i.0;) }- With this notation in place, we define
ul(Dy,...,Dy); D] component-wise by

F(Di(Ri: yi) ® F(D(':2) = F(DD1F1), ..., Di(Fe); 2)
1

k
pzsl(D1, ..., Dy); D :
i=

where we can interpret D;(X;) := D;(X;; @) as a crossingless matching, and

0 if y; # y! for some i;
Hz5:[(D1,...,Dy); D] =
F (Wg5.((D1, ..., Dy); D)) if y; = y; foralli.

Elements of (®l]le T(D,-)) ® F (D) are written (u1, . ..,u;) ® u or, frequently, i ® u. The last
thing we must do is describe the chronological cobordism W5, ((Dy, . .., D), D). This cobordism
is (as one would expect, comparing to Sections 2.2.2 and 3.2) defined by contracting the symmetric
arcs of y;. The chronology is chosen by moving counter-clockwise from the basepoint of the ith
removed disk of D and contracting symmetric arcs outwardly, starting at i = 1 and progressing to

i = k. Use Figure 4.1 for reference. In this example, Wz5.((D1, D2, D3), D) is the chronological
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Se

Figure 4.1 An example of a chronological coboridm W5, ((D1, D2, D3), D).

cobordism obtained by contracting the symmetric arcs of y as specified by the gray arrows in
the numbered order. So, it is a merge, followed by a split, and then three more merges. Notice

that Wz5.((D1, . . ., Dy), D) has Euler characteristic — Z,-|y,~| (recall that|y| = ¢ whenever y € B°).
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As we proceed, we will use the notation yDz to mean D(¥;z). This seems redundant, but it

is especially helpful to write X(D1, ..., D)y, or even 5513’5 for D’ = (Dy, ..., Dy), rather than

(D1(¥15y1), D2(¥25 y2), - - - DR yi))-
Let D’ = (D1, ...,Dy). We will frequently refer to the chronolonological cobordism above via

the (upwardly oriented) schematic

D D

where the trivalent vertex represents the cobordism Wy 5 .((D1, . . ., D), D). In following sections,
we’ll have to consider the compositions of such cobordisms, but it is not immediately clear how
the chronology is defined. Let D” = (Dajy---sDaayys - -+ s Dk,ay)), so that 5:’ are the planar arc

diagrams filling D;. While we can interpret

5// 5/ D

as a chronological cobordism using our rules above, we’d like to consider compositions of the form

D"// 5/ D

as well. In the latter, notice that the leftmost trivalent vertex is a collection of chronological
cobordisms, Wy 3, ((D1),---»>Da)- So, we will define the order of these chronological

cobordisms to follow the index i = 1, ..., k—the same idea applies to larger compositions. Denote
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the composition of these chronological cobordisms by W;V’gj(ﬁ”, D’), and the corresponding map
as u[D”, D']. To be explicit,
koo k k
ulD”,.07: | R QRFWy) | e | RFWD) | - R FWDiDit, ... Dia,)
=1 j=1 i=1 i=1

interpreting /1[5”, 5’] = ®ll.(=1 ul(Di1, ..., Dijqa,), Di]l. We shorten the expression above to
ulD". D' F(D")® F(D') — F(D'(D")).

Finally, while we will almost always use the composition maps /.l;g’y,z(l_j, D) moving forward,
we note that the flexibility of planar arc diagrams allows for a few more composition maps. First,
note that one may fill the ith hole of D by D;, leaving the other holes unchanged, by considering the
composition u[(1,,,...,D;, ..., 1,,); D]. On the other hand, we could also define a composition

map which only fills one hole of D without reference to the others. Consider the map
ulDi; D] F (D)@ F(D) = F(D(D,...,Di,...,0))
defined componentwise as
Byt Finyiyie Pis D1F (DiRis yi) ® F(D(G'32) = F (DB - .o, DilXi)s - .-, yp)
0 ify; # y
F Wiy, ForypynePis D)) if yi =y

where W(y/l,_“ (Dj; D) 1s the chronological cobordism which simply contracts symmetric

7551'7“-’.)7;{)’))1"1

arcs of y;y; counter-clockwise with respect to the basepoint, with closures specified by the other

indices. Then, notice that

ul(Dy,...,Dy); D]
=u[Dy;D(Dy,...,Di_1,)]o---0 (,U[Dz;D(Dl, ,....,9]eldp, ®--- ®Ide)

o (u[D1;D1®1dp, ® - ®Idp,)
where Idp, means the identity on elements living in components corresponding to closures of D;.
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4.1 (Grading) multicategories

Recall that a (small) multicategory € consists of
1. aset of objects Ob(%),

2. foreach k > Oandobjects xy,...,x;,y € Ob(%¥),asetHom(xy, ..., xy;y) of multimorphisms

from (xq,...,x) toy,

3. a composition map

k
Hom(yy, ..., yk;2) X ]—[ Hom(x;1, . . ., Xia;3 yi) — Hom(x11, . . ., Xkay 3 2),
i=1

and
4. adistinguished element Id, € Hom(x; x) for each x € Ob(x) called the identity of x

defined so that composition is associative, in the sense that the following diagram commutes:

Hom(y, ..., yk:2)
k Hom(xll""7-xka’k;Z)

XHi:l Hom(xil"'-axiai;yi) X @ H )

X o ><FL-:1 Hj=1 Om(Wijl,--~,Wijﬁ,-j,Xij)

x [Tizy I1,L, Hom(wiji, . .., wijg, s Xij)

|

Hom(yy, ..., Yk 2)

. Hom(Wii1, ..., WkayBra, s 0)-
X Hl’:] Hom(Wﬂ], ctt Wiaiﬁmi > yl)

In addition, we require that the identity elements are both right and left identities for composition.
Proceeding, for a multimorphism f : (x1,...,x;) — y, we set dom(f) := (x1,...,x;) and

codom(f) :=y.

Example. Planar arc diagrams comprise a multicategory important to the work that follows. Let

pT denote the multicategory whose

* objects are the natural numbers, including zero,
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e Hom,r(mj,...,my;n) is the collection of (my,...,my;n) planar arc diagrams, which we

will denote by D, .....my:n)-

Composition in pT is composition of planar arc diagrams, as defined at the beginning of this section.
It follows immediately that pT is a multicategory with identity elements 1,, which is just a circle
with n marked points times the interval. Note that we can view pT as a multicategory enriched

in categories since Yy, ... m,:n) can be viewed as a category whose morphisms are (potentially

.....

chronological) cobordisms between planar arc diagrams of type (my, ..., mg;n).

A very similar multicategory, ¢, will be the main object of study for the rest of this section.
The objects of ¢ will be crossingless matchings rather than natural numbers, but the more striking

difference between ¢ and pT is the composition rule.
Definition 4.1.1. Define the multicategory ¢ whose
* objects are crossingless matchings, Ob(¥) = B®;
* for crossingless matchings x; € B™,i=1,...,k,and y € B", set

. 7 2
Homg(xl, e ,xk,y) = @(ml,”_’mk;n) X Z°.
Then, composition

k
Hom(yy, ..., Yk;2) X nHom(xil, oo Xigs yi) | — Hom(xqq, ..., Xke, s 2)
i=1

is defined by

k
(D, p)o(D1.ps++ (D pi)) = | D1, Dz @) p+ Y pi+|Wiso(Dy,..., Dy): D)
i=1

where D(Dy,...,Dy; @) means D(Dy,...,Dy; @) with all closed loops removed. Finally,

the distinguished identity element Id, associated to each crossingless matching x is given by

(Lxp, (x|, 0)) € Hom(x; x).

Proposition 4.1.2. ¢ is a multicategory; in particular, composition in ¢ is associative.
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Proof. Consider the following compositions of multimorphisms.

Wi, "7 Wigy) XX Wi, *7 s WiaiBia,)

Dy,
x11, " Xlay)

(yl, “ e

8 \J
(Xk1, "7 Xkay)

Dy Dy
f\j /D s

Wkil, """ Wkigy) XX Wkats """ > WkarBra,)

Our goal is to verify the associativity of these compositions in ¥; i.e.,

k

v -2z @l

l_ll_[(Dlj’pl])o l_[(Dl’pl) (D,p) | = l—ll—[(Dl]’plj)on(Dl’pl o (D, p).

i=1 j=1 i=1 j=1

In either case, the composition yields

D (D((D11,...,D1a,), D2(D2, ..., Daay), ..., Di(Dyi, . ...

in the first coordinate. In the former case, the composition yields

p+ZPz+ZZPu

i=1 j=1

Wz5.((D1, ..., Di); D)

+Wiz.(D11, . . ., Diay); DDy, . ..

in the second coordinate. In the latter case, the composition yields

p+ Zpl ' Z Zpl, + Z\WW (it .. Dig,): D)

i=1 j=1

in the second coordinate since, foreachi =1,...,k,

J=1

+ Wsz}z((Dl(Dlla---,Dlal),---,Dk(Dkl,...

s Dka/k)) "
4.1.2)
, DY)
4.1.3)
Di,)): D)|

;g ;
H(Dij,l?ij) o(Di,pi) =\ Di(Di1,...,Diq), pi + Z Dij +‘Wwi}iy,»((Di1, > Dig,), Di‘

The values (4.1.2) and (4.1.3) are equivalent since the total number of merges and splits of the se-

quence of cobordisms is unchanged; otherwise, the minimality condition on the Euler characteristic

is contradicted.
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By a multipath, we mean a sequence of collections of composable multimorphisms. Explicitly,

a multipath of length n is a sequence of sequences of multimorphisms
1 2
((f;‘l)ila (ﬁlig)ili27 o 5( l’?i;_jﬂ)i]iz...i,,)
withrangesi; =1,...,k,ip=1,...,k;,uptoi, =1,...,k;. i , such that
dom(f! )= <codom( foi)™, - codom (£, ))

for each r = 1, ..., n. Denote by €!"! the collection of multipaths of length n. As we proceed, we
frequently confound terminology and refer to the sequence of multimorphisms obtained by taking

the composites of a multipath as a multipath. For example, suppose that
(D ) i) € €7
withiy =1,...,k,ix=1,...k;,andiz =1,...,k;;,. We’ll denote by
2
(f;l) ( ”12) ( 111213) (4'1'4)

the sequence of composites

fl1 ° <<f121 O(f1311’---’f131k11)> R (f12k| ° (f13k11""’f13’<1k1k1)>> ’
fr o <<f221 o (f3)1s- --’f231k21)) BEEE <f22kz ° (f§k21’~-~’f23k2kzk2)>>
fiio <<sz1 © Ui Fi)) o (f"k" ° (f’?"kl""’f’gkk"kkk» '

Then, this sequence is frequently referred to as a multipath of length 3, when it is really a composite
of such a multipath. Finally, distilling notation further, we’ll write f! := ( R ) fl.z =
(f? oo Ii[) and similarly for fi, and write the sequence of composites of multimorphisms (4.1.4)

as

=~

i

ﬁ 4.1.5)

i=1 i=1 j

e
4

Il
—_

We will replace k; with the notation «;, and similarly the notation k;; with the notation ;;. This
runs the risk of presenting confusion in light of the associator and compatibility maps introduced

momentarily—we hope that the meaning of notation is clear presented in context.
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We remark that if f !'is a single multimorphism, then the multipath (4.1.5) can be pictured as
(4.1.1) from the previous proof. In general, f may consist of many multimorphisms, and we can
think of a multipath as a collection of such diagrams—in other words, multipaths can be viewed as

trees and forests.

Definition 4.1.3. A grading multicategory is pair (¢, a) where % is a multicategory and « :

¢l — KX is a 3-cocycle, meaning that for all

=

~!

k k a a;

(1e ) (110 ) (1

i=1 i=1 j=1 i=1 j=I

i) | e
1

=~
Il

(shortened to f .8, 71 e ‘5[4]), a satisfies the expression

-

'a(h, 8, f)=1.

- g -

da(l, h, g, f) = all, h,§)a(l, b, f§) " a(l, §h, NHa(hl, g, f)
We call such an « an associator.

4.2 ¢ as a grading multicategory

Our goal is to show that there exists a suitable associator & endowing ¢ with the structure of a
grading multicategory. We will define « to be the product of two values associated to changes of
chronologies, one explicit and the other implicit.

We'll use the notation D, D’, and so on to denote collections of planar arc diagrams which
form a multipath in pT. If Disa single planar arc diagram D, and D’ = (D1, ...,Dy,), then their
composition, which will in general be denoted 5(5’), is denoted D(Dy, ..., D,). In the general

setting, the constituents of a multipath g, g, g”, 8" € ¥'*! will be written
g=(D,p)= H(Di,Pi)
i
g =MD, p)= H(Dij,l?ij)
i.J
g// — (Ell,ﬁ//) = H(Dijk’pijk)
i,j.k
g/// — (D/”,p_w,) — 1_[ (Dijkf,l?ijkf)~

i,J,k.¢
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On one hand, our indexing notation allows us to write 13: = [1;(Dij, pij)- Then, 13(5’) denotes the
collection (D1(13’1 ) R Dn(lS;l). We could also use our indexing notation to write, for example, g”’
as [1;, j,k(ﬁg’} . ﬁ:’; ,)- Finally, we will denote by P the sum of the entries of p (thatis, P = ¥, p;)
and similarly for the other cases; e.g., P”" = p” - (1,...,1) = Zi’j’k,g Pijke-

As we proceed, we will make use of the following lemma. It is implicit in the proof of

Proposition 4.1.2, but we restate it here.

Lemma 4.2.1. For any multipath of planar arc diagrams D, D', and D” as above,

Wis2(D', 5)‘ +‘sz(5", D(D"))

_ ‘Wm(ﬁ”, D’

+)WW(5’(5”), D).

Proof. The compositions Wzz(D", D(D")) o Wgzz(D', D) and Wi3z(D'(D"), D) o Wigzz(D", D’)
(we assume the first cobordisms in both composites are the identity elsewhere) have the same source
and target. Thus they are isotopic cobordisms—if this were not the case, the minimality condition

on the Euler characteristic would be contradicted. O

To construct our associator, consider the change of chronology

wD(D'(D"))?

Wis=(D”, D(D')) Wiz5z(D"(D"), D)

wD"% ® ¥D(D")Z wD'(D")y ® yDZ

1‘;5//;®W;€§Z(5/, 5) W@,}y(ﬁ”, 5/)®]1)752
wD"% ® XD’y ® yDZ
Define a(g”,g’,g) to be the evaluation of this change of chronology «(H,)—notice that this

component of @ does not see the second coordinates of its inputs. Secondly, take

,Zl?ijk

ij.k

axg” g, 8) = A | Wis=(D', D)

_2 (‘Wm(ﬁ’, 13)) , P") .
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Then, set

a =@ra;.

Remark 4.2.2. This definition is clearly motivated by and generalizes the associator presented in
[NP20]. A property we will use frequently is that the degree of cobordisms decomposes into a sum

of constituents; notice, for example, that

ax(g”,g".8") =4 ()me(ﬁ”, D)

, P//I>

=2 D |Wiz5,B7, Do) P
i

iXiYi

(We could rewrite the last line as []; 4 (]WW 23 (13;’, 13,~)

, P'"), invoking the bilinearity of A,
although there might be slight confusion with this rewriting since P”’ is a sum involving the index
i—indeed, the second coordinates of each term in this product are equivalent.) Finally, we remark
that we can view a as coming from the following sequence of schematics, just as in [NP20] (pictured

for the case we have just described).

”n "

= a1(g”,8",8") ai(g”,8", 88", 8", 8) &

g ” ” ”

gg/ gg/ gg/

Proposition 4.2.3. The map a : 9B — R is a 3-cocycle.

Proof. This proof is completely analogous to the proof of Proposition 5.4 in [NP20]—we represent

4

their proof in the context of grading multicategories. As in the original case, da(g”’,g”,2’, )
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computes the difference between the paths of the diagram below.

g/” g
a(g/l’,gllgl’g) N
gll , 4 gll ,
§ 8 Ma § 8
@
a(g’”,g”,g/)/\ Xd[(g//’g/’g) (4.2.1)
1444
1444 g
g”, . gll . gll
4 nr 1 ’ 4 nr 1 ’ 4
8 g a(g"g".8".8) g a(g".8".8'8) ¢
8 8 8

On one hand, we are comparing two locally vertical changes of chronology with the same source

and target, so the following diagram commutes by Proposition 3.1.3.

on (B (5",

4

al(ﬁ///’ﬁ//’ﬁ/) D///D//D/D D///D//D/D al(ﬁ/!,ﬁ/,ﬁ)
D//D//D/D D//D//D/D
on (B(B,5.) on (5.5 BB
\
K 4
D_)//q_))//D_)/D_) 5//5//5/5

Since the corresponding change of chronology consists only of the sliding of two chronological
cobordisms past one another, we know by work in Section 3.1 that « is

A < Wi3z(D’, D)|,|Wz(D", D)

b

Thus, the contribution of @ in equation (4.2.1) is

top = « bot.
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On the other hand, we can compute and compare the contributions of @ on the top and bottom

path of (4.2.1). The top path evaluates to

1 (’Wm(ﬁ”, D)

, P"') A (‘Wwﬁ(ﬁ'(ﬁ”), 5)( , P’”> A (’Wm(ﬁ', D)

, Pll)

or, applying bilinearity of A,

A <‘Wﬁ}f§(l—j”, 13’) + W@ﬁ(ﬁ’(ﬁ"), 5)

,P”’) 2 (‘W;ﬁ(ﬁ’, 13)) , P”) . 42.2)

The bottom path is slightly trickier to evaluate, since the second coordinate of a>(g"”’g”,g’, g)

requires a computation. As in the proof of Proposition 4.1.2, this comes from summing the second

4

coordinates of g”” and g” and the cobordisms among their coordinates; explicitly,

0”88 8) = 4 | |[Wes(D', D)

7" 7 _ir o=
T Z‘Wv<i,j)v7i.ffij(Dij’ Dij)
i,j
The last summation in the second coordinate can be rewritten as in Remark 4.2.2: we find that the

bottom path evaluates to

1 < W)?j;'E(D_)/a 5)’ ’Pm + P+ W{)’W}?(l_j”/a 5//)

) A (]WW(IS”,B(B’))

, Plll) .

Decomposing via bilinearity yields

pl (‘W;ﬁ(ﬁ’, 5)) , P”’) 2 (

WE}Z(B,, 5)‘ 5 P”) -A <‘Wgﬁ(ﬁ/, ﬁ)‘ ,‘W;@g(ﬁm, ﬁ”)

, Pl//> .

Combining the first and last term, and reordering suggestively, gives the product

)

A (WD, DD

, Wﬁv_&)_c' ﬁ///’l')’//) WVT/)_EZ 5//’5(5/))

A (|Wes=B, )

./1(

In this rewriting, the first term is k. Moreover, by Lemma 4.2.1, the first coordinate of the second

)+ (|wasD', 5| +

P///)

Wig=(D', 5)) , P") :

term is equivalent to the fist coordinate of the first term of (4.2.2). Thus, the overall contribution
of a3 in equation (4.2.1) is

K top = bot.

Together, this provides that da = 1, as desired. O
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4.3 Generalities on modules graded by grading multicategories

Before proceeding with the grading multicategory at hand, we note generalities of 4’-graded
modules. That is, we consider the ways in which results of Section 4 of [NP20] lift to the setting of
grading multicategories. Throughout, % is a grading multicategory with associator & over a unital,
commutative ring K.

By a ¢-graded K-module, we mean a K-module M with decomposition M = (P geMor(@) Mg
where g is a multimorphism of €. As before, we write|x| = g whenever x € M,. This generalizes
the notion of grading by a category, introduced in [NP20], which in turn generalized the notion of
grading by a group (take the category consisting of a single element x and End(x) = G). Of course,
we are interested in the case ¥ = ¢ and K = R.

Tensor products in this setting are rather odd in the sense that their graded structure has a few
different interpretations. This choice should be clear given the context. In one case, if M and M’
are two ¢ -graded K-modules, then we can define

MeM= ) M oM,
heMor(%)

where

M @My, = D M}, & M,.
h=gog’
Notice that this definition does not make full use of the flexibility offered by a grading multicategory.

On the other hand, for ¥’-graded modules My, ..., My, M, we can view the tensor product over K
as ¢-graded by defining
Mi®--eM)eM= ) (M & &M)e M,
heMor (%)
where

(Mi®--aM)@Mly= ) (Mg e &Meg)e M,
h=go(g1,.--.8k)

Notice that M| ® - - - ® M, is interpreted as a collection of ¢-graded modules, but not as a ¢’-graded

module itself. Rather, M| ® - - - ® M in the above scenario is viewed as €¥ = € x - - - X ¢ -graded
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in the sense that

M ® - ®M = P Mo © My,
(g1,---8K)EMor(E'*)

We will always abbreviate M| ® --- ® M (without interpretation as a % -graded module itself)
by (M, ..., My) or, more succinctly, M to avoid confusion. For example, the above scenario
will be written (M1, ..., M) ® M or, succinctly, MeM. Likewise, by M’ ® M we mean
(M ® My,..., M, ® My).

Denote by Modg, or just Mod?, the category of %’-graded K-modules, whose morphisms are
K-linear maps which preserve grading. That is, for f : M — N, we have f(My) C N, for each
g. We call such maps ¢-graded, or just graded. The associator of the grading multicategory ¢

provides a coherence isomorphism

M"@MYSM ——% M" ® (M’ ® M)

m’ ,|m|> m” @ (m’ ® m)

(n-}l// ® l’l_’)l/) Qm — « <|f?l”| ,

where /i’ (and, similarly, m”) is comprised of tensored homogeneous elements m; € (M;),,,|, and
|m | = (my],...,|mg|) is the corresponding collection of multimorphisms (that is, ¢’-gradings).
Since the number of modules involved in a tensor product can vary, we have a collection of
unit objects, one for each k, all defined as the tensor product of a single module: let 1 denote the
% -graded K-module @ XeOb(%))(K) 1x- Then, 1®% is a unit object in the sense that there are (graded)

isomorphisms (i.e., left- and right-unitors)
L£:1°%@M=M and R:Mol=M

of ¢ -graded modules which satisfy the triangle identity

<(M1,...,Mk)®]l®k>®M @ >(M1,...,Mk)®(]1®’<®M)

My, .... M) @M

where R; means the right unitor applied to M;. The left- and right-unitors we pick are determined

by the associator: if each m; inm; ® --- ® my € M; ® --- ® My is homogeneous (with, say,
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lm;| :© (xi1,...,%ia;) = ¥}), and similarly for ¢; ® --- ® ¢} € 1% and m € M (with, say,

|m| : (y1,...,Yk) — z), we can choose left-unitor given by
(c1® - ®cr)@m al(ly,,...,1y,), 1y, ..., Ly mD) er -+ cxm
and right-unitor by
(m1®- - ®@mp)@(c1®- - -®cy) = a((mi|, ... |mi]), 1y, ..., 1,), Ay, ..., 1y ))mic1® - -®myck.

To see why this satisfies the triangle identity, take y; = y so that |171’| and |m| are composable

multimorphisms, and consider the path of length 4 given by

o (myledme) L (ypsesly) L Uypeesdy) ) ml
X

Then, the cocycle condition of « establishes that

1= da(]r?z’

13, 15,Im|)

A Ipada|, 5. mD ™ (15, 15, ]m]).

= a’dn_’)l, vy 1y

This gives the triangle identity after re-arranging.

Since the cocyle requirement of the associator of a grading multicategory is exactly the pen-
tagonal relation of monoidal categories, it follows from the work above that Modg has a structure
resembling a monoidal category.

Finally, we briefly describe two important types of % -graded modules: algebras and multimod-
ules. A €-graded algebra is a ¢-graded K-module A = (P 2eMor(%) Ayg, supported only in gradings
g which are single-input multimorphisms (i.e., morphisms) of %, with a K-linear multiplication

mapu:A®A — Aand aunit 1y € Ayg, for each X € Ob(%) such that

() pis graded: p(Ag, Ag) C Agog forall g’, g € €,

(i1) u is graded-associative: u(u(z,y),x) = a(z|, y| JxDu(z, u(y, x)), and

(iii) p(ly,x) = LAdy,|x|) x and u(x, 1x) = R(x|,Idx) x for all x € Aj.x—y.
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Before proceeding, we emphasize that % -graded algebras are supported by single-input multimor-
phisms exclusively—really, 4 -graded algebras are hardly different than the C-graded algebras (C
a category) of [NP20].

We’ll write u(x, y) as x - y when it is clear which multiplication is in use. Going on, we will only
consider the tensor product (A, ..., Ay)—thatis, A| ® --- ® Ay viewed as € k -graded—with mul-
tiplication (a}, ..., a})- (a1, ..., ax), or, concisely, @ - d, defined as (ua, (@}, a1), . .., pa(a, ax)).

Suppose Ay, ..., Ak, B are € -graded algebras. Then, a € -graded (Ay, . . ., Ax; B)-multimodule

is a ¢-graded K-module M = B ¢eMor() Mg With graded, K-linear left and right actions
pL:(A,...,Ap) @M - M and PR - M®B —- M

such that

() pr((@ - d),m) = a(a@|.|d|.Im)pL(@, pr(@, m)),
(ii) pr(or(m,b"),b) = a(m|,|b|',|b))pr(m,b" - b),
(i) pr(pL(d@,m),b) = a{dl.lm|.|b)pL(@, pr(m, b)), and

(IV) pL((ly,...,ly),m) = .[:((ly,,ly),lmDm and pR(m, 1)() = R(]m|,1dx) for all m €

A4|m|:X—>Y

foralla’,a € (Ay,...,Ar),b’,be B,andm € M.

One should take caution: again, we are viewing (Aj,...,Ax) as a collection of % -graded
algebras, not as a single %¢’-graded object. In particular, a ¢-graded (Ay, . .., Ax; B)-multimodule
is, perhaps surprisingly, not equivalent to the notion of a ¥’-graded (A Qx - - - ®x A, B)-bimodule.

In particular, the left action py is graded in the sense that

PLU(A1g ® - ®Arg) ®My) C Mgogg,....000
and not in the sense that

PLI(A1 g ® - @Ak g,) ®Mg) C Mgogio0g,-
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We define a ¢’-graded (A, B)-bimodule as a ¢’-graded (A; B)-multimodule for ¢’-graded algebras
A and B.

A graded map of (Ay, ..., Ag; B)-multimodules is a graded, K-linear map satisfying

flor(d@,m) = pr(d, f(m)) ~ and  f(pr(m, b)) = pr(f(m), )

forall @, m, and b. Denote the category of ¢’-graded (A, . . ., Ax; B)-multimodules, cumbersomely,
by MultiModcf(Al, ..., Ax; B). Asalways, if it is clear what algebras we’re working over, we denote
this category by MultiMod® .

Take M € MultiMod(g(Bl, ..., By;C) and M; € MultiMod(g(Ail, ..., Ajg;; Bp) for each i =
1,...,k. Then (M, ..., My)® M has the structure of a ¢’-graded (A1, . . ., Ak¢,; C)-multimodule

by defining left- and right-actions so that the diagrams

Aty Ak ) @ (M, ... . M) M) ———— (My,.... M) M

(A1, .. A ) @ (M, ..., M) M

and
(My,.. MpyeM)C ———> (My,.... M) M

e

My,.... M) @M e C)

commute, interpreting ((A11, ..., Ake) ® (My, ..., My)) as
(A1, .. s Alg) @ My, .o, (Agts - -5 Arg) @ M).

Explicitly, the left action is given by

-

(@i, ... ake ) (MOm) = a_l(]a

—

\m

AmDoL(ant, ... aie),mi), ..., px((ak1, .. ., axe), mi))@m
where pi is meant to denote the left action for the multimodule M;. The right is just

(@ m) - c = ali| |m| |lchi ® (pr(m, c).
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Finally, we note that the tensor product of (Mj,..., My) with M over ¥-graded algebras

(B1,...,By), denoted (My, ..., M) &m,....B,) M, is defined as

.....

My, ..., Mp)® M/((plle(ml,bl), e ,pﬁ(mk,bk)) ®m

— ol ,(E AmDmy, .. ..m) @ pr((by,. ... br),m))

where p% is meant to denote the right action for the multimodule M;. This is to say that the tensor

product of (My, ..., My) with M over (By, ..., By) is defined as the coequializer of the diagram

(My,....M)® (B1,...,By)®M
HP%®1M

@ My,.... Mp)yeM

(Mi,....,Mp)® ((By,....Bx) ® M)

in the category of %’-graded modules. Given f : M — N and f; : M; — N;foralli=1,...,k, we

define the tensor product of maps
(i, ) f (M, ...,My)®a,,..B,) M — (N1,...,N;)) ®a,,...B,) N

by ((f1,-- - i) ® f) ((m1,...,mp) @m) = (fi(my), ..., film)) ® f(m).
4.4 ¢-graded arc modules
If D is a planar arc diagram of type (m 1, . .., my;n), F (D) is a¥/-graded R-multimodule where,

foru € F(D(x1,...,xk;y)) C F(D),
degy (u) = (D, degg(u)) € Homy (x1, ..., xt; ).
Then, the following lemmas are apparent.

Lemma 4.4.1. The composition maps u[(D1, ..., Dy); D] preserve 4-grading.

Proof. This is by definitions: recall the composition maps
ul(D1,...,Dg); D] : (F(D1),....F(Dp) ® F(D) — F(D(D1,...,Dy)
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from the beginning of this section. Now, an element (u1, . . ., ux) ® u living in the source has degree
(D", degp(w))o (D7, degr(u1)), - . ., (DY, degg(ur)))

k
= | D1, D" degp@) + ) degr(u) +Wiso((D1, .., Dy D)
-

1

where |u;| : X;, — y; and|u| : y — z. On the other hand,

degy (u[(D1,...,D); DI(u1, ... ux) ® u))
is, by the definition of the degree of cobordisms, the second coordinate of the pair above. O
Lemma 4.4.2. Foru;; € ¥(D;;), u; € (D), and u € F(D),

u[ﬁ'(ﬁ”),D] </l[5”,5,](1/7”, LT), u) —a <|I/_tw , b

ul) uIB”, DDH] (@, ulD’, DY@, w)) .

Proof. This is immediate by the construction of the u composition maps and the associator «,
recalling that ChCob, has the relation that W = «(H)W for each change of chronology H : W =

w’. O
Proposition 4.4.3. The arc algebra ¥ (1,)) = H" is unital and associative as a 4 -graded R-algebra.

Proof. Recall that the multiplication in H" is u[1,, 1,], so Lemma 4.4.1 implies that the multiplica-
tion in H" is ¢¥-graded, while Lemma 4.4.2 implies that it is graded associative. Since we defined
the left- and right-unitors via the associator, the third requirement of ¢-graded algebras is also
satisfied by Lemma 4.4.2, and we conclude that H" is a ¢-graded algebra. Associativity follows

from Lemma 4.4.2 as well; for a proof of unitality, see the proof of Proposition 6.2 in [NP20]. O

Proposition 4.4.4. Suppose D is a planar arc diagram of type (my, ...,mg;n). Then F(D) is a

G -graded (H™, . .., H"*; H")-multimodule with left action
pf =ul(lpys..os L), D1 (H™, ..., H"™)® F(D) — (D)

and right action

pR =ulD,1,]1: F(D)® H" — F(D).
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Proof. Just as the previous proposition, this follows by applying Lemmas 4.4.2 and 4.4.1, now

knowing that H" is a ¢&-graded algebra for each n. O

Recall that if D = (D1, ...,Dy)1s acollection of planar arc diagrams of type ({1, . . ., Ciq;; m;)
for each i = 1,...,k, then each of #(D;) in 7"(5) = (T(Dl),...,T(Dk)) is a ¥-graded

(H Gr . Hbei; g™ ) -multimodule with left-aciton

/'t[(lfip ey 1&'(1/,'); Dl]

and right action

Then, using results of §4.3, we can view (F(D1), ..., F(Dy))®F (D) asan (H"“, . Hber H’")-
multimodule. Similarly, comparing with the general case, we can define the tensor product

,,,,,

(u[D1, Ly Mur, x1), ooy Dy 1y Mg, x1)) @ u
4.4.1)

— a(ii J¥| Jub @i, . .. ue) ® plAmys - - -y Lny); DI, u)
for it € F(D'), ¥ € (H™,...,H™), and u € F(D).
Mimicking [Kho02], we note each of the following. See also Section 6.1 of [NP20]. The proofs
of these statements are essentially identical to those found in Sections 2.6 and 2.7 of Khovanov’s

paper, and would take us too far afield to prove here—we leave them to the reader.

Proposition 4.4.5. 7 (D) is sweet: it is projective as a left (H™', ..., H™)-module and as a right

H"-module.

Proposition 4.4.6. If D; is a planar arc diagram of type ({1, ..., lia;sm;) foreachi = 1,...,k
and D is a planar arc diagram of type (m1, . . ., my; n), then there is an isomorphism of ¢ -graded

(Hm, ..., Hkay H™)-multimodules

k
X)FD:) | @,y F(D) = F(D(Dy, ..., Dy @)

i=1
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induced by u[(D1,...,Dy), D). (The first collection of tensor products in the formula above are

taken over R.)

We note that the sweetness proposition is important for the proof of the latter; again, see Sections
2.6 and 2.7 of [Kho0O2]. Note also that ,u[ﬁ’, D] : F(D') ® F(D) — F(D(D")) induces a maps
?"(13’) Q.. .Hm)y F (D) — F (D(l3’)) by the universal property of the coequalizer. To see this,

use Lemma 4.4.2: for i’ € 7’(5’), Xxe(H™,... ,H"),and u € F(D), we have that
uID’, DY(UID’, Ly -+ - LG, %), ) = aid’| 7] Julpl D', DY, tl(Linys - - - s L), DICx, ).

Then, compare with equation (4.4.1).
Sometimes, we will write “®g”" as shorthand when its meaning is clear given context. For

example, in the lemma below, the “®g” on the left means “® ” and the “®g” on the

(HO .. H %er)

of ¢-graded bimodules induced by y[ﬁ’, D].”

Lemma 4.4.7. The following diagram commutes for all D”, D', and D.

ulD”,D"1®1

(F(D") @u F(D')) &n F(D) L—— F(D'(D")) & F(D)

a F(D(D'(D")))

. ulD”,D(D")]
1®u[D’,D]

F(D") & (F(D') @ F(D)) ———— F(D") &y F(D(D"))

Proof. This is immediate from the definition of @ and yu, following Lemma 4.4.2 in the language

of Proposition 4.4.6. O
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CHAPTER 5

¢ -SHIFTING SYSTEMS AND COBORDISMS
Usually, grading shifts for graded algebraic objects are defined by way of the additive structure of
Z. This raises the question of how one should define grading shifts in a %-graded setting. In the
¢ -graded case, we will see that the naive guess (i.e., a chronological cobordism in the first entry
plus a Z x Z-shift in the second) is adequate. The general definition of a ¢’-shifting system is
rather dense, so we introduce the more concrete ¢ -shifting system alongside the general definition,
hoping it gives a helpful model for the reader. These definitions are provided in §5.1, wherein we
also describe the compatibility conditions required of a shifting system associated to a particular
grading category. In §5.2, we address generalities of shifting systems before investigating the
theory of homogeneous maps for ¢’-graded multimodules in §5.3 (indeed, what does it mean for
amap f : M — N of ¢-graded multimodules to be homogeneous?). This includes the extension
of our shifting system to a so-called “shifting 2-system” so that, in our context, we can interpret
a composition of grading shifts as related to the grading shift associated to a composition of
chronological cobordisms. Finally, ¢-shifting systems are peculiar in the sense that changes of

chronology induce natural transformations of grading shifts, which we detail in §5.4.

5.1 A system of grading shifting functors for ¢
Suppose A : D — D' is a chronological cobordism of planar arc diagrams D, D" € Dy, ... mi:n)-
If x;, e B" foralli = 1,...,k and y € B,, then A induces a map from some subset of

Homg(x1,...,xx;y) to Homg(xy, . .., x; y). Explicitly, given v € Z X Z, the pair (A, v) induces a

map
oy - {(D, p) € Homy(xy,...,xx;y)} = Homg(xq, ..., xk;y)
defined by
¢@n)(D.p) = (D', p+v +[A(L. . L3 1))
where A(1,,,...,1;1,) is the cobordism A corked by thickenings of the relevant crossingless

matchings. We will see that any cobordism of planar arc diagrams (potentially paired with a Z X Z-
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degree, in which case we call the cobordism weighted) constitutes what we will call a ¥-grading

shift.
In general, a collection ((Ay, vy), ..., (A, v)) of chronological cobordisms of planar arc dia-
grams induces a grading shift on ((D1, p1), ..., (D, pr)). Viewing the former as a disjoint union

of chronological cobordisms, there is ambiguity as to what chronology to pick. Hereafter, we fix
a chronology which applies A; on its component, then A, ..., then A, followed by the iden-
tity cobordism weighed by v on its component, then v,, ..., and finally v;. A picture is more

descriptive of the situation:

This is the chronology we mean when we write (Z, V). We choose this particular chronology so that
our arguments appear similar to those found in [NP20]. Later on, we’ll denote A(1,,, ..., 1,,; 1,) by
13Al,. Again, this is especially helpful when dealing with a collection of cobordisms (A, ..., A,).
The degree|1z(Ay, ..., Ay)l5| is defined as the sum Z?:1|1;,.A,-1yi|.

Now, for eachi = 1, ..., k, suppose A; : D; — D7 is a chronological chobordism for D;, D’ €

Ditir,...tra;:m)- We denote by (Ay, ..., Ay) o A the chronological cobordism
(A1,...,Ax)®eA:D(Dy,...,Dy) - D'(D},...,D})

with chronology, as usual, dependant on indexing (first A, then A;, and so on). If each of these

cobordisms has a Z X Z weight, we’ll set

(A1,v1)y oo, (Ar,vi)) @ (A y) = (Al,...,Ak)OA,v+Zv,-

for cases like the one above. Otherwise, (A, vy),...,(Ak,vi)) ® (A,v) = 0. This multiplication
defines what we will call a multimonoid, whose elements are cobordisms of planar arc diagrams

together with a neutral element e and absorbing element 0, with composition defined as above.
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The collection of maps induced by cobordisms of planar arc diagrams {¢a,,)} constitutes a
generalization of a shifting system, in the sense of [NP20]. Explicitly, suppose & is a grading

multicategory; a ¢-grading shift ¢ is a collection of maps
o = {7 . DY ¢ Hom%p()z; Y) — Homcg(f(; Y)})?,Yeob(%”)

where X = (X1,...,Xg) for Xi,...,Xx € Ob(%). We write ¢(g) to mean (pi_’y(g) whenever
g€ D)? ~Y We write D to stand for “domain”, and use the sans serif font to differentiate these from
our notation for planar arc diagrams. In addition, let Z,;, denote the category obtained from % by

purging all multimorphisms besides the commuting endomorphisms: that is,
* Ob(Zin) = Ob(%) and

o) k>lorXy#Y
(X1,..., Xk Y) =

Z(End¢(Y;Y)) otherwise

® Homme
Where Z stands for the center. Finally, by a multimonoid .#, we mean a set equipped with an

associative multiplication law

o: Ihx 7 .7

for each k > 1, and a neutral element e so that ¢ ei =i foreach k andiee =i foralli € .. A
multimonoid may also have an absorbing element 0, so that (j1, ..., jx)ei = 0ifanyof ji,..., jk,i

are 0.

Definition 5.1.1. Suppose X is a wide subcategory of ¢ with at least all the morphisms of . A
€ -shifting system S = (¥, @) relative X for a grading multicategory % is a multimonoid .# and a

collection of %-grading shifts ® = {¢;};c » such that

* ., called the neutral shift, has

Df_’y = Homy(X;Y) and 905_))/ =1d

XY
DZ ™
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and ‘p()’l ----- Ynsiz)

1

(E115ee X1y 5Y1) Xplseees Xnan
) o (Xt Xnan :Yn) , we have that

n
D(yl ,,,,, yni?) o 1_[ D(xkl """ Xkay sYk) C D(Xll,-..,xnan;z)
i Jk (J1seenfn)oi

(V1sees¥n32) n (XK1 5eees xkak;)’k) o N (X115 X0y 32)
Di XHk:lD' T e jin) i

(@i, [k wﬂl J:Pm AAAAA Jjn)ei

Hom(yi, ..., yn;2) X [T, Hom(xg1, . . ., Xkay s yk) —— Hom(xqy, ..., Xpa,32)

commutes;
e thereis asubset #y C .# such that forall k and all X1, ..., X;,Y € Ob(%) there is a partition
Homy (X1, ..., X5 Y) = |_| DXt X—Y

i€Sy

for which ¢; = Id foralli € Hq;

DX-Y
* if .# contains an absorbing element 0, then ¢, called the null shift, always has Dg_’y = .

Remark 5.1.2. We will frequently write Di‘ —te

, Or just D;, to denote [, . Then, writing

DX—Y
i

g € D; means g is an ordered tuple of morphisms as one expects. Similarly, ¢:(g) is understood

component-wise. Also, we note that ¢, is assumed only to preserve X. We refer the reader to

Remark 4.10 of [NP20] for a more detailed discussion.

For example, take .# to be the multimonoid {(A, v)}a, U {e, 0} with multiplication e defined
above. Taking 4" = ¢, notice that Z,;, is the subcategory whose objects are crossingless matchings
and whose morphisms are identity (n; n)-planar arc diagrams (1,, p) : a — a for a € B", viewed
only as endomorphisms. We will take X to be the slightly larger category which allows for
morphisms (1,, p) : a — b for potentially distinct a,b € B". Using the notation of the above
definition, to a chronological cobordism of planar arc diagrams A : D — D', D, D" € D,....mu:n)
and v € Z X Z, we have a ¢-grading shift ¢ , so that for any crossingless matchings xi, ..., X,y

with |x;| = m; and|y| =n,

DEZI’;.).A,Xk)—W — {(DA,])) c HOm%(xl’ ce ,Xk;y) :p € Z X Z}
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Proposition 5.1.3. The multimonoid .% = {(A,v)}a., U{e, 0} together with the induced ¢4 -grading

shifts {¢; }ic.s form a G -shifting system.

Proof. We define ¢, and ¢ so that the first and last points are satisfied. The second point is straight-
forward. Finally, for the third point, we take %4 = {(1p~,(0,0)) : D is a planar arc diagram},

where 1 p is the identity cobordism on D. O

The definition of a ¢’-shifting system made no reference to the associator of the grading category
% . We say that a € -shifting system S is compatible with the associator « of € if there is a family

of maps

Kkt Xkay s3) Vloees¥niZ
HD 1. k xDﬁyl y?)_)KX’
(11 Tl !

for each w, ¥, ¥, Z consisting of objects of € and i, j consisting of objects in .#, called compatibility

maps granted they satisfy the relations

WXz

a(g”.g', 8B ﬁ(g "¢, 8) ,;yf(g”,g’)
(5.1.1)

ﬂvfyfig" g g)ﬁvl (g’ 9)a (cpiz(g ), soxy CHNTS (g)>
for all valid g”, g, g and 7 f, 1?, and B, = Bee.....e).(e.....e) = 1. Diagrammatically, this is to say that
the following picture commutes (here, the boxed number n refers to the €-grading shift, and we

suppress burdensome indices).

B&”. ¢") B&"g. 8
—_— —_—
g
g
g
B’ 8 BE". &g
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For (¢, a), we will define the compatibility maps S in a way analogous to the presentation in

[NP20]. Suppose
B = ]_[( p = |@ij pip)
LJ
and

p) = H(Di’l?i)

constitute a multipath of length two; g o g’ € 42|, Again, denote by P € Z X Z the sum of
the entries of p and P’ the sum of the entries of p’. Write D = (D1,...,Dy), and suppose that

(5, V) = ((A1,v1), ..., (Ar,vy)) is a collection of cobordisms for g. We’ll write
A 7)(D, ) = (AD).¥ + j)

where Z(ﬁ) = (A1(Dy),...,Ax(Dy))and A;(D;) denotes the boundary of A; other than D;. Finally,
V and V’ € Z x Z will denote the sums of the entries of v and V' respectively.
The value S will be defined as the product of four values. First, consider the change of

chronology

FAD) (M(D")) 2

Wesz(A(D"), A(D))

IA(D")Y ® FAD)Z

Wgyz(ﬁ/,[_j) 1;&’1)~,|_|19&12

XD’y ® yDZ
Set 81 = «(Hp). Then, set
,82:/1( ,v’+v>,
Bz=4 ( ) , and
,84:/1<P’, 3+V>.
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We define
B = BaB3B2P1.

Naisse and Putyra describe this shift diagrammatically as follows.

Lemma 5.14. If D € Dy,....my:ny and D= (D1,...,Dy) for D; € Y, liaysmi)- Moreover, let

..... PRRS

A be a cobordism on D and N be a collection of cobordisms for D’. Then, forany X € 1; j Bt

i
y € [1; Bm, and z € By, we have that
1:(A o A1,

|1581.] +

e 15| 4| Was (X (D), ADY| =|Weso (B, )| +

Notice that this lemma immediately applies to the cases when D is actually a collection

5 = HlDl andl_))/ = Hi,jDij'

Proof. Exactly as in [NP20], there is a diffeomorphism between the cobordisms below, so they

must have the same degree.

Proposition 5.1.5. The &-shifting system of Proposition 5.1.3 is compatible with the associator of

Proposition 4.2.3 through the compatibility map B defined above.

Proof. The following follows closely the proof of [NP20]. We will show that g satisfies equation

(5.1.1). The first step is to document the contributions of @; and §;. To do this, consider the
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following diagram of cobordisms.

where

=4 ( ‘Wﬁ;;@(ﬁﬁ, 5’) 1;‘;A”1;

|1sar

) and =2 |Wep@ B, ADY)

Comparing with diagram (5.1.2), we see that

£ x (Left of (5.1.1)) = i X (Right of (5.1.1)).

Next, we have to compare the contributions of @3, 82, 83, and B4. First, for the left side of

(5.1.1) (or, the top-and-then-down path in (5.1.2)), we have the following.

A (WD), KDy

vrev)a( |1®Z”1§),v’) a(p,

1f&1y) + V/) B34, 8")
V)
)

+ V) B234(8"g’, 8)

-

A |Wags(B7 o BB, ADY) L3R o )1

,V”+V’+V>-/l<

1541z

)

-A <P, +P” +’WW;5,'(13”, 5’)

(+5)

Wis2(D', 5)) , P") ax(g”.g’.8)

.A<

Turn your attention to the term marked (x). By application of Lemma 5.1.4, we can write

V) =a( V)

A ( ‘Wvggy(ﬁ”, 5,)

A([ra@ o &1y 1:A'15

+‘1Mj£”1;

,V) 2 ( |Wm(&"(13”), (D))

-1
,V> .
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On the other hand, using linearity, we can rewrite the term marked () as

pl (P’ + P’ +‘Wm(5", D)

J15A12

+ V) =A (P’ + P +)Wv'&5c'§(5”’ 5/)

[15812

)
V)

The last terms in the past two expansions cancel, and we can rewrite the contributions of a2, 82, 3,

AP+ P V) (WD, D)

and B4 on the left side of (5.1.1) as

A ( Wiz, & (D)

,V”+V’+V>-/l(

1A 15 v7) - a (P,

1;5/15," + V’)

V)

2 ( )WW((K" o« A)(B/(D"). A(DY)

VIV +V> A (]1;5’1;‘ +|1;VZ”1;

)

AP+ P V) (P P [15AL 1541

b

> -1 ( ‘W@w(ﬁ”, l_j,)

z

./1<

The process above could be described as “simplifying” 823 4(8”g’, g).

Wiz=(D', 5)‘ , P") :

Likewise, on the right side of (5.1.1) (or, the down-and-then-bottom path in (5.1.2)), we have

the following.
A ((Wes=B D), ADY|, P+ v+ 158714 026", 98, $(2))
*)
A |Wesz @B, ADY| v + V) A (1815, V)
()

A (P/, 15;213 + V) . ﬁ2,3,4(8', g)
A ([ Wase @ (B, & 0 BB, V" + V' +V)

2 ( ‘L;Z”l; V4 V’) 2 (P”, 1A o M)l + v + V’) Brsa(g”.g'g)

(*;r*)
Notice that the term (%) has three “parts.” The V" part can be absorbed into the term (*%); the rest

can be written

A ( Wiz B, BBY|. P7) - 2 ( Wiz D BB [ 158715

).
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The (x x %) term decomposes into parts

A <P”, 1A o A)1:

) aprvav).

Again, applying Lemma 5.1.4, we can write

)=a(p

2 (P”, —‘W;ﬁ(ﬁ’, 5)‘) .

1 (P", 1A o A1 15A15] +

A1) 2 (P,

Wes=(X'(D'), AD))|)

The middle term after the equality cancels with first term in the rewriting of (x). The last term can be

rewritten as A ( W;g;g(ﬁ’, 5)) , P”). All together, this means that we can rewrite the contributions

of ay, B2, B3, and B4 on the right side of (5.1.1) as

A ((WeszB 0, Ay 158714

b
2 ( ‘W;;E(Z’(ﬁ’), Z(B))),V” V4 v) 2 ( 1;5’1;),\/) 2 (P’, 15A1:|+ v) .
2 ( ‘Wm (D), (A e &)(5(5’)))‘ VAV + V> A ( 1A 1], v + v’)

APV V) (P 15R1 4|18

+

)

Compare the simplifications of contributions from each side. One one hand,

Wisz(D, 5)) , P”)

A (W@, &)

VAV 4 v) 2 ( ‘WW((&’ o YD/ (DY), 5(13))( VAV 4 V)
is equal to
1 ( ‘W;@Z(K’(ﬁ’), 5(13))( V'V 4 v) 2 ( ‘Wm(ﬁ”(ﬁ”), (& o Z)(B(ﬁ')))) VAV 4 v)

by Lemma 4.2.1. On the other hand, careful observation reveals that, via bilinearity of A alone,
the two collections of terms apart from these, and the terms marked £ and n, are equivalent. The
conclusion is that

n x (Left of (5.1.1)) = ¢ x (Right of (5.1.1)).

This completes the proof. O

77



As we proceed, for simplicity of exposition (and because it is the only situation which matters
in our application) we will only consider multipaths which end in a single multimorphism; we have

shown in the previous arguments how the situation is generalized without problem.

5.2 Generalities on shifting systems for grading multicategories

We conclude this discussion by detailing the generalities of % -shifting systems. These are
results of [NP20] which lift to the setting of grading multicategories. Throughout, let 4 be a
grading multicategory with associator @, and S = {.#, {¢; }ic.#} a €-shifting system compatible
with a through compatibility maps S.

Just as in the non-multi setting, we define for each i € . a grading shift functor ¢; : Mod¢ —
Mod? by putting

(M) = P ¢iM)y,0)

g<h;
for ¢;(M)y,(q) = My; that is, ¢; sends elements in degree g € D; to elements in degree ¢;(g), and

elements whose degree does not belong to D; to zero. Sometimes we call ¢; a €-grading shift or
just a grading shift.

Now, if M, My, ..., My are ¢ -graded modules, there is a canonical isomorphism

(5.2.1)

by (m1,....mi) @ m = Byl lmDni, ... mi) @ m.
The compatibility requirement, equation (5.1.1), ensures that this isomorphism is compatible with
the coherence isomorphism given by @. Moreover, since grading shift functors do not have effect

on graded maps, the compatibility maps ﬁfi define natural isomorphisms (denoted by the same

symbol) of multifunctors

Biit (i) s 0(0) @ 0i(=) = 97, (=, =), ) (5.2.2)

forall ji,..., jx,i € 5.
We define the identity shift functor ¢4 as @i sy Pis thus, ¢ijg(M) = M. In general, the identity
shift and the neutral shift are not the same (see, for example, [NP20], Remark 4.10). We’ll consider

the set JN, defined to be .# U {Id}. We do not think of 7 asa multimonoid—writing it this way

78



just helps to simplify notation. For example, we will write ¢q1q to mean P, g $jei- Similarly,
Ppy,; Means @fej ¢7,; Where J = {(j1,....jo) : je € Aaforall £ = 1,...,k}. To extend the
compatibility maps S to Z define de,i(g” g) = ,Bf,l.(g’, g) where g’ € D]~. and f € Hq; similarly
Bi(g’,8) =pji(g’ g where g € D;, i € Hq. Lastly, we fix Biyia = 1.

5.2.1 Shifting multimodules

To continue in the general setting, we must make the following assumption.

Assumption: Hereafter, all ¢-graded algebras A are supported only in X; that is, A; = 0

whenever g ¢ Homy

Thus, for ¢’-algebras A which satisfy this assumption, we have that ¢,(A) = A (really, ¢.(A) =

A, since ¢, acts as the identity wherever defined). Recall that, since

H'=F(1,)= @ F(al,b)

a,beB"
any m € H" has degree degy(m) = (1,,degg(m)) : a — b; that is, arc algebras are ¢-graded

algebras supported only in X.
If M is a ¢-graded (A4, ..., Ax; B)-multimodule, and ¢; is a % -grading shifting functor, then

we can view @;(M) as a €-graded (Ay, . .., A; B)-multimodule by defining left- and right-acitons
wipL t (A1, ..., Ar) ® i(M) — ¢;(M)

by ipL(@, ¢i(m)) = Pee....o.:(d| . ImDei(p (@, m))

and
©ipR : pi(M) ® B — ¢;(M)

by @ipr(@i(m), b) = Bi(m|,|b)ei(pr(m, b)).

In other words, ¢;p; and ¢;pr are defined as the composites

(Al .o AR) @ @i(M) ovvvieeie, > 0i(M)

I

(@e(AD), ..., 0e(Ar)) ® pi(M)

\Lﬁé,i

Olereroi (A1, A O M) —L5 s 0 ei(M)
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and
QM) @ B -y i( M)

1+

@i(M) ® ¢.(B)

\Lﬁi,e

Diee (M ® B) p% (pioe(M)

where the maps labeled % are isomorphisms thanks to the assumption from the start of the section.

We'll breifly describe why ¢;(M) is indeed a € -graded multimodule. First, notice that ¢;py
and ¢;pg are both graded maps. To illustrate for the left action, if (ay,...,ar) ® m has grading
go(g1,...,8k)In (A, ..., Ax) ® M, it has grading ¢;(g) o (g1,...,8k) In (Aq, ..., Ar) ® ¢;(M).
Thanks to the assumption from the start of the section, g; = ¢.(g;) since all algebras in sight are
supported only in X, and thus ¢, acts as the identity map. Applying the natural isomorphism
(5.2.2) provides the desired result. To see that requirements (i)-(iv) of the definition of %-graded
multimodules holds, one must simply apply equation (5.1.1) and Be,... ¢)(e....e) = 1 in each of the
scenarios.

Thus, grading shift functors are also functors for categories of multimodules. In conclusion,

we have the following.

Proposition 5.2.1. Ler M € MultiMod® (B, ..., B;; C) and M; € MultiMod? (A;1, .. ., Aia;; Bi)
foreachi = 1,...,k. Then, for each i, ji,...,jx € &, there is an isomorphism of €-graded

(A1, ..., Ak )-multimodules

induced by the canonical isomorphism (5.2.1).

Proof. We direct the reader to [NP20] Proposition 4.18 for a complete proof; the one here is

completely analogous. m|

5.3 Homogeneous maps
One of the goals of this thesis is to prove an adjunction for unified Khovanov homology,

generalizing Theorem 2.31 of [Hog19]. This means we must define HOM-complexes which, in
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our case, necessitates defining what is meant by maps of homogeneous ¢-degree. This opens a
whole can of worms, which most of the rest of this section is devoted to describing. We proceed
with the same assumptions as before: (%, @) is a grading multicategory, and S = (.7, {¢;}ic.#) is a
shifting system compatible with @ through maps 8. Moreover, all ¢ -graded algebras are assumed

to be supported entirely in X so that previous results hold.

Definition 5.3.1. Suppose M and N are ¢’-graded (A, ..., Ag; B)-multimodules. A K-linear map

f M — N is called purely homogeneous of degree i (fori € # L1 {Id}) if, for allm € M,
(i) f(m)=0if|m| ¢ D;,
(i) |fom)| = gi(ml) ifm| € D,
(iii) pL(@. f(m) = Be....cri(d].lm])f(pr(@ m) forall @ € (Ay, ..., Ap), and
(iv) pr(f(m),b) = Bie(ml.|b]) f(pr(m, b)) for all b € B.

A map f : M — M is called homogeneous if it is a finite sum of purely homogeneous maps,

written f =2 f 7. We'll write| f | =i if f is a purely homogeneous map of degree i.

Importantly, we do not require that a purely homogeneous map preserve % -degree; however,
every purely homogeneous map of degree i, f : M — N, induces a graded one, f :@i(M) — N,
by setting f(ei(m)) = f(m).

Using the shifting system and compatibility maps, we can define the tensor product of ho-
mogeneous maps. Let f; : M; — N;fori = 1,...,k and f : M — N be (not necessarily
purely) homogeneous maps of (A;1, . . ., Aje,; Bi)-multimodules and (By, . . ., Bx; C)-multimodules

respectively. Then, define
(fio-- s ) f :My,... . Mp)®M — (N1,...,Ny)®N

by setting (fi,..., fi) ® f = X;[(f1,-.., fi) ® f1V where

[(froe o SORFY (mr. . omp@m) = ) At

(il ..... ik).i=j

AmD™ (Frm). L f e )@ f (m)



for all homogeneous elements m € (M, ..., M), m € M.
First, notice that homogeneous maps behave well with respect to this tensor product (or,

horizontal composition).

Proposition 5.3.2. If fi,..., fi, f are purely homogeneous maps of degrees iy, ...,ix and i re-

spectively, then (fi, ..., fr) ® [ is purely homogeneous of degree (i1, . ..,i;) ®i.

Proof. For requirement (i), recall that|(m1,...,m;) @ m| = g o (g1, ..., gk). The assumption that
|r71 ® m| ¢ Ds,, implies that either g ¢ D;, hence f(m) = 0 since f is homogeneous of degree i, or
gc¢ ¢ D, for some ¢, in which case f(m,) = 0 for the same reason. Thus ((fl, s ) ® f) (mem) =
0.

For (i1), we compute

((fiv. - fo) ® ) Gl @ m)| = Bz, (| ,|m|>_1|(f1(m1), o fimg)) ® f(m)
= 7, (il ml) ™ (@bl . @i dmi) o eitml)

= Plei ("_i ® m|)

as desired.

For (iii),

Jml)” pr (@ (i, ... fump) ® fom))

o1 (@ ((fi...-. f)® f) (R@m)) =B, (i

= B, (il ml) ™ a@l.[Fam| [ femD (b @ AGmD) ... 0k (G fimo) ) ® Fm)
——
—g-(|it]) =pi(ml)
= Bz, (] D)™ a(@l, o)), eim) ™ B, al Jii) (f1 (pr@imn)..... fu (pi(ak,mk>))
® f(m)
= Bzula] Jii] olmDaal Jiil 1m)™ Bz dal il ™ (i (01 @), . (o Gix i)
® f(m)
= Bszalal Vil olmbadal il lmD ! (A, - fd ® f) (oL@, m), .., pf(ax mo) @ m)

= Bszulal it olmD) ((fi,... f) © f) (pr@@, 7 @ m)
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The first equality is by definition and K-linearity of the left action. The second equality is by the
definition of the % -graded multimodule left-action on (My, . . ., M;)® M. The third equality follows
from the assumption that| fg| = iy. The fourth equality follows from equation (5.1.1). Finally, the
fifth and sixth equalities follow from unraveling definitions; in particular, the fifth follows since
|| ol :‘(plL(ﬁl,ml), .. ,pﬁ(ﬁk,mk)‘ and the sixth invokes the K-linearity of (fi,..., fi) ® f.

Finally, this gives us the desired result since|r7z| olm| = |ﬁ1 ® m|: we have

pr (@ ((fi.- . S ® f) (Rem)) = Byral i em)) (fi..... fi) ® f) (pL(@. it @ m)) .
Showing that (iv) holds is completely analogous (and easier)—we leave it to the reader. O

On the other hand, we do not yet have a method for composing grading shifts vertically, so that
we cannot define the composition of homogeneous maps. We introduce the fix in the following

section.

5.3.1 Extension to a shifting 2-system

As before, we will consider the ¢-graded situation and then present generalities. Thankfully, the
extension of a ¢ ’-shifting system to a ¢ -shifting 2-system is almost exactly like the categorically-
graded situation.

Suppose A| : D — D’1 and Ay : Dy — D’2 are cobordisms of planar arc diagrams, so that
(A1, vy) and (A3, v2) induce grading shift functors for any vy, v, € Z @ Z; that is, they belong to the

multimonoid .# of ¢. Define a binary operation, which we call vertical composition,
o: IXSI > I
by stacking: set

(Az oA, vy +v1) lfD'1 =D, and
(A2, v2) o (A, vy) =

0 otherwise.

In our multivariable setting, vertical composition must be extended to a family of vertical compo-

sitions for each k > 1,

o: Ikx gk - gk
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- Ay Ay
So,if A; = (An,..., Ag) fori=1,2and Di; —5 D}, and Dy; —> D} for j = 1,..., k, we set

R R (Ayo Ay, ¥y +71) if D', = D forall j, and
(A2, V2) 0 (A1, V1) =

0 otherwise.

The nonzero term on the right is given a chronology as follows.

T
| | 2
V21 - -
—= | Vo+V
| v [T
|| V12
Vil ||
|| Ao
e Az
Ao || - =
n P Ay o Ay
| A
3

Again, we choose this particular chronology so that the arguments of [NP20] lift to our setting.
In general, if S = {.7,{¢;}} is already a % -shifting system, equipping .# with a vertical
composition map #* x #* — 7 of this form constitutes what is called a €-shifting 2-system,

granted it satisfies the following requirements:
(i) ece=ce,
(ii) Djo; = D; N ;' (D)),
(iii) ¢joi = ¢jlpD)nD; © ¢ilD;.;» and
(iv) P(Groenrji)oli1eensin))0(i00) = P(trerr i) )o((i1eemrit)oi) forall ji,...,Jjk /i1, ik, i € 5.

The first three requirements are written in the single-input case to ignore burdensome notation
and should be extended to the k-input cases. To elucidate the above requirements notice that (in
particular, if j o is nonzero) ¢; and ¢; must be defined on (frequently distinct) subsets of the same

hom-set. In the ¢-graded case, this causes no confusion: D;.; = D; since cobordisms which start
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at D and factor through D’1 = D still start at D . In general, we should be a little more careful:
D; —2 Homy(X), ..., X:¥) > D; — Homy(X,,. .., X;:Y)

so, in general, ¢ .; is defined only on the subset D; N cpl._l (D;), as in (ii) and (iii). Condition (iv) just
ensures that vertical composition and horizontal composition play nicely together—(iv) obviously
holds in the ¢-setting for weighted cobordisms of planar arc diagrams.

For completeness, we include a description of compatibility maps. We say that a & -shifting
2-system S = {7, {¢; }ic.s } is compatible with the associator « of ¥ if there are (8, y, E) such that
the underlying % -shifting system is compatible with @ through 8, and y and E are as follows. First,
v stands for a collection of maps

)/l-{?j_)Y : Dl??_)Y — K*
foralli,j € . and )2, Y € ¢ satisfying y; ; = 1 whenever i € %4, j € Fg, ori = j = e. More

generally, we construct multivariable functions

with analogous requirements (7;;. = 1 whenever each entry of ;belongs to Y4, each entry of ]

belongs to .74, ori = j = &). We do not require that yX;77 = yf‘;m e ik;Y *. For example, this
L] > >
is not the case for the ¢-graded setting, at least the way we’ve set things up. Second, E stands for

a collection of invertible scalars

1,1
JsJ
satisfying (i) E,7 = 1 whenever (j oi)e (joi) = (j e j)o(iei)and (ii) E,; is invariant when
JJ JiJ o
exchanging elements of .4 out with other elements of .#4. We often write = .- (g’g) for BEXDY—Z
", 1,0
i i

’ -

when X & 7 5 Z,or 2 .+(g) for XY when x5y Finally, we say that the shifting 2-system

j’J j, [
is compatible with « through (8, y, E) if, in addition, the two following equations hold. The first
reads
Yieijoj (8 8B 8", 8)B; 708N, ¢i(8) = B 7(8'9)B; i 708" 8)7;7 7(8 Vi1 (8) (5.3.1)

JoJ
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for all g’ € Dg_’?

are chosen so that the following diagram commutes.

:Bij(g/sg)

and g € DIX =Y Again, this looks burdensome, but it is just to say that y and =

[Go?)-woi)] 7w

ﬁjoi,fof(g,’ g)
S

The second requirement reads

Yikoj (€)Y k(@i(8) = Vjoik(8)Yi,j(g)

J/ Foi 7o (8'8)

(J’J) (l°l)

A

(5.3.2)

forall g € DIX ~Y which, a little more obviously, is to say the following diagram commutes.

~
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So, to extend the ¢-shifting system we have to a ¢-shifting 2-system, we choose compatibility

maps
(X1,e00 X))y _ R 3 1 X—y N — (] _A _,‘ >
Yo (D, p)—/l<|1xA21y|,v1> or, in general, y" ™ . (D, )= (|lzAal5], V3

where V is the sum of entries in v, and

—X—y—z
= N = 1(zH)HAV; v
Aoy~ GV V)

(A2v2).(A2,72)
where H : (52 ) 51) e (AyoA) > (Zg e Ay)o (Kl e A1) and V|, as before, means the sum of the
entries of v{. We refer to the first factor of E by Z; and the second factor by =,. Of course, the
definitions above only hold if the cobordisms involved are vertically composable with respect to
the chosen order; otherwise, these maps are zero.
To understand where these choices come from, notice that (A;, v2) o (A1, v1) can be rewritten

schematically as

for g : ¥ — y. Thatis, (A2, v2) o (A1, v1) = (13421,

,V1)(A2 0 Ay, vy +vy), so we hope y has the
form above. For 2, we can start by recognizing that, schematically (and thanks to our chronology

conventions), (52 o Zl) e (A o Ay) looks like

Where “1” and “1” just stand for the identity cobordism on their respective components (in partic-
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ular, an element of .#14).On the other hand, (Zz e Ay)o (51 e A}) looks like

So, we have that

(AyoAy) e (AyoAy) = izH,)(Ay e Ay) o (Aj e Ay)

where H : (Zz o Kz) e(AroA)) = (52 e Ay)o (Zl e A1) is the locally vertical change of chronology
which simply pushes A; past the cobordisms involved in Zl. So that = satisfies equation (5.3.1),

we must also multiply by A(Vy, v7).
Proposition 5.3.3. The &-shifting 2-system S defined above is compatible with a through (B3,y, E).

Proof. We know that the underlying shifting system is compatible with « through S by Proposition
5.1.5. Since

Hia = {(1p~r,(0,0)) : D is a planar arc diagram},

it is clear that v and Z as chosen satisfy preliminary requirements; all we need to do is verify

equations (5.3.1) and (5.3.2). Verifying (5.3.2) is easy: computing both sides yields

A1z(A3 0 M) 1y, vDA(1zA3 14|, v2) = A(1zA3 14|, vi +v2)A(1:A01,

V1)

which is true since|1 2(Az 0 Ar)l y| = | 1:A31 y| +| 1:A21 y|; applying bilinearity shows that both sides

vA(1zAs1

v)A(1zA21,,

are equal to /l(] 13:A31, ,V1).
Verifying equation (5.3.1) looks a lot like the proofs of Propositions 4.2.3 and 5.1.5. Again,

start by considering the contributions of 8; and Z; only. To do this, one can consider the two
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sequences of changes of chronology encoded by the diagram below.

Bi

(Gejolen)

h

(GoDeGon]

\ =1
7

).

Thus, by Proposition 3.1.3, we see that the contributions of 8| and Z; in equation (5.3.1) is

~

where

r=2 (]125115) ,)1;A212

{ x (Left of (5.3.1)) = (Right of (5.3.1)).

The remainder of the proof is computing the contributions of 85, 83, B4, v, and E;. The

contributions of these on the left-hand side of (5.3.1) are

A (]W;;Z((Zz o A)(D), (A 0 A)(D))

+ V2>

-

WV +VZ> -A (]1;&21;

v2)  (Ba3a); 7). ¢i2)

-A (]1;&11;‘ + P+V1,‘1§A211

'

()

A (Wsso BBy, s, Vi +v1) - (128015 1) (B230,1(88)
-A <P,‘1)-;A11Z + V1>
A (]1}(&2 o Az)lz ,Vi+ V1> ’y;.l',f.j(glg)

-

(%)
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We rewrite this product by expanding (*) via bilinearity, expanding (**) via Lemma 5.1.4 and

bilinearity, and then performing the obvious cancellations; the result is the following.

)

> A qllely‘,w) ~AV1,v2)

A (Wes(Bs 0 B(D), (8 0 ADY)

Vo +v2> -A (]1;&21)7

liAzlz 1§A21z

)

-/1<P,

+V2> -A (]1;511;

l

+ V1>

2 (]W;;z((zz o A)(D), (A 0 A)(D))

y([ e

i) - (Pisan,

,Vi+ V1> -A (IlyAzlz

,V1>

1) A (1515
-A (I];ley) , V1>
On the other hand, the contributions of S, 83, B4, ¥y and E; on the right-hand side of (5.3.1) are

Pl (Ilflzly

,vl) 2 <’1§A211

v 1) ;78" 7 (®)

A (Wes(Bs 0 B(D), (8 0 ADY)

Vi+Vo+vi+ vz) (B234) j0i 7078+ 8)

-A (]1;(52 o Zl)lj;

Vot V1> A (P,‘ly(AzoAan +va+ Vz)

A(V1,v2)

[1]
[\®]

Comparing the updated form of the left-hand side with this, we see that everything cancels except
for the ¢ term present in the former. Thus, we conclude that the contributions of S, 83, B4,y and

H, in equation (5.3.1) is
(Left of (5.3.1)) = ¢ x (Right of (5.3.1)),
which completes the proof. O

5.3.2 ¥ -graded vertical composition

As before, we construct natural isomorphisms ¢; o ¢; = @;o; Or Q50 ;= @5 given by

- (M)

(¢7 © @(M) = joi(M) (p3 0 g(M) = 3,

or, in general,
m vy j(m|)m m yzf.dr?zbn_fl
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respectively, and Piotye(jon) = P(fej)olioi) by

for all homogeneous m € M. In terms of these natural isomorphisms, equations (5.3.1) and (5.3.2)

translate to mean that the diagram

@7 (e M1, M) ® pi(M))

ﬁj,f ﬁi,;
@570 @My, ... M) ® ¢j o pi(M) Piej © Piai ((My,....M)®M)
Jj’;, i®7i.j Jj{.fj. J
Q7M. ... M) ® @ joi(M) P(Foj)olioi) ((My,....M)®M)

]

i,
J>
P(Goire(joi) ((Ml’ M) ® M)
commutes for all -graded multimodules M, ..., My, M, and

Yi,j
@ 0 @ 0 Pi(M) ——=% ¢} 0 @oi(M)

Vj,kl/ \L'oni,k

Yikoj

QDkOj,i(M) EE— ‘pkojoi(M)

commutes for each ¢-graded multimodule M.

Before moving on, we note that a shifting 2-system may be extended to . In particular, since
¢1q acts as the identity, we can extend vertical composition itself by declaring Id oi =i =i o Id. If
Id appears in the subscript of Z, it can be replaced by an compatible element in .%4.

Finally, we can properly define a vertical composition of homogeneous maps. Suppose f :
M — N is homogeneous of degree i, and g : N — L is homogeneous of degree j. Define their

% -graded composition as

(g 0% f) (m) =y j(m))™" (g o f) (m).
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Proposition 5.3.4. With the assumptions above, g o f is purely homogeneous of degree j o i.

Proof. Requirement (i) of Definition 5.3.1 follows easily since D;,; = D; N (pl._l(Dj). Additionally,

|f] =i so|f(m)| = @i(ml), and|g| = j so|g(f(m))| = ¢; o @i(m|). Thus,
(g 07 £) m)] = vi,;AmD) " ¢ 0 @illml) = @jiml),

so (i) is satisfied.

For (iii) we claim that, for any @ = (ay, ..., ax) € (Ay, ..., Ay),

yism) ™ Bzl ImDBs @l . eulm) = Bz josll Imbyyi; (oo m])”

where € = (e, .. ., e) as usual. The desired result follows easily from here, since

pr (@, (g og f)(m))
=pL (5, %,j(]mI)_]g(f(m))) by definition,
=vi;4m)) " pr (@, 8(f(m))) by K-linearity of py,

= yi,;4m) ™" Bz (al | Fm)|g (pr(@, f(m))) since [g| = J,
——
=@;(m|)

= ¥i,(mD ™' Bz (@l eilmD)Bz(al \mDg (f (oL@ m)))  since|f| =i & g is K-linear,

- - -1 - .
= Bz joidl] . Iml)yi s <|PL(G, m)|) (go f)(pr(@,m)) by the claim, and

= Bz joild] .Iml) (g 0% ) (pL(d. m)) by definition.

To prove the claim, we apply equation (5.3.1) when j =i =¢ and g’ = |c7 | and g =|m|; it reads

Yauizej (@] olmBzid| . ImNBz j(@z(a)), i(m)) = E; 2(d| olml)Bzez) joila| lm vz @)y j(ml).

Now, B;; = I since (foé)e(joi)=ce(joi)=joi=(cej)o(cei). Moreover, by our
J.€

working assumption that all 4’-graded algebras are supported entirely in X, ¢g(]c7|) = |c7|. Then,

noting y; ; = 1, the equation above may be rewritten

vij(d| olmDBz(a| .lmBz i(al., eilm) = Bz joi(dl Jm|)yi jAml).
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Note that |p 1@, m)| = |47 | o|m|, since the action maps of multimodules are % ’-graded—thus, rear-
ranging provides the desired result. Requirement (iv) is proven in exactly the same manner, noting

that Ee,i = 1. Oa
e,j

In general, suppose My f—i> Ny i L, is a composition of purely homogeneous maps of degree
i¢ and jp respectively, for £ =1, ..., k. We say that f is purely homogeneous of degreef, and g is

purely homogeneous of degree f Then, for m € (M4, ..., My), we define
(& o F0) = y;34) ™ @ 0 )
= ;7 m)~ @i (fimn), ..., gr(fi(mi))).

The proof above extends to this situation without trouble, so (g o¢ f ) is purely homogeneous of

degree f ol.

Proposition 5.3.5. € -graded vertical composition is associative.

h
Proof. Suppose M L NE LD Kare purely homogeneous of degrees|f| =1, g| = j,and|h| = k.

On one hand,

(hog (g oz ) (m) =y j(mD)" (hog gf) (m) =i jAm)) "y orx(m|) " hg f(m).

On the other,

((how g) o £) )=y ((Fm)]) ™ (hg o £) m) = vy (Fm)])” ikosml)y hg fm.
Since | f (m)| = @;(m|), associativity follows from equation (5.3.2). |

Propositions 5.3.2 and 5.3.4 imply that the € ’-graded composition and tensor product of homo-
geneous maps is again a homogeneous map. The last thing we must do is check the compatibility

of ® and o¢.

Proposition 5.3.6. Suppose f : M — N and {f, : My — Ngy}o=1....x are purely homogeneous

.....

maps of degree i and i, respectively, and similarly g : N — L and {gg : Ng — Lg}p-1,.  are
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purely homogeneous maps of degree j and jg respectively. Then

((g1 0% fi),....(8k o fi)) ® g o | = 7 ((g15---.800®8) o ((fi,.... fi)® f).
JJ
Proof. We will just unravel both sides of the equation above. The equality will follow from equation

(5.3.1). On one hand,

(((g1 097 f1)s -5 (8k o7 fr)) ® g o )1 @ m)
AmD7! ((g1 0 f1)m1), ..., (8k o% fi)(mp)) ® (g o f)(m)

AmD ™ (i mi D™ @ 0 ). Yie g dmi DT gk o fme) )

= ﬁfO?,]'Oi(Im

= ﬁfo?,joi(ln_:l
® v j(mi))"' (g o fH(m)

JmD D i imD ! (81 e fidm), - (gx 0 fid)(mi)) ® (g 0 f)(m).

= ﬁ foz joi (ln—;l
The first equality follows from Proposition 5.3.4 since each g, o f; is purely homogeneous of degree

Jeoig, so ((g1 o¢ f1)s-..,8k O% fk) is purely homogeneous of degree f oi. The second equality

follows from the definition of o¢, while the third is just a rewriting step. On the other hand,
(g1, 80) ® &) o (fi, -, fi) ® [H)m @ m)
= Yiijo (@M~ (g1, 80 ® &) 0 (fis- -, ) ® ) (T ®m)
=Viigo (i @ mP7 (21 g0 @ @) (Br ] Im D) (fiom), - feme) @ fm))
= Yiuijo (7 ® m|) ™' B7 (] ,|m|>‘1ﬁ;’j<1f<n%) D™ (g1(fitm), ..., gx(fem)))

b

® g(f(m)).

The first equality follows from Proposition 5.3.2, and the second and third follow from the definition
of the tensor product of homogeneous maps. As suggested, the equality follows from equation

(5.3.1), taking g’ = |n7z| and g =|m|—we must only compensate by = . -. O
g
5.4 Changes of chronology

An important feature of ¢-shifting systems in particular is that changes of chronology induce

natural transformations of grading shift functors. Recall that we have a few different notions of

composition for changes of chronolology:
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* to a sequence of chronological cobordisms A Y8 Y, Cand changes of chronology H on

W and H' on W’, there is a change of chronology H o H on W’ o W,

H H.
* A sequence of changes of chronology W —= W, = Wj 1s itself a change of chronology,

denoted H, x H;.

The compositions o and * extend to chronological cobordisms with corners A in the obvious
way. In this setting we obtain another way of composing changes of chronology. Suppose
A, Ay, ..., Ax are chronological cobordisms with corners so that (Aq,...,Ax) e A is nonzero,
and suppose H, Hy,...,H} are changes of chronology on A, Aj,...,A;. Then we denote by
(Hy,...,Hy) e H the change of chronology on (Ay,...,A) e A defined by applying the H; and
the H in order according to the chronology. Indeed, we could define the e operation in terms of
successive applications of the o operation after extending each change of chronology to be trivial
outside of its original component.

Now, each change of chronology H : A — A’ of chronological cobordisms with corners extends
to a change of chronology without corners given appropriate crossingless matchings xp, . .., Xk, y.
The latter is denoted by

)_c'Hy : lgAly — 1EA/1y-
We claim that this observation induces a natural transformation of grading shift functors
PH - PA = PN

defined on each M € Ob(MultiModg) by

(M) : oA(M) — pp(M)

@a(m) = (H(m|) " pa(m)

where H(m|) means ;H, for|m| : ¥ — y. In general,

P(H,....H) * P(Ar...hr) = PA]L..AY)
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where
Oy, Hy - (@a (M), - oa (M) = (e, (My), . .., o (M)

is given by
k

w307 = | | cHilmi) ™ o5, ().

i=1
We abbreviate [15, «(H;(m;]))™! to L(ﬁdﬁ|))‘1. Sometimes, we write ¢y when we mean g (M).

Proposition 5.4.1. The diagram

B,on)d

(ea, (M), ..., oa,(My)) ® paA(M) ————"— @(a,....a0en (M1,..., M) ® M)

(@H)s - OH )®¢H\L Jjﬁ(m, woo Hy)oH

B,y
(‘PA’I(MI), - -.,QDA;(Mk)) ® pn (M) ———— @ apen (M1, ..., M) ® M)

.....

commutes. Thus, opg(M) is a map of 9-graded multimodules and, in particular, ¢y is a natural

transformation of MultiModg(Al, ..., Ag; B) functors.

Proof. Assume that the gradings of (my,...,my) € (My,...,My) and m € M are compatible in
the sense that |m;| € Hom(x;1,...,Xjq,;y;) for each i = 1,...,k and |m| € Hom(yy, ..., yk;2).

Recall that g is defined as the composite 318,838+ and notice that (8;)(a,,...A).A = (ﬁz‘)(A’1 ..... AN

fori = 2,3, and 4. Denote by Hg and Hp the changes of chronology used to define (B1)a,.,...A,)A

and (,81)(A'1 ..... AN respectively. Also, consider the changes of chronology
2 ((Hi, ... H) o H) . 1:(A e M), = 1:(A" e A)1,
which we abbreviate to H,, and
(3, (HDy,s - - o5, (Hi)y ) UsH, © 1:A15 U 151, = 1:A15 0 15471,
which we abbreviate to H,. Then we have the following sequences of changes of chronology.

- - H - - -
(1A 0 A1) 0 Wego(D, D) —— Wiz (AD), AD)) o (1:A1; U 1541 )

H.OId\L \LIdOHu

- - H - - -
(1:(A" @ A)1;) © Wiz, (D. D) —> Wiz (R'(D), A'(D)) o (14715 U ;A1)
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Then, proposition 3.1.3 implies that

(HL)Bs A Im]) = By, (] lmDe(H.).

On the other hand,
(@1, - - - om) ® on) (| ®ml) = o 5D en(ml) = «(H@) " W H(ml) ™" = «(HL)™

and
90(H1,...,Hk)oH(]m| O|n7l|) = L(Ho)_la

which concludes the proof.

Proposition 5.4.2. We have that

PH O PH = QH'xH

Proof. This is immediate, since «(zH), o Hy) = (GH})u(zHy) = uzHy * :Hy).
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CHAPTER 6

TANGLES, DG-MULTIMODULES, AND MULTIGLUING
In this chapter, we finally prove multigluing in generality upon detailing our method for associating
to a diskular tangle a ¢-graded dg-multimodule; see §6.2. This is preceded by §6.1 wherein we
define %’-graded dg-multimodules, whose differential preserves %-degree. We also define the
HOM-complex associated to %’-graded dg-multimodules, important to Chapter 8. Finally, in §6.3,
we also discuss graded commutativity and analogues of Naisse-Putyra’s “dg-C-graded” bimodules,
whose differential is 4’-homogeneous. We do this mostly for completeness, and cite §6.3 very

sparingly in successive sections.

6.1 %-graded dg-multimodules and related concepts
We remark that we only consider the situation of %’-graded dg-multimodules over % -graded

algebras, rather than over ¢ -graded dg-algebras.

Definition 6.1.1. If Ay, . . ., Ay, B are ¥-graded algebras, we define a € -graded dg-(Ay, . . ., Ax; B)-
multimodule (M, dyy) as a Z X €-graded (A, ..., Ax; B)-multimodule M = @nez’geMor(%) Mg’

together with a K-linear map dy; : M — M satisfying
(@) du(Ml) c M,
(i) du(pr(d@, m)) = pr(d, du(m)),
(ii1) dm(pr(m, b)) = pr(dy(m), b), and
(iv) dyody = 0.

forall @ € (Ay,...,Ax),b € B, and m € M. The Z-grading is called the homological grading;

the homological grading of m € M is denoted |m|,. We assume the left and right action on a

multimodule preserves homological grading; i.e., |p.(d, m)| , = |ml,. A map of ¢-graded dg-
bimodules f : M — N will always mean a K-linear chain map (i.e., it commutes with the

differentials) which preserves both homological and %’-grading.
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Given ¢-graded dg-(A;i, . . ., Ajo,; Bi)-multimodules (M;, dy;,) foreachi = 1,...,k and a ¢-
graded dg-(By, .. ., By; C)-multimodules (M, dj), we define the ¢-graded dg-(A1, . . ., Ak, C)-

multimodule
(M1, du,). ... (Mi. i) ®s,....5) (M. dar) = (M1, ... M) ..y Mo d g,
where

k
i1, AN
it ®m) = 3 (=DZRIM Gy, dyg,(m). . mg) @ mo+ (=120 @ dyg(m).
i=1

We will sometimes denote the first large summation, perhaps confusingly, by simply d ;; (7).

Proposition 6.1.2. The tensor product of € -graded dg-multimodules, as defined above, is a € -

graded dg-multimodule.

Proof. The requirement (i) is obvious. Also, it is routine (but tedious) to check requirement (iv),

that d12\71®M = 0. To see requirements (ii) and (iii), note that d, preserves % -grading, so for any i,

|(m1, oo dy(my), . ,mk)| =|(my,...,mj,...,myg)|
thus, in particular,
aal.|m|.Iml) = a(dl.|m| |dum))) = a(dl.|om, . .., dy,(my), . .. mp)| Im]).
We leave the rest of the proof to the reader. O

The homology of a ¢-graded dg-multimodule (M, dys) is the € x Z-graded multimodule
HWM,dy) = ker(dM)/im(dM). We call a map of ¥’-graded dg-multimodules f : (M, dy) —
(N, dn) a quasi-isomorphism if the induced map f. : H(M, dy) — H(N, dy) is an isomorphism.

We define the mapping cone of a map of ¢’-graded dg-multimodules as follows. First, recall the
homological shifting functor [k] which sends the dg-multimodule (M, dj) to (M[k], dp(x)) where
M[k]g = Mg}‘k, dyik) = (-1)*dy;, and M[k] inherits the left and right actions of M. Then the

mapping cone of f : (M, dy) — (N, dy) is the €-graded dg-multimodule

—dy O
Cone(f) = (M[-1]1® N, dcone(f)) where dcone(f) =

dn
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We also define the HOM complex of %-graded dg-multimodules. Suppose M and N are
two % -graded dg-(Ay, ..., Ar; B)-multimodules. Let HOM(M, N) denote the chain complex of
bihomogeneous (that is, homogeneous in homological degree and purely homogeneous in -

degree) maps f of arbitrary (Z X ;“V)—degree, with differential
D(fy=dyo f=(=1lfody.

Thus, D preserves the Zdegree of a bihomogeneous map, but increases the homological degree
by one. For example, if f has degree (k,i) € Z X jv, then the differential of HOM(M, N) simply

takes the difference of the following paths.

n U s n+k
Mg N%(g)

b e

n+1 f s n+k+1
Mg N‘Pi(g)

Recall that each purely homogeneous map of degree i induces a graded map f D pi(M) > M.
Moreover, % -grading preserving maps can be viewed as purely homogeneous of degree Id € Jv,
indeed, purely homogeneous maps of degree Id induce maps graded maps ¢g(M) — N, but,
¢d(M) = M. This (tautological) correspondence allows us to view the HOM complex as a

bigraded abelian group

HOM(M, N); = 1—[ Homyy ipoqe (9i(M™), N™)

nez
with differential of bidegree (1, e).
6.2 Resolution of diskular tangles
A diskular (my, . ..,my;n)-tangle is a tangle diagram 7T in D? - (151 U---u Dok), where each

of the D; are disjoint disks lying within the interior of D?, each of the form {z € D? : |z — z;| < r;}

for some z; € D? and r; > 0, so that

* Each D; has 2m; marked points on its boundary, all disjoint from a fixed basepoint in 9D,

and
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+ D? itself has 2n marked points on its boundary, all disjoint from a fixed basepoint on dD?.

By “T is a tangle diagram in D? — (D U - - - U Dy),” we mean that the interval components of T all
have endpoints lying on the marked points of D?> — (D U - - - U Dy). We view the disks D1, .. ., Dy
as ordered.

As with planar arc diagrams, if S; is a diskular ({1, . . ., ie;; m;)-tangle for eachi = 1,.. ., k,
we denote by T'(S1, . . ., Sk) the diskular (¢11, . . ., {xq, ; n)-tangle obtained by filling the ith removed
disk with §;, identifying distinguished points and basepoints appropriately. Again, there is also a

pairwise composition, which we write as T o; S;, and the two are related by
T(S1,...»80) = (- ((T o S)og-1--+)0181.

A diskular (; n)-tangle is referred to as a diskular n-tangle.

Let ¢(T) denote the number of crossings in 7" and take an ordering x(T) = {x1,..., Xem} of
the crossings of 7. Let v = (v1,...,ver) : x(T) — {0, 1} be an assignment of 0 or 1 to each
crossing of 7. To each v, thought of as the coordinates of the vertices of the hypercube [0, 1],

we associate a planar arc diagram 7, of type (my, ..., my;n) by resolving each crossing according

P

Xi

v7 vi=1

) ( =

We call 7, aresolution of 7. As this procedure associates planar arc diagrams to each vertex of the

to the following rule.

cube [0, 11D, we can associate to each edge a cobordism of planar arc diagrams. First, to ensure

this cobordism comes with a chronology, we require that 7 come labeled with one of

\_/) N/
or
N N

at each crossing. For each v; = 0 in some vertex v, we write v + i to denote the vertex which is

identical to v except that (v+7); = 1. Introduce a direction on the edges of the cube so thatv — v +i.
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Finally, to each of these edges, we associate the chronological cobordism
Wv,i . Tv - Tv+i

obtained by putting a saddle in a small cylinder above the O-resolution of the ith crossing with
chronology determined by the labeling, and taking the identity everywhere outside of this cylinder.

Our goal is to assign a ¢¥-graded dg-(H™!, ..., H™*; H")-multimodule ¥ (T) to each diskular
(my,...,myg;n)-tangle T. We have already seen that ¥ (T;,) is a ¢-graded (H™, ..., H™*; H")-
multimodule for each resolution 7, of 7. Also, to each edge cobordism W, ; : T, — T,,;, we can
associate a ¢-graded map

FWoi) = ew, ,(F (1) = F (L)

We will need a slightly different graded map, achieved by constructing another family of chronolog-
ical cobordisms for each v. Denote by 1 the “all one” vertex (1, ..., 1). Recursively, set W) = I,

the identity cobordism of 77. For v # 1, let £ denote the lowest integer so that vy = 0. Then, define

W, =Wy o Wv,f

Wy, v . . .
which has path T, ‘ Tyir Wt T;. Additionally, notice that for each v; = 0, there is a locally

vertical change of chronology

Hv’j . Wv = Wv+j [©) W‘)’j

obtained by pushing the saddle over the jth crossing to the beginning of the sequence of saddles.

Now, set

C)y=EP Ll where  C(T), = gw,(F(T,).

vl=r

Here, r is the homological index of the dg-bimodule we are building. The first step in defining the

differential is to associate to each edge v — v + j the ¢¥-graded map
dv,j = T(Wv,j) © SDHv,j(T(Tv)) 1 C(T)y — C(T)v+j-

Perhaps this doesn’t seem to make sense. Indeed, there should be an intermediary yw,, . w, ; for the

v+ Wy,
composition to parse:

en, ;(F (1)) YWy Wy FWy, ;)
SOWV(T(TV)) — ‘PWVHOWV,I-(T(TV)) B— SDWWJ-(SOWW- (F(T)))) ? ¢Wv+j(7:(TV+J.))'
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However, by our definition of these compatibility maps, yw,,,.w, ; = 1 since both cobordisms in-

volved are unweighted. Actually, the grading shifting system imposed on this grading multicategory

implies that ow,, .ow, ; = ¢w,.; © ¥w, ;-

Lemma 6.2.1 ([NP20], Lemma 6.7). The diagram

C(T)v+i
C(T)V C(T)v+i+j

C(T)y+;

commutes for all v and i, j for which v; = v; = 0.

The proof of this Lemma is exactly as Naisse-Putyra. Indeed, the validity of this Lemma,
without sign assignments, is the first meaningful benefit of working with grading (multi)categories.
Finally, define d, : C(T), — C(T),+1 by setting
drlem), = Z (-1)P¥d, ;
{jv;=0}
for all v with |v| = r, where p(v,j) = {€ : j < € < ¢(T) and v, = 1} counts the number of
I-resolutions occurring after the jth entry of v. In conclusion, we set

F(T) = (@ C(T),,d = Z d,) .

r

The following is apparent, but we write it as a proposition for future reference.

Proposition 6.2.2. Suppose T is a diskular tangle. Given a specified crossing of T, write T;, for
i = 0,1, to denote the diskular tangles resulting from taking the ith resolution of this crossing.

Write o to denote the saddle from Ty to T\. Then,
F(1) = Cone (o710 7% 1))
Equivalently, we have an exact triangle
F () = F(T) = ¢oF (To)l1].
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Less apparent is the fact that 7 (T) is actually a €-graded dg-multimodule.

Proposition 6.2.3. If T is a diskular (my, . . ., my;n)-tangle, ¥ (T) has the structure of a -graded

dg-(H™, ..., H™; H")-multimodule.

Proof. Tt is clear that d(F(T);) C F(T)5*' and d* = 0 by definition. We will show that
d(pr(a,u)) = pr(d,d(u)); the requirement for the right action follows by a similar argument.

By linearity, it suffices to show that the diagram

oWy Py

(A1, ..., A0 ® ow, (F(T,)) ————— ow, (F(T,))

1®dv,jl _ l/dv,j
v+j

¢Wv+ij

(A1, ..., A B ow,, ;(F (Th1))) ——— ow,,,(F (Tv+)))

commutes, where p; denotes u[(1y,, ..., 1,,); Tv]. By definition of d,, ; and left actions on shifted

multimodules, this diagram factors as follows (we’ve refrained from labeling arrows to avoid clutter.

@a(Ar, ..., A) ® ow, (F (1)) — ow, (A1, ..., A @ F (1)) —— ow,(F (1))

@ ©)

~ ~ N

(A1, .. AR) B ow,, ow, (F(T) » @w,, 0w, (A1, ..., AR) @ F(T1) > ow,,;ow, (F(T)))

® ©)

~ ~ 2

(AL, A ® ow,, ; (F (1)) —> ow,,; (A1, ..., A) @ F(Ty4))) —> ow,, ;(F (Ty+)))

Here, we are using the fact that (A, ..., Ax) = ¢z(Ayq,...Ar). We will show that the original
diagram commutes by showing that squares @@ commute up to constants which cancel with

one another.

Square @,
Bz,w,

0a(A1, ..., AR ® ow, (F(T))) > ow, (A1, ..., A) @ F(T,))

18¢n, ;(F(T,) g, ;(FT,)

Baw,,jow,
0s(AL ..., A & pw,, ;ow, ;(F (1) ———— ow,, o, (A1,..., Ar) ® F(T,))
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commutes on the nose by Proposition 5.4.1, taking A=Zand A= W,.. Technically, if 4 is the “do
nothing” change of chronology, we are acting by goﬁ(g) on the left terms, but this is clearly equal
to 1. Similarly, the vertical arrow on the right should be ¢;, ., .

v,

Square @

L

ow,(A1,..., A @ F(T))) > ow, (F(Th))

en, ;(F (1) en, ;(F (1))

W soWe (Al -, AR 8 F(T,)) ——=— ow,ow, (F(T,))

commutes by the naturality of ¢y, ,; again, see Proposition 5.4.1.

Square @,

ﬁE,Wv_Fowv,‘
QDE(Al LI Ak) ® (va.;.jOWV,j (T(TV)) % 90Wv+jOWV!j((A1’ D) Ak) ® 7:(T'V))
1®F(Wy.) 18F (W, )

Bew,,
0s(AL ..., AD) ® pw,,,(F(T11)) ————— ow,,,(A1,..., A) ® F(Ty4)))

commutes up to a factor of ,ngv’j(]c? ,|lul), where we’ve fixed @ € (Ay,...,Ar) and u € F(T).
To see this, recall that S decomposes into 4 terms, S1—fB4, and that here S, = 3 = 1 for both
compatibility maps since all cobordisms involved are unweighted. Otherwise, suppose|a;| : x; — y;

and|u| : (y1,...,yx) — z. Note that if|u| : §y — x then|<,ow(u)| : ¥ > xand|F(A)(u)|y — x, as

long as the values are nonzero. Then

(Bzw,ajom,., (@l luD) , = AP |15(Wysy 0 Wi 1)

and

(Bzw,., (@l JF W, pa)), = AP [15Wea 1)

where P’ is the sum of the second coordinaters of a; fori = 1, ..., k. Bilinearity of A implies that

the contribution from the 54 terms is

A(P’, ) X (down, then right) = (right, then down).

ly(Wy )1,
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On the other hand, the §; terms are computed via changes of chronology. Similar to before, we

have that

(IBEsz+j°Wv,j(la ’

D), = (Bew, @l luD) , x (Baw,., (@l |F W, pa)), -

The easiest way to see this is by noticing that the change of chronology on the left factors into

changes of chronologies corresponding to the right terms.

Together, this means that
<,BE,WM(15| ,|u|)> X (down, then right) = (right, then down).
Finally, square @
ooyt (AL A © F L)~ o, o, ,(F(T,))
1®F (W, ;) FWy.))

v+j

oWy (AL, s A ® F(Ta) ———— w, (F(Tya))

commutes up to a factor of Bz y, (]5 ,lu]). To see this, recall that #(W; ;) is homogeneous of degree

W;. ;. hence
Py @, F Wy )W) = Bz, (a| JuDF W, (o} (@, w)).
These two contributions of Bz, . cancel each other out, which concludes the proof. O
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6.2.1 Multigluing
Finally, we prove that F behaves as we hope with respect to composition of tangles; this

isomorphism is referred to as multigluing.

Theorem 6.2.4. Suppose T is adiskular (my, ..., my;n)-tangle andT; is a diskular (C1, . . ., Cig,; m;)

tangle for eachi = 1, ..., k. Then there is an isomorphism
(FT)s ... F(TR) &, .amey F(T) = F(TT, ..., Tx))

induced by ul(T1)vys - - - (T)v ) Ty ]

Proof. Recall that C(T), = ¢ow, ¥ (1)) and C(T}),, = ow,, F(Ti)y,. We'll write @ gmi . gy as &y
First, notice that

By .....Wyp ). Wy

(ew,, FTDvys - s ow, F Tidv) @ ow, F (1) ————— @w,, ... W, oW, (F Ty - - -, F(Ti)vy) ©i F(T0))

I )vl ----- (Tk)vk )Ty ]

(p(WV] ..... va)'Wv T(Tv((T] )V] LR ] (Tk)vk ))

is an isomorphism thanks to Proposition 4.4.6. This composition is what we mean by “the map
induced by u[((T1)y,s - - - » (Tx)v,); T,]7; we will denote it by u* when there is no confusion. Notice

that the target of this composition can be rewritten

SDW(V,V1 ,,,,, Vk)T(T(Tl, cees Tk)(v,vl,.‘.,vk)) = C(T(Tl» BIRIRS Tk))(v,vl ..... Vi)

where we’ve ordered the crossings of T(T7, . . . , Ty ) by the crossings of T first, and then the crossings

of Ty, T», and so on. So, to conclude the proof, we need only show the diagrams

(CTvys - s CTvys - C(Ti )y, ) & C(T)y —L—3 CA T, .., T,

(lsw-’dvi,_fsn-sl)@li \Ld(v,vl ,,,,, vk),c+cl+”.+ci_1+j

(C(Tl)\/p ey C(Y})V,‘+j9 CIEEAE C(Tk)vk) ®rﬁ C(T)V IJ—> C(T(Tl’ ey Tk))(V,V1 ..... Vitf,eesVk)

.....

(where ¢ is the number of crossings of 7" and c; is the number of crossings of 7;) and

(C(T)ys - - CTidy) @i C(T)y —2—3 C(T(T, .. ., T, v

(1a~~~s1)®dv,jl \Ld(v,vl ,,,,, N

*

(C(Tl)vl’ ceey C(Tk)vk) ®r7l C(T)V+J #—> C(T(Tlv e Tk))(v+j,v1,...,vk)
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commute. As in the proof of Proposition 6.2.3, we will show that each square factors into squares
which commute up to values which cancel.

We introduce the following notation: we’ll write
* ¢w, =i and F(T;),, = G, so that C(Ty)y,; = pw,, ¥ (T;)y, can be written ¢;C;;
* ow, = ¢o and F(T), = Co, so that C(T), = ¢w,F (T), can be written ¢oCo;

* oW, oW, ; = @i and @w, . = @, Similarly, w,, ow, ; = ¢ and ¢w,,; = @or.

C = 7j(TV((Tl)Vp CIE) (T;')V," ) (Tk)vk))’ C' = 7j(TV((Tl)Vp CI) (Ti)v,‘+j7 ) (Tk)vk))’ and
C” = F (Lorj(T)vys - - s (Tidvp))-

Other notation is defined accordingly; for example, o, ... w,,....W,, oW, 1S TEWIItten @(1,...i,....k)e0,
and so on. The maps involved also adapt, including the writing of ¢p, for ¢y, ;, and #; and ¥’ for
T(in,j) and T(W(v,vl,...,vk),c+cl+-~-+c,»,1+j)-

With this new notation, the first diagram factorizes as follows.

Btk

(¢1C1,.. ., ¢iCis .., 0kCr) ®; ¢0Co @od,...i... k)00 (Cos . . ., Ciy ..., Ci) ®; Co —r o, iy k)o0C

(Lyeespr o 1)®L O @(L.....H;....1)eL ©) P, o Dol

h ~ ~
i

(@1C1s .., i Cis ..., 0k Ck) ® w0Co o Ciye o, ) 5 Co ——— w1 v, 19e0C

... ... )®1 @ I....%....1)el @ 7!

i

~ ~

B
<¢1C1, c il wka) ®ii 0Co

~

u
..,C{,..-,Ck) ®7z Co —— @q,...i7....;ke0C’

Squares @ and @ both commute by Proposition 5.4.1. Comparing the horizontal arrows, square

@ commutes up to a factor of ﬁ(ﬂ,‘..,wvi,j,...,l),ﬂ, in the sense that
ﬁ(]l,...,in,_,»,...,Jl),Jl X (down, then right) = (right, then down).

Notice that the 8, and 3 terms are both equal to 1, since all cobordisms involved are unweighted.

Moreover, the 84 term is equal to 1 since|1 ;ILly| = (0,0) given any closures X, y. Thus, the two
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sides differ by a value given by a single change of chronology

as in the definition of the compatibility maps . Of course, we should view the W,, ; on the left
as(1,..., W, ;,...,1)e1, and the W,, ; on the right as (1,...,W,, ;,..., 1). On the other hand,

square @ commutes up to the value

-1
= (Ba....w,, ,...1),1)

in the sense that
Ba,...wy, ..., 1),1)'1 X (down, then right) = (right, then down).

Thus, the former diagram commutes.
There are subtle differences in validating the commutativity of the latter diagram—in particular,
the 4 term in the analogue to square @ is nontrivial. Anyway, the diagram in question factorizes

as follows.

Ba.,...k.0 u
(1C1, - ., 0kCk) @i 00Co ——— ¢(1....k)e0 (Co, - . ., Ci) ®z Co — > @(1....k)e0C

11111

(L,...1)®en @ @(1,...,1)eH @ P,...,1)eH

g ~ ~

Ba,...00 u
(1C1, - .., 0kCk) @i 00y Co ———=> @(1....kpe0 (Co, - - ., Ci) ® Co —— @(1....k)e0r C

1,...1)8% 3) (L...)®F) 7

h ~ ~

Ba,...r00" u
(@1C1, ..., 0xCr) @i w0 C) ————= @(1.... 10007 (Co - . ., Ck) @ C), —— @(1....11007 C”

Again, squares @ and @ commute thanks to Proposition 5.4.1, and square @ commutes up to

a factor of 87 |, in the sense that
Wy, j

B w, , X (down, then right) = (right, then down).
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Indeed, the 3, and B3 terms are trivial, but otherwise we have

which is precisely

(down, then right) = g5 w. . X (right, then down)
sy, j

for square . Thus the latter diagram commutes, concluding the proof. O

6.3 dg-%-graded multimodules

In [NP20], Naisse and Putrya provide a second notion of %-graded dg-multimodules with
differential which is %-homogeneous rather than % -grading preserving: they are distinguished
from the former notion by calling them dg-%-graded multimodules. The only difference lies
in the differential. This section is devoted to showing that the analogous objects exists in the
multicategorically graded setting. However, along the way, we develop the notion of 4’ -commutative
diagrams (see §6.3.2). While almost all succeeding work in this thesis does not rely on anything
proven in this section, we will use ¢’-commutative diagrams (especially Proposition 6.3.3) briefly
in the discussion of duality (§8.2) and very minimally in the proof of properties of unified projectors

(§8.3). The author suggests proceeding to Chapter 7 and referring back to this section as necessary.

Definition 6.3.1. Assume Ay, ..., Ak, B are ¢-graded algebras. A dg-¢-graded (Ay, ..., Ay; B)-

multimodule (M, dyy) is a Z X € -graded (A1, ..., Ag; B)-multimodule M = @nez,ge% MZ,’ along

with a homogeneous differential dy, written dﬁ,l, satisfying dj; o dyy = 0.1 Again, we assume

]Really, we could have written dps o dpy = 0, but clearly this is the case if and only if dps o dps = 0, since y does
not take O for a value.
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that the left and right action preserves homological grading. A map of dg-%-graded multimodules
f M — N means a K-linear map which preserves homological grading and € -graded commutes

with the differentials.

To be explicit, since dy; = Zj d{;,[ is homogeneous, we know that it is K-linear, the sum is finite,

and for all m € M it satisfies
(i) dj, (M) c M;;(lg) if g € D; and d4,(M?) = 0 otherwise,

Jm) ' pr(@, d},(m)) for all @ € (A1, ..., Ay), and

(i) dy(pr(@ m) = Bz ;(a
(i) d};(pr(m, b)) = B; o(m| |b))pr(d},(m), b) for all b € B.

Note that we do not require maps of dg-%-graded multimodules to preserve %-grading. The
rest of this section is devoted to understanding what we mean by % -graded commutativity; see
[NP20] for more details.

A commutativity system on {.¢, ®} is a collection
T= {((i,j), @, ") € (#) x (J’")2}
(that is, each of 7, j, i’, j* may be m-vectors) such that
« if (G, /), (W, j") €T, then

(a) Pjoi = Pjroi’s and

b) (@.j),G, 1)) €T

and
« forany k > 1if (1, j1). (5. )+ - (G i) G ) - (G ) G2 57)) € T then

((Grseesi) @i, Grsee s ji) @ (@ sip) @8 (oo J) @ J) €T

We abbreviate the last requirement to ((7 f), (?,f’)) , ((i,j), (i’,j’)) eT = (?o i,fo J).
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For simplicity of exposition, assume i, j,i’, j* are single-entry. To witness the commutativity

system, we introduce a collection of scalars

Tfl.,_’y e K*

I’
for each Xy, ..., X, Y € Ob(¢) and (i, j), (7", j")) € T, satisfying

(i) X777 = 1 whenever j oi=j’ o, and
iJ’
-1

) [ 7577 ) =X7 foreach (/). (.)€ T.

1,0
7’ j’,j

If ((i ), @, ] ’)) ¢ T, then we declare 7;, i to be zero. We will write XY for the scalar witness
l l
j j q 2
isJ’

when m # 1—the above definition of 7 extends to the case where i, j,i’, j* are vectors, requiring

T)i_) ¥ = 1 whenever joi=j'o mterpreted correctly. As earlier, we write 7; 7 (g) to mean TX_)Y
i, i’
>, Js ]
JJ’ i’

whenever g : X ov. Finally, we say that a commutativity system T is compatible with a shifting

2-system through 7 if two equations are satisfied. The first is

(&7, (8) (6.3.1)

’ 4 — =
oo (8857, (8'8)B5,07, jror, (85 8) = Eih (&' 8)B5,oi, jroin (&> 8)T7 n, 80T

Jioj1,j2%)2 Jid J2J2 Jig2
which translates to the following diagram.

Bj, oty oy (858
—_—

i1 ei1, 2 &'s)

Jj1ej1, j29j2

N

g & 17,, ir (®)
]1 ]2 _]laJZ

oy, jpoi (%))
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The second equation establishes consistency between 7 and Z: we require that

— =1
Tldei,jold — =14,/ (6.3.2)

1
JjeoldIdei ild 14,

[1]

In particular, notice that in order to conclude that ((fd o, f e Id), (f old, Ide i)) € T, where any 1d
may be replaced by any element of .74, it is sufficient if ((’, Id), (Id, ")) € T for any i’ € .#—this

will clearly be the case in the ¢-graded setting. This equation translates to the following diagram.

lejoi,f':ld
(f ° Id) o <I_a ° i) jold, Ide! 5 (I_El ° i) o (f ° Id)
E;',lf RN I /Eld,j
wj (Fold)e(ldoi) == (Idoj)e(iold) il

6.3.1 %-graded commutativity

As before, one last time, we will describe the ¢ -graded setting before passing on to generalities.
We will not consider dg-%-graded multimodules explicitly, but we can construct them using the
information of this section. See [NP20] for more generalities of these objects. We’ll write A” for
(A, v) € Z to reduce the number of nested ordered pairs. We’ll describe the non-vectorized setting

first. Let T denote the collection of all pairs { <(A¥‘ LAY, (A’lvl1 , A’zvé)>} for which
* there exists a locally vertical change of chronology H : Ay o Ay = A] o A/, and
s vi=vjyand vy =v].

Similarly, in the vecotrized setting, ((53‘, 522), (K’f", K})) is in T if there are locally vertical
changes of chronology Hy : Ay oAy = A/z, (oA ¢ for all £ and V; = V), and v, = V. Notice that T
satisfies the criteria of a commutativity system since cobordisms which differ only with respect to a
locally vertical change of chronology induce the same ¢-grading shift, locally vertical changes of
chronology are invertible, and locally vertical changes of chronology are well behaved with respect

to horizontal composition of cobordisms.
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Next, we set

iy o
T(Al,Vl),(A;,v’l) - L(XHy)/l(VZa Vl)
(AZ’Vz),(A’z,VIZ)

again, where H is the locally vertical change of chronology H : ApoA; = Ao A]. In the vectorized

setting, we set

]

T, . = 1z, (H AV, V

G L G, (He)y, )A(V2, V1)
(B, 72),(R5,70)

where V,, V| denote the sums of the entries of v, and v respectively. We will write T = 7113, for

71 the part coming from the change of chronology and 7, the other.

Notice thatif (A2, v2)o(Ay, vi) = (A}, v})o(Ay," v}), then H is the identical change of chronology,

— ! — I _ -y _ SEIT - A7 ’ :
and vy = v, = vy = V| so A(v2,vy) = I, hence T(Al,vl)’(A’l,vi) =1. Also,if H: Ajo Al = Ay o Ayis

(A2,v2),(A,v))
also a locally vertical change of chronology (guaranteed to exist by the existence of H) then

-1

X—y — . roIN — (o -1 _ X—y
T(A/I,VEL(AI,V]) - L(xHy)/l(Vz’ V]) - L(xHy) /l(V], V2) - T(Al,Vl)’(AllsV'l)
(A)V)).(A2.v2) (A2.v2).(A5.v))

as desired.

Proposition 6.3.2. This commutativity system T is compatible with the 4 -grading shifting 2-system

defined previously, through the scalars t.

Proof. The validity of (6.3.2) is simple: recall that .#4 consists of elements (1p», (0,0)) for any
planar arc diagram D. Thus
X—>y _ .
TId.(A,v),(K,v.Id) = WAV, v)
(A,7)eld,Ide(A,v)

where V is the sum of entries of v and H : ((5, v)eld)o (IZl e (Av) = (I?_i e (A v))o ((Z, V) e Id).

On the other hand,

T(Aw)dd
(A 1d,(A7)

B i = (GHDAV,W) - ((GH)A,000,0)7)
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where
- - H, - - - -
(A, V) e 1d) o (Id e (A,v)) = ((A, V) o Id) & (Id o (A, v)) = (Id 0 (A, V) @ ((A, v) o Id)
= (I e (A.v) o (A7) o 1d).

Since H and H” o H’ are locally vertical changes of chronology with the source and target,
Proposition 3.1.3 implies that ((Hy) = uz(H"” o H')y) = «zHY)u(zH}), so equation (6.3.2) is
satisfied.

To check equation (6.3.1), we apply familiar arguments. Actually, the computation is fairly

simple compared to the previous proofs of this type. On one hand, ignoring Z X Z-degree to start,

consider the diagram

(ﬁf1°71’11°i1)

i1eiy,ireip
Ji%j1,j2%j2/

(ﬁfzdz’fzf’iz

wherei; = Ay, j1 = Ao, ip = A’l, J2 = A’Z, and so on. The two paths trace out changes of chronology
with the same source and target, so we conclude that the contributions of 71, Z;, and £ from
equation (6.3.1) agree on the nose.

On the other hand, since Zl ) 52 and Z’l o 5’2 as well as A, o A; and (A’2 o A’l), differ only by
a locally vertical changes of chronology, plus v + v, = v} +v| and V| + V, = V] + V|, it is easy to

find that

(ﬁ(gzogl,T51+\72),(A20A1,v1+vz)>2,374 - <ﬁ(&203;,63 +T5;),(A§0A’1,v’l+v§)> 234"
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If these conditions were not true, then the T maps involved would be zero, and equation (6.3.1)
would hold trivially. Moreover, we compute

T(&l'A13V1+V1),(5’1’A/1,V1’+V11) = /1(V2 + V2, Vl + Vl) = /?'(VZ, Vl) : /I(V29 Vl) : A(VZ, Vl) : /l(VZ’ Vl)

(RaoVa+v2) (A e A), VI +v))

2
and
h_‘(Als"l),(él,ﬁl) = /l(V] » VZ)
(A2,v2), (A1) / o
on one side, and
T(Kl,m,(&l,a;) = AV, V1),
(82.72).(85.V)) /
T(A1Lv).ALV)) = A(v2, V1),

(A2v2) (A1)

and

= AV{,vy) = A(Va,v1)

ORAYEE
W&/
on the other. Since A(V},v2) = A(va, V1)7!, these computations tell us that the contributions of 75,

H», and B2 34 from equation (6.3.1) also agree on the nose, concluding the proof. O

There may be other choices of commutativity systems compatible with the ¢-grading shifting
2-system. However, this doesn’t matter so much: the existence of a commutativity system is more

important than the commutativity system itself.

6.3.2 Generalities of commutativity systems

As before, we obtain natural transformations ¢ ;o; = @70

@joi(M) = @jropr (M)

m— 7,y (m|)m
JJ’
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or, more generally, Pioi = Pirop given by

o.My, ...,My) = ¢z 5 (M, ..., M)

Joi

Then, the compatibility equations (6.3.1) and (6.3.2) imply the following commutative diagrams in

categories of ¢-graded multimodules.

01,01
ﬁ]‘ oi|.J1%1

Jii
507, (M1 M) @ @101, (M) == 45, yuyoi) (Mo MO @ M) == 051y (M. Mi) @ M)

T2 . 7 .

2 iei,irein

T2 ? _ Ji®j1.j20)2
Tiaip

,3‘,‘-2 oi, /290

J2.)2
‘pfzofz(Ml’ s M) ® oty (M) —— P(Gaoir)e(j20i2) <(M1’ M) ® M) — P(Gaeja)olireir) ((Ml’ M) ® M)

"[dei,jeld

jold,Idei
P Getdyoider M) > Plieiroijoray(M)
=i F1a,
1d,] i1d
‘P(foﬂj).(ldo[)(M ) = ‘pfoi(M ) P (1do])e(iold)

Consider a diagram of purely homogeneous maps, with degrees pictured.
7
i’
M,
\
fa

We say that the diagram is ¢’-graded commutative if ((i ), @, J ’)) € T, and

My,
fi2
M>;
J
s
M3,
(fox 0% fir) =Tip (fr2 0% fix) -

JJ’

Note that (f*z oy fl*) has degree j’ o i’ and (fz,k oy f*l) has degree j o i, so 7;,;» ensures their ¢-
JJ’
degrees agree. This situation is abbreviated by including an arrow f} as in the following proposition.
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Proposition 6.3.3. Given ¢ -graded commutative diagrams

M,
NG
My, " M»,

My,

and
(M2 (M12)k
(Jy' %*2)1 <W &mk
(M1 " (M) > -0 (M) " (M)
(m 4;1 (_m %k
(M21)1 (M21)i

the diagram

(M12)1,....(M12)i) ® Mia

J?l*®fl* f ﬁ2®f*2
((MyD1, .., (M1)k) ® My (M1, ..., (M2)i) ® M
jz;1®f*l ﬁ*®f2*

(M2, ..., (Ma1)k) ® Mo
is € -graded commutative. Here, ﬁ* ® f1+ is shorthand for ((fl*)l, s (fl*)k) ® f1s and so on.

Proof. This is simple, given Proposition 5.3.6 and equation (6.3.1). We drop some notation in
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what follows; hopefully it is clear:

(f2® fi2) o (fie ® i @m) =B ((fa 00 fi) ® (fi2 0% fi)) (i @ m)

l/
77’
=1
==, wﬁl o7 ol (fa2 0 Fi)(7) ® (fua 06 fr.)(m)
77’
= E e ﬁj_ voir jroir Vi Cild (fz* oy f*l)(m) ® (fax 0% fr1)(m)
NN e
-1 =-1
=T ;*.” o = ]OTJOI(]CZ* o% f*l)(m) ® (fZ* O f*l)(m)
jeigej" i.J
-1 ——1 - - N
=72l B ((far 0 fo1) ® (fan 0% fo)) (G @ m)

jejg'ei’ j.J
= T_;:i 7 o’ ((f2>k ® fZ*) O% (f*l ® f*l))(n_;l Q m).

Jjej.j'ej’
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CHAPTER 7

AN INVARIANT OF DISKULAR TANGLES
In this chapter, we describe an invariant of diskular tangles. In §7.1, we describe useful compu-
tational tools necessary to successive work, inspired by [BNO7] but paying particular attention to
the “simplification” of ¢-grading shifts. We remark that, as in [NP20], our ¢-grading system is a
little too sensitive for the ¢-graded dg-multimodule we associate to a diskular tangle to be invariant
under each Reidemeister move. However, we also describe a procedure (important to the results
of chapter 8) which collapses ¢-grading to a g-grading, in which case we obtain an honest tangle
invariant. The work here is motivated by and serves as a generalization of [NP20]. Recall that
we write Kom(+) to indicate the category of complexes which are bounded below in homological

degree and of finite rank in each quantum or ¢ degree.

7.1 Quick computations in unified Khovanov homology

To begin, we will describe a few tools which will allow for quick computations in the homotopy
category of ¥-graded H"-modules, Kom (H”Modf). In particular, we hope to use the methods
introduced in [BNO7], but must develop others to deal with problems posed by ¢ -shifts.
7.1.1 Delooping

As an internal check, we can derive a formula for delooping in the current setting. A birth
@ : @ — QO induces a graded map ¥ (@) t po(R) — V, since (&) = R and F(O) = V.
Notice that this G-grading shift functor has only the effect of adding (1, 0) in the second coordinate

(free loops are ignored in the first coorinate): ¢ = {1,0}. So we have a graded map

?‘(@) - R{1,0} — V.

Similarly,
7 (@) L R{0,-1} >V
is a graded map. The grading shift functors {u, v} have clear inverses given by {—u, —v}. This

fact, together with similar analysis on graded maps induced by deaths, yields the following array
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of graded maps:

B

F(2){1,0}

Q)

F(O) F(O) (7.1.1)

7\
./

By
3

T(@){O, - }

It might seem pedantic, but we note that the arrows on the left-hand side of (7.1.1) should be

precomposed with the isomorphisms coming from natural transformations of grading shift functors
Id = {1,0} o {-1,0}

and

Id = {0,-1} 0 {0, 1}

respectively, so that the maps on the left are graded with respect to our conventions. We will neglect
writing these isomorphisms outside of special situations (e.g., the proof of Theorems 8.1.5 and

8.2.3).
Proposition 7.1.1 (Delooping). F(QO) = F(2){0,-1} & F(2){1,0}.

Proof. This follows directly from the definition of #. For example, the composition shown in

diagram 7.1.1 reads
— N —
7 f +F f =F
One can verify this by checking that a dotted cylinder, followed by a positive death, and then a birth

maps v, to v, and v_ to zero, while a positive death, followed by a birth, and then a dotted cylinder

maps v, to zero and v_ to v_. The other composition is also the identity: this amounts to showing

A(E)r()» (@)

That is, the tube-cutting and sphere relations hold in the category H "Modif.

that
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We should expect the gradings as they are since degg(v4) = (1,0) and degp(v-) = (0, —1), with

V:R<V+, V_>. O

7.1.2 Simplifying grading shift functors

In the even setting, delooping and Gaussian elimination allowed us to perform quick compu-
tations. To perform similar computations in the unified setting, we need to develop a system for
simplifying ¢-shifts. In the best cases, this means that W consists of no ambiguous saddles, and is
equivalent to a grading shift supported entirely in the Z X Z component; for example, we previously
used that ¢ = {1,0}. Usually this is not the case. Instead, given a cobordism W :  — 1’, we’'d
like to equate g,y with ¢y ) for some u € Z X Z where W is minimal. Recall that if W is not
minimal, it fails to be so up to some addition of tubes. Therefore, to approach the problem of

simplify grading shift functors, it makes sense to ask how ¢ ) behaves under tube-cutting.

Proposition 7.1.2. Let W : t — t’ be a cobordism. There is a minimal cobordism W : t — t’ which

is isotopic to W outside of finitely many tubes. Denote the number of tubes in W by tyw. Then

PW) = CWvtrw(=1,-1))

Proof. Any tube in W is either unambiguous (it is a split followed by a merge or vice versa) or it is
ambiguous (it is impossible to determine the order of elementary cobordisms which constitute the
tube without a given closure). Consider the (locally vertical) change of chronology H : W = W’

which changes all ambiguous tubes into unambiguous tubes, e.g.,

wherever ambiguous tubes are present. From our analysis earlier, there is an induced natural
transformation ¢y : ¢ow = ¢ys. Note that deg(1;W1,) = deg(13W’1,) since any tube in W
corresponds to the addition of (—1, —1) in degree on any closure, ambiguous or not. This implies
that pw,) = @wr,y). Since each tube in W’ is unambiguous, we know that each tube in W’ acts as

a degree (—1, —1) shift, so the result follows. O
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A consequence of this proposition is that all grading shift functors have inverses, not just {u, v}.

Corollary 7.1.3. For any pair (W : t — t',v), ¢w.y) has a left inverse

-1 _ _
PWy) = PW —vtrg,, (1,1)

(where W : t' — t is the mirror image of W) in the sense that

-1 ~
Pww) CPWy) = €1,
Proof. If the composition W o W produces any tubes, the contribution by these tubes on the second

coordinate are Killed by the addition of the term 7, (1, 1). |

Example. An elementary saddle cobordism )—( : ) ( - :: induces the graded map

F(H) e 700 =7 (=)

Consider the isomorphism induced by change of chronology:
op:ld= ¢l op. .

Then, precomposing with ¢, the saddle can be reinterpreted as the following graded map.

P () een (1) =, 7(2),

Wi tethat o= =@, .. ince T o )} prod tube. T 1,
€ compute tha QOH ® <I (1’1)> since I o )—( produces a tube. In genera
-1
0, =@/ -
(Ham) (X amuien)

Remark 7.1.4. Returning to diagram (7.1.1), we see that the natural transformations of grading

shifting functors actually take the forms

‘PH:Id:}(lD_l 090@3{1,0}0{—1,0}

5

and

-1

cpH:Id::»go@ow@E{0,—1}0{0,1}.
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The dismissal of free loops by the G-shifting system leads to another possibility for simplification
of grading shift functors. We will frequently use the following simplification while cooking up

projectors; see [NP20] for a proof.

Proposition 7.1.5. Suppose W : t — t’ is a cobordism and t contains a free loop €. Then there is

a natural isomorphism

W, ) = CW -1, by mi— A(1,0),deg(1gW1;,))m

where W' . t — € — t' is given by gluing a birth under the free loop in t, and m € Mg.,—p. If, on

the other hand, t' contains the free loop, the natural isomorphism is on the nose:

PW.(uv) = PW” (u,y-1))
and W" : t — t' — € is given by gluing a death above W.

Example. Here is a way we may use the preceding proposition. Consider the ¢-grading shifting
map cpg (the choice of chronology is unimportant). Then Proposition 7.1.5 says that this grading

shift is?somorphic to the grading shift ow- (-1,0y), Wwhere W’ is pictured below.

Of course, W’ is isotopic to an elementary saddle =, so Proposition 7.1.2 allows us to conclude

that

Y5 =4 (x10)
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The examples of this subsection illustrate a peculiarity of computations in Kom(H ”Modf)—
that a ¢-grading shift has a few different representatives. A difficulty in coming work (cf. the proof
of Lemma 7.2.6) is choosing the correct representative.

7.2 Tangle invariant

In this section, we finally construct an invariant of diskular tangles, motivated by and general-

izing Section 6.4 of [NP20].

Suppose T is a diskular (ny, . . ., ng; m)-tangle with c-many crossings. We will continue under
the assumption that T carries an orientation. Then 7" defines an oriented (2, ...,2,ny,...,ng;m)-
N
¢ times

planar arc diagram D7 by replacing each crossing of 7 with a new diskular region with four

endpoints; consult the schematic below.

AN ¥ /S

N\ <% /
Denote the crossings of T by x1, ..., x. and define the complex

.....

where

Kh <’X> = Cone 7—'()() 7(Hem gp‘)l_(?-‘ (::) (0,13,

for oy :I1d = ¢! o gp)_( Recall that the underlined entry is in homological degree zero.

The reader should compare this with the unoriented case, where we have

T(T) = (]m(X]), ey T(Xc)) ®(H2,,..,H2) Jm(DT)
by Theorem 6.2.4. So, we would expect the following lemma.
Lemma 7.2.1. For any diskular tangle T, there exists a shifting functor ¢ and integer € such that

Kh(T) = o(F(T))[{]
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Proof. Recall that the dg-multimodule associated to a single crossing is given by

. N . e 9"(2)—(1) - s
K J=cone{ ¢y ) ( — 7

On one hand, it is obvious that

On the other hand, the diagram

(0 )"0 ()

YH

90—)1_( L 90)_(7_. () () 90‘>‘_(7" ( A)

commutes tautologically. The bottom line is exactly go‘)l_( F <’y\> , so we conclude that

Then the desired result follows from the definition of Kh and Theorem 6.2.4. O

IR

F (X) (=1,0}[=1].

IR

Unfortunately, Kh is not an invariant of oriented tangles in the ¢-graded sense; rather, Kh will
be an invariant of diskular tangles up to ¢-grading shift (Theorem 7.2.8). We break the computation

up into three lemmas of increasing difficulty.

Remark 7.2.2. Notice that invariance under planar isotopy is immediately apparent in the ¢-graded
setting, in contrast to [NP20], since ¥ (D7) = F (D) if T’ is obtained from 7 via planar isotopy.

Moreover, in our setup, we no longer have to assume 7 is presented in a generic position.

Lemma 7.2.3. There are isomorphisms

(>o)=m(> )=( Do)
in Kom(H 1Modgg) (here, the choice of orientation does not matter).
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Proof. Picking an orientation for the right handed twist, we compute

¢<>O> Yo o pn sv‘)lo?' <>) o
g <> ) 01 Xz,

@

T
7 <> ) pop

The second isomorphism is by delooping, noticing that ¢~!. is isomorphic to {1, 0} as shifting

IR

IR

F <>) {1,0} [ {0, 1}

functors. Additionally, the maps are obtained from the former by precomposing with a birth or a
dotted birth. The third isomorphism is by Gaussian elimination. The reader may verify that the
computation for Kh (\/\)> is duplicate.

Doing the same for the left handed twist,

IR
S
Y
7
A

= | 7 <> ) {0, -1} ® {-1,0}
7 <> > {1,0}
follows by the same reasoning, and the computation for Kh (\\/\/:) ) is its doppelgénger. O
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Lemma 7.2.4. There are isomoprhisms

. (:Q) . . <> <> - Kh (D:)

and

in Kom(H 2M0d§f). We call the first pair of isomorphisms R11, and the second pair RI1_.

Proof. By definition, Kh ( Q > is the complex

— ’

with a global shift by {—1, 1}. However, up to isomorphism, we can rewrite the grading shifts on

the 01 and 11 resolutions suggestively, so that the complex takes the form

E%‘ ? _ B o
) (Z) =407 (5]

again, with a global shift by {—1, 1}. Now, by delooping,

QD(}’S (0’])> d (9\> il (pI a </\> © 90(:1:;,(1,1)) a (/\) :

Moreover, the maps ¥ (}:) o ¢y, and F <\§> compose with the delooping isomorphism to

yield invertible maps where desired, so that Gaussian elimination tells us that the entire complex is
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homotopy equivalent to Kh <E i) {-1, 1}, as desired. Duplicate this work for the other side

of RIL,. |
We play the exact same game for RII_: Kh (TQ) is
< }:{ © ¥H; N
() B e s (3
) Reenm (o

with a global shift of {—1, 1}. By grading shift arethmetic, we know

IR

e X — _1> S _,1, >~
Pse = {0, -1}, 90}]i 90(’_32;(1,1)>’ and 90\2, {1,0},

. .‘.

so that the complex may be rewritten

Fl g L0}
Delooping the 01 entry and applying Gaussian elimination, we conclude that the entire complex

is homotopy equivalent to ¢ <)_( " 0)) Kh <> <) (=11} s ie., o ()_( o 1)>Kh <> <>, s

desired. Again, the other side of RII_ is similar.

o en,

Remark 7.2.5. Lemma 7.2.4 establishes that the grading shift coming from Reidemeister II moves
is dependent on orientation. This, together with Lemma 7.2.3, implies that Reidemeister III moves

must—at least, sometimes—come at the cost of a nontrivial grading shift. For example, if this was
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not the case, the sequence of isomorphisms

#().on) Kh <> <) __ R kb ( :g) _ R o (

g E%

o <> <> Ll e ® <} q> -1 1y <R kp ( > )

would yield a contradiction. Notice that the vertical arrow is an Reidemeister III move of type

Lemma 7.2.6. We have the following isomorphisms in Kom(H?> Modf):

9

g < \> - (&) e > |
Kh(x) Kh(\” e *X)*”HW”“(\*

_- \/\

‘\/

N\
s

/

Proof. We will describe the proof by illustrating one of the isomorphisms on the left-hand side and

its counterpart on the right-hand side. Each computation is slightly different, but we hope that this

discussion sates the reader, or illuminates the procedure enough so that they might check the others

on their own.

The idea for any isomorphism on the left-hand side is to expand each complex and apply

Gaussian elimination carefully. If Gaussian elimination is done properly, the two complexes are

isotopic. If we do the same procedure for complexes appearing on the right-hand side, we will find

that the entries of the complex are isotopic, but the grading shifts disagree. In this case, we will
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argue that one is taken to the other by applying the grading shifts provided in the statement of the

Lemma.

Observe the complex associated to Kh ( )(/'\/‘ ) .

Eyeing the boxed vertex, we have that

()™ (1
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and, moreover, the delooping isomorphism provides that

e = 9 \/ H O, ~
90<j<<(01)> ., /O\< = I < /\< <j< <(11)> N

Now, we apply Gaussian elimination, so that the northwest and southeast vertices of the forward-

facing face cancel with the northeast vertex which we just delooped. Here is the resulting complex.

Now we do the same thing for Kh ( ’\/)‘\ . We will refrain from writing out the initial cube
this time. Mirroring the previous argument—delooplng and then applying Gaussian elimination
to toss three of the four terms appearing in the forward-facing face—this complex is homotopy

equivalent to the following.
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>¥/\ o e : >;>i ° $H;

Finally, notice that

and

() A

as grading shift functors. From here, it is straight forward to verify that the complexes are homotopy

equivalent, showing that

o (5)=(5%)

On the other hand, working the same program for Kh ( X < ) and Kh ( //)" > we obtain

SR
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the following complexes.

w K |
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Again, we know these complexes are not homotopy equivalent by, for example, Remark 7.2.5.

Instead, we will show that the latter is taken to the former by a global grading shift of

KN
may be wmten:d ¢ <>§ .
K ()

(1) Northwest vertex. As a warm-up, notice that ¢ >é§ has two isomorphic representatives

First, recall that go_l

functors). On the other hand,

> (up to equivalence of grading shift
are isomorphic as grading shift

functors.

important to understanding the intermediate comp‘léi. They are hardly different, but making
a choice here is one way to describe two representatives of the ¢-grading shift obtained after

the first global shift:

( ) ( )

. O i (%5\(01)> ¢ <%(lm>
<>§ "“’”) \“’(25\7(0’1))) \90 ( >§ﬂg))

Of course, yet another representative of this grading shift, encapsulating both of these

representative above, we obtain the grading shift ¢

1

Vs

. Anyway, applying the final global shift to the second

which, similarly, is a representative of the grading shift ¢ o

representatives, is ¢

(i1) Southwest vertex. This is the trickiest since it is the vertex with one of its arrows altered by

Gaussian elimination. On one hand, obviously if we apply ¢ ( , Eg o {0 -1}
Y 1>> oS
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(111)

(iv)

we are left with ¢ .

()

out of the vertex. To see that this questionable arrow is still a graded map, one may

. At first, this may not seem to square with the other arrow

draw the original cube and trace it through the Gaussian elimination; we leave this as an

exercise. Moving on, rewrite the grading shift as ¢ ,

= and apply ¢ ), to
<2é< (1,0)> 3€<
obtain ¢ < Ké< . This is a representative of the gravd'ing shiftp , . as we
:_' (1,0>> ( E<<< (1,1>>

hoped.
,._\%z__’(]’o&

Northeast vertex. From¢ ,

( >?>§'.,<1,1>>
ande , .
<;’ >>>2 (1,0)>
( ) ( )

Lo ¢<3§<>> 90(/%5())
>;Z \‘P <>§Z“°)> \90 <>§Z(]0)>

The reader is invited to check that both representatives are used in the intermediary complex.

, we will consider the representatives ¢ (

IR

V V

Picking the latter and composing with g0‘<1 . , we obtain the grading shift {0, —1}.
f E§< (—1,—1)>

Southeast vertex. This is the most straightforward: applying the first global shift to

@ © yields a shift by {1,0}. Redrawing >>’1 as 2<,< , it is apparent that

(3

applyiﬁg the second global shift provides ¢ (

'&<'Z,(1,0)

, as desired.
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Remark 7.2.7. In light of Lemma 7.2.6, the sequence of Remark 7.2.5 is recitfied: notice that
Kh (- | =¢ 1,00t Kh| |
= T Kh | .
“olcan( 2()

Composing with the grading shift by {—1, 1} and one last Reidemeister I move gives the desired

grading shift by (,0( o .
o <0,1))

Theorem 7.2.8. IfT and S are isotopic diskular tangles, then there exists a grading shifting functor
@Ay So that

oA Kh(T) = Kh(S).

Proof. In general, if one decomposes a diskular tangle T into T4(7Tp), as pictured below, then
Theorem 6.2.4 tells us that ¥ (T') = ¥ (Tp) ®y» ¥ (T4). By Lemma 7.2.1, there is a shifting functor

¢ and ¢ € Z such that Kh(T") = o(F (T))[£]. By the coherence isomorphisms S, we have that

o(F (T) ®yn F (Ta)) = ppF (Tp) ®un AT (Ta)

for ¢4 and ¢p restrictions of ¢ to the regions A and B. Moreover, as described in the proof of
Lemma 7.2.1, the ¢-grading and homological-grading shifts here are determined by local crossing

information, so it follows similarly that

e(F ()LL) = opF (Tp)[l] ®nn @aF (TW)[4]

for those particular €4, €p € Z satisfying €4 + {p = €. Indeed, since each ¢4, ¢p, €4, {p
coming from ¢ and ¢ are the same as the shifts coming from the proof of Lemma 7.2.1, we have

T (Tp)[€p] = Kh(Tp) and poF (T4)[€4] = Kh(T4). Summarizing, we have that

Kh(T) = Kh(Ts) ®@un Kh(Ty).
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If T and S are isotopic, then S is obtained from 7 by a finite sequence of Reidemeister moves.
For each move in this sequence, apply the isomorphism above to the diskular region containing
the Reidemeister move. Then, the theorem follows by applying this isomorphism, invoking one of

Lemmas 7.2.3, 7.2.4, and 7.2.6, and repeating as needed. O

7.2.1 Collapse to g-grading
To obtain a genuine tangle invariant, we will perform the same trick as is in Section 6.5 of

[NP20]. Define the degree collapsing map

k :Homy — Z

(D,(p1,p2)) = p1+p2

which forgets the planar arc diagram input of a ¢-grading and sums the entries of the second
coordinate. We will use « to notice that the ¢-grading of any ¢-graded object induces a coarser
integral grading. First, by ¥,(D), we mean the multimodule # (D) with an additional Z-grading
determined by its ¢-grading: fix

k

degy,(u) = | K(degy () + )" m;, degy (u)

i=1
This additional Z-degree, determined by ¢-degree, is called the quantum degree, or g-degree; we
denoted it by deg, (u).

Notice that the composition maps u preserve quantum degree. Furthermore, any cobordism

A : Dd — D' induces a map ¥ (A) : F4,(D) — F,(D’) which is homogeneous of g-degree
deg q(?' (A)) = #births + #deaths — #saddles.
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Sometimes we just write deg,(A) for deg, (7 (A)).

Finally, we reinterpret a grading shift functor ¢av in the Z X ¢-graded setting by

deg, (90A<V1,v2>(m)) i=deg,(m) +deg,(A) +vi +va.

This is to say that any cobordism A induces a Z X ¢-graded map F(A) : oaF,(D) — F4(D").

In conclusion, all results in the ¢-graded setting extend to the Z X ¢-graded setting with no
change to the compatibility maps: all isomorphisms involved are graded with respect to quantum
degree. In particular, each d, ; preserves g-degree, so we can define ¥,(T) as a Z X ¢-graded
dg-multimodule, using ¥,(T,) in the place of F(7,); define Kh,(T') similarly.

Suppressing notation, we let MultiMod? denote the category whose objects are the same as
MultiMod? except we record the quantum degree (that is, objects are Z X ¢-graded multimodules
obtained from the regular ¢-graded ones) but now, maps are only required to be homogeneous
with respect to ¢-degree, with the caveat that they must preserve quantum degree. By collapsing
to q-degree, we just mean that we are working in the category MultiMod? rather than MultiMod? .
This is perhaps misleading, as the ¢-degree is still present—what we mean to relay is that we
have relaxed the requirement of ¢-degree preservation to ¢-degree homogeneity up to g-degree
preservation.

We think of Kh,(7') as an object of Kom(MultiMod?). In the final chapter, we are mostly
interested in objects of Kom(H"Modgg), which we say descend to objects of Kom(H”Mod?e),
and also to Kom(H"Mod?) and Kom(H"Mod?), specializing X,Y,Z = 1 and X,Z =1,Y =
—1 respectively. We call these objects of Kom(H"Mod?) the image of whatever object(s) of
Kom(H ”Modg) which descends to it.

Notice that a gluing property holds for #,(T) and Kh,(T'), as before. Again, the benefit of

working in Kom(MultiMod?) is that Kh, becomes an honest tangle invariant.

Theorem 7.2.9. If T and S are isotopic diskular tangles, then

Kh,(T) = Kh,(S).
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Proof. This follows as long as the homotopy equivalences of Lemmas 7.2.3, 7.2.4, and 7.2.6
are graded with respect to quantum degree. For Reidemeister I moves, this is trivial, as the
homotopy equivalence was already graded with respect to ¢-degree. For Reidemeister I moves,

degq({—l, 1}) = 0 obviously, and

deg, “(1 (o) ) = 1+deg, ()—() —1+(=1)=0.

1

Similarly, it is clear that the g-degree of ¢ >_| ( o pr). . is zero. Therefore, the grading shift appearing

in Theorem 7.2.8 has deg,(¢w~) = 0, and the result follows. i

Remark 7.2.10. If T is a link, then the homology of Kh,(T') is isomorphic to the unified Khovanov
homology of T, as constructed in [Put14]; see [NP20] for a proof. In particular, setting X = Z =1
and Y = —1 (before taking homology), we get a tangle invariant for odd Khovanov homology, as

desired.
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CHAPTER 8

UNIFIED AND ODD PROJECTORS
Finally, we apply Theorem 6.2.4 (multigluing) to mimic the constructions of Cooper-Krushkal
[CK12] and produce projectors living in Kom(H”Mod(;f). Our work in this chapter follows an
outline similar to [SW24], since we exploit the flexibility provided by diskular tangles, as Stoffregen
and Willis do in the spectral setting.

More explicitly, in §8.1, we use multigluing to define the stacking ®, juxtaposing LI, and
partial trace Tr operations, and the category Chom(n)? (which we conjecture is the same as
Kom(H"PMod?), as in [Kho02]). We also take this opportunity to prove an adjunction, generalizing
a theorem of Hogancamp [Hog19]. The next section, §8.2, is mostly stand-alone: the main takeaway
for this thesis is Corollary 8.2.4, which we use in the proof of Lemma 8.3.4, itself used in the proofs
of Proposition 8.3.5 and Corollary 8.3.7. In §8.3, we define unified projectors as in [Hog19], though
our proofs follow the methods outlined in [SW24], as their setting most resembles our own. We
hope to illuminate preceding and successive work by computing the 2-stranded unified projector
two different ways in §8.4. We also compute the homology of the closure of P, (c¢f. Section 4.3.1
of [CK12]), which we will use to show that our categorification of the colored Jones polynomial
is distinct from that of [CK12]. Finally, we prove the existence of unified projectors (using the
same procedure as [SW24]) in §8.5, and the existence of a unified colored link homology (which
collapses to the categorification of the colored Jones polynomial of [CK12] on one hand, and to a
new categorification on the other) in §8.6.

We establish some notation. Proceeding, for A, B € Kom(H ”Modg), we will denote the HOM-
complex of A and B by Hom, (A, B). If A and B are (non-dg) ¢-graded H" modules, we’ll write
Hom, (A, B) as shorthand for Homy.,, ;4 (A, B).

8.1 Operations defined via multigluing

As far as the existence of projectors is concerned, the main payoff of multigluing in the unified

setting is that we can develop a notion for stacking and juxtaposing complexes of ¢-graded modules.

We can also use multigluing to define a partial trace for these complexes, allowing for an adjunction
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statement.

Given a diskular n-tangle 7', we’ll view it as a tangle in a rectangle as follows: traveling counter-
clockwise from the basepoint along the boundary, place the first n endpoints along the top of the
rectangle and the last n endpoints along the bottom. For this reason, flat diskular n-tangles are also

called a Temperley-Lieb n-diagrams, i.e., each resolution of 7 is a Temperley-Lieb diagram.
Definition 8.1.1 (Stacking). Vertical composition is the operation
® : Kom(H"Mod) x Kom(H"Mod} ) — Kom(H"Mod})
defined as follows: given complexes A, B € Kom(H "Modf), A ® B is the complex
(A, B) ®n gy F(DP)

where D? is the (n, n; n)-planar arc diagram

R
1o

s x
2 X

with removed disks ordered as shown. In particular, if 77 and 7, are both diskular n-tangles,

Theorem 6.2.4 says that
F() @ F (1) = (F(T1), F (1)) @un gmy F(Dy) = F(DF(T1, T»)).
We say that this complex is the result of stacking ¥ (T1) and 7 (T>).

Definition 8.1.2. Consider the full subcategory Chom(n)? of Kom(H”Modg) consisting of (par-
tially unbounded) ¢-graded dg-modules whose entries are all direct sums of ¢-graded modules
associated to flat diskular n-tangles.

In analogy with [KhoOO], we expect that the subcategory Chom(n)? is just the category

Kom(H"PMod?) for H"PMod? the category of projective ¢-graded H"-modules, although this
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seems worthy of further study. Additionally, we expect that vertical composition ® for this subcat-

egory is a monoidal product with monoidal identity

(that is, 7, is the dg-module associated to the picture above), with monoidal structure provided by
multigluing (Theorem 6.2.4). We let Chom(n)? denote the image of Chom(n)g in Kom(H"Mod?)
after collapsing to g-degree, §7.2.1. By definition, for Kg the Grothendieck group which records

only the g-degree of ¢-graded objects, we have that
K{(Chom(n)?) = K{(Chom(n)?) = TL,.

Just as stacking can be realized as a multigluing operation, the horizontal juxtaposition can as

well.
Definition 8.1.3 (Juxtaposing). Horizontal composition is the operation
L - Kom(H™Mod%) x Kom(H™Mod%) — Kom(H"*">Mod?)

defined as follows: for complexes A € Kom(H"'Modf) and B € Kom(H”ZModgg), A U B is the
complex

(F(T1), F(T2) ®tm ymay F (D, )

where D'(-"11 ) is the (n1, np; ny + ny)-planar arc diagram

If 7; a diskular n;-tangle, we’ll write F(77) U ¥ (T») to denote the tensor product

(F(T), F (1) ®m my F (D, ) = F(De  (T1,T2)).

(n1,n2) (n1,n2)

We say that this complex is the result of juxtaposing ¥ (Ty) and F(T>).
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8.1.1 Adjunction

First, consider the following operation on complexes in Kom(H ”Modﬁ).
Definition 8.1.4. (Trace) The trace is an operation
Tr : Kom(H"Mod}) — Kom(H""'Mod$)
defined as follows: for A € Kom(H "Modgg), Tr(A) is the complex
A ®pn F(DI)

where D" is the (n; n — 1)-planar arc diagram
I

n-—1

n-—1

I .
If T is a diskular n-tangle, we’ll write Tr(# (7)) to denote the complex

F(T) ®un F(D,") = F(DA(T)).

By the kth partial trace of A, we mean the complex obtained from applying the partial trace k

times to obtain Tr*(4) € Kom(H" ¥ Modf). The nth partial trace of A is known simply as the trace

or closure of A.

In [Hog19], we saw that the operations — U 1 and Tr(—) were adjoint. Impressively, we can

prove that a generalization of this adjunction exists in the ¢-graded setting!

Theorem 8.1.5. Suppose A € Kom(H"'Mod%) and B € Kom(H"Mod3). Then we have the

following isomorphisms of complexes.

and

) o (4 4900

LA L
(. o) ERRYIRER
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Proof. Unlike the analogues of this result for even Khovanov homology [Hog19] and even Kho-
vanov spectra [SW24], the fact that certain maps occur in disjoint disks does not mean that they
commute, but rather that swapping the two changes the overall composition by an isomorphism
induced by a locally vertical change of chronology. We will see that our ¢-shifting 2-system ac-
counts for this difference, so that the above result holds with little alterations to the aforementioned
proofs.

We will prove the first isomorphism, leaving the second to the reader—notice that the grading

shift by {—1, 0} in the former is replaced by a grading shift by {0, —1} in the latter. Suppose that
f€Hom, | AU, ¢ < #E o 1)) B | has homogenous .#-degree A", so it is realized as a ¢-graded

map f:oa AUl — @ < '#HZE o 1)>B (we do not have to pay attention to the homological degree).

Define ¢(f) € Hom,_1(A, Tr(B){—1, 0}) to be the composition

T A o F (D) o em AN T
QDAV 3 < ) (IDAW(fl,O)i & “J {-1,0}

where

oHp 1 1d = 90% o 908 = {-1,0} o {1, 0}.
and Ag(y) is shorthand for the isomorphism which pushes the {-1,0} shift after A”; that is,

/1¢(f) = Y(-1,0),Av © A(v, (—=1,0)). Schematically,

Lastly, by Tr(f) we just mean f ® 1. Notice that ¢(f) has the desired form since

- Loy =[ B ]|

is a split, so the shifting functor associated to it is the Z X Z-grading shift {0, —1}, thus canceling

with the original Z X Z-grading shift of {0, 1}. Said another way, Tr(f) € Hom,, (A uQ, Tr(B)).
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Next, let g € Hom,_1(A, Tr(B){—1,0}) and denote the .#-degree of g by &”. We define

€ Hom,, | AU, B | to be the composition
Y(g) n 90<¢H:® (0’1)> p

L5

where

¢HS:Id=>sooso-

Then, ¥ (g) has the desired form since
o7 =¢
i)

composed with {—1, 0} is ¢<¢H:E o 1)).

Now, we compute ¢ (¢(f)) as the composition

Lsip o F (D) o omy L £
Py

THUL ‘/\{_1,0}
5o

iy

If we slide f past the saddle, then the above complex is equivalent to the following one, where we
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have compensated for the slide by a change of chronology ¢, .

\,\\ e 1 SDHS
gaAv}} ¢Av+(—1,0) /ﬁ
{-1,0} 0 o7! o oszw' ‘
l‘PHl
{-1,0} o 7' o par 0 U ‘
0

(W an) 7 >0
o 9"@@«&»)%@%

The key observation is that A4 s—which corresponds to sliding a shift by {—1, 0} through A*—and

Aoy 0 F (D) 0 o,

\
2

¢n,—which corresponds to a change of chronology which pushes a saddle through A”, at which
point it is realized as a merge (and the grading shift associated to merges is {—1, 0})—are inverse

to one another. After this, the birth and merge cancel with one another, and we conclude that

(@) =r.

We play a similar game for ¢(¥(g)): it is computed as

. \\ /lw(g) ° T (®> 0 SOHB - 0 TI'(g LI 1) |
eer[ A pgmro A | | —— n] (-2.0)
=

Loy -¥] {—2,0}
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where the last equality follows because ¢! = {1,0}. Now, slide g before the birth; as

before, to do so, we have to compensate by ¢p, : ggw o {1,0} = {1,0} o pgw. Here is the resulting

composition.

$H
sﬂaw z wawo{—l,O}o{l,O}

Ag(f)

N

{—1,0}0908w0{1,0}

YH,

= ~

{_1’0} © {1’0} O pgw 3\‘:
\g
{—2,0}0{1,0}

O(’DHS
{—1,0} H {_2,0} e

7 ()

Now, A4(s) and ¢y, are inverse to one another, since A((a, b), (-1, 0)) = X~*Zb and A((a, b), (1,0)) =

X“Z~". Again, the birth cancels with the merge, and we have that ¢(¥(g)) = g, concluding the

proof.

Remark 8.1.6. Since

| Y(epon) )

O

this result descends to Theorem 2.31 of [Hog19] if we collapse the ¢-grading to the g-grading.

8.2 Duals and mirrors

Suppose R, S, and T are € -graded algebras. Per usual, we expect that if M is a ¢’-graded (R; S)-

multimodule, and N is a ¥’-graded (R; T)-multimodule, then Homg(M, N) is an (§; T)-multimodule
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PR (s, )(m) := f(pR (m,s))  and  pR°™(f,t)(m) := pR (f(m), 1)

for each f € Homgr(M,N),m € M,s € Sandt € T. However, Homg(M, N) does not satisfy the
axioms of a ¢’ -graded multimodule: by definition, Homg (M, N)is graded by IXL = (7 LU{Id})xZ,

and the reader is invited to verify that
o pHOM(sy - 50, F)m) = @ (ml Is1].Is2]) " PO (s, pHO (52, £))(m),
o P (f, 1), 12)(m) = @ (| Gm)] 1] [l ) PROVCE, 11 - 12)(m), and
o pllom(ptlom(s, £), 1)(m) = pHom(s, plom( £, 1))(m).

Despite this ambiguity, we are able to give a type of duality statement which turns out to be
a generalization of Theorem 4.12 in [Hog20]. This implies a unified analogue to Lemma 4.14 of
[SW24], which is all we will need to prove the uniqueness of unified Cooper-Krushkal projectors.

We dualize a flat diskular (m; n)-tangle T by the following operation, flipping radially,

X ! X !
e 2me - duali 2R
T: \ / ualize \ / :TV

to obtain a diskular (n;m)-tangle. Notice that if T is a flat diskular n-tangle, then TV is a flat

diskular (n; 0)-tangle; this is the case we are most interested in. On cobordisms of 7 embedded in
[0, 173, ()" acts by the transformation (x, y,z) — (x,1 —y, 1 — 2).

Now we describe how (—)" establishes a contravariant functor Chom(n)? — Chom(n)%. On
objects (which are chain complexes of summands of ¥-graded H"-modules associated to flat
diskular n-tangles with a differential of matrices of cobordisms), ()" applies (—)" on each entry,
reverses homological degree (i.e., (AVF = (A0, applies (—)" on each cobordism and takes the

transpose of each matrix of cobordisms, and reverses ¢-degree. By this last point, we mean that
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each cobordism shift W is dualized (note that if W : @ — b, then WY : bY — a") and Z X Z-degree
is reversed: {vi,v2}Y = {-v2, —vi}.

In particular, if d4 is the differential for A € Chom(n)g, then (abusing notation), fix

dav =—(da)" o on

where ¢y means that we are applying the change of chronology

$YH Id= QD(_dlA)V O D(d)Y

on each entry of each matrix comprising d4v. For example, the dual of the complex

() ( o (1 ot . : o
0 () (=

for oy :1d = ¢ o, . In particular, this is to say that

is the complex

as one might hope.
Finally, on morphisms, to f € Hom’éhom(n)(goW’(v,,Vz)A, B) (where k is the homological degree

and (W, (v1,v7)) is the ﬁdegree) we define fV € Homéhom(n)(gowv’(vz,vl)BV, AY) to be
(= CDH0”
following the commutativity of the square

BV — L (A

‘ (DR (foii) ‘
(B)Y ———% (A )Y
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As consequence of reversing ¢-degree, the jv—degree of compositions of morphisms is also
reversed; this is to say that (for, say, maps of homological degree zero) (g oy f)" = ¢u, 8" oz f"
where ¢y, , denotes the change of chronology prioritizing the degree shift of g before that of f.

Then, we have the following standard lemma.
Lemma 8.2.1. For A, B and f, g as above,

1. (-)Y induces a degree-zero chain map

Homchom(n)(A, B) = Homchom) (B, AY);

2. (809 )" = ¢, (DIl £V 0y gV,
The purpose of the rest of this section is to prove that
Hom,,(A ® §, B) = Hom,(A,B® ¢")

for any A, B € Chom(n) and ¢ any flat diskular n-tangle. In order to describe our logical process
for proving this statement, we will introduce yet another tensor product which will not reappear

anywhere else in this thesis.

Definition 8.2.2. Suppose A, B € Chom(n)?. Recall that we may represent, for example, A and

AV as

A:.. A and AV = \;"/ )

v

We define two natural operations. By A | BY, we mean the tensor A ®y» BY; on the other hand, by

A" | B, we mean the tensor AY ®0 B. Diagramatically,

A " \52/
A|B' = <2n> and AY|B= v
B

| AN
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by Theorem 6.2.4.

Theorem 8.2.3 (¢f Theorem 4.12, [Hog20]). Suppose A,B € Chom(n)?. Then there is an

isomorphism of complexes
Hom, (A, B) = Homy(@, B | AY{-n,0}).
This Theorem implies our goal for the section.

Corollary 8.2.4. Suppose 6 is a flat diskular n-tangle. Then
Hom,,(A ® F(6), B) = Hom, (A, B® F(5")).
Proof. Writing ¢ for F(6), we have

Hom,(A ® 6, B) = Hom(&, B | (A ® 6)"{-n,0})
=~ Homo(@, B | (6" ® AY){-n,0})
=~ Hom(@,(B®6") | AV{-n,0})

=~ Hom,(A,B®¢").

The first and last isomorphisms are provided by Theorem 8.2.3, while the second follows from the

definition of (—)" and the third is an application of Theorem 6.2.4. O

We prove Theorem 8.2.3 in two steps. First, we prove an analogue of Theorem 8.2.3 for

crossingless matchings. Then, we argue that this implies the general statement.

Definition 8.2.5. Suppose a is a crossingless matching on 2n points; i.e., a planar diskular n-tangle.
In this definition, we will assume a is indecomposable; that is, a is void of circle components.
1. Define n, as the map
¢H’Ia

Na: @ —— {-n,0} 0 {n,0} @ — {-n,0}a|a’

consisting of n-many births (since a | a” is exactly n-many circles).
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2. Let s, denote the map
. Vv
Sq - x4 |a_>1n
defined by the minimal chronological cobordism X, given by contracting symmetric arcs,

right-to-left, with framing pointed upwards.
The following lemma is apparent.
Lemma 8.2.6. Fix indecomposable crossingless parings on 2n-points a, b.
1. (Lg | sa)©(Ma | La) = 14 and (sq | Lav) © (Lgv 0 7a) = Lgv.

2. Suppose b | a” consists of €-many circles, 1 < € < n (note that £ = n if and only if b = a).
Then

1, |sqa:b|a’|a—b
consists of {-many merges followed by a minimal cobordism W : a — b.

Note that W consists of (n — £)-many saddles. We’ll write|b | av| to denote the number of loops

inb|a¥ (above,|b | aV| = {). We’ll denote crossingless matchings, pictorially, as

a:(@\ and avzk@).

For example, part 2 of Lemma 8.2.6 describes a cobordism

CIRTIA

\|

While these pictures are a departure from the planar arc diagrams we are accustomed to, they are a

little more natural for the proof of the following proposition.

Proposition 8.2.7 (cf. Proposition 4.8, [Hog20]). Suppose a and b are crossingless matchings on
2n points (not necessarily indecomposable) and fix a minimal cobordism W : a — b, where G, b

are a and b with circle components removed. Then
(3 s ) = Hom (2010001
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In pictures,

()
Hom, (SO(W,HZW\,O)) (@\ (@\) = Homo { 2, {_n’ 0

a
Proof. First, we can assume without loss of generality that a and b are both indecomposable—the
general result follows immediately by delooping.

Proceeding, we will frequently denote ¢ (W’ . «‘E| ‘7| 0)) by ¢wn~. Notice that the ﬁdegree of any
f € Hom, (¢w~a, b) can be chosen to be described purely by a Z x Z-degree, since W : a — b
is minimal. Recall that this is also the case for any g € Homy (@, bla’ {—n,O}) since any
grading shift associated to a cobordism between closed diagrams is canonically isomorphic to a
pure Z X Z-shift. Thus, we will denote the homogeneous degree of f and g by vy and w, € ZX Z
respectively.

The rest of this proof proceeds like the proof of Theorem 8.1.5. To any f € Hom, (goWna, b),

define ¢(f) € Homy(2, b | a” {—n, 0}) as the composition

(N a0, (=n,0)
vo "o om0l ) noyor,
@’
To clear up any confusion, notice that the minimal cobordism W : @ — b, which has (n —|b | av|)-
many saddles, extends to a cobordism W e 1,v : a | a¥ — b | a¥ in which all saddles are realized
as merges. Thus ¢ye v = 1d.

Next, to g € Homy(&, b | a¥ {—n, 0}), define ¥/(g) € Hom,(¢y~a, b) by

’ a W.(-{bla"|.0))

Aax

A el “ )
w© g (LN T gy 0w oN 1l o om0} @) 7M)>}90( @)
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where we set
Ay(g) = Ywn o, © AN, W),
Note that the last map is ¢-graded by part 2 of Lemma 8.2.6.

We compute ¥ (¢(f)) as the composition

Ayo() N “
VO QN ———— pynovpto - — oy~ ovyo{-n,0}

& AWy, (=n,0))

pws o (=m0} o vy (o)

1y | Sa yW{ -n,0} J' ]la|av
W( |b|aV|O) ‘<— PwN O{ n, 0} ’

\
|
)

or

2 o “
Vfo‘PWN(@wméowNo"f\ ** ON J ﬂSDWNOVfO{—”,O} @)

N(v i (-n,

0)
~
pwn 0 {-n,0} 0 v, NG

PH,
f a|sa “
(@\<—Vfo(pr <—vf0g0WN0{nO} Q
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obtained by sliding f past the saddle, which introduces a change of chronology ¢y, which in turn
cancels with A(vy, (=n,0)) and Ay (r). A discerning eye notices that this change of chronology
also kills the yyw (_, 0} term, since the roles of ¢y~ and {—n, 0} are interchanged during this change
of chronology. Now, notice that 1, | s, consists of n merges, so the penultimate arrow makes
sense. Then, 1. of Lemma 8.2.6 gives us that ¥/(¢(f)) = f.

On the other hand, ¢(i/(g)) is rather easy to compute; the reader is invited to verify that this

composition simplifies to

ST \‘ Q
A(wg. (=11, 0)) SRS “

(a) | |
Wg@ﬂWgo{—”»O}—W—”’o}owg ‘. — {=2n,0}, (@) |

(

Then, pushing g before the birth introduces a change of chronology ¢, equal to A((—n,0), w).

This is inverse to A(wg, (—n, 0)), so that the new composition is

which simplifies to g by Lemma 8.2.6. This concludes the proof. O

Remark 8.2.8. Since a minimal cobordism a — b consists of (n —|b | aV|)—many saddles,

o (i) =
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and we obtain a generalization of Proposition 4.8 in [Hog20].

Proof of Theorem 8.2.3. Recall that Hom, (A, B), for A and B ¢-graded dg-H"-modules, is the
chain complex of bihomogeneous (that is, homogeneous in homological degree and purely homo-
geneous in fv—degree) maps f of arbitrary (Z X jv)—degree. So, we can view Howm,,-complexes as
bigraded abelian groups
Hom, (A, By ) = ]—[ Hom,, (()D(W,V)Ag, Bi+k ) .
(e’

However, notice that for each ¢, k, and (W, v), Proposition 7.1.2 says that ¢ ,) = Pawk vy for Wé‘ a
minimal cobordism A’ — B“* and v = v + (=1, —1). This means that Hom, (v, A¢, B¥) is

canonically isomorphic to Hom,, (go(W[g’v,)Af’BHk). Set v'g = (n—‘Af | (BEHh)V

, 0); we conclude
that

Hom,, (go(W,V)Ag, B“k) =~ Hom, (go(wf,vzg)Af - vlg}, B“k) .

Thus, in the ¢ -graded case, we can absorb the first coordinate of the - grading into the homological

degree and view Hom,, (A, B) as bigraded by Z x Z2. Then

Howm, (A, B)* = [ | Hom, (ga(W;’v;g)Af, B“k)
CEZ

= [ [Homo (2, B | (A" {-n,0})

= Homg (@, B | AV {-n,0})

where the second isomorphism follows from Proposition 8.2.7.
This proves the isomorphism on the level of bigraded abelian groups. The rest of the statement
follows from the argument provided in the proof of Theorem 4.12 in [Hog20]. We will not review

the proof here, but for the argument to apply we must show that

(g | Lav) o ¢(f) = ¢(g o f) = (Lc | f) o $(8)

where f € Hom,(¢w, n)a, b), § € Hom,(¢w, n,)b, ¢), and ¢ : Hom,(¢y~a, c) — Homy(2, ¢ |

a” {-n,0}) is the isomorphism from the proof of Proposition 8.2.7. Here, W; : a — b and
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W, : b — c¢ are minimal cobordisms, and N; = (n —|b | aV|,0) and N, = (n —|c | bv| ,0), thus

g oy f € Hom, (¢w,ow, N +n,)a, ¢). The equality on the left-hand side is immediate. We will
content ourselves by proving the right-hand side.

To start, we claim that
(f | ﬂav)ona :(lb | fv)oﬂw

Notice that the claim holds trivially when f is a dot. When f is a saddle, both f and f" are
necessarily merge, and their zdegree is Id. Thus, in this case, isotopy invariance implies the
equality. Indeed, for any f € Hom,(¢w, ~,)a, b), the zdegree of f | 1,v is supported entirely in
the Z X Z-coordinate; the same is true for 1,v | V. We denote this degree by v 7 and, in this case,
we have that vy = vyv. To conclude the proof of the claim, we have to show the equality holds for

compositions g oy f, for f and g as above. First, notice that
8oy f) | L1av = (g [ Lav) o (f | Lav)
by Proposition 5.3.6 (here, & = 1 since 1,v is two of the four inputted maps). On the other hand,
€| 1av)og (f | Tav) = (g | Tav) o (f | 1av)

since each map in the composite has trivial .#-degree. So, we have

(g | ILav)o(f | ]lav)ona :(g | ILav)o(]lb | fv)onb
=1 | f)o(g | Lpv) o A(wg,vy)omy

=(Le | f)o(le ] g") 0 Awg,vy)one.

The first and last equalities are by assumption. The second equality follows from applying a change
of chronology. Notice that A(wg,vy) is, in this setting, equal to the value ¢p, . Then, again

applying Proposition 5.3.6, we conclude that

((gog /) La)ona=1e | (f¥ o g¥)) 0 @n,, 0 ne

= (Le | (g o /)*) o ne.
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We leave it to the reader to verify that one application of this claim implies that

¢(g oy )= (Le | f*) oy ¢(g)
concluding our proof. O

8.3 Definition and properties of unified projectors

Recall that the through-degree of a Temperley-Lieb diagram J, denoted 7(9), is the number of
strands with endpoints on opposite ends of the disk. We say that A € Chom(n)? has through-degree
less than k if A is homotopy equivalent to a colimit of ¢-graded dg-modules 7 (6) for Temperley-
Lieb diagramas ¢ with 7(6) < k. In this case, we also write T7(A) < k. Since the tensor product

commutes with colimits, we have that 7(A ® B) < min{7t(A), 7(B)}.

Definition 8.3.1. We say that A € Chom(n)? kills turnbacks from above if, for each B € Chom(n)?
with 7(B) < n, we have B® A ~ . Similarly, A € Chom(n) kills turnbacks from below if, for each

Bwitht(B)<n, AQ B ~ x.

Since all Temperley-Lieb diagrams with through-degree less than k can be built by stacking

various generators e; of the Temperley-Lieb algebra, we have the following (stated without proof).

Proposition 8.3.2. Let e; denote a standard generator of the Temperley-Lieb algebra. Then any
object A of Chom(n)? kills turnbacks from above (resp. below) if and only if F(e;) ® A = * (resp.

AQF(e) =~ .

Definition 8.3.3. A unified Cooper-Krushkal projector (or simply unified projector) is a pair (Py,, t)
consisting of an object P, € Chom(n)g and a morphism ¢ : , — P,, called the unit of the

projector, so that
(CK1) Cone(t) has through-degree less than n, and

(CK2) the ¢-graded dg-module P, kills turnbacks (from above and below).
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Lemma 8.3.4. If (P,, ) is a unified projector, there is a homotopy equivalence
Howm,(Py, Py) — Homy, (2, Pp)

induced by .

Proof. Specifically, we will show that the pullback ¢* : Hom,(P,, P,) — Howm,(Z,, P,) is a

homotopy equivalence. It suffices to show that Cone(c*) is contractible. We compute

Cone(t") ~ Hom,,(Cone(r), P,,)
~ Hom,,(colim(F (9);), P,) (CK1), 7(8) < nforall i

= lim(Hom, (7 (6)i, Pn))

o~ @(HOMn(In, P,®F(6))) Corollary 8.2.4
= lim(Hom,(Z,, %)) (CK2)
~ 3k
as desired. O

Proposition 8.3.5 (Properties of unified projectors). Suppose (P,,t) and (P,,!") are two unified

projectors of Chom(n)? .

1. (Uniqueness) P, ~ P, ® P, ~ P,

", and there is a homotopy equivalence h : P, — P,

satisfying hot =~ (.
2. (Idempotence) (P, ® Py, ® t) is a projector; thus, by uniqueness, P, ® P, ~ P,.
3. (Generalized absorbtion) More generally, for € < n

Py® (Prul,¢) ~Py= (PrUL) ®P,.
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Proof. Consider the following ¢-graded commutative diagram.

P, > 1, ® P,
/ id.V \L"gljpn
7, > 1, ® I, Lo > P ® P,
\/4 L’®m KP'@L
P’ > P ® 1,

The unmarked arrows are isomorphisms coming from multigluing (or, if one likes, the probable
the monoidal structure of Chom(n)g). Since this diagram is ¢-graded commutative, it commutes
up to homotopy, which is all we need going forward.

For the proof of uniqueness, notice that '’ ®idp, is a homotopy equivalence, as Cone(!’ ®idp, ) =
Cone(') ® P, =~ *, using (CK1) and (CK2). By the same reasoning, idp, ® ¢ is a homotopy
equivalence, thus

P,~P,®P, =P,

Then, since both these maps are homotopy equivalences, choosing a homotopy inverse for, say,
idp; ® ¢ induces a (class of) homotopy equivalence(s) i : P, — P, satisfying hot =~ (. To see that
h is unique up to homotopy, suppose /1, h, are two homotopy equivalences satisfying, fori = 1,2,
h; ot~ /, and that Ez is a homotopy inverse for 4. Then (¢ — Ez ohyou)=(dp, — Ez ohj)otL€
Howm,,(Z,, P,) is nullhomotopic, so Lemma 8.3.4 implies that idp, — ho o hy is as well; thus Ay = hy.

For idempotence, replace P;, in the diagram with P, everywhere. Then we have that P, ® P, ~
P,. More generally, that P, ® P, kills turnbacks is clear by the monoidal structure of Chom(n).
Then, since t®idp, is a homotopy equivalence, the homotopy commutativity of the diagram implies
that Cone(t ® ) ~ Cone(idz, ® 1) = *.

More generally, for £ < n, P, comes equipped with unit ¢, : 7, — P,. Then, it is clear that
idpn ® (e U id]n_{,) P, PeUT, ) — P, 1, =P,

is a homotopy equivalence (its cone is contractible by (CK2)). The other homotopy equivalence is

analogous. O
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Remark 8.3.6. We can define projectors for the category Chom(n)? similarly. Notice that projec-
tors of Chom(n)? descend to projectors of Chom(n)?; in addition, given any (W,v) € . with

degq(gowv) = 0, pwv P, defines a projector of Chom(n)?.

In future work, we hope to find particular elements U, € Howm,(P,, P,) coming from an
action on P,, as in [Hog19]. Fundamental to this study is the homotopy equivalence between the
endomorphism complex of P, and (a shift of) the closure of P,,. We point out that Theorem 8.1.5
and Lemma 8.3.4 imply a generalization of this result in the unified setting; we state it for the
g-graded category. For A, B %-graded dg H"-modules let Hom; (A, B) denote the HOM-complex

Howm, (A, B) obtained by collapsing ¢-grading.

Corollary 8.3.7. If P, is a unified projector, it descends to a projector in Chom(n)?. We have that
Hom!(P,, P,) = g "Tr"(P,).

Proof. Apply Lemma 8.3.4 and then apply Theorem 8.1.5 n-times. O

8.4 Explicit computations for the 2-stranded projector
Finally, our previous work allows us to mimic [CK12] in the ¢-graded (that is, unified) setting.

Consider the complex we will call P,, which has the form

where

C={3 - =2

XYY =2k -1
| i

for all i < 0. Notice that taking X,Y,Z +— 1 recovers a 2-strand projector of [CK12]; taking

X,Z — 1 and Y — —1 recovers the one of [Sch22].

Proposition 8.4.1. P, € Chom(Z)g.
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Proof. For the first case, notice that C_; o C_, = 0 just as in the even case: passing a dot below a
saddle and then back up the opposing side introduces two changes of chronology whose evaluations
are inverse to one another, since A(v, u) = A(u, v)" L.

The other two cases are slightly different since dots may not move past each other freely, but

rather by multiplication by XY:

as desired, recalling that two dots are evaluated as zero. The other composition is the same. O
Proposition 8.4.2. The chain complex P, € Chom(2)¥ is a unified Cooper-Krushkal projector.

Proof. (CK1) is satisfied clearly. We must check (CK2), that P; is killed by turnbacks. We will
show that ¢; ® P, ~ 0; the other direction is totally similar.

‘We have
N

i) 2

Thus, the previously ambiguous saddles appearing in the shifting functors of P, are seen to be a

N
1B P (L nm) ~ T (’0(

merge upon tensoring with e;. Merges have the effect of shifting Z X Z degree by (-1, 0), so we

conclude that

Consequently, the chain complex e; ® P; has the form

— §+XY§ — E_\a — \é v
© 5¢
~—~ {-3,-2} ~—~ {-2,-1} ~—~ 1-1,0} _
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Delooping yields the complex

—

/\
-
~—

~ {-2.-2}  ~ {-L-1} ~

where each of the maps down and to the right are zero and are therefore not pictured. Simplifying
the maps after delooping is not difficult—one need only take caution when applying the S1 relation.
Noting that each of the nonzero, diagonal maps are invertible, simultaneous Gaussian elimination

(Proposition 2.2.5) implies that this complex is homotopy equivalent to the zero complex. O

8.4.1 Homology of the trace
As in the even case, the unified projector satisfies a categorification of the closure property

(Tr(p,)) = [n+ 1]. In the n = 2 case, notice that

¢(g]’(n’n))>ﬂ = Fﬂ {-n,—(n+ 1)}

because the typically ambiguous saddle is a split after taking closure. Then, we see that the complex

Tr?(P,) has the form

g a +XY)% g 0 g g] @ . (8.4.1)
{-2,-3} {-1,-2} {0,-1}

Then we compute

(
R{2,0} ® R{1,-1} n=0

0 n=-1

H,(Tr*(P2)) = (8.4.2)
R{-2k +2,-2k} ® yxpri-2k+1,-2k — 1} n=-2k

(1= XY)R{-2k +1,-2k — 1} ® R{—2k, 2k =2} n=-2k-1

\
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whenever £ > 0. Note that we recover the solution in the even case (see Section 4.3.1 of [CK12])
when X,Y,Z +— 1. In the odd case, we see that it is important to specialize coefficients before
taking homology, since the dotted map is killed by setting ¥ = —1. In either case , the Euler

characteristic reproduces [3] = g% + 1 + ¢~2, despite infinite homology.

8.4.2 Unified Khovanov homology of the infinite 2-twist

While we have succeeded in constructing a representative for the second projector by guessing
based on the result in the even case, we will prove the existence of unified projectors in the following
section based on the suspicion that it ought to correspond to the Khovanov complex of an infinite
twist ([Roz14, Will18, SW24]).

We’ll illustrate this fact in the n = 2 case, using multigluing to compute the Khovanov complex
for 2-strand torus braids, yielding a unified Cooper-Krushkal projector. Perhaps it is interesting
that the projector obtained in this way has a slightly different appearance compared to P, in the
previous sections, although the homotopy equivalence is obvious.

To a single (negative) crossing we associate the complex

Thus, to the torus 2-braid with two negative crossings we assoiciate the complex

(=) ooz 2 ()

oS
W
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Focusing on the leftmost vertex, we’ve shown that (p§ =) (10" Moreover, delooping tells us

that we have the following isomorphism for any n:

—/ —/

(X ) ® (K a-ni-m)

N\ N\

Thus the original complex is isomorphic to the following complex.

=A((=1,0),(=1,-1))

Then, applying Gaussian elimination, we obtain the following complex.

- XZX - XZxX >
P 1-n)~ o~ ) |

To stack with another crossing means to tensor this complex with the original single crossing

complex. After delooping, this complex has the following form (arrows which are not pictured are
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zero; dotted arrows are ones which die during Gaussian elimination).

o XYz v
Y(2-0)~——¥(Ke1-n)~

x Xz
X7
XZ%
I -
5 PR~
X

P (1)~ o< )

The arrows in the left-most column are obtained by applying sphere relations. Note that we can

apply S1 and dot-sliding relations to obtain the following equivalences.

)
)

= =
. l vz ad . l _xz
AShS /=N

Applying Gaussian elimination, the above complex is homotopy equivalent to the following.

XYz:® + 7% o XZ¥ - XZX <
P(L2-2)~ P(L 1)~ X ———) |

(

At this point a pattern emerges which controls the complex for any two stranded braid (although

this might be easier to see computing the next case; we leave it to the reader). The complex has the

form

w C_4 w C_3 « C o C
P(3m)~ 7 P(R2)~ P Py~ 2 S~ ) (
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where )

g i=-1

Ci = { xz2! (X - ,.\) i =2k

72 <XYX+X> i=—2k—1

for all i < 0. As promised, this complex is homotopy equivalent to the P, we guessed earlier on.

8.5 Existence of unified projectors
In [Roz14], Rozansky showed that the Khovanov complex associated to an infinte twist on n
strands is a Cooper-Krushkal projector. In [Wil18], Willis generalized this argument to the spectral
setting. His argument was further generalized in [SW24] for the setting of spectral multimodules.
We will adapt the arguments of [SW24] to prove that unified Cooper-Krushkal projectors exist.
As in the work of Stoffregen-Willis, the left-handed fractional twist complex, denoted 7, is the

complex associated to the diskular n-tangle shown below.

<

Superscripts will indicate stacking:

7;"1:7;@...@7;
~—————

m-times
with 7,0 = 7. Notice that 7, can be viewed as a pure braid; we call this the left-handed full twist
complex. Finally, for any n € N, the left-handed infinite twist complex, denoted 7,%, is defined as

the colimit of the sequence
T;wzcolim((];()_)(]:ll — (];m — )

where each arrow comes from compositions of maps arising from the cofibration sequence

() =7 (X) ez (Z)u
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of Proposition 6.2.2. By the same proposition,

r];nk+r _ Cone . 7;nk+r 7;nk+r
<1 \LI=T T

We start our argument by computing a simplification of the term 7,"%*" ® ¢;, for 0 < r < n and

1 <i < n-1. Note that

F(>e)er (D) w7 (37) 2y 7(O()

by delooping and Gaussian elimination.
We’ll write e; as elt.(’p ® e}?"‘, although this tensor product is not exactly the same as the one in
Definition 8.1.1; we do not belabor the point. Assume that » = 0. Then 7;"" 18 k-full twists, and

we have that

T ® e = e)F ® @y Ty P {~2k, -2k} ® &

where W;’k is a cobordism consisting of 2k(n — 2) saddles (for the 2k (n — 2)-many Reidemeister 11
moves performed) and i” =i + r mod n. There are also 2k Reidemeister I moves, accounting for
the Z x Z-shift. To aid in comprehending ¢yu«, consider Figure 8.1. We remark that the tensor

on the left is vertical stacking as in definition 8.1.1, and the one on the right is as in the writing of

top

e, ® e?"t. Notice that eg)p is allowed; by this we mean the following picture.

% = |

0
|
Now, for 1 < r < n, there are three cases.

1. If i < n—r, the extra isotopy contains no Reidemeister I moves, but it does consist of 7-many

Reidemeister II moves.

2. If i = n —r, the isotopy contains (r — 1) more Reidemeister Il moves and exactly 1 more

Reidemeister I move. Note that i’ = 0 in this case.
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Figure 8.1 Computing the grading shift on 7;4 ® ej.
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)

3. If i > n — r, the isotopy contains the addition of a sequence of (» — 2) many Reidemeister
IT moves, then 1 Reidemeister I move, followed by (n — 2) more Reidemeister II moves, and
another lone Reidemeister I move; that is, (n+r—4) Reidemeister II moves and 2 Reidemeister

I moves.
So, we have proven the following.
Lemma 8.5.1. Forany0 <r <nand0 <i <n,

T @ e = eiP @ @i T P2k + ki), —(2k + kp)} © e
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wherei’ =i+r mod n and

1. ifi<n-—r, W,’l‘k” consists of 2k(n — 2) + r saddles, r; = r, and k; = 0;

2. ifi=n-r, W;’k“ consists of 2k(n —2) + (r — 1) saddles, ri =r — 1, and k; = 1;

3. ifi>n-—r, W[l‘k” consists of 2k(n —2) + (n + r — 4) saddles, r; =r — 2, and k; = 2.
In each of these cases, W'**" is a cobordism in the style of Figure 8.1.

We’ll denote by s; the number of additional saddles depending on r. That is, W"**" consists of

2k(n — 2) + s; saddles, where
1. s;=rifi<n-r;
2.5, =r—1ifi=n-r;
3. si=n+r—-4ifi>n-—r.

Note that our s; is not the same as the one appearing in [SW24].
We will use this Lemma to prove the existence of projectors. First, we would like to draw
some connections between our work and computations found in Section 5 of [SW24]. Consider the

complex C,,+1 defined as the cone
Cps1 = Cone(7,™ — ™),

Then, C,,+1 looks like (that is, is homotopy equivalent to) a cube of resolutions for 7,;1 with 7.
stacked on top, modulo the identity term, which is taken to be zero. Any entry of the cube
of resolutions for 7, (apart from the identity entry, which we have avoided) is isomorphic to
F (e;) ® F(0) for some flat diskular n-tangle 6 and 1 < i < n — 1. Dropping the ¥ notation, this is

to say that C,,+1 is homotopy equivalent to a colimit in which all nontrivial terms are of the form

50%1’7;"1 ®e;®0
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where ¢,1 denotes the grading shift coming from the cube of resolutions for T.'. Writing m = nk+r,

Lemma 8.5.1 says that this term is equivalent to
Pl (eﬁ?" ® Qi T D=2k + ki), — 2k + K1)} ® e}?‘)t) ® 6. (8.5.1)

As in [SW24], we want to provide a bound on grading shifts. On one hand, given a ¢-graded
dg H"-module A, by a global upper q-bound on ¢ -grading shifts, we mean some B € Z so that, for
each entry A; of A with grading shift oy, deg,(¢wv) < B. For example, we can compute an upper
bound of a complex with ¢-grading finding the minimum number of saddles appearing in each
grading shift and maximizing the Z x Z-degree. We define global lower bounds similarly. This
definition extends to a stricter notion on objects of Kom(H"Mod?) by taking the minimum (resp.
maximum) among all global upper (resp. global lower) bounds for each complex A” homotopy
equivalent to A.

Referring again to Proposition 6.2.2, to any diskular tangle 7, #(T') has an entry with trivial
¢/-grading; this is to say that a global upper bound on #(7) is 0. Similarly, a global lower bound
is given by —c(T), for ¢(T) the number of crossings in the diagram for 7.

Note that ¢,1 always consists of at least one saddle, by construction. Then, we can compute
the g-grading shift on (8.5.1) on a case-by-case basis via Lemma 8.5.1 and conclude that C,,1 is

homotopy equivalent to a complex with global upper bound on ¥ -grading
be £ By i=2nk —r—1.

Observe that this bound is similar to the one provided in [SW24].

Remark 8.5.2. As in [SW24], we can present a model in which 7, is an iterated mapping cone.
Start by setting Al = 7;1 and, inductively, assume A2, ..., A™ have been constructed, each
satisfying Al ~ ‘7;,5. We construct A™*! as follows. From the definition of C,,4, there is an exact
triangle

7" —— T —— Cust,

: l/’m
thus there is a map ¢, so that '7,'1”1+1 ~ Cone(Cp+1 — T,").
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Now, using Lemma 8.5.1, we have argued that C,,+1 is homotopy equivalent to a complex we’ll

call C’ ., with glabal upper bound B,+1. Let,, denote the map defined by the commutative square

Cm+l L 7;’”

T, 7

Y ;
Ci;’l+1 A"

where each vertical arrow is a homotopy equivalence. Then, set

Yo

A = Cone(C ., = A™).

m+1

Unfurling definitions and homotopy equivalences, it follows that A"+ ~ 7m+1,
In particular, A™*! is obtained from A™ by including finitely many new entries with ¢-grading
shifts bounded from above by B,+;. As m — oo, B, — —oo, and we obtain a model for

7, =~ A as an iterated mapping cone.

On the other hand, define a global upper Z X Z-bound on 9 -grading shifts to be some (B, B>) €

Z X Z so that, for each A; of A with grading shift ¢y,,.v,), we can find a simplification of @y w,.v,),

written P in which v{ < B and v, < B,. By a simplification, we that ¢y, = P

for W a minimal cobordism void of births, deaths, and unambiguous saddles.
Notice that, since Pyynkcer consists only of saddles, we have that (—2k, —2k) provides a global

upper Z X Z-bound on ¥-grading shifts for a complex homotopy equivalent to 7,"%*" ® ;.
Theorem 8.5.3. For each n, 7, is a unified projector.

Proof. Recall that 7, is defined as the colimit
7,° = colim (7,0 > T,' = - 7" — )

which we’ll write colim(‘];”k” ). Axiom (CK1) is apparent by definition, so we will content

ourselves with a proof of (CK2). First, notice that

colim(7,"¥*") ® e; ~ colim(7,"**" ® ¢;)
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so if the homology of the colimit on the right-hand side is trivial, we can conclude that the colimit
itself is contractible, thus 7, =~ *. Recall that any homology class of the colimit arises as a
homology class in a piece of the colimit. However, by Lemma 8.5.1, this colimit is built from
complexes with a global upper Z X Z-bound of (-2k, -2k). As m — oo, k — oo, and the global

upper bound goes to (—oo, —c0), so any nontrivial homology class must die in the colimit. O

8.6 A unified colored link homology

With very little work, the existence of unified projectors (together with multigluing) implies
the existence of a unified colored link homology specializing to an even one ([CK12], see also
[KhoO5, BWO08] by way of [BHPW23]), but also specializing to a new odd version. Recall the

following definition, adapted from Definition 5.1 of [CK12].

Definition 8.6.1. For any n € N and m = (my,...,m,) € N", we denote by Chomy(n)? the

category where
¢ 0b(Chomy(n)?) = ob(Chom(n)¥) and

where M = }}; m; and I1™ replaces the ith strand in each diagram with its m;th parallel composed
with a copy of the m;th projector. We define Chomy,(n)? by taking objects and morphisms of

Chomy,(n)? and collapsing degree, as usual.

We will represent projectors by small boxes, e.g., P, = . We will define the operation I1"
on links, via operations on diskular tangles, as follows. As an example, if K is a knot, let K denote

the diskular 1-tangle ,- x and suppose K™ denotes its mth parallel. Then
" (K) = T’ (Kh,(K™) ® P,)

More generally, if L is an n-component link, we use multigluing. Let m = (my,...,m,) € N", and

denote by 7" the result of taking m; parallel copies of the ith component of L and then removing
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a small diskular region from each of the original components (again, see Figure 1.1). Then, set

II™(L) := (Pp,» - . - » Pm,) ®mr ... iy Ky (TM™)

.....

where each of the P, is viewed as an object of Chom(mi)%.

Lemma 8.6.2. We have the following isomorphisms in Kom(H"*"Mod)? :

That is, free (parallel) strands can be moved over or under projectors in Kom(H*'Mod)? .

IR

and

N
N

Proof. We’ll explain the first homotopy equivalence; the others are proven with the same procedure.

The trick is to start with the middle complex: using (CK1), X 1s homotopy equivalent to the

NN

where ¢ = Cone(t). Again by (CK1), ¢ has through degree < m, so it contains some turnback.

complex of complexes

Pushing the turnback through the parallel overstrands induces nontrivial ¢-grading shifts (see
Lemma 7.2.4), but after it passes through all n overstrands, (CK2) tells us that that the entire

complex on the right is contractible, and we’re done. O

Using this Lemma, together with multiguling (Theorem 6.2.4) and idempotence (Proposition

8.3.5), II™ can be described up to homotopy as sending

L : and Y - %%
on the ith strand and each crossing of the ith strand under the jth.

Theorem 8.6.3. The category Komy(n)? contains invariants of framed tangles.
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Proof. Applying IT™ to the following typical diskular 2-tangle and applying idempotence (P,®P,, ~

P,) and Lemma 8.6.2, we obtain

Taking Kh (after picking any orientation), we know that

Kn @\A/g) " (M) " (%)

where @wv is the grading shift obtained by m;m; Reidemeister II moves (appeal to Lemma 7.2.4
for an exact value, if desired). We have that deg q(gowv) = 0 by Theorem 7.2.9 which concludes the
argument for the first framed tangle move. The argument for Reidemeister III moves is similar and

left to the reader. a

If L is a link, we denote by H(L; m) the homology of II™(L). Moreover, denote by I11"(L) and
IT}*(L) the complexes obtained from IT™(L) by taking X,Y,Z +— land X,Z — land Y — -1
respectively. These complexes are also invariants of the framed link (L; m); denote their respective
homology by H,(L; m) and H,(L; m). We write y, to denote the graded Euler characteristic which

records only the g-grading associated to a particular ¢-grading or ¢-grading shift. By definition,

Xq(H.(L;m)) = J(L;m)(q) = xq(H,(L; m))

where J(L; m)(q) denotes the colored Jones polynomial with indeterminate g. While H,(L;m)
is the colored link homology of [CK12], H,(L; m) provides a new categorification of the colored
Jones polynomial of L. To verify that the two homologies are distinct, recall that the computation

in §8.4.1 implies that H,(U;2) 2 H,(U;2) for U the unknot.
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CHAPTER 9

TOWARD A HOCHSHILD (CO)HOMOLOGY FOR C-GRADED ALGEBRAS

We conclude this thesis with a chapter initiating future investigations concerning C-graded struc-
tures. Namely, in this chapter, we provide a generalization of Hochschild homology which extends
to C-graded algebras A with coefficients in a C-graded (A, A)-bimodule. This work is presented
in more detail in [Spy25], where the constructions are applied to the unified Khovanov theory for
tangles, C = G. In this chapter, we assume that (C, @) is a grading category.

As a lead-in, we will eventually need to assume that our unitors are picked in a canonical
manner. Recall that the category Mod® is monoidal: define a monoidal product M ® N by

M®N = @ (M ® N)g where (M ®N), = EB Mg, ® Ng,.
geMor(C) 8=82°81

The coherence isomorphism is induced by the associator: fixa : (M1 @M)@M3 — M (M,®M3)
by

JzZhx ® (v ® 2)

x®y)®z > alx|.]y
for homogeneous elements x, y, and z. The fact that « satisfies the pentagon relation follows
directly from the cocycle condition of the grading category. The unit object is given by

I = @ KIdX

XeOb(C)

where Idy denotes the identity morphisms in C on X. In general, left- and right-unitors £ :

Ic®M — M and R : M ® Ic — M are given by any isomorphisms satisfying the triangle relation:

MI)®N ¢ S M ® (Ic ® N)
ﬂm A[
M®N

When needed, we will denote the chosen unitors for Mod¢ by L¢ and R¢. Indeed, the unitors can

be chosen to be induced by the associator. For example, one can take
e L:lc®M — Mby (k®@m)— L(k|,|m|)km, fixing
L(k|,Im]) := a(ldx, 1dx,|m])~", 9.0.1)
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and
* R:M®Ic — Mby (m®k)— R(m|,|k|)km, fixing

R(m|,|k|) := a(m]|,1dy, Idy), (9.0.2)

where|m| : X — Y. To see that the triangle relation is satisfied, notice that for X LN Y L Z,
1= da/(g9 IdYa IdYa h) = al(gs IdY9 IdY)a/(g7 IdY9 h)_lal(IdY’ IdY7 h)

Notice that, in general, the cocycle relation implies a(g, g,g) = 1 for any loop morphism
g : X — X. In the case of the above choice of unitors, this means that whenever|m| = Idy for any
X € ob(C), we have that L(k ® m) = km = R(m ® k). Provided that the coherence isomorphism of
Mod® is chosen to be the one induced by @, we say that the choice of unitor is rypical if it satisfies
L =1and R =1 on any elements m € My, C M for any X € ob(C). In general, the requirement
that

Iy L)oca=R 1y

implies only that the values associated to £ and R agree on m € M with|m| = Idxy. We call the
unitors given by equations (9.0.1) and (9.0.2) above the typical unitors induced by «.
In conclusion, we list a few quick computations regarding the associator which help to have in

one’s back-pocket.

Lemma 9.0.1. Let g,h € Mor(C) and g : X — Y and h : Y — Z. We have the following

equivalences, with their paths pictured.

(i) a(ldy,g,1dy) =1
Tdx Idy

AR AR
X S5y

(ii) a(ldx,lIdx, ho g) = a(ldy, g, h)a(Idx, Idx, g)

Idx
R
X

~
~
~
N
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(iii) a(ho g,1dz,1dz) = a(g, h,1dz)a(h,1dz,1dz)

1d,
g h N
X > Y > 7
(iv) a(g,1dy, h) = a(g,1dy, Idy)a(Idy, Idy, h)
Idy
g N h
X > Y > 7

Proof. Each of these are routine; we will prove (ii) as demonstration. We have
1 = da(Idy, Idy, g, h) = a(Idy, Idy, g)a(Idy, Idx, h o ) 'a(ldy, g, h)

as desired. O

The construction of the Hochschild complex is simple: given an algebra A, there is a special
(A, A)-bimodule B(A), called the bar resolution of A. Since (A, A)-bimodules are equivalent to

A ® A°P-modules, we can define
HC(A, M) = B(A) ®agar M
for any (A, A)-bimodule M. So, in the C-graded scenario, there are three things to check:

1. There is some notion of C-graded A ® A°°’-modules equivalent to that of C-graded (A, A)-

bimodules;

2. There is a C-graded bar resolution $(A) which has the structure of a C-graded DG (A, A)-

bimodule;
3. There is a notion of tensor product over A ® A°P.

These, respectively, are the subject of the next three sections.
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9.1 More on C-graded algebras and bimodules
For convenience, we relist the axioms of a C-graded algebra here. A C-graded algebra is a
C-graded K-module A = P 2eMor(C) A, endowed with a K-linear multiplication uy : A® A — A

and unit element 1y € Ayq, for each X € ob(C) which satisfy each of the following.

(A.I) pa is a graded map; that is, for each homogeneous x,y € A, |ua(x, y)| = |y| olx|.

(A.Il) w4 is graded associative; that is, for each homogeneous x, y, z € A,
pa(pate,y), 2) = alx]|y| lzDpatx, pate, ).

(A.III) For each homogeneous x € A,
palx,x) = LAdy,|x)x  and  palx, ly) = R(x[, Idy)x
where|x| : X — Y.

Notice that if our choice of unitors in Mod€ is typical, we have that pus(1x, 1x) = 1x.
Some of the usual operations performed on small categories can be extended to grading cat-
egories. For motivation, suppose A is a C-graded algebra, and consider A°P. Recall that A°P is

simply A but with multiplication defined by

Hao(x,y) = pa(y, x).

Then, notice that A°P fails to be a C-graded algebra.
However, A°? has a natural description as a C°P-graded algebra. Recall that the category

opposite C, denoted CP, is the category with
* ob(C°P) = ob(C), and

« Homger(X,Y) = Home(Y, X).

op
Notice that, if X i> Y LN Z is a sequence of morphisms in C, then (X i) Y LN )P =7 LN

op
Y f—> X. That is, the functor op : C — C°P is contravariant, and (C°P)°P? = C.
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Definition 9.1.1. Let (C, @) be a grading category. Let (C, @)°P := (C°P, a°P) denote the opposite

grading category, with P : (C°P)I3 — K> defined by

(57, 50 D) = alfis o f3) 7

Remark 9.1.2. Notice that there is no real significance of change the underlying category—if A is
(C, @)-graded, we will see in the proof of the following proposition that AP is naturally (C, a~!)-
graded. We make the choice to work with C°P so that there is no confusion when we say that

something is a C°P-graded module/algebra.

Proposition 9.1.3. Assume (C, @) is a grading category and A is a C-graded algebra. Then (C, @)°P

is a grading category, and A°P is a C°P-graded algebra.

Proof. For the first claim, note that d(a®®)(f,”, £;7, f," f{7) = da(f1, f, f3, f4)~', and the result
follows by assumption that (C, @) is a grading category. For the second, given a decomposition

A = D, gemor(c) Ag> choose the decomposition A% = (P ,opcpgor(cor)- Requirement (A.D) is satisfied

8

since

|luA°P(x’ y) Cop = <|,UA()”X)|C)OP = <|x|C o|y|c>0p :|y Cop o|x|C°P

using the fact that (x|;)°? =|x|cop. Requirement (A.II) is similar:

Haow(paor(x,y),2) = pa(z, pa(y, x))

= alzle Yl xle) " aluaz, y).x)

= &*( x| con 5| Y] op 12| cor) Ao (x, praon (3, 2)).

Notice that this is why we must invert the associator to obtain a graded structure on A°P. Finally,
for (A.III), notice that the unit object /cor is exactly I¢c. Then, sufficient unitors for Mod®” are

provided by fixing Lco = Re and Reor = L. O

Indeed, as remarked earlier, notice that the categories Mod® and Mod®” differ cosmetically by

reversing arrows in the grading structure, and substantively by inverting the coherence isomorphism.
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Now, suppose A and B are C-graded and D-graded algebras respectively. Abusing notation, we
will write A ® B to denote the tensor product of A and B as K-modules. The graded structure on A
and B induces one on A ® B as follows. Recall that the product category C X D of two categories

C and D is the one with

ob(C X D) = ob(C) X ob(D),

Homexp((X1, X3), (Y1,Y2)) = Home (X1, Y1) X Homgp (X3, 12),

* composition defined by (/2,82) o (f1,81) = (/2 f1,82 0 1), and

identity morphisms Id x y) = (Idx, Idy).

Definition 9.1.4. Given grading categories (C, @) and (D, ), define the product grading category
(C,a) X (D, ) :=(CxXD,ax B) where

(@ X B)((f1,81), (f2,82), (f3,&3)) := al(f1, f2, [3)B(g1, 82, &3)-

Proposition 9.1.5. If (C, a) and (D, B) are grading categories, then so is (C XD, a X 8). Moreover,
if Ais a (C,a)-graded algebra and B is a (D, 3)-graded algebra, then A ® B is a (C X D, a X B)-

graded algebra.

Proof. Again, the first claim is immediate. The second is routine: in general, we interpret A ® B
as a (C x D)-graded algebra by taking |a ® b|oxp = (alc,|b]p) and defining the multiplication

HagB - (A®B)®(A®B) > A® B as
Hasp(a1 ® bi,az ® by) = palai, az) ® pup(bi, bo).
Then, for example, check (A.I) by computing

|uass(ar ® by, ar ® b2)|c><z> =|palar, az) ® pp(by, b2)|c><z>

up(b1,b2)|,)

= (uatar. a2,
= (lazlc olailc lbalp olbilp)

= (az2lc.|b2lp) o (ailc.lbilp) =:laz ® baloxp ©lar ® bilexyp -
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Checking (A.II) is also routine. To check (A.Ill), we note that, as Mod®*? inherits its coherence
isomorphism from Mod® and Mod?, its unitors may also be chosen from these categories, defining
Lexop = Lo X L, and similarly for the right unitor Rexp. Also fix unit elements 1(x y) € Ajgx.y)
to be 1x ® 1y, recalling that, by definition, Id(xyy = (Idx, Idy). Then the checks required for (A.III)

are also routine: for example,

Haes(1x,y),a ® b) = ua(lx,a) ® up(ly, b)
= ‘EC(IdX’la|C)£D(IdY’|b|D)a ® b
= LCXD((IdX’ IdY)7 (]Cllc ’|b|2)))a ® b

= Loxp(Idx yy,la ® bloxpla ® b.
The check for Rexop is totally analogous. 0

Now, recall the definition of a C-graded bimodule. Suppose A and B are C-graded algebras.

We define a C-graded (A, B)-module as a C-graded K-module with graded, K-linear actions
pLAM - M and PR-M®B—>M

which which satisfy the following axioms for each of a,a’ € A, b,b’ € B,and m € M.

B.D prlpala,a’),m) =a(al |la'| .|mDpL(a, pLla’, m));

(B.ID) pr(pr(m, b),b") = a(m|.|b|.|b'Npr(m, pa(b, b"));

(B.IID) pr(prla,m),b) = a(al.|m|.|bD)pL(a, pr(m, b));

(B.IV) pr(1x,m) = LAdx,|m|)m and pr(m, 1y) = R(m|, 1dy)m.

We define a C-graded left A-module (resp. right B-module) as a C-graded (A, I¢)-bimodule (resp.
(I¢, B)-bimodule)—in this case, the pg (resp. o) action is trivial.

Equivalently, we can think of a left (resp. right) C-graded A-module as a C-graded K-module
with a single graded, K-linear action p (resp. pg) satisfying (B.I) (resp. (B.II)) and the first (resp.
second) half of (B.IV).
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Proposition 9.1.6. M is a C-graded left (resp. right) A-module if and only if it is a C°P-graded

right (resp. left) A°°-module.

Proof. Assuming M is a C-graded left A-module means that it has a left action p;, : A M — M

which satisfies
pL(paCx, y),m) = a(xlc |yl .Imle)oLx, prL(y, m))
and
pL(ly,m) = Ldy,|m|c)m.

We want to show that M has a natural definition as a C°P-graded right A°°’-module. First, if M =

@ 2eMor(C) M,, reverse arrows, as before, to get an induced grading by C*?;i.e., M = @ ¢

oPeMor(C°P)*
Then, define pz,p M ® A°® — M by p%p(m, a) = pr(a,m). We compute
PR Py (m,x),y) = pL(y, pLx,m))

= ay|, .Ixle Imle) ™ pL(ualy, x), m)

= aopqmlcop 5|x|C°P |y Cop)p([)gp(m’ luAOP(x9 .V))
and

pp(m, 1x) = pr(lx,m) = Lc(dy,Im|e)m = Reor(m|cop , Idx)m

as desired. The other checks are analogous. O

Assume A and B are both C-graded algebras. To conclude this section, we want there to be an
equivalence between C-graded (A, B)-bimodules and C-graded left A ® B°?-modules. The problem
is that our current definition of modules assumes that the algebra and the module share the same
grading category—in the latter instance, A ® BP is a C X C°P-graded algebra. This prompts the

following definition.

Definition 9.1.7. Fix C-graded algebras A and B. Define a C-graded left A ® B°°-module to be a

C-graded K-module M with a left, K-linear action map
pi:(A@BOp)xM—>M
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which is graded in the sense that|pf (a ® b, m)‘ =|b|c o|m|; o|alc, and the following hold.

(E.I) Foray,a; € A, by, by € B°?, and m € M homogeneous,

P (Hagpr(ar ® by, ar ® br),m) = Alar ® bil|cxcor laz ® baloxcor lmlc)

py (a1 ® by, pj(az ® by, m));
(E.IT) for (X,Y) € ob(C X C°P),
p;(Ix vy, m) = Le(Idx,|m|c)Re(m|c , 1dy)m

where A(a1 ® bi|cxcor »|a2 ® ba|oxcor »|m|c) is taken to be the value
afail |azl JmDa(m| olaz| olai| b2l |b1) " @ail Im| olaz|,|bal)
with all gradings taken in C, fixing |b|; := (b|cw)°P. When B = A, we write A® := A ® A°P.

Note that under the canonical identification |m|co, := (m|c)°P,

Lce(Idy,|m|c)Re(mlc, Idy) = Loxeoo(Idx vy, |mlcxcor)-

Also note that the value for A can be obtained many different ways, and the cocycle relation implies

that they all are equivalent. For example, the two paths

((ar1a2)m)(baby) ——> (ai(azm))(baby) —— ai((aam)(b2by)) a—_l> ai(((aam)by)by)

a\) l"_'

((a1(aam))ba)by —— (a1((aam)b2))by

yield equivalent values—the value provided in the definition is based on the lower path.

Proposition 9.1.8. Suppose that A and B are C-graded algebras, and that the unitors of Mod®
are the typical unitors induced by a. Then, every C-graded left A ® B°®-module can be given the

structure of a C-graded (A, B)-bimodule, and vice-versa.
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Proof. The backwards direction is rigged to work. Given a C-graded (A, B)-bimodule M, we give

it the structure of a C-graded left A ® B°?-module by defining p] : (A ® B°?) ® M — M by

pi(a®b.m) = pr(pr(a.m).b).

To verity (E.I), we compute

P (Uagpw(al ® by, az ® by),m) = pr(pr(ualay, az), m), ua(bz, by))
= a(ai|,laz|,|m|)pr(pL(ar, praz, m)), ua(ba, b))
= afail laz| . lm)e(m| o|az| olai|.|bi].|b2])™"
Pr(pr(pL(ayr, pr(az, m)), ba), by)
= 1| |az| Jm)a(m| olas| o|a1| .|| ,|b2])~"
a(ai|,lm| olazl,|b2)pr(pL(ar, pr(pL(a2, m), b2)), b1)

= Aa ® by],|az ® by| ,|m|)p} (a1 ® by, pj(az ® by, m))
as desired. For (E.I), setting|m| : X — Y,
piAxy),.m)=p;(x ® ly,m) = LAdy,|m|)R(m|,1dy)m

as well.

For the other direction, assume M is a C-graded A ® B°’-module. If|m| : X — Y, define
pr(a,m) = R(m|olal,Idy) 'pS(@®ly,m) and  pg(m,b) = L{dx,|m|) ' p¢(1x ® b,m)

First we check that the axioms of a C-graded (A, B)-bimodule are satisfied. We take the time to
perform the checks arduously as to not take the result for granted, although the entire proof might

be a bit pedantic. To check (B.I), assume that a;,a, € A and m € M are homogeneous so that

lai] |az] |m|

W > X > Y > Z
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We compute

pr(pa(ar, az),m) = Rm| olaz| olai|, 1)~ pf (alar, az) ® 1z,m)
= R(m| olaz| olai|,1d,) ™" p¢ (ualar, az) ® pace(lz, 17), m)
= R(m| olaz| olai|,1d,) ™ p¢ (Hagam (a1 ® 17, a2 ® 17),m)
= R(m| olaz| olai],1d)™ ' Aday ® 17| |az ® 12 ,|ml)
prlar ® 1z, p7(ar ® 1z,m))
= R(m| olaz| olay|,1d,)"'Afa; ® 17| laz ® 17|, |m|)R(m| olaz|,1dz)

R (a2 ® 1z,m)| olai| . 1dz)pL(ar, pLlaz, m)).

Notice that the second equivalence assumes that the unitors are typical. The first and the last term

written as a function of R cancel each other since |pf (a; ® 1z,m)| = |m| o|az|. Expanding the

remaining terms, A(a; ® 1z|,|la; ® 1z|,|m|) and R(m| o|az|,1dz), in terms of @ (using the fact

that the right unitor is the typical one induced by «), we obtain

a(ai],|az].lm[) a(m| olaz]| olai| ,Idz,1dz) ' a(ay ] ,Im| olaz|, Idz)a(m]| o|az| ,1dz,Idz) .
)

Then, the terms labeled () cancel by (iii) of Lemma 9.0.1, and we have that

pr(ualar, az),m) = a(ayl,laz|,|m|)pr(ar, prlaz, m))
as desired.
Axiom (B.II) is very similar. Assume that b, b, € B and m € M are homogeneous so that

b b
W |m|>X |2|>Y |1|>Z

We leave it to the reader to verify that

pr(pR(M, b2), b1) = LAdw,|m|)' LAdw,|b2| o|m|) ' Allw ® b1|,|1w @ ba| ,|m|)~" L(Idy,|m])

pr(m, ua(ba, by)).
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The first and the last term which appear as a function of £ cancel. Then, expanding the rest in

terms of « gives

a(ldy, 1dy,|ba| o|m|)a(Idw, Idw.|m|)™ am|,|ba] |b1]) a(dw,|m] ,|b2])™"

) )

The terms labeled () cancel by (ii) of Lemma 9.0.1, so we are left with the desired result.
Axiom (B.III) is exactly the same idea, but requires a little more computation. Now, pick a € A,

b € B, and m € M homogeneous so that

w > X > Y > Z
‘We want to show that

pr(pr(a,m),b) = a(al,Im|,|b))pL(a, pr(m, b)).
We compute
pr(pL(a,m),b) = R(m| olal ,1dy)"' LAdw.|m| ola)™' p{ (1w ® b, p§(a ® 1y, m))
= R(m| olal ,1dy)™ L(dw.|m| ola))"'Allw ® b| la ® 1y|,|m|)”"
Pi (Uagar(ly ® b,a ® ly), m)
= R(m| olal ,1dy)~" LAdw.|m| ola)™ A(lw ® b|.|a ® 1y|.|m|)~"
pr(ua(ly,a) ® pa(ly, b)), m)
= R(m| olal ,1dy)~" LAdw,|m| ola)™ A(lw ® b|.la ® 1y|.|m|)~' LAdw.|al)

L(1dy.|b])p; (@ ® b, m).
Expanding the values on the last line in terms of @, we find

a(m| ola|,1dy, Idy) ™ a(Idw, Idy,|m| o|al)

) (%)

a(ldy,lal Jm)™! a(m] olal ,1dy,|b]) a(dw,|m] ola] ,1dy)™"

(%) *) ()

a(Idy, Idw,|a])™" a(ldy, Idy,|b])"" .

(%) )
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The terms marked by () cancel by (iv) of Lemma 9.0.1, those marked by () cancel by (ii), and

the (x = =) is trivial by (i). On the other hand, one can verify in the same way that

pr(a, pr(m, b)) = LAdx,|m|)'R(b| o|m| o|a|,1dz) 'Ala ® 17| ,|1x ® b|,|m|)"'R(al,1dx)

R(b| . 1dz)p (a ® b,m).
Then, expanding in terms of «, we have

a(Idy, Idy,|m|) a(b| o|m| o|a| ,1dz,1dz)~!
) ()

a@(al  1dy.lm|)™ a(m| olal ,|b| . 1dz) a(al ,|m]|b])"!

*) (+%) (o)

a(al,Idy,Idx) a(b|,1dz,1dz) .

*) (%)

The terms marked () cancel by (iv) and the terms marked by () cancel by (iii) of Lemma 9.0.1.
The term marked (* * *) remains, and we are left with the desired equality.

Checking axiom (B.IV) is quickly verified. If|m| : X — Y, recall that 1x ® 1y = 1(xy) and

pr(1(X,Y),m) = LUdx,|m)R(m|, Idy)m.

Then

pr(lx,m) = R(m|,1dy) " pL(1x ® ly,m) = L{dx,|m|)m
and

pr(m, 1y) = LAdy.|m|)"' p§ (1x ® 1y, m) = R(m]| , Idy)m
as desired.

Finally, we check that this assignment is inverse to the one pj(a ® b,m) = pr(pr(a,m),b).

Per usual, one direction is rigged to work: we have

pr(a,m) =R(m|ola|,1dy) ' p¢(a ® ly,m) = R(m| olal,1dy) ' pr(pr(a, m), 1y) = pr(a, m),

since|pL(a,m)| =|m| ola|, and
pr(m, b) = LAdy,|m)™ p¢(1x ® b,m) = LAdx.|m|) " pr(pr(1x, m), b) = pr(m, b).
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For the other direction, we have to assume that the unitors are the typical ones induced by . We
assume the relevant gradings fit into the diagram
Idy

Idw
o A
W

lal

First, we compute

prla®b,m)=pr(pr(a,m),b)
= L(dyw.|m| ola])™' p{ (1w ® b, pr.(a, m))
= L{dw,|m| ola])'R(m]| olal ,1dy)™ p§ (1w ® b, p§(a ® 1y, m))
= L(dw,|m| olal)'R(m]| ola| . 1dy)'A(lw ® b| la ® 1y|,Im|)~!
P (Hagpr(ly ® b,a ® ly), m)
= L{dw,|m| ola])'R(m]| olal , 1dy) ' A1y ® b|.la ® 1y|.Im)™" LAdw,|al)

LAdy,|b)  pila®b,m)

where all gradings are taken in C, apart from the first two entries of A as per usual. Now we rewrite

all the terms of the last line in terms of the associator to get the product

a(Idw, Idw,|m| o|a]) a(m| o|a|, 1dy, Idy) ™"

) (%)

a(ldy,lalJm)™" a(m] olal ,1dy,|b]) a(ldy,|m]| ola] , 1dy)™"

) () ()

a(Idy, Idw,|a])™" a(ldy, Idy,|b])~"

) (%)

Then, the terms labeled (x) cancel by (ii) of Lemma 9.0.1, the terms labeled (xx) cancel by (iv) of

Lemma 9.0.1, and the term labeled (* * *) is trivial by (i) of Lemma 9.0.1. |

We note that one can define C-graded right A ® B°?-modules similarly, and it follows from the

arguments above that they are equivalent to the notion of C-graded (A, A)-modules.
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9.2 A C-graded bar resolution
We will use the following trivial example of a grading category to define C-graded differentially

graded objects.

Example 9.2.1. Consider the category Z := BZ with a single object x and Homz (*, %) = Z.
Extend Z to a grading category trivially: that is, take @ = 1. Thus, for the grading category (Z, 1),
a Z-graded object is the same thing as a Z-graded object. In general, if BG denotes the category
with a single object x and Hompg (%, x) = G for G a group, then we recover grading by arbitrary

groups, as defined by Albequerque and Majid [AM99].

In addition, we will see that specializing C to Z will recover the ordinary Hochschild homology.

Definition 9.2.2. A C-graded DG-(A, B)-bimodule is a pair (M, 0yr) of a Z x C-graded (A, B)-
bimodule M = @nez’geMor(C) Mg and a K-linear map dyy : M — M, called the differential,

satisfying the following:
(DG.I) dy(M}) c My~
(DG.ID) dum(prla,m)) = pr(a, dy(m));
(DG.I) Oum(pr(m, b)) = pr(Om(m), b);
(DG.IV) 9y 00y =0,

foreacha € A, b € B,and m € M. If m € M is homogeneous with |m| = (m|z ,|m|c), we call
|m| € Z the homological degree of m. We call (M, 0yr) a C-graded chain complexif A = B = I¢,
so that the left- and right-actions are just scalar multiplication.

A C-graded left DG-A ® B°P-module is a pair (M, 0y) of a Z X C-graded left A ® B°?-module
which is defined exactly the same way, except that axioims (DG.II) and (DG.III) are replaced by

the single axiom

(DG.IT") dm(prla ® b,m)) = pr(a ® b, dy(m)).
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Axiom (DG.I) says that the differential decreases homological degree by 1 and doesn’t have
an effect on C-degree. For clarity, we note that we could have just as easily defined C-graded
DG-(A, B)-bimodules where axiom (DG.I) is replaced with the requirement that dy; (M g) cM g“
(see, for example, Definition 4.24 of [NP20]). The offered definition simply agrees with usual
conventions for the bar resolution, defined shortly. Finally, note that, given a C-graded DG-(A, B)-

bimodule (M, dyy), its homology H(M, dyr) = ker(dyr)/im(dyy) is a Z X C-graded bimodule.

Proposition 9.2.3. Suppose A and B are C-graded algebras, and that the unitors of Mod® are
the typical unitors induced by a. Then every C-graded left DG-A ® B°°-module can be given the

structure of a C-graded DG-(A, B)-bimodule, and vice-versa.

Proof. Thisis adirect consequence of Proposition 9.1.8 and the proof thereof. Itis an easy exercise,

left to the reader, to verify that the actions defined there satisfy the new conditions. O

Let A be a C-graded algebra. We introduce the bar resolution B(A) of A as a primary example

of a C-graded DG-(A, A)-bimodule. As a complex, it takes the following form.
BA)= -+ —> (ARA)®A —> A®A —— 0
with differential 9 : A®"*2) — A®(+D given by
dap®a1®---®aps1) = Zn](—l)ia’(]ai—ﬂ o---olagl,la;|,|ai1)ao® - ® pala;, air1) ® - ® ans1
i=0

where we fix @(9,|ag|,|a1|) = 1 in the i = 0 summand. The tensor product in A®" is the monoidal

product of Mod®; in particular, A®" is C-graded. We will view B(A) as Z x C-graded taking
lap® a1 ® -+ ® ansilzxe = (+ Llansilc o - - - olail¢ olaolc).

Then, we have that (B8(A), d) satisfies (DG.I) clearly.

Lemma 9.2.4. If A is a C-graded algebra, B(A) is a chain complex; that is, 0 o d = 0.

Proof. Consider d(d(ap ® - -+ ® an+1). We will denote summands in the ensuing expansion by

pairs (i, j), fori =0, 1,...,n coming from the first differential and j =0, 1,...n — 1 coming from
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the second. Then, fixing i < j, observe that in the proof that the original bar complex is a chain
complex, the (i, j) summand cancels with the (j + 1,7) summand. We claim that this is also how
terms cancel in the C-graded setting. Thus, since the signs are as they appear in the original setting,
we do not need to keep track of them. There are three cases to consider.

The first is when (i, j) = (0, 0). This term is always

u(u(ag, ar),a2) ® az ® -+ - ® apy1

and it clearly cancels with the (j + 1,7) = (1, 0) term

a(aol ,|a1],|a2])uao, ular, az)) ® a3 @ - - ® any1.

For the second case, assume that i < j. Then the (i, j) term is

a(aj1] o -+ olaol lail Jaisi Dada;| o - - - o|u(ai, aiv1)| o - - olaol |aj| |ajs2))

times ag ® -+ - ® u(a;, ajx1) ® -+ @ u(ajs1,aj42) ® -+ - ® apy1. The (j + 1,1) term is clearly alike,

with coefficient

a(la]| A O|a0| ,|Clj+1 a|aj+2|)a(]ai—1| - O|a0| ’lail alai+1|)

Thus, these two terms cancel, as|,u(a,~, a,-+1)| =|a;+1| o|a;].

Finally, suppose thati = j > 0. Then, the (i, i)-term is

a(ai-1| o ---olao|,lail lairiDa(ai-1| o - - - olao| ,|u(a;, ais1)|,|aiz2|)

times ag @ - - - ® u(u(a;, aj+1), ai+2) ® - - - ® ay4+1, and the (i + 1,7)-term is
afa;| olai—1| o -+ olagl |ai1|.laialai1] o - - olaol la;| |u(ai1, am2)))

times ag ® - - - ® p(a;, u(air1,ai42)) ® - - - ® apy1. Write f =|a;_1|o---olagl, g =|a;|, h =|a;41| and
¢ =|a;s2]. Then, the cocycle relation da(f, g, h, {) = 1 implies that these two terms are equivalent,

since
u(u(a;, aivr), aiv2) = alail laici | laiDpla;, plaivr, aiz2)).

This concludes the proof. O
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Suppose a, ag, ay, . ..,a,+1 € A. We define the following values: let

n+l

. -1
O(al.laol lail, ... lanal) = Ha(]al Jai-1] o -+~ olao| ,|ai])
i=1

and

lI’(]a()| LR ,|an| ’lan+1| ,|Cl|) = a(]anl S O|a0| ,lan+1|7|a|)'

Proposition 9.2.5. If A is a C-graded algebra, (B(A), 0) is a C-graded DG-(A, A)-bimodule, with

left-action

pr(a,ap®ai ® -+ ® ayy1) := ®(al ,|aol,lail, . . ..lans1Dpala, ap) ® a1 ® -+ ® ansy
and right-action

PR ® a1 ® -+ ® aps1,a) = ¥Y(aol, ... lasl lan|.laDao ® a1 ® - - - ® palapss, a).

Proof. After Lemma9.2.4, we need to verify axioms (B.I)—(B.IV) and axioms (DG.II) and (DG.III).
Like many proofs to this point, the argument is straightforward, but tedious. We’ll verify the more
difficult (B.I), (B.III), and (DG.II), leaving the rest to the reader. These three are more tedious
because of the involvement of the right-action.

For (B.I), we must show that
pr(u(a,a),ap® a1 ® -+ ® ansy) = CI)(]u(a, a')| Jdaol, .. lans Du(u(a,a’),ap) ® a1 ® ... ® aps
is equal to

alal |a'|.lag® -+ ® anilprla, prld’ ap® ... ® an))

’|a0| LRI ,|an+1|)

= a(]a' ’|a,| a|a0 ® e ® an+1|)(1)(]a| ’|lu(al’ aO) ’|a1| 9 e .. ’lan+1 |)¢qa,

pa, u(a’,a0) ® ay @ -+ - ® dpy
Thus, it suffices to prove that

a,(]a| ’|a,| ,|(l() - ® an+1|)><

,|(11| 9 e .. alal’l+1|)q)(1a/

O(ua,a) laol, ... lani )" ®al |u@’, ao) Jdaol, .. - lans])
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is equal to a(al,|a’|,|laol). This can be seen via an iterative process. Start with the “n + 17 terms

from the expansions of each of the ®@ products. These look like
-1 -1
a(d’|olal |an|o---olag| lani]e(al |an| o - - olag| o|a’| |ans1 ) a(d’| lan] o - - olao] lansi )7

Taking f =|al, g =|d’|, h =|ay| o --- o|agl|, and € =|a,41|, inspecting the cocycle relation for

da(f, g, h,{), we see that the above is equal to
afal.|d| lan1] olanl o -+ olagh ™ aal |a’| lan] olan-1] o - -+ olaq]).

On one hand, the first term cancels with the original a(al|,|d’|,lao ® - - - ® a,+1|) term. On the
other, consider the product of the second term with the “n” terms from the ®-expansions: these

look like

a0 ---olao| lani 7"

ald’[olal |an| o - -olag| |ansiDelal lay| o - - - olag| ofa’| |ans1 )~ afa’

Then, taking f =|a|, g =|a’|, h =|a,—1|o- - -oap|, and € =|a,|, the cocycle relation for da(f, g, h, )

tells us that this product is equal to
CZ(]a| ,|Cl’| ,|an—l| ola}’l—2| O« O|a0|)'

To conclude the proof, iterate this process, which terminates with leftover term a(a|,|a’|,|ao|).

The proof of (B.II) is far easier given that ¥ is expressed by only one « term. It follows by only
one application of the cocycle relation. Similarly, though there are more terms, the proof of (B.III)
requires only one application of the cocycle relation. Both are left to the reader.

The proof of the first part of (B.IV) requires an iteration. By definition, we have

pr(lx,a0® - ® aper) = Pdy,|aol, ... |la1Du(lx, a0) ® a; ® ... ® apsi

= (I)(IdX9|a0| PICII alan+1|)L(Ian|a0|)a0 ® @ dp+l
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By assumption, £(Idy,|ao|) = a(Idx, Idy,|ao|)~"'. Expanding ®, we have

a(ldy,|a,| o -+ - olag| |an )™ - - - a(ldy,|a1] olao| ,|az]) " a(dy,|ao| ,Ja1 )~ e(ldx, Idx,|ao|) ™"

= a(Idy,|a,| o - - - olag| lans1 ) - - - @dy.|ai| olag|.laz]) " a(ldy, Idy,|a1| o|ao|)

= a(ldy, ldy,|ani| o -+~ olagh™

= L(dy,|ao| ® - - - ®lans1])
by iterative applications of (i) from Lemma 9.0.1. Similarly, the proof of the second half of (B.IV)
follows from a single application of (ii1) from Lemma 9.0.1

We proceed to proving the DG-axioms. As noted earlier, (DG.]) is immediate, and (DG.IV) is

Lemma 9.2.4. Checking (DG.II) directly, we compute that

dpr(a,ap®a; ® -+ ® anpy1))
= afal,lay| o - olao| lansi N alal lan-1] o - - olaol las)7" - - - aal laol Jai 7!
o(u(a,a))®a; - ®aps1)
= afal,lay| o -~ olao| lans1 N alal |an-1] o - - olao| la,)7" - - - alal laol lai 7!
lu(lu(a9 a0)9 al) ® az K& A+l
-1 -1 -1
+aal,|ay| o---olagl,lan1 )" a(al lan-1| o - olaol,la)"" - - - alal,|aol ,|a1])
n
D (=Diadaii] o+ olag| olal lail lai (@, ag) ® - - ® par, a1 ;® -+ @ .
i=1

On the other hand,

pr(a,0(ay®a; ® -+ - ® ans1))

=pr(a,u(ap,a;)) ® -+ ® aps1)

n
+ > (~alai|o - olagl,lail laii Dprla, ap® - @ pai, ain) & -+ ® ap)
i=1
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which is equal to
a(al lan| o - - olaol,lan1 )" alal Jap-1] o - -~ olaol lan))~" - - afal a1 olaol laz])~!
u(a, uag,a1)) ® a ® -+ - ® aps

n
+ > (=Dafai1| o+ olaollail |aiiDadal lan] o --- olao| ani )" - -
i=1

-1 -1
a(al ,lair1] olai| olaj-1| o - - - olao|,lai2|)" a(al la;i-1] o - - -laol ,lair1] o|a;])
-1 -1
(Y(]a',lal'_2| o"'ola0|7|al’—1|) "'a’qa|’|a0|a|a1|) ,U(Cl,ao)@"'®/l(ai,ai+])®"'®an+1
There are two cases to consider. First, observe that the coeflicients leading the i = 0 summands

in both expansions are exactly the same outside of the /(al ,|ao|,|a;|)~! appearing in front of the

first, but not the second. But this is as we hoped, as

u(u(a,ap),a1) ® ar ® - - @ apy1 = a(al,laol,laiDula, plap, a1)) ® ar ® - - - ® anpy1.

In the second case, we can consider any of the summands when i > 1. The coeflicients of these
summands are exactly the same outside of the appearance of the terms
a(aj-1| o -+ olao| lail |ais1Da(al lai| olai1| o - - olao|.lai ) alal lai-i| o - - - olac] |a;)~!
appearing in the first expansion, and the terms

aai_1| o -+ olaol lai| lamDadal lai—1| o - - olaol |ai1] ola;]) ™"
appearing tin the second. However, these values are equivalent by the cocycle condition. The proof

of (DG.III) is similar but much less tedious, and is left to the reader. |

Remark 9.2.6. The @ and ¥ terms are decided naturally by the following processes. The ® term is

chosen by following the path.

a(((@oan)az) -+ an) ——% (a((aoa)az) - Han —— -+ % ((alaoa1))az) - - ay)

b

o ((((aap)ar)az) - - -)ay

Accordingly, the ¥ term is much simpler, since the necessary path is of length one.

Y:((((agan)az) - - - Yap)a’ —— (((apai)az) - - - )ana’)
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9.3 The universal trace and C-graded Hochschild homology
Recall that, in general, the Hochschild homology of an algebra A with coefficients in and

(A, A)-bimodule M can be taken as the homology of the complex
B(A) ®agar M.

Naisse and Putyra [NP20] describe the tensor product of two C-graded modules over an intermediary
algebra. Suppose A, B, and C are C-graded algebras, and that M is a C-graded (A, B)-bimodule
and N is a C-graded (B, C)-bimodule. We view M ® N as a C-graded (A, C)-bimodule by defining

actions
pMeN pMoN
A®(MQ®N) > M ®N MN)®C > M ®N
\ / and \ /
! p{l®]1N @ 1M®pg
(AM)® N M®(N®C)

We define the tensor product of M and N over the intermediary algebra B as
o M N
M@p N =MoN/ (o} (m.b)®n—alm|.[b].Inhm & o} (b.n))

foranym € M, b € B,andn € N. The C-graded (A, C)-bimodule structure on M ® N induces one
on M ®p N. Finally, if M and N are C-graded DG-bimodules, we define their tensor product over
B as
(M, 0m) ®p (N,dy) := (M ®3 N, dg)
where
dg(m ® n) := dy(m) ® n + (-1)"1z2m ® dy(n).

The issue with ®4ga0o0 is that A ® AP is not canonically C-graded, but C x C°P-graded.
Explicitly, to define a tensor product over A ® A°P, we would like to take the coequalizer of the
diagram, where M (resp. N) is a C-graded right (resp. left) A ® A°°-module.

(M x(A®A®P)) ® N

) M®N

Q%ﬁ

M® ((A® A®?)x N)
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However, the connecting map ® cannot be as simple as a: in the tensor product over A ® A°P, we
hope to identify

prim,a®a)®n~me pja®d,n)
up to some witness ®. However the former has grading
Inl olal om| o|d’|
while the latter has grading
|| oln| ola] o|m] .

We see this as having two consequences. First, this means that the gradings of the elements

involved must form a loop of length four:
|m|/> ° %|
[ ] [ ]
e

else they are killed in the tensor over A ® A°P. More interestingly, this also means that M ® 4940 N,
if it is definable, is not C-graded, but rather graded by the universal trace of C:
Tr(C) := ]_[ Endc(X)/go f~ fog.
XeOb(C)
Remark 9.3.1. The first of the two consequences is interesting, as it means that the “size” of the
tensor product over A ® A°P (and, thus, the Hochschild homology) in the C-graded setting depends
largely on the abundance of loops in C. Notice that this doesn’t have any impact on the Z- or

G-graded settings, as all paths are loops in BG, thus nothing “extra” dies in the tensor.

Fix a grading category (C, ). There is a canonical quotient map

q: U End;(X) — Tr(C).
Xeob(C)
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We'll write X := q|Endc(x) to denote the components of g. By the definition of the universal trace,

we have that the diagram

Hom¢ (X, Y) X Home (Y, X) Hom¢ (Y, X) X Home(X,Y)
End¢(X) Endc(Y) (9.3.1)
x /
Tr(C)

commutes; in other words, for f € Homg(X,Y) and g € Home (Y, X), g(g o f) = g(f o g). To
extend to grading categories, we need a witness to the above diagram, extending the role played by

the associator . Let Q"C denote paths of length n in C which form loops.

Definition 9.3.2. A looper for a grading category (C, a) is a function & : Q>C — K* for which
(i) e(f, 9" = &(g, f), and
(ii) & is coherent with «; that is, if h o g o f is a loop of length three in C, then

a(f,g. We(f,hogla(g, h, fle(g, fomalh, f,gelh,go f)=1 (9.3.2)

If such an ¢ exists, we say that (C, @) admits a looper.
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The the formula (9.3.2) above is called a-& coherence. It comes from the observation that the
choices in “smoothing” a loop should be witnessed, and that the choice should ultimately be
coherent with other choices. We view a-& coherence as instructions on the preceding cube, starting
at the dotted path. As a natural extension of a for loops, @-& coherence states that the following
hexagon commutes:

(hog)o f <L o (hog)

ho(gof) (fohyog

s(m mm

(gOf)OthO(th)

It is very useful to encode the binary matchings above via pictures, as so:

* (g, h, 1)

78 .
&Y. w0

(g, foh)

949

ah, f,g) \F\ /h)

4
23

Definition 9.3.3. We will call an element of Q"C an n-partitioning of a loop it represents in Tr(C).
A presentation of an n-partition with a choice of n — 1 binary matchings (frequently depicted as
above) is called a topography on the n-partitioned loop. Denote the set of topographies on an

arbitrary n-partition by 7'(n).

Lemma 9.3.4. Counting from one, the number of topographies on an n-partitioned loop is the nth

2(n—1
|nw:<31f>
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Proof. Choose a basepoint of an n-partitioned loop (there are n choices). Doing so represents that
loop as an element of End¢(X) for some X € ob(C). Then, a choice of binary matchings after this

first choice is equivalent to the number of distinct full binary trees on n leaves, which is equal to

2n—1)
n—1

the n — 1st Catalan number. Thus|T(n)| =n - C,—1 = ( ) as desired. O

The witnesses @ and & satisfy another relation, which is perhaps obvious. This is, for paths

large enough (at least 5), there are squares appearing of the following form:

((a(bc))d)e

a(ay \cx(mboa, d,e)

(((ab)c)d)e (a(be))(de)

a(COhOaN %» 9]

((ab)c)(de)
Now, this diagram commutes by the well-definedness of @, and the fact that it takes values in
a commutative ring. We call this property distant commutativity for @. Similarly, there is a-&
distant commutativity; for a loop partitioned into enough morphisms (at least four), diagrams of

the following form start to appear.

a(f,g,h)

We refer to both properties

ala,b,c)a(coboa,d,e)=alcoboa,d,e)a(a,b,c)

a(f,g, h)e(hogo f,{)=e(hogo f,Oa(f,g, h)
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ambiguously as distant commutativity.

Definition 9.3.5. We denote by 7 (n) the space of topographies associated to an arbitrary n-

partitioned loop, defined as the following 2-dimensional CW-complex:
1. T()? :=T(n);

2. 7 (n)!is an (n— 1)-valent graph with|T(n)|-many vertices corresponding to changing a single
binary matching (n — 2 correspond to a single application of @, and one of which corresponds

to a basepoint change, i.e., an application of &);
3. 7(n)*> = T(n) is obtained by gluing 2-cells along all words corresponding to

a) the cocycle condition on «,

b) a-& coherence, or

¢) distant commutativity.
Theorem 9.3.6. Assume that (C, @) is a grading category admitting a grading by its trace via a
looper €. Suppose that A is a C-graded algebra and M and N are C-graded (A, A)-bimodules,

interpreting M as a right C-graded A ® A°®-module and N as a left C-graded A ® A°°-module.

Assume O(m|,|la ® a’|cxco »|n|) witnesses a path from

Inl o ((al olml) o|a’|) = (a’| o (nl olal)) o|m|

or, in terms of topographies,

O(m|,la ® a’|cxcor »|1|):

Then, M ®agaor N is a Tr(C)-graded module, where
M ®@s940 N :=M ® N/ (p;(m, a®ad)®n—®(m| ,|a ® a’|C><C(,p Jnhm e pja®d, n)) )
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Proof. The result holds as long as the value © is well-defined. This holds as long as 7(4) is simply
connected. We can compute that 7°(4) =~ S?; see Figure 9.1. By Lemma 9.3.4, we know that 77(4) is
a polyhedron with (g) = 20 vertices. We count twelve faces: four square, four pentagonal, and four
hexagonal. Each square face is seen to commute by a-& distant commutativity, each pentagonal

face commutes by the cocycle condition, and each hexagonal face commutes by a@-¢ coherence. 0O

Corollary 9.3.7. If (C, @) admits a looper, and A is a C-graded algebra, then the Hochschild
complex

HC(A, M) := B(A) ®apa» A

is a well-defined (Z X Tr(C))-graded chain complex.
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a(fol,g,h)

all, f.g)

a(f,hog,t)

a(h,l,go f) a(loh,f,g)

ah, fol,g)

a(g,h, fol)

a(h,f,%

Figure 9.1 The space of topographies for a 4-partitioned loop, 7 (4).

205



[AMO99]

[BHPW23]

[Blal0]

[BNO2]

[BNOS5]

[BNO7]

[BWOS]

[CK12]

[Dael5]

[GOR13]

[GORS14]

[Hog19]

[Hog20]

[HRW22]

[Jon87]

[Jon22]

BIBLIOGRAPHY

Helena Albuquerque and Shahn Majid. Quasialgebra structure of the octonions. J.
Algebra, 220(1):188-224, 1999.

Anna Beliakova, Matthew Hogancamp, Krzysztof Karol Putyra, and Stephan Mar-
tin Wehrli. On unification of colored annular sl knot homology. arXiv preprint
arXiv:2305.02977, 2023.

Christian Blanchet. An oriented model for Khovanov homology. J. Knot Theory
Ramifications, 19(2):291-312, 2010.

Dror Bar-Natan. On Khovanov’s categorification of the Jones polynomial. Algebr.
Geom. Topol., 2:337-370, 2002.

Dror Bar-Natan. Khovanov’s homology for tangles and cobordisms. Geom. Topol.,
9:1443-1499, 2005.

Dror Bar-Natan. Fast Khovanov homology computations. J. Knot Theory Ramifica-
tions, 16(3):243-255, 2007.

Anna Beliakova and Stephan Wehrli. Categorification of the colored Jones polynomial
and Rasmussen invariant of links. Canad. J. Math., 60(6):1240-1266, 2008.

Benjamin Cooper and Vyacheslav Krushkal. Categorification of the Jones-Wenzl
projectors. Quantum Topol., 3(2):139-180, 2012.

Aliakbar Daemi. Abelian gauge theory, knots and odd Khovanov homology. arXiv
preprint arXiv:1508.07650, 2015.

Eugene Gorsky, Alexei Oblomkov, and Jacob Rasmussen. On stable Khovanov ho-
mology of torus knots. Exp. Math., 22(3):265-281, 2013.

Eugene Gorsky, Alexei Oblomkov, Jacob Rasmussen, and Vivek Shende. Torus knots
and the rational DAHA. Duke Math. J., 163(14):2709-2794, 2014.

Matthew Hogancamp. A polynomial action on colored sl link homology. Quantum
Topol., 10(1):1-75, 2019.

Matthew Hogancamp. Morphisms between categorified spin networks. J. Knot Theory
Ramifications, 29(11):2050045, 33, 2020.

Matthew Hogancamp, David E. V. Rose, and Paul Wedrich. A Kirby color for Khovanov
homology. arXiv e-prints, page arXiv:2210.05640, October 2022.

V. F. R. Jones. Hecke algebra representations of braid groups and link polynomials.
Ann. of Math. (2), 126(2):335-388, 1987.

V.F. R. Jones. Planar algebras, I. New Zealand J. Math., 52:1-107,2021 [2021-2022].

206



[KhoOO0]

[Kho02]

[KhoO5]

[Lic93]

[Lic97]

[LLS22]

[LLS23]

[MW24]

[MWW22]

[MWW24]

[NP20]

[NVI1§]

[ORS13]

[OSO05]

[Put10]

[Put14]

[Roz14]

Mikhail Khovanov. A categorification of the Jones polynomial. Duke Math. J.,
101(3):359-426, 2000.

Mikhail Khovanov. A functor-valued invariant of tangles. Algebr. Geom. Topol.,
2:665-741, 2002.

Mikhail Khovanov. Categorifications of the colored Jones polynomial. J. Knot Theory
Ramifications, 14(1):111-130, 2005.

W. B. R. Lickorish. The skein method for three-manifold invariants. J. Knot Theory
Ramifications, 2(2):171-194, 1993.

W. B. Raymond Lickorish. An introduction to knot theory, volume 175 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1997.

Tyler Lawson, Robert Lipshitz, and Sucharit Sarkar. Homotopy functoriality for
Khovanov spectra. J. Topol., 15(4):2426-2471, 2022.

Tyler Lawson, Robert Lipshitz, and Sucharit Sarkar. Khovanov spectra for tangles. J.
Inst. Math. Jussieu, 22(4):1509-1580, 2023.

Jacob Migdail and Stephan Wehrli. Functoriality of odd and generalized Khovanov
homology in R? x i. arXiv preprint arXiv:2410.23455, 2024.

Scott Morrison, Kevin Walker, and Paul Wedrich. Invariants of 4-manifolds from
Khovanov-Rozansky link homology. Geom. Topol., 26(8):3367-3420, 2022.

Scott Morrison, Kevin Walker, and Paul Wedrich. Invariants of surfaces in smooth
4-manifolds from link homology. arXiv preprint arXiv:2401.06600, 2024.

Grégoire Naisse and Krzysztof Putyra. Odd Khovanov homology for tangles. arXiv
preprint arXiv:2003.14290, 2020.

Grégoire Naisse and Pedro Vaz. Odd Khovanov’s arc algebra. Fund. Math.,
241(2):143-178, 2018.

Peter S. Ozsvath, Jacob Rasmussen, and Zoltdn Szab6s. Odd Khovanov homology.
Algebr. Geom. Topol., 13(3):1465-1488, 2013.

Peter Ozsvath and Zoltdn Szab6é. On the Heegaard Floer homology of branched
double-covers. Adv. Math., 194(1):1-33, 2005.

Krzysztof Putyra. Cobordisms with chronologies and a generalisation of the Khovanov
complex. arXiv preprint arXiv: 1004.0889, 2010.

Krzysztof K. Putyra. A 2-category of chronological cobordisms and odd Khovanov
homology. In Knots in Poland Ill. Part 111, volume 103 of Banach Center Publ., pages
291-355. Polish Acad. Sci. Inst. Math., Warsaw, 2014.

Lev Rozansky. An infinite torus braid yields a categorified Jones-Wenzl projector.
Fund. Math., 225(1):305-326, 2014.

207



[RT91]

[Scal5]

[Sch22]

[Shull]

[Spy25]

[SS25]

[SSS20]

[SV23]

[SW24]

[Vaz20]
[Wil18]

[Wit89]

N. Reshetikhin and V. G. Turaev. Invariants of 3-manifolds via link polynomials and
quantum groups. Invent. Math., 103(3):547-597, 1991.

Christopher W. Scaduto. Instantons and odd Khovanov homology. J. Topol., 8(3):744—
810, 2015.

Dirk Schiitz. A scanning algorithm for odd Khovanov homology. Algebr. Geom.
Topol., 22(3):1287-1324, 2022.

Alexander N. Shumakovitch. Patterns in odd Khovanov homology. J. Knot Theory
Ramifications, 20(1):203-222, 2011.

Dean Spyropoulos. Hochschild homology for odd Khovanov arc algebras. In prepa-
ration, 2025.

Dean Spyropoulos and Matthew Stoffregen. Plane Floer homology and the odd Kho-
vanov homology of 2-knots. In preparation, 2025.

Sucharit Sarkar, Christopher Scaduto, and Matthew Stoffregen. An odd Khovanov
homotopy type. Adv. Math., 367:107112, 51, 2020.

Léo Schelstraete and Pedro Vaz. Odd Khovanov homology and higher representation
theory. arXiv e-prints, page arXiv:2311.14394, November 2023.

Matthew Stoffregen and Michael Willis. Jones-Wenzl projectors and the Khovanov
homotopy of the infinite twist. arXiv preprint arXiv:2402.10332, 2024.

Pedro Vaz. Not even Khovanov homology. Pacific J. Math., 308(1):223-256, 2020.

Michael Willis. A colored Khovanov spectrum and its tail for B-adequate links. Algebr.
Geom. Topol., 18(3):1411-1459, 2018.

Edward Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys.,
121(3):351-399, 1989.

208



	Introduction
	Unified projectors
	A gluing theorem for diskular tangles
	Other applications
	Future goals
	Outline

	Classical categorifications of Lg and  projectors
	Temperley-Lieb algebras and Jones-Wenzl projectors
	Categorifications of the Temperley-Lieb algebra
	Cooper-Krushkal projectors

	The Odd setting: chronologies and Lg-graded  structures
	Chronological cobordisms and changes of chronology
	Unified arc algebras
	A brief outline of Lg-graded structures

	Grading multicategories and planar arc  diagrams
	(Grading) multicategories
	Lg as a grading multicategory
	Generalities on modules graded by grading multicategories
	Lg-graded arc modules

	Lg-shifting systems and cobordisms
	A system of grading shifting functors for Lg
	Generalities on shifting systems for grading multicategories
	Homogeneous maps
	Changes of chronology

	Tangles, dg-multimodules, and multigluing
	Lg-graded dg-multimodules and related concepts
	Resolution of diskular tangles
	dg-Lg-graded multimodules

	An invariant of diskular tangles
	Quick computations in unified Khovanov homology
	Tangle invariant

	Unified and odd projectors
	Operations defined via multigluing
	Duals and mirrors
	Definition and properties of unified projectors
	Explicit computations for the 2-stranded projector
	Existence of unified projectors
	A unified colored link homology

	Toward a Hochshild (co)homology for C-graded algebras
	More on C-graded algebras and bimodules
	A C-graded bar resolution
	The universal trace and C-graded Hochschild homology

	Bibliography

