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ABSTRACT 

This thesis examines the extent of agroforestry in Michigan, Ohio, and Wisconsin by combining 

high-resolution spatial analysis of linear woody features with landowner survey data. The 

primary aim is to document the prevalence of practices such as windbreaks and riparian forest 

buffers and to investigate the management intentions explaining their genesis. Convolutional 

neural networks (CNNs) were employed to create a sub-meter land cover product using US 

Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) imagery, and 

shape-based metrics were then used to detect the presence of linear small woody features. 

Validation and case studies in 35 counties indicate that this approach accurately pinpoints 

narrow tree lines in agricultural landscapes. 

Parallel survey work engaged landowners through a multi-wave mailing strategy. Participants 

described their use of woody features, offering details on motivations, management intensity, 

and plans for future tree establishment or maintenance. Results demonstrated alignment 

between survey-reported windbreaks and riparian forest buffers and the automated mapping 

outputs in many cases, though some discrepancies arose in parcels with fragmented ownership 

or minimal maintenance. 

The findings emphasize the significance of precise, high-resolution classification methods for 

quantifying agroforestry practices at scale. They also highlight how social and economic factors 

shape whether landowners consider these woody features essential to farm and forested 

systems. By integrating spatial and survey-based evidence, this thesis provides a fuller 

perspective on agroforestry extent and adoption in the Lake States and presents strategies to 

refine classification thresholds. The multi-layered methodology can inform regional 

policymakers, resource managers, and extension services seeking to recognize and support 

these beneficial tree-based practices. 
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Chapter 1: Advancing the Automation of Linear Small Woody 
Feature (LSWF) Detection: Machine Learning Land Cover 
Applications and LSWF Feature Segmentation in the Great Lakes 
Region of the United States 
Objectives: 

● Develop a scalable, automated method to map linear small woody features (LSWFs) 
using high-resolution remote sensing and machine learning. 

● Leverage convolutional neural networks (CNNs) and shape-based filtering to detect 
windbreaks and riparian buffers with sub-meter precision. 

● Enhance agroforestry mapping accuracy to support targeted conservation, soil 
management, and land-use planning in the Great Lakes region. 

● Establish a robust workflow adaptable to diverse landscapes and transferable to broader 
applications. 

 
1.0 Abstract 

Linear small woody features (LSWFs), including agroforestry practices known as windbreaks 

and riparian forest buffers, serve key ecological and practical roles in the Great Lakes region. 

This paper presents a scalable approach for detecting LSWFs using publicly available high-

resolution imagery and image classification through convolutional neural networks (CNNs) to 

develop a sub-meter resolution land cover product. A shrink-expand technique isolates Trees 

Outside Forests (ToFs), followed by shape-based filtering and segmentation methods to identify 

and refine linear tree canopy structures. Many different methods of censusing LSWFs have 

been presented in literature across world contexts, at increasingly precise spatial resolutions. 

However, metrics to create aggregate metrics on LSWF presence or the processes to filter, 

validate, and scale findings in LSWF studies have not been adequately standardized. We 

propose a robust method that improves accuracy using band-limited, very-high-resolution NAIP 

imagery provided throughout the continental US, and can therefore be leveraged for scaled 

precision conservation and provide a more reliable aggregate censusing of LSWFs. We applied 

the method to 35 counties in Michigan, Wisconsin, and Ohio, revealing varying densities of 

LSWFs and demonstrating the feasibility of sub-meter resolution workflows. These results 
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contribute practical insights for stakeholders interested in censusing LSWF features for use in 

precision land management and providing technical assistance to landowners interested in 

agroforestry-associated practices. The framework underscores the potential of emerging 

geospatial tools for mapping ToFs and informing broader conservation efforts. 

1.1 Introduction and Literature Review 

Linear small woody features (LSWFs) on agricultural landscapes, including riparian woody 

areas, windbreaks, hedgerows, and shelterbelts, are widely recognized for their positive 

economic, ecological, and social benefits. Despite their global significance, the United States 

lacks a comprehensive nationwide survey documenting these features (Smith et al., 2022). 

LSWFs play a critical role in both ecological and socioeconomic contexts, mediating 

environmental processes and enhancing agricultural resilience. Ecologically, they connect 

habitats, enhance biodiversity, control soil erosion, and regulate microclimates, making them 

vital for sustainable and resilient agricultural systems (Jose, 2009). Additionally, they provide 

ecosystem services such as carbon sequestration and support for local flora and fauna (Rubio-

Delgado et al., 2024, Garrett et al., 2022). Socioeconomically, LSWFs improve agricultural 

productivity by mitigating wind damage, retaining soil moisture, and buffering against climate 

variability and extreme weather events (Schoeneberger et al. 2017). Integrated into agroforestry 

(AF) systems, LSWFs are foundational to achieving biodiversity conservation and sustainable 

agricultural productivity goals (Jose, 2009; Rubio-Delgado et al., 2024). As interest in AF 

continues to grow globally, understanding the distribution and structural characteristics of 

LSWFs is essential for advancing sustainable land management practices. 

Field surveys and remote sensing are two common approaches to mapping LSWFs. 

Historically, manual field surveys, while rich in detail, are resource-intensive and, therefore, are 

impractical for large-scale or nationwide assessments (Pippuri et al., 2016; Li et al., 2018). 

Conversely, remote sensing (RS) presents a scalable, efficient alternative, capturing spatial and 

temporal data across expansive landscapes—a critical advantage for mapping complex AF 
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structures and LSWFs across regions (Aksoy et al. 2010; Rizvi et al., 2020; Sharma et al., 2023; 

Patriarca et al., 2024).  

Recent advances in RS, incorporating machine learning approaches, have significantly 

expanded the potential for automated LSWF detection. High-resolution satellite and airborne 

imagery now provide the sub-meter spatial detail necessary to identify even the smallest LSWFs 

precisely (Burke et al., 2019; Sarti et al 2021; Luscombe et al., 2023). For instance, as Liknes et 

al. (2017) demonstrated, shape-based classification methods leverage specific indexes like the 

Straight and Narrow Feature Index (SNFI) to detect linear features semi-automatically and the 

Windbreak Sinuosity Index (WSI) to measure the sinuosity, or bendiness, of small tree canopy 

features. The SNFI, developed to identify elongated, narrow landscape elements such as 

hedgerows and windbreaks, quantifies the linearity of features within imagery by calculating 

shape-based metrics similar to length-to-width ratios. By assigning higher scores to features 

that conform to expected geometric properties of LSWFs, the SNFI enables the prioritization of 

likely LSWF candidates for further analysis or validation. This index significantly enhances the 

efficiency of semi-automated detection by reducing false positives and narrowing down regions 

of interest for more detailed study (Liknes et al., 2017). However, such approaches often require 

refinement to handle the varied morphologies of LSWFs in heterogeneous landscapes.  

Additionally, technologies such as Line Intersect Sampling (LIS) and LiDAR, such as those 

employed by Pasher et al. (2016) and Penner et al. (2024), provide enhanced vertical structure 

differentiation, making them invaluable for detailed feature detection in AF contexts. When 

integrated with machine learning methods, these tools also offer a path for automatically 

extracting LSWFs across diverse agricultural and forested environments. 

Traditional RS methods, such as pixel-based analysis (Aksoy et al., 2010; Liu et al., 2018) and 

object-based approaches (e.g., OBIA/GEOBIA), provide foundational insights on singular 

objects in a focused study area but often struggle to scale, for accuracy assessments and 

computational costs for larger study areas, with issues of feature fragmentation and 
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discontinuity, especially in regions with variable land management practices and tree canopy 

patterns (Blashke, 2010). Most recently, Deng et al. (2023) explored methods to extract 

individual linear woody features (LWF) using a shape-oriented method, which allowed for 

identifying networks of LWFs and fixing partial connectivity issues between otherwise 

continuous belts of woody barriers.  

Advancements in RS technology, like high-resolution imaging and machine learning approaches 

like CNNs, increase the capability to identify LSWFs, which is crucial to understanding 

agroforestry's ecological and economic impact (Deng et al., 2023; Xing et al., 2016). For 

example, Deng et al. (2017) mapped windbreaks using SPOT5 data through human-machine 

interpretation, while Yang et al. (2017) and Amichev et al. (2015) showed that machine learning 

and SPOT5 data could be used for broader landscape mapping—although limitations with 

image resolution and the connectivity of features remained. 

Efforts have been made to help automate the process and leverage emergent data and 

techniques to improve the census of small woody features associated with AF systems (Liknes 

et al., 2017). However, mapping LSWFs presents several challenges that have constrained 

traditional and automated approaches. More scalable, automated techniques using existing land 

cover products such as the NLCD or Sentinel 10m LULC Level 3 product encounter difficulties 

in accurately distinguishing LSWFs from other land cover types due to their narrow, linear 

forms, often smaller than the resolution of the land cover and the spectral similarity of their tree 

canopy vegetation to surrounding agricultural or wetland areas. Furthermore, shape-based 

detection methods using indices like SNFI and WSI (Liknes et al. 2017) have demonstrated 

potential. However, they often face limitations in non-homogenous agricultural landscapes with 

woodlots and forests directly connected to LSWFs, or when dealing with the diverse anisotropic 

morphologies of LSWFs that are not aligned with cardinal directions or are occasionally curved, 

as seen in bends in rivers, railroads, or roadways. These challenges underscore the need for 

refined methodologies to address the complexity and variability inherent in LSWF structures. 
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Trustworthy measures of LSWF extent could help augment national estimates of AF adoption 

within the US, supporting practices for sustainable land use associated with AF (Smith et al., 

2022). Despite the growing recognition of agroforestry’s importance, national datasets, such as 

those produced by the USDA (e.g., county-level analysis based on the 2017 and 2022 Census 

of Agriculture (Kellerman et al., 2025)), remain too coarse to capture smaller LSWFs or their 

spatial distribution adequately. Smith et al. (2022) point out that current classification schemes 

often underestimate AF adoption due to aggregating diverse AF elements into broad spatial 

categories (e.g., counties, states), which can obscure finer-scale features. This sentiment has 

been echoed in non-U.S. contexts (Rubio-Delgado et al., 2024); a general lack of precision has 

left critical gaps in our understanding of agroforestry's true extent and has limited the ability to 

assess ecological and socioeconomic contributions effectively. Addressing this issue requires 

the development of consistent, high-resolution mapping methodologies that can accurately 

detect smaller AF elements, such as LSWFs. Such data would close existing data gaps and 

directly inform policy or conservation programs, including those aimed at incentivizing AF 

adoption and improving land-use sustainability.  

Recent advancements in convolutional neural networks (CNNs) have significantly enhanced the 

capability to produce very high-resolution land cover products with less comparative 

supplemental band context than traditional LULC products, particularly for applications in 

precision conservation. Efforts by the Chesapeake Conservancy Conservation Innovation 

Center (CIC) and the University of Vermont Spatial Analysis Lab (UVM SAL) to develop 1-meter 

and 0.5-meter land cover products, respectively, for their regions of interest exemplify the 

increasing granularity now achievable in mapping land features, although these developments 

are relatively new. Robinson et al. (2019) demonstrated an ability to scale CNN machine 

learning methods, integrate multi-resolution data for high-resolution land cover mapping, and 

achieve detailed classification of diverse land cover types. Further, Robinson (2020) highlighted 

many broader applications of machine learning in computational sustainability, emphasizing its 
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potential to support conservation practices by accurately and precisely identifying and 

monitoring small-scale, ecologically significant features. Extensions of CNN use cases, 

particularly closer to research of woody features on agricultural landscapes, have identified 

hedgerows and hedgerow gaps in study areas in the UK (Wolstenholme et al., 2025). 

1.1.1 Objectives 

The primary objective of this chapter is to develop a scalable, automated method for mapping 

LSWFs using machine learning and high-resolution remote sensing. By focusing on the unique 

landscape characteristics of the Great Lakes Region, this study aims to create a widely 

applicable methodology that captures even the smallest features. Such an approach has 

important implications for land management, as it provides precise, actionable data to inform 

conservation policies and sustainable land-use practices. Accurate LSWF mapping can 

empower policymakers and landowners with insights needed to design biodiversity-friendly 

landscapes, implement soil conservation measures, and encourage AF practices in places that 

maximize both ecological and economic goals. 

This novel approach leverages the strengths of CNN-based ML for detecting LSWFs with great 

precision, which is crucial in landscapes with a mixture of contiguous forested spaces (or 

woodlots) and agriculturally productive areas. The unique feature set derived from sub-meter 

resolution aerial imagery (USDA 2022 NAIP) allows for increased accuracy in tabulating linear 

AF features and examining their characteristics. These innovations, alongside developing high-

resolution, landscape-specific filtering and segmentation methods, aim to provide a reliable and 

robust assessment of AF patterns within the Great Lakes region. Additionally, the procedures 

here were developed to be applied further outside our study area with a high-resolution tree 

canopy dataset. Finally, our work emphasizes the practical utility of these outputs for 

policymakers and land managers, aligning model findings with regional AF support needs and 

conservation strategies that support sustainable land use and ecosystem and agrarian 

resilience. 
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1.2 Methods 

This study develops a multistep process for extracting LSWFs, using convolutional neural 

networks (CNNs) to develop land cover classifications from USDA 2022 NAIP aerial imagery at 

fine scales (0.3 m and 0.6 m), as has been approached previously at much coarser spatial 

scales (Basu et. al., 2015). The use of CNNs in generating a very high-resolution land cover has 

been implemented using the same methods (Robinson et al. 2020; Zhang et al., 2024). Still, the 

extraction of LSWF information with enhanced edge detection methods associated with CNNs 

has not been described or published. This tailored approach focuses on capturing even the 

smallest LSWFs to 1) evaluate effective linear small woody features, which would have 

continuity at sub-meter scales, and 2) refine and extend regional mapping accuracy. The 

potential for further integration of machine learning into these processes suggests a path 

forward wherein continuous LSWF networks and improved feature connectivity can better 

support sustainable AF practices and inform ecological management policies in the Great Lakes 

region. 

1.2.1 Study Area 

The study area encompasses 35 counties across Michigan, Wisconsin, and Ohio, representing 

a diverse mosaic of land cover types. The total area evaluated directly from imagery for the 

study is roughly 60,187 km2 or 23,238 mi2. Together, this is approximately the size of the US 

state of West Virginia, the country of Ireland, or the water surface area of Lake Michigan. These 

counties were selected to investigate LSWFs due to their AF prevalence and varying land-use 

patterns. The study area includes at least four contiguous counties in each state, creating a 

representative sample of the transition zones between agricultural and forested landscapes as 

indicated by the 2019 National Land Cover Database (NLCD). This strategic selection captures 

a range of predominant land uses, including row-crop agriculture, forage production, urban 
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agroforestry, and tree crops, facilitating the identification and analysis of LSWFs in different 

ecological and socio-economic contexts. 

This region is particularly relevant for studying LSWFs due to its blend of intensive agricultural 

activity and significant woodland areas. The counties were further considered for inclusion as 

study counties using Cropscape 2022 data to gather a diversity of dominant farm outputs—from 

counties with predominant presences of field crops like corn and soybeans to counties focused 

on forage (hay/alfalfa) or specialty tree crops like cherries (Han et al., 2012). Other data that 

were used for initial county selection and validation include results from the 2017 Census of 

Agriculture, which identified counties where agroforestry practices like windbreaks and riparian 

first buffers were more or less common, such that a diversity of both ‘hotspot’ and ‘non-hotspot’ 

counties in agrarian-forestland transition zones were chosen. This categorization ensures that 

the analysis can account for the regional variability in land-use practices and their influence on 

LSWF formation and persistence. The selected counties also include urban and urban-fringe 

areas, where AF practices, such as windbreaks and riparian buffer zones play critical roles in 

promoting biodiversity and mitigating environmental impacts of both agricultural and 

urban/suburban pollution. Figure 1 illustrates the geographic extent of the study area, 

highlighting the counties selected for this research and their respective AF and land-use 

characteristics. 
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Figure 1: 35 counties used for LSWF analysis across Michigan, Wisconsin, and Ohio. Each 
state has four counties analyzed with a predominant woodland-farmland ‘transition,’ as well as 
spatially diverse counties with different predominant developmental/ agricultural land uses (e.g. 
forage/rowcrops) based on USDA Cropscape 2022 (Han et al., 2012).  
 
1.2.2 Data 

A single data source is needed to extract exhaustive high-resolution LSWF data within our study 

counties. High-resolution aerial imagery from the National Agriculture Imagery Program (NAIP), 

was used to produce a land cover at the NAIP native spatial resolution using CNNs. The 

imagery was sourced from the 2022 4-band NAIP in (R, G, B, and NIR), chosen for its sub-

meter resolution, which could precisely capture canopy structure not attempted at such a high 

resolution before in the US to census LSWFs. Native NAIP imagery resolutions were at 0.6 
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meters for Michigan and Wisconsin, and 0.3 m for Ohio, as each state was collected at separate 

resolutions for the 2022 NAIP release. 

 

 
Figure 2: Summarized methods to capture LSWF features as polygons from imagery, for both 
standalone trees outside forest (ToF) areas and segmented ToF networks. 
 
1.2.3 Preprocessing 

Image preprocessing focused on ensuring data consistency across the study area. 

Georeferencing and image alignment were previously conducted for the NAIP level 2 imagery 

received for the project, and maintaining the native resolutions for NAIP imagery throughout the 

methods preserved data integrity. All NAIP input data were maintained on their Universal 

Transverse Mercator (UTM) zones, which were standardized for each county—UTM 15N, 16N, 
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and 17N—ensuring spatial coherence across state boundaries and facilitating seamless feature 

delineation. 

1.2.4 Sub-meter Land Cover Classification 

A CNN model was employed to achieve high-resolution (sub-1.0m) land cover classification 

across 35 counties (Reference 1, Figure 2). Constructed with a U-Net architecture, the model 

excelled in semantic segmentation tasks such as vegetation mapping and fine-scale feature 

extraction. Its encoder-decoder structure extracted discriminative features from high-resolution 

aerial imagery and accurately projected them onto pixel space for LSWF classification 

(Ronneberger et al., 2015). A learn rate during training maintained consistent output quality 

across subtle spectral differences. Compared to conventional methods like Random Forests 

(RFs), the U-Net model demonstrated superior edge detection and texture handling by capturing 

context at multiple spatial scales via skip connections (Robinson, 2020). Recent studies further 

confirm the architecture’s strength in delineating fine spatial features, such as vegetation edges 

and linear elements in high-resolution remote sensing data (Ronneberger et al., 2015; Iglovikov 

& Shvets, 2018). Although RFs are computationally simple, their pixel-based approach often 

struggles with spatial coherence and detailed edge representation—issues critical for accurate 

LSWF detection (Belgiu & Dragut, 2016; Kampffmeyer et al., 2016; Ford, 2020). In contrast, the 

CNN U-Net model leverages inherent spatial contextual information to differentiate subtle 

boundaries and textures, making it particularly adept at delineating the irregular, elongated 

shapes of LSWFs even in datasets with limited band context, such as NAIP (R, G, B, NIR) 

(Claggett et al., 2022; Robinson et al., 2020). 

1.2.4.1: Model Training and Validation Data 

The CNN model was developed using the Chesapeake Bay area NAIP high-resolution land 

cover dataset from 2013/2014. This dataset, produced by the Chesapeake Conservancy in 

collaboration with the University of Vermont Spatial Analysis Lab (UVM SAL) and Worldview 



12 
 

Solutions, Inc. (WSI), provided a strong foundation for training with its seven-class classification 

schema. The original dataset’s detailed 1m resolution, trained using a method of class selection 

per objects as identified through OBIA and subsequent parcel-image segments (Clagett et al., 

2022), offered a comprehensive basis for model generalization to the study area and North 

American landscapes, as generalization has been shown to work on other Midwestern 

landscapes (Robinson et al., 2019). Further, minimal fine-tuning of the pre-trained model to a 

sample area in Northern Clinton County, MI, tuned spectral bands to an agricultural landscape 

in the Midwest with a typical combination of mixed forested and agrarian spaces, as is first 

described in Robinson et al. (2019). An OBIA-based fine-tuning was aimed to adjust the 

calibration of the model from the Chesapeake Bay region to the Midwest, although there are 

many noted spectral similarities among classes between the two areas with the spectral-

context-limited NAIP imagery bands. As the U-Net model in ArcGIS Pro is also designed to 

adapt at a user-set rate (in this study, ‘learn’ is set at a low rate, 0.01), minor changes in 

spectral qualities across NAIP imagery for each county were corrected across the imagery 

where the CNN model was run. 

Validation of the CNN model was focused on human-driven manual processes, as described in 

more detail in “1.3 Verification and Validation Measures/Methods”. Stratified testing areas were 

sampled randomly across 1000 points in three counties of the complete 35-county set (one 

representative county per state), and manual labeling was employed to refine class delineation, 

particularly in regions where automated classification might falter. In total, 3000 points were 

evaluated for accuracy in all classes, reflecting similar quality to other published results from 

similar studies using the same CNN methods (University of Vermont 2019, 2024; Pallai et al., 

2016). This approach minimized classification bias and ensured high fidelity in identifying the 

spatial patterns of LSWFs. 
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1.2.5 Shrink-Expand Method 

The novel shrink-expand method was employed to isolate ToFs by effectively masking 

continuous forest regions (see Figure 2, Reference 2). This technique enabled the precise 

identification of small woody features (SWFs) located outside, yet connected to larger forested 

areas, facilitating a targeted analysis of LSWFs without interference from connected, contiguous 

forested areas. 

1.2.5.1 Filtering Based on FIA Definitions 

The nationwide USDA/USFS Forest Inventory and Analysis (FIA) program defines forest land as 

areas with “at least 10 percent canopy cover, composed of trees of any size, or areas that have 

previously supported such cover but are not currently developed for non-forest use. Forested 

areas must be at least 1 acre in size and 120 feet in width to qualify under this definition.” 

(USDA, 2015) This analysis used the 120-foot width threshold to distinguish LSWFs from 

contiguous forested areas. Notably, an area with 120ft · 120ft (14400 ft2) of continuous canopy 

would already account for over 30% of an acre of canopy cover. However, it should be noted 

that while the FIA's 10 percent canopy cover criterion was not explicitly evaluated, the high 

resolution (0.6m and 0.3m) of the land cover dataset provided sufficient spatial context to 

delineate potentially contiguous wooded areas accurately. This resolution, therefore, allowed for 

a more nuanced interpretation of LSWFs. 

To create the continuous forest mask layer, the tree canopy raster was geomorphically shrunk 

by approximately 60 feet (determined based on raster pixel dimensions). Subsequently, the 

shrunken layer was expanded by approximately 72 feet (20% more than the initial shrink value) 

to account for edge sinuosity and irregularities in the tree canopy layer. This shrink-expand 

process effectively eroded polygons to meet the 120-foot threshold, filtering out contiguous 

forested areas while retaining ToFs for further analysis. 
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1.2.6 Further Filtering Based on Size Exclusions 

To reduce computational complexity and refine the dataset, isolated ToF areas smaller than 

250m² were excluded from subsequent analyses at two steps in the overall methodology. This 

threshold was determined based on visual inspection and judgment, as it sufficiently filtered out 

smaller groups of trees or single trees that were unlikely to represent structurally significant 

LSWFs. The exclusion of polygons smaller than 250m² removed over two-thirds of the ToF 

areas from a large vector polygon dataset for each county in the study, enabling a more focused 

and efficient analysis of relevant LSWFs. 

1.2.7 Shape-Based Refinement of LSWFs Using Object Splitting 

Segmentation is the next critical step in the analysis of individual LSWFs, enabling the 

differentiation of distinct linear features within complex landscapes. By accurately identifying 

and isolating these linear structures, segmentation provides the foundation for generating 

precise metrics and insights essential for modeling their ecological and agricultural functions. 

1.2.7.1 Centerline-Based Object Splitting and Voronoi Polygons 

Although commercial options exist to achieve Object-Based Imagery Analysis (OBIA) to 

segment tree canopy classes in imagery (e.g., Trimble eCognition, Overwatch Feature Analyst), 

the segmentation parameters can be computationally inefficient and inexact (requiring much 

time for QA/QC) at larger scales (Hossain and Chen, 2019), leading to improper grouping or 

assessment of woody features. Machine learning methods are developing further to fill these 

noted gaps (Morgan et al., 2024). Segmentation of LSWF networks was targeted to generate 

summary statistics to model the presence and characteristics of LSWFs individually on the 

landscape scale (see Figure 2, Reference 3). This segmentation method only required the 

single environmental class of tree canopies reduced to ToFs, which was then polygonized in 

previous steps, as opposed to OBIA methods, which use imagery directly. 
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The shape refinement process utilized Voronoi polygons to perform centerline-based object 

splitting, an essential step for distinguishing linear features and managing complex shapes 

within the dataset. Centerlines were derived via computing the medial axis of ToFs and 

connecting ends of lines at larger tree canopy sections, and some data cleaning via clipping, 

trimming, and removal of spurs removed nonsignificant lines. Individual centerlines within 

polygons were attached where just two lines met at points. This established standalone 

centerlines for each ‘straight’ section of a ToF polygon, which could later be associated with a 

filtered LSWF. This could then separate or ‘segment’ sections of LSWF networks, particularly 

those with T- or X- shaped contiguous woody features. 

To handle irregular LSWFs with near 90-degree bends—where no additional linear woody 

features met at a bend to form a network (for example, L-shaped or Z-shaped LSWFs)—we 

evaluated a Line-Straightness Index (LSI) using a moving window on lines. This approach 

specifically targeted the near 90-degree bends. Lines were simplified to differing thresholds of 

line simplification, and the "retain critical bends" line simplification algorithm was applied to 

preserve the essential geometry of these features. Points were then placed at the near 90-

degree angles or other significant inflection points within the threshold, where the LSI calculated 

straight sections at least 4 m long before and after a significant near-90-degree bend, and the 

centerlines from the original file were split along that section. This ensured that Voronoi 

segmentation captures straight, linear segments of a continuous standalone LSWF that 

possesses an L- or Z-shapes, while also allowing for segmentation of LSWF networks which 

have T- or X-shaped continuities. 

Finally, equidistant points were placed along the final split lines to segment the centerlines in a 

ToF layer so that each straight segment of an LSWF network had a separate polygon. Using 

these points, Thiessen (Voronoi) polygons were generated and subsequently merged based on 

their respective centerline identifiers. This approach allowed for accurate segmentation and 
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analysis of linear features—such as windbreaks or narrow wooded strips—even when they 

exhibited contiguous or convoluted shapes. 

1.2.7.2 Size and Shape Filtering Criteria 

Following the centerline-based segmentation and polygon creation, the resulting polygons 

underwent a final filtering process, removing features based on the same size threshold of 

250m². This criterion was again applied to exclude smaller, less ecologically relevant features 

created during the process to split polygons as they were associated with centerlines. Smaller 

LSWFs, such as very narrow LSWFs surrounding a farmstead, or features that fall below the 

minimum segmented or whole-length threshold of 100 m, are filtered from the final dataset. 

However, thresholds can be modified to be more inclusive of these features. 

1.2.8 Measurement of Shape Indices for LSWF Evaluation 

The evaluation of LSWFs incorporated two critical shape indices: the Straight and Narrow 

Feature Index (SNFI) and the Windbreak Sinuosity Index (WSI). These indices were calculated 

on both the base and the polygons split through Voronoi analysis to allow comprehensive 

shape-based assessments and comparisons. The SNFI quantified the elongation and 

straightness of features relative to the UTM coordinate grid. At the same time, the WSI 

measured the perimeter-to-area ratio, reflecting the sinuosity of the feature edges. 

1.2.8.1 Modified SNFI and WSI Calculations 

Adjustments were made to the traditional calculations of SNFI and WSI to accommodate the 

unique characteristics of anisotropic data and improve computational efficiency. Specifically, 

modifications included: 1) calculating the SNFI based on both an isotropic grid and an 

anisotropic, axis-based calculation of how straight and narrow a feature is, 2) polygon boundary 

simplifications to calculate the longest Euclidean length of a polygon feature and the orientation 

of an axis along that longest length, and 3) calculating the spatial extent (i.e. erosion) of straight 

and narrow polygons (as opposed to rasterized LSWFs), which improves the ability to calculate 
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WSI and the SNFI while accounting for potential anisotropy and reducing the need for high-

resolution raster data and more computing resources for each polygon during intermediate 

steps of an erosional analysis. These adjustments established that the indices remained precise 

and representative using the vector dataset, even with complex geometries, while minimizing 

the computational overhead. 

1.2.9 Final Filtering and Selection for LSWF Dataset Creation 

The final stage of the workflow involved selecting the optimal polygons for inclusion in the LSWF 

dataset. These scripts prioritized the selection of polygons depending on their SNFI values, WSI 

values, and maximum Euclidean distance between two vector points in the polygon (see Figure 

2, Reference 4). Filtering was based on an SNFI threshold of 0.8, ensuring the inclusion of 

features that exhibit sufficient elongation and straightness. Sinuosity thresholds, such as a 

maximum WSI of 3.0, were used to exclude overly irregular features that deviate from typical 

windbreak structures. A minimum Euclidean distance threshold of 100 m on the longest axis 

was applied, limiting the dataset to LSWFs with significant length. 

1.2.9.1 Final LSWF Dataset Construction and Verification 

The final LSWF dataset was constructed by merging the “Default” LSWF filtering process results 

and the Voronoi-segmented polygons through a best-selection criteria framework (see Figure 2, 

Reference 5). This merging process prioritized features based on the maximum SNFI value and 

structural alignment metrics for both the segmented and original, pre-Voronoi-segmentation 

datasets. For polygons in both datasets, preference was given to features with higher SNFI 

values and lower sinuosity scores, ensuring the inclusion of polygons that best represented 

linear, straight, and agroforestry-relevant features. 

1.2.10 Measurement of LSWFs for Analysis 

To evaluate the distribution of LSWFs across counties, the metric of the average distance of 

LSWFs per km² was used rather than simply counting individual features or summarizing their 
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total area or length in a study region (see Figure 4). This metric provides a more nuanced 

understanding of LSWF distribution by capturing their density and spatial arrangement with the 

land area. Previously published metrics to create summary assessments of LSWFs have noted 

weaknesses. Counts of individual LSWFs in a study region as studied and reported previously 

may overemphasize smaller, fragmented features, and summaries of total LSWF area or 

distance in a region can risk underrepresenting the importance of linear connectivity or having 

issues related to spatial inequivalence. 

1.3 Verification and Validation Measures/Methods 

An error matrix was developed using ground-truth data from Jackson County, MI, as it was 

central in the overall study area and possessed both a high density of identified LSWFs in the 

final dataset and a diverse set of LSWF morphologies to evaluate. The evaluation framework 

computed overall accuracy alongside user and producer accuracy rates for the LSWF class. 

The kappa statistic was calculated to account for chance agreement, thereby reinforcing the 

reliability of the automated classification. These metrics confirm that the detection algorithm 

aligns closely with ground observations and provide a robust quantitative basis for performance 

assessment. The error matrix thus serves as a critical baseline, paving the way for 

complementary spatial analyses such as length matching and omission rate evaluations. 

Additionally, two key validation metrics—length matching rate and omission rate—were 

employed to assess the robustness and consistency of the automated LSWF identification 

process. These metrics evaluate the model's spatial accuracy, detection completeness, and 

specificity, providing a comprehensive framework for performance assessment. 

● Length Matching Rate: This metric quantifies the proportion of detected windbreak 
feature length that aligns with ground-truth data. It serves as a direct measure of spatial 
accuracy, ensuring that identified features correspond closely to their real-world 
counterparts. 

● Omission Rate: The omission rate measures the proportion of true windbreaks missed 
by the model. High omission rates indicate areas where the model requires refinement to 
improve detection coverage and minimize false negatives. 
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1.3.1 Matching Validation Metrics with Previous Studies 

The validation methodology incorporates insights from Deng et al. (2023), and projects that 

validated their CNN machine-learned land cover products (University of Vermont 2019, 2024; 

Pallai et. al., 2016) by aligning metric definitions and thresholds with those established in prior 

studies. This alignment establishes methodological rigor and facilitates direct comparison with 

similar research. 

1.3.2 Accuracy Assessment of Land Cover Output 

Validation involved both automated and manual processes. Stratified testing areas were 

sampled randomly across 1000 points in each of the three counties in the complete 35-county 

set (one representative county per state), and manual labeling was employed to refine class 

delineation, particularly in regions where automated classification might falter. In total, 3000 

points were evaluated for accuracy in all classes, reflecting similar quality to other published 

results from similar studies using the same CNN methods (University of Vermont 2019, 2024; 

Pallai et al., 2016). This approach minimized classification bias during manual validation and 

ensured high fidelity in identifying the spatial patterns of LSWFs. The accuracy of the model 

output was evaluated using automated accuracy metrics, as well. Metrics such as overall 

accuracy, precision, recall, and F1-score were calculated for each feature class, 

comprehensively assessing the model’s strengths, limitations, and error distribution. This 

analysis highlighted the model’s ability to generalize well across different landscape types, while 

also identifying specific feature classes where performance could be improved. 

Manual validation results for the Land Cover dataset aligned with those from similar studies, 

including the Vermont and Chesapeake reports, establishing consistency with previous CNN-

derived land cover methods. Overall accuracy was around 92.17% for three reviewed counties 

(see section 2.3.2 Comparative Accuracy Assessment), which is roughly the same as other 

CNN-derived accuracy measurements for all classes (Robinson (et al.), 2019, 2020; Vermont 
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SAL, 2019, 2024). The verification matrix followed the framework applied in these studies, 

offering a breakdown of metrics for distinct feature types. This approach facilitated a nuanced 

understanding of the model's accuracy across varying landscape contexts, further reinforcing its 

reliability for LSWF classification and mapping. Automated validation yielded results similar to 

the ESRI-published validation metrics, if not slightly lower. 

1.3.3 Accuracy Assessment of LSWF Product 

Verification of the final LSWF dataset involved a systematic review of the extraction method’s 

performance over a focused area in the southwest corner of Jackson County, MI. Each feature 

in a set of n = 2920 model-produced LSWFs was evaluated to identify discrepancies between 

the automated outputs and expected linear woody features on the landscape. Detailed 

inspections identified instances where canopy bridging over roads, shadow artifacts, or 

segmentation challenges resulted in misclassification. Geometric attributes were measured to 

ensure that each candidate met the prescribed filters for LSWF length, continuity, and width. 

Furthermore, the same area in southwest Jackson County was visually checked for all ‘missed’ 

LSWF features that were not identified through the methods. This rigorous verification process, 

paired with visual inspections of much of the results across all counties studied, confirmed that 

the filtering criteria effectively minimized false positives and negatives, while also offering 

valuable insights for refining the methodology in future iterations. 

1.3.4 Model Quality Across Imagery and Environmental Factors 

The model demonstrated broadly consistent accuracy across diverse landscapes, with minor 

variations influenced by characteristics such as canopy density, terrain type, and vegetation 

cover. Accuracy was highest in landscapes with clearly defined contrast between classes, such 

as open fields of low, bright-colored vegetation mixed with areas of leafy, more textured 

hardwood forested spaces. This distinction proved particularly significant for tracking LSWFs in 

open agricultural fields and along tree lines in transitional zones, where spectral clarity between 
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land cover types facilitated more accurate classification. However, notable misclassification 

occurred in intense, darker green crop fields, which were occasionally misidentified as algae-

covered, very deep-green water features due to spectral similarities in the 4-band NAIP 

imagery, as well as a noted under-classification of wetland areas which, with 4 bands of visible 

NAIP imagery, spectrally look similar to areas of green low vegetation in the Midwest. 

Challenges also arose in areas with complex topography or densely forested regions where 

longer shadow distances below canopies made CNN feature delineation more difficult at edges 

or in areas where sourced NAIP imagery lacked clarity in the 2022 dataset. Notably, Auglaize 

County, OH, which had a large smoke/vapor plume overlaying much of the imagery in the 

center of the county, results for Auglaize County have an asterisk (*) noting this issue. 

Seasonal variations in vegetation growth and foliage density had a limited impact on model 

accuracy, as imagery collected between May and September 2022 generally maintained 

consistent feature detectability during extensive visual inspections, which is consistent with 

other findings when working with CNNs to generate land cover products. However, the most 

significant differences were linked to the time of day when NAIP imagery was captured. 

Variations in lighting conditions and shadowing influenced the visibility of certain features and 

feature edges, occasionally obscuring smaller LSWFs or causing less certain classification at 

the edges of the tree canopy class. 

1.4 Results and Discussion 

The model outputs provide insights into the spatial distribution and characteristics of LSWFs 

across the Great Lakes Region in the study counties. Outputs highlight various agroforestry-

related features, including windbreaks, riparian buffers, and small woody corridors. The spatial 

patterns revealed in the dataset indicate areas with high densities of LSWFs (see Figure 4), 

which often align with transitional zones between agricultural fields and natural landscapes.  

 



22 
 

 
Figure 3: (Left) Source NAIP imagery over a section of southwest Jackson County, Michigan, 
around the towns of Spring Arbor and Concord. (Right) CNN Land Cover output and shrink-
expand isolation of Trees outside Forests (ToFs) for the same area around Spring Arbor and 
Concord. The Teal and Pink colors were identified as woody canopies from imagery and then 
separated via shrink-expand ToF isolation. 
 
We addressed limitations in quantifying LSWF networks or assessing detailed individual LSWF 

characteristics by applying advanced segmentation techniques. This approach distinguishes 

individual linear features—capturing subtle connectivity and anisotropic canopy forms—through 

filtering with modified indices such as the Windbreak Sinuosity Index (WSI) and Straight and 

Narrow Feature Index (SNFI) (see Appendix B), along with segmentation methods using 

Voronoi polygons and moving-window centerline analysis. This strategy improves feature 

continuity beyond what traditional summary methods provide. 

The aggregated distance metric (Figure 4) highlights the role of LSWFs as spatially distributed, 

linear ecological corridors per equal spatial unit. This approach consistently compares LSWF 

patterns across counties with varying land-use intensities and landscape structures, as was 

seen in previous meta-analyses of hedgerows in North Dakota (Burke et al., 2019). These 

insights are valuable for understanding these features' ecological and agricultural functions in 

study regions. 
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Figure 4: Distribution of Linear Small Woody Features (LSWFs) in Jackson County, MI as 
measured through aggregated longest-dimension Euclidean distance of LSWFs per km2. 
 
To further illustrate these findings, we generated a county-level map displaying the average 

distance of LSWFs per km² across the study area (example shown in Figure 4, all counties 

shown in Chapter 2, Figure 8). This map highlights regions with exceptionally high or low LSWF 

densities, much like graphics presented in Burke et al. (2019), providing a spatially explicit view 

of distribution patterns. For example, counties with extensive forested land cover or LSWF 

presence would directly exhibit lower LSWF densities. However, they would still have higher 

average densities of LSWFs than a predominantly forested county. In contrast, counties with 

mixed land use or significant riparian networks display higher densities. 
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Table 1: Total summary statistics on extracted LSWF datasets for all study counties, with 
metrics for average LSWF dimensions shown. All units for length and average width are 
measured in meters. 

Count 
(n) 

Mean 
LSWF 
Length 

Median 
Length 

Length 
st. dev. 

Length 
IQR 

Mean 
Avg 
Width 

Median 
Avg 
Width 

Avg 
Width st. 
dev. 

Width 
IQR 

137055 185.5 154.5 107.4 101.7 16.09 15.36 5.71 7.54 

 
 

Figure 5: (Left) Same 0.6 m-resolution extracted land cover as shown above, with contiguously 
forested areas in teal and ToFs in pink. The box represents the inset shown on the (right). The 
inset details the final extracted segmented LSWF features within Jackson County, MI, as shown 
in yellow. Note how the separation of LSWF polygons at L, T, and X-shaped vertices allows for 
enhanced individual and summary assessments of the structure of LSWFs. This also illustrates 
the effectiveness of the shrink-expand and shape-based refinement methods in isolating 
forested or woodlot areas from LSWFs, such as windbreaks and narrow riparian buffers. 
 
Identifying and mapping LSWFs at a sub-meter resolution opens opportunities for their targeted 

integration into land management practices where they are not currently present, including 

windbreak establishment, erosion control, and wildlife corridors. The results align with findings 

by Deng et al. (2023), which demonstrated the efficacy of shape-oriented methods in detecting 

narrow, linear, woody features. However, this study's improved SNFI thresholds and 
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segmentation approaches provide greater precision in mixed agricultural and forested 

landscapes, addressing a limitation noted in earlier studies. Additionally, the incorporation of 

moving-window and Voronoi-based splitting methods distinguishes this work by offering 

enhanced individual feature metrics, which can be summarized, surpassing the capabilities of 

traditional pixel-based methods (Liknes et al., 2017; Sarti et al., 2021; Deng et al., 2023; 

Luscombe et al., 2023). By quantifying the spatial extent and structural characteristics of 

LSWFs, this study provides foundational data to inform AF planning and policy development. 

1.4.1 Accuracy Assessment of LSWFs  

Table 2: Raw accuracy metrics on model performance in SW Jackson County, MI 
Metric Value (count) % 

Total Evaluated Area (LSWFs identified by model) 2,920 – 

True Positive Count (Correctly identified LSWFs) 2,609 92.36% 

False-Negative Rate (Omission Rate, LSWFs missed) 321 10.96% 

False-Positives (Non-LSWFs incorrectly classified as LSWF) 311 10.65% 

Producer’s Accuracy 2,609 / 2,930 89.0% 

User’s Accuracy 2,609 / 2,920 89.2% 
 
Table 2 summarizes the raw accuracy metrics for the automated LSWF (linear small woody 

features) detection workflow in southwestern Jackson County, MI. Based on the validation 

dataset, 2,609 LSWFs were correctly identified out of 2,930 total validated (reference) LSWFs—

resulting in a producer’s accuracy of 89.0%. Of the 2,920 LSWF features identified by the 

model, 2,609 were correctly classified—yielding a user’s accuracy of 89.2%. The model missed 

321 LSWFs, corresponding to an omission rate of 10.9%. In addition, 311 areas that were not 

LSWFs were incorrectly classified as LSWFs, which, when estimated as a proportion of the total 

predicted positives, gives an alternative false-positive “rate” of 10.65%. 

In the verification area, the cumulative length of correctly detected LSWFs (true positives) is 

523,607.79 m, and when combined with an estimated false-negative length of 60,238.9 m 

(derived from 311 missed LSWFs at the average LSWF length from the accuracy assessment), 



26 
 

the total expected ground-truth length is 583,846.69 m. This results in a LSWF length-matching 

rate (as used in Deng et al. 2024) of 89.7%. 

Table 3: Estimated error matrix for LSWFs in Jackson County, MI, verification area. 

 Reference LSWF Reference Non-LSWF Total 

Mapped as LSWF 2,609 311 2,920 

Mapped as Non-LSWF 321 ≈2,607 ≈2,928 

Total 2,930 ≈2,918 ≈5,848 

The model predicted 2,920 positives (of which 2,609 were true positives and 311 were false 

positives). The reference positive count is 2,930 (2,609 true positives plus 321 false negatives). 

By assuming that the traditional FP rate (FP divided by FP plus true negatives) is equivalent to 

the estimated 10.65%, we solve for the true negatives, which yields about ≈2,607. This leads to 

an estimated reference negative count of ≈2,918 and a total sample size ≈5,848. With these 

values, the overall model accuracy is approximately 89.2%, and Cohen’s kappa is estimated to 

be around 0.78, indicating robust performance with strong concordance to the ground-truth 

data. 

1.4.2 Automated LSWF Detection for Land Management and Conservation 

Automated detection of LSWFs offers substantial advantages for both agroforestry planning and 

ecological restoration, as discussed further in 1.6.1. Advanced geospatial tools enable a 

detailed assessment of windbreaks and riparian forest buffers across entire watersheds. 

Riparian buffers are most effective when implemented across a watershed, as isolated buffers 

on a few farms have limited potential to enhance water quality. This issue is well documented in 

regions like the Chesapeake Bay, where fragmented buffer implementation has constrained 

measurable improvements. The integration of automated LSWF mapping allows for the 

identification of watersheds that exhibit the greatest need for buffer establishment, thereby 

guiding more impactful conservation strategies. Windbreaks also benefit from a landscape-scale 

approach. Widespread deployment across contiguous agricultural areas reinforces protection 
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against wind erosion and creates more reliable microclimatic conditions. This comprehensive 

perspective enhances both environmental resiliency and agricultural productivity by linking 

fragmented features into coherent, functional networks. 

Automated mapping in the Great Lakes Region, where agricultural and forested landscapes 

frequently intersect, provides stakeholders with actionable information to support sustainable 

land-use practices. Specifically, the ability to identify and evaluate AF features such as 

windbreaks and riparian zones enables more strategic decision-making for: 

• Land Management Practices: Automated detection assists farmers and land managers 
in pinpointing areas suited for windbreak installation and in targeting degraded regions 
for buffer restoration. 

• Policy Development: Local governments and conservation agencies can leverage 
detailed LSWF datasets to establish incentive programs for AF adoption and to refine 
land-use regulations. 

• Ecological Restoration: Comprehensive LSWF mapping facilitates landscape-scale 
restoration by identifying corridors and reconnecting fragmented habitats. 

In conclusion, the model outputs and methodologies presented in this study illustrate the 

transformative potential of automated LSWF detection for land management and conservation. 

Integrating these findings into broader planning frameworks empowers stakeholders to promote 

sustainable land-use practices while enhancing the ecological integrity of the Great Lakes 

Region. 

1.5 Challenges and Limitations 

While this study's results demonstrate the potential of automated methods for mapping linear 

small woody features (LSWFs), several challenges, limitations, and potential improvements or 

modifications to methods should be acknowledged. 

1.5.1 Computational Constraints 

The high-resolution nature of the datasets, with resolutions of 0.6m and 0.3m, demanded 

significant computational resources for preprocessing, training, and analysis. While effective, 

the CNN-based land cover product, shrink-expand method, and Voronoi-polygon-based 

refinement processes are computationally intensive, particularly when applied to large spatial 
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extents at very high resolutions. These constraints can limit the scalability of the methodology 

for broader applications without access to high-performance computing resources. However, 

resources may be warranted to produce high-resolution land cover data products for precision 

conservation. 

1.5.2 Landscape-Specific Errors 

The model's performance varied across different landscapes, with errors primarily occurring in 

areas with dense overlapping vegetation or mixed land-use contexts. For instance, clusters of 

trees in urban or peri-urban areas were sometimes carried through the analysis as LSWFs, as 

the groups in final datasets usually form a ‘linear’ tree canopy grouping. The most common 

misclassification in the land cover dataset was in very green or deep green agricultural fields, 

which were infrequently improperly classified as water surfaces (much like a duckweed- or 

algae-covered pond). However, this did not impact the tree canopy classification, which was 

used for LSWF outputs. At the same time, sometimes very narrow, relatively minimal woody 

features occasionally fail to meet the size, SNFI, or sinuosity thresholds (see 1.5.7). 

1.5.3 Improvement in the Shrink-Expand Method 

For an additional future analysis to address potential forest gaps and ensure more 

comprehensive masking of contiguous forested areas, an initial expansion of 10 to 20 linear feet 

could be applied to the tree canopy raster before the shrink-expand process (feet are used in 

this filter to align with FIA units). This preliminary step effectively bridges small gaps within 

forested regions, enhancing the accuracy of delineating contiguous forested polygons. 

Following this initial expansion, the subsequent shrink and expand process would have a 

carried over transformation to include the initial 60 feet shrink plus the additional 10 to 20 feet 

expansion, and the expansion step would incorporate the same initial adjustment, with a final 

tree canopy class expansion of approximately 72 to 84 feet (20% more than the ‘shrink’). 
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1.5.4 Constraining Segmentation of Polygons 

Most LSWFs are spatially independent of each other unless they were directly connected as 

part of an LSWF network. Therefore, the centerlines of LSWF features are significantly far apart 

from any other part of an LSWF. There were a handful of exceptions where a centerline used for 

the ToF segmentation would pull a small piece (i.e., a ‘sliver’ or ‘shard’) of another adjacent 

windbreak not directly connected to an LSWF network. Methods to constrain the Voronoi 

drawing process could be implemented to fix these errors, or methods to reconnect the small, 

infrequent separated pieces could improve full output quality. 

1.5.5 Misidentification of Irrelevant LSWFs 

Some LSWFs are not agriculturally or ecologically relevant and can contribute to the 

misattribution of all LSWFs to have agricultural or ecological significance. Future work should 

include filtering considerations for LSWFs in urban and suburban areas to better control for 

misattribution. A simple way to incorporate an urban or suburban filter within the US would be to 

remove LSWFs within census-designated places, developed commercial or residential areas. 

Furthermore, future work should have additional filtering considerations for common landscape 

features with LSWFs. For instance, within the upper Midwest, golf courses and cemeteries have 

LSWFs that meet the filter criteria to be included as LSWFs in our final dataset, but often do not 

contribute to agricultural or functional relevance. 

1.5.6 Dependence on High-Resolution Data 

The dependency on high-resolution NAIP imagery limits the study's ability to replicate similar 

findings to areas without such datasets. While the resolution of 0.6m and 0.3m imagery enabled 

the detection of fine-scale features, the availability and cost of acquiring similar high-resolution 

datasets for other regions may hinder the broader adoption of this methodology. Implementing 

these methods with satellite imagery and other imagery sources (either at slightly lower 

resolutions or other high-resolution sources) with global coverage may be feasible. 
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1.5.7 Incorporation of Belt-oriented Connections 

Deng et al. (2024) and Wolstenholme et al. (2025) describe methods to connect disconnected 

sections of LSWF belts, thereby improving the completeness of a dataset that may contain 

disconnected linear features or appear as a ‘dashed’ line rather than a continuous one. 

Incorporation of methods to connect otherwise disconnected features could identify additional 

LSWFs that may act as partially effective windbreaks, riparian buffers, or other functional AF 

features. Many partially effective linear woody features in our exhaustive dataset may have 

been removed due to the filtering constraints, which exclude features with a total length of less 

than 100 m or a lack of elongation along an axis. While these may not be considered in our 

final, full dataset, the gaps in canopies from imagery at such a high resolution likely mean they 

would not be regarded as a significant or fully effective, intensive AF feature by the definition 

used for this study. However, it would be interesting to evaluate the presence of partially 

effective or partially filled LSWF features, as they could be LSWFs that were established 

recently or are in succession. 

1.6 Further research 

In this study, we mapped LSWFs in diverse agricultural and forested landscapes, where smaller 

features (though not smaller than 100 m in length) could be captured and tabulated for analysis. 

This approach builds on prior studies by developing a robust, high-resolution mapping 

methodology tailored to the specific characteristics of the Great Lakes Region's heterogeneous 

landscapes, which are typified by fragmented forest patches, diverse land management (both 

forested and agricultural), and a mix of agricultural and natural land cover configurations. 

Recognizing the ecological and structural complexity of Linear Woody Canopy Features 

(LWCFs) such as windbreaks, our study focuses on adapting and enhancing convolutional 

neural network (CNN) methodologies to handle the region’s distinctive landscape features, filling 

a critical gap in region-specific automation for LSWF identification. 
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Running the model across the remaining counties in the Great Lakes Region would allow for a 

comprehensive estimate of LSWFs across the study area. This broader analysis would offer a 

more exact quantification of features and provide additional context for understanding regional 

LSWF presence, and, with additional validation, AF practices. Furthermore, integrating other 

land cover data sources or machine learning methods into the validation process would 

generally strengthen LSWF detection. 

Future research could benefit from integrating additional datasets, such as LiDAR or 

hyperspectral imagery, to capture finer details of canopy structure (such as fill) and health. 

Similarly, incorporating socio-economic data, such as landowner management practices or 

conservation program participation, would provide a richer context for understanding the drivers 

of LSWF distribution. These advancements would enhance detection accuracy and facilitate 

targeted interventions tailored to regional needs. 

Expanding this approach to entirely different states or landscapes, such as arid regions, 

forested mountainous areas, or highly urbanized environments, would test the model's 

robustness and scalability. These additional trials would provide invaluable insights into its 

applicability for various ecological and AF challenges. Future research should focus on 

extending the developed methodology to landscapes beyond the Great Lakes Region to 

evaluate the model's generalizability. Testing the model in regions with differing vegetation 

structures, agricultural practices, or environmental conditions would provide critical feedback on 

its adaptability and reliability. 

1.6.1 Implications for Policy and Management 

This study's findings and methodologies contribute significantly to the growing body of 

knowledge surrounding small woody features and land management. By providing a reliable 

and scalable approach for detecting and analyzing LSWFs, this work supports efforts to 

advance ecological policymaking at both regional and national levels. With a complete dataset 

on the presence of LSWFs, policymakers can leverage these findings to develop or refine 
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conservation incentives, land-use regulations, and AF support programs that emphasize the 

ecological benefits of LSWFs. 

The detailed LSWF maps produced by this study could serve as baseline datasets for 

monitoring AF adoption within programs like the USDA's Conservation Reserve Program or 

other regional conservation initiatives. Furthermore, such maps could be incorporated into 

incentive structures, such as payments for ecosystem services, where farmers and landowners 

are compensated for maintaining or restoring LSWFs that provide critical ecological functions. 

Moreover, the model demonstrates considerable potential as a tool for sustainable forestry 

management and AF development. Its integration into state or regional environmental technical 

support systems could streamline land management operations, enabling decision-makers to 

identify priority areas for windbreak restoration, riparian buffer establishment, and biodiversity 

corridor enhancement. With further refinement, this methodology could become a cornerstone 

of data-driven AF initiatives, fostering more sustainable and resilient landscapes. 

1.7 Conclusion 

This study demonstrates the potential of automated detection methods for mapping Linear 

Small Woody Features (LSWFs) in the Great Lakes Region. We developed a scalable 

methodology capable of identifying LSWFs with exceptional precision by leveraging high-

resolution aerial imagery and advanced convolutional neural networks. Incorporating innovative 

segmentation techniques, such as shape-oriented indices and Voronoi-based feature splitting, 

enabled a nuanced analysis of LSWF structure and connectivity across diverse landscapes. 

These advancements address longstanding challenges in AF mapping, including limitations in 

detecting smaller, fragmented features and achieving consistent classification across variable 

land-use patterns. 

The findings underscore the ecological and agricultural significance of LSWFs, highlighting their 

role as critical elements of sustainable land-use practices, from erosion control and habitat 

connectivity to windbreak establishment. Beyond immediate applications, this study’s 
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methodology provides a robust framework for scaling automated LSWF detection to broader 

regions and integrating it into AF planning, conservation policies, and ecological restoration 

efforts. While data dependency and computational intensity persist, future research 

incorporating additional datasets and adaptive modeling techniques can enhance the 

methodology's scalability and applicability. This work lays the foundation for data-driven 

strategies to support resilient AF systems and sustainable landscapes by bridging technological 

innovation with actionable insights. 
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APPENDIX A - Supplemental Data 
Table 1.9.A1: Raw counts and summary statistics  of LSWFs in each exhaustively surveyed 
county across the study area. All numerical units are in meters unless otherwise noted. 

County ST Count 
(n) 

Mean 
LSWF 
Length 

Median 
Length 

Length 
st. dev. 

Length 
IQR 

Mean 
Avg 
Width 

Median 
Avg 
Width 

Avg 
Width 
st. dev. 

Width 
IQR 

Alpena MI 1833 169.9 144.2 95.4 88.1 15.83 14.78 6.23 8.18 
Athens OH 2999 182.7 149.5 110.4 98.1 16.37 15.52 5.65 7.43 
Auglaize* OH 1997 209.2 166.2 138.9 124.3 14.28 13.27 6.02 8.22 
Bayfield WI 1719 175.6 149.3 98.0 91.1 17.53 16.72 6.50 8.92 
Berrien MI 4962 193.1 156.9 118.7 109.8 16.25 15.62 5.68 7.50 
Chippewa MI 2449 179.1 149.2 115.6 96.2 16.40 15.83 6.02 8.35 
Clark WI 3588 171.9 145.4 91.7 90.3 14.85 13.90 5.75 8.05 
Columbiana OH 4652 180.1 151.8 108.9 95.1 16.14 15.39 5.40 7.15 
Crawford OH 2354 200.8 165.0 121.2 119.9 14.26 13.42 5.52 7.29 
Defiance OH 2862 222.9 178.5 147.3 145.7 14.40 13.18 6.01 7.92 
Door WI 3000 174.3 146.5 89.6 92.6 15.86 14.54 6.11 7.57 
Green Lake WI 2847 184.2 156.8 95.1 104.8 17.08 16.35 5.47 7.22 
Hamilton OH 5556 213.7 165.8 152.1 131.5 17.10 16.19 6.32 8.25 
Houghton MI 1500 168.3 143.2 96.0 84.6 16.08 15.31 5.52 7.56 
Holmes OH 3716 177.7 150.5 92.3 98.1 15.56 14.69 5.77 7.34 
Huron MI 2953 176.9 148.8 98.9 95.3 13.26 12.09 6.00 8.08 
Iowa WI 3619 183.3 152.0 105.1 102.1 16.92 16.14 6.03 8.29 
Isabella MI 3751 177.8 152.2 91.5 93.8 15.41 14.77 5.49 7.50 
Jackson MI 9568 185.7 160.7 95.2 99.7 16.83 16.27 5.00 6.66 
Kent MI 7711 178.5 150.9 95.0 95.7 16.80 16.17 5.41 7.29 
Knox OH 6220 191.5 160.9 107.7 107.8 15.29 14.56 5.44 7.12 
Leelanau MI 1661 171.3 146.8 88.5 90.0 16.00 15.12 5.86 7.97 
Licking OH 8305 193.8 159.6 120.2 107.1 15.40 14.73 5.28 6.90 
Marquette WI 2676 179.1 153.7 92.0 98.6 16.84 16.13 5.83 7.78 
Mecosta MI 3058 166.9 145.1 79.9 80.0 16.40 15.67 5.59 7.56 
Montcalm MI 5572 181.5 154.5 95.4 95.1 16.38 15.65 5.31 6.80 
Oceana MI 2381 176.3 150.8 92.1 91.0 15.89 15.21 5.61 7.57 
Oneida WI 2301 184.8 152.8 109.0 101.5 18.08 17.59 6.28 8.52 
Ozaukee WI 2752 184.0 152.5 101.0 98.6 16.43 15.61 5.71 7.19 
Richland WI 3384 185.1 156.7 99.1 105.0 17.43 16.74 5.61 7.49 
Sauk WI 5165 187.3 158.3 101.1 107.8 16.87 16.10 5.69 7.55 
Shawano WI 3611 168.2 143.5 83.0 86.4 15.63 14.78 5.49 7.22 
Vernon WI 4209 180.6 152.0 98.8 99.4 17.25 16.61 5.43 7.27 
Wayne OH 5314 187.9 154.6 111.7 105.2 15.14 14.48 5.40 6.93 
Warren OH 6810 195.6 159.6 120.2 108.8 15.59 14.92 5.60 7.29 

TOTALS  137055 185.5 154.5 107.4 101.7 16.09 15.36 5.71 7.54 
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APPENDIX B - Measurements used in Methods/Accuracy Assessment 
Line Straightness Index (LSI) 

Two common formulations capture “straightness” of a line: 
(a) Global Straightness 
A simple measure is the ratio of the straight-line (Euclidean) distance between the endpoints to 
the actual path length L: 

 

A perfectly straight line gives LSI=1; any deviation (for example, a 90° bend) will reduce the 
value. 
(b) Localized (Moving Window) Straightness 
If one wishes to capture local bends (e.g., detecting near 90° angles), one can use the deviation 
at each vertex. Let θi be the internal angle at vertex i (with 180° representing no bend). Then, 
over n vertices the index can be defined as: 

 

In this formulation, a vertex with θi = 180° (perfectly straight) contributes 1, while a 90° bend 
contributes 0. 
 
Original Morphological SNFI (Liknes et al. 2017) 
In the original paper the SNFI is calculated using a hit-or-miss morphological erosion applied to 
a binary tree-cover map. Two different structuring elements are used: 

● A horizontal kernel (of size 1×m) 

● A vertical kernel (of size m×1) 

● Let  be the zonal sum (i.e. count of remaining foreground pixels) after 

horizontal erosion, and 

●  be the zonal sum after vertical erosion. 

Then the index is defined as: 
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Interpretation: 
● For a zone that is narrow in the east–west direction (i.e. elongated north–south), the 

horizontal erosion removes fewer pixels than the vertical one, so Sh > Sv and SNFI 
approaches +1. 

● Conversely, if the feature is oriented east–west, SNFI tends toward –1. 
 
Bounding Box–Based SNFI 
In this chapter an alternative (and computationally efficient) method was implemented using the 
axis-aligned bounding box of a feature. Let the bounding box be defined by its minimum and 
maximum coordinates: 

● xmin, xmax (horizontal extent) 
● ymin, ymax (vertical extent) 

Define: 
W = xmax − xmin , H =  ymax − ymin 
Then a bounding box–based SNFI is given by: 

. 

Interpretation: 
● A feature that is taller than it is wide (i.e. north–south oriented) will have H > W and yield 

a positive SNFI value (near +1 if very elongated). 
● If the feature is wider (east–west oriented), the index will be negative (approaching –1). 

 
Axis-Based (Oriented) SNFI 
For a more refined, rotation–invariant measure we first compute the oriented (or minimum) 
bounding box by rotating the feature to align its principal axis with a reference direction. Let: 

● L be the length of the oriented (long) side, and 
● W' be the length of the short side. 

Then one formulation is: 

 
Alternatively, if the principal orientation angle θ is obtained from a principal component analysis 
and is measured from the north–south direction, then an equivalent trigonometric formulation is: 

 

Interpretation: 
● When θ = 0° (i.e. the feature is aligned north–south), cos(0)=1. 
● When θ = 90° (east–west orientation), cos(180°) = −1. 
● This formulation is isotropic in that it removes the effect of the original image coordinate 

system. 
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Modified WSI 
As represented in Liknes et al. (2017), the original windbreak sinuosity index is calculated by 
comparing half of a zone’s perimeter (which approximates a “half-circumference”) to the 
Euclidean distance across the zone’s bounding box. In our work, we refer to this as the modified 
WSI. Using the bounding box defined by its minimum and maximum x- and y-coordinates xmin, 
xmax and ymin, ymax, the modified WSI is given by: 

 
Where: 

● P is the perimeter of the zone (i.e. the contiguous patch of tree cover), and 
● The denominator is the diagonal length of the zone’s axis–aligned bounding rectangle. 

Interpretation: 
● This index tends to be higher for a compact or square-like feature (for example, a square 

might yield a WSI around 1.4). 
● As the feature becomes more elongated (with the diagonal length approaching the 

length of the feature), the index decreases toward 1. 
● Values above about 1.4 suggest more irregular or curvilinear borders. 

 
Omission Rate 
The omission rate (also called the false-negative rate) is the proportion of ground-truth features 
that the model missed. Using counts, it is expressed as: 

 

It can also be calculated using cumulative lengths if preferred. 
Length Matching Rate 
This metric compares the cumulative length of correctly detected (true positive) features LTP to 
the total “ground-truth” length (true positives plus the estimated length of missed features, LFN: 

 

For example, if 523,608 m are detected (TP) and 60,239 m are missed (FN), the matching rate 
is about 89.7%. 
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APPENDIX C - Full LSWF Extraction Methods Flowchart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.11.AC1: Full methods to extract LSWFs from imagery, including specific parameters 
set for the model at various stages. 
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Chapter 2: Evaluating Data Products to Better Understand LSWF 
Presence and Morphology in the Great Lakes States  
Objectives: 

● Evaluate the effectiveness of CNN-derived land use/land cover products for identifying 
LSWFs in the Great Lakes states. 

● Compare high-resolution outputs against traditional datasets (NLCD, Sentinel imagery, 
Dynamic World) to assess spatial detail and accuracy improvements. 

● Analyze spatial patterns and morphological characteristics of LSWFs to reveal regional 
agroforestry trends. 

● Provide insights to guide precision conservation and land management strategies based 
on refined LSWF assessments. 

 
2.0 Abstract 

This chapter examines the effectiveness of machine learning-derived land use and land cover 

products for mapping linear small woody features (LSWFs) in the Great Lakes region. The study 

evaluates convolutional neural network outputs against conventional datasets, including the 

NLCD, Sentinel imagery, and Google Earth Engine’s Dynamic World product. Spatial pattern 

analysis, morphological assessments, and predictive modeling were applied across 35 counties 

in Michigan, Wisconsin, and Ohio to characterize agroforestry-related features such as 

windbreaks and riparian buffers. Findings show that the CNN-derived products capture fine-

scale details and delineate complex forest connectivity more accurately than traditional 

methods. The enhanced resolution supports improved conservation planning, identification of 

agroforestry extent and possibility, and informed decision-making, and it lays the groundwork for 

further integration of advanced machine learning techniques into regional LULC assessments. 

2.1 Introduction 

2.1.1 Background 

Accurate land use and land cover (LULC) mapping is foundational for sustainable landscape 

management, particularly in mixed-use regions where agriculture, forestry, and conservation 

intersect. In conservation planning, precision in mapping is crucial to delineate linear small 
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woody features such as windbreaks and riparian buffers that support ecosystem services, 

biodiversity, and climate resilience (Rubio-Delgado et al., 2024; Jose, 2009; Scholefield et al., 

2016). Precision agriculture and forestry rely on such detailed LULC data to optimize resource 

use while balancing ecological integrity. 

In the Great Lakes region, agroforestry (AF) practices like windbreaks and riparian buffers are 

pivotal in stabilizing landscapes and enhancing ecosystem services. Windbreaks, typically linear 

woody features abutting agricultural fields, roads, railroads, and parcel boundaries, provide soil 

stabilization and microclimate regulation, while woody riparian buffers mitigate nutrient runoff 

and enhance water quality, aligning with USDA AF definitions (Smith et al., 2022; Fortier et al., 

2016; Liknes et al., 2017). Accurate mapping of these features using advanced remote sensing 

and geospatial analysis is essential for their effective management and scaling (Patriarca et al., 

2024; Deng et al., 2023). 

Integrating AF within landscape-level planning and support has enhanced agricultural 

sustainability and ecosystem function. Yet, the identification and mapping of small woody 

features (SWFs), such as windbreaks or riparian forest buffers, have historically been 

underrepresented in LULC studies within the U.S., especially in regions with fragmented 

landscapes (Rubio-Delgado et al., 2024; Liknes et al., 2017; Aksoy et al., 2010). The 

development of tools and data products like the Chesapeake Bay Program’s high-resolution, 

high-accuracy LULC datasets exemplifies progress in addressing these gaps, enabling better 

tree canopy feature classification and conservation planning (Deng et. al., 2022; Claggett et al., 

2022; Bolyn et al., 2019). 

Recent studies employing remote sensing and geospatial techniques have highlighted LSWFs’ 

ecological importance and role in mitigating anthropogenic pressures on landscapes (Patriarca 

et al., 2024; Deng et al., 2023). Emergent tools like AgBufferBuilder demonstrate how 

collaborative design and incorporation of woody features can optimize conservation outcomes 

for these features within mixed-use agricultural regions (Oelschlager, 2023). 



46 
 

With ongoing advancements in remote sensing and machine learning, there is increasing 

potential to enhance the accuracy and applicability of LULC datasets for AF planning. The body 

of work on AF highlights that achieving these benefits is possible with technical innovation and 

policy support to integrate LULC data into decision-making frameworks and support tools. There 

is a fundamental gap between estimates of LSWFs, realized values of LSWFs through 

exhaustive remote sensing, and actual validation of AF practices on the ground. Relying on 

remote sensing or survey-based methods in isolation to quantify the presence of AF will always 

have numerous inherent imperfections. Studies such as those by Lovell et al. (2021) and Garcia 

de Jalón et al. (2018) stress the importance of participatory approaches in AF design, ensuring 

that these features are both ecologically robust and socio-economically viable. 

Various methods have been developed to quantify and measure the presence and significance 

of LSWFs, such as windbreaks and riparian buffers, in AF landscapes. These features have 

been assessed using high-resolution remote sensing, geospatial tools, and field-based 

observations. Emerging approaches increasingly leverage machine learning (ML) to enhance 

accuracy and efficiency in mapping LSWFs (Trivedi et al., 2024; Sharma et al., 2023). 

Integrating ML enables identifying and classifying LSWFs from high-resolution satellite imagery, 

aiding detailed landscape-level planning and management (Trivedi et al., 2024; Ellis et al., 

2005). 

Quantifying windbreaks’ spatial extent and ecological functions often involves remote sensing 

and field validation. Recent studies have utilized high-resolution aerial imagery and object-

based image classification techniques to delineate windbreak structures in rural landscapes, 

offering improved precision over pixel-based methods (Meneguzzo et al., 2013; Bolyn et al., 

2019; Sarti et al., 2021; Deng et al., 2023). Advances in large-eddy simulation modeling further 

underscore windbreaks' ability to reduce soil erosion, highlighting their physical and 

environmental significance within agricultural systems (van Ramshorst et al., 2022). 

Additionally, geospatial tools such as GIS-based models provide valuable insights into the 
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functional attributes of tree belts, enhancing their integration into rural landscape planning 

(Nowak & Pędziwiatr, 2018). 

Riparian buffers, another vital component of AF systems, are critical for reducing nutrient runoff, 

stabilizing streambanks, reducing flood debris from being deposited on crop fields, and 

improving water quality. Their quantification often involves multispectral and hyperspectral 

remote sensing to detect vegetation types and assess spatial patterns along waterways (Sarti et 

al., 2021; Rizvi et al., 2020). Recent innovations in geospatial technologies have allowed for the 

creation of detailed maps to support the operational management of woody riparian buffers in 

rural landscapes (Bolyn et al., 2019; Malkoç et al., 2021). For instance, deploying Sentinel-2 

imagery at 10 m spatial resolution has proven effective in identifying trees outside forests, 

enabling large-scale mapping of riparian buffers (Sarti et al., 2021). Research integrating 

multitemporal analysis has also been noted as a tool to monitor changes in riparian zones, 

providing critical data for long-term conservation and management strategies (Plieninger, 2012), 

although most of these studies occur outside North American contexts. 

The continued refinement of methodologies for mapping and quantifying LSWFs is essential for 

understanding their roles within AF systems. Integrating technologies such as ML, GIS, and 

high-resolution imagery enhances mapping accuracy and contributes to precise, sustainable 

landscape management. For example, tools developed to analyze AF systems in Europe have 

demonstrated the scalability of these methods for global application, underscoring the 

importance of interdisciplinary approaches in capturing the complexity of LSWFs (Rubio-

Delgado et al., 2024; Englund et al., 2021). These advancements provide robust datasets for 

assessing ecosystem services and ensuring that AF features are effectively recognized, 

managed, and preserved within diverse landscapes. 

2.1.2 Research Gap and Objectives 

Despite the extensive utility of traditional datasets like the National Land Cover Database 

(NLCD) and Sentinel imagery in LULC mapping, they face significant limitations in capturing 
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small-scale features such as LSWFs like windbreaks and riparian buffers. These datasets often 

lack the spatial resolution or classification granularity required to delineate and assess these 

narrow but ecologically critical features accurately. For example, the NLCD's coarse resolution 

can misclassify or omit small-scale woody features, leading to an underrepresentation of their 

spatial extent and ecological importance (Sharma et al., 2023; Meneguzzo et al., 2013). 

Similarly, while Sentinel imagery offers 3x higher resolution, its standard classification schemes 

are not tailored to agroforestry-specific applications, leaving gaps in feature detection and 

mapping precision (Sarti et al., 2021). These limitations hinder the effective integration of 

LSWFs into conservation and landscape management practices. 

Recent advancements in machine learning, particularly convolutional neural networks (CNNs), 

offer a promising avenue for improving LULC data granularity. CNNs have demonstrated 

remarkable success in extracting complex spatial patterns from high-resolution imagery with 

limited band context, enabling the identification of features as small as individual trees or narrow 

tree segments. By leveraging multi-spectral data and advanced image segmentation 

techniques, CNNs can address traditional datasets' scale and classification gaps. Studies 

integrating higher-resolution satellite products, such as Sentinel-2, have shown potential for 

enhancing the detection of AF components, providing datasets that are more accurate and 

ecologically relevant (Trivedi et al., 2024; Bolyn et al., 2019). These methods improve feature 

delineation and enable spatial analysis of previously overlooked components in mixed-use 

landscapes, often referenced within precision conservation and land management contexts. 

The primary objectives of this research are threefold. First, it seeks to analyze spatial patterns of 

windbreaks using CNN-derived products to demonstrate the advantages of ML in detecting and 

characterizing LSWFs. Second, it aims to compare CNN outputs with traditional datasets, such 

as NLCD, Sentinel LULC products, and Google Earth Engine’s Dynamic World, to evaluate the 

classification accuracy and resolution improvements. Third, the research highlights the 

ecological and conservation relevance of high-resolution LULC data by connecting detailed 
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feature mapping to broader ecosystem services, including soil conservation, biodiversity 

enhancement, and climate regulation. By addressing these objectives, this study contributes to 

advancing LULC mapping methods and underscores the necessity of incorporating high-

resolution datasets into AF planning and management frameworks. 

2.2 Study Area and Data Sources 

2.2.1 Study Area 

The study area extends across 35 counties in Michigan, Wisconsin, and Ohio, selected to 

represent the diverse land-use patterns characteristic of the Great Lakes region. The total area 

evaluated directly from imagery for the study is roughly 60,187 km2, or 23,238 mi2. This is 

approximately the size of the US state of West Virginia, the country of Ireland, or, locally, the 

water surface area of Lake Michigan. The Great Lakes region is an ideal setting for studying 

different types of identifiable LSWFs due to its unique mixed-use landscape, comprising 

agricultural fields, forests, residential/developed zones, and riparian corridors with a history of 

use for agriculture, forestry, and urban development. AF practices, such as windbreaks and 

riparian buffers, are particularly prominent in this region and some selected counties for 

analysis, according to results from the 2022 Census of Agriculture, playing essential roles in 

mitigating environmental challenges like soil erosion and nutrient runoff while supporting 

biodiversity and providing ecosystem services. 
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Figure 1: 35 counties used for LSWF analysis across Michigan, Wisconsin, and Ohio. The three 
counties used for the LCC validation are highlighted here. 
 
This selection of counties includes both contiguous and spatially diverse regions to capture a 

broad spectrum of land-use transitions. For example, the counties feature a range of dominant 

agricultural activities, from row-crop production (corn, soybeans, wheat) to forage (alfalfa, hay) 

and specialty tree crops (e.g., cherries, apples). Additionally, largely urban and urban-fringe 

counties, such as Hamilton County, OH, Kent County, MI, and Ozaukee County, WI, provide 
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examples of potential AF practices implemented within more developed landscapes, highlighting 

the versatility of LSWFs in diverse settings. This ensures that findings can be extended to a 

broader landscape analysis across the Great Lakes states. 

Further steps of the analysis extend the findings from the 35 study counties to all three states, 

where the 35 selected counties account for roughly 11.2% of the area of all three states put 

together (536,221 km2, 207,036 mi2). 

2.2.2 Datasets 

The analysis leverages a combination of derived, novel, and traditional datasets to 

comprehensively understand LSWFs and their distribution. The primary dataset is a CNN-

derived LULC product with sub-meter resolution (detailed in Chapter 1), providing 

unprecedented detail in identifying small-scale woody features. Several comparison datasets 

complement this high-resolution dataset to assess accuracy and applicability across varying 

spatial resolutions in the discussion: 

● NLCD: The National Land Cover Database offers baseline LULC classifications but 
struggles to capture fine-scale features like LSWFs due to its coarse resolution. 

● Sentinel 10m: Sentinel imagery provides higher resolution and multispectral capabilities 
but is limited by classification granularity. 

● Dynamic World 10m: This emerging dataset on Google Earth Engine, powered by 
machine learning, offers global, near-real-time LULC classification and serves as a 
benchmark for comparison. 

 
For validation purposes, ground-truthed data consisting of human-verified reference points from 

imagery were collected within three targeted counties, Clark County, WI, Jackson County, MI, 

and Wayne County, OH. 

The predictive random-forests LSWF analysis used the NLCD Land Cover (LndCov) layer and 

Fractional Impervious Surface (FctImp) layer, a bicubic-interpolated 30 m upscaled product of 

the National Renewable Energy Laboratory (NREL) average annual windspeed at 10 m above 

ground level layer, Cropscape (for specific crop types in categories), and gNATSGO Soil K-

factor as a proxy for soil stability. All layers were spatially aligned with the NLCD products. 
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2.2.3 Features of Interest 

The primary features of interest are LSWFs, often associated with windbreaks, riparian buffers, 

and linear groupings of trees outside forests (ToFs). These LSWFs are critical components of 

the region's typical windbreak or riparian buffers and are essential in enhancing ecosystem 

services, such as mitigating wind erosion, stabilizing streambanks, and supporting biodiversity. 

These features also bolster farm economics; windbreaks protect livestock, crops, and farm 

structures from wind damage, lowering repair costs and contributing to overall operational 

stability. Spatial distribution and ecological functions are analyzed using CNN-derived datasets, 

providing a detailed understanding of their prevalence and significance across diverse 

landscapes. 

This comprehensive dataset allows for a nuanced analysis of LSWFs, highlighting their 

ecological, economic, and social importance and offering insights into their integration within 

broader conservation and land management frameworks. Employing both classical and 

contemporary datasets to provide a comprehensive analysis of the opportunities and challenges 

associated with mapping critical elements within the Great Lakes region. 

2.3 Methods 

2.3.1 LSWF Data Analysis 

The spatial patterns of LSWFs were analyzed to understand their structure and regional 

variation across the Great Lakes study area. The CNN-derived sub-meter resolution dataset 

identified and characterized windbreaks based on their linearity, continuity, and association with 

land-use types such as row-crop agriculture, forage production, and riparian zones. We also 

confirmed the natural distributions of LSWF outputs by measuring the net length and width of 

LSWF features to better assess the quality of outputs and trends in structural characteristics 

from segmented LSWF outputs. The aggregated and summarized orientation of each county’s 

LSWF outputs was evaluated along the longest axis of each LSWF polygon, quantifying 
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predominant trends in the isotropic structure of LSWFs. This analysis provided insights into how 

these features vary across regions, influenced by agricultural practices, topography, and 

proximity to water bodies. To extend this research, connectivity metrics, such as patch 

adjacency and corridor linkage, can be computed to assess the ecological functionality of 

windbreak networks and their potential to support biodiversity and landscape resilience. The 

results can be further contextualized by comparing them to known land cover transitions within 

the study area. 

2.3.2 Comparative Accuracy Assessment 

The performance of the CNN-derived LULC dataset was evaluated against traditional LULC 

datasets, including NLCD, Sentinel imagery, and the “Dynamic World” 10 m land cover product 

developed using the Google Earth engine. To assess general accuracy, we created a stratified 

random sampling set of validation points across all classes in three counties (Jackson County, 

MI, Wayne County, OH, and Clark County, WI), setting at least 1000 points within each county 

and stratifying the accuracy validation points to classes, such that we had evaluated accuracy in 

each derived class sufficiently. We also generate general accuracy estimates for classes and an 

overall kappa statistic for the CNN product to gauge model accuracy likelihood. Additional visual 

assessments were conducted to evaluate performance to show LSWFs, ensuring a 

comprehensive understanding of CNN strengths and limitations compared to the outputs we 

could achieve using conventional LULC products. 

2.3.3 Tree Height Evaluation 

The height of windbreak trees was quantified using final windbreak products from the 

exhaustive dataset and cross-referenced with global 1 m tree height products published by 

Tolan et al. (2024). This integration enabled the detailed assessment of windbreak functionality, 

as height traditionally plays a critical role in LSWFs’ overall structure, maturity, and perceived 

effectiveness for reducing wind erosion (for windbreaks) and enhancing microclimates and 
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agricultural protection/productivity. Pixel-level data were aggregated to produce height 

distributions across the LSWF dataset, which were then referenced with other metrics to identify 

patterns. 

2.3.4 Predictive Modeling 

Predictive models were developed using aggregated outputs from the LSWF dataset to extend 

the findings to non-surveyed regions within the Great Lakes states of interest. Leveraging the 

diversity of the initial 35-county study area, the RF model extrapolated windbreak presence and 

distribution per km2 across broader landscapes, incorporating variables such as land cover type, 

specific crop types, wind speed, and soil erodibility. Predictions were validated against the 

values observed from our exhaustive dataset. This approach allowed for identifying regions with 

potential hotspots or gaps in LSWF coverage, offering actionable insights for conservation 

planning or opportunities for further extensions of the predictive modeling method. 

2.4 Results 

2.4.1 Spatial Pattern Insights 

Evaluation reveals clear patterns of how linear woody features vary across land covers. The 

analysis examines geometric properties and directional tendencies to clarify the relationship 

between these features and their surrounding agricultural and natural landscapes. 

2.4.1.1 LSWF Distribution Across Land Cover Contexts 

LSWFs in the study region are broadly associated with agricultural landscapes and linear 

infrastructure, such as roads, highways, and railways. These correlations align with patterns 

documented in prior studies, where windbreaks and small woody features tend to parallel or 

border human-made corridors such as roads and railways, parcel or field boundaries, or 

waterways and riparian areas. Agricultural expanses in southern or central Michigan and 

Wisconsin and the flatter portions of Ohio exhibit a higher frequency of LSWF occurrences. 

However, counties dominated by extensive forests display reduced counts of LSWF features. 
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Figure 6 illustrates these trends by presenting the distribution of LSWF centroid associations 

with NLCD land cover classes. Cultivated crops and pasture/hay constitute the largest shares, 

mirroring the prevalence of windbreaks and linear woodlots within active farming areas. As 

counties transition from predominantly agricultural to forested land cover, the relative frequency 

of LSWF detections declines, reflecting the reduced need or opportunity for linear woody 

structures in landscapes already characterized by extensive canopy. 

Many LSWFs are “bookended” by large, contiguous woodlots, revealing how linear segments of 

trees can merge with broader forest tracts. This pattern underscores their role in connecting 

managed fields with larger blocks of woody vegetation, a structural characteristic aligned with 

the filtering process outlined in Chapter 1, where contiguous forested areas were excluded 

during the segmentation of LSWFs. 

 
Figure 2: Distribution of LSWF centroid associations according to NLCD land cover classes, 
emphasizing the high incidence of LSWFs in cultivated crops and pasture/hay, along with 
smaller frequencies in forested categories. Bars represent the count of LSWF centroids 
intersecting each NLCD class. 
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2.4.1.2 Summary Statistics Shape Parameters of LSWFs 

The length distribution of LSWFs reveals a strong right-skew (after eliminating 1% of outliers, 

giving us the n = 134446 LSWFs), with the majority measuring under a few hundred meters and 

a long tail extending up to approximately 600 m (Figure 1). Notably, eliminating outliers removes 

a much longer tail of multi-kilometer-long individual LSWFs. However, features of greater length 

would often be broken up via segmentation in the methods explained in Ch. 1, such that this 

representation does not necessarily indicate the extent or impact of more extensive LSWF 

networks. Instead, it often shows the length of individual linear sections of LSWFs in more 

extensive networks or dispersed, standalone LSWFs which are smaller. Preliminary fits suggest 

that the data follow a gamma distribution, reflecting the predominance of shorter linear 

segments in agricultural or semi-urban landscapes. The mean and median lengths are 180.7 

and 154.35 m, respectively, highlighting the prevalence of relatively short features that connect 

or partition fields or run along infrastructure (roads, railroads) and waterways. 
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Figure 3: Frequency histogram of the “Best Length Metric” for LSWFs (n = 134,446). The 
distribution shows a right-skewed gamma pattern, peaking around lower lengths before tapering 
off near 600 m. 
The evaluation of average widths (Figure 4) likewise indicates a gamma-like skew, where most 

LSWFs maintain a narrow profile under 15 m. The highest frequency of widths centers just over 

14 m, coinciding with typical windbreak or small woodlot boundaries observed in the region. 

These findings suggest that LSWFs are typically narrow corridors, though a subset 

demonstrates expanded widths linked to broader riparian zones or field buffers. 

 

Figure 4: Frequency histogram of average width for LSWFs (n = 134,446). Most widths fall 
below 15 m, aligning with narrow windbreaks, hedgerows, and other linear woody features. 
Figure 5 illustrates the relationship between length and shape area, serving as a control to 

confirm that longer LSWFs also accumulate greater area. The hexbin plot shows a general 

upward trend, with clustering in the length and area lower-to-mid range. This pattern likely 

reflects widespread use of windbreaks and other linear features that do not occupy substantial 

surface area compared to larger, more contiguous wooded patches. 
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Figure 5: Hexbin plot comparing “Best Length” and shape area of LSWFs. The upper-right 
quadrant contains fewer but large-area features, while the lower-left quadrant exhibits many 
compact, shorter LSWFs. This graphic and a comprehensive listing of all shapewise 
relationships can be found in the appendix. 
These shape parameter analyses collectively underscore the structural diversity and, likewise, 

trends in the shape characteristics of LSWFs across the study area. The gamma distribution 

profile of both length and width indicates a high concentration of smaller features, punctuated by 

fewer but considerably larger ones that may act as critical ecological corridors or buffer zones. 

2.4.1.3 LSWF Orientations 

Most LSWFs in this study strongly tend toward cardinal orientations (Figure 7), especially in 

flatter counties where field and parcel boundaries often follow a grid-like arrangement. This 

alignment highlights the anthropogenic influence on their distribution, indicating that tree rows 

were often planted to delineate property boundaries or to serve as windbreaks parallel to road 

networks. Some counties align more closely with a cardinal direction perpendicular to prevailing 

winds, indicating the involvement of some level of an established advisory or financial support 

framework, such as the Natural Resource Conservation Service (NRCS) or other state and local 
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advisory bodies. The prevalence of cardinal alignments highlights the human dimension of land 

management choices, as agricultural fields and roads in many areas of Michigan, Ohio, and 

Wisconsin follow systematic, near-rectilinear patterns. 

Counties with more varied topography, such as Athens County in the Appalachian foothills of 

Ohio, exhibit a lower overall density of LSWFs. However, the features that do appear in these 

regions often deviate from the cardinal directions, reflecting terrain-driven parcel boundaries or 

property lines. This divergence reveals that LSWFs adapt to local landscape constraints, as 

steep slopes and winding valleys necessitate non-rectilinear alignments. 

The Appendix provides county-specific rose diagrams illustrating local variations for a more 

detailed view of orientation patterns. These additional displays demonstrate that while most 

counties conform to the cardinal-dominant trend, distinctive topographical or historical land 

survey factors can produce unique directional signatures in LSWF orientation. 

 

 
Figure 6: Directional frequency of LSWFs aggregated across all study counties in Michigan, 
Ohio, and Wisconsin. The radial chart shows a dominant clustering near cardinal directions, 
suggesting the influence of grid-based parcel boundaries and anthropogenic planting patterns. 
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2.4.2 CNN Land Cover Product Accuracy 

The CNN-derived land cover dataset demonstrates an overall accuracy of 92.17% based on 

approximately 3,000 validation points distributed across three counties in Michigan, Wisconsin, 

and Ohio. As shown in Figure 8, the confusion matrix includes an “Ambiguous” category, 

representing reference points that could not be definitively classified due to marginal distinctions 

in spectral and textural features (e.g., wetland versus low vegetation). When these ambiguous 

points are excluded, the model’s accuracy increases to 98.2%, accompanied by a multiclass 

kappa statistic of k=0.968. This suggests that the CNN model successfully delineates most land 

cover classes and is rarely confounded by subtle differences at sub-meter scales. 

Table 1: Confusion matrix displaying all predicted classes against reference (ground truth), 
including an “Ambiguous” category. Cells are shaded according to 
classification/misclassification frequency, illustrating where the CNN products align with our 
validated points. 
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Table 2 presents performance measures by class, illustrating strong producer and user 

accuracy scores for water, wetlands, and tree canopy. The CNN approach excels at boundary 

detection, capturing small AF elements and other linear vegetation features that might be 

overlooked by lower-resolution or purely spectral-based methods. Sub-meter detail also 

contributes to precise classification in regions of complex land use, such as mixed canopies 

adjacent to impervious surfaces. 

Table 2: Producer and user accuracy for nine main classes, excluding ambiguous assessments. 
Accuracy scores highlight the CNN’s proficiency in distinguishing distinct land cover types, 
including the tree canopy class used for developing the LSWF outputs. 

truth Correct 
(n) 

Reference 
(n) 

Predicted 
(n) 

Producer Accuracy 
(%) 

User Accuracy 
(%) 

Water 47 51 48 0.921569 0.979167 

Wetlands 10 10 10 1 1 

Tree canopy 1013 1030 1013 0.983495 1 

Shrublands 19 22 20 0.863636 0.95 

Low 
vegetation 

1633 1637 1666 0.997557 0.980192 

Barren 24 28 27 0.857143 0.888889 

Structures 33 39 33 0.846154 1 

Impervious 
surfaces 

29 34 38 0.852941 0.763158 

Impervious 
roads 

30 37 33 0.810811 0.909091 

The qualitative assessment indicates that the CNN effectively identifies canopy edges and small 

woody segments with minimal need for additional spectral context. While most classes show 

high accuracy, visual inspection confirms that classes with naturally gradual transitions, like low 
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vegetation merging into shrubland, can produce slightly lower user or producer scores due to 

overlapping texture or color. Even so, the CNN’s ability to detect structural boundaries remains 

robust, reflecting patterns noted in prior literature on CNN-based classification of AF features 

(Wolstenholme et al., 2025). 

2.4.3 Tree Height Evaluation 

Mean tree heights across LSWFs form a right-skewed distribution reminiscent of the gamma 

patterns observed for length and width (Figure 7). The majority of LSWFs exhibit mean heights 

in the lower-to-mid range (mean = 5.94 m, median = 5.64 m), with a small proportion extending 

above 10.15 m (95th percentile of mean canopy height). This skew suggests that while many 

segments include relatively young or short-statured trees, some locations support mature 

stands that exceed 11.83 m (99th percentile of mean canopy height) in average height. 

 

Figure 7: Frequency histogram depicting the distribution of mean tree canopy height across all 
identified LSWFs. Much like other metrics displayed earlier, the right-skewed pattern resembles 
a gamma curve, with the bulk of LSWFs exhibiting moderate heights and a smaller subset 
surpassing an average canopy height of 15 m. 
Correlations with other variables, illustrated in the hexbin plots in the Appendix, reveal a 

moderate positive relationship between mean tree height and LSWF dimensions such as length, 

area, and width. In particular, the correlation with length (r ≈ 0.109) indicates that longer 



63 
 

segments are slightly more likely to have taller trees. A similar pattern emerges for mean width, 

suggesting that broader windbreaks or riparian buffers may foster more substantial, consistent 

canopy height. 

Further associations relate mean tree height to shape complexity indices, such as the sinuosity 

or SNFI. Although these correlations are generally weaker (r ≈ 0.362 with a large cluster shown 

in Figure 2.8.A3), the data imply that there is a ‘goldilocks’ cluster for the typical height and 

sinuosity of LSWFs in the region, or in the case of SNFI, a slight negative relationship indicates 

that more straight and narrow features possess lower overall canopy height, seeming to reach a 

ceiling/bottleneck as SNFI increases. Such complexity underscores the importance of local 

environmental and management factors influencing growth patterns. 

Subtle differences in the orthographic alignment of the 1 m height dataset occasionally 

introduce minor discrepancies in tree height estimates. Shadow overlaps and slight terrain-

related misalignments can yield minor deviations. Nonetheless, the aggregated results provide a 

robust depiction of tree height trends within linear woody features, reflecting the overall structure 

and maturity of LSWFs in the study region. 

2.4.4 Predictive Modeling for LSWF Presence 

A Random Forest model was used to extrapolate LSWF densities from the 35 original study 

counties to the broader extents of Michigan, Wisconsin, and Ohio. This approach correlated 

county-level LSWF metrics (e.g., total length per km²) with land cover variables, soil 

characteristics, and climatological proxies, yielding an estimated distribution for unobserved 

areas. Figure 6 depicts the observed LSWF distances at the county scale, and Figure 7 shows 

the model’s predictions for the tri-state region, illustrating how local densities relate to broader 

spatial trends. 
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Figure 8: Observed Linear Small Woody Feature (LSWF) distances per km² in the 35 study 
counties, highlighting higher densities in agriculturally intensive regions. Colors indicate the 
estimated length of LSWFs (in meters) per km². 
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Results confirm a strong relationship between agricultural areas and higher densities of LSWFs, 

mirroring patterns identified in the original counties. Regions dominated by row-crop production 

consistently exhibit more windbreaks or woody buffers, suggesting that fields bounded by roads 

or property edges have sustained corridors of perennial vegetation. An extension of this 

observation would examine the presence of in-field LSWFs in relation to edge-of-field LSWFs, 

where in-field LSWFs are more likely to provide additional enhanced crop protection. This could 

reflect a landowner’s interest in the exposure-reducing production benefits of introducing woody 

barriers in an agricultural landscape. In contrast, sparsely cultivated landscapes, especially 

those with limited infrastructure or smaller fields, register fewer predicted LSWFs. 

Impervious surfaces emerged as another influential predictor, likely capturing the presence of 

roads that commonly support linear tree plantings. Model outputs initially indicated high LSWF 

densities near urban roads, though these areas were later masked to avoid conflating urban 

tree lines with features typically classified as agriculturally relevant LSWFs like windbreaks or 

riparian buffers. Despite the masking, the predictive maps reinforce the idea that road networks 

and agricultural parcels collectively drive a significant portion of LSWF variability across the 

region. 

Northern portions of Michigan and Wisconsin reflect a lower predicted density of LSWFs, 

aligning with their predominantly forested landscapes. Extensive continuous canopy coverage in 

mostly forested areas reduces the need or possibility for discrete windbreaks or narrow riparian 

strips. The model’s tendency to estimate minimal LSWF presence in such forests underscores 

the importance of distinguishing small, linear woody elements from large continuous tree cover 

in future regional analyses. 
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Figure 9: Random Forest predictions of LSWF distance across Michigan, Wisconsin, and Ohio, 
excluding densely urbanized areas. Colors indicate the estimated aggregate length of LSWFs 
(in meters) per km², revealing spatial variability associated with road networks and agricultural 
land use. 
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2.5 Discussion 

2.5.1 Strengths of CNN-Based LULC Products 

The CNN-derived dataset displayed a pronounced advantage in detecting and classifying small-

scale LSWFs, outperforming coarser-resolution products like NLCD or Sentinel 10m in 

identifying linear elements. This outcome aligns with previous studies indicating that CNNs 

require fewer spectral bands than traditional classifiers, thanks to their capacity for detailed 

texture analysis. Sub-meter imagery further enhances these capabilities by capturing subtle 

boundary details and minimizing errors introduced by pixel aggregation. 

Another key strength is the reduced need for extensive contextual or ancillary data. High-

resolution inputs and specialized CNN architectures, including operations such as max-pooling, 

bolster edge detection in fragmented, heterogeneous landscapes where smaller tree canopies 

or narrow buffers might otherwise be overlooked. These features are especially vital for 

precision conservation or more extensive strategic land management planning, where fine-scale 

mapping of AF components can support targeted interventions and management strategies. 

Although the current model demonstrates broad applicability in the Great Lakes region and 

possibly a wider area, additional training data would likely improve performance in regions with 

distinct land cover and ecological profiles. Because the initial network was trained in the 

Chesapeake Bay area, transferring it to the Great Lakes region necessitated calibration for 

various agricultural systems and forest types. Acknowledging that, it is remarkable how 

adaptable the Chesapeake Bay data was to the Great Lakes region without much additional 

calibration. As more comprehensive training datasets become available, CNN-based models 

can be refined to address emerging challenges in multi-regional land use planning and 

agroforestry research. 
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2.5.2 Comparative Insights 

The CNN products offer substantially higher spatial detail than Sentinel 10 m LULC products 

(Figure 10), capturing features such as hedgerows or narrow tree lines that conventional 

datasets frequently overlook. Furthermore, the Sentinel 10 m dataset claims an overall accuracy 

of 75%, which we greatly improve upon in our validation efforts (Venter et al., 2022). Similar 

assessments were made on NLCD products (which typically achieve an overall accuracy of 

around 83% (Wang and Mountrakis, 2023), despite their 30 m resolution (roughly one-third that 

shown in Figure 10), and in alternative LULC models at “high” resolution at 10 m such as the 

Dynamic World 10 m LULC (which has a claimed accuracy of about 72% (Venter et al., 2022)). 

This enhanced resolution is especially valuable in agricultural zones with many linear woody 

elements. Sentinel-based products often classify small or fragmented woody features as part of 

broader vegetation classes. By contrast, sub-meter CNN outputs enable the precise delineation 

of these features, improving estimates of their structural attributes and economic and ecological 

roles. 

  

Figure 10: Side-by-side comparison of 50% transparent Sentinel 10 m LULC overlaid on 
imagery (left) and CNN-derived land cover (right) in Jackson County, MI, with abundant LSWFs. 
The CNN classification captures the intricate linear woody strips in far greater detail, 
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demonstrating the limitations of coarser-resolution products in identifying fragmented or narrow 
features. 
However, no nationwide, authoritative LULC product currently exists at sub-meter resolution, 

highlighting a key gap in geospatial resources. While Vermont’s 0.5 m LULC and the 

Chesapeake Bay Conservancy’s regional product demonstrate the viability of high-resolution 

techniques, expanding these efforts beyond local or regional coverage poses significant 

challenges. The computational power required to process such large imagery volumes and the 

hosting infrastructure needed for public access underscores the infrastructural hurdles in scaling 

to a national dataset. 

Compared with Random Forest methods, CNN-driven classification shows incremental benefits 

in handling linear, fragmented features. Neural architectures, designed for detailed pattern 

recognition, capitalize on sub-meter pixel sizes to capture finer edges and boundaries with 

fewer auxiliary inputs. This advantage stands out where small woody features cross multiple 

land-use types or blend with background vegetation, leading to misclassifications in lower-

resolution or purely spectral-driven approaches. 

Analyzing LSWFs at resolutions as fine as 0.6 m or even 0.3 m enables more nuanced width, 

connectivity, and canopy structure measurements than prior literature has attempted. Such 

granularity facilitates ecosystem service evaluations—like carbon sequestration or wind 

mitigation—and reveals the ubiquity of small woody strips in agricultural settings. These findings 

are congruent with European assessments, which have noted the overlooked significance of 

linear woody features for local ecology, carbon markets, and small-scale timber or fiber 

production (Rubio-Delgado et al., 2024). 

2.5.3 New Knowledge Gained 

Analyses of minor woody feature structures have enhanced understanding of LSWFs’ shape 

indices, connectivity, and density, enabling their measurement with consistent criteria across 

different land-use contexts. Foremost, this work, combined with the methods used in chapter 1, 
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indicates that there is a near-ubiquity of LSWFs in midwestern landscapes, not only on farms or 

in agricultural operations as most studies previously seek out, but rather in varying land uses 

and topography throughout the Midwestern landscape. This suggests working towards a census 

of these features on a more thorough, full analysis. The granular approach uncovered in the last 

two chapters explores how subtle variations in width, length, or adjacency can affect ecological 

functionality, including potential habitat linkages or field-level environmental benefits. This 

research contributes to a standardized and adaptable framework for comparing LSWFs across 

varied agricultural and forestry systems by defining uniform parameters for these features. 

Beyond structure, the project has improved the detection of LSWFs and clarified their spatial 

characteristics within the study counties. Enhanced classification at sub-meter resolution 

reveals how these linear features often form corridors between larger forest patches or align 

with cropping or parcel boundaries. Documenting these patterns underscores the economic, 

ecological, and practical significance of retaining or promoting woody strips for wind mitigation, 

soil stability, and localized biodiversity support. 

Predictive modeling extends these insights beyond the sampled counties, offering suggestions 

for where LSWFs may occur in landscapes lacking examination. Incorporating land cover, 

hydrological, and anthropogenic variables has yielded maps that highlight both current and 

potential LSWF distributions. These data support targeted recommendations on landscape 

design, especially in regions seeking to integrate agroforestry more thoroughly for sustainable 

management purposes. 

In addition, the study provides new quantification and summary assessments of woody features 

traditionally underrepresented in agricultural literature. By identifying and mapping LSWFs at 

scale, this research pinpoints their frequency, extent, and spatial variations, equipping 

policymakers and landowners with evidence-based metrics to guide production and 

conservation efforts. Observing how these elements interact with crop fields, water bodies, or 
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impervious surfaces confirms that even small clusters of trees can exert measurable 

environmental and agronomic impacts. 

Finally, the inclusion of canopy height measurements from LiDAR and aerial sources can enrich 

the functional narrative of LSWFs. Evaluating tree height distributions highlights how certain 

regions or land uses foster more mature stands, while others maintain primarily younger 

vegetation. These patterns can illuminate management opportunities for carbon sequestration, 

potential timber production, and further agroforestry applications, reinforcing the central 

importance of LSWFs in both local and broader-scale landscape planning. 

2.5.4 Applications in Conservation 

High-resolution LULC data can support precision conservation by revealing subtle vegetation 

patterns that help locate potential sources of pollution or areas requiring targeted mitigation. For 

instance, finely resolved tree canopy maps and segmented buffer zones may detect localized 

runoff pathways or compromised streambank stretches. Identifying these areas enables more 

precise management actions, whether through riparian enhancements, sediment control 

structures, or pinpoint drainage modifications that protect downstream habitats. 

Beyond pinpointing threats, the predictive model results offer a regional overview of where 

LSWFs are most prevalent and where gaps in coverage persist. These “hotspots” and gaps 

guide stakeholders in deciding where interventions may yield the greatest ecological benefits or 

agricultural protection. Improving connectivity in sparse regions, for example, can create 

continuous habitat corridors or reduce soil erosion in vulnerable areas with minimal forest cover. 

Furthermore, stakeholders can engage in more accurate assessments of woody biomass 

outside of previously available coarser datasets. This is because the added resolution enables 

more thorough analysis and precise landscape quantification, such as carbon sink potential, 

wildlife corridor analysis, or hydrological flow, in landscapes where inexact estimates have been 

made previously using very coarse data that may not capture LSWFs. 



72 
 

This level of detail also supports integrated landscape planning and advisory services. 

Extension agents, landowners, and conservation agencies can use these insights to expand 

windbreaks or riparian buffers that will likely benefit landscape and individual operational 

resiliencies. By combining fine-scale vegetation maps with local land-use data, decision-makers 

can align plantings with existing agricultural practices or identified climate adaptation priorities, 

ensuring that woody features serve multiple production and ecosystem service objectives. 

Assessments of LSWF distributions and canopy conditions inform watershed management by 

highlighting how dense or fragmented woody strips influence hydrology, water quality, and 

biodiversity. Woody corridors along streambanks can reduce nutrient runoff and bolster aquatic 

habitat diversity. By quantifying these features across broad extents, conservation practitioners 

can identify watersheds with deficient buffers or suboptimal habitat networks, then tailor 

restoration efforts to address local constraints. 

Integrating LULC data with parcel ownership, landowner survey results, and land management 

databases can further refine these strategies. Linking high-resolution canopy maps to individual 

parcels allows targeted outreach for potential windbreak expansions, while cross-referencing 

with existing conservation easements can spotlight synergies between farmland preservation 

and agroforestry adoption. This fusion of datasets enables data-driven collaborations among 

local governments, land trusts, and producers, fostering broad-scale improvements in land 

stewardship. 

2.6 Conclusion 

CNN-based methods have demonstrated a distinct advantage in identifying agroforestry 

features, particularly LSWFs, within fragmented or mixed-use landscapes. The approach unveils 

patterns in LSWF ubiquity and ecological interactions that would go unseen in coarser datasets 

by leveraging high-resolution imagery to detect subtle boundaries and finely scaled structures. 

These findings confirm the efficacy of CNN products for characterizing spatially complex land 

cover types, reinforcing their value for regions that require precise delineation or censusing of 
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windbreaks, riparian buffers, and other small woody features. High-resolution LULC data is a 

powerful tool for guiding agroforestry management and landowner decision-making. By 

pinpointing the presence and nature of LSWFs, these datasets facilitate strategic interventions 

to bolster soil conservation, biodiversity, and on-farm resilience. Such granular mapping further 

supports land planning efforts, as local governments, conservation agencies, and producers can 

target specific parcels or watersheds where increasing woody cover or improving buffer quality 

may yield stacked production and ecosystem service benefits. 

Future efforts can expand and enhance this framework by incorporating LiDAR or hyperspectral 

imagery to refine structural and compositional assessments of LSWFs, capturing nuances like 

understory density or species composition. Extending these analyses to additional regions or a 

complete statewide coverage would fill critical data gaps, enabling the development of robust, 

region-specific agroforestry assessments. Such expansions promise a richer understanding of 

how high-resolution LULC data can inform policy and practice, helping to integrate agroforestry 

more fully into landscape-scale management. 
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APPENDIX 

Figure 2.8.A1: Rose diagrams of LSWFs as observed across each of the 35 counties in the 
study region. Note that some counties have very direct and strict relationships between the  
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Figure 2.8.A1 (cont’d):  
…orientation of LSWFs and a cardinal platting grid. Other counties have a conflicting 
topography or a predominantly wooded setting that prevents the uniform platting that leads to 
those trends in agrarian LSWF orientation, namely counties like Athens, OH, or Oneida, WI. 
Other counties have a lengthwise spatial orientation pattern leading to a predominant direction. 
Door County, WI, primarily runs north to south, and linear woody features follow that geography. 
Some counties are very square in dimension yet show favorability to either a north-south or an 
east-west orientation. Two primarily agricultural counties in Ohio have more prevalent north-
south orientations, Crawford County and Licking County, OH. Other counties have predominant 
east-to-west orientations, such as Mecosta County, MI, or Clark County, WI. 
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Figure 2.8.A2: Different correlative relationships between shape parameters in the final LSWF  
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Figure 2.8.A2 (cont’d):  
…dataset, including tree height. These visualizations were made using n = 120967 LSWFs after 
removing 1% of outliers for all of the evaluated fields for all surveyed counties, which is 
displayed as the “Combined Outlier Removal.” Note: All non-index units are in meters, 
AREA_GEO refers to the area of individual LSWFs in m2. 
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Figure 2.8.A3: Different correlative relationships between shape parameters in the final LSWF  
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Figure 2.8.A3 (cont’d):  
…dataset, including tree height. These visualizations were made using n = 120967 LSWFs after 
removing 1% of outliers for all of the evaluated fields for all surveyed counties, which is 
displayed as the “Combined Outlier Removal.” Note: All non-index units are in meters, 
AREA_GEO refers to the area of individual LSWFs in m2. 
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Chapter 3: A Lightweight Framework for the Functional 
Classification of Tree Canopies in Mixed-use Landscapes of the 
Upper Midwest: An Applied use of a Sub-meter Land Cover 
Classification for Enhanced Spatial Analysis of Anthropogenic-
Woody Feature Interaction 
Objectives: 

● Synthesize findings and extend methods to categorize tree canopies identified through 
CNN super-resolution land cover products into several valuable categories. 

● Introduce a method to quantify the presence of woody riparian buffers. 
● Describe a method to organize the categorization of tree canopy classes in super (<1m) 

resolution data, including the “order of operations” for categorization. 
● Discuss the applications of these categorizations and defend their utility. 
● Emphasize a conceptual approach, laying the groundwork for a more detailed, 

publishable paper. 
 
3.0 Abstract 
Accurate classification of tree canopies is essential for effective ecological management and 

landscape analysis, particularly within the diverse mixed-use landscapes of the Upper Midwest's 

Lakes States. This chapter presents a lightweight framework that leverages a convolutional 

neural network (CNN) or alternatively-produced super-resolution land cover data to categorize 

tree canopies at sub-meter resolution by human-influenced functional categories. The 

methodology introduces the Riparian Buffer Index (RBI), a novel metric for quantifying woody 

riparian buffers with very high-resolution sub-1m land cover products. It outlines a systematic 

approach for organizing five functional tree canopy classes within high-resolution datasets. The 

RBI framework accommodates linear and polygonal riparian features by integrating vector-

based and more straightforward raster-based approaches. The proposed categorization 

encompasses distinct forest structure classes, including continuous woodlands or forests, linear 

small woody features, riparian buffers, urban woody areas, and isolated trees or patches. Each 

category's utility is also examined, demonstrating the theoretically enhanced precision in forest 

structure surveying and improved capacity for detecting subtle changes in canopy composition 

or human impact. Applications of this framework extend to conservation planning, urban forest 
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management, and the assessment of human-forest interactions, underscoring its relevance for 

policymakers and stakeholders in the region. This conceptual approach advances existing 

methodologies and lays the groundwork for a more detailed study that exercises the 

categorization, highlighting the potential for broader application across various ecological 

contexts. Future research will focus on implementing and refining the categorization techniques, 

as well as expanding the framework's applicability to other geographic regions. 

3.1 Background 

3.1.1 Overview of Forest Structure Categorization 

Accurately characterizing forest structure is essential for understanding how canopy cover, 

species composition, and successional stages interact to shape broader ecological processes 

(Meneguzzo et al., 2013). Traditional forest definitions typically emphasize contiguous stands 

and often overlook smaller, scattered woody features, which can underrepresent the full 

complexity of mixed-use landscapes (Schnell et al., 2015), or the human influences that led to 

the dispersed presence of Trees outside Forests (ToFs). Recent efforts to address this gap 

acknowledge that ToFs are ubiquitous in most agricultural regions worldwide and are significant 

contributors to carbon storage, habitat connectivity, and local land-use patterns, particularly 

when identified using sub-meter or very high-resolution data (Malkoç et al., 2021). By combining 

structural metrics—such as canopy height, density, and spatial configuration—with ToF 

presence attributes, researchers can gain a deeper understanding of how forest patches, 

riparian corridors, small groups of trees, and individual trees collectively support ecosystem 

services. Researchers can also gain a better understanding of how dynamic human influences 

and decision-making processes affect the inclusion of woody features in agricultural settings, 

and how these factors impact both anthropocentric and ecological outcomes. 
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3.1.2 Existing Methods for Categorizing Forestland Structure Using VHR Data 

3.1.2.1 Remote Sensing Techniques 

Broadly, fine-scale forest structure classification relies on fusing 1) high-resolution optical 

imagery and/or land cover products and 2) LiDAR-derived height information (Swatantran et al., 

2016). Optical imagery from UAVs or aerial orthophotos can achieve sub-meter resolution (Li et 

al., 2020), capturing small forest patches, woody riparian buffers, or isolated trees. LULC efforts 

can then typically produce an early categorization of land cover, for instance, producing a tree 

canopy class. LiDAR, meanwhile, provides canopy height, foliage height diversity, and 3D 

structural metrics (Huang et al., 2019; Dubayah et al., 2020; Lang et al., 2022). Hybrid 

approaches that combine LiDAR’s vertical detail with optical data’s spectral richness often yield 

the best results, though cost and inconsistent coverage of both products pose challenges 

(Meneguzzo et al., 2013). 

3.1.2.2 Machine Learning and CNN Approaches 

Machine learning—and specifically, convolutional neural networks (CNNs)—have recently 

shown promise for classifying high-resolution tree cover in heterogeneous landscapes (Fricker 

et al., 2019; Zhang et al. 2022). These models use both spatial context and spectral signals, 

outperforming traditional random forest or maximum likelihood methods when detecting fine-

scale features like small woodlots or linear hedgerows (Subedi, 2005). Despite higher accuracy, 

computational demands and the need for region-specific training data remain significant hurdles 

(Fricker et al., 2019; Li et al., 2020). 

3.1.2.3 Advantages and Limitations 

Each data source has strengths— LiDAR excels at vertical complexity but can be expensive for 

broad areas, and high-resolution optical images cover large extents at lower cost but struggle in 

overlapping canopies, or under atmospheric effects and cloud cover (Makido, 2006). 
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While these challenges persist, the rise of sub-meter CNN classification and advanced data-

fusion methods fosters increasingly accurate forest structure mapping at regional and national 

scales (Meneguzzo et al., 2013; Fricker et al., 2019; Li et al., 2020). 

3.1.3 Categorizing a Single Forest Canopy Class 

Many classification schemes group all tree canopies—regardless of species—into a single 

“forest canopy” label or, more commonly, dichotomous ‘deciduous’ or ‘evergreen’ labels. This 

generic approach can overlook subtle intra-canopy variations in structure and phenology, as 

traditional spectral methods may fail to capture nuances like undergrowth density or seasonal 

leaf changes (Lee et al., 2023). In some cases, multi-seasonal imagery and shape-based 

metrics help reduce classification errors, especially in homogenous canopies where pines, 

spruce, or beech-maple stands dominate (Fricker et al., 2019). However, earlier work in the 

Lakes States shows that physiographic factors, disturbance regimes, and successional 

gradients add complexity when applying one broad “forest canopy” category to varied patches 

on the landscape (Scull, 1996). As a result, advanced segmentation strategies, such as the 

methods explained in Chapter 1, or through object-based image analysis (OBIA)—combined 

with high-resolution data and targeted validation—are essential to accurately identify stands or 

capture the fine-scale heterogeneity often obscured by a single canopy label. 

3.1.4 Using a Single Tree Canopy Class in Functional Land-Use Frameworks 

In agricultural or mixed-use landscapes, tree cover outside of woodlots or forests often appears 

as scattered patches of trees, hedgerows, or riparian strips, many of which fall outside 

traditional “forest” definitions. Lumping these varied canopies into one “tree canopy” class is a 

practical starting point for a functional categorization, especially in land-use and social-

ecological research. This broad-brush approach can help illustrate human dimensions of tree 

management, highlighting, for instance, where landowners plant windbreaks, maintain riparian 

buffers, or practice agroforestry (Schnell et al., 2015; Díaz et al., 2016; Li et al., 2020). By 
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treating all canopy types as one, analysts can more easily link tree presence to land-use 

decisions, such as soil conservation measures, habitat corridors, or aesthetic plantings, before 

refining those distinctions further (Subedi, 2005). 

Yet, mapping all woody cover under a single label inevitably risks masking crucial differences in 

species composition, structural attributes, and potential management regimes. For instance, 

intensively managed pine rows vs. mixed broadleaf woodlots may offer distinct ecological 

benefits or social values. Still, starting with a single tree category can be justified for broad-scale 

inventories and policy considerations prioritizing how tree cover, in general, intersects with 

agricultural production and rural development (Fricker et al., 2019; Schnell et al., 2015). 

Despite its utility, a single tree canopy label can conceal the functional diversity of woody 

vegetation on farms, in urban green spaces, or along watercourses. Numerous remote sensing 

approaches attempt to subdivide that generic canopy into meaningful functional types—like 

windbreaks, riparian buffers, orchard blocks, or small forest patches—based on canopy shape, 

adjacency to croplands, or hydrologic features (Gatziolis, 2003; Kaase & Katz, 2012; Schnell et 

al., 2015; Liknes et al., 2017; Schiefer et al., 2020; Lee et al., 2023). Others incorporate multi-

seasonal data to separate evergreen shelterbelts from deciduous hedgerows (Lee et al., 2023; 

Subedi, 2005) or use CNNs for distinguishing linear woody features from blocky woodlots (Li et 

al., 2020; Fricker et al., 2019). These functional subdivisions recognize that not all “trees” fulfill 

the same roles: some are managed for wind protection or livestock shade, others for riparian 

filtration or cultural amenities. Researchers can apply shape-based metrics, height profiles, or 

spectral thresholds to allocate tree patches into more granular functional classes by building on 

an initial single-canopy map. 

In the Lakes States region—where sugar maple (Acer saccharum), red pine (Pinus resinosa), 

aspen (Populus tremuloides), and countless small woodlots or shelterbelts abound—a simple 

“tree canopy” layer has proven beneficial for initial land-use planning and policy analyses 

(Schnell et al., 2015; Subedi, 2005). It reveals, for example, how much woody vegetation is 
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retained on farms or near waterways. However, finer distinctions often prove essential for 

economic, ecological, and social outcomes: working lands with narrow riparian buffers vs. large 

intact forest patches exhibit different management pressures, carbon potentials, and wildlife 

habitat value (Zhang et al., 2020; Liknes et al., 2017). While LiDAR and CNN-based methods 

show promise in separating these subcategories, many frameworks still lack regional calibration 

datasets, limiting the accuracy of functional designations. Moving forward, robust, locally-

informed training data and high-resolution mapping approaches are needed to transform a 

single tree canopy class into a truly functional classification, capturing the rich variety of human-

driven management practices and ecological roles across the Lakes States. 

3.1.5 Geographical Focus: Michigan, Wisconsin, and Ohio 

Overview of LULC Composition and Diversity in Michigan, Wisconsin, and Ohio 

The Lakes States comprise a mosaic of agricultural land, forest patches, urban centers, and 

wetlands, making them highly diverse in land use and cover (Kromm 1966; Donnelly 1986). 

Substantial areas of mixed hardwoods and coniferous stands exist alongside intensive 

agriculture, resulting in fragmented landscapes where riparian woodlands and isolated tree lines 

are common (Palik 1988; Tang 1991). 

Prior classification projects in the Midwestern U.S., such as county-level forest inventories, have 

mapped broad canopy categories but often omitted small woody patches (Subedi 2005). While 

LiDAR-based studies and satellite-driven classifications have reasonably well identified riparian 

forests and wetland edges, the resolution gap remains a consistent challenge from decades ago 

(Gatziolis, 2003; Makido, 2006; Mottus et al., 2021). Initiatives incorporating sub-1m-resolution 

approaches hold promise for better capturing linear riparian features and isolated forest 

fragments (Meneguzzo et al. 2013; Liknes et al. 2017). 

Local variations in topography, disturbance regimes, and historical land use necessitate 

regionally tailored classification strategies (Kromm 1966; Tang 1991). For instance, lowland 

hardwood stands in southern Michigan and aspen-dominated systems in northern Wisconsin 
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differ substantially in canopy structure. A one-size-fits-all classification can misrepresent these 

unique forest types, highlighting the need for a cross-regionally robust method to categorize tree 

canopy and its effects, or at least, a generalizable method that refrains from extrapolating too 

much from generalized practices (Lucas et al., 2024). 

3.1.6 Example of Categorization: Evergreen vs. Deciduous Canopy Separation 

Sub-meter imagery and LiDAR-based assessments have traditionally focused on differentiating 

broad categories of evergreen vs. deciduous forests (Gatziolis 2003). This distinction generally 

relies on differences in canopy phenology, spectral signatures (e.g., near-infrared reflectance), 

and LiDAR height/variance measures (Makido 2006; Fricker et al. 2019). Automated 

classification pipelines—whether maximum likelihood or CNN-based—readily achieve 

moderate-to-high accuracy when distinguishing these major canopy types (Lee et al., 2023). A 

wealth of research underscores the effectiveness of multi-season data in clarifying evergreen–

deciduous distinctions. Leaf-off imagery highlights structural differences in deciduous species, 

while conifers maintain dense canopies year-round (Gatziolis 2003; Schiefer et al., 2020). 

LiDAR’s ability to characterize vertical canopy complexity further aids in separating multi-layered 

deciduous stands from often more uniform coniferous stands (Gatziolis 2003). From an 

ecological standpoint, evergreen and deciduous canopies differ in phenology, nutrient cycling, 

and wildlife habitat value (Kromm 1966; Palik 1988; Lee et al., 2023). Management decisions—

such as timber rotations or riparian buffer designs—often hinge on these distinctions. 

Classifying canopy type precisely is paramount to assessing carbon budgets, habitat suitability, 

and resilience to disturbances like pests or extreme weather events (Tang 1991; Donnelly 1986; 

Zhang et al., 2020). 

Separating evergreen and deciduous canopies informs everything from wildlife corridor designs 

to climate adaptation strategies (Fricker et al., 2019). For instance, climate-sensitive species 

reliant on evergreen cover for winter shelter may be disproportionately affected by conifer 

decline, whereas deciduous stands influence leaf litter quality and aquatic nutrient fluxes in 
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riparian zones (Gatziolis 2003; Donnelly 1986; Schiefer et al., 2020). Thus, an accurate canopy 

classification remains essential for comprehensive ecosystem management. 

3.1.7 Utility of Shape-Based Metrics in Forest Structure Analysis 

Beyond traditional canopy measures, shape-based metrics—such as patch compactness, edge-

to-area ratio, and fragmentation indices— can offer insights into how forests are distributed 

spatially (Liknes et al. 2017). These metrics can illuminate landscape connectivity, forest 

fragmentation trends, and anthropogenic impacts (Basu et al., 2015). Combining shape-based 

evaluations with spectral or LiDAR data strengthens classification outputs by highlighting linear 

features (e.g., shelterbelts, riparian buffers) or small, isolated woodlots (Meneguzzo et al. 2013; 

Lucas et al., 2024). 

Liknes et al. (2017) introduced a suite of shape indices to characterize discrete forest patches 

and corridors. These indices quantify canopy geometry (e.g., shape complexity, elongation) and 

detect transitions from continuous woodland to narrow, linear corridors typical in agricultural or 

riparian contexts (Liknes et al. 2017; Kaase & Katz 2012). Such metrics are especially helpful in 

mapping small or linear woody features frequently missed by coarse-scale classification (Subedi 

2005). Typical metrics include fractal dimension, patch perimeter–area ratio, and shape 

complexity indexes. For instance, fractal dimension can distinguish simpler, rounder patches 

from elongated hedgerows or irregular riparian buffers (Meneguzzo et al. 2013). Perimeter–area 

ratios highlight small, linear features with disproportionately large perimeters, such as single-row 

windbreaks or riparian strips (Liknes et al. 2017; Kaase & Katz, 2012). 

Shape-based metrics often correlate with land use intensity, agricultural field boundaries, and 

zoning regulations (Nowak & Greenfield, 2012). For instance, high perimeter–area ratios near 

agricultural zones can signal deforestation pressure or corridor planting for windbreaks (Tang 

1991; Pourpeikari Heris et al., 2022). Similarly, linear forest patches adjacent to urban 

boundaries inform policies on greenbelt continuity and ecological connectivity (Meneguzzo et al. 

2013). By integrating shape indices, classifiers can differentiate subtle anthropogenic influences 
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on canopy structure. 

Prior chapters introduce the multi-faceted importance of forest canopy classification and 

emphasize diverse methods—machine learning, LiDAR, and shape-based indices—for 

capturing structural nuances. The methods for delineating canopy classes, especially sub-meter 

precision in riparian or small-wooded contexts, build on the ecological underpinnings presented 

earlier (Kromm 1966; Bryant 1963). Integrating shape-based techniques from Chapter 1 with 

ecological insights from Chapter 2 advances a holistic classification framework geared toward 

functional delineation of canopy types (Liknes et al. 2017; Donnelly 1986; Thomas et al., 2021; 

Lucas et al., 2024). This synergy underpins the more detailed workflows, including the proposed 

Riparian Buffer Index (RBI) and CNN-based canopy segmentation, which will be detailed in 

subsequent chapters. 

3.1.8 Quantifying Woody Riparian Buffers 

Riparian buffers—those forested or woody vegetative zones adjacent to streams, rivers, lakes, 

and wetlands—play a critical role in filtering pollutants, stabilizing streambanks, and maintaining 

ecological connectivity. Their value extends beyond water quality, including microclimate 

regulation, carbon storage, and biodiversity support (Donnelly 1986, Weigelhofer et al., 2012). 

As intensively managed landscapes expand, quantifying the extent and continuity of riparian 

woody vegetation is critical for sustainability (Kaase & Katz 2012). 

Traditional methods rely on buffer-width thresholds (e.g., 30 m from streambanks), sometimes 

ignoring local topography or vegetation height (Subedi 2005). More sophisticated approaches, 

like the Stream Index Division Equations (SIDE) algorithm, separate left- and right-bank 

contributions of topography, refining hydrological models (Grabs et al. 2010; Meneguzzo et al. 

2013). LiDAR data coupled with machine learning also enable 3D delineations of riparian zones, 

capturing canopy height and density along meandering streams (Gericke et al., 2020; 

Rutherford, 2023). 
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Most existing methods either oversimplify riparian buffers by applying uniform widths and 

weights or neglect small-scale morphological variability (Rutherford, 2023). The proposed study, 

with sub-meter CNN-based classification and shape-based indices (Liknes et al. 2017, Malkoç 

et al., 2021; Lucas et al., 2024), aims to address these gaps by quantifying riparian buffers that 

adjust to steam morphology and vegetation structure. However, it does not seek to supplant 

theory on the intentional and intensive approach needed to establish and maintain a properly 

managed riparian buffer. This approach can better inform nutrient mitigation strategies, corridor 

conservation, and estimates of other biotic and abiotic factors associated with tree canopy 

proximity to riparian features (i.e., shade, biomass contributions) in intensively used watersheds 

across the Lakes States (Kaase & Katz 2012; Zhang et al. 2020). 

3.1.9 Landscape-Level Impacts of Forest Structure 

Landscape ecology emphasizes how patch configuration, connectivity, and fragmentation drive 

ecological processes (Donnelly 1986; Palik 1988). Metrics like shape complexity, fractal 

dimension, and core area fraction reveal how forest structure influences habitat availability, 

species dispersal, and edge effects (Liknes et al. 2017, Malkoç et al., 2021). Integrating these 

metrics with 3D canopy data or CNN-based classification refines our understanding of how 

forest patches function within agricultural or mixed-use mosaics (Meneguzzo et al. 2013). 

Combining shape-based indices with canopy height or biomass metrics can yield 

multidimensional forest maps describing composition and configuration (Gatziolis 2003; Li et al., 

2020). For instance, a patch with high structural complexity and tall canopy might support 

specialized species requiring layered habitats. Meanwhile, linear riparian corridors function as 

dispersal pathways even with moderate canopy height (Tang 1991; Palik 1988; Schiefer et al., 

2020). 

Clear visualizations of how forest structure intersects with land use intensity guide management 

interventions—such as targeted buffer expansions, small-woodlot protection, or connectivity 

enhancements. Identifying areas of high biodiversity potential helps decision-makers prioritize 
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reforestation or corridor establishment, ultimately contributing to more resilient landscapes 

(Subedi 2005; Zhang et al. 2020). 

3.1.10 Human Dimensions of Forest Canopy Structure 

Human activities like agricultural expansion, urban development, and selection-based timber 

harvesting directly shape canopy density, composition, and patch configuration (Bryant, 1963; 

Tang, 1991; Thomas et al., 2021). Riparian zones are particularly vulnerable to agricultural 

encroachment or urban sprawl, altering buffer continuity and functionality (Kaase & Katz, 2012). 

Understanding these relationships is crucial for sustainable forestry, water resource protection, 

and rural development planning (Tang, 1991; Donnelly, 1986; Pourpeikari Heris et al., 2022). 

Socioeconomic research shows landowner objectives, market pressures, and policy incentives 

drive land-use decisions impacting canopy extent and quality (Thomas et al., 2021). For 

example, farmland owners may retain small, wooded patches for wind protection or tax 

incentives, while urban planners might prioritize street trees and parks for aesthetic or 

ecosystem service benefits (Subedi, 2005; Palik, 1988). Understanding these drivers aids in 

designing effective management interventions that align with local community goals (Thomas et 

al., 2021). 

As cities expand, fragmented forest patches often become “urban woodlands” with altered 

species composition, invasive pressure, and compromised connectivity (Pourpeikari Heris et al., 

2022). Surviving urban trees outside forests—such as in parks, riparian corridors, or street 

plantings—remain vital for ecosystem services like temperature regulation and stormwater 

management (Meneguzzo et al., 2013). Tracking these urban canopies with sub-meter 

classification can highlight critical zones for urban forestry initiatives, bridging the gap between 

natural resource management and urban planning (Gatziolis, 2003; Subedi, 2005; Schiefer et 

al., 2020). 



94 
 

3.2 Proposed Methods 

3.2.1 Describing the Riparian Buffer Index 

We quantified riparian buffers adjacent to streams, rivers, lakes, and wetlands using a 

framework that integrates spatial analysis with functional indicators. The approach defines 

criteria for classifying buffer zones based on measurable features such as buffer width, 

vegetation density, and proximity to a riparian feature. These criteria allow us to detect areas 

with limited riparian buffer presence and support the selection of sites for restoration and 

mitigative efforts. This section outlines a set of criteria used to categorize riparian buffers, 

emphasizing the integration of spatial analysis with functional indicators of riparian health. 

3.2.1.1 Vector-Based Riparian Buffer Index Calculation 

The vector-based approach to calculating the Riparian Buffer Index (RBI) involves delineating 

riparian features—such as streams, rivers, and lakes—from vector data and then assessing the 

proximity of tree canopies to these features. First, riparian features are defined and identified 

using high-resolution vector datasets. These datasets accurately represent the boundaries of 

flowing water bodies (streams, rivers, aqueducts, and canals) and still water bodies (lakes, 

wetlands, and ponds). The RBI is calculated along both sides of a centerline for flowing 

features. In contrast, for still features, the index is derived from the single exterior side of the 

polygon representing the water body. 

The RBI is recorded as an impact score that reflects the protective influence of woody 

vegetation along the riparian edge. This impact score follows a cosine wave pattern: tree 

canopies immediately adjacent to a riparian feature are assigned an impact score of 1, and this 

score gradually decreases in a cosine-like fashion until it reaches 0 at a distance of 120 feet 

from the riparian boundary. For example, if an area is continuously wooded for the entire 120-

foot extent, it receives an RBI of 1. Conversely, if the buffer is fully present only along the 

immediate riparian edge and then clears out before reaching 60 feet, the RBI value is calculated 
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to be approximately 0.8, reflecting a high but not complete protective influence. Areas with no 

woody buffer within 120 feet are assigned an RBI of 0. 

Equation: Riparian Buffer Index (RBI) – Vector-Based Calculation 
This index is designed so that points immediately adjacent to the riparian boundary (i.e., at 
distance d = 0) receive a score of 1, and the impact decays in a cosine-shaped fashion to 0 
at a maximum effective distance D (e.g., 120 feet). One formulation is: 

 
Here, 

● d is the perpendicular distance from the riparian boundary, and 
● D is the defined maximum distance over which the buffer is considered to have an 

impact. 
 
To handle partial buffers, the methodology quantifies the degree of buffer continuity along 

perpendicular transects extending from the riparian boundary. Riparian buffers are segmented 

at regular intervals—every 10 meters, for example—to calculate an RBI per unit distance along 

the vector. This segmentation provides a detailed spatial representation of buffer effectiveness, 

allowing for visualizing areas where woody vegetation is either abundant or lacking. For flowing 

features, RBI values are derived for both sides of the stream, while for still features, the RBI is 

determined along the single exterior side. This dual approach makes sure that the index 

accurately reflects the ecological and erosional dynamics associated with each type of water 

body. 

The vector-based method precisely measures the spatial relationship between tree canopies 

and riparian features. It facilitates targeted interventions by highlighting specific areas along a 

watercourse that require buffer enhancement, ultimately guiding management practices to 

improve water quality and ecosystem resilience. 
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Figure 1: A visual representation of a two-sided and a one-sided vector calculation of the 
Riparian Buffer Index (RBI) around flowing features such as a river or stream and a ‘still’ feature 
like a lake or wetland, respectively. As an example of a vector calculation, the ‘left’ bank of the 
flow feature with continuous forest would have an RBI value of near one over the 10 meters of 
evaluated distance on that side of the stream (which is one-half of the flow feature RBI 
calculation), and the ‘right’ bank’s RBI would fall somewhere under ‘0.5’ but not zero, since 
there is limited canopy on that side. To calculate an RBI value for that distance of a flow feature, 
you would take the average (or spatially-weighted average) of both sides, the left and right 
bank, to evaluate the riparian buffer’s effectiveness along that length of a riparian feature. The 
impact of tree canopy presence decreases, extending outward from a riparian feature in a 
cosine wave pattern. The concept is the same for still features, except that measurement is 
judged from just one side, based on the extent of the riparian feature. 
 
3.2.1.2 Raster-Based Direct Measurement 

In contrast to the vector-based approach, the raster-based direct measurement method involves 

establishing a continuous buffer zone around riparian features using a raster grid. A buffer of 

120 feet is created around the defined riparian boundaries, consistent with forest definitions 
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employed in forest inventories. Within this raster buffer, contiguous tree canopies are classified 

based on spectral, spatial, and textural information derived from high-resolution imagery. 

The raster-based method benefits from its simplicity and computational efficiency, particularly 

when processing large spatial extents. By converting the riparian buffer into a raster format, 

each cell within the buffer is automatically evaluated for the presence or absence of woody 

vegetation. The resulting data are then aggregated to produce an overall measure of buffer 

integrity across the study area. Although this approach may lack the nuanced, per-unit distance 

detail provided by the vector-based method, it offers a rapid and consistent means of assessing 

woody cover in riparian zones. 

Equation: Riparian Buffer Index (RBI) – Raster-Based Measurement (Simple Linear 
Decay) 
One may also use a simpler, linear decay function in a raster implementation. For example: 

 
This equation linearly reduces the impact from 1 at the boundary to 0 at distance D. 

When comparing the two methods, the vector-based approach provides a more detailed, 

continuous measurement of riparian buffer effectiveness by using impact scores based on 

proximity, which are sensitive to the cosine wave pattern of diminishing influence. While more 

straightforward and less computationally intensive, the raster-based method is best suited for 

situations where a rapid, broad-scale assessment is required or where vector data may be 

incomplete. In practice, the choice between these methods will depend on the spatial resolution 

of available data, computational resources, and the study's specific objectives. Both approaches 

can contribute to a more informed and precise management of riparian ecosystems by 

identifying areas where buffer enhancement is necessary and by facilitating the monitoring of 

changes over time. 
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Equation: Extended Impact Score (Optional Modification) 
Lastly, to account for a gradual “tail” of influence beyond the initial D (for instance, if 
some impact persists beyond the strict buffer limit), one may define an extended linear 
RBI as follows: 

 
where 
● E is the additional distance beyond D over which the extended impact decays to 0, 

and 
● β (with 0<β<1) is the maximum extended impact score at d = D. 

 
3.2.2 Categories to Evaluate Forest Structure 

The evaluation of forest structure is pivotal for understanding landscape-level ecological 

processes and informing effective management practices. In this section, forested areas are 

classified based on canopy continuity, spatial configuration (including aspects related to shape), 

and proximity to water bodies and urban development. Most of the categories listed in the 

following section are derived by following the steps in Chapter 1, namely the continuous forests 

layer, standalone trees/small groups of trees, and linear small woody features. The inclusion of 

an RBI to categorize riparian-associated woody features and a simple filter for woody features in 

developed urban or peri-urban areas makes it conceptually easy to extend the method. This 

extension categorizes nuanced, detailed impacts and interactions between humans and woody 

features on the landscape, such as their presence, genesis, and individual or typical 

characteristics. In summary, these categories provide a systematic framework allowing a more 

nuanced interpretation of forest composition and function in mixed-use landscapes. 

3.2.2.1 Defined Categories for Forest Structure 

Woodlands and Woodlots (Continuous Forested Areas): 

Continuously forested areas, also called woodlands or woodlots, are defined by an 

uninterrupted expanse of tree cover that often extends over broad areas. These regions exhibit 

well-developed canopy layers with high tree density and significant structural complexity. In this 
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category, the inclusion criteria are deliberately broad to allow for overlap with woody wetlands, 

thereby ensuring that areas where forested conditions coexist with hydric soils are not excluded. 

The ecological significance of these areas is underscored by their roles in maintaining 

biodiversity, stabilizing soil, and regulating hydrological processes. Of the categories presented, 

these are least often actively managed and influenced by anthropogenic factors. 

Linear Small Woody Features (LSWFs): 

Linear Small Woody Features (LSWFs) are characterized by narrow, elongated patches of tree 

cover that frequently occur within agricultural landscapes or along linear corridors. They can be, 

but are not always, associated with agroforestry practices such as windbreaks and hedgerows. 

As detailed in Chapter 1, LSWFs are distinguished by their reduced width and discontinuous 

nature relative to continuous woodlands. Their ecological importance lies in serving as corridors 

that facilitate species movement, enhance habitat connectivity, and mitigate edge effects. 

Despite their modest size, these features contribute significantly to landscape heterogeneity and 

provide essential ecosystem services in human-dominated environments. 

Riparian Woodlands and Buffers: 

Riparian woodlands and buffers are identified based on their proximity to water bodies and are 

quantified using the Riparian Buffer Index (RBI) criteria. These areas are critical for protecting 

water quality, regulating stream temperatures, and providing habitat for both aquatic and 

terrestrial species. The classification differentiates riparian buffers from other forest categories 

by incorporating both the RBI impact score and the spatial proximity to streams, lakes, and 

wetlands. This method guarantees that only areas directly affecting riparian functions are 

classified as riparian woodlands. 

Urban/Peri-Urban/Suburban/Exurban Woody Features: 

Urban woody features, which may also be termed peri-urban, suburban, or exurban woody 

areas, are distinguished by their occurrence within or adjacent to human settlements. The 

classification of these features is informed by Census Designated Place (CDP) polygons, which 
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help segregate urban areas from more natural forest settings. Urban woody features typically 

exhibit a higher degree of fragmentation or, as measured in chapter 1, a higher canopy 

sinuosity, with canopy structures often interrupted by infrastructure and impervious surfaces, or 

with added sinuosity to fit anthropogenic needs in a developed setting. Their characterization is 

essential for assessing urban ecosystem services such as cooling, air quality improvement, and 

stormwater management. 

Single Trees/Small Groups of Trees: 

This category encompasses isolated trees and small clusters as discrete elements within the 

landscape. Identification criteria are based on canopy size and spatial distribution, with single 

trees or groups lacking the continuity of larger forest patches. Despite their limited spatial 

extent, these tree elements are essential for maintaining landscape connectivity, providing 

habitat for various species, and contributing to overall carbon sequestration. They also serve as 

critical markers for ecological restoration and urban greening efforts. 

 

Figure 2: Proposed categories of tree canopies in the categorization scheme. 

3.2.2.2 Proposed Order of Operations for Tree Canopy Categorization 

A structured, multi-step procedure is proposed to ensure a systematic and replicable 

classification of tree canopies across diverse landscapes. This order of operations is designed 
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to optimize the integration of high-resolution, super-resolution data with both vector- and raster-

based analytical methods. 

Step 1: Extraction of Riparian Woodlands and Buffers 

The process begins with applying the Riparian Buffer Index (RBI) criteria to identify riparian 

woodlands and buffers. Using vector data, riparian features are delineated and the RBI is 

calculated to assign an impact score to adjacent tree canopies. This step is critical in isolating 

areas where riparian functions—such as water quality protection and habitat connectivity—are 

most pronounced. 

Step 2: Identification of Continuously Wooded Areas 

Following the extraction of riparian buffers, the next step involves detecting areas of 

uninterrupted forest cover beyond the riparian zones. Leveraging super-resolution data ensures 

that the detection process captures the fine-scale continuity of woodlands, thereby 

distinguishing extensive, continuous forest areas from more fragmented patches. 

Step 3: Integration of 'Slivers' into Continuous Woodlands 

In many landscapes, narrow or fragmented canopy patches, which, for this paper are called 

'slivers', occur at the periphery of continuous woodlands. This step involves reclassifying these 

slivers based on criteria that assess spatial continuity and canopy density. The goal is to merge 

these fragmented patches back with larger contiguous woodlands where appropriate, thereby 

refining the overall classification of forest structure. 

Step 4: Classification of Urban/Peri-Urban Woody Features 

Urban woody features are then segregated from natural and riparian woodlands. This could be 

achieved in the US using Census Designated Place (CDP) or urban areas polygons, which draw 

neat lines around urban areas. Characteristics such as fragmentation, canopy interruption by 

infrastructure, and distinct spectral signatures are used to differentiate urban woody features 

from their more natural counterparts. 
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Step 5: Extraction and Classification of Linear Small Woody Features (LSWFs) 

Utilizing methodologies outlined in Chapter 1, linear small woody features (LSWFs) are 

extracted from the landscape. These features are classified based on their narrow, elongated 

morphology and are integrated into the overall forest structure categorization. Their identification 

is essential for understanding landscape connectivity, particularly in agricultural settings. 

Step 6: Filtering and Classification of Remaining Tree Canopies 

The final step involves assigning any residual tree canopies that have not been categorized in 

the previous steps. These remaining canopies are classified into appropriate categories, such 

as single trees or patches, based on criteria such as canopy size, shape, and spatial 

distribution. Rigorous quality control and validation measures are implemented to ensure the 

accuracy and consistency of the classification. 

Collectively, this ordered approach provides a comprehensive framework for categorizing tree 

canopy structures, enabling a detailed evaluation of forest composition across varied 

landscapes. By integrating vector and raster-based methodologies with high-resolution remote 

sensing data, this framework supports the development of targeted management practices that 

enhance ecological resilience and promote sustainable land use. 

3.3 Discussion 

3.3.1 Context Within the Human/Forest Interface 

The refined categorization of forest structure presented in this study offers significant benefits at 

the intersection of human activity and forested landscapes. By deploying high-resolution, sub-

meter classification methods, this framework enhances our understanding of how forest 

ecosystems shape and impact human interactions. Detailed forest structure categorization 

allows for the precise mapping of diverse canopy elements—ranging from continuous 

woodlands and riparian buffers to urban woody features and isolated trees—which, in turn, 

supports a more nuanced analysis of land use dynamics. This precision is essential for 
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evaluating the impact of anthropogenic activities on ecological integrity and identifying zones 

where conservation efforts may be most urgently required. 

Accurate measurement of woody features is paramount for effective forest management and 

policy development. The capability to detect subtle changes in forest structure using advanced 

RS and ML techniques ensures that even minor modifications—whether resulting from natural 

disturbance or human intervention—are captured and quantified. Such detailed data provide a 

critical foundation for informed decision-making, allowing managers to anticipate ecosystem 

service shifts and design interventions that maintain or enhance habitat connectivity and 

resilience. High-resolution categorization plays an indispensable role in the early detection of 

degradation in riparian zones and urban forests, where the balance between development and 

ecological preservation is most delicate. 

The implications of this refined categorization extend directly into forest management and 

conservation. Integrating detailed forest structure data into broader ecological and socio-

economic frameworks enables the development of targeted management strategies. For 

instance, enhanced mapping of riparian buffers through the Riparian Buffer Index (RBI) 

supports precise buffer enhancement efforts to protect water quality and mitigate erosion. 

Similarly, accurate delineation of urban woody features facilitates better urban forest planning, 

critical for reducing urban heat island effects, improving air quality, and sustaining biodiversity in 

highly modified landscapes. 

Moreover, by embedding these high-resolution measurements into policy and management 

practices, stakeholders are better equipped to address land use changes. The ability to assess 

forest fragmentation and connectivity on a fine scale informs local conservation initiatives and 

regional and national strategies for ecosystem management. Ultimately, the framework 

established in this study provides a robust tool for synthesizing ecological data with socio-

economic considerations, thereby promoting sustainable development practices that are both 

environmentally sound and socially equitable. 



104 
 

3.3.2 Using FIA Definitions 

Integrating Forest Inventory and Analysis (FIA) definitions into this framework confers several 

advantages. FIA definitions provide a standardized basis for forest categorization, ensuring that 

results are comparable with national forest data and that the criteria for classification align with 

established ecological and management objectives. This standardization fosters consistency in 

monitoring forest conditions over time and can improve data sharing across agencies and 

regions. Moreover, the comprehensive nature of FIA criteria—encompassing factors such as 

canopy cover, tree density, and stand structure—supports the rigorous assessment of forest 

ecosystems, reinforcing the reliability of the categorization scheme presented here. 

Nevertheless, the application of FIA definitions is not without drawbacks. A notable limitation is 

the potential mismatch between the coarse metrics traditionally employed by FIA and the fine-

scale spatial detail provided by high-resolution remote sensing data. FIA definitions were 

developed primarily for national forest inventories and may not capture the nuanced variations 

in tree canopy structure that are observable at sub-meter resolutions. Additionally, since FIA 

metrics are often expressed in non-metric units and designed around a particular operational 

definition of a forest, alternative definitions could offer greater flexibility or precision when 

categorizing tree canopies into functional classes. This recognition of limitations has prompted 

an exploration of alternative frameworks that better accommodate the intricacies of urban, 

riparian, and fragmented landscapes. 

Despite these limitations, FIA definitions were selected for this study because they offer a well-

established, robust benchmark widely recognized by the forest management community in the 

U.S. Their compatibility with existing datasets and alignment with national monitoring objectives 

make them a practical choice for integrating high-resolution data into a larger, policy-relevant 

framework. This decision also ensures that the categorization results are directly comparable 

with broader forest health and management trends, thereby enhancing the findings' applicability 

to academic and operational contexts. 
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3.3.3 Utility of the Method and Categorization 

The categorization method developed herein offers substantial utility for analyzing and 

managing forests in the Upper Midwest. By leveraging high-resolution remote sensing data and 

a refined classification framework, this approach provides detailed, functionally relevant insights 

into forest structure that traditional methods have not achieved. 

First, identifying Woodlands and Woodlots (Continuous Forested Areas) accurately 

represents extensive, uninterrupted forest cover. These continuous areas serve as critical 

reservoirs of biodiversity and carbon, and their delineation enables managers to monitor large-

scale deforestation and forest degradation. In addition, allowing for overlap with woody wetlands 

enriches our understanding of hydrological connectivity and the role of these areas in water 

retention and flood mitigation. 

Second, the classification of Linear Small Woody Features (LSWFs), as outlined in Chapter 1, 

captures the unique ecological characteristics of narrow, elongated patches of vegetation. 

These features, which often appear along field margins, roadsides, or riparian zones, are 

essential for maintaining habitat connectivity and providing corridors for wildlife movement. Their 

precise mapping in agricultural landscapes fills a critical gap in traditional forest inventories and 

supports targeted conservation initiatives. 

Third, delineating Riparian Woodlands and Buffers using the Riparian Buffer Index (RBI) 

criteria is particularly impactful. By defining buffers based on proximity to water bodies and 

integrating a cosine wave-based impact score, this method precisely quantifies the protective 

role of riparian vegetation. Such a detailed assessment is invaluable for water quality 

management and for designing buffer enhancements that safeguard aquatic ecosystems. 

Fourth, the classification of Urban/Peri-Urban/Suburban/Ex-urban woody Features 

distinguishes human-modified landscapes from natural woodlands. Utilizing Census Designated 

Place (CDP) polygons to segregate these areas provides a practical approach for urban forest 

management. This categorization not only aids in monitoring urban tree canopy health but also 
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informs strategies to mitigate urban heat island effects and to promote sustainable urban 

planning. 

Fifth, identifying Single Trees/Small Groups of Trees captures elements that, while 

fragmented, contribute to greater landscape ecology. These isolated trees and small clusters 

can enhance ecological connectivity and provide localized ecosystem services like shade, air 

quality improvement, and microhabitat creation. Recognizing and mapping these features allow 

for more comprehensive assessments of forest cover and formulating management practices 

that support even the smallest woody elements. 

Overall, the proposed categorization framework—encompassing these five distinct classes—

enhances our capacity to analyze forest structure with unprecedented precision. By integrating 

detailed, high-resolution data into a coherent, multi-class system, this method not only advances 

the academic understanding of forest ecosystems but also offers practical tools for conservation 

planning, urban forest management, and formulating adaptive management strategies in the 

Upper Midwest. 

3.4 Takeaways 

In summary, this study has introduced a suite of novel methodologies that can advance the 

functional classification of tree canopies in the Upper Midwest. Integrating convolutional neural 

network (CNN) super-resolution data with a novel Riparian Buffer Index (RBI) framework 

achieves unprecedented sub-meter precision in delineating forest structure. The methodology 

synthesizes vector-based and raster-based techniques to identify continuous woodlands, linear 

small woody features, riparian woodlands and buffers, urban woody areas, and isolated trees or 

patches. These advancements not only enhance the resolution and accuracy of canopy 

mapping but also provide a standardized framework compatible with national data sources such 

as the FIA. This integration represents a significant methodological leap that improves our ability 

to monitor and manage forest ecosystems, particularly in complex, mixed-use landscapes. 
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The categorization framework exhibits substantial utility for forest management, conservation 

planning, and ecological research. It offers actionable insights for policymakers and 

stakeholders by enabling targeted interventions—such as buffer enhancement, urban forest 

planning, and the maintenance of environmental connectivity—across the Lakes States region. 

Moreover, the study identifies clear avenues for future research, including further refinement 

and validation of classification methods, expanding the framework to additional geographic 

areas, and incorporating supplementary data layers to capture even more nuanced ecological 

processes. Overall, these findings not only lay the groundwork for a publishable, detailed study 

but also contribute significantly to the evolving field of spatial forest analysis, promising broader 

application and impact in sustainable land management and conservation policy. 
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Chapter 4: The State of Agroforestry Presence in Lakes States 
and the Role of Intentionality in its Management: Initial Survey 
Returns 
Objectives: 

● Present a tailored survey instrument to capture landowner motivations, management 
intensity, and intentionality in upper Midwestern agroforestry practices. 

● Detail the survey development process and stratified random sampling approach to 
ensure broad representation across parcel sizes and states. 

● Explore landowner intensity and intent dimensions, distinguishing between inherited 
features and actively managed agroforestry systems. 

● Analyze initial survey responses to identify regional and demographic trends in 
agroforestry adoption. 

 
4.0 Abstract 

This chapter details the survey methodology and initial findings from a study to assess 

landowner interest in agroforestry and current adoption across the Great Lakes region. It 

describes the development of a tailored survey instrument aimed at capturing the nuanced 

motivations, decision-making processes, and agroforestry management practices of private 

landowners in the Upper Midwest. By building on previous instruments, such as the National 

Agroforestry Survey, and incorporating insights from regional studies, the survey was uniquely 

designed to measure intentionality and intensity as key factors characterizing the adoption and 

maintenance of agroforestry systems. Methodological innovations include parcel-specific 

identifiers for anonymized geospatial analysis and a stratified random sampling framework 

targeting private parcels across Wisconsin, Michigan, and Ohio, categorized by acreage. The 

survey was implemented in two waves to balance cost efficiency and response rates, beginning 

with a brief initial survey to establish baseline data, followed by an in-depth second wave 

targeting respondents from the first. The second wave primarily emphasized landowner 

priorities, conservation objectives, and management intensity. Initial response patterns, 

demographic characteristics, and descriptive statistics reveal significant regional and 
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demographic trends in agroforestry adoption. This establishes a methodological foundation for 

future studies while contributing to a broader understanding of how intentionality and intensity 

shape agroforestry practices in temperate regions. 

4.1 Introduction 

4.1.1 Background 

Agroforestry (AF) brings together trees, shrubs, and agricultural production for benefits, 

including enhanced farm resilience, economic diversification, and ecosystem services (USDA 

2019; Jose 2019). Its success depends on the decisions landowners make. Yet, one significant 

gap in AF research involves understanding the motivations and goals that prompt landowners to 

begin or maintain these integrated practices. Recent empirical work in the Great Lakes region 

(Benning 2024) reinforces that while traditional demographic factors may be less predictive of 

AF adoption, producers’ perceptions of constraints—such as the labor required for tree 

management—and the availability of financial incentives are critical drivers of whether they 

adopt these practices. Scholars often note that landowner decisions are driven by a mix of 

economic, environmental, and cultural factors, but the precise role of intentionality—meaning an 

owner’s motivation and planning horizon—remains underexamined in many AF studies 

(Arbuckle et al. 2009; Carlisle 2016). For example, Huff et al. (2019) compared family forest 

owners with and without farmland and found that overall forest management behaviors were 

remarkably similar, despite some differences in landholding characteristics, suggesting that 

owner intentionality may be influenced more by intrinsic motivations than by the type of land 

owned. 

Intentionality has been broadly considered in agriculture, forestry, and behavioral research as 

an individual’s capacity to envision and pursue specific outcomes based on personal values or 

goals (Montambault and Alavalapati 2005; Carlisle 2016; Floress et al. 2019). Early adoption 

models frequently emphasize attitudes, risk tolerance, and searching for new information 
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(Amare and Darr 2020; Prokopy et al. 2019). These constructs refer to an owner’s mindset, yet 

few metrics exist for capturing the degree of purposefulness or planning within AF contexts 

(Stubblefield 2021). Agencies like the USDA offer definitions of AF systems as “intentional” 

integrations of trees with crops or livestock (USDA 2019), but they rarely include consistent 

frameworks to measure how and why landowners decide to integrate or maintain tree-based 

systems within working landscapes (Patel-Weynand et al. 2017; Bentrup et al. 2018). 

The current study proposes a more systematic way of quantifying landowner intentionality in AF 

adoption to address this gap. This chapter uses the word “adoption” to define a landowner’s or 

operator’s intent to manage an existing agroforestry practice (either through a change in land 

tenure or through the subtraction of existing woody features to accommodate an AF practice) or 

actively plan for one continuously. The focus is on motivation (e.g., a drive for ecosystem 

services or long-term profit) and future planning (e.g., establishing multi-decade silvopasture 

rotations) rather than solely on observable land management steps. This differs from 

management intensity, which centers on the frequency and depth of interventions such as 

pruning, fertilizing, or livestock rotations (Jose 2019; Smith et al. 2021). A landowner might plant 

trees for wind protection with minimal upkeep—an instance of high intentionality yet lower 

intensity. Another might actively prune and thin on a short cycle for timber, indicating both 

strong planning and frequent interventions. 

In the Great Lakes region, agroforestry practices include alley cropping of fruit or nut trees, 

silvopasture in marginal woodlots, and forested riparian buffers to protect water quality (Patel-

Weynand et al. 2017). Research suggests that AF in this region can improve ecological health 

and offer economic returns through specialty products. Yet, the effect of landowner intentions on 

long-term success is poorly understood (Stubblefield 2021). This chapter aims to advance a 

framework for quantifying landowner intentionality in managing AF systems that range from low-

maintenance buffers to high-investment silvopasture. This approach aims to clarify how 
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motivation and future planning shape AF implementation and inform policy and practice in 

temperate farming–forest landscapes. 

4.1.2 Literature Review 

4.1.2.1 Role of Intentionality in Agroforestry 

Agroforestry (AF) is frequently categorized under a “4 I’s” framework, which describes the 

integration of trees, shrubs, crops, and livestock through practices that are intentional, intensive, 

interactive, and integrated (USDA 2019; Patel-Weynand et al. 2017). The emphasis on 

intentionality is based on the idea that landowners or managers set clear objectives and then 

design and maintain AF configurations that meet these goals (Montambault and Alavalapati 

2005; Carlisle 2016; Bentrup et al. 2018). Measuring intent, however, poses difficulties because 

it requires evaluating the purposeful planning and decision-making behind diverse management 

actions (Stubblefield 2021; Jose 2019). This can be complicated by variations in local climates, 

physical landscapes, and socioeconomic conditions that shape both the feasibility of AF 

activities and the evidence of purposeful adoption (Trozzo et al. 2014; Carlisle 2016). 

Efforts to capture how strongly a manager intends to maintain AF features often hinge on 

whether the practices remain within definitional guidelines, such as integrating trees with crops 

or livestock in a systematically designed system (USDA 2019; Patel-Weynand et al. 2017). 

Efforts to capture intentionality have proven challenging because they require assessing 

observable management practices and the underlying motivations driving these decisions 

(Stubblefield, 2021; Benning, 2024). In some instances, individuals may have initially planted 

trees or shrubs to gain benefits like shade or shelter but later reduce upkeep or cease active 

management. This transition can lead to features that no longer fit standard AF categories, 

especially if the tree-crop or tree-livestock interactions become incidental (Bentrup et al. 2018). 

Researchers stress that identifying genuine intentionality involves distinguishing between 

landowners who actively invest in and perpetuate AF elements and those who allow their 
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practices to lapse into unmanaged, tree-dotted fields or other forms of land use that lack 

deliberate design (USDA 2019a; Stubblefield 2021), although some forms of agroforestry 

function better without deliberate design and active management, such as riparian forest 

buffers. 

4.1.2.2 Role of Land Tenure in Agroforestry 

AF maintenance frequently requires intensive management, which includes careful tree 

establishment, ongoing thinning or pruning, and targeted grazing rotations (Jose 2019; 

Agroforestry Strategic Framework 2019–2024, USDA 2019b). In cases where a landowner 

inherits AF features, there may be uncertainty about the practices’ original design and intent, 

leading to challenges in replicating or sustaining prior management regimes (Arbuckle et al. 

2009; Montambault and Alavalapati 2005). If the new owner lacks awareness of the system’s 

initial goals or has limited technical guidance, intentional and intensive management can lapse, 

causing the features to deviate from AF parameters (Stubblefield 2021). 

Conversely, individuals with longer land tenure and a clear commitment to establishing AF 

systems typically show higher consistency in management intensity (Miller et al. 2012; Carlisle 

2016). This consistency includes a willingness to invest in pruning schedules, livestock 

movement plans, and tree species diversification. Studies indicate that these long-tenured 

managers are more likely to sustain carefully planned interactions between the tree and crop or 

livestock components (Bentrup et al. 2018; Strong and Jacobson 2005). As a result, the land 

remains within a definitional AF framework, supporting ecosystem services like soil protection 

and improved habitat structure (Jose 2019; Patel-Weynand et al. 2017). 

4.1.2.3 Landowner Intentionality Across Domains 

Studies on landowner intention in agriculture underscore the variety of drivers behind adopting 

new practices, including profitability, environmental stewardship, and cultural values (Arbuckle 

et al. 2009; Carlisle 2016). Farmer intent is frequently linked to risk tolerance, social norms, and 
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awareness of potential benefits, such as improved yields or resilience to market fluctuations 

(Carlisle 2016; Prokopy et al. 2019). Several models suggest that economic incentives and 

supportive networks often encourage farmers to experiment with novel approaches, although 

knowledge gaps can impede broader implementation (Stubblefield 2021). 

Within the woodland or forest management scope, forester intent focuses on sustainability 

targets and ecological outcomes (Montambault and Alavalapati 2005; Kilgore et al. 2017). This 

can mean balancing timber production with long-term stewardship goals like carbon 

sequestration, wildlife habitat, and soil protection (Bentrup et al. 2018). Agroforestry intent, 

situated at the intersection of these domains, often arises from multiple motivations. For 

instance, while studies have traditionally linked AF intent with risk tolerance and access to new 

information (Carlisle 2016; Prokopy et al. 2019), recent regional surveys (Benning 2024) 

indicate that even when land managers value agroforestry’s environmental benefits, challenges 

related to cost and technical knowledge can significantly constrain adoption. Some landowners 

center on profit, pursuing specialty crops or integrated livestock systems (Jose 2009). Others 

highlight conservation or climate adaptation, seeing tree-based practices as a path to soil 

restoration, biodiversity, or reduced climate risks (Patel-Weynand et al. 2017; Stubblefield 

2021). Mixed motivations are common, reflecting the multifunctional nature of agroforestry 

(Trozzo et al. 2014). 

4.1.2.4 Surveys in Agriculture, Forestry, and Agroforestry 

Several approaches have emerged to measure the “adoption” of AF and other conservation 

practices, using instruments like the National Census of Agriculture and the National 

Agroforestry Survey (Smith et al. 2021; USDA 2019). The Census of Agriculture collects 

information on farm operations, land use, and practices related to agroforestry, but it may not 

always clearly differentiate AF features (Smith et al. 2021) or provide very much spatial 

precision in reported results. The National Agroforestry Survey, though more targeted, depends 
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on respondents recognizing or classifying their systems as AF, posing challenges when the 

term itself is unfamiliar or variably applied (Stubblefield 2021; Patel-Weynand et al. 2017). 

Local and regional surveys also provide insights, as shown by Stubblefield’s Master’s Project in 

Missouri, which examined awareness of AF definitions and measured willingness to adopt 

specific practices (Stubblefield 2021). Similarly, Benning (2024) conducted a comprehensive 

survey among Minnesota and Wisconsin producers, revealing that while traditional demographic 

factors had limited influence, the way landowners perceived specific constraints (such as tree 

management labor and equipment incompatibility) and opportunities (like financial and technical 

assistance) strongly shaped AF adoption. This work underscores the importance of using 

tailored survey instruments to capture the nuanced intentionality behind land-use decisions. A 

landowner or operator’s mindset—whether they are actively pursuing a practice or resisting 

change—creates a dynamic of “lock-in.” Lock-in can refer to a commitment to current practices 

or the difficulty of shifting away from them, and these patterns shape AF adoption or a 

stakeholder’s capacity and willingness to change practices or dedicate space to an AF practice 

(Goldstein et al., 2023). We emphasize that diligent survey design, sampling approaches, and 

follow-up measures are critical for capturing the subtle motivations and intensities behind AF 

adoption and/or lock-in (Prokopy et al. 2019). Researchers and extension professionals 

frequently encounter sampling challenges in the Great Lakes region, including identifying 

landowners who engage in partial AF without labeling it as such (Arbuckle et al. 2009; Smith et 

al. 2021). Consequently, tailored survey instruments and follow-up interviews are often 

recommended to clarify whether and how respondents incorporate trees, shrubs, and perennial 

species within working landscapes (Stubblefield 2021, Kellerman et al., 2025). 
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4.1.3 Survey Design and Methodological Challenges 

4.1.3.1 Addressing Survey Response Rates 

Improving survey response rates is a critical methodological challenge addressed by adopting 

targeted incentives and systematic follow-up procedures, although survey response rates 

continue to decline nationwide within the US. Several studies have demonstrated that offering 

monetary and non-monetary incentives can effectively motivate potential respondents, while 

subsequent follow-up contacts—such as reminder postcards or emails—prompt additional 

participation (Strong & Jacobson, 2005; USDA, 2019). These techniques have been shown to 

increase overall response rates and enhance the representativeness of the survey sample by 

reaching segments of the population that might otherwise remain unresponsive. 

In addition, integrating digital and mail-based survey approaches has proven beneficial in 

broadening outreach. Digital surveys offer rapid, cost-effective distribution and are particularly 

useful for engaging respondents who are comfortable with online communication. Conversely, 

mail surveys ensure that individuals with limited internet access or lower digital literacy are not 

excluded from the survey process. This dual-mode strategy, supported by evidence from both 

AF and broader land use studies, facilitates comprehensive coverage and reduces mode-

specific biases (Montambault & Alavalapati, 2005; Arbuckle et al., 2009). 

4.1.3.2 Insights from Survey Best Practices for Environmental and Land Use Studies 

Best practices in survey research within environmental and land use studies consistently 

emphasize the importance of clear communication and the establishment of trust with 

respondents. Literature in this field supports the use of well-crafted survey instruments that 

incorporate personalized contact strategies—such as tailored invitations and follow-up 

communications—to foster a sense of engagement and commitment among participants 

(Trozzo et al., 2014). Such practices help to mitigate common concerns about survey relevance 

and confidentiality, thereby improving participation rates. 
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Moreover, combining digital and mail survey methods expands outreach and enhances data 

quality by accommodating diverse respondent preferences. This integrated approach enables 

researchers to leverage the strengths of each modality while minimizing their limitations. The 

resultant survey design is more likely to yield reliable, high-quality data that can inform robust 

analyses in environmental and land use research (USDA, 2019; Arbuckle et al., 2009). 

4.2 Methods 

4.2.1 Development of Survey Instrument 

The survey instrument builds on foundational instruments such as the National Agroforestry 

Survey (USDA 2019) and other farmer-focused questionnaires that have assessed landowner 

practices and motivations (Smith et al. 2021). It also incorporates lessons from a recent 

Master’s project in Missouri, which spotlighted how definitions and awareness shape AF 

willingness-to-adopt (Stubblefield et al., 2024). Early drafts underwent iterative revision with 

input from extension staff, agroforestry researchers, and university partners and collaborators to 

ensure language clarity and contextual relevance. 

A central feature of the instrument novel to the study is the measurement of landowner 

intentionality. Drawing on frameworks highlighting motivational and planning horizons in AF 

adoption, the questionnaire uses carefully phrased items to differentiate between landowners 

who manage trees and crops with a specific purpose in mind and those whose land use or 

inclusion of an AF practice might be incidental or inherited. Questions are worded to allow 

respondents to indicate how frequently or intensely they conduct key tasks to gauge landowner 

activity within a definitive AF framework. As examples from the second wave of the survey 

instrument, the following intent questions capture the timing of windbreak or riparian buffer 

establishment, the frequency of their monitoring, and the specific maintenance practices 

employed, revealing the degree of intentionality in landowners' AF management. The full survey 

instruments are included in 4.8 Appendix B. 
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S4. When were windbreaks/riparian buffers first established on the land/this operation? 
☐ Less than 5 years ago 
☐ 5 years - less than 10 years ago 
☐ 10 years - less than 15 years ago 
☐ 15 years or more 
☐ Don't know 

S5. How often do you monitor your windbreaks/riparian buffers?  
〇 Periodic assessments (ie, monthly, seasonally, annually) for integrity 
〇 Non-periodically, but as needed for reporting or for alignment with land management 
〇 Sporadically, spending on resource/time availability 
〇 Rarely, only when there is a noticeable problem 
〇 Never 

S6. How do you maintain your windbreaks/riparian buffers? (Check all that apply) 
☐ Periodic planting or replanting of buffer vegetation 
☐ Regular pruning or thinning of vegetation 
☐ Monitoring and managing for pests, invasive species, and disease 
☐ Natural growth with no specific interventions 

 
Likert scales from the Wave 2 instrument can also allow respondents to rank conservation 

priorities, economic objectives, and operational goals, while several open-ended prompts invite 

qualitative input. Combining these formats can facilitate richer data collection, allowing 

respondents to elaborate on unique motivations, barriers, or technical concerns. This mixed-

style format expands on earlier surveys’ structured responses and aligns with recommendations 

to capture quantitative and narrative nuances in AF decision-making (Stubblefield 2021; Strong 

& Jacobson 2005). 

4.2.2 Study Area 

The study focuses on the Great Lakes region, encompassing Wisconsin, Michigan, and Ohio. 

These three lakes states offer a critical window into temperate AF because they host abundant 

forested patches alongside extensive agricultural operations (Patel-Weynand et al. 2017). The 

region’s climate supports perennial crops such as fruits and nuts, making it suitable for 

silvopasture, alley cropping, forest farming, and otherwise diversified woodlots. Varied 

topography and soils also support opportunities for tree-based conservation practices in both 

riparian and upland sites. 
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Numerous research and extension initiatives in the Great Lakes basin have introduced farmers 

and woodland owners to tree-crop systems for soil conservation, habitat enhancement, and 

economic returns (USDA 2019). Although industrial-scale agriculture remains prominent, there 

is also a vibrant network of smaller parcels under private ownership, where integrated tree 

practices can meet productivity and conservation goals (Bentrup et al. 2018). These features 

make the Great Lakes region instructive for evaluating how intentional AF management shapes 

landowner decisions. 

Opportunities for new tree-based ventures, including specialty fruit and nut markets, show 

promise in these states. Concurrently, the region faces land-use pressures from urban 

expansion, legacy resource extraction, and shifting economic conditions (Arbuckle et al. 2009). 

The need to reconcile agricultural productivity with resource stewardship underscores the 

importance of examining AF adoption and management strategies in this region. 

4.2.3 Sampling Framework 

The study employed a stratified random sampling strategy, drawing on parcel-level ownership 

data from Wisconsin, Michigan, and Ohio. Parcels were filtered to exclude public or institutional 

owners, such as government entities, churches, and infrastructural organizations, to target 

individual and business landholders most likely to make land-use decisions in AF contexts 

(Stubblefield 2021). To capture variation in land size and potential management intensity, we 

divided parcels into three acreage groups—1–10 acres, 10–50 acres, and 50+ acres—and 

sampled equally from each stratum within each state, with 1000 surveys distributed for each 

state’s distribution. 

This framework ensures a spatially random and equitable representation of private parcels 

across the three states. We attached unique parcel identifiers to each survey, which enables 

anonymous linkage of a respondent’s answers to specific property attributes (Patel-Weynand et 

al. 2017). This design supports more detailed geospatial analysis without compromising 

confidentiality. Unlike previous surveys that targeted self-identified farmers or foresters, this 
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inclusive approach reflects the reality that many AF practitioners do not always align with 

conventional agricultural or forestry labels (Smith et al. 2021). 

Varying parcel sizes, geographies, and management priorities can influence both the intensity of 

agroforestry (AF) management and the degree of intentionality in system design. Smaller 

landholders may engage with tree-based practices for personal use or aesthetic considerations, 

while larger operations often integrate AF into broader economic or land management strategies 

(Strong & Jacobson 2005). To capture this variation, we stratified our sample by acreage 

category. While no comprehensive dataset currently describes farm size patterns of AF systems 

at a national scale, this stratification offers a pragmatic approach given the limitations of existing 

data. Regional studies have provided some insight, but many suffer from limited sample sizes 

that restrict generalizability. Although data from the National Adaptation Plans (NAPs) initiative 

will eventually improve the resolution of farm size information, these data were not available at 

the time of study design. In the interim, proportional sampling across acreage categories 

remains the most viable method for examining how farm size influences AF adoption and 

maintenance. 

4.2.4 Multiple-wave Survey Distribution 

A two-wave survey approach was adopted to maximize both cost efficiency and response rates. 

In Wave 1, all sampled landholders received an introductory two-page (single sheet front and 

back) questionnaire designed to gauge general AF awareness and capture basic demographic 

information. A reminder postcard followed, featuring a QR code for those preferring an online 

response, and an additional hard-copy mailer. This first wave establishes a baseline 

understanding and encourages initial participation through a concise format. 

Wave 2 targets respondents who completed the first questionnaire, providing a longer, 18-page 

booklet that probes more deeply into AF practices, motivations, and management intensities. 

This expanded format avoids redundancy by relying on previously collected demographic data, 

which is linked through each parcel/respondent’s unique and anonymous stratified parcel 
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identifier. As with Wave 1, we plan to mail reminder postcards and offer an online response 

option, anticipating higher engagement from participants already invested in sharing their 

viewpoints. 

The projected response rate draws on earlier AF surveys, which typically range from 10% to just 

under 50% when multiple follow-ups and calling efforts are utilized (National Agroforestry 

Survey, USDA 2019; Missouri master’s project, Stubblefield 2021, Benning 2024). The two-

wave strategy balances resource constraints with rigorous data collection, recognizing that an 

inexpensive initial mailing can prime interest. At the same time, the costlier, in-depth second 

wave elicits richer responses from already-engaged landholders who indicated a current or 

former interest in AF in some form as a land management practice. 

4.3 Results 

Wave 1 survey results are reported here based on responses collected between July and 

December 2024. This material reflects an initial subset of data as a follow-up initial wave of 

responses is underway. A second distribution of Wave 1 surveys began in January 2025, and 

Wave 2 mailings are active for those who participated in the initial survey window. Further 

analyses will incorporate these additional respondents and are expected to produce a more 

comprehensive view of landowner engagement with AF in the Great Lakes region. 

4.3.1 Response Rates 

Approximately 1,000 surveys were distributed in each state (Wisconsin, Michigan, and Ohio) per 

distribution cycle, with each parcel-size stratum (1–10 acres, 10–50 acres, 50+ acres) receiving 

roughly 333 mailings per state. A slightly adjusted total of 334 surveys was sent to the 1–10 

acre group, bringing the sum for that stratum to precisely 1,000 per state. Each state’s mailings 

had its respective institution branding represented on the survey cover letter for that state, which 

described AF and the five common AF practices as described by the National Agroforestry 

Center (NAC). The July–December 2024 mailings were not as strategically timed to align with 
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periods when land managers were more likely to respond, noting that initial feedback that 

midsummer into harvest season mailings can often yield suboptimal returns due to high 

workloads or seasonal transitions (Arbuckle et al. 2009), or in a special case for the timing of 

this study, the timing of other frequent mailings around the 2024 election cycle. The second 

distribution in January–Spring 2025 aims to capture additional respondents during a period 

when agricultural and forestry workloads are typically slow, providing a second “window” for 

better coverage of a different set of landowners who had not responded in the first mailing. 

A geographic overview of returns shows that respondents are relatively evenly dispersed across 

the three states, with visual inspection of parcel response point data indicating no discernible 

clusters or anomalies. The absence of concentrated pockets of respondents suggests a 

balanced spatial distribution, reflecting the effort to stratify sampling by both acreage and 

location across all three states. This geographic uniformity also implies minimal regional bias at 

this stage, though subsequent waves may illuminate patterns related to particular AF practices 

or local land-management networks (USDA 2019). 

Preliminary total returned surveys indicate a moderately consistent response rate among the 

three parcel-size strata. Notably, thanks to extensive filtering and a manual checking of parcel-

extracted mailing lists before the initial distribution of Wave 1, there were only 15 undeliverable 

surveys in the 3000-address distribution. Factoring in undeliverables, our adjusted total 

response rate for the first distribution of Wave 1 was 11.1%. Figure 1 depicts that the most 

significant portion of early returns comes from the 10–50 acre group, followed by the 50+ acre 

group, and then the 1–10 acre category. These early figures align with prior surveys showing 

that mid- to large-sized holdings can have somewhat higher engagement due to ongoing 

operational investments in both agricultural and forestry components (Stubblefield 2021). 

Although responses are nearly even across states, Michigan had the highest response rate, 

followed by Wisconsin and then Ohio. 
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Figure 1: Survey responses by acreage stratification and state. This pie chart displays the 
distribution of survey responses from the first survey wave, categorized by state (Michigan, 
Ohio, and Wisconsin) and parcel size (1–10 acres, 10–50 acres, and 50+ acres). Each segment 
represents the number of respondents within a specific state-acreage group, illustrating a 
balanced return rate across both landholding categories and states. The OH-01 stratification is 
not labeled for this visualization; there were 29 responses from that state stratification. 
 
Demographically, respondents vary in age, education, and tenure, with many landowners 

reporting long-term management of their parcels. A substantial subset has held their properties 

for over three decades, which may correlate with a deeper knowledge of AF practices and the 

inclination to consider integrated land uses. Educational attainment levels are generally above 

national averages for rural landowners, with a notable proportion holding associate's, 

bachelor’s, or graduate degrees. Primary land use data reflect a mixture of cropland, forest land, 

and smaller segments dedicated to pasture or miscellaneous activities. 

Overall, while these data represent only the first phase of Wave 1 returns and partial responses 

from the second Wave 1 distribution, the initial response rate and demographic breakdown 

suggest that the full subsequent distribution and the forthcoming Wave 2 survey will significantly 

enrich the dataset. As more responses are received, deeper cross-tabulations—particularly 

those linking tenure length, education level, and parcel size to AF adoption—will be possible, 
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offering a clearer picture of how landowners across the Great Lakes region approach and 

implement integrated systems. 

4.3.2 Descriptive Statistics 

This section summarizes the demographic and land-related attributes of the 331 individuals who 

responded to the initial Wave 1 distribution of surveys and 173 responses from the second 

Wave 1 distribution of surveys, for a total of 504 responses. Not all responses received from this 

first wave had complete or valid responses, as the first qualifier question in our wave one 

instrument asked if respondents made at least $1000 in on-farm revenue. Key variables in this 

first response include parcel size, land tenure, education level, reliance on off-farm income, and 

self-reported agricultural or forested acreage use, in addition to questions on AF or AF-adjacent 

practice adoption. The data provide a foundational snapshot of Great Lakes region landowners, 

offering context for subsequent analyses of AF adoption and management decisions. 

Parcel stratification was designed to capture different acreage groups—1–10 acres (01), 10–50 

acres (10), and 50+ acres (50)—evenly distributed across Wisconsin (WI), Michigan (MI), and 

Ohio (OH). Michigan yielded 203 total responses, Ohio 132, and Wisconsin 169. Within these, 

the 10–50 acre category accounted for the highest proportion of respondents (37.7%, or 190), 

followed by those owning more than 50 acres (34.7%, or 175), and then the 1–10 acre group 

(27.6%, or 139). Preliminary results show Michigan having the largest response count. 

Operator-reported acreage reflects the actual area each landowner manages, which sometimes 

extends beyond the single parcel used for sampling. Respondents report diverse land-use 

priorities, with cropland averaging 157.6 acres (n=233), forest land at 63.4 acres (n=256), other 

land uses at 53.6 acres (n=96), and permanent pasture at 50.8 acres (n=111). Land tenure 

shows a broad range, with a mean of 33.4 years of ownership. 
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Figure 2: Future land management intentions of respondents. This pie chart illustrates how 
surveyed landowners (n = 303) plan to manage their landholdings over the next five years. The 
majority (81.5%) intend to keep their property, while 12.5% plan to pass it down to heirs. A 
smaller portion anticipates selling or subdividing their land, with subdivision for heirs or sale 
representing the least common future intentions. These findings indicate a strong preference for 
land retention and continuity in ownership. 
 
Educational attainment among respondents is higher than typical rural landowner profiles, with 

26.6% holding a bachelor's degree, 21.3% reporting graduate-level education, 19.7% some 

college, 21.3% a high school diploma, and 9.7% an associate’s degree. Gender distribution 

remains predominantly male (79.4%), with 19.3% female and 1.3% responding with 

“Other/Prefer not to say”. 

Respondents represent a wide range of ages, with many individuals falling into middle-aged or 

older cohorts. The mean land tenure is approximately 33.4 years, suggesting a substantial 

history of property ownership. In parallel, many participants come from agrarian or forestry-

related backgrounds, with 67.9% of respondents growing up on a farm, 64.2% with direct 



129 
 

experience with woodlands, and nearly half reported prior farming involvement before acquiring 

their current parcels (Figure 3). 

Renting or leasing land appears relatively uncommon within this sample. Out of 318 responses, 

81.8% reported that they do not rent any portion of their owned acreage, 21.1% rent or lease 

less than half of the land they operate on (which they do not own), and 9.1% rent out all the land 

they own. Plans for the next five years underscore a strong commitment to current holdings: 

81.5% intend to retain their properties, 12.5% plan to bequeath them to heirs, and a small 

subset anticipates selling or subdividing. These figures underscore the longer-term land-use 

stability among surveyed owners. 

Income reliance indicates that 73.7% of respondents rely on off-farm income, 15.7% mainly rely 

on farm income, and 10.6% depend exclusively on farm-based revenue. Crops represent the 

most important source of on-farm income (154 responses), followed by “Other” (58), forest 

products (48), and livestock (34). 
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Figure 3: Landowner experiences related to agriculture and forestry. This stacked bar chart 
illustrates the number of survey respondents who reported having prior experience in various 
land-use activities. Categories include growing up on a farm, growing up with woodlands, prior 
farming experience, prior forestry experience, and holding a degree in agriculture or natural 
resources (Ag/NR). Green bars represent respondents with relevant experience, while yellow 
bars indicate those without. The data highlight the prevalence of backgrounds in farming and 
forestry among survey participants. 
 
Beyond demographic and economic traits, the survey requested information on current and 

former AF practices. Responses indicate that the most common AF practices are windbreaks 

and riparian buffers, whereas practices like silvopasture and alley cropping show more 

significant segments of disinterest. A second version of the AF presence graph omitting “Not 

Interested” categories (see Appendix Figure 4.7.A1) underscores a pocket of interest in forest 

farming, maple syrup production, and other diversified systems. Such patterns set the stage for 

more detailed analysis in upcoming sections, especially as Wave 2 data becomes available. 
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Figure 4: Agroforestry (AF) presence among respondents, including interest and past 
engagement. This bar chart illustrates the distribution of current, past, and prospective 
engagement in various AF practices as of Wave 1 (February 1, 2025) first distribution’s final 
results. The responses are categorized into four groups: currently practicing AF (green), used to 
practice (blue), interested in adopting (yellow), and not interested (red). Windbreaks and riparian 
buffers show the highest current adoption, while silvopasture, and maple syrup production have 
moderate interest. Forest farming, although low in adoption rates possesses high levels of 
interest relative to its adoption rate. Alley cropping has a distinct general disinterest among 
respondents, highlighting potential barriers to adoption. Woodlots and christmas tree farming, 
although land use practices, were included on the survey and in the figure although they are not 
explicitly agroforestry practices. This figure provides insight into the growth potential and 
challenges for different AF practices among landowners. 
 
4.3.3 Initial Patterns/Correlations 

An initial correlation matrix highlights several relationships among the demographic and land 

management variables gathered through the survey. As a control, “Age” and “Years Operated” 

have a strong positive correlation (r = 0.387), which aligns with the finding that older participants 

typically report holding their properties for longer periods. This pattern is consistent with a 
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tendency for family-owned parcels or multigenerational holdings, though the current dataset 

alone does not explain whether inheritance or active expansion drives this trend. 

“Agroforestry Adoption,” based on the five USDA-defined agroforestry practices and Maple 

Syrup Production, and Experience Score also display a moderate positive correlation (r = 

0.114*). This suggests that those who have engaged in farming or forestry tasks in the past—

and thus hold more knowledge of land-based enterprises—report higher rates of integrating AF 

components. By contrast, reliance on farm income shows a weaker relationship with AF 

adoption (r = 0.135*). Its negative correlation with years operated (r = -0.256***) indicates that 

respondents who have farmed longer tend to diversify income streams instead of relying solely 

on agricultural pursuits. 

When examining parcel size, educational attainment, and adoption, several statistical trends 

indicate that landowners with more formal education appear more likely to adopt AF. However, 

these education-related effects differ across states, suggesting that local conditions, networks, 

or extension programs may shape the decision-making process. A weak negative association 

between age and AF adoption (r = -0.099.) suggests that younger landowners could be more 

open to AF, although the overall pattern remains subtle. 

Another relationship reveals that off-farm income correlates weakly with AF adoption (r = 

0.135*). Landowners who rely on external employment or businesses may have additional 

flexibility to invest in long-term resource management strategies, while those who depend 

predominantly on farm income may perceive agroforestry’s lengthy establishment phase as an 

economic risk. The dataset does not indicate whether off-farm earners are more likely to receive 

grants or technical assistance; subsequent analyses could probe such mechanisms further. 

Regional comparisons show that Wisconsin respondents exhibit modestly higher reported 

adoption rates of AF practices than their counterparts in Michigan and Ohio. These variations 

may stem from differences in cost-share programs, extension outreach, or historical familiarity 

with AF concepts. A companion chart contrasting adoption with stated interest suggests that 
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Michigan and Ohio contain more landowners who are intrigued by the idea of an AF practice yet 

have not implemented it, hinting at possible barriers around capital availability, technical 

guidance, or clarity on the perceived benefits. 

Finally, stratification by acreage reveals that larger parcels (10-50 acres or more than 50 acres) 

display higher average adoption rates than smaller ones (1-10 acres). The correlation between 

years land was operated and AF adoption is weak (r = -0.107). Although response rates at this 

stage can have an impact on net results, Wisconsin parcels between 10 and 50 acres 

demonstrate the highest mean level of AF adoption, followed by all three states’ 50-or-more-

acre parcel responses, whereas 1-10 acre parcels across all three states show the lowest. This 

gap underscores the relevance of landholding size when considering the viability or 

attractiveness of AF practices. Although the current data do not explicitly clarify the reasons for 

this discrepancy, the finding underscores an important structural factor in the region’s emerging 

AF landscape. 

4.4 Discussion 

4.4.1 Interpretation of Initial Findings 

The demographic and geographic patterns observed in the results underscore a multifaceted 

interplay between landowner characteristics and AF adoption. Landowners with more years of 

operation, particularly those with diverse farm or forestry experiences, appear more likely to 

integrate tree-based agroforestry practices into their landscapes. Meanwhile, the data suggest 

that younger landowners could be open to experimentation, though the extent of their 

engagement may hinge on access to technical support and financial resources. 

Education emerged as a factor that correlates with higher levels of adoption, reflecting how 

educational achievement may increase familiarity with AF concepts. Additionally, reliance on off-

farm income corresponds with the willingness to pursue longer-term management horizons. 

This finding highlights the significance of economic stability in shaping decisions, as owners 
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who depend less on immediate farm revenue may face fewer barriers when considering time-

intensive or capital-intensive practices. 

Regional nuances illustrate how policy environments, local outreach, and land-use histories can 

shape adoption rates. In some states, cost-share or incentive programs may align with higher 

levels of AF integration. Wisconsin exhibited the highest adoption rate out of the three states 

surveyed, although adoption of AF had a relatively inverse relationship with interest when 

compared to Michigan and Ohio (see Figure 4.7.A11). This may be due to statewide outreach 

efforts or incentives to adopt AF practices, or as a product of local organizations like the 

Agroforestry Coalition or Savanna Institute in Wisconsin, which have an impact on overall 

recognition of AF practices and some competencies associated with AF. Yet, even in areas of 

interest, potential adopters appear stymied by limited financial and technical guidance, as 

indicated by the general rate of ‘disinterest’ across all AF practices. These gaps emphasize the 

importance of local networks in facilitating both the introduction and refinement of tree-based 

management strategies on agricultural landscapes. 

Across parcel sizes in our stratification, smaller holdings show lower participation in AF, 

implying that these practices may be perceived as more challenging to implement on limited 

acreage. Larger properties exhibit higher adoption, perhaps due to greater operational flexibility 

to accommodate AF practices or economies of scale. These findings suggest that AF uptake is 

shaped by a confluence of personal background, economic considerations, and external support 

structures, all warrant further examination as the survey expands to additional respondents and 

Wave 2 data. 

4.4.2 Implications for Policy and Practice 

The nuanced influences of land tenure, experience, and off-farm income underscore a need for 

carefully targeted policies. Incentive structures that account for these variables may encourage 

more widespread adoption by reducing upfront costs, clarifying technical requirements, or 

supporting long-term maintenance. Policymakers could tailor assistance to specific 
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demographics—such as first-time landowners, smaller-acreage managers, or those in regions 

with historically low engagement—to address distinct barriers and foster inclusive participation. 

Landowner characteristics also hint at the usefulness of parcel-level outreach strategies. For 

instance, linking site-specific property data with educational or planning materials (such as the 

novel commercial CanopyCompass tool, although it is not peer reviewed) could enhance 

relevance and encourage adoption among landowners uncertain about the feasibility of tree-

based systems. Extension services can bolster confidence in agroforestry's practicality by 

demonstrating potential returns or co-benefits in a localized context. Digital tools and 

personalized consultations can further strengthen these initiatives. 

In addition, field programs that integrate economic modeling or training could appeal to 

landowners worried about the financial implications of time-intensive tree establishment. 

Showcasing successful, context-specific demonstrations—particularly in areas where AF has a 

track record of stable or profitable results—may help dispel concerns about risk. Many efforts in 

AF communities of practice in the Midwest are being put towards developing AF demo farms to 

advance this mission. Cooperative ventures, including shared equipment or marketing support, 

can be facilitated through these channels, lowering the perceived hurdles associated with new 

management practices. 

Finally, regional customization of extension efforts holds promise. Aligning outreach with state-

level policies, local knowledge networks, and existing agricultural programs may streamline the 

integration of AF into diverse production systems. Tailored workshops, cost-sharing 

frameworks, and mentorship opportunities could connect landowners to both technical expertise 

and supportive peer networks. Such a holistic approach positions AF as a viable path to 

ecological resilience and economic diversification across varying property sizes and ownership 

backgrounds. 
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4.4.3 Comparison with Previous Surveys 

Our findings align with national AF surveys, demonstrating that our study's general adoption 

trends and demographic patterns mirror those reported on a broader scale, although we attempt 

to provide much more spatial detail across a swath of land ownership categories with our 

sampling framework. For instance, the distribution of landholding sizes and the prevalence of 

off-farm income in our sample corroborate national data, lending credibility to our survey 

instrument and reinforcing the consistency of these influential factors across diverse agricultural 

settings (Smith et al., 2021; Smith et al., 2022). 

In addition, our results are consistent with regional studies from the Midwest (Huff et al., 2019; 

Stubblefield, 2021; Stubblefield et al., 2024; Benning et al., 2024) that have noted higher AF 

adoption among larger landholders and the nuanced role of economic stability in AF adoption. 

This convergence between our data and previous local surveys underscores the reliability of our 

findings while highlighting the continuing relevance of factors such as education and local policy 

environments. Together, these cross-references validate our approach and suggest that the key 

drivers identified in our study have broad applicability. 

4.4.4 Future Research Directions 

The upcoming Wave 2 of our survey offers a promising opportunity to deepen our 

understanding of AF adoption. By comparing data from both waves, we expect to clarify 

emerging trends and better capture the dynamics of landowner engagement over time. This 

longitudinal insight is essential for distinguishing between short-term fluctuations and more 

persistent behavioral shifts. 

Future studies should focus on tracking qualitative individual landowner adoption trajectories 

over successive growing seasons. Such longitudinal tracking would help pinpoint critical 

transition moments and assess the long-term effectiveness of financial incentives, technical 
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assistance, and educational outreach. Understanding these temporal dynamics will enable 

researchers and policymakers to design interventions that support sustained AF integration. 

Expanding the geographic scope of our research to include additional Great Lakes or Upper 

Midwestern states—such as Minnesota, where recent studies indicate promising adoption 

potential (Benning 2024) — will further enhance our findings. A broader survey can capture 

regional variations in policy support, market conditions, and natural resource challenges, 

ultimately leading to more tailored and practical recommendations for increasing AF adoption 

across diverse settings. 

Finally, integrating our survey data with complementary methodologies like remote sensing and 

geospatial analysis will yield a richer, multi-dimensional dataset. These techniques can provide 

spatially explicit insights into land use patterns and AF system distribution, refining our 

understanding of how physical and environmental factors interact with socioeconomic drivers. 

4.5 Conclusion 

This chapter has established a robust methodological framework for examining agroforestry 

adoption through the lens of landowner intentionality and management intensity. By detailing the 

development of a tailored survey instrument, along with the strategic use of parcel-specific 

identifiers and a stratified random sampling approach, we have laid the groundwork for nuanced 

data collection that captures both the quantitative and qualitative dimensions of AF practices 

across the Great Lakes region. The initial findings—illustrating consistent demographic trends, 

varied levels of AF engagement, and key relationships among landholding characteristics—

demonstrate the potential of this instrument to yield insights that resonate with national and 

regional surveys. 

Ultimately, these preliminary results underscore the multifaceted influences shaping AF 

adoption, from land tenure and off-farm income to education and local policy environments. As 

we prepare to incorporate additional data from the forthcoming Wave 2, future research will 

refine these trends and explore their implications for targeted outreach and policy design. This 
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chapter validates our approach by aligning with previous studies and charts a course for 

ongoing investigations to inform sustainable agricultural practices and enhance support for AF 

integration in temperate regions. 
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APPENDIX A - Additional Visualizations 

 

Fig 4.7.A1: Agroforestry presence among respondents. This bar chart illustrates the prevalence 
of different agroforestry practices reported by survey respondents. The responses are 
categorized into three groups: currently have the practice (green), used to have the practice 
(blue), and interested in adopting the practice (yellow). Woodlots and windbreaks are the most 
commonly maintained agroforestry features, while riparian buffers, maple syrup production, and 
forest farming show moderate levels of interest. Practices like alley cropping and Christmas tree 
production have lower overall adoption rates but still show some interest among respondents. 
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Figure 4.7.A2: Dependence on farm income among respondents. This pie chart illustrates the 
distribution of farm income reliance among survey respondents (n = 293). The majority (73.7%) 
rely primarily on off-farm income, while 15.7% report that they mainly rely on farm-generated 
revenue. Only 10.6% of respondents exclusively depend on farm income. These findings 
suggest that most landowners supplement their agricultural earnings with external income 
sources, which may influence their ability to invest in long-term land management practices 
such as agroforestry. 
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Figure 4.7.A3: Age distribution of 307 survey respondents. This histogram with a density curve 
illustrates the age distribution of landowner respondents. Most respondents are between 50 and 
80 years old, peaking around the mid-60s. The average age was 66.9 years old. The distribution 
skews slightly older, suggesting that a significant portion of surveyed landowners are in or 
approaching retirement age, which may have implications for land management decisions and 
succession planning. 
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Figure 4.7.A4: Highest level of education completed by respondents. This pie chart illustrates 
the educational attainment of surveyed landowners (n = 319). The largest groups hold either a 
high school diploma or a bachelor’s degree (26.6% each), followed by respondents with some 
college experience (19.7%), a graduate degree (21.3%), or an associate’s degree (9.7%). 
These findings indicate a relatively high level of formal education among landowners, which 
may influence agroforestry knowledge and adoption. 

 

Figure 4.7.A5: Gender distribution of survey respondents. This pie chart displays the gender 
breakdown among respondents (n = 316). The majority (79.4%) identify as male, while 19.3% 
identify as female. A small percentage (1.3%) selected ‘Other/Prefer not to say’. This distribution 
reflects common trends in land ownership and agricultural management demographics. 
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Figure 4.7.A6: Average acreage reported by land use type. This bar chart presents the average 
acreage managed by survey respondents (n varies by category) across four primary land use 
types: cropland, forest land, other land use, and permanent pasture. Cropland has the highest 
average acreage (157.6 acres), followed by forest land (63.4 acres), other land uses (53.6 
acres), and permanent pasture (50.8 acres). The variation in land use categories highlights the 
diversity of land management approaches among respondents. 
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Figure 4.7.A7: Land renting and leasing status among respondents. This bar chart presents the 
distribution of land leasing practices among surveyed landowners (n = 318). The light pink bars 
represent respondents who rent land from others, while the dark red bars indicate those who 
rent land to others. The majority of respondents neither rent nor lease land, while a smaller 
subset participates in leasing arrangements to varying degrees. This data provides insight into 
land tenure dynamics within the surveyed population. 
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Figure 4.7.A8: Distribution of years respondents have operated land. This histogram displays 
the years survey respondents (n = 218) have owned or managed their land (only distribution 1 
responses). Most respondents have operated their land for 10 to 40 years, with an average just 
over 30 years. A smaller subset reports ownership exceeding 60 years, with a few outliers 
managing land for over 90 years. This distribution suggests that many landowners have long-
term land tenure through generations, which may influence agroforestry adoption and long-term 
management decisions. 
 

 
Figure 4.7.A9: Pie chart showing the total number of received, although not necessarily not 
usable survey responses by state (n = 504). Michigan (MI) accounts for the largest share of 
returns, followed by Wisconsin (WI) and Ohio (OH).  
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Figure 4.7.A10: Average number of agroforestry practices adopted by landowners, organized by 
each state and parcel acreage group. The bar heights indicate mean practice counts within 
each state-acreage stratification, highlighting differences in adoption across various landholding 
sizes. 
 

 
Figure 4.7.A11: Bar chart comparing the average number of agroforestry practices adopted 
(“AvgAdoption”) and the average level of interest in additional practices (“AvgInterest”) for 
Michigan (MI), Ohio (OH), and Wisconsin (WI). Wisconsin shows the highest overall adoption 
but a lower average interest than the other states, illustrating an inverse relationship between 
current adoption and future interest in agroforestry practices. 
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APPENDIX B - Survey Instruments 

First Wave Cover Letter and Instrument  

Welcome to the Branching Out Great Lakes Agroforestry Survey 
 

We are a team of researchers from Michigan State University, the Ohio State University, and University 
of Wisconsin-Madison, interested in learning more about how landowners and farmers in Ohio, Michigan, 
and Wisconsin use trees or agroforestry practices as part of their operation. Agroforestry is the intentional 
integration of trees and crop or livestock production. If you are a woodland owner, and do not identify as 
a farmer or have any agriculture on your property, we hope you will still take this survey.  
   
This study asks questions about your farm, your perspective on different on-farm conservation actions, 
and your network (e.g., of other farmers and professionals). Your participation in the study will consist of 
completing this survey. We will not use names, or other identifying information, in any reports of this 
research. We will report results at the state or regional level. All data will be treated with strict 
confidence, and your name will not be used in any report of the research findings. Your responses to 
questions are confidential. Your confidentiality will be protected to the maximum extent allowable by 
law. 
   
 If you would want to know the results of the study (within these restrictions) you should leave your name 
and contact information with us. 
 
 Your decision to participate or not participate in the research will have no effect on your professional 
activities. Participation is voluntary, you may choose not to participate at all, or you may refuse to 
participate in certain procedures or answer certain questions or discontinue your participation at any time 
without consequence. If at any point you feel any discomfort with the materials or questions, please do 
not hesitate to let us know. This short survey is intended to capture basic information about your on-farm 
practices. We will send a second wave survey to gather additional information, depending on your on-
farm practices.  
   
 If you have any questions about this study or wish to be removed from the study after submitting a 
response, please contact: Emily Huff: ehuff@msu.edu. If you have questions or concerns about your role 
and rights as a research participant, would like to obtain information or offer input, or would like to 
register a complaint about this study, you may contact, anonymously if you wish, the Michigan State 
University’s Human Research Protection Program at 517-355-2180, Fax 517-432-4503, or e-mail 
irb@msu.edu or regular mail at 4000 Collins Rd, Suite 136, Lansing, MI 48910. 
   
 Completing this survey indicates your consent to participate in this research. 
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Welcome to the Branching Out Great Lakes Agroforestry Survey 
 
This short survey is intended to capture basic information about trees on your property. We anticipate that 
this survey will take approximately 10 minutes to complete. Questions about the survey can be directed to 
Amanda Curton, Project Manager (curtonam@msu.edu). We have enclosed a full consent form, including 
potential risks and benefits of participating in the study. By mailing back this survey, you agree to your 
anonymized responses being included in the dataset. 

 
About Your Farm and/or Forest 
 

1. Did you own or operate a farm or raise at least $1,000 worth of farm or forest products in 2023 
(either to sell or for personal use)? 
 
____ YES (please continue this survey)  ____ NO (please mail back this survey in the 

envelope provided) 
 

2. How many acres of the land you operated is in each of the following categories (please round up 
to the nearest whole number): 
____ Cropland (row crops, hay, specialty crops, etc.) ____ Permanent pasture 
 
____ Forest       ____ Other (describe): 
 

3. How long have you owned or operated this land? ____________ Years 
 

4. What share of the land you operate do you rent from others?  
___ None ___ Less than half ___ Most ___ All 
 

5. What share of the land you own do you rent to others?  
___ None ___ Less than half ___ Most ___ All 
 

6. What is your most important source of farm income? (please select only one):  
___ Crops ___ Livestock (animal products) ___ Forest products ___ Other (please describe): 
 

7. How much does your household rely on farm or forest income? 

___ Exclusively depend on farm income  ___ Mainly rely on farm income  

___ Mainly rely on off-farm income 

 
8. In the next five years do you plan to (please select only one):  

___ Subdivide my property to sell 
___ Subdivide my property for children/heirs 
___ Sell my property 
___ Give property to heirs 
___ Keep my property 
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Current Practices 
9. Please indicate if you currently do any of the following forestry or agroforestry practices: 

Practice Description Yes, I do No, but I 
used to 

No, but 
I’m 

interested 

No, and 
I’m not 

interested 

Woodlot management Intentionally using the woods on 
your land for timber or non-
timber forest products (e.g., 

mushroom or berry gathering) 

⬚ ⬚ ⬚ ⬚ 

Windbreaks Rows of trees or shrubs ⬚ ⬚ ⬚ ⬚ 

Maple Syrup Making maple or other syrup  ⬚ ⬚ ⬚ ⬚ 

Alley Cropping Rows of trees or shrubs to create 
alleys between  row crops ⬚ ⬚ ⬚ ⬚ 

Silvopasture The deliberate integration of trees 
and grazing livestock operations 

on the same land  
⬚ ⬚ ⬚ ⬚ 

Riparian forest buffers An area of trees or shrubs next to 
a stream, lake, or wetland that is 

managed differently from the 
surrounding landscape 

⬚ ⬚ ⬚ ⬚ 

Forest Farming Cultivation of high-value crops 
under the protection of a 

managed tree canopy 
⬚ ⬚ ⬚ ⬚ 

Christmas Trees Cultivation of evergreen trees for 
sale ⬚ ⬚ ⬚ ⬚ 

Other (e.g., nut crops or 
fruit trees) 

Other practices that include 
woody perennials and their 

associated products 
⬚ ⬚ ⬚ ⬚ 

About You - Finally, we are interested in the characteristics of farmers and landowners who are 
currently using or interested in using agroforestry.  

10. Age:_________ 
11. Check if any of the following apply:  

___ Grew up on a farm 
___ Grew up on land with woodlands 
___ Prior farming experience before owning/operating on this land 
___ Prior forestry experience before owning/operating on this land 
___ Have a degree or training in agriculture, forestry, or a related field 

12. Please indicate the highest level of education you have completed: 
___ High school or equivalent ___ Some college ___ Associate’s degree 
___ Bachelor’s degree  ___ Graduate degree or equivalent (e.g., M.D., J.D., Ph.D., M.S.) 

13. Which of the following best describes you: 
__ Male     __ Female    __ Non-binary    __ I prefer not to answer 



152 
 

Second Wave Instrument 

A: ABOUT YOU AND YOUR LAND 

The next questions help us ensure we have heard from representative farmers in Michigan. 
They also allow us to compare how different sizes and kinds of farms are involved in 
agroforestry. This includes basic information about farm and household finances. Remember 
that your answers will be treated as confidential, and no information that personally identifies 
you will ever be released. If you are uncomfortable answering any question, you may leave it 
blank. 
A1. Please indicate which of the following you grow, raise, or otherwise manage on your land? 
(Check all that apply)  

☐ Row crops 
☐ Hay/Alfalfa 
☐ Specialty crops (including fruits/tree nuts, some vegetables, herbs/spices, flowers) 
☐ Timber 
☐ Other forest products (including firewood, Christmas trees, maple syrup, forest 

nuts/fruits) 
☐ Dairy cattle, including heifers 
☐ Beef cattle 
☐ Sheep/Goats 
☐ Hogs/Pigs 
☐ Poultry 
☐ Honey/honey bees/apiaries 

A1a. If you checked any of the livestock above, do you graze any of them? If you do not 
raise livestock, skip to Question A2.  

☐ Yes 
☐ No → if you do not raise livestock, skip to A2 

A1b. If you checked any of the livestock above - During the 2024 grazing season, how 
often did you move most of your livestock to new paddocks? 

Daily Every 2-3 days Once a week Less than once a 
week 

Never 

◯ ◯ ◯ ◯ ◯ 

 
A2. Which of the following represents the total operational receipts for business/revenue 
generated on your land in 2024? 
Please place a check beside the category that comes closest to your total gross farm receipts. 
Include all receipts from the sale of crops, livestock, milk and milk products, government 
payments and refunds, and income from custom farm work. 
〇 Under $10,000 
〇 $10,000 to $49,999 
〇 $50,000 to $99,999 
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〇 $100,000 to $249,999 
〇 $250,000 to $999,999 
〇 $1,000,000 or more 

A3. Did you produce any of the following crops/products from forested lands you operated in 
2024?  (Check all that apply) 

 
Sold in 
2024 

Managed 
for in 2024 

Used for 
personal or 
on-farm use 
in 2024 

Firewood ☐ ☐ ☐ 

Trees for wood products (lumber, pulp, woodchips, etc.) ☐ ☐ ☐ 

Forages/hay/fodder for livestock ☐ ☐ ☐ 

Foods (berries, nuts, maple syrup, mushrooms, game, etc.) ☐ ☐ ☐ 

Medicinal plants and herbs (American ginseng, goldenseal, etc.) ☐ ☐ ☐ 

Decorative plants and/or materials for landscaping (e.g., flowers) ☐ ☐ ☐ 

Ecosystem services (e.g., carbon, water quality, air quality) ☐ ☐ ☐ 

Other crops/products - Specify: ☐ ☐ ☐ 
A4. In which year did you begin any farming or woods-related enterprises on your land? _____ 
A5. Did you produce and use/sell any of the following crops/products from forested lands land 
you operated in 2023? (Check all that apply) 

 Sold in 2023 

Used this for 
personal or 
on-farm use 
in 2023 

Firewood ☐ ☐ 

Trees for wood products (lumber, pulp, woodchips, etc.) ☐ ☐ 

Forages/hay/fodder for livestock ☐ ☐ 

Foods (raspberries, walnuts, maple syrup, mushrooms, game etc.) ☐ ☐ 

Medicinal plants and herbs (American ginseng, goldenseal, etc.) ☐ ☐ 

Decorative plants and/or materials for landscaping (e.g., flowers) ☐ ☐ 

Ecosystem services (e.g., carbon, water quality, air quality) ☐ ☐ 

Other crops/products - Specify: ☐ ☐ 
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A6. Have you used any of the following practices on your farmland or woodland? (Check all that 
apply) 

 No 
Yes, in the 
past year 

Yes, in the 
past 2-5 years 

Yes, 5 or more 
years ago 

Pest and Weed Control:     

Cultivated for weed control (disking, plowing, mowing, 
etc.) ☐ ☐ ☐ ☐ 

Made herbicide application for weed control ☐ ☐ ☐ ☐ 

Put down barrier weed control (mulching/fabric/cover) ☐ ☐ ☐ ☐ 
Used pesticides on cropland, pasture, or forested 

areas  ☐ ☐ ☐ ☐ 

Brush hogged or mowed for weed or invasive species 
control ☐ ☐ ☐ ☐ 

Tree and Plant Management:     

Pruned tree branches and stems ☐ ☐ ☐ ☐ 

Did root pruning (where applicable) ☐ ☐ ☐ ☐ 
Replanted trees, windbreak vegetation, crops, or 

forages ☐ ☐ ☐ ☐ 

Removed living or dead trees (thinning) ☐ ☐ ☐ ☐ 

Removed undesirable understory vegetation or debris ☐ ☐ ☐ ☐ 

Soil and Water Management:     

Irrigated trees, crops, or shrubs ☐ ☐ ☐ ☐ 

Used fertilizer and/or soil amendments ☐ ☐ ☐ ☐ 
Used practices to control/minimize nutrient or soil 

runoff ☐ ☐ ☐ ☐ 

Wildlife and Livestock Management:     

Fencing or tree tubes to protect trees/crops from 
wildlife/livestock ☐ ☐ ☐ ☐ 

Flash or short-duration grazing ☐ ☐ ☐ ☐ 

Rotational grazing ☐ ☐ ☐ ☐ 

Conservation and Habitat Enhancement:     

Adding pollinator habitat ☐ ☐ ☐ ☐ 
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Adding continuous living cover or perennial vegetation ☐ ☐ ☐ ☐ 

Increasing carbon storage in plants and soil ☐ ☐ ☐ ☐ 

Fire Management:     

Prescribed fire (where applicable) ☐ ☐ ☐ ☐ 

Installation/maintenance of fire/fuel breaks ☐ ☐ ☐ ☐ 

Other Management Activities:     

Other management activities - Specify: ☐ ☐ ☐ ☐ 
 
A7. On a scale of 1-5, where 5 is “strongly agree” and 1 is “strongly disagree,” how strongly do 
you agree or disagree with each of the following statements? 
 Strongly  

Disagree Disagree 
Neither 
Agree Nor 
Disagree 

Agree Strongly 
Agree 

I am optimistic about the future of my farm/land ◯ ◯ ◯ ◯ ◯ 
Government should stop telling landowners how to 
manage their land ◯ ◯ ◯ ◯ ◯ 

Government should do more to help farmers/landowners ◯ ◯ ◯ ◯ ◯ 
In general, businesses can do things more efficiently 
than governments ◯ ◯ ◯ ◯ ◯ 

I am concerned about the future of farming/woodlot 
management in this area ◯ ◯ ◯ ◯ ◯ 

Agribusiness consolidations have helped my farm/land ◯ ◯ ◯ ◯ ◯ 
Crop and revenue insurance is critical to my farm’s 
survival ◯ ◯ ◯ ◯ ◯ 

Business will harm society if it is not regulated by 
government ◯ ◯ ◯ ◯ ◯ 

I am concerned governmental regulations will hurt my 
farm/land operations ◯ ◯ ◯ ◯ ◯ 

Agribusinesses exert too much power in farm markets ◯ ◯ ◯ ◯ ◯ 
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B: GENERAL AGROFORESTRY QUESTIONS 

In this survey, “agroforestry practices” is categorized as alley cropping, forest farming/maple 
syruping, riparian forest buffers, silvopasture, and windbreaks. Please reference the one-page 
sheet provided to provide examples of agroforestry practices you would see on your land. 
 
B1. In your experience or opinion, to what extent do you think agroforestry practices provide (or 
would provide) any of the following benefits to your land/operation? 

 No benefit Some benefit 
Significant 
benefit 

Conservation Benefits: 

Improved soil health ◯ ◯ ◯ 

Improved soil erosion control ◯ ◯ ◯ 

Improved water quality (reducing nutrient runoff) ◯ ◯ ◯ 

Increased carbon storage in soils, trees, and vegetation ◯ ◯ ◯ 

Habitat for wildlife or pollinators  ◯ ◯ ◯ 

Reduce pesticides and herbicides ◯ ◯ ◯ 

Increase biodiversity of plants, animals, or fungi ◯ ◯ ◯ 

Economic Benefits: 

Income diversification from multiple crops/products ◯ ◯ ◯ 

Crops/products for on-farm or personal use ◯ ◯ ◯ 

Increased land value ◯ ◯ ◯ 

Revenue from conservation program payments ◯ ◯ ◯ 

Revenue from hunting leases ◯ ◯ ◯ 

Improved farm resilience to weather extremes ◯ ◯ ◯ 

Other Benefits: 

Aesthetics/scenic beauty ◯ ◯ ◯ 

Hunting ◯ ◯ ◯ 

Recreation (other than hunting) ◯ ◯ ◯ 
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B2. In your experience or opinion, how big of a barrier or challenge are each of the following to 
your ability to use agroforestry practices on your land/operation? 

 
Not a barrier 
or challenge 

Minor 
barrier or 
challenge 

Major 
barrier or 
challenge 

Lack of information about establishing agroforestry practices  ◯ ◯ ◯ 

Difficulty establishing trees/shrubs or crops ◯ ◯ ◯ 

High startup costs ◯ ◯ ◯ 

Lack of information on management and maintenance ◯ ◯ ◯ 

Expense of maintenance ◯ ◯ ◯ 

Lack of information on recommended species (trees, shrubs, 
crops) ◯ ◯ ◯ 

Lack of knowledge among technical assistance providers ◯ ◯ ◯ 

Lack of examples or demonstration sites ◯ ◯ ◯ 

Lack of financial assistance ◯ ◯ ◯ 

Added labor and management complexity ◯ ◯ ◯ 

Incompatible with current farm operations ◯ ◯ ◯ 

Trees and crops compete for space, light, water, and nutrients ◯ ◯ ◯ 

Tree/shrub pests and diseases ◯ ◯ ◯ 

B3. Below are several statements on agroforestry systems. Please indicate the extent to which 
you agree with them:  

I believe that agroforestry generally can… 
Strongly 
Disagree Disagree 

Neither 
Agree Nor 
Disagree Agree 

Strongly 
Agree 

Diversify products/income ◯ ◯ ◯ ◯ ◯ 

Provide valuable crops/products for 
personal/on-farm use ◯ ◯ ◯ ◯ ◯ 

Increase land value ◯ ◯ ◯ ◯ ◯ 

Be costly to plant and maintain ◯ ◯ ◯ ◯ ◯ 

Increase crop, livestock, and/or forage 
production ◯ ◯ ◯ ◯ ◯ 

Improve crop and/or forage quality ◯ ◯ ◯ ◯ ◯ 

Increase water use efficiency ◯ ◯ ◯ ◯ ◯ 
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Offer recreational opportunities ◯ ◯ ◯ ◯ ◯ 

Improve marginal or unproductive land ◯ ◯ ◯ ◯ ◯ 

Require more labor and inputs ◯ ◯ ◯ ◯ ◯ 

Be difficult to manage ◯ ◯ ◯ ◯ ◯ 

Promote wildlife habitat/biodiversity ◯ ◯ ◯ ◯ ◯ 

Increase resilience to extreme weather  ◯ ◯ ◯ ◯ ◯ 

Improve soil health ◯ ◯ ◯ ◯ ◯ 

Provide scenic beauty/pleasing aesthetics ◯ ◯ ◯ ◯ ◯ 

B4. When considering whether to include or expand agroforestry practices on your land, how 
much would the following services help you implement agroforestry on your land? 

 Not at all Some A lot 

Labor assistance ◯ ◯ ◯ 

Technical assistance for agricultural practices ◯ ◯ ◯ 

Technical assistance for forestry practices ◯ ◯ ◯ 

Access to high-quality seeds/starts ◯ ◯ ◯ 

Access to equipment/planting materials ◯ ◯ ◯ 

Government cost-share or incentives for installation ◯ ◯ ◯ 

Peer support networks ◯ ◯ ◯ 

Insurance programs ◯ ◯ ◯ 

Credit/loan programs ◯ ◯ ◯ 

Educational programs ◯ ◯ ◯ 

Market access assistance ◯ ◯ ◯ 

Policy and regulatory support ◯ ◯ ◯ 

Monitoring and evaluation support ◯ ◯ ◯ 

Long-term maintenance or technical support ◯ ◯ ◯ 
B5. Do you currently use any of the agroforestry practices described on the one-page handout 
on your farmland/woodland? 
〇 Yes (continue) 
〇 No, I do not currently practice any of the described agroforestry practices (Skip to ‘C: 

Alley Cropping’) 
B6. Please estimate the total acres you used for each of the following agroforestry practices on 
your farm in 2024: 
Total acres in windbreaks, shelterbelts and/or hedgerows: ___ acres 
Total acres used for silvopasture: ___ acres 
Total acres in a riparian forest buffer (buffers to waterways): ___ acres 
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Total acres in alley cropping and/or intercropping with trees/crops: ___ acres 
Total acres used for forest farming, multi-story farming, and/or maple syruping/sugaring: ___ 
acres 
 
PERCEPTIONS AND EXPERIENCES WITH SPECIFIC AGROFORESTRY PRACTICES 

In the following sections, please offer your opinions on the likely benefits and challenges of 
individual agroforestry practices, indicate if you use each of these practices, and (if appropriate) 
answer a few questions about how you practice and experience that type of agroforestry. To 
revisit descriptions of agroforestry practices, please see the handout included with your survey. 
 
C: ALLEY CROPPING 

C1. Which best describes your interest in alley cropping?  
〇 I currently practice alley cropping.  
〇 No, I do not currently practice alley cropping, but I am interested in incorporating alley 

cropping into my operation. 
〇 No, I do not currently practice alley cropping, and I am not interested in alley cropping.  
〇 No, I do not currently practice alley cropping, but I have done so in the past. 

 
C2. In addition to the possible generic benefits from agroforestry described above, do you 
believe alley cropping does or could provide any of the following benefits to your 
land/operation? 

 
Not a 
benefit 

Slight 
benefit 

Significant 
benefit 

Economic Benefits: 

Income from sale of timber or forest products ◯ ◯ ◯ 

Increased production/yield of crops or forage ◯ ◯ ◯ 

Improved quality of crops, forage, and/or tree products ◯ ◯ ◯ 

Increased crop water use efficiency and/or irrigation efficiency ◯ ◯ ◯ 

Improved crop protection from insects and pests ◯ ◯ ◯ 

 
C3. In addition to the possible challenges from agroforestry described above, do you believe 
alley cropping would add any additional barriers or challenges to your land/operation? 

 
Not a barrier or 
challenge 

Minor barrier or 
challenge 

Significant barrier 
or challenge 

Increased wildlife damage to trees and crops ◯ ◯ ◯ 

Risks of herbicide drift damaging trees/shrubs ◯ ◯ ◯ 

Issues with snow drifts ◯ ◯ ◯ 

The following questions apply to those currently practicing alley cropping or those who 
have tried but stopped using alley cropping. If you do not currently use or have not formerly 
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used alley cropping, please skip to section D: Forest Farming/Multi-story Farming/Maple 
Sugaring.  
 
C4. When were alley cropping practices first established on your land/this operation? 

☐ Less than 5 years ago 
☐ 5 - 10 years ago 
☐ 10 - 20 years ago 
☐ More than 20 years ago 
☐ Don't know 

C5. In the next five years, do you expect the area of your land used for alley cropping to 
increase, decrease, or stay the same? (Check one) 
〇 Increase 
〇 Decrease 
〇 Stay the same 
〇 Don't know 

 
C6. How important are each of the following factors to your decision to stop using alley 
cropping? 

 
Not 
important 

A little 
important Important 

Very 
important N/A 

Not profitable ◯ ◯ ◯ ◯ ◯ 

Too much wildlife damage ◯ ◯ ◯ ◯ ◯ 

Too much work/maintenance intensive ◯ ◯ ◯ ◯ ◯ 

Does not produce/sustain additional yield ◯ ◯ ◯ ◯ ◯ 

Lack of technical assistance/support to achieve 
goals ◯ ◯ ◯ ◯ ◯ 

Other – please describe:___________________ ◯ ◯ ◯ ◯ ◯ 
 
D: FOREST FARMING/MULTI-STORY FARMING/MAPLE SUGARING 

D1. Which best describes your interest in Forest Farming/Multi-story Farming/Maple Sugaring?  
〇 I currently practice forest farming, multi-story farming, and/or maple sugaring.  
〇 No, I do not currently practice forest farming, multi-story farming, and/or maple sugaring, 

but I am interested in adopting/incorporating forest farming, multi-story farming, and/or 
maple sugaring as a practice. 

〇 No, I do not currently practice forest farming, multi-story farming, and/or maple sugaring, 
and I am not interested in forest farming, multi-story farming, and/or maple sugaring.  

〇 No, I do not currently practice forest farming, multi-story farming, and/or maple sugaring, 
but I have done so in the past. 
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D2. In addition to the possible generic benefits from agroforestry described above, do you 
believe forest farming, multi-story farming, and/or maple sugaring could provide any of the 
following benefits to your land/operation? 

 Not a benefit Slight benefit Significant benefit 

Conservation Benefits:    

Invasive weed control ◯ ◯ ◯ 

Economic Benefits:    

Income from the sale of products (edibles, timber, etc.) ◯ ◯ ◯ 

Increased crop production/yield ◯ ◯ ◯ 

Improved crop quality ◯ ◯ ◯ 

Increased water-use efficiency ◯ ◯ ◯ 

Timber stand improvement ◯ ◯ ◯ 

Other Benefits:    

Cultural/family tradition ◯ ◯ ◯ 

D3. In addition to the possible challenges for agroforestry described above, do you believe 
forest farming, multi-story farming, and/or maple sugaring would add the following additional 
barrier or challenge to your land/operation? 

 
Not a barrier or 
challenge 

Minor barrier or 
challenge 

Major barrier or 
challenge 

Theft of forest farming crops/products and equipment ◯ ◯ ◯ 

 
 

The following questions apply to those currently practicing Forest Farming/Multi-story 
Farming/Maple Sugaring or those who have tried but stopped practicing. If you do not 
currently use or have not formerly used forest farming, please skip to section E: Silvopasture.  
 
D4. When were forest farming, multi-story farming, and/or maple sugaring practices first 
established on your land/this operation? 

☐ Less than 5 years ago 
☐ 5 years - less than 10 years ago 
☐ 10 years - less than 15 years ago 
☐ 15 years or more 
☐ Don't know 

D5. In the next five years, do you expect the area of your land in forest farming, multi-story 
farming, and/or maple sugaring to increase, decrease, or stay the same? (Check one) 
〇 Increase 
〇 Decrease 
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〇 Stay the same 
〇 Don't know 

D6. How important are each of the following factors to your decision to stop practicing forest 
farming, multi-story farming, and/or maple sugaring? 

 
Not 
important 

A little 
important Important 

Very 
important N/A 

Not profitable ◯ ◯ ◯ ◯ ◯ 

No market for products ◯ ◯ ◯ ◯ ◯ 

Too much work/maintenance intensive ◯ ◯ ◯ ◯ ◯ 

Does not produce/sustain additional yield ◯ ◯ ◯ ◯ ◯ 

Lack of technical assistance/support to achieve 
goals ◯ ◯ ◯ ◯ ◯ 

Other – please describe:___________________ ◯ ◯ ◯ ◯ ◯ 

 
E: SILVOPASTURE 

E1. Which best describes your interest in silvopasture?  
〇 I currently practice/use silvopasture.  
〇 No, I do not currently practice/use silvopasture, but I am interested in 

adopting/incorporating silvopasture as a practice. 
〇 No, I do not currently practice/use silvopasture, and I am not interested in silvopasture.  
〇 No, I do not currently practice/use silvopasture, but I have done so in the past. 

 
E2. In addition to the possible generic benefits from agroforestry described above, do you 
believe silvopasture could provide any of the following benefits to your land/operation? 

 
Not a 
benefit 

Slight 
benefit 

Significant 
benefit 

Conservation Benefits:    

Invasive/noxious plant control ◯ ◯ ◯ 

Expansion of pasture acreage ◯ ◯ ◯ 

Economic Benefits:    

Income from the sale of products (meat, eggs, stockers, timber, 
etc.) ◯ ◯ ◯ 

Improved animal welfare and health ◯ ◯ ◯ 

Increased forage quality ◯ ◯ ◯ 

Increased forage availability throughout the year ◯ ◯ ◯ 

Increased forage production on a per acre basis ◯ ◯ ◯ 

Reduction in feed purchases ◯ ◯ ◯ 
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Timber stand improvement ◯ ◯ ◯ 

Wildfire fuel reduction ◯ ◯ ◯ 

 
E3. In addition to the possible challenges from agroforestry described above, do you believe 
silvopasture would add any of the following additional barriers or challenges to your 
land/operation? 

 

Not a 
barrier or 
challenge 

Minor 
barrier or 
challenge 

Major 
barrier or 
challenge 

Windthrow (trees falling over after thinning) ◯ ◯ ◯ 

Livestock poisoning from foraging on toxic plants ◯ ◯ ◯ 

Soil compaction from livestock ◯ ◯ ◯ 

 
The following questions apply to those currently practicing silvopasture or those who 
have tried but stopped using silvopasture. If you do not currently use or have not formerly 
used silvopasture, please skip to section F: Riparian Forest Buffers. 
 
E4. When were silvopasture practices first established on your land/this operation? 

☐ Less than 5 years ago 
☐ 5 years - less than 10 years ago 
☐ 10 years - less than 15 years ago 
☐ 15 years or more 
☐ Don't know 

E5. In the next five years, do you expect the area of your land in silvopasture to increase, 
decrease, or stay the same? (Check one) 
〇 Increase 
〇 Decrease 
〇 Stay the same 
〇 Don't know 
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E6. How important are each of the following factors to your decision to stop using silvopasture? 

 
Not 
important 

A little 
important Important 

Very 
important N/A 

Not profitable ◯ ◯ ◯ ◯ ◯ 

Lack of stand regeneration ◯ ◯ ◯ ◯ ◯ 

Too much work/maintenance intensive ◯ ◯ ◯ ◯ ◯ 

Does not produce/sustain additional yield ◯ ◯ ◯ ◯ ◯ 

Lack of technical assistance/support to achieve goals ◯ ◯ ◯ ◯ ◯ 

Not an efficient use of acreage for pasture ◯ ◯ ◯ ◯ ◯ 

No improvement in livestock wellbeing ◯ ◯ ◯ ◯ ◯ 

Other – please describe:___________________ ◯ ◯ ◯ ◯ ◯ 

 

F: RIPARIAN FOREST BUFFERS 

F1. Which best describes your interest in riparian forest buffers?  
〇 I currently maintain/have riparian forest buffers.  
〇 No, I do not currently maintain/have riparian forest buffers, but I am interested in 

adopting/incorporating riparian forest buffers as a practice. 
〇 No, I do not currently maintain/have riparian forest buffers, and I am not interested in 

riparian forest buffers. 
〇 No, I do not currently maintain/have riparian forest buffers, but I have in the past. 

F2. In addition to the possible generic benefits from agroforestry described above, do you 
believe riparian forest buffers could provide any of the following benefits to your land/operation? 

 
Not a 
benefit 

Slight 
benefit 

Significant 
benefit 

Conservation Benefits:    

Bank stabilization ◯ ◯ ◯ 

Shade for aquatic environment ◯ ◯ ◯ 

Traps debris during flooding ◯ ◯ ◯ 

Economic Benefits:    

Income from buffer trees/shrubs ◯ ◯ ◯ 

Crop protection ◯ ◯ ◯ 
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F3. In addition to the possible challenges for agroforestry described above, do you believe 
riparian forest buffers would add any of the following additional barriers or challenges to your 
land/operation? 

 

Not a 
barrier or 
challenge 

Minor 
barrier or 
challenge 

Major 
barrier or 
challenge 

Loss of cropland ◯ ◯ ◯ 

Trees falling into waterways/fields ◯ ◯ ◯ 

Damage to buffer trees/vegetation from flooding ◯ ◯ ◯ 

Herbicide drift damaging trees/shrubs ◯ ◯ ◯ 

Issues with subsurface drainage tiles ◯ ◯ ◯ 

Damage to buffer trees/vegetation from livestock ◯ ◯ ◯ 

Damage to buffer trees/vegetation from wildlife ◯ ◯ ◯ 

The following questions apply to those currently using riparian forest buffers or those 
who have tried, but stopped using riparian forest buffers. If you do not currently use or 
have not formerly used riparian forest buffers, please skip to section G: Windbreaks. 
 
F4. When were riparian forest buffers first established on the land/this operation?  

☐ Less than 5 years ago 
☐ 5 years - less than 10 years ago 
☐ 10 years - less than 15 years ago 
☐ 15 years or more 
☐ Don't know 

F5. How often do you monitor your riparian buffer zones? 
〇 Periodic assessments (i.e., monthly, seasonally, annually) for bank integrity 
〇 Non-periodically, but as needed for reporting or for alignment with land management 
〇 Sporadically, spending on resource/time availability 
〇 Rarely, only when there is a noticeable problem 
〇 Never 

F6. How do you maintain your riparian forest buffers? (Check all that apply) 
☐ Periodic planting or replanting of buffer vegetation 
☐ Regular pruning or thinning of vegetation 
☐ Monitoring and managing for pests, invasive species, and disease 
☐ Natural growth with no specific interventions 

F7. In the next five years, do you intend to increase, decrease, or maintain the area in riparian 
forest buffers? (Check one) 
〇 Increase 
〇 Decrease 
〇 Stay the same 
〇 Don't know  
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F8. How important are each of the following factors to your decision to stop using riparian forest 
buffers? 

 
Not 
important 

A little 
important Important 

Very 
important N/A 

Not profitable ◯ ◯ ◯ ◯ ◯ 

Invasive species concerns ◯ ◯ ◯ ◯ ◯ 

Too much work/maintenance intensive ◯ ◯ ◯ ◯ ◯ 

Does not produce/sustain additional yield ◯ ◯ ◯ ◯ ◯ 

Lack of technical assistance/support to achieve 
goals ◯ ◯ ◯ ◯ ◯ 

Not effective for erosion control ◯ ◯ ◯ ◯ ◯ 

Other – please describe:___________________ ◯ ◯ ◯ ◯ ◯ 

 

G: WINDBREAKS (also called SHELTER BELTS/HEDGEROWS) 

G1. Which best describes your interest in windbreaks?  
〇 I currently maintain/have windbreaks. 
〇 No, I do not currently maintain/have windbreaks, but I am interested in 

adopting/incorporating windbreaks as a practice. 
〇 No, I do not currently maintain/have windbreaks, and I am not interested in windbreaks.  
〇 No, I do not currently maintain/have windbreaks, but I have in the past. 

 
G2. In addition to the possible generic benefits from agroforestry described above, do you 
believe windbreaks could provide any of the following additional benefits to your land/operation? 

 
Not a 
benefit 

Slight 
benefit 

Significant 
benefit 

Conservation Benefits:    

Dust mitigation ◯ ◯ ◯ 

Economic Benefits:    

Increased crop production/yield ◯ ◯ ◯ 

Improved crop quality ◯ ◯ ◯ 

Income from windbreak trees/shrubs (firewood, timber, nuts, etc.) ◯ ◯ ◯ 

Improved welfare of livestock ◯ ◯ ◯ 

Increased livestock production ◯ ◯ ◯ 

Snow management ◯ ◯ ◯ 

Protection of farm buildings, home, and other structures ◯ ◯ ◯ 
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Farmstead energy conservation ◯ ◯ ◯ 

Increased crop water use efficiency and/or irrigation efficiency ◯ ◯ ◯ 

Reduced spread of tree diseases (canker, citrus greening, etc.) ◯ ◯ ◯ 

Other Benefits:    

Improved working or living environment from less intense wind    ◯ ◯ ◯ 

Privacy/visual screening ◯ ◯ ◯ 

Odor reduction ◯ ◯ ◯ 

Noise reduction ◯ ◯ ◯ 

G3. In addition to the possible challenges for agroforestry described above, do you believe 
windbreaks would add any additional barriers or challenges to your land/operation? 

 
Not a barrier 
or challenge 

Minor barrier 
or challenge 

Major barrier 
or challenge 

Difficulty regrowing trees within an established windbreak ◯ ◯ ◯ 

Lack of markets for products from windbreak ◯ ◯ ◯ 

Loss of cropland ◯ ◯ ◯ 

Harbors harmful crop pests (wildlife, insects, weeds, etc.) ◯ ◯ ◯ 

Trees and crops compete for space, light, water, and nutrients ◯ ◯ ◯ 

Livestock damage to trees ◯ ◯ ◯ 

Wildlife damage to trees ◯ ◯ ◯ 

Snow drift issues ◯ ◯ ◯ 

 
The following questions apply to those currently using windbreaks or those who have 
tried but stopped using windbreaks. If you do not currently use or have not formerly used 
windbreaks, please skip to H: Incentives And Program Participation. 
 
G4. When were windbreaks first established on the land/this operation? 

☐ Less than 5 years ago 
☐ 5 years - less than 10 years ago 
☐ 10 years - less than 15 years ago 
☐ 15 years or more 
☐ Don't know 

G5. How often do you monitor your windbreaks?  
〇 Periodic assessments (ie, monthly, seasonally, annually) for integrity 
〇 Non-periodically, but as needed for reporting or for alignment with land management 
〇 Sporadically, spending on resource/time availability 
〇 Rarely, only when there is a noticeable problem 
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〇 Never 
G6. How do you maintain your windbreaks? (Check all that apply) 

☐ Periodic planting or replanting of buffer vegetation 
☐ Regular pruning or thinning of vegetation 
☐ Monitoring and managing for pests, invasive species, and disease 
☐ Natural growth with no specific interventions 

G7. In the next five years, will the area of the land in windbreaks increase, decrease, or stay the 
same? (Check one) 
〇 Increase 
〇 Decrease 
〇 Stay the same 
〇 Don't know 

G8. How important are each of the following factors to your decision to stop using windbreaks? 

 
Not 
important 

A little 
important Important 

Very 
important N/A 

Not profitable ◯ ◯ ◯ ◯ ◯ 

Invasive species concerns ◯ ◯ ◯ ◯ ◯ 

Too much work/maintenance intensive ◯ ◯ ◯ ◯ ◯ 

Does not produce/sustain additional yield ◯ ◯ ◯ ◯ ◯ 

Lack of technical assistance/support to achieve 
goals ◯ ◯ ◯ ◯ ◯ 

Not effective for erosion control ◯ ◯ ◯ ◯ ◯ 

Other – please describe:___________________ ◯ ◯ ◯ ◯ ◯ 
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H: INCENTIVES AND PROGRAM PARTICIPATION  

H1. Did you participate in or benefit from the following programs between 2022-2024? 
(Check all that apply) 

● Federal crop insurance (e.g., yield or revenue loss programs) 
● Federal ag commodity programs (e.g., PLC, ARC, MAL, or DMC programs) 
● Federal conservation programs (e.g., EQIP, CRP, etc.) 
● State or local conservation programs (e.g., SWCD programs) 
● USDA Trade Assistance program payments 
● State property tax reduction programs for agriculture or forestry 
● A carbon market (e.g., Family Forest Carbon Program, Michigan Forest Carbon Project) 

H2. Have you previously participated in any cost-share or incentive programs to support 
agroforestry practices on your land? Please select one of the following options: 

◯ Yes, I have participated in cost-share programs. (Continue to Question H2a) 
◯ No, I have not participated, but am interested. (Skip to Question H3) 
◯ No, I have not participated and am not interested. (Skip to Qustion H3) 

H2a. Which agency, group, or program did you participate in? 
● Federal crop insurance (e.g., yield or revenue loss programs) 
● Federal ag commodity programs (e.g., PLC, ARC, MAL, or DMC programs) 
● Federal conservation programs (e.g., EQIP, CRP, etc.) 
● State or local conservation programs (e.g., SWCD programs) 
● USDA Trade Assistance program payments 
● State property tax reduction programs for agriculture or forestry 
● A carbon market (e.g., Family Forest Carbon Program, Michigan Forest Carbon 

Project) 
H2b. What percent of the total costs of implementing your agroforestry practices were 
covered by the cost-share program?  

◯ Less than 50% 
◯ 50% 
◯ 51-75% 
◯ More than 75% 

H3. What barriers have you faced or would you expect to face in participating in cost-share 
programs for agroforestry? (Check all that apply) 

☐ Lack of information  
☐ Paperwork load 
☐ Inadequate funding amount 
☐ Restrictions on land use under program conditions 
☐ Wait time 
☐ Limited upfront capital 
☐ Challenges with program staff 
☐ Other (please specify): 

H4. In the future - which type of organization would you prefer to administer cost-share 
programs for agroforestry on your land? Rank the following options from most preferred (1) to 
least preferred (5): 
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___ Local government agency (e.g., county, conservation district/council, municipalities) 
___ State agency (e.g., Michigan Department of Natural Resources, Michigan 
Department of Agriculture and Rural Development, Michigan EGLE) 
___ Federal agency (e.g., Natural Resources Conservation Service (NRCS), Farm 
Service Agency) 
___ Non-governmental organization (NGO) (e.g., The Nature Conservancy, American 
Forest Foundation, or other Environmental/Conservation Foundations and 
Organizations) 
___ Private company (e.g., TruTerra, FarmRaise, Farm Credit Services) 
___ University Extension  
Other (please specify) _______________________ 

H5. In the future, how would you prefer to receive incentive payments?  
◯ One-time payment before establishment 
◯ One-time payment after establishment 
◯ Installments over multiple years 
◯ I am not interested in receiving incentive payments 
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I: SCENARIOS: Incentive Programs for Agroforestry 

You are considering participating in an incentive program that will reimburse a portion of 
the expenses associated with creating or expanding an agroforestry system on your 
land. Establishment costs for expanding or creating your system total $1,500 per acre. 
Two assistance options are presented to you, but they vary across two factors: 

● Payment: Choices will reflect reimbursement payment rates to help establish 
agroforestry practices. The rates represent the portion of establishment costs the 
program will pay, with you being responsible for the remainder.  

○ Choice options: (1)$750/acre payment, (2) $1,125/acre payment, (3) 
$1,500/acre payment 

● Technical Assistance: Choices will either offer a personalized distant or in-
person consultation with a natural resources specialist working in forestry, 
agricultural systems, and agroforestry. An in-person consultation involves the 
specialist traveling to your property, whereas a distant consultation involves the 
specialist communicating with you through phone and email conversations and/or 
video-conferencing. In addition to a consultation, you will also receive 
educational resources such as fact sheets and other informational publications. 

○ Choice options: (1) resources + distant communication, (2) resources + in-
person communication 

Based upon these varying factors, you make a decision about whether to participate in 
the program or not. 
EXAMPLE: When presented with the following question, you would select the choice 
that sounds most appealing to you. If “Program 2” sounds the most preferable, then you 
would indicate this choice by marking the bubble under the respective column (as 
shown below). 
If neither option sounds appealing, then you would select the “Neither” option. 
    Program 1  Program 2   

Incentive Rate → $1,500 per acre  $1,125 per acre  Neither - Will not 
participate 

Technical Assistance → Resources + Distant  
Resources + In-
person  

  ◯  ⬤  ◯ 

Before proceeding, please read the following carefully: 
Hypothetical bias occurs when a respondent’s preferences under hypothetical 
conditions differ from their actual decisions in real life situations. This happens because 
people generally exhibit higher willingness to participate when their choices do not have 
actual consequences.  
Please select your preference for each of the following comparisons. Within each choice 
set, please indicate the option that is most appealing to you assuming an establishment 
cost of $1,500 per acre. Keep in mind that you may select the “Neither” option. Treat 
each choice set as a stand-alone decision. Please try to base your choices on how you 
may behave in reality. 
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Choice Set 1 
  Program 1  Program 2  Neither 

Incentive Rate → $1,125 per acre  $750 per acre  Neither - Will not 
participate 

Technical Assistance → Resources + Distant  
Resources + In-
person  

  ◯  ◯  ◯ 

Choice Set 2 
  Program 1  Program 2  Neither 

Incentive Rate → $750 per acre  $1,500 per acre  Neither - Will not 
participate 

Technical Assistance → 
Resources + In-
person  Resources + Distant  

  ◯  ◯  ◯ 

Choice Set 3 
  Program 1  Program 2  Neither 

Incentive Rate → $1,500 per acre  $1,125 per acre  Neither - Will not 
participate 

Technical Assistance → Resources + Distant  
Resources + In-
person  

  ◯  ◯  ◯ 

Choice Set 4 
  Program 1  Program 2  Neither 

Incentive Rate → $750 per acre  $1,500 per acre  Neither - Will not 
participate 

Technical Assistance → Resources + Distant  
Resources + In-
person  

  ◯  ◯  ◯ 
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J: COMMUNICATION AND INFORMATION 

J1. Please think about the farmers in your community with whom you communicate about farm or 
forest management practices. About how many think you should incorporate agroforestry 
practices into your operation? Please select only one:  

● Very few, less than 15% 
● Some, more than 15% but less than 50% 
● Most, more than 50% 

 
J2. Please think again about the farmers in your community with whom you communicate about 

farm or forest management practices. About how many of them do you believe incorporate 
one or more agroforestry practices into their operation? Please select only one: 

☐ Very few, less than 15% 
☐ Some, more than 15% but less than 50% 
☐ Most, more than 50% 

 
J3. How useful are the following sources of information for you when you want to learn about 

farm or forest land management and related topics? 

 
Not at all 

useful 
Somewhat 

useful Very useful Never used 

Advice/information from my paid agricultural 
advisors (crop advisor, seed dealer, fertilizer dealer, 

etc.) 
◯ ◯ ◯ ◯ 

Advice/information from professional foresters ◯ ◯ ◯ ◯ 

Beginning farmer support programs ◯ ◯ ◯ ◯ 

Conferences ◯ ◯ ◯ ◯ 

Farm or Forestry financial management training ◯ ◯ ◯ ◯ 

Farm stress or crisis hotlines ◯ ◯ ◯ ◯ 

Land transition or Estate planning programs ◯ ◯ ◯ ◯ 

Field days or demonstration sites ◯ ◯ ◯ ◯ 

Forest landowner associations or cooperatives ◯ ◯ ◯ ◯ 

Other farmers or landowners I communicate with ◯ ◯ ◯ ◯ 

Programs sponsored by farm organizations (e.g., 
Farm Bureau, OSA, ODPA, OEFFA, etc.) ◯ ◯ ◯ ◯ 

Publications from forestry research institutes ◯ ◯ ◯ ◯ 

Reading information on the internet ◯ ◯ ◯ ◯ 

Reading printed farm/forest magazines and books ◯ ◯ ◯ ◯ 

State farm/forestry agency resources and programs ◯ ◯ ◯ ◯ 
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Technical assistance from forestry extension 
service ◯ ◯ ◯ ◯ 

Trial and error on my land ◯ ◯ ◯ ◯ 

University Extension programs (MSU) ◯ ◯ ◯ ◯ 

USDA Natural Resources Conservation Service 
(NRCS) programs ◯ ◯ ◯ ◯ 

Workshops or training sessions on forest 
management ◯ ◯ ◯ ◯ 

 
J4. Have you attended any agroforestry events, trainings, or conferences?  

◯ Yes (continue) 
◯ No (Skip to Question J5) 

 
J4a. What are the greatest benefits you expect or have experienced from participating in 
agroforestry events, trainings, or conferences? 

 
Not a 

benefit (1) (2) (3) (4) 
Great 

benefit (5) 

Advocate for farmers' interests ◯ ◯ ◯ ◯ ◯ 

Learn about new farm management practices ◯ ◯ ◯ ◯ ◯ 

Learn about soil and water conservation issues ◯ ◯ ◯ ◯ ◯ 

Teach others about farm management practices ◯ ◯ ◯ ◯ ◯ 

Teach others about soil and water conservation issues ◯ ◯ ◯ ◯ ◯ 

Meet with other farmers or forest landowners ◯ ◯ ◯ ◯ ◯ 

 
J5. What organizations are you a member of? Please add any formal or informal (e.g., Facebook 

groups like Michigan Farm Families) groups you belong to. (Check all that apply) 
☐ Farm Groups (e.g., Farm Bureau, Farmers Union) 
☐ A Growers or Landowner Association (e.g., Michigan Corn Growers Association, 

Michigan Forest Association) 
☐ Conservation District 
☐ Farm or Forestry-related Facebook Group (e.g., Michigan Forest Association, Michigan 

Farms) 
☐ Other Social media group, please list: _______________________________ 
☐ Other:  ___________________________________________________ 
☐ None of the above    
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Chapter 5: Integration of Parcel-Level Data with Survey Results 
to Perform Spatial Estimation of LSWFs Associated with 
Agroforestry in the Lake States 
Objectives: 

● Describe integrating parcel-level survey data with high-resolution spatial analyses to 
validate LSWF identification as intentional agroforestry practices. 

● Link landowner responses with remotely sensed LSWF features to assess the presence 
of windbreaks and riparian buffers at the parcel scale. 

● Examine case studies and aggregate trends to identify agreements and discrepancies 
between survey reports and spatial outputs. 

● Recommend refining agroforestry mapping methodologies and improving national 
inventory accuracy through similar integrated analysis. 

5.0 Abstract 

Integrating parcel-level survey data with spatial datasets offers an innovative approach to 

refining the identification and characterization of linear and small-scale woody features (LSWFs) 

as agroforestry (AF) practices. This study synthesizes survey data collected from stratified 

random parcels across three states in the Great Lakes region with high-resolution geospatial 

analyses of LSWFs to evaluate their presence, management intentionality, and correspondence 

to agroforestry practices such as windbreaks and riparian buffers. By leveraging advancements 

in remote sensing, including machine-learning classification and 1-meter resolution aerial 

imagery, the study examines the spatial alignment of LSWF features with survey-derived reports 

from landowners. Key findings address the extent to which LSWFs identified through remote 

sensing methodologies can be validated as AF practices compared to ground-truth data derived 

from parcel-level surveys. Metrics were developed to assess the consistency between observed 

LSWFs and self-reported agroforestry features, with an emphasis on distinguishing intentional 

agroforestry from unmanaged woody vegetation. Case studies of LSWF presence and absence 

were evaluated to identify broader spatial trends in agroforestry adoption and management 

across the landscape. The results highlight regional patterns of LSWF intentionality, particularly 

within the Great Lakes region, providing insights into the relationship between reported land use 

practices and spatially inferred LSWF configurations. The study addresses significant gaps in 
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national AF mapping efforts by demonstrating how parcel-level surveys can enhance the 

resolution and accuracy of agroforestry assessments. It further offers practical 

recommendations for improving future methodologies, including the integration of geospatial 

technologies and producer-based surveys. These findings contribute to a more nuanced 

understanding of the distribution, adoption, and management of LSWFs as agroforestry 

practices, facilitating the development of more effective strategies for promoting agroforestry at 

regional and national scales. 

5.1 Introduction/Background 

5.1.1 Contextualizing Agroforestry Mapping and Classification 

Nationwide efforts to map agroforestry (AF) features have historically relied on datasets like the 

U.S. Census of Agriculture, which could capture only a fraction of actual AF usage due to 

inconsistent awareness of AF terminology and limited survey result detail (Smith et al. 2022). 

Simultaneously, response rates to traditional surveys are continuously declining (USDA, 2021; 

Eggleston et al., 2024), offering stakeholders less insight on apparent trends in land 

management among private landholders, who in the United States make autonomous decisions 

on sustainable and/or resilient land use practices for most of the country’s land area. While 

some regions outside the US maintain inventories of identifiable AF practices—for example, 

windbreaks or riparian buffers—these assessments often do not adequately account for the 

impacts and factors that influence management intensity and intent. Farmers may plant trees to 

address a specific agronomic goal, yet without clear records of management objectives, even 

robust mapping tools risk conflating actively managed AF with unmanaged woody cover 

(Sharma et al. 2022; Ahmad et al. 2016). 

Another major limitation arises from the challenge of detecting small-scale or linear small woody 

features (LSWFs) with existing methods and datasets. Typical remote sensing approaches have 

become adept at identifying large forest patches but struggle to classify slender tree rows or 
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narrow vegetative buffers (Meneguzzo et al. 2013; Liknes et al. 2017; Burke et al., 2019). 

Where LSWFs run along field boundaries, rivers, or roads, they may appear similar to naturally 

occurring vegetation, diminishing the ability of standard classification algorithms to distinguish 

intentional AF practices from incidental tree growth. Consequently, small-scale AF elements 

such as windbreaks or riparian buffers are frequently overlooked, creating underestimates of 

genuine AF adoption (Begue et al. 2018). 

These difficulties underscore the strong reliance of AF classification on clear management 

definitions. A row of trees planted to reduce erosion or protect crops exemplifies AF yet can 

visually resemble a line of unmanaged shrubs. Likewise, from imagery, a row of trees can look 

very neatly managed and, on ground-truthing evaluation, be a very ineffective windbreak if at all. 

Even advanced mapping platforms encounter substantial obstacles without explicit ground truth 

data on why trees are planted and how they are maintained. This blurred boundary between 

managed and unmanaged vegetation illustrates the complexity of interpreting AF features solely 

from aerial or satellite imagery. 

5.1.2 Importance of Ground-Truthing for Accurate Classification 

Smith et al. (2022) emphasize that national-level remote sensing assessments must be paired 

with “ground truth” data to avoid misclassifying AF features. Ground-truthing entails verifying the 

management goals and maintenance of a given woody feature, ensuring that identified trees 

reflect an intentional AF system rather than spontaneous or minimally managed growth. Such 

verification is critical for refining existing national estimates, given how AF practice's “4 Is” 

(intent, inputs, integration, and impacts) are often invisible from imagery alone. 

Current mapping approaches rely heavily on shape- or pixel-based classifications that cannot 

capture the nuanced objectives behind tree establishment (Sharma et al., 2022; Pirbasti et al., 

2024). Indeed, there is a fundamental gap between estimates of LSWFs, realized values of 

LSWFs through exhaustive remote sensing, and actual validation of AF practices on the ground. 

Relying on remote sensing or survey-based methods in isolation to quantify the presence of AF 
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will always have numerous inherent imperfections. Therefore, it is essential to combine 

producer surveys with these spatial methods. Many studies demonstrate that high-resolution 

imagery can detect linear features effectively (Ahmad et al., 2016; Burke et al., 2019; Sarti et al 

2021; Luscombe et al., 2023; Patriarca et al., 2024). Yet, producer interviews or questionnaires 

are needed to confirm whether these features are managed for wind protection, riparian 

buffering, or other AF practices. This synergy between remotely sensed data and on-the-ground 

perspectives fills the informational gap on management intensity, a decisive factor in AF 

classification. 

By incorporating landowner-reported details—such as maintenance frequency, monitoring, or 

planning frameworks—researchers can refine AF maps and better align them with how farmers 

or landowners actually steward their landscapes. This integrative approach confirms the 

presence of AF systems and allows for an improved understanding of their ecological roles, 

management variations, and adoption patterns (Romanova et al., 2022; Stubblefield 2021). 

Consequently, ground-truthed data can help address the systematic undercounting of AF 

features and lay a more robust foundation for nationwide AF assessments. 

5.1.3 Leveraging Remote Sensing for LSWF Identification 

Recent advances in remote sensing have considerably enhanced our capacity to identify and 

map linear and small-scale woody features (LSWFs) associated with AF practices. In particular, 

the previously described integration of machine-learning classification techniques with 1-meter 

resolution aerial imagery has enabled the production of detailed tree cover maps that capture 

even subtle vegetative features outside conventional forest boundaries (Meneguzzo et al. 2013; 

Liknes et al. 2017; Burke et al. 2019; Chapter 1 and 2). Complementary to these advances, 

shape-based metrics have been effectively employed to detect windbreaks and riparian forest 

buffers by quantifying geometric attributes such as linearity and sinuosity, thereby facilitating the 

semi-automated identification of these AF elements (Liknes et al. 2017; Chapter 1). Luscombe 
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et al. (2023) demonstrated that integrating airborne LiDAR (∼2 m resolution) can accurately 

resolve fine-scale tree lines and hedgerows with over 90% positional precision. Patriarca et al. 

(2024) propose an object-oriented classification workflow using freely available high-resolution 

orthophotos similar to NAIP, facilitating the automated mapping of hedgerows and woody strips 

at a large scale. Despite these promising advancements, challenges remain in distinguishing 

unmanaged tree features from those intentionally integrated into AF systems, a distinction that 

is critical for accurate classification and subsequent policy and management decisions (Begue 

et al. 2018). 

Smith et al. (2022) encapsulate the potential of remote sensing in augmenting national AF 

assessments by stating: 

“With advances in spatial assessment technologies, remote sensing offers potential opportunities to 
supplement survey methodologies in developing national estimates of agroforestry use. In the U.S., high-
resolution aerial imagery and machine-learning classification systems are being used to develop 1 m 
resolution maps of tree cover, which can then be used to identify windbreaks and riparian forest buffers 
based on their shape. This approach can be used to estimate land area and locations for these types of 
linear agroforestry practices and may be a way to cross check numbers derived from survey methods. 
Challenges remain in accurately identifying forest farming, silvopasture, and similar block-type 
agroforestry practices from other forest land covers and uses. Remotely sensed data will need to be 
augmented with producer-based surveys that can provide key information, including number of adopters 
and their demographics as well as practice implementation and management factors.” 

Integrating high-resolution remote sensing with ground-truthing via producer surveys is essential 

to refining LSWF inventories and ensuring that AF mapping efforts accurately reflect the actual 

AF practices employed on the landscape. 

5.1.4 Rationale for Parcel-stratified, Random Surveys in the Lake States 

Identifying AF features on a larger landscape scale requires robust remote sensing analysis and 

a ground-truth element that situates detected tree cover within the context of deliberate 

management decisions. In the Lake States region (Minnesota, Wisconsin, and Michigan), recent 

advances in high-resolution imagery and shape-based classification (e.g., Liknes et al. 2017) 

provide greater specificity in locating linear woody features. However, these tools alone cannot 

fully distinguish intentionally managed windbreaks or riparian forest buffers from incidental tree 
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rows, abandoned shelterbelts, or other unmanaged features (Begue et al. 2018). Consequently, 

there is a pressing need to complement these spatial datasets with wholistic and spatially 

random surveys that capture local landowners' nuanced objectives and stewardship practices. 

Parcel-level data offer the granular insight to confirm whether identified LSWFs fulfill established 

AF definitions involving purposeful design and management intensity (Smith et al. 2022). 

Additionally, distributing a survey randomly to private landholders allows for a greater meta-

analysis of trends in land management beyond the traditional silos of agricultural and forestry 

producers and practitioners. Indeed, a parcel-scale questionnaire or interview with the 

landowner can clarify whether a visually identified buffer was planted for wind protection, water 

filtration, or wildlife habitat rather than simply arising from natural succession. By integrating 

local landowner perspectives with high-resolution imagery, researchers and policymakers in the 

Lake States can more accurately map the distribution of windbreaks, riparian buffers, and 

similar AF features, thereby guiding targeted outreach, financial incentives, and technical 

assistance to sustain and expand AF practices across the region. 

5.2 Research Objectives 

5.2.1 Clarifying LSWF Presence and Intentionality 

The primary objective is to clarify the presence and intentionality of linear and small-scale 

woody features (LSWFs) as agroforestry (AF) practices in the Lake States. By examining case 

studies at the parcel level, this research seeks to fill existing gaps in national-scale AF 

assessments that can conflate unmanaged tree cover with intentionally managed windbreaks 

and riparian buffers, or generally underestimate the presence and importance of AF features on 

landscapes (Begue et al. 2018). In doing so, the study will measure how landowners perceive 

and manage these features, thereby assessing whether the spatially detected LSWFs align with 

established AF definitions and management standards (Smith et al. 2022). 
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5.2.2 Evaluating Landscape Trends in the Great Lakes Region 

A second objective is to evaluate the broader landscape trends of LSWF adoption and 

intentionality across 35 counties in Michigan, Ohio, and Wisconsin. Integrating parcel-level 

survey data with high-resolution remote sensing analyses will allow for identifying regional 

hotspots and areas where AF practices could be under- or over-represented. This spatial 

evaluation aims to reveal patterns in the distribution of managed windbreaks and riparian 

buffers that can inform both regional planning and policy development (Ahmad et al. 2016; 

Meneguzzo et al. 2013). 

5.2.3 Providing Recommendations for Improved Estimations 

The final objective is to offer practical recommendations for refining AF mapping methodologies 

or broader estimations. This research intends to develop guidance on distinguishing 

intentionally managed AF features from unmanaged woody vegetation by integrating remote 

sensing data with detailed producer surveys. By establishing best data calibration and 

integration practices, the study aims to enhance the accuracy of future national assessments of 

AF practices, thereby supporting more effective conservation and management strategies 

(Liknes et al. 2017; Smith et al. 2022). 

5.3 Data and Methods 

5.3.1 Data 

5.3.1.1 Exhaustive LSWF Dataset 

The exhaustive LSWF dataset for this study was developed through machine-learning 

classifications applied to 1-meter resolution aerial imagery spanning 35 counties in Michigan, 

Ohio, and Wisconsin. Convolutional Neural Networks (CNNs) were used to process large 

volumes of imagery, and their outputs generated high-resolution delineations of woody features 

along agricultural fields, waterways, and property boundaries. LSWF identification from a very 

high-resolution tree canopy class involved shape metrics, segmentation, and filtering steps to 
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isolate relatively narrow or linear tree stands. These classification rules aimed to avoid 

mislabeling broader forest patches or incidental clusters of shrubs, thereby delivering a dataset 

of plausible agroforestry-related features across the region. 

A separate methods paper (see Chapter 1) provides in-depth detail on the neural network 

architecture, training procedures, and performance evaluations. The present work relies on that 

foundational process for its analyses, integrating the LSWF classifications with survey data. 

Previous chapters provide a map of the study areas. 

5.3.1.2 Parcel-referenced Survey Data 

The parcel-referenced survey data were collected by drawing a stratified random sample of 

parcels from each state, with acreage-based categories of 1–10 acres, 10–50 acres, and 50+ 

acres. This sampling extended to all counties in each state and was not limited to the 35 

counties covered by the LSWF dataset. ReGRID served as the source for parcel information in 

Michigan and Ohio. At the same time, the Statewide Parcel Map Initiative (coordinated by the 

State Cartographer's Office and the Wisconsin Land Information Program) provided analogous 

data in Wisconsin. 

Using R, a random set of parcels was pulled, generating 333 parcels per stratification group. For 

the smallest category (1 to 10 acres), 334 parcels were selected to maintain a balanced 

representation. The final mailing list was refined to give precedence to private landowners 

through a data cleaning process. Public entities and larger industrial or infrastructural 

corporations were removed from the final dataset to target individuals with direct decision-

making authority over land management. 

This broad geographic coverage supports additional analyses related to AF in the study states. 

Wave 1 of the survey emphasized the presence or absence of windbreaks, riparian buffers, or 

other woody features, along with basic demographic information on land operators and tenure. 

This initial questionnaire was designed to capture a straightforward inventory of landowner 

practices, establishing a baseline for further assessment. 
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Each surveyed parcel was assigned a unique identification code that linked the mail responses 

to the relevant geospatial data. Chapter 4 provides a more detailed overview of how the survey 

instruments captured landowner intentionality and expands on the discussion of how parcel-

level data can be integrated with remote sensing outputs to clarify management objectives for 

LSWFs. 

5.3.2 Methods 

5.3.2.1 Linking Parcel Survey Data to LSWF Spatial Information 

The first step in integrating landowner-reported agroforestry (AF) features with remotely 

detected LSWFs was establishing an apparent geospatial reference for each parcel. Unique 

parcel identification codes were matched to the LSWF dataset through spatial overlays, linking 

the location of windbreaks, riparian buffers, or other linear woody features to the reported 

attributes from the survey. This allowed for direct association between each surveyed parcel 

and any corresponding LSWF polygons identified via machine-learning. 

Once parcels and LSWF records were linked, presence/absence matrices were constructed to 

capture agreement or discrepancy between landowner survey responses and observed LSWFs. 

Landowners who indicated having windbreaks or riparian buffers were matched with 

corresponding features in the spatial dataset. Parcels where owners indicated no relevant 

woody features were similarly reviewed for any LSWFs that might be false positives. These 

matrices represented an essential mechanism for systematically comparing ground-reported AF 

practices with spatial detections. 

Analyses focused on whether each feature labeled as a windbreak or buffer in the LSWF 

dataset aligned with self-identified management practices. Parcels where the LSWF dataset 

identified probable AF elements, yet the owner’s survey response showed no such features, 

were flagged for further scrutiny. Conversely, situations where the survey reported AF features 
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but the spatial detection missed those features were also noted, creating a framework to guide 

more detailed case study evaluations. 

5.3.2.2 Examining Case Studies for Agreement/Discrepancy 

The described cases were drawn from parcels that exhibited high alignment between the survey 

responses and model outputs and instances where notable discrepancies arose. These case 

studies focused on potential reasons for agreement, such as clearly defined windbreak rows, 

and for discrepancy, such as canopy misclassification or overlooked features along shared 

boundaries. 

The evaluation of each case considered that the survey instrument asked landowners to 

characterize their land operations broadly rather than the specific parcel pulled for sampling. For 

that reason, the final analysis included the selected parcels and adjacent parcels belonging to 

the same respondent. This approach accurately assessed potential AF features extending 

beyond a single parcel boundary. To protect anonymity, individual parcel maps or imagery are 

not published. Instead, aggregated or generalized descriptions and illustrations convey patterns 

and outcomes relating to ownership structure, tree-cover layout, and on-ground management. 
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Figure 2: Reference figure displaying a generalized, hypothetical parcel map of a region in the 
study area to demonstrate survey response overlap with LSWF survey results while protecting 
respondent anonymity. This sample landscape includes a mixture of parcel sizes, residential 
and non-residential parcels, as well as some reference features such as roads, a lake, and a 
river. This version does not include any woody features on the landscape for demonstration 
purposes. 
 
Anticipated factors causing mismatches included abandoned windbreaks overgrown with 

volunteer species, unreported woody strips along property edges, and survey responses 

referring to larger non-adjacent operational holdings where the sampled parcel did not contain 

an active AF practice. Unrecognized or fully forested riparian zones presented another 

explanation for divergence, particularly when high tree density obscured the linearity or 

intentional/unintentional structure of buffers. These case study findings guided refinements in 

data cleaning and classification, highlighting the importance of verifying whether detected 

features indeed reflected managed AF practices. 
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5.3.2.3 Assessing Landscape-Level Trends 

Insights from the case studies were aggregated to identify spatial patterns of LSWF presence 

and AF adoption across the study area. Instances where survey data and model outputs agreed 

helped delineate counties or regions that appeared more likely to host intentionally managed 

woody buffers or windbreaks. Areas with higher frequencies of discrepancies prompted further 

consideration of local land-use practices, data collection methods, and possible misclassification 

in the LSWF dataset. 

Drawing on these aggregated observations, the analysis compared LSWF densities with known 

AF adoption hotspots and regions where uptake may be minimal. This comparison offered 

preliminary indicators of whether certain landscape features, climatic conditions, or policy 

influences correlated with higher incidences of managed woody features. Data at this stage 

remained preliminary due to the limited information on management intensity, making it 

challenging to reach definitive conclusions on how different owners approach AF practices. 

These landscape-level assessments established a foundation for more detailed studies in later 

chapters. The absence of thorough data on landowner intent and the degree of active 

management underscored the need for a more comprehensive investigation. Follow-up survey 

waves and additional datasets are intended to refine the overall picture of AF adoption, 

shedding light on the motivations behind establishing LSWFs and the roles these features play 

in supporting broader conservation or economic objectives. 

5.4 Results 

5.4.1 Presence/Absence Across Surveyed Parcels 

The survey responses collected from parcels within the study counties offer a foundational 

perspective on the presence or absence of windbreaks and riparian buffers. Wave 1 results 

compiled on February 22, 2024, indicate that seven respondents in each state, for a total of 21 

across Michigan, Ohio, and Wisconsin, reported having windbreaks and/or riparian buffers on 
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their land. These reported features were then cross-referenced with the spatial dataset of linear 

and small-scale woody features (LSWFs) to gauge how effectively remote sensing classification 

aligned with landowner observations. Overall, the patterns suggest a generally consistent match 

between survey responses and mapped LSWFs, although the data reveal cases where certain 

AF elements were either completely and clearly overlooked by the model or went unreported by 

landowners. 

The assessment of windbreaks showed that nine of the twelve surveyed parcels in the study 

counties included model-derived LSWFs in areas where the respondents had indicated 

windbreaks in their survey answers. One respondent reported a windbreak, which in imagery 

was visually along a lakeshore, yet the classification model did not detect any corresponding 

feature. Two other respondents managed land spanning hundreds of acres in scattered, non-

adjacent parcels beyond the surveyed parcel, and no windbreaks were mapped within the 

parcels selected for the survey or their immediate neighbors. An additional respondent 

described a missed windbreak on a smaller holding within a larger, possibly rented, non-

adjacent tract, suggesting that the complexities of tenure and management can lead to gaps in 

the alignment of survey findings and spatial/survey data. 

Riparian buffers exhibited a similar pattern, with nine of twelve surveyed parcels showing an 

LSWF that aligned with the riparian buffers stated in the survey responses. Two respondents 

indicated the presence of riparian forest buffers on parcels that were primarily forested outside 

of the waterway corridors. These extensive tree stands did not register as LSWFs in the 

classification because the model filtered out broader forest areas (see Figure 4). After removing 

the parcels where the canopy was contiguous and fully wooded, nine of ten surveyed parcels in 

the study counties contained riparian buffers that matched the spatial outputs. These findings 

illustrate that the model performed well when buffers conformed to narrower, linear shapes 

along riparian areas, though fully forested situations required additional scrutiny. 
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When the presence of windbreaks and riparian buffers was combined, 17 out of 19 surveyed 

parcels that reported either practice had spatially detected LSWFs within the same parcel or on 

adjacent parcels controlled by the same landowner. These results support the observation that 

many recognized agroforestry (AF) features, particularly when they adhere to distinct linear 

forms, can be identified using the methods described in Chapter 1. Nevertheless, the few 

missed detections emphasize the need to pay close attention to management scenarios where 

AF practices occur on fragmented holdings or are integrated into more extensive swaths of 

forested land. 

A parallel priority of this assessment was to verify the absence of LSWFs for respondents who 

indicated no windbreaks or riparian buffers on their parcels. A total of 42 respondents across the 

study counties reported having none of these AF practices, prompting a comparison of survey 

statements with LSWF classifications. Twelve of these 42 parcels, along with adjacent parcels 

owned by the same individuals, showed model-detected features that were potentially 

inconsistent with the reported absence. This discrepancy highlights false positives ranging from 

marginal spillover effects at boundary edges to trees that formed urban-like canopies 

misclassified as LSWFs (see Figure 4). 

False positives warrant a more detailed look at how the classification processes handle small 

clusters of canopy and how remote sensing boundaries are drawn. Five cases featured LSWFs 

that marginally spilled across a parcel boundary from a neighboring tract where the adjacent 

landowner presumably managed the trees. Two smaller parcels showed linear stands of urban 

trees, which suggests that the classification process would benefit from a systematic urban 

reclassification step, following the strategies described in Chapter 3. One elongated residential 

parcel by a lake contained a strip of LSWF across multiple lakefront ‘front yards’, though the 

respondent did not consider those trees a managed AF practice (as other respondents 

classified similar features as windbreaks or riparian buffers). These instances underscore the 

complexity of distinguishing intentional AF features in densely settled landscapes and raise 
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questions about how to interpret ownership boundaries when evaluating the presence of AF 

practices. 

5.4.2 Summary Agreement Between Survey Data and LSWF Detection 

A concise comparison of survey-based presence/absence data and spatially mapped linear and 

small-scale woody features (LSWFs) revealed moderate to high consistency. Table 4.1 (below) 

illustrates this relationship by categorizing surveyed parcels into four categories: true positives, 

true negatives, false positives, and false negatives. Of the 19 parcels where landowners 

reported windbreaks or riparian buffers, 17 contained corresponding features in the spatial 

dataset, suggesting a relatively low rate of missed detections (2 false negatives). Conversely, 

42 surveyed parcels indicated no AF features, yet 12 of those showed LSWFs in the 

classification, generating a cluster of false positives. These discrepancies appear to stem from 

classification challenges at property boundaries and confusion around forested parcels that 

might be interpreted differently by respondents and the machine-learning model, detailed further 

in 5.5.2. 

Table 1: Survey vs. LSWF spatial outputs confusion matrix for agreement.  

 Survey Presence Survey Absence 

LSWF Spatial Presence 17 (True Pos.) 12 (False Pos.) 

LSWF Spatial Absence 2 (False Neg.) 30 (True Neg.) 

The resulting agreement rate for parcels that either had both a self-reported feature and a 

spatially detected LSWF (true positives), or indicated none both in the survey and the spatial 

output (true negatives), was sufficient to reinforce the utility of combining these datasets. At the 

same time, the presence of false positives and false negatives underscores the importance of 

iterative refinements. The overall accuracy for identifying windbreaks or riparian buffers 

approached roughly three-quarters of the surveyed sample (see Table 2). This figure is 

encouraging for a first-wave approach that hinges on basic parcel attributes and classification 

metrics, yet it indicates room for improved discrimination of sparse woodlands, boundary-
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adjacent tree stands, and occasionally overlooked linear features. As further discussed in 5.5.2, 

modifying the criteria for inclusion of LSWFs on a property would significantly improve our 

overall agreement metric, as many LSWFs that did not agree with survey results were only 

incidentally related to parcels responding to the survey, on adjacent land holdings. 
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Table 2: Agreement rate calculation between survey and LSWF dataset. 

Metric Value 

Total Surveyed Parcels 61 

Surveyed Parcels Reporting 
Windbreaks/Buffers 

19 (31.1% of responding parcels in spatial 
study counties) 

Surveyed Parcels Indicating No 
Windbreaks/Buffers 

42 (68.9% of responding parcels in spatial 
study counties) 

Spatially Mapped Parcels with LSWFs 29 (47.5%) 

Spatially Mapped Parcels without LSWFs 32 (52.5%) 

True Positives (TP) Count 17 

False Positives (FP) Count 12 

False Negatives (FN) Count 2 

True Negatives (TN) Count 30 

Overall Agreement Rate (%) (TP + TN) / 61 → 47/61 ≈ 77.0% 

It is essential to note that the survey instrument in Wave 1 was limited to whether landowners 

perceived a windbreak or riparian buffer on any portion of their holdings without accounting for 

the nuances of maintenance, planting history, or management intensity. The classification 

likewise targeted the presence of woody configurations matching shape-based metrics, rather 

than parsing the degree to which these features might be actively stewarded. Subsequent 

survey waves and expanded datasets are thus anticipated to better capture the intentionality 

and intensity of AF practices, refining the accuracy metrics beyond the basic presence/absence 

framework. 
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Figure 3: View of our hypothetical landscape with scenarios found in true-positive responses. 
Typically, true positive responses reporting a windbreak or riparian buffer AF practice very 
clearly had a whole or significant portion of an LSWF on their parcel pulled for the survey or for 
an adjacent parcel where there was the same land tenure and land management practice as 
indicated visually through imagery (e.g., a tilled field where the tilling operation clearly ran 
directly across a parcel boundary). Along the river, typical examples for a riparian forest buffer 
are shown which would have been included in the final LSWF dataset, and other examples 
show typical hedgerows or windbreaks as would have been seen on imagery. On the 
hypothetical area's left- and rightmost sides are two ‘forest’ patches or woodlots, which would 
not be counted as LSWFs in our spatial results. 
 
5.4.3 Spatial Patterns of LSWF Presence 

Patterns in the spatial occurrence of linear and small-scale woody features (LSWFs) largely 

reflect the land use and cover types within the study counties. Most true positives, where 

landowner-reported agroforestry (AF) features aligned with remote sensing detections, fell along 

field edges and property boundaries in active agricultural areas. These sites frequently 

encompassed vegetation rows that shielded crops from wind or paralleled waterways for 
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erosion control, mirroring the findings of Chapter 2 regarding the shape-based attributes of 

windbreaks and riparian buffers. Because these boundary-oriented tree stands generally form 

narrower configurations distinct from the surrounding landscape, they were more reliably 

captured by the model. 

Urban contexts, residential parcels, and lakefront properties presented greater challenges for 

accurate classification. Trees in these locations often formed fragmented or irregular canopies, 

and some parcels exhibited extensive ornamental or incidental vegetation. Although these 

elements sometimes appeared as linear clusters in aerial imagery, landowners did not 

recognize or report them as intentional AF practices. Similarly, the classification approach 

filtered out denser woodland patches and large contiguous tree cover in northern counties 

dominated by forested landscapes. Survey responses from these heavily forested areas 

frequently indicated no managed AF features, further illustrating how environmental context 

influenced both detection and self-reporting of potential LSWFs. 

Concentrations of LSWFs were highest in mid-sized agricultural operations, where farmers often 

seek to enhance crop productivity or protect water resources without the scale or intensity of 

more extensive, industrialized operations. Preliminary observations suggest that industrial-scale 

farms, frequently characterized by extensive row-crop acreage and limited field margins, 

reported fewer AF practices and exhibited fewer mappable LSWFs. This trend may reflect 

distinct management styles in heavily mechanized systems, though further evidence is needed 

to confirm the correlation between operational size and the likelihood of maintaining windbreaks 

or riparian buffers. 

Last, it is important to consider that the analyses in this chapter rely on survey responses drawn 

only from 35 counties. These counties, distributed across three states, do not represent the total 

jurisdictional areas, or even a fully representative portion of survey responses. Patterns of 

LSWF adoption and detection discussed here may, therefore, be distinct from what might be 

observed in the remaining counties. Additional data will further refine an understanding of how 
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regional variations in land use, ownership structure, and environmental factors influence the 

presence, accuracy, and classification of agroforestry-related woody features. 

5.5 Discussion 

5.5.1 Validating Remote Sensing for Agroforestry Classification 

The results described in Chapter 4 point to a strong alignment between remote sensing outputs 

and survey-confirmed agroforestry (AF) features, particularly windbreaks and riparian buffers. 

Parcels where landowners reported linear woody features generally matched the model’s 

detections, suggesting that high-resolution imagery and shape-based classification can be 

reliable for identifying smaller-scale linear tree features. This correlation was highest in actively 

managed agricultural regions where boundary-oriented vegetation fits the model’s windbreak 

and/or riparian corridor criteria. 

A few cases revealed that some LSWFs were unmanaged or overlooked by landowners in their 

survey responses. Some respondents possessed wooded strips that fell within the model’s 

thresholds for AF-like features, yet they did not recognize these strips as intentional plantings. In 

other scenarios, landowners described “wild” or spontaneously regenerated vegetation, which 

does not necessarily align with AF definitions even if it appears structurally similar. These 

examples highlight how classification methods can identify woody features that are functionally 

akin to windbreaks or buffers but may not reflect the deliberate management behaviors often 

associated with AF systems. 

These findings suggest the need for continued refinements in remote sensing approaches to 

further distinguish intentionally managed vegetation. Gathering additional information on 

management inputs—whether pruning, planting, or planned rotations—could help refine 

algorithms that currently rely on shape metrics alone. Future classification efforts should 

incorporate higher-resolution imagery or multi-temporal data to track planting activities over 

time. This type of iterative improvement is key for enhancing the consistency and accuracy of 
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AF detection, particularly in landscapes where farmers might allow natural regeneration or 

sporadic tree growth at field edges. 

5.5.2 Common Discrepancies 

Aligning self-reported survey data with remotely sensed LSWF detections is inherently 

challenging due to variations in land ownership, parcel boundaries, and differing interpretations 

of management practices. Discrepancies between survey data and the model’s spatial 

inferences often arose from issues related to land ownership and management boundaries. In 

some instances, landowners described their land operations holistically, spanning multiple 

parcels, while our study framework sampled individual parcels. This mismatch occasionally 

created confusion over which property a landowner’s reported windbreak or buffer might 

actually occupy. Similarly, certain parcels can be nominally owned by one party yet were farmed 

or maintained by another, leading to uncertainty regarding who was responsible for planting or 

managing linear woody features. 

Land tenure complexities became clear when a single row-crop field extended across multiple 

parcel boundaries. The imagery consistently depicted a unified field or contiguous LSWF, yet 

the legal ownership might vary from one parcel to the next. Determining whether a windbreak 

extending across multiple boundary lines should be credited to one landowner or several could 

challenge survey-based methods. When the classification model accurately identified LSWFs in 

such scenarios, there was still ambiguity in assigning management responsibility to an individual 

respondent. 

These challenges also applied to riparian buffers in agrarian settings. Many buffers detected in 

the southern regions of the study area in Michigan and Wisconsin were narrow and clearly 

demarcated, standing out as individual features. However, riparian buffers can blend seamlessly 

into larger woodland patches in the northern sections dominated by extensive forests. The 

classification model typically filtered out large areas of forest cover, meaning such contiguous 

forested riparian zones did not appear in LSWF outputs. Some landowners from those areas 
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still reported buffers in the survey, reflecting a belief that any wooded strip near a stream 

qualified as a “riparian buffer,” regardless of whether the trees were intentionally planted or 

integrated. 

 
Figure 4: Common cases where false-positive LSWFs were recorded on properties not 
indicating an AF practice (numbers 1 and 2), or false-negative LSWF reporting of survey-
positive riparian buffers (number 3). Respondent parcels indicating a discrepancy in the data 
presented are shaded light orange. Typically errors arose from 1) marginal sections of LSWFs 
on adjacent properties crossing over to a respondent’s parcel, 2) portions or ends of full LSWF 
features which cross over two or more parcels, although the full feature considered my 
constitute a LSWF, or 3) AF features such as riparian buffers masked by a continuous 
connection to a larger woody feature (forest/woodlot). 
 
Taken together, these discrepancies underscore the influence of land tenure configurations and 

varying land cover types on the classification’s ability to align with landowner-reported AF 

practices. Parcel-specific ownership records do not always account for shared operations or 
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fluid management boundaries, and a one-size-fits-all approach to identifying riparian buffers 

may overlook important distinctions in tree cover density. Future refinements in both survey 

instruments and classification methods should address these nuances, ensuring that reported 

AF features are more accurately attributed to the individuals responsible for their establishment 

and upkeep. 

5.5.3 Necessity of Two-Wave Surveying and Further Analysis 

The first wave of surveys was limited to gathering basic presence/absence data on windbreaks 

and riparian buffers, which provided a foundational layer of understanding but did not fully 

capture the depth of landowner intentions or management regimes. Farmers and other 

landowners may have planted trees for varied objectives—soil conservation, wildlife habitat, or 

erosion control—yet these goals remain unverified when the survey instrument only asks 

whether specific practices exist. This incomplete view can lead to ambiguity regarding how 

actively these features are maintained or whether they truly align with established agroforestry 

(AF) principles. 

A second wave of surveys will address this gap by probing deeper into the intensity and 

objectives of management. Questions aimed at clarifying maintenance practices, planting 

motivations, and resource inputs (e.g., pruning schedules, manure application, or selective 

thinning) will offer critical insights into the level of intention behind each woody feature. These 

data will help distinguish deliberately managed AF systems from incidental or minimally 

maintained vegetation, providing a more comprehensive evaluation of how farmers engage in 

AF. 

Such detail on management intensity can refine the broader conversation around AF adoption. 

Participants who confirm active establishment, regular upkeep, and targeted design for wind or 

water filtration underscore the degree to which these features serve strategic land-use 

objectives. At the same time, reporting that certain stands remain unmanaged or are 

spontaneously regenerating challenges the assumption that all woody vegetation in agricultural 
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settings is being stewarded as AF. This deeper information, combined with remote sensing 

outputs, will clarify whether the model’s detections align with genuine AF practices or if 

recalibrations are needed to account for passive forms of tree growth. 

5.5.4 Broader Implications for National AF Mapping, Augmenting National 

Statistics 

Parcel-level surveys, although resource-intensive, carry considerable potential for boosting the 

reliability of large-scale AF inventories, especially when integrated with remote sensing 

methods. They provide ground-truth data on management goals, ownership structures, and 

agricultural practices, all of which help distinguish actively tended AF features from other woody 

vegetation. This approach can strengthen national estimates that rely solely on broad survey 

datasets or structural analyses using more spatially coarse data, which could either 

underestimate AF practice presence for the most common practices or risk overestimating 

managed AF practices, conflating it with unmanaged woody fragments. 

Generating consistent, high-resolution woody feature datasets is similarly resource-intensive, 

underscoring the value of targeted surveying in pilot areas before expanding to a larger scale. In 

many cases, conducting a detailed pilot study in counties or regions representative of diverse 

land-use patterns is more feasible. Researchers can extract generalized statistics on AF 

presence and absence by combining these smaller-scale yet in-depth surveys with spatial 

analysis. Regional estimates on the most common AF practices (windbreaks, riparian buffers) 

could be estimated more thoroughly without relying on resource-intensive efforts to increase 

survey response rates, by generating estimates of LSWFs and referencing that with a 

percentage of LSWFs ‘likely’ to be AF practices. As an example of how to conduct a cost-

effective mailing to a focused study area, the United States Postal Service (USPS) Every Door 

Direct Mail (EDDM) service offers a low-cost distribution option for mailed survey forms, 

potentially streamlining outreach to specific rural communities to confirm a presence of LSWFs. 
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Scaling this integrated approach to broader initiatives requires following methods that adapt well 

to varied landscapes and policies. Chapter 1 laid out a methodology for deriving LSWFs in any 

county with sufficiently high-resolution imagery. Through parallel landowner surveys, each 

region can be assessed for levels of AF adoption, yielding more precise statistics to guide 

conservation incentives or land-use planning. Policies encouraging windbreak establishment, 

riparian protection, and AF expansion could thus rest on evidence showing how these features 

manifest differently in distinct agricultural and environmental contexts. 

Future remote sensing efforts should incorporate more extensive landowner engagement to 

refine classification parameters. Survey responses indicating why trees were planted or how 

often they are maintained can help train models to detect nuanced patterns of vegetation 

arrangement or growth. In turn, this feedback loop between ground-based surveys and spatial 

analysis allows policymakers and researchers to track the efficacy of AF promotion campaigns, 

revealing whether local or federal programs truly incentivize the adoption and careful 

stewardship of trees on agricultural lands, or the incorporation of agricultural practices in 

wooded settings. 

5.6 Conclusions and Recommendations 

Wave 1 data reveal that linear and small-scale woody features (LSWFs) derived from high-

resolution spatial analyses largely aligned with landowners’ reported agroforestry (AF) practices, 

particularly for windbreaks and riparian buffers. Survey results showed an agreement rate of 

nearly three-quarters, highlighting the utility of combining remote sensing with parcel-referenced 

data. However, the presence of false positives and false negatives underscores the necessity 

for validating features on the ground. These discrepancies confirm that a multi-step approach—

integrating multiple lines of evidence, including more detailed surveys and iterative feedback—is 

essential for capturing the full spectrum of management intentions. 

Advancements in remote sensing algorithms should focus on distinguishing actively managed 

woody features from those that emerge without deliberate planning, drawing on the 
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methodological recommendations outlined in Chapter 1. Refined shape metrics and the 

incorporation of temporal data may help differentiate planted windbreaks or buffers from 

unmanaged vegetation, while multi-season imagery can capture changes resulting from 

pruning, strategic planting, or tree removal. Parallel improvements in survey design could 

include more targeted questions about the intensity and frequency of management practices, 

ensuring that the next wave of landowner data captures crucial details of AF stewardship. This 

dual refinement of spatial detection and survey instruments will provide a more substantial basis 

for identifying AF systems at scale. 

Scaling the integrated survey and remote sensing approach requires systematic producer 

outreach and rigorous geospatial analyses. Future initiatives can benefit from practical 

measures such as two-wave survey methods (presence/absence, followed by detailed 

management queries) to gather more accurate, layered data, and from leveraging higher-

resolution imagery where feasible. Policy support would also strengthen the viability of this 

work: financial incentives or technical assistance programs could encourage landowners to 

adopt and maintain AF features. At the same time, direct engagement—through mailers or 

cooperative extension networks—might improve response rates and data quality. Over time, 

these strategies will help refine national and regional AF inventories, creating better-informed 

conservation and land-use planning frameworks. 
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