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ABSTRACT
Predictive modeling of high-dimensional dynamical systems remains a central challenge in numerous
scientific fields, including biology, materials science, and fluid mechanics. When clear scale
separation is lacking, a reduced model must accurately capture the pronounced memory effects
arising from unresolved variables, making non-Markovian modeling essential. In this thesis, we
develop and analyze data-driven methods for constructing generalized Langevin equations (GLEs)
and extended stochastic differential equations that faithfully encode non-Markovian behaviors.

Building on the Mori—Zwanzig formalism, we first propose an approach to learn a set of non-
Markovian features—auxiliary variables that incorporate the history of the resolved coordinates—so
that the effective dynamics inherits long-time correlations. By matching evolution of correlation
functions in the extended variable space, our method systematically approximates the multi-
dimensional GLE without requiring direct estimates of complicated memory kernels. We show
that this approach yields stable, high-fidelity reduced models for molecular systems, enabling
significantly lower-dimensional simulations that nonetheless reproduce key statistical and dynamical
properties of the original system.

We then extend this framework to incorporate state-dependent memory kernels, facilitating
enhanced sampling across diverse regions of phase space. We demonstrate that constructing heteroge-
neous memory kernels—reflecting the local variations in unresolved degrees of freedom—improves
the model’s accuracy and robustness, especially in systems exhibiting multiple metastable states.
Through both numerical experiments and theoretical analysis, we highlight how these data-driven
non-Markovian models outperform traditional Markovian or fixed-memory approaches.

To address complex, multi-modal distributions in high-dimensional data, we then modify the
latent variable of a KRNet normalizing-flow architecture from a single Gaussian to a mixture-of-
Gaussians (MoG). This richer latent representation not only improves the model’s expressiveness
and training stability but also facilitates discovering collective variables (CVs), as the multi-modal
latent space reveals distinct modes corresponding to relevant metastable states or slow degrees of

freedom. Through both numerical experiments and theoretical analysis, we show that integrating a



MoG prior into KRNet yields superior density estimation, enhanced sampling of metastable basins,
and a more interpretable set of learned CVs.

Altogether, this thesis provides a comprehensive methodology for deriving scalable, memory-
embedded reduced dynamics augmented by advanced latent representations. Such models open new
possibilities for multi-scale simulations by merging fine-grained molecular fidelity with tractable
coarse-grained representations, all while systematically leveraging the benefits of multi-modal latent
spaces to identify key low-dimensional features. Our results underscore the practical advantages
of incorporating non-Markovian features and a mixture-based flow model in capturing the full

complexity of real-world molecular and dynamical systems.
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CHAPTER 1

OVERVIEW

The accurate modeling of high-dimensional dynamical systems remains a cornerstone challenge
across a range of scientific disciplines, from soft matter and biophysics to fluid mechanics and climate
science. Modern simulations of such systems often demand immense computational resources
due to the intricate interactions and multi-scale nature of the underlying processes. Although fully
resolved models, which include all microscopic variables and fine-grained details, can in principle
capture the relevant physics, they frequently prove infeasible in practice because of prohibitive
computational cost. As a result, significant efforts in coarse-grained modeling aim to reduce
dimensionality and complexity while preserving the essential statistics and long-time behaviors of
the original high-dimensional problem.

A central insight in coarse-graining is that purely Markovian models—those assuming in-
stantaneous and memoryless evolution—often fail to reproduce the observed time correlations
and transport properties in real systems. These discrepancies become particularly pronounced in
situations lacking clear time-scale separations, wherein so-called “fast” or unresolved degrees of
freedom exert non-negligible influences over extended time horizons. Consequently, one must
explicitly retain memory terms to produce physically accurate reduced dynamics. In theoretical
treatments, the Mori—Zwanzig (MZ) formalism provides a foundation for describing the projected
dynamics of a lower-dimensional set of variables, augmented with a time-dependent memory kernel
and stochastic fluctuation terms. However, direct numerical implementation of these ideas is seldom
straightforward because the memory kernel typically lacks a closed-form expression and may require
large volumes of data to estimate reliably.

In response, a growing body of literature has turned to data-driven approaches that learn reduced
equations or effective models directly from simulation trajectories or experimental data. Such
methods circumvent the direct computation of memory kernels by leveraging machine learning
techniques to discover the underlying structure of the system. This dissertation focuses on integrating

and extending three distinct strategies that address complementary aspects of non-Markovian



modeling for high-dimensional dynamical systems:

1. Non-Markovian Feature Learning

Our first strategy proposes a learning framework that sidesteps the need for explicit memory-
kernel estimation by introducing a set of auxiliary variables. These additional variables
encapsulate the “history” of the coarse-grained coordinates, effectively transforming what
would otherwise be a non-Markovian model into a higher-dimensional extended Markovian
system. By matching correlation functions between the full model and the extended reduced
model, we ensure that critical temporal dependencies are accurately preserved. This correlation-
matching step is instrumental: it encodes the slow relaxations and recurrent configurations that
are crucial for capturing long-time dynamics. Numerical experiments on molecular systems
demonstrate that non-Markovian feature learning can yield reduced-order simulations with
excellent fidelity to the reference trajectories, all while maintaining moderate computational

COst.

2. State-Dependent Memory Kernels

While the first approach offers a single global mechanism to embed memory effects, many
real systems exhibit state-dependent memory. For instance, macromolecular or fluid systems
may have multiple metastable basins, each with distinct relaxation times or energetic barriers.
In such cases, it is insufficient to assume a uniform memory kernel throughout the entire state
space. Our second strategy addresses this limitation by introducing heterogeneous memory
kernels that adapt to the local environment of the resolved variables. Rather than fitting a
single kernel function, we allow the memory to vary based on the instantaneous configuration
or thermodynamic state. This added flexibility is particularly advantageous for systems with
complex free-energy landscapes, as it enables more accurate modeling of basin-to-basin
transitions, barrier crossing, and other processes sensitive to local unresolved dynamics.

By learning these heterogeneous kernels from data, we capture nuanced variations in the



memory structure, significantly improving sampling efficiency and predictive performance in

multi-basin or multi-phase scenarios.

3. KRNet with a Mixture-of-Gaussians Latent Representation

Although robust memory modeling is critical for accurate dynamics, effectively capturing
distributional complexity in high-dimensional systems poses an additional challenge. Many
normalizing-flow methods, which learn invertible transformations from simple latent spaces
to complex data distributions, rely on a single Gaussian prior for the latent variables. Such
a unimodal assumption can limit the expressivity of the model, particularly when the
target distribution is multi-modal or exhibits heavy tails. Here, we introduce an advanced
KRNet architecture that employs a mixture-of-Gaussians (MoG) as the latent prior. By
allowing the latent space to be multi-modal, KRNet gains greater flexibility in approximating
intricate molecular or continuum distributions. Moreover, analyzing individual mixture
components provides insights into physically meaningful collective variables (CVs), such as
reaction coordinates or slow degrees of freedom that govern the system’s long-time behavior.
This MoG-based design not only improves density-estimation accuracy but also enhances
interpretability, offering an additional avenue for understanding how different metastable

states or configurations map to the underlying latent structure.

Taken as a whole, these three complementary approaches form a cohesive framework for
memory-aware, distribution-aware coarse-graining. In the first two, we focus on correctly capturing
time correlations and historical dependence—the hallmark of non-Markovian dynamics. In the third,
we emphasize handling complex data distributions and uncovering low-dimensional representations.
Implemented together, they enable practitioners to develop robust reduced-order models that do not
sacrifice crucial multi-scale or multi-modal characteristics of the original system.

Beyond theoretical importance, these techniques offer practical advantages: multi-scale simu-
lations become more feasible as the reduced models require fewer degrees of freedom to achieve

a similar predictive capability, potentially reducing wall-clock times while maintaining essential



physical fidelity. Moreover, our approaches naturally expose slow modes and transitions that might
otherwise remain obscured in fully detailed simulation data, thereby aiding in physical interpretation.
Researchers can identify meaningful collective variables or design specialized sampling protocols
targeting critical regions of phase space (e.g., near transition states or interfaces).

Ultimately, the methods presented here reflect a broader trend in computational science: as
machine learning and high-performance computing continue to advance, new opportunities emerge
for data-driven modeling of complex phenomena. These advances permit us to go beyond naively
discarding unresolved scales, instead systematically incorporating their effects through memory
terms, latent-variable modeling, or both. The chapters that follow detail each of these methods,
their theoretical underpinnings, and the empirical studies that demonstrate their utility. Collectively,
they underline the feasibility of incorporating memory effects and multi-modal representations
in next-generation coarse-grained simulation frameworks, bridging the gap between brute-force
full-resolution models and simpler—but often inaccurate—Markovian approximations.

In summary, the remainder of this dissertation proceeds as follows:

* We begin by examining non-Markovian feature learning and explain how auxiliary variables,
grounded in correlation-function matching, facilitate extended Markovian representations of

intrinsically non-Markovian processes.

* Next, we tackle state-dependent memory kernels as a direct way to incorporate local
environmental or configurational effects, significantly improving the realism of reduced

models in multi-basin systems.

* Finally, we present KRNet with a mixture-of-Gaussians (MoG) latent space, illustrating
how it enhances distribution modeling and offers a pathway to derive physically interpretable
collective variables. We highlight its synergy with memory-based approaches, demonstrating

an integrated methodology for advanced coarse-grained simulations.

Through these contributions, this dissertation seeks to illustrate the power and flexibility of

data-driven, memory-embedded modeling. By capturing temporal dependencies and multi-modal



structures simultaneously, researchers can generate high-fidelity reduced-order simulations capable of
exploring complex energy landscapes, long-time dynamical evolution, and rarely visited metastable
states. The approaches and results stand to benefit a wide array of fields, ranging from molecular
biophysics and materials science to geophysics and fluid mechanics, all of which confront the

challenges posed by limited computational budgets and intrinsically non-Markovian dynamics.



CHAPTER 2

DATA-DRIVEN CONSTRUCTION OF STOCHASTIC REDUCED DYNAMICS ENCODED
WITH NON-MARKOVIAN FEATURES

2.1 Introduction

Predictive modeling of multi-scale dynamic systems is a long-standing problem in many fields
such as biology, materials science, and fluid physics. One essential challenge arises from the high-
dimensionality; numerical simulations of the full models often show limitations in the achievable
spatio-temporal scales. Alternatively, reduced models in terms of a set of resolved variables are
often used to probe the evolution on the scale of interest. However, the construction of reliable
reduced models remains a highly non-trivial problem. In particular, for systems without a clear scale
separation, the reduced dynamics often exhibits non-Markovian memory effects, where the analytic
form is generally unknown. To close the reduced dynamics, existing methods are primarily based on
the following two approaches. The first approach seeks various numerical approximations of the
memory term by projecting the full dynamics onto the resolved variables based on frameworks such
as the Mori-Zwanzig formalism Mori (1965b); Zwanzig (1973) or canonical models such as the
generalized Langevin equation (GLE) Zwanzig (2001). Examples include the t-model approximation
Chorin et al. (2002), the Galerkin discretization Darve et al. (2009a), regularized integral equation
discretization Lange and Grubmiiller (2006), the hierarchical construction Chen et al. (2014); Stinis
(2015); Zhu and Venturi (2018); Hudson and Li (2020); Price et al. (2021), and so on. Recent
studies Ma et al. (2018); Vlachas et al. (2018); Harlim et al. (2020); Wang et al. (2020a) based on
the recurrent neural networks Hochreiter and Schmidhuber (1997) provide a promising approach to
learn the memory term of deterministic dynamics. Yet, for ergodic dynamics, how to impose the
coherent noise term compensating for the unresolved variables remains open. The second approach
parameterizes the memory term by certain ansatz, e.g., the fictitious particle Davtyan et al. (2015a),
continued fraction Wall (1948); Mori (1965a), rational function Corless and Frazho (2003), such
that the memory and the noise terms can be embedded in an extended Markovian dynamics Mori

(1965a); Ceriotti et al. (2009); Baczewski and Bond (2013); Davtyan et al. (2015a); Lei et al. (2016a);



Jung et al. (2017a); Lee et al. (2019a); Russo et al. (2019); Ma et al. (2019); Grogan et al. (2020). In
addition, non-Markovian models are represented by discrete dynamics with exogenous inputs in
form of NARMAX (nonlinear autoregression moving average with exogenous input) Chorin and Lu
(2015); Lin and Lu (2021) and SINN (statistics information neural network) Zhu et al. (2022) and
parameterized for each specific time step. Recent work by Vroylandt et al. Vroylandt et al. (2022)
presents an expectation-maximization method to parameterize the reduced model from the full
model trajectories. Refs. Daldrop et al. (2017); Kowalik et al. (2019) present an efficient approach
based on analyzing the force correlation function to extract the memory function for the reduced
dynamics of aqueous molecules under quadratic confinement potential; see also recent review
Klippenstein et al. (2021) for further discussion. Despite the overall success, most studies focus on
the cases with a scalar memory function. Notably, the reduced model of a two-dimensional GLE is
constructed in Ref. Lee et al. (2019a). To the best of our knowledge, the systematic construction of
stochastic reduced dynamics of multi-dimensional resolved variables remains under-explored.
Ideally, to obtain a reliable reduced model, the construction needs to accurately retain the
non-Markovian features, enable certain modeling flexibility (e.g., the dimensionality of the resolved
variables) and adaptivity (e.g., the order of approximation), and guarantee the numerical stability
and robustness. In a recent study, we developed a Petrov-Galerkin approach Lei and Li (2021) to
construct the non-Markovian reduced dynamics by projecting the full dynamics into a subspace
spanned by a set of projection bases in form of the fractional derivatives of the resolved variables.
The obtained reduced model is parameterized as extended stochastic differential equations by
introducing a set of test bases. Different from most existing approaches, the construction does not
rely on the direct fitting of the memory function. Non-local statistical properties can be naturally
matched by choosing the appropriate bases, and the model accuracy can be systematically improved
by introducing more basis functions to expand the projection subspace. Despite these appealing
properties, the construction relies on the heuristic choices of the projection and test bases. Given the
target number of basis, how to choose the optimal basis functions for the best representation of the

non-Markovian dynamics remains an open problem. Furthermore, the numerical stability needs to be



treated empirically. These issues limit the applications in complex systems with multi-dimensional
resolved variables.

In this work, we aim to address the above issues by developing a new data-driven approach to
construct the stochastic reduced dynamics of multi-dimensional resolved variables. The method
is based on the joint learning of a set of non-Markovian features and the extended dynamic
equation in terms of both the resolved variables and these features. Unlike the empirically chosen
projection bases adopted in the previous work Lei and Li (2021), the non-Markovian features take
an interpretable form that encodes the history of the resolved variables, and are learned along with
the extended Markovian dynamic such that they are optimal for the reduced model representation.
In this sense, they represent the optimal subspace that embodies the non-Markovian nature of the
resolved variables. The learning process enables the adaptive choices of the number of features
and is easy to implement by matching the evolution of the correlation functions of the extended
variables. In particular, the explicit form of the encoder function enables us to obtain the correlation
functions of these features directly from the ones of the resolved variables rather than the time-series
samples. The constructed model automatically ensures numerical stability, strictly satisfies the
second fluctuation-dissipation theorem Kubo (1966), and retains the consistent invariant distribution
Espafiol (2004); Noid et al. (2008).

We demonstrate the method by modeling the dynamics of a tagged particle immersed in solvents
and a polymer molecule. With the same number of features (or equivalently, the projection bases),
the present method yields more accurate reduced models than the previous methods Lei et al. (2016a);
Lei and Li (2021) due to the concurrent learning of the non-Markovian features. More importantly,
reduced models with respect to multi-dimensional resolved variables can be conveniently constructed
without the cumbersome efforts of matrix-valued kernel fitting and stabilization treatment. This is
well-suited for model reduction in practical applications, where the constructed reduced models
often need to retain the non-local correlations among the resolved variables. It provides a convenient
approach to construct meso-scale models encoded with molecular-level fidelity and paves the way

towards constructing reliable continuum-level transport model equations Lei et al. (2020); Fang



et al. (2022).

Finally, it is worthwhile to mention that the present study focuses on the model reduction of
ergodic dynamic systems where the full or part of the resolved variables are specified as known
quantities that either retain a clear physical interpretation (e.g., the tagged particle position), or are
experimentally accessible (e.g., the polymer end-to-end distance, the radius of gyration). Another
relevant direction focuses on learning the slow or Markovian dynamics from the complex dynamic
systems where the resolved variables are unknown a priori; we refer to Refs. Rohrdanz et al. (2011);
Pérez-Hernandez et al. (2013); Li and Ma (2014); Krivov (2013); Lu and Vanden-Eijnden (2014);
Bittracher et al. (2018) on learning resolved variables that retain the Markovianity, Refs. Coifman
et al. (2008); Chiavazzo et al. (2017); Crosskey and Maggioni (2017); Ye et al. (2021); Feng et al.
(2022); Zieliniski and Hesthaven (2022) on learning the slow dynamics on a non-linear manifold,
and Refs. Giannakis (2019); Klus et al. (2018); Dibak et al. (2018); Klus et al. (2020) on model

reduction of the transfer operator.
2.2 Methods

2.2.1 Problem Setup
Let us consider the full model as a Hamiltonian system represented by a 6/ N-dimensional phase
vector Z = [Q); P], where Q and P are the position and momentum vectors, respectively. The
equation of motion follows
Z =SVH(Z), (2.1)
0 I

where S = is the symplectic matrix, and H(Z) is the Hamiltonian function and initial
-I 0

condition is given by Z(0) = Zj. For high-dimensional systems with N > 1, the numerical
simulation of Eq. (2.1) can be computational expensive. It is often desirable to construct a
reduced model with respect to a set of low-dimensional resolved variables z(7) := ¢ (Z(z)) where
¢ : RO — R™ represents the mapping from the full to the coarse-grained state space with m < N.
With the explicit form of H(Z) and ¢(Z), the evolution of z(¢) can be mapped from the initial

values via the Koopman operator Koopman (1931), i.e., z(f) = ¢'£z(0), where the Liouville



operator L#(Z) = —((VH(Zy))" SV 7,)9(Z) depends on the full-dimensional phase vector Z.
Using the Duhamel-Dyson formula, the evolution of z(¢) can be further formulated in terms of z
based on the Mori-Zwanzig (MZ) projection formalism Mori (1965b); Zwanzig (1973). However,
the numerical evaluation of the derived model relies on solving the full-dimensional orthogonal
dynamics Chorin et al. (2002), which can be still computational expensive.

In practice, the resolved variables are often defined by the position vector Q. The MZ-formed
reduced dynamics is often simplified into the GLEs, i.e.,

g=M"'p

t 2.2)
p=-VU(q) - /0 0(1 - )G(r)dr + R(1).

where g € R is the so-called collective variables, M is the mass matrix, U(q) is the free energy
function, 8(¢) : R* — R™ is a matrix-valued function representing the memory kernel, and R(z)
is a stationary colored noise related to 8(z) through the second fluctuation-dissipation condition
Kubo (1966), i.e., (R(t)R(O)T> = kpTO(r). It is worth mentioning that Eq. (2.2) is not exact
based on the MZ formalism. In particular, the memory function generally depends on the resolved
variables z and the noise term could be non-Gaussian; we refer to Ref. Ayaz et al. (2022) for further
discussion. Nevertheless, even for the simplified GLE form (2.2), the accurate construction of
the reduced model could remain highly-nontrivial. Specifically, the numerical simulation requires
the explicit knowledge of both the free energy U(q) and the memory function 6(z). Several
methods based on importance sampling Kumar et al. (1992); Darve and Pohorille (2001); Laio and
Parrinello (2002a) and temperature elevation Rosso et al. (2002); Maragliano and Vanden-Eijnden
(2006, 2008) have been developed to construct the multi-dimensional free energy function. In
real applications, the main challenge often lies in the treatment of the memory kernel 8(z). In
particular, for multi-dimensional collective variables g, the efficient construction of numerically
stable matrix-valued memory function remains under-explored.

In this study, we develop an alternative approach to learn the reduced model. Rather than directly
constructing the memory function 6(¢) in Eq. (2.2), we seek a set of non-Markovian features from

the full model, denoted by {¢;};_,, and establish a joint learning of the reduced Markovian dynamics

10



in terms of both the resolved variables and these features, i.e.,
dz =g (2)dr + XdW,, 2.3)

where Z := [q;p;(1;- -+ ; (] represents the extended variables and W, represents the standard
Wiener process. In principle, any such extended system would generally lead to a non-Markovian
dynamics for the resolved variables z = [q; p]. However, the essential challenge is to determine
{¢i}i, so that the non-local statistical properties of z can be preserved with sufficient accuracy.
Also, the form of g(-) and X will need to be properly designed such that the reduced model retains the
consistent thermal fluctuations and density distribution. In particular, the introduction of auxiliary
variables can be loosely considered as approximating the full-dimensional Koopman operator in
a sub-space. However, different from Ref. Lei and Li (2021), the features {(;}', are not the
empirically-chosen projection bases; instead, they are learned along with model equation (2.3) for
the best approximation of the non-local statistics. This essential difference enables the present
method to generate more accurate reduced model and be easy to implement for multi-dimensional

resolved variables without empirical treatment for numerical stability.

2.2.2 Non-Markovian features and the extended dynamics

To illustrate the essential idea, let us consider a solute molecule immersed solvent particles. To
construct a reduced model (2.3) for the solute molecule, a main question is how to construct the
auxiliary variables ¢ := [{1;C2; - - - 5 ¢ ]. Intuitively, ¢; should depend on the full-dimensional vector
Z such that their evolution encodes certain unresolved dynamics orthogonal to the subspace spanned
by z(1). A straightforward approach is to represent {(¢) as a function of Z(¢), i.e., { = h(Z).
However, the direct construction of the general formulation h(Z) would become impractical since
the learning generally involves sampling the individual solvent particles near the solute molecule;
the computational cost could become intractable due to the high-dimensionality of Z.

To circumvent the above challenges, the key ascribes to formulate () such that it properly
encodes the unresolved dynamics of Z(7), and meanwhile, can be easily sampled. One important
observation is that the history of p(¢) naturally encodes the unresolved dynamics orthogonal to z(t)

and the values can be conveniently obtained. To see this, we note that the dynamics follows p = Lp

11



where the Liouville operator L#(Z) = —((VH(Zy))" SV 7,)9(Z) depends on the full-dimensional
vector Z. Therefore, it is possible to construct {(7) by some encoder functions in terms of the
time history of p(t), i.e., p(7) with 7 < ¢, such that they retain certain components orthogonal to
z(t). This is somewhat similar to the study Lei et al. (2020) on modeling the non-local constitutive
dynamics of non-Newtonian fluids by learning a set of features from the polymer configuration
space. The main difference is that the present features ¢ are non-Markovian in the temporal space.

Accordingly, we define a set of non-Markovian features {¢;}}_, by

i) = /0 wi(t)v(t - 7)dr
o (2.4)

~ Z w; (jor)v(t — jor)

=1

where v := M~!p represents the generalized velocity, w; : Rt — R" " represents the encoder
function represented by N,, discrete weights {w;(j 5t)}§]:“’1 whose values will be determined later.
¢ (1) can be loosely viewed as a generalized convolution over the history of v(¢) whose evolution
encodes the orthogonal dynamics of z(z). Therefore, it is possible to learn a set of (;(¢) such
that the joint dynamics in terms of both z(#) and (;(¢) can be well approximated by the extended
Markovian model (2.3). Moreover, the linear form in terms of v (#) ensures that the invariant density
function of ¢;(¢) retains the Gaussian distribution consistent with v(¢). We can further impose a
constraint such that v(¢) and (;(¢) are uncorrelated. This leads to an additional quadratic term in the

energy function of the extended system, i.e., W(q, p,{) = U(q) + %pTM_lp + %CTA_IC, where A

represents the covariance matrix of the {;, - - - , ;. The reduced dynamics can be written as
q
dlp|=GVW(q,p,{)dt + ZdW,, (2.5)
¢

12



where the matrix G € R(Z+)mx(2+mm takeq the form

o I 0 ---0l(I 0O0---0
—I 0
I
J A
A
0 0

The matrix J € R further determines the statistical properties of the resolved variables and
will be learned along with the non-Markovian features {w;(7)}/_, from the training samples as
discussed in next subsection. Given the reduced model in form of Egs. (2.5) and (2.6), the noise

covariance matrix can be determined by
22l = g Y JA+ ATTT), (2.7)

where 8 = 1/kgT and A = diag(I, A). The form of A implies that v and &; are uncorrelated and
is consistent with the energy function of the extended system W(q, p, ). It also alleviates the
non-negative constraint of »>7 as discussed in Sec. 2.2.3. Furthermore, we can show that model
(2.5) strictly satisfies the second-fluctuation dissipation theorem. Specifically, the embedded kernel
in Eq. (2.5) takes the form

0(t) = - (j115(f) + jlzej”tjzl) , (2.8)

where J;; = [j] L:m.1:mo Ji = [j]]:m’m_'_]; and Jy; = [j]m+1;,1;m are the sub-blocks of the matrix

J := JA. The colored noise R(¢) in terms of p(¢) is related to 6(z) by
(R(OR(HT) = -p! (leefzz("">J21 + (Ju + J])é(r - t’)) (2.9)

with ¢ < t. Moreover, we can show that the reduce model retains the consistent invariant density

function with the full model, i.e.,

Peq < exp [-BW(q,p. )] . (2.10)

We refer to Appendix C and D for details.
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We conclude this subsection with two remarks: (I) In principle, the mass matrix M further
depends on q. Ref. Lee et al. (2019a) reports that the varying mass matrix plays a secondary
effect on the reduced dynamics of the molecular system therein; see also Ref. Ayaz et al. (2022)
for the cases of the nonlinear distance coordinate with constant mass. A constant mass matrix is
adopted in the present study; reduced models with the varying mass matrix can be constructed
by introducing an additional term in the conservative force and will be considered in the future
study. (II) The non-Markovian features {¢;}"_, in form of Eq. (2.4) can be generalized to retain
the state-dependence, e.g., (;(7) = fo+°° w;(1,q(7))v(t — 7)dr, which leads to a reduced model
with state-dependent non-Markovian memory. In this study, we demonstrate the proposed learning
framework by constructing the reduced model (2.5) that approximates the standard GLE (2.2) with
state-independent memory function 8(¢). As shown in the numerical examples, although 0(¢) is
not explicitly constructed, it is well approximated by the memory kernel embedded in the reduced
model (2.5) by matching the evolution of the correlation matrices for both the resolved and the
extended variables. The learning of reduced models with the heterogeneous memory term will be

systematically investigated in the future study.

2.2.3 Joint learning of the reduced dynamics

Construction of the above reduced models relies on the joint learning of the non-Markovian
features (2.4) in form of the encoder functions {w;(#)};_, and the reduced dynamics (2.5)(2.6)
determined by the free energy U(q) and the matrix J. In this study, we represent the multi-
dimensional free energy U(q) using a neural network and parameterize it based on the molecular
dynamics Frenkel and Smit (2001); we refer to Appendix for details. Furthermore, the covariance of
the noise term specified by Eq. (2.7) implies that J and A (i.e., the encoder functions w; (7)) need to
satisfy the following constraint

JA+AJT 0. (2.11)

Directly imposing the condition (2.11) becomes cumbersome for the joint learning of J and

w;(t). Fortunately, this issue can be avoided by imposing an orthogonal constraint among the
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non-Markovian features, i.e.,
[A]ij = B{Gi. <))

-y Z {wi(t - két)v(kst), w;(t — k'st)v(k'61)) 2.12)
k,k’

:6,'J'I, 1Si,j§l’l,

where the inner product {(f(Z),g(Z)) = / f(Z)g(Z)! p(Z)dZ is defined with respect to the

equilibrium density function of the full model p(Z) = ¢ P# (2)/ / e PH(Z)4Z . In addition, we
also impose the orthogonal constraints such that ¢ and p are uncorrelated. Therefore, condition

(2.11) can be transformed into seeking J s.t. J + J7 < 0, and we represent .J by
J=-LL" +J*%, (2.13)

where L € RU#Dmx(n+m jq the Jower-triangle matrix with positive diagonal elements and LL”
represents the Cholesky decomposition of a symmetric positive-definite matrix. J4 represents an
anti-symmetric matrix. Unlike the studies Mori (1965a); Ceriotti et al. (2009) based on the direct
kernel approximation, we note that J takes a more general form and is not restricted to be diagonal
or tri-diagonal.

With the proper form of .J, we can cast the reduced dynamics into the evolution of the correlation

matrices by multiply v(0) to both sides of Eq. (2.5), i.e.,

(Mwv,v(0))) [(VU(q),v(0)) (v,v(0))
% (ClJ.J(O)) .\ ? _g (CM.J(O)) ’ 2.14)
(Cnsv(0)) 0 (Cn, v(0))
Ci(1) Co(1) Ca(n)

where the correlation matrices ({;(¢), v(0)) can be directly obtained from the correlation matrix of

the resolved variables (v(t),v(0)) given the encoder weights, i.e.,

N,y
(€0, v(0)) = > wi(t)) (v(t — 1;),0(0)),
=1

J
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where ¢; = jot and encoder weights wj; (¢;) will be learned jointly. Therefore, we are able to construct
J from the pre-computed, noise-free correlation matrices instead of the on-the-fly computation
from the time-series samples of g and p. The reduced model can be trained by minimizing the

following loss function

Ny
Le =[GV (1) + Colep) = TC2 | La = 1A - I,
=1

j (2.15)

L= ﬂcLC + AALp,

where C| = [(Mwv,v(0)); ({1, v(0)) ;- ;(Cs,v(0))], Cy and C,(t) are defined similarly in Eq.
(2.14). Ac and A, are the hyperparameters. ¢; refers to the discrete time points and N, represents
the total number of sample points of the correlation matrices obtained from the full model. The
loss term L¢ ensures that the non-local statistical properties of the resolved variables can be
accurately preserved while the loss term L ensures the aforementioned orthogonality among the
non-Markovian features. To simulate the constructed model, we always set A = I such that J in
form of Eq. (2.13) strictly satisfies the semi-positive definiteness condition. We emphasize that the
non-Markovian encoder weights {wi(t_,~)}jy:”'l do not explicitly appear in the loss function. However,
they are involved in the training process along with J since the correlation functions C and C
further depend on the definition of ¢, i.e., they are concurrently learned for the best approximation of
the extended Markovian dynamics of [q; p; {]. As shown in Sec. 3.3, this joint learning of both the
non-Markovian features and the dynamic equations enables us to probe the optimal representation
of the reduced models that leads to more accurate numerical results than the ones constructed
by the pre-selected bases, and can be easily implemented for models with multi-dimensional
resolved variables. In this study, we choose N; = 5000 for all the numerical examples and choose
N,, = 1800 for the one-dimensional reduced model and 1200 for the four-dimensional reduced
model, respectively. The training is conducted by the ADAM optimization algorithm Kingma and
Ba (2015) where 1000 points are randomly selected per each training step

We conclude this subsection with the following remarks: (I) Instead of Eq. (2.14), the reduced

dynamics can be also cast into the evolution of the correlation matrices by multiplying g(0) to both
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sides of Eq. (2.5). For the present study, we found that both formulations yield accurate reduced
models. (IT) Rather than learning the full sets of non-Markovian features, we can fix one of them as
Mo + VU (q); this ensures that the time-derivatives of correlation functions of the reduced model
can accurately match the values of the full model near # = 0. In the numerical examples presented in
following Sec. 3.3, all the reduced models are constructed with this choice. For simple notation,
we set it to be the last feature. For example, the fourth-order reduced model is constructed using 4
non-Markovian features. {;, ¢ and (3 take the form of Eq. (2.4), and 4 is set to be M v + VU(q).
(IIT) In principle, for reduced models of Hamiltonian systems, the form of matrix J can be further
restricted to

J = —diag(0, LLT) + J4, (2.16)

where L € R is a lower-triangle matrix. Eq. (2.16) ensures that the embedded kernel in Eq.
(2.5) does not contain the Markovian memory term (i.e., (Ji; + J 1T1) 5(1)). O(¢) recovers the form
of standard GLE and the second fluctuation-dissipation relationship shown in Eq. (2.9) recovers the
standard form, i.e., <7~3(t)7~3(t’)T> = 8710(¢t — ). In this study, both forms yield accurate numerical

results; the contribution of the Markovian term constructed by Eq. (2.13) is less than 1%.
2.3 Numerical results

2.3.1 A tagged particle in aqueous environment
We demonstrate our method by modeling a tagged particle immersed in solvent particles. The
particle interaction is governed by the pairwise force
fo(1 = Qij/re)e;, Qi <re

Fi;(Qij) =
0, Q,‘j > T

where Q; and Q; are the positions of i-th and j-th particles. Q;; = Q; — Q;, Q;; = [|Q; — Q;]|, and

e = (Q!—Z, and r, is the cut-off distance. The full system consists of 4000 particles ina 10 x 10 x 10
cubic box with periodic boundary condition along each direction. We set fy = 50, r. = 1, and the
particle mass to be unit. Nosé-Hoover thermostat is used with kg7 = 0.5 and time step 6¢ = 2x 1073,

128 samples are collected from a production stage of 6 X 10° steps, which are used as the initial

17



conditions of the NVE simulations of the full model for a production stage of 1 x 10° steps using

the Velocity-Verlet integrator.
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Figure 2.1 Numerical results for a tagged particle in the solvent particle bath. (a) Velocity correlation
function C,,, (¢) obtained from the full MD model and the reduced models constructed by the present
method based on the joint learning approximation, the rational function approximation Lei et al.
(2016a), and the Petrov—Galerkin projection with fixed bases Lei and Li (2021). (b) Predicted
evolution of the probability density function of the particle velocity obtained from the full MD and
the different reduced models with the second-order approximation. The initial velocity v is set to 0
(the vertical line). (¢) C,, (¢) obtained from the full MD model and different orders of the present
joint learning approximation. (d) Encoder weights for the three non-Markovian features obtained
from the present joint learning with the fourth-order approximation.

The reduced dynamics in terms of the tagged particle is constructed in form of Eq. (2.5) along
with the learning of the non-Markovian features {;}"_,. The free energy U(q) vanishes for this
case. For comparison, we also construct the reduced model using the previous approaches based on

the Petrov-Galerkin projection (named as fixed-basis) Lei and Li (2021) and the rational function
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approximation Lei et al. (2016a). Fig. 2.1(a) shows the velocity correlation function of constructed
models using two non-Markovian features, or equivalently, two projection bases, as well as the
second-order rational function approximation. The model constructed by the present (named as
the joint-learning) method shows the best agreement with the full model based on the molecular
dynamics (MD) simulations. The model accuracy can be further examined by the evolution of
probability density function (PDF) of the particle velocity. Specifically, we fix the velocity to be
zero as ¢t = 0 and sample the instantaneous PDF thereafter. Fig. 2.1(b) shows the obtained PDF at
t = 0.06. The present approach yields more accurate result than the Petrov-Galerkin method. As
shown in Fig. 2.1(c), the accuracy of the reduced model shows further improvement as we increase
the number of non-Markovian features. In particular, the reduced model with the fourth-order
approximation can accurately capture the oscillations over the full regime. Fig. 2.1(d) shows the
obtained encoder weights of the fourth-order approximation. All of the three encoder functions
show pronounced oscillations near ¢ = 0 and decay to O for large . Unlike the empirically chosen
fractional-derivative bases in Ref. Lei and Li (2021), the present method enables the encoders to be
optimized for the best approximation of the non-local statistics, and therefore yields more accurate

results.

Figure 2.2 A sketch of a chain-molecule represented by united atom model. Reduced models are
constructed with respect to a four-dimensional resolved vector g, which represents the end-to-end
distance (q1), the radius of gyration (g»), and the end-to-middle distances (g3 and g4), respectively.
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2.3.2 One-dimensional reduced model of a polymer molecule
We consider the reduced dynamics of a polymer molecule consisting of N = 16 atoms. The
intramolecular potential is governed by
N Np N, Na
Vinol (Q) = >~ Vo(Qi) + D Vo(li) + D Va(0) + > Va(#0), (2.17)
i=1 i=1 i=1

i#]

where [;, 0;, ¢; represent the individual bond length, bond angle, and dihedral angle, respectively.
Vps Vb, Va, and V4 represent the pairwise Lennard-Jones, finite extensible nonlinear elastic bond,
harmonic angle, and multiharmonic dihedral interactions whose explicit forms are specified in
Appendix A. The atom mass is set to unit, thermal temperature kg7 is set to 1.0, and the time step
St is set to be 1 x 1073, 512 samples are collected from a production stage of 3 x 10° steps, which
are used as the initial conditions of the NVE simulations of the full model for a production stage of
1 x 10° steps using the Velocity-Verlet integrator. Fig. 2.2 shows a sketch of the polymer molecule.

To examine the effectiveness of the present method, we first construct a 1D reduced dynamics in
terms of the end-to-end distance ¢; = ||Q1 — Qn/|| as done in the previous work Lei and Li (2021)
based on the Petrov-Galerkin method, and compare the numerical results obtained from the two
methods. Figure 2.3(a) shows the velocity correlation function C,,,(z) = (v;(#)v;(0)) obtained
from the full MD and different orders of fixed-basis and joint-learning approximations. With the
same order of approximation, the current method yields better agreement with the MD results.
Specifically, the second-order model of the current method can capture the pattern around ¢ = 4 and
the fourth-order model can capture the patterns around ¢ = 0.4 and ¢ = 4. However, the previous
method with the same order approximation shows limitation to accurately capture these two patterns.

Figure 2.3(b) shows the displacement auto-correlation function Cy, () = {(g1(t)q1(0)) obtained
from full MD and the reduced models constructed by the present method with different number
of non-Markovian features. As we introduce more features, the predicted correlation functions
approaches the MD results. In particular, the fourth-order model can capture the oscillations of the
MD results at ¢ = 10 and ¢ = 25. Figure 2.3(c) shows the encoder weights of non-Markovian features
for the fourth-order approximation. Similar to the tagged particle system, the encoder functions

exhibit pronounced oscillations at the short time and decay to zero at longer time.
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Figure 2.3 Numerical results of a one-dimensional reduced model representing the dynamics of the
end—end distance of a polymer molecule system. (a)—(b) Velocity correlation function C,, () and
the Laplace transform of the memory function ®(1) obtained from the full MD simulations and
the different orders of the present joint learning approximation, and the Petrov—Galerkin projection
with fixed-basis approximation. (c) Displacement correlation function Cy,(¢) obtained from the
full MD and different orders of the joint learning approximation. (d) Encoder weights for the three
non-Markovian features of the reduced model with the fourth-order approximation.
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The accuracy of the constructed reduced models can be further examined by comparing the
embedding memory kernels 6(¢) with the full MD model. Figure 2.3(d) shows the Laplace transform
of the memory kernel of the reduced models @(1) = /0+°O 0(t) exp (=t/2)dz. The MD kernel ©@(1)
is obtained by @(1) = ~G(1)H(1)~!, where G(1) and H (1) are the Laplace transform of the
correlation matrices g(t) = (Mwv(t) + VU(q), q(0)) and h(t) = (v(z), q(0)). Compared with the
previous method, the current method yields better agreement with MD results. Specifically, the
second- and fourth-order of the joint learning approximation, and the fourth-order of the fixed
basis approximation show good agreement with the MD result @(1) for A between 1 and 1000.
Furthermore, the fourth-order model of the joint learning approximation can further capture the
pronounced peak regime of the MD results near 4 = 0.1. We emphasize that the memory kernel
0 (1) is not explicitly constructed during the learning process; 0(f) approaches 6(z) as we impose the
constraint (2.14) such that the correlation matrices of the reduced dynamics match the ones of the
full model. This enables us to circumvent the direct fitting of the matrix-valued memory function
for multi-dimensional GLEs, and efficiently construct the numerically-stable reduced model that

retains the non-local statistics and coherent noise as shown in the following example.
2.3.3 Four-dimensional reduced model of a polymer molecule
Finally, we construct a reduced model in terms of a four-dimensional resolved vector g =

(91, g2, 43, q4] defined by

q1 = 1Q1 - Qnll,
5 5
2 2
q, = ”Ql_Qc” s Qc:_ Qi,
NS NS (2.18)
qs3 = HQL%J - QIH 5

q4 = HQ(%] - QN‘ )
where g1, g2, g3, and g4 represent the end-to-end distance, radius of gyration, and two center-
to-end distances, respectively. The four-dimensional free energy function U(q) is constructed by

matching the average force sampled from the restraint molecular dynamics and represented by a

neural network; we refer to Appendix B for details. Rather than constructing the four-dimensional
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GLE kernel 0(t), we directly learn the reduced model (2.5) by minimizing the loss function (2.15).
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Figure 2.4 Numerical results of a four-dimensional reduced model representing the dynamics of a
polymer molecule system, with conformation states characterized by the resolved variables q (see
Eq. (2.18)). (a)—(c) Diagonal components of the velocity correlation function C,, () = (v(t) v(0)T).
Note that [C), (7)]44 is omitted because it is similar to [C),(7)]33. (d) Constructed encoder weights
of the first non-Markovian feature (; for the fourth-order reduced model.

Figure 2.4(a-c) show the diagonal components of the velocity correlation matrix C,,(t) =
(v (Hv (O)T> obtained from the full MD and the reduced models using different order approximations.
Specifically, the components [C),,(¢)]{; and [C),(?)];3 show similar values near ¢ = 0 since both
q1 and g3 characterize the distances between the individual particles, e.g., vi = (Q1 — Qn) - (V1 —
Vn)/11Q1 — Qnl|. As the distribution of the velocity difference between the two free-end particles
follows N(0,2kpTI), the variance of v; is 2kgT. Similar argument also holds for v3 and v4. On

the long-time scale, [C,, (?)];; and [C),(?)],, decay much slower than [C,,(t)]33 and [C,(?)]44
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and show pronounced oscillations near # = 10 and # = 25. The differences can be understood as
follow: Compared with the end-to-middle distances g3 and ¢4, the end-to-end distance ¢ and radius
of gyration g, represent the global states of the molecular conformation. Based on the scaling
law of the idealized Gaussian chain model de Gennes (1979), the relaxation time of g and ¢g> is
proportional to N2. Accordingly, [C,,(¢)],; decays four times slower than [C,, (f)]53, Which is
qualitatively consistent with the present numerical results.

The transient dynamics of the correlation functions can be accurately captured by the reduced
model. As we increase the number of non-Markovian features, the predictions show better agreement
with MD results. Specifically, the zeroth-order (i.e., Langevin) model is insufficient to capture the
patterns around 0.5 and 5. The second-order model yields an accurate prediction for [C),(?)]s3
but less accurate predictions for [C),(t)],; and [C,,()],,. The fourth-order model yields good
agreement for all the components over the full regime. Fig. 2.4(d) shows the encoder weights of the
first non-Markovian feature ¢, which naturally encode the non-local statistics among the resolved
variables, and decay to O at large time.

Fig. 2.5 shows the off-diagonal components of the velocity correlation matrix C',, (¢). Similar to
the diagonal components, [C,, (?)], represents the coupling between the dynamics of two global
conformation states and therefore exhibits the longest correlation with pronounced oscillations at
t =10 and ¢ = 25. On the other hand, [C),(#)]5 and [C),, (#)],3 represent the coupling between
a global state and semi-global state, and therefore exhibit intermediate correlation. In addition,
[C,,(7)]54 exhibits weaker correlation compared with the other components since the coupling
between the dynamics of g3 and ¢4 is mainly governed by the local bond- and angle-interactions
associated with 8-th and 9-th atom. The predictions of the second-order reduced model show fairly
good agreement with the full MD results for [C,,(?)]3 and [C),(#)],3 but less agreement for
[C,y(t)]15- The fourth-order reduced model yields good agreement for all the components.

Fig. 2.6 shows the components of the embedded matrix-valued kernels in the Laplace space
obtained from the full MD and the reduced models. In particular, ®(1) obtained from the second-

order model shows good agreement with ® (1) obtained from the full MD within the regime of large
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Figure 2.5 (a-d) Off-diagonal components of the velocity correlation function C,,(¢) for a polymer

molecule system whose conformation states are characterized by a four-dimensional resolved vector
q defined by Eq. (2.18).

A. The fourth-order model yields good agreement over the full regime, which is consistent with
the accurate prediction of the velocity correlation functions shown in Fig. 2.4 and 2.5 (see also
Appendix E for 6(7)). While the kernel function 6(7) is not explicitly constructed in the present
method, the accurate recovery of @(A) verifies that the constructed models faithfully retain the
non-Markovian dynamics of the resolved variables.
2.4 Summary

In this study, we developed a data-driven approach to accurately learn the stochastic reduced
dynamics of full Hamiltonian systems with non-Markovian memory. The method essentially

provides an efficient approach to approximate the multi-dimensional generalized Langevin equation.
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Figure 2.6 (a-d) Components of the embedded matrix-valued kernel ®(2) in the Laplace space
obtained from the full MD and a four-dimensional reduced model of a polymer molecule system.

Rather than directly fitting the matrix-valued memory kernel, the present method seeks a set of
non-Markovian features whose evolution naturally encodes with the orthogonal dynamics of the
resolved variables, and establishes a joint learning of the extended dynamics in terms of both the
resolved variables and the non-Markovian features. Compared with the previous studies based on
the rational function approximation Lei et al. (2016a) and the Petrov-Galerkin projection Lei and Li
(2021) with the pre-selected fractional derivative bases, the present method enables us to probe the
optimal representation of the reduced dynamics through the joint learning of the non-Markovian
features. The constructed features retain a clear physical interpretation and can be loosely viewed as
the convolution of the velocity history. This enables us to construct the proper learning formulation

such that the reduced dynamics strictly preserves the second fluctuation-dissipation theorem and
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retains the consistent invariant density distribution. Moreover, the learning process does not require
the on-the-fly computation of the time correlations of these features from the time-series samples,
and automatically ensures numerical stability of the constructed model without empirical treatment.
This is particularly well-suited for the construction of reduced dynamics of complex systems such as
the conformation dynamics of macromolecular systems, where multi-dimensional resolved variables
are often needed to characterize the transition dynamics with non-local cross-correlations among
the variables.

Building upon the data-driven framework for modeling state-independent memory effects
introduced in Chapter 2, Chapter 3 extends this approach to more complex dynamical systems with
state-dependent memory. While Chapter 2 demonstrated how a fixed set of convolutional encoders
could capture global non-Markovian behavior through auxiliary variables, this assumption becomes
limiting in systems where memory varies across configurations — such as when transitions between
metastable states occur. To address this, Chapter 3 introduces a heterogeneous encoding architecture
that allows the memory kernels to adapt locally to the system’s state. This generalization enables a
more accurate and flexible representation of reduced dynamics in high-dimensional systems where

memory effects are inherently configuration-dependent.
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CHAPTER 3

ENHANCED SAMPLING DATA-DRIVEN CONSTRUCTION OF STOCHASTIC
REDUCED DYNAMICS ENCODED WITH STATE-DEPENDENT MEMORY

3.1 Introduction

Predictive modeling of multi-scale dynamic systems remains a significant challenge across
various fields, including biology, materials science, and fluid physics. A prominent example is
coarse-grained molecular dynamics (CGMD), where the goal is to simplify molecular system
representations while preserving their essential dynamic behavior. The generalized Langevin
equation (GLE) has emerged as a widely used framework for capturing the non-Markovian dynamics
inherent in many CGMD processes. A range of approaches has been proposed for parameterizing
the memory Lange and Grubmiiller (2006); Darve et al. (2009b); Ceriotti et al. (2009); Baczewski
and Bond (2013); Davtyan et al. (2015b); Lei et al. (2016b); Russo et al. (2019); Jung et al. (2017b);
Lee et al. (2019b); Ma et al. (2019); Wang et al. (2020b,c); Zhu and Venturi (2020); Vroylandt
et al. (2022); She et al. (2023); Xie and E (2024) aiming to reconstruct specific dynamic properties
accurately. However, recent work Lyu and Lei (2023b); Ge et al. (2024) reveal that recovering
isotropic properties alone may be insufficient for accurately reproducing the underlying complex
dynamics. These findings underscore the importance of incorporating state-dependent memory
effects to achieve precise reconstruction of dynamic behaviors.

The accurate parameterization of a state-dependent memory kernel hinges on effectively capturing
the dynamic properties within the phase space. However, practical applications often face challenges
due to the inherent complexity of the energy landscape in phase space. This complexity is typically
marked by the presence of numerous metastable states, which are separated by significant energy
barriers. These barriers hinder transitions between states, making it difficult to comprehensively
sample the phase space and accurately reconstruct the memory kernel. Addressing this challenge
requires advanced techniques capable of efficiently exploring these landscapes while retaining
essential dynamic information. The critical role of sampling in phase space has been widely

acknowledged, particularly in the construction of free energy landscapes. To address this, numerous
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methodologies have been developed, each offering unique advantages for overcoming sampling
challenges. Notable approaches include umbrella sampling Torrie and Valleau (1977), which applies
biased potentials to enhance exploration; histogram reweighting Kumar et al. (1992), enabling the
integration of data from multiple simulations; metadynamics Laio and Parrinello (2002b); Barducci
et al. (2008), which facilitates the escape from metastable states through adaptive biasing; and
variational enhanced sampling Valsson and Parrinello (2014); Shaffer et al. (2016); Bonati et al.
(2019), a framework that leverages variational principles to optimize bias potentials. These methods
collectively underscore the importance of efficient phase space exploration in capturing accurate
free energy profiles. Despite their great success and wide application to capture the static properties,
the importance of the sampling for the dynamic properties is largely ignored.

In this study, we employ our previously developed consensus-based enhanced sampling technique
to simultaneously construct the free energy surface and parameterize the memory kernel. The
conservative force is determined through constrained dynamics at selected points in the phase
space, while dynamic information at these points is obtained via multiple free dynamics simulations

initiated from the same locations.

3.2 Methods
The system under consideration is modeled as a Hamiltonian system with a 6 N-dimensional
phase space vector Z = [Q; P], represent the position and momentum vectors, respectively. The

dynamics of the system are governed by the equation of motion:

7.=SVH(Z), (3.1)

0 I
where S = is the symplectic matrix that preserves the structure of Hamiltonian dynamics,

-1 0

with I being the identity matrix. and H(Z) denotes the Hamiltonian function. For sufficiently large
N, the simulation of Eq. (3.1) becomes computationally prohibitive. However, in many practical
scenarios, interest lies in a low-dimensional resolved variable, z() = ¢(Z(z)), where ¢ : RN — R™
serves as a mapping that projects the high-dimensional pace onto a reduced space of interest.

The Mori-Zwanzig (MZ) formalism provides a robust foundation for constructing approximate
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dynamics for resolved variables by employing a projection operator. This framework separates
the resolved and unresolved components of the system, enabling a reduced description of the
dynamics while incorporating memory effects and fluctuating forces to account for the influence of
unresolved variables. The projection operator # maps functions of the full system to functions of

the coarse-grained (CG) system, and is defined as:
[8(8(2) —2) f(Z)p(Z)dZ
[ 6(8(2) - 2)p(Z)dZ
where z represents the CG variables, ®(Z) is the mapping from the full system to the CG system, and

(Pf)(z) =

p(Z) is the probability density function of the full system. The dynamics of CG variable follows:

a t

E¢(Z) = exp(t£)7’£¢(Z)+/ exp ((t —5)L)PLexp(sQL)YQLH(Z)ds+exp(tQL)QRLY(Z).
0

Here, £ :=is the Liouville operator and Q = I — . Motivate by this, the reduced dynamics can be

written as
q=M(q)'p,

b= —F(q) /0 61 - 1)q(r)dr + R(1).

Here, q = ¢,(Q) denotes a coarse-grained variable, and p is the corresponding momentum,

3.2)

associated with a mass matrix M(q). The effective free energy for q is defined as Ues(q) =
—é log / dZ6(¢4(Z) — q)p(Z), with g = ﬁ is the inverse temperature. Inspired by previous
research She et al. (2023), Equation (3.2) can be reformulated as an extended Markovian process
(q, p, &), where & represents auxiliary variables that will be defined later. These auxiliary variables
serve to capture the memory effects inherent in the original generalized Langevin equation (GLE)

and are assumed to follow a Gaussian distribution, N (0, 1). The evolution takes the form

q 0 I 0fVyF 000
dlpl=|-1 v, F |dr+]0 dw,, (3.3)
J(q) X(q)
VeF 0

where 7 (q,p, &) = U(q) + p’M(q)'p + £7€ is the free energy for the extended system. The
relationship Z(q)2(q)” = —KzT (J(q)A+AJ(q)7), ensures consistency with the second fluctuation-

dissipation theorem, where A is covariance matrix of (p, £). By solving the Fokker-Planck equation,
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we have the invariant distribution of the extended system p.(q, p, &) « exp(—BF (q,p,&)). The
invariant distribution should be consistent with the free energy for q, with f Pe(q, p, &)dpd€ o
exp(—BU.(q)), from which we notice that U(q) = Ug(q) — ;—ﬁlog IM(q)~!|. To construct
the hidden variables, we define them as a linear combination of past momentum values p(¢ —

ot),--- ,p(t — Nyot), i.e

Ny

(1) = Z w;ip(t — i61),
Jj=1

where w; are the coefficients to be optimized, and N is the number of momentum terms included

in the linear combination. To simplify the process of training and collecting data, we construct our

matrix J(q) as follows

0 h’(q)
J(q) = (3.4)
~h(gM (@)  J(q)
here h(q) is a vector represented by a neural network which takes the coarse-grained variable q as
input. Then we use choleschy decomposition to form J(q) = —~L(q)L” (q) + A(q). Note that L(q)
is a block-wise lower triangle matrix and A(q) is a block-wise antisymmetric matrix represented by
two different neural networks respectively. Now, the the second fluctuation-dissipation theorem can
be simplified as follows
2(QE(@)" = -KsT(J (@A +AJ(q))
where
0 o0 M(q) 0
X(q) = A= X (3.5)
0 Z(q) 0 Ag
With the constructed &€, we can computed the correlation function by multiply p(0) given q(0) = q

on both side of Eq. (3.3),

(p+VqF,p(0)]q(0) = q) (Vp7,p(0) q(0) =q)
d =J(q) dr
(€,p(0)1q(0) = q) (VeF,p(0)1q(0) =q) | - (3.6)
Ci(t.q;w) Cy(t.q;w)
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By construct J(g) as J(q; 6;) = £(q; 6,)Z(q; 6;)7, the loss function can be constructed as
Ny

min Z
GJ,W 1

i=

d < CH . 2
Ecl(f’ qi;w) — J(q;;0,)Ca(2, q;; W) +;||A((Ii;w) -1, (3.7)

where we optimize J(q; 6;) and auxiliary variable £ depends on w at the same time on the training
set {qi}l].vz“l. The construction of dynamics also depends on an accurate free energy surface Ueg(q)
and mass matrix M(q). It can be computed from restrained dynamics by introducing a harmonic

term into full potential, i.e.

U(Q.9) = U(Q) +5(94(Q) - ) (8,(Q) - @)

where k represents the magnitude of the restrained potential and U is the potential of full
system without restraint. The mean force can be computed by VU.g(q) = lim;_,. F¥(q) and

M(q) = limy_,.. M¥(q), where

1
Fa) = / K(6,(Q) — @) exp(—BU(Q. 4))dQ

and

X 1 1 B
M@ =5 [ Ty Q)

Two neural networks M(q; 6y,) and F(q;6F) is constructed to approximate M(q) and F(q)

respectively and trained loss function on the same dataset

Ny Ny
. v _ A2 i (. _ NIE
min 2, INHCas:6a0) = M@ gin D IF (a3 6r) ~F(a)

The sampling points are adaptively selected by consensus-based enhanced sampling strategy

Lyu and Lei (2023a) with a McKean type stochastic differential equation for N,, walker q1,--- , qn

w

1 / 2
dq; = ——V,G(q;)dt + | —dW, (3.8)
y Kny

where G(q;) = $(q;—m)?V~!(q;—m), wherem = 3" q;p(q;), V = (x+5) 0 (q; —m)7 (q; —

exp(=x1R(4))
2P exp(—kiR(q;))

choose to be ||F(q;; 0r) — F(q;)||? in this project. The first right term in Eq. (3.8) represents the

m)p(q;) and p(q;) = The R(q;) represents the residual at the point q;, which we
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exploitation term that uses current information to drive the sampler towards the maximum residual
region, and the second term is a high temperature exploration term «;, that explores the unknown
region. Notice that the residual also depends on the neural network parameters, then by iterative
optimization of our neural network representation and the sampling points, we can get a good

training set over the phase space.
3.3 Numerical results

3.3.1 One-dimensional state-dependent reduced model of a polymer molecule

To illustrate the core concept of the present method, we begin with a polymer molecule with

N = 16 atoms, where the intramolecular potential is defined by

N Np Na Na

Vinol(Q) = D" Vp(Qi) + )" Vol + Y V(i) + > Va(0), (3.9)

i#] i=1 i=1 i=1
where V), is the Lennard-Jones intermolecular potential, V}, is the harmonic bonds, V,, and V,; denotes
the potential on angle and dihedral angle respectively. The end-to-end distance g; = ||Q; — Q|| is
used as a collective variable in the 1D reduced dynamics framework to evaluate the effectiveness
of our current method. We selected 25 distinct points uniformly from the range of ¢; € [2, 18] to
create our training set.

Four auxiliary variables &; are learned in standard GLE and our state-dependent GLE. The
overall velocity correlation function C,,(t) = (v{(t)v;(0)) in presented in Figure 3.1(a). Both
state-dependent GLE and standard GLE align well with the MD result. We also present the encoder
weights for non-Markovian features as obtained from the state-dependent GLE approximation in
Figure 3.1(b). The encoder functions demonstrate pronounced oscillations at short times, reflecting
the dynamic interactions present in the system during that initial period. As time progresses,
these oscillations gradually decay to zero, indicating that the influence of these non-Markovian
features diminishes at longer time scales. This behavior underscores the transient nature of the
non-Markovian dynamics in the system.

However, the fitness of the overall GLE do not represent the good performance of the learned

dynamics. We compare the conditional autocorrelation with q starting from 25 selected points by
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Figure 3.1 Numerical results of a one-dimensional reduced model representing the dynamics of the
end—end distance of a polymer molecule system. (a) Overall velocity correlation function C,,(t)
obtained from MD, 4" order standard GLE, and state-dependent GLE. (b) Encoder weights for the
three non-Markovian features of the state-dependent GLE.

standard GLE, state-dependent GLE and MD in Figure 3.2. This comparison will reveal differences
of the diffusion behavior at different points on the phase space in MD is captured by the standard
state-dependent but not in standard one. Inaccuracy in the diffusion process will in return affect
the precision of the transition process.Figure 3.2(a) illustrates the time distribution of g for values
greater than 15, comparing results from MD simulations, GLE and state-dependent GLE. The data
reveals that the state-dependent GLE provides a closer match to the MD results than the standard
GLE method.

However, the fitness of the overall GLE do not represent the good performance of the learned
dynamics. We compare the conditional autocorrelation with q starting from 25 selected points by
standard GLE, state-dependent GLE and MD in Figure 3.2. This comparison will reveal differences
of the diffusion behavior at different points on the phase space in MD is captured by the standard
state-dependent but not in standard one. Inaccuracy in the diffusion process will in return affect
the precision of the transition process.Figure 3.2(a) illustrates the time distribution of g for values
greater than 15, comparing results from MD simulations, GLE and state-dependent GLE. The data
reveals that the state-dependent GLE provides a closer match to the MD results than the standard

GLE method.
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Figure 3.2 Numerical results of a one-dimensional reduced model representing the dynamics of
the end—end distance of a polymer molecule system. (a) Distribution of ¢; > 15 obtained from
the full MD simulations, the 4™-order GLE approximation, and the 4M-order state-dependent GLE
approximation. (b—d) Conditional velocity correlation functions obtained from MD, standard GLE,
and state-dependent GLE, respectively.

3.3.2 Two-dimensional state-dependent reduced model of an alanine dipeptid

We further demonstrate the effectiveness of our state-dependent reduced modeling framework
using the alanine dipeptide molecule (Ace-Ala-Nme), commonly referred to as Ala2. The full-atom
molecular dynamics (MD) simulation is performed for a solvated alanine dipeptide immersed in 383
explicit water molecules at 300 K, using the Amber99-SB force field and the TIP3P water model. A
time step of 2.5 x 10~ ps is used for numerical integration.

To reduce dimensionality, we adopt two dihedral angles as collective variables (CVs): the ¢

angle defined by atoms (C, N, C,, C), and the ¢ angle defined by atoms (N, C,, C, N). These angles
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provide a compact representation of the molecular conformations.

A consensus-based sampling strategy selects 1,000 representative configurations from the
MD trajectory to train the state-dependent generalized Langevin equation (GLE) model. At each
configuration, we compute the conservative force, effective mass, and the velocity autocorrelation
function. Four auxiliary variables are introduced to close the non-Markovian system, forming a
Markovian embedding that captures state-dependent memory effects.

The model’s accuracy is validated by comparing conditional momentum autocorrelation functions
from two conformational regions. As shown in Figure 3.3, the state-dependent GLE faithfully
reproduces MD results, including subtle oscillatory features that are missed by traditional GLE

models with fixed memory kernels.
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Figure 3.3 Numerical results of the two-dimensional reduced model in terms of the two dihedral
angles of the alanine dipeptide system. (a—c) Conditional momentum auto-correlation functions
obtained from full MD simulations and the 4"-order GLE approximation at (¢, ) = (—1.60,2.78).
(d—f) Conditional momentum auto-correlation functions at (¢, ) = (-2.90, -0.16).

We also compute the distribution of transition time between different local minima. Four local
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minima is selected in Figure 3.4. The distribution of transition time between point 0 and other three

points is shown in Figure 3.5

w[rad]

Figure 3.4 The heatmap of the free energy surface mG (¢, ). Colored solid circles mark four local
minima of the configuration.

Figure 3.6 presents the distribution of time spent at each point, based on results from MD, 4"
order of GLE and 4" order of sate-dependent GLE. The results demonstrate that our current method

provides improved accuracy for each point compared to GLE method.

3.4 Summary

The state-dependent generalized Langevin equation (GLE) is usefull tool to describe the non-
Markovian behavior in many processes in the CGMD problem accurately. In this study, we employ
our previously developed consensus-based enhanced sampling strategy to simultaneously construct
the heterogeneous memory kernel and the free energy surface. The conservative force is calculated
using constrained dynamics at specific points in the phase space, while the dynamic information at
these points is gathered through multiple free dynamics initiated from the same locations. We then
train our neural network to capture the differences among the various conditional auto-correlation
functions. The results demonstrate that our current method provides improved accuracy for each

point compared to the GLE method.
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Figure 3.5 Numerical results of a two-dimensional reduced model representing the two dihedral
angles of the alanine dipeptide system. (a) Distribution of transition time from position 0 to position

1. (b) From position 1 to 0. (c) From position 0 to 2. (d) From position 2 to 0. (e) From position 0
to 3. (f) From position 3 to 0.
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Figure 3.6 Numerical results of a two-dimensional reduced model representing the two dihedral
angles of the alanine dipeptide system. (a) Distribution of time periods spent at position O before
transitioning to position 1. (b—d) Distributions of time spent at positions 1, 2, and 3, respectively.
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CHAPTER 4

GENERATIVE MODEL BASED IDENTIFYING METASTABLE STATES IN FULL
MOLECULE SPACE

4.1 Introduction

Normalizing flows have gained significant traction in recent years as flexible generative models
that provide exact likelihood evaluation and tractable sampling through invertible transformations
between data and latent spaces. While highly expressive, their performance critically depends
on the structure of the latent prior distribution. In most conventional settings—including in
many state-of-the-art normalizing flow architectures—a simple unimodal prior such as a standard
multivariate Gaussian is employed. This assumption works well for data distributions that are
themselves unimodal or smoothly varying, but it becomes a substantial bottleneck in modeling
systems characterized by multimodality, sharp transitions, or complex geometrical features in
high-dimensional spaces.

This issue is particularly critical in domains such as molecular dynamics or continuum mechanics,
where data often arise from a mixture of metastable states or rare-event transitions. These systems
naturally lead to multimodal distributions, with each mode representing a distinct macroscopic
configuration or energy basin. While recent developments in normalizing flows—such as NICE,
RealN'VP, and Glow Dinh et al. (2014, 2017); Kingma and Dhariwal (2018)—have significantly
improved the expressivity of the transformation through architectural innovations like coupling
layers and conditioning, they still rely on simple unimodal latent priors. As a result, such models are
limited in their ability to identify and represent metastable states explicitly, since the prior structure
does not reflect the inherent multimodality of the system.

Moreover, during training, these models typically focus on maximizing the overall likelihood and
do not incorporate gradient or perturbation-based penalties to enforce key physical constraints—such
as requiring the gradient of the log-density to vanish at latent maxima or ensuring that log-density
values at these mapped maxima are indeed local maxima in data space. Without these constraints,

the learned transformation may distort the latent structure and fail to preserve the correspondence
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between latent and data-space modes, ultimately limiting the interpretability and metastable state
resolution of the model.

To address these limitations, we propose a generative modeling framework that uses a Mixture-
of-Gaussians (MoG) prior to explicitly represent multiple metastable modes in the latent space. The
goal is not merely to enhance expressivity, but to enforce a maximum-to-maximum correspondence
between the latent space and data space—ensuring that each latent mode is mapped to a high-
density metastable state in the observed configuration space. To achieve this, we use an invertible
transformation that preserves the structure of the distribution under the change of variables. While
our implementation adopts KRNet for this transformation due to its flexibility and scalability, the
approach is general and compatible with any expressive normalizing flow architecture. During
training, we further impose gradient penalties to enforce vanishing gradients at mapped maxima,
and contrastive perturbation penalties to ensure local maximality in data space. This strategy allows
the model to capture and preserve the metastable structure inherent in complex physical systems,
rather than simply fitting the data distribution in a likelihood sense.

Our design is inspired in part by recent advances in multimodal flow-based generative modeling,
such as the bounded KRNet architecture introduced by Peng et al. Peng et al. (2023), which
demonstrated that introducing structural constraints in the latent space can significantly improve
the accuracy and interpretability of normalizing flows. Building on this line of thinking, our
model introduces a Mixture-of-Gaussians (MoG) latent prior not merely for greater flexibility, but
to explicitly encode multiple metastable modes that reflect the complex landscape of molecular
systems. Each Gaussian component captures a different region of the latent space, which is then
mapped—via a KRNet transformation—into a distinct metastable basin in data space. To enforce
this mode-to-mode correspondence, we introduce gradient penalties to drive the log-density gradient
toward zero at each latent mode, and contrastive perturbation losses to ensure that these mapped
points are true maxima in the data space.

Beyond improving generative performance, this design also enhances scientific interpretability.

The multimodal latent structure enables soft clustering of generated configurations, where each mode
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can be associated with meaningful collective variables (CVs) such as torsion angles, end-to-end
distances, or radius of gyration. This provides insight into the system’s metastable organization
and helps identify the slow reaction coordinates that govern long-time dynamics. In summary, our
MoG-based KRNet formulation introduces a novel framework for aligning latent and data-space
maxima, enabling both accurate density modeling and interpretable discovery of metastable structure

in high-dimensional molecular data.
4.2 Method

4.2.1 Overview of the MoG-KRnet Framework

MoG-KRnet is a bijective generative model that constructs an invertible mapping f : R¢ — R?
transforming samples from a hybrid latent distribution pz to the data distribution px. The key
idea is to approximate a transport map that rearranges a tractable base measure into a complex,
potentially multimodal data distribution. For a given observation x € R?, the model defines the

log-density through the change-of-variable formula:

log px(x) = log pz(f(x)) +log|detJs(x)],

where J(x) = Vx f(x) € R9*4 denotes the Jacobian of f. This formulation permits exact likelihood

evaluation and allows optimization via maximum likelihood estimation.

4.2.2 Hybrid Latent Prior

The latent variable z € R¢ is decomposed into two independent blocks, denoted z; € R%
and z, € R%, with d| + d» = d. The first block z; follows a product of one-dimensional
mixture-of-Gaussians:

di K;

p(z1) = 1—[ Zﬂj,k 'N(Zj;ﬂj,k,a'ik),

j=1 k=1

while the second block z; ~ N(0,1,,) is standard Gaussian. This hybrid prior combines multimodal

expressiveness with analytical tractability and defines the target measure for the flow map.
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4.2.3 KRnet Architecture as Progressive Triangular Transport
Inspired by the Knothe—Rosenblatt rearrangement, MoG-KRnet factorizes the transformation f

into a sequence of stage-wise maps:

f= f(K) o f(K—l) 0.0 f(l),

where each stage f¥) updates a block of coordinates while conditioning on preceding ones,
approximating triangular transport structure. Each f® is implemented as a composition of
transformations:

£ = 80 5 ZH) o ) o R

where R is a linear transformation with learnable LU structure, N %) is an actnorm layer that
ensures zero-mean and unit variance per dimension (with learnable parameters), A% is a stack
of affine coupling layers (described in Section 3.4), and S*) performs a squeezing operation that
reallocates dimension usage over stages.

This layered composition ensures that the full Jacobian J; remains triangular or block-triangular,

allowing for efficient computation of log | det J¢| as a sum over the individual layers.

4.2.4 Affine Coupling Transformations
Each affine coupling layer partitions the input x = [Xj, X, ], and updates X, using a scale-and-shift

transformation conditioned on X;:
X, =X2 O (1 + « - tanh(s(x;))) + 7y - tanh(z(x1)).

Here, s and ¢ are neural networks; @ € (0, 1) is a fixed stability parameter (e.g., 0.6); ¥ € R? is
a learnable global vector. The inverse transformation is analytically computable, ensuring exact

invertibility. The log-determinant of the Jacobian for each coupling layer is efficiently computed as:

d’
log |detJ 4| = Z log (1 + « - tanh(s;(x1))),

i=1

which contributes additively to the total log-likelihood.
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4.2.5 Mode Alignment Regularization

We introduce a geometric regularization mechanism to promote semantic alignment between the
latent and data spaces. Let zZyax € RY be the point in latent space corresponding to the global mode
of the prior. We define it as the concatenation of the mean of the dominant mixture components in
Z1, and the zero vector in z,:

Zmax = [H], - - - ’:“:}1’0’ ..., 0],

where ,u;‘. is the mean of the most probable component for dimension j. We compute the corresponding
data-space mode as Xmax = ' (Zmax)-

To encourage Xmax to align with a mode of the data distribution, we introduce two regularization

terms. The first is a gradient penalty:

2
Lgrad = ‘ Vxlog pX(X)|X=XmaXH ’

which encourages stationarity of the log-density at Xxpax. The second is a local contrastive penalty

defined over perturbed neighborhoods:

M
1 .
Leontrast = M Z max (0, log px (X?elgh) — log pX(Xmax)) s
i=1

neigh

where x; = Xmax + €, and  ~ N(0, 0'21). This enforces that xi,« 1s not only a critical point, but

a local maximum.
4.2.6 Objective Function
The total loss function used for training is the sum of the negative log-likelihood and the
mode-alignment penalties:
L = -Ex.plog px(X) + Agrad * Lgrad + Acontrast * Leontrast-
Here, Agrad, Acontrast = 0 control the strength of the regularization terms.

4.2.7 Sampling and Inference
For density evaluation, an input x € R? is mapped through the flow to obtain z = f(x), and the

log-likelihood is computed via:

K
log px(x) = log pz(z) + ) log| detJ o) (-)].
k=1
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Each sub-map contributes a triangular Jacobian, so the determinant is computed in linear time. The

prior log-density is decomposed as:

d; K;
1 dy
log pz(z) = E log E ik N(zjs e o7 0) | = Elllzll2 =~ log(2n).
=1 k=1

To generate samples, latent vectors z ~ pz are drawn by sampling each MoG dimension z; from its
categorical mixture and the Gaussian block from standard normal. The resulting z is passed through
the inverse flow x = f~!(z), which is exact and fully differentiable.
4.3 Numerical Result
4.3.1 Approximation of the Miiller-Brown Equilibrium Distribution

We first evaluate the capacity of MoG-KRnet to approximate a complex, multimodal target
distribution arising from the well-known Miiller-Brown potential—a classical benchmark in
molecular simulation that features multiple metastable wells separated by high-energy barriers. The

target equilibrium distribution is the Boltzmann-Gibbs measure:

(%) = lexp (_U(x)),

Z kgT

where U(x) denotes the potential energy, T = 30K, and x € R?. We simulate overdamped Langevin
dynamics,

dx

— ="VU(X) + V2kpT - £(1),

to generate a reference dataset of 5 million samples. These samples serve as empirical draws from
the true equilibrium distribution py.

The model is instantiated as a single-stage KRnet with depth D = 64, input dimension
d = 2, and coupling width 256. Each flow stage includes alternating affine coupling layers with
learnable LU-based linear transformations and interleaved squeezing operations. The coupling
layers implement:

Z) =175 O (1 + a - tanh(s(z1))) +y - tanh(¢(zy)),
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with @ = 0.6, and s, 7 being two-layer neural networks with ReLU activations. The latent prior
pz(z) consists of a product of a one-dimensional mixture-of-Gaussians:

2
p(z1) = an Nz pe, o), 7=1[0.6,04], u=[-2,2], o=][1.0,0.5],
k=1

and a standard Gaussian z, ~ N (0, 1).

In addition to maximum likelihood estimation, we introduce geometric regularization to ensure
that the high-density region of the latent prior is mapped to a corresponding mode in the target
space. This is done via two penalty terms:

1. A local contrastive penalty encourages log-probability at mapped prior mode Xp,ax to exceed
its local neighbors:

M
Leontrast = Z max (0’ log px (X?elgh) — log pX(Xmax)) ,
i=1

neigh

where x; = Xmax + €, and & ~ N (0, o2T).

2. A gradient penalty enforces V 1og px (Xmax) = 0:

-Egrad = ‘

VX log Px (X)|x:Xmax H] ’

The total objective is:

L = —Ex-p [log px(X)] + AcontrastLcontrast + Agradl:grad

Training is performed using the Adam optimizer with an initial learning rate of 1 x 107#, which
is decayed by 10% every 5000 iterations. Penalty coeflicients Acontrast, Agrad> and Aajign are initialized
at small values and gradually increased (by 5% every 5000 iterations) to guide the flow toward stable
mode alignment while preventing instability in early optimization.

Minibatches of 2D coordinates are drawn from preprocessed subsets {set J}}zo’ and the entire
training loop runs for 100,000 steps. Gradients are clipped using global norm clipping with a
threshold of 0.01. Checkpoints are saved regularly and used for restarting long runs.

Figure 4.1 shows the learned transport map learned by MoG-KRnet. On the left, samples drawn

from the latent space exhibit two clearly separated high-density regions corresponding to distinct
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components in the mixture-of-Gaussians prior. After training, these two latent modes are transported
via the inverse flow f~! into two distinct basins of the Miiller-Brown energy landscape, shown on
the right.

This demonstrates that the model not only captures the overall multimodal structure of the target
distribution but also learns a semantically consistent transport: each latent mode is mapped to a
specific metastable state of the physical system. The smoothness and separation of the transformed
samples reflect that the triangular KRnet flow—coupled with the hybrid prior and geometric
regularization—successfully avoids mode collapse and learns a one-to-one correspondence between
latent and physical modes.

Such mode-resolving behavior is difficult to achieve with standard normalizing flows that rely on
unimodal priors. In contrast, MoG-KRnet leverages the flexibility of mixture components to assign
and map separated probability mass to different energetic regions in a physically meaningful way.
This mode alignment improves both sampling fidelity and interpretability, especially in systems

where multiple competing basins dominate the dynamics.

Initial Distribution

Figure 4.1 Learned transport from latent space to physical space using MoG-KRnet. The left half of
the image shows samples drawn from the latent distribution, which has two distinct high-density
regions due to the mixture-of-Gaussians prior. The right half shows the transformed samples under
the inverse flow f~!, which accurately maps the two latent modes into the two metastable basins of
the Miiller-Brown potential. This demonstrates the model’s ability to perform semantically aligned
mode separation, transporting distinct regions of latent mass to physically meaningful targets.
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4.3.2 Approximation of the Alanine Dipeptide Equilibrium Distribution

To further assess the scalability and generalization capacity of MoG-KRnet, we apply it
to approximate the equilibrium distribution of a higher-dimensional molecular system: alanine
dipeptide in implicit solvent. This molecule is a well-known testbed in molecular simulation due
to its low dimensionality yet rich conformational landscape, characterized by transitions between
metastable states in the Ramachandran (¢, ¢)-angle space and the full Cartesian coordinates of
selected atoms.

We generate reference samples for alanine dipeptide (Ace-Ala-Nme, commonly referred to as
Ala2) via full-atom molecular dynamics (MD) simulation in explicit solvent. The simulation system
consists of the alanine dipeptide molecule immersed in 383 TIP3P water molecules. The simulation
is carried out at 350 K using the Amber99-SB force field and Langevin dynamics for temperature
control. A time step of 2.5 x 107 ps is used for numerical integration.

Trajectories are collected from equilibrium simulations and projected onto a reduced coordinate
space consisting of Cartesian positions of selected heavy atoms. In total, 5 million configurations are
used to construct the dataset Dy, ~ px, representing the high-dimensional equilibrium distribution
over molecular conformations.

The MoG-KRnet model is constructed to map the equilibrium distribution of alanine dipeptide
into a structured latent space. The model input is a 15-dimensional vector representing the
Cartesian coordinates of five key atoms—[5, 7, 9, 15, 17]—selected to capture relevant backbone
conformational fluctuations while avoiding redundant degrees of freedom. This atom selection
encompasses chemically meaningful internal coordinates, including both ¢ and ¢ torsions, as well
as spatial end-to-end geometry.

The flow transformation f : R — R!> consists of 7 staged mappings inspired by the pseudo-
triangular structure of the Knothe—Rosenblatt rearrangement. Each stage contains 24 affine coupling
layers with hidden width 128, supplemented by actnorm, LU-based rotations, and squeezing
operations. This progressive architecture allows early layers to resolve nonlinear, multimodal

features in dominant subspaces, while later layers refine global geometry.
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The latent prior pz is a hybrid of three independent one-dimensional mixture-of-Gaussians

(MoG) and a standard multivariate Gaussian:

3
pz(z) = 1_[ Tk 'N(Zj;,uj,k,o'ik) - N(24.15;0,112).
=1 k=1

This design reflects the assumption that a small number of latent coordinates capture discrete
conformational transitions (e.g., basin-hopping), while the remaining degrees of freedom reflect
continuous fluctuations in local structure. The independence of latent dimensions facilitates efficient
sampling and interpretable mode decomposition. Latent samples are drawn by independently
sampling each MoG dimension using categorical selection followed by Gaussian sampling, and
appending a standard normal vector for the Gaussian block.

Training is performed on a dataset of 5 million MD samples using a composite loss:

Ltotal = LNLL + /lgradLgrad + /lcontrast-Lcontrast + Lrep-

Here, LniL is the negative log-likelihood, Lgraq enforces local maximality at the mapped latent
maxima, and Lconirase €nsures neighborhood contrast.

To prevent mode collapse, a pairwise repulsion loss Lyep is introduced between mapped maxima
{Xfl?ax} using a soft margin criterion.

Training runs for 200,000 iterations with the Adam optimizer, an initial learning rate of 1077,
and dynamically scaled penalty weights. During training, KDE diagnostics are periodically used
to ensure that generated samples recover the correct distributions in torsional and Euclidean
observables.

In Fig. 4.2, we compare the predicted marginal densities of the ¢ and ¢ dihedral angles from
KRnet to reference MD histograms. MoG-KRnet accurately reproduces all modes in both coordinates
and captures the correct relative amplitudes. In particular, the sharp peak near ¢ ~ 3.0 is learned
precisely, and the multimodality in ¢ is preserved without mode collapse.

To assess the learned joint dependencies, we visualize the 2D density over (¢, ¢) in Fig. 4.3,
along with the eight mode points mapped from latent maxima. The conformational basins of Ala2 are

clearly recovered, and the mode points are well-separated, each landing within distinct high-density
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Figure 4.2 Comparison of 1D dihedral angle marginals between KRnet (red) and MD ground truth
(blue).

regions. This confirms that MoG-KRnet not only fits the data globally but also identifies meaningful

latent structure.
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Figure 4.3 Predicted equilibrium features of alanine dipeptide from the trained MoG-KRnet model.

An important feature of our MoG-KRnet framework is the explicit mapping of latent density
modes to high-probability basins in configuration space. By construction, each mode of the hybrid
prior zfl?ax is mapped through the inverse flow f~! to a corresponding point xfl?ax € R?. These

mapped maxima are designed to coincide with peaks in the learned data distribution px (x), enforced
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during training via gradient and contrastive penalties.

As shown in Figure 4.3, this alignment holds in both the dihedral angle space (¢,y) and
in structural coordinates. In the left panel, each mapped latent mode falls within a distinct
conformational basin in the (¢, ) landscape, indicating that MoG-KRnet captures metastability
through a structured latent space. In the right panel, the same latent maxima are distributed across the
manifold of end-to-end distance and radius of gyration, further supporting the physical consistency
and geometric expressiveness of the learned model. These results confirm that our framework not
only generates accurate samples but also provides a semantically meaningful latent representation

that aligns with physically interpretable features of the molecular system.

4.4 Summary.

In this work, we proposed MoG-KRnet, a novel flow-based generative framework designed for ap-
proximating high-dimensional equilibrium distributions in complex molecular systems. Our approach
builds upon the theory of invertible transformations and exploits a staged Knothe—Rosenblatt-inspired
architecture to progressively map structured latent representations to physical configuration space.
A distinguishing feature of MoG-KRnet is its use of a hybrid latent prior that combines independent
one-dimensional mixture-of-Gaussians (MoG) components with standard Gaussian variables. This
formulation enables the model to flexibly represent multi-modal distributions while maintaining
computational tractability and efficient sampling.

To ensure meaningful correspondence between latent and physical modes, we introduced a
mode-alignment strategy during training. This involves constructing the prior such that each latent
mode zr(f%x encodes a distinct peak in the latent density, and then enforcing through loss penalties
that each of these modes is mapped to a high-probability region xff?ax = f! (zg)ax) in the observed
space. This is achieved via gradient-based penalties to minimize ||V log px (Xmax)||, and contrastive
penalties to ensure that Xp,x 1S indeed a local maximum compared to its neighbors. This alignment
strategy imbues the model with semantic coherence and supports downstream interpretability.

The efficacy of MoG-KRnet was demonstrated on two benchmark systems. For the Miiller-Brown

potential, we showed that the model accurately captured the bimodal equilibrium distribution and
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learned to associate each latent mode with a distinct physical basin. For the more complex alanine
dipeptide molecule in explicit solvent, the model was trained on 5 million full-atom MD snapshots
and succeeded in learning the joint equilibrium distribution over both angular variables (dihedral
angles ¢, ¢) and structural observables (end-to-end distance and radius of gyration). In all cases,
the mapped latent maxima landed squarely in dominant high-density regions of the data space,
confirming the success of the mode-to-basin alignment. Furthermore, generated samples from the
model reproduced the marginal and joint distributions of key physical features with high fidelity,
closely matching empirical histograms derived from MD data.

Together, these contributions underscore the dual strengths of MoG-KRnet: the capacity to
approximate complex, multi-modal densities in high dimensions, and the ability to structure the
latent space in a physically meaningful and interpretable manner. Our results demonstrate that
MoG-KRnet provides not only a powerful generative model but also a principled tool for reduced
representation of molecular systems, where the mapping from latent to physical coordinates respects
the underlying metastable structure of the dynamics. This makes it particularly well-suited for tasks
in coarse-grained modeling, statistical reweighting, and uncertainty-aware exploration of equilibrium

configurations.
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CHAPTER 5

CONCLUSION
This thesis presents a unified, data-driven framework for constructing reduced-order models of
high-dimensional, non-Markovian dynamical systems. By integrating advances in memory-aware
modeling and normalizing flow-based latent representations, we address two central challenges
in coarse-grained modeling: accurately capturing long-time correlations and resolving complex,
multi-modal equilibrium distributions.

We began by developing a novel learning-based approach to non-Markovian stochastic re-
duced modeling. By augmenting the resolved dynamics with a set of learned auxiliary vari-
ables—interpretable as non-Markovian features—we showed that the complex memory effects
embedded in full-atom molecular simulations can be faithfully captured without directly estimating
memory kernels. This framework builds on the Mori—Zwanzig formalism and circumvents conven-
tional kernel fitting by matching correlation functions in an extended variable space. Numerical
results on tagged particles and polymer chains demonstrated excellent agreement with full molecular
dynamics (MD) simulations, validating the expressiveness and robustness of the proposed models.

We extended this methodology to incorporate state-dependent memory kernels, thereby enabling
more realistic dynamics in systems with heterogeneous free energy landscapes. Our framework
captures local variations in unresolved degrees of freedom and accommodates basin-specific
relaxation times and noise structures. Through simulations on polymer systems, we observed
significant improvements in predictive accuracy and sampling fidelity compared to global or
fixed-kernel models.

To handle the challenge of modeling complex equilibrium distributions, we introduced a new
Mixture-of-Gaussians (MoG) KRNet architecture—termed KRnet-MoG-GLE—as a probabilistic
generative model for full molecular dynamics. By replacing the unimodal latent prior with a flexible
MoG prior, our model gains the capacity to represent multiple metastable basins and generate
samples that better match empirical distributions. Importantly, we designed the training to enforce

mode-alignment, ensuring that the maxima of the latent variables map to high-probability regions in
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the data space. This was demonstrated convincingly in the Miiller-Brown and alanine dipeptide
systems, where our model successfully resolved distinct basins and accurately approximated target
observables such as end-to-end distance, radius of gyration, and dihedral angles.

Taken together, the contributions of this work represent a significant step forward in the design of
interpretable, memory-embedded, and generative reduced-order models. By marrying the strengths
of stochastic modeling with expressive latent-variable architectures, our approach enables efficient
exploration and inference in systems that are otherwise intractable due to their high dimensionality
and long memory effects.

Ultimately, this thesis lays the foundation for data-driven, physically-consistent reduced models
that can serve as scalable surrogates for multi-scale simulations, with broad applicability across

molecular biophysics, soft materials, and beyond.
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APPENDIX A

MICROSCALE MODEL OF THE POLYMER MOLECULE

The polymer molecule is modeled as a bead-spring chain consisting of 4 sub-units. Each sub-unit
consists of 4 atoms. The full potential is given by

N N, Ng Na

Vinor (MQ) = > Vp(Qij) + > Vo(li) + ) Va6 + ) Va0, (A1)

i#] i=1 i=1 i=1
where V,,, Wy, V,, and V4 represent the pairwise, bond, angle, and dihedral interactions whose detailed
forms are specified as below.

The pairwise interaction V}, is modeled by the Lennard-Jones potential

|(2)”~(5)] | (£)" - (&)] e<e

0, 020

Vo (0) = (A2)
where € = 0.005, 0 = 1.8 and Q. = 10.0.
The bond potential V4, is modeled by the finite extensible nonlinear elastic bond (FENE) potential

__kip, 12
Vb(l) = —710 og 1- % s (A3)

where three different bond types. Within each sub-unit, the atoms 1-2, 3-4 are connected
by type-1 bond. The atoms 2-3 are connected by type-2 bond. Finally, the sub-unit groups are

connected by type-3 bond. The detailed parameter set is given by Tab. A.1.

Type ki lo
1 0.4 1.8
2 0.64 1.6
3 0.32 1.8

Table A.1 Parameters of the FENE bond interactions.

The angle potential V; is modeled by the harmonic angle potential

ka
xq@zgw—%ﬁ, (A.4)
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Type ka 6o
1 12 114.0
2 15 119.7

Table A.2 Parameters of the harmonic angle interaction.

where two different types. Within each sub-unit group, the bond angles formed by 1-2-3 and 2-3-4
are imposed by type-1 potential. The bond angles formed by atoms of different sub-unit groups (e.g.,
3-4-5, 4-5-6) are imposed by type-2 potential. The detailed parameter set is given by Tab. A.2.

The dihedral potential V4 is modeled by the multiharmonic dihedral potential

6
Va(¢) = ) Aycos" (), (A3)

i=1
where two different types. Type-1 dihedral potential is imposed to dihedral angles formed by 2-3-4-5,
4-5-6-7, - - -. Type-2 dihedral potential is imposed to dihedral angles formed by 3-4-5-6, 7-8-9-10,

---. The detailed parameter set is given by Tab. A.3.

Type Al A2 A3 A4 A5 A6
1 0.0673 1.8479 0.0079 -2.2410 -0.0058 0.0051
2 0.1602 -3.9993 0.2483 6.2837 0.0165 -0.0146

Table A.3 Parameters of the multiharmonic dihedral interaction.
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APPENDIX B

CONSTRUCTION OF THE FOUR-DIMENSIONAL FREE ENERGY FUNCTION
Accurate construction of the multi-dimensional free energy is a well-known non-trivial problem.
To construct the free energy function U(mg) for the four-dimensional resolved variables mg
defined by (2.18), we conduct the restraint molecular dynamics simulation to sample the average
force. Specifically, for each target configuration mg*, we impose a biased quadratic potential
Ubias(mg, mg") by )

Ubias(mg, mq") = % Zl ki (gi—a;). (B.1)
where k1, - - - , k4 represents the magnitude of the l;_ias potential. We choose the values such that
the fluctuations are about 5% of target values. For the polymer molecule considered in the present
study, the effective restraint force applied to the full atom {mQ j };1:] is given by

4
mFiias (Mg, mg*) = = > ki (i = ;) Ymo, i (B.2)
i=1

where the gradient terms are given by

mQ; —mQy mQy —mgQ

Vmo, g1 = ————0; 1+ ————0; N>
mo; 4 q1 ! q1 !

2(mQ; - mQ,)

Vo, 42 = ]<lq2 -
mQ _mQL%J mQL%J —mQ; (B.3)

Vmg,q3 = A P
mQy — mQ[%] mQ[%] -mQy

’ q4 q4 S

where ¢; ; represents the Kronecker delta function.

The free energy U(myg) is approximated by a 4-layer fully connected neural network U(myg).
Each hidden layer has 160 neurons; hyperbolic tangent function is used as the activation function.
U(mg) is trained by minimizing the empirical loss

2
)

Ny
L= Z H—qu<k>l7 (mg) — mFy;4,(mg, mq("))( (B.4)
k=1

where mg®) represents a sampled configuration. In this work, we construct U(mg) using

N, = 400000 sample points collected from a simulation with a production stage of 1 x 107 steps.
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For each configuration, the number of step is between 1 x 10% and 6 x 10° such that the empirical
sampling error is less than 5% of the mean value.
To verify the accuracy of U(mg), we numerically evaluate the integration
Ns
kpTml = / mg ® VU(mq)e_U(m‘I)/kBTqu// e Vma)/ksT ymg ~ NL Z mqg® ® VU (mg®).
e (B.5)

Therefore, the difference between the numerical summation and kg7 m/ provide a metric. For this

case, kpT = 1. The average term yields

1.0362 —0.0011 0.0087 0.0062

Ny

] & ) 0.0094 0.9814 0.0021 0.0018
~ 2, ma" ® V0 (mg") = , (B.6)
= 0.0096 0.0068 0.9913 —0.0020

0.0076  0.0098 0.0008 0.9913

which verifies that the constructed U(myg) is an accurate approximation of U(myg).
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APPENDIX C

FLUCTUATION-DISSIPATION THEOREM OF THE EXTENDED DYNAMICS
For the extended dynamics in form of Egs. (2.5)(2.6), we can show that the embedded memory kernel
mé(¢) and fluctuation term mR(¢) satisfy the second-fluctuation dissipation theorem. Without
loss of generality, we set the covariance of the non-Markovian features to be kg7 m/ following the

learning method presented in Sec. 2.2.3, i.e., mA = m/, mJ/ = mJ.

Proposition C.0.1. The embedded memory kernel of the extended dynamics (2.5)(2.6) takes the
formmo(t) = — (m]lld(t) + mJlgemJ”thZI). Furthermore, by choosing the initial condition of

m/( and the white noise term mé(t) = mEmW, satisfying

(m¢(0m¢(0)") = g~'mI

(mé(Hmé(s)") = -p7 (mJ +mJT)5(1 - s),

(C.1)

the embedded kernel mé(t) and mR(t) satisfies the second fluctuation-dissipation theorem, i.e.,
(mR(HmR (1)) = -p~! (nijlze‘ﬁhz(f-”hﬁhl +(mJy +mJ)o(t - t')) . (C.2)
Proof. With mA = mJ and mJ = mJ, we can take the integration of m/ (¢) in Eq. (2.5), yielding

t t
m/ (1) = / e™2=)m 1 my(s)ds + / ™29 mes (5)ds + e™2'me (0). (C.3)
0 0

Plugging m{(7) into the dynamic equation of mv gives
t
mMniv = - VU (mg) + mJ;ymv + / mleemJ”(’_“)memv(s)dt
0

t
+mé (1) +/ mJ 2™ 209 mé, (s)ds + mJ2e™2'm (0) . (C4)
~—— 0

Ri (1) . R (1)
Ra (1)

67



We check the covariance matrices of the noise terms, i.€.,

(Ri(ORi1(t)") = =B~ (mJ11 +mJ] )61 - 1),

<7é2(f)7?2(f')T> = /0[ ‘/Ot/ mJ,e™/22(-5) (mgz(s)mfz(s’)T> eszTz(t"s')mJITstds’
=5 /0 t /O ' mJ,e™2079) (mJy, + miL)6(s — ' )mJLe™ 2= mJT dsds’
=-p! /Ot, mJ ™20 (mJ,, + mJZTz)memJ;Z(’/'S/)mJszds’,

— _ﬁ—lmjlzem-]22f+m\lgzl/m‘]1T2 +ﬁ_1mJ123mJ22(t_[/)mlez, vtl <t
(Ra(1)R3(1)T) = mJ12e™2! (mZ (0)m (0)T ) ™2 mJ7,

_ T 1
— ﬁ lmjlzemjzztemfzzl mJ{Z

(C.5)
Moreover, for ¢ > t’, all the cross terms vanish except <7§2(t)7§ 1 (t’)T>, ie.,
t
(RaOR ()7 = [ e mes(syme, (1)) ds
0
t
=B /0 mJ;,e™209) (mJy; + mJsz)d(t' —s)ds (C.6)
= —IB‘ImJuemhz(’_’/) (mJy + mJsz).
Combining Eq. (C.5) and Eq. (C.6), we have
<ﬁ(l‘)ﬁ(l‘,)T> = ,B_Imjlzemjzz(’_”)mlez - ﬁ_]m.llzemJZZ(t_l/) (mJ21 + mJsz)
~ B (mJy +mJl)s(t - 1) (C.7)
=8 (mleemJZZ(t"')mng +(mJy; +mJ] )6t - t’)) )
O

As a special case, by imposing the restraint specified by Eq. (2.16) such that mJy; + mJ 1Tl =0

and mJ;, = —-mJ?

7.+ the memory kernel mé(¢) recovers —mJ ,¢™2'mJ7, without the Markovian

part, and the second fluctuation-dissipation theorem recovers the standard form, i.e.,

(mR(H)mR(0)") = g~'ma(2). (C.8)
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APPENDIX D

INVARIANT PROBABILITY DENSITY FUNCTION
Proposition D.0.1. By choosing the white noise following Eq. (C.1), the reduced model (2.5)(2.6)

retains the invariant density function

Peq(mg, mp, m¢) = exp [-W(mg, mp, m{)| // exp [-W(mg, mp, m{)| dmgdmpdm/.
(D.1)

Proof. By Eq. (C.1), the covariance of the white noise of the full extended system is given by

mG +mG’ = diag(0,mEmX’). Accordingly, the Fokker-Plank equation follows

dp(mz, 1)

5 =V [-mGYW(mz)p(mz, 1) - %,B_I(mG +mG”)Vp(mz, t)) : (D.2)

where p(mgz,?) represents the probability density function of the extended variables mz =
[mg; mp; m{]. For pe,(mg, mp,m¢{) « exp [-W(mg, mp,m()], the RHS follows

V-8 'mGVp,,(mz,1) - %ﬁ'l(mG +mG7")Vpe, (mz, t)) =p'v. (mGAVpeq(mz, t))
(D.3)

0,

where the last identity holds because mG* is anti-symmetric. O
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APPENDIX E

MEMORY KERNEL OF THE POLYMER MOLECULE SYSTEMS
Fig. E.1 shows the embedded matrix-valued kernels mé(¢) of the full MD and the 4D reduced
models of the polymer molecule system. Similar to the kernel in the Laplace space m®(A1) shown in
Fig. 2.6, the good agreement between the full MD and the reduced models verifies that the reduced

model can accurately retain the non-Markovian dynamics of the resolved variables.
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Figure E.1 (a—d) Components of the embedded matrix-valued kernel mé(¢) obtained from the full
MD and the four-dimensional reduced model of a polymer molecule system She et al. (2023).
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