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ABSTRACT

Predictive modeling of high-dimensional dynamical systems remains a central challenge in numerous

scientific fields, including biology, materials science, and fluid mechanics. When clear scale

separation is lacking, a reduced model must accurately capture the pronounced memory effects

arising from unresolved variables, making non-Markovian modeling essential. In this thesis, we

develop and analyze data-driven methods for constructing generalized Langevin equations (GLEs)

and extended stochastic differential equations that faithfully encode non-Markovian behaviors.

Building on the Mori–Zwanzig formalism, we first propose an approach to learn a set of non-

Markovian features—auxiliary variables that incorporate the history of the resolved coordinates—so

that the effective dynamics inherits long-time correlations. By matching evolution of correlation

functions in the extended variable space, our method systematically approximates the multi-

dimensional GLE without requiring direct estimates of complicated memory kernels. We show

that this approach yields stable, high-fidelity reduced models for molecular systems, enabling

significantly lower-dimensional simulations that nonetheless reproduce key statistical and dynamical

properties of the original system.

We then extend this framework to incorporate state-dependent memory kernels, facilitating

enhanced sampling across diverse regions of phase space. We demonstrate that constructing heteroge-

neous memory kernels—reflecting the local variations in unresolved degrees of freedom—improves

the model’s accuracy and robustness, especially in systems exhibiting multiple metastable states.

Through both numerical experiments and theoretical analysis, we highlight how these data-driven

non-Markovian models outperform traditional Markovian or fixed-memory approaches.

To address complex, multi-modal distributions in high-dimensional data, we then modify the

latent variable of a KRNet normalizing-flow architecture from a single Gaussian to a mixture-of-

Gaussians (MoG). This richer latent representation not only improves the model’s expressiveness

and training stability but also facilitates discovering collective variables (CVs), as the multi-modal

latent space reveals distinct modes corresponding to relevant metastable states or slow degrees of

freedom. Through both numerical experiments and theoretical analysis, we show that integrating a



MoG prior into KRNet yields superior density estimation, enhanced sampling of metastable basins,

and a more interpretable set of learned CVs.

Altogether, this thesis provides a comprehensive methodology for deriving scalable, memory-

embedded reduced dynamics augmented by advanced latent representations. Such models open new

possibilities for multi-scale simulations by merging fine-grained molecular fidelity with tractable

coarse-grained representations, all while systematically leveraging the benefits of multi-modal latent

spaces to identify key low-dimensional features. Our results underscore the practical advantages

of incorporating non-Markovian features and a mixture-based flow model in capturing the full

complexity of real-world molecular and dynamical systems.
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CHAPTER 1

OVERVIEW

The accurate modeling of high-dimensional dynamical systems remains a cornerstone challenge

across a range of scientific disciplines, from soft matter and biophysics to fluid mechanics and climate

science. Modern simulations of such systems often demand immense computational resources

due to the intricate interactions and multi-scale nature of the underlying processes. Although fully

resolved models, which include all microscopic variables and fine-grained details, can in principle

capture the relevant physics, they frequently prove infeasible in practice because of prohibitive

computational cost. As a result, significant efforts in coarse-grained modeling aim to reduce

dimensionality and complexity while preserving the essential statistics and long-time behaviors of

the original high-dimensional problem.

A central insight in coarse-graining is that purely Markovian models—those assuming in-

stantaneous and memoryless evolution—often fail to reproduce the observed time correlations

and transport properties in real systems. These discrepancies become particularly pronounced in

situations lacking clear time-scale separations, wherein so-called “fast” or unresolved degrees of

freedom exert non-negligible influences over extended time horizons. Consequently, one must

explicitly retain memory terms to produce physically accurate reduced dynamics. In theoretical

treatments, the Mori–Zwanzig (MZ) formalism provides a foundation for describing the projected

dynamics of a lower-dimensional set of variables, augmented with a time-dependent memory kernel

and stochastic fluctuation terms. However, direct numerical implementation of these ideas is seldom

straightforward because the memory kernel typically lacks a closed-form expression and may require

large volumes of data to estimate reliably.

In response, a growing body of literature has turned to data-driven approaches that learn reduced

equations or effective models directly from simulation trajectories or experimental data. Such

methods circumvent the direct computation of memory kernels by leveraging machine learning

techniques to discover the underlying structure of the system. This dissertation focuses on integrating

and extending three distinct strategies that address complementary aspects of non-Markovian
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modeling for high-dimensional dynamical systems:

1. Non-Markovian Feature Learning

Our first strategy proposes a learning framework that sidesteps the need for explicit memory-

kernel estimation by introducing a set of auxiliary variables. These additional variables

encapsulate the “history” of the coarse-grained coordinates, effectively transforming what

would otherwise be a non-Markovian model into a higher-dimensional extended Markovian

system. By matching correlation functions between the full model and the extended reduced

model, we ensure that critical temporal dependencies are accurately preserved. This correlation-

matching step is instrumental: it encodes the slow relaxations and recurrent configurations that

are crucial for capturing long-time dynamics. Numerical experiments on molecular systems

demonstrate that non-Markovian feature learning can yield reduced-order simulations with

excellent fidelity to the reference trajectories, all while maintaining moderate computational

cost.

2. State-Dependent Memory Kernels

While the first approach offers a single global mechanism to embed memory effects, many

real systems exhibit state-dependent memory. For instance, macromolecular or fluid systems

may have multiple metastable basins, each with distinct relaxation times or energetic barriers.

In such cases, it is insufficient to assume a uniform memory kernel throughout the entire state

space. Our second strategy addresses this limitation by introducing heterogeneous memory

kernels that adapt to the local environment of the resolved variables. Rather than fitting a

single kernel function, we allow the memory to vary based on the instantaneous configuration

or thermodynamic state. This added flexibility is particularly advantageous for systems with

complex free-energy landscapes, as it enables more accurate modeling of basin-to-basin

transitions, barrier crossing, and other processes sensitive to local unresolved dynamics.

By learning these heterogeneous kernels from data, we capture nuanced variations in the
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memory structure, significantly improving sampling efficiency and predictive performance in

multi-basin or multi-phase scenarios.

3. KRNet with a Mixture-of-Gaussians Latent Representation

Although robust memory modeling is critical for accurate dynamics, effectively capturing

distributional complexity in high-dimensional systems poses an additional challenge. Many

normalizing-flow methods, which learn invertible transformations from simple latent spaces

to complex data distributions, rely on a single Gaussian prior for the latent variables. Such

a unimodal assumption can limit the expressivity of the model, particularly when the

target distribution is multi-modal or exhibits heavy tails. Here, we introduce an advanced

KRNet architecture that employs a mixture-of-Gaussians (MoG) as the latent prior. By

allowing the latent space to be multi-modal, KRNet gains greater flexibility in approximating

intricate molecular or continuum distributions. Moreover, analyzing individual mixture

components provides insights into physically meaningful collective variables (CVs), such as

reaction coordinates or slow degrees of freedom that govern the system’s long-time behavior.

This MoG-based design not only improves density-estimation accuracy but also enhances

interpretability, offering an additional avenue for understanding how different metastable

states or configurations map to the underlying latent structure.

Taken as a whole, these three complementary approaches form a cohesive framework for

memory-aware, distribution-aware coarse-graining. In the first two, we focus on correctly capturing

time correlations and historical dependence—the hallmark of non-Markovian dynamics. In the third,

we emphasize handling complex data distributions and uncovering low-dimensional representations.

Implemented together, they enable practitioners to develop robust reduced-order models that do not

sacrifice crucial multi-scale or multi-modal characteristics of the original system.

Beyond theoretical importance, these techniques offer practical advantages: multi-scale simu-

lations become more feasible as the reduced models require fewer degrees of freedom to achieve

a similar predictive capability, potentially reducing wall-clock times while maintaining essential
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physical fidelity. Moreover, our approaches naturally expose slow modes and transitions that might

otherwise remain obscured in fully detailed simulation data, thereby aiding in physical interpretation.

Researchers can identify meaningful collective variables or design specialized sampling protocols

targeting critical regions of phase space (e.g., near transition states or interfaces).

Ultimately, the methods presented here reflect a broader trend in computational science: as

machine learning and high-performance computing continue to advance, new opportunities emerge

for data-driven modeling of complex phenomena. These advances permit us to go beyond naively

discarding unresolved scales, instead systematically incorporating their effects through memory

terms, latent-variable modeling, or both. The chapters that follow detail each of these methods,

their theoretical underpinnings, and the empirical studies that demonstrate their utility. Collectively,

they underline the feasibility of incorporating memory effects and multi-modal representations

in next-generation coarse-grained simulation frameworks, bridging the gap between brute-force

full-resolution models and simpler—but often inaccurate—Markovian approximations.

In summary, the remainder of this dissertation proceeds as follows:

• We begin by examining non-Markovian feature learning and explain how auxiliary variables,

grounded in correlation-function matching, facilitate extended Markovian representations of

intrinsically non-Markovian processes.

• Next, we tackle state-dependent memory kernels as a direct way to incorporate local

environmental or configurational effects, significantly improving the realism of reduced

models in multi-basin systems.

• Finally, we present KRNet with a mixture-of-Gaussians (MoG) latent space, illustrating

how it enhances distribution modeling and offers a pathway to derive physically interpretable

collective variables. We highlight its synergy with memory-based approaches, demonstrating

an integrated methodology for advanced coarse-grained simulations.

Through these contributions, this dissertation seeks to illustrate the power and flexibility of

data-driven, memory-embedded modeling. By capturing temporal dependencies and multi-modal
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structures simultaneously, researchers can generate high-fidelity reduced-order simulations capable of

exploring complex energy landscapes, long-time dynamical evolution, and rarely visited metastable

states. The approaches and results stand to benefit a wide array of fields, ranging from molecular

biophysics and materials science to geophysics and fluid mechanics, all of which confront the

challenges posed by limited computational budgets and intrinsically non-Markovian dynamics.
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CHAPTER 2

DATA-DRIVEN CONSTRUCTION OF STOCHASTIC REDUCED DYNAMICS ENCODED
WITH NON-MARKOVIAN FEATURES

2.1 Introduction

Predictive modeling of multi-scale dynamic systems is a long-standing problem in many fields

such as biology, materials science, and fluid physics. One essential challenge arises from the high-

dimensionality; numerical simulations of the full models often show limitations in the achievable

spatio-temporal scales. Alternatively, reduced models in terms of a set of resolved variables are

often used to probe the evolution on the scale of interest. However, the construction of reliable

reduced models remains a highly non-trivial problem. In particular, for systems without a clear scale

separation, the reduced dynamics often exhibits non-Markovian memory effects, where the analytic

form is generally unknown. To close the reduced dynamics, existing methods are primarily based on

the following two approaches. The first approach seeks various numerical approximations of the

memory term by projecting the full dynamics onto the resolved variables based on frameworks such

as the Mori-Zwanzig formalism Mori (1965b); Zwanzig (1973) or canonical models such as the

generalized Langevin equation (GLE) Zwanzig (2001). Examples include the t-model approximation

Chorin et al. (2002), the Galerkin discretization Darve et al. (2009a), regularized integral equation

discretization Lange and Grubmüller (2006), the hierarchical construction Chen et al. (2014); Stinis

(2015); Zhu and Venturi (2018); Hudson and Li (2020); Price et al. (2021), and so on. Recent

studies Ma et al. (2018); Vlachas et al. (2018); Harlim et al. (2020); Wang et al. (2020a) based on

the recurrent neural networks Hochreiter and Schmidhuber (1997) provide a promising approach to

learn the memory term of deterministic dynamics. Yet, for ergodic dynamics, how to impose the

coherent noise term compensating for the unresolved variables remains open. The second approach

parameterizes the memory term by certain ansatz, e.g., the fictitious particle Davtyan et al. (2015a),

continued fraction Wall (1948); Mori (1965a), rational function Corless and Frazho (2003), such

that the memory and the noise terms can be embedded in an extended Markovian dynamics Mori

(1965a); Ceriotti et al. (2009); Baczewski and Bond (2013); Davtyan et al. (2015a); Lei et al. (2016a);
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Jung et al. (2017a); Lee et al. (2019a); Russo et al. (2019); Ma et al. (2019); Grogan et al. (2020). In

addition, non-Markovian models are represented by discrete dynamics with exogenous inputs in

form of NARMAX (nonlinear autoregression moving average with exogenous input) Chorin and Lu

(2015); Lin and Lu (2021) and SINN (statistics information neural network) Zhu et al. (2022) and

parameterized for each specific time step. Recent work by Vroylandt et al. Vroylandt et al. (2022)

presents an expectation-maximization method to parameterize the reduced model from the full

model trajectories. Refs. Daldrop et al. (2017); Kowalik et al. (2019) present an efficient approach

based on analyzing the force correlation function to extract the memory function for the reduced

dynamics of aqueous molecules under quadratic confinement potential; see also recent review

Klippenstein et al. (2021) for further discussion. Despite the overall success, most studies focus on

the cases with a scalar memory function. Notably, the reduced model of a two-dimensional GLE is

constructed in Ref. Lee et al. (2019a). To the best of our knowledge, the systematic construction of

stochastic reduced dynamics of multi-dimensional resolved variables remains under-explored.

Ideally, to obtain a reliable reduced model, the construction needs to accurately retain the

non-Markovian features, enable certain modeling flexibility (e.g., the dimensionality of the resolved

variables) and adaptivity (e.g., the order of approximation), and guarantee the numerical stability

and robustness. In a recent study, we developed a Petrov-Galerkin approach Lei and Li (2021) to

construct the non-Markovian reduced dynamics by projecting the full dynamics into a subspace

spanned by a set of projection bases in form of the fractional derivatives of the resolved variables.

The obtained reduced model is parameterized as extended stochastic differential equations by

introducing a set of test bases. Different from most existing approaches, the construction does not

rely on the direct fitting of the memory function. Non-local statistical properties can be naturally

matched by choosing the appropriate bases, and the model accuracy can be systematically improved

by introducing more basis functions to expand the projection subspace. Despite these appealing

properties, the construction relies on the heuristic choices of the projection and test bases. Given the

target number of basis, how to choose the optimal basis functions for the best representation of the

non-Markovian dynamics remains an open problem. Furthermore, the numerical stability needs to be
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treated empirically. These issues limit the applications in complex systems with multi-dimensional

resolved variables.

In this work, we aim to address the above issues by developing a new data-driven approach to

construct the stochastic reduced dynamics of multi-dimensional resolved variables. The method

is based on the joint learning of a set of non-Markovian features and the extended dynamic

equation in terms of both the resolved variables and these features. Unlike the empirically chosen

projection bases adopted in the previous work Lei and Li (2021), the non-Markovian features take

an interpretable form that encodes the history of the resolved variables, and are learned along with

the extended Markovian dynamic such that they are optimal for the reduced model representation.

In this sense, they represent the optimal subspace that embodies the non-Markovian nature of the

resolved variables. The learning process enables the adaptive choices of the number of features

and is easy to implement by matching the evolution of the correlation functions of the extended

variables. In particular, the explicit form of the encoder function enables us to obtain the correlation

functions of these features directly from the ones of the resolved variables rather than the time-series

samples. The constructed model automatically ensures numerical stability, strictly satisfies the

second fluctuation-dissipation theorem Kubo (1966), and retains the consistent invariant distribution

Español (2004); Noid et al. (2008).

We demonstrate the method by modeling the dynamics of a tagged particle immersed in solvents

and a polymer molecule. With the same number of features (or equivalently, the projection bases),

the present method yields more accurate reduced models than the previous methods Lei et al. (2016a);

Lei and Li (2021) due to the concurrent learning of the non-Markovian features. More importantly,

reduced models with respect to multi-dimensional resolved variables can be conveniently constructed

without the cumbersome efforts of matrix-valued kernel fitting and stabilization treatment. This is

well-suited for model reduction in practical applications, where the constructed reduced models

often need to retain the non-local correlations among the resolved variables. It provides a convenient

approach to construct meso-scale models encoded with molecular-level fidelity and paves the way

towards constructing reliable continuum-level transport model equations Lei et al. (2020); Fang
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et al. (2022).

Finally, it is worthwhile to mention that the present study focuses on the model reduction of

ergodic dynamic systems where the full or part of the resolved variables are specified as known

quantities that either retain a clear physical interpretation (e.g., the tagged particle position), or are

experimentally accessible (e.g., the polymer end-to-end distance, the radius of gyration). Another

relevant direction focuses on learning the slow or Markovian dynamics from the complex dynamic

systems where the resolved variables are unknown a priori; we refer to Refs. Rohrdanz et al. (2011);

Pérez-Hernández et al. (2013); Li and Ma (2014); Krivov (2013); Lu and Vanden-Eijnden (2014);

Bittracher et al. (2018) on learning resolved variables that retain the Markovianity, Refs. Coifman

et al. (2008); Chiavazzo et al. (2017); Crosskey and Maggioni (2017); Ye et al. (2021); Feng et al.

(2022); Zieliński and Hesthaven (2022) on learning the slow dynamics on a non-linear manifold,

and Refs. Giannakis (2019); Klus et al. (2018); Dibak et al. (2018); Klus et al. (2020) on model

reduction of the transfer operator.

2.2 Methods

2.2.1 Problem Setup

Let us consider the full model as a Hamiltonian system represented by a 6𝑁-dimensional phase

vector Z = [Q;P ], where Q and P are the position and momentum vectors, respectively. The

equation of motion follows

¤Z = S∇𝐻 (Z), (2.1)

where S =
©­­«

0 I

−I 0

ª®®¬ is the symplectic matrix, and 𝐻 (Z) is the Hamiltonian function and initial

condition is given by Z (0) = Z0. For high-dimensional systems with 𝑁 ≫ 1, the numerical

simulation of Eq. (2.1) can be computational expensive. It is often desirable to construct a

reduced model with respect to a set of low-dimensional resolved variables z(𝑡) := 𝜙 (Z (𝑡)) where

𝜙 : R6𝑁 → R𝑚 represents the mapping from the full to the coarse-grained state space with 𝑚 ≪ 𝑁 .

With the explicit form of 𝐻 (Z) and 𝜙(Z), the evolution of z(𝑡) can be mapped from the initial

values via the Koopman operator Koopman (1931), i.e., z(𝑡) = e𝑡Lz(0), where the Liouville
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operator L𝜙(Z) = −((∇𝐻 (Z0))𝑇 S∇Z0)𝜙(Z) depends on the full-dimensional phase vector Z.

Using the Duhamel–Dyson formula, the evolution of z(𝑡) can be further formulated in terms of z

based on the Mori-Zwanzig (MZ) projection formalism Mori (1965b); Zwanzig (1973). However,

the numerical evaluation of the derived model relies on solving the full-dimensional orthogonal

dynamics Chorin et al. (2002), which can be still computational expensive.

In practice, the resolved variables are often defined by the position vector Q. The MZ-formed

reduced dynamics is often simplified into the GLEs, i.e.,

¤q = M−1p

¤p = −∇𝑈 (q) −
∫ 𝑡

0
θ(𝑡 − 𝜏) ¤q(𝜏)d𝜏 + R(𝑡),

(2.2)

where q ∈ R𝑚 is the so-called collective variables, M is the mass matrix,𝑈 (q) is the free energy

function, θ(𝑡) : R+ → R𝑚×𝑚 is a matrix-valued function representing the memory kernel, and R(𝑡)

is a stationary colored noise related to θ(𝑡) through the second fluctuation-dissipation condition

Kubo (1966), i.e.,
〈
R(𝑡)R(0)𝑇

〉
= 𝑘𝐵𝑇θ(𝑡). It is worth mentioning that Eq. (2.2) is not exact

based on the MZ formalism. In particular, the memory function generally depends on the resolved

variables z and the noise term could be non-Gaussian; we refer to Ref. Ayaz et al. (2022) for further

discussion. Nevertheless, even for the simplified GLE form (2.2), the accurate construction of

the reduced model could remain highly-nontrivial. Specifically, the numerical simulation requires

the explicit knowledge of both the free energy 𝑈 (q) and the memory function θ(𝑡). Several

methods based on importance sampling Kumar et al. (1992); Darve and Pohorille (2001); Laio and

Parrinello (2002a) and temperature elevation Rosso et al. (2002); Maragliano and Vanden-Eijnden

(2006, 2008) have been developed to construct the multi-dimensional free energy function. In

real applications, the main challenge often lies in the treatment of the memory kernel θ(𝑡). In

particular, for multi-dimensional collective variables q, the efficient construction of numerically

stable matrix-valued memory function remains under-explored.

In this study, we develop an alternative approach to learn the reduced model. Rather than directly

constructing the memory function θ(𝑡) in Eq. (2.2), we seek a set of non-Markovian features from

the full model, denoted by {ζ𝑖}𝑛𝑖=1, and establish a joint learning of the reduced Markovian dynamics
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in terms of both the resolved variables and these features, i.e.,

dz̃ = g (z̃) d𝑡 + 𝚺dW𝑡 , (2.3)

where z̃ := [q;p; ζ1; · · · ; ζ𝑛] represents the extended variables and W𝑡 represents the standard

Wiener process. In principle, any such extended system would generally lead to a non-Markovian

dynamics for the resolved variables z = [q;p]. However, the essential challenge is to determine

{ζ𝑖}𝑛𝑖=1 so that the non-local statistical properties of z can be preserved with sufficient accuracy.

Also, the form of g(·) and 𝚺 will need to be properly designed such that the reduced model retains the

consistent thermal fluctuations and density distribution. In particular, the introduction of auxiliary

variables can be loosely considered as approximating the full-dimensional Koopman operator in

a sub-space. However, different from Ref. Lei and Li (2021), the features {ζ𝑖}𝑛𝑖=1 are not the

empirically-chosen projection bases; instead, they are learned along with model equation (2.3) for

the best approximation of the non-local statistics. This essential difference enables the present

method to generate more accurate reduced model and be easy to implement for multi-dimensional

resolved variables without empirical treatment for numerical stability.

2.2.2 Non-Markovian features and the extended dynamics

To illustrate the essential idea, let us consider a solute molecule immersed solvent particles. To

construct a reduced model (2.3) for the solute molecule, a main question is how to construct the

auxiliary variables ζ := [ζ1; ζ2; · · · ; ζ𝑛]. Intuitively, ζ𝑖 should depend on the full-dimensional vector

Z such that their evolution encodes certain unresolved dynamics orthogonal to the subspace spanned

by z(𝑡). A straightforward approach is to represent ζ (𝑡) as a function of Z (𝑡), i.e., ζ = h(Z).

However, the direct construction of the general formulation h(Z) would become impractical since

the learning generally involves sampling the individual solvent particles near the solute molecule;

the computational cost could become intractable due to the high-dimensionality of Z.

To circumvent the above challenges, the key ascribes to formulate ζ (𝑡) such that it properly

encodes the unresolved dynamics of Z (𝑡), and meanwhile, can be easily sampled. One important

observation is that the history of p(𝑡) naturally encodes the unresolved dynamics orthogonal to z(𝑡)

and the values can be conveniently obtained. To see this, we note that the dynamics follows ¤p = Lp
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where the Liouville operator L𝜙(Z) = −((∇𝐻 (Z0))𝑇 S∇Z0)𝜙(Z) depends on the full-dimensional

vector Z. Therefore, it is possible to construct ζ (𝑡) by some encoder functions in terms of the

time history of p(𝑡), i.e., p(𝜏) with 𝜏 ≤ 𝑡, such that they retain certain components orthogonal to

z(𝑡). This is somewhat similar to the study Lei et al. (2020) on modeling the non-local constitutive

dynamics of non-Newtonian fluids by learning a set of features from the polymer configuration

space. The main difference is that the present features ζ are non-Markovian in the temporal space.

Accordingly, we define a set of non-Markovian features {ζ𝑖}𝑛𝑖=1 by

ζ𝑖 (𝑡) =
∫ +∞

0
ω𝑖 (𝜏)v(𝑡 − 𝜏)d𝜏

≈
𝑁𝑤∑︁
𝑗=1

w𝑖 ( 𝑗𝛿𝑡)v(𝑡 − 𝑗𝛿𝑡)
(2.4)

where v := M−1p represents the generalized velocity, ω𝑖 : R+ → R𝑚×𝑚 represents the encoder

function represented by 𝑁𝑤 discrete weights {w𝑖 ( 𝑗𝛿𝑡)}𝑁𝑤

𝑗=1 whose values will be determined later.

ζ𝑖 (𝑡) can be loosely viewed as a generalized convolution over the history of v(𝑡) whose evolution

encodes the orthogonal dynamics of z(𝑡). Therefore, it is possible to learn a set of ζ𝑖 (𝑡) such

that the joint dynamics in terms of both z(𝑡) and ζ𝑖 (𝑡) can be well approximated by the extended

Markovian model (2.3). Moreover, the linear form in terms of v(𝑡) ensures that the invariant density

function of ζ𝑖 (𝑡) retains the Gaussian distribution consistent with v(𝑡). We can further impose a

constraint such that v(𝑡) and ζ𝑖 (𝑡) are uncorrelated. This leads to an additional quadratic term in the

energy function of the extended system, i.e.,𝑊 (q,p, ζ) = 𝑈 (q) + 1
2p

𝑇M−1p + 1
2ζ

𝑇 𝚲̂
−1
ζ, where 𝚲̂

represents the covariance matrix of the ζ1, · · · , ζ𝑛. The reduced dynamics can be written as

d

©­­­­­«
q

p

ζ

ª®®®®®¬
= G∇𝑊 (q,p, ζ)d𝑡 + 𝚺dW𝑡 , (2.5)

12



where the matrix G ∈ R(2+𝑛)𝑚×(2+𝑛)𝑚 takes the form

G =

©­­­­­­­­­­­­«

0 I 0 · · · 0

−I

0
...

0

J

ª®®®®®®®®®®®®¬

©­­­­­­­­­­­­«

I 0 0 · · · 0

0

0
...

0


I

𝚲̂



ª®®®®®®®®®®®®¬
. (2.6)

The matrix J ∈ R𝑛𝑚×𝑛𝑚 further determines the statistical properties of the resolved variables and

will be learned along with the non-Markovian features {ω𝑖 (𝑡)}𝑛𝑖=1 from the training samples as

discussed in next subsection. Given the reduced model in form of Eqs. (2.5) and (2.6), the noise

covariance matrix can be determined by

𝚺𝚺𝑇 = −𝛽−1(J𝚲 + 𝚲𝑇J𝑇 ), (2.7)

where 𝛽 = 1/𝑘𝐵𝑇 and 𝚲 = d𝑖𝑎𝑔(I , 𝚲̂). The form of 𝚲 implies that v and ξ𝑖 are uncorrelated and

is consistent with the energy function of the extended system 𝑊 (q,p, ζ). It also alleviates the

non-negative constraint of 𝚺𝚺𝑇 as discussed in Sec. 2.2.3. Furthermore, we can show that model

(2.5) strictly satisfies the second-fluctuation dissipation theorem. Specifically, the embedded kernel

in Eq. (2.5) takes the form

θ̃(𝑡) = −
(
J̃11𝛿(𝑡) + J̃12eJ̃22𝑡J̃21

)
, (2.8)

where J̃11 = [J̃ ]1:𝑚,1:𝑚, J̃12 = [J̃ ]1:𝑚,𝑚+1: and J̃21 = [J̃ ]𝑚+1:,1:𝑚 are the sub-blocks of the matrix

J̃ := J𝚲. The colored noise R̃(𝑡) in terms of p(𝑡) is related to θ̃(𝑡) by〈
R̃(𝑡)R̃(𝑡′)𝑇

〉
= −𝛽−1

(
J̃12eJ̃22 (𝑡−𝑡′)J̃21 + (J̃11 + J̃𝑇11)𝛿(𝑡 − 𝑡

′)
)

(2.9)

with 𝑡′ < 𝑡. Moreover, we can show that the reduce model retains the consistent invariant density

function with the full model, i.e.,

𝜌eq ∝ exp [−𝛽𝑊 (q,p, ζ)] . (2.10)

We refer to Appendix C and D for details.
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We conclude this subsection with two remarks: (I) In principle, the mass matrix M further

depends on q. Ref. Lee et al. (2019a) reports that the varying mass matrix plays a secondary

effect on the reduced dynamics of the molecular system therein; see also Ref. Ayaz et al. (2022)

for the cases of the nonlinear distance coordinate with constant mass. A constant mass matrix is

adopted in the present study; reduced models with the varying mass matrix can be constructed

by introducing an additional term in the conservative force and will be considered in the future

study. (II) The non-Markovian features {ζ𝑖}𝑛𝑖=1 in form of Eq. (2.4) can be generalized to retain

the state-dependence, e.g., ζ𝑖 (𝑡) =
∫ +∞
0 ω𝑖 (𝜏, q(𝜏))v(𝑡 − 𝜏)d𝜏, which leads to a reduced model

with state-dependent non-Markovian memory. In this study, we demonstrate the proposed learning

framework by constructing the reduced model (2.5) that approximates the standard GLE (2.2) with

state-independent memory function θ(𝑡). As shown in the numerical examples, although θ(𝑡) is

not explicitly constructed, it is well approximated by the memory kernel embedded in the reduced

model (2.5) by matching the evolution of the correlation matrices for both the resolved and the

extended variables. The learning of reduced models with the heterogeneous memory term will be

systematically investigated in the future study.

2.2.3 Joint learning of the reduced dynamics

Construction of the above reduced models relies on the joint learning of the non-Markovian

features (2.4) in form of the encoder functions {ω𝑖 (𝑡)}𝑛𝑖=1 and the reduced dynamics (2.5)(2.6)

determined by the free energy 𝑈 (q) and the matrix J . In this study, we represent the multi-

dimensional free energy𝑈 (q) using a neural network and parameterize it based on the molecular

dynamics Frenkel and Smit (2001); we refer to Appendix for details. Furthermore, the covariance of

the noise term specified by Eq. (2.7) implies that J and 𝚲 (i.e., the encoder functions ω𝑖 (𝑡)) need to

satisfy the following constraint

J𝚲 + 𝚲J𝑇 ≼ 0. (2.11)

Directly imposing the condition (2.11) becomes cumbersome for the joint learning of J and

ω𝑖 (𝑡). Fortunately, this issue can be avoided by imposing an orthogonal constraint among the

14



non-Markovian features, i.e.,[
𝚲̂
]
𝑖 𝑗

:= 𝛽
〈
ζ𝑖, ζ 𝑗

〉
= 𝛽

∑︁
𝑘,𝑘 ′

〈
w𝑖 (𝑡 − 𝑘𝛿𝑡)v(𝑘𝛿𝑡),w 𝑗 (𝑡 − 𝑘′𝛿𝑡)v(𝑘′𝛿𝑡)

〉
= 𝛿𝑖 𝑗I , 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

(2.12)

where the inner product ⟨f (Z), g(Z)⟩ =
∫

f (Z)g(Z)𝑇 𝜌(Z)dZ is defined with respect to the

equilibrium density function of the full model 𝜌(Z) = 𝑒−𝛽𝐻 (Z)/
∫

𝑒−𝛽𝐻 (Z)dZ. In addition, we

also impose the orthogonal constraints such that ζ and p are uncorrelated. Therefore, condition

(2.11) can be transformed into seeking J s.t. J + J𝑇 ≼ 0, and we represent J by

J = −LL𝑇 + J 𝐴, (2.13)

where L ∈ R(𝑛+1)𝑚×(𝑛+1)𝑚 is the lower-triangle matrix with positive diagonal elements and LL𝑇

represents the Cholesky decomposition of a symmetric positive-definite matrix. J 𝐴 represents an

anti-symmetric matrix. Unlike the studies Mori (1965a); Ceriotti et al. (2009) based on the direct

kernel approximation, we note that J takes a more general form and is not restricted to be diagonal

or tri-diagonal.

With the proper form of J , we can cast the reduced dynamics into the evolution of the correlation

matrices by multiply v(0) to both sides of Eq. (2.5), i.e.,

d
d𝑡

©­­­­­­­­«

⟨Mv, v(0)⟩

⟨ζ1, v(0)⟩
...

⟨ζ𝑛, v(0)⟩

ª®®®®®®®®¬︸            ︷︷            ︸
C1 (𝑡)

+

©­­­­­­­­«

⟨∇𝑈 (q), v(0)⟩

0
...

0

ª®®®®®®®®¬︸               ︷︷               ︸
C0 (𝑡)

= J

©­­­­­­­­«

⟨v, v(0)⟩

⟨ζ1, v(0)⟩
...

⟨ζ𝑛, v(0)⟩

ª®®®®®®®®¬︸         ︷︷         ︸
C2 (𝑡)

, (2.14)

where the correlation matrices ⟨ζ𝑖 (𝑡), v(0)⟩ can be directly obtained from the correlation matrix of

the resolved variables ⟨v(𝑡), v(0)⟩ given the encoder weights, i.e.,

⟨ζ𝑖 (𝑡), v(0)⟩ =
𝑁𝑤∑︁
𝑗=1

w𝑖 (𝑡 𝑗 )
〈
v(𝑡 − 𝑡 𝑗 ), v(0)

〉
,
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where 𝑡 𝑗 = 𝑗𝛿𝑡 and encoder weightsw𝑖 (𝑡 𝑗 ) will be learned jointly. Therefore, we are able to construct

J from the pre-computed, noise-free correlation matrices instead of the on-the-fly computation

from the time-series samples of q and p. The reduced model can be trained by minimizing the

following loss function

𝐿𝐶 =

𝑁𝑡∑︁
𝑗=1



C1
′(𝑡 𝑗 ) +C0(𝑡 𝑗 ) − JC2(𝑡 𝑗 )



2
𝐿Λ = ∥𝚲 − I ∥2 ,

𝐿 = 𝜆𝐶𝐿𝐶 + 𝜆Λ𝐿Λ,

(2.15)

where C1 = [⟨Mv, v(0)⟩ ; ⟨ζ1, v(0)⟩ ; · · · ; ⟨ζ𝑛, v(0)⟩], C0 and C2(𝑡) are defined similarly in Eq.

(2.14). 𝜆𝐶 and 𝜆Λ are the hyperparameters. 𝑡 𝑗 refers to the discrete time points and 𝑁𝑡 represents

the total number of sample points of the correlation matrices obtained from the full model. The

loss term 𝐿𝐶 ensures that the non-local statistical properties of the resolved variables can be

accurately preserved while the loss term 𝐿Λ ensures the aforementioned orthogonality among the

non-Markovian features. To simulate the constructed model, we always set 𝚲̂ = I such that J in

form of Eq. (2.13) strictly satisfies the semi-positive definiteness condition. We emphasize that the

non-Markovian encoder weights
{
w𝑖 (𝑡 𝑗 )

}𝑁𝑤

𝑗=1 do not explicitly appear in the loss function. However,

they are involved in the training process along with J since the correlation functions C1 and C2

further depend on the definition of ζ𝑖, i.e., they are concurrently learned for the best approximation of

the extended Markovian dynamics of [q;p; ζ]. As shown in Sec. 3.3, this joint learning of both the

non-Markovian features and the dynamic equations enables us to probe the optimal representation

of the reduced models that leads to more accurate numerical results than the ones constructed

by the pre-selected bases, and can be easily implemented for models with multi-dimensional

resolved variables. In this study, we choose 𝑁𝑡 = 5000 for all the numerical examples and choose

𝑁𝑤 = 1800 for the one-dimensional reduced model and 1200 for the four-dimensional reduced

model, respectively. The training is conducted by the ADAM optimization algorithm Kingma and

Ba (2015) where 1000 points are randomly selected per each training step

We conclude this subsection with the following remarks: (I) Instead of Eq. (2.14), the reduced

dynamics can be also cast into the evolution of the correlation matrices by multiplying q(0) to both

16



sides of Eq. (2.5). For the present study, we found that both formulations yield accurate reduced

models. (II) Rather than learning the full sets of non-Markovian features, we can fix one of them as

M ¤v + ∇𝑈 (q); this ensures that the time-derivatives of correlation functions of the reduced model

can accurately match the values of the full model near 𝑡 = 0. In the numerical examples presented in

following Sec. 3.3, all the reduced models are constructed with this choice. For simple notation,

we set it to be the last feature. For example, the fourth-order reduced model is constructed using 4

non-Markovian features. ζ1, ζ2 and ζ3 take the form of Eq. (2.4), and ζ4 is set to be M ¤v + ∇𝑈 (q).

(III) In principle, for reduced models of Hamiltonian systems, the form of matrix J can be further

restricted to

J = −diag(0, L̂L̂𝑇 ) + J 𝐴, (2.16)

where L̂ ∈ R𝑛𝑚×𝑛𝑚 is a lower-triangle matrix. Eq. (2.16) ensures that the embedded kernel in Eq.

(2.5) does not contain the Markovian memory term (i.e.,
(
J11 + J𝑇11

)
𝛿(𝑡)). θ̃(𝑡) recovers the form

of standard GLE and the second fluctuation-dissipation relationship shown in Eq. (2.9) recovers the

standard form, i.e.,
〈
R̃(𝑡)R̃(𝑡′)𝑇

〉
= 𝛽−1θ̃(𝑡 − 𝑡′). In this study, both forms yield accurate numerical

results; the contribution of the Markovian term constructed by Eq. (2.13) is less than 1%.

2.3 Numerical results

2.3.1 A tagged particle in aqueous environment

We demonstrate our method by modeling a tagged particle immersed in solvent particles. The

particle interaction is governed by the pairwise force

F𝑖 𝑗 (Q𝑖 𝑗 ) =


𝑓0(1 −𝑄𝑖 𝑗/𝑟𝑐)e𝑖 𝑗 , 𝑄𝑖 𝑗 ≤ 𝑟𝑐

0, 𝑄𝑖 𝑗 > 𝑟𝑐

where Q𝑖 and Q 𝑗 are the positions of 𝑖-th and 𝑗-th particles. Q𝑖 𝑗 = Q𝑖 − Q 𝑗 , 𝑄𝑖 𝑗 = ∥Q𝑖 − Q 𝑗 ∥, and

e𝑖 𝑗 =
Q𝑖 𝑗

𝑄𝑖 𝑗
, and 𝑟𝑐 is the cut-off distance. The full system consists of 4000 particles in a 10 × 10 × 10

cubic box with periodic boundary condition along each direction. We set 𝑓0 = 50, 𝑟𝑐 = 1, and the

particle mass to be unit. Nosé-Hoover thermostat is used with 𝑘𝐵𝑇 = 0.5 and time step 𝛿𝑡 = 2×10−3.

128 samples are collected from a production stage of 6 × 105 steps, which are used as the initial
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conditions of the NVE simulations of the full model for a production stage of 1 × 105 steps using

the Velocity-Verlet integrator.
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Figure 2.1 Numerical results for a tagged particle in the solvent particle bath. (a) Velocity correlation
function 𝐶𝑣𝑣 (𝑡) obtained from the full MD model and the reduced models constructed by the present
method based on the joint learning approximation, the rational function approximation Lei et al.
(2016a), and the Petrov–Galerkin projection with fixed bases Lei and Li (2021). (b) Predicted
evolution of the probability density function of the particle velocity obtained from the full MD and
the different reduced models with the second-order approximation. The initial velocity 𝑣 is set to 0
(the vertical line). (c) 𝐶𝑣𝑣 (𝑡) obtained from the full MD model and different orders of the present
joint learning approximation. (d) Encoder weights for the three non-Markovian features obtained
from the present joint learning with the fourth-order approximation.

The reduced dynamics in terms of the tagged particle is constructed in form of Eq. (2.5) along

with the learning of the non-Markovian features {ζ𝑖}𝑛𝑖=1. The free energy 𝑈 (q) vanishes for this

case. For comparison, we also construct the reduced model using the previous approaches based on

the Petrov-Galerkin projection (named as fixed-basis) Lei and Li (2021) and the rational function
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approximation Lei et al. (2016a). Fig. 2.1(a) shows the velocity correlation function of constructed

models using two non-Markovian features, or equivalently, two projection bases, as well as the

second-order rational function approximation. The model constructed by the present (named as

the joint-learning) method shows the best agreement with the full model based on the molecular

dynamics (MD) simulations. The model accuracy can be further examined by the evolution of

probability density function (PDF) of the particle velocity. Specifically, we fix the velocity to be

zero as 𝑡 = 0 and sample the instantaneous PDF thereafter. Fig. 2.1(b) shows the obtained PDF at

𝑡 = 0.06. The present approach yields more accurate result than the Petrov-Galerkin method. As

shown in Fig. 2.1(c), the accuracy of the reduced model shows further improvement as we increase

the number of non-Markovian features. In particular, the reduced model with the fourth-order

approximation can accurately capture the oscillations over the full regime. Fig. 2.1(d) shows the

obtained encoder weights of the fourth-order approximation. All of the three encoder functions

show pronounced oscillations near 𝑡 = 0 and decay to 0 for large 𝑡. Unlike the empirically chosen

fractional-derivative bases in Ref. Lei and Li (2021), the present method enables the encoders to be

optimized for the best approximation of the non-local statistics, and therefore yields more accurate

results.

q
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Figure 2.2 A sketch of a chain-molecule represented by united atom model. Reduced models are
constructed with respect to a four-dimensional resolved vector q, which represents the end-to-end
distance (𝑞1), the radius of gyration (𝑞2), and the end-to-middle distances (𝑞3 and 𝑞4), respectively.
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2.3.2 One-dimensional reduced model of a polymer molecule

We consider the reduced dynamics of a polymer molecule consisting of 𝑁 = 16 atoms. The

intramolecular potential is governed by

𝑉mol(Q) =
𝑁∑︁
𝑖≠ 𝑗

𝑉p(𝑄𝑖 𝑗 ) +
𝑁𝑏∑︁
𝑖=1
𝑉b(𝑙𝑖) +

𝑁𝑎∑︁
𝑖=1
𝑉a(𝜃𝑖) +

𝑁𝑑∑︁
𝑖=1
𝑉d(𝜙𝑖), (2.17)

where 𝑙𝑖, 𝜃𝑖, 𝜙𝑖 represent the individual bond length, bond angle, and dihedral angle, respectively.

𝑉p, 𝑉b, 𝑉a, and 𝑉d represent the pairwise Lennard-Jones, finite extensible nonlinear elastic bond,

harmonic angle, and multiharmonic dihedral interactions whose explicit forms are specified in

Appendix A. The atom mass is set to unit, thermal temperature 𝑘𝐵𝑇 is set to 1.0, and the time step

𝛿𝑡 is set to be 1 × 10−3. 512 samples are collected from a production stage of 3 × 106 steps, which

are used as the initial conditions of the NVE simulations of the full model for a production stage of

1 × 106 steps using the Velocity-Verlet integrator. Fig. 2.2 shows a sketch of the polymer molecule.

To examine the effectiveness of the present method, we first construct a 1D reduced dynamics in

terms of the end-to-end distance 𝑞1 = ∥Q1 −Q𝑁 ∥ as done in the previous work Lei and Li (2021)

based on the Petrov-Galerkin method, and compare the numerical results obtained from the two

methods. Figure 2.3(a) shows the velocity correlation function 𝐶𝑣𝑣 (𝑡) = ⟨𝑣1(𝑡)𝑣1(0)⟩ obtained

from the full MD and different orders of fixed-basis and joint-learning approximations. With the

same order of approximation, the current method yields better agreement with the MD results.

Specifically, the second-order model of the current method can capture the pattern around 𝑡 = 4 and

the fourth-order model can capture the patterns around 𝑡 = 0.4 and 𝑡 = 4. However, the previous

method with the same order approximation shows limitation to accurately capture these two patterns.

Figure 2.3(b) shows the displacement auto-correlation function 𝐶𝑞𝑞 (𝑡) = ⟨𝑞1(𝑡)𝑞1(0)⟩ obtained

from full MD and the reduced models constructed by the present method with different number

of non-Markovian features. As we introduce more features, the predicted correlation functions

approaches the MD results. In particular, the fourth-order model can capture the oscillations of the

MD results at 𝑡 = 10 and 𝑡 = 25. Figure 2.3(c) shows the encoder weights of non-Markovian features

for the fourth-order approximation. Similar to the tagged particle system, the encoder functions

exhibit pronounced oscillations at the short time and decay to zero at longer time.
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Figure 2.3 Numerical results of a one-dimensional reduced model representing the dynamics of the
end–end distance of a polymer molecule system. (a)–(b) Velocity correlation function 𝐶𝑣𝑣 (𝑡) and
the Laplace transform of the memory function Θ(𝜆) obtained from the full MD simulations and
the different orders of the present joint learning approximation, and the Petrov–Galerkin projection
with fixed-basis approximation. (c) Displacement correlation function 𝐶𝑞𝑞 (𝑡) obtained from the
full MD and different orders of the joint learning approximation. (d) Encoder weights for the three
non-Markovian features of the reduced model with the fourth-order approximation.
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The accuracy of the constructed reduced models can be further examined by comparing the

embedding memory kernels θ̃(𝑡) with the full MD model. Figure 2.3(d) shows the Laplace transform

of the memory kernel of the reduced models 𝚯̃(𝜆) =
∫ +∞
0 θ̃(𝑡) exp (−𝑡/𝜆)d𝑡. The MD kernel 𝚯(𝜆)

is obtained by 𝚯(𝜆) = −G(𝜆)H (𝜆)−1, where G(𝜆) and H (𝜆) are the Laplace transform of the

correlation matrices g(𝑡) = ⟨M ¤v(𝑡) + ∇𝑈 (q), q(0)⟩ and h(𝑡) = ⟨v(𝑡), q(0)⟩. Compared with the

previous method, the current method yields better agreement with MD results. Specifically, the

second- and fourth-order of the joint learning approximation, and the fourth-order of the fixed

basis approximation show good agreement with the MD result 𝚯(𝜆) for 𝜆 between 1 and 1000.

Furthermore, the fourth-order model of the joint learning approximation can further capture the

pronounced peak regime of the MD results near 𝜆 = 0.1. We emphasize that the memory kernel

θ̃(𝑡) is not explicitly constructed during the learning process; θ̃(𝑡) approaches θ(𝑡) as we impose the

constraint (2.14) such that the correlation matrices of the reduced dynamics match the ones of the

full model. This enables us to circumvent the direct fitting of the matrix-valued memory function

for multi-dimensional GLEs, and efficiently construct the numerically-stable reduced model that

retains the non-local statistics and coherent noise as shown in the following example.

2.3.3 Four-dimensional reduced model of a polymer molecule

Finally, we construct a reduced model in terms of a four-dimensional resolved vector q =

[𝑞1, 𝑞2, 𝑞3, 𝑞4] defined by

𝑞1 = ∥Q1 −Q𝑁 ∥ ,

𝑞2
2 =

1
𝑁

𝑁∑︁
𝑖=1

∥Q𝑖 − Q𝑐∥2, Q𝑐 =
1
𝑁

𝑁∑︁
𝑖=1

Q𝑖,

𝑞3 =




Q⌊ 𝑁2 ⌋ − Q1




 ,
𝑞4 =




Q⌈ 𝑁2 ⌉ − Q𝑁




 ,
(2.18)

where 𝑞1, 𝑞2, 𝑞3, and 𝑞4 represent the end-to-end distance, radius of gyration, and two center-

to-end distances, respectively. The four-dimensional free energy function𝑈 (q) is constructed by

matching the average force sampled from the restraint molecular dynamics and represented by a

neural network; we refer to Appendix B for details. Rather than constructing the four-dimensional

22



GLE kernel θ(𝑡), we directly learn the reduced model (2.5) by minimizing the loss function (2.15).
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Figure 2.4 Numerical results of a four-dimensional reduced model representing the dynamics of a
polymer molecule system, with conformation states characterized by the resolved variables q (see
Eq. (2.18)). (a)–(c) Diagonal components of the velocity correlation function C𝑣𝑣 (𝑡) = ⟨v(𝑡) v(0)𝑇 ⟩.
Note that [C𝑣𝑣 (𝑡)]44 is omitted because it is similar to [C𝑣𝑣 (𝑡)]33. (d) Constructed encoder weights
of the first non-Markovian feature ζ1 for the fourth-order reduced model.

Figure 2.4(a-c) show the diagonal components of the velocity correlation matrix C𝑣𝑣 (𝑡) =〈
v(𝑡)v(0)𝑇

〉
obtained from the full MD and the reduced models using different order approximations.

Specifically, the components [C𝑣𝑣 (𝑡)]11 and [C𝑣𝑣 (𝑡)]33 show similar values near 𝑡 = 0 since both

𝑞1 and 𝑞3 characterize the distances between the individual particles, e.g., 𝑣1 = (Q1 −Q𝑁 ) · (V1 −

V𝑁 )/∥Q1 −Q𝑁 ∥. As the distribution of the velocity difference between the two free-end particles

follows N(0, 2𝑘𝐵𝑇I), the variance of 𝑣1 is 2𝑘𝐵𝑇 . Similar argument also holds for 𝑣3 and 𝑣4. On

the long-time scale, [C𝑣𝑣 (𝑡)]11 and [C𝑣𝑣 (𝑡)]22 decay much slower than [C𝑣𝑣 (𝑡)]33 and [C𝑣𝑣 (𝑡)]44
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and show pronounced oscillations near 𝑡 = 10 and 𝑡 = 25. The differences can be understood as

follow: Compared with the end-to-middle distances 𝑞3 and 𝑞4, the end-to-end distance 𝑞1 and radius

of gyration 𝑞2 represent the global states of the molecular conformation. Based on the scaling

law of the idealized Gaussian chain model de Gennes (1979), the relaxation time of 𝑞1 and 𝑞2 is

proportional to 𝑁2. Accordingly, [C𝑣𝑣 (𝑡)]11 decays four times slower than [C𝑣𝑣 (𝑡)]33, which is

qualitatively consistent with the present numerical results.

The transient dynamics of the correlation functions can be accurately captured by the reduced

model. As we increase the number of non-Markovian features, the predictions show better agreement

with MD results. Specifically, the zeroth-order (i.e., Langevin) model is insufficient to capture the

patterns around 0.5 and 5. The second-order model yields an accurate prediction for [C𝑣𝑣 (𝑡)]33

but less accurate predictions for [C𝑣𝑣 (𝑡)]11 and [C𝑣𝑣 (𝑡)]22. The fourth-order model yields good

agreement for all the components over the full regime. Fig. 2.4(d) shows the encoder weights of the

first non-Markovian feature ζ1, which naturally encode the non-local statistics among the resolved

variables, and decay to 0 at large time.

Fig. 2.5 shows the off-diagonal components of the velocity correlation matrix C𝑣𝑣 (𝑡). Similar to

the diagonal components, [C𝑣𝑣 (𝑡)]12 represents the coupling between the dynamics of two global

conformation states and therefore exhibits the longest correlation with pronounced oscillations at

𝑡 = 10 and 𝑡 = 25. On the other hand, [C𝑣𝑣 (𝑡)]13 and [C𝑣𝑣 (𝑡)]23 represent the coupling between

a global state and semi-global state, and therefore exhibit intermediate correlation. In addition,

[C𝑣𝑣 (𝑡)]34 exhibits weaker correlation compared with the other components since the coupling

between the dynamics of 𝑞3 and 𝑞4 is mainly governed by the local bond- and angle-interactions

associated with 8-th and 9-th atom. The predictions of the second-order reduced model show fairly

good agreement with the full MD results for [C𝑣𝑣 (𝑡)]13 and [C𝑣𝑣 (𝑡)]23 but less agreement for

[C𝑣𝑣 (𝑡)]12. The fourth-order reduced model yields good agreement for all the components.

Fig. 2.6 shows the components of the embedded matrix-valued kernels in the Laplace space

obtained from the full MD and the reduced models. In particular, 𝚯̃(𝜆) obtained from the second-

order model shows good agreement with 𝚯(𝜆) obtained from the full MD within the regime of large
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Figure 2.5 (a-d) Off-diagonal components of the velocity correlation function C𝑣𝑣 (𝑡) for a polymer
molecule system whose conformation states are characterized by a four-dimensional resolved vector
q defined by Eq. (2.18).

𝜆. The fourth-order model yields good agreement over the full regime, which is consistent with

the accurate prediction of the velocity correlation functions shown in Fig. 2.4 and 2.5 (see also

Appendix E for θ(𝑡)). While the kernel function θ(𝑡) is not explicitly constructed in the present

method, the accurate recovery of 𝚯(𝜆) verifies that the constructed models faithfully retain the

non-Markovian dynamics of the resolved variables.

2.4 Summary

In this study, we developed a data-driven approach to accurately learn the stochastic reduced

dynamics of full Hamiltonian systems with non-Markovian memory. The method essentially

provides an efficient approach to approximate the multi-dimensional generalized Langevin equation.
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Figure 2.6 (a-d) Components of the embedded matrix-valued kernel 𝚯(𝜆) in the Laplace space
obtained from the full MD and a four-dimensional reduced model of a polymer molecule system.

Rather than directly fitting the matrix-valued memory kernel, the present method seeks a set of

non-Markovian features whose evolution naturally encodes with the orthogonal dynamics of the

resolved variables, and establishes a joint learning of the extended dynamics in terms of both the

resolved variables and the non-Markovian features. Compared with the previous studies based on

the rational function approximation Lei et al. (2016a) and the Petrov-Galerkin projection Lei and Li

(2021) with the pre-selected fractional derivative bases, the present method enables us to probe the

optimal representation of the reduced dynamics through the joint learning of the non-Markovian

features. The constructed features retain a clear physical interpretation and can be loosely viewed as

the convolution of the velocity history. This enables us to construct the proper learning formulation

such that the reduced dynamics strictly preserves the second fluctuation-dissipation theorem and
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retains the consistent invariant density distribution. Moreover, the learning process does not require

the on-the-fly computation of the time correlations of these features from the time-series samples,

and automatically ensures numerical stability of the constructed model without empirical treatment.

This is particularly well-suited for the construction of reduced dynamics of complex systems such as

the conformation dynamics of macromolecular systems, where multi-dimensional resolved variables

are often needed to characterize the transition dynamics with non-local cross-correlations among

the variables.

Building upon the data-driven framework for modeling state-independent memory effects

introduced in Chapter 2, Chapter 3 extends this approach to more complex dynamical systems with

state-dependent memory. While Chapter 2 demonstrated how a fixed set of convolutional encoders

could capture global non-Markovian behavior through auxiliary variables, this assumption becomes

limiting in systems where memory varies across configurations — such as when transitions between

metastable states occur. To address this, Chapter 3 introduces a heterogeneous encoding architecture

that allows the memory kernels to adapt locally to the system’s state. This generalization enables a

more accurate and flexible representation of reduced dynamics in high-dimensional systems where

memory effects are inherently configuration-dependent.
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CHAPTER 3

ENHANCED SAMPLING DATA-DRIVEN CONSTRUCTION OF STOCHASTIC
REDUCED DYNAMICS ENCODED WITH STATE-DEPENDENT MEMORY

3.1 Introduction

Predictive modeling of multi-scale dynamic systems remains a significant challenge across

various fields, including biology, materials science, and fluid physics. A prominent example is

coarse-grained molecular dynamics (CGMD), where the goal is to simplify molecular system

representations while preserving their essential dynamic behavior. The generalized Langevin

equation (GLE) has emerged as a widely used framework for capturing the non-Markovian dynamics

inherent in many CGMD processes. A range of approaches has been proposed for parameterizing

the memory Lange and Grubmüller (2006); Darve et al. (2009b); Ceriotti et al. (2009); Baczewski

and Bond (2013); Davtyan et al. (2015b); Lei et al. (2016b); Russo et al. (2019); Jung et al. (2017b);

Lee et al. (2019b); Ma et al. (2019); Wang et al. (2020b,c); Zhu and Venturi (2020); Vroylandt

et al. (2022); She et al. (2023); Xie and E (2024) aiming to reconstruct specific dynamic properties

accurately. However, recent work Lyu and Lei (2023b); Ge et al. (2024) reveal that recovering

isotropic properties alone may be insufficient for accurately reproducing the underlying complex

dynamics. These findings underscore the importance of incorporating state-dependent memory

effects to achieve precise reconstruction of dynamic behaviors.

The accurate parameterization of a state-dependent memory kernel hinges on effectively capturing

the dynamic properties within the phase space. However, practical applications often face challenges

due to the inherent complexity of the energy landscape in phase space. This complexity is typically

marked by the presence of numerous metastable states, which are separated by significant energy

barriers. These barriers hinder transitions between states, making it difficult to comprehensively

sample the phase space and accurately reconstruct the memory kernel. Addressing this challenge

requires advanced techniques capable of efficiently exploring these landscapes while retaining

essential dynamic information. The critical role of sampling in phase space has been widely

acknowledged, particularly in the construction of free energy landscapes. To address this, numerous
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methodologies have been developed, each offering unique advantages for overcoming sampling

challenges. Notable approaches include umbrella sampling Torrie and Valleau (1977), which applies

biased potentials to enhance exploration; histogram reweighting Kumar et al. (1992), enabling the

integration of data from multiple simulations; metadynamics Laio and Parrinello (2002b); Barducci

et al. (2008), which facilitates the escape from metastable states through adaptive biasing; and

variational enhanced sampling Valsson and Parrinello (2014); Shaffer et al. (2016); Bonati et al.

(2019), a framework that leverages variational principles to optimize bias potentials. These methods

collectively underscore the importance of efficient phase space exploration in capturing accurate

free energy profiles. Despite their great success and wide application to capture the static properties,

the importance of the sampling for the dynamic properties is largely ignored.

In this study, we employ our previously developed consensus-based enhanced sampling technique

to simultaneously construct the free energy surface and parameterize the memory kernel. The

conservative force is determined through constrained dynamics at selected points in the phase

space, while dynamic information at these points is obtained via multiple free dynamics simulations

initiated from the same locations.

3.2 Methods

The system under consideration is modeled as a Hamiltonian system with a 6𝑁-dimensional

phase space vector Z = [Q; P], represent the position and momentum vectors, respectively. The

dynamics of the system are governed by the equation of motion:

¤Z = S∇𝐻 (Z), (3.1)

where S =
©­­«

0 I

−I 0

ª®®¬ is the symplectic matrix that preserves the structure of Hamiltonian dynamics,

with I being the identity matrix. and 𝐻 (Z) denotes the Hamiltonian function. For sufficiently large

𝑁 , the simulation of Eq. (3.1) becomes computationally prohibitive. However, in many practical

scenarios, interest lies in a low-dimensional resolved variable, z(𝑡) = 𝜙(Z(𝑡)), where 𝜙 : R6𝑁 → R𝑚

serves as a mapping that projects the high-dimensional pace onto a reduced space of interest.

The Mori-Zwanzig (MZ) formalism provides a robust foundation for constructing approximate
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dynamics for resolved variables by employing a projection operator. This framework separates

the resolved and unresolved components of the system, enabling a reduced description of the

dynamics while incorporating memory effects and fluctuating forces to account for the influence of

unresolved variables. The projection operator P maps functions of the full system to functions of

the coarse-grained (CG) system, and is defined as:

(P 𝑓 ) (z) =
∫
𝛿(𝜙(Z) − z) 𝑓 (Z)𝜌(Z)dZ∫
𝛿(𝜙(Z) − z)𝜌(Z)dZ

,

where z represents the CG variables, Φ(Z) is the mapping from the full system to the CG system, and

𝜌(Z) is the probability density function of the full system. The dynamics of CG variable follows:

𝜕

𝜕𝑡
𝜙(Z) = exp(𝑡L)PL𝜙(Z)+

∫ 𝑡

0
exp ((𝑡 − 𝑠)L) PL exp(𝑠QL)QL𝜙(Z)d𝑠+exp(𝑡QL)QL𝜙(Z).

Here, L := is the Liouville operator and Q = I − P. Motivate by this, the reduced dynamics can be

written as
¤q = M(q)−1p,

¤p = −F(q) −
∫ 𝑡

0
𝜃 (𝑡 − 𝜏) ¤q(𝜏)d𝜏 + R(𝑡),

(3.2)

Here, q = 𝜙𝑞 (Q) denotes a coarse-grained variable, and p is the corresponding momentum,

associated with a mass matrix M(q). The effective free energy for q is defined as 𝑈eff(q) =

− 1
𝛽

log
∫

dZ𝛿(𝜙𝑞 (Z) − q)𝜌(Z), with 𝛽 = 1
𝐾𝐵𝑇

is the inverse temperature. Inspired by previous

research She et al. (2023), Equation (3.2) can be reformulated as an extended Markovian process

(q, p, ξ), where ξ represents auxiliary variables that will be defined later. These auxiliary variables

serve to capture the memory effects inherent in the original generalized Langevin equation (GLE)

and are assumed to follow a Gaussian distribution, 𝑁 (0, 1). The evolution takes the form

d

©­­­­­«
q

p

ξ

ª®®®®®¬
=

©­­­­­«
0 I 0

−I
J(q)

0

ª®®®®®¬
©­­­­­«
∇qF

∇pF

∇ξF

ª®®®®®¬
d𝑡 +

©­­­­­«
0 0 0

0
𝚺(q)

0

ª®®®®®¬
dW𝑡 , (3.3)

where F (q, p, ξ) = 𝑈 (q) + p𝑇M(q)−1p + ξ𝑇ξ is the free energy for the extended system. The

relationship 𝚺(q)𝚺(q)𝑇 = −𝐾𝐵𝑇 (J(q)𝚲+𝚲J(q)𝑇 ), ensures consistency with the second fluctuation-

dissipation theorem, where 𝚲 is covariance matrix of (p, ξ). By solving the Fokker-Planck equation,
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we have the invariant distribution of the extended system 𝜌𝑒 (q, p, ξ) ∝ exp(−𝛽F (q, p, ξ)). The

invariant distribution should be consistent with the free energy for q, with
∫
𝜌𝑒 (q, p, ξ)dpdξ ∝

exp(−𝛽𝑈eff(q)), from which we notice that 𝑈 (q) = 𝑈eff(q) − 1
2𝛽 log |M(q)−1 |. To construct

the hidden variables, we define them as a linear combination of past momentum values p(𝑡 −

𝛿𝑡), · · · , p(𝑡 − 𝑁𝑤𝛿𝑡), i.e

ξ𝑖 (𝑡) =
𝑁𝑤∑︁
𝑗=1

w 𝑗𝑖p(𝑡 − 𝑖𝛿𝑡),

where w 𝑗𝑖 are the coefficients to be optimized, and 𝑁𝜉 is the number of momentum terms included

in the linear combination. To simplify the process of training and collecting data, we construct our

matrix J(q) as follows

J(q) =
©­­­­­«

0 h𝑇 (q)

−h(q)M−1(q) Ĵ(q)

ª®®®®®¬
(3.4)

here h(q) is a vector represented by a neural network which takes the coarse-grained variable q as

input. Then we use choleschy decomposition to form Ĵ(q) = −L(q)L𝑇 (q) + A(q). Note that L(q)

is a block-wise lower triangle matrix and A(q) is a block-wise antisymmetric matrix represented by

two different neural networks respectively. Now, the the second fluctuation-dissipation theorem can

be simplified as follows

𝚺̂(q)𝚺̂(q)𝑇 = −𝐾𝐵𝑇 (Ĵ(q)𝚲̂ + 𝚲̂Ĵ(q))

where

𝚺(q) =
©­­­­­«
0 0

0 𝚺̂(q)

ª®®®®®¬
,𝚲(q) =

©­­­­­«
M(q) 0

0 𝚲̂(q)

ª®®®®®¬
(3.5)

With the constructed ξ, we can computed the correlation function by multiply p(0) given q(0) = q

on both side of Eq. (3.3),

d
©­­«
〈
p + ∇qF , p(0) |q(0) = q

〉
⟨ξ, p(0) |q(0) = q⟩

ª®®¬︸                                ︷︷                                ︸
C1 (𝑡,q;𝑤)

= J(q)
©­­«
〈
∇pF , p(0) |q(0) = q

〉〈
∇ξF , p(0) |q(0) = q

〉ª®®¬︸                           ︷︷                           ︸
C2 (𝑡,q;𝑤)

d𝑡
. (3.6)
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By construct J(𝑞) as J̃(q; 𝜃𝐽) = 𝚺̃(q; 𝜃𝐽)𝚺̃(q; 𝜃𝐽)𝑇 , the loss function can be constructed as

min
𝜃𝐽 ,w

𝑁𝑠∑︁
𝑖=1





 d
d𝑡

C1(𝑡, q𝑖;𝑤) − J̃(q𝑖; 𝜃𝐽)C2(𝑡, q𝑖; w)




2

+
𝑁𝑠∑︁
𝑖=1



𝚲̂(q𝑖; w) − I


2
, (3.7)

where we optimize J̃(q; 𝜃𝐽) and auxiliary variable ξ depends on w at the same time on the training

set {q𝑖}𝑁𝑠

𝑖=1. The construction of dynamics also depends on an accurate free energy surface𝑈eff(q)

and mass matrix M(q). It can be computed from restrained dynamics by introducing a harmonic

term into full potential, i.e.

U𝑘 (Q, q) = U(Q) + 𝑘
2
(𝜙𝑞 (Q) − q)𝑇 (𝜙𝑞 (Q) − q),

where 𝑘 represents the magnitude of the restrained potential and U is the potential of full

system without restraint. The mean force can be computed by ∇𝑈eff(q) = lim𝑘→∞ F𝑘 (q) and

M(q) = lim𝑘→∞ M𝑘 (q), where

F𝑘 (q) = 1
𝑍𝑘 (q)

∫
𝑘 (𝜙𝑞 (Q) − q) exp(−𝛽U𝑘 (Q, q))dQ

and

M𝑘 (q) = 1
𝑍𝑘 (q)

∫
1

2𝛽( d𝜙𝑞 (Q)
d𝑡 )2

exp(−𝛽U𝑘 (Q, q))dQ.

Two neural networks M̃(q; 𝜃𝑀) and F̃(q; 𝜃𝐹) is constructed to approximate M(q) and F(q)

respectively and trained loss function on the same dataset

min
𝜃𝑀

𝑁𝑠∑︁
𝑖=1

∥M̃(q𝑖; 𝜃𝑀) − M(q𝑖)∥2,min
𝜃𝐹

𝑁𝑠∑︁
𝑖=1

∥F̃(q𝑖; 𝜃𝐹) − F(q𝑖)∥2.

The sampling points are adaptively selected by consensus-based enhanced sampling strategy

Lyu and Lei (2023a) with a McKean type stochastic differential equation for 𝑁𝑤 walker q1, · · · , q𝑁𝑤

dq𝑖 = −1
𝛾
∇z𝐺 (q𝑖)d𝑡 +

√︄
2
𝜅ℎ𝛾

dW𝑡 (3.8)

where𝐺 (q𝑖) = 1
2 (q𝑖 −m)𝑇V−1(q𝑖 −m), where m =

∑𝑁𝑤

𝑖=1 q𝑖𝑝(q𝑖), V = (𝜅𝑙 + 𝜅ℎ)
∑𝑁𝑤

𝑖=1 (q𝑖 −m)𝑇 (q𝑖 −

m)𝑝(q𝑖) and 𝑝(q𝑖) = exp(−𝜅𝑙R(q𝑖))∑𝑁𝑤
𝑗

exp(−𝜅𝑙R(q 𝑗 ))
. The R(q𝑖) represents the residual at the point q𝑖, which we

choose to be ∥F̃(q𝑖; 𝜃𝐹) − F(q𝑖)∥2 in this project. The first right term in Eq. (3.8) represents the
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exploitation term that uses current information to drive the sampler towards the maximum residual

region, and the second term is a high temperature exploration term 𝜅ℎ that explores the unknown

region. Notice that the residual also depends on the neural network parameters, then by iterative

optimization of our neural network representation and the sampling points, we can get a good

training set over the phase space.

3.3 Numerical results

3.3.1 One-dimensional state-dependent reduced model of a polymer molecule

To illustrate the core concept of the present method, we begin with a polymer molecule with

𝑁 = 16 atoms, where the intramolecular potential is defined by

𝑉mol(Q) =
𝑁∑︁
𝑖≠ 𝑗

𝑉p(𝑄𝑖 𝑗 ) +
𝑁𝑏∑︁
𝑖=1
𝑉b(𝑙𝑖) +

𝑁𝑎∑︁
𝑖=1
𝑉a(𝜃𝑖) +

𝑁𝑑∑︁
𝑖=1
𝑉d(𝜙𝑖), (3.9)

where𝑉𝑝 is the Lennard-Jones intermolecular potential,𝑉𝑏 is the harmonic bonds,𝑉𝑎 and𝑉𝑑 denotes

the potential on angle and dihedral angle respectively. The end-to-end distance 𝑞1 = ∥Q1 − Q𝑁 ∥ is

used as a collective variable in the 1D reduced dynamics framework to evaluate the effectiveness

of our current method. We selected 25 distinct points uniformly from the range of 𝑞1 ∈ [2, 18] to

create our training set.

Four auxiliary variables ξ𝑖 are learned in standard GLE and our state-dependent GLE. The

overall velocity correlation function 𝐶𝑣𝑣 (𝑡) = ⟨𝑣1(𝑡)𝑣1(0)⟩ in presented in Figure 3.1(a). Both

state-dependent GLE and standard GLE align well with the MD result. We also present the encoder

weights for non-Markovian features as obtained from the state-dependent GLE approximation in

Figure 3.1(b). The encoder functions demonstrate pronounced oscillations at short times, reflecting

the dynamic interactions present in the system during that initial period. As time progresses,

these oscillations gradually decay to zero, indicating that the influence of these non-Markovian

features diminishes at longer time scales. This behavior underscores the transient nature of the

non-Markovian dynamics in the system.

However, the fitness of the overall GLE do not represent the good performance of the learned

dynamics. We compare the conditional autocorrelation with q starting from 25 selected points by
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Figure 3.1 Numerical results of a one-dimensional reduced model representing the dynamics of the
end–end distance of a polymer molecule system. (a) Overall velocity correlation function 𝐶𝑣𝑣 (𝑡)
obtained from MD, 4th order standard GLE, and state-dependent GLE. (b) Encoder weights for the
three non-Markovian features of the state-dependent GLE.

standard GLE, state-dependent GLE and MD in Figure 3.2. This comparison will reveal differences

of the diffusion behavior at different points on the phase space in MD is captured by the standard

state-dependent but not in standard one. Inaccuracy in the diffusion process will in return affect

the precision of the transition process.Figure 3.2(a) illustrates the time distribution of 𝑞1 for values

greater than 15, comparing results from MD simulations, GLE and state-dependent GLE. The data

reveals that the state-dependent GLE provides a closer match to the MD results than the standard

GLE method.

However, the fitness of the overall GLE do not represent the good performance of the learned

dynamics. We compare the conditional autocorrelation with q starting from 25 selected points by

standard GLE, state-dependent GLE and MD in Figure 3.2. This comparison will reveal differences

of the diffusion behavior at different points on the phase space in MD is captured by the standard

state-dependent but not in standard one. Inaccuracy in the diffusion process will in return affect

the precision of the transition process.Figure 3.2(a) illustrates the time distribution of 𝑞1 for values

greater than 15, comparing results from MD simulations, GLE and state-dependent GLE. The data

reveals that the state-dependent GLE provides a closer match to the MD results than the standard

GLE method.
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Figure 3.2 Numerical results of a one-dimensional reduced model representing the dynamics of
the end–end distance of a polymer molecule system. (a) Distribution of 𝑞1 > 15 obtained from
the full MD simulations, the 4th-order GLE approximation, and the 4th-order state-dependent GLE
approximation. (b–d) Conditional velocity correlation functions obtained from MD, standard GLE,
and state-dependent GLE, respectively.

3.3.2 Two-dimensional state-dependent reduced model of an alanine dipeptid

We further demonstrate the effectiveness of our state-dependent reduced modeling framework

using the alanine dipeptide molecule (Ace-Ala-Nme), commonly referred to as Ala2. The full-atom

molecular dynamics (MD) simulation is performed for a solvated alanine dipeptide immersed in 383

explicit water molecules at 300 K, using the Amber99-SB force field and the TIP3P water model. A

time step of 2.5 × 10−4 ps is used for numerical integration.

To reduce dimensionality, we adopt two dihedral angles as collective variables (CVs): the 𝜙

angle defined by atoms (C, N, C𝛼, C), and the 𝜓 angle defined by atoms (N, C𝛼, C, N). These angles
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provide a compact representation of the molecular conformations.

A consensus-based sampling strategy selects 1,000 representative configurations from the

MD trajectory to train the state-dependent generalized Langevin equation (GLE) model. At each

configuration, we compute the conservative force, effective mass, and the velocity autocorrelation

function. Four auxiliary variables are introduced to close the non-Markovian system, forming a

Markovian embedding that captures state-dependent memory effects.

The model’s accuracy is validated by comparing conditional momentum autocorrelation functions

from two conformational regions. As shown in Figure 3.3, the state-dependent GLE faithfully

reproduces MD results, including subtle oscillatory features that are missed by traditional GLE

models with fixed memory kernels.
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(a) (b)

(c) (d)

(e) (f)
Figure 3.3 Numerical results of the two-dimensional reduced model in terms of the two dihedral
angles of the alanine dipeptide system. (a–c) Conditional momentum auto-correlation functions
obtained from full MD simulations and the 4th-order GLE approximation at (𝜙, 𝜓) = (−1.60, 2.78).
(d–f) Conditional momentum auto-correlation functions at (𝜙, 𝜓) = (−2.90,−0.16).

We also compute the distribution of transition time between different local minima. Four local
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minima is selected in Figure 3.4. The distribution of transition time between point 0 and other three

points is shown in Figure 3.5

(a)
Figure 3.4 The heatmap of the free energy surface m𝐺 (𝜙, 𝜓). Colored solid circles mark four local
minima of the configuration.

Figure 3.6 presents the distribution of time spent at each point, based on results from MD, 4𝑡ℎ

order of GLE and 4𝑡ℎ order of sate-dependent GLE. The results demonstrate that our current method

provides improved accuracy for each point compared to GLE method.

3.4 Summary

The state-dependent generalized Langevin equation (GLE) is usefull tool to describe the non-

Markovian behavior in many processes in the CGMD problem accurately. In this study, we employ

our previously developed consensus-based enhanced sampling strategy to simultaneously construct

the heterogeneous memory kernel and the free energy surface. The conservative force is calculated

using constrained dynamics at specific points in the phase space, while the dynamic information at

these points is gathered through multiple free dynamics initiated from the same locations. We then

train our neural network to capture the differences among the various conditional auto-correlation

functions. The results demonstrate that our current method provides improved accuracy for each

point compared to the GLE method.
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(a) (b)

(c) (d)

(e) (f)
Figure 3.5 Numerical results of a two-dimensional reduced model representing the two dihedral
angles of the alanine dipeptide system. (a) Distribution of transition time from position 0 to position
1. (b) From position 1 to 0. (c) From position 0 to 2. (d) From position 2 to 0. (e) From position 0
to 3. (f) From position 3 to 0.
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(a) (b)

(c) (d)
Figure 3.6 Numerical results of a two-dimensional reduced model representing the two dihedral
angles of the alanine dipeptide system. (a) Distribution of time periods spent at position 0 before
transitioning to position 1. (b–d) Distributions of time spent at positions 1, 2, and 3, respectively.
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CHAPTER 4

GENERATIVE MODEL BASED IDENTIFYING METASTABLE STATES IN FULL
MOLECULE SPACE

4.1 Introduction

Normalizing flows have gained significant traction in recent years as flexible generative models

that provide exact likelihood evaluation and tractable sampling through invertible transformations

between data and latent spaces. While highly expressive, their performance critically depends

on the structure of the latent prior distribution. In most conventional settings—including in

many state-of-the-art normalizing flow architectures—a simple unimodal prior such as a standard

multivariate Gaussian is employed. This assumption works well for data distributions that are

themselves unimodal or smoothly varying, but it becomes a substantial bottleneck in modeling

systems characterized by multimodality, sharp transitions, or complex geometrical features in

high-dimensional spaces.

This issue is particularly critical in domains such as molecular dynamics or continuum mechanics,

where data often arise from a mixture of metastable states or rare-event transitions. These systems

naturally lead to multimodal distributions, with each mode representing a distinct macroscopic

configuration or energy basin. While recent developments in normalizing flows—such as NICE,

RealNVP, and Glow Dinh et al. (2014, 2017); Kingma and Dhariwal (2018)—have significantly

improved the expressivity of the transformation through architectural innovations like coupling

layers and conditioning, they still rely on simple unimodal latent priors. As a result, such models are

limited in their ability to identify and represent metastable states explicitly, since the prior structure

does not reflect the inherent multimodality of the system.

Moreover, during training, these models typically focus on maximizing the overall likelihood and

do not incorporate gradient or perturbation-based penalties to enforce key physical constraints—such

as requiring the gradient of the log-density to vanish at latent maxima or ensuring that log-density

values at these mapped maxima are indeed local maxima in data space. Without these constraints,

the learned transformation may distort the latent structure and fail to preserve the correspondence
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between latent and data-space modes, ultimately limiting the interpretability and metastable state

resolution of the model.

To address these limitations, we propose a generative modeling framework that uses a Mixture-

of-Gaussians (MoG) prior to explicitly represent multiple metastable modes in the latent space. The

goal is not merely to enhance expressivity, but to enforce a maximum-to-maximum correspondence

between the latent space and data space—ensuring that each latent mode is mapped to a high-

density metastable state in the observed configuration space. To achieve this, we use an invertible

transformation that preserves the structure of the distribution under the change of variables. While

our implementation adopts KRNet for this transformation due to its flexibility and scalability, the

approach is general and compatible with any expressive normalizing flow architecture. During

training, we further impose gradient penalties to enforce vanishing gradients at mapped maxima,

and contrastive perturbation penalties to ensure local maximality in data space. This strategy allows

the model to capture and preserve the metastable structure inherent in complex physical systems,

rather than simply fitting the data distribution in a likelihood sense.

Our design is inspired in part by recent advances in multimodal flow-based generative modeling,

such as the bounded KRNet architecture introduced by Peng et al. Peng et al. (2023), which

demonstrated that introducing structural constraints in the latent space can significantly improve

the accuracy and interpretability of normalizing flows. Building on this line of thinking, our

model introduces a Mixture-of-Gaussians (MoG) latent prior not merely for greater flexibility, but

to explicitly encode multiple metastable modes that reflect the complex landscape of molecular

systems. Each Gaussian component captures a different region of the latent space, which is then

mapped—via a KRNet transformation—into a distinct metastable basin in data space. To enforce

this mode-to-mode correspondence, we introduce gradient penalties to drive the log-density gradient

toward zero at each latent mode, and contrastive perturbation losses to ensure that these mapped

points are true maxima in the data space.

Beyond improving generative performance, this design also enhances scientific interpretability.

The multimodal latent structure enables soft clustering of generated configurations, where each mode
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can be associated with meaningful collective variables (CVs) such as torsion angles, end-to-end

distances, or radius of gyration. This provides insight into the system’s metastable organization

and helps identify the slow reaction coordinates that govern long-time dynamics. In summary, our

MoG-based KRNet formulation introduces a novel framework for aligning latent and data-space

maxima, enabling both accurate density modeling and interpretable discovery of metastable structure

in high-dimensional molecular data.

4.2 Method

4.2.1 Overview of the MoG-KRnet Framework

MoG-KRnet is a bijective generative model that constructs an invertible mapping 𝑓 : R𝑑 → R𝑑

transforming samples from a hybrid latent distribution 𝑝𝑍 to the data distribution 𝑝𝑋 . The key

idea is to approximate a transport map that rearranges a tractable base measure into a complex,

potentially multimodal data distribution. For a given observation x ∈ R𝑑 , the model defines the

log-density through the change-of-variable formula:

log 𝑝𝑋 (x) = log 𝑝𝑍 ( 𝑓 (x)) + log | det 𝐽 𝑓 (x) |,

where 𝐽 𝑓 (x) = ∇x 𝑓 (x) ∈ R𝑑×𝑑 denotes the Jacobian of 𝑓 . This formulation permits exact likelihood

evaluation and allows optimization via maximum likelihood estimation.

4.2.2 Hybrid Latent Prior

The latent variable z ∈ R𝑑 is decomposed into two independent blocks, denoted z1 ∈ R𝑑1

and z2 ∈ R𝑑2 , with 𝑑1 + 𝑑2 = 𝑑. The first block z1 follows a product of one-dimensional

mixture-of-Gaussians:

𝑝(z1) =
𝑑1∏
𝑗=1

𝐾 𝑗∑︁
𝑘=1

𝜋 𝑗 ,𝑘 · N (𝑧 𝑗 ; 𝜇 𝑗 ,𝑘 , 𝜎2
𝑗 ,𝑘 ),

while the second block z2 ∼ N(0, I𝑑2) is standard Gaussian. This hybrid prior combines multimodal

expressiveness with analytical tractability and defines the target measure for the flow map.
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4.2.3 KRnet Architecture as Progressive Triangular Transport

Inspired by the Knothe–Rosenblatt rearrangement, MoG-KRnet factorizes the transformation 𝑓

into a sequence of stage-wise maps:

𝑓 = 𝑓 (𝐾) ◦ 𝑓 (𝐾−1) ◦ · · · ◦ 𝑓 (1) ,

where each stage 𝑓 (𝑘) updates a block of coordinates while conditioning on preceding ones,

approximating triangular transport structure. Each 𝑓 (𝑘) is implemented as a composition of

transformations:

𝑓 (𝑘) = S (𝑘) ◦ A (𝑘) ◦ N (𝑘) ◦ R (𝑘) ,

where R (𝑘) is a linear transformation with learnable LU structure, N (𝑘) is an actnorm layer that

ensures zero-mean and unit variance per dimension (with learnable parameters), A (𝑘) is a stack

of affine coupling layers (described in Section 3.4), and S (𝑘) performs a squeezing operation that

reallocates dimension usage over stages.

This layered composition ensures that the full Jacobian 𝐽 𝑓 remains triangular or block-triangular,

allowing for efficient computation of log | det 𝐽 𝑓 | as a sum over the individual layers.

4.2.4 Affine Coupling Transformations

Each affine coupling layer partitions the input x = [x1, x2], and updates x2 using a scale-and-shift

transformation conditioned on x1:

x′2 = x2 ⊙ (1 + 𝛼 · tanh(𝑠(x1))) + 𝛾 · tanh(𝑡 (x1)).

Here, 𝑠 and 𝑡 are neural networks; 𝛼 ∈ (0, 1) is a fixed stability parameter (e.g., 0.6); 𝛾 ∈ R𝑑
′ is

a learnable global vector. The inverse transformation is analytically computable, ensuring exact

invertibility. The log-determinant of the Jacobian for each coupling layer is efficiently computed as:

log | det 𝐽A | =
𝑑′∑︁
𝑖=1

log (1 + 𝛼 · tanh(𝑠𝑖 (x1))) ,

which contributes additively to the total log-likelihood.
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4.2.5 Mode Alignment Regularization

We introduce a geometric regularization mechanism to promote semantic alignment between the

latent and data spaces. Let zmax ∈ R𝑑 be the point in latent space corresponding to the global mode

of the prior. We define it as the concatenation of the mean of the dominant mixture components in

z1, and the zero vector in z2:

zmax = [𝜇∗1, . . . , 𝜇
∗
𝑑1
, 0, . . . , 0],

where 𝜇∗
𝑗
is the mean of the most probable component for dimension 𝑗 . We compute the corresponding

data-space mode as xmax = 𝑓 −1(zmax).

To encourage xmax to align with a mode of the data distribution, we introduce two regularization

terms. The first is a gradient penalty:

Lgrad =




∇x log 𝑝𝑋 (x)
��
x=xmax




2
,

which encourages stationarity of the log-density at xmax. The second is a local contrastive penalty

defined over perturbed neighborhoods:

Lcontrast =
1
𝑀

𝑀∑︁
𝑖=1

max
(
0, log 𝑝𝑋 (xneigh

𝑖
) − log 𝑝𝑋 (xmax)

)
,

where xneigh
𝑖

= xmax + 𝜖𝑖, and 𝜖𝑖 ∼ N(0, 𝜎2I). This enforces that xmax is not only a critical point, but

a local maximum.

4.2.6 Objective Function

The total loss function used for training is the sum of the negative log-likelihood and the

mode-alignment penalties:

L = −Ex∼D log 𝑝𝑋 (x) + 𝜆grad · Lgrad + 𝜆contrast · Lcontrast.

Here, 𝜆grad, 𝜆contrast ≥ 0 control the strength of the regularization terms.

4.2.7 Sampling and Inference

For density evaluation, an input x ∈ R𝑑 is mapped through the flow to obtain z = 𝑓 (x), and the

log-likelihood is computed via:

log 𝑝𝑋 (x) = log 𝑝𝑍 (z) +
𝐾∑︁
𝑘=1

log | det 𝐽 𝑓 (𝑘 ) (·) |.
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Each sub-map contributes a triangular Jacobian, so the determinant is computed in linear time. The

prior log-density is decomposed as:

log 𝑝𝑍 (z) =
𝑑1∑︁
𝑗=1

log ©­«
𝐾 𝑗∑︁
𝑘=1

𝜋 𝑗 ,𝑘 · N (𝑧 𝑗 ; 𝜇 𝑗 ,𝑘 , 𝜎2
𝑗 ,𝑘 )

ª®¬ − 1
2
∥z2∥2 − 𝑑2

2
log(2𝜋).

To generate samples, latent vectors z ∼ 𝑝𝑍 are drawn by sampling each MoG dimension 𝑧 𝑗 from its

categorical mixture and the Gaussian block from standard normal. The resulting z is passed through

the inverse flow x = 𝑓 −1(z), which is exact and fully differentiable.

4.3 Numerical Result

4.3.1 Approximation of the Müller-Brown Equilibrium Distribution

We first evaluate the capacity of MoG-KRnet to approximate a complex, multimodal target

distribution arising from the well-known Müller-Brown potential—a classical benchmark in

molecular simulation that features multiple metastable wells separated by high-energy barriers. The

target equilibrium distribution is the Boltzmann-Gibbs measure:

𝑝𝑋 (x) =
1
𝑍

exp
(
−𝑈 (x)
𝑘𝐵𝑇

)
,

where𝑈 (x) denotes the potential energy, 𝑇 = 30𝐾 , and x ∈ R2. We simulate overdamped Langevin

dynamics,
𝑑x
𝑑𝑡

= −∇𝑈 (x) +
√︁

2𝑘𝐵𝑇 · ξ(𝑡),

to generate a reference dataset of 5 million samples. These samples serve as empirical draws from

the true equilibrium distribution 𝑝𝑋 .

The model is instantiated as a single-stage KRnet with depth 𝐷 = 64, input dimension

𝑑 = 2, and coupling width 256. Each flow stage includes alternating affine coupling layers with

learnable LU-based linear transformations and interleaved squeezing operations. The coupling

layers implement:

z2 = z2 ⊙ (1 + 𝛼 · tanh(𝑠(z1))) + 𝛾 · tanh(𝑡 (z1)),
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with 𝛼 = 0.6, and 𝑠, 𝑡 being two-layer neural networks with ReLU activations. The latent prior

𝑝𝑍 (z) consists of a product of a one-dimensional mixture-of-Gaussians:

𝑝(𝑧1) =
2∑︁
𝑘=1

𝜋𝑘 · N (𝑧1; 𝜇𝑘 , 𝜎2
𝑘 ), 𝜋 = [0.6, 0.4], 𝜇 = [−2, 2], 𝜎 = [1.0, 0.5],

and a standard Gaussian 𝑧2 ∼ N(0, 1).

In addition to maximum likelihood estimation, we introduce geometric regularization to ensure

that the high-density region of the latent prior is mapped to a corresponding mode in the target

space. This is done via two penalty terms:

1. A local contrastive penalty encourages log-probability at mapped prior mode xmax to exceed

its local neighbors:

Lcontrast =

𝑀∑︁
𝑖=1

max
(
0, log 𝑝𝑋 (xneigh

𝑖
) − log 𝑝𝑋 (xmax)

)
,

where xneigh
𝑖

= xmax + 𝜖𝑖, and 𝜖𝑖 ∼ N(0, 𝜎2I).

2. A gradient penalty enforces ∇ log 𝑝𝑋 (xmax) ≈ 0:

Lgrad =




∇x log 𝑝𝑋 (x)
��
x=xmax





1
.

The total objective is:

L = −Ex∼D [log 𝑝𝑋 (x)] + 𝜆contrastLcontrast + 𝜆gradLgrad

Training is performed using the Adam optimizer with an initial learning rate of 1 × 10−4, which

is decayed by 10% every 5000 iterations. Penalty coefficients 𝜆contrast, 𝜆grad, and 𝜆align are initialized

at small values and gradually increased (by 5% every 5000 iterations) to guide the flow toward stable

mode alignment while preventing instability in early optimization.

Minibatches of 2D coordinates are drawn from preprocessed subsets {set 𝑗 }19
𝑗=0, and the entire

training loop runs for 100,000 steps. Gradients are clipped using global norm clipping with a

threshold of 0.01. Checkpoints are saved regularly and used for restarting long runs.

Figure 4.1 shows the learned transport map learned by MoG-KRnet. On the left, samples drawn

from the latent space exhibit two clearly separated high-density regions corresponding to distinct
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components in the mixture-of-Gaussians prior. After training, these two latent modes are transported

via the inverse flow 𝑓 −1 into two distinct basins of the Müller-Brown energy landscape, shown on

the right.

This demonstrates that the model not only captures the overall multimodal structure of the target

distribution but also learns a semantically consistent transport: each latent mode is mapped to a

specific metastable state of the physical system. The smoothness and separation of the transformed

samples reflect that the triangular KRnet flow—coupled with the hybrid prior and geometric

regularization—successfully avoids mode collapse and learns a one-to-one correspondence between

latent and physical modes.

Such mode-resolving behavior is difficult to achieve with standard normalizing flows that rely on

unimodal priors. In contrast, MoG-KRnet leverages the flexibility of mixture components to assign

and map separated probability mass to different energetic regions in a physically meaningful way.

This mode alignment improves both sampling fidelity and interpretability, especially in systems

where multiple competing basins dominate the dynamics.

Figure 4.1 Learned transport from latent space to physical space using MoG-KRnet. The left half of
the image shows samples drawn from the latent distribution, which has two distinct high-density
regions due to the mixture-of-Gaussians prior. The right half shows the transformed samples under
the inverse flow 𝑓 −1, which accurately maps the two latent modes into the two metastable basins of
the Müller-Brown potential. This demonstrates the model’s ability to perform semantically aligned
mode separation, transporting distinct regions of latent mass to physically meaningful targets.
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4.3.2 Approximation of the Alanine Dipeptide Equilibrium Distribution

To further assess the scalability and generalization capacity of MoG-KRnet, we apply it

to approximate the equilibrium distribution of a higher-dimensional molecular system: alanine

dipeptide in implicit solvent. This molecule is a well-known testbed in molecular simulation due

to its low dimensionality yet rich conformational landscape, characterized by transitions between

metastable states in the Ramachandran (𝜙, 𝜓)-angle space and the full Cartesian coordinates of

selected atoms.

We generate reference samples for alanine dipeptide (Ace-Ala-Nme, commonly referred to as

Ala2) via full-atom molecular dynamics (MD) simulation in explicit solvent. The simulation system

consists of the alanine dipeptide molecule immersed in 383 TIP3P water molecules. The simulation

is carried out at 350 K using the Amber99-SB force field and Langevin dynamics for temperature

control. A time step of 2.5 × 10−4 ps is used for numerical integration.

Trajectories are collected from equilibrium simulations and projected onto a reduced coordinate

space consisting of Cartesian positions of selected heavy atoms. In total, 5 million configurations are

used to construct the dataset Dala ∼ 𝑝𝑋 , representing the high-dimensional equilibrium distribution

over molecular conformations.

The MoG-KRnet model is constructed to map the equilibrium distribution of alanine dipeptide

into a structured latent space. The model input is a 15-dimensional vector representing the

Cartesian coordinates of five key atoms—[5, 7, 9, 15, 17]—selected to capture relevant backbone

conformational fluctuations while avoiding redundant degrees of freedom. This atom selection

encompasses chemically meaningful internal coordinates, including both 𝜙 and 𝜓 torsions, as well

as spatial end-to-end geometry.

The flow transformation 𝑓 : R15 → R15 consists of 7 staged mappings inspired by the pseudo-

triangular structure of the Knothe–Rosenblatt rearrangement. Each stage contains 24 affine coupling

layers with hidden width 128, supplemented by actnorm, LU-based rotations, and squeezing

operations. This progressive architecture allows early layers to resolve nonlinear, multimodal

features in dominant subspaces, while later layers refine global geometry.
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The latent prior 𝑝𝑍 is a hybrid of three independent one-dimensional mixture-of-Gaussians

(MoG) and a standard multivariate Gaussian:

𝑝𝑍 (z) =
3∏
𝑗=1

𝐾 𝑗∑︁
𝑘=1

𝜋 𝑗 ,𝑘 · N (𝑧 𝑗 ; 𝜇 𝑗 ,𝑘 , 𝜎2
𝑗 ,𝑘 ) · N (z4:15; 0, I12).

This design reflects the assumption that a small number of latent coordinates capture discrete

conformational transitions (e.g., basin-hopping), while the remaining degrees of freedom reflect

continuous fluctuations in local structure. The independence of latent dimensions facilitates efficient

sampling and interpretable mode decomposition. Latent samples are drawn by independently

sampling each MoG dimension using categorical selection followed by Gaussian sampling, and

appending a standard normal vector for the Gaussian block.

Training is performed on a dataset of 5 million MD samples using a composite loss:

Ltotal = LNLL + 𝜆gradLgrad + 𝜆contrastLcontrast + Lrep.

Here, LNLL is the negative log-likelihood, Lgrad enforces local maximality at the mapped latent

maxima, and Lcontrast ensures neighborhood contrast.

To prevent mode collapse, a pairwise repulsion loss Lrep is introduced between mapped maxima

{x(𝑖)
max} using a soft margin criterion.

Training runs for 200,000 iterations with the Adam optimizer, an initial learning rate of 10−7,

and dynamically scaled penalty weights. During training, KDE diagnostics are periodically used

to ensure that generated samples recover the correct distributions in torsional and Euclidean

observables.

In Fig. 4.2, we compare the predicted marginal densities of the 𝜙 and 𝜓 dihedral angles from

KRnet to reference MD histograms. MoG-KRnet accurately reproduces all modes in both coordinates

and captures the correct relative amplitudes. In particular, the sharp peak near 𝜓 ≈ 3.0 is learned

precisely, and the multimodality in 𝜙 is preserved without mode collapse.

To assess the learned joint dependencies, we visualize the 2D density over (𝜙, 𝜓) in Fig. 4.3,

along with the eight mode points mapped from latent maxima. The conformational basins of Ala2 are

clearly recovered, and the mode points are well-separated, each landing within distinct high-density
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(a) Marginal distribution of 𝜙 (b) Marginal distribution of 𝜓

Figure 4.2 Comparison of 1D dihedral angle marginals between KRnet (red) and MD ground truth
(blue).

regions. This confirms that MoG-KRnet not only fits the data globally but also identifies meaningful

latent structure.

(a) 𝜙–𝜓 dihedral distribution of Ala2. Warm
background indicates predicted density; overlaid
points mark mapped latent maxima.

(b) End-to-end distance vs. radius of gyration
(𝑅𝑔) from sampled configurations. Latent max-
ima are projected onto this plane.

Figure 4.3 Predicted equilibrium features of alanine dipeptide from the trained MoG-KRnet model.

An important feature of our MoG-KRnet framework is the explicit mapping of latent density

modes to high-probability basins in configuration space. By construction, each mode of the hybrid

prior z(𝑖)max is mapped through the inverse flow 𝑓 −1 to a corresponding point x(𝑖)
max ∈ R𝑑 . These

mapped maxima are designed to coincide with peaks in the learned data distribution 𝑝𝑋 (x), enforced
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during training via gradient and contrastive penalties.

As shown in Figure 4.3, this alignment holds in both the dihedral angle space (𝜙, 𝜓) and

in structural coordinates. In the left panel, each mapped latent mode falls within a distinct

conformational basin in the (𝜙, 𝜓) landscape, indicating that MoG-KRnet captures metastability

through a structured latent space. In the right panel, the same latent maxima are distributed across the

manifold of end-to-end distance and radius of gyration, further supporting the physical consistency

and geometric expressiveness of the learned model. These results confirm that our framework not

only generates accurate samples but also provides a semantically meaningful latent representation

that aligns with physically interpretable features of the molecular system.

4.4 Summary.

In this work, we proposed MoG-KRnet, a novel flow-based generative framework designed for ap-

proximating high-dimensional equilibrium distributions in complex molecular systems. Our approach

builds upon the theory of invertible transformations and exploits a staged Knothe–Rosenblatt-inspired

architecture to progressively map structured latent representations to physical configuration space.

A distinguishing feature of MoG-KRnet is its use of a hybrid latent prior that combines independent

one-dimensional mixture-of-Gaussians (MoG) components with standard Gaussian variables. This

formulation enables the model to flexibly represent multi-modal distributions while maintaining

computational tractability and efficient sampling.

To ensure meaningful correspondence between latent and physical modes, we introduced a

mode-alignment strategy during training. This involves constructing the prior such that each latent

mode z(𝑖)max encodes a distinct peak in the latent density, and then enforcing through loss penalties

that each of these modes is mapped to a high-probability region x(𝑖)
max = 𝑓 −1(z(𝑖)max) in the observed

space. This is achieved via gradient-based penalties to minimize ∥∇x log 𝑝𝑋 (xmax)∥, and contrastive

penalties to ensure that xmax is indeed a local maximum compared to its neighbors. This alignment

strategy imbues the model with semantic coherence and supports downstream interpretability.

The efficacy of MoG-KRnet was demonstrated on two benchmark systems. For the Müller-Brown

potential, we showed that the model accurately captured the bimodal equilibrium distribution and
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learned to associate each latent mode with a distinct physical basin. For the more complex alanine

dipeptide molecule in explicit solvent, the model was trained on 5 million full-atom MD snapshots

and succeeded in learning the joint equilibrium distribution over both angular variables (dihedral

angles 𝜙, 𝜓) and structural observables (end-to-end distance and radius of gyration). In all cases,

the mapped latent maxima landed squarely in dominant high-density regions of the data space,

confirming the success of the mode-to-basin alignment. Furthermore, generated samples from the

model reproduced the marginal and joint distributions of key physical features with high fidelity,

closely matching empirical histograms derived from MD data.

Together, these contributions underscore the dual strengths of MoG-KRnet: the capacity to

approximate complex, multi-modal densities in high dimensions, and the ability to structure the

latent space in a physically meaningful and interpretable manner. Our results demonstrate that

MoG-KRnet provides not only a powerful generative model but also a principled tool for reduced

representation of molecular systems, where the mapping from latent to physical coordinates respects

the underlying metastable structure of the dynamics. This makes it particularly well-suited for tasks

in coarse-grained modeling, statistical reweighting, and uncertainty-aware exploration of equilibrium

configurations.
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CHAPTER 5

CONCLUSION

This thesis presents a unified, data-driven framework for constructing reduced-order models of

high-dimensional, non-Markovian dynamical systems. By integrating advances in memory-aware

modeling and normalizing flow-based latent representations, we address two central challenges

in coarse-grained modeling: accurately capturing long-time correlations and resolving complex,

multi-modal equilibrium distributions.

We began by developing a novel learning-based approach to non-Markovian stochastic re-

duced modeling. By augmenting the resolved dynamics with a set of learned auxiliary vari-

ables—interpretable as non-Markovian features—we showed that the complex memory effects

embedded in full-atom molecular simulations can be faithfully captured without directly estimating

memory kernels. This framework builds on the Mori–Zwanzig formalism and circumvents conven-

tional kernel fitting by matching correlation functions in an extended variable space. Numerical

results on tagged particles and polymer chains demonstrated excellent agreement with full molecular

dynamics (MD) simulations, validating the expressiveness and robustness of the proposed models.

We extended this methodology to incorporate state-dependent memory kernels, thereby enabling

more realistic dynamics in systems with heterogeneous free energy landscapes. Our framework

captures local variations in unresolved degrees of freedom and accommodates basin-specific

relaxation times and noise structures. Through simulations on polymer systems, we observed

significant improvements in predictive accuracy and sampling fidelity compared to global or

fixed-kernel models.

To handle the challenge of modeling complex equilibrium distributions, we introduced a new

Mixture-of-Gaussians (MoG) KRNet architecture—termed KRnet-MoG-GLE—as a probabilistic

generative model for full molecular dynamics. By replacing the unimodal latent prior with a flexible

MoG prior, our model gains the capacity to represent multiple metastable basins and generate

samples that better match empirical distributions. Importantly, we designed the training to enforce

mode-alignment, ensuring that the maxima of the latent variables map to high-probability regions in
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the data space. This was demonstrated convincingly in the Müller-Brown and alanine dipeptide

systems, where our model successfully resolved distinct basins and accurately approximated target

observables such as end-to-end distance, radius of gyration, and dihedral angles.

Taken together, the contributions of this work represent a significant step forward in the design of

interpretable, memory-embedded, and generative reduced-order models. By marrying the strengths

of stochastic modeling with expressive latent-variable architectures, our approach enables efficient

exploration and inference in systems that are otherwise intractable due to their high dimensionality

and long memory effects.

Ultimately, this thesis lays the foundation for data-driven, physically-consistent reduced models

that can serve as scalable surrogates for multi-scale simulations, with broad applicability across

molecular biophysics, soft materials, and beyond.
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APPENDIX A

MICROSCALE MODEL OF THE POLYMER MOLECULE

The polymer molecule is modeled as a bead-spring chain consisting of 4 sub-units. Each sub-unit

consists of 4 atoms. The full potential is given by

𝑉m𝑜𝑙 (m𝑄) =
𝑁∑︁
𝑖≠ 𝑗

𝑉p(𝑄𝑖 𝑗 ) +
𝑁𝑏∑︁
𝑖=1
𝑉b(𝑙𝑖) +

𝑁𝑎∑︁
𝑖=1
𝑉a(𝜃𝑖) +

𝑁𝑑∑︁
𝑖=1
𝑉d(𝜙𝑖), (A.1)

where𝑉p,𝑉b,𝑉a, and𝑉d represent the pairwise, bond, angle, and dihedral interactions whose detailed

forms are specified as below.

The pairwise interaction 𝑉p is modeled by the Lennard-Jones potential

𝑉p(𝑄) =


4𝜀

[(
𝜎
𝑄

)12
−
(
𝜎
𝑄

)6
]
− 4𝜀

[(
𝜎
𝑄𝑐

)12
−
(
𝜎
𝑄𝑐

)6
]
, 𝑄 < 𝑄𝑐

0, 𝑄 ≥ 𝑄𝑐
(A.2)

where 𝜀 = 0.005, 𝜎 = 1.8 and 𝑄𝑐 = 10.0.

The bond potential𝑉b is modeled by the finite extensible nonlinear elastic bond (FENE) potential

𝑉b(𝑙) = − 𝑘𝑠
2
𝑙20 log

[
1 − 𝑙2

𝑙20

]
, (A.3)

where three different bond types. Within each sub-unit, the atoms 1-2, 3-4 are connected

by type-1 bond. The atoms 2-3 are connected by type-2 bond. Finally, the sub-unit groups are

connected by type-3 bond. The detailed parameter set is given by Tab. A.1.

Type 𝑘𝑠 𝑙0
1 0.4 1.8
2 0.64 1.6
3 0.32 1.8

Table A.1 Parameters of the FENE bond interactions.

The angle potential 𝑉a is modeled by the harmonic angle potential

𝑉a(𝜃) =
𝑘𝑎

2
(𝜃 − 𝜃0)2 , (A.4)
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Type 𝑘𝑎 𝜃0
1 1.2 114.0
2 1.5 119.7

Table A.2 Parameters of the harmonic angle interaction.

where two different types. Within each sub-unit group, the bond angles formed by 1-2-3 and 2-3-4

are imposed by type-1 potential. The bond angles formed by atoms of different sub-unit groups (e.g.,

3-4-5, 4-5-6) are imposed by type-2 potential. The detailed parameter set is given by Tab. A.2.

The dihedral potential 𝑉d is modeled by the multiharmonic dihedral potential

𝑉d(𝜙) =
6∑︁
𝑖=1

𝐴𝑛 cos(𝑛−1) (𝜙), (A.5)

where two different types. Type-1 dihedral potential is imposed to dihedral angles formed by 2-3-4-5,

4-5-6-7, · · · . Type-2 dihedral potential is imposed to dihedral angles formed by 3-4-5-6, 7-8-9-10,

· · · . The detailed parameter set is given by Tab. A.3.

Type 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6
1 0.0673 1.8479 0.0079 -2.2410 -0.0058 0.0051
2 0.1602 -3.9993 0.2483 6.2837 0.0165 -0.0146

Table A.3 Parameters of the multiharmonic dihedral interaction.
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APPENDIX B

CONSTRUCTION OF THE FOUR-DIMENSIONAL FREE ENERGY FUNCTION

Accurate construction of the multi-dimensional free energy is a well-known non-trivial problem.

To construct the free energy function 𝑈 (m𝑞) for the four-dimensional resolved variables m𝑞

defined by (2.18), we conduct the restraint molecular dynamics simulation to sample the average

force. Specifically, for each target configuration m𝑞∗, we impose a biased quadratic potential

𝑈b𝑖𝑎𝑠 (m𝑞,m𝑞∗) by

𝑈b𝑖𝑎𝑠 (m𝑞,m𝑞∗) =
1
2

4∑︁
𝑖=1

𝑘𝑖
(
𝑞𝑖 − 𝑞∗𝑖

)2
, (B.1)

where 𝑘1, · · · , 𝑘4 represents the magnitude of the bias potential. We choose the values such that

the fluctuations are about 5% of target values. For the polymer molecule considered in the present

study, the effective restraint force applied to the full atom
{
m𝑄 𝑗

}𝑁
𝑗=1 is given by

m𝐹b𝑖𝑎𝑠 (m𝑞,m𝑞∗) = −
4∑︁
𝑖=1

𝑘𝑖
(
𝑞𝑖 − 𝑞∗𝑖

)
∇m𝑄 𝑗

𝑞𝑖, (B.2)

where the gradient terms are given by

∇m𝑄 𝑗
𝑞1 =

m𝑄1 − m𝑄𝑁

𝑞1
𝛿 𝑗 ,1 +

m𝑄𝑁 − m𝑄1
𝑞1

𝛿 𝑗 ,𝑁 ,

∇m𝑄 𝑗
𝑞2 =

2
(
m𝑄 𝑗 − m𝑄𝑐

)
𝑁𝑞2

,

∇m𝑄 𝑗
𝑞3 =

m𝑄1 − m𝑄 ⌊ 𝑁2 ⌋

𝑞3
𝛿 𝑗 ,1 +

m𝑄 ⌊ 𝑁2 ⌋ − m𝑄1

𝑞3
𝛿 𝑗 ,⌊ 𝑁2 ⌋ ,

∇m𝑄 𝑗
𝑞4 =

m𝑄𝑁 − m𝑄 ⌈ 𝑁2 ⌉

𝑞4
𝛿 𝑗 ,𝑁 +

m𝑄 ⌈ 𝑁2 ⌉ − m𝑄𝑁

𝑞4
𝛿 𝑗 ,⌈ 𝑁2 ⌉ ,

(B.3)

where 𝛿𝑖, 𝑗 represents the Kronecker delta function.

The free energy 𝑈 (m𝑞) is approximated by a 4-layer fully connected neural network 𝑈̃ (m𝑞).

Each hidden layer has 160 neurons; hyperbolic tangent function is used as the activation function.

𝑈̃ (m𝑞) is trained by minimizing the empirical loss

𝐿 =

𝑁𝑠∑︁
𝑘=1




−∇m𝑞 (𝑘 )𝑈̃ (m𝑞) − m𝐹b𝑖𝑎𝑠 (m𝑞,m𝑞 (𝑘))



2
, (B.4)

where m𝑞 (𝑘) represents a sampled configuration. In this work, we construct 𝑈̃ (m𝑞) using

𝑁𝑠 = 400000 sample points collected from a simulation with a production stage of 1 × 107 steps.
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For each configuration, the number of step is between 1 × 106 and 6 × 106 such that the empirical

sampling error is less than 5% of the mean value.

To verify the accuracy of 𝑈̃ (m𝑞), we numerically evaluate the integration

𝑘𝐵𝑇m𝐼 ≡
∫

m𝑞 ⊗∇𝑈 (m𝑞)e−𝑈 (m𝑞)/𝑘𝐵𝑇dm𝑞/
∫

e−𝑈 (m𝑞)/𝑘𝐵𝑇dm𝑞 ≈ 1
𝑁𝑠

𝑁𝑠∑︁
𝑘=1

m𝑞 (𝑘) ⊗∇𝑈̃ (m𝑞 (𝑘)).

(B.5)

Therefore, the difference between the numerical summation and 𝑘𝐵𝑇m𝐼 provide a metric. For this

case, 𝑘𝐵𝑇 = 1. The average term yields

1
𝑁𝑠

𝑁𝑠∑︁
𝑘=1

m𝑞 (𝑘) ⊗ ∇𝑈̃ (m𝑞 (𝑘)) =



1.0362 −0.0011 0.0087 0.0062

0.0094 0.9814 0.0021 0.0018

0.0096 0.0068 0.9913 −0.0020

0.0076 0.0098 0.0008 0.9913


, (B.6)

which verifies that the constructed 𝑈̃ (m𝑞) is an accurate approximation of𝑈 (m𝑞).
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APPENDIX C

FLUCTUATION-DISSIPATION THEOREM OF THE EXTENDED DYNAMICS

For the extended dynamics in form of Eqs. (2.5)(2.6), we can show that the embedded memory kernel

m̃𝜃 (𝑡) and fluctuation term m̃R(𝑡) satisfy the second-fluctuation dissipation theorem. Without

loss of generality, we set the covariance of the non-Markovian features to be 𝑘𝐵𝑇m𝐼 following the

learning method presented in Sec. 2.2.3, i.e., mΛ = m𝐼, m̃𝐽 = m𝐽.

Proposition C.0.1. The embedded memory kernel of the extended dynamics (2.5)(2.6) takes the

form m̃𝜃 (𝑡) = −
(
m𝐽11𝛿(𝑡) + m𝐽12em𝐽22𝑡m𝐽21

)
. Furthermore, by choosing the initial condition of

m𝜁 and the white noise term m𝜉 (𝑡) = mΣ ¤m𝑊 𝑡 satisfying〈
m𝜁 (0)m𝜁 (0)𝑇

〉
= 𝛽−1m𝐼〈

m𝜉 (𝑡)m𝜉 (𝑠)𝑇
〉
= −𝛽−1(m𝐽 + m𝐽𝑇 )𝛿(𝑡 − 𝑠),

(C.1)

the embedded kernel m̃𝜃 (𝑡) and mR(𝑡) satisfies the second fluctuation-dissipation theorem, i.e.,〈
m̃R(𝑡)m̃R(𝑡′)𝑇

〉
= −𝛽−1

(
m̃𝐽12em̃𝐽22 (𝑡−𝑡′)m̃𝐽21 + (m̃𝐽11 + m̃𝐽𝑇11)𝛿(𝑡 − 𝑡′)

)
. (C.2)

Proof. With mΛ = m𝐼 and m̃𝐽 = m𝐽, we can take the integration of m𝜁 (𝑡) in Eq. (2.5), yielding

m𝜁 (𝑡) =
∫ 𝑡

0
em𝐽22 (𝑡−𝑠)m𝐽21m𝑣(𝑠)d𝑠 +

∫ 𝑡

0
em𝐽22 (𝑡−𝑠)m𝜉2(𝑠)d𝑠 + em𝐽22𝑡m𝜁 (0). (C.3)

Plugging m𝜁 (𝑡) into the dynamic equation of m𝑣 gives

m𝑀 ¤m𝑣 = − ∇𝑈 (m𝑞) + m𝐽11m𝑣 +
∫ 𝑡

0
m𝐽12em𝐽22 (𝑡−𝑠)m𝐽21m𝑣(𝑠)d𝑡

+ m𝜉1(𝑡)︸  ︷︷  ︸
R̃1 (𝑡)

+
∫ 𝑡

0
m𝐽12em𝐽22 (𝑡−𝑠)m𝜉2(𝑠)d𝑠︸                               ︷︷                               ︸

R̃2 (𝑡)

+m𝐽12em𝐽22𝑡m𝜁 (0)︸                ︷︷                ︸
R̃3 (𝑡)

. (C.4)
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We check the covariance matrices of the noise terms, i.e.,〈
R̃1(𝑡)R̃1(𝑡′)𝑇

〉
= −𝛽−1(m𝐽11 + m𝐽𝑇11)𝛿(𝑡 − 𝑡

′),〈
R̃2(𝑡)R̃2(𝑡′)𝑇

〉
=

∫ 𝑡

0

∫ 𝑡′

0
m𝐽12em𝐽22 (𝑡−𝑠) 〈m𝜉2(𝑠)m𝜉2(𝑠′)𝑇

〉
em𝐽𝑇22 (𝑡

′−𝑠′)m𝐽𝑇12d𝑠d𝑠′

= −𝛽−1
∫ 𝑡

0

∫ 𝑡′

0
m𝐽12em𝐽22 (𝑡−𝑠) (m𝐽22 + m𝐽𝑇22)𝛿(𝑠 − 𝑠

′)m𝐽𝑇21em𝐽𝑇22 (𝑡
′−𝑠′)m𝐽𝑇12d𝑠d𝑠′

= −𝛽−1
∫ 𝑡′

0
m𝐽12em𝐽22 (𝑡−𝑠′) (m𝐽22 + m𝐽𝑇22)mem𝐽𝑇22 (𝑡

′−𝑠′)m𝐽𝑇12d𝑠′,

= −𝛽−1m𝐽12em𝐽22𝑡+m𝐽𝑇22𝑡
′
m𝐽𝑇12 + 𝛽

−1m𝐽12em𝐽22 (𝑡−𝑡′)m𝐽𝑇12, ∀𝑡′ ≤ 𝑡〈
R̃3(𝑡)R̃3(𝑡′)𝑇

〉
= m𝐽12em𝐽22𝑡

〈
m𝜁 (0)m𝜁 (0)𝑇

〉
em𝐽𝑇22𝑡

′
m𝐽𝑇12

= 𝛽−1m𝐽12em𝐽22𝑡em𝐽𝑇22𝑡
′
m𝐽𝑇12.

(C.5)

Moreover, for 𝑡 > 𝑡′, all the cross terms vanish except
〈
R̃2(𝑡)R̃1(𝑡′)𝑇

〉
, i.e.,〈

R̃2(𝑡)R̃1(𝑡′)𝑇
〉
=

∫ 𝑡

0
m𝐽12em𝐽22 (𝑡−𝑠) ⟨m𝜉2(𝑠)m𝜉1(𝑡′)⟩ d𝑠

= −𝛽−1
∫ 𝑡

0
m𝐽12em𝐽22 (𝑡−𝑠) (m𝐽21 + m𝐽𝑇12)𝛿(𝑡

′ − 𝑠)d𝑠

= −𝛽−1m𝐽12em𝐽22 (𝑡−𝑡′) (m𝐽21 + m𝐽𝑇12).

(C.6)

Combining Eq. (C.5) and Eq. (C.6), we have〈
R̃ (𝑡)R̃ (𝑡′)𝑇

〉
= 𝛽−1m𝐽12em𝐽22 (𝑡−𝑡′)m𝐽𝑇12 − 𝛽

−1m𝐽12em𝐽22 (𝑡−𝑡′) (m𝐽21 + m𝐽𝑇12)

− 𝛽−1(m𝐽11 + m𝐽𝑇11)𝛿(𝑡 − 𝑡
′)

= −𝛽−1
(
m𝐽12em𝐽22 (𝑡−𝑡′)m𝐽21 + (m𝐽11 + m𝐽𝑇11)𝛿(𝑡 − 𝑡

′)
)
.

(C.7)

□

As a special case, by imposing the restraint specified by Eq. (2.16) such that m𝐽11 + m𝐽𝑇11 = 0

and m𝐽12 = −m𝐽𝑇21, the memory kernel m̃𝜃 (𝑡) recovers −m𝐽12em𝐽22𝑡m𝐽𝑇12 without the Markovian

part, and the second fluctuation-dissipation theorem recovers the standard form, i.e.,〈
m̃R(𝑡)m̃R(0)𝑇

〉
= 𝛽−1m̃𝜃 (𝑡). (C.8)
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APPENDIX D

INVARIANT PROBABILITY DENSITY FUNCTION

Proposition D.0.1. By choosing the white noise following Eq. (C.1), the reduced model (2.5)(2.6)

retains the invariant density function

𝜌e𝑞 (m𝑞,m𝑝,m𝜁) = exp [−𝛽𝑊 (m𝑞,m𝑝,m𝜁)] /
∫

exp [−𝛽𝑊 (m𝑞,m𝑝,m𝜁)] dm𝑞dm𝑝dm𝜁 .

(D.1)

Proof. By Eq. (C.1), the covariance of the white noise of the full extended system is given by

m𝐺 + m𝐺𝑇 = d𝑖𝑎𝑔(0,mΣmΣ𝑇 ). Accordingly, the Fokker-Plank equation follows

𝜕𝜌(m𝑧, 𝑡)
𝜕𝑡

= ∇ ·
(
−m𝐺∇𝑊 (m𝑧)𝜌(m𝑧, 𝑡) − 1

2
𝛽−1(m𝐺 + m𝐺𝑇 )∇𝜌(m𝑧, 𝑡)

)
, (D.2)

where 𝜌(m𝑧, 𝑡) represents the probability density function of the extended variables m𝑧 =

[m𝑞; m𝑝; m𝜁]. For 𝜌e𝑞 (m𝑞,m𝑝,m𝜁) ∝ exp [−𝛽𝑊 (m𝑞,m𝑝,m𝜁)], the RHS follows

∇ ·
(
𝛽−1m𝐺∇𝜌e𝑞 (m𝑧, 𝑡) −

1
2
𝛽−1(m𝐺 + m𝐺𝑇 )∇𝜌e𝑞 (m𝑧, 𝑡)

)
= 𝛽−1∇ ·

(
m𝐺𝐴∇𝜌e𝑞 (m𝑧, 𝑡)

)
≡ 0,

(D.3)

where the last identity holds because m𝐺𝐴 is anti-symmetric. □
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APPENDIX E

MEMORY KERNEL OF THE POLYMER MOLECULE SYSTEMS

Fig. E.1 shows the embedded matrix-valued kernels m𝜃 (𝑡) of the full MD and the 4D reduced

models of the polymer molecule system. Similar to the kernel in the Laplace space mΘ(𝜆) shown in

Fig. 2.6, the good agreement between the full MD and the reduced models verifies that the reduced

model can accurately retain the non-Markovian dynamics of the resolved variables.
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Figure E.1 (a–d) Components of the embedded matrix-valued kernel m𝜃 (𝑡) obtained from the full
MD and the four-dimensional reduced model of a polymer molecule system She et al. (2023).
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