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ABSTRACT

The push for cleaner energy sources, coupled with declining costs, has facilitated the massive

deployment of solar photovoltaic (PV) systems in electric grids worldwide. At the heart of

any PV system is the inverter, a device responsible for converting DC power captured by

solar cells into AC power suitable for grid use. In recent years, reliability concerns have

emerged regarding inverters, with multiple reports identifying central and string inverters

as the primary culprits in most forced outages in PV systems. Inverter failures significantly

hinder energy production, potentially reducing it to zero. Thus, estimating the reliability of

these devices is crucial for forecasting the long-term performance of PV systems.

In this thesis, we develop a state-space reliability model to characterize the failure be-

havior of string inverters, using a limited and heterogeneous failure dataset from residential

and commercial PV systems in the U.S. Despite the data constraints, the proposed model

successfully captures both decreasing and increasing failure rate behaviors observed in the

data. Additionally, we derive an exponential approximation of the model, enabling system-

level reliability evaluation via Markov Reward Models (MRM). To address the uncertainty

inherent in limited datasets, we adopt a Bayesian framework, which is better suited for un-

certainty quantification under data scarcity. This approach allows us to compute credible

intervals on expected energy production by propagating parameter uncertainty through the

MRM. Our findings indicate that, although parameter uncertainty is non-negligible, its im-

pact on expected long-term energy yield remains limited—primarily due to the relatively

fast replacement of inverters compared to their average time to failure.

Lastly, since the failure rate is an important quantity for reliability optimization and

risk assessment, we establish a method for detailed failure rate estimation, providing deeper

insights into the failure process. Following this approach, without relying on any major

assumptions, the model estimations confirm our assumptions of a bathtub-like failure rate

behavior.
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CHAPTER 1

INTRODUCTION

Electric grids are facing two important challenges, an ever-increasing demand for electricity

and higher pressure to reduce their reliance on fossil-based generation amid global warming

concerns. The combined effect of these two challenges, along with declining costs, is driving

the integration of more and more renewable energy resources (RERs) in an attempt to reduce

the carbon footprint associated with electricity generation and ensure sufficient supply to

meet the load. From the pool of RERs available, solar photovoltaic (PV) is the most widely

deployed.

According to the International Energy Association (IEA), in 2023 around 407–446 GW

of solar PV were installed globally. In the U.S. alone, 32 GW were installed, closing the year

with a cumulative installed capacity of 137.5 GW [3]. Utility-scale installations make up most

of the newly installed capacity, but residential installations have been growing steadily [4].

Commercial and residential PV systems give customers the opportunity of reducing their

bills, and have more control over their electric supply. However, as more of these systems

are installed, concerns about their reliability and how it can affect their expected perfor-

mance have become critical. Moreover, the inverter, one of the most critical components

of the system, has been deemed the most failure-prone [2, 5–8]. Since PV systems generate

electricity at no cost as long as there is sunlight, the amount of time it is fully functional

(i.e, its availability) has a direct impact on the returns of investing in these systems.

Reliability analysis of these systems requires improved models and comprehensive ap-

proaches that consider the effects of component failure, along with other significant factors

such as solar panel degradation. This thesis develops a state-space reliability model to char-

acterize the failure behavior of string inverters using data and integrates this model into

an analytical framework based on Markov Reward Models. A Bayesian approach facilitates

accounting for parameter uncertainty, making it possible to establish confidence bounds for

the expected energy production. Additionally, the thesis establishes a method for detailed
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Figure 1.1 Residential grid-tied PV system [2]

failure rate estimation, providing deeper insights into the failure process and confirming a

bathtub-like failure behavior.

1.1 Motivation & Challenges

A PV system is made up of several components, including solar panels, mounting struc-

tures, watt-meters, inverters, and protective devices. Most small PV systems are grid-tied,

meaning they operate connected to the electric grid. The basic configuration of a grid-tied

PV system is shown in Figure 1.1. The system design is determined by the type of inverter

used. Residential and commercial PV systems can be designed to work with string or mi-

croinverters, but they are typically designed to use string inverters because of their lower

cost [2].

Several studies have analyzed failure records of PV systems and concluded that inverters

are responsible for the majority of forced outages. In [7] failure data were collected by

Sandia National Laboratory from PV systems in the U.S. of various sizes and grouped in

four portfolios. Portfolio D consists of mostly small systems of up to 500 kW. In all portfolios,

inverter failures are the main cause of maintenance tickets, accounting for 50% of all failures

in portfolio D.

Gunda et al. [1] analyze a dataset of 55,000 inverter-related maintenance records and ap-

ply machine learning techniques to classify each entry into a distinct failure mode. However,

because of data constraints, the failure distributions provided are only for time until the
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first failure. The parameters of the distributions for some failure modes are shown in Table

1.1. The shape parameter of all distributions is less than one, which indicates a decreasing

likelihood of failure. It is worth noting that no information about the rating of inverters is

provided, and all systems under study were located in the U.S.

Table 1.1 Weibull parameters for annual failure rates reported in [1]

Inverter Subsystem Shape (α) Scale (β)
Communications 0.69 3.29
Ground Faults 0.77 3.60
Heat Mgmt. Systems 0.93 3.35
IGBTs 0.81 6.01

A study conducted by Golnas [5] analyzed energy production in 600 PV systems during a

period of 27 months and found that inverter-associated outages accounted for 36% of energy

not produced. Furthermore, a comparison between central-, string-, and microinverter-based

systems is done in terms of a normalized metric called tickets per inverter-year; showing string

systems to be far more reliable than central inverters, but having 3 to 4 times higher tickets

per inverter-year than microinverters.

The largest PV system failure database found in the literature is presented in [8]. The

dataset consists of 100,000 PV systems in the US and over 7 GWDC of total capacity, collected

for five years. Again, inverters make the top of the list in the number of failures for all

three system types (residential, commercial, and utility). However, the impact on energy

production of inverter failures is significantly higher in residential systems than in commercial

and utility systems. The authors argue that this is because of the closer supervision and

monitoring in larger systems. Additionally, residential systems may be leased by the property

owner, which means that the property and system owners need to coordinate repair schedules,

potentially increasing the time to resolve hardware issues.

A possible explanation why inverters fail so often is given in [9] and it is a consequence

of three factors. First, inverters have to carry out a multitude of functions with little to

no redundancy, and under harsh environmental conditions. Secondly, the pressure to reduce
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costs in inverters forces some manufacturers to rely on cheaper materials that may not provide

the required resistance to achieve the expected life of the component. Lastly, inverters are

operated through software that is sometimes updated remotely, and these updates can cause

malfunctions when not enough testing is carried out prior to rollout.

There is evidence in the literature to believe that inverters are the most fragile component

in PV systems, and their failures affect significantly energy production; this is true partic-

ularly for residential systems. When a string inverter fails, energy production is severely

hindered, even dropping to zero [1]. Therefore, accurate modeling of inverter failures is

crucial to estimate the reliability of PV systems. This not only will allow a better under-

standing of how they fail, but also to assess more accurately the impacts of reliability on the

economics of PV systems [2].

Reliability studies concerning PV systems have long relied on two kinds of analysis,

analytical and simulation-based. The simulation-based approach is conducted by means

of a Monte Carlo Simulation (MCS), easily accommodating any effects that could not be

modeled analytically. Regardless of this, accurate reliability models are still required to

obtain correct results, which has been difficult to achieve in power systems because of the

lack of data [10]. However, only steady-state numerical results can be obtained from MCS.

Ignoring transient behavior can lead to an under- or overestimation of the risk associated

with system failure [11].

Most analytical models used for PV system reliability analysis rely on Continuous-time

Markov Chains (CTMCs) to derive expressions for system availability and other performance

metrics [12–14]. An inherent assumption of CTMCs is that the failure rate of components

remains constant. CTMCs are commonplace in power systems reliability because failure data

is usually presented as Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR).

However, assuming a constant failure rate limits the capacity of these models to account for

the impacts of aging or the occurrence of premature failures, potentially leading to inaccurate

estimations of system availability [10].
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The constant failure rate assumption may not be appropriate for inverters for two reasons.

First, inverters, as any other power converter, include capacitors and power switches as their

building blocks, which are known to wear and fail prematurely, causing their failure rate

to be non-constant [10]. Secondly, previous research has analyzed inverter failure data and

estimated distributions for various failure modes that have time-varying failure rates [1, 7].

As seen in Table 1.1, the shape parameter of these distributions indicates that inverters are

less likely to fail later on than just after being put to operation; an indication of decreasing

failure rate.

The impacts of non-constant failure rate behavior have been addressed extensively in

the literature of power system reliability to model the long-term effects of aging [15–17]

and account for component condition [18–20]. These works focus more on the long-term

performance rather than the dynamic failure behavior, which also provides a lot of insights

into how the component is failing. Nevertheless, very few studies in power systems have

examined components where failures are followed by replacements, such as inverters.

In [21], the authors propose using a Semi-Markov Process (SMP) to model the time-

varying failure rate due to aging, along with a CTMC for random failures. They calculate the

total component availability as the product of the individual availabilities. The SMP employs

a Weibull distribution for time to failure, and both models assume an exponential time to

repair. While the SMP demonstrates high accuracy, it requires numerically solving a system

of integral equations in the time domain, which makes it unsuitable for an analytical whole-

system analysis. Lifetime data for the models were derived from Stress-Strength Analysis

(SSA) and electrothermal modeling.

Sangwongwanich and Blaabjerg [22] approach the reliability modelling of fault-tolerant

power converters using the method of stages. The method consists in approximating the

Weibull distribution using an Erlang distribution. The resulting model comprises several

stages of constant failure rate states that behave as a Weibull distribution. Even though

it is possible to approximate any distribution using the method of stages, difficulties will
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arise when the failure data being dealt with exhibits both increasing and decreasing failure

rates; only increasing failure rate data is present because the authors generate the lifetime

data using electrothermal modeling, which is meant to account only for aging—an increasing

failure rate process.

Peyghami et al. [10] compares CTMC, method of stages, and SMP to model the avail-

ability of components subject to increasing, constant, and decreasing failure rates. Although

the method of stages approximates wear-out failures very well, it behaves similarly to CTMC

when modeling premature failures, ignoring the sharp decrease in availability as a result of

a decreasing failure rate. The results show that only SMP accurately captures the behavior

of decreasing failure rates. However, it has the same limitations as the SMP in [21]. The

analyses shown in this work are theoretical, and no actual failure distribution development

is undertaken.

1.2 Thesis Contributions

Up until now, reliability modeling of inverters has primarily focused on those used in

large-scale installations, which differ from those in smaller systems. The reasons for this

focus include the lack of sufficient data to derive a robust model and the perceived lower

importance of high reliability in small systems. However, as mentioned in [2, 8], reliability

can significantly impact the long-term performance of small systems due to the typical delays

in resolving failures, making it imperative to develop accurate models from data that can

account for their actual behavior.

Previous research has often assumed that there is no decreasing failure rate stage in

the life of power converters, which may not be accurate for inverters. Moreover, critical

aspects of reliability modeling, such as parameter uncertainty and distribution fitting, have

gone unnoticed, possibly because the focus has been on generating large samples of lifetime

data from first principles, which cannot account for hidden defects responsible for premature

failures.

In order to bridge the existing gaps in the literature, the contributions of this work can
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be summarized as follows:

• We propose a methodology to develop a data-driven state-space reliability model tai-

lored for equipment that exhibits both increasing and decreasing failure rates.

• The methodology is applied to a limited dataset of non-repairable string inverter fail-

ures collected from residential and commercial PV systems in the U.S., where data

scarcity and variability motivate the use of flexible, probabilistic modeling techniques.

• We derive an exponential approximation for the inverter model, facilitating the analyt-

ical comparison of expected energy production between systems designed with string

and microinverters.

• A Bayesian approach is adopted to quantify the uncertainty of parameter estimates,

seamlessly integrated into a reliability analysis based on Markov Reward Models.

• Leveraging Stan, we propose a detailed failure rate estimation procedure, providing

estimates with a granularity of up to 50 days.

1.3 Thesis organization

The remainder of the thesis is organized as follows. Chapter 2 describes the reliability

modeling of small PV systems. Chapter 3 explains the concepts concerning failure data anal-

ysis and describes the methodology used to develop the inverter reliability model. Chapter

4 introduces the concept of Markov Regeneration Process and Markov Reward Models, and

provides the mathematical basis for the exponential approximation of the inverter model.

Chapter 5 adopts a Bayesian approach to the failure data analysis. Lastly, Chapter 6 presents

the conclusions.
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CHAPTER 2

PV SYSTEM RELIABILITY

In this chapter, we analyze small PV systems from a reliability perspective, modeling them

as multistate systems. We narrow our focus to residential PV systems for simplicity of

design; however, the concepts presented here can be extended to commercial systems. We

begin by providing the necessary definitions to formalize the analysis as multistate systems.

Next, we examine the components of both types of system designs found in residential PV

systems—string inverter and microinverter systems—and discuss their respective reliability

models. Finally, the reliability of the system is graphically represented using a reliability

block diagram.

2.1 PV system as a multistate system

It is possible to represent any system composed of binary or multistate components as

a multistate system (MSS), since the overall performance or efficiency level of the system

depends on the availability of its constituent units. If the MSS can occupy K distinct

states, and gi denotes the total system performance in state i (i ∈ 1, . . . , K), then the MSS

performance rate at time t is a random variable taking values in the set g = g1, . . . , gK [23].

Different procedures have been employed in the reliability literature to analyze MSS, and

they can be classified into state-space and non-state-space methods. The former are typically

used to analyze non-repairable MSS, although, under the assumption of independent failures

and repairs, they can be used for repairable systems as well. These methods include reliability

block diagram, reliability graph, fault-tree analysis, and state-space enumeration. On the

other hand, state-space methods have higher modeling power and are not limited by the

assumption of independent failures and repairs. Continuous-time Markov Chains, Semi-

Markov Process, and Petri nets are among the most widely used state-space methods [24].

To develop a MSS reliability model, it is necessary to understand how the individual

components behave and how they affect the performance of the system [23]. Therefore, reli-

ability models for each component must be devised and a analysis method chosen accordingly.
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Grid-tied residential PV systems are constituted by [25]:

• Solar panels, an interconnected package of solar cells in charge of converting sunlight

into DC electricity.

• Inverter, recognized as the brain of the installation, takes DC electricity coming from

the panels and converts it into AC electricity that can be used to feed loads or feed

back to the grid.

• Energy meter, keeps track of the energy fed back to the grid and how much is being

drawn from it; there could be two energy meters, depending on the compensation

scheme used.

• Wiring, electrical boxes and protective devices, provide connectivity between system

components and protection against faults.

We will now focus on each component of the PV system, its reliability model, and how

system performance is affected once it fails.

2.1.1 Solar panels

In string systems, solar panels are connected in series to form a string. Each string is

then connected to one optimizer, whose job is to maximize the energy production of the

string. In contrast, in microinverter systems, each solar panel has its own optimizer, and

the production of the panels is aggregated on an AC bus. The way the panels are connected

determines the impact of their failures on the system performance. If a solar panel in a

string fails, the whole string fails unless there is a bypass diode that provides an alternate

path for the current. In contrast, if a solar panel in a microinverter system fails, only its

output would be lost and the rest of the system continues functioning [26].

Past research has found that solar panels seldom suffer from failures, making them one

of the most reliable components in the PV system [1, 5, 7]. In [8], the share of solar panel
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failures was about 0.1% of the total hardware failures. However, since there are many solar

panels in a system, the impact of their failures needs to be accounted for.

Therefore, a simple two-state model with an exponential time to failure for each solar

panel is sufficient to describe their behavior; these models are commonplace in the literature

[12, 13, 25–27]. For the string systems in this work, we will assume that a bypass diode is

present and the failure of one panel does not cause the failure of the entire string. By doing

so, and given that all solar panels in a system have the same rating, the different states

associated with solar panel failures can be grouped to reduce the number of system states.

For example, a system with two solar panels where each has two states, functional and failed,

would have a total of three states instead of four.

The failure rate of solar panels is drawn from [28], where the authors present a mean

time to failure of 65,789,474 hours or 7,510.2 years.

2.1.2 Inverters

Inverters are responsible for converting DC into AC, which makes them indispensable for

the operation of the PV system. Similar to solar panels, the way the system is designed and

wired determines how inverter failures will impact the system. Failure of central, string, and

microinverters results in the loss of energy production of all panels connected to them. This

behavior suggests a kind of series dependence between solar panels and inverters, regardless

of what kind of inverter we are dealing with, and only differs by the aggregated energy

production lost, being noticeably lower for microinverter failures.

Microinverters are highly reliable, with Enphase advertising a time between failures of 600

years [29]. This duration is still far from that of solar panels, but is significantly longer than

that of string and central inverters. Furthermore, field studies confirm that microinverters

fail significantly less frequently than central and string inverters [8]. The reason for why

microinverters are more reliable is that their components have significantly lower power

handling requirements than string and central inverters [2]. Consequently, as for solar panels,

using a simple two-state model with an exponential time to failure is justified.
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Unlike microinverters, string and central inverters are prone to failures, and their failures

result in the loss of production from several solar panels, rendering crucial having an accurate

reliability model. We will address the reliability model of string inverters in the next chapter.

2.1.3 Balance-of-system components

In well-designed and properly installed systems, failures originating from energy meters,

wiring, disconnects, and other hardware required to transfer power are unlikely [8]. Lastly,

any grid failures would not significantly impact the long-term performance of PV systems

because most outages are resolved in a few hours, at most [30]. Furthermore, grid and

energy meter failures will affect the reliability of the system in the same way regardless

of its architecture, making it possible to compare the reliability of two different inverter

configurations without the need of including them in the model.

Therefore, for the reliability diagram of the system, only inverter and solar panel failures

will be considered.

2.2 Reliability block diagram

The PV system is decomposed into several subsystems. The way of decomposing the sys-

tem has to comply with the dependence between components and how repairs are carried out.

For string systems, we can decompose them into subsystems comprising one string inverter

and the solar panels connected to it. Only the inverter performance is usually monitored in

these systems, which leaves solar panel failures to be addressed during maintenance visits.

Conversely, when inverter failures happen, the system owner is notified by the monitoring

system, prompting its repair. Under these assumptions, we can consider each subsystem as

independent.

Microinverter systems are more reliable, and information about their performance is usu-

ally available, ensuring that the repair procedure for both, microinverter and solar panel, can

be initiated promptly. Therefore, these systems can be decomposed into multiple subsystems

of a microinverter and the panels connected to it.

From the way we have defined subsystems, as long as there is one solar panel functioning
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and the inverter or microinverter to which it is connected has not failed, the system can

produce electricity. Thus, each subsystem is aggregated in parallel to build the complete

representation of the PV system. If a two-state model corresponding to DC or AC discon-

nects, energy meter, or grid failures were to be added, it would be in series with the parallel

connection of the subsystems because, if any of these fail, energy production will drop to

zero. The reliability diagram of the string inverter or microinverter subsystem is shown in

Figure 2.1.

Figure 2.1 Reliability block diagram of subsystems
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CHAPTER 3

RELIABILITY MODELING OF INVERTERS

In this chapter, we describe the reliability modeling of string inverters based on failure data.

This approach, known as the actuarial approach, assumes that all relevant information about

the failure of a component is captured by a time-to-failure distribution f(t). From f(t),

reliability characteristics such as the failure rate λ(t) can be directly derived.

We analyze the failure data and propose a piecewise exponential distribution to model

the observed failures. This distribution also connects with the concept of state-space mod-

eling, which enables the development of a reliability model. Finally, we present numerical

results that highlight the importance of accounting for the time-varying failure rate behavior

exhibited by inverters.

3.1 Developing reliability models

Reliability modeling of most components, except those present in safety-critical systems,

involves the way they fail and how they are brought back to operation upon failure. In our

case, the failure of an inverter leads to its subsequent replacement; thus, the component

goes back to a good-as-new condition. Under this scenario, the failure-repair process can

be considered an alternating renewal process. Therefore, the failure and repair distributions

can be established independently [24].

To obtain the failure distribution of a component, it is necessary to carry out life tests,

where the time until failure of each component being tested is recorded. However, in many

cases, the lifetimes of the components are observed while they are in operation; this kind of

measurement campaign is referred to as field data collection. Moreover, when failures are

recorded from components in operation, a significant portion of them will not fail before the

end of data collection, and instead of a lifetime value, their potential lifetime is obtained.

This is called censored data in the reliability literature [31].

The procedure to fit failure models recommended in most reliability textbooks is as

follows [32]:
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1. Construct a histogram of the failures.

2. Calculate descriptive statistics.

3. Assess the empirical failure rate

4. Make use of any prior knowledge of the failure process

5. Select suitable candidate models

6. Estimate parameters

7. Perform a goodness-of-fit test

Steps 1 through 4 provide insights to narrow down the number of candidate distributions

that will be considered in step 5. Step 6 consists of estimating the parameters of each

candidate model, usually by means of maximum likelihood estimation, and judging them

according to accuracy metrics such as the Akaike Information Criterion. Finally, in step 7,

it is determined whether it is reasonable to assume the data came from the hypothesized

distribution [31,32].

A reliability model of the component can be developed from the estimated failure distri-

bution using different approaches. The simplest is to use a Semi-Markov Process where the

sojourn time in the up state is distributed according to the failure distribution estimated,

and the state space model consists of only two states (up and down) [10]. An alternative

approach is to use a CTMC with two or more transient and one absorbing states to ap-

proximate the non-exponential failure distribution. The preceding definition corresponds

to a family of distributions called phase-type [10, 22, 24]. Some authors have shown that

PH approximations are not so accurate, especially in the transient period, when there is a

decreasing failure rate behavior present [10].

3.2 Description of the failure database

Data was collected from residential and commercial PV systems located in the Midwest

part of the U.S. The earliest installation date of the systems under study was 2013, and
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the capacity of the inverters ranges from 5 to 100 kWac. A total of 193 failures were reg-

istered. Failures were identified from current and voltage signals, when possible, and from

the monitoring system component changelog when there was no communication during the

failure.

The histogram of the failures is depicted in Figure 3.1; more than half of the failures

occurred within 1000 days, while only 28 failures were recorded beyond 2400 days.

Figure 3.1 Histogram of failures

The failure database is complemented by censored data from 234 inverters, which are

currently communicating with the monitoring platform. The censored data in this case is

multiply right-censored, that is, each component was placed in operation at different times

and only some of them failed while the data was being collected [32].

3.3 Non-parametric models

The procedure of fitting a failure distribution to data can be less of trial and error if there

is some indication of the underlying failure behavior embedded in the data. In light of this,

non-parametric representations of the failure data provide valuable insights into choosing
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better models. The only assumptions made by these representations is that the cumulative

distribution function (CDF), F (t), is continuous and monotonically increasing [31].

Two important non-parametric representations will be discussed next, the Kaplan-Meier

estimator and the cumulative failure rate.

3.3.1 Kaplan-Meier estimator

The Kaplan-Meier estimator provides an estimate of the survivor function R(t) from

censored data [31]. The Kaplan-Meier estimator is defined as:

R̂(t) =
∏
j∈Jt

nj − 1

nj

(3.1)

where R̂(t) is the estimate of the survival function at time t, t(j) represents a failure time,

Jt denotes the set of all indices j where t(j) < t, and nj represents the number of items

functioning and in observation immediately before time t(j), j = 1, 2, ..., n.

When the largest lifetime recorded is censored, the estimator is said to be undefined after

the last registered failure.

3.3.2 Cumulative failure rate

The Cumulative failure rate, also Nelson-Aalen estimator, is used to empirically deter-

mine the cumulative failure rate, Z(t), in the presence of censored data [31]. The estimator

is defined as:

Ẑ(t) =
∑
j∈Jt

1

nj

(3.2)

Z(t) can be interpreted as the accumulation of the failure rate over time, and its concavity

indicates the shape of failure rate. If Z(t) is concave upward, there is an indication of

increasing failure rate, and downward concavity indicates decreasing failure rate. A bathtub

shaped curve would be seeing as Z(t) being concave downward followed by a transition to a

concave upward section.

From the cumulative failure rate, it is possible to ascertain if the data could be well

represented by a Weibull distribution if it has a decreasing failure rate. Alternatively, by a
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normal distribution, lognormal, or a Weibull if it has an increasing failure rate [32]. However,

it is not possible to estimate the numerical value of the failure rate using this estimator.

3.3.3 Non-parametric analysis of the data

Figure 3.2 depicts a Kaplan-Meier estimate that can be thought of as three lines with

different slopes. The changes in slope occur at around 1100 and 2500 days. The cumulative

failure rate depicted in Figure 3.3 initially has a concave downward section, but suddenly

changes to a linear section around 2500 days. The former is an indication of a decreasing

failure rate, agreeing with what is shown in Figure 3.1. The latter, on the contrary, is more

complicated to analyze because of the lack of sufficient data beyond 2500 days. Although,

it is clear that there are two different failure rate behaviors, which is not easy to model

using regular continuous distributions. We will show that it is possible to model this kind

of behavior using a piecewise exponential distribution.

Figure 3.2 Kaplan-Meier estimate
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Figure 3.3 Cumulative failure rate

3.4 Piecewise exponential distribution

A random variable T is piecewise exponentially (PWE) distributed if its hazard rate

function is piecewise constant with a total of r change points dk, where 1 ≤ k ≤ r [33]. The

hazard and survivor function are given by equations 3.3 and 3.4, respectively.

h(t) =



λ1, t < d1

λ2, d1 ≤ t < d2

...

λr+1, t ≥ dr

(3.3)

S(t) =



e−λ1t, t < d1

e(λ2−λ1)d1−λ2t, d1 ≤ t < d2

...

e[
∑r

i=1(λi+1−λi)di]−λr+1t, t ≥ dr

(3.4)
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The parameter estimation process of the PWE distribution is usually done using the

maximum likelihood estimator, and it consists of determining the location of the change

points and the hazard rates. If the change points are known, the likelihood function becomes

smooth and the hazard rates can be found solving the maximization problem. On the other

hand, when the change points are unknown, the estimation can be conducted by brute force

or by fitting lines to the empiric survivor function plotted in logarithmic scale [33]. A brute

force approach involves assuming a number of change points and estimating parameters

for numerous combinations of possible locations, which can be tedious when several change

points are considered.

In this work, the change points will be determined visually from the survivor function

plotted in logarithmic scale.

3.5 Maximum likelihood estimator

The Maximum Likelihood Estimator (MLE) of any parametric distribution f(θ) is found

by determining the parameter values (θ1, . . ., θk) that maximize the likelihood function [32].

The likelihood function is given by equation 3.5.

L(θ1, . . . , θk) =
n∏

i=1

f(ti | θ1, . . . , θk) (3.5)

where i = 1, 2, 3, ..., n are the indices corresponding to the number of failure observations.

Due to the multiplicative nature of equation 3.5 it is easier to find the parameters that

maximize the logarithm of the likelihood function.

Equation 3.5 is slightly modified to take into account multiply censored observations,

resulting in equation 3.6. The term R(ti; θ) is added to find the set of parameters that

maximize the reliability function for the censored observations.

L(θ) =
∏
i∈U

f(ti; θ)
∏
i∈C

R(ti; θ) (3.6)

where U and C are the set of indices corresponding to failure and censored observations,

respectively.
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3.6 Fitting failure distributions

In this section, we estimate the parameters of different failure distributions and assess

how well each fits the data. The parameter identification is done using lifelines library in

Python.

For the PWE distribution, it is necessary to identify the change points. In Figure 3.4,

the Kaplan-Meier estimate is plotted with the vertical axis in logarithmic scale. Initially, we

identified two changes in slope, at 1100 and 2500 days, which are the red dots in Figure 3.4.

However, the best fit found was when two more change points are added, at 130 and 2900

days, depicted as green dots in Figure 3.4.

Figure 3.4 Visual identification of change points

Now, we compare distributions to model the data. A qualitative fit assessment is provided

by Figure 3.5, where the survivor function of each estimated distribution is compared to the

Kaplan-Meier estimate. It can be seen that the PWE distribution is the only whose 95%

confidence bounds enclose completely the Kaplan-Meier estimate, a visual indication of a

good fit. Quantitatively, the quality of fit can be assessed using the Akaike Information
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Criterion (AIC), which is presented in Table 3.1; the PWE distribution achieves the lowest

AIC value and is therefore the best model among the six proposed.

Table 3.1 Comparison of distributions according to AIC

Weibull Exponential Lognormal
3496 3500 3520

Loglogistic PWE Generalized gamma
3506 3470 3491

The Walt test is used to perform a goodness-of-fit test of the parameters of the PWE

distribution. The p-values obtained for each parameter of the distribution are smaller than

0.05, which means that it is possible to reject the null hypothesis that each rate equals the

baseline value of 1. In other words, the rates are statistically significant.

3.7 Proposed model

Reliability literature has consistently favored state-space modeling over non-state-space

approaches, as it offers greater modeling power and the ability to represent dependencies

among various components of a system [34]. Therefore, if the model is meant to be used for

a whole-system analysis where there could be dependencies between components, a state-

space modeling approach should be adopted.

We propose a state-space reliability model where the PWE distribution becomes a se-

quence of states, and use a Semi-Markov process as model formalism to describe its dynamic

behavior. In the following subsections, we will present the mathematical basis of our ap-

proach.

3.7.1 Semi-Markov process

A Semi-Markov process is a generalization of the CTMC where the exponentially dis-

tributed sojourn time requirement is relaxed, but the process still follows the Markov prop-

erty [24].

The SMP is completely characterized by its kernel matrix Q(t) and the initial state of the

process. Each element Qij(t) represents the probability of a one-step transition from state i
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Figure 3.5 Survivor function of each failure distribution estimated
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to state j during the interval [0, t]. Considering a scenario where a process is in state 0 and

can move to two different states (1 and 2), Q01 can be found by applying equation 3.7.

Q01(t) = Pr {(T0,1 ≤ t) ∩ (T0,2 > t)} (3.7)

where Pr{·} indicates the probability of the event enclosed in the curly brackets, T0,1 and

T0,2 are random variables that denote the time to transition from state 0 to states 1 and 2,

respectively.

The unconditional sojourn time distribution in state i can be obtained from Q(t) using

equation 3.8.

Fi(t) =
K∑
j=1

Qij(t) (3.8)

where j = 1, 2, ..., K denote the system states.

The conditional time-dependent probabilities can be found by solving the following sys-

tem of integral equations [24]:

θij(t) = δij [1− Fi(t)] +
K∑
k=1

∫ t

0

dQik(τ)

dτ
θkj(t− τ)dτ (3.9)

where δij is an indicator variable that evaluates to 0 if i ̸= j, and 1 if i = j. The term θij(t)

reads as the probability that the process is in state j at time t, given that the process started

from state i.

3.7.2 Deriving the state-space model

The PWE distribution can be viewed as a sequence of J transient states, where J = r+1,

and one absorbing state F . From each transient state, except the last state in the sequence,

it is possible to transition toward the failure state or to the next state in the sequence.

The time until a transition to failure TiF , i = 1, 2, . . . , J , is exponentially distributed with

parameter λk, corresponding to the k-th interval of the PWE distribution, defined between

the change points dk − dk−1. The CDF of TiF is denoted by equation 3.10. Similarly, the
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time until a transition to the next state in the sequence Tij, j = i+ 1, is deterministic with

a CDF given by equation 3.11.

FiF (t) =


0, t < 0,

1− e−λkt, t ≥ 0.

(3.10)

Fij(t) =


0, t < Tk,

1, t ≥ Tk.

(3.11)

where Tk = dk − dk−1. When k = 1, Tk = d1 Since the process can only start from the first

state of the sequence, the probabilities of interest have the form θ1j(t).

3.7.3 State probabilities

The probability of being in any state at time t can be found by solving equation 3.9 in

Laplace domain. These equations can be written in matrix form as equation 3.12 [24].

θ(s) = (I−Q(s))−1

(
1

s
I− F(s)

)
. (3.12)

where:

θij(s) =

∫ ∞

0

e−stθij(t) dt, (3.13)

Qik(s) =

∫ ∞

0

e−st dQik(t), (3.14)

Fi(s) =

∫ ∞

0

e−stFi(t) dt. (3.15)

To obtain the time-domain expression of θ(s), the inverse Laplace operator is applied.

It may not be possible to obtain a close form solution for θ(t); however, the integral that

defines the inverse Laplace transform can be numerically evaluated.

Without a transition out of the failure state, the state probabilities for the SMP are

nonzero only during the interval where the process could certainly have reached that state,

and no transition to the next state could have occurred. Thus, the individual time-dependent
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probabilities have no meaning in this case. However, adding the probabilities of all transient

states yields the survivor function.

The survivor function is derived analytically by solving the system of equations in (3.16)

because the singularity of Q(t) when there is no transition out of failure prohibits the use of

equation 3.12.


θjF (s) = sQj(j+1)(s)θ(j+1)F (s) +Q(j+1)F (s)

...

θNF (s) = QNF (s)

(3.16)

where j = 1, . . . , J − 1.

The equations can be back-substituted to obtain an expression for θ1F (s) solely in terms

of the complex Laplace-domain variable s. Thereafter, the inverse Laplace operator is applied

to obtain the time-domain expression.

3.8 Results and discussion

The PWE distribution fitted in Section 3.6 can be converted into a SMP with five tran-

sient states and one absorbing state. The matrix Q(t) has dimensions 6 × 6 and the initial

state is the first state of the sequence. The state-space model is represented by the diagram

in Figure 3.6.

Solving equation 3.16 yields a time-domain expression consisting of exponential terms

multiplied by Heaviside functions, which describe the same survivor function as the fitted

PWE distribution. Thus, the failure process is accurately reproduced by the SMP.

Next, we want to use the model to find the availability of the inverter. To do this,

we include a transition out of the failure state. The time to restoration is assumed to

follow an exponential distribution with rate µ. In this scenario, Q(t) is full rank, and it is

possible to apply equation 3.12. The element θ16(s), which represents the unavailability of

the system, is extracted and its time-domain representation is obtained numerically using

Euler’s method [35]. The availability of the proposed model, along with that of a two-state
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Figure 3.6 Proposed reliability model

Figure 3.7 System availability

Markov model, is plotted in Figure 3.7. The two-state model failure rate is obtained from

the MLE of an exponential distribution from the data.

As shown in Figure 3.7, the availability of the proposed model initially decreases sharply,

reflecting a high likelihood of premature failures, which implies a decreasing failure rate.

This is followed by an increase in availability and a subsequent dip—suggesting a period of
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rising failure rates—before finally stabilizing at a steady-state value. The two decreasing

epochs in availability demonstrate the model’s capability to capture the underlying patterns

of varying failure rates in the data, as confirmed by the cumulative failure rate. In contrast,

the two-state CTMCmodel demonstrates a much simpler behavior, where availability quickly

stabilizes at a steady state.

As the mean time to repair increases, the error incurred by using a two-state model

becomes more significant. This may not be an issue for large-scale facilities, but it can

impact the economic feasibility of systems used in residential and commercial settings, which

are not monitored as closely and where repairs can take longer [8].

The accuracy of the inverter model comes with an important caveat: conducting a whole-

system analysis with our model requires the use of a modeling formalism capable of main-

taining some memory of where the process is in time, because the model is not memoryless.

To illustrate this, let us consider a system comprising one inverter and one solar panel; here

we assume the solar panel to be a two-state exponential model. The process starts from the

state 1 of the inverter and the up state of the solar panel. If the solar panel fails, the clock

resets and the progress towards state 2 of the sequence is lost. After the failure of the solar

panel, the inverter will restart in state 1 as if no time has elapsed, leading to an incorrect

representation of its failure behavior.

In the next chapter, we will introduce a modeling formalism capable of dealing with the

non-memoryless nature of our model, called Markov Regenerative Models.
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CHAPTER 4

SUBSYSTEM RELIABILITY MODEL

Up until now, we have discussed the reliability of PV systems and reduced it to several

subsystems connected in parallel, each consisting of solar panels and the inverter to which

they are connected. In the previous chapter, we developed a reliability model for string

inverters that captures both premature and wear-out failures, and discussed why the model

structure cannot be directly applied to a system analysis under the Semi-Markov framework.

In this chapter, we introduce Markov Regenerative Process and elaborate on how to apply

it to the solar panel-inverter subsystem. Thereafter, we utilize phase-type distributions to

find an exponential representation of the string inverter model. Lastly, we describe Markov

Reward Process and its use for estimating energy yield of PV systems.

4.1 Markov Regenerative Process

Markov Regenerative Processes (MRGPs) is a class of stochastic models that can be used

to model processes in which there are transitions that do not adhere to the Markov property.

MRGPs are a generalization of many stochastic models such as SMP and CTMC. The key

concept behind MRGPs is that the Markov property holds for a certain group of states called

regeneration states [24].

The embedded time points {Tn, n ≥ 0} are the regeneration time points (RTP) of the

system, that is, the process resets every time it reaches these points. To define a MRGP, two

matrices need to be specified: global K(t) and local E(t) kernel matrices. The global kernel

describes the occurrence of the next RTP, and can be formulated as equation 4.1. On the

other hand, the local kernel expresses the state transitions within the regeneration interval,

before the process hits the next RTP; each element of E(t) is computed using the expression

in equation 4.2.

Kij(t) = P{Y1 = j, T1 ≤ t|Y0 = i} (4.1)

Eij(t) = P{Z(t) = j, T1 > t|Y0 = i} (4.2)
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where Z(t) is the state of the process at time t, and i, j are states within the state space S.

Using the global and local kernels, the transition probability over (0, t] can be found by

solving the generalized Markov Renewal Equation, shown in equation 4.3.

Vij(t) = Eij(t) +
∑
k∈S

∫ t

0

dKik(y)Vkj(t− y). (4.3)

where Vij(t) is the transition probability.

As for SMPs, equation (4.3) can be converted to the Laplace domain to obtain a matrix

equation that can be solved analytically if the kernels can be expressed in closed form. The

resulting matrix equation is denoted by equation 4.4.

V̂ (s) = [I − K̂(s)]−1Ê(s) (4.4)

Solving equation 4.4 involves numerous symbolic operations just to find V̂ (s), which we

will need to numerically integrate to find V (t). This procedure becomes computationally

expensive as the state space grows, necessitating an alternative solution approach. A more

efficient way of solving equation 4.3 is to use an exponential approximation of the inverter

model so that the subsystem model can be expressed as a CTMC, which are easier to analyze

than MRGPs [24].

4.2 Exponential approximation

Finding an exponential approximation of a non-exponential stochastic process is called

Markovization. This procedure entails replacing the non-exponential distribution with a

phase-type distribution, representable as a CTMC with one absorbing state. Furthermore,

any discrete state non-exponential stochastic process can be approximated by an equivalent

CTMC over an expanded state space using phase-type distributions [24].

4.2.1 Phase-type distributions

Phase-type (PH) distributions are employed to model non-exponential distributions as

the time until absorption of a Markov process with one absorbing state. PH distributions of

order n can approximate as closely as desired any distribution function [24].

The components of a PH distribution are:
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1. State Space: A set of transient states 1, 2, ..., n and one absorbing state.

2. Initial Probability Vector: The probability of starting in each transient state is given

by α.

3. Sub-Generator Matrix (T): The matrix represents the transition rates between the

transient states.

Different techniques have been proposed in the literature for fitting PH distributions:

Fitting mixture of Erlangs with moment-matching techniques, MLE, and Expected Maxi-

mization with various classes of PH distributions. Computer programs such as PhFit have

been developed to fit continuous distributions and experimental data to PH distributions [24].

4.2.2 Deterministic transitions

The inverter model developed in the previous chapter exhibits non-exponential behavior

due to deterministic transitions between success states. This deterministic time to transition

can be modeled as a PH distribution by representing it as an Erlang random variable, which

is the sum of k i.i.d. exponential random variables. Being the sum of k exponential random

variables with the same rate parameter means that it is equivalent to a succession of k

exponential stages, all with the same rate. The mean and coefficient of variation of an

Erlang random variable are given in equations 4.5 and 4.6, respectively.

µ = k/λ (4.5)

CV = 1/
√
k (4.6)

where k is the number of states of the exponential approximation and λ is the transition

rate between states.

Equation 4.6 reveals an interesting property of the exponential approximation by means

of an Erlang: The quality of the approximation depends on the number of states. Ideally, a

deterministic variable has zero variance or an infinite coefficient of variation. However, for
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practical purposes, accurate representations can be achieved without the need for too many

states [36].

To find the exponential approximation, both the CV or k, and the mean need to be

specified. The mean simply represents the value at which the transition occurs, and the CV

or k is set to achieve the desired accuracy. Subsequently, the goodness of the approximation

can be assessed by plotting the CDF.

The CDF of the exponential approximation can be found by solving the Kolmogorov

differential equation for the transition rate matrix (A) and initial state vectors (p0), given in

equations 4.7 and 4.8, respectively.

A =

Qu aT

0 0

 , (4.7)

p0 =

[
1 0 · · · 0

]
(4.8)

where Qu is a k × k matrix and each of its rows has only two nonzero values, aii = −λ and

ai,i+1 = λ. The column vector aT is found as −Que
T , where eT is a column vector with all

entries equal to 1. The initial state vector p0 is a 1× (k + 1) vector.

The Kolmogorov differential equation is written as [23]:

dp(t)

dt
= p(t)A (4.9)

Figure 4.1 depicts the exponential approximation of a deterministic transition at 100 days

for different values of CV. As denoted by equation 4.6, in Figure 4.1 we can see that the

accuracy of the approximation increases with decreasing CV or increasing number of states.

4.2.3 Exponential inverter model

Now, we elucidate the procedure to find the exponential approximation of the inverter

model. First, we find the exponential approximation for each deterministic transition. Then,

we aggregate these approximations to form the state-space of the inverter model. Figure 4.2

depicts the transition rate diagram of the exponential inverter model. Each state in the same
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Figure 4.1 Exponential approximation of a deterministic transition for different coefficients
of variation

group has a transition to failure given by the PWE distribution, whereas the transition from

one transient state to the next is given by the rate determined through the deterministic

approximation.

Assuming k = 25 for the first and last transition, and k = 100 for the rest, we find a

good compromise between accuracy and complexity. Figure 4.3 shows the availability of both

the exponential model and the SMP. The maximum difference between the two responses is

0.3%. Therefore, we can conclude that the exponential approximation does a very good job

at capturing the non-exponential behavior of the inverter model.

4.3 Subsystem model

Now that we have found an exponential approximation of the inverter model, we can

create a subsystem model. The transition rate diagram depicted in Figure 4.4 shows the

state space of the subsystem model with string inverter and the different failure transitions

between states. Horizontal transitions and transitions denote the progression through each

state of the inverter model, whereas vertical transitions denote changes in the number of
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Figure 4.2 Exponential inverter model

Figure 4.3 Availability of both inverter models
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solar panels functioning. From each row to the next, the system moves with a transition

rate given in equation 4.10.

λi = ni × λsp for i = 1, . . . , N (4.10)

where ni is number of solar panels functioning in state i and λsp is the failure rate of a single

solar panel.

Figure 4.4 Subsystem model with string inverter

Figure 4.5 Subsystem model with microinverter
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The repair transitions are not shown in the diagram. Solar panels repairs take place only

during scheduled maintenance. This would be represented by a transition from each state

where there is a failed solar panel to the first state of the corresponding column in which

is located, with rate given by the mean time to maintenance. In case of an inverter repair,

the process moves horizontally to the left, arriving at the first state of the row. The rate

at which this transition occurs is determined by how long it takes to solve inverter-related

hardware issues.

The subsystem model with microinverter is shown in Figure 4.5. Since information at

component level is available, the failure of the solar panels or the microinverter triggers a

repair action that will restore the system to the state where all components are functional.

All repair transitions are equal and its rate is given by the time it takes to repair the inverter.

4.4 Markov Reward Models

A Markov Reward Model (MRM) or Markov Reward Process is a mathematical frame-

work to analyze stochastic systems that adhere to the Markov property and accumulate

some prize or reward by staying in a state or transiting to another [23]. In the context of a

PV system, MRMs provide a flexible framework that we can use to estimate the expected

energy yield.

An MRM consists of the following components:

1. State space (S): A finite or countable set of states s1, s2, s3, ..., sK .

2. Transition rate matrix (A): A matrix that describes the instantaneous rate of transiting

to another state.

3. Reward matrix (R): A matrix that contains the different rewards the process obtains

by staying in its current state or transitioning to another. The rewards accrued per

unit of time when the system is in the state si is rii. Alternatively, the prize won by

transitioning from state i to state j is denoted as rij.
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The total expected accumulated reward until time t when starting from state i is vi(t).

The solution of the system of differential equations with zero as the initial condition provides

the accumulated expected reward:

dvi(t)

dt
= zi +

K∑
j=1

qijvj(t), i = 1, . . . , K (4.11)

zi = rii +
K∑
j=1
j ̸=i

qijrij, i = 1, . . . , K (4.12)

4.5 Rewards for estimating energy yield

For a PV system, the reward matrix specifies the energy production in each state per

unit of time. Energy production in a given state is determined by the number of solar

panels functioning and if whether the inverter is operational. Off-diagonal values of the

reward matrix are zeros, since there is no reward associated with transitions between states.

Equation 4.13 denotes the amount of energy produced in each state.

Ei = δ ×min(Pin, Psp × (N −M))× Eavg (4.13)

where Ei is the energy production of the i-th state, δ is an indicator variable with a value

of 1 if the inverter is operative and 0 if it is not, Pin is the inverter rated power, Psp is the

solar panel rated power, M is the number of solar panels not working in the i-th state. Eavg

is the average yearly energy output of a perfectly reliable PV system per kWac installed.

The rewards matrix can be set up in a way that also accounts for time-dependent changes

in the system. It can decrease sequentially to account for the degradation of solar panels,

providing a more comprehensive description of the performance of the system.

4.6 Results and discussion

We will now compare the long term performance of two 8 kW systems, one with string

inverters and the other with microinverters. The system configurations under study are:

1. One 8 kW string inverter and twenty 400 W solar panels connected to it.
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2. Twenty 400 W microinverters, each connected to one 400 W solar panel.

No shading effects are assumed, so the performance of both systems neglecting failures is

the same; any differences in performance will be because of reliability. The yearly energy

production is 1375 kWh/kW. Solar panel degradation is assumed to be 0.5% yearly.

Figure 4.6 Yearly energy production of both system configurations for varying inverter
mean time to repair (A=40 days, B=60 days, and C=105 days)

The energy production of both systems is shown in Figure 4.6 for different values of

inverter mean time to repair, which for the microinverter system is the time to repair of

both solar panel and microinverter. As expected, the higher reliability of microinverters

grants them higher energy production overall. It is worth pointing out that the string system

production is heavily influenced by the decreasing and increasing failure rate behavior of the

inverter; this manifests as a reducing the gap in energy production between the two systems

within the first 5 to 6 years, and then increasing it until the difference settles. Another key

takeway from Figure 4.6 is that the string system energy production is very sensitive to the

mean time to repair of inverters, whereas microinverter systems are so reliable that even for
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higher time to repairs the energy production results unaffected. These repair values were

selected from [8] and they and represent the mean, 75th percentile, and max value of the

recorded times to solve inverter-related hardware issues.
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CHAPTER 5

BAYESIAN INVERTER RELIABILITY MODELING

In Chapter 3, we established time-to-failure distributions using maximum likelihood estima-

tion, as is customary in traditional reliability and lifetime data analysis. In this approach,

the notion of probability is frequency-based; that is, it derives from the understanding of

probability as the limiting relative frequency of an event in a repeated series of identical trials.

An alternative to this notion is Bayesian probability, which differs from the frequency-based

paradigm by considering probability as a subjective assessment of the state of knowledge.

This philosophical difference enables the use of information that would otherwise remain

unutilized, thereby enhancing model building. In Bayesian models, parameters are treated as

random variables about which we make probabilistic statements, providing a robust frame-

work to quantify uncertainty—especially vital in the absence of abundant data. In this

chapter, we revisit the identification of the PWE distribution from a Bayesian perspective

for two reasons. First, we aim to analyze the impact of uncertainty stemming from model

parameters on the expected energy production and provide confidence bounds for these esti-

mates. Secondly, we aim to analyze the failure rate as a key indicator of the failure process

by employing a PWE distribution with change points evenly placed at distances sufficient

to capture how the process varies over time.

5.1 Basics of Bayesian analysis

In Bayesian analysis, probability models are composed of two parts: prior and likelihood.

The prior represents our knowledge about the parameters before any data is used. On

the other hand, the likelihood function is obtained from the sampling distribution, which

essentially describes the probability of observing the data given a set of parameter values.

These two elements give rise to the posterior distribution through the application of the

Theorem of Bayes, shown in equation 5.1 [37].

p(θ|y) = f(y|θ)p(θ)
m(y)

(5.1)
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where p(θ|y) is the posterior distribution, p(θ) is the prior density, m(y) is the marginal

density of the data, and f(y|θ) is the likelihood.

5.1.1 Priors

For every parameter θi in a Bayesian model, we need to provide a prior. The prior

encapsulates an initial plausibility assignment for each possible value the parameter can

take. Priors can serve other purposes such as constraining the parameters to be within a

reasonable range, taking advantage of any insight we may have about what the correct value

should be. Priors can be informative and noninformative; the former is used when it is known

that the parameter is more likely to take certain values, whereas the latter is used when very

little information is known about the parameter; an example of a noninformative prior would

be to use a uniform distribution from zero to one when estimating a population proportion.

Since priors can and will affect the posterior, it is necessary to do a prior sensitivity check

to gauge how robust the posterior is to changes in the priors [38].

5.1.2 Likelihood

The likelihood specifies the plausibility of observing each sample in the dataset, and it is

expressed in terms of the parameters of the model. For instance, if we are interested in the

proportion of the number of heads to the total number of tosses, we would choose a binomial

probability mass function as the likelihood function. In fact, the likelihood function is what

Bayesian analysis has in common with its frequency-based counterpart, and it is the reason

why, as the sample size grows, the results of both approaches become very similar [38].

5.1.3 Posterior

Obtaining the posterior consists of updating our beliefs contained in the priors. This

updating procedure is carried out by applying equation 5.1. Closed-form expressions for

p(θ|y) are only possible when conjugate priors are used, since finding m(y) is numerically

intractable in most cases. Fortunately, Markov Chain Monte Carlo (MCMC) methods can

be used to sample from complex posteriors and generate sequences of parameter values upon

which inferences can be based. Probabilistic programming tools such as Stan have built-
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in samplers that can be used to generate a sample of the posterior for a wide variety of

models, so that all the effort can be devoted to finding appropriate priors and writing out

the likelihood function, if it is not already implemented in the chosen tool [39].

5.1.4 Parameter uncertainty

The frequency-based way of thinking about parameter uncertainty is based on the sam-

pling distribution of the estimator being used. However, deriving analytical expressions of

the sampling distribution for every model is not always possible, and in these cases, inferences

about the parameter must rely on asymptotic results—approximating the sample distribu-

tion of the parameter when the sample size is ”large.” The MLE of a parameter θ for a large

sample size is approximately normally distributed, with a mean equal to θ and a variance

equal to the negative reciprocal of the second derivative of the log-likelihood evaluated at

the MLE. Confidence bounds derived following this approach are not probability statements

about parameter uncertainty, but rather statements based on repeated sampling that may

not even make sense in most scenarios, especially in those where data is limited [37].

Unlike frequency-based confidence bounds, Bayesian probability does provide probability

statements about parameter uncertainty, also called credible confidence bounds [38]. Addi-

tionally, these probability statements can be easily propagated through complex models, a

task that is difficult and sometimes impossible with frequency-based confidence intervals [37].

5.2 Rethinking the PWE distribution under Bayes

Bayesian probability offers a framework to incorporate uncertainty into the reliability

and performance analyses conducted so far. The expected energy production is a fixed value

once the parameters have been specified; however, if there is uncertainty in the parameters,

it becomes a random variable. Using Bayesian credible confidence bounds, we can offer a

confidence interval for the expected energy production.

5.2.1 Building the Model

In this section, we will assume that the location of the change points is the same as those

in the model of Chapter 3; hence, the only parameters are the failure rates. Despite knowing
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the MLE of the parameters, it is desirable to introduce as little bias as possible into the

priors because they can heavily influence the posterior. As an initial prior, we have assumed

a bathtub-shaped behavior, summarized in Table 5.1. The lowest failure rate is chosen as

the inverse of ten years, a reference value used by most manufacturers to establish warranties

for string inverters, and the standard deviation is set large enough to allow the sampler to

explore the search space.

Table 5.1 Initial priors

Parameter Prior
λ1 N (4.1096× 10−4, 2.25× 10−8)
λ2 N (3.4246× 10−4, 2.25× 10−8)
λ3 N (2.7397× 10−4, 2.25× 10−8)
λ4 N (3.4246× 10−4, 2.25× 10−8)
λ5 N (4.1096× 10−4, 2.25× 10−8)

The likelihood function of the PWE distribution is shown in equation 5.2 [40].

h(t) = λi, t ∈ Ii, i = 1, . . . , r + 1,

L(t, λ) =
N∏
i=1

λi · di · exp(−λi · ai),

di =
∑
j

xij,

ai =
∑
j

(tij − ti−1,j)

(5.2)

where Ii is the interval (ti−1, ti], li is the likelihood contribution of all data points through

λi, di is the number of failures in interval i, and ai is the exposure time in interval i.

5.2.2 Estimation results

The model estimation is implemented in RStan, which is an interface in R to Stan, a C++

library for Bayesian inference using the No-U-Turn sampler [39]. The estimation summary

is shown in Table 5.2.

The resulting marginal posterior for all parameters has a lower standard deviation than

the priors, which indicates that uncertainty was reduced after the Bayesian update. However,
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Table 5.2 Posterior summary statistics using normal prior

λ Mean SD 2.5% 25% 50% 75% 97.5%
1 5.429E-04 8.056E-05 3.945E-04 4.868E-04 5.393E-04 5.958E-04 7.116E-04
2 3.218E-04 3.210E-05 2.622E-04 2.996E-04 3.206E-04 3.428E-04 3.877E-04
3 1.923E-04 2.887E-05 1.401E-04 1.722E-04 1.908E-04 2.109E-04 2.530E-04
4 5.906E-04 1.003E-04 4.032E-04 5.217E-04 5.870E-04 6.562E-04 7.975E-04
5 4.961E-04 1.180E-04 2.774E-04 4.136E-04 4.934E-04 5.747E-04 7.335E-04

it is important to verify to what extent this reduction was influenced by the choice of priors.

To assess the sensitivity of the posterior to changes in the priors, we explore more candidate

prior distributions with the same expected value: exponential and gamma. The latter can

be considered a small perturbation, whereas the former represents a large perturbation. For

the gamma distribution, the parameters α and λ have been set to match the mean and to

have a standard deviation closer to that of the normal priors; the exponential distribution is

specified by just the mean. The posterior summary statistics using each prior are shown in

Tables 5.3 and 5.4.

Table 5.3 Posterior summary statistics using gamma prior

λ Mean SD 2.5% 25% 50% 75% 97.5%
1 5.464E-04 8.859E-05 3.882E-04 4.836E-04 5.418E-04 6.032E-04 7.341E-04
2 3.185E-04 3.152E-05 2.598E-04 2.964E-04 3.174E-04 3.393E-04 3.825E-04
3 1.891E-04 2.819E-05 1.384E-04 1.695E-04 1.875E-04 2.072E-04 2.487E-04
4 6.578E-04 1.364E-04 4.187E-04 5.608E-04 6.481E-04 7.445E-04 9.485E-04
5 4.977E-04 1.384E-04 2.660E-04 3.972E-04 4.858E-04 5.834E-04 8.031E-04

Table 5.4 Posterior summary statistics using exponential prior

λ Mean SD 2.5% 25% 50% 75% 97.5%
1 5.826E-04 1.020E-04 4.010E-04 5.104E-04 5.769E-04 6.478E-04 7.986E-04
2 3.177E-04 3.242E-05 2.571E-04 2.953E-04 3.166E-04 3.387E-04 3.845E-04
3 1.862E-04 2.824E-05 1.346E-04 1.666E-04 1.848E-04 2.045E-04 2.453E-04
4 8.144E-04 1.857E-04 4.939E-04 6.824E-04 7.995E-04 9.306E-04 1.219E-03
5 6.064E-04 2.305E-04 2.450E-04 4.375E-04 5.779E-04 7.421E-04 1.147E-03

The summary statistics of all three choices of prior are very similar, which indicates that

the model setup is not very sensitive to changes in the prior. The only noticeable difference is

in λ5 of the exponential prior—slightly more skewed than for the other priors. This skewness

43



can be attributed to the likelihood not being as influential as in the rest of the intervals,

making the prior set the shape of the posterior.

Figure 5.1 Comparison of the survivor function with the Kaplan-Meier estimate for a
normal prior

Another way of assessing model quality is by plotting the survival function with its

confidence bounds on top of the Kaplan-Meier estimate, as shown in Figures 5.1 to 5.3. For

all three priors, the survival functions look identical up until 2500 days, but they differ in

how they behave at the tail. Using a normal prior, we get the smoothest tail, even leaving

a portion of the Kaplan-Meier estimate outside the 95% confidence bounds. The tail of the

gamma prior is slightly less smooth, yet it completely encloses the Kaplan-Meier estimate.

Lastly, with the exponential prior, we observe the roughest tail, with higher failure rate

estimates in the last two intervals. Tail robustness shown by the distribution with normal

priors is desirable, and usually, control actions are taken to ensure this [33].

We will choose the model with the normal prior as the final model, although the gamma

prior could also have been chosen.
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Figure 5.2 Comparison of the survivor function with the Kaplan-Meier estimate for a
gamma prior

Figure 5.3 Comparison of the survivor function with the Kaplan-Meier estimate for an
exponential prior
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5.2.3 Expected energy production with parameter uncertainty

Accounting for parameter uncertainty using a Bayesian time-to-failure model is straight-

forward. From the generated posterior samples, we can select the set of parameters that

define the confidence region of interest. For the sake of simplicity, we will assume a two-

sided equal-tailed confidence interval of 95%; thus, we will have a set of parameters for the

2.5% bound and another for the 97.5%. Thereafter, we compute the expected energy pro-

duction for each of these two sets of parameters, following the same procedure outlined in

Chapter 4.

The numerical results presented next are based on the case study used in Chapter 4.

Figures 5.4 to 5.6 depict the expected energy production for the test system, assuming an

inverter mean time to repair of 40, 60, and 105 days.

Figure 5.4 Expected energy production with a 40-day mean time to inverter repair.

Figures 5.4 to 5.6 suggest that even though there is significant uncertainty associated

with model parameters, its effects on the expected energy production of the system are not

significant, due to the rapid execution of repairs. Nevertheless, it is important to acknowledge

the ease with which it is possible to account for parameter uncertainty in this Markov-based
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Figure 5.5 Expected energy production with a 60-day mean time to inverter repair.

Figure 5.6 Expected energy production with a 105-day mean time to inverter repair.
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reliability analysis using a Bayesian approach for time-to-failure modeling.

5.3 Interval-based failure rate analysis

The failure rate is a crucial metric for non-repairable components, not only because it

provides a more intuitive interpretation of the failure process but also because it represents

the conditional probability of failure given survival up to a certain point in time. Thus,

knowing its value can contribute to more effective risk management [41].

The objective of the failure modeling so far has been to find a compact model for in-

tegration into a system reliability model, and as such, the behavior of the failure rate has

been simplified as much as possible to reduce the complexity of the model. Now, we aim

to capture the failure rate behavior with arbitrary granularity. Fitting such a model using

MLE is challenging because it uses limited information to estimate the failure rate for each

interval. For instance, we will use MLE to find a yearly failure rate model with change points

every year from the first to the eighth year. Figure 5.7 illustrates the goodness of fit of this

model in terms of the survival function. It is evident that the model overestimates the failure

rates, yielding an overly pessimistic outlook. To further illustrate, consider a model with

change points placed every 100 days; the fit of this model is depicted in Figure 5.8, and as

expected, it performs even worse.

The reason why MLE is not stable is because it uses only local information to estimate

the failure rate, and since the data is spread unevenly, it is not possible to provide reasonable

estimates in every interval, especially those in which data is very scarce. This instability

could be overcome by including a mechanism for exchanging information across intervals

or by implementing some form of regularization. Using a simple Bayesian approach, as

demonstrated in the previous section, does provide a good model for yearly intervals, shown

in Figure 5.9. However, decreasing the interval spacing to 100 days results in a model with

wide and noisy confidence bounds, as seen in Figure 5.10. Also, a model with this many

change points requires the specification of numerous priors, increasing the modeling burden.
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Figure 5.7 MLE estimation of PWE distribution: change points every year

Figure 5.8 MLE estimation of PWE distribution: change points every 100 days
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Figure 5.9 Bayesian estimation of PWE distribution: change points every year

Figure 5.10 Bayesian estimation of PWE distribution: change points every 100 days

50



5.3.1 Relating Consecutive Intervals

Using a Bayesian framework and probabilistic programming tools like Stan, we can model

complex interactions between model parameters to find stable estimates of the failure rate for

any granularity of change point placement. Essentially, we aim to relate failure rates across

intervals in a manner that leverages the underlying nature of the failure process—a gradual

degradation. We propose relating consecutive rates using equation 5.3; assuming that the

next rate is normally distributed with mean given by the previous rate discourages large

variations. Now, information flows across intervals, strengthening the failure rate estimation

for intervals that lack sufficient data to produce a reliable estimate using local data alone.

Another advantage of this approach is that only one prior is needed: the initial failure rate;

thereby reducing the complexity of prior sensitivity analysis.

λi ∼ N (λi−1, σ
2) i = 2, . . . , r + 1, (5.3)

where σ is a tuning parameter.

5.3.2 Model with Change Points Every 100 Days

The change points are now placed every 100 days until 3100 days, thus the model includes

a total of 31 change points. One aspect to keep in mind is that there are intervals where no

failures occurred. The prior for the initial rate is N (4.1096× 10−4, 2.25× 10−8)—similar to

what we assumed for the compact model—and σ is 1× 10−4.

The survivor function, plotted alongside the Kaplan-Meier estimate, is depicted in Figure

5.11; the model exhibits good visual agreement with the Kaplan-Meier estimate and tighter,

smoother confidence bounds. The failure rate estimates are shown in Fig. 5.12.

5.3.3 Model with change points every 50 days

The granularity of the change points can be further increased without compromising the

quality of the resulting distribution. Now, we present results for an even placement every 50

days-a more complex task due to the increased number of intervals with zero failures. The

prior for λ1 and the value of σ are the same as in the previous case.
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Figure 5.11 Survivor function of PWE distribution with changepoints placed every 100 days

Figure 5.12 Failure rate estimates of PWE distribution with change points placed every 100
days
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Figure 5.13 Survivor function of PWE distribution with changepoints placed every 50 days

Figure 5.14 Failure rate estimates of PWE distribution with change points placed every 50
days
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Figures 5.13 and 5.14 depict the survivor function plotted against the Kaplan-Meier

estimate and the failure rate estimates, respectively, confirming that robust estimates can

also be obtained using this approach for change points every 50 days.
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CHAPTER 6

CONCLUSIONS

In this thesis, three main topics have been discussed: developing reliability models from

scarce and censored data, converting a non-exponential reliability model into a Markov

model amenable to conventional reliability analysis, and leveraging Bayesian probability to

account for parameter uncertainty and provide detailed estimates of failure rates.

Using field data instead of test data comes with many challenges, such as insufficient sam-

ple sizes and censoring, which complicate the modeling process. Moreover, when the data do

not follow typical behavior, employing well-known probability distributions in power systems

reliability—such as Weibull, exponential, or log-normal—is not possible. To overcome this,

we proposed using a piecewise exponential distribution, more commonly found in settings

like clinical trials, which can inherently accommodate all kinds of failure rate behaviors and

is more suitable for fitting the data at hand.

We found that not only did it provide a good fit, but it also related to the notion of viewing

the failure process as a progression through discrete stages, which is the basis for state-space

reliability methods. However, unlike most reliability models in the power systems literature,

a model based on the PWE distribution was not memoryless, necessitating a more advanced

modeling framework than continuous-time Markov chains. The model was then framed as a

Semi-Markov process. By solving the Markov renewal equation, we demonstrated how the

availability of the string inverter changes over time when an exponential time to restore is

assumed. However, this raised the concern that a whole-system model could not be framed

as a Semi-Markov process due to the absence of a global clock to track progress.

The conversion of a non-exponential process into an exponential model is referred to

as Markovization, which is based on the use of phase-type distributions. By using these

distributions, we approximated each deterministic transition of the Semi-Markov process as

a series of exponentially distributed stages, all with the same rate; this sum of exponential

stages can be represented by an Erlang distribution. Using the expressions for the mean
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and variance of an Erlang distribution, we determined the rate corresponding to a number

of stages, which ultimately controls the accuracy of the approximation. Numerical results

show that using a model with 252 states provides a sufficiently accurate representation for

long-term analysis.

In Chapter 2, we briefly discussed the modeling of small PV systems, focusing on res-

idential systems due to their simplicity in design and the economic rationale behind using

string inverters. We proposed decomposing the system model into independent subsystems

comprised of one string inverter and the solar panels connected to it, in line with how mon-

itoring systems operate and repairs are carried out. Similarly, for microinverter systems,

which are recognized for their higher reliability, we argued that a subsystem can consist of

the microinverter and the connected solar panel. This arrangement not only simplified our

analysis but also lets us compare the reliability of string inverters with that of microinverters.

Having developed a model for the string inverter, we constructed a completely memory-

less subsystem model, suitable for Markov-based reliability analysis. Although reliability is

traditionally compared in terms of availability, it is more appropriate to compare the string

inverter and microinverter subsystems in terms of expected energy production. For this pur-

pose, we utilized Markov Reward Models, where the rewards represent energy production.

Our results indicate that the energy production of microinverters is not sensitive to changes

in the mean time to repair, unlike that of string inverters.

The last chapter of this thesis adopted a Bayesian approach to the estimation procedure

outlined in Chapter 3. By doing so, we were able to provide confidence bounds for the en-

ergy production of the string inverter subsystem without any major changes to the modeling

framework itself. Applied to the case study of Chapter 4, we see that, although there is

significant uncertainty in the model parameters, most of it is absorbed by the promptness

of the repairs. Another strength of Bayesian probability is how it allows for flexible model

representation, enabling the modeling of complex interactions between model parameters.

Leveraging this approach, we obtained failure rate estimates with minimal prior informa-
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tion for arbitrarily placed changepoints, confirming the bathtub-shaped behavior previously

suggested by the cumulative failure rate. This analysis is not only valuable for risk assess-

ment and reliability optimization but also serves as an initial method to describe the failure

process, facilitating subsequent simplifications based on observed behaviors.

Data on the operation of small PV systems is not widely available, which limits our

understanding of their actual reliability. In this work, we attempted to characterize the

behavior of string inverters using a small dataset collected from a single region in the U.S.

However, this dataset is by no means representative of all string inverters, which constrained

the depth of the insights we could draw. To support more conclusive research in this area,

a more comprehensive data collection platform must be established.

A robust reliability assessment would require access to additional information such as

voltage and current waveforms, environmental parameters like temperature and humidity,

and the internal temperature of the device. Moreover, greater effort must be made to accu-

rately categorize failure causes. This would enhance reliability analysis and enable root-cause

investigations that improve failure modeling. Such information would not only deepen our

understanding of component reliability but also allow us to leverage failure data for prog-

nostic purposes—ultimately enabling the prediction of failures and the implementation of

corrective measures to prevent them.
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