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ABSTRACT 

Modeling the rate of fluid penetration into capillaries due to surface tension forces is often 

based on the Poiseuille flow solution. However, this model does not apply to short capillaries 

due to non-fully developed conditions at the entrance and exit regions. Improved models are 

needed for small capillary systems, which are crucial in processes such as oil droplet removal 

from water using thin membranes. Previous research has addressed deviations from Poiseuille 

flow near the entrance and moving meniscus, including the use of momentum conservation 

equations and inertia forces in kinetic models for infinite flow entering capillary tubes. Some 

studies have considered finite reservoir infiltration, assuming parallel flow lines, but neglected 

local acceleration due to inertia and gravity effects. This study presents a novel analysis focusing 

on the dynamic behavior of droplets in pores. It models a finite flow reservoir associated with a 

droplet and includes drag forces at the capillary channel entrance. The mathematical model 

incorporates pressure losses due to sudden contraction and viscous dissipation at the tube 

entrance, which can be significant in low Reynolds number flows. Additionally, it considers 

energy dissipation due to contact angle hysteresis. The model addresses an apparent anomaly 

posed by Washburn-Rideal and Levin-Szekely, and is applied to various liquids including water, 

glycerin, blood, oil, and methanol. It is tested with different geometries and cases, including 

numerical simulations, showing close agreement with experimental data. Deviations are 

observed when comparing infinite reservoir flow to finite droplet flow. 

A parametric study evaluates the effects of dimensionless numbers such as capillary, 

Reynolds, Weber, and Froude numbers. Results suggest the Weber number's importance over the 

Capillary number in droplet dynamics. The study also examines finite flow and film penetration 

in single pores versus pore networks. Computational simulations using ANSYS-FLUENT 23 R2 



provide 2D results, using User Defined Functions (UDF) to capture liquid-gas interfaces. These 

simulations corroborate the mathematical model. Contrary to previous findings, this study 

demonstrates that contact angle effects are significant in the initial stages of capillary 

penetration. The proposed solution is valid for very short initial times, applicable to printing, 

lithographic operations, and filtration systems dealing with oil droplet removal from water using 

membranes. 
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 CHAPTER 1: PREVIOUS RESEARCH AND PROBLEM STATEMENT 

1.1 Introduction 

The rise of liquids in capillary tubes has been investigated due to its importance for oil 

recovery, textiles, inkjet printing, fuel cells, and membrane separation. The ability of a fluid to 

rise in small channels or pores depends on the pressure applied at the entry, the droplet or film 

size, fluid properties, surface properties, and the pore shape. The classic equation of Washburn 

and Rideal[3] for the rate of penetration of fluid into capillaries due to surface tension forces is 

based on the Poiseuille flow across the capillary cross-section. However, such a model of fluid 

flow cannot apply at the entrance and exit of a capillary. Szekely[8] and Levine [11] have 

attempted a more rigorous theory of capillary penetration in which the entry flow comes from a 

large reservoir, and irreversible energy dissipation effects due to circulation during formation of 

a vena contracta at the entrance to the capillary were considered. They were able to remove the 

anomaly of the initial infinity in the fluid motion but their treatment of dissipative effects arising 

from circulation refers to high Reynolds number and flow from infinite reservoir. 

The flow in pores media or through network of pores have been studied using two-phase flow 

mechanics to study flow in the unsaturated, or vadose zone, of the subsurface, where empty 

spaces are partly filled by air and partly by liquid. Two-phase flow mechanics has also been used 

in filtration systems to characterize the flow of water and oil in oil-water separation design. In 

recent years, most modern applications and technologies of separation systems are applying two-

flow mechanics to modeling the transport of contamination / fouling on membrane and in 

groundwater[15]. Two-phase flow concepts generally used to describe the interaction 

mechanisms between liquid-solid, liquid gas, and gas solid in pores media, such as contact angle, 

interfacial tension, and wettability. 
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In the next sections, important physical concepts needed are summarized to understand the 

two-phase flow phenomenon with emphasis on capillary flow. 

1.2 Interfacial Tension and Capillary Pressure 

Interfacial energy arises at the contacting interface between two or more fluids, which can be 

a gas or another liquid barely miscible with the first liquid. This interfacial energy arises from 

the difference between the inward attraction of the molecules in the interior of each phase and 

those at the surface of contact [13]. This imbalance in forces exerts a tension on the interface of 

two immiscible liquids and causes contraction of the interface in small area as possible. This 

phenomenon is somewhat similar to the behavior of a stretched membrane under tension, and in 

contact with two fluids on either side of the membrane [15]. The interfacial tension of two 

immiscible liquids is defined as the amount of energy (N/m) that is required to create a unit area 

of interface between two immiscible liquids [16], and can be defined as the amount of work that 

must be performed in order to separate a unit of the fluid from the liquid [15]. In practice, the 

greater the interfacial tension between two immiscible liquids, the less likely an emulsion will be 

stable, so emulsions can efficiently be separated after mixing. In addition, interfacial tension 

decreases with increasing temperatures, surfactants, and gases in solution [17]. The values of 

interfacial tension of fluids that used in this study are water 72 mN/m, gasoline 21.6mN/m, 

glycerin 62mN/m, blood 55.89mN/m, alcohol 22mN/m. 

Capillary pressure arises because of interfacial tension between two contacted immiscible 

fluids. A discontinuity in pressure exists across the interface separating them. The magnitude of 

the pressure difference depends on the curvature of the interface considered. Capillary pressure is 

defined as the difference in pressure between a liquid and a fluid, where the pressures are taken 

in the two phases as the interface is approached from their respective sides. The Young–Laplace 
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equation describes the capillary pressure between two fluids and relates the capillary pressure to 

the surface of the wall. 

 

Figure 1.1 shows the forces acting at the curved liquid/fluid interface 

Figure 1.1 shows an infinitesimal element of a curved interface between two immiscible 

fluids labeled 1 and 2[13], where either both or only one of the two fluids is a liquid. Given the 

curvature, the pressure in fluid 1 is larger than that in fluid 2.  The forces balance in components 

along the normal to the interface, with a constant surface tension , 𝜎ଵ/ଶ 𝑎𝑛𝑑 𝑟ᇱ = 𝑟ᇱᇱ = 𝑟, found 

that [15]: 

 𝑝௖ = 𝑝ଵ − 𝑝ଶ = 𝜎 ൬
1

𝑟ᇱ
+

1

𝑟ᇱᇱ
൰ =

2𝜎ଵ,ଶ

𝑟
 (1.1) 

where 𝑝ଵ and 𝑝ଶ denote to the pressures in fluid 1 and fluid 2, respectively, 𝑟ᇱ and 𝑟ᇱᇱ denote the 

principal radii of curvature, and 𝑟 is the mean radius of curvature. 
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1.3 Wettability and Contact Angle 

Wettability is the ability of a liquid to maintain contact with a solid. In a two-immiscible-fluid 

system, it is defined as the tendency of one fluid to spread preferentially over a solid surface in 

favor of the second fluid. This tendency is controlled by the balance of adhesive forces (liquid to 

surface) and cohesive forces (liquid to liquid)[18]. For instance, the behavior of a drop of water 

on an untreated glass surface can be observed: the droplet spreads on the surface and tends to 

stretch into a thin film. Under these conditions, the water droplet can be said to be wetting with 

respect to air. On the other hand, a droplet of mercury is observed to roll over the untreated glass 

surface with very little spreading. Therefore, in this system, mercury is said to be non-wetting 

with respect to air [15]. 

Wettability has been measured using three quantitative methods, contact angle, Amott method 

(imbibition and forced displacement), and US Bureau of Mines (USBM) [15][19]. In this 

research, at a specific surface, wettability is depicted by the concept of contact angle method, 

while Amott and USBM methods measure the average wettability of a core). Wettability is 

inversely proportional to the contact angle value; large wettability is happening at smaller 

contact angle [20]. The contact angle characterizes the wettability of liquid and substrate 

interface, and it is the best wettability measurement method when working on pure fluids and 

with absence of surfactants or other compounds altering the wettability[19]. 

In case of a droplet of test liquid formed on a solid surface with surrounding second fluid, as 

shown in Figure 1.2, the contact angle 𝜃ௗ is often measured at the water phase [21],and it is 

defined as the angle of the interface plane  between the solid surface plane and the tangent plane 

at the point of contact of the interface with the droplet surface. When 𝜃ௗ = 0, the wetting fluid is 

said to be perfectly wet the solid surface, and when 𝜃ௗ = 180 the surface is perfectly 
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hydrophobic or/and the liquid is perfectly non-wetting. In case of different fluid than water, the 

contact angle measured at the denser phase [14].  

 
Figure 1.2 defines the wettability based on the contact angle and surface property 

In experimental studies, showed that if 𝜃ௗ < 90, the fluid contained in the droplet is defined 

as the wetting fluid, while the surrounding fluid is non-wetting fluid [15]. In practice and for 

more specific ranges at 0 ≤ 𝜃ௗ < 65 , the liquid is wetting, and at 105 ≤ 𝜃ௗ < 180 the liquid is 

non-wetting. At 65 ≤ 𝜃ௗ < 105 is a transient or intermediate case in which the surface has no 

specific definition regarding the preference for either fluid [21]. 

Capillary pressure can be defined as the difference between the pressure of the wetting fluid 

and the pressure of the non-wetting fluid, as illustrated in Figure 1.2, with fluid 1 defined as the 

non-wetting fluid. In practical applications, the concept of wettability has been applied to two-

phase flow transport under specific conditions that require a comprehensive physical 

explanation. Thus, in the case of two-phase flow displacement in porous media, the fluid that 

penetrates a pore throat is said to be the wetting fluid, while the fluid repelled by capillary forces 

is said to be the non-wetting fluid. Therefore, capillary pressure is a measure of the tendency of a 

porous medium to imbibe the wetting phase or to repel the non-wetting phase [15]. 



6 
 

1.4 Viscosity and Density 

Density is the ratio of mass per unit volume of a substance, and it can be described in terms of 

Specific Gravity (Relative Density). SG is the ratio of the density of a solution to the density of a 

reference solution. The reference solution is usually water at 4°C[22]. Most studies show that 

there is no direct relation between viscosity, density, and surface tension. These three properties 

are independent of each other; however, viscosity, density, and surface tension are all affected by 

temperature [23]. In general, for any fluid, with an increase in temperature, the fluid’s density 

decreases, and thus its viscosity and surface tension decrease as well, making the fluid less 

viscous. In this study, five fluids have been examined as shown in Table 1.1[15]. 

Table 1.1 Five fluid properties that have been studied in this work[15] 

Fluid 
Density 

(g/ml) 

Viscosity (mPa 

s) 

Surface tension 

(mN/m) 

Water 0.997 0.894 72 

Gasoline 0.726 0.6 21.6 

Glycerin 1.261 950 62 

Blood 0.994 3-4 55.89 

Alcohol(ethanol) 0.789 1.095 22 

 

 

1.5 Kinetics of flow in capillary tubes; background and previous research work 

1.5.1 Introduction 

The rise of liquids in capillary tubes has been investigated in several studies for many years 

due to its importance in applications such as; oil & gas recovery [24], textile[25], ink jet 

printing[26], fuel cell[27], agriculture[28], medicine[29], the pharmaceutical industry[30], 

nuclear engineering[31][32][33], fiber industry[34], ceramic industry[35][36][37], food 
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engineering[38], and environmental remediation[15]. In general, the rise of fluids in capillary 

channels is a topic of interest for any discipline dealing with porous media or materials. 

This research focuses on the dynamic aspects of capillary infiltration. The dynamics of liquid 

entering a network of pores, also called the kinetics of infiltration, aim to compute the rate of rise 

of a droplet of liquid into a capillary tube (pore) and thus gain knowledge of the liquid interface 

displacement as a function of time. 

Numerous studies and publications related to capillary penetration in channels can be found in 

the literature. Lucas, 1918  [1], a German scientist, presented the first paper published in a 

scientific journal that included a complete equation for the rate of infiltration in capillary tubes. 

However, because Lucas's paper was written in German, it is traditionally believed that 

Washburn, 1921 [2], was the first person to develop such a model. Therefore, the ordinary 

differential equation (ODE) that combines the rate of capillary rise with the total rise in a 

capillary tube often carries Washburn’s name, and in some publications, the ODE is referred to 

as the Lucas-Washburn equation  [15]. 

The mathematical model describing capillary rise behavior can be traced back to the 

eighteenth century. Beneficiaries of this science have appreciated G. K. Mikhailov, who pointed 

to a letter from Georg Wolfgang Krafft to Euler (dated September 24, 1748), in which Krafft had 

put forward the puzzle: 

“The mechanical rule 𝑑𝑐 =  𝑝 𝑑𝑡/𝑚 or 𝑐 𝑑𝑐 =  𝑝 𝑑𝑠/𝑚 assumes that the mass 𝑚 is constant 

during the entire motion; would it not be possible to create such a rule in which the mass, or 

rather the moving point, could be variable?… I think that it would then become possible to 

derive the measure of the rise of fluids into capillary tubes, for in this case the mass that rises 



8 
 

increases all the time. Please, Sir, let me know your thoughts regarding this matter at some 

suitable opportunity” [39]. 

History has lost Euler’s reply to this letter, this could be a great example of the simulation of a 

case study associated with the dynamics of the system whose mass varies with time[15]. 

1.5.2 Lucas-Washburn Equation 

Lucas & Washburn [1][2] presented the simplest ODE describing the infiltration of liquid into 

a capillary tube. Although other forms of the equation were obtained by Bell and Cameron 

(1906, published in The Journal of Physical Chemistry, 2002)[40] and West, 1911 [41], “they did 

not start using the Hagen–Poiseuille equation, which was derived independently by Jean Léonard 

Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Poiseuille in 

1840–41 and 1846 [42]. The theoretical justification of the Poiseuille law was given by George 

Stokes in 1845”[43] &Wikipedia.  

Lucas and Washburn both had started from the Hagen-Poiseuille’s law, which relates the 

steady-state flow of a liquid through a capillary tube [44] 

 𝑄 =
𝜋𝑟଴

ସ

8𝜇𝑙
∆𝑝 (1.2) 

Where 𝑄 is the volumetric flow of liquid, 𝑟଴ and 𝑙 are the radius and the length of the capillary 

tube, respectively, 𝜇 is the dynamic viscosity of the liquid, and ∆𝑝 is the total driving pressure 

acting to force the liquid along the capillary. Based on the Equation (1.2), Lucas and Washburn 

obtained [15]  

 
𝑑𝑧௖

𝑑𝑡
=

𝑟଴
ଶ

8𝜇

∆𝑝(𝑧௖)

𝑧௖
 (1.3) 

Where 𝑧௖ is the penetrated length of liquid displacing air inside a capillary tube at time 𝑡, as 

illustrated in Figure 1.3. Assuming the parabolic profile of the velocity distribution of Hagen-
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Poiseuille’s flow, 𝑑𝑧௖ 𝑑𝑡⁄  is a mean velocity across a section of capillary tube, and displaced air 

(gas phase) velocity has been assumed to be negligible with respect to the viscosity of the 

liquid[15]. 

 

Figure 1.3 shows the schematic of infiltration into a capillary tube with 𝑟଴ radius and inclination 
angle 𝜑 to the horizontal 

With the assumption of the liquid is wetting with respect to the air, the total pressures are 

acting on the system as show in Figure 1.3 

 ∆𝑝(𝑧௖) = 𝜌𝑔ℎ −  𝜌𝑔𝑧௖ sin 𝜑 +
2𝜎 cos 𝜃

𝑟଴
 (1.4) 

where 𝑔 is the gravity, 𝜌 density, surface tension 𝜎 , contact angle 𝜃 , ℎ reservoir head (assumed 

constant with time), and 𝜑 is the inclination angle of the capillary tube to the horizontal, as 

illustrated in Figure 1.3. Due to reservoir and the capillary tube are open to the air, the 

atmospheric pressure was ignored in Equation (1.4). 

As a result, based on experimental measurements, with 𝑟଴ known, Equation (1.4) can be used 

to study the capillary infiltration into porous solids such as powder beds in order to characterize 

their wettability [2][45][10][46][47]. 
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In the case of 𝜑 = 0 where the capillary tube is horizontal, and ∆𝑝(𝑧௖) is independent of 𝑧௖, 

Washburn had solved Equation (1.4) for these conditions and obtained 

 𝑧௖ = ඨ
𝑟଴

ଶ

4𝜇
൬𝜌𝑔ℎ +  

2𝜎 cos 𝜃

𝑟଴
൰ (1.5) 

which the above equation shows that the penetration length of a horizontal capillary tube is 

proportional to the square root of time. 

This relation was theoretically approved and experimentally verified with water, alcohol, and 

benzene for 0.5 mm radius capillary tubes by Bell and Cameron [40]. However, Levy noted from 

Equation (1.5) that the flow is not driven by the interfacial tension difference. Instead, it results 

from the laminar flow of a Newtonian liquid in a tube under the action of a constant pressure 

difference, where the penetration length of the liquid changes with time [15]. On the other hand, 

in case of 𝜑 = 90଴, the capillary tube is vertical and located above the reservoir, so  ∆𝑝(𝑧௖) is 

dependent of 𝑧௖. Under these conditions, Lucas and Washburn solved Equation (1.4) and 

obtained 

 𝑧௖ + (ℎ + ℎ௘) ln ൬1 −
𝑧௖

ℎ + ℎ௘
൰ = −

𝑟଴
ଶ𝜌𝑔

8𝜇
𝑡 (1.6) 

where ℎ௘ is the well-known equilibrium height at 𝑡 → ∞ given by[15] 

 ℎ௘ =
2𝜎 cos 𝜃

𝜌𝑔𝑟଴
 (1.7) 

In the case of hydrostatic forces are negligible with respect to capillary forces, so the 

Equations (1.6) & (1.7) both reduce to 

 𝑧௖ = ඨ
𝑟଴𝜎 cos 𝜃

2𝜇
 (1.8) 
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Infiltration into capillary tube has been described by the Equations (1.6) & (1.8). The credit of 

initial study was given to Washburn, 1921, who has obtained excellent agreement, the following 

Table 1.2 show the validation of the penetration behavior proportional parabolic with time 

validated by different authors. The authors found that the flow rate is smaller than expected with 

presence of bubbles within the liquid. In all these studies has been done with the assumption of 

initially pre-wetted capillary tube. The studies have been shown the penetration into an initially 

dry tube could only be predicted correctly in case surface tension property of water equal to 

0.0385 𝑁/𝑚 [15]. 

Table 1.2 Validation of the penetration behavior proportional parabolic with time validated 
by different authors 

Author Year 
Capillary length 

(m) 

Radius 

(mm) 
Fluid   

Washburn[2] 1921 0.95 m 0.15 , 0.37  water  Pre-wetted 

Rideal[3] 1922 1.2 0.35  solvents Pre-wetted 

Malik et al[110] 1979  0.2 , 0.3 Water & alcohol Pre-wetted 

Fisher and 

Lark[111] 

1979 Very small 0.3 

µm 

0.15-0.2 

µm 

water and 

cyclohexane 

Pre-wetted 

Peek and 

McLean[45] 

1934  0.25-0.36 water Pre-wetted 

Ligenza & 

Bernstein[49] 

1951  20-40 µm solvents Pre-wetted 

 

Studies have shown the successful application of Washburn equation. Washburn obtained 

reasonable agreement both theoretically and experimentally for capillary rise into a 0.15 mm 

radius capillary tube using Equation (1.8). Ligenza and Bernstein [49] illustrated very good 
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agreement between Equation (2.6) and experimental data on rise of various solvents into 20-40 

µm radius fine vertical capillary tube. 

Despite the reported successes of most studies validating the Lucas-Washburn equation, high-

resolution observations in capillary tubes often conclude that the Lucas-Washburn equation fails 

to describe the initial stage of wetting liquid infiltration (rapid change case). Initial penetration of 

the fluid has been observed to be linear with time [50].  At the initial moment of penetration, the 

penetration rate is much larger than those measured experimentally [15][48][51][52][53]. 

Siebold (2000) showed the rise of pentane into a 0.191 mm radius vertical capillary tube and 

compared it with the predictions using Equations (1.6)at ℎ = 0 & (1.8) at 𝜃 = 0 as illustrated in 

Figure 1.4[48] 

 

Figure 1.4 illustrates the rise of pentane into a 0.191 mm radius vertical capillary tube: (1) 
experimental points; (2) Eq. (1.6) taking into account the hydrostatic pressure; (3) Eq. (1.6) 
neglecting the hydrostatic pressure[48].Used with permission of Elsevier Science & Technology 
Journals, from Siebold, Alain, Michel Nardin, Jacques Schultz, André Walliser, and Max Oppliger. 
"Effect of dynamic contact angle on capillary rise phenomena." Colloids and surfaces A: 
Physicochemical and engineering aspects 161, no. 1 (2000): 81-87; permission conveyed through 
Copyright Clearance Center, Inc 
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The graph in Figure 1.4 illustrates the rise of pentane in a vertical capillary tube with a radius 

of 0.191 mm. It compares experimental data with theoretical predictions from Equation (1.6), 

both considering and neglecting hydrostatic pressure. The experimental points closely follow the 

dashed line, indicating that hydrostatic pressure plays a significant role in the capillary rise of 

pentane. The solid line, which neglects hydrostatic pressure, deviates from the experimental data, 

showing that ignoring this factor leads to less accurate predictions. The study highlights the 

importance of considering hydrostatic pressure in capillary rise phenomena, especially when 

dealing with small capillaries and dynamic contact angles [48]. 

Using Lucas-Washburn’s equation (1.6) gives infinite initial penetration rate (𝑑𝑧௖ 𝑑𝑡)⁄  at 

initial condition 𝑧௖(𝑡 = 0) = 0. Washburn was aware of the fact of infinite initial penetration 

rate, but he stated that the “Lucas-Washburn’s equation (2.3)” is valid whenever Hagen-

Poiseuille’s law is applicable at 𝑅𝑒 < 2000. This analysis fails to consider the significant effects 

of inertia—the forces associated with the change in momentum of the liquid. Inertia forces are 

significant in the laminar region at Reynolds 𝑅𝑒 < 2000. The length scale of the region in which 

the Lucas-Washburn’s equation (1.6) is not valid includes his implicit assumption of quasi-static 

flow[15]. Therefore, Lucas-Washburn’s equation (1.6) is inappropriate to describe the initial 

conditions where rapid changes in penetration occur, such as the initial conditions of the 

meniscus rise into a capillary tube. 

1.6 Penetration Model with consideration of Inertia Forces 

1.6.1 Equation of motion using momentum balance 

Attempts have been made to address the failure of the Lucas-Washburn equation at the initial 

stage of wetting liquid infiltration. Scholars have used the momentum conservation equation to 

include inertia forces and derive kinetic models for liquid penetration into capillary 
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tubes[3][4][5][6][11][50]. Bosanquet[4], Quéré[50] and Pickett[5] considered the momentum 

difference at an infinitesimal change of time 𝑡 and penetration length 𝑧௖, in the initial stage of an 

air-filled capillary tube with radius 𝑟଴. They obtained the following expression 

 𝜌 ൬
𝑑𝑧௖

𝑑𝑡
൰

ଶ

+ 𝜌𝑧௖

𝑑ଶ𝑧௖

𝑑𝑡ଶ
= ∆𝑝(𝑧௖) −

8𝜇

𝑟଴
ଶ 𝑧௖

𝑑𝑧௖

𝑑𝑡
 (1.9) 

Rideal, as well as Levine and Neale, used a similar approach but obtained [15] 

 𝜌𝑧௖

𝑑ଶ𝑧௖

𝑑𝑡ଶ
= ∆𝑝(𝑧௖) −

8𝜇

𝑟଴
ଶ 𝑧௖

𝑑𝑧௖

𝑑𝑡
 (1.10) 

The Bosanquet model does not consider the momentum of the element of length ∆𝑧௖ at the 

reservoir feeding the capillary tube at time t. Their derivation implicitly assumed ∆𝑧௖ has no 

momentum[15]. Levine et al. (1976) studied in depth the dynamic behavior of the element 

entering the capillary tube, which will be discussed in more details in next chapter. 

 Equation (1.10) solved with the assumption of the total driving pressure ∆𝑝(𝑧௖) is 

independent of 𝑧௖, 𝑧௖(𝑑𝑧௖ 𝑑𝑡)௧ୀ଴ = 0⁄ , and horizontal capillary tube 

 𝑧௖ = ඨ
𝑟଴

ଶ∆𝑝

4𝜇
 ൤𝑡 − 𝜏 ൬1 − 𝑒ି

௧
ఛ൰൨ (1.11) 

where 𝜏 is a time scale at inertia forces are significant and is given by 

 𝜏 =
𝜌𝑟଴

ଶ

8𝜇
 (1.12) 

In case of 𝑡 ≫ 𝜏, (1.10) is reduced to (1.5). For the horizontal capillary tube and reservoir head 

ℎ = 0, so the time scale 𝜏 corresponds to a length scale 𝜁can be given by (1.12) 

 𝜁 = ඨ
𝜌𝑟଴

ଷ𝜎 cos 𝜃

16𝜇ଶ
 (1.13) 
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The effects of inertia can be examined by Equations (1.12) & (1.13). For instance, consider 

the penetration of water in a 1 mm radius horizontal pre-wetted capillary tube. Using the physical 

properties of water at 20଴𝐶 as shown in Table 1.3[44], The significant effects of inertia can be 

noted over the length of 10 to100 times the capillary tube radius. 

In case of vertical capillary tube taking 𝑔 = 9.807 𝑚/𝑠ଶ,  Equation (1.6) can be solved 

numerically to get ℎ௘ which is same as a length scale 𝜁, and compare the result to the 

Equation(1.7) 

Table 1.3 Effects of inertia using Equations (1.12) & (1.13) 

Case   
Radius 

mm 

Viscosity  

Pa.s 

Surface 

tension 

N/m  

Density 

Kg/m3 

𝝉  

𝒔 

𝜻 

mm 

1 horizontal 1 1.002E-3 7.28E-2 998.2 0.125 67.3 

2 horizontal 0.1 1.002E-3 7.28E-2 998.2 1.25E-3 2.13 

 

 

Table1.4 show that for a 𝑟଴ = 1 𝑚𝑚 capillary tube radius,  𝜁 = 14.9 𝑚𝑚 equal to ℎ௘ using 

Equation(1.7), while for a 𝑟଴ = 0.1 𝑚𝑚 capillary tube radius,  𝜁 = 2.12 𝑚𝑚 which is not equal 

to ℎ௘ = 148.7 using Equation(1.7)[44]. Therefore, the effects of inertia are significant for 𝑟଴ =

1 𝑚𝑚, while for 𝑟଴ = 0.1 𝑚𝑚, they are only important with the region less than 1.5% of ℎ௘. 

Table 1.4 Effects of inertia using Equations (1.12) & (1.13) 

Case   
Radius 

mm 

Viscosity  

Pa.s 

Surface 

tension 

N/m  

Density 

Kg/m3 

𝝉  

𝒔 

𝜻 

mm 

𝒉𝒆 

mm 

3 Vertical  1 1.002E-3 7.28E-2 998.2  14.9 14.9 

4 Vertical  0.1 1.002E-3 7.28E-2 998.2  2.12 148.7 
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At the early stage of capillary penetration, if viscosity and hydrostatic forces are neglected, 

Equation (1.9) reduced to 

 𝜌
𝑑

𝑑𝑡
൬𝑧௖

𝑑𝑧௖

𝑑𝑡
൰ =

2𝜎 cos 𝜃

𝑟଴
 (1.14) 

Equation.(1.14) can be solved at initial condition 𝑧௖ = 0 and finite penetration rate 𝑑𝑧௖ 𝑑𝑡⁄ , 

obtained [15] 

 𝑧௖ = 𝑐 𝑡 (1.15) 

where c is the penetration rate given by 

 𝑐 = ඨ
2𝜎 cos 𝜃

𝜌𝑟଴
 (1.16) 

Penetration rate 𝑐 is sometimes referred to as the Bosanquet velocity [15] 

To solve Equation (1.9), it might seem natural to take the initial conditions 𝑧௖(௧ୀ଴)
= 0, and 

(𝑑𝑧௖ 𝑑𝑡)⁄
௧ୀ଴

= 0. However, taking these initial conditions leads to a singularity at 𝑡 = 0 when a 

finite force is applied to an infinitesimal mass. To eliminate the singularity, a finite initial 

velocity is assumed, as given by Equation (1.16)[15]. A drawback is an infinite acceleration at 

𝑡 =  0 [15][54], which was solved by Szekely[7] and will be discussed in more details in the 

coming sections. 

Reynolds number computed corresponding to the Bosanquet velocity as[15] 

 𝑅𝑒(𝑐) = ඨ
8𝑟଴𝜌𝜎 cos 𝜃

𝜇ଶ
 (1.17) 

and found that the flow associated with the capillary infiltration is laminar. 

Experimental observations of capillary penetration have shown initial behavior as predicted 

by Equation (1.15), where the penetration length increases linearly with time at the very early 
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stages of liquid infiltration [48][50]. However, the observed penetration rate was found to be less 

than the predicted velocity 𝑐 [15][50][53][55]. Quéré[50] identified the inconsistency between 

the observed and predicted velocities as due to[15]: 

 A difference between the dynamic contact angle and the static contact angle. This difference 

arises from the characteristics of the flow at the contact line between the liquid/air interface 

and the capillary wall. 

 Partial energy losses at the boundary between the capillary tube and its reservoir. These 

losses are caused by the pressure distribution resulting from the flow from the reservoir into 

the capillary. 

Levine and Neale[11] have pointed out to another issue in the both Equations (1.9) and (1.10). 

Their left-hand side terms indicate that the liquid moves through the capillary tube as a solid 

plug, suggesting a constant velocity distribution through the capillary tube cross-section[15]. The 

contradict to the suggested constant velocity profile can be found in left-hand side terms that 

contains a term corresponding to the Hagen-Poiseuille’s viscous dragging force, which is based 

on a steady flow parabolic velocity distribution across a section of the capillary tube[15]. 

Levine and Neale[11], Quéré[50], and others have disregarded another issue: an implicit 

assumption in their equations states that streamlines are parallel to the walls of the capillary tube 

and the main direction of flow. Most scientists and researchers have written force balances for 

the column of liquid in motion instead of using the Navier-Stokes equations. For example, 

Munson et al.[44] have failed to incorporate this term into account[3][4][5][7][8][50][54]. This 

issue is a core part of this research and will be explored further in coming sections. 
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1.6.2 Equation of motion using Navier-Stokes Equation 

Letelier et al.[56] has mad attempt to remove the limitations associated with the Hagen- 

Poiseuille’s friction approximation in unsteady flow. In their derivations, they kept the 

assumption of streamline enters parallel to the longitudinal direction of capillary tube. In other 

words, convective inertia and radial velocity assumed to be zero, and longitudinal velocity 

profile was not assumed to be parabolic. Letelier et al. used Navier-Stokes Equation and wrote 

series expansion of velocity distribution and obtained 

 
3

4
𝜌𝑧௖

𝑑ଶ𝑧௖

𝑑𝑡ଶ
= ∆𝑝(𝑧௖) −

8𝜇

𝑟଴
ଶ 𝑧௖

𝑑𝑧௖

𝑑𝑡
+

1

144

𝜌ଶ𝑟଴
ଶ

𝜇
𝑧௖

𝑑ଷ𝑧௖

𝑑𝑡ଷ
+ 𝑜 ቆ

𝑑ସ𝑧௖

𝑑𝑡ସ
ቇ (1.18) 

where 𝑜(𝑑ସ𝑧௖ 𝑑𝑡ସ)⁄  is the rest of series of order derivatives of z_c in the fourth power and 

above. Lucas-Washburn equation is obtained from Equation (1.18) by eliminate the order ≥ 2, 

and Rideal equation is obtained by eliminate the order ≥ 3. The importance of higher order is 

associated with smaller time ranges. By inspection Equation (1.18) illustrates the term order ≥ 2 

can be negligible with respect to the first-order term when the time 𝑡 ≫ 𝜏ଵ, where 

 𝜏ଵ =
3

4

𝜌𝑟଴
ଶ

8𝜇
 (1.19) 

Which like Equation (1.12). Similarly, the term order ≥ 3 can be negligible with respect to the 

second-order term when the time 𝑡 ≫ 𝜏ଶ, where 

 𝜏ଵ =
1

144

3

4

𝜌𝑟଴
ଶ

8𝜇
 (1.20) 

Letelier et al.[56] have not validated the derivation experimentally, but their model was 

evaluated by Batten[15][57]. Batten[57] used data obtained by LeGrand and Rense[51]who 

investigated the rise of water and ethanol in capillary tubes of radius ranging from 0.242 mm to 

0.350 mm [15]. Batten did not claim that Equation(1.18)could predict the capillary rise more 
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accurately than was found by the Bosanquet equation (1.9). However, it should be stated out that 

Batten neglected the terms ≥ 2. 

1.7 Penetration Model with consideration of Inertia Forces Between Capillary tube and 
Reservoir 

1.7.1 Hagenbach Correction  

The first consideration of the effects of drag forces was attempted by Brittin [60], who added 

a term to the right side of Bosanquet’s equation (1.9)[4]. This term relates to the friction loss due 

to cross-sectional contraction at the inlet of the capillary tube. This loss can be attributed to 

eddies forming at the side of the tube entrance[15][58]. By neglecting the cross-sectional area of 

the capillary tube compared to the cross-sectional area of the reservoir, the contraction drag force 

𝑓௖ௗ can be found by 

 𝑓௖ௗ =
𝑒ఔ

2
𝜌𝜋𝑟଴

ଶ ൬
𝑑𝑧௖

𝑑𝑡
൰

ଶ

 (1.21) 

where 𝑒ఔ is a dimensionless coefficient equal to 0.5[15]. The Vena contracta drag force has been 

examined by Szekely using the same approaches mentioned above, and he determined a 

coefficient 𝑒ఔ = 0.45 [15][59]. In general, 𝑒ఔ is determined by the type of connection between 

the capillary tube and the reservoir. This value will be lower in the case of a well-rounded or 

“trumpet-shaped” connection type [15]. Conversely, the vena contracta drag force coefficient is 

larger if the capillary tube is reentrant[44]. In general case, Bosanquet’s equation (1.9) can be 

rewritten as 

 𝜌 ൬
𝑑𝑧௖

𝑑𝑡
൰

ଶ

+ 𝜌𝑧௖

𝑑ଶ𝑧௖

𝑑𝑡ଶ
= ∆𝑝(𝑧௖) −

8𝜇

𝑟଴
ଶ 𝑧௖

𝑑𝑧௖

𝑑𝑡
−

𝑒ఔ

2
𝜌 ൬

𝑑𝑧௖

𝑑𝑡
൰

ଶ

 (1.22) 

Brittin [60] used Equation (1.22) and obtained good agreement with one set of data presented 

by Rense[6][15]. Levine et al.[11] criticized the approach used by Brittin [60]and Szekely, 
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pointing out that the drag force given by Equation (1.21) was only valid at high Reynolds 

numbers for turbulent flow. In this research, the approach derived by Levine et al.[11] was used, 

which can be valid for laminar flow in porous media at very low Reynolds. 

In the case of laminar flow into a capillary tube, there are two types of pressure drops to 

consider: one in the inlet region and the other corresponding to the conversion of pressure energy 

to kinetic energy at the inlet of the capillary tube. The first approximation of the inlet pressure 

can be found by assuming inviscid flow in the reservoir and a constant penetration rate 𝑑𝑧௖ 𝑑𝑡⁄  . 

Thus, the inlet pressure 𝑝ଵ(𝑧௖) has been found using Bernoulli’s equation as [61][15] 

 𝑝ଵ(𝑧௖) = 𝜌𝑔ℎ −
1

2
𝜌 ൬

𝑑𝑧௖

𝑑𝑡
൰

ଶ

 (1.23) 

With viscous flow conditions within the entry development region, a constant velocity 

distribution over the cross-section of the circular tube is considered. The boundary layer grows to 

ensure mass conservation until a parabolic velocity distribution is achieved [15]. Bird et al.[59] 

defined the length of the developing region in the order of 0.07 𝑟଴𝑅𝑒. White [62] suggest 𝑙௘ =

0.16𝑟଴𝑅𝑒 + 1.3𝑟଴, where the second term 1.3𝑟଴ is independent of the Reynolds number, making 

the formula valid for creeping flow at very low Reynolds numbers ≪ 1[63][64]. 

Studies have shown that the magnitude of kinetic energy associated with a constant velocity 

distribution is half that of the kinetic energy associated with a parabolic velocity distribution. 

Additionally, there is a pressure loss due to the transition from constant to parabolic velocity 

distribution[15] [65]. The drag force corresponding to the pressure loss because of transitioning 

velocities, can be expressed in the form similar to Equation (1.21). By computing the energy 

differences using constant and parabolic velocity distributions, the vena contracta drag force 

coefficient  𝑒ఔ = 1 [15][65]. By combining Equation (1.21) and the second term of left hand side 

of Equation (1.21) to form a pressure drop  
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 ∆𝑝(𝑧௖) = (1 + 𝑒ఔ)
𝜌

2
൬

𝑑𝑧௖

𝑑𝑡
൰

ଶ

 (1.24) 

the coefficient (1 + 𝑒ఔ) is replaced by 𝑚 which is called Hagenbach correction [66][15]. In case 

of 𝑚 = 2, reduced Equation (1.21) to 𝜌(𝑑𝑧௖ 𝑑𝑡⁄ )ଶ which is the same term that differentiates 

Rideal Equation (1.21) from Bosanquet Equation (1.21). This concludes that pressure loss term 

has already included in Bosanquet[4] analysis but does not in Rideal[3]. 

Table 1.5 Hagenbach correction from different authors[15] 
Author 𝐦 Average experimental 𝐦 

Langhaar 2.28  

Boussinesq 2.24  

Schiller 2.16  

Atkinson-Goldstein 2.41  

Riemann  2.248 

Schiller  2.32 

Hagen 2.7  

 

 

More studies have been done to estimate Hagenbach correction 𝑚 using different approaches 

as illustrated in Table 1.5. Most of these theories assume that the flow from the reservoir to the 

capillary tube takes place through a well-rounded entrance, exclude Hagen, the tube entrance 

was not well rounded but squarely cut off[15]. 

Levy[15] has summarized three combined effects that attribute to the pressure drop across the 

contraction from the reservoir to the capillary tube as following: 

 Conversion of pressure energy to kinetic energy in the reservoir near the inlet of the capillary 

tube 
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 Conversion of pressure energy to kinetic energy due to a change in velocity distributions 

 Eddy dissipation at the contraction 

Taking the pressure drop terms given by Equations (1.21) & (1.24), the using Equation (1.4) 

and Equation (1.10)[15] 

 𝜌𝑧௖

𝑑ଶ𝑧௖

𝑑𝑡ଶ
+

8𝜇

𝑟଴
ଶ 𝑧௖

𝑑𝑧௖

𝑑𝑡
= 𝜌𝑔ℎ +

2𝜎 cos 𝜃

𝑟଴
− 𝜌𝑔𝑧௖ sin 𝜑 −

𝑚

2
𝜌 ൬

𝑑𝑧௖

𝑑𝑡
൰

ଶ

 (1.25) 

The above equation was first proposed by Siegel [7]. By taking 𝑚 = 2 in Equation 

(1.25), the resulting equation is not substantially different from Equation 2.9. Siegel had taken 

𝑚 = 5 before he observed that existence of some agreement between prediction and 

measurement on a micro-gravity rise in a capillary tube with radius 0.95 mm[15]. 

In case of the flow can be turbulent before entering the capillary tube, Zhmud et al[54] has 

suggested the possibility of existing a turbulence drag could slow down the penetration rate, and 

added a term to the right-hand side of Equation (1.25) equal to 

 𝜙(𝑧௖) = ቐ

0 𝑖𝑓 𝑑𝑧௖ 𝑑𝑡⁄  ≤ 𝑣௖௥

−
𝑞

𝑟଴
ଶ 𝑧௖ ൬

𝑑𝑧௖

𝑑𝑡
൰

ଶ

𝑖𝑓 𝑑𝑧௖ 𝑑𝑡⁄  > 𝑣௖௥

 (1.26) 

where 𝑣௖௥ is the critical velocity in which the turbulence begins, 𝑞 is a turbulence coefficient 

taken to be equal to 0.3 𝑘𝑔 𝑚ଷ⁄ . 

A very good fit has been obtained by Zhmud et al[54]for the capillary rise of dodecane in a 

0.1 mm radius of the capillary tube. However, they noted that the critical velocity 𝑣௖௥ 

corresponded to a Reynolds number of the order of 2. Therefore, according to empirical 

approach used by the authors, 𝜙(𝑧௖) was not exactly a turbulent drag, but rather it is the second 

order dissipation correction related to the actual flow pattern[15]. 
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1.7.2 Reservoir Inertia 

The inlet pressure 𝑝ଵ(𝑧௖) has been found using Bernoulli’s equation as shown in Equation 

(1.24) with assuming constant velocity in the capillary tube, which of course is not true case. 

These changes in velocities are responsible for reservoir inertia and must be examined. Siegel[7] 

adopted the study of flow through an orifice done by Morse and Feshbach [15][67]. For the flow 

rate of 𝜋𝑟଴
ଶ (𝑑𝑧௖ 𝑑𝑡⁄ ) through an orifice, the authors illustrated that a plug of effective mass 

𝜌𝜆𝜋𝑟଴
ଷ ; 𝜆 = 𝜋 2⁄ , had to be accelerated when initiating flow. For the inertia term of Equation 

(1.25), Siegel 1961, found out this inertia was equivalent to increasing in liquid height in the 

capillary from 𝑧௖ to 𝑧௖ + 𝜆𝑟଴, then he obtained  

 𝜌(𝑧௖ + 𝜆𝑟଴)
𝑑ଶ𝑧௖

𝑑𝑡ଶ
+

8𝜇

𝑟଴
ଶ 𝑧௖

𝑑𝑧௖

𝑑𝑡
= 𝜌𝑔ℎ +

2𝜎 cos 𝜃

𝑟଴
− 𝜌𝑔𝑧௖ sin 𝜑 −

𝑚

2
𝜌 ൬

𝑑𝑧௖

𝑑𝑡
൰

ଶ

 (1.27) 

The empirical choice of 𝜆 = 𝜋 4⁄  leads to a good agreement with Siegel’s experimental data. 

In addition, initial condition of zero velocity can be compatible with Equation (1.27) because the 

correction term has removed the singularity associated with Equation (1.9) at 𝑡 = 0. 

Although the Siegel’s approach of reservoir inertia analysis seems to be empirical, it was 

independently validated by Szekely by using an innovative method of examining a case of liquid 

rise into a vertical capillary tube. Instead of using the momentum conservation equation, they 

analyzed a system of liquid rise into capillary tube by using macroscopic energy balance as[15] 

 
𝑑

𝑑𝑡
(𝐾𝐸 + 𝑃𝐸) = −∆ ቈቆ

𝑢ଶ

2
+ 𝑔𝑧 +

𝑝

𝜌
ቇ 𝑤቉ − 𝑊 − 𝐸ఔ (1.28) 

where 𝐾𝐸 & 𝑃𝐸 are total kinetic energy and potential energy within the system, respectively, the 

longitudinal liquid velocity 𝑢 = 𝑑𝑧௖ 𝑑𝑡⁄  assumed to be constant throughout the system, at system 

pressure 𝑝, mass flow rate 𝑤 = 𝜌𝑢𝐴; 𝐴 cross section area, −𝑊 a rate of work done by the 

system, and the rate of work dissipated irreversibly 𝐸ఔ. The three terms inside the parentheses are 
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respectively, (net input of kinetic energy + the net input of potential energy + the net input of 

pressure energy) at the cross-sectional boundaries of the system. This case of input energy comes 

through the boundary with the reservoir and no output energy since the upper boundary is rising 

along with the liquid[15]. The terms 𝑊 and 𝐸ఔ are respectively, correspond to the rate of works 

due to viscosity forces and contraction drag force. After the calculations, Szekely obtained  

 𝜌𝑧௖

𝑑ଶ𝑧௖

𝑑𝑡ଶ
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ଶ

 (1.29) 

It can be noticed that Equation (1.29) includes the form of Rideal’s equation (1.10)[3], in 

additional to energy loss term similar to that has proposed by Brittin[60]. It should be pointed out 

that Szekely’s analysis is consistent with Rideal’s analysis with the assumption of input kinetic 

energy to be equal to 0.5𝜌𝜋𝑟଴
ଶ(𝑑𝑧௖ 𝑑𝑡⁄ )ଷfor elements of liquid entering the capillary tube[15]. 

Szekely has proposed different techniques to treat the driving pressure given by Equation 

(1.4), they included the pressure distribution due to the flow from reservoir into capillary tube, 

which they obtained  

 ∆𝑝(𝑧௖) = −𝜌𝑔𝑧௖ +
2𝜎 cos 𝜃

𝑟଴
+ 𝑝ଵ(𝑧௖) (1.30) 

where 𝑝ଵ(𝑧௖) cross section inlet pressure. For a vertical case at 𝜑 = +90଴, 𝑝ଵ(𝑧௖) that given by 

Equation(1.23) and  Equation (1.29) is identical to Equation (1.29). 
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Figure 1.5 shows the far and near field of the capillary tube reservoir 

Szekely has assumed that the connection level of the capillary tube to the reservoir at 

reservoir head ℎ = 0, they applied an energy balance Equation (1.28) and expression for inlet 

pressure 𝑝ଵ(𝑧௖) has been obtained. The element of liquid flow from reservoir can be seen as a 

hemispherical body extending through the inlet of the capillary to infinity as shown in Figure 

1.5. The centripetal velocity 𝑢௥, in the far field for any hemispherical liquid of radius 𝑟 ≥ 𝑟଴, can 

be obtained from mass conservation equation in spherical coordinates[68] as 

 𝑢௥ =
1

2
ቀ

𝑟଴

𝑟
ቁ

ଶ 𝑑𝑧௖

𝑑𝑡
 (1.31) 

Therefore, the corresponding kinetic energy can be measured, and it has been covered through 

the study of flow towards a spherical sink or away from a point source, for both viscous and 

inviscid flow[15].  

In the near field, within the element of hemispherical liquid of radius 𝑟 ≤ 𝑟଴, as shown in 

Figure 1.5, the velocity field is not known. For this region, Szekely assumed that, the velocity 

within the near region, was equal to the main capillary tube velocity 𝑑𝑧௖ 𝑑𝑡⁄ , which is the actual 



26 
 

velocity of the upper-bond. They obtained an expression for 𝑝ଵ(𝑧௖) by deriving the reservoir 

total kinetic energy 

 𝑝ଵ(𝑧௖) = −
7

6
𝜌𝑟଴

𝑑ଶ𝑧௖

𝑑𝑡ଶ
 (1.32) 

 However, Szekely presented innovative technique in their energy balance analysis, but it 

seems to be mistakenly neglecting the outflow of kinetic energy, 0.5𝜌𝜋𝑟଴
ଶ(𝑑𝑧௖ 𝑑𝑡⁄ )ଷ, from 

capillary tube to reservoir. By including outflow KE, they should have obtained 

 𝑝ଵ(𝑧௖) = −
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6
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1
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൰ (1.33) 

which is identical to Equation (1.23), but with additional tear of reservoir inertia. Substituting 

Equation (1.33) into Equation (1.30) and Equation (1.29) gets 
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(1.34) 

which analogous to Siegel’s equation[7] at 𝜑 = +90଴, ℎ = 0, and 𝜆 = 7 6⁄ . Similar approach 

was used by Huang et al.[69], but 𝜆 = 3 8⁄ . 

Based on using incomplete Equation (1.32), Szekely should have obtained the coefficient 𝑒ఔ 

instead of 𝑚 = 1 + 𝑒ఔ. In fact, the authors found the coefficient 2 + 𝑒ఔ as might be an indication 

of an error in their analysis of energy balance. This error was found by Levine [9] and 

Sorbie[70], while none of the authors above referred to the error associated with Equation (1.32). 

Levy[15]  pointed out that, Batten[57] extended the energy balance equation to capillary 

penetration through porous media, but he made the same sign error resulting in an equation 

similar to that of Szekely. This error had not noticed in several publication[15], might be because 
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of Szekely took 𝑒ఔ = 0.45 as mentioned earlier, so, they got (2 + 𝑒ఔ = 2.45)  which is the same 

order of 2.24 ≤ 𝑚 ≤ 2.41. 

 
Figure 1.6 illustrates the penetration rate of water in a vertical 0.133 mm radius capillary tube. A. 
Experimental data; B. Model of Szekely et al. [1971] given by (2.34) (m = 2.45); C. Lucas-
Washburn model[53] Used with permission of Elsevier Science & Technology Journals, from 
Jeje, Ayodeji A. "Rates of spontaneous movement of water in capillary tubes." Journal of 
Colloid and Interface Science 69, no. 3 (1979): 420-429; permission conveyed through 
Copyright Clearance Center, Inc 

A conclusion can be presented to clarify the effects of reservoir inertia on the penetration into 

a capillary tube. Within the early stages of the infiltration at 𝑧௖ is of the order of 𝑟଴, for the inertia 

term 𝑧௖ should be replaced by 𝑧௖ + 𝜆𝑟଴. Then, it can be noticed that the reservoir inertia has 

small influence on the overall behavior of the infiltration, as illustrated in Figure 1.6 [53], 

Equation (1.34) makes a little improvement of Lucas-Washburn’s equation (1.4), but it still 

overestimates the initial penetration rate[15]. 
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1.7.3 Couette Correction 

Levine et al. [9] criticized Szekely et al.[8] approach and they suggested to add a term 𝑚ᇱ 𝑅𝑒⁄  

mentioned by Oka[66] to Hagenbach correction 𝑚, to be 𝑚 + 𝑚ᇱ 𝑅𝑒⁄ , where 𝑚ᇱ is a constant, 

and 𝑅𝑒 is a Reynolds number given by 

 𝑅𝑒 =
2𝜌𝑟଴

𝜇

𝑑𝑧௖

𝑑𝑡
 (1.35) 

Plugging the correction term to Equation (1.21), then the total drag force given by 

 𝑓௖ௗ =
1

2
ቆ𝑚 +

𝑚ᇱ

𝑅𝑒
ቇ 𝜌𝜋𝑟଴

ଶ ൬
𝑑𝑧௖

𝑑𝑡
൰

ଶ

 (1.36) 

The term 𝑚ᇱ 𝑅𝑒⁄  called Couette correction, and it is an important in measuring a viscosity 

using rheometer[15][66]. In creeping flow at low Reynolds, additional pressure drop can be 

counted associated with viscous energy dissipation at the end of tube equivalent to an increase in 

capillary tube effective length. Using Equation (1.35) and replacing Equation (1.36) in Equation 

(1.27) in case of ℎ = 0 & 𝜑 = 𝜋 2⁄ , the following expression is found [15] 

 

𝜌(𝑧௖ + 𝜆𝑟଴)
𝑑ଶ𝑧௖

𝑑𝑡ଶ
+

8𝜇

𝑟଴
ଶ ቆ𝑧௖ +

𝑚ᇱ

32
𝑟଴ቇ 

𝑑𝑧௖

𝑑𝑡

=
2𝜎 cos 𝜃

𝑟଴
− 𝜌𝑔𝑧௖ −

𝑚

2
𝜌 ൬

𝑑𝑧௖

𝑑𝑡
൰

ଶ

 

(1.37) 

Equation (1.37) gives the fact that the supplementary viscous drag is due the change in 

capillary length from 𝑧௖ to 𝑧௖ + 𝑚ᇱ𝑟଴ 32⁄  within the range in which viscous forces apply. 

As indicated by Sylvester and Rosen[71], Equation (1.36) has been found by superposition of 

the Hagenbach correction obtained for the inertia-dominant flow, and the Couette correction 

obtained for the viscous flow, and it was not obtained directly by solving laminar flow 

equation[15]. 
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Experimental studies on viscous flow through an orifice and through short tubes, measured 

the values of 𝑚ᇱ = 36.7 ± 0.6 [72][73]. These results have a good agreement with that found 

theoretically for viscous flow through orifice 𝑚ᇱ = 12𝜋 ≅ 37.7[74]. Based on the results found 

by Bond[72][73], Weissberg[75] has used infinite reservoir and derived the upper limit value for 

𝑚ᇱ = 43.6 by suggesting this value is independent of capillary tube length 𝑙. However, an 

experimental study has done by Astarita and Greco[76] obtained a large value of 𝑚ᇱ = 795, and 

it suggested that 𝑚ᇱ is a very sensitive to the contraction geometry[15]. Their regression analysis 

was later criticized by Sylvester and Rosen[71] who have obtained 𝑚ᇱ = 295 ∓ 50, and they 

suggested 𝑚ᇱ to be decreased with decrease the surface area ratio 𝑟଴
ଶ 𝑟௥

ଶ⁄ , 𝑟௥ is the radius of the 

reservoir [15]. 

Consider a very small capillary tube radius compared to reservoir dimensions, 𝑚ᇱ is on the 

order of 10ଶ by taking in account the suggestions made by Sylvester and Rosen[71]. Levy[15] 

pointed out from Equation (1.37), that increase in capillary tube effective length should not 

exceed a few radii. In addition, for reservoir inertia correction 𝜆𝑟଴, Couette correction only valid 

to early stage of capillary penetration, at large Reynold number and the inertia dominant[15]. 

This lead that this correction has no significant effects of the theoretical predictions of capillary 

infiltration, but it may be significant at low initial velocity[15]. 

The above conclusion was supported by Levine et al.[9] who obtained Equation (1.37) using 

different approach. They build their analysis applying Navier-Stokes equations on capillary tube 

with parabolic velocity distribution. Excluding the vena contracta energy loss term, Levine et 

al.[9] derived an equation identical to Szekely, used combination of Equations (1.29) & (1.30). 

As what Szekely did for finding 𝑝ଵ(𝑧௖), Levine et al.[9] required to come up with an expression 

describes inlet pressure  𝑝ଵ(𝑧௖). Rather than using Szekely approach using energy conservation 
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equation, Levine et al.[9] derived their model of the reservoir pressure far field 𝑟 ≥ 𝑟଴, from 

Navier-Stokes equations using reservoir radial velocity given by Equation (1.31). Then, Levine 

et al.[9] needed to combine the far field pressure with inlet pressure, which it has been done 

using a momentum conservation equation for the near field system of hemisphere at 𝑟 ≤ 𝑟଴ as 

illustrated in Figure 1.5. The near field velocity was unknown, they had to use an approximation 

approach to find the rate of change of total momentum in the system [9]. They consider the 

viscous forces acting along the surface 𝑟 =  𝑟଴, then they were able to obtain an expression 

covering both the reservoir inertia and the Couette correction. The model was derived by Levine 

et al.[9] is identical to Equation (1.37) but with 𝜆 = 37 36⁄ , 𝑒ఔ = 2.33, and 𝑚ᇱ = 8. Levy[15] 

believed that Levine et al.[9] should not have neglected the convective inertia term in their 

analysis of the far field pressure and should have instead obtained 𝑒ఔ  =  2.58 as been discussed 

earlier in this chapter. The value of 𝑚ᇱ obtained by authors showed that Couette correction for 

the effective viscous length is in the order of less than 𝑟଴, but for accurate study should not be 

neglected especially in capillary penetration flow from finite reservoir, for instance, dynamics of 

droplet penetration. 

1.7.4 Conclusion on Pressure Drops due to Capillary Tube-Reservoir Interactions 

Flow in capillary tube faces drag forces at the entrance region, that can potentially act to 

reduce the penetration rate. for this reason, three kinds of pressure losses effects have been 

studied. First, pressure drop due to sudden contraction is proportional to square of penetration 

rate, effects of energy loss have been incorporated to the Hagenbach correction. Second, 

unsteady penetration rate has been applied, so the reservoir inertia promotes pressure drop, in the 

amount equal to the increase of infiltration length in the order of 𝑟଴ within the region in which 

inertia force is applied. Third, pressure drop due to viscous dissipation at the entrance of 
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capillary tube with very low Reynolds number, incorporated to the Couette correction, is equal to 

the increase in the penetration length in the order of one or several 𝑟଴ within the region in which 

inertia force is applied. 

It can be concluded that all the three corrections have failed to justify discrepancies between 

measurements and predictions reported in the literature. Couette corrections are only 

considerable at the initial stages of the capillary penetration at 𝑧௖ → 𝑟଴. After initial stages and 

depending on interface velocity (contact line), Hagenbach correction might still have significant 

influence to reduce the penetration rate and need to be calculated in the prediction analysis [15]. 

1.8 Penetration Model with consideration of Meniscus Effects 

1.8.1 Overview 

The flow in the vicinity of the advancing meniscus is associated with two problems. First; the 

Hagen-Poiseuille’s flow  has been characterized to be a fully developing flow “parabolic velocity 

profile”, where meniscus displacement appears to contradict the well-known no-slip boundary 

condition at the wall of the capillary tube; in which the speed of the fluid at the wall is supposed 

to be zero[15][77]. Second, dependence on the contact angle on the velocity. As will be 

discussed in this section, these two issues are intimately connected. In general, these studies are 

part of comprehensive topic of liquid spreading on solid surfaces, which have been extensively 

studied [79][80][81][83][85], and has attracted the attention of many investigators both from a 

theoretical and a practical point of view[90][15]. Many issues remain unresolved that are related 

to sub-microscopic mechanisms by which a liquid displaces another fluid from a solid surface, 

especially flow behavior from finite reservoir; water drops as example[15]. 
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1.8.2 Static Contact Angle and Contact Angle Hysteresis 

Contact angle is located at the point in which the three interfaces of liquid, solid and gas come 

in contact together. This angle is associated with properties of liquid and solid, and interaction 

and repulsion forces between liquid and solid. Those forces known as cohesion and 

adhesion forces which are intermolecular forces. Contact angle can be defined in two cases; 

static contact angle 𝜃௦ at which the meniscus at rest intersects the solid at the junction of the 

three distinct phases, liquid, fluid (can be gas or different liquid) and solid, while dynamic 

contact angle 𝜃ௗ at the movement of the system. The point at three phases that come in contact 

together is commonly referred to as the contact line or wetting line[15] 

 

Figure 1.7 shows the static contact angle and contact line at Solid, Liquid, and Gas interfaces 

It can be see that Figure 1.7 illustrates the thermodynamic equilibrium conditions of Liquid-

Solid-Gas interfaces have been defined using Young’s equation, that relates static contact angle 

𝜃௦, and surface tensions of liquid σ, liquid-solid 𝜎௅/௦, and gas-solid 𝜎ீ/௦. The solid surface 

assumed to be perfectly flat and homogeneous, Young’s equation wrote as 

 𝜎 cos 𝜃௦ = 𝜎ீ/௦ − 𝜎௅/௦ (1.38) 
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Even though Equation (1.38) deucedly simple, but it eluded to be experimentally verified due 

to an incapability of measuring 𝜎ீ/௦  and 𝜎௅/௦ [79]. In addition, for the system of Liquid-Gas-

Solid, the contact angle is a unique property according to Young’s equation, however practically 

usually possible examine the range of contact angle for Liquid-Gas-Solid and Liquid-Liquid-

Solid [79][91]. The term of hysteresis or contact angle hysteresis it related to solid surface 

impurities, heterogeneity, and surface roughness[80][88][15]]. Equation (1.38) still can be apply 

at the microscopic scale of surface roughness, that make possibility of multiple equilibrium 

configurations in existence of impurities and heterogeneities of surfaces, which can be lead to 

observe the hysteretic behavior at the macroscopic scale[15]. For the reasons that cause 

hysteresis phenomenon, it has been found that the contact line is stuck on the solid surface, 

discontinued at a particular location on the solid surface. This phenomenon is not only for 𝜃 =

𝜃௦, but whenever 𝜃 sits within a finite interval around 𝜃௦ [15][80] 

 𝜃௥ ≤ 𝜃 ≤ 𝜃௔ (1.39) 

where 𝜃௥ is static receding contact angle and 𝜃௔ is a static advancing contact angle. static 

advancing contact angle and static receding contact angle. As shown in Figure 1.8.a, the receding 

contact angle, 𝜃௥, is the smallest contact angle can be reached before the wetting line begins to 

move toward the wetting phase. In contrast, as illustrated in Figure 1.8.b, the static advancing 

contact angle, 𝜃௔, is the largest contact angle can be reached before the wetting line begins to 

move toward the non-wetting phase. Contact angle usually measured once contact line move[88]. 
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Figure 1.8 shows the contact angle hysteresis: a. Static receding contact angle; b Static advancing 
contact angle 

For any normal surfaces that have not been specifically treated, the range of difference 

between 𝜃௔ − 𝜃௔ ≥ 10଴ in the case of Liquid-Gas system[80]. While for Liquid- Liquid systems 

𝜃௔ − 𝜃௔ ≫ 10଴. In case of Glycerin-Silicon oil interfaces in horizontal capillary tubes of radius 

𝑟଴ = 1𝑚𝑚, Fermigier and Jenffer[91] observed the magnitude of the interval 𝜃௔ − 𝜃௔was of the 

order of 60଴. 

1.8.3 Dynamic Contact Angle 

For liquid displacement by any of Liquid-Fluid-Solid system during flow in capillary 

channels, the contact line at the Liquid-Fluid interface has observed to move. Measuring 

dynamic contact angle 𝜃ௗ can be done at the macroscopic scale in the order of few microns, the 

common measurement techniques have been taken place at the apparent interface intersects the 

solid surface[83][92]. The variables associate with the dynamic contact angle and influence on it, 

have been studied under different geometrical configurations as illustrated in Figure 1.9, for 

instance, these methods include the spreading of drops on a solid surface as shown in Figure 

1.9.a [93][94], the flow in capillary tubes of circular cross section; 

Figure1.9.b[15][91][95][96][97], the wetting lines formed by immersing (withdrawal) a plat; 
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Figure 1.9.c [85][87][93], and the rotation of a horizontal cylinder in a pool of liquid; Figure 

1.9.d[15]. 

 

Figure 1.9 shows the dynamic contact angles in different geometries used to study them: 
Spreading drops, Liquid-Fluid displacement in capillary tubes, Steady immersion (withdrawal) 
Rotation of a horizontal cylinder in a pool of liquid 

The shape of the interface (contact line) of forced air displacement by various non-volatile 

liquids (i.e. imbibition) have been examined by Hoffman[95] using capillary tube; 𝑟଴ = 1 𝑚𝑚 

[Levy]. Forced meniscus motion has imposed externally to be at constant velocity, while 

spontaneous displacement where the wetting process is inherently transient[15]. Under condition 

of perfect wetting at 𝜃௦ = 0, Hoffman[95] found that the apparent dynamic contact angle 

significantly associated with the capillary number at the system controlled by the dominant of 

interfacial and viscous forces, the capillary number defined as 

 𝐶𝑎 =
𝜇 𝑢଴

𝜎
 (1.40) 

where 𝑢଴ is interface displacement velocity. Hoffman[95] has found a relationship between 

apparent contact angle 𝜃௠ and capillary number plus a shift factor 𝜇 𝑢଴ 𝜎⁄ + 𝐹(𝜃௦), 𝐹(𝜃௦) is 
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shift factor, it is very small ≈ 0, generally a constant for any Liquid-Solid-Gas system. This 

relationship has depicted on a curve can be called a comprehensive curve that characterizes the 

shape of any liquid-air interface in a motion in the case of only viscous and interfacial forces are 

important[95].  

 

Figure 1.10 illustrates the effects of flow on apparent contact angle of advancing liquid-air 
interface[95]Used with permission of Elsevier Science & Technology Journals, from Hoffman, 
Richard L. "A study of the advancing interface. I. Interface shape in liquid—gas 
systems." Journal of colloid and interface science 50, no. 2 (1975): 228-241; permission 
conveyed through Copyright Clearance Center, Inc 

As illustrated in Figure 1.10, Hoffman[95] examined the relation between capillary number 

plus shift function ranging from 10ିହ to around 36, corresponding to apparent contact angle 

ranging from 0 to 180଴. Other contribution forced displacement data has obtained by both of 

Fermigier and Jenffer[91], and Hansen and Toong[98] using similar Hoffman’s technique[95], 

and other researchers have used alternative experimental techniques that found close fit to 
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comprehensive curve, validate that dynamic contact angles are independent of the flow geometry 

and measurement method[92][93]. 

1.9 Finite Flow in capillary tube 

Lucas-Washburn’s model is a good approximation in case of a quasi-steady-state laminar 

flow of a Newtonian flow form infinite reservoir, or a large droplet is deposited on a capillary 

tubes/pore media, they neglected the inertia effect and viscous drag [99]. However, for flow from 

finite reservoir/ small drops, the volume and contact angle effects have to be considered 

especially when it is comparable with the capillary size, and the surface curvature and surface 

tension may generate a capillary pressure that promotes droplet penetration[100]. The 

penetration dynamics of a small droplet into capillary tube was first reported by 

Marmur[99][101][102]. Marmur had studied the effects of surface curvature and surface tension 

and incorporated these effects into analysis, when a small droplet meets the surface edge of 

capillary tube, it forms two curvatures at the air-water-solid interfaces: droplet surface outside 

the pore and the meniscus inside. Marmur found that for non-wetting droplet may penetrate into 

capillary tube if the initial droplet radius 𝑅଴ satisfy: 

 𝑅଴ <
𝑟଴

− cos 𝜃௦
 (1.41) 

where 𝑟଴ is the capillary tube radius, and  𝜃௦ is a static contact angle which is 𝜃௦ > 90଴ in non-

wetting case, while in a wetting case of 𝜃௦ > 90଴ the penetration rate is higher in compare with 

the flow from infinite reservoir. Droplet penetration is driven by the capillary pressure 

differences between droplet pressure and meniscus in the pore. Laplace pressure of the droplet 

varies inversely with the droplet radius, the process of penetration enhanced with increasing the 

pressure differences. In liquid penetration, both the pore radius and droplet volume determine the 
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dynamics behavior of penetration, so to understand and ability to control this behavior needed to 

increase[103].  

Although other forms of the equation were obtained by Bell and Cameron[40] and West[41], 

but they did not started using Hagen–Poiseuille equation that have been derived independently 

by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen and published by 

Poiseuille in 1840–41 and 1846 [42]. The theoretical justification of the Poiseuille law was given 

by George Stokes in 1845[43].  

Lucas and Washburn both had started from the Hagen-Poiseuille’s law, which relates the 

steady-state flow of a liquid through a capillary tube[44] 

 𝑄 =
𝜋𝑟଴

ସ

8𝜇𝑙
∆𝑝 (1.42) 

Where 𝑄 is the volumetric flow of liquid, 𝑟଴ and 𝑙 are the radius and the length of the capillary 

tube, respectively, 𝜇 is the dynamic viscosity of the liquid, and ∆𝑝 is the total driving pressure 

acting to force the liquid along the capillary. Based on the Equation (1.42), Lucas and Washburn 

obtained[15]  

 
𝑑𝑧௖

𝑑𝑡
=

𝑟଴
ଶ

8𝜇

∆𝑝(𝑧௖)

𝑧௖
 (1.43) 

where 𝑧௖ is the penetrated length of liquid displacing air inside a capillary tube at time 𝑡. 

Assuming the parabolic profile of the velocity distribution of Hagen-Poiseuille’s flow, 𝑑𝑧௖ 𝑑𝑡⁄  is 

a mean velocity across a section of capillary tube, and displaced air (gas phase) velocity has been 

assumed to be negligible with respect to the viscosity of the liquid[15]. 

In this study, an analysis of finite fluid flow at low Reynolds for entry flow is presented in 

which the penetration towards the capillary entrance from a finite reservoir (water droplet or 

film). Time-dependent solutions of the Navier-Stokes equations are crucial for understanding the 
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rate of liquid penetration in various fluid dynamics scenarios. The Navier-Stokes equations, 

which describe the motion of viscous fluid substances, are a set of nonlinear partial differential 

equations that account for the conservation of momentum and mass. When solving these 

equations for time-dependent problems, we often use numerical methods to handle the 

complexity of the equations and the boundary conditions. 

In the context of liquid penetration, these solutions help model how a liquid moves through 

porous media or capillary tubes over time. The rate of penetration is influenced by factors such 

as viscosity, surface tension, and the dynamic contact angle. By solving the Navier-Stokes 

equations, we can predict how quickly a liquid will penetrate a given material, which is essential 

for applications in fields like material science, biology, and engineering. The next chapter will 

delve deeper into these solutions, exploring specific mathematical techniques and their 

applications. It will also discuss how initial and boundary conditions are set up to ensure accurate 

and stable solutions, and how these solutions can be validated against experimental data 
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 CHAPTER 2: GOVERNING EQUATIONS AND MATHEMATICAL FORMULATION 

2.1 Overview 

In this study, an analysis of finite fluid flow at low Reynolds for entry flow is presented in 

which the penetration towards the capillary entrance from a finite reservoir (water droplet) is 

considered. Boundary layer theory and time-dependent solutions of Navier-Stokes equations are 

describing the rate of droplet penetration. A theoretical analysis of various cases is performed, 

resulting in ordinary differential equations that can be solved relatively rapidly. The cases 

studied include: 

 A single droplet entering a pore 

 A single droplet attached to the surface entering a pore with stick-slip motion of the contact 

line 

 A single droplet covering several pores with a receding contact line  

 Infinitely large and finite film of liquid both drained by a single pore 

 Infinitely large and finite film drained by several pores 

Governing equations are derived for the penetration length and the changes in pore or film 

geometry as the fluid enters the pore(s). Parametric studies are performed to understand the 

effects of various properties on the solution.  

The current study presents a novel analysis focusing on the dynamic aspects of droplet 

behavior into a pore and provides a theoretical study of droplet penetration into a pore using 

Levin-Szekely theories. The departure from Poiseuille flow in the capillary near the entrance and 

in the vicinity of the moving meniscus appears to be amenable to mathematical treatment. 

However, it is noted that the asymptotic solutions provided by Washburn-Rideal and Levin-

Szekely are not valid for very short contact times and for flow from a finite reservoir (water 
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droplet), which may typically be encountered in certain printing and lithographic operations. It is 

a real possibility that a rigorous formulation of the problem would be required for the description 

of these processes. 

2.2 Mathematical Formulation 

An attempt has been made in this study using N-SEs in combined with boundary layer model 

during the penetration of the droplet into the pore to obtain a theoretical solution of the dynamic 

of the droplet. 

 

Figure 2.1 shows the system of penetration of droplet with constant initial radius 𝑅௜  into pore 
with radius 𝑎 

2.2.1 Governed equation of region 1 

Continuity and Navier-Stokes equations for incompressible fluid: 

 
𝜕

𝜕𝑧
(𝑟𝑢) +

𝜕

𝜕𝑟
(𝑟𝑣) = 0 (2.1) 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝜈 ቈ

𝜕ଶ𝑢

𝜕𝑟ଶ
+

1

𝑟

𝜕𝑢

𝜕𝑟
+

𝜕ଶ𝑢

𝜕𝑟ଶ
቉ + 𝑔 (2.2) 

Multiplying by r and using continuity Equation (2.1): 

 
𝜕

𝜕𝑡
(𝑟𝑢) +

𝜕

𝜕𝑧
(𝑟𝑢ଶ) +

𝜕

𝜕𝑟
(𝑟𝑢𝑣) = −

𝑟

𝜌

𝜕𝑃

𝜕𝑧
+ 𝜈 ቈ

𝜕

𝜕𝑟
൬𝑟

𝜕𝑢

𝜕𝑟
൰ +

𝜕ଶ𝑢

𝜕𝑧ଶ
቉ + 𝑔𝑟 (2.3) 

Equation (2.3) can be solved by integration from 𝑟 = 0 𝑡𝑜 𝑟 = 𝑎 , using no-slip boundary 

condition 𝑢(𝑟 = 𝑎) = 0, and Equation (2.1) with the known of: 

1. Volume flux along the tube 𝜋𝑎ଶ ௗ௭

ௗ௧
= 2𝜋 ∫ 𝑟𝑢 𝑑𝑟

௔

଴
 

2. Assuming Poiseuille flow,   𝑢 = 2 ቀ1 −
௥మ

௔మ
ቁ

ௗ௭

ௗ௧
 which satisfies the continuity equation 1 

3.  𝑢 independent of z, and 𝑑𝑢 𝑑𝑟⁄ ]௥ୀ௔ = (− 4 𝑎)⁄  𝑑𝑧 𝑑𝑡⁄  

4. Poiseuille flow 𝑣 = 0, 𝑝(𝑧, 𝑟, 𝑡) = 𝑝(𝑧, 𝑡) = 𝑝௔௧௛ + 2𝛾 𝑅⁄ ; p is independent of 𝑟, R is 

droplet radius, and atmospheric pressure 𝑝௔௧௛ 

5. Integrating Equation (2.3) from 𝑧 = 0 to 𝑧 = 𝑧(𝑡) 

Equation (2.3) now yields 

 

1

2
𝑎ଶ𝑧

𝑑ଶ𝑧

𝑑𝑡ଶ
= −

1

𝜌
ቈ
1

2
𝑎ଶ(𝑝௔௧௛ + 2𝜎 𝑅⁄ ) − න 𝑟 𝑝(0, 𝑡)𝑑𝑟

௔

଴

቉ − 4𝒱𝑧 
𝑑𝑧

𝑑𝑡

−
1

2
𝑔𝑎ଶ𝑧 

(2.4) 

Figure 2.1 illustrates the system where a droplet with a constant initial radius 𝑅 penetrates a 

pore with radius a. To solve the Equation (2.4), it is necessary to evaluate the integral related to 

the pressure at the origin, 𝑧 = 0, denoted as 𝑝(0, 𝑡), as shown in Figure 2.1 

2.2.2 Governed equation of region 2 

The pressure can be found by introducing region (2) of spherical polar coordinates 𝑅, 𝜃, ∅ as 

illustrating in Figure 2.2  
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Figure 2.2 shows the system of penetration of droplet with constant initial radius 𝑅௜  into pore 
with radius 𝑎 

To evaluate 𝑝(0, 𝑡) at the following boundary condition: 

1. 𝑝(𝑅, 𝑡) = 𝑝௔௧௛ 

2. 𝑝(𝑎, 𝑡): will be derived later in Equation2.10, and 

3. Velocity field in the region 𝑅 ≤ 𝑎 

To evaluate 𝑝(𝑎, 𝑡) by using governed equations in 𝑅 direction as following  

 
𝜕(𝑅ଶ𝜐ோ)

𝜕𝑅
= 0 (2.5) 

 𝜌
𝜕𝜐ோ

𝜕𝑡
+ 𝜌𝜐ோ

𝜕𝜐ோ

𝜕𝑅
= −

𝜕𝑃

𝜕𝑅
+ 𝜇 ቌ

𝜕

𝜕𝑅
൭

1

𝑅ଶ

𝜕

𝜕𝑅
(𝑅ଶ𝜐ோ)൱ቍ + 𝜌𝑔 (2.6) 

For region (2), can be solved the momentum equation of droplet by applying the volume 

conservation between droplet and flow into pore, gets: 

 
4

3
𝜋(𝑅௜

ଷ − 𝑅ଷ) = 𝜋𝑎ଶ𝑧 (2.7) 

Differentiate Equation (2.7) with respect to time 𝑡, where  𝑅௜ is a constant, gets: 

 −4𝜋𝑅ଶ
𝑑𝑅

𝑑𝑡
= 𝜋𝑎ଶ

𝑑𝑧

𝑑𝑡
∶  𝜐ோ =

𝑑𝑅

𝑑𝑡
 (2.8) 

and 
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 𝜐ோ =
𝑑𝑅

𝑑𝑡
= −

𝑎ଶ

4𝑅ଶ

𝑑𝑧

𝑑𝑡
 (2.9) 

Applying Equation (2.9) in Equation (2.6) and integrate from 𝑎 to 𝑅: 

 𝑝(𝑎, 𝑡) = 𝑝(𝑅, 𝑡) +
𝜌𝑎ଶ

4
൤

1

𝑅
−

1

𝑎
൨

𝑑ଶ𝑧

𝑑𝑡ଶ
 (2.10) 

Equation (2.10) satisfy the condition of incompressible flow ∇ଶ𝑃 = 0 

The velocity field in the region 𝑅 ≤ 𝑎 is unknown. Levine [9] introduced an innovative 

technique to apply for the momentum balance equation to address this unknown for the system in 

the hemisphere from 0 to 𝑅 ≤ 𝑎 as following  

 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚

= 𝑓𝑙𝑢𝑥 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑒𝑛𝑡𝑟𝑖𝑛𝑔 − 𝑓𝑙𝑢𝑥 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑙𝑒𝑎𝑣𝑖𝑛𝑔

+ 𝑠𝑢𝑚 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒𝑠 𝑎𝑐𝑡𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

(2.11) 

The force at 𝑅 = 𝑎 in the 𝑧 direction 

 𝑓ଵ = 2𝜋𝑎ଶ න −𝜎ோோ sin 𝜃 cos 𝜃  𝑑𝜃

గ
ଶ

଴

 (2.12) 

The stress tensor at the hemisphere at 𝑅 = 𝑎 

 𝜎ோோ = −𝑝(𝑎, 𝑡) + 2𝜇 ൤
𝜕𝜐ோ

𝜕𝑅
൨

ோୀ௔
, 𝜎ோఏ = 0 (2.13) 

Plug Equation (2.13) and Equation (2.10) in Equation (1.12) and integration over the hemisphere 

gets 

 𝑓ଵ = 𝜋𝑎ଶ ቆ𝑝(𝑅, 𝑡) +
𝜌𝑎ଶ

4
൤

1

𝑅
−

1

𝑎
൨

𝑑ଶ𝑧

𝑑𝑡ଶ
−

𝜇

𝑎

𝑑𝑧

𝑑𝑡
ቇ (2.14) 

The corresponding fore term at 𝑧 = 0 in the entry region of the capillary tube is 

 𝑓ଶ = −2𝜋 න 𝑟 𝑝(0, 𝑡)𝑑𝑟
௔

଴

 (2.15) 
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The flux of momentum in 𝑧 direction entring the hemisphere at 𝑅 = 𝑎 is 

 𝐹𝑜𝑚 = 2𝜋𝜌𝑎ଶ න (𝜐ோ
ଶ)ோୀ௔ sin 𝜃 cos 𝜃  𝑑𝜃

గ
ଶ

଴

=
1

4
𝜋𝜌𝑎ଶ (2.16) 

Levien [9] assumed the momentum leaving at 𝑧 = 0 as following  

 2𝜋𝜌 න 𝑟 𝑢ଶ 𝑑𝑟
௔

଴

=
4

3
𝜋𝜌𝑎ଶ ൬

𝑑𝑧

𝑑𝑡
൰

ଶ

 (2.17) 

The mean acceleration inside the hemisphere system was approximated by Levine [9] as 

following  

 𝑚𝑒𝑎𝑛 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 =
2

3
𝜋𝜌𝑎ଷ ቆ

19

24

𝑑ଶ𝑧

𝑑𝑡ଶ
+

1

8𝑎
൬

𝑑𝑧

𝑑𝑡
൰

ଶ

ቇ (2.18) 

plug Equations (2.14),(2.15),(2.16),(2.17), and (2.18), into Equation (2.11) of momentum 

balance gets: 

 න 𝑟 𝑝(0, 𝑡)
௔

଴

𝑑𝑟 =
𝑎ଶ

2
𝑝(𝑅, 𝑡) + 𝜌𝑎ଷ ൬

𝑎

8𝑅
−

7

18
൰

𝑑ଶ𝑧

𝑑𝑡ଶ
−

𝑎𝜇

2

𝑑𝑧

𝑑𝑡
−

7

12
𝜌𝑎ଶ ൬

𝑑𝑧

𝑑𝑡
൰

ଶ

 (2.19) 

Using Equation (2.19) in Equation (2.4) with mathematical arrangement, the equation of motion 

of droplet entering the pore obtained as following: 

 ቈ𝑧 −
𝑎ଶ

4𝑅
+

7𝑎

9
቉

𝑑ଶ𝑧

𝑑𝑡ଶ
−

7

6
൬

𝑑𝑧

𝑑𝑡
൰

ଶ

−
𝜇

𝑎ଶ𝜌
[𝑎 + 4𝑧]

𝑑𝑧

𝑑𝑡
−

1

𝜌
[∆𝑃 − 𝜌𝑔𝑧] = 0 (2.20) 

Where ∆𝑃 is a total pressure on the droplet with equal to 2𝜎 𝑅⁄ . The dimensionless equation of 

motion is: 

 ൤𝑧∗ −
𝐶𝑎 𝑅𝑒

8 𝑊𝑒
+

7

9
൨ 𝑉∗ᇱ −

7

6
𝑉∗ଶ −

2𝐹𝑟

𝑅𝑒
[1 + 4𝑧∗] 𝑉∗ − ቈ

2 𝐹𝑟ଶ

𝑊𝑒
− 𝑧∗቉ = 0 (2.21) 
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Where 𝑉∗ᇱ =
ௗమ௭∗

ௗ௧∗మ , 𝑉∗ =
ௗ௭∗

ௗ௧∗
, Reynolds number, 𝑅𝑒 =

ଶ௔ఘ௎

ఓ
 , Froude number, 𝐹ோ =

௎

√௚ ௔
, 

Capillary number, 𝐶𝑎 =
ఓ୙

ఙ
, Weber number, 𝑊𝑒 =

ఘ୙మோ

ఙ
, 𝑧 = 𝑎𝑧∗,

ௗ௭∗

ௗ௭
=

ଵ

௔
, 𝑡 = 𝑡∗ට

௔

௚
,

ௗ௧∗

ௗ௧
=

ට
௚

௔
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 CHAPTER 3: MATHEMATICAL RESULTS OF DYNAMIC BEHAVIOR OF DROPLETS 
ENTERING CAPILLARY CHANNELS  

The behavior of water droplets entering capillary channels has been studied, and presented a 

developed mathematical model of the finite flow. In this chapter, the penetration rate and 

penetration distance of the liquid into the pore was captured as a function of time. The 

penetration results of this mathematical model are validated with previous mathematical models 

derived by Washburn and Szekely. To validate the results, experimental data has been plotted 

against the results of mathematical model. The objective was to develop a mathematical model 

that could predict the droplet at which liquid penetrated the surface pores. 

3.1 Mathematical Validation  

 

 

Figure 3.1 shows the plot of the penetration length vs. time for the results of present work, Szekely, 
and Washburn, for the droplet radius R=1 mm, pore radius a=0.1 mm, and ΔP=50/a 
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When a water droplet of radius 𝑅 = 1𝑚𝑚 was loaded onto a capillary tube of radius 𝑎 =

0.1𝑚𝑚, and constant physical properties of water. The data results was non-dimensionalized and 

depicted in the curves Figure 3.1and Figure 3.2. Water droplet was gradually penetrated the pore, 

by the inspection the curves of droplet penetration length against time, and droplet penetration 

rate against the time, derived Equation (2.21) differ from Washburn equation in very initial 

stages of capillary penetration at initial time period of the order of 10-3-10-5 sec. Equation (2.21) 

plotted against Washburn Equation (1.4) and modified Szekely Equation (1.29). It can be noticed 

that the higher values of ቀ
ఓ

௔మఘ
[𝑎 + 4𝑧]ቁ in Equation (2.21), the steeper of the penetration rate 

curve, and the shorter  is of the time period in which Washburn equation does not applicable. In 

addition, can be seen an close agreement with modified Szekely Equation (1.29) and follow the 

same curve behavior but different results due to Szekely solution was derived for flow from 

infinite reservoir in compare with the current study for flow of finite droplet. 

 

Figure 3.2 shows the plot of the penetration rate vs. time for the results of present work, Szekely, 
and Washburn, for the droplet radius R=1 mm, pore radius a=0.1 mm, and ΔP=50/a 
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3.2 Experimental Validation  

To validate the results, experimental data [20] has been plotted against the results of current 

mathematical model as illustrated on Figure 3.3. The flow dynamics resulted from mathematical 

model follows the same behavior of flow from experimental results but with significant errors 

due to the impact of droplet deformation fall from ℎ distance. While the current results evaluated 

at ℎ = 0 with no deformation, so the differences between curves are due to the droplet 

deformation due to dynamic pressure.  

 

Figure 3.3 shows the plot of the comparison of droplet penetration rate and length of mathematical 
results vs experimental results  

Attempt has been made using try and error to estimate the dynamic pressure, Equation (3.1) is 

a modified mathematical model, but it fits only the current case with the inputs utilized to solve 

the mathematical model. The comparison results to the experimental results are plotted on Figure 

3.4. the close agreement between penetration length curves of mathematical results against the 

experimental results which validate the mathematical model.  
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1

4
ቈ𝑧 −

𝑎ଶ

4𝑅
+

7𝑎

9
቉

𝑑ଶ𝑧

𝑑𝑡ଶ
−

7

30
൬

𝑑𝑧

𝑑𝑡
൰

ଶ

−
2𝜇

𝑎ଶ𝜌
[𝑎 + 4𝑧]

𝑑𝑧

𝑑𝑡

−
1

𝜌
൤∆𝑃 +

1

4
𝐾𝐸 − 𝜌𝑔𝑧൨ = 0 

(3.1) 

where 𝐾𝐸 = 0.5𝜌𝑉 ∗ 𝑣ଶ; and 𝑉 & 𝑣 is droplet volume and velocity respectively 

 
Figure 3.4 shows the plot of the droplet penetration Rate & Length of Mathematical results (include 
dynamic pressure) vs, Experimental results 

Table 3.1 Experimental and mathematical results of droplet penetration length and 
penetration rate  
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3.3 Transient dynamics of liquids entering a pore (pores) Cases studied 

 

   Figure 3.5 shows the behavior of droplet entering a pore and dynamics of contact line motion   

This section explores the behavior of liquids as they enter pores, focusing on the transient 

dynamics involved. Several cases are studied to understand the various scenarios and their 

implications as shown in Figure 3.5 and Figure 3.6: 

1. Single Droplet Entering a Pore: 

This case examines how a single droplet of liquid penetrates a pore, considering factors such 

as the droplet's size, the pore's geometry, and the interaction between the liquid and the pore 

walls. 

2. Single Droplet with Stick-Slip Motion: 

Here, the focus is on a droplet attached to a surface that enters a pore with stick-slip motion 

of the contact line. This involves analyzing the intermittent movement of the droplet as it 

adheres to and slips along the surface. 

3. Droplet Covering Multiple Pores: 

This scenario studies a droplet that covers several pores with a receding contact line. It looks 

at how the liquid distributes itself among multiple pores and the dynamics of the contact line 

as it moves. 
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Figure 3.6 shows the behavior of droplet versus film, entering network of pores and dynamics of 
contact line motion 

4. Finite Films Drained by a Single Pore: 

This case investigates the behavior of finite films of liquid as they are drained by a single 

pore. It considers the rate of drainage and the changes in the film's geometry. 

5. Finite Films Drained by Multiple Pores: 

Similar to the previous case, but with multiple pores involved. This examines how the liquid 

film interacts with several pores simultaneously and the resulting dynamics 

The above-mentioned five cases have been studied and applied to the new mathematical 

model. This mathematical model does not cover the dynamics of spreading, receding, and stick-

slip contact line motion. These dynamics will be studied separately using simulation analysis by 

ANSYS FLUENT. The mathematical model is valid for cases A, D, and F as shown on Figure 

3.6, which will be discussed in more detail in the next section. While cases B, C, and E will be 

studied numerically.  

3.3.1 Case A: Droplet set on an edge 

Figure 3.7 shows the system of droplet is setting on an edge and entering a pore, the volume 

conservation between droplet and flow into pore can be determined using volume conservation 

equation. Equation (2.21) has been solved using various parameters as discussed in the next 

section. 
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Figure 3.7 shows the droplet set on an edge entering a pore 

3.3.1.1 Effect of droplet size entering the pore, 𝒂 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

 

 

Figure 3.8 shows the plot of the penetration Length at various droplet radius at constant pore radius 
a=0.01 (cm) 

Penetration length and penetration rate have been plotted using Equation (2.21). Figure 3.8 

and Figure 3.9 illustrate dynamics behavior of different droplet volumes. High penetration length 

and high penetration rate happened at lower droplet diameter with is consisted with Laplace 

pressure that increase with decrease the droplet diameter. 
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The blue curve (𝑅ௗ  =  0.01 𝑐𝑚) in Figure 3.8 shows the highest penetration length over time, 

indicating that smaller droplets penetrate deeper into the pore. As the droplet radius increases, 

such as in the black curve (𝑅ௗ  =  0.1 𝑐𝑚), the penetration length decreases. This decrease in 

penetration length for larger droplets is due to lower Laplace pressure. Smaller droplets 

experience higher Laplace pressure, which drives them deeper into the pore. This is consistent 

with the blue curve showing the highest penetration length. Conversely, larger droplets have 

lower Laplace pressure, resulting in less penetration, as reflected in the black and red curves. 

 

Figure 3.9 shows the plot of the penetration Rate at various droplet radius at constant pore radius 
a=0.01 (cm) 

The dynamics behavior of penetration rates shows that higher penetration rates are achieved 

with smaller droplet diameters due to higher Laplace pressure, as clearly demonstrated by the 

blue curve in Figure 3.9. This consistency with Laplace pressure, where the pressure increases as 

the droplet diameter decreases, drives the higher penetration rates observed in the plot. 

Understanding these dynamics is crucial for applications such as microfluidics, where precise 

control of droplet behavior in small-scale systems is essential; oil recovery, where enhancing 
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fluid penetration efficiency in porous media is vital; and biomedical engineering, where targeted 

drug delivery through porous tissues relies on these dynamics. 

3.3.1.2 Effect of variant of pore number on droplet entering the pore, 𝒂&𝑹 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

The mathematical model is valid for flow of finite liquid into network of pores, can be the 

case of track etched membrane. Figure 3.10 and Figure 3.11 show the slight differences in the 

droplet dynamics behavior. In case of multiple pores, the Laplace pressure decreases, and 

accordingly, the penetration length and penetration rate will take more time than in case of one 

pore. 

 

Figure 3.10 shows the plot of the penetration rate vs. time for the results of present work, for the 
droplet radius R=1 mm, pore radius a=0.1 mm, and ΔP=50/a, for one pore vs. n pores 
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Figure 3.11 shows the plot of the penetration rate vs. time for the results of present work, for the 
droplet radius R=1 mm, pore radius a=0.1 mm, and ΔP=50/a, for one pore vs. n pores 

3.3.1.3 Effect of variant of pore number on film entering the pore, 𝒂 =constant, flow from 
infinite reservoir  

 

 

Figure 3.12 shows the plot of the film penetration rate versus time for the results of present work, 
comparing one pore versus multiple pores 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20

P
en

et
ra

ti
on

 L
en

gt
h 

(c
m

)

Time (ms)

One Pore
n Pores

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180 200

P
en

et
ra

ti
on

 R
at

e 
(c

m
/s

ec
)

Time (ms)

Filme Penetration Rate at one pore vs. n pores

One Pore

n Pores



57 
 

 

Figure 3.13 shows plot of the film penetration length versus time for the results of the present 
work, comparing one pore versus multiple pores 

Figure 3.13 depicts the penetration length of a finite film flow over time within a pore system, 

the graph contrasts the penetration length between a single pore and multiple pores, underscoring 

the differences in fluid dynamics between these systems. This comparison is vital for 

comprehending fluid behavior in porous materials. When finite film flows through a pore and a 

network of pores, it adheres to the Laplace pressure law, which describes the pressure difference 

across the curved surface of a droplet due to surface tension. In this scenario, the film is modeled 

as a spherical cap of a droplet with a large radius. The spherical cap assumption simplifies the 

complex interactions at the fluid interface, allowing for more accurate predictions of fluid 

behavior under varying conditions. The penetration rate, as shown in Figure 3.12, is lower during 

finite film flow through a network of pores compared to a single pore. This is due to the 

increased resistance and complex pathways within the network, which affect the fluid's 

movement and distribution. The Brinkman model, an extension of the classical Darcy model, can 

be applied to account for viscous phenomena in these porous flow systems. This model helps in 
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understanding the multiphase flow applications and the locally mass-conserving methods that are 

crucial for accurate simulations. 

3.3.1.4 Effect of variant of contact angle θ, 𝒂&𝑹 =constant  

The effects of contact angle through the study of capillary penetration are considerable at the 

very initial stages of penetration processes which contradict Szekely [1] findings that stated that 

meaningful results of penetration processes can be taken only about 1-2 sec after the initiation of 

flow.  Figure 3.14 and Figure 3.15 illustrated the significant effects of contact angle on the 

penetration rate and length. Lower contact angle increases the hydrophilic properties of the pore 

surface and vice versa. 

 

 

Figure 3.14 shows the plot of the penetration length versus time at different contact angles for 
droplet radius R=1 mm, and pore radius a=0.1 mm 

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70 80

P
en

et
ra

ti
on

 L
en

gt
h 

(m
m

)

Time (ms)

Droplet Penetration  Length at R=1 mm, a=0.1 mm

θ=30
θ=45
θ=60
θ=80



59 
 

 

Figure 3.15 shows the plot of the penetration rate versus time at different contact angles for a water 
droplet with radius R=1 mm, and pore radius a=0.1 mm 

3.3.1.5 Effect of varying Weber numbers 

Figure 3.16 presents the droplet dynamics at various Weber numbers (We = 0.07, 0.14, 0.7, 

1.4, and 6). The spreading stage started at initial contact times, with the increase of the Weber 

number, the contact circuit speed of the droplet becomes lower, resulting in a lower Weber 

number at the same time, and the maximum penetration rate increases.  
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Figure 3.16 shows the plot of the effect of varying Weber numbers on the penetration length and 
penetration rate versus time for a water droplet at ρ=1kg/m3, µ=0.01 mPa s, σ=72 dyne/cm, Re=20, 
Fr=3.2, Ca=1.4E-03, a=0.01cm, U=10 cm/sec 

3.3.1.6 Creeping flow Reynolds number 

Low Reynolds number flow, known as creeping flow or Stokes flow, at the Reynolds number 

𝑅𝑒 ≪ 1. Figure 3.17 shows creeping flow at very low Reynolds number, which in this study has 

been taken as 𝑅𝑒 = 0.03. In Stokes flow, the viscous forces are higher than the inertial forces. 

However, in the droplet flow into a pore, its initial speed is significant enough that acceleration 

and inertia cannot be negligible compared to the fluid's viscosity. In infinite flow, when the 
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Reynolds number Re << 1, inertial effects can be ignored, and only viscous resistance is 

considered. Which is not the case in the finite flow of spherical volumes.  

 

 

Figure 3.17 shows the plot of the creeping flow Reynolds number for a water droplet at R=0.1cm, 
a=0.015cm, very low Re=0.03, We=14E-08,Ca=139E-08, Fr=2.61E-03 

3.3.1.7 Effect of varying liquid properties 

The properties of five liquids, in addition to water, have been studied with a constant Froude 

number, as presented in Figure 3.18.  It can be noticed that at the initial contact time, the 

penetration rate and length of the water droplet are higher compared to the ethanol droplet due to 

the effects of viscous forces and inertial forces. Glycerin, blood, oil, and methanol exhibit similar 

behavior when compared to each other, with glycerin and blood showing one pattern, and oil and 

methanol showing another. 
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Figure 3.18 shows the plot of the effect of varying the penetration length and penetration rate vs 
time for varying liquid properties at R=0.25cm, a=0.001cm, U=10 cm/sec 

3.3.1.8 Effect of variant Froude number  

Figure 3.19 presents the droplet dynamics at various Froude numbers (Fr = 3.2, 10, and 32). It 

is noticed that an anomaly region does not follow the properties of the liquid during spreading 

stage at initial contact time, to the time of maximum penetration rate. With the increase of the 

Froude number after around one time unite, the penetration length decrease due to the effect of 

inertia forces.  
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Figure 3.19 shows the plot of the effect of varying Froude number on the penetration length and 
penetration rate vs time for a water droplet at ρ=1kg/m3, µ=0.01 mPa s, σ=72 dyne/cm, U=10 
cm/sec, We=14E-2, CA=14E-5 

3.3.1.9 Effect of variant of Reynolds 

The importance of varying Reynolds numbers on finite flow has been studied and is presented 

in Figure 3.20. It illustrates the behavior of water droplet penetration rate and penetration length 

at different Reynolds numbers (5.7, 11.5, 17, 30, and 40). The water droplet flow rate and length 

increase with increasing Reynolds numbers.  
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Figure 3.20 shows the plot of the effect of varying Reynolds on the penetration length and 
penetration rate vs time for a water droplet at ρ=1kg/m3, µ=0.01 mPa s, σ=72 dyne/cm 

Capillary numbers and Weber numbers are the main dimensionless numbers that are used to 

evaluate the effect of surface tension on the flow. Figure 3.21 shows the droplet penetration rate 

at varied Capillary number. It noticed that with different calculated capillary numbers, there is no 

noticeable difference in the droplet dynamics. Since in finite flow at 𝑅𝑒 ≪ 1 that applied in this 
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study, it can be concluded to consider the importance of Weber number rather than capillary 

number 

 

Figure 3.21 shows the plot of the effect of varying the Capillary number on the penetration length 
and penetration rate vs time for a water droplet at ρ=1kg/m3, µ=0.01 mPa s, σ=72 dyne/cm 

3.3.2 Application of the mathematical model on a pore of elliptical cross section 

A theoretical analysis of finite liquid entering a pore with circular cross section vs entering a 

pore with elliptical cross section are presented in Figure 3.22 and Figure 3.23. It was shown that 

in the case of equal cross section areas but different shapes (circular and elliptical) the initial 

penetration rate resulted through finite flow through a pore with elliptical cross section is faster 

than in case of circular cross section, but the dynamics behavior changes after around 2ms, so the 

penetration rate decreases rapidly with elliptical cross section while circular cross section 

increases. 
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Figure 3.22 shows the plot of the effect of varying cross-section on the penetration length and 
penetration rate versus time for a water droplet at Circular cross-section versus Elliptical cross-
section 

The initial penetration rate for the circular cross-section (black curve) starts at around 

60 𝑐𝑚/𝑠𝑒𝑐 as can be seen in Figure 3.23. The peaks slightly above this value, and then gradually 

decreases over time to about 10 𝑐𝑚/𝑠𝑒𝑐 at 30 𝑚𝑠, indicating higher initial penetration rates 

compared to elliptical cross-sections. The elliptical cross-sections (red and blue curves) start 

lower than the black curve, peak below it, and gradually decrease over time but remain below the 

black curve throughout the duration. The peak penetration rate for the black curve is higher than 

the red and blue curves, suggesting that the circular cross-section allows for a higher maximum 

penetration rate. All curves show a gradual decrease in penetration rate over time, indicating that 

the driving force, likely Laplace pressure, diminishes as the droplets continue to penetrate the 

pore. 
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Figure 3.23 shows the plot of the effect of varying cross-section on the penetration rate and 
penetration rate versus time for a water droplet at Circular cross-section versus Elliptical cross-
section 

3.4 Conclusion  

The calculations presented in this study confirm the appropriateness of the modified Szekely 

equation and Washburn equation, as an asymptotic solution, for understanding the behavior of 

capillary penetration. However, this study presented a solution that is valid for very short initial 

times, which may typically be found in certain printing and lithographic operations. 
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 CHAPTER 4: GOVERNING EQUATIONS AND NUMERICAL SIMULATIONS FOR 
SIMULATING A DROPLET ENTERING A PORE 

4.1 Overview  

In this chapter, the governing equations of Navier-Stokes and the interface tracking method 

have been studied. Computational simulation methods were used to obtain 2D results from the 

model using the ANSYS-FLUENT 23 R2. Mesh development for 2D model and its refinement is 

considered. The computational methods used to simulate droplet dynamics, and the behavior of 

Stick-slip regimes. User defined function (UDF) and Volume of Fluid (VOF) algorithms are used 

in the solver to capture the interface between the liquid and the gas. 

 
Figure 4.1 shows the governing parameters stick-slip regimes, and receding contact angle 

Capillary forces, which depend on surface tension and contact angle, drive the movement of 

droplets in both slip and stick regimes. In the stick regime, pinning occurs when the droplet's 

contact line temporarily sticks to surface features, affecting its movement and potentially causing 

hysteresis in the contact angle. The dynamic contact angle changes as the droplet moves, 
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influencing the capillary forces and the overall behavior of the droplet. Understanding these 

parameters and their interactions is crucial for applications in microfluidics, coating processes, 

and surface science. Figure 4.1 highlights how different parameters influence the behavior of 

droplets in stick-slip regimes and their receding contact angles. Understanding these interactions 

is crucial for applications in surface science and fluid dynamics. 

4.2 Mathematical Formulation 

Laminar, Incompressible, and Newtonian flow has been assumed to solve the continuity 

equation and conservative of momentum. The two phases’ properties are constant, and the 

droplet assumed to be spherical setting on the edge. The computational simulation of the droplet 

setting on a pore is performed using Volume-of-Fluid (VOF) method for Incompressible, and 

Newtonian two-phase flow. The governing equations of the conservation of mass is: 

 ∇. 𝑉ሬ⃗ = 0 (4.1) 

 
∂𝑉ሬ⃗

𝜕𝑡
+ 𝑉ሬ⃗ . ∇𝑉ሬ⃗ = −

1

𝜌
∇p +

1

𝜌
∇. τ +

1

𝜌
𝐹⃗ௌி +

1

𝜌
𝐹⃗஻ (4.2) 

Where 𝑉ሬ⃗  is velocity vector, 𝑡 is time, p is the pressure, 𝜌 and τ are the fluid density and share 

stress tensor, respectively. 𝐹⃗ௌி is the surface tension force at the Gas-Liquid interface, 𝐹⃗஻ is all 

body forces that are acting on the droplet.  The governing equations are discretized on a Eulerian 

grid with structured uniform mesh size. The set-up solutions use Eulerian frame of references to 

couple the solution with methodology of interface tracking. The Volume-of-Fluid (VOF) method 

is used in ANSYS-FLUENT 23R2 to track the interface. The phase fraction 𝛼 = 1 is designated 

for cells filled with full liquid, and  𝛼 = 1 for cells filled with only gas. 0 < 𝛼 < 1 describes the 

cells where the interface is located. The Volume-of-Fluid (VOF) method is presented by the 

equation: 
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∂α

𝜕𝑡
+ (𝑉ሬ⃗ . ∇)𝛼 = 0 (4.3) 

The density of the liquids in each computational grid has been calculated based of the fluid 

fraction in the cell as following: 

 𝜌௡
௖௘௟௟

= 𝛼 × 𝜌௅௜௤௨௜ௗ + (1 − 𝛼) × 𝜌ீ௔௦ (4.4) 

Adding Continuum surface tension force (CSF) to the VOF calculations that were 

implemented in FLUENT 23R2, and the pressure at the Liquid-Gas interface as following: 

 ∇𝑃 = 𝑃௅௜௤௨௜ௗ + 𝑃 ௔௦ = 𝜎𝑘 (4.4) 

Where ∇𝑃 is interfacial pressure differences that explain in Equation (1.1). The effect of the 

surface tension was calculated based on the nondimensional numbers described in Equation 

(2.21). In this study, for low Rynolds flow, Weber number considered instead of capillary 

number. 

The effect of contact angle on Stick-slip regimes has been considered by considering wall 

adhesion angle in FLUENT 23R2. Advancing static contact angle was applied for the numerical 

simulation for low Rynolds flow. User Defined Function (UDF) was applied to track the droplet 

height and the radius of contact circuit.  

4.3 Two-Dimensional Solver Methods  

Solver method in ANSYS-FLUENT using Least Squares Cell-Based Gradient evaluation to 

discretize the momentum equation. The solution was assumed to be linear. The pressure solution 

used a spatial discretization scheme PRESTO (Pressure Staggering Option) method. The VOF 

model for Eulerian multiphase use Geo-Reconstruct scheme. 

The pressure-based solver is used to solve the two-phase of Liquid-Gas flow modeling using 

projection method to converge the solution. SIMPLE algorithm is used to solve the relationship 
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between velocity and pressure corrections. The Pressure-Implicit with Splitting of Operators 

(PISO) is a pressure-velocity coupling scheme as a part of SIMPLE algorithms. 

4.4  Geometry and Meshing 

Numerical simulation was studied on one hole geometry. Numerical code with User Defined 

Functions (UDF) applications will be validated by modeling liquid droplet entering on capillary 

hole along the diameter of the droplet while it spreads on the substrate. Initialization method 

using UDF to enforce the initial spherical phase of liquid into the cubic geometry with structured 

mesh as shown in Figure 4.2. The Cube dimensions is 4 × 4 × 4mm, contain a droplet with 

2mm diameter enforce to enter a 0.1 mm diameter of a pore. Meshing structure used local 

refinement with resolution ∆𝑥 = 17 × 10ି଺𝑚 that result 124968 elements and time resolution 

∆𝑡 = 10ି଺ 𝑠𝑒𝑐. Two boundary conditions were applied, no-slip boundary condition and 

pressure-outlet boundary conditions 

 

 

                                               Figure 4.2 illustrates the numerical geometry 
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 CHAPTER 5: SIMULATION RESULTS AND DYNAMIC BEHAVIOR OF DROPLETS 
ENTERING CAPILLARY CHANNELS 

5.1 Numerical simulation comparison and validation 

Numerical simulation of water droplet of a radius 𝑅 = 1 𝑚𝑚 entering onto a capillary tube of 

radius 𝑎 = 0.1 𝑚𝑚, and constant physical properties of water, was conducted. The data results 

were depicted in Figure 5.1. The water droplet gradually penetrated the pore. By inspection the 

curves of droplet penetration length against time, a close agreement with modified Szekely 

Equation (1.29) can be seen, following the same curve behavior but yielding different results due 

to the Szekely solution being derived for flow from an infinite reservoir compared with the 

current study of flow of a finite droplet. 

 

 

Figure 5.1 shows the plot of the simulation results for droplet penetration rate and penetration 
length at zero contact angles, with a water droplet radius of R=1 mm, and pore radius of a=0.1 
mm 
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Equation (2.21) was tested against simulation results. When a water droplet with radius 𝑅 =

1𝑚𝑚 was loaded onto a capillary tube with radius 𝑎 = 0.1𝑚𝑚, maintaining constant physical 

properties of water, the data results are shown in the curves of Figure 5.2 and Figure 5.3. 

 

 

Figure 5.2 shows the plot of the penetration rate versus time for a water droplet with radius R=1 
mm, and a pore radius a=0.1 mm, comparing both mathematical results (include dynamic 
pressure) and numerical simulation results 

Figure 5.2 shows a water droplet gradually penetrating a pore with a radius of 𝑎 = 0.1𝑚𝑚. 

By inspecting the curves of droplet penetration rate against time, it is evident that the derived 

Equation (2.21) differs from the simulation results due to assumptions made during the 

simulation process. Additionally, there is a close agreement with the simulation results, 

following the same curve behavior but yielding different results due to errors caused by these 

assumptions.  
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Figure 5.3 shows the plot of the droplet penetration volume of mathematical results (include 
dynamic pressure) versus simulation results for a water droplet with radius of R=1mm, and a 
pore radius of a=0.1mm 

Figure 5.3 shows the normalized total penetrated volume with respect to the droplet volume. 

The results indicate that the depth of penetration volume increases with time for both the 

simulation and the current results, following the same behavior. However, discrepancies between 

the simulation results and the current results are due to errors caused by assumptions made 

during the simulation process. On the other hand, the current study demonstrates greater 

accuracy in comparison to the Szekely equation and the Washburn equation, as shown in 

Figure5.3  
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5.2  Droplet Stick-slip behavior 

The effect of contact angle on stick-slip regimes has been considered by incorporating the 

wall adhesion angle in FLUENT 23R2. An advancing static contact angle was applied for the 

numerical simulation of low Reynolds flow. A User Defined Function (UDF) was used to track 

the droplet height and the radius of the contact area.   

5.2.1 Oscillation of droplet height and contact circuit  

 

Figure 5.4 shows the plot of the oscillation of droplet height and contact circuit diameter at zero 
contact angles for a water droplet with a radius R=1 mm, and pore radius a=0.1 mm 

 
Figure 5.4 represents the behavior of droplet height oscillation during droplet penetration into 

the pore. The curve shows the stick-slip motion through the oscillations of droplet height and 

contact circuit diameter. Changes in oscillation magnitude can be seen in the damping behavior, 

which is due to surface energy dissipation affecting droplet dynamics. The droplet height and 

contact circuit diameter oscillate and eventually reach stability at 0.1mm.  In fact, 0.1mm is the 

pore diameter at the last point where the UDF can track the droplet height and contact circuit 
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diameter. The results of these oscillations validate the theory of stick-slip motion as the droplet 

penetrates into the capillary channel.  

5.2.2 Oscillation of droplet height at θ=0 vs θ=900  

 

Figure 5.5 shows the plot of the oscillation of droplet heights for a water droplet with a radius 
R=1 mm, and a pore radius of a=0.1 mm at contact angle 00 vs 900 

Details of droplet height and contact circuit movement in Figure 5.5 and Figure 5.6, compare 

the oscillation behavior by changing the contact angle. According to the results of penetration 

rate in both figures, at θ=00, the penetrated liquid at 1ms is not noticeable compared to θ=900. 

After t = 1ms, when penetration initiates and it reaches its maximum value, both the decrease in 

droplet volume and surface energy dissipation affect the oscillation behavior, pushing the droplet 

into its final damped shape and diminishing in volume. 

The droplet contact circuit at θ=00 starts at approximately 0.0008 meters and shows 

fluctuations before stabilizing around 0.0012 meters at 0.04 seconds. This indicates that the 

droplet's contact area varies initially but eventually reaches a steady state. While the droplet 

contact circuit at θ=900 starts similarly but rises more sharply, peaking around 0.0014 meters at 
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0.03 seconds, then fluctuates before stabilizing around 0.0012 meters at 0.05 seconds. This 

suggests that the droplet's contact area increases rapidly before stabilizing. 

 

 

Figure 5.6 shows the plot of the oscillation of droplet contact circuits for a water droplet with a 
radius of R=1 mm, and a pore radius of a=0.1 mm at contact angle of 00 and 900 

 
5.2.3 Droplet penetration Length at θ=0 and θ=90 

The effects of contact angle on capillary penetration are considerable during the very initial 

stages of the penetration process, which contradicts Szekely's findings that meaningful results of 

penetration processes can only be obtained about 1-2 seconds after the initiation of flow[1]. 

Figure 5.7 illustrates the significant effects of contact angle on penetration length. A lower 

contact angle increases the hydrophilic properties of the pore surface, and vice versa. At zero 

contact angle, the penetration length increases rapidly, reaching approximately 0.006 meters 

within 0.09 seconds. 
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Figure 5.7 shows the plot of the plot of penetration lengths versus time for a water droplet with a 
radius of R=1mm and a pore radius of a =0.1mm for the contact angle 00 vs 900 

This indicates that the fluid spreads quickly when the contact angle is zero. While at θ=900 

contact angle, the penetration length increases more slowly, leveling off around 0.002 meters 

within the same time frame. This suggests that the fluid spreads less efficiently when the contact 

angle θ=900. 
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 CHAPTER 6: SUMMARY AND CONCLUSION 

6.1 Summary and Conclusions 

This study presents an analysis of finite fluid flow at low Reynolds numbers for entry flow, 

focusing on the penetration towards the capillary entrance from a finite reservoir (water droplet 

or film). Time-dependent solutions of the Navier-Stokes equations are solved to determine the 

rate of liquid penetration. A theoretical analysis of various cases is performed, resulting in 

ordinary differential equations that can be solved relatively rapidly. The findings from solving 

the mathematical model are as follows: 

1. The mathematical model was plotted against the Washburn and modified Szekely 

equations. It can be noticed that higher values of ቀ
ఓ

௔మఘ
[𝑎 + 4𝑧]ቁ in the mathematical 

model result in a steeper penetration rate curve and a shorter time period during which 

the Washburn equation is not applicable. Additionally, there is close agreement with the 

modified Szekely equation, following the same curve behavior but yielding different 

results. This discrepancy is due to the Szekely solution being derived for flow from an 

infinite reservoir, whereas the current study focuses on the flow of a finite droplet. 

2. The theoretical analysis of various cases, in addition to numerical simulation, resulted in 

close agreement with the modified Szekely equation, following the same curve behavior 

but yielding different results. This discrepancy is due to the Szekely solution being 

derived for flow from an infinite reservoir, whereas the current study focuses on the flow 

of a finite droplet. 

3. The calculations presented in this study confirm the appropriateness of the modified 

Szekely equation and the Washburn equation, as asymptotic solutions, for understanding 

the behavior of capillary penetration. However, this study presents a solution that is valid 
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for very short initial contact times, which may typically be found in certain printing and 

lithographic operations. 

4. A theoretical analysis of finite liquid entering a pore with a circular cross section versus 

entering a pore with an elliptical cross section was conducted. It was shown that, in the 

case of equal cross-sectional areas but different shapes (circular and elliptical), the initial 

penetration rate through a pore with an elliptical cross section is faster than through a 

circular cross section. However, the dynamic behavior changes after approximately 2 ms, 

with the penetration rate decreasing rapidly for the elliptical cross section while 

increasing for the circular cross section. In the case of finite film flowing through a pore 

and a network of pores, it follows Laplace pressure law. Here, the film is assumed to be a 

spherical cap of a droplet with a large radius. A lower penetration rate occurs during 

finite film flow through a network of pores. 

5. The results of the current study were validated using experimental data. The experimental 

data were plotted against the mathematical results, and the flow dynamics from the 

mathematical model followed the same behavior as the flow from the experimental 

results. However, significant errors were observed due to the impact of droplet 

deformation from a fall height ℎ distance. The current results were evaluated at ℎ = 0 

with no deformation, so the differences between the curves are attributed to droplet 

deformation caused by dynamic pressure.  

6. The properties of five liquids, in addition to water, have been studied at a constant Froude 

number. It was noticed that at the initial contact time, the penetration rate and length of 

the water droplet were higher compared to the ethanol droplet due to the effects of 
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viscous and inertial forces. Glycerin, blood, oil, and methanol follow the same behavior 

when compared to each other, specifically glycerin and blood, or oil and methanol. 

7. The droplet dynamics at various Froude numbers (Fr = 3.2, 10, and 32) have been 

investigated. An anomaly region was noticed that does not follow the properties of the 

liquid during the spreading stage at initial contact time, up to the time of maximum 

penetration rate. With the increase of the Froude number after approximately one time 

unit, the penetration length decreases due to the effect of inertial forces. 

8. Capillary numbers and Weber numbers are the main dimensionless numbers used to 

evaluate the effect of surface tension on the flow. The study showed with different 

calculated capillary numbers, there is no noticeable different of the droplet dynamics. 

Since in finite flow at 𝑅𝑒 ≪ 1 as applied in this study, it can be concluded that the 

Weber number is more important than the capillary number. 

9. The mathematical model was tested at low Reynolds number flow, known as creeping 

flow or Stokes flow, at 𝑅𝑒 ≪ 1. The present work studied creeping flow at a very low 

Reynolds number, specifically 𝑅𝑒 = 0.03.  In Stokes flow, viscous forces are higher than 

inertial forces, but in droplet flow into a pore, the initial speed is significant enough that 

acceleration and inertia cannot be negligible compared to the fluid's viscosity. In infinite 

flow, when Re << 1, inertial effects can be ignored, and only viscous resistance is 

considered. This is not the case in the finite flow of spherical volumes. 

Computational simulation methods were used to obtain 2D results from the model using 

ANSYS-FLUENT 23 R2. Mesh development for the 2D model and its refinement were 

considered. Computational methods were used to simulate droplet dynamics and the behavior of 
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stick-slip regimes. User Defined Function (UDF) and Volume of Fluid (VOF) algorithms were 

used in the solver to capture the interface between the liquid and the gas: 

1. Numerical simulation of a water droplet with a radius 𝑅 = 1𝑚𝑚 entering a capillary tube 

with a radius of 𝑎 = 0.1𝑚𝑚, and constant physical properties of water, showed close 

agreement with the modified Szekely equation. The simulation followed the same curve 

behavior but yielded different results because the Szekely solution was derived for flow 

from an infinite reservoir, whereas the current study focuses on the flow of a finite 

droplet. The differences from the simulation are due to assumptions made during the 

simulation process. Additionally, there is close agreement with the simulation results, 

following the same curve behavior but yielding different results due to errors caused by 

these assumptions. 

2. The results of penetrated volume indicate that the depth of penetration volume increases 

with time for both the simulation and the current results, following the same behavior. 

However, discrepancies between the simulation results and the current results are due to 

errors caused by assumptions made during the simulation process. On the other hand, the 

current study shows greater accuracy in comparison to the Szekely equation and the 

Washburn equation  

3. The droplet height and contact circuit diameter oscillate and eventually reach stability at 

0.1 mm. In fact, 0.1 mm is the pore diameter at the last point where the UDF can track 

the droplet height and contact circuit diameter. The results of these oscillations validate 

the theory of stick-slip motion as the droplet penetrates into the capillary channel.  

4. The effects of contact angle on capillary penetration are considerable during the very 

initial stages of the penetration process, which contradicts Szekely's findings that 
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meaningful results of penetration processes can only be obtained about 1-2 seconds after 

the initiation of flow. 

6.2 Future Work Recommendations 

1. It is undoubtedly recommended that experimental studies on a droplet setting on a hole 

substrate be extended to a parallel network of holes, including corner modeling. This 

includes studying the effect of surface roughness, specifically on corners and edges. 

2. Conducting computational thermal studies of finite flow and the network of pores, which 

change the properties of the fluid and the porous materials. 

3.  Deriving mathematical model using Navier-Stokes equations including heat flux 

derivative, to study the effects of temperature on hysteresis in the contact angles through 

the study of capillary penetration at the very initial stages of penetration processes. 
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APPENDIX: USER DEFINED FUNCTION CODE 

User Defined Function code 

The dynamics of droplet impact and spreading on solid surfaces play a critical role in various 

engineering and scientific applications, including inkjet printing, spray cooling, and surface 

coating. Accurate simulation of such multiphase flow phenomena requires detailed tracking of 

the liquid-gas interface and quantification of key physical parameters such as droplet height, 

contact line radius, and spreading speed. 

To achieve this, a User Defined Function (UDF) was developed and implemented in ANSYS 

Fluent. The UDF consists of two main components: an initialization routine that defines the 

initial droplet shape and location using Volume of Fluid (VOF) values, and a post-processing 

routine that computes and records the droplet’s dynamic parameters at the end of each time step. 

The simulation captures the stick-slip behavior at the contact line and allows for detailed analysis 

of droplet evolution over time. The outputs from this UDF provide insight into the interface 

dynamics, enabling validation against experimental data and aiding in the design of optimized 

surface interactions. 

The computational methods used to simulate droplet dynamics, and the behavior of Stick-slip 

regimes. User defined function (UDF) is used in the solver to capture the interface between the 

liquid and the gas as following: 

1. DEFINE_INIT(patching, d) 

 Purpose: Initializes the droplet by setting the Volume of Fluid (VOF) values in the cells 

to simulate a droplet positioned at a certain height (y = 0.0016 m) and with a given 

radius. 
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2. Key logic: 

 If a cell centroid lies within a sphere of radius 0.0016 m centered at y = 0.0016 m, the 

liquid phase VOF is set to 1 (droplet region), otherwise it is set to 0 (gas region). 

 Velocity C_V is set to zero initially, simulating impact from rest. 

3. DEFINE_EXECUTE_AT_END(execute_at_end) 

 Purpose: Post-processing function that runs at the end of each time step to measure and 

log dynamic quantities: 

 Maximum height of the droplet interface. 

 Maximum radius of the contact line at the bottom wall (wall ID 9). 

 Minimum depth and corresponding velocity at the “hole wall” (wall ID 8). 

4. Key features: 

 Uses C_VOF to track the interface. 

 PRF_GRHIGH1 and PRF_GRLOW1 ensure global maximum/minimum values across 

parallel processes. 

 Outputs data to a file contact.txt in the format: 

 time, height, radius, depth, speed. 

 
The code hase been written as the following: 
 
#include "udf.h" 
/* 
#define MAX(a,b) (((a)>(b))?(a):(b)) 
#define MIN(a,b) (((a)>(b))?(b):(a)) 
*/ 
DEFINE_INIT(patching, d) 
{ 
 cell_t c; 
 Thread* t; 
 Thread* ts; 
 Thread* tp; 
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 real xc[ND_ND], dist2; 
#if !RP_HOST 
  /* loop over all cell threads in the domain */ 
 thread_loop_c(t, d) 
 { 
  ts = THREAD_SUB_THREAD(t, 1); 
  tp = THREAD_SUB_THREAD(t, 0); 
  /* loop over all cells */ 
  begin_c_loop(c, t) 
  { 
   C_CENTROID(xc, c, t); 
   dist2 = xc[0] * xc[0] + (xc[1] - 0.0016) * (xc[1] - 0.0016) + xc[2] * xc[2]; 
 
   if (dist2 < 0.0016 * 0.0016) 
   { 
    C_VOF(c, ts) = 1.000000; 
    C_VOF(c, tp) = 0.000000; 
    C_V(c, t)    = 0.0;// impact speed for droplet from H=5cm 
   } 
   else 
   { 
    C_VOF(c, ts) = 0.000000; 
    C_VOF(c, tp) = 1.000000; 
   } 
    
  } 
  end_c_loop(c, t) 
 } 
 Message("Patched successfully using UDF!\n"); 
#endif 
} 
 
DEFINE_EXECUTE_AT_END(execute_at_end) 
{ 
 Domain* d; 
 Thread* t; 
 Thread* tp; 
 Thread* ts; 
 
 Thread* tf; 
 
 cell_t c; 
 face_t f; 
 d = Get_Domain(1);  /* mixture domain if multiphase */ 
 real Height, Radius, xc[ND_ND], xf[ND_ND]; 
 real Depth, Speed; 
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 /* loop over all cell threads in the domain */ 
 Height = -10.; 
 Radius = 0.; 
  
 Depth = 0.; 
 Speed = 0; 
#if !RP_HOST 
 /* height */ 
  
 thread_loop_c(t, d) 
 { 
  tp = THREAD_SUB_THREAD(t, 0); 
   
  // loop over all cells 
  begin_c_loop(c, t) 
  { 
   C_CENTROID(xc, c, t); 
    
   if (C_VOF(c, tp) < 0.5) 
   { 
    Height = MAX(Height, xc[1]); 
   } 
  } 
  end_c_loop(c, t) 
 } 
  
 /* contact line*/ 
 tf = Lookup_Thread(d, 9); // 9 is wall ID of bottom wall 
 tp = THREAD_SUB_THREAD(THREAD_T0(tf), 0); 
 
 begin_f_loop(f, tf) 
 { 
  if PRINCIPAL_FACE_P(f, tf) 
  { 
   F_CENTROID(xf, f, tf); 
   if (C_VOF(F_C0(f, tf), tp) < 0.5) 
   { 
    Radius = MAX(Radius, xf[0]); 
   } 
   else 
   { 
   } 
  } 
 } 
 end_f_loop(f, tf) 
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 /* wall_hole - ID 8*/ 
 tf = Lookup_Thread(d, 8); // 8 is wall ID of hale wall 
 ts = THREAD_SUB_THREAD(THREAD_T0(tf), 1); 
 begin_f_loop(f, tf) 
 { 
  if PRINCIPAL_FACE_P(f, tf) 
  { 
   F_CENTROID(xf, f, tf); 
   if (C_VOF(F_C0(f, tf), tp) < 0.5) 
   { 
    if (Depth > xf[1]) 
    { 
     Depth = xf[1]; 
     Speed = C_V(F_C0(f, tf), ts); 
    } 
   } 
   else 
   { 
   } 
  } 
 } 
 end_f_loop(f, tf) 
 
 Radius = PRF_GRHIGH1(Radius); 
 Height = PRF_GRHIGH1(Height); 
 
 Depth = PRF_GRLOW1(Depth); 
 Speed = PRF_GRLOW1(Speed); 
#endif 
 
 node_to_host_real(&Radius, 1); 
 node_to_host_real(&Height, 1); 
 node_to_host_real(&Depth, 1); 
 node_to_host_real(&Speed, 1); 
 
#if !RP_NODE 
 FILE* fp = NULL; 
 
 if ((fp = fopen("contact.txt", "a")) != NULL) 
 { 
  fprintf(fp, "%f,\t%f,\t%f,\t%f,\t%f\n", CURRENT_TIME, Height, Radius, 
fabs(Depth), fabs(Speed)); 
 } 
 fclose(fp); 
#endif 
} 
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