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ABSTRACT

This dissertation examines impacts of Artificial Intelligence (AI) on labor market outcomes and

educational choices. The first chapter focuses on labor supply by exploring the relationship between

the growth of AI and college major choices. The second chapter turns to labor demand, studying

the impacts of AI job postings on labor market outcomes of heterogeneous skill groups. The last

chapter analyzes how AI adoption in firms affects gender wage gaps.

The first chapter explores how the rise in AI shapes college major choice. I propose a new

method to measure how well a major prepares students to work with AI by matching phrases for AI

subfields with college major descriptions. I then define AI skill-related majors as those that provide

AI-related skill training. Those majors that are most complementary to AI have systematically

high growth rates of bachelor’s degree conferrals from 1990 to 2019. In contrast, I find evidence

suggesting that majors that are most exposed to AI-driven substitution grow relatively slowly,

especially at elite universities.

In the second chapter, I study effects of AI on employment and wages for heterogeneous skill

groups in the U.S. by introducing and analyzing a task-based framework. I first categorize labor into

four skill groups based on skill specializations: (1) abstract and AI-intensive; (2) abstract-intensive

but not yet AI-related; (3) routine-intensive; and (4) manual-intensive. The demand for AI skills is

then measured by matching phrases for AI-developing skills to descriptions of online job postings. I

document a consistent upward trend in the share of AI postings for the high-skilled AI-complement

group during my sampling period, 2012-21. There is a strong growth in both employment and

wages for abstract and AI-intensive occupations associated with an increasing demand for AI skills,

while abstract but not-yet-AI occupations have much smaller growth. Middle-skilled occupations

experience wage declines associated with an increase in the standard deviation of the intensity that

AI-developing skills are required for job tasks. Employment and wage gaps between abstract and

AI-intensive occupations and other skill groups widen as the labor market favors workers with AI

skills, consistent with my theoretical model’s implications. I also discuss whether AI is possibly a

general-purpose technology.



The last chapter analyzes the link between gender wage gaps and AI adoption. Using a real-time,

high-frequency data on AI adoption in business, I construct measures for current, expected, and

continuing AI adoption. AI adoption at the state-month level narrows within-occupation gender

wage gaps in mean hourly wages, whereas AI adoption at the industry-month level exhibits a

non-monotonic pattern in within-industry, between-occupation gender wage gaps across different

percentiles of the wage distribution. The gap widens at the 10th percentile and the median, but

shrinks at the 90th percentile. However, using data on online job postings that require AI skills, I

find that a higher share of AI postings benefits women more than men across the wage distribution.
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INTRODUCTION

The past decades have witnessed rapid technological advances that have profoundly impacted the

economy, driving productivity growth, the creation of new tasks, changes in skill requirements, job

displacement, and wage inequality. Although the impacts of past technologies, such as computer-

ization, automation, and industrial robots, on the labor market have been studied extensively, the

influence of Artificial Intelligence (AI), which has grown rapidly over the last decade, remains less

discussed but continues to expand.

The key difference between previous technologies and AI is the type of tasks they can perform.

Past technologies like automation and robots are compatible with routine tasks because these tasks

are decomposed into a series of explicitly programmed steps. Existing literature studying these past

technologies (e.g., Krusell et al., 2000; Autor et al., 2003; Acemoglu and Autor, 2011; Acemoglu

and Restrepo, 2018a,b, 2019, 2020, 2021, 2022; Brussevich et al., 2019; Acemoglu et al., 2020;

Deming and Noray, 2020; Moll et al., 2021) finds that middle-skilled or less educated workers

are negatively affected in terms of employment and earnings, while assumes high-skilled workers

who specialize in abstract tasks that require decision making and problem solving are unaffected.

However, AI can "mimic" human reasoning by learning from the big data to predict patterns

and make rational decisions (LeCun et al., 2015; Zhang et al., 2022). Thus, AI can not only

complement workers and increase their productivity, but also put some high-skilled workers at the

threat of being displaced. Therefore, it is important to understand the impact of AI on the labor

market, as policymakers should implement measures to reduce inequality and provide guidance to

workers on enhancing their comparative advantage when selecting majors and seeking employment.

There is a growing literature studying the implications for the labor market of AI, focusing

on job displacements, changes in skill requirements, and wage inequality. On the one hand,

advances in AI technologies enhance AI’s ability to perform tasks and increase technical capital,

thus displacing workers (e.g., Acemoglu et al., 2022; Benmelech et al., 2024; Eloundou et al.,

2024). On the other hand, AI can boost the productivity of workers with AI-developing skills (e.g.,

machine learning, deep learning, natural language processing) and those who utilitize AI-powered
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tools such as Large Language Models (LLMs) and Generative AI, thus increasing the demand for

AI skills (e.g., Hanson, 2021; Autor et al., 2024; Carvajal et al., 2024).

However, there are several gaps in existing research on AI, both theoretical and empirical. First,

most studies focus on the demand side of the labor market, such as employment and wages, with

less attention paid to the impact of AI on labor supply. Second, empirical work primarily examines

the substitution effect of AI and its labor market consequences, with limited exploration of the

mechanisms through which AI’s complementarity affects workers with different skill sets. Third,

while a small but growing body of literature investigates the gender gap in AI adoption (Park and

Gelles-Watnick, 2023; Aldasoro et al., 2024; Carvajal et al., 2024; Stöhr et al., 2024; Humlum and

Vestergaard, 2025), particularly regarding Generative AI tools like ChatGPT, there is little evidence

on how AI adoption differentially impacts wages for women and men.

My dissertation attempts to address these gaps. I first explore the influences of AI on the labor

supply side by focusing on college major choices under the growth of AI, which are presented in

Chapter 1. By matching phrases of AI subfields or applications with college major descriptions,

I define AI skill-related majors as those that provide trainings in AI-related skills and prepare

students to produce AI, improve the performance of AI, or perform tasks complemented by AI

after graduation. The relevance of AI to college majors is then measured by using (1) number

of matched AI phrases and (2) changes in academic publications or relative search intensities on

AI phrases. In contrast to this major-AI relatedness measure which captures how well a major

prepares people to work with AI, I also propose a major-AI exposure measure which captures

how easy it is for AI to substitute for the tasks of a major. This major-AI exposure measure is

constructed by matching occupations to college majors and using occupational-level AI exposure

scores from Felten et al. (2018, 2021) and Webb (2019). Majors that are most closely related to

AI have experienced significantly higher growth rates of bachelor’s degrees conferred over the past

three decades. I also document a positive relationship between degrees conferred in AI skill-related

majors and increases in search intensities or academic publications on rapid-growing AI subfields

(e.g., deep learning, machine learning, data mining). In addition, students are less likely to choose
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majors that are more exposed to AI-driven substitution, especially at elite universities.

Chapter 2 turns to analyze how AI impacts the labor demand side. It focuses on AI-developing

skills, such as deep learning and machine learning, and measures the effects of online job postings

requiring AI skills on labor market outcomes of four skill groups, which are high-skilled AI-

complement, high-skilled not-yet-AI, middle-skilled, and low-skilled. I first introduce and analyze

a task-based framework extended from Acemoglu and Autor (2011), Acemoglu and Restrepo

(2018a), and Autor et al. (2024) to study the economic impacts of AI on these four skill groups

regarding job tasks and relative wages, which motivates my empirical analysis. I assume that AI has

a higher productivity than automation so that AI can perform more abstract or complex tasks while

automation can only perform simpler tasks. My model implies that AI can expand the set of tasks

performed by high-skilled labor and widen the wage gap between high-skilled AI-complement

group and other skill groups. Leveraging the data on AI job postings at the state-year level, I

document a steady increase in the proportion of AI postings for the high-skilled AI-complement

group throughout my sampling period, 2012–21. This group experiences significant growth in both

employment and wages associated with an increase in the demand for AI-developing skills. More

specifically, compared to the low-skilled group, the abstract and AI-intensive occupations have 56

more people employed per 100,000 capita and a 2.5% growth in mean hourly wages associated

with a 1 percentage point increase in the AI posting share at the state-year level. The abstract but

not-yet-AI occupations also have a significant growth, but much smaller in magnitude compared to

high-skilled AI-complement ones. Middle-skilled occupations experience wage declines associated

with increased variation in the demand for AI-developing skills across job tasks. Thess findings

suggest that gaps in employment and wages between high-skilled AI-intensive occupations and other

skill groups expand as the labor market increasingly prioritizes workers with AI skills, aligning

with the implications of my theoretical model.

Finally, Chapter 3 investigates the link between AI adoption and gender wage gaps. If AI

has differential effects on tasks requiring different skill sets, the wage impact of AI is likely to

be unevenly distributed between women and men, since these two groups of workers tend to be
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employed in different types of jobs. By utilizing high-frequency data on businesses’ AI adoption for

producing goods or services, I first find that AI adoption at the state-month level reduces the gender

gap in mean hourly wages within occupations, suggesting that on average women benefit more than

men from AI adoption in firms. To study the distributional effect of AI adoption, I then use the

industry-month level AI adoption data to capture industry-specific trends in technological changes

and employ the within-industry, between-occupation variation. I document a non-monotonic pattern

in the relationship between AI adoption and gender wage gaps at the 10th percentile, median, mean,

and 90th percentile. The gap expands at the bottom and middle of the wage distribution, but

shrinks at the top. Although this high-frequency AI adoption data could reflect AI’s substitution,

complementarity, or both, I use job postings data to more accurately capture AI’s complementarity,

as indicated by the anticipated demand for AI skills proxied by job vacancies. Results show that

gender wage gaps narrow across the wage distribution associated with a higher share of AI postings

at the state-year level, with a stronger correlation at the upper end of the distribution.

By studying the impacts of AI on educational choices and inequalities in wages and employ-

ment, this dissertation provides insights into the economic consequences of AI. It highlights the

importance of upskilling and reskilling to help individuals better adapt to changes in job require-

ments driven by AI, as well as the need for training programs and policy interventions to support

workers in remaining competitive in the labor market.
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CHAPTER 1

COLLEGE MAJOR CHOICES UNDER THE RAPID GROWTH OF
GENERAL-PURPOSE TECHNOLOGY: A STUDY ON AI

1.1 Introduction

The growth of emerging technologies profoundly influences society. On the one hand, techno-

logical advances improve living standards and productivity, and even create new job opportunities.

On the other hand, they potentially increase wage inequality and cause job displacement. Under-

standing impacts of technological progress is important to both individuals and policymakers, as

technological advances change skill requirements in the labor market as well as the task content

of production (Acemoglu and Restrepo, 2019). Individuals need to acquire new skills to make

themselves less likely to be replaced by new technologies, while colleges need to adjust curriculum

to better align students’ major choices with changes in skill requirements for the workforce shaped

by new technologies.

Unlike traditional technologies such as computerization and industrial automation, Artificial

Intelligence (AI) is compatible with more abstract tasks since AI can analyze big data, predict

patterns, and inform decision making (Russell and Norvig, 2021). In this way, AI is more likely to

impose threats to the employment prospects of those working in cognitive or abstract fields, while

computerization and industrial automation are likely to replace people specialized in routine tasks,

especially those in the manufacturing sector (Zhang, 2019; Nedelkoska et al., 2021; Acemoglu

and Restrepo, 2022a,b). As newly emerging AI technologies such as deep learning and machine

learning have substantially improved AI’s performance (LeCun et al., 2015; Zhang et al., 2022) and

AI’s compatibility with task content of production (Acemoglu et al., 2022), workers who perform

tasks that can be performed by these technologies are more likely to be replaced by AI, while those

who acquire AI-complementary skills may experience employment and earnings gains (Deming

and Noray, 2020; Grennan and Michaely, 2020; Alekseeva et al., 2021; Acemoglu et al., 2022).

Yet there is little evidence on how people adjust their skill acquisition and educational choices in

response to changes in demand for AI skills.
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This paper investigates the relationship between the rise in AI and students’ college major

choices. By matching phrases for AI skills and applications with college major descriptions, I first

define AI skill-related majors as those that have concentrations in AI technologies. These majors

better prepare students to produce AI, improve the performance of AI, or use AI capabilities to

complement their job tasks. Figure 1.1 displays decadal growth rates of bachelor’s degree recipients

by major from 1990-2019. Compared to the 1990s, the growth rate in completing AI majors was

smaller in the 2000s but became much higher in the 2010s. This growth rate has been consistently

higher than all majors, non-AI majors, and non-AI tech majors.

To distinguish general trends from responses to technological advances, I further classify AI

skill-related majors into three categories, ranging from the most specific to the most general: (1)

majors that are most complementary to AI; (2) majors with concentrations in AI-related computer

and information processing technologies; and (3) majors associated with general computer skills

which are the basic concepts and skills that students need to acquire if they plan to specialize in

AI in the future. Next, I construct a measure of AI relatedness (denoted "AI Relevance Score"

hereafter) to capture how well a major prepares students to work with AI using two data sources:

relative Google search intensities on AI technologies and the number of academic publications in

AI subfields. In addition, to capture AI exposure of a major (i.e., how likely students graduating

with a major will perform tasks that are highly exposed to AI), I map occupations to college majors

and separately aggregate the occupational-level AI exposure measures constructed by Felten et al.

(2018, 2021) and Webb (2019) at the college major level.

I first document that, on average, majors that are most complementary to AI have experienced

a decadal growth rate of 53.3% in bachelor’s degrees conferred over the past three decades.

Majors associated with general computer skills also grew fast in the 2010s. These findings are

consistent with the trends of degree completion shown in Figure 1.1, as well as the upward trend

in undergraduates completing Computer Science (CS) degrees during the 2010s documented by

Zhang et al. (2022).

I then explore the relationship between AI Relevance Score (i.e., a major’s complementarity
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Figure 1.1 Decadal Growth Rates of Bachelor’s Degree Recipients
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with AI) and college major choices. Over 1990-2019, as fast-growing AI subfields (big data,

data mining, deep learning, and machine learning) and AI itself are more intensively discussed

by the public or studied by researchers, there is faster growth in completing majors that are most

complementary to AI or general computer majors. When students witness the growing popularity

of AI, they may view it as a signal for the increasing demand for AI skills. Thus, they may become

more likely to choose majors that provide AI skill training to better prepare themselves to work

with AI after graduation.

Unlike the positive relationship between a major’s complementarity with AI and degree com-

pletion, I document a negative relationship between AI exposure and degree completion, especially

when restricting to top 100 or top 50 universities in the U.S. This negative relationship indicates

that students in top-end universities tend to avoid choosing majors with high AI exposure, thus

being less likely to perform tasks that are more substitutable by AI.

Following the theoretical work on skill-biased technological change (e.g., Katz and Murphy,

1992; Acemoglu and Autor, 2011) and subsequent studies on how automation (e.g., Autor and

Dorn, 2013; Moll et al., 2022) and industrial robots (e.g., Humlum, 2019; Acemoglu and Restrepo,

2020) affect wage inequality and job polarization, there is a growing literature exploring impacts of
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AI on labor market outcomes. Acemoglu et al. (2022) use online job vacancies data and find that

establishments with high AI exposure increase recruitment of workers with AI skills and reduce

non-AI hiring, especially after 2014. Grennan and Michaely (2020) show that sell-side analysts

with stocks that are more exposed to AI tend to leave the job, while those who stay reallocate their

efforts to tasks that need more soft skills. These studies show that AI not only displaces workers

with high AI exposure, but also complements those with AI skills. As a complement to these

papers that focus on how AI impacts the labor market, I study how students choose their majors in

response to the rapid growth of AI.

This paper also contributes to the work on college major choices by considering the role of

technological change. Previous studies have investigated how college major choices respond to

expected earnings (Long et al., 2015), local shocks such as local job losses (Acton, 2021), students’

abilities (Arcidiacono, 2004), gender preferences (Zafar, 2013; Porter and Serra, 2020), and peer

effects (De Giorgi et al., 2010; Zölitz and Feld, 2021). Dauth et al. (2021) and Di Giacomo and

Lerch (2023) find that higher exposure to automation technologies increases college enrollment in

Germany and the U.S., respectively. Zhang et al. (2023) explore the IT-labor relationship and find

that IT complements labor with a master’s degree or above. Humlum and Meyer (2022) document

a wage premium in Denmark for majors concentrating in firms that produce AI. The most closely

related paper to this one is Hemelt et al. (2023), who use online job vacancies data to define majors

to be general (e.g., Business and Engineering) and specific (e.g., Nursing) based on how skills

associated with each major differ across areas. They find a positive (negative) correlation between

earnings and demand for cognitive and financial skills (social and basic computer skills). Unlike

Hemelt et al. (2023), I classify majors based on whether they are related to AI to explore whether

undergraduates respond to changes in a major’s complementarity with or exposure to AI.

Finally, this paper introduces a novel measure of AI complementarity at the college major level.

By leveraging Google search intensity and academic publications data on AI subfields, this measure

– the AI Relevance Score – captures an objective view of how closely a college major provides

up-to-date, popular skills that are related to AI.
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The rest of the paper proceeds as follows. Section 1.2 introduces how to define AI skill-related

majors and proposes measures for a major’s AI exposure and complementarity with AI. Section

1.3 describes the data and presents the empirical strategy. Section 1.4 discusses the main results.

Section 1.5 concludes.

1.2 Measuring AI Exposure and Relatedness

Section 1.2.1 first presents a methodology of measuring major-AI exposure by mapping oc-

cupations to college majors and using occupational-level AI exposure measures constructed by

the existing literature. I then define AI skill-related majors in Section 1.2.2 by directly matching

phrases for AI skills and applications to college major descriptions. Section 1.2.3 introduces AI

Relevance Score which captures the complementarity of AI. Section 1.2.4 provides distributions of

these AI measures.

1.2.1 AI Major Exposure

I study three different measures of AI Occupational Exposure (AIOE)1 to construct college

majors’ exposure to AI by matching occupations to college majors. All of these AIOE measures

capture the compatibility of AI and occupational tasks. The higher the AIOE score is, the more

likely AI can perform and substitute labor in tasks of an occupation.

The first measure is from Webb (2019), who extracts verb-noun phrases from AI-related patents

and matches them with verb-noun phrases in occupational descriptions from the Occupational

Information Network (O∗NET) database. Occupations matched with more AI patents are classified

as more exposed to AI since they have more overlap-ping tasks with AI capabilities.

The second measure is from Felten et al. (2018), who use the Electronic Frontier Foundation

(EFF) AI Progress Measurement dataset to track the progress on performance across AI applica-

tions (e.g., speech recognition, generating images) between 2010 and 2015. They map these AI

applications to the 52 occupational abilities listed by O∗NET and use the rate of improvements in

AI performance to construct an ability-level AI exposure. Their AIOE is a weighted sum of 52

O∗NET abilities’ AI exposure, where weights are an ability’s prevalence and importance within
1Although the Felten et al. (2018, 2021) and Webb (2019) occupational-level AI exposure measures are named

differently, I use AI Occupational Exposure (AIOE) hereafter for convenience.
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each occupation from O∗NET.

The third measure is from Felten et al. (2021). Unlike Felten et al. (2018), the authors use

a crowd-sourced dataset to link AI applications (e.g., image recognition, language modeling)

chosen from the EFF dataset to the 52 O∗NET occupational abilities. They conduct a survey on

"gig workers" from Amazon’s Mechanical Turk (mTurk) web service by asking these respondents

whether they think each chosen AI application is related to each of the 52 O∗NET occupational

abilities. A matrix of relatedness between AI applications and abilities is then created based on the

survey responses. Similar with Felten et al. (2018), the AIOE is calculated as a weighted sum of

the ability-level AI exposure.

In Appendix Table 1A.1, occupations with the highest (lowest) scores are the most (least)

exposed to AI. Tasks of the highest ranking occupations, i.e., occupations that are the most exposed

to AI, are more compatible with AI while the least exposed occupations are mostly labor-intensive.

Although these three AIOE measures are not highly correlated (with correlations between 0.10 and

0.30), the highest (or lowest) scoring occupations are similar regardless of which measure is used

for ranking.

Figure 1.2 presents the geographic distribution of AI exposure by commuting zone (CZ) using

the Felten et al. (2021) AIOE measure. CZs with a darker color have underwent higher exposure

to AI. People who live in CZs with higher AI exposure are more likely to be replaced by AI in

the labor market than those who live in CZs with lower AI exposure. The most exposed CZs

are largely concentrated in metropolitan cities, e.g., New York City, Chicago, Miami, and Los

Angeles. This finding is robust to the Felten et al. (2018) and Webb (2019) AIOE measures with

the distribution shown in Appendix Figure 1A.1. It is worth noting that CZs with high AI exposure

are different from those that are most exposed to routine employment, trade, or robots. Autor et al.

(2013) show that CZs with the highest routine employment shares are human capital-intensive or

manufacturing-intensive regions, while the latter ones are also highly exposed to trade. Acemoglu

and Restrepo (2020) document that some CZs in the rust belt and Texas have been the most exposed

to industrial robots.

12



Figure 1.2 AI Occupational Exposure (AIOE) by Commuting Zone, 2019

0.85 − 4.52

0.35 − 0.85

−0.06 − 0.35

−0.49 − −0.06

−1.05 − −0.49

−7.41 − −1.05

Notes: The Felten et al. (2021) AIOE measure is aggregated to the commuting zone level.

I then map occupations to college majors and construct AI Major Exposure (AIME) measures

using each of the above three AIOE measures separately. AIME captures how likely students

graduating with a major will perform tasks with high AI exposure. I use the American Community

Survey (ACS) data2 to determine the most common occupation for a major. The AIME score for

major 𝑚 in year 𝑡 is constructed as follows:

AIME𝑚,𝑡 = 1{𝑜∗ = arg max
𝑜

𝑒𝑚𝑝𝑜,𝑚,𝑡} × AIOE𝑜∗ , (1.1)

where 𝑒𝑚𝑝𝑜,𝑚,𝑡 is the number of employed workers of occupation 𝑜 in year 𝑡 graduating with major

𝑚. 1{𝑜∗ = arg max𝑜 𝑒𝑚𝑝𝑜,𝑚,𝑡} denotes the most common occupation for major𝑚 in year 𝑡, which is

the occupation with the largest number of employed people within the group of students graduating

with the same major. AIOE𝑜∗ is one of the three AIOE measures for major 𝑚’s most common

occupation 𝑜∗.3 Thus, a total of three AIME measures are constructed. Students graduating with a

major with a higher AIME score are more likely to work in occupations that are more exposed to

AI. That is, they are more likely to perform tasks with a higher likelihood of being substituted by

AI in the labor market.4

2ACS provides employment data by occupations and college majors starting from 2009. The 2018 Standard
Occupational Classification (SOC) code is used to represent each occupation. The 4-digit Field of Degree (degfieldd)
code classified by the Census Bureau is used to represent each major and is mapped to the 2020 6-digit Classification
of Instructional Program (CIP) code in this paper for consistency using the crosswalk between the Field of Degree and
CIP code provided by the Census Bureau.

3All of the Felten et al. (2018, 2021) and Webb (2019) AIOE measures are time-invariant.
4Another way to construct the AIME measure could be to weight AIOE using the proportion of people with a
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Table 1.1 College Majors with the Highest/Lowest AIME Scores in 2019

Rank Highest Scoring Lowest Scoring

1 Actuarial Science Sports, Kinesiology, and Physical Education/Fitness, Other

2 Accounting Parks, Recreation, and Leisure Studies

3 Accounting and Related Services, Other Parks, Recreation, Leisure, Fitness, and Kinesiology, Other

4 Accounting and Finance Exercise Science and Kinesiology

5 Business/Managerial Economics Sports, Kinesiology, and Physical Education/Fitness, General

6 Accounting and Business/Management Parks, Recreation, and Leisure Facilities Management, General

7 Accounting Technology/Technician and Bookkeeping Sport and Fitness Administration/Management

8 Auditing Security System Installation, Repair, and Inspection Technology/Technician

9 Investments and Securities Musical Instrument Fabrication and Repair

10 International Finance Vehicle Emissions Inspection and Maintenance Technology/Technician
Notes: The AIME scores are constructed by using the Felten et al. (2021) AIOE and equation (1.1).

Table 1.1 shows college majors with the highest and lowest AIME scores in 2019 constructed

by using the Felten et al. (2021) AIOE measure and equation (1.1). College majors with the highest

exposure to AI, i.e., the highest AIME scores, are mostly Accounting and Finance majors. AI

and IT are more compatible with accounting or finance tasks (Boukherouaa et al., 2021; Hasan,

2021; Cao, 2022). The least exposed majors align students with labor-intensive occupations that

also require social skills. Appendix Table 1A.2 presents that Architecture, Chemical Engineering,

and Visual and Per-forming Arts majors are also highly exposed to AI according to the other two

AIME measures. Improvements in text-to-image and text-to-video AI such as DALL·E and Sora

developed by OpenAI impact the creative industries (Anantrasirichai and Bull, 2022; Cetinic and

She, 2022). Venkatasubramanian (2019) shows that AI is used to support chemical engineers and

may transform this industry.

specific occupation within the group of people graduating with the same college major:

AIME𝑚,𝑡 =
∑︁
𝑜

𝑒𝑚𝑝𝑜,𝑚,𝑡

𝑒𝑚𝑝𝑚,𝑡
× AIOE𝑜, (1.2)

where 𝑒𝑚𝑝𝑚,𝑡 is the number of all employed workers in year 𝑡 graduating with major 𝑚. However, this AIME measure
is noiser than that constructed by the most common occupation method using equation (1.1). Since students graduating
with the same major may choose different occupations, one major may have multiple weights. About 80% of majors
are matched to over 100 occupations. The extreme case is that one major matches to 510 occupations. Thus, this
"weighting" version of AIME might be averaged out, resulting in little variation in its distribution which will be
discussed further in Section 1.2.4. This multiple weights issue may introduce noise in the AIME measure, making it
less precise. By assigning a weight of one to the most common occupation as shown in equation (1.1) might address
this issue.
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1.2.2 Defining AI Skill-Related Majors

In contrast to the AIME score, which captures how easy it is for AI to substitute for the tasks of a

major, I propose a new methodology to measure how well a major prepares students to work with AI.

The biggest difference between this new measure and the AIME score discussed in Section 1.2.1 is

that the former captures a major’s complementarity with AI while the latter captures substitutability.

Thus, these two measures are polar opposites.

To measure a major’s complementarity with AI, I first define AI skill-related majors as those that

provide students with AI skill training to better work with AI by mapping AI skills and applications

to college major descriptions. The National Center for Education Statistics (NCES) provides a

short description for each major represented by a 6-digit Classification of Instructional Program

(CIP) code, which briefly describes the main concentrations of and what skills students can learn

from a major/program.5 For each 2020 CIP code, the NCES provides information on the program’s

title, description, and whether this CIP code, its title, or its definition underwent a notable change

compared to the previous version.

Next, I extract phrases for AI skills and applications from Zhang et al. (2022) and titles and

topics of top journals and conferences in the field of AI (e.g., Institute of Electrical and Electronics

Engineers (IEEE) and Association for Computing Machinery (ACM)). If a major’s description

includes any of the chosen AI phrases, I consider it as an AI skill-related major. I classify these

chosen AI phrases into three categories (from the most specific to the most general) based on

Zhang et al. (2022): skills and applications that are the most closely related to AI (category 1), AI-

related computer and information processing technologies (category 2), and general computer skills

(category 3). Table 1.2 lists all chosen phrases in each category. If a chosen AI phrase is exactly

included in a major’s description, it will be considered as "matched" to this major. If the number of

a major’s matched AI phrases from category 𝑔 (𝑔 ∈ {1, 2, 3}) is non-zero, then this major will be

classified as an AI skill-related major in category 𝑔. Majors in category 1 have concentrations in

the most specific AI skills and applications, while those in category 3 are associated with general
5CIP code was originally developed by NCES in 1980. Revisions occurred in 1985, 1990, 2000, 2010, and 2020.

15



Table 1.2 Phrases for AI Skills and Applications

Category Phrases

Category 1: Skills and artificial intelligence, augmented reality (AR), autonomous driving, big data, computer graphics,
applications that are the computer vision, data mining, deep learning, machine learning, multimedia, natural language
most closely related to AI processing (NLP), neural network, pattern recognition, robot/robotics, speech recognition, virtual

reality (VR), voice recognition, 3D modeling

Category 2: AI-related cloud computing, computational intelligence, computational biology, computer-aided design (CAD)/
computer and information computer-aided drafting/CAD application, computer network, cybernetics, image processing,
processing technologies internet, internet of things (IoT), symbolic inference

Category 3: General automatic control, automation, cognitive science/cognitive engineering, computer programming,
computer skills computing theory, geographic information system (GIS), industrial internet, information system,

information technology, integrated circuit, intelligent control, microchip/chip design, neuroscience,
phenotype, remote sensing, software engineering, statistics, telecommunication, wireless
communication

computer skills. If a major’s description is matched with phrases in multiple categories, it will be

classified into the category with more specific skills (i.e., the category with a smaller index). For

example, if a major’s description includes phrases in both categories 1 and 2, it will be considered

as a category 1 major. In this way, there is no overlap between different categories.

Table 1.3 shows four examples of college major descriptions: one from each category of AI

skill-related majors and a non-AI skill-related major. The phrases in red, blue, and orange are the

matched AI phrases in categories 1, 2, and 3, respectively, of the corresponding major. The full

lists of majors in each category of AI skill-related ones are presented in Appendix Tables 1A.3 to

1A.5. It is worth noting that a bigger number of matched AI phrases does not imply that more

advanced AI skills are the concentrations of a major. A smaller number does not indicate that only

preliminary AI skills can be learned from choosing this major, either. This number of matched

AI phrases only objectively shows how many AI skills or applications students can acquire from

the corresponding major as listed in its description provided by NCES. In other words, a greater

number of matched AI phrases indicates that more versatile AI skills are the main concentrations

of this major, while a smaller number implies that students learn fewer but more specific AI skills

from choosing the corresponding major.

Although CIP codes have underwent revisions in 2000, 2010, and 2020, none of the college

major descriptions changed in 2010 compared to the 2000 version and most of the descriptions
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Table 1.3 Examples of AI Skill-Related/Non-AI Skill-Related Majors with Descriptions

2020 CIP 2020 CIP Title Description Is It an AI-Skill-
Code Related Major?

A program that focuses on the symbolic inference, representation, and simulation by
computers and software of human learning and reasoning processes and capabilities,

11.0102 Artificial Intelligence and the computer modeling of human motor control and motion. Includes instruction Yes, category 1.
in computing theory, cybernetics, human factors, natural language processing, and
applicable aspects of engineering, technology, and specific end-use applications.

Electrical/Electronics A program that prepares individuals to apply technical knowledge and skills to develop
Drafting and working schematics and representations in support of electrical/electronic engineers,

15.1305 Electrical/Electronics computer engineers, and related professionals. Includes instruction in basic electronics, Yes, category 2.
CAD/CADD electrical systems and computer layouts; electrode-mechanical drafting; manufacturing

circuitry; computer-aided drafting (cad); and electrical systems specification interpretation.

A program that prepares individuals to apply basic engineering principles and technical
Computer Software skills to support engineers in developing, implementing, and evaluating computer

15.1204 Technology/Technician software and program applications. Includes instruction in computer programming, Yes, category 3.
programming languages, databases, user interfaces, networking and warehousing,

encryption and security, software testing and evaluation, and customization.

A program that prepares individuals to practice the profession of accounting and to
perform related business functions. Includes instruction in accounting principles and
theory, financial accounting, managerial accounting, cost accounting, budget control,

52.0301 Accounting tax accounting, legal aspects of accounting, auditing, reporting procedures, statement No.
analysis, planning and consulting, business information systems, accounting research

methods, professional standards and ethics, and applications to specific for-profit,
public, and non-profit organizations.

Notes: Phrases in red, blue, and orange are the matched AI skills or applications in categories 1, 2, and 3, respectively.

did not change in 2020 compared to the 2010 version.6 6% (4 out of 33) of college majors in

category 1 and 11% (2 out of 18) in category 2 underwent slight changes in descriptions in 2020

compared to the 2010 version, but none of these changes is related to the chosen AI phrases. Of

majors in category 3 that experienced changes in descriptions in 2020 (4%, or 3 out of 73), the

phrase "geographic information system (GIS)" was added to one major leading to a change in its

number of matched phrases. Since most college major descriptions have not changed over time,

the number of matched AI phrases is assumed to be time invariant in this paper. However, due to

this time invariance property, the number of matched AI phrases cannot capture the growth in AI.

I then propose a new measure to link the growth in AI to college majors in the next section.
6NCES only provides college major descriptions for 2000, 2010, and 2020 CIP codes on its website. For older

versions, only CIP codes and the corresponding titles can be found in crosswalks provided by NCES.
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1.2.3 AI Relevance Score of College Majors

To capture the relatedness between the growth in AI and college majors, I construct a new

measure denoted as "AI Relevance Score." This measure captures how well a major prepares

students to use AI to complement their job tasks, i.e., a major’s complementarity with AI.

To measure the growing interest in AI, I use relative Google search activities for each chosen AI

phrase from Google Trends data.7 Google Trends data provides an index of relative search volumes

by search terms, time ranges, and geographic areas. Although the exact number of search queries on

a specific term is not available, Google Trends Index (GTI) is designed to show the relative change

in search intensities over a given period and at a given location.8 Appendix Figure 1A.2 shows GTI

of search activities on some chosen AI phrases in the U.S. from 2004 to 2020.9 Since users can

compare at most five terms per request, I include "Machine Learning" and "Pattern Recognition" in

both requests presented in Appendix Figure 1A.2 for comparison. Newly emerging AI technologies,

such as machine learning, deep learning, and big data, have been searched more intensively than

traditional AI technologies, e.g., pattern recognition and natural language processing.

Since GTI represents relative Google search intensities and Google is one of the most popular

search engines worldwide, GTI can be used as a proxy for changes in people’s interests in different

AI subfields over time. The AI Relevance Score of major 𝑚 in category 𝑔 during decade 𝜏 is then

constructed as follows:

AI Relevance Score𝑚,𝑔,𝜏 =
∑︁

𝑖∈AI phrases𝑔

1{𝑖 ∈ Description𝑚} ×
GTI𝑖,𝜏𝑇 − GTI𝑖,𝜏0

GTI𝑖,𝜏0
, (1.3)

where 𝜏, 𝜏0, and 𝜏𝑇 denote a decade, the first year in that decade, and the last year in that

decade, respectively. 1{𝑖 ∈ Description𝑚} indicates whether an AI phrase 𝑖 in category 𝑔 (where

7https://trends.google.com/trends/?geo=US. Stephens-Davidowitz and Varian (2014) introduce Google Trends
data in details and how it can be used for social science research. Kong and Prinz (2020) use Google Trends data to
study the effect of shutdown policies on unemployment during the COVID-19 pandemic.

8GTI ranges between 0 and 100, which is computed based on a term’s proportion of search activities among all
search activities on all terms per request. Suppose a user compares term A and B over period 𝜏 in location 𝑔. If term
A has a GTI of 100 and term B has a GTI of 50 at time 𝑡, this implies that the number of search activities on term A at
time 𝑡 was twice as large as that on term B. GTI is computed separately for each request. Users can compare at most
five terms per request.

9Google Trends data starts from Jan. 1st, 2004.
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𝑔 ∈ {1, 2, 3}) listed in Table 1.2 is matched to major 𝑚’s description. GTI𝑖,𝜏0 and GTI𝑖,𝜏𝑇 are the

start-of-decade and end-of-decade indices of Google search queries in the U.S. on an AI phrase 𝑖,

respectively. Since Google Trends data starts from 2004, this AI Relevance Score is only available

for the 2000s and the 2010s. Due to the same reason, 𝜏0 is set to be 2004 when computing the AI

Relevance Score in the 2000s. The underlying assumption is that the differences in relative search

intensities from 2004 to 2010 would remain unchanged if the time range is extended back to 2000.

When undergraduate students choose their fields of study, it is possible that they search for

relevant information to learn more about majors they are interested in on Google. Thus, by using

the decadal growth in GTI of chosen AI phrases, I assume that students respond to changes in

the attention that an AI subfield has received from the public. A higher AI Relevance Score then

implies that AI skills or applications associated with a major have become increasingly popular

among the public in the U.S.

In addition to GTI, I use growth rates of academic publications in the field of AI to compute

an alternative AI Relevance Score. Unlike GTI which captures relative search intensities on AI

subfields, the growth rate of academic publications can be viewed as a proxy for course content

developments. Through these developments, students can acquire more up-to-date concepts and

skills and be better prepared for changes in skill requirements.

The growth rate of academic publications whose topic is one of the AI phrases listed in Table

1.2 is computed using the Web of Science (WoS) Core Collection database from Clarivate. WoS

Core Collection contains more than 21,100 peer-reviewed journals, books, and proceedings in the

field of Science, Social Science, and Arts and Humanities from 1900 to present. Users can search

for academic publications with a specific topic published in a specific year on the WoS website.10

Since each academic publication is counted only once by WoS, I use the total number of annual

academic publications with each of the chosen AI phrases included in the topic and calculate the

decadal growth rate of academic publications for each AI phrase. This alternative AI Relevance
10Appendix Figure 1A.3 presents examples of the search page and results.
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Score of major 𝑚 in category 𝑔 in decade 𝜏 is constructed as follows:

̂AI Relevance Score𝑚,𝑔,𝜏 =
∑︁

𝑖∈AI phrases𝑔

1{𝑖 ∈ Description𝑚}

×
Publications𝑖,𝜏𝑇 − Publications𝑖,𝜏0

Publications𝑖,𝜏0
,

(1.4)

where Publications𝑖,𝜏0 and Publications𝑖,𝜏𝑇 are the start-of-decade and end-of-decade numbers of

academic publications with an AI phrase 𝑖 in category 𝑔 included in the topic, respectively. By

calculating this AI Relevance Score as the sum of growth rates of publications in all AI subfields

associated with a major, I equally weight each AI subfield. The underlying assumption for this

equal weight is that different concentrations of a major have the same importance. Suppose a

major has concentrations in pattern recognition, big data, and machine learning. Although pattern

recognition is a mature AI subfield while the rest are newly emerging AI technologies, instructors

who teach related courses will not solely focus on pattern recognition or quickly mention the rest,

and vice versa. It is equally important for students to learn all of them. Moreover, Appendix Figure

1A.4 shows that more than 80% of AI skill-related majors are matched to only one AI phrase. One

potential weight that can be applied to the construction of AI Relevance Score is the total credits

of courses in each chosen AI subfield required by a major. Credits can be the proxy for the amount

of contents of a specific subject or topic that students need to learn, which in turn implies how

in-depth this subject is covered by a major.

By using decadal growth rates of academic publications to construct AI Relevance Score, I

assume that students are responsive to the trend of AI progress. A consistently high growth rate

of an AI subfield indicates that it has consistently and increasingly captured researchers’ attention.

In other words, this AI subfield has been a popular research topic that is worth studying. A major

with concentrations in this fast-growing AI subfield is consequently assigned a relatively higher

AI Relevance Score based on equation (1.4). Thus, a higher AI Relevance Score indicates a more

promising future: students who choose a major with a high AI Relevance Score can learn more

in-depth and up-to-date AI skills to complement their jobs after graduation. However, a potential

threat to this measure is the possibility that a newly emerging technology usually has a high growth
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rate of academic publications due to its small baseline, while a mature technology that has a large

baseline grows slowly. Since the AI Relevance Score computed by equation (1.4) cannot capture

changes in the absolute number of academic publications, I then propose a complementary AI

Relevance Score using decadal changes in the number of academic publications to address this

threat:

˜AI Relevance Score𝑚,𝑔,𝜏 =
∑︁

𝑖∈AI phrases𝑔

1{𝑖 ∈ Description𝑚} × ΔPublications𝑖,𝜏, (1.5)

where ΔPublications𝑖,𝜏 is the decadal change in the number of academic publications with an

AI phrase 𝑖 included in the topic. This alternative AI Relevance Score captures the relationship

bewteen the intellectual capital accumulation on AI and college majors. A higher score indicates

that AI skills or applications with a larger increase in the intellectual capital are concentrations of

a major.

Appendix Figure 1A.5 shows decadal changes in and decadal growth rates of academic pub-

lications on a few AI phrases that have relative high growth rates over time. Deep learning and

machine learning are newly emerging technologies and had a consistently rapid growth during the

2010s, while pattern recognition is a mature AI subfield that was fast-growing back in the 1990s.

These trends are consistent with the upward trends in relative Google search intensities on these

newly emerging technologies compared to the mature ones shown in Appendix Figure 1A.2.

1.2.4 Distribution of AI Measures across College Majors

Of the 1,355 college majors (represented by the 2020 6-digit CIP code) in my sample over

the past three decades, 2.4% are defined as majors that are most complementary to AI (category

1), 1.3% are with concentrates in AI-related computer and information processing technologies

(category 2), 5.4% are associated with general computer skills (category 3), 28.6% are STEM

(science, technology, engineering, and mathematics) majors, and 22.9% are non-AI tech majors

(i.e., non-AI STEM majors).11

11I use the 2020 STEM Designated Degree Program List provided by the U.S. Department of Homeland Security
(DHS) to define STEM majors.
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Figures 1.3a to 1.3c show the distribution of three AI Relevance Score measures by broad college

major categories (represented by the 2020 2-digit CIP code) over 2010-2019 academic years. They

highlight that these three AI Relevance Score measures capture different aspects of a major’s

complementarity with AI as discussed in Section 1.2.3. The AI Relevance Score constructed using

relative search intensities, GTI, is of a similar magnitude for Agriculture, Engineering, Mathematics

and Statistics, Physics, and Social Sciences majors. The other two AI Relevance Score measures are

especially high for Mathematics and Statistics, Physics, and Social Sciences majors. It is interesting

that Computer and Information Sciences majors do not have an extremely high AI Relevance Score.

Since the AI Relevance Score is a weighted sum of either GTI or changes in academic publications,

it is possible that this score is averaged out as CS majors focus on both traditional (e.g., pattern

recognition) and newly emerging (e.g., deep learning) AI technologies. As shown in Appendix

Figures 1A.2 and 1A.5, traditional AI technologies usually have lower search intensities and a

stagnant growth in academic publications than newly emerging ones.

The distribution of AIME measures constructed by assigning a weight of one to the most

common occupation following equation (1.1) is presented in Figures 1.3d to 1.3f.12 All three

AIME measures have high values for Communications Technology/Technician majors. Liberal

Arts and Sciences and Linguistics majors are also high in AIME constructed by using the Felten

et al. (2021) AIOE measure. Tasks that students graduating with these majors perform are more

substitutable by AI since AI is compatible with processing languages and coverting text to images

or videos.

1.3 Data and Empirical Strategy

1.3.1 Data

The degree completion data between 1990-91 and 2019-20 academic years are from the Inte-

grated Postsecondary Education Data System (IPEDS), which has surveyed all U.S. post-secondary

institutions since 1993. Since the CIP codes underwent revisions, I use the crosswalk provided by
12Unlike AIME constructed using the most common occupations, those constructed as a weighted sum of AIOE

measure using employment shares following equation (1.2) have less variation across majors as shown in Appendix
Figure 1A.6. They are less precise due to the multiple weights issue explained in the footnote of Section 1.2.1.
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Figure 1.3 AI Measures by Broad College Major Category, 2010-19

(a) AI Relevance Score—by Google Trends Index
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(d) AIME—by Using the Felten et al. (2021) AIOE
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(e) AIME—by Using the Felten et al. (2018) AIOE
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(f) AIME—by Using the Webb (2019) AIOE
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Notes: Majors with a zero AI Relevance Score in subfigures (a) to (c) are those that do not match with any chosen AI
phrase. The AIME measures in subfigures (d) to (f) are constructed by assigning a weight of one to the most common
occupation for a major following equation (1.1). The most common occupation is the one with the largest number of
employed people within the group of students graduating with the same major.
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the NCES to match all CIP codes from previous versions to the most recent one (2020 CIP codes)

for consistency. Due to the geographic variation in AI exposure shown in Figure 1.2 and the fact that

the highest ranking or the most popular majors are different across colleges, I use the IPEDS data at

the major-by-college-by-decade level. Decadal growth rates of bachelor’s degree recipients for each

6-digit CIP code (i.e., the most detailed college major category) in each college are calculated to

explore the relationship between the growth in AI and college major choices over the past decades.

I also limit the IPEDS data to 4-year colleges because students enrolled in 4-year colleges usually

have a longer period to learn about the field-specific information and their preferences than those

who are enrolled in less-than-4-year colleges.

Table 1.4 provides summary statistics of average decadal completion rates between 1990-91

and 2019-20 academic years. On average, majors that are most complementary to AI (category 1)

had a decadal growth rate of 136.7% for all bachelor’s degree recipients, 69.9% for male, 98.4%

for female, 62.9% for Whites, 14.7% for international students, and 140.0% for U.S. citizens over

the past three decades. Note that this growth rate is at major-by-college-by-decade level, so they

can be either positive or negative for different majors in different colleges in each decade. Thus,

the average decadal growth rate for a group of recipients might be smaller if it has more negative

rates that are larger in magnitude or fewer positive rates (or both) compared to other groups. Of the

overall growth rates in AI majors, 46.6% are negative with an average growth rate of -63.3% while

53.4% are positive with an average of 358.6%.13 Of the growth rates for male (female), 49.7%

(47.6%) are negative with an average growth rate of -67.4% (-68.3%) while the average of positive

rates is 259.9% (303.4%). Thus, the overall growth rate in AI majors is, on average, higher than

that for male or female. Same explanation is applied to the comparison between the overall rate

and the rate for other subgroups.

Compared with AI majors (category 1), those associated with AI-related computer and infor-
13The average of positive rates is much higher in magnitude than that of negative rates due to observations with a

small baseline when calculating decadal growth rates. For negative rates, no matter what the baseline is, the minimum
value cannot be smaller than -1. If a major, especially a newly emerging major, has a few completions in the start of
a decade but experiences much more completions in the end of a decade, its growth rate will be extremely high. This
then substantially increases the average of positive completion rates.
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Table 1.4 Summary Statistics of Average Decadal Completion Rates, 1990-2019

Average Decadal Growth Rate3 of Bachelor’s Degree Recipients by Major

All Male Female Whites International U.S.
Recipients Students Citizens

All College Majors1 0.829 0.479 0.643 0.493 0.181 0.828
N = 236,763 (8.017) (3.825) (6.595) (4.970) (2.955) (8.643)

AI Skill-Related Majors2 in
Category 1 1.367 0.699 0.984 0.629 0.147 1.400
N = 3,827 (17.660) (3.758) (10.222) (3.171) (2.712) (18.113)

Category 2 1.225 1.162 0.336 0.845 0.018 1.167
N = 755 (4.885) (4.598) (3.461) (3.962) (4.138) (4.734)

Category 3 1.365 0.933 1.030 0.912 0.748 1.329
N = 8,668 (7.043) (4.852) (5.674) (6.678) (5.273) (7.079)

Non-AI Majors 0.798 0.453 0.624 0.472 0.154 0.794
N = 223,513 (7.793) (3.771) (6.553) (4.918) (2.786) (8.426)

Non-AI Tech Majors 0.867 0.585 0.704 0.546 0.518 0.893
N = 44,999 (11.096) (4.101) (9.737) (4.390) (3.773) (12.476)

Notes: Standard deviations are shown in parentheses.
1Each observation is a major-college-decade cell. College majors are represented by the 2020 6-digit Classification of
Instructional Programs (CIP) code. Observations with missing overall decadal completion rates are not counted.
2Category 1 denotes majors that are most complementary to AI; category 2 includes majors with concentrations in
AI-related computer and information processing technologies; category 3 consists of majors associated with general
computer skills.
3Growth rates are calculated at the major-college-decade level.

mation technologies (category 2) underwent larger growth in completion for male, Whites, and

U.S. citizens. General computer majors (category 3) experienced similar decadal growth for all

recipients and U.S. citizens with AI majors, but larger growth for other subgroups. Unlike these AI

skill-related majors, non-AI tech majors had smaller growth in degrees awarded to all subgroups

except international students.

Appendix Table 1A.6 further decomposes decadal growth rates presented in Table 1.4 into

each decade. On average, AI majors (category 1) experienced the largest overall growth in degree

completion during the 2000s, while majors in categories 2 and 3 as well as non-AI tech majors

underwent the largest growth during the 2010s. The fastest growth in general computer majors

(category 3) for Whites and U.S. citizens occurred in the 1990s. In addition, non-AI majors had

stagnant growth over past decades for all subgroups except international students.

25



1.3.2 Empirical Strategy

I first document decadal changes in degree completion over the past three decades with the

following specification:

Δ𝑦𝑚,𝑢,𝜏 = 𝛼 +
∑︁

𝑘∈{1990𝑠,2000𝑠,2010𝑠}

∑︁
𝑔∈{1,2,3}

𝛽𝑘,𝑔1{𝑚 ∈ AI Skill-Related Majors𝑔} × 1{𝜏 = 𝑘}

+ X𝑢,𝜏0𝚽 + 𝛿𝑚2𝑑𝑖𝑔𝑖𝑡 ,𝜏 + 𝜃𝑢,𝜏 + 𝜀𝑚,𝑢,𝜏,
(1.6)

where 𝑚, 𝑚2𝑑𝑖𝑔𝑖𝑡 , 𝑢, and 𝜏 denote the 2020 6-digit CIP code, the 2020 2-digit CIP code, college,

and decade, respectively. 𝑔 represents one of the three categories of AI skill-related majors: majors

with concentrations in the most specific AI skills (category 1), majors associated with AI-related

computer and information processing technologies (category 2), and majors with specilizations in

general computer skills (category 3). Δ𝑦𝑚,𝑢,𝜏 is the decadal growth rate of bachelor’s degree recip-

ients in major 𝑚 graduating from college 𝑢 over decade 𝜏. 1{𝑚 ∈ AI Skill-Related Majors𝑔} rep-

resents the time-invariant indicator for majors in category 𝑔. 1{𝜏 = 𝑘}, 𝑘 ∈ {1990𝑠, 2000𝑠, 2010𝑠}

are decade dummies. The vectors X𝑢,𝜏0 contain the start-of-decade college controls, including the

share of graduates who are male and Whites. 𝛿𝑚2𝑑𝑖𝑔𝑖𝑡 ,𝜏 and 𝜃𝑢,𝜏 are the 2-digit-CIP-by-decade14

and college-decade fixed effects, respectively. These fixed effects capture two different sources of

unobserved heterogeneity: changes in preferences for broad major categories (represented by the

2-digit CIP code) across time and differences in unobserved determinants of college major choices

across colleges and across time that are correlated with AI. Finally, 𝜀𝑚,𝑢,𝜏 is an idiosyncratic error

term.

The coefficient of interest is 𝛽𝑘,𝑔, which captures the decadal growth in bachelor’s degrees

conferred in AI skill-related majors in category 𝑔. Since the binary indicator for which category

a major belongs to, 1{𝑚 ∈ AI Skill-Related Majors𝑔}, is time invariant15, I further interact it with

decade dummies to estimate how this growth has changed over decades.
14Instead of the 6-digit-CIP-by-decade fixed effect, the 2-digit-CIP-by-decade fixed effect is used because the binary

indicator for AI skill-related majors does not change at the 6-digit CIP level across time.
15As explained in Section 1.2.2, since most of the college major descriptions have not underwent a notable change

over time, the binary indicator for AI skill-related majors in category 𝑔 is assumed to be time invariant.
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Nevertheless, the indicator for AI skill-related majors in equation (1.6) fails to capture differ-

ences in the substitutability or complementarity of AI across majors and across time. To explore the

relationship between degree completion and major-level AI exposure, I re-estimate equation (1.6)

by replacing the interaction term with the AIME measure constructed by equation (1.1). To study

the relationship between degree completion and how well a major prepares students to use AI, I first

re-estimate equation (1.6) by replacing the interaction term with AI Relevance Score measures to

test students’ responsiveness to a major’s complementarity with AI. Second, I additionally include

a few fast-growing AI subfields which have substantially improved the performance of AI over one

or more decades to explore how students respond to these fast-growing AI technologies.

To analyze the relationship between fast-growing AI subfields and degree completion, I estimate

the following specification:

Δ𝑦𝑚,𝑢,𝜏 = 𝛼 +
∑︁

𝑔∈{1,2,3}
𝛽𝑔ΔGTI of AI Subfields𝜏 × 1{𝑚 ∈ AI Skill-Related Majors𝑔}

+
∑︁

𝑔∈{1,2,3}
𝛾𝑔AI Relevance Score𝑚,𝑔,𝜏 + X𝑢,𝜏0𝚽 + 𝛿𝑚2𝑑𝑖𝑔𝑖𝑡 ,𝜏 + 𝜃𝑢,𝜏 + 𝜀𝑚,𝑢,𝜏,

(1.7)

where AI Relevance Score𝑚,𝑔,𝜏 is computed for major 𝑚 in category 𝑔 during decade 𝜏 using

relative search intensities data following equation (1.3). ΔGTI of AI Subfields𝜏 represents the

decadal change in relative Google search intensities on any of the following phrases: "Artificial

Intelligence," "Big Data," "Data Mining," "Deep Learning," and "Machine Learning." I assume

that AI itself and these four fast-growing AI subfields jointly, instead of separately, affect students’

college major choices because these subfields not only have largely improved the performance of

AI in the 2010s but also have impacted each other over time. There are several reasons why these

four newly emerging AI subfields and AI itself are included, rather than other mature AI subfields

(e.g., pattern recognition). First, there has been rising interest from both the public and researchers

in all of these four AI subfields and AI itself over the past two decades (Zhang et al., 2022; Google

Trends data). Second, these four AI subfields are the major contributors of the rapid growth in AI

during the 2010s compared to the 1990s and the 2000s (LeCun et al., 2015).

By interacting ΔGTI of AI Subfields𝜏 with the AI major indicators, I assume that (1) the rising
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interest in the aformentioned five AI technologies impact all AI skill-related majors and (2) this

impact could vary by the category 𝑔 a major belongs to. Although the general computer majors

(category 3) are associated with general computer skills rather than specific AI skills or applications,

they could also be affected by these four fast-growing AI subfields and AI itself. First, general

computer skills serve as the foundation of AI. Second, students graduating with general computer

majors can specialize in AI in the future (e.g., during their graduate studies). Third, students can

take courses that cover specific AI skills even if they choose a more general computer major.

As explained in Section 1.2.2, changes in relative search activities may not capture the

intellectual capital accumulation in AI technologies which can be the proxy for course con-

tent developments. Thus, I re-estimate equation (1.7) by (1) changing the variable of interest,

ΔGTI of AI Subfields𝜏, to decadal growth rates of academic publications on fast-growing AI tech-

nologies and (2) replacing AI Relevance Score with the alternative one generated by the number of

academic publications following equation (1.5).

1.4 Results

1.4.1 Trends in College Major Choices over the Past Decades

Table 1.5 presents estimates of equation (1.6) by including AI major indicators only (columns

1 to 3) and interacting these indicators with decade dummies (columns 4 to 6).

Column 1 shows coefficients estimated from a simple Ordinary Least Squares (OLS) regres-

sion with start-of-decade college-level controls. Compared with majors that are unrelated to AI,

bachelor’s recipients in majors that are most complementary to AI (category 1) increased by 55.4

percentage points (pp) over the past three decades, while degree completion in general computer

majors (category 3) increased by 48.8pp. However, the OLS estimates may be overestimated due

to unobserved determinants of students’ preferences across majors, colleges, and time. Column 2

then adds college-decade fixed effects, while column 3 further includes 2-digit-CIP-by-decade fixed

effects. After controlling for both fixed effects, the coefficient on AI majors (category 1), 53.3pp,

becomes slightly smaller. At the mean decadal growth rate of 82.7%, this percentage-point effect

represents an approximate 64.4% increase in decadal growth in AI majors. However, coefficients
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Table 1.5 Decadal Changes in Bachelor’s Degree Recipients by Major, 1990-2019

Dep. Var.: Decadal Growth Rate of Bachelor’s Degree
Recipients by Major

All Recipients
(1) (2) (3) (4) (5) (6)

Majors That Are Most Complementary to AI (Category 1) in Years:
1990 to 2019 0.554∗ 0.453 0.533∗

(0.302) (0.298) (0.279)

1990 to 2000 0.454∗∗∗ 0.372∗∗ 0.492∗∗∗
(0.171) (0.182) (0.173)

2000 to 2010 0.932 0.515 0.597
(0.601) (0.623) (0.615)

2010 to 2019 0.237 0.433∗ 0.493∗∗∗
(0.217) (0.224) (0.185)

Majors with Concentrations in AI-Related Computer and Information Processing
Technologies (Category 2) in Years:

1990 to 2019 0.548 -0.284 -0.511
(0.674) (0.967) (0.882)

1990 to 2000 -0.087 -0.406 -0.474
(0.220) (0.293) (0.376)

2000 to 2010 -0.074 -2.275∗∗ -2.073∗
(0.713) (1.079) (1.078)

2010 to 2019 0.952∗ 0.969 0.505
(0.535) (0.791) (0.729)

Majors Associated with General Computer Skills (Category 3) in Years:
1990 to 2019 0.488∗ 0.372 0.366

(0.258) (0.250) (0.231)

1990 to 2000 0.349 0.407 0.612
(0.344) (0.416) (0.373)

2000 to 2010 0.292 -0.067 0.015
(0.361) (0.374) (0.423)

2010 to 2019 0.755∗∗ 0.778∗∗ 0.579∗
(0.346) (0.345) (0.302)

Observations 233,519 235,838 235,838 233,519 235,838 235,838
Outcome Mean 0.807 0.827 0.827 0.807 0.827 0.827
Start-of-Decade Controls ✓ ✓
College-Decade FE ✓ ✓ ✓ ✓
2-Digit-CIP-by-Decade FE ✓ ✓

Notes: Each observation is a major-college-decade cell. The coefficients represent the estimate of 𝛽 in equation (1.6).
College major-clustered standard errors are shown in parentheses. The estimates in columns 1 to 3 are robust to male,
female, and U.S. citizens, while those in columns 4 to 6 are robust to male, female, Whites, U.S. citizens and
international students. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.

on general computer majors become insignificant with any fixed effect included. I do not find

any relationship between degree completion and majors associated with AI-related computer and

information processing technologies (category 2), regardless of which specification is used.

Estimates shown in columns 5 and 6 indicate that majors associated with the most specific AI

skills (category 1) underwent a significant growth in degree completion in both the 1990s and the
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2010s, after controlling for both fixed effects. However, this growth is not significant in the 2000s.

These results are robust to different specifications and different subgroups (i.e., male, female,

Whites, U.S. citizens, and international students). These findings can be explained by several

reasons. First, neural network and pattern recognition were two of the most popular AI subfields

back in the 1990s (Jain et al., 2000) which could lead to a rise in new undergraduate students in

these AI majors. During the same decade, the computing system Deep Blue defeated the chess

world champion, Garry Kasparov, which caught the public’s attention on AI (Audibert et al., 2022;

Shao et al., 2022). Second, AI received increasing attention in the 2010s and the performance of

AI was dramatically improved by newly emerging technologies (e.g., deep learning, data mining)

in the same period (LeCun et al., 2015; Shao et al., 2022). This, in turn, might attract more students

to choose AI-related majors in the 2010s. Third, there was a lack of important advances in AI in the

2000s compared to the 1990s and the 2010s, accompanied with a decline in the share of published

books in the U.S. that mention AI (Brooks, 2021; Shao et al., 2022).

In contrast to AI majors, those associated with AI-related computer and information processing

technologies (category 2) experienced a negative growth in the 2000s. This could be explained by

a lack of key advances in AI during this period (Brooks, 2021; Shao et al., 2022). Since category 2

majors are associated with neither the most specific AI skills nor the most general computer skills,

fewer students might choose these majors.

Bachelor’s degrees awarded in general computer majors (category 3) had a significant and faster

growth in the 2010s. The estimate is even larger in magnitude than that for AI majors (category 1).

Since general computer majors provide students with computer skill training, advances in AI that

also improve methodologies in the field of computer science will have positive impacts on these

majors. During the 1990s, pattern recognition was one of the intensively studied AI subfields.

Unlike pattern recognition which aims at solving problems of recognizing complex patterns, the

newly emerging AI technologies (e.g., big data, deep learning, machine learning) in the 2010s are

breakthroughs of fundamental techniques and methodologies in the field of AI (LeCun et al., 2015).

This documented increase in completing general computer majors in the 2010s is consistent with
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the findings of Zhang et al. (2022). They show that the number of new CS undergraduates has

largely increased from 2010 to 2020.

1.4.2 The Relationship between AI Complementarity/Exposure and College Major Choices

1.4.2.1 AI Complementarity

To further test students’ responsiveness to AI subfields that have been intensively studied and

are the main contributors of improvements in AI, I study the relationship between the growth in

these AI subfields and college major choices. Table 1.6 presents estimates of 𝛽 and 𝛾 in equation

(1.7). Columns 1 to 4 only include AI Relevance Score constructed from equation (1.3), while

columns 5 to 8 further add GTI of fast-growing AI subfields (big data, data mining, deep learning,

and machine learning) and AI itself.

By only including contemporaneous terms, I assume that students are only responsive to the

development in AI subfields occurring in the same decade. However, when only including AI

Relevance Score in columns 1 and 2, there is no relationship between degree completion and

how well a major trains students to learn AI skills over 2000-19.16 Columns 3 and 4 replace the

contemporaneous AI Relevance Score with the lagged one. After controlling for both fixed effects,

a 1pp increase in the lagged AI Relevance Score of AI majors (category 1) significantly raised the

decadal growth in completing these majors by 3.709pp. The estimate on lagged AI Relevance Score

for general computer majors (category 3) implies a smaller and less significant effect of 0.691pp.

These findings suggest that there is a lag in students learning how well a major prepares them to

work with AI when choosing their fields of study without controlling for relative search intensities

on fast-growing AI technologies.

Columns 5 and 6 further add contemporaneous interaction terms between GTI of fast-growing

AI subfields and the binary indicator for majors in category 𝑔. The estimate for the interaction

term between GTI and the AI major indicator in column 6 shows that a 1pp increase in GTI of

fast-growing AI subfields leads to a 0.12pp increase in the decadal growth of completing these

AI majors. The effect of 0.159pp on general computer majors (category 3) is also statistically
16I only explore the relationship between relative Google search intensities and degree completion over 2000-19

because the Google Trends data starts from 2004. More details can be found in Section 1.2.3.
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Table 1.6 The Relationship between Google Trends Index (GTI) of Fast-Growing AI Subfields and
College Major Choices, 2000-19

Dep. Var.: Decadal Growth Rate of Bachelor’s Degree Recipients by Major

All Recipients
(1) (2) (3) (4) (5) (6) (7) (8)

GTI of Fast-Growing AI Subfields ×
1{major ∈ Category 1} 0.106 0.120∗

(0.070) (0.062)

1{major ∈ Category 2} 0.376∗ 0.231
(0.202) (0.185)

1{major ∈ Category 3} 0.227∗∗∗ 0.159∗∗
(0.074) (0.069)

Lagged GTI of Fast-Growing AI Subfields ×
1{major ∈ Category 1} 0.179 0.920

(0.807) (0.669)

1{major ∈ Category 1} -1.394 -0.493
(1.433) (1.315)

1{major ∈ Category 1} -0.757 0.229
(1.409) (1.444)

AI Relevance Score1 of Majors in
Category 1 4.768 5.372 4.746 5.392

(4.019) (4.004) (4.015) (3.983)

Category 2 -2.004 -2.086 -2.599 -2.421
(2.777) (2.718) (3.036) (2.840)

Category 3 0.329 0.294 0.071 0.117
(0.495) (0.498) (0.456) (0.492)

Lagged AI Relevance Score of Majors in
Category 1 2.797∗∗∗ 3.709∗∗∗ 3.408∗ 6.644∗∗∗

(1.052) (0.977) (2.036) (1.900)

Category 2 7.726 5.082 3.209 3.441
(6.849) (4.764) (2.213) (2.383)

Category 3 0.901∗∗ 0.691∗ 0.412 0.841
(0.430) (0.369) (1.121) (1.075)

Observations 171,628 171,628 79,096 79,096 171,628 171,628 79,096 79,096
Outcome Mean 0.814 0.814 0.726 0.726 0.814 0.814 0.726 0.726
College-Decade FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Decade FE ✓ ✓ ✓ ✓

Notes: Each observation is a major-college-decade cell. The coefficients in each column are estimated by using
equation (1.7). Category 1 denotes majors that are most complementary to AI; category 2 includes majors with
concentrations in AI-related computer and information processing technologies; category 3 consists of majors
associated with general computer skills. College major-clustered standard errors are shown in parentheses. The
estimates in columns 1 to 4 are robust to all groups of recipients, while those in columns 5 to 8 are robust to male,
female, Whites, and U.S. citizens. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1AI Relevance Score is constructed from equation (1.3) by using Google Trends data.

significant and even larger in magnitude compared with AI majors after controlling for both fixed

effects in column 6. Students respond to the contemporaneous rising interests in fast-growing

AI subfields and AI itself. If fast-growing AI technologies are more intensively searched by the

public, students are more likely to choose majors associated with either specific AI skills or general

computer skills.
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Nevertheless, I do not find such significant correlation for category 2 majors (the ones that

are neither specific nor general) after including both types of fixed effects. Since only 1.3% of

majors are classified into category 2, the estimates might be imprecise due to few observations.

Another possible explanation is that students might major in the most specific AI or the most general

computer majors with a minor in category 2. Due to the lack of data on minors17, this paper cannot

explore this mechanism empirically.

In contrast to columns 5 and 6 which include contemporaneous terms, columns 7 and 8 only

consider the lagged ones. However, I find no discernible relationship between degree completion

and lagged relative search intensities on fast-growing AI subfields and AI itself. Since technology

is progressing rapidly, students might be more sensitive to the current technological advances.

Findings from Table 1.6 then imply that students respond to contemporaneous increasing

attention fast-growing AI subfields (big data, data mining, deep learning, and machine learning)

and AI itself have received from the public when choosing majors associated with either the most

specific AI skills or the most general computer skills. The contemporaneous popularity of an AI

skill-related major’s key concentrations might not be the determinant.

I then explore if students are responsive to course content developments proxied by academic

publications on fast-growing AI technologies. Similar with Table 1.6, columns 1 to 4 of Appendix

Table 1A.7 only include AI Relevance Score measures constructed from equation (1.4), while

columns 5 to 8 further add decadal growth rates of academic publications on fast-growing AI

subfields and AI itself.

In column 6, a 1pp increase in the growth in academic publications on fast-growing AI subfields

and AI itself is associated with a 0.052pp increase in the decadal growth rate of degree completion

in AI majors (category 1). This finding is consistent with the positive correlation between relative

Google search activities on these fast-growing AI technologies and degree completion in AI majors

presented in Table 1.6. Similar with relative search intensities, a rise in academic publications on

fast-growing AI technologies indicates that they have received increasing attention from researchers.
17IPEDS does not provide degree completion data on students’ minors.
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Instructors may update syllabi based on theories and methodologies introduced and discussed in

academic publications to provide students with the most up-to-date course materials. These course

content developments could then affect students’ college major choices.

Nonetheless, there is no relationship between degrees conferred in AI skill-related majors

and decadal changes in academic publications on these fast-growing AI technologies (estimates

are presented in Appendix Table 1A.8). Although some estimates on these decadal changes are

statistically significant, they are small in magnitude. For example, in column 8 of Appendix Table

1A.818, a 0.0094pp increase in the growth of AI majors (category 1) is associated with a 1pp

increase in lagged decadal changes in academic publications on fast-growing AI technologies.

Since undergraduate students are less likely to read journal or conference papers, it is possible that

they are not sensitive to the actual changes in the number of academic publications when choosing

their fields of study.

1.4.2.2 AI Exposure

This section explores the relationship between AI exposure and college major choices. Unlike

Section 1.4.2.1 which uses degree completion data over the past three decades, this section specif-

ically focuses on the 2010s. This is because ACS has started to collect information on college

majors since 2009. Thus, I do not have employment data to map occupations to college majors

before 2009. One may argue that the following assumption could be imposed to construct the AIME

measure for years before 2009: the mapping between college majors and occupations observed for

2009 to 2019 would also hold for the 1990s and the 2000s. However, this is a strong assumption

because occupational choices may have changed over time based on changes in skill requirements.

Thus, estimates obtained under this assumption may be biased.

Since the top-ranking or the most popular majors vary across colleges, information students’

received prior to college may affect their choices of college or major. Table 1.7 shows results

from re-estimating equation (1.6) by (1) replacing the outcome variable, the decadal growth rate

of bachelor’s recipients, with the annual growth rate and (2) using the average AIME measure in
18The unit of measurement of the dependent variable in Appendix Table 1A.8 only is a percentage point. In this

way, the estimates are scaled differently to avoid presenting numerous estimates of "0.000".
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Table 1.7 Annual Changes in Bachelor’s Degree Recipients with AI Major Exposure (AIME),
2011-19

Dep. Var.: Annual Growth Rate of Bachelor’s Degree Recipients by Major
All Recipients

AIME Constructed Using AIME Constructed Using AIME Constructed Using
Felten et al. (2021) Felten et al. (2018) Webb (2019) AIOE Measure

AIOE Measure AIOE Measure

(1) (2) (3) (4) (5) (6)

Panel A. Full Sample

Avg. AIME in Years -0.038∗ -0.042 -0.023 -0.037 0.015 -0.010
Before College1 (0.021) (0.028) (0.022) (0.027) (0.024) (0.021)

Observations 89,379 89,377 89,379 89,377 111,291 111,289
Outcome Mean 0.111 0.111 0.111 0.111 0.123 0.123

Panel B. Restricting to Top 50 Universities

Avg. AIME in Years -0.032 -0.142∗∗∗ -0.043 -0.149∗∗∗ -0.027 -0.107∗∗
Before College (0.038) (0.047) (0.041) (0.048) (0.048) (0.042)

Observations 4,968 4,958 4,968 4,958 6,174 6,159
Outcome Mean 0.058 0.058 0.058 0.058 0.087 0.087

College-Year FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Year FE ✓ ✓ ✓

Notes: Each observation is a major-college-year cell. The coefficients in each column are estimated by using equation
(1.6) but replacing the interaction term with the AIME measure constructed using equation (1.1). The AIME score is
rescaled to have a range between 0 and 1. College major-clustered standard errors are shown in parentheses. In Panel
A, the estimates in (1) columns 1 and 2 are robust to female, U.S. citizens, and international students; (2) columns 3
and 4 are robust to female and U.S. citizens; and (3) columns 5 and 6 are robust to male, U.S. citizens and international
students. In Panel B, the estimates are robust to U.S. citizens and Whites. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1The average AIME is calculated as the average of AIME measures in students’ sophomore year to senior year of high
school.

years before college.19

Panel A of Table 1.7 presents results obtained from the full sample. In column 1, when only

including college-year fixed effect, a 10pp increase in the average AIME of a major is correlated

with a 0.0038pp decrease in its annual growth rate. Note that an increase in the AIME score implies

that students graduating with the corresponding major are more likely to perform tasks with high

AI exposure. Since IT substitutes college graduates in routine-intensive industries (Zhang et al.,

2023), this negative estimate then suggests that students tend to avoid choosing majors with high
19This average AIME is calculated as the average of AIME measures in students’ sophomore year through senior

year of high school. Since the AIME measures in different years are highly correlated, including them separately may
cause multicollinearity. Specifically, for the AIME measures constructed using the Felten et al. (2021) AIOE measure,
the correlation between any two of the AIME measures in sophomore year to senior year of high school is about 0.96.
For the AIME measures constructed using the Felten et al. (2018) and Webb (2019) measures, the correlation ranges
bewteen 0.96 to 0.98 and 0.96 to 0.97, respectively.
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AI exposure to be less substituted by AI after graduation. However, none of the estimates on

the average AIME are statistically significant after further controlling for 2-digit-CIP-by-year fixed

effect (column 2 in Panel A). By including both types of fixed effects, column 2 compares majors

within the same broad category (the 2-digit CIP) and among the same college during the same

year, while column 1 compares all majors (the 6-digit CIP) offered in the same college during the

same year. Thus, the former may lose some variation in AIME as the 6-digit majors within the

same 2-digit category may share a high similarity in their AI exposure. This finding suggests that

the negative correlation between AI exposure and degree completion stems from the difference in

AI exposure across, rather than within, broad major categories. However, there is no discernible

relationship between degree completion and the average AIME constructed by using either the

Felten et al. (2018) or Webb (2019) AIOE measure (columns 3 to 6).20

The insignificant correlation between the average AIME over years before college and degree

completion might be explained by students’ abilities. Students in top-end universities are more

likely to have higher abilities and be more sensitive to technological changes. Thus, they may

react more quickly to AI exposure by adjusting their human capital investment, e.g., choosing

their college majors. Panel B of Table 1.7 presents the relationship between AIME and degree

completion by restricting the sample to top 50 universities in the U.S.21 Now estimates (columns

2, 4, and 6 in Panel B) on the average AIME become significantly negative and much larger in

magnitude regardless of which AIOE is used to construct AIME. Students enrolled in top-end

universities are less likely to choose majors that are highly exposed to AI, compared with students

from all 4-year institutions. These results are robust to restricting the sample to top 100 universities

as shown in Appendix Table 1A.10, although estimates are smaller in magnitude.
20Appendix Table 1A.9 presents coefficients on the "weighting" version of AIME constructed by equation (1.2)

which suffers from the multiple weights issue as explained in the footnote of Section 1.2.1. I do not find any evidence
in Panels A and B on the correlation between degree completion and AI exposure. However, in Panel C for which the
AIME is the weighted sum of Webb (2019) AIOE measure, the point estimate on the average AIME in column 1 of
Panel C is significantly positive. Two possible reasons could explain these inconsistently signed estimates. First, the
Webb (2019) measure captures different aspects of AI compared to the Felten et al. (2018, 2021) measures (Acemoglu
et al., 2022). Second, this "weighting" version of AIME might be noisy as explained in Section 1.2.1, possibly resulting
in imprecise estimates.

21The top 50 universities listed in the Best National University Ranking by U.S. News are used (https://www.usnews.
com/best-colleges/rankings/national-universities).
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Since the above AIME measure captures an aggregate shock, Appendix Tables 1A.11 and 1A.12

present the correlation between geographical variation in a major’s AI exposure across county and

state, respectively, and degree completion. Consistent with equation (1.1), the AIME measure for

major 𝑚, geographical location 𝑔 (either county or state), and year 𝑡 is constructed as follows:

AIME𝑚,𝑔,𝑡 = 1{𝑜∗ = arg max
𝑜

𝑒𝑚𝑝𝑜,𝑚,𝑔,𝑡} × AIOE𝑜∗ . (1.8)

Estimates in Panel B of Appendix Table 1A.11 suggest that majors in counties that are most

exposed to AI grow relatively slowly, especially at top-end universities. These estimates are larger

in magnitude compared to Table 1.7 but also have larger standard errors. However, I do not find

any significant correlation between these geographical variation across state and degree completion

as presented in Appendix Table 1A.12.22 Due to the lack of college-level employment data,

the underlying assumption of using the ACS employment data to construct 𝐴𝐼𝑀𝐸𝑚,𝑔,𝑡 following

equation (1.8) is that the distribution of employment by major for people living in a county/state is

the same as the distribution for people graduating from a college located in the same county/state.

This assumption might be too strong, leading to imprecise estimates in Appendix Tables 1A.11 and

1A.12.

1.5 Conclusion

As an intensively studied and growing general-purpose technology over the past decades,

AI not only raises human productivity but also leads to job displacement and changes in skill

requirements in the labor market. However, the relationship between human capital accumulation

and AI has received relatively little attention from researchers. By constructing a new measure

which captures how well a college major prepares students to use AI to complement their work

after graduation and using the degree completion data, this paper shows that AI skill-related majors

have experienced a dramatic growth in bachelor’s degree recipients over the past three decades,
22Appendix Tables 1A.13 and 1A.14 display estimates on geographical variation in the "weighting" version of

AIME constructed as follows:
AIME𝑚,𝑔,𝑡 =

∑︁
𝑜

𝑒𝑚𝑝𝑜,𝑚,𝑔,𝑡

𝑒𝑚𝑝𝑚,𝑔,𝑡
× AIOE𝑜 . (1.9)

Estimates now become much noiser: they are significantly negative using either Felten et al. (2018, 2021) AIOE when
restricting to elite universities, but become positive if using Webb (2019) AIOE.
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especially majors associated with either the most specific AI skills or the most general computer

skills. This growth has been statistically significant and similar in magnitude during the 1990s and

the 2010s, but not in the 2000s. Moreover, I document a significantly positive relationship between

degrees conferred in majors associated with the most specific AI skills and rising interests from

both the public and researchers in fast-growing AI subfields (big data, data mining, deep learning,

and machine learning) and AI itself. In addition, there is some evidence showing that degree

completion is negatively correlated with AI exposure. This negative correlation becomes stronger

when restricting the sample to top-end universities. Higher-ability students tend to avoid choosing

majors that are more exposed to AI to be less substituted by AI in the labor market.

These results suggest that colleges should make adjustments to the curricula of majors that are

related to AI to better prepare students to acquire AI-related skills. However, due to the lack of

data on college curricula, I am not able to test whether colleges respond quickly to the growth in

AI. This is an important area of future research, as it helps colleges take action on advising and

providing relevant training for students.

Another limitation of this paper is the lack of individual-level data on students’ dynamic

decisions on declaring their fields of study. With this individual-level data, researchers would be

able to estimate dynamic models of college major choices to explore the role of the growth in AI.

Moreover, other determinants of college major choices (e.g., ability and parental influence) can

also be taken into account as complements of the impact of AI on major choices by using the

individual-level data. Future research can also explore the labor market performance of students

who graduate with AI skill-related majors, e.g., whether they perform tasks that are complemented

by AI. Finally, such individual-level data would allow for an analysis of the effects of changes in

supply of AI-skilled labor on employment and the wage distribution.
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APPENDIX 1A

ADDITIONAL FIGURES & TABLES

Figure 1A.1 AI Occupational Exposure (AIOE) by Commuting Zone (Continued), 2019

(a) Felten et al. (2018) AIOE Measure

0.79 − 4.26

0.27 − 0.79

0.01 − 0.27

−0.33 − 0.01

−0.95 − −0.33

−6.79 − −0.95

(b) Webb (2019) AIOE Measure

0.84 − 4.67

0.31 − 0.84

−0.09 − 0.31

−0.47 − −0.09

−0.96 − −0.47

−7.95 − −0.96

Notes: Both the Felten et al. (2018) and Webb (2019) AIOE measures are aggregated to the commuting zone level.
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Figure 1A.2 Changes in Google Trends Index of Search Activities on Chosen AI Phrases

(a) Comparing "Artificial Intelligence," "Deep Learning," "Machine Learning," "Pattern Recognition," and
"Computer Vision"

(b) Comparing "Big Data," "Natural Language Processing," "Machine Learning," "Pattern Recognition,"
and "Data Mining"

Source: https://trends.google.com/trends/?geo=US.
Notes: Google Trends website allows users to compare at most five terms per request. "Machine Learning" and "Pattern
Recognition" are included in both subfigures to serve as the comparison group because "Machine Learning" is one of
the AI phrases that have received increasing interests recently while "Pattern Recognition" was intensively discussed
in the 1990s.
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Figure 1A.3 An Example of Searching Academic Publications on the Web of Science Website

(a) An Example of the Search Page

(b) An Example of the Search Result Page

Source: Web of Science platform.

45



Figure 1A.4 Share of AI Skill-Related Majors by the Number of Matched AI Phrases

(a) Category 1: Majors that are Most Complementary to AI
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(b) Category 2: Majors with Concentrations in AI-Related Computer and Information Processing
Technologies
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(c) Category 3: Majors Associated with General Computer Skills
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Figure 1A.5 Decadal Changes in and Growth Rates of Academic Publications on Some AI Subfields

(a) Decadal Changes
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(b) Decadal Growth Rates

0

2

4

6

8

A
I

1980s 1990s 2000s 2010s
Decade

0

200

400

600

B
ig

 D
a
ta

1980s 1990s 2000s 2010s
Decade

0

1

2

3

4

D
a
ta

 M
in

in
g

1980s 1990s 2000s 2010s
Decade

0

100

200

300

D
e
e
p
 L

e
a
rn

in
g

1980s 1990s 2000s 2010s
Decade

0

5

10

M
a
c
h
in

e
 L

e
a
rn

in
g

1980s 1990s 2000s 2010s
Decade

0

20

40

60

80

100

N
e
u
ra

l 
N

e
tw

o
rk

1980s 1990s 2000s 2010s
Decade

0

1

2

3

4

5

N
L
P

1980s 1990s 2000s 2010s
Decade

0

1

2

3

4

P
a
tt
e
rn

 R
e
c
o
g
n
it
io

n

1980s 1990s 2000s 2010s
Decade

2
4
6
8

10
12

3
−

D
 M

o
d
e
lin

g

1980s 1990s 2000s 2010s
Decade

Decadal Growth Rates of Academic Publications

Source: Web of Science Core Collection database.

47



Figure 1A.6 "Weighting" Version of AIME Measure by Broad College Major Category, 2010-19

(a) AIME—by Weighting the Felten et al. (2021) AIOE
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Table 1A.1 Occupations with the Highest/Lowest AIOE Scores

(a) Felten et al. (2021) AIOE Measure

Rank Highest Scoring Lowest Scoring

1 Genetic Counselors Dancers

2 Financial Examiners Exercise Trainers and Group Fitness Instructors

3 Actuaries Helpers—Painters, Paperhangers, Plasterers, and
Stucco Masons

4 Budget Analysts Reinforcing Iron and Rebar Workers

5 Judges, Magistrate Judges, and Magistrates Pressers, Textile, Garment, and Related Materials

6 Procurement Clerks Helpers—Brickmasons, Blockmasons, Stonemasons,
and Tile and Marble Setters

7 Accountants and Auditors Dining Room and Cafeteria Attendants and
Bartender Helpers

8 Mathematicians Fence Erectors

9 Judicial Law Clerks Helpers—Roofers

10 Education Administrators, Postsecondary Slaughterers and Meat Packers

(b) Felten et al. (2018) AIOE Measure

Rank Highest Scoring Lowest Scoring

1 Airline Pilots, Copilots, and Flight Engineers Models

2 Physicists Telemarketers

3 Surgeons Locker Room, Coatroom, and Dressing Room Attendants

4 Commercial Pilots Graders and Sorters, Agricultural Products

5 Air Traffic Controllers Shampooers

6 Dentists, General Maids and Housekeeping Cleaners

7 Biochemists and Biophysicists Cleaners of Vehicles and Equipment

8 Oral and Maxillofacial Surgeons Slaughterers and Meat Packers

9 First-Line Supervisors of Firefighting and Dining Room and Cafeteria Attendants and
Prevention Workers Bartender Helpers

10 Microbiologists Food Servers, Nonrestaurant

(c) Webb (2019) AIOE Measure

Rank Highest Scoring Lowest Scoring

1 Railroad Brake, Signal, and Switch Operators and Locomotive Firers Cooks, Restaurant

2 Captains, Mates, and Pilots of Water Vessels Agricultural Sciences Teachers, Postsecondary

3 Water and Wastewater Treatment Plant and System Operators Healthcare Support Workers, All Other

4 Political Scientists Social Work Teachers, Postsecondary

5 Civil Engineering Technologists and Technicians English Language and Literature Teachers, Postsecondary

6 Chemical Engineers Criminal Justice and Law Enforcement Teachers, Postsecondary

7 Aerospace Engineering and Operations Technologists and Technicians Credit Authorizers, Checkers, and Clerks

8 Gas Plant Operators Recreation and Fitness Studies Teachers, Postsecondary

9 Administrative Law Judges, Adjudicators, and Hearing Officers Political Science Teachers, Postsecondary

10 Marine Engineers and Naval Architects Morticians, Undertakers, and Funeral Arrangers
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Table 1A.2 College Majors with the Highest/Lowest AIME Scores in 2019 (Continued)

(a) AIME—by Using the Felten et al. (2018) AIOE

Rank Highest Scoring Lowest Scoring

1 Landscape Architecture Entomology

2 Architecture and Related Services, Other Zoology/Animal Biology

3 Interior Architecture Zoology/Animal Biology, Other

4 Architectural Technology/Technician Electrical/Electronics Maintenance and Repair Technologies/
Technicians, Other

5 Architectural History and Criticism, General Parts and Warehousing Operations and Maintenance Technology/
Technician

6 Architecture Alternative Fuel Vehicle Technology/Technician

7 Environmental Design/Architecture Industrial Electronics Technology/Technician

8 City/Urban, Community, and Regional Planning Aircraft Powerplant Technology/Technician

9 Naval Architecture and Marine Engineering Appliance Installation and Repair Technology/Technician

10 Chemical Engineering Communications Systems Installation and Repair Technology/
Technician

(b) AIME—by Using the Webb (2019) AIOE

Rank Highest Scoring Lowest Scoring

1 Chemical Engineering Entomology

2 Graphic Design Zoology/Animal Biology, Other

3 Commercial Photography Zoology/Animal Biology

4 Illustration Christian Studies

5 Interior Design Philosophy, Other

6 Industrial and Product Design Buddhist Studies

7 Design and Visual Communications, General Religious/Sacred Music

8 Fashion/Apparel Design Pastoral Studies/Counseling

9 Design and Applied Arts, Other Hindu Studies

10 Commercial and Advertising Art Bible/Biblical Studies
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Table 1A.3 List of AI Skill-Related Majors in Category 1 (Associated with the Most Specific AI
Skills)

2020 CIP Code 2020 CIP Title

10.0304 Animation, Interactive Technology, Video Graphics, and Special Effects
10.0308 Computer Typography and Composition Equipment Operator
11.0102 Artificial Intelligence
11.0204 Computer Game Programming
11.0801 Web Page, Digital/Multimedia and Information Resources Design
11.0803 Computer Graphics
11.0804 Modeling, Virtual Environments and Simulation
13.0501 Educational/Instructional Technology
14.4201 Mechatronics, Robotics, and Automation Engineering
15.0101 Architectural Engineering Technologies/Technicians
15.0405 Robotics Technology/Technician
15.0406 Automation Engineer Technology/Technician
15.0407 Mechatronics, Robotics, and Automation Engineering Technology/Technician
15.1102 Surveying Technology/Surveying
16.0102 Linguistics
23.1303 Professional, Technical, Business, and Scientific Writing
26.1103 Bioinformatics
30.2501 Cognitive Science, General
30.3101 Human Computer Interaction
30.3901 Economics and Computer Science
30.5202 Digital Humanities
30.7001 Data Science, General
30.7101 Data Analytics, General
30.7102 Business Analytics
30.7104 Financial Analytics
42.2701 Cognitive Psychology and Psycholinguistics
50.0402 Commercial and Advertising Art
50.0409 Graphic Design
50.0411 Game and Interactive Media Design
50.0913 Music Technology
51.0909 Surgical Technology/Technologist
51.2703 Medical Illustration/Medical Illustrator
52.1301 Management Science
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Table 1A.4 List of AI Skill-Related Majors in Category 2 (Associated with AI-Related Computer
and Infomation Processing Technologies)

2020 CIP Code 2020 CIP Title

11.0902 Cloud Computing
11.1003 Computer and Information Systems Security/Auditing/Information Assurance
11.1004 Web/Multimedia Management and Webmaster
11.1006 Computer Support Specialist
14.0999 Computer Engineering, Other
14.1004 Telecommunications Engineering
14.4701 Electrical and Computer Engineering
15.0305 Telecommunications Technology/Technician
15.1302 CAD/CADD Drafting and/or Design Technology/Technician
15.1304 Civil Drafting and Civil Engineering CAD/CADD
15.1305 Electrical/Electronics Drafting and Electrical/Electronics CAD/CADD
26.1101 Biometry/Biometrics
26.1199 Biomathematics, Bioinformatics, and Computational Biology, Other
27.0303 Computational Mathematics
43.0403 Cyber/Computer Forensics and Counterterrorism
51.2706 Medical Informatics
52.0208 E-Commerce/Electronic Commerce
52.0407 Business/Office Automation/Technology/Data Entry
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Table 1A.5 List of AI Skill-Related Majors in Category 3 (Associated with General Computer
Skills)

2020 CIP Code 2020 CIP Title

01.0106 Agricultural Business Technology/Technician
01.8105 Veterinary Anatomy
01.8110 Veterinary Preventive Medicine, Epidemiology, and Public Health
09.0702 Digital Communication and Media/Multimedia
11.0103 Information Technology
11.0104 Informatics
11.0105 Human-Centered Technology Design
11.0202 Computer Programming, Specific Applications
11.0205 Computer Programming, Specific Platforms
11.0299 Computer Programming, Other
11.0901 Computer Systems Networking and Telecommunications
11.1001 Network and System Administration/Administrator
11.1005 Information Technology Project Management
11.1099 Computer/Information Technology Services Administration and Management, Other
13.0603 Educational Statistics and Research Methods
14.0103 Applied Engineering
14.0501 Bioengineering and Biomedical Engineering
14.0902 Computer Hardware Engineering
14.0903 Computer Software Engineering
14.1301 Engineering Science
14.3701 Operations Research
14.3801 Surveying Engineering
15.0613 Manufacturing Engineering Technology/Technician
15.1204 Computer Software Technology/Technician
15.1501 Engineering/Industrial Management
26.0708 Animal Behavior and Ethology
26.1102 Biostatistics
26.1501 Neuroscience
26.1599 Neurobiology and Neurosciences, Other
27.0304 Computational and Applied Mathematics
27.0305 Financial Mathematics
27.0501 Statistics, General
27.0502 Mathematical Statistics and Probability
27.0503 Mathematics and Statistics
27.0599 Statistics, Other
27.0601 Applied Statistics, General
27.9999 Mathematics and Statistics, Other
30.2502 Contemplative Studies/Inquiry
30.3801 Earth Systems Science
30.4101 Environmental Geosciences
30.4401 Geography and Environmental Studies
40.0403 Atmospheric Physics and Dynamics
40.0404 Meteorology
40.0512 Cheminformatics/Chemistry Informatics
40.0601 Geology/Earth Science, General
40.0603 Geophysics and Seismology
42.2706 Behavioral Neuroscience
42.2813 Applied Psychology
42.2815 Performance and Sport Psychology
43.0301 Homeland Security
43.0407 Geospatial Intelligence
43.0408 Law Enforcement Intelligence Analysis
45.0102 Research Methodology and Quantitative Methods
45.0202 Physical and Biological Anthropology
45.0501 Demography and Population Studies
45.0603 Econometrics and Quantitative Economics
45.0701 Geography
45.0702 Geographic Information Science and Cartography
50.0917 Sound Arts
51.0706 Health Information/Medical Records Administration/Administrator
51.0905 Nuclear Medical Technology/Technologist
51.2003 Pharmaceutics and Drug Design
51.2007 Pharmacoeconomics/Pharmaceutical Economics
51.3303 Naturopathic Medicine/Naturopathy
52.0207 Customer Service Management
52.0209 Transportation/Mobility Management
52.0216 Science/Technology Management
52.1201 Management Information Systems, General
52.1206 Information Resources Management
52.1207 Knowledge Management
52.1302 Business Statistics
52.1304 Actuarial Science
52.2101 Telecommunications Management
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Table 1A.6 Summary Statistics of Average Decadal Completion Rates Decomposed into Each
Decade, 1990-2019

Average Decadal Growth Rate3 of Bachelor’s Degree Recipients by Major

All Male Female Whites International U.S.
Recipients Students Citizens

Panel A. 1990-2000
All College Majors1 0.862 0.476 0.691 1.162 -0.184 1.461

N = 64,503 (4.910) (3.234) (4.159) (5.451) (1.869) (6.717)

AI Skill-Related Majors2 in
Category 1 1.228 0.878 0.707 1.680 0.083 1.828
N = 651 (4.216) (2.779) (2.437) (4.285) (1.553) (3.940)

Category 2 0.717 0.960 0.560 1.179 0.000 1.001
N = 20 (2.031) (2.321) (1.992) (1.932) (0.000) (2.578)

Category 3 1.393 1.042 0.964 2.671 0.123 3.397
N = 1,844 (9.249) (6.722) (3.357) (15.792) (2.069) (20.432)

Non-AI Majors 0.843 0.453 0.683 1.099 -0.205 1.388
N = 61,988 (4.727) (3.054) (4.193) (4.689) (1.865) (5.722)

Non-AI Tech Majors 0.769 0.493 0.636 1.136 -0.133 1.557
N = 12,398 (3.414) (2.667) (2.605) (3.872) (1.627) (5.837)

Panel B. 2000-2010
All College Majors 0.892 0.571 0.646 0.520 -0.100 0.884

N = 92,818 (10.279) (4.120) (8.266) (4.924) (2.083) (10.145)

AI Skill-Related Majors in
Category 1 1.784 0.684 1.204 0.651 -0.330 1.817
N = 1,547 (26.963) (3.376) (15.042) (3.086) (1.111) (25.914)

Category 2 0.672 0.719 -0.057 0.008 -0.625 0.645
N = 281 (3.633) (3.941) (3.556) (2.083) (0.633) (3.534)

Category 3 1.117 0.795 0.537 0.667 -0.064 1.023
N = 3,343 (4.766) (3.218) (3.308) (3.966) (3.455) (4.313)

Non-AI Majors 0.869 0.559 0.642 0.514 -0.095 0.863
N = 87,647 (9.906) (4.168) (8.227) (4.986) (2.019) (9.816)

Non-AI Tech Majors 0.804 0.543 0.484 0.411 -0.062 0.784
N = 17,498 (17.036) (5.444) (14.634) (5.319) (1.724) (16.856)

Panel C. 2010-2019
All College Majors 0.729 0.377 0.600 0.381 0.538 0.681

N = 79,442 (6.967) (3.888) (5.899) (4.952) (3.747) (6.742)

AI Skill-Related Majors in
Category 1 1.027 0.649 0.875 0.508 0.770 0.960
N = 1,629 (5.927) (4.356) (4.747) (3.102) (3.872) (5.716)

Category 2 1.589 1.430 0.607 1.232 0.622 1.492
N = 454 (5.572) (4.962) (3.449) (4.557) (5.707) (5.359)

Category 3 1.588 1.010 1.558 0.967 1.541 1.424
N = 3,481 (7.503) (5.031) (8.004) (7.145) (6.542) (6.680)

Non-AI Majors 0.677 0.331 0.555 0.346 0.476 0.635
N = 73,878 (6.966) (3.795) (5.823) (4.861) (3.502) (6.771)

Non-AI Tech Majors 1.020 0.706 1.018 0.641 1.208 0.951
N = 15,103 (4.582) (3.156) (4.719) (3.076) (5.168) (4.382)

Notes: Standard deviations are shown in parentheses.
1Each observation is a major-college-decade cell. College majors are represented by the 2020 6-digit Classification of
Instructional Programs (CIP) code. Observations with missing overall decadal growth rates are not counted.
2Category 1 denotes majors that are most complementary to AI; category 2 includes majors with concentrations in
AI-related computer and information processing technologies; category 3 consists of majors associated with general
computer skills.
3Growth rates are calculated at the major-college-decade level.
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Table 1A.7 The Relationship between Decadal Growth Rates of Academic Publications on Fast-
Growing AI Subfields on College Major Choices, 1990-2019

Dep. Var.: Decadal Growth Rate of Bachelor’s Degree Recipients by Major

All Recipients
(1) (2) (3) (4) (5) (6) (7) (8)

ΔPublications1 on Fast-Growing AI Subfields ×
1{major ∈ Category 1} 0.044∗ 0.052∗∗∗

(0.023) (0.018)

1{major ∈ Category 2} 0.079 0.036
(0.087) (0.079)

1{major ∈ Category 3} 0.070∗ 0.050
(0.040) (0.039)

Lagged ΔPublications on Fast-Growing AI Subfields ×
1{major ∈ Category 1} 0.119∗ 0.132∗∗

(0.068) (0.064)

1{major ∈ Category 2} 0.289 0.176
(0.231) (0.176)

1{major ∈ Category 3} 0.028 0.055∗
(0.033) (0.031)

AI Relevance Score2 of Majors in
Category 1 3.316 3.659 2.843 3.087

(2.509) (2.445) (2.338) (2.278)

Category 2 -4.208 -4.042 -5.202 -4.481
(3.362) (3.232) (3.417) (3.115)

Category 3 1.320 1.155 -0.039 0.215
(0.829) (0.763) (1.126) (1.157)

Lagged AI Relevance Score of Majors in
Category 1 -0.425∗ -0.204 -1.117∗∗ -0.967∗∗

(0.254) (0.236) (0.477) (0.435)

Category 2 -2.263 -2.255 -3.638∗∗∗ -3.063∗∗
(1.498) (1.448) (1.391) (1.308)

Category 3 2.028∗ 1.488 1.723∗ 0.853
(1.037) (0.905) (0.978) (0.870)

Observations 235,838 235,838 235,838 235,838 235,838 235,838 235,838 235,838
Outcome Mean 0.827 0.827 0.827 0.827 0.827 0.827 0.827 0.827
College-Decade FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Decade FE ✓ ✓ ✓ ✓

Notes: Each observation is a major-college-decade cell. The coefficients in each column are estimated by using
equation (1.7) and replacing terms associated with GTI to decadal growth rates of academic publications. Category
1 denotes majors that are most complementary to AI; category 2 includes majors with concentrations in AI-related
computer and information processing technologies; category 3 consists of majors associated with general computer
skills. College major-clustered standard errors are shown in parentheses. The estimates in columns 1 to 4 are robust to
male, female, and U.S. citizens, while estimates in columns 5 to 8 are robust to all groups except international students.
∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1ΔPublications denotes decadal growth rates of academic publications.
2AI Relevance Score is constructed from equation (1.4) by using decadal growth rates of academic publications.
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Table 1A.8 The Relationship between Decadal Changes in Academic Publications in Fast-Growing
AI Subfields on College Major Choices, 1990-2019

Dep. Var.: Decadal Growth Rate of Bachelor’s Degree Recipients by Major
in Percentage Points1

All Recipients
(1) (2) (3) (4) (5) (6) (7) (8)

ΔPublications2 on Fast-Growing AI Subfields ×
1{major ∈ Category 1} 0.0002 0.0003

(0.0003) (0.0003)

1{major ∈ Category 2} 0.0029∗∗∗ 0.0021∗∗
(0.0011) (0.0010)

1{major ∈ Category 3} 0.0011∗∗ 0.0006
(0.0005) (0.0005)

Lagged ΔPublications on Fast-Growing AI Subfields ×
1{major ∈ Category 1} 0.0079∗∗ 0.0094∗∗∗

(0.0039) (0.0036)

1{major ∈ Category 2} 0.0458∗∗ 0.0333
(0.0223) (0.0206)

1{major ∈ Category 3} 0.0143 0.0080
(0.0087) (0.0082)

AI Relevance Score3 of Majors in
Category 1 384.4∗ 376.0∗∗ 369.8∗ 356.3∗

(197.7) (191.2) (206.6) (203.5)

Category 2 -93.9 -117.4 -254.2∗ -226.4
(161.2) (147.4) (141.1) (142.8)

Category 3 38.5 56.1∗∗ -14.2 25.8
(30.0) (23.2) (23.6) (22.1)

Lagged AI Relevance Score of Majors in
Category 1 76.9 78.4 36.9 30.6

(64.7) (58.2) (59.5) (56.4)

Category 2 -34.5 -61.7 -224.3 -194.4
(126.3) (115.5) (146.5) (146.6)

Category 3 48.3 62.7∗∗ -19.4 24.8
(34.6) (25.9) (40.4) (37.3)

Observations 235,838 235,838 235,838 235,838 235,838 235,838 235,838 235,838
Outcome Mean 82.7 82.7 82.7 82.7 82.7 82.7 82.7 82.7
College-Decade FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Decade FE ✓ ✓ ✓ ✓

Notes: Each observation is a major-college-decade cell. The coefficients in each column are estimated by using
equation (1.7) and replacing terms associated with GTI to decadal changes in academic publications. Category 1
denotes majors that are most complementary to AI; category 2 includes majors with concentrations in AI-related
computer and information processing technologies; category 3 consists of majors associated with general computer
skills. College major-clustered standard errors are shown in parentheses. The estimates in columns 1 to 4 are robust to
female and U.S. citizens, while estimates in columns 5 to 8 are robust to all groups. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The dependent variable is shown in percentage points to scale the estimates differently in this table only due to small
estimates in columns 5 to 8. Estimates and standard errors are rounded to four decimal places in this table only.
2ΔPublications denotes decadal changes in academic publications.
3AI Relevance Score is constructed from equation (1.5) by using decadal changes in academic publications.
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Table 1A.9 Annual Changes in Bachelor’s Degree Recipients with "Weighting" Ver. AI Major
Exposure (AIME), 2011-19

Dep. Var.: Annual Growth Rate of Bachelor’s Degree Recipients by Major
All Recipients

Panel A. AIME Constructed by Panel B. AIME Constructed by Panel C. AIME Constructed by
Weighting Felten, Raj and Weighting Felten, Raj and Weighting Webb (2019) Measure
Seamans (2021) Measure Seamans (2018) Measure

(1) (2) (1) (2) (1) (2)

Avg. AIME in Years -0.037 -0.057 0.007 -0.057 0.150∗∗∗ 0.055
Before College1 (0.031) (0.041) (0.037) (0.052) (0.027) (0.037)

Observations 355,715 355,715 355,715 355,715 355,715 355,715
Outcome Mean 0.112 0.112 0.112 0.112 0.112 0.112
College-Year FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Year FE ✓ ✓ ✓

Notes: Each observation is a major-college-year cell. The coefficients in each column are estimated by using equation
(1.6) but replacing the interaction term with the "weighting" version of AIME measure constructed by (1.2). The AIME
score is rescaled to have a range between 0 and 1. College major-clustered standard errors are shown in parentheses.
The estimates in (1) both Panels A and B are robust to U.S. citizens and Whites; and (3) Panel C are robust to female,
U.S. citizens, and Whites. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1The average AIME is calculated as the average of AIME measures in students’ sophomore year to senior year of high
school.
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Table 1A.10 Annual Changes in Bachelor’s Degree Recipients with AI Major Exposure (AIME),
Top 100 Universities over 2011-19

Dep. Var.: Annual Growth Rate of Bachelor’s Degree Recipients by Major
All Recipients

Panel A. AIME Constructed by Panel B. AIME Constructed by Panel C. AIME Constructed by
Using Felten, Raj and Using Felten, Raj and Using Webb (2019) Measure

Seamans (2021) Measure Seamans (2018) Measure

(1) (2) (1) (2) (1) (2)

Avg. AIME in Years -0.055∗∗ -0.094∗∗ -0.055∗ -0.094∗∗ -0.027 -0.077∗∗
Before College1 (0.027) (0.045) (0.029) (0.042) (0.041) (0.034)

Observations 9,674 9,673 9,674 9,673 12,011 12,005
Outcome Mean 0.065 0.065 0.065 0.065 0.101 0.101
College-Year FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Year FE ✓ ✓ ✓

Notes: Each observation is a major-college-year cell. The coefficients in each column are estimated by using equation
(1.6) but replacing the interaction term with the AIME measure constructed by equation (1.1). The AIME score is
rescaled to have a range between 0 and 1. College major-clustered standard errors are shown in parentheses. The
estimates in (1) Panel A are robust to female, U.S. citizens, and international students; (2) Panel B are robust to all
groups except Whites; and (3) Panel C are robust to all groups except international students. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05,
∗𝑝 < 0.1.
1The average AIME is calculated as the average of AIME measures in students’ sophomore year to senior year of high
school.
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Table 1A.11 Annual Changes in Bachelor’s Degree Recipients with Geographical Variation in AI
Major Exposure (AIME) across County, 2011-19

Dep. Var.: Annual Growth Rate of Bachelor’s Degree Recipients by Major
All Recipients

AIME Constructed Using AIME Constructed Using AIME Constructed Using
Felten et al. (2021) Felten et al. (2018) Webb (2019) AIOE Measure

AIOE Measure AIOE Measure

(1) (2) (3) (4) (5) (6)

Panel A. Full Sample

Avg. AIME in Years -0.098 -0.156 0.020 -0.060 0.087∗ 0.037
Before College1 (0.103) (0.109) (0.047) (0.057) (0.045) (0.045)

Observations 27,974 27,968 29,381 29,375 40,739 40,737
Outcome Mean 0.114 0.114 0.112 0.112 0.120 0.120

Panel B. Restricting to Top 100 Universities

Avg. AIME in Years -0.076 -0.238∗∗ -0.052 -0.186∗∗ -0.043 -0.170∗
Before College (0.090) (0.102) (0.074) (0.082) (0.063) (0.099)

Observations 4,382 4,374 4,648 4,640 6,742 6,736
Outcome Mean 0.070 0.070 0.067 0.067 0.108 0.108

Panel C. Restricting to Top 50 Universities

Avg. AIME in Years 0.150∗ 0.043 0.062 0.027 0.040 -0.054
Before College (0.077) (0.095) (0.062) (0.078) (0.061) (0.071)

Observations 2,416 2,399 2,582 2,565 3,818 3,809
Outcome Mean 0.044 0.046 0.039 0.040 0.066 0.067

College-Year FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Year FE ✓ ✓ ✓

Notes: Each observation is a major-college-year cell. The coefficients in each column are estimated by using equation
(1.6) but replacing the interaction term with the AIME measure constructed using equation (1.8). The AIME score is
rescaled to have a range between 0 and 1. College major-clustered standard errors are shown in parentheses. In Panel
A, the estimates are robust to all groups except international students. In Panel B, the estimates are robust to U.S.
citizens. In Panel C, (1) the estimates in columns 2, 3, 4, and 6 are robust to all groups; (2) the estimate in column 1 is
robust to female, Whites, and international students; (3) the estimate in column 4 is robust to male, U.S. citizens, and
Whites.
1The average AIME is calculated as the average of AIME measures in students’ sophomore year to senior year of high
school.
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Table 1A.12 Annual Changes in Bachelor’s Degree Recipients with Geographical Variation in AI
Major Exposure (AIME) across State, 2011-19

Dep. Var.: Annual Growth Rate of Bachelor’s Degree Recipients by Major
All Recipients

AIME Constructed Using AIME Constructed Using AIME Constructed Using
Felten et al. (2021) Felten et al. (2018) Webb (2019) AIOE Measure

AIOE Measure AIOE Measure

(1) (2) (3) (4) (5) (6)

Panel A. Full Sample

Avg. AIME in Years -0.015 -0.028 -0.006 -0.044 0.035 0.013
Before College1 (0.031) (0.030) (0.031) (0.030) (0.032) (0.028)

Observations 61,543 61,540 63,066 63,061 86,400 86,398
Outcome Mean 0.108 0.108 0.109 0.109 0.119 0.119

Panel B. Restricting to Top 100 Universities

Avg. AIME in Years 0.001 -0.052 -0.020 -0.078 0.033 -0.002
Before College (0.047) (0.067) (0.051) (0.073) (0.059) (0.055)

Observations 6,790 6,782 6,995 6,986 9,837 9,826
Outcome Mean 0.082 0.082 0.080 0.080 0.099 0.099

Panel C. Restricting to Top 50 Universities

Avg. AIME in Years 0.028 -0.026 0.010 -0.046 0.012 -0.036
Before College (0.049) (0.070) (0.056) (0.078) (0.046) (0.055)

Observations 3,489 3,475 3,594 3,580 5,140 5,126
Outcome Mean 0.063 0.063 0.061 0.060 0.073 0.074

College-Year FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Year FE ✓ ✓ ✓

Notes: Each observation is a major-college-year cell. The coefficients in each column are estimated by using equation
(1.6) but replacing the interaction term with the AIME measure constructed using equation (1.8). The AIME score is
rescaled to have a range between 0 and 1. College major-clustered standard errors are shown in parentheses. In Panel
A, the estimates are robust to male, U.S. citizens, and Whites. In Panels B and C, the estimates are robust to all groups
except international students.
1The average AIME is calculated as the average of AIME measures in students’ sophomore year to senior year of high
school.
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Table 1A.13 Annual Changes in Bachelor’s Degree Recipients with Geographical Variation in
"Weighting" Ver. AI Major Exposure (AIME) across County, 2011-19

Dep. Var.: Annual Growth Rate of Bachelor’s Degree Recipients by Major
All Recipients

AIME Constructed Using AIME Constructed Using AIME Constructed Using
Felten et al. (2021) Felten et al. (2018) Webb (2019) AIOE Measure

AIOE Measure AIOE Measure

(1) (2) (3) (4) (5) (6)

Panel A. Full Sample

Avg. AIME in Years -0.071 -0.019 0.059 0.064 0.381∗∗∗ 0.280∗∗∗
Before College1 (0.046) (0.040) (0.101) (0.079) (0.097) (0.105)

Observations 115,992 115,991 116,826 116,825 123,325 123,322
Outcome Mean 0.115 0.115 0.115 0.115 0.116 0.116

Panel B. Restricting to Top 100 Universities

Avg. AIME in Years -0.015 0.100 -0.049 0.098 0.260∗ 0.270
Before College (0.115) (0.118) (0.127) (0.173) (0.134) (0.214)

Observations 19,428 19,423 19,542 19,538 20,747 20,744
Outcome Mean 0.104 0.104 0.105 0.105 0.110 0.110

Panel C. Restricting to Top 50 Universities

Avg. AIME in Years -0.134∗∗ -0.068 -0.197∗∗∗ -0.101 0.023 0.052
Before College (0.060) (0.062) (0.076) (0.078) (0.119) (0.125)

Observations 11,163 11,157 11,226 11,223 11,848 11,844
Outcome Mean 0.070 0.070 0.070 0.070 0.074 0.074

College-Year FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Year FE ✓ ✓ ✓

Notes: Each observation is a major-college-year cell. The coefficients in each column are estimated by using equation
(1.6) but replacing the interaction term with the "weighting" version of AIME measure constructed using equation
(1.9). The AIME score is rescaled to have a range between 0 and 1. College major-clustered standard errors are shown
in parentheses. In Panel A, the estimates are robust to all groups. In Panel B, the estimates are robust to all groups
except international students. In Panel C, the estimates are robust to male, U.S. citizens, and Whites.
1The average AIME is calculated as the average of AIME measures in students’ sophomore year to senior year of high
school.
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Table 1A.14 Annual Changes in Bachelor’s Degree Recipients with Geographical Variation in
"Weighting" Ver. AI Major Exposure (AIME) across State, 2011-19

Dep. Var.: Annual Growth Rate of Bachelor’s Degree Recipients by Major
All Recipients

AIME Constructed Using AIME Constructed Using AIME Constructed Using
Felten et al. (2021) Felten et al. (2018) Webb (2019) AIOE Measure

AIOE Measure AIOE Measure

(1) (2) (3) (4) (5) (6)

Panel A. Full Sample

Avg. AIME in Years -0.010 0.010 0.054 -0.001 0.412∗∗∗ 0.143
Before College1 (0.047) (0.040) (0.065) (0.063) (0.076) (0.090)

Observations 297,729 297,729 298,083 298,083 301,197 301,197
Outcome Mean 0.110 0.110 0.110 0.110 0.110 0.110

Panel B. Restricting to Top 100 Universities

Avg. AIME in Years -0.149∗ -0.199∗∗ -0.223∗∗ -0.231∗∗ 0.300∗∗ 0.141
Before College (0.085) (0.083) (0.095) (0.096) (0.146) (0.147)

Observations 32,372 32,369 32,392 32,389 32,765 32,761
Outcome Mean 0.105 0.105 0.105 0.105 0.106 0.106

Panel C. Restricting to Top 50 Universities

Avg. AIME in Years -0.233∗∗∗ -0.210∗ -0.291∗∗∗ -0.219∗ 0.092 0.019
Before College (0.067) (0.123) (0.085) (0.132) (0.117) (0.138)

Observations 17,400 17,389 17,408 17,397 17,618 17,606
Outcome Mean 0.082 0.082 0.082 0.082 0.082 0.082

College-Year FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-CIP-by-Year FE ✓ ✓ ✓

Notes: Each observation is a major-college-year cell. The coefficients in each column are estimated by using equation
(1.6) but replacing the interaction term with the "weighting" version of AIME measure constructed using equation
(1.9). The AIME score is rescaled to have a range between 0 and 1. College major-clustered standard errors are shown
in parentheses. In Panel A, the estimates are robust to all groups except male. In Panel B, the estimates are robust to
all groups. In Panel C, the estimates are robust to Whites and U.S. citizens.
1The average AIME is calculated as the average of AIME measures in students’ sophomore year to senior year of high
school.
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CHAPTER 2

MACHINE VERSUS MUSCLE, BOT VERSUS BRAIN: EFFECTS OF ARTIFICIAL
INTELLIGENCE ON HETEROGENEOUS SKILL GROUPS

2.1 Introduction

The displacement effect of high tech, especially automation and industrial robots, has been

intensively studied (e.g., Acemoglu and Autor, 2011; Autor and Dorn, 2013; Acemoglu and

Restrepo (2019, 2022a); Dauth et al., 2021; Kogan et al., 2021). Previous literature has largely

focused on how low- and middle-skilled workers (those who specialize in manual- and routine-

intensive occupations, respectively) are replaced by automation and has assumed that high-skilled

workers are unlikely to be negatively affected by automation. However, this assumption may not

hold in the case of Artificial Intelligence (AI). AI is an algorithm or a program which aims at

recognizing patterns from large datasets and making predictions and rational decisions like humans

(Russell and Norvig, 2021).

The biggest difference between AI and industrial automation discussed in this paper is that

AI is claimed to be a general-purpose technology (GPT) with profound impacts on technological

evolution and the economy (e.g., Dafoe, 2018; Brynjolfsson et al., 2019; Cockburn et al., 2019;

Crafts, 2021; Hötte et al., 2022; Goldfarb et al., 2023), while industrial automation is not. The

latter one specifically substitutes for labor in tasks that follow explicitly defined rules (i.e., routine

tasks). Importantly, AI can not only perform more complex and abstract tasks but also increase the

productivity of workers who possess AI-developing skills and even create new job opportunities.

Yet there is little evidence regarding effects of AI as a GPT on heterogeneous skill groups in the

labor market, or how these effects differ from those of traditional high tech that are not considered

as GPTs, especially industrial automation. This paper attempts to fill this gap by introducing and

analyzing a task-based framework which (1) incorporates both traditional and rapid-growing high

tech and (2) categorizes labor into detailed groups based on skill specializations to reflect the

complementarity and displacement effects of AI.
*I gratefully acknowledge the financial support from the Thompson Endowment Award.
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This paper focuses on AI-developing skills (e.g., deep learning, machine learning, natural lan-

guage processing), which are used to improve the performance of AI technologies, predict patterns,

and develop AI-powered tools. To explore the relationship between the demand for AI skills and

labor market outcomes of heterogeneous skill groups, I first categorize occupations into four skill

groups: (1) high-skilled AI-complement group with a concentration on abstract-intensive tasks that

require AI skills (e.g., "Software Developers, Applications and Systems Software" and "Aerospace

Engineers"); (2) high-skilled, not-yet-AI-complement group that is abstract-intensive but not yet

AI-related (e.g., "Chemists and Materials Scientists" and "Lawyers, and Judges, Magistrates, and

other Judicial Workers"); (3) middle-skilled group that is routine-intensive (e.g., "Stock Clerks and

Order Fillers" and "Automotive Body and Related Repairers"); and (4) low-skilled group that is

manual-intensive (e.g., "Waiters and Waitresses"). Since an occupation comprises a tremendous

amount of job postings, I directly match phrases for AI-developing skills to the description of

postings using online job postings data to define AI postings, i.e., postings that require AI skills.

These postings capture AI’s complementarity; more employers listing AI skills in job postings

indicate a higher demand for people specializing in AI-developing activities. Next, I aggregate AI

postings to the occupational level to distinguish between AI-complement and not-yet-AI occupa-

tions. Abstract, routine, and manual occupations are then defined using the occupational-level task

contents measured by Autor and Dorn (2013). Finally, an occupation exclusively falls into one skill

group according to the definition of skill groups introduced above.

I first document a consistent upward trend in the share of AI postings for the high-skilled

AI-complement group during my sampling period, 2012-21. These abstract and AI-intensive oc-

cupations experience the largest employment growth and wage gains, associated with an increasing

share of AI postings at the state-year level, compared to other skill groups. Specifically, a 1 percent-

age point increase in the AI posting share leads to 50 more employed people per 100,000 population,

a 3% increase in mean hourly wages, and a 0.078 percentage point increase in the wage income

share for high-skilled AI-complement occupations. I also perform a principal component analysis

to measure the intensity that AI-developing skills are required for job tasks. I document a signif-
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icant and positive relationship between this measure and labor market outcomes for high-skilled

AI-complement occupations.

The second result is that although there is significant growth in employment and wages for

high-skilled, not-yet-AI occupations, this growth is much smaller than that for the high-skilled AI-

complement group. For example, employment growth for the high-skilled, not-yet-AI group is less

than half that of the high-skilled AI-complement group. Findings on the high-skilled occupations

suggest that AI has differential effects within the high-skilled group. The employment and wage

gaps between abstract, AI-intensive occupations and abstract, not-yet-AI occupations widen when

AI becomes more ubiquitous.

The third result shows that overall effects of the AI posting share on the employment and wages

for middle- and low-skilled occupations are small and negative, but not statistically significant.

However, I find that middle-skilled occupations experience a wage decline associated with an

increase in the standard deviation of the measure of the intensity with which AI skills are required

for job tasks.

These findings imply a "J-shaped" curve of changes in employment or wages by skill level,

where employment or wages in both the right and left tails are higher than the middle, and the

right tail is exceptionally higher than the left tail. The labor market favors people specializing

in AI-developing tasks as AI grows, with the employment and wage gaps between abstract and

AI-intensive occupations and other skill groups widening over time.

My empirical analysis further suggests why AI is possibly a general-purpose technology, akin

to the steam engine and electricity. First, AI has a wide range of applications across occupations

and sectors. Second, there is an increasing trend in explicitly listing AI skill requirements when

employers post new job vacancies, regardless of skill groups or industry sectors. Third, AI tends to

impact the whole economy rather than particular occupations or sectors. Although changes in the

state-year share of AI postings have strong and differential effects on employment and wages for

skill groups, these relationships become insignificant when using the share of AI postings at more
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granular level, i.e., 2-digit-occupation-by-state-by-year level.1 This implies that the employment

and wage gaps between skill groups are driven by between-group variation, not within-group.

To provide theoretical explanations for my empirical results, I extend task-based models devel-

oped in Acemoglu and Autor (2011), Acemoglu and Restrepo (2018a), and Autor et al. (2024).

Tasks can be performed by labor or technology (embodied in capital). Instead of general technology,

my model specifically considers AI and industrial automation as factors of production by assuming

they have different levels of productivity so that AI can compete against labor in more complex and

abstract tasks while industrial automation cannot. Labor is categorized into four skill groups based

on skill specializations—high-skilled AI-complement, high-skilled not-yet-AI, middle-skilled, and

low-skilled—to better explore the differential effects of AI and industrial automation on labor

market outcomes of skill groups.

In my model, AI will by assumption displace middle- and high-skilled workers in complex tasks

(displacement effect) and in equilibrium expand the set of tasks performed by high-skilled workers

(reinstatement effect). In contrast, industrial automation by assumption only has a displacement

effect on both low- and middle-skilled workers. The displacement effect driven by AI narrows wage

gaps between high-skilled labor and other skill groups, while the displacement effect of industrial

automation and the reinstatement effect of AI widen these wage gaps. In addition, this task-based

framework explores the differential effects of AI as a labor-augmenting technology by assuming that

the growth in AI particularly increases the productivity of high-skilled AI-complement workers.

Since these workers specialize in AI-developing activities and can be complemented by AI, the

wage gap between high-skilled AI-complement workers and other types of workers widens as AI

grows.

A substantial amount of literature has developed theoretical models to study the impacts of

technology on labor market outcomes (e.g., Katz and Murphy, 1992; Autor et al., 2003; Acemoglu

and Autor, 2011; Autor and Dorn, 2013; Acemoglu and Restrepo (2018a,b, 2019); Autor et al.,

2024). Although the canonical model (1) explains that changes in factor-augmenting technologies
1The 2-digit occupation is the most broad occupation category in the data used in my empirical analysis.

66



and relative labor supplies are confounding factors of changes in the wage structure and (2)

concludes that skill premiums lead to employment and wage inequalities, it fails to provide a reason

for why middle-skilled workers experience declines in both wages and employment compared

to low- and high-skilled workers (which is referred to as "polarization"). A task-based model

has implications on labor market trends and polarization by making a distinction between skills

and tasks and allowing labor to have comparative advantages in performing different tasks. The

task-based framework introduced in this paper contributes to this body of work by (1) specifically

incorporating both industrial automation, which substitutes for low- and middle-skilled workers in

simpler and more routine tasks, and AI, which competes against middle- and high-skilled workers

in more complex and abstract tasks, and (2) decomposing high-skilled workers into two groups

based on the specialization in AI-developing tasks.

This paper also contributes to research focusing on the evolution of work, changes in skill

demands, and wage gaps. Using a job postings dataset from 1950 to 2000, Atalay et al. (2020)

document an upward-sloping (downward-sloping) trend for the frequency of words related to non-

routine (routine) tasks in postings. Similarly, Nedelkoska et al. (2021) find that both male and

female workers have switched from performing routine and manual tasks to non-routine cognitive

tasks since 1970s. Kogan et al. (2021) show that workers who are exposed to technological innova-

tions have experienced worse labor market outcomes such as employment and wages, while Autor

et al. (2024) state that employment and wages increase in occupations exposed to technological

innovations with augmentation effects but decrease in those exposed to innovations with displace-

ment effects. Instead of focusing on general technologies or industrial automation that displace

labor in routine-intensive tasks, this paper discusses the differential effects of AI, a fast-growing

technology that can not only substitute for but also complement higher-skilled labor in performing

more abstract tasks, on heterogeneous skill groups.

The most closely related to this paper is Acemoglu et al. (2022). They specifically study the

effects of AI on hiring and skill requirements using online job vacancies data. They conclude

that recruitment of workers with AI skills increases in establishments highly exposed to AI, while
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non-AI hiring declines in these establishments. However, the measures of AI they used capture

the extent an occupation is exposed to AI, i.e., AI’s substitutability. In this paper, I classify job

postings into AI and not-yet-AI postings and use AI postings to capture AI’s complementarity.

New job vacancies that require AI skills indicate that these jobs need to hire people to perform

AI-developing tasks, suggesting the demand for AI skills. I also propose an alternative measure

that captures the intensity of AI skills required for job applicants when applying for a job.

The rest of this paper proceeds as follows. A task-based framework is introduced in Section

2.2 which motivates my empirical analysis. Section 2.3 describes the data used in my empirical

analysis and defines skill groups. My empirical strategy and main results are presented in Sections

2.4 and 2.5, respectively. Section 2.6 discusses why AI can be considered as a general-purpose

technology. Section 2.7 concludes.

2.2 Theoretical Model

In this section, I follow Acemoglu and Autor (2011), Acemoglu and Restrepo (2018a), and

Autor et al. (2024) to introduce a task-based model, which motivates my empirical analysis on

exploring the influences of AI on labor market outcomes of heterogeneous skill groups.

2.2.1 Environment

I begin with a unique final good 𝑌 produced by combining a unit measure of tasks as follows:

𝑌 =

[∫ 𝑁

𝑁−1
𝑦(𝑖) 𝜎−1

𝜎 𝑑𝑖

] 𝜎
𝜎−1

, (2.1)

where 𝑦(𝑖) is the output of task 𝑖 ∈ [𝑁 − 1, 𝑁] and 𝜎 ∈ (0,∞) is the elasticity of substitution

between tasks. The index 𝑖 represents the complexity of a task. The higher an index is, the more

complex the corresponding task is. Since I assume that 𝑌 is the unique final good, 𝑌 is set to be the

numeraire and its price 𝑃 ≡ 1.

There are five factors of production, high-skilled AI-complement labor (𝐻𝐴𝐼), high-skilled

not-yet-AI labor (𝐻𝑁𝑜𝑛), middle-skilled or AI-substitutable labor (𝑀), low-skilled labor (𝐿), and

technology which embodied in capital (𝐾). Then the production function for task 𝑖 is:

𝑦(𝑖) = 𝛼𝐻𝐴𝐼 (𝑖)ℎ𝐴𝐼 (𝑖) + 𝛼𝐻𝑁𝑜𝑛 (𝑖)ℎ𝑁𝑜𝑛 (𝑖) + 𝛼𝑀 (𝑖)𝑚(𝑖) + 𝛼𝐿 (𝑖)𝑙 (𝑖) + 𝛼𝐾 𝑘 (𝑖), (2.2)
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where 𝛼𝐻𝐴𝐼 (𝑖), 𝛼𝐻𝑁𝑜𝑛 (𝑖), 𝛼𝑀 (𝑖), 𝛼𝐿 (𝑖), and 𝛼𝐾 represent the productivity of the corresponding

factor of production; ℎ𝐴𝐼 (𝑖), ℎ𝑁𝑜𝑛 (𝑖),𝑚(𝑖), 𝑙 (𝑖), and 𝑘 (𝑖) are the total quantities of the corresponding

factor used to perform task 𝑖. I impose the following assumptions on these productivities:

Assumption 2.1 𝛼𝐻 𝑗 (𝑖), 𝛼𝑀 (𝑖), 𝛼𝐿 (𝑖),
𝛼
𝐻 𝑗

(𝑖)
𝛼𝑀 (𝑖) , and 𝛼𝑀 (𝑖)

𝛼𝐿 (𝑖) , 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}, are continuously differ-

entiable and strictly increasing.

This assumption implies that (1) labor has higher productivity in more complex tasks (i.e.,

more abstract tasks) which are represented by a higher index; and (2) higher-skilled workers have

comparative advantages over lower-skilled workers in performing more complex tasks.

Assumption 2.2 ∃𝐼𝐻 ∈ [𝑁 − 1, 𝑁] such that 𝛼
𝐻𝐴𝐼

(𝑖)
𝛼
𝐻𝑁𝑜𝑛

(𝑖) is continuously differentiable and strictly

increasing (decreasing) if 𝑖 > 𝐼𝐻 and requires AI skills (is not yet related to AI).

This assumption indicates that within the group of high-skilled workers, those who possess

AI skills have comparative advantages in complex tasks that require AI skills. However, not all

complex tasks are AI-related. Other soft skills (e.g., cognitive and social skills) may play a pivotal

role in these not-yet-AI complex tasks. Assumption 2.2 then implies that high-skilled not-yet-AI

workers have comparative advantages in these tasks over high-skilled AI-complement workers.

Different from most previous literature that has utilized the supermodular comparative advantage

structure across all factors, I follow Acemoglu and Restrepo (2018a) to state that technology can

efficiently compete with not only low-skilled labor in simpler tasks but also middle- or high-skilled

labor in more complex tasks. I assume that there exists 𝑆 ∈ (𝑁 −1, 𝑁) such that tasks 𝑖 ∈ (𝑁 −1, 𝑆)

can be automated with productivity 𝛼𝐾 = 1, while tasks 𝑖 ∈ (𝑆, 𝑁) can be performed by AI

with productivity 𝛼𝐾 > 1. This assumption indicates that technology can efficiently perform

some simpler tasks that low-skilled labor used to specialize in and some more complex tasks that

previously utilized middle- or high-skilled labor.

Assumption 2.3 ∃𝐼𝐿 , 𝐼𝑀 ∈ (𝑁 − 1, 𝑆), where 𝐼𝐿 < 𝐼𝑀 , and 𝐼𝐻 ∈ (𝑆, 𝑁) such that 𝑊
𝐻 𝑗

𝛼
𝐻 𝑗

(𝐼𝐻 ) >
𝑅
𝛼𝐾

,

and 𝑊𝑀

𝛼𝑀 (𝐼𝑀 ) > 𝑅 >
𝑊𝐿

𝛼𝐿 (𝐼𝐿) , 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}.
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Figure 2.1 The Equilibrium Task Allocation

Notes: 𝐿, 𝑀 , 𝐻𝐴𝐼 , and 𝐻𝑁𝑜𝑛 represent low-skilled, middle-skilled, high-skilled AI-complement, and high-skilled
not-yet-AI labor, respectively. 𝐼𝐻 = min{𝐼𝐻𝐴𝐼 , 𝐼𝐻𝑁𝑜𝑛 }, 𝑆, 𝐼𝑀 , and 𝐼𝐿 are thresholds used to determine the equilibrium.

This assumption ensures that it is strictly cheaper to produce (1) tasks 𝑖 ∈ (𝐼𝐿 , 𝐼𝑀] by industrial

automation than by low-skilled labor and (2) tasks 𝑖 ∈ (𝑆, 𝐼𝐻] by AI than by high-skilled labor in

equilibrium. The equilibrium is then characterized by using the comparative advantage structure

in Assumptions 2.1 and 2.2 and the effective cost assumption stated in Assumption 2.3. In

particular, there exist some thresholds, 𝐼𝐻 , 𝐼𝑀 , 𝐼𝐿 , and 𝑆, such that low-skilled workers perform

tasks 𝑖 ∈ [𝑁−1, 𝐼𝐿], middle-skilled workers perform tasks 𝑖 ∈ (𝐼𝑀 , 𝑆], high-skilled AI-complement

workers perform tasks 𝑖 ∈ (𝐼𝐻 , 𝑁] with AI skill requirements, and high-skilled not-yet-AI workers

perform tasks 𝑖 ∈ (𝐼𝐻 , 𝑁] without any AI skill requirements. Tasks 𝑖 ∈ (𝐼𝐿 , 𝐼𝑀] are automated and

tasks 𝑖 ∈ (𝑆, 𝐼𝐻] are performed by AI. This equilibrium allocation of tasks to factors is depicted in

Figure 2.1 and is formally presented as follows:

Proposition 2.1 In any equilibrium, ∃𝐼𝐻𝐴𝐼 , 𝐼𝐻𝑁𝑜𝑛 , 𝐼𝑀 , 𝐼𝐿 , and 𝑆 such that 𝑁 − 1 < 𝐼𝐿 < 𝐼𝑀 < 𝑆 <

𝐼𝐻 < 𝑁 , where 𝐼𝐻 = min{𝐼𝐻𝐴𝐼 , 𝐼𝐻𝑁𝑜𝑛}, and

(a) for any 𝑖 ∈ (𝐼𝐿 , 𝐼𝑀] ∪ (𝑆, 𝐼𝐻], 𝑙 (𝑖) = 𝑚(𝑖) = ℎ𝐴𝐼 (𝑖) = ℎ𝑁𝑜𝑛 (𝑖) = 0;

(b) for any 𝑖 ∈ [𝑁 − 1, 𝐼𝐿], 𝑚(𝑖) = ℎ𝐴𝐼 (𝑖) = ℎ𝑁𝑜𝑛 (𝑖) = 𝑘 (𝑖) = 0;

(c) for any 𝑖 ∈ (𝐼𝑀 , 𝑆], 𝑙 (𝑖) = ℎ𝐴𝐼 (𝑖) = ℎ𝑁𝑜𝑛 (𝑖) = 𝑘 (𝑖) = 0;

(d) for any 𝑖 ∈ (𝐼𝐻 , 𝑁] and 𝑖 ∈ AI tasks, 𝑙 (𝑖) = 𝑚(𝑖) = ℎ𝑁𝑜𝑛 (𝑖) = 𝑘 (𝑖) = 0;
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(e) for any 𝑖 ∈ (𝐼𝐻 , 𝑁] and 𝑖 ∈ not-yet-AI tasks, 𝑙 (𝑖) = 𝑚(𝑖) = ℎ𝐴𝐼 (𝑖) = 𝑘 (𝑖) = 0.

The intuition behind this proposition is that task allocation is determined by cost minimization

and the comparative advantage structure introduced in Assumptions 2.1 and 2.2. 𝐼𝐻𝐴𝐼 (𝐼𝐻𝑁𝑜𝑛) is

the threshold where high-skilled AI-complement (high-skilled not-yet-AI) labor and capital can be

indifferently used to perform task 𝑖 = 𝐼𝐻𝐴𝐼 (𝑖 = 𝐼𝐻𝑁𝑜𝑛). Since the sets of tasks that high-skilled

AI-complement and high-skilled not-yet-AI workers perform in equilibrium are both complex

(represented by a higher index) but have different skill requirements (the former ones require AI

skills while the latter ones are not yet AI-related), I am not able to determine which type of

tasks is more superior. That is, it is insufficient to say all tasks that high-skilled AI-complement

workers specialize in are more complex than those performed by high-skilled not-yet-AI workers

or vice versa. Therefore, I set 𝐼𝐻 = min{𝐼𝐻𝐴𝐼 , 𝐼𝐻𝑁𝑜𝑛} to distinguish the set of tasks performed by

all high-skilled workers but add conditions of different skill requirements when charaterizing the

equilibrium (Propositions 2.1(d) and 2.1(e)). The differences in how technology affects these two

types of workers in the labor market will be discussed later. Given the equilibrium allocation of

tasks in Proposition 2.1, the equilibrium price of task 𝑖 is shown below:

𝑝(𝑖) =



𝑊𝐿
𝛼𝐿 (𝑖) if 𝑖 ∈ [𝑁 − 1, 𝐼𝐿],

𝑅 if 𝑖 ∈ (𝐼𝐿 , 𝐼𝑀],
𝑊𝑀

𝛼𝑀 (𝑖) if 𝑖 ∈ (𝐼𝑀 , 𝑆],
𝑅
𝛼𝐾

if 𝑖 ∈ (𝑆, 𝐼𝐻],
𝑊
𝑗

𝐻

𝛼
𝐻 𝑗

(𝑖) if 𝑖 ∈ (𝐼𝐻 , 𝑁] and 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛},

(2.3)

where 𝑊𝐻𝐴𝐼 , 𝑊𝐻𝑁𝑜𝑛 , 𝑊𝑀 , and 𝑊𝐿 are the economy-wide wages for high-skilled AI-complement,

high-skilled not-yet-AI, middle-skilled or AI-substitutable, and low-skilled labor. 𝑅 is the rental

rate of capital.

From equation (2.1), the quantity of task 𝑖 can be derived as

𝑦(𝑖) = 𝑌 𝑝(𝑖)−𝜎 . (2.4)
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Combining Proposition 2.1 with equations (2.3) and (2.4), I can obtain the demand for each factor

in task 𝑖 as

𝑘 (𝑖) = 𝑌𝛼−1
𝐾 𝑝(𝑖)−𝜎, if 𝑖 ∈ (𝐼𝐿 , 𝐼𝑀] ∪ (𝑆, 𝐼𝐻]

𝑙 (𝑖) = 𝑌𝛼𝐿 (𝑖)−1𝑝(𝑖)−𝜎, if 𝑖 ∈ [𝑁 − 1, 𝐼𝐿]

𝑚(𝑖) = 𝑌𝛼𝑀 (𝑖)−1𝑝(𝑖)−𝜎, if 𝑖 ∈ (𝐼𝑀 , 𝑆]

ℎ 𝑗 (𝑖) = 𝑌𝛼𝐻 𝑗 (𝑖)−1𝑝(𝑖)−𝜎, if 𝑖 ∈ (𝐼𝐻 , 𝑁] and 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}.

(2.5)

Then the factor markets clear in the equilibrium:

𝐾 = 𝑌A𝐾𝑅
−𝜎, 𝐿 = 𝑌A𝐿𝑊

−𝜎
𝐿 , 𝑀 = 𝑌A𝑀𝑊

−𝜎
𝑀 , 𝐻 𝑗 = 𝑌A𝐻 𝑗𝑊−𝜎

𝐻 𝑗 , 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}, (2.6)

where

A𝐾 = (𝐼𝑀 − 𝐼𝐿) + (𝐼𝐻 − 𝑆)𝛼𝜎−1
𝐾 , A𝐿 =

∫ 𝐼𝐿

𝑁−1
𝛼𝐿 (𝑖)𝜎−1𝑑𝑖, A𝑀 =

∫ 𝑆

𝐼𝑀

𝛼𝑀 (𝑖)𝜎−1𝑑𝑖,

A𝐻𝐴𝐼 =

∫ 𝑁

𝐼𝐻

1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1𝑑𝑖, A𝐻𝑁𝑜𝑛 =

∫ 𝑁

𝐼𝐻

1{𝑖 ∈ not-yet-AI tasks}𝛼𝐻𝑁𝑜𝑛 (𝑖)𝜎−1𝑑𝑖,

(2.7)

can be viewed as the "allocation share" of each factor. Factor prices satisfy the ideal-price condition:

A𝐻𝐴𝐼𝑊
1−𝜎
𝐻𝐴𝐼

+ A𝐻𝑁𝑜𝑛𝑊
1−𝜎
𝐻𝑁𝑜𝑛

+ A𝑀𝑊
1−𝜎
𝑀 + A𝐿𝑊

1−𝜎
𝐿 + A𝐾𝑅

1−𝜎 = 1. (2.8)

Proposition 2.2 The equilibrium factor prices and output can be expressed as:

𝑅 = 𝑌
1
𝜎A

1
𝜎

𝐾
𝐾− 1

𝜎 , 𝑊𝐿 = 𝑌
1
𝜎A

1
𝜎

𝐿
𝐿−

1
𝜎 , 𝑊𝑀 = 𝑌

1
𝜎A

1
𝜎

𝑀
𝑀− 1

𝜎 , 𝑊𝐻 𝑗 = 𝑌
1
𝜎A

1
𝜎

𝐻 𝑗 (𝐻 𝑗 )− 1
𝜎 ,

𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛},
(2.9)

and

𝑌 =

[
A

1
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼) 𝜎−1

𝜎 + A
1
𝜎

𝐻𝑁𝑜𝑛
(𝐻𝑁𝑜𝑛) 𝜎−1

𝜎 + A
1
𝜎

𝑀
𝑀

𝜎−1
𝜎 + A

1
𝜎

𝐿
𝐿
𝜎−1
𝜎 + A

1
𝜎

𝐾
𝐾

𝜎−1
𝜎

] 𝜎
𝜎−1

. (2.10)

This proposition provides intuitions for the "allocation share" of each factor defined in equation

(2.7). These "allocation shares" can be viewed as the distribution parameters in the equilibrium

output in equation (2.10). They indicate how different factors are allocated in producing the final

good, 𝑌 .
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2.2.2 Relationship between Labor Market Outcomes and High Tech

In this section, I discuss the relationship between labor market outcomes (e.g., employment,

relative wages) of different skill groups and AI or industrial automation. I follow Acemoglu and

Restrepo (2019) to define the following effects: (1) the displacement effect means capital substitutes

for labor in production; (2) the reinstatement effect means the set of tasks performed by labor is

expanded; and (3) the productivity effect means technology increases productivity in production.

Proposition 2.3 explores the displacement effect and the reinstatement effect of AI or industrial

automation. Propositions 2.4 and 2.5 study effects on relative wages. Proposition 2.6 explores

the productivity effect of AI on the income distributed to high-skilled AI-complement labor or

capital. Only the inequalities that can be tested in my empirical analysis are presented. Additional

inequalities and proofs can be found in Appendix 2A.

Proposition 2.3 (Displacement and reinstatement effects of AI or industrial automation)

(1) AI can displace workers in some complex tasks, 𝑑A
𝐻 𝑗

𝑑𝐼𝐻
< 0, 𝑑A𝐾

𝑑𝐼𝐻
> 0, 𝑑A𝑀

𝑑𝑆
> 0, 𝑑A𝐾

𝑑𝑆
< 0.

(2) AI can expand the set of tasks performed by high-skilled workers, 𝑑A
𝐻 𝑗

𝑑𝑁
> 0.

(3) Industrial automation primarily takes over simpler tasks, 𝑑A𝑀
𝑑𝐼𝑀

< 0, 𝑑A𝐾
𝑑𝐼𝑀

> 0.

Note that 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}.

The growth in AI (represented by an increase in 𝐼𝐻) reduces the share of tasks specialized by

high-skilled workers (A𝐻 𝑗 , 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}) because AI becomes more efficient in production

and can take over some complex tasks previously performed by high-skilled workers. AI also

has a displacement effect on middle-skilled workers. A decrease in 𝑆 means that some tasks that

previously used middle-skilled workers switch to utilize AI (captured by a decrease in A𝑀 or an

increase in A𝐾).

An increase in 𝐼𝑀 means improvements in industrial automation, which reduces the share of

tasks performed by middle-skilled workers (A𝑀) but increases that of capital (A𝐾). This can be

viewed as a direct displacement effect of industrial automation on middle-skilled workers and an
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indirect displacement effect of AI since improvements in AI may also stimulate developments in

industrial automation.

Different from industrial automation which mainly brings displacement effects to middle-skilled

labor, the growth in AI expands the set of tasks that high-skilled workers can perform by creating

new tasks that require high-skilled labor (an increase in 𝑁) or changing task content in favor of

high-skilled labor over AI. This is referred to as the reinstatement effect of AI (Acemoglu and

Restrepo, 2019).

Proposition 2.4 (Relationship between relative wages and AI or industrial automation)

(1) The displacement effect of AI narrows wage gaps,
𝑑 (
𝑊
𝐻 𝑗

𝑊𝐿
)

𝑑𝐼𝐻
< 0,

𝑑 (
𝑊
𝐻 𝑗

𝑊𝑀
)

𝑑𝐼𝐻
< 0.

(2) The reinstatement effect of AI widens wage gaps,
𝑑 (
𝑊
𝐻 𝑗

𝑊𝐿
)

𝑑𝑁
> 0,

𝑑 (
𝑊
𝐻 𝑗

𝑊𝑀
)

𝑑𝑁
> 0,

𝑑 (𝑊𝑀
𝑊𝐿

)
𝑑𝑁

> 0.

(3) The displacement effect of industrial automation widens wage gaps,
𝑑 (
𝑊
𝐻 𝑗

𝑊𝑀
)

𝑑𝐼𝑀
> 0,

𝑑 (𝑊𝑀
𝑊𝐿

)
𝑑𝐼𝑀

> 0.

Note that 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}.

The main takeaway from this proposition is that the displacement effect of AI (an increase in 𝐼𝐻)

narrows wage gaps between high-skilled group and middle- or low-skilled group (𝑊𝐻 𝑗
𝑊𝑀

and 𝑊
𝐻 𝑗

𝑊𝐿
),

while the displacement effect of industrial automation (an increase in 𝐼𝑀) or the reinstatement effect

of AI (an increase in 𝑁) widens these wage gaps. An increase in 𝐼𝐻 leads to a reduction in the share

of tasks performed by high-skilled workers, further resulting in lower wagebills for these workers.

Since wages for workers from other skill groups are assumed to be not affected under this scenario,

the wage gap between high-skilled labor and middle- or low-skilled labor becomes smaller. In

contrast, AI can also create tasks that require skills possessed by high-skilled labor or change task

contents in favor of high-skilled labor rather than AI. In this way, the wage gap between high- and

middle-skilled labor (𝑊𝐻 𝑗
𝑊𝑀

) or between high- and low-skilled labor (𝑊𝐻 𝑗
𝑊𝐿

) widens associated with

the growth in AI.

Since the reinstatement effect of AI on wage gaps between high-skilled group and other groups is

in the opposite direction of the displacement effect of AI, which effect is dominant is indeterminate.
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However, my empirical findings will shed light on which effect is dominant for different skill

groups.

Proposition 2.5 (Relationship between relative wages and labor-augmenting AI) The growth in

AI widens the wage gap between the high-skilled AI-complement group and other skill groups by

increasing the productivity of labor possessing AI skills.

𝑑 (𝑊𝐻𝐴𝐼
𝑊𝐿

)
𝑑𝛼𝐻𝐴𝐼 (𝑖)

> 0,
𝑑 (𝑊𝐻𝐴𝐼

𝑊𝑀
)

𝑑𝛼𝐻𝐴𝐼 (𝑖)
> 0,

𝑑 ( 𝑊𝐻𝐴𝐼
𝑊
𝐻𝑁𝑜𝑛

)
𝑑𝛼𝐻𝐴𝐼 (𝑖)

> 0. (2.11)

Different from industrial automation which is assumed to be only factor-augmenting in my model

and mainly displaces labor, AI not only substitutes for but also complements labor. I view AI as a

factor- and labor-augmenting technology since it can increase the productivity of both capital and

workers with AI skills. Since high-skilled AI-complement workers possess AI skills and utilize AI

to complement their work, AI is assumed to raise the productivity of high-skilled AI-complement

workers (𝛼𝐻𝐴𝐼 (𝑖)) but not other skill groups in this model. As the performance of AI improves,

high-skilled AI-complement workers earn more due to an increase in their productivity. As a

result, the wage gap between these workers and other skill groups (low-skilled, middle-skilled, or

high-skilled not-yet-AI workers) widens.

Proposition 2.6 (Income allocated to high-skilled AI-complement labor and AI technologies)

(1) An increase in the productivity of high-skilled AI-complement labor widens the gap between

the income allocated to this skill group and that allocated to capital, 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼
𝐻𝐴𝐼

(𝑖) > 0.

(2) The relationship between the productivity of AI technologies and this income allocation gap

depends on whether the factors are complements or substitutes: if𝜎 ∈ (0, 1), 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
> 0;

if 𝜎 = 1, 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
= 0; if 𝜎 ∈ (1,∞), 𝑑 (

𝐻𝐴𝐼𝑊
𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
< 0.

(3) If factors are complements, 𝜎 ∈ (0, 1], the productivity effect of high-skilled AI-complement

labor dominates the productivity effect of AI technologies, | 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼
𝐻𝐴𝐼

(𝑖) | > | 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
|; if
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factors are substitutes, 𝜎 ∈ (1,∞), it is indeterminate which effect dominates, | 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼
𝐻𝐴𝐼

(𝑖) | ⪌

| 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
|.

The takeaway of this proposition is that if factors are complements, an increase in the productivity

of either high-skilled AI-complement labor or AI technologies embodied in capital widens the

gap between the income allocated to high-skilled AI-complement labor and capital. If factors

are substitutes, then an increase in the productivity of high-skilled AI-complement labor (AI

technologies) has a positive (negative) effect on this income allocation gap. In this case, it is

indeterminate which effect dominates.

In summary, my task-based framework implies that AI has a reinstatement effect by creating

new tasks that demand high-skilled labor. It also indicates that the growth in AI widens both

the wage gap between high-skilled AI-complement group and other skill groups, and the income

allocation gap between high-skilled AI-complement labor and capital. In addition, I discuss the

relationships between (1) the reinstatement and displacement effects of AI, and (2) the productivity

effect of high-skilled AI-complement labor and the productivity effect of AI technologies.

2.3 Data and Construction of Skill Groups

Section 2.3.1 describes the datasets I use. Section 2.3.2 introduces how I define skill groups.

Section 2.3.3 presents summary statistics of job postings and labor market outcomes by skill group.

2.3.1 Data

Online Job Postings. I use the online job postings data from LinkUp. LinkUp has web scraped

over 200 million daily online job postings directly from over 60,000 employer websites worldwide

since 2007. Postings with missing information on either the posted time, geographic locations,

occupational codes, or job descriptions (i.e., the raw text of a posting) are dropped. Since only

around 2% of collected postings in the U.S. were posted on and before 2010, my sample comprises

postings between 2011 and 2022 in the U.S. These restrictions leave me with a total sample of

around 125 million postings.

Occupational Descriptions. Since it is difficult for LinkUp, as well as other web-scraping
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companies, to scrape and collect every single online posting, I use the Occupational Information

Network (O∗NET) database as a complement of LinkUp data for this paper. Among all occupational

features provided by O∗NET, occupational tasks, technology skills, detailed work activities, and

knowledge information are adopted to define skill groups. These features provide descriptions of

tasks that are usually performed for an occupation and list skills, software, and knowledge that

are commonly required by this occupation. One disadvantage of using the O∗NET database over

the job postings data is that the available occupational descriptions provided by O∗NET are time-

invariant. Although the O∗NET occupational codes have changed periodically, to the best of my

knowledge, the detailed descriptions of occupational features for older versions are not available.

Therefore, researchers are not able to track how occupational features have changed within and

across occupations over time by only using the O∗NET database.

Employment and Wages. The individual-level data on labor market outcomes is from the

American Community Survey (ACS) Public Use Microdata Sample (PUMS) data (IPUMS-ACS

hereafter) between 2012-21. For my analysis, I restrict to individuals aged 18 to 64 and drop all

unemployed individuals with no work experience in the last five years or earlier and individuals

who never worked. Individuals whose occupation that is not on the list of my proposed skill groups,

which will be introduced in the Section 2.3.2, are also dropped. I then calculate occupational-level

employment per 100,000 capita, share of employment, mean hourly wage (all wages are in 2019

U.S. dollars), and share of wage income to explore the relationship between these labor market

outcomes and AI.2

2.3.2 Defining Skill Groups

This section describes how I define the following skill groups: (1) high-skilled AI-complement

occupations that have a concentration of abstract and AI-related tasks; (2) high-skilled, not-yet-AI
2IPUMS-ACS has not collected the exact number of weeks worked during the calendar year before each Census

year (the reference period) until 2019 (the "WKSWORK1" variable). However, it provides the interval of weeks worked
during the reference period (the "WKSWORK2" variable) for my sampling period, 2012-21. Thus, I treat the midpoint
of each interval to be the number of weeks worked to calculate mean hourly wage. In addition, neither the total number
of hours (the "HRSWORK1" variable) nor the interval (the "HRSWORK2" variable) that the respondent was at work
during the previous week between 2012-21 is provided by IPUMS-ACS. Thus, the "UHRSWORK" variable which
represents the number of hours per week that the respondent usually worked, if the person worked during the previous
year, is adopted to calculate mean hourly wage.
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Table 2.1 Phrases for AI Skills and Applications

Category Phrases

Narrow AI artificial intelligence, augmented reality (AR), autonomous driving, big data, computer graphics,
computer vision, data mining, deep learning, machine learning, matlab, multimedia, natural language
processing (NLP), neural network, pattern recognition, python, pytorch, robotic, tensorflow, virtual
reality (VR), voice recognition, 3D modeling

Broad AI All phrases in the Narrow AI category +
cloud computing, cognitive science, computational biology, computational intelligence,
computer-aided design/drafting (CAD), cybernetics, geographic information system (GIS),
image processing, phenotype, remote sensing, symbolic inference

Notes: The set of phrases in the narrow AI category is a subset of phrases in the broad AI category.

occupations that focus on abstract tasks which are not yet AI-related; (3) middle-skilled occupations

that consist of routine tasks; and (4) low-skilled occupations that comprise manual tasks. To

categorize occupations into these four groups, I first define AI postings (Section 2.3.2.1) and AI

occupations (Section 2.3.2.2) which are those with a specialization in AI-developing activities.

Abstract, routine, and manual occupations are then defined based on the occupational-level task

contents measured by Autor and Dorn (2013) (Section 2.3.2.3). Occupations are classified into one

of these skill groups in Section 2.3.2.4.

2.3.2.1 Defining AI Postings

The phrases for AI-developing skills I used to define AI postings are from LeCun et al. (2015),

Zhang et al. (2022), and topics of top journals and conferences in the field of AI (e.g., Institute of

Electrical and Electronics Engineers (IEEE) and Association for Computing Machinery (ACM)),

which are listed in Table 2.1. These phrases are then divided into two categories: (1) the narrow

definition of AI or "narrow AI," which refers to AI itself, the major subfields of AI, commonly used

programming languages for AI, and AI-powered technologies; and (2) the broad definition of AI or

"broad AI," which includes not only all phrases in the "narrow AI" category but also more general

computer science (CS) skills and applications that are, to some extent, AI-related.

I then directly match the chosen AI phrases to the raw text of online job postings. Including

a chosen AI phrase in the job description means that this posting explicitly requires this AI skill

when hiring people to fill this position. If a job description includes any chosen AI phrase from

the narrow (broad) AI category, then this posting will be defined as a narrow (broad) AI posting. I
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further define CS postings as those with at least one CS phrase but no narrow AI phrase included

in job descriptions.3 Figure 2.2 presents the number and share of narrow AI, broad AI, and CS

postings between 2011-22 in the U.S. There was an overall increasing trend for both narrow and

broad AI postings, while the share of CS postings remained constant between 2014-22. The number

of AI postings dropped from 2019-20 but dramatically increased from 2020-21, which could be due

to the COVID-19 pandemic. Although AI and CS postings account for a small share of postings

in LinkUp data, this share increased from around 0.15% to 4.58% for narrow AI postings, from

0.28% to 5.70% for broad AI ones, and from 0.13% to 1.11% for CS ones during 2011-22. Note

that both the number and share of broad AI postings are higher than either narrow AI or CS ones

because phrases that are used to define narrow AI/CS postings also belong to the broad AI category.

Appendix Figures 2B.1 and 2B.2 further show trends of AI and CS postings by the Bureau of Labor

Statistics (BLS) regions.4 All eight regions have similar trends in the number of AI postings but

are different in magnitude. The Western region experienced the largest AI job vacancies while the

Mountain-Plains region had the smallest number of AI postings. The share of AI postings was

relatively high in the New England, New York/New Jersey, Mid-Atlantic, and Western regions. All

eight regions had a relatively small number and share of CS postings with a constant trend.

The geographic distribution of the narrow AI posting share from 2011-14, 2015-18, and 2019-22

is presented in Figure 2.3. The darker a state’s color is, the more narrow AI vacancies were posted

in that state. During 2011-14, only Washington was in the darkest color with the highest share of

narrow AI postings, followed by California and Massachusetts. From 2015-18, both Washington

and California were in the darkest red with a few more states in orange and yellow. After 2019, the

narrow AI posting share in both the West Coast and the Northeast was the highest in the U.S. Almost

all states were in orange or yellow, implying a growth in the narrow AI posting share nationwide

over time. Note that the scales also increased over 2011-22. The minimum and maximum share

increased from 0.12% to 0.96% and from 5.17% to 8.52%, respectively. These facts indicate spatial
3CS phrases refer to those that belong to the broad AI category but not the narrow AI category as listed in Table

2.1.
4Guam, Puerto Rico, and Virgin Islands are dropped from my sample.
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Figure 2.2 AI/CS Postings in the U.S. in LinkUp Data, 2011-22
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and temporal patterns of AI postings; the share of narrow AI postings changed differentially across

states and consistently increased over time. The share of broad AI postings have similar patterns

displayed in Appendix Figure 2B.3.

Compared to the online job postings data from Lightcast, formerly known as Burning Glass

Technologies, which has been widely used in economic research (e.g., Deming and Noray, 2018,

2020; Bloom et al., 2020; Alekseeva et al., 2021; Acemoglu et al., 2022; Dillender and Forsythe,

2022; Hemelt et al., 2023), LinkUp data has been less utilized. To test the validity of using

LinkUp data to examine the relationship between changes in online job postings and labor market

outcomes, I compare the annual share of AI postings in the U.S. separately computed using LinkUp

and Lightcast data as displayed in Appendix Figure 2B.4. The share from Lightcast data is

presented on the x-axis and that from LinkUp data is on the y-axis.5 Each marker represents the

annual share of postings in one of the following AI subcategories proposed by Zhang et al. (2022):

artificial intelligence, autonomous driving, machine learning, natural language processing, neural

networks, robotics, and visual image recognition. Most markers locate on or close to the 45 degree

line, implying a high similarity between LinkUp and Lightcast data.6 Specifically, the correlation
5Since Lightcast data is non-public, I use the monthly share of AI postings from 2010-20 in the U.S., made

publicly available by Zhang et al. (2022) from the Stanford Institute for Human-Centered Artificial Intelligence (HAI)
via https://aiindex.stanford.edu/ai-index-report-2022/, to compute the annual share of AI postings in Lightcast data.

6The share of postings in robotics differs from that of the other subcategories, possibly because the phrases used
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Figure 2.3 Geographic Distribution of the Narrow AI Posting Share in LinkUp Data
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Notes: Scales are in percentage point.
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between the overall share of AI postings in LinkUp and Lightcast data is 0.9490.7

2.3.2.2 Defining AI Occupations

Since each occupation comprises a substantial amount of job postings, an AI occupation,

𝐴𝐼𝑜𝑐𝑐 𝑗 ,𝑐,𝜏, is:

𝐴𝐼𝑜𝑐𝑐 𝑗 ,𝑐,𝜏 =


1 , if %𝐴𝐼 𝑝𝑜𝑠𝑡 𝑗 ,𝑐,𝜏 >

1
𝑁

∑
𝑗∈J %𝐴𝐼 𝑝𝑜𝑠𝑡 𝑗 ,𝑐,𝜏

0 , if %𝐴𝐼 𝑝𝑜𝑠𝑡 𝑗 ,𝑐,𝜏 ≤ 1
𝑁

∑
𝑗∈J %𝐴𝐼 𝑝𝑜𝑠𝑡 𝑗 ,𝑐,𝜏,

(2.12)

where 𝑗 , J , and 𝑁 denote an occupation, the set of all occupations, and the number of all

occupations. %𝐴𝐼 𝑝𝑜𝑠𝑡 𝑗 ,𝑐,𝜏 is the share of AI postings in category 𝑐 ∈ {Narrow AI, Broad AI} of

occupation 𝑗 in the U.S. during the time period 𝜏 ∈ {2011 − 14, 2015 − 18, 2019 − 22}. If the

AI posting share of an occupation is greater than the chosen threshold, the mean of shares across

all occupations during a time period, this occupation is treated as an AI occupation. Similar to

the occupational classification systems that are updated periodically, my proposed AI occupation

indicators are time-variant to capture how AI technologies and the demand for AI skills have

changed over time. The time-invariant indicators are also constructed by using the share of AI

postings over 2011-22 for a robustness check.

To test the validity of my choice of threshold in defining AI occupations, I cross-check AI

occupations defined by using LinkUp data with those constructed by using O∗NET data. To make

the results comparable across datasets, I match the same set of AI phrases listed in Table 2.1 to tasks,

technology skills, detailed work activities, and knowledge information of each occupation provided

by O∗NET (Appendix Figure 2B.5 shows an example of these features). If the description of any

of the above features is matched to at least one chosen AI phrase, the corresponding occupation

will be defined as an AI occupation. Among 901 occupations represented by 2019 O∗NET-SOC

code in my sample, (1) 164 are narrow AI occupations defined by using LinkUp data and 212 are

to define robotics postings in this paper and in Zhang et al. (2022) are different. While I directly match "Robotic" to
descriptions of LinkUp online job postings, Zhang et al. (2022) list phrases such as "Motoman Robot Programming,"
"Robot Framework," "Robotic Systems," and "Robot Programming" as AI skills in the robotics category.

7This correlation within each of the seven subcategories is: 0.9698 (artificial intelligence), 0.6649 (autonomous
driving), 0.9581 (machine learning), 0.8236 (NLP), 0.9660 (neural networks), 0.6459 (robotics), and 0.6797 (visual
image recognition).
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Figure 2.4 Comparison between AI Occupations Defined by Using LinkUp and O∗NET Data

(a) Narrow AI (b) Broad AI

Notes: The black solid circle in each venn diagram represents the set of AI occupations defined by using LinkUp
data with narrow AI (Subfigure 2.4a) or broad AI (Subfigure 2.4b) definition discussed in Section 2.3.2.1, while the
red dashed circle represents the set of AI occupations defined by using O∗NET data. The overlapping area represents
occupations that are defined as AI occupations in both datasets. The numbers shown in each venn diagram represent
the total number of occupations that belong to one of the above sets.

defined by using O∗NET data with an overlap of 112 occupations; (2) 182 are broad AI occupations

defined by using LinkUp data and 393 are defined by using O∗NET data with an overlap of 170

occupations (shown in Figure 2.4). Due to the advantages and disadvantages of both LinkUp and

O∗NET data discussed in Section 2.3.1, I treat the overlapping occupations as the narrow/broad AI

occupations in my main analysis.

2.3.2.3 Defining Abstract, Routine, and Manual Occupations

The next step is to categorize occupations into high-, middle-, and low-skilled groups, which

are respectively proxied by abstract, routine, and manual occupations. I define these three types

of occupations based on abstract, routine, and manual task contents measured by Autor and Dorn

(2013):

𝑂𝑐𝑐𝑇𝑦𝑝𝑒 𝑗 = 𝑥 if 𝑇𝑥𝑗 ,1980 = 𝑚𝑎𝑥 T 𝑗 ,1980, for 𝑥 ∈ {𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡, 𝑅𝑜𝑢𝑡𝑖𝑛𝑒, 𝑀𝑎𝑛𝑢𝑎𝑙}, (2.13)

where T 𝑗 ,1980 ≡ {𝑇 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡
𝑗 ,1980 , 𝑇𝑅𝑜𝑢𝑡𝑖𝑛𝑒

𝑗 ,1980 , 𝑇𝑀𝑎𝑛𝑢𝑎𝑙
𝑗 ,1980 } and 𝑗 denotes an occupation.8 𝑂𝑐𝑐𝑇𝑦𝑝𝑒 𝑗 represents

the indicator for the type (i.e., abstract, routine, and manual) that occupation 𝑗 belongs to. 𝑇 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡
𝑗 ,1980 ,

𝑇𝑅𝑜𝑢𝑡𝑖𝑛𝑒
𝑗 ,1980 , and𝑇𝑀𝑎𝑛𝑢𝑎𝑙

𝑗 ,1980 are the abstract, routine, and manual task inputs in each occupation 𝑗 measured

8An occupation in equation (2.13) is represented by occ1990dd occupation classification constructed by Dorn
(2009). I map occ1990dd to 2010 Census Occupational Classification using the crosswalk provided by Autor (2015)
to merge the occupation indicators with the data on employment and wages.
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Figure 2.5 Occupational Task Contents

(a) By Autor and Dorn (2013)’s Occupation Group
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(b) By Abstract, Routine, and Manual Occupation
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Notes: Each marker represents an occupation using the occ1990dd occupation classification constructed by Dorn
(2009). According to https://www.ddorn.net/data.htm, "the occ1990dd occupation classification aggregates U.S.
Census occupation codes to a balanced panel of occupations for the 1980, 1990, and 2000 Census, as well as the
2005-2008 ACS." There are 330 occupations in Autor and Dorn (2013)’s data. The abstract, routine, and manual task
contents have a range between 0 and 10.

in 1980 by Autor and Dorn (2013) with a range between 0 and 10. Based on equation (2.13), each

occupation falls into only one category.9 Note that since Autor and Dorn (2013) use task inputs

in 1980, which is the starting year of their sample, my indicators for abstract, routine, and manual

occupations are static over time.

Figure 2.5 shows a 3D visualization of each occupation’s task contents. Each marker represents

an occupation and the style of the marker distinguishes which group this occupation belongs to.

Figure 2.5a displays occupational task contents by Autor and Dorn (2013)’s occupation group,

while Figure 2.5b divides occupations into abstract, routine, and manual ones constructed using

equation (2.13). Since these figures present three dimensions, they should be viewed as 3D boxes

instead of 2D surfaces. The darker the color of and the more solid a marker is, the closer this

marker is located to readers (i.e., the closer this marker is located to the space with a high value

in routine task contents and a low value in manual task contents, regardless of the abstract task

contents which are represented by the vertical axis or the z axis); the lighter the color of and the
9There is no occupation that has the highest value of task inputs with ties in Autor and Dorn (2013)’s data.
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more transparent a marker is, the further this marker is located to readers (i.e., the closer this marker

is located to the space with a low value in routine task contents and a high value in manual task

contents). Managers/prof/tech/finance/public safety occupations have a high abstract task intensity,

while production/craft and machine operators/assemblers specialize in routine tasks. Manual-

intensive occupations are mainly transport/construct/mech/mining/farm and service occupations.

Undoubtedly, in Figure 2.5b, the red circles that represent abstract occupations locate in the upper

surface of the 3D box with a high value in abstract task inputs but a low value in both routine

and manual task inputs. Routine occupations, represented by blue triangles, have the highest

concentration in routine tasks, while manual occupations labeled by black squares specialize in

manual tasks.

2.3.2.4 Categorizing Occupations into Skill Groups

The final step is to categorize occupations into one of the four skill groups as follows:

𝑆𝑘𝑖𝑙𝑙𝐺𝑟𝑜𝑢𝑝 𝑗 ,𝑐,𝜏 =



High-skilled AI-complement , if 𝑂𝑐𝑐𝑇𝑦𝑝𝑒 𝑗 = 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡 & 𝐴𝐼𝑜𝑐𝑐 𝑗 ,𝑐,𝜏 = 1

High-skilled not-yet-AI , if 𝑂𝑐𝑐𝑇𝑦𝑝𝑒 𝑗 = 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡 & 𝐴𝐼𝑜𝑐𝑐 𝑗 ,𝑐,𝜏 = 0

Middle-skilled , if 𝑂𝑐𝑐𝑇𝑦𝑝𝑒 𝑗 = 𝑅𝑜𝑢𝑡𝑖𝑛𝑒

Low-skilled , if 𝑂𝑐𝑐𝑇𝑦𝑝𝑒 𝑗 = 𝑀𝑎𝑛𝑢𝑎𝑙,
(2.14)

where 𝑗 , 𝑐 ∈ {Narrow AI, Broad AI}, and 𝜏 denote an occupation, the narrow or broad AI definition,

and a time period (2011-14, 2015-18, or 2019-22), respectively. Although the indicators for

occupation type,𝑂𝑐𝑐𝑇𝑦𝑝𝑒 𝑗 , are time-invariant, the skill group indicators, 𝑆𝑘𝑖𝑙𝑙𝐺𝑟𝑜𝑢𝑝 𝑗 ,𝑐,𝜏, change

across time periods because the indicator for AI occupations, 𝐴𝐼𝑜𝑐𝑐 𝑗 ,𝑐,𝜏, is time-variant. Note that

an occupation is exclusively categorized into one skill group.

Table 2.2 lists occupations with the highest and lowest number of narrow AI postings. Most

occupations in Panel A with a high number of AI postings are from high-skilled AI-complement

group, while most occupations without any AI posting in Panel B are middle-skilled (i.e., routine-

intensive). Appendix Table 2B.1 shows a similar pattern by ranking occupations using the narrow

AI posting share. Appendix Table 2C.1 provides a full list of all 4-digit occupations by skill group.
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Table 2.2 Occupations Ranked by the Number of Narrow AI Postings, 2021

OCC2010 Occupation Title Skill Group #Narrow AI Postings

Panel A. Occupations with the Top 15 #AI Postings

1020 Software Developers, Applications and Systems Software 𝐻𝐴𝐼 596,312
1100 Network and Computer Systems Administrators 𝐻𝐴𝐼 148,016
1000 Computer Scientists and Systems Analysts/Network Systems Analysts/Web Developers 𝐻𝐴𝐼 84,249
710 Management Analysts 𝐻𝐴𝐼 44,886
730 Other Business Operations and Management Specialists 𝐻𝐴𝐼 36,653
30 Managers in Marketing, Advertising, and Public Relations 𝐻𝐴𝐼 33,622

3130 Registered Nurses 𝑀 27,952
1550 Engineering Technicians, Except Drafters 𝑀 24,981
1430 Industrial Engineers, Including Health and Safety 𝐻𝐴𝐼 23,077
800 Accountants and Auditors 𝐻𝑁𝑜𝑛 22,401
1410 Electrical and Electronics Engineers 𝐻𝐴𝐼 17,778
3500 Licensed Practical and Licensed Vocational Nurses 𝑀 17,157
1240 Mathematicians and Statisticians 𝐻𝐴𝐼 13,771
1460 Mechanical Engineers 𝐻𝐴𝐼 13,115
120 Financial Managers 𝐻𝑁𝑜𝑛 12,035

Panel B. Occupations with the Bottom 15 #AI Postings
3700 First-Line Supervisors of Correctional Officers 𝐿 0
5630 Weighers, Measurers, Checkers, and Samplers, Recordkeeping 𝑀 0
3800 Bailiffs, Correctional Officers, and Jailers 𝐿 0
7540 Locksmiths and Safe Repairers 𝑀 0
6240 Carpet, Floor, and Tile Installers and Finishers 𝑀 0
6700 Elevator Installers and Repairers 𝑀 0
6400 Insulation Workers 𝑀 0
3730 First-Line Supervisors of Protective Service Workers, All Other 𝐻𝑁𝑜𝑛 0
6460 Plasterers and Stucco Masons 𝑀 0
6710 Fence Erectors 𝑀 0
4500 Barbers 𝑀 0
8450 Upholsterers 𝑀 0
4540 Tour and Travel guides 𝑀 0
6740 Rail-Track Laying and Maintenance Equipment Operators 𝑀 0
5410 Reservation and Transportation Ticket Agents and Travel Clerks 𝑀 0

Notes: The number of narrow AI postings in this table is calculated at the 4-digit-occupation-by-year level. There
is a tie in the lowest number of narrow AI postings, with 64 occupations having no narrow AI posting. 15 out of 64
occupations are randomly chosen and listed in Panel B. 𝐻𝐴𝐼 , 𝐻𝑁𝑜𝑛, 𝑀 , and 𝐿 represent high-skilled AI-complement,
high-skilled not-yet-AI, middle-skilled, and low-skilled occupation group, respectively.

2.3.3 Facts about Skill Groups

Table 2.3 summarizes the 30 high-skilled AI-complement occupations, 110 high-skilled not-

yet-AI ones, 257 middle-skilled ones, and 31 low-skilled ones in my sample.10 Note that the skill

group indicators in Table 2.3 are static to better compare statistics over time.11 Panel B of Table
10For the consistency in occupation code, my main analysis use OCC2010 coding system, which is a harmonized

occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification, because my
data on employment and wages adopts OCC2010 system. Since LinkUp and O∗NET use 2019 O∗NET-SOC code,
I crosswalk 6-digit 2019 O∗NET-SOC to 4-digit OCC2010 as explained in Appendix 2C to construct a skill group
indicator for each 4-digit OCC2010.

11Since only 7 out of 428 OCC2010 have their skill group indicator changed across time periods as shown in
Appendix Table 2C.1, the statistics are robust to using the time-variant skill group indicators.
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2.3 shows a large difference in AI and CS postings between the high-skilled AI-complement group

and other skill groups. Occupations that are abstract and AI-intensive, on average, have more AI

and CS postings than others. On average, 15.5% of job postings for high-skilled AI-complement

occupations are narrow AI postings, 24.1% are broad AI postings, and 8.6% are CS postings. Note

that the number (share) of CS postings, on average, is the difference between the number (share)

of broad and narrow AI postings. This is because CS postings are defined as those whose job

descriptions include phrases that belong to broad AI category but not narrow AI category. That is,

narrow AI phrases and CS phrases are not only two subsets of broad AI phrases but also mutually

exclusive. Panel C presents summary statistics on labor market outcomes for the four skill groups.

On average, there are more people employed in high-skilled not-yet-AI occupations (0.34% or 335

per 100,000 capita), while high-skilled AI-complement occupations experience the highest mean

hourly wage (44.3 in 2019 U.S. dollars) and the share of wage income (0.41%).

By collapsing the occupation-by-state-by-year data to the skill-group-by-year level, Figure 2.6

displays plots of employment per 100,000 capita (Figure 2.6a), the employment share (Figure 2.6b),

mean hourly wage (Figure 2.6c), the wage income share (Figure 2.6d), the narrow AI posting share

(Figure 2.6e) and CS posting share (Figure 2.6f), where the skill groups are defined using the

narrow AI definition. The plots generated using the broad AI definition are presented in Appendix

Figure 2B.6.

Among all skill groups, middle-skilled group experienced the highest employment, while

both high-skilled AI-complement and low-skilled groups employed the smallest number of people

between 2012 and 2021. These findings suggest an inverted U-shaped employment distribution by

skill level. These trends were relatively constant over time in the U.S.

The mean hourly wage for the high-skilled AI-complement group was the highest from 2012-21,

more than double that of middle- or low-skilled groups. Thus, the high-skilled AI-complement

(low-skilled) group can be considered as the highest (lowest) wage group. In addition, the highest

wage income share was allocated to high-skilled not-yet-AI group, followed by middle-skilled

group. This could be driven by the large employment in these two skill groups and the relative
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Table 2.3 Summary Statistics, 2012-21

Skill Group:

High-Skilled High-Skilled Middle-Skilled Low-Skilled
AI-Complement Group Not-Yet-AI Group Group Group

Panel A. Skill Group Indicators
#4-Digit Occ. 30 110 257 31

Panel B. Job Postings
#Narrow AI Postings 101.697 6.936 10.269 1.962

(748.411) (28.554) (64.013) (15.364)

#Broad AI Postings 125.916 13.014 14.626 3.197
(812.833) (50.407) (69.350) (20.965)

#CS Postings 24.219 6.078 4.358 1.235
(97.897) (34.073) (19.606) (8.812)

%Narrow AI Postings 0.155 0.034 0.053 0.019
(0.223) (0.101) (0.144) (0.092)

%Broad AI Postings 0.241 0.093 0.116 0.037
(0.275) (0.192) (0.231) (0.129)

%CS Postings 0.086 0.060 0.064 0.018
(0.188) (0.163) (0.177) (0.091)

Obs. 23,180 38,472 40,308 4,932

Panel C. Labor Market Outcomes
Emp. per 100,000 Capita 232.128 335.016 234.737 289.895

(324.312) (544.575) (428.403) (550.691)

%Emp. 0.0023 0.0034 0.0024 0.0029
(0.0032) (0.0054) (0.0043) (0.0055)

Mean Hourly Wage 44.297 32.477 21.958 25.600
(25.188) (31.697) (18.350) (31.603)

%Wage Income 0.0041 0.0045 0.0017 0.0022
(0.0056) (0.0082) (0.0034) (0.0046)

Obs. 13,591 51,672 113,244 13,631
Notes: Standard deviations are shown in parentheses. Occupation is represented by OCC2010, a harmonized occupation
system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. Each observation in Panel
B is a 2-digit-occupation-by-state-by-year cell, while each observation in Panel C is at the 4-digit-occupation-by-state-
by-year level. This is because the job posting data from LinkUp is collected at the 6-digit 2019 O∗NET-SOC level.
Since (1) there is a one-to-one matching between 2-digit Census occupation group and 2-digit O∗NET-SOC and (2)
there is neither a direct matching between 4-digit OCC2010 and 6-digit 2019 O∗NET-SOC nor a one-to-one matching
between these two occupational classification, the job postings data is collapsed to the 2-digit O∗NET-SOC level first
and then merged to IPUMS-ACS labor market outcome data. The skill group indicator in this table is static to make
summary statistics comparable over time. The statistics remain consistent when switching to the time-variant skill
group indicator, since only 7 (out of 428) 4-digit OCC2010 occupations have their skill group indicator changed across
time periods as shown in Appendix Table 2C.1. Only statistics on %employment and %wage income in Panel C are in
four decimal places to better compare the magnitudes of statistics across skill groups.
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Figure 2.6 Plots of Skill-Group-By-Year Employment, Wages, and Postings, 2012-21
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Notes: Narrow AI definition is used when defining skill groups and computing %AI postings. The skill group indicators
in these figures are time-invariant to make statistics comparable across time. The statistics remain consistent when
switching to the time-variant skill group indicators, since only 7 (out of 428) 4-digit OCC2010 occupations have their
skill group indicators changed across time periods as shown in Appendix Table 2C.1.
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high mean hourly wage for high-skilled not-yet-AI group. Although there was an upward trend in

mean hourly wage for all four skill groups, only high-skilled AI-complement group experienced

a growth in the wage income share (from 11% to 15%). Middle-skilled group, in contrast, had a

decline in the wage income share (from 38% to 34%). These findings can be viewed as a sign of

capital redistribution over time.

Undoubtedly, as displayed in Figure 2.6e, high-skilled AI-complement group experienced the

highest share of narrow AI postings during 2012-21. More importantly, this share increased

dramatically over time. Notably, this share in 2021 was more than three times larger than that in

2012. Shares of narrow AI postings from other three skill groups were smaller than 1% but slightly

increased over time, indicating an increasing demand for narrow AI skills in all occupations

rather than for a specific skill group. These increasing trends in AI posting shares reflects the

reinstatement effect of AI discussed in Proposition 2.3. Nonetheless, the share of CS postings

remained consistently small for all skill groups.

2.4 Empirical Strategy

To explore the relationship between changes in demand for AI skills and labor market outcomes

of heterogeneous skill groups, I adopt the following specification:

𝑦𝑜4,𝑠,𝑡 =𝛼 + 𝛽0%𝐴𝐼 𝑝𝑜𝑠𝑡𝑠,𝑡 +
∑︁

𝑘∈{𝐻𝐴𝐼 ,𝐻𝑁𝑜𝑛,𝑀}
𝜏𝑘1{𝑆𝑘𝑖𝑙𝑙𝐺𝑟𝑜𝑢𝑝𝑜4 = 𝑘}

+
∑︁

𝑘∈{𝐻𝐴𝐼 ,𝐻𝑁𝑜𝑛,𝑀}
𝛽𝑘%𝐴𝐼 𝑝𝑜𝑠𝑡𝑠,𝑡 × 1{𝑆𝑘𝑖𝑙𝑙𝐺𝑟𝑜𝑢𝑝𝑜4 = 𝑘}

+ X𝑠,𝑡𝚽 + 𝛿𝑠 + 𝜃𝑡 + 𝜀𝑜4,𝑠,𝑡 ,

(2.15)

where 𝑜4, 𝑠, and 𝑡 denote 4-digit OCC2010 occupation, state, and year, respectively.12 𝑦𝑜4,𝑠,𝑡 is

one of the following labor market outcomes: (1) the employment per 100,000 capita; (2) the share

of employment; (3) the log mean hourly wage; and (4) the share of wage income, all measured at

4-digit-occupation-by-state-by-year level. %𝐴𝐼 𝑝𝑜𝑠𝑡𝑠,𝑡 is the share of narrow AI postings in state 𝑠

and year 𝑡, which captures changes in demand for AI-developing skills and serves as the proxy for
12The 4-digit code is the most detailed occupation classification in the OCC2010 coding system.

90



growth in AI.13 This share is multiplied by 100; thus the unit of measurement is a percentage point

(pp). 1{𝑆𝑘𝑖𝑙𝑙𝐺𝑟𝑜𝑢𝑝𝑜4 = 𝑘} refers to the binary indicator for skill group 𝑘 ∈ {𝐻𝐴𝐼 , 𝐻𝑁𝑜𝑛, 𝑀} that

an occupation 𝑜4 belongs to, as defined by using narrow AI postings. The chosen excluded group

is low-skilled group; thus only three groups are included in the set of skill group indicators 𝑘 . By

interacting AI posting shares with skill group dummies, equation (2.15) can capture the differential

effects on skill groups. X𝑠,𝑡 contains state-year control variables that may affect individuals’ labor

market outcomes: the unemployment rate; the sex ratio; the share of population who have a

Bachelor’s degree or higher; and the share of population who are White, Black, Asian, or Hispanic.

Standard errors, 𝜀𝑜4,𝑠,𝑡 , are clustered at the 4-digit-occupation-by-state-by-year level.

Equation (2.15) includes skill-group, state, and year fixed effects. The skill-group fixed effect,

denoted by 1{𝑆𝑘𝑖𝑙𝑙𝐺𝑟𝑜𝑢𝑝𝑜4 = 𝑘}, accounts for unobserved differences in labor market performance

across skill groups. 𝛿𝑠 denotes a state fixed effect which absorbs state-specific time-invariant

differences in outcomes. 𝜃𝑡 is a year fixed effect which accounts for general time trends that are

constant across states and broad occupation categories. The underlying identification assumption

of my approach is that there are no changes in unobserved determinants of labor market outcomes

at the skill-group-by-year level that are correlated with changes in AI postings. One threat to this

assumption is the possibility of contemporaneous shocks that affect both the AI growth and skill

groups’ labor market performances. I estimate specifications that interact the skill-group fixed

effects with year fixed effects to account for any unobservable time trends in how a skill group

responds or is exposed to AI.

Since skill groups are constructed based on 4-digit occupation codes, the set of 2-digit occu-

pation groups is not a subset of skill groups, and vice versa. That is, as presented in Appendix

Tables 2C.2-2C.4, (1) a skill group consists of 4-digit occupations from different 2-digit occupation

groups and (2) 4-digit occupations from the same 2-digit group can be classified to different skill

groups. Thus, the identification could be threatened if there are labor market trends at the 2-digit-

occupation level. To address this concern, I include a 2-digit-occupation fixed effect which controls
13Results on broad AI postings will be presented in robustness checks.

91



for differences in unobserved determinants of labor market performances across broad occupation

categories.14

Taking the above factors into account, my main specification is as follows:

𝑦𝑜4,𝑠,𝑡 =𝛼 + 𝛽0%𝐴𝐼 𝑝𝑜𝑠𝑡𝑠,𝑡 +
∑︁

𝑘∈{𝐻𝐴𝐼 ,𝐻𝑁𝑜𝑛,𝑀}
𝜏𝑘1{𝑆𝑘𝑖𝑙𝑙𝐺𝑟𝑜𝑢𝑝𝑜4 = 𝑘}

+
∑︁

𝑘∈{𝐻𝐴𝐼 ,𝐻𝑁𝑜𝑛,𝑀}
𝛽𝑘%𝐴𝐼 𝑝𝑜𝑠𝑡𝑠,𝑡 × 1{𝑆𝑘𝑖𝑙𝑙𝐺𝑟𝑜𝑢𝑝𝑜4 = 𝑘}

+ X𝑠,𝑡𝚽 + 𝛿𝑠 + 𝜃𝑡 + 𝛾𝑜2 + 𝜇𝑘,𝑡 + 𝜀𝑜4,𝑠,𝑡 ,

(2.16)

where 𝛾𝑜2 and 𝜇𝑘,𝑡 are 2-digit-occupation and skill-group-by-year fixed effects, respectively. The

coefficients of interest are 𝛽0 and 𝛽𝑘 , which capture the relationship between changes in online

job postings that require AI-developing skills and labor market outcomes of heterogeneous skill

groups. Specifically, 𝛽0 is the change in labor market outcomes of the low-skilled group associated

with a 1pp difference in the share of AI postings. 𝛽𝑘 is the gap in labor market outcomes between

skill group 𝑘 (high-skilled AI-complement, high-skilled not-yet-AI, or middle-skilled) and the

low-skilled group when the share of AI postings changes by 1pp. Thus, 𝛽0 + 𝛽𝑘 is the total change

in the outcome variable of skill group 𝑘 associated with a 1pp difference in the share of AI postings

at the state-year level.

2.5 Results

2.5.1 Main Results

2.5.1.1 AI and Employment

Table 2.4 shows the relationship between narrow AI posting shares and employment. Specif-

ically, columns 1-3 focus on employment per 100,000 capita while columns 4-6 look at the em-

ployment share. Note that the skill groups are constructed using the narrow AI definition. Column

1 presents estimates from a simple Ordinary Least Squares (OLS) regression on the share of AI

postings itself and skill group indicators. It estimates the overall effect of AI postings on all oc-

cupations. The coefficient on the share of AI postings, -10.5, indicates a significant decline in the
14Since the 2-digit occupation group is not a subset of skill groups and vice versa, including both skill-group and

2-digit-occupation fixed effects does not lead to collinearity.
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Table 2.4 Effects of Demand for AI Skills on Employment, 2012-21

Dep. Var.:

Employment per 100,000 Capita Share of Employment1

(1) (2) (3) (4) (5) (6)

%AI Postings2 -10.5∗∗∗ -10.8 -6.2 -0.010∗∗∗ -0.011 -0.006
(1.5) (10.5) (8.3) (0.026) (0.002) (0.008)

%AI Postings ×
High-Skilled AI-Complement Occ 57.9∗∗∗ 55.8∗∗∗ 0.058∗∗∗ 0.056∗∗∗

(15.5) (14.9) (0.016) (0.015)

High-Skilled Not-Yet-AI Occ 23.0∗ 20.1∗∗ 0.023∗ 0.020∗∗
(12.4) (10.1) (0.012) (0.010)

Middle-Skilled Occ 11.1 2.9 0.011 0.003
(11.6) (9.0) (0.012) (0.009)

Skill Group =

High-Skilled AI-Complement Occ -77.7 -187.9 -333.4∗ -0.078 -0.188 -0.333∗
(110.6) (124.7) (187.6) (0.111) (0.125) (0.188)

High-Skilled Not-Yet-AI Occ 40.4 -5.2 -209.5 0.040 -0.005 -0.209
(112.4) (131.2) (184.7) (0.112) (0.131) (0.185)

Middle-Skilled Occ -61.5 -84.5 -192.2 -0.062 -0.084 -0.192
(104.3) (124.5) (181.4) (0.104) (0.124) (0.181)

Observations 192,008 192,008 192,008 192,008 192,008 192,008
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓
Skill-Group FE × Year FE ✓ ✓
R2 0.012 0.018 0.129 0.012 0.018 0.129

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of employment is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.

number of employed people associated with a 1pp increase in the AI posting share, regardless of

which skill group this occupation belongs to.

Column 2 interacts the AI posting share with skill group indicators and includes state, year,

and skill-group fixed effects to explore effects of the demand for AI skills on heterogeneous skill

groups. The coefficient on the interaction term between the AI posting share and the high-skilled

AI-complement group dummy is 57.9, implying that, compared with the low-skilled group, a 1pp
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increase in state-year AI posting shares leads to roughly 58 more people employed in abstract and

AI-intensive occupations per 100,000 capita. This effect is larger than that for the high-skilled

not-yet-AI group, indicating an employment gap within high-skilled occupations.

Column 3 estimates equation (2.16). By further controlling for 2-digit-occupation and skill-

group-by-year fixed effects, the comparison is now among 4-digit occupations in the same 2-

digit occupation group and the same skill group across states and over time. Estimates are

similar with column 2; now, compared with low-skilled occupations, employment in high-skilled

AI-complement and high-skilled not-yet-AI occupations grows by 56 and 20, respectively, per

100,000 capita when AI posting shares increase by 1pp. The overall effects for high-skilled

AI-complement and high-skilled not-yet-AI occupations are 50 and 14 more employed people.

However, employment for neither middle- nor low-skilled occupations is significantly impacted

by changes in the share of AI postings. Estimates in columns 4-6 show a similar relationship

between employment shares and AI. These findings support Proposition 2.3 in Section 2.2.2, which

implies that the reinstatement effect of AI brings a significant employment growth for high-skilled

AI-complement occupations.

I also plot estimated coefficients from my main specification for all four skill groups in Figure

2.7a. The red line represents estimates from the regression of employment per capita, while the

blue line presents estimates from the regression of the employment share. The right tail of both

curves is noticeably higher than the left tail. These results document large employment gaps

between occupations that are high in abstract and AI-intensive tasks and other skill groups. It is

worth noting that there is also an employment gap within abstract-intensive occupations, depending

on whether tasks of an occupation require AI-developing skills. These patterns are consistent

with findings of Alekseeva et al. (2021) who document a dramatic increase in hiring people with

AI skills. Similarly, Felten et al. (2019) show an employment growth in high wage occupations

associated with AI. This is consistent with my finding that high-skilled AI-complement occupations

experience an employment growth as the share of AI postings increases. In my paper, high-skilled

AI-complement occupations can be considered as high wage occupations because they have the
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Figure 2.7 Overall Effects of Demand for AI Skills on Labor Market Outcomes, 2012-21
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Notes: The coefficient estimates plotted in each subfigure show overall effects of changes in share of narrow AI postings
on labor market outcomes. They are obtained by respectively regressing employment per 100,000 capita, share of
employment (in percentage point), log mean hourly wages, and share of wage income (in percentage point) on the
interaction term between share of narrow AI postings and skill group dummies, using the main specification with a
full set of fixed effects (i.e., state, year, skill-group, 2-digit-occupation, and skill-group-by-year fixed effects) included.
I also plot the corresponding 95% confidence intervals in each subfigure.

highest mean hourly wage as shown in Figure 2.6c. In addition, Felten et al. (2019) do not find

a significant relationship between AI and employment growth for low-wage occupations, which is

also consistent with my results.

2.5.1.2 AI and Wages

Table 2.5 shows relationships between AI and wages for heterogeneous skill groups, with

columns 1-3 and columns 4-6 presenting results from regressions of log mean hourly wage and the

wage income share.

The OLS estimates in column 1 indicate that as AI posting shares increase, the mean hourly

wage for all types of occupations significantly increases by 2.7%. After controlling for a full set of

fixed effects in column 3, high-skilled AI-complement occupations experience a 2.5% wage growth

associated with a 1pp increase in AI posting shares, relative to low-skilled occupations. The overall

effect for high-skilled AI-complement occupations is a 3% wage growth. Estimates for other skill

groups are much smaller in magnitude and even negative for middle-skilled occupations, but none of

them are statistically significant. Coefficients on skill group indicators show an interesting finding:
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Table 2.5 Effects of Demand for AI Skills on Wages, 2012-21

Dep. Var.:

Log Mean Hourly Wage Share of Wage Income1

(1) (2) (3) (4) (5) (6)

%AI Postings2 0.027∗∗∗ 0.006 0.005 -0.028 -0.011 -0.011
(0.001) (0.005) (0.005) (0.020) (0.012) (0.011)

%AI Postings ×
High-Skilled AI-Complement Occ 0.012∗∗ 0.025∗∗∗ 0.080∗∗∗ 0.089∗∗∗

(0.006) (0.007) (0.024) (0.026)

High-Skilled Not-Yet-AI Occ 0.004 0.007 0.020 0.026∗
(0.005) (0.006) (0.015) (0.014)

Middle-Skilled Occ -0.007 -0.009 0.010 0.005
(0.005) (0.005) (0.013) (0.012)

Skill Group =

High-Skilled AI-Complement Occ 0.673∗∗∗ 0.651∗∗∗ 0.441∗∗∗ 0.152 0.001 -0.151
(0.080) (0.080) (0.104) (0.111) (0.114) (0.166)

High-Skilled Not-Yet-AI Occ 0.289∗∗∗ 0.284∗∗∗ 0.126 0.223∗∗ 0.182 -0.029
(0.084) (0.085) (0.096) (0.110) (0.126) (0.159)

Middle-Skilled Occ -0.076 -0.062 -0.088 -0.056 -0.076 -0.169
(0.078) (0.078) (0.092) (0.083) (0.105) (0.141)

Observations 187,960 187,960 187,960 192,008 192,008 192,008
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓
Skill-Group FE × Year FE ✓ ✓
R2 0.195 0.205 0.340 0.053 0.058 0.158

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.

mean hourly wage for abstract and AI-intensive group is 44.1% higher than the baseline group,

the low-skilled group, when the state-year AI posting share is 0. This wage gap widens when AI

becomes more ubiquitous. While Proposition 2.4 discusses that the reinstatement (displacement)

effect of AI widens (narrows) wage gaps, my empirical findings on wages further argue that the

reinstatement effect of AI on high-skilled labor dominates the displacement effect as AI favors

high-skilled workers with AI skills. Moreover, the finding on the wage gap between the high-
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skilled AI-complement group and other skill groups supports Proposition 2.5, which indicates a

relative wage gain for workers specializing in abstract and AI-intensive tasks as AI increases their

productivity.

In addition to mean hourly wage, I explore how AI affects the wage income share which can

be viewed as a proxy for the total capital distributed to a skill group. Estimates in column 6 of

Table 2.5 show that a 1pp increase in AI posting shares is associated with an overall growth of

0.078pp (0.015pp) in wage income share for high-skilled AI-complement (high-skilled not-yet-AI)

occupations. The overall effects for middle- and low-skilled occupations are negative (-0.006pp and

-0.011pp) but are not statistically significant. As AI develops, high-skilled AI-complement workers

become more productive since they are supposed to use AI-developing skills to complement their

work. Then more income will be distributed to this skill group, which is reflected by the relatively

larger increase in its wage income share. The finding that the overall effects on the wage income

share across all skill groups sum to more than 0 sheds light on Proposition 2.6, suggesting that

the effect of an increase in productivity of labor specializing in abstract and AI-intensive tasks

outweighs the effect of an increase in capital’s productivity.15

Similar with employment, I document wage gaps between high-skilled AI-intensive occupations

and other skill groups. Figure 2.7b shows a "J-shaped" curve of changes in mean hourly wage

associated with AI by skill group: (1) both the left and right tails are higher than the middle; and

(2) the right tail is extremely higher than the left tail. These findings imply that as AI grows, wages

for labor specializing in abstract and AI-intensive tasks increase dramatically compared to labor

specializing in other types of tasks. Conversely, middle-skilled occupations experience the largest

wage decline among all four skill groups. These findings on wages are consistent with Felten et al.

(2019) who conclude that wages for high wage occupations are increased by AI and Alekseeva et

al. (2021) who document wage premia for AI skills. In contrast to Webb (2019) who argues that AI

is predicted to narrow the wage gap between the 90th and 10th percentile of the wage distribution,
15Suppose the total income that can be allocated to each factor in the production is fixed. Then changes in the share

of wage income for labor and capital should sum up to 0. Since my empirical results indicate that the overall effects
across all four skill groups are positive, then there should be a negative correlation between the demand for AI skills
and the income allocated to capital.
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I find that the wage gap between high-skilled AI-complement and low-skilled occupations widens

as demand for AI skills increases.

2.5.2 Robustness

The main results in Section 2.5.1 show employment and wage gaps between the abstract and

AI-intensive occupations and other skill groups. The underlying assumption of these results is that,

given the controls of my specification, labor outcomes are unrelated to unobserved heterogeneity

at the skill-group-by-state-by-year level that are correlated with AI or other technological changes

(e.g., more general computer science). This section presents several robustness checks to test

this assumption. Since main results on employment per capita and the employment share are

comparable, this section focuses on employment per capita and wages, while robustness checks for

the employment share are presented in Appendix 2B.

First, I test the potential endogeneity issue by adopting a shift-share instrumental variable

(SSIV) (Goldsmith-Pinkham et al., 2020). The share of AI postings could be endogenous to the

supply of AI skills in the local labor market and the extent to which local firms are developing or

adopting AI technologies. The former one is likely to be positively correlated with the AI posting

share. If a local labor market has a large supply of workers with AI-developing skills, employers

may specify more AI skills when posting job vacancies. The correlation between the latter one

and the AI posting share is likely to be unclear. On the one hand, if more firms start to develop

AI models or AI-powered tools, the demand for AI skills will increase. On the other hand, it is

possible that, as AI grows, AI-substituting technologies have more capabilities in performing tasks

that were previously completed by high-skilled labor. The more AI-substituting technologies firms

adopt, the less AI hiring is. Due to the lack of firm-level data on what kinds of AI technologies

firms develop or adopt which could be used as a possible instrument, I construct a "leave-one-out"

SSIV by interacting local employment shares and industry-specific AI posting shares to instrument

for the AI posting share. The "leave-one-out" estimator is adopted to address the finite sample bias

issue (Angrist et al., 1999; Goldsmith-Pinkham et al., 2020). This "leave-one-out" SSIV for state
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𝑠 and year 𝑡 is:

𝐴𝐼 𝑝𝑜𝑠𝑡 𝑠ℎ𝑎𝑟𝑒 𝐼𝑉𝑠,𝑡 =
∑︁
𝑜2
𝐸𝑜2,𝑠,2011

∑
𝑠′≠𝑠

∑
𝑜4 #𝐴𝐼 𝑝𝑜𝑠𝑡𝑜4,𝑜2,𝑠′,𝑡∑

𝑠′≠𝑠
∑
𝑜4 #𝑝𝑜𝑠𝑡𝑜4,𝑜2,𝑠′,𝑡

, (2.17)

where 𝑜2 is the 2-digit 2010 Census OCC code. 𝐸𝑜2,𝑠,2011 =
𝑒𝑚𝑝𝑜2,𝑠,2011∑
𝑜2′ 𝑒𝑚𝑝𝑜2′ ,𝑠,2011

represents the start-of-

period share of employment in broad occupation category 𝑜2 in state 𝑠.

Columns 1 and 2 of Table 2.6 present the results on employment per capita from my main

specification and the "leave-one-out" SSIV, respectively. Although the SSIV estimates in column

2 become much larger in magnitude but less precise compared with OLS estimates in column

1, the relative comparison between skill groups still holds. The effect of the AI posting share

for abstract and AI-intensive occupations (112) is almost three times larger than that for abstract,

not-yet-AI occupations (47). Another difference between OLS and SSIV estimates is that SSIV

estimates show a significant employment decline for low-skilled occupations (-92). These estimates

show widened employment gaps between skill groups compared with OLS estimates, especially

the gap between abstract, AI-intensive occupations and other skill groups. I also re-conduct SSIV

analyses by changing the 2-digit occupation group, 𝑜2, in equation (2.17) to 4-digit occupation, 4-

digit North American Industry Classification System (NAICS) code, or an alternative occupational

classification constructed by clustering occupations based on skill similarity using a machine

learning algorithm.16 Estimates are presented in Appendix Tables 2B.2 and 2B.3, which reassure

a consistent pattern in employment gaps between skill groups.

Columns 3 and 4 of Table 2.6 focus on log mean hourly wage, while columns 5 and 6 turn to

the wage income share. Similar with the comparison between columns 1 and 2, SSIV estimates

on the interaction term between the AI posting share and skill group dummies are about double

of OLS estimates when focusing on wages. Different from OLS estimates in column 3, SSIV

estimates in column 4 indicate a significant mean hourly wage gain for high-skilled not-yet-AI

occupations (0.029), although this wage gain is smaller than that for high-skilled AI-complement

occupations (0.050). In addition, low-skilled occupations experience a significant decline in the

wage income share (-0.101) after adopting a SSIV approach shown in column 6. Estimates from
16Details on how I propose this alternative occupational classification will be explained in Section 2.6.2.
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Table 2.6 Effects of Demand for AI Skills—Adopting SSIV, 2012-21

Dep. Var.:

Emp. per 100,000 Capita Log Mean Hourly Wage Share of Wage Income1

Main Spec. SSIV Main Spec. SSIV Main Spec. SSIV
(1) (2) (3) (4) (5) (6)

%AI Postings2 -6.1 -92.3∗∗∗ 0.005 0.010 -0.011 -0.101∗∗∗
(8.3) (19.8) (0.005) (0.014) (0.011) (0.025)

%AI Postings ×
High-Skilled AI-Complement Occ 55.8∗∗∗ 112.1∗∗∗ 0.025∗∗∗ 0.050∗∗∗ 0.089∗∗∗ 0.158∗∗∗

(14.9) (27.1) (0.007) (0.010) (0.026) (0.040)

High-Skilled Not-Yet-AI Occ 20.1∗∗ 47.0∗∗ 0.007 0.029∗∗∗ 0.026∗ 0.056∗∗
(10.1) (19.9) (0.006) (0.010) (0.014) (0.027)

Middle-Skilled Occ 2.9 10.5 -0.009 0.005 0.005 0.014
(9.0) (18.0) (0.005) (0.009) (0.012) (0.022)

Skill Group =

High-Skilled AI-Complement Occ -333.4∗ -361.1∗ 0.441∗∗∗ 0.431∗∗∗ -0.151 -0.184
(187.6) (190.3) (0.104) (0.104) (0.166) (0.168)

High-Skilled Not-Yet-AI Occ -209.4 -220.8 0.126 0.117 -0.029 -0.042
(184.7) (188.0) (0.096) (0.096) (0.159) (0.163)

Middle-Skilled Occ -192.2 -194.6 -0.088 -0.094 -0.169 -0.172
(181.4) (184.8) (0.092) (0.092) (0.141) (0.145)

Observations 192,008 192,008 187,960 187,960 192,008 192,008
State FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓ ✓
R2 0.129 0.122 0.340 0.339 0.158 0.152
Cragg-Donald Wald F Statistic 2,594.341 2,454.979 2,594.341

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.

using SSIVs summing over different occupation groups are presented in Appendix Tables 2B.4

and 2B.5. Regardless of which SSIV being used, the significant wage gaps between high-skilled

AI-complement occupations and other skill groups always exist.

The second concern is that the main results could be driven by more general CS skills, rather

than the AI-developing skills captured in narrow AI postings. To address this concern, I additionally

control for the share of CS postings using the same specification as in my baseline model. Table 2.7

shows estimates from regressions of employment per capita and wages. Columns 1, 3, and 5 show
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Table 2.7 Effects of Demand for AI Skills—Controlling for CS Skills, 2012-21

Dep. Var.:

Emp. per 100,000 Capita Log Mean Hourly Wage Share of Wage Income1

Main Spec. Controlling Main Spec. Controlling Main Spec. Controlling
for CS for CS for CS

(1) (2) (3) (4) (5) (6)

%AI Postings2 -6.1 -3.3 0.005 0.004 -0.011 -0.012
(8.3) (7.3) (0.005) (0.006) (0.011) (0.010)

%AI Postings ×
High-Skilled AI-Complement Occ 55.8∗∗∗ 50.1∗∗∗ 0.025∗∗∗ 0.034∗∗∗ 0.089∗∗∗ 0.086∗∗∗

(14.9) (14.0) (0.007) (0.008) (0.026) (0.025)

High-Skilled Not-Yet-AI Occ 20.1∗∗ 17.5∗ 0.007 0.013∗ 0.026∗ 0.030∗∗
(10.1) (9.1) (0.006) (0.007) (0.014) (0.014)

Middle-Skilled Occ 2.9 1.2 -0.009 -0.008 0.005 0.006
(9.0) (7.8) (0.005) (0.006) (0.012) (0.011)

%CS Postings3 -20.6 0.006 0.000
(16.4) (0.017) (0.016)

%CS Postings ×
High-Skilled AI-Complement Occ 34.6∗ -0.057∗∗ 0.013

(19.2) (0.023) (0.027)

High-Skilled Not-Yet-AI Occ 16.0 -0.033∗ -0.021
(17.9) (0.019) (0.019)

Middle-Skilled Occ 10.3 -0.004 -0.006
(17.7) (0.018) (0.017)

Skill Group =

High-Skilled AI-Complement Occ -333.4∗ -339.6∗ 0.441∗∗∗ 0.452∗∗∗ -0.151 -0.153
(187.6) (189.5) (0.104) (0.104) (0.166) (0.167)

High-Skilled Not-Yet-AI Occ -209.5 -212.1 0.126 0.132 -0.029 -0.026
(184.7) (186.7) (0.096) (0.097) (0.159) (0.161)

Middle-Skilled Occ -192.2 -193.8 -0.088 -0.087 -0.169 -0.168
(181.4) (183.4) (0.092) (0.093) (0.141) (0.143)

Observations 192,008 192,008 187,960 187,960 192,008 192,008
State FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓ ✓
R2 0.129 0.129 0.340 0.340 0.158 0.158

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
3 Phrases that belong to broad AI category but not narrow AI category are used to compute %CS postings at the
state-year level. %CS postings is in percentage point.
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estimates from my main specification, while columns 2, 4, and 6 show estimates obtained from

additionally controlling for the CS posting share. Coefficients on the interaction between the share

of AI postings and skill group dummies from this robustness check represent effects of the demand

for AI skills residualized on the demand for CS skills. They are very similar to estimates from the

main specification, implying that my main results are not likely to be driven by the demand for CS

skills.17

Appendix Tables 2B.10 and 2B.11 reassure that my main results are not driven by CS skills

through controlling for exposure to software and robots using the measures constructed by Webb

(2019). These measures capture the capabilities in software and robots for performing an occu-

pation’s tasks. After controlling for software and robot exposure, estimates are almost the same

with those from my main specification. Appendix Tables 2B.12 and 2B.13 further show adding

CS skills to the set of AI phrases does not increase predictability of how AI impacts the labor

market. That is, replacing narrow AI phrases with broad AI phrases leads to noisy estimates. In

addition, coefficients on broad AI posting shares become smaller compared with coefficients on

narrow AI posting shares, indicating that broad AI definition does not capture the true demand for

AI-developing skills well.

I also conduct robustness checks on the choice of threshold for defining AI occupations. Instead

of using the binary AI occupation indicator defined by equation (2.12) to categorize high-skilled

occupations into AI-complement and not-yet-AI ones, I decompose high-skilled occupations into

five groups using narrow AI posting share quintiles. Thus, there are seven skill groups in total:

five groups within high-skilled occupations, middle- and low-skilled groups. Table 2.8 presents

estimates from interacting the AI posting share with the new skill group indicators, with the low-

skilled group being the baseline group as in my main analysis. These estimates are also plotted in
17I also construct SSIVs for the CS posting share using equation (2.17) by replacing AI postings with CS postings.

Appendix Tables 2B.6-2B.9 present estimates from instrumenting both AI posting shares and CS posting shares. Each
table focuses on one of the four labor market outcomes. Estimates from adopting any kind of SSIV except the SSIV
summing across 2-digit occupation group in column 2 of Appendix Tables 2B.6-2B.9 reassuare that my main results
are not driven by CS skills. Regardless of the magnitude and significance level of coefficients on CS posting shares,
coefficients on AI posting shares are similar with my main results. Estimates in column 2 are boosted up, especially for
regressions of employment, because regressions used in column 2 fit the data poorly implied by the negative R-squared
and extremely small F statistic.
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Figure 2.8 Overall Effects of Demand for AI Skills by AI Posting Share Quintile, 2012-21
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Notes: The coefficient estimates plotted in each subfigure show overall effects of changes in share of narrow AI
postings on labor market outcomes for each skill group. Instead of the four skill groups in my main specification, the
high-skilled occupations are decomposed into five groups using narrow AI posting share quintiles. Thus, there are
seven skill groups in total. Estimates are obtained by respectively regressing employment per 100,000 capita, share
of employment (in percentage point), log mean hourly wages, and share of wage income (in percentage point) on the
interaction term between share of narrow AI postings and skill group dummies, using the main specification with a
full set of fixed effects (i.e., state, year, skill-group, 2-digit-occupation, and skill-group-by-year fixed effects) included.
I also plot the corresponding 95% confidence intervals in each subfigure.

Figure 2.8. There is a monotonic trend in effects of AI postings on employment and wages for high-

skilled occupations that fall into the top four AI posting share quintiles. High-skilled occupations

in the top quintile always have the highest gain in both employment and wages associated with

an increase in the demand for AI skills. Low-skilled occupations (the first row of Table 2.8) have

the largest decline in employment and the wage income share (i.e., the estimate is the smallest in

magnitude and negative).18

Another test to check the threshold for AI occupations is to measure the variation of AI-

developing skills being listed in job postings across occupations (denoted as "AI Skill Prevalence

Score" hereafter). To construct this measure, I perform a principal component analysis (PCA) on

the matrix of frequencies of a narrow AI phrase being listed in job postings across all occupations

and years.19 The AI Skill Prevalence Score indicates the intensity that AI-developing skills are
18These results are robust to using the SSIV approach, with estimates presented in Appendix Tables 2B.14-2B.17.
19Each element in this matrix represents how many times a narrow AI phrase listed in Table 2.1 shows up in all

postings of an occupation in a specific year. This matrix uses this frequency for all occupations between 2012 and 2021.
Then a static component loading is calculated for each narrow AI skill using PCA, which captures the importance
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Table 2.8 Effects of Demand for AI Skills—Using AI Posting Share Quintiles, 2012-21

Dep. Var.:

Emp. per 100,000 Capita Log Mean Hourly Wage Share of Wage Income1

(1) (2) (3)

%AI Postings2 -6.2 0.005 -0.011
(8.3) (0.005) (0.011)

%AI Postings ×
High-Skilled Occ × AI Occ (q5) 48.9∗∗∗ 0.025∗∗∗ 0.076∗∗∗

(13.0) (0.006) (0.022)

High-Skilled Occ × AI Occ (q4) 38.3∗∗∗ 0.013∗∗ 0.055∗∗
(13.3) (0.006) (0.023)

High-Skilled Occ × AI Occ (q3) 10.1 0.004 0.008
(10.3) (0.007) (0.013)

High-Skilled Occ × AI Occ (q2) -6.3 0.006 -0.008
(13.5) (0.008) (0.017)

High-Skilled Occ × AI Occ (q1) 11.1 -0.012 0.015
(10.1) (0.015) (0.012)

Middle-Skilled Occ 2.9 -0.009 0.005
(9.0) (0.005) (0.012)

Skill Group =

High-Skilled Occ × AI Occ (q5) -349.6∗ 0.334∗∗∗ -0.172
(187.0) (0.105) (0.164)

High-Skilled Occ × AI Occ (q4) -175.1 0.189∗ 0.050
(191.1) (0.103) (0.173)

High-Skilled Occ × AI Occ (q3) 70.5 0.149 0.364
(256.2) (0.121) (0.301)

High-Skilled Occ × AI Occ (q2) 13.3 0.061 0.062
(212.0) (0.117) (0.213)

High-Skilled Occ × AI Occ (q1) -383.2∗∗ 0.045 -0.319∗∗
(182.7) (0.133) (0.153)

Middle-Skilled Occ -186.6 -0.081 -0.159
(181.9) (0.093) (0.141)

Observations 192,008 187,960 192,008
State FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓
R2 0.143 0.339 0.175

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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required for performing tasks of an occupation. The higher this score is, the more AI-intensive

activities an occupation involves. Appendix Table 2B.18 presents the component loadings of all

narrow AI skills used. Of all skills, "python," "machine learning," and "big data" play the most

important roles in the AI Skill Prevalence Score.

Figure 2.9 plots the average AI Skill Prevalence Score over time.20 The AI Skill Prevalence

Score, on average, increased over time, with a big jump between 2012-15 (Figure 2.9a). This big

jump is driven by high-skilled AI-complement occupations, which have a much higher AI Skill

Prevalence Score on average compared with the other three skill groups (Figure 2.9b). To make

trends in this measure by skill group comparable, Figure 2.9c plots the average AI Skill Prevalence

Score relative to the baseline year 2012. There was an increasing trend for high-skilled AI-intensive

occupations, while this measure dropped for the other skill groups between 2012-14 and gradually

went back to their baseline level around 2020. Appendix Table 2B.19 lists occupations with

the top and bottom AI Skill Prevalence Score in 2021. "Software Developers, Applications and

Systems Software" has the highest score, followed by "Management Analysts" and "Other Business

Operations and Management Specialists." All occupations in Panel A with a high score are from

the high-skilled AI-complement group. In contrast, most of occupations with a low score are

routine-intensive (i.e., from the middle-skilled group).

Table 2.9 tests the relationship between AI Skill Prevalence Score and labor market outcomes.

Panel A presents estimates from a regression on the 4-digit-occupation-by-year AI Skill Prevalence

Score, which is standardized within a year. The source of variation comes from within occupations.

A one standard deviation increase in an occupation’s AI Skill Prevalence Score correlates with 34

more employed people per 100,000 capita, a 0.034pp increase in the share of employment, a 0.8%

increase in mean hourly wage, and a 0.070pp increase in the wage income share, all of which are

statistically significant.

However, to make the estimates comparable to my main analysis which captures the between-

or weight of a narrow AI phrase in constructing the AI Skill Prevalence Score. Python allows users to choose the
number of components to keep. Thus, the multi-dimensional matrix is projected to a one-dimensional space by PCA
to construct this single measurement.

20The AI Skill Prevalence Score is standardized within a year.
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Figure 2.9 Trends in Average AI Skill Prevalence Score, 2012-21

(a) Average AI Skill Prevalence Score across All Occupations
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(c) Average AI Skill Prevalence Score Relative to Baseline Year 2012
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Notes: The occupation-year AI Skill Prevalence Score is standardized within a year. In Subfigure 2.9c, the AI Skill
Prevalence Score for each skill group in year 2012 is used as the baseline. Each line represents the following ratio,

AI Skill Prevalence Score𝑘,𝑡
AI Skill Prevalence Score𝑘,2012

, where 𝑘 represents a skill group and 𝑡 is year.
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Table 2.9 Effects of AI Skill Prevalence on Labor Market Outcomes, 2012-21

Dep. Var.:

Emp. per 100,000 Capita %Emp Share1 Log Mean Hourly Wage %Wage Income2

(1) (2) (3) (4)

Panel A. Using Occupation-Year AI Skill Prevalence Score
AI Skill Prevalence Score3 33.8∗∗∗ 0.034∗∗∗ 0.008∗∗ 0.070∗∗∗

(7.1) (0.007) (0.003) (0.010)

Observations 186,799 186,799 183,018 186,799
R2 0.132 0.132 0.345 0.168

Panel B. Using State-Year AI Skill Prevalence Score
AI Skill Prevalence Score4 16.0∗∗ 0.016∗∗ 0.003 0.012

(6.5) (0.007) (0.006) (0.009)
AI Skill Prevalence ×

High-Skilled AI-Complement Occ 30.4∗∗∗ 0.030∗∗∗ 0.024∗∗∗ 0.061∗∗∗
(11.0) (0.011) (0.007) (0.023)

High-Skilled Not-Yet-AI Occ 6.6 0.007 0.002 0.012
(7.6) (0.008) (0.007) (0.011)

Middle-Skilled Occ 0.2 0.000 -0.013∗∗ 0.002
(7.2) (0.007) (0.006) (0.010)

Observations 192,008 192,008 187,960 192,008
R2 0.128 0.128 0.340 0.156

State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in Panel B is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1,2 The unit of the employment share and the share of wage income is a percentage point.
3 The AI Skill Prevalence Score in Panel A is constructed at the 4-digit-occupation-by-year level and standardized
within a year.
4 The AI Skill Prevalence Score in Panel B is constructed at the state-year level and standardized within a year.

group variation using the state-year AI posting shares, I construct a state-year AI Skill Prevalence

Score by performing a PCA on the matrix of AI skill frequencies in job postings across all states and

years. This alternative measure captures the prevalence of AI skills being listed in job descriptions

(i.e., the intensity of AI-developing activities) at the state-year level. Appendix Table 2B.20 lists

states with the top and bottom AI Skill Prevalence Score in 2021. California had the highest

score, followed by Texas, New York, Virginia, Massachusetts, and Illinois. Appendix Figure 2B.7a

plots this measure by BLS regions. Both New York/New Jersey and the Southwest experienced

an increase over time, while other regions had a decline. Although California had the highest

107



score, the Western U.S. had a downward trend due to states with pretty low scores classified into

this region (e.g., Alaska, Hawaii, and Nevada). Appendix Figure 2B.7b is the same as Appendix

Figure 2B.7a but fixing the range of the y-axis to make these curves more visually comparable.

The Western U.S. had a consistently high score over time and New York/New Jersey experienced a

consistent growth in this measure. The AI Skill Prevalence Score for both regions was much higher

than that for other regions.

Panel B of Table 2.9 uses the same specification as my main results but replacing the AI

posting share with the state-year AI Skill Prevalence Score. The estimates capture the between-

group variation—the difference in the prevalence of AI skills between skill groups within a state.

Compared with low-skilled occupations, a one standard deviation increase in this measure is

associated with 30 more employed people, 0.030pp increase in the share of employment, a 2.4%

mean hourly wage gain, and a 0.061pp increase in the wage income share for high-skilled AI-

complement occupations. There is also a 1.3% decline in mean hourly wage for middle-skilled

occupations, compared with the baseline group, the low-skilled group. These estimates indicate the

existence of employment and wage gaps between abstract and AI-intensive occupations and other

skill groups, consistent with my main results in Section 2.5.1.

Estimates in Panel B of Table 2.9 also sheds light on Proposition 2.4 in Section 2.2.2 which

discusses the relationship between the reinstatement and displacement effect of AI. These estimates

indicate a wider wage gap between high- and middle-skilled occupations but a narrower wage gap

between low- and middle-skilled occupations, suggesting that the displacement effect of AI on

relative wages for middle-skilled labor dominates the reinstatement effect. This can be explained

by the following reasons. First, AI has become more productive since AI technologies have been

dramatically improved during the late 2010s (LeCun et al., 2015; Russell and Norvig, 2021; Zhang

et al., 2022). Thus, AI may take over some tasks that were previously performed by middle-skilled

workers. Second, improvements in AI may indirectly improve industrial automation, resulting in

more automated tasks and a decline in the share of tasks performed by middle-skilled workers.

Although this paper does not empirically explore the relationship between wages for middle-skilled
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workers and industrial automation, existing literature has demonstrated a negative relationship

between labor market outcomes of people exposed to routine tasks and automation (Acemoglu et al.,

2020; Acemoglu and Restrepo, 2022a,b; Moll et al., 2022; Autor et al., 2024). Third, the current AI

technologies are not able to substitute for tasks heavily relied on social skills, which are low-skilled

occupations defined in Section 2.3.2. Although I do not find a significant relationship between

mean hourly wages for low-skilled occupations and changes in demand for AI skills, Deming (2017)

documents a strong and positive relationship between wages and social-skill-intensive occupations.

Finally, I show that my main results are not driven by one specific state or COVID. Appendix

Table 2B.21 shows percentiles of the distribution of estimated effects using my main specification

with one state left out at a time for all states in my sample. The estimates are consistent with my

main specification, implying that my main results are not driven by one specific state (e.g., a state

with an extremely high or low AI posting share). My main estimates are also similar with estimates

from dropping COVID years presented in Appendix Tables 2B.22 and 2B.23, indicating that my

results are not driven by COVID or work-from-home requirements during COVID.

2.5.3 Heterogeneity

Since the main results presented in Section 2.5.1 remain static over the whole sampling period,

I examine heterogeneity over time in this section. Appendix Figure 2B.8 plots how estimates for

each skill group change over time when interacting the AI posting share in the main specification

with year dummies. Effects on employment and the wage income share remain pretty constant over

time, while effects on mean hourly wage show an increasing trend, especially for high-skilled AI-

complement occupations before COVID. A possible explanation is that AI has been dramatically

improved and received increasing attention from the public since the late 2010s (LeCun et al.,

2015; Zhang et al., 2022), but there was a stagnation in economic growth during COVID years.

It is also worth noting that there were large employment and wage gaps between high-skilled AI-

complement occupations and other skill groups over the whole sampling period. Specifically, the

wage gap widened prior to COVID and slightly narrowed during COVID.

Appendix Figure 2B.9 further shows estimates by interacting state-year AI Skill Prevalence
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Score with year dummies. Different from Appendix Figure 2B.8, there is now an upward trend

for high-skilled AI-complement occupations in terms of all four outcomes. The employment gap

between abstract and AI-intensive group and other skill groups was the largest from 2019-20 while

the gap in mean hourly wage was the largest between 2018-19. But on the whole, the time-varying

effects of AI Skill Prevalence Score are consistent with those of the AI posting share. Abstract

occupations that are AI-intensive experienced the largest growth in both employment and wages

over time.

2.6 Discussion: AI as a General-Purpose Technology

This section discusses that AI is possibly one of the general-purpose technologies (GPT) which

have profound impacts on the whole economy. Section 2.6.1 presents results from re-estimating

equation (2.16) but using the share of AI postings at more granular level and argues that AI tends

to affect the whole economy rather than specific occupation categories. Section 2.6.2 introduces

an alternative occupation classification system based on the similarity in skill requirements of an

occupation using machine learning. I then discuss which occupation clusters have a surge in AI

hiring and the differential effects of the demand for AI skills on these occupation clusters.

2.6.1 AI Postings at More Granular Level and Labor Marker Outcomes

In my main specification, equation (2.16), the share of AI postings used as the proxy for AI

growth is computed at the state-year level. The underlying assumption is that people respond to

all kinds of contemporaneous job postings intended to hire workers specializing in AI-developing

activities posted in the state where they live. This assumption could be threatened if AI only affects

some occupations instead of the whole economy, i.e., only people from certain occupations are

responding to AI postings from those specific occupations. Therefore, I re-estimate equation (2.16)

but use the share of narrow AI postings at the 2-digit-occupation-by-state-by-year level. Now 𝛽0

and 𝛽𝑘 in equation (2.16) capture how changes in the AI posting share from a specific 2-digit

occupation category affect labor market outcomes.

Appendix Table 2B.24 focuses on employment. Different from my main results, Table 2.4 in

Section 2.5.1, the share of AI postings used in Appendix Table 2B.24 is computed at more granular
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level—the 2-digit-occupation-by-state-by-year level. The source of variation is now from within

2-digit occupation groups, rather than between groups. After controlling for a full set of fixed

effects following my main specification, equation (2.16), none of the coefficients on AI postings

are statistically significant. This finding also holds in terms of wages, with estimates presented in

Appendix Table 2B.25.

Similarly, when interacting the occupation-year AI Skill Prevalence Score with skill group

dummies as presented in Appendix Table 2B.26, estimates become much noisier compared with

using this measure at more aggregated level in Panel B of Table 2.9. This is due to the different

source of variation in the prevalence of AI skills listed in job postings: the former one is within-

group variation, while the latter one is between-group variation.

These findings accompanied with my main results indicate that the employment and wage

gaps between high-skilled AI-complement occupations and other skill groups can be due to the

variation in the demand for AI skills between groups, rather than within groups. Thus, AI may

have impacts on the whole economy by widening the employment and wage gaps between workers

with a specialization in AI-developing tasks and others who do not possess such skills, instead of

only impacting people within specific sectors. These results suggest that AI is a general-purpose

technology, which is consistent with Cockburn et al. (2019), Acemoglu (2021), Crafts (2021), and

Hötte et al. (2022).

2.6.2 Alternative Classification of Occupations

This section introduces an alternative occupation classification system to replace the 2-digit

occupation group in my main specification. The broad occupation groups classified by Census

or BLS are based on general work performed, but may not reflect specific skill requirements of

an occupation. For example, both "Advertising and Promotions Managers" and "Architectural

and Engineering Managers" are classified into "Management Occupations" (a 2-digit occupation

group). The description of the former one is to "plan, direct, or coordinate advertising policies

and programs," while the latter one is to "plan, direct, or coordinate activities in such fields as
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architecture and engineering."21 Both occupations have the same general work performed (i.e.,

plan, direct, or coordinate activities), but require different specific skill sets (the former one needs

knowledge of advertising and marketing while the latter one requires knowledge of architecture and

engineering). However, they are classified into the same 2-digit occupation group. Using these

broad occupation groups classified based on general work performed might lead to measurement

errors. Thus, I propose an alternative occupation classification system (denoted as "ML occupation

clusters" hereafter) based on skill similarity across occupations. I cluster occupations by skill

similarity using the skill requirements reflected in job postings and a machine learning clustering

algorithm.22 Occupations with high similarity in skills are classified into the same cluster (Fogel and

Modenesi, 2023). The detailed definition of this alternative occupation classification system and

the procedure of developing this system are provided in Appendix 2D. Appendix Tables 2D.1-2D.3

present the relationship between the ML occupation clusters and the four skill groups introduced in

Section 2.3.2, while Appendix Table 2D.4 provides a list of the composition of each ML occupation

cluster (i.e., the 4-digit occupations that are classified into each cluster).

Figure 2.10 shows that Engineering, Environment, Finance, IT, Media, and Life Sciences occu-

pations had higher and increasing demand for AI-developing skills. However, the trends in narrow

AI posting shares by 2-digit Census occupation group in Appendix Figure 2B.10 are pretty flat, ex-

cept "Computer and Mathematical Occupations" and "Architecture and Engineering Occupations."

Appendix Figures 2B.11a and 2B.11b plot the mean hourly wage by ML occupation cluster and by

2-digit Census occupation group, respectively, from 2012-21. There is relatively larger variation

in wages across ML occupation clusters. People who work in Engineering, Environment, Finance,

IT, Public Safety, Policy, and Social Science occupations experienced higher wages with an upward
21The descriptions of these two occupations are from BLS (https://www.bls.gov/soc/2010/2010_major_groups.

htm). Although the mapping between 4-digit 2010 Census Occupational Classification and the 6-digit 2010 Standard
Occupational Classification (SOC) is not always one-to-one (in a few cases this mapping is one-to-many), there is
a one-to-one mapping between the 2-digit Census occupation groups and the 2-digit SOC groups provided by BLS
(https://www.bls.gov/cps/cenocc2010.htm). Since I do not find a detailed description of each 4-digit 2010 Census
occupation, I use the 6-digit 2010 SOC code as examples. Note that the 4-digit (6-digit) code is the most detailed
occupational classification in the Census (BLS) system.

22I use over 1,800 general and specific skills (e.g., "audit software," "clerical support," "equipment repair,"
"javascript") to cluster occupations. I set the total number of occupation clusters to be the same as the total number of
2-digit Census Occupational Classification, which is 23.
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Figure 2.10 Plots of %AI Postings by ML Occupation Cluster, 2012-21
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trend in mean hourly wage.23 These differences could stem from how an occupation system is

developed. Since the Census classification of occupations is constructed based on general work

performed rather than skill specification, it is possible that both high- and low-skilled occupations

are classified into the same category which averages out the outcomes (e.g., mean hourly wage) for

this category. In addition, I plot the share of narrow AI postings by ML occupation cluster relative

to the baseline year, 2012, in Appendix Figure 2B.15. Almost all clusters experienced an overall

increasing trend, indicating that the demand for AI skills has been increased in almost every sector

of the economy.

To examine the relationship between labor market outcomes for ML occupation clusters and the
23There is larger variation in the magnitude of the wage income share across ML occupation clusters (Appendix

Figure 2B.12a) than across Census 2-digit occupational classifications (Appendix Figure 2B.12b). The plots of
employment are noisier though (Appendix Figures 2B.13 and 2B.14).
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demand for AI skills, I re-estimate my main specification but interacting the AI posting share with

ML occupation cluster dummies instead. To make the estimates comparable to my main results, I

choose the "service and retail workers" cluster to be the baseline group. Estimates are presented

in Table 2.10, which complements my main results by further showing which occupation clusters

within a skill group experience growth or decline in labor market outcomes. Abstract and AI-

intensive clusters experience significant growth in both employment and wages, e.g., "engineering

technicians," "IT and data management," and "media production and broadcasting." In contrast,

clusters with a high concentration in middle-skilled jobs, such as "technical maintenance workers"

and "manual workers and machine operators," face significant declines in wages. Different from

my main results that document significant correlations between labor market outcomes and the

high-skilled group only, coefficients from Table 2.10 show that almost all occupation clusters are

significantly impacted by the demand for AI skills.

2.7 Conclusion

AI has been receiving increasing attention from academia, the industry, and the public. How-

ever, researchers have not reached a consensus on the consequences of AI to skill changes, task

reallocation, inequalities, and changes in employment and wages. This paper explores how the

demand for AI-developing skills influences employment and wages for heterogeneous skill groups

in the U.S. I first categorize labor into four skill groups based on skill specializations: (1) a

high-skilled AI-complement group that specializes in abstract tasks and possesses AI skills; (2) a

high-skilled, not-yet-AI group with a concentration on abstract tasks that are not yet AI-related; (3) a

middle-skilled group that is routine-intensive; and (4) a low-skilled group that is manual-intensive.

I then measure changes in the demand for AI skills proxied by changes in the share of job postings

that explicitly require AI skills using online job postings data. A task-based model is proposed to

provide explanations for my main findings:

1. High-skilled AI-complement occupations have experienced the largest growth in employment

and wages among all four skill groups associated with an increasing demand for AI skills.

This growth is more than double that of high-skilled not-yet-AI occupations.
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Table 2.10 Effects of Demand for AI Skills by ML Occupation Cluster, 2012-21
Dep. Var.:

Emp. per 100,000 Capita %Emp Share1 Log Mean Hourly Wage %Wage Income2

(1) (2) (3) (4)

%AI Postings3 -18.6∗∗ -0.019∗∗ 0.005 -0.018∗
(8.9) (0.009) (0.004) (0.010)

%AI Postings ×
Postsecondary Educators 32.3∗∗∗ 0.032∗∗∗ 0.001 0.001

(10.0) (0.010) (0.004) (0.012)

Specialized Service Professionals 24.0∗∗ 0.024∗∗ -0.012 0.022∗∗
(9.7) (0.010) (0.013) (0.010)

Construction & Craft Workers 15.2 0.015 -0.003 0.017
(12.0) (0.012) (0.012) (0.011)

Finance Professionals 29.2∗ 0.029∗ 0.022∗ 0.040∗
(15.4) (0.015) (0.013) (0.024)

Pre-Secondary Educators 13.7 0.014 0.009 -0.008
(28.7) (0.029) (0.006) (0.035)

Building Improvement Technicians 24.5∗∗∗ 0.024∗∗∗ 0.011 0.024∗∗
(9.4) (0.009) (0.011) (0.010)

Public Safety, Policy, & Social Science 34.2∗∗ 0.034∗∗ 0.007 0.040∗
(13.5) (0.014) (0.010) (0.023)

Life Sciences & Quality Assurance 34.6∗∗∗ 0.035∗∗∗ 0.009 0.040∗∗∗
(11.2) (0.011) (0.011) (0.014)

Engineering Technicians 33.0∗∗∗ 0.033∗∗∗ 0.013 0.041∗∗∗
(11.2) (0.011) (0.008) (0.014)

Healthcare Professionals & Practitioners 15.3 0.015 -0.009∗ 0.003
(11.1) (0.011) (0.005) (0.014)

Technical Maintenance Workers 13.7 0.014 -0.019∗∗∗ 0.007
(9.8) (0.010) (0.004) (0.010)

Workplace Safety & Training Specialists 25.7∗∗ 0.026∗∗ 0.026∗∗∗ 0.024∗∗
(10.2) (0.010) (0.004) (0.012)

IT & Data Management 64.9∗∗∗ 0.065∗∗∗ 0.015∗∗∗ 0.091∗∗∗
(19.2) (0.019) (0.005) (0.034)

Sales & Marketing Professionals 44.3∗∗∗ 0.044∗∗∗ 0.028∗∗∗ 0.050∗∗
(15.4) (0.015) (0.008) (0.021)

Media Production & Broadcasting 36.0∗∗∗ 0.036∗∗∗ 0.051∗∗∗ 0.038∗∗∗
(11.0) (0.011) (0.012) (0.012)

Regulatory Compliance Specialists 122.9 0.123 0.002 0.178
(76.9) (0.077) (0.008) (0.122)

Manual Workers & Machine Operators 14.3 0.014 -0.022∗∗∗ 0.012
(10.3) (0.010) (0.005) (0.011)

Service & Administrative Professionals 23.8∗∗ 0.024∗∗ 0.007 0.027∗∗
(10.9) (0.011) (0.005) (0.013)

Infrastructure Architecture & Engineering 18.8 0.019 -0.002 0.009
(14.2) (0.014) (0.007) (0.021)

Creative & Communication Support -75.8 -0.076 -0.016 -0.097
(60.5) (0.061) (0.011) (0.079)

Technical & Service Support Personnel 24.7∗∗ 0.025∗∗ 0.005 0.024∗∗
(9.8) (0.010) (0.005) (0.010)

Environmental & Earth Scientists 48.0∗∗∗ 0.048∗∗∗ 0.014 0.054∗∗
(17.2) (0.017) (0.021) (0.025)

Observations 190,712 190,712 186,742 190,712
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
ML-Clustering-Group FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓
R2 0.128 0.128 0.304 0.158

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a
harmonized occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification.
All columns include a set of state-year controls. The baseline group is the "service and retail workers" cluster.
Occupation-clustered standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1,2 The unit of the employment share and the share of wage income is a percentage point.
3 Narrow AI definition is used when computing %AI postings at the state-year level. %AI postings is in percentage
point.

115



2. There is no significant relationship between changes in demand for AI skills and employment

for middle- or low-skilled occupations. However, I document a significant and negative

correlation between the intensity of AI-developing skills required in job tasks and the mean

hourly wage for middle-skilled occupations.

3. The above findings suggest employment and wage gaps between abstract and AI-intensive

occupations and other skill groups. These results reflect (1) a "J-shaped" curve of changes

in employment associated with AI by skill group and an employment gap between high-

skilled AI-complement occupations and other skill groups, and (2) wage polarization, where

middle-skilled workers experience the largest decline in wages compared with other types of

workers.

My main results are limited by my measures of AI and skill group classifications. Although

existing literature is used as references when choosing AI phrases, there are possibly omitted

phrases that can also be counted toward a "narrow AI" or "broad AI" phrase. Future research

could improve the completeness of my chosen AI phrases adopted to distinguish between AI and

not-yet-AI postings/occupations.

Another future research direction is to explore the impacts of Generative AI (GenAI) tools,

also known as Large Language Models (LLMs). My empirical analysis mainly focuses on the

complementarity of AI-developing skills, but does not discuss how GenAI tools like ChatGPT may

affect the economy. This can be explained by several reasons. First, although GenAI can both

complement (e.g., people may use ChatGPT to help with job tasks or problems they encounter

during work such as writing emails and doing simple math) and substitute (e.g., Eloundou et al.

(2023) argue that most occupations are, to some extent, exposed to LLMs) labor, employers may

not list the use of these GenAI tools as one of the requirements in job postings. The access to GenAI

tools like ChatGPT is simple and does not require any specialized knowledge or skill. However,

people who possess AI-developing skills are essential to the improvements in GenAI. Thus, this

paper focuses on workers specializing in AI-developing skills by tracking changes in the demand
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for these skills rather than workers using the easily accessible GenAI tools. Second, GenAI tools

has become publicly known and easily accessible since 2022, which is later than the last year of

job postings data that I have access to. Third, although a decline in AI postings may signal the

substitution effect of AI, I do not find such a trend from the online job postings data. Thus, the

postings data may not serve as a good proxy for measuring AI’s substitution. However, my approach

to studying AI-developing skills can be applied to explore the impacts of GenAI tools, or other

technological advances, on the economy.
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APPENDIX 2A

PROPOSITIONS AND PROOFS

Appendix 2A.1 presents inequalities and propositions that are not tested in my main empirical

analysis. Propositions 3′ and 4′ add additional inequalities to the ones presented in Propositions 2.3

and 2.4 in Section 2.2.2, while both Propositions 2A.7 and 2A.8 are only included in the Appendix.

Proposition 2A.7 discusses the productivity effect of AI and industrial automation on the final

output. Proposition 2A.8 sheds light on the relationship between relative wages and labor supplies.

Appendix 2A.2 shows the proofs of all propositions.

2A.1 Additional Propositions

Proposition 3′ (Displacement and reinstatement effects of AI or industrial automation)

Inequalities presented in Proposition 2.3 in Section 2.2.2:

(1) AI can displace workers in some complex tasks, 𝑑A
𝐻 𝑗

𝑑𝐼𝐻
< 0, 𝑑A𝐾

𝑑𝐼𝐻
> 0, 𝑑A𝑀

𝑑𝑆
> 0, 𝑑A𝐾

𝑑𝑆
< 0.

(2) AI can expand the set of tasks performed by high-skilled workers, 𝑑A
𝐻 𝑗

𝑑𝑁
> 0.

(3) Industrial automation primarily takes over simpler tasks, 𝑑A𝑀
𝑑𝐼𝑀

< 0, 𝑑A𝐾
𝑑𝐼𝑀

> 0.

Additional inequalities:

(4) While the set of tasks performed by high-skilled workers is expanded by AI, the simplest tasks

that were performed by low-skilled workers may disappear, 𝑑A𝐿
𝑑𝑁

< 0.

(5) Labor has a learning effect, 𝑑A𝐿
𝑑𝐼𝐿

> 0, 𝑑A𝐾
𝑑𝐼𝐿

< 0.

Note that 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}.

Since there is a unit measure of tasks as shown in equation (2.1), if new tasks favoring high-skilled

labor are created (an increase in 𝑁), then the simplest tasks will disappear.

Proposition 3′ implies the learning effect of labor. An increase in 𝐼𝐿 can represent a higher

productivity of low-skilled workers in completing slightly more complex tasks. Their productivity

can be increased by having more education, participating in on-the-job trainings, etc. Thus,
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low-skilled workers are able to perform some tasks that were previously automated due to the

higher productivity of low-skilled workers and less costs of using low-skilled labor, resulting in an

increase in the share of tasks performed by low-skilled workers (A𝐿) and a decrease in the share of

automated tasks (A𝐾). Similar explanation can be applied to the learning effect of middle-skilled

labor (represented by an increase in 𝑆).

Proposition 4′ (Relationship between relative wages and AI or industrial automation)

Inequalities presented in Proposition 2.4 in Section 2.2.2:

(1) The displacement effect of AI narrows wage gaps,
𝑑 (
𝑊
𝐻 𝑗

𝑊𝐿
)

𝑑𝐼𝐻
< 0,

𝑑 (
𝑊
𝐻 𝑗

𝑊𝑀
)

𝑑𝐼𝐻
< 0.

(2) The reinstatement effect of AI widens wage gaps,
𝑑 (
𝑊
𝐻 𝑗

𝑊𝐿
)

𝑑𝑁
> 0,

𝑑 (
𝑊
𝐻 𝑗

𝑊𝑀
)

𝑑𝑁
> 0,

𝑑 (𝑊𝑀
𝑊𝐿

)
𝑑𝑁

> 0.

(3) The displacement effect of industrial automation widens wage gaps,
𝑑 (
𝑊
𝐻 𝑗

𝑊𝑀
)

𝑑𝐼𝑀
> 0,

𝑑 (𝑊𝑀
𝑊𝐿

)
𝑑𝐼𝑀

> 0.

Additional inequalities:

(4) The displacement effect of AI represented by a decrease in 𝑆 widens the wage gap between

the high- and middle-skilled groups, but narrows the wage gap between the middle- and

low-skilled groups,
𝑑 (
𝑊
𝐻 𝑗

𝑊𝑀
)

𝑑𝑆
< 0,

𝑑 (𝑊𝑀
𝑊𝐿

)
𝑑𝑆

> 0.

(5) The displacement effect of industrial automation represented by a decrease in 𝐼𝐿 widens wage

gaps,
𝑑 (
𝑊
𝐻 𝑗

𝑊𝐿
)

𝑑𝐼𝐿
< 0,

𝑑 (𝑊𝑀
𝑊𝐿

)
𝑑𝐼𝐿

< 0.

Note that 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}.

The displacement effect of AI on high-skilled labor (an increase in 𝐼𝐻) narrows wage gaps between

high-skilled group and middle- or low-skilled group (𝑊𝐻 𝑗
𝑊𝑀

and 𝑊
𝐻 𝑗

𝑊𝐿
), while this displacement

effect on middle-skilled labor (a decrease in 𝑆) narrows wage gaps between the middle- and low-

skilled groups (𝑊𝑀

𝑊𝐿
) but widens the wage gap between the high- and middle-skilled groups (𝑊𝐻 𝑗

𝑊𝑀
).

The displacement effect of industrial automation (an increase in 𝐼𝑀 or a decrease in 𝐼𝐿) and the

reinstatement effect of AI (an increase in 𝑁) widen these wage gaps.
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Proposition 2A.7 (Productivity effect of AI or industrial automation)

𝑑𝑌

𝑑𝐼𝑀
=

𝜎

𝜎 − 1
𝑌

[
𝑅1−𝜎 − ( 𝑊𝑀

𝛼𝑀 (𝐼𝑀)
)1−𝜎

]
> 0,

𝑑𝑌

𝑑𝐼𝐻
=

𝜎

𝜎 − 1
𝑌

[
( 𝑅
𝛼𝐾

)1−𝜎 − 1{𝑖 ∈ AI tasks}( 𝑊𝐻𝐴𝐼

𝛼𝐻𝐴𝐼 (𝐼𝐻)
)1−𝜎 − 1{𝑖 ∈ not-yet-AI tasks}( 𝑊𝐻𝑁𝑜𝑛

𝛼𝐻𝑁𝑜𝑛 (𝐼𝐻)
)1−𝜎

]
> 0.

(2A.1)

Improvements in AI (represented by an increase in 𝐼𝐻) or industrial automation (represented

by an increase in 𝐼𝑀) both have a positive productivity effect on the final output, 𝑌 . This

can be easily explained by the fact that technological improvements raise the productivity of

technologies in production. The larger the gap 𝑊𝑀

𝛼𝑀 (𝐼𝑀 ) − 𝑅 or 1{𝑖 ∈ AI tasks} 𝑊
𝐻𝐴𝐼

𝛼
𝐻𝐴𝐼

(𝐼𝐻 ) +1{𝑖 ∈

not-yet-AI tasks} 𝑊
𝐻𝑁𝑜𝑛

𝛼
𝐻𝑁𝑜𝑛

(𝐼𝐻 ) −
𝑅
𝛼𝐾

is, the less costly it is to replace more expensive labor with cheaper

capital and the greater productivity gains are (these gaps are positive due to Assumption 2.3).

Proposition 2A.8 (Relationship between relative wages and labor supplies)

𝑑 ln(𝑊𝐻 𝑗
𝑊𝐿

)
𝑑 ln𝐻 𝑗

< 0,
𝑑 ln(𝑊𝐻 𝑗

𝑊𝑀
)

𝑑 ln𝐻 𝑗
< 0,

𝑑 ln(𝑊𝐻 𝑗
𝑊𝑀

)
𝑑 ln𝑀

> 0,

𝑑 ln(𝑊𝑀

𝑊𝐿
)

𝑑 ln𝑀
< 0,

𝑑 ln(𝑊𝐻 𝑗
𝑊𝐿

)
𝑑 ln 𝐿

> 0,
𝑑 ln(𝑊𝑀

𝑊𝐿
)

𝑑 ln 𝐿
> 0, 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}.

(2A.2)

When the task allocation among different skill groups remains unchanged, an increase in the labor

supply of a specific skill group will put a downward pressure on wages for that group because

there are more workers competing in the same set of tasks. In particular, an increase in the supply

of high-skilled workers (𝐻 𝑗 , 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}) will reduce their wages and consequently have a

negative impact on relative wages 𝑊
𝐻 𝑗

𝑊𝐿
and 𝑊

𝐻 𝑗

𝑊𝑀
. An increase in the supply of middle-skilled

workers (𝑀) widens the wage gap between high- and middle-skilled workers (𝑊𝐻 𝑗
𝑊𝑀

) but reduces the

wage gap between middle- and low-skilled workers (𝑊𝑀

𝑊𝐿
) because middle-skilled workers earn less.

Similarly, an increase in the supply of low-skilled workers (𝐿) increases the wage gap between low-

and middle-skilled workers (𝑊𝑀

𝑊𝐿
) or between low- and high-skilled workers (𝑊𝐻 𝑗

𝑊𝐿
).
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2A.2 Proofs

2A.2.1 Proof of Proposition 2.1

The proof of this proposition is similar to the proof of Lemma 1 in Acemoglu and Autor (2011).

Intuitively, given factor prices of labor and capital, task 𝑖 = 𝐼𝑀 can be performed by either industrial

automation or middle-skilled labor because the cost of producing this task using either type of factors

is the same. That is, 𝑅 =
𝑊𝑀

𝛼𝑀 (𝐼𝑀 ) .
1 Since Assumption 2.3 assumes that ∃𝐼𝑀 ∈ (𝑁 − 1, 𝑆) such that

𝑊𝑀

𝛼𝑀 (𝐼𝑀 ) > 𝑅 and Assumption 2.1 assumes that 𝛼𝑀 (𝑖) is strictly increasing in 𝑖, then (1) the cost

of automating any tasks 𝑖 < 𝐼𝑀 is lower than using middle-skilled labor and (2) it is less costly to

produce tasks 𝑖 > 𝐼𝑀 using middle-skilled labor than industrial automation. The same argument

applies to comparisons of other factors.

2A.2.2 Proof of Proposition 2.2

I first show the proof of the ideal-price condition presented in equation (2.8). Given the CES

production function expressed in equation (2.1), the marginal cost of producing the final good 𝑌 is:

𝑃 =

[∫ 𝑁

𝑁−1
𝑝(𝑖)1−𝜎𝑑𝑖

] 1
1−𝜎

. (2A.3)

Equation (2.8) can then be derived by combining equations (2.3) and (2A.3):

1 ≡ 𝑃 =

[∫ 𝐼𝐿

𝑁−1
( 𝑊𝐿

𝛼𝐿 (𝑖)
)1−𝜎𝑑𝑖 +

∫ 𝐼𝑀

𝐼𝐿

𝑅1−𝜎𝑑𝑖 +
∫ 𝑆

𝐼𝑀

( 𝑊𝑀

𝛼𝑀 (𝑖) )
1−𝜎𝑑𝑖 +

∫ 𝐼𝐻

𝑆

( 𝑅
𝛼𝐾

)1−𝜎𝑑𝑖

+
∫ 𝑁

𝐼𝐻

( 𝑊𝐻𝐴𝐼

𝛼𝐻𝐴𝐼 (𝑖)
)1−𝜎𝑑𝑖 +

∫ 𝑁

𝐼𝐻

( 𝑊𝐻𝑁𝑜𝑛

𝛼𝐻𝑁𝑜𝑛 (𝑖)
)1−𝜎𝑑𝑖

] 1
1−𝜎

⇒ 1 = 𝑅1−𝜎 [
𝐼𝑀 − 𝐼𝐿 + (𝐼𝐻 − 𝑆)𝛼𝜎−1

𝐾

]
+𝑊1−𝜎

𝐿

∫ 𝐼𝐿

𝑁−1
𝛼𝐿 (𝑖)𝜎−1𝑑𝑖 +𝑊1−𝜎

𝑀

∫ 𝑆

𝐼𝑀

𝛼𝑀 (𝑖)𝜎−1𝑑𝑖

+𝑊1−𝜎
𝐻𝐴𝐼

∫ 𝑁

𝐼𝐻

1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1𝑑𝑖 +𝑊1−𝜎
𝐻𝑁𝑜𝑛

∫ 𝑁

𝐼𝐻

1{𝑖 ∈ not-yet-AI tasks}𝛼𝐻𝑁𝑜𝑛 (𝑖)𝜎−1𝑑𝑖

= A𝐻𝐴𝐼𝑊
1−𝜎
𝐻𝐴𝐼

+ A𝐻𝑁𝑜𝑛𝑊
1−𝜎
𝐻𝑁𝑜𝑛

+ A𝑀𝑊
1−𝜎
𝑀 + A𝐿𝑊

1−𝜎
𝐿 + A𝐾𝑅

1−𝜎 .

(2A.4)

The equilibrium factor prices expressed in equation (2.9) can be easily obtained by re-arranging

terms of equation (2.6). Replacing factor prices of the ideal-price condition, equation (2.8), with
1The productivity of industrial automation is set to be 1 introduced in Section 2.2.1.
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expressions for these factor prices presented in equation (2.9), I can obtain the equilibrium output

shown in equation (2.10):

1 = A𝐻𝐴𝐼𝑊
1−𝜎
𝐻𝐴𝐼

+ A𝐻𝑁𝑜𝑛𝑊
1−𝜎
𝐻𝑁𝑜𝑛

+ A𝑀𝑊
1−𝜎
𝑀 + A𝐿𝑊

1−𝜎
𝐿 + A𝐾𝑅

1−𝜎

= A𝐻𝐴𝐼

[
𝑌

1
𝜎A

1
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼)− 1

𝜎

]1−𝜎
+ A𝐻𝑁𝑜𝑛

[
𝑌

1
𝜎A

1
𝜎

𝐻𝑁𝑜𝑛
(𝐻𝑁𝑜𝑛)− 1

𝜎

]1−𝜎
+ A𝑀

[
𝑌

1
𝜎A

1
𝜎

𝑀
𝑀− 1

𝜎

]1−𝜎

+ A𝐿𝑊𝐿

[
𝑌

1
𝜎A

1
𝜎

𝐿
𝐿−

1
𝜎

]1−𝜎
+ A𝐾

[
𝑌

1
𝜎A

1
𝜎

𝐾
𝐾− 1

𝜎

]1−𝜎

= 𝑌
1−𝜎
𝜎

[
A

1
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼) 𝜎−1

𝜎 + A
1
𝜎

𝐻𝑁𝑜𝑛
(𝐻𝑁𝑜𝑛) 𝜎−1

𝜎 + A
1
𝜎

𝑀
𝑀

𝜎−1
𝜎 + A

1
𝜎

𝐿
𝐿
𝜎−1
𝜎 + A

1
𝜎

𝐾
𝐾

𝜎−1
𝜎

]
.

(2A.5)

2A.2.3 Proof of Propositions 2.3 and 3′

I present the proof for 𝑑A
𝐻𝐴𝐼

𝑑𝐼𝐻
> 0 (that is, 𝑑A

𝐻 𝑗

𝑑𝐼𝐻
> 0, 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}, when 𝑗 = 𝐴𝐼) in

Proposition 2.3. The proof for other inequalities in Propositions 2.3 and 3′ is analogous. Given

equation (2.7),

𝑑A𝐻𝐴𝐼

𝑑𝐼𝐻
=
𝑑
∫ 𝑁

𝐼𝐻
1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1𝑑𝑖

𝑑𝐼𝐿

= 1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑁)𝜎−1 𝑑 (𝑁)
𝑑𝑖

− 1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝐼𝐻)𝜎−1

= 1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝐼𝐻)𝜎−1 > 0.

(2A.6)

2A.2.4 Proof of Propositions 2.4 and 4′

Given the equilibrium factor prices presented in equation (2.9) and Proposition 2.3,

𝑑 (𝑊𝐻 𝑗
𝑊𝐿

)
𝑑𝐼𝐻

=

𝑑

[
A1/𝜎
𝐻 𝑗

(𝐻 𝑗 )−1/𝜎

A1/𝜎
𝐿

𝐿−1/𝜎

]
𝑑𝐼𝐻

=

𝑑A
𝐻 𝑗

𝑑𝐼𝐻

1
𝜎

A
1−𝜎
𝜎

𝐻 𝑗 (𝐻 𝑗 )−1/𝜎

A1/𝜎
𝐿
𝐿−1/𝜎

< 0, 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}. (2A.7)

Similar for the other inequalities in Propositions 2.4 and 4′.
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2A.2.5 Proof of Proposition 2.5

Given the equilibrium factor prices presented in equation (2.9) and Assumption 2.1,

𝑑 (𝑊𝐻𝐴𝐼
𝑊𝐿

)
𝑑𝛼𝐻𝐴𝐼 (𝑖)

=
𝑑A𝐻𝐴𝐼

𝑑𝛼𝐻𝐴𝐼 (𝑖)

1
𝜎

A
1−𝜎
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼)− 1

𝜎

A
1
𝜎

𝐿
𝐿−

1
𝜎

=

𝑑

[∫ 𝑁

𝐼𝐻
1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1𝑑𝑖

]
𝑑𝛼𝐻𝐴𝐼 (𝑖)

1
𝜎

A
1−𝜎
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼)− 1

𝜎

A
1
𝜎

𝐿
𝐿−

1
𝜎

=
1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1

𝛼′
𝐻𝐴𝐼

(𝑖)

1
𝜎

A
1−𝜎
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼)− 1

𝜎

A
1
𝜎

𝐿
𝐿−

1
𝜎

> 0.

(2A.8)

Similar for the other inequalities in Proposition 2.5.

2A.2.6 Proof of Proposition 2.6

Given the equilibrium factor prices presented in equation (2.9) and Assumption 2.1,

𝑑 ( 𝐻
𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐻𝐴𝐼 (𝑖)
=

𝑑 (
𝐻𝐴𝐼𝑌1/𝜎A1/𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼 )−1/𝜎

𝐾𝑌1/𝜎A1/𝜎
𝐾

𝐾−1/𝜎 )

𝑑𝛼𝐻𝐴𝐼 (𝑖)
=

𝑑A1/𝜎
𝐻𝐴𝐼

𝑑𝛼𝐻𝐴𝐼 (𝑖)
(𝐻𝐴𝐼) 𝜎−1

𝜎

A1/𝜎
𝐾
𝐾

𝜎−1
𝜎

=
1
𝜎

A
1−𝜎
𝜎

𝐻𝐴𝐼

𝑑

[∫ 𝑁

𝐼𝐻
1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1𝑑𝑖

]
𝑑𝛼𝐻𝐴𝐼 (𝑖)

(𝐻𝐴𝐼) 𝜎−1
𝜎

A1/𝜎
𝐾
𝐾

𝜎−1
𝜎

=
1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1

𝛼′
𝐻𝐴𝐼

(𝑖)

1
𝜎

A
1−𝜎
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼) 𝜎−1

𝜎

A
1
𝜎

𝐾
𝐾

𝜎−1
𝜎

> 0.

(2A.9)

Similarly,

𝑑 ( 𝐻
𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
= −

1
𝜎

A
1
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼) 𝜎−1

𝜎

A
1+𝜎
𝜎

𝐾
𝐾

𝜎−1
𝜎

(𝐼𝐻 − 𝑆) (𝜎 − 1)𝛼𝜎−2
𝐾


> 0 if 𝜎 ∈ (0, 1),

= 0 if 𝜎 = 1,

< 0 if 𝜎 ∈ (1,∞).

(2A.10)
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Thus, when 𝜎 ∈ (0, 1], both 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼
𝐻𝐴𝐼

(𝑖) > 0 and 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
> 0. However, when 𝜎 ∈ (1,∞), if

we want to show 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼
𝐻𝐴𝐼

(𝑖) > | 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
|, then we need to prove the following is true:

𝑑 ( 𝐻
𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐻𝐴𝐼 (𝑖)
> |

𝑑 ( 𝐻
𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
|

⇐ 1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1

𝛼′
𝐻𝐴𝐼

(𝑖)

1
𝜎

A
1−𝜎
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼) 𝜎−1

𝜎

A
1
𝜎

𝐾
𝐾

𝜎−1
𝜎

>

1
𝜎

A
1
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼) 𝜎−1

𝜎

A
1+𝜎
𝜎

𝐾
𝐾

𝜎−1
𝜎

(𝐼𝐻 − 𝑆) (𝜎 − 1)𝛼𝜎−2
𝐾

⇐ 1{𝑖 ∈ AI tasks}𝛼𝐻𝐴𝐼 (𝑖)𝜎−1

𝛼′
𝐻𝐴𝐼

(𝑖)
A𝐾

A𝐻𝐴𝐼
> (𝐼𝐻 − 𝑆) (𝜎 − 1)𝛼𝜎−2

𝐾

⇐ 1{𝑖 ∈ AI tasks}
𝛼′
𝐻𝐴𝐼

(𝑖)
A𝐾

A𝐻𝐴𝐼

[
𝛼𝐻𝐴𝐼 (𝑖)
𝛼𝐾

]𝜎−1
> (𝐼𝐻 − 𝑆) (𝜎 − 1)𝛼−1

𝐾 .

(2A.11)

However, we cannot determine whether the last inequality is true or not without knowing the range

of parameters. Thus, 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼
𝐻𝐴𝐼

(𝑖) ⪌ | 𝑑 (
𝐻𝐴𝐼𝑊

𝐻𝐴𝐼

𝐾𝑅
)

𝑑𝛼𝐾
|.

2A.2.7 Proof of Proposition 2A.7

Rewrite equation (2.10), the expression for the equilibrium output, as

𝑌
𝜎−1
𝜎 = A

1
𝜎

𝐻𝐴𝐼
(𝐻𝐴𝐼) 𝜎−1

𝜎 + A
1
𝜎

𝐻𝑁𝑜𝑛
(𝐻𝑁𝑜𝑛) 𝜎−1

𝜎 + A
1
𝜎

𝑀
𝑀

𝜎−1
𝜎 + A

1
𝜎

𝐿
𝐿
𝜎−1
𝜎 + A

1
𝜎

𝐾
𝐾

𝜎−1
𝜎 , (2A.12)

and differentiate both sides with respect to 𝐼𝐿:

𝜎 − 1
𝜎

𝑌− 1
𝜎
𝑑𝑌

𝑑𝐼𝑀
= A

1−𝜎
𝜎

𝑀
𝑀

𝜎−1
𝜎
𝑑A𝑀

𝑑𝐼𝑀
+ A

1−𝜎
𝜎

𝐾
𝐾

𝜎−1
𝜎
𝑑A𝐾

𝑑𝐼𝑀

𝑑𝑌

𝑑𝐼𝑀
=

𝜎

𝜎 − 1
𝑌

1
𝜎

[
A

1−𝜎
𝜎

𝑀
𝑀

𝜎−1
𝜎
𝑑A𝑀

𝑑𝐼𝑀
+ A

1−𝜎
𝜎

𝐾
𝐾

𝜎−1
𝜎
𝑑A𝐾

𝑑𝐼𝑀

]
𝑑𝑌

𝑑𝐼𝑀
=

𝜎

𝜎 − 1
𝑌

[
(𝑌A𝑀)

1−𝜎
𝜎 𝑀

𝜎−1
𝜎
𝑑A𝑀

𝑑𝐼𝑀
+ (𝑌A𝐾)

1−𝜎
𝜎 𝐾

𝜎−1
𝜎
𝑑A𝐾

𝑑𝐼𝑀

]
𝑑𝑌

𝑑𝐼𝑀
=

𝜎

𝜎 − 1
𝑌
[
𝑅1−𝜎 −𝑊1−𝜎

𝑀 𝛼𝑀 (𝐼𝑀)𝜎−1]
𝑑𝑌

𝑑𝐼𝑀
=

𝜎

𝜎 − 1
𝑌

[
𝑅1−𝜎 − ( 𝑊𝑀

𝛼𝑀 (𝐼𝑀)
)1−𝜎

]
> 0.

(2A.13)

According to Assumption 2.3, ∃𝐼𝑀 ∈ (𝑁 − 1, 𝑆) such that 𝑊𝑀

𝛼𝑀 (𝐼𝑀 ) > 𝑅. Then if 𝜎 ∈ (0, 1),

( 𝑊𝑀

𝛼𝑀 (𝐼𝑀 ) )
1−𝜎 > 𝑅1−𝜎 and 𝜎

𝜎−1 < 0. Otherwise if 𝜎 ∈ (1,∞), ( 𝑊𝑀

𝛼𝑀 (𝐼𝑀 ) )
1−𝜎 < 𝑅1−𝜎 and 𝜎

𝜎−1 > 0.

In both cases, 𝑑𝑌
𝑑𝐼𝑀

> 0. Similar for 𝑑𝑌
𝑑𝐼𝐻

> 0.
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2A.2.8 Proof of Proposition 2A.8

Given the equilibrium factor prices presented in equation (2.9),

𝑑 ln(𝑊𝐻 𝑗
𝑊𝐿

)
𝑑 ln𝐻 𝑗

=

𝑑 ln
[

A1/𝜎
𝐻 𝑗

(𝐻 𝑗 )−1/𝜎

A1/𝜎
𝐿

𝐿−1/𝜎

]
𝑑 ln𝐻 𝑗

=
𝑑 ( 1

𝜎
ln A𝐻 𝑗 − 1

𝜎
ln𝐻 𝑗 − 1

𝜎
ln A𝐿 + 1

𝜎
ln 𝐿)

𝑑 ln𝐻 𝑗

= − 1
𝜎
< 0, 𝑗 ∈ {𝐴𝐼, 𝑁𝑜𝑛}.

(2A.14)

Similar for the other inequalities in Proposition 2A.8.
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APPENDIX 2B

ADDITIONAL FIGURES & TABLES

Figure 2B.1 Number of AI/CS Postings by BLS Region in LinkUp Data, 2011-22
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Figure 2B.2 Share of AI/CS Postings by BLS Region in LinkUp Data, 2011-22
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Figure 2B.3 Geographic Distribution of the Share of Broad AI Postings in LinkUp Data

(a) 2011-14
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Notes: Scales are in percentage point.
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Figure 2B.4 Comparison between LinkUp and Lightcase Data, 2010-20
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Notes: Shares of AI postings in Lightcast online job postings data is from the Stanford Institute for Human-Centered
Artificial Intelligence (HAI) who purchased Lightcast data. Since Lightcast is a non-public data, HAI only shares (1)
the monthly share of AI postings in each of the seven AI subcategories (artificial intelligence, autonomous driving,
machine learning, natural language processing (NLP), neural networks, robotics, and visual image recognition) in the
U.S. between 2010 and 2020 and (2) the state-year share of AI postings between 2019 and 2021. These data are
publicly available at https://aiindex.stanford.edu/ai-index-report-2022/, provided by Zhang et al. (2022). Since the
total number of AI postings in Lightcast data is not available, I compute the average monthly share of AI postings each
year from (1) in Lightcast data and treat it as the annual share to compare with the annual share in LinkUp data.
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Figure 2B.5 Occupation-Specific Information from O∗NET: Using Actuaries (2019 O∗NET-SOC
Code: 15-2011.00) as an Example

(a) Tasks

(b) Technology Skills

(c) Detailed Work Activities

(d) Knowledge

Source: https://www.onetonline.org/link/summary/15-2011.00
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Figure 2B.6 Plots of Skill-Group-By-Year Employment, Wages, and Share of AI Postings (Using
Broad AI Definition), 2012-21
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Figure 2B.7 Average AI Skill Prevalence Score by BLS Region, 2012-21
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Notes: The AI Skill Prevalence Score is constructed at the state-year level and standardized within a year.
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Figure 2B.8 Time-Varying Effects of Demand for AI Skills on Labor Market Outcomes, 2012-21

(a) Employment per 100,000 Capita
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Notes: The coefficient estimates plotted in each subfigure show overall time-varying effects of changes in share of
narrow AI postings on labor market outcomes. They are obtained by respectively regressing employment per 100,000
capita, share of employment (in percentage point), log mean hourly wages, and share of wage income (in percentage
point) on the triple interaction term between share of narrow AI postings, skill group dummies, and year dummies,
using the main specification with a full set of fixed effects (i.e., state, year, skill-group, 2-digit-occupation, and
skill-group-by-year fixed effects) included. I also plot the corresponding 95% confidence intervals in each subfigure.
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Figure 2B.9 Time-Varying Effects of AI Skill Prevalence on Labor Market Outcomes, 2012-21

(a) Employment per 100,000 Capita
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Notes: The coefficient estimates plotted in each subfigure show overall time-varying effects of AI Skill Prevalence
Score on labor market outcomes. They are obtained by respectively regressing employment per 100,000 capita, share of
employment (in percentage point), log mean hourly wages, and share of wage income (in percentage point) on the triple
interaction term between state-year AI Skill Prevalence Score, skill group dummies, and year dummies, controlling for
the full set of fixed effects (i.e., state, year, skill-group, 2-digit-occupation, and skill-group-by-year fixed effects) as my
main specification. I also plot the corresponding 95% confidence intervals in each subfigure.
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Figure 2B.10 Plots of %AI Postings by 2-Digit Occupational Classification, 2012-21
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Notes: The total number of 2-digit Census Occupational Classification is 23, which is the same as the total number of
my proposed ML occupation clusters. However, the "Military Specific Occupations" group is excluded from my main
sample due to the absence of O∗NET occupational descriptions, which are necessary for constructing the AI occupation
indicators and, consequently, the skill group indicators, as explained in Section 2.3.2.2. Thus, only 22 Census 2-digit
groups are included in my sample for plotting the share of narrow AI postings.
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Figure 2B.11 Plots of Mean Hourly Wage by Different Occupation System, 2012-21

(a) By ML Occupation Cluster
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Notes: The total number of 2-digit Census Occupational Classification is 23, which is the same as the total number of
my proposed ML occupation clusters. However, the "Military Specific Occupations" group is excluded from my main
sample due to the absence of O∗NET occupational descriptions, which are necessary for constructing the AI occupation
indicators and, consequently, the skill group indicators, as explained in Section 2.3.2.2. Thus, only 22 Census 2-digit
groups are included in my sample for plotting the mean hourly wage.

139



Figure 2B.12 Plots of %Wage Income by Different Occupation System, 2012-21

(a) By ML Occupation Cluster
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Notes: The total number of 2-digit Census Occupational Classification is 23, which is the same as the total number of
my proposed ML occupation clusters. However, the "Military Specific Occupations" group is excluded from my main
sample due to the absence of O∗NET occupational descriptions, which are necessary for constructing the AI occupation
indicators and, consequently, the skill group indicators, as explained in Section 2.3.2.2. Thus, only 22 Census 2-digit
groups are included in my sample for plotting the share of wage income.
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Figure 2B.13 Plots of Emp. per Capita by Different Occupation System, 2012-21

(a) By ML Occupation Cluster
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Notes: The range of the y-axis is not fixed for each occupation group within an occupation system. The total number of
2-digit Census Occupational Classification is 23, which is the same as the total number of my proposed ML occupation
clusters. However, the "Military Specific Occupations" group is excluded from my main sample due to the absence of
O∗NET occupational descriptions, which are necessary for constructing the AI occupation indicators and, consequently,
the skill group indicators, as explained in Section 2.3.2.2. Thus, only 22 Census 2-digit groups are included in my
sample for plotting the employment per capita.
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Figure 2B.14 Plots of %Employment by Different Occupation System, 2012-21

(a) By ML Occupation Cluster
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Notes: The total number of 2-digit Census Occupational Classification is 23, which is the same as the total number of
my proposed ML occupation clusters. However, the "Military Specific Occupations" group is excluded from my main
sample due to the absence of O∗NET occupational descriptions, which are necessary for constructing the AI occupation
indicators and, consequently, the skill group indicators, as explained in Section 2.3.2.2. Thus, only 22 Census 2-digit
groups are included in my sample for plotting the share of employment.
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Figure 2B.15 %AI Postings by ML Occupation Cluster Relative to Baseline Year, 2012-21
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Notes: The baseline year for each ML occupation cluster is the first year when there were narrow AI postings of this
group. Each line represents the following ratio, %Narrow AI postings𝑖,𝑡

%Narrow AI postings𝑖,𝑡𝑏𝑎𝑠𝑒
, where 𝑖 represents a ML occupation cluster, 𝑡

is year, and 𝑡𝑏𝑎𝑠𝑒 is the baseline year.
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Table 2B.1 Occupations Ranked by Share of Narrow AI Postings, 2021

OCC2010 Occupation Title Skill Group %Narrow AI Postings

Panel A. Occupations with the Top 15 %AI Postings
5920 Statistical Assistants 𝑀 0.5134408
1760 Physical Scientists, All Other 𝐻𝐴𝐼 0.5022625
1240 Mathematicians and Statisticians 𝐻𝐴𝐼 0.4595848
1400 Computer Hardware Engineers 𝐻𝐴𝐼 0.4479544
1020 Software Developers, Applications and Systems Software 𝐻𝐴𝐼 0.4286178
1700 Astronomers and Physicists 𝑀 0.2866242
8550 Woodworkers Including Model Makers and Patternmakers, All Other 𝑀 0.25
7010 Computer, Automated Teller, and Office Machine Repairers 𝑀 0.2305805
1800 Economists and Market Researchers 𝐻𝐴𝐼 0.2304875
1010 Computer Programmers 𝐻𝐴𝐼 0.2256069
1410 Electrical and Electronics Engineers 𝐻𝐴𝐼 0.2237831
1460 Mechanical Engineers 𝐻𝐴𝐼 0.2184486
1200 Actuaries 𝐻𝐴𝐼 0.2033132
1000 Computer Scientists and Systems Analysts/Network systems Analysts/Web Developers 𝐻𝐴𝐼 0.2027434
1560 Surveying and Mapping Technicians 𝐻𝑁𝑜𝑛 0.2007183

Panel B. Occupations with the Bottom 15 %AI Postings
8640 Chemical Processing Machine Setters, Operators, and Tenders 𝑀 0
4500 Barbers 𝑀 0
3700 First-Line Supervisors of Correctional Officers 𝐿 0
3800 Bailiffs, Correctional Officers, and Jailers 𝐿 0
6460 Plasterers and Stucco Masons 𝑀 0
2760 Entertainers and Performers, Sports and Related Workers, All Other 𝐻𝑁𝑜𝑛 0
5410 Reservation and Transportation Ticket Agents and Travel Clerks 𝑀 0
4420 Ushers, Lobby Attendants, and Ticket Takers 𝑀 0
5630 Weighers, Measurers, Checkers, and Samplers, Recordkeeping 𝑀 0
6130 Logging Workers 𝐿 0
9650 Pumping Station Operators 𝑀 0
4830 Travel Agents 𝑀 0
5540 Postal Service Clerks 𝑀 0
2050 Directors, Religious Activities and Education 𝐻𝑁𝑜𝑛 0
7160 Automotive Glass Installers and Repairers 𝑀 0

Notes: The share of narrow AI postings in this table is calculated at the 4-digit-occupation-by-year level. There is a tie
in the lowest share of narrow AI postings, with 64 occupations having no narrow AI posting. 15 out of 64 occupations
are randomly chosen and listed in Panel B. 𝐻𝐴𝐼 , 𝐻𝑁𝑜𝑛, 𝑀 , and 𝐿 represent high-skilled AI-complement, high-skilled
not-yet-AI, middle-skilled, and low-skilled occupation group, respectively.
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Table 2B.2 Effects of Demand for AI Skills on Employment per Capita—Adopting Different SSIVs,
2012-21

Dep. Var.: Employment per 100,000 Capita

"Leave-One-Out" SSIV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster1

(1) (2) (3) (4) (5)

%AI Postings2 -6.146 -92.339∗∗∗ -23.431 -17.202 -71.854∗∗∗
(8.282) (19.785) (15.930) (14.465) (16.847)

%AI Postings ×
High-Skilled AI-Complement Occ 55.756∗∗∗ 112.148∗∗∗ 104.546∗∗∗ 107.041∗∗∗ 115.332∗∗∗

(14.940) (27.069) (25.826) (25.458) (27.218)

High-Skilled Not-Yet-AI Occ 20.065∗∗ 46.987∗∗ 43.239∗∗ 44.447∗∗ 51.323∗∗∗
(10.099) (19.926) (19.693) (18.122) (19.648)

Middle-Skilled Occ 2.868 10.546 10.996 10.270 14.428
(8.991) (18.021) (18.083) (15.803) (17.382)

Skill Group =

High-Skilled AI-Complement Occ -333.383∗ -361.106∗ -282.738 -356.421∗ -204.808
(187.602) (190.281) (228.930) (189.121) (135.222)

High-Skilled Not-Yet-AI Occ -209.460 -220.774 -127.816 -219.972 -138.956
(184.689) (187.992) (236.239) (186.713) (132.753)

Middle-Skilled Occ -192.177 -194.626 -114.134 -195.785 -161.660
(181.375) (184.771) (230.363) (183.521) (118.682)

Observations 192,008 192,008 202,796 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.129 0.122 0.129 0.128 0.121
Cragg-Donald Wald F Statistic 2594.341 7772.793 3414.392 2722.659

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.3 Effects of Demand for AI Skills on Share of Employment—Adopting Different SSIVs,
2012-21

Dep. Var.: Share of Employment1

"Leave-One-Out" SSIV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster2

(1) (2) (3) (4) (5)

%AI Postings3 -0.006 -0.092∗∗∗ -0.023 -0.017 -0.072∗∗∗
(0.008) (0.020) (0.016) (0.014) (0.017)

%AI Postings ×
High-Skilled AI-Complement Occ 0.056∗∗∗ 0.112∗∗∗ 0.105∗∗∗ 0.107∗∗∗ 0.115∗∗∗

(0.015) (0.027) (0.026) (0.025) (0.027)

High-Skilled Not-Yet-AI Occ 0.020∗∗ 0.047∗∗ 0.043∗∗ 0.044∗∗ 0.051∗∗∗
(0.010) (0.020) (0.020) (0.018) (0.020)

Middle-Skilled Occ 0.003 0.011 0.011 0.010 0.014
(0.009) (0.018) (0.018) (0.016) (0.017)

Skill Group =

High-Skilled AI-Complement Occ -0.333∗ -0.361∗ -0.283 -0.356∗ -0.205
(0.188) (0.190) (0.229) (0.189) (0.135)

High-Skilled Not-Yet-AI Occ -0.209 -0.221 -0.128 -0.220 -0.139
(0.185) (0.188) (0.236) (0.187) (0.133)

Middle-Skilled Occ -0.192 -0.195 -0.114 -0.196 -0.162
(0.181) (0.185) (0.230) (0.184) (0.119)

Observations 192,008 192,008 202,796 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.129 0.122 0.129 0.128 0.121
Cragg-Donald Wald F Statistic 2594.341 7772.793 3414.392 2722.659

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of employment is a percentage point.
2 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
3 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.4 Effects of Demand for AI Skills on Mean Hourly Wage—Adopting Different SSIVs,
2012-21

Dep. Var.: Log Mean Hourly Wage

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster1

(1) (2) (3) (4) (5)

%AI Postings2 0.005 0.010 -0.002 -0.005 0.012
(0.005) (0.014) (0.010) (0.013) (0.013)

%AI Postings ×
High-Skilled AI-Complement Occ 0.025∗∗∗ 0.050∗∗∗ 0.048∗∗∗ 0.055∗∗∗ 0.044∗∗∗

(0.007) (0.010) (0.010) (0.011) (0.010)

High-Skilled Not-Yet-AI Occ 0.007 0.029∗∗∗ 0.025∗∗∗ 0.029∗∗∗ 0.026∗∗∗
(0.006) (0.010) (0.009) (0.010) (0.009)

Middle-Skilled Occ -0.009 0.005 0.003 0.002 -0.002
(0.005) (0.009) (0.008) (0.010) (0.009)

Skill Group =

High-Skilled AI-Complement Occ 0.441∗∗∗ 0.431∗∗∗ 0.431∗∗∗ 0.428∗∗∗ 0.381∗∗∗
(0.104) (0.104) (0.098) (0.103) (0.115)

High-Skilled Not-Yet-AI Occ 0.126 0.117 0.127 0.117 0.171
(0.096) (0.096) (0.094) (0.095) (0.109)

Middle-Skilled Occ -0.088 -0.094 -0.101 -0.092 -0.098
(0.092) (0.092) (0.090) (0.091) (0.095)

Observations 187,960 187,960 198,588 187,960 186,742
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.340 0.339 0.341 0.340 0.302
Cragg-Donald Wald F Statistic 2454.979 7515.481 3252.866 2595.872

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.5 Effects of Demand for AI Skills on Wage Income Share—Adopting Different SSIVs,
2012-21

Dep. Var.: Share of Wage Income1

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster2

(1) (2) (3) (4) (5)

%AI Postings3 -0.011 -0.101∗∗∗ -0.026 -0.025 -0.082∗∗∗
(0.011) (0.025) (0.020) (0.018) (0.021)

%AI Postings ×
High-Skilled AI-Complement Occ 0.089∗∗∗ 0.158∗∗∗ 0.148∗∗∗ 0.148∗∗∗ 0.159∗∗∗

(0.026) (0.040) (0.038) (0.036) (0.040)

High-Skilled Not-Yet-AI Occ 0.026∗ 0.056∗∗ 0.051∗ 0.056∗∗ 0.059∗∗
(0.014) (0.027) (0.027) (0.025) (0.027)

Middle-Skilled Occ 0.005 0.014 0.015 0.014 0.015
(0.012) (0.022) (0.022) (0.020) (0.022)

Skill Group =

High-Skilled AI-Complement Occ -0.151 -0.184 -0.090 -0.177 0.037
(0.166) (0.168) (0.221) (0.167) (0.131)

High-Skilled Not-Yet-AI Occ -0.029 -0.042 0.072 -0.042 0.101
(0.159) (0.163) (0.231) (0.162) (0.115)

Middle-Skilled Occ -0.169 -0.172 -0.165 -0.174 -0.127∗
(0.141) (0.145) (0.206) (0.144) (0.076)

Observations 192,008 192,008 202,796 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.158 0.152 0.154 0.156 0.150
Cragg-Donald Wald F Statistic 2594.341 7772.793 3414.392 2722.659

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
3 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.6 Effects of Demand for AI Skills on Employment per Capita—Controlling for CS Skills
with SSIV Approach,2012-21

Dep. Var.: Employment per 100,000 Capita

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster1

(1) (2) (3) (4) (5)

%AI Postings2 -3.319 230.823∗∗∗ -21.448∗ -11.059 -81.387∗∗∗
(7.305) (69.433) (11.001) (8.898) (23.373)

%AI Postings ×
High-Skilled AI-Complement Occ 50.117∗∗∗ 74.264 80.628∗∗∗ 76.245∗∗∗ 148.067∗∗∗

(13.951) (47.849) (27.198) (20.555) (38.270)

High-Skilled Not-Yet-AI Occ 17.475∗ 48.567 31.679∗∗ 32.214∗∗∗ 65.866∗∗
(9.068) (33.341) (15.230) (10.759) (27.776)

Middle-Skilled Occ 1.214 15.045 -13.824 -0.380 18.935
(7.837) (31.375) (10.474) (9.124) (25.563)

%CS Postings3 -20.644 10,597.27∗∗∗ -258.415∗∗∗ -160.357∗∗ -287.229∗∗∗
(16.402) (2659.423) (84.086) (71.667) (93.169)

%CS Postings ×
High-Skilled AI-Complement Occ 34.595∗ 440.349∗ 118.009 212.925∗∗∗ -189.905∗∗

(19.244) (230.409) (100.192) (75.302) (94.463)

High-Skilled Not-Yet-AI Occ 15.984 203.431 57.044 83.368 -97.905
(17.927) (185.603) (85.209) (71.702) (79.981)

Middle-Skilled Occ 10.290 203.121 135.208∗ 71.801 -52.257
(17.749) (175.500) (80.918) (64.526) (75.213)

Skill Group =

High-Skilled AI-Complement Occ -339.642∗ -522.176∗∗ -372.870∗ -396.763∗∗ -267.485
(189.454) (217.974) (200.537) (197.764) (166.744)

High-Skilled Not-Yet-AI Occ -212.117 -345.447∗ -226.329 -233.944 -188.700
(186.650) (205.772) (197.692) (196.731) (162.947)

Middle-Skilled Occ -193.763 -416.912∗∗ -215.101 -206.787 -147.224
(183.421) (203.557) (194.491) (193.099) (156.835)

Observations 192,008 192,008 192,008 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.129 -18.991 0.123 0.126 0.097
Cragg-Donald Wald F Statistic 1.396 234.610 83.690 292.027

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
3 Phrases that belong to broad AI category but not narrow AI category are used to compute %CS postings at the
state-year level. %CS postings is in percentage point.
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Table 2B.7 Effects of Demand for AI Skills on Share of Employment—Controlling for CS Skills
with SSIV Approach,2012-21

Dep. Var.: Share of Employment1

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster2

(1) (2) (3) (4) (5)

%AI Postings3 -0.003 0.231∗∗∗ -0.021∗ -0.011 -0.081∗∗∗
(0.007) (0.069) (0.011) (0.009) (0.023)

%AI Postings ×
High-Skilled AI-Complement Occ 0.050∗∗∗ 0.074 0.081∗∗∗ 0.076∗∗∗ 0.148∗∗∗

(0.014) (0.048) (0.027) (0.021) (0.038)

High-Skilled Not-Yet-AI Occ 0.017∗ 0.049 0.032∗∗ 0.032∗∗∗ 0.066∗∗
(0.009) (0.033) (0.015) (0.011) (0.028)

Middle-Skilled Occ 0.001 0.015 -0.014 -0.000 0.019
(0.008) (0.031) (0.010) (0.009) (0.026)

%CS Postings4 -0.021 10.597∗∗∗ -0.258∗∗∗ -0.160∗∗ -0.287∗∗∗
(0.016) (2.659) (0.084) (0.072) (0.093)

%CS Postings ×
High-Skilled AI-Complement Occ 0.035∗ 0.440∗ 0.118 0.213∗∗∗ -0.190∗∗

(0.019) (0.230) (0.100) (0.075) (0.094)

High-Skilled Not-Yet-AI Occ 0.016 0.203 0.057 0.083 -0.098
(0.018) (0.186) (0.085) (0.072) (0.080)

Middle-Skilled Occ 0.010 0.203 0.135∗ 0.072 -0.052
(0.018) (0.176) (0.081) (0.065) (0.075)

Skill Group =

High-Skilled AI-Complement Occ -0.340∗ -0.522∗∗ -0.373∗ -0.397∗∗ -0.267
(0.189) (0.218) (0.201) (0.198) (0.167)

High-Skilled Not-Yet-AI Occ -0.212 -0.345∗ -0.226 -0.234 -0.189
(0.187) (0.206) (0.198) (0.197) (0.163)

Middle-Skilled Occ -0.194 -0.417∗∗ -0.215 -0.207 -0.147
(0.183) (0.204) (0.194) (0.193) (0.157)

Observations 192,008 192,008 192,008 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.129 -18.991 0.123 0.126 0.097
Cragg-Donald Wald F Statistic 1.396 234.610 83.690 292.027

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of employment is a percentage point.
2 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
3 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
4 Phrases that belong to broad AI category but not narrow AI category are used to compute %CS postings at the
state-year level. %CS postings is in percentage point.
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Table 2B.8 Effects of Demand for AI Skills on Mean Hourly Wage—Controlling for CS Skills with
SSIV Approach,2012-21

Dep. Var.: Log Mean Hourly Wage

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster2

(1) (2) (3) (4) (5)

%AI Postings2 0.004 -0.006 0.004 0.010 0.008
(0.006) (0.020) (0.014) (0.018) (0.019)

%AI Postings ×
High-Skilled AI-Complement Occ 0.034∗∗∗ 0.032 0.037∗∗ 0.060∗∗∗ 0.073∗∗∗

(0.008) (0.021) (0.015) (0.019) (0.024)

High-Skilled Not-Yet-AI Occ 0.013∗ 0.033∗∗ 0.030∗∗ 0.021 0.048∗∗∗
(0.007) (0.016) (0.012) (0.016) (0.018)

Middle-Skilled Occ -0.008 -0.006 0.001 -0.011 -0.002
(0.006) (0.015) (0.012) (0.016) (0.018)

%CS Postings3 0.006 -0.807 0.018 0.025 0.102
(0.017) (0.663) (0.065) (0.111) (0.080)

%CS Postings ×
High-Skilled AI-Complement Occ -0.057∗∗ 0.090 0.058 -0.037 -0.143

(0.023) (0.085) (0.063) (0.081) (0.095)

High-Skilled Not-Yet-AI Occ -0.033∗ -0.034 -0.026 0.049 -0.115∗
(0.019) (0.061) (0.051) (0.069) (0.069)

Middle-Skilled Occ -0.004 0.045 0.011 0.085 0.005
(0.018) (0.058) (0.049) (0.068) (0.067)

Skill Group =

High-Skilled AI-Complement Occ 0.452∗∗∗ 0.419∗∗∗ 0.421∗∗∗ 0.436∗∗∗ 0.555∗∗∗
(0.104) (0.106) (0.105) (0.107) (0.105)

High-Skilled Not-Yet-AI Occ 0.132 0.129 0.123 0.108 0.236∗∗
(0.097) (0.098) (0.098) (0.099) (0.098)

Middle-Skilled Occ -0.087 -0.087 -0.095 -0.109 -0.002
(0.093) (0.094) (0.094) (0.096) (0.095)

Observations 187,960 187,960 187,960 187,960 186,742
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.340 0.275 0.340 0.338 0.341
Cragg-Donald Wald F Statistic 1.819 225.433 77.326 278.088

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group is the low-skilled group. Occupation-clustered standard errors
are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
3 Phrases that belong to broad AI category but not narrow AI category are used to compute %CS postings at the
state-year level. %CS postings is in percentage point.
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Table 2B.9 Effects of Demand for AI Skills on Wage Income Share—Controlling for CS Skills with
SSIV Approach,2012-021

Dep. Var.: Share of Wage Income1

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster2

(1) (2) (3) (4) (5)

%AI Postings3 -0.012 0.204∗∗∗ -0.041∗∗∗ -0.022∗ -0.111∗∗∗
(0.010) (0.067) (0.014) (0.012) (0.030)

%AI Postings ×
High-Skilled AI-Complement Occ 0.086∗∗∗ 0.113∗ 0.124∗∗∗ 0.116∗∗∗ 0.215∗∗∗

(0.025) (0.059) (0.039) (0.033) (0.055)

High-Skilled Not-Yet-AI Occ 0.030∗∗ 0.093∗∗ 0.061∗∗ 0.048∗∗∗ 0.106∗∗∗
(0.014) (0.040) (0.024) (0.016) (0.040)

Middle-Skilled Occ 0.006 0.029 0.000 0.005 0.031
(0.011) (0.031) (0.012) (0.012) (0.032)

%CS Postings4 0.000 10.574∗∗∗ -0.189∗∗ -0.159∗ -0.251∗∗
(0.016) (2.637) (0.076) (0.082) (0.101)

%CS Postings ×
High-Skilled AI-Complement Occ 0.013 0.481∗ 0.115 0.224∗∗ -0.296∗∗

(0.027) (0.254) (0.122) (0.100) (0.137)

High-Skilled Not-Yet-AI Occ -0.021 0.002 -0.066 0.051 -0.271∗∗∗
(0.019) (0.181) (0.086) (0.085) (0.104)

Middle-Skilled Occ -0.006 0.138 0.072 0.061 -0.109
(0.017) (0.162) (0.069) (0.070) (0.082)

Skill Group =

High-Skilled AI-Complement Occ -0.153 -0.355∗ -0.196 -0.220 -0.041
(0.167) (0.210) (0.179) (0.176) (0.152)

High-Skilled Not-Yet-AI Occ -0.026 -0.132 -0.027 -0.050 0.019
(0.161) (0.190) (0.172) (0.173) (0.148)

Middle-Skilled Occ -0.168 -0.382∗∗ -0.183 -0.183 -0.117
(0.143) (0.178) (0.153) (0.155) (0.116)

Observations 192,008 192,008 192,008 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.158 -13.519 0.153 0.155 0.123
Cragg-Donald Wald F Statistic 1.396 234.610 83.690 292.027

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
3 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
4 Phrases that belong to broad AI category but not narrow AI category are used to compute %CS postings at the
state-year level. %CS postings is in percentage point.
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Table 2B.10 Effects of Demand for AI Skills on Employment—Controlling for Software/Robot
Exposure, 2012-21

Dep. Var.:

Emp. per 100,000 Capita Share of Emp.1

Main Spec. Controlling for Exposure Main Spec. Controlling for Exposure
to Software/Robot to Software/Robot

(1) (2) (3) (4)

%AI Postings2 -6.146 -6.068 -0.006 -0.006
(8.282) (8.286) (0.008) (0.008)

%AI Postings ×
High-Skilled AI-Complement Occ 55.756∗∗∗ 55.665∗∗∗ 0.056∗∗∗ 0.056∗∗∗

(14.940) (14.935) (0.015) (0.015)

High-Skilled Not-Yet-AI Occ 20.065∗∗ 20.157∗∗ 0.020∗∗ 0.020∗∗
(10.099) (10.126) (0.010) (0.010)

Middle-Skilled Occ 2.868 2.754 0.003 0.003
(8.991) (9.011) (0.009) (0.009)

Software Exposure3 -29.705 -0.030
(84.576) (0.085)

Robot Exposure4 41.908 0.042
(59.383) (0.059)

Skill Group =

High-Skilled AI-Complement Occ -333.383∗ -328.487∗ -0.333∗ -0.328∗
(187.602) (189.279) (0.188) (0.189)

High-Skilled Not-Yet-AI Occ -209.460 -202.830 -0.209 -0.203
(184.689) (186.656) (0.185) (0.187)

Middle-Skilled Occ -192.177 -196.507 -0.192 -0.197
(181.375) (179.849) (0.181) (0.180)

Observations 192,008 190,859 192,008 190,859
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓
R2 0.129 0.129 0.129 0.129

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of employment is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
3,4 The software and robot exposure scores are constructed by Webb (2019), which measure the capabilities in software
and robots for performing an occupation’s tasks.
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Table 2B.11 Effects of Demand for AI Skills on Wages—Controlling for Software/Robot Exposure,
2012-21

Dep. Var.:

Log Mean Hourly Wages Share of Wage Income1

Main Spec. Controlling for Exposure Main Spec. Controlling for Exposure
to Software/Robot to Software/Robot

(1) (2) (3) (4)

%AI Postings2 0.005 0.005 -0.011 -0.011
(0.005) (0.005) (0.011) (0.011)

%AI Postings ×
High-Skilled AI-Complement Occ 0.025∗∗∗ 0.025∗∗∗ 0.089∗∗∗ 0.089∗∗∗

(0.007) (0.007) (0.026) (0.026)

High-Skilled Not-Yet-AI Occ 0.007 0.008 0.026∗ 0.027∗
(0.006) (0.006) (0.014) (0.015)

Middle-Skilled Occ -0.009 -0.008 0.005 0.005
(0.005) (0.005) (0.012) (0.012)

Software Exposure3 0.144∗ 0.000
(0.081) (0.064)

Robot Exposure4 -0.092∗∗ -0.010
(0.042) (0.041)

Skill Group =

High-Skilled AI-Complement Occ 0.441∗∗∗ 0.440∗∗∗ -0.151 -0.144
(0.104) (0.103) (0.166) (0.167)

High-Skilled Not-Yet-AI Occ 0.126 0.128 -0.029 -0.020
(0.096) (0.095) (0.159) (0.161)

Middle-Skilled Occ -0.088 -0.089 -0.169 -0.165
(0.092) (0.089) (0.141) (0.140)

Observations 187,960 186,911 192,008 190,859
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓
R2 0.340 0.345 0.158 0.157

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
3,4 The software and robot exposure scores are constructed by Webb (2019), which measure the capabilities in software
and robots for performing an occupation’s tasks.
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Table 2B.12 Effects of Demand for AI Skills on Employment—Comparing Narrow vs. Broad AI
Definition, 2012-21

Dep. Var.:

Emp. per 100,000 Capita Share of Emp.1

Main Spec.: Broad AI Def. Main Spec.: Broad AI Def.
Narrow AI Def. Narrow AI Def.

(1) (2) (3) (4)

%AI Postings2 -6.146 -6.426 -0.006 -0.006
(8.282) (7.180) (0.008) (0.007)

%AI Postings ×
High-Skilled AI-Complement Occ 55.756∗∗∗ 40.379∗∗∗ 0.056∗∗∗ 0.040∗∗∗

(14.940) (11.235) (0.015) (0.011)

High-Skilled Not-Yet-AI Occ 20.065∗∗ 17.276∗ 0.020∗∗ 0.017∗
(10.099) (8.877) (0.010) (0.009)

Middle-Skilled Occ 2.868 2.654 0.003 0.003
(8.991) (7.791) (0.009) (0.008)

Skill Group =

High-Skilled AI-Complement Occ -333.383∗ -359.568∗ -0.333∗ -0.360∗
(187.602) (187.916) (0.188) (0.188)

High-Skilled Not-Yet-AI Occ -209.460 -207.855 -0.209 -0.208
(184.689) (186.267) (0.185) (0.186)

Middle-Skilled Occ -192.177 -193.676 -0.192 -0.194
(181.375) (182.588) (0.181) (0.183)

Observations 192,008 192,008 192,008 192,008
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓
R2 0.129 0.130 0.129 0.130

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of employment is a percentage point.
2 In columns 1 and 3 (2 and 4), narrow (broad) AI definition is used when defining skill groups and computing %AI
postings at the state-year level. %AI postings is in percentage point.
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Table 2B.13 Effects of Demand for AI Skills on Wages—Comparing Narrow vs. Broad AI
Definition, 2012-21

Dep. Var.:

Log Mean Hourly Wages Share of Wage Income1

Main Spec.: Broad AI Def. Main Spec.: Broad AI Def.
Narrow AI Def. Narrow AI Def.

(1) (2) (3) (4)

%AI Postings2 0.005 0.004 -0.011 -0.010
(0.005) (0.004) (0.011) (0.009)

%AI Postings ×
High-Skilled AI-Complement Occ 0.025∗∗∗ 0.017∗∗∗ 0.089∗∗∗ 0.061∗∗∗

(0.007) (0.005) (0.026) (0.019)

High-Skilled Not-Yet-AI Occ 0.007 0.005 0.026∗ 0.022∗
(0.006) (0.005) (0.014) (0.013)

Middle-Skilled Occ -0.009 -0.007 0.005 0.004
(0.005) (0.004) (0.012) (0.010)

Skill Group =

High-Skilled AI-Complement Occ 0.441∗∗∗ 0.353∗∗∗ -0.151 -0.213
(0.104) (0.108) (0.166) (0.166)

High-Skilled Not-Yet-AI Occ 0.126 0.126 -0.029 -0.026
(0.096) (0.096) (0.159) (0.161)

Middle-Skilled Occ -0.088 -0.086 -0.169 -0.172
(0.092) (0.092) (0.141) (0.143)

Observations 187,960 187,960 192,008 192,008
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓
R2 0.340 0.335 0.158 0.158

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 In columns 1 and 3 (2 and 4), narrow (broad) AI definition is used when defining skill groups and computing %AI
postings at the state-year level. %AI postings is in percentage point.
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Table 2B.14 Effects of Demand for AI Skills on Employment per Capita—Using AI Posting Share
Quintiles, 2012-21

Dep. Var.: Employment per 100,000 Capita

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster2

(1) (2) (3) (4) (5)

%AI Postings3 -6.216 -85.276∗∗∗ -36.123∗∗ -13.202 -56.901∗∗∗
(8.286) (19.489) (15.230) (14.441) (15.184)

%AI Postings ×
High-Skilled Occ × AI Occ (q5) 48.853∗∗∗ 99.140∗∗∗ 90.803∗∗∗ 96.294∗∗∗ 101.648∗∗∗

(12.974) (24.210) (21.893) (22.795) (23.490)

High-Skilled Occ × AI Occ (q4) 38.268∗∗∗ 79.798∗∗∗ 73.485∗∗∗ 80.581∗∗∗ 83.682∗∗∗
(13.342) (25.707) (23.289) (25.579) (25.421)

High-Skilled Occ × AI Occ (q3) 10.131 31.974 26.344 27.874 31.521∗
(10.305) (19.617) (18.004) (18.882) (18.635)

High-Skilled Occ × AI Occ (q2) -6.320 11.232 2.387 0.804 6.653
(13.476) (23.393) (22.058) (20.595) (22.658)

High-Skilled Occ × AI Occ (q1) 11.129 12.545 19.884 23.376 13.795
(10.147) (23.463) (20.025) (17.422) (23.596)

Middle-Skilled Occ 2.876 10.715 10.850 10.264 10.607
(8.991) (18.012) (16.224) (15.799) (16.758)

Skill Group =

High-Skilled Occ × AI Occ (q5) -349.610∗ -373.521∗∗ -368.446∗ -370.143∗∗ -324.360∗∗
(187.009) (189.883) (189.206) (188.629) (164.379)

High-Skilled Occ × AI Occ (q4) -175.111 -191.474 -189.621 -192.923 -218.962
(191.082) (193.761) (193.115) (192.522) (168.215)

High-Skilled Occ × AI Occ (q3) 70.477 62.172 63.610 62.475 81.577
(256.242) (258.880) (258.203) (257.453) (233.694)

High-Skilled Occ × AI Occ (q2) 13.270 -46.608 -16.595 -11.378 -23.859
(212.031) (241.724) (238.168) (233.475) (239.980)

High-Skilled Occ × AI Occ (q1) -383.211∗∗ -385.143∗∗ -387.530∗∗ -388.782∗∗ -358.280∗∗
(182.666) (186.549) (185.660) (184.996) (161.318)

Middle-Skilled Occ -186.631 -189.173 -190.062 -190.342 -153.562
(181.869) (185.228) (184.440) (183.981) (157.866)

Observations 192,008 192,008 192,008 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.143 0.137 0.142 0.141 0.137
Cragg-Donald Wald F Statistic 1,417.981 2,625.620 1,932.669 1,495.119

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based on
skill requirements using machine learning. Details are presented in Section 2.6.2.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.15 Effects of Demand for AI Skills on Share of Employment—Using AI Posting Share
Quintiles, 2012-21

Dep. Var.: Share of Employment1

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster2

(1) (2) (3) (4) (5)

%AI Postings3 -0.006 -0.085∗∗∗ -0.036∗∗ -0.013 -0.057∗∗∗
(0.008) (0.019) (0.015) (0.014) (0.015)

%AI Postings ×
High-Skilled Occ × AI Occ (q5) 0.049∗∗∗ 0.099∗∗∗ 0.091∗∗∗ 0.096∗∗∗ 0.102∗∗∗

(0.013) (0.024) (0.022) (0.023) (0.023)

High-Skilled Occ × AI Occ (q4) 0.038∗∗∗ 0.080∗∗∗ 0.073∗∗∗ 0.081∗∗∗ 0.084∗∗∗
(0.013) (0.026) (0.023) (0.026) (0.025)

High-Skilled Occ × AI Occ (q3) 0.010 0.032 0.026 0.028 0.032∗
(0.010) (0.020) (0.018) (0.019) (0.019)

High-Skilled Occ × AI Occ (q2) -0.006 0.011 0.002 0.001 0.007
(0.013) (0.023) (0.022) (0.021) (0.023)

High-Skilled Occ × AI Occ (q1) 0.011 0.013 0.020 0.023 0.014
(0.010) (0.023) (0.020) (0.017) (0.024)

Middle-Skilled Occ 0.003 0.011 0.011 0.010 0.011
(0.009) (0.018) (0.016) (0.016) (0.017)

Skill Group =

High-Skilled Occ × AI Occ (q5) -0.350∗ -0.374∗∗ -0.368∗ -0.370∗∗ -0.324∗∗
(0.187) (0.190) (0.189) (0.189) (0.164)

High-Skilled Occ × AI Occ (q4) -0.175 -0.191 -0.190 -0.193 -0.219
(0.191) (0.194) (0.193) (0.193) (0.168)

High-Skilled Occ × AI Occ (q3) 0.070 0.062 0.064 0.062 0.082
(0.256) (0.259) (0.258) (0.257) (0.234)

High-Skilled Occ × AI Occ (q2) 0.013 -0.047 -0.017 -0.011 -0.024
(0.212) (0.242) (0.238) (0.233) (0.240)

High-Skilled Occ × AI Occ (q1) -0.383∗∗ -0.385∗∗ -0.388∗∗ -0.389∗∗ -0.358∗∗
(0.183) (0.187) (0.186) (0.185) (0.161)

Middle-Skilled Occ -0.187 -0.189 -0.190 -0.190 -0.154
(0.182) (0.185) (0.184) (0.184) (0.158)

Observations 192,008 192,008 192,008 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.143 0.137 0.142 0.141 0.137
Cragg-Donald Wald F Statistic 1,417.981 2,625.620 1,932.669 1,495.119

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a
harmonized occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification.
All columns include a set of state-year controls. The baseline group in columns is the low-skilled group.
Occupation-clustered standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of employment is a percentage point.
2 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based
on skill requirements using machine learning. Details are presented in Section 2.6.2.
3 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.16 Effects of Demand for AI Skills on Mean Hourly Wage—Using AI Posting Share
Quintiles, 2012-21

Dep. Var.: Log Mean Hourly Wage

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster1

(1) (2) (3) (4) (5)

%AI Postings2 0.005 0.012 0.004 -0.005 0.018
(0.005) (0.014) (0.011) (0.013) (0.013)

%AI Postings ×
High-Skilled Occ × AI Occ (q5) 0.025∗∗∗ 0.051∗∗∗ 0.049∗∗∗ 0.056∗∗∗ 0.047∗∗∗

(0.006) (0.010) (0.009) (0.011) (0.009)

High-Skilled Occ × AI Occ (q4) 0.013∗∗ 0.040∗∗∗ 0.035∗∗∗ 0.037∗∗∗ 0.036∗∗∗
(0.006) (0.010) (0.009) (0.011) (0.010)

High-Skilled Occ × AI Occ (q3) 0.004 0.023∗ 0.018∗ 0.022∗ 0.018
(0.007) (0.012) (0.011) (0.012) (0.012)

High-Skilled Occ × AI Occ (q2) 0.006 0.022 0.021∗ 0.029∗∗ 0.020
(0.008) (0.014) (0.013) (0.014) (0.013)

High-Skilled Occ × AI Occ (q1) -0.012 0.001 -0.001 -0.002 0.019
(0.015) (0.026) (0.023) (0.029) (0.028)

Middle-Skilled Occ -0.009 0.005 0.003 0.002 -0.001
(0.005) (0.009) (0.008) (0.010) (0.009)

Skill Group =

High-Skilled Occ × AI Occ (q5) 0.334∗∗∗ 0.324∗∗∗ 0.324∗∗∗ 0.321∗∗∗ 0.424∗∗∗
(0.105) (0.105) (0.105) (0.105) (0.104)

High-Skilled Occ × AI Occ (q4) 0.189∗ 0.178∗ 0.180∗ 0.179∗ 0.258∗∗
(0.103) (0.103) (0.103) (0.102) (0.101)

High-Skilled Occ × AI Occ (q3) 0.149 0.140 0.142 0.141 0.242∗∗
(0.121) (0.121) (0.121) (0.120) (0.119)

High-Skilled Occ × AI Occ (q2) 0.061 0.007 0.009 -0.015 0.020
(0.117) (0.125) (0.125) (0.125) (0.122)

High-Skilled Occ × AI Occ (q1) 0.045 0.040 0.040 0.040 0.095
(0.133) (0.133) (0.133) (0.133) (0.135)

Middle-Skilled Occ -0.081 -0.088 -0.087 -0.086 -0.000
(0.093) (0.093) (0.093) (0.092) (0.092)

Observations 187,960 187,960 187,960 187,960 186,742
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.339 0.338 0.338 0.338 0.340
Cragg-Donald Wald F Statistic 1,338.611 2,515.017 1,839.275 1,424.106

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a
harmonized occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification.
All columns include a set of state-year controls. The baseline group in columns is the low-skilled group.
Occupation-clustered standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based
on skill requirements using machine learning. Details are presented in Section 2.6.2.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.17 Effects of Demand for AI Skills on Wage Income Share—Using AI Posting Share
Quintiles, 2012-21

Dep. Var.: Share of Wage Income1

Leave-One-Out IV by Summing across
OLS 2-Digit OCC 4-Digit OCC 4-Digit NAICS ML Occupation Cluster2

(1) (2) (3) (4) (5)

%AI Postings3 -0.011 -0.088∗∗∗ -0.040∗∗ -0.019 -0.064∗∗∗
(0.011) (0.024) (0.019) (0.018) (0.019)

%AI Postings ×
High-Skilled Occ × AI Occ (q5) 0.076∗∗∗ 0.139∗∗∗ 0.127∗∗∗ 0.133∗∗∗ 0.142∗∗∗

(0.022) (0.034) (0.032) (0.032) (0.034)

High-Skilled Occ × AI Occ (q4) 0.055∗∗ 0.106∗∗ 0.098∗∗ 0.111∗∗ 0.112∗∗∗
(0.023) (0.042) (0.039) (0.044) (0.043)

High-Skilled Occ × AI Occ (q3) 0.008 0.025 0.020 0.027 0.024
(0.013) (0.025) (0.023) (0.023) (0.024)

High-Skilled Occ × AI Occ (q2) -0.008 0.005 -0.004 -0.004 -0.000
(0.017) (0.030) (0.028) (0.026) (0.029)

High-Skilled Occ × AI Occ (q1) 0.015 0.023 0.028 0.029 0.024
(0.012) (0.024) (0.021) (0.021) (0.023)

Middle-Skilled Occ 0.005 0.014 0.014 0.014 0.013
(0.012) (0.022) (0.020) (0.020) (0.021)

Skill Group =

High-Skilled Occ × AI Occ (q5) -0.172 -0.201 -0.194 -0.196 -0.132
(0.164) (0.167) (0.167) (0.166) (0.146)

High-Skilled Occ × AI Occ (q4) 0.050 0.030 0.032 0.027 -0.031
(0.173) (0.175) (0.174) (0.173) (0.155)

High-Skilled Occ × AI Occ (q3) 0.364 0.357 0.358 0.355 0.415
(0.301) (0.304) (0.303) (0.302) (0.298)

High-Skilled Occ × AI Occ (q2) 0.062 0.018 0.049 0.048 0.041
(0.213) (0.253) (0.248) (0.243) (0.252)

High-Skilled Occ × AI Occ (q1) -0.319∗∗ -0.323∗∗ -0.324∗∗ -0.325∗∗ -0.311∗∗
(0.153) (0.157) (0.156) (0.156) (0.136)

Middle-Skilled Occ -0.159 -0.162 -0.162 -0.163 -0.130
(0.141) (0.145) (0.144) (0.144) (0.120)

Observations 192,008 192,008 192,008 192,008 190,712
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓ ✓
R2 0.175 0.170 0.173 0.173 0.166
Cragg-Donald Wald F Statistic 1,417.981 2,625.620 1,932.669 1,495.119

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a
harmonized occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification.
All columns include a set of state-year controls. The baseline group in columns is the low-skilled group.
Occupation-clustered standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 The ML occupation cluster is an alternative occupation classification constructed by clustering occupations based
on skill requirements using machine learning. Details are presented in Section 2.6.2.
3 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.18 Component Loadings for the AI Skill Prevalence Score (Ranked from the Highest to
the Lowest)

AI Skill Principal Component 1

Python 0.89732448
Machine learning 0.30575326
Big data 0.2575757
Artificial intelligence 0.11524112
Robotic 0.07181856
Matlab 0.06659661
Natural language processing (NLP) 0.0557427
Deep learning 0.04594767
Data mining 0.04416461
TensorFlow 0.03561318
Computer vision 0.03542881
Autonomous driving 0.02640705
PyTorch 0.02231685
Augmented reality (AR) 0.01904324
Virtual reality (VR) 0.01846953
Neural network 0.01384596
3-D modeling 0.01179794
Computer graphics 0.00799434
Voice recognition 0.0071089
Multimedia 0.00704629
Pattern recognition 0.00428575

Notes: Then component loadings are static across time, which capture the importance or weight of a narrow AI phrase
in constructing the AI Skill Prevalence Score. Python allows users to choose the number of components to keep.
Thus, the multi-dimensional skill set is projected to a one-dimensional space by principal component analysis (PCA)
to construct this single measurement.
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Table 2B.19 Occupations Ranked by AI Skill Prevalence Score, 2021

OCC2010 Occupation Title AI Skill Prevalence Score Skill Group

Panel A. Occupations with the Top 15 AI Skill Prevalence Score

1020 Software Developers, Applications and Systems Software 19.75286 𝐻𝐴𝐼

710 Management Analysts 2.638285 𝐻𝐴𝐼

730 Other Business Operations and Management Specialists 2.111124 𝐻𝐴𝐼

1100 Network and Computer Systems Administrators 1.96713 𝐻𝐴𝐼

1000 Computer Scientists and Systems Analysts/Network systems 1.562139 𝐻𝐴𝐼

Analysts/Web Developers
840 Financial Analysts 0.5148678 𝐻𝐴𝐼

1240 Mathematical Science Occupations, All Other 0.4935438 𝐻𝐴𝐼

950 Financial Specialists, All Other 0.4659868 𝐻𝐴𝐼

110 Computer and Information Systems Managers 0.4455855 𝐻𝐴𝐼

30 Managers in Marketing, Advertising, and Public Relations 0.4433329 𝐻𝐴𝐼

1650 Medical Scientists, and Life Scientists, All Other 0.4405924 𝐻𝐴𝐼

1220 Operations Research Analysts 0.3378968 𝐻𝐴𝐼

1410 Electrical and Electronics Engineers 0.3365522 𝐻𝐴𝐼

4930 Sales Engineers 0.3293847 𝐻𝐴𝐼

1400 Computer Hardware Engineers 0.3147703 𝐻𝐴𝐼

Panel B. Occupations with the Bottom 15 AI Skill Prevalence Score
7160 Automotive Glass Installers and Repairers -0.0926943 𝑀

8420 Textile Winding, Twisting, and Drawing Out Machine Setters, -0.0926943 𝑀

Operators, and Tenders
7850 Food Cooking Machine Operators and Tenders -0.0926943 𝑀

940 Tax Preparers -0.0926943 𝐻𝑁𝑜𝑛

8940 Tire Builders -0.0926943 𝑀

8920 Molders, Shapers, and Casters, Except Metal and Plastic -0.0926943 𝑀

8450 Upholsterers -0.0926943 𝑀

6700 Elevator Installers and Repairers -0.0926943 𝑀

6240 Carpet, Floor, and Tile Installers and Finishers -0.0926943 𝑀

8720 Extruding, Forming, Pressing, and Compacting Machine Setters, -0.0926943 𝑀

Operators, and Tenders
8540 Woodworking Machine Setters, Operators, and Tenders, Except Sawing -0.0926943 𝑀

8640 Chemical Processing Machine Setters, Operators, and Tenders -0.0926943 𝑀

6010 Agricultural Inspectors -0.0926943 𝑀

8730 Furnace, Kiln, Oven, Drier, and Kettle Operators and Tenders -0.0926943 𝑀

3260 Health Diagnosing and Treating Practitioners, All Other -0.0926943 𝐻𝑁𝑜𝑛

Notes: The occupation-year AI Skill Prevalence Score is standardized within a year. There is a tie in the lowest AI Skill
Prevalence Score, with 66 occupations having the lowest score, -0.0926943. 15 out of 66 occupations are randomly
chosen and listed in Panel B. 𝐻𝐴𝐼 , 𝐻𝑁𝑜𝑛, 𝑀 , and 𝐿 represent high-skilled AI-complement, high-skilled not-yet-AI,
middle-skilled, and low-skilled occupation group, respectively.
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Table 2B.20 States Ranked by AI Skill Prevalence Score, 2021

Panel A. States with the Top 15 AI Skill Prevalence Score Panel B. States with the Bottom 15 AI Skill Prevalence Score
State AI Skill Prevalence Score State AI Skill Prevalence Score

California 5.356526 Wyoming -0.6126739
Texas 2.384235 Alaska -0.6096864
New York 1.545264 South Dakota -0.6029171
Washington 1.441433 Hawaii -0.6021812
Virginia 0.9939204 Vermont -0.5961387
Massachusetts 0.9668954 West Virginia -0.5951093
Illinois 0.6540916 Montana -0.5942092
Florida 0.5013081 Mississippi -0.5881292
Georgia 0.4332158 North Dakota -0.5876687
North Carolina 0.3860596 Maine -0.5788439
Pennsylvania 0.2700901 Rhode Island -0.5525354
Colorado 0.2696101 Nebraska -0.5342934
New Jersey 0.2091825 Oklahoma -0.5319125
Maryland 0.1105196 New Hampshire -0.5318903
Ohio 0.0961018 Nevada -0.5297292

Notes: The state-year AI Skill Prevalence Score is standardized within a year.
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Table 2B.21 Distribution of Effects with One State Left Out, 2012-21

Max p75 p50 p25 Min

Panel A. Outcome: Employment per 100,000 Capita
%AI Postings1 -3.289 -5.937 -6.179 -6.433 -8.388

(7.474) (8.271) (8.282) (8.220) (10.615)
%AI Postings ×

High-Skilled AI-Complement Occ 68.137∗∗∗ 56.032∗∗∗ 55.775∗∗∗ 55.306∗∗∗ 46.573∗∗∗
(17.595) (14.999) (14.965) (15.138) (13.923)

High-Skilled Not-Yet-AI Occ 26.533∗∗ 20.313∗ 20.102∗∗ 19.879∗∗ 14.571∗
(13.017) (10.581) (10.117) (10.085) (8.759)

Middle-Skilled Occ 3.369 3.015 2.893 2.756 1.998
(9.004) (9.017) (9.010) (8.675) (9.433)

Panel B. Outcome: Share of Employment2
%AI Postings -0.003 -0.006 -0.008 -0.006 -0.008

(0.007) (0.008) (0.008) (0.008) (0.011)
%AI Postings ×

High-Skilled AI-Complement Occ 0.068∗∗∗ 0.056∗∗∗ 0.056∗∗∗ 0.055∗∗∗ 0.047∗∗∗
(0.018) (0.015) (0.015) (0.015) (0.014)

High-Skilled Not-Yet-AI Occ 0.027∗∗ 0.020∗ 0.020∗∗ 0.020∗∗ 0.015∗
(0.013) (0.011) (0.010) (0.010) (0.009)

Middle-Skilled Occ 0.003 0.003 0.003 0.003 0.002
(0.009) (0.009) (0.009) (0.009) (0.009)

Panel C. Outcome: Log Mean Hourly Wage
%AI Postings 0.008 0.006 0.005 0.005 0.003

(0.005) (0.005) (0.005) (0.005) (0.005)
%AI Postings ×

High-Skilled AI-Complement Occ 0.034∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.023∗∗∗
(0.009) (0.007) (0.007) (0.007) (0.007)

High-Skilled Not-Yet-AI Occ 0.015∗∗ 0.008 0.007 0.007 0.004
(0.007) (0.006) (0.006) (0.006) (0.006)

Middle-Skilled Occ -0.007 -0.008 -0.009 -0.009∗ -0.010∗
(0.005) (0.005) (0.005) (0.005) (0.006)

Panel D. Outcome: Share of Wage Income3

%AI Postings -0.008 -0.011 -0.011 -0.0011 -0.016
(0.010) (0.010) (0.011) (0.011) (0.014)

%AI Postings ×
High-Skilled AI-Complement Occ 0.103∗∗∗ 0.089∗∗∗ 0.089∗∗∗ 0.089∗∗∗ 0.082∗∗∗

(0.000) (0.001) (0.001) (0.001) (0.003)

High-Skilled Not-Yet-AI Occ 0.038∗∗ 0.027∗ 0.026∗ 0.026∗ 0.019
(0.019) (0.015) (0.014) (0.014) (0.012)

Middle-Skilled Occ 0.007 0.005 0.005 0.005 0.004
(0.015) (0.012) (0.012) (0.012) (0.011)

Notes: The table shows percentiles from the distribution of estimated effects using my main specification, equation
(2.16), but leaving out one state from the analysis at a time. All columns include a set of state-year controls. The
baseline group in columns is the low-skilled group. Occupation-clustered standard errors are shown in parentheses.
∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
2,3 The unit of the share of employment and the share of wage income is a percentage point.
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Table 2B.22 Effects of Demand for AI Skills on Employment—Dropping COVID Years, 2012-19

Dep. Var.:

Emp. per 100,000 Capita Share of Emp.1

Main Spec. Dropping Main Spec. Dropping
COVID Years COVID Years

(1) (2) (3) (4)

%AI Postings2 -6.146 -4.594 -0.006 -0.005
(8.282) (9.038) (0.008) (0.009)

%AI Postings ×
High-Skilled AI-Complement Occ 55.756∗∗∗ 55.237∗∗∗ 0.056∗∗∗ 0.055∗∗∗

(14.940) (15.319) (0.015) (0.015)

High-Skilled Not-Yet-AI Occ 20.065∗∗ 20.410∗ 0.020∗∗ 0.020∗
(10.099) (10.900) (0.010) (0.011)

Middle-Skilled Occ 2.868 2.822 0.003 0.003
(8.991) (9.797) (0.009) (0.010)

Skill Group =

High-Skilled AI-Complement Occ -333.383∗ -331.370∗ -0.333∗ -0.331∗
(187.602) (188.507) (0.188) (0.189)

High-Skilled Not-Yet-AI Occ -209.460 -209.577 -0.209 -0.210
(184.689) (185.677) (0.185) (0.186)

Middle-Skilled Occ -192.177 -197.897 -0.192 -0.198
(181.375) (182.244) (0.181) (0.182)

Observations 192,008 153,221 192,008 153,221
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓
R2 0.129 0.130 0.129 0.130

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of employment is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.23 Effects of Demand for AI Skills on Wages—Dropping COVID Years, 2012-19

Dep. Var.:

Log Mean Hourly Wages Share of Wage Income1

Main Spec. Dropping Main Spec. Dropping
COVID Years COVID Years

(1) (2) (3) (4)

%AI Postings2 0.005 0.001 -0.011 -0.009
(0.005) (0.006) (0.011) (0.012)

%AI Postings ×
High-Skilled AI-Complement Occ 0.025∗∗∗ 0.029∗∗∗ 0.089∗∗∗ 0.088∗∗∗

(0.007) (0.007) (0.026) (0.026)

High-Skilled Not-Yet-AI Occ 0.007 0.009 0.026∗ 0.027∗
(0.006) (0.006) (0.014) (0.016)

Middle-Skilled Occ -0.009 -0.006 0.005 0.005
(0.005) (0.006) (0.012) (0.013)

Skill Group =

High-Skilled AI-Complement Occ 0.441∗∗∗ 0.438∗∗∗ -0.151 -0.145
(0.104) (0.106) (0.166) (0.166)

High-Skilled Not-Yet-AI Occ 0.126 0.126 -0.029 -0.027
(0.096) (0.097) (0.159) (0.160)

Middle-Skilled Occ -0.088 -0.086 -0.169 -0.173
(0.092) (0.093) (0.141) (0.142)

Observations 187,960 150,071 192,008 153,221
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓
R2 0.340 0.347 0.158 0.156

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-year level. %AI
postings is in percentage point.
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Table 2B.24 Effects of Demand for AI Skills on Employment—Using AI Posting Shares at More
Granular Level, 2012-21

Dep. Var.:

Employment per 100,000 Capita Share of Employment1

(1) (2) (3) (4) (5) (6)

%AI Postings2 -4.497 -64.619 -33.822 -0.004 -0.065 -0.034
(4.136) (40.120) (30.439) (0.004) (0.040) (0.030)

%AI Postings ×
High-Skilled AI-Complement Occ 73.963∗ 44.004 0.074∗ 0.044

(40.642) (30.912) (0.041) (0.031)

High-Skilled Not-Yet-AI Occ 51.016 35.362 0.051 0.035
(40.994) (31.099) (0.041) (0.031)

Middle-Skilled Occ 49.184 33.548 0.049 0.034
(40.533) (30.824) (0.041) (0.031)

Skill Group =

High-Skilled AI-Complement Occ -45.713 -165.488 -321.744∗ -0.046 -0.165 -0.322∗
(107.731) (116.754) (190.593) (0.108) (0.117) (0.191)

High-Skilled Not-Yet-AI Occ 47.720 44.293 -205.102 0.048 0.044 -0.205
(113.162) (124.792) (185.128) (0.113) (0.125) (0.185)

Middle-Skilled Occ -58.853 -68.505 -193.837 -0.059 -0.069 -0.194
(104.351) (114.289) (181.114) (0.104) (0.114) (0.181)

Observations 192,008 192,008 192,008 192,008 192,008 192,008
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓
Skill-Group FE × Year FE ✓ ✓
R2 0.012 0.022 0.129 0.012 0.022 0.129

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns 2, 3, 5, and 6 is the low-skilled group. Occupation-
clustered standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of employment is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-by-year-by-2-digit-
occupation level. %AI postings is in percentage point.
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Table 2B.25 Effects of Demand for AI Skills on Wages—Using AI Posting Shares at More Granular
Level, 2012-21

Dep. Var.:

Log Mean Hourly Wage Share of Wage Income1

(1) (2) (3) (4) (5) (6)

%AI Postings2 0.016∗∗∗ 0.012 0.004 0.001 -0.042 -0.020
(0.003) (0.033) (0.028) (0.006) (0.031) (0.023)

%AI Postings ×
High-Skilled AI-Complement Occ -0.011 -0.002 0.058∗ 0.038

(0.033) (0.028) (0.033) (0.025)

High-Skilled Not-Yet-AI Occ 0.008 -0.002 0.027 0.018
(0.034) (0.028) (0.033) (0.025)

Middle-Skilled Occ 0.020 0.003 0.039 0.023
(0.033) (0.028) (0.032) (0.023)

Skill Group =

High-Skilled AI-Complement Occ 0.557∗∗∗ 0.669∗∗∗ 0.468∗∗∗ 0.147 0.027 -0.138
(0.084) (0.090) (0.108) (0.101) (0.111) (0.169)

High-Skilled Not-Yet-AI Occ 0.263∗∗∗ 0.258∗∗∗ 0.135 0.222∗∗ 0.235∗ -0.018
(0.085) (0.092) (0.098) (0.112) (0.122) (0.158)

Middle-Skilled Occ -0.085 -0.097 -0.092 -0.056 -0.066 -0.170
(0.078) (0.083) (0.094) (0.083) (0.090) (0.139)

Observations 187,960 187,960 187,960 192,008 192,008 192,008
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓
Skill-Group FE × Year FE ✓ ✓
R2 0.198 0.213 0.340 0.052 0.060 0.157

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in columns 2, 3, 5, and 6 is the low-skilled group. Occupation-
clustered standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The unit of the share of wage income is a percentage point.
2 Narrow AI definition is used when defining skill groups and computing %AI postings at the state-by-year-by-2-digit-
occupation level. %AI postings is in percentage point.
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Table 2B.26 Effects of Occupation-Year AI Skill Prevalence Interacting with Skill Group Dummies,
2012-21

Dep. Var.:

Emp. per 100,000 Capita %Emp Share1 Log Mean Hourly Wage %Wage Income2

(1) (2) (3) (4)

AI Skill Prevalence Score3 34,346.52∗∗∗ 34.347∗∗∗ 7.875 40.574∗∗∗
(8,689.240) (8.689) (8.106) (4.538)

AI Skill Prevalence ×
High-Skilled AI-Complement Occ -34,313.02∗∗∗ -34.313∗∗∗ -7.866 -40.504∗∗∗

(8,689.252) (8.689) (8.106) (4.538)

High-Skilled Not-Yet-AI Occ -33,103.8∗∗∗ -33.104∗∗∗ -7.107 -38.406∗∗∗
(8,707.614) (8.708) (8.113) (4.636)

Middle-Skilled Occ -28,173.44∗∗∗ -28.173∗∗∗ -6.950 -32.674∗∗∗
(8,916.063) (8.916) (8.130) (5.242)

Observations 186,799 186,799 183,018 186,799
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Skill-Group FE ✓ ✓ ✓ ✓
2-Digit-Occ FE ✓ ✓ ✓ ✓
Skill-Group FE × Year FE ✓ ✓ ✓ ✓
R2 0.177 0.177 0.347 0.225

Notes: Each observation is an occupation-state-year cell. Occupation is represented by 4-digit OCC2010, a harmonized
occupation system constructed by IPUMS-ACS based on the 2010 Census Occupational Classification. All columns
include a set of state-year controls. The baseline group in Panel B is the low-skilled group. Occupation-clustered
standard errors are shown in parentheses. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1,2 The unit of the employment share and the share of wage income is a percentage point.
3 The AI Skill Prevalence Score is constructed at the 4-digit-occupation-by-year level and standardized within a year.
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APPENDIX 2C

4-DIGIT OCCUPATIONS WITHIN A SKILL GROUP

Since the LinkUp job postings data used to construct the skill groups introduced in Section 2.3.2

is collected at the 2019 O∗NET-SOC level and the labor market outcome data from IPUMS-ACS

uses a harmonized occupation system, OCC20101, constructed by IPUMS-ACS based on the

2010 Census Occupational Classification, a crosswalk is needed to map these two occupational

classification systems. Due to the lack of available crosswalk to directly map 2019 O∗NET-SOC to

OCC2010, I first construct skill group indicators at 6-digit 2019 O∗NET-SOC level, and then map

2019 O∗NET-SOC to 2010 O∗NET-SOC to 2010 SOC to OCC2010 to obtain skill group indicators

for each 4-digit OCC2010. For the majority of occupations, there is a one-to-one mapping between

different occupational coding systems. In the case of one-to-many mapping, if an occupation is

mapped to multiple occupations with different skill group indicators, I keep the skill group indicator

with a higher number of total postings.

In my final sample, there are 428 OCC2010 between 2012 and 2021. Note that the IPUMS-ACS

OCC2010 coding scheme has 493 occupations in total. The ones that are not included in my sample

are due to two reasons. First, some of these occupations do not have a detailed description in O∗NET

since my AI occupation indicator is constructed as an intersection between AI occupations defined

by using LinkUp data and those defined by using O∗NET data (as explained in Section 2.3.2.2).2

Second, some occupations did not show up in IPUMS-ACS data between 2012 and 2021, such as

"Drilling and Boring Machine Tool Setters, Operators, and Tenders, Metal and Plastic" (7960) and

"Shoe Machine Operators and Tenders" (8340). Appendix Table 2C.1 lists the time-variant skill

group indicator for all 4-digit occupations in my final sample. Since I also construct a static skill

group indicator, each panel of Appendix Table 2C.1 shows occupations that are classified into the
1https://usa.ipums.org/usa-action/variables/OCC2010#description_section. The OCC2010 coding systems from

Census and IPUMS-ACS are not exactly the same. According to IPUMS, "In the interest of harmonization, however,
the scheme has been modified to achieve the most consistent categories across time. That is, some categories that
provide more detail in the 2010 scheme were grouped together because earlier categories are inseparable when more
than one occupation is coded together." These two systems can be easily mapped based on occupation titles. In my
analysis, I use IPUMS-ACS OCC2010 system because my labor market outcome data is from IPUMS-ACS.

2My empirical results are robust to using AI occupation indicator defined by using only LinkUp data instead of
taking the intersection.
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corresponding skill group using this time-invariant skill group system.3

3My empirical results are robust to using the time-invariant skill group indicators.
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Table 2C.1 Time-Variant Skill Group Indicators for 4-Digit Occupations

OCC2010 Occupation Title Skill Group Indicator During Ever

2011-14 2015-18 2019-22 Changed

Panel A. High-Skilled AI-Complement Group Using Time-Invariant Skill Group Indicator
0030 Managers in Marketing, Advertising, and Public Relations 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝐴𝐼 ✓
0110 Computer and Information Systems Managers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

0300 Architectural and Engineering Managers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

0710 Management Analysts 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

0730 Other Business Operations and Management Specialists 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

0840 Financial Analysts 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

0950 Financial Specialists, All Other 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1000 Computer Scientists and Systems Analysts/Network systems 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

Analysts/Web Developers
1010 Computer Programmers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1020 Software Developers, Applications and Systems Software 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1060 Database Administrators 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1100 Network and Computer Systems Administrators 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1200 Actuaries 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1220 Operations Research Analysts 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1240 Mathematical Science Occupations, All Other 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1320 Aerospace Engineers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1350 Chemical Engineers 𝐻𝑁𝑜𝑛 𝐻𝐴𝐼 𝐻𝐴𝐼 ✓
1400 Computer Hardware Engineers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1410 Electrical and Electronics Engineers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1430 Industrial Engineers, including Health and Safety 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1440 Marine Engineers and Naval Architects 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1450 Materials Engineers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1460 Mechanical Engineers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1530 Engineers, All Other 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1650 Medical Scientists, and Life Scientists, All Other 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1710 Atmospheric and Space Scientists 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1760 Physical Scientists, All Other 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

1800 Economists and Market Researchers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

2840 Technical Writers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

4930 Sales Engineers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝐴𝐼

Panel B. High-Skilled Not-Yet-AI Group Using Time-Invariant Skill Group Indicator
0010 Chief Executives and Legislators/Public Administration 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0020 General and Operations Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0100 Administrative Services Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0120 Financial Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0130 Human Resources Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0140 Industrial Production Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0150 Purchasing Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0205 Farmers, Ranchers, and Other Agricultural Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0220 Constructions Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0230 Education Administrators 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0310 Food Service and Lodging Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0330 Gaming Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 /
0350 Medical and Health Services Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0360 Natural Science Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0410 Property, Real Estate, and Community Association Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0420 Social and Community Service Managers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0430 Managers, All Other (Including Postmasters) 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0500 Agents and Business Managers of Artists, Performers, and Athletes 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0510 Buyers and Purchasing Agents, Farm Products 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0520 Wholesale and Retail Buyers, Except Farm Products 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0530 Purchasing Agents, Except Wholesale, Retail, and Farm Products 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛
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Table 2C.1 (cont’d)

OCC2010 Occupation Title Skill Group Indicator During Ever

2011-14 2015-18 2019-22 Changed

0540 Claims Adjusters, Appraisers, Examiners, and Investigators 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0600 Cost Estimators 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0620 Human Resources, Training, and Labor Relations Specialists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0700 Logisticians 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0720 Meeting and Convention Planners 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0800 Accountants and Auditors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0810 Appraisers and Assessors of Real Estate 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0820 Budget Analysts 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0830 Credit Analysts 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0850 Personal Financial Advisors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0860 Insurance Underwriters 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0910 Credit Counselors and Loan Officers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0930 Tax Examiners and Collectors, and Revenue Agents 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

0940 Tax Preparers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1050 Computer Support Specialists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1300 Architects, Except Naval 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1310 Surveyors, Cartographers, and Photogrammetrists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1360 Civil Engineers 𝐻𝐴𝐼 𝐻𝐴𝐼 𝐻𝑁𝑜𝑛 ✓
1420 Environmental Engineers 𝐻𝐴𝐼 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 ✓
1520 Petroleum, Mining and Geological Engineers, Including Mining 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝐴𝐼 ✓

Safety Engineers
1560 Surveying and Mapping Technicians 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1600 Agricultural and Food Scientists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1610 Biological Scientists 𝐻𝐴𝐼 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 ✓
1640 Conservation Scientists and Foresters 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1720 Chemists and Materials Scientists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1820 Psychologists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

1840 Social Scientists, All Other 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2000 Counselors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2010 Social Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2020 Community and Social Service Specialists, All Other 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2040 Clergy 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2050 Directors, Religious Activities and Education 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2100 Lawyers, and Judges, Magistrates, and other Judicial Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2200 Postsecondary Teachers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2300 Preschool and Kindergarten Teachers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2310 Elementary and Middle School Teachers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2320 Secondary School Teachers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2330 Special Education Teachers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2340 Other Teachers and Instructors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2400 Archivists, Curators, and Museum Technicians 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2430 Librarians 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2540 Teacher Assistants 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2550 Education, Training, and Library Workers, All Other 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2700 Actors, Producers, and Directors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2760 Entertainers and Performers, Sports and Related Workers, All Other 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2810 Editors, News Analysts, Reporters, and Correspondents 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2825 Public Relations Specialists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2850 Writers and Authors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2860 Media and Communication Workers, All Other 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

2920 Television, Video, and Motion Picture Camera Operators and Editors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3000 Chiropractors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3010 Dentists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3030 Dieticians and Nutritionists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3040 Optometrists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3060 Physicians and Surgeons 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛
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Table 2C.1 (cont’d)

OCC2010 Occupation Title Skill Group Indicator During Ever

2011-14 2015-18 2019-22 Changed

3110 Physician Assistants 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3120 Podiatrists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3140 Audiologists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3150 Occupational Therapists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3160 Physical Therapists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3200 Radiation Therapists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3210 Recreational Therapists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3220 Respiratory Therapists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3230 Speech Language Pathologists 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3260 Health Diagnosing and Treating Practitioners, All Other 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

3730 Supervisors, Protective Service Workers, All Other 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4210 First-Line Supervisors of Landscaping, Lawn Service, and 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

Groundskeeping Workers
4320 First-Line Supervisors of Personal Service Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4460 Funeral Service Workers and Embalmers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4600 Childcare Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4620 Recreation and Fitness Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4640 Residential Advisors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4650 Personal Care and Service Workers, All Other 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4700 First-Line Supervisors of Sales Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4800 Advertising Sales Agents 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4820 Securities, Commodities, and Financial Services Sales Agents 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4850 Sales Representatives, Wholesale and Manufacturing 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4920 Real Estate Brokers and Sales Agents 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4940 Telemarketers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

4950 Door-to-Door Sales Workers, News and Street Vendors, and Related 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

Workers
5000 First-Line Supervisors of Office and Administrative Support Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

5100 Bill and Account Collectors 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

5520 Dispatchers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

5840 Insurance Claims and Policy Processing Clerks 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

6200 First-Line Supervisors of Construction Trades and Extraction Workers / 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

7700 First-Line Supervisors of Production and Operating Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

9000 Supervisors of Transportation and Material Moving Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

9240 Railroad Conductors and Yardmasters 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

9260 Subway, Streetcar, and Other Rail Transportation Workers 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛

Panel C. Middle-Skilled Group Using Time-Invariant Skill Group Indicator
0160 Transportation, Storage, and Distribution Managers 𝑀 𝑀 𝑀

0560 Compliance Officers, Except Agriculture 𝑀 𝑀 𝑀

0900 Financial Examiners 𝑀 𝑀 𝑀

1540 Drafters 𝑀 𝑀 𝑀

1550 Engineering Technicians, Except Drafters 𝑀 𝑀 𝑀

1700 Astronomers and Physicists 𝑀 𝑀 𝑀

1740 Environmental Scientists and Geoscientists 𝑀 𝑀 𝑀

1830 Urban and Regional Planners 𝑀 𝑀 𝑀

1900 Agricultural and Food Science Technicians 𝑀 𝑀 𝑀

1910 Biological Technicians 𝑀 𝑀 𝑀

1920 Chemical Technicians 𝑀 𝑀 𝑀

1930 Geological and Petroleum Technicians, and Nuclear Technicians 𝑀 𝑀 /
1960 Life, Physical, and Social Science Technicians, All Other 𝑀 𝑀 𝑀

2140 Paralegals and Legal Assistants 𝑀 𝑀 𝑀

2150 Legal Support Workers, All Other 𝑀 𝑀 𝑀

2440 Library Technicians 𝑀 𝑀 𝑀

2600 Artists and Related Workers 𝑀 𝑀 𝑀

2630 Designers 𝑀 𝑀 𝑀

2800 Announcers 𝑀 𝑀 𝑀

2900 Broadcast and Sound Engineering Technicians and Radio Operators, 𝑀 𝑀 𝑀

and Media and Communication Equipment Workers, All Other
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2910 Photographers 𝑀 𝑀 𝑀

3050 Pharmacists 𝑀 𝑀 𝑀

3130 Registered Nurses 𝑀 𝑀 𝑀

3250 Veterinarians 𝑀 𝑀 𝑀

3300 Clinical Laboratory Technologists and Technicians 𝑀 𝑀 𝑀

3310 Dental Hygienists 𝑀 𝑀 𝑀

3320 Diagnostic Related Technologists and Technicians 𝑀 𝑀 𝑀

3400 Emergency Medical Technicians and Paramedics 𝑀 𝑀 𝑀

3410 Health Diagnosing and Treating Practitioner Support Technicians 𝑀 𝑀 𝑀

3500 Licensed Practical and Licensed Vocational Nurses 𝑀 𝑀 𝑀

3510 Medical Records and Health Information Technicians 𝑀 𝑀 𝑀

3520 Opticians, Dispensing 𝑀 𝑀 𝑀

3530 Health Technologists and Technicians, All Other 𝑀 𝑀 𝑀

3540 Healthcare Practitioners and Technical Occupations, All Other 𝑀 𝑀 𝑀

3600 Nursing, Psychiatric, and Home Health Aides 𝑀 𝑀 𝑀

3610 Occupational Therapy Assistants and Aides 𝑀 𝑀 𝑀

3620 Physical Therapist Assistants and Aides 𝑀 𝑀 𝑀

3630 Massage Therapists 𝑀 𝑀 𝑀

3640 Dental Assistants 𝑀 𝑀 𝑀

3650 Medical Assistants and Other Healthcare Support Occupations, 𝑀 𝑀 𝑀

All Other
3900 Animal Control 𝑀 𝑀 𝑀

3910 Private Detectives and Investigators 𝑀 𝑀 𝑀

3930 Security Guards and Gaming Surveillance Officers 𝑀 𝑀 𝑀

3950 Law Enforcement Workers, All Other 𝑀 𝑀 𝑀

4000 Chefs and Cooks 𝑀 𝑀 𝑀

4010 First-Line Supervisors of Food Preparation and Serving Workers 𝑀 𝑀 𝑀

4030 Food Preparation Workers 𝑀 𝑀 𝑀

4040 Bartenders 𝑀 𝑀 𝑀

4050 Combined Food Preparation and Serving Workers, Including Fast Food 𝑀 𝑀 𝑀

4060 Counter Attendant, Cafeteria, Food Concession, and Coffee Shop 𝑀 𝑀 /
4120 Food Servers, Nonrestaurant 𝑀 𝑀 𝑀

4130 Food Preparation and Serving Related Workers, All Other 𝑀 𝑀 𝑀

4140 Dishwashers 𝑀 𝑀 𝑀

4150 Host and Hostesses, Restaurant, Lounge, and Coffee Shop 𝑀 𝑀 𝑀

4200 First-Line Supervisors of Housekeeping and Janitorial Workers 𝑀 𝑀 𝑀

4220 Janitors and Building Cleaners 𝑀 𝑀 𝑀

4240 Pest Control Workers 𝑀 𝑀 𝑀

4250 Grounds Maintenance Workers 𝑀 𝑀 𝑀

4300 First-Line Supervisors of Gaming Workers 𝑀 𝑀 /
4340 Animal Trainers 𝑀 𝑀 𝑀

4350 Nonfarm Animal Caretakers 𝑀 𝑀 𝑀

4400 Gaming Services Workers 𝑀 𝑀 𝑀

4420 Ushers, Lobby Attendants, and Ticket Takers 𝑀 𝑀 𝑀

4430 Entertainment Attendants and Related Workers, All Other 𝑀 𝑀 𝑀

4500 Barbers 𝑀 𝑀 𝑀

4510 Hairdressers, Hairstylists, and Cosmetologists 𝑀 𝑀 𝑀

4520 Personal Appearance Workers, All Other 𝑀 𝑀 𝑀

4540 Tour and Travel Guides 𝑀 𝑀 𝑀

4610 Personal Care Aides 𝑀 𝑀 𝑀

4720 Cashiers 𝑀 𝑀 𝑀

4740 Counter and Rental Clerks 𝑀 𝑀 𝑀

4750 Parts Salespersons 𝑀 𝑀 𝑀

4760 Retail Salespersons 𝑀 𝑀 𝑀

4810 Insurance Sales Agents 𝑀 𝑀 𝑀

4830 Travel Agents 𝑀 𝑀 𝑀

4840 Sales Representatives, Services, All Other 𝑀 𝑀 𝑀

4900 Models, Demonstrators, and Product Promoters 𝑀 𝑀 𝑀

5010 Switchboard Operators, Including Answering Service 𝑀 𝑀 𝑀

5020 Telephone Operators 𝑀 𝑀 𝑀

5110 Billing and Posting Clerks 𝑀 𝑀 𝑀

5120 Bookkeeping, Accounting, and Auditing Clerks 𝑀 𝑀 𝑀
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5130 Gaming Cage Workers 𝑀 𝑀 /
5140 Payroll and Timekeeping Clerks 𝑀 𝑀 𝑀

5150 Procurement Clerks 𝑀 𝑀 𝑀

5160 Bank Tellers 𝑀 𝑀 𝑀

5200 Brokerage Clerks 𝑀 𝑀 /
5220 Court, Municipal, and License Clerks 𝑀 𝑀 𝑀

5230 Credit Authorizers, Checkers, and Clerks 𝑀 𝑀 𝑀

5240 Customer Service Representatives 𝑀 𝑀 𝑀

5250 Eligibility Interviewers, Government Programs 𝑀 𝑀 𝑀

5260 File Clerks 𝑀 𝑀 𝑀

5300 Hotel, Motel, and Resort Desk Clerks 𝑀 𝑀 𝑀

5310 Interviewers, Except Eligibility and Loan 𝑀 𝑀 𝑀

5320 Library Assistants, Clerical 𝑀 𝑀 𝑀

5330 Loan Interviewers and Clerks 𝑀 𝑀 𝑀

5340 New Account Clerks 𝑀 𝑀 𝑀

5350 Correspondent Clerks and Order CLerks 𝑀 𝑀 𝑀

5360 Human Resources Assistants, Except Payroll and Timekeeping 𝑀 𝑀 𝑀

5400 Receptionists and Information Clerks 𝑀 𝑀 𝑀

5410 Reservation and Transportation Ticket Agents and Travel Clerks 𝑀 𝑀 𝑀

5500 Cargo and Freight Agents 𝑀 𝑀 𝑀

5510 Couriers and Messengers 𝑀 𝑀 𝑀

5530 Meter Readers, Utilities 𝑀 𝑀 𝑀

5540 Postal Service Clerks 𝑀 𝑀 𝑀

5550 Postal Service Mail Carriers 𝑀 𝑀 𝑀

5560 Postal Service Mail Sorters, Processors, and Processing Machine 𝑀 𝑀 𝑀

Operators
5600 Production, Planning, and Expediting Clerks 𝑀 𝑀 𝑀

5610 Shipping, Receiving, and Traffic Clerks 𝑀 𝑀 𝑀

5620 Stock Clerks and Order Fillers 𝑀 𝑀 𝑀

5630 Weighers, Measurers, Checkers, and Samplers, Recordkeeping 𝑀 𝑀 𝑀

5700 Secretaries and Administrative Assistants 𝑀 𝑀 𝑀

5810 Data Entry Keyers 𝑀 𝑀 𝑀

5820 Word Processors and Typists 𝑀 𝑀 𝑀

5850 Mail Clerks and Mail Machine Operators, Except Postal Service 𝑀 𝑀 𝑀

5860 Office Clerks, General 𝑀 𝑀 𝑀

5900 Office Machine Operators, Except Computer 𝑀 𝑀 𝑀

5910 Proofreaders and Copy Markers 𝑀 𝑀 𝑀

5920 Statistical Assistants 𝑀 𝑀 𝑀

5940 Office and Administrative Support Workers, All Other 𝑀 𝑀 𝑀

6010 Agricultural Inspectors 𝑀 𝑀 𝑀

6040 Graders and Sorters, Agricultural Products 𝑀 𝑀 𝑀

6050 Agricultural Sorkers, All Other 𝑀 𝑀 𝑀

6210 Boilermakers 𝑀 𝑀 𝑀

6220 Brickmasons, Blockmasons, and Stonemasons 𝑀 𝑀 𝑀

6230 Carpenters 𝑀 𝑀 𝑀

6240 Carpet, Floor, and Tile Installers and Finishers 𝑀 𝑀 𝑀

6250 Cement Masons, Concrete Finishers, and Terrazzo Workers 𝑀 𝑀 𝑀

6260 Construction Laborers 𝑀 𝑀 𝑀

6300 Paving, Surfacing, and Tamping Equipment Operators 𝑀 𝑀 /
6320 Construction Equipment Operators Except Paving, Surfacing, 𝑀 𝑀 𝑀

and Tamping Equipment Operators
6330 Drywall Installers, Ceiling Tile Installers, and Tapers 𝑀 𝑀 𝑀

6355 Electricians 𝑀 𝑀 𝑀

6360 Glaziers 𝑀 𝑀 𝑀

6400 Insulation Workers 𝑀 𝑀 𝑀

6420 Painters, Construction and Maintenance 𝑀 𝑀 𝑀

6440 Pipelayers, Plumbers, Pipefitters, and Steamfitters 𝑀 𝑀 𝑀

6460 Plasterers and Stucco Masons 𝑀 𝑀 𝑀

6515 Roofers 𝑀 𝑀 𝑀
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6520 Sheet Metal Workers, Metal-Working 𝑀 𝑀 𝑀

6530 Structural Iron and Steel Workers 𝑀 𝑀 𝑀

6600 Helpers, Construction Trades 𝑀 𝑀 𝑀

6660 Construction and Building Inspectors 𝑀 𝑀 𝑀

6700 Elevator Installers and Repairers 𝑀 𝑀 𝑀

6710 Fence Erectors 𝑀 𝑀 𝑀

6720 Hazardous Materials Removal Workers 𝑀 𝑀 𝑀

6730 Highway Maintenance Workers 𝑀 𝑀 𝑀

6740 Rail-Track Laying and Maintenance Equipment Operators 𝑀 𝑀 𝑀

6765 Construction workers, All Other 𝑀 𝑀 𝑀

6800 Derrick, Rotary Drill, and Service Unit Operators, and Roustabouts, 𝑀 𝑀 𝑀

Oil, Gas, and Mining
6820 Earth Drillers, Except Oil and Gas 𝑀 𝑀 𝑀

6830 Explosives Workers, Ordnance Handling Experts, and Blasters 𝑀 𝑀 𝑀

6840 Mining Machine Operators 𝑀 𝑀 𝑀

6940 Extraction workers, All Other 𝑀 𝑀 𝑀

7000 First-Line Supervisors of Mechanics, Installers, and Repairers 𝑀 𝑀 𝑀

7010 Computer, Automated Teller, and Office Machine Repairers 𝑀 𝑀 𝑀

7020 Radio and Telecommunications Equipment Installers and 𝑀 𝑀 𝑀

Repairers
7030 Avionics Technicians 𝑀 𝑀 𝑀

7040 Electric Motor, Power Tool, and Related Repairers 𝑀 𝑀 𝑀

7100 Electrical and Electronics Repairers, Transportation Equipment, 𝑀 𝑀 𝑀

and Industrial and Utility
7110 Electronic Equipment Installers and Repairers, Motor Vehicles 𝑀 𝑀 /
7120 Electronic Home Entertainment Equipment Installers and Repairers 𝑀 𝑀 𝑀

7130 Security and Fire Alarm Systems Installers 𝑀 𝑀 𝑀

7140 Aircraft Mechanics and Service Technicians 𝑀 𝑀 𝑀

7150 Automotive Body and Related Repairers 𝑀 𝑀 𝑀

7160 Automotive Glass Installers and Repairers 𝑀 𝑀 𝑀

7200 Automotive Service Technicians and Mechanics 𝑀 𝑀 𝑀

7210 Bus and Truck Mechanics and Diesel Engine Specialists 𝑀 𝑀 𝑀

7220 Heavy Vehicle and Mobile Equipment Service Technicians and 𝑀 𝑀 𝑀

Mechanics
7240 Small Engine Mechanics 𝑀 𝑀 𝑀

7260 Vehicle and Mobile Equipment Mechanics, Installers, and 𝑀 𝑀 𝑀

Repairers, All Other
7300 Control and Valve Installers and Repairers 𝑀 𝑀 𝑀

7315 Heating, Air Conditioning, and Refrigeration Mechanics and 𝑀 𝑀 𝑀

Installers
7320 Home Appliance Repairers 𝑀 𝑀 𝑀

7330 Industrial and Refractory Machinery Mechanics 𝑀 𝑀 𝑀

7340 Maintenance and Repair Workers, General 𝑀 𝑀 𝑀

7350 Maintenance Workers, Machinery 𝑀 𝑀 𝑀

7360 Millwrights 𝑀 𝑀 𝑀

7410 Electrical Power-Line Installers and Repairers 𝑀 𝑀 𝑀

7420 Telecommunications Line Installers and Repairers 𝑀 𝑀 𝑀

7430 Precision Instrument and Equipment Repairers 𝑀 𝑀 𝑀

7510 Coin, Vending, and Amusement Machine Servicers and Repairers 𝑀 𝑀 𝑀

7540 Locksmiths and Safe Repairers 𝑀 𝑀 𝑀

7560 Riggers 𝑀 𝑀 𝑀

7610 Helpers–Installation, Maintenance, and Repair Workers 𝑀 𝑀 𝑀

7630 Other Installation, Maintenance, and Repair Workers Including 𝑀 𝑀 𝑀

Wind Turbine Service Technicians, and Commercial Divers,
and Signal and Track Switch Repairers

7710 Aircraft Structure, Surfaces, Rigging, and Systems Assemblers 𝑀 𝑀 /
7720 Electrical, Electronics, and Electromechanical Assemblers 𝑀 𝑀 𝑀

7730 Engine and Other Machine Assemblers 𝑀 𝑀 𝑀

7740 Structural Metal Fabricators and Fitters 𝑀 𝑀 𝑀
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7750 Assemblers and Fabricators, All Other 𝑀 𝑀 𝑀

7800 Bakers 𝑀 𝑀 𝑀

7810 Butchers and Other Meat, Poultry, and Fish Processing Workers 𝑀 𝑀 𝑀

7830 Food and Tobacco Roasting, Baking, and Drying Machine 𝑀 𝑀 𝑀

Operators and Tenders
7840 Food Batchmakers 𝑀 𝑀 𝑀

7850 Food Cooking Machine Operators and Tenders 𝑀 𝑀 𝑀

7900 Computer Control Programmers and Operators 𝑀 𝑀 𝑀

7920 Extruding and Drawing Machine Setters, Operators, and Tenders, 𝑀 𝑀 𝑀

Metal and Plastic
7930 Forging Machine Setters, Operators, and Tenders, Metal and Plastic 𝑀 𝑀 /
7940 Rolling Machine Setters, Operators, and Tenders, metal and Plastic 𝑀 𝑀 /
7950 Cutting, Punching, and Press Machine Setters, Operators, and 𝑀 𝑀 𝑀

Tenders, Metal and Plastic
8000 Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, / 𝑀 𝑀

Operators, and Tenders, Metal and Plastic
8010 Lathe and Turning Machine Tool Setters, Operators, and Tenders, / 𝑀 𝑀

Metal and Plastic
8030 Machinists 𝑀 𝑀 𝑀

8040 Metal Furnace Operators, Tenders, Pourers, and Casters 𝑀 𝑀 𝑀

8100 Molders and Molding Machine Setters, Operators, and Tenders, 𝑀 𝑀 𝑀

Metal and Plastic
8130 Tool and Die Makers 𝑀 𝑀 𝑀

8140 Welding, Soldering, and Brazing Workers 𝑀 𝑀 𝑀

8220 Metal workers and plastic workers, All Other 𝑀 𝑀 𝑀

8250 Prepress Technicians and Workers 𝑀 𝑀 𝑀

8300 Laundry and Dry-Cleaning Workers 𝑀 𝑀 𝑀

8310 Pressers, Textile, Garment, and Related Materials 𝑀 𝑀 𝑀

8320 Sewing Machine Operators 𝑀 𝑀 𝑀

8330 Shoe and Leather Workers and Repairers 𝑀 𝑀 𝑀

8350 Tailors, Dressmakers, and Sewers 𝑀 𝑀 𝑀

8400 Textile Bleaching and Dyeing, and Cutting Machine Setters, 𝑀 𝑀 /
Operators, and Tenders

8410 Textile Knitting and Weaving Machine Setters, Operators, and 𝑀 𝑀 /
Tenders

8420 Textile Winding, Twisting, and Drawing Out Machine Setters, 𝑀 𝑀 𝑀

Operators, and Tenders
8450 Upholsterers 𝑀 𝑀 𝑀

8460 Textile, Apparel, and Furnishings workers, All Other 𝑀 𝑀 𝑀

8500 Cabinetmakers and Bench Carpenters 𝑀 𝑀 𝑀

8510 Furniture Finishers 𝑀 𝑀 𝑀

8530 Sawing Machine Setters, Operators, and Tenders, Wood 𝑀 𝑀 𝑀

8540 Woodworking Machine Setters, Operators, and Tenders, Except 𝑀 𝑀 𝑀

Sawing
8550 Woodworkers Including Model Makers and Patternmakers, All 𝑀 𝑀 𝑀

Other
8600 Power Plant Operators, Distributors, and Dispatchers 𝑀 𝑀 𝑀

8610 Stationary Engineers and Boiler Operators 𝑀 𝑀 𝑀

8620 Water Wastewater Treatment Plant and System Operators 𝑀 𝑀 𝑀

8630 Plant and System Operators, All Other 𝑀 𝑀 𝑀

8640 Chemical Processing Machine Setters, Operators, and Tenders 𝑀 𝑀 𝑀

8650 Crushing, Grinding, Polishing, Mixing, and Blending Workers 𝑀 𝑀 𝑀

8710 Cutting Workers 𝑀 𝑀 𝑀

8720 Extruding, Forming, Pressing, and Compacting Machine Setters, 𝑀 𝑀 𝑀

Operators, and Tenders
8730 Furnace, Kiln, Oven, Drier, and Kettle Operators and Tenders 𝑀 𝑀 𝑀

8740 Inspectors, Testers, Sorters, Samplers, and Weighers 𝑀 𝑀 𝑀

8750 Jewelers and Precious Stone and Metal Workers 𝑀 𝑀 𝑀

8760 Medical, Dental, and Ophthalmic Laboratory Technicians 𝑀 𝑀 𝑀

178



Table 2C.1 (cont’d)

OCC2010 Occupation Title Skill Group Indicator During Ever

2011-14 2015-18 2019-22 Changed

8800 Packaging and Filling Machine Operators and Tenders 𝑀 𝑀 𝑀

8810 Painting Workers and Dyers 𝑀 𝑀 𝑀

8830 Photographic Process Workers and Processing Machine 𝑀 𝑀 𝑀

Operators
8850 Adhesive Bonding Machine Operators and Tenders 𝑀 𝑀 𝑀

8910 Etchers, Engravers, and Lithographers 𝑀 𝑀 𝑀

8920 Molders, Shapers, and Casters, Except Metal and Plastic 𝑀 𝑀 𝑀

8930 Paper Goods Machine Setters, Operators, and Tenders 𝑀 𝑀 𝑀

8940 Tire Builders 𝑀 𝑀 𝑀

8950 Helpers–Production Workers 𝑀 𝑀 𝑀

8965 Other Production Workers Including Semiconductor Processors 𝑀 𝑀 𝑀

and Cooling and Freezing Equipment Operators
9040 Air Traffic Controllers and Airfield Operations Specialists 𝑀 𝑀 𝑀

9360 Automotive and Watercraft Service Attendants 𝑀 𝑀 𝑀

9510 Crane and Tower Operators 𝑀 𝑀 𝑀

9520 Dredge, Excavating, and Loading Machine Operators 𝑀 𝑀 /
9560 Conveyor Operators and Tenders, and Hoist and Winch 𝑀 𝑀 𝑀

Operators
9610 Cleaners of Vehicles and Equipment 𝑀 𝑀 𝑀

9620 Laborers and Freight, Stock, and Material Movers, Hand 𝑀 𝑀 𝑀

9630 Machine Feeders and Offbearers 𝑀 𝑀 𝑀

9640 Packers and Packagers, Hand 𝑀 𝑀 𝑀

9650 Pumping Station Operators 𝑀 𝑀 𝑀

9750 Material Moving Workers, All Other 𝑀 𝑀 𝑀

Panel D. Low-Skilled Group Using Time-Invariant Skill Group Indicator
2720 Athletes, Coaches, Umpires, and Related Workers 𝐿 𝐿 𝐿

2740 Dancers and Choreographers 𝐿 𝐿 𝐿

2750 Musicians, Singers, and Related Workers 𝐿 𝐿 𝐿

3700 First-Line Supervisors of Correctional Officers 𝐿 𝐿 𝐿

3710 First-Line Supervisors of Police and Detectives 𝐿 𝐿 𝐿

3720 First-Line Supervisors of Fire Fighting and Prevention Workers 𝐿 𝐿 𝐿

3740 Firefighters 𝐿 𝐿 𝐿

3750 Fire Inspectors 𝐿 𝐿 𝐿

3800 Sheriffs, Bailiffs, Correctional Officers, and Jailers 𝐿 𝐿 𝐿

3820 Police Officers and Detectives 𝐿 𝐿 𝐿

3940 Crossing Guards 𝐿 𝐿 𝐿

4110 Waiters and Waitresses 𝐿 𝐿 𝐿

4230 Maids and Housekeeping Cleaners 𝐿 𝐿 𝐿

4530 Baggage Porters, Bellhops, and Concierges 𝐿 𝐿 𝐿

6005 First-Line Supervisors of Farming, Fishing, and Forestry Workers 𝐿 𝐿 𝐿

6100 Fishing and Hunting Workers 𝐿 𝐿 𝐿

6120 Forest and Conservation Workers 𝐿 𝐿 𝐿

6130 Logging Workers 𝐿 𝐿 𝐿

9030 Aircraft Pilots and Flight Engineers 𝐿 𝐿 𝐿

9050 Flight Attendants and Transportation Workers and Attendants 𝐿 𝐿 𝐿

9100 Bus and Ambulance Drivers and Attendants 𝐿 𝐿 𝐿

9130 Driver/Sales Workers and Truck Drivers 𝐿 𝐿 𝐿

9140 Taxi Drivers and Chauffeurs 𝐿 𝐿 𝐿

9200 Locomotive Engineers and Operators 𝐻𝑁𝑜𝑛 𝐻𝑁𝑜𝑛 𝐿 ✓
9300 Sailors and marine oilers, and ship engineers 𝐿 𝐿 𝐿

9310 Ship and Boat Captains and Operators 𝐿 𝐿 𝐿

9350 Parking Lot Attendants 𝐿 𝐿 𝐿

9410 Transportation Inspectors 𝐿 𝐿 𝐿

9420 Transportation Workers, All Other 𝐿 𝐿 𝐿

9600 Industrial Truck and Tractor Operators 𝐿 𝐿 𝐿

9720 Refuse and Recyclable Material Collectors 𝐿 𝐿 𝐿
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Table 2C.2 The Overlap between 2-Digit OCC2010 and Time-Variant Skill Groups, 2012-14

Number of 4-Digit Occupations in Skill Group:

4-digit High-Skilled High-Skilled Middle-Skilled Low-Skilled Total #Occ.
2-Digit Occ. Title OCC2010 AI-Complement Group Not-Yet-AI Group Group Group

Management Occ. 0010-0430 2 18 1 0 21
Business and Financial Operations Occ. 0500-0950 4 18 2 0 24
Computer and Mathematical Occ. 1000-1240 8 1 0 0 9
Architecture and Engineering Occ. 1300-1560 10 5 2 0 17
Life, Physical, and Social Science Occ. 1600-1980 5 5 8 0 18
Community and Social Service Occ. 2000-2060 0 5 0 0 5
Legal Occ. 2100-2150 0 1 2 0 3
Education, Training, and Library Occ. 2200-2550 0 10 1 0 11
Arts, Design, Entertainment, Sports, 2600-2920 1 7 5 3 16

and Media Occ.
Healthcare Practitioners and Technical Occ. 3000-3540 0 15 13 0 28
Healthcare Support Occ. 3600-3650 0 0 6 0 6
Protective Service Occ. 3700-3950 0 1 4 8 13
Food Preparation and Serving Related Occ. 4000-4150 0 0 10 1 11
Building and Grounds Cleaning and 4200-4250 0 1 4 1 6

Maintenance Occ.
Personal Care and Service Occ. 4300-4650 0 6 11 1 18
Sales and Related Occ. 4700-4965 1 7 8 0 16
Office and Administrative Support Occ. 5000-5940 0 4 42 0 46
Farming, Fishing, and Forestry Occ. 6005-6130 0 0 3 4 7
Construction and Extraction Occ. 6200-6940 0 0 31 0 31
Installation, Maintenance, and Repair Occ. 7000-7630 0 0 32 0 32
Production Occ. 7700-8965 0 1 59 0 60
Transportation and Material Moving Occ. 9000-9750 0 4 11 12 27

Total 31 109 255 30 425

Notes: The counted occupations are from my final sample used for my main analysis. The 2-digit occupation
classification used is from 2010 Census Occupational Classification. The 2-digit IPUMS-ACS OCC2010 code is
mostly the same with 2010 Census Occupational Classification but further divides the following three 2-digit groups
into more detailed ones: (1) "Business Operations Specialists" and "Financial Specialists" instead of "Business
and Financial Operations Occ.;" (2) "Architecture and Engineering" and "Technicians" instead of "Architecture and
Engineering Occ.;" (3) "Construction" and "Extraction" instead of "Construction and Extraction Occ." Since there is a
one-to-one mapping between the 2-digit 2010 Census Occupational Classification and 2-digit O∗NET-SOC code, I use
the 2-digit 2010 Census Occupational Classification rather than the 2-digit IPUMS-ACS OCC2010 to better merge the
job postings data to labor market outcome data. The column of 4-digit OCC2010 shows the range of 4-digit OCC2010
code classified into each 2-digit group. The skill group indicator in this table is time-variant, which is consistent within
years between 2011-14, 2015-18, and 2019-22.
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Table 2C.3 The Overlap between 2-Digit OCC2010 and Time-Variant Skill Groups, 2015-18

Number of 4-Digit Occupations in Skill Group:

4-digit High-Skilled High-Skilled Middle-Skilled Low-Skilled Total #Occ.
2-Digit Occ. Title OCC2010 AI-Complement Group Not-Yet-AI Group Group Group

Management Occ. 0010-0430 2 18 1 0 21
Business and Financial Operations Occ. 0500-0950 4 18 2 0 24
Computer and Mathematical Occ. 1000-1240 8 1 0 0 9
Architecture and Engineering Occ. 1300-1560 10 5 2 0 17
Life, Physical, and Social Science Occ. 1600-1980 4 6 8 0 18
Community and Social Service Occ. 2000-2060 0 5 0 0 5
Legal Occ. 2100-2150 0 1 2 0 3
Education, Training, and Library Occ. 2200-2550 0 10 1 0 11
Arts, Design, Entertainment, Sports, 2600-2920 1 7 5 3 16

and Media Occ.
Healthcare Practitioners and Technical Occ. 3000-3540 0 15 13 0 28
Healthcare Support Occ. 3600-3650 0 0 6 0 6
Protective Service Occ. 3700-3950 0 1 4 8 13
Food Preparation and Serving Related Occ. 4000-4150 0 0 10 1 11
Building and Grounds Cleaning and 4200-4250 0 1 4 1 6

Maintenance Occ.
Personal Care and Service Occ. 4300-4650 0 6 11 1 18
Sales and Related Occ. 4700-4965 1 7 8 0 16
Office and Administrative Support Occ. 5000-5940 0 4 42 0 46
Farming, Fishing, and Forestry Occ. 6005-6130 0 0 3 4 7
Construction and Extraction Occ. 6200-6940 0 1 31 0 32
Installation, Maintenance, and Repair Occ. 7000-7630 0 0 32 0 32
Production Occ. 7700-8965 0 1 61 0 62
Transportation and Material Moving Occ. 9000-9750 0 4 11 12 27

Total 30 111 257 30 428

Notes: The counted occupations are from my final sample used for my main analysis. The 2-digit occupation
classification used is from 2010 Census Occupational Classification. The 2-digit IPUMS-ACS OCC2010 code is
mostly the same with 2010 Census Occupational Classification but further divides the following three 2-digit groups
into more detailed ones: (1) "Business Operations Specialists" and "Financial Specialists" instead of "Business
and Financial Operations Occ.;" (2) "Architecture and Engineering" and "Technicians" instead of "Architecture and
Engineering Occ.;" (3) "Construction" and "Extraction" instead of "Construction and Extraction Occ." Since there is a
one-to-one mapping between the 2-digit 2010 Census Occupational Classification and 2-digit O∗NET-SOC code, I use
the 2-digit 2010 Census Occupational Classification rather than the 2-digit IPUMS-ACS OCC2010 to better merge the
job postings data to labor market outcome data. The column of 4-digit OCC2010 shows the range of 4-digit OCC2010
code classified into each 2-digit group. The skill group indicator in this table is time-variant, which is consistent within
years between 2011-14, 2015-18, and 2019-22.
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Table 2C.4 The Overlap between 2-Digit OCC2010 and Time-Variant Skill Groups, 2019-21

Number of 4-Digit Occupations in Skill Group:

4-digit High-Skilled High-Skilled Middle-Skilled Low-Skilled Total #Occ.
2-Digit Occ. Title OCC2010 AI-Complement Group Not-Yet-AI Group Group Group

Management Occ. 0010-0430 3 16 1 0 20
Business and Financial Operations Occ. 0500-0950 4 18 2 0 24
Computer and Mathematical Occ. 1000-1240 8 1 0 0 9
Architecture and Engineering Occ. 1300-1560 10 5 2 0 17
Life, Physical, and Social Science Occ. 1600-1980 4 6 7 0 17
Community and Social Service Occ. 2000-2060 0 5 0 0 5
Legal Occ. 2100-2150 0 1 2 0 3
Education, Training, and Library Occ. 2200-2550 0 10 1 0 11
Arts, Design, Entertainment, Sports, 2600-2920 1 7 5 3 16

and Media Occ.
Healthcare Practitioners and Technical Occ. 3000-3540 0 15 13 0 28
Healthcare Support Occ. 3600-3650 0 0 6 0 6
Protective Service Occ. 3700-3950 0 1 4 8 13
Food Preparation and Serving Related Occ. 4000-4150 0 0 9 1 10
Building and Grounds Cleaning and 4200-4250 0 1 4 1 6

Maintenance Occ.
Personal Care and Service Occ. 4300-4650 0 6 10 1 17
Sales and Related Occ. 4700-4965 1 7 8 0 16
Office and Administrative Support Occ. 5000-5940 0 4 40 0 44
Farming, Fishing, and Forestry Occ. 6005-6130 0 0 3 4 7
Construction and Extraction Occ. 6200-6940 0 1 30 0 31
Installation, Maintenance, and Repair Occ. 7000-7630 0 0 31 0 31
Production Occ. 7700-8965 0 1 56 0 57
Transportation and Material Moving Occ. 9000-9750 0 3 10 13 26

Total 31 108 244 31 414

Notes: The counted occupations are from my final sample used for my main analysis. The 2-digit occupation
classification used is from 2010 Census Occupational Classification. The 2-digit IPUMS-ACS OCC2010 code is
mostly the same with 2010 Census Occupational Classification but further divides the following three 2-digit groups
into more detailed ones: (1) "Business Operations Specialists" and "Financial Specialists" instead of "Business
and Financial Operations Occ.;" (2) "Architecture and Engineering" and "Technicians" instead of "Architecture and
Engineering Occ.;" (3) "Construction" and "Extraction" instead of "Construction and Extraction Occ." Since there is a
one-to-one mapping between the 2-digit 2010 Census Occupational Classification and 2-digit O∗NET-SOC code, I use
the 2-digit 2010 Census Occupational Classification rather than the 2-digit IPUMS-ACS OCC2010 to better merge the
job postings data to labor market outcome data. The column of 4-digit OCC2010 shows the range of 4-digit OCC2010
code classified into each 2-digit group. The skill group indicator in this table is time-variant, which is consistent within
years between 2011-14, 2015-18, and 2019-22.
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APPENDIX 2D

ML OCCUPATION CLUSTERS

This section introduces how I construct the ML occupation clusters using job postings data and

machine learning algorithms. I first extract over 1,800 skills from (1) the skill dictionary provided

by Lightcast, formerly known as Burning Glass Technologies; (2) basic skills, technology skills,

knowledge, and hot technologies from O∗NET; and (3) my chosen AI phrases listed in Table 2.1.

Some examples of these skills are "algorithm development," "audit software," "bioinformatics,"

"clerical support," "direct marketing," "equipment repair," and "javascript." Next, I match skills to

the raw text of over 200 million job postings collected by LinkUp and calculate the frequency of each

skill appeared in a posting. I then collapse the posting-skill matrix to an occupation-skill matrix as

an occupation consists of numerous postings. Finally, I use machine learning clustering algorithms

to cluster occupations based on the similarity in skills. Occupations with higher similarity in skills

are supposed to fall into the same cluster.

To compare my proposed ML occupation clusters and Census/BLS 2-digit groups, I create

a visualization of multi-dimensional skills by different occupation system in Appendix Figure

2D.1. Each marker in the figure represents an occupation. Different colors and symbols are

used to distinguish clusters. Since there are over 1,800 skills (i.e., over 1,800 dimensions), I

use a dimensionality reduction algorithm to reduce the high dimensions to only two dimensions.

Thus, the x- and y-axes in Appendix Figure 2D.1 have no empirical meaning. They represent the

projection of a high-dimensional data. The most important takeaway of this figure is the relative

distance between occupations within the same cluster. The closer two markers are, the higher

similarity in over 1,800 skills they share. Occupations within the same Census/BLS 2-digit group

scatter everywhere (Appendix Figure 2D.1a),1 while most occupations within the same ML group

proposed by me cluster together (Appendix Figure 2D.1b). This finding further supports that the

Census/BLS occupation system does not capture specific skill requirements of an occupation or

skill similarity between occupations. Appendix Tables 2D.1-2D.3 show the overlap between ML
1There is a one-to-one mapping between the 2-digit Census Occupational Classification and the 2-digit BLS SOC

groups. Thus, in Appendix Figure 2D.1a, the 2-digit SOC code is used to represent the broad occupation group.
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occupation clusters and the time-variant skill groups during different time periods, while Appendix

Table 2D.4 lists the ML occupation cluster for all 4-digit occupations. The titles of each cluster are

named based on 4-digit occupation titles within the cluster.
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Figure 2D.1 2-D Visualization of Multi-Dimensional Skills

(a) By 2-Digit Census Occupational Classification
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(b) By ML Occupation Cluster
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Notes: The AI Skill Prevalence Score is constructed at the state-year level and standardized within a year.
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Table 2D.1 The Overlap between ML Occupation Clusters and Time-Variant Skill Groups, 2012-14

Number of 4-Digit Occupations in Skill Group:

High-Skilled High-Skilled Middle-Skilled Low-Skilled Total #Occ.
ML Occupation Cluster: AI-Complement Group Not-Yet-AI Group Group Group

#1 Postsecondary educators 0 1 0 0 1

#2 Service & retail workers 0 6 23 1 30

#3 Specialized service professionals 0 1 3 0 4

#4 Construction & craft workers 0 0 5 0 5

#6 Finance professionals 2 3 1 0 6

#7 Pre-Secondary educators 0 5 0 0 5

#9 Building improvement technicians 0 0 3 0 3

#10 Public safety, policy, & social science 1 2 1 2 6

#11 Life sciences & quality assurance 3 3 1 0 7

#13 Engineering technicians 7 1 1 0 9

#16 Healthcare professionals & practitioners 0 18 17 0 35

#17 Technical maintenance workers 0 1 58 2 61

#18 Workplace safety & training specialists 0 1 0 0 1

#19 IT & data management 11 7 1 0 19

#20 Sales & marketing professionals 2 7 2 0 112

#21 Media production & broadcasting 1 3 3 0 7

#22 Regulatory compliance specialists 0 1 4 0 5

#23 Manual workers & machine operators 0 3 47 4 54

#24 Service & administrative professionals 0 32 36 6 74

#25 Infrastructure architecture & engineering 3 4 2 0 9

#26 Creative & communication support workers 0 0 2 2 4

#27 Technical & service support personnel 0 8 44 13 65

#28 Environmental & earth scientists 1 1 1 0 3

Total 31 108 255 30 424
Notes: The counted occupations are from my final sample used for my main analysis. The index for ML occupation
clusters is a randomly chosen number. There is no meaning for this index. The skill group indicator in this table is
time-variant, which is consistent within years between 2011-14, 2015-18, and 2019-22.
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Table 2D.2 The Overlap between ML Occupation Clusters and Time-Variant Skill Groups, 2015-18

Number of 4-Digit Occupations in Skill Group:

High-Skilled High-Skilled Middle-Skilled Low-Skilled Total #Occ.
ML Occupation Cluster: AI-Complement Group Not-Yet-AI Group Group Group

#1 Postsecondary educators 0 1 0 0 1

#2 Service & retail workers 0 6 23 1 30

#3 Specialized service professionals 0 1 3 0 4

#4 Construction & craft workers 0 0 5 0 5

#6 Finance professionals 2 3 1 0 6

#7 Pre-Secondary educators 0 5 0 0 5

#9 Building improvement technicians 0 0 3 0 3

#10 Public safety, policy, & social science 1 2 1 2 6

#11 Life sciences & quality assurance 3 3 1 0 7

#13 Engineering technicians 7 1 1 0 9

#16 Healthcare professionals & practitioners 0 18 17 0 35

#17 Technical maintenance workers 0 1 60 2 63

#18 Workplace safety & training specialists 0 1 0 0 1

#19 IT & data management 11 7 1 0 19

#20 Sales & marketing professionals 2 7 2 0 11

#21 Media production & broadcasting 1 3 3 0 7

#22 Regulatory compliance specialists 0 1 4 0 5

#23 Manual workers & machine operators 0 3 47 4 54

#24 Service & administrative professionals 0 32 36 6 74

#25 Infrastructure architecture & engineering 2 5 2 0 9

#26 Creative & communication support workers 0 0 2 2 4

#27 Technical & service support personnel 0 8 44 13 65

#28 Environmental & earth scientists 1 1 1 0 3

Total 30 109 257 30 426
Notes: The counted occupations are from my final sample used for my main analysis. The index for ML occupation
clusters is a randomly chosen number. There is no meaning for this index. The skill group indicator in this table is
time-variant, which is consistent within years between 2011-14, 2015-18, and 2019-22.
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Table 2D.3 The Overlap between ML Occupation Clusters and Time-Variant Skill Groups, 2019-22

Number of 4-Digit Occupations in Skill Group:

High-Skilled High-Skilled Middle-Skilled Low-Skilled Total #Occ.
ML Occupation Cluster: AI-Complement Group Not-Yet-AI Group Group Group

#1 Postsecondary educators 0 1 0 0 1

#2 Service & retail workers 0 6 23 1 30

#3 Specialized service professionals 0 1 3 0 4

#4 Construction & craft workers 0 0 5 0 5

#6 Finance professionals 2 3 1 0 6

#7 Pre-Secondary educators 0 5 0 0 5

#9 Building improvement technicians 0 0 3 0 3

#10 Public safety, policy, & social science 1 2 1 2 6

#11 Life sciences & quality assurance 3 3 1 0 7

#13 Engineering technicians 7 1 1 0 9

#16 Healthcare professionals & practitioners 0 18 17 0 35

#17 Technical maintenance workers 0 1 56 2 59

#18 Workplace safety & training specialists 0 1 0 0 1

#19 IT & data management 11 7 1 0 19

#20 Sales & marketing professionals 3 6 2 0 11

#21 Media production & broadcasting 1 3 3 0 7

#22 Regulatory compliance specialists 0 1 4 0 5

#23 Manual workers & machine operators 0 3 44 4 1

#24 Service & administrative professionals 0 31 33 6 70

#25 Infrastructure architecture & engineering 2 5 2 0 9

#26 Creative & communication support workers 0 0 2 2 4

#27 Technical & service support personnel 0 7 41 14 62

#28 Environmental & earth scientists 1 1 1 0 3

Total 31 106 244 31 412
Notes: The counted occupations are from my final sample used for my main analysis. The index for ML occupation
clusters is a randomly chosen number. There is no meaning for this index. The skill group indicator in this table is
time-variant, which is consistent within years between 2011-14, 2015-18, and 2019-22.

188



Table 2D.4 4-Digit Occupations by ML Occupation Cluster
OCC2010 Occupation Title OCC2010 Occupation Title

ML Occupation Cluster #1: Postsecondary Educators
2200 Postsecondary Teachers

ML Occupation Cluster #2: Service and Retail Workers
20 General and Operations Managers 4750 Parts Salespersons
310 Food Service and Lodging Managers 4760 Retail Salespersons
510 Buyers and Purchasing Agents, Farm Products 4900 Models, Demonstrators, and Product Promoters
520 Wholesale and Retail Buyers, Except Farm Products 4950 Door-to-Door Sales Workers, News and Street Vendors, and
2630 Designers Related Workers
3520 Opticians, Dispensing 5300 Hotel, Motel, and Resort Desk Clerks
4000 Chefs and Cooks 5620 Stock Clerks and Order Fillers
4010 First-Line Supervisors of Food Preparation and Serving Workers 6010 Agricultural Inspectors
4030 Food Preparation Workers 7800 Bakers
4120 Food Servers, Nonrestaurant 7810 Butchers and Other Meat, Poultry, and Fish Processing Workers
4140 Dishwashers 7840 Food Batchmakers
4200 First-Line Supervisors of Housekeeping and Janitorial Workers 8300 Laundry and Dry-Cleaning Workers
4610 Personal Care Aides 8810 Painting Workers and Dyers
4700 First-Line Supervisors of Sales Workers 9050 Flight Attendants and Transportation Workers and Attendants
4720 Cashiers 9640 Packers and Packagers, Hand
4740 Counter and Rental Clerks

ML Occupation Cluster #3: Specialized Service Professionals
3910 Private Detectives and Investigators 6360 Glaziers
4460 Funeral Service Workers and Embalmers 8450 Upholsterers

ML Occupation Cluster #4: Construction and Craft Workers
6210 Boilermakers 8500 Cabinetmakers and Bench Carpenters
6230 Carpenters 8540 Woodworking Machine Setters, Operators, and Tenders
6330 Drywall Installers, Ceiling Tile Installers, and Tapers Except Sawing

ML Occupation Cluster #6: Financial Management Professionals
120 Financial Managers 840 Financial Analysts
800 Accountants and Auditors 950 Financial Specialists, All Other
820 Budget Analysts 5120 Bookkeeping, Accounting, and Auditing Clerks

ML Occupation Cluster #7: Pre-Secondary Educators
2310 Elementary and Middle School Teachers 2340 Other Teachers and Instructors
2320 Secondary School Teachers 2540 Teacher Assistants
2330 Special Education Teachers

ML Occupation Cluster #9: Building Improvement Technicians
6240 Carpet, Floor, and Tile Installers and Finishers 6765 Construction Workers, All Other
6400 Insulation Workers

ML Occupation Cluster #10: Public Safety, Policy, and Social Science
10 Chief Executives and Legislators/Public Administration 1830 Urban and Regional Planners

1640 Conservation Scientists and Foresters 3720 First-Line Supervisors of Fire Fighting and Prevention Workers
1800 Economists and Market Researchers 3820 Police Officers and Detectives

ML Occupation Cluster #11: Life Sciences and Quality Assurance
360 Natural Science Managers 1650 Medical Scientists, and Life Scientists, All Other
1240 Mathematical Science Occupations, All Other 1720 Chemists and Materials Scientists
1350 Chemical Engineers 1910 Biological Technicians
1610 Biological Scientists

ML Occupation Cluster #13: Engineering Technicians and Technologists
1320 Aerospace Engineers 1460 Mechanical Engineers
1400 Computer Hardware Engineers 1530 Engineers, All Other
1410 Electrical and Electronics Engineers 1600 Agricultural and Food Scientists
1430 Industrial Engineers, including Health and Safety 1700 Astronomers and Physicists
1450 Materials Engineers

ML Occupation Cluster #16: Healthcare Professionals and Practitioners
350 Medical and Health Services Managers 3230 Speech Language Pathologists
1820 Psychologists 3260 Health Diagnosing and Treating Practitioners, All Other
2000 Counselors 3300 Clinical Laboratory Technologists and Technicians
2010 Social Workers 3310 Dental Hygienists
2020 Community and Social Service Specialists, All Other 3320 Diagnostic Related Technologists and Technicians
2040 Clergy 3400 Emergency Medical Technicians and Paramedics
3030 Dieticians and Nutritionists 3410 Health Diagnosing and Treating Practitioner Support Technicians
3050 Pharmacists 3500 Licensed Practical and Licensed Vocational Nurses
3060 Physicians and Surgeons 3510 Medical Records and Health Information Technicians
3110 Physician Assistants 3530 Health Technologists and Technicians, All Other
3120 Podiatrists 3540 Healthcare Practitioners and Technical Occupations, All Other
3130 Registered Nurses 3600 Nursing, Psychiatric, and Home Health Aides
3140 Audiologists 3610 Occupational Therapy Assistants and Aides
3150 Occupational Therapists 3620 Physical Therapist Assistants and Aides
3160 Physical Therapists 3640 Dental Assistants
3200 Radiation Therapists 3650 Medical Assistants and Other Healthcare Support Occupations,
3210 Recreational Therapists All Other
3220 Respiratory Therapists 5310 Interviewers, Except Eligibility and Loan
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Table 2D.4 (cont’d)
OCC2010 Occupation Title OCC2010 Occupation Title

ML Occupation Cluster #17: Technical Maintenance Workers
1550 Engineering Technicians, Except Drafters 7420 Telecommunications Line Installers and Repairers
4250 Grounds Maintenance Workers 7430 Precision Instrument and Equipment Repairers
6260 Construction Laborers 7510 Coin, Vending, and Amusement Machine Servicers and
6300 Paving, Surfacing, and Tamping Equipment Operators Repairers
6320 Construction Equipment Operators Except Paving, Surfacing, 7540 Locksmiths and Safe Repairers

and Tamping Equipment Operators 7710 Aircraft Structure, Surfaces, Rigging, and Systems Assemblers
6355 Electricians 7720 Electrical, Electronics, and Electromechanical Assemblers
6440 Pipelayers, Plumbers, Pipefitters, and Steamfitters 7900 Computer Control Programmers and Operators
6500 Reinforcing Iron and Rebar Workers 7930 Forging Machine Setters, Operators, and Tenders, Metal and
6520 Sheet Metal Workers, Metal-Working Plastic
6530 Structural Iron and Steel Workers 7950 Cutting, Punching, and Press Machine Setters, Operators, and
6600 Helpers, Construction Trades Tenders, Metal and Plastic
6700 Elevator Installers and Repairers 7960 Drilling and Boring Machine Tool Setters, Operators, and
6730 Highway Maintenance Workers Tenders, Metal and Plastic
6740 Rail-Track Laying and Maintenance Equipment Operators 8000 Grinding, Lapping, Polishing, and Buffing Machine Tool
6800 Derrick, Rotary Drill, and Service Unit Operators, and Roustabouts, Setters, Operators, and Tenders, Metal and Plastic

Oil, Gas, and Mining 8010 Lathe and Turning Machine Tool Setters, Operators, and
6820 Earth Drillers, Except Oil and Gas Tenders, Metal and Plastic
7000 First-Line Supervisors of Mechanics, Installers, and Repairers 8030 Machinists
7010 Computer, Automated Teller, and Office Machine Repairers 8130 Tool and Die Makers
7020 Radio and Telecommunications Equipment Installers and Repairers 8140 Welding, Soldering, and Brazing Workers
7030 Avionics Technicians 8150 Heat Treating Equipment Setters, Operators, and Tenders,
7040 Electric Motor, Power Tool, and Related Repairers Metal and Plastic
7100 Electrical and Electronics Repairers, Transportation Equipment, and 8210 Tool Grinders, Filers, and Sharpeners

Industrial and Utility 8220 Metal Workers and Plastic Workers, All Other
7130 Security and Fire Alarm Systems Installers 8600 Power Plant Operators, Distributors, and Dispatchers
7140 Aircraft Mechanics and Service Technicians 8610 Stationary Engineers and Boiler Operators
7150 Automotive Body and Related Repairers 8620 Water Wastewater Treatment Plant and System Operators
7200 Automotive Service Technicians and Mechanics 8630 Plant and System Operators, All Other
7210 Bus and Truck Mechanics and Diesel Engine Specialists 8740 Inspectors, Testers, Sorters, Samplers, and Weighers
7220 Heavy Vehicle and Mobile Equipment Service Technicians and 8965 Other Production Workers Including Semiconductor Proces-

Mechanics sors and Cooling and Freezing Equipment Operators
7240 Small Engine Mechanics 9240 Railroad Conductors and Yardmasters
7300 Control and Valve Installers and Repairers 9410 Transportation Inspectors
7315 Heating, Air Conditioning, and Refrigeration Mechanics and 9420 Transportation Workers, All Other

Installers 9510 Crane and Tower Operators
7330 Industrial and Refractory Machinery Mechanics 9520 Dredge, Excavating, and Loading Machine Operators
7340 Maintenance and Repair Workers, General 9650 Pumping Station Operators
7350 Maintenance Workers, Machinery 9750 Material moving workers, All Other
7360 Millwrights
7410 Electrical Power-Line Installers and Repairers

ML Occupation Cluster #18: Workplace Safety and Training Specialists
130 Human Resources Managers

ML Occupation Cluster #19: IT and Data Management Specialists
100 Administrative Services Managers Analysts/Web Developers
110 Computer and Information Systems Managers 1010 Computer Programmers
140 Industrial Production Managers 1020 Software Developers, Applications and Systems Software
150 Purchasing Managers 1050 Computer Support Specialists
220 Constructions Managers 1060 Database Administrators
300 Architectural and Engineering Managers 1100 Network and Computer Systems Administrators
530 Purchasing Agents, Except Wholesale, Retail, and Farm Products 1200 Actuaries
700 Logisticians 1220 Operations Research Analysts
710 Management Analysts 2840 Technical Writers
1000 Computer Scientists and Systems Analysts/Network Systems 5920 Statistical Assistants

ML Occupation Cluster #20: Sales and Marketing Professionals
30 Managers in Marketing, Advertising, and Public Relations 4820 Securities, Commodities, and Financial Services Sales Agents
730 Other Business Operations and Management Specialists 4840 Sales Representatives, Services, All Other
2825 Public Relations Specialists 4850 Sales Representatives, Wholesale and Manufacturing
2850 Writers and Authors 4930 Sales Engineers
4800 Advertising Sales Agents 4940 Telemarketers
4810 Insurance Sales Agents

ML Occupation Cluster #21: Media Production and Broadcasting
1710 Atmospheric and Space Scientists 2900 Broadcast and Sound Engineering Technicians and Radio
2600 Artists and Related Workers Operators, and Media and Communication Equipment
2700 Actors, Producers, and Directors Workers, All Other
2800 Announcers 2920 Television, Video, and Motion Picture Camera Operators
2810 Editors, News Analysts, Reporters, and Correspondents and Editors

ML Occupation Cluster #22: Regulatory Compliance Specialists
430 Managers, All Other (Including Postmasters) 7120 Electronic Home Entertainment Equipment Installers and
560 Compliance Officers, Except Agriculture Repairers
900 Financial Examiners 7320 Home Appliance Repairers
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Table 2D.4 (cont’d)
OCC2010 Occupation Title OCC2010 Occupation Title

ML Occupation Cluster #23: Manual Workers and Machine Operators
4220 Janitors and Building Cleaners 8310 Pressers, Textile, Garment, and Related Materials
4230 Maids and Housekeeping Cleaners 8320 Sewing Machine Operators
5540 Postal Service Clerks 8340 Shoe Machine Operators and Tenders
5550 Postal Service Mail Carriers 8400 Textile Bleaching and Dyeing, and Cutting Machine Setters,
5560 Postal Service Mail Sorters, Processors, and Processing Machine Operators, and Tenders

Operators 8410 Textile Knitting and Weaving Machine Setters, Operators, and
5610 Shipping, Receiving, and Traffic Clerks Tenders
5850 Mail Clerks and Mail Machine Operators, Except Postal Service 8420 Textile Winding, Twisting, and Drawing Out Machine Setters,
5900 Office Machine Operators, Except Computer Operators, and Tenders
6050 Agricultural Workers, All Other 8510 Furniture Finishers
6220 Brickmasons, Blockmasons, and Stonemasons 8530 Sawing Machine Setters, Operators, and Tenders, Wood
6250 Cement Masons, Concrete Finishers, and Terrazzo Workers 8640 Chemical Processing Machine Setters, Operators, and Tenders
6420 Painters, Construction and Maintenance 8650 Crushing, Grinding, Polishing, Mixing, and Blending Workers
6940 Extraction Workers, All Other 8710 Cutting Workers
7160 Automotive Glass Installers and Repairers 8720 Extruding, Forming, Pressing, and Compacting Machine Setters,
7260 Vehicle and Mobile Equipment Mechanics, Installers, and Repairers, Operators, and Tenders

All Other 8730 Furnace, Kiln, Oven, Drier, and Kettle Operators and Tenders
7560 Riggers 8760 Medical, Dental, and Ophthalmic Laboratory Technicians
7610 Helpers–Installation, Maintenance, and Repair Workers 8800 Packaging and Filling Machine Operators and Tenders
7700 First-Line Supervisors of Production and Operating Workers 8850 Adhesive Bonding Machine Operators and Tenders
7730 Engine and Other Machine Assemblers 8860 Cleaning, Washing, and Metal Pickling Equipment Operators and
7740 Structural Metal Fabricators and Fitters Tenders
7750 Assemblers and Fabricators, All Other 8920 Molders, Shapers, and Casters, Except Metal and Plastic
7830 Food and Tobacco Roasting, Baking, and Drying Machine Operators 8930 Paper Goods Machine Setters, Operators, and Tenders

and Tenders 8940 Tire Builders
7850 Food Cooking Machine Operators and Tenders 8950 Helpers–Production Workers
7920 Extruding and Drawing Machine Setters, Operators, and Tenders, 9000 Supervisors of Transportation and Material Moving Workers

Metal and Plastic 9260 Subway, Streetcar, and Other Rail Transportation Workers
7940 Rolling Machine Setters, Operators, and Tenders, Metal and Plastic 9300 Sailors and Marine Oilers, and Ship Engineers
8040 Metal Furnace Operators, Tenders, Pourers, and Casters 9560 Conveyor Operators and Tenders, and Hoist and Winch Operators
8100 Molders and Molding Machine Setters, Operators, and Tenders, 9600 Industrial Truck and Tractor Operators

Metal and Plastic 9620 Laborers and Freight, Stock, and Material Movers, Hand
8200 Plating and Coating Machine Setters, Operators, and Tenders, Metal 9630 Machine Feeders and Offbearers

and Plastic 9720 Refuse and Recyclable Material Collectors

ML Occupation Cluster #24: Service and Administrative Professionals
160 Transportation, Storage, and Distribution Managers 4300 First-Line Supervisors of Gaming Workers
205 Farmers, Ranchers, and Other Agricultural Managers 4320 First-Line Supervisors of Personal Service Workers
230 Education Administrators 4530 Baggage Porters, Bellhops, and Concierges
330 Gaming Managers 4540 Tour and Travel Guides
410 Property, Real Estate, and Community Association Managers 4620 Recreation and Fitness Workers
420 Social and Community Service Managers 4640 Residential Advisors
500 Agents and Business Managers of Artists, Performers, and Athletes 4830 Travel Agents
540 Claims Adjusters, Appraisers, Examiners, and Investigators 4920 Real Estate Brokers and Sales Agents
620 Human Resources, Training, and Labor Relations Specialists 5000 First-Line Supervisors of Office and Administrative Support
720 Meeting and Convention Planners Workers
810 Appraisers and Assessors of Real Estate 5100 Bill and Account Collectors
830 Credit Analysts 5110 Billing and Posting Clerks
850 Personal Financial Advisors 5140 Payroll and Timekeeping Clerks
860 Insurance Underwriters 5150 Procurement Clerks
910 Credit Counselors and Loan Officers 5160 Bank Tellers
930 Tax Examiners and Collectors, and Revenue Agents 5200 Brokerage Clerks
1310 Surveyors, Cartographers, and Photogrammetrists 5220 Court, Municipal, and License Clerks
1560 Surveying and Mapping Technicians 5240 Customer Service Representatives
1900 Agricultural and Food Science Technicians 5250 Eligibility Interviewers, Government Programs
1920 Chemical Technicians 5320 Library Assistants, Clerical
1930 Geological and Petroleum Technicians, and Nuclear Technicians 5330 Loan Interviewers and Clerks
1960 Life, Physical, and Social Science Technicians, All Other 5340 New Account Clerks
2050 Directors, Religious Activities and Education 5350 Correspondent clerks and order clerks
2100 Lawyers, and Judges, Magistrates, and Other Judicial Workers 5360 Human Resources Assistants, Except Payroll and Timekeeping
2140 Paralegals and Legal Assistants 5400 Receptionists and Information Clerks
2150 Legal Support Workers, All Other 5500 Cargo and Freight Agents
2400 Archivists, Curators, and Museum Technicians 5520 Dispatchers
2430 Librarians 5600 Production, Planning, and Expediting Clerks
2440 Library Technicians 5700 Secretaries and Administrative Assistants
2550 Education, Training, and Library Workers, All Other 5810 Data Entry Keyers
2860 Media and Communication Workers, All Other 5840 Insurance Claims and Policy Processing Clerks
3700 First-Line Supervisors of Correctional Officers 5860 Office Clerks, General
3710 First-Line Supervisors of Police and Detectives 5910 Proofreaders and Copy Markers
3730 Supervisors, Protective Service Workers, All Other 5940 Office and Administrative Support Workers, All Other
3750 Fire Inspectors 6005 First-Line Supervisors of Farming, Fishing, and Forestry Workers
3800 Sheriffs, Bailiffs, Correctional Officers, and Jailers 6840 Mining Machine Operators
3900 Animal Control 9040 Air Traffic Controllers and Airfield Operations Specialists
3930 Security Guards and Gaming Surveillance Officers
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Table 2D.4 (cont’d)
OCC2010 Occupation Title OCC2010 Occupation Title

ML Occupation Cluster #25: Infrastructure Architecture and Engineering
600 Cost Estimators Safety Engineers
1300 Architects, Except Naval 1540 Drafters
1360 Civil Engineers 6200 First-Line Supervisors of Construction Trades and Extraction
1420 Environmental Engineers Workers
1440 Marine Engineers and Naval Architects 6660 Construction and Building Inspectors
1520 Petroleum, Mining and Geological Engineers, Including Mining

ML Occupation Cluster #26: Creative and Communication Support Workers
2740 Dancers and Choreographers 5820 Word Processors and Typists
5020 Telephone Operators 9130 Driver/Sales Workers and Truck Drivers

ML Occupation Cluster #27: Technical and Service Support Personnel
940 Tax Preparers 5510 Couriers and Messengers
2300 Preschool and Kindergarten Teachers 5530 Meter Readers, Utilities
2720 Athletes, Coaches, Umpires, and Related Workers 5630 Weighers, Measurers, Checkers, and Samplers, Recordkeeping
2750 Musicians, Singers, and Related Workers 6040 Graders and Sorters, Agricultural Products
2910 Photographers 6100 Fishing and Hunting Workers
3000 Chiropractors 6120 Forest and Conservation Workers
3010 Dentists 6130 Logging Workers
3040 Optometrists 6460 Plasterers and Stucco Masons
3250 Veterinarians 6515 Roofers
3630 Massage Therapists 6710 Fence Erectors
3740 Firefighters 6720 Hazardous Materials Removal Workers
3940 Crossing Guards 6830 Explosives Workers, Ordnance Handling Experts, and Blasters
3950 Law Enforcement Workers, All Other 7110 Electronic Equipment Installers and Repairers, Motor Vehicles
4040 Bartenders 7550 Manufactured Building and Mobile Home Installers
4050 Combined Food Preparation and Serving Workers, Including 7630 Other Installation, Maintenance, and Repair Workers Including

Fast Food Wind Turbine Service Technicians, and Commercial Divers, and
4060 Counter Attendant, Cafeteria, Food Concession, and Coffee Shop Signal and Track Switch Repairers
4110 Waiters and Waitresses 8060 Model Makers and Patternmakers, Metal and Plastic
4130 Food Preparation and Serving Related Workers, All Other 8250 Prepress Technicians and Workers
4150 Host and Hostesses, Restaurant, Lounge, and Coffee Shop 8330 Shoe and Leather Workers and Repairers
4210 First-Line Supervisors of Landscaping, Lawn Service, and 8350 Tailors, Dressmakers, and Sewers

Groundskeeping Workers 8460 Textile, Apparel, and Furnishings Workers, All Other
4240 Pest Control Workers 8550 Woodworkers Including Model Makers and Patternmakers,
4340 Animal Trainers All Other
4350 Nonfarm Animal Caretakers 8750 Jewelers and Precious Stone and Metal Workers
4400 Gaming Services Workers 8830 Photographic Process Workers and Processing Machine Operators
4420 Ushers, Lobby Attendants, and Ticket Takers 8910 Etchers, Engravers, and Lithographers
4430 Entertainment Attendants and Related Workers, All Other 9030 Aircraft Pilots and Flight Engineers
4500 Barbers 9100 Bus and Ambulance Drivers and Attendants
4510 Hairdressers, Hairstylists, and Cosmetologists 9140 Taxi Drivers and Chauffeurs
4520 Personal Appearance Workers, All Other 9200 Locomotive Engineers and Operators
4600 Childcare Workers 9230 Railroad Brake, Signal, and Switch Operators
5010 Switchboard Operators, Including Answering Service 9310 Ship and Boat Captains and Operators
5130 Gaming Cage Workers 9350 Parking Lot Attendants
5230 Credit Authorizers, Checkers, and Clerks 9360 Automotive and Watercraft Service Attendants
5260 File Clerks 9610 Cleaners of Vehicles and Equipment
5410 Reservation and Transportation Ticket Agents and Travel Clerks

ML Occupation Cluster #28: Environmental and Earth Scientists
360 Natural Science Managers 1760 Physical Scientists, All Other
1740 Environmental Scientists and Geoscientists 1840 Social Scientists, All Other

Notes: There are 10 occupations that do not have any observations in 2012-2021 IPUMS-ACS data. These
occupations are: Reinforcing Iron and Rebar Workers (6500), Drilling and Boring Machine Tool Setters, Operators,
and Tenders, Metal and Plastic (7960), Heat Treating Equipment Setters, Operators, and Tenders, Metal and Plastic
(8150), Tool Grinders, Filers, and Sharpeners (8210) from ML Occupation Cluster #17 Technical Maintenance
Workers; Plating and Coating Machine Setters, Operators, and Tenders, Metal and Plastic (8200), Shoe Machine
Operators and Tenders (8340), Cleaning, Washing, and Metal Pickling Equipment Operators and Tenders (8860) from
ML Occupation Cluster #23 Manual Workers and Machine Operators; Manufactured Building and Mobile Home
Installers (7550), Model Makers and Patternmakers, Metal and Plastic (8060), Railroad Brake, Signal, and Switch
Operators (9230) from ML Occupation Cluster #27 Technical and Service Support Personnel. They are not included
in my main analysis as my sampling period is between 2012 and 2021.
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CHAPTER 3

AI ADOPTION AND GENDER WAGE GAPS

3.1 Introduction

Throughout the past decade, there have been substantial advancements in Artificial Intelligence

(AI) capabilities. Progress in AI subfields, such as machine learning, deep learning, computer

vision, robotics, and natural language processing, has not only enhanced AI’s ability to automate

both routine-cognitive and routine-manual tasks (e.g., Webb, 2019; Hatzius et al., 2023; Kogan et

al., 2023; Pizzinelli et al., 2023) but also improved worker productivity in cognitive, non-routine,

and AI-complementary tasks (e.g., Acemoglu and Restrepo, 2018; Acemoglu and Restrepo, 2020;

Brynjolfsson et al., 2023; Pizzinelli et al., 2023; Georgieff, 2024). AI’s displacement effect leads

to job losses and wage declines, while its augmentation effect increases labor demand and drives

wage growth (Acemoglu and Restrepo, 2018). However, these effects may vary by gender. Given

differences in task composition across female- and male-dominated roles, AI could widen or narrow

existing gender wage gaps.

This paper examines the impact of AI adoption on gender wage gaps in the U.S. labor market.

Leveraging real-time, high-frequency data from the Census Business Trends and Outlook Survey

(BTOS), which has been collecting data since September 2023, I measure firms’ actual AI imple-

mentation using the proportion of businesses who current use or expect to use AI in producing

goods or services. To quantify the persistence of AI adoption among firms, I measure continuing

AI adoption as the unconditional proportion of businesses reporting both current and expected AI

use.1 The proportion of businesses reporting AI adoption has grown rapidly since September 2023,

particularly among those with continuing AI adoption.

I provide three key findings. First, I document that AI adoption at the state-year-month level

is associated with a narrowing of within-occupation gender wage gaps, as it increases the mean

hourly wage for women more than for men. More specifically, a 1 percentage point (pp) increase in
1Since the BTOS data is publicly available only at aggregated levels, such as state, sector, or firm size, but not at

more granular levels like the firm level, I am unable to compute the conditional proportion of continuing AI adoption.
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the state-year-month share of businesses reporting current, expected, or continuing AI usage leads

to a 0.5%, 0.4%, and 3.2% increase, respectively, in women’s mean hourly wage relative to men. I

additionally include lagged and lead AI adoption variables to distinguish between short-term and

long-term effects. The results show a significant relationship between the lagged AI adoption and

the mean hourly wage but a insignificant relationship for the current AI adoption, suggesting the

long-term effect narrows the gender wage gap at the mean. This finding may be due to the high

correlation between the current and lagged AI adoption variables, resulting in multicollinearity

issue, or the stronger power of the lagged effect in explaining the variation.

To gain a deeper understanding on the distributional effect of AI adoption on gender wage gaps,

I use the within-industry, between-occupation variation along with the industry-month AI adoption

to better capture industry-specific patterns. I find a non-monotonic pattern in the relationship

between AI adoption and gender wage gaps across the wage distribution, where AI adoption

widens gender wage gaps at the bottom and middle of the wage distribution (e.g., the 10th percentile

and median) but narrows gaps at the top (e.g., the 90th percentile). Low- and middle-wage women

primarily specialize in routine-intensive tasks, such as clerical and administrative jobs, making

them more vulnerable to AI-driven substitution. In contrast, their male counterparts are more

concentrated in manual, non-routine occupations which are less susceptible to either substitution or

complementarity by current AI technologies. Thus, women at the bottom and middle of the wage

distribution are disadvantaged by AI relative to men. At the top of the distribution, women can be

complemented by AI, rather than being displaced, to boost their productivity, leading to greater

wage gains compared to men.

Finally, I employ the state-year level data on job postings demanding AI skills to provide a clearer

depiction of AI’s complementarity because it is not easy to distinguish between the substitution

and complementarity effect of AI using the data on AI adoption in firms. Different from results

on the relationship between AI adoption and gender wage gaps, I document a monotonic trend for

the impact of the AI job posting share. An increase in this share, reflecting a higher demand for

AI skills, narrows gender wage gaps at the 10th percentile, median, mean, and 90th percentile, with
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stronger effects at the top of the distribution. This could be explained by the fact that the AI job

posting share and AI adoption capture different aspects of AI, where the former one measures the

expected demand for AI vacancies while the latter one captures the actual implementation of AI in

producing goods or services in business.

The existence of gender wage gaps in the U.S. labor market has been extensively studied and

well documented. Previous literature discusses how changes in gender wage gaps can be explained

by human capital differences (Mincer and Polachek, 1974; Altonji and Blank, 1999; Blau and Kahn,

2017), occupational segregation (Goldin, 1990; Cortes and Pan, 2018), discrimination (Neumark

et al., 1996; Bertrand and Mullainathan, 2004), workplace flexibility and work preferences (Bertrand

et al., 2010; Goldin, 2014), bargaining and negotiation (Babcock and Laschever, 2003; Card et al.,

2016), heterogeneous unobserved skills (Bacolod and Blum, 2010), and technology like computer,

robots, and automation (Ge and Zhou, 2020; Domini et al., 2020). My paper contributes to this

large body of work by examining how AI, a rapidly evolving technology with profound impacts,

affects gender wage gaps through the mechanisms of complementarity and substitutability.

Research focusing on the link between AI and gender wage gaps is less common, with more

studying its impact on the wage inequality in general. Skare et al. (2024) leverage a dataset on

AI capital stock in the U.S., the EU, and Japan from 1995 to 2020 and show that AI capital

stock accumulation is positively correlated with wealth disparity. Similarly, Felten et al. (2019)

document a positive correlation between the exposure to AI and income inequality. Chapter 2 of my

dissertation finds that workers specializing in abstract-intensive, AI-complement tasks experience

the largest wage gains due to the complementarity of AI, widening wage gaps between this skill

group and the rest. However, Acemoglu et al. (2022) find no significant wage effects for occupations

or industries that are most exposed to AI substitution. A few studies futher examines AI’s impacts

on gender wage gaps. Georgieff (2024) studies the relationship between AI exposure and wage

inequality in 19 OECD countries from 2014 to 2018 and finds AI does not affect gender wage gaps

within occupations. Domini et al. (2020) reach to a similar conclusion by employing an event study

methodology to examine changes in gender wage gaps within French firms from 2002 to 2017 in
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response to a surge in firm investments in automation or AI. However, the time periods studied in

these two papers are prior to the period when AI gained significant public attention. The study most

closely related to this paper is Huang (2025), which uses AI adoption data from 2021 and employs

a long-differencing approach to investigate the impacts of AI adoption on employment, under the

assumption that AI adoption was absent in 2010. My paper differs from these studies by examining

the distributional effects of AI adoption in the U.S. during the 2020s on gender wage gaps.

The rest of this paper is organized as follows. Section 3.2 describes the data on AI adoption

and wages. My empirical strategy is presented in Section 3.3. My main results are discussed in

Section 3.4. Section 3.5 concludes.

3.2 Data and Descriptive Statistics

In this section, I will first introduce the data sources to measure AI adoption and construct

gender wage gaps, and then describe patterns of current AI adoption, expected future AI use,

continuing AI usage, and gender wage gaps in the U.S.

3.2.1 AI Adoption

The AI adoption data is from the Census Business Trends and Outlook Survey (BTOS), which

is a high-frequency survey collecting data from representative U.S. employer businesses since

September 2023. The survey asks respondents whether their business used AI technologies cur-

rently (Question 7)2 and whether they expect their business to use AI during the next six months

(Question 26)3. For each of these two questions, respondents can select one from three options:

"Yes," "No," or "Do not know."

The BTOS data consists of approximately 1.2 million businesses, divided into six representative

panels. Each panel participates in the survey once every 12 weeks for a year. Data are released

every two weeks and are available at the national, 2017 North American Industry Classification
2According to the BTOS questionnaire, Question 7 is framed as follows: "Between MMM DD – MMM DD, did

this business use Artificial Intelligence (AI) in producing goods or services? (Examples of AI: machine learning,
natural language processing, virtual agents, voice recognition, etc.)." A definition of AI was added on October 23,
2023, stating: "AI Definition: Computer systems and software that are able to perform tasks normally requiring human
intelligence, such as decision-making, visual perception, speech recognition, and language processing."

3Question 26 is framed as follows: "During the next six months, do you think this business will be using Artificial
Intelligence (AI) in producing goods or services? (Examples of AI: machine learning, natural language processing,
virtual agents, voice recognition, etc.)."
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System (NAICS) sector (2-digit NAICS), subsector (3-digit NAICS), employment size, sector by

employment size, state, and the 25 most populous Metropolitan Statistical Areas (MSAs) level.

To measure the current (expected) AI adoption in firms, I use the proportion of businesses

that answered "Yes" to Question 7 (26) in the BTOS. I aggregate the bi-weekly BTOS data at

the monthly level by averaging the shares to integrate it with the monthly wage data. Figure 3.1

presents the trends in AI adoption in the U.S. from September 2023 to February 2025. Although

the proportion of businesses currently using or expecting to use AI in producing goods or services

in the U.S. remained low (Figures 3.1a and 3.1c), it grew rapidly compared to the baseline period,

September 2023, as shown in Figures 3.1b and 3.1d. Meanwhile, the proportion of businesses that

neither currently use nor expect to use AI slightly declined. Figure 3.1e plots the trend in continuing

AI adoption in firms, which is an unconditional share of businesses currently using and expecting

to use AI computed by multiplying the proportions of businesses that answered "Yes" to both

Questions 7 and 26.4 This unconditional share of continuing AI adoption has been rising sharply

over time, especially since May 2024, indicating an accelerating trend of businesses consistently

adopting AI in producing goods or services.

Figure 3.2 presents the geographic distribution of the proportion of businesses currently adopting

AI by state. The darker a state’s color is, the more businesses adopted AI in producing goods or

services in that state.5 The current AI adoption greatly increased over time for almost all states

in the U.S., especially for the West Coast and the East Coast. Almost all states were in yellow

during September 2023 to February 2024, but turned into orange and red during September 2024

to February 2025. The minimum and maximum proportion increased from 3.22% to 4.36% and

from 11.50% to 16.64%, respectively. Appendix Figures 3A.1 and 3A.2 display similar trends in

expected and continuing AI adoption: AI adoption varied by state but consistently increased over

time.

I additionally plot the current, expected, and continuing AI adoption by 2-digit NAICS code
4Since more granular BTOS data, such as firm-level data, is not publicly available, I am unable to compute the

conditional share of businesses currently using or expecting to use AI.
5States with no data means that, according to BTOS, their estimate "does not meet publication standards because

of high sampling variability, poor response quality, or other concerns about the estimate quality."
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Figure 3.1 Trends in AI Adoption, Sep. 2023 - Feb. 2025

(a) Current AI Adoption, Raw Numbers (in pp)
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(b) Current AI Adoption, Relative to Sep. 2023
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(c) Expected AI Adoption, Raw Numbers (in pp)
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(d) Expected AI Adoption, Relative to Sep. 2023
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(e) Continuing AI Adoption
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Notes: In Subfigure 3.1e, the unconditional share of businesses that used and will use AI in producing goods or services
is computed by multiplying the proportions of businesses that answered "Yes" to both Question 7 ("Did this business
use AI in producing goods or services?") and Question 26 ("During the next six months, will this business use AI in
producing goods or services?") in the BTOS.
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Figure 3.2 Geographic Distribution of Current AI Adoption by State
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Data: Business Trends and Outlook Survey (BTOS)
Notes: Scales are in percentage point. These figures show the proportion of businesses that answered "Yes" to Question
7 ("Did this business use AI in producing goods or services?") in the BTOS. States with no data indicate that, according
to BTOS, their estimate "does not meet publication standards because of high sampling variability, poor response
quality, or other concerns about the estimate quality."
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in Appendix Figures 3A.3 to 3A.5. The information industry experienced the highest level of AI

adoption, showing an upward trend in the proportion of businesses answering "Yes" and a downward

trend in the proportion answering "No" to both the current and expected AI adoption questions. The

finance, real estate, professional and scientific services, management, education, and healthcare

industries also show a trend of narrowing the gap between the proportion of businesses answering

"No" and "Yes" to AI adoption questions, particularly for the expected adoption question.

3.2.2 Gender Wage Gaps

The data source to construct the hourly wage from September 2023 to December 2024 is from

the Current Population Survey (CPS) data sourced from Integrated Public Use Microdata Series

(IPUMS). My sample includes individuals aged 18 to 64 and excludes all individuals who are

unemployed or never worked.6 Since the CPS does not directly provide the hourly wage for each

individual, I compute it using their usual hours worked per week and rounded weekly earnings7 in

the CPS data.

To ensure consistency in usual hours worked per week, I take several steps using the CPS data.

First, I drop individuals with missing values or those reporting "hours vary." Second, I exclude

individuals who report working 168 hours or more per week, as this is the theoretical maximum

of hours per week. Finally, I restrict the sample to full-time workers by excluding individuals who

report working fewer than 35 hours per week.8

I apply the following restrictions to create a consistent wage series in the CPS data. First,

I drop individuals with "Not in Universe (NIU)" values in weekly earnings. Second, I adjust

weekly earnings to 2019 U.S. dollars using the Consumer Price Index for All Urban Consumers

(CPI-U) provided by the Bureau of Labor Statistics. Finally, I apply a Winsorization approach to

cap earnings at the 99th percentile instead of relying on the CPS topcoding system. This is due to

changes in the Census Bureau’s topcoding system during my sampling period. From April 2023
6Individuals who are unemployed or never worked are coded as "Not in Universe (NIU)" in the CPS data.
7Beginning in April 2023, the Census Bureau began rounding weekly earnings as a privacy protection measure.
8Without this restriction, the mean hourly wage may be overestimated or the wage distribution may be skewed due

to observations with extremely high weekly earnings but very low reported weekly hours worked. For example, some
CPS observations show weekly earnings exceeding $2,000 with only 0 or 1 hour worked per week.
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Figure 3.3 Distribution of Hourly Wage by Gender, 2019-24
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Data: the Current Population Survey (CPS)

to March 2024, weekly earnings were topcoded at $2,884.61 (nominal). Starting from April 2024,

the Census Bureau used the weighted average of the reported earnings of the top 3% of earners as

the "dynamic" topcode. Winsorized mean hourly wage had a consistent trend over time (Appendix

Figure 3A.6a), while uncapped one disproportionately increased after April 2024 (Appendix Figure

3A.6b), especially for high-skilled groups (Appendix Figure 3A.7).

Figure 3.3 presents the distribution of hourly wages for female (Figure 3.3a) and male (Figure

3.3b) workers from 2019 to 2024. Both distributions exhibit a right-skewed shape, indicating that

most workers earn lower hourly wages, while a smaller proportion earns substantially higher wages.

However, the wage distribution for male shows a slightly wider right tail and is less right-skewed

than the female wage distribution, suggesting that men are more likely than women to earn higher

wages and have more access to high-paying jobs. The male wage distribution also has a lower peak

and a relatively wider spread, suggesting that men have a more even distribution of wages compared

to women. The kernel density estimates (red lines) reinforce these patterns by smoothing out the

histogram.

To visualize gender wage gaps across the wage distribution, Figure 3.4a displays hourly wages

by gender at the 10th percentile, median, and 90th percentile over time. From 2019 to 2024, the

hourly wages for male were consistently higher than female. The gender wage gap is much wider
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Figure 3.4 Hourly Wage across Percentiles, 2019-24
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at the top of the wage distribution compared to the bottom, but it shrinks at both ends. Figure

3.4b shows the female-to-male wage ratio at the 10th percentile, median, mean, and 90th percentile,

highlighting a non-uniform gender wage gap across the distribution. The gap was the narrowest

and showed a tendency to close at the bottom of the distribution, where women’s hourly wages

increased from 88% to 92% of men’s hourly wages. The female-to-male wage ratio is lower at

the top of the wage distribution, indicating that women tend to be underrepresented in high-paying

jobs. The trend where the ratio at the mean is higher than at the median is consistent with Figure

3.3, suggesting that the wage distribution for female is more right-skewed.

3.3 Empirical Strategy

I study the relationship between AI adoption and gender wage gaps using the following speci-

fication:

ln(𝑊𝑎𝑔𝑒𝑜4,𝑠,𝑡,𝑔) = 𝛼 + 𝛽𝐹𝑒𝑚𝑎𝑙𝑒𝑔 + 𝜏𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑡 + 𝛾(𝐹𝑒𝑚𝑎𝑙𝑒𝑔 × 𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑡)

+ X𝑠,𝑡𝚽 + 𝜇𝑜4 + 𝛿𝑠 + 𝜃𝑡 + 𝜀𝑠,𝑡 ,
(3.1)

where 𝑜4, 𝑠, 𝑡, and 𝑔 denote 4-digit OCC2010 occupation, state, time period (year-month), and

gender, respectively. The time period used in my sample is from September 2023 to December

2024. 𝑊𝑎𝑔𝑒𝑜4,𝑠,𝑡,𝑔 is the mean hourly wage (in 2019 U.S. dollars) measured at the occupation-

202



by-state-by-year-month-by-gender level. 𝐹𝑒𝑚𝑎𝑙𝑒𝑔 equals one if 𝑔 is female and zero otherwise.

𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑡 measures the state-year-month level current, expected, or continuing AI adoption

by firms. It represents one of the following: (1) the proportion of businesses in state 𝑠 using AI

to produce goods or services during the current time period 𝑡; (2) the proportion of businesses in

state 𝑠 at time 𝑡 expecting to use AI in producing goods or services within the next six months; or

(3) the proportion of businesses in state 𝑠 at time 𝑡 that reported both currently using and expecting

to use AI.9 These shares are multiplied by 100; thus the unit of measurement is a percentage point

(pp). X𝑠,𝑡 contains state-year-month control variables that may affect individuals’ hourly wages:

the share of female employment; the share of Black population; the share of Hispanic population;

and the share of population who earned a Bachelor’s degree or above. Standard errors, 𝜀𝑠,𝑡 , are

clustered at the state-year-month level to account for the fact that the AI adoption variable is an

aggregated measure.

The coefficient of interest, 𝛾, captures how the relationship between wages and AI adoption

in firms differs for females compared to males. By including occupation, state, and year-month

fixed effects, coefficients are identified using within-occupation variation, while accounting for

state-specific time-invariant differences in wages and general time trends.

To test this relationship in both the short term and long term, I include the lagged and lead AI

adoption variables in the following specification:

ln(𝑊𝑎𝑔𝑒𝑜4,𝑠,𝑡,𝑔) = 𝛼 + 𝛽𝐹𝑒𝑚𝑎𝑙𝑒𝑔 +
∑︁

𝑘∈{𝑡−3,𝑡,𝑡+3}
𝜏𝑘𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑘

+
∑︁

𝑘∈{𝑡−3,𝑡,𝑡+3}
𝛾𝑘 (𝐹𝑒𝑚𝑎𝑙𝑒𝑔 × 𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑘 ) + X𝑠,𝑡𝚽 + 𝜇𝑜4 + 𝛿𝑠 + 𝜃𝑡 + 𝜀𝑠,𝑡 ,

(3.2)

where 𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑡−3 and 𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑡+3 represent the AI adoption three months prior and

three months ahead, respectively. I only include the 𝑡 − 3, 𝑡, and 𝑡 + 3 terms for 𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑘 to

mitigate potential multicollinearity.
9Due to the lack of the firm-level data, the measurement of continuing AI adoption is an unconditional share

computed by multiplying the proportions of businesses that answered "Yes" to both Question 7 ("Did this business
use AI in producing goods or services?") and Question 26 ("During the next six months, will this business use AI in
producing goods or services?") in the BTOS.
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To better capture the distributional effects of AI adoption on gender wage gaps, I construct

wages at the industry-by-state-by-year-month-by-gender level for different percentiles of the wage

distribution and include industry, state, and year-month fixed effects:

ln(𝑊𝑎𝑔𝑒𝑝
𝑖𝑛𝑑,𝑠,𝑡,𝑔

) = 𝛼 + 𝛽𝐹𝑒𝑚𝑎𝑙𝑒𝑔 + 𝜏𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖𝑛𝑑,𝑡 + 𝛾(𝐹𝑒𝑚𝑎𝑙𝑒𝑔 × 𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖𝑛𝑑,𝑡)

+ X𝑠,𝑡𝚽 + 𝜇𝑖𝑛𝑑 + 𝛿𝑠 + 𝜃𝑡 + 𝜀𝑖𝑛𝑑,𝑡 ,
(3.3)

where 𝑖𝑛𝑑 denotes 2-digit NAICS code and 𝑝 represents the 𝑝th percentile. This approach allows

me to analyze how AI adoption influences wage dispersion within industries while maintaining

between-occupation variation. Compared to the previous specification, equation (3.3) employs

industry-year-month AI adoption to better reflect sector-specific technological adoption patterns. In

this way, this specification better captures how AI impacts gender wage gaps at different percentiles

of the wage distribution within industries, rather than relying on state-level measures which may

absorb industry-level heterogeneity. Standard errors are clustered at the industry-year-month level

to align with the industry-year-month level AI adoption variable.

3.4 Results

3.4.1 AI Adoption and within-Occupation Gender Wage Gaps

I first look at the relationship between within-occupation gender wage gaps and AI adoption

varying across states and over time. Columns 1-3 of Table 3.1 estimate equation (3.1) using current

AI adoption. The Ordinary Least Squares (OLS) estimates in column 1 show that women earn, on

average, 13.5% lower hourly wages than men in the absence of AI adoption in businesses, but there

is no significant relationship between AI adoption and wages. Column 2 adds state and year-month

fixed effects, while column 3 further controls for occupation fixed effect; thus, column 3 captures

within-occupation effects. The coefficient on the interaction term, 𝐹𝑒𝑚𝑎𝑙𝑒𝑔 × 𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑡 ,

is now significant and positive, implying that women may experience slightly more positive wage

changes from current AI adoption compared to men. Specifically, a 1pp increase in the share of

businesses currently adopting AI at the state-year-month level is associated with a 0.5% higher

mean hourly wage for women relative to men. This result remains consistent regardless of the
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Table 3.1 Effects of Current AI Adoption by State on Gender Wage Gaps

Dep. Var.: Log Mean Hourly Wage

(1) (2) (3) (4) (5)

Female -0.135∗∗∗ -0.137∗∗∗ -0.147∗∗∗ -0.186∗∗∗ -0.210∗∗∗
(0.017) (0.017) (0.015) (0.022) (0.023)

%Businesses Using AI1 in -0.006∗∗∗ -0.003 -0.004 -0.003 -0.002
Current Month (t) (0.002) (0.004) (0.003) (0.004) (0.005)

Female × %Businesses Using AI in 0.005 0.005∗ 0.005∗∗ 0.001 0.004
Current Month (t) (0.003) (0.003) (0.003) (0.005) (0.007)

%Businesses Using AI -0.002 -0.003
3 Months Ago (t-3) (0.005) (0.006)

Female × %Businesses Using AI 0.011∗ 0.016∗∗
3 Months Ago (t-3) (0.006) (0.006)

%Businesses Using AI -0.002
3 Months later (t+3) (0.005)

Female × %Businesses Using AI -0.002
3 Months later (t+3) (0.006)

Observations 62,480 62,480 62,479 47,845 42,800
State FE ✓ ✓ ✓ ✓
Year-Month FE ✓ ✓ ✓ ✓
Occupation FE ✓ ✓ ✓
Outcome Mean 3.162 3.162 3.162 3.161 3.160
R2 0.033 0.038 0.310 0.312 0.316

Notes: Each observation is an occupation-state-year-month-gender cell. Occupation is represented by 4-digit
OCC2010, a harmonized occupation system constructed by IPUMS based on the 2010 Census Occupational Classifi-
cation. All columns include a set of state-year-month controls. Standard errors shown in parentheses are clustered at
the state-year-month level. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The share of businesses currently using AI is measured as the average monthly share of businesses at the state level
that answered "Yes" to Question 7 in the Business Trends and Outlook Survey (BTOS), which asked "Between MMM
DD – MMM DD, did this business use Artificial Intelligence (AI) in producing goods or services? (Examples of AI:
machine learning, natural language processing, virtual agents, voice recognition, etc.)." The unit is a percentage point.

inclusion of occupation fixed effect. Note that the OLS estimates underestimate gender wage gaps

without AI adoption. After controlling for state, year-month, and occupation fixed effects, on

average, women earn 14.7% less in hourly wages than men.

Column 4 estimates equation (3.2) by including the lagged term of AI adoption, which refers

to the reported AI adoption from three months ago, to capture the short-term and long-term

effects. The coefficient on the interaction between female and current AI adoption (𝐹𝑒𝑚𝑎𝑙𝑒𝑔 ×
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𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑡) is now statistically insignificant (0.001), while the coefficient on the lagged

interaction term (𝐹𝑒𝑚𝑎𝑙𝑒𝑔 × 𝐴𝐼 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑠,𝑡−3) is significantly positive (0.011), indicating that AI

adoption by business could have a delayed effect on female wages. This finding suggests a long-term

effect of AI adoption on narrowing gender wage gaps, which is in contrast to the short-term effect

shown in column 3. Several reasons could explain this contradiction. First, the current and lagged

AI adoption variables might be highly correlated, leading to multicollinearity issue. Second, the

lagged period’s effect might explain more of the variation, leading to a weaker effect of the current

period.

Column 5 further includes the lead term of AI adoption, the reported AI adoption from three

months later. The relationship between lagged AI adoption and female wages is stronger: a 1pp

increase in the state-year-month share of businesses using AI three months ago is associated with

a 1.6% higher mean hourly wage for women compared to men at the current stage. This result

strengthens the idea that there might be a delayed response in the labor market to the actual

implementation of AI in businesses.

Table 3.2 estimates equation (3.2) separately for each of the following four skill groups proposed

by Chapter 2 of my dissertation: high-skilled AI-complement, high-skilled not-yet-AI, middle-

skilled, and low-skilled groups. Panel A only considers current and lagged AI adoption. Column

1 of Panel A is the same as column 4 of Table 3.1, which uses the full sample of occupations.

Coefficients in Panel A show a significant relationship between lagged AI adoption and mean

hourly wages for female from the middle-skilled group. Compared to middle-skilled men, mean

hourly wages for middle-skilled women increase by 1.2% if the share of businesses reported using

AI three months ago at the state-year-month level increases by 1pp. This could be explained by

the substitutability effect of AI, where middle-skilled occupations, being routine-intensive, are

particularly vulnerable to AI-driven displacement (Acemoglu and Restrepo, 2018, 2019; Huang,

2025). Since these middle-skilled, routine-intensive occupations tend to be male-dominated, their

mean hourly wages are more negatively affected by AI adoption than females. In addition, women in

routine-intensive roles were more likely to shift to high-skilled, high-wage occupations compared
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to men (Cortés et al., 2024), leading to a narrower gender wage gap within the middle-skilled

occupations.

In Panel B of Table 3.2, I use the share of businesses reporting expected AI adoption during the

next six months at time period 𝑡, which reflects businesses’ future plans and strategies, instead of

the share of businesses reporting using AI currently (𝑡) and three months ago (𝑡 − 3). In column

1 of Panel B, the expected AI adoption benefits female workers slightly more than male workers,

reflecting the effect of forward-looking expectation on narrowing gender wage gaps in general.

Same as Panel A, when decomposing occupations into the four skill groups, Panel B only shows a

significantly positive correlation between gender wage gaps within middle-skilled occupations and

expected AI adoption. Since BTOS asks businesses whether they expect to use AI in producing

goods or services, it is possible that businesses plan to adopt AI for routine-intensive tasks to

replace labor but have not yet implemented it.

Panel C of Table 3.2 uses the continuing AI adoption at the state-year-month level, which is

an unconditional share computed by multiplying shares of businesses reporting both current and

expected AI adoption. Since the AI adoption is likely to be an ongoing event, this continuing AI

adoption measure captures how pervasive and sustained AI adoption is expected to be. Continuing

AI adoption narrows gender wage gaps more than current or expected AI adoption. The coefficient

on the interaction term in column 1 of Panel C indicates that a 1pp increase in the unconditional

share of businesses reporting both current and expected AI adoption leads to a 3.2% increase

in mean hourly wages for women compared to their male counterparts. Since the unconditional

continuing AI adoption share reflects both current and expected AI usage, these findings suggest

that businesses anticipating greater AI adoption are shifting their wage structures to favor women,

thus narrowing gender wage gaps.

3.4.2 AI Adoption and within-Industry, between-Occupation Gender Wage Gaps

While Section 3.4.1 focuses on the mean hourly wage using within-occupation variations,

Section 3.4.2 looks at the distributional effects of AI adoption. Table 3.3 presents estimates of

equation (3.3), utilizing industry-year-month specific AI adoption and industry-by-state-by-year-
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Table 3.2 Effects of AI Adoption by State on Gender Wage Gaps by Skill Group

Dep. Var.: Log Mean Hourly Wage

(1) (2) (3) (4) (5)
All Occ. High-Skilled High-Skilled Middle-Skilled Low-Skilled

AI-Complement Occ. Not-Yet-AI Occ. Occ. Occ.

Panel A. Current AI Adoption
Female -0.186∗∗∗ -0.154∗∗ -0.148∗∗∗ -0.239∗∗∗ -0.210∗∗

(0.022) (0.060) (0.037) (0.028) (0.094)

%Businesses Using AI in -0.003 -0.010 -0.013∗ 0.001 0.021
Current Month (t) (0.004) (0.013) (0.007) (0.005) (0.018)

Female × %Businesses Using AI 0.001 0.001 -0.003 0.009 -0.004
in Current Month (t) (0.005) (0.011) (0.007) (0.006) (0.025)

%Businesses Using AI -0.002 0.001 -0.004 -0.000 0.003
3 Months Ago (t-3) (0.005) (0.014) (0.009) (0.006) (0.016)

Female × %Businesses Using AI 0.011∗ -0.003 0.012 0.012∗ 0.018
3 Months Ago (t-3) (0.006) (0.015) (0.010) (0.007) (0.025)

Observations 47,845 5,030 16,694 22,714 2,735
R2 0.312 0.111 0.212 0.236 0.236

Panel B. Expected AI Adoption
Female -0.147∗∗∗ -0.143∗∗∗ -0.112∗∗∗ -0.181∗∗∗ -0.194∗∗∗

(0.014) (0.038) (0.021) (0.019) (0.062)

%Businesses Reporting Expected -0.004∗ 0.001 -0.005 -0.005∗ -0.001
AI Adoption (0.002) (0.006) (0.004) (0.003) (0.008)

Female × %Businesses Reporting 0.004∗∗ -0.002 0.002 0.008∗∗∗ 0.009
Expected AI Adoption (0.002) (0.005) (0.003) (0.002) (0.008)

Observations 69,417 7,258 24,293 32,943 3,998
R2 0.312 0.106 0.208 0.231 0.239

Panel C. Continuing AI Adoption
Female -0.132∗∗∗ -0.145∗∗∗ -0.103∗∗∗ -0.158∗∗∗ -0.173∗∗∗

(0.008) (0.021) (0.013) (0.012) (0.036)

%Businesses Continuing -0.016 0.044 -0.046 -0.012 -0.001
AI Adoption1 (0.022) (0.052) (0.039) (0.027) (0.077)

Female × %Businesses 0.032∗∗ -0.025 0.015 0.078∗∗∗ 0.104
Continuing AI Adoption (0.015) (0.032) (0.023) (0.023) (0.066)

Observations 62,479 6,580 21,825 29,618 3,609
R2 0.310 0.104 0.207 0.231 0.240

State FE ✓ ✓ ✓ ✓ ✓
Year-Month FE ✓ ✓ ✓ ✓ ✓
Occupation FE ✓ ✓ ✓ ✓ ✓

Notes: Each observation is an occupation-state-year-month-gender cell. Occupation is represented by 4-digit
OCC2010, a harmonized occupation system constructed by IPUMS based on the 2010 Census Occupational Classi-
fication. The skill group indicators are constructed by Chapter 2 of my dissertation. All columns include a set of
state-year-month controls. Standard errors shown in parentheses are clustered at the state-year-month level. ∗∗∗𝑝 < 0.01,
∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The share of businesses continuing AI adoption is an unconditional measure, computed by multiplying the proportions
of businesses that responded "Yes" to both Question 7 (currently using AI) and Question 26 (expecting to use AI) in
the Business Trends and Outlook Survey (BTOS).
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month-by-gender hourly wages at the 10th percentile, median, mean, and 90th percentile of the wage

distribution. Coefficients on the binary indicator for women, 𝐹𝑒𝑚𝑎𝑙𝑒𝑔, align with the trends in

gender wage gaps shown in Figure 3.4. The gap is wider at the top of the wage distribution but

narrower at the bottom.

Panel A of Table 3.3 focuses on the current AI adoption. The coefficients on the interaction

term show a non-monotonic pattern in the relationship between current AI adoption and gender

wage gaps across the wage distribution. At the 10th percentile, the coefficient on the interaction

term is significant and negative (-0.010), implying that a 1pp increase in the industry-year-month

share of businesses currently adopting AI leads to a 1% decline in hourly wages for women at the

10th percentile of the distribution compared to men. This result suggests that current AI adoption

is associated with a wider gender wage gap at the bottom of the wage distribution. This negative

effect persists but slightly diminishes at the median, where the estimate is smaller in magnitude

(-0.005) but still statistically significant, indicating a weaker effect of current AI adoption on the

gender wage gap at the median than at the bottom of the distribution. In contrast, the coefficient

on the interaction term turns positive (0.009) and significant at the 90th percentile, suggesting that

high-wage women benefit more from current AI adoption relative to men in similar high-wage roles.

This positive relationship reduces the gender wage gap at the top of the wage distribution. However,

at the mean, the interaction term is insignificant (-0.001), indicating a lack of clear relationship

between industry-specific AI adoption and the average gender wage gap within industries but across

occupations. It is possible that the negative effects at the bottom of the distribution and the positive

effects at the top appear to offset each other, resulting in an insignificant net effect at the mean.

These results remain robust across different combinations of state, year-month, and industry fixed

effects, as shown in Appendix Table 3A.1. However, they become insignificant after including

lagged AI adoption terms, potentially due to multicollinearity.

These findings indicate that current AI adoption exacerbates gender wage gaps at the bottom

of the wage distribution but reduces gaps at the top. This non-monotonic pattern occurs because

AI adoption by business disproportionately disadvantages women in low- and middle-wage jobs
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Table 3.3 Effects of AI Adoption by Industry on Gender Wage Gaps across the Wage Distribution

Dep. Var.: Log Hourly Wage

(1) (2) (3) (4)
At p10 At Median At Mean At p90

Panel A. Current AI Adoption
Female -0.068∗∗∗ -0.143∗∗∗ -0.129∗∗∗ -0.230∗∗∗

(0.020) (0.012) (0.012) (0.016)

%Businesses Using AI in 0.005 0.002 0.000 -0.004
Current Month (t) (0.007) (0.004) (0.004) (0.004)

Female × %Businesses Using AI -0.010∗∗∗ -0.005∗∗ -0.001 0.009∗∗∗
in Current Month (t) (0.003) (0.002) (0.002) (0.003)

Observations 13,478 13,478 13,478 13,478
R2 0.121 0.331 0.346 0.331

Panel B. Expected AI Adoption
Female -0.056∗∗∗ -0.131∗∗∗ -0.125∗∗∗ -0.236∗∗∗

(0.021) (0.012) (0.012) (0.017)

%Businesses Reporting Expected 0.003 0.003 0.002 -0.001
AI Adoption (0.006) (0.003) (0.003) (0.003)

Female × %Businesses Reporting -0.008∗∗∗ -0.005∗∗∗ -0.001 0.007∗∗∗
Expected AI Adoption (0.002) (0.002) (0.001) (0.002)

Observations 13,478 13,478 13,478 13,478
R2 0.121 0.332 0.348 0.331

Panel C. Continuing AI Adoption
Female -0.104∗∗∗ -0.159∗∗∗ -0.133∗∗∗ -0.197∗∗∗

(0.016) (0.009) (0.009) (0.012)

%Businesses Continuing 0.022 0.014 0.006 -0.003
AI Adoption1 (0.026) (0.015) (0.013) (0.012)

Female × %Businesses -0.028∗ -0.017∗ -0.005 0.030∗∗
Continuing AI Adoption (0.015) (0.030) (0.008) (0.011)

Observations 13,478 13,478 13,478 13,478
R2 0.120 0.331 0.346 0.330

State FE ✓ ✓ ✓ ✓
Year-Month FE ✓ ✓ ✓ ✓
Occupation FE ✓ ✓ ✓ ✓

Notes: Each observation is an industry-state-year-month-gender cell. Industry is represented by 2-digit NAICS code.
All columns include a set of state-year-month controls. Standard errors shown in parentheses are clustered at the
industry-state-year-month level. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The share of businesses continuing AI adoption is an unconditional measure, computed by multiplying the
proportions of businesses that responded "Yes" to both Question 7 (currently using AI) and Question 26 (expecting to
use AI) in the Business Trends and Outlook Survey (BTOS).
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while benefiting women in high-wage jobs. AI adoption tends to replace routine tasks, which are

primarily concentrated at the bottom or middle of the wage distribution (Acemoglu and Restrepo,

2018, 2022). On the one hand, women in low- and middle-wage jobs are overrepresented in routine-

intensive roles like clerical and administrative occupations, which are highly likely to be replaced

by AI-powered automation (Brussevich et al., 2019; Cazzaniga et al., 2024). This displacement

effect of AI adoption may lead to stagnating or declining wages for women. On the other hand, men

at the bottom or middle of the wage distribution tend to specialize in manual, non-routine tasks

which are more AI-resilient than routine-intensive tasks. Thus, they might be less affected by AI

adoption in businesses because these manual, non-routine tasks are not easily performed by current

AI capabilities. At the upper end of the wage distribution, the complementarity or augmentation

effect of AI dominates its substitution effect (Chapter 2 of my dissertation). Women in high-wage

jobs may use AI to enhance their productivity, leading to greater wage gains or more promotion

opportunities for high-paying women relative to men. This is consistent with Carvajal et al. (2024),

which find that women with top grades can significantly enhance their job prospects by acquiring

AI skills, and Cazzaniga et al. (2024), which suggest that women are more likely to benefit from

the complementarity of AI.

Panels B and C of Table 3.3 show a similar non-monotonic pattern: both expected and continuing

AI adoption widen gender wage gaps at the lower and middle parts of the wage distribution but

narrow the gap at the top. Notably, the non-monotonic effect of continuing AI adoption is much

larger in magnitude than the effect of current or expected AI adoption. Since continuing AI adoption

is the unconditional share of businesses reporting both current and expected AI usage, it reflects

the persistent AI use by business. This long-term adoption is likely to have larger effects on the

labor market compared to one-time adoption or future plans.

I plot the coefficients on the interaction term between female and AI adoption estimated from

equation (3.3) in Figure 3.5 to illustrate the heterogeneous impacts of AI adoption on gender wage

gaps across the wage distribution. In addition to the estimates presented in Table 3.3, I also run

regressions at the 5th and 95th percentiles to provide a more comprehensive overview of how AI

211



Figure 3.5 Effects of AI Adoption on Women Relative to Men in the Hourly Wage
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Notes: The coefficient estimates plotted are the estimates of 𝛾 from equation (3.3). They represent the difference in
the effect of current, expected, and continuing AI adoption, respectively, between women and men. The
corresponding 95% confidence intervals are also shown.

adoption affects gender wage gaps at both the lower and upper ends of the wage distribution. The

coefficient plot visualizes the non-monotonic trend in how the impact of AI adoption on women’s

hourly wages differs from men’s across the wage distribution. It reveals that the lower an individual

is in the wage distribution, the stronger the widening effect of AI adoption on the gender wage gap

is. In contrast, at the upper end of the distribution, AI adoption is associated with a narrowing of

the gap.

3.4.3 AI Postings and Gender Wage Gaps

Since the framing of the AI-related question in the BTOS does not clearly differentiate between

measuring the substitutability or complementarity effect of AI adoption, I use the share of job

postings requiring AI skills to better capture the complementarity effect of AI by adopting the

following specification:
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Table 3.4 Effects of AI Postings on Gender Wage Gaps by Skill Groups, 2019-24

Dep. Var.: Log Mean Hourly Wage

(1) (2) (3) (4) (5)
All Occ. High-Skilled High-Skilled Middle-Skilled Low-Skilled

AI-Complement Occ. Not-Yet-AI Occ. Occ. Occ.

Female -0.154∗∗∗ -0.183∗∗∗ -0.124∗∗∗ -0.165∗∗∗ -0.139∗∗∗
(0.005) (0.016) (0.011) (0.007) (0.024)

%AI Postings1 -0.032∗∗∗ -0.026 -0.029∗∗ -0.028∗∗∗ -0.043
(0.008) (0.020) (0.013) (0.010) (0.031)

Female × %AI Postings 0.033∗∗∗ 0.048∗∗∗ 0.029∗∗∗ 0.031∗∗∗ 0.002
(0.005) (0.013) (0.009) (0.006) (0.021)

Observations 100,090 8,847 31,520 51,333 6,273
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Occupation FE ✓ ✓ ✓ ✓ ✓
Outcome Mean 3.136 3.580 3.260 3.006 2.986
R2 0.408 0.168 0.364 0.330 0.326

Notes: Each observation is an occupation-state-year-gender cell. Occupation is represented by 4-digit OCC2010, a
harmonized occupation system constructed by IPUMS based on the 2010 Census Occupational Classification. The
skill group indicators are constructed by Chapter 2 of my dissertation. All columns include a set of state-year controls.
Standard errors shown in parentheses are clustered at the state-year level. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The share of AI postings is measured at the state-year level. The unit is a percentage point. The data is from the AI
Index Report by Stanford Institute for Human-Centered AI, who provides the Lightcast data on AI posting shares at
the state-year level for the public.

ln(𝑊𝑎𝑔𝑒𝑜4,𝑠,𝑦𝑟,𝑔) = 𝛼 + 𝛽𝐹𝑒𝑚𝑎𝑙𝑒𝑔 + 𝜏𝐴𝐼 𝑃𝑜𝑠𝑡𝑖𝑛𝑔𝑠𝑠,𝑦𝑟 + 𝛾(𝐹𝑒𝑚𝑎𝑙𝑒𝑔 × 𝐴𝐼 𝑃𝑜𝑠𝑡𝑖𝑛𝑔𝑠𝑠,𝑦𝑟)

+ X𝑠,𝑦𝑟𝚽 + 𝜇𝑜4 + 𝛿𝑠 + 𝜃𝑦𝑟 + 𝜀𝑠,𝑦𝑟 ,
(3.4)

where 𝑦𝑟 represents year (from 2019 to 2024) and 𝐴𝐼 𝑃𝑜𝑠𝑡𝑖𝑛𝑔𝑠𝑠,𝑦𝑟 is the state-year level share of

job postings requiring AI skills (in percentage points), which is provided by Zhang et al. (2022),

Maslej et al. (2023), and Maslej et al. (2024) from Stanford Institute for Human-Centered AI

(HAI).10 The coefficient of interest is still 𝛾, which captures the changes in the mean hourly wage

for women relative to men associated with a 1pp increase in the state-year level share of AI job

postings.

Table 3.4 presents results estimated from equation (3.4) for all occupations and each skill

group separately. The coefficient on the interaction term in column 1 indicates that, compared
10Stanford HAI aggregates online job postings data from Lightcast at the state-year level and provides free public

access. However, more granular data is not publicly available.
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to men, a 1pp increase in the share of AI postings at the state-year level leads to a 3.3% mean

hourly wage growth for women. When restricting the sample to each one of the skill groups,

women in high-skilled AI-complement jobs have the largest mean hourly wage growth relative

to men, suggesting a narrower gender wage gap within high-skilled AI-complement occupations

driven by the complementarity effect of AI. Note that for low-skilled group in column 5, the

coefficient on the interaction term (0.001) is insignificant, implying that a higher demand for AI

skills does not disproportionately benefit or disadvantage women in low-skilled jobs compared to

men. Furthermore, the coefficient on the share of AI postings (-0.043) is not significant. These

findings could be due to the fact that low-skilled occupations are less likely to require AI skills, as

discussed in Chapter 2 of my dissertation, and therefore, the AI posting share does not significantly

affect wages for low-skilled workers.

Appendix Table 3A.2 tests the short- and long-term effects of the AI posting share by including

its lagged term, which represents the share from the previous year. The coefficient on the interaction

term between female and AI postings in the current year is significantly positive, particularly for

high-skilled AI-complement occupations. In contrast, the coefficient on the interaction between

female and the lagged term is insignificant, except for low-skilled occupations. Since job postings

requiring AI skills signal expectations for and anticipated changes in AI skills in the future, the

share of AI job postings may have a more immediate impact on wages compared to AI adoption,

which reflects the actual implementation of AI in firms.

Table 3.5 re-estimates equation (3.4) but replacing the outcome variable with the industry-by-

state-by-year-by-gender hourly wage at the 10th percentile, median, mean, and 90th percentile of

the wage distribution. Different from Table 3.3, coefficients on the interaction term in Table 3.5

show a monotonic trend in the relationship between the share of AI postings and gender wage gaps

across the wage distribution, with coefficients plotted in Appendix Figure 3A.8. A higher demand

for AI skills narrows gender wage gaps across the distribution, while the AI adoption by business

widens the gap at the bottom of the distribution but narrows the gap at the top. This difference

may arise because AI job postings and AI adoption reflect distinct aspects of AI. AI job postings
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Table 3.5 Effects of AI Postings on Gender Wage Gaps across Wage Distribution, 2019-24

Dep. Var.: Log Hourly Wage

(1) (2) (3) (4)
At p10 At Median At Mean At p90

Female -0.132∗∗∗ -0.182∗∗∗ -0.162∗∗∗ -0.228∗∗∗
(0.016) (0.016) (0.012) (0.013)

%AI Postings1 -0.033∗ -0.019 -0.027 -0.018
(0.018) (0.017) (0.017) (0.018)

Female × %AI Postings 0.024∗ 0.028∗∗ 0.044∗∗∗ 0.056∗∗∗
(0.013) (0.012) (0.010) (0.010)

Observations 9,144 9,144 9,144 9,144
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓
Outcome Mean 2.534 3.114 3.087 3.777
R2 0.302 0.626 0.685 0.489

Notes: Each observation is an industry-state-year-gender cell. Industry is represented by 2-digit NAICS code. All
columns include a set of state-year controls. Standard errors shown in parentheses are clustered at the industry-year
level. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The share of AI postings is measured at the state-year level. The unit is a percentage point. The data is from the AI
Index Report by Stanford Institute for Human-Centered AI, who provides the Lightcast data on AI posting shares at
the state-year level for the public.

capture expected demand for AI-related vacancies, which may benefit low-wage women more than

men. It is possible that some female-dominated clerical or administrative jobs may require workers

to use AI-powered tools rather than being fully automated, thus providing upskilling or reskilling

opportunities that benefit women more than men. AI adoption indicates the implementation of AI

in producing goods or services in business, leading to job displacement which disproportionately

disadvantages low-wage women. However, low-wage men usually specialize in manual, non-routine

jobs, which are less likely to be complemented by AI or be substituted by AI at the present stage.

Estimates in column 4 of Table 3.5 further supports the finding that, at the top of the wage

distribution, AI narrows the gender wage gap by benefiting women more than men. These high-

wage jobs are more likely to involve problem-solving, decision-making, and cognitive tasks that can

be complemented by AI rather than being replaced. Women in high-paying jobs can utilize AI tools

or acquire AI skills to enhance their productivity, leading to wage gains. The increasing demand

for AI skills in these jobs may also provide women with greater opportunities for employment,
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upskilling, potential promotions, or transitions into higher-wage roles.

After including the lagged share of AI postings variable in Appendix Table 3A.3, the results

align with those on within-occupation mean hourly wages in Appendix Table 3A.2. The AI posting

share reflects labor market expectations, leading to quicker wage adjustments, particularly at the

upper end of the wage distribution.

3.5 Conclusion

The rapid advancement of AI raises questions about its impact on labor market outcomes. While

most of the existing literature focuses on how AI affects employment and wages from the perspective

of the exposure to AI, my study explores the relationship between AI adoption in firms and gender

wage gaps in the U.S. during September 2023 to December 2024. I first find that an increase in the

share of businesses reporting current, expected, or continuing AI adoption in producing goods or

services narrows the within-occupation gender gaps in mean hourly wage. Using the AI adoption

data by industry to capture industry-specific patterns in technological changes, I document a non-

monotonic pattern in the distributional effect of AI adoption on gender wage gaps: AI adoption

widens gaps at the lower end and middle of the distribution but narrows the top. I further test the

correlation between the complementarity of AI and gender wage gaps using the data on online job

postings requiring AI skills. Results suggest that the higher demand for AI skills narrows gender

wage gaps across the wage distribution, with more pronounced effects at the top of the distribution.

The real-time, high-frequency data on AI adoption at the state or industry level allows me to

examine the differential effects of dynamic changes in AI adoption on wages for females versus

males. However, due to the lack of more granular level data, such as the firm level, my paper is

unable to compute the conditional share that firms adopting continuing AI usage to more accurately

measure the persistence of firms adopting AI. In addition, the framing of survey questions regarding

the AI usage makes it difficult to (1) distinguish between the substitution and complementarity effect

of AI and (2) capture the extent workers use generative AI tools like ChatGPT during work. These

remain important topics for future research.

216



BIBLIOGRAPHY

Acemoglu, D., Autor, D., Hazell, J., and Restrepo, P. (2022). Artificial intelligence and jobs:
Evidence from online vacancies. Journal of Labor Economics, 40(S1):S293–S340.

Acemoglu, D. and Restrepo, P. (2018). Artificial intelligence, automation, and work. In The
economics of artificial intelligence: An agenda, pages 197–236. University of Chicago Press.

Acemoglu, D. and Restrepo, P. (2019). Automation and new tasks: How technology displaces and
reinstates labor. Journal of Economic Perspectives, 33(2):3–30.

Acemoglu, D. and Restrepo, P. (2020). The wrong kind of ai? artificial intelligence and the future
of labour demand. Cambridge Journal of Regions, Economy and Society, 13(1):25–35.

Acemoglu, D. and Restrepo, P. (2022). Tasks, automation, and the rise in us wage inequality.
Econometrica, 90(5):1973–2016.

Altonji, J. G. and Blank, R. M. (1999). Race and gender in the labor market. Handbook of labor
economics, 3:3143–3259.

Babcock, L. and Laschever, S. (2003). Women don’t ask: Negotiation and the gender divide.
Princeton University Press.

Bacolod, M. P. and Blum, B. S. (2010). Two sides of the same coin: Us “residual” inequality and
the gender gap. Journal of Human resources, 45(1):197–242.

Bertrand, M., Goldin, C., and Katz, L. F. (2010). Dynamics of the gender gap for young professionals
in the financial and corporate sectors. American economic journal: applied economics, 2(3):228–
255.

Bertrand, M. and Mullainathan, S. (2004). Are emily and greg more employable than lakisha
and jamal? a field experiment on labor market discrimination. American economic review,
94(4):991–1013.

Blau, F. D. and Kahn, L. M. (2017). The gender wage gap: Extent, trends, and explanations.
Journal of economic literature, 55(3):789–865.

Brussevich, M., Dabla-Norris, M. E., and Khalid, S. (2019). Is technology widening the gender
gap? Automation and the future of female employment. International Monetary Fund.

Brynjolfsson, E., Li, D., and Raymond, L. (2023). Generative ai at work «, national bureau of
economic research working paper 31161.

Card, D., Cardoso, A. R., and Kline, P. (2016). Bargaining, sorting, and the gender wage gap:
Quantifying the impact of firms on the relative pay of women. The Quarterly journal of

217



economics, 131(2):633–686.

Carvajal, D., Franco, C., and Isaksson, S. (2024). Will artificial intelligence get in the way of
achieving gender equality? NHH Dept. of Economics Discussion Paper. No. 03.

Cazzaniga, M., Jaumotte, M. F., Li, L., Melina, M. G., Panton, A. J., Pizzinelli, C., Rockall,
E. J., and Tavares, M. M. M. (2024). Gen-AI: Artificial intelligence and the future of work.
International Monetary Fund.

Cortés, P., Feng, Y., Guida-Johnson, N., and Pan, J. (2024). Automation and gender: Implications
for occupational segregation and the gender skill gap. Technical report, National Bureau of
Economic Research.

Cortes, P. and Pan, J. (2018). Occupation and gender. The Oxford handbook of women and the
economy, pages 425–452.

Domini, G., Grazzi, M., Moschella, D., and Treibich, T. (2020). For whom the bell tolls: the effects
of automation on wage and gender inequality within firms. Available at SSRN 3701517.

Felten, E. W., Raj, M., and Seamans, R. (2019). The occupational impact of artificial intelligence:
Labor, skills, and polarization. NYU Stern School of Business.

Ge, S. and Zhou, Y. (2020). Robots, computers, and the gender wage gap. Journal of Economic
Behavior & Organization, 178:194–222.

Georgieff, A. (2024). Artificial intelligence and wage inequality. Technical report, OECD Publish-
ing.

Goldin, C. (1990). Understanding the gender gap: An economic history of American women. New
York: Oxford University Press.

Goldin, C. (2014). A grand gender convergence: Its last chapter. American economic review,
104(4):1091–1119.

Hatzius, J. et al. (2023). The potentially large effects of artificial intelligence on economic growth
(briggs/kodnani). Goldman Sachs, 1.

Huang, Y. (2025). The labor market impact of artificial intelligence: Evidence from us regions.
Available at SSRN 5137231.

Kogan, L., Papanikolaou, D., Schmidt, L. D., and Seegmiller, B. (2023). Technology and labor
displacement: Evidence from linking patents with worker-level data. Technical report, National
Bureau of Economic Research.

Maslej, N., Fattorini, L., Brynjolfsson, E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Ngo,

218



H., Niebles, J. C., Parli, V., Shoham, Y., Wald, R., Clark, J., and Perrault, R. (2023). The ai index
2023 annual report. AI Index Steering Committee, Institute for Human-Centered AI, Stanford
University, Stanford, CA, April 2023.

Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E., Etchemendy, J., Ligett,
K., Lyons, T., Manyika, J., Niebles, J. C., Shoham, Y., Wald, R., and Clark, J. (2024). The
ai index 2024 annual report. AI Index Steering Committee, Institute for Human-Centered AI,
Stanford University, Stanford, CA, April 2024.

Mincer, J. and Polachek, S. (1974). Family investments in human capital: Earnings of women.
Journal of political Economy, 82(2, Part 2):S76–S108.

Neumark, D., Bank, R. J., and Van Nort, K. D. (1996). Sex discrimination in restaurant hiring: An
audit study. The Quarterly journal of economics, 111(3):915–941.

Pizzinelli, C., Panton, A. J., Tavares, M. M. M., Cazzaniga, M., and Li, L. (2023). Labor
market exposure to AI: Cross-country differences and distributional implications. International
Monetary Fund.

Skare, M., Gavurova, B., and Burić, S. B. (2024). Artificial intelligence and wealth inequality:
A comprehensive empirical exploration of socioeconomic implications. Technology in society,
79:102719.

Webb, M. (2019). The impact of artificial intelligence on the labor market. Available at SSRN
3482150.

Zhang, D., Maslej, N., Brynjolfsson, E., Etchemendy, J., Lyons, T., Manyika, J., Ngo, H., Niebles,
J. C., Sellitto, M., Sakhaee, E., Shoham, Y., Clark, J., and Perrault, R. (2022). The ai index
2022 annual report. AI Index Steering Committee, Institute for Human-Centered AI, Stanford
University, Stanford, CA, March 2024.

219



APPENDIX 3A

ADDITIONAL FIGURES & TABLES

Figure 3A.1 Geographic Distribution of Expected AI Adoption by State
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Data: Business Trends and Outlook Survey (BTOS)
Notes: Scales are in percentage point. These figures show the proportion of businesses that answered "Yes" to Question
26 ("During the next six months, will this business use AI in producing goods or services?") in the BTOS. States with
no data indicate that, according to BTOS, their estimate "does not meet publication standards because of high sampling
variability, poor response quality, or other concerns about the estimate quality."
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Figure 3A.2 Geographic Distribution of Continuing AI Adoption by State
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Data: Business Trends and Outlook Survey (BTOS)
Notes: Scales are in percentage point. These figures show the unconditional share of businesses currently using
and expecting to use AI in producing goods or services, computed by multiplying the proportions of businesses that
answered "Yes" to both Question 7 ("Did this business use AI in producing goods or services?") and Question 26
("During the next six months, will this business use AI in producing goods or services?") in the BTOS. States with no
data indicate that, according to BTOS, their estimate "does not meet publication standards because of high sampling
variability, poor response quality, or other concerns about the estimate quality."
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Figure 3A.3 Current AI Adoption by Industry (in pp), Sep. 2023 - Feb. 2025
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Data: Business Trends and Outlook Survey (BTOS)
Notes: Scales are in percentage point. Industries are represented by the 2-digit NAICS code. Industries with missing
data points indicate that, according to BTOS, their estimate "does not meet publication standards because of high
sampling variability, poor response quality, or other concerns about the estimate quality."
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Figure 3A.4 Expected AI Adoption by Industry (in pp), Sep. 2023 - Feb. 2025
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Data: Business Trends and Outlook Survey (BTOS)
Notes: Scales are in percentage point. Industries are represented by the 2-digit NAICS code. Industries with missing
data points indicate that, according to BTOS, their estimate "does not meet publication standards because of high
sampling variability, poor response quality, or other concerns about the estimate quality."

223



Figure 3A.5 Continuing AI Adoption by Industry (in pp), Sep. 2023 - Feb. 2025
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Data: Business Trends and Outlook Survey (BTOS)
Notes: Scales are in percentage point. Industries are represented by the 2-digit NAICS code. These figures show the
unconditional share of businesses currently using and expecting to use AI in producing goods or services, computed
by multiplying the proportions of businesses that answered "Yes" to both Question 7 ("Did this business use AI in
producing goods or services?") and Question 26 ("During the next six months, will this business use AI in producing
goods or services?") in the BTOS. Industries with missing data points indicate that, according to BTOS, their estimate
"does not meet publication standards because of high sampling variability, poor response quality, or other concerns
about the estimate quality."
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Figure 3A.6 Mean Hourly Wage in the U.S. (in 2019 U.S. Dollars), 2019-24

(a) Earnings Capped at the 99th Percentile
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(b) Uncapped Earnings
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Notes: In Subfigure 3A.6a, earnings are winsorized at the 99th percentile to mitigate the influence of outliers. In
Subfigure 3A.6b, earnings follows the Census Bureau’s topcoding system: from April 2023 to March 2024, weekly
earnings were topcoded at $2,884.61 (nominal); beginning in April 2024, the maximum value of weekly earnings is
the weighted average of the reported earnings of the top 3% of earners during the reported month.
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Figure 3A.7 Mean Hourly Wage in the U.S. by Skill Group (in 2019 U.S. Dollars), 2019-24

(a) Earnings Capped at the 99th Percentile
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(b) Uncapped Earnings
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Notes: The skill group indicators are constructed by Chapter 2 of my dissertation. In Subfigure 3A.7a, earnings are
winsorized at the 99th percentile to mitigate the influence of outliers. In Subfigure 3A.7b, earnings follows the Census
Bureau’s topcoding system: from April 2023 to March 2024, weekly earnings were topcoded at $2,884.61 (nominal);
beginning in April 2024, the maximum value of weekly earnings is the weighted average of the reported earnings of
the top 3% of earners during the reported month.
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Figure 3A.8 Effects of AI Postings on Women Relative to Men in the Hourly Wage
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Notes: The coefficient estimates plotted are the estimates of 𝛾 from equation (3.4), but with one modification: replacing
the outcome variable with the industry-by-state-by-year-by-gender hourly wage at the 10th percentile, median, mean,
and 90th percentile of the wage distribution. The corresponding 95% confidence intervals are also shown.
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Table 3A.1 Effects of Current AI Adoption by Industry on Gender Wage Gaps

Dep. Var.: Log Hourly Wage

(1) (2) (3) (4)

Panel A. At 10th Percentile
Female -0.068∗∗∗ -0.068∗∗∗ -0.068∗∗∗ -0.064∗∗∗

(0.018) (0.020) (0.020) (0.024)
%Businesses Using AI1 in Current Month (t) 0.036∗∗∗ 0.037∗∗∗ 0.005 0.016∗∗

(0.002) (0.003) (0.007) (0.008)
Female × %Businesses Using AI in Current Month (t) -0.010∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.006

(0.003) (0.003) (0.003) (0.013)
%Businesses Using AI 3 Months Ago (t-3) -0.021∗

(0.013)
Female × %Businesses Using AI 3 Months Ago (t-3) -0.004

(0.015)

R2 0.066 0.081 0.121 0.114

Panel B. At Median
Female -0.143∗∗∗ -0.143∗∗∗ -0.143∗∗∗ -0.142∗∗∗

(0.012) (0.012) (0.012) (0.014)
%Businesses Using AI in Current Month (t) 0.044∗∗∗ 0.046∗∗∗ 0.002 0.004

(0.002) (0.003) (0.004) (0.008)
Female × %Businesses Using AI in Current Month (t) -0.005∗∗∗ -0.005∗∗ -0.005∗∗ 0.002

(0.002) (0.002) (0.002) (0.011)
%Businesses Using AI 3 Months Ago (t-3) -0.008

(0.009)
Female × %Businesses Using AI 3 Months Ago (t-3) -0.008

(0.013)

R2 0.220 0.236 0.331 0.324

Panel C. At Mean
Female -0.129∗∗∗ -0.129∗∗∗ -0.129∗∗∗ -0.135∗∗∗

(0.012) (0.012) (0.012) (0.013)
%Businesses Using AI in Current Month (t) 0.038∗∗∗ 0.040∗∗∗ 0.000 0.001

(0.001) (0.003) (0.004) (0.007)
Female × %Businesses Using AI in Current Month (t) -0.001 -0.001 -0.001 -0.002

(0.002) (0.002) (0.002) (0.008)
%Businesses Using AI 3 Months Ago (t-3) -0.009

(0.008)
Female × %Businesses Using AI 3 Months Ago (t-3) 0.001

(0.010)

R2 0.192 0.217 0.346 0.349

Panel D. At 90th Percentile
Female -0.230∗∗∗ -0.230∗∗∗ -0.230∗∗∗ -0.244∗∗∗

(0.014) (0.016) (0.016) (0.018)
%Businesses Using AI in Current Month (t) 0.033∗∗∗ 0.035∗∗∗ -0.004 -0.003

(0.001) (0.004) (0.004) (0.008)
Female × %Businesses Using AI in Current Month (t) 0.009∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.002

(0.002) (0.003) (0.003) (0.011)
%Businesses Using AI 3 Months Ago (t-3) -0.008

(0.009)
Female × %Businesses Using AI 3 Months Ago (t-3) 0.010

(0.014)

R2 0.171 0.199 0.331 0.334

Observations 13,478 13,478 13,478 10,914
State FE ✓ ✓ ✓
Year-Month FE ✓ ✓ ✓
Industry FE ✓ ✓

Notes: Each observation is an industry-state-year-month-gender cell. Industry is represented by 2-digit NAICS code.
All columns include a set of state-year-month controls. Standard errors shown in parentheses are clustered at the
industry-state-month level. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The share of businesses currently using AI is measured as the average monthly share of businesses at the industry
level that answered "Yes" to Question 7 in the Business Trends and Outlook Survey (BTOS), which asked "Between
MMM DD – MMM DD, did this business use Artificial Intelligence (AI) in producing goods or services? (Examples
of AI: machine learning, natural language processing, virtual agents, voice recognition, etc.)." The unit is a
percentage point.
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Table 3A.2 Short-Term Versus Long-Term Effects of AI Postings on Gender Wage Gaps by Skill
Groups, 2019-24

Dep. Var.: Log Mean Hourly Wage

(1) (2) (3) (4) (5)
All Occ. High-Skilled High-Skilled Middle-Skilled Low-Skilled

AI-Complement Occ. Not-Yet-AI Occ. Occ. Occ.

Female -0.150∗∗∗ -0.179∗∗∗ -0.120∗∗∗ -0.162∗∗∗ -0.124∗∗∗
(0.006) (0.018) (0.012) (0.009) (0.031)

%AI Postings1 in Year 𝑡 -0.027∗∗∗ -0.012 -0.021 -0.021 -0.094∗∗∗
(0.010) (0.025) (0.017) (0.014) (0.035)

Female × %AI Postings 0.029∗∗∗ 0.047∗∗ 0.020 0.028∗∗∗ 0.032
in Year 𝑡 (0.007) (0.021) (0.016) (0.009) (0.029)

%AI Postings in Year 𝑡 − 1 -0.020∗ -0.044∗ -0.008 -0.029∗ 0.011
(0.011) (0.026) (0.016) (0.017) (0.039)

Female × %AI Postings 0.001 0.001 0.008 -0.001 -0.052∗
in Year 𝑡 − 1 (0.007) (0.024) (0.014) (0.009) (0.030)

Observations 78,956 7,039 25,036 40,294 4,922
State FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Occupation FE ✓ ✓ ✓ ✓ ✓
Outcome Mean 3.146 3.587 3.268 3.017 2.996
R2 0.412 0.187 0.367 0.331 0.331

Notes: Each observation is an occupation-state-year-gender cell. Occupation is represented by 4-digit OCC2010, a
harmonized occupation system constructed by IPUMS based on the 2010 Census Occupational Classification. The
skill group indicators are constructed by Chapter 2 of my dissertation. All columns include a set of state-year controls.
Standard errors shown in parentheses are clustered at the state-year level. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The share of AI postings is measured at the state-year level. The unit is a percentage point. The data is from the AI
Index Report by Stanford Institute for Human-Centered AI, who provides the Lightcast data on AI posting shares at
the state-year level for the public.
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Table 3A.3 Short-Term Versus Long-Term Effects of AI Postings on Gender Wage Gaps across
Wage Distribution, 2019-24

Dep. Var.: Log Hourly Wage

(1) (2) (3) (4)
At p10 At Median At Mean At p90

Female -0.118∗∗∗ -0.176∗∗∗ -0.156∗∗∗ -0.225∗∗∗
(0.019) (0.018) (0.015) (0.016)

%AI Postings1 in Year 𝑡 -0.055∗∗ -0.008 -0.033 0.005
(0.022) (0.025) (0.022) (0.022)

Female × %AI Postings 0.033 0.021 0.036∗∗ 0.040∗∗
in Year 𝑡 (0.021) (0.020) (0.018) (0.017)

%AI Postings1 in Year 𝑡 − 1 0.026 -0.017 -0.021 -0.048∗∗
(0.034) (0.027) (0.023) (0.022)

Female × %AI Postings -0.024 0.003 0.006 0.015
in Year 𝑡 − 1 (0.019) (0.020) (0.018) (0.018)

Observations 7,286 7,286 7,286 7,286
State FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓
Outcome Mean 2.549 3.125 3.083 3.785
R2 0.302 0.638 0.693 0.488

Notes: Each observation is an industry-state-year-gender cell. Industry is represented by 2-digit NAICS code. All
columns include a set of state-year controls. Standard errors shown in parentheses are clustered at the industry-year
level. ∗∗∗𝑝 < 0.01, ∗∗𝑝 < 0.05, ∗𝑝 < 0.1.
1 The share of AI postings is measured at the state-year level. The unit is a percentage point. The data is from the AI
Index Report by Stanford Institute for Human-Centered AI, who provides the Lightcast data on AI posting shares at
the state-year level for the public.
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