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ABSTRACT 

In disaster scenarios with compromised communication infrastructure, Unmanned Aerial Vehicles 

(UAVs) can provide ad hoc connectivity for resilient information dissemination. This thesis 

develops a hierarchical UAV-assisted framework of federated multi-armed bandit learning for 

post-disaster content dissemination. The developed framework incorporates a two-tier UAV 

hierarchy consisting of Anchor UAVs (A-UAVs) with high-cost backhaul connectivity, and more 

mobile Micro-Ferrying UAVs (MF-UAVs) without backhaul links. Such a hierarchy allows for 

strategic offloading of storage-intensive tasks to A-UAVs, while leveraging the mobility of MF-

UAVs to dynamically ferry content across disconnected user clusters. By integrating trajectory-

aware selective caching strategies into UAV operations, the framework aligns aerial mobility 

patterns with evolving spatio-temporal content demands. Algorithmic innovation of the framework 

stems from a federated bandit and stateless reinforcement learning paradigm, which enables UAVs 

to collaboratively learn content popularity profiles, and adapt caching policies based on localized 

user request patterns. Unlike centralized methods, the federated approach preserves data locality 

and minimizes inter-UAV communication overhead, which is critical in bandwidth- and energy-

constrained post-disaster environments. The multi-armed bandit learning mechanism utilizes a 

multi-dimensional reward feedback architecture that captures content relevance, inter-UAV 

delivery latency, and caching diversity across disjointed and isolated user communities. The thesis 

also explores the interplay between UAV energy budgets, caching capacities, and mission-critical 

delivery constraints such as quality-of-service expectations in terms of tolerable access delay. To 

summarize, the research in this thesis bridges multi-agent learning with mission-oriented aerial 

networking towards developing solutions for smart content dissemination in networks with sparse 

connectivity.  
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Chapter 1: Introduction 

1.1 Background and Motivation 

Catastrophic events, including natural disasters like earthquakes and floods, as well as 

human-induced crises such as wars, have profound impacts on both the physical landscape and 

critical human-made infrastructures, notably the communication systems. In the aftermath of such 

events, the collapse of conventional communication networks can significantly hinder disaster 

response and relief efforts [1], [2]. Such situations often leave communities isolated from crucial 

information flow regarding disaster dynamics, relief operations, weather conditions, and 

rehabilitation efforts. Access to such information is essential, sometimes even lifesaving, for the 

affected communities [3], [4]. 

The thesis aims towards scenarios in which a disaster/war-stricken population is forced into 

multiple clusters of isolated communities with diverse information needs. The diversity, or 

heterogeneity, of these needs reflects in the varying popularity of requested content across 

communities, influenced by their proximity to the disaster and the users’ geo-temporal context. 

For instance, a community close to a fire might prioritize information about nearby fire stations, 

whereas one farther away focuses on transportation to evacuate. Additionally, the expectation of 

Quality-of-Service, measured by tolerable access delay (𝑇𝐴𝐷) [5], [6], [7] for different content, 

varies based on the urgency and type of information needed.  

Numerous studies have explored the deployment of Device-to-Device (D2D) communication 

[8], [9] and Ad Hoc networks [10], [11] as solutions to bridge gaps in communication 

infrastructure, although with limitations in cases of total infrastructure collapse. Proposed Delay 

Tolerant Networks (DTNs) facilitate content transfer across fragmented communities [12], [13], 
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[14], [15], [16] that addresses routing delays but often neglects challenges in data caching and the 

effects of device mobility on caching efficiency. 

Moreover, ensuring the consistent availability of content, given the wide variances in user 

request patterns, poses an unresolved challenge. Some strategies employ function approximation 

to predict request dynamics, a method dependent on extensive data collection that may not suit the 

urgent nature of information dissemination in crises. 

The thesis underscores the potential of using Unmanned Aerial Vehicles (UAVs) as 

alternative platforms for content delivery that leverages their mobility against the constraints of 

limited storage, energy, and flight duration [17], [18], [19]. These insights aim to refine the 

understanding and management of content dissemination in disaster-affected areas which 

emphasizes the need for innovative solutions to ensure timely and reliable information access 

amidst challenging conditions. 

1.2 UAVs and Micro-UAVs for Content Provisioning  

This research introduces an advanced family of caching solutions towards employing 

trajectory-aware Unmanned Aerial Vehicles (UAVs) to facilitate the flow of information in areas 

where traditional communication infrastructures are compromised due to disasters or conflicts. 

This solution adopts a novel two-tier system which leverages anchor-UAVs (A-UAVs) equipped 

with high-cost vertical connectivity, such as satellite links [20], [21], [22], and a network of micro-

ferrying-UAVs (MF-UAVs) [23], [24], [25] that operate without these connections. The MF-

UAVs are pivotal in transferring and disseminating content among A-UAVs that ensures 

widespread content accessibility across fragmented communities by bypassing the need for direct 

vertical connections. 
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The main goal is to develop sophisticated strategies for content caching and downloading 

that are tailored to the unique storage limitations of the A-UAVs and MF-UAVs, the diverse 

demands for content among the communities, and the strategic distribution of content requests. A 

significant focus is placed on analyzing how the trajectories of MF-UAV fleets impact the 

availability of content to these segmented groups. The intention is to enhance content reach within 

these communities by overcoming the obstacles of restricted connectivity. 

By leveraging a dual-layered strategy, this thesis aims to discover highly efficient methods for 

distributing content. It factors in the varying demands for information, the sizes of MF-UAV fleets, 

and their storage capabilities to maximize content access for isolated groups. This approach not 

only addresses the immediate need for reliable information in crisis situations but also sets a new 

benchmark for content delivery mechanisms in challenging environments. 

1.2.1 Advantages of employing UAVs 

Using Unmanned Aerial Vehicles for content provisioning in scenarios where communication 

infrastructure is absent or damaged has several advantages: 

a) Rapid Deployment: UAVs can be quickly deployed to areas lacking communication 

infrastructure that enables swift establishment of temporary communication networks. This is 

particularly beneficial in disaster-hit areas where existing infrastructure is destroyed or in 

remote regions that lack such facilities. 

b) Flexibility and Scalability: UAVs offer flexible and scalable solutions for content delivery. 

They can be used in a variety of scenarios, ranging from small-scale deployments to cover 

specific areas to larger networks consisting of multiple UAVs that work together to cover wider 

regions. 
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c) Cost-Effectiveness: Compared to the construction of traditional communication infrastructure, 

UAVs represent a cost-effective solution, especially in hard-to-reach areas. They eliminate the 

need for physical infrastructure like towers and cables which reduces both the initial setup cost 

and ongoing maintenance expenses. 

d) Dynamic Network Topology: UAVs can dynamically adjust their positions based on the 

demand for communication services which optimizes the network’s performance and 

coverage. This adaptability ensures efficient use of resources and enhanced connectivity in 

areas where user density might fluctuate. 

e) Improved Accessibility: By providing overhead communication links, UAVs can enhance the 

accessibility of content and internet services to remote and underserved communities. This 

helps in bridging the digital divide and promoting equal access to information. 

f) Enhanced Data Collection and Distribution: UAVs equipped with sensors and cameras can 

collect and distribute a wide range of data, including live video feeds, which can be crucial for 

surveillance, environmental monitoring, and disaster management. 

1.2.2 Challenges faced in UAV-based Content Provisioning  

Deploying Unmanned Aerial Vehicles (UAVs) for content delivery in areas without 

traditional communication infrastructure encounters specific challenges like power management 

and operational efficiency. These UAVs face constraints like limited flight duration and 

operational range, which are critical factors in their ability to deliver content over extended 

distances or periods. The power requirements for various operations such as downloading and 

transmitting content, receiving content requests, and maintaining basic flight, are significant. Each 

of these operations depletes the UAV’s battery, with the energy consumed during its flight and 

idle states [18], [26], [27], [28], [29]. 
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A crucial aspect of using UAVs for content distribution is managing the balance between 

power consumption and operational effectiveness. The process of downloading and transmitting 

content to users, for instance, requires careful consideration of power use, especially since 

transmitting power needs are substantially higher than those for receiving requests. This 

discrepancy is largely due to the properties of signal transmission, where ensuring that a signal 

reaches the receiver with sufficient strength to be decoded correctly necessitates a higher energy 

output. This shows that increased power consumption with higher transmission power necessitates 

a careful balance between communication requirement and operational longevity of the UAVs. 

Enhancing one can significantly impact the other, potentially reducing the effectiveness of content 

distribution efforts. 

Furthermore, to maintain unhindered content provisioning, the aim should be to maximize 

the on-time of the UAVs. However, there are inherent energy expenses associated with UAV like 

the ones cited above. One straight-forward approach is to minimize the communication energy 

expenditure which includes the content download, transmission and reception expenses. Such 

approach will depend heavily on the average data consumption rate of individual users. Service 

providers have reported an average monthly data consumption of 25-30 gigabytes per user [30], 

[31], [32]. With an average population density of 10! users/sq-mile [33], [34], the data requirement 

per day can reach up to 80-100 terabytes. Attempts to handle such requirements can be made by 

installing Non-Volatile Memory Express solid-state drive (NVMe SSD) memory cards [35], [36] 

in UAVs that can store contents with data size of aforesaid magnitude. Nevertheless, the 

communication energy expenditure can still deplete the battery of the UAVs while storing and 

replacing contents in these large memory devices. To exacerbate the situation, with increase in the 
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data storage capacities of such memory cards, the communication energy expenditure scales which 

leads to even faster depletion of UAV battery.  

This limitation necessitates the contents to be intelligently spread across UAVs. Also, the 

inability of the total storage capacity offered by the UAV network to store all contents required 

currently and, in the future, requires efficient content management strategies. 

1.3 Advantages of Proactive Caching over Traditional Caching Techniques 

Proactive caching is an advanced strategy that enhances data storage and access beyond 

conventional methods like LRU, FIFO, and LFU [37], [38], [39], particularly vital in the context 

of UAVs with their limited storage and battery constraints. Unlike traditional caching, which often 

relies on removing the oldest or least used content, proactive caching anticipates and prepares for 

future demand by intelligently predicting which content will be needed soon. This foresight allows 

UAVs to prioritize and store only the most relevant information which optimizes resource use and 

improves content delivery efficiency. Key to this approach is leveraging data on content popularity 

and request rates that enables these systems to dynamically adjust their cache to meet anticipated 

needs. This ensures that high-priority content is always ready for users, thereby maximizing cache 

space efficiency and minimizing latency. 

1.4 Cooperative Federated Reinforcement Learning-based Techniques  

Building on these principles by leveraging machine learning (ML) techniques such as 

reinforcement learning (RL) [40], [41] and Multi-Armed Bandit (MAB) algorithms [42], [43], 

[44], UAVs can develop sophisticated caching policies that adapt in real-time without prior 

knowledge of content popularity or request rates. These ML strategies enable UAVs to balance 

between exploring new caching approaches and exploiting effective existing ones which in turn 

optimizes for long-term benefits like lower latency and higher content accessibility. This adaptive 
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framework allows UAVs to dynamically tailor caching decisions to fluctuating network conditions 

and user demands by using trial and error to refine strategies based on direct environmental 

feedback. 

 

Figure 1.1. Coordinated UAV system for content dissemination in environments without 

communication infrastructure 

Furthermore, the adoption of cooperative learning algorithms enhances collaborative 

caching within UAV networks. This involves multiple UAVs or nodes sharing insights to refine 

caching decisions network-wide, crucial for coordinated operations such as surveillance or content 

delivery. Federated Learning (FL) [45], [46], [47] emerges as a key technique in this context that 

promotes distributed learning and decision-making to continuously refine caching strategies based 

on collective data, thereby improves content availability and user experience. 

These adaptive learning mechanisms allow UAVs to adjust caching policies on-the-fly that 

responds adeptly to varying user demands and network conditions. By combining the exploration 

capabilities of MAB [48], [49] with the distributed intelligence of FL [50], [51], [52], UAV 
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networks achieve greater resource efficiency and content delivery performance. This blend of 

proactive and cooperative learning techniques in caching equips UAVs with the capability to 

continuously evolve their caching strategies that enhances the efficiency of cache space utilization 

and the user experience by minimizing content access delays. This continuous improvement cycle 

ensures UAVs can effectively anticipate and meet changing content needs which enhances the 

overall efficiency and responsiveness of the network. 

1.5 Learning Caching Policies and Enhancing UAV-aided Content Dissemination in 

Disaster-Affected Areas 

In UAV-enhanced communication systems, Anchor UAVs (A-UAVs) with advanced 

communication technology like satellite links work alongside Micro-Ferrying UAVs (MF-UAVs) 

to bridge gaps in disaster-struck areas that ensures critical data reaches isolated communities. This 

network relies on content caching, especially within A-UAVs by employing Smart Cache 

Duplication to optimize their storage by prioritizing essential data. This strategy faces challenges 

such as accurately predicting demand and adapting to the varying nature of emergencies, which 

can alter priority information swiftly. 

Addressing the variability in information needs across different communities, where 

urgency and type of information required can vary significantly, introduces complexity. Quality 

of Service (QoS) like Tolerable Access Delay (𝑇𝐴𝐷), adds another layer of complexity, with user 

expectations for prompt content delivery influences caching decisions. Traditional methods 

struggle in such scenarios due to difficulty in forecasting content popularity and delay tolerances. 

To navigate these challenges, this thesis integrates the Top-k Multi-Armed Bandit (MAB) 

algorithm, a technique that permits UAVs to refine caching strategies based on observed demand. 

This adaptive method moves beyond static pre-loaded caches to a dynamic model that aligns with 
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real-time needs which accommodates the diverse and evolving content requirements and 𝑇𝐴𝐷 

expectations. By adopting a multi-dimensional reward mechanism, the Top-k MAB approach 

enables UAVs to continuously update their caching policies that ensures optimal content 

availability and meets varying QoS demands. This innovative strategy demonstrates a tailored, 

responsive approach to content delivery in UAV-supported networks, significantly enhancing the 

relevance and timeliness of information provided to affected communities. 

While the Top-k MAB approach offers significant improvements, certain limitations 

remain, particularly in large-scale scenarios with sparse user activity. Relying on MF-UAVs to 

relay content availability information across distant regions slows down the learning process, 

especially when information must traverse multiple communities. Additionally, content that is less 

frequently requested often suffers from unreliable popularity estimates which reduces the 

effectiveness of caching decisions. These issues are further complicated as the content pool grows 

which makes it harder to maintain stable and timely learning. To address these challenges, this 

thesis introduces a Federated Multi-Armed Bandit (FedMAB) framework, where A-UAVs 

collaboratively refine their caching strategies by sharing learned models rather than raw data. This 

cooperation accelerates learning, enhances the stability of caching decisions, and ensures that even 

low-demand content receives fair consideration that ultimately improves the overall 

responsiveness and equity of information delivery in critical situations. 

1.6 Strategic Joint Deployment of UAVs for Cache Space Utilization 

In UAV content dissemination networks, operating micro-ferrying UAVs (MF-UAVs) 

independently without collaboration can lead to inefficiencies, notably through content duplication 

across UAVs. This redundancy hampers cache utilization, with UAVs possibly carrying identical 
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data and leaving other crucial information not cached. This approach not only wastes cache space 

but also fails to address diverse user needs effectively. 

Such redundancy also undermines the efficiency of Anchor UAVs (A-UAVs), crucial for 

their larger cache capacities and broader communication capabilities. When MF-UAVs carry 

duplicated content, A-UAVs’ potential to distribute a varied range of information, especially 

critical in emergencies, is not fully leveraged. 

Implementing a coordinated UAV deployment with a unified caching strategy can rectify 

these issues. By aligning caching decisions among MF-UAVs, the network optimizes cache space 

that ensures a broader variety of content is distributed efficiently. This collective approach 

eliminates unnecessary duplications which allows for strategic content allocation based on user 

demand, therefore significantly improves information availability and network performance in 

crisis scenarios. 

1.7 Trajectory-aware Collaborative Caching using Swarm of Micro-Ferrying UAVs  

Deploying UAVs strategically for content caching is essential for enhancing the 

functionality of UAV-supported networks. The collaboration between Anchor UAVs (A-UAVs) 

and Micro-Ferrying UAVs (MF-UAVs) is vital, with A-UAVs acting as central storage hubs for 

in-demand content, and MF-UAVs distributing this content. The application of the Top-k Multi-

Armed Bandit Learning technique at A-UAVs facilitates dynamic learning which enables UAVs 

to adjust their caching strategies in real-time to meet user demand. This method considers the 

diverse urgency and importance of content requests, along with the content distribution patterns 

between UAVs, to optimize content availability. 

Nonetheless, these strategies face challenges, like the risk of content duplication among 

MF-UAVs, which can waste valuable cache space. Moreover, without tailoring caching policies 
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to Quality of Experience (QoE) requirements, UAVs may non-selectively cache identical content 

by ignoring the specific needs of their target areas. 

An evolved approach, Top-k Multi-Armed Bandit Learning with Selective Caching, 

addresses these issues by discerningly caching content, taking into account what is already stored 

across the network to prevent redundancy. This selective strategy ensures a varied and efficient 

cache usage that aligns more closely with user community demands. Continuous adaptation and 

learning from environmental interactions allow for the prioritization of highly relevant content, 

therefore enhancing network performance. This ensures that content is available where and when 

needed, thereby sustaining a high quality of service and maximizing the UAV network’s impact. 

However, introducing federated learning presents a new challenge. While FedMAB 

improves adaptability through collaborative model updates, its aggregation process can 

inadvertently reduce the effectiveness of selective caching. This creates a trade-off between global 

coordination and localized efficiency, where selective strategies risk being overshadowed by 

uniform model consensus. This thesis deliberates on this critical tension and proposes a latency-

aware coordination mechanism that preserves the benefits of selective caching without 

compromising the collaborative strengths of federated learning. By aligning the learning dynamics 

with the operational constraints, the proposed framework ensures balanced, efficient, and context-

sensitive content dissemination across the UAV network. This thesis also attempts to convert this 

reactive caching policy to a proactive one, by incorporating crowd-counting algorithms. This 

method uses advances computer vision techniques to adeptly achieve population density which 

can compensate for any plausible weak estimate as a result of request sampling discrepancies. 
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Figure 1.2. Thesis Organization 

(The grey blocks are the works that this thesis has achieved, and the orange blocks are the future 

directions) 
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managing content dissemination in disaster affected area. This framework is anticipated to 
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for Trajectory-aware Caching Policy
• Model Sharing with trajectory-aware
caching at micro-ferrying UAVs

• Leveraging models of adjacent anchor
UAVs to improve self-model

• Divergence-based weight for model
aggregation in FedMAB

• Reduction in divergence due to model
aggregation and associated challenges

• FedMAB with Selective Caching

Chapter-10 (Future Work 2)
Preemptive Caching at UAVs using Large 

Language Models
• LLMs to analyze user request patterns
• Understanding the context and semantics
of users for content popularity trends

• Forecast which data or content will be in
high demand
• reducing latency and improving user
experience

Chapter-10 (Future Work 1)
Crowd Estimation-based Context-Aware 

Caching Using Bandits
• Crowd counting to improve confidence
on user request patterns

• VGG-16 backbone based auxiliary point
guidance crowd counting

• Target latent features are interpolated
using implicit feature interpolation (IFI)

• Features processed through prediction
head to obtain confidence score & offsets
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timely and relevant information. An essential element of this is to enhance the caching decision 

of UAVs by leveraging knowledge of adjacent communities’ UAVs with varying user 

demands that ensures an uninterrupted flow of information. 

2- It achieves the development of a Federated Multi-Armed Bandit Learning-based framework to 

enhance content delivery via on-the-fly learning of caching policies for UAV-based systems. 

The intention here is twofold: firstly, to ensure the highest levels of content availability, thus 

ensuring users have access to the most pertinent information when needed; and secondly, to 

minimize the amount of downloaded contents that optimizes the efficiency of the network. 

3- A core component of this research is the creation and thorough examination of a joint 

deployment strategy for UAV networks. The strategy aspires to amplify the availability of 

content across the network, drastically diminish periods when content is unavailable, and 

amplify the diversity of content within the UAV-aided caching system. 

4- Furthermore, the dissertation explores the construction of an adaptive learning-based 

framework with an integrated Selective Caching method. This novel approach is sensitive to 

UAV trajectories and QoS parameters that focuses on elevating content availability, limiting 

access delays, reducing redundancy in content replication, and ensures that the cached content 

sequence mirrors the benchmark for optimal caching sequences. 

5- Eventually, this thesis also attempts to improve this reactive learning-based caching policy to 

a proactive caching policy by incorporating crowd-counting algorithms. This addition aids the 

Federated Multi-Armed Bandit based caching policy by compensating for any weak reward 

estimates as a result of low request sampling problem. 

The culmination of these objectives is aimed at delivering a robust, responsive, and 

efficient content delivery service via UAVs, even in the most challenging environments. Through 
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these sophisticated learning mechanisms, UAV networks can dynamically adapt to the immediate 

needs of different user communities, effectively managing cache space to maintain high service 

quality even under the constraints and uncertainties inherent in post-disaster environments. 

1.9 Scope of the Dissertation  

The main goal of this thesis proposal is to propose a Federated Multi-Armed Bandit Learning-

based content dissemination system for cache enabled Unmanned Aerial Vehicles to ensure 

content provisioning in communication infrastructure-less scenario. The proposed methods deliver 

via service provisioning performance maximization in terms of content availability, content access 

delay, content low availability period and cached content sequence similarity. The organization of 

the Thesis proposal is as follows: 

This thesis presents a comprehensive exploration of UAV-centric content caching architectures 

aimed at enhancing communication in challenging environments. Chapter 2 lays the foundational 

groundwork by reviewing relevant literature which highlights key developments and existing 

strategies in UAV-assisted communication and content caching. In Chapter 3, we delve into the 

design of a UAV-centric Content Caching Architecture for Communication-challenged 

Environments that establishes the core principles behind deploying UAVs to facilitate efficient 

data delivery where traditional communication infrastructure is lacking or damaged. Chapter 4 

expands on this by discussing how to handle demand heterogeneity in UAV-aided Content 

Caching which addresses the complexities of diverse content demands across different user groups 

in such environments. Chapter 5 introduces a novel approach that employs Multi-Armed Bandit 

Learning for Content Provisioning in a Network of UAVs which focuses on optimizing content 

delivery by learning user preferences and demand patterns over time. Chapter 6 emphasizes on the 

model sharing strategy by incorporating the concept of Federated Learning on Bandits, which 
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strengthens the caching policy’s confidence and fairness of the bandit-based models across the 

disaster scenario. In Chapter 7, we explore Content Placement Planning for UAV Trajectory-aware 

Caching Policy in Infrastructure-less Wireless Networks, aiming to enhance the efficiency of 

content delivery by optimizing UAV flight paths based on content caching needs and network 

topology. Chapter 8 further advances this discussion by integrating Top-k Multi-Armed Bandit 

Learning for Content Dissemination in Swarms of Micro-UAVs with a trajectory-aware selective 

caching algorithm. This fine-tunes the content delivery process by identifying the groups of micro-

UAVs traversing in close proximity and prioritizing the contents most in demand. Chapter 9 

discussed the hurdles faced while incorporating Federated Multi-Armed Bandit to learn the 

caching policy. It also uncovers the algorithmic additions to tackle the issues of model sharing in 

the presence trajectory-aware selective caching algorithm. Finally, Chapter 10 discusses one of the 

immediate future extensions of this thesis where it shows the impact of crowd-counting applied on 

an image dataset that contains real disaster affected images. It explains the effect of precise crowd 

estimation on the learning-based caching policy. Additionally, it reflects on the research journey, 

summarizes achievements, and outlines potential future directions. This section highlights the 

scalability of the proposed architectures and algorithms, their adaptability to emerging hurdles, 

and their potential impact on future UAV-assisted communication systems. Through this 

organized structure, the thesis systematically addresses the challenges of UAV-based content 

caching and delivery, offers innovative solutions and paves the way for future advancements in 

the field.  
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Chapter 2: Related Work 

This chapter builds upon the foundational motivations outlined in Chapter 1 by offering a 

structured review of existing literature that informs the development of UAV-assisted content 

dissemination strategies. It examines five interrelated areas that form the core of this thesis; post-

disaster content provisioning frameworks, the role of UAVs and micro-UAVs in disaster response, 

UAV-based content provisioning through proactive caching, learning-based caching systems for 

dynamic environments, and recent developments in federated learning and bandit-based 

reinforcement learning for adaptive, decentralized decision-making. 

2.1 Post-Disaster Content Provisioning 

In the wake of disasters, whether natural or human-made, the efficient provisioning of 

content is crucial for effective response and recovery efforts. This entails not only the 

dissemination of vital information to affected populations and first responders but also the 

coordination among various agencies and stakeholders involved in the disaster management [53], 

[54] process. The existing literature on content provisioning frameworks in post-disaster scenarios 

highlights a variety of approaches, each with its unique set of challenges, solutions, and limitations. 

These include Mobile Ad-Hoc Networks (MANETs), Delay-Tolerant Networks (DTNs), social 

media platforms, satellite communications, Content Distribution Networks (CDNs), blockchain 

technology, and the Internet of Things (IoT). 

MANETs and DTNs are often highlighted for their ability to provide flexible and resilient 

connectivity in the absence of traditional communication infrastructure. For example, [55], [56] 

discusses the design and application of DTNs in challenging communication environments which 

includes disaster-impacted areas. On the other hand, social Media Platforms have been 

increasingly recognized for their role in disaster communication. The authors of [57] examine how 
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social media is utilized for emergency management that emphasizes its capacity for rapid 

information dissemination and public engagement. 

Despite their potential, MANETs and DTNs based frameworks face various limitations 

and can suffer from connectivity and scalability issues. Similarly, social media platforms may 

struggle with misinformation and information overload. To tackle these discrepancies, IoT 

Applications in disaster management are gaining attention for their ability to provide real-time 

data and enhance situational awareness. The work in [58] discusses the integration of IoT 

technologies in emergency response systems which highlights their potential to improve 

monitoring, content provisioning and coordination. This motivates the use of UAVs as a viable 

solution for content dissemination as an extension to the IoT-assisted response systems. 

2.2 Use of UAVs/Micro-UAVs for disaster management services 

UAVs, especially micro-UAVs, have emerged as crucial tools in managing and mitigating 

the aftermath of disasters [59]. Their applications span across various critical tasks which includes 

aerial surveillance, terrestrial imaging, precision agriculture, and infrastructure inspection in areas 

struck by calamities [60], [61]. These aerial vehicles excel in gathering real-time data and offers a 

bird’s-eye view of disaster-struck regions, which is instrumental for effective and timely decision-

making [23], [24]. The agility and small size of micro-UAVs make them particularly suitable for 

navigating through constrained spaces that enables assessments in areas that are otherwise 

inaccessible to traditional disaster response machinery [62]. 

The utility of UAVs in such scenarios is multifaceted. Primarily, they are deployed for their 

ability to quickly and efficiently survey large and hard-to-reach areas that provides critical 

information on the extent of damage, identifying stranded victims, and assessing the needs of 

affected communities [63]. Their application in precision agriculture, for instance, through yield 
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estimation and crop monitoring, underscores their capability in managing resources and assessing 

environmental conditions, which can be adapted for disaster assessment and recovery efforts [9]. 

Several studies have focused on optimizing the capabilities of UAVs for enhanced service 

provision in disaster management. Works such as [64], [65] propose methods to optimize the flight 

paths of UAVs and schedule communication tasks. These strategies aim to extend service coverage 

through optimized UAV hovering times and employing multi-hop relaying between multiple 

UAVs which includes device-to-device (D2D) routing. Such approaches are pivotal for ensuring 

continuous and effective communication in disaster-affected areas, especially when traditional 

communication infrastructure is compromised. 

The incorporation of energy-aware strategies which includes the use of multi-armed bandit 

algorithms [66], [67], focuses on selecting user hotspots for efficient data transmission while 

minimizing UAV energy consumption. Additionally, employing multiple UAVs at different 

altitudes [68] or through dynamic leader selection in a master-slave architecture [62] optimizes 

both the coverage area and energy usage that ensures longer operational periods in critical 

situations. 

While many studies have emphasized enhancing communication range [69] and optimizing 

flight paths, there’s a noted gap in addressing content placement and caching strategies specific to 

disaster management scenarios. However, the adaptation of solid-state drives (SSDs) for increased 

caching capacity [70] suggests a direction towards integrating more sophisticated data handling 

capabilities in UAVs that enhances their utility in disseminating vital information and services in 

disaster-struck regions. 

Despite these advancements, simply increasing storage space does not directly solve the 

content availability challenge. This is because an expansion in storage capacity results in higher 
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energy consumption for downloading and updating content, which requires long-range 

communication equipment (refer Section 1.2.2). As the storage space enlarges, the communication 

energy expense also scales, which inadvertently reduces the UAV’s flight time by consuming 

energy that could otherwise support flight operations. In contrast, adopting inter-UAV content 

exchange methods that utilize low-range communication equipment can significantly save on 

communication energy which results in conservation of more power for prolonged flight. This 

approach not only addresses the efficient management of content but also enhances the UAV’s 

operational time which makes it a more viable solution for disaster management scenarios where 

endurance and efficient content delivery are critical. This multifaceted utility underscores UAVs’ 

significance in not only bridging connectivity gaps but also in ensuring timely, efficient, and secure 

access to vital content and services in diverse operational contexts. 

2.3 UAV-based Content Provisioning via Proactive Caching 

In the evolving landscape of Unmanned Aerial Vehicle (UAV) technology, the strategic 

placement and caching of content have emerged as pivotal components in enhancing the efficacy 

of UAV-based communication networks, particularly within the context of Internet of Things (IoT) 

networks and disaster management scenarios. This thesis delves into the various methodologies 

proposed in the literature for optimizing these aspects and sheds light on their potential to 

revolutionize the way information is disseminated in critical situations. 

The advent of Named Data Networking (NDN) architecture in IoT networks represents a 

significant leap forward in content distribution. Studies such as those referenced in [71] illustrate 

how UAVs can harness this architecture to gather data directly from the field and deliver it 

efficiently to the intended recipients, and therefore circumvents the need for retransmission and 
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enhances overall network performance. This approach not only simplifies the data delivery process 

but also significantly reduces the burden on the network infrastructure. 

Further exploring the realm of UAV-enabled communication, research in [72] introduces 

innovative strategies where UAVs proactively transmit content to a select group of ground nodes 

(GNs). These GNs are algorithmically chosen to cooperatively cache the necessary content that 

ensures a broad and efficient distribution network that maximizes accessibility for end users. The 

employment of a probabilistic cache placement technique, as discussed in [73], aims to further 

refine this process by enhancing cache hit probabilities that leverages a homogeneous Poisson 

Point Process for the strategic placement of wireless nodes. 

Addressing the challenges faced by small-cell base stations (SBSs) under the strain of high 

data traffic, several studies [74], [75] propose the use of UAVs as a relief mechanism. By caching 

enhanced layer information, UAVs can efficiently manage high-definition video streaming 

requests, with the base layer information handled by the SBSs. This dual-layer approach not only 

alleviates pressure on the SBSs but also incorporates measures for interference management and 

security against potential eavesdropping which showcases the multifaceted benefits of UAV 

integration into existing networks. 

The optimization of cache placement in areas with high data traffic is another critical area 

of research. In [76], the authors utilize greedy algorithms and the Lagrange dual method to 

strategically determine the content to be cached on UAVs that takes into consideration the dynamic 

nature of user movement across different coverage areas. This emphasis on adapting to user 

heterogeneities marks a significant advancement in customizing content availability that directly 

addresses the limitations of temporally static user movement models. 
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Despite these innovative approaches, there remains a gap in effectively maximizing cache 

capacity within UAV-aided content dissemination networks, especially in scenarios characterized 

by demand heterogeneity. This gap signifies an area ripe for further exploration, as highlighted by 

the research efforts aimed at traffic offloading methods and learning-based caching strategies. 

Studies [72], [73], [74], [75] reveal that by considering factors such as content popularity and size, 

the caching capacity of UAVs can be significantly enhanced. This is particularly evident in UAV-

enabled small-cell networks, where data traffic is offloaded from SBSs to UAVs which allows for 

the proactive caching of popular content and direct delivery to users as needed. 

However, these mechanisms, while promising for scenarios of partial infrastructure 

destruction, face limitations in fully-functional alternatives where communication infrastructures 

are completely obliterated. Additionally, the reliance on temporally static models of global content 

popularity [73] in most existing mechanisms fails to capture the real-world complexity and 

variability of content demands, particularly in disaster scenarios. 

This thesis advances the conversation around UAV-based content provisioning systems 

that focuses on proactive caching [73] as a cornerstone of efficient and resilient communication 

networks. By critically examining the current state of research and identifying areas for further 

investigation, this work contributes to the development of more sophisticated, adaptive, and robust 

UAV-based content distribution frameworks that are capable of meeting the nuanced demands of 

modern communication challenges. Through proactive caching and strategic content placement, 

UAVs hold the promise of transforming the landscape of information dissemination, particularly 

in scenarios where traditional communication infrastructures are compromised or entirely absent.  
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2.4 Learning-based Caching for UAV-based content dissemination system 

The integration of Unmanned Aerial Vehicles (UAVs) into content dissemination networks 

represents a transformative approach to addressing the dynamic needs of modern communication 

systems. This particularly important in scenarios characterized by challenging environments and 

demand heterogeneity. This thesis explores the novel application of learning-based caching 

strategies and joint optimization of caching and trajectory decision techniques [77] that leverage 

the agility and flexibility of UAVs to optimize content delivery in various contexts. 

Recent studies have proposed innovative methods that combine caching decisions with 

UAV trajectory planning to minimize content delivery delays and enhance user satisfaction. For 

instance, research indicated in [78] introduces a system where online decisions are influenced by 

inputs processed through a Convolutional Neural Network (CNN). This is done in tandem with 

subsequent caching and trajectory optimizations performed offline using a Clustering-Based Two 

Layered (CBTL) algorithm. This dual-phase approach meticulously balances immediate decision-

making with strategic planning that ensures a cohesive content distribution strategy. 

Further advancements in this field have been demonstrated by [79], where a deep Q-

learning based framework is employed to jointly optimize UAV trajectory and radio resource 

allocation. This method specifically addresses the complexities of large networks characterized by 

an extensive range of state-action pairs that underscores the potential of deep reinforcement 

learning techniques in navigating the intricacies of UAV-based content dissemination. 

However, existing models often overlook the critical factor of content popularity 

heterogeneity, which varies significantly with the geographic location of users. This oversight 

limits the applicability of such models in real-world scenarios where user demand and content 

preferences can shift drastically across different regions. To bridge this gap, our work introduces 
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a nuanced approach that incorporates the variability of content popularity into the learning-based 

caching and decision-making process. 

In the realm of UAV trajectory control, [80] has proposed mechanisms that dynamically 

adjust UAV missions based on real-time observations which includes the decision to continue 

service delivery along a planned trajectory or to return to a charging station. This adaptability is 

crucial in maximizing operational efficiency and ensuring uninterrupted service provision. 

Similarly, [81] delve into the mathematical formulation of joint optimization problems that aims 

to find the most energy-efficient trajectories for UAVs while managing radio resources and 

caching replacements. 

Despite these technological strides, previous studies have not sufficiently addressed the 

specific challenges posed by disaster geographies, such as demand heterogeneity and the physical 

impacts on UAV flight decisions. Our research fills this critical void by meticulously analyzing 

how disaster-induced variations in geography and user demand affect caching policies and UAV 

trajectory planning. 

Furthermore, the methodologies explored in [76], [78], [79], [80], [81] primarily utilize 

long-term estimation techniques, which may not adequately respond to the rapid changes in 

network conditions and user demand. This thesis argues for the development of more responsive 

and adaptable learning-based caching mechanisms that can swiftly adjust to evolving 

environmental and network dynamics. Additionally, there is a notable absence of efforts aimed at 

maximizing cache space utilization and reducing reliance on costly server downloads through 

direct UAV-to-user content delivery. 

To address these shortcomings, our work develops a comprehensive framework that not 

only considers the heterogeneity of content popularity but also incorporates adaptive learning 
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methods to optimize UAV caching decisions and flight trajectories in real-time. By leveraging 

advanced machine learning algorithms which includes reinforcement learning and its variant like 

Multi-Armed Bandits, we establish a robust benchmark for evaluating the effectiveness of UAV-

based content dissemination strategies. 

This framework significantly enhances the efficiency of content delivery networks, 

particularly in disaster recovery operations and other critical scenarios where traditional 

communication infrastructures are compromised. Through the judicious application of learning-

based caching strategies, our approach improves the UAV content dissemination landscape by 

offering a more agile, responsive, and user-centric model that can dynamically adjust to the unique 

demands of diverse geographic and operational contexts. 

2.5 Federated, Bandit-based and Reinforcement learning for adaptive UAV caching 

To address the limitations of static or centralized approaches, recent literature has explored 

learning-based methods that enable UAVs to adaptively make caching decisions in dynamic 

environments. Reinforcement learning (RL), particularly through deep Q-networks and actor-critic 

methods, has been employed to jointly optimize content delivery and trajectory planning [82], 

[83], [84], [85], [86], [87], [88], [89], [90]. These methods offer adaptability but often rely on 

centralized infrastructure or long convergence periods which makes them less suitable for disaster 

scenarios characterized by network volatility and limited infrastructure. 

In parallel, Multi-Armed Bandit (MAB) algorithms have been studied for online caching 

decisions under uncertainty. MAB-based methods treat content selection as a reward-driven 

exploration-exploitation trade-off. While effective in adapting to changing demand, early 

implementations typically assumed globally uniform popularity or lacked inter-agent coordination 

[91], [92], [93], [94], [95], [96], [97], [98], [99]. More recent work has attempted to combine 
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MABs with contextual information, yet challenges remain in achieving scalable coordination and 

responsiveness across distributed UAV agents. 

Furthermore, Federated learning has gained traction as a way to address scalability and 

privacy constraints in decentralized environments [100], [101], [102], [103], [104]. In the federated 

paradigm, each processing node independently learns a local caching policy and periodically 

contributes to a shared global model through model aggregation, rather than raw data exchange. 

This is particularly beneficial in disaster zones, where bandwidth and power constraints make 

centralized updates infeasible. 

The integration of federated learning with MABs, referred to as Federated Multi-Armed 

Bandit (FedMAB) learning, offers a hybrid approach that combines the local adaptivity of MABs 

with the scalability and privacy-preserving characteristics of federated learning. Unlike methods 

relying on long-term global demand estimation, FedMAB supports geo-temporal heterogeneity by 

learning and sharing local caching decisions across UAVs. The literature demonstrates the 

effectiveness of federated learning approaches in mobile and distributed networks (e.g., FL-based 

edge classification systems) [105], [106], [107], [108], [109], [110], [111], but their application to 

content dissemination under full infrastructure failure is still emerging. Also, federated aggregation 

has been achieved in graph-type learning paradigms such as DNN [112], [113], [114], [115], [116], 

which is both intuitive and achievable. Amalgamation of federated learning with tabular methods 

like MAB and RL has fundamental limitations, since the such aggregations are not straight-

forward and can have detrimental effect on learning capabilities and contextual loss. 

Our thesis builds directly upon these developments by implementing a FedMAB 

framework tailored for disaster-affected regions. It incorporates demand heterogeneity, varying 

quality-of-service constraints, and inter-UAV collaboration without requiring centralized 
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coordination. By leveraging both the theoretical advantages and empirical performance of MABs 

and federated updates, our approach provides a foundation for scalable, resilient, and context-

sensitive UAV caching strategies. 

2.6 Summary 

Existing learning-based UAV-aided content dissemination systems face several challenges 

that includes a lack of adaptability to rapid changes and demand heterogeneity, inefficient 

utilization of UAVs’ caching capabilities, and insufficient focus on real-time adjustments for 

optimized content delivery. Our methods designed in this thesis address these drawbacks by 

incorporating advanced machine learning algorithms that account for demand variability across 

different regions, optimizing caching strategies according to UAV trajectory in real-time, and 

ensuring efficient use of UAVs’ cache spaces for content delivery. By focusing on adaptability, 

efficiency, and responsiveness, our approaches enhance the effectiveness of UAV-aided content 

dissemination systems in meeting diverse operational demands. 

In the next chapter, a UAV-aided content dissemination framework is characterized that 

can tackle content needs from the stranded users from disjoint communities in a disaster affected 

region. The framework is designed in a scenario where communication infrastructure is completely 

obliterated due to unforeseen catastrophic events. 
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Chapter 3: UAV Centric Content Caching for Communication 

Challenged Scenarios 

This chapter introduces a specialized UAV-based caching framework aimed at enhancing 

content delivery in disaster-affected areas where traditional communication infrastructure is 

absent. Utilizing both static anchor UAVs for direct content access and mobile ferrying UAVs for 

broader content distribution, this system focuses on optimizing content availability through 

strategic caching and content duplication methods tailored to the constraints of UAV storage 

capacity. The framework’s effectiveness is demonstrated through analytical and simulation-based 

evaluations, highlighting its capacity to adapt to various disaster scenarios, UAV trajectories and 

operational constraints. Here, the thesis details the framework’s architecture, its innovative 

caching strategies, and the significant role of UAV trajectories in maximizing content accessibility 

for isolated user communities in crisis situations.  

3.1 Motivation 

Using UAVs for content provisioning without communication infrastructure faces specific 

challenges like power limitation, which affects flight duration and operational range, limiting the 

UAV’s ability to deliver content over long distances or for extended periods. Let’s outline a basic 

model for UAV power expenditure using the following parameters. 

a) 𝑃"#$%&#'": Power consumption of the communication module when actively downloading 

content. 

b) 𝑃(): The power used for transmitting content to users, influenced by factors like distance, data 

rate, and the efficiency of the communication protocol. 

c) 𝑃*): The power consumed by the UAV’s communication system for receiving content request, 

depending on receiver sensitivity and signal processing requirements. 
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d) 𝑃+: This is the power consumed by the UAV’s communication system’s circuitry, which 

includes the transmitter circuitry, receiver circuitry, and any signal processing components. 

e) 𝑃,"&-: Power consumption of communication module when on but not actively downloading. 

f) 𝑃.&,/0(: Power consumption for keeping the UAV in the air (motors, avionics, etc.). 

g) 𝑇"#$%&#'": Time spent downloading content. 

h) 𝑇(): Time taken to transmit content to user. 

i) 𝑇*): Time taken to receive content request from user. 

j) 𝑇(#('&: Total flight time available (average flight time considered is 30 minutes). 

k) 𝐸1'((-*2: Total energy available from the UAV’s battery. The UAV’s battery charge (or 

energy) can be measured in watt-hours (𝑊ℎ) or milliamp-hours (𝑚𝐴ℎ). 

Based on the above parameters, the depleted energy, remaining energy and remaining on-time can 

be mathematically approximated as follows: 

𝐸"-3&-(-" = 𝑃"#$%&#'" . 𝑇"#$%&#'" + (𝑃() + 𝑃+). 𝑇() + (𝑃*) + 𝑃+). 𝑇*)	(3.1) 

𝐸*-4',%,%/ = 𝐸1'((-*2 − 𝐸"-3&-(-" 																																																															(3.2) 

𝑇*-4',%,%/ =
𝐸*-4',%,%/

𝑃.&,/0( + 𝑃,"&-
=
𝐸1'((-*2 − 𝐸"-3&-(-"
𝑃.&,/0( + 𝑃,"&-

																														(3.3) 

The above expressions show the remaining on-time contingent upon the content download and 

lateral communication load with the users. To be noted that the transmission power 𝑃() is 

significantly higher than the reception power 𝑃*) owing to the Friis transmission equation [117], 

[118] for free space. The transmission power in wireless communication systems is the power that 

the transmitter needs to emit to ensure the signal reaches a receiver with sufficient strength (𝑃*) to 

be decoded correctly. This relationship can be illustrated through the Friis transmission equation 

in a simplified form, assuming free space and line-of-sight communication: 
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𝑃* = 𝑃() . 𝐺() . 𝐺* . 5
𝜆
4𝜋𝑑:

5

																																																											(3.4) 

The equation above defines 𝑃() in relation to 𝑃*, given known values of 𝐺() , 𝐺* , 𝜆 and 𝑑, which 

are the gain of the transmitter and receiver antenna, transmitted signal’s wavelength and distance 

between the transmitter and receiver. This shows that increased power consumption with higher 

transmission power necessitates a careful balance between communication range and operational 

longevity of the UAVs [30]. Enhancing one can significantly impact the other, potentially reducing 

the effectiveness of content distribution efforts. 

To maintain unhindered content provisioning, the aim should be to maximize the on-time 

of the UAVs. However, there are inherent energy expenses associated with UAV like the ones 

cited above. One straight-forward approach is to minimize the communication energy expenditure 

which includes the content download, transmission and reception expenses. Such approach will 

depend heavily on the average data consumption rate of individual users. Service providers have 

reported an average monthly data consumption of 25-30 gigabytes per user [30], [31], [32]. With 

an average population density of 10! users/sq-mile [33], [34], the data requirement per day can 

reach up to 80-100 terabytes. Attempts to handle such requirements can be made by installing 

Non-Volatile Memory Express solid-state drive (NVMe SSD) memory cards [35], [36] in UAVs 

that can store contents with data size of aforesaid magnitude. Nevertheless, the communication 

energy expenditure can still deplete the battery of the UAVs while storing and replacing contents 

in these memory devices. To exacerbate the situation, with increase in the data storage capacities 

of such memory cards, the communication energy expenditure scales which leads to even faster 

depletion of UAV battery.  
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This limitation necessitates the contents to be intelligently spread across UAVs. Also, the 

inability of the total storage capacity offered by the UAV network to store all contents required 

currently and, in the future, requires efficient content management strategies. 

3.2 Design Objective 

The objective of this chapter is to design and validate a comprehensive UAV-enabled 

content dissemination framework optimized for environments lacking fixed communication 

infrastructure. This involves the development of a detailed architectural model that leverages 

UAVs for content delivery. Furthermore, it includes formulation of optimal content placement and 

caching strategies tailored to specific UAV trajectories, and exploration of how these trajectories 

influence caching efficiency. Additionally, the chapter aims to construct analytical models capable 

of estimating content availability within this framework, supported by the execution of extensive 

simulation experiments. These simulations are intended to rigorously test and evaluate the 

effectiveness of the proposed strategies across a spectrum of network conditions and operational 

scenarios, thereby ensuring the framework’s applicability. 

3.3 System Model 

3.3.1 UAV Hierarchy  

The content distribution system is organized in two layers, namely, the anchor UAVs (i.e., 

A-UAVs) and the ferrying UAVs (i.e., F-UAVs). As shown in Figure 3.1, each partitioned 

community of users is served by an A-UAV using a lateral wireless link such as WiFi. A-UAVs 

can also download content form the internet via an expensive vertical link such as satellite-based 

internet. One monolithic system design approach is to let the A-UAVs download all needed 

content, as requested by their local users, via the vertical links. In this approach, with no inter-A-

UAV data transfer, the following shortcomings will be encountered. First, there will be 
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duplications of downloads via the expensive vertical links by different A-UAVs due to overlaps 

in requests for popular contents. This will incur high download costs. Second, storage constraints 

will cap the number of contents that can be downloaded and stored in an A-UAV, thus limiting the 

content availability. Finally, due to limited infrastructure availability, some of the communities of 

users are rendered isolated from content access without a dedicated A-UAVs assigned to them.  

 

Figure 3.1.  Coordinated UAV system for content caching and distribution in environments  

without communication 

To address these problems, a set of ferrying UAVs (i.e., F-UAVs) are introduced. Unlike 

A-UAVs, the F-UAVs do not possess vertical links, but they do have lateral links such as WiFi, 

using which they can communicate with the A-UAVs. The role of these UAVs is to cache and 

transfer content around the A-UAVs such that the users in a community are able to access content 

that was downloaded by A-UAVs serving other communities via F-UAVs.  
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3.3.2 Content Request and Provisioning Model 

Content requests are generated by the community users and sent to the local A-UAV or a 

visiting F-UAV, in that order.  

Content Popularity and Requests: Studies have shown that content request pattern often follows a 

Zipf distribution in which a requested content’s popularity is a geometric multiple of the next 

popular content in a larger pool [119]. Popularity of content ′𝑖′ is given as  

𝑝6(𝑖) =
7!"8

#

∑ 7!$8
#

$∈&
																																																																														(3.5)  

The parameter 𝐶 represents the total number of contents in the pool, and the Zipf parameter 𝛼 

determines the skewness of the distribution. Poisson request generation is the most prevalent way 

to capture real-time user requests. 

Tolerable Access Delay and Content Provisioning: For each generated request, a Tolerable Access 

Delay (TAD) is specified. TAD is a quality-of-service parameter that indicates the duration a 

requesting user waits before the content is provisioned via download. After receiving a request 

from one of its community users, the relevant A-UAV first searches its local storage for the 

content. If not found, it waits for a potential future delivery of the content by one of the traveling 

F-UAVs. If no F-UAV with that content arrives within the specified TAD, the A-UAV downloads 

it via the vertical link.   

3.4 Caching Policies 

The caching related design questions to be addressed are: a) which content to be 

downloaded in the A-UAVs via the vertical links so that they can serve their own community 

directly, and the remote communities via the traveling F-UAVs; b) which content to be transferred 

from the A-UAVs to the F-UAVs via the lateral links, and cached within the F-UAVs 
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subsequently; and finally, c) what inter-community trajectories should be followed by the F-

UAVs.  

This chapter addresses these questions in that it assumes pre-assigned globally known 

content popularities and static content pre-placements before user request are generated. In terms 

of F-UAV trajectories, different pre-programmed trajectories are characterized along with 

different static content placement strategies. After understating and characterizing such static 

policies, the goal will be to develop runtime and dynamic mechanisms for all these design 

components and report it in a future publication.  

3.4.1 Caching at Anchor UAVs (A-UAVs) 

A naïve strategy for the A-UAVs would be to cache the most popular contents (i.e., 

following the globally known Zipf distribution) to fill out their individual storage space of 𝐶: 

contents. This naïve fully duplicated (FD) [120], [121] mechanism has the shortcoming in that it 

limits the number of accessible contents for all user communities to 𝐶:, the A-UAV cache size. 

This limitation can be addressed by storing a certain number of unique (exclusive) contents in all 

the A-UAVs and share those contents across the communities via the traveling F-UAVs. This 

Smart Cache Duplication (SCD) mechanism can effectively increase the access to the number of 

contents for all users across the entire system, thus improving the overall availability within a 

given TAD. 

Let the size of the duplicate segment of A-UAV cache be 𝜆. 𝐶: and that of the unique 

segment be (1 − 𝜆). 𝐶:where 𝜆 is a duplication factor that decides the level of content duplication 

in A-UAVs. This results into 𝑁:. (1 − 𝜆). 𝐶: unique contents stored across all 𝑁: number of A-

UAVs in the system, and these can be shared across all user communities via the mobile F-UAVs. 

These unique contents have popularities after the top 𝜆. 𝐶: popular duplicated contents in all the 
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A-UAVs. For symmetry, all 𝑁:. (1 − 𝜆). 𝐶: unique contents are uniformly randomly distributed 

across 𝑁: number of A-UAVs. The total number of contents in system: 𝐶;2; = 𝜆. 𝐶: +

𝑁:. (1 − 𝜆). 𝐶:.  

It should be noted that with 𝜆 set to one, the SCD system reduces to the fully duplicated 

(FD) strategy. With higher 𝜆 values, the users have better access to more number of highly popular 

contents, but to fewer of them with low popularity, that are stored across the system-wide A-UAVs 

and can be accessed via the mobile F-UAVs. A lower 𝜆	creates an opposite effect. The goal is to 

be able to choose a 𝜆, that strikes the right balance between those effects and maximizes the overall 

availability. 

3.4.2 Caching at Ferrying UAVs (F-UAVs) 

The purpose of the F-UAVs is to ferry around 𝑁:. (1 − 𝜆). 𝐶: unique contents stored in all 

𝑁:	A-UAVs. In the presence of limited per-F-UAV caching space, 𝐶<, its caching policy can be 

determined based on its trajectories, the value of 𝜆, and the Zipf parameter defining the content 

popularity. 

Consider a situation in which an F-UAV k is approaching towards the A-UAV i. Let 𝑈, be 

the set of all unique contents in the entire system except the ones stored in A-UAV i. To maximize 

content availability for the users in A-UAV i’s community, the F-UAV should carry as many low 

popularity contents from set 𝑈, 	as its cache space permits. To enable such access, F-UAV k should 

carry 𝐶< 	top popular contents from the set 𝑈, 	while approaching A-UAV i. The size of the set 𝑈, 

can be expressed as |𝑈,| = (𝑁: − 1). (1 − 𝜆). 𝐶:. In scenarios when 𝐶< ≤ |𝑈,|, the F-UAV should 

carry the 𝐶< 	top popular contents as outlined above. Otherwise, the F-UAV will carry all |𝑈,| 

unique contents, leaving part of the F-UAV cache (i.e., 𝐶< − |𝑈,|) empty. This causes 
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underutilization of F-UAV cache space due to large 𝜆	values, leading to heavy in-A-UAV 

duplications, thus storing few unique contents. 

3.4.3 Trajectory of Ferring UAVs  

An F-UAV’s trajectory is represented by the sequence of visited A-UAVs, and the 

hovering duration at each A-UAV. Trajectory sequence can be categorized as partitioned or global 

cycles. With a partitioned trajectory cycle, an F-UAV go around a specific part of the system 

containing a fixed subset of all the A-UAVs like F-UAVs A and B follow a partitioned cycle of A-

UAVs X, Y, Z and W in Figure 3.1. With a global cycle, an F-UAV moves around all the A-UAVs 

in the system like F-UAVs C and D in Figure 3.1. Intuitively, if the contents cached in the unique 

segments of A-UAVs have very low popularity then the global sequence cycle would be beneficial. 

Conversely, when some of the A-UAVs maintain unique contents with comparatively very high 

popularity, then using partitioned cycle may be rewarding. These will be evaluated in the 

experiment in Section 3.6.  

The cycle time of an F-UAV trajectory is 𝑇+2+&- = 𝑁:= × (𝑇>#?-* + 𝑇@*'%;,(), where 𝑁:= 	 

is the number of A-UAVs in the cycle (partitioned or global), 𝑇>#?-* is the hover duration at each 

A-UAV, and 𝑇@*'%;,( is the transit time between two consecutive A-UAVs in a sequence. 

𝑇@*'%;,(	depends on the F-UAV flying speed, inter-A-UAV distance, wind speed/directions, and 

other environmental factors. 𝑇>#?-* should be set to a value which is determined by the data 

transfer rate and the amount of data needs to be exchanged between F-UAV to/from A-UAV. It 

should be noted that A-UAVs don’t follow a trajectory since they are stationed at their respective 

communities for uninterrupted content dissemination. 
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3.5 Content Dissemination Performance 

3.5.1 Content Availability  

Availability is defined as the probability of finding a requested content within the local A-

UAV or a future visiting F-UAV within a TAD. Consider a situation in which a single F-UAV 

cycles in a round-robin manner through all the A-UAVs with hovering and transit respectively. 

For a content requested from a community, the F-UAV may or may not be accessible within the 

specified TAD. This probability is as follows: 

𝑃<: = G
A'×(@()*+,D@:E)

A-×(@()*+,D@.,/01"2)	
		𝑓𝑜𝑟	𝑇𝐴𝐷 < ((A-

A'
− 1)𝑇>#?-* +

A-
A'
𝑇@*'%;,()

1																																	𝑓𝑜𝑟	𝑇𝐴𝐷 ≥ ((A-
A'
− 1)𝑇>#?-* +

A-
A'
𝑇@*'%;,()

         (3.6) 

If the 𝑇𝐴𝐷 is larger than a specific duration, then the F-UAV’s accessibility to the requesting 

community is guaranteed. Otherwise, it follows the first expression in Eqn. 3.6. Note that the 

physical accessibility to the F-UAV does not guarantee the access to the requested content since 

the F-UAV can store only a limited number (i.e., 𝐶<) of unique contents. Let 𝑃< be the probability 

that the requested content can be found within the F-UAV following a caching strategy as stated 

in Section 3.4. It can be expressed as: 

   𝑃< = ∑ 𝑝6(𝑖)
=-DHD=3''
,I=-DH                                                             (3.7) 

where, 𝑝6(𝑖) is the Zipf distributed popularity as defined in Section 3.3. The effective cache size 

of the F-UAV is given as: 𝐶J<< = 𝑚𝑖𝑛{𝐶< , (𝑁: − 1) × (1 − 𝜆) × 𝐶:}. Effective cache size is less 

than 𝐶< when F-UAVs cache is partly empty i.e., underutilized (see Section 3.4). Now, the 

probability that requested content can be found within a A-UAV that is local to the request 

generating community can be expressed as: 

𝑃: = ∑ 𝑝6(𝑖)
K×=-D(HLK)×=-
,IH 	                                                   (3.8) 

Combining those three probabilities above, the overall availability can be stated as: 
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 𝑃:?',& = 𝑃: + 𝑃<: × 𝑃<                                                          (3.9) 

To summarize, local contents from A-UAVs (i.e., both duplicate and unique) and unique 

contents from future visiting F-UAVs contribute towards the overall availability 𝑃:?',& within a 

specified 𝑇𝐴𝐷. Note that all unavailable contents within the specified TAD will have to be 

downloaded by the A-UAVs using their expensive vertical links such as the satellite Internet. 

Therefore, availability indirectly indicates the content download cost in the system.    

3.5.2 Low Availability Period  

Consider the scenario in Figure 3.2 with two A-UAVs and one F-UAV. The users in a 

community have access to the content in the F-UAV for a duration of 𝑇𝐴𝐷 + 𝑇>#?-*. Time taken 

for the F-UAV to come back to the same community before the users in the community will have 

access to its content again is: 2. 𝑇@*'%;,( + 𝑇>#?-* − 𝑇𝐴𝐷. This is the period during which the 

content availability for the users will only be from the local A-UAV, and that is without access to 

the F-UAV. 

This duration is referred to as the low availability period, which can be generally expressed as: 

𝐿𝐴𝑃 = A-@.,/01"2D(A-LH)@()*+,L@:E
A'

                                         (3.10) 

where 𝑁: and 𝑁< are the number of A-UAVs and F-UAVs in the system. With higher transit and 

hovering times and 𝑁:, while the low availability period goes up, the overall availability, as 

derived in Eqns. 1 through 4, goes down.  
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Figure 3.2.  (Top) Scenario with 𝑇𝐴𝐷 = 0; (Bottom) With non-zero 𝑇𝐴𝐷 

3.5.3 Content Access Delay 

Any request that is served by a local A-UAV experience zero access delay. There is no 

access delay if the request for content from F-UAV is generated when the F-UAV is hovering in 

the community. Therefore, the only scenario with a non-zero access delay would be the one in 

which the requested content is available at an F-UAV, and it is currently not visiting the requesting 

community. The probability of that scenario 𝑃=:E can be expressed as: 

𝑃=:E =	R

A'×@:E
A-×(@()*+,D@.,/01"2)

											𝑓𝑜𝑟	𝑇𝐴𝐷 < @$4$5+
A'

− 𝑇>#?-*

A'×M
.$4$5+
6'

L@()*+,N

A-×(@()*+,D@.,/01"2)
									𝑓𝑜𝑟	𝑇𝐴𝐷 ≥ @$4$5+

A'
− 𝑇>#?-*

                    (3.11) 

Note that the access delay is upper bounded by the specified  𝑇𝐴𝐷. As per the second expression 

in Eqn. 3.11, if the 𝑇𝐴𝐷 is larger than the time it takes for the F-UAV to reach the request 

generating community, then content is delayed by the time taken by the F-UAV to reach. 

Conversely, for lower 𝑇𝐴𝐷𝑠, the content is delayed just by the 𝑇𝐴𝐷 duration.  

The average delay incurred in those two cases are:  

𝐷𝑒𝑙𝑎𝑦'? = R

@:E
5
											𝑓𝑜𝑟	𝑇𝐴𝐷 < @$4$5+

A'
− 𝑇>#?-*

.$4$5+
6'

LO

5
			𝑓𝑜𝑟	𝑇𝐴𝐷 ≥ @$4$5+

A'
− 𝑇>#?-*

                               (3.12) 
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These averages are based on the maximum and the minimum possible delays. Combining 𝑃=:E 

and 𝐷𝑒𝑙𝑎𝑦'?, the access delay (𝐴𝐷) can be expressed as:  

𝐴𝐷 = 𝑃=:E × ∑ 𝑝6(𝑖),I∀=' × 𝐷𝑒𝑙𝑎𝑦'?                                           (3.13) 

3.6 Experimental Results and Analysis 

Experiments were carried out using simulations, for implementing the request generation, 

UAV caching, and F-UAV movement strategies presented in Sections 3.4. Default experimental 

parameters are 𝑁= = 1000, 𝑁: = 20, 𝑁< = 10,	𝐶: = 𝐶< = 50,	𝜇 = 1,	𝑇>#?-* =

20	𝑠𝑒𝑐𝑠,	𝑇@*'%;,( = 10	𝑠𝑒𝑐𝑠,	𝑇𝐴𝐷 = 20	𝑠𝑒𝑐𝑠 and 𝛼 = 1.001. 

 

Figure 3.3. Content Availability with changing 𝜆 for different 𝑁< 

3.6.1 Impacts of F-UAVs on Content Availability 

Figure 3.3 depicts the benefits of the ferrying UAVs in terms of improving content 

availability as defined in Section 3.4. The figures show availability computed analytically and 

from simulation experiments (i.e., average computed from the success of 10! requests for each 

availability point), both of which are validated through their excellent agreements.  
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Content availability is evaluated for varying 𝜆 values, representing the split between cached 

duplicated and unique objects within the A-UAVs, as described in Section 3.4. The following 

observations can be made from Figure 3.3. First, increasing F-UAVs can improve availability by 

ferrying contents that are not otherwise available to a community in its local A-UAV’s cache. 

Second, the percentage increase in availability is more drastic for lower values of 𝜆 for which more 

unique contents are cached in the A-UAVs. Since the F-UAVs ferry around those unique contents 

across different communities, the dependance of availability on cached contents in the F-UAVs is 

more pronounced for smaller 𝜆. Third, there is an optimum duplication factor 𝜆, for which the 

content availability is the maximum for a given number of A-UAVs, F-UAVs, and default system 

parameters. Beyond the optimal operating point, availability reduces due to cache underutilization 

in F-UAVs, as shown in Section 3.4.  

3.6.2 Impacts of the Number of User Communities  

Figure 3.4(a) shows the impacts of the number of deployed A-UAVs (i.e., number of 

communities) on availability, while keeping the number of F-UAVs constant. These results are 

computed analytically from the equations provided in Section 3.5. The numbers show percentage 

increase in availability compared to the no-F-UAV case. The figure shows that the benefits of data 

ferrying consistently go down with increasing number of A-UAVs. The main reason for this is in 

the reduction in probability 𝑃<: (i.e., in Eqn. 3.6) of physical access to the F-UAVs due to the 

increase in their overall cycle times. This can be mitigated using more F-UAVs and is shown later.  
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(a) 

 

(b) 

Figure 3.4. (a) Maximum increase in Availability with A-UAVs, (b) Contribution % from A- and 

F-UAVs, (c) Maximum increase in Availability with F-UAVs 
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Figure 3.4 (cont’d) 

 

(c) 

A content can be provisioned to a user either by its local A-UAV or by a visiting F-UAV. 

Hence, availability has an A-UAV component and an F-UAV component. These two are shown 

separately in Fig 3.4(b). As expected, as the amount of duplicated cached contents in the A-UAVs 

go up (i.e., with larger 𝜆), the contribution from the A-UAVs go up accordingly. A-UAVs’ 

contribution, however, is lesser for larger number of communities since the unique contents are 

uniformly randomly distributed across more A-UAVs as explained in Section 3.4. The 

contributions of the F-UAVs reduce because of the fall in 𝑃<:, as stated for Figure 3.4(a).  

3.6.3 Impacts of Deploying Multiple F-UAVs 

Deploying more F-UAVs increase the probability of physical access to the F-UAVs (i.e., 

𝑃<:), thus improving availability over the corresponding no-F-UAV scenarios which is shown in 

Figure 3.4(c). The results are with 20 A-UAVs, computed analytically and from simulation. The 
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(A'
0+7LA'

)58)×(@:ED@()*+,)
A-×(@()*+,D@.,/01"2)

. Here 𝑁<%-$ and 𝑁<#&" are the number of deployed F-UAVs after and 

before additional deployments. ∆𝑃<: shows the rise in accessibility of F-UAVs to communities, 

which in turn, improves overall availability as given in Eqns. 1-4.  

3.6.4 Effects of Hover Time and Tolerable Access Delay 

Content availability is impacted by both the F-UAV hover time and the user-specified TAD 

in an interdependent manner. Those dependencies are shown in Figure 3.5(a) with 𝑁: = 10, 𝑁< =

5, and 𝜆 = 0.8. The figure shows non-monotonic behavior of availability with varying hovering 

time and 𝑇𝐴𝐷. One notable observation is that for low 𝑇𝐴𝐷𝑠, availability increases with increase 

in hover time 𝑇>#?-* and otherwise for high 𝑇𝐴𝐷𝑠. This can be explained as follows.  First, for 

𝑇𝐴𝐷 < 𝑇@*'%;,(, when an F-UAV travels from community i to next community j, the F-UAV does 

not contribute to availability at community i or j for 𝑇@*'%;,( − 𝑇𝐴𝐷 duration (see Figure 3.2). In 

this case, it is advantageous for the F-UAV to hover over a community. Second, for 𝑇𝐴𝐷 >

𝑇@*'%;,(, increase in hovering time reduces the possibility of the condition	(𝑇𝐴𝐷 − 𝑇>#?-*) >

𝑇@*'%;,( to be true. In other words, the possibility of exhausting the given 𝑇𝐴𝐷 before reaching 

next community increases. So, it is beneficial to hover less, which increases the accessibility of F-

UAVs at future communities in the cycle before TAD expires. Finally, for 𝑇𝐴𝐷 = 𝑇@*'%;,(, an F-

UAV adds to availability within 𝑇𝐴𝐷 irrespective of its hovering decision.   
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(a) 

 

(b) 

Figure 3.5. (a) Availability for variable 𝑇0#?-* and TAD, (b) Increase in availability for different 

trajectories, (c) Unique contents for varying 𝑁: and 𝜆 
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Figure 3.5 (cont’d) 

 

(c) 

3.6.5 Effect of F-UAV Trajectory on Content Availability 

Trajectory of an F-UAV has an impact on what content it carries and its contribution to the 

overall content availability based on A-UAVs in its trajectory cycle. Figure 3.5(b) depicts those 

impacts for a system with 640 A-UAVs, 128 F-UAVs, 𝐶< = 200, 𝛼 = 0.8 and all other default 

parameters calculated analytically. Increase in availability is reported as a percentage difference 

between the baseline no-F-UAV case and maximum content availability (i.e., at the optimal 

duplication factor 𝜆) for specific F-UAV trajectories.  

The global cycle (GC) trajectory refers to when an F-UAV visits all A-UAVs in a cycle. 

The content volume (i.e., 𝐶:. (1 − 𝜆). 𝑁:) to fill the F-UAVs in this trajectory scenario is quite 

high due to the large number of A-UAVs in the cycle, which is shown in Figure 3.5(c). The next 

trajectory that was experimented with is partitioned cycle-1 (𝑃𝐶H). In this, the A- and F-UAVs are 

divided into two sets, which are 2 sets of 320 A-UAVs and 2 sets of 64 F-UAVs. F-UAVs from 

the first set cycle around the first set of the A-UAVs, and the same applies to the second sets of A-
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UAVs and F-UAVs. Functionally, this scenario is equivalent to scaled down GC system with half 

as many A-UAVs and F-UAVs used for the GC results. In this scenario, the content availability is 

slightly larger than the GC case as can be seen in Figure 3.5(b). The reasons are as follows. First, 

due to less cycle duration probability 𝑃<: increases (i.e., in Eqn. 3.6). Second, is the sufficiency of 

unique contents in the system due to adequate count of A-UAVs in the cycle (Figure 3.5(c)). Third, 

the optimal duplication factor 𝜆 is same for both i.e., 0.95. Thus, any increase in 𝑃<: will increase 

content availability at optimal 𝜆. The second and third partitioned cycles (𝑃𝐶5 and 𝑃𝐶Q) are 

functionally identical to 𝑃𝐶H except that in these cases, both F-UAVs and A-UAVs are divided 

into 4 and 8 equal sets, respectively. Due to enough A-UAVs in the cycles to fill respective F-

UAVs, content availability increases. Dividing the A-UAVs and F-UAVs further into 16 and 32 

equal sets (i.e., in 𝑃𝐶R, 𝑃𝐶!) leads to reduction in availability due to the fewer A-UAVs in each 

F-UAV cycle (Figure 3.5(b)). In such cases, the cache space in the F-UAVs go underutilized at 

the optimal 𝜆 value. To ensure adequate filling up of F-UAV, a sub-optimal 𝜆 is chosen which 

reduces duplication. This can be seen in Figure 3.5(c) where 𝜆, reduces from 0.95 to 0.90 for 𝑃𝐶R 

and 0.80 for 𝑃𝐶!. This indicate that for a given number of A- and F-UAVs, there exists an optimal 

partitioning at which the overall content availability can be maximized.  

3.6.6 Effects of Content Duplication on Access Delay 

Figure 3.6 shows consistent reduction in average access delay with increasing A-UAV 

duplication factor 𝜆 which is computed from the analytical equations given in Section 3.5.  

This reduction is explained as follows. With higher 𝜆, less popular contents are cached in 

F-UAVs. As contents with low popularity are less likely to be requested according to Zipf 

distribution (see Section 3.3), the average access delay also goes down accordingly. Substantial 

reduction in access delay due to underutilization of F-UAV’s cache, explained in Section 3.4, can 
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be seen in Figure 3.6 for values above 𝜆 = 0.95. It can also be seen that with increase in number 

of F-UAVs, the average content access delay increases. As, delay is only due to contents that are 

cached in F-UAVs, more F-UAVs increase the quantity 𝑃=:E which adds to access delay. 

 

Figure 3.6.   Increase in delay with increasing F-UAVs for varying 𝜆 

An F-UAV’s hover time impacts its overall cycle duration, that affects the duration for 

which the content availability from that F-UAV to the users remains low. During such Low 

Availability Periods (LAP), as explained in Eqn. 3.10 in Section 3.5, only the locally cached 

contents from A-UAV’s remain available. LAP reduces when more F-UAVs are deployed. This 

underlying effect is visible in Figure 3.3 where adding F-UAVs reduces LAP and boosts 

availability.  

3.7 Summary and Conclusion 

This chapter investigates caching policies in UAV networks for content dissemination in 

communication challenged systems. Cache-enabled UAVs serve communities of users in a 

disaster/war-stricken area by caching popular contents in order to reduce downloading needs using 

satellites and other expensive vertical links. A framework is adopted in which two types of UAVs, 

namely anchor UAVs and ferrying UAVs, are deployed. Through analytical modeling and 
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simulation experiments, the chapter establishes an optimal content duplication strategy in which 

certain number of popular objects are duplicated in all anchor UAVs and certain number of non-

duplicated/unique contents are carried in both types of UAVs. It was shown that content 

availability in such a system can be maximized by appropriately dimensioning the content 

duplication factor. The system was functionally validated, and performance evaluated for a 

different scenario including various ferrying UAV trajectories. The next chapter will extend this 

concept to a heterogenous demand scenario where requests can belong to different popularity 

distributions. Additionally, to emulate a more realistic scenario the generated requests can be 

accompanied with user-specific tolerable access delays. Furthermore, dynamic nuances of ferrying 

UAVs’ trajectories are considered to enhance the collective content provisioning capability of the 

UAV-aided network for all the aforementioned design components. 
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Chapter 4: Using QoS-aware Caching for Handling Demand 

Heterogeneity in UAV-based Content Provisioning 

4.1 Motivation 

In disaster or conflict-affected areas, the collapse of communication infrastructures poses 

a significant barrier to timely information dissemination and recovery efforts. The deployment of 

Unmanned Aerial Vehicles (UAVs) as a plausible solution to form ad hoc networks has gained 

importance, given their ability to navigate and operate in areas without stable infrastructure. 

Despite this, existing UAV-based communication models are largely inept in environments with 

total infrastructure failure, especially when faced with the challenge of demand heterogeneity. 

Such heterogeneity is manifested through varying content popularity, urgency, and Quality of 

Service (QoS) expectations such as tolerable access delays. This requires a nuanced content 

caching approach beyond the capabilities of current systems, which rely on static, long-term 

request pattern estimations. There exists a need for an agile and adaptive UAV-aided content 

dissemination framework capable of addressing these multifaceted challenges directly, ensuring 

that critical information reaches all user communities efficiently and reliably. 

4.2 Design Objective 

The research in this chapter aims to conceptualize and develop a UAV-aided content 

caching system tailored for communication-challenged environments. This system is envisioned 

to efficiently accommodate the heterogeneous demands of isolated user communities, optimizing 

for content availability without excessive reliance on costly vertical connectivity. By leveraging 

the developed algorithmic approaches for content caching, the framework seeks to ensure high-

availability content access across diverse user communities. A pivotal goal is to articulate the 

interdependencies between user demand patterns, users’ urgencies and caching mechanisms, with 
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a focus towards identifying optimal operational configurations that maximize content 

dissemination efficiency. Through rigorous simulation experiments and analytical modeling, the 

proposed system will be validated and evaluated, underscoring its potential as a resilient 

communication solution in the aftermath of disasters. 

4.3 System Model 

4.3.1 UAV Hierarchy  

The content distribution system is organized in two layers, namely, the anchor UAVs (i.e., 

A-UAVs) and the ferrying UAVs (i.e., F-UAVs). As shown in Figure 3.1, each partitioned 

community of users is served by a A-UAV using a lateral wireless link such as Wi-Fi. A-UAVs 

can download content via an expensive vertical link such as satellite-based internet. 

One monolithic system design approach is to let the A-UAVs download all needed content, 

as requested by their local users. In this approach, with no inter-A-UAV data transfer, the following 

shortcomings will be encountered. First, duplications of downloads will incur high download cost 

via the expensive A-UAV vertical links due to overlaps in requests from different communities. 

Second, storage constraints will cap the number of contents that can be downloaded and stored in 

each A-UAV, thus limiting the content availability. To address these, ferrying UAVs (i.e., F-

UAVs) are introduced. Unlike A-UAVs, the mobile F-UAVs do not possess vertical links, but they 

have lateral links such as Wi-Fi, using which they can communicate with the A-UAVs and the 

users. These UAVs share the contents downloaded by A-UAVs serving other communities.  

After receiving a request from one of its community users, an A-UAV first searches its 

local storage for the content. If not found, it waits for a potential future delivery of the content by 

one of the traveling F-UAVs. If no F-UAV with that content arrives within the specified TAD, the 

A-UAV downloads it. 



 51 

4.3.2 Content Request and Provisioning Model 

Content Popularity: Studies have shown [119], [122] that content request patterns follow a Zipf 

distribution in which a requested content’s popularity is a geometric multiple of the next popular 

content in a larger pool [119]. Popularity of contents is given as: 

 𝑝6(𝑖) =
7!"8

#

∑ 7!98
#

9∈&
                                                           (4.1) 

The parameter 𝐶 represents total number of contents in the pool, and Zipf parameter 𝛼 determines 

skewness of the distribution. Popularity sequence of contents at different communities may vary, 

which introduces popularity heterogeneity, which is the focus of this chapter.  

Content Requests: Poisson distributed request generation is a prevalent way to capture user 

requests in practical networks. 

Tolerable Access Delay and Content Provisioning: For each generated request, a Tolerable Access 

Delay (TAD) [123], [124] is specified. TAD is a Quality-of-Service parameter that indicates the 

duration that a user is ready to wait before a requested content can be accessed. Here, if a content 

is not available from the UAVs within the specified TAD, it will be downloaded from a central 

server using the expensive vertical links of A-UAVs. 

4.4 Caching Policies to Handle Heterogeneity 

This chapter focuses on following caching related design questions: a) which content to be 

downloaded and cached in A-UAVs so that they can serve their own community directly, and the 

remote communities via traveling F-UAVs; b) which contents to be cached when the popularity 

and TAD of contents vary at different communities; c) which content to be transferred from the A-

UAVs to the F-UAVs; and, d) what inter-community trajectories to be followed by the F-UAVs.  

This chapter addresses these questions with pre-assigned and globally known 

heterogeneous content popularities, and content pre-placements at A-UAVs. Different pre-
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programmed F-UAV trajectories are characterized with a multitude of content placement 

strategies. After understanding such scenarios in this chapter, runtime and dynamic mechanisms 

has been developed and reported in future chapters.  

 

Figure 4.1.  Example of FD at 3 A-UAVs with 10 cached contents in the system 

4.4.1 Caching at Anchor UAVs (A-UAVs) 

A naïve fully duplicated (FD) [119] mechanism limits the number of accessible contents 

for all user communities to 𝐶:, the A-UAV cache size, due to the duplication of requested contents 

form the corresponding user communities (see Figure 4.1). This limitation can be addressed by 

storing a certain number of exclusive contents in all the A-UAVs and share those contents across 

the communities via the traveling F-UAVs. This Smart Exclusive Caching (SEC) mechanism can 

effectively increase the access of contents for all users across the entire system, thus improving 

the overall availability within a given TAD.  
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Figure 4.2.   Content Caching Policy in 3 A-UAVs with Cache Size 𝐶: = 10 for Homogeneous 

Content Popularity Sequence 

Suppose we consider a disaster/war-stricken area with homogeneous content popularity 

sequence across all the user- communities and an A-UAV is assigned to each community for 

content provisioning. According to the SEC mechanism, cache space of an A-UAV has two 

segments i.e., Segment-1 and Segment-2. Let the size of Segment-1 of A-UAV cache be 𝐶SH =

𝜆. 𝐶: and that of Segment-2 be 𝐶S5 = (1 − 𝜆). 𝐶:, where 𝜆 is a storage segmentation factor (SSF) 

that decides the size of Segment-1 of A-UAVs. Top 𝜆. 𝐶: popular contents are cached at Segment-

1 of A-UAVs. These contents are same across all A-UAVs whereas contents from Segment-2 are 

different. This results into 𝐶S5(#('& = 𝑁:. (1 − 𝜆). 𝐶: number of total Segment-2 contents stored 

across all 𝑁: number of A-UAVs, and these can be shared across all user communities via the 

mobile F-UAVs. These contents have popularities after the top 𝜆. 𝐶: popular Segment-1 contents 

in all the A-UAVs. For symmetry, all 𝑁:. (1 − 𝜆). 𝐶: Segment-2 contents are uniformly randomly 
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distributed across 𝑁: number of A-UAVs. Total number of contents in this content dissemination 

system is as follows:  

𝐶;2; = 𝜆. 𝐶: + 𝑁:. (1 − 𝜆). 𝐶:                                       (4.2)  

Figure 4.2 shows an example of this caching policy with 3 A-UAVs and storage 

segmentation factor 𝜆 = 0.7. Contents in Segment-1 are same across all three A-UAVs while those 

in Segment-2 part of the A-UAV storage are different. Total contents across all A-UAVs are {1 −

16} according to Eqn. 4.2. 

 

Figure 4.3.   Content Caching Policy in 3 A-UAVs with Cache Size 𝐶: = 10 for Heterogeneous 

Content Popularity Sequence 

4.4.2 Caching to Cater to Heterogeneous Popularity Sequences     

Caching policy described so far assumes that the contents have the same popularity 

sequence for the requests across all communities. In practice, requests can be heterogeneous in 

that the popularity sequence of requested contents from different communities can be different. 

For example, in case of a fire breakout, information about fire trucks and medical care are the most 
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popular contents for the areas in the vicinity of fire. But, for areas which is in the path of fire spread 

needs logistical support for relocation. In such heterogeneous popularity cases, previous caching 

policy may not be the best fit since most popular contents may not be the same for all communities.  

This limitation can be addressed by caching a community’s most popular contents in the 

Segment-1 of its local A-UAV. Figure 4.3 shows a scenario where there are three A-UAVs at their 

respective communities with different content popularity sequence. These A-UAVs have cached 

most popular contents according to their communities’ content popularity sequence. It can be 

observed that contents {5, 6} are cached in all the A-UAVs, contents {1, 2, 3} are cached in A-

UAV 1 and contents {4, 7} are cached in A-UAVs 1 and 2. Contents {1, 2, 3,4,7} are called 

exclusive contents of Segment-1 that are cached in one or some of the A-UAVs, but not in all of 

them, whereas contents {5, 6} are called non-exclusive contents of Segment-1 that are cached at all 

A-UAVs. Therefore, unlike SEC, the number of contents in Segment-1 across all A-UAVs may 

be more than 𝜆. 𝐶: i.e., 𝐶SH(#('& = 𝐶AJ + 𝐶J(#('& ≥ 𝜆. 𝐶:. Like SEC, contents in Segment-2 do not 

repeat across A-UAVs. If 𝐶AJ 	𝑎𝑛𝑑	𝐶J(#('& are the number of non-exclusive and total exclusive 

contents in Segment 1, then total number of contents in the system: 

𝐶;2; = 𝐶AJ + 𝐶J(#('& + 𝑁:. (1 − 𝜆). 𝐶: ≥ 𝜆. 𝐶: + 𝑁:. (1 − 𝜆). 𝐶:                (4.3) 

Validation of Eqn. 4.3 can be seen in Figs. 4.2 and 4.3. The stored contents across all A-

UAVs is {1 − 16} with SEC (i.e., Figure 4.2). In the heterogeneous case (i.e., Figure 4.3), the 

caches contents are {1 − 22}. The objective here is to choose a 𝜆, that strikes the right balance 

between the two segments and maximizes the overall content availability in the heterogeneous 

case.  

One limitation of popularity-based caching is related to the tolerable access delay (𝑇𝐴𝐷). 

The popularity-based caching does not consider content specific 𝑇𝐴𝐷. This shortcoming leads to 
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reduced availability for contents with both low 𝑇𝐴𝐷 and popularity. This is explained using the 

following example.  

Let us consider a content ′𝑥′ which has popularity higher than 𝜆. 𝐶: and another content ′𝑦′ 

with popularity lower than 𝜆. 𝐶:. According to popularity-based caching, content ′𝑥′ is cached in 

Segment-1 of an A-UAV, and content ′𝑦′ is cached in Segment-2 of one of the A-UAVs. Therefore, 

content ′𝑦′ is ferried by F-UAVs across all communities. Let the inter-community distances be 

such that an F-UAV ‘j’ reaches a community within 30	𝑠𝑒𝑐𝑜𝑛𝑑𝑠 of departure of the previous F-

UAV ‘j-1’. If the 𝑇𝐴𝐷 associated with ′𝑥′ is 100	𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and ′𝑦′ is 5	𝑠𝑒𝑐𝑜𝑛𝑑𝑠, a request for ′𝑦′ 

will rarely be served by the A-UAV/F-UAV content dissemination network. This will lead to ′𝑦′ 

being downloaded. This issue is addressed by a value-based caching strategy proposed in the next 

subsection.   

 

Figure 4.4. Example of VBC with low TAD content ‘15’ at Segment-1 of A-UAV 
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4.4.3 Value-based Caching to Handle Heterogeneous TAD 

All the policies discussed so far makes caching decision of a content based on its popularity 

at the community where it is requested. However, the promptness with which a content needs to 

be provisioned may not always be positively correlated with its popularity. For example, request 

for logistical support information can be more popular than the information about first responders 

in a post-disaster situation. However, the TAD for first responder information is expected to be 

shorter. To prioritize caching of such contents in Segment-1 of A-UAVs, this chapter devices a 

value-based caching policy where the value of a requested content is calculated from its popularity 

and its associated 𝑇𝐴𝐷. Value of a content ′𝑖′ can be expressed as: 

𝑉(𝑖) = 𝜅𝜐 × 3#(,)
@:E(,)

= 𝜅 × @:E:"0
3#(H)

× 3#(,)
@:E(,)

                                      (4.4) 

Here, 𝑝6(𝑖) is the popularity of the content as per Zipf Distribution, 𝑇𝐴𝐷(𝑖) is the tolerable access 

delay associated with the content request, 𝜅 ∈ [0,1] is a scalar weight which increases with 

decrease in popularity and ′𝜐′ is a normalization constant. For a given Zipf (popularity) parameter 

𝛼, the normalization constant is calculated from the minimum possible 𝑇𝐴𝐷 (𝑇𝐴𝐷4,%) and the 

maximum possible popularity, which is 𝑝6(1). The quantity 𝑉(𝑖) is bounded between [0, 1] and it 

increases with increase in 𝑝6(𝑖) and decrease in 𝑇𝐴𝐷(𝑖). This value-based caching policy 

increases the likelihood of contents requested with low 𝑇𝐴𝐷 to be cached in Segment-1 of the A-

UAVs, thus making them more readily available (see Figure 4.4). 

4.4.4 Caching at Ferrying UAVs (F-UAVs) 

The purpose of the F-UAVs is to ferry around 𝐶J(#('& + 𝑁:. (1 − 𝜆). 𝐶: number of contents 

stored across 𝑁:	number of A-UAVs (see Eqn. 4.3). Due to the limitation of per-F-UAV caching 

space (i.e.,	𝐶<), its caching policy should be determined based on its trajectories, the value of 𝜆, 

the Zipf popularity, and the 𝑇𝐴𝐷𝑠 associated with the contents to be cached.  
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F-UAV caching policy is explained in the pseudocode below. 

Algorithm 4.1. F-UAV Caching Algorithm with Value-based policy at A-UAV 

1. Input: Total A-UAVs in its trajectory, 𝑇𝐴𝐷, next A-UAV ′𝑖′, present A-UAV ′𝑖 − 1′  

2. Output: 𝐶< contents for F-UAV ′𝑗′ 

3. Initialize 𝐶: contents in each A-UAV based on value of contents 

4. while True: 

5.       if F-UAV leaving for next A-UAV ′𝑖′ then do 

6.             for 𝑘 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV ′𝑖′ cache 𝐶:,) do 

7.                   Check if 𝑘 in 𝐶< cache space of F-UAV ′𝑗′ 

8.                   if true then do  

9.                         Replace ′𝑘′ with highest value content from 𝐶:,LH  

                              not cached in F-UAV ′𝑗′ and A-UAV ′𝑖′ 

10.                   end if 

11.             end for    

12.       end if 

13.       Update next A-UAV ′𝑖′, present A-UAV ′𝑖 − 1′  

14. end while 

Consider a situation in which an F-UAV ‘j’ is approaching towards the A-UAV ‘i’. Let 𝑈, 

be the set of all exclusive contents in Segment-1 of all A-UAVs and all contents from Segment-2 

of all A-UAVs in the entire system except the ones stored in A-UAV ‘i’. To maximize content 

availability for the users in A-UAV i’s community, the F-UAV should carry 𝐶< 	top valued contents 

(refer Eqn. 4.4) from the set 𝑈, 	while approaching A-UAV i. The size of the set 𝑈, can be expressed 

as |𝑈,| = 𝐶J(#('& + (𝑁: − 1). (1 − 𝜆). 𝐶:. In scenarios when 𝐶< ≤ |𝑈,|, the F-UAV should carry 



 59 

the 𝐶< 	top popular contents as outlined above. Otherwise, the F-UAV should carry all |𝑈,| 

contents, leaving part of the F-UAV cache (i.e., 𝐶< − |𝑈,|) empty. This causes underutilization of 

F-UAV cache space.  

The next section discusses the deployment and trajectory planning methods for F-UAVs 

employed in this chapter to boost content availability for the requesting users.  

4.5 Deployment and Trajectory Planning of UAVs 

Ferrying UAVs travel across communities to share contents among the A-UAVs. In this 

setting, the trajectory of F-UAVs can greatly impact content availability to the requesting users. 

4.5.1 Trajectory Sequence and Cycle  

An F-UAV’s trajectory cycle is represented by the sequence of A-UAVs that it visits. The 

cycle time of an F-UAV trajectory is 𝑇+2+&- = 𝑁:= × (𝑇0#?-* + 𝑇(*'%;,(,#%), where 𝑁:= 	 is the 

number of A-UAVs in the F-UAV’s sequence, 𝑇0#?-* is the hover duration at each A-UAV, and 

𝑇(*'%;,(,#% is the transition time between two consecutive A-UAVs in the F-UAV’s sequence. 

𝑇(*'%;,(,#%	depends on the F-UAV flying speed, intercommunity distance, wind speed/directions, 

and other environmental factors. 𝑇0#?-* is the minimum duration necessary for completing data 

exchanged between UAVs.  

4.6 Content Dissemination Performance 

4.6.1 Content Availability  

Content availability is defined as the probability of finding a requested content from the 

UAV-aided caching paradigm within the specified Tolerable Access Delay (𝑇𝐴𝐷). F-UAV’s 

accessibility within a given 𝑇𝐴𝐷 while transitioning in round-robin manner across A-UAVs in its 

trajectory is expressed as: 
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𝑃<: = G

A'×(@()*+,D@:E)
A-×(@()*+,D@2,/01"2")0)	

				𝑓𝑜𝑟	𝑇𝐴𝐷 < kA-
A'
− 1l𝑇0#?-* +

A-
A'
𝑇(*'%;,(,#%
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            (4.5) 

It can be seen from the condition given in Eqn. 4.5 that when the interval between two visits by an 

F-UAV to an A-UAV is less than 𝑇𝐴𝐷, the contents cached in F-UAV are always accessible. 

However, when 𝑇𝐴𝐷 is less than the said interval, the contents in F-UAVs are partially accessible. 

Note that the physical accessibility to F-UAVs does not guarantee the access to a requested content 

since the F-UAVs can store only a limited number (i.e., 𝐶<) of contents. Let 𝑃< be the probability 

that the requested content can be found within a F-UAV. It can be expressed as: 
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                                       (4.6) 

where, 𝑉(𝑖) is value of the content (Eqn. 4.4); 𝐶:, 𝐶J and 𝐶 are cache size, exclusive contents in 

Segment 1 of each A-UAV and total contents respectively. Effective cache size of F-UAV is:  

𝐶J<< = 𝑚𝑖𝑛{𝐶< , (𝑁: − 1). (𝐶J + (1 − 𝜆). 𝐶:)}                                       (4.7) 

Now, 𝑃:, probability of finding a requested content in the local A-UAV of the request generating 

community, is expressed as: 
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∑ T(,)A×&-;(!CA)×&-
"<!

∑ T(,)&
"<!

=
∑ U× =#(")

.-@(")×
.-@:"0
=#(!)

A×&-;(!CA)×&-
"<!

∑ U× =#(")
.-@(")×

.-@:"0
=#(!)

&
"<!

                         (4.8) 

Combining Eqns. 4.5, 4.6 and 4.8, the overall availability is: 

 𝑃:?',& = 𝑃: + 𝑃<: × 𝑃<                                                      (4.9) 

To summarize, local contents from A-UAVs and contents from future visiting F-UAVs contribute 

towards the overall availability 𝑃:?',& within the specified 𝑇𝐴𝐷𝑠.  
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Note that all unavailable contents within specified 𝑇𝐴𝐷𝑠 will be downloaded by the A-

UAVs using their expensive vertical links such as a satellite Internet. Thus, availability indirectly 

indicates the content download cost in the system.   

4.6.2 Low Availability Period  

Consider the scenario in Figure 4.5 with two A-UAVs and one F-UAV. The users in a 

community can have access to the content in the F-UAV for a duration of 𝑇𝐴𝐷 + 𝑇0#?-*. Time 

taken for the F-UAV to come back to the same community before the users in the community will 

have access to its content again is: 2. 𝑇(*'%;,(,#% + 𝑇0#?-* − 𝑇𝐴𝐷. During this period content 

availability will be restricted from the local A-UAV.  

 

Figure 4.5.   (Top) Scenario with 𝑇𝐴𝐷 = 0; (Bottom) With non-zero 𝑇𝐴𝐷 

This duration is referred to as the low availability period, which can be generally expressed as: 

𝐿𝐴𝑃 = A-@2,/01"2")0D(A-LH)@D)*+,L@:E
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                                      (4.10) 

where 𝑁: and 𝑁< are the number of A-UAVs and F-UAVs in the system. Low availability period 

is an effect of long cycle duration, and do not necessarily indicate the actual content availability in 

the system.   

4.6.3 Content Access Delay 

Any request that is served by a local A-UAV or found within a visiting F-UAV experience 

zero access delay. The only scenario with a non-zero access delay would be the one in which the 
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requested content is available at an F-UAV, and it is currently not visiting the requesting 

community.  

The probability of that scenario 𝑃=:E can be expressed as: 

𝑃=:E =	R

A'×@:E
A-×(@()*+,D@.,/01"2)

											𝑓𝑜𝑟	𝑇𝐴𝐷 < @$4$5+
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                      (4.11) 

As per the second expression in Eqn. 4.11, if the 𝑇𝐴𝐷 is larger than the time it takes for the F-

UAV to reach the request-generating community, then content is delayed by the time taken by the 

F-UAV to reach the requesting community. Conversely, for lower 𝑇𝐴𝐷𝑠, the content is delayed 

just by the 𝑇𝐴𝐷 duration. Average delay incurred in those two cases are: 
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                                  (4.12) 

Using 𝑃=:E and 𝐷𝑒𝑙𝑎𝑦'?, access delay is calculated as follows:  

𝐴𝐷 = 𝑃=:E ×
∑ U× =#(")

.-@(")×
.-@:"0
=#(!)"<∀&'

∑ U× =#(")
.-@(")×

.-@:"0
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&
"<!

× 𝐷𝑒𝑙𝑎𝑦'?                              (4.13) 

Here, access delay is calculated for all content specific TADs. 

4.7 Experimental Setup 

For experimentation, specific modules were developed for implementing request 

generation, UAV caching, and F-UAV movement strategies presented in Sections 4.3, 4.4 and 4.5. 

Unless mentioned otherwise, default experimental parameters in Table 4.1 are used for all 

experimentations. Each of the data points in the presented results represent an average computed 

from simulation experiments with 10V content requests. 
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Table 4.1. Default Values for Model Parameters 

# Variables Default Value 

1 Total number of contents, 𝐶 2000 
2 Number of A-UAVs, 𝑁: 20 
3 Number of F-UAVs, 𝑁< 10 
4 Cache space in A-UAV, 𝐶: 100 
5 Cache space in F-UAV, 𝐶< 100 
6 Poisson request rate parameter, 𝜇 1 
7 Hover time of F-UAV, 𝑇>#?-* 20 seconds 
8 Transition time of F-UAV, 𝑇@*'%;,(,#% 10 seconds 
9 Tolerable Access Delay, 𝑇𝐴𝐷 240 seconds 
10 Zipf parameter (Popularity), 𝛼 0.7 
11 Ferrying UAV Trajectory Round-robin 

 

4.7.1 Heterogeneity in Content Popularity Sequence 

To emulate real-life heterogeneity, a swap-based mechanism is used. Two parameters, 

namely, a swap probability 𝜇 and a swap difference 𝛿 are used to create different popularity 

sequences from a given sequence. Swap probability 𝜇 is the probability with which the popularities 

of two contents (e.g., ‘x’ and ‘y’) within the original popularity sequence are swapped. The swap 

difference 𝛿 is used to determine which content (e.g., ‘y’) to swap for content ‘x’. The difference 

between the original sequence and the new sequence using the above method is determined using 

Smith-Waterman Distance [125]. To capture heterogeneity in content popularity sequence 

different communities are programmed with different popularity sequences obtained using the 

method stated above.  

4.7.2 Heterogeneity in Tolerable Access Delay (TAD) 

This chapter uses a binary request 𝑇𝐴𝐷s (i.e., low and high-𝑇𝐴𝐷) to incorporate 

heterogeneity in tolerable access delay. Experiments are conducted by broadly classifying the 
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contents into 5 popularity classes, such that Class-1 contains contents with highest popularity, and 

Class 5 contents are the least popular. At any given time, 𝛾	% of requests for contents from only 

one class have low 𝑇𝐴𝐷. Remaining requests for contents from the said class and all other classes 

have high 𝑇𝐴𝐷.  

4.8 Experimental Results and Analysis 

4.8.1 Impacts of Value-Based Caching 

The overall increase in content availability using value-based content caching and joint-

deployment of ferrying UAVs is shown in Figure 4.6. The performance improvement is compared 

against popularity-based caching policy at A-UAVs and round-robin trajectories of F-UAVs. 

Content availability is evaluated for varying cache size of the UAVs.  

 

Figure 4.6.   Improvement in maximum availability of contents by loading 

UAVs using value (𝑇𝐴𝐷+Popularity) of contents 
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It can be seen from Figure 4.6 that a maximum increase in availability of approximately 

12% can be achieved by using value-based caching policy at the A-UAVs while F-UAVs are 

following their respective round-robin trajectory. The benefits of value-based caching in scenarios 

with multi-dimensional demand heterogeneities are attributed to various factors including 

heterogeneity in popularity sequence, 𝑇𝐴𝐷 associated with the content requests, popularity of low 

𝑇𝐴𝐷 contents, and value of a content. The effects of these factors are depicted individually in the 

following sub-sections.  

 

Figure 4.7. Difference between two sequences with varying 𝜇 and 𝛿 

4.8.2 Effects of Heterogeneity in Content Popularity Sequence 

Different popularity sequences are generated using the parameters swap probability 𝜇 and 

swap difference 𝛿. 

Figure 4.7 shows the normalized Smith-Waterman distance between the sequences. 

Maximum difference between two sequences is recorded at 𝜇 = 0.5. The difference does not vary 
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substantially with Swap Difference 𝛿 for a particular value of 𝜇. However, it shows an increasing 

trend with increase in 𝛿 in the beginning, and then a reduction.  

 

Figure 4.8.   Increase in availability with respect to scenario without F-UAVs by varying 𝜇 and 𝛿 

Figure 4.8 shows the increase in availability while employing popularity-based caching for 

heterogeneous content sequence at communities. This is compared with a scenario without F-

UAVs. The increase in availability is shown for 𝛼 = 0.9 with varying swap probability and swap 

difference. 

The observations are as follows. First, the increase in availability for 𝜇 = 0 corresponds to 

the cases where the popularity sequences are the same in all communities (i.e., the homogeneous 

case). For such cases, the increase in content availability due to contents ferried by F-UAVs is 

approximately 7.5%. Second, the maximum increase in availability of about 9% is recorded for 
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𝜇 = 0.4 and 𝛿 = 50. This improvement is due to incorporating popularity-based caching at A-

UAVs to tackle heterogeneity in popularity sequence. This demonstrate that benefits of popularity-

based caching are higher for scenarios where content sequence is more heterogeneous.  

 

(a) 

 

(b) 

Figure 4.9. (a) Availability of Low TAD contents, (b) Availability of High TAD contents, (c) 
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Figure 4.9 (cont’d) 

 

(c) 
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computed value (see Section 4.4.3). However, if a content is highly popular, its value does not 

improve by a large margin. This can be seen in Figure 4.9a where availability of low 𝑇𝐴𝐷 contents 

doesn’t increase if they belong to Class 1. Second, availability of high 𝑇𝐴𝐷 contents reduce for all 

popularity classes and across all values of 𝛾, while employing value-based caching. This is due to 

the replacement of high 𝑇𝐴𝐷 contents by low 𝑇𝐴𝐷 (high value) contents at the A-UAVs. Figure 

4.9b shows this adverse effect where the maximum reduction in availability of high 𝑇𝐴𝐷 contents 

can be observed at Class 5. Third, average availability, while employing value-based caching 

policy, is best for middle range of content popularities. This can be seen in Figure 4.9c, where 

increase in average availability is maximum (i.e., approximately 4%) when low 𝑇𝐴𝐷 content 

requests are from Class 3, beyond which it tapers off. The physical meaning of this phenomenon 

is that if a very low popular content has low 𝑇𝐴𝐷, it is not beneficial to cache it in A-UAVs. This 

is because a very low popularity content is less likely to be requested. Finally, for higher 𝛾, the 

effect of value-based caching is comparatively severe since more contents from a class have low 

𝑇𝐴𝐷. These effects manifest differently when the cache space of UAVs is varied. 

Effects of scaling caching capacity of UAVs while employing value-based caching are 

discussed next.  

4.8.4 Impacts of UAV cache Size on Value-Based Caching 

To explore the extent of value-based caching toward increasing availability, cache space is 

varied. Parameters are set as follows; High 𝑇𝐴𝐷 = 240 seconds, Low 𝑇𝐴𝐷 = 5 seconds, 𝛾 = 0.95, 

and remaining parameters according to Table 4.1. 
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Figure 4.10.   Increase in Availability with value-based caching with respect to popularity-based 

caching for increasing cache space 

Figure 4.10 compares the impact of increasing cache size on content availability while 

employing value-based and popularity-based caching individually. The observations from the 

figures are as follows. First, for a given total number of contents viz, 2000, maximum increase in 

availability with value-based caching is recorded for UAV cache sizes in the range 900-1100. This 

increase in availability is approximately 12%. Beyond the cache size of 1100, availability of low 

𝑇𝐴𝐷 content reduces due to very low popular contents being cached at the A-UAVs. Second, the 

increase in overall availability is attributed to the increase in availability for low 𝑇𝐴𝐷 contents. 
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Third, availability for high 𝑇𝐴𝐷 contents reduce marginally. Due to increased value of low TAD 

contents, high TAD contents are replaced at A-UAVs and their availability reduces.  

Beyond the extents of value-based caching, content availability, can be also achieved by 

exploiting F-UAV trajectories as discussed below.  

4.9 Summary and Conclusion 

This chapter designs a UAV-aided content dissemination system to enable content 

availability for users in the absence of communication infrastructure in disaster scenarios. Two 

types of UAVs are used, namely, anchor UAVs and ferrying UAVs. Anchor UAVs provide 

contents to users in their respective communities at all times while ferrying UAVs provide contents 

intermittently by sharing those cached in the anchor UAVs. Popularity based caching policy has 

been introduced which takes the heterogeneity in content popularity sequence into consideration 

to cache content is the anchor UAVs. Value-based caching policy has been explored where a 

content is cached in a A-UAV when it is likely to be requested and its associated tolerable access 

delay is low, which signifies urgency of requirement. The developed caching policies, deal with 

demand heterogeneity by associating value to a content based on its popularity and tolerable access 

delay. Together the popularity-based and value-based caching policy improve content availability 

by approximately 12%. The next chapter on this topic will include incorporating adaptive 

algorithms to learn the caching policy and ferrying UAV trajectories on-the-fly in time-varying 

disaster regions. 
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Chapter 5: Multi-Armed Bandit Learning for Content Provisioning 

in Network of UAVs 

In disaster-hit regions, the obliteration of communication infrastructure leaves 

communities isolated, deprived of crucial information for survival and relief. This chapter 

introduces an innovative solution where a UAV-based content dissemination network is designed 

to operate autonomously of traditional communication systems. Addressing the inherent 

challenges such as limited UAV energy, storage and flight capabilities necessitates a sophisticated 

approach to content management, making UAVs a vital link in disseminating essential 

information. 

 

Figure 5.1.  Coordinated UAV system for content caching and distribution in environments  

without communication infrastructure 

Anchor UAV
Ferrying UAV
F-UAV Trajectory

Information sharing between 
A-UAV and F-UAV

Communication
Infrastructure

Destruction

Satellite Link

x

y

z

w

v

u

t

i

j



 73 

5.1 Motivation 

This chapter is shaped by the dire necessity for a resilient, UAV-assisted content 

distribution system capable of functioning in the absence of conventional communication 

networks. The challenge is amplified by the diverse and urgent information needs of isolated 

communities, coupled with UAV operational limitations. Traditional content distribution 

strategies often neglect the nuanced demand and spatial-temporal request heterogeneity. Hence, 

the research in this chapter designs an adaptive, decentralized caching strategy, employing a Top-

k Multi-Armed Bandit Learning model, to ensure the prioritized delivery of critical content to 

affected populations via on-the-fly learning of caching policies. 

5.2 Design Objectives 

The primary goal of the research conducted in this chapter is to develop a UAV-aided 

content caching and dissemination framework that can dynamically adapt to the unique demands 

of disaster-stricken communities. By employing a Top-k Multi-Armed Bandit Learning model, the 

system aims to optimize content caching decisions in real-time that takes into account the 

geographical and temporal variations in content popularity as well as the heterogeneous demands 

of the users. The objectives are multi-fold: 

a. This chapter designs a decentralized learning mechanism that enables UAVs to make 

informed caching decisions on-the-fly, therefore, maximizing the relevance and 

accessibility of content to stranded users. 

b. The designed method incorporates a multi-dimensional reward structure within the 

learning model that accounts for both local and global content popularity trends that 

facilitates an optimal caching strategy that improves overall content dissemination. 
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c. This chapter will explore the interactions between the dynamically learned caching 

policies, Quality of Service (QoS) expectations (specifically, tolerable access delay), and 

user demand patterns, aiming to fine-tune the learning model for enhanced performance. 

d. The designed framework has been rigorously tested and validate through simulation 

experiments and analytical modeling which ensures its effectiveness in a range of disaster 

scenarios, UAV configurations, and content popularity distributions. 

This research endeavors to bridge the gap in current UAV-based communication solutions 

by introducing an agile, adaptive caching system that responds to the immediate needs of disaster-

affected populations. This can potentially transform the landscape of emergency communication 

and information dissemination in the face of infrastructure collapse. 

5.3 Caching based on Content Pre-loading at Anchor UAVs 

This section discusses caching policies based on content pre-loading at A-UAVs that 

assumes pre-assigned, static, and globally known content popularities. After understanding the 

limitations of these caching policies, this chapter proposes a runtime, dynamic and adaptive Top-

k Multi-armed Bandit based caching mechanism, which is explained in a later section.  

5.3.1 Pre-loading Policies at Anchor UAVs (A-UAVs) 

The Fully Duplicated (FD) mechanism [91] is a naive approach that allows A-UAVs to 

download content from vertical links upon request by local users. However, the FD mechanism 

has limitations such as content duplication, high vertical link download costs, and suboptimal 

utilization of UAV cache space. Smart Exclusive Caching (SEC) [91] 

 overcomes the limitations of the FD mechanism by storing a set number of unique contents 

in all A-UAVs and sharing them among communities via F-UAVs. Assuming globally known 

homogeneous content popularity across all user communities, the SEC mechanism divides the 
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cache into two segments. Segment-1 contains the top 𝜆. 𝐶: popular contents cached in all A-UAVs, 

while Segment-2 contains unique contents (1 − 𝜆). 𝐶:, where 𝜆 is the Storage Segmentation 

Factor. Total contents in the system as per SEC is given as:   

𝐶;2; = 𝜆. 𝐶: + 𝑁:. (1 − 𝜆). 𝐶:                                                    (5.1) 

Popularity-Based Caching (PBC) [93] is employed when different communities have 

different content preferences. PBC divides the cache space of a A-UAV into two segments, 

considering the heterogeneous popularity sequence of the local community. Segment-1 caches the 

most popular contents, which can be exclusive to a A-UAV (𝐶J) or non-exclusive i.e., may be 

cached across multiple A-UAVs (𝐶AJ), while Segment-2 is the same as SEC. To be noted that total 

unique contents in the system can be denoted as 𝐶J(#('&, which leads to total replicated contents 

across the system to be represented as follows:  

𝐶*-3&,+'(-" = 𝐶AJ + 𝑁:. (1 − 𝜆). 𝐶:																																																(5.2) 

Therefore, by modifying Eqn. 5.1, total number of contents in the system can be expressed as:  

𝐶;2; = 𝐶AJ + 𝐶J(#('& + 𝑁:. (1 − 𝜆). 𝐶: ≥ 𝜆. 𝐶: + 𝑁:. (1 − 𝜆). 𝐶:              (5.3) 

Value-Based Caching (VBC) [93] further enhances the caching policy by storing top-

valued contents in Segment-1 of A-UAV, where value of contents comprises of their popularity 

and tolerable access delay. Value of a content ‘𝑖’ be calculated as:  

𝑉(𝑖) = 𝜅𝜐 × 3#(,)
@:E(,)

= 𝜅 × @:E:"0
3#(H)

× 3#(,)
@:E(,)

                                 (5.4) 

In this equation, 𝑝6(𝑖) represents the content’s popularity as per the Zipf distribution, 𝑇𝐴𝐷(𝑖) is 

the content’s tolerable access delay, 𝜅 is a scalar weight that increases as popularity decreases, and 

𝜐 is a normalization constant. The normalization constant is calculated for a given Zipf (popularity) 

parameter 𝛼 using the minimum possible 𝑇𝐴𝐷 (𝑇𝐴𝐷4,% ) and the maximum possible popularity, 

which is 𝑝6(1). The value of 𝑉(𝑖) is bounded between [0,1] and increases as 𝑝6(𝑖) increases and 
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𝑇𝐴𝐷(𝑖) decreases and can present a holistic quantifiable measure for caching decision. 

The caching policy for F-UAVs remains the same for all the discussed and forthcoming 

caching policies for A-UAVs [91], [93], [126].  An F-UAV ferries content from already visited A-

UAVs to future visiting A-UAVs in its trajectory. The caching policy of an A-UAV determines 

the utility of an F-UAV where every A-UAV should maintain sufficient contents in its cache space 

to optimize the F-UAV cache utilization. 

5.3.2 Limitations of Cache Pre-loading at A-UAVs 

The caching policies discussed in this section rely on pre-loading content into A-UAVs, 

which has certain limitations. This approach assumes a priori knowledge of the popularity 

distribution of all the content in the system, which can hinder practical feasibility during 

deployment. Local popularity estimation of requested content within individual A-UAVs can 

partially alleviate this issue, but it cannot adjust the crucial storage segmentation factor (𝜆) (see 

section 5.3.1) for maximizing availability across the entire system of A-UAVs and their 

communities. Collaborative global popularity estimation can be introduced, but it fails to capture 

demand heterogeneity across different A-UAV communities.   

The limitations listed above can be addressed by employing a Top-k Multi-armed Bandit 

(Top-k MAB) learning-based caching mechanism at the A-UAVs, which is explained in the 

following section. This paradigm is able to leverage the expected reward maximization attribute 

of MAB and intelligence sharing nature of proposed multi-dimensional reward structure for 

caching decision at the A-UAVs. 

5.4 Decentralized Caching with Multi-Armed Bandit 

Once a A-UAV is deployed into a community, its subsequent action is to decide which 

contents to download (via its vertical link) and cache such that content availability to the requesting 
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users can be maximized. This goal is achieved by employing a Top-k Multi-Armed Bandit learning 

agent in the A-UAV.  

5.4.1 Top-k Multi-Armed Bandit Learning  

Multi-Armed Bandit is a classic problem in reinforcement learning [127] and decision-

making. At each round 𝑡, an agent chooses an arm 𝐴( out of 𝑁 arms, denoted by 𝐴H, 𝐴5, . . . , 𝐴A, 

and observes a reward 𝑅(. Each arm 𝑖 has an unknown reward distribution with mean 𝜇, and 

variance 𝜎,5. The agent’s goal is to maximize the total expected reward 𝑅@ over 𝑇 rounds, where 

𝑇 is the total number of rounds (time horizon): 

𝑅@ = 𝑚𝑎𝑥	r𝐸[𝑅(]
@

(IH

																																																							(5.5) 

This chapter uses a variant of MAB called Top-k Multi-Armed Bandit [127], [128]. Here, 

the agent has to choose 𝑘 arms out of a larger set of 𝑁 arms, as opposed to choosing one arm in 

classical MAB, and receives a reward for each arm in the chosen set. The goal of the agent is to 

maximize the total cumulative reward 𝑅@ obtained over a finite time horizon 𝑇:  

𝑅@ = 𝑚𝑎𝑥	rr𝐸[𝑅,,(]
X

,IH

@

(IH

																																														(5.6) 

 

Figure 5.2. Top-k Multi-Armed Bandit Learning for Caching Policy at A-UAVs 
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5.4.2 Decentralized Caching using Top-k Multi-Armed Bandit 

In the scenario of UAV-caching, there is a Top-k MAB agent in each A-UAV. Here, 

choosing each content for caching corresponds to choosing an arm. The ‘k’ of Top-k MAB agent 

corresponds to the caching capacity of A-UAV, i.e., 𝑘 = 𝐶:. The agent’s aim is to select ‘𝐶:’ 

contents out of a larger set of ‘𝑁’ contents to be cached in an A-UAV such that content availability 

to the users can be maximized.  Here, the UAV-aided content dissemination system is the learning 

environment where the A-UAVs interact through their actions of choosing specific sets of contents 

to be cached. The feedback from the environment for the taken actions are in the form of 

rewards/penalties. Actions are rewarded when cached contents are requested by the users and are 

served to the users within the given tolerable access delay or penalized otherwise. The top 𝐶: 

contents that accumulate most reward from the corresponding community and other communities 

are chosen to be cached at a A-UAV. It should be noted that the Top-k MAB agents in the A-UAVs 

are provided with no a priori information about the content popularity at the corresponding user 

communities.  

A learning decision epoch for each Top-k MAB agent is set according to the F-UAVs 

accessibility at the corresponding community (i.e., an F-UAV’s visiting frequency). This is 

because the F-UAVs carries the content availability information from the communities in its 

trajectory that is leveraged for learning at the A-UAVs’ Top-k MAB agents using appropriately 

designed multi-dimensional rewards. The agent learns to cache contents via the multi-dimensional 

reward structure which has three parts: namely local, ferrying, and global reward. The first 

corresponds to the increase in availability at an A-UAV’s corresponding community i.e., increase 

in local availability (𝛿&). The second is related to the contents that are cached in an A-UAV, and 

are responsible for increase in availability at other communities i.e., ferried content availability 
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(𝛿.). A global reward is received when cached contents add to increase in average availability 

across all communities. This is called increase in global availability (𝛿/). The three types of 

rewards are given below: 

𝑅,Y = s 1,											𝑓𝑜𝑟	𝛿& > 0	
−1, 𝑓𝑜𝑟	𝛿& < 0		 																																																									(5.7) 

𝑅,< = s
1,												𝑓𝑜𝑟	𝛿. > 0
−1, 𝑓𝑜𝑟	𝛿. < 0																																																										(5.8) 

𝑅,Z = s
1,												𝑓𝑜𝑟	𝛿/ > 0	
−1, 𝑓𝑜𝑟	𝛿/ < 0 																																																									(5.9) 

In the above equations, 𝑅,Y, 𝑅,<, and 𝑅,Z  are rewards according to increase in availability for content 

‘𝑖’ cached in an A-UAV.  

Learning is achieved using a tabular method where a Q-table is maintained for all contents 

in the system. The value corresponding to each content is called a Q-value or action-value [127]. 

The agent updates the Q-value for a content at every learning epoch according to the multi-

dimensional rewards in Eqns. 5.7-5.9 from the interaction with the environment (UAV-aided 

content dissemination system) and learns the best actions (contents cached). The recursive 

expression which explains Q-value update for a content ‘𝑖’ is given as follows: 

𝑄(𝑖) ← 𝑄(𝑖) + 𝛼v𝑟(𝑖) − 𝑄(𝑖)w                                             (5.10) 

Here, 𝑄(𝑖) represents the Q-value of a content ‘𝑖’; 𝑟(𝑖) is the reward received by caching content 

‘𝑖’; 𝛼 is a hyper-parameter which controls the learning rate. The Q-values for all contents are 

initialized with zero to ensure no a priori information for a Top-k MAB agent. Also, it ensures 

equal importance to all contents for caching decisions. An epsilon-greedy (𝜖-greedy) exploration 

strategy is implemented. Such exploration strategy guarantees that every content gets to be cached 

in an A-UAV. As learning progresses, exploration decays and best contents with highest Q-values 
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are exploited with the aim of maximizing accumulated reward which improves the caching policy 

and thus increases content availability. 

The proposed algorithm enables Top-k MAB agents in A-UAVs to learn the caching policy, 

and the contents cached at A-UAVs emulate the cache pre-loading segmentation behavior 

described in Section 5.3.1. However, the caching policy and corresponding content availability 

may fluctuate due to less request for less popular content, leading to weak or unstable reward 

estimates. This results in Q-values that are highly sensitive to requests for less popular content and 

less sensitive to requests for popular content. Therefore, changes in Q-values of less popular 

content may lead to intermittent variations in caching, particularly in Segment-2 (refer Section 

5.3.1). Also, there can be vAXw combination of contents to be sampled by the Top-k MAB agent for 

caching. Due to this the reward estimation for each content occurs after large intervals, which leads 

to a weak estimate of reward distribution as 𝑁 increases. These oscillations can be controlled by 

empirically selecting 𝜖 and its decay rate. To reduce the dependence of caching policy on the 

choice of 𝜖, Upper Confidence Bound (UCB) strategy is used [127], [128]. The Top-k MAB agent 

maintains an upper confidence bound on the expected reward of each content, and selects the set 

of 𝐶: contents with highest UCB at each epoch. 

𝑈((𝑖) = 𝑄((𝑖) + y
𝛼[ log(𝑡)
𝑁((𝑖)

																																																							(5.11) 

Here, 𝑈((𝑖) is the UCB of content ‘𝑖’ at epoch ‘𝑡’; 𝑄((𝑖) is the updated Q-value at epoch ‘𝑡’; 𝛼[ is 

a hyperparameter that controls the degree of exploration; 𝑁((𝑖) is the number of time content ‘𝑖’ 

has been requested till epoch ‘𝑡’. The first term represents the reward estimate, and the second 

term depicts the uncertainty in reward estimate. UCB selects the content that has high potential for 

high reward but hasn’t been requested frequently. The promotes exploration without externally 
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inducing an exploration parameter such as 𝜖. For this chapter, 𝜖-greedy exploration strategy is 

applied according to the UCB values, as shown in Step 7-16 in Algorithm 5.1.  

The following pseudo code explains the caching policy at a A-UAV with a Top-k MAB agent.  

Algorithm 5.1. Caching policy at a A-UAV with Top-k MAB Learning  

1. Initialization: 

a. N: Total contents in the system 

b. 𝐶:: Caching capacity of an A-UAV 

c. 𝑄: Array of size 𝐶: initialized with 0’s (Q-table). 

d. 𝜖: Exploration rate 

e. 𝛼: Learning rate for Q-table update. 

f. 𝛼[: Degree of exploration (if UCB used) 

2. Load A-UAV’s cache with 𝐶: randomly chosen contents. 

3. while True: 

    \\ Check for learning epoch 

4.     if F-UAV is visiting A-UAV then do 

5.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶:) do 

6.             Get reward 𝑟(𝑖)  \\ according to Eqns. 5.7-5.9 

7.             Update 𝑄(𝑖)       \\ 𝑄(𝑖) ← 𝑄(𝑖) + 𝛼[𝑟(𝑖) − 𝑄(𝑖)] 

                                            \\ 𝑄(𝑖) ← 𝑈(𝑖) if UCB employed 

8.         end for 

9.         𝑣𝑎𝑙𝑢𝑒	 = 	𝒄𝒐𝒑𝒚(𝑄) \\ make a copy of Q-table 

        \\ Reload contents (Select arms) 

10.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶:) do 
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Algorithm 5.1. (cont’d) 

11.             Generate random number ‘𝑥’ 

12.             if 𝑥 < 𝜖 then do 

13.                 Load 1 randomly chosen content to A-UAV 

14.             else 

15.                 𝑐4') = 𝒂𝒓𝒈𝒎𝒂𝒙(𝑣𝑎𝑙𝑢𝑒) 

16.                 Load 𝑐4') to A-UAV 

17.                 Set 𝑣𝑎𝑙𝑢𝑒[𝑐4')] = −𝑖𝑛𝑓 

18.             end if 

19.         end for 

20.     end if 

21.     Check for 𝜖 decay condition. 

22.     if true then do 

23.         Update 𝜖 

24.     end if 

25. end while 

This Top-k MAB agent at a A-UAV learns a near optimal caching policy within a finite time 

horizon and approaches the best caching policy asymptotically. The cached contents can boost 

content availability at their respective communities as well as at other distant communities via F-

UAVs. 
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Table 5.1    Default Values for Model Parameters 

# Variables Default Value 
1 Total number of contents, 𝐶 1000 
2 Number of A-UAVs, 𝑁: 12 
3 Number of F-UAVs, 𝑁< 3 
4 Cache space in A-UAV, 𝐶: 100 
5 Cache space in F-UAV, 𝐶< 100 
6 Poisson request rate parameter, 𝜇 1 request/sec 
7 Hover time of F-UAV, 𝑇>#?-* 600 seconds 
8 Transition time of F-UAV, 

𝑇@*'%;,(,#% 

300 seconds 
9 Zipf parameter (Popularity), 𝛼 0.7 
10 Ferrying UAV Trajectory Round-robin 

 

5.5 Experiments and Results  

Experiments are performed to analyze the performance of the proposed Top-k MAB 

learning-based caching mechanism with a discrete event simulator. The simulator accomplishes 

content request generation while maintaining an intra-event interval according to exponential 

distribution and following a Zipf popularity distribution [126]. To perform the cache pre-loading, 

the mathematical expressions are included in the simulator. To capture heterogeneity in content 

popularity sequence at different communities, contents are swapped with pre-decided probability 

[93] and the difference between the sequences are determined using Smith-Waterman Distance 

[125]. The experimental parameters for the proposed Top-k MAB learning based caching and 

cache pre-loading policies are listed in Table 5.1. The performance evaluation of the proposed 

mechanism is accomplished via the following metrics. 

5.5.1 Performance Metrics 

Content Availability (𝑃'?',&): It is defined as the ratio between cache hits and generated 

requests within a time interval. Cache hits are the content provided to the users from the contents 
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cached in the UAV-aided caching system (without download). Therefore, content availability 

indirectly indicates the content download cost of a systems as well. 

Jaro-Winkler Similarity (𝐽𝑊𝑆): It is a similarity measure that is used to compute the 

similarity between two sequences [129]. It is computed by calculating the number of matches, 

number of transpositions requires within the matches and the similarity in prefix of both sequences. 

𝐽𝑊𝑆 is used to compute the similarity between the content sequence from the learnt caching policy 

and content sequence according to cache pre-loading.   

Access Delay (𝐴𝐷): Performance of Top-k MAB model is also evaluated based on the 

access delay which is the end-to-end delay between the generation of content request and its 

provisioning form the cached contents in the UAVs. This chapter reports the epoch-wise average 

access delay to show the improvement in caching policy as learning progresses.   

5.5.2 Effect of Exploration Strategies on Learnt Caching Policy 

In order to understand the viability of the proposed Top-k MAB learning-based caching 

policy in scenarios with demand heterogeneity, two type of content popularity sequence are used. 

Every consecutive community has a different popularity sequence. For 𝜖-greedy strategy, initial 

exploration is 𝜖 = 1 with decay rate of 0.0025 per epoch. The degree of exploration in UCB is set 

to 𝛼[ = 2. Figure 5.3a shows the convergence behavior of the learnt caching policy with a 

comparison of exploration strategies employed in the Top-k MAB model.   

The convergence behavior is shown in term of content availability from the learnt caching 

policy. The observations from Figure 5.3(a) are as follows. First, the figure shows that by 

employing Top-k MAB agent at every A-UAV, a near optimal caching policy can be learnt. The 

algorithm is able to leverages the multi-dimensional reward structure, as explained in Eqns. 5.7-

5.9, to achieve content availability close to the benchmark performance (see section 5.3.1). Second, 
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when the agent uses UCB exploration strategy, the content availability settles at a sub-optimal 

value. However, during the initial learning epochs the content availability increases promptly due 

to high upper confidence value of all contents, which avoids exploitation. This is due to low 

sampling of requests. As learning progresses, the sparse request for unpopular contents keeps the 

upper confidence value high which maintains consistent exploratory behavior. 

 

(a) 

 

(b) 

Figure 5.3. Comparison between exploration strategies in Top-k MAB and pre-loading using  

(a) Content Availability; (b) Access Delay 
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An algorithmically induced 𝜖 value in 𝜖-greedy strategy avoids this continuous uncertainty 

behavior due to 𝜖 decay. This can be seen from the content availability with 𝜖-greedy exploration 

strategy which is better than the performance with UCB. Finally, to maintain the initial surge in 

content availability and to limit the unbounded exploratory behavior, 𝜖-greedy exploration is 

applied on the UCB values of the content. It can be seen that such hybrid exploration strategy helps 

to boost the content availability closer to the benchmark performance by 5%. Similarly, Figure 

5.3(b) shows the convergence behavior of the Top-k MAB learning-based caching agent in terms 

of access delay. This is computed for a 𝑇𝐴𝐷 of 300 seconds and it is observed that as learning 

progresses, the access delay for requested contents reduce while the content availability increases 

simultaneously. This manifests the improvement in learnt caching policy over the learning epochs. 

The best reduction in access delay is observed when 𝜖-greedy exploration is applied on the UCB 

values of the content.  

 

Figure 5.4. Change in learnt caching policy of A-UAV with TAD 
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5.5.3 Impact of Tolerable Access Delay on Learning Performance 

To show the learning capability of the proposed Top-k MAB model, experiments are 

conducted with varying 𝑇𝐴𝐷s ranging from 300 to 1200 seconds. The content availability 

according to the learnt caching policy with varying 𝑇𝐴𝐷 is shown in Figure 5.4. The figure 

demonstrates the behavior of the proposed caching mechanism with respect to the benchmark 

performance, computed from the cache pre-loading policy discussed in Section 5.3.1. Following 

observations can be made from Figure 5.4. First, the learnt caching policy achieves performance 

closer to the benchmark for all values of 𝑇𝐴𝐷. Second, the best possible performance (i.e., the 

benchmark) changes with change in 𝑇𝐴𝐷. The Top-k MAB agents in the A-UAVs adapts to the 

user defined 𝑇𝐴𝐷. It can be observed in Figure 5.4 that the learning performance varies along with 

𝑇𝐴𝐷. In other words, the role of multi-dimensional reward structure of the MAB agent becomes 

more evident with higher 𝑇𝐴𝐷. Especially, the information related to the global availability i.e., 

𝛿. and 𝛿/ (refer Section 5.4.2), are derived from large count of content requests. This improves 

the estimated reward at A-UAVs thus impacting their caching decision.   

 

(a) 

Figure 5.5.  Jaro-Winkler similarity for (a) A-UAVs and (b) F-UAVs 
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Figure 5.5 (cont’d) 

 

(b) 

5.5.4 Cache Similarity of Learnt Sequence with Best Sequence 

The effect of learning on the cached content sequence is demonstrated in Figure 5.5. Figure 

5.5(a) plots Jaro-Winkler Similarity (𝐽𝑊𝑆) of cached content sequences for all 12 A-UAVs. The 

key observation are as follows. First, the 𝐽𝑊𝑆 between the best caching sequence from cache pre-

loading policy (see Section 5.3.1) and the cached content sequences learnt by the Top-k MAB 

agents at A-UAVs converge near 0.9, with a certain variance. Physically, this represents higher 

degree of similarity post convergence, where 1 indicates complete similarity and 0 implies no 

similarity. Second, the cached contents improve over epochs as learning progresses. Lower 𝐽𝑊𝑆 

values at initial epochs signifies that A-UAVs have no a priori content popularity information, 

local or global. As the MAB agents learn, over epochs of generated content requests, the cached 

contents in A-UAVs become more similar to the best caching sequence. Third, 𝐽𝑊𝑆 is an indirect 

representation of the storage segmentation factor (𝜆), which is used to decide the segment sizes 

according to cache pre-loading policies. A higher 𝐽𝑊𝑆 implies that, along with learning the 

caching policy, the Top-k MAB agents learn to emulate the said segmentation behavior. Finally, 
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the partial dissimilarity of the cached content sequence can be ascribed to the uncertainty 

associated with the Q-values of contents with low popularity. Also, this leads to an oscillatory 

convergence of 𝐽𝑊𝑆 for A-UAVs. This behavior manifests in the 𝐽𝑊𝑆 for F-UAVs as well, which 

is shown in Figure 5.5(b). Since, F-UAVs ferry contents that are requested less frequently, the low 

popularity of such contents leads to a comparatively sluggish improvement of its 𝐽𝑊𝑆 as compared 

to 𝐽𝑊𝑆 improvement of A-UAVs. 

5.6 Summary and Conclusion 

In this chapter, UAV-aided content dissemination system is designed which can learn the 

caching policy on-the-fly without a priori content popularity information. Two types of UAVs are 

introduced to revive content provisioning in a disaster/war-stricken scenario viz. anchor and 

ferrying UAVs. Cache-enabled anchor UAVs are stationed at each stranded community of users 

for uninterrupted content provisioning. Ferrying UAVs act as content transfer agents across anchor 

UAVs. The evolution of pre-loading-based caching policies are discussed which requires a priori 

information about content popularity. A decentralized Top-k Multi-Armed Bandit Learning-based 

caching policy is proposed to ameliorate the limitation of cache pre-loading. It learns the caching 

policy on-the-fly with the help of a multi-dimensional reward structure with encapsulates local and 

global availability information. The forthcoming chapters on this research will include the 

characterization of shared intelligence across UAVs, and UAV trajectories and deployment 

strategies which can build the foundation for developing distributed learning-model sharing 

approaches to improve content provisioning. 
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Chapter 6: Distributed Federated-Multi-Armed Bandit Learning for 

Content Management in Connected UAVs 

In the aftermath of disasters such as earthquakes, floods, or armed conflicts, survivors are 

often forced to relocate into regions with severely compromised or entirely destroyed 

communication infrastructure. In these situations, access to critical information, ranging from 

emergency services and rescue updates to weather conditions and medical logistics, can determine 

the success of relief efforts. The UAV-aided caching system introduced in this chapter builds 

directly on the learning mechanisms developed in Chapter 5 by extending them into a federated 

and distributed framework that is better suited to such fragmented and high-variability 

environments. 

As described earlier, this chapter presents a two-tiered content dissemination architecture. 

Communities of stranded users are each served by Anchor UAVs (A-UAVs), which maintain 

vertical connectivity to centralized content repositories. A set of Ferrying UAVs (F-UAVs), which 

operate without vertical links, travel between A-UAVs and propagate cached content throughout 

the network. The key advancement lies in the introduction of Federated Multi-Armed Bandit 

(FedMAB) Learning, a decentralized learning mechanism that enables UAVs to optimize their 

caching policies on-the-fly based on local user demands while periodically aggregating their 

learning to ensure system-wide coordination. 

6.1 Motivation 

The caching policies developed in Chapter 5 addressed on-the-fly learning within 

individual UAVs, but they remain limited in scope when faced with distributed user communities 

exhibiting strong geo-temporal variations in content demand. In such disconnected environments, 

local demand at one community may be vastly different from another, often driven by the 
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immediate vicinity to the disaster, accessibility to relief, or evolving user needs. Moreover, content 

requests are not uniform in urgency. Some may require immediate access (e.g., evacuation routes), 

while others can tolerate delay (e.g., food distribution updates). 

This chapter is motivated by the need to enhance learning agility, model generalization, 

and coordination across UAVs deployed in such multi-community environments. While a single 

UAV may adapt to its local context, the opportunity to share learning models across UAVs unlocks 

faster convergence, improved robustness, and reduced reliance on repeated exploration. Federated 

Multi-Armed Bandit (FedMAB) Learning makes this possible by allowing each UAV to 

independently learn caching decisions while periodically aggregating Q-values or model updates. 

This ensures each UAV not only reflects its local reality but benefits from insights gathered 

elsewhere. 

Unlike prior works that assume globally known popularity or rely on slow-to-adapt 

function approximators, this chapter introduces a collaborative and distributed learning framework 

that prioritizes responsiveness and scalability. In doing so, it aligns learning-based caching 

strategies with the practical realities of post-disaster operations, limited backhaul, varying QoS 

needs, and non-uniform content value across communities. 

6.2 Design Objective 

The primary objective of this chapter is to present a UAV-aided content caching and 

dissemination framework that can learn optimal caching policies on-the-fly using Federated Multi-

Armed Bandit (FedMAB) Learning. The system is designed to operate effectively in 

infrastructure-deficient disaster scenarios and adapt to geo-temporal variations in content demand. 
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a. This chapter proposes a UAV-based caching framework that allows each UAV to 

autonomously learn its content caching policy in real time by analyzing locally observed 

content request patterns. 

b. It introduces Multi-Armed Bandit learning algorithms that jointly consider local 

observations and shared insights from other UAVs to improve caching decisions that 

reflect both local and global content popularity. 

c. It presents a federated model aggregation technique that enables UAVs to periodically 

exchange their learned Q-tables, thereby enhancing the overall caching efficiency without 

exchanging raw data. 

d. It investigates the relationship between the learned caching strategies and Quality of 

Service (QoS) expectations by incorporating Tolerable Access Delay (TAD) as a key 

constraint in content relevance and urgency. 

e. It explores the trade-offs between content demand variability and the responsiveness of 

learned caching policies that offers insights into parameter tuning for optimal policy 

convergence. 

f. It validates the effectiveness of the proposed caching model through simulation-based 

experiments and analytical evaluations across diverse disaster configurations and content 

demand patterns. 

Through these objectives, the chapter seeks to demonstrate a scalable, adaptive, and 

decentralized caching strategy that aligns with the operational realities of disconnected, post-

disaster environments. It further aims to deliver a robust, distributed solution that enhances the 

agility, resilience, and efficiency of UAV-assisted content dissemination under extreme conditions 

where infrastructure-based communication is no longer viable. 
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Figure 6.1.  Coordinated UAV system for content caching and distribution in environments 

without communication infrastructure 

6.3 System Model 

6.3.1 UAV Hierarchy 

As shown in Figure 6.1, a two-tiered UAV-assisted content dissemination system is deployed. 

Each community is served by a dedicated A-UAV that uses a lateral wireless connection (i.e., WiFi 

etc.) to communicate with users in that community. To be noted that that the role of A-UAVs can 

be served by ground vehicles with similar mobility restrictions and communication equipment for 

both vertical and lateral links. The system in Figure 6.1 introduces a set of ferrying UAVs (F-

UAVs), which are mobile and only have lateral communication links such as Wi-Fi. The lateral 

links are used for transferring content between the A-UAVs and the users in the community that 

the F-UAV is currently visiting at. Unlike the A-UAVs, the F-UAVs do not possess vertical links. 

The F-UAVs act as content transfer agents across different user communities by selectively 
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transferring content across the A-UAVs. The ferrying UAVs also provide a means for isolated 

communities to access content, making the system more resilient and accessible for all users.  

When a user in a community requests a content, the serving local A-UAV first checks its local 

storage. If the content is not found, the A-UAV waits for a potential delivery by a passing F-UAV. 

This allows the content to be cached and transferred around the A-UAVs, thus enabling users in 

different communities to access content that was downloaded by other A-UAVs. If no F-UAV 

arrives within the specified tolerable access delay (TAD), only then the A-UAV downloads the 

content via its expensive vertical link. This way, the proposed two-tiered UAV-assisted content 

dissemination system is able to mitigate the limitations of the FD approach.  

6.3.2 Content Demand and Provisioning Model  

The generated content requests from the users in a community follow different popularity 

distributions and quality of services as outlined below. 

Content Popularity: Research has shown that the pattern of content requests from a population 

often follows a Zipf distribution [91], [119], [126], where the popularity of a content is proportional 

to the inverse of its rank and is a geometric multiple of the next popular content. Popularity of 

content ‘𝑖’ is given as: 

𝑝6(𝑖) =
7!"8

#

∑ 7!98
#

9∈&
                                                             (6.1) 

The Zipf parameter, 𝛼, determines the distribution's skewness, while the total number of contents 

in the pool is represented by the parameter C. It should be noted that while the request for a specific 

content from a user follows Zipf distribution, the inter-request time from a user follows the popular 

exponential distribution.  
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Tolerable Access Delay: For each requested content, the user specifies a Tolerable Access Delay 

(TAD) [123], [124], which serves as a quality-of-service parameter and represents the amount of 

time the user is willing to wait before the content is provisioned for download. 

Content Provisioning: Upon receiving a request from one of its community users, the relevant A-

UAV first searches its local storage for the content. If the content is not found, the A-UAV waits 

for a potential future delivery by a traveling F-UAV. If no F-UAV arrives with the requested 

content within the specified TAD, the A-UAV then proceeds to download it through its vertical 

link, which is usually expensive. In other words, the system attempts to provision the requested 

content without incurring the cost of downloading from the centralized server by waiting for the 

user-specified in order to access it from potentially passing F-UAVs. 

6.4 Limitations of Cache Pre-loading at A-UAVs 

All the caching policies described in this section relies on content pre-loading in the A-UAVs. 

Such preloading leads to the following limitations. Such preloading  majorly assumes prior 

knowledge of the underlying popularity distributions of the entire content population in the system. 

This assumption can seriously impede practical feasibility from a deployment standpoint. The 

impacts of the assumption can be partially mitigated by estimating local popularity of the contents 

requested within individual A-UAV’s communities. Such estimates, however, would fail to adjust 

the storage segmentation factor (λ), which is crucial for maximizing availability across the entire 

system of A-UAVs and users in their communities. Although global content popularities can be 

estimated by introducing collaboration among the local popularity estimation modules, such 

collaboration would fail to capture demand heterogeneity across the communities of different A-

UAVs.   
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The limitations listed above can be addressed by employing a Federated Multi-armed Bandit (f-

MAB) learning-based caching mechanism at the A-UAVs. This paradigm is able to leverage the 

expected reward maximization attribute of MAB and intelligence sharing nature of Federated 

Learning for caching decision at the A-UAVs. The f-MAB learning based caching policy is 

presented in the following section. 

6.5 Federated Multi-Armed Bandit Learning for Caching 

Once a A-UAV is deployed into a community, its subsequent action is to decide which contents to 

download (via its vertical link) and cache such that content availability to the requesting users can 

be maximized. This goal is achieved by employing a Top-k Multi-Armed Bandit learning agent in 

the A-UAV.  

6.5.1 Top-k Multi-Armed Bandit Learning  

Multi-Armed Bandit is a classic problem in reinforcement learning [130] and decision-making, 

where an agent is faced with a set of actions or “arms” to choose from, each associated with an 

unknown reward distribution. The objective of the agent is to maximize the total expected reward 

over a sequence of trials or rounds [127]. Formally, let there be 𝑁 arms, denoted by 𝐴H, 𝐴5, . . . , 𝐴A. 

Each arm 𝑖 has an unknown reward distribution with mean 𝜇, and variance 𝜎,5. At each round 𝑡, 

the agent chooses an arm 𝐴( and observes a reward 𝑅( drawn independently from the reward 

distribution of the chosen arm. The agent's goal is to maximize the total expected reward 𝑅@ over 

𝑇 rounds, where 𝑇 is the total number of rounds (time horizon): 

𝑅@ = 𝑚𝑎𝑥	r𝐸[𝑅(]
@

(IH

																																																													(6.2) 

This thesis uses a variant of MAB called Top-k Multi-Armed Bandit [128]. Here, the agent has to 

choose 𝑘 arms out of a larger set of 𝑁 arms, as opposed to choosing one arm in classical MAB, 
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and receives a reward for each arm in the chosen set. The goal of the agent is to maximize the total 

cumulative reward 𝑅@ obtained over a finite time horizon 𝑇:  

𝑅@ = 𝑚𝑎𝑥	rr𝐸[𝑅,,(]
X

,IH

@

(IH

																																																								(6.3) 

6.5.2 Decentralized Caching using Top-k Multi-Armed Bandit 

In the scenario of UAV-caching, there is a Top-k MAB agent in each A-UAV. Here, choosing each 

content for caching corresponds to choosing an arm. The ‘k’ of Top-k MAB agent corresponds to 

the caching capacity of A-UAV; i.e., 𝑘 = 𝐶:. The agent’s aim is to select ‘𝐶:’ contents out of a 

larger set of ‘𝑁’ contents to be cached in an A-UAV such that content availability to the users can 

be maximized. Here, the UAV-aided content dissemination system is the learning environment 

where the A-UAVs interact through their actions of choosing specific sets of contents to be cached, 

as shown in Figure 6.2. The feedback from the environment for the taken actions are in the form 

of rewards/penalties. Actions are rewarded when cached contents are requested by the users and 

are served to the users within the given tolerable access delay. Otherwise, the actions are penalized. 

The top 𝐶: contents that accumulate most reward from the corresponding community and other 

communities are chosen to be cached at an A-UAV. It should be noted that the Top-k MAB agents 

in the A-UAVs are provided with no a priori information about the content popularity at the 

corresponding user communities.  
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Figure 6.2.    Top-k Multi-Armed Bandit Learning for Caching Policy at A-UAVs 

A learning decision epoch for each Top-k MAB agent is set according to the F-UAVs 

accessibility at the corresponding community (i.e., an F-UAV’s visiting frequency). This is 

because the F-UAVs carries the content availability information from the communities in its 

trajectory. Such content availability information is leveraged for learning at the A-UAVs’ Top-k 

MAB agents using appropriately designed rewards. The agent learns to cache contents via a multi-

dimensional numerical reward structure which has three parts: namely local, ferrying, and global 

reward. The first corresponds to the increase in availability at an A-UAV’s corresponding 

community i.e., increase in local availability (𝛿&). The second is related to the contents that are 

cached in an A-UAV, and are responsible for increase in availability at other communities i.e., 

ferried content availability (𝛿.). A global reward is received when cached contents add to increase 

in average availability across all communities. This is called increase in global availability (𝛿/). 

The three types of rewards are given below: 

𝑅,Y = s 1,											𝑓𝑜𝑟	𝛿& > 0	
−1, 𝑓𝑜𝑟	𝛿& < 0		 																																			(6.4) 
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𝑅,Z = s
1,												𝑓𝑜𝑟	𝛿/ > 0	
−1, 𝑓𝑜𝑟	𝛿/ < 0 																																			(6.6) 

In the above equations, 𝑅,Y, 𝑅,<, and 𝑅,Z  are rewards according to increase in availability for content 

‘𝑖’ cached in an A-UAV.  

 Using the aforementioned Top-k MAB model, a A-UAV agent learns the caching policy 

that can serve the user requests which increases content availability across the communities. 

Learning is achieved using a tabular method where a Q-table is maintained for each action i.e., 

each content to be cached in an A-UAV. The value corresponding to each content is called a Q-

value or action-value [127], [130]. The agent updates the Q-value for a content at every learning 

epoch according to the rewards in Eqns. 7-9 from the interaction with the environment (UAV-

aided content dissemination system) and learns the best actions (contents cached). The expression 

which explains Q-value update for a content ‘𝑖’ is given as follows: 

𝑄(𝑖) ← 𝑄(𝑖) + 𝛼[𝑟(𝑖) − 𝑄(𝑖)]                                           (6.7) 

Here, 𝑄(𝑖) represents the Q-value of a content ‘𝑖’; 𝑟(𝑖) is the reward received by caching content 

‘𝑖’; 𝛼 is a hyper-parameter which controls the learning rate. The Q-values for all contents are 

initialized with zero to ensure no a priori information for a Top-k MAB agent. Also, it ensures 

equal importance to all contents for caching decisions. An epsilon-greedy (𝜖-greedy) exploration 

strategy is implemented. Such exploration strategy guarantees that every content gets to be cached 

in an A-UAV. As learning progresses, exploration decays and best contents with highest Q-values 

are exploited with the aim of maximizing accumulated reward which increases content availability. 

Based on Algorithm 6.1, which captures the concept discussed thus far, the Top-k MAB agents 

in the A-UAVs learn the caching policy. After learning converges, the contents cached at A-UAVs 

emulate the cache pre-loading segmentation behavior. However, the caching policy and the 

corresponding average content availability remains oscillatory due to the low request rates for the 



 100 

less popular contents. Due to low sampling (request generation) of less popular contents, their 

reward estimates are weak (or unstable). This means that the Q-value of highly popular contents 

are less sensitive to content requests, whereas the Q-values for less popular contents are very 

sensitive to requests. In other words, when a request for a popular content is generated and served 

to the requesting user, the updated Q-value of that content doesn’t change drastically. However, 

when an unpopular content is requested and served its Q-value changes abruptly. A sudden 

increase or decrease in Q-value of less popular contents may result in its addition to or removal 

from the cache of a A-UAV. This leads to intermittent variations in caching of some contents, 

which corresponds mostly to cached contents in Segment-2, as mentioned in cache pre-loading 

policies. Such oscillation depends on and can be controlled by the choice of 𝜖 and its decay rate.  

The following pseudo code explains the caching policy at a A-UAV with a Top-k MAB agent.  

Algorithm 6.1. Caching policy at a A-UAV with Top-k MAB Learning  

1. Initialization: 

a. N: Total contents in the system 

b. 𝐶:: Caching capacity of an A-UAV 

c. 𝑄: Array of size 𝐶: initialized with 0’s (Q-table). 

d. 𝜖: Exploration rate 

e. 𝛼: Learning rate for Q-table update. 

2. Load A-UAV’s cache with 𝐶: randomly chosen contents. 

3. while True: 

4.     if F-UAV is visiting A-UAV then do 

\\ Check if F-UAV visits A-UAV i.e., for learning epoch 

5.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶:) do 
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Algorithm 6.1. (cont’d) 

    \\ Loop through every content in A-UAV 

6.             Get reward 𝑟(𝑖)  \\ According to Eqns. 7-9 

7.             Update 𝑄(𝑖)       \\ 𝑄(𝑖) ← 𝑄(𝑖) + 𝛼[𝑟(𝑖) − 𝑄(𝑖)] 

\\ 𝑄(𝑖) ← 𝑈(𝑖) if UCB employed 

8.         end for 

9.         𝑣𝑎𝑙𝑢𝑒	 = 	𝒄𝒐𝒑𝒚(𝑄) \\ make a copy of Q-table 

10.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶:) do 

         \\ Reload contents (Select arms) 

11.             Generate random number ‘𝑥’ 

\\ For 𝜖-Greedy action selection strategy 

12.             if 𝑥 < 𝜖 then do 

13.                 Load 1 randomly chosen content to A-UAV 

14.             else 

15.                 𝑐4') = 𝒂𝒓𝒈𝒎𝒂𝒙(𝑣𝑎𝑙𝑢𝑒) 

16.                 Load 𝑐4') to A-UAV 

17.             Set 𝑣𝑎𝑙𝑢𝑒[𝑐&#'"-"] = −𝑖𝑛𝑓     

\\ To avoid redundant reloading of same content 

18.             end if 

19.         end for 

20.     end if 

21.     Check for 𝜖 decay condition. 

22.     if true then do 
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Algorithm 6.1. (cont’d) 

23.         Update 𝜖  

\\ 𝜖 = 𝜖 × 𝑑𝑒𝑐𝑎𝑦\ where,  𝑑𝑒𝑐𝑎𝑦\ = 0.99 

24.     end if 

25. end while 

To reduce the dependence of caching policy on the choice of 𝜖, Upper Confidence Bound 

(UCB) strategy is used [127]. The Top-k MAB agent maintains an upper confidence bound on the 

expected reward of each content, and selects the set of 𝐶: contents with highest UCB at each epoch. 

𝑈((𝑖) = 𝑄((𝑖) + y
𝛼[ log(𝑡)
𝑁((𝑖)

																																																								(6.8) 

Here, 𝑈((𝑖) is the UCB of content ‘𝑖’ at epoch ‘𝑡’; 𝑄((𝑖) is the updated Q-value at epoch ‘𝑡’; 𝛼[ is 

a hyperparameter that controls the degree of exploration; 𝑁((𝑖) is the number of time content ‘𝑖’ 

has been requested till epoch ‘𝑡’. The first term represents the reward estimate, and the second 

term depicts the uncertainty in reward estimate. UCB selects the content that has high potential for 

high reward but hasn’t been requested frequently. This promotes exploration without externally 

inducing an exploration parameter such as 𝜖. For this chapter, 𝜖-greedy exploration strategy is 

applied according to the UCB values, as shown in Step 7-16 in Algorithm 6.1. 

This Top-k MAB agent at a A-UAV learns a near optimal caching policy within a finite time 

horizon and approaches the best caching policy asymptotically. However, the learning method for 

caching encounters the following limitations. First, since the global content availability 

information is ferried by F-UAVs, a large disaster area with multiple communities makes the 

learning sluggish. Second, communities with a smaller number of users will results in reduced 

content requests received by the local A-UAV. In such scenarios the requests for less popular 



 103 

contents are even less due to heavily skewed content popularity at communities that follows a Zipf 

distribution. This leads to weaker estimate of reward distribution and sensitive (unstable) Q-values 

for less popular contents, thus making the caching policy very sensitive to unpopular content 

requests. Finally, there can be vAXw combination of contents to be sampled by the Top-k MAB agent 

for caching. Due to this the reward estimation for each content occurs after large intervals, which 

leads to a weak estimate of reward distribution as 𝑁 increases.  

These limitations can be alleviated by using a Federated Multi-Armed Bandit Learning for caching 

policy that aggregates Top-k MAB models from all the A-UAVs. The mechanism is explained 

below.    

6.5.3 A Brief on Federated Aggregation 

Federated learning (FL) [131], [132], [133] is a distributed machine learning technique that allows 

multiple devices/servers to collaboratively train a model without actually sharing their local data 

with a central server/arbitrator. In this approach, data remains on individual devices/servers, and 

only model updates are exchanged between them.  

Some of the popular federated learning techniques include federated aggregation (also called 

weighted aggregation) [131], [132], secure aggregation [133], and differential privacy [132] 

aggregation. In federated aggregation and weighted aggregation, each device’s model update is 

multiplied by a weight which reflects the importance or contribution of a device towards the final 

model. These models are then combined by taking a weighted average, which is called an 

aggregated model. For secure aggregation, the model parameters of a device are encrypted before 

sending them to another device for aggregation. In differential privacy, random noise is added to 

model updates before sending them to another device, in order to preserve privacy of individual 

devices. Such noisy update of models is done using Laplace, Gaussian, or exponential mechanisms 
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[132]. Overall, federated learning enables improved global model training, decentralized training, 

privacy, security, and scalability.  

For the application in this thesis, improved global training and scalability attributes of FL is 

focused on. Federated learning is achieved using the federated or weighted aggregation technique 

to combine model updates that reflects a collective knowledge of all devices in the system. 

Federated aggregation process typically involves three main steps: 

Initialization: Let us assume, ‘𝑚’ devices in the system and each device ‘𝑖’ is initialized with a 

model represented by a vector of parameters denoted by ‘𝑤,’.  

Local training: Each device/server ‘𝑖’ trains the model locally using its own local data and updates 

‘𝑤,’. 

Model aggregation: The aggregation is done at a central server which is chosen a priori based on 

the idea of a central arbitrator or a group leader. This central server contains the weight ‘𝑊,’ of 

each device based on its importance or intended contribution towards the aggregated model. One 

common approach to assign weight to a device is by using the number of data samples ‘𝑛,’ 

available at each device ‘𝑖’. This is shown below: 

𝑊, =
%"

∑ %"∀"
                                                         (6.9) 

Another approach is to use some measure of a device’s performance, like accuracy ‘𝑎𝑐𝑐,’ of the 

device’s local model, to assign weight to a device. 

𝑊, =
'++"

∑ '++"∀"
                                                       (6.10) 

In general, the choice of weights depends on the specific application and the aim of the federated 

learning system. The locally trained models are sent to the central server and aggregated to create 

a new, improved model via weighted aggregation, as shown in the expression below: 
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∑ ]".$"
:
"<!
∑ ]"
:
"<!

                                                 (6.11) 

where ‘𝑤'//*-/'(-"’ is the aggregated model which improves the desired performance by giving 

more weight to better performing individual models and less weight to adversely performing 

models.  

One advantage of federated learning is that it reduces the need to transfer large amounts of data 

to a central server/arbitrator for processing. This can be particularly useful in situations where the 

data is large, and network connectivity is limited or expensive. Another advantage is that Federated 

learning also enables real-time updates of models, making it possible to quickly adapt to 

changes/anomalies in the data or environment. The application in this chapter leverages these 

advantages of Federated Learning.  

 

Figure 6.3. Federated Multi-Armed Bandit Learning for Caching Policy at Anchor UAVs 
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6.5.4 Distributed Caching with Federated Multi-Armed Bandit 

For UAV-caching scenario, each device in the classical definition of Federated Learning is 

analogous to a A-UAV. The local data, based on which each UAV’s Top-k MAB model is updated, 

corresponds to the information about the cached contents, cache hits, and content availability. To 

be noted that, cache hits comprise of the number of times a content cached in a A-UAV is requested 

and served within the given tolerable access delay (TAD). The model, in this case, refers to the Q-

table of the Top-k MAB agent of A-UAV. The role of central server for model aggregation is 

played by the mobile F-UAVs. F-UAVs are chosen because of their ability to access model 

parameters (i.e., Q-tables) of all the A-UAVs in their respective trajectories. The aggregated model 

at an F-UAV is sent to the A-UAV in its vicinity using the lateral link with an objective of 

improving the Top-k MAB model developed at the A-UAV. The aim of this updated Top-k MAB 

model is to help a A-UAV to decide its respective contents to be cached based on the top ‘𝐶:’ Q-

values. Since this updated caching method possesses the model sharing attribute of Federated 

Learning and expected reward maximization attribute of MAB, this is called as Federated Multi-

Armed Bandit Model (f-MAB).  

According to the first step in standard learning paradigm of Federated Learning, the Q-table is 

initialized at each A-UAV. The learning epoch is set based on the F-UAV visiting frequency. 

Similar to the Q-value update procedure from Top-k MAB, Q-values of individual Top-k MAB 

agents of the A-UAVs update at each learning epoch. The Q-tables are updated following the 

recursive equation for reward estimate of MAB, as shown in Eqn. 6.7. These Q-values captures 

the respective communities’ content request pattern and the respective A-UAVs’ caching 

decisions. This is called personal experience of Top-k MAB model of a A-UAV (refer to Figure 

6.3). This process is synonymous with the second step i.e., local training stage in a standard 
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Federated Learning paradigm. After gaining personal experience for an epoch duration, the model 

at a A-UAV can improve using models of its adjacent A-UAVs via the F-UAVs. The model 

aggregation operation in f-MAB also occurs according to the frequency of F-UAV visits near a A-

UAV in its trajectory. To be noted that quality of the aggregated model depends on the freshness 

of information (i.e., Q-tables) ferried by an F-UAV. Therefore, with increase in the number of F-

UAVs in UAV-aided caching system the quality of aggregated model improves.  

Model aggregation in case of regression/classification based model such as neural networks 

involve aggregation of model parameters such as coefficients/weights [131]. For f-MAB, model 

aggregation involves aggregation of Q-values. As explained in the previous sub-section, every 

device has a weight associated with it which is related to its importance during aggregation. 

Similarly, in the case of UAV-caching using f-MAB, the weight for each A-UAV’s model, when 

the F-UAV is visiting A-UAV ‘𝑥’, is given by the following expression. 

𝑊),2 =
HL_Y( F̀|| 4̀)

∑ (HL_Y( F̀||`5)):
5<!

                                                    (6.12) 

Here, ‘𝑊),2’ represents the weight associated with A-UAV 𝑦’s model when the F-UAV is at A-

UAV 𝑥. The parameter ‘𝑚’ is the total number of A-UAVs in the system. 𝑃) and 𝑃2 are content 

popularity distributions estimated at the A-UAVs 𝑥 and 𝑦, respectively. 𝐾𝐿(𝑃)||𝑃2) is the 

Kullback-Leibler divergence or relative entropy [134] which measures the difference between the 

distributions. Using these weights from Eqn. 6.12, the aggregated model is computed using the 

following expression. 

𝑄)
'//(𝑖) = ∑ 𝑊),2 . 𝑄2(𝑖)4

2IH =
∑ 7HL_Yb F̀|| 4̀c8.d4(,):
4<!

∑ (HL_Y( F̀||`5)):
5<!

                          (6.13) 

In Eqn. 6.13, 𝑄)
'//(𝑖) refers to the aggregated Q-value of content ‘𝑖’ at A-UAV ‘𝑥’. The physical 

significance of using KL divergence to compute weight or importance of a A-UAV’s model is as 
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follows. The term “1 − 𝐾𝐿v𝑃)||𝑃2w” represents how similar the content popularity distributions 

are at communities near A-UAV ‘𝑥’ and ‘𝑦’. Therefore, if estimated content popularity distribution 

of A-UAV ‘𝑦’ is similar to that of A-UAV ‘𝑥’ the weight associated with A-UAV 𝑦’s model is 

more and vice versa.  

After the aggregation of Q-tables at the visiting F-UAV, the aggregated Q-table ‘𝑄'//’ replaces 

the existing Q-table at a A-UAV. This is shown in Figure 6.1 where F-UAV 𝑖 is visiting A-UAV 

𝑥, therefore it has access to the Q-table of A-UAV 𝑥 and model aggregation is done at F-UAV 𝑖. 

Whereas F-UAV 𝑗 is transiting and has not reached the next A-UAV in its trajectory, hence no 

model aggregation takes place at F-UAV 𝑗.  

These aggregated Q-tables improve the estimated reward associated with each content. The 

number of requests generated at a community during a learning epoch duration may not be 

sufficient for a better reward estimate at its respective A-UAV. Due to this, in the absence of model 

aggregation, the A-UAVs have weaker estimate of the reward distribution. Through Q-table 

aggregation, the estimated rewards are improved without physically getting content requests 

information across all the A-UAVs.  

However, Q-table aggregation loses the context of local popularity when there exists demand 

heterogeneity across different communities. This problem is analogous to personalization-

generalization problem in Federated Learning [131], [132]. A A-UAV’s Q-table updated with 

personal experiences corresponds to personalized (local) model and the aggregated Q-table 

represents the generalized (global) model. This chapter uses weighted averaging technique to 

preserve the local popularity context along with the improvement in reward estimate. This is given 

as: 

𝑄)
[3"(𝑖) = 𝑤H. 𝑄)(𝑖) + 𝑤5𝑄)

'//(𝑖)                                       (6.14) 
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This is equivalent to 

𝑄)
[3"(𝑖) = 𝑤H. 𝑄)(𝑖) +

-CG82

e1
. v1 − 𝑄)(𝑖)w. 𝑄)

'//(𝑖)                           (6.15) 

In equations 6.14 and 6.15, ‘𝑡’ is the epoch number. The weights 𝑤H and 𝑤5 decide the contribution 

of the local and global (aggregated) models towards the updated model ‘𝑄)
[3"’. From equations 

6.14 and 6.15, 𝑤5 can be expressed as follows: 

𝑤5 =
-CG82

e1
. v1 − 𝑄)(𝑖)w                                                  (6.16) 

Here, 𝛽" and 𝛽; represents the weight decay factor and scaling factor. The parameters ensures that 

the contribution of global (aggregated) model reduces as learning progresses. This idea is backed 

by the assumption that, as learning progresses, with the help of model aggregation the individual 

local models will be reflect the true value of contents. After this the requirement for model 

aggregation may not be necessary to improve reward estimate. Also, the expression in Eqn. 6.16 

has the term “v1 − 𝑄)(𝑖)w”, which is a representation of regret [127]. This ensures that the updated 

f-MAB model can be better than the existing Top-k MAB model while maintaining the Q-value 

within the true value of a content.  

For the simulation experiments, 𝑤H is set empirically to 0.99. The motivation behind choosing 

such a high value for 𝑤H is that the local content popularity at a community does not vary with 

time. To be noted that the choice of the weight 𝑤H in Eqn. 6.14 and 6.15 is essential, especially in 

scenarios with time-varying content popularity. In such scenarios, the content popularity estimates 

such as 𝑃), 𝑃2 (along with their Q-values) change with time. To determine the weight 𝑤H in such 

cases, the following expression can be used: 

𝑤H = 1 −
𝐽𝑆𝐷v𝑃)( , 𝑃)(

Hw
𝑙𝑛 2 ⇒ 𝑤H = 1 −

�12 k𝐾𝐿(𝑃)
(||𝑀) + 𝐾𝐿v𝑃)(

H||𝑀wl�		
𝑙𝑛 2 															(6.17) 
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Here, 𝐽𝑆𝐷v𝑃)( , 𝑃)(
Hw is the Jensen-Shannon Divergence [134] which shows dissimilarity between 

𝑃)( and 𝑃)(
H. 𝑃)( and 𝑃)(

H are content popularity distributions at time 𝑡 and 𝑡f. 𝑀 is the average 

distribution calculated as 𝑀 = v𝑃)( + 𝑃)(
Hw/2. 𝐾𝐿(𝑃)||𝑀) is the Kullback-Leibler divergence or 

relative entropy [134] which measures the difference between an individual distribution (𝑃)( or 

𝑃)(
H) and the average distribution 𝑀. The weight 𝑤H will be high if the content popularity 

distribution doesn’t experience substantial change within time 𝑡 to 𝑡f and vice versa. This weight 

𝑤H determines the importance of the local model in case of time-varying local popularity and the 

dependance of updated Q-table 𝑄)
[3" on it.  

Eqn. 6.15 can be rewritten by substituting 𝑤H and  𝑄)
'// as: 

𝑄)
[3"(𝑖) = �1 −

g_Yb F̀
2||hcD_Y7 F̀

2H||h8i		

5.&% 5
� . 𝑄)(𝑖) +

-CG82

e1
. v1 − 𝑄)(𝑖)w.

∑ 7HL_Yb F̀|| 4̀c8.d4(,):
4<!

∑ (HL_Y( F̀||`5)):
5<!

 

(6.18) 

The hyperparameters 𝛽" and 𝛽; can be explored empirically to ensure that caching policy at a A-

UAV doesn’t lose the local context of content popularity, especially when there exists 

heterogeneity in content popularity across communities.  

The personalization-generalization problem handling in f-MAB based caching is shown in 

Figure 6.3 where model aggregation is done at F-UAV and the model at A-UAV ‘2’ is updated 

using a weighted average of personal and aggregated model. Algorithmically, the implementation 

of f-MAB based caching policy at A-UAV is similar to Top-k MAB based caching except for line 

7 in Algorithm 6.1. The Q-table update uses Eqn. 6.18 along with Eqn. 6.7 to incorporate Federated 

Learning along with the concepts of Top-k Multi-Armed Bandit. The new Q-table is used for 

caching decision, where top 𝐶: contents with highest Q values are cached at an A-UAV. Such 
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contents can boost content availability at their respective communities as well as at other distant 

communities via F-UAVs.  

Table 6.1. Default Values for Model Parameters 

# Variables Default Value 

1 Total number of contents, 𝐶 1000 

2 Number of A-UAVs, 𝑁: 12 

3 Number of F-UAVs, 𝑁< 3 

4 Cache space in A-UAV, 𝐶: 200 

5 Cache space in F-UAV, 𝐶< 200 

6 Poisson request rate parameter, 𝜇 0.5 request/sec 

7 Hover time of F-UAV, 𝑇>#?-* 600 seconds 

8 Transition time of F-UAV, 𝑇@*'%;,(,#% 300 seconds 

9 Zipf parameter (Popularity), 𝛼 0.4 

10 Ferrying UAV Trajectory Round-robin 

 

6.6 Experiments and Results  

 A discrete event simulator was used for experimentally evaluating the performance of the 

proposed f-MAB and Top-k MAB learning-based caching mechanisms. Content requests are 

generated using an exponential distribution for the inter-request intervals, and a Zipf distribution 

for the content popularity control (refer to Eqn. 6.1). Cache pre-loading is done using the 
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mathematical expressions, to evaluate the best achievable benchmark performance when the 

content popularities across all communities are known a priori. Unless specified otherwise, the 

parameter values form Table 6.1 are used as defaults. 

The following performance metrics are evaluated.  

Content Availability (𝑃'?',&): It is defined as the ratio between cache hits and generated requests 

within a time interval. Cache hits are the content provided to the users from the caches in the UAV-

aided caching system. Meaning, when a content is downloaded from the cloud because it was not 

available in the caches of both types of UAVs. In other words, content availability indirectly 

indicates the reduction of from-cloud download cost by deploying smart caching.  

Cache Distribution Optimality (CDO): This determines the optimality of the learnt caching policy 

in terms of the caching sequence. Jaro-Winkler Similarity (𝐽𝑊𝑆) [93] is used to represent CDO, 

by computing the similarity between the content sequence from the learnt caching policy and 

content sequence according to cache pre-loading. It is computed by calculating the number of 

matches, number of transpositions required within the matches and the similarity in prefix of both 

sequences. It is a normalized similarity measure where 1 represents optimal caching and 0 means 

non-optimal caching. 

Access Delay (𝐴𝐷): Access delay is defined as the total latency between when a content request is 

generated and it is delivered to the user from the cache of any of the UAVs. AD is reported over 

time to demonstrate how it improves as the caching policy learning progresses.   

6.6.1 Effect of Caching Mechanisms and Exploration Strategies 

In order to understand the viability of the proposed caching policies in scenarios with demand 

heterogeneity, a unique content popularity sequence is used for each community. In order to 

capture heterogeneity in content popularity sequence at different communities, contents are 
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swapped with pre-decided probability [93] and the difference between the sequences are 

determined and maintained using Smith-Waterman Distance (SWD) [93]. This is a normalized 

distance measure where SWD value of 1 means that the content popularity sequences are 

completely different and an SWD of 0 means no difference in content popularity sequences. 

Additionally, two different request generation rates, 0.5 and 0.01 requests/ second, are used across 

the communities for capturing demand heterogeneity. To implement f-MAB, the weight decay 

factor is set to 𝛽" = 0.01, 0.05 and scaling factor of 𝛽; = 2 is chosen empirically. Two values of 

𝛽" are used to demonstrate the effect of personalization-generalization problem in Federated 

Multi-Armed Bandit Learning, which is explained later. For the 𝜖-greedy strategy, initial 

exploration is set as 𝜖 = 1, which is made to decay at the rate of 0.0025 per learning epoch. The 

degree of exploration in Upper Confidence Bound (UCB) exploration strategy is set to 𝛼[ = 2.  

Figure 6.4 shows the convergence behavior of the learnt caching policies with a comparison of 

f-MAB and different exploration strategies employed in the Top-k MAB model. The graph in 

Figure 6.4a is shown in learning dynamics in terms of the improvements in content availability.  

The observations from Figure 6.4a are as follows. First, the figure shows that by employing f-

MAB agent at every A-UAV, a near-optimal caching policy can be learnt. The algorithm is able 

to leverage the intelligence sharing attribute of federated learning in order to achieve content 

availability that is close to the benchmark performance. The model sharing approach in federated 

learning reduces the inherent dependance of A-UAVs’ MAB models on their respective content 

requests only. By including the aggregated model for Q-table updates (see Eqn. 6.18), the Q-values 

at each A-UAV captures the requests generated across all communities. Such Q-values represent 

improved reward estimates, which leads to better learning towards a more effective caching policy. 
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The said improvement in reward can be seen in Figure 6.4c, where f-MAB ensure consistent higher 

rewards created by the learning of an improved caching policy.  

 

Figure 6.4. Comparison between f-MAB, different exploration strategies in Top-k MAB and 

Cache Pre-Loading in terms of (a) Content Availability; (b) Access Delay; (c) Cumulative 

reward; (d) Epoch-wise Standard Deviation in Content Availability of A-UAVs 

The second observation is that with an increase in weight decay factor 𝛽", the content availability 

increases. As discussed previously, the weight decay factor helps in balancing the personalization-

generalization problem in Federated Multi-Armed Bandit Learning. Physically, this means that a 

very slow decay of aggregated model’s weight (refer to Eqn. 6.16) may increase generalization, 

leading to a replicated caching behavior across all A-UAVs. The effect of over generalization can 

also be observed in Figure 6.4c, where, as learning progresses, the line corresponding to 𝛽" = 0.01 

 
(a)                                                                                                                                 (b) 

(c)                                                                                                                                 (d) 

Learning Epoch Learning Epoch

Learning Epoch Learning Epoch
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accumulates less rewards as compared to the one with 𝛽" = 0.05. A more detailed analysis of 

weight decay factor and its effect on content availability is provided in Figure 6.5. 

The third observation is regarding the performance comparisons between the f-MAB and the 

Top-k MAB approaches with various exploration strategies. It is shown that the multi-dimensional 

reward structure of the Top-k MAB models at the A-UAVs help generating caching policies that 

show performance improvement during the initial learning epochs. These were also highlighted as 

through Eqns. 7-9. As the learning progresses, the performance improvement tapers off after a 

point of learning. This effect is due to the insufficiency of content requests at individual A-UAVs 

which leads to weak estimated Q-values.  

Finally, when the agent uses the standalone UCB exploration strategy, the content availability 

settles at a sub-optimal value. However, during the initial learning epochs, the content availability 

increases promptly due to high upper confidence value of all contents, which avoids exploitation. 

This can be seen in Eqn. 6.8, where 𝑁((𝑖) represents the number of requests generated for content 

‘𝑖’ during a learning epoch ‘𝑡’. During the initial learning epochs, requests generated for all 

contents are less, which keeps their upper confidence values high. Physically, this means that due 

to initial high confidence on all contents, the model fails to prioritize a subset of contents to cache, 

thus leading to exploratory behavior. As the learning progresses, the sparse requests for unpopular 

contents keep the upper confidence value high which maintains consistent exploratory behavior. 

An algorithmically induced 𝜖 value in 𝜖-greedy strategy avoids this consistent exploratory 

behavior due to 𝜖 decay. However, 𝜖 is a predetermined exploration parameter which is controlled 

by its decay rate (refer Algorithm 6.1). A faster decay can limit the exploration capability of the 

proposed algorithm, thus forcing it to converge to a suboptimal learnt caching policy. 
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Therefore, to maintain the initial surge in content availability and to limit the unbounded 

exploratory behavior, 𝜖-greedy exploration is applied on the upper confidence bound values of the 

content. Such hybrid exploration strategy helps to boost the content availability beyond their 

respective non-hybrid performance. Specifically, such hybrid exploration strategy applied in 

conjunction with f-MAB approach is able to achieve a performance improvement of 7% compared 

to the Top-k MAB with any standalone exploration strategy.  

Figure 6.4b shows the convergence behavior of f-MAB and Top-k MAB in terms of access delay. 

This is computed for a 𝑇𝐴𝐷 of 1800 seconds and it is observed that as learning progresses, the 

access delay for requested contents reduces while the content availability increases. The best 

reduction in access delay is observed when f-MAB is applied in tandem with the described UCB/𝜖-

greedy hybrid exploration. 

Another way of representing the learning convergence behavior is the standard deviation (SD) 

in epoch-wise content availability across all A-UAVs. This characterizes the fairness in learnt 

caching behavior across all A-UAVs, as learning progresses. The physical significance of 

observing the standard deviation of availability is as follows. A content ‘𝑖’ with low popularity 

cached at A-UAV ‘x’ can assist to increase availability at A-UAV ‘y’ via F-UAV. If popularity of 

‘𝑖’ is high at the A-UAV ‘y’, it serves more user requests and commensurately achieves high 

ferrying reward 𝑅,< and global reward 𝑅,Z  at the A-UAV ‘x’ (refer to Eqns. 8 and 9). If ferrying 

reward 𝑅,< and global reward 𝑅,Z  have high values, Q-value of ‘𝑖’ increases at A-UAV ‘x’, which 

leads to caching of a low popularity content. This violates the estimation criteria for non-IID 

samples where a content is cached at a A-UAV depending on its estimate from another A-UAV 

with different content popularity preferences. This phenomenon contributes to the standard 

deviation in content availability. 
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The comparison in Figure 6.4d reveals that the f-MAB strategy decreases the standard deviation 

in availability, indicating synchronized learning of caching policies among all A-UAVs. In 

contrast, the Top-k MAB strategy exhibits an increased standard deviation, implying unfair 

learning behavior among A-UAVs due to non-identically independently distributed (non-IID) 

content request patterns. The proposed f-MAB approach minimizes the absolute dependence on 

the reward structure and incorporates the concept of local and global popularity through 

personalized and aggregated models. This leads to fairly simultaneous content availability 

improvement across communities, as depicted in Figure 6.4d. The residual standard deviation after 

convergence is due to the inherent demand heterogeneity and sparse intra-community request 

generation. Figure 6.4d demonstrates the superior performance of f-MAB over Top-k MAB for 

learnt caching decision-making.   

 

Figure 6.5.  (a) Effect of weight decay factor 𝛽" on content availability; (b) Convergence with 

𝛽";  (c) Offset from benchmark performance 

Note that in f-MAB, the aggregated model (see Eqn. 6.15) and its contribution towards the 

update of the Q-values is controlled by a weight decay factor 𝛽" (see Eqn. 6.16). The effects of 𝛽" 

on content availability is shown in Figure 6.5. The observations are as follows. First, the best 

content availability is achieved with 𝛽" = 0.05. It can also be observed in Figure 6.5c that the 
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achieved content availability offset from the benchmark performance is minimum, as shown. 

Second, a higher weight decay factor ensures an initial surge in performance, but it tapers as the 

learning progresses. Figure 6.5c shows that with such 𝛽", the learning performance settles down 

at a suboptimal value. Finally, lower values of 𝛽" make the learning sluggish, which can be 

observed in Figure 6.5a and 6.5b. Also, the suboptimality of the achieved contentavailability can 

be seen in Figure 6.5c. Therefore, weight associated with aggregated model 𝑄)
'// must be 

computed with careful and empirical selection of 𝛽". 

 

Figure 6.6.  (a) JWS at A-UAVs with f-MAB; (b) JWS at A-UAVs with Top-k MAB; (c) JWS at 

F-UAVs with f-MAB; (d) JWS at F-UAVs with Top-k MAB 

6.6.2 Quality of Learnt Cache Sequence  

This section reports the quality of algorithmically learnt cache sequences in terms of their 

similarities with the theoretically best possible cache sequence. To be noted that the best possible 
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caching sequence can be derived from cache pre-loading policies. The quality of a learnt caching 

policy is reported in terms of cache distribution optimality (CDO) which can be calculated from 

Jaro-Winkler Similarity (𝐽𝑊𝑆) [93].  

Cache distribution optimality can be inferred as an indirect representation of the storage 

segmentation factor (𝜆), which is used to decide the segment sizes according to cache pre-loading 

policies. A higher 𝐽𝑊𝑆 implies that, along with learning the caching policy, the MAB agents learn 

to emulate the said segmentation behavior. The cached contents become close to optimum as the 

learning progresses. Lower 𝐽𝑊𝑆 values at initial epochs signifies that the A-UAVs have no a priori 

content popularity information, neither local nor global. As the MAB agents learn in time with 

generated content requests, the cached contents in the A-UAVs become more similar to the best 

caching sequence. Thus, indirectly, it learns to emulate cache segmentation along with the increase 

in cache distribution optimality. The partial dissimilarity of the cached content sequence can be 

ascribed to the uncertainty associated with the Q-values of contents. Also, this leads to an 

oscillatory convergence of 𝐽𝑊𝑆 for A-UAVs (refer Figure 6.6a and 6.6b). This behavior manifests 

in the 𝐽𝑊𝑆 for F-UAVs as well, due to its dependance on caching decisions at A-UAVs.  

Figs. 6.6a and 6.6b plot Jaro-Winkler Similarity of cached content sequences for all 12 A-UAVs 

while employing f-MAB and Top-k MAB, respectively. The key observations are as follows. First, 

the 𝐽𝑊𝑆 between the best caching sequence with cache pre-loading policy and the learnt caching 

sequences with f-MAB agents converge near 0.9, although with a certain variance. Physically, this 

represents high cache distribution optimality, where 1 indicates complete similarity and 0 indicates 

no similarity. Second, the learnt caching sequence with Top-k MAB agents show initial increase 

in learnt similarity. However, it tapers off as learning progresses. That is due to the subpar Q-

values of content, which can be seen from the weak reward estimates in Figure 6.4c. Third, it can 



 120 

be seen that learnt caching sequences with Top-k MAB has high variance. The reason is twofold: 

global rewards’ precedence over local penalties and the agent’s unawareness about global 

popularity. Intermittently, cached contents accumulate huge rewards due to global rewards which 

supersedes local penalties. This leads to bad caching decisions locally, thus resulting in reduced 

content availability. Also, an agent’s unawareness about global popularity fails to limit the offset 

due to bad caching decision. Finally, the adeptness of learnt caching sequence at the A-UAVs 

affects the learnt caching sequence at the F-UAVs. Figure 6.6c and 6.6d shows the JWS of cached 

content at 3 F-UAVs with f-MAB and Top-k MAB, respectively. Since, F-UAVs ferry contents 

that are requested less frequently, the low popularity of such contents leads to a comparatively 

sluggish improvement of its 𝐽𝑊𝑆 as compared to 𝐽𝑊𝑆 improvement for the A-UAVs. Due to bad 

caching decisions with Top-k MAB at A-UAVs, the caching decision at F-UAVs is affected more 

as compared to f-MAB, which is shown in Figure 6.6c and 6.6d. It shows 10-15% less JWS for 

Top-k MAB as compared to f-MAB learning-based policy, which indicates lower cache 

distribution optimality.   

6.6.3 Impacts of Tolerable Access Delay 

To gain insights about the learning capabilities of the proposed f-MAB and Top-k MAB models, 

experiments are conducted with varying tolerable access delays (𝑇𝐴𝐷) ranging from 1200 to 2400 

seconds. The content availability according to the learnt caching policies with varying 𝑇𝐴𝐷 is 

shown in Figs. 6.7a and 6.7b. The figures demonstrate the behavior of the proposed caching 

mechanisms viz. f-MAB and Top-k MAB with respect to the benchmark performance, which is 

computed using the cache pre-loading policy. The two figures 6.7a and 6.7b are different ways to 

emphasize the learning behavior for varying 𝑇𝐴𝐷 scenarios.  
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Figure 6.7.  (a-b) Two different ways to show content availability performance with different 

TADs 

Following observations can be made from Figure 6.7. First, the learnt caching policy with f-

MAB learning based caching mechanism achieves performance closer to the benchmark for all 

values of 𝑇𝐴𝐷. Second, Figs. 6.7a-b show that the best possible performance (i.e., the benchmark) 

changes with change in 𝑇𝐴𝐷. Third, the f-MAB and Top-k MAB agents in the A-UAVs adapt to 

the user defined 𝑇𝐴𝐷 via dynamic learning. In other words, the role of multi-dimensional reward 

structure of MAB and model sharing approach of federated learning becomes more evident as 

content 𝑇𝐴𝐷 increases. Especially, the information related to the global availability i.e., 𝛿. and 𝛿/, 

are derived from large count of content requests. This improves the estimated reward at the A-

UAVs, thus impacting their caching decision. Since, f-MAB model leverages the personal 

experience of individual A-UAVs, with enhanced performance of Top-k MAB, f-MAB’s 

performance improves commensurately.  
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Figure 6.8.  (a-b) Two different ways to show content availability performance with different 

Zipf Popularity Skewness 

6.6.4 Impacts of Content Popularity Skewness  

Content popularity skewness, represented by the Zipf parameter 𝛼, can change the importance 

of all contents such that with increase in 𝛼 the most popular content becomes more popular and 

the popularity of less popular content falls. Figs. 6.8a and 6.8b show two different ways to show 

the proposed learning-based mechanisms’ ability to cope with different Zipf popularity skewness 

𝛼. Both f-MAB and Top-k MAB policies adjust to the modification in 𝛼. Due to the increase in 

popularity of highly requested contents with increase in 𝛼, Q-values of popular contents develop 

comparatively faster than that with lower 𝛼. This behavior favors the learning progression of both 

f-MAB and Top-k MAB agents. Similar to the observation till now, f-MAB’s performance, in 

terms of content availability, is better than that of Top-k MAB. However, this improvement comes 

with added pre-convergence computational complexity, which is shown in Figure 6.9. The 

computational load for both of the proposed caching methods are calculated for 1800 requests per 

epoch. The computational load for Top-k MAB is calculated for the recursive Q-value update 
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equation [128], which is constant. On the other hand, for f-MAB computation scales with number 

of contents, due to the weight calculation using KL divergence (refer to Eqns. 15-21). Note that 

the additional computation with f-MAB tapers off post-convergence due to the improved Q-values 

of contents. Physically, this implies that the f-MAB caching agent has learnt to balance the local 

content requirements of the respective communities along with the global need of the disaster 

effected regions.  

 

Figure 6.9.    Computation complexity (a) before convergence, and (b) after convergence 

It should be noted that the aforementioned experiments have been conducted and explained for 

a heterogeneous scenario to show the generalization capabilities of the proposed caching 

mechanisms.  

A homogeneous demand scenario is a special case of the generalized heterogeneous case. With 

homogeneity in both content popularity and TAD, the benchmark performance is computed using 

Smart Exclusive Caching (SEC), whereas for homogenous TAD with community-specific content 

popularity, Popularity Based Caching (PBC) decides the benchmark performance. It should also 

be noted that both SEC and PBC are special cases of Value Based Caching (VBC). The proposed 
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As learning progresses
the weight decay factor
𝛽𝑑 	becomes negligible.
Therefore, the need for
computation associated
with KL divergence and
federated aggregation
tapers off.
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f-MAB and Top-k MAB models are still applicable in the aforementioned scenarios for on-the-fly 

learning of caching policies.  

 

Figure 6.10.  Federated Multi-Armed Bandit Learning based Caching Performance comparison 

in Heterogeneous and Homogeneous Scenarios 

Figure 6.10 shows that applicability of f-MAB to learn the caching policy in heterogeneous as 

well as homogeneous demand scenarios. The performance improvements in both scenarios are 

comparable. 

6.7 Summary and Conclusion 

In this chapter, a UAV-aided content dissemination system is proposed which can learn the 

caching policy on-the-fly without a priori content popularity information. Two types of UAVs are 

introduced to support content provisioning in a disaster/war-stricken scenario viz. anchor and 

ferrying UAVs. Cache-enabled anchor UAVs are stationed at each stranded community of users 

for uninterrupted content provisioning. Ferrying UAVs act as content transfer agents across the 

anchor UAVs. The evolution of pre-loading-based caching policies, which requires a priori 

information about content popularity, are discussed. A decentralized Top-k Multi-Armed Bandit 

 
Learning Epoch
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Learning-based caching policy is proposed to ameliorate the limitation of cache pre-loading. It 

learns the caching policy on-the-fly by maximizing estimated reward for the increase in local and 

global content availability. To improve Q-value estimates, a distributed Federated-Multi-Armed 

Bandit Learning-based caching policy is proposed. This method combines the Q-values of all 

anchor UAVs to produce a better estimate of top popular content at a community. Future work on 

this research includes algorithmically coping with time-varying content popularity and adaptive 

trajectory planning in the presence of operational unreliabilities of the UAV. The next chapter 

includes the characterization of UAV trajectories and deployment strategies which can build the 

foundation for developing trajectory-aware learning-model sharing techniques to enhance content 

dissemination. 
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Chapter 7: Benchmarking UAV Trajectory-Aware Caching Policies 

in Infrastructure-Less Networks 

7.1 Motivation 

The pursuit of this research is driven by the critical need for reliable communication in 

environments where disasters or conflicts have compromised or completely destroyed traditional 

communication infrastructure. The urgency to develop solutions that can quickly and efficiently 

bridge these communication gaps is paramount. Unmanned Aerial Vehicles (UAVs) present a 

promising avenue for addressing this challenge due to their flexibility and rapid deployment 

capabilities. However, the effective use of UAVs in such scenarios requires a deep understanding 

of their operational dynamics. Specifically, how the planning of their flight paths, including 

hovering and transitioning behaviors, impacts the availability of essential content and the costs 

associated with its delivery. This chapter aims to fill this gap by exploring the intricate dynamics 

of UAV trajectory planning in communication-challenged scenarios. 

7.2 Design Objective 

The primary goal of this work is to enhance the accessibility of critical information in areas 

where standard communication systems are no longer viable. To achieve this, the chapter 

introduces a novel Joint Deployment of Ferrying UAVs (JDFU) algorithm designed to optimize 

content availability across various scenarios. This algorithm represents a significant advancement 

over traditional content caching and UAV deployment strategies by dynamically adjusting to the 

specific needs and constraints of disaster-affected environments. A key part of this objective is to 

understand the trade-offs between the UAVs’ operational parameters and the tolerable delays in 

accessing requested content. By doing so, the research seeks to identify an operational sweet spot 

that ensures maximum content availability. Additionally, the development of simulation 
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experiments and analytical models is crucial for validating the effectiveness of the proposed 

trajectory planning and deployment strategies. These will also be used in subsequent chapters as 

performance benchmarks for learning models that can develop trajectory-aware caching policies. 

These tools are not only instrumental in assessing the performance of the JDFU algorithm but also 

in fine-tuning the overall approach to UAV-aided content dissemination in challenging conditions. 

7.3 System Model 

7.3.1 UAV Hierarchy  

The two-tier UAV-aided content dissemination system is shown in Figure 3.1, where each 

partitioned community of users is served by a A-UAV using a lateral wireless link such as Wi-Fi. 

With a naïve fully duplicated (FD) approach where A-UAVs download all contents requested by 

the users [120], with no inter-A-UAV data transfer, the following shortcomings will be 

encountered. First, there will be duplications of downloads via the expensive vertical links by 

different A-UAVs due to the overlaps in requests from different communities for popular contents. 

This will incur high download costs. Second, storage constraints will cap the number of contents 

that can be downloaded and stored in each A-UAV, thus limiting the content availability. Finally, 

due to limited infrastructure availability, some of the communities of users can be rendered isolated 

from content access without dedicated A-UAVs assigned to them.  

To address these, a set of ferrying UAVs (i.e., F-UAVs) are introduced. Unlike A-UAVs, 

the mobile F-UAVs do not possess vertical links, but they do have lateral links such as Wi-Fi, 

using which they can communicate with the A-UAVs and the users. The role of these UAVs is to 

cache and transfer content around the A-UAVs such that the users in a community are able to 

access content that was downloaded by A-UAVs serving other communities.  
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After receiving a request from one of its community users, a A-UAV first searches its local 

storage for the content. If not found, it waits for a potential future delivery of the content by one 

of the traveling F-UAVs. If no F-UAV with that content arrives within the specified tolerable 

access delay (TAD), the A-UAV downloads it via the vertical link.   

To address the question about trajectory planning in terms of F-UAV trajectories, different 

pre-programmed trajectories are characterized along with below mentioned static content 

placement strategies.  

7.3.2 Caching Policies  

Caching at Anchor UAVs (A-UAVs): As mentioned before that the FD mechanism has the 

shortcoming in that it limits the number of accessible contents for all user communities to 𝐶:, the 

A-UAV cache size. This limitation can be addressed by storing a part of the A-UAV’s cache with 

same contents viz. duplicate contents and the remaining cache space with unique contents. The 

unique contents in all the A-UAVs are shared across the communities via the traveling F-UAVs. 

This Smart Cache Duplication (SCD) mechanism can effectively increase the access to the number 

of contents for all the users across the entire system, thus improving the overall availability within 

a given TAD. 

Let the size of the duplicate segment of A-UAV cache be (𝜆. 𝐶:) and that of the unique 

segment be ((1 − 𝜆). 𝐶:)where 𝜆 is a duplication factor that decides the level of content 

duplication in A-UAVs. This results into 𝑁:. (1 − 𝜆). 𝐶: unique contents stored across all 𝑁: 

number of A-UAVs in the system, and these can be shared across all user communities via the 

mobile F-UAVs. These unique contents have popularities after the top (𝜆. 𝐶:) popular duplicated 

contents in all the A-UAVs. For symmetry, all 𝑁:. (1 − 𝜆). 𝐶: unique contents are uniformly 
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randomly distributed across 𝑁: number of A-UAVs. The total number of contents in the system: 

𝐶;2; = 𝜆. 𝐶: + 𝑁:. (1 − 𝜆). 𝐶:.  

Caching at Ferrying UAVs (F-UAVs): The purpose of the F-UAVs is to ferry around 

𝑁:. (1 − 𝜆). 𝐶: unique contents stored in all 𝑁:	A-UAVs. In the presence of limited per-F-UAV 

caching space, 𝐶<, its caching policy can be determined based on its trajectories, the value of 𝜆, 

and the Zipf parameter defining the content popularity. 

Consider a situation in which an F-UAV k is approaching towards the A-UAV i. Let 𝑈, be 

the set of all unique contents in the entire system except the ones stored in A-UAV i. To maximize 

content availability for the users in A-UAV i’s community, the F-UAV should carry as many low 

popularity contents from set 𝑈, 	as its cache space permits. To enable such access, F-UAV k should 

carry 𝐶< 	top popular contents from the set 𝑈, 	while approaching A-UAV i. The size of the set 𝑈, 

can be expressed as |𝑈,| = (𝑁: − 1). (1 − 𝜆). 𝐶:. In scenarios when 𝐶< ≤ |𝑈,|, the F-UAV should 

carry the 𝐶< 	top popular contents as outlined above. Otherwise, the F-UAV will carry all |𝑈,| 

unique contents, leaving part of the F-UAV cache (i.e., 𝐶< − |𝑈,|) empty. This causes 

underutilization of F-UAV cache space due to large 𝜆	values, leading to heavy in-A-UAV 

duplications, thus storing few unique contents. 

7.4 Content Request and Provisioning Model 

Content requests are generated by the users in communities and sent to their respective 

local A-UAVs or to a visiting F-UAV, in that order or preference.  

Content Popularity: Studies have shown [119] that content request patterns often follow a Zipf 

distribution in which a requested content’s popularity is a geometric multiple of the next popular 

content. Popularity of contents is given as 𝑝6(𝑖) = (1/𝑖)6/∑ (1/𝑘)6X∈= . The parameter 𝐶 
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represents the total number of contents in the pool, and the Zipf parameter 𝛼 determines the 

skewness of the distribution.  

Content Requests: Poisson distributed request generation is the most prevalent way to capture user 

requests in practical network scenarios. 

Tolerable Access Delay and Content Provisioning: For each generated request, a Tolerable Access 

Delay (TAD) [123], [124] is specified. TAD is a Quality-of-Service parameter that indicates the 

duration that a user is ready to wait before a requested content can be accessed. From the network’s 

perspective, if the content is not available from the A-UAV or visiting F-UAVs within the specified 

TAD, it will have to be downloaded from a central server using the expensive vertical link on the 

A-UAVs. Therefore, to reduce that downloading cost, the contents cached in F-UAVs need to be 

more readily available within the A-UAV/F-UAV network.  

7.5 Trajectory-aware Content Placement Planning for Ferring UAVs 

7.5.1 Trajectory Sequence and Cycle  

An F-UAV’s trajectory is represented by the sequence of visited A-UAVs, and hovering 

duration at each A-UAV. Figure 3.1 shows F-AUVs A and B follow a partitioned cycle of A-UAV 

sequence X, Y, Z and W, whereas F-UAVs C and D follow a global cycle. Choice of sequence 

depends on the popularity of contents cached in A-UAVs. 

The cycle time of an F-UAV trajectory is 𝑇+2+&- = 𝑁:= × (𝑇0#?-* + 𝑇(*'%;,(,#%), where 𝑁:= 	 

is the number of A-UAVs in the F-UAV’s sequence, 𝑇0#?-* is the hover duration at each A-UAV, 

and 𝑇(*'%;,(,#% is the transition time between two consecutive A-UAVs in the F-UAV’s sequence. 

𝑇(*'%;,(,#%	depends on the F-UAV flying speed, intercommunity distance, wind speed/directions, 

and other environmental factors. 𝑇0#?-* should not be less than a minimum duration that is required 

for successful data transfer between UAVs and users. Minimum hover time is determined by (a) 
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the data transfer rate; (b) the amount of data needs to be exchanged between F-UAV to/from A-

UAV; (c) multipath fading; (d) shadowing; fading due to height of UAVs etc.  

7.5.2 Joint Deployment of Ferrying UAVs (JDFU) Algorithm  

The caching mechanism discussed so far are based on round-robin trajectories using which 

an F-UAV sequentially visits all the A-UAVs with equal hover durations at each A-UAV. In the 

presence of multiple F-UAVs, since the same trajectory is used by all the F-UAVs with equal 

spacing, the time gap between two consecutive visits of an F-UAV to a community (i.e., a A-UAV) 

is 𝑇+2+&-/𝑁<. Let us consider a scenario where an F-UAV ′𝑖′ leaves an A-UAV ′𝑗′ and the next F-

UAV ′𝑖 + 1′ reaches A-UAV ′𝑗′ after 𝑇+2+&-/𝑁< duration. If a requested content from the F-UAVs 

has a Tolerable Access Delay 𝑇𝐴𝐷 > 𝑇+2+&-/𝑁<, then the content is served to the user with a 

minimum of 𝑇𝐴𝐷 − 𝑇+2+&-/𝑁< 	 extra time before exhausting the 𝑇𝐴𝐷. If this extra time is more 

than the time gap between two consecutive F-UAV visits (𝑇+2+&-/𝑁<), then this extra time can be 

leveraged by deploying multiple F-UAVs in groups flying together as explained below.  

Here we introduce an F-UAV trajectory mechanism, termed as Joint Deployment of 

Ferrying UAVs (JDFU), to leverage this extra time. In this mechanism, multiple F-UAVs fly 

together while following the same trajectory at the same time. With 𝑁< number of F-UAVs in a 

system, they can be deployed in groups of different sizes while employing JDFU. If they are 

deployed with 𝑁<Z  number of F-UAVs per group, then there will be 𝑁</𝑁<Z  such groups viz. 

(𝑁<Z × 𝑁</𝑁<Z) F-UAVs. This is called the JDFU configuration. It should be noted that the groups 

of 𝑁<Z  F-UAVs still visit the A-UAVs (at their corresponding communities) in a round-robin 

manner. 

It has two major advantages. First, in case of high 𝑇𝐴𝐷 requests, the extra time of 𝑇𝐴𝐷 −

𝑇+2+&-/𝑁< is reduced where the F-UAV is not adding to the content availability. It is explained as 
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follows. 𝑇+2+&-/𝑁< is the time it takes an F-UAV to reach the next community in its sequence after 

the previous F-UAV leaves the community. If 𝑇𝐴𝐷 > 𝑇+2+&-/𝑁<, then the F-UAV reaches the 

community 𝑇𝐴𝐷 − 𝑇+2+&-/𝑁< before it exhausts the 𝑇𝐴𝐷. Employing JDFU can leverage this 

duration to improve availability of contents at other communities. Second, employing JDFU 

increases the effective caching capacity of F-UAVs as compared to F-UAVs deployed without 

JDFU. This is explained as follows. If F-UAVs follow their respective trajectories (without JDFU), 

then they carry only the 𝐶< most popular contents out of (𝑁: − 1). (1 − 𝜆). 𝐶: from the cache of 

A-UAVs in their trajectories (refer Section 7.3.2). By employing JDFU, the F-UAVs can carry 

𝑁<Z . 𝐶< contents out of (𝑁: − 1). (1 − 𝜆). 𝐶: cached in A-UAVs as opposed to 𝐶< contents. Here 

𝑁<Z  is the number of F-UAVs traversing in a group. Therefore, the effective caching capacity of 

the F-UAVs increases form 𝐶< to 𝑁<Z . 𝐶< which can significantly enhance the content availability.  

However, this increase in effective cache size comes with the following downsides. First, 

the time interval during which the content availability depends only on the A-UAVs increases. The 

explanation is as follows. While employing JDFU, the equal spacing between group of F-UAVs 

depends on the number of groups. This means that the time taken by a group of F-UAVs ′𝑘f to 

reach an A-UAV ′𝑗′ after the previous group of F-UAVs ′𝑘 − 1′ leaves the community will 

increase with increase in 𝑁<Z . This is the time during which content availability depends only on 

A-UAVs. Second, to completely fill the increased effective cache of the F-UAVs, the duplication 

factor 𝜆 should be lowered. A lower 𝜆 ensures enough contents in Segment-2 of the A-UAVs to 

avoid underutilization of F-UAV cache (refer Section 7.3.2). While lower 𝜆 helps in increasing the 

effective cache utilization of the group of F-UAVs, it reduces the number of most popular contents 

in Segment-1 of the A-UAVs. However, if the 𝑇𝐴𝐷 is sufficiently high, popular contents cached 
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in F-UAVs due to low 𝜆 can be accessed before exhausting the 𝑇𝐴𝐷. Therefore, the reduction in 

𝜆 will have minimum or no effect on content availability for high 𝑇𝐴𝐷. 

The pseudo code to calculate 𝑁<Z  algorithmically and determine JDFU configuration is as follows. 

Algorithm 7.1.    JDFU Algorithm 

1. Input: Total UAVs 𝑁:, 𝑁<, 𝑇𝐴𝐷 and 𝑇(*'%;,(,#% 

2. Output: JDFU configuration 

3. Initialize 𝑇0#?-*, F-UAV trajectory to round-robin, 𝑁<Z = 1 

4. while True: 

5.       compute 𝑇+2+&- 

6.       if 𝑇𝐴𝐷 > @$4$5+×A'
I

A'
− 𝑇0#?-* then do 

7.             Increment 𝑁<Z  

8.             while True: 

9.                   Decrement 𝜆 

10.                   if (𝑁: − 1). (1 − 𝜆). 𝐶: ≥ 𝑁<Z . 𝐶< then do 

11.                         Cache 𝑁<Z . 𝐶< in 𝑁<Z  F-UAVs 

12.                         break     

13.                   end if 

14.             end while 

15.       else if 𝑇0#?-* > 𝑇0#?-*4,%  then do 

16.             Decrement 𝑇0#?-* 

17.       end if 

18.       compute JDFU configuration from 𝑁<Z  
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Algorithm 7.1. (cont’d) 

19. end while 

The increase in content availability by employing JDFU largely depends on the 𝑇𝐴𝐷 of the 

requested contents. When a content cached in F-UAVs is requested with very high 𝑇𝐴𝐷, it allows 

the F-UAVs to reach the request generating community with a maximum delay of 𝑇𝐴𝐷. This 

shows that the benefit of employing JDFU is directly proportional to the specified 𝑇𝐴𝐷 in the 

content requests. Intercommunity distances also contribute to the increase in availability while 

employing JDFU algorithm in which closely located communities can be reached by F-UAV 

groups before the specified 𝑇𝐴𝐷. This phenomenon is elaborated later along with supporting 

experimental results.  

7.6 Content Dissemination Performance and Experimental Results 

Content availability is used as a metric to evaluate the performance of the proposed algorithm. It 

is defined as the probability of finding a requested content from the UAV-aided caching paradigm 

within the specified 𝑇𝐴𝐷. In the case of an F-UAV transitioning in round-robin manner across the 

A-UAVs in its trajectory, the F-UAV’s accessibility within a given 𝑇𝐴𝐷 is expressed as follows. 

𝑃<: =

⎩
⎪
⎨

⎪
⎧ 𝑁< × (𝑇>#?-* + 𝑇𝐴𝐷)
𝑁<Z . 𝑁: × (𝑇>#?-* + 𝑇(*'%;,(,#%)	

𝑓𝑜𝑟	𝑇𝐴𝐷 < �
𝑁<Z . 𝑁:
𝑁<

− 1�𝑇0#?-* +
𝑁<Z . 𝑁:
𝑁<

𝑇(*'%;,(,#%

1																																																									𝑓𝑜𝑟	𝑇𝐴𝐷 ≥ �
𝑁<Z . 𝑁:
𝑁<

− 1�𝑇0#?-* +
𝑁<Z . 𝑁:
𝑁<

𝑇(*'%;,(,#%

 

(7.1) 

The relative difference between the 𝑇𝐴𝐷 and the time taken by an F-UAV or a group of F-UAVs 

to reach an A-UAV after the previous group has left decides the accessibility of F-UAVs. Note 

that the physical accessibility to the F-UAV does not guarantee the access to the requested content 

since the F-UAV or the group of F-UAVs can store only a limited number (i.e., 𝑁<Z . 𝐶<) of unique 
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contents. Let 𝑃< be the probability that the requested content can be found within the F-UAV or 

group of F-UAVs. It can be expressed as: 

   𝑃< = ∑ 𝑝6(𝑖)
=-DHD=3''
,I=-DH                                       (7.2) 

where, 𝑝6(𝑖) is the Zipf distributed popularity as defined in Section 7.4. The effective cache size 

of the F-UAV is given as: 𝐶J<< = 𝑚𝑖𝑛{𝑁<Z × 𝐶< , (𝑁: − 1) × (1 − 𝜆) × 𝐶:}.  

Now, let 𝑃: be the probability that the requested content can be found within the A-UAV 

that is local to the community from which the content request was generated. This is expressed as: 

𝑃: = ∑ 𝑝6(𝑖)
K×=-D(HLK)×=-
,IH 	                             (7.3) 

Combining those three probabilities above, the overall availability can be stated as: 

 𝑃:?',& = 𝑃: + 𝑃<: × 𝑃<                                     (7.4) 

To summarize, local contents from A-UAVs (i.e., both duplicate and unique) and unique contents 

from future visiting F-UAVs contribute towards the overall availability 𝑃:?',& within a specified 

𝑇𝐴𝐷. Note that all unavailable contents within the specified TAD will have to be downloaded by 

the A-UAVs using their expensive vertical links such as the satellite Internet. Therefore, 

availability indirectly indicates the content download cost in the system.   

Before exploring the impact of employing JDFU algorithm on content availability, it is 

important to understand the effects for hover and transition time with respect to tolerable access 

delay, which is discussed next. For experimentation, specific modules were added to implement 

request generation, UAV caching, and F-UAV movement strategies. For all experiments, 𝑁+ =

2000, 𝐶: = 𝐶< = 100, Poisson request rate 𝜇 = 1 requests/second and Zipf parameter 𝛼 = 0.7.  
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Figure 7.1.   Improvement in maximum availability of contents by loading 

UAVs using value of contents and deploying F-UAVs in groups 

7.6.1 Impacts of Value-Based Caching and JDFU 

The overall increase in content availability using value-based content caching and joint-

deployment of ferrying UAVs is shown in Figure 7.1. The performance improvement is compared 

against popularity-based caching policy at A-UAVs and round-robin trajectories of F-UAVs 

(without JDFU). Content availability is evaluated for varying cache size of the UAVs.  

It can be seen from Figure 7.1 that a maximum increase in availability of approximately 

25% can be achieved by using value-based caching policy at the A-UAVs, and JDFU for the F-

UAVs. The benefits of value-based caching along with JDFU in scenarios with multi-dimensional 

demand heterogeneities are attributed to various factors including heterogeneity in popularity 
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sequence, 𝑇𝐴𝐷 associated with the content requests, popularity of low 𝑇𝐴𝐷 contents, value of a 

content, and configuration of JDFU. The effects of these factors are depicted individually in the 

following sub-sections.  

7.6.2 Effects of Hover Time and Tolerable Access Delay 

F-UAV hover time and TAD have interdependent impact on the content availability. This 

is shown in Figure 7.2 with 𝑁: = 20, 𝑁< = 10 and 𝑇(*'%;,(,#% = 10	𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 

The surface plot shown in Figure 7.2 is nonmonotonic with respect to content availability 

when hover time and tolerable access delay are varied. The most noticeable observation is the 

dichotomous behavior of availability with increase in hover time for low and high 𝑇𝐴𝐷. For low 

𝑇𝐴𝐷, availability increases with increase in hover time, whereas for high 𝑇𝐴𝐷, availability 

decreases with longer hover time. The explanation for such behavior is as follows. First, for 𝑇𝐴𝐷 <

𝑇(*'%;,(,#%, while traversing from present community i to next community j, an F-UAV doesn’t 

contribute to availability for 𝑇(*'%;,(,#% − 𝑇𝐴𝐷 duration (refer Figure 7.2). This means that some 

of the requests generated for contents cached in F-UAVs will be downloaded because of partial 

inaccessibility of F-UAV. Hence, hovering over a community is more beneficial for content 

availability even though it may be an unfair increase in average availability (availability increases 

only for the community where the F-UAV is hovering).  
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Figure 7.2.   Content availability for different 𝑇𝐴𝐷 with varying hover time 

The region to the left of the red line in Figure 7.2 shows this effect. Second, for 𝑇𝐴𝐷 >

𝑇(*'%;,(,#%, increase in hovering time reduces the possibility of the condition	(𝑇𝐴𝐷 − 𝑇0#?-*) >

𝑇(*'%;,(,#% to be true. In other words, the possibility of exhausting the given 𝑇𝐴𝐷 before reaching 

next community increases. So, it is beneficial to hover less, which increases the accessibility of F-

UAVs at future communities in the cycle before 𝑇𝐴𝐷 expires. This behavior is capture in Figure 

7.2 in the region right to the red line. Finally, for 𝑇𝐴𝐷 = 𝑇(*'%;,(,#%, an F-UAV can add to 

availability within 𝑇𝐴𝐷, at all times, irrespective of its hovering decision. If F-UAV decides to 

hover at the present community i, it caters to all the requests generated at i whereas transiting to 

next community j ensures accessibility of F-UAV at j since it reaches j within the TAD. The red 

line in Figure 7.2 shows this behavior. It should also be noted that this contradicting behavior is 

for a fixed transition time 𝑇(*'%;,(,#%. With the same number of UAVs, effect of transition time on 

availability for varying tolerable access delay is discussed next. 
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Figure 7.3.   Content availability for different 𝑇𝐴𝐷 with varying transition time 

7.6.3 Effects of Transition Time and Tolerable Access Delay 

The effect of 𝑇(*'%;,(,#% and 𝑇𝐴𝐷 on content availability is shown in Figure 7.3 for 

𝑇0#?-* = 20	𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 

There are two major observations. First, content availability reduces with increasing 

transition time. High transition time reduces accessibility of F-UAVs at future visiting 

communities, which leads to reduction in availability (refer Eqn. 7.1). Second, with increase in 

𝑇𝐴𝐷, content availability increases. This statement is intuitively supported since more 𝑇𝐴𝐷 entails 

more time allowed for an F-UAV to reach the request generating user community. These 

observations can also be verified from the Eqn. 7.1 and Eqn. 7.4, where 𝑃<: is directly proportional 

to 𝑇𝐴𝐷 and inversely proportional to 𝑇(*'%;,(,#%. Therefore, the maximum content availability 

occurs at least transition time 𝑇(*'%;,(,#% and highest user-specified 𝑇𝐴𝐷. 
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Figure 7.4.   Availability and delay with JDFU for different 𝑇𝐴𝐷 

 

Figure 7.5.   Increase in availability with JDFU for different 𝛼 
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Figure 7.6.   Delay with JDFU for different 𝛼 

7.6.4 Effect of Joint Deployment of Ferrying UAVs (JDFU) 

To show the benefits of JDFU, the first set of experiments are conducted with popularity 

parameter 𝛼 = 0.9, 𝑇𝐴𝐷 = 240	𝑎𝑛𝑑	300	𝑠𝑒𝑐𝑜𝑛𝑑𝑠, swap probability 𝜇 = 0.4, and swap 

difference 𝛿 = 50. Rest of the parameters are as per Table 7.1.  

Figure 7.4 shows the increase in availability with increase in F-UAV group size for the JDFU 

configuration (Section 7.5.2). The following inferences can be derived from the figure. First, with 

increase in group size, the availability increases. However, for 𝑇𝐴𝐷 = 240	𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the increase 

in availability is restricted for 2 × 5 configuration of JDFU with 5 F-UAVs in each group. This is 

because groups of F-UAVs do not reach the next community in their trajectory before the 𝑇𝐴𝐷 

expires. Second, with increase in 𝑇𝐴𝐷 to 300	𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the benefit of JDFU is retained for 2 × 5 

configuration of F-UAVs since the group of F-UAVs reach the next community in their trajectory 

before the 𝑇𝐴𝐷 expires. Third, content access delay increases with increase in F-UAV group size 

for JDFU. Finally, with increase in 𝑇𝐴𝐷, delay increases proportionally.  
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Figure 7.5 and 7.6 show the effects of different popularity distribution on the increase in 

availability and delay while employing JDFU. Important observation from Figure 7.5 shows a 

comparison between the increase in availability for 𝛼 = 0.9 and 0.4 with varying configurations 

of JDFU. First, for smaller F-UAV group size in JDFU configuration, higher 𝛼 ensures more 

increase in availability of contents. This is because for higher 𝛼, popular contents are more likely 

to be requested. Second, for larger F-UAV group size in JDFU configuration, lower 𝛼 produces 

more availability. This is because less popular contents cached in F-UAVs are more likely to be 

requested, which is not in the case of high 𝛼. Figure 7.6 shows that, delay increases with low 𝛼 

due to the content requests being more distributed across all contents cached in A-UAVs and F-

UAVs. This is an attribute of the Zipf distribution (refer Section 7.4) and JDFU configurations. 

When the F-UAV group sizes increase, the contents served by F-UAVs increase as well. Due to 

increase in time a group takes to reach a community, delay increases with the group size. Next, the 

benefits of JDFU are explored by increasing the caching capacity of UAVs.  

7.6.5 Impacts of UAV cache Size on JDFU 

This experiment discusses the effects of JDFU on availability, when caching capacity of UAVs 

is increased. For best results, value-based caching policy is followed at the A-UAVs. Parameters 

are set as follows; High 𝑇𝐴𝐷 = 240	𝑠𝑒𝑐𝑜𝑛𝑑𝑠, Low 𝑇𝐴𝐷 = 5	𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝛾 = 0.95, JDFU 

configuration is 3 × 3 + 1 with 3 F-UAVs in each group and remaining parameters are according 

to default value in Table 7.1.  
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Figure 7.7.   Increase in availability with value-based caching and JDFU as compared to 

popularity-based caching 

Fig 7.7 shows the combined effects of JDFU and value-based caching policy towards increase 

in availability with respect to the popularity-based caching policy. The observations are as follow. 

First, increase in availability is maintained for all cache sizes until A-UAV’s cache size is equal to 

total number of contents in the system. It can be observed in Figure 7.7 that beyond cache size of 
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JDFU. To compensate for the underutilization of F-UAV cache space, the storage segmentation 

factor 𝜆 is reduced (refer Section 7.3), which reduces availability. Finally, high−𝑇𝐴𝐷 contents do 

not contribute to the increase in availability beyond cache size of 1000. The reasons are twofold. 

One is the excessive reduction of 𝜆 to compensate for the space underutilization of F-UAVs, and 

the other is high popularity contents being replaced by very low popularity contents with low 𝑇𝐴𝐷, 

due to their increased value by employing value-based caching policy (see Eqn. 4.4).  

7.6.6 Hovering Required to Maximize Content Availability with JDFU Algorithm 

To explore the benefits and limits of JDFU algorithm, 10 F-UAVs are deployed in groups 

of 𝑁<Z = 2, 3	𝑎𝑛𝑑	5. For this experiment, 𝑁: = 20 and 𝑇(*'%;,(,#% = 10	𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Figure 7.8-7.11 

shows the impact of JDFU for varying 𝑇0#?-* and 𝑇𝐴𝐷.  

 

Figure 7.8. Content Availbility Without JDFU 
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Figure 7.9. Content Availbility with JDFU configuration 5 × 2 

 

Figure 7.10. Content Availbility with JDFU configuration 3 × 3 + 1 
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Figure 7.11. Content Availbility with JDFU configuration 2 × 5 

The observations are as follows. First, maximum content availability attained using JDFU 

algorithm is with the configuration 2 × 5. Here, F-UAVs are deployed in groups of 5. Since there 

are a total of 10 F-UAVs, there are 2 such groups. To fill the cache space of 5 F-UAVs, 500 unique 

contents are required. With 20 A-UAVs in the system, 𝜆 (duplication factor) is set to 0.75 so that 

the unique content in the system is 𝐶:. (1 − 𝜆). 𝑁: = 100. (1 − 0.75). 20 = 500. Therefore, F-

UAVs ferry 500 contents as opposed to 100 contents without JDFU deployment, which increases 

content availability. Second, next two JDFU configurations, viz. 3 × 3 + 1 and 5 × 2, are 

functionally similar to 2 × 5 except that the groups are of 3 F-UAVs and 2 F-UAVs respectively. 

F-UAVs ferry 300 and 200 contents for their respective configurations, which is less than 500 

contents with 2 × 5 configuration. This explains the reason for less availability with 3 × 3 + 1 

and 5 × 2 JDFU configurations as compared to 2 × 5 configuration. The lowest maximum 

availability is attained for no JDFU configuration. Third, for high hover time 𝑇0#?-*, JDFU 
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algorithm fails to provide more availability. This is due to the reduction in 𝑃<: which reduces the 

content availability (see Eqn. 7.1-7.4). 

7.6.7 JDFU with Different Inter-community Distances 

For the experiments so far, transition time, which represents the intercommunity distance, is 

kept fixed at 𝑇(*'%;,(,#% = 10	𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Figure 7.12 discusses the impact of JDFU with the context 

of inter-community distances. It considers three scenarios, namely, communities located nearby, 

moderately apart, and far apart, and their effects on availability while applying the aforementioned 

proposed mechanisms.  

 

Figure 7.12.   Benefits of JDFU for different intercommunity distances 

In Figure 7.12, red, black, and blue lines represent low, moderate and high 𝑇𝐴𝐷 values, 

respectively. Solid and dashed lines are used to depict less and more hovering durations 

respectively. The key observations from Figure 7.12 are as follows. First, employing JDFU boosts 

content availability for all combinations of inter-community distances and TADs except for very 

low TAD values. This can be seen in across Figure 7.12a-c. Second, the benefits of JDFU 

diminishes with increase in inter-community distances. This can be observed in Figure 7.12b and 

7.12c where group size of 3 F-UAVs adds to availability more for moderate inter-community 
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separation as compared to far apart communities. Third, with increase in TAD, the benefit of JDFU 

is substantial. This can be seen in Figure 7.12c where group size of 3 F-UAVs produce more 

content availability with 𝑇𝐴𝐷 = 300 seconds as compared to 𝑇𝐴𝐷 = 150 seconds. Finally, more 

hovering is beneficial for all inter-community distance scenarios except for very low TAD values 

[92], [135] (Figure 7.12a-c).  

All of these observations are attributed to accessibility of F-UAVs (refer Eqn. 7.1), which shows 

that increase in intercommunity distances decrease probability of accessibility (𝑃<:) whereas 

increase in TAD increases 𝑃<:. Increase in Low availability period (𝐿𝐴𝑃) can also be used as a 

measure to describe the reduction in accessibility of F-UAVs (Figure 4.5).  

It should be noted that JDFU benefits the availability of requested contents irrespective of the 

caching policy employed at the UAVs. However, performances can be enhanced if the caching 

policy is well formulated like value-based caching. Although the experiments are conducted for 

round-robin trajectory, JDFU can be used to improved content availability while using other 

trajectories as well. Therefore, joint deployment of ferrying UAVs and value-based caching policy 

are generalized algorithmic solutions for the caching decision problems in communication-

challenged environments.  

7.7 Summary and Conclusion 

The chapter explores trajectory characterization and planning in a UAV-aided networks 

for content dissemination in infrastructure-less systems. Cache-enabled UAVs serve communities 

of users in a disaster/war-stricken area by caching popular contents in order to reduce content 

downloading using satellites and other expensive vertical links. A framework is adopted in which 

two types of UAVs, namely anchor UAVs and ferrying UAVs, are deployed. Through analytical 

modeling and simulation experiments, the chapter establishes a trajectory design paradigm which 
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considers the user-specified tolerable access delay and the nature of the disaster/war-stricken 

region. It is shown that content availability can be maximized by appropriately choosing the hover 

time of ferrying UAVs at each community. It also introduces a novel Joint Deployment of Ferrying 

UAVs (JDFU) algorithm which can leverage user-specified tolerable access delay associated with 

requested content and intercommunity distances to improve content availability by deploying 

ferrying UAVs in groups. The system has been functionally validated, and performance is 

evaluated for different scenarios including stochastic content request generation and various 

ferrying UAV trajectories. The next chapter on this topic will include incorporating runtime, 

dynamic and adaptive mechanisms to learn trajectory-aware caching policies befitting ferrying 

UAV trajectories. Such learning-driven caching policies can be developed on-the-fly for all those 

design components so that content popularities, optimal caching, and the best UAV trajectories 

can be learnt online in time-varying disaster regions. 
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Chapter 8: Top-k Multi-Armed Bandit Learning for Trajectory-

Aware Caching in Swarms of Micro-UAVs 

Continuing from the trajectory considerations discussed in the previous chapter, this 

chapter advances our understanding of how Micro-Unmanned Aerial Vehicles (Micro-UAVs) can 

be effectively utilized for content dissemination in environments devoid of standard 

communication infrastructures due to disasters or conflicts. We now focus on enhancing the 

adaptability of these UAV systems through trajectory-aware, adaptive caching strategies. These 

strategies are designed to dynamically respond to changing conditions and demands in disaster-

stricken areas, leveraging the mobility and flexibility of Micro-UAVs. 

 

Figure 8.1. (a) Coordinated UAV system for content caching and distribution in environments 

without communication infrastructure; (b) Zipf Popularity Distribution 

8.1 Motivation 

Effective communication during disasters is crucial for efficient relief operations and 

timely dissemination of vital information. Micro-UAVs present a promising solution to the 

disruption of traditional communication networks, capable of navigating and servicing isolated or 

inaccessible areas. However, the potential of these UAVs is not fully realized without addressing 
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the challenges posed by their limited storage capacities and the dynamic nature of disaster 

environments. There is a compelling need for a content management system that not only 

understands the geographic and temporal aspects of content demand but also integrates the flight 

trajectories of the UAVs. Such a system would ensure that content delivery is both strategic and 

context-aware, maximizing the impact and utility of the UAVs deployed in these critical scenarios. 

8.2 Design Objective 

The primary objective of this chapter is to design a decentralized, trajectory-aware, adaptive 

content management system utilizing Micro-UAVs that optimizes content delivery to disaster-

affected populations. The following design goals will guide the development of this system: 

a) This chapter develops a trajectory-aware adaptive caching policy that not only responds to 

changes in content popularity and user demand but also incorporates UAV flight paths and 

operational constraints. This trajectory-aware approach ensures that caching decisions 

enhance the overall efficiency and content dissemination via cache-enabled UAVs. 

b) Utilizing a Top-k Multi-Armed Bandit (MAB) learning approach, the system adapts to real-

time changes in content popularity and user demand. This learning is informed by shared 

data across Micro-UAVs, optimizing content availability on each UAV. 

c) Furthermore, this chapter implements a Selective Caching Algorithm to effectively manage 

the trade-off between Micro-UAV storage and their accessibility via minimization of 

content redundancy. By ensuring that only essential content is stored and disseminated, 

this mechanism reduces the storage burden and improves the responsiveness of the UAVs 

to critical needs. It focuses on the joint geographical deployment of Micro-UAVs to 

manage this trade-off, ensuring that UAVs are deployed in a manner that maximizes 

content reach while considering their regional accessibility. 
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d) It analyzes how adaptive caching decisions influenced by the learning algorithms affect 

quality of service, particularly in terms of the Tolerable Access Delay (𝑇𝐴𝐷), which 

measures the urgency of different types of information and community expectations. 

e) The proposed mechanism enables the system to modify caching decisions in real-time, 

based on immediate feedback from the environment and user interactions. Such real-time 

adaptability accommodates sudden changes in content demand and UAV operational 

conditions. 

Through these objectives, this chapter aims to further develop the capabilities of Micro-UAVs in 

delivering critical information under challenging circumstances, ensuring that they operate not 

only as carriers of content but as smart, adaptive components of a larger disaster response strategy. 

This trajectory-aware caching model is intended to be robust yet flexible, capable of adapting to 

both the physical and informational landscapes of emergency scenarios. 

8.3 System Model 

8.3.1 UAV Hierarchy 

As shown in Figure 8.1, a two-tiered UAV-assisted content dissemination system is 

deployed. Each community is served by a dedicated A-UAV that uses a lateral wireless connection 

(i.e., WiFi etc.) to communicate with users in that community. The system introduces a set of low-

power-budget Micro-UAVs for the role of ferrying (MF-UAVs). These are unlike A-UAVs which 

operate with a much larger power budgets. MF-UAVs are mobile and possesses only lateral 

communication links such as Wi-Fi. Unlike the A-UAVs, the MF-UAVs do not possess expensive 

vertical communication interfaces such as satellite links etc. Effectively, the MF-UAVs act as 

content transfer agents across different user communities by selectively transferring content across 
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the A-UAVs through their lateral links.  

8.3.2 Content Demand and Provisioning Model  

The content popularity distribution, quality of services and content provisioning are 

outlined below. 

Content Popularity: Research has shown that user content request patterns often follow a Zipf 

distribution [91], [92], where the popularity of a content is proportional to the inverse of its rank, 

and is a geometric multiple of the next popular content. Popularity of content ‘𝑖’ is given as:  

𝑝6(𝑖) = 5
1
𝑖 :

6

r5
1
𝑘:

6

X∈A

� 																																																										(8.1) 

The Zipf parameter, 𝛼, determines the distribution’s skewness, while the total number of contents 

in the pool is represented by the parameter 𝑁. The inter-request time from a user follows the 

popular exponential distribution [91].  

Tolerable Access Delay: For each requested content, the user specifies a Tolerable Access Delay 

(𝑇𝐴𝐷) [70], which serves as a quality-of-service parameter and represents the amount of time the 

requesting user can wait before the content is downloaded. 

Content Provisioning: Upon receiving a request from one of its community users, the relevant 

A-UAV first searches its local storage for the content. If the content is not found, the A-UAV waits 

for a potential future delivery by a traveling MF-UAV. If no MF-UAV arrives with the requested 

content within the specified TAD, the A-UAV then proceeds to download it through its vertical 

link. Since vertical links such as satellite links are expensive, smart caching strategies that can 

make the content accessible from the UAVs can be effective in reducing content provisioning 

costs.  

8.4 Caching based on Content Pre-loading at A-UAVs  

This section discusses caching policies based on content pre-loading at A-UAVs that 
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assumes pre-assigned, static, and globally known content popularities. After understanding the 

limitations of these caching policies, the chapter designs a runtime, dynamic, and adaptive Top-k 

Multi-armed Bandit based caching mechanism, which is explained in a Section 8.5.  

8.4.1 Pre-loading Policies at Anchor UAVs (A-UAVs)  

The Fully Duplicated (FD) mechanism [91] is a naive approach that allows A-UAVs to 

download content from vertical links upon request by local users. FD has major limitations 

including content duplication, high vertical link download costs, and underutilization of UAV 

cache space. This means that with a cache size of 𝐶: contents per UAV, the total caching capacity 

of the system is limited to 𝐶:. Smart Exclusive Caching (SEC) [91], [92] overcomes those 

limitations of FD by storing a set number of unique contents in all A-UAVs and sharing them 

among communities via traveling MF-UAVs. Assuming globally known homogeneous content 

popularity across all user communities, the SEC mechanism divides the cache into two segments 

of size 𝐶SH and 𝐶S5. Segment-1 contains the top 𝐶SH = 𝜆. 𝐶: popular contents cached in all A-

UAVs, while Segment-2 contains unique contents 𝐶S5 = (1 − 𝜆). 𝐶:, where 𝜆 is a Storage 

Segmentation Factor. This results into 𝐶S5(#('& = 𝑁:. (1 − 𝜆). 𝐶: number of total Segment-2 

contents stored across all 𝑁: number of A-UAVs, and these can be shared across all user 

communities via the mobile MF-UAVs. This factor needs to be adjusted and fine-tuned based on 

various network, content, and demand conditions. Total number of contents in the system as per 

SEC is given as:   

𝐶;2; = 𝜆. 𝐶: + 𝑁:. (1 − 𝜆). 𝐶:																																																													(8.2) 

Popularity-Based Caching (PBC) [93] is employed when different communities have different 

content preferences. Considering the heterogeneous popularity sequence of a community, the PBC 

approach, like SEC, divides the cache space of the local A-UAV into two segments of size 𝐶SH and 
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𝐶S5. Segment-1 caches the most popular contents, which can be exclusive to a A-UAV (𝐶J) or 

non-exclusive i.e., may be cached across multiple A-UAVs (𝐶AJ), such that, 𝐶SH = 𝐶J + 𝐶AJ. To 

be noted that according to the exclusivity of contents in 𝐶SH, the total number of exclusive contents 

across all A-UAVs is termed as 𝐶J(#('&. Segment-2 is the same as that in SEC. Therefore, by 

modifying Eqn. 8.2, the total number of contents in the system can be expressed as:  

𝐶;2; = 𝐶AJ + 𝐶J(#('& + 𝑁:. (1 − 𝜆). 𝐶: ⇒ 𝐶;2; ≥ 𝜆. 𝐶: + 𝑁:. (1 − 𝜆). 𝐶:																	(8.3)  

Value-Based Caching (VBC) [93] further enhances the caching policy by storing top-valued 

contents in Segment-1 of the A-UAVs, where value of contents comprises of their popularity and 

tolerable access delay. Value of a content ‘𝑖’ is calculated as:  

𝑉(𝑖) = 𝜅𝜐∗ ×
𝑝6(𝑖)
𝑇𝐴𝐷(𝑖) ⇒ 𝑉(𝑖) = 𝜅 ×

𝑇𝐴𝐷4,%
𝑝6(1)

×
𝑝6(𝑖)
𝑇𝐴𝐷(𝑖)																																	(8.4) 

In this equation, 𝑝6(𝑖) represents the content’s popularity as per the Zipf distribution, 𝑇𝐴𝐷(𝑖) is 

the content’s tolerable access delay, 𝜅 is a scalar weight that increases as popularity decreases, and 

𝜐∗ is a normalization constant. The normalization constant is calculated for a given Zipf 

(popularity) parameter 𝛼 using the minimum possible 𝑇𝐴𝐷 (𝑇𝐴𝐷4,% ) and the maximum possible 

popularity, which is 𝑝6(1), i.e., 𝜐∗ = 𝑇𝐴𝐷4,% 𝑝6(1)⁄ . The value of 𝑉(𝑖) is bounded between [0,1], 

and it increases as 𝑝6(𝑖) increases and 𝑇𝐴𝐷(𝑖) decreases. The content’s value presents a holistic 

quantifiable measure for caching decision.  

The caching policy for micro-ferrying UAVs remains the same for all the above-discussed 

caching policies for A-UAVs, which will be discussed in the forthcoming Section 8.5.  An MF-

UAV ferries content across the A-UAVs it visits along its trajectory. The caching policy of A-

UAVs determines the utility of MF-UAVs where every A-UAV should maintain sufficient 
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contents in its cache space to maximize the MF-UAV cache space utilization.  

8.4.2 Limitations of Cache Pre-loading at A-UAVs 

   The caching policies discussed in this section rely on pre-loading content into A-UAVs, 

which has certain limitations. These approaches assume a priori knowledge of the popularity 

distribution of all the content in the system, which can hinder practical feasibility during 

deployment. Local popularity estimation of requested content within individual A-UAVs can 

partially alleviate this issue, but it cannot adjust the crucial storage segmentation factor (𝜆) (see 

Section 8.4.1) for maximizing availability across the entire system of A-UAVs and their 

communities. Collaborative global popularity estimation can be introduced, but it fails to capture 

locally meaningful demand heterogeneity across different communities.  

8.5 Decentralized Caching with Multi-Armed Bandit 

This section presents a plausible solution for the aforementioned shortcomings by using 

Top-k Multi-Armed Bandit learning for caching decisions at the A-UAVs. This facilitates faster 

learning and is adaptive to heterogeneous user demand patterns through information sharing via 

micro-UAVs. Based on the forthcoming mechanism, the caching policy for micro-ferrying UAVs 

is also modified to leverage their ubiquity, which is discussed later.  

8.5.1 Top-k Multi-Armed Bandit Learning  

Multi-Armed Bandit is a classic problem in reinforcement learning [130] and decision-

making. At each round 𝑡, an agent chooses an arm 𝐴( out of 𝑁 arms, denoted by 𝐴H, 𝐴5, . . . , 𝐴A, 

and observes a reward 𝑅(. Each arm 𝑖 has an unknown reward distribution with mean 𝜇, and 

variance 𝜎,5. The agent’s goal is to maximize the total expected reward 𝑅@ over 𝑇 rounds, where 
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𝑇 is the total number of rounds (time horizon):   

𝑅@ = 𝑚𝑎𝑥	r𝐸[𝑅(]
@

(IH

																																																																(8.5) 

This thesis uses a variant of MAB called Top-k Multi-Armed Bandit [128]. Here, the agent 

has to choose 𝑘 arms simultaneously out of a larger set of 𝑁 arms, and it receives a reward for 

each arm in the chosen set. This is in contrast to choosing only one arm in classical MAB 

approaches. The goal of the agent is to maximize the total cumulative reward 𝑅@ obtained over a 

finite time horizon 𝑇:  

𝑅@ = 𝑚𝑎𝑥	rr𝐸[𝑅(,,]
X

,IH

@

(IH

																																																						(8.6) 

8.5.2 Caching at A-UAV using Top-k Multi-Armed Bandit 

In the scenario of UAV-caching, there is a Top-k MAB agent in each A-UAV. Here, 

choosing each content for caching corresponds to choosing an arm. The ‘k’ of Top-k MAB agent 

corresponds to the caching capacity of A-UAV, i.e., 𝑘 = 𝐶:. The agent’s aim is to select ‘𝐶:’ 

contents out of the total pool of ‘𝑁’ contents to be cached in an A-UAV such that the content 

availability to the users can be maximized.  Here, the UAV-aided content dissemination system is 

the learning environment where the A-UAVs interact through their actions of choosing specific 

sets of contents to be cached. The feedback from the environment for the taken actions are in the 

form of rewards/penalties. Micro-ferrying UAVs play a crucial role in transferring information 

across the UAV-aided system, which helps in the computation of appropriate rewards/penalties, 

as shown in Figure 8.2. Actions are rewarded when cached contents are requested by the users and 

are served to the users within the given tolerable access delay or penalized otherwise. The top 𝐶: 

contents that accumulate most reward from the corresponding community and other communities 
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are chosen to be cached at a A-UAV. It should be noted that the Top-k MAB agents in the A-UAVs 

are provided with no a priori information about the content popularity at the corresponding user 

communities.  

 

 

A good choice for learning decision epoch in each Top-k MAB agent is according to the 

MF-UAVs accessibility at the corresponding community (i.e., an MF-UAV’s visiting frequency). 

This is because the MF-UAVs carry the content availability information from the communities in 

its trajectory. Such information is leveraged for learning at the A-UAVs’ Top-k MAB agents using 

appropriately designed multi-dimensional rewards. The agent learns to cache contents via the 

multi-dimensional reward structure which has three parts, namely, local, ferrying, and global 

rewards. Let 𝕃, 𝔽 and 𝔾 denote the sets of locally requested contents, contents requested at other 

communities, and contents requested across all communities, respectively. These contents can be 

served to the users directly by a A-UAV or indirectly via the visiting MF-UAVs. If a cached 

content is served to a user within the given TAD and an increase in content availability is observed, 

the content is rewarded. The type of reward is determined by the set to which the cached content 
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Figure 8.2. Top-k Multi-Armed Bandit Learning for Caching Policy at A-UAVs 
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belongs. The expressions for three types of rewards are given as follows: 

𝑅,,𝕃 = 𝕀H(𝑖 ∈ 𝕃, 𝛿𝕃 ≥ 0) + 𝕀LH(𝑖 ∉ 𝕃, 𝛿𝕃 < 0)																																								(8.7) 

𝑅,,𝔽 =
1

𝑁: − 1
r 𝕀H(𝑖 ∈ 𝔽, 𝛿𝔽 ≥ 0)
A-

nIH,no𝕏

+
1

𝑁: − 1
r 𝕀LH(𝑖 ∉ 𝔽, 𝛿𝔽 < 0)
A-

nIH,no𝕏

								(8.8) 

𝑅,,𝔾 =
1
𝑁:
r𝕀H(𝑖 ∈ 𝔾, 𝛿𝔾 ≥ 0)
A-

nIH

+
1
𝑁:
r𝕀LH(𝑖 ∉ 𝔾, 𝛿𝔾 < 0)
A-

nIH

																					(8.9) 

𝑤ℎ𝑒𝑟𝑒, 𝕀H(𝐴) = s		1, 𝑖𝑓	𝐴	𝑖𝑠	𝑡𝑟𝑢𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

The above equations compute the reward according to increase in availability due to content ‘𝑖’ 

cached at A-UAV ‘𝕏’. Here, 𝑅,,𝕃, 𝑅,,𝔽, and 𝑅,,𝔾 are local, ferrying, and global rewards respectively. 

The terms 𝛿𝕃, 𝛿𝔽 and 𝛿𝔾 correspond to the increase in local availability, ferried content availability 

and global availability respectively. Each type of reward is contingent upon the condition in the 

indicator function 𝕀H/LH(𝑖). The first terms in Eqns. 8.7, 8.8 and 8.9 represent the reward 

accumulated by caching content ‘𝑖’ at A-UAV ‘𝕏’, whereas the second term is the penalty 

associated with adverse condition. To be noted that 𝑅,,𝔽, and 𝑅,,𝔾 are higher if the content ‘𝑖’ is 

requested and served at more communities.  

Learning is achieved using a tabular method where a Q-table is maintained for all contents 

in the A-UAVs. The value corresponding to each content is called a Q-value or action-value [136]. 

The agent updates the Q-value for a content at every learning epoch according to the multi-

dimensional rewards in Eqns. 8.7-8.9 from the interaction with the environment (UAV-aided 

content dissemination system) and learns the best actions (contents cached). The recursive 

expression which explains Q-value update for a content ‘𝑖’ at A-UAV ‘𝕏’ is given as follows: 

𝒬(DH(𝑖) = (1 − 𝛼)𝒬((𝑖) + 𝛼 k𝑅(,,,𝕃 + 𝕀H(𝛿)v𝑅(,,,𝔽 + 𝑅(,,,𝔾wl																				(8.10) 
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Here, 𝒬((𝑖) represents the Q-value of a content ‘𝑖’ at 𝑡(0 epoch; 𝑅(,,,_ is the respective reward 

received by caching content ‘𝑖’; 𝛿 represents the condition for the indicator function 𝕀H(𝜇) which 

is 1 if micro-ferrying UAVs are present in the communication range of A-UAV ‘𝕏’ or 0 otherwise; 

𝛼 is a hyper-parameter which controls the learning rate. The Q-values for all contents are initialized 

with zero to ensure no a priori information for a Top-k MAB agent. Also, it ensures equal 

importance to all contents for caching decisions. As learning progresses, Q-values improve and 

best contents with highest Q-values are cached with the aim of maximizing accumulated reward 

which improves the caching policy and thus increases content availability.  

Note that there can be very large number, i.e.,  vAXw, of combinations of contents to be 

sampled by the Top-k MAB agent for caching. Consequently, the reward estimation for each 

individual content combination occurs infrequently, only after large intervals. This can lead to a 

weak estimates of reward distribution, as the global content population size 𝑁 increases. This issue 

is handled by empirically selecting 𝜖 and its decay rate in the 𝜖-greedy action selection policy 

[137]. To reduce the dependence of a caching policy on the choice of 𝜖, an Upper Confidence 

Bound (UCB) strategy is used [137]. The Top-k MAB agent maintains an upper confidence bound 

on the expected reward of each content, and selects the set of 𝐶: contents with the highest UCB at 

each epoch. 

𝒰((𝑖) = 𝒬((𝑖) + y
𝛼[ log(𝑡)
𝑁((𝑖)

																																																		(8.11) 

Here, 𝒰((𝑖) is the UCB of content ‘𝑖’ at epoch ‘𝑡’; 𝒬((𝑖) is the updated Q-value at epoch ‘𝑡’; 𝛼[ 

is a hyperparameter that controls the degree of exploration; 𝑁((𝑖) is the number of time content ‘𝑖’ 

has been requested till epoch ‘𝑡’. The first term represents the reward estimate, and the second 

term depicts the uncertainty in reward estimate. UCB selects the content that has high potential for 
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high reward but hasn’t been requested frequently. This promotes exploration without externally 

inducing an exploration parameter such as 𝜖. For this chapter, 𝒰((𝑖) is used in place of 𝒬((𝑖) to 

cache content ‘𝑖’, as shown in Step 7-14 in Algorithm 8.1.  

The following pseudo code explains the caching policy at a micro-ferrying UAV with a 

Top-k MAB agent.  

Algorithm 8.1 Caching policy at a A-UAV with Top-k MAB Learning  

1. Initialization: 

a. N: Total contents in the system 

b. 𝐶:: Caching capacity of an A-UAV 

c. 𝒰: Size |𝐶:| initialized with 0’s (Q-table with UCB) 

d. 𝛼: Learning rate for Q-table update 

e. 𝛼[: Degree of exploration (in UCB) 

2. Load A-UAV’s cache with 𝐶: randomly chosen contents. 

3. while True: 

4.     Check for learning epoch at A-UAV i.e., at 𝑡(0 epoch 

5.     if True then do 

6.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶:) do 

7.             Get reward 𝑅(,,,_	 \\ according to Eqns. 8.7-8.9 

8.             Update 𝒰(𝑖)       \\ from Eqns. 8.10 and 8.11 

9.         end for 

10.         𝑣𝑎𝑙𝑢𝑒	 = 	𝒄𝒐𝒑𝒚(𝒰) \\ make a copy of UCB values  

        \\ Reload contents (Select arms) 

11.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶:) do 
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Algorithm 8.1. (cont’d) 

12.              𝑐4') = 𝒂𝒓𝒈𝒎𝒂𝒙(𝑣𝑎𝑙𝑢𝑒) 

13.              Load 𝑐4') to A-UAV 

14.              Set 𝑣𝑎𝑙𝑢𝑒[𝑐4')] = −∞ 

15.         end for 

16.     end if 

17. end while 

8.5.3 Proof of convergence 

Within a finite time horizon, the Top-k MAB agent at a A-UAV converges to a caching 

policy which approaches the benchmark caching policy asymptotically. The proof of convergence 

lies in the intrinsic regret minimizing characteristics of MAB [138], which is shown below.  

𝐶: = {𝑖|𝑖 ∈ 𝑁, 1 ≤ 𝑖 ≤ 𝑘} = argmin
X

v𝑅𝑒𝑔𝑟𝑒𝑡(𝑇)w 

= argmin
X

¨r¨max
X
r𝑅(,,∗
X

,IH

−r𝑅(,,

X

,IH

ª
@

(IH

ª			(8.12) 

where, 𝑇 is the total number of epochs (time horizon); 𝑘 is the number of contents cached at each 

epoch; 𝑖∗ represents the optimal caching action; 𝑖 is the caching action selected by the Top-k MAB 

agent at 𝑡(0 epoch. Eqn. 8.12 shows the difference between the reward obtained by the algorithm 

and the reward obtained by caching with benchmark policy. Post-convergence, the instantaneous 

regret should be minimum, which is experimentally proven in this chapter. Ideally for a perfectly 

designed reward structure the regret should asymptotically vanishes, i.e., lim
@→u

v-/*-((@)
@

= 0 [129]. 

The convergence of estimated rewards (Q-values) to the true values (expected reward) in 

a MAB setup, including Top-k MAB scenarios, can be analyzed using the Law of Large Numbers 

(LLN) [140] and concepts of stochastic approximation. For simplicity, this work initially considers 
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the proof for a single arm and then extend the idea to all ‘𝑘’ arms in the Top-k selection. According 

to weak law of large numbers [141], the estimated value of a content ‘𝑖’ will be at a minute offset 

‘𝜖,’ from its true value, which is shown in the following expression: 

« lim
@→u

𝒬(DH(𝑖)« − 𝜇,∗ < 𝜖, ⇒ ¬ lim
@→u

1
𝑛r­𝑅(,,,𝕃 + 𝕀H(𝛿)v𝑅(,,,𝔽 + 𝑅(,,,𝔾w®

%

(IH

¬ − 𝜇,∗ < 𝜖, 						(8.13) 

Here, a single content/arm ‘𝑖’ has a true value of 𝜇,∗ , and 𝒬(DH(𝑖) represent the estimated reward 

(Q-value) of content ‘𝑖’ after it has been selected ‘𝑛’ times. The reward is taken from the second 

term (weighted reward) of Eqn. 8.10. For convergence, the weight ‘𝛼’ is chosen empirically in 

such a way that it satisfies the Robbins-Monro stochastic approximation condition [139] for non-

constant ‘𝛼’, namely, ∑ 𝛼%(𝑖) = ∞%  and ∑ 𝛼%(𝑖)5 < ∞% . To be noted that the weight ‘𝛼’ is 

manifestation of ‘1/𝑛’ in Eqn. 8.13. Now, extending the concept to all top ‘𝑘’ contents, Eqn. 8.13 

can be modified using Eqn. 8.6: 

¬ lim
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	(8.14) 

The convergence proof for each of the top ‘𝑘’ contents individually follow the same logic 

as for the single content, provided each content is sampled infinitely often. Each content, including 

the top ‘𝑘’ contents, must be selected infinitely often as the number of total selections 𝑇 → ∞. 

This requirement is met in practice by exploration strategies (like 𝜖-greedy/UCB) that ensure all 

arms are explored sufficiently over time. 

 With an assumption on the success of the Top-k MAB based caching policy, let’s say that 

the ideal sequence of contents are cached at A-UAVs, which is 𝐶: = {𝑖∗|𝑖∗ ∈ 𝑁, 1 ≤ 𝑖∗ ≤ 𝑘}. For 
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this caching decision, ∑ 𝜖,X
,IH = 0, according to the expression given in Eqn. 8.14. Therefore, the 

instantaneous regret post-convergence can be derived from Eqn. 8.12 and 8.14, as follows: 

max
X
r­𝑅(,,∗,𝕃 + 𝕀H(𝛿)v𝑅(,,∗,𝔽 + 𝑅(,,∗,𝔾w®
X

,IH

−r­𝑅(,,,𝕃 + 𝕀H(𝛿)v𝑅(,,,𝔽 + 𝑅(,,,𝔾w®
X

,IH

≈ 0				(8.15) 

The evidence of convergence, supporting the above expression is shown in Figure 8.7, 

where near-optimal contents cached at A-UAVs leads to ∑ 𝜖,X
,IH ≈ 0. According to the learnt 

caching policy, the cached contents can boost content availability at their respective communities 

as well as at other distant communities via MF-UAVs. 

8.5.4 Selective Caching at Micro-Ferrying UAVs (MF-UAVs) 

Ideally, the purpose of the MF-UAVs is to ferry around a subset of 𝐶J(#('& + 𝑁:. (1 − 𝜆). 𝐶: 

number of contents stored across 𝑁:	number of A-UAVs (see Section 8.4). Due to the limitation 

of per-MF-UAV caching space (i.e.,	𝐶h<), its caching policy should be determined based on its 

trajectories, learnt caching policy at A-UAVs, content request patterns, and the 𝑇𝐴𝐷𝑠 associated 

with the contents to be cached.  

 

Figure 8.3. Algorithmic selection of cached contents at MF-UAVs in conjunction 

with Top-k Multi-Armed Bandit learning at A-UAV 
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MF-UAV caching policy is explained in the pseudocode below. 

Algorithm 8.2 MF-UAV Caching Algorithm with Top-k MAB learning-based caching policy at 

A-UAVs 

1. Input: Total A-UAVs in its trajectory, 𝑇𝐴𝐷, next A-UAV ‘𝑥’, present A-UAV ‘𝑥 − 1’  

2. Output: 𝐶h< contents for MF-UAV ‘𝑦’ 

3. Caching at A-UAVs using Top-k MAB policy (Algorithm 8.1) 

4. while True: 

5.       if MF-UAV leaving for next A-UAV ‘𝑥’ then do 

                // Contents that are not in the future visiting A-UAV 

6.             Update ferrying content knowledge 

                // Function call from the present A-UAV ‘𝑥 − 1’ 

7.             Call content-wise_TAD ( )   

                // Present A-UAV sends MF-UAV visiting frequency             

8.             Call MF-UAV_visiting_frequency ( )   

                // Check what content the last MF-UAV ferried 

9.             Call Check_previous_MF-UAV_roster ( )  

                  Return roster contents with respective TADs  

                // Compute request interval for last MF-UAV roster 

10.             Calculate least popular content’s request interval 

11.             Check if request time is less than its TAD and  

              MF-UAV visiting duration 

12.             if True then do 

13.                   Cache same roster 
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Algorithm 8.2. (cont’d) 

14.             else 

15.                   Cache next best roster 

16.             end if 

17.             Check if other MF-UAVs flying with MF-UAV ‘𝑦’ 

18.             for 𝑙 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(MF-UAVs flying together) do 

19.                 for 𝑘 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV ‘𝑥’ cache 𝐶:)) do 

20.                       Check if 𝑘 in 𝐶h< cache space of MF-UAV ‘𝑦’ 

21.                       if True then do  

22.                           Replace ‘𝑘’ with highest value content  

                             from 𝐶:)LH not cached in MF-UAV ‘𝑦’  

                             and A-UAV ‘𝑥’ 

23.                       end if 

24.                 end for   

25.                 Cache next best roster  

26.              end for 

27.       end if 

28.       Update next A-UAV ‘𝑥’, present A-UAV ‘𝑥 − 1’  

29. end while 

The role of MF-UAVs is to ferry contents from the previously visited A-UAVs to the future 

visiting A-UAV such that the future visiting A-UAV gets the benefit of contents cached at other 

A-UAVs. In Algorithm 8.2, this process is described in detail. Figure 8.3 shows the impact of this 
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collaborative algorithm. 

Consider a situation in which an MF-UAV ‘𝑦’ is ready to leave the A-UAV ‘𝑥 − 1’. Before 

caching contents, it needs the following information from A-UAV ‘𝑥 − 1’; 1) What are the 

contents eligible for ferrying; 2) What is the MF-UAVs visiting frequency; 3) What roster of 

ferrying content did the last MF-UAV ferry, where roster is the grouping of contents based on their 

popularity or value; 4) Are the next roster contents likely to be requested within the given TAD; 

and 5) Are MF-UAVs flying in close proximity with each other. Based on these information MF-

UAV ‘𝑦’ selectively caches contents while maintaining diversity in the contents cached by other 

MF-UAVs in its proximity. This means, if MF-UAVs are flying while maintaining proximity with 

each other or in groups, they ferry contents from consecutive rosters. To be noted that the size of 

a roster is same as an MF-UAV’s cache size. Therefore, if MF-UAVs are flying in groups of 𝑁h<Z  

(group size), then the number of contents cached by the group is 𝑁h<Z × 𝐶h<. Such selective 

caching policy at MF-UAVs ensures content availability maximization by avoiding redundant 

cache duplication.  

8.6 Experimental Results and Content Dissemination Performance 

Simulation experiments are performed to analyze the performance of the proposed Top-k 

MAB learning-based caching mechanism and selective caching at the micro-ferrying UAVs. An 

event-driven simulator accomplishes content request generation while maintaining an intra-event 

interval according to exponential distribution and following a Zipf popularity distribution (refer to 

Eqn. 8.1). To capture heterogeneity in content popularity sequence at different communities, 

contents are swapped with pre-decided probability [142] and the difference between the sequences 

are determined using Smith-Waterman Distance [125]. Default experimental parameters for the 

proposed Top-k MAB learning based caching and cache pre-loading policies are listed in Table 
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8.1.  

 

The performance evaluation of the proposed mechanism is accomplished via the following metrics. 

   Content Availability (𝑃'?',&): Defined as the ratio between cache hits and generated requests for 

a given tolerable access delay. Cache hits are the content provided to the users from the contents 

cached in the UAV-aided caching system (without download). Therefore, content availability 

indirectly indicates the content download cost of a systems as well. 

Cache Distribution Optimality (CDO): This determines the optimality of the learnt caching 

policy in terms of the caching sequence. Jaro-Winkler Similarity (JWS) [143] is used to represent 

CDO, by computing the similarity between the content sequence from the learnt caching policy 

and content sequence according to cache pre-loading. It is computed by calculating the number of 

matches, number of transpositions required within the matches and the similarity in prefix of both 

Table 8.1. Default Values for Model Parameters 

# Variables Default 
Value 

1 Total number of contents, 𝐶 2000 

2 Number of A-UAVs, 𝑁: 4 

3 Number of MF-UAVs, 𝑁h< 8 

4 A-UAV’s Cache space (as number of contents), 𝐶: 200 

5 MF-UAV’s Cache space (as number of contents), 𝐶h< 25 

6 Poisson request rate parameter, 𝜇 (in request/sec) 1 

7 Hover rate of MF-UAV, 𝑅>#?-* = 𝑇>#?-*/𝑇@*'n-+(#*2 1/6 

8 Transit rate of MF-UAV, 𝑅@*'%;,( = 𝑇@*'%;,(/𝑇@*'n-+(#*2 1/12 

9 Zipf parameter (Popularity), 𝛼 0.4 

10 Micro Ferrying UAV Trajectory Round-robin 
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sequences. It is a normalized similarity measure where 1 represents optimal caching and 0 means 

non-optimal caching. 

Access Delay (𝐴𝐷): Performance of Top-K MAB model and selective caching policy for micro-

ferrying UAVs is also evaluated based on the access delay which is the end-to-end delay between 

the generation of content request and its provisioning from the cached contents in the UAVs. This 

chapter reports the epoch-wise average access delay to show the improvement in caching policy 

as learning progresses.   

 

Figure 8.4. Increase in Content Availability with Top-k MAB and Selective Caching Policy 

8.6.1 Effect of Exploration Strategies on Learnt Caching Policy 

In order to understand the viability of the proposed Top-k MAB learning-based caching 

policy in scenarios with demand heterogeneity, two type of content popularity sequence are used. 

This is achieved with adjacent communities having different popularity sequences. For UCB 

exploration strategy, the degree of exploration is set to 𝛼[ = 2. Also, to show the effectiveness of 

selective caching at micro-ferrying UAVs (MF-UAVs), TAD Ratio 𝑅@:E for contents {51 − 75} 

are kept lower than the default 𝑅@:E i.e., 1/8	. To be noted that TADs are represented as a ratio 

Here, 𝜂𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 	𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 	𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦

About 5% increase in
content availability with
Top-k MAB
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with respect to trajectory time (𝑇@*'n-+(#*2) to ensure generalizability of the proposed algorithms. 

Figure 8.4 and 8.5 shows the convergence behavior of the learnt caching policy with Top-k MAB 

model at the A-UAVs, and selective caching at the MF-UAVs. The convergence behavior is shown 

in terms of content availability from the learnt caching policy.  

 

Figure 8.5. Responsiveness of Selective caching to user demand i.e., TAD 

The observations from Figure 8.4 and 8.5 are as follows. First, the figure shows that by 

employing Top-k MAB agent at every A-UAV and selective caching at MF-UAVs, a caching 

policy can be learnt which can provide content dissemination performance closer to the benchmark 

performance [142]. The algorithm is able to leverage the multi-dimensional reward structure, as 

explained in Eqns. 8.7-8.9, to learn the caching policy on-the-fly (see Section 8.5.2). Second, the 

selective caching policy at micro-ferrying UAVs leverages the shared information between 

themselves and with the A-UAVs to boost the content availability closer to the benchmark 

performance by approximately 9% (see Figure 8.5). It utilizes the currently visiting A-UAV’s 

caching information and the preceding MF-UAV’s caching decision to algorithmically select its 

own contents for caching, which is also shown in Figure 8.3. Such selective caching will reduce 

With lower 𝑅𝑇𝐴𝐷 for some contents, selective
caching policy modifies the Micro-ferrying
UAV caching roster accordingly.

About 9% increase in
content availability
with Top-k MAB and
Selective Caching
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the redundancy of multiple copies of the same content available through multiple sources at the 

same time. Difference in the effectiveness of selective caching can be observed in Figure 8.4 and 

8.5, where caching decisions at MF-UAVs differ due to the difference in 𝑅@:E in both scenarios. 

Third, when the agent uses UCB exploration strategy, during the initial learning epochs the content 

availability increases promptly due to high upper confidence value of all contents, which avoids 

excessive exploitation. This is due to low sampling of requests. As learning progresses, the sparse 

request for unpopular contents keeps the upper confidence value high which maintains consistent 

exploratory behavior. Figure 8.4 and 8.5 shows that such exploration strategy alone helps to boost 

the content availability closer to the benchmark performance by approximately 5% more than 

popular estimation-based methods [78], [79], [80], [81].  

 

Figure 8.6. Delay with Top-k MAB and Selective Caching Policy 

Similarly, Figure 8.6 shows the convergence behavior of the Top-k MAB learning-based 

caching agent at the A-UAVs and selective caching at micro-ferrying UAVs in terms of access 

delay. It is observed that as learning progresses, the access delay for requested contents reduces 

while the content availability increases. This shows the improvement in learnt caching policy over 

With Top-k MAB and
Selective caching policy, the
content access delays are
substantially less than the
TAD of 600 seconds.

With TAD of 450 seconds
for contents {51-75}, the
learnt caching policy
adjusts to provide lower
content access delay.
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the learning epochs and its effect on content access delay. The best reduction in access delay is 

observed when Upper Confidence Bound (UCB) exploration is used at the Top-k MAB agent of 

A-UAVs and selective caching is applied at micro-ferrying UAVs.  

8.6.2 Cache Similarity of Learnt Sequence with Best Sequence 

The effects of learning on the cached content sequence are demonstrated in Figure 8.7. It 

plots Cache Distribution Optimality (CDO) of the cached content sequences for all the A-UAVs 

in terms of Jaro-Winkler Similarity (JWS).  

 

Figure 8.7. Learnt cached content sequence’s similarity with benchmark sequence 

The key observation are as follows. First, the average 𝐶𝐷𝑂 between the benchmark caching 

sequence from cache pre-loading policy (see Section 8.4) and the cached content sequences learnt 

by the Top-k MAB agents at A-UAVs converge near 0.9, although with a certain variance. 

Physically, this represents higher degree of similarity after convergence, where 1 indicates 

complete similarity and 0 implies no similarity. Second, the cached contents improve over epochs 

as learning progresses. Lower 𝐶𝐷𝑂 values after the initial epochs signify that the A-UAVs have 

no a priori local or global content popularity information. As the MAB agents learn, over epochs 

Initial oscillations
with all caching methods
indicate no a-priori content
popularity information

The post-convergence oscillations show
the sensitive Q-values of the contents
ferried by micro-ferrying UAVs.
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of generated content requests, the cached contents in the A-UAVs become more similar to the best 

caching sequence. Third, 𝐶𝐷𝑂 is an indirect representation of the storage segmentation factor (𝜆), 

which is used to decide the segment sizes according to cache pre-loading policies [93]. A higher 

𝐶𝐷𝑂 implies that, along with learning, the caching policy, the Top-k MAB agents learn to emulate 

the said segmentation behavior. Finally, the partial dissimilarity of the cached content sequence 

can be ascribed to the uncertainty (or regret) associated with the Q-values of contents with low 

popularity. Also, this leads to an oscillatory convergence of 𝐶𝐷𝑂 for the A-UAVs.  

The impacts of selective caching at micro-ferrying UAVs can be distinctly seen in Fig 8.7. 

Selective caching at the MF-UAVs along with Top-k MAB caching agent at A-UAVs leads to a 

𝐶𝐷𝑂 of nearly 0.9. Note that this depends on effective caching capacity of the MF-UAVs, which 

is dictated by the 𝑇𝐴𝐷s associated with content requests and the MF-UAVs visiting frequency at 

A-UAVs (refer Algorithm 8.2). The dependance of contents’ Q-values on such information also 

adds to the post-convergence oscillation. To be noted that for the computation of 𝐶𝐷𝑂, the 

benchmark caching sequence is derived by considering the same effective caching capacity as the 

selective caching algorithm at the micro-ferrying UAVs.  

8.6.3 Leveraging the Micro-Ferrying UAVs for Better Effective Caching Capacity 

To elaborate on the ability of selective caching at micro-ferrying UAVs to exploit effective 

caching capacity, experiments are conducted with different TAD Ratios 𝑅@:E. The comparison of 

performance is done with a scenario where there is one relatively larger ferrying UAV (F-UAV). 

Such F-UAVs can have sophisticated communication equipment as payload including a larger 

caching capacity (≥ total caching capacity of all MF-UAVs). The content availability according to 

the learnt caching policy with 24 MF-UAVs is shown in Figure 8.8. The remaining parameters are 
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set according to the default values provided in Table 8.1.  

 

Figure 8.8. (a) Best learnt 𝐶h<
-.. for 𝑅@:E = 1/6, (b) for 𝑅@:E = 1/8 

Following observations can be made from Figure 8.8 a. First, for a given 𝑅@:E =1/6, the 

best content availability achieved is with effective caching capacity of 4. 𝐶h< i.e., four times the 

caching capacity of an MF-UAV. Physically, this means that the 4 MF-UAVs fly very close to 

each other. Within the fleet of such closely flying MF-UAVs none of the pending content requests, 

for the ones cached at the MF-UAVs, expire by exceeding their respective TADs. Second, content 

availability increases with increase in effective caching capacity up to a certain point beyond which 

it decreases with further increase in effective caching capacity. This is due to two opposing effects: 

a) low availability period [91] for a content increases with increase in effective caching capacity 

which eventually decreases content availability, and b) with increase in effective caching capacity 

content availability increases due to more types of contents cached at MF-UAVs. Therefore, 

selective caching at the MF-UAVs handles the trade-off between these opposing behaviors by 
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choosing a caching policy that increases the effective caching capacity without increasing the low 

availability period of contents cached at MF-UAVs. 

Note that the previous explanation is valid for a particular 𝑅@:E. The best learnt effective 

caching capacity differs when the 𝑇𝐴𝐷𝑠 associated with the content requests change. This is 

demonstrated in Figure 8.8 b where due to a decrease in 𝑅@:E from 1/6 to 1/8, the best learnt 

effective caching capacity decreases. Therefore, it can be said that the learning capability of the 

Top-k MAB agents at A-UAVs have an indirect dependence on the effective caching capacity of 

the MF-UAVs.  

This also emphasizes the motivation behind employing micro-UAVs in the role of ferrying 

contents. With a given cost budget for UAVs in a content dissemination system, micro-UAVs 

provide flexibility in caching policies such that their effective caching capacity can be altered to 

fit to the users’ needs. This facility cannot be leveraged with relatively larger and pricier UAVs, 

especially under equipment cost constraints.  

8.7 Summary and Conclusion 

In this chapter, a micro-UAV aided content dissemination system is proposed which can 

learn caching policies on-the-fly without a priori content popularity information. Two types of 

UAVs are introduced for content provisioning in a disaster/war-stricken scenario viz. anchor 

UAVs and micro-ferrying UAVs. Cache-enabled anchor UAVs are stationed at each stranded 

community of users for uninterrupted content provisioning. Micro-ferrying UAVs act as content 

transfer agents across the anchor UAVs. A decentralized Top-k Multi-Armed Bandit Learning-

based caching policy is proposed to ameliorate the limitation of existing caching methods. It learns 

the caching policy on-the-fly by maximizing the estimated multi-dimensional reward for the 

increase in local and global content availability. It is shown that a Top-k MAB learning based 
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caching policy achieves a content availability of »82% of maximum achievable content 

availability. To improve the Q-value estimates, Selective Caching Algorithm is introduced at 

micro-ferrying UAVs. This method combines the shared information between anchor UAVs and 

micro-ferrying UAVs to reduce redundant copies of contents and to produce a better estimate of 

top popular content at a community. Selective caching at micro-ferrying UAVs along with Top-k 

MAB learning-based caching policy at anchor UAVs boosts the content availability to »87% of 

maximum achievable content availability. With the proposed caching policies, a scaled-up micro-

UAV aided network is shown to attain a content availability of nearly 95% of maximum achievable 

content availability. Future work on this research includes algorithmically coping with time-

varying content popularity and adaptive trajectory planning in the presence of operational 

unreliabilities of the UAV. Furthermore, the next experiments will focus on model sharing 

approaches like Federated Learning in the presence of selective caching at Micro-Ferry UAVs. 
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Chapter 9: Federated Multi-Armed Bandit Learning for Trajectory-

aware Caching Policy in Content Dissemination System using 

Swarm of UAVs 

In the aftermath of large-scale disasters such as earthquakes, floods, and armed conflicts, 

survivors are often left in isolated regions without functional communication infrastructure. 

Traditional content dissemination mechanisms become ineffective, creating an urgent need for 

adaptive and resilient alternatives. Building upon the trajectory-aware caching framework 

developed in Chapter 8, this chapter introduces a federated, learning-driven solution that further 

enhances content availability in fragmented environments. 

Specifically, this chapter presents a Federated Multi-Armed Bandit (FedMAB) learning 

approach where UAVs collaborate by sharing learned models rather than raw user data. Through 

this strategy, UAVs jointly optimize their caching decisions while preserving their nuanced local 

content caching perspective and minimizing overgeneralization of the shared models. The 

architecture builds upon a two-tier structure of anchor UAVs (A-UAVs) and micro-ferrying UAVs 

(MF-UAVs) that incorporates selective caching strategies and federated model aggregation to 

dynamically adapt to varying user demands, diverse content priorities, and tolerable access delays. 

9.1 Motivation 

Although decentralized learning through Multi-Armed Bandit algorithms enhances content 

caching decisions at individual UAVs, isolated learning can result in slow convergence and weak 

reward estimation, especially under heterogeneous and dynamic content demand. Furthermore, 

trajectory-aware caching strategies, while effective, remain vulnerable to operational uncertainties 

and shifting user preferences. 
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This chapter is motivated by the need to accelerate learning convergence, to enhance 

caching robustness across a geographically distributed UAV swarm, and to ensure coordinated 

decision-making without relying on centralized control. Federated Multi-Armed Bandit Learning 

addresses these challenges by allowing UAVs to share their learned models that enables rapid 

adaptation, scalable decision-making, and resilient operation in disaster-affected regions. 

9.2 Design Objective 

The primary objective of this chapter is to create a distributed and federated learning framework 

that enables UAVs to dynamically learn and optimize trajectory-aware caching policies in 

environments where conventional communication infrastructure is unavailable. 

a) First, this chapter designs a Federated Multi-Armed Bandit (FedMAB) based caching 

framework that enables UAVs to collaboratively refine their caching decisions while 

maintaining the privacy of user demand information. 

b) Second, it introduces a multi-dimensional reward structure that captures local content 

demand, ferrying-based dissemination patterns, and global content popularity to guide 

effective and adaptive caching strategies. 

c) Third, the chapter presents a divergence-based weighted aggregation method to ensure that 

UAVs experiencing similar content request patterns contribute more significantly during 

federated model updates, thereby improving the alignment between local and global 

caching priorities. 

d) Fourth, it designs a Selective Caching Algorithm for micro-ferrying UAVs (MF-UAVs), 

which strategically minimizes content redundancy across the swarm while maximizing 

overall content accessibility for isolated communities. 
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e) Fifth, the chapter develops a controlled latency mechanism for federated model updates 

that balances learning responsiveness with caching stability, ensuring that UAVs can adapt 

efficiently while maintaining high system performance. 

f) Finally, it validates the designed FedMAB framework through extensive simulation 

experiments and analytical modeling, demonstrating its effectiveness in enhancing content 

availability, reducing access delay, improving cache optimality, and enabling adaptability 

under changing user preferences. 

Through these objectives, this chapter aims to establish a robust, scalable, and resilient UAV-aided 

content dissemination system that responds intelligently to real-world challenges encountered 

during disaster recovery operations. 

9.3 System Model 

9.3.1 UAV Hierarchy 

As shown in Figure 9.1, a two-tiered UAV-assisted content dissemination system is deployed. 

Each community is served by a dedicated A-UAV, which operate with much larger power budgets 

compared to Micro-UAVs described next. The A-UAVs use lateral wireless connections (i.e., 

WiFi etc.) to communicate with users in that community. A-UAVs can download content via an 

expensive vertical link such as satellite-based internet. The system introduces a set of low-power-

budget Micro-UAVs [63] for the role of ferrying (MF-UAVs). MF-UAVs are mobile and 

possesses only lateral communication links such as Wi-Fi. Unlike the A-UAVs, the MF-UAVs do 

not possess expensive vertical communication interfaces such as satellite links etc. Effectively, the 

MF-UAVs act as content transfer agents across different user communities by selectively caching 

and transferring content across the A-UAVs through their lateral links. 
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Figure 9.1. Coordinated UAV system for content dissemination in environments without 

communication infrastructure 

Discussion: The concept of hierarchical UAV structuring and content clustering is aligned with 

the principles of efficient content dissemination. While the designed framework does not explicitly 

impose a higher-layer structure for clustering communities, aspects of hierarchical coordination 

already emerge through the two-tier UAV system. The Anchor UAVs (A-UAVs) inherently serve 

as local caching coordinators for their respective communities, while Micro-Ferrying UAVs (MF-

UAVs) transport content across different regions, effectively creating a layered distribution system 

without rigid structuring. 

Additionally, content placement decisions in FedMAB, to be discussed later, naturally result in 

implicit clustering, as the learning model prioritizes frequently requested content within specific 

regions which ensures that communities receive relevant cached data without requiring manual 

segmentation. This data-driven approach allows the system to dynamically adapt to evolving 

content access patterns rather than relying on predefined clusters. 
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The model also integrates an implicit indexing mechanism through its Q-value system, also to 

be discussed in the forthcoming sections, where content importance is dynamically ranked based 

on request patterns. This ranking ensures that MF-UAVs retrieve and distribute the most relevant 

content without needing a predefined indexing structure.  

9.3.2 Content Demand and Provisioning Model 

The content popularity distribution, quality of services and content provisioning are outlined 

below. 

Content Popularity: Research has shown that user content request patterns often follow a power 

law distribution such as the Zipf distribution [91]. In Zipf distribution, the popularity of a content 

is proportional to the inverse of its rank, and is a geometric multiple of the next popular content. 

Popularity of content ‘𝑖’ is given as:  

𝒫6(𝑖) = 5
1
𝑖:

6

r5
1
𝑘:

6

X∈=

� 																																																														(9.1) 

The Zipf parameter 𝛼 determines the distribution’s skewness, while the total number of contents 

in the pool is represented by the parameter 𝐶. The inter-request time from a user follows the 

popular exponential distribution [91].  

Note that Zipf distribution is widely recognized as an appropriate model for content popularity, 

with empirical validation across multiple domains, including publications, online video platforms, 

social media, and recommendation systems such as Netflix, Instagram and more. This distribution 

effectively captures the heavy-tailed nature of content requests, where a small fraction of items 

accounts for the majority of demand. 
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Figure 9.2. Content Delivery Process 

Tolerable Access Delay (TAD): For each generated request, a TAD [70] is specified. TAD is a 

Quality-of-Service parameter that indicates the duration that a user is ready to tolerate before its 

requested content must be provisioned. Operationally, if a content is not available from the UAVs 

within the specified TAD, it must be downloaded from a central server using the expensive vertical 

links of A-UAVs. To be noted that 𝑇𝐴𝐷 is request specific in which it is different for different 

contents depending on the requesting user’s urgency.  

Content Provisioning: Upon receiving a request from one of its community users, the locally 

deployed A-UAV first searches its local storage for the content. If the content is not found, the A-

UAV waits for a potential future delivery by a traveling MF-UAV. If no MF-UAV arrives with 

the requested content within the specified TAD, the A-UAV then proceeds to download it through 

its vertical link. Since vertical links such as satellite links are expensive, smart caching strategies 

that can make the content accessible from the UAVs can be effective in reducing the overall 

content provisioning costs. 

9.4 Content Caching Problem Formulation 

The caching problem focuses on selecting which contents should be stored at UAVs to maximize 

content availability while considering storage constraints, access latency, and varying user demand 
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across communities. For a given number of Anchor and Micro-ferrying UAVs, the caching 

problem at the UAVs can be defined as follows. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
∀%∈𝒩

¶
1
𝒩 ¯rℙ%'?',&
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°¹																																																																																				(9.2) 
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𝑎𝑛𝑑	𝒯𝒽;-*?- − 𝒯𝒽
*-y ≤ 𝑇𝐴𝐷𝒽 , 𝒽 ∈ 	ℋ%, ∀	ℋ% = {1,2,3,⋯ }																	(9.4) 

where, ℙ%'?',& =
ℋ0
ℛ0

, ℋ% is the number of contents provisioned at community ‘𝑛’ by the UAV 

system (both A-UAVs and MF-UAVs), ℛ% is the total number of requests made by users at 

community ‘𝑛’, 𝒩 is the number of commmunities, 𝐶 is the total contents in pool, 𝐶: is the cache 

of each A-UAV, 𝐶h< is the cache of MF-UAVs, 𝑁: is the number of A-UAVs, 𝑁h< is the number 

of MF-UAVs, 𝒯𝒽
*-y is the time at which a content ‘𝒽’ is requested by a user, 𝒯𝒽;-*?- is the time 

when content ‘𝒽’ is served to the user by the UAV system, and 𝑇𝐴𝐷𝒽 is the tolerable access delay 

associated with content ‘𝒽’. 

The caching problem focuses on maximizing the overall content availability, as shown in Eqn. 9.2. 

This objective is constrained by maintaining the cumulative caching capacities of the UAVs below 

the total number of contents in the content pool, which is captured in Eqn. 9.3. An additional 

constraint is imposed by the tolerable access delay associated with a content served to the user by 

the UAV-aided system (refer to Eqn. 9.4). 

9.5 Benchmark Caching Policy with A-Priori Demand Knowledge 

This section focuses on the following caching related design questions: a) which content to be 

downloaded and cached in the A-UAVs so that they can serve their own community directly, and 
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the remote communities via the traveling MF-UAVs; b) which contents to be cached when the 

popularity and 𝑇𝐴𝐷 of contents vary at different communities; c) which content to be transferred 

from the A-UAVs to the MF-UAVs; and, d) what is the benchmark caching policy with 

heterogeneous content popularity at each user community and heterogeneity in request-specific 

𝑇𝐴𝐷.  

These questions are addressed by formulating a benchmark caching policy with a priori known 

heterogeneous content popularities. This benchmark caching policy also considers and modifies 

the caching policy to cater to the request specific 𝑇𝐴𝐷s. After understanding the benchmark, 

runtime and dynamic mechanisms will be developed in a next section.  

9.5.1 Caching at Anchor UAVs (A-UAVs) 

For simplicity, let us consider a disaster/war-stricken area with homogeneous content popularity 

across all the user communities. An A-UAV is assigned to each community for content 

provisioning. The number of A-UAVs in the system is denoted by 𝑁:. In such a scenario, the 

effective caching capacity of A-UAVs can be maximized by storing a certain number of unique 

contents in all the A-UAVs, and share those contents across the communities via the traveling MF-

UAVs. To maximize the effective caching capabilities of all 𝑁: A-UAVs, the cache space of each 

A-UAV is divided into two segments [91], namely, Segment-1 and Segment-2. Let the sizes of 

Segment-1 and Segment-2 of the A-UAV cache be |𝐶SH| and |𝐶S5| respectively. They can be 

expressed as follows: 

|𝐶SH| = 𝜆 × |𝐶:|																																																																																																(9.5) 

|𝐶S5| = (1 − 𝜆) × |𝐶:|																																																																																				(9.6) 

where 𝜆 is a storage segmentation factor (SSF) that decides the split between the segments within 

a A-UAV [91]. The top 𝜆. |𝐶:| popular contents are cached in Segment-1. These contents are same 
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across all A-UAVs whereas contents stored in Segment-2 are different. This results into the 

number of total Segment-2 contents stored across all 𝑁: A-UAVs to be: 

À𝐶S5(#('&À = 𝑁: × (1 − 𝜆) × |𝐶:|																																																																													(9.7) 

These contents are shared across all user communities via the mobile MF-UAVs. These contents 

have popularities after the top 𝜆. |𝐶:| popular Segment-1 contents in all the A-UAVs. For 

symmetry, all 𝑁: × (1 − 𝜆) × |𝐶:| Segment-2 contents are uniformly randomly distributed across 

𝑁: number of A-UAVs. Hence, for a given Zipf parameter 𝛼 which determines the distribution’s 

skewness, the total number of contents in the system is as follows:  

À𝐶;2;6 À = 𝜆 × |𝐶:| + 𝑁: × (1 − 𝜆) × |𝐶:| ⇒ À𝐶;2;6 À = v𝜆 + 𝑁: × (1 − 𝜆)w × |𝐶:|										(9.8) 

Now consider a heterogeneous demand scenario in which every community has a different 

demand pattern, and each content is requested with a fixed pre-decided 𝑇𝐴𝐷. The above caching 

policy is modified as follows to address such a situation. Some contents from Segment-1, termed 

as exclusive contents, are cached in one or some of the A-UAVs, but not in all of them [93]. 

Whereas the remaining contents from Segment-1, termed as non-exclusive contents, are cached at 

all the A-UAVs [91]. Therefore, unlike the homogeneous popularity scenario, the number of 

contents in Segment-1 across all A-UAVs may be more than 𝜆 × |𝐶:| due to the different A-UAV 

specific exclusive contents. This shown below: 

À𝐶SH(#('&À = |𝐶AJ| + À𝐶J(#('&À ≥ 𝜆 × |𝐶:|																																																																						(9.9) 

Similar to the caching policy in a homogeneous popularity scenario, contents in Segment-2 do not 

repeat across the A-UAVs. If 𝐶AJ 	𝑎𝑛𝑑	𝐶J(#('& are the non-exclusive and total exclusive contents in 

Segment 1, then total number of contents in the system can be modified from Eqn. 9.8, and can be 

expressed as follows: 

À𝐶;2;6 À = |𝐶AJ| + À𝐶J(#('&À + 𝑁: × (1 − 𝜆) × |𝐶:| ⇒ À𝐶;2;6 À ≥ v𝜆 + 𝑁: × (1 − 𝜆)w × |𝐶:|		(9.10) 
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The classification of content as exclusive or non-exclusive is determined by predefined access 

constraints that specify whether a piece of content is intended for a single community or multiple 

communities. Exclusive content is assigned to a specific segment and is cached at designated A-

UAVs serving that community. Non-exclusive content is intended for broader dissemination and 

is made available across multiple A-UAVs to maximize accessibility. In the benchmark models, 

these classifications dictate where content is stored which ensures exclusive content remains 

within its intended segment while non-exclusive content is widely distributed. However, in 

FedMAB, that is to be discussed in the forthcoming section, caching decisions are not constrained 

by predefined exclusivity labels. Instead, the learning model determines caching locations 

dynamically based on observed request patterns. Content initially classified as exclusive or non-

exclusive may be placed in different locations if the bandit-driven learning process identifies a 

more efficient caching strategy. This ensures that caching adapts to real-world demand rather than 

being restricted by static classifications. 

To be noted that the above stated caching policies take the contents’ popularity into 

consideration while making the caching decisions. However, the promptness with which a content 

needs to be provisioned, i.e., the 𝑇𝐴𝐷, may not always be positively correlated with its popularity. 

Therefore, unlike cache space optimization done till now, the caching policy needs modification 

from a perspective that considers a content’s importance. Hence, unlike the cache space 

optimization undertaken thus far, the caching policy requires modification from a standpoint that 

considers the significance of content. 

Now consider a demand heterogeneous scenario where every community has a different demand 

pattern, and each content is requested with its own specific 𝑇𝐴𝐷 [91]. If a content is requested 

with less 𝑇𝐴𝐷, this implies that the user is not willing to wait for a visiting MF-UAV to deliver 
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the content. Therefore, caching such time-critical contents at the A-UAVs becomes imperative. To 

prioritize caching of such contents in Segment-1 of A-UAVs, this chapter devices a value-based 

caching policy where the value of a requested content ‘𝒽’ is calculated from its popularity and its 

𝑇𝐴𝐷, and is as follows: 

𝒱(𝒽) = 𝜅 ×
𝑇𝐴𝐷4,%
𝑝6(1)

×
𝒫6(𝒽)
𝑇𝐴𝐷𝒽

⇒ 𝒱(𝒽) = 𝜅𝜐 ×
𝒫6(𝒽)
𝑇𝐴𝐷𝒽

																																				(9.11) 

Here, 𝒫6(𝒽) is the popularity of the content as per Zipf Distribution, 𝑇𝐴𝐷𝒽 is the tolerable access 

delay associated with the content request, 𝜅 ∈ [0,1] is a scalar weight which increases with 

decrease in popularity and 𝜐 is a normalization constant. For a given Zipf (popularity) parameter 

𝛼, the normalization constant is calculated from the minimum possible 𝑇𝐴𝐷 (𝑇𝐴𝐷4,%) and the 

maximum possible popularity, which is 𝒫6(1). The quantity 𝒱(𝒽) is bounded between [0, 1], it 

increases with increase in 𝒫6(𝒽), and it decreases with 𝑇𝐴𝐷𝒽. This value-based caching policy 

increases the likelihood of contents requested with low 𝑇𝐴𝐷 to be cached in Segment-1 of the A-

UAVs, thus making them more readily available. To be noted that the cache space maximization 

method developed in Eqns. 9.5-9.10 still applies to this scenario. Here, the contents to be cached 

are chosen based on their values instead of their popularity, which is shown below:  

À𝐶;2;𝒱 À = |𝐶AJ| + À𝐶J(#('&À + 𝑁: × (1 − 𝜆) × |𝐶:|																																																								(9.12) 

9.5.2 Caching at Micro-Ferrying UAVs (MF-UAVs) 

The purpose of the MF-UAVs is to ferry À𝐶J(#('&À + 𝑁: × (1 − 𝜆) × |𝐶:| number of contents stored 

across 𝑁:	number of A-UAVs (see Eqn. 9.10). Due to the limitations of per-MF-UAV caching 

space [63] (i.e.,	|𝐶h<|), their caching policy should be determined based on the trajectories, the 

value of 𝜆, the Zipf popularity, and the 𝑇𝐴𝐷𝑠 associated with the contents to be cached [126].  



 188 

Consider a situation in which an MF-UAV ‘j’ is approaching towards the A-UAV ‘i’. Let 𝑈, be 

the set of all exclusive contents in Segment-1 of all A-UAVs and all contents from Segment-2 of 

all A-UAVs in the entire system except the ones stored in A-UAV ‘i’. To maximize content 

availability for the users in A-UAV i’s community, the MF-UAV should carry |𝐶h<|	top valued 

contents (refer to Eqn. 9.12) from the set 𝑈, 	while approaching A-UAV i.  

 

Figure 9.3. Caching Policy at MF-UAVs 

The size of the set 𝑈, can be expressed as |𝑈,| = À𝐶J(#('&À + (𝑁: − 1). (1 − 𝜆). |𝐶:|. In scenarios 

when |𝐶h<| ≤ |𝑈,|, the MF-UAV should carry the |𝐶h<|	top popular contents as outlined above. 

Otherwise, the MF-UAV should carry all |𝑈,| contents, leaving part of the MF-UAV cache (i.e., 

|𝐶<| − |𝑈,|) empty. This implies that an apt choice of caching policy at A-UAVs affect the 

utilization of MF-UAV’s cache.  

MF-UAV caching policy is explained in the pseudocode below.  

Algorithm 9.1. MF-UAV Caching Algorithm with Value-based policy executed at the A-UAVs 

1. Input: Total A-UAVs in its trajectory, 𝑇𝐴𝐷, next A-UAV ‘𝑖’, present A-UAV ‘𝑖 − 1’  

2. Output: 𝐶h< contents for MF-UAV ‘𝑗’ 

3. Initialize 𝐶: contents in each A-UAV based on value of contents 

121087654321

131197654321

1311912108

A-UAV 1

A-UAV 2

MF-UAV MF-UAV
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Algorithm 9.1. (cont’d) 

4. while True: 

5.       if MF-UAV leaving for next A-UAV ‘𝑖’ then do 

6.             for 𝑘 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV ‘𝑖’ cache 𝐶:,) do 

7.                   Check if 𝑘 in 𝐶h< cache of MF-UAV ‘𝑗’ 

8.                   if true then do  

9.                     Replace ‘𝑘’ with highest value content from  

                    𝐶:,LH not cached in MF-UAV ‘𝑗’ & A-UAV ‘𝑖’ 

10.                   end if 

11.             end for    

12.       end if 

13.       Update next A-UAV ‘𝑖’, present A-UAV ‘𝑖 − 1’  

14. end while 

9.5.3 Theoretical Performance Upper-Bound 

In this section, a theoretical performance upper-bound is computed when the A-UAVs and MF-

UAVs follow the benchmark caching policy as described in Section 9.5.1. Let us consider a UAV-

caching system where there are 𝑁: number of A-UAVs, and 𝑁h< number of MF-UAVs. The 

number of MF-UAVs traveling in a group is denoted by 𝑁h<Z . MF-UAVs traverse the complete 

disaster region in 𝒯=2+&- seconds. The hover ratio is ℛ>#?, which is the ratio of the time an MF-

UAV stays at a community before leaving for the next to 𝒯=2+&-. The transition ratio is ℛ@*'%;, 

which is the ratio between the time on MF-UAV takes to travel from one community to the next 

and 𝒯=2+&-. For simplicity, the inter-community distances are kept the same. The content request 
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pattern is heterogeneous across communities with popularity parameter of 𝛼. Every request ‘𝒽’ is 

accompanied by its respective 𝑇𝐴𝐷𝒽.  

The performance upper-bound has three important parts, namely, the probability ℙ: that the 

content is found in an A-UAV ‘𝑖’, the probability of a content being found in MF-UAV ℙh<, and 

the probability that an MF-UAV is accessible near a A-UAV before content requests expire 

ℙ:++-;;. The accessibility probability ℙ:++-;; is computed according to a condition 𝕋+#%" which 

is given below: 

𝕋+#%" = �
𝑁h<Z × 𝑁:
𝑁h<

− 1� × ℛ>#? × 𝒯=2+&- + �
𝑁h<Z × 𝑁:
𝑁h<

� × ℛ@*'%; × 𝒯=2+&- 

⇒ ¨�
𝑁h<Z × 𝑁:
𝑁h<

− 1� × ℛ>#? + �
𝑁h<Z × 𝑁:
𝑁h<

� × ℛ@*'%;ª × 𝒯=2+&- 																		(9.13) 

Eqn. 9.13 computes the time an MF-UAV takes to revisit a location. To ensure that the formulation 

remains applicable across different UAV configurations, it is important to clarify how the grouping 

of MF-UAVs and the accessibility factors influence the caching process. The first term in 

parentheses in Eqn. 9.13 does not become zero, because 𝑁h<Z  represents a dynamically determined 

grouping of MF-UAVs based on their flight dynamics and proximity. Since the grouping varies 

depending on how MF-UAVs ferry content and reduce redundant transmissions, the ratio AK'
I .A-
AK'

 

does not equal one which ensures the first term remains nonzero. Consequently, the first term does 

not become negative because all involved parameters are strictly positive, and by definition, 

𝑁h<Z ≤ 𝑁h<. The subtraction of one ensures that the formulation correctly accounts for 

accessibility relative to the number of A-UAVs in the MF-UAVs’ trajectory cycle. 

Additionally, ℛ>#? is formulated as a probability weight rather than a strict ratio to 𝒯=2+&- that 

ensures adaptability in determining the weighted contribution of hovering time. By treating ℛ>#? 
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as a probability weight, the framework allows for dynamic adjustments based on MF-UAV group 

behavior which prevents an over-simplified proportionality that does not account for variations in 

flight patterns and spatial arrangements. This ensures that the influence of hovering time is 

contextually adjusted rather than statically imposed, preserving the generality of the formulation. 

Depending on the condition being satisfied, ℙ'++-;; is computed using the following piece-wise 

expression: 

ℙ'++-;; = R
𝑁h< × vℛ>#?𝒯=2+&- + 𝑇𝐴𝐷ÃÃÃÃÃÃw

𝑁h<Z × 𝑁: × vℛ>#?𝒯=2+&- +ℛ@*'%;𝒯=2+&-w
,																𝑓𝑜𝑟	𝑇𝐴𝐷ÃÃÃÃÃÃ < 𝕋+#%"

																																		1, 																																																										𝑓𝑜𝑟	𝑇𝐴𝐷ÃÃÃÃÃÃ ≥ 𝕋+#%"

 

= R

𝑁h< × vℛ>#?𝒯=2+&- + 𝑇𝐴𝐷ÃÃÃÃÃÃw

𝑁h<Z × 𝑁: × k(ℛ>#? +ℛ@*'%;)𝒯=2+&-l
,																									𝑓𝑜𝑟	𝑇𝐴𝐷ÃÃÃÃÃÃ < 𝕋+#%"

																																1, 																																																																𝑓𝑜𝑟	𝑇𝐴𝐷ÃÃÃÃÃÃ ≥ 𝕋+#%"

																(9.14) 

Here, 𝑇𝐴𝐷ÃÃÃÃÃÃ is the mean 𝑇𝐴𝐷, which is used for generalization. The second part of the piece-wise 

expression in Eqn. 9.14 shows that for a very large 𝑇𝐴𝐷, the contents in an MF-UAV are always 

accessible.  However, for 𝑇𝐴𝐷ÃÃÃÃÃÃ less than the 𝕋+#%", the contents in MF-UAVs are partially 

accessible. Note that the physical accessibility to MF-UAVs does not guarantee the access to a 

requested content since the MF-UAVs can store only a limited number of contents. The probability 

ℙh< that a content can be found in a MF-UAV is given below: 

ℙh< =

⎣
⎢
⎢
⎡

r 𝒱(𝒽)

𝒽∉~�=63
" �D�=3

" ��

𝒽∈��=3
2)2/5�DA-.(HLK).|=-|� ⎦

⎥
⎥
⎤

¯r𝒱(𝒽)
∀=

°Ê  

⇒ ℙh< =
∑ 𝜅 × 𝑇𝐴𝐷4,%𝑝6(1)

× 𝒫6(𝒽)𝑇𝐴𝐷𝒽
𝒽∉~�=63

" �D�=3
" ��

𝒽∈��=3
2)2/5�DA-.(HLK).|=-|�

∑ 𝜅 × 𝑇𝐴𝐷4,%𝑝6(1)
× 𝒫6(𝒽)𝑇𝐴𝐷𝒽

=
𝒽IH

				(9.15) 
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The above expression considers the value of the contents from Eqn. 9.11. Now, ℙ:, the probability 

of finding a requested content in the local A-UAV of the request generating community, is 

expressed as: 

ℙ: = Ë r 𝒱(𝒽)
∀	|=63|D|=3|

Ì ¯r𝒱(𝒽)
∀=

°Ê  

⇒ ℙ: = Ë r 𝜅𝜐 ×
𝒫6(𝒽)
𝑇𝐴𝐷𝒽𝒽∈|=63|D|=3|

Ì ¯r 𝜅𝜐 ×
𝒫6(𝒽)
𝑇𝐴𝐷𝒽

=

𝒽IH

°Ê 													(9.16) 

Combining Eqns. 9.14, 9.15 and 9.16, the average content availability at a community ‘𝑛’ can be 

expressed as: 

ℙ%'?',& = ℙ: + ℙ'++-;; × ℙh< 																																																		(9.17) 

Eqn. 9.17 shows that the contents from A-UAV ‘𝑖’ and contents from future visiting MF-UAVs 

contribute towards the average availability ℙ%'?',& at community ‘𝑛’ within the specified 𝑇𝐴𝐷𝑠. 

Note that all unavailable contents within specified 𝑇𝐴𝐷𝑠 will be downloaded by the A-UAVs using 

their expensive vertical links such as a Satellite Internet link. Thus, availability indirectly indicates 

the content download cost in the system.   

The aim of the learning-based caching policy, discussed in the next section, is to achieve the 

above-mentioned benchmark performance in terms of content availability. The proposed learning 

is achieved in a distributed manner in which all UAVs learn the caching policy without a priori 

demand information and without explicit sharing of user request data. 

9.6 Federated Multi-Armed Bandit Learning for Content Caching 

9.6.1 Caching Policy using Top-k Multi-Armed Bandit 

Upon deployment in a community, a A-UAV’s primary task is to optimize content availability for 

users by determining which contents to download and cache through its vertical link. One of the 
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ways to approach this objective involves the utilization of a Top-k Multi-Armed Bandit (Top-k 

MAB) learning agent within the A-UAV. 

The Top-k MAB learning, a variant of the classical Multi-Armed Bandit problem in 

reinforcement learning, is employed to maximize the cumulative reward ℝ(𝑇) over a finite time 

horizon 𝑇 [128]. In contrast to the traditional MAB, this variant involves choosing 𝑘 arms 

simultaneously from a set of 𝑀 arms and receiving individual rewards for each arm selected. 

ℝ@ = max ¯r¨r𝔼[ℝ((𝑖)]
X

,IH

ª
@

(IH

°																																																																		(9.18) 

Each A-UAV is assumed to be equipped with a Top-k MAB agent. Here, the selection of content 

for caching corresponds to choosing an arm, with ‘𝑘’ in ‘Top-k’ representing the caching capacity 

(𝐶:) of the A-UAV. The agent’s objective is to choose ‘𝐶:’ contents from a larger set of ‘𝐶’ 

contents in order to maximize content availability for users.  

 

Figure 9.4. Top-k Multi-Armed Bandit Learning for Caching Policy at A-UAVs 

In the UAV-aided content dissemination environment, A-UAVs interact by selecting specific 

content sets (i.e., MAB actions) for caching. The feedback from the environment for the taken 

actions are in the form of rewards/penalties. Micro-ferrying UAVs play a vital role in transferring 
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information across the system, contributing to the computation of rewards and penalties. Actions 

are rewarded when cached contents are requested and served within the tolerable access delay. 

Otherwise, they are penalized.  

The learning epoch for each Top-k MAB agent is strategically chosen based on the MF-UAVs’ 

accessibility at the corresponding community. Therefore, epoch duration is influenced by the 

visiting frequency of MF-UAVs. MF-UAVs carry the content availability information of the 

already visited A-UAVs in its trajectory. The Top-k MAB agents leverage such information and 

learn to cache contents through a multi-dimensional reward structure, encompassing the local, 

ferrying, and global rewards. These rewards are contingent upon the availability of the sets of 

locally served contents (ℒ), contents served at other communities via ferrying (ℱ), and overall 

contents served across all communities (𝒢). These contents can be served to the users directly by 

a A-UAV or indirectly via the visiting MF-UAVs. If a cached content is served to a user within 

the given TAD, and an increase in content availability is observed, the caching decision for the 

content is rewarded. The type of reward is determined by the set to which the cached content 

belongs to. The expressions for three types of rewards are given as follows:  

ℝ(𝑖, ℒ) = [(𝑖 ∈ ℒ)⋀(Δℒ ≥ 0)] − [(𝑖 ∉ ℒ)⋀(Δℒ < 0)]																															(9.19) 

ℝ(𝑖, ℱ) =
1

𝑁: − 1
r [(𝑖 ∈ ℱ)⋀(Δℱ ≥ 0)]
A-

nIH,no𝕏

−
1

𝑁: − 1
r [(𝑖 ∉ ℱ)⋀(Δℱ < 0)]
A-

nIH,no𝕏

 

⇒ ℝ(𝑖, ℱ) =
1

𝑁: − 1
r [(𝑖 ∈ ℱ)⋀(Δℱ ≥ 0)]
A-

nIH,no𝕏

+
1

𝑁: − 1
r �­¬[(𝑖 ∉ ℱ)⋀(Δℱ < 0)]® − 1�
A-

nIH,no𝕏

																																																	(9.20) 
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ℝ(𝑖, 𝒢) =
1
𝑁:
r­(𝑖 ∈ 𝒢)⋀vΔ𝒢 ≥ 0w®
A-

nIH

−
1
𝑁:
r­(𝑖 ∉ 𝒢)⋀vΔ𝒢 < 0w®
A-

nIH

																															 

⇒ ℝ(𝑖, 𝒢) =
1
𝑁:
r­(𝑖 ∈ 𝒢)⋀vΔ𝒢 ≥ 0w®
A-

nIH

+
1
𝑁:
rÕ�¬­(𝑖 ∉ 𝒢)⋀vΔ𝒢 < 0w®� − 1Ö
A-

nIH

			(9.21) 

𝑤ℎ𝑒𝑟𝑒, [𝐴] = s		1, 𝑖𝑓	𝐴	𝑖𝑠	𝑡𝑟𝑢𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 																																												 

The above equations are used for computing the reward received by a Top-k MAB agent at A-

UAV ‘𝕏’. Caching content ‘𝑖’ at A-UAV ‘𝕏’ is rewarded if it leads to an increase in availability. 

Here, ℝ(𝑖, ℒ), ℝ(𝑖, ℱ), and ℝ(𝑖, 𝒢) are local, ferrying and global rewards, respectively. The terms 

Δℒ, Δℱ  and Δ𝒢 correspond to the increase in local availability, ferried content availability, and 

global availability, respectively. Each type of reward is contingent upon satisfying the condition 

‘𝑓(𝑖)’ in the Iverson bracket “[𝑓(𝑖)]“. The first terms in Eqns. 9.7, 9.8 and 9.9 represent the reward 

accumulated by caching content ‘𝑖’ cached at A-UAV ‘𝕏’, whereas the second term is the penalty 

associated with adverse condition. To be noted that ℝ(𝑖, ℱ), and ℝ(𝑖, 𝒢) are higher if the content 

‘𝑖’ is requested and served at more number of communities. 

Learning employs a tabular approach where a Q-table is maintained for all contents in A-UAVs. 

Each content corresponds to a Q-value or action-value [130] in the Q-table. The Q-value indicates 

the importance of a content depending on its popularity and frequency of request. Additionally, it 

indirectly captures the geographical relevance of the content which is related to where the content 

has been requested in the disaster region. The Top-k MAB agent updates the Q-value for a content 

at each learning epoch based on the multi-dimensional rewards (Eqns. 9.19-9.21). These rewards 

are derived from the interactions of a A-UAV’s agent with the UAV-aided content dissemination 

system, shaping its understanding of optimal actions (contents to cache). The recursive Q-value 

update expression for content ‘𝑖’ at A-UAV “𝕏“ is given as follows: 
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ℚ(DH(𝑖) = (1 − 𝛼Y)ℚ((𝑖) + 𝛼 Øℝ((𝑖, ℒ) + �
[(𝓍, 𝓎, 𝓏):L�:TH𝕏H = (𝓍,𝓎, 𝓏)h<L�:T]

× vℝ((𝑖, ℱ) + ℝ((𝑖, 𝒢)w
�Ü			(9.22) 

In this context, ℚ((𝑖) denotes the Q-value associated with content ‘𝑖’ at the ‘𝑡(0’ epoch. ℝ((𝑖, _) 

signifies the corresponding reward gained from caching content ‘𝑖’. The term 

“[(𝓍, 𝓎, 𝓏):L�:TH𝕏H = (𝓍,𝓎, 𝓏)h<L�:T]“ defines the condition inside the Iverson bracket, taking 

the value 1 if micro-ferrying UAVs are within the communication range of A-UAV “𝕏“ and 0 

otherwise. The hyper-parameter “𝛼Y“ governs the learning rate.  

Initially, all the Q-values for contents start at zero, ensuring no prior information for the Top-k 

MAB agent and assigning equal importance to all contents for caching decisions. As the learning 

process advances, Q-values evolve, and the best contents, characterized by the highest Q-values, 

are cached. This approach aims to maximize the cumulative reward, subsequently enhancing the 

caching policy and, in turn, improving content availability.  

The Top-k MAB agent faces a challenge due to the numerous content combinations v=Xw it must 

sample for caching to get the best possible estimated values for all contents. An infrequent 

sampling results in weak reward distribution estimates, especially as the global content population 

(𝐶) increases. To address this, 𝜖 and its decay rate are empirically chosen in the ϵ-Greedy action 

selection policy [139]. To reduce policy dependence on 𝜖, an Upper Confidence Bound (UCB) 

strategy [128] is employed. 

𝕌((𝑖) = ℚ((𝑖) + y
𝜍 log(𝑡)
𝕟((𝑖)

																																																												(9.23) 

The UCB, denoted as 𝕌((𝑖), is calculated using the updated Q-value ℚ((𝑖), controlling 

hyperparameter ‘𝜍’, and the number of times content ‘𝑖’ has been requested 𝕟((𝑖). This strategy 
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aids in content selection by favoring items with high reward potential and infrequent requests, thus 

promoting exploration without introducing an external exploration parameter 𝜖.  

Algorithm 9.2. Caching policy at a A-UAV with Top-k MAB Learning 

1. Initialization: 

a. 𝐶: Total contents in the system 

b. 𝐶:: Caching capacity of an A-UAV 

c. 𝕌: Size |𝐶:| initialized with 0’s (Q-table with UCB) 

d. 𝛼: Learning rate for Q-table update 

e. 𝜍: Degree of exploration (in UCB) 

2. Load A-UAV’s cache with 𝐶: randomly chosen contents. 

3. while True: 

4.     Check for learning epoch at A-UAV i.e., at 𝑡(0 epoch 

5.     if True then do 

6.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶:) do 

7.             Get reward ℝ((𝑖, _)	 \\ according to Eqns. 9.19-9.21 

8.             Update 𝕌((𝑖)           \\ from Eqn. 9.23 

9.         end for 

10.         𝑣𝑎𝑙𝑢𝑒 = 𝒄𝒐𝒑𝒚(𝕌)       \\ make a copy of UCB values  

11.         for 𝑖 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV cache size 𝐶:) do  \\ Reload contents (Select arms) 

12.              𝑐4') = 𝒂𝒓𝒈𝒎𝒂𝒙(𝑣𝑎𝑙𝑢𝑒) 

13.              Load 𝑐4') to A-UAV 

14.              Set 𝑣𝑎𝑙𝑢𝑒[𝑐4')] = −∞ 

15.         end for 
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Algorithm 9.2. (cont’d) 

16.     end if 

17. end while 

The segment-based caching benchmarks in this study are used solely for theoretical comparisons 

and do not reflect how the Top-k MAB framework operates. These benchmarks represent 

deterministic edge cases for establishing performance bounds, whereas the learning-based Top-k 

MAB model is fundamentally more capable in handling fairness dynamically. Caching decisions 

are determined through a multi-dimensional reward structure that accounts for individual content 

popularity, inter-community content influence, and the global impact of caching choices. Unlike 

benchmarks that impose static constraints, the combinatorial nature of Top-k MAB inherently 

ensures fairness by dynamically adjusting caching priorities based on real-time content request 

patterns. 

The Q-values computed in the combinatorial bandit model quantify content importance rather 

than predefined allocation constraints. Caching ability depends solely on UAV storage capacity 

that ensures fairness emerges as a function of storage limitations rather than arbitrary segment size 

constraints. 

Furthermore, Top-k MAB’s caching efficiency is entirely dependent on request generation 

patterns (i.e., sampling), unlike deterministic benchmarks that rely on predefined segment 

structures. Larger communities inherently generate higher request volumes which leads them to 

receive more cached content organically through bandit learning. This eliminates the need for 

manually imposed fairness constraints. Similar effects can be expected while content requests 

manifest urgency or emergency, for which the learning-based model adapts such that it can 

determine the importance of contents. 
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Complexity Analysis: To evaluate the computational feasibility of the Top-k Multi-Armed Bandit 

algorithm, we analyzed the complexity of its key components, including initialization, reward 

calculation, action selection, and the Q-value updates. These components collectively determine 

the scalability of the algorithm for large-scale UAV-assisted content dissemination systems. 

The algorithm begins with an initialization phase where each A-UAV creates a Q-table to track 

the rewards associated with all 𝑁 contents. This initialization step, which is performed only once, 

has a time complexity of 𝑂(𝑁). Given the one-time nature of this step, its computational burden 

does not affect the scalability of the system in a major way. During each learning epoch, the 

algorithm computes rewards from 𝑘 arms selected from the total 𝑁 contents. This reward 

calculation, which occurs across 𝑇 epochs, involves evaluating the multi-dimensional reward 

structure. As 𝑘 ≪ 𝑁, the complexity of this step is 𝑂(𝑇. 𝑘), making it computationally light enough 

for real-time operations. The most computationally intensive step is the action selection process, 

where the Upper Confidence Bound (UCB) method ranks all 𝑁 contents to identify the top 𝑘 arms 

to cache. Sorting the contents at each epoch results in a complexity of 𝑂(𝑁 log𝑁), which, over 𝑇 

epochs, leads to a total complexity of 𝑂(𝑇.𝑁 log𝑁). While this step dominates the overall 

computational complexity, it is till bounded by logarithmic growth, thus keeping it scalable for 

large content pools. Finally, the Q-values of the selected arms are updated at each epoch based in 

the observed rewards. This update process has a complexity of 𝑂(𝑇. 𝑘), which remains manageable 

due to the small value of 𝑘 relative to 𝑁. 

Combining these components, the overall time complexity of the Top-k MAB algorithm is 

𝑂(𝑁) + 𝑂(𝑇. 𝑘) + 𝑂(𝑇.𝑁 log𝑁) + 𝑂(𝑇. 𝑘). Simplifying this for 𝑘 ≪ 𝑁, the dominant term is 

𝑂(𝑇.𝑁 log𝑁). Therefore, the overall time complexity is 𝑂(𝑇.𝑁 log𝑁), with the action selection 

step contributing the most significant computational cost. This complexity demonstrates the 
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algorithm’s suitability for large-scale systems, as its logarithmic scaling ensures efficiency even 

with large number of contents. Furthermore, the selective caching mechanism employed by MF-

UAVs, which will be explained in a forthcoming subsection, with a linear complexity of 

𝑂 k𝑁@*'n-+(#*2 . (𝐶h< + 𝑁:)l, complements the learning-based approach by ensuring effective 

content distribution without introducing significant computational overhead. Note that here 𝐶h< 

is the cache size of MF-UAVs, 𝑁: is the number of A-UAVs, and 𝑁@*'n-+(#*2 is the number of 

trajectory changes. 

Thus, the overall complexity of the Top-k MAB algorithm is dominated by 𝑂(𝑇.𝑁 log𝑁), 

which makes it scalable for large content pools. The linear complexity of the MF-UAV caching 

mechanism further supports efficient operation in distributed settings. The designed framework is 

computationally efficient, scalable and is well-suited for real-time UAV-assisted content 

dissemination in disaster-stricken environments. 

There are a few limitations of the above learning based caching method. First, relying on MF-

UAVs to ferry global content availability information makes learning slow. Especially so in large 

disaster areas with multiple communities. Second, communities with fewer users result in fewer 

content requests for the corresponding local A-UAVs. The problem is particularly compounded 

for the less popular contents for which the popularity reduces drastically following Zipf 

distribution (see Section 9.3.2). This lack of requests creates a learning challenge, leading to less 

accurate reward distribution estimates [140]. This results in unstable Q-values for less popular 

content. Finally, the Top-k MAB agent has to sample v=Xw content combinations. This results in 

infrequent reward estimations with increasing 𝐶 (i.e., the total number of contents in pool), thus 

weakening the estimate of the reward distribution [140]. This leads to sensitive and unstable Q-

values of contents.  



 201 

These challenges can be mitigated by employing a Federated Multi-Armed Bandit (FedMAB) 

Learning approach. Such an approach involves integrating the Top-k MAB models from all A-

UAVs. The mechanism is presented below. 

9.6.2 Distributed Caching with Federated Multi-Armed Bandit 

This mechanism applies the principles of Federated Learning [63], [132], [133], [144] to the UAV-

caching scenario. Each A-UAV serves as a client [144] in Federated Learning, with its local model 

representing information about cached contents, cache hits [72], and content availability. Note that 

cache hits indicate how often a content cached in an A-UAV is requested and served within the 

user-species 𝑇𝐴𝐷, as defined in Section 9.3.2. The Q-table of the Top-k MAB agent serves as the 

model for each A-UAV. 

MF-UAVs acts as model aggregators [144], chosen for their ability to access Q-tables of A-

UAVs in their respective trajectories. They aggregate the acquired Q-tables aiming to improve the 

Top-k MAB model at each A-UAV. They receive the Q-tables from all A-UAVs in their 

trajectories, and send the aggregated model back to the A-UAVs. This aggregated model helps the 

A-UAVs to decide as to which content to cache based on the top ‘|𝐶:|’ Q-values. 

As per the standard Federated Learning paradigm, Q-tables are initialized at the A-UAVs, and 

learning epochs are set based on the MF-UAVs’ visiting frequencies. The learning epoch’s 

dependance on MF-UAVs’ visit is important to capture the rewards ℝ(ℱ) and ℝ(𝒢). Note that 

these rewards are associated to the ferried contents and their impact on global availability (refer 

Eqns. 9.20 and 9.21). The Q-values of individual Top-k MAB agents are updated at each epoch, 

thus capturing the latest content request patterns and A-UAV caching decisions. This is termed as 

“personal experience“ which is akin to the local training stage in Federated Learning. After gaining 

personal experience, an A-UAV’s model is improved by exchanging information with its adjacent 
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A-UAVs through the traveling MF-UAVs. To be noted that the quality of the aggregated model 

depends on the freshness of information ferried by the MF-UAVs. To be noted that cost constraints 

can reduce the deployment of high-cost UAVs, leading to less frequent information updates. 

Therefore, leveraging more number of affordable MF-UAVs within the UAV-assisted caching 

system ensures more consistent information collection, crucial for maintaining model accuracy 

under budgetary limitations.  

 

Figure 9.5. Contribution factor for Federated Multi-Armed Bandit implementation at A-UAVs 

Unlike weight matrix aggregation in neural networks in regression/classification models [132], 

Federated Multi-Armed Bandit involves the aggregation of Q-values. Each A-UAV’s contribution 

during aggregation is determined based on its importance. This is synonymous to weights 

associated with devices in classical Federated Learning algorithm. Such contributions can be 

defined as contribution factor which is crucial during the aggregation process. It is calculated 

based on the similar between the estimated popularity distributions of contributing A-UAVs. The 

mechanism is shown using the following expressions: 
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ℭ𝕏,𝕐 = [𝜌 − 𝔇_Y(𝒫𝕏||𝒫𝕐)] Ërv𝜌 − 𝔇_Y(𝒫𝕏||𝒫𝕝)w
A-

𝕝IH

Ì� 																																																		(9.24𝑎) 

where, 𝜌 = maxér𝔇_Y(𝒫𝕏||𝒫𝕝)
A-

𝕝IH

ê																																											(9.24𝑏) 

Using the Eqn. 9.25, the aggregated model can be shown as: 

ℚ𝕏
:/.(𝑖) =rkℭ𝕏,𝕪 × ℚ𝕪(𝑖)l

A-

𝕪IH

 

= Ërìk𝜌 − 𝔇_Yv𝒫𝕏||𝒫𝕪wl × ℚ𝕪(𝑖)í
A-

𝕪IH

Ì Ërv𝜌 − 𝔇_Y(𝒫𝕏||𝒫𝕝)w
A-

𝕝IH

ÌÊ 													(9.25) 

In Eqn. 9.24, the contribution factor ℭ𝕏,𝕐 denotes the significance of A-UAV 𝕐’s model when the 

MF-UAV is at A-UAV ‘𝕏’, where 𝑁: is the total number of A-UAVs. 𝒫𝕏 and 𝒫𝕐 are content 

popularity distributions estimated at A-UAVs ‘𝕏’ and ‘𝕐’, respectively. The KL divergence [134], 

denoted as ‘𝔇_Y(𝒫𝕏||𝒫𝕐)’, quantifies the distinction between these distributions. Thus, the term 

“𝜌 − 𝔇_Y(𝒫𝕏||𝒫𝕐)“ represents how similar the content popularity distributions are near A-UAVs 

‘𝕏’ and ‘𝕐’. To be noted that the term ‘𝜌’ is included in the expressions due to the unbounded 

nature of ‘𝔇_Y(𝒫𝕏||𝒫𝕐)’. 

Using the contribution factor from Eqn. 9.24, the aggregated model is determined through Eqn. 

9.25. In this equation, ℚ𝕏
:/.(𝑖) signifies the aggregated Q-value of content ‘𝑖’ at A-UAV ‘𝕏’. A 

higher importance is assigned to A-UAV “𝕪’s” model if its estimated content popularity 

distribution is more similar to that of A-UAV ‘𝕏’, and vice versa.    

Aggregating the Q-tables enhances the estimated reward associated with each content. In a 

learning epoch, the generated requests at a community might be insufficient for an accurate reward 

estimate at its A-UAV. Without model aggregation, A-UAVs end up with a weaker estimate of 
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the reward distribution. Q-table aggregation, as proposed above, enhances the estimated rewards 

without requiring content request information from all the A-UAVs. 

However, Q-table aggregation overlooks local popularity nuances when demand varies among 

the communities. This issue mirrors the personalization-generalization problem in Federated 

Learning [144], [145]. A-UAV’s Q-table, updated with personal experiences using Eqns. 9.22 and 

9.23, is akin to a personalized (local) model, while the aggregated Q-table in Eqn. 9.25 signifies a 

generalized (global) model. This chapter employs weighted averaging to retain local popularity 

context while improving reward estimation. This can be expressed as:  

ℚ𝕏
�3".(𝑖) = 𝜔Hℚ𝕏(𝑖) + 𝜔5ℚ𝕏

:/.(𝑖)																																																			(9.26) 

In the given context, the weights 𝜔H and 𝜔5 are critical in determining the influence of both local 

and global (aggregated) models in updating the model ℚ𝕏
�3".. For the experiments in this chapter, 

𝜔H is empirically set to 0.99, indicating a strong preference for local content popularity, which is 

assumed to be relatively stable over time. However, a correct choice of 𝜔H is pivotal, especially in 

scenarios where the content popularity is dynamic. For such cases, the adaptive selection of 𝜔H is 

governed by:   

𝜔H = 1 − ­𝔇�Sv𝒫𝕏( , 𝒫𝕏(
Hw 𝑙𝑛 2⁄ ®;	𝜔H: 𝔇�Sv𝒫𝕏( , 𝒫𝕏(

Hw =
1
2 k𝔇_Y(𝒫𝕏(||ℳ) + 𝔇_Yv𝒫𝕏(

H||ℳwl	(9.27) 

Here, 𝔇�Sv𝒫𝕏( , 𝒫𝕏(
Hw is the Jensen-Shannon Divergence [134], indicating the dissimilarity between 

content popularity distributions at times 𝑡 and 𝑡f. ℳ is the mean distribution calculated as ℳ =

v𝒫𝕏( + 𝒫𝕏(
Hw/2 and 𝔇_Y(𝒫𝕏

_||ℳ) is the Kullback-Leibler divergence. A high 𝜔H value implies 

minimal change in content popularity over time.  

The weight associated with the aggregated model 𝜔5 in Eqn. 9.26 can be expressed as: 

𝜔5 = 𝑒Le8( × v1 − ℚ𝕏(𝑖)w 𝛽;⁄ 																																																	(9.28) 



 205 

Here, 𝛽" and 𝛽; represent the weight decay factor and scaling factor, respectively. The parameters 

ensure that the contribution of global (aggregated) model reduces as learning progresses. The 

formulation of Eqn. 9.28 reflects the decreasing relevance of the global model as learning 

advances, with an embedded regret component “1 − ℚ𝕏(𝑖)“. This idea is backed by the 

assumption that as learning progresses, the local models will reflect the true value of contents. 

Hence, the expressions for weights 𝜔H and 𝜔5 from Eqns. 9.27 and 9.28 can be replaced in Eqn. 

9.26: 

ℚ𝕏
�3".(𝑖) = ­1 − ó𝔇�Sv𝒫𝕏( , 𝒫𝕏(

Hw 𝑙𝑛 2⁄ ô® × ℚ𝕏(𝑖) + õ
𝑒Le8(

𝛽;
× v1 − ℚ𝕏(𝑖)wö × ℚ𝕏

:/.(𝑖)						(9.29) 

The hyper-parameters ‘𝛽"’ and ’𝛽;’ should be empirically optimized to maintain local relevance 

in content popularity, particularly in heterogeneous environments. 

This framework integrates Federated Learning with Top-k Multi-Armed Bandit principles for 

high-performance caching in autonomous UAVs (A-UAVs). It leverages model aggregation at 

MF-UAVs and updates A-UAV models with a balance of personalized and aggregated data. The 

updated Q-table is used for caching decisions, thus prioritizing contents with the highest Q-values 

for enhanced content availability across all user communities.  

The dependency on MF-UAVs for model aggregation does not introduce significant 

bottlenecks, as multiple MF-UAVs operate in parallel to facilitate decentralized updates across 

different A-UAVs. This naturally distributes the computational load by preventing a single UAV 

from becoming an aggregation bottleneck. Additionally, the contribution-based weighting 

mechanism (Eqn. 9.24) ensures that only relevant updates are merged which reduces unnecessary 

model exchanges and further optimizes aggregation efficiency. 

For even greater scalability, an alternative approach could involve hierarchical aggregation, 

where A-UAVs first perform localized model updates before forwarding refined models to MF-
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UAVs for global merging. This multi-level aggregation structure could reduce communication 

overhead in networks with a larger number of UAVs that can further enhance system scalability. 

While the current approach remains effective under the evaluated network conditions, future work 

can explore hierarchical aggregation strategies to optimize performance in extremely large 

deployments. 

The designed FedMAB framework ensures privacy in federated learning-based caching by 

limiting shared information to content popularity distribution parameters and Q-values, which 

serve as reward distribution estimates. Unlike traditional federated learning approaches that 

involve direct transmission of graph-based models which represents user data or raw request logs, 

FedMAB does not share individual user content requests, behavioral patterns, or identifiable data. 

The aggregation process exchanges only learned model parameters relevant to content caching 

decisions which makes the framework inherently privacy-preserving. Since Q-values represent 

estimated rewards from caching actions rather than explicit user information, the system 

effectively optimizes caching policies without exposing sensitive data. Furthermore, these Q-

values undergo aggregation at MF-UAVs, where updates are computed based on local learning 

experiences, without requiring access to underlying user-generated request data. 

This decentralized learning mechanism ensures that UAVs collaboratively refine caching 

strategies while preserving privacy. Since no direct content request logs or personal information 

are transmitted, this structure ensures secure model sharing which minimizes the risk of data 

leakage while maintaining collaborative learning efficiency. 
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Figure 9.6. Increase in collective caching capacity of MF-UAVs through Selective Caching 

9.6.3 Selective Caching at Micro-Ferrying UAVs (MF-UAVs) 

The role of MF-UAVs is to ferry contents from the previously visited A-UAVs to the future 

visiting A-UAVs such that the future visiting A-UAVs get the benefit of contents cached at other 

A-UAVs. Ideally, the purpose of the MF-UAVs is to ferry around a subset of 𝐶J(#('& +

𝑁:. (1 − 𝜆). 𝐶: number of contents stored across 𝑁:	number of A-UAVs (see Section 9.5.1). 

However, such implementation leads to replication of all ferried contents, resulting in 

underutilized cache space at the MF-UAVs. Due to the limitation of per-MF-UAV caching space 

(i.e.,	𝐶h<), their caching policy should be jointly determined based on their trajectories, learnt 

caching policy at the A-UAVs, content request patterns, and the tolerable access delays (𝑇𝐴𝐷𝑠)  

associated with the contents to be cached. A “Selective Caching“ mechanism as the MF-UAV 

caching policy is explained in the pseudocode below. 

Algorithm 9.3. Selective Caching Algorithm MF-UAV with FedMAB caching at A-UAV 

1. Input: Total A-UAVs in its trajectory, 𝑇𝐴𝐷, next A-UAV ‘𝕏’, present A-UAV ‘𝕏 − 1’  

2. Output: 𝐶h< contents for MF-UAV ‘𝒴’ 

3. Caching at A-UAVs using FedMAB policy // Eqns. 9.19-9.29 

4. while True: 

5.       if MF-UAV leaving for next A-UAV ‘𝕏’ then do 
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Algorithm 9.3. (cont’d) 

                   // Contents that are not in the future visiting A-UAV 

6.             Update ferrying content knowledge 

                   // Function call from the present A-UAV ‘𝕏 − 1’ 

7.             Call content-wise_TAD ( )   

                   // Present A-UAV sends MF-UAV visiting frequency             

8.             Call MF-UAV_visiting_frequency ( )   

                   // Check what content the last MF-UAV ferried 

9.             Call Check_previous_MF-UAV_roster ( ) Return roster contents with respective TADs

        // Compute request interval for last MF-UAV roster 

10.             Calculate least popular content’s request interval 

11.             Check if request time is less than its TAD and MF-UAV  

                   visiting duration 

12.             if True then do 

13.                   Cache same roster 

14.             else 

15.                   Cache next best roster 

16.             end if 

17.             Check if other MF-UAVs flying with MF-UAV ‘𝒴’ 

18.             for 𝑙 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(MF-UAVs flying together) do 

19.                 for 𝑘 = 0	𝑡𝑜	𝑙𝑒𝑛𝑔𝑡ℎ(A-UAV ‘𝕏’ cache 𝐶:𝕏) do 

20.                       Check if 𝑘 in 𝐶h< cache space of MF-UAV ‘𝒴’ 

21.                       if True then do  
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Algorithm 9.3. (cont’d) 

22.                           Replace ‘𝑘’ with highest value content from 𝐶:𝕏LH  

                                 not cached in MF-UAV ‘𝒴’ and A-UAV ‘𝕏’ 

23.                       end if 

24.                 end for   

25.                 Cache next best roster  

26.              end for 

27.       end if 

28.       Update next A-UAV ‘𝕏’, present A-UAV ‘𝕏 − 1’  

29. end while 

In Algorithm 9.3, the process of selective caching is described in detail. Consider a situation in 

which an MF-UAV ‘𝒴’ is ready to leave the A-UAV ‘𝕏 − 1’. Before caching contents, it needs 

the following information from A-UAV ‘𝕏 − 1’; 1) what are the contents eligible for ferrying to 

A-UAV ‘𝕏’; 2) what is the MF-UAVs visiting frequency; 3) what roster of ferrying content did 

the last MF-UAV ferry, where roster is the grouping of contents based on their popularity or value; 

4) are the next roster contents likely to be requested within the given 𝑇𝐴𝐷; and 5) are MF-UAVs 

flying in groups. Based on these information, MF-UAV ‘𝒴’ selectively caches contents which 

helps in maintaining diversity in the contents cached by all MF-UAVs in its vicinity. This means, 

if MF-UAVs are flying in groups or traversing in close proximity from each other, they ferry 

contents from consecutive rosters. To be noted that the size of a roster is same as an MF-UAV’s 

cache size. Therefore, if subsets of MF-UAVs are considered collectively as a group of 𝑁h<Z  (group 

size), then the number of contents cached by the group is 𝑁h<Z × 𝐶h<. Such selective caching 
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policy at MF-UAVs ensures content availability maximization by avoiding redundant content 

replication.  

9.6.4 Enhancing Federated Learning with Controlled Latency 

The use of A-UAVs equipped with federated multi-armed bandit (FedMAB) learning algorithms 

offers a promising avenue for adaptive learning and decision-making based on user demands and 

network conditions. However, the model aggregation nature of FedMAB, while enhancing content 

delivery services, can inadvertently diminish the benefits of selective caching strategies. Especially 

so when such a strategy is crucial for managing a UAV-network’s storage resources effectively. 

To address this, a nuanced latency approach that integrates Federated Multi-armed Bandit 

learning at A-UAVs with selective caching at MF-UAVs is proposed. This approach maintains the 

integrity and benefits of both federated learning at A-UAVs and selective caching at MF-UAVs 

by introducing controlled latency into the A-UAVs’ learning cycles. 

Mechanism Details: The modified FedMAB learning algorithm with latency introduces a 

deliberate delay in the divergence-based weighted computation updates of A-UAVs. In simpler 

terms it adds a delay between the Top-k MAB update and the model aggregation at A-UAVs. This 

delay is managed through a latency_counter, which tracks the number of learning epochs elapsed 

since the last federated learning update. Only when this counter exceeds a predefined threshold, 

𝑇Y, does the A-UAV proceed with its learning and cache update process via federated learning 

(refer to Eqns. 9.24-9.29). This controlled latency allows MF-UAVs more time for data analysis 

and informed decision-making regarding selective caching. 

During the latency period, A-UAVs continue to collect data, learn via Top-k MAB agents, and 

perform their regular operational functions. However, they postpone the federated learning cycle’s 

execution, allowing MF-UAVs to assess and analyze the cached content across various A-UAVs. 
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MF-UAVs can then identify which contents are likely to be in higher demand and ensure their 

availability by ferrying them between A-UAVs. This synchronization of learning with the mobility 

patterns of MF-UAVs enables more strategic and informed decisions regarding content caching 

and distribution. 

Algorithm 9.4. Federated Multi-Armed Bandit Learning with Strategic Latency for A-UAVs 

1. Input: 

a. 𝐶: Total contents in the system. 

b. 𝐶:: Caching capacity of an A-UAV. 

c. 𝑇Y: Latency Threshold. 

2. Initialization: 

a. Set latency_counter to 0 for each A-UAV 

b. Initialize each A-UAV’s cache with randomly selected 𝐶: contents 

c. Set Q-values for all content to 0  // These values help track content demand. 

d. Define learning rate (𝛼) and exploration parameter (𝜍) 

3. Main Loop: 

4.     While the system is running: 

5.           Check if it’s time (current epoch) for a learning update 

                  // This could be determined by MF-UAV flight time 

6.           Calculate reward ℝ((𝑖, _) for content 𝑖 in A-UAV 

7.           Update the Q-value for all cached contents using MAB 

                  // Based on calculated reward and the learning rate (𝛼) 

8.           If latency_counter >= 𝑇Y then: 

9.                 Compute Divergence-based Weights 
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Algorithm 9.4. (cont’d) 

10.                 Update Q-values using Eqns. 9.24-9.29 

11.                 Reset latency_counter to 0 

                        // Indicating an update has been completed. 

12.           Else If latency_counter <= 𝑇Y then: 

13.                 Increment latency_counter by 1  

                        // This delays the Federated learning update cycle 

14.           Copy the Q-values to a temporary list for manipulation 

15.           For each slot in the A-UAV’s cache: 

16.                 Select not cached content with the highest Q-value 

17.                 Update the cache to include this content 

                        // Replace the least demanded content if necessary. 

18.                 Update the selected content’s Q-value to −∞  

                        // In the temporary list to avoid reselection 

19.     Repeat steps 4-18 for an adaptive system 

This latency-based approach enhances content availability across the network and optimizes the 

use of network resources, ensuring a balance between learning efficacy and caching efficiency. By 

integrating the dynamic learning capabilities of A-UAVs with the selective caching strategies of 

MF-UAVs, the system becomes more resilient, efficient, and user-centric. 

9.7 Experimental Results and Content Dissemination Performance 

Simulation experiments were conducted to evaluate the performance of the designed FedMAB 

learning-based caching mechanism and selective caching at micro-ferrying UAVs. An event-

driven simulator was used to generate content requests, maintaining intervals between events 
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according to an exponential distribution and following a Zipf popularity distribution (see Eqn. 9.1). 

To account for variations in content popularity across different communities, contents were 

swapped with a predetermined probability [93], and differences between sequences were 

maintained using the Smith-Waterman Distance [125]. The default system parameters for the 

FedMAB-based caching and cache pre-loading policies are provided in Table 9.1. 

Table 9.1: Default Values for Model Parameters 

# Variables Default Value 

1 Total number of contents, 𝐶 2000 

2 Number of A-UAVs, 𝑁: 4 

3 Number of MF-UAVs, 𝑁h< 8 

4 A-UAV’s Cache space (content count), 𝐶: 200 

5 MF-UAV’s Cache space, 𝐶h< 25 

6 Poisson request rate parameter, 𝜇 (request/sec) 1 

7 Hover rate of MF-UAV, 𝑅>#?-* = 𝑇>#?-*/𝑇@*'n-+(#*2 1/6 

8 Transit rate of MF-UAV, 𝑅@*'%;,( = 𝑇@*'%;,(/𝑇@*'n-+(#*2 1/12 

9 Zipf parameter (Popularity), 𝛼 0.4 

10 Micro Ferrying UAV Trajectory Round-robin 

In the simulation, the impact of lateral link range on content dissemination has been 

implemented. An MF-UAV begins serving content upon entering the WiFi transmission range of 

a community, even before reaching its boundaries. The duration during which the MF-UAV starts 

transmitting content, denoted as Δ𝑡+#44, is influenced by its transit speed. If Δ𝑡+#44 is 

significantly shorter than the Poisson-distributed content request generation time (𝑇*-y), the 

adjusted hover time remains approximately the same (𝑇ø>#?-* ≈ 𝑇>#?-*). Conversely, if Δ𝑡+#44 is 
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comparable to or exceeds 𝑇*-y, the adjusted hover time increases to 𝑇ø>#?-* ≈ 𝑇>#?-* + Δ𝑡+#44, 

while the transit time decreases to 𝑇ø@*'%;,( ≈ 𝑇@*'%;,( − Δ𝑡+#44. 

The performance of the designed mechanism was evaluated using the following metrics: 

Content Availability (𝑃'?',&): This is the ratio of cache hits to generated requests within a tolerable 

access delay. Cache hits refer to content provided to users from the UAV-cached content without 

needing a download. Content availability indirectly reflects the content download cost of the 

system. 

Cache Distribution Optimality (CDO): This metric assesses the optimality of the learned caching 

policy in terms of the caching sequence. The Jaro-Winkler Similarity (JWS) [143] measures CDO 

by comparing the similarity between the content sequence from the learned caching policy and the 

cache pre-loading sequence. It considers the number of matches, required transpositions, and 

prefix similarity of both sequences. A normalized similarity measure, where 1 indicates optimal 

caching and 0 indicates non-optimal caching, is used. 

Access Delay (𝐴𝐷): Performance of FedMAB model and selective caching policy for micro-

ferrying UAVs is also evaluated based on the access delay which is the end-to-end delay between 

the generation of content request and its provisioning from the cached contents in the UAVs. This 

chapter reports the epoch-wise average access delay to show the improvement in caching policy 

as learning progresses.   

9.7.1 Effect of Controlled Latency Induced Federated Learning on Content Availability 

To understand the applicability of the designed FedMAB-based caching policy along with 

selective caching, experiments were conducted with different durations of controlled latency. This 

is achieved with caching policies learnt through models that update with different levels of latency. 

Each MAB model uses a hybrid exploration strategy including both UCB and 𝜖-greedy, where the 
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degree of exploration is set to 𝛼[ = 2. Also, to show the effectiveness of selective caching at 

micro-ferrying UAVs (MF-UAVs), TAD Ratio 𝑅@:E for contents {51 − 75} are kept lower than 

the default 𝑅@:E i.e., 1/8	. To be noted that TADs are represented as a ratio with respect to 

trajectory time (𝑇@*'n-+(#*2) to ensure generalizability of the designed algorithms. Figure 9.7 

shows the convergence behavior of the learnt caching policy with FedMAB model at the A-UAVs, 

and selective caching at the MF-UAVs. The comparison emphasizes on the effects of controlled 

latency.  

  

Figure 9.7. Increase in content availability by controlling the learning latency in Federated 

Learning aided caching policy 

The convergence behavior is shown in terms of relative content availability, which is the ratio 

between content availability achieved using the designed method and the deterministic baseline 

method from Eqns. 9.13-9.17. The key outcomes are given below. First, the best content 

availability achieved is with the maximum induced latency while implementing FedMAB to learn 

caching policy. This parameter controls the application of divergence-based weight computation, 

eventually the aggregation of the Top-k MAB (refer Eqns. 9.24-9.29 and Algorithm 9.4). Second, 
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the promptness in learning behavior is more apparent in the models with least latency or no latency. 

However, the converged learning performance is subpar, and it can be seen via the attained content 

availability. Third, the learning progression is inversely proportional to the controlled latency for 

aggregation, whereas the learning performance is directly proportional to it. For least controlled 

latency, the individual model’s epoch-wise reward estimate 𝔼[ℝ] ≠ 𝕣∗ is weak due to limited 

content requests experienced within an epoch’s duration. Here, ℝ is the reward received during 

𝑡(0 epoch and 𝕣∗ is the true reward. Also, due to the mobility of the MF-UAVs, the accessibility 

of ferry and global content availability information can’t be guaranteed, leading to a weak and 

sensitive estimated reward. On the contrary, with a high controlled latency, the individual model’s 

reward is substantially stable i.e., 𝔼[ℝ] ≈ 𝕣∗. Additionally, due to the induced latency for model 

aggregation, the content availability information from adjacent communities can be accessed via 

MF-UAVs with high likelihood. This leads to a better overall reward estimate, therefore improving 

content caching policy. However, the explicit introduction of latency to the learning algorithm 

makes the model update process sluggish, which can be seen in Figure 9.7. 

 

Figure 9.8. (Left) Evolution of learning-based caching policy with information sharing; (Right) 
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9.7.2 Evolution of Learning based Caching Policies and their Impacts 

The evolution of the learning-based caching policies designed in this chapter and their comparison 

are shown in terms of relative content availability. The observations from Figure 9.8 are as follows. 

First, the figure shows that by employing FedMAB model along with selective caching, a caching 

policy can be learnt which can provide content dissemination performance closer to the benchmark 

performance [93]. The benchmark performance, using Value-based Caching, is calculated with the 

aid of apriori information on content popularity and takes into consideration the heterogeneity in 

user demand (see Eqns. 9.9-9.12). The designed FedMAB algorithm is able to leverage the multi-

dimensional reward structure and divergence-based weighted aggregation to account for 

heterogeneity [146], [147], as explained in Eqns. 9.19-9.29, to learn the caching policy on-the-fly 

(see Section 9.6.1 and 9.6.2). Second, the selective caching policy at micro-ferrying UAVs 

leverages the shared information between themselves and with the A-UAVs to boost the content 

availability closer to the benchmark performance by approximately 20% (see Figure 9.8). It utilizes 

the currently visiting A-UAV’s caching information and the preceding MF-UAV’s caching 

decision to algorithmically select its own contents for caching, which is also shown in Figure 9.6. 

Such selective caching will reduce the redundancy of multiple copies of the same content available 

through multiple sources at the same time. Third, the difference in the efficacy and limitations of 

selective caching can be observed in Figure 9.7 and 9.8, where caching decisions at MF-UAVs 

differ due to the model aggregation in both scenarios. The effectiveness of controlled latency can 

be seen here in Figure 9.8, where the benefits of divergence-based weighted aggregation is 

preserved along with leveraging the pros of selective caching. Fourth, when the agent uses UCB 

exploration strategy, during the initial learning epochs the content availability increases promptly 

due to high upper confidence value of all contents, which avoids excessive exploitation. This is 
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due to low sampling of requests. As learning progresses, the sparse request for unpopular contents 

keeps the upper confidence value high which maintains consistent exploratory behavior. Figure 

9.8 shows that such exploration strategy alone helps to boost the content availability closer to the 

benchmark performance by approximately 10% more than popular estimation-based methods [78], 

[79], [80], [81]. Finally, the standard deviation across the performances of all A-UAVs is recorded, 

which shows the progression of the learning-based caching policy. Note that FedMAB��� shows 

lowest standard deviation, which shows highest level of fairness in the performance. Here, the 𝜎 

is computed as average of 150 learning epochs. Also, contrary to the performance behavior of the 

MAB algorithm with hybrid action selection strategy, it shows more nonuniform increase in 

performance with respect to estimation-based methods. This can be attributed to intermittent 

accessibility of MF-UAVs, therefore limiting information access. This behavior is not seen in both 

learning variants with selective caching as the caching information is spanned across multiple MF-

UAVs. 

Discussion: FedMAB��� allows maximum evolution of the caching policy such that increased 𝑇𝐴𝐷 

is leveraged to achieve highest content availability. The performances of Top-k MAB with 

Selective caching and multi-dimensional reward structure follows in that order. These observations 

can be used to deepen the understanding of the components of FedMAB���. With high 𝑇𝐴𝐷, the 

ferrying and global reward i.e., ℝ(𝑖, ℱ), and ℝ(𝑖, 𝒢) respectively, brings the estimated reward ℝ@ 

closer to the true mean, as it allows more time for the MF-UAVs to transit before the request 

expires. Furthermore, the effectiveness of the selective caching algorithm boosts with high 𝑇𝐴𝐷, 

since it allows more MF-UAVs to collaborate allowing them to avoid caching copies of same 

contents amongst themselves. The last component of FedMAB���, that is the divergence-based 

weighted updates of the models allows each A-UAV to have explicit knowledge of the content 
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popularity at adjacent communities, therefore avoiding content replication at A-UAVs. The 

consolidation of these components of FedMAB��� results in increased content availability with the 

primary objective of this work. Note that a high value of 𝑇𝐴𝐷 also allows for unconstrained 

application of controlled latency, which proves to be beneficial in boosting content availability as 

shown in Figure 9.7 and 9.8. 

 

Figure 9.9. Balance between reactiveness and performance of 𝐹𝑒𝑑𝑀𝐴𝐵S-& caching policy in case 

of time-varying user preferences 

9.7.3 Adaptability with Changing User Preferences 

The adaptability of the developed learning-based caching mechanisms is further emphasized in 

Figure 9.9. It showcases that the ability of FedMAB��� approach to learn the caching policy in a 

setting where the user preference changes over time. It goes on to highlight the reactive nature of 

the FedMAB���, where content availability increases more promptly compared to the standalone 

Top-k MAB implementation or any of its predecessors. Note that dynamic user preference patterns 

are simulated using Smith-Waterman Distance-based sequence swapping [125] and changing the 

Zipf parameter (refer Eqn. 9.1). Moreover, the comparison between the reactiveness of the 

learning-based caching polices are depicted in terms of 3 different measures, namely reactiveness 

time (𝜓), lowest performance point (𝜒) and crossover ratio (𝜁). Reactiveness time (𝜓) captures the 
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time taken for the system to start improving its performance after the demand scenario change. 𝜒 

represents the lowest point in performance after the demand scenario change, just before the 

system begins to recover. Crossover ratio (𝜁) represents the ratio of the time before which one 

algorithm’s performance surpasses another (i.e., 𝜏 − 𝜏+), relative to the time constant (𝜏 which is 

the duration of the fixed demand scenario). Here, 𝜏+ refers to the time when an algorithm’s 

performance surpasses another. Therefore, crossover ratio 𝜁 can be expressed as 𝜁 = �L�$
�

. For 

interpretability, the case where performance of an algorithm doesn’t surpass its predecessor, 𝜏+ =

𝜏. This indicates that there is no relative improvement in performance within the time constant 𝜏. 

The performance seen with FedMAB��� exhibit relatively lower values for 𝜓 and higher values for 

𝜒 with any level of controlled latency in FedMAB���. This indicates the promptness of the 

developed caching method as compared to its predecessors. Crossover ratio 𝜁, on the other hand, 

shows a more nuanced observation. For controlled latency of 2 epochs, 𝜁 is high but it reduces for 

latency of 10 epochs, although with improved relative performance. This shows that a high 

controlled latency in divergence-based weighted updates for FedMAB��� can improve performance 

significantly, but it comes with a cost of the model’s reactiveness. Therefore, a realistic assumption 

on the dynamic nature of the content demand pattern suggests that for user preferences with high 

time constant 𝜏, the reactiveness of the FedMAB��� is relatively high as compared to the learning-

based caching mechanisms discussed above. 

Note that while the Zipf model is used to represent content request generation patterns, the 

designed Federated Multi-Armed Bandit (FedMAB) framework remains agnostic to the specific 

distribution governing user requests. The caching decisions are purely data-driven that relies on 

observed request patterns rather than prior assumptions about the underlying distribution. If 

content requests were generated according to an alternative distribution, such as Normal, T, or 
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Beta, the learning process would naturally adjust caching policies to match the observed demand 

structure. The adaptability of FedMAB ensures that the system remains effective under diverse 

content popularity dynamics, therefore optimizing caching decisions based on real-world user 

behavior rather than a predefined statistical model. 

Discussion: The choice of TAD for the experiments is such that it is less than the hovering and 

transiting duration together. This is done to emphasize the reactive nature of the algorithm by 

constraining the allowed duration for a request, before it is served via download. It should be 

highlighted that keeping the TAD too high allows the MF-UAVs to reduce the caching frequency 

of those contents. On the contrary, for very low TAD, the model overestimates the value of those 

contents leading to them being cached at A-UAVs allowing ready availability. 

 

Figure 9.10. Access delay as a determinant for the choice of learning-based caching policy (Two 

viewing perspective) 

9.7.4 The Interplay Between Learning Latency and Content Access Delay 

The choice of learning-based caching policy with respect to the access delay has been highlighted 

in Figure 9.10. This figure emphasizes on the various components, namely multidimensional 

reward structure, selective caching and divergence-based weighted aggregation, the amalgamation 

of which leads to the proposed FedMAB��� caching policy. Additionally, it also scrutinizes the 
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behavior of these components under the influence of shared information in varying learning-based 

caching scenarios. The observations are as follows. First, both Figure 9.8 and 9.10 shows that with 

increase in shared information content availability and access delay improves irrespective of the 

caching policy used. However, the efficacy of different versions of the learning-based caching 

policies varies. Second, Figure 9.10 demonstrates the effect on access delay while applying 

different versions of the learning-based caching policy as learning progresses. It can be seen that 

for each learning-based caching policy the delay decreases with increase in epochs, which is 

intuitive. Along with providing more contents from the hierarchical UAV-aided content 

dissemination system, the delay decreases since more relevant contents are stored at A-UAVs. 

Third, with the implementation of multi-dimensional reward structure and the hybrid action 

selection strategy, access delay decreases, since the relevance of the contents cached in both A-

UAVs and MF-UAVs improve. Finally, it can be that as the learning-based caching policy evolves 

the access delay reduces till a certain point. However, an increase in delay can be seen for 

FedMAB��� based policy. The reasons are multifaceted. When the model evolves from standalone 

MAB to Top-k MAB with multi-dimensional reward structure, the caching policy of the A-UAVs 

improve leading to high value content being cached at A-UAVs. This results in better content 

being ferried via the MF-UAVs without adding significant delay. FedMAB��� along with 

improving the caching policy for A-UAVs improves the policies for MF-UAVs jointly, which 

allows more content to be ferried from adjacent communities before exhausting the requests 

lifetime. This increases the dependance on the hierarchical UAV-aided dissemination system for 

content provisioning. Therefore, an increase in access delay is observed along with a boost in 

content availability, which is the primary objective of this work (refer Section 9.4). 
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Discussion: The designed framework inherently mitigates latency through a combination of 

controlled learning updates, demand-aware caching policies, and dynamic UAV coordination. As 

detailed in Algorithm 9.4, the system regulates the timing of federated model updates to balance 

responsiveness and caching stability which ensures that UAVs do not prematurely overwrite 

cached content while maintaining adaptability to real-time requests. The incorporation of 

Tolerable Access Delay (TAD) constraints ensures that content with lower latency requirements is 

prioritized at A-UAVs, while content with more relaxed delay tolerance is efficiently transferred 

via MF-UAVs. 

Additionally, high-demand conditions naturally strengthen the learning process of the Federated 

Multi-Armed Bandit (FedMAB) framework. Increased accessibility of MF-UAVs in such 

scenarios exposes the model to a broader range of content requests which allows it to refine caching 

decisions based on diverse demand patterns. However, local high-demand conditions are not 

entirely dependent on MF-UAVs; each UAV continues learning independently to track sudden 

surges in requests. This ensures that the personalized Q-table remains highly reliable, as increased 

demand inherently leads to higher sampling, which is particularly beneficial for combinatorial 

bandits. This greater sampling rate allows UAVs to gain stronger confidence in learned content 

priorities, improve caching efficiency via high confidence contribution factor ℭ𝕏,𝕐 and reduce 

overall latency. 

The results in Figure 9.7 and 9.10 empirically validate these latency mitigation mechanisms. By 

leveraging controlled federated learning updates, demand-aware caching, and increased sampling 

during high-demand periods, the system effectively maintains low access delays under varying 

demand conditions that ensures robust performance in real-world UAV-assisted content 

dissemination scenarios. 



 224 

 

 

Figure 9.11. Learnt cached content sequence’s similarity with benchmark sequence 

9.7.5 Cache Similarity of Learnt Sequence with Best Sequence 

The effects of learning on the cached content sequence are demonstrated in Figure 9.11. It plots 

Cache Distribution Optimality (CDO) of the cached content sequences for all the A-UAVs in terms 

of Jaro-Winkler Similarity (JWS). The key observation are as follows. First, the average 𝐶𝐷𝑂 

between the benchmark caching sequence from cache pre-loading policy (see Section 9.5) and the 

cached content sequences learnt by the FedMAB agents at A-UAVs converge near 0.95, with 

relatively less variance with respect to its Top-k MAB predecessor. Physically, this represents 

higher degree of similarity after convergence, where 1 indicates complete similarity and 0 implies 

no similarity. Second, the cached contents improve over epochs as learning progresses. Lower 

𝐶𝐷𝑂 values after the initial epochs signify that the A-UAVs have no a priori local or global content 

popularity information. As the MAB agents learn over multiple epochs of generated content 

requests, the cached contents in the A-UAVs become increasingly similar to the optimal caching 

sequence, which, in turn, improves the efficacy of FedMAB. Third, 𝐶𝐷𝑂 is an indirect 

representation of the storage segmentation factor (𝜆), which is used to decide the segment sizes 
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according to cache pre-loading policies [91], [142]. A higher 𝐶𝐷𝑂 implies that, along with 

learning, the caching policy, the FedMAB agents learn to emulate the said segmentation behavior. 

Finally, the partial dissimilarity of the cached content sequence can be ascribed to the uncertainty 

(or regret) associated with the Q-values of contents with low popularity. Also, this leads to an 

oscillatory convergence of 𝐶𝐷𝑂 for the A-UAVs.  

The impacts of selective caching at micro-ferrying UAVs can be distinctly seen in Fig 9.6. 

Selective caching at the MF-UAVs along with Top-k MAB caching agent at A-UAVs leads to a 

𝐶𝐷𝑂 of nearly 0.9, although with a certain variance. Note that this depends on effective caching 

capacity of the MF-UAVs, which is dictated by the 𝑇𝐴𝐷s associated with content requests and the 

MF-UAVs visiting frequency at A-UAVs (refer Algorithm 9.3). The dependance of contents’ Q-

values on such information also adds to the post-convergence oscillation. Such oscillatory 

uncertainties are mitigated by the FedMAB, which enhances the value difference between in-

demand and low demand contents, therefore improving the expect reward. To be noted that for the 

computation of 𝐶𝐷𝑂, the benchmark caching sequence is derived by considering the same 

effective caching capacity as the selective caching algorithm at the micro-ferrying UAVs. 

9.8 Conclusion 

In this chapter, we design a micro-UAV-assisted content dissemination system that learns caching 

policies on the fly without prior knowledge of content popularity. Two types of UAVs are 

introduced for content provisioning in disaster or war-stricken scenarios; anchor UAVs and micro-

ferrying UAVs. Cache-enabled anchor UAVs are stationed at each stranded community of users 

to provide uninterrupted content delivery, while micro-ferrying UAVs act as content transfer 

agents between the anchor UAVs. 
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To overcome the limitations of existing caching methods, we introduce a decentralized 

Federated Multi-Armed Bandit (FedMAB) learning-based caching policy. This method leverages 

the collective intelligence of all A-UAVs to increase promptness in learning the caching policy, 

while reducing the redundant copies of the contents across the network. The policy at each A-UAV 

learns the caching decisions dynamically by maximizing an estimated multi-dimensional reward 

aimed at increasing both local and global content availability. Our results show that the FedMAB 

learning-based caching policy achieves approximately 88% of the maximum achievable content 

availability. 

To further improve the Q-value estimates, we implement a Selective Caching Algorithm at the 

micro-ferrying UAVs. This method leverages shared information between anchor UAVs and 

micro-ferrying UAVs to further reduce the redundant content copies and provide a better estimate 

of the most popular content within a community. Combining selective caching at micro-ferrying 

UAVs with the FedMAB learning-based caching policy at anchor UAVs boosts content 

availability to approximately 94% of the maximum achievable level. With the designed caching 

policies, a scaled-up micro-UAV-assisted network is shown to attain content availability close of 

the maximum achievable content availability. 

Discussion and Future Work: Future work includes developing algorithms to handle time-varying 

content popularity and implementing adaptive trajectory planning to address operational 

unreliabilities of the UAVs. Additionally, it is necessary to explore methods for preserving the 

richness of information when converting multi-modal disaster data into smaller-sized formats to 

enhance effective content caching capacity.  

While the developed framework has been validated through simulations, real-world deployment 

would require addressing practical challenges that includes UAV coordination, wireless 
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interference, and energy constraints. The decentralized structure of the system mitigates 

coordination complexity by allowing A-UAVs and MF-UAVs to operate autonomously which 

leverages federated learning to refine caching strategies without requiring continuous central 

control. 

A transition to operational implementation would follow a phased approach. Initial deployment 

could involve small-scale testbed experiments, where UAVs execute FedMAB-based caching 

policies in controlled environments. This would allow for real-world validation of caching 

performance under dynamic network conditions. The next phase would involve field trials in real-

world UAV-assisted networks, where interference, energy efficiency, and UAV mobility 

constraints could be evaluated. Future extensions could also explore hardware integration with 

UAV control algorithms which can ensure that caching decisions align with real-time flight 

dynamics. 

By adopting a structured deployment roadmap, the designed framework can be progressively 

refined for real-world applications while maintaining its efficiency in adaptive caching. 
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Chapter 10: Conclusions and Future Works 

This thesis investigates the complex problem of content dissemination in environments that 

lack communication infrastructure due to natural disasters or conflicts. To overcome this 

challenge, the research introduces a hierarchical UAV-assisted content dissemination framework 

designed to provide essential information to isolated communities. The proposed architecture 

incorporates Anchor UAVs (A-UAVs), which provide stationary caching points with costly 

satellite-like backhaul connectivity, and Micro-Ferrying UAVs (MF-UAVs) that transfer cached 

contents across different communities without direct backhaul connections. 

A central aspect of this thesis is the use of Multi-Armed Bandit (MAB) and Federated 

Multi-Armed Bandit (FedMAB) learning methodologies to dynamically and adaptively cache 

contents. Unlike traditional caching strategies that rely on static or globally known content 

popularity, the proposed model captures local content demands and temporal variations without 

requiring centralized coordination. FedMAB enables UAVs to collaboratively enhance their 

caching policies by sharing learned models rather than user requests directly, thus ensuring a 

scalable learning framework. 

The research further extends the MAB framework by integrating trajectory-aware caching 

policies. This approach considers UAV mobility patterns and content request dynamics to 

determine optimal caching strategies. By effectively leveraging trajectories, the system 

significantly improves content delivery efficiency, reduces redundancy in content storage, and 

increases overall availability of critical information to users. 

Another important contribution is the Selective Caching Algorithm developed specifically 

for MF-UAVs. This algorithm strategically selects and manages cached contents to maximize their 

availability while minimizing redundant storage across UAV fleets. Through careful evaluation, 
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this method demonstrated substantial improvements in caching efficiency and system performance 

compared to traditional pre-loading benchmarks. 

Extensive simulations were conducted to validate the effectiveness of the proposed 

approaches against established benchmark models, including other traditional caching policies. 

Results indicated that the amalgamation of federated learning, multi-armed bandits and trajectory-

aware caching policies significantly outperform traditional approaches that achieves high levels of 

content availability, reduced access delay, and improved caching stability under varying user 

demand patterns. 

This research delivers a practical and robust solution for UAV-based content 

dissemination, effectively addressing the critical challenges posed by infrastructure-deprived 

environments. By incorporating advanced federated learning techniques, bandit algorithms, 

adaptive caching, and trajectory-awareness, the developed framework ensures resilience, 

scalability, and responsiveness. The methodologies and algorithms established through this thesis 

lay the groundwork for future research in adaptive UAV systems which emphasizes a balanced 

approach between operational efficiency, learning responsiveness, and strategic content 

management. 

10.1 Key Findings and Design Guidelines 

Given below are the essential core ideas that can be deduced from the results presented in this 

thesis. 

a) Federated Model Aggregation Enhances Scalability: The integration of Federated Multi-

Armed Bandit learning enables collaborative policy refinement across multiple UAVs 

without relying on centralized coordination. This allows each A-UAV to build locally 

relevant models while benefiting from global content popularity trends shared through MF-
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UAV-based model aggregation. The system achieves rapid convergence of caching 

policies which makes it suitable for large-scale and dynamic disaster-response networks. 

b) Mobility-Aware Caching Improves Efficiency: Considering UAV trajectory patterns and 

user request dynamics substantially enhances content delivery performance. Caching 

decisions informed by UAV mobility trajectories reduce redundancy in content storage and 

improve overall content availability. To optimize system performance, UAV caching 

algorithms should dynamically adapt based on real-time trajectory data and content 

demand predictions. By aligning caching decisions with known or predicted UAV flight 

paths, the system maximizes content exposure to target communities and minimizes missed 

delivery opportunities. 

c) Selective Caching at MF-UAVs Optimizes Network Utility: The Selective Caching 

Algorithm at MF-UAVs strategically curates content based on urgency, request likelihood, 

and caching history. This approach improves effective cache utilization across UAV 

swarms that minimizes overlap in stored content and increases system-wide availability. 

When deployed at scale, this mechanism ensures maximum diversity and relevance of 

cached items. 

d) Multi-Dimensional Reward Structures Enable Contextual Adaptation: The use of local, 

ferrying, and global reward components in caching decision-making leads to finely-tuned 

learning behavior. This structure allows UAVs to dynamically adapt to regional content 

demand variations and system-wide utility metrics. It supports learning policies that are 

simultaneously locally responsive and globally efficient. 

e) Hierarchical Architecture Increases Robustness: A two-tier UAV network architecture 

comprising A-UAVs and MF-UAVs ensures operational continuity even under constrained 
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conditions. The hierarchical structure simplifies learning coordination, offloads content 

ferrying, and enhances fault tolerance. As a result, the system scales robustly with minimal 

central infrastructure. 

f) Dynamic Adaptability Under Changing Conditions: The proposed federated multi-armed 

bandit and trajectory-aware caching solutions consistently outperform traditional static and 

centralized methods, particularly in unpredictable and dynamic scenarios. Emphasizing 

dynamic adaptability allows the system to swiftly adjust caching strategies in response to 

shifting user demands and environmental changes that maintains high system performance 

and reliability. 

g) Balanced Optimization Across System Constraints: The framework accounts for trade-offs 

among QoS, computation, communication cost, cache capacity, and UAV budgets. 

Learning-driven caching policies help balance content relevance against delivery 

feasibility which ensures that the system operates within resource bounds while 

maintaining high service quality. 

10.2 Future Directions 

10.2.1 Crowd Estimation-Based Context-Aware Caching 

This direction explores a context-aware caching mechanism that leverages crowd 

estimation and environmental sensing to guide content placement decisions. Traditional MAB 

approaches rely solely on observed request frequency, without accounting for the urgency, 

relevance, or situational context of content demand. In disaster-stricken environments, such 

limitations can significantly impair content availability when observational data is sparse or 

missing. 

The proposed solution integrates multimodal context extraction using techniques such as 
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image captioning (e.g., CLIP), crowd estimation models like auxiliary point guidance, and 

structured image analysis to infer user and environmental conditions from onboard UAV camera 

sensors. These multimodal signals are processed to generate real-time context scores that 

encapsulate content urgency, relevance, damage severity, and inferred user intent. 

A context scoring model is developed to estimate content demand when explicit request 

data is unavailable. For example, crowd density estimation or disaster damage detection informs 

content selection priorities when direct user input is missing. These context-driven metrics are then 

integrated into the Federated Multi-Armed Bandit (FedMAB) framework to dynamically update 

caching strategies based on environmental insights. 

The proposed system includes a pipeline for population and popularity estimation, and 

temporal decay modeling that balances short-term surges in demand with long-term value 

retention. This helps UAVs adapt their caching policy in response to changing real-world 

conditions. 

By incorporating multimodal insights into the reward formulation and decision logic, the 

caching framework aligns delivery priorities with real-world urgency. The use of Federated 

Learning enables distributed UAVs to share model parameters without central coordination which 

ensures that learning remains adaptive and robust in communication-challenged environments. 

This approach opens new avenues for deploying intelligent, context-aware caching in extreme 

scenarios where traditional demand estimation falls short. 

10.2.2 Large Action Models (LAM) for Enhanced Decision Sampling and Strategic Caching 

This future direction proposes integrating Large Action Models (LAM) with Federated 

Multi-Armed Bandit (FedMAB) learning frameworks to enhance the decision-making processes 

in UAV-assisted content dissemination systems. Traditional MAB methods typically deal with a 
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limited set of discrete actions which constrains the ability to efficiently explore and exploit a vast 

action space in highly dynamic environments. LAM addresses this limitation by generating 

extensive and diverse action spaces based on historical data, simulation outcomes, and predictive 

modeling. 

Incorporating LAM with FedMAB can significantly expand the scope and precision of 

caching policies by enabling UAVs to sample and assess a broad spectrum of potential actions 

rapidly. The system can dynamically construct and evaluate large corpora of actions for various 

scenarios, such as sudden shifts in content popularity, unexpected UAV failures, or rapid 

environmental changes. By combining predictive analytics from machine learning models, such 

as Transformer-based predictors, with LAM-generated action spaces, UAVs can proactively 

formulate and test multiple strategic scenarios before deployment. 

Furthermore, the integration of federated learning within LAM allows UAV networks to 

collaboratively refine their large-scale action databases without compromising local autonomy. 

Each UAV contributes insights based on local context and outcomes that enhances collective 

decision-making accuracy. This collective intelligence enables the system to rapidly identify 

optimal actions from a comprehensive and evolving action repository, thus significantly enhancing 

the robustness and adaptability of content dissemination policies. 

This innovative approach to large-scale decision sampling facilitates more accurate, 

proactive, and resilient caching strategies. Future research will explore algorithmic advancements 

to optimize action space generation and evaluation, along with scalability improvements to support 

extensive deployments in real-world, resource-constrained disaster-response scenarios. 

10.2.3 Contextual Federated Multi-Armed Bandit Learning for Collective Caching 

This direction of the thesis extension seeks to design and implement a novel caching policy 
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framework for a swarm of micro-ferrying unmanned aerial vehicles (UAVs) which utilizes 

Contextual Federated Multi-Armed Bandit Learning. The primary focus is on maximizing content 

availability through a collective caching strategy that intelligently adapts to the heterogeneous and 

time-varying demands of user content requests, which follow a Zipf popularity distribution. By 

integrating contextual variables derived from the UAVs’ operational environment, such as their 

flight patterns and proximity in formations, this framework aims to enhance the efficiency and 

responsiveness of content delivery networks in diverse scenarios. 

At the core of the suggested system is the development of a caching algorithm tailored to 

manage and exploit the complexities of a multi-UAV system characterized by a hierarchical 

structure UAVs. The caching algorithm will be designed to continuously learn and adapt to the 

operational context of the UAV swarm. By observing the trajectories and grouping patterns of the 

UAVs, the algorithm will adjust the cached content on each UAV to minimize redundancy and 

ensure a diverse range of data is available across the network. This approach leverages the inherent 

characteristics of the UAVs’ flight routes and community engagement patterns that makes it 

possible to tailor content delivery to specific regional demands dynamically. 

Furthermore, the proposed caching policy will incorporate a multivariate Contextual 

Federated Multi-Armed Bandit (CFMAB) learning model that utilizes a complex aggregation of 

Q-values derived from multiple UAVs operating in concert. This model will allow for the sharing 

and updating of multivariate model information across the swarm without significant delays, 

facilitating a responsive and adaptive system capable of handling non-independent and identically 

distributed (non-IID) data scenarios [148]. The use of a joint distribution-based divergence 

mechanism in the CFMAB model will help to synchronize and optimize the caching decisions 

across the UAV swarm which will enhance the overall system’s efficiency and effectiveness. 
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An essential component of this framework is its ability to balance the trade-off between 

the effective caching capacity of the UAV fleet and their accessibility. This balance is critical to 

maintaining high levels of service quality, especially in terms of meeting the QoS expectations and 

tolerable access delays specified by users. The caching policy will be continuously refined through 

the CFMAB learning process, which will study the interactions between the learnt caching policies 

and the QoS expectations. Such continuous learning will enable adapting the network’s behavior 

to optimize content delivery based on actual user experiences and feedback. 

The proposed caching policy framework for the UAV swarm will utilize advanced 

contextual muti-armed bandits and federated learning techniques to dynamically adapt to changing 

environmental and user demand conditions. By addressing the challenges of multivariate, non-IID 

data in a real-world application [149], this research will not only enhance the performance of UAV-

based content distribution networks but also contribute significant insights and methodologies to 

the field of distributed machine learning and autonomous vehicle coordination. 

10.2.4 Adaptive Trajectory Planning in the Presence of Operational Unreliabilities of the Micro 

UAVs 

The proposed initiative to enhance the effectiveness of unmanned aerial vehicles (UAVs) 

in content distribution by addressing the issue of operational unreliabilities requires an integrated 

approach that utilizes both adaptive trajectory route planning and advanced caching techniques. 

This approach aims to refine the current framework, which primarily focuses on predetermined 

trajectories for UAVs and Micro-UAVs, by incorporating dynamic decision-making capabilities 

that respond to fluctuations in operational stability. 

The central objective of this enhancement is to implement adaptive trajectory route 

planning that compensates for the unreliability of Micro UAV operations. This entails the design 
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of a dynamic flight plan that not only adjusts in real-time to the status and availability of UAVs 

within the network but also ensures that the collective storage and dissemination capabilities of 

the fleet are not compromised due to individual UAV failures. 

At a higher level, the primary goal of this development is to ensure that the network of 

UAVs can maintain high levels of content availability and reliability even when individual units 

fail or deviate from their expected operational parameters. This is achieved by dynamically 

modifying the caching policies and trajectory plans of the remaining UAVs. Such adjustments are 

crucial not only for optimizing the distribution of content across the affected areas but also for 

ensuring that the collective capabilities of the UAV swarm are utilized efficiently. Furthermore, 

the design of the flight plan also plays a critical role. It must be flexible enough to allow for real-

time reconfiguration which can enable UAVs to regroup or reposition themselves effectively to 

cover potentially uncovered areas due to the failure of one or more units. This strategic regrouping 

is expected to maximize the content availability by leveraging the undiminished parts of the 

network to compensate for the affected segments. 

Through the integration of these methodologies, the framework aims to provide a resilient, 

scalable, and highly adaptive solution to the challenges posed by the operational unreliability of 

Micro UAVs in disaster-stricken or isolated regions, thus enhancing the effectiveness of UAV-

assisted communication and content dissemination systems. 

10.2.5 Integration of Proactive and Predictive Caching with Federated Multi-Armed Bandit 

Learning 

In the proposed framework for integrating proactive and predictive caching methods with 

Federated Multi-Armed Bandit Learning (FMABL) or Contextual Federated Multi-Armed Bandit 

(CFMAB) learning for caching in UAV/Micro-UAV networks, we aim to transition from 
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traditional reactive caching strategies to a more predictive model. Traditional methods primarily 

respond to immediate content requests, gradually improving the caching decisions based on 

received user feedback and the associated rewards. These systems, while adaptive, typically 

initiate improvements only after the content requests are made by UAVs or Micro-UAVs. Such 

reactive approaches can limit the efficiency and responsiveness of the network, especially in 

dynamic and fast-evolving operational environments. 

The principal objective of this new proposal is to implement Transformer Learning 

algorithms [150], [151] to anticipate changes in content popularity. Transformer Learning models, 

known for their effectiveness in understanding time-series data and patterns in sequence prediction 

tasks, will be employed to forecast the fluctuating demands for content [152]. By predicting these 

changes, the system can proactively adjust caching policies before actual requests occur, 

potentially enhancing the network’s efficiency and user satisfaction. 

This proactive approach is augmented by an advanced caching policy developed through 

MAB/FMABL/CFMAB. The MAB/FMABL/CFMAB framework leverages the decentralized 

nature of UAV networks to aggregate insights from individual UAV experiences, even in a non-

independent and identically distributed (non-IID) data environment [145]. This method allows for 

a dynamic adaptation of caching strategies that are both informed by local conditions and enhanced 

through a collective learning process. The integration of Transformer Learning predictions with 

such caching policy constitutes a significant enhancement over existing methods. By forecasting 

content popularity trends, the Transformer model provides a predictive input that the 

MAB/FMABL/CFMAB system uses to pre-adjust its strategies. This means that the caching 

decisions can be refined in anticipation of future demands rather than solely in reaction to past 

requests. For example, if the Transformer Learning model predicts a surge in demand for specific 
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types of content in a particular area, the FMABL system can proactively direct UAVs to cache this 

content in anticipation, rather than waiting for the demand to manifest physically.  

Moreover, this proactive caching approach will not only improve the timeliness and 

relevance of the content delivered but also optimizes the network’s resources. By reducing the 

need for rapid, reactive changes in caching strategies, the system can operate more smoothly and 

efficiently that focuses its computational and communication resources on maintaining optimal 

service rather than constant adjustment. 

In other words, the integration process involves the continuous training of the Transformer 

model with historical and real-time data to refine its predictive accuracy. Concurrently, the 

MAB/FMABL/CFMAB framework adjusts its parameters based on both the predictions from the 

Transformer model and the ongoing feedback from the UAV network. This dual-input system 

ensures that the caching policy remains robust and adaptable, capable of handling the inherent 

uncertainties and variability of UAV-assisted content delivery environments. It combines the 

predictive power of Transformer Learning with the adaptive, decentralized learning capabilities of 

MAB/FMABL/CFMAB to create a caching system that not only responds to but anticipates user 

needs and content popularity trends. 
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