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ABSTRACT

Phylogenetics studies the evolutionary relationships among species, often represented as phyloge-

netic trees. However, traditional tree-like models fall short when dealing with interspecific gene

flows, such as hybridization/introgression in eukaryotes and horizontal gene transfer (HGT) in

prokaryotes, which necessitate the use of phylogenetic networks to capture complex, reticulate

evolutionary histories. Although numerous methodologies have been developed to analyze non-

tree-like evolutions, the advent of high-throughput sequencing technologies has introduced two

primary scalability challenges: the large number of taxa present in the data and the intricate and

diverse gene flow among these taxa. These challenges have considerably constrained the scope and

precision of non-tree-like phylogenetic inference and analysis.

This dissertation addresses these limitations by introducing novel techniques for analyzing

non-tree-like evolutions in large-scale genomic studies. We developed PHiMM, an introgression

detection tool that combines coalescent-based approximations with hidden Markov models (HMMs)

to improve scalability and detection accuracy. Comparisons with state-of-the-art methods on both

simulation and empirical datasets indicated that PHiMM significantly outperforms previous meth-

ods like PhyloNet-HMM in terms of runtime and memory usage, while maintaining comparable

inference accuracy to PhyloNet-HMM.

To further enhance PHiMM’s performance, we integrated it with the SERES resampling tool,

significantly improving introgression inference accuracy under various model conditions. Simu-

lation experiments demonstrated that combining the SERES resampling approach with PHiMM

substantially improves introgression inference accuracy compared to standalone PHiMM, although

it results in longer runtimes.

One major limitation of PHiMM is its requirement for a phylogenetic network as input to

constitute the structure of the HMM. To address this, we extended PHiMM to DACS by integrating

phylogenetic network inference with introgression detection. To further improve the scalability

and accuracy of introgression mapping on ultra large datasets, we adopted divide-and-conquer

and subsampling techniques, allowing us to efficiently handle the complexity of the data while



maintaining accuracy.

Moreover, we applied these approaches to metagenomic studies, where data often include thou-

sands of species derived from complex microbial communities. After assembling the sequencing

reads into metagenome-assembled genomes (MAGs), we employ DACS to identify reticulate evo-

lutionary events, such as introgression or HGT, under challenging scenarios characterized by noise,

incomplete data, and large numbers of taxa. By adapting our methods to accommodate the scale and

complexity of metagenomic datasets, we provide a powerful framework for elucidating reticulate

evolutionary histories in diverse microbial communities.

These advancements provide deeper insights into genetic and biological processes and offer

robust tools for a wide range of biological and medical applications.



Copyright by
QIQIGE WUYUN
2025



ACKNOWLEDGEMENTS

First, I would like to express my sincere thanks to my advisor, Professor Kevin Liu, for his continuous

training and mentorship throughout my Ph.D. studies. With his patience and immense knowledge,

Professor Liu has taught me to learn from every mistake and to care about details, guiding me to

become a competent scientist.

I am deeply indebted to my committee members, Professor Emily Dolson, Professor Mohammad

Ghassemi, Professor Elizabeth Heath-Heckman, and Professor Adina Howe, for their generous

service, valuable comments, and thoughtful questions. It has been a great honor and privilege to

have them on my doctoral committee.

I am grateful to BEACON, EEB, and HPCC for their generous support during my Ph.D. studies.

I would also like to thank the professors and staff at the Department of Computer Science and

Engineering, especially Professor Eric Torng and Professor Sandeep Kulkarni, for their invaluable

assistance.

My deepest gratitude also goes to Professor Jishou Ruan, who supervised my master’s thesis

at the Department of Mathematics, Nankai University. Professor Ruan has provided invaluable

patience and feedback. Without his precious support and inspiration, I would not have achieved the

current results. Although he is no longer with us, he will always remain in my heart.

Lastly, I had the pleasure of working with my excellent colleagues — Hussein, Wei, Julia,

Meijun, Ahmad, Md, Rei, Byungho, Preethi, and many others — who have impacted and inspired

me greatly.

v



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 3 PHIMM: SCALABLE STATISTICAL INTROGRESSION
DETECTION USING THE APPROXIMATE COALESCENT-BASED
INFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 4 APPLICATION OF PHIMM INTROGRESSION DETECTION
METHOD TO EMERGING MODEL SYSTEMS . . . . . . . . . . . . . 50

CHAPTER 5 BOOSTING PHIMM-BASED PHYLOGENETIC HMM INFERENCE
AND LEARNING BASED ON RANDOM WALK RESAMPLING . . . 62

CHAPTER 6 DACS: FAST AND ACCURATE ULTRA LARGE-SCALE
COESTIMATION OF PHYLOGENETIC NETWORKS AND
INTROGRESSIONS USING DIVIDE-AND-CONQUER . . . . . . . . 80

CHAPTER 7 APPLICATION OF DACS-BASED METHOD TO HORIZONTAL
GENE TRANSFER DETECTION IN METAGENOMICS . . . . . . . . 120

CHAPTER 8 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . 139

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

APPENDIX A THE COMPARISON OF INTROGRESSION PATTERNS BETWEEN
PHYLONET-HMM AND PHIMM ON EACH CHROMOSOME OF
MOUSE DATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

APPENDIX B THE INTROGRESSION PATTERNS OF DACS ON DARWIN’S
FINCH DATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

vi



CHAPTER 1

INTRODUCTION

Phylogenetics is the study of relationships among different groups of species and their evolutionary

developments, and attempts to trace the evolutionary history in the Tree of Life. A phylogeny

represents the evolutionary history for a set of organisms and is often depicted in a diagram

known as a phylogenetic tree. Phylogenies are used in a range of applications, including studying

pathogens [1], representing the relationships between species in the tree of life, studying speciation

and extinction [2], studying the spread of antibiotic resistance between species [3], identifying genes

and non-coding RNAs in newly sequenced genomes [4], and reconstructing ancestral genomes [5].

These widespread applications have led to the development of many sophisticated methods for

phylogeny reconstruction, reflecting the importance of accurate and efficient inference algorithms.

Most phylogenetic reconstruction methods assume that the underlying biological data follows

a tree-like structure. However, it is known that this assumption does not always hold due to

interspecific gene flows such as hybridization/introgression in eukaryotes and horizontal gene

transfer (HGT) in prokaryotes. Introgression, or introgressive hybridization, denotes the process

of gene flow from one species into the gene pool of another through the recurrent backcrossing

of an interspecific hybrid with one of its parental species; HGT is the nonsexual movement of

genetic material between distantly related organisms, which enables the rapid transmission of genes

between species and plays an essential role in the adaptation of microbes to novel environments.

Interspecific gene flow is thought to be especially important in the evolution of a wide range of

different species, including humans [6], mice [7], butterflies [8], fungi [9], and bacteria [10]. When

reticulate events such as introgression or HGT occur, the evolutionary history can no longer be

accurately represented by a simple, bifurcating tree. Instead, a phylogenetic network is required

to capture these complex genetic exchanges. A phylogenetic network extends the conventional

tree framework by incorporating reticulation nodes and reticulation edges, which explicitly capture

gene flow. This more general model accurately reflects both vertical (tree-like) and non-vertical

(reticulate) evolutionary processes.
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Over the past decade, researchers have developed various computational methods aimed at

detecting and analyzing non-tree-like evolutionary events [11–13]. However, the field has recently

encountered significant challenges stemming from high-throughput sequencing technologies. Two

key scalability issues have emerged. First, there is often a large number of taxa (i.e., species or

strains) present in the data, potentially spanning hundreds or thousands of organisms. Second,

the complexity and diversity of gene flows among these taxa amplify the computational burden.

These challenges can undermine the performance of traditional non-tree-like phylogenetic methods,

limiting both the size of datasets that can be analyzed and the accuracy of the resulting inferences

[11, 14, 15].

1.1 Contributions

To address these scalability and complexity challenges, this dissertation focuses on developing

novel phylogenetic methods and models designed for large-scale genomics and metagenomics

studies involving non-tree-like evolutionary processes.

We first concentrate on introgression, a prevalent form of gene flow in eukaryotes. We introduce

PHiMM, an introgression detection tool tailored to identify introgression in genomic datasets

containing dozens of DNA sequences. PHiMM incorporates a newly devised coalescent-based

approximation technique with a Hidden Markov Model (HMM) under a joint model of genetic drift,

substitutions, recombination, and gene flow. This integrated approach reduces model complexity

and enhances the scalability of introgression detection compared to existing methods. PHiMM

requires a phylogenetic network to define the structure of the underlying HMM. Comparisons

with other state-of-the-art tools on both simulated and empirical datasets suggest that PHiMM

offers significantly improved runtime and memory usage over PhyloNet-HMM while maintaining

comparable inference accuracy.

Next, we seek to boost PHiMM’s introgression inference performance and learning capabilities

by leveraging SERES, a random-walk-based resampling tool. As a data perturbation technique,

SERES is used to perform resampling on the input alignment to generate multiple replicates.

PHiMM is then run on these resampled SERES replicates. The introgression probabilities inferred

2



by PHiMM are aggregated across all SERES replicates to obtain final results. Simulation exper-

iments demonstrate that combining the SERES resampling approach with PHiMM substantially

improves introgression inference accuracy under various model conditions compared to standalone

PHiMM, although this benefit does come at the cost of increased runtimes.

A primary limitation of PHiMM is its dependence on a known phylogenetic network as an input.

Consequently, we introduce DACS, an extension of PHiMM that integrates phylogenetic network

inference with introgression detection. By embedding network construction and introgression

analysis into a unified framework, DACS bypasses the need for a predefined network. Additionally,

DACS employs divide-and-conquer strategies and subsampling techniques to handle ultra-large

datasets more efficiently. These approaches allow us to break down large datasets into smaller,

manageable subproblems, each of which can be analyzed independently before combining the

results, thereby efficiently handling the complexity of the data while maintaining accuracy.

The advent of high-throughput metagenomic technologies has brought us tons of biological data,

which have experienced exponential growth in recent years. The data generated by metagenomic

experiments are also inherently noisy and partial, sometimes containing as many as 10,000 species

[16]. Extracting useful biological information from datasets of such magnitude poses substantial

computational hurdles for researchers. To address these difficulties, we apply our proposed method,

DACS, to metagenomic data. The first thing we need to do is to process the metagenomic data

into metagenome-assembled genomes (MAGs), from which the aforementioned methods should

be easily employed. Once MAGs are obtained, DACS can be applied to detect introgression or

horizontal gene transfer (HGT) among diverse microbial communities. We further study and discuss

the differences in terms of input requirements, accuracy, scalability, and application conditions of

proposed methods between genomics and metagenomics.

1.2 Organization

The dissertation is organized into the following chapters:

• Chapter 2 provides a background and foundation for the research presented in this disser-

tation. We introduce the fundamental concepts behind non-tree-like evolution, including
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phylogenetic network, multi-species network coalescent (MSNC) model, and introgression.

• Chapter 3 details the development and design of PHiMM, our novel introgression mapping

algorithm. We demonstrate how PHiMM significantly expands the scalability of introgression

detection and achieves competitive or superior performance compared to existing tools.

• Chapter 4 focuses on empirical validations of PHiMM. We apply PHiMM to a variety of

real-world datasets, indicating its effectiveness in practical scenarios.

• Chapter 5 explains the application of SERES random walk-based resampling approach,

illustrating how integrating SERES with PHiMM can further boost introgression inference

accuracy in challenging cases.

• Chapter 6 introduces DACS, an improved introgression mapping framework that integrates

phylogenetic network inference and adopts divide-and-conquer and subsampling techniques.

We highlight its ability to handle ultra-large datasets without prior knowledge of the under-

lying network.

• Chapter 7 explores the application of DACS-based introgression detection within the con-

text of metagenomic studies. We elaborate on how our method is applied to microbial

communities featuring vast species diversity and high levels of reticulation.

• Chapter 8 concludes the dissertation with a summary of our research findings and a discus-

sion of potential future directions.

This dissertation thus aims to bridge the gap between the theoretical frameworks of reticulate

evolution and their practical implementation in large-scale genomics and metagenomics. Through

the development of scalable algorithms and robust computational tools, we provide researchers

with new ways to decode the complexities of gene flow across the Tree of Life.
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CHAPTER 2

BACKGROUND

2.1 Phylogenies

2.1.1 Phylogenetic Tree

A phylogenetic tree represents a branching structure that depicts the evolutionary relationships

between diverse biological species, genes, populations, or even individuals based on similarities

and differences in their physical or genetic characteristics.

A tree is a connected acyclic graph. Let 𝑇 = (𝑉, 𝐸) be a phylogenetic tree,𝑉 be a set of vertices

or nodes, and 𝐸 be a set of edges or branches. Each edge 𝑒 ∈ 𝐸 is defined by two connected vertices

𝑒 = (𝑣1, 𝑣2), where 𝑣1, 𝑣2 ∈ 𝑉 . The leaf nodes or leaves represent present-day taxa, such as species,

populations, genes, or individuals, while the internal nodes typically symbolize extinct ancestors

whose sequence data remain unavailable and inaccessible. An internal node is also termed as the

most recent common ancestor (MRCA) of its descendants. The ancestor of all sequences is the root

of the tree. The branches or edges represent the time estimates of the evolutionary relationships

among taxa. A branch or edge that is incident with a leaf is called an external branch or external

edge, whereas one connecting two internal nodes is called an internal branch or internal edge.

A tree in which the root is specified is known as a rooted tree, whereas a tree lacking a determined

root is referred to as an unrooted tree (Figure 2.1). For 𝑛 taxa, there are (2𝑛 − 3)!! distinct rooted

trees, and (2𝑛 − 5)!! different unrooted trees.

For an unrooted tree, a commonly-used strategy to identify the root and produce a rooted tree

is outgroup rooting. An outgroup is a species distantly related to all species in an unrooted tree.

Through introducing an outgroup in the tree reconstruction, the root can be placed on the branch

connecting the outgroup, resulting in a rooted subtree for the ingroups [17].

For readability and legibility in computer programs, rooted trees are commonly depicted using

a Newick format. It utilizes a pair of parentheses to group sister taxa into one clade where taxa

are split by a comma. A semicolon is used to mark the end of the tree. Branch lengths, if present,

are prefixed by colons. Figure 2.1 shows an example of a rooted tree, which can be referred to as
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“((((A, B), C), D), E);” without branch lengths visualization, or “((((A: 0.1, B: 0.2): 0.12, C: 0.3):

0.123, D: 0.4): 0.1234, E: 0.5);” showing branch lengths.

The Newick format can also be used to represent unrooted trees. An unrooted tree has several

Newick representations due to the flexibility of root placement on the tree. For example, the

unrooted tree shown in Figure 2.1 can also be represented as “((((A, B), C), D), E);”.

Figure 2.1 The illustration of the rooted and unrooted phylogenetic trees. In the rooted tree
on the left, a specific ancestor is designated as the root (at the base of the diagram), implying a
clear evolutionary direction as lineages diverge over time. In contrast, the unrooted tree on the
right shows the same relationships among taxa (A, B, C, D, E) without specifying a common
ancestor, thus omitting any time or evolutionary direction. Branch lengths can indicate the amount
of sequence divergence (e.g., 0.1 substitutions per site). Taxa labeled A, B, C, D, and E represent
different species or taxonomic units. This figure is reproduced from Yang [17].

2.1.2 Phylogenetic Network

Although phylogenetic trees are widely used to represent evolutionary relationships, the true

evolutionary histories are not always tree-like. The phylogenetic networks are thus introduced to

visualize evolutionary relationships when reticulation events, such as hybridization, introgression,

and horizontal gene transfer (HGT), are involved. The phylogenetic networks explicitly model

richly linked networks through the introduction of reticulation nodes to capture gene flow.
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A phylogenetic network is a directed acyclic graph (DAG) with at least one reticulation event

[18]. Let 𝑁 = (𝑉, 𝐸) be a phylogenetic network with 𝑉 = 𝑟 ∪𝑉𝐿 ∪𝑉𝑇 ∪𝑉𝑁 , where

• 𝑟 is the root of the network: 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑟) = 0 (node has no parent);

• 𝑉𝑁 is the set of reticulation nodes in 𝑁: ∀𝑣 ∈ 𝑉𝑁 , 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 2 (nodes have two parents)

and 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 1 (nodes have one child);

• 𝑉𝑇 is the set of tree nodes in 𝑁: ∀𝑣 ∈ 𝑉𝑁 , 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 1 (nodes have one parent) and

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) ≥ 2 (nodes have at least two children);

• 𝑉𝐿 is the set of leaves in 𝑁: ∀𝑣 ∈ 𝑉𝑁 , 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 1 (nodes have one parent) and

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 0 (nodes have no child).

𝐸 ⊆ 𝑉 × 𝑉 are the edges of network 𝑁 . There are two distinct types of edges: reticulation edges,

which direct to reticulation nodes, and tree edges, which point to tree nodes.

A phylogenetic network can be characterized based on the set of induced tree topologies. The

set of trees can be obtained by the following steps. First, the phylogenetic network is converted to a

multilabeled tree (MUL-tree) where leaves are not uniquely labeled by a taxon set [19, 20]. Then,

a set of true trees is obtained by keeping only one valid way of taxa mapping in the MUL-tree. For

simplicity, the set of induced trees is also called the set of MUL-trees. As shown in Figure 2.2, the

set of MUL-trees, 𝑇1 and 𝑇2, are induced from the network 𝑁 .

An extended Newick format can be employed to represent phylogenetic networks for easy

use in computer programs [21]. It introduces the “#” symbol to annotate the reticulation nodes

that are duplicated and numbered consecutively. For example, the network in Figure 2.2 can be

represented as “((A:1, (B:0.5)X#H1:0.5):1, ((X#H1:0,C:0.5):0.5, D:1));” or “((A:1, X#H1:0.5):1,

(((B:0.5)X#H1:0,C:0.5):0.5, D:1));”.

2.1.3 Gene Tree, Species Tree, and Species Network

The phylogeny that illustrates the relationships among a group of species is referred to as the

species tree or network. The tree corresponding to a set of gene sequences from the species is

known as the gene tree.

For a species tree or network, the leaf nodes represent species, which include the entire popu-
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Figure 2.2 The illustration of a phylogenetic network. (A) A phylogenetic network 𝑁 , where 𝑟
is the root node, and 𝑋 is a reticulation node. (B) The MUL-tree induced from the network 𝑁 . (C)
The induced trees 𝑇1 and 𝑇2 from network 𝑁 .

lation of this species. Each internal node symbolizes a speciation event, which results in the split

of one species’ population into subsequent species.

The gene tree shows the evolution path of one particular gene, which is a particular region on

the genome of all involved species. The gene tree is not necessarily identical to the species tree

or other gene trees. A variety of factors may render the gene tree different from the species tree,

such as introgression, hybridization, horizontal gene transfer, recombination, incomplete lineage

sorting, and gene duplication and loss.

Some gene tree discordances do not affect the tree structure of the species tree. However, some

of the discordances caused by gene flow, where the genetic information transfers from one species

to another species, cannot be properly represented in a tree structure on the species level. In these

cases, a tree structure can depict the evolutionary traces of genes, but a network structure with

reticulations may be a better form to visualize a species phylogeny.
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Figure 2.3 Gene evolution within a species tree (((A,B),C),(D,E)) under the multi-species
coalescent model. (A) A scenario where the gene tree is the same as the species tree. (B) A
scenario where the gene tree has a different tree topology from the species tree, resulting from ILS.
(C) A scenario where the gene tree is also the same as the species tree. (D) A scenario where the
gene tree also displays a deep coalescence, and yet the gene tree matches the species tree. This
figure is reproduced from Stadler and Degnan [22].

2.1.4 Multi-Species Coalescent (MSC) Model

The multi-species coalescent (MSC) is introduced by Kingman [23], which offers a framework

to analyze multi-locus genomic sequence data from different species in diverse inference problems,

such as species tree inference.

In the MSC model, each species represents a population of individuals, where each gene
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involves a set of alleles. The species tree evolves forward in time, while the alleles trace their

histories from leaves to the root backward in time. Each allele at a leaf can randomly pick its parent

from the prior generation. Over time, two or more alleles may converge upon a common parent,

giving rise to a coalescence event, wherein any two alleles have an equal probability of coalescing

first. Eventually, all the alleles coalesce into a single allele. Thus, all of the alleles from different

individuals constitute a gene tree, which matches inside the species tree.

For any two alleles, the initial chance of coalescence occurs on the edge located above their

most recent common ancestor (MRCA). When two or more alleles do not coalesce on that first

possible edge, but enter and coalesce on a subsequent edge (i.e., the one further back in time, and

closer to the root), we call this event “deep coalescence”. Since any two alleles are equally likely

to coalesce first, deep coalescence has the potential to create gene trees that differ from the species

tree and differ from each other, although the gene trees still fit inside the species tree. The deep

coalescence is also called incomplete lineage sorting (ILS).

Figure 2.3 depicts four gene trees that evolved within the same species tree under the MSC. Of

the four different gene trees, the gene trees in panels (A), (C) and (D) show the same tree topology

as the species tree, while the incongruence between the gene tree and the species tree in panel (B)

is due to deep coalescence or ILS. Interestingly, the gene tree in panel (D) also illustrates a deep

coalescence event, where the alleles from A and B do not coalesce on the edge above the MRCA

of A and B, despite the gene tree matching the species tree. Note that ILS can take place without

altering the topology.

Mathematically, the MSC model specifies how lineages coalesce through time. The structure

of the tree generated by the coalescent model is determined by coalescent times and how lineages

are selected to merge at each coalescent event. The probability that two lineages coalesce in the

generation immediately prior is equivalent to the chance they inherited their genetic material from

the same parent sequence. Assuming a stable effective population size where each genetic locus

has 2𝑁𝑒 possible parental sequences, there exist precisely 2𝑁𝑒 candidate parental copies in the

previous generation. Under random mating conditions, the probability of two alleles descending
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from an identical parental sequence is therefore 1/(2𝑁𝑒), and conversely, the probability they do not

coalesce at this generation is 1 − 1/(2𝑁𝑒). Considering generations sequentially, the coalescence

probability follows a geometric distribution. Specifically, the probability that lineages coalesce

exactly at generation 𝑡 is given by the product of the non-coalescence probabilities across the

preceding (𝑡 − 1) generations and the coalescence probability in generation 𝑡 itself:

𝑃𝑐 (𝑡) = (1 −
1

2𝑁𝑒
)𝑡−1( 1

2𝑁𝑒
)

When the effective population size 𝑁𝑒 is sufficiently large, this discrete probability distribution is

closely approximated by a continuous exponential form:

𝑃𝑐 (𝑡) =
1

2𝑁𝑒
𝑒
− 𝑡−1

2𝑁𝑒

2.1.5 Multi-Species Network Coalescent (MSNC) Model

The MSC model has been introduced in the context of phylogenetic trees. It can be easily

extended to the phylogenetic network [24], where the reticulation edges are used for tracing gene

flow events, including hybridization, introgression, and horizontal gene transfer (HGT).

Figure 2.4 shows four scenarios where gene trees evolve within the same species tree under

the multi-species network coalescent (MSNC) model. Of the four different gene trees, the gene

tree in panel (A) has neither gene flow nor ILS, and matches the species network. Moreover, the

gene tree in panel (C) has only gene flow, so it matches the species network with the reticulation

edge. The gene tree in panel (B) displays only ILS, resulting in a mismatch to the species network.

Interestingly, the gene tree in panel (D) also matches the species network, but includes both gene

flow and ILS.

Formally, suppose we have 𝑚 independent genomic loci, each represented by an alignment set

denoted as S = 𝑆1, 𝑆2, . . . , 𝑆𝑚, where each 𝑆𝑖 contains sequence information for locus 𝑖. Typically,

each alignment 𝑆𝑖 might consist of sequences from multiple species under study or represent data

from a single bi-allelic genetic marker (e.g., a vector of binary indicators such as single nucleotide

polymorphisms, SNPs). The MSNC model consists of two main components:
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1. A phylogenetic network Ψ, characterized by its topological structure and associated contin-

uous parameters, including divergence times;

2. A vector Γ that represents inheritance probabilities.

The likelihood under this model can be mathematically expressed as follows:

𝑝(S |Ψ, Γ) =
𝑚∏
𝑖=1

∫
𝑔

𝑝(𝑆𝑖 |𝑔)𝑝(𝑔 |Ψ, Γ)𝑑𝑔

where the integration is taken over all possible gene trees, 𝑝(𝑆𝑖 |𝑔) is the probability of the sequence

alignment 𝑆𝑖 given a particular gene tree 𝑔 [25], and 𝑝(𝑔 |Ψ, Γ) is the density of the gene tree

(topologies and branch lengths) given the model parameters, defined as [26]:

𝑝(𝑔 |Ψ, Γ) =
∑︁

ℎ∈𝐻Ψ (𝑔)

𝑤(ℎ)
𝑑 (ℎ)

∏
𝑏∈𝐸 (Ψ)

𝑤𝑏 (ℎ)
𝑑𝑏 (ℎ)

Γ[𝑏, 𝑗]𝑢𝑏 (ℎ) 𝑝𝑢𝑏 (ℎ)𝑣𝑏 (ℎ) (𝜆𝑏)

where 𝐻Ψ (𝑔) denotes the set of all coalescent histories that explain a gene tree 𝑔 appearing inside a

species tree with topology Ψ and a vector of branch length 𝜆, 𝑢𝑏 (ℎ) and 𝑣𝑏 (ℎ) denote the number of

lineages enter and exit edge 𝑏 ofΨ under coalescent history ℎ, 𝑤𝑏 (ℎ) denotes the number of possible

ways the coalescent events could have occurred consistently with the gene tree 𝑔, 𝑑𝑏 (ℎ) denotes the

number of sequences of coalescences that give the number of coalescent events specified by ℎ, and

𝑝𝑢𝑏 (ℎ)𝑣𝑏 (ℎ) (𝜆𝑏) denotes the probability of 𝑢𝑏 lineages entering the branch and 𝑣𝑏 lineages exiting

the branch over a branch of length 𝜆𝑏. The posterior 𝑝(Ψ, Γ|S ) of the model is proportional to

𝑝(Ψ, Γ|S ) ∝ 𝑝(S |Ψ, Γ)𝑝(Ψ)𝑝(Γ) = 𝑝(Ψ)𝑝(Γ)
𝑚∏
𝑖=1

∫
𝑔

𝑝(𝑆𝑖 |𝑔)𝑝(𝑔 |Ψ, Γ)𝑑𝑔

where 𝑝(Ψ) and 𝑝(Γ) are the priors on the phylogenetic network (and its parameters) and the

inheritance probabilities, respectively.

While such a full likelihood approach uses all the information in the data, it can be computa-

tionally intensive. One common strategy for speeding up inference is to preprocess each locus by

estimating its local genealogies. The observed data are then summarized as a set of inferred gene

trees G = {𝐺1, 𝐺2, ..., 𝐺𝑚}. In this case, the likelihood formulation simplifies to

𝑝(G |Ψ, Γ) =
𝑚∏
𝑖=1

𝑝(𝐺𝑖 |Ψ, Γ)
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where 𝐺𝑖 is the gene tree that has been inferred for every locus, and 𝑝(𝐺𝑖 |Ψ, Γ) is the density of

the gene tree 𝐺𝑖 (topologies and branch lengths) given the model parameters [26]. Because this

approach relies on accurate gene tree inference, any errors in gene tree estimation can propagate to

the final network inference.

Despite these optimizations, exact likelihood and posterior computations can still pose sig-

nificant computational challenges. Hence, pseudo-likelihood methods have been developed. For

example, Yu and Nakhleh [27] introduced the pseudo-likelihood of phylogenetic network Ψ and

inheritance probabilities Γ given a set of gene trees 𝐺:

𝐿 (Ψ, Γ|𝐺) = 𝑝(𝐺 |Ψ, Γ) =
∏

{𝑋,𝑌,𝑍}⊆X
𝑓 (𝜌(𝑋𝑌 |𝑍, 𝐺), 𝜌(𝑋𝑍 |𝑌, 𝐺), 𝜌(𝑌𝑍 |𝑋, 𝐺) |Ψ, Γ)

where X is the set of taxa, 𝑋𝑌 |𝑍 , 𝑋𝑍 |𝑌 and 𝑌𝑍 |𝑋 are binary triples with {𝑋,𝑌, 𝑍} ⊆ X, and 𝜌 is

the number of times a binary triple is induced by 𝐺.

2.2 Phylogenetic Inference

2.2.1 Simulation Studies

Many methods have been developed to address the phylogeny problems. Each represents

different tradeoffs of phylogeny accuracy with respect to the true phylogeny, as well as computational

requirements.

Simulation studies are one category of widely-used tools to assess the performance of different

methods by directly comparing the estimated phylogeny produced by different methods against a

true phylogeny. By the generation of synthetic or simulated datasets, simulation studies provide

predominant insights into the relative performance of different phylogeny inference methods. A

simulation study proceeds according to the following steps:

(1) A model phylogeny (tree or network) is simulated randomly, where r8s [28] tool is often

utilized to generate a random tree, while steps listed in Hejase et al. [11] can be used to add

reticulations on the tree to generate a network.

(2) Local genealogies or gene trees are simulated for independent and identically distributed

(i.i.d.) loci following a species phylogeny under an MSC or MSNC model. In this step,

13



Figure 2.4 Gene evolution within a species network under the multi-species network coalescent
(MSNC) model. (A) A scenario where the gene tree has neither gene flow nor ILS, and matches
the species network. (B) A scenario where the gene tree displays only ILS, resulting in a mismatch
to the species network. (C) A scenario where the gene tree has only gene flow, and matches the
species network with the reticulation edge. (D) A scenario where the gene tree also matches the
species network, but includes both gene flow and ILS. This figure is reproduced from Stadler and
Degnan [22].
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msmove [29] and ms [30] are often employed to simulate the local genealogies.

(3) DNA sequences are evolved following local gene trees under a specific substitution model

[31], in which seq-gen [32] and INDELible [33] are two popularly used tools.

2.2.2 Phylogenetic Tree Inference

2.2.2.1 Gene Tree Inference

The inference of phylogenetic trees is a basic and fundamental problem in phylogenetic studies.

A variety of methods have been developed to tackle this issue. These methods can be categorized

into two main groups: distance-based methods and optimization-based methods.

The first category of phylogenetic tree inference methods is distance-based methods. In those

methods, a distance matrix is first formed by calculating the distances of pairwise sequences, and

then converted into a phylogenetic tree by clustering algorithms. The most popular methods within

this category are UPGMA (Unweighted Pair Group Method using Arithmetic mean) [34] and

neighbor-joining [35].

Other methods are optimization-based methods, which employ an optimality criterion or ob-

jective function to measure a tree’s compatibility with the data. The tree that achieves the optimal

score is considered the estimate of the true tree. Examples in this category include maximum

parsimony [36], maximum likelihood (ML) [25], and Bayesian methods [37]. In the maximum

parsimony method, the tree score is the minimum number of character changes required for the

tree, and the maximum parsimony tree or most parsimonious tree is the tree with the smallest tree

score. The ML method uses the log-likelihood value of the tree to measure the fit of the tree to the

data, and the maximum likelihood tree is the tree with the highest log likelihood value. The ML

method of gene tree estimation was first introduced by Felsenstein [25] and has been implemented

in programs such as PAML [38], PhyML [39], RAxML [40], RAxML-NG [41], IQ-Tree [42], and

FastTree [43]. In the Bayesian method, the posterior probability of a tree is the probability that the

tree is true given the data. The tree with the maximum posterior probability is the estimate of the

true tree. The Bayesian method was introduced into molecular phylogenetics in the 1990s [37] and

has been implemented in programs such as MrBayes [44], RevBayes [45], BEAST [46, 47], and
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PhyloBayes [48, 49].

Distance-based methods are often computationally faster than optimization-based methods,

and can be easily applied to analyze different kinds of data as long as pairwise distances can be

calculated [17]. Among optimization-based methods, parsimony is known to be more prone than

likelihood methods to systematic errors, including long branch attraction (LBA) [50], which is the

phenomenon where two branches that are in truth not sisters are inferred to be sister branches when

using maximum parsimony inference (see Figure 2.5). This occurs because, unlike likelihood,

parsimony does not take into account branch lengths when computing the parsimony score. The

situations in which phylogenetic trees produce data susceptible to this failure are referred to as

“Felsenstein Zone” [51].

Figure 2.5 An illustration of long branch attraction. This figure contrasts the true phylogenetic
tree (left) with a parsimony-predicted tree (right) to highlight the phenomenon of long-branch
attraction where two branches that are in truth not sisters are inferred to be sister branches when
using maximum parsimony inference. In the true tree, lineages 1 and 2 share a more recent
common ancestor than either does with 3 or 4, yet in the parsimony-predicted tree, lineages 1 and 4
are incorrectly grouped as sister taxa. This occurs because, unlike likelihood, parsimony does not
take into account branch lengths when computing the parsimony score. The situations in which
phylogenetic trees produce data susceptible to this failure are referred to as “Felsenstein Zone” [51].
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2.2.2.2 Species Tree Inference

Reconstruction of a species tree usually requires the analyses of a set of genes, due to the limited

evolutionary signals provided by each gene and discordance between gene trees. To better infer

the species tree, sufficient gene trees, associated with the corresponding gene tree distribution, are

needed. Many methods have been developed to address the species tree inference. There are three

main categories of these methods: concatenation methods, summary-based methods (or supertree

methods), and co-estimation methods (see Figure 2.6).

In the concatenation methods, sequences from genes are first concatenated into one larger size

of genome-level sequences, called a supermatrix. Then, a global estimate of the species tree

is performed based on the supermatrix for taxa of interest. However, these methods ignore the

discordance between gene trees, and may thus lead to statistically inconsistent trees and introduce

poor accuracy [52]. Commonly-used programs implementing the multi-species coalescent (MSC)

model include StarBEAST [53, 54] and BPP [55, 56].

For the summary-based methods, on the other hand, the gene trees are first estimated indepen-

dently based on their sequences, and then summarized to construct the overall species tree. There

are many methods in this category, such as “minimizing deep coalescence (MDC)”-based methods

[57–59], and weighted quartet-based methods [60, 61]. Popular summary-based programs include

ASTRAL [60, 61] and MP-EST [62]. These methods are computationally efficient and can analyze

thousands of genes but may suffer from errors in reconstructed gene trees [50].

The co-estimation methods simultaneously infer both gene trees and the species tree based on

the Bayesian model and the Markov Chain Monte Carlo (MCMC) algorithm, which have shown

higher accuracy in species tree inference than solely concatenation methods [53, 63].

2.2.2.3 Metric

Sometimes we may wish to quantify the similarity between two trees. For instance, we might be

interested in comparing the differences among trees derived from different methods or evaluating

the dissimilarities between the true tree and the estimated tree in a simulation study in order to

assess a tree inference method.
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Figure 2.6 Species tree inference methods, including concatenation methods, summary-based
methods (or supertree methods), and co-estimation methods. In the concatenation methods,
sequences from genes are first concatenated into one larger size of genome-level sequences, called
a supermatrix. Then, a global estimate of the species tree is performed based on the supermatrix for
taxa of interest. However, these methods ignore the discordance between gene trees, and may thus
lead to statistically inconsistent trees and introduce poor accuracy [52]. For the summary-based
methods, on the other hand, the gene trees are first estimated independently based on their sequences,
and then summarized to construct the overall species tree. These methods are computationally
efficient and can analyze thousands of genes but may suffer from errors in reconstructed gene trees
[50]. The co-estimation methods simultaneously infer both gene trees and the species tree based
on the Bayesian model and the Markov Chain Monte Carlo (MCMC) algorithm, which have shown
higher accuracy in species tree inference than solely concatenation methods [53, 63].

Phylogenetic trees can be represented by a collection of bipartitions. A bipartition refers to

a distinct split of leaves obtained by removing one internal edge in an unrooted tree. Given an

unrooted tree 𝑇 = (𝑉, 𝐸), each edge defines a bipartition of taxa. We denote by 𝐶 (𝑇) the set of

non-trivial bipartitions of 𝑇 , in which each non-trivial bipartition on the leaf set of 𝑇 is generated

by the removal of an internal edge.

The Robinson-Foulds (RF) distance [64] of two unrooted phylogenetic trees𝑇1 and𝑇2 is defined

as

𝑑 (𝑇1, 𝑇2) = |𝐶 (𝑇1)\𝐶 (𝑇2) | + |𝐶 (𝑇2)\𝐶 (𝑇1) |

That is, the RF distance is defined as the total number of false positive bipartitions and false negative
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bipartitions. For easy use, the RF distance can be normalized between 0 and 1 by dividing 𝑑 (𝑇1, 𝑇2)

by the maximal possible RF distance, whose value is 2𝑛 − 6 for binary unrooted trees, where 𝑛 is

the number of leaves in a tree.

Although the RF distance here is defined for unrooted trees, the same definition can be easily

applied to rooted trees by virtually attaching an outgroup to the root.

Furthermore, the missing branch rate is another commonly-used measure for evaluating the

difference between the true tree and the estimated tree. The missing branch rate is computed as the

proportion of bipartitions present in the true tree but absent in the estimated tree.

2.2.3 Phylogenetic Network Inference

2.2.3.1 Inference Methods

Numerous computational methodologies have been devised to infer phylogenetic networks from

multi-locus data, including the maximum parsimony method, the maximum likelihood method, the

maximum pseudo-likelihood method, and the Bayesian inference method.

The maximum parsimony (MP) methods employ the minimizing deep coalescence (MDC)

criterion [57], which searches for the network that has the capability to minimize the occurrence of

deep coalescences necessary to account for all input gene trees.

Maximum likelihood methods are proposed to calculate model likelihood under the multi-

species network coalescent (MSNC) model, where only gene tree topologies (MLE) or gene tree

topologies and branch lengths (MLE-length) are used [26]. One weakness of maximum likelihood

methods is their high computational cost.

Maximum pseudo-likelihood (MPL) methods use pseudo-likelihood in the optimization crite-

rion [27], which reduces the computational requirements but attains less accuracy than the MLE or

MLE-length methods.

By leveraging the prior distribution in conjunction with a set of rooted gene tree topologies

as input, the Bayesian inference method can achieve computational expediency, resulting in faster

computations for inferring the posterior distribution of the network. The most widely-used method

for the Bayesian inference of the phylogenetic network is the reversible-jump Markov chain Monte

19



Carlo (RJMCMC) [65].

2.2.3.2 Metric

The tripartition-based distance [18] counts the proportion of tripartitions that are not shared

between the two networks.

For each node of the network, a tripartition consists of three sets of leaves: those that are strict

descendants of it, those that are non-strict descendants of it, and those that are not descendants of

it. Given a phylogenetic network 𝑁 = (𝑉, 𝐸) with 𝐿 as a set of leaves, an ancestor 𝑠 of a node 𝑢 in

𝑁 is referred to as a strict ancestor if all the paths from the root of 𝑁 to 𝑢 contain 𝑠, otherwise a

non-strict ancestor of 𝑢. The tripartition of edge 𝑒 = (𝑢, 𝑣) is defined as (𝐴(𝑒), 𝐵(𝑒), 𝐶 (𝑒)), where

• 𝐴(𝑒) = {𝑠 ∈ 𝐿 | 𝑢 is a strict ancestor of 𝑠};

• 𝐵(𝑒) = {𝑠 ∈ 𝐿 | 𝑢 is a non-strict ancestor of 𝑠};

• 𝐶 (𝑒) = {𝑠 ∈ 𝐿 | 𝑢 is not an ancestor of 𝑠}.

For two phylogenetic networks 𝑁1 and 𝑁2, the tripartition-based distance can be calculated by

𝑑 (𝑁1, 𝑁2) =
1
2
× ( |{𝑒1 ∈ 𝐸 (𝑁1) |�𝑒2 ∈ 𝐸 (𝑁2), 𝐴(𝑒1) = 𝐴(𝑒2), 𝐵(𝑒1) = 𝐵(𝑒2), 𝐶 (𝑒1) = 𝐶 (𝑒2)}|

|𝐸 (𝑁1) |

+ |{𝑒2 ∈ 𝐸 (𝑁2) |�𝑒1 ∈ 𝐸 (𝑁1), 𝐴(𝑒1) = 𝐴(𝑒2), 𝐵(𝑒1) = 𝐵(𝑒2), 𝐶 (𝑒1) = 𝐶 (𝑒2)}|
|𝐸 (𝑁2) |

)

where 𝐸 (𝑁1) and 𝐸 (𝑁2) define the set of edges of networks 𝑁1 and 𝑁2, respectively.

The reduction-based distance [66] is commonly used to measure the difference between phyloge-

netic networks. The reduction-based distance quantifies the dissimilarity between two phylogenetic

networks by considering their reduced topologies.

We first define the reduction of a network. Given a phylogenetic network 𝑁 , its reduced network

𝑁′ can be obtained by creating symbolic leaf nodes to replace and represent each maximal subtree

where reticulation nodes are not included.

For two reduced phylogenetic networks 𝑁1 and 𝑁2, the reduction-based distance can be calcu-

lated by

𝑑 (𝑁1, 𝑁2) =
1
2
× (

∑︁
𝑣∈𝑈 (𝑁1)

𝑚𝑎𝑥{0, 𝜅(𝑣) − 𝜅(𝑣′)} +
∑︁

𝑢∈𝑈 (𝑁2)
𝑚𝑎𝑥{0, 𝜅(𝑢) − 𝜅(𝑢′)})
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where 𝑈 (𝑁1) and 𝑈 (𝑁2) define the set of unique nodes of networks 𝑁1 and 𝑁2, respectively.

𝑣′ ∈ 𝑈 (𝑁2) is equivalent to 𝑣 ∈ 𝑈 (𝑁1), while 𝑢′ ∈ 𝑈 (𝑁1) is equivalent to 𝑢 ∈ 𝑈 (𝑁2). Two

nodes are considered equivalent if they are both leaf nodes and bear identical labels, or if they have

the same number of children and their children are equivalent accordingly. 𝜅(𝑣), 𝜅(𝑣′), 𝜅(𝑢) and

𝜅(𝑢′) represent the number of nodes equivalent to 𝑣, 𝑣′, 𝑢, and 𝑢′ in networks 𝑁1, 𝑁2, 𝑁2, and 𝑁1,

respectively.

Similar to the above-mentioned RF distance, the reduction-based distance roughly quantifies

the number of rooted subnetworks that are present in one network but absent in the other [66].

2.3 Substitution Models

2.3.1 Definition

The substitution models are Markov models that characterize changes occurring over evolution-

ary time in macromolecules (e.g., DNA sequences) represented as sequences of symbols (A, C, G,

and T in the case of DNA). Substitutions at any particular site are described by a Markov chain,

wherein the symbols (A, C, G, and T in the case of DNA) serve as the states of the chain. The

primary characteristic of a Markov chain is its lack of memory: “given the present, the future does

not depend on the past”. The sites in the sequence are commonly assumed to undergo evolution

independently of each other.

2.3.2 Nucleotide Substitution Models

The most general and commonly-used model of nucleotide substitution is the general time-

reversible (GTR) model [67]. It is a continuous-time reversible Markov model that is parameterized

by a stationary base probability distribution over the nucleotides 𝜋 and a 4×4 transition rate matrix

𝑄,

𝑄 = {𝑞𝑖 𝑗 } =

©­­­­­­­­«

𝑇 𝐶 𝐴 𝐺

𝑇 . 𝑎𝜋𝐶 𝑏𝜋𝐴 𝑐𝜋𝐺

𝐶 𝑎𝜋𝑇 . 𝑑𝜋𝐴 𝑒𝜋𝐺

𝐴 𝑏𝜋𝑇 𝑑𝜋𝐶 . 𝑓 𝜋𝐺

𝐺 𝑐𝜋𝑇 𝑒𝜋𝐶 𝑓 𝜋𝐴 .

ª®®®®®®®®¬
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where each entry is the instantaneous substitution rate of one nucleotide to another (see Figure 2.7).

Jukes-Cantor (JC or JC69) model [31] represents the simplest submodel of the GTR model, as

it assumes both equal transition rates and equal base frequencies, i.e., 𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑒 = 𝑓 and

𝜋𝐴 = 𝜋𝑇 = 𝜋𝐺 = 𝜋𝐶 = 1
4 . The transition rate matrix 𝑄 is as follows (see also Figure 2.7),

𝑄 = {𝑞𝑖 𝑗 } =

©­­­­­­­­«

𝑇 𝐶 𝐴 𝐺

𝑇 . 𝜆 𝜆 𝜆

𝐶 𝜆 . 𝜆 𝜆

𝐴 𝜆 𝜆 . 𝜆

𝐺 𝜆 𝜆 𝜆 .

ª®®®®®®®®¬
Kimura’s two-parameter model, also known as K80 model [68], is another simple submodel of

the GTR model that assumes that all of the bases are equally frequent (𝜋𝐴 = 𝜋𝑇 = 𝜋𝐺 = 𝜋𝐶 = 1
4 ).

Let the substitution rates be 𝛼 for transitions and 𝛽 for transversions, where the transition means

the substitution between two pyrimidines (𝑇 ↔ 𝐶) or between two purines (𝐴 ↔ 𝐺), while the

transversion is the substitution between a pyrimidine and a purine (𝑇, 𝐶 ↔ 𝐴, 𝐺). The transition

rate matrix 𝑄 is as follows (see also Figure 2.7),

𝑄 = {𝑞𝑖 𝑗 } =

©­­­­­­­­«

𝑇 𝐶 𝐴 𝐺

𝑇 . 𝛼 𝛽 𝛽

𝐶 𝛼 . 𝛽 𝛽

𝐴 𝛽 𝛽 . 𝛼

𝐺 𝛽 𝛽 𝛼 .

ª®®®®®®®®¬
Let the transition/transversion rate ratio 𝜅 be 𝛼/𝛽. The transition rate matrix 𝑄 can also be

represented as,

𝑄 = {𝑞𝑖 𝑗 } =

©­­­­­­­­«

𝑇 𝐶 𝐴 𝐺

𝑇 . 𝜅 1 1

𝐶 𝜅 . 1 1

𝐴 1 1 . 𝜅

𝐺 1 1 𝜅 .

ª®®®®®®®®¬
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These nucleotide substitution models can be employed to simulate the evolutionary process of

nucleotide sequences under a rooted tree 𝑇 , where branch lengths represent the time estimating the

evolutionary changes. First, the sequence at the root is randomly generated based on the stationary

base probability distribution of nucleotides 𝜋. Then, the sequences on the descendant nodes are

iteratively obtained according to the transition probability matrix 𝑃(𝑡) = 𝑒𝑄𝑡 [69], where the time

𝑡 represents the branch length until a set of simulated sequences at all nodes of 𝑇 are created.

To incorporate rate heterogeneity across sites, the instantaneous substitution rates of any sub-

stitution model can be multiplied by a rate sampled from the Γ distribution for rate variation across

sites [70]. For example, GTR+Γ is the GTR substitution model in combination with the Γ model

to produce rate variation across sites.

Figure 2.7 An illustration of JC69, K80, and GTR substitution model. In JC69 model (left),
all substitutions — whether transition or transversion — are assumed to occur at the same rate 𝜆.
In K80 model (middle), transitions (dashed arrows) occur at rate 𝛼, whereas transversions (solid
arrows) occur at rate 𝛽, thus distinguishing purine-purine or pyrimidine-pyrimidine substitutions
from purine-pyrimidine substitutions. The GTR (General Time Reversible) model (right) is the
most parameter-rich, allowing each of the six possible base substitutions to have its own rate
parameter. In addition, GTR incorporates base frequency parameters (𝜋𝐴, 𝜋𝑇 , 𝜋𝐺 , 𝜋𝐶) to account
for unequal nucleotide frequencies in the sequences being modeled. These models progressively
increase in complexity to capture the diverse evolutionary patterns that arise in real genetic data.
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2.4 Gene Flow

2.4.1 Definition

Gene flow is the transfer of genetic material from one population to another. The gene flow

between species primarily involves horizontal gene transfer (HGT) in prokaryotes and introgression

(also known as introgressive hybridization) in eukaryotes.

2.4.2 Introgression

2.4.2.1 Definition

Introgression, or introgressive hybridization, denotes the process of gene flow from one species

into the gene pool of another through the recurrent backcrossing of an interspecific hybrid with

one of its parental species. Introgression differs from hybridization, because simple hybridization

results in a relatively even mixture of two parental species, while introgression results in a variable

mixture involving a relatively small percentage from the donor species (Figure 2.8). Ancient

introgression events have the potential to leave traces of extinct species in present-day genomes, a

phenomenon referred to as ghost introgression [71].

Introgression can manifest as either neutral, where its effects on phenotypes go unnoticed, or

adaptive, where it influences phenotypes in significant ways. The term “adaptive introgression” is

used when the genetic transfer of minimal genomic regions from a donor species leads to positive

fitness effects within the gene pool of the recipient species [72].

2.4.2.2 Inference Methods

The detection of introgression has become a major area of interest in evolutionary biology.

Numerous computational methods have been proposed to distinguish true introgression events

from incomplete lineage sorting (ILS), leveraging different features of genomic data, analytical

formalisms, and statistical frameworks.

Early approaches for detecting introgression distinguish introgressive hybridization and ILS by

using sequence data to construct gene tree topologies evolved down a phylogenetic network. Sang

and Zhong [73] and Holder et al. [74] built and tested their model based on the idea that incongruent

gene trees show a nearly equal distribution in the case of introgression but a significantly distinct
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Figure 2.8 An illustration of introgression and hybridization. Introgression differs from hy-
bridization, because simple hybridization results in a relatively even mixture of two parental
species, while introgression results in a variable mixture involving a relatively small percentage
from the donor species. For introgression on the left, a single hybridization event is followed by
repeated backcrossing of hybrids to one parental species (Species A), causing the proportion of red
chromosomes (from Species B) to diminish in each generation (e.g., 50%, 25%, 12.5%, 6.25%)
while still persisting in the final population. For hybridization on the right, multiple or ongoing
hybridization events occur between the two parental species across successive generations, leading
to more complex admixture patterns. Here, the fraction of genetic material from each species
can shift in different ways (e.g., returning to 62.5% red in one generation), reflecting repeated
interbreeding rather than a single hybridization event followed strictly by backcrossing.

distribution for ILS. Patterson et al. [75] detected the introgressive hybridization by computing the

genetic divergence of aligned sequences.

A notable class of recent methods employ hidden Markov models (HMMs) to analyze genomic

data in the context of incomplete lineage sorting (ILS) [12, 76–79]. CoalHMM [76, 79] was

originally proposed to tackle different population genetic inference issues but has since been

expanded to address the challenge of statistical introgression mapping. Subsequently, Liu et al. [12]

devised the PhyloNet-HMM method, which combined an HMM-based model with the phylogenetic

networks as input to detect introgression in genomes. This method is accurate but time- and

memory-consuming because it takes all possible gene trees evolved down the input phylogenetic

network into account.

Other methods bypass the gene tree inference and calculate imbalances in minimum genetic

25



distances to infer introgression. The method from Joly et al. [80] was based upon the fact that the

calculated minimum pairwise sequence distance between two species is smaller for introgression

events than for ILS. Joly [81] developed a software called JML based on the above scenarios.

Drawing inspiration from the reconciliation framework used in detecting horizontal gene trans-

fer, Chauve et al. [82] introduced a method to reconcile gene trees within a species network,

identifying gene flow events that yield consistent explanations for observed incongruences. This

approach has been shown to detect extensive introgression even in large and complex datasets.

Taking advantage of the rapid progress in artificial intelligence technologies, Schrider et al. [83]

introduced FILET, a machine learning-based pipeline designed to detect genomic introgression by

integrating a comprehensive set of population genetic summary statistics. By capturing patterns

of variation across multiple populations, FILET effectively identifies regions of introgressed an-

cestry. Expanding on this paradigm, Flagel et al. [84] proposed a convolutional neural network

(CNN) framework that interprets population genomic alignments as images, thereby eliminating

the need for predefined summary statistics. Through the automatic extraction of discriminative fea-

tures across genomic windows, this CNN-based approach demonstrates high accuracy in detecting

introgression events. More recently, Ray et al. [85] introduced IntroUNET, a deep learning frame-

work that similarly treats alignments as images but employs semantic segmentation to pinpoint

introgressed alleles with heightened resolution.

D-statistic is based on the idea that a statistically significant imbalance between two SNP patterns

is indicative of an introgression event. D-statistic is first applied to hominoids using genome-scale

SNP data and a sliding window analysis to detect introgression on four-taxon data despite the

existence of ILS [6, 86, 87]. An extension of D-statistic (called 𝐷𝐹𝑂𝐼𝐿) applying for the symmetric

five-taxon phylogeny is developed by Pease and Hahn [88]. Inspired by 𝐷𝐹𝑂𝐼𝐿 , Elworth et al. [89]

devised a general statistic, 𝐷𝐺𝐸𝑁 , to automatically generate a statistic for detecting introgression in

any number of genomes and any set of hybridization events. In recent years, many analogs to the

D-statistic have been brought up to estimate the introgression regions [90–97]. The disadvantage

of this type of statistical method is that it assumes an infinite-sites model and independence across
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loci.

2.4.3 Horizontal Gene Transfer

2.4.3.1 Definition

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the nonsexual movement

of genetic material between distantly related organisms. Other than the “vertical” transfer from

parents to offspring, HGT enables the rapid transmission of genes between species and plays an

essential role in the adaptation of microbes to novel environments [98]. In particular, there is

a growing interest in HGT concerning the dissemination of antibiotic resistance genes among

bacteria in diverse communities [99–102]. Most studies in genetics and biology have focused upon

the “vertical” transfer, such as hybridization and introgression, but the importance of HGT among

single-cell and even some multi-cell organisms is beginning to be acknowledged [103].

While HGT remains the primary mode of horizontal evolution scrutinized in genomic data, it

is crucial to acknowledge several other mechanisms of horizontal evolutionary processes as well,

including gene duplication and loss, and genetic recombination (Figure 2.9). Gene duplication is

defined as the generation of new copies of a gene at distinct loci within the genome [104]. Gene

loss is referred to as the absence or extinction of a gene that is identified when comparing different

species, but can also encompass any allelic variant carrying a loss-of-function mutation found

within a population [105]. Genetic recombination is the exchange of genetic material between

different chromosomes, which renders different histories for neighboring segments within a gene

[106].

Due to these processes, gene trees may be expected to be discordant with the species tree. As

discussed before, the multi-species coalescent (MSC) model has served as a baseline to investigate

gene tree discordance caused by incomplete lineage sorting (ILS), while the multi-species network

coalescent (MSNC) model is proposed for analyzing the discordance introduced from gene flow,

such as introgression, hybridization, and HGT. Furthermore, these models can also be extended

to capture genetic recombination as well as gene duplication and loss. An example is shown in

Figure 2.9.
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Figure 2.9 Alternative sources of the discordance between the species tree and gene trees from
horizontal evolutions. (A) A scenario where an HGT event makes the gene tree (A,(B,C)) incon-
gruent to the species tree ((A,B),C), but matches the species network ((A,(B)X#H1),(X#H1,C)).
(B) A scenario where the incongruence is caused by the gene duplication and loss. (C) A scenario
where the discordance comes from recombination. For the DNA segment depicted in red, the gene
tree is ((A,B),C), but for the segment in green, the gene tree is ((A,C),B). This figure is reproduced
from Degnan and Rosenberg [104].

2.4.3.2 Inference Methods

A number of approaches have been developed to detect HGT in genomics and metagenomics

data. These methods can be broadly classified into two groups: sequence composition-based

methods and phylogenetic methods (Figure 2.10).

Sequence composition-based methods search for fragments of a genome significantly differ-

ent from the genomic average by computing sequence signatures, such as GC content or codon

usage [107]. Genomic regions that exhibit distinct compositional characteristics compared to the

background are referred to as “genomic islands”. There are two commonly-used tools for the

identification of genomic islands: GIST [108] and IslandViewer [109].

Phylogenetic methods analyze the evolutionary histories of genes involved and identify conflict-

ing phylogenies. These methods can be further divided into explicit methods, which reconstruct

and directly compare phylogenetic trees, and implicit methods, which employ surrogate measures

in place of the phylogenetic trees [110]. For example, HGTector [111] and DarkHorse [112]

are two popular implicit phylogenetic methods, which identify genes in genomes exhibiting tax-

onomically discordant similarity to genes present within a reference database; AnGST [113] and

RANGER-DTL [114] are widely-used explicit phylogenetic methods that reconcile phylogenetic
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incongruencies between gene and species trees to detect HGT.

These methods address the detection of HGT from distinct perspectives, which may lead to

remarkably different HGT inference results. However, these tools can be combined to produce

more robust detections [115]. Based on this idea, MetaCHIP [116] has recently been proposed to

identify HGT events in a natural community by combining an all-against-all BLASTN with the

RANGER-DTL software.
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Figure 2.10 An overview of HGT inference methods. The HGT iference methods can be broadly
classified into two groups: (1) sequence composition-based methods and (2) phylogenetic methods.
(1) Sequence composition-based methods search for fragments of a genome significantly different
from the genomic average by computing sequence signatures, such as GC content or codon usage
[107]. Genomic regions that exhibit distinct compositional characteristics compared to the back-
ground are referred to as “genomic islands”. (2) Phylogenetic methods analyze the evolutionary
histories of genes involved and identify conflicting phylogenies. These methods can be further
divided into explicit methods, which reconstruct and directly compare phylogenetic trees, and im-
plicit methods, which employ surrogate measures in place of the phylogenetic trees [110]. This
figure is reproduced from Ravenhall et al. [117].
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CHAPTER 3

PHIMM: SCALABLE STATISTICAL INTROGRESSION DETECTION USING THE
APPROXIMATE COALESCENT-BASED INFERENCE

3.1 Introduction

Hybridization, defined as the sexual reproduction of two organisms from distinct species, is a key

evolutionary process that can alter genetic and phenotypic diversity. Introgression (or introgressive

hybridization) occurs when gene flow from one species enters the gene pool of another through

recurrent backcrossing of hybrids [118]. It has been estimated that up to 25% of plant species

and 10% of animal species are capable of interspecific hybridization and introgression [119],

highlighting the evolutionary significance of this phenomenon.

Introgression regions in eukaryotic genomes are important, since the introgression can be

neutral without showing in phenotypes but can also be adaptive and impact phenotypes. A widely-

studied example of adaptive introgression is the house mice, i.e., Mus musculus dometicus (M.

m. dometicus) and Mus spretus (M. spretus). The anticoagulant rodenticide resistance of M. m.

dometicus is acquired through the introgression of the Vkorc1 (vitamin K 2,3-epoxide reductase

subcomponent 1) gene from M. spretus to M. m. dometicus [120]. Clearly, introgression plays

a vital role in genetic evolution and adaptive divergence. Therefore, developing state-of-the-art

techniques to detect introgression regions based upon the increasing explosion of genomic data is

urgently needed.

Detecting the introgression region can be achieved by scanning the genomes of the species,

and constructing the gene tree at each locus. The incongruence between gene trees evolved from

different species trees offers an opportunity to detect introgression events. However, introgression

detection remains a challenging problem, since distinguishing between hybrid introgression and

incomplete lineage sorting (ILS) can be difficult. ILS is a type of deep coalescence that occurs

in the speciation event, which can also result in the discordance between gene trees along the

genomes. Although other processes, such as gene duplication and loss [121], may also cause the

incongruence between gene trees and species trees, we focus on introgression and ILS here. Thus, a
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powerful approach for the detection of introgressed regions in the presence of ILS is highly needed

but challenging.

Recent methods have been designed to disentangle introgression mapping in the presence of

ILS, such as D-statistic, and an array of hidden Markov model (HMM)-based techniques (refer

to Chapter 2.4.2.2). Of great relevance to our work, Liu et al. [12] introduced an introgression

mapping method, PhyloNet-HMM, which combines the multi-species network coalescent (MSNC)

model [20] with an HMM to detect introgression.

Although these methods have advanced the field, none are optimized for both speed and

accuracy when analyzing datasets comprising dozens of DNA sequences. To bridge this gap, we

developed PHiMM (fast PhyloNet + Hidden Markov Model) [122], a refined introgression detection

framework that integrates a coalescent-based approximation with an HMM under a model in a

combination of substitutions, recombination, and gene flow. The simulation study demonstrates

that the PHiMM tool is able to decrease the model complexity, which can significantly expand

the scalability of introgression detection while maintaining the inference accuracy. By offering

an efficient and accurate tool for introgression detection in increasingly large genomic datasets,

PHiMM contributes to a deeper understanding of the evolutionary processes underpinning species

divergence and adaptation.

3.2 Related Work

3.2.1 PhyloNet-HMM Algorithm

The PhyloNet-HMM algorithm infers introgression regions based on a hidden Markov model.

The algorithm was first proposed by Liu et al. [12], and then modified and implemented as a part

of the PhyloNet version 3.6 package [13, 123].

The inputs of PhyloNet-HMM algorithm are the aligned DNA sequences 𝐴 and a phylogenetic

network 𝑁 . The input alignment 𝐴 can be defined as {𝐴,𝐶,𝑇, 𝐺}𝐾×𝐿 , where 𝐾 is the number of

taxa, and 𝐿 is the length of genomic sequence alignment.

The HMM states in the PhyloNet-HMM algorithm correspond to all distinct pairs of a MUL-tree

and a gene tree. The MUL-tree is encoded from the input species network 𝑁 using some existing
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methods described by Huber et al. [19] and Yu et al. [20]. The set of MUL-trees can be used to

represent the species network 𝑁 . The gene tree can be any possible rooted binary tree on 𝐾 leaves,

so the total number of possible gene trees is (2𝐾 − 3)!!, where 𝐾 is the number of taxa. Gene flow

directionality is reflected in reticulation edge directionality in an explicit phylogenetic network. Let

𝑚 and 𝑛 be the number of MUL-trees and gene trees, respectively. Thus, the total number of hidden

states should be 𝑚 × 𝑛. As shown in Figure 3.1, the HMM hidden states can be represented by

𝑠𝑖 𝑗 = (𝑇𝑖, 𝐺 𝑗 ), where 𝑇𝑖 is the 𝑖-th MUL-tree (1 ≤ 𝑖 ≤ 𝑚) and 𝐺 𝑗 is the 𝑗-th gene tree (1 ≤ 𝑗 ≤ 𝑛).

The transition of HMM from the start state to a state 𝑠𝑖 𝑗 = (𝑇𝑖, 𝐺 𝑗 ) can be calculated as follows:

𝑡(𝑇𝑖 ,𝐺 𝑗 ) =
𝑧(𝑠𝑖 𝑗 )∑

𝑘,𝑙

𝑧(𝑠𝑘𝑙)

where 𝑧(𝑠𝑖 𝑗 ) is the probability of local gene tree 𝐺 𝑗 under MUL-tree 𝑇𝑖, which can be calculated

using the approach in Yu et al. [20].

The transition from a state 𝑠𝑖 𝑗 = (𝑇𝑖, 𝐺 𝑗 ) to a state 𝑠𝑘𝑙 = (𝑇𝑘 , 𝐺 𝑙) (1 ≤ 𝑖, 𝑘 ≤ 𝑚 and 1 ≤ 𝑗 , 𝑙 ≤ 𝑛)

occurs with the following probability:

𝑎 (𝑇𝑖 ,𝐺 𝑗 )→(𝑇𝑘 ,𝐺𝑙) = 𝜖 (𝑇𝑖, 𝑇𝑘 )𝛿(𝐺 𝑗 , 𝐺 𝑙)
𝑧(𝑠𝑘𝑙)∑
𝑖, 𝑗

𝑧(𝑠𝑖 𝑗 )

where the 𝜖 (𝑇𝑖, 𝑇𝑘 ) and 𝛿(𝐺 𝑗 , 𝐺 𝑙) can be calculated based on the following formulas:

𝜖 (𝑇𝑖, 𝑇𝑘 ) =


1 − Δ𝑇 𝑖 𝑓 𝑖 = 𝑘

Δ𝑇

𝑚−1 𝑖 𝑓 𝑖 ≠ 𝑘

𝛿(𝐺 𝑗 , 𝐺 𝑙) =


1 − Δ𝐺 𝑖 𝑓 𝑗 = 𝑙

Δ𝐺

𝑛−1 𝑖 𝑓 𝑗 ≠ 𝑙

where Δ𝐺 represents the probability of switching between gene trees with different topologies

(i.e., switching between columns in Figure 3.1), while Δ𝑇 is the probability of switching between

MUL-trees with different topologies (i.e., switching between rows in Figure 3.1).
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Given a hidden state 𝑠𝑖 𝑗 = (𝑇𝑖, 𝐺 𝑗 ), the emission probability can be calculated based on the

input observation sequence 𝐴, which is defined as {𝐴,𝐶,𝑇, 𝐺}𝐾×𝐿 , where 𝐾 is the number of

taxa and 𝐿 is the length of genomic sequence alignment. We define each site of the observation

sequence 𝐴 as 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝐿). The emission probability at each site 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝐿) is calculated by:

𝑒𝑠,𝜙 (𝑎𝑖) = 𝑃[𝑎𝑖 |𝑠, 𝜙] = 𝑃[𝑎𝑖 |ℓ𝑇 , ℓ𝐺 , 𝜙]

where ℓ𝑇 are the branch lengths of the MUL-tree and ℓ𝐺 are the branch lengths of the gene tree

associated with state 𝑠 = (𝑇, 𝐺). 𝜙 represents a specific substitution model under which emissions

occur. In this study, the generalized time-reversible (GTR) model [67] is used.

Given the observation sequences 𝐴 and the HMM structure, the model parameters 𝜃 are learned

to maximize 𝑃(𝐴|𝜃), i.e., argmax𝜃𝑃(𝐴|𝜃). The model parameters 𝜃 are comprised of:

• The set of MUL-trees with both topologies and branch lengths;

• The set of local gene trees with both topologies and branch lengths;

• DNA substitution model parameter 𝜙;

• MUL-tree and gene tree switching probabilities Δ𝑇 and Δ𝐺

While the model likelihood for a fixed 𝜃 can be calculated efficiently using the dynamic

programming [124], it is computationally difficult to optimize the model likelihood by learning 𝜃.

For this reason, local search heuristics, such as the Baum-Welch algorithm and the expectation-

maximization algorithm [124], are typically used for HMM learning. In the PhyloNet version

3.6 implementation, the PhyloNet-HMM framework utilizes the BOBYQA algorithm [125] to

iteratively perform multi-variate optimization as part of a hill-climbing search (whereas in the

initial implementation, PhyloNet-HMM utilizes Brent’s method for univariate optimization [126]).

Given an optimized model 𝜃∗, the forward and backward algorithms are used to calculate the

posterior decoding probability:

𝑃(𝜋𝑡 = (𝑇𝑖, 𝐺 𝑗 ) |𝐴, 𝜃∗) =
𝑓𝑡 (𝑖, 𝑗)𝑏𝑡 (𝑖, 𝑗)
𝑃(𝐴|𝜃∗)
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where 𝐴 is the observed multiple sequence alignment with 𝐿 columns, and each aligned columns

of 𝐴 is 𝑎𝑡 ∈ 𝐴 (1 ≤ 𝑡 ≤ 𝐿); 𝜋𝑡 is the 𝑡-th state of hidden state path 𝜋; (𝑇𝑖, 𝐺 𝑗 ) represents all

possible hidden states (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛) as shown in Figure 3.1; the forward probability

𝑓𝑡 (𝑖, 𝑗) = 𝑃(𝑎1, 𝑎2, ..., 𝑎𝑡 , 𝜋𝑡 = (𝑇𝑖, 𝐺 𝑗 ) |𝜃∗) is calculated using the forward algorithm; the backward

probability 𝑏𝑡 (𝑖, 𝑗) = 𝑃(𝑎𝑡+1, 𝑎𝑡+2, ..., 𝑎𝐿 |𝜋𝑡 = (𝑇𝑖, 𝐺 𝑗 ), 𝜃∗) is calculated using the backward algo-

rithm; 𝑃(𝐴|𝜃∗) is the probability of the alignment, which can be computed by either the forward or

backward algorithms.

Finally, a modified posterior decoding approach is used to assess the confidence of introgression

inference by the PhyloNet-HMM algorithm. The modified posterior decoding probability that a

site 𝑎𝑡 (1 ≤ 𝑡 ≤ 𝐿) in the alignment 𝐴 has an introgressed origin is computed as follows:

𝑝𝑡 =
∑︁
𝑇𝑖∈Ω𝑇

1≤ 𝑗≤𝑛

𝑃(𝜋𝑡 = (𝑇𝑖, 𝐺 𝑗 ) |𝐴, 𝜃∗)

where Ω𝑇 represents the set of MUL-trees having introgressive origins.

3.3 Methods

3.3.1 Problem Definition

Based on the description of PhyloNet-HMM, the inputs of the problem are the aligned DNA

sequences 𝐴 and a phylogenetic network 𝑁 .

Consistent with the study of Liu et al. [12], the output of the problem is a sequence of modified

posterior decoding probabilities for the columns of the input alignment 𝐴. At a site 𝑎𝑡 (1 ≤ 𝑡 ≤ 𝐿)

in the alignment 𝐴, the probability of 𝑎𝑡 having an introgressive origin is defined by:

𝑝𝑡 =
∑︁
𝑇𝑖∈Ω𝑇

1≤ 𝑗≤𝑛

𝑃(𝜋𝑡 = (𝑇𝑖, 𝐺 𝑗 ) |𝐴)

where Ω𝑇 is the set of MUL-trees corresponding to introgression events.

3.3.2 PHiMM Algorithm

The PHiMM algorithm for statistical introgression mapping consists of a three-stage pipeline.

The pseudocode of our algorithm is given in Algorithm 3.1 and Figure 3.2.
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Figure 3.1 An illustration of the PhyloNet-HMM framework. (A) The genomes of three species
A, B, and C. (B) The species network of A, B, and C, which has a reticulate evolutionary history,
where individuals in B have some genetic material from the common ancestor of B and A, and
other genetic material from C. (C) Corresponding gene trees and parental species trees. The blue,
red, and green “locus” in the genomes have 𝐺1, 𝐺2, and 𝐺3 as their local gene trees, respectively.
Further, gene trees𝐺1 and𝐺3 for the blue and green loci evolved within the parental species tree𝑇1,
whereas gene tree𝐺2 for the red locus evolved within the parental species tree𝑇2. (D) The structure
of the HMM (only states are shown). The states 𝑠11, 𝑠12, and 𝑠13 correspond to three possible local
gene trees𝐺1,𝐺2, and𝐺3 with evolution following the parental tree𝑇1, while states 𝑠21, 𝑠22, and 𝑠23
correspond to three possible local gene trees 𝐺1, 𝐺2, and 𝐺3 with evolution following the parental
species tree 𝑇2. 𝑠00 is the start state. Note that only transitions outgoing from 𝑠11 = (𝑇1, 𝐺1) are
shown to simplify the presentation. This figure is reproduced from Liu et al. [12].
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The first stage consists of the following “truncation” algorithm:

(a) Under the input species network model N , we conduct a Monte Carlo sampling of 𝑧 local

gene tree topologies from the gene tree topology distribution under the MSNC model.

Here, 𝑧 is set to 1000 in the simulation experiments and empirical analyses. The observed

frequency distribution of local gene tree topologies is normalized to obtain an estimated

probability distribution ˆ𝑓N .

(b) Topologies in the domain of ˆ𝑓N are ranked based on their estimated probabilities. Let Δ be

the top 𝑘𝑛 topologies based on the topology ranking. In this study, 𝑘𝑛 is set to 30.

(c) The distribution ˆ𝑓N is truncated such that the domain consists only of topologies inΔ. Then,

a truncated probability distribution 𝑔N is obtained by normalizing the truncated distribution

ˆ𝑓N .

The second stage of the PHiMM algorithm constructs a hidden Markov model (HMM) in a

manner similar to the PhyloNet-HMM algorithm with a single modification. The set of MUL-trees

𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑚, where 𝑚 is the number of MUL-trees) in the MUL-tree representation of 𝑁 is

enumerated using the procedure described by Yu et al. [20]. HMM state construction utilizes the

truncated distribution ˆ𝑓N rather than the full theoretical distribution 𝑓 , where a row of HMM states

is instantiated for each distinct MUL-tree 𝑇𝑖 and each state in a row corresponds to a distinct local

gene tree topology 𝐺 𝑗 (1 ≤ 𝑗 ≤ 𝑘𝑛 = |Δ|) in the domain of 𝑔N .

The final stage of the PHiMM algorithm performs model learning and statistical inference under

the fitted model using the same procedures as the PhyloNet-HMM algorithm.

3.4 Materials

3.4.1 Simulation Data

The simulation study is used to evaluate the performance and applicability of the proposed

PHiMM method, since we can track the true history of evolutionary events. The simulation data

are constructed through various tools, such as r8s [28], ms [30], msmove [29], and seq-gen [32].

(1) Construction of model phylogenies

The model phylogenies are generated using the procedure of Hejase et al. [11].
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Figure 3.2 The PHiMM pipeline. This flowchart illustrates the three-stage PHiMM algorithm
for statistical introgression mapping: Stage 1 (“Truncation” Algorithm) begins by performing
Monte Carlo sampling of local gene tree topologies under the input species network and ranking
these topologies according to their empirical frequencies. Only the top 𝑘𝑛 topologies are retained,
and a truncated probability distribution is formed. Stage 2 (HMM Construction) leverages the
truncated set of topologies rather than the full gene tree distribution. Each MUL-tree derived from
the species network is enumerated, and each state in the hidden Markov model corresponds to
one of the retained local gene tree topologies attached to a specific MUL-tree. Stage 3 (Model
Learning and Inference) applies maximum-likelihood or similar routines (as in PhyloNet-HMM)
to the constructed HMM, producing a site-by-site probability of introgression along the input
aligned genomes. Through these steps, PHiMM provides a computationally efficient framework
to detect introgression signals while accounting for the complexity of network-like evolutionary
histories.This figure is reproduced from Wuyun et al. [122].
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Algorithm 3.1 PHiMM
1: procedure PHiMM(𝑁, 𝐴)
2: N ← 𝐺𝑒𝑡𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑜𝑑𝑒𝑙 (𝑁) ⊲ 𝑁: Phylogenetic network
3: ⊲ N : Species network model
4: Δ𝑧 ← ∅ ⊲ Δ𝑧: Sampled gene tree topologies
5: int 𝑖 ← 1
6: while 𝑖 ≤ 𝑧 do ⊲ 𝑧: Sampling size
7: Δ𝑧 ← Δ𝑧 + 𝐺𝑒𝑛𝑒𝑇𝑟𝑒𝑒𝑀𝑜𝑛𝑡𝑒𝐶𝑎𝑟𝑙𝑜𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑁,N)
8: 𝑖 ← 𝑖 + 1
9: Δ𝑑 ← 𝐺𝑒𝑡𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝐺𝑒𝑛𝑒𝑇𝑟𝑒𝑒𝑠(Δ𝑧) ⊲ Δ𝑑: Distinct gene tree topologies in Δ𝑧

10: ˆ𝑓N ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(Δ𝑑) ⊲ ˆ𝑓N : Estimated probability distribution of Δ𝑑
11: ˆ𝑓N ← 𝑅𝑎𝑛𝑘𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦( ˆ𝑓N )
12: Δ← 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒( ˆ𝑓N ,Δ𝑑 , 𝑘𝑛) ⊲ 𝑘𝑛: Truncation size; Δ: Selected gene tree topologies
13: ˆ𝑔N ← 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(Δ)
14: ⊲ ˆ𝑔N : Estimated probability distribution of Δ
15:
16: 𝜃 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑀𝑜𝑑𝑒𝑙𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝑁,Δ, ˆ𝑔N ) ⊲ 𝜃: Model parameters
17: while Not reaching the convergence criteria do
18: 𝜃 ← 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝜃, 𝐴)
19: ⊲ 𝐴: Input multiple sequence alignment with 𝐾 aligned sequences and 𝐿 columns
20: {𝑝𝑡}1≤𝑡≤𝐿 ← 𝑀𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔(𝜃, 𝑁, 𝐴)
21: ⊲ 𝑝𝑡 : Introgression probability for each aligned site 𝑡 (1 ≤ 𝑡 ≤ 𝐿)
22: return {𝑝𝑡}1≤𝑡≤𝐿

First, the r8s [28] tool is used to generate a random phylogenetic tree. The r8s version

is 1.81, and the commands are shown below:

#nexus

begin r8s;

simulate diversemodel=bdback seed=<integer random seed>

charevol=yes ntaxa=<5, 6, 7, 8, 9, or 10> infinite=yes nreps=20;

end;

where “diversemodel” means the model used for tree generation, which is generally set to

the birth-death model denoted by “bdback”. “seed” specifies a random seed for the tree

generation. “ntaxa” represents the number of taxa, which is selected from 5 to 10 in this

study. “nreps” indicates the number of generated repeats. “charevol=yes” indicates the

model tree is output with branch lengths. “infinite=yes” represents that the branch lengths
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are set to the expected values based on rate and time.

Then, the resulting tree is scaled to a height ℎ of 1 by multiplying the length of each

edge in the model tree by ℎ. Furthermore, an outgroup is added to the generated tree at 10.0

coalescent time.

In order to get the phylogenetic network for input, we finally add 𝑟 reticulations

(𝑟 ∈ [1, 2]) by iterating the following steps: a time 𝑡𝑀 between 0 and the tree height

is selected uniformly at random, two tree edges for which corresponding ancestral popula-

tions existed during a time interval [𝑡𝐴, 𝑡𝐵] such that 𝑡𝑀 ∈ [𝑡𝐴, 𝑡𝐵] are randomly selected,

and a reticulation at time 𝑡𝑀 is added to connect the pair of tree edges. Similar to Leaché

et al. [15], the model network can be further classified based upon whether gene flow is

“deep” or “non-deep”, which is defined by the topological placement of reticulations, i.e.,

non-deep reticulations are placed between two leaf edges, while deep reticulations include

all other reticulations.

(2) Generation of local genealogies

Local genealogy at each locus is simulated using the msmove [29] or ms [30] following

the above species network. The local gene trees are modeled for independent and identi-

cally distributed (i.i.d.) loci under a multi-species network coalescent with recombination

(MSNCwR) model. msmove is modified from the Monte Carlo simulator ms [30] to allow

the tracking of migration events, while ms does not provide this annotation. The following

msmove or ms command is used:

msmove <number of samples> <number of repeats> -T

-r <crossover rate> <number of sites>

-I <number of populations> <n_1 n_2 ... n_k>

-ej <t_1> i_1 j_1 -ej <t_2> i_2 j_2 ... -ej <t_k> i_k j_k

-ev <t_m> i j <probability x>

or

ms <number of samples> <number of repeats> -T
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-r <crossover rate> <number of sites>

-I <number of populations> <n_1 n_2 ... n_k>

-ej <t_1> i_1 j_1 -ej <t_2> i_2 j_2 ... -ej <t_k> i_k j_k

-em <t_m1> i j <x_1> -em <t_m2> i j <x_2>

where -T parameter indicates the gene trees representing the history of the sampled taxa are

output. The -I parameter is followed by 𝑘 that represents the number of populations. The

list of integers (n_1 n_2 ... n_k) includes the number of taxa sampled in each population.

In this study, one allele is sampled from each taxon. The -r parameter is used to set

recombination under Hudson’s finite-sites recombination model [30], where the crossover

rate or recombination rate 𝜌 is set to 1 for msmove or 10 for ms, and the number of sites

between which recombination can occur is set to 100 for msmove or 1000 for ms. The -ej

parameter specifies moving all lineages in population i to population j at time t. The -ev

parameter is special for msmove, which sets migration at time t_m from population i to

population j with the migration probability x. The migration rate is selected randomly for

each replicate in this study. In contrast, the -em parameter for the ms tool sets migration

from subpopulation j to subpopulation i at time t_m1 or t_m2 with migration rate as x_1 or

x_2.

(3) Simulation of DNA sequences

The DNA sequences are generated using seq-gen [32] under the Jukes-Cantor substitution

model [31] with mutation rate 𝜃 = 2. The sequence simulation is performed under the

procedure of multi-locus genomic sequence evolution. In detail, we simulate two different

classes of loci: “query” loci that are sampled from the MSNC model with a recombination

rate 𝜌 of 1 based on msmove tool to produce shorter sequences with a length of 100 bp, and

“non-query” loci that are sampled with a recombination rate 𝜌 of 10 based on ms tool to

generate longer sequences with a length of 1 kb. Loci from the two classes are interleaved,

resulting in ten query loci and nine non-query loci sampled per dataset, where each locus is

independent and identically distributed (i.i.d.). The following seq-gen command is used:
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seq-gen -mHKY -l <sequence length> -p <number of partitions>

< genetreefile > seqfile

where -m parameter specifies the substitution model. Here, the Jukes-Cantor substitution

model denoted by “HKY” is used. The -l parameter specifies the sequence length. The -p

parameter sets the number of partitions. The genetreefile is the input file providing the gene

trees. The seqfile is the output file with simulated sequences under the given gene trees.

The sampling design is carefully designed to ensure that the query loci are sufficiently

separated by sequence length. This allows us to make the assumption of free recombination

between the query loci based on the observed decay of linkage disequilibrium in previous

empirical studies [127].

In the simulation study, we conduct 20 repetitions of the simulation procedure for each model

condition. To assess the performance of the methods, we calculate the average and standard error

of the performance measures across these 20 replicates. The statistical summary of the simulation

dataset is presented in Table 3.1.

3.4.2 Performance Assessments

To evaluate and compare the performance of different approaches on the simulation dataset

where the true history of evolutionary events can be tracked, we use two types of area under the

curve (AUC): the area under the receiver-operating characteristic (ROC) curve, and the area under

the Precision-Recall curve, referred to as simply ROC-AUC and PR-AUC, respectively. ROC-AUC

is plotted by the true positive rate ( 𝑇𝑃
𝑇𝑃+𝐹𝑁 ) as a function of the false positive rate ( 𝐹𝑃

𝐹𝑃+𝑇𝑁 ) at various

threshold settings, while PR-AUC similarly plots the precision ( 𝑇𝑃
𝑇𝑃+𝐹𝑃 ) against the recall ( 𝑇𝑃

𝑇𝑃+𝐹𝑁 )

at different thresholds, where TP, FP, TN, and FN represent the numbers of true positives, false

positives, true negatives, and false negatives, respectively. The ROC-AUC and PR-AUC measures

represent the tradeoff between type I errors and type II errors under different threshold values. The

measures are calculated only on the “query” loci in the simulation dataset, where the true migration

events are annotated by msmove. After concatenating all query loci in one simulation replicate,

the ROC-AUC and PR-AUC of a method are assessed based on the probability of a particular site
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Table 3.1 Statistics for the simulation dataset. The reticulation scenarios include one non-deep
reticulation, two non-deep reticulations, and one deep reticulation. “Ntaxa” means the number of
taxa. “Total Sites” indicates the number of total sites in the simulation genomes for running. “Sites
for analysis” represents the number of “query” sites for analyzing the performance of introgression
detection methods. The p-distance of a pair of aligned sequences is calculated by dividing the
number of sites where the two sequences had different nucleotides by the number of sites in which
both sequences had nucleotides. “Average/Maximum p-dist” is the average/maximum p-distance
of all pairs of aligned sequences in the simulation dataset. “Introgression (%)” shows the percent
of introgressed sites over the genome. “Network Height” gives the height of the model network.
“Average Branch Length” is the average branch length of the model network. The average and
standard error (SE) are shown based on 20 replicates.

Reticulation
Scenario Ntaxa Total

Sites
Sites for
analysis

Average p-dist (%) Maximum p-dist (%) Introgression (%) Network Height Average Branch Length
Average SE Average SE Average SE Average SE Average SE

one non-deep 5 10kb 1kb 68.307 2.339 73.317 0.624 54.000 13.565 1.000 0.000 0.337 0.052
6 10kb 1kb 67.474 2.251 73.254 0.759 51.000 13.379 1.000 0.000 0.288 0.039
7 10kb 1kb 68.039 2.434 73.403 0.386 47.500 12.600 1.000 0.000 0.297 0.050
8 10kb 1kb 68.673 1.368 73.538 0.442 55.000 15.330 1.000 0.000 0.285 0.036
9 10kb 1kb 68.327 1.493 73.446 0.310 60.500 14.654 1.000 0.000 0.270 0.041
10 10kb 1kb 68.878 1.196 73.630 0.330 52.500 13.370 1.000 0.000 0.275 0.037

two non-deep 5 10kb 1kb 66.634 2.567 72.763 0.638 70.000 13.416 1.000 0.000 0.273 0.046
6 10kb 1kb 66.945 3.350 72.645 1.560 79.000 11.790 1.000 0.000 0.272 0.040
7 10kb 1kb 67.551 1.874 73.136 0.346 78.500 11.079 1.000 0.000 0.253 0.035
8 10kb 1kb 68.882 1.270 73.468 0.378 72.500 16.086 1.000 0.000 0.264 0.034
9 10kb 1kb 68.490 1.522 73.325 0.449 75.500 15.322 1.000 0.000 0.246 0.038
10 10kb 1kb 68.256 1.683 73.535 0.312 74.500 11.169 1.000 0.000 0.241 0.033

one deep 5 10kb 1kb 66.605 2.501 72.330 1.996 72.500 16.086 1.000 0.000 0.300 0.042
6 10kb 1kb 67.891 2.168 72.584 1.360 74.000 10.198 1.000 0.000 0.293 0.052
7 10kb 1kb 67.262 2.224 73.072 0.503 80.000 10.000 1.000 0.000 0.272 0.054
8 10kb 1kb 68.372 2.288 73.238 0.546 72.000 13.638 1.000 0.000 0.261 0.042
9 10kb 1kb 68.056 1.736 73.456 0.400 79.500 13.219 1.000 0.000 0.247 0.048
10 10kb 1kb 68.936 1.078 73.535 0.404 75.000 12.450 1.000 0.000 0.258 0.032

involving an introgressive origin.

Additionally, we report the memory usage and runtime in order to comprehensively evaluate

the scalability of our framework.

3.4.3 Software and Data

Our PHiMM algorithm is implemented as custom software, which includes a tailored version of

the MSNC-based Monte Carlo algorithm and custom adaptations of the PhyloNet software package

[13, 123]. All of our software and study datasets are open-source and publicly available for access

at https://gitlab.msu.edu/liulab/phimm-dataset.

3.5 Results

We present a comprehensive evaluation of the PHiMM framework using simulated datasets

designed to capture a variety of factors that could influence introgression detection accuracy.

Specifically, we focus on (1) the effect of varying the gene tree truncation size 𝑘𝑛, (2) the impact of
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increasing the number of taxa, and (3) the influence of different numbers and depths of reticulations.

We further compare the performance of PHiMM with PhyloNet-HMM in terms of accuracy,

runtime, and memory usage.

3.5.1 Effect of gene tree truncation size

An initial step in implementing PHiMM involves determining the optimal gene tree truncation

size 𝑘𝑛, which directly affects the number of hidden states in the HMM. As depicted in Figure 3.3,

both memory usage and runtime exhibit an increasing trend with the number of gene trees, partic-

ularly for networks involving 10 taxa. This outcome is expected because more gene trees translate

into a larger state space for the HMM, thereby necessitating greater computational resources.

Despite the rise in computational cost, Figure 3.3 also shows that detection accuracy remains

relatively stable across a wide range of gene tree counts. This stability implies that many gene

trees may be redundant with respect to introgression detection, allowing us to choose a moderate

truncation size without sacrificing predictive performance. Based on these findings, we set 𝑘𝑛 = 30

as a default, thereby balancing accuracy with memory and runtime efficiency.

3.5.2 Impact of the number of taxa and reticulation number and depth

To further explore PHiMM’s performance, we assess how the number of taxa and various

reticulation scenarios affect both computational requirement (memory and runtime) and detection

accuracy.

Figure 3.4 gives the performance of the PHiMM approach on different numbers of taxa and

different reticulation scenarios. We find that the memory and runtime increase as the function of

the number of taxa grows from 5 to 10. But overall, the memory and runtime are under 10 GB or

10 hours. Furthermore, the ROC-AUC of PHiMM remains above 0.75 on different numbers of taxa

with non-deep reticulations. However, ROC-AUC on more than 7 taxa involving deep reticulations

is reduced below 0.7.

Furthermore, we analyze the influence of different numbers or types of reticulations. There are

three scenarios: one non-deep reticulation, two non-deep reticulations, and one deep reticulation,

because the memory and runtime would rise as the number of reticulations increases. As shown in
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Figure 3.4, we find that the memory usage grows as the number of reticulations increases, while

the runtime remains relatively unchanged by comparing the results of one non-deep reticulation

with those of two non-deep reticulations. However, the ROC-AUC is between 0.85 and 0.9 for two

non-deep reticulations, which is significantly higher than that for one non-deep reticulation. On

the other hand, we compare the difference between non-deep and deep reticulations. We noticed

that the memory and runtime are approximately similar for these two scenarios. However, the

ROC-AUC is comparatively lower for one deep reticulation (below 0.7 for more than 7 taxa). This

is straightforward because the deep reticulation is more complex, thus resulting in hard calculations

and optimizations in PHiMM.

3.5.3 Comparison with PhyloNet-HMM

Finally, we compare the PHiMM framework with PhyloNet-HMM. Since PhyloNet-HMM is

time and memory-intensive, we only make the evaluation based on the 5-taxon phylogenetic network

with one non-deep reticulation as input. In Table 3.2, the memory usage and runtime for PHiMM

are only 2.4 GB and 0.1 hours, which are 0.3% and 0.7% of those for PhyloNet-HMM (318.6 GB

and 40.9 hours), respectively, indicating that the PHiMM framework can dramatically reduce the

memory usage and runtime for introgression detection when compared with the PhyloNet-HMM.

However, PHiMM’s ROC-AUC and PR-AUC are comparable with PhyloNet-HMM’s, even though

the ROC-AUC of PHiMM (0.7653) is 2% lower than that of PhyloNet-HMM (0.7806).

Overall, these results demonstrate that PHiMM significantly reduces computational overhead

without severely compromising accuracy. Consequently, PHiMM represents a compelling alterna-

tive for large-scale introgression mapping, especially in datasets with dozens of DNA sequences

and complex reticulation patterns.

3.6 Discussion and Conclusion

In this study, we introduced PHiMM, a novel introgression detection framework that employs

a coalescent-based approximation strategy to reduce model complexity and enhance detection

performance in large-scale genomic datasets. Through extensive simulation experiments, we

demonstrated that PHiMM achieves significant improvements in runtime and memory usage —
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Figure 3.3 Results for different numbers of gene trees for (A) 5 and (B) 10 taxa input network.
The simulation data is generated under the model conditions: one non-deep reticulation. The
number of gene trees used ranges from 10 to 100. Performance measures include the area under the
receiver operating characteristic curve (denoted by AUC) (red points), runtime (blue rectangles),
and memory usage (green triangles). Averages and standard error bars are depicted based on 20
replicates. This figure comes from Wuyun et al. [122].
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Figure 3.4 The performance of PHiMM on model conditions with (A) one non-deep reticu-
lation, (B) two non-deep reticulations, and (C) one deep reticulation. Performance measures
include the area under the receiver operating characteristic curve (denoted by AUC) (red points),
runtime (blue rectangles), and memory usage (green triangles). Averages and standard error bars
are depicted based on 20 replicates. This figure comes from Wuyun et al. [122].
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Table 3.2 The performance comparison between PHiMM and PhyloNet-HMM on the 5-taxon
model condition with one non-deep reticulation. Performance measures include the area under
the receiver-operating characteristic curve (ROC-AUC), the area under the precision-recall curve
(PR-AUC), runtime, and memory usage. The average and standard error (SE) are calculated based
on 20 replicates. This table comes from Wuyun et al. [122].

PhyloNet-HMM PHiMM
Average SE Average SE

ROC-AUC 0.7806 0.0534 0.7653 0.0523
PR-AUC 0.7197 0.0871 0.7305 0.0726
Runtime (hour) 40.8968 0.5607 0.1291 0.0035
Memory (GB) 318.6493 4.3099 2.3527 0.2271

often by several orders of magnitude — when compared to the state-of-the-art PhyloNet-HMM.

This exceptional scalability is primarily attributable to the truncation strategy built into PHiMM,

wherein the model approximation procedure effectively curtails the number of parameters involved

in local optimizations.

Although model approximations typically raise concerns regarding trade-offs between com-

putational efficiency and inference precision, our results show that PHiMM maintains accuracy

levels comparable to PhyloNet-HMM, with only a marginal decrease in ROC-AUC and PR-AUC.

One plausible explanation for this robust performance is that discarding redundant gene trees or

parameters through truncation strategically simplifies the model without forfeiting critical genetic

signals required for introgression inference.

Our findings further indicate that PHiMM’s detection accuracy is generally resilient across

variations in the number of taxa and the complexity of reticulation patterns. Nonetheless, a modest

drop in ROC-AUC is observed in datasets containing a large number of taxa and deep reticulations.

These observations align with recent studies suggesting that deep gene flow or ancient evolutionary

events impose greater challenges for phylogenetic inference than more recent divergence scenarios

[11, 14, 15]. Moreover, although the computational demands of PHiMM increase in proportion to

the number and depth of reticulations, as well as the overall number of taxa, these requirements

remain within manageable limits for modern high-performance computing systems.

In conclusion, PHiMM represents a powerful alternative for introgression mapping, combining
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computational efficiency with reliable inference of hybridization events. The framework’s scalabil-

ity, coupled with its robust accuracy, renders it particularly well-suited to the burgeoning volume

and complexity of contemporary genomic datasets. Future endeavors could focus on refining the

approximation strategies to further enhance performance on data characterized by deep reticula-

tions, as well as extending PHiMM to incorporate additional sources of genomic heterogeneity

such as gene duplication and loss. Through these developments, PHiMM has the potential to offer

a versatile platform for unraveling the evolutionary processes that shape species diversity.
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CHAPTER 4

APPLICATION OF PHIMM INTROGRESSION DETECTION METHOD TO
EMERGING MODEL SYSTEMS

4.1 Introduction

In our previous work, we introduced the PHiMM approach as a scalable and accurate method for

detecting introgression in simulated genomic data. Through a series of computational experiments,

we demonstrated that PHiMM maintains high inference accuracy while dramatically enhancing the

scalability of introgression detection. Encouraged by these promising simulation-based results, the

next logical step is to validate the performance of PHiMM on empirical datasets that capture the

complexity and heterogeneity inherent in real-world biological systems. Accordingly, this study

applies PHiMM to two well-characterized cases of introgression, thereby evaluating its effectiveness

and robustness under practical evolutionary scenarios.

The first empirical dataset is the widely-studied case of adaptive introgression among house

mice, i.e., Mus musculus dometicus (M. m. dometicus) and Mus spretus (M. spretus). The adaptive

significance of this introgression is evident in the acquired resistance to anticoagulant rodenticides

by M. m. dometicus. This resistance is conferred by the introgression of Vkorc1 (vitamin K

2,3-epoxide reductase subcomponent 1) gene from the gene pool of M. spretus to M. m. dometicus

[120]. This case not only exemplifies how introgression can confer immediate and profound

adaptive benefits but also provides a tractable system in which to assess the accuracy of PHiMM’s

introgression mapping under a known evolutionary outcome.

The second empirical dataset is from studies of mimicry in the butterfly genus Limenitis. The

WntA gene was found to be responsible for wing mimicry among Limenitis [128]. This dataset

allows us to explore the role of introgression in morphological diversification and ecological

adaptation. By examining how introgression may have contributed to morphological diversification

and ecological adaptation, this dataset allows for a broader evaluation of PHiMM’s performance

under selective pressures distinct from those observed in rodents. Moreover, these butterflies

present an opportunity to interrogate introgression events that shape complex phenotypes, such as
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wing coloration and patterning.

By applying PHiMM to these two divergent empirical systems — an adaptive introgression

conferring rodenticide resistance in mice and morphological mimicry in butterflies — we aim to

(i) verify the consistency of our simulation-derived findings in real datasets, and (ii) explore the

broader applicability of PHiMM to evolutionary processes involving diverse selection pressures.

This study thereby not only extends PHiMM’s utility beyond controlled simulation conditions but

also contributes to a deeper understanding of the adaptive and ecological impacts of introgression

in natural populations.

4.2 Materials

4.2.1 Mouse Data

Figure 4.1 The phylogenetic network and corresponding parental species trees used for eval-
uating PhyloNet-HMM and PHiMM on mouse data. The phylogenetic network captures (A)
introgression from M. spretus to M. m. domesticus. The parental tree in (B) captures genomic
regions of introgressive descent, while the parental tree in (C) captures genomic regions with no
introgression.

The data gathered from the mice include empirical genomic sequence datasets with positive and

negative control loci. The datasets are sampled from wild-derived and wild mouse samples from

M. m. domesticus and M. spretus. For comparison purposes, we replicate a subset of the PhyloNet-

HMM analyses conducted in the research by Liu et al. [7], which utilized genomic sequence data

from Didion et al. [131]. We briefly review relevant methodological details here (see [7] for more

details). The data were sequenced using an SNP array designed by Yang et al. [129]; raw reads

from the array were genotyped using MouseDivGeno software [131]. The genotypic sequence data
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Table 4.1 Mouse samples used in this study. We used existing mouse samples from previous
studies. Each row lists a sample’s name, species, commonly used alias, the geographic origin of
the population, and the corresponding reference source. The M. m. domesticus entries represent
house mouse populations from various locations in Spain, Germany, Cyprus, and Georgia, while
the M. spretus entry corresponds to a distinct mouse species from the Cadiz Province in Spain.
References to original sources are also included for traceability.

Sample Name Species Alias Origin Source
Spain-Arenal M. m. domesticus MWN1279 Arenal, Mallorca Island, Spain [129]
Spain-RocadelValles M. m. domesticus MWN1287 Roca del Valles, Catalunya, Spain [129]
Germany-Hamm-A M. m. domesticus B9 Hamm, North Rhine-Westphalia, Germany [7]
Germany-Hamm-B M. m. domesticus B10 Hamm, North Rhine-Westphalia, Germany [7]
Germany-Hamm-C M. m. domesticus B11 Hamm, North Rhine-Westphalia, Germany [7]
Germany-Hamm-D M. m. domesticus C1 Hamm, North Rhine-Westphalia, Germany [7]
Germany-Hamm-E M. m. domesticus C2 Hamm, North Rhine-Westphalia, Germany [7]
Germany-Hamm-F M. m. domesticus C3 Hamm, North Rhine-Westphalia, Germany [7]
A-background M. m. domesticus DCA Akotiri, Cyprus [129, 130]
B-background M. m. domesticus DCP Paphos, Cyprus [129, 130]
C-background M. m. domesticus DGA Adjaria, Georgia [129, 130]
Spretus M. spretus SPRET/EiJ Puerto Real, Cadiz Province, Spain [129, 130]

Table 4.2 Mouse datasets. Each dataset comprises a subset of Mus samples selected for phyloge-
netic and comparative genomic analyses using PhyloNet-HMM or PHiMM. For PhyloNet-HMM,
four haploid Mus genomes were included, while the extended PHiMM analysis incorporated five
Mus genomes. The extended PHiMM datasets (noted in parentheses) specifically incorporate the
additional Mus genome to deepen the inference of phylogenetic histories and evolutionary relation-
ships across mouse populations. An additional rat genome (Rattus norvegicus reference genome
RGSC Rnor_5.0) served as an outgroup.

Dataset Set of samples included
Spain-Arenal Spain-Arenal, A-background, B-background, C-background (for extended PHiMM analysis), Spretus
Spain-RocadelValles Spain-RocadelValles, A-background, B-background, C-background (for extended PHiMM analysis), Spretus
Germany-Hamm-A Germany-Hamm-A, A-background, B-background, C-background (for extended PHiMM analysis), Spretus
Germany-Hamm-B Germany-Hamm-B, A-background, B-background, C-background (for extended PHiMM analysis), Spretus
Germany-Hamm-C Germany-Hamm-C, A-background, B-background, C-background (for extended PHiMM analysis), Spretus
Germany-Hamm-D Germany-Hamm-D, A-background, B-background, C-background (for extended PHiMM analysis), Spretus
Germany-Hamm-E Germany-Hamm-E, A-background, B-background, C-background (for extended PHiMM analysis), Spretus
Germany-Hamm-F Germany-Hamm-F, A-background, B-background, C-background (for extended PHiMM analysis), Spretus
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Table 4.3 Statistics for the mouse datasets. “Haplotype” indicates the haplotype name in each
dataset. “Nchrs” means the number of chromosomes in each dataset. “Sites” indicates the number
of total sites from all chromosomes. The p-distance of a pair of aligned sequences is calculated by
dividing the number of sites where the two sequences had different nucleotides by the number of sites
in which both sequences had nucleotides. “Average/Maximum p-dist𝑎” is the average/maximum
p-distance of all pairs of aligned sequences in the PhyloNet-HMM datasets with 4 ingroup taxa,
while “Average/Maximum p-dist𝑏” is for the extended PHiMM datasets with 5 ingroup taxa. The
average and standard error (SE) are shown based on all chromosomes.

Dataset Haplotype Nchrs Sites Average p-dist𝑎 Maximum p-dist𝑎 Average p-dist𝑏 Maximum p-dist𝑏
Average SE Average SE Average SE Average SE

Spain-Arenal 1 20 414376 26.590 1.381 35.008 0.777 25.261 1.575 35.008 0.777
Spain-Arenal 2 20 414376 26.621 1.367 35.141 0.884 25.287 1.587 35.141 0.884
Spain-RocadelValles 1 20 414376 26.609 1.334 34.983 0.884 25.266 1.543 34.983 0.884
Spain-RocadelValles 2 20 414376 26.642 1.352 35.142 0.921 25.295 1.579 35.142 0.921
Germany-Hamm-A 1 20 414376 27.622 1.458 36.918 0.883 26.112 1.638 36.918 0.883
Germany-Hamm-A 2 20 414376 27.623 1.482 36.909 0.923 26.107 1.682 36.909 0.923
Germany-Hamm-B 1 20 414376 27.644 1.462 36.918 0.908 26.123 1.641 36.918 0.908
Germany-Hamm-B 2 20 414376 27.624 1.475 36.905 0.956 26.119 1.671 36.905 0.956
Germany-Hamm-C 1 20 414376 27.571 1.484 36.876 1.034 26.076 1.644 36.876 1.034
Germany-Hamm-C 2 20 414376 27.623 1.462 36.890 0.994 26.107 1.667 36.890 0.994
Germany-Hamm-D 1 20 414376 27.511 1.442 36.782 1.095 25.999 1.616 36.782 1.095
Germany-Hamm-D 2 20 414376 27.500 1.477 36.788 1.087 25.990 1.663 36.788 1.087
Germany-Hamm-E 1 20 414376 27.513 1.416 36.792 1.022 25.994 1.601 36.792 1.022
Germany-Hamm-E 2 20 414376 27.511 1.468 36.768 1.050 26.000 1.660 36.768 1.050
Germany-Hamm-F 1 20 414376 27.500 1.414 36.719 1.042 25.989 1.597 36.719 1.042
Germany-Hamm-F 2 20 414376 27.554 1.479 36.775 1.026 26.038 1.669 36.775 1.026

was phased into haploid genomic sequences using fastPHASE [132].

Comprehensive details about the data can be found in Table 4.1 and 4.2. Each dataset consists

of genomic sequences from three M. m. domesticus samples, one M. spretus sample, and one Rattus

norvegicus genome (RGSC Rnor_5.0/rn5) that is included as an outgroup (see Figure 4.1). Thus,

each dataset consists of four ingroup taxa and one outgroup taxon. For the three M. m. domesticus

samples, one originates from the region of sympatry between M. m. domesticus and M. spretus,

and two are from far outside the sympatric region. Specifically, the M. spretus sample is also from

the sympatric region. Therefore, we assume the network for this dataset involved a reticulation

from M. spretus to the sympatric M. m. domesticus.

In addition to the datasets in Liu et al. [7], our study also incorporates larger “extended” datasets

with a more extensive taxon sampling, which encompasses all the data from the original study as

a strict superset. The larger size of the extended datasets necessitates the use of PHiMM for

introgression mapping purposes. Other than the larger set of taxa in new datasets, all other aspects

of empirical data are the same (i.e., genotyping, phasing, etc.). Notably, the extended datasets

53



include an extra sample of M. m. domesticus from outside the region of sympatry between M. m.

domesticus and M. spretus (Figure 4.1).

For the analyses of the extended datasets, PHiMM is run with the same settings used in the

simulation study, except for two modifications. First, the number of iterations for model parameter

learning is increased to 1000 (as opposed to 300). Second, model parameters are optimized using

chromosome 7 from the extended Spain-Arenal dataset.

The summarized statistics of these datasets can be found in Table 4.3.

4.2.2 Limenitis Data

Figure 4.2 The phylogenetic network and corresponding parental species trees used for eval-
uating PhyloNet-HMM and PHiMM on Limenitis data. The phylogenetic network captures (A)
introgression from Limenitis arthemis arizonensis to Limenitis arthemis astyanax. The parental
tree in (B) captures genomic regions of introgressive descent, while the parental tree in (C) captures
genomic regions with no introgression.

We also conduct a re-analysis of the Limenitis dataset described in the study by Gallant et al.

[128]. For this re-analysis, we perform PhyloNet-HMM and PHiMM on the Limenitis AC scaffold,

which contains the WntA gene. The dataset comprises four ingroup taxa, namely, Limenitis

arthemis arizonensis, Limenitis arthemis arthemis, Limenitis arthemis astyanax, and Limenitis

archippus floridenesis. Our assumption is that Limenitis arthemis arthemis and Limenitis arthemis

astyanax first coalesce, followed by their ancestors coalescing with Limenitis arthemis arizonensis,

and finally with Limenitis archippus floridenesis. In this 4-taxon network, a reticulation from

Limenitis arthemis arizonensis to Limenitis arthemis astyanax is postulated (see Figure 4.2).

Due to the scalability limitations of PhyloNet-HMM, it is executed on the 4-taxon dataset, while

PHiMM employs the extended dataset that includes an additional Limenitis arthemis arthemis
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sample (Figure 4.2).

4.3 Results

4.3.1 Mouse Data Re-analysis

In our study, we conduct a performance comparison between PHiMM and PhyloNet-HMM using

mouse genomic sequence datasets previously analyzed in the works of Liu et al. [7] and Didion

et al. [131]. However, due to the scalability constraints of PhyloNet-HMM, we run PhyloNet-HMM

on a smaller dataset consisting of only four ingroup taxa. This smaller dataset is a proper subset

of the larger dataset used for PHiMM analyses, which includes more samples of M. m. domesticus

but remains otherwise identical. Additional information and detailed explanations of the datasets

can be found in the Methods section.

Previous studies [7, 120] have reported instances of adaptive interspecific introgression involv-

ing the region around the Vkorc1 gene, specifically the region on chromosome 7 between coordinates

123 Mb and 134 Mb. As depicted in Figure 4.3 and Figure A.1-A.20 of Appendix A, both PHiMM

and PhyloNet-HMM methods infer the presence of multi-megabase-long introgressed tracts that

are present in all eight samples from Spain and Germany, with the exception of the Arenal, Spain

sample. Thus, both methods successfully detect interspecific introgression in this positive control.

Notably, the genomic region containing the Vkorc1 gene shows the longest introgressed tracts

detected in the mouse genome. Within this particular genomic region, it is worth mentioning that

PHiMM infers a greater total sequence length of introgressed tracts compared to the inference made

by PhyloNet-HMM.

Beyond Vkorc1, additional genomic regions spanning several hundred kilobases also exhibit

substantial introgression signals, as reported by Liu et al. [7]. In many of these regions, PHiMM

and PhyloNet-HMM converge on qualitatively similar inferences, reaffirming the presence of in-

trogressed tracts across the genome.

However, when examining local inference patterns, two types of differences become evident.

First, there are local differences in the pattern of introgressed and non-introgressed tracts, exem-

plified in regions such as the chromosome 7 region between coordinates 102 Mb and 108 Mb, and
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(A) PhyloNet-HMM

(B) PHiMM

Figure 4.3 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on mouse data. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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Figure 4.4 The comparison of histograms of introgressed tract lengths between (A) PhyloNet-
HMM and (B) PHiMM on mouse data. Introgressed tract lengths are shown in 100 kilobases
(Kb). Results are reported for all recipients M. m. domesticus samples from the region of sympatry
between M. m. domesticus and M. spretus. This figure comes from Wuyun et al. [122].

57



the chromosome 17 region between coordinates 4 Mb and 54 Mb. Second, PHiMM infers longer

and more numerous introgressed tracts compared to PhyloNet-HMM in certain regions, such as

chromosome 10, 12, and 15.

Furthermore, we investigate the genome-wide histogram of introgressed tract lengths as shown

in Figure 4.4. Qualitatively, PhyloNet-HMM and PHiMM return inferences with similar histogram

shapes: a large peak over short tract lengths (kilobases or a few megabases of sequence length at

most), followed by a long tail over longer sequence lengths. Two primary differences between the

histograms of the two methods are noted. First, PHiMM’s histogram has a greater total count of

introgressed tracts and a larger total sequence length compared to the latter. Second, PHiMM’s

histogram appears to be bimodal: one part has tract lengths distributed between 0 and 3.5 Mb, and

the other part consists of around a dozen much longer introgressed tracts with sequence lengths

between 4 and 11 Mb. In comparison, PhyloNet-HMM’s histogram has a long tail with a relatively

uniform distribution of introgressed tracts between 2 and 10 Mb.

In summary, these comparisons illustrate that PHiMM and PhyloNet-HMM both accurately

detect known adaptive introgression events in M. m. domesticus, although PHiMM appears more

inclined to identify longer or subtler introgressed tracts. Future studies could delve into the biolog-

ical relevance of such extended signals and refine methodological assumptions to better account for

the complexities of natural populations, including varying recombination rates, incomplete lineage

sorting, and the mosaic nature of introgressed genomes.

4.3.2 Limenitis Data Re-analysis

In addition to the mouse datasets, we further evaluated PHiMM and PhyloNet-HMM on genomic

data from the butterfly genus Limenitis, which exhibits well-characterized mimicry traits. Due to

computational constraints, PHiMM was applied to a larger five-taxon dataset, whereas PhyloNet-

HMM could only be run on a smaller four-taxon subset (see the Methods section for detailed

descriptions of both datasets). This setup facilitates a comparative assessment of the two approaches

under varying data sizes and complexities.

As shown in Figure 4.5, the longest introgressed tract inferred by PHiMM closely corresponds
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Figure 4.5 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on Limenitis data. Introgressed tracts along the genome are shown in kilobases (Kb).
Results are reported for the introgression from a donor Limenitis arthemis arizonensis sample to a
recipient Limenitis arthemis astyanax sample. This figure comes from Wuyun et al. [122].

to the major tract identified by PhyloNet-HMM, albeit shifted slightly toward lower genomic coor-

dinates. In principle, inferring introgression from datasets with more taxa can be more challenging

owing to increased heterogeneity and potential discordance across gene regions. Consequently, the

five-taxon analyses conducted by PHiMM exhibit a marginally higher level of noise relative to the

smaller, four-taxon analysis by PhyloNet-HMM. This is reflected in the observation that PHiMM

tends to detect a larger number of shorter introgressed tracts compared to PhyloNet-HMM.

Despite these differences, both methods consistently identify introgression within the WntA

region, spanning approximately 27 to 101 kb, with a pronounced cluster of introgressed segments

between 60 kb and 100 kb. These findings align with the results in Gallant et al. [128], who

highlighted the importance of WntA for wing-pattern mimicry in Limenitis. The concordance of

these inferences underscores each method’s ability to capture critical genomic intervals, even when

operating on datasets of different sizes and complexities. By confirming introgression signals in an

ecologically and evolutionarily significant region, our analysis further validates the utility of both

PHiMM and PhyloNet-HMM for dissecting genomic contributions to phenotypic adaptations.

4.4 Discussion and Conclusion

In this study, we evaluate the performance of PHiMM and another state-of-the-art method,

PhyloNet-HMM, using two empirical genomic sequence datasets. Our analyses focus on the

adaptive introgression in house mice and the mimicry in the butterfly genus Limenitis, providing a
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comprehensive evaluation of PHiMM’s capabilities in real-world biological data.

On the mouse empirical datasets, both PHiMM and PhyloNet-HMM provide qualitatively

similar inferences regarding the introgressed genomic regions, which align with the molecular

hypotheses proposed by Liu et al. [7]. However, there are differences observed in the patterns of

local inferences between the two methods.

In some genomic regions, such as the Vkorc1-containing region on chromosome 7, PHiMM

infers longer and more numerous introgressed tracts compared to PhyloNet-HMM. Additionally,

the distribution of introgressed tract lengths exhibited dissimilarities between the two methods.

PHiMM detects more introgressed tracts and displays a clearer “separation” between two classes

of tracts: megabases-long tracts, which are few in number, and shorter tracts, which are more

numerous. The presence of the former “long” class of tracts is consistent with the hypothesis of

adaptive introgression, where neutral recurrent backcrossing tends to shorten introgressed tracts

over time, while positive selection and genetic hitchhiking have an opposing effect [7]. On the

other hand, the latter “short” class of tracts aligns with Liu et al. [7]’s hypothesis regarding more

ancient bouts of adaptive interspecific introgression; sympatry between M. musculus and M. spretus

is understood to have predated the recent introduction of pesticides [7, 133].

On the Limenitis empirical datasets, both PhyloNet-HMM and PHiMM identify similar intro-

gression tracts that exhibit significant overlap across much of the genomic region containing WntA.

These results are in line with the experimental findings presented in the work of Gallant et al. [128].

The observed differences in our empirical study can be attributed to two factors: PHiMM’s

competitive statistical power and type I error control relative to PhyloNet-HMM, as well as the

denser allele sampling made possible by PHiMM’s improved scalability compared to PhyloNet-

HMM.

In conclusion, our study demonstrates that the PHiMM method is a powerful tool for introgres-

sion detection, capable of handling large datasets and providing accurate inferences. By applying

PHiMM to diverse empirical datasets, we have illustrated its robustness and utility in real-world

biological research. These findings contribute to our understanding of the evolutionary processes
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underlying genetic diversity and adaptive introgression, and pave the way for future applications of

the PHiMM approach in various genomic studies.
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CHAPTER 5

BOOSTING PHIMM-BASED PHYLOGENETIC HMM INFERENCE AND LEARNING
BASED ON RANDOM WALK RESAMPLING

5.1 Introduction

Non-parametric resampling techniques enable researchers to leverage empirical data to construct

distributions for obtaining critical values, calculating 𝑝-values, or constructing confidence intervals.

For the task of introgression mapping, non-parametric resampling methods can be employed to

generate resampled replicates of a genome alignment. Inference/analysis can be thus performed

and compared across replicates.

There are two primary classes of resampling methods: non-parametric and parametric. Among

non-parametric methods, the bootstrap method is the most widely-used [134, 135]. Given an

input set of observations, the bootstrap method resamples observations uniformly at random with

replacements. Re-estimation is then conducted on these resampled replicates, and repeatability

is assessed by comparing the re-estimated results. Other non-parametric methods include the

jackknife and weighted bootstrap. In contrast, parametric methods resample directly from an explicit

statistical model, often requiring the assumption of a hypothesis model due to the unavailability

of the original model that generated the original inputs. Non-parametric methods are preferred

in many cases as they do not necessitate assumptions where observations were generated under a

specific model.

Despite their popularity, non-parametric resampling methods, such as the bootstrap, have

significant limitations, particularly the assumption that input observations are independent and

identically distributed (i.i.d.). This assumption does not hold in cases where inputs consist of

sequences of observations, which is common in genomics and computational biology.

The SEquential RESampling (“SERES”) framework [136] consists of non-parametric or semi-

parametric sequential resampling techniques that generalize the standard bootstrap method for

non-parametric resampling [134] and the Heads-or-Tails method [137]. A critical feature of

SERES is its “neighbor preservation property”, which ensures that neighboring bases within the
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original sequences are preserved during resampling. This generalized framework employs a random

walk along a multiple sequence alignment (MSA) that is composed of either aligned or unaligned

biomolecular sequences. In SERES, the random walk is conducted using the following procedure:

A starting point and direction for the random walk are chosen uniformly at random across all sites.

As the random walk proceeds, reversals occur with certainty at the start or end of the MSA; reversals

can also occur during each step with probability 𝛾. The random walk continues until the number

of sampled characters equals the fixed MSA length. For each resampled replicate, re-estimation is

performed, and repeatability is then measured by quantifying disagreement among re-estimations.

Initial studies of SERES focused on unaligned sequence inputs [136], rather than aligned inputs.

Briefly, the SERES algorithm for unaligned sequence inputs also takes the form of a random walk,

with one main difference: resampling “reads” along unaligned sequences occurs in an asynchronous

fashion, and a set of anchors serves as synchronization “barriers” in the same way as they do in

parallel computing. The SERES algorithm was applied to perform confidence interval placement

for a classical problem in computational biology and bioinformatics — multiple sequence alignment

(MSA) estimation. Results from synthetic and empirical data demonstrated that SERES random

walks within a resampling/re-estimation pipeline yielded comparable or superior type I and type II

error rates compared to state-of-the-art methods [136].

In subsequent research, we applied the SERES resampling algorithm on the aligned sequences

for another classical problem in computational biology and bioinformatics: recombination-aware

local genealogical inference [138]. We mainly focused on an HMM-based local genealogical infer-

ence method, recHMM [139], for the following reasons. RecHMM identifies local genealogy by

applying heuristic searches on the space of all possible partitions, and is powerful in detecting local

genealogy changes, especially when the regions involved in recombination are long and the dataset

size is large. Thus, RecHMM reveals the most likely recombination breakpoint locations with high

accuracy and fewer requirements on parameter settings such as window schemes, making it an ideal

method to focus on. Another reason we focused on the recHMM method is that recHMM takes

aligned sequences as input to annotate mosaic genome structures, making it possible to combine
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the SERES resampling approach. Simulation experiments indicated that combining SERES with

recHMM significantly improved recombination detection and local genealogical inference. The

SERES resampling also holds potential for applications in ancestral recombination inference prob-

lems, such as recombination rate estimation [140] and recombination hotspot or coldspot detection

[141, 142].

In this study, we propose another application of SERES random walks on aligned sequences,

and utilize SERES random walks as a means to “boost” HMM inference/learning performance.

Similar to other non-parametric resampling methods, we demonstrate that SERES will serve as a

data perturbation technique in addition to its use in confidence interval placement, as considered

by earlier work [136, 138]. In the simulation study, we apply the SERES resampling algorithm

on the aligned sequences for a classical problem in computational biology and bioinformatics —

introgression mapping. We mainly focus on the PHiMM algorithm for introgression mapping.

In detail, we compare the performance and scalability of the PHiMM method with and without

the SERES resampling approach. Benchmark results suggest that the SERES resampling and

re-estimation can significantly improve PHiMM’s inference accuracy.

5.2 Methods

5.2.1 Standalone PHiMM pipeline

PHiMM is an HMM-based introgression mapping method that combines inference and learning

under a combined model of genetic drift, substitutions, recombination, and gene flow with a

coalescent-based approximation technique. Benchmark analyses indicate that PHiMM offers better

computational runtime and main memory usage by multiple orders of magnitude, while returning

comparable inference accuracy.

We first run the PHiMM alone to establish a baseline performance on the introgression mapping

in the simulation data. PHiMM analyses are run using default settings, e.g., the number of iterations

for model parameter learning is 300, and the number of runs is set to 10. Users also need to assign

a gene tree truncation size 𝑘𝑛 for the HMM model of PHiMM. In our simulation study, we run

PHiMM with the default setting, 𝑘𝑛 = 15.
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Algorithm 5.1 SERES+PHiMM
1: procedure SERES-based PHiMM(𝑁, 𝐴, 𝑅)
2: ({𝑝𝑡}1≤𝑡≤𝐿 , 𝜃) ← 𝑃𝐻𝑖𝑀𝑀 (𝑁, 𝐴) ⊲ 𝑁: Phylogenetic network
3: ⊲ 𝐴: Input multiple sequence alignment with 𝐾 aligned sequences and 𝐿 columns
4: ⊲ 𝑝𝑡 : Introgression probability for each aligned site 𝑡 (1 ≤ 𝑡 ≤ 𝐿)
5: ⊲ 𝜃: Model parameters
6: int 𝑖 ← 1
7: while 𝑖 ≤ 𝑅 do ⊲ 𝑅: Number of replicates
8: 𝑠𝑡𝑎𝑟𝑡𝑠𝑖𝑡𝑒(𝑖) , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑖) ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑡𝑎𝑟𝑡𝑆𝑖𝑡𝑒(𝐴)
9: ⊲ 𝑠𝑡𝑎𝑟𝑡𝑠𝑖𝑡𝑒(𝑖) , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑖): Starting point and direction for SERES random walk

10: 𝐴(𝑖) , 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑖) ← ∅, ∅ ⊲ 𝐴(𝑖) , 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑖): Resampled alignment and mapping
11: while Length of 𝐴(𝑖) ≤ 𝐿 do
12: 𝐴(𝑖) , 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑖) ← 𝐴(𝑖) , 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑖)+𝑅𝑎𝑛𝑑𝑜𝑚𝑊𝑎𝑙𝑘 (𝐴, 𝑠𝑡𝑎𝑟𝑡𝑠𝑖𝑡𝑒(𝑖) , 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑖) , 𝛾)
13: ⊲ 𝛾: Reversal probability
14: {𝑝 (𝑖)𝑡 }1≤𝑡≤𝐿 ← 𝑃𝐻𝑖𝑀𝑀 (𝑁, 𝐴(𝑖) , 𝜃) ⊲ Run PHiMM with fixed model parameters
15: 𝑖 ← 𝑖 + 1
16: {𝑝𝑡} ← 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦({𝑝𝑡}, {𝑝 (1)𝑡 }, 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(1) ..., {𝑝

(𝑅)
𝑡 }, 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑅))

17: return {𝑝𝑡}1≤𝑡≤𝐿

Consistent with the study by Wuyun et al. [122], the inputs of the PHiMM include: the aligned

DNA sequences 𝐴, with 𝐾 aligned sequences and 𝐿 columns; and a phylogenetic network 𝑁 on 𝐾

taxa. The output is a sequence of modified posterior decoding probabilities for the columns of the

input alignment 𝐴.

5.2.2 The SERES+PHiMM pipeline

The PHiMM framework can be augmented with SERES-based resampling and re-estimation to

enhance inference and learning (Algorithm 5.1).

First, SERES random walks are conducted to perform resampling on the input alignment

𝐴. Detailed pseudocode for this procedure is shown in Algorithm 5.2 (reproduced from Wang

et al. [136, 138]), and Figure 5.1 provides an illustrated example of a SERES random walk

on an input MSA. The SERES resampling procedure in our simulation study utilizes a default

reversal probability 𝛾 = 0.0001. We also conduct additional experiments with alternative reversal

probability 𝛾 ∈ {0, 0.0001, 0.001, 0.005, 0.01, 0.1}. We use the SERES random walk to generate

10 resampled replicates for each dataset in our study.

Then, the PHiMM algorithm is run with default settings to perform optimization-based learning

65



Algorithm 5.2 SERES
1: procedure SERES Walk on Aligned Sequences(𝐴, 𝛾, numReplicates)
2: ⊲ 𝐴: Input multiple sequence alignment
3: ⊲ 𝛾: Walk reversal probability
4: ⊲ numReplicates: Number of SERES replicates
5: replicates = < >
6: for 𝑖 from 1 to numReplicates do
7: direction = (rand() > 0.5) ? +1 : −1
8: ⊲ Uniformly at random choose a direction (right vs. left)
9: ⊲ rand() returns floating point number sampled uniformly at random from [0, 1)

10: 𝑖 = ⌊ length(𝐴) ∗ rand() ⌋ + 1 ⊲ Uniformly at random draw from [1, length(𝐴)]
11:
12: replicate = < >
13: while length(replicate) < length(𝐴) do
14: replicate .= 𝐴𝑖 ⊲ Read 𝐴𝑖, which is the 𝑖-th character in alignment 𝐴
15: ⊲ Alignment characters 𝐴𝑖 are one-indexed
16: 𝑖 += direction
17: if (𝑖 ≤ 0) or (𝑖 > length(𝐴)) or (rand() < 𝛾) then ⊲ Reflection of random walk
18: direction ∗= −1
19: if (𝑖 ≤ 0) or (𝑖 > length(𝐴)) then
20: 𝑖 += direction ∗ 2 ⊲ Always reflect at start/end of alignment 𝐴
21: replicates .= replicate
22: return replicates

on the original input alignment 𝐴. The optimized model parameters are then used to perform fixed-

parameter-value inference on resampled SERES replicates.

Finally, re-estimated posterior probability distributions are averaged across SERES replicate

analyses to obtain a final inferred distribution. Consistent with the study of Wuyun et al. [122], the

output of each SERES replicate is a sequence of modified posterior decoding probabilities for the

columns of the input alignment 𝐴. For each site 𝑎𝑡 (1 ≤ 𝑡 ≤ 𝐿) in the alignment 𝐴, the posterior

probability distributions are aggregated across all the replicates in which the site appeared. The

aggregated distribution is then averaged to obtain a valid probability distribution.

5.3 Materials

5.3.1 Simulation Data

The simulation study is used to evaluate the performance and applicability of the standalone

PHiMM method and SERES+PHiMM method, since we can track the true history of evolutionary
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Figure 5.1 Illustrated example of a SERES random walk on an input multiple sequence
alignment (MSA). The input of the SERES resampling algorithm is an MSA. The SERES
resampling algorithm takes the form of a random walk. First, a start site and initial walk direction
are chosen uniformly at random. In this example, the fourth site from the left is chosen as the start
site, and the initial walk direction is rightward. The random walk proceeds, where an MSA site is
sampled during each step of the walk. Walk reversals occur with certainty at the start and end of
the input MSA and with probability 𝛾 at any other point of the walk. The walk concludes when
the sampled replicate meets a sequence length criterion — namely, when the number of sites in the
sampled replicate and input MSA are equal. In this example, a first reversal occurs in the interior
of the input MSA and a second reversal occurs at the left boundary of the input MSA. The output
consists of the sampled replicates. This figure comes from Wang et al. [138].

events. The simulation data are constructed through various tools, such as r8s [28], msmove [29],

and seq-gen [32].

(1) Generation of model trees using r8s

A random rooted model tree can be generated using r8s [28] tool, which utilizes the birth-

death model for the tree generation.

#nexus

begin r8s;

simulate diversemodel=bdback seed=<integer random seed> charevol=yes

ntaxa=<integer greater than 3> infinite=yes nreps=1;

end;

where “diversemodel” means the model used for tree generation, which is generally set to

the birth-death model denoted by “bdback”. “seed” specifies a random seed for the tree
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generation. “ntaxa” represents the number of taxa, which is set from 5 to 10 for comparison.

“nreps” indicates the number of generated repeats. “charevol=yes” indicates the model tree

is output with branch lengths. “infinite=yes” represents that branch lengths are set to the

expected values based on rate and time.

The height of the resulting tree is scaled to ℎ by multiplying the length of each edge in

the model tree by ℎ. Here, we set ℎ to 5.0 coalescent units. Furthermore, an outgroup is

added to the generated tree at 50.0 coalescent time.

(2) Generation of model networks

A model network can be generated by the steps listed in Hejase et al. [11]. With the model

tree obtained from the above step, we then add 𝑟 reticulations (𝑟 ∈ [1, 2]) by iterating the

following steps: a time 𝑡𝑀 between 0 and the tree height is selected uniformly at random,

two tree edges for which corresponding ancestral populations exist during a time interval

[𝑡𝐴, 𝑡𝐵] such that 𝑡𝑀 ∈ [𝑡𝐴, 𝑡𝐵] are randomly selected, and a reticulation at time 𝑡𝑀 is added

to connect the pair of tree edges. Similar to Leaché et al. [15], the model network can be

further classified based upon whether gene flow is “deep” or “non-deep”, which is defined

by the topological placement of reticulations, i.e., non-deep reticulations are placed between

two leaf edges, while deep reticulations include all other reticulations.

(3) Generation of local genealogies using msmove

Given a model species network, 100 local genealogies can be simulated using the msmove

[29] for independent and identically distributed (i.i.d.) loci following a species network

under a multi-species network coalescent with recombination (MSNCwR) model. msmove

is a modified version of the Monte Carlo simulator ms [30] allowing the tracking of migra-

tion events, while ms does not provide this annotation. Recombination is modeled using

Hudson’s finite-sites recombination model [30].

msmove <number of samples> <number of repeats> -T -r <crossover rate>

<number of sites> -I <number of populations> <n_1 n_2 ... n_k>

-ej <t_1> i_1 j_1 -ej <t_2> i_2 j_2 ... -ej <t_k> i_k j_k
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-ev <t_m> i j <probability x>

where -T parameter indicates the gene trees representing the history of the sampled taxa are

output. The -I parameter is followed by 𝑘 that represents the number of populations. The list

of integers (n_1 n_2 ... n_k) includes the number of taxa sampled in each population. In this

study, one allele is sampled from each taxon. The -r parameter is used to set recombination

by crossover rate and the number of sites between which recombination can occur, where

the crossover rate or recombination rate 𝜌 is set to 0.1, and the number of sites between

which recombination can occur is set to 900. The -ej parameter specifies moving all lineages

in population i to population j at time t. The -ev parameter is special for msmove, which

sets migration at time t_m from population i to population j with the migration probability

𝑥 = 0.1 in this study.

Then, the gene trees will be deviated away from ultrametricity by the following steps

[143]. First, a deviation factor, 𝑐, that quantifies the deviation level is determined. Then,

for each edge in the model tree, its branch length is multiplied by 𝑒𝑥 , where 𝑥 is uniformly

and randomly chosen from the interval [− lg(𝑐), lg(𝑐)]. Similar to Liu et al. [144], 𝑐 is set

to 2.0 here.

(4) Simulation of sequences using seq-gen

The DNA sequences can be generated using seq-gen [32] under the general time-reversible

(GTR) substitution model [67].

seq-gen -mGTR -f <base frequencies> -r <general reversible

rate matrix> -a <shape of Γ distribution>

-l <sequence length> -p <number of partitions>

< genetreefile > seqfile

where -m parameter specifies the general time-reversible (GTR) substitution model denoted

by “GTR”. The -s parameter sets the mutation rate 𝜃 that scales the branch lengths to make

them equal the expected number of substitutions per site for each branch. The mutation rate

𝜃 is set to 1.The -f parameter specifies the frequencies of the four nucleotides A, C, G, and
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T. The -r parameter sets a relative rate of substitutions between nucleotides in a GTR model.

The -a parameter specifies the shape of the Γ distribution. The -l parameter specifies the

sequence length. Here, the simulated sequence length of each gene tree is set to 900 bp.

The -p parameter sets the number of partitions. The genetreefile is the input file providing

the gene trees. The seqfile is the output file with simulated sequences under the given gene

trees.

The GTR substitution model parameter values were estimated based on empirical anal-

yses of the mouse genomic sequence dataset from Liu et al. [7] study. We used all M. m.

domesticus and M. spretus samples listed in “Table S1” of Liu et al. [7] study and concate-

nated all chromosomes to get the sequence data. RAxML was used to perform concatenated

phylogenetic MLE under the GTR model. The estimated parameters used in seq-gen simu-

lations include base frequencies: 𝜋𝐴 = 0.216, 𝜋𝐶 = 0.284, 𝜋𝐺 = 0.285, 𝜋𝑇 = 0.215; GTR

matrix: 1.002820, 5.486349, 1.095939, 0.539209, 5.535556, and 1.000000 for 𝐴 ↔ 𝐶,

𝐴 ↔ 𝐺, 𝐴 ↔ 𝑇 , 𝐶 ↔ 𝐺, 𝐶 ↔ 𝑇 , and 𝐺 ↔ 𝑇 , respectively; shape parameter 𝛼 of the Γ

distribution: 0.543225.

Then, coalescent times are converted into branch lengths using “Equation (3.1)” in Hein

et al. [145].

For each model condition, the simulation procedure is repeated to obtain 30 replicate datasets.

Model condition parameters and summary statistics for simulated datasets are shown in Table 5.1.

5.3.2 Performance Assessments

To evaluate and compare the performance of different approaches on the simulation dataset

where the true history of evolutionary events can be tracked, we use two types of area under the

curve (AUC): the area under the receiver-operating characteristic (ROC) curve, and the area under

the Precision-Recall curve, referred to as simply ROC-AUC and PR-AUC, respectively. ROC-AUC

is plotted by the true positive rate ( 𝑇𝑃
𝑇𝑃+𝐹𝑁 ) as a function of the false positive rate ( 𝐹𝑃

𝐹𝑃+𝑇𝑁 ) at various

threshold settings, while PR-AUC similarly plots the precision ( 𝑇𝑃
𝑇𝑃+𝐹𝑃 ) against the recall ( 𝑇𝑃

𝑇𝑃+𝐹𝑁 )

at different thresholds, where TP, FP, TN, and FN represent the numbers of true positives, false
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Table 5.1 Statistics for the simulation dataset. The reticulation scenarios include one non-deep
reticulation, two non-deep reticulations, and one deep reticulation. “Ntaxa” means the number of
taxa. “Network Height” gives the height of the model network. “Total Sites” indicates the number
of total sites in the simulation genomes. The p-distance of a pair of aligned sequences is calculated
by dividing the number of sites where the two sequences had different nucleotides by the number of
sites in which both sequences had nucleotides. “Average/Maximum p-dist” is the average/maximum
p-distance of all pairs of aligned sequences in the simulation dataset. “Introgression (%)” shows
the percent of introgressed sites over the genome. “Number of Gene Trees” indicates the number
of true gene trees. “Average Branch Length” is the average branch length of the model network.
The average and standard error (SE) are shown based on 30 replicates.

Reticulation
Scenario Ntaxa Total

Sites
Network
Height

Average p-dist (%) Maximum p-dist (%) Introgression (%) Number of Gene Trees Average Branch Length
Average SE Average SE Average SE Average SE Average SE

one non-deep 5 90000 5 0.631 0.002 0.704 0.000 0.101 0.006 1196.800 14.416 2.014 0.049
6 90000 5 0.626 0.002 0.704 0.000 0.100 0.008 1227.900 12.191 1.834 0.045
7 90000 5 0.615 0.002 0.704 0.000 0.113 0.008 1256.800 16.283 1.532 0.047
8 90000 5 0.612 0.002 0.704 0.000 0.120 0.010 1260.933 18.156 1.505 0.045
9 90000 5 0.610 0.002 0.704 0.000 0.141 0.015 1270.967 10.680 1.441 0.047
10 90000 5 0.608 0.002 0.704 0.000 0.126 0.012 1351.367 22.363 1.383 0.047

one deep 5 90000 5 0.632 0.002 0.704 0.000 0.208 0.022 1231.433 16.601 2.006 0.065
6 90000 5 0.624 0.001 0.704 0.000 0.129 0.011 1219.767 16.295 1.757 0.044
7 90000 5 0.617 0.002 0.704 0.000 0.173 0.017 1250.933 12.212 1.607 0.044
8 90000 5 0.614 0.002 0.704 0.000 0.147 0.013 1304.167 12.799 1.510 0.049
9 90000 5 0.609 0.002 0.705 0.000 0.177 0.019 1337.233 15.688 1.400 0.041
10 90000 5 0.606 0.003 0.705 0.000 0.164 0.017 1289.033 19.507 1.350 0.047

two non-deep 5 90000 5 0.634 0.002 0.704 0.000 0.184 0.014 1208.633 13.822 2.082 0.055
6 90000 5 0.626 0.002 0.704 0.000 0.184 0.014 1237.133 13.853 1.870 0.055
7 90000 5 0.620 0.001 0.704 0.000 0.182 0.011 1258.067 15.582 1.658 0.036
8 90000 5 0.612 0.002 0.704 0.000 0.182 0.015 1255.467 19.117 1.463 0.049
9 90000 5 0.609 0.002 0.704 0.000 0.177 0.009 1290.900 18.244 1.436 0.041
10 90000 5 0.603 0.002 0.704 0.000 0.152 0.009 1280.533 15.278 1.322 0.041

positives, true negatives, and false negatives, respectively. The ROC-AUC and PR-AUC measures

represent the tradeoff between type I errors and type II errors under different threshold values.

The measures are calculated on all loci in the simulation datasets, where the true migration events

are annotated by msmove with an asterisk. After concatenating all query loci in one simulation

replicate, the ROC-AUC and PR-AUC of a method are assessed based on the probability of a

particular site involving an introgressive origin.

Additionally, we report the memory usage and runtime in order to comprehensively evaluate

the scalability of our framework.

5.4 Results

In this study, we compare the performance of SERES-based PHiMM and PHiMM on datasets

with different numbers of taxa (5 to 10) and different model conditions (one non-deep reticulation,

one deep reticulation, and two non-deep reticulations), since the memory and runtime would rise

as the number of taxa/reticulations and the complexity of reticulations increases.
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Figure 5.2 shows the comparisons of the area under the receiver-operating characteristic (ROC)

curve (ROC-AUC), and the area under the Precision-Recall curve (PR-AUC), runtime, and memory

usage between PHiMM and SERES-based PHiMM on the 5- to 10-taxon model conditions with

one non-deep reticulation, one deep reticulation, and two non-deep reticulations.

For predictable performance, both methods exhibit relatively high ROC-AUC and PR-AUC

values for model conditions with one or two non-deep reticulations, suggesting strong prediction

performance. The SERES+PHiMM method consistently demonstrates superior or comparable

ROC-AUC and PR-AUC values across all taxa when compared to the PHiMM alone. Particularly

for model conditions with one non-deep reticulation, the improvement brought by SERES-based

PHiMM method is substantially larger than other model conditions with two non-deep reticulations

or one deep reticulation, where the performance gap between the two methods narrows. The

model conditions with one deep reticulation shows a different trend where the ROC-AUC and

PR-AUC values for both methods tend to be lower compared to the “non-deep” model conditions,

suggesting that the deeper reticulations might face challenges in maintaining high classification

accuracy. Nevertheless, the SERES+PHiMM method still generally outperforms the PHiMM

method, particularly for smaller numbers of taxa (5 to 8 taxa). Overall, the integration of SERES

with PHiMM tends to improve or sustain predictable performance across varying numbers of taxa

and reticulation scenarios, with the “non-deep” model conditions yielding more robust results

compared to the “deep” model conditions.

The runtime for both methods increases as the number of taxa increases under model condi-

tions with one non-deep reticulation. PHiMM demonstrates significantly lower runtimes compared

to SERES+PHiMM across all taxa numbers, because SERES+PHiMM runs on multiple SERES

resampling replicates to aggregate the results. For instance, with 10 taxa, PHiMM takes approx-

imately 50 hours, whereas SERES+PHiMM requires about 255 hours. The discrepancy becomes

more pronounced with an increasing number of taxa, indicating that SERES+PHiMM scales less

efficiently in these model conditions. In model conditions with one deep reticulation, a similar trend

is observed. PHiMM consistently outperforms SERES+PHiMM in terms of runtime. For 10 taxa,
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PHiMM’s runtime is around 60 hours compared to over 320 hours for SERES+PHiMM. Again,

the gap widens as the number of taxa increases, highlighting the inefficiency of SERES+PHiMM

in handling larger datasets under the deep model conditions. The two non-deep model conditions

also show PHiMM with substantially lower runtimes compared to SERES+PHiMM. The runtimes

for PHiMM remain relatively low and stable, even as the number of taxa increases. In contrast,

SERES+PHiMM’s runtime escalates dramatically with the number of taxa. For example, with

10 taxa, PHiMM’s runtime is about 55 hours, while SERES+PHiMM’s runtime is close to 350

hours. Overall, the results indicate that PHiMM is significantly more efficient in runtime than

SERES+PHiMM across all tested reticulation scenarios and numbers of taxa. The efficiency gap

between the two methods becomes more substantial as the number of taxa increases, particu-

larly under model conditions with one deep reticulation or two non-deep reticulations where both

methods tend to use more runtimes. These findings suggest that PHiMM is a more scalable and

time-efficient method for large datasets and complex model conditions.

In terms of memory usage, both methods exhibit low memory usage for 5 taxa, with memory

consumption increasing as the number of taxa rises. In model conditions with one non-deep

reticulation, PHiMM and SERES+PHiMM show comparable memory usage, particularly at higher

numbers of taxa where both methods utilize approximately 60 GB at 10 taxa. In model conditions

with one deep reticulation, memory consumption increases for both methods as the number of

taxa grows, with PHiMM showing marginally higher memory usage than SERES+PHiMM for 6

to 10 taxa. In the two non-deep model conditions, both methods show a significant increase in

memory consumption as the number of taxa rises. At 10 taxa, PHiMM reaches around 55 GB,

while SERES+PHiMM is slightly higher, around 60 GB, indicating similar memory usage overall.

Overall, PHiMM and SERES+PHiMM demonstrate similar memory consumption across all model

conditions, with only slight differences that become more pronounced at higher numbers of taxa.

This suggests that both methods have comparable memory efficiency, making them both viable

options for large-scale phylogenetic studies.

Table 5.2 presents a detailed comparison of the area under the receiver-operating characteristic
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curve (ROC-AUC) values for two phylogenetic inference methods, PHiMM and SERES+PHiMM,

under varying reversal probabilities 𝛾 for model conditions involving one non-deep reticulation,

one deep reticulation, and two non-deep reticulations. The analysis spans 5- to 10-taxon model

conditions. For model conditions with one non-deep reticulation, PHiMM consistently shows

high ROC-AUC values across all 𝛾 values, with slight variations as the number of taxa increases.

SERES+PHiMM generally demonstrates higher ROC-AUC values compared to PHiMM, particu-

larly at lower 𝛾 values. When two non-deep reticulations are considered, both methods demonstrate

a decrease in performance as the 𝛾 value increases. However, the performance of SERES+PHiMM

remains superior, especially at lower 𝛾 values, showing consistent ROC-AUC improvements across

most 𝛾 values. The trend continues for model conditions with one deep reticulation, where both

methods maintain relatively high ROC-AUC values. SERES+PHiMM outperforms PHiMM across

most 𝛾 values and different numbers of taxa, especially noticeable at 𝛾 values of 0, 0.0001, and

0.001. The consistency in performance across different reticulation scenarios and 𝛾 values high-

lights SERES+PHiMM’s superior ability to manage reversal probabilities in phylogenetic model

conditions. The Table 5.2 demonstrates the enhanced effectiveness of SERES+PHiMM in phyloge-

netic inference tasks across various taxa counts, reticulation complexities, and reversal probabilities,

highlighting its robustness and reliability in evolutionary studies.

Table 5.3 presents the comparison of the area under the precision-recall curve (PR-AUC)

between the PHiMM and SERES+PHiMM models across various reversal probabilities 𝛾 for each

combination of reticulation scenario and number of taxa. For model conditions with one non-deep

reticulation, SERES+PHiMM generally exhibits higher PR-AUC values compared to PHiMM,

especially at lower 𝛾 levels. The improvement diminishes as 𝛾 increases. In scenarios with two

non-deep reticulations, a similar trend is observed, but both methods display a notable decline in

PR-AUC values. For model conditions with one deep reticulation, SERES+PHiMM consistently

shows superior performance compared to PHiMM across most 𝛾 levels, but the performance gap

narrows at higher 𝛾 levels.

Table 5.4 provides a detailed comparison of the runtime (measured in hours) between the
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PHiMM and SERES+PHiMM methods under various reversal probabilities 𝛾 in 5- to 10-taxon

model conditions. For scenarios with one non-deep reticulation, PHiMM generally exhibits shorter

runtimes compared to SERES+PHiMM, with the difference becoming more pronounced as 𝛾

decreases. In scenarios involving two non-deep reticulations, SERES+PHiMM consistently shows

significantly longer runtimes than PHiMM across all 𝛾 levels, especially for lower 𝛾 values,

with the gap widening as the number of taxa increases. Similarly, in the one deep reticulation

scenario, both methods tend to have increased runtimes due to the complexity of model conditions.

SERES+PHiMM’s runtime is substantially longer compared to PHiMM, particularly at lower

𝛾 levels. These results suggest that SERES+PHiMM may be computationally more intensive,

especially in complex reticulation scenarios and with lower reversal probabilities, while PHiMM is

more time-efficient without a significant loss in accuracy, particularly in scenarios with more taxa.

Table 5.5 shows a comparative analysis of memory usage (measured in gigabytes or GB)

between the PHiMM and SERES+PHiMM methods under different reversal probabilities 𝛾 for 5-

to 10-taxon model conditions. For all three scenarios, PHiMM exhibits consistently similar memory

usage compared to SERES+PHiMM across all 𝛾 levels. Notably, for the SERES+PHiMM method,

there is no significant difference of memory usage between different 𝛾 levels. These findings suggest

that SERES+PHiMM requires similar memory resources than PHiMM across different reticulation

scenarios and reversal probabilities, indicating that SERES+PHiMM is a more memory-efficient

alternative while maintaining better performance in accuracy, particularly for lower 𝛾 values.

5.5 Discussion and Conclusion

This study introduces the application of SERES random walks on aligned sequences and shows

SERES as a data perturbation technique to improve introgression inference and learning. The

simulation experiments show that the combination of the SERES resampling approach with the

PHiMM returns great improvement in the introgression inference compared to standalone PHiMM

on different model conditions in our study, which suggests that the SERES resampling and re-

estimation has the potential to “boost” PHiMM’s inference accuracy.

To evaluate to what extent the SERES resampling approach boosts the introgression inference
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Figure 5.2 The performance comparison between PHiMM and SERES+PHiMM on the 5- to
10-taxon model conditions with one non-deep reticulation, one deep reticulation, and two non-
deep reticulations. The measures include the area under the receiver-operating characteristic curve
(ROC-AUC), the area under the precision-recall curve (PR-AUC), runtime (Hour), and memory
usage (GB). The SERES+PHiMM method was run with reversal probabilities 𝛾 = 0.0001. The
average and standard error (SE) are calculated based on 30 replicates.
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Table 5.2 The comparison of the area under the receiver-operating characteristic curve (ROC-
AUC) between PHiMM and SERES+PHiMM among different reversal probabilities 𝛾 on the
5- to 10-taxon model conditions with one non-deep reticulation, one deep reticulation, and
two non-deep reticulations. The parameter 𝛾 represents the probability of reversals in SERES
resampling and is tested at several levels (0, 0.0001, 0.001, 0.005, 0.01, and 0.1). The “no 𝛾”
column indicates results for a baseline method where reversals are not considered. “Ntaxa” means
the number of taxa. The average and standard error (SE) are calculated based on 30 replicates
(represented as “average value ± SE value”).

Reticulation
Scenario Ntaxa PHiMM SERES+PHiMM

no 𝛾 𝛾 = 0 𝛾 = 0.0001 𝛾 = 0.001 𝛾 = 0.005 𝛾 = 0.01 𝛾 = 0.1
one non-deep 5 0.899±0.032 0.965±0.012 0.969±0.011 0.958±0.015 0.958±0.012 0.966±0.010 0.923±0.022

6 0.941±0.020 0.950±0.019 0.953±0.017 0.953±0.018 0.916±0.030 0.944±0.018 0.920±0.025
7 0.885±0.028 0.925±0.019 0.903±0.027 0.888±0.034 0.880±0.031 0.886±0.027 0.885±0.027
8 0.867±0.027 0.909±0.020 0.889±0.025 0.881±0.028 0.890±0.021 0.888±0.025 0.859±0.026
9 0.915±0.019 0.945±0.011 0.935±0.016 0.916±0.025 0.919±0.021 0.937±0.016 0.915±0.021
10 0.888±0.023 0.918±0.020 0.922±0.020 0.909±0.021 0.909±0.022 0.905±0.023 0.901±0.022

two non-deep 5 0.830±0.026 0.849±0.027 0.851±0.031 0.840±0.033 0.826±0.037 0.823±0.032 0.811±0.029
6 0.859±0.030 0.882±0.032 0.887±0.027 0.868±0.029 0.871±0.027 0.877±0.027 0.865±0.026
7 0.886±0.024 0.909±0.026 0.894±0.032 0.887±0.032 0.907±0.025 0.892±0.027 0.877±0.029
8 0.885±0.024 0.907±0.020 0.892±0.030 0.879±0.029 0.880±0.025 0.890±0.023 0.858±0.038
9 0.857±0.026 0.869±0.027 0.865±0.031 0.864±0.027 0.834±0.032 0.854±0.028 0.851±0.027
10 0.855±0.023 0.875±0.019 0.860±0.021 0.851±0.025 0.861±0.019 0.859±0.019 0.852±0.021

one deep 5 0.889±0.024 0.897±0.024 0.899±0.024 0.891±0.026 0.884±0.026 0.892±0.022 0.881±0.024
6 0.891±0.020 0.899±0.022 0.901±0.021 0.893±0.023 0.904±0.024 0.889±0.020 0.882±0.025
7 0.910±0.017 0.924±0.015 0.928±0.015 0.926±0.015 0.924±0.016 0.921±0.015 0.904±0.017
8 0.902±0.023 0.920±0.022 0.918±0.025 0.920±0.023 0.900±0.026 0.912±0.024 0.907±0.021
9 0.844±0.024 0.870±0.021 0.865±0.022 0.859±0.022 0.855±0.022 0.847±0.021 0.841±0.023
10 0.922±0.012 0.942±0.011 0.924±0.013 0.921±0.014 0.925±0.014 0.922±0.014 0.914±0.013

accuracy, we compare the performances of the standalone PHiMM method and the combined

SERES+PHiMM method. Across all the simulation model conditions, the SERES+PHiMM method

has a consistently better inference accuracy compared to the standalone PHiMM method. The

improved performance obtained by combining PHiMM inference with SERES resampling and

re-estimation is robust in different numbers of taxa and different reticulation scenarios.

We also compare the runtime and memory usage produced by these two methods. We find

that both methods produce a similar memory usage for different numbers of taxa and different

reticulation scenarios. The SERES+PHiMM method produces longer runtimes compared to the

standalone PHiMM method.

We attribute these findings to two factors. First, the application of the SERES resampling and

re-estimation appears to be conducive to the introgression inferences. The SERES resampling

approach has the ability to retain the sequence dependence in the input alignment to the resampled
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Table 5.3 The comparison of the area under the precision-recall curve (PR-AUC) between
PHiMM and SERES+PHiMM among different reversal probabilities 𝛾 on the 5- to 10-taxon
model conditions with one non-deep reticulation, one deep reticulation, and two non-deep
reticulations. The parameter 𝛾 represents the probability of reversals in SERES resampling and
is tested at several levels (0, 0.0001, 0.001, 0.005, 0.01, and 0.1). The “no 𝛾” column indicates
results for a baseline method where reversals are not considered. “Ntaxa” means the number of
taxa. The average and standard error (SE) are calculated based on 30 replicates (represented as
“average value ± SE value”).

Reticulation
Scenario Ntaxa PHiMM SERES+PHiMM

no 𝛾 𝛾 = 0 𝛾 = 0.0001 𝛾 = 0.001 𝛾 = 0.005 𝛾 = 0.01 𝛾 = 0.1
one non-deep 5 0.806±0.040 0.876±0.032 0.880±0.029 0.865±0.036 0.860±0.031 0.861±0.034 0.764±0.053

6 0.819±0.047 0.865±0.046 0.834±0.050 0.862±0.046 0.808±0.054 0.825±0.050 0.788±0.052
7 0.730±0.057 0.761±0.052 0.738±0.059 0.752±0.055 0.712±0.058 0.733±0.052 0.719±0.055
8 0.660±0.052 0.711±0.051 0.687±0.053 0.678±0.061 0.690±0.051 0.682±0.053 0.612±0.056
9 0.750±0.045 0.811±0.041 0.794±0.047 0.760±0.051 0.764±0.048 0.799±0.047 0.735±0.050
10 0.690±0.054 0.784±0.045 0.769±0.047 0.733±0.053 0.740±0.048 0.741±0.049 0.740±0.048

two non-deep 5 0.639±0.053 0.647±0.053 0.666±0.054 0.681±0.049 0.645±0.057 0.636±0.053 0.625±0.052
6 0.685±0.056 0.707±0.058 0.694±0.062 0.660±0.061 0.647±0.058 0.692±0.056 0.653±0.055
7 0.741±0.051 0.781±0.052 0.754±0.058 0.731±0.059 0.777±0.050 0.737±0.056 0.720±0.053
8 0.676±0.058 0.715±0.052 0.712±0.056 0.662±0.059 0.664±0.056 0.701±0.052 0.659±0.057
9 0.626±0.054 0.658±0.051 0.638±0.056 0.637±0.049 0.604±0.056 0.628±0.048 0.632±0.051
10 0.600±0.052 0.617±0.048 0.603±0.047 0.605±0.049 0.612±0.044 0.607±0.046 0.594±0.045

one deep 5 0.745±0.051 0.771±0.050 0.786±0.049 0.773±0.051 0.742±0.052 0.762±0.046 0.740±0.050
6 0.751±0.045 0.771±0.046 0.780±0.045 0.768±0.047 0.798±0.045 0.753±0.042 0.756±0.046
7 0.773±0.042 0.800±0.040 0.807±0.039 0.793±0.041 0.806±0.041 0.794±0.038 0.755±0.043
8 0.801±0.036 0.834±0.031 0.831±0.033 0.838±0.036 0.801±0.035 0.827±0.033 0.801±0.034
9 0.671±0.045 0.701±0.043 0.697±0.046 0.690±0.047 0.676±0.045 0.666±0.044 0.661±0.046
10 0.787±0.028 0.830±0.028 0.793±0.036 0.781±0.033 0.786±0.033 0.769±0.036 0.761±0.032

Table 5.4 The comparison of runtime (Hour) between PHiMM and SERES+PHiMM among
different reversal probabilities 𝛾 on the 5- to 10-taxon model conditions with one non-deep
reticulation, one deep reticulation, and two non-deep reticulations. The parameter 𝛾 represents
the probability of reversals in SERES resampling and is tested at several levels (0, 0.0001, 0.001,
0.005, 0.01, and 0.1). The “no 𝛾” column indicates results for a baseline method where reversals
are not considered. “Ntaxa” means the number of taxa. The average and standard error (SE) are
calculated based on 30 replicates (represented as “average value ± SE value”).

Reticulation
Scenario Ntaxa PHiMM SERES+PHiMM

no 𝛾 𝛾 = 0 𝛾 = 0.0001 𝛾 = 0.001 𝛾 = 0.005 𝛾 = 0.01 𝛾 = 0.1
one non-deep 5 1.615±0.108 16.546±1.216 20.031±1.828 14.912±1.109 15.251±1.472 12.675±0.897 12.194±0.973

6 4.715±0.454 49.991±4.406 45.421±4.291 31.086±2.952 26.044±2.399 23.157±2.099 18.694±1.883
7 13.589±1.263 138.952±11.148 96.198±7.236 58.166±5.285 53.561±4.949 43.252±3.472 36.710±2.977
8 25.038±1.869 234.342±14.003 152.545±8.533 99.570±5.828 70.428±4.312 66.534±3.835 53.501±3.225
9 36.166±1.938 307.725±19.453 195.459±10.506 123.787±7.184 86.693±5.498 85.434±4.559 69.443±3.788
10 47.028±1.958 387.345±22.982 255.875±11.187 157.106±6.896 119.800±4.739 109.674±4.363 90.982±3.310

two non-deep 5 3.213±0.341 35.666±3.726 46.201±4.475 33.429±4.173 29.445±3.340 30.117±3.287 27.399±3.204
6 6.008±0.497 62.110±4.795 67.373±5.306 42.995±3.690 39.200±3.932 37.157±3.110 30.806±2.945
7 16.251±1.480 159.016±13.826 109.736±10.768 91.010±8.737 78.998±7.451 70.492±6.905 65.597±6.562
8 27.248±1.985 273.218±20.707 171.304±14.714 131.127±9.094 104.789±8.835 92.155±8.071 91.718±7.491
9 44.984±2.276 424.090±17.552 290.139±11.489 195.802±9.559 168.118±7.621 139.561±7.637 141.756±6.827
10 57.054±2.142 526.604±16.344 324.596±12.752 242.069±7.839 200.630±10.444 197.226±7.346 170.772±6.564

one deep 5 3.128±0.234 38.677±3.422 38.941±3.025 31.505±2.334 40.511±2.762 29.911±2.388 24.947±2.296
6 7.639±0.560 83.086±6.566 84.079±6.956 62.756±4.682 64.538±4.975 56.337±5.096 50.446±5.096
7 17.409±1.263 179.234±12.396 152.101±10.097 102.317±7.182 89.755±6.701 82.943±7.334 71.305±5.565
8 28.617±1.689 277.617±17.329 200.300±12.639 131.271±9.287 125.695±9.284 109.313±8.128 102.464±8.426
9 41.516±2.337 404.211±22.775 277.049±14.920 191.190±10.614 160.965±9.449 149.415±8.548 135.226±8.261
10 55.080±1.916 508.594±26.932 348.707±12.763 231.784±8.474 196.986±7.220 186.991±7.114 170.549±6.458
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Table 5.5 The comparison of memory usage (GB) between PHiMM and SERES+PHiMM
among different reversal probabilities 𝛾 on the 5- to 10-taxon model conditions with one
non-deep reticulation, one deep reticulation, and two non-deep reticulations. The parameter
𝛾 represents the probability of reversals in SERES resampling and is tested at several levels (0,
0.0001, 0.001, 0.005, 0.01, and 0.1). The “no 𝛾” column indicates results for a baseline method
where reversals are not considered. “Ntaxa” means the number of taxa. The average and standard
error (SE) are calculated based on 30 replicates (represented as “average value ± SE value”).

Reticulation
Scenario Ntaxa PHiMM SERES+PHiMM

no 𝛾 𝛾 = 0 𝛾 = 0.0001 𝛾 = 0.001 𝛾 = 0.005 𝛾 = 0.01 𝛾 = 0.1
one non-deep 5 3.974±0.276 8.116±0.901 3.552±0.199 5.697±0.607 4.733±0.394 4.974±0.220 3.771±0.299

6 10.749±0.953 14.667±1.367 8.464±0.603 10.828±0.672 10.873±0.829 11.137±0.820 10.043±0.790
7 25.778±1.690 29.367±2.186 25.978±1.447 24.698±2.531 27.031±2.311 27.012±2.305 27.410±2.239
8 45.796±2.347 48.084±2.383 47.791±2.098 42.071±2.391 45.293±2.299 41.971±2.167 46.498±2.653
9 47.177±2.270 55.784±1.776 48.073±2.073 48.495±2.165 47.093±2.766 46.954±1.888 48.179±1.942
10 59.551±1.269 58.761±2.496 58.189±2.046 54.531±1.372 56.675±1.390 55.667±1.521 58.262±1.212

two non-deep 5 5.249±0.523 8.481±1.018 6.254±0.762 7.913±0.843 6.739±0.698 6.147±0.742 4.994±0.506
6 12.731±1.622 15.422±1.600 10.278±1.021 13.111±1.266 9.579±0.721 10.026±0.976 8.364±0.688
7 26.489±1.727 26.709±2.116 27.908±1.500 24.325±1.920 22.528±1.806 24.571±1.610 23.876±1.749
8 43.038±2.572 44.987±2.474 43.014±2.326 41.804±2.565 40.568±2.152 42.366±2.337 44.181±2.484
9 56.088±1.308 55.065±1.511 52.504±1.271 53.388±1.730 54.329±1.430 55.747±1.586 57.242±2.377
10 60.285±1.470 58.654±1.360 58.981±1.224 58.310±1.434 60.466±2.537 63.296±1.447 60.150±1.259

one deep 5 5.072±0.543 7.317±0.669 5.949±0.614 7.557±0.602 5.855±0.455 6.321±0.504 5.166±0.606
6 12.845±1.433 19.203±2.126 15.900±1.665 16.421±1.690 12.690±1.370 14.750±1.922 12.010±1.584
7 26.223±1.588 33.512±2.154 25.357±1.920 28.008±1.715 29.564±2.369 27.848±1.992 25.206±1.180
8 43.157±2.486 43.338±2.153 44.520±2.404 43.925±2.811 48.347±2.414 44.036±2.373 44.941±2.765
9 51.237±2.288 56.058±1.783 52.744±2.306 53.838±1.825 61.073±1.933 52.754±2.121 58.877±1.985
10 56.510±1.548 59.617±1.799 59.161±1.292 56.849±1.327 58.594±1.345 58.694±1.494 60.472±1.506

replicates. In addition, the intra-sequence dependence among sites provides additional information

on the historical evolutionary events, especially those that caused the dependence. Thus, the

introgression inference greatly benefits from the SERES resampling and re-estimation process.

Second, the SERES resampling algorithm reveals uncertainties in the introgression inference.

Incorrect introgression inferences are less repeatable. The accuracy of introgression inference by

SERES+PHiMM method is consistently better than the standalone PHiMM for all model conditions

of the simulated datasets, which indicates that the SERES resampling and re-estimation process

produces consistently more correct introgression inferences.

Additional experiments performed to evaluate how the choice of the reversal probability impacts

the method performance indicate that the SERES+PHiMM is robust to the choice of reversal proba-

bility 𝛾. The results are consistent with the original motivation for sequence-aware resampling and

re-estimation. We note the smaller 𝛾 values mean that longer-distance sequential dependence is re-

tained. Our results suggest that longer-distance sequential dependence is critical to the performance

of resampling and re-estimation for sequence-based inference problems.
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CHAPTER 6

DACS: FAST AND ACCURATE ULTRA LARGE-SCALE COESTIMATION OF
PHYLOGENETIC NETWORKS AND INTROGRESSIONS USING

DIVIDE-AND-CONQUER

6.1 Introduction

Uncovering introgression events among a large number of taxa is a challenging task that

demands both efficient computational algorithms and accurate phylogenetic models. In prior

studies [12, 122], we introduced the PHiMM framework and demonstrated its efficacy in mapping

introgression signals when a known phylogenetic network is available. Specifically, PHiMM

uses the topology of an input network to construct the hidden Markov model (HMM) structure,

enabling site-by-site inference of introgression probabilities. When the true network is known, as

often assumed in simulation studies, PHiMM has been shown to maintain high accuracy while

achieving substantial reductions in runtime and memory usage compared to existing methods such

as PhyloNet-HMM.

In empirical applications, however, the ground-truth phylogenetic network is rarely available

a priori. Consequently, network inference is typically guided by existing knowledge or domain

expertise [12, 122]. While this approach is feasible for well-studied, small taxon sets, it becomes

intractable for large sets of taxa for which only limited biological information is known. In such

cases, robust mathematical and computational methods are needed for scalable network inference.

Unfortunately, most current state-of-the-art phylogenetic network inference methods encounter

severe computational bottlenecks with datasets containing more than 30 taxa [14]. As the number

of taxa increases, the computational requirements grow rapidly, while the corresponding inference

accuracy decreases. These constraints highlight the necessity for novel, scalable techniques that

can recover phylogenetic networks efficiently while maintaining high accuracy.

FastNet [11] is a recently developed tool that addresses these challenges by employing a divide-

and-conquer strategy to infer phylogenetic networks from large-scale genomic datasets. The key

insight lies in partitioning the full taxon set into smaller, more closely related subsets, inferring

sub-network topologies, and then combining these partial solutions into a final network. This
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partitioning not only alleviates computational demands but also improves inference accuracy by

reducing the evolutionary divergence within each subset.

Building upon these advances, we propose DACS (Divide-And-Conquer and Subsampling), a

new algorithm specifically designed to detect introgression events more efficiently in large phyloge-

nomic datasets by integrating a divide-and-conquer approach with a robust subsampling strategy.

Unlike the standard PHiMM pipeline, DACS does not require a predefined network as input. In-

stead, it leverages FastNet’s network inference capabilities for large-scale analyses. The framework

systematically addresses two fundamental challenges in introgression detection: (1) DACS reduces

the computational overhead associated with analyzing a large number of taxa simultaneously; and

(2) rather than relying on a single, potentially erroneous phylogenetic network, DACS integrates

over multiple plausible topologies to reduce errors. As demonstrated by our simulation experi-

ments and empirical analyses, this approach not only scales effectively to dozens or even hundreds

of taxa but also maintains high accuracy in identifying introgressed genomic regions. By enabling

large-scale, site-by-site introgression mapping without requiring prior knowledge of the true net-

work or an optimal taxon sampling scheme, DACS opens new avenues for investigating complex

evolutionary scenarios.

6.2 Methods

6.2.1 Problem Definition

The inputs of the problem must include the aligned DNA sequences 𝐴, which can be defined

as {𝐴,𝐶,𝑇, 𝐺}𝐾×𝐿 , where 𝐾 is the number of taxa, and 𝐿 is the length of genomic sequence

alignment. A phylogenetic network Ψ is optional. But if Ψ is not provided, the number of

reticulations presented in the phylogenetic network Ψ should at least be specified, denoted as 𝑅.

Using that information, FastNet method [11] can be used to infer a phylogenetic network Ψ.

To represent the species network Ψ, we use a collection of MUL-trees [19, 20]. Corresponding

gene trees are assumed to be any rooted binary tree on 𝐾 leaves. Let 𝑚 and 𝑛 be the number of

MUL-trees and gene trees, respectively. Thus, the total number of HMM hidden states should be

𝑚 × 𝑛, each state represented as a pair (𝑇𝑖, 𝐺 𝑗 ), where 𝑇𝑖 is the 𝑖-th MUL-tree (1 ≤ 𝑖 ≤ 𝑚) and 𝐺 𝑗
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is the 𝑗-th gene tree (1 ≤ 𝑗 ≤ 𝑛).

Consistent with the studies of Liu et al. [12] and Wuyun et al. [122], the output of the problem

is a sequence of modified posterior decoding probabilities for the columns of the input alignment

𝐴. At a site 𝑎𝑡 (1 ≤ 𝑡 ≤ 𝐿) in the alignment 𝐴, the probability of 𝑎𝑡 having an introgressive origin

is defined by:

𝑝𝑡 =
∑︁
𝑇𝑖∈Ω𝑇

1≤ 𝑗≤𝑛

𝑃(𝜋𝑡 = (𝑇𝑖, 𝐺 𝑗 ) |𝐴)

where Ω𝑇 is the set of MUL-trees corresponding to introgression events.

6.2.2 Proposed Method

Previously, we introduced the PHiMM approach for introgression mapping. Our simula-

tion results indicated that PHiMM reduces runtime and memory usage significantly compared to

PhyloNet-HMM, while maintaining comparable accuracy. However, two key challenges remain:

1. Although PHiMM has largely reduced the runtime and memory usage, it cannot be run

efficiently on large numbers of taxa. For instance, more than 300GB of memory may be

needed for just 30 taxa with sequence length >100kb.

2. PHiMM requires a phylogenetic network as input to constitute the structure of the HMM.

But in real-world datasets, we generally do not know true phylogenetic network information.

To address these challenges, we propose DACS (Divide-And-Conquer and Subsampling), which

extends PHiMM by (1) leveraging the divide-and-conquer and subsampling schemes to focus on

local reticulation events within smaller taxa subsets, and (2) incorporating FastNet to systematically

reduce uncertainty in phylogenetic network inference. The pseudocode of DACS is given in

Algorithm 6.1, and an illustration of the pipeline is provided in Figure 6.1.

6.2.2.1 The divide-and-conquer approach with subsampling

To alleviate PHiMM’s high computational demands on large datasets, we integrate a divide-

and-conquer approach with subsampling.

Phylogenomic subsampling can be defined as a phylogenomic protocol in which loci are sampled
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at random to create different-sized locus-by-species matrices, with the goal of exploring the stability

of a phylogenetic hypothesis [146]. Subsampling can also be performed on taxa, and although many

studies have explored this approach [146, 147], often called jackknifing in past studies. Many kinds

of subsampling have been employed throughout the history of phylogenetics and phylogenomics

[146–149].

DACS begins with a phylogenetic network Ψ. If the true network Ψ is unknown, it can be

estimated using a suitable inference method such as FastNet (see the next Chapter for details).

Once a network Ψ is obtained, the algorithm identifies all reticulation edges, labeled Υ1, ...,Υ𝑅

in the input network Ψ, where 𝑅 is the total number of reticulations in the input network. For

each non-sister reticulation Υ𝑖 (1 ≤ 𝑖 ≤ 𝑅), DACS randomly subsample a small subset of taxa

containing the reticulation edge Υ𝑖 multiple times. The subsampling process begins by identifying

the most recent common ancestor (MRCA) of all leaves under the putative reticulation. From there,

a specified subnetwork size 𝐶 (e.g., 𝐶 set to 7) is enforced by first retaining at least one “visible”

[150, 151] leaf from the source node and one from the sink node of the reticulation. To fill out the

rest of the subset to reach the size 𝐶, the remaining leaves are randomly sampled from the overall

set, with the constraint that at least one of these sampled leaves must be under the MRCA but not

under the reticulation nodes to ensure that the subnetwork captures the non-sister reticulation event.

By limiting each subset to a maximum size 𝐶 (e.g., 4 or 7 taxa), the method substantially reduces

runtime and memory usage compared to analyzing the full dataset. This selective subsampling

process is repeated 𝑀 times for each reticulation Υ𝑖, resulting in multiple random subsamples that

ensure the robustness of the final estimates to subsampling variation.

After subsampling, DACS applies the original PHiMM algorithm to each subset to infer site-by-

site posterior decoding probability distribution (i.e., introgression probabilities). PHiMM analyses

are run using default settings, e.g., the number of iterations for model parameter learning is 300,

and the number of runs is set to 10. Users also need to assign a gene tree truncation size 𝑘𝑛 for the

HMM model of PHiMM. In our simulation study, we run PHiMM with the default setting, 𝑘𝑛 = 15.

Concretely, for the 𝑚-th subsample of reticulation Υ𝑖, DACS obtains an introgression probability
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𝑝
(Υ𝑖)
𝑡,𝑚 at each alignment site 𝑡. These probabilities are then merged across all 𝑀 subsamples for the

same reticulation Υ𝑖 using an “average” merge strategy:

𝑝
(Υ𝑖)
𝑡 =

1
𝑀

𝑀∑︁
𝑚=1

𝑝
(Υ𝑖)
𝑡,𝑚

This averaging step stabilizes the introgression probability estimates for each reticulation by reduc-

ing the influence of individual subsamples.

Next, DACS merges the introgression probabilities from different reticulations Υ1, ...,Υ𝑅 via a

“maximum” merge strategy:

𝑝𝑡 = max
1≤𝑖≤𝑅

𝑝
(Υ𝑖)
𝑡

This yields a final site-by-site introgression probability distribution 𝑝𝑡 for each alignment column

after considering all reticulation events in Ψ. This choice of merge function identifies the largest

introgression signal across any of the detected reticulations at each site.

By focusing only on small subsets of taxa around each reticulation, we drastically reduce the

memory and computational time. Meanwhile, repeated subsampling ensures that the resulting

estimates are robust to sampling variance.

6.2.2.2 Bypassing the need for a predefined network input: Integration with FastNet

While the procedure above applies directly when a phylogenetic network Ψ is provided, real-

world datasets often lack a ground-truth network. To account for this network uncertainty, FastNet

[11] can be used to infer one or more candidate phylogenetic networks from sequence alignments.

FastNet provides a set of top-ranked network topologies Ψ1, ...,Ψ𝑁 . Each candidate network

has a log pseudolikelihood score (defined by Equation (1) in the FastNet paper). When selecting

candidate networks, one can either choose the top 𝑁 scoring networks or choose all networks whose

log pseudolikelihood score lies within a specified Δ% range of the best score. To avoid including

too few or too many networks, here we set a lower limit of 5 and an upper limit of 15 topologies.

This procedure ensures that moderately well-supported network topologies are not excluded while

preventing an unmanageably large set of candidates.
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For each guide network Ψ 𝑗 (1 ≤ 𝑗 ≤ 𝑁) provided by FastNet, above introgression mapping

procedure (PHiMM with the divide-and-conquer and subsampling strategy) is run to obtain a

introgression probability distribution {𝑝𝑡, 𝑗 }. Since different networks may vary in quality, DACS

assigns a weight 𝜔 𝑗 to each guide network Ψ 𝑗 according to its relative log pseudolikelihood:

𝜔 𝑗 =
𝑚𝑎𝑥1≤𝑘≤𝑁 𝑙𝑜𝑔(𝐿 (Ψ𝑘 , Γ|𝐺))

𝑙𝑜𝑔(𝐿 (Ψ 𝑗 , Γ|𝐺))

Here, 𝐿 (Ψ, Γ|𝐺) means the pseudo-likelihood of phylogenetic network Ψ and inheritance proba-

bilities Γ given a set of gene trees 𝐺 (see Chapter 2.1.5). This ensures that networks with higher

log pseudolikelihood are more influential.

Finally, DACS combines the introgression probabilities from all candidate networks into a

single consensus distribution 𝑝𝑡 by adopting a weighted average approach:

𝑝𝑡 =

∑
𝑗 𝜔 𝑗 × 𝑝𝑡, 𝑗∑

𝑗 𝜔 𝑗

Users may alternatively adopt other combination functions (e.g., simple averaging, median, or

maximum) in place of the weighted average as deemed appropriate.

This multi-network strategy greatly reduces the risk of relying on a single, potentially inaccurate

network and captures reticulation signals that might be missed or incorrectly represented by any

one topology, and therefore typically improves robustness, particularly for large-scale or complex

datasets where reticulation signals can be subtle or where gene flow may be multilayered.

The end result is a site-by-site introgression probability distribution that integrates over: po-

tential reticulation events, multiple subsamplings of large sets of taxa, and uncertainty in network

inference. Therefore, these steps provide a scalable, memory-efficient, and robust pipeline for

detecting introgression events in large phylogenomic datasets while explicitly accounting for phy-

logenetic network uncertainties.

6.3 Materials

6.3.1 Simulation Data

The simulation study is used to evaluate the performance and applicability of the proposed

DACS method, since we can track the true history of evolutionary events. The simulation data are
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Figure 6.1 The DACS pipeline. (A) Starting with a multiple DNA sequence alignment, if a phy-
logenetic network is not already available, FastNet is used to infer a set of top-ranked candidate
networks. (B) Each inferred network is then decomposed around its reticulation events and sub-
jected to repeated subsampling (subsets of taxa around each reticulation) to reduce computational
demands. PHiMM is run on each subsample, yielding site-by-site introgression probabilities, which
are then averaged per reticulation (average merge). Subsequently, the results for all reticulations
in a single network are combined (max merge) to produce an introgression distribution for that
network. (C) Finally, to account for uncertainty in network inference, the site-by-site distributions
from all candidate networks are combined via a weighted average to generate the final introgression
probability profile along the genome alignment (bottom). The pipeline thus integrates the pos-
sibility of multiple network topologies, subsampling for computational efficiency, and statistical
merging steps to yield robust introgression probability estimates.
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Algorithm 6.1 DACS
1: procedure DACSwithInputNetwork(Ψ, 𝐴)
2: ⊲ Ψ: Phylogenetic network
3: ⊲ 𝐴𝐾×𝐿: Multiple sequence alignment with 𝐾 aligned sequences and 𝐿 columns
4: Υ1, ...,Υ𝑅 ← 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝑅𝑒𝑡𝑖𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠(Ψ) ⊲ 𝑅: Total number of reticulations in Ψ

5: for Υ𝑖 from Υ1 to Υ𝑅 do
6: {𝑝 (Υ𝑖)

𝑡 } ← 0
7: for 𝑚 from 1 to 𝑀 do ⊲ 𝑀: Number of replicates
8: Ψ

(Υ𝑖)
𝑚 , 𝐴

(Υ𝑖)
𝑚 ← 𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑇𝑎𝑥𝑎(𝐴,Ψ,Υ𝑖, 𝐶) ⊲ 𝐶: Maximum size of

subsampling
9: {𝑝 (Υ𝑖)

𝑡,𝑚 } ← 𝑃𝐻𝑖𝑀𝑀 (Ψ(Υ𝑖)
𝑚 , 𝐴

(Υ𝑖)
𝑚 )

10: {𝑝 (Υ𝑖)
𝑡 } ← {𝑝

(Υ𝑖)
𝑡 } + {𝑝

(Υ𝑖)
𝑡,𝑚 }

11: {𝑝 (Υ𝑖)
𝑡 } ← {𝑝

(Υ𝑖)
𝑡 }/𝑀

12: {𝑝𝑡} ← max1≤𝑖≤𝑅{𝑝 (Υ𝑖)
𝑡 }

13: return {𝑝𝑡}1≤𝑡≤𝐿
14:
15:
16: procedure DACSwithoutInputNetwork(Ψ, 𝑅)
17: ⊲ 𝑅: Number of reticulations in the input network
18: ⊲ 𝐴𝐾×𝐿: Multiple sequence alignment with 𝐾 aligned sequences and 𝐿 columns
19: Ψ1, 𝐿(Ψ1, Γ|𝐺), ...,Ψ𝑁 , 𝐿(Ψ𝑁 , Γ|𝐺) ← 𝐹𝑎𝑠𝑡𝑁𝑒𝑡 (𝐴, 𝑅, 𝑁)
20: ⊲ 𝑁: Number of candidate networks
21: ⊲ 𝐿 (Ψ, Γ|𝐺): Pseudo-likelihood of phylogenetic network Ψ and inheritance probabilities

Γ given a set of gene trees 𝐺
22: for 𝑗 from 1 to 𝑁 do
23: {𝑝𝑡, 𝑗 } ← 𝐷𝐴𝐶𝑆𝑤𝑖𝑡ℎ𝐼𝑛𝑝𝑢𝑡𝑁𝑒𝑡𝑤𝑜𝑟𝑘 (Ψ 𝑗 , 𝐴)
24: 𝜔 𝑗 ← 𝑚𝑎𝑥1≤𝑘≤𝑁 𝑙𝑜𝑔(𝐿 (Ψ𝑘 , Γ|𝐺))/𝑙𝑜𝑔(𝐿 (Ψ 𝑗 , Γ|𝐺))
25: {𝑝𝑡} ←

∑
𝑗 𝜔 𝑗 × {𝑝𝑡, 𝑗 }/

∑
𝑗 𝜔 𝑗

26: return {𝑝𝑡}1≤𝑡≤𝐿

constructed through various tools, such as r8s [28], msmove [29], and seq-gen [32].

(1) Generation of model trees using r8s

A random rooted model tree can be generated using r8s [28] tool, which utilizes the birth-

death model for the tree generation.

#nexus

begin r8s;

simulate diversemodel=bdback seed=<integer random seed> charevol=yes

ntaxa=<integer greater than 3> infinite=yes nreps=1;
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Algorithm 6.2 Subsampling
1: procedure SubsampleTaxa(Ψ, 𝐴,Υ, 𝐶)
2: ⊲ Ψ: Phylogenetic network
3: ⊲ 𝐴𝐾×𝐿: Multiple sequence alignment with 𝐾 aligned sequences and 𝐿 columns
4: ⊲ Υ: Reticulation
5: ⊲ 𝐶: Maximum size of subsampling
6: 𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑎𝑣𝑒𝑠← 𝐺𝑒𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝐿𝑒𝑎𝑣𝑒𝑠(Ψ,Υ)
7: 𝑠𝑖𝑛𝑘_𝑙𝑒𝑎𝑣𝑒𝑠← 𝐺𝑒𝑡𝑆𝑖𝑛𝑘𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝐿𝑒𝑎𝑣𝑒𝑠(Ψ,Υ)
8: 𝑀𝑅𝐶𝐴_𝑙𝑒𝑎𝑣𝑒𝑠← 𝐺𝑒𝑡𝑀𝑅𝐶𝐴𝑙𝑒𝑎𝑣𝑒𝑠(Ψ,Υ)
9: 𝑎𝑙𝑙_𝑙𝑒𝑎𝑣𝑒𝑠← 𝐺𝑒𝑡𝐴𝑙𝑙𝐿𝑒𝑎𝑣𝑒𝑠(Ψ)

10:
11: 𝑠𝑢𝑏𝑠𝑒𝑡 ← {}
12: 𝑠𝑢𝑏𝑠𝑒𝑡.𝐴𝑑𝑑 (𝑅𝑎𝑛𝑑𝑜𝑚𝐶ℎ𝑜𝑖𝑐𝑒(𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑎𝑣𝑒𝑠))
13: 𝑠𝑢𝑏𝑠𝑒𝑡.𝐴𝑑𝑑 (𝑅𝑎𝑛𝑑𝑜𝑚𝐶ℎ𝑜𝑖𝑐𝑒(𝑠𝑖𝑛𝑘_𝑙𝑒𝑎𝑣𝑒𝑠))
14: 𝑠𝑢𝑏𝑠𝑒𝑡.𝐴𝑑𝑑 (𝑅𝑎𝑛𝑑𝑜𝑚𝐶ℎ𝑜𝑖𝑐𝑒(𝑀𝑅𝐶𝐴_𝑙𝑒𝑎𝑣𝑒𝑠 − 𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑎𝑣𝑒𝑠 − 𝑠𝑖𝑛𝑘_𝑙𝑒𝑎𝑣𝑒𝑠))
15: while 𝑆𝑖𝑧𝑒(𝑠𝑢𝑏𝑠𝑒𝑡) < 𝐶 do
16: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑙𝑒𝑎 𝑓 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐶ℎ𝑜𝑖𝑐𝑒(𝑎𝑙𝑙_𝑙𝑒𝑎𝑣𝑒𝑠)
17: if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑙𝑒𝑎 𝑓 ∉ 𝑀𝑅𝐶𝐴_𝑙𝑒𝑎𝑣𝑒𝑠 + 𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑒𝑎𝑣𝑒𝑠 + 𝑠𝑖𝑛𝑘_𝑙𝑒𝑎𝑣𝑒𝑠 then
18: 𝑠𝑢𝑏𝑠𝑒𝑡.𝐴𝑑𝑑 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑙𝑒𝑎 𝑓 )
19: Ψ(Υ) ← 𝐺𝑒𝑡𝑆𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (Ψ,Υ, 𝑠𝑢𝑏𝑠𝑒𝑡)
20: 𝐴(Υ) ← 𝐺𝑒𝑡𝑆𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠(𝐴, 𝑠𝑢𝑏𝑠𝑒𝑡)
21: return Ψ(Υ) , 𝐴(Υ)

end;

where “diversemodel” means the model used for tree generation, which is generally set

to the birth-death model denoted by “bdback”. “seed” specifies a random seed for the

tree generation. “ntaxa” represents the number of taxa, which is set to 10, 20, or 100 for

comparison. “nreps” indicates the number of generated repeats. “charevol=yes” indicates

the model tree is output with branch lengths. “infinite=yes” represents that branch lengths

are set to the expected values based on rate and time.

The height of the resulting tree is scaled to ℎ by multiplying the length of each edge in

the model tree by ℎ. Here, we set ℎ to 5.0 coalescent units. Furthermore, an outgroup is

added to the generated tree at 50.0 coalescent time.

(2) Generation of model networks

A model network can be generated by the steps listed in Hejase et al. [11]. With the

model tree obtained from the above step, we then add 𝑟 reticulations (𝑟 ∈ [1, 2, 3, 4, 5]) by
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iterating the following steps: a time 𝑡𝑀 between 0 and the tree height is selected uniformly

at random, two tree edges for which corresponding ancestral populations exist during a time

interval [𝑡𝐴, 𝑡𝐵] such that 𝑡𝑀 ∈ [𝑡𝐴, 𝑡𝐵] are randomly selected, and a reticulation at time 𝑡𝑀

is added to connect the pair of tree edges. Similar to Leaché et al. [15], the model network

can be further classified based upon whether gene flow is “deep” or “non-deep”, which is

defined by the topological placement of reticulations, i.e., non-deep reticulations are placed

between two leaf edges, while deep reticulations include all other reticulations.

(3) Generation of local genealogies using msmove

Given a model species network, 100 local genealogies can be simulated using the msmove

[29] for independent and identically distributed (i.i.d.) loci following a species network under

a multi-species network coalescent with recombination (MSNCwR) model. msmove is a

modified version of Monte Carlo simulator ms [30] allowing the tracking of migration events,

while ms does not provide this annotation. Recombination is modeled using Hudson’s finite-

sites recombination model [30].

msmove <number of samples> <number of repeats> -T -r <crossover rate>

<number of sites> -I <number of populations> <n_1 n_2 ... n_k>

-ej <t_1> i_1 j_1 -ej <t_2> i_2 j_2 ... -ej <t_k> i_k j_k

-ev <t_m> i j <probability x>

where -T parameter indicates the gene trees representing the history of the sampled taxa are

output. The -I parameter is followed by 𝑘 that represents the number of populations. The list

of integers (n_1 n_2 ... n_k) includes the number of taxa sampled in each population. In this

study, one allele is sampled from each taxon. The -r parameter is used to set recombination

by crossover rate and the number of sites between which recombination can occur, where

the crossover rate or recombination rate 𝜌 is set to 0.1, and the number of sites between

which recombination can occur is set to 900. The -ej parameter specifies moving all lineages

in population i to population j at time t. The -ev parameter is special for msmove, which

sets migration at time t_m from population i to population j with the migration probability
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𝑥 = 0.1 in this study.

Then, the gene trees will be deviated away from ultrametricity by the following steps

[143]. First, a deviation factor, 𝑐, that quantifies the deviation level is determined. Then,

for each edge in the model tree, its branch length is multiplied by 𝑒𝑥 , where 𝑥 is uniformly

and randomly chosen from the interval [− lg(𝑐), lg(𝑐)]. Similar to Liu et al. [144], 𝑐 is set

to 2.0 here.

(4) Simulation of sequences using seq-gen

The DNA sequences can be generated using seq-gen [32] under the general time-reversible

(GTR) substitution model [67].

seq-gen -mGTR -f <base frequencies> -r <general reversible

rate matrix> -a <shape of Γ distribution>

-l <sequence length> -p <number of partitions>

< genetreefile > seqfile

where -m parameter specifies the general time-reversible (GTR) substitution model denoted

by “GTR”. The -s parameter sets the mutation rate 𝜃 that scales the branch lengths to make

them equal the expected number of substitutions per site for each branch. The mutation

rate 𝜃 is set to 0.1, 0.5, 1, 2, 5, and 10 for comparison. The default setting is 0.5. The -f

parameter specifies the frequencies of the four nucleotides A, C, G, and T. The -r parameter

sets a relative rate of substitutions between nucleotides in a GTR model. The -a parameter

specifies the shape of the Γ distribution. The -l parameter specifies the sequence length.

Here, the simulated sequence length of each gene tree is set to 900 bp. The -p parameter

sets the number of partitions. The genetreefile is the input file providing the gene trees. The

seqfile is the output file with simulated sequences under the given gene trees.

The GTR substitution model parameter values were estimated based on empirical anal-

yses of the mouse genomic sequence dataset from Liu et al. [7] study. We used all M. m.

domesticus and M. spretus samples listed in “Table S1” of Liu et al. [7] study and concate-

nated all chromosomes to get the sequence data. RAxML was used to perform concatenated
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phylogenetic MLE under the GTR model. The estimated parameters used in seq-gen simu-

lations include base frequencies: 𝜋𝐴 = 0.216, 𝜋𝐶 = 0.284, 𝜋𝐺 = 0.285, 𝜋𝑇 = 0.215; GTR

matrix: 1.002820, 5.486349, 1.095939, 0.539209, 5.535556, and 1.000000 for 𝐴 ↔ 𝐶,

𝐴 ↔ 𝐺, 𝐴 ↔ 𝑇 , 𝐶 ↔ 𝐺, 𝐶 ↔ 𝑇 , and 𝐺 ↔ 𝑇 , respectively; shape parameter 𝛼 of the Γ

distribution: 0.543225.

Then, coalescent times are converted into branch lengths using “Equation (3.1)” in Hein

et al. [145].

For each model condition, the simulation procedure is repeated to obtain 20 replicate datasets.

Model condition parameters and summary statistics for simulated datasets are shown in Table 6.1.

Table 6.1 Statistics for the simulation dataset. The reticulation scenarios include solely non-deep
reticulations, solely deep reticulations, and a combination of both non-deep and deep reticulations.
“Ntaxa” means the number of taxa. “Network Height” gives the height of the model network. “Total
Sites” indicates the number of total sites in the simulation genomes. The p-distance of a pair of
aligned sequences is calculated by dividing the number of sites where the two sequences had different
nucleotides by the number of sites in which both sequences had nucleotides. “Average/Maximum
p-dist” is the average/maximum p-distance of all pairs of aligned sequences in the simulation
dataset. “Introgression (%)” shows the percent of introgressed sites over the genome. “Average
Branch Length” is the average branch length of the model network. The average and standard error
(SE) are shown based on 20 replicates.

Ntaxa Reticulation Scenario Total
Sites

Network
Height

Average p-dist (%) Maximum p-dist (%) Introgression (%) Average Branch Length
Average SE Average SE Average SE Average SE

10 1 non-deep 90000 5 55.625 0.209 68.500 0.020 13.450 1.488 1.381 0.041
10 1 deep 90000 5 55.912 0.276 68.403 0.026 14.850 1.875 1.432 0.050
10 2 non-deep 90000 5 55.540 0.368 68.519 0.026 16.900 1.525 1.366 0.054
10 1 non-deep + 1 deep 90000 5 56.094 0.210 68.452 0.023 21.000 1.515 1.469 0.049
20 1 non-deep 90000 5 53.671 0.329 68.522 0.029 9.550 0.872 1.055 0.047
20 1 deep 90000 5 53.187 0.221 68.548 0.024 19.250 1.745 0.941 0.036
20 2 non-deep 90000 5 53.288 0.291 68.514 0.020 15.350 1.024 0.987 0.048
20 1 non-deep + 1 deep 90000 5 53.304 0.208 68.529 0.016 17.750 1.710 0.968 0.032
100 1 non-deep 90000 5 52.657 0.136 68.595 0.025 9.150 1.057 0.596 0.019
100 2 non-deep 90000 5 52.519 0.175 68.597 0.027 11.550 1.077 0.593 0.021
100 3 non-deep 90000 5 52.501 0.302 68.572 0.015 11.700 0.995 0.624 0.023
100 4 non-deep 90000 5 52.438 0.249 68.573 0.025 15.250 0.820 0.625 0.028
100 5 non-deep 90000 5 52.535 0.252 68.599 0.024 13.737 0.670 0.588 0.025
100 1 non-deep + 1 deep 90000 5 52.245 0.303 68.590 0.025 15.350 1.044 0.596 0.025
100 2 deep 90000 5 52.278 0.278 68.605 0.029 15.350 0.844 0.605 0.020
100 3 deep 90000 5 52.403 0.178 68.576 0.026 18.100 1.013 0.606 0.020

6.3.2 Mosquito Data

We downloaded the MAF whole genome alignment from high-depth field samples of Anopheles

species from Dryad (doi: 10.5061/dryad.f4114) [152]. The data consist of one genome from each

of the species An. gambiae, An. coluzzii, An. arabiensis, An. quadriannulatus, An. merus, An.
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melas, An christyi, and An epiroticus.

Since DACS method can be applied to dozens of taxa, we added more background mosquito

species from the study of Neafsey et al. [153]. Following the alignment strategy in studies of Neafsey

et al. [153] and Fontaine et al. [152], we use An. gambiae PEST (AgamP3) as reference, i.e., all

other species assemblies are mapped to the An. gambiae PEST (AgamP3) reference assembly. The

all-against-all pairwise LASTZ (https://lastz.github.io/lastz/) alignments are projected to ensure

that the reference species is “single-coverage”, i.e. in any pairwise alignment, regions of the

reference species may only be present once. Subsequent projection steps are then performed as

guided by the species dendrogram (Figure 6.2) to progressively combine the pairwise alignments,

and then the multiple alignments, until they encompass the complete phylogeny of all 19 species.

To avoid the impact of input phylogenetic networks on introgression detection, we directly

used the species network from studies of Neafsey et al. [153] and Fontaine et al. [152] for our

introgression analyses (see Figure 6.2).

Finally, we applied DACS to the 2L, 2R, 3L, 3R, and X chromosomal arms of 19 mosquito

species. DACS was run with the same settings used in the simulation study, except for a modification

of the number of iterations for model parameter learning increased to 1000 (as opposed to 300).

6.3.3 Darwin’s Finch Data

As part of our empirical study, we re-analyzed Darwin’s finch genomic sequence data originally

published by Lamichhaney et al. [154]. We began by downloading the original Illumina HiSeq2000

paired-end read data from the NCBI SRA database (accession number PRJNA263122). From

these data, we randomly selected one sample per species, yielding a dataset of 20 samples. We

also downloaded the assembled whole-genome sequence and gene annotations for the medium

ground finch, Geospiza fortis, from the GigaDB database (http://gigadb.org/dataset/100040). Next-

generation sequencing (NGS) read alignment, quality filtering, and variant calling steps were based

on the study of [154]. First, paired-end reads for each sample were aligned to the G. fortis reference

genome using BWA version 0.7.17 with default parameters [155]. The medium ground finch

genome assembly contains 27,239 scaffolds unassigned to chromosomes. Quality filtering, post-

92

https://lastz.github.io/lastz/
http://gigadb.org/dataset/100040


Figure 6.2 The phylogenetic network used on mosquito data. The phylogenetic network captures
introgression from An. merus to An. quadriannulatus. Branch colors indicate genus information:
orange for 8 Pyretophorus species, blue for 5 Neocellia+Myzomyia species, green for 2 Neomy-
zomyia species, pink for 2 Anopheles species, and cyan for 2 Nyssorhynchus species.
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Table 6.2 Mosquito species used in this study. We used existing mosquito dataset from previous
studies. Each row lists species name and the corresponding data sources. References to original
sources are also included for traceability.

Species Source Reference
An. arabiensis Dryad (doi: 10.5061/dryad.f4114) [152]
An. christyi Dryad (doi: 10.5061/dryad.f4114) [152]
An. coluzzii Dryad (doi: 10.5061/dryad.f4114) [152]
An. epiroticus Dryad (doi: 10.5061/dryad.f4114) [152]
An. gambiae Dryad (doi: 10.5061/dryad.f4114) [152]
An. melas Dryad (doi: 10.5061/dryad.f4114) [152]
An. merus Dryad (doi: 10.5061/dryad.f4114) [152]
An. quadriannulatus Dryad (doi: 10.5061/dryad.f4114) [152]
An. albimanus GenBank Assembly: GCA_000349125.2 [153]
An. atroparvus GenBank Assembly: GCA_000473505.1 [153]
An. culicifacies GenBank Assembly: GCA_000473375.1 [153]
An. darlingi GenBank Assembly: GCA_943734745.1 [153]
An. dirus GenBank Assembly: GCA_000349145.1 [153]
An. farauti GenBank Assembly: GCA_000473445.2 [153]
An. funestus GenBank Assembly: GCA_000349085.1 [153]
An. maculatus GenBank Assembly: GCA_000473185.1 [153]
An. minimus GenBank Assembly: GCA_000349025.1 [153]
An. sinensis GenBank Assembly: GCA_000472065.2 [153]
An. stephensi GenBank Assembly: GCA_000349045.1 [153]

processing, and variant calling tasks were then performed using SAMtools [156]. Identifed variants

consisted of SNPs and short indel polymorphisms.

To obtain haplotype sequences, bi-allelic SNPs were phased using fastPHASE version 1.4.8

[132]. The phased calls for bi-allelic SNPs were combined with the genotypic data of homozygous

multi-allelic SNPs and homozygous indel polymorphisms. The heterozygous multi-allele SNPs

and heterozygous indels, representing less than 1% of the input data, were treated as missing data.

To obtain a species phylogeny for our introgression analyses, we used FastNet [11] to infer

species networks from the genomic alignment of all 27,239 scaffolds. The species tree listed

in Lamichhaney et al. [154] was used as a starting tree and the number of reticulations was set

ot 2 for FastNet’s local search heuristics by performing maximum likelihood estimation (MLE)
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optimization using PhyloNet software package [13, 123]. As shown in Figure 6.3, we used top 15

two-reticulation species networks as input of DACS. These networks include introgression between

warbler finches and non-warbler finches, introgression between G. propinqua_G and tree finches,

and introgression between G. propinqua_G and G. conirostris_E, consistent with previous reports

of extensive hybridization and gene flow among Darwin’s finches [154, 157].

Finally, we applied DACS to the 469 largest scaffolds with sequence length greater than 100kb

for computational efficiency. DACS was run with the same settings used in the simulation study,

except for a modification of the number of iterations for model parameter learning increased to

1000 (as opposed to 300).

The summarized statistics of these datasets can be found in Table 6.3.
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Table 6.3 Summary of samples of Darwin’s finches and outgroup species. The table lists key
metadata for Darwin’s finches and their outgroups. “Classification” column indicates whether a
sample belongs to Darwin’s finches or an outgroup species. “Sample Name” provides a unique
label assigned to each sample. “Common Name” and “Species (Alias)” detail the vernacular name
(e.g., large ground finch) and the corresponding scientific name (e.g., Geospiza magnirostris).
“Island (Abbreviation)” column identifies the sampling site for each species (e.g., Daphne Major,
abbreviated “M”). “NCBI Accession” refers to the publicly available sequencing record associated
with each sample.

Classification Sample Name Common Name Species (Alias) Island (Abbreviation) NCBI Accession
Darwin’s finches G. magnirostris_G Large ground finch Geospiza magnirostris Genovesa (G) SRR1607485

G. fortis_M Medium ground finch Geospiza fortis Daphne Major (M) SRR1607458
G. fuliginosa_Z Small ground finch Geospiza fuliginosa Santa Cruz (Z) SRR1607462
G. propinqua_G Large cactus finch Geospiza propinqua Genovesa (G) SRR1607365
G. conirostris_E Large cactus finch Geospiza conirostris Española (E) SRR1607296
G. scandens_M Common cactus finch Geospiza scandens Daphne Major (M) SRR1607547
G. difficilis_P Sharp-beaked ground finch Geospiza difficilis Pinta (P) SRR1607420
G. septentrionalis_W Sharp-beaked ground finch Geospiza septentrionalis Wolf (W) SRR1607440
G. acutirostris_G Sharp-beaked ground finch Geospiza acutirostris Genovesa (G) SRR1607406
C. heliobates_I Mangrove finch Camarhynchus heliobates Isabela (I) SRR1607472
C. pallidus_Z Woodpecker finch Camarhynchus pallidus Santa Cruz (Z) SRR1607494
C. psittacula_P Large tree finch Camarhynchus psittacula Pinta (P) SRR1607543
C. parvulus_Z Small tree finch Camarhynchus parvulus Santa Cruz (Z) SRR1607504
C. pauper_F Medium tree finch Camarhynchus pauper Floreana (F) SRR1607508
P. crassirostris_Z Vegetarian finch Platyspiza crassirostris Santa Cruz (Z) SRR1607534
C. olivacea_S Green warbler finch Certhidea olivacea Santiago (S) SRR1607385
C. fusca_E Grey warbler finch Certhidea fusca Española (E) SRR1607359
P. inornata_C Cocos finch Pinaroloxias inornata Cocos Island (C) SRR1607529

outgroup T. bicolor_B Black-faced grassquit Tiaris bicolor Barbados (B) SRR1607551
L. noctis_B Lesser Antillean bullfinch Loxigilla noctis Barbados (B) SRR1607480

6.3.4 Performance Assessments

To evaluate and compare the performance of different approaches on the simulation dataset

where the true history of evolutionary events can be tracked, we use two types of area under the

curve (AUC): the area under the receiver-operating characteristic (ROC) curve, and the area under

the Precision-Recall curve, referred to as simply ROC-AUC and PR-AUC, respectively. ROC-AUC

is plotted by the true positive rate ( 𝑇𝑃
𝑇𝑃+𝐹𝑁 ) as a function of the false positive rate ( 𝐹𝑃

𝐹𝑃+𝑇𝑁 ) at various

threshold settings, while PR-AUC similarly plots the precision ( 𝑇𝑃
𝑇𝑃+𝐹𝑃 ) against the recall ( 𝑇𝑃

𝑇𝑃+𝐹𝑁 )

at different thresholds, where TP, FP, TN, and FN represent the numbers of true positives, false

positives, true negatives, and false negatives, respectively. The ROC-AUC and PR-AUC measures

represent the tradeoff between type I errors and type II errors under different threshold values.

The measures are calculated on all loci in the simulation datasets, where the true migration events

are annotated by msmove with an asterisk. After concatenating all query loci in one simulation
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replicate, the ROC-AUC and PR-AUC of a method are assessed based on the probability of a

particular site involving an introgressive origin.

Additionally, we report the memory usage and runtime in order to comprehensively evaluate

the scalability of our framework.

6.3.5 Software and Data

Our software implementation of the DACS algorithm includes the divide-and-conquer strategy

to combine FastNet [11] and PHiMM [122] methods to realize the coestimation of phylogenetic

network and introgression mapping. Open-source software and open data for all study datasets are

publicly accessible at https://gitlab.msu.edu/liulab/phimm2.

6.4 Results

6.4.1 Simulation Studies

6.4.1.1 DACS’s parameter setting on simulation data

To determine optimal parameter settings for DACS under 20-taxon model conditions with two

non-deep reticulations, we systematically evaluate the impact of subsampling size, subsampling

replicates, number of input networks, and merging strategies on both accuracy and runtime.

In Figure 6.4A and Table 6.4, we first investigate the impact of two key factors on model

performance (the receiver operating characteristic area under the curve or ROC-AUC shown in

the left y-axis) and computational cost (the runtime in CPU hours shown in the right y-axis): the

sampling size and the number of subsampling replicates, on 20-taxon model conditions with 2 non-

deep reticulations. We find that higher sampling size (blue markers) consistently yields a greater

ROC-AUC than lower sampling size (red markers). This indicates that including more samples

per subsample helps capture the underlying signal more effectively, thereby improving predictive

performance. Furthermore, increasing the number of subsampling replicates—shown on the x-

axis—improves the ROC-AUC for both sampling sizes, suggesting that more extensive subsampling

helps the model generalize and reduces uncertainty in performance estimates. However, these gains

in accuracy come with a cost in computational time. As the number of subsampling replicates

increases, the runtime also rises, and this effect is more pronounced for the larger sampling

98

https://gitlab.msu.edu/liulab/phimm2


Figure 6.4 The parameter setting on 20-taxon model conditions with 2 non-deep reticulations.
(A) ROC-AUC (left y-axis, bars) and runtime (right y-axis, dash lines) as functions of the number
of subsampling replicates. Red bars/lines represent for a sampling size of 4, and blue bars/lines for
a sampling size of 7. (B) ROC-AUC (left y-axis, bars) and runtime (right y-axis, dash lines) for
four merging strategies of combining multiple input networks: Weighted Average (red), Average
(blue), Maximum (green), and Medium (purple). The x-axis shows the number or the fraction of
top-scoring candidate networks. (C) The minimum (left y-axis, black dash lines) and average (right
y-axis, red dash lines) reduction-based distance between true and estimated networks (details see
Chapter 2.2.3.2) for different numbers or fractions of top-scoring candidate networks.
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Table 6.4 The sampling parameter setting on 20-taxon model conditions with 2 non-deep
reticulations. The measures include the area under the receiver-operating characteristic curve
(ROC-AUC) and runtime (in CPU Hour). DACS method was run using 20 CPUs. The average
and standard error (SE) are calculated based on 20 replicates (represented as “average value ± SE
value” or only “average” for runtime).

Sampling Size Number of subsampling ROC-AUC Runtime (CPU Hour)

Sampling Size = 4

1 0.721±0.040 0.157
2 0.852±0.036 0.253
3 0.878±0.031 0.206
4 0.892±0.028 0.297
5 0.933±0.022 0.380
6 0.936±0.022 0.451
7 0.942±0.018 0.508
8 0.946±0.017 0.524
9 0.953±0.016 0.702
10 0.951±0.017 0.724

Sampling Size = 7

1 0.935±0.027 0.639
2 0.940±0.027 1.075
3 0.962±0.013 2.380
4 0.962±0.013 3.041
5 0.960±0.013 3.385
6 0.962±0.012 4.253
7 0.967±0.012 4.950
8 0.968±0.011 5.751
9 0.968±0.011 6.318
10 0.969±0.011 7.078

size. Similar trend is found for sampling size where the sampling size of 7 reflects a higher overall

computational burden. These findings highlight the importance of tuning both the sampling strategy

and the number of replicates to achieve an acceptable balance of performance and resource usage

for a given analysis. In the following sections, we set the sampling size to 7 and the subsampling

replicates to 10 as default.

Figure 6.4B and Table 6.5 compare four different strategies—Weighted Average, Average,

Maximum, and Medium—for combining multiple input networks, illustrating the trade-off between

predictive performance (left y-axis) and computational runtime (right y-axis). The Weighted

Average method (pink bars) exhibits lower ROC-AUC when only a small subset of networks is

100



Table 6.5 The network parameter setting on 20-taxon model conditions with 2 non-deep
reticulations. The measures include the area under the receiver-operating characteristic curve
(ROC-AUC) and runtime (in CPU Hour). DACS method was run using 20 CPUs. The average
and standard error (SE) are calculated based on 20 replicates (represented as “average value ± SE
value” or only “average” for runtime).

Merging strategy Number of networks ROC-AUC Runtime (CPU Hour)

Weighted Average

Top 1 0.893±0.027 11.043
Top 0.1%≈5.25 0.906±0.028 57.912
Top 0.5%≈5.9 0.904±0.028 64.274
Top 1%≈6.35 0.903±0.028 68.933
Top 5%≈11.3 0.899±0.030 124.232
Top 10%≈14.45 0.919±0.026 159.871
Top 15%≈14.95 0.918±0.026 164.963
Top 20%≈15 0.918±0.026 165.452

Average

Top 1 0.893±0.027 11.043
Top 0.1%≈5.25 0.906±0.028 57.912
Top 0.5%≈5.9 0.904±0.028 64.274
Top 1%≈6.35 0.903±0.028 68.933
Top 5%≈11.3 0.899±0.030 124.232
Top 10%≈14.45 0.919±0.026 159.871
Top 15%≈14.95 0.918±0.026 164.963
Top 20%≈15 0.918±0.026 165.452

Maximum

Top 1 0.893±0.027 11.043
Top 0.1%≈5.25 0.906±0.024 57.912
Top 0.5%≈5.9 0.905±0.024 64.274
Top 1%≈6.35 0.899±0.027 68.933
Top 5%≈11.3 0.895±0.026 124.232
Top 10%≈14.45 0.904±0.026 159.871
Top 15%≈14.95 0.902±0.027 164.963
Top 20%≈15 0.902±0.027 165.452

Medium

Top 1 0.893±0.027 11.043
Top 0.1%≈5.25 0.908±0.026 57.912
Top 0.5%≈5.9 0.903±0.027 64.274
Top 1%≈6.35 0.902±0.028 68.933
Top 5%≈11.3 0.892±0.030 124.232
Top 10%≈14.45 0.903±0.026 159.871
Top 15%≈14.95 0.903±0.026 164.963
Top 20%≈15 0.903±0.026 165.452
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Table 6.6 The network errors of different network parameter settings on 20-taxon model
conditions with 2 non-deep reticulations. The measures include the average and minimum
reduction-based distance between true and estimated networks (details see Chapter 2.2.3.2). DACS
method was run using 20 CPUs. The average and standard error (SE) are calculated based on 20
replicates (represented as “average value ± SE value” ).

Number of networks Minimum reduction-based distance Average eduction-based distance
Top 1 13.750±0.864 13.750±0.864
Top 0.1%≈5.25 13.200±0.842 15.541±0.598
Top 0.5%≈5.9 13.050±0.866 15.534±0.617
Top 1%≈6.35 13.050±0.866 15.528±0.630
Top 5%≈11.3 12.050±0.899 15.863±0.554
Top 10%≈14.45 11.150±1.091 16.048±0.518
Top 15%≈14.95 11.150±1.091 16.107±0.498
Top 20%≈15 11.150±1.091 16.097±0.498

considered (e.g., “Top 1”), but its performance steadily improves as the number of input networks

grows. Eventually, Weighted Average surpasses the other methods, indicating a notable advantage

in predictive accuracy once enough candidate networks are incorporated. Meanwhile, Average

(blue bars), Maximum (green bars), and Medium (purple bars) remain relatively close to one

another, suggesting that these three aggregation methods yield comparable performance under

different sampling fractions. However, these performance gains come with a pronounced rise in

runtime (red dashed line) as the number of input networks increases. The runtime begins at a

relatively modest level when only a single or a few top networks are selected but climbs sharply

beyond 100 CPU hours as the subset of considered networks expands. This pattern underscores the

computational costs associated with exploring a larger space of input networks, even though such

exploration can improve predictive performance.

To further refine the selection of candidate networks used for merging, we evaluated the

topological similarity between true and estimated networks using the reduction-based distance

(Figure 6.4C and Table 6.6). As more top-scoring networks were incorporated, the minimum

reduction-based distance decreased, indicating an improved best-case network topology match.

However, the average reduction-based distance plateaued beyond the top 10%, implying diminishing

gains from adding more networks beyond this threshold. These results suggest that while merging

a greater number of candidate networks can slightly improve the chance of obtaining a network
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close to the true topology, the benefit saturates rapidly.

Overall, balancing accuracy and computational efficiency, we set the fraction of top-scoring

candidate networks to 10% with weighted average method as default in the following sections.

6.4.1.2 Comparison of PHiMM and DACS with true phylogeny input

Figure 6.5 The performance comparison between PHiMM and DACS with true network as
input on 20-taxon model conditions. Reticulation scenarios include one non-deep reticulation,
one deep reticulation, two non-deep reticulations, and a combination of both non-deep and deep
reticulations. (A) The head-to-head comparison of area under the receiver-operating characteristic
curve (ROC-AUC) between PHiMM and DACS on different reticulation scenarios. Statistical
significance of performance differences between PHiMM and DACS was evaluated using a one-
tailed pairwise Student’s t-test (𝛼 = 0.05; 𝑛 = 20). (B) The runtime (in CPU Hour) comparison
between PHiMM and DACS. (C) The memory usage (in GB) comparison between PHiMM and
DACS. The percentages and arrows (in red) shown in panels (B) and (C) indicate the improvement
in DACS’s performance compared to PHiMM’s performance. Both PHiMM and DACS methods
were run using 20 CPUs. The average and standard error (SE) are calculated based on 20 replicates.

We make a comprehensive comparison of the PHiMM and DACS methods, using a true network

as input under various 20-taxon model conditions, including different reticulation scenarios: one

non-deep reticulation, one deep reticulation, two non-deep reticulations, and a combinations of

both.

Figure 6.5A presents the head-to-head comparison of the area under the receiver operating
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characteristic curve (ROC-AUC) between PHiMM and DACS across the different reticulation

scenarios. The results reveal a significant improvement in ROC-AUC for DACS over PHiMM

across all conditions with 𝑝-values by one-tailed pairwise Student’s t-test, all below 0.05.

Figure 6.5B indicates the comparison of runtime (in CPU hours) between PHiMM and DACS

under the same conditions. It is evident that DACS not only improves accuracy but also reduces

computational time significantly. For instance, DACS exhibits an 83.6%, 89.8%, 77.4%, and

83.8% reduction in runtime, respectively, in the case of one non-deep, one deep, two non-deep, and

combined non-deep and deep reticulations with 𝑝-values by one-tailed pairwise Student’s t-test all

below 0.05. These substantial reductions in runtime underscore the efficiency gains achieved by

DACS.

Figure 6.5C further examines memory usage (in GB) between the two methods. Here, DACS

consistently demonstrates lower memory consumption across all tested conditions. The reductions

range from 63.8% to 82.5%, with the highest memory savings observed in the non-deep reticulation

scenario. These findings suggest that DACS not only enhances computational speed but also

optimizes memory usage, making it a more resource-efficient method compared to PHiMM.

In summary, Figure 6.5 provides clear evidence that DACS is superior to PHiMM across

multiple dimensions, including model accuracy, runtime efficiency, and memory consumption,

under varying reticulation scenarios. The statistical significance of the results further validates the

robustness of DACS, highlighting its potential for more effective and resource-efficient modeling

in phylogenetic studies.

6.4.1.3 Comparison of PHiMM and DACS with inferred phylogeny by FastNet

We extend our comparison of PHiMM and DACS to estimated phylogenetic networks as input

under various reticulation scenarios in 20-taxon model conditions. Similar trends are seen when

estimated networks are used as input under various 20-taxon model conditions (Figure 6.6).

The ROC-AUC values in DACS continue to outperform those in PHiMM when estimated

networks are used (Figure 6.6A). The improvement is statistically significant across all scenarios,

as indicated by the 𝑝-values being below the 0.05 threshold. These results underscore that DACS
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Figure 6.6 The performance comparison between PHiMM and DACS with estimated networks
as input on 20-taxon model conditions. Reticulation scenarios include one non-deep reticulation,
one deep reticulation, two non-deep reticulations, and a combination of both non-deep and deep
reticulations. (A) The head-to-head comparison of area under the receiver-operating characteristic
curve (ROC-AUC) between PHiMM and DACS on different reticulation scenarios. Statistical
significance of performance differences between PHiMM and DACS was evaluated using a one-
tailed pairwise Student’s t-test (𝛼 = 0.05; 𝑛 = 20). (B) The runtime (in CPU Hour) comparison
between PHiMM and DACS. (C) The memory usage (in GB) comparison between PHiMM and
DACS. The percentages and arrows (in red) shown in panels (B) and (C) indicate the improvement
in DACS’s performance compared to PHiMM’s performance. Both PHiMM and DACS methods
were run using 20 CPUs. The average and standard error (SE) are calculated based on 20 replicates.

maintains a robust performance advantage over PHiMM in different reticulation scenarios, even

with the potential inaccuracies introduced by estimated networks.

Figure 6.6B shows the comparison of runtime (in CPU hours) between PHiMM and DACS under

these conditions. The efficiency improvements seen with true networks (as in Figure 6.5) are also

observed when using estimated networks, suggesting that DACS offers substantial computational

benefits across different input conditions.

Figure 6.6C presents the memory usage (in GB) comparison between the two methods. Once

again, DACS demonstrates lower memory consumption across all tested conditions. These results

indicate that DACS not only accelerates computational performance but also optimizes memory

utilization, even when estimated networks are used as input.
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Overall, Figure 6.6 confirms that DACS significantly outperforms PHiMM with substantial

improvements in ROC-AUC, runtime, and memory usage, even when the networks are estimated

rather than true. This reinforces the reliability and resource efficiency of DACS in handling complex

phylogenetic scenarios.

The consistency of these findings are also seen across various 10-taxon model conditions in

Table 6.7 and 6.8. These tables illustrate comparisons of the PHiMM and DACS methods, using

either a true network or estimated networks as input across diverse reticulation scenarios. The data

consistently demonstrate the superior performance of DACS over PHiMM in terms of accuracy,

computational runtime, and memory efficiency, irrespective of the input network utilized.

6.4.1.4 Impact of network inference on DACS’s introgression detection

To quantify how inaccuracies in the input phylogenetic network influence DACS, we compare

ROC-AUC values with the reduction-based distances between true and estimated networks under

20-taxon model conditions with four reticulation scenarios: (i) one non-deep reticulation, (ii) one

deep reticulation, (iii) two non-deep reticulations, and (iv) one non-deep plus one deep reticulation

(Table 6.9 and Figure 6.7).

In the simplest scenario involving a single non-deep reticulation, DACS remains highly robust

with average ROC-AUC of 0.938, and both the minimum and average reduction-based distances

between true and estimated networks are relatively small (6.55 and 12.79, respectively). The weak

Pearson correlation coefficient (PCC) between minimum distance and ROC-AUC (PCC=0.088)

indicates that minimal impact of minor network inference errors on downstream detection perfor-

mance. With two non-deep reticulations, ROC-AUC stays high (0.919), yet the correlation between

ROC-AUCs and reduction-based distances becomes strongly negative (PCC=-0.419), indicating

that larger topological errors directly reduced DACS’s detection accuracy.

As the reticulation complexity increases, particularly in scenarios involving deep reticulations,

DACS’s performance declines rapidly. In the single-deep scenario the minimum reduction-based

distance nearly doubles (13.05) and ROC-AUC falls to 0.810. This trend is most pronounced in the

hybrid scenario combining one non-deep and one deep reticulation, where ROC-AUC is the lowest
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Table 6.7 The performance comparison between PHiMM and DACS with true network as
input on 10- and 20-taxon model conditions. Reticulation scenarios include one non-deep
reticulation, one deep reticulation, two non-deep reticulations, and a combination of both non-deep
and deep reticulations. The measures include the area under the receiver-operating characteristic
curve (ROC-AUC), the area under the precision-recall curve (PR-AUC), runtime (in CPU Hour),
and memory usage (in GB). Statistical significance of performance differences between PHiMM
and DACS was evaluated using a one-tailed pairwise Student’s t-test (𝛼 = 0.05; 𝑛 = 20). Both
PHiMM and DACS methods were run using 20 CPUs. The average and standard error (SE) are
calculated based on 20 replicates (represented as “average value ± SE value”).

Measure Ntaxa Reticulation Scenario PHiMM DACS 𝑝-value

ROC-AUC

10 1 non-deep 0.917±0.024 0.937±0.027 5.18e-02
10 1 deep 0.880±0.027 0.933±0.020 3.55e-04
10 2 non-deep 0.881±0.032 0.942±0.020 1.16e-02
10 1 non-deep + 1 deep 0.849±0.032 0.874±0.028 3.43e-03
20 1 non-deep 0.896±0.039 0.977±0.010 2.46e-02
20 1 deep 0.877±0.022 0.980±0.008 5.26e-05
20 2 non-deep 0.871±0.032 0.969±0.011 7.74e-04
20 1 non-deep + 1 deep 0.791±0.037 0.922±0.018 1.43e-04

PR-AUC

10 1 non-deep 0.734±0.059 0.861±0.045 1.62e-04
10 1 deep 0.689±0.051 0.786±0.051 9.03e-03
10 2 non-deep 0.731±0.063 0.852±0.047 7.01e-03
10 1 non-deep + 1 deep 0.721±0.048 0.751±0.051 3.60e-02
20 1 non-deep 0.720±0.071 0.885±0.045 8.64e-03
20 1 deep 0.680±0.050 0.951±0.019 2.11e-05
20 2 non-deep 0.731±0.060 0.914±0.027 5.36e-04
20 1 non-deep + 1 deep 0.596±0.063 0.813±0.045 1.06e-04

Runtime (CPU Hour)

10 1 non-deep 2.120±0.126 2.668±0.222 3.96e-03
10 1 deep 2.400±0.149 3.448±0.318 4.85e-04
10 2 non-deep 2.534±0.129 6.994±0.589 5.85e-08
10 1 non-deep + 1 deep 3.780±0.253 7.572±0.574 5.18e-08
20 1 non-deep 22.558±2.063 3.690±0.309 1.75e-08
20 1 deep 41.541±3.796 4.223±0.407 3.12e-09
20 2 non-deep 30.488±2.192 6.876±0.478 2.45e-09
20 1 non-deep + 1 deep 61.081±8.119 9.873±0.673 1.65e-06

Memory (GB)

10 1 non-deep 25.522±2.893 4.091±0.230 1.82e-07
10 1 deep 23.349±1.351 6.588±0.772 3.93e-10
10 2 non-deep 41.691±4.001 4.988±0.325 1.01e-08
10 1 non-deep + 1 deep 44.740±3.229 11.290±1.567 2.80e-09
20 1 non-deep 31.112±1.206 5.715±0.379 1.03e-13
20 1 deep 27.511±0.864 9.966±0.997 9.87e-10
20 2 non-deep 35.099±0.650 6.155±0.371 1.76e-20
20 1 non-deep + 1 deep 53.147±2.144 13.056±0.860 2.61e-13
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Table 6.8 The performance comparison between PHiMM and DACS with estimated networks
as input on 10- and 20-taxon model conditions. Reticulation scenarios include one non-deep
reticulation, one deep reticulation, two non-deep reticulations, and a combination of both non-deep
and deep reticulations. The measures include the area under the receiver-operating characteristic
curve (ROC-AUC), the area under the precision-recall curve (PR-AUC), runtime (in CPU Hour),
and memory usage (in GB). Statistical significance of performance differences between PHiMM
and DACS was evaluated using a one-tailed pairwise Student’s t-test (𝛼 = 0.05; 𝑛 = 20). Both
PHiMM and DACS methods were run using 20 CPUs. The average and standard error (SE) are
calculated based on 20 replicates (represented as “average value ± SE value”).

Measure Ntaxa Reticulation Scenario PHiMM DACS 𝑝-value

ROC-AUC

10 1 non-deep 0.844±0.037 0.865±0.056 3.20e-01
10 1 deep 0.726±0.044 0.901±0.034 1.21e-04
10 2 non-deep 0.746±0.051 0.853±0.035 7.99e-03
10 1 non-deep + 1 deep 0.684±0.039 0.779±0.037 8.29e-03
20 1 non-deep 0.688±0.051 0.938±0.028 1.47e-04
20 1 deep 0.622±0.050 0.810±0.048 9.82e-05
20 2 non-deep 0.698±0.038 0.919±0.026 1.66e-06
20 1 non-deep + 1 deep 0.607±0.039 0.770±0.043 2.25e-04

PR-AUC

10 1 non-deep 0.586±0.071 0.768±0.075 5.30e-03
10 1 deep 0.424±0.065 0.772±0.059 2.42e-05
10 2 non-deep 0.511±0.068 0.700±0.062 1.44e-03
10 1 non-deep + 1 deep 0.473±0.053 0.629±0.052 3.73e-03
20 1 non-deep 0.312±0.067 0.795±0.069 2.05e-05
20 1 deep 0.369±0.062 0.608±0.076 1.00e-03
20 2 non-deep 0.409±0.061 0.839±0.046 5.38e-08
20 1 non-deep + 1 deep 0.372±0.055 0.624±0.059 2.39e-05

Runtime (CPU Hour)

10 1 non-deep 23.723±1.916 65.806±5.201 7.31e-11
10 1 deep 29.972±2.453 73.934±6.266 7.11e-10
10 2 non-deep 31.926±2.414 123.099±9.094 1.67e-11
10 1 non-deep + 1 deep 37.327±3.778 141.815±11.325 2.33e-11
20 1 non-deep 234.787±23.018 81.629±4.147 5.69e-07
20 1 deep 273.297±23.213 85.071±2.649 4.58e-08
20 2 non-deep 377.342±25.539 159.871±5.853 3.73e-08
20 1 non-deep + 1 deep 457.258±59.173 162.829±6.729 1.74e-05

Memory (GB)

10 1 non-deep 18.949±0.214 12.720±0.938 5.40e-08
10 1 deep 19.091±0.249 14.348±1.147 3.71e-05
10 2 non-deep 35.675±1.446 16.336±1.378 5.78e-22
10 1 non-deep + 1 deep 38.317±4.360 15.584±1.445 7.04e-07
20 1 non-deep 19.103±0.382 14.274±1.169 4.24e-04
20 1 deep 20.576±0.221 15.173±1.182 2.67e-05
20 2 non-deep 42.647±5.645 16.422±1.106 1.78e-05
20 1 non-deep + 1 deep 43.110±5.673 16.628±1.290 8.81e-06
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Figure 6.7 The head-to-head performance comparison of network inference and introgression
detection on 20-taxon model conditions. Reticulation scenarios include one non-deep reticula-
tion, one deep reticulation, two non-deep reticulations, and a combination of both non-deep and
deep reticulations. X-axis shows minimum reduction-based distance between true and estimated
networks; the Y-axis depicts the area under the receiver-operating characteristic curve (ROC-AUC)
of DACS with estimated networks as input. DACS method was run using 20 CPUs.
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Table 6.9 The network inference errors for DACS on 10-, 20-, and 100-taxon model condi-
tions. Reticulation scenarios include solely non-deep reticulations, solely deep reticulations, and
a combination of both non-deep and deep reticulations. The measures include the area under the
receiver-operating characteristic curve (ROC-AUC), and the average and minimum reduction-based
distance between true and estimated networks (details see Chapter 2.2.3.2). Pearson correlation co-
efficient (PCC) between each reduction-based distance and ROC-AUC was also calculated. DACS
method was run using 20 CPUs. The average and standard error (SE) are calculated based on 20
replicates (represented as “average value ± SE value”).

Ntaxa Reticulation Scenario ROC-AUC Minimum reduction-based distance Average eduction-based distance
distance PCC distance PCC

10 1 non-deep 0.865±0.056 2.300±0.726 -0.764 8.217±0.405 -0.482
10 1 deep 0.901±0.034 8.800±0.574 -0.148 10.146±0.278 -0.145
10 2 non-deep 0.853±0.035 6.800±0.756 -0.296 10.667±0.544 -0.299
10 1 non-deep + 1 deep 0.779±0.037 10.100±0.533 -0.136 12.268±0.356 -0.150
20 1 non-deep 0.938±0.028 6.550±0.910 0.088 12.790±0.512 0.083
20 1 deep 0.810±0.048 13.050±0.749 0.240 14.557±0.554 0.229
20 2 non-deep 0.919±0.026 11.150±1.091 -0.419 16.048±0.518 -0.348
20 1 non-deep + 1 deep 0.770±0.043 15.850±0.638 -0.219 18.257±0.475 -0.226
100 1 non-deep 0.857±0.047 30.050±1.725 -0.455 35.193±1.502 -0.326
100 2 non-deep 0.839±0.034 35.800±1.933 -0.253 40.627±1.605 -0.114
100 3 non-deep 0.855±0.031 39.450±2.498 -0.482 44.827±2.221 -0.417
100 4 non-deep 0.827±0.028 45.800±2.207 -0.146 52.520±1.901 -0.131
100 5 non-deep 0.812±0.029 49.950±2.367 -0.452 55.213±2.036 -0.454
100 1 non-deep + 1 deep 0.758±0.033 42.650±1.918 -0.244 45.777±1.649 -0.203
100 2 deep 0.710±0.037 45.400±1.895 -0.223 47.610±1.834 -0.252
100 3 deep 0.717±0.031 51.800±1.325 -0.077 53.120±1.326 -0.169

(0.770) and the minimun reduction-based distances reaches 15.85. The negative PCC (-0.219)

further confirms that increased network inference error leads to consistent declines in introgression

detection performance.

Overall, DACS demonstrates strong tolerance to moderate network-inference errors and main-

tains acceptable accuracy even for deep reticulations — ROC-AUC remains above 0.80 for the single

deep reticulation case — underscoring its practicality for complex evolutionary histories. Nonethe-

less, achieving reliable introgression detection in highly reticulated or mixed-depth scenarios still

benefits from the most accurate network estimates available.

6.4.1.5 Accuracy of DACS on ultra large datasets

To assess performance on ultra-large datasets, we analyze a 100-taxon model condition under

multiple reticulation scenarios. Due to PHiMM’s limited scalability, it was not feasible to run

PHiMM on this dataset, preventing a direct comparison. Nevertheless, this analysis showcases

DACS’s capability to scale effectively to datasets of this size. Figure 6.8 and Table 6.10 presents
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Figure 6.8 The performance comparison between true network and estimated networks as
input for DACS on ultra large datasets with 100 taxa. The measures include (A) the area
under the receiver-operating characteristic curve (ROC-AUC), (B) runtime (in CPU Hour), and (C)
memory usage (in GB). Reticulation scenarios include solely non-deep reticulations, solely deep
reticulations, and a combination of both non-deep and deep reticulations. DACS method was run
using 20 CPUs. The percentages and arrows shown in red indicate the performance reduction with
the estimated networks as input compared to true network as input. The average and standard error
(SE) are calculated based on 20 replicates.
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Table 6.10 The performance comparison between true network and estimated networks as
input for DACS on ultra large datasets with 100 taxa. Reticulation scenarios include solely
non-deep reticulations, solely deep reticulations, and a combination of both non-deep and deep
reticulations. The measures include the area under the receiver-operating characteristic curve
(ROC-AUC), the area under the precision-recall curve (PR-AUC), runtime (in CPU Hour), and
memory usage (in GB). DACS method was run using 20 CPUs. The average and standard error
(SE) are calculated based on 20 replicates (represented as “average value ± SE value”).

Measure Ntaxa Reticulation Scenario True Estimated

ROC-AUC

100 1 non-deep 0.972±0.013 0.857±0.047
100 2 non-deep 0.960±0.018 0.839±0.034
100 3 non-deep 0.970±0.007 0.855±0.031
100 4 non-deep 0.941±0.015 0.827±0.028
100 5 non-deep 0.939±0.012 0.807±0.030
100 1 non-deep + 1 deep 0.936±0.020 0.758±0.033
100 2 deep 0.963±0.011 0.710±0.037
100 3 deep 0.950±0.019 0.717±0.031

PR-AUC

100 1 non-deep 0.916±0.038 0.671±0.093
100 2 non-deep 0.889±0.044 0.670±0.062
100 3 non-deep 0.891±0.028 0.713±0.065
100 4 non-deep 0.878±0.025 0.716±0.044
100 5 non-deep 0.850±0.032 0.657±0.058
100 1 non-deep + 1 deep 0.845±0.044 0.576±0.053
100 2 deep 0.920±0.020 0.465±0.057
100 3 deep 0.878±0.038 0.539±0.051

Runtime (CPU Hour)

100 1 non-deep 4.798±0.278 86.124±1.732
100 2 non-deep 10.435±0.458 188.392±5.733
100 3 non-deep 14.597±0.825 297.975±7.360
100 4 non-deep 19.411±0.957 473.023±13.245
100 5 non-deep 23.366±1.575 630.657±13.456
100 1 non-deep + 1 deep 12.319±0.706 160.655±5.159
100 2 deep 14.236±0.847 221.789±4.556
100 3 deep 20.436±0.726 493.052±6.947

Memory (GB)

100 1 non-deep 6.525±0.228 17.776±1.110
100 2 non-deep 8.239±0.421 15.309±1.105
100 3 non-deep 8.613±0.538 18.208±1.309
100 4 non-deep 8.892±0.446 20.868±1.493
100 5 non-deep 7.646±0.208 19.116±1.422
100 1 non-deep + 1 deep 15.141±0.825 16.707±1.477
100 2 deep 16.294±0.783 20.176±1.547
100 3 deep 17.224±0.959 16.658±1.905
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detailed comparisons of the performance of DACS when using a true network versus estimated

networks as input, on ultra-large datasets with 100 taxa.

Figure 6.8A displays the ROC-AUC values across various reticulation scenarios, including up

to three deep and five non-deep reticulations. DACS maintains high accuracy when true networks

are provided, while performance with estimated networks remains strong but shows a moderate

decline. The percentage differences, indicated above each pair, range from an 11.8% decrease in the

simplest scenario of one non-deep reticulation to a 25.7% decrease in the most complex scenario

of three deep reticulations. These results highlight DACS’s robustness but also underscore the

challenges posed by input uncertainty as network complexity increases.

Figure 6.8B illustrates the memory usage (in GB) for the two types of inputs across the different

scenarios. The results show a significant increase in memory consumption when estimated networks

are used, with the differences ranging from 10.3% to a staggering 172.4% depending on the scenario.

However, DACS remains operable even under the most demanding conditions. The largest increase,

observed in the one non-deep reticulation case, reflects the extra overhead required to process less

accurate input. Nevertheless, these results affirm that DACS can efficiently manage large-scale

inputs even when input quality varies.

Figure 6.8C presents runtime (in CPU hours) required for running DACS method, which

increases substantially when using estimated networks — by 1204.1% to 2339%, depending on

the scenario. The most extreme increase in runtime is observed in the scenario involving three

deep reticulations, where the computational burden more than doubles. This significant increase

in runtime underscores the computational challenges posed by estimated networks, particularly

in complex scenarios, and suggests that further optimizations or alternative approaches may be

necessary to maintain computational efficiency.

Overall, these findings demonstrate that DACS is capable of handling ultra-large datasets with

up to 100 taxa, even in the presence of complex reticulation patterns. While using estimated

networks incurs costs in accuracy, memory, and runtime, DACS remains applicable and scalable,

offering a practical solution for large-scale phylogenetic network analysis. When true networks
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are not available, researchers can still leverage DACS, with an understanding of the computational

trade-offs, particularly in scenarios with high complexity.

6.4.2 Mosquito Data Re-analysis

Figure 6.9 The introgression patterns of DACS on mosquito data. Introgressed tracts along the
genome are shown in megabases (Mb). Results are reported for the introgression from An. merus
to An. quadriannulatus.

Figure 6.10 The histograms of introgressed tract lengths by DACS on mosquito data. Intro-
gressed tract lengths are shown in megabases (Mb). Results are reported for the introgression from
An. merus to An. quadriannulatus.

We applied DACS to mosquito whole-genome data to infer introgressed genomic tracts from An.
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merus into An. quadriannulatus. The results revealed widespread introgression across all major

autosomes (Figure 6.9), with a particularly dense signal on chromosome arm 3L. This observation

is consistent with prior findings of pervasive autosomal introgression between An. merus and An.

quadriannulatus, especially in the ∼22 Mb 3La inversion region (Figure 4 from [152]). In our

results, this region is marked by high probabilities of introgressed tracts, suggesting nearly complete

replacement of the ancestral An. quadriannulatus sequence by its An. merus counterpart in this

genomic interval.

Figure 6.10 shows the distribution of inferred tract lengths. Most tracts are relatively short

(<1 Mb), but a small number of long tracts — up to ∼8 Mb — were also observed, indicating

potentially recent or large-scale introgression events. These patterns are consistent with a model

of both ancient and recent gene flow, with the longer tracts possibly reflecting lower recombination

rates, such as those expected in regions with historical inversions like 3La [152]. The extensive

and contiguous replacement observed in 3L supports the hypothesis that historical recombination

suppression facilitated the maintenance of a large introgressed haplotype.

6.4.3 Darwin’s Finch Data Re-analysis

We applied DACS to the 469 largest scaffolds of the Darwin’s finch genome, focusing on those

exceeding 100 kb in length (Figure 6.11 and Figure B.1-B.8 of Appendix B). This subset captures

the majority of genomic content relevant to introgression while excluding highly fragmented or low-

information scaffolds. In total, these 469 scaffolds represent a substantial portion of the genome’s

informative content.

The inferred tract length distribution (Figure 6.12) was highly skewed, with most tracts under

100 kb but a subset extending beyond 500 kb. This heterogeneity suggests both ancient and

recent introgression events: longer tracts are likely indicative of more recent gene flow or segments

maintained by positive selection; in contrast, more fragmented or shorter tracts, scattered throughout

various scaffolds, may reflect older events that have undergone increased recombination or simply

represent the lower bound of detection accuracy [158].

To explore potential biological relevance, we examined the genomic context of inferred tracts
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Figure 6.11 The introgression patterns of DACS on on top 1-50 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in megabases (Mb). Results are
reported for the introgression from An. merus to An. quadriannulatus.

across species (Figure 6.11). Several introgressed regions overlapped genes previously implicated

in finch morphology [154, 157]. Notably, we detected tracts overlapping 4 genes previously

associated with craniofacial development, beak morphology, and/or body size variation in mammals

or birds, including FGF12 (fibroblast growth factor 12), LRRIQ1 (leucine-rich repeats and IQ motif

containing 1), MSRB3 (methionine-R-sulfoxide reductase B3), and HMGA2 (high mobility AT-

hook 2). These signals were especially existed on scaffolds 172, 166, and 186, consistent with

previous reports of extensive hybridization and gene flow among Darwin’s finches [154, 157]. These

findings exemplify how integrative approaches such as DACS can reveal biologically meaningful

signals of introgression even in complex, reticulate clades.

116



Figure 6.12 The histograms of introgressed tract lengths by DACS on Darwin’s finch data.
Introgressed tract lengths are shown in kilobases (Kb).

6.5 Discussion and Conclusion

In this study, we introduced a novel divide-and-conquer and subsampling-based algorithm,

DACS, designed to detect introgression events in large phylogenomic datasets, even when a phylo-

genetic network is not initially available. Building upon the PHiMM framework, DACS integrates

FastNet-based network inference, subsampling, and statistical merging strategies to address the

scalability and accuracy limitations commonly encountered in introgression mapping.

Our simulation experiments demonstrated that DACS improves upon PHiMM both in terms

of inference accuracy and computational efficiency. Even under challenging reticulation scenarios

(e.g., multiple deep or non-deep reticulations), DACS consistently achieved higher ROC-AUC

and PR-AUC values than PHiMM. Moreover, it substantially reduced memory usage and runtime,

enabling analyses of datasets spanning up to 100 taxa—well beyond the practical limits of standard

phylogenetic network inference tools reported in the literature [14].
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These performance improvements can be attributed to two main algorithmic advances. First, the

divide-and-conquer component selectively focuses on smaller taxa subsets around each reticulation,

significantly lowering computational and memory overheads. Second, repeated subsampling further

stabilizes the posterior decoding probabilities, reducing biases that can arise from single-run

estimates. When coupled with FastNet’s ability to infer multiple candidate networks, DACS also

reduces the risk of conditioning on an inaccurate topology by weighting the final introgression

probabilities according to network quality.

Our simulation results additionally highlight important trade-offs. For instance, while DACS

achieves high accuracy when true networks are known, performance diminishes and computational

costs rise when networks must be estimated. In ultra-large analyses (e.g., 100 taxa), runtime

can increase substantially as the number of reticulation events grows. These findings indicate

that users should balance the accuracy gains from broader network exploration (i.e., considering

more candidate topologies) against the computational burdens that arise. Further methodological

optimizations—such as more efficient sampling or heuristic selection of candidate networks—may

help alleviate these challenges.

Beyond simulations, our empirical re-analyses of mosquito data and Darwin’s finch genomic

data underscore the practical utility of DACS. The method effectively processed real-world, large-

scale sequencing data, detecting introgression signals in a biologically rich context where hybridiza-

tion is known to play a significant role. By accommodating uncertain or unknown phylogenetic

networks, DACS offers a robust framework for researchers investigating gene flow across diverse,

understudied taxonomic groups.

Despite these advances, some limitations remain. The current pipeline relies on FastNet for

network inference, which may itself become computationally expensive for extremely large datasets

or highly reticulated evolutionary histories. Moreover, while repeated subsampling helps reduce

variance, the choice of sampling size and number of replicates can affect both accuracy and runtime,

necessitating careful parameter tuning. Addressing these issues—possibly via adaptive or dynamic

sampling strategies—could further improve the method’s efficiency.
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Future work will concentrate on further optimizing both the subsampling and merging steps,

broadening the framework to accommodate diverse reticulation types, and investigating refined

strategies for network inference in highly reticulate evolutionary contexts. We anticipate that

these developments will establish DACS as a powerful resource for evolutionary biologists and

genomics researchers seeking to elucidate the dynamics of introgression across increasingly large

and complex datasets.
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CHAPTER 7

APPLICATION OF DACS-BASED METHOD TO HORIZONTAL GENE TRANSFER
DETECTION IN METAGENOMICS

7.1 Introduction

In previous studies, we have developed DACS, an introgression detection tool that significantly

enhances the scalability of introgression analysis while preserving high accuracy in inference.

Building on this advancement, we propose to adapt and improve the DACS tool for Horizontal

Gene Transfer (HGT) detection in microorganisms. This extension represents a more complex

challenge due to the involvement of diverse taxa and intricate reticulations in HGT events, which

require more robust methods to handle the increased biological complexity.

The advent of high-throughput metagenomic technologies has revolutionized biological research

by generating vast amounts of sequencing data, with data volumes expanding exponentially. As

a result, there is an urgent need to apply introgression and HGT detection methodologies to

metagenomic datasets. However, this task is complicated by the inherent challenges of metagenomic

data, including noisy and partial sequences. While shotgun read data can be directly employed

for tasks such as taxon identification and functional annotation, the majority of metagenomic

workflows focus on reconstructing metagenome-assembled genomes (MAGs) through processes

such as filtering, assembly, and binning. MAGs, which exhibit high completeness, are considered

close representations of actual microbial genomes and can be utilized for downstream genomic

analyses.

Nevertheless, metagenomic datasets are often derived from heterogeneous microbial commu-

nities, sometimes containing over 10,000 distinct species [16]. This complexity, coupled with

noisy and incomplete sequence data, presents significant challenges when applying traditional

genomics-based methods to metagenomics. Existing tools and methods may perform suboptimally

due to these quality issues. Furthermore, many phylogenetic-based approaches, which have proven

valuable in genomic studies, have yet to be fully adapted or tested in the metagenomics domain.

In this study, we address the challenges associated with HGT detection in metagenomic datasets
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by applying our proposed method, DACS, to metagenomic studies. In this study, we aim to address

the challenges associated with HGT detection in metagenomic datasets by applying our proposed

method, DACS, to these data. After assembling sequencing reads into MAGs, we use DACS to

identify reticulate evolutionary events, such as introgression and HGT, even under challenging

model conditions characterized by noise, incomplete data, and large numbers of taxa. We also

compare the performance of DACS in metagenomics with its application to genomics, discussing

differences in terms of input requirements, accuracy, scalability, and the specific conditions under

which each method is most applicable.

7.2 Background

7.2.1 Metagenomics Definition

Traditionally, microbiology has relied on cultivating pure cultures within laboratory settings,

allowing for the sequencing of individual organisms’ genomes one at a time. However, this approach

only scratches the surface, as up to 99% of microorganisms elude cultivation, leaving us ignorant

of their very existence. This limitation in cultivation has distorted our perception of microbial

diversity and restricted our understanding of the vast microbial realm.

In contrast, metagenomics presents a refreshing perspective by directly sampling the genome

sequences of entire communities of organisms within their natural habitats, thus circumventing

the necessity for isolating and cultivating individual organisms in the lab. Metagenomics offers

a comparatively unbiased outlook not only on the community’s structure, encompassing species

richness and distribution, but also on the functional and metabolic potential of the community as a

whole.

Various habitats or environments, such as soil, sea, mud, forests, space, and even the hu-

man body, harbor distinct communities of microorganisms, comprising bacteria, viruses/phages,

microbial eukaryotes (e.g., yeast), as well as worms (e.g., helminths and nematodes).

7.2.2 Metagenomics Analysis

The field of metagenomics raises two fundamental questions [159]:

1. Who is there? — This question pertains to identifying the various species of microorganisms
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present in the sample.

2. What are they doing? — Here, the objective is to discern the functions and behaviors of the

identified microorganisms.

To address these questions, numerous strategies can be employed in the analysis of metage-

nomics shotgun data [160] (Figure 7.1, Table 7.1, and Table 7.2).

7.2.2.1 Quality filtering

A customary initial step involves running a range of computational tools for quality control

or filtering, including trimming sequencing adapters, discarding short and low-quality reads, and

eliminating reads with low-quality extremes or “N” characters based on quality.

Following quality control, the reads can be subjected to two potential paths: either assembled

into longer contiguous sequences known as contigs, or directly employed in taxonomic classifiers

or functional annotations (see Figure 7.1).

7.2.2.2 Assembly

Assembly, the process of merging collinear metagenomic reads from the same genome into

contiguous sequences called contigs, proves valuable in generating longer sequences, thereby

simplifying bioinformatic analysis compared to working with unassembled short metagenomic

reads.

Two primary approaches to assembly are available:

1. De novo assembly: This method involves joining sequenced fragments to generate contigs

without relying on a previously sequenced reference genome. The De Bruijn graph method

stands as the most popular De novo assembly paradigm and finds implementation in various

assemblers.

2. Comparative assembly: This approach utilizes a previously sequenced, closely related or-

ganism as a guide to aid the assembly process.

Following assembly, the quality of the obtained contigs can be assessed to facilitate the evalua-

tion and comparison of metagenome data, relying on alignments to close references as a basis for

assessment. The resulting contigs obtained after assembly can serve multiple purposes, directly
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contributing to gene prediction and functional annotation or playing a crucial role in the binning

process.

7.2.2.3 Binning

Binning algorithms undertake the task of grouping contigs or scaffolds that originate from the

same or closely related organisms. Once these contigs are clustered into bins, subsequent analyses,

such as taxonomic profiling and functional annotation, are performed on these bins rather than

individual contigs. Binning has proven to be a powerful approach capable of clustering contigs

even from rare species. Moreover, it has demonstrated the ability to recover draft genomes from

previously uncultivated bacteria [161].

There are two primary binning methods: taxonomy-dependent methods (supervised methods)

and taxonomy-independent methods (unsupervised methods).

1. Taxonomy-dependent methods (Supervised methods): These methods utilize known ref-

erence genomes or characteristics extracted directly from the nucleotide sequences (e.g.,

oligonucleotide frequencies, GC content) to map the contigs. They are based on aligning

metagenomic sequences to a reference. However, a drawback of taxonomy-dependent meth-

ods is the limited number of available sequenced genomes in current databases, which can

lead to challenges in the alignment process and result in longer computing times.

2. Taxonomy-independent methods (Unsupervised methods): In contrast, taxonomy-independent

methods do not rely on a reference genome and have become more popular due to their ver-

satility. These methods assume that contigs belonging to the same genome should exhibit

similar abundance and/or oligonucleotide composition within the same sample.

Following the binning process, reads can be mapped back to the bins, allowing each bin to

be reassembled. If the binning is successful, this step may produce longer contigs, enhancing the

overall quality of the assembled genomes [160]. Once the bins have been filtered for contamination

and completeness, they are referred to as metagenome-assembled genomes (MAGs) [162].
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7.2.2.4 Gene prediction or annotation

Gene prediction determines which metagenomic reads contain coding sequences. Once iden-

tified, coding sequences can be functionally annotated. Gene prediction can be conducted on

assembled or unassembled metagenomic sequences. One of the most straight forward ways of

identifying coding sequenced in a metagenome is to map metagenomic reads or contigs to a

database of gene sequences. De novo gene prediction, on the other hand, can potentially identify

novel genes. Here, gene prediction models, which are trained by evaluating various properties of

microbial genes (e.g., length, codon usage, GC bias), are used to assess whether a metagenomic

read or contig contains a gene without relying on sequence similarity to a reference database.

7.2.2.5 Functional annotation

Functional annotation in metagenomics serves the purpose of addressing the question “what are

they doing”. By examining the collective functions encoded in the genomes of the microorganisms

within a community, metagenomes shed light on the physiological activities of that community.

Once genome assembly, binning, and gene annotation are completed, numerous tools are avail-

able to carry out functional annotations. The conventional approach to identifying gene function

involves similarity searches using well-established tools like BLAST. Predicted peptides that are

classified as homologs of a protein family are annotated with the family’s function. Conducting this

analysis across all reads results in a community functional diversity profile. To refine the predicted

function, it is essential to utilize comprehensive databases (Table 7.1).

7.2.2.6 Taxonomic profiling

In metagenomics, the question of “who is there” is addressed through taxonomic profiling,

providing insights into the taxonomic composition of each analyzed sample. Taxonomic profiling

not only identifies the detected taxa in a sample but also estimates their relative abundances and

various diversity indices.

Traditionally, taxonomic profiling has been performed using marker gene analysis, a widely-

adopted approach that relies on specific genes conserved across related organisms to infer taxonomic

identities. This technique will be described in greater detail later.
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Several software tools are available to carry out taxonomic profiling using either MAGs or

contigs. These tools aid in the taxonomic classification and quantification of the microbial commu-

nities present in the samples (Table 7.1). In recent developments, methods have emerged to enable

genome profiling of MAGs at the strain level, providing more detailed insights into the diversity

within specific taxa. These tools offer a more detailed and precise understanding of the taxonomic

structure and strain-level diversity within microbial communities (Table 7.1).

7.2.2.7 Assembly-free approach

Assembled genomes offer evident advantages for subsequent functional analyses. Nonetheless,

obtaining accurate assemblies, bins, and even MAGs when dealing with metagenomic samples

remains a challenging task. Consequently, a considerable portion of the reads acquired from

metagenomic samples will remain non-assembled. Hence, approaches have been developed to

enable the direct analysis of raw metagenomic data for both taxonomic classification and functional

assignments.

Marker gene analysis represents one of the most straightforward and computationally efficient

methods for assessing the taxonomic diversity of a metagenome. This approach involves comparing

metagenomic reads to a database of taxonomically informative gene families, commonly known as

marker genes. By identifying metagenomic reads that exhibit homology to these marker genes, the

sequences are taxonomically annotated through sequence or phylogenetic similarity to the marker

gene database. The frequently employed marker genes are those found in ribosomal RNA (rRNA)

genes and protein-coding genes, which typically exist as single copies and are widespread across

microbial genomes. Notably, the 16S rRNA, 18S rRNA, and ITS genes are particularly esteemed

as excellent marker genes for bacteria, eukaryotes, and fungi, respectively.

Various methods have been developed for assesbly-free taxonomic classification in metage-

nomics, including both reference-based and reference-free approaches (Table 7.2). Reference-based

methods rely on reference databases for classification. On the other hand, reference-free methods

do not depend on reference databases and offer alternative approaches for taxonomic profiling in

metagenomic samples.
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When working directly with reads for annotation, conventional tools like BLAST often suffer

from slowness due to the substantial amount of data being processed. As a result, novel meth-

ods employing optimized strategies have emerged to expedite the process. Additionally, several

pipelines have been established to integrate some of these tools, enabling direct annotation from

raw sequencing data. These pipelines streamline the annotation process, providing efficient ways

to analyze metagenomic data directly from raw reads (Table 7.2).

7.3 Methods

7.3.1 Standalone DACS pipeline

DACS is an advanced algorithm specifically designed to detect introgression events in large

phylogenomic datasets efficiently by integrating a divide-and-conquer approach with a robust

subsampling strategy. Unlike the standard PHiMM pipeline, which requires a predefined network

as input, DACS leverages FastNet’s network-inference capabilities for large-scale analyses. DACS

aims to address two fundamental challenges in introgression detection. First, DACS reduces the

computational overhead associated with analyzing a large number of taxa simultaneously. Second,

rather than relying on a single, potentially erroneous phylogenetic network, DACS integrates

over multiple plausible topologies to minimize errors and improve the robustness of the results.

Benchmark analyses have demonstrated that DACS not only scales effectively to handle dozens

or even hundreds of taxa but also maintains high accuracy in identifying introgressed genomic

regions.

To apply DACS to metagenomic datasets, the process begins after assembling sequencing reads

into metagenome-assembled genomes (MAGs) (as described in Chapter 7.4). The DACS pipeline

is then run to perform introgression mapping on these MAGs under different model conditions,

which account for noise, incomplete data, and large numbers of taxa.

The divide-and-conquer and subsampling procedures in DACS require the user to set the

subsampling size and the number of subsampling replicates. By default, we use a subsampling size

of 7 and perform 10 subsampling replicates. During the subproblem-solving phase of DACS, the

PHiMM tool is used for introgression analysis. PHiMM runs with its default settings, which include
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Figure 7.1 Common analysis procedures for metagenomics data. First, raw reads undergo
quality control (QC) to remove low-quality bases and contaminants. The QC-controlled reads are
then assembled into longer contiguous sequences (contigs), which may be further evaluated and
filtered. Next, binned contigs are formed by grouping contigs that likely originate from the same
organism, yielding metagenome-assembled genomes (MAGs). Two major downstream analyses
follow: Taxonomic Profiling (“Who is there?”) involves comparing reads or contigs to reference
databases—either marker-gene based or more comprehensive sequence repositories—to classify the
taxa present and infer their evolutionary relationships. Functional Annotation (“What are they
doing?”) entails gene prediction and mapping predicted proteins to known families and pathways,
thereby identifying the biological roles and metabolic capabilities of the microbial community.
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Table 7.1 Common assembly-based tools for metagenomics data. This table compiles a broad
range of bioinformatics software used throughout the metagenomics workflow. Tools are organized
by major analytical steps: (1) Quality filtering—covering low-quality read trimming, contig as-
sessment, and bin validation; (2) Assembly—including traditional de novo strategies and ensemble
methods; (3) Binning—encompassing taxonomy-dependent (supervised), taxonomy-independent
(unsupervised), and ensemble approaches; (4) Gene prediction—distinguishing between prokary-
otic and eukaryotic prediction tools; (5) Functional annotation—highlighting commonly used
databases, aligners, and tools; and (6) Taxonomic profiling—covering broad (basic) as well as
strain-level taxonomic resolution. References are provided for each method/tool to offer further
guidance on specific algorithms, use cases, implementation details, performance characteristics,
and potential applications.

Category Subcategory Methods & Reference
Quality filtering Quality filtering for reads PRINSEQ [163], Trimmomatic [164], FastQC [165],

SeqKit [166], Cutadapt [167], BBDuk [168],
Sickle (v.1.33) [169]

Quality filtering for contigs MetaQUAST [170]
Quality filtering for bins CheckM [171], AMBER [172]

Assembly De novo assembly Minia [173], MetaVelvet [174], MetaVelvet-SL [175],
(Eg. De Bruijn graph methods) Ray Meta [176], IDBA [177], IDBA-UD [178],

MetaSPAdes [179], Megahit [180]
Ensemble assembly MetAMOS [181], MeGAMerge [182], GAM-NGS [183]

Binning Taxonomy-dependent CARMA3 [184], MetaPhyler [185], SOrt-ITEMS [186],
or Supervised PhyloPythiaS+ [187], Phymm/PhymmBL [188],

MG-RAST v.4 [189], MEGAN6 [190], TACOA [191],
IMG/M v.5.0 [192]

Taxonomy-independent Metawatt [193], AbundanceBin [194], LikelyBin [195],
or Unsupervised MBBC [196], Canopy [197], MetaCluster4 [198],

MaxBin2 [199], MetaBAT2 [200], CONCOCT [201],
COCACOLA [202], SCIMM [203], CompostBin [204]

Ensemble binning Binning-refiner [205], DAS Tool [206], ICoVeR [207],
MetaWRAP [208]

Gene prediction Prokaryotes MetaGeneMark [209], MetageneAnnotator [210],
Glimmer-MG [211], JGI (Joint Genome Institute) [212],
MetaProdigal [213], FragGeneScan [214]

Eukaryotes GeneMark.hmm [215, 216], AUGUSTUS [217],
Gnomon [218], SNAP [219]

Functional annotation Aligners BLAST [220]
Databases Pfam [221], Interpro [222], PRIAM [223], KEGG [224],

Metacyc [225], NCBI taxonomy [226]
Tools Prokka [227], DFAST [228], NCBI’s PGAP [229],

MetaErg [230]
Taxonomic profiling Basic MEGAN6 [190], DIAMOND [231], MAGpy [232],

MG-RAST v.4 [189, 233]
Strain level MetaMLST [234], StrainPhlAn [235], DESMAN [236],

MetaSVN [237]
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Table 7.2 Common assembly-free tools for metagenomics data. This table summarizes frequently
used software tools that bypass the need for assembly when analyzing metagenomic samples. Tools
are grouped into two main categories: (1) Functional annotation, which leverages fast aligners
(e.g., USEARCH, DIAMOND) and integrated pipelines (e.g., HUMAnN2, MGS-Fast) to directly
map reads to known databases for functional insights; and (2) Taxonomic profiling, subdivided into
reference-based methods (e.g., Kraken2, Centrifuge) that match reads to comprehensive taxonomic
databases, and reference-free methods (e.g., MetaPhlAn, PhymmBL) that infer taxonomy without
relying on external reference genomes. References are provided for each method/tool to offer further
guidance on specific algorithms, use cases, implementation details, performance characteristics,
and potential applications.

Category Methods Reference
Functional annotation Aligners USEARCH [238]

BLAT5 [239]
RAPSearch2 [240]
DIAMOND [231]
PALADIN [241]
GRASP2 [242]

Tools FUN4ME [243]
MOCAT2 [244]
MGS-Fast [245]
HUMAnN2 [246]
MetaStorm [247]
MG-RASTv.4 [189]
IMG/M v.5.0 [192]

Taxonomic profiling Reference-based MG-RASTv.4 [189]
MEGAN6 [190]
CARMA3 [184]
Kraken [248]
Clark [249]
Kraken2 [250]
Taxonomer [251]
Centrifuge [252]
Kaiju [253]
taxMaps [254]
Taxator-tk [255]

Reference-free PhylopythiaS+ [187]
PhymmBL [188]
MetaPhlAn [256]
MetaPhlAn2 [257]
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300 iterations for model parameter learning and 10 seperate runs for robustness. Additionally, users

need to assign a gene tree truncation size, denoted as 𝑘𝑛, for the hidden Markov model (HMM) in

PHiMM. Here, we set 𝑘𝑛 = 15, which corresponds to the default setting in PHiMM.

First of all, to make a fair comparison across different metagenomic scenarios and avoid potential

confounding effects from network uncertainty, we opt to use the true phylogenetic network as input

for DACS (obtained from Chapter 6.3.1). The required inputs for DACS thus include the aligned

MAG sequences 𝐴, where 𝐾 represents the number of sequences and 𝐿 is the number of alignment

columns, as well as a true phylogenetic network Ψ on the 𝐾 taxa. The input MAG alignment 𝐴

is constructed based on steps described in Chapter 7.4, while the true phylogenetic network Ψ is

directly from the DACS simulation studies in Chapter 6.3.1.

However, the ground-truth phylogenetic network is rarely available a priori in real-world data.

One of the key advantages of DACS is its ability to bypass the need for a predefined network

by employing FastNet [11] to infer one or more candidate phylogenetic networks from the input

sequence alignments. Therefore, we also run experiments with estimated phylogenetic networks by

FastNet as input for DACS (see steps described in Chapter 6.2.2.2). The required inputs for DACS

thus include the aligned MAG sequences 𝐴, where 𝐾 represents the number of sequences and 𝐿 is

the number of alignment columns, as well as a the number of reticulations 𝑅 (obtained from dataset

construction step in Chapter 7.4).

The output of DACS is a sequence of modified posterior decoding probabilities for the columns

of the input MAG alignment. These probabilities are crucial for identifying potential introgression

events and understanding the evolutionary dynamics within the dataset.

7.4 Materials

7.4.1 Simulation of reads

Preliminary results presented in this Chapter are derived entirely from fully synthetic reference

genomes; the 100-taxon datasets used for DACS analyses (see Chapter 6.3.1) do not correspond to

any real-world species. These datasets were generated in silico solely to explore method behavior

under extreme evolutionary complexity and should be interpreted as proof-of-concept rather than
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empirically validated findings.

First, we prepared reference genomes for simulating raw reads from two 100-taxon datasets

used in the DACS simulation analysis (see Chapter 6.3.1). Each dataset includes 100 distinct

genomes corresponding to different taxa or species, and each dataset consists of 20 replicates. The

first dataset was constructed under model condition involving 3 deep reticulations, and the second

dataset was constructed under model condition with 5 non-deep reticulations. These reticulation

conditions represent highly complex evolutionary scenarios, making them suitable for mimicking

real-world data. As a result, they present a challenging and robust foundation for our downstream

analyses.

For the 100 reference genomes from each replicate of each dataset, we simulated metagenomic

sequence reads using wgsim (available at https://github.com/lh3/wgsim), a widely-used simulator

initially developed as part of SAMtools [156]. This tool generates error-containing paired-end

reads. We simulated both short reads with a length of 250 bp as well as long reads with a length of

1000 bp, applying the default Illumina sequencing noise with a 2% error rate. All other parameters

were left at their default settings.

Since the reconstruction of genes involved in HGT is highly sensitive to sequencing depth and

the choice of assembler [258], we set the wgsim parameters to produce target DNA fragments by

randomly sampling from the reference sequences. We generated reads with varying coverage depth

levels: 5x, 10x, 20x, 30x, 50x, and 100x, to explore different levels of genetic divergence and their

effects on metagenomic assembly and downstream introgression/HGT detection. Coverage depth

(or read depth, sequencing depth) refers to the number of times a specific base (nucleotide) in the

DNA is read during the sequencing process.

Thus, we simulated both 250-bp and 1000-bp paired-end reads with coverage depths of 5x, 10x,

20x, 30x, 50x, and 100x for the two 100-taxon datasets under 3 deep reticulation condition or 5

non-deep reticulation condition.

131

https://github.com/lh3/wgsim


7.4.2 Metagenomic assembly and MAG construction

For each simulated read dataset, BBDuk [168] was used to remove Illumina adapters as well

as PhiX and other Illumina trace contaminants. After adapter removal, reads were trimmed using

Sickle (v.1.33) [169] with a default quality threshold of 20 (quality type set to Sanger, which

corresponds to CASAVA v.1.8 or higher). Each physical filter was treated as an independent

sample. Specifically, metagenomic reads from a single filter were assembled together, rather than

co-assembling reads from all filters or size fractions.

Assembly was performed using Megahit (v.1.2.9) [180] with the default parameters. with a

k-mer size cascade of 21, 29, 39, 59, 79, 99, 119, 141, 159, 179, 199, 219, 239, and 255 to

assemble quality controlled reads into contigs. Assembled contigs were then scaffolded using the

scaffolding function from IDBA-UD [178]. Only scaffolds greater than 1 kb in length were retained

for downstream gene prediction and MAG construction.

These scaffolds were aligned to corresponding reference genomes with BLASTN [220] using

the default setting. The BLASTN results were then filtered with an E-value cut-off of < 10−3, an

identity cut-off of > 90% and an aligned length cut-off of > 100 bp for the scaffolds. Note that

scaffolds can only be mapped to one reference genome (i.e., one species) with best E-value. These

stringent criteria ensured the high quality and relevance of the identified genes.

Subsequently, we derived MAGs by extracting all aligned scaffold segments corresponding to

reference genomes for simulated read datasets with different read length and coverage levels. Given

that our reference genomes were well-aligned, the resulting MAGs were also well-aligned, with

gaps representing missing DNA sites. To prepare the MAGs for input into the DACS method, we

removed these gap regions, as DACS requires a complete alignment with no gaps.

7.5 Results

Figure 7.2, Figure 7.3, and Table 7.3 summarize the effects of read length (250-bp vs. 1000-bp)

and read sequencing depth (5×, 10×, 20×, 30×, 50×, and 100×) on the accuracy of detecting reticulate

events using DACS. Performance was evaluated across two simulated 100-taxon metagenomic

datasets, each modeled under either 5 non-deep or 3 deep reticulations, using both true and
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estimated phylogenetic networks as input.

Across all conditions, both the area under the receiver-operating characteristic curve (ROC-

AUC) and the completeness of the reconstructed metagenome-assembled genomes (MAG coverage)

improved steadily with increasing read coverage depth, regardless of read length or reticulation

complexity. At low read depths (5×–10×), assemblies from short reads (250-bp) generally produced

slightly higher ROC-AUC values than those from long reads (1000-bp). For example, in the 5 non-

deep reticulation scenario with true network as input (Figure 7.2A), the mean ROC-AUC at 5x

read depth was 0.926 for 250-bp reads and 0.915 for 1000-bp reads. However, as read depth

increased beyond 20×, the differences between the two read lengths diminished, with both read-

length assemblies converging on ROC-AUC values around 0.933-0.935. By 100x read depth,

short- and long-read assemblies performed nearly identically (both at approximately 0.933-0.934

ROC-AUC), and both approached the “True” reference condition (0.939), in which DACS was run

directly on the original reference genomes without any assembly. This same trend was reflected in

MAG coverage, which neared 100% for all assemblies once read coverage depth reached 50x and

above.

When estimated networks were used instead of true networks, a consistent drop in ROC-AUC

was observed across all settings (Figure 7.3), highlighting DACS’s sensitivity to phylogenetic

inference accuracy. For the 5 non-deep reticulation model at 5× depth, ROC-AUC dropped to

0.760 for 250-bp reads and 0.749 for 1000-bp reads. The decline was more pronounced in the

3 deep reticulation model, where ROC-AUC at 5× depth fell to 0.671 (250-bp) and 0.661 (1000-

bp). Although performance improved with increasing depth, the gap between true and estimated

network inputs remained evident. Even at 100× coverage, the ROC-AUC under estimated networks

remained ∼0.717–0.807 — substantially lower than ∼0.939–0.950 observed with true networks.

The 3 deep reticulation model posed greater challenges overall, with slightly reduced ROC-AUC

and MAG coverage at low to moderate depths compared to the 5 non-deep reticulation model. This

suggests that deeper reticulate events are more difficult to resolve, particularly when assemblies are

incomplete or networks are inferred. Nonetheless, once coverage reached 30× or more, DACS was
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able to recover high-quality MAGs and achieve reliable HGT detection, even in the presence of

complex evolutionary histories.

Overall, these findings demonstrate that DACS maintains robust performance in identifying

HGT/introgression events under both shallow and deep reticulation models as well as under both

true and estimated networks as input once moderate (≥20-30x) coverage depths are reached. The

250-bp assemblies often offered slightly better early-stage performance at 5-10x coverage, because

the long-read assembly is more difficult and challenging. But the gap between short- and long-read

assemblies closed quickly with increasing coverage, indicating that both read lengths can achieve

accurate HGT detection at moderate to high coverage depths.

7.6 Discussion and Conclusion

In this study, we investigated the performance of our DACS-based approach for detecting

horizontal gene transfer (HGT) in metagenomic datasets under a variety of read lengths (250-bp vs.

1000-bp), coverage depths (5x, 10x, 20x, 30x, 50x, and 100x), input phylogenies (true vs. estimated

networks) and reticulation complexities (3 deep vs. 5 non-deep reticulations). Our results show that

coverage depth is a crucial determinant of both reconstructed MAG completeness and accuracy in

detecting reticulate events. While short reads exhibited slightly better in ROC-AUC at low coverage

(5-10x), the gap between short- and long-read assemblies diminished as coverage increased, and

both achieved near-reference-level accuracy at coverage depths of 20-30x and higher.

One potential explanation for the early lead of short reads under low coverage is that shorter

reads may assemble more robustly when read coverage is sparse, possibly because the fragmented

sequence data are less prone to errors in contig assembly. Conversely, long-read assemblies

require sufficient coverage to resolve repetitive regions, complex structural variations, and other

complications that can prevent accurate contig construction. Once coverage exceeds a certain

threshold (in this study, about 20-30x), both short and long reads form sufficiently complete and

accurate assemblies, yielding nearly indistinguishable performance in HGT detection.

We also observed that DACS consistently achieved higher accuracy when using true networks

as input, highlighting the method’s sensitivity to the quality of phylogenetic inference. Even at high
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Figure 7.2 The comparison of different read lengths of 250-bp and 1000-bp and coverage
depths of 5x, 10x, 20x, 30x, 50x, and 100x when running DACS with true network as input
on both 100-taxon datasets under model conditions with (A) 5 non-deep reticulations and (B)
3 deep reticulations. “True” means results directly on the reference genomes. ROC-AUC (left
y-axis, bars) and MAG coverage (%) (right y-axis, dash lines) as functions of read coverage depths.
Red bars/lines represent for read length of 250-bp, and blue bars/lines for read length of 1000-bp.
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Figure 7.3 The comparison of different read lengths of 250-bp and 1000-bp and coverage
depths of 5x, 10x, 20x, 30x, 50x, and 100x when running DACS with estimated networks as
input on both 100-taxon datasets under model conditions with (A) 5 non-deep reticulations
and (B) 3 deep reticulations. “True” means results directly on the reference genomes. ROC-AUC
(left y-axis, bars) and MAG coverage (%) (right y-axis, dash lines) as functions of read coverage
depths. Red bars/lines represent for read length of 250-bp, and blue bars/lines for read length of
1000-bp.
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Table 7.3 The comparison of different read lengths of 250-bp and 1000-bp and coverage depths
of 5x, 10x, 20x, 30x, 50x, and 100x on both 100-taxon datasets under model conditions with
5 non-deep reticulations and 3 deep reticulations. The measures include the area under the
receiver-operating characteristic curve (ROC-AUC) and MAG coverage (%). DACS was run twice
with true network or estimated networks as input. “True” means results directly on the reference
genomes. The average and standard error (SE) are calculated based on 20 replicates (represented
as “average value ± SE value” or only “average” for runtime).

Dataset Read length Read Coverage Depth MAG coverage (%) ROC-AUC
True Network Estimated Networks

5 non-deep

250-bp

5x 90.467 0.926±0.014 0.760±0.028
10x 93.747 0.927±0.015 0.778±0.027
20x 95.821 0.931±0.013 0.788±0.028
30x 97.877 0.933±0.016 0.789±0.022
50x 98.845 0.935±0.015 0.792±0.026
100x 99.885 0.933±0.011 0.799±0.029
True 100.000 0.939±0.012 0.807±0.030

1000-bp

5x 90.225 0.915±0.013 0.749±0.028
10x 91.486 0.914±0.015 0.760±0.027
20x 95.689 0.930±0.015 0.784±0.026
30x 97.773 0.932±0.014 0.785±0.025
50x 98.797 0.934±0.014 0.789±0.024
100x 99.801 0.933±0.015 0.798±0.030
True 100.000 0.939±0.012 0.807±0.030

3 deep

250-bp

5x 91.484 0.927±0.018 0.671±0.022
10x 92.790 0.931±0.018 0.680±0.025
20x 93.803 0.939±0.018 0.699±0.029
30x 93.816 0.941±0.023 0.701±0.029
50x 97.836 0.947±0.018 0.706±0.026
100x 98.840 0.949±0.018 0.710±0.030
True 100.000 0.950±0.019 0.717±0.031

1000-bp

5x 88.266 0.920±0.018 0.661±0.028
10x 91.508 0.929±0.018 0.671±0.023
20x 93.702 0.937±0.019 0.698±0.028
30x 93.747 0.939±0.020 0.700±0.027
50x 97.797 0.946±0.018 0.700±0.026
100x 97.797 0.947±0.015 0.706±0.025
True 100.000 0.950±0.019 0.717±0.031
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read depth, the use of estimated networks introduced noticeable performance degradation. This

observation suggests that improvements in phylogenetic network inference methods could further

enhance the predictive accuracy of DACS and related downstream analyses.

Despite the increased complexity of the 3 deep reticulation model compared to the 5 non-deep

reticulation model, DACS demonstrated robustness across varying levels of reticulation complexity

if the assembly quality is adequate. In both scenarios, coverage depth remained the key driver

of improved MAG coverage and ROC-AUC, underscoring the importance of sufficient sequencing

effort when detecting subtle evolutionary events such as introgression or HGT. Our results also

highlight that even complex reticulate events are tractable with a carefully assembled metagenome,

provided there is adequate depth of coverage.

Although this study used simulated reads from known reference genomes, real-world metage-

nomic datasets often introduce additional complexities such as uneven taxon abundances, incom-

plete reference databases, and the possibility of assembling novel microbial lineages. Future efforts

should further evaluate the DACS method on real metagenomic datasets that capture the full diver-

sity and uneven coverage typically encountered in microbial communities. Additional refinements

to assembly strategies, binning algorithms, and data integration approaches may further enhance

the accuracy of HGT detection by improving the resolution and completeness of MAGs.

Our application of the DACS-based framework to simulated metagenomic datasets demonstrates

its robustness in identifying HGT and introgression events under a wide range of coverage depths

and read lengths. Despite the initial advantage of shorter reads under very low coverage, both read

lengths can ultimately achieve similar and high accuracy in detecting complex reticulate events

once coverage depth reaches approximately 20-30x. These findings emphasize the critical role

of coverage depth in assembling high-quality MAGs, which in turn drives more reliable HGT

detection. The results further underscore the value of DACS for metagenomic research, offering a

scalable and accurate tool that can be adapted to diverse microbial communities characterized by

extensive reticulation and genomic complexity.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The dissertation have introduced innovative techniques that push the boundaries of what is

achievable in introgression studies. The research has laid a solid foundation for advancing the study

of introgression by offering novel methods and insights that effectively address the limitations of

existing approaches. In particular, our work tackles critical scalability issues and enhances the

accuracy of phylogenetic analyses. These advancements not only make significant strides towards

understanding genetics and biology, but also provide valuable tools for a wide range of biological

and medical applications.

A central achievement of this research is the development of PHiMM, an introgression detection

algorithm designed to handle genomic datasets containing dozens of DNA sequences. PHiMM

employs a novel coalescent-based approximation strategy combined with a Hidden Markov Model

(HMM) framework. This integration effectively reduces model complexity while preserving de-

tection accuracy. Comparative studies with existing state-of-the-art methods demonstrated that

PHiMM achieves substantially better runtime and memory usage than PhyloNet-HMM, maintain-

ing inference accuracies on par with or surpassing established benchmarks.

We also employed SERES as a data perturbation technique to enhance introgression inference

and learning. Simulation experiments demonstrated that combining the SERES resampling ap-

proach with PHiMM substantially improves introgression inference accuracy under various model

conditions compared to standalone PHiMM. Although the combined SERES+PHiMM method

results in longer runtimes, it maintains similar memory usage compared to standalone PHiMM,

demonstrating its potential to “boost‘’ PHiMM’s inference accuracy.

Recognizing that reliable introgression detection is intrinsically linked to accurate phyloge-

netic network inference, we extended PHiMM to DACS. Unlike traditional methods that require a

known network topology, DACS integrates de novo network inference with introgression detection,

enabling more flexible and automated analysis. We further improved scalability by leveraging
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divide-and-conquer and subsampling techniques, allowing large-scale genomic datasets to be par-

titioned into smaller, more manageable subproblems. These enhancements collectively ensure

that DACS is both computationally tractable and capable of producing highly accurate results in

ultra-large data contexts.

Given the rising importance of metagenomic studies — particularly those involving complex

microbial communities — our work underscores the potential of applying DACS to metagenomic

datasets. Through the construction of metagenome-assembled genomes (MAGs), we demonstrated

that our methods can be adapted to identify reticulate evolutionary events, such as introgression or

horizontal gene transfer (HGT), even in the presence of substantial noise and partial data. These

advancements underscore the growing relevance of network-based phylogenetics in metagenomics

and pave the way for future research that further refines these approaches for real-world applications.

8.2 Future Work

While the methodologies developed in this dissertation provide a robust framework for intro-

gression detection, several key avenues remain open for further investigation.

An important extension involves distinguishing adaptive introgression from the broader spec-

trum of introgression events. In adaptive introgression, relatively small genomic regions — trans-

ferred from a donor species — confers a selective advantage to the recipient species. This in-

vestigation is of great importance because adaptive introgression can broaden genetic diversity

and promote species adaptations to various environments. Many methods have been developed

to detect adaptive introgression [259–261]. With the rapid progress in deep learning techniques,

Gower et al. [262] proposed a convolutional neural network (CNN)-based approach to jointly

model introgression and positive selection. However, this method requires the use of simulation

data to train the network, with certain parameters and models needing to be specified a priori. This

necessitates the experience and expertise of users to avoid CNN performance declines caused by

misspecifications. Inspired by this method, integrating generative adversarial networks (GANs)

[263] into the adaptive introgression detection process may help allow the model to learn in a more

unsupervised or semi-supervised manner. Attention-based mechanisms could also be introduced
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to incorporate expert knowledge without significantly constraining model flexibility.

Furthermore, making these methods more accessible to a wider audience is a key priority.

Developing open-source software packages with user-friendly interfaces and thorough documenta-

tion will enable researchers from different fields—such as ecology, epidemiology, and evolution-

ary biology—to apply these approaches in their own work. Improved support for reproducible

research practices, including containerized computing environments and version-controlled work-

flows, would further promote transparency and foster broader use of these tools.

Overall, these prospective directions aim to deepen our understanding of reticulate evolution

across myriad biological contexts. By harnessing methodological advances in non-tree-like phylo-

genetics, machine learning, and large-scale data analysis, future work has the potential to further

elucidate the complex processes that shape biodiversity and drive adaptation in both eukaryotic and

prokaryotic lineages.
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APPENDIX A

THE COMPARISON OF INTROGRESSION PATTERNS BETWEEN PHYLONET-HMM
AND PHIMM ON EACH CHROMOSOME OF MOUSE DATA.

(A) PhyloNet-HMM

(B) PHiMM

Figure A.1 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 1. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.2 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 2. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.3 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 3. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.4 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 4. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.5 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 5. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.6 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 6. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.7 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 7. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.8 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 8. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.9 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 9. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.10 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 10. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.11 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 11. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.12 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 12. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.13 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 13. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.14 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 14. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.15 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 15. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.16 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 16. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.17 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 17. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.18 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 18. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.19 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome 19. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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(A) PhyloNet-HMM

(B) PHiMM

Figure A.20 The comparison of introgression patterns between (A) PhyloNet-HMM and (B)
PHiMM on chromosome X. Introgressed tracts along the genome are shown in megabases (Mb).
Results are reported for the introgression from donor M. spretus samples to the recipient M. m.
domesticus samples (two Spanish mice and six German mice). Each M. m. domesticus sample
is shown with two haploid genomes (the above bar is haplotype 1, while the below represents
haplotype 2). This figure comes from Wuyun et al. [122].
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APPENDIX B

THE INTROGRESSION PATTERNS OF DACS ON DARWIN’S FINCH DATA.

Figure B.1 The introgression patterns of DACS on top 51-100 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in megabases (Mb).
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Figure B.2 The introgression patterns of DACS on top 101-150 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in megabases (Mb).
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Figure B.3 The introgression patterns of DACS on top 151-200 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in kilobases (Kb).
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Figure B.4 The introgression patterns of DACS on top 201-250 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in kilobases (Kb).
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Figure B.5 The introgression patterns of DACS on top 251-300 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in kilobases (Kb).
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Figure B.6 The introgression patterns of DACS on top 301-350 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in kilobases (Kb).
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Figure B.7 The introgression patterns of DACS on top 351-400 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in kilobases (Kb).
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Figure B.8 The introgression patterns of DACS on top 401-469 largest scaffolds of Darwin’s
finch data. Introgressed tracts along the genome are shown in kilobases (Kb).
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