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ABSTRACT 

The Laurentian Great Lakes are the largest system of connected surface water lakes in the 

world. Fresh surface and groundwater totaling approximately 27,000 km3 stored within the Great 

Lake Basin are a critical resource for the region and the rest of North America. However, 

anthropogenic contaminants, invasive species, increasing water use demands and a changing 

climate threaten these water resources in the Great Lakes Basin. To mitigate these threats, a better 

understanding of the processes controlling water resources, and hydrologic modeling frameworks 

capable of simulating past, current and future conditions are required. This dissertation seeks to 

apply both of these methods to study water quality and groundwater-surface water interactions 

within the state of Michigan region. Two primary research questions are addressed in this 

dissertation. First, what are the landscape and hydrologic factors which control stream nutrient 

concentrations? This question is addressed in Chapter 2 through the analysis of regional scale 

repeated synoptic stream chemistry sampling data and statistical analysis. Second, how are 

groundwater dynamics linked to Great Lakes lake levels, either indirectly through regional climate 

or directly through boundary condition effects? This topic is investigated in Chapters 3 and 4 using 

a coupled, process-based surface and groundwater model. Results from Chapter 2 suggest that 

landscape characteristics are a powerful predictor of stream chemistry early in the year during 

snowmelt, but that the landscape becomes decoupled from stream chemistry as the seasons 

progress. Relationships between streamflow and water chemistry during the spring and summer 

high flow events indicate distinct water chemistry patterns despite similar flow conditions when 

compared to baseflow. Chapter 3 investigates how groundwater storage changed during a period 

of extreme lake level variations. Simulations of surface hydrology and groundwater elevations 

from 2000-2023 using the Landscape Hydrology Model indicate that groundwater elevations 

increased along with lake elevations between 2013-2020, but that the onset of these storage 

increases lagged the onset of lake level changes by 2-4 years. In Chapter 4, this model is applied 

to investigate how coastal wetland connectivity to surface and groundwater changes as lake and 

groundwater elevations fluctuate. Modeling analysis suggests that rising groundwater elevations 

between 2000-2023 increased the amount of connected coastal wetland area by 18% when 

compared to estimates of surface water connectivity change alone.  Finally, Chapter 5 provides a 

summary and proposes a method for more closely integrating field data collection and hydrologic 

models to groundwater nutrient transport through the use of a model-experiment framework
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CHAPTER 1: INTRODUCTION 

The Laurentian Great Lakes are the largest system of freshwater connected lakes in the 

world. The Great Lakes Basin (GLB) covers portions of eight U.S. states and the Canadian 

province of Ontario, home to more than 30 million people, or ~10% of the US and ~30% of the 

Canadian population (Gronewold et al., 2013). Approximately 40 million people in the US and 

Canada get their drinking water from the GLB (Polidori et al., 2024). The Great Lakes region 

contains a diverse range of ecosystems including boreal forests, prairies, coastal wetlands and 

aquatic systems which support over 3,500 species of plants and animals (Michigan Sea Grant). 

The water resources of this region are a major driver of economic productivity contributing 

through sectors including tourism, manufacturing, shipping, and commercial fishing (NOAA, 

2020).  

Together the five lakes, Superior, Michigan, Huron, Erie and Ontario, contain 

approximately 23,000 km3 of surface water or about 21% of the world’s available freshwater 

(Hunter et al., 2015, Norton et al., 2019). In addition to the abundant surface waters, the GLB also 

contains about 4,000 km3 of groundwater (Grannemann et al., 2010). The modern Great Lakes 

were formed by the advance and retreat of glaciers during the Quaternary Period (Larson and 

Schaetzl, 2001). These glaciers also deposited glacial sediments which define surficial geology in 

the southern portion of the basin. There is significant groundwater storage in these sediments, and 

in underlying permeable limestone and sandstone bedrock units (Feinstein et al., 2010, 

Grannemann et al., 2010). Groundwater is an important source of drinking water in the basin, 

providing water to both large urban areas and rural communities. It also provides up to 90% of 

streamflow (Neff et al., 2005), and contributes ~45% of the total inputs to the Great Lakes both 

directly through discharge to the lakes and indirectly as stream baseflow (Neff and Nichols, 2005). 

The Great Lakes play an important role in the climate of the region. Their large surface area and 

thermal inertia result in significant water recycling (evaporation, condensation, and precipitation) 

within the basin. This results in distinct lake effect precipitation patterns of concentrated snow and 

rainfall on the southern and eastern sides of the lakes (Notaro et al., 2013). However, the quality 

and quantity of ground and surface water resources in the Great Lakes Basin, are threatened by 

changing climate and land use, increased water use demands, and the release of anthropogenic 

contaminants.   

The release of nitrogen and phosphorus compounds into the environment has resulted in 
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elevated nutrient concentrations in rivers (Singh et al., 2023), groundwater (Hamlin et al., 2022), 

wetlands (Hannah et al., 2020), inland lakes, and the Great Lakes (Ho and Michalak, 2015). 

Eutrophic conditions in Lake Erie have resulted in anoxia and harmful algal blooms, impacting 

aquatic ecosystems and municipal water resources for coastal human communities (Ho and 

Michalak, 2015). Nitrate leaching to groundwater has resulted in the contamination of drinking 

water wells in Michigan’s Lower Peninsula, threatening human health (Hamlin et al., 2022). 

Considerable work has been done to study anthropogenic nutrient contamination, ranging from 

intense monitoring at the field to watershed scale, to regional scale modeling and data synthesis 

efforts (Byrnes et al., 2020, Gentry et al., 1998, Knapp et al., 2020, Knapp et al., 2022, Robertson 

et al., 2019). Despite these efforts, heterogeneous nutrient sources, transport and cycling processes 

prevent effective management (Van Meter et al., 2018). An increased understanding of both 

seasonal and spatial variability in nutrient concentrations, and the role of legacy nutrients delivered 

by groundwater flow paths with long transit times are needed to better address this issue.  

Recent climate shifts have resulted in historic changes in lake levels (Gronewold et al., 

2023). These rapid changes in lake levels have altered coastal ecosystems, impeded commerce and 

damaged coastal infrastructure (Gronewold et al., 2013, Theuerkauf and Braun, 2021). However, 

the effects of these recent climate shifts on terrestrial hydrology and groundwater dynamics within 

the basin are largely unquantified. Significant efforts have been undertaken to understand 

groundwater dynamics within the GLB, through a combination of observational data and 

hydrologic models. The scope of these investigations range from the county (Luukkonen et al., 

2004 , Holtschlag et al., 1998), and watershed (Curtis et al., 2019, Hunt et al., 2013) to the Lake 

Michigan Basin scale (Feinstein et al., 2010). Yet, groundwater is largely underrepresented in 

regional scale hydrologic models, including those used for operational forecasting of climate, 

terrestrial hydrology, and lake levels in the Great Lakes (Fry et al., 2020). An improved 

understanding of how groundwater has responded to regional climate shifts, and its interactions 

with the Great Lakes, are necessary to effective water resource management within the GLB.  

This dissertation seeks to better understand the processes controlling water quality and 

water resources in the GLB, through a combination of field data and hydrologic models, with a 

particular focus on groundwater-surface water interactions. Two major questions are addressed 

herein. First, what are the landscape and hydrologic factors that control stream nutrient 

concentrations? This topic is addressed though statistical analysis of regional scale repeated 
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synoptic stream sampling data. Second, how are groundwater dynamics linked to Great Lakes 

levels, either indirectly through regional climate or directly though boundary condition effects 

along the Great Lakes coastline? This topic is investigated using a coupled, process-based surface 

and groundwater model. Both of these investigations are focused on the state of Michigan region. 

Michigan, comprised of the Upper and Lower Peninsulas, is located in the central portion of the 

GLB, and has coastline along four of the five Great Lakes. Michigan has strong gradients in 

climate, ecosystems, hydrology, surficial geology and land use that encompasses conditions 

spanning a large portion of the GLB. The following three chapters of this dissertation detail these 

investigations.  

Chapter 2 studies how water quality varies across seasons within Michigan’s Lower 

Peninsula as a result of landscape characteristics and hydrological processes. Specifically, data 

from a repeated synoptic stream sampling campaign which targeted specific hydrologic conditions 

are used to understand how relationships between land cover and stream nutrient concentrations 

vary across seasons and flow conditions.  

While developing this work, it became clear that the role of hydrologic processes in 

determining stream chemistry could not be fully characterized with field data alone; a hydrologic 

modeling framework capable of describing both surface and subsurface processes was needed. 

Thus, a coupled surface and groundwater model was developed to quantify how the sources of 

streamflow changed though time within a given catchment, and how this may affect water quality. 

During the development of this model, the Great Lakes reached historic highs following a period 

of unprecedentedly rapid water level increases. This phenomenon raised questions about how 

groundwater storage and discharge had changed during this period, and about the degree to which 

rising lake levels directly affect groundwater.  

Subsequently, Chapters 3 and 4 focus on simulating groundwater at the regional scale 

within the GLB. Chapter 3 describes the development of this regional scale hydrology model, and 

it' use to quantify how groundwater storage has changed across the state of Michigan region from 

2000-2024. This is the first regional scale, coupled surface and groundwater modeling effort to 

specifically investigate changes in groundwater storage coincident with the recent lake level 

variability. The fourth Chapter of this dissertation focuses on characterizing the direct interactions 

between the Great Lakes and the adjacent groundwater system, and how this may have affected 

coastal wetland habitats during swings in lake levels. 
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 Finally, Chapter 5 concludes this dissertation and describes how the insights and tools 

develop here could be applied in a model-experiment (ModEx) framework to improve our 

understanding of stream water quality. The ModEx approach consists of closely integrating field 

data during model development, and use of the model to develop targeted filed data collection 

efforts. Specifically, it details a proposed hydrologic model-informed field sampling effort to 

better characterize the role of groundwater nutrient legacies in surface water quality. 

. 
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CHAPTER 2: SEASONALLY VARIABLE RELATIONSHIPS BETWEEN LANDSCAPE 

CHARACTERISTICS, HYDROLOGY, AND STREAM NUTRIENT CONCENTRATIONS 

REVEALED THROUGH STRATEGIC SYNOPTIC SAMPLING 

Abstract 

The spatial and temporal heterogeneity of nutrient (nitrogen (N) and phosphorus (P)) 

sources, cycling, and transport poses a significant barrier to accurately predicting their 

concentrations and impedes effective water quality management. A better understanding of how 

nutrient sources, landscape characteristics, and hydrologic processes affect nutrient fluxes is 

needed to improve predictive capability. To investigate these seasonal dynamics, stream chemistry 

data from 64 Great Lakes tributaries across Michigan’s Lower Peninsula were collected through 

synoptic sampling efforts conducted during three hydrologic conditions: snowmelt, post-planting 

summer rainfall, and fall baseflow. Observed concentrations of N and P species increased from 

north to south in the study region, corresponding to increasing urban and agricultural land uses. 

On average, concentrations were highest during snowmelt, elevated during summer rainfall, and 

lowest during baseflow. Linear models describing stream nutrient concentrations using landscape 

characteristics performed best for snowmelt samples (R2 ≤ 0.83), moderately for summer rainfall 

(R2 ≤ 0.73), and most poorly for baseflow (R2 ≤ 0.70). This progressive decoupling between 

landscape characteristics and stream nutrient concentrations indicates a regime shift from 

landscape-dominated concentrations in the Spring, to stream process-dominant in the late summer 

and early fall. This shift corresponds to changing concentration-discharge relationships and aligns 

with reduced influence of surface runoff relative to groundwater discharge, decreased nutrient 

availability, and increased biogeochemical cycling as the seasons progress. Explicitly considering 

this seasonal switch from landscape-dominated to instream process-dominated nutrient controls 

may provide insights to predict nutrient delivery to waters impacted by eutrophication. 
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1. Introduction 

The global development of agricultural, industrial, and wastewater infrastructure in 

response to growing human population has resulted in release of nutrients (specifically nitrogen 

(N) and phosphorus (P)) to the landscape far in excess of natural conditions (Byrnes et al., 2020, 

Carey and Migliaccio 2009, Hamlin et al., 2022, Vitousek et al., 2009). These anthropogenic 

nutrients pose a significant threat to the quality of groundwater and surface water in developed 

regions across the globe (Vörösmarty et al., 2010). This threat is widely recognized and has been 

extensively studied, with recent examples from North America (Basu et al., 2023, Wan et al., 

2023), South America (Figueiredo et al., 2020), South Africa (Mararakanye et al., 2022), India 

(Bowes et al., 2020), Europe (Ebeling et al., 2021), China (Zhang et al., 2019), and New Zealand 

(Rogers et al., 2023). Nutrient accumulation in surface waters has caused increases in the 

occurrence and severity of anoxic conditions and harmful algal blooms in regions including the 

Gulf of Mexico (Rabalais et al., 2002), Chesapeake Bay (Boesch et al., 2001) and Lake Erie (Ho 

and Michalak, 2015). Anthropogenic nutrients also accumulate in the subsurface, contaminating 

shallow groundwater (DeSimone et al., 2014, Knoll et al., 2019, Lockheart et al., 2013, Nolan et 

al., 1997) and posing a threat to drinking water and human health, especially in heavily agricultural 

regions (Hamlin et al. 2022, Pennino et al., 2017, Ward et al., 2018). Tackling this problem has 

been hindered by factors including generally unknown nutrient inputs, complex biogeochemical 

cycles, and species-dependent transport via both surface and groundwater pathways—all of which 

vary seasonally. Further complicating this issue are the long lag times between nutrient release and 

delivery along subsurface flowpaths, which can provide sustained nutrient inputs to surface waters 

even after nutrients inputs have been reduced (Martin et al., 2021, Van Meter et al., 2018).  

Advancing the capability to accurately describe and predict landscape nutrient fluxes to surface 

waters requires a deeper understanding of relationships among these landscape, hydrologic and 

biogeochemical processes.  

Studying patterns in stream nutrient concentrations across gradients in landscape 

characteristics and hydrologic conditions through careful sampling campaign design can enhance 

this understanding. Stream catchments integrate seasonally variable landscape inputs, runoff 

flowpaths, solute transport mechanisms and nutrient cycling processes across the landscapes they 

drain. Stream chemistry also provides an ecologically relevant monitoring and management target, 

as rivers are important natural ecosystems, and a major conduit by which nutrients are transported 
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from uplands to wetlands, inland lakes, and ultimately the Great Lakes coastline (Mooney et al., 

2020, Robertson and Saad, 2011). As a result, measuring and monitoring stream chemistry has 

been, and continues to be, a powerful tool to understand how the landscape affects water quality. 

Land use and land cover determine the nutrient sources within a watershed (Hamlin et al., 

2020, Luscz et al., 2015, 2017), which are a strong control on observed surface water nutrient 

concentrations (Allen, 2004, Robertson and Saad, 2011). Specifically, the amount of agricultural 

and urban areas within a watershed have been correlated to increased nutrient concentrations in 

surface waters systems ranging from headwater streams in Oregon (Poor and McDonnel, 2007) to 

reservoirs in the Missouri River basin (Jones et al., 2004). Conversely, the presence of forested 

areas is correlated with decreased stream nutrient concentrations, due to lower nutrient inputs 

(Jones et al., 2004).   

Watershed landscape characteristics also exert control on nutrient cycling and transport 

processes. The presence of riparian wetlands, which are hotspots of biogeochemical activity, has 

been correlated to decreases in stream nutrient concentrations relative to landscape inputs (Hansen 

et al., 2018; Martin et al., 2011). Tile drainage is widespread across the agricultural Midwest, and 

creates a direct conduit between the root zone and surface waters, short circuiting natural transport 

and cycling processes in the shallow subsurface (Gorski and Zimmer, 2021). This results in flashy 

streamflow responses and increased nutrient export during storm flow events in extensively 

drained landscapes (Gentry et al., 2007, Miller and Lyon 2021, Royer et al., 2006). In urban 

watersheds, wastewater treatment plant (WWTP) effluent high in nutrients can comprise a 

significant proportion of streamflow, especially during low flows in heavily urban influenced 

watersheds (Carey and Migliaccio, 2009, Ledford et al., 2021).  

Hydrologic processes affect nutrient transport and biogeochemical cycling within a 

watershed, and play an important role in determining stream chemistry. Specifically, variations in 

the active flowpaths by which water moves from uplands to streams, can mobilize different pools 

of stored nutrients, change residence times between mobilization and delivery, and affect the 

degree of nutrient cycling. Overland flow can mobilize nutrients stored on or near the surface, and 

quickly transport them to surface waters (Want et al., 2023). Groundwater flowpaths can result in 

long delays from moralization to delivery (Martin et al., 2017, Van Meter and Basu, 2017), and 

may result in increased biogeochemical cycling both within aquifers (Lin et al., 2019) and the 

hyporheic zone of rivers (Zarnetske et al., 2011). While hard to characterize directly, the relative 
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contribution of flowpaths and the size of contributing areas have both been correlated to changes 

in streamflow conditions (Jones et al., 2017, Gorski et al., 2021, Zimmer et al., 2019).  

Extensive research has been conducted to explore the connections between streamflow 

dynamics and stream nutrient concentrations. These relationships are highly variable across events 

(Knapp et al., 2020, Gorski and Zimmer, 2021), seasons (Zimmer et al., 2017), nutrient sources 

(Jones et al., 2017), antecedent conditions (Knapp et al., 2020), and dominant land use in the 

watershed (Kincaid et al., 2020). For example, increased streamflow has been correlated to 

increased nutrient concentrations in agricultural watersheds due to the mobilization of these solutes 

stored on the landscape, and decreased concentrations in urban watersheds due to the dilution of 

WWTP effluent high in N and P (Van Meter et al., 2020). Seasonal changes to nutrient sources 

and bioavailability can result in different concentration-discharge relationships for events of 

similar magnitudes within a watershed (Knapp et al., 2020). While these and other studies using 

high-frequency data provide valuable insights into nutrient transport processes, the equipment 

costs, site access needs, and maintenance requirements limit the potential to collect high-resolution 

data in many locations at regional scales.  

Synoptic sampling provides a snapshot of physical parameters under similar environmental 

conditions by collecting samples from multiple locations over a short, defined sampling period. 

Though synoptic sampling lacks high temporal resolution, its low cost (relative to continuous 

sampling), spatial coverage, and ability to target specific conditions of interest make it a powerful 

tool to interpret landscape-scale patterns in stream chemistry. Within hydrology, this approach has 

been applied across a range of spatial and temporal scales, from sampling multiple locations in a 

single catchment over hours or days (Runkel et al., 2013, 2023), to sampling a large number of 

watersheds at a regional scale during multi-day sample collection campaigns (Mooney et al., 2020, 

Verhougstraete et al., 2015). Synoptic sampling methods have also been applied to investigate how 

stream chemistry evolves along a river corridor (Hensley et al., 2020, Malin et al., 2024). The data 

from such synoptic sampling campaigns can be used for a range of applications, including 

investigating relationships between the landscape and stream chemistry (Wayland et al., 2003), 

monitoring for the presence of contaminants such as acid mine drainage (Messer et al., 1988, 

Runkel et al., 2013, 2023) or characterizing physical processes, such as identifying the 

groundwater flowpaths active within stream reaches (Semrdon and Gardner, 2022). Recent work 

by Abbot et al., (2017) showed that spatial patterns in stream chemistry were stable across years 
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to decades, suggesting that synoptic sampling data may be representative of landscape scale 

patterns in stream chemistry beyond the year or season sampled.  

 Despite extensive study, the complex interplay between landscape characteristics, nutrient 

inputs, hydrologic processes and biogeochemical cycles limits our understanding of the dominant 

controls of nutrient export and often prevents effective management (Martin et al., 2021, Van 

Meter et al., 2018). Many previous publications that investigated how landscape characteristic and 

hydrologic processes affect seasons stream water quality relied on high frequency water quality 

monitoring data in a limited number of small catchments. Studies at larger spatial scales also often 

rely on high frequency data from a few locations on large streams (e.g. Van Meter et al., 2020) or 

provide a single snapshot in time (e.g. Mooney et al., 2020). An opportunity exists therefore, to 

explore methods to investigate spatial and seasonal variability in stream nutrient dynamics at 

regional scales without the need for high frequency monitoring equipment.   

Here, a repeated synoptic sampling campaign of 64 watersheds across Michigan’s Lower 

Peninsula was employed to study spatial and seasonal dynamics in stream chemistry. This effort 

was designed to sample three key portions of the stream hydrograph (hereafter “seasons”): early 

spring snowmelt, summer rain, and fall low flows (hereafter “baseflow”).  Selection of these three 

seasons was based on prior observations of distinct hydrologic and landscape nutrient source 

conditions occurring annually in this region. These observations include: high flows and the 

presence of stored nutrients from agricultural applications the previous fall during snowmelt; 

elevated flow conditions and recent nutrient applications during summer rainfall; and groundwater 

dominated low flows and depleted nutrient storage on the landscape during baseflow. Based on 

these observations, the following hypotheses were developed: 1) in agricultural and rural regions, 

streamflow and nutrient concentrations would be highest during snowmelt, moderate during 

summer rainfall, and lowest during baseflow; 2) in urban areas, where the primary nutrient source 

is municipal WWTP effluent (Carey and Migliaccio, 2009), reduced seasonality in nutrient 

concentrations relative to agricultural landscapes would occur, and 3) for more reactive nutrient 

species such as nitrate or soluble reactive phosphorus, seasonal variability may be considerably 

more complex across landscape types. Data analysis was guided by three primary research 

questions: 1) how do nutrient concentrations vary during snowmelt, summer rainfall, and baseflow 

conditions across watersheds with a range of dominant land cover types? 2) What are the dominant 

landscape and hydrogeologic characteristics that affect seasonal nutrient concentrations across 
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seasons? 3) How do changing hydrologic processes affect seasonal nutrient concentrations? 

Testing these hypotheses and answering these questions can provide a deeper understanding of the 

driving factors behind the spatial and seasonal variations in stream nutrient fluxes and subsequent 

delivery of nutrients to the Great Lakes, and within similar landscapes more broadly. 

2. Methods 

2.1 Study Area 

This study examined in-stream nutrient dynamics in 64 Great Lakes tributaries draining 

82% of Michigan's Lower Peninsula (including small portions of neighboring Indiana and Ohio, 

Figure 1). This region is characterized by gradients in climate, hydrogeology, nutrient inputs and 

land cover representative of large portions of the upper Midwestern United States. The rivers in 

Michigan's Lower Peninsula drain to the Laurentian Great Lakes, which are the largest system of 

connected freshwater lakes in the world and contain about 20% of the world's fresh surface water 

(Hunter et al., 2015). This critical resource is threatened by water quality issues, including the 

widespread addition of anthropogenic nutrients to the landscape, leading to elevated nutrient fluxes 

(Hamlin et al., 2020, Robertson and Saad 2011) and groundwater nitrate concentrations (Hamlin 

et al., 2022), as well as increased establishment of invasive species (Hannah et al., 2020), harmful 

algal blooms (Ho and Michalak 2015), and other deleterious effects. 
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Figure 1: Seasonal Strategic Synoptic Sampling Study Region. The location of (A) the study 

domain within the United States and (B) the locations of the sample points and their associated 

watersheds for the 64 Great Lakes tributaries examined in this study. None of the watersheds 

included in this study overlap or are nested. 

Michigan’s Lower Peninsula has a temperate and strongly seasonal climate, with warm 

temperatures and periodic rainfall during spring and summer (April-October), and colder 

temperatures and periodic snowfall during fall and winter (November-March). Mean annual 

precipitation decreases from southwest to northeast (Figure 2B), and mean annual temperature 

(Figure 2C) decreases from south to north in the region. Snowfall, snowpack thickness, and 

snowmelt all also increase from south to north in the state (Ford et al., 2020). The amount and 

timing of snowmelt are closely linked to the magnitude and timing of peak spring streamflows 

across the region.  

Land use and land cover range from temperate forest-dominated regions in the north, to 

strongly urbanized and agricultural regions in the south and southeast (Figure 2A). Hamlin et al., 

(2020) quantified source-specific nutrient inputs across the U.S. Great Lakes Basin for 2010. In 
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the Lower Peninsula, total N and P loads to the landscape are highest in Central Michigan and 

lowest in the Northern Lower Peninsula. Nutrient inputs are dominated by chemical fertilizer and 

manure inputs in agricultural regions, by atmospheric deposition and septic leaching in rural areas, 

and by non-agricultural fertilizer, septic, and wastewater sources in urban areas (Hamlin et al., 

2020). Since 2010, little has changed in terms of both land use (Dewitz and U.S. Geological 

Survey, 2021) and nutrient loading (Byrnes et al., 2020) in the region; thus the landscape 

conditions present for this study are similar to those today.  

The county-scale N mass balance calculated by Byrnes et al. (2020) shows increasing N 

surplus rates north to south across the study region, and that these rates are comparable to those in 

large portions of the agricultural Midwest, Central and Eastern United States (Byrnes et al., 2020). 

Peak N surplus rates of greater than 100 kg-N/ha/y are observed within the study region, but occur 

less often than in the most agriculturally intensive regions of the US (e.g., portions of Illinois, 

Indiana, Wisconsin and Iowa).   
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Figure 2: Land Cover, Precipitation and Temperature in Michigan’s Lower Peninsula. 

Landscape and climate gradients across the study region of A) reclassified 2006 NLCD land cover 

(Fry et al., 2011), B) 30-year (1990-2019) mean annual precipitation normals, and C) annual 

temperature normals, both from PRISM (Prism Climate Group, 2020). 

The hydrogeologic setting of Michigan's Lower Peninsula is characterized by thick 

recently deposited (Pleistocene era) glacial sediments overlying much older (Silurian through 

Jurassic) bedrock units of the Michigan Basin. There are four primary aquifers in Michigan's 

Lower Peninsula: three in the sedimentary bedrock units and one in the overlying unconsolidated 

glacial sediments (Milstein 1987, Soller and Garrity 2018, Westjohn and Weaver 1998). A USGS 

investigation showed very high baseflow index values (ratio of groundwater-sourced to total 

annual streamflow) across the Lower Peninsula, from ~40% to > 90%. The highest baseflow 

indices occur in areas with thick glacial deposits including in the northern Lower Peninsula. In 

contrast, baseflow index values were lowest in the Saginaw Bay to southern Lake Huron area and 

in the south-eastern corner of the state where glacial deposits are thin (Neff et al., 2005).   

2.2 Three-Season Study Design, Sample Collection, and Analysis 

To assess these hypotheses, 64 stream sampling locations across Michigan’s Lower 
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Peninsula were selected, representing a diverse range of nutrient inputs, landscape characteristics, 

and dominant hydrologic processes. Sample watersheds were identified using three primary 

criteria. First, only rivers which drain directly to the Great Lakes were considered. Second, the 30 

largest streams by watershed area in the Lower Peninsula were chosen. Third, 34 smaller streams 

evenly distributed around the Lower Peninsula, not overlapping the 30 largest watersheds, were 

chosen to provide greater variability in land cover characteristics. In total, these sample locations 

capture 84% of the Lower Peninsula land area. For each watershed, a sampling point was selected 

by identifying road crossing (bridge) locations that: 1) maximized upstream watershed area while 

avoiding hydraulic backwater effects from the Great Lakes, 2) had adequate flow predominantly 

sourced from river discharge (as opposed to municipal outfalls or other artificial discharge 

sources), 3) provided clear access for water sampling and flow measurement instruments, and 4) 

was safely accessible. Samples were collected from the bridges at the center of the stream channel. 

Both whole water and filtered samples were collected, stored either refrigerated or frozen, and held 

prior to analysis according to standard methods. Further details on the site selection, sample 

collection, and analytical processes can be found in the methods and supplementary material of 

Verhougstraete et al. (2015).  

For each hydrologic condition, a target sampling window was defined based on regional 

streamflows and land cover practices: October 1st to 13th, 2010 for baseflow; March 4th to 23rd, 

2011 for snowmelt; and June 1st to 28th, 2011 for summer rainfall. Within each window, 

streamflow, temperature, and precipitation conditions were monitored to ensure that the desired 

conditions were met. The baseflow sampling event occurred during a period of relatively little 

precipitation across the study region, indicated by both weather radar and streamflow hydrographs 

at USGS stream gauging stations within the study region. Snowmelt, which occurred earlier in the 

southern portion of the study region, was identified by observing several days of warm 

temperatures and precipitation and subsequent hydrograph rise. Summer rainfall sampling in June 

happened in two campaigns, as substantial rain events occurred separately in the northern and 

southern portions of the study region. For four sites, discharge measurements and sample 

collection could not be completed due to access issues or conditions during one of the three 

seasons. Of the 60 sites where data were collected during all three seasons, event flows were higher 

than baseflow at 52 locations during snowmelt, and 56 locations during summer rainfall, indicating 

distinct hydrologic conditions were captured.  
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At each sampling site, streamflow discharge was measured, physical stream water 

parameters were quantified, and samples were collected and preserved for various laboratory 

analyses. Table A1 provides a list of analytes and the analytical methods for their quantification. 

No a priori assumptions were made about the speciation of N and P species during the design of 

this sampling campaign. Rather, a series of N and P species that are related but differ in terms of 

solubility and reactivity were quantified. For N, Total Nitrogen (TN), nitrate plus nitrite (NOX), 

Nitrite (NO3) and Ammonium (NH4) are reported. For phosphorus, total Phosphorus (TP), total 

dissolved phosphorus (TDP), soluble reactive phosphorus (SRP) are reported. TP represents all P, 

both bound to particulate matter and dissolved in water. TDP is assessed on a filtered and digested 

fraction of a water sample, representing both dissolved P and P bound to particles smaller than 

0.45 um. Soluble reactive phosphorus is assessed on filtered, undigested samples and represents 

only dissolved, unbound phosphorus. In addition to the species listed in Table A1, pH and non-

particulate organic carbon data were also collected, however these parameters were not explicitly 

included in this analysis. Summary statistics of their value are provided in Table A3 to provide 

additional geochemical context for the nutrient values reported.  

Results from this sampling campaign have provided insights into variations in fecal 

contamination (Verhougstraete et al., 2015) and microbial source tracking (Wilson et al., 2022). 

Here, the spatial and seasonal patterns in observed TN and TP are presented. Results for other 

nutrient species are summarized in the text, with figures provided in the supplemental material. 

The maximum (max.), mean, median (med.), minimum (min.), and standard deviation (stdev.) for 

each analyte were calculated using the Python packages NumPy (Harris et al., 2020) and Pandas 

(McKinney, 2010) and are reported in Table A3. The significance of differences between median 

concentrations between seasons for each analyte was evaluated using a chi-squared test on the 

results of Mood’s median test, implemented in the Python package SciPy (Virtanen et al., 2020). 

2.3 Linear Modeling 

Ordinary least squares (OLS) linear modeling was used to investigate how landscape 

characteristics (including land use, nutrient sources, and hydrologic characteristics) relate to 

stream nutrient concentrations, and how these relationships change across seasons. This method 

was chosen over more complex linear or non-linear methods due to the relative ease of 

interpretation, well-developed methods to assess model performance and significance, and 

generally strong model performance. OLS modeling and associated significance tests were 
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conducted using the Python package StatsModels (Seabold and Perktold, 2010).  

For each combination of nutrient species and season, two sets of OLS models were created 

using different sets of driver variables. Models were also created for the major ion species Na, Cl, 

Ca, K, SO4, and Mg (Table A1), which provide a reference of model performance for non-reactive 

species that are sourced from the landscape (Na, Cl, K and SO4) or from water-rock interactions 

in the subsurface (Ca and Mg). For example, chloride has a non-point anthropogenic source (used 

broadly as a paved surface deicer) similar to N and P, but unlike nutrient species it is transported 

relatively conservatively via both surface and subsurface flowpaths. Driver variables for the two 

sets of linear models were: 1) land cover model: proportions of major land cover types within 

sample catchments, and 2) land cover and hydrogeology model: land cover proportions along with 

catchment-average hydrologic properties (soil hydraulic conductivity, groundwater travel time, 

and annual recharge). The land cover model was chosen to investigate how landscape 

characteristics (as a proxy for nutrient sources and surface processes) affect stream nutrient 

concentrations, while the land cover and hydrology model was used to investigate if hydrologic 

characteristics as a proxy for subsurface processes may help to explain the observed stream nutrient 

concentrations. Each model considers only one species as its independent variable. Therefore, 

while some parameters such as TDP and SRP are closely related, they are modeled independently 

and the results interpreted independently. The spatial predictor variables for both models are 

described in greater detail in the next section. Analyte concentrations and some driver variables 

were normalized to achieve near-normal distribution of the independent and dependent variables. 

Specifically, nutrient concentrations were log-transformed, and land cover proportions were logit-

transformed following the methods used in Hannah et al. (2020).  

Adjusted R-squared (R2) values were used to assess the relative performances of each 

model, which allow for comparison of linear model performance across models with varying 

structures (i.e., numbers of predictors). Adjusted R2 penalizes the addition of additional predictor 

variables if they do not add predictive power to the model (Seabold and Perktold, 2010, Yin and 

Fan, 2001). Adjusted R2 values were compared across species, seasons, and model structures, 

giving insights into which species are most correlated to landscape characteristics, how those 

relationships shift across seasons, and whether incorporating hydrologic variables better explains 

concentrations than land covers alone. The p-value of the F statistic provided by StatsModels, was 

used to assess the significance of each season/species model with 0.05 as the significance 
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threshold.  

A chi-squared test on the Likelihood Ratio Static (𝐿𝑅𝑆) (Lewis et al., 2010) is used to 

assess whether adding increased model complexity significantly improved performance. The LRS 

is defined in Equation 1, where, 𝐿𝑎  is the log-likelihood of the original model, and 𝐿𝑏  is the log-

likelihood of the model with added parameters. The log-likelihoods for each model were output as 

part of the ordinary least squared model function in StatsModels.  

[1] 𝐿𝑅𝑆 =  −2(𝐿𝑏  −  𝐿𝑎)  

The degrees of freedom for the chi-squared test were equal to the difference in the number 

of independent variables between the model with the added variable and the original model. Here, 

a p-value < 0.05 indicates that the model with added parameters performed significantly better. 

2.4 Spatial Predictor Datasets 

The spatial predictor variables for the linear model were quantified within sample point 

watersheds using either the Tabulate Area (for proportions of land use) or Zonal Statistics (for 

hydrologic characteristics) tools in the ArcGIS Spatial Analysis toolbox. These sample point 

watersheds were derived from the National Elevations Dataset 1 arc-second DEM product, as 

described in Verhougstraete et al. (2015). Briefly, watersheds were generated using sample 

locations manually snapped to flowlines generated from a D8 flow direction grid computed from 

a sink-filled DEM.  

The 2006 National Land Cover Database (NLCD) was processed into summary land cover 

classes, as shown in Table A2. In addition to using land cover proportions as drivers in the linear 

model, each sample watershed was also classified into a dominant land cover type for visualization 

and other analyses. Forested, Agricultural, and Urban watersheds were defined as having greater 

than 50% watershed area occupied by each land cover type, while Mixed was defined as no single 

land cover class covering > 50% of the watershed area. Forested landscapes were most common 

in the north, agricultural watersheds in the south, and urban watersheds in and around the larger 

metropolitan areas (Figure A1). While dominant land covers were summarized by these three 

categories, all study watersheds contain some degree of mixed land use and land cover 

characteristics, a trait common to Midwestern drainage basins. Tables A7 and A8 show watershed 

characteristics including watershed size, land cover proportions and dominant land cover classes 

for all 64 sample point watersheds. 

Gridded estimates of three hydrogeologic characteristics were quantified across the entire 
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sampling domain: groundwater travel time, average groundwater recharge, and soil hydraulic 

conductivity. Groundwater travel time estimates were created by Martin et al. (2021) using aquifer 

hydraulic conductivity estimates and interpolated groundwater levels to estimate velocities along 

2-D subsurface flowpaths. Groundwater recharge was estimated for the domain using linear 

relationships between soil hydraulic conductivity and annual precipitation, each computed from 

an integrated surface and groundwater hydrologic model (Kendall 2009). These linear models can 

then be readily applied to a broader spatial domain (e.g. Wan et al., 2023). Soil hydraulic 

conductivity was estimated using the gSSURGO database along with the ROSETTA pedotransfer 

functions (Schaap et al., 2001). Watershed summaries of these hydrogeologic characteristics are 

shown in Figure A2.  

2.5 Baseflow Normalized Concentrations 

To assess how relationships between stream discharge and solute concentrations change 

across seasons, the log baseflow-normalized concentration, 𝐶𝑛, was calculated using Equation 2, 

where 𝐶𝑒  is the event (i.e., snowmelt or spring rain) concentration, 𝐶𝑏  is the baseflow 

concentration.  

[2] 𝐶𝑛 =  𝑙𝑜𝑔10(𝐶𝑒/𝐶𝑏) 

Calculating baseflow-normalized concentrations allows for the classification of solutes as 

enriched, diluted, or unchanged in response to snowmelt or spring rain event flows. Values of log-

normalized concentrations above 0 indicate enrichment, while those less than 0 indicate dilution. 

Development of this metric was inspired by the analysis of concentration-discharge relationships 

and their use to classify river systems as chemostatic or chemodynamic. Similar to the 

interpretation of chemodynamic behavior in continuously monitored catchments, changes to the 

baseflow normalized concentration are attributed to the activation of different flowpaths, nutrient 

sources, or in-stream processes.  

3. Results and Discussion 

3.1 Seasonal and Spatial Variations in Nutrient Concentrations  

Median nutrient concentrations across the sites were highest during snowmelt, elevated 

during summer rainfall, and lowest during baseflow, supporting our first hypothesis. Spatial 

patterns in TN and TP concentrations during the three seasons are shown in Figure 3. Median TN 

concentrations were significantly higher at snowmelt (1.3 mg/L) than during summer rainfall (0.92 

mg/L, p ≤ 0.030) or baseflow (0.69 mg/L, p ≤ 0.001), but baseflow and summer rain concentrations 
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were not significantly different (p ≤ 0.070). Median TP concentrations were also significantly 

higher during snowmelt (0.076 mg/L) than during summer rainfall (0.036 mg/L, p ≤ 0.004) and 

baseflow events (0.025 mg/L, p ≤ 6.8E-09). For TP however, summer rainfall TP concentrations 

were also significantly higher (p ≤ 0.011) than during baseflow. Descriptive statistics for each 

analyte are listed in Table A3, while Table A4 shows the p-values for median concertation 

compared across the three seasons.  

This seasonal pattern of decreasing median concentrations from snowmelt, through 

summer rainfall to baseflow was observed for TDP, NH4, NOX, TDN, and NO3, however, the 

significance in these seasonal differences is variable. Median NH4 (Figure A3) and TDP 

concentrations (Figure A4) were significantly different across all three seasons, while median NO3
 

(Figure A5) and TDN (Figure A6) concentrations were not significantly different during any of 

the three seasons. Median NOX concentrations (Figure A7) were only significantly different 

between snowmelt (0.86 mg/L) and baseflow (0.34 mg/L, p ≤ 0.045). The only exception to this 

seasonal pattern is for SRP (Figure A8), which had similar median concentrations during snowmelt 

(0.0092 mg/L) and baseflow (0.097 mg/L) and lowest concentrations during summer rainfall 

(0.006), with the only significant difference between summer rainfall and baseflow (p ≤ 0.007).  

The observed pattern of peak nutrient concentrations during snowmelt, greater 

mobilization of phosphorus relative to N during rainfall and low baseflow concentrations are 

supported by other studies of nutrient seasonality across North America. Recent work by Basu et 

al. (2023) used a random forest model to predict annual and seasonal stream nutrient 

concentrations, showing similar seasonal patterns of stream nutrient concentrations as were 

observed in this study. They also observed different seasonal patterns for N and P species, with 

summer TP and SRP concentrations shown to be moderate, while dissolved inorganic nitrogen 

concentrations during summer were near those observed at baseflow. Wilson et al. (2019) studied 

nutrient flux during snowmelt and rainfall events in watersheds of the Canadian Great Plains, 

finding elevated TP concentrations during both snowmelt and rainfall, while TN concentrations 

were higher during snowmelt and lower during rainfall events. These results support the 

observation of significantly elevated TP but not TN during summer rainfall found in this study. 

Basu et al. (2023) attributed the observed increase of TP relative to TN during summer rainfall to 

wet antecedent conditions and the extensive presence of tile drains in their study watersheds 

(Wilson et al., 2019). 
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Figure 3: Seasonal TN and TP Concentrations Maps. Concentrations of (A) Total Nitrogen and 

(B) Total Phosphorus for the three hydrologic conditions sampled. Both TN and TP had strong 

north-to-south gradients in concentrations and different seasonal behavior across the region. 

There was a strong north-south gradient of increasing nutrient concentrations (Figure 3), 

reflecting gradients in both land use and climate (Figure 2). Dominant land use transitions from 

forested in the northern watersheds toward agricultural and urban in the southern watersheds 

(Figure A2), leading to an increase in the proportion of developed land within a watershed from 

north to south in the region (Figure A9). This land cover transition corresponded to higher median 

and maximum TN and TP concentrations in the southern half of the state (42 to 44° latitude) than 

in the northern half (44 to 46° latitude), as shown by the violin plots in Figure A10. For TN, this 

trend was strongest during snowmelt, while it was strongest for TP during summer rainfall (Figure 
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A11).  

The observed variations in the spatial and seasonal patterns of nutrient concentrations are 

attributed to the activation of different nutrient sources, transport pathways, and uptake processes 

across seasons and landscape types. Streamflows (Figure A12) were similar during the two event 

flows, though concentrations were significantly different for TN, TP, TDP, and NH4. These 

observed differences in concentration despite similar streamflow conditions were likely related to: 

1) the mobilization of additional nutrient sources through the activation of different flowpaths 

during snowmelt events relative to summer rain and baseflow, 2) increased cycling of nutrients 

during summer rainfall relative to snowmelt, or 3) a combination of the two. This interpretation is 

supported by previous studies using high-frequency monitoring data. Knapp et al. (2020) observed 

that the variation in event scale concentration-discharge relationships is controlled by a solutes 

source (e.g., groundwater vs. landscape sources) and its dominant transport processes. Knapp et 

al. (2020), along with Kapp et al. (2022) demonstrate that seasonal variations in catchment wetness 

(the amount of antecedent moisture in the watershed) also affects the transport mechanisms active 

during hydrologic events (i.e., snowmelt or rainfall) and the resulting solute mobilization.  

 The lack of significant seasonal difference in TDN and NO3 concentrations may have been 

due to the influence of legacy N species in the system. Large inputs of N to the landscape (Hamlin 

et al., 2020), and long transit times for N species transported via subsurface flowpaths can lead to 

consistent, elevated N inputs to streams from groundwater (Martin et al., 2017, Van Meter et al., 

2017). The consistent addition of legacy nutrients sustaining elevated nutrient N inputs from the 

event flows through baseflow may account for the steady yet insignificant decrease in 

concentration between the three seasons for these two nutrient species.  

3.2 Seasonal Nutrient Dynamics across Dominant Land Covers  

Streams with different dominant watershed land cover types (Figure A1) had distinct 

seasonal patterns in TN and TP concentrations (Figure 4). As expected, given the few sources of 

nutrients, forested watersheds consistently had the lowest average TN and TP concentrations 

across the three seasons. Agricultural watersheds generally had the highest TN and TP 

concentrations during snowmelt and summer rainfall, while urban watersheds tended to have 

greater concentrations during baseflow. Notably urban watersheds also had high TP concentrations 

during summer rainfall. N species showed generally similar patterns (Figures A13 – A15), except 

NH4 which exhibited distinctly different seasonal patterns across watershed types (Figure A16) 
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with concentrations similar in agricultural and urban watersheds during snowmelt and summer 

rainfall, and highest concentrations in mixed watersheds during baseflow. Phosphorus species had  

generally similar patters to TP, (Figures A17 and A18), except during summer rainfall SRP 

concentrations were highest in agricultural watersheds. Van Meter et al. (2020) analyzed long-

term stream chemistry monitoring data from over 200 sites across the Great Lakes Basin and 

observed a similar pattern of seasonal nutrient flux patterns across watersheds with different 

dominant land covers. Specifically, they observe that nutrient concentrations were highest during 

event flows in forested and agricultural watersheds, while urban watersheds frequently have the 

highest concentrations during low flow periods.  
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Figure 4: Seasonal TN and TP Concentration Distributions by Land Cover. Distribution of 

TN and TP concentrations across the three seasons in the four classified watershed land cover 

types (Figure A2). In these violin plots, the shaded regions are mirrored probability distribution 

functions for each group. The central line is the median concentration, with the top and bottom 

lines indicating the maximum and minimum sample, respectively. TN concentrations were highest 

in agricultural watersheds during both snowmelt and summer rainfall, and highest in urban 

watersheds during baseflow. TP concentrations were highest in agricultural watersheds during 

snowmelt, and in urban watersheds during summer rain and baseflow.  

The differences in seasonality of peak concentrations between urban and agricultural areas 

highlight the importance of both nutrient sources and streamflow generation processes on stream 

nutrient fluxes. Peak concentrations in agricultural watersheds occurring during snowmelt suggest 

that some of the nutrients stored at or near-surface from the prior planting and growing seasons 
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were flushed out during snowmelt. Decreases in concentrations through summer rainfall and 

baseflow conditions may be due to accompanying shifts in streamflow sources toward subsurface 

flowpaths that typically have lower nutrient concentrations and greater rates of nutrient uptake 

than direct surface runoff. This interpretation is supported by a recent study in the Illinois River 

Basin that used nitrate isotope composition to trace sources of nitrate in streamflow across seasons 

in the Illinois River (Lin et al., 2019). They demonstrated that decreases in stream nutrient 

concentrations throughout the year coincide with decreasing δ15N and increasing δ18O values,  

which is consistent with a shift toward older, denitrified groundwater, resulting in lower nitrate 

concentrations during baseflow in agricultural tributaries of the Illinois River. In urban areas, peak 

nutrient concentrations at baseflow for most nutrient species are attributed to generally steady 

WWTP effluent volumes constituting a greater proportion of streamflow. Ledford et al. (2021) 

found that WWTP effluent contributed up to 90% of baseflow in an urban watershed near 

Philadelphia, PA. This is also supported by the findings of Lin et al. (2019), with nitrate isotope 

composition in the Illinois River more closely matching that of the Chicago WWTP effluent during 

low flow conditions.  

3.3 Drivers of Nutrient Concentrations across Seasons 

The land cover-only linear models demonstrate that land cover proportions alone were 

strong predictors of stream ion concentrations, with up to 83% of variation across sites explained 

within a given season (Figure 5). All adjusted R2 values for all species, seasons, and both sets of 

models are listed in Table A5. Model performance was consistently strong for the less-reactive 

species (Na, K, Cl, SO4) across all three seasons, with adjusted R2 values between 0.63 and 0.83. 

Model performance for the species primarily sourced from subsurface water-rock interactions (Ca, 

Mg) was relatively uniform across the three seasons, but with lower adjusted R2 values (0.35 to 

0.52). 

For nutrients, land cover is generally a stronger predictor of concentrations during 

snowmelt than during other seasons (except for TP), with adjusted R values ranging from 0.38 

(NH4) to 0.81 (TDN). As the seasons progress, the relationship between land cover and stream 

nutrient chemistry weakens. During summer rainfall, model performance is moderate but highly 

variable, with adjusted R2 values between 0.02 and 0.70. Model performance is weakest at 

baseflow, with the lowest R2 values (0.002 to 0.68). TP is a notable exception to this pattern, which 

has the strongest model performance during baseflow (adjusted R2 = 0.68) and the weakest 
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performance during snowmelt (adjusted R2 = 0.45). This degradation of model performance as the 

season’s progress is attributed to increased nutrient cycling and shifting hydrologic processes 

throughout the growing season and into fall. 

Model performance is highly variable for individual P species, but was strongest for SRP 

during snowmelt and summer rainfall, and TP during baseflow. Model performance for P species 

generally increases with solubility during snowmelt and decreases with solubility during baseflow, 

while no trends with solubility are observed during summer rainfall. For N species, performance 

is consistently highest for TDN and NO3 across the three seasons and no trend in model 

performance with respect to solubility is observed. Note that the models for SRP and NH4 during 

baseflow, and NH4 during summer rainfall did not pass the 5% significance threshold (indicated 

by open circles in Figure 5).  

During snowmelt and summer rainfall, surface and shallow subsurface flowpaths are 

activated, creating a direct connection between the landscape and surface waters (Freeze 1974, 

Stottlemyer and Toczydlowski, 1991, Zimmer et al., 2019). This direct connection is likely 

responsible for the relatively high percent of variance in stream nutrient concentrations explained 

by land cover during snowmelt and summer rainfall events. Increases in nutrient cycling during 

the summer may help explain the overall decreased model performance and increased variability 

in performance observed for the summer rainfall model. A study of nutrient uptake seasonality in 

three watersheds in Michigan's Upper Peninsula showed that both gross primary production and 

community respiration were higher during early summer (May to July) than during late 

summer/fall (August to October) (Hoellein et a., 2007). These highly seasonal changes to nutrient 

uptake processes are not well represented by land cover alone (Gorski and Zimmer 2021, Marinos 

et al., 2020). As streamflow sources become groundwater dominated during baseflow, the loss of 

direct connection to the landscape surface may drive the decreased model performance. 

Specifically, the significant lag times between solute loading at the surface, and its delivery to 

streams via saturated groundwater flowpaths with long transport times (e.g., Martin et al., 2017, 

Van Meter and Basu 2017), were not well captured in the linear model. Additionally, vadose zone 

transport, sorption, and cycling processes affect the chemistry of waters prior to their recharge to 

the saturated groundwater table (Green et al., 2018, Lee et al., 2006). This interpretation is also 

supported by results from Kincaid et al. (2020) who monitored nitrate and SRP in 3 headwater 

catchments to calculate hysteresis patterns in concentration-discharge relationships over 400 storm 
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flow events. Differences in observed C-Q hysteresis patterns indicate that nutrient sources and 

transport pathways vary across seasons, dominant land cover types, and constituents. 

 

 

Figure 5: Land Cover Linear Model for Stream Chemistry. Performance for the OLS relating 

observed nutrient concentrations across the three seasons to land cover proportions in the sample 

watershed. For nutrient species, model performance decreased as the seasons progressed from 

snowmelt to summer rainfall and baseflow. For the conservative species Na, K, Cl, and SO4 model 

performance was consistently high across seasons, while it was consistently moderate for Ca and 

Mg. Open circles indicate models for the given element and season fell below the significance 

threshold for the F-test, indicating no significant relationship between the driver variables and 

observed concentrations. 

The second set of linear models, which added hydrogeologic variables, increased 

performance significantly for several non-reactive species across all three seasons (Figure 6B). 

Specifically, model performance improved for Ca, Mg, and K with increases in adjusted R2 values 

between 0.05-0.14. This improvement is attributed to the abundance of these solutes in 

groundwater, sourced from water-rock interactions in the subsurface (Langmuir, 1997, Williams 

et al., 2007). Model performance was not significantly increased for the already high-performing 

Na, Cl, or SO4 models during any of the three seasons, except for a very small yet significant 

increase of 0.02 for Cl during snowmelt.  

In contrast to major ion species, adding hydrogeologic characteristics to the models 
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produced variable and limited improvements in model performance for the nutrient species. 

Generally, the additional model complexity produced lower adjusted R2 values for many of the 

nutrients (although not significantly). Significant improvements in model performance occurred 

for the dissolved P species TDP and SRP (adjusted R2 increases of 0.06 and 0.03 respectively) 

during snowmelt. The only significant improvements for N species were for TN, NOx, and NO3 

during baseflow by 0.073, 0.067, and 0.082 respectively.  

The improvement in model performance with the hydrogeology model for some nutrient 

species is attributed to the added hydrologic characteristics acting as proxies for groundwater 

nutrient transport mechanisms. For example, the improvements in performance for NO3 and TN 

may be due to the inclusion of mean groundwater travel time, which has a significant regression 

coefficient for these two species only during baseflow. N compounds have been shown to travel 

through groundwater (Lin et al., 2019, Martin et al., 2017, Van Meter et al., 2018) and baseflow 

samples are representative of groundwater flowpaths due to the design of the seasonal synoptic 

sampling campaign.  During snowmelt, improvements in TDP and SRP performance are attributed 

to the inclusion of hydrologic characteristics with significant regression coefficients during this 

season; recharge for TDP and soil K for SRP. These parameters are both related to the presence 

and function of tile drainage systems shown to transport significant amounts of phosphorus species 

in agricultural regions (Cain et al., 2022, King et al., 2015, Wan et al., 2023). Table A6 lists these 

and other significant model predictor variables for the models using both hydrologic and land 

cover characteristics. The limited improvements however indicate that the inclusion of proxies for 

groundwater processes is insufficient to increase performance during summer rainfall and 

baseflow. Explicit consideration of how runoff and nutrient transport processes change across 

seasons is likely required to better understand the observed variability in nutrient concentrations.    

While the linear modeling approach used here cannot capture the complex interactions 

between all major factors affecting steam chemistry, the findings do help fill a gap in the 

understanding of how nutrient fluxes vary across seasons and landscape types. Previous studies 

that have focused on seasonal dynamics have largely done so in a small number of watersheds and 

rely on high-frequency water chemistry monitoring (e.g., Kincaid et al., 2020, Knapp et al., 2020, 

Poor and McDonnell, 2007, Wilson et al., 2019). Most of these studies focus primarily on event 

flows and do not expressly consider baseflow conditions or groundwater transport of nutrients. 

Studies focusing on how landscape characteristics influence stream chemistry (Allen, 2004, 
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Fraterrigo and Downing 2008, Hansen et al., 2018, Jarvie et al., 2008,  Kincaid et al., 2020, Poor 

and McDonnell, 2007, Vidon and Hill, 2004, Wilson et al., 2019) often do not consider how these 

controls vary seasonally, instead focusing on long term average conditions. Recent work by Van 

Meter et al. (2020) investigated nutrient seasonality at the regional (Great Lakes basin) scale but 

relied on high-frequency data, and related landscape characteristics to changes in concentration-

discharge relationships across a whole year, not at multiple points within a year. Due to the design 

of the seasonal synoptic sampling campaign, the approach of this study was able to investigate the 

seasonality of factors controlling stream nutrient concentrations using low-frequency data. 

Specifically, our models indicate a strong connection between the landscape and stream 

concentrations during snowmelt, and a progressive decoupling of this relationship during summer 

rainfall and baseflow. Furthermore, this decoupling is attributed to seasonally variable runoff, 

transport and cycling processes, as described in our conceptual model (section 3.4).  
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Figure 6: Combined Land Cover and Hydrogeology Linear Model. Adjusted R2 for the 

hydrogeology model (A), and change in adjusted R2 compared to the land cover model (B) when 

hydrogeologic characteristics of mean soil K, mean recharge, and mean groundwater travel time 

were included in the land cover proportion model shown in Figure 5. Including hydrogeologic 

parameters increased model performance for Ca and Mg, conservative elements often associated 

with water-rock interactions in groundwater. Moderate improvements were also observed for some 

N species during baseflow, and P species during snowmelt. Open circles represent model results 

with a p-value ≥ 0.05 for the chi-squared test on the Likelihood Ratio statistic, indicating no 

significant difference between the two models.  
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3.4 Variation in Hydrologic Process across Seasons  

Given the observed degradation in linear model performance during summer rainfall and 

baseflow, log baseflow-normalized concentration (𝐶𝑛) values were quantified to investigate the 

role of seasonally variable hydrologic processes on this unexplained variation in nutrient loads. 

Specifically, 𝐶𝑛 values are used to assess the influence that changing flowpaths, and the nutrient 

availability along these flowpaths, have on seasonal nutrient fluxes.  

Changes in event concentration relative to baseflow are observed for TP and TN during 

both snowmelt and summer rainfall streamflow events in watersheds across the study region 

(Figure 7). During snowmelt, both TN and TP were enriched relative to baseflow, with average 

𝐶𝑛 values of 0.61 and 1.1 respectively (values greater than 0 indicate enrichment on a log10 scale). 

TP enrichment was similar across the gradient of percent watershed development, while TN 

enrichment increased with increased developed area (Figure 7A). During summer rainfall TP 

enrichment responses were weaker, and dilution responses were more common leading to a lower 

average 𝐶𝑛 of 0.31, and no trend in the responses with respect to developed area was observed. 

TN responses during summer rainfall were also lower on average relative to snowmelt (𝐶𝑛 = 0.31). 

Interestingly, the opposite trend in TN enrichment with respect to land cover was observed, with 

weak enrichment responses in minimally developed watersheds and strengthening dilution 

responses in watersheds with greater than ~40% developed area (Figure 7B).  

Near zero log baseflow-normalized concentration (𝐶𝑛) values would suggest seasonally 

uniform nutrient source concentrations and transport processes. For example, work by Basu et al., 

(2010) and Thompson et al. (2011) suggest that in watersheds with significant nutrient inputs, 

storage increases until the amount of nutrients available for mobilization is nearly uniform across 

space and through time, leading to chemostatic responses. Average TN and TP 𝐶𝑛 values show 

enrichment of both species on average across the study region during the snowmelt and summer 

rainfall events. This enrichment relative to baseflow indicates that nutrient concentrations along 

the overland flow and shallow subsurface pathways active during event flows are distinct from, 

and generally increased relative to, the saturated subsurface flowpaths that dominate during 

baseflow conditions. Higher enrichment during snowmelt relative to summer rainfall suggests 

mobilization of landscape-stored nutrients not available during summer rainfall events. However, 

increased in-stream uptake may also play a role.  

The opposing trends in 𝐶𝑛 values for TN with respect to development intensity between 
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the two event flows suggest that although flow conditions during snowmelt were similar to those 

during summer rainfall, a different set of sources and flowpaths were active. During snowmelt, 

agricultural and urban watersheds were enriched relative to baseflow, while during summer rainfall 

these same watersheds were somewhat diluted on average. This indicates that nutrients stored in 

those watersheds were less available or mobile during summer rainfall, but also suggests that in-

stream uptake may have been substantially higher during this period, producing lower 𝐶𝑛 values.  

Enrichment and dilution of TN and TP during the event flows suggest distinct hydrologic 

processes and nutrient availability across all three sampled hydrologic conditions. This 

interpretation is supported by previous studies linking variation in event nutrient concentrations to 

changes in nutrient availability and streamflow sources throughout the year (e.g., Blaen et al., 

2020, Gorski and Zimmer, 2021, Jones et al., 2017, Knapp et al., 2020, Knapp et al., 2022, Lin et 

al., 2019, Van Meter et al., 2020, Zimmer et al., 2019). For example, Blaen et al., (2020) linked 

variation in event nutrient concentrations to the activation of different nutrient source zones across 

29 storm events in a single catchment in the United Kingdom. Lin et al. (2019) demonstrated both 

a switch from agricultural to urban-sourced nitrate and a shift from high nitrate groundwater to 

low nitrate groundwater across seasons in the Illinois River Basin using N isotope data. 
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Figure 7: Relationship Baseflow Normalized Concentrations to Developed Land Cover. 

Variation in TN and TP 𝐶𝑛 with percent developed (sum of urban and agricultural land uses) area 

in the sample point watershed for A) snowmelt and B) summer rainfall events, with solid lines 

from LOWESS smoothing. During snowmelt, both TN and TP were generally enriched across the 

sites, with greater enrichment for TP. During summer rainfall, enrichment weakens and dilution 

responses become more common with more developed land cover in the sample watershed.  

3.5 Conceptual Model 

Based on observations made during the analysis presented here, and by the findings of 

previous studies of nutrient transport and hydrologic processes that affect stream chemistry, a 

conceptual model (Figure 8) was developed to illustrate the complex factors controlling the 

observed variability of seasonal nutrient concentrations. This conceptual model is underpinned by 

three assumptions about how hydrologic processes change across seasons in this region, which are 

supported by previous work linking seasons to different dominant runoff processes: 1) Snowmelt: 

overland flow, shallow subsurface and deep groundwater flowpaths are all active, with overland 

and shallow subsurface flow dominating (Stottlemyer and Toczydlowski, 1991), 2) Summer 

Rainfall: overland flow is important, while shallow subsurface and groundwater discharge 

decreases compared to snowmelt (Freeze, 1974), and 3) Baseflow: overland flow is essentially 
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inactive, and saturated groundwater flowpaths dominate (Freeze, 1974) except in urban watersheds 

where low flows may be augmented by WWTP’s and other municipal outflows (Carey and 

Migliaccio, 2009, Ledford et al., 2021).  

During snowmelt, increased transport along all flowpaths (Stottlemyer and Toczydlowski, 

1991) should flush stored N and P from the landscape, creating a strong, direct connection between 

landscape conditions and instream nutrient concentrations. Also during this time, cold 

temperatures limit in-stream nutrient uptake (e.g., Comer-Warner et al, 2020). Agricultural 

watersheds have the highest concentrations due to the direct landscape connectivity, while urban 

watersheds experience lower concentrations due to the dilution of WWTP effluent by urban runoff.  

 For summer rain events, recent applications of fertilizers combined with active surface and 

agricultural drainage pathways lead to elevated nutrient concentrations in regions with agricultural 

influence, particularly for P species. N species tend to be more strongly sourced from shallow 

subsurface pathways than P species (Gentry et al., 1998, Gentry et al., 2007, Lin et al., 2019, Wan 

et al., 2023). Increased instream cycling due to warmer temperatures during the summer should 

reduce nutrient concentrations relative to snowmelt (e.g., Comer-Warner et al., 2020). Urban 

watersheds respond similarly to snowmelt, with urban runoff low in nutrients diluting WWTP 

effluent. 

At baseflow, nutrient concentrations are lowest in all watersheds, except those dominated 

by urban land cover. Such watersheds should have the highest concentrations during baseflow due 

to enriched WWTP effluent accounting for a larger portion of total flow during these conditions 

(Carey and Migliaccio, 2009, Ledford et al., 2021). Reduced nutrient input and active instream 

cycling further disconnect the landscape from concentrations (e.g., Comer-Warner et al., 2020).  
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Figure 8: Seasonal Nutrient Export Conceptual Model. Conceptual model of changing 

streamflow sources and nutrient inputs across the three seasons with: A) significant runoff, high 

groundwater elevations and limited instream processing during snowmelt, B) P enriched runoff 

and moderate groundwater contribution, along with significant instream processing during 

summer rainfall, and C) limited surface runoff, moderate instream processing and low groundwater 

contributions resulting in low nutrient exports during baseflow. The absolute contribution of 

WWTP effluent is expected to be consistent across seasons but result in relative differences due to 

changes in streamflow, where loading from WWTP effluent will be diluted during high flows and 

most influential during low flow conditions.  

4. Conclusions 

Stream chemistry, including major ions and nutrient species, was sampled across 64 

Michigan watersheds draining the majority of its Lower Peninsula. The field sample collection 

effort included three synoptic sampling events, specifically designed to capture distinct hydrologic 

and nutrient conditions within the study watersheds. Average stream nutrient concentrations across 

Michigan's Lower Peninsula were highest during snowmelt, elevated during summer rainfall, and 

lowest during baseflow, supporting our initial hypothesis. Concentrations were also generally 

higher in watersheds with significant proportions of agricultural or urban land use. Seasonal 

patterns in TN and TP concentrations were variable across dominant land cover types: they were 

highest in predominantly agricultural watersheds during snowmelt and peaked during baseflow in 

urban watersheds. 

Linear regression models with catchment landscape characteristics as predictor variables 

explained most of the variability in major ion concentrations across seasons but performed variably 

for nutrients. The relationships between landscape characteristics were strongest during snowmelt, 

moderate but highly variable during summer rainfall, and weakest during baseflow. This 

progressive weakening of the landscape influence on river nutrient fluxes as the seasons progress 

is attributed to a shift from overland flow and shallow (short) subsurface flowpaths during 

snowmelt, to regional groundwater discharge-dominated flows during baseflow, and to increased 

aquatic biogeochemical cycling during summer.  
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TN and TP concentrations are responsive to event flows (resulting in enrichment or dilution 

with respect to baseflow) across the study region, suggesting distinct hydrologic processes and 

nutrient sources between event flows and baseflow conditions. Furthermore, differences in the 

magnitude and direction of trends in baseflow-normalized concentrations with respect to 

developed land cover between snowmelt and summer rainfall suggest that streamflow sources and 

nutrient availability were different between these two high flow event types. Specifically, they 

indicate increased nutrient availability or increased ability to transport the available nutrients 

during snowmelt as compared to summer rainfall, especially in highly developed watersheds. 

These results, along with a large body of previous work (referenced in section 3.4), support the 

interpretation that at least some of the observed variation in stream nutrient concentrations not 

currently explained by the linear model is related to seasonal changes to nutrient storage and 

dominant runoff pathways.  

To further understand the role that shifting hydrologic flowpaths have on seasonal surface 

water nutrient fluxes in the Great Lakes region, more complex and intensive methods (such as 

hydrologic modeling, additional field data collection, and remote sensing) are required. While long 

term nutrient monitoring programs exist, repeated observations of stream nutrient concentrations 

collected by state and federal agencies (such as Michigan Environment Great  Lakes and Energy 

or the U.S. Geological Survey) generally occur in larger, developed watersheds. Continued 

collection of seasonal stream data in watersheds representing a range of size and impact would be 

useful to confirm the observations and conceptual model presented here. Further context can be 

added to these observations using modeled and remotely sensed products including the location of 

tile drainage, and the contribution of surface vs. subsurface flowpaths to streamflow and nutrient 

transport. For example, Wan et al. (2023) used a statistical transport model SENSEFlux to 

demonstrate the importance of tile drainage pathways in delivering nutrients from the landscape 

to the coastline of the Great Lakes basin. Finally, the use of statistical (i.e., SENSEFlux) and 

process-based (i.e., MODFLOW, MODPATH, and MT3D) models of nutrient transport can 

improve understanding of the underlying processes that affect seasonal variation in stream 

chemistry, by further interrogating relationships between nutrient sources, hydrologic processes 

and observed stream chemistry.  
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CHAPTER 3: BASIN GROUNDWATER STORAGE DYNAMICS DURING RECORD-

SETTING WATER LEVEL CHANGES IN THE LAURENTIAN GREAT LAKES 

Abstract 

North America’s Laurentian Great Lakes hold ~23,000 km3 of freshwater, including 

~4,000 km3 of groundwater, containing ~21% of the world’s available freshwater. Previous field 

and modeling work has demonstrated a dynamic hydrologic connection between the Great Lakes 

and the adjacent groundwater aquifers. The combined surface water and groundwater of the Great 

Lakes support drinking water needs, agriculture, manufacturing, maritime shipping, recreation, 

and power generation for the surrounding region. Record-setting changes in Great Lakes elevations 

occurred between 2002-2020 due to shifting regional climate patterns, including variability in the 

ENSO and polar air currents. The resulting shifts in precipitation, evaporation, and temperature 

simultaneously affect the terrestrial water balance of the Great Lakes Basin. While changes to the 

lake levels are highly visible and widely documented, little is known about how groundwater 

storage and discharge may have changed during this time period. To investigate these groundwater 

dynamics, a coupled surface and groundwater model for the state of Michigan was developed using 

the Landscape Hydrology Model (LHM) for the 2000-2023 period. LHM is a gridded, process-

based water balance model which is coupled to the USGS MODFLOW code to simulate saturated 

groundwater flow. Results from this simulation show changes in groundwater elevations closely 

mirror but are lagged 2-4 years behind changes in lake levels. Average heads across the model 

domain were lowest in September 2013 and highest in December 2020, corresponding to an 

average groundwater storage increase of 0.2 m. This change is about one-tenth the average increase 

in lake elevations of 1.46 m during the same period, but an order of magnitude larger than the 

average seasonal change in groundwater storage of 0.028 m. Surface model estimates of the 

terrestrial water balance suggest changing groundwater storage was the result of coincident 

increases in precipitation and decreases in evapotranspiration which occurred between 2008 and 

2018. This effort provides the first estimates of modeled groundwater storage change across a large 

portion of the Great Lakes region for the recent period of record-setting lake level variability. 

Continued development of groundwater simulations in the Great Lakes Basin, and their integration 

into decision-making frameworks, will be necessary to address the impacts of changing climate 

and increased demand for freshwater resources across the region.  
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1. Introduction 

The Laurentian Great Lakes represent the largest unfrozen freshwater resource in the 

world, containing approximately 23,000 km3 of surface and groundwater. Surface water elevations 

in the Great Lakes have historically fluctuated, with both seasonal and interannual variations 

observed since data collection began in 1918 (Figure 9, Panel 1). This record, maintained by the 

National Oceanic and Atmospheric Administration (NOAA), shows seasonal variations of 0.35-

0.67 m, and maximum interannual variations of ~1-2 m across the five lakes. In the past 20 years, 

the lake elevations have swung between record lows and highs, driven by changes in regional 

climate (Gronewold et al., 2014, Gronewold et al., 2016, Gronewold et al., 2021). Little is known 

to date, however, about how these changes have affected inland groundwater storage and discharge 

across the Great Lakes region.  

Water levels in the Great Lakes are controlled by a combination of direct precipitation and 

evaporation over the lake surface, surface runoff from rivers (which are in turn controlled by the 

terrestrial water balance), interlake flows through the connecting channels (St. Mary’s, St. Clare, 

Detroit, and Niagara Rivers), and outflow through the St. Lawrence River (Neff and Nicholas, 

2005). Changes to local climate conditions can alter both the terrestrial water balance and the 

direct-to-lake fluxes, however, these changes are not always consistent between the landscape and 

lake (Gronewold et al., 2021). In addition to changes driven by shifts in the basin’s water balance, 

glacial isostatic rebound and thermal expansion can also change lake levels. Estimated rates of 

glacial isostatic adjustment in the Great Lakes are small relative to the observed change in lake 

level, on the order of millimeters per year (Argus et al., 2020) but are always increasing. Thermal 

induced changes of ~0.4 m occur cyclically, and should not change the year over year trends in 

lake elevation (Meredith, 1975). Due to their large water volume and thermal capacity, the lakes 

also exert a significant effect on regional climate. The lakes store heat during the summer and 

release it during the winter, increasing wintertime evaporation and precipitation, leading to 

significant increases in snowfall on the lee sides of the lakes (Notaro et al., 2013, Shi and Xue 

2019). Inclusion of lake surface temperature dynamics into a Weather Research and Forecasting 

(WRF) simulation of the Great Lakes region increased mean snow water equivalent between 3-

15% in the Great Lakes region (Shi and Xue 2019).  

While the lake levels have historically fluctuated, more distinct shifts in the lake levels 

have been observed over the last thirty-five years. Starting in the 1990’s, an El Niño event brought 
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on a period of sustained increase in surface water temperatures and low winter ice cover, increasing 

over-lake evaporation (Assel et al., 2004, Gronewold et al., 2016). During this period, over-land 

precipitation was well above historical averages, increasing runoff to the Great Lakes; however, 

the increased evaporative flux was enough to offset this increased input. As a result, lake levels 

fell precipitously from the mid 1990’s into the early 2000’s, with historical or near-historical low 

lake levels recorded between 2007 and 2013 in all five lakes (Gronewold et al., 2021). Simulations 

of future lake levels during this time period predicted continued declines due to increased over-

lake evaporation under a warming climate (Lofgren et al., 2011).  

In 2013, Lakes Superior and Michigan-Huron started the fastest two-year average rate of 

water level rise ever recorded across the lakes. Destabilization of polar air currents resulted in a 

polar vortex; extremely cold air from the arctic descended into the Great Lakes region, 

significantly decreasing average lake surface temperature. This resulted in widespread ice cover, 

lowering over-lake evaporation to a point where this flux was overwhelmed by the continued 

elevated input of precipitation to the basin (Gronewold et al., 2016, Gronewold et al., 2021). Lake 

levels continued to rise through the end of the decade until by spring of 2020, all the lakes had 

neared or exceeded their absolute maximum water levels (Figure 9, Panel 2). Specifically, Lake 

Erie had exceeded its previous historical maximum, while Lakes Superior, Michigan and Huron 

were within 0.03 m and 0.04 m of their record levels respectively. These record high levels were 

the result of continued increases in over-land and over-lake precipitation, and near long term 

average landscape ET and lake evaporation (Gronewold et al., 2021). These sustained high lake 

levels impacted both natural systems and human communities through coastal habitat loss 

(Theuerakauf and Braun 2021) and damage to infrastructure, including roads and structures 

(Reynolds, 2020).  

The mismatch between lake level projections during the early 2000’s and the changes 

observed between ~2010 and 2020 is the result of an overprediction in potential evapotranspiration 

(PET), as identified by Lofgren et al. (2011). Recent advancements in predicting Great Lakes water 

levels have focused on improving climate simulations including the downscaling of global 

circulation models (GCM’s) through the use of regional climate models (RCMs) and their online 

coupling to land surface models (Notaro et al., 2015) and three dimensional lake models (Kayastha 

et al., 2018). These improved models predict continued interannual variations and increasing 

extremes in water levels, and significant variability in the direction of change based on the specific 
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approach and climate scenarios used (Kayastha et al., 2018, Notaro et al., 2015). Continued efforts 

are underway to create more dynamically coupled land-lake-atmosphere models, to further resolve 

local-regional climate feedbacks between the land surface, lake surface and atmosphere (Sharma 

et al., 2018).  

Compared to the links between the climate, land surface, and lakes, much less is known 

about the groundwater of the Great Lakes region. There is significant, but largely indirect evidence, 

that the Great Lakes are hydrologically connected to the adjacent groundwater system within the 

basin (Feinstein et al., 2010, Grannemann et al. 2000, Xu et al., 2021). Groundwater provides water 

to the Great Lakes both indirectly through streamflow (Grannemann et al., 2000), and directly 

through discharge to the near shore and lake bed regions (Feinstein et al., 2010, Xu et al., 2021). 

Xu et al. (2021) used a coupled surface and groundwater model to estimate the direct fluxes 

between groundwater and the Great Lakes. This model indicates that both direct groundwater 

recharge and discharge occur across all five Great Lakes. Their results suggest that most of this 

exchange occurs in the near-shore region, and that this flux is primarily from the groundwater into 

the lake. In addition to being a source and sink for water in the Great Lakes, the basin’s 

groundwater system plays a critical role in sustaining streams, rivers, and wetlands, as well as 

being an important source of drinking water.  

While the recent swings in lake levels are highly visible, little is known about how 

groundwater storage and discharge to surface waters has changed over this same period. The same 

climate factors that drive changes in lake levels also affect terrestrial hydrology. These factors 

include shifts in precipitation, temperature, and evapotranspiration, all of which have changed 

significantly over both the lakes and land surface within the Great Lakes basin within the last 30 

years (Costa et al., 2021, Ford, 2020, Gronewold et al., 2016). Here, a coupled surface and 

groundwater model is developed to understand how the climate forces that drove the rapid lake 

level changes in the Great Lakes have affected groundwater over the state of Michigan region. The 

Landscape Hydrology Model (LHM) is used to quantify how groundwater storage, 

evapotranspiration, recharge and groundwater discharge, have changed between 2000-

2023.  Specifically, the following research questions are addressed: 1) What is the seasonal cycle 

of groundwater storage relative to seasonal changes in lake levels?; 2) How has groundwater 

storage changed during the recent interannual swings in lake levels?; 3) What is the timing of 

changes in groundwater storage relative to changes in lake levels?; and 4) What changes to the 



 

 

53 

surface water balance are observed, and how do these relate to changes in groundwater storage.  

 

 

Figure 9: Great Lakes Lake Elevations 1918-2023. Elevations of lakes Superior (a), Michigan-

Huron (b), and Erie (c) for the periods of 1918-2023 (Panel 1) and 2000-2023 (Panel 2).The 

minimum and maximum historical lake level are shown by the solid and dashed lines respectively. 

The colored arrows Panel 2 indicate the recent minimums (for Superior and Erie) and maximums 

(for Michigan-Huron and Superior), while the accompanying text indicates how much higher (or 

lower) this recent extreme was from the all time record conditions (NOAA Great Lakes Monitoring 

Network). 
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2. Methods 

2.1 Study Region and Model Boundary 

The area of interest for this modeling investigation was defined as all the U.S. Geological 

Survey Hydrologic Unit Code 8-digit (HUC8) sub-basins that intersect the state of Michigan. The 

model domain was defined using separate criteria for the inland (terrestrial) and lake portions of 

the domain. In the terrestrial portion of the model, the boundary was defined as an adjacent major 

hydrologic divide beyond the area of interest. Where possible, this terrestrial boundary follows 

higher order river channels within these adjacent watersheds, and is conceptualized as a no-flow 

boundary within the groundwater model. For the portion of the domain that intersects the Great 

Lakes, the model boundary follows the coastline. In the surface model, the boundary follows the 

coastline directly. In the groundwater model, the boundary is extended 10km into the lakes using 

a buffer around the coastline, to allow the model simulate direct exchange of water between the 

Great Lakes and groundwater system though the lake bed. Hereafter, this domain is referred to as 

the “LHM Michigan Model” or “Michigan Model”.  

This domain consists of two primary geographic regions centered around Michigan’s 

Upper and Lower Peninsulas. The upper portion of the domain consists of the north-eastern portion 

of Wisconsin and the Upper Peninsula (Figure 10). The lower portion of the domain consists of 

the Lower Peninsula and portions of Illinois, Indiana, and Ohio. This domain also covers portions 

of the surface drainage basins for Lakes Superior, Huron, Michigan and Erie. It is important to 

note that Lakes Michigan and Huron are connected by the Straits of Mackinac, and as a result their 

levels are the same. Thus, this water body is referred to as Lake Michigan-Huron in the rest of this 

manuscript, and land surface draining to this water body is treated as a single drainage basin.  

Two primary geologic settings are present within the modeling domain. The western half 

of the upper domain is characterized by Precambrian to Cambrian era metamorphic bedrock, 

primarily basaltic lavas and metamorphosed sedimentary rocks (Dietrich, 1983). These units are 

either overlain by thin soils and glacial sediments (Larson and Schaetzl, 2001), or exposed at the 

surface, particularly within the Porcupine Mountains. The eastern half of the upper domain and 

the lower domain are characterized by Pleistocene-era glacial deposits overlying bedrock units of 

the Michigan Basin (Dietrich, 1983, Milstein, 1987, Reed and Daniels, 1987, Westjohn and 

Weaver 1998). Glacial deposits consist of till, outwash and lacustrine sediments (Soller and Garrity 

2018, Westjohn and Weaver 1998). Thick sand, outwash, and coarse to medium till deposits create 
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a topographically high region in the northern Lower Peninsula, the thickest portion of the glacial 

aquifer within the model domain. Lacustrine sediments and fine tills dominate along the lake 

shores, particularly within the Saginaw Bay watershed and Lake Erie basin (Farrand et al., 1984, 

Fullerton et al., 1991, Gobel et al., 1983, Lineback et al., 1983, Sado et al., 1993). The underlying 

units of the upper Michigan Basin are thick sedimentary sequences of sandstone, limestone, shale, 

and dolomite units from the Ordovician through Jurassic periods. Deeper units of the Michigan 

Basin include Precambrian and Cambrian sandstones overlying Precambrian crystalline rock units.  

(Dietrich, 1983, Reed and Daniels, 1987, Milstein, 1987, Westjohn and Weaver 1998). Primary 

aquifers within the modeling domain consist of the glacial sediments, and the more permeable 

units of the Michigan basin (Westjohn and Weaver 1998). Groundwater is a significant contributor 

to surface water and streamflow in this region. A USGS study of streamflow in the Great Lakes 

basin shows that baseflow contributes between ~40% to > 90% of total flow across most of the 

modeling domain (Neff et al., 2005). 
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Figure 10: Study Region, Model Domain and Surface Elevations. Domains for the surface (blue 

outline) and groundwater (purple outline) models (A) shown with surface elevations form the 

USGS 3D Elevation Program (USGS, 2023) and common names of places referenced throughout 

the manuscript. The model domain contains every HUC8 subbasin in the state of Michigan, and 

includes portions of the coastline of lakes Superior, Huron, Michigan and Erie. Panel (B) shows 

the relative location of the state of Michigan and the Great Lakes in North America. Model outputs 

are summarized across the model domain, and within the portions of the Great Lakes surface 

drainage basins contained within the model, shown in Panel C. The lightly shaded regions of 

corresponding color show the extent of each lake basin outside the model domain.   

2.2 The Landscape Hydrology Model 

The Landscape Hydrology Model and its functionality are described in detail in Kendall 

(2009) and Hyndman et al. (2007). Briefly, LHM is a distributed, process-based surface and 

subsurface water and energy balance model. LHM consists of three modules which each simulate 

the relevant processes in one of three hydrologic zones: the landscape surface and root zone, the 

unsaturated zone, and the saturated zone. The landscape module is a gridded 2-dimensional model 

simulating water and energy fluxes from the canopy through the root zone. The generalized form 

of the water balance equation solved by the surface module is given in Equation 1 as: 
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[1] 𝛥𝑆𝑚 = 𝑃 −  𝐸 −  𝑇 −  𝑆𝑠 −  𝑅 − 𝐸𝑥 −  𝑃𝑑   

Where 𝛥𝑆𝑚 is the change in root zone soil moisture, 𝑃 is precipitation, 𝐸 is evaporation, 

𝑇 is transpiration, 𝑆𝑠 is surface storage (combination of canopy, depression, snowpack and ice 

storage), 𝑅  is runoff, 𝐸𝑥  is exfiltration from (water leaving) the root zone and 𝑃𝑑  is deep 

percolation (water reaching the water table after transport through the unsaturated zone). The 

landscape surface has one layer, while the root zone is in general multi-layered. 

The unsaturated zone module takes deep percolation from the surface model, removes 

throughflow created by resistive deeper layers, then simulates the vertical propagation of water 

through the unsaturated zone until its delivery to the saturated water table as recharge. Here, 

throughflow is defined as water that moves laterally through the unsaturated zone before 

discharging to a surface feature. Throughflow occurs when deep percolation exceeds the vertical 

conductivity of the unsaturated zone material beneath the root zone, and is governed by Equation 

2: 

[2] 𝑇𝑓 =  𝑚𝑎𝑥((𝑃𝑑 − 𝐾𝑣),0)  

Where throughflow 𝑇𝑓 is the maximum of 0 and the difference between deep percolation 

𝑃𝑑 and unsaturated zone vertical saturated hydraulic conductivity 𝐾𝑣. Recharge 𝑅𝑐ℎ is calculated 

as the difference between deep percolation 𝑃𝑑 and throughflow 𝑇𝑓 convoluted with a time delay 

function as show in Equation 3:  

[3]  𝑅𝑐ℎ =  (𝑃𝑑 −  𝑇𝑓)  ∗  𝐷𝑓 

This time delay function was derived empirically from the 1-dimensional Richards 

Equation (Richards, 1931) and uses soil hydrologic properties to simulate the delay in transport 

between water leaving the bottom of the soil zone and reaching the top of the water table. It is 

important to note that this computed transit time is that of the pressure wave pushing soil moisture 

downward, not the hydrologic transit time of water particles. 

The saturated zone module is based primarily around the modular 3-dimensional finite 

difference groundwater flow model MODFLOW (Harbaugh, 2005). Recharge from the 

unsaturated zone module and unsatisfied evapotranspiration demand from the surface model are 

passed to MODFLOW which then computes the change in groundwater storage 𝛥𝑆𝐺 , groundwater 

supplied evapotranspiration  𝐸𝑇𝐺 , and groundwater discharge 𝑄 as shown in Equation 4: 

[4] 𝛥𝑆𝐺  =  𝑅 −  𝐸𝑇𝐺  −  𝑄 

Groundwater elevations and fluxes in MODFLOW are governed by a variety of optional 
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‘packages’ used to represent boundary conditions such as groundwater evapotranspiration, 

groundwater discharge to streams and constant heads. Details on the MODFLOW packages used 

in this work are provided in Section 2.8.  Hereafter we will refer to the combination of the 

landscape surface, root zone, and unsaturated zone as the “surface model” and to MODFLOW as 

the “groundwater model”.  

Currently the surface and groundwater models are coupled offline using the following 

approach. First the surface model is run for the full simulation period, and the outputs are saved. 

Second, deep percolation and unsatisfied ET demand are passed to MODFLOW which is run for 

the full simulation period to compute groundwater elevations and discharge to surface features. 

Finally, post-processing combines the surface runoff fluxes and groundwater discharge to compute 

streamflows. More details on the calculation of streamflows and their comparison to observed 

streamflow data are provided in Section 2.10.  

Five major changes have been made to the basic structure of the LHM since its description 

in Hyndman et al. (2007) and Kendall (2009), which are important to its function as applied in this 

paper.  

1. A snowpack thickness calculation has been added to the snow model, including the 

addition of terms for snowpack liquid water holding capacity and ice/water fraction. 

Snowmelt at the surface is now retained in the snowpack, and melt only occurs after 

the holding capacity has been reached (Ford, 2022).   

2. Infiltration capacity, previously static and defined as the saturated infiltration capacity 

provided in the SSURGO database (USDA, 2016), is now calculated using the Green 

and Ampt method (Green and Ampt, 1911).  

3. The user can now select from two different methods for calculating root zone soil 

moisture in the land surface module: 1) a linearized 1-dimensional Richards equation 

approach described in Kendall (2009) or 2) a hybrid bucket model computes fluxes 

from one layer of the soil zone to the layer below it using the unsaturated hydraulic 

conductivity, which is computed using the soil moisture in that layer with the Van 

Genuchten equation (Van Genuchten 1980) 

4. A mechanism has been implemented using MODFLOW’s Drain Package to simulate 

discharge from the groundwater aquifer through lateral discontinuities caused by rapid 

changes in elevation, hereafter referred to as vertical seepage faces. A detailed 
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description of these vertical seepage faces and their governing equations are provided 

in Section 2.7.  

5. The groundwater coupling and model preparation infrastructure have been updated to 

allow LHM to run newer versions of MODFLOW, including MODFLOW-NWT 

(Niswonger et al., 2011).   

2.3 Model Data Sources 

LMH instances are built and driven using a variety of existing regional to national scale 

datasets describing the climate and landscape. Climate forcing data including precipitation, 

windspeed, air temperature, humidity, and incoming solar radiation are sourced from the North 

American Land Data Assimilation System (NLDAS-2A) reanalysis product (Mitchell et al., 2004, 

Xia et al., 2012a, Xia et al., 2012b). Leaf area index (LAI) data used in calculating ET in the model 

come from the MODIS MCD15A2H LAI product (Myneni et al., 2015). Land cover and 

impervious surface area are taken from the USGS National Land Cover Database (NLCD) 2001, 

2006, 2011, 2016, 2019 and 2021 data products (Dewitz, 2023, Yang et al., 2018). Municipal 

boundaries are defined using the Topologically Integrated Geographic Encoding and Referencing 

(TIGER) dataset (U.S. Census Bureau, 2012). LHM uses two main hydrography datasets, the 

National Hydrography Dataset (NHD) (USGS, 2020) and wetland data from the National Wetlands 

Inventory (NWI) (USFWS, 2018). Surface elevation data come from the USGS 3D Elevation 

Program (3DEP) 1/3rd arc second digital elevation model (DEM) (USGS, 2023) and Great Lakes 

bathymetry comes from the NOAA Great Lakes Bathymetry dataset (National Geophysical Data 

Center, 1999a,1999b, 1999c, 1999d, 1999e). Soil type and soil property data are taken from the 

Gridded Soil Survey Geographic (gSSURGO) Database (USDA, 2016), with soil hydrologic 

properties computed using the ROSETTA model (Schaap et al., 2001).  

Well data were accessed from the Michigan Department of Environment, Great Lakes, and 

Energy (EGLE) Wellogic database, which provides the locations and characteristics of public and 

private water wells across the state. This database includes information compiled from driller logs 

including depth to water, well depth, aquifer type and aquifer thickness. Also included are 

estimates of hydraulic conductivity based on lithology (EGLE, 2020). Drinking water wells for 

Wisconsin, Illinois, Indiana, and Ohio were compiled from their respective state agencies which 

oversee well records (IDNR, 2015, ISGS, 2015, ODNR, 2015, WDNR, 2015) , which compiles 

well data from state agencies across the United States.  
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To ensure cross scale consistency, the location and extent of Quaternary geology units were 

compiled from a series of 4x6 degree Quaternary geologic maps from the U.S Geology Survey for 

the Chicago (Lineback et al., 1983), Lake Erie (Fullerton et al., 1991), Lake Superior (Farrand et 

al., 1984), Minneapolis (Goebel et al., 1983) and Sudbury (Sado et al., 1989) quadrangles. Data 

for Quaternary deposit thickness and bedrock topography came from maps by Soller and Garrity 

(2018). Bedrock geology unit locations and extents were specified using the Geologic Map of 

North America (Garrity and Soller, 2009). Additional information on bedrock unit formations was 

taken from the Michigan Bedrock Geology maps (Milstein, 1987, Reed and Daniels, 

1987).  Lakebed material units were specified using the lakebed substrate material product 

provided in the Great Lakes Aquatic Habitat Framework (GLAHF) (Wang et al., 2015). 

2.4 Model Layering and Discretization  

For the Michigan Model, LHM’s surface model contains one land surface layer and seven 

root-zone soil layers, and is discretized with 1000 m cells and hourly time steps. The groundwater 

model uses 500 m cells, daily time steps and weekly stress periods. To initialize the groundwater 

model, a steady state stress period is run at the beginning of the simulation period using average 

recharge and evaporative demand from LHM’s surface model. During the transient simulation 

period, recharge and evaporative demand are updated at the beginning of each week-long stress 

period, but remain constant during each time step within a given stress period.  

Land surface elevations are specified using the 3DEP DEM (USGS 2023), and the soil 

thickness is defined using the gSSURGO database (USDA, 2016), with a minimum thickness of 

0.5m and a maximum thickness of 2.5m. The groundwater model has three layers, two in the 

Quaternary glacial materials and one representing the bedrock material. Land surface elevations 

in the groundwater model are defined using a combination of the NED DEM and Great Lakes 

Bathymetry data (Described in Section 2.4). Specifically, top elevation in the first layer is set to 

the land surface elevation in the terrestrial portion of the model and the lakebed elevation in the 

portion of the model domain covered by the Great Lakes. The top elevation in layer 2 is set to half 

the distance between the starting head elevation and the bedrock surface, and the top of layer 3 is 

set to the bedrock surface. A map of the surface aquifer thickness, calculated as the difference 

between the DEM and bedrock elevations is shown in Figure A22. Layer 3, representing the 

bedrock units, was set to a fixed depth of 100m, and was included primarily to provide stability to 

the heads in layers 1 and 2. Although units of the Michigan Basin can include highly saline water, 
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movement of groundwater due to density dependent flow is not considered in this model.  

2.5 Surface and Bedrock Elevations and Starting Heads 

Model top elevations were created by combining the 3DEP DEM (USGS, 2023) with the 

NOAA Great Lakes bathymetry dataset (National Geophysical Data Center, 1999a,1999b, 1999c, 

1999d, 1999e) to create a continuous elevation map representing the land surface and lake bottom 

elevations. The 3DEP DEM includes lake surface elevations, representative of the lake level at the 

time of data collection. To convert these lake surface elevations to lake bottom elevations, the 

NOAA bathymetry data were first combined from their individual lake basins to a single raster, 

then only the cells with negative elevation (measurable lake depth) were selected. This resulting 

lake depth raster was then subtracted from the DEM, to yield a combined elevation product 

spanning the land surface and lakebed. Bedrock elevations, which define the contact between 

Quaternary glacial and bedrock aquifers in the groundwater model, were created by smoothing the 

Soller and Garrity (2018) bedrock elevation product using a 3x3 focal mean implemented using 

the Focal Statistics tool in ArcPy (ESRI, 2023).   

Starting heads were created using an input layer consisting of groundwater well elevations 

compiled from data from the agencies responsible for permitting and/or tracking private water 

wells in each state in the model domain (EGLE, ODNR 2015, ISGS 2015, IDNR 2015, WDNR 

2015) located within the model boundary and screened in the Quaternary aquifer. First an initial 

gridded estimate of static water table elevations is created by randomly selecting a subset of the 

wells, then interpolating the static water levels reported in the database using the Empirical 

Bayesian Kriging function in ArcPy (ESRI, 2023). Second, this initial water table elevation is used 

to select areas where the water table is above the land surface. Third, elevations (taken from the 

DEM) for surface water features (taken from the hydrography datasets) in areas where the initial 

water table is above the land surface are converted to points. Finally, a combined dataset of the 

water well subset, and points representing surface hydrologic features are combined, and 

interpolated using the same kriging routine. The result is a gridded estimate of water table 

elevations which considers surface hydrologic features, considered to be expressions of the water 

table.  

2.6 Quaternary and Bedrock Geology Maps  

A unified Quaternary geology map (Figure A23A) was created by combining the five 

quadrangle Quaternary geology maps and clipping it to the model boundary. The Quaternary 
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material classes reported in the original datasets were then re-classified into a simplified list of 

geology classes (Table A1). Polygons within this reclassified map were then dissolved using the 

summary Quaternary geology classes to combine polygons of the same material type adjacent to 

one another. All of these initial processing steps were performed in Python (version 3.9.18) using 

the Geopandas (Jordahl et al., 2021) and ArcPy packages (ESRI, 2023). Some linear features 

bisecting Quaternary unit polygons were present from the compositing of the individual maps. 

These features not removed by the dissolve were manually removed in the ArcGIS Pro desktop 

interface.  

A bedrock geology unit map (Figure A23B) was created by first clipping the bedrock 

geology polygon product from the Geologic Map of North America (Garrity and Soller, 2009) to 

the model domain. This map has coarse spatial resolution, but was uniform and nearly continuous 

across our model domain. There were, however, some missing data in a thin band along the 

coastline of the Great Lakes. To fill in this missing data, polygons of the same age and material 

type on either side of these missing data were connected by manually editing the polygon vertices 

in the ArcGIS Pro desktop application (ESRI, 2023). Because this data was uniform across the 

model region, the unit names and rock type information were not re-classified. However, attributes 

from the Michigan Bedrock Geology product were combined with those of the Geologic Map of 

North America, as the Michigan bedrock product had more descriptive geologic unit names helpful 

in specifying aquifer property estimates (described in detail in the next section).  

2.7 Initial Aquifer Property Estimates (Quaternary, Bedrock and Lakebed Substrate)  

Hydraulic conductivity (HK) estimates in the Quaternary material (Figure A24 A) were 

derived by combining the Wellogic conductivity information with the merged and refined bedrock 

and Quaternary geology maps described in Section 2.3. The Wellogic data were cleaned to remove 

all wells with no data for HK and to remove all wells with whole number HK values (i.e. 0, 

50,100,200,300) which were repeated more often than other values and assumed to be spurious 

data. Subsets of this dataset representing wells in sedimentary and bedrock aquifers were then 

created. For the Quaternary geology units, the formatted Quaternary geology map and cleaned 

Quaternary well data were combined using their spatial locations using the spatial join function in 

the Python package Geopandas (Jordahl et al., 2021). One of two methods was used to assign HK 

values to the individual Quaternary unit map polygons. In polygons with more than five wells, the 

geometric mean of the reported hydraulic conductivities for all the wells within that polygon was 
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calculated. The arithmetic mean was then taken for all of the polygons of a given class with more 

than five wells to create type-average HK values. The unit average HK values were then assigned 

to polygons with less than five wells based on the unit type, and are reported in Table A10. Two 

Quaternary geology summary classes had no polygons with wells in them, bedrock and artificial 

fill. The bedrock units were assigned an HK value based on that of the corresponding location 

bedrock HK map, and artificial fill was assigned the same HK value as coarse textured till.  HK 

values for the lake bed were computed by relating the six substrate classes listed in the GLAHF 

dataset (clay, silt, sand, mud, hard, rock) to the existing Quaternary geologic classes using Table 

S11. HK values for the substrate classes were then assigned as the average HK in the corresponding 

Quaternary geologic material. For bedrock HK estimates (Figure A24 B), a similar procedure was 

used. First, the Geologic Map of North America polygons were edited to fill in gaps around the 

lake shore present in the original shapefiles. Second, the bedrock unit polygons were merged with 

the cleaned bedrock wells, and the geometric mean of the reported HK values was calculated for 

each polygon.  

Estimates of specific yield from the Quaternary aquifer materials were derived from the 

gSSURGO soil data for the lowest soil layer in LHM’s surface model. Specific yield, or the ratio 

of water that can drain from an aquifer to the total value of the aquifer, was calculated by taking 

the difference between the soil saturated water content (𝛩𝑠𝑎𝑡 ) and soil field capacity (𝛩𝑓𝑐), as 

shown in Equation 5. 

[5] 𝑆𝑦 =  𝛩𝑠𝑎𝑡 − 𝛩𝑓𝑐  

The calculated specific yield raster was then resampled to the Quaternary geology polygons 

by taking the mean across each polygon. Geologic unit information from both the Geologic Map 

of North America and the Michigan Bedrock Geology maps were used to assign specific yield 

values from the literature to the bedrock geology polygons. Assigned specific yield values were 

taken from published estimates for different geologic materials compiled in Anderson, Woessner, 

and Hunt (2015) and Woessner and Poeter (2020). Porosity estimates were derived as the 

difference in the specific yield estimates (𝑆𝑦, described above) and the residual water content 

(𝛩𝑟𝑒𝑠) reported for the lowest soil layer reported in the gSSURGO database (USDA. 2016) as 

shown in Equation and range from 0.139 to 0.382 across the model domain.  

[6]     𝜙 =  𝑆𝑦 + 𝛩𝑟𝑒𝑠 

Specific yield estimates for the bedrock units were taken from published values for bedrock 
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units of different lithologies (Anderson et al., 2015, Woessner and Poeter, 2020).  

2.8 Groundwater Model Boundary Conditions 

Six internal boundary condition types are included in the groundwater model, implemented 

using one of three MODFLOW head-dependent flux boundary packages: Drain (DRN), 

Evapotranspiration (EVT) or General-Head Boundary (GHB) (Harbaugh, 2005).  

A two-way head-dependent flux boundary condition is specified from the coastline 10 km 

into the lakes using the GHB package. This package is used to represent exchange of water 

between the Great Lakes and the terrestrial groundwater system. Heads for this boundary condition 

are specified using the monthly observed lake elevation data from the NOAA Great Lakes 

Monitoring Network. The direction of the flux is computed in MODFLOW as the difference 

between the head ℎ and the lake elevation 𝐸𝐿. The total flux across this boundary is the product of 

this difference in head multiplied by the conductance of the lakebed sediments (𝐶𝐿𝐵) as shown in 

as shown in Equation 7: 

[7] 𝑄 =  (ℎ − 𝐸𝐿)  ∗  𝐶𝐿𝐵    

Here, lakebed conductance is defined as the hydraulic conductivity 𝐾 multiplied by the cell 

area 𝐴𝐿 divided by resistive sediment thickness 𝑇 here assumed to be 1 m everywhere as shown in 

Equation 8. 

 [8] 𝐶𝑙𝑏 =  𝐾 ∗ 𝐴𝐿/𝑇  

Four types of one-way head dependent fluxes, which allow water to drain from the aquifer, 

are represented in the model as “drains” using the DRN package: rivers, lakes/wetlands, horizontal 

seepage faces (surface drains) and vertical seepage faces. Every cell in the first layer of the model 

is specified as a river, lake/wetland or horizontal seepage face, while vertical seepage faces are 

specified in layers 2 and 3 where lateral discontinuities in the layers occur. MODFLOW computes 

flux across these boundaries as the difference in calculated head ℎ and drain feature elevation 𝐸𝑑, 

multiplied by a conductance term 𝐶 as shown in Equation 9.  

[9] 𝑄 =  (ℎ − 𝐸𝑑)  ∗  𝐶  

A unique conductance term is defined for each of the four drain types. For all four drain 

types, water can only leave the aquifer, so in the case that (ℎ − 𝐸)  ≤  0, Q is zero.   

The locations and geometry of rivers are defined using the National Hydrography Dataset 

(USGS, 2020), and streambed elevations are derived from the 3DEP DEM (USGS, 2023). River 

conductance is defined in Equation 10 as:  
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[10] 𝐶𝑟  =  𝐾 ∗ 𝐿 ∗ 𝑊/𝑇𝑠𝑒𝑑  

Where 𝐶𝑟 is riverbed conductance, 𝐾 is horizontal hydraulic conductivity, 𝐿 is the length 

of the stream feature in each cell,   𝑇𝑠𝑒𝑑 is the thickness of the river bottom sediment, assumed to 

be 1m in all locations and 𝑊  is stream width. Here, 𝑊  is estimated as a spatially-variable 

relationship between stream width and streamflow as given in Equation 11: 

[11] 𝑊 =  𝑎 ∗ 𝑄 𝑏  

Where 𝑎 and 𝑏 are spatially variable constants and 𝑄 is discharge inferred from the USGS 

stream gauging network stations within the model domain. Values of these constants are set by 

fitting stream cross-sectional measurement data collected by the USGS during site visits (USGS, 

2019) using the at-many-stations hydraulic geometry method (Gleason and Wang, 2015). Because 

these constants reflect underlying geologic, climatologic, and other hydrologic conditions, they 

vary across space, and at different flow levels (e.g. low, medium, and high flow) and spatial scales. 

However, the spatial distribution of stream geometry measurements is uneven, and sparse in 

regions with lower populations, such as Michigan’s Upper Peninsula. To address this, we 

iteratively fit the constants in Equation 11 to best describe stream width at a given discharge 

percentile for all of the gauges within a given watershed. This process was repeated across 

successively decreasing watershed sizes, starting with 2-digit HUC code watersheds, followed by 

HUC 4, 6 and finally HUC 8. If a watershed at a certain scale did not contain sufficient points for 

an accurate fit (10 gauges was selected as the threshold), that watershed then inherited constants 

fit at the next coarsest scale. For stream velocity and geometry calculations here, constants fit to 

median flow geometry data were used.   

Wetland and inland lake locations are defined using the NHD dataset (USFWS, 2018), and 

elevations are defined using the 3DEP DEM (USGS, 2023). Conductance (𝐶𝑤𝑙 ) in these features 

is defined in Equation 12 as: 

[12] 𝐶𝑤𝑙  =  𝐾 ∗ 𝐴𝑓/𝑇𝑠𝑒𝑑  

Where 𝐾 is the hydraulic conductivity of the bed sediments, 𝐴𝑓 is the area of the feature 

within the cell, and  𝑇𝑠𝑒𝑑 the thickness of the sediments along the bottom of the feature, assumed 

to be 1 m in all locations.   

Horizontal seepage faces (surface drains) are specified in every cell without a river or 

lake/wetland drain. Elevations for these surface drains are set equal to the land surface elevations 

specified by the DEM (USGS, 2023). Surface drain conductance 𝐶𝑠𝑢𝑟𝑓  is defined in Equation 13 
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as: 

[13] 𝐶𝑠𝑢𝑟𝑓  =   𝐾 ∗  𝐴𝑐/𝑇𝑠𝑜𝑖𝑙  

Where  𝐾 is the hydraulic conductivity, 𝐴𝑐 is the area of the cell and 𝑇𝑠𝑜𝑖𝑙 is assumed to be 

a unit thickness of soil closest to the surface.   

Vertical seepage faces are defined as a special case in the model, allowing water to drain 

from cells in any layer where a lateral discontinuity in the model layers occurs. This condition 

simulates the lateral drainage of water from topographic faces in areas of high relief, such as in the 

Porcupine Mountains in the north-western portion of the model region. Vertical seepage faces are 

allowed to occur in layers 2 and 3 anywhere that the layer bottom is above the layer top of an 

adjacent model cell, such that the cell is exposed to the surface on one of its four lateral faces. No 

vertical seepage faces were specified in layer 1, as all layer 1 cells contained either a river, 

lake/wetland or horizontal seepage face boundary.  

A seepage face conductance term is derived to describe the discharge across the wetted 

area of the seepage face, as shown in Equation 14 such that: 

[14] 𝐶𝑠𝑓  =  𝐾 ∗ (𝐸𝑡𝑜𝑝  −  𝐸𝑠𝑒𝑒𝑝) 
3

4
  

Where 𝐶𝑠𝑓 is the seepage face conductance, 𝐾 is hydraulic conductivity in the given layer, 

𝐸𝑡𝑜𝑝 is the top elevation in the cell, and 𝐸𝑠𝑒𝑒𝑝 is the elevation of the bottom of the seepage face 

(equal to the model top of the adjacent cell where the lateral discontinuity occurs). Using Darcy’s 

equation and the Dupuit-Forchheimer, we estimate that the height of the wetted area of the seepage 

face is ¾ the total seepage face height, here given by (𝐸𝑡𝑜𝑝  −  𝐸𝑠𝑒𝑒𝑝).  The derivation of this 

seepage face conductance, including the simplifying assumptions used therein, is described in the 

Appendix B. And accompanying figure showing a conceptual diagram of head within the seepage 

face cell is included in figure A21.   

When insufficient soil moisture exists to meet evaporative demand in areas with shallow 

water tables, plants can access saturated groundwater to meet this unsatisfied evaporative demand 

(Lowry et al., 2010, Zipper et al., 2015). In LHM, groundwater evapotranspiration is allowed in 

wetland areas, where water tables are within 3 m of the land surface. Wetland evapotranspiration 

from groundwater is represented using the EVT package, and is specified by three parameters: an 

ET rate, surface elevation and extinction depth (here set to 3 m). ET occurs at the specified rate 

when the simulated head is equal to or greater than the ET surface; when head is below the 
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extinction depth no ET occurs. At head elevations below the ET surface and extinction depth, the 

ET rates vary linearly with head. Here, ET rates are specified as the unsatisfied ET demand, or the 

difference between potential evapotranspiration (PET) and the ET supplied by surface fluxes as 

computed by LHM’s surface model.  

In addition to the internal boundary conditions described above, a no-flow boundary 

condition is specified along the margins of the model boundary. In the terrestrial portion of the 

model domain, this no flow boundary follows major river systems outside the area of interest, and 

in the lakes this boundary follows a 10km buffer out from the shoreline.  

2.9 Observational Data  

Both observed groundwater head elevation and streamflow records are used for comparison 

with model outputs. Head observations are compiled from the same static water level 

measurements reported by state agencies in their municipal and drinking water well databases that 

were used to create starting heads for the model. Static water level measurements are filtered to 

select only those from within the model period (01-01-2000 to 12-31-2023). During a transient 

run, heads are written out using the MODFLOW Head Observation Package at the same date and 

location as the observed water level. During a steady state run, all observed heads are compared 

to the modeled head at the end of the single steady state stress period. Model performance for 

heads is assessed using the root mean square error, calculated using the Python package NumPy 

(Harris et al., 2020) as shown in Equation 15: 

[15] 𝑅𝑀𝑆𝐸 =  √𝛴(𝐻𝑆  − 𝐻𝑂)^ 2/𝑁                                           

Where 𝐻𝑆 is the simulated head elevation in the cell containing the observation well, 𝐻𝑂 is 

the head elevation in the observation well, and 𝑁 is the total number of observations.  

Streamflow observations are downloaded from the USGS NWIS system for every gage 

active during the model period within the model domain. An observation watershed is 

automatically delineated for the contributing area to each streamflow observation location. 

Groundwater discharge fluxes from MODFLOW along with surface runoff and throughflow from 

the surface model are summarized within the observation gage basins to create simulated daily 

streamflow at the observation gage. Model performance for streamflow is assessed by comparing 

the monthly mean of simulated and observed streamflows at each site using the Normalized Nash-

Sutcliffe Efficiency (𝑁𝑁𝑆𝐸) in Equation 16 as: 
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[16] 𝑁𝑁𝑆𝐸 = 1 /  (1 +  
𝛴((𝑆𝑂 − 𝑆𝑆) ^ 2)

𝛴((𝑆𝑂 −  𝑆𝑀) ^ 2)
)                                           

Where: 𝑆𝑂 is the observed streamflow, 𝑆𝑆 is the simulated streamflow and 𝑆𝑀 is the mean 

of the observed streamflow. Streamflow simulation performance across the whole model domain 

is computed as the average of the 𝑁𝑁𝑆𝐸. Values of 𝑁𝑁𝑆𝐸 = 1 indicates perfect summation, 0.5 

indicates the simulation is no better than the mean of observations, 0 indicates no predictive power.   

2.10 Model Calibration  

Model calibration was performed in two primary phases: 1) steady state calibration to head 

observations, and 2) transient calibration to both heads and flows. In the first phase, HK values 

were iteratively updated by scaling HK values based on the head residuals from the previous run 

summarized within the Quaternary geologic units. The scaling factor (𝑆𝐹) used to update HK for 

the next run is shown in Equation [17]: 

[17] 𝑆𝐹 = 𝑎𝑅 / 𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛                                                                      

Where 𝑎  is a constant, 𝑅  is the residual within the given geologic unit, 𝑅𝑚𝑎𝑥 is the 

maximum residual across the geologic units, and 𝑅𝑚𝑖𝑛 is the minimum residual across the 

geologic units. The constant was varied between 3 and 8 to control the degree to which HK values 

could be changed within each iteration. Higher values of 𝑎 (Between 8 and 5) were used in early 

calibration runs to allow larger adjustments to HK values, while a smaller 𝑎 of 3 was used in later 

runs to make smaller adjustments to HK values.    

2.11 Data Analysis  

To reduce dimensionality in the model outputs for interpretation, spatial and temporal 

summaries were computed. First, time series of spatial averages were created by computing the 

mean of each gridded output across the entire model domain and within individual lake drainage 

basins at each timestep. Second, cross year averages for each month were created to quantify 

changes within a year on average across the simulation period. For groundwater (and observed 

lake) elevations, mean monthly anomalies were computed by computing the mean elevation within 

each year, then subtracting each year's mean from its monthly values, and finally taking an average 

of this mean-removed monthly value across all years. For surface fluxes (e.g. ET, deep 

percolation), mean fluxes in each month across all years were computed. Groundwater storage is 

computed as meters of water in the aquifer at a given time point, calculated as the MODFLOW 

estimated head time porosity. Hereafter “head” or “groundwater elevation” refers to the 
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MODFLOW estimated groundwater elevation in meters above sea level, while “storage” or 

“groundwater storage” refers the computed aquifer storage in meters of water (MODFLOW 

estimated head times porosity). Changes in groundwater storage are only assessed in the surficial 

aquifer. Groundwater flow across the Great Lakes region is primarily in the shallow flow system, 

which for most of the model region is dominated by glaciofluvial material. These aquifers are also 

the most productive; however significant storage and drinking water withdrawals occur from the 

deeper bedrock aquifers, including from units of the Michigan Basin (Grannemann et al., 2000, 

Feinstein et al., 2010). These deeper bedrock aquifers are not fully simulated in this model.  

These time series of the spatially averaged model outputs were then used to inform creation 

of spatially explicit maps of change in groundwater storage across the model period. In the first 

case, the difference in head in each cell was taken between the domain average minimum and 

maximum head conditions. Second, a maximum seasonal groundwater storage change map was 

created by: 1) identifying the months with the maximum and minimum average groundwater 

elevation anomaly (December and September respectively), 2) computing the average head in each 

cell during these two months across the simulation period, and 3) computing the difference in head 

mean September from the mean December groundwater elevation in each cell.  

Segmented linear regression is employed to identify when distinct changes in trends of lake 

elevation and groundwater storage occurred. For this analysis, the data records are truncated to the 

period of 2006-2021 and after initial analysis of the model output data, 2012-2021 for groundwater 

elevations. The approach implemented search for the single most significant breakpoint in the time 

series. Restricting these date ranges for the analysis assured that the inflection point between 

extreme low and high water levels in each series were captured. The dates of these inflection points 

are then compared for the lake elevations and groundwater storage in their respective basins to 

assess to what degree there is a lag between these two signals. This analysis is implemented using 

the Python package piecewise-regression (Pilgrim, 2021, Pilgrim, 2023), which is based on the 

methods of Muggeo (2003).  

Breakpoint analysis was used to investigate the relationships between changes in 

groundwater elevation and surface fluxes. Breakpoints in the domain average time series of each 

model output were selected using the Python package Ruptures (Turong et al., 2018). Specifically, 

a bottom-up segmentation approach was used with a least squared deviation cost function to select 

two breakpoints in each time series. These two breakpoints were then used to segment the time 
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series into three periods, representing changes in the long-term mean of the given model output. 

Mean head and surface fluxes in each model cell were computed within the three periods created 

by the breakpoint analysis, and compared to understand the spatial variability in changes to the 

surface water balance and groundwater elevations.  

3. Results and Discussion  

3.1 Model Calibration 

The initial, uncalibrated model performance values for the first fully transient model run 

were an RMSE of 8.03m for head and an average NNSE of 0.435 for streamflows. A steady state 

only version of this same run yielded an RMSE of 7.96. A total of eight subsequent steady state 

model runs were completed where HK values were scaled based on RMSE values from the 

previous runs summarized in the geologic unit polygons (Equation 17). The last of these eight runs 

yielded an RMSE of 6.56, and the corresponding transient run had an RMSE of 6.60 and an average 

NNSE of 0.41. There is no obvious bias toward over or underprediction in the model in the 

simulated-vs-observed plot shown in Figure A25A. Figure A25C shows the spatial distribution of 

head errors, with clusters of underprediction occurring in the northern Lower Peninsula where 

Quaternary sediments are thick, and along the northern shore of the Upper Peninsula and into the 

Keweenaw Peninsula, where bedrock exists near the surface adjacent to the lakeshore. Clusters of 

overprediction occur along the shoreline of the northern Lower Peninsula, and along the south-

eastern portion of the model domain including the Maumee Watershed. No trend in residuals 

though time is observed, indicating that the model is not accumulating error or bias toward any 

particular period of the observational data (Figure A25B). Model performance for streamflow is 

highest in the central and eastern Upper Peninsula, and is weakest in watersheds of the northern 

Lower Peninsula, in the same regions with the largest underprediction in groundwater heads 

(Figure A26).  

3.2 Average Conditions  

On average, the study region receives 894 mm of precipitation per year, 541 mm of which 

is returned to the atmosphere as ET, and 260 mm of which passes below the root zone as deep 

percolation. Overland runoff averages 93 mm per year. Annual average precipitation, ET, and deep 

percolation across the model regions are shown in Figure A27. Precipitation in the region is 

strongly influenced by the lake effect, especially along the Lake Superior and Lake Michigan 

shorelines. Lake effect precipitation also affects deep percolation, while the ET pattern is 
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considerably more heterogeneous across the model region. Average water table elevations (Figure 

A28A) closely follow trends in topography and are influenced by the presence of discharge points 

(rivers, lakes and wetlands), while depth to water (A28B) is considerably more variable, even 

across areas of similar relief, due to variations in soil and aquifer properties and the locations and 

elevations of groundwater drainage boundary conditions. Depth to water in roughly 45% of the 

model region is within 5m of the surface, and is especially shallow in the central Upper Peninsula, 

Saginaw Bay watershed, in the Thumb of Michigan and in the Maumee River Basin. The largest 

depths to water occur in the northern Lower Peninsula in areas of deep, sandy surficial aquifers.  

3.2 Seasonal Changes in Groundwater Storage  

Seasonal cycles of groundwater heads and lake elevations are out of phase, with peak 

groundwater heads occurring three to four months after peak lake elevations (Figure 11). Lake 

elevations are highest during mid-summer, with peak elevations occurring in August in Lake 

Superior (Figure 11A), July in Lake Michigan-Huron (Figure 11B), and in June in Lake Erie 

(Figure 11C). Maximum average groundwater heads within the lake basins occur in November in 

the Lake Superior basin, December in the Michigan-Huron basin and October in the Lake Erie 

Basin. Conversely minimum average heads occur during late summer; in September for the Lake 

Superior and Michigan-Huron basins, and August for the Lake Erie Basin. Average seasonal 

changes in heads across the lake basins range from 0.34 m in the Lake Superior basin to 0.13 m in 

the Michigan-Huron basin and 0.06 m in the Lake Erie basin. These seasonal changes in head are 

similar in magnitude to those of lake elevation for Lake Superior (0.29 m), much lower than those 

in Lakes Michigan-Huron (0.29 m) and Erie (0.37 m). These changes in head correspond to 

changes in groundwater storage of 0.08 m, 0.03 m and 0.01 m for the Superior, Michigan-Huron 

and Erie Basins. The same seasonal pattern of groundwater heads which peak during winter and 

are lowest during the summer are observed in the model of Xu et al. (2021). Their model also 

shows groundwater discharge to the Great Lakes is highest during winter, when heads are highest 

and lake levels are lowest.  

Argus et al. (2020) estimate changes to groundwater storage across the Great Lakes Basin 

using GRACE and GPS data along with modeled soil moisture (NLDAS/Noah) and snow cover 

(SNODAS). They estimate seasonal changes of ~0.12 m in groundwater storage, or about four 

times the LHM derived estimate of 0.03 m across the domain. Their results also suggest that both 

terrestrial water storage and groundwater storage peak during March, 3-5 months before peak lake 
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levels and 7-9 months before (or several months after) the maximum seasonal groundwater 

elevations simulated by LHM. The timing of peak groundwater storage suggested by Argus et al. 

(2020) also contrasts with those simulated using a coupled surface and groundwater model for the 

Great Lakes Basin (Xu et al., 2021). Differences in the magnitude and timing of inferred 

groundwater storage change may be due to coarse resolution of the GRACE mass concentration 

solution used, ~350 km: two to three orders of magnitude larger than the resolutions of the models 

presented here. Additionally, the method used by Argus et al. (20200 lumps together changes in 

soil moisture (unsaturated zone water storage) and saturated groundwater, while the storage 

changes reported here from LHM are only those in saturated groundwater. Other complicating 

factors include coarse resolution of soil moisture estimates from the NLDAS/Noah model, and that 

their analysis ignores changes to surface water storage in other non-Great Lake reservoirs such as 

inland lakes and wetlands.  

Spatial patterns in the timing (Figure A29) and magnitude (Figure 11D) of seasonal head 

minimums and maximums are significantly more complex than these spatial averages. Minimum 

heads generally occur between April and October in most of the upper domain and northern lower 

domain (Figure A29A). In the southern domain, minimum heads can occur year round, with 

significant portions of the Lake Erie basin having minimum head elevations in winter (December 

to February). Timing of maximum heads (Figure A29B) is slightly more consistent across the 

domain occurring between November and February however large portions of the southern half of 

the lower domain have maximum heads which occur in spring (April-May). Seasonal increases in 

head between September and December are widespread across the Upper Peninsula and northern 

Lower Peninsula and Upper Peninsula, and are strongest in the north-western portion of the Upper 

Peninsula and eastern Wisconsin. Areas of decreased head between September and December 

occur in the lower-lying regions of the model, such as in the Saginaw Bay watershed and Lake 

Erie basin and are most prevalent in the Maumee River basin. These observed seasonal head 

decreases are due to the variation in timing of minimum and maximum heads across the domain.  

 



 

 

73 

 

Figure 11: Seasonality in Lake Levels and Groundwater Elevations. Monthly anomalies in 

lake levels and lake basin groundwater elevations (heads) for lakes Superior (A), Michigan-Huron 

(B) and Erie (C). Elevation across the three lakes (solid line) peak during summer (June-July), 

while groundwater elevations (dashed line) peak in fall or early winter (October-December). 

Differences in the average September and December groundwater elevation (D) are greatest in the 

western Upper Peninsula and Northern Lower Michigan. Portions of the Lower Peninsula and 

Maumee Watershed have lower groundwater in December than in September, indicating seasonal 

cycles in groundwater storage vary across the model domain.   

The observed seasonal changes in simulated groundwater heads across the domain are 

driven by seasonal shifts in the surface water balance (Figure 12). Precipitation and terrestrial ET 

both increase during spring, peak during summer and decrease though fall to minimums in winter. 

Precipitation is elevated from April through November, while peaks in ET are sharper but shorter 

lived, increasing rapidly from April to July before falling steadily through November. Deep 

percolation rises from February to its peak in April and May, then declines to its minimum in 

September, before increasing slightly during November and December. Domain average 

groundwater heads are highest in December, decline though March when a brief increase occurs, 

then continue to decline to minimums in August and September. 

The relationship between seasonal changes in the surface water balance and those in 

groundwater heads is the result of complex processing including simultaneous changes to opposing 

fluxes (P and ET) and time it takes for changes in the water balance to propagate across different 

hydrologic (e.g. the surface, root and vadose) zones. Starting in early spring, deep percolation 

begins to rise as snowmelt and early spring rains increase infiltration. As the growing season begins 
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in spring and early summer, increased ET rates reduce the fraction of precipitation which 

percolates below the root zone. Deep percolation rates remain low until ET rates decrease during 

plant senescence and harvest in fall, after which continued precipitation causes a slight rise in deep 

percolation from November to January.  

The seven month delay (April to December) between peak deep percolation and peak 

groundwater elevations highlights the significant lags between when changes to the surface water 

balance are expressed in groundwater. For changes in groundwater to occur, first alterations to the 

surface water balance must affect the root zone and subsequent deep percolation. Second, this 

change in deep percolation must propagate through the unsaturated zone, before reaching the water 

table as recharge. Unsaturated zone travel times can be especially long in areas where the 

unsaturated zone is thick, such as in portions of the central and northern Lower Peninsula (Hunt et 

al., 2008). Furthermore, the observed offset between seasonal peak lake elevations and heads is 

likely driven by differences in the water balance of the landscape and lake surfaces. Precipitation 

over the lakes and land surface follows a similar pattern, however over-lake evaporation peaks 

during the winter (Xu et al., 2021).   

 

 

 



 

 

75 

 

Figure 12: Seasonality of Head Elevation and Surface Fluxes. Average monthly groundwater 

elevation (head) anomaly (dashed line, left axis) plotted against average monthly surface fluxes 

(solid lines, right axis) from 2000-2023. Increases in groundwater elevation occur from March-

May and follow increases in both precipitation and deep percolation. Groundwater elevations then 

fall from May-September as terrestrial ET increases, and deep percolation decreases. Groundwater 

elevations increase rapidly from their minimum in September to their maximum in December, 

corresponding with decreases in ET, increases in deep percolation and sustained precipitation.  

3.3 Groundwater Storage Changes 2000-2023 

Accompanying the record-setting increases in lake elevation which have occurred since 

2007, rapid increases in groundwater storage occurred in all three simulated Great Lakes basins 

between 2013 and 2020 (Figure 13). Average groundwater storage in the Lake Superior and 

Michigan-Huron basins increased 0.47 m and 0.22 m respectively, from minimums in August and 

September of 2013 to maximums in October and December of 2020. Lake Erie’s groundwater 

storage trends are considerably different from those of the other two lake basins. Maximum and 

minimum groundwater storage in Lake Erie occurred in November 2009 and December 2015, 

respectively. In addition to the groundwater storage increases in the Lake Erie basin between 2015-

2020 of 0.14 m, storage increases of comparable magnitude occur between 2007-2011 and in 2013. 

Estimates of groundwater storage change derived from GRACE, GPS and land surface models 

across the Great Lakes basin between 2013 and 2019 by Argus et al. (2020) indicate approximately 

half the increase in groundwater storage (~0.1 m) as is simulated on average across the Michigan 
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Model domain between 2013 and 2020 (0.2 m). The difference in these estimates may be due to 

the much larger area in the Argus et al. (2020) study, their reliance on land surface model-derived 

estimates of subsurface hydrology, the slightly shorter period of record used during their study, 

and their inclusion of soil moisture in groundwater storage change.  

The increases in groundwater storage lagged behind the changes in lake elevation between 

two and five years across the domain. This lag is most clearly observed in Lake Michigan-Huron 

(Figure 13B). Breakpoints identified by segmented linear regression indicate this delay is smallest 

in Lake Superior and largest in Lake Erie (Figure A30). Specifically, these inflection points occur 

for each lake and its lake basin in: October 2011 and January 2013 for Lake Superior, February 

2013 and August 2016 for Lake Michigan-Huron and October 2013 and February 2017 for Lake 

Erie. The trends in storage closely follow those in lake level for Lakes Michigan-Huron, but are 

starkly different for Lake Erie.  

Changes in groundwater storage between the between September of 2013 and December 

of 2020 as shown in Figure 13D, with a median change of 0.12 m. Groundwater storage increases 

over a majority of the domain, with a median increase of 0.16 m, with the largest head increases 

in the western Upper Peninsula to 9 m near the northern shore of Lake Superior. Increases in the 

Lower Peninsula are largest in the northern and western portions of the peninsula. Decreases in 

head (median of -0.02 m, maximum of -5.9 m) during this period are observed in part of the eastern 

Upper Peninsula, and across the lower two-thirds of the Lower Peninsula. While seasonal 

fluctuations in the surface water balance and groundwater storage are part of the normal 

hydrological cycle in the Great Lakes, year-over-year changes have the potential to impact aquatic 

systems. Changes to groundwater elevations and storage may affect streamflows, inland lake 

levels, evapotranspiration and wetland connectivity, especially in areas with shallow water tables 

(Condon and Maxwell 2019, Winter, 1999). As with seasonal groundwater cycles, the timing of 

minimum and maximum heads (and thus storage) have a spatially complex pattern across the 

model domain. The year in which minimum heads occur (Figure A31) is considerably more 

variable than the year in which maximum heads occur. Minimum heads occur across the entire 

range of the simulation period, with some regionally consistent patterns. Maximum heads 

generally occur latest in the far north western portions of the domain (~2023), and earliest in the 

far southern portions of the domain (~2009). 
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Figure 13: Changes in Lakes Levels and Groundwater Storage 2000-2023. Changes in lake 

elevation (solid line), and average groundwater storage (dashed line) across the lake basin for (A) 

Superior, (B) Michigan-Huron and (C) Erie between 2000 and 2023. Considerable increases in 

both lake elevations and groundwater storage occur between the early 2010’s and the 2020’s. 

Changes in groundwater storage start later (between two and four years) but peak at near the same 

time as those in lake levels. Changes in groundwater storage across the domain from September 

2013 to December 2020 (D) show widespread increases in groundwater storage across the basin, 

especially in the western Upper Peninsula and northern Lower Peninsula.  

3.4 Drivers of Groundwater Storage Change 2000-2023  

The observed recent increases in groundwater storage are preceded by changes to the 

surface water balance, specifically an increase in precipitation and decrease in ET (Figure 14A and 

B). These changes to precipitation and ET also result in increased deep percolation and streamflow 

across the region (Figure 14B and C). Breakpoints analysis (Figure 14D-H) suggest that, preceding 

the circa 2020 peaks in groundwater elevation, a period of low groundwater storage occurs 

between June 2010 and December 2017. This coincides with a period of increased ET relative to 

the model period beginning in July 2010. Precipitation rates increase starting in July 2016 and 

remain elevated through 2021, while average ET rates drop in January 2018. Increases in deep 

percolation, groundwater storage and streamflow all occur beginning in December 2017 or January 

2018, only after ET has decreased but precipitation remains elevated. Periods of increased deep 

percolation and streamflow both occur between January 2018 and January 2021, and coincide with 

peaks in groundwater storage. The fastest rate of lake level rise occurred during 2013-2014. 

Gronewold et al. (2016) identified the causes for this change as: 1) increased runoff and over-lake 

precipitation in 2013 and 2) continued elevated runoff combined with decreased over-lake 
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evaporation. Our results suggest the same forcings of increased precipitation and decreased ET, 

lagged by ~2 years from changes to the lake water balance, caused the rapid rise in groundwater 

storage between 2016-2020. In both the lakes and the groundwater system, a change in 

precipitation alone was not enough to cause the recent storage increases; both systems required a 

shift in precipitation and ET for this change to occur.  

 

 

Figure 14: Changes in Surface Fluxes 2000-2023 as Drivers of Groundwater Storage Change. 

Changes in monthly (a) groundwater storage (product of saturated thickness and porosity) and (B) 

annual total precipitation (rain + snow), surface evapotranspiration, and deep percolation averaged 

across the model domain for the period of 2000-2023. Panels D through H show breakpoints for 

groundwater storage and the three surface fluxes. Breakpoints, shown by vertical dashed lines, in 

all four quantities occur in 2017-2018, corresponding to increased precipitation, decreased ET, 

increased deep percolation and increased head. Means for the three segments created by the 

breakpoints are shown in horizontal black lines, and shading indicates the change in mean, with 

red shaded regions having lower means than blue shaded regions.  

Changes to the surface water balance and groundwater storage within the windows 

identified by the breakpoints analysis (Figure 15) were largest in the western Upper Peninsula 

where precipitation increased, while ET decreased and deep percolation increased. In the northern 

Lower Peninsula changes in both precipitation and ET were more moderate, however deep 
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percolation and groundwater storage both increased. This region is characterized by high 

permeability glacial deposits of considerable thickness. Changes in southern Lower Peninsula and 

the Maumee Basin are much more mixed, with both increases and decreases in storage and all 

three surface fluxes observed. Generally, regions with decreased precipitation saw increased ET, 

decreased deep percolation and decreased storage. This southern portion of the domain includes 

large areas of lower permeability soil, and has distinctly different weather and climate patterns to 

that of the northern Lower Peninsula and Upper Peninsula.  
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Figure 15: Maps of Average Surface Fluxes in Breakpoint Windows. Differences in mean (A) 

groundwater storage (B), precipitation, (C) ET and (D) deep percolation for the breakpoint window 

that includes the 2020 peak in groundwater elevations and the means across the previous window. 

Increases in precipitation and decreases in ET were strongest in the western Upper Peninsula, 

where groundwater storage increases were also strongest. Shifts in the surface water balance are 

more heterogeneous in the Lower Peninsula and Maumee River Basin (see Figure 10), with both 

increases (decreases) in precipitation and ET observed respectively.  

3.5 Other Modeling Studies in the Region 

A considerable amount of hydrologic modeling, for both research and operational 

purposes, has been done within the Great Lakes basin. A large portion of this work has focused on 

using a variety of rainfall-runoff models to simulate streamflow across the region (e.g. Fry et al., 

2014, Mai et al., 2022). These streamflow estimates are used for a variety of water resource 
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management applications, including to supply the streamflow component of net basin supply to 

the lake level models used for operational forecasting of the Great Lakes (Fry et al., 2020). The 

Large Basin Runoff model, a lumped parameter rainfall-runoff mode, is commonly used across 

the Great Lakes basin to supply estimates of tributary flow to the lake models (Fry, 2014). More 

recent efforts have included applying the processed based Weather Research and Forecasting 

hydrologic model (WRF-Hydro) as an operational model for the Great Lakes Basin, as an 

extension of the National Water Model (Mason et al., 2019). These models are often assessed 

solely on their ability to reproduce streamflow, and as such have underrepresented other 

hydrologic processes including groundwater. Both WRF-Hydro and LBRM use simple bucket 

models to represent groundwater, which “fill” with excess soil water and “spill” into streams as 

baseflow (Gochis et al., 2020, Shin et al., 2024).  As a result, these models often struggle to 

simulate streamflows in areas with significant groundwater contribution, such as the Great Lakes 

region (Mai, 2023). They are also unable to quantify changes in the broader groundwater system 

including those in direct groundwater contributions to the Great Lakes or those in groundwater 

storage (Shin et al., 2024).  

While a number of site- to watershed-scale groundwater models (Costa  et al., 2021, Curtis 

et al., 2019,  Holtschlag et al., 1998, Hunt et al., 2013, Kang et al., 2021, Kendall, 2009, Luukkonen 

et al., 2004 ) have been developed for the region, only two previous works have developed regional 

(e.g. state or lake basin) scale hydrologic models with explicit, physically based representations of 

groundwater: a MODFLOW model for the Lake Michigan Basin (LMB) (Fienstein et al., 2010), 

and a coupled surface and groundwater model for the Great Lakes Basin in modeling program 

HydroGeoSphere (HGS) (Xu et al., 2021). The LMB model was developed to quantify the impacts 

of pumping on local and regional groundwater flow systems in the Lake Michigan Basin from the 

mid 1800’s to 2005. This study finds limited local reductions in streamflow from the surficial 

aquifer, while significant groundwater flow changes have occurred in the bedrock aquifers around 

large urban areas including in the Chicago IL., Milwaukee WI., and Lansing MI. regions (Feinstein 

et al., 2010). The Great Lakes basin HGS model was developed primarily to investigate 

groundwater as a source and sink of water to the Great Lakes. It shows direct groundwater 

discharge supplies between 0.6-1.3% of total water supply for the Great Lakes, and that this 

contribution is greatest during the winter (Xu et al., 2021). While these models, and the 

aforementioned large body of rainfall-runoff/land surface modeling has provided insight into both 
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surface and groundwater processes within the Great Lakes Basin, the Michigan Model developed 

is the first coupled, process-based surface and groundwater model developed to study storage 

changes at the regional scale within the Great Lakes Basin.  

3.6 Recent Changes and Future Projections 

After reaching their peak elevations in 2012-2022, both groundwater and lake levels began 

to drop in 2022-2023. Since the end of the model period in December of 2023, lake elevations 

have continued to fall, with a lake-wide average annual elevation 0.14 m lower than in 2023. As 

of the most recent measurement in February of 2025 average lake elevations are lower than they 

have been at any time since 2013 (GLERL, 2025). A recent effort by Kayastha et al. (2022) 

predicted lake levels using coupled regional climate and 3D lake model to downscale CMIP5 

climate projections for 2030-2049 under the RCP 8.5 scenario. This model predicts increases in 

annual average water levels between 0.19 m (Superior) and 0.44 m (Michigan-Huron), due to 

increases in both over-lake precipitation (27-66 mm/year) and stream discharge (31-80 mm/year) 

to the lakes which outpace increases to over-lake evaporation (8-38 mm/year).  

Streamflow, over-lake precipitation, and over-lake evaporation are approximately equal 

components of net basin supply in the Great Lakes (Gronewold et al., 2016, Hunter et al., 2015). 

Given the underrepresentation of groundwater in the models used to supply runoff estimates to 

lake forecasting models (Mai, 2022, 2023; Shin et al., 2024), and importance of baseflow in large 

portions of the Great Lakes Basin (Neff et al., 2005), current projections may misrepresent the 

runoff component of net basin supply and therefore lake levels. To better constrain future 

projections of streamflow and lake elevations, and to understand the potential impacts of climate 

change on groundwater storage, continued development and integration of models which more 

explicitly represent groundwater processes is needed.  

4. Conclusions  

Across the state of Michigan region, groundwater storage has increased by an average of 

0.2 m from minima in September 2013 to maxima in December 2020. This increase is seven times 

that of the seasonal fluctuation of 0.028 m in groundwater storage across the region, and about one 

tenth the average change in lake elevation of 1.46 m across lakes Superior, Michigan-Huron and 

Erie. The recent increases in groundwater storage mirror, but are delayed between 2 and 4 years 

behind associated increases to lake levels. These changes to groundwater storage are greatest 

within the Lake Superior basin and least in the Lake Erie basin. Specifically, storage changes are 
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greatest in areas with high precipitation and thick permeable aquifers able to accept increased 

recharge, such as in the Western Upper Peninsula and Northern Lower Peninsula. Changes to 

storage are smallest in regions with lower permeability aquifers and thin unsaturated zones, and 

which have experienced much more heterogeneous changes to precipitation and other components 

of the surface water balance, such as the Saginaw Bay and Maumee River Watersheds. Similar to 

the drivers for change in lake elevation identified by Gronewoeld et al. (2016) the recent changes 

to groundwater storage were likely driven by a combination of increased precipitation and 

decreased ET; change in one component of the water balance alone was not enough to cause the 

precipitous changes in both surface and groundwater storage across the central Great Lakes region.  

While this model has provided the first regional-scale estimates of groundwater storage 

changes within the Great Lakes basin, three major changes are necessary to fully assess how 

shifting climate patterns will affect water resources within the basin. First, groundwater pumping 

and other water use data should be added to this model, to assess their impact on groundwater 

storage and discharge. While the results of the Lake Michigan Basin model did not suggest regional 

scale changes to the surficial aquifer due to pumping, they indicated local effects can be significant 

in areas of concentrated withdrawal (Feinstein et al., 2010). Second, is an effort currently underway 

to develop a similar model for the entire Great Lakes Basin, which will require significant effort 

to pull together datasets from the eight US states and two Canadian provinces within the basin. 

Third, more explicit representations of groundwater storage and its effects of streamflow should 

be incorporated into the operations models used to forecast hydrologic changes within the Great 

Lakes basin, including lake levels. While groundwater supplies only a small portion of the Lakes 

water budget directly (Xu et al., 2021) it supplies a significant amount of water though stream 

baseflow (Gronewold et al., 2016, Hunter et al., 2015, Neff et al., 2005). In addition, considering 

changes to the groundwater system itself will be critical to understand how future extremes in 

climate and lake levels may impact water resources, human communities and aquatic ecosystems 

across the world's largest system of connected freshwater lakes.  
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CHAPTER 4: IMPACTS OF EXTREME LAKE LEVEL CHANGES ON GROUND AND 

SURFACE WATER CONNECTIVITY TO GREAT LAKES COASTAL WETLANDS  

Abstract 

The Laurentian Great Lakes contain ~21% of the worlds available freshwater and have the 

most coastline of any region in the contiguous United States. Between the early 2000’s and 2020, 

water levels in the Great Lakes rose from historic lows to historic highs, driven by shifts in regional 

climate patterns. Coastal wetlands are widely distributed along the Great Lakes coastline and have 

a direct hydraulic connection to the lakes. They are an important component of the Great Lakes 

ecosystem, providing habitat for a range of species and serving as hotspots of nutrient cycling. 

While changing lake elevations have direct, observable impacts on coastal wetlands, they may also 

be affected by associated changes in groundwater elevations. While previous modeling efforts 

have simulated groundwater discharge to, and recharge from, the lakes, little is known about how 

changes to lake elevations may affect groundwater elevations. An existing surface and 

groundwater model developed for the state of Michigan region using the Landscape Hydrology 

Model (LHM) is applied to investigate the relationships between lake levels, groundwater and 

coastal wetlands within the Great Lakes Region. Four groundwater model scenarios with different 

lake level boundary conditions are used to first simulate the direct effects of changing lake levels 

on coastal groundwater elevations, and second to assess changes in groundwater connectivity to 

coastal wetlands. Model derived estimates of groundwater connectivity are then compared to 

estimates of surface water inundation to compute total changes in wetland connectivity as the lakes 

and groundwater elevations rise from their lowest to highest conditions. Model results suggest 

groundwater is discharged to the Great Lakes during the entire simulation period, and that lake 

levels have the potential to alter coastal groundwater elevations up to 1.9 m. They reveal however, 

that climate variability between 2000 and 2023 caused groundwater elevation changes which 

nearly matched the potential impact of direct feedbacks from the lakes. When lake levels and 

groundwater elevations rise from their lowest to highest conditions, total wetland connectivity 

increases by ~2,323 km2. Surface water inundation is responsible for ~77.4% of this change, while 

rising groundwater elevations account for 18.3% of the increase in connected area. These changes 

to coastal wetland connectivity are concentrated along the Lake Michigan and Huron shoreline in 

Michigan’s Upper Peninsula, and along the Lake Huron Shoreline in the Lower Peninsula. 
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1. Introduction  

The Laurentian Great Lakes, the world's largest system of interconnected freshwater lakes, 

have experienced record variability in lake levels over the last 20 years. Between 2007 and 2020 

all five lakes approached or exceeded the minimum and maximum elevation recorded by the 

National Oceanic and Atmospheric Administration (NOAA) since 1918 (Figure 16A). These 

extreme swings in lake surface elevation have had significant and highly visible effects on the 

coastline of the Great Lakes (Figure 16B-F). Extreme low water levels between 2003-2013 

impeded navigation, affecting the region’s recreational and industrial economies (Gronewold and 

Stow, 2014). The high water levels between 2019 and 2022 eroded habitat (Theuerkauf and Braun, 

2021), damaged infrastructure (Matheny, 2020), and caused flooding in urban areas (Egan, 2021) 

along the Great Lakes coastline. As Lake Michigan reached its near maximum elevation in 2020, 

it rose above the flood stage of the Chicago River, rendering a primary water management tool for 

the city useless. The combination of extreme lake levels and heavy rain in May of 2020 lead to 

historic flooding around the city of Chicago (Egan, 2021). Along less developed parts of the 

coastline, what had been coastal wetland or upland habitat in the mid 2000’s to early 2010’s 

became inundated wetlands and open water by 2020 (Figure 16B-F). This historic swing between 

near minimum and maximum lake levels was driven by shifts in regional climate, which affected 

both the lake water balance and terrestrial water balance over the lakes drainage basin (Gronewold 

et al., 2016, Gronewold et al., 2019). While the effects of changing surface water levels on the 

coastal region are highly visible, associated changes in the adjacent groundwater system during 

this period of lake level extremes are largely unknown. 
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Figure 16: Lake Level Changes 2020-2023 and the Impact on Coastlines. Changes to Great 

Lakes water levels between 2003-2020 (Panel A) resulted in significant changes to the Great Lakes 

coastline. All four of the lakes within the study domain neared or reduced their historical extreme 

levels between 2000-2021. Solid lines indicate a historic low lake level, dashed lines indicate 

histoirc high lake levels, and arrows with annotations indicate how close recent extremes came to 

those over the period of record starting in 1918. An example of coastal change is shown for a 

coastal wetland monitoring site near Cheboygan, Michigan along the Lake Huron Coast (Panel B). 

Panels C and E show Google Earth satellite images of the site in 2013 and 2020. A groundwater 

monitoring well was installed at this site (location shown by the orange star). Field photos show 

that in 2013 (Panel D) this site monitored shallow groundwater in a wet meadow adjacent to the 

lake, and by 2020 (Panel F) the site was inundated with approximately 1 meter of water.  
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The Great Lakes hold roughly 23,000 km3 of freshwater, and have over 4,500 miles of 

coastline, more than either the U.S. Atlantic or Gulf Coasts (Gronweold et al., 2013). The structure 

of the Great Lakes coastline varies from sand beaches to rocky shorelines, sand dunes and steep 

bedrock cliffs. Land cover and use within a 10 km buffer around the shoreline of the Great Lakes 

varies from heavily agricultural and urban in southern Lake Michigan and Huron, to forested and 

wetland dominated in northern Lake Michigan-Huron and along most of Lake Superior (Bourgeau-

Chavez et al., 2015). Coastal wetlands are a prominent feature of the Great Lakes coastline 

providing important ecosystem services including habitat for fish, birds, amphibians and 

invertebrates. They also play a significant role in regulating local water quality, as they can trap 

sediment and are hotspots of nutrient cycling (Sierszen et al., 2012). Coastal wetlands are located 

between permanently upland and permanently open water areas of the coastline (Mynard and 

Wilcox, 1997), and are defined as those “under substantial hydrologic influence from Great Lakes 

waters” (Keough et al., 1999). Thus the physical structure and ecosystem function of coastal 

wetlands is closely related to variations in Great Lakes water levels.  

Fluctuations of 10-40 cm in lake levels, which occur regularly over hourly to annual time 

scales, maintain the natural function of Great Lakes coastal wetlands. High waters keep woody, 

upland plants from encroaching on wetland species while low waters expose seeds stored in 

wetland sediment and allow for new growth of wetland species (Anderson et al., 2023, Keddy and 

Reznicek, 1986). Inter-annual variations in lake levels however can cause the migration of coastal 

wetlands either toward the upland at high water levels or toward the lake at low water levels. If 

these changes occur too quickly, or the physical structure of the coastal zone prevents migration, 

the loss of coastal wetlands can occur (Anderson et al., 2023, Theuerkauf and Braun, 2021). Using 

a combination of field data and Bayesian hierarchical modeling, Anderson et al. (2023) studied the 

position and relative length of coastal wetlands around the Great Lakes from 2011-2019, as lake 

levels were rising toward their recent maximum. They demonstrated a contraction of wetland area 

due to rising lake levels; this loss of wetland habitat was most severe for wet meadows (e.g. Albert 

et al., 2005) which have plant species intolerant of sustained inundation.  

In addition to the effects of changing surface water elevation, groundwater conditions can 

also affect coastal wetlands. Previous studies using both field data and numerical models suggest 

that across the Great Lakes region, groundwater is an important component of coastal wetland 

hydrology and water quality. In a review of coastal wetland-groundwater interactions in the Great 
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Lakes, Crowe and Shikaze (2004) suggest that all of the region's coastal wetlands are connected 

to groundwater. The nature of this connection however, is dependent on wetland morphology. In 

wetlands which are directly connected to the lake, regional groundwater flows through the wetland, 

imparting little control on wetland level, but significant impacts on wetland water chemistry. In 

wetlands partially or fully protected from the open lake by beach deposits (spits and barrier bars) 

regional water from the uplands discharges to the wetlands, while groundwater in the spits and 

barriers may flow toward either the wetland or lake (Doss, 1993). The water levels in such wetlands 

are controlled by a combination of lake levels and groundwater elevations. For coastal wetlands 

further removed from the open lake, such as those behind beach ridges or dunes, groundwater is a 

primary control of wetland elevations. Groundwater flow systems around these wetlands can be 

highly complex, and are influenced by localized recharge and ET, as well as boundary conditions 

effects of the lake. The works summarized by Crowe and Shikaze (2004) however focus 

exclusively on the very local scale, and do not consider how groundwater connectivity to wetlands 

may change further inland.  

In addition to the localized linkages described above, the Great Lakes surface waters are 

hydrologically connected to the adjacent terrestrial groundwater system at the regional scale. The 

Great Lakes receive groundwater both directly through discharge along the coasts, and previous 

regional modeling studies of the Lake Michigan basin by Feinstein et al. (2010) and the Great 

Lakes basin by Xu et al. (2021) both suggest that the lakes act as a discharge point for local and 

regional flowpaths, primarily through the surficial aquifer system. The model developed by Xu et 

al. (2021) suggests that groundwater from the surficial aquifer continuously discharges through 

the nearshore zone throughout the year. This contribution of groundwater discharge to the lakes is 

greatest during winter, when groundwater elevations are at their seasonal high and lake levels are 

at their seasonal low. Much less is known however about how changes in lake level, and thus the 

discharge point for terrestrial groundwater, may propagate upgradient within the surficial 

groundwater system.  

In coastal ocean regions, recent work has suggested that increased coastal groundwater 

elevations increase the effect of sea level rise far beyond areas inundated by rising surface waters 

alone (Befus et al., 2020, Bjerklie et al., 2012, Rotzoll and Fletcher, 2013). A study of groundwater 

inundation caused by rising sea levels in Oahu, Hawaii indicated that considering groundwater 

elevation changes increased the area flooded by sea level rise by more than double the direct effect 
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of surface water inundation alone (Rotzoll and Fletcher, 2013). A recent study by Befus et al. 

(2020) modeled groundwater table elevation responses to sea level rise in a 1 km buffer along 

California’s coastline. Their results indicate that 1 m of sea level rise would extend inundated areas 

between 50-150 m inland from current conditions. Groundwater discharge though topographic 

lows (existing or emergent drainage networks) can offset this groundwater inundation and should 

not be ignored in calculating the impact of sea level rise on groundwater conditions (Befus et al., 

2020, Bjerklie et al., 2012). Based on these observations from ocean coastal regions, it is likely 

that the extreme changes in lake levels may affect groundwater conditions at larger scales than 

previously identified in the Great Lakes.  

A more holistic assessment of the relationships between lake levels, groundwater 

elevations, and coastal wetland connectivity is required to understand the impacts of historical and 

future interannual variation in the Great Lakes. In this study, a coupled surface and groundwater 

model for the state of Michigan region (Figure 17) is combined with remotely sensed estimates of 

coastal wetland inundation to study interactions between Great Lakes lake levels, groundwater 

elevations and coastal wetland connectivity during the recent period of extreme lake level changes 

from 2000-2023. The groundwater flow model is used to quantify the amount of groundwater 

discharging along the coastline, how changing lake levels affect groundwater elevations, and how 

changes in coastal groundwater elevations affect wetland connectivity. These estimates of 

groundwater connectivity change are then compared to estimates of surface water connectivity 

change derived from remotely sensed coastal wetland inundation at high and low lake levels. Given 

the importance of coastal wetlands to the Great Lakes ecosystem, and predictions of continued 

interannual variability in lake levels (Kayastha et al., 2022), it is critical to understand how the 

lakes are interacting with terrestrial groundwater in the near shore region, and how these changes 

may affect coastal wetlands along the Great Lakes.  

2. Hypothesis and Conceptual Framework 

This study seeks to assess changes in coastal hydrology and groundwater-wetland 

connectivity at a regional scale, along the Great Lakes coastline within the state of Michigan. Great 

Lakes coastal wetlands are historically considered to be those directly affected by the surface water 

hydrology of the lakes (Keough et al., 1999, Mynard and Wilcox, 1997). Previous considerations 

of coastal wetland-groundwater interactions have been limited to investigations of very localized 

conditions, and to seasonal variations of lake and groundwater elevations (Crowe and Shikaze 
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(2004)). Based on the observations of groundwater-sea level interactions along ocean coastlines 

(Befus et al., 2020, Bjerklie et al., 2012, Rotzoll and Fletcher, 2013), it is possible that more 

extreme lake level variations may affect groundwater elevations, and thus their connectivity to 

wetland features much farther inland than previously considered.  

Palustrine wetlands are those that lie outside of coastal, inland lake or river systems; they 

are commonly described as marshes, bogs, swamps and wetlands (Cowardin et al., 1979, Federal 

Geographic Data Committee, 2013). As shown in the high resolution coastal land cover dataset by 

Bourgeau-Chavez et al. (2015) there are significant palustrine (e.g. emergent, shrub, and forested) 

wetlands along the coastal region in the state of Michigan. To more fully assess the extent of 

groundwater-driven coastal change, the groundwater connectivity to both traditionally defined 

coastal wetlands (Keough et al., 1999, Mynard and Wilcox, 1997) as well as low lying palustrine 

wetlands near the Great Lakes coastline is assessed. We hypothesized that there are palustrine 

wetlands along the Great Lakes where connectivity to groundwater is determined by the lake 

levels. Additionally, we hypothesize that there are wetlands that become disconnected from the 

lakes during low level conditions, but remain groundwater connected. Changes in groundwater 

connectivity to near-shore palustrine and coastal wetlands have not been directly quantified in 

previous works, and the degree of groundwater influence may be important to understanding how 

lake level variability affects wetland habitat along the Great Lakes coastline.  

Here, we define groundwater-coastal wetland hydraulic connectivity as any case where the 

groundwater head reaches or exceeds the elevation of the estimated wetland bottom. Under this 

condition, groundwater actively affects wetland water levels (Crowe and Shikaze 2004). 

Groundwater is important to not only wetland hydrologic function, but to wetland chemistry and 

plant distribution (Crowe and Shikaze 2004, Goslee et al., 1997). Although not captured in this 

analysis, groundwater may also be important to wetland ecology by sustaining wetland plants 

during periods where the water table falls below the wetland bottom elevation. Groundwater has 

been previously shown to provide a subsidy to soil moisture and plant transpiration in upland and 

riparian habitats (Zipper et al., 2015, Lowry and Loheide, 2010). This subsidy is the result of both 

plants accessing saturated groundwater directly, and capillary action pulling water from the 

saturated zone into the vadose zone. In this way, groundwater below the wetland bottom elevation 

may still be ecologically important to wetland ecosystems. The shallow rooting depth of plants in 

saturated soils (Fan et al., 2017), however, may limit the depth to which groundwater can fall 
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before it becomes inaccessible by wetland plants.  

Figure 17 illustrates a conceptual framework which guided development of the hypothesis 

about lake-groundwater-coastal wetland interactions. Specifically, this conceptual model describes 

changes to connectivity to one coastal and one palustrine wetland at three lake and groundwater 

level conditions: low, moderate and high. At low lake levels, coastal wetlands are disconnected 

from surface water and both coastal and palustrine wetlands are disconnected from groundwater. 

At median conditions, rising groundwater elevations connected coastal wetlands and may cause 

intermittent wetting of palustrine wetlands. At high water levels, coastal wetlands are directly 

connected to (or inundated by) surface waters while palustrine wetlands become groundwater 

connected. 

It is important to note that this is a highly generalized conceptual model of Great Lakes 

coastal hydrology. Changes in wetland connectivity and position may happen across a range of 

water levels based on shoreline morphology and topography. In addition to changes in wetland 

connectivity, changing surface water levels may cause the migration of coastal wetlands toward 

the lake at low levels and toward the upland at high lake levels. Furthermore, coastal wetlands 

which exist at the most lakeward extent at low water may be converted to open water habitat at 

high lake levels. 
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Figure 17: Coastal Wetland Connectivity Conceptual Diagram. A conceptual model of 

interactions between lake levels, groundwater, and wetlands along the Great Lakes coastline. At 

low water levels (A), both coastal and palustrine wetlands are disconnected. At moderate water 

levels (B), rising groundwater elevations connect coastal wetlands and may cause intermittent 

wetting in palustrine wetlands. At high water levels (C), coastal wetlands are connected to both 

surface and groundwater, and palustrine wetlands become connected to groundwater. While 

groundwater-lake-coastal wetland linkages have been established at the very local scale, it is 

hypothesized that the influence of lake levels on coastal groundwater, and of groundwater on 

wetland connectivity, may extend much further inland than previously documented. 

3. Methods  

3.1 Study Region 

The state of Michigan (Figure 18) lies in the central portion of the Great Lakes drainage 

basin, and is composed of two peninsulas: The Upper Peninsula (UP), which borders Lake 

Superior to the north, and Lakes Michigan and Huron to the south; and the Lower Peninsula (LP), 

which lies directly between Lake Michigan to the west and Lakes Huron and Erie to the east. It is 

important to note that Lakes Michigan and Huron are connected by the Straits of Mackinac, and 
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function as one hydrologic system sharing the same lake elevation. They are, therefore, sometimes 

referred to as Lake Michigan-Huron. The boundary of the hydrologic model used in this study was 

defined by selecting all of the U.S. Geological Survey 8-digit hydrologic unit code (HUC) 

watersheds that intersect the state of Michigan. This boundary was then extended to a nearby 

hydrologic divide; where possible this divide was specified as the river channel of the adjacent 

river system away from the area of interest. The resulting ~251,000 km2 area includes all of the 

state of Michigan as well as parts of Illinois, Indian, Ohio and Wisconsin.  

Michigan has over 3,224 miles of coastline, the most of any Great Lakes state (NOAA, 

2025). The Lake Michigan shoreline in the LP is characterized by sandy beaches and extensive 

high relief dune structures, including Sleeping Bear Dunes National Lakeshore. The Lake Huron 

shoreline in the LP is similarly characterized by sand beaches, but is generally of lower relief. The 

southern shoreline of the UP is generally sandy or rocky and of mixed relief, while the Lake 

Superior shoreline varies from sandy and pebble beaches to sand dunes and exposed bedrock cliffs. 

Coastal land cover in the LP varies from heavily urban and agricultural in the south to a mix of 

forest, wetland and agriculture in the north. Forest and wetland land covers dominant most of the 

Huron-Michigan and Superior coastlines in the UP (Bourgeau-Chavez et al., 2015). 

 Michigan's climate is temperate and strongly seasonal, with significant influence from the 

Great Lakes, resulting in concentrated lake effect precipitation along the Lake Superior and Lake 

Michigan shorelines (Anderson, 2012, Notaro et al., 2013). The hydrogeology of this region is 

strongly influenced by Pleistocene glaciation (Milstein, 1987, Reed and Daniels, 1987, Westjohn 

and Weaver 1998). In the central Upper Peninsula, northern LP, and along the Lake Michigan 

shoreline in the southern LP, surficial geology is characterized by deposits of high conductivity 

glacial outwash, sand, and coarse till. The eastern UP and Lake Huron shoreline in the LP are 

characterized by lower conductivity lacustrine and finer grained till deposits (Farrand et al., 1984, 

Fullerton et al., 1991, Gobel et al., 1983, Lineback et al., 1983, Sado et al., 1993). In the western 

UP, thin glacial sediments overlie Precambrian to Cambrian bedrock units which are exposed at 

the surface in a number of locations, inducing along the Lake Superior coastline (Dietrich, 1983, 

Larson and Schaetzl, 2001).  

To highlight the results at relevant scales, each map in the following sections include an 

inset of three regions; Grand Traverse Bay, the Eastern Upper Peninsula, and the Lower Saginaw 

River. These areas represent unique coastline conditions representative of other portions of the 
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modeling domain. The Grand Traverse Bay region (Figure 18B) has sandy beaches and generally 

higher relief away from the coastline. In the eastern Upper Peninsula (Figure 18C), especially 

along the Huron shoreline, extensive coastal wetlands exist at both high and low water conditions, 

with generally low relief away from the coastline. In the Lower Saginaw River region (Figure 

18D), low relief and the large river channel allow changes in lake level to propagate a significant 

distance inland, farther than anywhere else in the model domain.  
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Figure 18: Study Region, Groundwater Model Boundary and Coastal Land Cover. The state 

of Michigan (A) lies south of Lake Superior, and between Lakes Michigan and Huron in the central 

Great Lakes Basin. High resolution coastal land cover data (Bourgeau-Chavez et al., 2015) shows 

Michigan’s coastline includes significant wetland area, especially in the northern Lower Peninsula 

(C) and Upper Peninsula (B). Highlihgted in read in this dataset are wetlands where invasie plants 

such as Thypha and Phgragmites have becoem established. In the central and southern Lower 

Peninsula (D), considerable portions of the coastline have been converted to urban or agricultural 

areas. The model extent is shown with the dark blue line, while the MODLFOW General head 

boundary, used to simulate the effects of changing lake levels, is shown in a lighter blue. This 

boundary extends from the coastline, 10km into the lakes, and inland in areas where the surface 

elevation of hydrographic features (e.g. lakes and river mouths) is at or below the mean lake 

elevation, such as in the Saginaw Bay region (Panel D).  

3.2 Landscape Hydrology Model  

The Landscape Hydrology Model (LHM) is a process-based, coupled surface and 
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subsurface hydrology model capable of simulating water and energy fluxes from the canopy 

through deep groundwater. The development of LHM is described in Kendall (2009) and recent 

updates to the model’s structure and function are described in detail in Chapter 2. Briefly, LHM 

consists of a land surface hydrology model and a vadose zone model, which then pass fluxes of 

recharge and groundwater evaporative demand to the three-dimensional saturated groundwater 

flow model MODFLOW (Harbaugh, 2005). This surface model simulates all of the major surface 

fluxes including evaporation, transpiration, infiltration, and runoff, while MODFLOW is used to 

simulate groundwater elevations and discharge across three drainage boundary condition types 

using the drain package: streams and wetlands, and horizontal and vertical seepage faces. In 

addition to these drains, two other boundary condition fluxes are represented: groundwater 

evapotranspiration using the EVT package, and two-way head dependent fluxes to the Great Lakes 

using the General Head Boundary (GHB) package.  

Using LHM, a transient 24-year simulation has been developed for the state of Michigan 

Region, shown in Figure 18, and hereafter referred to as the Michigan Model. The model boundary 

was developed as described in Section 3.1 and is shown in the blue line on Figure 18. The 

landscape within the model defined using the 3-D Elevation Program (3DEP) 1/3rd arc-second 

DEM (USGS 2023) for surface elevations, National Hydrography Dataset (USGS, 2020) and the 

National Wetlands Inventory (USFWS, 2018) for hydrography, the National Land Cover Database 

(NLCD) data for land use, land cover and imperviousness, the MODIS MCD15A2H product 

(Myneni et al., 2015) for LAI and the Gridded Soil Survey Geographic (gSSURGO) Database 

(USDA, 2016) for soils data. Climate data used to force the model surface fluxes, including 

precipitation, temperature and incoming solar radiation are taken from the North American Land 

Data Assimilation System (NLDAS-2A) (Mitchell et al., 2004, Xia et al., 2012a, Xia et al., 2012b). 

Surficial geology in the groundwater model is defined using USGS 4x6 degree quadrangle 

Quaternary geologic maps, while bedrock geology is defined using the Geologic Map of North 

America (Garrity and Soller, 2009). Estimates of horizontal hydraulic conductivity (HK) for the 

surgical and bedrock geology units are derived from estimates included in the Michigan 

Department of Environment, Great Lakes, and Energy (EGLE) Wellogic database (EGLE, 2020). 

A detailed description of the preparation of these data for use in the Michigan Model is provided 

in Chapter 2.  

Particularly relevant to this investigation is the use of the MODFLOW GHB package to 
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simulate direct time varying interactions between the Great Lakes and adjacent coastal 

groundwater. The GHB package is used to simulate head dependent fluxes, where the direction of 

the flux (i.e. into our out of the aquifer) is controlled by comparing a user specified (observed) 

head elevation to the head computed by MODFLOW, as shown in Equation 1: 

[1] 𝑞 = (ℎ𝑏  −  ℎ𝑠) ∗ 𝐶 

Where 𝑞 is flow into (positive) or out of (negative) the aquifer,  ℎ𝑏 is the specified head in 

a GHB cell, ℎ𝑠 is the simulated head in that cell and 𝐶 is a conductance term describing the ability 

of water to move across the boundary. When simulated heads are above the specified head 

elevation, water discharges from the aquifer, while when the simulated head is below the specified 

head water recharges the aquifer from the boundary condition. Here, this flux occurs across the 

top of the model cell, and is controlled by a conductance parameter 𝐶, the basic form of which is 

shown in Equation 2: 

[2] 𝐶 =  K ∗ 𝐴/𝑇 

Where 𝐾 is hydraulic conductivity of the material at the boundary between the aquifer and 

the boundary condition, 𝐴 is the area across which the flux occurs and 𝑇 is the thickness of the 

material separating the aquifer and the boundary condition. 

In the Michigan Model, the GHB package is used to represent two key processes: the 

movement of water between the lakes and the underlying aquifer, and the effect of lake levels on 

adjacent terrestrial groundwater. The GHB boundary extends 10 km into the lakes from the 

coastline and also includes inland waterways affected by changes in lake levels. Lake level-

affected inland waters include lakes that have been directly connected to the Great Lakes (e.g 

Muskegon Lake, Lake Macatawa, and Lake Charlevoix) and low-lying river systems including the 

Saginaw River. These inland waterways were identified by selecting all of the model domain 

where the 3DEP DEM surface elevation was below the maximum elevation of the adjacent Great 

Lake from the NOAA Great Lakes Monitoring Network monthly lake level observations between 

2000-2023. Movement of water between the Great Lakes and the underlying aquifer system occurs 

across the lake bed sediment. Aquifer top elevations within the GHB cells representing the Great 

Lakes are specified as the lake bottom elevation using a combination of the DEM and the  NOAA 

Great Lakes Bathymetry dataset (National Geophysical Data Center, 1999a,1999b, 1999c, 1999d, 

1999e). The lakebed conductance 𝐶𝑙𝑏  is computed as the hydraulic conductivity of the lakebed 

sediments (𝐾𝑠𝑒𝑑 ) times the cell area divided by the thickness of the lakebed sediments (𝑇𝑠𝑒𝑑 , 
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assumed to be 1 everywhere), as shown in Equation 3: 

[3] 𝐶𝑙𝑏 =  𝐾𝑠𝑒𝑑  ∗ 𝐴𝑐𝑒𝑙𝑙 /𝑇𝑠𝑒𝑑   

Lakebed sediment types and their distribution are taken from the Great Lakes Aquatic 

Habitat Framework (GLAHF) (Wang et al., 2015) lakebed substrate map. As direct observations 

of conductivity in these lakebed sediments are extremely limited, HK estimates from the surficial 

aquifer material were used to define HK for the GLAHF substrate types. First, the GLAHF 

substrates were reclassified to match the Quaternary geologic material classes. Second, an average 

HK was computed for each material by taking the mean of estimated HK across all polygons of a 

given material. Third, HK values for the subtract classes were specified as the mean in the 

corresponding Quaternary geologic material. The relationship between the GLAHF substrate and 

Quaternary geology classes, and the average HK for these units is shown in Table A12.  

To separate the effects of direct lake interactions on groundwater dynamics, four 

groundwater model scenarios are assessed, each with the GHB boundary specified at different lake 

levels. In the first scenario, hereafter referred to as the ‘BASE’ scenario, time variant boundary 

conditions are specified using the NOAA Great Lakes Monitoring Network monthly lake level 

observations from 2000-2023. In the other three scenarios, referred to as “MIN”, “MED” and 

“MAX” respectively, lake boundary conditions are fixed in time at the minimum, median, or 

maximum lake level observed between 2000 and 2023. The same NLDAS-2A time-variant climate 

forcing data is used for all four scenarios.  

3.3 MODFLOW Output Processing  

MODFLOW-derived estimates of groundwater head (elevation) and fluxes across the GHB 

were used to characterize the lake-groundwater-coastal wetland interactions across the model 

region. Prior to this analysis these gridded outputs were processed using a combination of 

MATLAB (MathWorks Inc., 2021) and the python packages Numpy (Harris et al., 2020) and 

Xarray (Hoyer and Hamman, 2017). The general workflow was as follows: 1) read the binary 

MODFLOW outputs, 2) format the data as arrays, 3) spatially and temporally resample as needed. 

Head outputs from MODFLOW are saved at the end of every month, while GHB fluxes are saved 

at the end of every time step (daily).  

Binary head arrays were initially read by MATLAB, saved as single ASCII arrays for each 

month, then read using Numpy and combined into a single 3D array using Xarray. Time series of 

average heads were generated by taking the average head in each month across the model domain. 
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Temporal summaries including the minimum and maximum heads were then created by 

summarizing values in each cell through time. The arrays of head elevation at each month, as well 

as the temporal summaries (such as maximum and minimum head elevations in each cell) were 

compared to estimates of wetland bottom elevations to quantify changes in connectivity (described 

in detail in section 3.3.3).  

Boundary condition fluxes were read using FloPy (Bakker et al., 2016), then spatially and 

temporally aggregated. GHB fluxes were characterized in two ways. First, an average time series 

was created by taking the average flux from all GHB cells across the model domain for each 

monthly total flux. Second, the average of the GHB flux in each month across the 24 years was 

computed, to characterize the seasonal cycle of groundwater exchange with the lakes.     

3.4 Wetland Locations, Depths and Inundation  

Palustrine wetland locations were selected from National Wetlands Inventory (NWI) 

polygon data (USFWS, 2018), which were downloaded for the states in the model region, then 

clipped to the modeling domain. Palustrine wetland depths were assigned based on the NWI 

Wetland Water Regime classifier for palustrine wetlands. These water regimes describe the 

frequency with which a palustrine wetland is inundated or saturated, and is illustrated on page 18 

of the Federal Geographic Data Committee (2013) Classification of Wetlands and Deepwater 

Habitats of the United States report. Permanently flooded wetlands were assumed to be the deepest 

and were assigned a depth of 2.5m (the maximum palustrine wetland depth as defined by the NWI), 

while those with only seasonal saturation were assumed to be the most shallow and were assigned 

a depth of 0. Water regimes between permanently flooded and seasonally saturated were assigned 

depths based on their degree of inundation and/or saturation. The depths assigned to each wetland 

water regime are included in Table A11. This palustrine depth polygon feature was then converted 

to a raster at the 3DEP DEM resolution (~30m) using ArcPy (ESRI, 2023). A copy of the 3DEP 

DEM was also created and masked to the palustrine wetland area, to create a raster of wetland 

elevations.  

These derived palustrine wetland elevation and depth rasters were then aggregated to the 

MODFLOW grid resolution of 500m for comparison with model output. This aggregation was 

performed using the ArcPy Spatial Analyst Aggregate function (ESRI, 2023), taking the mean 

elevation or depth value in the high resolution grids within each MODFLOW cell. Finally, wetland 

bottom elevation was computed by subtracting the wetland depth from wetland elevation at the 
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MODFLOW grid resolution.  

Surface water inundated coastal wetland areas were identified by GIS analysis in a dataset 

developed by Michigan Technological Research Institute (Miller et al., in prep). Areas inundated 

by Great Lakes surface water were identified by comparing high resolution LIDAR based surface 

elevation data along the coastlines to lake levels at their average, low and high conditions. These 

data were downloaded from the MTRI data server (https://webserver.mtri.org/pub/MDEQ_conn), 

then compiled into a single map for Lakes Superior, Michigan, Huron and Erie, and clipped to the 

model domain. This was then converted to a raster at the resolution of the 3DEP DEM for the 

model region, then aggregated to the MODFLOW grid resolution using the same method as the 

palustrine wetland depth and elevation products.  

3.5 Wetland Connectivity Analysis 

A “coastal groundwater zone” was defined as any area where the difference between mean 

head elevations for the “MIN” and “MAX” scenarios was greater than 1 cm. This represents the 

zone where lake level fluctuations of the magnitude observed between 2000-2023 can directly 

affect groundwater levels. This coastal groundwater zone was then combined with the maximum 

surface water wetland inundation extent to create a “coastal wetland zone” specific to this study, 

shown in Figure A32. This combined ‘coastal wetland zone’ was assumed to represent the area in 

which groundwater elevations and wetland connectivity could be affected by the recent changes 

in lake levels.  

For the purposes of this study, both traditionally defined coastal wetlands and palustrine 

wetlands within this coastal wetland zone are considered “coastal wetlands”. Surface and 

groundwater connectivity are subsequently quantified for all wetlands within this coastal wetland 

zone. Any changes to groundwater-wetland connectivity outside of this zone were considered to 

be the result of climate drivers alone, and not the primary focus of this study.  

Wetlands are considered groundwater connected (𝐺𝐶) if the head elevation within a model 

cell (ℎ𝑖 ) is greater than or equal to the wetland bottom elevation (𝑊𝐵𝑖 ) in that cell, as shown in 

Equation 4: 

[4] 𝐺𝐶𝑖 =  ℎ𝑖 ≥    𝑊𝐵𝑖  

Groundwater wetland connectivity (𝐺𝑊𝐶) is defined as the total number of groundwater 

model cells containing wetlands that are groundwater connected (𝐺𝐶𝑖 ) as shown in Equation 5: 

[5] 𝐺𝑊𝐶 =  𝛴 𝐺𝐶𝑖   

https://webserver.mtri.org/pub/MDEQ_conn
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𝐺𝑊𝐶  was assessed for all four scenarios (“BASE”,”MIN”,”MED”,”MAX”) at three 

groundwater conditions: 1) the maximum and 2) the minimum head elevation during the 

simulation period in each model cell, and 3) groundwater head elevations at the 15th of every 

month during the simulation period. The minimum and maximum conditions were compared to 

estimate the total potential change in 𝐺𝑊𝐶 during the model period. Monthly heads were used to 

assess how the amount of 𝐺𝑊𝐶 changed through time over the model period. Changes in 𝐺𝑊𝐶 

are expressed as a percent difference with respect to the theoretical minimum connectivity (𝐺𝑊𝐶 

at absolute minimum heads). Estimates of groundwater connected wetland (𝐺𝑊𝐶 ) area were 

computed by multiplying 𝐺𝑊𝐶 by the cell area, or 0.25 km2.  

Surface water connectivity (𝑆𝑊𝐶) was defined as the total number of cells where surface 

water inundated wetlands were present in the 500 m resolution rasters derived from the MTRI 

inundation dataset (described in Section 3.3.2). 𝑆𝑊𝐶 was calculated for the low and high lake 

level conditions reported by MTRI, and change in 𝑆𝑊𝐶 was reported as a percent of 𝑆𝑊𝐶 at low 

lake levels. To keep estimates of 𝑆𝑊𝐶 wetlands consistent with 𝐺𝑊𝐶 estimates, surface water 

connected area is computed as 𝑆𝑊𝐶 multiplied by the cell area (0.25 km2). Combined surface and 

groundwater wetland connectivity (𝐶𝑊𝐶 ) is defined as cells where both the 𝐺𝑊𝐶  and 𝑆𝑊𝐶 

conditions are met. The number of these cells at high and low water levels is then multiplied by 

the cell area (0.25 km2) to estimate 𝐶𝑊𝐶 area.  

𝐺𝑊𝐶 was compared between the different model scenarios to assess how much influence 

lake levels have on groundwater connectivity, through direct influence on coastal groundwater 

elevations. Connectivity at maximum and minimum groundwater head elevations were compared 

between the BASE and MED scenarios to assess the effects of including time variant lake levels 

on wetland connectivity. Maximum connectivity was compared for the BASE and MAX scenarios, 

while minimum connectivity was compared for the BASE and MIN scenarios, to assess how much 

more or less connectivity could have occurred if the lakes maintained their extreme levels. Finally, 

connectivity was computed for each time step in the MIN, MED, and MAX scenarios, then 

compared to the time series of connectivity from the BASE scenario to assess how close the 

observed conditions came to the theoretical impact of the lakes equilibrating at their extreme 

conditions.  

3.6 Sensitivity Analysis 

Due to the use of an absolute elevation to determine groundwater wetland connectivity, 
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𝐺𝑊𝐶 may be very sensitive to simulated head elevations. As all models have some degree of 

uncertainty, assessing the sensitivity of this 𝐺𝑊𝐶 approach to absolute head elevation provides 

content for interpretation of the results presented above. Sensitivity of 𝐺𝑊𝐶  to simulated 

groundwater elevations was assessed by varying minimum, maximum and monthly head 

elevations in the “base” scenario by +/- 0.5m, +/- 0.3m and +/- 0.1m. A seventh case was also 

assessed where heads were adjusted by the median error, defined as the difference between 

modeled and observed head elevations.  This error was calculated by first by taking the mean of 

the simulated vs observed heads for all observation points within the coastal wetland zone. The 

impact of adjusting head elevations was calculated as the amount of wetland area connected to 

groundwater in each time step for the seven sensitivity cases, expressed as a percentage of absolute 

maximum BASE scenario connectivity.  

The effect of data resolution on wetland connectivity estimates was assessed by resampling 

the groundwater model outputs to the 3DEP DEM resolution, then comparing groundwater 

elevations and wetland bottom elevations at this resolution. Groundwater model heads were 

resampled with a nearest neighbor approach using the Rasterio python package (Gillies et al, 

2024). The result was a groundwater head grid at the DEM where each cell in the higher resolution 

grid inherited the value of the nearest cell in the native groundwater model output resolution grid. 

While this method does not account for sub-grid variation in groundwater elevation, it does allow 

for smaller scale variability in wetland elevation and depth to be considered. It also more accurately 

represents the amount of wetland area within the domain.  

4. Results and Discussion 

4.1 Direct Groundwater-Lake Exchange 

Groundwater discharges to the Great Lakes through the nearshore lakebed at a rate of 

between 0.01 and 0.12 m/month between 2000-2023 (Figure 19A). Seasonally, groundwater 

discharge peaks in April and is lowest in September (Figure A33), closely following the seasonal 

patterns in simulated deep percolation from the surface model, shown in Figure 14. Groundwater 

discharge to the lakes is similar at the beginning and end of the model period, and is lowest between 

~2009-2013 (Figure 19E), when both the lakes and the groundwater are at their lowest point. 

Groundwater discharge is very consistent within the lakebed region (Figure 19A), however 

significant variability is observed along the coastline (Figure 19B), and within inland features 

directly connected to the Great Lakes (Figure 19C).  



 

 

113 

This consistent discharge of groundwater through the near-shore lakebed regions was also 

observed by Xu et al. (2021) who modeled groundwater and lake elevations across the Great Lakes 

basin using the HydroGeoSphere hydrologic model. Their results estimate a seasonal pattern of 

groundwater discharge similar to this work, but shifted one month earlier, with maximum 

discharge in March and minimum discharge in August. Xu et al. (2021) estimated annual average 

discharge to the lakes to range between 29.0, 38.6 and 24.5 m3/s for lakes Superior, Michigan and 

Huron respectively, while a modeling study of the Lake Michigan Basin by Feinstein et al (2020) 

estimated direct discharge to Lake Michigan of 9.6 m3/s. While not directly comparable to either 

study, as we only simulate portions of each lake, annual average discharge through the combined 

GHB in this model ranged from 246-673 m3/s. This is considerably more discharge than the 

combined discharge of Lakes Superior, Michigan and Huron of 92.1 m3/s estimated by the Xu et 

al. (2021) model. Higher simulated direct groundwater discharge rates in this study relative to the 

Xu et al. (2021) model may be due to the significantly smaller cell size used in this study (500 m 

vs 2-10 km) or the much higher conductivity value used for the GHB cells (4.5-18.3 m/day in this 

study versus 0.0864 m/day (Xu et al., 2021)).  
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Figure 19: Groundwater Discharge to the Great Lakes. Average direct groundwater discharge 

to the lakes during the model period is very consistent though the lakebed (A), but concentrated 

along the coastline (B and C) and in inland waterway connected to the Great Lakes (D). 

Groundwater continuously discharges to the lakes during the simulation period, but is lowest 

between 2009-2011 when both lake and groundwater elevations were near their lowest (E).  
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4.2 Influence of Lake Levels on Coastal Groundwater   

Comparison of the MIN and MAX scenario heads indicate lake levels changes ranging 

from 1.1-1.9m across the three lakes have the potential to directly influence groundwater 

elevations by at least 1 cm in a zone extending from the shoreline up to ~17. 5km inland (Figure 

20A). Change in groundwater elevations over this region averages 21.2 cm, with a maximum of 

1.93 m. This potential effect of lake levels on groundwater is highest along the inland waters 

included in the GHB boundary, and in areas surrounded by the lake, such as the two peninsulas in 

the Grand Traverse Bay region (Figure 20B). The difference between these two scenarios 

represents the maximum difference in groundwater head that could be directly caused by lake 

levels, if the lakes had equilibrated with the groundwater system at their observed minimum and 

maximum levels.  

The observed lake level variation between 2000-2023 resulted in coastal groundwater 

elevation changes which nearly equaled the maximum potential effect (Figure 20E). At their 

extremes, coastal groundwater elevations in the base run were 5.2 cm higher than the theoretical 

minimum, and 4.4 cm lower than the theoretical maximum. On average, heads in this coastal 

groundwater zone varied by 124 cm during the BASE scenario (Figure 20E). Coastal groundwater 

heads in the MED lake level scenario varied by 113 cm over this same period. These results suggest 

that of the observed variation in coastal groundwater elevations, approximately 91% is due to 

variations in the surface water balance, while ~9% is due to direct effects of the lakes. The 

difference in coastal groundwater head between the BASE and MED lake level scenarios is shown 

in Figure A34. Together, results of this modeling study suggest the observed dynamic climate and 

lake level variations between 2000-2023 resulted in changes to coastal groundwater elevations 

approximately equal to the effect of changing the lake level by 2 meters. Further, these results 

indicate most of this variability is due to the observed changes in climate, which alter the surface 

water balance and ultimately groundwater elevations.   
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Figure 20: Groundwater Model Scenario Comparison. Average difference in heads between 

the “MIN” and “MAX” scenarios, showing the potential impact of lake levels on groundwater 

elevation. Direct lake level impacts are generally greater along the Lake Michigan coastline (Panel 

A), in peninsulas such as those in Grand Traverse Bay (Panel B), and in low lying inland 

waterways such as the Lower Saginaw River Watershed (Panel D). Differences between the BASE 

scenario (black line) and the two extreme scenarios (MIN, red line, and MAX, blue line) shown in 

Panel E suggest that between 2000-2023, coastal groundwater elevations nearly reached the 

theoretical impact that would be observed if the lakes had been fixed at their extremes. 
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4.3 Changes to Coastal Wetland Connectivity  

Coastal wetland surface water connectivity (𝑆𝑊𝐶) increases by a factor of 2.9 when the 

lakes rise from extreme low to high water levels, as they did between 2007 and 2021 (Figure A35). 

This ~3,716 km2 increase in 𝑆𝑊𝐶 area is concentrated along the Lake Michigan-Huron shoreline 

in the UP, and along the Lake Michigan Shoreline in the LP. Of the 5,488 km2 of surface water 

connected coastal wetlands at high water levels, 67.7% is newly inundated while 32.3% was also 

inundated at low water levels. This newly connected area at high lake levels may be the result of 

rising water levels inundating existing but previously surface water-disconnected wetlands, or the 

result of wetland migration. Increased lake levels cause both the expansion of coastal wetland area 

landward, and the loss of wetland habitat near the low water level coastline (Anderson et al., 2023, 

Theuerkauf and Braun, 2021). When the lake levels rise to their maximum, about 6% of the 𝑆𝑊𝐶 

area at low water is lost, as rising waters convert some of the low water 𝑆𝑊𝐶 area to open water.  

𝐺𝑊𝐶  in the coastal wetland zone increased by 120.9% when heads rose from their 

minimum to maximum between 2000-2023 (Figure A36). This represents an increase from ~526 

km2 of coastal 𝐺𝑊𝐶 area at minimum heads, to ~1,161 km2 at maximum heads. All of the 𝐺𝑊𝐶 

at minimum head elevations remains connected at maximum head elevations. Due to the structure 

of the groundwater model, the location of the lake-land interface is fixed across the model runs. 

Thus, changes to wetland connectivity due to the expansion or contraction of the coastal zone with 

changing lake levels cannot be assessed. Groundwater wetland connectivity changes between 

2000-2023 are not limited to coastal wetlands. 𝐺𝑊𝐶 in palustrine wetlands outside the coastal 

wetland zone increased by 103.9% increase at the maximum groundwater heads when compared 

to minimums (Figure A36). These changes occur throughout the model domain, but areas of 

wetland connectivity increases are concentrated in the central LP, Saginaw Bay watershed and in 

the southern half of the UP.  

The combined wetland connectivity ( 𝐶𝑊𝐶 ) area at minimum lake and groundwater 

elevations totals approximately 2,323 km2. Of this total connected area, 77.4% is connected by 

surface water, 18.3% is connected to groundwater, and 4.3% is connected to both. At the maximum 

lake and groundwater conditions, 𝐶𝑊𝐶 increases by 160% to approximately 6,047 km2. At high 

water conditions, 80.8% of coastal wetlands are connected to surface water, 9.2% to groundwater, 

and 10.0% to both surface and groundwater. Of the additional coastal wetland area that becomes 

connected at high water levels, shown in Figure 21, 84% is connected to surface water, 10.1% to 
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groundwater and 5.2% to both. Including groundwater connectivity change with the estimate of 

surface water connectivity change increased the estimated amount of coastal wetland area gained 

when lake levels rise by 18.2%. In addition to extending the amount of increased wetland 

connectivity at high water levels, including groundwater in this analysis of wetland connectivity 

also indicates that ~6.1% of the coastal wetland area connected to the lakes at high lake levels, 

remains groundwater connected at low lake levels. These areas may remain wetland habitat 

through a groundwater subsidy even during a loss of surface water connectivity.  

The minimum and maximum in lake levels and groundwater elevations used to assess 

connectivity changes do not occur at the same time. Minimum head elevations occurred between 

2000-2017, while minimum lake elevations occurred between 2003-2013. Similarly maximum 

head conditions occurred between 2008 and 2020, while maximum lake elevations occurred 

between 2019 and 2020. Quantifying this total connectivity, and its change as the lakes and 

groundwater reach their maximum conditions is however useful to summarize the effects of 

changing hydraulic conditions on wetland connectivity between 2000-2023. While the MTRI 

dataset only includes a single layer each for high and low inundation, simulated groundwater head 

elevations were saved at monthly intervals. Over the model period, the amount of groundwater 

connectivity ranges from 55% to 89.6% of maximum 𝐺𝑊𝐶, as shown by the solid blue line in 

Figure 22. Trends in 𝐺𝑊𝐶  over the model period generally follow those in lake level and 

groundwater elevations; 𝐶𝑊𝐶 is lowest in 2004-2013 and highest in 2019-2021.   
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Figure 21: Ground and Surface Water Connectivity Change in Coastal Wetlands. Change in 

combined wetland connectivity within the coastal zone due to changes in surface water 

connectivity (SWC, green), groundwater elevations (GWC, blue) or both (CWC, orange) between 

minimum and maximum lake level scenarios are shown in Panel A. The increase in connected 

wetland area is primarily due to an increase in SWC, as is the case in the Eastern Upper Peninsula 

(Panel C). Rising groundwater elevations alone account for approximately 10.1% of the increased 

wetland area, and can extend the impact of rising surface and groundwater conditions a 

considerable distance inland. This effect is most strongly observed in low lying conductivity areas 

such as in the Lower Saginaw River (Panel D).  

4.4 Drivers of Coastal Wetland Connectivity Change  

𝐺𝑊𝐶 estimates from the MED scenario are 2.1% lower at maximum connectivity, and 

1.6% higher at minimum connectivity when compared to the BASE scenario. Wetland 

connectivity in the base scenario was ~5.5% higher at minimum conditions and about 1.4% lower 

at maximum conditions when compared to the extreme scenarios (MAX and MIN). Together, 

comparing these scenarios to the BASE scenario indicate that direct feedback between lake levels 

and groundwater elevations had minimal impact on groundwater connectivity to coastal wetlands 
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between 2000-2023. As such, climate forcings appear to control most of the variability in 

groundwater elevation and 𝐺𝑊𝐶 change over the simulation period.  

There is considerable difference between the potential impact of lake level variation on 

groundwater elevations, and its simulated effect on  𝐺𝑊𝐶 between 2000-2023. This minimal 

feedback from the lakes, through groundwater heads to coastal wetlands is attributed to two 

factors. First, groundwater head and surface elevation gradients along the coastline limit the impact 

of changing groundwater elevations on wetland connectivity. This is illustrated by the Grand 

Traverse Bay region, where potential changes in groundwater elevation due to lake level are large 

(Figure 20B), but groundwater-wetland connectivity across all conditions is limited due to high 

relief (Figure 21B, Figure A36B). Second is the significant coupling between lake elevations and 

terrestrial hydrology through regional climate processes. The Great Lakes are closely linked to the 

basin climate; changes to precipitation and ET are a strong control on lake levels, while moisture 

from the lakes provides a significant amount of precipitation over the basin's land area (Gronewold 

et al., 2016, Notaro et al., 2013). The results of Chapter 3 suggests that groundwater elevations 

and lake levels co-evolved during the simulation period. Thus, the impact of climate forcings on 

groundwater elevations and thus wetland connectivity cannot be completely separated from those 

directly controlled by the lakes. Further counterfactual model runs, such as those with varying lake 

levels but fixed climate, would be needed to fully attribute the changes in groundwater elevation 

and wetland connectivity to climate forcings and direct boundary condition effects of the lakes.  

4.5 Sensitivity Analysis and Uncertainty 

The uncertainty in groundwater elevations, inherited from uncertainty in the groundwater 

model structure, parameters, and forcing data affects estimates of 𝐺𝑊𝐶, as the absolute elevation 

of the head and wetland bottom are used to quantify connectivity. The median difference between 

simulated and observed heads within the coastal groundwater zone (Shown in Figure A37) is -0.81 

m, indicating that on average, simulated groundwater elevations are below those observed within 

the coastal groundwater zone. Groundwater head elevations have a significant impact on the total 

amount of groundwater connected-wetland across the model period when varied. During the base 

model run, 𝐺𝑊𝐶 within each month varied from ~55-90% of maximum connectivity (the amount 

of connected area if each model cells were at its maximum elevation). Varying the monthly head 

grids from the base scenario by +/- 0.5 m, 0.3 m and 0.1 m, and the median simulated-observed 

head difference of 0.81 resulted in 𝐺𝑊𝐶 which ranged between ~40-140% of maximum 𝐺𝑊𝐶 
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during the base run, shown in Figure 22. In addition to changing absolute area connected, changing 

heads also altered the amount of variability during the model simulation. Relative to 𝐺𝑊𝐶 at 

maximum heads in the base run, the proportion of 𝐺𝑊𝐶  varied by 21.5% when heads were 

decreased by 0. 5m, and 50.4% when heads were increased by 0.5 m. Increasing the minimum and 

maximum heads by the median simulated-observed head difference in the coastal zone increases 

𝐺𝑊𝐶 by 78.1% at minimum head and 62.4% at maximum. These differences are greatest where 

groundwater head elevations are near the surface, such as along the Lake Huron coastline in the 

LP and the Michigan-Huron coastline in the UP, as shown in Figure A38. 

This approach gives some indication of the sensitivity of wetland connectivity to heads, 

however it oversimplifies the model error in heads in two ways. First, while the median error in 

heads is -0.81 m, this error is not evenly distributed across the coastal region. Some areas have a 

bias toward underprediction, such as along much of the Lake Michigan coastline, while other areas 

are generally overpredicted, such as in Saginaw Bay and Lake St. Clair and Erie shorelines (Figure 

A38). Second, addressing this error in the groundwater model would require, at minimum, 

adjusting model parameters such as hydraulic conductivity. Applying such changes to the model 

would result in a significantly more complex response in head than raising or lowering elevations 

uniformly across the grid. Continued refinement of the groundwater model, and a model based 

sensitivity analysis, would improve estimates of groundwater connectivity to wetlands and better 

constrain uncertainty.  

Assessing surface and groundwater connectivity change at the 3DEP DEM scale changed 

both estimates of connected area and the relative amount of connectivity change. Table A13 

compares the 𝐺𝑊𝐶 and 𝑆𝑊𝐶 area at minimum and maximum water levels, as well as the change 

in 𝐺𝑊𝐶 and 𝑆𝑊𝐶 area, when assessed at the groundwater model resolution (500 m) and the DEM 

resolution (24.6 m). Analysis at the 500 m resolution shows an increase from low to high lake 

levels in 𝑆𝑊𝐶 of 2.9 times totaling ~3,716 km2, while analysis at the 24.6 m resolution indicates 

an increase of 3.8 times totaling 1462 km2. For 𝐺𝑊𝐶, analysis at the 500 m resolution suggests an 

increase of 121% totaling 635 km2, while analysis at the 24.6 m resolution showed an increase of 

60.8% totaling 216 km2. Both analyses however support increases in 𝐺𝑊𝐶 areas beyond those 

connected to surface waters when lake levels and groundwater elevations increase between 2000-

2023. The differences in area are the result of the considerable scale differences between the 

groundwater model resolution and that of the wetland and DEM products. The coarser cell 
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resolution therefore overestimates both the amount of area connected, and the amount of change 

in connected area that occurs due to changing groundwater levels. The considerably larger size of 

the high resolution datasets however require more time and computational resources to process, 

especially for the analysis of the change in connectivity through time and sensitivity analysis. The 

overestimation of wetland area and connectivity when assed at the groundwater model resolution 

could be addressed in three ways. First, estimates of connected wetland area could be scaled by 

the fraction of wetland area within each groundwater model cell. Second, the workflow for 

analyzing wetland connectivity at the DEM resolution could be refined to improve efficiency in 

processing and analyzing the high resolution datasets through the use of parallel processing tools 

for python such as Dask (Dask Development Team, 2016). Third, a smaller portion of the model 

domain could be selected, either for post-processing and analysis at higher resolution, or for the 

construction of a higher resolution inset model.  

In addition to the uncertainty in modeled heads, and those introduced by the scale of this 

analysis, the wetland location and depths are also uncertain. Wetland locations and types from the 

NWI are the highest quality wetland data available across the United States. Both coastal wetland 

and the included palustrine wetlands are connected to either surface water, groundwater or both 

(Cowardin et al., 1979, Crowe and Shikaze, 2004). When and how often these wetlands are 

inundated by surface or groundwater, and their detailed morphology (e.g. depth) are largely 

unknown however. A combination of increased field data collection and novel remote sensing 

analysis, however, can constrain these attributes. For example, the Great Lakes Coastal Wetland 

Monitoring Program has, since the early 2010’s, taken physical measurements of wetland 

morphology and ecology at over 1000 coastal wetland locations across the Great Lakes Basin 

(Uzarski et al., 2019). Incorporation of this data, and collection of similar data for coastal palustrine 

wetlands, would bridge the gap between highly localized (e.g. within wetland) investigations 

(Crowe and Shikaze, 2004) and those derived from the regional groundwater modeling insights 

such as are presented here. Remotely sensed estimates of surface water extent, derived through a 

combination of optical and infrared radar data, have the potential to map the presence and temporal 

occurrence of surface water in wetlands. For example, the Observational Products for End-Users 

from Remote Sensing Analysis (OPERA) project lead by the NASA Jet Propulsion Laboratory 

(JPL) has developed maps of surface water inundation extent at 30m resolution using Sentinel-1, 

NISAR, and Harmonized Landsat Sentinel-2 (HLS) data (OPERA, 2024). This product could be 
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used to identify the presence of surface water inundation in the NWI wetlands, which would 

indicate connectivity to surface water and/or groundwater, and used as validation data for the 

groundwater model derived estimates of connectivity presented here.  

 

 

Figure 22: Sensitivity of Groundwater-Coastal Wetland Connectivity to Simulated Head 

Elevation. Head elevation is a strong control on the absolute amount of wetland area connected to 

groundwater. Sensitivity of wetland connectivity to head elevations, shown as a percent of the area 

connected to groundwater at maximum heads in the base scenario (shown in the solid blue line), 

for a range of adjustments in head (shown in the grey lines). These values, ranging from -0.5m to 

+0.5m were added uniformly to the base scenario head grids, before computing connectivity with 

the adjusted head for each time step. The dashed blue line represents connectivity when heads are 

adjusted by the median error in the coastal groundwater, where heads were a median of 0.81m 

lower than observed heads. Head elevations also affected the degree of variability over the model 

period; connectivity varied by 34.6% in the base run, 21.5% when heads were decreased by 0.5 m 

and 50.4% when heads were increased by 0.5  

5. Conclusions  

This groundwater modeling analysis indicates a dynamic and direct connection between 

the Great Lakes and the associated groundwater system. This direct connection is evident by the 

simulated discharge of groundwater into the lakes, and the effects and the boundary condition 
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effects of lake levels on coastal zone groundwater elevations. Groundwater is directly discharged 

into the lakes though a 10 km buffer around the shoreline over the entire model period at rates 

ranging from 82.1 to 2,398 m3/s, however this discharge is primarily concentrated alone the 

shoreline. The observed lake elevation changes have the potential to alter groundwater elevations 

between 1 cm to 1.9 m in a zone of “coastal groundwater” ranging between 500 m and ~20 km 

inland. Within this zone, groundwater connectivity to coastal wetlands increased by 120.9% when 

heads rose from their minima to maxima between 2000 and 2023.  

When combined with estimates of surface water connectivity between low and high lake 

elevations over the same period, a total of ~2,323 km2 became connected to ground or surface 

water with 18.2% of this increase in connected area due to groundwater alone. These results 

highlight the close connection between groundwater elevation and lake levels, and the potential 

effects of groundwater elevations on connectivity in Great Lakes coastal wetlands. Improved and 

refined modeling approaches, continued field data collection and integration of remoting sensing 

data are required to better understand the connectivity of groundwater to Great Lakes coastal 

wetlands.  This improved understanding is critical to protect the important ecosystem services 

provide by Great Lakes coastal wetlands given projections of continued climate and lake level 

variability within the Great Lakes (Kayastha et al., 2022).   
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CHAPTER 5: SUMMARY AND FUTURE WORK 

5.1 Conclusions  

This dissertation seeks to integrate field data and hydrologic models to better understand 

water quality and water resources across and within the Great Lakes Basin, focusing specifically 

on the state of Michigan region. Both the field study presented in Chapter 2, and the modeling 

analysis presented in Chapters 3 and 4, indicate the importance of groundwater and its interactions 

with surface water for water resources within the Great Lakes. While groundwater has been long 

considered an important resource for the region, the works presented herein advance our 

knowledge of surface and groundwaters coupling in the state of Michigan. 

In Chapter 2, a straightforward linear modeling analysis of water quality data collected 

across Michigan’s Lower Peninsula demonstrates seasonal variability in both stream nutrient 

concentrations and their relationships to landscape conditions. Stream nutrient concentrations were 

most strongly correlated to land use and land cover during spring snowmelt, moderately correlated 

during summer rainfall and least correlated during fall baseflows. The degradation in model 

performance across the sampling events suggests progressive decoupling of stream chemistry from 

landscape conditions as the seasons progress. This decoupling is attributed to changes in runoff 

processes, nutrient availability, and nutrient cycling throughout the year. Baseflow-normalized 

concentrations show distinct responses of nutrient concentrations to high flows during spring 

snowmelt versus summer rainfall. These results suggest different nutrient availability and 

streamflow sources, or a combination of both, during the two high flow events. Collectively, the 

results of this study demonstrate the considerable seasonality of nutrient concentrations in streams 

across Michigan’s Lower Peninsula, and that static landscape characteristics alone are insufficient 

to explain this variability.  

Chapter 3 describes the development of a coupled surface and groundwater hydrologic 

model for the state of Michigan region between 2000-2023, and its use to characterize changes in 

groundwater elevation during a period where the Great Lakes rose from record low to record high 

lake elevations. Development of this model required the addition of new physical processes in the 

Landscape Hydrology Model in order to simulate the highly variable hydrogeologic landscape 

within the model region. Model results indicate groundwater storage increases which mirror, but 

lag 2-4 years behind, increases in lake elevation. These changes in groundwater storage were 

shown to be the result of increased precipitation and decreased evaporation, the onset of which 
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occurred between 2015-2017.  

This modeling framework was then used in Chapter 4 to investigate relationships between 

lake levels, groundwater elevations and coastal wetland connectivity. Modeling results show that 

groundwater is continually discharged to the lake through the near shore region, and changes to 

lake elevation have the potential to significantly alter coastal groundwater elevations. Comparing 

simulated heads to estimated coastal wetland bottom elevations suggest the amount of coastal 

wetland area connected to groundwater increases by approximately 120% when heads rise from 

their minimum to maximum conditions. Estimates of coastal wetland connectivity change between 

low and high water levels are 18% greater when groundwater is considered, compared to estimates 

of this change derived from remotely sensed surface water connectivity alone. The amount of 

groundwater-connected wetland area however, is sensitive to the groundwater elevations, which 

are underestimated relative to observations by a median of 0.81 m within the coastal region.  

Water resources in the Great Lakes Basin are threatened by changing climate, landscape 

and water use demands. In order to properly manage the region’s water resources, models capable 

of predicting how these changes will propagate through the hydrologic system are necessary. Such 

models are also needed to predict how these changes will impact important ecosystem services 

such as coldwater fish habitat provided by groundwater-fed streams, and nutrient cycling within 

groundwater-connected wetlands. Field data are an important component of model construction, 

calibration and validation. Close integration of existing and newly collected field data with 

hydrologic models is a critical step toward developing the tools needed to protect water resources 

in the Great Lakes region.  

5.2 Limitations 

While the works presented in Chapters 2-4 have advanced the understanding of processes 

driving water quality and groundwater connectivity across the Michigan Region, each has its own 

inherent limitations. In Chapter 2, the long delay between data collection (2011-2012) and data 

analysis (2020-2023) presented challenges in properly analyzing and interpreting the data. While 

this dataset was a unique look at seasonal water quality at a regional scale, there were likely subtle 

details overlooked due to this long delay. The patterns observed in Chapter 2 should also be 

compared, to the extent possible, with similar analysis done on long term discrete or continuous 

water quality samples. The same analysis used in Chapter 2 should be applied to data from the 

USGS WQX portal or state agencies. Finally, while the hydrologic interpretation of the data in 
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Chapter 2 is sound, it is largely circumstantial, and based on a first principals understanding of 

regional groundwater and streamflow processes. To constrain the influence of streamflow 

generation processes on water quality, additional field data and/or model derived processes 

representations are required. The addition of tracers such as isotopes or age tracers could help 

constrain the sources of streamflow in future synoptic water quality datasets. Estimates of 

streamflow processes from a calibrated surface and groundwater model could also provide greater 

context for how seasonally variable runoff process affect water chemistry.  

Chapters 3 and 4 both rely on the coupled surface and groundwater model developed for 

the state of Michigan region. The development of a process-based, coupled surface and 

groundwater model for the regional is novel, especially given its use to investigate changes to 

groundwater storage and wetland connectivity. Improvements to the existing model however could 

provide significant value in improving both model performance and system interpretation. An 

improved unsaturated zone model, either between LHM’s surface model and MODLFOW or 

through the use of the MODFLOW UZF package, would likely improve estimates of recharge or 

soil moisture. The current unsaturated zone representation is a simple linear time delay function, 

and likely oversimplifies the timing of moisture pulses though the unsaturated zone and of their 

delivery to the water table as recharge. Because the surface and groundwater model are offline 

coupled, and vadose zone simulation occurs before MODLFOW, the model is not currently 

capable of representing saturation excess overland flow. This process may be important for 

properly simulating peak streamflows, especially in areas with shallow water tables. A more 

robust, systematic, and automated calibration approach is also needed. The current calibration 

approach presented in Chapter 2 was sufficient for an initial analysis. Significant improvements 

are needed however, to better match observed streamflows and groundwater heads across the 

region. In certain areas, a more powerful calibration routine may not be enough. For example in 

the thick glaciated sediments of the northern Lower Peninsula where underestimation in heads in 

currently greatest, the subsurface geology conceptual model may need to be updated. This could 

include the addition of one or two layers to the model, which could be used to represent 

discontinuous confining units within the glacial sediments.  

Specific to Chapter 4, uncertainty in simulated groundwater elevations and the prescribed 

wetlands depths complicate the ability to make accurate assessments of wetland connectivity to 

groundwaters.  As is discussed above, a more robust calibration is needed to improve estimates of 
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groundwater elevation. This is a primary control on its connectivity with surface waters, along 

with the permeability of the sediments within the bed of the surface water feature.  While spatially 

explicit maps of wetland location exist, the estimates of wetland depth are rudimentary at best. A 

combination of fieldwork and novel remote sensing to constrain wetland depths and inundation 

would aid in improving repetition of coastal and palustrine wetlands at the regional scale. 

Collection of novel field data, integration of new remotely sensed datasets, refinement of model 

process representation and more robust calibration of the hydrologic model would help to address 

limitations across all three research chapters presented in this dissertation.  

5.3 Future Work 

Building off of the work presented in Chapters 2, 3 and 4, there is an opportunity to 

leverage a Model-Experiment (ModEx) framework to enhance both our understanding of the 

controls on stream water quality, and the performance of regional scale hydrologic models. The 

ModEx framework (illustrated in Figure 23) consists of using existing field data to help construct, 

parameterize and calibrate a model, and then using the model to help design new field data 

collection efforts or experiments (e.g. Restif et al., 2012). Using models to help inform field data 

collection has also been implemented though the data worth approach (e.g. Neuman et al., 2012) 

where model parameter estimation can be used to identify where additional field data would 

provide the greatest value to improving model calibration. While the data worth approach is 

focused on improving model performance, the ModEx approach can be used to design experiments 

which also improve conceptual models or address specific hypotheses. Bridging the themes 

presented in Chapter 2 with those presented in Chapters 3 and 4, there is an exciting opportunity 

to apply the regional modeling framework presented here studying changes to stream chemistry 

within the Great Lakes region using a ModEx approach. Specifically, though the use of additional 

modeling tools and water chemistry observations, this approach can be applied to better 

understanding the role of legacy nutrients transported by groundwater to determine current stream 

nutrient concentrations.  
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Figure 23: ModEx Framework for Hydrologic Model-Field Data Integration. Illustration of 

the model-experiment framework for field data collection: a model is developed using existing 

observation data for parameterization, calibration and validation. The model is then used to assess 

potential locations for future sample collection efforts that will either increase process knowledge, 

model performance or both.    

Human activates have released nitrogen and phosphorus into the environment far in excess 

of natural conditions (Byrnes et al., 2020, Hamlin et al., 2020), overwhelming natural nutrient 

cycles (Vitousek et al., 2009), and contaminating water resources globally (Vörösmarty et al., 

2010). The primary sources of these anthropogenic nutrients are agricultural fertilizers and 

wastewater management (Byrnes et al., 2020, Hamlin et al., 2020). The buildup of anthropogenic 

nutrients has resulted in eutrophication and harmful algal blooms (Ho and Michalak, 2015, 

Rabalais et al., 2002); contributed to the spread of invasive species (Hannah et al., 2020); and 

threatened drinking water resources (Hamlin et al., 2022). Once released to the environment, 

nutrients can be can be taken up by plants, stored in the soil zone,  transported by runoff to surface 

waters or transported through the subsurface via soil moisture and groundwater (Wan et al., 2023). 

Nutrients can be transported from the uplands to streams and inland lakes by surface processes or 

tile drainage over the course of hours to months after their application. Delays between application 

and delivery are considerably longer for nutrients stored in the soil zone or transported via 

subsurface pathways, ranging from days to decades (Figure 24) (Ilampooranan et al., 2019, Martin 

et al., 2021). The delivery of these legacy nutrient can keep surface water nutrient concentrations 

high long after inputs to the land surface had decreased, impeding effective management (Van 

Meter et al., 2018, Van Meter et al., 2017).   
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Figure 24: Groundwater Legacy Nuterint Conceptual Figure. A conceptual diagram showing 

the differences in resonance time for nutrients transported via surface/tile drainage and 

groundwater flow pathways. Nutrients transported via overland flow or tile drainage can reach 

surface waters within hours or days after their application or release from storage. Those 

transported by groundwater flowpaths can have significant delays of days to decades between 

release and delivery. 

Most of the applied phosphorus not taken up by plants is transported via surface runoff, 

discharged to surface waters via tile drainage, or stored in the soil zone (Gentry et al., 2007 King 

et al., 2015). While nitrogen can also be transported by surface and tile drainage, large amounts, 

primarily in the form of nitrate, can be leached below the root zone and transported via subsurface 

flowpaths (Lin et al., 2019, Gentry et al., 1998, Wan et al., 2023). As such, nitrate transport via 

groundwater flow paths plays a considerable role in determining legacy nutrient additions to 

surface waters (Van Meter et al., 2016, Van Meter et al., 2017). While some denitrification can 

occur in oxic groundwater and in the hyporheic zone of streams (Lin et al., 2019, Juckem et al., 

2024), nitrate is generally conservative during groundwater transport due to low dissolved organic 

carbon levels needed for microbial metabolism. Therefore, groundwater travel times are a strong 

control on the delivery of legacy nitrate to surface waters. Using a particle tracking model such as 

MODPATH, both the pathways by which water moves, and the time it takes to travel along these 

pathways can be simulated (Fienen et al., 2018, Juckem and Starn, 2021). MODPATH tracks 

groundwater flowpaths and transit times from the outputs of a MODFLOW groundwater flow 

model (Pollock, 2016). It has been previously used to simulate groundwater travel times at regional 

scales (Fienen et al., 2018), estimate nitrate delivery to wells (Juckem et al., 2024) and streams 
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(Moore et al., 2023).   

By combining MODPATH with the existing MODFLOW model in a ModEx framework, 

hypotheses about groundwater nutrient transport can be tested while also improving the 

performance of groundwater flow and transport models. Due to the limited number of 

observations, aquifer properties such as hydraulic conductivity are often lumped into zones (i.e. 

geologic units) or distributed across the domain (i.e. interpolated) often using multiple realizations 

(Fienen et al., 2009). In either case, due to the relatively small number of parameter observations, 

significant calibration is required to produce simulations with performance fit to the models’ 

purpose (Konikow and Mercer, 1988). Observations of groundwater elevations and stream 

baseflows are used to parameterize groundwater model inputs; modern parameter estimation tools 

like PEST have increased the power of these observational data (Doherty and Hunt, 2010, Hunt et 

al., 2020). When simulating solute transport or particle tracking in groundwater flow systems, 

additional subsurface characteristics including porosity are required (Pollock, 2016). This 

introduces another dimension of uncertainty into the modeling framework, but allows for 

calibration to water chemistry and age tracer data (Juckem and Starn, 2021). All field data are 

inherently uncertain, as are all environmental models (Bevin, 2005). The nature of groundwater 

modeling is especially uncertain, as widespread direct observations of the subsurface are 

impossible. While bore logs and pumping tests provide valuable information, these characterize 

only a very small portion of the subsurface (Anderson, Woessner and Hunt, 2015). 

To achieve the goals of improving both numerical models and qualitative 

conceptualizations of the subsurface, a model-experiment framework based on the addition of a 

MODPATH simulation to the existing groundwater model described in Chapters 2 and 3 is 

proposed to study the effect of legacy nutrients on observed stream water chemistry in the Maumee 

and St. Joseph Watersheds (Figure 25). Such a framework can advanced the understanding of 

legacy nutrients in the southern Great Lakes region in two primary ways. First, existing water 

quality data can be combined with historical nitrogen application estimates and estimates of 

groundwater contributing areas and travel times from MODPATH. Second, the MODPATH 

modeling framework can be used to identify new sites for potential data collection that would 

capture a broader range of groundwater contributing areas and travel time distributions than 

existing data alone. This approach will allow us to learn what we can from existing data and 

increase the value of future data collection efforts. The Maumee and St. Joseph watersheds have 
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similar current land use and landscape nutrient input histories (Figure 25). However the 

hydrogeologic setting of these two watersheds is quite different. The St. Joseph is characterized 

by high permeability glacial materials such as outwash and sand, while the Maumee is dominated 

by much finer textured till and lacustrine deposits. As a result, hydraulic conductivity values 

estimated from well data are generally higher across watersheds within the St. Joseph than they 

are the Maumee (Figure 25). Performing the data analysis and model-experiment across these two 

watersheds will allow for the effects of subsurface conditions on groundwater nutrient legacies.  
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Figure 25: Model Informed Sampling Study Region. The Maumee and St. Joseph Watersheds 

(A) span southern Michigan, norther Indiana and Ohio, and are located at the southern extent of 

the Michigan Model domain. These two watersheds have similar land use (C), but the Maumee 

has generally lower hydraulic conductivity (D). Across the two watersheds there are 34 sites in the 

Water Quality Portal where TN has been sampled more than ten times. Nutrient data from these 

sites can serve as the basis for initial investigations into the relationships between historical N 

inputs, modeled groundwater travel times and observed stream chemistry.  
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In the first phase, existing water quality data will be collected from published databases of 

surface water chemistry, including the Water Quality Portal (https://www.waterqualitydata.us/) 

and the National Center for Water Quality Research Heidelberg Tributary Loading Program 

(HTLP) Dataset (NCWQR, 2022). These data will then be filtered to select sites with repeated data 

for nutrient data, specifically nitrate. At every sample point with sufficient data (e.g. greater than 

10 samples), a groundwater contributing area will be delineated using MODPATH. First a surface 

watershed for the point will be generated, then the sample point surface watershed will be buffered 

and intersected with the groundwater model grid, and MDOPATH will with a particle in every cell 

within the buffered watershed. After particle tracking is performed with MODAPTH, the cells 

which terminate within the un-buffered surface watershed will be selected, and their starting points 

will be used to delineate a groundwatershed. Groundwater travel time distributions and historical 

nitrogen inputs from the TREND-Nitrogen dataset (Byrnes et al., 2020) within this 

groundwatershed will then be compared to observed surface water nitrate species concentrations 

to investigate relationships between historical inputs, groundwater travel time and observed stream 

chemistry. Optionally at this step, an inset of the existing groundwater model for the area of interest 

at higher spatial resolution could be developed.   

In the second phase, the modeling-experiment framework can be applied to select new 

sample locations within the study watersheds which represent a large range of groundwater 

contributing areas, nutrient input histories and groundwater travel time distributions. First, possible 

sampling locations can be developed by identifying where streams can be accessed for sample 

collection, such as at road crossings (bridges), hiking trails, public easements, and established 

research sites which currently lack surface water nitrogen data. Existing sample points identified 

in phase one would be removed at this step. Second, the same approach for the established sites 

described above would be used to estimate groundwater contributing areas and travel times for all 

potential sites. Third, the list of potential new sample locations would be assessed to select a set 

of approximately 30 sites each in the St. Joseph and Maumee watersheds which would strengthen 

the data analysis described in Phase 1. A synoptic sampling approach will then be used to collect 

water chemistry data including ions and nitrogen species, along with groundwater and nitrogen 

age tracers across the selected sample location. Specifically, the collection of established 

groundwater age tracer tritium will be combined with the novel age tracer MESA (McCarty et al., 

2014). Tritium is a radioisotope with a known release history in the atmosphere from nuclear 

https://www.waterqualitydata.us/
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testing, which can be used to date relatively young groundwater (Beyer et al., 2014). MESA is an 

environmental degradation product of the herbicide Metolachlor, which is widely applied to 

agricultural fields around the same time as fertilizer. Importantly, a known shift in the ratios of the 

two Metolachlor isomers occurred in 1999 (Plummer et al., 2020). MESA also has similar 

conservative transport to nitrate in groundwater. As a result, MESA can be used to both indicate 

the presence of agricultural (vs. wastewater or other source) nitrogen, and to constrain the age of 

any observed agricultural nitrogen (Rice et al., 2016). While groundwater age tracers are 

traditionally sampled from groundwater wells, recent works have demonstrated that the sampling 

of groundwater age tracers from streams at low flow, does characterize the age of groundwater 

contributions to streamflow (Gilmore et al., 2016). Together the water chemistry data, isotope 

tracers and MESA data can be used to strengthen the performance and of the groundwater flow 

and particle tracking models. While this approach proposes a synoptic sampling event, the same 

model-experiment framework could be used to established new long term nutrient monitoring 

locations where legacy nitrogen is likely to affect future water quality.  

The resulting dataset would provide valuable information on how groundwater legacy 

nitrate contributes to observed surface water nutrient concentrations. First, using the newly 

connected groundwater age tracers can help to further constrain modeled groundwater travel times. 

This should thus improve further analysis which incorporates groundwater travel times in 

assessing legacy nutrients. For example, comparing the observed water chemistry with historical 

landscape nutrient inputs (i.e. TREND-Nitrogen) and simulated groundwater travel time can help 

to reveal how legacy inputs are affecting current water quality. Specifically, this approach would 

allow for a better understanding of where in a given system legacy inputs where highest, where 

legacy nutrients have already been discharged from the system though quick flowpaths, and where 

slower flowpaths may continue to contribute legacy nitrogen. Better understanding both the current 

and historical contribution of anthropogenic nutrients to current water quality can aid in the 

development, selection and application of nutrient and water quality management practices.  

In addition to the work proposed above, there are numerous other ways a model-experiment 

framework using the Michigan Model could be applied to advance our knowledge of the processed 

controlling groundwater/surface water interactions and increase model performance.  Such a 

coupled surface and groundwater model could be used to explicitly simulate different streamflow 

generation processes including overland flow, throughflow, shallow groundwater flow and deep 
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groundwater flow. These model simulations could then be used to select sites where additional 

streamflow and water chemistry observations could be collected.  These new streamflow estimates 

could then be used to identify which flowpaths contribute most to streamflow, and to the seasonal 

changes in water chemistry observed in Chapter 2. A similar approach could be used to study how 

inland lakes are responding to the same climate forcings which have driven the observed changed 

to Great Lakes levels and groundwater storage observed in Chapter 3.  

The disciplines of water quality and hydrogeology are moving more and more toward 

bigger data and larger modeling domains. Continental to global scale models are becoming more 

and more common in hydrology, as so is the use of both unsupervised and physics-informed 

machine learning approaches. Such large scale models have been notoriously poor at simulating 

regional processes that can be critically import to the systems which they seek to represent. 

Continental models, for example, have struggled to represent both the lake-atmosphere feedbacks 

and importance of groundwater to regional hydrology within the Great Lakes region. These models 

do however provide a uniform basis for model development and interpretation across large areas. 

Developing approaches which more closely integrate insights from field observations to large scale 

physical and machine learning models may help to address the current shortcomings in these large 

scale models. Specifically, a diligent combination of process-based models developed at tractable 

scales, with field observation data which can improve and refine process representation, is required 

to develop the solutions to water resources and water quality challenges.  
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APPENDIX A: SUPPLEMENTARY INFORMATION FOR CHAPTER 2  

Table A1: Analytes and Analytical Methods for Stream Chemistry Parameters. Stream 

chemistry analytes used for this study. Note that for simplicity we use symbolic abbreviations for 

ions without valances. Analytical method information re-produced from Verhougstraete et al. 2014 

Table S3.  

Analyte (valence) Method Description Method Reference Abbreviation 

Calcium2+ Flame atomic 

absorption 

spectrophotometry 

Wetzel R, Likens G (2000) 

Limnological Analyses 

(Springer, New York), 3rd Ed. 

Ca 

Magnesium2+ Flame atomic 

absorption 

spectrophotometry 

Wetzel R, Likens G (2000) 

Limnological Analyses 

(Springer, New York), 3rd Ed. 

Mg 

Potassium+ Flame atomic 

absorption 

spectrophotometry 

(0.5% HNO 3 

preservative) 

Hamilton SK, Bruesewitz DA, 

Horst GP, Weed DB, Sarnelle O 

(2009) Biogenic calcite–

phosphorus precipitation as a 

negative feedback to lake 

eutrophication. Can J FishAquat 

Sci 66(2):343–350. 

K 

Sodium+ Flame atomic 

absorption 

spectrophotometry 

(0.5% HNO 3 

preservative) 

Hamilton SK, Bruesewitz DA, 

Horst GP, Weed DB, Sarnelle O 

(2009) Biogenic calcite–

phosphorus precipitation as a 

negative feedback to lake 

eutrophication. Can J FishAquat 

Sci 66(2):343–350. 

Na 

Chloride- Dionex membrane-

suppression ion 

chromatography 

Wetzel R, Likens G (2000) 

Limnological Analyses 

(Springer, New York), 3rd Ed. 

 

 Hamilton SK, Bruesewitz DA, 

Horst GP, Weed DB, Sarnelle O 

(2009) Biogenic calcite–

phosphorus precipitation as a 

negative feedback to lake 

eutrophication. Can J FishAquat 

Sci 66(2):343–350. 

Cl 
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Table A1 (cont’d)  

Sulfate2- Dionex membrane- 

suppression ion 

chromatography 

Hamilton SK, Bruesewitz DA, 

Horst GP, Weed DB, Sarnelle O 

(2009) Biogenic calcite–

phosphorus precipitation as a 

negative feedback to lake 

eutrophication. Can J FishAquat 

Sci 66(2):343–350. 

SO4 

Total Phosphorus Ascorbic acid method 

following persulfate 

digestion 

 

Standard methods 4500-P.E 

and 4500-N.C  

TP 

Total Dissolved 

Phosphorus 

Ascorbic acid method 

following persulfate 

digestion 

 

Standard methods 4500-P.E 

and 4500-N.C  

TDP 

Soluble Reactive 

Phosphorus 

Ascorbic acid method Standard methods 4500-P.E.  SRP 

Total Nitrogen Second derivative 

spectroscopy 

following persulfate 

digestion 

Crumpton W, Isenhart T, 

Mitchell P (1992) Nitrate and 

organic N analyses with sec-ond-

derivative spectroscopy. Limnol 

Oceanogr 37(4):907–913. 

TN 

Total Dissolved 

Nitrogen 

Second derivative 

spectroscopy 

following persulfate 

digestion 

Crumpton W, Isenhart T, 

Mitchell P (1992) Nitrate and 

organic N analyses with sec-ond-

derivative spectroscopy. Limnol 

Oceanogr 37(4):907–913. 

TDN 

Nitrate2-/Nitrite- Cadmium reduction Standard methods 4500-NO 3-E  NOx 

Nitrate2- Cadmium reduction Standard methods 4500-NO 3-E  NO3 

Ammonium4+ Phenate Method Standard methods 4500-NH 3-G  NH4 
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Table A2: NLCD Land Cover Summary Classes. Table showing the relationship between the 

original 2006 NLCD classes and our summary land cover classes used in the linear model analysis. 

NLCD Class NLCD Label Updated Class Updated Label  

21 Developed, Open Space 1 Developed 

22 Developed, Low Intensity 1 Developed 

23 Developed, Medium 

Intensity 

1 Developed 

24 Developed, High Intensity  1 Developed 

82 Cultivated Crops 2 Cropland 

71 Grassland/Herbaceous 3 Grassland 

81 Pasture/Hay 3 Pasture/Hay 

41 Deciduous Forest 4 Deciduous to Mixed Forest 

43 Mixed Forest 4 Deciduous to Mixed Forest 

11 Open Water 5 Open Water 

95 Emergent Herbaceous 

Wetlands  

6 Herbaceous Wetlands 

31 Barren Land 7 Barren 

42 Evergreen Forest 8 Evergreen Forest 

52 Shrub/Scrub 9 Shrub/Herbaceous 

72 Sedge/Herbaceous 9 Shrub/Herbaceous 

90 Woody Wetlands 10 Woody Wetlands 
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Table A3: Summary Statistics for Stream Chemistry in Each Season. Minimum (min), mean, 

median (med.), maximum (max.) and standard deviation (stdev.) in concentration (mg/L) of all 

nutrient species summarized across sites for each sampling event. The highest median 

concentration of the three seasons is highlighted in green. pH and NOPC values are also provided 

in this table for additional geochemical context.   

 Max. Mean Med. Min. Stdev. 

 Snowmelt 

TN 7.887 1.903 1.303 0.253 1.679 

TP 0.513 0.097 0.076 0.009 0.076 

TDP 0.359 0.055 0.038 0.005 0.053 

SRP 0.336 0.027 0.009 0.003 0.051 

NH3 0.387 0.087 0.062 0.001 0.092 

NOX 6.870 1.518 0.860 0.002 1.630 

TDN 11.009 1.923 1.218 0.284 1.967 

NO4 10.272 1.576 0.909 0.047 1.869 

pH  8.237 7.959 7.970 7.510 0.159 

NPOC 14.026 6.907 6.805 1.788 2.746 

 Summer Rainfall 

TN 7.776 1.276 0.923 0.126 1.244 

TP 0.112 0.048 0.036 0.011 0.029 

TDP 0.098 0.027 0.022 0.001 0.019 

SRP 0.036 0.011 0.006 0.002 0.011 

NH3 0.999 0.215 0.028 0.002 0.376 

NOX 5.682 0.872 0.568 0.004 1.075 

TDN 6.449 1.506 1.130 0.252 1.312 

NO4 5.491 1.073 0.580 0.017 1.298 

pH  8.546 8.116 8.112 7.826 0.157 
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Table A3 (cont’d) 

NPOC 64.16 21.68 17.163 1.635 15.313 

 Baseflow 

TN 5.583 1.082 0.686 0.082 1.120 

TP 0.396 0.038 0.025 0.008 0.052 

TDP 0.292 0.025 0.016 0.003 0.038 

SRP 0.266 0.023 0.010 0.001 0.045 

NH3 0.280 0.024 0.005 0.000 0.045 

NOX 5.639 0.858 0.337 0.000 1.300 

TDN 5.609 1.048 0.658 0.124 1.036 

NO4 5.503 0.749 0.258 0.000 1.083 

pH  8.382 8.197 8.209 7.896 0.105 

NPOC 26.777 6.140 5.011 1.600 4.193 
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Table A4: Significance in Difference between Seasons in Land Cover Linear Model. P values 

for significant difference in the median concentration between the three seasons, values of p≥0.05 

highlighted in red.  

 Snowmelt-Summer 

Rain 

Summer Rain-

Baseflow 

Snowmelt-Baseflow 

TN 0.030 0.070 0.001 

TP 0.004 0.011 6.86E-09 

TDP 7.12E-06 0.048 2.58E-08 

SRP 0.106 0.007 1.000 

NH4 0.043 2.73E-4 5.33E-05 

NOX 0.361 0.361 0.045 

TDN 0.713 0.141 0.066 

NO3 0.269 0.269 0.066 
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Table A5: Linear Model Adjusted R Squared Values. Adjusted R squared values for the land 

cover only and combined land cover and hydrology models.  

 Land Cover Only Model  Hydrology + Land Cover Model 

Analyte Snowmelt Summer Rain  Baseflow Snowmelt Summer Rain  Baseflow 

Ca 0.35 0.45 0.39 0.49 0.58 0.51 

Mg 0.41 0.52 0.48 0.41 0.60 0.64 

K 0.80 0.78 0.74 0.86 0.88 0.82 

Na 0.83 0.77 0.71 0.82 0.78 0.73 

Cl 0.79 0.72 0.73 0.80 0.73 0.75 

SO4 0.72 0.63 0.63 0.72 0.64 0.65 

TP 0.45 0.55 0.68 0.45 0.54 0.67 

TDP 0.58 0.36 0.42 0.64 0.34 0.44 

SRP 0.67 0.59 0.002 0.70 0.59 -0.01 

TN 0.66 0.14 0.31 0.65 0.20 0.38 

TDN 0.81 0.70 0.39 0.81 0.71 0.44 

NOX 0.66 0.47 0.39 0.65 0.48 0.45 

NO3 0.77 0.69 0.36 0.76 0.68 0.44 

NH4 0.38 0.02 0.12 0.37 -0.05 0.16 
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Table A6: Significant Parameters from the Combined Linear Model. All significant 

coefficients (driver variables) for each species and season in the combined hydrology and land 

cover linear model. The instances of significant correlation between the hydrologic predictor 

variables and the dependent chemical species is highlighted in light blue in this table.  

Snowmelt 

Predictor Coefficient P-value Species 

Ag 0.1133 0.039 Ca 

Ag 0.3527 0 Cl 

Ag 0.3777 0 K 

Ag 0.1209 0.022 Mg 

Ag 0.3256 0.004 Na 

Ag 0.7106 0.019 NH3 

Ag 0.7575 0 NO3 

Ag 0.8509 0 NOx 

Ag 0.4876 0 SO4 

Ag 0.4426 0 TND 

Ag 0.2735 0.02 TN 

Forest 0.1964 0.028 Ca 

Forest 0.361 0.014 Cl 

Forest 0.5071 0.006 Na 

Forest 0.6274 0 SO4 

Forest -0.6242 0.008 SRP 

Forest -0.3774 0.011 TDP 

GWTT 0.0015 0.005 Cl 

GWTT 0.0013 0.003 K 

GWTT -0.0009 0.007 Mg 
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Table A6 (cont’d)  

Open -0.2614 0.003 K 

Open -0.3492 0.043 NO3 

Open -0.2511 0.024 SO4 

Open -0.6198 0 SRP 

Open -0.3328 0.002 TND 

Open -0.3001 0.003 TDP 

Open -0.3492 0.01 TN 

Open -0.338 0.01 TP 

Recharge -0.0044 0.003 Ca 

Recharge -0.0042 0.004 Mg 

Recharge -0.007 0.004 TDP 

Soil K 0.441 0.003 K 

Soil K 0.7272 0.01 SRP 

Urban 0.28 0 Ca 

Urban 0.7417 0 Cl 

Urban 0.3153 0 K 

Urban 0.1988 0.001 Mg 

Urban 1.0821 0 Na 

Urban 0.3879 0.024 NO3 

Urban 0.5789 0.027 NOx 

Urban 0.5929 0 SO4 

Urban -0.5895 0 SRP 

Urban -0.2765 0.008 TDP 

Wetland -0.9763 0 SRP 

Wetland -0.5777 0 TDP 
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Table A6 (cont’d)  

Summer Rainfall 

Ag 0.108 0.015 Ca 

Ag 0.3058 0.004 Cl 

Ag 0.3053 0 K 

Ag 0.1162 0.005 Mg 

Ag 0.3127 0.003 Na 

Ag 0.9999 0 NO3 

Ag 0.8889 0.002 NOx 

Ag 0.4322 0.001 SO4 

Ag 0.3963 0 TND 

Ag 0.314 0.026 TDP 

Ag 0.2479 0.015 TP 

Forest 0.5055 0.015 SO4 

GWTT 0.002 0 K 

GWTT -0.0008 0.001 Mg 

Open -0.198 0.007 K 

Open -0.3074 0.031 SO4 

Open -0.3667 0.021 SRP 

Recharge -0.0081 0.043 TN 

Soil K 0.3094 0.016 K 

Soil K 0.6367 0.032 TN 

Urban 0.1702 0.002 Ca 

Urban 0.6206 0 Cl 

Urban 0.2482 0.001 K 

Urban 0.099 0.04 Mg 
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Table A6 (cont’d) 

Urban 0.799 0 Na 

Urban 0.5203 0.033 NO3 

Urban 0.505 0.001 SO4 

Urban 0.265 0.031 TP 

Wetland -0.1309 0.022 Mg 

Baseflow 

Ag 0.1151 0.025 Ca 

Ag 0.4637 0 Cl 

Ag 0.3505 0 K 

Ag 0.1453 0.003 Mg 

Ag 0.4552 0.001 Na 

Ag 0.4774 0 SO4 

Forest 0.5218 0.014 Cl 

Forest 0.5554 0.014 Na 

Forest 0.7852 0.001 SO4 

Forest -0.6336 0.014 TND 

Forest -0.7538 0.01 TN 

GWTT 0.0021 0 K 

GWTT -0.0013 0 Mg 

GWTT -0.0056 0.005 NO3 

GWTT -0.0019 0.024 TND 

GWTT -0.0029 0.006 TN 

Open -0.1219 0.022 Mg 

Open -0.2836 0.04 Na 

Open -0.3317 0.017 SO4 
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Table A6 (cont’d) 

Open -0.2508 0.03 TP 

Soil K -0.2764 0.006 Ca 

Urban 0.1396 0.024 Ca 

Urban 0.8173 0 Cl 

Urban 0.2968 0.004 K 

Urban 0.7655 0 Na 

Urban 0.7604 0.048 NO3 

Urban 0.502 0.001 SO4 

Urban 0.3956 0.001 TP 
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Table A7: Sample Watershed Area and Dominant Land Cover. Sample point watershed area 

and domiant land cover class. Individual land cover propirtions are shown in table A8.   

River Area km2 Dominant Land Cover 

St. Joseph 11061.02 Agricultural 

Paw Paw River 1027.30 Agricultural 

Kalamazoo 5001.87 Agricultural 

Grand 12853.63 Agricultural 

Muskegon 6417.96 Forested 

White River 1048.77 Forested 

Pere Marquette 1789.84 Forested 

Big Sable River 476.26 Forested 

Little Manistee 525.83 Forested 

Manistee 3558.73 Forested 

Bear Creek 349.96 Mixed 

Betsie 617.85 Forested 

Platte 470.82 Forested 

Boardman 715.70 Forested 

Elk-Torch 1307.78 Forested 

Cheboygan 2316.79 Forested 

Black 1508.96 Forested 

Thunder Bay 2240.89 Forested 

Au Sable 5287.16 Forested 

Au Gres 986.79 Mixed 

 



 

 

160 

Table A7 (cont’d) 

Rifle 858.08 Forested 

Black River 1250.01 Agricultural 

Pine River 440.14 Agricultural 

Belle River 511.69 Agricultural 

Clinton River 1879.91 Urban 

River Rouge 1033.25 Urban 

Huron 2298.21 Mixed 

Raisin 2682.81 Agricultural 

S. Branch Black River 313.36 Agricultural 

N. Branch Black River 397.78 Agricultural 

Macatawa River 292.30 Agricultural 

Pine Creek 48.25 Urban 

Pigeon River 101.56 Agricultural 

Rush Creek 151.54 Urban 

Buck Creek 2.88 Urban 

Sand Creek 141.77 Agricultural 

Bass River 127.05 Agricultural 

Little Pigeon Creek 13.95 Forested 

Black Creek 135.89 Mixed 

Silver Creek 41.10 Forested 

Flower Creek 78.57 Agricultural 

Stony Lake Outlet 160.43 Mixed 
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Table A7 (cont’d)  

Swan Creek 54.06 Agricultural 

Lincoln River 214.87 Mixed 

Crystal River 109.95 Forested 

Belangers Creek 25.48 Mixed 

Mitchell Creek 37.57 Mixed 

Jordan River 174.08 Forested 

Monroe Creek 27.24 Forested 

Boyne River 199.32 Forested 

Bear River 293.12 Forested 

Carp River 119.22 Mixed 

Ocqueoc River 369.13 Forested 

Trout River 81.76 Mixed 

Little Trout River 27.75 Mixed 

Long Lake Creek 162.12 Mixed 

Tawas River 403.270 Forested 

Harrington Drain 53.194 Urban 

Marsh Creek 77.948 Urban 

Sandy Creek 81.779 Agricultural 

Cass River 2174.009 Agricultural 

Flint River 3206.087 Agricultural 

Shiawassee River 1517.388 Agricultural 

Tiltabawasee River 6211.324 Mixed 
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Table A8: Sample Watershed Land Cover Proportions. Relative propirtion of the summary 

land cover classes in each sample point watershed. These values were used toe compute the 

domiant land cover class reported in Table A7.   

 Land Cover Proportions 

River Urban Ag Open Forest Water Wetland Barren 

St. Joseph 0.143 0.595 0.011 0.104 0.024 0.122 0.002 

Paw Paw River 0.115 0.475 0.026 0.211 0.014 0.156 0.003 

Kalamazoo 0.141 0.478 0.018 0.215 0.021 0.124 0.004 

Grand 0.127 0.553 0.010 0.166 0.015 0.127 0.003 

Muskegon 0.076 0.196 0.096 0.405 0.039 0.186 0.001 

White River 0.052 0.203 0.097 0.497 0.007 0.143 0.001 

Pere Marquette 0.050 0.093 0.083 0.616 0.012 0.145 0.001 

Big Sable River 0.053 0.115 0.080 0.524 0.050 0.170 0.008 

Little Manistee 0.047 0.039 0.125 0.686 0.007 0.096 0.001 

Manistee 0.057 0.096 0.159 0.564 0.014 0.109 0.001 

Bear Creek 0.063 0.138 0.201 0.376 0.023 0.197 0.001 

Betsie 0.081 0.076 0.131 0.462 0.099 0.150 0.001 

Platte 0.066 0.099 0.134 0.562 0.075 0.061 0.002 

Boardman 0.108 0.104 0.188 0.467 0.021 0.109 0.002 

Elk-Torch 0.076 0.144 0.136 0.454 0.113 0.074 0.002 

Cheboygan 0.064 0.082 0.116 0.510 0.081 0.145 0.002 

Black 0.055 0.044 0.121 0.471 0.039 0.270 0.001 

Thunder Bay 0.063 0.110 0.088 0.402 0.027 0.310 0.001 

Au Sable 0.084 0.032 0.145 0.589 0.020 0.128 0.001 
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Table A8 (cont’d)  

Au Gres 0.064 0.233 0.076 0.377 0.022 0.220 0.007 

Rifle 0.093 0.165 0.089 0.442 0.016 0.194 0.001 

Black River 0.062 0.742 0.012 0.106 0.001 0.075 0.001 

Pine River 0.090 0.465 0.032 0.333 0.003 0.075 0.001 

Belle River 0.095 0.597 0.017 0.190 0.003 0.097 0.002 

Clinton River 0.515 0.202 0.013 0.149 0.028 0.086 0.007 

River Rouge 0.829 0.054 0.005 0.072 0.007 0.029 0.003 

Huron 0.325 0.245 0.012 0.218 0.042 0.151 0.006 

Raisin 0.108 0.674 0.008 0.111 0.014 0.083 0.002 

S. Branch Black River 0.091 0.458 0.044 0.228 0.012 0.165 0.002 

N. Branch Black River 0.070 0.436 0.056 0.248 0.017 0.171 0.002 

Macatawa River 0.235 0.678 0.007 0.040 0.002 0.031 0.009 

Pine Creek 0.484 0.309 0.011 0.121 0.003 0.061 0.011 

Pigeon River 0.110 0.660 0.020 0.153 0.001 0.051 0.005 

Rush Creek 0.564 0.315 0.004 0.076 0.011 0.023 0.006 

Buck Creek 0.913 0.000 0.006 0.014 0.009 0.058 0.000 

Sand Creek 0.191 0.608 0.008 0.113 0.002 0.076 0.003 

Bass River 0.111 0.636 0.021 0.160 0.002 0.066 0.005 

Little Pigeon Creek 0.189 0.164 0.062 0.419 0.000 0.163 0.003 

Black Creek 0.149 0.348 0.053 0.299 0.048 0.101 0.002 

Silver Creek 0.117 0.006 0.152 0.637 0.042 0.044 0.002 

Flower Creek 0.102 0.456 0.107 0.277 0.006 0.034 0.018 
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Table A8 (cont’d) 

Stony Lake Outlet 0.101 0.377 0.117 0.351 0.010 0.041 0.003 

Swan Creek 0.055 0.579 0.082 0.155 0.013 0.115 0.000 

Lincoln River 0.056 0.332 0.118 0.306 0.021 0.165 0.002 

Crystal River 0.047 0.034 0.087 0.537 0.237 0.033 0.024 

Belangers Creek 0.067 0.384 0.127 0.308 0.015 0.099 0.000 

Mitchell Creek 0.283 0.228 0.163 0.194 0.002 0.130 0.001 

Jordan River 0.032 0.078 0.065 0.707 0.000 0.118 0.001 

Monroe Creek 0.042 0.223 0.088 0.445 0.022 0.181 0.000 

Boyne River 0.083 0.161 0.108 0.545 0.006 0.094 0.002 

Bear River 0.064 0.133 0.070 0.485 0.066 0.181 0.002 

Carp River 0.062 0.086 0.077 0.220 0.070 0.483 0.001 

Ocqueoc River 0.047 0.065 0.115 0.434 0.022 0.314 0.003 

Trout River 0.046 0.135 0.095 0.288 0.001 0.431 0.003 

Little Trout River 0.054 0.278 0.075 0.143 0.001 0.446 0.003 

Long Lake Creek 0.057 0.117 0.071 0.207 0.157 0.391 0.001 

Tawas River 0.084 0.071 0.069 0.516 0.020 0.240 0.000 

Harrington Drain 0.997 0.000 0.000 0.002 0.000 0.001 0.000 

Marsh Creek 0.720 0.047 0.017 0.154 0.000 0.059 0.002 

Sandy Creek 0.262 0.587 0.013 0.106 0.000 0.027 0.004 

Cass River 0.069 0.574 0.022 0.197 0.002 0.135 0.001 

Flint River 0.210 0.406 0.020 0.241 0.016 0.104 0.003 

Shiawassee River 0.157 0.525 0.007 0.170 0.022 0.114 0.004 
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Table A8 (cont’d) 

Tiltabawasee River 0.086 0.328 0.073 0.306 0.015 0.191 0.002 

 

 

Figure A1: Dominant Land Cover in Each Sample Point Watershed. Dominant land cover in 

each sample point watershed. A dominant land cover class was assigned only if the watershed 

contained greater than 50% of agricultural, urban or forested land covers. Watersheds with no 

dominant land cover are considered mixed and shown in pale blue.  
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Figure A2: Recharge, Groundwater Travel Time and Soil Hydraulic Conductivity in the 

Study Region. Mean annual recharge in cm/year, groundwater travel time in years and soil 

hydraulic conductivity in m/day for sample watersheds.  
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Figure A3: NH4 Concentrations during the Three Sampling Events. NH4 concentrations 

during the three sampling events with A) concentrations mapped to sample point watersheds and 

B) box plots showing distribution of observed concentrations across sample locations; solid lines 

representing the median and dashed lines representing the mean of observed concentrations.  
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Figure A4: TDP Concentrations during the Three Sampling Events. TDP concentrations 

during the three sampling events with A) concentrations mapped to sample point watersheds and 

B) box plots showing distribution of observed concentrations across sample locations; solid lines 

representing the median and dashed lines representing the mean of observed concentrations.  
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Figure A5: NO3 Concentration during the Three Sampling Events. NO3 concentrations during 

the three sampling events with A) concentrations mapped to sample point watersheds and B) box 

plots showing distribution of observed concentrations across sample locations; solid lines 

representing the median and dashed lines representing the mean of observed concentrations. 
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Figure A6: TDN Concentrations during the Three Sampling Events. TDN concentrations 

during the three sampling events with A) concentrations mapped to sample point watersheds and 

B) box plots showing distribution of observed concentrations across sample locations; solid lines 

representing the median and dashed lines representing the mean of observed concentrations.  
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Figure A7: NOx Concentrations during the Three Sampling Events. NOx concentrations 

during the three sampling events with A) concentrations mapped to sample point watersheds and 

B) box plots showing distribution of observed concentrations across sample locations; solid lines 

representing the median and dashed lines representing the mean of observed concentrations.  
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Figure A8: SRP Concentrations during Three Sampling Events. SRP concentrations during 

the three sampling events with A) concentrations mapped to sample point watersheds and B) box 

plots showing distribution of observed concentrations across sample locations; solid lines 

representing the median and dashed lines representing the mean of observed concentrations.   
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Figure A9: Distribution of Developed Land Cover wtihin the Study Domain . Figure showing 

the percentage of developed land (urban + agricultural) in each watershed (A) and versus latitude 

(B). The amount of developed land increased from north to south in the state.  
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Figure A10: Distributions of TN and TP during the Three Seasons for the Northern and 

Southern Watersheds. Distributions of TN (A) and TP (B) for the northern (above 44 degrees 

latitude) and southern (below 44 degrees latitude) halves of the study region. Both the mean and 

maximum concentrations are greater in the southern half of the study region than the north, 

following gradients of increased landscape disturbance from north to south in the region.  
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Figure A11: TN and TP Concentration Trends with Latitude for the Three Seasons. 

Concentrations of TN and TP plotted vs latitude fit with a nonparametric lowess model. 

Concentrations are uniformly low in the northern half of the region, while the range of 

concentrations increases in the southern region.  
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Figure A12: Streamflow Distributions during the Three Seasons. Seasonal distribution of 

discharge across the study watersheds, hash marks represent the maximum, median and minimum 

flows during each season. Flows are highest during summer rainfall, elevated during snowmelt 

and lowest during baseflow.  
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Figure A13: TDN Distribution with Land Cover. Distribution of TDN concentrations across 

the three seasons in our four classified watershed land cover types.  
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Figure A14: NOx Distribution with Land Cover. Distribution of NOx concentrations across the 

three seasons in our four classified watershed land cover types.  



 

 

179 

 

Figure A15: NO3 Distribution with Land Cover. Distribution of NO3 concentrations across the 

three seasons in our four classified watershed land cover types.  
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Figure A16: NH4 Distribution with Land Cover. Distribution of NH4 concentrations across the 

three seasons in our four classified watershed land cover types. 
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Figure A17: TDP Distribution with Land Cover. Distribution of TDP concentrations across the 

three seasons in our four classified watershed land cover types.  
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Figure A18: SRP Distributions with Land Cover. Distribution of SRP concentrations across the 

three seasons in our four classified watershed land cover types. 
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Figure A19: Differences in Discharge between Baseflow and High Flow Events. Distributions 

of differences in log streamflow between the events (snowmelt and summer rainfall) and baseflow. 

A majority of our sites during both events had flows higher than baseflow, indicating different 

hydrologic conditions were sampled.  
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Figure A20: Box plots of Streamflow Percentiles Sampled During Each Event. Box plots of 

the distributions of day of year streamflow percentiles at the USGS gage locations sampled during 

the three seasonal sampling events. Results of this analysis suggest that: the baseflow event 

sampled conditions slightly drier than average, the snowmelt event captured slightly wetter than 

normal conditions, and the summer rain event was much wetter than average.  
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APPENDIX B: SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

B.1 Vertical Seepage Face Conductance Derivation  

A conductance term 𝐶𝑚𝑓 is used by MODFLOW to approximate discharge 𝑄𝑚𝑓 from a 

cell with a vertical seepage face using the head simulated by MODFLOW ℎ𝑚𝑓 within that cell, as 

shown in Equation A1: 

[A1] 𝑄𝑚𝑓 = 𝐶𝑚𝑓 ∗ ℎ𝑚𝑓 

MODFLOW calculates a single head within each cell (ℎ𝑚𝑓), however in a cell containing 

a seepage face, some gradient between head at the cell face with incoming flow ℎ1 and the head at 

the cell face with the seepage condition ℎ2 must exist, as shown in the diagram below.  

 

 

Figure A21: Vertical Seepage Face Conceptual Diagram. Conceptual relaptionship between the 

average head computed by MODFLOW ℎ𝑚𝑓, and the gradient in head a cell with a vertical seepage 

face from the cell face with incoming flow  ℎ1 to the cell face with the drainage condition ℎ2.  

The following process was used to derive 𝐶𝑚𝑓 such that within cell variations in head are 

considered with the calculation of 𝑄𝑚𝑓. Specifically, a combination of Darcy’s law (shown in 

Equation A2) and the Dupuit-Forchheimer assumption (shown in Equation A3) were used to 
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approximate the saturated thickness of the cell at the seepage face (ℎ2).  

Darcy’s law (Equation A2) defines discharge through a porous media in two dimensions 

as: 

[A2] 𝑄 =  −𝐾
𝑑ℎ

𝑑𝐿
𝑇 

Where: 𝑄 is discharge, 𝐾 is hydraulic conductivity, 𝑑ℎ is the change in head which occurs over 

the distance 𝑑𝐿, and 𝑇 is the saturated thickness of the aquifer. 

The Dupuit-Forchheimer assumption is used to simplify the groundwater flow equation in 

an 2-D unconfined steady aquifer; assuming that groundwater flows predominantly in the 

horizontal direction and that discharge is proportional to saturated thickness such that: 

[A3] 𝑄𝐷𝐹 =
𝐾(ℎ2

2−ℎ1
2)

2𝐿
 

At the vertical seepage face, if we assume that head falls from  ℎ2 directly interior of the 

seepage face, to ℎ0 directly outside the seepage face, across 1 unit length, then 𝑄𝑠𝑒𝑒𝑝 becomes:  

[A4] 𝑄𝑠𝑒𝑒𝑝 = 𝐾
ℎ2−ℎ0

𝑑𝐿
∗ ℎ2 

If we assume that the head datum is the bottom of the saturated aquifer, then Equation A4 

simplifies to: 

[A5] 𝑄𝑠𝑒𝑒𝑝 = 𝐾 ∗ ℎ2
2 

Through the Continuity Equation, we know that the flux across the length 𝐿 equals that 

across the seepage face 𝑄𝐷𝐹 = 𝑄𝑆𝐸𝐸𝑃. Therefore: 

[A6] 𝐾ℎ2
2 =

𝐾(ℎ2
2−ℎ1

2)

2𝐿
 

Solving for ℎ2 yields: 

[A7] ℎ2 = ℎ1 ∗  √
1

1+2𝐿
 

 

Substituting ℎ2 from Equation A7 in A3 to solve for the Dupuit-Forchheimer discharge 

(𝑄𝐷𝐹) in terms of cell width (𝑊), cell length (𝐿),  𝐾 and ℎ1 as shown in Equation 7:  

[A7] 𝑄𝐷𝐹 =
𝐾

2
 (ℎ1

2 − ℎ1
2 (√

1

1+2𝐿
  )

2

) =
𝐾

2
(ℎ1

2 −
ℎ1

2

1+2𝐿
)  

Assuming that in the case of a model with square cells, and a linear cell size (𝐿) much 

greater than 1, the term √
1

1+2𝐿
 is negligible, allowing us to simplify Equation A7 into Equation 
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A8:  

[A8] 𝑄𝐷𝐹 =
𝐾

2
ℎ1

2 

Hypothetically, MODFLOW is simulating the average head in a cell, thus we would like 

an expression of the average head in our system in terms of ℎ1. To do this, we integrate for ℎ(𝑥), 

given by Equation A3: ℎ(𝑥) = √ℎ1
2 −

2𝑄𝐷𝐹

𝑘
𝑥:  

[A9] ℎ̅ =
1

𝐿
∫ ℎ(𝑥)𝑑𝑥 =

1

𝐿
∫ √ℎ1

2 −
2𝑄𝐷𝐹

𝐾
𝑥𝑑𝑥

𝐿

0

𝐿

0
 

Using the method of substitutions, and assuming that the cell sizes are sufficiently large 

such that the quantity 1 + 2𝐿 ≈ 2𝐿 this can be directly integrated to produce ℎ̅ =
2

3
ℎ1. Thus the 

average head in the MODFLOW cell ℎ𝑀𝐹 should be: 

[A10] ℎ𝑀𝐹 =
2

3
ℎ1 

Finally, Equation 1 can be rewritten in terms of the seepage face conductance 𝑐𝑠𝑓: 

[A11] 𝐶𝑠𝑓 =
𝑄𝑀𝐹

ℎ𝑀𝐹
  

Assuming that the MODFLOW Discharge (𝑄𝑀𝐹) equals the Dupuit-Forchheimer discharge 

from Equation A8, and substituting Equation A10 into Equation A11, yields: 

[A12] 𝐶𝑠𝑓 = 𝐾 ∗
ℎ1

2/2
2

3
ℎ1

  

Simplifying this equation yields the final equation for MODFLOW vertical seepage faces, 

shown in Equation A13: 

[A13] 𝐶𝑠𝑓 =
3

4
 𝐾 ∗ ℎ1 
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Table A9: Summary Quaternary Geology Classes. Geology unit codes and names from the 

USGS Quadrangle maps, and their relationship to the summary model Quaternary geology classes.   

USGS Geo Codes USGS Map Units   LHM Model Class 

al Alluvium Alluvium 

lcr Attenuated Lake Silt And Clay Lacustrine fine 

R Bedrock Bedrock 

tc Clayey Till Till fine 

tce(g) Clayey Till Till fine 

tce(e) Clayey Till Till fine 

tak Clayey Till Till fine 

tae Clayey Till Till fine 

tcb Clayey Till Till fine 

tca Clayey Till Till fine 

taj Clayey Till Till fine 

tah Clayey Till Till fine 

tad Clayey Till Till fine 

ed Dune Sand Sand 

eu Eolian Sand And Silt Sand 

es Eolian Sheet Sand Sand 

ks Ice-Contact Sand  Sand 

kg Ice-Contact Sand And Gravel Sand 

lm Lake Clay And Silt (Under Lakes Huron, Erie, 

And Ontario) 

Lacustrine fine 

lca Lake Clay And Silt Lacustrine fine 

lcc Lake Clay, Silt, Sand, And Gravel Lacustrine coarse 

lcb Lake Clay, Silt, Sand, And Gravel (Under Lakes 

St. Clair) 

Lacustrine coarse 
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Table A9 (cont’d)  

lds Lake Delta Sand And Gravel Lacustrine coarse 

lsa Lake Sand and Gravel  Lacustrine coarse 

ls Lake Sand and Gravel (Under Lakes Huron, Erie, 

And Ontario) 

Lacustrine coarse 

lga Lake Sandy Gravel Lacustrine coarse 

lc Lake Silt And Clay Lacustrine fine 

tl Loamy Till Till medium 

tlr Loamy Till Till medium 

tkg Loamy Till Till medium 

tki Loamy Till Till medium 

tlg Loamy Till Till medium 

tlh Loamy Till Till medium 

f Manmade Artificial Fill  

tdr Noncalcareous Sandy Loamy Till, Attenuated 

Drift  

Till medium 

gs Outwash Sand Outwash 

gg Outwash Sand And Gravel Outwash 

hp Peat Peat and Muck 

td Sandy Loamy Till Till medium 

teb Sandy Loamy Till Till medium 

tdb(g) Sandy Loamy Till Till medium 

tdb(e) Sandy Loamy Till Till medium 

tdb(s) Sandy Loamy Till Till medium 

tdb Sandy Loamy Till Till medium 

tde Sandy Loamy Till Till medium 

ts Sandy Till Till coarse 
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Table A9 (cont’d)  

tsr Sandy Till, Attenuated Drift Till coarse 

hs Swamp Deposit  Peat and Muck 

Lake, river, island   Water Water 

 

Table A10: Quaternary Geology Unit Average Hydraulic Conductivity. Unit average 

horizontal hydraulic conductivity in the summary Quaternary geology classes. 

LHM Model Class Mean HK 

Alluvium 4.35 

Lacustrine coarse 17.90 

Lacustrine fine 15.38 

Outwash 67.15 

Peat and Muck 23.00 

Sand 58.17 

Till coarse 15.94 

Till fine 44.45 

Till medium 63.01 

Water 70.59 

Artificial Fill 15.94 

Bedrock 3.30 
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Table A11: Relationship between GLAHF Substrate and Quaternary Geology Class with 

Associated HK Values. GLHAF Substrate units were match to those in the Quaternary geology 

classes for the model surficial aquifer, and then average HK values form these Quaternary geology 

classes were assigned to the substrate types as shown below.   

GLAHF Substrate 

Texture 

GLAHF Substrate 

Description 

Quaternary Geology 

Class 

Mean HK 

very coarse <0 (Phi Units) Lacustrine coarse 17.90 

very coarse >50% rock Lacustrine coarse 17.90 

fine >6 (Phi Units) Lacustrine fine 15.38 

coarse 0.062 - 0.25 mm Lacustrine coarse 17.90 

fine 0.062 mm & smaller Lacustrine fine 15.38 

coarse 0.25 - 0.5 mm Lacustrine coarse 17.90 

very coarse 0.5 mm & larger Lacustrine coarse 17.90 

coarse 0-2 (Phi Units) Lacustrine coarse 17.90 

coarse 2-4 (Phi Units) Lacustrine coarse 17.90 

fine 4-6 (Phi Units) Lacustrine fine 15.38 

fine artificial Artificial Fill 15.94 

very coarse Assorted cobble/rock Lacustrine coarse 17.90 

very coarse assumed hard Bedrock 3.30 

very coarse Bedrock Bedrock 3.30 

very coarse bedrock Bedrock 3.30 

very coarse Bedrock and rubble Bedrock 3.30 

very coarse Bedrock with cobble 

patches 

Bedrock 3.30 

fine Clay ridges with sand Lacustrine fine 15.38 

coarse Coarse Sand Lacustrine coarse 17.90 

coarse coarse sand Lacustrine coarse 17.90 

very coarse Cobble evenly 

distributed on sand 

Till medium 63.01 

very coarse Cobble on bedrock Bedrock 3.30 
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Table A11 (cont’d) 

very coarse Cobble patches on 

sand 

Till medium 63.01 

fine cohesive clay Lacustrine fine 15.38 

fine Dredge spoils Lacustrine fine 15.38 

coarse fine sand Lacustrine fine 17.90 

coarse Fine Sand Lacustrine coarse 17.90 

fine Glaciolacustrine clay Lacustrine fine 15.38 

fine glaciolacustrine clay Lacustrine fine 15.38 

fine glaciolacustrine 

sediment 

Lacustrine fine 15.38 

very coarse Gravel Lacustrine coarse 17.90 

very coarse gravel Lacustrine coarse 17.90 

very coarse hard Bedrock 3.30 

very coarse Large cobble with 

sand 

Lacustrine coarse 17.90 

coarse medium sand Till medium 63.01 

coarse Medium Sand Till medium 63.01 

very coarse Mixed Cobbles / 

Boulders 

Till medium 63.01 

very coarse Mixed Gravels / 

Pebbles / Cobbles 

Till medium 63.01 

fine mud Lacustrine fine 15.38 

fine Mud Lacustrine fine 15.38 

fine mud, silt Lacustrine fine 15.38 

fine mud, silts Lacustrine fine 15.38 

fine muds Lacustrine fine 15.38 

very coarse rock Till medium 63.01 

very coarse rubble Till medium 63.01 

very coarse Rubble and Sand Till medium 63.01 
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Table A11 (cont’d)  

coarse Sand Till medium 63.01 

coarse sand Till medium 63.01 

very coarse Sand and Gravel Till medium 63.01 

very coarse Sand Infilled Cobbles 

to Boulders 

Till medium 63.01 

very coarse Sand Infilled Pebbles 

to Cobbles 

Till medium 63.01 

very coarse Sand on broken 

bedrock 

Till medium 63.01 

very coarse Sand with cobble 

patches 

Till medium 63.01 

very coarse Sand with scattered 

rubble 

Till medium 63.01 

very coarse Sand and Rocks Till medium 63.01 

coarse Sand/clay Lacustrine coarse 17.90 

coarse sand/gravel Till medium 63.01 

fine sand/mud Lacustrine fine 15.38 

very coarse Sand/rock 

combination 

Till medium 63.01 

fine Sandy Mud Lacustrine fine 15.38 

very coarse Sandy Mud and 

Rocks 

Till fine  

fine silt Lacustrine fine 15.38 

fine silt/clay Lacustrine fine 15.38 

very coarse Small Cobbles Till medium 63.01 

very coarse Smooth bedrock Bedrock  

fine soft Lacustrine fine 15.38 

very coarse till and bedrock Till medium 63.01 

very coarse till and/or bedrock Till medium 63.01 
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Table A11 (cont’d) 

fine Type A basin 

sediments (muds) 

Lacustrine fine 15.38 

fine Type B basin 

sediments (muds > 

50%) 

Lacustrine fine 15.38 

fine undefined Lacustrine fine 15.38 

very coarse Undifferentiated till 

or bedrock 

Till medium 63.01 

fine Unknown Lacustrine fine 15.38 
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Figure A22: Surficial Aquifer Thickness. The surficial aquifer is thickest in the northern Lower 

Peninsula as a result of Quaternary glacial drift depots up to 350 m thick. The surficial aquifer is 

thinnest in the Upper Peninsula where bedrock units are near the surface, and in the Saginaw Bay 

and Maumee watershed regions. 
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Figure A23: Surficial and Bedrock Geology for the Michigan Model Domain. Surficial (A) 

and bedrock (B) geology for the model region. Geologic unit classes present in the original datasets 

have been combined into summary classes for use in the model. Surficial geology is dominated by 

Quaternary glacial deposits including tills, outwash, and lacustrine deposits from glacial lakes. 

Bedrock geology across the eastern upper and all of the lower domain is dominated by units of the 

Michigan Basin, primarily limestone, dolomite, shale and sandstone. Bedrock in the western half 

of the upper domain includes Cambrian and Precambrian era volcanic and metamorphic units, 

including the southern extent of the Canadian Shield.  
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Figure A24: Uncalibrated and Calibrated Hydraulic Conductivity Maps. Model 

hydrogeologic properties including the (A) surface aquifer thickness (surface topography minus 

bedrock topography). Surficial aquifers are thickest in the Northern Lower Peninsula due to 

massive deposits of glacial outwash.  
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Figure A25: Simulated and Observed Groundwater Elevations. Model calibration results 

showing (A) simulated vs observed heads, (B) residuals binned to years, and (C) mapped 

differences in simulated and observed heads. Overprediction is biased slightly toward low-lying 

areas of the model, particularly in the northern Lower Peninsula and south-eastern proportion of 

the model domain. Underprediction is biased toward the mid-elevation portions of the northern 

Lower Peninsula characterized by deep glacial aquifers and to the western Upper Peninsula in 

regions of significant elevation and shallow surficial aquifers. No bias through time is observed in 

the simulated vs observed data, as shown in panel B.  
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Figure A26: Simulated Streamflow Performance. Normalized Nash Sutcliffe efficiency for 

observation gage basins in the model domain. Highest NNES values occur in the central and 

eastern Upper Peninsula, and in a few watersheds in the Lower Peninsula. The lowest NNSE’s are 

observed in the Northern Lower Peninsula, where overprediction in heads is greatest.   
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Figure A27: Average Precipitation, ET and Deep Percolation from the Surface Model. 

Surface model estimates of (A) precipitation, (B) ET and (C) deep percolation averaged over the 

model simulation period. The northern coastline of the Upper Peninsula along Lake Superior and 

the western coastline of the Lower Peninsula along Lake Michigan receive significant lake effect 

precipitation, which is visible in the patterns of deep percolation. ET patterns are influenced by 

precipitation, but also vegetation and soil characteristics..   
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Figure A28: Average Water Table Elevation and Depth to Water from the Groundwater 

Model. Average water table elevation (A) and depth to water (B) during the model run. Water 

table elevations closely mirror surface elevations. Depth to water is greatest in the Northern Lower 

Peninsula, where deep glacial drift aquifers dominate, and shallowest in the western half of the 

lower domain, which is characterized by low permeability sediments and low relief.  
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Figure A29: Month of Annual Minimum and Maximum Head Elevation. Month of (A) 

minimum and (B) maximum on average across the model years. The month of each year with the 

minimum (maximum) head was computed, and then the mode was taken for each pixel in the 

model domain. Minimum heads occur in fall for most of the upper domain. In the lower domain, 

minimum heads occur across a range from spring to fall in most of the domain. Parts of the 

southern lower domain including in the Saginaw Bay and Maumee Watershed experience 

minimum heads in the winter (December to January). Maximum head occur during winter 

(November to February) across most of the model region, with the exception of some portion of 

the lower domain, including in the Saginaw Bay and Maumee River basins, where maximum heads 

occur during the spring or early summer.  

 

 

 

 

 

 

 

 

 



 

 

203 

 

Figure A30: Segmented Linear Regression for Lake Eelvations and Simualted Groundwater 

Heads. Breakpoints identified by piecewise regression analysis indicating the year in which lake 

elevations (A-C) and groundwater storage (D-F) began their most recent increases. This analysis 

indicates a distinct delay between the rising lake elevations and increases in groundwater storage 

which increases north-south across the lakes and their associated basins.   
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Figure A 31: Year of Minimum and Maximum Head Elevation. Year of (A) minimum and (B) 

maximum head elevations between 2000-2023. Across most of the upper domain, minimum heads 

occurred between 2009-2013. Minimum heads in the lower domain trends from ~2009 to between 

2018-2024 north to south across most of the region. Maximum heads across a large portion of the 

domain occurred between the start of 2020 and the end of 2023. In the far southern portion of the 

basin, as well as in other isolated locations, maximum heads occurred much earlier between ~2009-

2013.  

 

 

 

 

 

 

 

 

 

 



 

 

205 

APPENDIX C: SUPPLEMENTARY INFORMATION FOR CHAPTER 4 

Table A12: NWI Palustrine Wetland Depth. Wetland depths assigned to palustrine wetlands 

based on the NWI Wetland Water Regimes, assuming an increasing depth with the degree of 

saturation and inundation.   

NWI Water Regime Name Depth  

Seasonally Saturated 0 

Continuously Saturated 0 

Intermittently Flooded 0.25 

Temporarily Flooded 0.5 

Seasonally Flooded 0.75 

Seasonally Flooded-Saturated 1 

Semipermanently Flooded 1.5 

Intermittently Exposed 2 

Permanently Flooded 2.5 

 Artificially Flooded 2.5 
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Table A13: Effects of Mean Error Adjusted Head on Wetland Connectivity. Comparison of 

groundwater and surface water connectivity when assessed at the groundwater model (500m) and 

DEM (24.6m) resolution.   

 500m Resolution 24.6m Resolution 
 

Area km2 Percent Change Area km2 Percent Change 

Min SW Con 1897 

 

495.38 

 

Max SW Con 5488 

 

1871.84 

 

SW Con Change  3591 189.29 1462.36 277.86 

Min GW Con  525.75 

 

356.75 

 

Max GW Con  1161.25 

 

573.7 

 

GW Con Change  635.5 120.87 216.95 60.81 
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Figure A32: Coastal Wetland Zone Extent. The combined maximum extent of surface water 

inundated coastal wetlands and potential groundwater connected palustrine wetlands shown for 

the model region (A), Grand Traverse Bay region (B), eastern UP (C) and Lower Saginaw River 

(D). This layer was created by merging the area of maximum inundation with the area where heads 

were greater than 1cm different in the extreme lake level scenario runs. Both of these conditions 

were assessed at the groundwater model resolution. Quantification of wetland connectivity, and of 

groundwater model error for the purposes of uncertainty quantification in the sensitivity analysis 

were restricted to this area.  
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Figure A33: Average Monthly and Annual Average Groundwater Discharge to the Great 

Lakes. The average discharge through the general head boundary region for each month shows 

direct groundwater fluxes to the lake peak in April and are lowest in September. Annual average 

groundwater discharge (B) is lowest between 2009-2011, when the lakes and groundwater were 

both near their minimum conditions, and much higher at the beginning and end of the model 

period.   
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Figure A34: Difference in Simulated Heads with Transient and Fixed Lake Elevation 

Boundary Conditions. The difference between heads in the coastal wetland zone for the “base” 

and ‘MED” scenarios suggest that without varying lake elevations, heads are over-predicted by 

roughly 4cm between 2000-2013 and underpredicted by between 1 and 6cm between 2014-2023.  
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Figure A35: Surface Water Connectivity to Coastal Wetlands. Surface water connectivity to 

coastal wetlands for the low and high lake levels shown for the model region (A), Grand Traverse 

Bay region (B), Eastern UP (C) and Lower Saginaw River (D). Areas in red are only connected at 

low levels, those in blue connected only at  high levels, and those in orange connected at both. 

Persistent connectivity is most widespread along the Lake Huron shoreline in the Lower Peninsula, 

while the Lake Michigan-Huron shoreline in the UP gains the most surface water connected 

wetland area at high lake levels.  
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Figure A36: Groundwater Connectivity to Coastal Wetlands. Groundwater connectivity in 

coastal wetlands for the minimum and maximum head conditions shown for the model region (A), 

Grand Traverse Bay region (B), Eastern UP (C) and Lower Saginaw River (D). Areas in red are 

only connected at low levels, those in blue are connected only at high levels, and those in orange 

are connected at both. Groundwater connectivity is generally greater along the shorelines of the 

UP, and the Lake Huron shoreline in the LP. The Lake Michigan shoreline has generally lower 

groundwater-coastal wetland connectivity due to its generally higher relief along the shoreline.  
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Figure A37: Groundwater Model Error in the Coastal Wetland Zone. Differences between 

simulated and observed heads in the coastal wetland zone where simulated heads are a median of 

0.81 m below observed values. These areas are not evenly distributed; considerable areas of 

underprediction occur in the Grand Traverse Bay region, and in the Keweenaw Peninsula, while 

concentrated areas of overprediction occur along the Lake St. Clair and Lake Erie shorelines.  
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Figure A38:  Sensitivity of Connected Wetland Area to Simulated Head Elevation. Changes 

in connectivity between the base scenario heads and those adjusted by the median error of -0.81 

within the coastal groundwater zone, at the maximum (A-D) and minimum (E-H) head conditions. 

For both minimum and maximum conditions, the mean error adjusted head increases the estimated 

wetland connectivity, especially in the Eastern UP (Panels C&G) and Lower Saginaw River 

(Panels D&H). Connectivity in the Grand Traverse Bay region (Panels B&F) remains limited in 

both cases (base and mean error adjusted) and at both conditions (minimum and maximum).   


