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ABSTRACT 

In an increasingly interconnected world, food trade systems are increasingly exposed to 

overlapping crises—including pandemics, geopolitical conflicts, and climate change. These 

disruptions reveal persistent vulnerabilities in global supply chains and demand a cross-scale 

understanding of food trade resilience. This dissertation applies the metacoupling framework—

which integrates human–nature interactions within (intracoupling), between neighboring 

(pericoupling), and between distant (telecoupling) systems—to examine food trade dynamics 

under multiple crises across spatial and temporal scales. 

Chapter 2 presents a systematic review of 455 peer-reviewed studies and identifies major gaps in 

existing research. While most studies focus on national-scale trade or intracoupled systems, few 

consider spillover systems or interactions across multiple coupling types. Based on this gap, the 

chapter synthesizes fragmented resilience indicators into a unified assessment framework, 

structured around human- and nature-related drivers. 

Chapter 3 develops a multi-dimensional evaluation framework to assess food trade resilience 

before and after the COVID-19 pandemic. By disaggregating five indicators—Bonilla index, 

centrality, connectivity, trade disruptions, and supply chain diversity—into adjacent and distant 

trade components, the study reveals stark inequalities in resilience, particularly in low-income 

countries with limited diversification and infrastructure. 

Chapter 4 constructs a rapid assessment framework to estimate the impacts of the Russia–

Ukraine war on winter cereals trade in 2022. Leveraging remote sensing-based cropland data, 

trade statistics, and network metrics, the study shows a sharp decline in trade connectivity and 

the emergence of new trade pathways, exposing the fragility of current supply chains in conflict-

affected regions. 



 

 

Chapter 5 extends the analysis to the global wheat trade over three decades (1991–2022). Using a 

combination of network analysis, structural change modeling (SCM), and generalized additive 

models (GAM), the chapter quantifies long-term trends in trade resilience. The results show 

widening disparities across income groups, with distant trade growing in dominance and low-

income countries remaining disproportionately vulnerable to both acute and chronic crises. 

Together, these chapters advance theoretical and empirical understanding of food trade resilience 

under multiple crises. By integrating metacoupling theory with remote sensing, network science, 

and quantitative modeling, this dissertation provides a cross-scale perspective on the evolving 

structure of global wheat trade and offers actionable insights for enhancing global food system 

resilience.
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CHAPTER 1:  INTRODUCTION 

1.1 Background 

In an increasingly interconnected global environment, the dynamics of international food trade 

are profoundly influenced by multiple crises, from global pandemics to geopolitical conflicts 

(Davis et al., 2021; Hallegatte, 2019; Liu et al., 2013a; Young et al., 2006). Notably, the 

COVID-19 pandemic and the Russia–Ukraine conflict represent critical disruptions that 

underline the importance of resilience within food trade networks (Abay et al., 2023; Behnassi 

and El Haiba, 2022; Falkendal et al., 2021; Fan et al., 2021). These events underscore the urgent 

need to understand the immediate and extended impacts of such crises on global food systems, 

particularly for essential commodities like winter cereals. 

The COVID-19 pandemic brought widespread disruption to global supply chains, altering 

consumer demand, restricting labor mobility, and introducing financial volatility that impacted 

food security worldwide (Charlton, 2022; Laborde et al., 2020). These disruptions require a 

systematic evaluation of food trade resilience across spatial scales and trade distances. It is 

essential to quantify the shifts in network performance before and after the pandemic to reveal 

the structural vulnerabilities and adaptive capacities of the global food trade system (Carlson et 

al., 2021). 

The Russia–Ukraine conflict has introduced another layer of complexity to the global food trade 

(Feng et al., 2023; Laber et al., 2023; Van Meijl et al., 2024). As two of the world’s leading 

exporters of winter cereals, the war has substantially disrupted their production and trade routes, 

with ripple effects extending into global food prices and supply stability. This situation calls for 

the integration of satellite observations with trade modeling to simulate and assess the potential 

spatial and structural consequences of such geopolitical tensions. 
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Beyond short-term disruptions, the compounded and cascading impacts of multiple crises—both 

health-related and geopolitical—highlight the systemic risks embedded in modern food trade 

networks. These interconnected networks are shaped by complex feedbacks and spillovers across 

sending, receiving, and indirectly affected systems (Davis et al., 2021; Distefano et al., 2018; 

Gephart and Pace, 2015; Gomez et al., 2021). Understanding these dynamics is crucial to 

developing strategies that enhance trade resilience and support global food security in an era of 

compounding uncertainty. 

This dissertation addresses these challenges by applying the metacoupling framework to evaluate 

the resilience of global wheat trade under multiple crises. Chapter 2 offers a systematic review of 

455 studies and identifies critical gaps in existing resilience assessments, particularly the neglect 

of spillover systems and cross-scale interactions. Chapter 3 introduces a framework to assess 

resilience across adjacent and distant trade systems before and after the COVID-19 pandemic, 

revealing disparities between income groups. Chapter 4 simulates the 2022 Russia–Ukraine 

war’s impact on winter cereal trade using satellite-derived cropland data and trade network 

metrics. Finally, Chapter 5 examines long-term structural changes in the global wheat trade 

network from 1991 to 2022, using network analysis, structural change modeling (SCM), and 

generalized additive models (GAM) to uncover income-based disparities and shifts in trade roles 

over time. 

Together, these chapters provide theoretical and empirical insights for understanding the spatial, 

structural, and temporal dimensions of food trade resilience. By integrating network analysis, 

remote sensing, and systematic review within a metacoupling framework, this research offers 

practical tools and policy-relevant findings for improving the resilience of global food systems.  
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1.2 Theoretical Framework 

To uncover the various human-nature interactions and their effects at multiple scales, the 

metacoupling framework originated. The principle and framework of metacoupled (Liu, 2017a) 

are developed based on telecoupling's research on the interaction between distant systems (Liu et 

al., 2013a) which aims to qualify the impacts of distant connections such as global trade 

(Herzberger et al., 2019a), gas emission (Yao et al., 2018), cropland soil erosion with distant 

drivers (Wang et al., 2021). The metacoupling framework has a comprehensive consideration of 

the interactions and impacts between the focal system and the adjacent systems with support 

through the integration of a series of interdisciplinary concepts and theories (Liu et al., 2019a). 

Each metacoupled system integrates three profound complex systems through flows at different 

scales. There are five main components of each sub-framework, system, flows, causes, agents, 

and effects, Figure 1.2 is the specific structure of the intra-, peri- and telecoupled systems. 
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Figure 1. 1 Metacoupling framework (adapted from Liu 2017). 

 

 

Figure 1. 2 System structure of tele-, peri- and intracoupled systems which include sending, 

receiving spillover systems, causes, agents, effects, and flows. 
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This thesis consists of four research chapters (Chapters 2 through 5) organized according to the 

structure in Figure 1.3. 

 

Figure 1. 3 Interrelations among four research chapters of the proposed dissertation research on 

the complex effect of metacoupling processes on a coupled human and natural system. 

 

1.3 Goals and Objectives 

This dissertation aims to deepen our understanding of how global food trade systems—

particularly wheat trade—respond to multiple types of crises. It does so by applying the 

metacoupling framework to assess resilience across spatial and temporal scales, using both 

qualitative and quantitative approaches. The four core chapters each address a specific aspect of 

this broader goal. 

Chapter 2 provides a systematic literature review and meta-analysis of 455 peer-reviewed 

studies related to food trade resilience. The objective is to evaluate how existing research 

addresses different spatial scales and the main components of food trade systems, including 

sending, receiving, and spillover systems. This chapter also synthesizes the indicators used in 

current assessments and proposes a new classification based on human- and nature-related 

drivers to guide future resilience evaluations. 
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Chapter 3 examines how the COVID-19 pandemic affected global food trade, with a focus on 

both adjacent and distant trade relationships. This chapter develops a quantitative framework to 

evaluate trade resilience using five indicators—Bonilla index, centrality, connectivity, trade 

disruption, and supply chain diversity. It incorporates globally available datasets on political, 

economic, demographic, institutional, and supply chain factors, and analyzes how different 

income groups experienced and responded to disruptions between 2019 and 2020. 

Chapter 4 builds a rapid assessment framework to estimate the impact of the 2022 Russia–

Ukraine war on winter wheat trade. Using a combination of satellite-derived cropland data and 

international trade statistics, this chapter compares trade network structure in 2022 with pre-war 

patterns from 2021. The analysis is carried out at multiple spatial scales to capture uneven 

impacts across regions and income groups. 

Chapter 5 extends the analysis to a longer time frame by constructing a global wheat trade 

network from 1991 to 2022. This chapter applies network analysis, scenario simulation, 

structural change modeling (SCM), and generalized additive models (GAM) to evaluate how the 

structure and resilience of the wheat trade system have evolved. Special attention is given to 

income group disparities and the effects of multiple crisis events (e.g., financial crisis, COVID-

19, export bans). The objective is to identify long-term structural changes and highlight 

persistent inequalities in global food security. 
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CHAPTER 2:  UNDERSTANDING FOOD TRADE SYSTEM RESILIENCE UNDER 

THE METACOUPLING FRAMEWORK 

2.1 Abstract 

Resilience of international food trade systems, threatening global food security. Here we utilize 

the metacoupling framework (which integrates socioeconomic and environmental dimensions 

across multiple adjacent and distant geographic regions and scales), in conjunction with a 

systematic review of existing studies, to identify potential research gaps. Through a systematic 

review of 455 peer-reviewed articles, this study highlights the unbalanced nature of existing 

research, which often overlooks the interconnectedness of food trade systems at national, 

regional, and global scales.  Our analysis reveals that there is an insufficient focus on spillover 

systems, which have been discussed the least among the main components (systems, agents, 

causes, effects, and flows) of the metacoupling framework. In addition, there is a large lack of 

research on the complex dynamics across multiple geographical scales and the interdependencies 

among the different components. Our findings emphasize the necessity for future research to 

incorporate all metacoupling components, thereby enhancing the robustness and effectiveness of 

current efforts to sustain global food security amidst multiple crises. 

2.2 Introduction 

Global food systems are linked through intensive and complex food trade networks. These 

networks create dependencies among nations and states that can mitigate or exacerbate the 

effects of external crises, which differ based on how and where crises enter the network (Hertel 

et al., 2020; Smith & Glauber, 2020; Wood et al., 2023). The complex interplay of climate 

change, geopolitical tensions, and global pandemics underscores the need to better understand 

these systems, which is integral to ensuring food security and sustainability worldwide.  
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Existing research has made an attempt to analyze the resilience of food trade networks, showing 

that it may increase supply diversity—referring to the variety of geographic sources, product 

types, and transportation pathways—but also may grow the dependence on food imports, which 

reduces the resilience of the system (Kummu et al., 2020; Thow, 2009; Thow & Hawkes, 2009). 

Food production capacity, scale, and diversity are key factors that guarantee a food system’s own 

resilience, as they directly influence its ability to absorb crises, adapt to changes, and recover 

from disruptions (Coopmans et al., 2021; Fan et al., 2021). Moreover, these factors are essential 

for sustaining the resilience of global and regional food trade systems by supporting stable 

supply chains, reducing dependency on a few producers, and enhancing the overall adaptability 

of interconnected markets. Greater connectivity and self-organization within local systems not 

only enhance their ability to respond to crises but also strengthen the overall resilience of the 

global food trading system by enabling faster recovery, resource-sharing, and adaptive responses 

to disruptions (Berkhout et al., 2023; Coopmans et al., 2021; Miralles et al., 2017). This local-

level adaptability plays a crucial role in stabilizing regional and global supply chains, 

highlighting how resilience at smaller scales contributes to the robustness of the entire food trade 

network. However, much of this research remains fragmented by either focusing on only local 

supply chains in isolation or measuring the extensive global trade networks through harmonized 

assessment metrics. Therefore, an integrated framework that bridges all these cross-scale studies 

is needed. The metacoupling framework represents a sophisticated and integrative conceptual 

model that incorporates socioeconomic and environmental interactions within a single coupled 

human and natural system and across neighboring and distant systems (Liu, 2017; Liu et al., 

2021). This framework is structured by three systems: sending, receiving, and spillover – see 

Figure 1. Each system has five main components: systems (usually defined using political or 
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geographic boundaries; flows, such as the transfer of information and commodities; agents, the 

facilitators of the flows and include traders and policymakers among others; causes, the 

underlying reasons for the flows; and effects, the outcomes resulting from the flows (Figure 2. 

1).  

 

Figure 2. 1 Metacoupling framework (a) and the components of each system (b). The three 

circles represent the three scales of coupled human and natural systems (a). The ribbon arrows 

embody human-nature interactions, the green plants represent natural components, and the hand 

icon indicates human components (adapted from Liu, 2017 (page 1 Figure 2.1). (b) shows the 

general conceptual framework of coupling human-nature interactions between two or more 

coupled systems (from Liu et al., 2013 (page 3 Figure 2)) illustrates five main components and 

interrelationships: systems (sending, receiving, spillover), flows, agents, causes, and effects. 

 

In global food trade networks, the sending and receiving systems can be importing and exporting 

countries, with the sending system being the exporter and the receiving system being the 

importer. Spillover systems are those that affect or are affected by the exchanges between 

sending and receiving systems. Despite their significance, spillover effects remain an 
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underexplored dimension in resilience studies, often being overlooked in traditional assessments 

of food trade systems. These spillover effects can take various forms, including indirect 

economic repercussions, environmental degradation, and policy-driven shifts in trade patterns, 

among others. Understanding these dynamics is crucial for developing a more comprehensive 

framework for food trade resilience. 

By illuminating the interactions within and between national and global food trade systems 

through the concepts of intracoupling (human–nature interactions within a system), pericoupling 

(human–nature interactions between adjacent systems), and telecoupling (human–nature 

interactions between distant systems), the framework provides a comprehensive perspective that 

is largely absent from the existing literature (Jia et al., 2024). For example, intracoupling can be 

observed in domestic food supply chains within countries such as China or the United States, 

where internal production, distribution, and consumption interact (Herzberger et al., 2019). 

Pericoupling occurs in regional trade between neighboring countries, such as Russia and China 

(Herzberger et al., 2019). Telecoupling is evident in the global soybean trade, where Brazil and 

the USA export large quantities to China, creating long-distance dependencies that influence 

food security and environmental sustainability in all three nations (Sun et al., 2018). The 

interplay among these coupled systems underscores the complexity of global food trade and 

highlights the need for resilience frameworks that go beyond simplistic assessments of supply 

and demand. In particular, resilience assessments must consider not only direct trade linkages but 

also assess how systemic disruptions, such as geopolitical shifts, climate-induced supply chain 

breakdowns, and regulatory interventions, cascade across these networks. 

In addition, while existing research has begun to identify key factors affecting food system 

resilience, such as diversification in food trade supply and food production forms, adaptation, 
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and the strength of socioecological linkages, consensus on how these factors should be integrated 

and assessed in the context of food trade is still missing (Kummu et al., 2020; Toth et al., 2016). 

Given this backdrop, our systematic review seeks to address major gaps by employing the 

metacoupling framework as a conceptual lens to examine the existing literature on food trade 

system resilience. This study represents the first step of a two-stage research agenda, where we 

systematically review existing resilience assessments, analyze their limitations, and propose a 

metacoupling-based evaluation framework. The second step, which will be presented in the next 

chapter, involves an empirical case study to operationalize this framework and test its 

applicability in a real-world food trade system. 

Combining existing studies with the metacoupling framework helps us identify knowledge gaps 

in existing studies. As depicted in Figure 2.1, we scanned all the articles for the components in 

the intracoupled (focal) system, pericoupled (adjacent) system(s), and telecoupled (distant) 

system(s) that were addressed at national, regional, and global scales: agents; flows; receiving, 

sending, and spillover systems; effects; and causes. By categorizing the research according to the 

metacoupling domains—intra-, peri-, and telecoupling—this investigation provides a critical 

analysis of the coverage and depth of studies into the five main components of the framework, 

highlighting the diversity of factors in resilience assessment, and promoting a more 

comprehensive understanding of the resilience of the food trade system. This first stage of the 

research is crucial because it establishes a structured foundation for integrating metacoupling 

into resilience assessments, ensuring that the subsequent empirical application is informed by a 

thorough understanding of existing research gaps. Food system resilience in this study refers to 

the ability of these networks to absorb, adapt to, and recover from crises—such as climate 
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change, geopolitical tensions, or pandemics—while continuing to ensure food availability, 

accessibility, and stability. 

2.3 Methodology  

2.3.1 Data Retrieval 

We utilized the widely recognized systematic review methodology, referred to as the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach (Figure 2. 2) 

(Moher et al., 2010). This method guided us in gathering, reviewing, and selecting relevant 

studies that fall within the ambit of our research objectives, as elaborated in Section 2.3.2. 

 

Figure 2. 2  PRISMA workflow for paper selection and scanning. 

 

For the review, we collected relevant articles from the Web of Science (WoS) by utilizing the 

tailored search terms “(#1 OR # 2).” 

#1: TS = (((food* OR crop*) NEAR/5 trade) NEAR/5 (resilienc* OR vulnerab*)) 
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#2: TS = (((food* OR crop*) NEAR/5 (trade system)) NEAR/5 (resilienc* OR vulnerab*)) 

The WoS search strategy employs Boolean and proximity operators to refine literature retrieval. 

In the specified search queries, the NEAR/5 operator ensures that key terms appear within a 

defined proximity to each other, allowing for a more targeted yet comprehensive identification of 

relevant studies. The NEAR/5 operator instructs the database to retrieve records in which the 

specified terms appear within five words of each other, in any order. This approach enhances the 

relevance of search results by capturing literature where these concepts are closely related while 

allowing for slight variations in word arrangement. 

The first query, TS = (((food OR crop) NEAR/5 trade) NEAR/5 (resilienc* OR vulnerab*))**, 

identifies studies where the term food or crop appears within five words of trade, and this 

combined phrase then appears within five words of resilience or vulnerability, including 

variations such as resiliency and vulnerabilities. The use of wildcard (*) ensures inclusivity of 

multiple word forms, thereby broadening the scope while maintaining relevance. This query is 

designed to capture research discussing the resilience or vulnerability of food or crop trade in a 

structured manner. 

The second query, TS = (((food OR crop) NEAR/5 (trade system)) NEAR/5 (resilienc* OR 

vulnerab*))**, follows a similar logic but introduces the term trade system instead of trade. This 

distinction refines the search by emphasizing systemic perspectives on food and crop trade rather 

than individual trade transactions. Consequently, this query prioritizes studies that examine the 

structural resilience or vulnerabilities within food trade systems, ensuring a focus on broader 

trade networks and interdependencies. In total, we compiled 479 publications related to the topic 

search (TS) used. Some of these papers were duplicated, and some were written in non-English 

languages, so we excluded these two groups. Finally, the research results as of March 16, 2024, 
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showed that 455 papers were obtained. The paper list was downloaded with parameters 

containing the published year, article title, journal, authors, keywords, times cited (all databases), 

DOI, research areas, and unique WoS ID. 

2.3.2 Scanning Papers with Expertise Knowledge 

Our goal was to evaluate how the current literature represents the different elements of the Meta-

coupling framework. A pre-selected set of 455 papers was used as input. Articles that assessed 

trade dynamics and were human-centered were included in the selection, which revolved around 

quantitative and qualitative analyses of food and crop trade. Literature review articles that 

focused only on biophysical properties or technical aspects, and/or did not take trade into 

account were excluded. 

Table 2. 1 Inclusion and exclusion criteria for scanning papers 
Inclusion criteria (related to food/crop trade and 

discussion about resilience/vulnerability) 

 Quantitative/qualitative studies (including 

evaluation framework)  

 Predict/estimate trade dynamics/ socioeconomic 

aspects of food/crop trade 

 Social sensing / social media: application of 

non-technical aspects to study food trade 

(supply chain; production; export quantity; 

production such as fertilizer import; food price; 

climate factors) 

 Public health  

 Economic activities (e.g., food prices) 

 Political activities (agents; stakeholders, 

political economy; legitimation) 

Exclusion criteria (not related to food/crop trade and 

no discussion about resilience/vulnerability)  

 Outline of study progress/review papers 

 Physical aspects of soil quality and climate features 

without considering effects on human/society 

 Focus on food/crop system not related to trade 

 Remote sensing/algorithms: production prediction, 

data/method development, etc. 

 Survey/workshop participants to study food economics  

2.4 Statistical Outline of Food Trade Resilience in a Metacoupled World 

This section summarizes the levels of quantitative and qualitative distribution, study areas, and 

types of couplings covered in food trade system resilience studies through Sankey diagrams 
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(Figure 2.3(a)). The results show that there are more quantitative studies than qualitative ones, 

with a total of 87 quantitative and 35 qualitative studies screened as inputs for the final scan (122 

in total). The top research regions with the most frequent research on the resilience of the food 

trade system include the globe, the United States of America, the United Kingdom, Mexico, 

India, Indonesia, and China.  

We categorized these study areas as global, regional (more than one country but less than 

global), and national (one country or smaller spatial scale). The trend in the proportion of studies 

at different scales is similar in quantitative and qualitative studies (Figure 2.3(b)), with national-

scale studies being the most prevalent in both types of studies (42.53% [37 papers] quantitative, 

48.57% [17 papers] qualitative), followed by global-scale studies (39.08% [34 papers] 

quantitative, 25.71% [9 papers] qualitative) and regional scale studies (18.39% [16 papers] 

quantitative, 25.71% [9 papers] qualitative). 

As seen in Figure 2.3(c), concerns about the resilience of the food trade have increased over 

time. In 2020, 9 papers discussed resilience, increasing to 23 in 2021, 25 in 2022, and 21 in 

2023. This interesting trend may be related to the outbreak of the COVID-19 global pandemic in 

2020, when social distancing and travel embargoes, among others, led to the disruption of food 

trade, thus triggering concern among scholars (Gren, et al, 2024). 

The proportions involving intra-, peri-, tele-, and metacoupling varied across study scales (Figure 

2.3 (b)). Specifically, at the national scale, quantitative and qualitative studies have similar 

distribution trends across the four coupling types, with intracoupling accounting for the highest 

percentage, followed by metacoupling. More articles consider telecoupling than pericoupling in 

quantitative studies. In qualitative studies, however, there are as many studies considering tele- 

and pericoupling. At the regional scale, both quantitative and qualitative studies consider 
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telecoupling the most, followed by meta-, intra-, and pericoupling. At the global scale, large 

variability emerges in terms of quantitative and qualitative studies covering different coupling 

types. Specifically, quantitative studies of meta- and telecoupling have a larger share of global-

scale studies, while intra- and pericoupling have fewer. In qualitative studies, tele- and 

intracoupling have a slightly higher share, but overall, the four types have similar shares. 

 

Figure 2. 3 Distribution of food trade resilience research by methodology, geographical focus, 

and coupling types. (a) Sankey diagram representing the flow of qualitative and quantitative 

studies across different regions and coupling types (meta-, tele-, intra-, and pericoupling); (b) Bar 

chart comparing the distribution of studies by coupling type across different geographical scales; 

(c) Temporal distribution chart showing the number of studies published from 1990 to 2024 (data 

for 2024 was as of March 13th). This highlights the increase in post-2020 research. 

 

   

 . .
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2.5 Components in Coverage in Food Trade Resilience   

2.5.1 National-scale Components Coverage  

At the national scale, the research usually involved domestic food trade flows, including both the 

distribution of domestically produced foods from their place of origin to points of consumption 

and the internal movement of imported foods from entry points (such as ports or distribution 

centers) to consumers. Since some studies involved research on multiple different systems and 

different components, these different components were counted repeatedly, so their total may 

exceed the total number of articles involved. At the national scale, the components of the focal 

(the country under the study), adjacent (neighboring countries or regions with direct trade links, 

and distant (non-contiguous countries or regions engaged in food trade) systems were discussed 

a total of 283 times (times means the total number they were discussed) across the analyzed 

studies, indicating that national-scale discussions of food trade resilience were more frequent 

than those at regional and global scales (Figure 2.4). One series of studies at the national scale 

considered an entire country as a system, and the trade flows under consideration took place 

within the focal system (Adiga et al., 2022; Horn et al., 2022; Nava et al., 2023; Syfongxay et al., 

2022; Willer & Aldridge, 2023). Thus, the country in study can be defined as an intracoupling 

system. The focal system and its main components were discussed 166 times, with the focal 

system being discussed the most, including 56 times as the junction point of three different 

systems (Figure 2.4). Furthermore, the receiving system was discussed 23 times, the sending 

system 31 times, and the spillover system was only discussed twice. Flows were discussed 33 

times, the most of any single component. Four of the five components—agents, causes, effects, 

and flows—were discussed in a more balanced way. The limited discussions of spillover systems 

reflect insufficient attention to spillover effects in trade, which can indirectly trigger price 
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fluctuations, contribute to environmental degradation, and exacerbate socioeconomic and 

ecological challenges. For example, disruptions in trade flows—such as export bans or supply 

chain crises—can create price volatility by limiting food availability in some regions while 

causing oversupply in others (Jia et al., 2024). Similarly, shifts in agricultural production driven 

by trade demands can lead to deforestation, soil depletion, and water overuse, particularly in 

regions with less stringent environmental regulations. Additionally, trade-induced spillovers can 

widen socioeconomic inequalities by creating food accessibility disparities or displacing small-

scale farmers from local markets (Arouri et al., 2012; Hou & Zhu, 2022; Nordin & Sek, 2019; 

Y.-J. Zhang et al., 2008). 

Alternatively, if provinces/cities/counties within a country are considered as the focal system, 

their neighboring provinces/cities/counties are considered adjacent systems, and geographically 

noncontiguous areas are considered distant systems (Mastronardi et al., 2022; Rothwell et al., 

2016; Thanichanon et al., 2018). The components of adjacent systems were discussed 51 times, 

and the components of distant systems were discussed 66 times. The limited focus on spillover 

systems observed in studies of the focal system was also evident in research on adjacent and 

distant systems, where spillover effects received comparatively little attention. Interestingly, we 

found that the distribution of the other components in studies of adjacent and distant systems was 

not as balanced as the distribution within the focal system. Furthermore, both the adjacent and 

distant sytems lacked adequate attention to agents (discussed twice in adjacent systems and three 

times in distant systems). We believe this little attention to agents may be due to the need for 

fieldwork and additional data collection challenges for some researchers (Elsig, 2011). 
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Figure 2. 4 Share of discussions of components in adjacent, distant, and focal systems at 

national, regional, and global scales. All numbers in the figure indicate the frequency of 

discussions on each component across the analyzed studies. Since some studies address multiple 

components and cover both national and regional scales, the total count exceeds the number of 

individual studies (122). 

 

2.5.2 Regional Scale Components Coverage  

Regional-scale studies examine food trade dynamics within politically or economically 

connected regions. These may include trade within political blocs, such as the European Union, 

or among countries influenced by shared policies, such as those in the Belt and Road Initiative. 

Regional studies can also focus on trade between countries with similar dietary habits, cultural 

practices, or historical connections, such as Canada and the United States (Chepeliev et al., 2023; 

Hu et al., 2023; Larochez-Dupraz & Huchet-Bourdon, 2016; Maggio et al., 2016; Qinghua et al., 

2023; Rabbi et al., 2023). These studies typically analyze the movement of food from producers 

to consumers within the region, covering both intra-regional trade (e.g., food exchange among 
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EU member states) and inter-regional trade (e.g., food exports from these regions to external 

markets).  

The frequency of discussion of the five main components of the metacoupling framework related 

to regional scale was the lowest of the three research scales, at only 134 times (Figure 2.4). 

Papers describing research at the regional scale did not discuss spillover effects, whereas papers 

covering research at both national and global scales discussed them. Next, of all components 

examined, agents were the least discussed in focal/adjacent/distant systems. This may be due to 

the challenges of acquiring agent data and the complexity of analysis in regional-scale studies. 

Specifically, among focal systems, the most discussed system was still the sending system, 

which was studied 10 times. At the regional scale, studies most frequently examined causes and 

effects, each discussed nine times, indicating a strong focus on the factors driving food trade and 

its socioenvironmental consequences. However, research on adjacent systems was notably 

limited, with only 32 instances across all components, suggesting that interactions between 

neighboring regions are understudied. Within adjacent systems, flows and receiving systems 

were the most frequently examined (seven times each), while sending systems and effects were 

addressed less often (five times each), and agents were rarely considered (only twice). In 

contrast, distant systems received the most attention, with 57 mentions, likely because regional 

trade is often analyzed as a whole in relation to external markets. This trend aligns with the 

emphasis on receiving systems (14), sending systems (13), and flows (14) in the literature. 

Despite this, a critical gap remains in the study of spillover systems, which received less 

attention than other components across all scales. Given their potential role in price volatility, 

environmental degradation, and unintended socioeconomic consequences, the lack of research on 

spillover effects represents a major gap in understanding food trade resilience. 
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2.5.3 Global Scale Components Coverage 

Globalization studies are different from national- and regional-scale studies because they include 

all countries and regions of the world. Therefore, the use of uniform, publicly available data is 

usually required, and few studies are able to take into account nationally localized data and 

characteristics. Influenced by this feature, agents were the least addressed in the use of 

globalized trade data to measure and assess trade (system) resilience, whether in focal systems 

(discussed twice), adjacent systems (discussed twice), or distant systems (discussed five times). 

Twenty studies focused on food trade flows within the focal system, making it the second most 

frequently studied component after the combined analysis of all three system types—receiving 

(12 studies), sending (13 studies), and spillover (4 studies). Concerns about causes and effects 

were addressed 15 and 17 times, respectively, and overall, global-scale studies had similar levels 

of concern for the components of the focal system, with the exception of agents and the spillover 

system. Only 58 studies of adjacent systems dealt with their components. The most discussed 

components were receiving systems (7) and sending systems (10). Spillover systems were 

discussed three times, which shows that global studies usually focus on the parties directly 

involved in food trade and less on the scope of spillover effects. Of the remaining four 

components, the most important was flows, discussed 18 times, implying the highest level of 

attention was paid to the type of food trade in global-scale studies. 

Distant systems were the most frequently discussed among the three types, appearing 95 times 

across the studies evaluated. Among the components, flows (28), receiving systems (17), and 

sending systems (20) received the most attention. However, spillover effects were examined in 

only three studies, highlighting a large gap in understanding spillover dynamics in global-scale 

studies.  
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2.6 Indicators of Food Trade Resilience 

While quantitative studies often incorporate resilience assessment frameworks, there is no 

standardized approach that systematically integrates key indicators across different coupling 

scales. Existing studies tend to focus on isolated aspects of resilience, such as economic trade 

dependencies or environmental vulnerabilities, without fully capturing the interconnected nature 

of food trade within the coupled human and natural systems (CHANS) framework. To address 

this gap, we propose a new framework that categorizes resilience indicators comprehensively 

and integrates them into a unified structure that reflects the complexity of food trade resilience. 

An important feature of the reviewed quantitative studies on food trade system resilience is the 

use of indicator-based frameworks. We identified 87 indicators across 40 studies, which we 

categorized into human-related and nature-related factors (Table 2.2). Nature-related factors 

include biophysical drivers (e.g., soil quality, water availability, biodiversity) and environmental 

drivers (e.g., climate and weather, elevation, natural resource degradation). These indicators are 

critically important for understanding long-term sustainability and can sometimes cause sudden, 

large-scale disruptions. Weather and climate extremes such as hurricanes and earthquakes can 

have immediate and devastating impacts, rapidly halting infrastructure, disrupting transportation, 

and triggering cascading failures across trade networks. Their role in shaping the resilience of 

food systems is especially pronounced in regions vulnerable to climate variability and ecological 

stress. 

However, the empirical focus of this dissertation centers on crises that are primarily human-

driven, including the COVID-19 pandemic, the 2008 global financial crisis, and the 2010 

Russian wheat export ban. These events were characterized by rapid shifts in trade flows, policy 

decisions, and institutional responses, making social, economic, and political indicators more 
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directly relevant for the analysis. As such, the analytical framework employed here emphasizes 

variables that are more responsive over short to medium timescales. This focus does not diminish 

the importance of environmental or biophysical factors, but rather reflects the thematic scope of 

the study. Future research—particularly those examining climate extremes, natural disasters, or 

compound socio-environmental shocks—should incorporate a broader suite of environmental 

indicators to capture the full spectrum of resilience dynamics in food trade systems. Integrating 

these factors into metacoupling analyses could offer valuable insights into how ecological 

feedbacks reshape global trade, especially under conditions of accelerating environmental 

change. 

To fill this knowledge gap, we classified the assessment indicators used in food trade system 

resilience into broad categories and subcategories. Since CHANS encompasses both human and 

natural systems, the broad categories include human-related factors and nature-related factors. 

Human-related factors include innovation and research drivers, economic and market drivers, 

political and institutional drivers, and demographic and supply chain indicators (Table 2.2). 

Nature-related factors are categorized into biophysical drivers and environmental drivers (Table 

2.2). By merging these existing indicators into a comprehensive framework, we provide a 

structured approach to resilience assessment that accounts for both human and environmental 

dimensions. Integrating these fragmented indicators into a unified system allows for a more 

holistic evaluation, offering a systematic way to assess vulnerabilities, identify intervention 

points, and improve the adaptability of food trade systems in response to crises and disruptions. 
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Table 2. 2 Assessment frameworks are classified into broad and secondary categories 

Broad  

category Subcategories  Example factors 

Number of 

publications 

Selected referenced 

studies 

Human-related 

factors 

Innovation and 

research drivers 

Technology; 

infrastructure;  

innovation 

4 (Lehikoinen et al., 2021) 

Economic and 

market drivers 

Livelihoods and 

income; markets, 

firms, and trade; 

land tenure; food 

prices; GDP 

26 (Nava et al., 2023; Saman 

& Alexandri, 2018; Willer 

& Aldridge, 2023) 

Political and 

institutional drivers 

Governance 

frameworks; policy; 

institutional support; 

civil strife and 

conflict; social move 

ban; export ban; 

trade partner 

11 (Gephart et al., 2016; 

González-Mon et al., 2023; 

Yu et al., 2023) 

Sociocultural drivers  Social norms and 

traditions; social 

stratification; 

women’s 

empowerment; diet 

habit 

6 (González-Mon et al., 

2023; Yu et al., 2023) 

Demographic Population; 

changing age 

profiles; migration 

1 (Suweis et al., 2015) 

Supply chain  Storage and trade; 

historical export 

quantity; retail and 

marketing; 

industries; 

transportation 

17 (Marchand et al., 2016; 

Nava et al., 2023; 

Nicholson et al., 2021) 

Nature-related 

factors 

Biophysical drivers Soil quality; water 

availability; 

biodiversity 

10 (Karakoc & Konar, 2021; 

Lehikoinen et al., 2021; 

Mastronardi et al., 2022) 

Environmental 

drivers 

Climate and 

weather; topography 

and land use; pests 

and diseases; natural 

resources 

degradation 

12 (Larochez-Dupraz & 

Huchet-Bourdon, 2016; Yu 

et al., 2023) 

 

Some of the 40 studies considered more than one aspect of the indicator factors, so the sum of all 

indicator counts resulted in a final tally of 87. Of all the subcategories, economic and market 

drivers (26) had the largest share, reaching 29.89% of the number of times all indicators were 
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considered, which is particularly consistent with the food trade. Supply chain, the second-highest 

subcategory, was covered 17 times, accounting for 19.54% of the total, which may be 

determined by the fact that any trade process needs to be supported by a supply chain. Third in 

the ranking was environmental drivers (12 studies, 13.79%), with factors such as climate and 

weather, topography and land use, pests and diseases, and natural resource degradation, which 

are the main factors to be considered when studying the dynamics of food production (Pimentel, 

2018; Ray et al., 2019; Wirsenius et al., 2010). 

Political and institutional drivers, discussed 11 times, are also an important subcategory for 

measuring the resilience of the food trade (system), which typically includes governance 

frameworks, policy, institutional support, civil strife and conflict, social movility bans, export 

bans, trade partners, and so on. These factors can largely affect food accessibility. Biophysical 

drivers, a set of physiological and biochemical indicators that determine the productivity of the 

land, is an important determinant of the amount of output, at the very beginning of the food 

trade, and was discussed 10 times, accounting for 11.49%. Other indicators such as sociocultural 

drivers (6), innovation and research drivers (4), and demographics (1) were considered less in 

this literature, possibly influenced by a number of factors, such as the difficulty of obtaining 

data, the complexity of the analyses, etc., which may explain the lack of attention paid to these 

dimensions in the existing literature. 

2.7 Implications of the Metacoupling Framework for Food Trade Resilience Evaluation 

In light of the increasing frequency of multiple crises—ranging from environmental crises to 

economic and social disruptions—understanding the resilience of food trade networks is 

paramount. The metacoupling framework provides a robust methodology for tracing the 

interdependencies and vulnerabilities within global food trade systems (Liu, 2017). By 
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evaluating the flows of commodities across sending, receiving, and spillover systems, this 

framework delineates how disturbances in one region can propagate and amplify across the 

network, thus exacerbating vulnerabilities, not only in regions heavily reliant on food imports but 

also in those dependent on critical inputs for food production, such as fertilizers, seeds, and 

agricultural equipment (Kummu et al., 2020). Furthermore, the framework can help explicitly 

understand and balance the proportions of intracoupling, pericoupling, and telecoupling, which is 

essential for enhancing resilience by identifying overdependencies, diversifying trade linkages, 

and strengthening adaptive capacities across different scales.   

Given the limitations of existing resilience assessment measures identified in our review, we 

propose the development of new, integrated indicators within the metacoupling framework to 

better capture the complexity of food trade systems. Current measures often fail to account for 

the multi-scale interactions between sending, receiving, and spillover systems, limiting their 

ability to provide a comprehensive assessment of trade resilience. By incorporating new 

indicators that explicitly address these interactions, our framework offers a more robust approach 

to understanding and enhancing resilience in global food trade networks. We propose a series of 

measurable indicators designed to assess the status of the system’s resilience, ensuring a more 

comprehensive evaluation within the metacoupling framework.  

In addition, there is a need to develop new metrics in future research, such as a coupling strength 

index, which aims to quantify the intensity of interactions among intra-, peri-, and telecoupled 

systems. Such an index could help assess the robustness of the connections within and between 

systems, offering a systematic approach for evaluating resilience in food trade networks. For 

instance, a coupling strength index to measure the intensity of interactions among intra-, peri-, 

and telecoupled systems could help identify the robustness of connections within and between 
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systems. In the metacoupling framework, high coupling strength indicates that a system can 

withstand crises and disruptions because of its strong interactions and well-connected nature. 

Countries with high coupling strength can maintain their food trade flows in the face of crises, 

thereby keep a high resilience level.  

Incorporating the metacoupling framework into existing resilience assessment models can 

profoundly enhance the analysis of food trade dynamics (Liu et al., 2021). For instance, 

traditional studies often neglect the intricate dynamics of spillover systems, where indirect 

effects of policy changes or economic activities can lead to environmental degradation and 

socioeconomic instability in distant regions (Zhang et al., 2023). By integrating these 

dimensions, the framework facilitates a more holistic understanding of the agents involved—

from traders to policymakers—and the underlying causes driving these complex interactions. A 

comprehensive approach is essential for addressing the often fragmented nature of current 

resilience assessments and for fostering a more interconnected understanding of global food 

security. 

The integration of the metacoupling framework enables a nuanced examination of resilience 

factors such as food supply and transportation diversification and adaptation, viewing them not 

as isolated elements but as interconnected components within a complex network (Fan et al., 

2021). Future work should develop and evaluate new practices and policies that not only address 

immediate needs within individual systems but also consider their potential impacts on global 

food security (Smith & Glauber, 2020). These could include trade diversification strategies to 

reduce dependency on single suppliers, adaptive tariff adjustments to stabilize food prices, 

sustainability incentives to promote environmentally responsible production, and cross-border 

cooperation frameworks to enhance resilience against supply chain disruptions. Promoting 
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sustainable practices in food production and enhancing cooperation between different systems 

(focal, adjacent and distant systems discussed in the study) may help mitigating the risk of 

adverse spillover effects, thereby fostering a more resilient food trade network capable of 

withstanding future crises. Integrating the metacoupling framework into food trade resilience 

evaluation represents a large advancement in this regard, offering a detailed and holistic analysis 

that is essential for understanding and enhancing the sustainability of global food systems in an 

increasingly interconnected world. 

2.8 Conclusion 

This systematic review critically examined the current status of food trade resilience research 

through the lens of the metacoupling framework. By categorizing and analyzing studies across 

intra-, peri-, and telecoupling domains, we identified major gaps in the literature, particularly 

regarding the integration and comprehensive assessment of spillover systems and agents. These 

findings highlight the need for a more holistic understanding of the resilience of global food 

trade systems. 

The application of the metacoupling framework revealed that many existing studies fail to 

capture the intricate dynamics and interdependencies that shape global food trade. Instead of 

treating national, regional, and global scales as isolated layers, a more integrated approach is 

needed to address how disruptions cascade through different systems. Focusing on the 

connections and flows between sending, receiving, and spillover systems allows researchers and 

policymakers to better anticipate and mitigate the impacts of socioeconomic and environmental 

crises on global food security. 

While this review provides a comprehensive examination of food trade resilience through the 

metacoupling perspective, it is important to acknowledge several limitations. One limitation 
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stems from the inherent complexity of the metacoupling framework itself. Although it offers a 

broad and integrative view, its operationalization and quantification can be challenging, 

especially in data-scarce environments. In such cases, while quantitative applications may be 

limited, qualitative analysis based on the framework can still provide valuable insights. Another 

limitation relates to the focus on published academic literature, which may overlook grey 

literature and on-the-ground practices that offer important perspectives on resilience strategies 

not yet fully captured in academic discussions. Recognizing these limitations points to 

opportunities for future work to expand data sources and refine methodologies to better capture 

the intricacies of global food trade resilience. 

This study serves as the foundation for a broader research effort to integrate the metacoupling 

framework into empirical assessments of food trade systems. By systematically reviewing and 

categorizing existing research, we establish the groundwork for the second phase of this project, 

which involves operationalizing the proposed framework in real-world case studies. The insights 

gained here not only refine the conceptual basis for future analysis but also inform the 

development of measurable indicators and practical assessment methodologies aimed at 

supporting the resilience of food trade systems under multiple crises. 
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CHAPTER 3:  QUANTIFYING THE IMMEDIATE IMPACTS OF COVID-19 

PANDEMIC ON FOOD TRADE RESILIENCE IN A METACOUPLED WORLD 

3.1 Abstract 

The COVID-19 pandemic has exposed critical vulnerabilities in the global food trade system, 

emphasizing the importance of resilience across diverse income levels and spatial scales. This 

study develops a comprehensive evaluation framework to assess food trade resilience, integrating 

economic, political, socio-cultural, and logistical dimensions. By disaggregating five key 

indicators—Bonilla index, centrality, connectivity, global trade disruptions, and supply chain 

diversity—into adjacent and distant trade components, we offer a nuanced understanding of how 

spatial proximity influences trade resilience dynamics. Our findings reveal stark disparities: low-

income countries demonstrate acute vulnerabilities, especially in adjacent trade networks, due to 

limited diversification and infrastructural deficiencies. In contrast, high-income countries exhibit 

greater adaptive capacity, with diverse supply chains and robust trade networks buffering against 

global disruptions. Notably, adjacent trade dependencies in regions such as North Africa 

deteriorated largely, while distant trade networks demonstrated relative stability. These insights 

underscore the unequal impacts of global crises and highlight the critical need for targeted 

strategies to enhance resilience in the most vulnerable regions. By leveraging this integrated 

framework, our study provides actionable insights for policymakers to strengthen global food 

trade systems in the face of mounting uncertainty.  

3.2 Introduction 

Building upon the systematic review and integrated indicator framework established in Chapter 

2, this chapter applies the framework to evaluate the impacts of the COVID-19 pandemic on 

global food trade system resilience. While Chapter 2 identified major gaps in the fragmented 
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application of resilience indicators and synthesized a comprehensive framework, this chapter 

operationalizes these indicators to assess real-world shifts during a large-scale global crisis. 

The COVID-19 pandemic has underscored the vulnerability of international food trade networks, 

disrupting production, distribution, and consumption patterns across countries and regions 

(Dodds & Pippard, 2013). The pandemic-induced restrictions on labor mobility, transportation, 

and international trade led to supply shortages, logistical bottlenecks, price fluctuations, and 

increased food insecurity, particularly in nations heavily dependent on food imports (Arndt et al., 

2020; Béné, 2020; Mena et al., 2022). These cascading disruptions highlighted the critical 

importance of resilience in food trade systems—their capacity to absorb shocks, adapt to 

evolving conditions, and recover while ensuring food availability, accessibility, and affordability. 

Despite the growing recognition of food trade resilience as a critical research area, previous 

studies often focused on isolated factors, such as economic dependencies, supply chain 

vulnerabilities, or governance challenges (Gephart et al., 2016; Ingram, 2011; Grassia et al., 

2022). Few assessments have systematically integrated these dimensions into a unified analytical 

framework, particularly one capable of capturing the spatial heterogeneity and transboundary 

nature of trade network resilience. As discussed in Chapter 2, this lack of integration hampers 

efforts to fully understand how disruptions cascade through interconnected food systems across 

different spatial scales. 

To address this gap, this chapter utilizes the comprehensive indicator framework developed 

through the meta-analysis of 455 studies in Chapter 2. Specifically, the framework incorporates 

economic, political, demographic, socio-cultural, and supply chain dimensions, providing a 

multi-faceted basis for resilience assessment. By applying this framework to the global food 

trade system before and during the COVID-19 pandemic (2019–2020), we aim to offer empirical 



32 

 

insights into how different income groups and trade linkages—adjacent versus distant—

responded to a major global shock. 

The scientific questions of this chapter aims to answer are: (1) How did the COVID-19 pandemic 

impact the resilience of global food trade systems? What is the differences among income 

groups? (2) How did adjacent and distant trade relationships respond differently to the COVID-

19 disruption? and (3) Which human-related drivers contributed most to the changes in food 

trade resilience during COVID-19? 

Through this analysis, we seek to advance understanding of how global food trade networks 

absorb and adapt to large-scale crises, and to inform strategies aimed at enhancing the resilience 

of food systems in an increasingly interconnected and crisis-prone world. 

3.3 Methodology 

3.3.1 Integrated Framework for Food Trade (System) Resilience 

This study adopts the integrated indicator framework developed in Chapter 2, which synthesizes 

insights from a systematic review of 455 peer-reviewed studies on food trade resilience, and 

there are 38 publications that include the indicators for evaluating the food trade system 

resilience (Figure 3.1). The framework consolidates fragmented indicators into six thematic 

categories—Innovation and Research, Economy and Market, Policy and Institution, Society and 

Culture, Demographic, and Supply Chain—providing a comprehensive structure for resilience 

evaluation across spatial and income dimensions. 

Building on this foundation, we selected 25 distinct indicators representing critical drivers of 

food trade system resilience. These indicators capture the economic, political, socio-cultural, 

demographic, and logistical factors shaping the capacity of food trade networks to absorb and 

adapt to crises. Each indicator’s directionality—whether it positively or negatively influences 
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resilience—was determined based on the existing literature (e.g., Larochez-Dupraz & Huchet-

Bourdon, 2016; Diserens et al., 2018; Gephart et al., 2016; González-Mon et al., 2023; Karakoc 

& Konar, 2021). 

The COVID-19 pandemic period (2019–2020) provides an ideal context for applying this 

framework, allowing us to assess temporal changes in resilience outcomes under a major external 

shock. We applied the framework to disaggregate resilience performance into adjacent and 

distant trade components, enabling the examination of spatial heterogeneity across countries of 

different income levels. 

 

Figure 3. 1 PRISMA workflow for paper selection and scanning. 

 

3.3.2 Building Food Trade (System) Resilience Evaluate Indicators  

From the reviewed literature, data on resilience indicators were systematically extracted. We 

identified 25 distinct indicators, the broad category, indicators’ name, description of each 
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indicator, and positive or negative to food resilience and resources are all listed in Table 3.1. The 

extraction aimed to capture the commonly discussed indicators that are utilized to measure food 

trade resilience and the diverse metrics employed across different studies. These indicators were 

then integrated into a single framework to facilitate a structured analysis of food trade resilience. 

The framework categorized the indicators into six thematic groups: "Innovation and Research", 

"Economy and Market", "Policy and Institution", " Society and culture", "Demographic", and 

"Supply Chain".  In this study, we have included a separate category "Innovation and research" 

for indicators that do not have a direct product, are derived from the literature, and need to be 

calculated using raw data.  

Table 3. 1 Selected indicators for food trade resilience framework 
Broad 

category 
Indicators  Description 

Positive 

/Negative 
Reference study 

Innovation 

and research 

Bonilla Index 

(BI) 

An indicator representing the 

vulnerability of food security to 

trade. It measures the ratio of 

national food import expenditure to 

the value of total exports.  

- 
(Larochez-Dupraz & 

Huchet-Bourdon, 2016) 

Connectivity 

of food trade 

network 

Trade connections (Here use trade 

quantity) 
+ 

(Diserens et al., 2018; 

Gephart et al., 2016; 

González-Mon et al., 

2023; Karakoc & Konar, 

2021; Lehikoinen et al., 

2021) 

Centrality of 

food trade 

network 

Key role of countries in connecting 

global trade flows, use betweenness 

centrality of food trade network 

+ (Grassia et al., 2022) 

Economy 

and market 

Exchange 

Rate (E) 

The exchange rate plays a role in 

determining the cost of food 

imports, as it affects the domestic 

price of imported goods. 

+ 
(Larochez-Dupraz & 

Huchet-Bourdon, 2016; 

Saman & Alexandri, 2018) 

World Food 

Prices (Pw) 

Changes in global food prices 

directly impact food trade resilience 

by affecting the cost of imports and 

the income from exports. 

- 

(Larochez-Dupraz & 

Huchet-Bourdon, 2016; 

Nisar et al., 2023; Saman 

& Alexandri, 2018; 

Travnikar & Bele, 2022) 

Economy 

and market 

GDP GDP of a country + (Yu et al., 2023) 

Income levels 
Average earnings, influencing 

purchasing power and food demand. 
+ 

(Kahiluoto et al., 2012; Yu 

et al., 2023) 

Energy 

dependence 
Reliance on energy sources for food 

production and transportation. 
- (Rabbi et al., 2023) 
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Table 3.1 (cont’d) 

Economy 

and market 

Export 

Growth Rate 
Yearly monthly growth rate  + (Nisar et al., 2023) 

Production 

diversity 
Variety of food types cultivated in 

domestic agricultural systems. 
+ 

(Kahiluoto, 2020; 

Nicholson et al., 2021; 

Seekell et al., 2017) 

Policy and 

institution 

Trade 

Dependencies 
The dependency on food imports - 

(Chatzopoulos et al., 2021; 

Fridman et al., 2021; 

Gephart et al., 2016; 

Hadida et al., 2022; 

Hellegers, 2022; 

Lehikoinen et al., 2021; 

Marchand et al., 2016; 

Nicholson et al., 2021; 

Suweis et al., 2015; 

Travnikar & Bele, 2022) 

Political 

stability 
Consistency in governance affecting 

trade policies and relationships. 
+ 

(Hellegers, 2022) 

 

Domestic 

Food 

Production 
Domestic food production capacity + 

(Hadida et al., 2022; 

Ingram, 2011; Marchand et 

al., 2016; Willer & 

Aldridge, 2023) 

Domestic 

consumption 

Consumption of food within a 

country's borders, affects 

availability. 
- (Prasetyo et al., 2021) 

Trade partner 

diversity 
Variety of countries involved in 

food imports and exports. 
+ 

(Gephart et al., 2016; 

Lehikoinen et al., 2021) 

Trade 

diversification 
Expanding variety of traded food 

products and markets. 
+ 

(Grassia et al., 2022; 

Hadida et al., 2022; 

Marchand et al., 2016) 

Society and 

culture 

Exposure to 

crises 
Population affected by crises, here 

used total people  
- (Gephart et al., 2016) 

Affordability 
Accessibility of food products 

relative to income levels. 
+ (Ingram, 2011) 

Diet 

preference 
Preferential choices influencing 

demand for specific food products. 
- (Ingram, 2011) 

Demographic 

Population 

growth 
Increase in the number of people 

impacting food demand. 
- (Suweis et al., 2015) 

Food 

availability 
Sufficient supply of food products 

for consumption and trade. 
+ (Suweis et al., 2015) 

Human 

development 

index (HDI) 

Measure of a country's development 

based on health and education. 
+ (Harris et al., 2022) 

Calorie 

supply 
Average daily calorie intake per 

person, reflecting food availability. 
+ 

(Fridman et al., 2021; 

Ingram, 2011; Nicholson 

et al., 2021) 

Supply chain 

Global Trade 

Disruptions 
Trade decrease quantity - (Bassett et al., 2021; Rabbi 

et al., 2023) 

Supply chain 

diversity 
Variety of routes and sources in 

food distribution networks. 
+ (Bassett et al., 2021; 

Carlson et al., 2021; 

Mastronardi et al., 2022) 
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3.3.3Bonilla Index 

The Bonilla Index (BI) is a representative indicator reflecting the vulnerability of food 

accessibility to trade, as it measures the ratio of national food import expenditure to the value of 

total exports (Diaz-Bonilla et al., 2000). Introduced by Larochez-Dupraz and Huchet-Bourdon 

(2016), the BI is used to assess how dependent a country's food accessibility is on its ability to 

engage in global trade.  

Usually, a higher BI value indicates greater food vulnerability, as a large portion of a country's 

export earnings is required to cover its food import needs. While a lower BI value indicates a 

more resilient food trade system, with less dependency on external food supplies relative to 

export revenue. 

BI can be further nuanced by applying the framework of metacoupling, which accounts for 

human-nature interactions such as trade within and across adjacent and distant countries (Liu 

2017, 2023) and dividing trade flows into two categories: trade with adjacent countries and trade 

with distant countries. In this context and in the description of the other indicators in this article, 

all references to 'adjacent' mean that the two countries or regions share a border, while 'distant' 

means that the two countries or regions do not share a border. This distinction is important 

because trade with adjacent countries typically involves lower transportation costs, and shorter 

supply chains, making it inherently more resilient to disruptions. In contrast, distant trade 

introduces more risk, as it involves longer and more complex supply chains that are often subject 

to greater logistical and geopolitical vulnerabilities. By applying the telecoupling framework 

(Liu et al. 2013), which examines interactions across long distances, this division helps us 

understand the broader impacts of distant trade dependencies. 

The formula for BI is given by: 
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                                   𝐵𝐼 =
𝑉𝑚𝑓

𝑉𝑥
=

𝑄𝑚𝑓⋅𝑃𝑚𝑓
𝑑

𝑄𝑥⋅𝑃𝑥
𝑑                                            (1) 

Where 𝑉𝑚𝑓 is the value of food imports in national currency; 𝑉𝑥 is the value of total exports in 

national currency; 𝑄𝑚𝑓: quantity of food imports; 𝑄𝑥: quantity of total exports; 𝑃𝑚𝑓
𝑑 , 

𝑃𝑥
𝑑: domestic aggregated prices in national currency for food imports and total exports. 

While the total BI is separated into its adjacent and distant components as: 

                                𝐵𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐵𝐼𝑎𝑑𝑗 + 𝐵𝐼𝑑𝑖𝑠                                       (2) 

Where 𝐵𝐼𝑎𝑑𝑗  is the BI value calculated through adjacent countries’ food trade, 𝐵𝐼𝑑𝑖𝑠 is the BI 

value calculated through distant countries’ food trade. 

The importance of the BI lies in its ability to highlight the economic pressures and potential risks 

faced by countries heavily reliant on food imports. The BI offers a comprehensive understanding 

of food accessibility by considering both import spending and export capacity. This indicator is 

particularly relevant for countries with limited domestic food production capabilities and those 

prone to external economic crises. It enables policymakers to identify and mitigate risks 

associated with food trade, thereby enhancing overall food security and stability. Given that the 

BI encompasses both import dependency and export performance, it makes sense to use it to 

measure the food trade's resilience. This dual consideration ensures that the assessment of food 

security is not one-dimensional but rather reflects the broader economic context in which trade 

occurs.  

3.3.4 Connectivity and Centrality of the Food Trade Network 

Connectivity and betweenness centrality are widely accepted indicators in network analysis. 

They are essential indicators for analyzing the structural resilience and robustness of the food 

trade network. Connectivity measures the degree to which nodes (countries) are linked within the 

network, reflecting the overall integration and potential for trade diversification in the global 
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food trade system (Pósfai, 2016). Betweenness centrality assesses the extent to which a node lies 

on the shortest path between other nodes, indicating its role in facilitating trade flows and 

controlling information dissemination within the network (Freeman, 1977). 

These indicators are important for identifying primary countries that maintain the stability and 

efficiency of the food trade network. A well-integrated network with numerous trade routes is 

reflected in high connectivity, which improves resilience by offering backup routes in the event 

of disruptions. Betweenness centrality highlights the crucial role that certain countries play in 

maintaining the continuity of trade flows and preventing localized crises by connecting 

seemingly unconnected areas of the network. 

In this study, we also separate the connectivity and centrality into adjacent trade and distant trade 

categories. This is because when impacted by crisis events, for example, the Russia-Ukraine 

War, adjacent countries' trade and distant countries' trade are impacted differently (Chai et al., 

2024). Thus, instead of the traditional construction of a trade network and simultaneous 

evaluation of connectivity and centrality, in this study, we construct an adjacent country trade 

network and a distant country trade network to calculate the separate connectivity and centrality 

and use the sum of adjacent and distant networks’ metrics as the total value. 

The formula for betweenness centrality 𝐶𝐵(𝑣) of a node 𝑣 is given by: 

𝐶𝐵(𝑣) = ∑  𝑠≠𝑣≠𝑡
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
                                         (3) 

Where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠 to node 𝑡, and 𝜎𝑠𝑡(𝑣) means the 

number of those paths that pass-through node 𝑣 (Freeman, 1977). This measure is crucial for 

understanding the strategic importance of countries within the food trade network and for 

developing policies that enhance global food security by ensuring robust trade linkages (Pósfai, 

2016; Freeman, 1977). 
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                𝐶𝐵𝑡𝑜𝑡𝑎𝑙
= 𝐶𝐵𝑎𝑑𝑗

+ 𝐶𝐵𝑑𝑖𝑠
                                       (4) 

Where 𝐶𝐵𝑎𝑑𝑗
 is the betweenness centrality value calculated through adjacent countries’ food 

trade, 𝐶𝐵𝑑𝑖𝑠
 is the betweenness centrality value calculated through distant countries’ food trade. 

Conducting connectivity and betweenness centrality as indicators contributes to measuring food 

trade resilience, as they reflectthe structural dynamics of trade networks and help identify 

systemic strengths and vulnerabilities. These indicators provide insights into the network's 

capacity to withstand disruptions and adapt to changing conditions, making them indispensable 

tools for policymakers and researchers focused on food security. 

3.3.5 Supply Chain Indicators 

1) Global trade disruptions 

Global trade disruptions largely impact the resilience of food trade networks. These disruptions 

can arise from various factors, including geopolitical tensions, natural disasters, pandemics, and 

economic sanctions, among others. To understand the effects of such disruptions, we calculated 

the progress in food trade resilience by comparing the current trade network with the previous 

trade network. This comparison involves a subtraction method, analyzing changes in trade flows, 

connectivity, and centrality metrics to identify disruptions and their impacts on the food trade 

system. 

We can measure the degree of disruptions and determine which trade routes and countries are 

most impacted by comparing the current and historical networks. We can then monitor the 

modifications to trade patterns with this strategy, including fluctuations in trade volume, changes 

in trading partners, and changes in the centrality of important nodes as: 

               𝐶𝑡𝑑 = 𝑁𝑐 − 𝑁𝑝                                            (5) 
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Where 𝑁𝑐 is the food trade network of the current year, while 𝑁𝑝 is the food trade network of the 

previous year. 

Here, we also used the separate adjacent and distant components to calculate the degree of total 

global trade disruptionas: 

                𝐶𝑡𝑑𝑡𝑜𝑡𝑎𝑙
= 𝐶𝑡𝑑𝑎𝑑𝑗

+ 𝐶𝑡𝑑𝑑𝑖𝑠
                                       (6) 

Where 𝐶𝑡𝑑𝑎𝑑𝑗
 is the global trade disruptions value calculated through adjacent countries’ food 

trade, 𝐶𝑡𝑑𝑑𝑖𝑠
 is the global trade disruptions value calculated through distant countries’ food trade. 

2) Supply chain diversity 

Supply chain diversity is an indicator of enhancing the resilience of a country's trade system. A 

diverse supply chain ensures that when one supply route or mode of transportation is disrupted, 

alternative routes and modes can be utilized to compensate for the shortfall. This adaptability is 

essential for maintaining the steady flow of goods and mitigating the impact of trade disruptions. 

Therefore, it is important for importing countries to employ a variety of import modes and 

distribute their imports as evenly as possible across different types of food and transportation 

methods. 

To quantify supply chain diversity, we consider three components: the mode of import, the type 

of food imported, and the uniformity of distribution. The formula for supply chain diversity as: 

                                             𝐷𝑠𝑐 = 𝑇𝑓𝑖 ∗ 𝑀𝑓𝑖 ∗ 𝐸                                       (7) 

Where 𝐷𝑠𝑐 is supply chain diversity; 𝑇𝑓𝑖 is type of food imported;  𝑀𝑓𝑖 is mode of import; 𝐸 in 

this context, measures the evenness of the distribution of imports across different categories. It is 

calculated using the formula for evenness (𝐸), which is derived from the Shannon index as: 

                                         𝐸 =
𝐻

𝐻𝑚𝑎𝑥
=

𝐻

ln 𝑆
                                        (8) 
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Where 𝐻 is the Shannon index calculated from the distribution of imports, 𝐻𝑚𝑎𝑥 is the 

maximum possible Shannon index, and 𝑆 is the number of different import categories (e.g., 

different modes of transport or types of food). 

The value of 𝐸 ranges from 0 to 1, where values closer to 1 indicate a more even distribution of 

imports across the different categories, thereby reflecting higher uniformity. High uniformity in 

the context of supply chain diversity suggests that the imports are well-balanced across various 

modes and types, reducing the vulnerability to disruptions in any single supply chain. 

Considering that supply chains also involve supplying countries at different distances, supply 

chain indicators can also be divided into adjacent and distant countries as: 

                          𝐷𝑠𝑐𝑡𝑜𝑡𝑎𝑙
= 𝐷𝑠𝑐𝑎𝑑𝑗

+ 𝐷𝑠𝑐𝑑𝑖𝑠
                                         (9) 

Where 𝐶𝑡𝑑𝑎𝑑𝑗
 is the supply chain diversity value calculated through adjacent countries’ food 

trade, 𝐶𝑡𝑑𝑑𝑖𝑠
 is the supply chain diversity value calculated through distant countries’ food trade. 

This metric provides a comprehensive measure of a country's trade resilience by considering the 

diversity and balance of its import strategies. By promoting diverse and balanced import 

practices, countries can enhance their ability to withstand and quickly recover from global trade 

disruptions. 

3.3.6 Food Trade Resilience Score Construction 

To quantify the resilience of national food trade systems, we constructed a composite index by 

aggregating 26 indicators across six thematic dimensions: Innovation and Market, Policy and 

Institution, Demographic, Supply Chain, Socio-cultural, and Environmental. Each indicator was 

first normalized individually using min–max normalization to ensure comparability across 

different units and measurement ranges. This standardization allowed for the integration of 

diverse metrics into a single evaluative framework. 
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The final resilience score for each country was calculated as the unweighted sum of the 26 

normalized indicator values. This method preserves the contribution of each indicator and 

reflects the overall structural capacity of a country to maintain stable food trade under external 

crises. The resulting score captures multidimensional attributes of food system resilience and 

enables cross-country and cross-year comparisons without imposing additional scaling 

constraints. All indicators, including their definitions, data sources, and normalization 

procedures, are documented in Table S3.1. 

3.4 Data 

This study utilizes a comprehensive suite of indicators across six thematic categories to assess 

the resilience of global food trade systems. Data were meticulously gathered from several global 

databases to ensure a robust analysis. 

3.4.1 Innovation and Research 

To assess the market structure and innovation capacity within global food trade systems, we 

examined two key indicators: the Bonilla Index (BI), trade connectivity and centrality metrics of 

trade network. BI and trade coennectivity were calculated using Food and Agriculture 

Organization (FAO) trade data, capturing each country’s degree of trade dependency and the 

overall volume and intensity of its trade relationships. These metrics reflect the robustness and 

integration of a country's market position. While Centrality of Trade Network was Derived from 

the United Nations Commodity Trade Statistics Database (UN Comtrade) database to examine 

the interconnectedness of countries in the global trade network.Centrality measures indicate how 

central or influential a country is in facilitating flows between other nations, providing insight 

into market innovation, adaptability, and systemic importance. Together, these indicators help 
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characterize both structural resilience and the capacity for market adaptation under crisis 

conditions. 

3.4.2 Economy and Market 

To evaluate the economic dimensions of innovation and market adaptability in global food trade, 

we included several macroeconomic indicators. Exchange rate data, sourced from XE.com, were 

used to standardize trade values across different national currencies, enabling consistent cross-

country comparisons of trade activity. World food price trends, captured through the FAO Food 

Price Index, and national GDP data from the World Bank were incorporated to assess overall 

economic conditions that shape trade behavior and resilience. Additionally, income level 

classifications (from the World Bank) and energy dependence data (from the International 

Energy Agency) were used to evaluate a country's financial capacity and vulnerability to energy-

related trade disruptions. These indicators collectively reflect the structural and economic context 

within which countries innovate and operate their food trade systems. 

3.4.3 Political and Institution 

Political stability and domestic food systems play a critical role in shaping market performance 

and innovation capacity in food trade. Political stability, derived from the World Bank’s 

Worldwide Governance Indicators, reflects the degree of governance predictability and 

institutional reliability that underpins trade relationships and market confidence. A stable 

political environment fosters conditions for policy innovation and consistent trade regulation, 

both of which are essential for resilient and responsive markets. In parallel, domestic food 

production and consumption data, drawn from FAO statistics, offer insight into national self-

sufficiency and internal demand structures. Countries with strong domestic production and stable 
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consumption patterns are often better positioned to innovate and buffer against external trade 

crises, thereby reinforcing market stability under crisis conditions. 

3.4.4 Society and Culture 

Affordability and diet preferences, drawn from the Global Food Prices Database and FAO 

dietary data, reflect the socio-cultural drivers that shape consumption behavior and influence 

food trade patterns. These factors determine demand diversity across countries and affect how 

markets respond to changing economic and cultural conditions, especially during disruptions. 

3.4.5 Demographic 

Population growth and the Human Development Index (HDI) provide critical demographic 

context for understanding food trade dynamics. Population data from the UN World Population 

Prospects and HDI scores from the United Nations Development Programme capture trends in 

human capital, development, and demand pressure—factors that influence trade volumes, 

infrastructure needs, and the capacity for innovation in food systems 

3.4.6 Supply Chain 

Within the Innovation and Market domain, global trade disruptions and supply chain diversity 

serve as key indicators of systemic adaptability. Using UN Comtrade and FAO trade data, we 

analyzed the structural flexibility of countries’ food trade systems and their exposure to external 

disruptions. Supply chain diversity captures the range and distribution of trade partners, 

reflecting a country’s ability to reroute food flows when disruptions occur. The global trade 

disruption metric quantifies the extent and frequency of trade interruptions, offering insight into 

the stability of market linkages. Together, these indicators reflect how innovation in logistics, 

sourcing strategies, and trade partnerships contribute to a more resilient and responsive food 

trade system. 
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3.4.7 Income Level and Annual Carbon Emission Data 

To incorporate socioeconomic and environmental dimensions into our assessment of food trade 

resilience, we utilized national income classifications and annual carbon emissions data as 

contextual variables. These indicators offer important perspectives on the structural 

characteristics and environmental pressures that may shape countries' resilience capacities. 

The classification of countries by income level was based on the World Bank’s official 

methodology for fiscal years 2024–2025, which organizes countries into four income groups—

low, lower-middle, upper-middle, and high—based on Gross National Income (GNI) per capita 

using the Atlas method (World Bank, 2023). This classification was consistently applied to both 

2019 and 2020 to facilitate comparative analysis, recognizing that while income categories may 

evolve annually, a fixed classification improves interpretability of resilience differences across 

time. 

National carbon dioxide (CO₂) emission data were obtained from the Emissions Database for 

Global Atmospheric Research (EDGAR), version 7.0, published by the European Commission’s 

Joint Research Centre (Crippa et al., 2022). This dataset provides harmonized and high-

resolution estimates of CO₂ emissions from fossil fuel combustion and industrial processes. We 

extracted total national CO₂ emissions (in megatonnes per year) for 2019 and 2020 to align with 

the period of trade data used in the study. These data allowed us to examine whether countries 

with higher emissions levels demonstrated distinctive resilience patterns, particularly under 

stress conditions such as the COVID-19 pandemic. 

The integration of income level and emissions data supports a more comprehensive analysis of 

trade resilience, highlighting the intersection between economic status, environmental exposure, 

and systemic vulnerability. 
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3.5 Results 

3.5.1 Global Food Trade System Resilience Impacted by COVID-19 

The analysis of global food trade resilience for 2019 and 2020 illustrates distinct spatial patterns 

in the ability of regions to sustain and manage their food trade networks under challenging 

conditions. Food trade resilience was measured using a composite index that combines our 6 

categories of indicators as shown in Table 3.1. In 2019 (Figure 3.2. (a)), the highest levels of 

resilience were predominantly visible in European countries, particularly in Russia, which has a 

resilience score of about 10.66, followed by Germany (9.97), Italy (9.27), and Poland (9.12). 

North American countries such as Canada (9.04) and the United States (8.64) also exhibited high 

resilience. These high resilience scores might have been obtained due to advanced logistics, 

diversified food sources, and robust economic conditions. Russia’s leading resilience score 

reflected a combination of factors, including its dominant role as a global wheat exporter, state-

supported logistics infrastructure, and proactive trade policies. Its capacity to pivot toward non-

Western markets amid geopolitical tensions and its relatively self-sufficient food production 

system further strengthened its trade stability. 

In Asia, China (8.89) and India (8.27) ranked among the most resilient nations, reflecting the 

scale and diversity of their agricultural production and trade networks. China's resilience, driven 

by substantial investments in infrastructure, large-scale food production, and large economic 

growth, placed it among the top resilient countries. India similarly showed high resilience due to 

its strong agricultural sector and extensive trade market. Conversely, lower resilience scores 

were markedly noticeable in Central Africa, including countries such as the Democratic Republic 

of the Congo and Chad, with resilience scores of about 1.83 and 0.97, respectively. These 

countries faced large challenges related to logistics, political instability, and limited economic 
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diversification, which severely hindered their food trade resilience. South Asia, with countries 

like Afghanistan (1.54) and Nepal (5.16), also exhibited lower resilience indices, reflecting 

infrastructure deficiencies and economic constraints. Similarly, parts of South America, 

including Venezuela (0.41) and Bolivia (4.16), showed low resilience scores due to political and 

economic instability.  

 

Figure 3. 2 Global food trade resilience and relative changes across income levels. 

Panels (a) and (b) illustrate the food trade resilience scores in 2019 and 2020, respectively, based 

on a composite index integrating multiple economic, social, and logistical indicators. Panel (c) 

shows the percentage change in food trade resilience from 2019 to 2020, capturing the relative 

impact of the COVID-19 pandemic at the national level. Panel (d) displays the distribution of 

relative resilience changes across among low-, middle-, and high-income, using violin plots to 

visualize the spread and central tendencies of percentage changes within each income level 

(https://blogs.worldbank.org/en/opendata/world-bank-country-classifications-by-income-level-

for-2024-2025). 
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In 2020 (Figure 3.2 (b)), the overall pattern of food trade resilience showed some shifts, 

primarily influenced by the COVID-19 pandemic. The pandemic had widespread impacts on 

"Innovation and Research", "Economy and Market", "Policy and Institution", " Society and 

culture", "Demographic", and "Supply Chain" (for the category details, please see Table 3.1). 

Europe continued to show strong resilience, but countries experienced varying degrees of impact 

due to lockdown measures, supply chain disruptions, and changes in trade policies, with 

Germany and Russia scoring approximately 8.91 and 9.21. Despite pandemic-related trade 

uncertainties, Russia's food trade network remained highly resilient, likely supported by its 

continued grain export capacity, limited dependence on external suppliers, and state-managed 

trade systems that buffered against logistical shocks. The United States and Canada maintained 

high resilience scores, with slight adjustments reflecting the pandemic's impact on their food 

trade systems. The United States scored approximately 6.52, and Canada scored approximately 

7.69 in 2020, indicating a slight decrease. China's resilience score for 2020 showed some decline 

due to trade restrictions caused by the pandemic, among other things, but China (5.82) remained 

somewhat resilient, driven by continued investments in infrastructure and a quicker economic 

recovery than expected from the initial pandemic impact. 

Differences were observed in regions with previously lower resilience. Central African countries, 

such as the Democratic Republic of the Congo (5.22), saw further declines in resilience due to 

exacerbated logistical challenges and economic pressures (Figure 3.2 (b)) (Balike Dieudonné Z, 

2021). South Asian countries like Afghanistan (3.76) experienced additional setbacks in 

resilience, influenced by pandemic-induced restrictions and economic constraints.  The pandemic 

accelerated technological innovations and research in food production and supply chain 

management (Kafi, et al., 2023). However, regions with limited access to these advancements 
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saw a widening resilience gap. Economic contractions and market disruptions were widespread, 

affecting countries' abilities to maintain stable food trade networks (Engemann& Jafari, 2022; 

Aday&Aday, 2020; Ihle, et al., 2020). Developed countries with diversified economies showed 

better resilience compared to those reliant on limited trade partners (Kummu, et al., 2020). 

Government's responses to the pandemic, including trade policies and support measures, largely 

impacted food trade resilience (Arita, et al., 2022). Regions with proactive and adaptive policies 

managed better compared to those with less effective responses (Adger, et al., 2011). The 

pandemic influenced socio-cultural factors, including changes in consumption patterns and 

public health measures, impacting food availability and distribution (Supplementary file 1). 

Population dynamics, such as urban-rural migration and changes in labor availability, affected 

food production and trade (Supplementary file 1). Countries with more flexible labor markets 

showed better adaptability (Bernal-Verdugo, et al., 2012). Disruptions in global supply chains 

were a major factor affecting resilience (Supplementary file 1). Countries with diverse and robust 

supply chains managed better compared to those with heavily disrupted networks.  

The impact of COVID-19 on global food trade resilience varied largely across countries, as 

measured by the food trade resilience difference (Kubatko, et al., 2023). India, a lower-middle-

income country, exhibited one of the most pronounced declines in food trade resilience, with a 

difference in -3.54 (Figure 3.2 (c)). This substantial decrease underscores the severe disruptions 

faced by India, likely driven by large supply chain interruptions, logistical challenges, and 

restrictions on global trade due to the pandemic (Priyadarshini, et al., 2021). The country's heavy 

reliance on agricultural exports and the limited capacity to buffer against such large-scale 

disruptions exacerbated the impact (Foong, et al., 2023). Brazil, an upper-middle-income 

country, showed a resilience decline of 1.50, reflecting moderate impacts on its food trade during 
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the pandemic (Figure 3.2 (c). While Brazil faced challenges in sustaining its trade flows, the 

extent of the impact was less severe compared to countries like India. Brazil's diverse 

agricultural production and its relatively resilient export markets helped cushion the blow, 

though logistical issues and domestic pandemic management still posed large challenges 

(Szymczak, et al., 2020). In contrast, the United Arab Emirates (ARE), a high-income country, 

experienced a slight improvement in resilience, with a difference of 0.46 (Figure 3.2 (c)). This 

indicates that the UAE's food trade network maintained a higher degree of stability, possibly due 

to its robust infrastructure, diversified trade partnerships, and the ability to quickly adapt to 

changing global trade dynamics. The UAE's strategic investments in food security and logistics 

may have also played a role in mitigating the impact.  

Interestingly, Hungary, a high-income country, demonstrated a large increase in resilience, with 

a difference of 1.33 (Figure 3.2 (c)). This positive change suggests that Hungary's food trade 

system adapted effectively to the pandemic, potentially benefiting from shifts in global trade 

dynamics. Hungary's strong trade infrastructure, unique logistics system construction, and 

effective policy responses contributed to its ability to not only withstand but also improve its 

food trade resilience during the crisis (Gyuris, 2022). These examples illustrate the varied 

impacts of COVID-19 on food trade resilience across different countries and income levels. The 

geographical distribution of these changes, as shown in Figure 3.2, highlights the disparities in 

how countries managed to cope with the pandemic's challenges. Factors such as economic 

structures, trade dependencies, crisis management capabilities, and strategic investments in 

infrastructure and food security played critical roles in determining resilience outcomes 

(Supplementary file 1, Table 3.1). 
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3.5.2 Impacts of Key Indicators on Food Trade Resilience During COVID-19 

Figure 3.2(d) illustrates the distribution of food trade resilience differences due to the COVID-19 

pandemic across various income levels. The resilience difference is calculated as the change in 

food trade resilience from 2019 to 2020, reflecting the pandemic's impact on each country's 

ability to maintain stable food trade. Lower-middle-income countries exhibit the widest 

distribution of negative changes, indicating large variability and greater susceptibility to the 

pandemic's disruptions. This variability is likely due to less diversified economies and weaker 

healthcare and trade infrastructures, which exacerbated the impact of global trade disruptions. 

Conversely, high-income countries showed a relatively narrower distribution with smaller 

negative changes and even slight improvements, highlighting their more robust economic 

structures and better crisis management capabilities. 

Furthermore, Figure 3.3 provides additional context by comparing the average values of various 

resilience indicators across different income levels for the years 2019 and 2020. Figure 3.3(a) 

presents the average values of key indicators affecting food trade resilience for 2019 and 2020. 

Indicators such as trade diversification, production diversity, and domestic food production saw 

notable declines in lower-middle-income countries. This decline indicates that these countries 

struggled to maintain diverse and stable food production and trade networks amidst the 

pandemic. Lower-middle-income countries also experienced large drops in political stability and 

trade dependencies, further correlating with the broader distribution of negative resilience 

changes observed in Figure 3.2(d). Figure 3.3(b) provides detailed information showing the 

shifts in resilience indicators across different income levels between 2019 and 2020. It illustrates 

that high-income countries generally maintained or slightly improved their resilience indicators, 

such as GDP and food availability. In contrast, lower and lower-middle-income countries 
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showed substantial declines in several indicators, including energy dependence and export 

growth rate. These shifts highlight the disparities in resilience dynamics, reinforcing that lower 

income countries faced more pronounced challenges due to their limited capacity to adapt to 

global disruptions. In terms of the connectivity of food trade networks, there was a general 

downward trend in trade between distant countries. However, adjacent countries' trade 

connectivity showed a more large downward trend in low and high-income countries, suggesting 

that low-income countries have more difficulty in adapting to changes due to poor trade 

infrastructure and more homogeneous trade routes, while high-income countries might be 

affected by epidemic policies and export controls (Derindag et al., 2024; Barbero et al., 2021). 

These results collectively underscore the uneven impacts of the COVID-19 pandemic on global 

food trade resilience, with lower income countries facing more pronounced challenges. The 

findings highlight the critical need for targeted interventions to enhance resilience, particularly in 

the most vulnerable regions. Enhanced trade diversification, strengthened domestic production, 

and improved political stability are essential for building resilient food trade systems capable of 

withstanding future global disruptions. 
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Figure 3. 3 Comparative results of food trade resilience indicators across income levels in 2019 

and 2020. (a) is the average value of each indicator of 2019 and 2020; (b) is a comparison of the 

2019 and 2020 indicators' average value through different income levels. 

 

Figure 3.4 illustrates the contribution of various indicators to the overall food trade resilience 

difference, highlighting the impact of different drivers on resilience outcomes during the 

COVID-19 pandemic. The Sankey diagram categorizes the indicators into six key drivers: 

“Policy and Institutional”, “Demographic”, “Economy and Market”, “Innovation and Research”, 
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“ upply Chain”, and “ ocio-culture”. The “Policy and Institution” shows a large positive 

contribution to food trade resilience, indicating that countries with strong political stability, 

effective governance, and robust institutional frameworks were better able to manage trade 

disruptions and maintain resilience. Effective policies likely facilitated smoother trade operations 

and quicker adaptation to new trade regulations imposed during the pandemic. Similarly, the 

“Demographic” driver contributes positively, suggesting that countries with better social 

development and higher human capital could adapt more efficiently to the disruptions, possibly 

managing labor shortages and ensuring food availability during the pandemic. In contrast, the 

“Economy and Market” drivers exhibit a negative contribution, indicating that economic factors 

such as GDP growth, trade dependencies, and energy dependence largely affected resilience 

negatively. Countries heavily reliant on specific trade partners or with less diversified economies 

struggled more during the pandemic, as economic crises and fluctuating global markets directly 

impacted their trade stability. “Innovation and Research” contribute positively, reflecting those 

countries with high levels of research and development, innovation in food production, and 

technological advancements could better mitigate the adverse effects of the pandemic on food 

trade. Innovative practices in agriculture and supply chain management played a crucial role in 

sustaining food trade resilience. The “ upply Chain” driver also shows a positive contribution, 

emphasizing the importance of supply chain diversity and connectivity. Countries with well-

established and diversified supply chains could more effectively handle disruptions, reroute trade 

flows, and maintain steady food supplies despite global interruptions. Lastly, the “ ocio-culture” 

positively impacts resilience, suggesting that social factors such as diet preferences, food culture, 

and community support mechanisms helped countries maintain resilience. Socio-cultural 

adaptability may have enabled quicker shifts in consumption patterns and national production 
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practices, thereby sustaining food trade stability. Overall, Figure 3.4 highlights the multifaceted 

nature of food trade resilience, where different types of indicators contribute to varying extents. 

The positive impact of strong institutional frameworks, demographic factors, innovation, supply 

chain diversity, and socio-cultural adaptability underscores the importance of these drivers in 

building robust and resilient food trade systems. Conversely, economic vulnerabilities highlight 

areas where targeted interventions are needed to enhance resilience against future disruptions. 

 

Figure 3. 4 Contribution of key drivers to food trade resilience difference during COVID-19. It 

illustrates the contributions of six major drivers—policy and institution, demography, economy 

and market, innovation and research, supply chain, and socio-cultural factors—to the variations 

in food trade resilience during the COVID-19 pandemic. The Sankey diagram highlights the 

positive (+) and negative (-) contributions of each driver, with their relative magnitudes 

represented by the width of the connecting flows. The right-hand side visualizes the distribution 

of individual sub-indicators within each driver category, offering a detailed breakdown of their 

respective impacts on resilience changes. The color gradient at the bottom represents the 

intensity of the contribution, ranging from negative (yellow) to highly positive (purple), 

emphasizing the multidimensional and interconnected nature of factors influencing food trade 

resilience during global disruptions. 
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3.5.3 Resilience of Food Trading Systems in Different Income Countries Affected by COVID-

19 

The pandemic-induced disruptions have distinctly impacted food trade resilience across different 

economic brackets, highlighting the interplay between a country's economic status and its 

capacity to manage crises. The resilience maps overlaid with income levels for 2019 and 2020 

provide a compelling visual narrative of these impacts. 

There is a clear trend of higher food trade resilience scores associated with higher income levels 

in both 2019 and 2020 (Figure 3.5). High-income countries, on average, displayed the highest 

resilience scores, followed by upper-middle-income, lower-middle-income, and low-income 

countries. This pattern emphasizes that economic capacity strongly correlates with food trade 

resilience, as countries with more resources generally have better infrastructure, governance, and 

adaptive capacity to handle global disruptions. However, compared to 2019, resilience scores 

across all income groups declined in 2020, reflecting the universal impact of the COVID-19 

pandemic. The pandemic introduced widespread disruptions in food trade, affecting even the 

most resilient systems. The consistent decline across income levels highlights the strain that the 

pandemic placed on food security worldwide, though the degree of resilience loss varied among 

countries within each income bracket. 
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Figure 3. 5 Food trade resilience by income group comparison. The figure presents the 

distribution of normalized food trade resilience scores across income groups in 2019 (left panel) 

and 2020 (right panel). The box plots illustrate the variations in resilience among low-income, 

lower-middle-income, upper-middle-income, and high-income countries. The black line in the 

figure means the median value of this income level. 

 

The differential impacts of the pandemic are shown in Fig. 6, with certain regions experiencing 

greater shifts in resilience. High-income countries such as Canada, Australia, and the United 

Kingdom exhibited substantial resilience changes between 2019 and 2020. Despite their strong 

economic positions, these countries experienced large disruptions, indicating their reliance on 

global supply chains. In contrast, countries like Germany and Japan displayed relatively stable 

resilience, suggesting their diversified trade networks and robust infrastructure mitigated the 

pandemic’s impact. France and the United States also showed moderate resilience changes, 

reflecting partial vulnerability within their food trade systems. Upper-middle-income countries 

displayed mixed resilience changes. China demonstrated minimal change in resilience, 

highlighting effective policy responses and infrastructure that helped stabilize its food trade 

system. Similarly, Russia showed limited resilience change, benefiting from domestic production 

and self-sufficiency in certain food sectors. However, Brazil and Turkey experienced more 

substantial declines, indicating greater susceptibility to pandemic disruptions. South Africa also 
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showed notable resilience loss, reflecting the challenges it faced in maintaining stable trade amid 

economic pressures.  

Lower-middle-income countries experience greater resilience declines overall. Countries such as 

India, Vietnam, and the Philippines exhibited noticeable resilience decreases, showing 

vulnerability to supply chain interruptions and export restrictions. Egypt and Indonesia also 

reveal resilience declines, which highlight the challenges posed by import dependencies and 

limited resources to buffer against external crises. Other countries, like Pakistan and Bangladesh, 

showed resilience losses, reflecting the broader challenges lower-middle-income nations face in 

sustaining food trade stability. Low-income countries, especially in Africa, faced the most large 

declines in resilience. Chad, Sudan, and the Democratic Republic of the Congo demonstrated 

marked resilience losses, underscoring the severe impact on countries with limited infrastructure, 

high import dependencies, and economic constraints. Ethiopia and Mali also showed substantial 

resilience declines, highlighting the strain on food security systems in low-income regions. In 

contrast, some low-income countries like Nepal showed relatively smaller resilience changes, 

likely due to their lower integration in global food trade, which may have insulated them from 

some pandemic-related disruptions. 
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Figure 3. 6 Spatial distribution of differences (from 2019 to 2020) in income levels and food 

trade resilience. This map illustrates the global spatial distribution of food trade resilience in 

conjunction with income levels. High-income countries, primarily located in North America, 

Europe, and parts of Oceania, exhibit high food trade resilience, represented in darker yellow 

tones. Conversely, low-income nations, predominantly in Sub-Saharan Africa and South Asia, 

show lower resilience, highlighted in lighter yellow and cyan shades. Regions lacking data are 

depicted in white. 

 

3.5.4 Trade Indicators Dynamics across Spatial Scales 

The separation of these five indicators—Bonilla index, centrality, connectivity, global trade 

disruptions, and supply chain diversity—into adjacent and distant trade components enables a 

nuanced view of trade resilience across spatial scales. This approach highlights the importance of 

the coexistence of regional assessments and global trading networks, as it reveals how 
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dependence based on adjacent and distant trading interconnectedness responds differently to 

global crises. 

The Bonilla index (Figure 3.7) reveals concentrated resilience impacts in adjacent regions, 

particularly in North African countries like Libya and Egypt. In 2019 for adjacent trade (Figure 

3.7(a)), resilience values were moderately low, between -0.20 and -0.80. By 2020 (Figure 

3.7(b)), these values declined further to -1.00, indicating a heightened vulnerability in these 

regions. In contrast, the distant trade network (Figure 3.7(c) and (d)) remained stable over this 

period, suggesting that resilience challenges were more acute in nearby trade relationships as 

countries prioritized regional trade networks (trade with adjacent countries) during the pandemic. 

 

Figure 3. 7 Bonilla index of trade resilience in adjacent and distant trade networks for 2019 and 

2020. This figure shows the spatial distribution of the Bonilla index, measuring resilience in 

adjacent and distant trade networks across 2019 and 2020. 
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The centrality index (Figure 3.8) reflects changes in the importance of countries within their 

trade networks, capturing how some regions became more influential in adjacent trade due to 

pandemic-induced shifts. In 2019 for adjacent trade (Figure 3.8(a)), high centrality was observed 

across North African and Middle Eastern countries, indicating their critical role in regional trade. 

By 2020 (Figure 3.8(b)), centrality increased across Eastern Europe and Central Asia, reflecting 

a shift towards regional interdependence, likely as a response to disrupted global trade routes. 

However, this increase in centrality does not imply that these Eastern European and Central 

Asian countries expanded their total trade connections but rather that their influence within the 

regional trade network grew due to temporary reorientation. 

 

Figure 3. 8 Centrality of trade networks in adjacent and distant trade for 2019 and 2020. 

Centrality scores highlight the prominence of countries within their respective trade networks. 

 



62 

 

In contrast, the connectivity index (Figure 3.9) remained robust across African, South American, 

and Asian countries in both adjacent and distant trade networks, despite the pandemic. For 

adjacent trade in 2019 (Figure S3.10(a)), regions such as Brazil and Nigeria showed strong 

connectivity, with values between 0.60 and 1.00, indicating a high volume of trade links. By 

2020 (Figure 3.9(b)), this connectivity was largely retained, signaling resilience in the number of 

trade connections. For distant trade (Figure 3.9(c) and (d)), connectivity also remained stable, 

showing that while trade dynamics shifted regionally (as seen in centrality), countries maintained 

broad trade relationships. The differing patterns between centrality and connectivity highlight 

that while some regions increased their influence (centrality), many countries maintained 

extensive trade links (connectivity) without necessarily becoming more central hubs. 

 

Figure 3. 9 Connectivity of trade networks in adjacent and distant trade for 2019 and 2020. 

Connectivity levels illustrate the resilience of trade links in both adjacent and distant networks. 
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The global trade disruptions index (Figure 3.10) underscores the heightened vulnerability of low-

income and developing regions, particularly in Africa. In 2019 for adjacent trade (Figure 

3.10(a)), countries in Southern Africa exhibited moderate to high disruption levels, with values 

ranging from 0.40 to 0.80. By 2020 (Figure 3.10), disruptions intensified across Central and 

Southern Africa. For distant trade networks (Figure 33.10(c) and (d)), disruptions were also large 

in parts of Africa and South America, indicating that both adjacent and distant trade were 

adversely affected, although connectivity remained stable. This contrast suggests that while 

many trade links were preserved, their functionality or stability was compromised, especially in 

vulnerable regions (as low-income and developing regions). 

 

Figure 3. 10 Global trade disruptions in adjacent and distant trade networks for 2019 and 2020. 

This figure depicts trade disruptions, which reflect instability in trade systems across adjacent 

and distant networks. 
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Finally, the supply chain diversity index (Figure 3.11) highlights the adaptive capacity of high-

income countries in comparison to lower-income regions. In 2019 for adjacent trade (Figure 

3.11), high-income countries, especially in Europe and North America, exhibited high supply 

chain diversity, with values approaching 1.00. By 2020 (Figure 3.11), diversity remained stable 

in these regions, indicating resilience in maintaining diverse supply chain partners. In contrast, 

the distant trade network (Figure 3.11(c) and (d)) also saw high diversity levels in Europe and 

North America across both years, underscoring their ability to withstand disruptions through a 

variety of trade partnerships. 

 

Figure 3. 11 Supply chain diversity in adjacent and distant trade networks for 2019 and 2020. 

Supply chain diversity reflects the adaptive capacity of countries through varied trade 

partnerships.  
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Together, these indicators present a multi-faceted view of trade resilience. The stability in 

connectivity highlights the preservation of trade links, while shifts in centrality reflect temporary 

adaptations to regional reliance. Meanwhile, global trade disruptions and Bonilla index changes 

show where trade vulnerabilities were most pronounced, especially in low-income regions. The 

supply chain diversity observed in high-income countries underscores their adaptive advantage, 

suggesting that countries with more diversified trade are better equipped to absorb crises. 

3.6 Discussion and Conclusion 

This study has illuminated stark disparities in food trade resilience across different income 

levels, notably underscoring the acute vulnerabilities of low-income countries. Our findings align 

with existing literature portraying economic constraints as large amplifiers of global crisis 

impacts, such as those seen with the COVID-19 pandemic (Hallegatte, 2019; Nébié et al., 2021). 

Regions with limited economic resources exhibited pronounced susceptibility due to their 

inadequate infrastructural and institutional supports. In contrast, high-income countries, equipped 

with more robust mechanisms, demonstrated greater capacity to swiftly adapt and mitigate such 

disruptions. These differences highlight the urgent need for more intense international support 

and strategic policy interventions to strengthen food trade resilience in low-income regions. 

Beyond income disparities, the segmentation of resilience indicators into adjacent and distant 

trade components provided deeper insights into how spatial proximity influences trade 

vulnerability. Our analysis revealed that adjacent trade networks, particularly in low-income 

countries, were more prone to disruptions, largely due to reliance on a smaller number of 

neighboring partners. For instance, the Bonilla Index results showed that adjacent networks in 

North Africa, such as those involving Libya and Egypt, experienced marked declines in 

resilience, indicating heightened sensitivity to localized crises. In contrast, distant trade 
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networks, benefiting from diversified partnerships, exhibited relatively stable resilience during 

the pandemic, suggesting that geographical diversification can act as a buffer against global 

shocks. 

Changes in network centrality further reflected how some regions adapted during the crisis. In 

adjacent trade networks, Eastern Europe and Central Asia displayed increased centrality in 2020, 

suggesting a regional shift as countries turned more heavily toward nearby partners. However, 

this rise in centrality did not always correspond to an increase in connectivity, as the number of 

trade links remained largely stable across both adjacent and distant networks. This finding 

indicates that while the importance of certain countries within their regions may shift during 

crises, the overall trade structure remains resilient enough to sustain essential flows. 

The results for global trade disruptions and supply chain diversity deepen the understanding of 

compounded vulnerabilities, particularly among low-income regions. Adjacent trade disruptions 

were especially severe in Central and Southern Africa, where strong regional dependencies 

intensified the impacts of global trade instability. Conversely, high-income countries, supported 

by diverse trade networks, showed greater adaptability, maintaining stable supply chain diversity 

across both adjacent and distant networks. The role of supply chain diversity in buffering against 

crises became evident, particularly in countries with developed political systems and industrial 

infrastructures, such as China. However, it is important to note that some highly globalized high-

income countries, including Canada, Australia, and the United Kingdom, experienced noticeable 

declines in resilience, demonstrating that deep integration into international markets can also 

carry risks during major disruptions. 

The approach introduced in this study offers an integrated framework that aggregates diverse 

evaluative perspectives from the extant literature, providing a more comprehensive analysis of 
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food trade resilience. Unlike many prior studies that focus on isolated aspects, our framework 

embeds economic, political, socio-cultural, and logistical dimensions into a unified system. This 

holistic method is pivotal for crafting nuanced insights that can better inform resilience-

enhancing strategies. By integrating multiple data sources and metrics, and utilizing datasets 

from reputable international organizations such as the FAO, World Bank, and UN Comtrade, we 

traced year-to-year fluctuations in resilience and highlighted the critical roles of economic 

stability and diversified trade networks. These results contribute valuable empirical evidence to 

ongoing discussions of global food security and provide practical guidance for policymakers and 

stakeholders aiming to strengthen food trade systems.  

It is important to acknowledge that the method used to assign weights to indicators—based on 

their frequency of appearance in previous literature—may introduce bias. This approach, while 

grounded in academic precedent, could overemphasize commonly studied dimensions at the 

expense of underexplored but equally critical aspects. Previous studies have also highlighted this 

limitation. For example, Gu et al. (2018) pointed out that indicator weightings based solely on 

literature frequency may reinforce entrenched priorities rather than respond to current or 

emerging vulnerabilities. While our strategy enables comparability across multiple resilience 

categories, future work could integrate more participatory or adaptive weighting mechanisms, 

such as expert elicitation, analytic hierarchy process (AHP), or entropy-based methods, to 

improve robustness and mitigate potential bias. 

Although this study provides an extensive analysis, it also opens important avenues for future 

research. Long-term assessments of the cumulative impacts of recurring global disruptions on 

food trade resilience, particularly in economically marginalized regions, remain needed. 

Developing dynamic predictive models to anticipate changes in resilience under future economic 
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and environmental shifts could enhance strategic planning efforts. One limitation of the current 

study lies in its reliance on secondary data sources, which may not fully capture the immediacy 

and finer dynamics of real-time trade patterns. Future research could benefit from primary data 

collection and more frequent updates to offer a more detailed and timely understanding of food 

trade resilience.  

In sum, this research highlights persistent disparities in food trade resilience across economies, 

emphasizing the urgent need for targeted efforts to bolster the resilience of low-income countries 

against future crises. The integrated framework proposed here offers a strong foundation for 

more informed research and policymaking, supporting the development of resilient and adaptable 

global food trade systems in an era of mounting uncertainty.
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CHAPTER 4: THE RUSSIA-UKRAINE WAR REDUCED WINTER CEREAL YIELDS 

AND EXPORTS WITH A DISPARATE GEOGRAPHICAL IMPACT    

4.1 Abstract 

The transboundary impacts of regional war on global food trade remain underexplored, 

particularly regarding disruptions to production and trade networks. Here we address this gap by 

developing a rapid assessment framework that integrates remote sensing, policy monitoring, and 

network analysis to evaluate the effects of the Russia-Ukraine war on global winter cereal 

production and trade. Using satellite data, we estimated yield reductions for wheat, barley, and 

oats and analyzed the effects of export-ban policies enacted since February 24, 2022. Our 

findings indicate that lower- and middle-income countries were disproportionately impacted, as 

trade networks became fragmented, forming isolated clusters that threatened food accessibility. 

Geographically distant countries experienced greater disruptions than those near the conflict. 

This framework provides insights into the cascading effects of conflict on global food systems 

and offers a predictive tool for policymakers to address food availability challenges during future 

crises. 

4.2 Introduction 

As major producers and exporters of agricultural commodities, Russia and Ukraine play critical 

roles in the global staple food supply. They export more than 54% of globally traded wheat, 

barley, and oats (USDA, 2018). A number of countries, including some with vulnerable food 

availability, heavily rely on imports from these two countries. For instance, the shares of wheat 

imported from Ukraine by Egypt and Lebanon are 85% and 81% of their total wheat imports 

(Behnassi & El Haiba, 2022). The war between Russia and Ukraine, which began on February 

24, 2022, has raised serious concerns about Ukraine's crop production and global food shortages 
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(Osendarp et al., 2022). A series of cascading effects of the war, such as loss of agricultural 

labor, destruction of infrastructure, and limited access to agricultural inputs, have threatened 

food production in Ukraine (Deininger et al., 2023; Abay et al., 2023; Shumilova et al., 2023).  

Alongside high energy costs and supply-chain disruptions, the war has further exacerbated the 

global rise in food prices (Carriquiry et al., 2022). International cereals’ prices increased by 20% 

within the first three months after the start of the Russia-Ukraine war (FAO, 2022). The soaring 

prices have reduced the purchasing power of food importers and caused hunger, especially in 

low-income countries in Africa, the Middle East, and South America (Pereira et al., 2022). The 

Food and Agriculture Organization (FAO) models suggested that 13 million more people would 

be undernourished in 2022 due to the Russia-Ukraine war (IPES-Food, 2022). Furthermore, over 

20 nations, including India and Kazakhstan, have declared stringent prohibitions and restrictions 

on grain exports after the Russia-Ukraine war, worsening the global grain supply and food 

availability (The Economist, 2022). Quantifying such cross-border impacts is therefore necessary 

for assessing food availability and making timely responses.  

Recent studies have aimed to explore the quantitative impact of the Russia-Ukraine war on 

global food trade and food availability. Established studies have assessed the direct, indirect, and 

cascading effects of the Russia-Ukraine war by measuring the resilience, dependence, 

availability, and stability of other countries (Ben Hassen & El Bilali et al., 2022). Steinbach used 

product-level empirical modeling to identify reductions in Ukrainian exports and substantial 

trade diversions in Russia's favor (Steinbach, 2023). Some studies similarly emphasize the 

increase in global agricultural import prices, quantifying the impact of the war on food prices, 

trade volumes, and security (Feng et al., 2023; Lin et al., 2023). Some studies have examined the 

impact of war on trade and supply chains. For example, Arndt et al. used a global trade model to 
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assess the impact of the Russia-Ukraine war on developing food supply chains (Arndt et al., 

2023). The study emphasized the importance of diversifying sources of food supply. The study 

by Zhou et al. examined the economic impact of the war on agricultural markets, highlighting 

trade disruptions and food price increases (Zhou et al., 2023). Structural general equilibrium 

trade models have been used to illustrate how a reduction in Ukraine's wheat production would 

affect global food security (Lin et al., 2023). Van Meijl et al. (2024) assessed the impacts of the 

conflict on global grain markets and food security. The study reveals severe supply disruptions 

and price increases and argues for policy interventions to stabilize markets. However, these 

studies still fail to integrate rapid export ban policy data into exploring the impact of the war on 

countries with different income levels, and it is not clear whether the impacts vary among 

countries at different spatial distances. This knowledge gap may result in some of the most 

affected countries being overlooked.  

Also, some studies attempted to examine changes in food production in  kraine and the war’s 

transboundary effects but are based on qualitative analysis or untested quantitative analyses 

(Abay et al., 2023; Carriquiry et al., 2022; Jagtap et al., 2022). While existing studies provide 

valuable insights into the economic impacts of the Russia-Ukraine war on grain-importing 

countries, a complementary approach is needed to conceptualize the trading system as a 

dynamic, interconnected network (Figure 4.1). This allows us to assess the structural changes 

within global trade relationships and explore the resilience of the global trade network in 

response to external crises. Collecting ground data in conflict zones is dangerous and 

challenging. Previous studies have demonstrated the efficacy of remote sensing in assessing the 

socioeconomic and environmental impacts of war in countries such as Uganda, Iraq, Syria, South 

Sudan, and Yemen (Berrang Ford, 2007; Li & Li, 2014; Jiang et al., 2017; Abdo, 2018; Hanna et 
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al., 2021; Jumaah et al., 2021; Li et al., 2022). While a few studies have applied remote sensing 

to monitor agricultural production in Ukraine, they lack systematicity and often focus on specific 

aspects such as changes in land cover or yields of a single crop (Lin et al., 2023; Ma et al., 2022). 

Furthermore, the impact of the Russia-Ukraine war on food availability in countries at different 

distances remains underexplored. To summarize, the impact of the Russia-Ukraine war on 

adjacent and distant national food systems in different income levels is not well understood in a 

metacoupled world (e.g., socioeconomic-environmental interactions within and across national 

borders) (Liu, 2023; Vina & Liu., 2023).  

 

Figure 4. 1 Cascading mechanism by which war affects the global winter cereal network by 

decreasing production and prompting other exporting countries to publish export policies. (a) is 

the crisis of the Russia-Ukraine war on the volume of food trade exports, while (b) shows the 

resilience of the trading system, mitigating the crisis through price changes. The gray arrows 

refer to the quantified impacts covered in this paper. The black dashed arrows are the potential 

impacts discussed in the qualitative aspects of this paper. The blue arrows in (b) refer to negative 

impacts on price, i.e., when potential exporters export in large quantities, which reduces cereal 

prices; the red arrows refer to positive impacts on price, i.e., when import demand increases or 

there is a shortfall in export volumes, which raises cereal prices. 
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Considering the above gaps, we developed a rapid quantitative predicting framework integrating 

remote sensing and export ban policies with network analysis to build a trade network 

simulation. The simulation aims to assess the impact of the Russia-Ukraine war on food 

production in Ukraine. Since winter crops in Ukraine are dominated by canola and cereal, we 

used climatic algorithms to differentiate the acreage of winter cereals (wheat, barley, and oats) 

by analyzing seasonal growth differences using the widely used radar satellite images, Sentinel-1 

(Marchetti et al., 2023). The method is still limited by some of the inherent shortcomings of 

remotely sensed imagery. For example, the spatial and temporal resolutions of the Sentinel-1 

data are not suitable enough for accurately distinguishing morphological changes in crop plots at 

small scales over short periods of time (Marchetti et al., 2023). While other satellite-based 

sensors with higher spatial resolution ground sampling distances and/or daily revisits may be 

better suited to detecting such changes, these options currently require the use of commercial 

solutions, which can increase survey costs. Considering several advantages, such as not being 

limited by weather, and timing of visits (which may be obscured by cloud cover in fall and 

winter), low cost (compared to commercial solutions) and secure access (despite the ongoing war 

in the study area), the Sentinel-1 is a useful source of data for the monitoring effort. 

Subsequently, we generated a 10-m resolution map of annual winter cereal farmland extents at 

the state level within Ukraine. After obtaining a spatial distribution map of annual winter cereals, 

we estimated the winter cereal yield using a random forest regression model, with model inputs 

such as the normalized difference vegetation index (NDVI), climate variables, and reference crop 

yield statistics. Given that staple crops affect food availability, we focused on three major staple 

crops in Ukraine—wheat, barley, and oats—to assess changes in food production. The planting 

area and yields of the three cereals account for more than 80% of all cereals (SSSU, 2022).  
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The complex and interdependent nature of the global food system underscores the imperative for 

a rigorous and comprehensive approach to quantifying the effects of the armed conflict (Ben 

Hassen & El Bilali, 2022). Network analysis is a method of studying the relationships between 

the nodes in a network and understanding how the network functions as a whole. It has been 

widely used for systematic analysis in sociology, medicine, sustainable development, and 

ecosystems (Wasserman & Faust, 1994; Zhao & Frank, 2003; Pósfai et al., 2011; Felipe-Lucia et 

al., 2020; Chung et al., 2021; Wu et al., 2022). Network analysis allows us to understand how 

changes in one part of the system can ripple through the entire network, affecting everything 

from production to distribution to consumption. Additionally, network analysis enables us to 

identify which countries and regions are most vulnerable to global food-system disruptions and 

target interventions in those areas (Gutiérrez-Moya et al., 2021). Overall, network analysis is a 

valuable tool for understanding the complex dynamics of the global food system (Schaffer-Smith 

et al., 2018) and developing effective strategies to enhance its resilience and sustainability. Here 

we constructed a correlation network in which a network node is a country in the global trade 

systems of wheat, barley, and oats, and the strength of each link is the trade quantity between 

countries. Thus, we built export networks for the three crop trade systems.  

Here, we utilized rapid policy data and remotely sensed data in conjunction with trade network 

analysis and used simulations to gain a comprehensive understanding of global winter cereal 

trade dynamics affected by the Russia-Ukraine war. Specifically, we aimed to address the 

following questions: 

(1) What is the status of reductions in the production of winter cereal (wheat, barley, and oats) in 

Ukraine? 
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(2) How have the structures and interdependencies of the global trade networks of winter cereals 

changed in the simulated 2022 trade network compared to 2021, taking into account the 

reduction in winter cereal production in Ukraine as well as the export bans on wheat, barley, and 

oats in other countries? 

(3) How does the war affect countries at different income levels and across distances? Are 

countries farther from the exporting countries affected differently compared to those near the 

exporting countries? 

4.3 Materials and Methods 

4.3.1 War-affected Areas in Ukraine 

There is an ongoing geopolitical dispute between Russia and Ukraine (O’Loughlin et al., 2020). 

The main battleground of the armed conflict is primarily located in the eastern part of Ukraine, 

and the conflict has spread to multiple states including Kherson, Luhansk, Zaporizhzhya, 

Mykolayiv, Donetsk, Kharkiv, Crimea, and Sevastopol (Mazepus et al., 2023). These states have 

all been impacted to varying degrees by the war, which has directly affected agricultural 

production by causing crop losses and damage to agricultural infrastructure (Deininger et al., 

2023; Shumilova et al., 2023). These regions directly affected by the war are the main 

agricultural states of Ukraine. Their winter production of wheat, barley, and oats accounts for 

30% of the total production of these three crops of winter wheat in Ukraine in 2021. Among 

them, the production of winter wheat is 42.08% of the total production in Ukraine, and the 

production of barley is 41.32% of the total winter wheat production. When these major 

agricultural states are hit by the war, their reduced production may have a ripple effect. In 

addition to the yield losses caused by these war-affected regions, in other regions of Ukraine, 

panic may also cause yield reductions due to untimely management of farmland. 
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4.3.2 Materials 

4.3.2.1. Satellite data and processing  

We collected Sentinel-2 and Sentinel-1 images from 2019 to 2022 as the main model input. 

These data were produced by the European Space Agency (ESA) and freely available on the 

Google Earth Engine (GEE) platform. Sentinel-1 images were acquired in Interferometric 

Wideswath (IW) mode, which provides a dual polarization (VH and VV) at 10 m spatial 

resolution. The Sentinel-1 images on the GEE platform have been processed using the Sentinel-1 

SNAP7 Toolbox to generate Ground Range Detected (GRD) images (Markert et al., 2020). 

Sentinel-2 satellites provide optical images in 13 spectral bands at 10, 20, and 60 m spatial 

resolution. We used the atmospherically corrected Sentinel-2 surface reflectance (SR) product 

and eliminated the cloud-covered pixels via the Sentinel-2 cloud probability dataset 

(https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY). Then, the red and NIR 

bands from Sentinel-2 images were used to derive the NDVI time series characterizing crop 

phenology. 

4.3.2.2. Agricultural map and official statistical data  

The cropland distribution data were derived from the 10-m global land-cover map produced by 

ESA (Van De Kerchove et al., 2021). In addition, the RapeseedMap10 dataset with a spatial 

resolution of 10 m was used to assist in the extraction of the annual spatial distribution of 

rapeseed planting areas in Ukraine (Han et al., 2021). However, the dataset lacks spatial 

information on winter rapeseed after 2019. We obtained data on planted areas and yield statistics 

for winter crops (wheat, barley, rye, and rapeseed) at the state level between 2019 and 2021 from 
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the State Statistics Committee of Ukraine. These data were used to train yield models and to 

validate the derived winter cereal maps and yield forecasts. 

4.3.2.3 Meteorological data 

Temperature and precipitation data were utilized as important inputs to the yield model to 

explore the relationship between climate and yield (Johnson, 2014). The temperature data were 

derived from the remotely sensed thermal product (MYD11A2.006) from the Aqua MODIS 

sensor at 1-km resolution. The precipitation data were acquired from CHIRPS dataset, 

corresponding to a resolution of 0.05×0.05 degrees (Funk et al., 2015). 

4.3.2.4. Trade data  

The overall global trade data were collected from United Nations Commodity Trade Statistics 

Database (UN Comtrade database, see Data availability section), which is the original and 

probably the most widely used data source to support physical trade analysis from 2020 to 2021. 

Comtrade has been considered a reliable source of data by previous studies for purposes such as 

establishing trade networks, building trade-related databases, and conducting logistics analysis. 

Since the primary source of Comtrade data is the country itself as a reporter, there may be 

political motivations to keep information confidential and cause errors. Previous studies have 

indicated that UN Comtrade data have three main quality issues: outliers, missing values, and 

bilateral asymmetries. We compared imports and exports for the crops we used and found that 

both were missing data, with imports missing 15.27% more than exports. Thus, we believe the 

export volume data can better reflect the country's agricultural trade (Jones & Olken, 2010). 

Global wheat, barley, and oats trade data were collected for 2020–2021. We also fitted the export 

and import data (as shown in Figure S4.6 and Figure S4.3) and found that they are similar, and 
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all of their P values are less than 0.05, which indicates the results obtained by using the export 

data are reliable. 

We planned to introduce some pre-hints to predict the impacts of war on global food trade, thus 

we collected export restriction acts through tracking websites that had monitored relevant news 

and policies since the beginning of the war to assess the change in the volatility of exports of 218 

countries and regions. Since Ukraine has many battlefields, there is a reduction in production due 

to negative effects such as a lack of agricultural management and unavailability of harvest. After 

using NDVI to estimate the yield, we set 30% as the unavailability of harvest based on the FAO 

report (FAO, 2022). We used the pixel- and phenology-based model to estimate the yield 

reduction of winter crops in Ukraine. Second, considering that Ukraine will not export all its 

winter crops, we calculated the proportion of exports by total production in 2021 and exports in 

2021 and used the proportion of grain exports in 2021 as the proportional distribution of exports 

to countries in 2022. From these calculations, we constructed the trade networks for 2022. 

4.3.2.5. Trade ban data  

The trade policy ban data are mainly from the food availability portal - food and fertilizer export 

restrictions tracker - collected in the press and provided by the International Food Policy 

Research Institute (IFPRI), which the European Commission financially supports. The rest of the 

ban data is mainly from government websites and news. We have collected a total of 20 

countries that have issued export bans related to winter grains and their products, and the specific 

data can be viewed in Appendix B. 

4.3.3 Assessment of Total Reductions 

The whole predicting framework consists of two main parts: the assessment of reduction in 

Ukraine, and the simulation of the next year’s trade networks through tracking export bans. The 
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summary and workflow of the remote sensing part are shown in Figure 4.2 with more details 

reported in the text. The workflow consists of the following steps: (1) Winter Crop Extraction, 

(2) Winter Cereal Extraction, and (3) Winter Cereal Yield Assessment. 

4.3.3.1 Winter crop extraction 

To obtain maps of three annual winter cereals (wheat, barley, and oats), we implemented an 

automatic winter crop extraction approach proposed by Skakun et al., which was previously 

applied to map winter crops in Ukraine for 2016–2018 (Skakun et al., 2017). The approach uses 

a phenological metric known as the maximum NDVI during the green-up stage of winter crop 

development to differentiate winter crops from summer crops. A cropland map was used as input 

data to generate a binary cropland mask to eliminate the non-cropland area. For the remaining 

areas, we extracted the maximum NDVI from March 1 to April 6, which is considered the best 

informative period for early differentiation between summer and winter crops (Skakun et al., 

2017; Skakun et al., 2019). Since the NDVI was higher for winter crops and lower for summer 

crops during this period, we applied the maximum between-class variance method (OTSU 

thresholding) to automatically select appropriate thresholds for differentiating winter and 

summer crops (Wang et al., 2022). Taking into account the effect of regional differences, we 

chose a threshold that best fit each state. Finally, the binary mathematical morphological 

operations of erosion and dilation with a radius of 6 pixels were applied to the winter crop maps 

to reduce the salt-and-pepper noise presented as image speckles. 

4.3.3.2 Winter cereal extraction 

In the previous step, we extracted winter crop distributions. To obtain the distribution of winter 

cereal, it is also necessary to remove the disturbance of winter rapeseed, which has a similar crop 

calendar to winter cereal. According to previous studies, the VH backscatter of winter rapeseed 
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has large differences from winter cereal in terms of its taller plants and randomly oriented 

branches at late growth stages in May (Veloso et al., 2017). Thus, the maximum VH backscatter 

in May was employed as a specific characteristic to distinguish winter rapeseed from winter 

cereal (Huang et al., 2022). After that, a mean filter with a kernel radius of 1 pixel was applied to 

reduce speckle noise in VH-intensity images (Mullissa et al., 2021). Once again, we used OTSU 

thresholding and winter crops mask to select thresholds for each state that would more accurately 

identify winter rapeseed and winter cereal. For most of the Ukrainian states, the area of winter 

rapeseed is much smaller than that of winter cereal. In this case, the VH-VH-intensity image 

histogram was dominated by winter cereal. It no longer exhibited bimodality, which results in the 

OTSU thresholding method selecting an inappropriate threshold value. To address this issue, we 

collected winter rapeseed samples from the RapeseedMap10 dataset and the same number of 

winter cereal samples from winter crop maps after excluding winter rapeseed. We used these 

samples as input to the OTSU thresholding method and mapped winter cereal from 2019 to 2021 

with the output threshold. As before, we implemented binary mathematical morphology 

operations to reduce the salt-and-pepper noise resulting from the classification. Considering the 

general decline in crop NDVI due to the war, we anticipated that our method might not perform 

well in extracting winter cereals for 2022. Therefore, for the 2022 winter cereal distribution, we 

used the 2021 winter cereal data to represent it. Moreover, at the time of planting the winter crop 

in 2021, farmers did not anticipate the war and therefore would not have reduced the planted 

area. This estimation method was validated as feasible in previous studies due to the low inter-

annual fluctuations in crops (Lin et al., 2023). There was a negligible difference in the winter 

cereal distribution between 2021 and 2022. 
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4.3.4 Winter Cereal Yield Assessment 

Winter cereal yield assessment was done by developing a random forest regression model 

combining NDVI, climate records, and reference crop yield statistics (Figure 4.2). With the 

winter cereal mask, we extracted the maximum NDVI, cumulative precipitation, and average 

temperature during the growing season at the state level as input. These variables were 

considered to be associated with crop yields (Lin et al., 2023; Johnson, 2014)15,64. We randomly 

selected 80% of the samples for training and reserved the remaining 20% for evaluating model 

accuracy. 
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Figure 4. 2 Winter cereal yield map generation flow. (1) Extraction of winter full crop maps was 

based on Sentinel-2 MSI data and ESA WorldCover products to determine NDVI thresholding 

values through OTSU. (2) Maximum VH data were calculated based on Sentinel-1 SAR data, 

and after the mean filtering process, the winter cereal map was obtained by OTSU thresholding 

based on the winter crop mask and RapeseedMap 10 product. (3) Yield estimation was based on 

NDVI and real yield data of previous years combined with winter cereal map. 

 



83 

4.3.5 Confidence Intervals Calculation for the Prediction 

To compensate for the fact that the prediction results may include uncertainties such as 

randomness and assumptions based on historical data, we calculated 95% confidence intervals 

for the predicted data to improve the robustness of the data. These assumptions, including 

changing environmental factors, such as soil conditions and climatic factors, are considered 

consistent across the dataset. The steps for calculating the confidence intervals were as follows.  

First, the mean of the data set was calculated: 

𝜇 =
∑𝑥𝑖

𝑛
      Formula (1) 

where 𝜇 is the number of data points, 𝑥𝑖 represents each data point, and 𝑛 represents the total 

number. 

Second, we calculated the standard deviation (𝑠): 

𝑠 = √
∑(𝑥𝑖−𝜇)2

𝑛−1
       Formula (2) 

Third, we calculated the standard error (SE). This step was used to calculate the margin of the error: 

𝑆𝐸 =
𝑠

√𝑛
        Formula (3) 

Fourth, we calculated the confidence interval (CI): 

𝐶𝐼 = 𝜇±(Z × 𝑆𝐸)    Formula (4) 

where Z =1.96 for a 95% confidence level. 

Finally, the sum range based on the confidence interval was calculated by multiplying the 

bounds of the confidence interval by the number of data points: 

𝑆𝑢𝑚 𝑅𝑎𝑛𝑔𝑒 =  𝐶𝐼 × 𝑛   Formula (5) 

4.3.6 Network Analyses 

Network analysis is a widely accepted approach. It has been used to examine the relationships 

within and between networks of nodes and the connections, or edges, that link them. The nodes 



84 

of network analysis are usually entities (including individuals, organizations, and countries), 

while the edges represent the relationships or interactions between these entities. Network 

analysis has been extensively applied in multidisciplinary studies to reveal the underlying 

patterns and dynamics of complex systems. It has been essential to sociology's understanding of 

social interactions and community structures, illuminating the connections between people and 

groups (Granovetter, 1973). Network analysis has also contributed to the field of biology, where 

it has been used to study gene interactions and protein function, thus contributing to the 

development of genomics and systems biology (Pósfaiet al., 2011). Previous work also 

demonstrates a solid foundation for examining the complexities of global trade systems by 

network analysis. Kim and Shin applied a social network approach to examine how 

regionalization and globalization impact international trade patterns. They provided a 

longitudinal view of the evolution of trade networks toward denser and more decentralized 

forms, which validates the use of network analysis to comprehend global economic integration 

(Kim & Shin, 2002). Mahutga explored how globalization and the "new international division of 

labor" affect structural inequality in the world economy through a network analysis (Mahutga, 

2006). Notably, other research further discussed the trade structure. For instance, Fagiolo et al. 

provided a detailed examination of the World Trade Web using a weighted network analysis, 

highlighting the structural properties of trade relationships and their evolutions over time, which 

revealed insights into trade interdependencies and clustering behaviors of nations based on trade 

intensity (Fagiolo, 2008). In addition, Smith and White explored how countries interacted in the 

global trading system and the changing nature of their economic exchanges, thereby revealing 

structural changes in trade networks (Smith & White, 1992). The analysis of specific food trade 

networks has also been conducted, with Chung et al. discussing the dynamics of trade networks 



85 

in space and exploring food trade networks in the context of human health, which are influenced 

by a variety of factors in health, agricultural, and trade policies (Chung et al., 2020; Chung et al., 

2021). Previous studies have also examined global seafood trade networks from 1994 to 2012, 

highlighting the trend of increasing globalization of seafood trade. Through network analysis, the 

authors identified changes in trade patterns, centrality, and partnerships, indicating increased 

regionalization (Chung et al., 2020; Herzberger et al., 2019; Gephart & Pace, 2015). The studies 

also discussed the implications of these changes for food availability and environmental impacts. 

Useful attempts have also taken place in the trading system of crops. For example, a complex 

network analysis was used to study the international wheat trade network from 2009 to 2013. 

The authors assessed the network's resilience and vulnerability to supply crises, noting that while 

the network's resilience has improved slightly, some developing countries have become more 

vulnerable. The study simulated the impact of supply disruptions on food availability and 

analyzed how COVID-19 might affect global wheat trade dynamics. These foundational studies 

underscore the suitability of network analysis for exploring the complex dynamics of interactions 

and dependencies among countries that characterize global trade (Gutiérrez-Moya et al., 2021). 

Thus, in this study, we used network analysis to build a real-world crop trade network and 

simulated crop trade networks affected by war production cuts and trade ban policies enacted by 

global exporters. We focused on the dynamics of three key network metrics: connectance, 

evenness, and modularity, which reflect the impacts of war on the food trade system. We used 

the 2021 UN Commodity Trade Statistics Database (Comtrade) to build the 2021 real-world 

trade network. Comtrade provides information on the year of trade, commodity type, volume of 

goods, amount of trade, exporting country, and importing country, and has been verified as a 

reliable source of data for constructing trade networks for commodities (Chen et al., 2022). The 
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network data for 2022 were constructed as a simulation combining the results of remote sensing 

forecasts—production data after the Ukraine production cuts—and policy data. First, the ratio 

between total Ukraine exports and production in 2021 was obtained, and the total amount of 

exports in 2022 was projected. Second, keeping the ratio between Ukraine's exports to other 

countries in 2021, data on Ukraine's exports to other countries in 2022 were allocated using the 

total amount of predicted exports. The countries that had enacted export bans were considered 

“no trade” in 2022. Then, we constructed simulated trade networks for 2022. To validate the 

accuracy of the simulated 2022 trade network, we compared the predicted trade quantities for 

wheat, barley, oats, and total winter cereals against actual trade data obtained from the 2022 

Comtrade dataset. We conducted a comparative analysis by plotting the predicted and actual 

trade quantities across income groups (high, upper-middle-, lower-middle-, and low-income) to 

assess how well the simulation aligned with real-world outcomes. We further conducted linear 

regression analyses between the predicted and actual trade values, calculating R² values to 

measure the strength of the correlation. 
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Figure 4. 3 Network metrics in global winter cereal trade network analysis. Connectance, 

modularity, evenness, and modularity from top to bottom. 

 



88 

For each network, we calculated the connectance, evenness, and modularity indices of the global 

trade networks for wheat, barley, and oats by year for 2021 and 2022 through R package igraph. 

Connectance was calculated as the proportion of present links to all possible links in the network, 

weighted by the absolute value of the correlation coefficient in previous studies (Csardi et al., 

2006). Here, we adapted the traditional concept of connectance by using trade volumes as 

proxies. This approach allowed us to quantify not only the existence of trade relationships 

between countries but also the intensity and economic significance of these connections. As a 

result, the connectance values reported reflect the absolute magnitudes of trades, rather than a 

normalized proportion of possible connections, which is particularly valuable for analyzing the 

resilience and vulnerabilities of global trade networks in the context of disruptions like the 

Russia-Ukraine war. Evenness was referred to as the homogeneity of the link strengths in the 

network. In the context of this research, where understanding the complex interdependencies of 

international trade networks is essential, igraph offers a range of community detection algorithms 

(Csardi et al., 2006). However, many of these algorithms have limitations for this specific 

application. The edge betweenness algorithm, which identifies clusters by removing high 

betweenness edges, can be too computationally intensive for large trade networks. The fast 

greedy algorithm, while efficient in modularity optimization, may struggle with the complex, 

overlapping relationships of global crop trade. The InfoMap method, which relies on information 

theory to reveal communities, may not accurately capture the nuanced trade flows. The louvain 

algorithm is efficient for large networks but might miss subtler community structures. The 

optimal algorithm offers the best modularity but is computationally impractical for such vast 

datasets. Spinglass uses simulated annealing for modular networks but can be sensitive to 

parameter selection, and the leiden algorithm improves on louvain but still might not capture the 
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trade networks' intricate patterns as effectively. In contrast, the walktrap algorithm is best suited 

for capturing the nuanced and overlapping communities within global crop trade networks, 

providing more meaningful insights into complex trade relationships. Thus, modularity was 

calculated by using walktrap in igraph, which separates densely connected subgraphs via random 

walks using correlation coefficients as weights. 

First, the volume of food trade is one of the hallmarks of globalization. As globalization becomes 

more advanced, developed supply chains facilitate food trade between countries, providing food 

availability to more people in food crises and increasing internal connectance. Conversely, 

counterglobalization trends can reduce the volume of trade and cause decoupling between 

countries. Moreover, reduced production caused by, for example, natural disasters and wars, can 

increase demand in food-importing countries yet weaken the exports and capacities of food-

exporting countries. Second, suppose the evenness of food trade networks among countries 

decreases by restricting or banning certain food exports through export policies. In that case, the 

dependence of food-importing countries increases globally for a few major exporting countries 

and reduces the resilience of the network. A reduction in production in the remaining exporting 

countries, for any reason, could trigger a dramatic food availability risk. Third, a decrease in 

modularity (i.e., the emergence of an oligarchy of food exporters) may breed new hegemonies. 

The pricing power for food would be in the hands of a few countries, and the number of people 

who cannot afford to buy food will increase. Therefore, determining how diverse crises alter 

these different network metrics can provide a more integrated view of war impacts on global 

food availability. 

The trade volume between countries was converted to a network graph object and analyzed by 

the R package igraph (Csardi et al., 2006). In the network, the nodes represent the individual 
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countries that interact, and the trade quantity between the nodes represents the directed food 

flows and their weights. Specifically, in 2021, we used the export data reported by countries with 

their partners to construct a directed trade network, using the absolute trade quantity, or trade 

quantity, as the connection weight between nodes. For 2022, we assumed that the trade network 

of countries would have remained unchanged, except for the decline in exports due to reduced 

production in Ukraine and the bans on exports by other countries to protect their domestic food 

availability. Thus, the network for 2022 was calculated based on 2021, and the trade volumes of 

countries that had enacted export bans were zeroed based on 2021, meaning that these countries 

would not export wheat, barley, or oats to any country in 2022. In contrast, 2022 imports from 

Ukraine were recalculated for importing countries based on remotely estimated production. First, 

we calculated the ratio between total exports and total production of wheat, barley, and oats in 

2021, which was used to calculate the ratio of exports of these three winter cereals in 2022. 

Then, this ratio was applied to the production estimated by remote sensing for 2022 to obtain the 

total exports of the three cereals in 2022. Next, by calculating the ratio of exports to each country 

to total exports, we simulated the exports from Ukraine to other countries in 2022 and used these 

export volumes as weights for the network. Besides the network metrics, we used the weighted 

node degree (the average strength of connection to other nodes, calculated as the product of the 

degree of a node and the mean of the absolute correlation coefficients of all connections) to 

calculate the connectance of countries in the interaction networks. We calculated this value for 

each node in the networks to identify the most connected node and the change in connectance of 

each node along the winter crop trade network. We compared the composition of the network 

modules from 2021 to 2022. Note that the existence and composition of the modules in a 
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network are independent of the network’s modularity value, which means that modules can be 

identified even if the modularity value is low. 

4.4 Results 

4.4.1 Winter Crop Production Reduction Observed from Satellite 

Based on the state-level official statistical data, we evaluated the performance of our method at 

the state level for identifying winter cereals. Appendix B Figure 1 shows the mapping results of 

the validation for 2019 to 2021. The R2 values between the satellite-derived area and the official 

statistical data ranged from 0.80 to 0.94 for 26 states. Meanwhile, the root mean square error 

(RMSE) ranged from 55.94 km2 to 116.11 km2. Overall, there is good correspondence between 

official statistical data and identified planted areas. In addition, our state-level yield estimation 

results compared well against official statistics, with an RMSE of 346 kg/ha and an R2 of 0.70 

(Povey & Grainger, 2015; Wasserman, 2013). The prediction errors can arise due to the inherent 

noise in historical data, inaccuracies in model assumptions, or the unpredictability of future 

conditions not captured in historical observations (Agrawal & Patel, 2020; Chatfield & Xing, 

2019; Smith & White, 1992). To account for these uncertainties, we have calculated a 95% 

confidence interval, depicted in Figure S4.1. This interval reflects our best estimate of the 

expected range of predicted values, accounting for possible variations inherent in our modeling 

framework. 

The monitoring results of remote sensing satellites and official statistical data show that the 

winter crop was mainly distributed in the central and southern parts of Ukraine in 2022 (Figure 

4.4). After the war’s outbreak, winter crops' main production areas shifted from Odessa, 

Zaporizhzhya, and Mykolayiv states to Zaporizhzhya, Dnipropetrovs'k, and Kherson states. 

Meanwhile, war in the eastern region threatened the crops in the war-affected areas and affected 
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the growth and development of winter crops in the entire region (NDVI<0). From the NDVI 

changes in the longitude (Figure 4.4 (a)) and latitude (Figure 4.4 (c)) directions, the NDVI values 

in the central part of the study area were higher than those in the surrounding areas, and the 

winter crops yield was higher. The yield estimation results (Figure 4.4 (d)–(g)) show that the war 

threatened agricultural production and food availability in Ukraine. If war losses are not 

considered, compared to 2021, winter crop yield reduced by 5.42 million tons (95% CI range: (-

0.05, 10.88)) in Ukraine, including 4.72 million tons (95% CI range: (-0.22, 9.67)) of winter 

wheat and 0.86 million tons (95% CI range: (-0.43,2.15)) of winter barley. But, if we consider 

30% of war losses, compared to 2021, winter crop yield would be reduced by 15.04 million tons 

(95% CI range: (8.68, 21.40)), including 12.89 million tons (95% CI  range: (7.72, 18.05)) of 

winter wheat, 2.09 million tons (95% CI range: (0.29, 3.89)) of winter barley, and 0.07 million 

tons (95% CI range: (0.02, 0.12)) of winter oats (Lin et al., 2023). As the main battlefields of the 

war, the food-producing croplands of the states near the eastern and southern parts of Ukraine 

have been affected. The total yield of winter cereal in Odessa, Donets'k, Kharkiv, Zaporizhzhya, 

and Mykolayiv states decreased by over 7.68 million tons. This decline was also observed in the 

total yield of winter wheat within these states, with a decrease exceeding 6.29 million tons. 

Similarly, the total yield of winter barley exhibited a reduction, surpassing 1.38 million tons, 

particularly in Odessa, Zaporizhzhya, Mykolayiv, and Kherson states. In addition, the yield of 

winter oats also decreased. The observed decline in NDVI across  kraine’s major winter cereal 

production zones reflects more than just a decrease in output. These patterns likely signal 

environmental degradation caused by direct and indirect consequences of war. Active conflict 

zones have experienced destruction of agricultural infrastructure, abandonment of cropland, and 

limitations on irrigation access, all of which contribute to reduced vegetation productivity. 
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Beyond short-term yield losses, prolonged exposure to these stressors could degrade soil 

structure, reduce organic content, and increase the risk of erosion or salinization — especially in 

semi-arid regions of eastern Ukraine. These environmental consequences may persist long after 

hostilities cease, underscoring the long-tail effects of war on agroecosystems. While our analysis 

focuses on NDVI as a proxy for vegetation condition, future studies could incorporate field 

validation or finer-scale indices (e.g., NPP, land surface temperature, or evapotranspiration) to 

quantify the cascading environmental damages more precisely. 
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Figure 4. 4 Satellite observations reveal that winter crop yield in Ukraine decreased in 2022. (a) 

NDVI change in longitude direction; the x-axis is the pixel number while the y-axis is the sum of 

total NDVI change value. (b) Schematic diagram of NDVI and war areas. (c) NDVI change in 

latitude direction. (d) The reduction in winter wheat yield in each state. (e) The reduction of 

winter barley yield in each state. (f) The reduction of winter oats yield in each state. (g) The 

reduction of winter crop yields in each state. Due to Russia's control, crop yields in the Crimea 

and Sevastopol regions were not considered in this study; the y-axis is the pixel number while 

the x-axis is the sum of the total NDVI change value. 
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4.4.2 Winter Cereal Trade Networks in 2021 

We visualized the global trade networks for wheat, barley, and oats in 2021 (Figure 4.5 (a)–(c), 

three letters represent abbreviations of country names; for specific names of countries, see 

Appendix B Table S1). Ukraine is one of the major exporters in the world’s network of wheat, 

along with the USA, Russia, Canada, Australia, and France. These major exporting countries 

have very different structures of cooperation partners. For example, the United States, Russia, 

and Canada export mainly to countries with upper-middle-income levels. The United States 

exports mainly to Mexico, Philippines, China, Japan, Korea, Colombia, and Thailand. Russia 

exports mainly to Turkey, Egypt, Azerbaijan, Kazakhstan, Nigeria, Bangladesh, and Thailand. In 

contrast, Canada exports mainly to China, Japan, Indonesia, Peru, Colombia, and France’s main 

partners are mostly high-income countries. Australia and Ukraine are the main exporters to 

lower-middle-income countries. Among them, Ukraine is the only one of these major exporters 

in the lower-income (lower-middle-income and low-income) level category. It mainly exports to 

countries with lower-middle-income levels, such as Egypt, Indonesia, Pakistan, Morocco, 

Bangladesh, and the Philippines, and low-income countries, such as Ethiopia, Yemen, 

Mozambique, Madagascar, and Indonesia. A  number of countries with upper-middle-income or 

high-income are the major wheat-importing countries in this trade network: China, Turkey, Italy, 

and Brazil. The reasons for this are closely related to these countries' population sizes, cultivated 

patterns, and dietary habits. 
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Figure 4. 5 Global trade flows (top 25%) of winter cereals among income groups in 2021 (for 

trade flows among all countries, see Appendix B Figure S4.2). Networks for winter cereals—

wheat (a), barley (b), and oats (c)—classified by income levels. Trade flows are depicted using 

chord diagrams, with the direction and volume of trade represented by the connecting bands 

between countries. The color coding distinguishes the income levels of countries, with high-

income countries in red, upper-middle-income countries in yellow, lower-middle-income 

countries in blue, and low-income countries in green. Thicker bands indicate higher volumes of 

trade between the respective countries. 
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In the global trade network for barley, the top exporters are very similar to those for wheat and 

include Australia, Ukraine, Russia, France, Canada, Argentina, and Germany. Ukraine remains 

the main exporting country with the lowest overall income level among them, and it exports 

large quantities of barley to China, Turkey, Saudi Arabia, Libya, Tunisia, and other countries. In 

this trade network China, Saudi Arabia, Netherlands, Turkey, and Belgium are the most 

important importers of barley. In the global trade network of oats, Canada's export to the United 

States is the largest trade flow, making Canada and the United States the largest oats exporters 

and importers in the world, respectively. Australia, Poland, Russia, and Sweden are also major 

exporters, while USA, Germany, China, Netherlands, Belgium, and Spain are the main importers 

of oats.  

In summary, Ukraine is one of the leading exporters of winter grains, with the highest total 

exports of wheat and barley, and trades mainly with lower- and upper-middle-income. As the 

only lower-middle-income exporting country, Ukrainian population may be having difficulty 

affording its own grain production investments during the war, and its reduced production may 

impact food availability for populations in more vulnerable middle-income countries. 

4.4.3 Affected Winter Cereal Trade Networks 

The winter cereals (wheat, barley, and oats) for 2021–2022 are used as an example to visualize 

the predicted dynamics in each country in the trade networks under war effects. We simulated 

and analyzed it based on the fact that  kraine’s reduced production led to a drop in exports to 

other countries and a ban on exports by other countries.  

The validation results, shown in Figure S4.3, demonstrate a strong correlation between the 

simulated 2022 trade networks and actual trade data for wheat, barley, oats, and total winter 

cereals. Although some variations exist, particularly for lower-middle- and low-income 
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countries, where greater deviations in trade quantities are observed due to higher vulnerability to 

market crises, the overall distribution patterns remain consistent across income levels. The 

regression analysis further supports the reliability of the simulation, with the R² value of total 

winter cereals is 0.72, the R² value of wheat is 0.76, the R² value of barley is 0.73 while the R² 

value of oat is 0.59. The validation results indicate that our simulation effectively captures the 

general trends in global trade volumes.  

Based on the simulation result, we analyzed the percentage impact of each country in the three 

winter cereal trade networks for the 2021–2022 season. The visualizations (Figure 4.6; for 

specific decreasing rates, see Appendix B) reveal that countries in Africa and Asia were the most 

affected, with reductions in imports ranging from 75% to 100%. Specifically, countries such as 

Guinea-Bissau, Sierra Leone, the Democratic Republic of Congo, Somalia, and Eritrea in Africa, 

as well as Montenegro, Albania, the former Yugoslav Republic of Macedonia, and Belarus in 

Europe, were among the most heavily impacted. Additionally, the European countries 

Macedonia, and Belarus were expected to experience reductions in imports, while in Asia 

affected countries included Turkey, the Syrian Arab Republic, Georgia, Armenia, Azerbaijan, 

Kazakhstan, Uzbekistan, Kyrgyzstan, Mongolia, Nepal, and Bhutan. A noteworthy observation is 

that among the countries most heavily impacted by the reductions in winter cereal exports, only 

Antigua and Barbuda belong to the high-income group. Six affected countries are classified as 

low-income, seven as low to middle-income, and eight as middle-to high-income. The disparities 

in the impacts of the export reductions between high-income and low-income countries underline 

the importance of targeted policies and programs to support vulnerable populations during times 

of conflict. By recognizing and addressing different groups' unique needs and challenges, we can 

work toward building more resilient and equitable societies.  
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Figure 4. 6 Percentage reductions in projected imports in 2022 for each country. (a) Absolute 

value and rate of change of total import volume by country from 2021 to 2022; contents of (b)–

(f) are the shares of countries with different income levels in different affected percentage 

intervals. 

 

Nine countries in the highly impacted category (more than 50%), are classified as lower-middle-

income: Egypt, Bangladesh, Senegal, Pakistan, Lebanon, Congo, Cameroon, Benin, and the 

United Republic of Tanzania. Five countries at the low-income level and nine lower-middle-

income countries were highly impacted, along with four upper-middle-income level countries 

and five high-income countries. In the countries less impacted (25%–50% reduction in imports), 

most are in the high-income category which indicates that high-income countries are more 

resilient and have a greater diversity of import providers. 
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Based on remotely sensed yield estimates and information on export ban policies, we simulated 

the winter cereals trade networks of 2022 to reflect the effects of these conditions (Figure 4.7). 

We considered the global trade networks to remain consistent with 2021 in terms of export 

volumes and trade parties, except for the impacts of reduced production and policy measures. To 

analyze these changes, we employed network analysis to model the trade network dynamics, 

focusing on key metrics—connectance, evenness, and modularity—to capture the war’s impact 

on the global food trade system. The 2021 network was built using data from the UN Comtrade 

database, which provides detailed trade statistics. For 2022, we simulated the network by 

integrating remote sensing–based yield forecasts and export policy data. We maintained the 2021 

ratio of  kraine’s exports to its production, projecting the total exports for 2022, and allocated 

exports proportionally to countries. For those countries with export bans, trade was assumed to 

cease, allowing us to construct simulated 2022 trade networks reflecting the expected shifts. 

According to the simulated results, the most affected importers in the wheat trade network were 

mainly Turkey at the upper-middle-income level, Egypt, Bangladesh, Indonesia, and Nigeria at 

the lower-middle-income level, and Yemen at the low-income level. Overall, the most affected 

group of countries was the upper-middle-income countries, which were expected to lose more 

than 46.58 million tons of wheat imports, followed by the lower-middle-income countries, which 

would see a reduction of 38.92 million tons of imports compared to 2021 imports. The low-

income countries were estimated to face a shortfall of 25.59 million tons of grain imports, while 

high-income countries were the least affected, facing only 20 million tons of import reduction. 
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Figure 4. 7 Trade networks affected by production cuts in Ukraine and external cereals export 

bans in 2022 (top 25%) (for trade flows among all countries, see Appendix B Figure S4.4). 

Global trade networks for winter cereals—wheat (a), barley (b), and oats (c)—across various 

countries classified by income levels. Trade flows are depicted using chord diagrams, with the 

direction and volume of trade represented by the connecting bands between countries. The color 

coding distinguishes the income levels of countries, with high-income countries in red, upper-

middle-income countries in yellow, lower-middle-income countries in blue, and low-income 

countries in green. Thicker bands indicate higher volumes of trade between the respective 

countries. 
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For the worldwide barley trade network, reducing production in Ukraine and national trade 

protectionism in Russia were the most influencing factors. Turkey, China, and Libya at the 

upper-middle-income level, Tunisia at the lower-middle-income level, and Saudi Arabia at the 

high-income level are the most affected countries. In the oats trade network, despite the ban on 

oats exports published by Hungary, Kyrgyzstan, Kuwait, and Turkey, the reduction in production 

in Ukraine still had the most impactful role due to the volume of trade. The most affected 

countries were India and Pakistan at the lower-middle-income level, Libya, Serbia, Bosnia 

Herzegovina at the upper-middle-income level, and Hungary, Switzerland, and Germany at the 

high-income level. 

Production reduction in Ukraine and the introduction of protectionist bans on the trade of winter 

cereals in various countries as a result of the Russia-Ukraine war have reduced the connectance 

of the global trade networks for the three grains, with the wheat trade network being the most 

affected (Figure 4.8). The modularity of the three networks has also increased, which illustrates 

the impact of the war on the network, causing elevated national protectionism and reduced trade 

between countries. Specifically, in 2021, wheat, barley, and oats trade networks displayed high 

connectance and global integration, signifying well-established supply chains. In 2022, the 

geopolitical disruptions due to the Russia-Ukraine war caused disruptions manifested as a 

pronounced fragmentation in the trade networks of all three grains, leading to smaller, regionally 

concentrated clusters.  
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Figure 4. 8 Effect of war on the network structure of winter cereals. For 2021 and 2022, 

respectively, (a1) and (a2) indicate the wheat network, (b1) and (b2) indicate the barley network, 

and (c1) and (c2) indicate the oats network. These figures show the effects of the Russia-Ukraine 

war on (i) connectance, (ii) modularity, and (iii) evenness in different years. Each colored 

connecting piece in the figure represents a small trade group with strong trade links. The 

connectance values exceed the typical [0,1] interval because they are derived from trade 

volumes, which measure the strength and economic impact of trade connections. This method 

allows us to capture the intensity of trade flows, offering a more detailed understanding of the 

network's structure and the potential impact of disruptions on global food security. 
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For wheat, the trade network's fragmentation was particularly evident (Figure 4.8 (a1), (a2)). In 

2021, the dense connections between countries reflected a high level of global trade, 

corroborating findings by the FAO that highlight the importance of Ukraine and Russia as wheat 

exporters (FAO, 2023a). However, the 2022 data indicate a decline in connectivity, signaling the 

urgent search for alternative suppliers due to Ukraine's diminished production and export 

restrictions by other nations. This shift resulted in isolated regional clusters, showing a decline in 

global trade interconnectedness. 

Similarly, the barley network faced reorganization (Figure 4. (b1), (b2)). As per the International 

Grains Council (2022), Ukraine was one of the world's leading barley exporters, and the decrease 

in its production due to conflict had cascading effects. The 2022 network reflects fewer trade 

connections, and regional clusters emphasize countries’ relying more on local or nearby 

suppliers. 

The oats network, comparatively smaller and less globally connected, also underwent a 

noticeable shift (Figure 4. (c1), (c2)). While its 2021 network showed less connectivity than 

wheat or barley, the 2022 data further highlight fragmentation, emphasizing regional clusters 

more pronouncedly. The shift to localized trade reflects broader trends observed in supply chain 

research during crises (Gereffi, 2020). 

Our results indicate that war reduces the homogeneity of wheat and barley trade networks, 

suggesting that trade between countries was more isolated than before. Interestingly, the conflict 

causes a slight increase in the evenness of the oats network, which may be because the decrease 

in trade in the oats network is mainly driven by a single country, Ukraine, thus making the 

overall network more even as  kraine’s importing countries chose other import channels. 
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These observations underscore the global grain trade's vulnerability to geopolitical events and 

the imperative need to diversify supply sources to bolster resilience. As witnessed during the 

COVID-19 pandemic (Gereffi, 2020), this fragmentation and regionalization of trade networks, 

driven by geopolitical factors, necessitate a rethink in supply chain strategies to ensure global 

food security. 

4.4.4 War Affects Adjacent and Distant Countries Differently 

Generally speaking, in a metacoupled world, war or other crises can have internal, peripheral, 

and distant effects. The impact on adjacent countries due to local wars is often referred to as a 

pericoupling effect, while the impact on distant countries is a telecoupling effect (Liu, 2023).  

To quantify how the Russia-Ukraine war has differentially affected adjacent and distant countries 

in the winter cereals network, we accounted for all affected exporters and their neighboring and 

distant importers. We found that to the extent that wheat, barley, and oats were affected, the war 

had a much greater impact on distant countries than on adjacent countries, which means a larger 

trade difference (see Table 4.1). 

Table 4. 1 Trade quantity differences between adjacent and distant countries of Ukraine and 

other countries (Unit: ton) from 2021 to 2022 
Country Type Wheat Barley Oats 

Ukraine 

Distant 7828.89 2252.23 1.75 

Adjacent 41.82 0.19 0.19 

Other countries 

Distant 181,829.83 3748.59 0.16 

Adjacent 50,292.37 431.02 0.17 

Note: The values in the table are the sums of differences of the countries’ trade with adjacent and 

distant countries. 

 

Wheat exports to distant countries curtailed a total of 189,658.72 tons in 2022, while exports to 

adjacent countries shrank by only 50,334.19 tons. A similar phenomenon was observed for 
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barley, where imports in distant countries shrank by 6000.82 tons, while imports in adjacent 

countries shrank by only 431.21 tons. In the least affected oats trade network, the distant 

importing countries experienced a total reduction of 1.91 tons, while the adjacent countries had a 

total reduction of 0.36 tons. 

Ukraine and other exporting countries had different levels of impact on distant and adjacent 

places (Figure 4.9). Ukraine showed a clear tendency to have a higher degree of influence on 

distant places in all trade networks of wheat, barley, and oats, while other exporters showed a 

tendency to have a higher degree of influence on distant places in wheat and barley networks. In 

the trade networks of other countries’ exports of oats, there is no large difference in the degree of 

influence between distant and adjacent partners. 

 

Figure 4. 9 Comparison of the degree of impact of Ukraine and other exporting countries on 

distant and adjacent importing countries. Share of total wheat, barley, and oats exports by 

geographic proximity and exporter type. The bars represent the proportion of winter cereal 

exports (wheat in light red, barley in red, and oats in blue) to distant and adjacent countries 

relative to Ukraine (UKR) and other major exporters in 2022. "Distant UKR" represents 

countries geographically distant from Ukraine, while "Adjacent UKR" refers to neighboring 

countries. Similarly, "Distant Other" and "Adjacent Other" indicate non-Ukraine exporters, 

categorized by their proximity to major importing regions. 
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The greater impact on distant countries can be attributed to both logistical and strategic trade 

dependencies. Distant nations, particularly those in Africa, the Middle East, and parts of Asia, 

rely heavily on Black Sea exporters like Ukraine and Russia for their cereal imports due to 

established long-distance trade agreements, price competitiveness, and historical supply patterns. 

These countries often lack regional alternatives with comparable export capacity, making them 

more vulnerable to sudden supply chain disruptions. In contrast, adjacent countries, despite 

geographic proximity, typically maintain more diversified import portfolios within their regional 

blocs or have greater overland transport and contingency options available. 

Furthermore, maritime shipping routes to distant countries were disproportionately affected due 

to disruptions in port operations, heightened insurance costs, and geopolitical risks in the Black 

Sea region. Many distant importers lack domestic cereal production to buffer shortfalls, 

increasing their exposure to international shocks. Adjacent countries, such as those in Eastern 

Europe, benefited from overland logistical flexibility and often received prioritized grain flows 

through humanitarian corridors or bilateral agreements. As a result, the relative shock magnitude 

observed in distant importers reflects both structural trade dependencies and the compounded 

risks of distance, limited substitution, and reduced logistical resilience. 

4.5 Discussion 

To quantify the impact of war on winter crop production in Ukraine, we used remote sensing 

algorithms to map the distribution of winter cereal and predict the production of winter cereals 

(Otsu, 1975)49. Considering 30% of war losses, results indicate that compared to 2021, winter 

crop production in Ukraine decreased by 15.04 million tons (95% CI range: (8.68, 21.40)), with 

the main war zones in the eastern and southern regions severely affected, which shows 

production distribution trends similar to the research findings of Jagtap et al., Deininger et al., 
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and Lin et al. However, the resolution in our study is 30-m which is much higher than in other 

studies (Deininger et al., 2023; Lin et al., 2023; Jagtap et al., 2022). It indicates that our results 

will have a more accurate estimation of the specific amount of production decrease. As a net 

exporter of grain, Ukraine has always been an important granary for Europe and even the world 

(Hellegers, 2022; Mottaleb et al., 2022). The ongoing war has directly damaged arable land and 

agricultural infrastructure, leading to direct losses of crops in the war zones and difficulties in 

cultivating some arable land (Behnassi & El Haiba, 2022; Shumilova et al., 2023; Levy & 

Leaning, 2022). Ukraine's lost production of three winter cereals in 2021 could have met the 

caloric needs of 76 million adults for a year (FAO, 2001; FAO, 2023b). At the same time, the 

war brought huge labor losses, with at least 6.5 million refugees from Ukraine recorded globally, 

leading to a shortage of agricultural labor and the abandonment of arable land (Ben Hassen & El 

Bilali, 2022; USA for UNHCR, 2023). The ongoing Russia-Ukraine war has impacted Ukraine's 

winter crop production, as the war disrupted key stages of farmland management such as 

fertilization and irrigation, leading to a large reduction in grain production (Deininger et al., 

2023; Lin et al., 2023). This reduction could exacerbate an already precarious global food 

supply, particularly given the potential for further disruption caused by extended heatwaves in 

the northern hemisphere in 2022 and the sanctions imposed on Russia. The war has also led to a 

surge in global fertilizer and energy prices, which has created disruptions in the fertilizer market 

and reduced farmers' willingness to use energy and fertilizers, potentially leading to worldwide 

crop reduction and food crisis (Abay et al., 2023; Pörtner et al., 2022). The complex interplay 

between geopolitical war and global food availability underscores the need for proactive 

measures to address the vulnerabilities of global food supply chains, particularly in regions that 

are prone to instability or war. 
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Fortunately, potential remains for mitigating an impending food crisis that could be triggered by 

the simulated results in this study. Notably, some major grain-exporting countries boosted their 

exports to compensate for the absence of Ukraine and other countries that have enacted trade 

bans from the market (Glauben et al., 2022). The results of a 2023 network analysis reveal 

important shifts in the global trade dynamics for wheat, barley, and oats following the 

disruptions caused by the Russia-Ukraine war and export bans in 2022 (Figure S4.5). Several 

major grain-exporting countries have stepped in to mitigate the decline in Ukrainian exports, 

ensuring a relatively stable global supply. Notably, the United States, Australia, Canada, and 

Argentina have increased their wheat exports, helping to balance the shortfall. As the 2023 wheat 

network analysis indicates, the connectance value has increased (14871835.6793), and the 

evenness metric (0.8283) suggests a more balanced distribution of trade flows, reflecting the 

successful redistribution of supply routes among key exporters. In the barley trade network, 

countries such as Australia, France, and Germany have emerged as crucial exporters, alongside 

Argentina and Canada, filling the void left by the disrupted Ukrainian supply chains. The 2023 

analysis shows a connectance value of 14549313.9751 and the evenness of 0.7727, indicating 

that the barley trade system has also adapted to the disruptions, with more countries sharing the 

export burden. The oats trade network has seen similar adjustments, with Poland, Australia, and 

Brazil playing pivotal roles in stabilizing the global supply chain. The 2023 network analysis 

highlights a connectance of 3071156.198 and the evenness of 0.888, signifying a relatively equal 

distribution of trade volumes among key exporters.  

However, it is also important to note that many of the exporters stepping in to fill these gaps are 

from high-income or upper-middle-income countries. These countries are typically better 

equipped to respond to sudden increases in global demand due to their established infrastructure, 
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robust agricultural sectors, and the ability to quickly scale production and have a strong 

motivation to increase their export quantity with a rapidly increasing price. Although these 

countries can bridge the gap caused by Ukraine's absence in terms of total exports, several 

challenges need to be addressed. Negative factors, such as panic surrounding food availability 

and port blockades resulting from the Russia-Ukraine war, have rapidly increased agricultural 

commodity prices in a short period. Ukraine's primary trading partners include lower-middle-

income and upper-middle-income countries, with fewer high-income and low-income countries. 

Regions such as low-income European and African countries that rely on food imports from 

Ukraine to meet domestic needs face a huge challenge because their populations cannot afford 

the rapidly rising food prices. Consequently, while major exporting countries may close the 

export gap, reduced affordability continues to pose a threat to global food availability. Some 

countries have tried to create new cropland from forests or other lands to increase food 

production, but this may further affect environmental sustainability. Using the metacoupling 

framework, we quantitatively estimated the negative impact of the Russia-Ukraine war on the 

winter grain trade there and in interlinked countries worldwide (Liu, 2023). While reducing 

imports from countries adjacent to the focal system, the war also has a much larger impact on 

distant importers (Chai et al., 2024). This finding reveals the urgency and need for attention to 

potentially vulnerable countries. In the face of these challenges, the international community 

needs to improve its overall understanding of the countries affected. The regions where imports 

will be most affected may not be those bordering these countries, but rather the distant regions. 

Policies and subsidies for these countries, which may be underrecognized, will be essential for 

achieving sustainable development goals. 
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The current food crisis resulting from the Russia-Ukraine war poses many challenges, including 

rapidly escalating global commodity prices, declining affordability in less developed countries, 

and geopolitical tensions. In order to achieve food availability, the international community must 

focus on the seemingly localized impacts that transcend regions. We recommend calling for a 

highly resilient agenda, led by international organizations such as the FAO, that focuses on 

distant places of high vulnerability and fosters intercountry cooperation. This agenda should 

prioritize countries with low levels of development and high dependence on food imports in 

order to guarantee food availability for vulnerable groups. By working together under a 

harmonized and resilient framework, the international community could take decisive steps 

toward achieving Sustainable Development Goal 2 and ensuring a world free from hunger for all. 

It is important to note that inherent uncertainties in trade dynamics data and satellite imagery 

may influence the reliability of our results. Nationally reported export data might contain 

inaccuracies due to reporting errors or political and economic motives. Some exporters with 

large winter cereals storage capacity might have increased their exports driven by increasing 

prices, creating differences between the true trade network and the simulated results (Figure 

S4.5). Similarly, satellite imagery, while effective in monitoring large-scale agricultural changes, 

has limitations in spatial and temporal resolution that might affect the accuracy of yield 

estimates. The Sentinel-1 data, while offering advantages like cost-effectiveness and all-weather 

imaging, still pose challenges in distinguishing crop changes at small scales over short periods. 

These factors, along with model assumptions and unpredictable future conditions, necessitate 

caution when interpreting our findings. To address these uncertainties, we calculated confidence 

intervals for our yield predictions, reflecting possible variations in our modeling framework. In 

addition, because the simulation setup considers changes based on the 2021 trade system and 
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may ignore the elasticity of the markets, i.e., changing prices, some exporters may increase their 

exports to compensate for deficiencies. Our simulation setup may result in simulated network 

exports that differ from the real market situation. While the trade analysis emphasized disrupted 

flows and emerging trade routes, our satellite-based assessment reveals that environmental 

degradation was a simultaneous and compounding outcome of the war. The reduction in winter 

cereal productivity, as indicated by NDVI, should be interpreted not only as an economic loss 

but also as a signal of biophysical stress. These findings point to the dual role of war in both 

disrupting trade structures and impairing ecological conditions, thereby reducing the long-term 

resilience of regional food systems. 

4.6 Conclusion 

In this study, we developed a comprehensive and rapid assessment framework that integrates 

remote sensing, policy monitoring, and network analysis to quantify the impact of the Russia-

Ukraine war on global food systems. Our methodology involved using remote sensing–based 

algorithms to extract and map winter cereal crop areas and a random forest regression model to 

estimate yield reductions in Ukraine. We also collected global trade and policy data to model the 

impacts on the global trade networks of wheat, barley, and oats. 

Our findings reveal that winter cereal production in Ukraine decreased due to the conflict, with 

yield reductions primarily affecting regions such as Odessa, Donetsk, Kharkiv, Zaporizhzhya, 

and Mykolayiv. These reductions, coupled with protectionist policies enacted by a number of 

exporting nations, impacted the global trade network. The study shows that countries with lower-

and middle-income levels were more affected than high-income nations. Furthermore, countries 

that are geographically distant from exporting regions experienced greater disruptions than 

neighboring nations. Our analysis suggests that these changes in the trade network structure can 
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exacerbate food shortages in vulnerable countries. 

The holistic framework developed in this study allows for a nuanced understanding of the 

intricate dynamics of the global food system in times of conflict, offering valuable insights into 

which countries are most vulnerable to disruptions in trade. The research highlights the 

cascading effects of regional conflicts on the global food system (Fig. 1), emphasizing the need 

for international cooperation and targeted policies to safeguard food availability. 
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CHAPTER 5:  GLOBAL WHEAT TRADE UNDER MULTIPLE CRISES AND THE 

EVOLVING DISPARITIES IN TRADE NETWORKS OVER THREE DECADES 

5.1 Abstract 

The global wheat trade network has been shaped by the combined effects of multiple global 

crises over the past three decades, including the 2008 financial crisis, the 2010 Russian wheat 

export ban, and the 2020 COVID-19 pandemic. This study examines how these crises influenced 

wheat trade patterns using network analysis, scenario simulation, the synthetic control method, 

and generalized additive models. The results show that each crisis produced distinct effects, but 

their combined effects created long-term shifts in trade structure, connectivity, and performance 

across regions and income levels. The financial crisis reduced liquidity and slowed recovery. The 

export ban led to supplier diversification. The COVID-19 pandemic disrupted logistics but also 

triggered broader trade expansion in some regions. High-income countries initially maintained 

stability but experienced increasing trade deviation during the pandemic. Upper-middle-income 

countries showed delayed recovery and missed growth potential. In contrast, lower-middle-

income countries exceeded projected export levels under all crisis scenarios, suggesting 

emerging resilience. Low-income countries faced persistent trade shortfalls and limited recovery. 

Key exporters such as Russia, the United States, Canada, and Ukraine demonstrated different 

trade roles over time, shaped by policy and geography. Adjacent trade remained more stable 

under crisis conditions, while distant trade was more sensitive to disruption. This study 

introduces a method to quantify the combined effects of multiple crises on trade. The results 

underscore the unequal distribution of resilience across income levels and space. They also point 

to the need for inclusive and adaptive trade policies that can address structural disparities and 

support long-term stability in the global food system. 
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5.2 Introduction 

Food is the cornerstone of maintaining human survival and social development (Friel & Ford, 

2015). However, due to differences in climate, soil, water resources, and technological levels, 

there are large differences in food production types, quantities, and quality among different 

countries and regions (Rask & Rask, 2011; Chen et al., 2023). These differences have led to the 

emergence of global food trade, which plays a crucial role in optimizing resource allocation, 

increasing dietary diversity, and balancing regional disparities in food production capacity and 

demand (Brown et al., 2017; Davis et al., 2021). As one of the world’s most essential staple 

crops, wheat serves as a fundamental component of global food security and economic stability 

(Brown et al., 2017). Despite its widespread cultivation, wheat trade remains highly sensitive to 

crises because production and demand are unevenly distributed across regions (Baines Joseph, 

2017; Clapp J & Moseley, W, 2020). Many countries rely on imports to meet their food security 

needs, making the global wheat trade network vulnerable to supply chain disruptions during 

crises (Gutiérrez-Moya et al., 2021; Bertassello et al., 2023). 

The global food trade system is considered to play a key role in achieving multiple Sustainable 

Development Goals (SDGs) (e.g., biodiversity (SDG14 and SDG15), decent work and economic 

growth (SDG8), and reduced inequalities (SDG10)) simultaneously, in addition to achieving 

SDG 2 (zero hunger) (Tanumihardjo et al., 2020; Chen et al., 2023). However, in recent years, 

this complex system has faced numerous challenges, such as climate change, the pandemics, 

financial crises, natural disasters, and geopolitical conflicts (Behnassi & El Haiba, 2022; Fan et 

al., 2021; Li et al., 2022; Lin et al., 2023; Olsen et al., 2021; Reed et al., 2022; Artiushyn et al, 

2011). Among these, three major crises—the 2008 global financial crisis, the 2010 Russian 

wheat export ban, and the 2020 COVID-19 pandemic—have had profound and distinct impacts 
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on wheat trade networks. Unlike previous studies that have treated these crises as general 

disruptions, we seek to differentiate their individual and interacting effects to trade fluctuations. 

A large challenge in existing research is the difficulty in isolating the impact of specific crises on 

trade patterns, as their effects often overlap. To address this, we employ the synthetic control 

method (SCM) to construct counterfactual scenarios that estimate what wheat trade patterns 

would have been in the absence of each crisis. This approach allows us to quantify the individual 

impact of the 2008-2009 financial crisis, the 2010-2011 Russian wheat export ban, and the 2020-

2021 COVID-19 pandemic, thereby improving our understanding of their respective roles in 

reshaping wheat trade networks (Headey Derek, 2011; Welton George, 2011; Svanidze et al., 

2022; Arita, et al., 2022). 

Using systems integration and long-term analysis to evaluate complex trade systems has been 

widely accepted as a feasible quantitative method (Dalin et al., 2012; Distefano et al., 2018; 

Wang & Dai, 2021). Multiple studies have assessed the resilience, vulnerability, complexity, 

structure, and evolution of food trade networks, aimed to provide qualitative and quantitative 

descriptions of the nature and temporal dynamics of food trade networks, while in recent years 

some studies have focused on revealing multiple crises and impacts on trade networks based on 

the basic properties of the networks (Burkholz & Schweitzer, 2019; Dalin et al., 2012; De 

Benedictis et al., 2014; Distefano et al., 2018; Dolfing et al., 2019; Ercsey-Ravasz et al., 2012; 

Fair et al., 2017; Gephart et al., 2016; Gephart & Pace, 2015; Grassia et al., 2022; Wang & Dai, 

2021). Network analysis as a holistic approach with the ability to describe and visualize complex 

systems in a highly coupled world can be used as a way to explore the dynamics of long time 

series of complex international food trade networks, revealing how crises within countries, 
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between neighboring countries and distant countries are transmitted and affect each other, 

ultimately affecting the entire network (De Benedictis et al., 2014; Gutiérrez-Moya et al., 2021).  

Network analysis can be used to explore the dynamics of international food trade networks 

through a series of network metrics (e.g., Betweenness (Robustness) centrality, Eigenvector 

centrality, evenness, modularity, connectance, clustering coefficient, assortativity, rich-club 

coefficient). These indicators measure the impact of various crises on food trade networks and 

provide a clear visual perspective and quantitative description of the interactions between these 

variables to elucidate these interactions (Felipe-Lucia et al., 2020; Tamea et al., 2016; Wu et al., 

2022; Xie et al., 2022). Although previous studies have advanced understanding of the 

complexity and systemic nature of the impact of multiple crises on food trade networks 

separately, there is limited research on the dynamics of multiple crises overlapping each other, 

i.e., how the interaction of the two changes with progress. Revealing the dynamics of multiple 

crises and food trade system interactions over a long time series allows us to estimate the impact 

of different crisis types. This helps identify obstacles and opportunities for countries at different 

income levels as they face crises in a highly interconnected and interacting world, and to find 

specific priorities for action for countries at different income levels based on specific levels of 

impact. To fill this knowledge gap, this study employs network analysis methods to examine the 

spatio-temporal dynamics of 218 countries and regions from 1993 to 2022 and investigates 

whether wheat trade networks are becoming less interconnected in the face of these challenges. 

To complement the network analysis, we also developed a scenario simulation framework to 

quantify the combined effects of the three major crises. This approach compares actual trade 

outcomes with baseline projections under no-crisis and single-crisis scenarios, allowing us to 

evaluate both individual and cumulative crisis effects on global and income-group-specific wheat 
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exports. By focusing on this key crop trade network, the research aims to provide valuable 

insights into the functioning and resilience of the global food trade system in the context of 

multiple crises. I constructed the wheat trade networks over the last three decades using absolute 

and relative trade volumes between countries, respectively, and evaluated connectance, 

modularity, evenness, weighted degree, betweenness (robustness) centrality, eigenvector 

centrality, clustering coefficient, assortativity, and rich-club coefficient. These indicators can 

reflect how different crises affect trade networks and are transmitted through time and space. To 

understand the long-term trends of these indicators, I also used a synthetic control method 

(SCM) fitted 1993 to 2022 trend pairs, which was used to analyze their trends and long-term 

dynamics. 

To sum up, I aim to answer the following scientific questions: 

(1)    What are the patterns of spatio-temporal dynamics in global wheat trade networks over the 

three decades? How have multiple crises, including the financial crisis, export ban, and the 

COVID-19 pandemic, affected the global wheat trade system from 1993 to 2022? 

(2)    How did the different crises interact with each other and ultimately reshape the global 

wheat trading network?? 

(3)     How are countries with different income levels affected differently? 

5.3 Data and Methods 

5.3.1 Trade Data Collection 

The global wheat trade data from 1993 to 2022 for this study were obtained from the Food and 

Agriculture Organization (FAO, http://www.fao.org/statistics/en/). FAO provides comprehensive 

and widely used agricultural trade data, frequently utilized in international trade analysis. 
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Previous studies have relied on this dataset to construct trade networks, develop trade-related 

databases, and analyze global food logistics. 

Since FAO data aggregate information from multiple national and international sources, some 

discrepancies may exist due to variations in reporting standards and data harmonization 

processes. Research suggests that import-reported data are generally more reliable than export-

reported data (Escaith, H), as importing countries have stronger incentives to maintain accurate 

records for taxation and regulatory purposes. To reduce potential inconsistencies, this study 

primarily uses import data and supplements them with export data where necessary. This study 

constructs two types of wheat trade networks based on absolute and relative trade volumes. The 

absolute weight network represents trade connections using the total wheat trade volume (in 

metric tons) exchanged between countries, capturing major trade flows and high-volume 

transactions. The relative weight network reflects the share of a country’s total wheat exports 

directed to each trading partner, ensuring that smaller wheat-exporting countries are not 

overlooked in the network analysis. 

5.3.2 Multiple Crises Cases Selection 

The selection of 2008, 2010, and 2020 as key years for analysis in this study is based on their 

widely recognized significance as crises that had substantial and lasting effects on the global 

wheat trade network (Götz et al., 2010; Gutiérrez-Moya et al., 2021). While fluctuations in 

network properties occur throughout the study period, these three years represent distinct events 

that triggered systemic disruptions with long-term consequences for trade connectivity, structure, 

and resilience. The 2008 global financial crisis marked a turning point for international trade, 

including wheat markets, as financial instability led to declining trade liquidity, increased 

volatility in commodity prices, and export restrictions from major producers (Acharya et al., 
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2012; Götz et al., 2013; Fair et al., 2017). Although the immediate changes in wheat trade 

network metrics were not extreme, the crisis set off a series of cascading effects, including 

heightened concerns over food security and policy interventions that reshaped trade patterns in 

subsequent years. The persistence of trade restrictions and shifts in supply chain strategies 

following 2008 make it a critical moment for understanding the long-term structural evolution of 

the wheat trade network. 

The 2010 Russian wheat export ban was a direct intervention in global wheat markets that had 

pronounced regional and international effects (Welton et al., 2011; Götz et al., 2015; Svanidze et 

al., 2022). While some trade network properties, such as connectance and modularity, may not 

exhibit abrupt changes in that specific year, the ban redefined the role of alternative suppliers and 

contributed to long-term trade realignments. European and Black Sea exporters gained 

prominence, while import-dependent nations diversified their sources, leading to enduring 

modifications in trade routes. The implications of this policy decision extended beyond the 

immediate supply constraints, reinforcing the role of government intervention in shaping food 

trade networks. 

The 2020 COVID-19 pandemic caused unprecedented disruptions to global supply chains, yet its 

impact on wheat trade differed from other economic crises (Kiselev et al., 2020; Gutiérrez-Moya 

et al., 2020; Özden 2022). Unlike previous crises that led to fragmentation, 2020 saw an increase 

in trade connectivity as countries sought to secure food supplies through expanded partnerships 

and diversified trade routes. While the immediate structural shifts were not as pronounced as 

might be expected for such a large-scale disruption, the pandemic accelerated ongoing trends 

toward resilience and adaptation in the wheat trade network. The reorganization of supply chains 

and trade dependencies during this period had lasting implications for global food security. 
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Although the magnitude of changes in network metrics for these three years varies, their 

selection is justified by their recognized significance in economic and food trade research. Each 

crisis introduced distinct challenges that reshaped trade strategies and policies, leaving lasting 

imprints on the wheat trade network. By focusing on these years, this study captures not just 

short-term fluctuations but the broader evolution of the trade system in response to global crises.  

5.3.3 Network Analysis 

Network analysis offers a powerful tool for examining the structure and dynamics of complex 

systems, such as the global food trade. In this study, I apply network analysis methods to analyze 

the spatio-temporal dynamics of wheat trade on both network common metrics and compare the 

differences between various income levels (Figure 5.1). This approach allows for identifying 

crucial nodes, connections, and vulnerabilities within the system, as well as assessing how the 

system's structure has evolved in response to crises. 

The trade volume between countries is converted to a network graph object and analyzed by the 

R packages ‘igraph’, and ‘tnet’, along with Python package ‘cpnet’ (G. Csardi, and T. Nepusz, 

2006; Opsahl T, 2009; Rossa F., Dercole F., Piccardi C., 2013). 
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Figure 5. 1 Network metrics in global wheat trade network analysis. Nodes represent countries, 

with blue indicating importers and red indicating exporters, while edges represent trade 

relationships. Each row visualizes a different metric, including five network-level metrics—

connectance, modularity, evenness, assortativity, and clustering coefficient—and five node-level  
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Figure 5.1 (cont’d) 

metrics—rich-club coefficient, core–periphery structure, average degree, density, and 

modularity-based community clustering—demonstrating their structural characteristics within 

the trade network. 
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In the wheat trade network, nodes represent individual countries, while edges (connections) 

represent directed wheat trade flows between them. The edge weights correspond to the volume 

of wheat traded between countries. This study constructs the global wheat trade network from 

1993 to 2022, capturing bilateral trade relationships over time. The network structure enables an 

assessment of trade resilience, connectivity, and disruptions caused by crises. 

This study evaluates ten key network metrics to assess the impact of crises on the global wheat 

trade system. These metrics include connectance, modularity, evenness, assortativity, and the 

rich-club coefficient of the whole trade network. And betweenness centrality, core–periphery 

structure, clustering coefficient, degree in, and degree out of each node properties. Each metric 

captures different aspects of trade structure, resilience, and vulnerability under crises. The 

volume of wheat trade is a fundamental indicator of globalization. Well-developed supply chains 

facilitate trade between countries, improving wheat accessibility, especially during crises. 

Conversely, counter-globalization trends, such as trade restrictions or geopolitical tensions, can 

reduce trade volumes and weaken network connectivity. External crises, including natural 

disasters, economic downturns, and conflicts, can also disrupt wheat production. This may 

increase demand in wheat-importing countries while reducing the export capacity of major wheat 

suppliers. 

Changes in evenness reflect shifts in trade dependency. If wheat trade becomes concentrated 

among fewer exporters due to trade restrictions, importing countries face higher risks during 

supply crises. A decrease in modularity suggests the emergence of dominant wheat-exporting 

nations. This shift may lead to pricing power imbalances, increasing global food insecurity by 

limiting access for lower-income countries. For network analysis, we calculate weighted degree 

using the weighted_degree_table function. Betweenness centrality, which measures the influence 
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of key transit countries, is computed using the betweenness function in the R ‘igraph’ package. 

Additional metrics, including core–periphery structure, clustering coefficient, and assortativity, 

are derived using functions from the same package. The core–periphery metric is calculated 

using the Python package cpnet, based on the Borgatti–Everett model (Borgatti & Everett, 2000; 

Rossa, F. D., Dercole, F., & Piccardi, C., 2013), which identifies hierarchical structures in trade 

networks by distinguishing densely connected “core” countries from sparsely linked “periphery” 

countries. This method has been applied in global food trade studies such as Chen et al. (2021). 

The rich-club coefficient, which identifies highly interconnected wheat-exporting hubs, is 

estimated using as_tnet and rich_club_coefficient_w from the ‘tnet’ package. These analyses 

provide a quantitative assessment of how major crises have reshaped the global wheat trade 

network over time. 

5.3.4 Generalized Additive Model (GAM) 

The GAM is a flexible statistical approach used to capture nonlinear relationships between 

variables. Unlike traditional linear regression models, which assume a constant effect of 

explanatory variables, GAM allows for smooth, data-driven relationships by using nonparametric 

smoothing functions. This feature makes GAM particularly useful for analyzing long-term trends 

and fluctuations in complex time series data, such as global trade flows. 

In this study, we employ GAM to model the temporal dynamics of wheat trade for key countries, 

including the United States, Brazil, Russia, and Egypt, from 1993 to 2022. GAM is used to 

estimate the trends in wheat export and import volumes, providing a continuous and smoothed 

representation of trade patterns over time. This approach enables us to identify key periods of 

growth, decline, and stabilization in wheat trade, which would be difficult to capture using 

simple linear trends. 
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The GAM model is specified as follows: 

𝑌𝑡 = 𝛽0 + 𝑓(𝑡) + 𝜖𝑡 

where 𝑌𝑡 represents wheat trade volume at time ttt, 𝛽0 is an intercept, 𝑓(𝑡) is a smooth function 

of time that captures nonlinear trends, and ϵ𝜖𝑡 is the error term.  

5.3.5 Synthetic Control Method 

The Synthetic Control Method (SCM) is a data-driven approach designed to estimate causal 

effects by constructing a counterfactual scenario for a treatment unit that has experienced an 

intervention or crisis (Abadie & Gardeazabal, 2003; Abadie et al., 2010). Unlike traditional 

difference-in-differences (DID) methods, SCM does not assume parallel trends but instead 

constructs a synthetic control unit—a weighted combination of untreated units that best 

approximates the characteristics of the treated unit before the intervention (Goodman-Bacon, A, 

2021; Callaway&  ant’Anna, 2021, Suh et al., 2024). This enables a more accurate estimation of 

the impact of a particular crisis by comparing observed outcomes with an estimated 

counterfactual trajectory (Kaul et al., 2015; Billmeier & Nannicini, 2013). 

The SCM has been widely applied in economic and trade studies to assess the impact of 

interventions on market dynamics. Previous research has used SCM to evaluate the 

consequences of trade agreements (Billmeier & Nannicini, 2013) and economic sanctions 

(Hinrichs, 2012), providing insights into how policy changes alter international trade flows. In 

commodity markets, SCM has been employed to measure the effects of oil price fluctuations 

(Becker, 2021) and agricultural trade restrictions (Abadie, 2019), demonstrating its capability to 

isolate interventions in supply chains. Similarly, it has been used to analyze macroeconomic 

policy interventions, such as the economic consequences of Brexit (Campos et al., 2019) and the 

effects of monetary policy on food security (Arndt et al., 2016). More recently, SCM has been 
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applied to quantify the trade disruptions caused by COVID-19 and its impact on global supply 

chains (Kichurchak et al., 2024), highlighting its relevance in crisis assessment. Given these 

applications, SCM is particularly well-suited for this study, as it enables the construction of a 

counterfactual wheat trade network that estimates what trade patterns would have been in the 

absence of major crises. By applying SCM, this study can disentangle the specific impacts of the 

crises distinguished by financial crisis, export ban, and the COVID-19 pandemic on wheat trade 

network, distinguishing their individual effects on the structure, resilience, and connectivity of 

the global wheat trade network. This approach provides a robust scenario simulation framework, 

allowing for a precise decomposition of crisis-driven disruptions and offering deeper insights 

into the mechanisms by which these crises have reshaped international wheat trade. 

This study applies the SCM to estimate the impact of three major crises distinguished by 

financial crisis, export ban, and the COVID-19 pandemic on global wheat trade. The analysis 

incorporates economic, infrastructural, and production-related factors that influence wheat trade 

resilience. Key predictors include labor force participation rates, GDP per capita, government 

borrowing capacity, income inequality, trade infrastructure, and wheat production indicators, all 

sourced from the World Bank (Van Der Mensbrugghe, D., 2016). These covariates capture 

structural conditions that shape trade performance and are averaged over a pre-crisis period to 

ensure that the synthetic control unit closely matches the characteristics of affected countries 

before the intervention. 

The SCM model estimates the difference between actual wheat trade volumes and the 

counterfactual projection, expressed as: 

𝑌𝑖𝑡 = 𝑌𝑖𝑡
𝑁 + 𝐷𝑖𝑡𝜏𝑖𝑡 



128 

where 𝑌𝑖𝑡 represents observed wheat trade for country 𝑖 at time 𝑡, 𝑌𝑖𝑡
𝑁 denotes the estimated 

counterfactual trade volume, 𝐷𝑖𝑡 is a binary indicator for crisis exposure, and 𝜏𝑖𝑡 captures the 

crisis-induced deviation in wheat trade.  

Since SCM constructs country-specific counterfactuals based on tailored covariates, the results 

are not directly aggregable across countries or income groups. This limitation prevents us from 

generating group-level estimates or figures that show the simultaneous effect of all three crises. 

Control variables such as labor force participation and logistics performance indices vary in form 

and availability across countries, making cross-country synthesis infeasible. 

To construct the synthetic control unit, weights are assigned to donor countries so that the 

weighted sum of their wheat trade patterns minimizes the difference from the treated country's 

pre-crisis trajectory. The counterfactual estimate is given by: 

𝑌̂1𝑡
𝑁 = ∑  

𝐽+1

𝑗=2

𝑤𝑗𝑌𝑗𝑡 

where 𝑤𝑗 represents the optimal weights assigned to each donor country, constrained to sum to 

one.  

The estimated impact of the crisis is then computed as the difference between observed and 

counterfactual trade: 

𝜏1𝑡 = 𝑌1𝑡 − 𝑌̂1𝑡
𝑁 

A large deviation in 𝜏1𝑡 indicates that the crisis altered wheat trade beyond expected market 

fluctuations. 

Implementation is conducted in R using the tidysynth package, with wheat trade data from 

1993 to 2022 (Eric Dunfor, 2020; Lamba et al., 2023). The model assigns donor weights based 

on pre-crisis economic and trade conditions, optimizes them for best fit, and estimates 
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synthetic wheat trade trajectories. By comparing observed and counterfactual values, this 

approach quantifies how different crises have reshaped global wheat trade networks and assesses 

their impact on trade resilience across countries. 

5.3.6 Scenario Simulation Framework 

To assess the combined and individual effects of multiple global crises on wheat trade, we 

developed a scenario simulation framework based on pre-crisis export trends. This method 

estimates how trade would have evolved under different crisis conditions and helps isolate the 

contribution of each event. Four scenarios were constructed: (1) a baseline assuming no crisis 

occurred, (2) a scenario incorporating only the 2008 financial crisis, (3) a scenario including both 

the 2008 financial crisis and the 2010 Russian wheat export ban, and (4) the actual observed 

exports, which reflect the combined effects of all three crises, including the 2020 COVID-19 

pandemic. 

Each scenario was simulated using linear extrapolation based on data before the first structural 

break. By comparing simulated export trajectories with actual values, we estimated the effects of 

each crisis and their cumulative influence on wheat trade over time. The stepwise structure of the 

scenarios allowed us to identify how each additional crisis shaped deviations from the no-crisis 

baseline. This simulation was applied globally and to four income-level country groups to 

evaluate spatial disparities in exposure, adaptation, and resilience. The approach complements 

the network and SCM analyses by quantifying long-term crisis effects on trade performance 

across diverse economic contexts. 
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5.4 Results 

5.4.1 Dynamics of the Global Wheat Trade Network 

The global wheat trade network exhibited substantial structural shifts over the past three decades, 

with major disruptions occurring in 2008–2009, 2010–2011, and 2020–2021 (Figure 5.2). These 

crises triggered noticeable changes in network connectivity, trade modularity, evenness, 

assortativity, and the dominance of key exporters. The 2008 financial crisis led to a sharp 

contraction in trade connectivity, reflected in a lower connectance value, as countries imposed 

export restrictions and reduced the number of trading partners. Despite this fragmentation, 

modularity remained high, suggesting that while global trade diminished, regional trade 

communities persisted. Evenness declined slightly, indicating a stronger concentration of wheat 

trade among a few dominant exporters. The assortativity value stayed negative, reinforcing the 

trend of trade between structurally different nations rather than within homogeneous economic 

blocs. The rich-club coefficient remained stable, indicating that the core group of major 

exporters continued to maintain strong internal connectivity despite overall trade reductions. By 

2009, trade connectivity showed partial recovery, but the increased modularity suggested that 

trade expansions occurred primarily within established regional trade blocs rather than through 

broader global reintegration. 

The 2010–2011 Russian wheat export ban marked another large disruption, influencing global 

wheat trade patterns. Following the ban, connectance rebounded as nations sought alternative 

suppliers, mitigating the immediate trade crisis. However, modularity remained elevated, 

emphasizing that trade restructuring occurred within distinct regional clusters rather than through 

full globalization. Evenness increased, reflecting a more balanced distribution of trade, as 

importers diversified their sources to ensure food security. Meanwhile, the assortativity value 



131 

remained relatively stable, highlighting continued trade between different economic groups 

rather than within homogenous trade zones. The rich-club coefficient declined slightly, 

suggesting a temporary weakening of interconnections among dominant exporters as new trade 

routes emerged. 

The COVID-19 pandemic in 2020–2021 introduced another major structural transformation in 

the wheat trade network. Contrary to initial expectations of market contraction, connectance 

surged, surpassing pre-pandemic levels and indicating that global wheat trade became more 

interconnected. This rise in connectivity was accompanied by a decline in modularity, reflecting 

enhanced market integration and reduced fragmentation compared to previous crises. Evenness 

peaked at its highest level in three decades, demonstrating a broader distribution of wheat trade 

across countries. Notably, assortativity moved closer to zero, signaling a weakening of prior 

trade preferences and a shift toward a more adaptive and flexible global trade system. The rich-

club coefficient rebounded, suggesting the reinforced connectivity of major wheat-exporting 

nations, ensuring trade stability amid pandemic-induced supply chain disruptions. The evolution 

of these network properties underscores the adaptive nature of the global wheat trade system in 

response to economic and geopolitical crises. While each crisis introduced periods of 

fragmentation and consolidation, the long-term trend suggests increasing connectivity, 

diversification of trade flows, and resilience among major exporters.  
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Figure 5. 2 Evolution of the global wheat trade network and network metrics over time. 

Visualization of the global wheat trade network structure in selected years (1993, 2008, 2010, 

and 2020), illustrating the evolution of trade communities and connectivity patterns. Nodes 

represent countries, with edges indicating trade relationships. The colored regions highlight 

modular structures within the network. (b) Temporal trends of key network metrics, including 

connectance, modularity, evenness, rich-club coefficient, and assortativity value, from 1993 to 

2022, capturing the long-term dynamics of global wheat trade. 
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5.4.2 Wheat with Multiple Crises 

The role of individual countries in the wheat trade network evolved considerably over time, 

particularly in response to crises in 2008, 2010, and 2020 (Figure 5.3). The financial crisis of 

2008 led to a decline in betweenness centrality, reflecting disruptions in trade intermediaries and 

reduced global trade coordination. The average betweenness centrality value was lower than in 

subsequent years, indicating that fewer countries acted as key transit hubs for wheat trade. The 

disruption in intermediary roles coincided with a decline in wheat availability in several import-

dependent regions, prompting governments to impose trade restrictions to safeguard domestic 

supplies. At the same time, eigenvector centrality remained relatively low, suggesting a 

concentration of trade power among a few dominant exporters. The clustering coefficient 

dropped to its lowest level, highlighting the fragmentation of regional trade networks as 

economic instability disrupted established trade relationships. 

 

Figure 5. 3 Global wheat trade network: node centrality and connectivity analysis. Global wheat 

trade network’s structural properties, highlighting key network metrics for different countries. 

Panels (a), (b), and (c) illustrate the spatial distribution of network node properties of 2008, 

2010, and 2020, including degree in (red), degree out (green), betweenness centrality (blue), 

core-periphery (purple), and clustering coefficient (orange).  
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By 2010, the network showed signs of reorganization. The Russian wheat export ban altered 

trade routes, increasing the betweenness centrality of several European and Black Sea countries 

as new suppliers emerged. The mean betweenness centrality value rose, indicating that more 

countries played intermediary roles in the global wheat supply chain. Countries that had 

previously relied on Russia as a major supplier diversified their imports, strengthening 

connections with alternative exporters such as Kazakhstan, Ukraine, and EU nations. The core–

periphery scores of several Eastern European countries increased, reflecting their transition from 

peripheral to more central positions within the global trade network. The clustering coefficient 

nearly doubled compared to 2008, signaling a re-establishment of regional trade connections and 

the formation of new supplier-importer relationships. Despite the trade reconfiguration, lingering 

concerns over price volatility and supply security prompted some governments to pursue longer-

term trade agreements to mitigate future crises. 

In 2020, the COVID-19 pandemic introduced another major crisis, but its impact on node-level 

properties differed from previous crises. Betweenness centrality dropped largely to its lowest 

observed value, indicating a shift toward more direct trade relationships and reduced reliance on 

intermediary nations. This suggests that countries sought to secure supply chains through more 

direct agreements rather than relying on traditional trade hubs. Governments prioritized national 

food security by minimizing dependence on intermediaries and reinforcing bilateral trade 

relationships, reducing logistical uncertainties. Core–periphery values declined for many top 

exporters, reflecting a weakening of structural hierarchy and a flattening of trade importance 

between core and peripheral countries. However, the clustering coefficient remained stable, 

suggesting that despite initial disruptions, regional wheat trade networks maintained their 

cohesion, preventing widespread breakdowns in supply. The resilience of regional trade clusters 
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highlights the increasing reliance on geographically closer partners, a trend that could persist as 

nations seek to buffer future supply chain crises. 

These changes highlight the adaptability of global wheat trade networks in response to 

interventions. While 2008 and 2010 saw shifts in trade influence and restructuring of 

intermediary roles, 2020 marked a transition toward a more decentralized and regionally stable 

trade system. The decline in betweenness centrality and core–periphery structure, alongside the 

resilience of clustering patterns, suggest that nations have increasingly diversified their trade 

strategies, reducing vulnerability to interventions and strengthening regional partnerships in 

global wheat trade. The shifts in node-level properties underscore the evolving dynamics of 

global wheat markets, with an increasing emphasis on resilience, redundancy, and adaptive trade 

strategies to ensure food security amid global uncertainties. 

5.4.3 Key players of global wheat trade 

To comprehensively analyze the structural dynamics of the global wheat trade network, we select 

four representative countries—the United States (USA), Russia, Brazil, and Egypt—based on 

their economic classifications and strategic roles in the trade system. These countries are chosen 

from distinct income groups: high-income (USA), upper-middle-income (Russia), lower-middle-

income (Brazil), and low-income (Egypt). The USA serves as a dominant wheat exporter, 

shaping global supply chains and influencing market stability. Russia, an emerging powerhouse 

in wheat production, has largely impacted global trade flows, particularly in recent decades. 

Brazil, traditionally an importer, plays a crucial role in the South American market, reflecting the 

trade dependencies of developing economies. Egypt, one of the world’s largest wheat importers, 

represents food security challenges faced by low-income nations reliant on international trade. 



136 

Together, these four countries capture key trade dynamics across income levels, making them 

essential focal points for studying the resilience and evolution of the global wheat trade network.  

USA: 

From 1993 to the early 2000s, the GAM fit indicates a steady increase in U.S. wheat exports, 

reflecting strong global demand, trade liberalization, and favorable agricultural policies. The 

trade chord analysis from 1993 shows a broad network of trading partners, with a concentration 

of high-income (red) and upper-middle-income (orange) importers. The U.S. maintained strong 

wheat trade relationships with North America, Western Europe, and developed Asian economies 

such as Japan and South Korea. While lower-middle-income (blue) and low-income (green) 

countries participated in trade, their share remained limited. This period marked the height of 

U.S. wheat dominance before competition from emerging exporters reshaped the global market. 
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Figure 5. 4 Evolution of U.S. wheat trade networks and export dynamics from 1993 to 2020. The 

figure presents the structural evolution of U.S. wheat trade networks alongside export dynamics 

over three decades. The (a) displays the 1993 wheat trade chord diagram, illustrating the trade 

relationships between the U.S. and its trading partners. The (b) shows the generalized additive 

model (GAM) fit of U.S. wheat export volumes over time, with the red points representing 

observed trade values, the blue line indicating the fitted trend, and the shaded area representing 

confidence intervals. The bottom panels depict wheat trade chord diagrams for 2008 (c), 2010 

(d), and 2020 (e), highlighting shifts in trade relationships before and after major crises. The 

chord diagrams use color-coded arcs to represent different income-level groups among trade 

partners, with blue indicating lower-middle-income countries, orange representing upper-middle-

income countries, red for high-income countries, and green for low-income countries. The width 

of the connecting bands indicates the trade volume between the U.S. and its respective trade 

partners in each given year. 
 

The 2008 financial crisis triggered a downturn in U.S. wheat exports, as reflected in the GAM 

trend, which shows a sharp decline during this period. Economic instability reduced trade 

liquidity and increased price volatility, leading to a contraction in export volumes. However, the 
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chord diagram for 2008 does not show a dramatic reduction in the number of trading partners, 

suggesting that while trade volume declined, the structural composition of wheat importers 

remained relatively stable. High-income countries remained key importers, though their 

dominance slightly weakened as economic pressures led to import reductions. The share of 

upper-middle-income and lower-middle-income countries increased slightly, indicating that U.S. 

wheat was still reaching developing markets that were less affected by the financial crisis. 

In 2010, the Russian wheat export ban led to a temporary surge in U.S. wheat exports, as 

observed in the GAM results. Export volumes rebounded quickly as countries that had relied on 

Russian wheat sought alternative suppliers. The chord diagram for 2010 highlights an expansion 

in the number of trade connections with lower-middle-income and upper-middle-income 

countries, particularly in Africa, the Middle East, and Southeast Asia. This shift underscores the 

adaptability of U.S. wheat trade, as it gained access to new markets during a period of supply 

disruption. While high-income countries continued to be major buyers, the trade network had 

become more diversified, with developing nations playing an increasingly important role. 

The 2020 COVID-19 pandemic introduced another large disruption, but unlike previous crises, 

its impact on U.S. wheat exports followed a different pattern. The GAM fit indicates an initial 

decline in exports, likely due to logistical constraints and temporary restrictions, followed by a 

rapid recovery as supply chains adapted. The trade chord diagram for 2020 shows a relatively 

stable set of trading partners, suggesting that despite pandemic-related challenges, U.S. wheat 

trade networks remained intact. High-income countries continued to be key buyers, but lower-

middle-income and low-income countries exhibited greater volatility, likely due to economic 

uncertainties and supply chain constraints. Upper-middle-income countries emerged as 
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particularly stable trade partners, reinforcing the importance of economic resilience in shaping 

trade flows during global disruptions. 

By 2022, the GAM fit suggests a stabilization in U.S. wheat exports, though volumes remained 

below historical peaks. The long-term trajectory points to an increasingly competitive global 

wheat market, where the U.S. must contend with shifting demand patterns and growing 

competition from other major exporters. The income structure of trade partners, as shown in the 

chord analysis over the decades, highlights a gradual diversification of U.S. wheat markets. 

While high-income countries continue to be core buyers, the increasing role of developing 

economies underscores the need for flexible trade policies and strategic market adaptation. 

Brazil: 

The wheat trade dynamics of Brazil, a lower-middle-income country, from 1993 to 2022 reflect 

its evolving role in the global market as both an importer and, more recently, an emerging 

exporter. The generalized additive model (GAM) fit captures fluctuations in Brazil’s wheat trade 

volumes, while trade chord diagrams for 1993, 2008, 2010, and 2020 illustrate structural shifts in 

its trade partnerships and income-level composition of trade partners. 

The GAM fit reveals a steady increase in Brazil’s wheat imports from 1993 to the early 2000s, 

reflecting the country’s reliance on external suppliers due to domestic production constraints. 

The 1993 trade chord diagram highlights a high concentration of trade with high-income 

countries, particularly the United States, Canada, France, and Switzerland, as well as Argentina 

and  ruguay. Argentina, as a key regional supplier, dominated Brazil’s wheat imports due to 

geographic proximity and trade agreements within Mercosur. The composition of trade partners 

at this stage reflects Brazil’s strong dependence on a few high-income and upper-middle-income 
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wheat-exporting nations, with minimal engagement with lower-middle-income or low-income 

suppliers. 

 

Figure 5. 5 Evolution of Brazil’s wheat trade networks and import dynamics from 1993 to 2020. 

The figure presents the structural evolution of Brazil’s wheat trade networks alongside import 

dynamics over three decades. The (a) the 1993 wheat trade chord diagram, illustrating Brazil’s 

primary wheat suppliers and trade relationships. The (b) shows the generalized additive model 

(GAM) fit of Brazil’s wheat import volumes over time, with red points representing observed 

trade values, the blue line indicating the fitted trend, and the shaded area representing confidence 

intervals. The bottom panels depict wheat trade chord diagrams for 2008 (c), 2010 (d), and 2020 

(e), highlighting shifts in trade relationships before and after major crises. The chord diagrams 

use color-coded arcs to represent different income-level groups among trade partners, with blue 

indicating lower-middle-income countries, orange representing upper-middle-income countries, 

red for high-income countries, and green for low-income countries. The width of the connecting 

bands represents the trade volume between Brazil and its respective wheat suppliers in each 

given year. 
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By 2008, the financial crisis introduced economic volatility, but Brazil’s wheat trade remained 

relatively stable, as seen in the GAM trends. The trade chord diagram for 2008 shows an increase 

in the number of lower-middle-income partners (blue), including Indonesia, India, and Nigeria, 

suggesting a diversification of wheat suppliers beyond traditional sources. However, Argentina 

and the  nited  tates remained dominant. This diversification likely reflects Brazil’s strategic 

efforts to hedge against supply risks, particularly during economic uncertainty, while still 

maintaining strong ties with historical trade partners. 

The 2010 Russian wheat export ban had a more pronounced effect on Brazil’s trade composition, 

as seen in both the GAM fit and the 2010 chord diagram. The GAM results show an initial dip 

followed by a recovery, indicating that while trade volumes briefly declined, Brazil quickly 

adapted by expanding partnerships with alternative suppliers. The trade chord diagram reveals a 

further increase in lower-middle-income country trade, including Kenya, Mozambique, and 

Vietnam, alongside new high-income suppliers such as South Korea and Poland. Argentina and 

the  nited  tates continued to be major sources, but Brazil’s trade network had become more 

diverse compared to earlier years. This period highlights the increasing role of developing 

economies in Brazil’s wheat trade, driven by shifts in global supply availability. 

The COVID-19 pandemic in 2020 brought new challenges, but Brazil’s wheat trade remained 

resilient, as reflected in the GAM trends. The initial disruption in trade logistics led to a 

temporary drop in imports, but a swift recovery followed as global markets adjusted. The 2020 

trade chord diagram shows a stable core network, with Argentina, the United States, and 

Uruguay remaining primary suppliers. Notably, Russia emerged as a new trade partner, marking 

a shift toward greater diversification in global wheat sourcing. Additionally, Saudi Arabia and 
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Pakistan appeared as importers, indicating that Brazil was increasingly engaging in wheat trade 

beyond just imports, possibly laying the groundwork for its role as a wheat exporter. 

By 2022, the GAM fit suggests stabilization in trade volumes, with Brazil maintaining a 

diversified supplier base while exploring export opportunities. The long-term trajectory indicates 

a transition from heavy dependence on high-income suppliers to a more balanced trade network, 

incorporating lower-middle-income and upper-middle-income partners. The chord diagrams 

demonstrate Brazil’s shift from a trade structure dominated by a few high-income suppliers to a 

more resilient and adaptable network, better positioned to navigate global economic and supply 

chain disruptions. 

Russia: 

It shows a consistent decline in wheat imports from the 1990s to the early 2000s, followed by a 

gradual stabilization at low levels, reflecting the country’s shift toward self-sufficiency and 

eventual dominance as an exporter. The trade chord diagrams for 1993, 2008, 2010, and 2020 

further illustrate the structural evolution of Russia’s wheat trade relationships, highlighting the 

expansion of its export network, the diversification of trading partners, and shifts in trade flows 

due to crises. In 1993, Russia’s wheat trade network was characterized by heavy dependence on 

imports, primarily from high-income and upper-middle-income countries. The chord diagram for 

this period shows a dominant share of imports coming from the United States, Canada, and 

European suppliers, reflecting Russia’s reliance on external sources to meet domestic demand in 

the post-Soviet economic transition. The GAM fit indicates a declining trend in wheat imports, 

suggesting that domestic production was gradually increasing, reducing the need for foreign 

wheat supplies. 
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Figure 5. 6 Evolution of Russia’s wheat trade from import dependence to export dominance 

(1993–2020). The figure illustrates the evolution of Russia’s wheat trade network and import-

export dynamics over three decades. The (a) displays the 1993 wheat trade chord diagram, 

showing Russia’s reliance on wheat imports, primarily from high-income and upper-middle-

income countries. The (b) presents the generalized additive model (GAM) fit of Russia’s wheat 

trade volumes over time, with red points representing observed trade values, the blue line 

showing the fitted trend, and the shaded area representing confidence intervals. The bottom 

panels depict wheat trade chord diagrams for 2008 (c), 2010 (d), and 2020 (e), illustrating 

Russia’s transition from an importer to a major global wheat exporter. The chord diagrams use 

color-coded arcs to represent different income-level groups among trade partners: blue for lower-

middle-income countries, orange for upper-middle-income countries, red for high-income 

countries, and green for low-income countries. The width of the connecting bands represents the 

volume of wheat traded between Russia and its partners in each given year. 

 

By 2008, Russia had made large progress in expanding its wheat production and export capacity. 

The trade chord diagram for this year reflects the country’s emergence as a regional wheat 

supplier, with exports primarily directed to lower-middle-income and upper-middle-income 
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countries. Notably, Russia’s role as an importer had diminished considerably, aligning with its 

growing presence in global wheat markets. However, the financial crisis of 2008 introduced 

economic instability that influenced trade relationships. While high-income trade partners 

remained important, Russia’s growing ties with Middle Eastern, African, and Asian markets 

suggest that trade diversification strategies were already taking shape before the major supply 

disruptions of 2010. The 2010 Russian wheat export ban marked a critical turning point in 

Russia’s wheat trade. The GAM fit does not show a major deviation in import volumes, but the 

trade chord diagram illustrates the immediate impact on Russia’s export network. Wheat exports 

were temporarily halted, forcing key trade partners, including Egypt and Turkey, to seek 

alternative suppliers. The sudden restriction of exports underscores Russia’s growing influence 

in global wheat markets, as the absence of Russian wheat created large disruptions in 

international trade flows. This period also led to long-term shifts in Russia’s trade strategy, 

reinforcing its commitment to expanding domestic production and securing stable trade 

agreements to prevent future supply crises. 

By 2020, Russia had established itself as a dominant wheat exporter, with a trade network 

spanning lower-middle-income and upper-middle-income countries across Africa, the Middle 

East, and Asia. The COVID-19 pandemic posed logistical challenges, but the GAM fit suggests 

that Russia’s wheat trade remained relatively stable, with exports continuing despite global 

disruptions. The chord diagram for 2020 highlights Russia’s strong ties with key importers, 

particularly Egypt, Turkey, and countries in Sub-Saharan Africa, demonstrating the resilience of 

its wheat export network. Unlike previous crises, where trade was largely disrupted, Russia’s 

wheat trade in 2020 exhibited greater stability, reflecting a more mature, diversified export 

market that had adapted to crises. 
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Egypt:  

In 1993, Egypt’s wheat imports were primarily sourced from high-income countries, with the 

United States, Canada, France, Germany, Italy, and Sweden among its main suppliers. The trade 

chord diagram shows a strong reliance on Western exporters, reflecting long-established trade 

relationships and the dominance of traditional grain-exporting nations in global markets. The 

GAM fit suggests a steady increase in wheat imports during this period, aligning with population 

growth and rising domestic demand. The reliance on high-income suppliers was consistent with 

Egypt’s trade preferences in the early 1990s when government policies prioritized stable, 

established sources for securing wheat supplies. By 2008, Egypt’s wheat trade network had 

begun to diversify. The trade chord diagram shows an expansion of suppliers, with Ukraine and 

Russia emerging as key exporters alongside Argentina and Australia. While high-income 

countries like the United States and France remained important, the increased presence of 

Eastern European and  outh American suppliers reflects a shift in Egypt’s sourcing strategy, 

likely driven by cost considerations and growing competition in the global wheat market. The 

GAM fit reveals no sharp decline in trade volume, suggesting that despite financial instability 

worldwide, Egypt was able to sustain its wheat imports by broadening its supplier base. This 

diversification likely helped mitigate potential disruptions caused by the global economic 

downturn. 
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Figure 5. 7 Evolution of Egypt’s wheat trade network and import patterns from 1993 to 2020. 

The figure illustrates the evolution of Egypt’s wheat trade network and import trends over three 

decades. The (a) displays the 1993 wheat trade chord diagram, showing Egypt’s reliance on 

wheat imports, primarily from high-income countries. The (b) presents the generalized additive 

model (GAM) fit of Egypt’s wheat import volumes over time, with red points representing 

observed trade values, the blue line showing the fitted trend, and the shaded area representing 

confidence intervals. The bottom panels depict wheat trade chord diagrams for 2008 (c), 2010 

(d), and 2020 (e), illustrating Egypt’s shifting trade partnerships and supplier diversification over 

time. The chord diagrams use color-coded arcs to represent different income-level groups among 

trade partners: blue for lower-middle-income countries, orange for upper-middle-income 

countries, red for high-income countries, and green for low-income countries. The width of the 

connecting bands represents the volume of wheat traded between Egypt and its partners in each 

given year. 

 

In 2010, the Russian wheat export ban disrupted trade flows, forcing Egypt to adjust its import 

strategy. The chord diagram shows an increased reliance on alternative suppliers, particularly 

Ukraine, Argentina, and Canada, as Russia temporarily withdrew from the market. Egypt’s trade 
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relationships with European and North American exporters remained intact, but the shift toward 

Eastern European and Latin American suppliers highlights the adaptability of its trade network. 

The GAM fit captures a brief decline followed by a recovery, consistent with Egypt’s ability to 

navigate supply crises through trade diversification. Notably, wheat imports from Middle Eastern 

and North African countries, such as Jordan and Lebanon, also appeared in the 2010 network, 

indicating an effort to secure supplies from regional partners during periods of uncertainty. The 

COVID-19 pandemic in 2020 introduced another phase of adaptation in Egypt’s wheat trade. 

Unlike the disruptions caused by the financial crisis and the Russian export ban, the pandemic 

prompted logistical challenges rather than a direct supply shortage. The chord diagram for 2020 

shows a continued reliance on Russia and Ukraine, alongside high-income suppliers like the 

United States, France, and Italy. However, a notable increase in wheat imports from lower-

middle-income and low-income countries, including Sudan, Ethiopia, and Somalia, reflects a 

shift toward regional trade partnerships, possibly as part of broader food security strategies in 

response to supply chain uncertainties. The GAM fit indicates a temporary decline at the onset of 

the pandemic, followed by a rapid recovery, suggesting that Egypt’s wheat trade network had 

become more resilient compared to previous crises. 

By 2022, Egypt’s wheat trade appeared to stabilize, with Russia and  kraine playing dominant 

roles, alongside long-standing suppliers from North America and Europe. The long-term 

trajectory of Egypt’s wheat trade suggests a progressive shift from reliance on high-income 

Western suppliers toward a more diversified network incorporating Eastern European, Latin 

American, and regional partners. The interplay between GAM trends and trade chord analysis 

highlights Egypt’s increasing capacity to adapt to crises, ensuring food security despite economic 

fluctuations and geopolitical disruptions. 
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5.4.4 Crisis-Induced Trade Adjustments and Structural Shifts in Global Wheat Markets  

Egypt is selected as the focus of this analysis due to its status as one of the world’s largest wheat 

importers, making it highly sensitive to crises. Unlike major exporters such as the U.S. and 

Brazil, whose trade dynamics are influenced by global demand, Egypt’s wheat trade fluctuations 

are largely supply-driven. This makes Egypt an ideal case for examining how different crises 

reshape import-dependent economies and, by extension, the global wheat trade network. The 

SCM results for Egypt in 2008, 2010, and 2020 reveal substantial deviations between actual and 

predicted trade, highlighting how crises force rapid adjustments in import strategies, trade 

relationships, and market resilience. 

In 2008, the financial crisis disrupted global credit markets, increasing volatility in commodity 

prices and trade financing. The  CM results show that Egypt’s actual wheat imports closely 

tracked synthetic estimates, suggesting that while the financial crisis created economic 

uncertainty, it did not immediately translate into a severe trade contraction. However, Egypt’s 

observed trade fluctuated more than the synthetic model predicted, reflecting short-term 

adjustments to changing price dynamics and supplier reliability. The ability to maintain 

relatively stable wheat imports during a financial downturn underscores the role of government 

policies and strategic trade partnerships in mitigating demand-side crises. The 2010 Russian 

wheat export ban had a much more pronounced impact, creating the largest observed deviation 

from synthetic trade estimates.  nder normal conditions, Egypt’s wheat trade would have 

followed a stable trajectory, as projected by the synthetic model. Instead, actual imports spiked 

sharply beyond predicted levels, reflecting Egypt’s aggressive response to a major supply crisis. 

The  CM results indicate that Egypt’s wheat imports diverged from previous patterns, 

reinforcing evidence from the trade chord analysis that Egypt rapidly diversified its supplier 
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base. The surge in actual imports, particularly from Ukraine, Argentina, and Canada, suggests 

that Egypt anticipated prolonged disruptions and acted preemptively to secure alternative sources 

and stabilize domestic food security. The magnitude of this deviation highlights how supply 

crises lead to immediate and large-scale trade restructuring, in contrast to financial crises, which 

tend to produce more gradual adjustments. 

By 2020, the COVID-19 pandemic introduced a different kind of disruption, primarily affecting 

logistics, supply chain continuity, and government trade restrictions. The SCM results for this 

period reveal an initial decline in actual trade compared to synthetic estimates, reflecting early-

stage logistical constraints and trade policy uncertainties. However, this gap closed rapidly, and 

actual trade even exceeded synthetic predictions later in the year.  nlike 2010, where Egypt’s 

response was characterized by supplier diversification, the 2020 crisis led to greater reliance on 

regional trade, as seen in increased wheat imports from Sudan, Ethiopia, and Somalia. The SCM 

results suggest that Egypt had adapted to global supply chain risks by integrating shorter-

distance suppliers into its network, ensuring continued wheat availability despite international 

shipping disruptions. 

The SCM results across these three crises reveal a clear pattern: economic, supply, and logistical 

crises produce different types of trade disruptions, but their cumulative effect reshapes the 

structure of global wheat trade over time. The 2008 crisis tested Egypt’s financial capacity to 

sustain wheat imports under economic pressure, while the 2010 supply crisis forced a structural 

shift toward diversification. In 2020, the pandemic reinforced the importance of flexible trade 

networks, accelerating Egypt’s regional trade integration as a risk-management strategy. The 

SCM deviations show that crisis responses are not temporary fluctuations but contribute to long-
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term market transformations, reinforcing the idea that trade networks evolve in response to 

repeated crises. 

 

Figure 5. 8 SCM-based analysis of Egypt’s wheat trade response to global crises in 2008, 2010, 

and 2020. Observed and synthetic wheat trade values for Egypt under the synthetic control 

method (SCM) for intervention years (a) 2008, (b) 2010, and (c) 2020. The solid gray line 

represents actual observed wheat trade, while the dashed magenta line represents the 

counterfactual synthetic trade value, which estimates expected trade had the crisis not occurred. 

The vertical dashed line indicates the intervention year for each crisis. 
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Beyond Egypt, these findings reflect broader systemic changes in the global wheat trade 

network. The SCM results suggest that predicting trade flows based solely on pre-crisis trends is 

increasingly unreliable, as trade structures are continuously reshaped by crises. The sharp 

deviations between synthetic and actual trade during crises highlight the need for more dynamic 

trade models that incorporate real-time policy responses, supplier shifts, and geopolitical 

considerations rather than assuming stability in trade relationships. The long-term trajectory of 

Egypt’s wheat imports demonstrates that crises are not isolated events but interwoven disruptions 

that cumulatively shape market behavior. 

5.4.5 Shifting Wheat Trade Patterns with Adjacent and Distant Partners under Global Crises 

We compared the wheat trade dynamics of the USA, Russia, Brazil, and Egypt over three 

decades, focusing on the trade balance changes with neighboring countries (adjacent trade) 

versus those with geographically distant partners (distant trade) under the metacoupling 

framework (Liu J, 2023). For the United States, trade dynamics with distant partners exhibited 

high volatility, with notable contractions during 1994-1996 and 2008-2009, aligning with the 

North American market restructuring and the 2008 financial crisis. While distant trade showed 

signs of recovery post-2010, adjacent trade remained relatively stable but experienced minor 

fluctuations. A decline in adjacent trade after 2015 suggests a shifting reliance toward more 

geographically diverse trade partners, rather than maintaining strong regional trade relationships. 

Russia’s wheat trade demonstrated a fundamental shift from an import-dependent to an export-

driven network. In the late 1990s and early 2000s, distant trade remained negative, reflecting a 

reliance on foreign imports. However, by the mid-2000s, Russia’s trade balance with distant 

partners improved largely, particularly post-2010 following the Russian wheat export ban. 

Meanwhile, adjacent trade remained volatile, with sharp increases in 2011-2012 and 2016-2017, 
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indicating stronger trade connections with neighboring markets, particularly in the 

Commonwealth of Independent States (CIS) region. The sharp decline in adjacent trade in 2020-

2021 suggests potential disruptions due to logistics and trade restrictions during the COVID-19 

pandemic. Brazil, primarily an importer of wheat, shows a consistently negative trade balance 

with distant and adjacent partners, with fluctuations reflecting import dependency. Adjacent 

trade with Argentina and Paraguay dominates Brazil’s wheat supply, evident in the recurring 

negative balance. However, an increasing volume of wheat imports from distant suppliers post-

2010, particularly from North America and Eastern Europe, suggests diversification in sourcing 

strategies. The 2014-2015 period saw a marked contraction in adjacent trade, potentially linked 

to regional production shortfalls and currency fluctuations affecting wheat prices. 

Egypt’s trade balance highlights its reliance on distant wheat suppliers, particularly from the 

Black  ea region, North America, and Europe. Throughout the early 2000s, Egypt’s distant trade 

balance remained largely positive, peaking in 2010-2011 following the Russian wheat export 

ban, which led to a surge in imports from alternative suppliers. However, post-2020, Egypt’s 

trade dynamics shifted, showing a contraction in distant trade, potentially due to supply chain 

disruptions during COVID-19 and shifts in global wheat availability. Meanwhile, adjacent trade 

remained relatively low and unstable, reflecting Egypt’s limited reliance on regional wheat 

suppliers. These findings underscore how wheat trade networks adapt differently across nations 

based on their economic positioning and strategic trade preferences. Exporting countries like 

Russia and the U.S. have expanded their reach toward distant partners, while importers like 

Egypt and Brazil continue to navigate supplier diversification. The impact of crises, including 

financial downturns, export bans, and the COVID-19 pandemic, has shaped these patterns, 

reinforcing the importance of resilience in global food trade strategies. 
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Figure 5. 9 Comparison of wheat trade dynamics with adjacent and distant partners for the 

United States, Russia, Brazil, and Egypt (1993–2022). The annual changes in wheat trade 

volume between distant and adjacent trade partners for the United States (USA), Russia (RUS), 

Brazil (BRA), and Egypt (EGY) from 1993 to 2022. The top section represents distant trade, 

while the bottom section represents adjacent trade. The color gradient indicates trade volume, 

with green shades representing trade surpluses (positive values) and brown shades indicating 

trade deficits (negative values). Each row corresponds to a yearly trade period, showing the shifts 

in wheat trade balances for each country over time.  

 

5.4.6 Scenario-based Simulation of Global Wheat Exports under Crises 

To assess the impacts of multiple global crises on wheat exports, we conducted a series of 

scenario simulations based on pre-crisis trends. The model estimates export levels in the absence 

of the 2008 financial crisis, the 2010 Russian export ban, and the 2020 COVID-19 pandemic. By 

comparing these simulation results with actual export data, we evaluated how global and income-

level trade patterns responded to each crisis. 

Figure 5.10 presents the global scenario simulation results. The no-crisis simulation shows the 

highest export level, followed by the simulations that remove only the 2010 export ban or the 

2020 pandemic. In all three cases, actual export volumes fall below the simulated levels, 

confirming that the combined effect of these crises suppressed global wheat trade. The gap 

between the no-crisis scenario and actual data reflects the long-term impact of repeated 
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disruptions. The simulation without the 2010 export ban diverges from actual trade starting 

around 2011, while the simulation without the 2020 pandemic shows a more abrupt drop after 

2020. These results show that each crisis affected trade differently, both in timing and in 

mechanism. 

 

Figure 5. 10 Global wheat export volumes under simulated crisis scenarios and observed data, 

2000–2022. This figure compares actual global wheat export volumes with simulated export 

values under three crisis scenarios using a linear model. The orange solid circle (●) represents 

actual observed export data, which also represents the combined effects of the three crises. The 

pink diamond (◆) represents the simulated scenario without the 2008 financial crisis. The green 

square (■) represents the simulated scenario without the 2010 Russian wheat export ban. The 

blue triangle (▲) represents the simulated scenario without the 2020 COVID-19 pandemic. The 

x-axis shows the year (1990–2022), and the y-axis displays export values.  

 

When separated by income group, the results reveal more specific and contrasting patterns 

(Figure 5.11). In low-income countries, actual export volumes were higher than simulated values 

following the financial crisis. This suggests that the crisis created trade opportunities, possibly by 

shifting demand toward new suppliers. However, after the 2010 Russian export ban, actual 
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exports fell below the simulated scenario, showing a negative impact. The COVID-19 pandemic 

deepened this gap, with actual exports consistently below predicted levels. These shifts imply 

that early gains were later offset by structural and logistical limitations. 

 

Figure 5. 11 Wheat export volumes under simulated crisis scenarios and observed data by 

income group, 1990–2022. This figure shows the comparison between actual wheat export volumes 

and simulated counterfactual values under three crisis scenarios for four income groups: (a) low-income, 

(b) lower-middle-income, (c) upper-middle-income, and (d) high-income countries. The orange solid 

circle (●) represents actual observed export data. The pink diamond (◆) represents the simulated scenario 

without the 2008 financial crisis. The green square (■) represents the simulated scenario without the 2010 

Russian wheat export ban. The blue triangle (▲) represents the simulated scenario without the 2020 

COVID-19 pandemic. The x-axis indicates the year (1990–2022), and the y-axis shows export values. 

 

For lower-middle-income countries, actual exports remained above all three simulated crisis 

scenarios. These countries consistently exceeded expected performance during each disruption 

period. The difference is most pronounced during the COVID-19 pandemic, when actual exports 

grew well above simulated values. This may reflect growing competitiveness, expanded trade 

networks, or improvements in export infrastructure. In upper-middle-income countries, the 
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simulation results for the export ban and the pandemic were both higher than the actual export 

values, especially after 2015. This suggests that these crises constrained export growth, even 

though pre-crisis trends indicated greater potential. The scenario without the financial crisis 

remained closer to actual values, indicating that its impact was more limited. High-income 

countries showed a delayed but increasing gap between simulated and actual exports. The 

scenario without the pandemic in particular shows that exports could have grown further if 

disruptions had not occurred. The growing difference after 2015 suggests that export 

performance in this group was increasingly affected by supply chain issues, changing market 

conditions, or trade policy responses. 

These simulation results show that the effects of crises vary across income groups. While the 

overall suppressive effect is most visible at the global level, some countries, particularly in the 

lower-middle-income group, adapted well and even strengthened their trade positions. Others, 

especially low- and upper-middle-income exporters, experienced more limited recovery. These 

differences highlight not only the need for targeted trade support and context-specific policy 

interventions, but also the importance of addressing spatial disparities in resilience. Countries 

across different regions and income groups experienced distinct trade impacts, indicating that 

global crises interact with local vulnerabilities and regional trade dynamics in uneven ways. 

5.5 Discussion 

This study demonstrates how multiple global crises—economic, supply-driven, and logistical—

have collectively shaped the structure and function of the global wheat trade over the past three 

decades. Through the combination of scenario simulation and network analysis, we show that the 

effects of the 2008 financial crisis, the 2010 Russian wheat export ban, and the 2020 COVID-19 
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pandemic were not isolated events. Instead, their impacts accumulated over time, influencing 

trade performance across different income levels and geographic regions. 

Each crisis contributed differently to changes in trade patterns. The financial crisis primarily 

reduced global liquidity and altered trade financing conditions. Although it did not immediately 

disrupt the network structure, it contributed to long-term shifts in trade behavior, such as 

stockpiling and supplier diversification among middle-income countries. These findings are 

consistent with previous studies that recognized financial crises as indirect yet influential 

stressors on trade dynamics (Belke, 2010; Davis et al., 2021; Gephart et al., 2016). In contrast, 

the 2010 Russian wheat export ban had a more direct impact. Many import-dependent countries 

were forced to diversify their supply sources, leading to structural shifts in global wheat flows. 

This outcome aligns with earlier research indicating that supply-side disruptions often accelerate 

trade network reconfiguration (Devadoss & Ridley, 2024; Svanidze et al., 2022; Arita et al., 

2022). The COVID-19 pandemic introduced a distinct set of constraints by disrupting logistics, 

labor availability, and trade regulation. While some countries adapted by strengthening existing 

partnerships or establishing new channels, others—particularly low-income regions—

experienced prolonged setbacks. Previous studies have similarly emphasized how the pandemic 

triggered both fragmentation and reconnection within global food supply chains (Mahajan & 

Tomar, 2021; Li et al., 2022; Lin et al., 2023). 

Importantly, our results reinforce the notion that the global wheat trade system is path-

dependent. Responses to one crisis often shaped outcomes in the next. For example, the 

diversification strategies initiated after the export ban helped some countries cushion the impacts 

of COVID-19-related disruptions. However, the capacity to adopt such strategies was uneven. 

High-income and upper-middle-income countries generally absorbed and adapted to multiple 
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crises more effectively. In contrast, lower-middle- and low-income countries faced greater trade 

suppression and slower recovery, echoing spatial and economic disparities noted in earlier 

studies (Gephart et al., 2016; Behnassi & El Haiba, 2022). 

Scenario simulations further revealed the heterogeneity in exposure and recovery across income 

groups. Some lower-middle-income countries exceeded their predicted export levels under all 

crisis scenarios, demonstrating resilience and adaptability. Others remained persistently below 

projections, reflecting deeper structural constraints that limited their recovery capacity. Beyond 

these income-based patterns, the analysis of major exporters provides additional insights. Russia, 

the United States, Canada, and Ukraine showed distinct trade responses across crisis periods. 

Russia’s policy decisions and trade disruptions had broad effects across the network, while the 

United States and Canada maintained relatively stable roles. Ukraine, which had been gaining 

importance before 2020, faced setbacks due to conflict and crisis spillovers. These national-level 

trajectories illustrate how political conditions and geographic positioning mediate trade 

adjustments under stress. 

Differences between adjacent and distant trade flows further highlight the spatial dynamics of 

resilience. Adjacent trade proved more resilient under crisis conditions, likely benefiting from 

geographic proximity, shared infrastructure, and lower transaction costs. In contrast, distant trade 

relationships were more sensitive to disruption, particularly during the COVID-19 pandemic. 

This divergence suggests that regional integration may offer advantages for maintaining trade 

continuity during global crises, and highlights the role of proximity in buffering against 

widespread shocks. 

Beyond empirical findings, this study also offers a methodological contribution by providing a 

quantitative approach to evaluate the combined effects of multiple crises on global trade flows. 
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By linking scenario simulations with network analysis, we developed a framework to better 

understand how sequential disruptions reshape trade across both space and income groups. 

Through this approach, we addressed three central questions: how the global wheat trade 

responds to different types of crises; how these impacts vary across country groups and regions; 

and how structural disparities influence resilience and recovery trajectories. 

The findings have clear implications for trade governance and crisis management. Increasing the 

resilience of the global wheat trade will require inclusive policy frameworks that account for 

uneven adaptive capacities, stronger regional cooperation to support adjacent trade resilience, 

and targeted investments in transport, storage, and market access. Without addressing the 

structural disparities that shape trade vulnerability, future crises may continue to widen the 

global divide in food security. 
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CHAPTER 6: SYNTHESIS 

This dissertation advances the application of the metacoupling framework to evaluate the 

resilience and transformation of food trade systems in a crisis-prone world. By combining 

systematic literature review, remote sensing, trade data analysis, and statistical modeling, this 

research offers a cross-scale, multi-method understanding of how global wheat trade systems 

respond to both short-term disruptions and long-term pressures. Each chapter builds on the 

concept of intra-, peri-, and telecoupling to reveal how sending, receiving, and spillover systems 

are reshaped across time and space. 

Chapter 2 presents a systematic review of 455 peer-reviewed articles and identifies major gaps in 

existing food trade resilience research. While many studies emphasize national-scale dynamics, 

few consider spillover systems or cross-scale trade linkages. This chapter synthesizes fragmented 

indicators into a unified framework structured around human- and nature-related drivers. It 

highlights the urgent need to incorporate underexplored metacoupling dimensions in resilience 

evaluations. 

Chapter 3 develops an evaluation framework to assess how the COVID-19 pandemic disrupted 

global food trade. By disaggregating Bonilla index, centrality, connectivity, trade disruption, and 

supply chain diversity into adjacent and distant trade components, this chapter reveals spatial 

inequalities in resilience. Low-income countries experienced more severe adjacent trade 

disruptions, while high-income countries maintained stability through diversified distant 

connections. These findings emphasize the importance of spatial structure and trade diversity for 

navigating global crises. 

Chapter 4 introduces a rapid assessment approach to quantify the 2022 Russia– kraine war’s 

impact on winter wheat trade. Using remote sensing-based cropland data combined with trade 
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network metrics, the chapter identifies reduced connectivity and the emergence of new 

peripheral trade routes. The war’s disruption to a critical supply region revealed the vulnerability 

of over-concentrated trade networks and emphasized the role of near-real-time data in 

monitoring supply chain risks. 

Chapter 5 extends the analysis across three decades (1991–2022) to examine long-term structural 

changes in the global wheat trade network. Using network analysis, structural change modeling 

(SCM), and generalized additive models (GAM), the chapter detects critical turning points 

associated with three major global events: the 2008 financial crisis, the 2010 Russian wheat 

export ban, and the 2020 COVID-19 pandemic. The results show growing dominance of distant 

trade, persistent income-based inequalities in centrality and connectivity, and increased trade 

concentration in high-income countries. These findings reveal how recurring crises can reinforce 

long-term disparities and reshape the structure of global wheat trade networks. 

In summary, this dissertation contributes both conceptually and methodologically to the study of 

food trade resilience under the metacoupling framework. It introduces a new classification 

system for resilience indicators, demonstrates empirical methods for assessing crises at multiple 

scales, and links structural changes in trade to crises. Future research should explore how 

cascading crises interact across systems and scales and incorporate subnational and firm-level 

data to improve resolution. Integrated modeling approaches and scenario-based simulations are 

also needed to anticipate nonlinear system behaviors and feedbacks. 

By providing an integrated framework to evaluate food trade system resilience, this research 

supports the design of more adaptive and equitable trade policies. The findings contribute to a 

deeper understanding of how global food systems evolve under pressure and offer practical 

insights for strengthening resilience in pursuit of the Sustainable Development Goals. 
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APPENDIX A SUPPORTING INFORMATION FOR CHAPTER 3 

Table S3. 1 Data sources 

Broad 

category 
Variables 

Impacts 

on food 

trade 

resilience 

Reference study 

Innovation 

and research 

Bonilla Index (BI) - https://www.fao.org/faostat/en/#data  

Connectivity of 

trade network 
+ https://comtradeplus.un.org/ 

Centrality of trade 

network 
+ https://comtradeplus.un.org/ 

Economy and 

market 

Exchange Rate 

(E) 
+  

https://www.xe.com/zh-

CN/currencyconverter/convert/?Amount=1&From=SPL&To

=CNY (173 countreis avaliable) 
World Food 

Prices (Pw) 
- https://www.fao.org/faostat/en/#data  

GDP + https://data.worldbank.org/indicator/NY.GDP.MKTP.CD  

Income levels + https://data.worldbank.org.cn/indicator/NY.GNP.PCAP.CD  

Energy 

dependence 
- 

https://yearbook.enerdata.net/total-energy/world-

consumption-statistics.html  

Export Growth 

Rate 
+ https://data.worldbank.org/indicator/NE.EXP.GNFS.KD.ZG  

Production 

diversity 
+ https://www.fao.org/faostat/en/#data/MDDW  

Policy and 

institution 

Trade 

Dependencies 
- 

https://data.worldbank.org/indicator/TM.VAL.FOOD.ZS.U

N 

Political stability + 
https://databank.worldbank.org/source/worldwide-

governance-indicators/preview/on  

Domestic Food 

Production 
+ https://www.fao.org/faostat/en/#data/MDDW 

Domestic 

consumption 
- https://www.fao.org/faostat/en/#data/CP 

Trade partner 

diversity 
+ 

https://kof.ethz.ch/en/forecasts-and-

indicators/indicators/kof-globalisation-index.html 
Trade 

diversification 
+ https://economicdiversification.com/the-index/ 

Society and 

culture 

Exposure to crises - https://github.com/owid/covid-19-data 
Affordability + https://ourworldindata.org/food-prices 

Diet preference - 
https://globaldietarydatabase.org/our-data/data-

visualizations/dietary-data-country 

Demographic 

Population growth - https://www.worldpop.org/ 
Food availability + https://www.fao.org/faostat/en/#data/SUA 
Human 

development 

index (HDI) 
+ 

https://hdr.undp.org/data-center/human-development-

index#/indicies/HDI 

 Calorie supply + https://www.fao.org/faostat/en/#data/SCL 

Supply chain 

Global Trade 

Disruptions 
- https://www.fao.org/faostat/en/#data 

Supply chain 

diversity 
+ comtradeplus.un.org 
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Figure S3. 1 Supply chain diversity in adjacent and distant trade networks for 2019 and 2020. 

Supply chain diversity reflects the adaptive capacity of countries through varied trade 

partnerships.  
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APPENDIX B SUPPORTING INFORMATION FOR CHAPTER 4 

Supplementary Results 

 

Figure S4. 1 Comparison of official statistics and satellite-derived winter cereal planting area at 

the state level for 2019–2021. Comparison between satellite-derived winter cereal yield estimates 

and official statistics from 2019 to 2021. Each panel represents the regression results for a 

different year, with satellite data on the x-axis and official statistics on the y-axis. The solid line 

in each panel represents the linear regression fit, while the shaded area indicates the confidence 

interval of the regression. The equation of the regression line, R², and RMSE (root mean square 

error) in each panel show the strong correlation between the satellite estimate and official 

statistic. The high R² values (ranging from 0.80 to 0.94) and low RMSE values across all years 

suggest the reliability of satellite data in estimating winter cereal yields, thus supporting its use in 

assessing production reductions due to the Russia-Ukraine war. 
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Figure S4. 2 Global trade flows of winter cereals among income groups in 2021 (100%). Global 

trade networks for winter cereals—wheat (a), barley (b), and oats (c)—across various countries, 

classified by income levels. Trade flows are depicted using chord diagrams, with the direction 

and volume of trade represented by the connecting bands between countries. Color coding 

distinguishes the income levels of countries, and thicker bands indicate higher volumes of trade 

between the respective countries. 

 

Panel (a) shows the global wheat trade network, with high-income countries (red) playing a 

dominant role in both exporting and importing activities. Key wheat exporters such as the United 

States and countries within the European Union are interconnected with major wheat importers. 

Upper-middle-income countries (yellow), including China and Turkey, are also largely integrated 

into the global wheat trade, although their connections are less dense compared to high-income 

countries. Panel (b) depicts the barley trade network, where high-income countries are again the 

primary actors in the exchange of barley. Major exporters such as Australia and European 

countries form robust trade links with importing countries. Notably, upper-middle-income 

countries like Argentina and Brazil are also important players in the barley market. The presence 

of lower-middle-income countries (blue) is relatively limited in this network, suggesting that 

barley trade is more concentrated among wealthier nations. Panel (c) illustrates the oats trade 
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network, where high-income countries dominate trade relations. The network for oats is 

characterized by fewer, but still substantial, connections between key exporters such as Canada 

and Australia and their primary importing partners, mostly in Europe. The overall volume of oats 

trade is smaller compared to wheat and barley, but it remains largely concentrated among a select 

group of high-income countries. 
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Figure S4. 3 Uncertainty analysis of simulated 2022 trade networks for wheat, barley, oats, and 

total cereal quantities compared to real 2022 trade data. (a) to (d) show the distribution of 

predicted trade quantities for wheat, barley, oats, and the sum of all winter cereals, respectively, 

for 2022, comparing simulated data to real trade values across different income levels (high-, 

upper-middle-, lower-middle-, and low-income). (e) to (h) present the linear regression analysis 

between the predicted (simulated) and actual trade quantities for wheat, barley, oats, and the sum 

total, respectively. The scatter plots visualize the relationship between the logarithms of 

predicted and actual trade quantities. The dashed diagonal lines represent perfect predictions 

(i.e., where predicted equals actual). The strength of the fit is indicated by how closely the points 

align with this line, and the correlation coefficients are reflected in the regression slopes. 
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The validation presented in Figure S4.3 highlights the comparison between the simulated 2022 

trade networks and the actual trade data for wheat, barley, oats, and total winter cereal quantities. 

Panels (a) to (d) reveal that, although there are variations between the predicted and real data, the 

overall distribution patterns are generally consistent across income levels. High-income countries 

exhibit relatively minimal deviation, whereas lower-middle and low-income countries show 

more noticeable divergence in trade quantities, which could be attributed to their higher 

vulnerability to market crises and supply chain disruptions. This is particularly evident in oats 

and barley trades. 

In the regression analysis (panels e to h), the linear regression between simulated and actual trade 

quantities demonstrates strong correlation across all crops. The scatter plots for wheat, barley, 

oats, and the total cereals indicate high R² values, suggesting that the simulation accurately 

captures the overall trend in trade volumes. While some deviations are observed, particularly in 

lower-income regions and for oats, the error remains within an understandable range given the 

complexity of global trade networks and the uncertainties inherent in predictive modeling. 
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Figure S4. 4 Trade networks affected by production cuts in Ukraine and cereal export bans in 

importing countries. Global trade networks for winter cereals—wheat (a), barley (b), and oats 

(c)—across various countries, classified by income levels. Trade flows are depicted using chord 

diagrams, with the direction and volume of trade represented by the connecting bands between 

countries. Color coding distinguishes the income levels of countries, and thicker bands indicate 

higher volumes of trade between the respective countries. 

 

The figure highlights the decrease in global trade volumes and the fragmentation of trade networks 

due to the combined effects of the Russia-Ukraine war and export bans. In the wheat network 

(panel a), there is a noticeable contraction in the trade flows, especially between high-income and 

upper-middle-income countries, with fewer connections to low-, and lower-middle-income 

nations. The barley trade network (panel b) shows a similar pattern, with high-income countries 

continuing to dominate the trade, though the overall volume has decreased. Oats trade (panel c) 

also exhibits a reduction in export flows, with the impact being more pronounced among lower-

middle-income countries, as seen by the thinner and more fragmented connections. The overall 

reduction in connectivity and trade volume across these three cereal types demonstrates the large 

disruption to global food systems in 2022, disproportionately affecting lower-income and 

geographically distant countries. 
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Table S4. 1 Country names with ISO abbreviations 

Country (from ISO list) Alpha-2 code Alpha-3 code Numeric 

Afghanistan AF AFG 4 

Albania AL ALB 8 

Algeria DZ DZA 12 

American Samoa AS ASM 16 

Andorra AD AND 20 

Angola AO AGO 24 

Anguilla AI AIA 660 

Antarctica AQ ATA 10 

Antigua and Barbuda AG ATG 28 

Argentina AR ARG 32 

Armenia AM ARM 51 

Aruba AW ABW 533 

Australia AU AUS 36 

Austria AT AUT 40 

Azerbaijan AZ AZE 31 

Bahamas (the) BS BHS 44 

Bahrain BH BHR 48 

Bangladesh BD BGD 50 

Barbados BB BRB 52 

Belarus BY BLR 112 

Belgium BE BEL 56 

Belize BZ BLZ 84 

Benin BJ BEN 204 

Bermuda BM BMU 60 

Bhutan BT BTN 64 

Bolivia (Plurinational State of) BO BOL 68 

Bonaire, Sint Eustatius and Saba BQ BES 535 

Bosnia and Herzegovina BA BIH 70 

Botswana BW BWA 72 

Bouvet Island BV BVT 74 

Brazil BR BRA 76 

British Indian Ocean Territory (the) IO IOT 86 

Brunei Darussalam BN BRN 96 

Bulgaria BG BGR 100 

Burkina Faso BF BFA 854 

Burundi BI BDI 108 

Cabo Verde CV CPV 132 

Cambodia KH KHM 116 

Cameroon CM CMR 120 

Canada CA CAN 124 

Cayman Islands (the) KY CYM 136 

Central African Republic (the) CF CAF 140 
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Table S4. 1 (cont’d) 

Chad TD TCD 148 

Chile CL CHL 152 

China CN CHN 156 

Christmas Island CX CXR 162 

Cocos (Keeling) Islands (the) CC CCK 166 

Colombia CO COL 170 

Comoros (The) KM COM 174 

Congo (The Democratic Republic of the) CD COD 180 

Congo (The) CG COG 178 

Cook Islands (The) CK COK 184 

Costa Rica CR CRI 188 

Croatia HR HRV 191 

Cuba CU CUB 192 

Curaçao CW CUW 531 

Cyprus CY CYP 196 

Czechia CZ CZE 203 

Côte d'Ivoire CI CIV 384 

Denmark DK DNK 208 

Djibouti DJ DJI 262 

Dominica DM DMA 212 

Dominican Republic (The) DO DOM 214 

Ecuador EC ECU 218 

Egypt EG EGY 818 

El Salvador SV SLV 222 

Equatorial Guinea GQ GNQ 226 

Eritrea ER ERI 232 

Estonia EE EST 233 

Eswatini SZ SWZ 748 

Ethiopia ET ETH 231 

Falkland Islands [Malvinas] FK FLK 238 

Faroe Islands (the) FO FRO 234 

Fiji FJ FJI 242 

Finland FI FIN 246 

France FR FRA 250 

French Guiana GF GUF 254 

French Polynesia PF PYF 258 

French Southern Territories (the) TF ATF 260 

Gabon GA GAB 266 

Gambia (the) GM GMB 270 

Georgia GE GEO 268 

Germany DE DEU 276 

Ghana GH GHA 288 

Gibraltar GI GIB 292 

Greece GR GRC 300 
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Table S4. 1 (cont’d) 

Greenland GL GRL 304 

Grenada GD GRD 308 

Guadeloupe GP GLP 312 

Guam GU GUM 316 

Guatemala GT GTM 320 

Guernsey GG GGY 831 

Guinea GN GIN 324 

Guinea-Bissau GW GNB 624 

Guyana GY GUY 328 

Haiti HT HTI 332 

Heard Island and McDonald Islands HM HMD 334 

Holy See (the) VA VAT 336 

Honduras HN HND 340 

Hong Kong HK HKG 344 

Hungary HU HUN 348 

Iceland IS ISL 352 

India IN IND 356 

Indonesia ID IDN 360 

Iran (Islamic Republic of) IR IRN 364 

Iraq IQ IRQ 368 

Ireland IE IRL 372 

Isle of Man IM IMN 833 

Israel IL ISR 376 

Italy IT ITA 380 

Jamaica JM JAM 388 

Japan JP JPN 392 

Jersey JE JEY 832 

Jordan JO JOR 400 

Kazakhstan KZ KAZ 398 

Kenya KE KEN 404 

Kiribati KI KIR 296 

Korea (the Democratic People's Republic of) KP PRK 408 

Korea (the Republic of) KR KOR 410 

Kuwait KW KWT 414 

Kyrgyzstan KG KGZ 417 

Lao People's Democratic Republic (the) LA LAO 418 

Latvia LV LVA 428 

Lebanon LB LBN 422 

Lesotho LS LSO 426 

Liberia LR LBR 430 

Libya LY LBY 434 

Liechtenstein LI LIE 438 

Lithuania LT LTU 440 

Luxembourg LU LUX 442 
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Table S4. 1 (cont’d) 

Macao MO MAC 446 

Madagascar MG MDG 450 

Malawi MW MWI 454 

Malaysia MY MYS 458 

Maldives MV MDV 462 

Mali ML MLI 466 

Malta MT MLT 470 

Marshall Islands (the) MH MHL 584 

Martinique MQ MTQ 474 

Mauritania MR MRT 478 

Mauritius MU MUS 480 

Mayotte YT MYT 175 

Mexico MX MEX 484 

Micronesia (Federated States of) FM FSM 583 

Moldova (the Republic of) MD MDA 498 

Monaco MC MCO 492 

Mongolia MN MNG 496 

Montenegro ME MNE 499 

Montserrat MS MSR 500 

Morocco MA MAR 504 

Mozambique MZ MOZ 508 

Myanmar MM MMR 104 

Namibia NA NAM 516 

Nauru NR NRU 520 

Nepal NP NPL 524 

Netherlands (the) NL NLD 528 

New Caledonia NC NCL 540 

New Zealand NZ NZL 554 

Nicaragua NI NIC 558 

Niger (the) NE NER 562 

Nigeria NG NGA 566 

Niue NU NIU 570 

Norfolk Island NF NFK 574 

Northern Mariana Islands (the) MP MNP 580 

Norway NO NOR 578 

Oman OM OMN 512 

Pakistan PK PAK 586 

Palau PW PLW 585 

Palestine, State of PS PSE 275 

Panama PA PAN 591 

Papua New Guinea PG PNG 598 

Paraguay PY PRY 600 

Peru PE PER 604 

Philippines (the) PH PHL 608 
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Table S4. 1 (cont’d) 

Pitcairn PN PCN 612 

Poland PL POL 616 

Portugal PT PRT 620 

Puerto Rico PR PRI 630 

Qatar QA QAT 634 

Republic of North Macedonia MK MKD 807 

Romania RO ROU 642 

Russian Federation (the) RU RUS 643 

Rwanda RW RWA 646 

Réunion RE REU 638 

Saint Barthélemy BL BLM 652 

Saint Helena, Ascension and Tristan da Cunha SH SHN 654 

Saint Kitts and Nevis KN KNA 659 

Saint Lucia LC LCA 662 

Saint Martin (French part) MF MAF 663 

Saint Pierre and Miquelon PM SPM 666 

Saint Vincent and the Grenadines VC VCT 670 

Samoa WS WSM 882 

San Marino SM SMR 674 

Sao Tome and Principe ST STP 678 

Saudi Arabia SA SAU 682 

Senegal SN SEN 686 

Serbia RS SRB 688 

Seychelles SC SYC 690 

Sierra Leone SL SLE 694 

Singapore SG SGP 702 

Sint Maarten (Dutch part) SX SXM 534 

Slovakia SK SVK 703 

Slovenia SI SVN 705 

Solomon Islands SB SLB 90 

Somalia SO SOM 706 

South Africa ZA ZAF 710 

South Georgia and the South Sandwich Islands GS SGS 239 

South Sudan SS SSD 728 

Spain ES ESP 724 

Sri Lanka LK LKA 144 

Sudan (the) SD SDN 729 

Suriname SR SUR 740 

Svalbard and Jan Mayen SJ SJM 744 

Sweden SE SWE 752 

Switzerland CH CHE 756 

Syrian Arab Republic SY SYR 760 

Taiwan (Province of China) TW TWN 158 

Tajikistan TJ TJK 762 



195 

Table S4. 1 (cont’d) 

Tanzania, United Republic of TZ TZA 834 

Thailand TH THA 764 

Timor-Leste TL TLS 626 

Togo TG TGO 768 

Tokelau TK TKL 772 

Tonga TO TON 776 

Trinidad and Tobago TT TTO 780 

Tunisia TN TUN 788 

Turkey TR TUR 792 

Turkmenistan TM TKM 795 

Turks and Caicos Islands (the) TC TCA 796 

Tuvalu TV TUV 798 

Uganda UG UGA 800 

Ukraine UA UKR 804 

United Arab Emirates (the) AE ARE 784 

United Kingdom of Great Britain and Northern Ireland (the) GB GBR 826 

United States Minor Outlying Islands (the) UM UMI 581 

United States of America (the) US USA 840 

Uruguay UY URY 858 

Uzbekistan UZ UZB 860 

Vanuatu VU VUT 548 

Venezuela (Bolivarian Republic of) VE VEN 862 

Viet Nam VN VNM 704 

Virgin Islands (British) VG VGB 92 

Virgin Islands (U.S.) VI VIR 850 

Wallis and Futuna WF WLF 876 

Western Sahara EH ESH 732 

Yemen YE YEM 887 

Zambia ZM ZMB 894 

Zimbabwe ZW ZWE 716 

Åland Islands AX ALA 248 
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Table S4. 2 Decreasing rate range statistics 

ISO code Partner Rate Range 2021_Qty 2022_Qty Income level 

GUM Guam -5%-0% 48 48 High-income 

ABW Aruba -5%-0% 2836 2836 High-income 

AND Andorra -5%-0% 176531 176531 High-income 

BMU Bermuda -5%-0% 195000 195000 High-income 

GRL Greenland -5%-0% 274131 274131 High-income 

PYF French Polynesia -5%-0% 629232 629232 High-income 

URY Uruguay -5%-0% 1046138 1046138 High-income 

BRB Barbados -5%-0% 8935886 8935886 High-income 

NCL New Caledonia -5%-0% 33829904 33829904 High-income 

LUX Luxembourg -5%-0% 1.14E+08 1.14E+08 High-income 

TTO Trinidad and Tobago -5%-0% 1.23E+08 1.23E+08 High-income 

IRL Ireland -5%-0% 5.36E+08 5.36E+08 High-income 

CHL Chile -5%-0% 1.45E+09 1.45E+09 High-income 

NZL New Zealand -5%-0% 6.07E+08 6.07E+08 High-income 

PRT Portugal -5%-0% 1.35E+09 1.35E+09 High-income 

PAN Panama -5%-0% 1.42E+08 1.42E+08 High-income 

ISL Iceland -5%-0% 47611487 47611426 High-income 

JPN Japan -5%-0% 6.5E+09 6.5E+09 High-income 

SWE Sweden -5%-0% 1.26E+08 1.26E+08 High-income 

USA USA -5%-0% 3.08E+09 3.08E+09 High-income 

CAN Canada -5%-0% 5.21E+08 5.21E+08 High-income 

SGP Singapore -5%-0% 2.14E+08 2.14E+08 High-income 

DEU Germany -5%-0% 5.67E+09 5.67E+09 High-income 

KWT Kuwait -5%-0% 1E+09 1E+09 High-income 

AUS Australia -5%-0% 943943 943019 High-income 

FRA France -5%-0% 5.52E+08 5.51E+08 High-income 

CZE Czechia -5%-0% 1.22E+08 1.22E+08 High-income 

HUN Hungary -5%-0% 2.18E+08 2.18E+08 High-income 

BEL Belgium -5%-0% 5.63E+09 5.62E+09 High-income 

POL Poland -5%-0% 7.8E+08 7.78E+08 High-income 

NLD Netherlands -5%-0% 7.37E+09 7.34E+09 High-income 

BHR Bahrain -5%-0% 94446353 93857218 High-income 

SVN Slovenia -5%-0% 63215134 62695474 High-income 

AUT Austria -5%-0% 8.07E+08 7.99E+08 High-income 

GBR United Kingdom -5%-0% 1.66E+09 1.63E+09 High-income 

BRN Brunei Darussalam -5%-0% 17609 17219 High-income 

ESP Spain -5%-0% 4.45E+09 4.29E+09 High-income 

GIB Gibraltar -5%-0% 104 100 High-income 

DNK Denmark -5%-0% 1.77E+08 1.69E+08 High-income 

CAF Central African Rep. -5%-0% 120 120 Low-income 

NER Niger -5%-0% 700 700 Low-income 

ZMB Zambia -5%-0% 47027822 47027822 Low-income 

WSM Samoa -5%-0% 60 60 Lower-middle-income 

VUT Vanuatu -5%-0% 632 632 Lower-middle-income 
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Table S4. 2 (cont’d) 

TLS Timor-Leste -5%-0% 1067 1067 Lower-middle-income 

COM Comoros -5%-0% 4864 4864 Lower-middle-income 

LAO Lao People's Dem. Rep. -5%-0% 4023568 4023568 Lower-middle-income 

CPV Cabo Verde -5%-0% 4594149 4594149 Lower-middle-income 

LSO Lesotho -5%-0% 33619423 33619423 Lower-middle-income 

SWZ Eswatini -5%-0% 45641015 45641015 Lower-middle-income 

PNG Papua New Guinea -5%-0% 2.53E+08 2.53E+08 Lower-middle-income 

HND Honduras -5%-0% 2.98E+08 2.98E+08 Lower-middle-income 

SLV El Salvador -5%-0% 3.14E+08 3.14E+08 Lower-middle-income 

KHM Cambodia -5%-0% 55184533 54809533 Lower-middle-income 

IND India -5%-0% 58235410 57516547 Lower-middle-income 

TJK Tajikistan -5%-0% 21984809 21520170 Lower-middle-income 

VNM Viet Nam -5%-0% 5.31E+09 5.11E+09 Lower-middle-income 

MMR Myanmar -5%-0% 4.81E+08 4.6E+08 Lower-middle-income 

TON Tonga -5%-0% 2768 2768 Upper-middle-income 

ARG Argentina -5%-0% 13597399 13597399 Upper-middle-income 

GRD Grenada -5%-0% 13755658 13755658 Upper-middle-income 

BLZ Belize -5%-0% 13782010 13782010 Upper-middle-income 

SUR Suriname -5%-0% 32347242 32347242 Upper-middle-income 

GUY Guyana -5%-0% 47348036 47348036 Upper-middle-income 

NAM Namibia -5%-0% 50434752 50434752 Upper-middle-income 

BWA Botswana -5%-0% 60040080 60040080 Upper-middle-income 

MUS Mauritius -5%-0% 1.31E+08 1.31E+08 Upper-middle-income 

FJI Fiji -5%-0% 1.7E+08 1.7E+08 Upper-middle-income 

JAM Jamaica -5%-0% 1.91E+08 1.91E+08 Upper-middle-income 

CRI Costa Rica -5%-0% 2.52E+08 2.52E+08 Upper-middle-income 

CUB Cuba -5%-0% 5.02E+08 5.02E+08 Upper-middle-income 

GTM Guatemala -5%-0% 5.66E+08 5.66E+08 Upper-middle-income 

ECU Ecuador -5%-0% 1.56E+09 1.56E+09 Upper-middle-income 

PRY Paraguay -5%-0% 161361 161025 Upper-middle-income 

BRA Brazil -5%-0% 6.7E+09 6.67E+09 Upper-middle-income 

MDV Maldives -5%-0% 52414 52144 Upper-middle-income 

DOM Dominican Rep. -5%-0% 5.9E+08 5.87E+08 Upper-middle-income 

COL Colombia -5%-0% 2.16E+09 2.13E+09 Upper-middle-income 

MEX Mexico -5%-0% 5.63E+09 5.54E+09 Upper-middle-income 

GNQ Equatorial Guinea -5%-0% 116963 113558 Upper-middle-income 

RUS Russian Federation -5%-0% 1.04E+08 1E+08 Upper-middle-income 

PER Peru -5%-0% 2.08E+09 1.98E+09 Upper-middle-income 

KOR Rep. of Korea -25%--5% 4.52E+09 4.27E+09 High-income 

HRV Croatia -25%--5% 72028774 64657769 High-income 

ITA Italy -25%--5% 6.3E+09 5.6E+09 High-income 

NOR Norway -25%--5% 3.23E+08 2.87E+08 High-income 

SVK Slovakia -25%--5% 75536662 63464766 High-income 

MOZ Mozambique -25%--5% 6.75E+08 5.61E+08 Low-income 

AFG Afghanistan -25%--5% 7196829 5896119 Low-income 
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Table S4. 2 (cont’d) 

UGA Uganda -25%--5% 4.06E+08 3.22E+08 Low-income 

GIN Guinea -25%--5% 3.86E+08 2.98E+08 Low-income 

MWI Malawi -25%--5% 1.63E+08 1.24E+08 Low-income 

DZA Algeria -25%--5% 8.5E+09 8.06E+09 Lower-middle-income 

IRN Iran -25%--5% 1.81E+09 1.72E+09 Lower-middle-income 

PHL Philippines -25%--5% 6.4E+09 5.94E+09 Lower-middle-income 

MAR Morocco -25%--5% 5.06E+09 4.48E+09 Lower-middle-income 

HTI Haiti -25%--5% 2.67E+08 2.36E+08 Lower-middle-income 

IDN Indonesia -25%--5% 1.12E+10 9.68E+09 Lower-middle-income 

NGA Nigeria -25%--5% 6.3E+09 5.22E+09 Lower-middle-income 

ZWE Zimbabwe -25%--5% 58895612 46995612 Lower-middle-income 

MYS Malaysia -25%--5% 1.76E+09 1.67E+09 Upper-middle-income 

ZAF South Africa -25%--5% 1.68E+09 1.58E+09 Upper-middle-income 

CHN China -25%--5% 2.2E+10 2.07E+10 Upper-middle-income 

THA Thailand -25%--5% 3.54E+09 3.31E+09 Upper-middle-income 

TKM Turkmenistan -25%--5% 12185420 11042020 Upper-middle-income 

JOR Jordan -25%--5% 1.61E+09 1.39E+09 Upper-middle-income 

GRC Greece -50%--25% 1.38E+09 1.03E+09 High-income 

SAU Saudi Arabia -50%--25% 8.28E+09 6.14E+09 High-income 

QAT Qatar -50%--25% 5.65E+08 4.14E+08 High-income 

ARE United Arab Emirates -50%--25% 1.7E+09 1.15E+09 High-income 

OMN Oman -50%--25% 6.75E+08 4.41E+08 High-income 

EST Estonia -50%--25% 20156801 13094973 High-income 

CHE Switzerland -50%--25% 8.36E+08 5.21E+08 High-income 

CYP Cyprus -50%--25% 3.83E+08 2.37E+08 High-income 

ISR Israel -50%--25% 2.03E+09 1.21E+09 High-income 

ROU Romania -50%--25% 1.28E+09 7.22E+08 High-income 

LTU Lithuania -50%--25% 2.62E+08 1.44E+08 High-income 

MLI Mali -50%--25% 2.79E+08 1.97E+08 Low-income 

ETH Ethiopia -50%--25% 1.4E+09 9.3E+08 Low-income 

BFA Burkina Faso -50%--25% 1.71E+08 1.09E+08 Low-income 

YEM Yemen -50%--25% 3.07E+09 1.93E+09 Low-income 

SDN Sudan -50%--25% 1.86E+09 1.16E+09 Low-income 

KEN Kenya -50%--25% 1.78E+09 1.31E+09 Lower-middle-income 

DJI Djibouti -50%--25% 3.26E+08 2.37E+08 Lower-middle-income 

AGO Angola -50%--25% 5.81E+08 4.2E+08 Lower-middle-income 

GHA Ghana -50%--25% 8.17E+08 5.85E+08 Lower-middle-income 

MRT Mauritania -50%--25% 4.05E+08 2.89E+08 Lower-middle-income 

TUN Tunisia -50%--25% 2.78E+09 1.9E+09 Lower-middle-income 

LKA Sri Lanka -50%--25% 1.51E+09 9.93E+08 Lower-middle-income 

PAK Pakistan -50%--25% 2.32E+09 1.37E+09 Lower-middle-income 

LBN Lebanon -50%--25% 1.13E+09 6.38E+08 Lower-middle-income 

NIC Nicaragua -50%--25% 1.42E+08 76746200 Lower-middle-income 

GAB Gabon -50%--25% 1.24E+08 92090338 Upper-middle-income 

SRB Serbia -50%--25% 19296601 13488188 Upper-middle-income 
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Table S4. 2 (cont’d) 

MDA Rep. of Moldova -50%--25% 3905887 2406351 Upper-middle-income 

IRQ Iraq -50%--25% 4.86E+08 2.67E+08 Upper-middle-income 

BGR Bulgaria -50%--25% 20313717 10666224 Upper-middle-income 

MLT Malta -75%--50% 33361062 14516780 High-income 

LVA Latvia -75%--50% 1.15E+09 4.79E+08 High-income 

SYC Seychelles -75%--50% 371985 154971.6 High-income 

FIN Finland -75%--50% 1.26E+08 37727126 High-income 

TGO Togo -75%--50% 1.55E+08 75354200 Low-income 

BDI Burundi -75%--50% 56362963 25042963 Low-income 

MDG Madagascar -75%--50% 1.31E+08 51828810 Low-income 

RWA Rwanda -75%--50% 1.21E+08 47488651 Low-income 

LBR Liberia -75%--50% 16551191 6050208 Low-income 

ERI Eritrea -75%--50% 60231577 16758185 Low-income 

SOM Somalia -75%--50% 73266524 18573346 Low-income 

BEN Benin -75%--50% 24690734 12092050 Lower-middle-income 

TZA United Rep. of Tanzania -75%--50% 8.32E+08 3.91E+08 Lower-middle-income 

CMR Cameroon -75%--50% 8.95E+08 4.02E+08 Lower-middle-income 

UKR Ukraine -75%--50% 58774144 24796593 Lower-middle-income 

SEN Senegal -75%--50% 5.95E+08 2.43E+08 Lower-middle-income 

EGY Egypt -75%--50% 1.19E+10 4.82E+09 Lower-middle-income 

COG Congo -75%--50% 1.34E+08 47870475 Lower-middle-income 

BGD Bangladesh -75%--50% 6.98E+09 2.25E+09 Lower-middle-income 

LBY Libya -75%--50% 2.22E+09 1.01E+09 Upper-middle-income 

BIH Bosnia Herzegovina -75%--50% 3.01E+08 84117423 Upper-middle-income 

ATG Antigua and Barbuda -100%--75% 18 3 High-income 

SYR Syria -100%--75% 1.34E+08 17725351 Low-income 

COD Dem. Rep. of the Congo -100%--75% 4.05E+08 49722114 Low-income 

GNB Guinea-Bissau -100%--75% 547 47 Low-income 

SLE Sierra Leone -100%--75% 10321600 272990 Low-income 

MNG Mongolia -100%--75% 2.04E+08 21489320 Lower-middle-income 

UZB Uzbekistan -100%--75% 5694515 135000 Lower-middle-income 

KGZ Kyrgyzstan -100%--75% 2.49E+08 1119639 Lower-middle-income 

NPL Nepal -100%--75% 2.38E+08 569179 Lower-middle-income 

BTN Bhutan -100%--75% 1912202 1902 Lower-middle-income 

TUR Turkey -100%--75% 1.17E+10 2.51E+09 Upper-middle-income 

MNE Montenegro -100%--75% 11670080 2413482 Upper-middle-income 

ALB Albania -100%--75% 2.27E+08 29207100 Upper-middle-income 

MKD North Macedonia -100%--75% 78658670 8565198 Upper-middle-income 

GEO Georgia -100%--75% 4.67E+08 47700835 Upper-middle-income 

BLR Belarus -100%--75% 2.95E+08 4381420 Upper-middle-income 

ARM Armenia -100%--75% 2.58E+08 1852957 Upper-middle-income 

KAZ Kazakhstan -100%--75% 1.14E+09 2191143 Upper-middle-income 

AZE Azerbaijan -100%--75% 1.07E+09 270194.2 Upper-middle-income 

PLW Palau -100%--75% 10 0 Upper-middle-income 
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⚫ ISO code: The official two- or three-letter country or region code according to the 

International Organization for Standardization (ISO) standard. 

⚫ Partner: The name of the country or region (identified by the ISO code) involved in the 

trade or study. 

⚫ Rate Range: The percentage range indicating the rate of decrease in trade quantity or 

production between 2021 and 2022. 

⚫ 2021_Qty: The quantity of cereals (likely wheat, barley, and oats in this manuscript) 

recorded in 2021 for the respective country or region. 

⚫ 2022_Qty: The corresponding quantity of cereals recorded in 2022 for the respective 

country or region. 

⚫ Income level: The income classification of the country or region, indicating whether it is 

categorized as high-income, upper-middle-income, lower-middle-income, or low-income 

based on global income classifications. 
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Supplementary Discussion 

 

Figure S4. 5 Global trade flows decrease in winter cereals among income groups from 2022 to 

2023 and the trade networks of winter cereals. (a1), (b1), and (c1) show the decrease in trade 

flows for wheat, barley, and oats, respectively, from 2022 to 2023 among countries categorized 

by income group. High-income countries (red) maintain the largest volume of trade, as 

evidenced by the thick connecting bands, though a decline in their interactions with lower-

middle-income and low-income countries (blue and green, respectively) is apparent. Upper-

middle-income countries (yellow) show a moderate level of trade decline, mostly with lower-

income-countries, reflecting the uneven impact of disruptions in global cereal trade. (a2), (b2), 

and (c2) represent the structural changes in the global trade networks for wheat, barley, and oats, 

respectively. The modularity, connectance, and evenness metrics shown at the bottom of each 

panel reflect the fragmentation and concentration within the networks. Higher modularity 

indicates greater clustering among specific groups of countries, while reduced connectance 

signifies decreased trade relationships overall. Evenness values reflect the balance of trade 

volumes across countries, with lower evenness in the barley network (b2) showing a more 

uneven distribution of trade flows. In contrast, the oats trade network (c2) shows a relatively 

higher evenness, suggesting a more balanced trade system among participating countries, even 

though the overall volume is lower. 
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Supplementary Methods and Materials 

 

Figure S4. 6 Trade quantity data linear regression. Regression analysis results, highlighting the 

strong correlation between export and import data. The three panels represent different income 

groups: lower-middle-income (left, blue), upper-middle-income (center, green), and high-income 

(right, red) countries. Each plot shows the linear relationship between export and import volumes 

for the respective income group, with the shaded area representing the confidence interval of the 

regression line. This analysis is the consistency of trends between exports and imports across 

income groups, as indicated by the strong linear relationships in all three panels, which suggest 

that export data can be reliably used to infer trade flow dynamics, as it mirrors the trends 

observed in imports. Hence, focusing on export data provides a representative view of global 

trade flows, supporting the decision to prioritize export over import data in this study’s analysis 

of trade disruptions. 
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Table S4. 3 Statistics of 2021 wheat, barley, and oats imports and exports in ComTrade 
Winter Cereal Type Data Type Import Dataset Export Dataset 

Wheat 

Import countries 114 149 

Export Countries 38 37 

Barley 

Import countries 51 66 

Export Countries 17 20 

Oats 

Import countries 25 24 

Export Countries 7 6 

Total 

Import countries 200 239 

Export Countries 62 63 

Sum  262 302 

 

The data show that while the number of countries exporting these cereals is relatively consistent 

across wheat, barley, and oats, the number of importing countries varies largely, with fewer 

countries providing comprehensive import data. For example, wheat has 149 export countries but 

only 114 import countries listed. This discrepancy in the number of reporting countries 

introduces uncertainty when relying on import data to analyze global trade flows. 

Given this lack of comprehensive import data, the decision to use export data as a proxy for 

understanding global trade dynamics is justified. The higher availability and consistency of 

export data provide a more reliable basis for assessing the trade flows of winter cereals and allow 

for a more accurate depiction of the global cereal trade network, minimizing the uncertainties 

introduced by incomplete import datasets. 

 

 

 


