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ABSTRACT

Biological macromolecules display intricate geometric and topological organization that defies
traditional descriptors based solely on atom-level coordinates or sequence information. This
dissertation introduces an integrated framework that advances both computational algebraic and
geometric topology to capture multiscale structure—function relationships in biomolecular data.
In the algebraic domain, we expand persistent homology to higher-order N-chain complexes,
producing generalized, efficiently computable descriptors; in the geometric domain, we develop
a suite of multiscale invariants—including the multiscale Gauss linking integral, evolutionary
Khovanov homology, and persistent Khovanov homology—to quantify entanglement in knot-type
data. Applied to protein-ligand affinity prediction, DNA/RNA topological analysis, and
macromolecular flexibility assessment, these tools yield interpretable features with competitive

accuracy, underscoring the promise of topological approaches in contemporary biological research.
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CHAPTER 1

INTRODUCTION

Computational topology has emerged as a powerful tool for analyzing the complex structures
found in biological systems. The rapid growth of high-dimensional biological data—such as
molecular conformations, protein—-ligand complexes, and nucleic acid chains—poses substantial
challenges to traditional geometric and statistical descriptors. These methods often fail to
capture essential structural, multiscale, or topological features that underlie biological function
and dynamics. In this dissertation, we present a comprehensive framework grounded in
both computational algebraic topology and computational geometric topology, aiming to bridge
mathematical theory and practical biological applications.

Persistent homology lies at the foundation of many advances in computational algebraic
topology. It quantifies topological features across a filtration of simplicial complexes, offering robust
and multiscale descriptors for complex data. The theory has proven useful in various biological tasks
including molecular property prediction and mutation impact assessment, as shown in [1, 2, 3,4, 5].
However, classical persistent homology is built on the standard differential condition d> = 0, which
limits its expressiveness for encoding higher-order or cyclic interactions among simplices.

To overcome this limitation, we develop new methods based on N-complexes, where the
differential satisfies " = 0. These generalized chain complexes, first introduced by Mayer [6] and
later formalized by Spanier and Dubois-Violette [7, 8], form the basis for a new class of homology
theories. By extending coeflicients to N-th roots of unity, we construct Persistent Mayer Homology
(PMH) and Persistent Mayer Laplacians (PMLs), which yield a family of topological descriptors
indexed by degrees ¢ = 1,2, - - - , N — 1. These methods not only enrich the topological information
captured but also reduce computational complexity compared to spectral approaches like persistent
Laplacians [9, 4]. We establish theoretical stability for PMH and PMLs under metric perturbations
and validate their practical effectiveness in tasks such as protein—ligand binding affinity prediction.

Beyond point-cloud topology, many biological structures—such as DNA helices, protein

backbones, and molecular loops—are naturally modeled as curves, links, or tangles embedded



in three-dimensional space. These structures motivate a computational geometric topology
perspective that captures both global and local entanglement. To our knowledge, this dissertation
is among the first systematic efforts to harness geometric-topology techniques for data analysis,
though we recognize the field is nascent and complementary approaches will continue to evolve.
To this end, we propose the Multiscale Gauss Linking Integral (mGLI), which generalizes the
classical Gauss linking number into a multiscale, quantitative descriptor. This invariant captures
fine-grained entanglement features across length scales and has shown utility in applications such
as protein flexibility analysis and drug screening [10].

Building further, we introduce Evolutionary Khovanov Homology (EKH), a homological
categorification that tracks how knot or tangle diagrams evolve through sequences of crossing
smoothings. Unlike traditional knot invariants, EKH incorporates a filtration structure to reveal
topological transformations that occur across resolutions [11]. We also develop Persistent Khovanov
Homology (PKH) for open tangles, overcoming challenges in defining persistent homology on
knot-type data. By leveraging concepts from planar algebras and cobordism categories, we establish
a theoretical foundation for persistent knot analysis.

Collectively, these developments in algebraic and geometric topology are implemented in
computational pipelines and validated on biological datasets involving binding affinity prediction,
molecular screening, and structural classification. Our methods consistently demonstrate
interpretability, robustness, and predictive power. For instance, using topological features derived
from PMH and mGLI, we achieved state-of-the-art performance in predicting protein—ligand
binding strengths and in identifying structural features.

In summary, this dissertation presents a unified approach to computational topology in
biology by expanding classical topological tools through persistent, multiscale, and categorified
methods. By integrating algebraic and geometric topology into algorithmic frameworks, we provide
biologically meaningful, mathematically rigorous, and computationally efficient tools for modeling

the structure and dynamics of complex biomolecular systems.



CHAPTER 2
COMPUTATIONAL ALGEBRAIC TOPOLOGY IN BIOLOGICAL STUDIES

2.1 N-chain complex and Mayer homology

In this section, we review fundamental concepts, including the N-chain complex and Mayer
homology. Moreover, for a given simplicial complex, it is possible to construct multiple N-chain
complexes. We concentrate on a specific construction, which will be applied to our examples
and dataset later on. Additionally, we introduce Laplacian operators on N-chain complexes. This
section encompasses some properties of N-chain complexes and Mayer homology, along with
examples of related computations. From now on, the ground field is assumed to be the field K. The

N-chain complex and Mayer homology can be also built on a commutative ring with unit.

2.1.1 Mayer homology

From now on, N is always an integer > 2.

Definition 2.1.1. An N-chain complex consists of a graded K-linear space C. = (C,),>0, equipped
with a linear map d : C. — C._1 of degree —1 satisfying d¥ = 0. The linear map d. : C.. — C._,

is called the N-differential (N-boundary operator).

The following diagram illustrates the N-differential within the N-chain complex. Each
horizontal sequence represents a chain complex corresponding to stage g. The vertical sequences

are given by the identity map (id) or by the N-differential d.



d del d del d del
T LpaN-1 Cn Ch1 Con Con-i—"+-
d id d id d
d2 dN—Z d2 dN—2 dZ dN—Z
©e >~ Ln+N-2 Cn Cn—2 Cn—N Ch-n-2 >
d id d id d
d id d id d

dN—Z d2 dN—Z d2 dN—Z d2
Cus2 Cy Ch-nN+2 Con Chongg —" "+
d id d id d
del d dN -1 d del d
Cut Cn Ch-nN+1 Co-n Chongt — -

In particular, when N = 2, the N-chain complex reduces to the usual chain complex.

Definition 2.1.2. A morphism f : (C.,d) — (C.,d’) of N-chain complexes is a linear map of

degree zero such that fod =d’ o f.

Let (Cs, d) be an N-chain complex. For each 1 < g < N — 1, the space of the q-th n-cycles
is defined by Z, , = {x € C,|dx = 0}. The space of the q-th n-boundaries is given by B, , =
{dN~9x|x € CN—g+n}- It follows that B, , € Z, 4. Let us denote d,, : C,, — C,_1. In particular, for
N =3, we can prove that d,C,, € B,,_12,dyZy2 € Zy-11NBy_12,dnZ,1 =0,and d,, B, 2 C By—11.

The Mayer homology of the N-chain complex (C., d) is defined as

Figure 2.1 Illustration of the boundary operators and chain, cycle, and boundary groups of the
N-chain complex for N = 3.

Hy,y(Curd) = Zy4/Bng, n20. (2.1.1)



The rank of H, ,(C.,d) is defined as the Mayer Betti number of the N-chain complex (C.,d).
The idea of Mayer homology was first introduced by Mayer in 1942 [6]. In Mayer’s paper, he
constructed the N-chain complex on simplicial complexes over the field Z/p. Here, p is a prime
number. And the name of Mayer homology first appeared in [7], which showed the relationship

between Mayer homology and the classical homology of simplicial complexes.

Example 2.1.3. Consider the graded vector space Z3[x], with the grading (Z3[x]), = Z3x" and
the basis 1,x,x2,...,x*,.... Here, Z3 1s the field with elements 0, 1,2 modulo 3. Consider the
linear map d : Z3[x] — Z3[x] given by dx” = nx"~! and d(1) = 0. It follows that d°> = 0. By a

straightforward calculation, we have

ngn, n= 3k, k € ZZ();
Zn,l = Bn,l =1

0, otherwise.

Z3x", n=3k,3k+1,k € Z>g;
Zn,2 = Bn,Z =1

0, otherwise.

By definition, the Mayer homology is given by

Hn,l(Z3 [x]) = Hn,Z(Z3 [x]) =0, n>0.

Now, let A,, = Z3{1,x,...,x>"*1} be the graded vector space generated by 1,x,...,x>"*!. One



has

Z3x", n=3k,k=0,1,...,m;
Zn,l =
0, otherwise.
Z3x", n=3k,3k+1,k=0,1,...,m;
Zn,2 =
0, otherwise.
Zsx", n=3k,k=0,1,...,m—1;
Bn,l =
0, otherwise.
Z3x", n=3k,3k+1,k=0,1,...,m—1;
B,p =4 Zsx", n=3m;
0, otherwise.
Z3x", n=3m; Z3x", n=3m+1;
It follows that H,, 1 (A;,) = and H,2(An) =
0, otherwise 0, otherwise.

Let f: (Ci,d) — (C.,d’) be a morphism of N-chain complexes. Since f commutes with the

N-differential, it induces the morphism of Mayer homology
f*,q : H*,q(C*’ d) — H*,q(C;, d), [z]m [f(2)] (2.1.2)
forany 1 < g < N — 1. Moreover, one has

Proposition 2.1.1. ([12, Proposition 1]) If f.1 : H.1(Cs,d) — H.1(C.,d") and f.n-1
H,n-1(Cs,d) — H.n-1(C,,d") are isomorphisms, then f., : H.,(Cs,d) — H,4,(C;,d’) is

an isomorphism forany 1 < g < N - 1.

The above proposition shows that if f., : H.1(Cs,d) — H.1(C,,d’) is an isomorphism for
qg = 1,N — 1, then it is an isomorphism for any 1 < ¢ < N — 1. There are various distinctive
properties associated with Mayer homology. For instance, it has been demonstrated in [12] that
there exists an isomorphism of linear spaces, H. ,(C.,d) = H. n_4(C., d). However, it does not

have to be H,, ,(Cs,d) = H, y—4(Cs, d) for a given n.



Let Nchain be the category of N-chain complexes, whose objects are the N-chain complexes,
and whose morphisms are the morphisms of N-chain complexes. Let Veck be the category of

vector spaces over K. Then we have the following proposition.
Proposition 2.1.2. The Mayer homology H. , : Nchain — Vecy is a functorfor 1 < g < N - 1.

Proof. For morphisms f : (Cy,d) — (C.,d") and g : (C.,d") — (C.,d"”) of N-chain complexes,
one has

g*,qf*,q([z]) = g*q([f(z)]) =[gf(x)] =(go f)*q([z]) (2.1.3)

Here, z € H. 4(C,, d). The left can be verified step by step. O

It is worth noting that the functorial property of Mayer homology is crucial for us to develop
the persistence for Mayer homology. More specifically, morphisms at the N-chain level can always
induce morphisms at the homology level. Indeed, we also require the functorial property that maps
the morphisms at the simplicial complex level to morphisms at the N-chain level.

The N-chain complex is a kind of generalization of the usual chain complex by changing the
boundary operator by an N-boundary operator. Other than the homology of N-chain complexes, the
homotopy for N-chain complexes can be also built. More precisely, two morphisms f, g : (C.,d) —
(C.,d’) of N-chain complexes are homotopic if there exist linear maps hy : (Cs,d) — (C., |, d")
of degree 1 for 0 < k < N — 1 such that f — g = NZ_I hid*. If f,g : (C.,d) — (C.,d’) are
N-chain homotopic, then they induce the same morphki:(r)n of Mayer homology, i.e., fi 4, = g« 4 for

I<g<N-1

2.1.2 N-chain complex on simplicial complexes
From now on, for the sake of simplicity, we will always consider the case where N is a prime

number, and the field K is taken to be the complex number field C. Let & = e V-1N be the
N-1 ko

primitive N-th root of unity. It follows that }, &' = 0. Moreover, ), &' # Oforany 0 < k < N -2.
i=0 i=0



Let K be a simplicial complex. Let C,(K;C) be the linear space generated by the n-simplices

of K over C. Consider the linear map d, : C,(K;C) — C,_1(K;C) given by
dn(v0, V1, ... V) = Zn“glxvo, Vi), nz1 (2.1.4)
i=0
and dy = 0. Then d : C.(K;C) — C.(K;C) is a linear map of degree -1. Moreover, we have
Lemma 2.1.3. 4" =0.

Proof. Let 0; : K, — Ku—1,{v0,V1,...,Vn) ¥ {V0o,...,Vi,...,Vv,) denote the i-th face map of

simplicial complex K. If n < N, we have d"¥ = 0. For r < n, by induction, we can prove

dr = l_[(1+§+...+§k_l) Z é‘_-j1+--.+jr_r(rTil)ajl ..‘6]}' (215)
k=1 j1<m<is
Note that 1 + & +--- + £V=1 = 0. It follows that " = 0. O

Then the construction (C,(K; C), d) is an N-chain complex. There are various ways to construct
N-chain complexes on a simplicial complex, and these different constructions lead to different Mayer
homology [12]. In this work, we will study the N-chain complex constructed above. The N-chain
complex (C.(K;C), d) is over the field C, which is more computationally feasible. In addition, we
can consider the inner product structure on the N-chain complex (C.(K;C), d), which leads to the
Laplacians on the N-chain complex.

For 1 < g < N — 1, the Mayer homology of the simplicial complex K is defined by
H,,(K;C):=H,,(C.K;C),d), n=>0. (2.1.6)

The Betti numbers corresponding to the Mayer homology are called the Mayer Betti numbers of

simplicial complex, denoted by 8, ,.

Proposition 2.1.4. The construction C,(—;C) : Cpx — Nchain is a functor from the category of

simplicial complexes to the category of N-chain.
Proof. Let ¢ : K — L be a morphism of simplicial complexes. The induced morphism

C.(¢) : (C.(K;C),dg) — (C.(L;C),dy)



of N-chain complexes is given by C..(¢) (o) = ¢(o). Indeed, for any o= = (vg, v1,...,Vv,), we have

dc*((p)(o-) = Z§i<¢(v0)a ceey ¢(§}l)a ceey ¢(vi’l)> = ¢(Z §i<v0a s ey ‘?ia e ey Vn>) = C*(qj)(do-)
i=0 i=0
(2.1.7)

Obviously, C.(¢) preserves identity. The desired result follows. O

Corollary 2.1.5. The Mayer homology H., ,(—;C) : Cpx — Vecx is a functor from the category

of simplicial complexes to the category of vector spaces over K.
Proof. It is a directed corollary of Proposition 2.1.2 and Proposition 2.1.4. m|

The generalized Mayer homology contains the information of the usual simplicial homology.
It is worth noting that the Mayer homology here is different from the simplicial homology. Thus,

we can obtain additional topological information from the Mayer homology defined above.

Lemma 2.1.6. Let M, , be the representation matrix of d,, ; = dy—g+1 - dp-1d, : Cu(K;C) —

Cy—4(K;C). Then we have
Bng = dim C,(K;C) —rank (M, 4) — rank (M,sn—g N—¢)- (2.1.8)
Proof. Consider the short exact sequence

dn
0 Zpg— Cp(K;C) — By_gn-g —0. (2.1.9)

Indeed, we have the decomposition
Cu(K;C) = Z, g ®BpynN-g = Hyg(K;C)® By ®By_gn—g. (2.1.10)
Note that rank (M, ;) = dim B,,_, y—_. It follows that dim B,, , = rank (M,,4n—4 n—4). Thus we have
dim C,(K; C) = B, 4 + rank (My4n—gq N-¢) +rank (M, 4). (2.1.11)

The desired result follows. O



Example 2.1.4. Consider the simplicial complex A[3] with the simplices

{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3},

(2.1.12)
{0,1,2},{0,1,3},{0,2,3},{1,2,3},{0, 1,2, 3}.
Consider the 3-chain complex C.(A[3]; C) with the 3-boundary operator given by
d3{0,1,2,3} = {1,2,3} + £{0,2,3} + £2{0, 1,3} + {0, 1,2},
d>{0, 1,2} = {1,2} + £{0, 2} + £2{0, 1},
d>{0,1,3} = {1,3} + £{0, 3} + £2{0, 1}, (2.1.13)

d»{0,2,3} = {2,3} + £{0,3} + £2{0, 2},

dr{1,2,3} = {2,3} + &{1,3} + £*{1,2}

and di{v,w} = {w} +&{v} for 0 < v < w < 3. The representation matrices of d;, d, and d3 with

the simplices as basis are given by

1

By

S O O Y IYn I

0
0
3
3
0

0

0
0

1

1

62
é‘;Z

&0 1
0 &£ 0

0
1

0 & ¢ 0 0

0 0 0 & ¢

oS O

CoB=(1 82 ¢ 1) QL

The representation matrices of d;d, and d,d3 are listed as follows.

B>B =

& -1 =&
& -1 0
& 0 -1
0 —¢& -1

0
—&2
—£2
—&2

, B3Bz=(—1 e e .| _52).

Moreover, have have that BB, B = Quxa, which shows that d® = 0 on C.(A[3];C). On the other

10



hand, a straightforward calculation shows that
Z3) =233 =231 =By =0,

Zan = Bap = span{{1,2,3} +£{0,2,3} + {0, 1,3} + {0, 1,2}},

Zl,l = Span{{o’ 2} - {0’3} - {1’2} + {1’ 3}’ §{09 1} - 6{0’ 2} - {1’ 3} + {2’ 3}}a
By 1 = span{&{0, 1} +{0,2} + £2{0,3} + £2{1,2} + &{1,3} + {2, 3}},
ZI,Z = Span{{o’ 1}’ {0’ 2}’ {O» 3}’ {19 2}’ {1’ 3}’ {2» 3}}’
(2.1.15)
B, = span{{1,2} + £{0,2} + £2{0, 1}, {1,3} + £{0,3} + £2{0, 1},

{2,3} +£{0,3} +£2{0,2},{2,3} + £{1,3} + £*{1,2}},
Zo,1 = span{{0}, {1}, {2}, {3}},
span{{0} — {1}, {1} — {2}, {2} - {3}},

Zoo = Bop = span{{0}, {1}, {2}, {3}}.

By definition, one has

Bo,1

H3 1 (A[3];C) = H32(A[3];C) = Hap(A[3];C) = Ha 1 (A[3];C) = Hop(A[3];C) =0 (2.1.16)

and
Hi1(A[3]:C) =C, H;2(A[3];C) = C?,  Hoy(A[3];C) = C. (2.1.17)
C, n=0;

However, the simplicial homology of A[3] is H,,(A[3];C) = This indicates that
0, otherwise.

even for contractible spaces, Mayer homology may not be trivial.

Example 2.1.5. Many common geometric shapes can be viewed as simplicial complexes through
simplicial triangulations. In this example, we compute the Mayer Betti numbers for the simplicial
complexes A[3], dA[3], and a hexagon. Additionally, we perform simplicial triangulations for the
Mobius strip, torus, and octahedron, and calculate the Mayer Betti numbers for these simplicial

complexes. The simplicial complex JA[3] has the simplices listed as follows:

{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}.
(2.1.18)

11



A hexagon is a simplicial complex with the simplices listed as follows:

{0}, {1}, {2}, {3}, {4}, {5}, {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {0, 5}. (2.1.19)

Now, we provide simplicial triangulations for the Mobius strip, torus, and octahedron, and compute

the corresponding Mayer Betti numbers.

Hexagon Mébius trip Torus Octahedron

1 1 2 3

\o

,\,/
S

Q

(&)}
S
w
W)
EN
(&)
o
(o]
=
(0e]
(o)}
/l
=
cn/ 3
&S
\1(.0\/
\\1"/

0 1 2 0

Figure 2.2 The simplicial triangulations of the Mobius strip, hexagon, torus, and octahedron.

The simplicial triangulations of the Mdbius strip, torus, and octahedron are shown in Figure

2.2.
simplicial complexes | Bo.1 | B1.1 | B2 | Po2 | Bz | Bea

A[3] 1 1 0 0 2 0

0A[3] 1 2 0 0 2 1

Hexagon 6 0 0 0 6 0

Mobius trip 1 6 0 0 6 1
Torus 1 18 0 0 9 10

Octahedron 1 3 1 0 2 3

Table 2.1 The Mayer Betti numbers for the simplicial complexes A[3], dA[3], a hexagon, and the
simplicial triangulations of the Mobius strip, torus, and octahedron.

Using our algorithm’s computations, Mayer Betti numbers can be obtained, as illustrated in

Table 2.1.

2.1.3 The Mayer Laplacians on N-chain complexes
Now, let K be a simplicial complex. Then we have a chain complex (C.(K;C),d). One can

endow C.(K;C) with an inner product given by

A-u, o=r1;
(Ao, ut) = (2.1.20)
0, otherwise.

12



Here, A, u € C, and y is the complex conjugate of u. Consider the adjoint operator d* of d, i.e.,

(dx,y) = (x,d*y) for any x, y € C.(K;C). Note that
(dix,y) = (d9"x,d*y) = -+ = (x, (d") ). (2.1.21)

By the definiteness of inner product, one has (d?)* = (d*)?. For 1 < g < N — 1, the Mayer

Laplacian A, 4 : C.(K;C) — C.(K;C) is defined as
Ay = (d?)* od?+d" 10 (a"™9)". (2.1.22)

Choose the simplices of K as an orthogonal basis of the N-chain complex C,(K;C) over C. Let B
be the representation matrix of the linear operator d : C.(K;C) — C,._;(K; C) with respect to the
chosen orthogonal basis under left multiplication. Then the representation matrix of A, , is given
by

L,=BI(BY) + (B TV, (2.1.23)
Here, ET is the conjugate transpose or Hermitian transpose matrix of B. For the graded case, the

Mayer Laplacian A, , : C,(K;C) — C,(K;C) is given by
Apg = (dn)*o-- -O(dn_q+1)*odn_q+1o~ -odp+dpy10- 'odn+N—qo(dn+N—q)*o' o(dns1)”. (2.1.24)

Here, d, : C,(K;C) — C,-1(K;C) is the operator of d restricted to C,,(K;C). Let B, be the
representation matrix of d, with respect to the chosen orthogonal basis, and the representation
matrix of A, , is given by

—T —T T T
Ln,q =B, Bn—q+an—q+l By 4+ Buy1 - 'Bn+N—q Bn+N—q “+ Buy1. (2125)

. . —T . .
Here, B, is a complex matrix and B,, is the conjugate transpose of B,,.

Proposition 2.1.7. The Laplacian A, , on C,(K;C) is a self-adjoint and non-negative definite

operator.

The proof of Proposition 2.1.7 is a straightforward verification, one can refer to [13]. Itis worth
noting that even over the complex number field C, the eigenvalues of the Laplacian operator are

non-negative.

13



Proposition 2.1.8. Forany nand 1 < g < N — 1, we have dimkerA, , = 8, 4.

Proof. 1t is a classic result. One can obtain a detailed proof in a [14].

Example 2.1.6. Let us compute the Mayer Laplacians on dA[3].
complex C.(0dA[3]; C) with the differential given by dy = 0,

and

We denote the representation matrix of d, by B,,.

{0, 1}
{0,2}
{0.3}
{1,2}
{1.3}
{2,3}

{0,1,2}
{0, 1,3}
{0,2,3}

{1,2,3}

30282 -1

26 3 27

-1 2& 3

267 -1 2¢

& ¢
£ 0
0 &
0 0

28

-1

22
3

S i Y O O
—
e}

010
£ 0 1
£ 0 0
0 & ¢

{0}
{1}
{2}
(3}

{0, 1}
0\| {0,2}
{0,3}
1| {12}

)

1] (1,3}

{2,3}

We can obtain the N-chain

(2.1.26)

(2.1.27)

Observe that By = B3 = O. It follows that
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L=

&
£ 0 1
0 & 1

The spectra of Lo 1, Lo, L1,1, and Ly are

Spec(Lo;) ={0,4 — 2V3.4,4 + 2\/5},

Spec(Lo2) ={2 - V3,3,5,2+ V3},

Lip=

2 ¢ &

3

& 288
¢ ¢ 2 0 & ¢&

§2
62
0 &

Spec(L;,1) ={0,0,2 — \/5, 3,5,2+ \/5},

Spec(L1,) ={0,0,2 — V3,3,2 + V3,5}.

£ 0
0 ¢

E 0 2 & ¢
0 & & 2 ¢
£ &

£ 2

(2.1.29)

(2.1.30)

Let w(A,,4) denote the number of zero eigenvalues of the operator A, 4. It is worth noting that

w(Ao1) =1, w(Ap2) =0, w(A11) = 2, w(A22) = 2. This is consistent with the Betti numbers

corresponding to Table 2.1.

Example 2.1.7. Now, we will compute the Mayer Laplacians of the hexagon.

As described

in Example 2.1.5, the 3-chain of a hexagon is a graded vector space with the corresponding

3-differential given by

dy

{0. 1}
{1,2}
{2.3}
{3.4}
{4,5}

{0.5}

N O O© O O Y

o O O O UYn

S O O Un

)

§
0
0

o o O

o o o O

{0}
{1
2}
(3}
{4}
{5}

(2.1.31)

and d,, = O for n # 1. The calculation for N = 3 is shown in Table 2.2. For the case N = 5, we have
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n,q n=0q= n=0,g=2 n=1,qg=1 n=1,g=2
2 &0 0 0 1 2 &0 0 0 1
£ 2 £ 0 0 0 £ 2 £ 0 0 0
0 & 2 & 0 0 0 & 2 &£ 0 0
Ln.q Osxs 0 0 & 2 £ o0 0 0 &£ 2 ¢ 0 Osxs
0 0 0 & 2 1 0 0 0 & 2 1
1 0 o 0 1 2 1 0 0o 0 1 2
Bn,q 6 0 0 6
Spec(L,.,) | {0,0,0,0,0,0} {0.12,0.47,1.65,2.35,3.53,3.88) {0.12,047,1.65,2.35,3.53.3.88} {0,0,0,0,0.0}
Table 2.2 Ilustration of Mayer Laplacians for N = 3.
the corresponding 5-differential given by
{0, 1} & 10 0 0 0 {0}
{1,2} 0 & 1 0 0 O {1}
{2, 3} 0 0 & 1 0 O {2}
dj = (2.1.32)
{3,4} 0 0 0 & 1 0 {3}
{4,5} 0 0 0 0 & 1 {4}
{0,5} & 0 0 0 01 {5}

and d,, = Oforn # 1. Here, &; is the primitive 5-th root of unity. The calculated result at this point is

shown in Table 2.3. Our calculations demonstrate that the eigenvalues are consistently non-negative.

n,q n=0,q=1 n=0,q=2 n=0,g=3 n=0,g=4
2 & 0 0 0 1
& 2 & (1 0 0
Ly.g O6x6 Oex6 O6x6 8 %5 ;5 % é—% 8
0 0 0 & 2 1
1 0 0 0 1 2
Bra 6 6 6 0
Spec(L, ) | {0,0,0,0,0,0} | {0,0,0,0,0,0} | {0,0,0,0,0,0} | {0.04,0.66,1.38,2.62,3.34,3.96}
n,q n=1,4g=1 n=1,q=2 n=1,q=3 n=1,q=4
2 & 0 0 0 1
& 2 & 0 00
4
Ly.g 8 %5 525 525 é% 8 Oex6 O6x6 O6x6
0 0 0 & 2 1
1 0 0 0 1 2
Bn.g 0 6 6 6
Spec(L,.,) | {0.04,0.66,1.382.62,3.34,3.96} | {0.0,0,0,0,0} | {0,0,0,0.0.0} | {0,0,0,0,0,0}

Table 2.3 Illustration of Mayer Laplacians for N = 5.

Moreover, the number of zero eigenvalues of Laplacians coincides with the corresponding Mayer
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Betti numbers.

In an intuitive sense, the Mayer homology and Mayer Laplacian of a complex reflect connections
between simplices at different dimensions. The corresponding Betti numbers reveal the topological
cycles representing interactions between simplices of different dimensions, whereas the eigenvalues
of the Laplacian operator deconstruct the connectivity between simplices of various dimensions.
These relationships are more intricate and subtle, extending beyond what traditional simplicial

homology theory can capture.

2.2 Persistence on Mayer features

In this section, we will explore the persistent versions of Mayer homology and Mayer Laplacians.
Since Mayer homology and Mayer Laplacians provide information different from the usual
simplicial homology and Laplacian, investigating Mayer features is highly meaningful for our
study of the topological characteristics and geometric structure of data. From now on, the ground
field is taken to be the complex number field C. Besides, we always consider the case that N is a

prime number for the sake of simplicity.

2.2.1 Persistent Mayer homology

Let K be a simplicial complex, and let f : K — R be a real-valued function defined on K such
that f(o) < f(7) for every face o of 7 in K. For each real number a, we can obtain a sub complex
K, = {0 € K|f(0) < a} of K. Moreover, for real numbers a < b, one has K, C K;. Thus, we

can obtain a filtration of simplicial complexes

K, €K, C---CK,, (2.2.1)
for real numbers a; < a; < --- < a,. By Proposition 2.1.4, we have a sequence of N-chain
complexes

Ci(K45C) = Cu(Kyy;C) = -+ = Ci(K,,,; C). (2.2.2)
By Proposition 2.1.2, this induces a sequence of Mayer homology
H,,(K;;C) = H, ;(Kyy;C) = -+ = H, 4(K,,,;C) (2.2.3)
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forany 1 < g < N—1. For any real numbersa < band 1 < g < N —1, the (a, b)-persistent Mayer

homology is defined by
HEb = im (H,4(Ka:C) = Hyq(Kp;C)), n>0. (2.2.4)

The rank of H,‘j”é’ is the (a, b)-persistent Betti numbers. The persistent Betti numbers can also be
visualized using a persistence diagram or barcode. It is worth noting that foreach 1 < g < N — 1,
we can obtain a persistence diagram, which means that the persistent Mayer homology contains
more information than the usual persistent homology. Moreover, the fundamental theorems of
persistent homology are also applicable to persistent Mayer homology.

Let {K,,}i>1 be a filtration of simplicial complexes. For each i > 1, we have the map x :

H,,(K,;;C) — H, (K, ;C) induced by i — i + 1. Consider the persistent homology, denoted

i+1?

(o]

as H, = EB H,, (K4;; C), which encapsulates homological information from all time steps. Then
i=1

one has a map x : H, — H,, where x map a generator at a; to a generator at a,,1. Let C[x] be a

polynomial ring over the complex number field C. The space H, is a left C[x]-module given by
Clx]xH; - H,, (f(x),a) f(x)(a). (2.2.5)
Moreover, the module structure theorem for persistent Mayer homology is established as follows.

Theorem 2.2.1. For a filtration of finite simplicial complexes {Ky, }i>1, the corresponding persistent

Mayer homology H, has a decomposition as C[x]-module

e ab,) ® (@ Clx]/x - ,Bbs) . (2.2.6)

The proof of the above theorem is essentially a replica of the standard persistent homology

H, =

structure theorem. Similarly, the generators in the free part, denoted as a, , refer to those generators
born at time b, and persist until infinity, while 5, represents the generators born at time by and
dead at time b + c,;. Similarly, we can define the barcode for persistent Mayer homology and give

the fundamental characterization theorem for barcodes.
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2.2.2 Wasserstein distance for Mayer persistence diagrams

Recall that the r-th Wasserstein distance of persistence diagrams is defined by

1/r
Wo(D.D) = inf (Z Ix —y(x)llz) : 2.27)
v:D—-D’
xeD
where D, D’ are persistence diagrams, || - ||; denotes the L;-distance on a persistence diagram, and

the infimum is taken over all matchings between D and D’.

In the context of a filtration of simplicial complexes, a family of persistence diagrams
D1, ..., Dy-1 can be obtained for the persistent Mayer homology concerning the p-boundary
operator. This collection is referred to as the Mayer persistence diagram. To formalize the
relationship between these diagrams, we introduce the r-th Wasserstein distance for Mayer

persistence diagrams, defined by

1
N-1 Ir

Wr({Dq}ISqSN—l, {@;}ISqSN—l) = Z Wr(Dq’ D;)r . (2-2-8)
g=1
The case where r = oo is notably well-known. In this scenario, the Wasserstein distance reduces to

the bottleneck distance:

dp({Dy}1<g<n-1,{Dy}1<g<n-1) =  sup inf sup [x —y(x)l. (2.2.9)
1<g<N-17:Dq— q xe€Dy

The real number field R can be regarded as a poset category with the real numbers as objects and
the binary relations < as morphisms. Recall that an R-indexed diagram ¥ in a category € is a
functor ¥ : R — @ from the poset category R to the category €. Let ¥ be the category of
R-indexed diagrams in €. Let = : ¥ — F* be a functor on the category of R-indexed diagrams

given by (Z°F)(a) = F (a + &).

Definition 2.2.1. Let ¥ and G be two R-indexed diagrams in a category €. We say ¥ and G are
e-interleaved if there are natural transformations ® : ¥ — XG and ¥ : G — X*F such that

(Z2W) o @ = 2% | and (Z°®) o ¥ = £%¢|g.

Definition 2.2.2. Let ¥ and G be two R-indexed diagrams in a category €. The interleaving

distance between ¥ and G is defined by

d;(¥,G) = inf{e > 0|F and G are e-interleaved}. (2.2.10)
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Let f, g be two real-valued functions defined on a simplicial complex K. Then one has two
filtrations of simplicial complexes. Let || f —glle = sup | f (o) —g(o)|. Let D, (K, f) and D, (K, g)

ogek

be the persistence diagrams of K filtered by f and g, respectively. We have the following result.

Theorem 2.2.2. Let K be a finite complex. Then dg({D, (K, f)}1<g<n-1, {Dy(K, 8) }1<g<n-1) <
1/ = glleo-

Proof. We construct the proof based on the concepts developed in [15, 16, 17]. We consider Mayer
persistent homology as the entities in the category Vec™ of diagrams in the vector spaces category
indexed by R. Similarly, we regard Mayer persistence diagrams as the entities in the category Mch™
of diagrams in the matching category indexed by R. By [16, Theorem 1.7] and [16, Proposition
4.3], one has

dp(Dy(K, [), Dy(K, g)) = di(Hy(K, [),Hy(K, g)) (2.2.11)

Here, d; denotes the interleaving distance for diagrams indexed by R. For (K, f), we have a diagram
K/ : R — Simp in the category of simplicial complexes given by KC{- ={o € K|f(0) < a}. Let

and K¢ < K7, _ for

€ = ||f — gllo- Then there are inclusions of simplicial complexes K'C{ — K¢ e

at+e

and ¥ : K¥ < K7, of

any real number a. Thus one has natural transformations @ : Kf — K¢ e

o+g

R-indexed diagrams. Here, K,(a) = K,. By construction, we have
(W) 0 @ = 2% . (2.2.12)

is given by (Z¢W)(K%,,.)(a) = K

ote a+2e

Here, X°% : K%, < K/

o+e o+2e

and 228'1({ kI = Kf+28 is
given by 228|K_.f (K,f) (a) = KZ;ZS. Similarly, one has (Z®) o ¥ = 228|K§. It follows that K/
and K¢ are s-interleaved. By definition, we have d;(K/, K¢) < . By [15, Proposition 3.6] and

Corollary 2.1.5, we have
di(Hy(K, f),Hy(K, g)) < di(K',K®) < &. (2.2.13)
It follows that

dp(D,(K, f), D, (K,g)) < di(K',K®) < &. (2.2.14)
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By the definition of bottleneck distance, one has

dp({Dy(K, f)}1<qgen-1,{Dg(K, &) h1<g<n-1) < |If — gllco- (2.2.15)
The desired result follows. O

The aforementioned conclusion establishes the stability of persistent Mayer Betti numbers under
the bottleneck distance. This guarantees that the persistence of Mayer Betti numbers is a steadfast

and resilient topological feature, resistant to noise.

2.2.3 Persistent Mayer Laplacians

Let {K,, }i>1 be a filtration of simplicial complexes. Endow C.(K,, ;C) with an inner product
structure over C. Consequently, as subspaces, each C,(K,,; C) inherits the inner product structure
of C.(Ky,,,;C).

Consider the inclusion j,; : K, — Kj of simplicial complexes. By Proposition 2.1.4, we
have a morphism C.(jsp) : C:«(K;;C) — Ci(Kp;C) of N-chain complexes. For the sake of
simplicity, we denote C{ = C,(K,; C) with the corresponding Mayer differential d¢, and denote

.a,b _ . _
Jn~ = Cu(jap). Moreover, we denote dyg = dZ—q+1 .

cd®_d8: CY— Cl,. Let

n—-1"n

Cob={xeCld)xeCi,}, 1<q<N-1 (2.2.16)

It follows that C,‘fjé’ is a subspace of C? with the subspace inner product. Besides, we have a linear

map dﬁjg : C,?”;’ — C,._, given by df’ljé’ (x) = df’hqx.

drcll+N—q N-gq d::’q
a : a a
Cn+N—q a.b C]’\l -~ Cf_q (2217)
d d”"/”“/ (i)
%N: )t
.a,b C(l,b a .a,b -a,b
-/n+N—q n+N—-q,N—q In’ Jn—q
/d; db
b n+N-q,N—-q b n,q b
Cn+N—q C" C’l—q
The (a, b)-persistent Mayer Laplacian AZ:S : Cy — C, is defined by
AS = (49 Y odt 4 d™h  o(dh e (22.18)
ngq - n.q n.q n+N-q,N—q n+N-q,N—¢q’ * e
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In particular, if n < ¢, the persistent Mayer Laplacian is reduced to Afljg = d*° o

n+N—-q,N—q
(d;’ﬁv_q n_g)"- We arrange the positive eigenvalues of AZ:S in ascending order as follows:
A80(1),28(2),..., A8b(r), (2.2.19)

where r is the number of positive eigenvalues. Specifically, AZ:S(I) denotes the smallest positive
eigenvalue, serving as the spectral gap and bearing close relevance to the Cheeger constant in
geometry.

Recall that for simplicial homology, the harmonic component of the persistent Laplacian and
persistent homology are isomorphic. Similarly, the harmonic component of the persistent Mayer

Laplacian and persistent Mayer homology are also isomorphic. This is presented follows.

Theorem 2.2.3. For any a < b, we have an isomorphism ker AZ:S = H,‘j;f]’ , where n > 0 and

I<g<N-1

Proof. Note that d;; , o dz;l;v_% Neg = 0. The result follows from [14, Proposition 3.1]. O

The above theorem indicates that, within the Mayer homology theory, the persistent Mayer
Laplacian contains more information than persistent Mayer homology. The persistent Mayer
Laplacian reflects the geometric characteristics of complexes. It can be easily proven that the
eigenvalues of the persistent Mayer Laplacian are non-negative. We arrange the positive eigenvalues
in ascending order, denoting them as A, ,(1),...,4,4(r). Here, r is the number of positive
eigenvalues. Typically, attention is often focused on the smallest positive eigenvalue, the largest
positive eigenvalue, the average value of eigenvalues, and similar information. In this paper, our

examples and applications will involve computing the smallest eigenvalue.

2.2.4 Mayer features on Vietoris-Rips complexes

Let X be a finite set of points embedded in Euclidean space. It is always possible to construct a
filtration of simplicial complexes. Common constructions include Vietoris-Rips complexes, alpha
complexes, cubical complexes, and others. These complexes offer diverse topological descriptions

for datasets. Now, we will focus on exploring the Mayer features on Vietoris-Rips complexes.
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Given a real number €, the Vietoris-Rips complex on X is given by the simplicial complex
VR = {0 C X|every pair of points in ¢ has a distance not larger than €}. (2.2.20)

From the Vietoris-Rips complex, one can derive the N-chain complex C.(VR; C). Furthermore,
for any real numbers € < €', the inclusion VR, — VR, induces the inclusion C.(VR,;C) —

C.(VR; C) of N-chain complexes. It leads to the persistent Mayer homology
HgS = im (H, (VR C) = Hog(VRe;C)), n20. (2.2.21)

and the persistent Mayer Laplacian based on the Vietoris-Rips complexes, serving as the primary

tool in our work.
Example 2.2.3. Consider the example where X; consists of the following seven points on a plane
(0,0), (1,1),(1,-1),(2,1),(2.5,1.5),(2.5,0.5), (3, 1). (2.2.22)

Here, we exhibits a visualization of some of the corresponding Vietoris-Rips complexes in

Filtration

Figure 2.3 Illustration of the Vietoris-Rips complexes at different filtration radius for pointset X.
Note that for the point set X in this example, we can obtain a maximum of 12 Vietoris-Rips
complexes with different filtration radius. For simplicity, we have omitted 5 complexes between rs
and rg.

Figure 2.3, labeled by their filtration radius, namely rg to rg, respectively. In this example, the
topological features we employed from the Mayer features include the Betti numbers at dimension
0 and 1. We display comparisons of calculation results of the persistent Mayer homology of the
Vietoris-Rips complexes derived from the set X with different N values.

We first compare the case N = 2 with N = 3, shown in Figure 2.4. The N = 2 case, which

also represents the classical persistent Betti numbers, exhibit fewer topological features than the
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persistent Mayer Betti numbers for N = 3 case. Specifically, the classical (N = 2) persistent
homology can yield non-trivial Betti numbers for dimensional O and 1 at filtration radius rg,r1,72,
and ry, respectively. In contrast, for N = 3 case, the persistent Mayer homology reveals non-trivial
Mayer Betti number O atrg (¢ = land g =2),r1 (g =1andg =2),rmn (g =1and g =2), r3
(gq=1),r4(q=1),r5(q =1),and r¢ (g = 1). Additionally, the N = 3 case yields non-trivial
Mayer Betti number 1 atry (g =1landg=2),rm(g=1andg=2),r3(gq=1landg=2),r4(q =1
andg=2),rs(g=1andg=2),andrg (¢ = 1).

N=2(classical)

1.0 — g=1
o 6 -~
3 3
L 41 . 0.5
(] (]
> >
© ©
= 2 =
T T T L T T O'O- T T T T T T
ro rnrarsrgfls I'e ro rra rsrafls I'e
Filtration Radius Filtration Radius
N=3

o N S o
Mayer Betti 0
Mayer Betti 1

2]
L

Mayer Betti 0
N
Mayer Betti 1
N

a~
!

o
L

l'o rira r3rgfrs r'e ro rrp rrgrs I'e
Filtration Radius Filtration Radius

Figure 2.4 Comparison of persistent Betti numbers between the cases N = 2, N = 3.

While in other cases, such as N = 5, and N = 7, more topological features are encompassed.
As illustrated in Figure 2.5, we consistently observe N — 1 Betti curves, each reflecting distinct

topological information. To provide a more accurate description of the information content in
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the Betti curves obtained for different values of N, we conducted a statistical analysis of the
variations in Betti O and Betti 1 for different values of N, shown in Table 2.4. We observe that
with the increase in the value of N, the quantities of Betti 0 variations and Betti 1 variations
strictly and positively increase. The increasing effect is more pronounced for Betti 1, indicating
that, unlike the information obtained from the classical persistent homology of Rips complexes, the
one-dimensional information provided by persistent Mayer homology also plays a crucial role.
Additionally, it is noteworthy that the average Betti variation in Table 2.4 indicates that, for the
majority of cases, increasing the value of N not only results in obtaining more Betti curves but also
enhances the topological information of each Betti curve. The only exception is the case of Betti 0
for N = 7. This is primarily due to the fact that the point set considered in this example contains
only 7 points, leading to a sparse existence of high-dimensional simplices in the corresponding
Vietoris-Rips complex. In Mayer homology, Betti O variation implies that O-dimensional simplices
are killed by some higher-dimensional simplices. If the number of higher-dimensional simplices is
too sparse, the difficulty of eliminating O-dimensional simplices increases, leading to a reduction
in the quantity of variations. However, in application scenarios, the number of points in the point
set is generally much larger than the value of N. In such cases, we can typically expect an increase

in the average Betti variations.

N value | Betti O variations | Avg. Betti O variations | Betti 1 variations | Avg. Betti 1 variations
2 3 3 2 2
3 7 3.5 12 6
5 15 3.75 33 8.25
7 17 2.83 54 9

Table 2.4 A statistics of the Mayer Betti curves variation for different N value.

Example 2.2.4. In this example, we show the comparison of Betti numbers and the smallest
eigenvalues for the non-harmonic components of the Laplacians for the case N = 5. Here, we
consider example where points are distributed on the vertices of a three-dimensional cube. Let X3

be a set with points given by

(0,0,1.3), (0,0,-1), (0,1,0), (0,-1,0), (1,0,0), (-1,0,0). (2.2.23)
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0
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Figure 2.5 Illustration of persistent Betti numbers between the cases N = 5, N = 7. The Mayer
degree, denoted by ¢, refers to the stage of Mayer homology.
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Figure 2.6 shows the visualization of the Vietoris-Rips complexes.

ry r, r, ry
o ?
.
0 <é E; @?
(]
° o

Filtration

Figure 2.6 Illustration of the Vietoris-Rips complexes at different filtration radius for pointset X».

We are interested to know whether persistent Mayer Laplacian detects more geometric variations
than persistent Mayer homology in characterizing data. To this end, we compare the persistent Betti
numbers and the smallest non-zero eigenvalues of persistent Mayer Laplacians derived from X; for
the case N =2, N =3, and N =5 as shown in Figure 2.7, Figure 2.8, and Figure 2.9, respectively.
Since the harmonic spectra of persistent Mayer Laplacians fully recovery the topological information
of persistent Mayer homology, attention is given to whether Mayer Laplacian’s non-zero eigenvalue
can detect additional variations compared to Mayer Betti numbers. Our results are summarized
in Table 2.5. After comparison, we observe that the classical (N = 2) Laplacian’s nonharmonic
spectra can detect more variations in both dimension 0 and 1. While Mayer Laplacian’s first
nonzero eigenvalue is superior in dimension O for all N = 3 cases,and N =5, =2, N =5,q = 3,
N = 15,9 = 4 cases, and in dimension 1 for N =3, =2, N =5,g=1,and N = 5, g = 4 cases.
It performs on par with Mayer Betti number in dimension O for N = 5,4 = 1, in dimension 1 for
N = 3,q = 1. In addition, Mayer Laplacian’s first nonzero eigenvalue captures fewer variations
than Mayer Betti number does in dimension 1 for N = 5,4 =2 and N = 5,¢ = 3. In summary,
Mayer Laplacian exhibits superior performance compared to Mayer Betti numbers, confirming
that persistent Mayer Laplacian indeed provides richer information compared to persistent Mayer
homology.

A more detailed analysis reveals that the reason for the use of Mayer Laplacian lies in its inability
to detect the variations from r( to r; and from r; to r, in the 1-dimensional case for N = 5,9 =2

and N =5, g = 3. In both of these scenarios, the smallest eigenvalues of persistent Laplacians are
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—— Mayer Laplacian —— Mayer Betti number
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Figure 2.7 Comparison of persistent Betti numbers and the smallest positive eigenvalues of
persistent Laplacians for the case that N = 2 (classical). The blue curves denote the Betti curves,
while the red curves represent changes of the smallest eigenvalues. The notion 3, , denotes the
n-dimensional Betti number at stage g of the Vietoris-Rips complex at distance . The notion
A3, 4(1) represents the smallest eigenvalue of the non-harmonic component of the Laplacian A;
at distance parameter r.

—— Mayer Laplacian =~ —— Mayer Betti number
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Figure 2.8 Comparison of persistent Betti numbers and the smallest positive eigenvalues of
persistent Laplacians for the case that N = 3. The blue curves denote the Betti curves, while the
red curves represent changes of the smallest eigenvalues. The notion f;, , denotes the
n-dimensional Betti number at stage g of the Vietoris-Rips complex at distance . The notion
Ay, 4(1) represents the smallest eigenvalue of the non-harmonic component of the Laplacian A; ,
at filtration parameter r.
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Figure 2.9 Comparison of persistent Betti numbers and the smallest positive eigenvalues of
persistent Laplacians for the case that N = 5. The blue curves denote the Betti curves, while the
red curves represent changes of the smallest eigenvalues. The notion £3;, , denotes the
n-dimensional Betti number at stage g of the Vietoris-Rips complex at distance r. The notion
A;,.4(1) represents the smallest eigenvalue of the non-harmonic component of the Laplacian A;,
at filtration parameter r.

consistently 0. This indicates that, in these cases, all 1-dimensional simplices precisely serve as
representatives of some Mayer homology classes. Therefore, we believe that while persistent Mayer
Laplacian’s first eigenvalue can offer more information compared to persistent Mayer homology, it
is not sufficient to replace the latter. The combination of both harmonic and non-harmonic spectra

is necessary to achieve better results in practical applications.
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Mayer | N=2 | N=3 N=3|N=5 N=5 N=5 N=5
features | g=1 | g=1 ¢g=2|g=1 ¢q=2 ¢g=3 qg=4
Bog 2 3 2 2 1 3 2
Ao,g(1) 3 4 4 2 2 4 4
Big 0 4 3 3 3 4 3
A1,4(1) 4 4 4 4 2 2 4

Table 2.5 A comparison of variation detection of the Mayer Betti numbers with the Mayer
Laplacian’s first non-zero eigenvalues for N = 2,3, and 5.

2.2.5 Applications

In this section, we will compute the persistent Mayer Betti numbers and spectral gaps of Mayer
Laplacians for fullerene Cgp and cucurbit[7]uril CB7. We use the atomic coordinates of molecules
as spatial points to construct the Vietoris-Rips complex, and then build an N-chain complex on it.
Typically, we consider the cases N = 2, N = 3, and N = 5. Here, N represents the integer that
d" = 0. We focus on the Mayer Betti numbers denoted as Bn,q and the smallest positive eigenvalues
of Mayer Laplacians (spectral gaps) denoted as 4, ,(1). In this work, n denotes the dimension of
Mayer homology or Mayer Laplacians, and we always compute the Mayer Betti numbers and the
spectral gaps of Mayer Laplacians for dimensions 0 and 1. The parameter g refers to the subscript
of Mayer homology or Mayer Laplacians, representing the g-th stage, where 1 < ¢ < N — 1.
Specifically, for the case of N = 2, we obtain the usual simplicial homology and its corresponding
Laplacian, where g can only take the value of 1. This implies that for a given dimension #, there is

only one homology group and one Laplacian operator.

Figure 2.10 Structures of the fullerene Cgg (Left) and the cucurbit[7]uril CB7 (Right).

In the depicted 3D structure showcased in Figure 2.10, the fullerene Cgq is presented as a

carbon molecule with a distinctive soccer ball-like arrangement, comprising 60 carbon points.
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In contrast, the macrocyclic compound cucurbit[7]uril (CB7) is intricately composed of 126
points, encompassing carbon, hydrogen, oxygen, and nitrogen atoms. Given the more symmetrical
and concise configuration of Cgp in comparison to the complex structure of CB7, an effective
featurization method is anticipated to reveal more nuanced patterns for CB7.

In Figure 2.11 and Figure 2.12, as well as Figure 2.13 and Figure 2.14, distinct colors represent
the numerical values of different Betti numbers and spectral gaps. The structural differences
between Cgp and CB7 are readily apparent from the comparisons in Figure 2.11 with Figure 2.13,
and Figure 2.12 with Figure 2.14. The persistent Mayer Betti numbers and persistent Mayer
Laplacians of CB7 display more intricate patterns, and the critical points of variation in these
patterns involve a broader range of filtration radius. This highlights the potential of persistent

Mayer homology and persistent Mayer Laplacian as highly effective tools for featuring molecular

structures.
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Figure 2.11 Comparison of persistent Betti numbers and the smallest positive eigenvalues of
persistent Laplacians for fullerene Cgg in cases where N =2, N = 3, and N = 5. Here, 3,4
denotes the n-dimensional Betti number at stage ¢ for a given distance parameter. Similarly, 4, 4
represents the smallest eigenvalue of the non-harmonic component of the Laplacian A, , at a
given distance parameter.
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Figure 2.12 Comparison of persistent Betti numbers and the smallest positive eigenvalues of
persistent Laplacians for fullerene Cgg in cases where N =2, N = 3, and N = 5. Here, 3,4
denotes the n-dimensional Betti number at stage g for a given distance parameter. Similarly, 4, 4
represents the smallest eigenvalue of the non-harmonic component of the Laplacian A, , at a
given distance parameter.

In the above calculations, for convenience, we computed the persistent Betti numbers and
persistent spectral gaps of the 3-skeleton of the Vietoris-Rips complex. However, this does not
hinder us from obtaining the topological and geometric characteristics of the structure. In the
figures, we observe that for the case of N = 2, the Betti numbers provide relatively limited
information, while the spectral gaps can complement the geometric information. For the cases of
N =3 and N =5, the information contained in the Betti numbers alone is already comparable to
the combined information of Betti numbers and spectral gaps for the N = 2 case. This implies
that, for larger values of N, computing Mayer Betti numbers alone is sufficient to capture the sum
of harmonic and non-harmonic information present in the N = 2 case. Generally, computing Betti
numbers is much faster than solving for spectral gaps, providing a more efficient approach for
calculating geometric features.

Despite the calculation cost of persistent Mayer Laplacian, which should be approximately

N — 1 times that of the classical persistent Laplacian if we omit some of matrix multiplications,
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Figure 2.13 Comparison of persistent Betti numbers and the smallest positive eigenvalues of
persistent Laplacians for cucurbit[7]uril CB7 in cases where N =2, N = 3, and N = 5. Here, £, 4
denotes the n-dimensional Betti number at stage ¢ for a given distance parameter. Similarly, 4, 4

represents the smallest eigenvalue of the non-harmonic component of the Laplacian A, , at a

given distance parameter.

the persistent Mayer homology and persistent Mayer Laplacian, from an applied perspective,
successfully provide practical multichannel featurization technique. As in applications, it is
essential to obtain effective features of sufficient dimensionality before engaging in machine learning
tasks, especially when dealing with datasets containing thousands or even millions of samples.
Traditional persistent homology and persistent Laplacian methods can only increase the feature
dimensionality by adding more filtrations. This approach faces two main challenges. Firstly,
there is an upper limit to the number of filtrations that can be added, and the computational cost
becomes prohibitively high when dealing large filtration. Secondly, even with an increased number
of filtrations, it does not guarantee the acquisition of useful information. This issue significantly
impacts persistent homology, especially in higher dimensions (1-dimensional and above). In such
scenarios, to obtain the desired features, it is common to divide the data into subgroups based on
the physical understanding. For example, element-specific persistent homology considers different

types of elements in the data [3]. Persistent Laplacians not only consider the smallest positive
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Figure 2.14 Comparison of persistent Betti numbers and the smallest positive eigenvalues of
persistent Laplacians for cucurbit[7]uril CB7 in cases where N =2, N = 3, and N = 5. Here, 3,4
denotes the n-dimensional Betti number at stage ¢ for a given distance parameter. Similarly, 4, ,

represents the smallest eigenvalue of the non-harmonic component of the Laplacian A, , at a

given distance parameter.

eigenvalue but also take into account the largest eigenvalue and some statistical measures of the
positive eigenvalues [18].

Persistent Mayer homology and persistent Mayer Laplacian possess Mayer degrees, serving as
an additional dimension. By selecting specific values of N, we can effortlessly expand the feature
dimensionality by a factor of N — 1. Moreover, as the value of N increases, each Mayer degree can
have additional effective filtration choices for its corresponding features. As shown in Figure 2.11

and Figure 2.13, more patterns in the persistent Mayer Betti numbers as N increases.

2.3 Mayer-homology learning prediction of protein-ligand binding affinities
As mentioned early, Mayer homology of simplicial complex reduces to simplicial homology
when N is taken to 2. We will begin with a brief review of simplicial complexes, the classical
homology of simplicial complexes, and then generalize the discussion to Mayer homology.
Simplicial complex is a well-known topological model in data science, with notable examples

including the Vietoris-Rips complex, Cech complex, and Alpha complex. A simplicial complex
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Figure 2.15 The persistent Mayer homology representation for a point cloud based on VR
complex. a: A 2D point cloud. b: The representation of simplices in dimensionn =0, 1,2, 3. c:
A filtration of simplicial complexes obtained from the point cloud. d: The barcode of dimension 0
and 1 corresponding to the filtration process in c. The filtration parameter is defined to be the
diameter of circles around given points. e: The Betti numbers Sy and S3; calculated from
persistent Mayer homology (PMH) for N = 2. f: The Betti numbers Sy, and §; , calculated from
persistent Mayer homology (PMH) for N = 3 (¢ = 1,2). g: The Betti numbers Sy, and 51 4
calculated from persistent Mayer homology (PMH) for N =5 (¢ = 1,2, 3,4). The curves for By |
and Sy coincide. The curves for § 7 and ;3 coincide.

is composed of a collection of simplices following specific combinatorial rules. An n-simplex is
the convex hull formed by n + 1 geometrically independent points. For example, a O-simplex is a
vertex, a 1-simplex is an edge, a 2-simplex is a triangle (with a solid interior), and a 3-simplex is a
solid tetrahedron, as illustrated in Figure 2.15b.

The key idea of persistent homology is to introduce multi-scale information, which is provided
by the filtration of simplicial complexes. For a given point cloud data set, the most common
filtration of simplicial complexes is the Vietoris-Rips (VR) complex, as illustrated in Figure 2.15c.

Topological features at different scales exhibit a certain kind of persistence, meaning that homology
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generators at smaller scales may persist as homology generators at larger scales, thereby giving rise
to persistent homology generators. The scale at which a generator is born is referred to as its birth
time, while the scale at which it disappears is known as its death time. The topological features
of persistent homology are represented by bars that record the birth and death times of homology
generators, as shown in Figure 2.15d, corresponding to the barcode of the filtration of simplicial
complexes in Figure 2.15d.

Unlike classical homology theories, the Mayer homology theory explored in this study has a
generalized differential ¢ = 0 with an integer N > 2 on the N-chain complex. This approach
allows us to obtain a family of homology groups H, ,(K) for a simplicial complex, where n is
the dimension and 1 < ¢ < N — 1 corresponds to the Mayer degree. The homology groups
H, ,(K) are referred to as Mayer homology. The Betti numbers associated with Mayer homology
are termed the Mayer Betti numbers of the simplicial complex, denoted by B, ,. For N = 2, the
Mayer degree g can only be ¢ = 1, which means that for a fixed dimension 7, there is only one
homology group, which is consistent with the usual homology groups of a simplicial complex. For
general N, Mayer homology reveals more information than classical homology, offering potentially
valuable geometric and topological features for applications. Beyond contributing to a unified
mathematical framework for homology theory, Mayer homology and the associated Betti numbers
provide valuable tools for analyzing the topological space of a given data set.

The Betti numbers for each simplicial complex are recorded in the barcode diagram shown in
Figure 2.15d. For example, the number of red lines in Figure 2.15d at a filtration parameter of 2
corresponds to By. The Betti number 3, : [0,+c0) — N can be regarded as a function with the
filtration parameter as its variable. Such a function is referred to as a Betti curve. Figure 2.15¢
shows the Betti curves for N = 2, with the red line representing the Betti curve Sy and the blue
line representing the Betti curve 8;. Additionally, Figure 2.15f and Figure 2.15g present the Betti
curves for Mayer homology with N = 3 and N = 5, respectively. Each plot contains multiple curves
because, in the case of Mayer homology, 3, , forms a curve for each 1 < g < N — 1. It is worth

noting that when N = 5, the Sy 1 and By > align with each other and the $; » and 3] 3 align with each
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other as shown in Figure 2.15g. The comparison of these figures highlights the richer topological

and geometric features of Mayer Betti numbers.

2.3.1 PMH-based element interactive molecular representation

Atomic coordinates in molecules can be viewed as point cloud data. Persistent Mayer homology
is well-suited for characterizing molecular structures, and a multiscale topological representation
can be obtained through a filtration process. The resulting persistent features effectively capture
the hierarchical and multiscale properties of biomolecular structures and interactions. Various
intramolecular and intermolecular interactions exist within molecular structures, characterized by
different forces such as covalent bonds, van der Waals forces, electrostatic interactions, hydrophobic
interactions, and hydrophilic interactions. To this end, we follow the element interaction
characterization for pairwise atom groups [19] and use persistent Mayer homology to analyze
these element-specific topological data structures. A cutoff distance of 12 A is applied to extract
the protein atoms around the ligand, considering that intermolecular interactions predominantly
occur in the binding pocket region.

Figure 2.16b displays the PMH (N = 2) barcodes for C-C and O-C atom groups in the
protein-ligand complex (PDBID: 1A94), with the simplicial complex constructed using the alpha
complex. The persistence and variance of the Sy, 51, and 8, information are revealed. The ligand
has more carbon atoms than oxygen atoms, leading to the faster decay of the S, value during filtration
for C-C atom groups. Persistent attributes associated with §; and S, are also distinguishable in
the characterization of C-C and O-C atom groups. The Betti curves of different dimensions are
for these two atom groups as shown in Figure 2.16c and Figure 2.16d, respectively. The changes
in B, , values from PMH with N = 3 and N = 5 for C-C groups are shown in Figure 2.16e and
Figure 2.16g. The changes for O-C groups are exhibited in Figure 2.16f and Figure 2.16h. Unlike
the PMH characterization for 2D point clouds, which shows overlapping curves, there are distinct
Bo,q or B1,4 curves in Figure 2.16g and Figure 2.16h for N = 5. These PMH (N = 3 or N = 5) Betti
changes for these atom groups tend to plateau when the filtration parameter reaches 10 A, or even as

early as 5 A. Therefore, it is sufficient to collect the Betti information with the filtration parameter
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Figure 2.16 Persistent Mayer homology characterization for a protein-ligand complex (PDBID:
1A94) on alpha complex. a: The 3D structure of protein 1A94. b: The barcodes of different
dimensions for a pair of atom sets in protein 1A94 with PMH (N=2). The first letter in C-C or
O-C stands from atom group from protein and the second one indicates atom group from the
ligand. c: The Betti curves of different dimensions for the C-C atom group in b. d: The Betti
curves of different dimensions for the O-C atom group in b. e: The By, and S 4 curves for the
C-C atom groups in b using PMH with N=3 (q=1,2). f: The Sy, and B 4 curves for the O-C atom
groups in b using PMH with N=3 and (q=1,2). g: Bo 4 and ;4 curves for the C-C atom group in b
using PMH with N=5 (g=1, 2,3,4). h: The By, and ;4 curves for the O-C atom group in b using
PMH with N=5 (q=1, 2,3,4).

ranging from 0 A to 10 A. For PMH (N = 2) or traditional persistent homology characterization of

the protein-ligand complex, persistent attributes analysis extends to an upper filtration parameter
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of 12 A.

It is observed that the Sy 1 and B curves in Figure 2.16e resemble the 5y 3 and Sy 4 curves in
Figure 2.16g. A similar pattern is seen between Figure 2.16f and Figure 2.16h. However, there are
subtle numerical differences along the filtration. The Sy 1 and B2 curves, along with the distinct
B1,4 curves, still differentiate PMH (N = 5) from PMH (N = 3).

A multiscale molecular representation can be obtained either by directly using PMH Betti
numbers or by extracting useful statistical information from barcodes. Persistence bars represent
the persistence of topological invariants in nested simplicial complexes, from which PMH Betti
numbers can be directly read. Molecular features can be designed by collecting the Betti numbers
at a set of filtration parameters. However, the inconsistent number of atoms across atom groups
or molecules makes barcodes not directly suitable for scalable representation learning. Various
stable learning strategies for topological data analysis have been proposed, such as persistent
landscapes [20] and persistent images [21]. The bin-spaced statistical functions [3], incorporating
the maximum, minimum, average, and standard deviation of barcodes, provide a reliable and
effective vector representation. This approach offers competitive descriptive capacity and the
advantage of scalable modeling. We utilize both the Betti numbers from PMH and barcodes to
design molecular features.

To address computational efficiency, simplicial complexes using alpha complexes are primarily
considered for PMH with N > 2. For PMH with N = 2, both VR complexes and alpha complexes
can be utilized. When VR complexes are used, we incorporate physical properties in addition to
the original molecular structure data to ensure that sufficient molecular interactions are captured.
Technically, the filtration process and persistent Mayer homology are induced using either the
Euclidean distance metric in space or a kernel function-defined correlation matrix for a group
of atomic coordinates. Collectively, these methods enhance our PMH theory-based molecular

representation learning. We provide more details about our PMH features in the following section.
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Figure 2.17 The illustration of persistent Mayer homology feature extraction for a protein-ligand
complex (PDBID: 1A94) and the subsequent machine learning model development.

2.3.2 PMH learning models for drug design

2.3.3 PMH-based multiscale molecular vectorization

We utilize element-interactive PMH representation learning for biomolecular data, as discussed
above. This strategy captures crucial biological information and enhances characterization capacity,
as validated by extensive modeling work [3, 22, 23]. Specifically, for a protein-ligand complex,
the types of elements considered for proteins are Sp = {C,N, O, S}, and for ligands, they are
St ={C,N,O,S,P,F,Cl,Br,I}. Therefore, we can have up to 36 element combinations and design
interactive PMH features accordingly. The interactions between all the ligand atoms and protein
atoms near the binding pocket can also be characterized by PMH.

We denote S5 _, as the set of atoms consisting of X types of atoms in the protein and Y types

of atoms in the ligand, where the distance between any pair of atoms in these two groups is within

a cutoff c:

Yoy = {ala € X, rglilr/l dis(a,b) < c} U {b|b e Y}, (2.3.1)
€
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where a and b denote atoms. We also consider all heavy atoms in the ligand together with all heavy
atoms in the protein that are within the cutoff distance ¢ from the ligand molecule, and denote this
set as S7 ;. Similarly, we denote the set of all heavy atoms in the protein that are within the cutoff
distance ¢ from the ligand molecule as S,,.,.

Both the correlation matrix and the Euclidean distance matrix are used for the VR
complex-induced persistent homology (PMH) (N = 2). We use A(i) to indicate the affiliation

of an atom with index 7 in a group of atoms from either the protein or the ligand. We define four

types of matrices as follows.

« FRIE":
1— e—(rij/’]ij)’(’ A([) + A(])
dGi.j) = (2.3.2)
doo, A(i) = A())
« FRI,,:
d(i, j) =1- e Viilmi)’ (2.3.3)
° EUCagS[:
dGi. ) = (2.3.4)
deo, A(i) = A(J)
* EUC:

d(i, j) = rij. (2.3.5)

Equation 2.3.2 is inspired by the development of the flexibility-rigidity index (FRI) theory [24],
which utilizes a decaying radial basis function to effectively quantify atomic interactions. The
parameter r;; represents the Euclidean distance between atoms with indices i and j, and n;; =
T - (r; +rj), where k and 7 are positive adjustable parameters that control the decay rate of the
exponential kernel, allowing us to model interactions with different strengths. Here, n,; is the
characteristic distance between the ith and jth atoms and is typically set as the sum of the van

der Waals radii of the two atoms. The exponential kernel function is non-negative and strictly
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monotonically decreasing with respect to the Euclidean distance between a pair of atoms. When
the Euclidean distance between two atoms is close to 0, their correlation distance d (i, j) approaches
1. Conversely, when the atoms are far apart, d(i, j) approaches 0. This ensures that the correlation
matrix is well-defined. We use the superscript agst to distinguish correlations between atoms
from the same or different affiliations. When both atoms are within the same molecule, their
correlation distance is set to infinity. This approach excludes intramolecular interactions and
highlights the intermolecular interactions between proteins and ligands, which are then represented
in the construction of VR simplices and ultimately aid in characterizing these interactions through
persistent Mayer homology (PMH).

In contrast, the correlation matrix defined by Equation 2.3.3 captures both physical and chemical
information from intramolecular and intermolecular interactions. Furthermore, Equation 2.3.4 and
Equation 2.3.5, which are based on the Euclidean distance metric, provide a better characterization
of molecular 3D structures. The EUC“8*" metric places greater emphasis on the shape derived from
intermolecular 3D data and is used in conjunction with alpha complexes for our PMH analysis. We
primarily use PMH(N=2) and PMH(N=5) to extract molecular features, employing five different
feature extraction strategies as shown in Table 2.6. Consequently, for each protein-ligand complex,
we generate five feature vectors: the first four are derived from PMH(N=2), while the final vector

is based on PMH(N=5).

2.3.4 PMH learning models for binding affinity prediction

We demonstrate the learning capacity of the proposed PMH through protein-ligand binding
affinity prediction, a critical problem in drug discovery. We consider three well-established
PDBbind datasets [25], including PDBbind-v2007, PDBbind-v2013, and PDBbind-v2016. These
datasets contain a collection of 3D structures for protein-ligand complexes and their experimental
binding affinities and have been widely used to test new methods [26, 27, 28]. Detailed information
about the data size for the three datasets and the related training-test splits can be found in Table 2.7.
Based on the 3D structures, each protein-ligand complex is represented by five sets of molecular

vectors according to Table 2.6. In our implementation, feature sets I-IV are concatenated into a
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Table 2.6 Molecular feature extraction with PMH. PMH2 and PMHS indicates the PMH on
2-chain and 5-chain complex, respectively. The first argument in PMH2 or PMHS specifies the
group of molecular coordinate data, while the second argument denotes the correlation or
Euclidean distance matrix. The third argument indicates the type of complex used to construct
simplical complex.

long vector representation, while feature set V is used as a separate vector representation. These
two vectors are combined with the gradient boosting decision tree (GBDT) algorithm to build
regression models, resulting in model-PMH2 and model-PMHS. The GBDT hyperparameters
used for modeling are listed in Table 2.8. A general workflow of our PMH featurization and the
resulting machine learning modeling is provided in Figure 2.17.

The final PMH modeling prediction is determined by the consensus of the predictions from the
two models. We build models twenty times with different random seeds and use two evaluation
metrics: Pearson correlation coefficient (R) and root mean square error (RMSE). The average R
values of the PMH machine learning models for the three datasets are 0.824, 0.787, and 0.834,
respectively, as shown in Table 2.9. These high R values validate the effectiveness and reliability
of our PMH molecular representation. We also obtain low RMSE values (in units of kcal/mol),
which compare the predicted binding energies with the experimental values. The binding energy

is calculated from the given pK in the original data by multiplying it by a constant of 1.3633.
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To enhance the predictive performance of our PMH machine learning models, we incorporate
natural language processing (NLP)-based molecular features and develop an additional set of
machine learning models. The pretrained NLP models generate molecular features using molecular
sequences as input. Specifically, we utilize molecular features from transformer-based pretrained
models for proteins [29] and small molecules [30]. These features are then integrated with the GBDT
algorithm to create a new predictive model, referred to as model-seq. The modeling performance
of this approach is presented in the third column of Table 2.9. The average R value of the PMH
model exceeds that of the transformer-based machine learning model. Additionally, we create a
consensus model by combining the strengths of the three models—model-PMH?2, model-PMHS,
and model-seq—by averaging their predictions to determine the final predicted binding affinity.
The last column of Table 2.9 shows the performance of the consensus model. The consensus model
significantly boosts the performance of the PMH model, with an average R value of 0.832.

A series of advanced mathematical theories from algebraic topology and graph theory were
employed to design molecular descriptors [22, 23, 31, 3], leading to reliable machine learning
models. Their success significantly relies on molecular characterization through topological
invariants.  Our machine learning model is comparable to these competitive models and
demonstrates superior performance compared to a wide range of other published models. The Betti
numbers from PMH include crucial topological invariants and provide additional mathematical
analysis of molecular data. This significantly enhances the descriptive and predictive power of our

molecular features.

Dataset Total Training set Test set
PDBbind-v2007 [32] | 1300 1105 195
PDBbind-v2013 [33] | 2959 2764 195
PDBbind-v2016 [34] | 4057 3767 290

Table 2.7 Details of the datasets utilized for benchmark tests in this study.

We compare the performance of our consensus model with various models from the literature.
Figure 2.18 depicts these comparisons across the three PDBbind datasets. Our model outperforms

a wide range of models and represents the state of the art. The second column in Figure 2.18 shows

44



No. of estimators Max depth Min. sample split Learning rate

20000 7 5 0.002
Max features Subsample size Repetition
Square root 0.8 20 times

Table 2.8 Hyperparameters used for build gradient boosting regression models.

Dataset PMH Transformer PMH+Transformer
PDBbind-v2007 | 0.824(1.95)  0.795(2.006) 0.837(1.907)
PDBbind-v2013 | 0.787(2.036) 0.791(1.977) 0.807(1.982)
PDBbind-v2016 | 0.834(1.755) 0.836(1.716) 0.851(1.701)

Average 0.815(1.914) 0.807 (1.9) 0.832 (1.863)

Table 2.9 Modeling performance of different strategies on the test sets of PDBbind-v2007,
PDBbind-v2013 and PDBbind-v2016. Pearson correlation coefficient and root mean square error
(unit, kcal/mol) are the two evaluation metrics.

the comparison between experimental energy and predictions from our final consensus model. The
high consistency between the two sets of binding energies validates the accuracy and reliability
of our machine learning model. Deep neural networks have advanced the development of the
scientific community. Integrating our PMH molecular descriptors with deep neural networks has

the potential to offer even more accurate predictive models.
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Figure 2.18 The prediction performance of my final machine learning model for three
well-established protein-ligand binding affinity datasets including PDBbind-v2007,
PDBbind-v2013, and PDBbind-v2016. The comparison of the experimental and predicted
binding affinities for the three datasets are exhibited in the right column.
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CHAPTER 3
COMPUTATIONAL GEOMETRIC TOPOLOGY IN BIOLOGICAL STUDIES

3.1 Khnot theory

To introduce Khovanov homology and establish notations, we review some fundamental
concepts of knot theory in this section, including Reidemeister moves, knot invariants, Gauss
code, Kauffman brackets, Jones polynomials, and Khovanov homology. We aim to present these
topics in a self-contained manner. For readers interested in a more detailed study of knot theory,

we recommend the references [35, 36].

3.1.1 Kbnot invariant

A knot is an embedding of the circle S! into three-dimensional Euclidean space R? or into the
3D sphere S3. Sometimes, the knot is required to be piecewise smooth and to have a non-vanishing
derivative on each closed interval.

Two embeddings f, g : N — M of manifolds are called ambient isotopy if there is a continuous
map F : MX[0, 1] — M such thatif Fy is the identity map, each F; : M — M is ahomeomorphism,
and Fio f =g.

Two knots are equivalent if there is an ambient isotopy between them. It is one of the pivotal
challenges in knot theory to study the equivalence classes of knots. This equivalence allows us to
systematically study the properties and characteristics of knots without considering their specific
shapes or spatial positions. Based on this, researchers have developed various knot invariants and
established the topology of knots.

A knot in R? (resp. S%) can be projected into the Euclidean plane R? (resp. S2). From now on,
unless specifically stated otherwise, we will focus on knots in R?. For knots in 3, we can provide
analogous descriptions.

A projection p : K — R? of a knot K is regular if it is injective everywhere, except at a finite
number of crossing points. These crossing points are the projections of double points of the knot,

and should occur only where lines intersect. Moreover, the crossing points contain the information
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of overcrossings and undercrossings. Such a projection is commonly referred to as a knot diagram.

It is worth noting that a knot can have different regular projections. Consequently, for a given
knot, we can obtain different knot diagrams. Indeed, the knot diagram is independent of the choice
of projection up to equivalence. Before proceeding, let us recall the Reidemeister moves.

The Reidemeister moves are the following three operations on a small region of the diagram :

(R1) Twist and untwist in either direction;
(R2) Move one loop completely over or under another; and
(R3) Move a string completely over or under a crossing.

Figure 3.1(a) provides a graphical representation of the Reidemeister moves.

a b

0 -)

(RI)

¢
KK

(R3)

Figure 3.1 (a) The three types of Reidemeister moves; (b) The marked diagram of a knot can be
used to obtain the Gauss code; (¢) The left is the left-handed crossing, and the right is the
right-handed crossing; (d) The knot with crossings marked by + or —. The corresponding writhe
numberis w(L) =4 -4 =0.

48



Reidemeister et al. have shown that two knot diagrams belonging to the same knot can
be transformed into each other by a sequence of the three Reidemeister moves up to ambient
isotopy [37, 38]. Moreover, two knots are equivalent if and only if all their projections are
equivalent [36]. This suggests that the equivalence relation of knots can be established using
Reidemeister moves, which are more user-friendly compared to ambient isotopy. They also facilitate
proving whether a quantity is a knot invariant.

A knot invariant is a quantity defined on knots that remains unchanged under knot equivalence.
The most common knot invariants include tricoloring [39], crossing number [35], bridge number
[40], and the Jones polynomial [41]. However, these knot invariants cannot determine the
equivalent class of knots; indeed, it is even difficult to determine if a knot is the trivial knot.
This underscores the inadequacy of current knot invariants, prompting ongoing efforts to seek
new ones. Among these knot invariants, the Jones polynomial stands out as one of the most
successful. It encapsulates critical information regarding knot topology and structure, including
symmetry, crossing distribution, and complexity. Furthermore, its profound links to fields such as
topological quantum field theory and quantum braid theory in physics underscore its importance in

understanding topological phase transitions and quantum states.

3.1.2 Gauss code

The Gauss code represents a knot diagram using a sequence of integer numbers [42]. This
digital representation facilitates recording and understanding of the knot diagram. Moreover, we
can reconstruct the original knot diagram from its Gauss code. This implies that Gauss code holds
significant importance in classifying knots and computing knot invariants.

Given a knot diagram K, one can obtain a Gauss code G (K) as follows:
1) Choose a crossing as the starting point and select a direction to begin from the starting point;

2) Assign the starting crossing a value of 1, and then assign values of 2, 3, and so on to each

subsequent unlabeled crossing along the chosen direction;

3) For each crossing, we assign a sign. If the crossing is an overcrossing, the sign is positive;
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otherwise, it is negative.

The integer sequence written down following the aforementioned procedure is what we refer to
as the Gauss code. For example, see Figure 3.1(b). Starting from 1 and proceeding to 2, we obtain
a sequence of numbers, denoted as 1,2, 3,4,2,5,6,3,4,1,7,8,9,6,5,9,8,7. By assigning a sign

to each number based on the type of crossing, we get a new sequence of numbers:

+1,-2,43,-4,+2,45,-6,-3,+4,-1,+7,+8,-9,+6, -5,+9, -8, -7.

This sequence is the Gauss code for the knot in Figure 3.1(b).

For a Gauss code C, we can reconstruct a knot diagram D (C). So, the natural question arises:
for a knot diagram K, is the knot diagram D (G (K)) equivalent to K? In general, this is not entirely
correct. To address this issue, people have introduced extended Gauss code. The construction of
the extended Gauss code is similar to the Gauss code, with one key difference in how the signs
of the integers are assigned. When the crossing is right-handed, the integer is assigned a positive
value, and when it is left-handed, the integer is assigned a negative value. For Figure 3.1(b), by
considering the right-handed or left-handed nature of each crossing, we obtain the extended Gauss

code:

+1L,-2R,+3R, 4R, +2R,+5L,—6L, —-3R,+4R, 1L,
+7L,4+8R,-9R,+6L,—-5L,+9R, -8R, —TL.

In theory, Gauss code helps us examine and understand information about knots, which allows
us to study their properties. In computation, Gauss code can be utilized to calculate various knot
invariants, such as the Jones polynomial, Alexander polynomial, and others. Furthermore, from an
algorithmic perspective, digitizing and processing knot data through the Gauss code are invaluable

for computer-assisted knot research and computation.

3.1.3 Kauffman bracket and Jones polynomial
In the previous section, we concluded that to study the invariants of knots, it is sufficient to

explore the invariance of knot diagrams under Reidemeister moves. From now on, our attention will
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directed toward knot diagrams as we revisit the Kauffman bracket and Jones polynomial associated
with them.
For a crossing, there is a 0-smoothing @ and a 1-smoothing @ . The process of smoothing

can be understood as untangling a crossing, as illustrated below.

X = + 00
X = + 00

A link is a collection of knots that do not intersect but may be linked (or knotted) together. In
particular, a knot is a link with only one component. If not explicitly stated, the links discussed in
this paper are assumed to be orientable.

Given a knot K and a crossing x of K, we can create links by replacing the crossing x with
the 0-smoothing and the 1-smoothing, respectively. Let Knot denote the set of knots, and let
Link denote the set of links. Given a link L, let X(L) denote the set of crossings of L. For
each x € X (L), the smoothing operators at x lead to the 0-smoothing and the 1-smoothing maps
p0,p1 - Link — Link as L — po(L,x) and L — p;(L,x), respectively. In the following
construction of the Kauffman bracket, for an unoriented knot, the smoothing is always performed
on the undercrossing @ .

The Kauffiman bracket is a bracket function (=) : Link — Z[a, a~'] satisfying:
(a) (O)=1;
(b) {OQUL)=(-a>~a){L);
(¢) (L) = alpo(L,x)) +a""{pi(L,x)) for any x € X(L).

Here, O denotes the trivial knot.

The Kauffman bracket does always exist, and it is uniquely determined in Z[a, a~']. Now, let
n = |X(L)| be the number of crossings of L. For each crossing, we have the options of performing
0-smoothing and 1-smoothing. Thus, we can obtain a total of 2" different smoothing links. Each

of these smoothing links is referred to as a state of the link L. All the states together form a state
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cube. Another description of the Kauffman bracket is given in terms of the state cube of a link
[39]. For a state s of L, let a(s) and B(s) denote the number of 0-smoothings and 1-smoothings of

crossings in state s, respectively. The Kauffman bracket is
(L) = Z(_l)a(s)—ﬁ(S)(_a2 — g -l (3.1.1)
s

Here, s runs through all the states of L, and y(s) is the number of circles of L in the state s.

It is worth noting that the Kauffman bracket is invariant under the Reidemeister moves (R2) and
(R3). However, the Kauffman bracket is not a knot invariant, as it is not invariant under (R1). To
define a knot invariant, we first introduce the concept of the writhe number. Consider an oriented
diagram of a link L. Let us define w(L) as follows: with each crossing of L, we associate +1 if it is
a right-handed crossing, and —1 if it is a left-handed crossing. For an example, see Figures 3.1(c)
and (d). By summing these numbers at all crossings, we obtain the writhe number w(L).

The Kauffman polynomial (or normalized Kauman bracket) of a link L is the polynomial defined

as follows

X1(a) = (=a) (LY. (3.1.2)

The Kauffman polynomial is a knot invariant [43]. By substituting a in Xy (z) with t‘zlt, we obtain

the Jones polynomial

Vi(r) = X (t79). (3.1.3)

The Jones polynomial is a famous knot invariant introduced by Jones [41].

Remark 3.1.1. With the previous notations, if we set g = —a~2, then the Kauffman bracket can be

described by the conditions
(a") (O)=q+q7";
(b') (QUL)=(g+q ") L);

(¢") (L) = {po(L,x)) = q{p1(L,x)) for any x € X(L).
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Let n;. be the number of right-handed crossings in X (L), and let n_ be the number of left-handed

crossings in X (L). The unnormalized Jones polynomial is defined by
J(L) = (=1)"-¢g"™ 2" (L), (3.1.4)

Then, the Jones polynomial of L is defined as J(L) = J(L)/(q + ¢~'). This definition is more

convenient for categorifying the Jones polynomial, as specifically detailed in the literature [44].

@*@*@*@

L100 L101
L110 L111

Q 0D C) . N6
. T :
-0 & 7

Figure 3.2 (a) The links by conducting 0-smoothings and 1-smoothings of the undercrossings of a
left-handed trefoil; (b) Two circles merging into one, or one circle splitting into two; (c) An
illustration of the differential.

Example 3.1.2. Let L be a left-handed trefoil. Consider the smoothing of L shown in Figure 3.2(a).
For example, the link Ljoo represents the original link after performing one 1-smoothing, followed

by two 0-smoothings. Note that
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(Lioo) =(QUO) = (g+q7"),
(L) =(O) = (g+q7"),
(L) =(O) = (g +q7"),
(Lin)=(QUOy=(g+q ")

It follows that

(L1o) = (L1oo) — ¢{L101) = ¢ (g +q7"),

(L11) = (L110) — ¢{L1n) = —-¢* (g + q7").

Thus, we have (L) = (Lio) — g(L11) = (¢7" + ¢°) (¢ + ¢~!). By a similar calculation, we can

obtain (Lg) = ¢~%(q + ¢~ '). Hence, we obtain

(L) = Loy —q(L1) = (¢ = 1=¢") (g +q™").
Thus the unnormalized Jones polynomial of L is

J(L)=(-1)1¢Ly=q"+q+q7 -q°,

and the Jones polynomial of L is ¢g=> + ¢ % — ¢g78.

3.1.4 Khovanov homology

Khovanov homology, introduced by Khovanov around year 2000, is regarded as a
categorification of the Jones polynomial, providing a topological interpretation of the Jones
polynomial [45, 43]. Specifically, the graded Euler characteristic of Khovanov homology
corresponds to the Jones polynomial. Compared to the Jones polynomial, Khovanov homology
contains more information. Notably, Khovanov homology can detect the unknot [46].
Graded dimension: Let V = kZZ Vi be a graded vector space. The graded dimension of V is the

€

power series

qdimV = Z g* dim V.
keZ
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For example, if V is generated by three elements v_1, vo, v with the grading —1, 0, 1, respectively,
then the graded dimension of Vis ¢! + 1 + g.

Degree shift: The degree shift on a graded vector space V = }, Vi is an operation -{/} such that

keZ
WA{l}r = Wy_;. By definition, one has that
qdimV{l} = ¢'qdimV.
Height shift: Let C denote the cochain complex --- — C” 4 C™! — .... The height shift

of C* is the operation -[m] such that C[m] is a cochain complex with C[m]" = C"™ and
d[m]" = 4" . Cc""m — Ccrmtl,

Recall that for a link, we have a state cube {0, 1}*(©). Each state s in {0, 1}¥©) can be
represented as (sy,$2,...,5,), where n = |X(L)|. Now, let K be the ground field, and let V
be a graded vector space with two generators v_,v,. Then, qdimV = ¢~! + ¢g. For each state
s € {0,1}¥() we have a space V(L) = V&) {¢(s)}, where c(s) is the number of circles in the
smoothing of L at state s, and £(s) = i s; 1s the number of ones in the representation of s. The

i=1
k-th chain group of L is defined as

(L) = @D Vew (D). (3.1.5)
s:0(s)=k
Then, [[L]] is a graded vector space. Furthermore, we can obtain a cochain complex [[L]]{n; —

2n_}. The Khovanov chain group of L is defined by

C(L) :=[[L]][-n_]{nsy —2n_}. (3.1.6)
More precisely, we have
ck(L) = @ Ve Lp(s) +ny — 2n_}. (3.1.7)
(s)=k+n_

Note that C* (L) itself is a graded vector space. Thus there is a natural graded structure on C*(L).
To obtain a cochain complex, we will endow C (L) with a differential as follows. Consider the state

cube {0, 1} with n - 27! edges. Each of the edges is of the form
(SI’S29 e ?Si—l’oa Sitlse - Sn) — (Sl, 8§25 .5 81, la Sitlse - 7Sn)~
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We denote the edge by & = (£1,&a,...,& 1, %, Eirls - .., &n). Let sgn (&) = (=D& +i-1_and
let || = 3 &. The differential d* : CK(L) — C**!(L) is defined by d = 3, sgn (&) - dg. Now,
we will r:i;iew the construction of d¢. Note that an edge of the state cube|i|(:n];nects two adjacent
states. The two states differ by just one crossing’s smoothing, which implies that the diagrams
corresponding to these two states differ by just one circle. Geometrically, this is manifested as two
circles merging into one, or one circle splitting into two, see Figures 3.2(b) and (c).

Algebraically, the above process can be understood as V®V — VorV — V ® V, because

the word length of the term V&) {£(s) + n, — 2n_} is equal to the number of circles. The map

dg 1 C*(L) — C*1(L) is defined as:

Vi Q@Vy vy, VoQVybv_,
m:VeV -V, m: (3.1.8)

Vi®Vvo v, vo®v_—0

on the components involved in merging,

Vi Vi Qv_o+Vv_ vy,
AV-oSVRV, A: 3.1.9)

Vo> V_QV_

on the components involved in splitting, and the identity at other components. It can be verified
that the above construction indeed provides a differential structure on C(L). Therefore, C(L) is a

cochain complex, called the Khovanov complex. The Khovanov (co)homology of L is defined by
H*(L) = H*(C(L)), k=1

As a well-known knot invariant, Khovanov homology can decode the Jones polynomial. We call
the rank of H*(L) the k-th Betti polynomial of L, denoted by B (q).

The graded Poincaré polynomial of C(L) is defined by
Kh(L) = Z qdimH* (L) - t*. (3.1.10)
k
By taking t = —1, we have the graded Euler characteristic of L given by

X, (L) = Z(—l)kqdimH"(L). (3.1.11)
k
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It is worth noting that X, (L) = >.( —~1)kqdimC*(L). A famous result asserts that the graded Euler
k

characteristic of L equals the unnormalized Jones polynomial of L.
Theorem 3.1.1. Let L be a link. We have X,(L) = J(L).

The above result demonstrates that Khovanov homology provides a categorical interpretation
of the Jones polynomial, thereby establishing the significant role of Khovanov homology in knot
theory. In this work, our focus lies in applying the features of Khovanov homology to analyze and
study knots with spatial twists. Persistence is the core principle in analyzing the spatial geometric
structure of knots. This prompts us to investigate evolutionary Khovanov homology in subsequent

sections.

Example 3.1.3. Let L be the left-handed trefoil. All the crossings are left-handed. Then, we have

the Khovanov cochain complex of L given by

0——C (L) -“ o) L1 L eO(L) —— 0.

Here, the space C*(L) is obtained by the circles of states listed as follows:

(0,0,0)
—_——
C3(L)=VeVeV,

(1,0,0) (0,1,0) (0,0,1)
— /=
CiL)=VeVaVeaVaeVaV,

(1,1,0) (1,0,1) (0,1,1)
— = /=
clLy=v @ Vv & VvV ,

(1,1,1)
—
c(L)=veV.

Recall that V has two generators v, and v_. Thus, the space C~>(L) has the basis

Vi®ViQ@Vi, Vi Q@Vyi®V_, vy ®V_QVi, Vo ® Vi QVy,

ViQV_oQV_,V_Q®ViQ®V_,Vv_QR®V_QVi,Vv_QV_QV_,

57



the space C~2(L) has the basis

(V+ ® Vi, O’ O)’ (v+ ® V-, 07 0)9 (V_ ® Vi, 09 0)9 (V— ® V-, 07 0)9
(Oa Vi ® Vi, 0)9 (07 Vi ® V-, 0)9 (05 Vo ® Vi, 0)5 (Oa Vo ® V-, 0)9

(0’ O’ Vi ® V+), (O’ Oa Vi ® V—)9 (05 0, Vo ® V+)a (0’ O» Vo ® V—)9

the space C~' (L) is generated by
(v4+,0,0), (v-,0,0), (0,v4,0), (0,v-,0), (0,0,v4), (0,0,v_),
and the space CY(L) has the basis
Vi@V, Vi ®V_,V_Q Vi, V_QV_.

We represent the basis of the corresponding space C¥(L) using column vectors. The left

representation matrix B_; for the differential d~! is then given as follows:

(v+,0,0) O 1 1 O
(v-,0,0) Ve Q@ vy 0O 0 0 1 Ve ®Vy
. (0,v4,0) Vi ®V_ 0 -1 -1 O Vi ®V_
d_ = B—l =
(0,v_,0) V_oQ® vy 0O 0 0 -1 V_oQ® vy
(0,0,vy) V_®V_ 0 1 1 0 Vo®V_
(0,0,v-) 0O 0 0 1

Similarly, the left representation matrices of the differentials 4= and d~2 with respect to the chosen
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basis are given by

o o o o o o o

o o o o o o

oS o o O

-1 0 -1
0 -1 O
01 00O0T1O0O00O0 0O -1 0
001 0O0O0OT1O0O0 0O 0 O
0010O0O0O0T1PO0 I 0 O
000T1TO0O0TTOO 0O 1 O
,Bo =
1 00 0O0O0OO1 0O 1 O
1 00010O0O00O0 0O 0 O
000O0T1O0O0O0T71 0O 0 1
00 0O0O0OO0OO0OO0OO O 0O 0 O
0O 0 O
0O 0 O

o o O o o o O

o o O

[S—

By step-by-step calculation, we can obtain the corresponding Khovanov homology presented

in Table 3.1.

H(L) k=0 k=-1 k=-2 k=-3
[=-1 (Vi ® vyl 0 0 0
[=-2 0 0 0 0
[=-3 [vi®v_] 0 0 0
[=-4 0 0 0 0
l=-5 0 0 [vi®Vv_ —v_®v,] 0
l=-6 0 0 0 0
l=-7 0 0 [v-®v_]» 0
[=-8 0 0 0 0
l=-9 0 0 0 [vo®v_®v_]

Table 3.1 The Khovanov homology H*!(L) of L.

Here, k is the height and [ is the degree of the homology generators. The generator [v_ ® v_],

exhibits a torsion of 2, meaning that 2[v_ ® v_], = 0. The remaining generators are free. Thus, we
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have

H3(L) =K,
) K& K, Kis the field of characteristic 2;
H (L) =
K, otherwise.
H (L) =0,
H(L) =KeK.

Consider the case that 2 is invertible in K. The corresponding unnormalized Jones polynomial
is given by
J(L) = X, (L) = > (-DfqdimH* (L) = ¢ + g7 + 47 — g7
k
This coincides with the result shown in Example 3.1.2.

3.2 Khnot data analysis using multiscale Guass linking integral

Knots are ubiquitous in nature, from animal nests, interlocked tree branches, vines, tendrils,
chromosome chains, to DNA double helices. Humans have been intrigued by knot tying due
to their practical functions, aesthetic appeal, and spiritual symbolism since prehistoric times.
Mathematical theory of knots dated back to 1771 by Alexandre-Théophile Vandermonde. Knot
theory is one of the most active areas of mathematical studies, concerning the embeddings of a
closed circle S! into the three-dimensional (3D) Euclidean space, their classification, equivalence
after continuous deformations, or ambient isotopy [35]. Some of the most important knot invariants,
which differentiate knots, include knot crossing number, knot group [47], knot polynomials [35],
knot Floer homology [48], Khovanov homology [44], etc.

Knot theory has been applied to various fields such as physics [49], biochemistry [50], and
biology [51, 52, 53], with limited success. Most real-world objects might not be a closed circle.
In applications, ambient isotopy typically has major different properties, while keeping the global
knot information unchanged. For instance, the realization of many object functions, such as the
molecular recognition of DNA, depends on local structures. Therefore, it is imperative to develop

knot theory-based tools that are robust and effective for applications.
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Several attempts have been made to address the aforementioned challenge. Jamroz et al.
proposed the protein topology database KnotProt to study knot and slipknot type of proteins [54].
Dabrowski-Tumanski et al. extend the database to include links and spatial graphs, and also enable
the calculation of topological polynomials invariant of those structures [55]. Recently, Panagiotou
and Kauffman have proposed new invariants for open curves in 3-space [56]. In addition, Baldwin
et al. [57] attempted to localize knot information by intercepting some specific intervals in the
linear structure of an open curve. Nevertheless, these approaches are still global topological in
nature.

Multiscale analysis can offer a viable localization scheme for knot data analysis, given its
remarkable success in diverse areas such as wavelet theory and topological data analysis (TDA).
Persistent homology, as a prominent technique in TDA, combines concepts from algebraic
topology, geometry, and multiscale analysis to analyze complex datasets [2, 58]. It uncovers
the complex topological invariants and patterns of data at various scales, which are not easily
discernible with traditional geometric and statistical techniques. Topological features facilitate
valuable representation learning, and their efficacy is demonstrated through integration with deep
learning models, specifically in the context of topological deep learning (TDL) coined by us
2017 [3]. Compelling applications which consistently demonstrate the relevant advantages of
TDL over existing methods are the victories of TDL in the D3R Grand Challenges, a worldwide
annual competition series in computer-aided drug, [5], the discovery of SARS-CoV-2 evolution
mechanisms [59], and the successful forecasting of SARS-CoV-2 variants BA.2 [60], and BA.5
[18] about two months in advance.

Mathematically, linking number is a knot invariant that measures the extent of linkage between
two closed curves in 3D space, representing the number of times that each curve winds around
the other. The Gauss linking integral [61], also known as Gauss’s integral, gives an explicit
formulation for the linking number. It serves as a fundamental tool for studying knots, links,
and other topological structures within 3D space. This tool holds significance in various fields,

including knot theory, geometric topology, differential geometry, and quantum field theory. For
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example, for idealized Dirac-string center vortices, the Chern-Simons number, can be given by the
Gauss link integral [62]. High-order link integrals were proposed [63]. However, these approaches
are typically global and qualitative.

The objective of this work is to introduce knot data analysis (KDA) as a new paradigm for data
science. To this end, we propose a new framework called multiscale Gauss linking integral (mGLI)
by integrating multiscale analysis with classical knot and knot-related theories. The proposed
mGLI can capture both local and global information of knots, curves, and other curve-like objects
by admitting a family of open balls around each segment on the objects. We define a metric to
describe the degree of the local entanglement within each ball. By increasing the ball radius, the
metric will incorporate additional local information in objects and finally reveal the global properties
of the original structure such as knots and entangled links. The proposed mGLI effectively captures
intrinsic structures and patterns in complex data, offers valuable low-dimensional embeddings of
the data. To assess the performance of mGLI, we consider 13 benchmark datasets across various
domains, including protein flexibility analysis, protein-ligand binding affinity prediction, human
Ether-a-go-go-Related Gene (hERG) blockade classification, and quantitative toxicity predictions.
The performance of mGLI is compared with that of other state-of-art approaches, including TDA,
unlocking geometric topology’s potential.

In contrast to the previous qualitative and descriptive knot theory approaches, the mGLI is a
quantitative and predictive strategy. It offers an unprecedented tool in knot theory analysis and

opens a new area in data analysis and knot learning.

3.2.1 Opverview of mGLI in knot data analysis(KDA) platform

Figure 3.3 outlines the proposed KDA platform. Like TDA, KDA utilizes a multiscale strategy
to capture local structural information of data at various scales and represent the information in a
knot invariant, the Gauss link integral or Gauss link number. While globally the Gauss link number
quantifies the linking or entanglement between two curves or loops in 3D space, our mGLI further
measures local entanglements at each pair of link or curve segments. As shown in Figure 3.3a,

such local information are systematically collected across scales and assembled over all segments,
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giving rise to a vectorization of the original structure.

A specific application of mGLI to a protein-ligand complex is given in Figure 3.3b. An
element-specific mGLI strategy is introduced to elucidate physical and chemical interactions
(Figure 3.3c¢) and to ensure the scalability across different complexes via statistics (Figure 3.3d).
In the case of protein-ligand complex characterization, chemical and biological information,
such as hydrogen bonds, electrostatics, hydrophilicity, and hydrophobicity can be delineated by
element-specific mGLI strategy. The intrinsic molecular properties in the 3D structures are properly
decoded into low-dimensional topological representations, which are suitable for downstream
molecular property analysis and prediction. Theoretical details are provide in Methods section.

The proposed mGLI method captures stereochemical information that is crucial for molecular
interactions. In complement, pretrained deep language models are able to access evolutionary and
constitutional information of the problem under study. Specifically, we use a transformer-based
pretrained model for protein embedding [29], while transformer and autoencoder-based pretrained
models are utilized for small molecule embedding[64, 30] as indicated in Figure 3.3e. These

embeddings are paired with mGLIs for downstream prediction tasks as shown in Figure 3.3f.

Multiscale Gauss linking integral (mGLI)

It is intrinsic to describe real-world data by mathematical objects, such as knots, knotoids,
lassos, links, linkoids, cysteine knots, etc. (see Figure 3.7a). The mGLI involves partitioning
knots and other curved objects into segments and conducting a multiscale analysis at each segment.
Upon curve segmentation, Gauss link integrals are defined at various scales to quantitatively capture
structure, connectivity, and entanglement. The global topological invariant properties are ultimately
recovered when a sufficiently large scale is reached. Below, we give some essential formulations
of the proposed mGLI method.

Definition 3.2.1 (Gauss linking integral). Given two disjoint open or closed curves /; and /3,
parametrized as y;(s) and y»(z), respectively, the following double integral gives the the Gauss

linking integral that characterizes the degree of interlinking between /| and /, [65]:

L(ll,lz)=i/ / det(y1(s), ¥2(1), y1(s) — y2(2)) ds dr. G2.1)
4r Jio,11 J10,11

y1(s) = 92(0)P
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Figure 3.3 The conceptual diagram of the knot data analysis (KDA) platform for biological data
learning. a. An illustration of multiscale Gauss linking integral-based KDA on a (2, 8) torus. b
mGLI is applied to the assessment of biomolecular 3D structures with multiple radius scales
applied around each atom. ¢. An element-specific mGLI strategy is introduced to embed physical
and chemical interactions. d. Atom-specific mGLI features are extracted to characterize atomic
interactions in the protein-ligand complex. Statistics is used to ensure the scalability across
different complexes. e. Sequence-based features are generated for the amino acid sequence and
the SMILES string, respectively, using pretrained natural language processing models. f. The
mGLI features and sequence-based features are paired for downstream predictions and analysis
using gradient boosting decision tree models or deep neural networks. Colors of frames and large
arrows indicate the workflows in different modules: (a, b, ¢, and d) denote a structure-based
module (blue), e highlights a sequence-based module (orange), and f represents a prediction
module (purple).

where vy (s) and y;,(t) are derivative of v (s) and y,(t), respectively.

Definition 3.2.2 (Segmentation of Gauss linking integral). Given finite curve segments P, and Q,,

for disjoint open or closed curves /jand /», respectively, the segmentation of Gauss linking integral
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induced by the curve segments is defined as the following n X m segmentation matrix:

L(p1,q1) L(p1,q2) --- L(p1,9m)
G- L(p2,q1) L(p2,q2) -+ L(p2,qm) , (3.2.2)
L(pn.q1) L(pn.q2) -+ L(pn,qm)

where p; € P,and q; € Q,, are curve segments of /| and />, respectively. Examples on segmentation

of Gauss linking integral for Hopf link are offered in subsection A in the Appendix file.

Remark 3.2.3. The segmentation of the Gauss linking integral serves as the basis for our multiscale
modeling. Since the objects in the segmentation of Gauss linking integral are curve segments, we

define the distance of curve segments d(p;, q;) with Euclidean distance.

Definition 3.2.4 (Scaled Gauss linking integral). Given a finite set of real numbers R =
{ro,r1,7r2,7r3, -+ ,rr} where 0 = ro < r; < rp < --- < ry, the Gauss linking integral at scale

[7s, re41] 1s defined as (3.2.3) and (3.2.4).

Xirer 1 (AP @) L(P1. ) = X1 (d(P1, @m))L(P1, gm)
S Xirerea 1 (P2, ) L(P2,q1) =+ Xirerea ] (d(P2, Gm)) L(P2, Gm) , (3.2.3)
Xtrere 1 (AP @O)L(Prsq1) <= Xirra 1 (d(Prs @m)) L(P s Gm)

where

Lif x € [rs, res1]
Xl (%) = (3.2.4)
0, else

Remark 3.2.5. The scaled Gauss linking integral is used to extract appropriate linking integral
within the scale. As shown in the curve segmentation for a (2, 8) torus of Figure 3.3a, each
torus has a collection of segments. We have G?]’.” =0, G;J'.’rz = L(pi,q;), and G:j":“ = 0. The
scaled integral provides a way to capture local interactions between segments for a given scales.

Cumulative integrals across expanding scales offer additional local structural insights, gradually
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unveiling broader global characteristics and relationships. Accordingly, multiscale Gauss linking

integral features can be designed for various system (see Methods).

Definition 3.2.6 (Localized scaled Gauss linking integral). For given scale [r;, ;41 ], we can define

the localized scaled Gauss linking integral at p; or g; by the followings:

m
Jrr,rr+l (pl) — Z G;;’rt"'l, (325)
s=1
n
Jrr,rr+1 (q]) — Z G;’/’r’*l (326)
s=1

Remark 3.2.7. By examining Gauss linking integrals at different scales, we obtain multiscale
representation. The localized scaled Gauss linking integral gives rise to a measurement for each
curve segment in the curve. By considering different scales, the localized scaled Gauss linking

integral provides a featurization of each curve segment u:

Feature(u) = (J'""(u), J™" (u), -+, J* """ (u)). (3.2.7)

In the case of biomolecular data characterization, curve segmentation is centered at atoms.
Consequently, a scaled Gauss linking integral is tailored in an atom-specific or element-specific
manner. Localized scaled Gauss linking integrals characterize atomic interactions across various

scales, facilitating molecular multiscale analysis.

KDA of biological data

Biological systems are intricately complex and pose grand challenges. We evaluate the
performance of mGLI with 13 benchmark datasets in four classes of biological systems, including
protein flexibility analysis, protein-ligand binding affinity prediction, the classification of hEGR
channel blockers, and quantitative toxicity prediction. To develop predictive machine learning
models, we incorporate mGLI features with linear regression algorithm, gradient boosting decision
trees (GBDT), deep neural networks (DNN), and multi-task deep neural networks (MTDNN).
Extensive comparison with the state-of-the-art is carried to demonstrate utility, reliability, and

robustness of the proposed mGLI-based KDA platform.

66



c d i

e bB1a1[52[3302|34
%4! N | M
NS % % t
s = =
=il

Comparisons of B-factor

1.0 predictions on 364 proteins
\f\/ i

a2 - % i
[/ 62 % ﬁl’ oz : 0.8
i, !
B3 (
<) a2 [ g4
B4 j’ '” ‘vw”% A 06
f
i’\&; /e 0.4
W el _:};x -#‘
R
- S 0.0
j B-factor modeling comparisons for | B-factor predictions for protein 1V70
three additional benchmark datasets 80
Small set Medium set Large set " 560 \ —— GNM7  —— Experimental
B 40 dh Y —— GNM8  —— mGLI
mGLI 4 0.899 0.776 0.708 Expenmental o \
NMA 1 0.480 0.482 0.494 ' ’, N
{/
GNM 4 0.541 0.550 0.529

ReS|due Number

pfFRI{  0.594 0.605 0591 ’
mGLI <%
OpFRI + 0.667 0.664 0.636 M 3 20
I |15
ASPH 0.870 0.680 0610 1 310
5 AA
EH A 0.773 0.729 0.665 o

R R R GNM 05 1fo 1f5 20 215 >3.0

Figure 3.4 An illustration of mBLI analysis for protein B-factor predictions. a. The 3D structure
of protein 1J27 consisting of two a-helices and four S-sheets. b. The segmentation of the Gauss
linking integral of protein 1J27. ¢. The absolute value of Gauss linking integral matrix of protein
1J27. d. The absolute Gauss linking integral matrix of protein 1J27. e-h. Absolute Gauss linking
integral matrices of protein 1J27 at different scales. i. The comparison of B-factor predictions
between our mGLI method and other literature approaches on a benchmark dataset of 364
proteins. j. The comparison of B-factor predictions on three additional benchmark datasets
between our mGLI method and other literature approaches (refer to Table S2 for detailed
information). k. The visualization of protein 1J27 B-factors obtained from experiments, mGLlI,
and GNM [66]. 1. Comparison of protein 1J27 B-factors obtained from experiments, mGLI, and
GNM [66]. Here GNM7 and GNMS indicate the cutoff value at 7 A and 8 A for the GNM. The
x-axis represents the residue number, and the y-axis represents the B-factor value. m. The
visualization of mGLI features with the maximal cutoff at 30A. The x-axis represents the residue
number and the y-axis represents the scale range. Note that all values exceed 3.0 are labeled as red.

Protein flexibility analysis

Proteins are inherently flexible and undergo various motions to maintain their functions. Protein
flexibility is often experimentally measured with B-factors, also known as temperature factors or
atomic displacement parameters. High B-factors indicate increased atomic mobility, suggesting the
location of the protein that is flexible or involves conformational changes. Low B-factors, on the

other hand, indicate rigid regions with limited atomic motion. We assess the effectiveness of the
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proposed mGLI-base features in predicting protein B-factors (see Methods). The mGLI features
are integrated with linear regression algorithm. It has been a tradition in B-factor predictions for all
methods to utilize the same simple machine learning algorithm, thereby ensuring a fair comparison
of various approaches.

Typically, the B-factor prediction focuses on C, atoms in a protein as shown in Figure 3.4a for
protein (PDBID: 1J27). We segment the protein polymer chain structure into C, atoms to facilitate
Gauss linking integral calculations of atomic interactions among C,, atoms. The resulting atom-wise
mGLI matrix is depicted in Figure 3.4b with reference to the secondary structure. It is noteworthy
that the Gauss linking integral depends on the orientations of segments or curves. Eliminating
this orientation factor may lead to a more insightful analysis for specific tasks, regardless of curve

orientation. To completely disregard orientation impact, we consider the absolute Gauss linking

_ 1
L(li,l) = —
(hh) = 7 /[0,1]/[0’1]

along with its corresponding integral segmentation matrix. The absolute Gauss linking integral of

integral as
det(y1(s), ¥2(2), y1(s) = y2(1))
[y1(s) = 72()P

ds dt, (3.2.8)

Figure 3.4b is given in Figure 3.4c. In the rest of this work, we use absolute Gauss linking integral
in our computations.

Figures 3.4¢-h show the absolute mGLIs at various scales from large to small. At the smallest
scale (Figure 3.4h), only the nearest neighbor interactions are recorded in Gauss linking integral.
This multiscale analysis characterize each C, atom’s local environment and interactions.

Numerous computational methods have been developed for B-factor predictions, such as Gauss
network model (GNM) [66], anisotropic network model (ANM) [67], normal mode analysis (NMA)
[68]. However, Park et al. [69] demonstrated that both GNM and NMA were ineffective in analyzing
a wide range of protein structures. Their findings revealed that, on average, the correlation
coeflicients for GNM and NMA, across three protein sets categorized by size (small, medium, and
large), were consistently below 0.6 and 0.5, respectively. Recently, advanced methods have emerged
to address this challenge, including flexibility rigidity index-based approaches such as pfFRI [70]

and opFRI [70], as well as topology-based methods like atom-specific persistent homology (ASPH)
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[71] and evolutionary homology (EH) [72].

To evaluate the performance of the proposed multiscale Gauss linking integral (mGLI) for
protein flexibility analysis, we employed a dataset consisting of 364 protein structures, sourced
from [70]. This dataset served as a benchmark for comparing mGLI against established methods,
specifically opFRI [70], pfFRI [70], and GNM [69].

In Table S11, we present the comparative results of mGLI with previous methods for each
protein in the dataset. Remarkably, mGLI outperformed previous methods in 320 out of 364
proteins. On average, mGLI achieved the highest correlation coefficient of 0.725, surpassing the
values of 0.673 for opFRI, 0.626 for pfFRI, and 0.565 for GNM, as illustrated in Figure 3.4i. This
represents a significant improvement of 7.7%, 15.8%, and 28.3%, respectively.

In addition, to validate the effectiveness of mGLI for predicting C, atom B-factors in proteins of
different sizes, we compared our method with previous approaches including EH [72], ASPH [71],
opFRI [70], pfFRI [70], GNM [69], and NMA [69] on three protein sets, as shown in Figure 3.4j.
mGLI achieved average correlation coeflicients of 0.899, 0.776, and 0.708 for the small, medium,
and large protein sets, respectively. Our results on the three datasets significantly outperformed the
previous methods, demonstrating improvements of 16.3%, 6.4%, and 6.5% on the small, medium,
and large protein sets, respectively, compared to the previous state-of-the-art method EH [72].

To understand mGLI’s performance, we present a case study with a potential antibiotic synthesis
protein (PDBID: 1V70) 105 residues. Figure 3.4k shows the protein colored with B-factor values.
Apparently, mGLI-predicted B-factor values are very close to those of the experimental ones,
whereas, GNM predicted values are unmatched. Figure 3.41 presents detailed comparison. GNM
methods have large errors around residues 1-10, which can also be seen in Figure 3.4k. In contrast,
mGLI gives accurate B-factor prediction for these residues. The mGLI features are presented
in Figure 3.4m. For each scale, we calculate the cumulative absolute Gauss linking integral,
represented by a colored bar along with its accumulated value below. We designate the values
exceeding a specific threshold (3.0 in this case) as red. Consequently, it becomes evident that the

pattern of mGLI values in Figure 3.4m matches the experimental B-factors in Figure 3.41 directly.
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This observation holds true in a broader sense and is further validated in Figure S6 and Figure S7.

Protein-ligand binding affinity predictions

Protein-ligand binding affinity describes the interaction strength between a potential drug
molecule and its target protein or receptor, and its prediction plays a crucial role in drug design
and discovery [73, 74]. The development of machine learning models for protein-ligand binding
affinity prediction represents a pivotal advancement in computational biology [75]. We explore
the utility of mGLI for machine learning predictive models. The PDBbind database [76] offers
a comprehensive repository of protein-ligand complex structures along with their corresponding
binding affinity data [74]. In our study, we have included two of the most commonly utilized
protein-ligand databases, namely, PDBbind-v2013 and PDBbind-v2016 [25]. It is challenging to
improve performance on these datasets as they have been studied by numerous researchers. The
detailed information for the two datasets and related rigorous training-test splittings can be found
in Table S1.

In Methods, we propose two mGLI featurization approaches on two distinct scale intervals
[7, ri41] or [0, rr41], on which localized scaled Gauss linking integral is given. We use notations
mGLI-bin and mGLI-all to indicate the protein-ligand complex features and mGLI-lig-bin and
mGLI-lig-all to indicate two sets of ligand features. The mGLI-lig-all features can be used as
additional features for protein-ligand interactions. We also utilize pretrained natural language
processing (NLP) models, i.e., transformer features (TF), to complement mGLI features (see details
in the Methods). Gradient boosting decision algorithm is used for the predictions. Given a training
dataset, models are built 20 times with different random seeds to address initialization-related
errors. The median of Pearson correlation coefficient (R) values from the 20 experiments are
reported below.

Figure 3.5a illustrates the comparison of Pearson correlation coefficients (R) obtained from
our model and the literature ones. Our mGLI-assisted model outperforms existing models for
the two PDBbind datasets. The R values of 0.819 and 0.862, are achieved by our models in

modeling PDBbind-2013 and PDBbind-2016, respectively, and are the highest values ever reported
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Figure 3.5 The performance summary of our mGLI-assisted machine learning predictions for two
PDBbind datasets. a-b: The Pearson correlation coefficient (R) comparison for the binding
affinity predictions of PDBbind-v2013 and PDBbind-v2016 core sets. Our models outperform
other state-of-art methods (refer to Table S4 for detailed information). ¢-d: The comparison
between the experimental binding affinity (BA) and the predicted BA from our best models across
the two PDBbind datasets.

in the literature. This highlights our model’s superiority and establishes it as a new state-of-the-art
protein-ligand binding affinity prediction model. Notably, our model demonstrates a significant
improvement in R values in modeling the PDBbind-v2013 and PDBbind-v2016 datasets compared
to others. The PDBbind-v2013 and PDBbind-v2016 datasets contain 2764 and 3767 complexes,
respectively.

Persistent homology [77] and persistent spectral theories [4, 23, 31] give rise to competitive
molecular representation and are widely utilized for molecular properties predictions. For example,
TopBP [77], PerSpect-ML [23], and PPS-ML [31] rank among the top-performing models in
binding affinity prediction, as demonstrated in Figure 3.5a. The efficacy of these models can be
further augmented when additional physical information is integrated. For instance, the average
R value of PerSpect-ML [23] across the two datasets increased from 0.806 to 0.817, while that
of PPS-ML [31] increased from 0.804 to 0.817. Our mGLI-assisted models, which are based on
mGLI-all&mGLI-lig-all or mGLI-bin&mGLI-lig-all features, provide accurate predictions across

the two PDBbind datasets, as shown in Table S3. The symbol &’ denotes feature concatenation.
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The average R values of the two mGLI-based models across the two PDBbind dataset are 0.814 and
0.818. The best consensus models, formed by averaging predictions from mGLI-all&mGLI-lig-all
or mGLI-bin&mGLI-lig-all feature-based models along with the transformer feature-based models
further enhance the modeling performance, achieving an average R value of 0.838 and 0.841 across
the two PDBbind datasets. This exceeds the average R of 0.835 obtained from persistent homology
[77], as well as the averages of 0.817 from PerSpect-ML [23] and 0.817 from PPS-ML [31].
Figure 3.5b offer visualization comparison between the experimental and predicted binding
affinities generated by our best models for the two PDBbind datasets. The details of our models are

provided in Table S3.

hERG blockade classification predictions

Ligand-based virtual screening plays a significant role in drug discovery. Appropriate molecular
descriptors are of vital importance for predictive accuracy. We investigate the performance of our
mGLI molecular features in several ligand-based virtual screening prediction tasks. Predictions for
hERG blockage are critically important in drug discovery due to the potential cardiac safety risks
associated with drugs that inhibit the hERG potassium channel [78].

Several machine learning predictive models are available in the literature [79, 80, 78, 81, 82],
and we benchmark our mGLI-based models against them. Among these models, the persistent
Laplacian theory [4, 78] was used in conjunction with several NLP molecular embeddings [83, 30]
to build predictive models, yielding the best hERG blockade prediction model. The persistent
Laplacian approach, rooted in spectral graph theory, can be regarded as an extension of persistent
homology theory. It preserves the topological persistence as persistent homology, while revealing
additional geometric insights from those non-harmonic portions of the spectrum. We provided the
detailed discussion of these two theories in section 7 in the appendix file. Here, we employ mGLI
theory alongside several other molecular descriptors, including the same two NLP embeddings as in
[78], and algebraic graph (AG)-based molecular features [22]. The NLP embeddings are paired with
artificial neural network algorithms, while mGLI and AG features are used with gradient boosting

decision tree (GBDT) algorithms. Our final prediction model is obtained with the consensus
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Figure 3.6 The performance summary of our machine learning models for hERG blockade
classification and drug toxicity predictions. a. Accuracy (ACC) comparisons of our
mGLI-assisted consensus model with literature models. These comparisons indicate that our
model represents the state-of-the-art machine learning predictive tool. b. ROC curves of our
model for four hERG blockade classification tasks. ¢. Prediction comparisons of our model with
literature models for the four toxicity datasets in terms of the squared Pearson correlation
coefficient (R?) (Refer to Table S7 for detailed comparative information.)

prediction of these four models.

Three hERG blockade datasets with binary classification labels from the literature were used
to investigate the performance of our models. Details of these datasets and five utilized evaluation
metrics including AUC, ACC, MCC, sensitivity, and specificity are included in Table S1 and section
1 in the Appendix file. Among these metrics, ACC gives the percentage of the correctly predicted
blockers and non-blockers. Given a training dataset, each individual model was built ten times with
different random seeds. In the comparison with other literature models, the highest ACC scores,
along with corresponding metrics evaluations from the ten prediction results, are reported in Table

S5. Our models yield state-of-the-art predictions. Figure 3.6a displays the ACC score comparisons
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across the three datasets, while the comparison in terms of AUC and MCC is displayed in Figure
S12. Figure 3.6b exhibits the ROC curves of our model in predicting the test sets of the three
datasets.

C.Zhang et al. [79] investigated their model performance with a hERG dataset containing 1163
compounds. Different training and test sets were partitioned from the 1163 compounds. Various
thresholds defined by ICso values were used to discriminate hERG blockers from non-blockers.
Their SVM model had the best ACC scores of 0.848 on the test set with threshold of 30 uM. X.
Zhang et al.’s model [80] had an boosted prediction ACC score of 0.856. Feng et al.’s model
[78] achieved much higher improvement in many metric. Our model has significantly higher
predictive power than Feng et al.’s model [78] with ACC scores increased from 0.864 to 0.881, and
MCC results boosted from 0.518 to 0.587, respectively, while it also achieved high sensitivity and
specificity scores.

Li et al. [81] constructed two consensus models based on their dataset composed of 3721
compounds with a threshold of ICsg equals to 1 ¢M classifying blockers and non-blockers. Their
best consensus results on a test set of 1092 compounds achieved an ACC score of 0.842. Feng et
al.’s model [78] improved the results of Li et al. [81] and X. Zhang et al.[80]. The AUC, ACC, and
MCC scores of our mGLI-assisted model are 0.924, 0.893 and 0.661, which are even higher than
the corresponding scores of 0.917, 0.885, and 0.629 in Feng et al.’s model [78].

Cai et al. [82] developed a multitask deep neural network-based model and had their best
predictive power on a hERG dataset with blockade threshold value of 80 uM. The reported AUC
and ACC scores achieved 0.967 and 0.925. Feng et al.’s [78] model had boosted performance.
Our model accomplished perfect scores of 1.000 in all the five evaluation metrics. The detailed
performance of our individual models is provided in Table S6 or Figure S13. The mGLI models
outperform or achieve comparable results. This indicates the critical impact of mGLI modeling
on the resulting consensus predictions. Our model consistently exhibits outstanding predictive
performance, placing it among the top-tier machine learning models for hERG blocker/non-blocker

classification.

74



Quantitative toxicity predictions

Toxicity in drug discovery refers to the potential harmful effects or adverse reactions that a drug
or chemical compound may have on living organisms [84]. Assessing drug toxicity is essential in
drug discovery. We assess the performance of our mGLI-assisted predictive models on four toxicity
datasets, including IGC50, LC50, LC50DM, and LDS50. Information about the toxicity datasets is
provided in Table S1 and subsection B in the Appendix file.

In addition to mGLI, we also employ transformer (TF) [83] and autoencoder (AE) models [30]
to enhance the modeling performance. We pair GBDT with mGLI features to model the four
datasets. Due to the similarity of the toxicity datasets, a multitask deep neural network (MTDNN)
was employed to enhance modeling performance [85, 84, 64]. We employed TF and AE features
to build two MTDNN models, resulting in two additional sets of predictions. Our final predictive
model is obtained by averaging these three sets of predictions. Given a training dataset, models are
built 10 times with random seeds.

Table S7 presents the detailed comparison in terms of squared Pearson correlation coefficients
(R?) and root mean squared error (RMSE). The comparisons in terms of R? are depicted in
Figure 3.6b. Our model stands out in toxicity predictions, achieving the higher R? values of 0.842,
0.793, 0.778, and 0.690 for the IGC50, LC50, LC50DM, and LD50 datasets, respectively. Figure
S16 presents a comparison between the experimental toxicity and our predicted toxicity values
for the four datasets. The high consistency underscores the effectiveness of our machine learning
models.

Two competitive models were proposed by Gao et al. [85], namely the 2D-GBDT and
2D-MTDNN consensus models, which utilize traditional 2D molecular fingerprints along with
various machine learning algorithms. Their multitask learning consensus model achieved R? values
of 0.794, 0.765, 0.725, and 0.639 for the IGC50, LC50, LC50DM, and LD50 datasets, respectively.
They surpassed many other models in the literature, including those from Toxicity Estimation
Software Tool (T.E.S.T) and related approaches, such as hierarchical, FDA, nearest neighbor,

and T.E.S.T consensus [86]. Wu et al. [84] introduced molecular fingerprints using persistent
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homology theory and developed a consensus multitask learning model. Additional molecular
descriptors based on physical attributes, including energy, surface energy, and electric charge, were
incorporated into their consensus model, significantly enhancing predictive performance. Their
model achieved R? values of 0.802, 0.789, 0.678, and 0.653 for the aforementioned datasets. Our
model outperforms these exceptional models. Several other models have recently been developed
based on traditional molecular fingerprints such as estatel, estate2, daylight MACCS, or other
advanced strategies. However, our model outperforms them by a significant margin, as observed
in Figure 3.6, and detailed comparisons are provided in Table S7. This demonstrates that our
mGLI-based knot theory provides an effective approach for molecular representation learning.

In addition, Table S7 or Figure S15 displays the detailed performance results of our GBDT
and MTDNN models. We compared the mGLI-based GBDT model with GBDT models based
on TF or AE features. The mGLI-GBDT model is competitive across the four prediction tasks,
outperforming the TF-GBDT model in all tasks except for LC50DM. The inferior performance for
the LC50DM task can be primarily attributed to overfitting issues. The large number of features in
the mGLI model makes it less suitable for the LCS0DM dataset, whose training set only has 283
molecules. The comparisons indicate that mGLI provides valuable 3D structure-based features for
small molecule representations compared to NLP molecular features and is competitive in modeling

individual tasks.
Discussion

Generalization to other topological objects and real-world structures

It is intriguing to consider the range of data to which the present KDA can be applied.
Mathematically, the multiscale Gauss link integral theory proposed in this work can naturally
extend to a wide variety of other topological objects, such as knotoids [87], links, linkoids [88],
lassos [89], and cysteine knots [90] in Figure 3.7a, as well as curve segments in Figure 3.7b-c,
tangles, and braids. These types of curved structures are ubiquitous in real-world objects, ranging
from ropes, shoelaces, highways, and powerline networks to polymers, DNA, RNA, nucleosomes,

chromosomes, and the trajectories of space vehicles and interceptor missiles. In a comparative
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analysis, our KDA deals with curved data, whereas TDA handles point cloud data defined on
simplicial complexes, graphs, hypergraphs, etc. Additionally, our earlier persistent Hodge Laplacian

is defined on manifolds and addresses volumetric data [9].

Curve segment size and multiscale granularity

In principle, our method allows for the arbitrary combination of curve segmentation with
any multiscale schemes. However, in practical applications, the performance of mGLI is highly
dependent on their selection. First and foremost, the values of the Gauss linking integral of a local
curve segment depend not only on their spatial alignment but also on their relative lengths compared
to the global curve. When the length of a curve segment approaches zero, the corresponding Gauss
linking integral approximates to 0. Similarly, as curve segments expand to cover the global curve,
the Gauss linking integral returns global information. In both cases, the Gauss linking integral
fails to extract useful spatial information regarding local alignments. The choice of segmentation
depends on the specific application. For example, in dealing with molecular properties, atomic
segments are needed. In modeling a crowded highway, the segment of individual car size is a natural
choice. Secondly, the selection of the multiscale range impacts the featurization of the Gauss linking
integral. Ideally, different scales should capture distinct spatial structure information, and the choice
of scales should reflect important interactions in the data. If the information between different scales
is negligible, it can result in a large number of identical or trivial features. Conversely, if the scale

is too coarse, it may lead to information loss.

The superiority of mGLI for biomolecular data

Proteins, DNA, and RNA are polymers and are naturally modeled as curved structures at certain
scales. The proposed multiscale Gauss linking integral proves to be a superior tool for biomolecular
data analysis compared to previous methods. The analysis of biomolecular structures using mGLI
can lead to insights. To demonstrate this, we conducted a structural analysis of protein 1J27
by segmenting the absolute multiscale Gauss linking integral and compared it with the previous
transient probability matrix (TPM) [91]. The structural information that was previously obscured

becomes considerably more evident and clear when using mGLI, as depicted in Figure 3.7e. For
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Figure 3.7 a. Examples of topological objects which can be studied by the multiscale Gauss
linking integral. b. Hopf link with two types of curve segmentations. ¢. Slipknot with seven
curve segments. d. Lasso with four curve segments. e. Left is the absolute Gauss linking integral
matrix for protein 1J27. Right is the transient probability matrix (TPM) for protein 1J27. Points in
top row and left column are colored green or yellow, denoting 5-sheet or a-helix of 1J27. f. The
protein or ligand element-specific mGLI features based on summation statistics for protein 1PXO,
as formulated in Equation 3.2.16. Additional features for other element-specific cases are offered
in Figure S2, while features based on median statistics are provided in Figure S3. g. The curve
segmentation illustration of molecule 2-Trifluroacetyl along with radius scales centered at each
atom. h. The feature of element-specific mGLI under three scales for the molecule using median
statistics, as formulated in Equation 3.2.16. The magnitude of feature values increases as the
scales increase. Features with alternative statistics measures for element-specific mGLI features
are presented in Figure S4 and Figure S5.

instance, in the TPM, interactions such as al-a1 and a2-a2 are represented as slightly thicker
yellow blocks along the diagonal. In contrast, mGLI portrays these interactions as larger, more
expressive, and prominently red blocks. This enhanced visualization enables a more precise
distinction between the self-interaction of the alpha chain and other structural elements, such as the
self-interaction between the 2 and 3 regions. Furthermore, the contrast between different values

within each block is more pronounced in mGLI compared to TPM. This distinction is particularly
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noticeable in blocks representing interactions like a1-a2, f1-a2, 51-2, and so forth.

Topological data analysis vs knot data analysis

Recent years have witnessed the rapid growth of TDA in data science, driving its success in
various domains, particularly in computational biology [5, 59, 60]. However, the major tool of
TDA, persistent homology, has many drawbacks [18], including its qualitative and global nature, as
well as the lack of localization. It is imperative to develop new mathematical/topological methods
that overcome the drawbacks of TDA and potentially impact various domains of data science.

The proposed mGLI is a local method but recovers global topological properties at sufficiently
large scales. Therefore, mGLI-based KDA models can outperform TDA models, as shown in this
work. A direct comparison of TDA and KDA in protein B-factor prediction shows that KDA has a
17.2% improvement over TDA as sown in Figure 3.4i (ASPH vs mGLI). Besides, our mGLI models
demonstrate superiority over TDA models [23, 31] for predicting protein-ligand binding affinity.
Our model, based on mGLI features, achieves an average R value of 0.818 across the two PDBbind
datasets. This surpasses the R values of 0.806 from PerSpect-ML [23] and 0.804 from PPS-ML
[31] as well. The proposed KDA is computationally efficient, as it takes only a few minutes on a
personal computer to generate mGLI features for a moderately sized dataset. Recently, a new KDA
tool, persistent Khovanov homology, has also been reported [11]. Given the tremendous success of
TDA, we expect that KDA will become a powerful new topological learning tool for a wide variety

of problems in data science.
Methods

Multiscale Gauss linking integral
We introduced several essential definitions related to the Gauss linking integral in the Results

section. Additional important proposition or theorems are presented below.

Proposition 3.2.1. The Gauss linking integral in Equation 3.2.1 is identical to the average of half
the algebraic sum of inter-crossings in the projection of the two curves in any possible projection

direction for both open and closed curves.
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Theorem 3.2.2 (Panagiotou et al.[56]). For closed curves, the Gauss linking integral is an integer
and a topological invariant. For open curves, the Gauss linking integral is a real number and a

continuous function of curve coordinates.

Theorem 3.2.3 (The grand sum of the segmentation matrix). The grand sum of the segmentation

matrix of two curves equals the Gauss linking integral of the original curves:

L(h,b) =) ) Lpisp)). (3.2.9)
J

Remark 3.2.8 (Generalization of Gauss linking integral). Vassiliev measure, a generalization of
Gauss linking integral, can be applied to open and closed curves in 3-space [88]. Similarly, the
proposed mGLI obtained by combining the Gauss linking integral and multiscale process can
naturally be applied to links, linkoids, open and closed curves, and other segmentable objects
as shown in Figure 3.7b. It can be noticed that any element in the segmentation of the Gauss
linking integral is defined on local curve segments. This indicates that one can define a generalized
form of the multiscale Gauss linking integral if the segmentation of the Gauss linking integral is
well-defined on local curve segments. In fact, for any topological or geometric structure that can

be segmented into curve segments Py, Q,,, we can define the following segmentation matrix:

gpi,q1) g(p1.q2) -+ g(p1.qm)
- |elp2.q1) g(p2.92) -+ g(P2.qm)
G = , (3.2.10)
g(pn-q1) &(Pn-q2) -+ &(Pnsqm)
where
L(pi,qj) if p; N q;isanull-set,
g(pi,qj) = (3.2.11)

0 else.
In the above definition, unlike in Equation 3.2.2, the curve segments in P, and Q,, are allowed
to intersect or even be equal. Thus, the mGLI can be applied in multiple topological/geometric
structures as long as they can locally be represented as curve segments. Featurization can be

similarly derived as in Equation 3.2.7.
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mGLI featurization for B-factor prediction

We consider a protein as an open curve, acknowledging that the polypeptide chain of a protein
molecule can be seen as an open polygon [ whose vertices are corresponding to the C, atoms, while
the edges represent the pseudobonds that connect a C, atom to another one in an adjacent amino

acid residue. We propose a curve segmentation induced by C, atoms:
pi={xel|f(x,ci) = ing f(x,0)}l,1 <i<n, (3.2.12)
ce

where f(a, b) is the distance of points a and b along [, c; is the 3D coordinates of a C, atom, and

C is the set of C, atoms. Then, the d(p;, g;) assumed in Equation 3.2.3 can be defined:
d(pi,q;) = dg(ci, cj), (3.2.13)

where df is the Euclidean distance in the 3D space.
Then, according to the generalized multiscale Guass linking integral, the segmentation of Gauss

linking integral that investigates the inter-crossings between segments of the protein can be given:

L(pi,p1) L(pi,p2) -+ L(p1,pn)

G- L(p2,p1) L(p2,p2) -+ L(p2,pn)

L(pn’pl) L(pnaPZ) L(pn,pn)

0 L(p1,p2) -+ L(p1,pn)

| L2, p1) 0 - L(p2,pn)
L(pn,p1) L(pn,p2) - 0

The localized scaled Gauss linking integral, detailed in Remark Remark 3.2.7, is a natural way to
characterize each C, atom in B-factor predictions. We naturally choose a segment that precisely
covers a single C, atom along the polymer chain. Additionally, in our study, the multiscale
scheme is selected to start from 5A and extend up to 17A, with each scale interval set at 1A. This

choice is based on the fact that the average distance between C, atoms is approximately 3.8A.
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Such a selection of the multiscale scheme results in a powerful featurization method that provides
abundant representations of local protein structures.

Traditional B-factor analysis methods predominantly concentrate on individual atoms and their
spatial positions in three-dimensional space, accounting for the thermal motion and disorder of
atoms within a protein structure. However, the incorporation of bonding interactions between
atoms, which indirectly impacts the observed B-factor values, is rarely employed in B-factor
analysis. Through the incorporation of mGLI, our method introduces the notion of pseudobonds
between protein atoms, effectively capturing the influence of bonding interactions. The integration
of knot theory with the multiscale procedure enables the precise localization of measurements,
capitalizing on the spatial positions and atomic environments. The synergy between multiscale
analysis and knot theory culminates in a robust method for predicting protein B-factors, showcasing
the potential of multiscale approaches in effectively pinpointing measurements derived from knot

theory.

mGLI featurization for protein-ligand complex

Localized scaled Gauss linking integral is also utilized to characterize protein-ligand
interactions.  This approach defines distinct curve segments and computes integrals with
other segments across various scales. For molecular structures, we adopt atom-specific curve
segmentation. Each atom ¢; in a protein or ligand molecule is linked by multiple covalent
bonds to neighboring atoms, determining the curve segmentation specific to ¢;. These segments
originate from the central atom and extend to the midpoint of associated covalent bonds, resulting

in atom-specific curve segmentation.

pi={xellf(x,c;) < %f(c, ¢;),c € C}, (3.2.14)

Here, C represents the set of adjacent atoms connected to atom c¢; by covalent bonds, and / denotes
the straight line along each covalent bond.
We focus on the binding core region where protein-ligand interactions primarily occur,

extracting protein atoms within a 12 A cutoff distance from the ligand. We can obtain atom-specific
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curve segmentations for both the protein and ligand. Using these segmentations (p; in protein and g ;
in ligand), we compute atom-by-atom Gauss linking integrals (a-GLI) L(p;, ¢;). Multiple segment
pairs between the two atoms may exist, resulting in numerous Gauss linking integral between a
segment pair. We consider the absolute Gauss linking integrals to mitigate curve orientation effects.
Due to the multiple integrals between pairs, we utilize statistical analysis, specifically median and
standard deviation, to define L(p;, q;).

Element-specific approach is used in designing mGLI protein-ligand features. Specifically, we
primarily focus on the protein atom groups of four elements (C, N, O, and S) within the protein,
while considering atom groups of ten elements (C, N, O, H, S, P, F, Cl, Br, and I) within the ligand.
We extract these atom groups in the core binding region, and then apply mGLI to characterize
pairwise interactions between these atom groups from the protein and ligand.

Let PS and QY represent collections of carbon (C) atom-specific curve segmentations in the
protein and nitrogen (N) atom-specific curve segmentations in the ligand, respectively, given by
PC = {picli =1,2,---,n} and QN = {qjvlj =1,2,---,m}. We use the two groups to illustrate
element-specific mGLI for protein-ligand featurization. The atomic coordinates in the two groups
are labeled as {ricli =1,2,---,n} and {rﬁ.\’|j = 1,2,--- ,m}. With the atom-by-atom Gauss
linking integral L( pl.c, q?’ ) defined, we further determine the multiscale element-by-element Gauss
linking integral. Assuming a scale R = {rg,ry,r2,73,--- ,rg} where 0 =rg <ry <rp <--- <ry,
the distance between pic and qﬁy is denoted as d(pic, q?’) = dE(riC,ry) (in A), where dg(-,)
indicates the Euclidean distance. The scaled Gauss linking integral G"*"**! in Equation 3.2.3 for
curve segments generalizes to atom-by-atom Gauss linking integral. Atom-specific localized scaled
Gauss linking integrals between two atom groups can be similarly derived as in Equation 3.2.5 and

Equation 3.2.6:

m
I (pf o) = ) Gl
s=1

n
JleoTee (qﬁy, PrCl') — Z Ggrj,rm
s=1

where the second variable in J*"*+! indicate linking atom sets with the specified atom in the first

variable. These expressions quantify the inter-crossing between a C atom-specific segmentation
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pl.C in the protein and a set of C atom-specific segmentations in the ligand within a given scale from
r; to rp41, Or between a N atom-specific segmentation qf.v in the ligand and a set of C atom-specific
segmentations in the protein within a given scale.

To provide a scalable description of atomic interactions between two atom groups, we compute
all atom-specific localized scaled Gauss linking integrals J'*"+! ( pl.C, Q%) fori =1,2,---,n, and
JIore (q?’ , P,g ) for j =1,2,---,m. Statistical measures are then used to determine the multiscale

element-specific Gauss linking integral (e-GLI) through the following formulations:

JleTe (Pr(zj’ Q%) = statistics of

(g (pS Ny g (pS 000, - T (pS, 00,

JleoTee (QYIZ, PS) = statistics of

(3.2.15)

e Gy P, I (@ P T (g P}

We employ various statistical measures such as sum, minimum, maximum, mean, and median
in Equation 3.2.15, which depict the atomic interactions between C atom-specific segmentations
in the protein and N atom-specific segmentations in the ligand within the scale [r;,r;+1]. We
consider the two formulations in Equation 3.2.15 as protein and ligand element-specific Gauss
linking integral, respectively.

We can extend starting point of the scale interval to 0, giving rise to following formulation:

JOr1 (PC 0Ny = statistics of
{07 (p L 0o, T (P, O+ IO (py, @I}
(3.2.16)
JOre (QN PCY = statistics of
WYy P (g P SO (g P)Y
We refer to the first and second approaches as mGLI-bin and mGLI-all featurization,
respectively. In characterizing protein-ligand complexes, we define the scale radius set as
R=1{0,2,3,---,11,12} (in A). Each of these featurization approaches results in an mGLI feature
vector with a length of 40 (number of element combinations) X 2 (e-GLI fro two formulations in

Equation 3.2.15) x 11 (scale number) X 5 (statistics for e-GLI) x 2 (statistics for a-GLI) = 8800.

Figure 3.7e-f give an illustration of protein and ligand element-specific mGLI features.
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Figure 3.7f illustrates a few cases of protein or ligand element-specific mGLI over the radius
scales based on statistics of summation for two formulations in Equation 3.2.16. Additional cases
are provided in Figure S2 and Figure S3.

We investigate the potential improvements in modeling performance resulting from employing
statistical measures for mGLI features. Figure S8, Figure S9 and Figure S10 demonstrate the
effectiveness of utilizing various statistical measures. Comparative analysis in subsection B in
Appendix file validates the enhancement induced by incorporating additional statistical measures.

Adjusting the upper scale of protein-specific mGLI features could lead to an improvement
in modeling performance. Figure S11 presents the resulting performance comparisons across
various upper scales r¢, ranging from 12 to 20. Despite the increase in upper scales, the modeling
performance remains consistent, indicating that an upper scale of 12 A is adequate for ensuring
optimal mGLI feature performance. The scale range and equal partitioning with an increment
of 1 A are appropriate for capturing local atomic interactions and recovering global molecular

interactions.

mGLI featurization for small molecules

The mGLI featurization for small molecules can utilize the same approach based on the
aforementioned 10 atom groups. Two mGLI feature strategies for ligands are available:
mGLI-bin-lig and mGLI-all-lig, depending on local integral scale ranges. For a ligand
with atom-specific curve segmentations p; and g;, the atom-by-atom Gauss linking integral
L(pi,qj) is determined using median statistics, adhering to the element-specific strategy to
capture more atomic interactions. For atom-specific curve segmentations pl.C @=12,---,n
and q?’ (G = 1,2,---,m), statistics including summation, minimum, maximum, mean, and
median are applied to the multiscale element-specific Gauss linking integral in equations
such as Equation 3.2.15, or Equation 3.2.16. The scale values are defined as R =
{0,2.0,2.44,2.98,3.63,4.43,5.41,6.59,8.05, 10} for characterizing small molecules. Both
mGLI-bin-lig and mGLI-all-lig features have a length of 2475. The upper scale of 10 A is reasonable

based on the 3D structure size of general small molecules as analyzed for hRERG blockade molecules
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in Figure S14.
An illustration of the multiscale element-specific Gauss linking integral for a molecule is
depicted in Figure 3.7g-h, with corresponding additional feature analysis provided in Figure S4 and

Figure S5.

Additional molecular descriptors and machine learning algorithms

In this work, transformer and autoencoder-based natural language processing (NLP) molecular
descriptors are employed to enhance mGLI knot learning for various predictive tasks. Details about
these descriptors are provided in subsection C in the Appendix file. Additionally, the integration
of various molecular descriptors with machine learning and deep learning algorithms is discussed

in the Appendix file.

3.3 Evolutionary Khovanov homology

We encounter challenges in establishing a filtration process for links, to the extent that we
lack even the concept of sublinks. In fact, morphisms in the category of links are provided by
cobordisms, and cobordism constructions are geometric in nature. This presents a challenge in the
application of links. Thus directly studying the filtration process on the category of links is not a
favorable approach. Therefore, in order to obtain a persistent process for link versions, we consider

establishing filtration from the perspective of Khovanov cochain complexes of links.

3.3.1 Smoothing link

Let L be a link diagram. Let x € X(L) be a crossing of L. At crossing x, there are two
smoothing options: the 0-smoothing denoted as po(L, x) and the 1-smoothing denoted as p (L, x).
It is worth noting that 2X(5) = 2X(po(Lx) | X (p1(LX)  Thys the Khovanov chain groups of p(L, x)
and p; (L, x) are subspaces of the Khovanov chain group of L without considering the gradings.
Moreover, even when we consider gradings, the Khovanov complex C(po(L,x)) or C(p1(L, x))
can still be a subcomplex of C(L) in certain cases.

When x is a left-handed crossing, assume that n = | X (L)| is the number of crossing of L. Each

crossing in X (L) can be written of the form (sy, s2,...,s,). Let A be the index of the crossing x
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in X(L). We have a map jg : 2X(P0(LX) — 2X(L) gjven by

(s17S2’ e »Sn—l) - (Sla .. '35/1—19 1as/l9 . "Sn—l)'

Let n_ be the number of left-handed crossings in X (po(L,x)), and let n, ¢ be the number of

right-handed crossings in X (po(L, x)). It follows that
c(s) = c(jo(s), no=n_—1, nig=ny, £(s)=(jo(s) - 1.
Then, we have an isomorphism of vector spaces
VELE(s) +ny = 2n_} = VEUONL(jo(s)) +neo — 200},
which is given by the degree shift. The degree difference is
E(jo(s)) +nso—2n_o—L€(s) —ny+2n_=1.
The height of both side are equal: £(s) —n_ = £(jo(s)) — n_ . Thus the induced map
io : C(po(L,x)) = C(L)

is an inclusion of degree -1 shift from the Khovanov complex C(po(L, x)) to the Khovanov complex
C(L). Moreover, one can verify iod = diy step by step by confirming iods = dgig for each €. Hence,
C(po(L,x)) is the subcomplex of C(L).

When x is a right-handed crossing, we can verify that C(p;(L,x)) is a subcomplex of C(L)

using a similar approach as described above. Consider the map j; : 2X(P1(Lx) _; 2X(L) given by

(51582, -5 Sn=1) = (S15. 8221, 0,80, . ., Sp—1).

We can obtain an injection i; : C(pi(L,x)) — C(L) of degree 1 shift from the Khovanov

complex C(p;(L,x)) to the Khovanov complex C(L). Thus, we have the following proposition.

Proposition 3.3.1. Let L be a link, and let x be a crossing of L. If x is a left-handed crossing,
C(po(L,x)) is a subcomplex of C(L). If x is a right-handed crossing, C(p; (L, x)) is a subcomplex
of C(L).
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The construction described above is called the smoothing link, denoted by p,L. Note that
oxL = po(L,x) if x is left-handed, and p,L = p;(L,x) if x is right-handed. By construction, we

have the following result.
Lemma 3.3.2. Let L be a link, and let x, y be crossings of L. Then, we have p,p,L = pyp,L.

In view of Lemma 3.3.2, for a subset S of X (L), we obtain a link pgL by applying the smoothing

link step by step to crossings in S. Obviously, C(ps(L, x)) is the subcomplex of C(L).

3.3.2 Evolutionary Khovanov homology
A weighted link is a link L equipped with a function f : X(L) — R on the set of crossings
of L. We arrange the crossings in X (L) in ascending order of their assigned values, denoted as

X1,X2,...,X,. Then, we have a filtration of links

L, ple, pxszlL’ <o Pxy 'pxszlL'

Note that the link p,, --- px,px, L 1s unknotted, comprising a collection of disjoint circles. The
filtration of links characterizes the process by which a complex link is gradually untangled, crossing
by crossing, through smoothing. This process can be understood as the evolution of a link from
complexity to simplicity.

For any real number a, we have the subset X (L, a) of X(L) consists of crossings x such that
f(x) < a. Then we have a link px(z ) L, which is called the a-indexed link.

Let (R, <) the category with real numbers as objects and pairs of form a < b as morphisms.

Theorem 3.3.3. The construction C(px(r,—)L) is a functor from the category (R, <)°P to the

category of cochain complexes.

Proof. For any a < b, letx;,,...,x;, be the crossings in X (L, b)\X (L, a). By Proposition 3.3.1
and Lemma 3.3.2, the cochain complex C(px(r»)L) = C(ps, *** P1,PX (L)L) is the subcomplex

of C(px(ra)L). Let us denote 6, : C(px(rn)L) — C(px(La)L). For real numbersa < b < c,
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we have the following commutative diagram.

Ob.c

C(pxreL) - Clpx.nl)

gu,c ga,b
Clpx(La)L)

It follows that 6, 46), . = 64,. Note that 8,, = id|¢(, X(L.aL) for any real number a. The desired

result follows. O

For real numbers a < b, we have links px (1 q)L and px(z ) L. Note that there is an inclusion

of Khovanov cochain complexes

Clpxp)L) = Clpx(La)l).

This induces the morphism of Khovanov homology

Aap : Hlpxp)L) = H(px(r,a)L)-

The (a, b)-evolutionary Khovanov homology of the weighted link (L, f) is defined by

HY (L, f) :=im(H" (pxpL) = H (pxal)). k> 0.

Remark 3.3.1. For a weighted link (L, f) with crossings x1, x2, . . ., x, of ascending weights, one

can also obtain a filtration of links

L’ pan, Px,,_lpan, e ,pxl te 'pxn_lenL'

For any real number a, let X, (L) be the set of crossing with weight f(x) > a. Then, the construction
C(px_(r)L) is a functor from the category (R, <) to the category of cochain complexes. For real
numbers a < b, we define the (a, b)-evolutionary Khovanov homology of the weighted link (L, f)

as

HY (L, f) :=im(H* (px,)L) = H (px,)L)). k> 0.

This definition shares the same fundamental idea as the previous definition.
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The rank of Hé‘ (L, f) is called the (a, b)-evolutionary Betti number, denoted by S,,(L, f),
which is the crucial feature for us to conduct data analysis. In particular, if we take a = b, we have
that H* (L, f) = H*(px(1.a)L). Furthermore, we can define the (a, b)-evolutionary unnormalized

Jones polynomial as

Jap(L) = ) (=D)*qdimHE ,(L).
k

As a direct corollary of Proposition 3.3.3, we have the following result, which shows that the

evolutionary Khovanov homology is a (co)persistence module [92].

Theorem 3.3.4. The evolutionary Khovanov homology H : (R, <)°? — Vecy is a functor from

the category (R, <)°P to the category of K-module.

Evolutionary Khovanov homology tracks how the generators of Khovanov homology evolve
with changes in parameter filtration. This concept shares a remarkable similarity with persistent
homology. Yet, there are fundamental distinctions between the evolution process of evolutionary
Khovanov homology and the persistence process of persistent homology: the former relies on
smoothing the link, while the latter is established through the Vietoris-Rips complex, ensuring a

continuous persistence.

Example 3.3.2. Consider the link L in Figure 3.8. Link L has four crossings, labeled x1, x2, x3,

and x4 in the figure. We consider the weighted functions f, g : X(L) — R defined by

f(xl) =1, f(Xz) =2, f(X3) =3, f(X4) =35,
and

g(x1) = 1,g(x2) =3,8(x3) =2,8(x4) = 4.
This gives us the following filtrations of links:

L, Px, L, PxrPx L, Px3Px2Px L, PxsPx3PxyPx; L,

and

L, px,L, px30x, L, Pxy Px30x1 Ls Py P P3P, L
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unknotted link
l Prs l Prs

~~

X1 X
Pxy Px,
— —
X4 X3

Hopf link

Figure 3.8 Link L produces different filtrations of links when processed through the crossings
X1,X2,x3 and through the crossings xp, x3, x3.

Note that link L is unknotted, so its Khovanov homology is trivial. The links in the filtration
given by the weighted function f are all unknotted links, hence their corresponding evolutionary
Khovanov homologies are also trivial. On the other hand, note that the link py, px, L is a Hopf link.

Its Khovanov homology has four generators, and the Khovanov homology is given by
H2(prpr L) = KOK,

H™'(pypy, L) =0
H'(ppq L) = KO K.
The evolutionary Khovanov homology H;,Z(L, g) is non-trivial. This example illustrates that even
if an unknotted link has trivial Khovanov homology, its evolutionary Khovanov homology may not
be trivial. Moreover, different choices of weighting functions can produce different filtrations of

links, leading to variations in their evolutionary Khovanov homology.

3.3.3 Representations of evolutionary features

In the previous section, we proved that evolutionary Khovanov homology is a functor.
Consequently, evolutionary Khovanov homology also has representations similar to the barcode
and persistence diagram in persistent homology theory.

Given a weighted link (L, f), since the links we consider have a finite number of crossings,

we can arrange the crossings of the link L in ascending order of their weights as xg, xa, ..., X,.
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For any integers 1 < i < j < n, we obtain an evolutionary Khovanov homology H J’i(x') f(x‘)(L, ).
i)sJ\Xj
LetH = @ Hf(x[)(L, f),and let t : H — H be given by the map /lf(xi),f(xm) : Hf(le)(L, f) —
i

Hy () (L, f). Then, for any element g in the polynomial ring K[¢], we obtain a map
g:H—-H.

This implies that H is a finitely generated K[¢]-module. By the decomposition theorem for finitely

generated modules over a principal ideal domain, we have:

Theorem 3.3.5. Let (L, ) be a weighted link. We have a decomposition of the evolutionary

Khovanov homolog of (L, f) given by

H= P’ -Kli o (@t"l - g[’] 3.3.1)

k l

In the decomposition mentioned above, the K[7]-module H has two components: the free part
and the torsion part. For the free part, by represents a generator of the evolutionary Khovanov
homology, which has weight 1 until smoothing at crossing x;,, and becomes weight 0 after smoothing
at crossing x,,, . For the torsion part, ¢; represents a generator that, after smoothing at crossing x,,
its weight becomes 0. Before smoothing at crossing x.,, this generator has weight 1 after smoothing
at crossing x.,—q, and weight 0 before smoothing at crossing x.,—g, .

Evolutionary Khovanov homology reflects the changes in homological generators of a link as it
undergoes smoothing. This provides a more nuanced characterization of the topological features of
the link. It also implies that the characteristic representation of evolutionary Khovanov homology is
highly valuable in application. Common representations include barcode and persistence diagrams.
Considering the decomposition of evolutionary Khovanov homology, each generator’s information
can be represented using intervals. For the decomposition (3.3.1), the generators of the free part can
be represented by intervals (—oo, by |, while for the torsion part, their generators can be represented
by intervals [c¢;—d], ¢;]. This collection of intervals provides the barcode of evolutionary Khovanov
homology. Another well-known representation is the persistence diagram. For the generators of

the free part, they are represented by pairs of the form (—co, by ), while for the torsion part, pairs
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of the form (c¢; — dj, ¢;) are used. These pairs correspond to points on the plane R?, and these
discrete points provide the persistence diagram representation of evolutionary Khovanov homology.
Other tools such as Betti curves and persistence landscapes are commonly used for representing and

analyzing topological features. We demonstrate these representations in examples and applications.

Example 3.3.3. Consider the weighted trefoil knot (L, f) with f : X(L) — Rdefined as f(x;) =1,
fr, =2, and f,, = 3. Then, we have a filtration of links L, py, L, px,px,L, px;Px,0x, L, shown in

Figure 3.9(a). This filtration illustrates the process of untangling a crossing of a trefoil by smoothing.

a b
y @
H—2
% \ — 1
g 1 V. O
g [Vi®V_—v_®v,]
5
S i
5 2 /r \\ —— [V, ® V_]
=
[ * [vi®v,]
|
31 COY 0 1 2 3

Filtration parameter

Figure 3.9 (a) The filtration of smoothing links of the weighted trefoil link (L, f); (b) The barcode
of the evolutionary Khovanov homology of (L, f).

Note that the last two links are both unknotted, so they have trivial Khovanov homology. Now,
let us first examine the Khovanov complex of the link p,, L. Note that the map iy : 2X(pxy L) 5 pX(L)
is given by (sq,s2) — (1,s1,s2). Hence, we can verify the commutative diagram between the
Khovanov complex of p,, L and the Khovanov complex of L.

d? d-!

0 VeV VeV ——_0

.

3 -2 d-!
0—VRVeV—@PHVeV—VoeVeV—VeV——0

i=1

VeV

We select the basisof V@V as v, ® vy, vy Q vy, vy Q vy, vy ® vy, and for V & V, the basis is

chosen as (v4,0), (v_,0), (0,v,), (0,v_). Then, the left representation matrices of the differentials
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d=? and d~! in the Khovanov complex C*(po,, L) are as follows:

1 010 0 1 1 0

01 01 O 0 0 1
B = , B =

0101 0O -1 -1 O

00 0O O 0 0 -1

From matrix calculations, we can obtain the generators of the Khovanov homology of p,, L as in

Table 3.2.
HY(p, L) k=0 k=-1 k=-2
[=0 [vi®vy] O 0
l=-1 0 0 0
l=-2 [vi®v_] O 0
l=-3 0 0 0
l=-4 0 0 [Vvi®Vvo —v_® vy
[ =-5 0 0 0
[=-6 0 0 [vo®@v_]

Table 3.2 The Khovanov homology H*!(p,, L) of p, L.

Therefore, the Khovanov homology of p,, L is given by

H?(p,,L) =K oK,
H™'(py,L) =0,
H’(p, L) =Ko K.

The corresponding unnormalized Jones polynomial is given by
J(L) = X,(L) = Y (-DFqdimH* (L) = 1+ g2+ g™ + 47,
k

Comparing Tables 3.1 and 3.2, we observe that the homology generators [v; ® v.], [vy ® v_],
and [v, ®v_ —v_®v.] of H*(py, L) are mapped to generators in H*(L). The generator [v_ ® v_]
maps to the torsion part in H*(L). Assuming that 2 is invertible in K, we can conclude that the
generator [v_ ® v_] vanishes in H*(L). The corresponding barcode of the evolutionary Khovanov

homology is shown in Figure 3.9(b). There are three bars, representing the generators [v. ® v4],
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[vi®v_], and [v; ® v_ —v_ ® v,]|. The arrows indicate that the cohomology generators emerge
from later moments and persist toward earlier moments. These generators can be represented by
intervals as [0, 1], [0, 1], and [0, 1], respectively, each with degrees —1, —3, and —5. Besides, the
(0, 1)-evolutionary unnormalized Jones polynomial of (L, f) is
Joa(Ly = (~DfqdimHf (L) =g + g7 + 47
k
3.3.4 Distance-based filtration of links

Traditional approaches to studying knots or links primarily focus on their topological properties.
However, considering knots and links as objects within a metric space, their geometric properties
are equally significant. In this section, we study the geometric information and topological
characteristics of links by exploring distance-based filtration. This method allows us to extract
richer and more effective information about links.

Consider a link L with crossings projected into a space R?. Let X(L) be the set of crossings.
We have a function f : X(L) — R defined as follows: For a crossing x € R?, we can construct a
disk D (x, r) with center x and radius r. Then, f(x) is defined as the maximal real number r such
that there are no other crossings within the interior of D(x,r) apart from x. Mathematically, we
have

f(x) = max{r|d(x,y) = r for any crossing y # x in X(L)}. (3.3.2)

Geometrically, we connect points that are within a distance . When r < f(x), the point x remains
isolated. Based on this construction, we obtain a weighted link (L, f). Using the method described
in 3.3.1, we can obtain a filtration of links, which we refer to as the distance-based filtration of links.
In the above construction, we can metaphorically say that we smooth out the isolated crossings first,
gradually breaking down the entire knot step by step.

Now, for real numbers a < b, the (a, b)-evolutionary Khovanov homology of the link L is

HY (L) = im (H* (px,)L) = H (px,()L)). k > 0.
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Specifically, when a and b are sufficiently large, H 5 ,(L)=H k(L). Conversely, when a and b are

sufficiently small, we have H 6’; (L) = 0. We will illustrate this method with an example.

Example 3.3.4. Consider the link L embedded in R?> shown in Figure 3.10(a). This is a knot of 7

type.

Figure 3.10 (a) A knot L of type 74 in 3-dimensional space; (b) The corresponding knot diagram
of L.

The coordinates of these crossings are given below:

(—3.68122,2.1618,0.520849), (-2.31313,4.52637, —0.526226),
(—0.291898, —0.0329635, 0.5289), (—0.000160251, —3.82999, —0.657526),
(1.29451,3.02755, -0.309725), (2.99467,4.45183, 0.450002),
(3.79753,2.50471, -0.482759).

We project the knot onto the xy-plane, obtaining a knot diagram as shown in Figure 3.10(b).

Through the construction of the weighted function in Eq (3.3.2), we can obtain a weighted link
(L, f). Figure 3.11(b) depicts the process of assigning weights to crossings. Subsequently, we
can derive a filtration of links as illustrated in Figure 3.11(b). The variations in Figure 3.11(a)
correspond to eight different cases, each yielding a distinct result. In Table 3.3, we describe
the different critical distances corresponding to the changes in Figure 3.11(a), along with their
respective link types. Here, 7¢ and 3; represent types in the knot table. Specifically, 3; denotes
the trefoil. The links 5% and 2% are representations in Rolfsen’s Table of Links, where 5% is the

Whitehead link and 2% is the Hopf link. Additionally, n(O denotes n separate unknots O.
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Figure 3.11 (a) As the distance decreases, isolated crossing points undergo gradual smoothing; (b)
The filtration of links provided by the distance-based weighted function.

S
e

Filtration 1 2 3 4 5 6 7 8
Critical distance  2.019 1.953 1904 1724 1366 1279 1109 1053
Typeoflinks 76 57 51+0 51+ O 31+20 31+20 2}+20 40

Table 3.3 The link types of the filtration of links.

Furthermore, for each filtration distance, we can obtain the corresponding Khovanov homology.
Figure 3.12 illustrates the evolution of the graded Poincaré polynomial of Khovanov homology.
The x-axis represents the filtration distance, while the y-axis denotes the Euler characteristic
X1 = x1(L,) for the link L, at distance r. Each subfigure in Figure 3.12 represents the surface of

the graded Poincaré polynomial of the Khovanov homology H*(L,).
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1.0 1.2 14 1.6 1.8 2.0 2.2
Filtration Distance

Figure 3.12 The representation of evolutionary Khovanov homology. Each subfigure represents
the surface of the graded Poincaré polynomial of the Khovanov homology at the corresponding
distance parameter. The y-axis denotes the value of Euler characteristic y, for the case g = 1.

The graded dimensions of the Khovanov homology of the links are the graded Betti numbers
parameterized by g. When we set g = 1, it reduces to the usual Betti numbers, representing the
number of generators. In persistent homology theory, for a given dimension k and distance r, the
Betti number Sy is a real number. In evolutionary Khovanov homology, for a given dimension k
and distance r, the graded Betti number Sy (¢) is a polynomial in g. In other words, the graded Betti
number not only includes information about the number of generators but also about the degree of
each generator. In Table 3.4, we observe the evolution of the graded Betti numbers in evolutionary

Khovanov homology for different values of k.

Distance
Degree 0-1.053 1.053-1.109 1.109-1.366 1.366-1.953 1.953-2.019
k>1 0 0 0 g*+1 P +q+q!
k=0 0 14+g72 g '+q73 2+2¢72 2¢7 ' +2¢73
k=-1 0 0 0 q~> 23 +q7
k=-2 0 g +q° q7> g4 +q° 27 +2q77
k<-3 0 0 q~° g8 g 7+3¢ +q M+ 473

Table 3.4 The graded Betti of the filtration of links.
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3.3.5 Unzipping filtration of links

The unzipping filtration of links presents another innovative method for extracting geometric
and topological information from link diagrams. Starting from a given initial point and direction,
this technique involves progressively smoothing out each crossing along the link until none remain,
simplifying the complex links into simple circles. This process preserves crucial geometric and
topological characteristics, allowing for enhanced insight and detailed analysis at each stage of
simplification. By systematically reducing visual complexity, unzipping filtration uncovers hidden
structural features and enables systematic featurization of links, making it a valuable evolutionary
technique compared to traditional knot theory techniques.

Given a link L, we can assign it a Gauss code representation. In this Gauss code, each
crossing x of L is assigned a number G (x) and its sign. We define a function f : X(L) — Z
by f(x) = G(x), resulting in a weighted link (L, f). This process involves starting at an initial
crossing and progressively unwrapping the link in a specified direction, akin to unzipping a zipper.
The links obtained in this evolutionary process form what is known as the unzipping filtration of
links.

For real numbers a < b, the (a, b)-evolutionary Khovanov homology of the link L is given by
H} (L) = im(H" (px, ) L) = H (px, ) L)), k 2 0.

Unzipping filtration offers a distinctive alternative to distance-based filtration, with several
unique attributes. First, it is less sensitive to local disturbances, making it more resistant to
noise. Second, it has a strong connection to the Gauss code of a link diagram, directly relating
the filtration process to the link’s combinatorial properties. Third, unzipping filtration is less
influenced by the spatial distribution of crossings. While distance-based methods may struggle
in isolating crossings in complex local regions, unzipping filtration can sequentially separate and
resolve individual crossings, providing a robust method for link analysis. This makes unzipping
filtration a valuable complement to distance-based filtration as an effective evolutionary technique,

offering an alternative perspective in the study of EKH.
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Example 3.3.5. In this example, we employed evolutionary Khovanov homology of a unzipping
filtration to investigate the knot structure of the SARS-CoV-2 frameshifting pseudoknot (PDB
ID: 7LYJ). The knot structure was generated with the following process. Initially, we simplified
the molecular structure by representing each RNA residue solely by its phosphorus atom, and
connecting these atoms with linear segments to form a continuous backbone, directed from the 5’
to 3’ end, see Figure 3.13(a). This abstraction was followed by transforming the linear RNA chain
into a closed loop, ensuring continuity by connecting the terminal phosphorus atoms. Such closure
is essential for applying knot theory, as it converts the molecular structure into a topologically
relevant form as in Figure 3.13(b). Lastly, to facilitate the analysis of the RNA’s topological
properties, we projected the closed-loop structure onto the xz-plane, generating a knot diagram.
Along the numbering of crossings, the value of the weight function corresponds to the number

assigned to each crossing. Consequently, we obtain a filtration of links, as shown in Figure 3.14.

a b

&
&

)
3‘\ A

Figure 3.13 (a) The representation of the SARS-CoV-2 frameshifting pseudoknot with the 5* and
3’ ends; (b) The corresponding abstract knot of the SARS-CoV-2 frameshifting pseudoknot
formed by connecting the two ends.

Using the method described in Section 3.3, we computed the evolutionary Khovanov homology
of the corresponding knot diagram of the SARS-CoV-2 frameshifting pseudoknot. We obtained the
corresponding barcode information, as shown in Figure 3.15. Note that the knot in Figure 3.13(b) is
unknotted, and its Khovanov homology is trivial. However, Figure 3.15 shows that its evolutionary
Khovanov homology is non-trivial, with four bars. Here, since the dimensions of generators remain
unchanged during the evolution, but their degrees change, we use the vertical axis to represent the

degree. We use polyline segments to indicate the changes in the degrees of these generators.
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Figure 3.14 The filtration of smoothing links of the corresponding knot diagram of the
SARS-CoV-2 frameshifting pseudoknot.

s [ —2
3‘ H_l
B — 0
1 | H
8 _1 I L]
;.; l
a_ l | l J
i I | J l J
_5 I
-7 | J | |

o 1 2 3 4 5 6 7 8 9 10 M
Filtration parameter

Figure 3.15 The barcode of the evolutionary Khovanov homology of the corresponding knot
diagram of the SARS-CoV-2 frameshifting pseudoknot.
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3.4 Persistent Khovanov homology of tangle

3.4.1 Tangle and Khovanov homology

In this section, we review the fundamental concepts and results related to tangles. We refer
to [93] for basic concepts related to tangles. For the classical theory of Khovanov homology of
tangles, we refer to [94] and [44]. Additionally, [95] explores the homology of (1, 1)-tangles. Our
approach in this work builds upon the relevant theory of the Khovanov homology of tangles as

presented in [94].

3.4.1.1 Tangle

A tangle is an embedding of finitely many arcs and circles into R? x [0, 1]. More precisely, a
tangle 7 is defined as a 1-dimensional compact oriented piecewise smooth submanifold of R? lying
between two horizontal planes, with every boundary point of 7" lying on both the top and bottom
planes. Another way to describe a tangle is as an embedding of finitely many arcs and circles into
a 3-dimensional ball B3, with the ends of the arcs required to lie on the boundary B> of B*. From

now on, we will consider tangles embedded in the 3-dimensional ball B3.

ji

Figure 3.16 The tangle representations of a tangle in R? x [0, 1] and B>,

Two tangles T and T” are isotopic if there exists a continuous map H : B> x [0, 1] — B3 such
that H(—, 0) is the identity map, H(—, 1) maps T to 7", and each map H(—, t) is a homeomorphism
that restricts to the identity map on 0 B°.

A tangle diagram is a projection T — B? of a tangle onto a maximal disk B? in B> such that
it is injective everywhere except at a finite number of crossing points, which are the projections of
only two points of the tangle. A tangle diagram can be seen as a generalization of the concepts of
knot diagrams and link diagrams. Two tangle diagrams are equivalent if they are related by a series
of Reidemeister moves.

From now on, unless otherwise specified, the tangles considered will always refer to tangle
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B /\
Figure 3.17 The three types of Reidemeister moves.

diagrams. For a tangle T', we denote the set of crossings of 7 by X(T'). A crossing of the form @
is called an overcrossing, while a crossing of the form ® is an undercrossing. Each crossing
has a smoothing resolution: ® = @ + @ or ® = @ + @ . Here, (g) , called
the 0-smoothing, is the tangle obtained by locally changing a crossing into two opposing arcs, one
above the other. Similarly, @ , called the 1-smoothing, is obtained by locally changing a crossing
into two opposing arcs, one to the left and one to the right. In this work, the 0-smoothings and
I-smoothings are always conducted on the undercrossing ® . Let n = |X(T)| be the number of
crossings of 7. Then there are 2" states of the smoothing resolution of 7. The 2" states form a state
cube {0, 1}". Each vertex represents a state of the smoothing resolution and can be described by
a sequence (s;)o<i<n € {0, 1}" of Os and 1s of length n. Each edge represents two state sequences
that differ in exactly one position. For an oriented tangle, we have the right-handed crossing @
and the left-handed crossing ® . We always assign the symbol + to the right-handed crossing and
the symbol — to the left-handed crossing. Let n,. denote the number of right-handed crossings, and
let n_ denote the number of left-handed crossings.

The study of the category of tangles involves the 2-category structure of tangles, which has been
developed in [96, 97, 98]. Roughly speaking, this category has the boundaries of tangles as objects,
tangles as 1-morphisms, and cobordisms connecting tangles as 2-morphisms. The 2-morphisms,
depicted by movies, are generated by a family of moves as detailed in [99, 100]. In particular, the

edges of the state cube can be characterized by a cobordism between the smoothings of a tangle.

3.4.1.2 Cobordism and bracket complex
Let M and N be two compact manifolds without boundary. A cobordism X between M and N is
a compact manifold with boundary such that its boundary is the disjoint of M and N, 0¥ = M UN.
Given atangle 7', recall that we can obtain a state cube {0, 1}". Each vertex of the cube represents

atangle with the boundary 07. Moreover, there is a cobordism connecting the tangles corresponding
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to the end vertices of an edge of the state cube. Considering such tangles corresponding to some
smoothing of T as objects, and the cobordisms between these tangles as morphisms, we obtain
a category Cube(T). Generally, for a finite set of points B on a circle, we have a category
Cob?(B), whose objects are the tangles corresponding to some smoothing of a tangle, and whose
morphisms are the cobordisms between such tangles. For a fixed tangle 7', the category Cube(T)
is a subcategory of Cob*(9T).

Let k be a commutative ring with a unit. One can extend Cob>(B) to a pre-additive category
kCob?(B) as follows. The objects in kCob?(B) are the same as the objects in Cob>(B), and
the morphisms in kCob?(B) are linear combinations of morphisms in Cob*(B). That is, the set
Homye,p35) (T, T') is a k-module generated by the morphisms in the set Homg,3(p) (T, T") of

morphisms from 7T to 7’ for any objects T and 7’ in Cob*(B).

Definition 3.4.1. For a pre-additive category C, we can define a category Maty (C) with:

m
. Objects of the form O = P O; for O; € C.
i=1
m k
. Morphisms that are matrices of the form f = (fi;)i; : PO — EBO; where
i=1 j=1
fij 1 0i > O;. are morphismsinC forl <i<mand1 < j <k.

. Composition of morphisms given by matrix multiplication.

The construction Maty (C) is an additive category, which is the additive closure of the category

C. Furthermore, one can define a cochain complex in an additive category.

Definition 3.4.2. Let C be an additive category. The category Ch*(C) of cochain complexes over

C is defined as follows. Its objects are of the form

. Qr—l a-! Qr ar Qr+1

such that d"*! o d" = 0 for any r, and its morphisms are of the form f” : (Q!,d,) — (", d},) such

that "' od, = dj, o f" forany r.

Let T be a tangle with n crossings. The state cube associated with 7" has vertices indexed by

states s = (s;)o<i<n € {0, 1}", where each s; represents a smoothing choice at the i-th crossing of the
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n
tangle. For a given state s, we denote £(s) = ), s;. Next, for the smoothing tangle 7 corresponding
i=1
to state s, we assign a height function h(s) = €(s) — n_, where n_ is the number of left-handed
crossings in the original tangle 7. This height measures the relative position of each smoothing

state in the cube. Recall that the category Cube(T) is a subcategory of Cob?(0T). We have a
graded object in Mat(kCob>(B)) given by

| [y 4 | L [ | [

where each graded piece [[T]]* = P T is a direct sum over all smoothing tangles 7 whose

h(s)=k
height i(s) = k. The morphism d* is given by

d* = (-1 =@, [[T]]* - [[T]]*,
3

where the sum is over all edges & = (£1,...,& -1, %, &ir15 ..., Ex(m)) € {0, 1, %} XM in the state
cube that connect a state s with a neighboring state s’ that differs by one position. Here, &; € {0, 1}
for j # i and % indicates an edge connecting O to 1. The map d¢ denotes the cobordism morphism
between the smoothing tangles 7 and Ty-. The sign sgn(¢) is determined by the number of 1s in &
that appear before the first *.

Note that the cube Cube(T) is anti-commutative. This means that for each face of the cube,

represented by the following diagram:

dg
T, ——=Ty

dq L l d,]/
dg

Tg —_— Tg/
we have the anti-commutativity relation d;g od, = —d,y ods. This condition ensures that the
composition of differentials along the edges of each face of the state cube satisfies the appropriate

signs, maintaining the structure of a cochain complex.

Proposition 3.4.1 ([94, Proposition 3.4]). The construction ([[T]]*, d*) above is a cochain complex

over Mat(kCob?(9T)).

105



The cochain complex ([[T]]*,d*) is called the bracket complex of T. However, the
bracket complex ([[T]]*,d*) is not a tangle invariant in the category Ch®(Mat(kCob?(9T)))
of cochain complexes over Mat(kCob>(9T)). In [94], Bar-Natan obtains a new category from
Mat(kCob>(4T)) by modding out some equivalence relations. In this new category, he proves that
the bracket complex is a tangle invariant up to chain homotopy.

Let B be a finite set of points on a circle. The category kCob?l(B) is a localization of the
category kCob> (B) defined as follows. The objects are the same as the objects in kCob>(B). The
morphisms are those of kCob>(B) under the following equivalence relations:

(S) C + 8% = 0 for any cobordism C in kCob3(B). Here, S* is the cobordism of the

2-dimensional sphere.

(T) C + T? = 2C for any cobordism C in kCob?(B). Here, T? is the cobordism

corresponding to the torus.

(4Tu) Cip + C34 = C13 + Cog. Here, C is a cobordism whose intersection with a ball is the
union of four disks D;, i = 1,2, 3,4, and C;; is the cobordism obtained by removing

D; and D from C and replacing them with a tube that has the same boundary.

& .I0 AL D
N @D IVCD

Figure 3.18 The cobordism representation of the (47u) relation.

Since kCob*(B) is a pre-additive category, so is kC ob?l(B). Moreover, one has an additive

category Mat(kCob?l(B)).

Theorem 3.4.2 ([94, Theorem 1]). The construction ([[7']]*, d”) is a tangle invariant up to chain

homotopy in the category Ch® (Mat(kC obfl(aT))) of cochain complexes over Mat(kC 0b7l(8T)).

The above theorem says that the bracket complex of T in the category of cochain complexes

over Mat(kC ob? ,(0T)) is an invariant under Reidemeister moves up to chain homotopy.
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Definition 3.4.3. Let 7 be a tangle. The Khovanov complex of T is the cochain complex

(Kh*(T),d%) given by Kh?(T) = [[T]]P*"+"= and d¥ = dP*"+"-.

The Khovanov complex and the bracket complex differ by a height shift. Specifically, when the
tangle T is a knot or link, the corresponding Khovanov complex is consistent with the Khovanov
complex of the knot or link. Similarly, if two tangles 7 and 7, differ by some Reidemeister moves,
there exists a chain homotopy equivalence Kh(Ty) =~ Kh(T5).

Let B C S' be a finite set of points. Let Cob*(B) be the category whose objects are tangles
in a disk D with boundary B, and whose morphisms are 2-dimensional cobordisms between these
tangles in D X [—¢€, €] X [0, 1] with boundary B X [—e¢, €] X [0, 1]. The construction K& gives a
functor Khg : Cob*(B) — Ch‘(Mat(kCob?l(B))) from the category Cob*(B) of tangles with

boundary B to the category of cochain complexes over Mat(kC ob?l(B)).

Theorem 3.4.3. The functor Khg : Cob*(B) — Ch'(Mat(kCob‘;l(B))) maps the equivalence

classes of isotopy of tangles to the equivalence classes of chain homotopy of cochain complexes.

Itis worth noting that Bar-Natan’s construction directly forms cochain complexes in the category
kCob?l(B), which provides a more fundamental approach compared to the Khovanov complex
constructed within the framework of topological quantum field theory (TQFT). However, this more
intrinsic construction comes with a significant limitation: we cannot directly define Khovanov

homology because the category kCob? ,(B) is not an abelian category.

3.4.1.3 Khovanov homology of tangles

Let Ab be an abelian category. Note that any functor F : kC’ob?l(B) — Ab can
extend to a functor F : Mat(kCob?l(B)) — Ab. Thus one can obtain a functor F° :
Ch'(Mat(kCob?l(B))) — Ch®*(Ab) given by F°(Q",d*) = (FQ',Fd*). Recall that the
homology is a functor H : Ch*(Ab) — Ab from the category of cochain complexes to an

abelian category. We have the definition of Khovanov homology of tangles as follows.

Definition 3.4.4. Let B be a finite set of points on a circle. Let ¥ : kKC ob?l(B) — Ab be a functor

into an abelian category. The Khovanov homology of tangles with respect to ¥ is the composition
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of functors

Cob*(B) X2 ch* (Mat(KCob? (B)) —— Ch*(Ab) —L~ Ab.

It can be verified that HF *Khp is an isotopy invariant of tangles with boundary B. The
definition of Khovanov homology mentioned above relies on the functor #. Recall that the
category Mody of modules is an abelian category. In TQFT, there is a standard construction of the

functor ¥ : Cob>(0) — Mody, which yields the usual definition of Khovanov homology of links.

a@

Figure 3.19 The cobordisms corresponding to the maps A and V.

b

Consider the functor ¥ : Cob3(0) — Mody constructed as follows. Let V be a k-module
generated by the elements v, and v_. For a link L, the k-module ¥ (L) is the tensor product

V ®V @k - - ® V, where r(L) is the number of circles of L. Note that the morphisms in Cob>(0)

r(L)
are compositions of those represented by cap and cup cobordisms, along with the morphisms A

and V, corresponding to saddle cobordisms. The functor ¥ is given as follows:
T(ﬂ)ze:k—)V, 1 v,

where () : @ — O denotes the morphism corresponding to the cap cobordism shown in Figure
3.20a,
7(U)=771V—>k, Ve 0,0 1

where | : O — 0 denotes the morphism corresponding to the cup cobordism depicted in Figure

3.20b.

Vi PV QV_o+Vv_ ® vy,
F(AN)=A:V-oVeV, A:

Vo Vo QV_,
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where A denotes the splitting of a circle into two circles, as shown in Figure 3.19a.

Vi Q®Vib vy, V_oQ®Vyb> V.,
F(V)=m:VeV -V, m:

Vi®V_b> v, v_Qv_ 0,

where V denotes the merging of circles into a circle, as shown in Figure 3.19b. One can verify
that the construction above can extend to a functor F : kC ob?l((Z)) — Mody. Fix alink L, the
construction F°*Khy(L) is a cochain complex of k-modules. The differential is the k-module
homomorphism d* = Z(—I)Sgn(«f)?‘(dg), where d¢ is the map given by (V) or #(A) on the
components involved in(f merging or splitting, and the identity on other components. In this case,
the homology H(¥*Khg(L)) coincides with the classical definition of Khovanov homology for
links. Additionally, each element x in the cochain complex ¥ °*Khy(L) has a quantum grading
given by ®(x) = p(x) + ny — n_ + 6(x), where p(x) is the height of x in the cochain complex, and
0(x) is obtained by taking 8(v,) = 1 and (v_) = —1.

In the remainder of this paper, we will denote Kz = F*Khp : Cob*(B) — Ch*(Maody) and
H(—;F) = HKg : Cob*(B) — Modj for simplicity. Unless otherwise specified, the notation
Ko = F*Khg : Cob*(0) — Ch*(Mody) will always be based on the construction of ¥ given in
Section 3.4.1.3.

Now, consider the case where kis afield. Let M = €5 M; be a graded k-linear space. The graded
dimension of M is defined as the polynomial qdim M :l Eé g' dim M; in the variable g. For the above
construction of V, let degv, = 1 and degv_ = —1. T}icej we have qdimV = ¢ + ¢~'. The graded
Euler characteristic of a cochain complex C* of k-linear spaces is defined by X, = >.(— 1)*qdim C*.
Let T be a tangle. Then the Jones polynomial of T can be expressed as k

J,(T) = Z(—l)kqdimHk(T, F).
k

When 0T = 0, J,(T) corresponds to the classical unnormalized Jones polynomial.

3.4.2 Persistent Khovanov homology of tangles
Tangles are common research objects across various disciplines, such as curve-like data which

locally appear as tangles, and they have significant application potential. Studying the persistent

109



Khovanov homology of tangles is a natural idea, and it offers a new tool for understanding complex
entangled structures. In this section, we introduce the concept of persistent Khovanov homology
of tangles. Moreover, to ensure the computability of tangle homology, we provide a construction

from the category Cob*(B) of tangles to the category of k-modules.

3.4.2.1 Persistent Khovanov homology
Let B be a finite set of points on the circle S'. Suppose (X, <) is a poset with the partial order
<. Then (X, <) can be regarded as a category whose objects are the elements in X, and whose

morphisms are the pairs x < x” with x,x” € X.

Definition 3.4.5. A persistence tangle with boundary B is a functor ? : (X, <) — Cob*(B) into

the category of tangles with boundary B.

Example 3.4.6. A movie of a tangle cobordism X is the intersection of the tangle cobordism
in D X [—¢€,€] X [0, 1] with cylinder spaces D X [—¢€, €] X {t}. This movie is called the movie
representation of the tangle cobordism X. For each ¢t € [0, 1], the intersection corresponds to a
tangle. The movie representation of a tangle cobordism can be understood as depicting each frame
of the movie.

A movie representation of the tangle cobordism in the category Cob*(B) can equivalently be
described as a persistence tangle. Given a tangle cobordism X with boundary B X [—¢€, €] X [0, 1],
the functor # : ([0, 1], <) — Cob*(B) given by P(t) = = N (D X [—¢, €] x {t}) is a persistence

tangle. The persistence tangle $(¢) is also a movie representation of the tangle cobordism X.

Definition 3.4.7. Let  : (X, <) — Cob*(B) be a persistence tangle. The persistent homology of

P 1s the composition of functors
(X, <) -2~ Cob*(B)"Z2 Mod.

Here, H(—; F) : Cob*(B) — Mod is the homology of tangles.
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Specifically, for any a < b in X, the (a, b)-persistent Khovanov homology of the persistence

tangle P : (X, <) — Cob*(B) is given by
H! (P, B) =im (H”(P(a),B) — H’(P(b),B)), peZ.

The graded dimension of H;’ , (P, B) is the Betti polynomial ,BZ »(@) = > g®@, where
’ ’ weH?  (P.B)
®(w) is the quantum grading of w.

Specifically, let (X, <) = (Z, <). Let H= € H*(¥(a), B). For any a € Z, we have a map

ac”z

z:H*(P(a),B) > H (P(a+1),B),
which induces a map z : H — H. Thus, H is a k[z]-module. This implies that the persistent
Khovanov homology of tangles is also a persistence module. Under certain conditions, persistent
Khovanov homology exhibits the structure theorem of persistence modules, the fundamental
characterization of the corresponding barcodes, as well as the stability theorem for persistence
modules. We shall not expend further in elaborating on these analogous results.
a b c !
Figure 3.20 The subfigures a, b, and c represent the cap cobordism, cup cobordism, and saddle
cobordism, respectively.

Let @ : (g) — @ be the morphism representing the saddle cobordism (see Figure 3.20c).
It is known that the morphisms in the category Cob*(0) are generated by the three Reidemeister
moves and the morphisms (), |, and @ .

Let () : T — T I O be the morphism of tangles that produces a circle. Here, T II O
denotes the disjoint union of the tangle 7T and the circle O. Note that the cochain complex
Ko(T I O) = Kp(T) ® V. Thus, the morphism Kp(()) : Ko(T) — Kp(T) Q V is given by

Ko () (x) = x ® v,. Therefore, the corresponding persistent Khovanov homology of () is
imH*(ﬂ; F)=H(T;F) Q@ vy.
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Let | : T QO — T be the morphism of tangles corresponding to the cup cobordism. The
morphism Kp(l)) : Ko(T) @V — Kyp(T) is given by Kp(UJ) (x®v,) = 0and Kp(UJ) (x®v_) = x.

Thus, the persistent Khovanov homology of | J is
imH*((_J; F) = H'(T; ).

Let @ : T — T’ be the morphism of tangles with a local saddle cobordism. We have a morphism
Ko( @) . Ko(T) — Kp(T") of cochain complexes. Let T be the tangle obtained by changing
(g) of T into ® . By [94], one obtains a cochain complex

Ko(T) = Ko(T)[-1] @ Ko(T")

with the differential given by d(z,2") = (~dz, Ko(())(z) + d’7’), where Ko(T)[~1] is the
height shift of Ky(T) given by Ko(T)[-1]7 = Kyp(T)P*!. Here, z € Ko(T)[-1], z' € Ko(T"),
and d, d’ are the differentials of Kyp(T)[—1] and Kp(T’), respectively. Thus, the morphism
Ko ( @) s Ko(T) — Kp(T') is given by Ki( @)(z) = p1c7z. Here, p; : Kop(T) — Ko(T)
is the projection onto the component Kp(7’). Therefore, one has a k-module homomorphism
(p@* : H(T;¥) — H*(T';F) given by (pw?)*([z]) = [pljz] for any cohomology class

[z] € H*(T; ). It follows that the persistent Khovanov homology of the saddle morphism @ is
imH*((2);F) = im(p1d)”

Besides, the morphisms of the Khovanov cochain complexes induced by the three Reidemeister
moves are chain homotopy equivalences, and the corresponding morphisms of the Khovanov
homology are isomorphisms. Therefore, for any persistence tangle with boundary B, the persistent
Khovanov homology is a composition of a sequence of the three types of morphisms mentioned

above and can be computed step by step.

3.4.2.2 The construction of functors on tangles
In [44], Khovanov provides a construction of a functor from the category of (1, 1)-tangles to the

category of modules. In [95], he assigns graded bimodules to tangle smoothings by considering all
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Figure 3.21 The tangle cobordisms corresponding to the saddle maps in our construction.

closures of tangles. However, these constructions have limitations for our application to persistent
homology. In this section, we will present a different construction of k-modules on tangles.

Let us define the functor G : Cob®(B) — Mod as follows. Let V be the k-module generated
by the elements v, and v_, and let W be the k-module generated by an element w. For a tangle

T in Cob3(B), the k-module G(T) is the tensor product W ®g - - - Qk WV ® - - - ® V, where

1(T) r(T)
r(T) and ¢(T) represent the number of circles and arcs in 7T, respectively. Here, V = k{v,,v_} and

W = k{w} are free k-modules.

The functor G is defined as follows:

(00 : DU - X :wewowew, wewwo,

g(®>O—> )O)ZW—)W@V, W wev_,
g(® )O N :@)W@V—)W, WRVy k> w,

wev_ 0,

and G coincides with ¥ on the maps corresponding to the operations on the components of circles
described in Section 3.4.1.3. Here, the square boxes indicate that the arcs or circles within them
are independent components in the tangle, in contrast to the arcs in the round boxes in (g) which
represent local arcs within the tangle. Besides, in the above construction, the degree of w is set to

be —1.
Proposition 3.4.4. The construction G : Cob’(B) — Maod is functorial.

Proof. Recall that the construction G coincides with ¥ on circles and the map between circles. We

will focus on mappings that include arcs. To show G is a functor, the nontrivial steps are to verify
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the following diagrams commute.

L 6 )OO)MQ( Oh = ¢HQO) o 00) a[=O

id®mj l G( @ ) id®Al

L Ol o 00) [0 G( )OO)MQ( )

Indeed, a step-by-step calculation shows that

sDOO) —— gD —— ¢ XD

WRVi vy > W vy P w
WV, QV_ e — w®v_ — 0
WRV_Q® Vv, — 0 — 0
WRV_®V_ S 0 — 0

and

id®m
s DOO) = DO — X))

WV, vy _ wevy _ w
WRV,QV_ —_ w®v_ — 0
WRV_Q Vv, —_ weVv_ —_ 0
WRV_Q®Vv_ — 0 — 0.

For the second diagram, we have that

s HOh)h — =) —— sH Q)

weRVvs  — w —_ wev_
wev_ —_ 0 — 0
and
s DO) —— OO @ingb
W vy — WRVLQV_+WRV_Q v, —_ weVv_
wev_ — WRV_®V_ m— 0.

The desired result follows. The remaining verifications are straightforward.
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Note that the relations (S), (T'), and (4Tu) occur at the components of cobordism between
closed curves. Therefore, the functor G : Cob®>(B) — Mody can descend to a functor G :
kCob?l(B) — Mody from the additive category kCob?l(B) to the abelian category Modk.
Thus we can obtain a functor G* : Ch'(Mat(kCob?l(B))) — Ch*(Mody) between the category
of cochain complexes. Now, we will give the detailed construction of the cochain complex of
k-module derived from G. For a tangle T, let G[[T]]* = & G(T;). And the map G(d)* =
G(d") : glIT1]* — GIITII*! is given by G(d¥) = Z(—?()ss)g_“k(f)g(dg)- Since d**! o d* =0,
we have G(d**!) o G(d¥) = G(d**' o d¥) = 0. Hence‘f, the construction (G[[T]]*,G(d)*) is a
cochain complex. Let GKhP(T) = G[[T]]?* "~ and G(d7)? = G(d)P*"+"-. Thus, we have the

following result.
Proposition 3.4.5. The construction (GKh*(T), G(dr)*) is a cochain complex.

For any element x in the cochain complex GKh”(T), we define the quantum grading of x by

®(x) = p+ny—n_+6(x), where 6(x) is obtained by taking #(v,) = 1,6(v_) = —1,and O(w) = —1.

Lemma 3.4.6 ([101]). Let A and B be additive categories. Any additive functor F : A — B

induces an additive functor F* : Ch*(A) — Ch®(8) that preserves homotopy equivalences.

Recall that we have the functor Khp : Cob*(B) — Ch*® (Mat(kCob?l(B))). By composing it
with G° : Ch'(Mat(kCob?l(B))) — Ch*(Mody), we obtain the functor G*Khp : Cob*(B) —
Ch*(Mody), which maps the category of tangles with boundary B to the category of cochain

complexes of k-modules.

Theorem 3.4.7. The functor G*Khp : Cob*(B) — Ch*®(Mody) maps isotopy classes of tangles

to homotopy classes of cochain complexes.

Proof. Note that the functor G : kCob?l(B) — Mod is additive, and it extends to an additive
functor Mat(kC ob?l(B)) — Mody. The desired result follows from a variant of [94, Theorem 4]

and Lemma 3.4.6. O
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3.4.3 Planar tangles and persistent Khovanov homology

In the study of persistent Khovanov homology for tangles, it is often the case that the boundary
of the tangle does not remain fixed as the tangle evolves over persistence parameter. This presents
a challenge for the application of persistence tangles. A natural approach is to consider that as the
persistence parameter increases, the tangle at earlier times can be viewed as an interior part of the
tangle at later times. The relationship between these two tangles can be described using operations

induced by input planar tangles.

3.4.3.1 Input planar tangle

A d-input planar tangle consists of a large output disk equipped with d input disks, along with
a collection of disjoint embedded arcs that are either closed or have endpoints on the boundary.
These input disks are sequentially numbered from 1 to d, and both the input disks and the output
disk are marked with * as base points.

Let 7 (k) be the collection of all the classes of tangles with k endpoints up to Reidemeister
moves. Suppose D is a d-input planar tangle such that there are k, endpoints of arcs on the r-th

input disk in D for R = 1,2,...,d. Then one has an operation
D :T (k)X xXT(kg) = T (k),

which embeds d tangles, each with k1, . . ., k; endpoints respectively, into the d-input planar tangle
D by connecting their endpoints, resulting in a new tangle. Let (k) be the vector space generated
by the elements in 7 (k). Then the collection {# (k) }«>0, equipped with the operation D, forms a
planar algebra. For more details on planar algebras, refer to [102].

Now, let D be a 1-input planar tangle. We can obtain an operation
D : T (ki) = T (k)

by embedding a tangle T into D, resulting in a larger tangle D(T'), with T as a part of D(T), as
shown in Figure 3.22.
Our goal in this work is to establish the distance-based persistent Khovanov homology of tangles.

A natural idea is to determine whether we can obtain a morphism Kh(7 (ky)) — Kh(7 (k))
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GeR

Figure 3.22 An example of the operation of a 1-input planar tangle.

of cochain complexes. Unfortunately, it is challenging to construct such a morphism of cochain
complexes. Even with the constructions from TQFT, we have not been able to establish a morphism

FKh(T (k1)) = F°*Kh(T (k)) of cochain complexes.

3.4.3.2 The category Pla

Consider the category Pla of tangles, where the objects are tangles and the morphisms are
given by maps T — T’ = D(T) for some 1-input planar tangle D. In this setting, any morphism
in Pla can be viewed as an inclusion of 1-dimensional manifolds, where arcs are mapped to either
arcs or circles, and circles are mapped to circles.

For any morphism 77 — T’, we can associate cochain complexes (GKh*(T), G(dr)")
and (GKh*(T"),G(d7)*). Our goal is to construct a map ¥ : (GKh*(T),G(dr)*) —
(GKh*(T"),G(d7)*). Recall that each direct summand of Kh*(T) consists of a collection of

disjoint arcs and circles. The map ¥ is a k-module homomorphism defined as follows:

v:g((XOD)-6(O) we
and ¥ acts as the identity on the identity maps O — O and >O — >O of

independent components. In other words, ¥ maps arcs to arcs and circles to circles wherever the

structure of the tangle is preserved, and performs the specified homomorphism on components that

transition between arcs and circles.
Theorem 3.4.8. The map ¥ : GKh*(T) — GKh*(T’) is a morphism of cochain complexes.

Proof. To prove ¥ is a morphism of cochain complexes, it suffices to show G(d¢) 0¥ = W o G(dy).
Here, d¢ : T, — Ty is a saddle map given by the edge & = (&1,...,&-1, %, &ivts .., Ex(1))) €
{0, 1, x} XDl in the state cube that connect a state s with a neighboring state s’ that differs by one

position. Here, &; € {0, 1} for j # i and % indicates an edge connecting O to 1. Hence, we need to
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prove that the following four diagrams are commutative.

a(H)

o)

e

g(| X)) m  @g(X)])

gD

v | v v
s DO AW =) e X)-4SehO)
Ol ¢ %) s =) v ¢ XD &) g Ol

|+ |+ v v
¢((OO) —2—3g(Oh ¢(|O) —2—¢(OO)

We will only verify the third diagram. A straightforward calculation shows that

Q(@) ¥
sDO) —— o XD) —— ¢

wR Vv, 4

o:  G(

|

wRVv_ —— 0 —_ 0

and

¥ ! m
sDO) —— ¢(OO) —— ¢ O

we Vv, —_ Vo ® vy —_ V_

weVv_ — Vo QV_ e — 0.

Thus, Diagram III commutes. The commutativity of the other diagrams can be verified similarly,

following analogous calculations. O

Example 3.4.8. Now, we will give an example of tangles with more independent components.

Consider the following diagram.

s NO)H2Le(NOO) s OOO)

1deG ( @ )l jg( ® )®id lm@id
(D) 2—g(DOh—2-g(OO)
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It is worth noting that G( @ )®id = id ® m and m ® id = id ® m. The corresponding element

mappings and their associated diagrams are listed as follows.

WRVL,OAIWH—=V_QV, QWH—=V_QV, QV_

| | |

WRIWH——V_QWH———=V_Q V_

WQRV_OWH—WRV_QV_ —V_QV_QV_

| J |

0 0+ 0

The calculation shows that the above diagram of k-modules is commutative.

Theorem 3.4.9. The construction G*Kh : Pla — Ch*(Maod) is functorial.

Proof. LetT A T’ 2, T” be morphisms of tangles in the category $la. We need to prove that the

following diagram commutes:

G*Kh(T) R

m lIJD’

G Kh(T").

G Kh(T’)

Here, D’ o D is the composition of morphisms in the category £la. In other words, we need to

prove that Wp/op = Wpr o Pp. It suffices to prove the diagram

G(T-T’)

G(T) G(1")

Q(T% /@—W”)

Gg(1")

is commutative. We only need to verify the commutativity for the two cases of morphisms

T->T —>T:

=0/ -10-10. XJ-X0-10.

This follows from a straightforward step-by-step computation. The remaining part of the proof can

be checked directly. O
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It is worth noting that, at present, there is no definition of isotopy for tangles with different
boundaries. Consequently, we do not have a result stating that the functor G*Kh : Pla —

Ch* (Modx) maps isotopy classes of tangles to homotopy classes of cochain complexes.

3.4.3.3 Homology functors for tangles

In the previous sections, we introduced a new construction G : Cob’(B) — Mod for tangles.
This construction is functorial and leads to two functors: G*Khp : Cob*(B) — Ch*(Maody)
and G°Kh : Pla — Ch*(Mody). The functor G*Khp is a tangle invariant up to homotopy
equivalence, but it has limitations for applications because it requires the boundaries of tangles
to be fixed. In contrast, although functor G*Kh does not capture tangle invariants, it has greater
potential for application.

For a given tangle T, the constructions G*Khyr(T) and G*Kh(T) produce the same cochain
complex. Thus, although G*Khyr and G°Kh are different functors, this does not impact the
computation of the Khovanov homology of tangles. For practical purposes, we will use the

homology functor associated with G*Kh.
Definition 3.4.9. Let T be a tangle. The Khovanov homology of T associated with G is defined by
HY(T;G) = H’(G°Kh(T)), pE€EL.

The Khovanov homology associated with G is a functor H” (—; G) : Pla — Modg. Moreover,
if 0T = 0, the Khovanov homology associated with G reduces to the Khovanov homology of links,
that is, H?(T;G) = HP(T; F) for any p. The Khovanov homology of tangles associated with G

can be explicitly computed. The following computation provides a detailed example.

Example 3.4.10. Consider the tangle T = @ . The corresponding cochain complex Kh(T') of

T in Ch* (Mat(kC’ob?l(aT)) is described as follows:

0—>>Q@> ) O] —o.

-1 0

The cochain complex Kh*(T) collapses at heights —1 and 0. The only nontrivial differential is

d-! = @ : Kh™'(T) — Kh°(T). Applying to the functor G, we have a cochain complex of
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k-modules

0—W—4wWeoV_—0.

Here, dw = w ® v_. A straightforward calculation shows that

k +h =0;
(g = P

0, otherwise.

Recall that degw = —1. Then the quantum grading of w ® v, is given by —1. Now, consider the

tangle 77 = @ . Then the cochain complex Kh(T”) is described as follows:

0—> )O@@—w.

1

The differential at dimension 0 is given by d° = @ : Kh%(T) — Kh'(T). Thus, we have a

cochain complex of k-modules
0—WoV—4-w—0,
where d(w ® v;) = w and d(w ® v_) = 0. The corresponding Khovanov homology is

k _}H =0;
(g = | SOV

0, otherwise.

The quantum grading of w ® v_ is —1. Now, consider the tangle 7" consisting of a single arc. It is

clear that the Khovanov homology is

k{w}, =0;
ware = T
0, otherwise.

The quantum grading of w here is also —1. In this example, T, 77, and T” are equivalent up to
Reidemeister moves. Their corresponding Khovanov homology groups are also identical, with

even the quantum gradings of the homology generators being equal.
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3.4.3.4 Application

In Section 3.4.2.1, we defined persistent Khovanov homology of tangles within the category of
tangles with fixed boundaries. However, in practical applications, it is uncommon to encounter the
filtration of tangles with fixed boundaries. In this section, we present an application that describes
how, with a given tangle in a metric space, one can construct persistent tangles within the category
Pla, thereby obtaining the persistent Khovanov homology of tangles.

Let (X, <) be a poset. Then (X, <) can be regarded as a category, where the objects are the

elements of X, and the morphisms are the pairs (x, x”) such that x < x’” for x,x’ € X.
Definition 3.4.11. A persistence tangle in category Pla is a functor P : (X, <) — Pla.

Definition 3.4.12. Let  : (X,<) — %Pla be a persistence tangle. The persistent Khovanov

homology of tangles is the composition of functors

H(_;g)/\/(odk.

(X, <) L= Pla

For any a < b in X, the (a, b)-persistent Khovanov homology of tangles  : (X, <) — Pla is
given by
H! (P;G) =im (H"(P(a);G) — H'(P(b);G)), pEeL

Example 3.4.13. Consider a tangle 7 in a Euclidean plane. Fix a point P as the center, and let D,
denote a disk centered at P with radius €. For each &, define the tangle 7, = T'N D, which may be
empty. Itis evident that the functor £ : (R, <) — Pla defined by P (&) = T is a persistence tangle.
For any real numbers a < b, we have the corresponding (a, b)-persistent Khovanov homology of

tangles H’ , (P; G).

Example 3.4.14. Let C be a finite collection of curves in 3-dimensional Euclidean space, and let
g : C — R? be a projection such that there are finitely many crossings, each of which is required
to be a double point. Let {D.}.cr be a family of disks in R? with the same center. Then the

intersection T, = g(C) N D, is a tangle (or the empty set) for any € > 0. This defines a persistent
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tangle 7, : (R, <) — Pla, which can be used to compute the persistent Khovanov homology of

tangles and extract topological features.

In practical applications, persistent tangles can be derived from one-dimensional manifolds
embedded in three-dimensional space, or even from collections of non-smooth curves. By
computing the persistent Khovanov homology of tangles, one can extract multi-scale topological
features, which can then be used to analyze curve-type data. This highlights the significant potential

of persistent Khovanov homology of tangles across various application domains in data science.
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CHAPTER 4

THESIS CONTRIBUTION

The main contributions of this dissertation are listed as follows:

In chapter 2.1, we introduce a new construction of N-chain complexes on simplicial
complexes and develop the associated Mayer homology, persistent Mayer homology,

and persistent Mayer Laplacians.

In chapter 2.2, we perform the application of using Mayer homology to study
protein-ligand binding affinities.
In chapter 3.1, we review essential knot-theoretic foundations required for

computational geometric topology in biology.

In chapter 3.2, we propose the multiscale Gauss linking integral (mGLI) and illustrate

its power for knot data analysis of biomolecules.

In chapter 3.3, we study evolutionary Khovanov homology, providing a multiscale

refinement that captures topological transitions of knots and links.

In chapter 3.4, we develop persistent Khovanov homology of tangles, extending

multiscale analysis of knot-type data beyond closed curves to open tangles.

The contents of this dissertation are mostly adopted from the following publications and

preprints:

Li Shen, Jian Liu, and Guo-Wei Wei. “Persistent Mayer Homology and
Persistent Mayer Laplacian.” Foundations of Data Science 6 (2024): 584-612.
doi:10.3934/fods.2024032.

Hongsong Feng, Li Shen, Jian Liu, and GuoWei Wei. ‘“MayerHomology Learning
Prediction of Protein—Ligand Binding Affinities.”  Journal of Computational

Biophysics and Chemistry 24 (2) (2025): 253-266. doi:10.1142/S2737416524500613.

Li Shen, Jian Liu, and Guo-Wei Wei. “Evolutionary Khovanov Homology.” AIMS
Mathematics 9 (9) (2024): 26139-26165. doi:10.3934/math.20241277.
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https://doi.org/10.3934/fods.2024032
https://doi.org/10.1142/S2737416524500613
https://doi.org/10.3934/math.20241277

Li Shen, Hongsong Feng, Fengling Li, Fengchun Lei, Jie Wu, and Guo-Wei Wei. “Knot
Data Analysis Using Multiscale Gauss Link Integral.” Proceedings of the National

Academy of Sciences (2024). doi:10.1073/pnas.2408431121.

Jian Liu, Li Shen, and Guo-Wei Wei. “Persistent Khovanov Homology of Tangle.”

arXiv preprint (2024). Available at https://arxiv.org/abs/2409.18312.
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CHAPTER 5

FUTURE WORK

Many future directions are available, including:

Design and implement scalable algorithms—potentially leveraging parallelization,
finite-field arithmetic —to accelerate Mayer homology and persistent Mayer Laplacian

computations on large simplicial complexes.

The Mayer framework extends the classical differential d to an N-differential with
d" = 0. Developing analogous N-operator extensions for other homology theories
(e.g., Hochschild, quantum, or interaction homology) could open new algebraic and

computational avenues.

Apply the multiscale Gauss linking integral to problems beyond knot entanglement,
such as protein mutation analysis, neuronal arbor geometry, and other biology domains

involving highly segmented or filamentous structures.

Generalize evolutionary Khovanov homology and persistent Khovanov homology to
spatial graphs that admit singular vertices, enabling topological analysis of complex

knot-type data with branching or junction points.

Generalize evolutionary Khovanov homology and persistent Khovanov homology
produce invariants indexed by quantum degrees; developing task-specific featurization
or embedding strategies for these quantum-graded signatures will be crucial for

downstream machine-learning applications.
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