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ABSTRACT

Graphs are a common way of representing real-world structured data. A graph is composed of

nodes connected with one another via edges (i.e., “links”), where a link models how such nodes are

related to one another. Due to the prevalence of graph-structured data, machine learning on graph

data has become very popular.

Link prediction, which attempts to predict unseen links in a graph, is a fundamental task on

graphs. Link prediction has a multitude of real-world applications, including in recommender

systems, knowledge graphs, and biology. In recent years, a flurry of methods have been introduced

that make use of graph neural networks (GNNs) for this task. However, we find that multiple

limitations impede our ability to create effective link prediction models that can perform in real-

world settings. First, we find that the current method of evaluating link prediction models is both

unrealistic and too easy, resulting in inflated model performance that doesn’t reflect real-world

performance. Second, we observe that current methods are limited in their ability to model various

patterns in link formation. This poses a challenge in real-world datasets where links can form for a

number of reasons. Third, efficiency is an important concern in link prediction, as effective models

are often expensive to run. Lastly, we find that link prediction models on knowledge graphs suffer

from degree bias, where poor representations are learnt for lower-degree nodes, leading to subpar

performance.

In this thesis, we first uncover the root cause of these fundamental limitations. I will then

introduce our attempts to combat these problems, through the design of new evaluation strategies

and new model design. Through the introduction of these new approaches, we help promote better

use of link prediction in more realistic scenarios that can occur in the wild.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Graphs are ubiquitous data structures, being used to represent data across many domains.

Recent work in Graph ML has shown tremendous promise in modeling graphs [55] in many real-

world applications such as in the sciences and finance. One common downstream task on graphs

is link prediction (LP), which attempts to predict whether two nodes in a graph are connected. LP

has a wide span of real-world applications ranging from recommender systems [46], biological

networks [57], and knowledge graph completion [100].

However, several key challenges prevent wider adoption of such models: (1) Bias & Efficiency:

Graph ML models are known to often suffer from bias [103] and poor efficiency [20]. Fixing

these problems, requires understanding their root causes at both the model and data level. (2)

Performance on Diverse Data: To be viable for widespread use, graph-based models must be

performant on data from a diverse set of domains [72]. This is necessary to promote widespread

adoption of those models. (3) Real-World Evaluation: To correctly judge the effectiveness of

different models, model evaluation must correspond to real-world model usage. However, this is

not always the case [62], resulting in a mismatch between offline evaluation and actual usage. All

these problems come together to present a set of unique challenges to using LP in realistic settings.

To help solve the varied and multifaceted set of challenges faced by LP, we propose to use data-

centric approach. By data-centric, we mean that the problems are in fact related to the data itself,

and can be solved through an approach that emphasizes the data. In particular, (1) By analyzing

the data, we can glean valuable insights into the core problems that effect performance, efficiency,

and bias. (2) These insights can then be leveraged to motivate the design of more scalabale and

effective models. (3) Furthermore, by understanding the data, we can determine if our evaluation

is aligned with actual use of these models. Through this, we can then introduce newer evaluation

procedures or benchmark datasets that better reflect realistic model performance.

Next, I describe how this framework is applied to enrich our ability to perform link prediction
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on graphs.

1.2 Contributions

My research applies the aforementioned framework to enhancing the task of link prediction

(LP). Specifically, my work concerns advancing LP in two main areas. The first is LP on uni-

relational graphs from various domains (this is typically just referred to as “link prediction” in

literature, a convention we adhere to). The second is LP on knowledge graphs (KGs), which

is generally referred to as KG completion (KGC). KGs are a type of multi-relational graph that

encodes facts as links. As such, LP on KGs is analogous to predicting new facts. For each task,

we use the knowledge gained from understanding the data to promote more effective models and

evaluation procedures. Our contributions are as follows:

1. We observe that there are several issues that plague the existing evaluation of models for LP.

First, there is a lack of unified settings used across papers, resulting in different evaluation

metrics, data splits, and training procedures being used. This complicates any one-to-one

comparison between models. Second, we find that the previous evaluation setting is unrealistic

and doesn’t correspond to real-world evaluation of LP. To address these issues, we first conduct

a benchmarking of all prominent models and datasets under the same settings, to better compare

performance. We then propose a new evaluation setting, HeaRT, which more closely aligns

with how LP is conducted. We find that the previous evaluation procedure greatly overestimates

the performance of LP methods.

2. Work has shown that multiple types of factors need to be used to adequately perform LP [72].

However, most existing methods are either unable to model all such factors. Furthermore, those

that can are prohibitively expensive. In pursuit of an expressive and scalable model, we propose

LPFormer, which efficiently and adaptively stresses different LP factors for each link being

predicted (i.e., the “target link”). We achieve this by considering the relationship between both

nodes in the target link in the context of the graph. The relationship is extracted via a learnable

attention mechanism between the target link and the nodes in the graph. Using attention allows

for the factors to vary by target link, thereby stressing different underlying factors for different
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target links. We demonstrate the ability of LPFormer on both the original and HeaRT evaluations

settings.

3. A common concern when learning on graphs is degree bias. This causes graph algorithms to

learn poorer representations for nodes of lower degree, thereby degrading their performance on

downstream tasks. This is harmful as the final learnt model will be biased against nodes of lower

degree. Motivated by this problem we asked – how does degree bias effect KG completion?

We observed that unlike other graph tasks, it is not the node degree that best correlates with

performance on KGs but rather the number of links where the relation and the node being

predicted co-occur together. To obviate this special type of degree bias, we propose a model-

agnostic data augmentation technique, KG-Mixup, which creates additional synthetic links for

those samples of lower degree and can empirically improve performance.

4. Recently, GNN-based models that propagate path information, “path-based GNNs”, have gained

prominence for KG reasoning. But, to achieve satisfying performance, they require a large

number of layers, rendering them inefficient in real-world applications. However, we observe

that such models tend to propagate messages that either have redundant path information or

contain no information (i.e., “empty”). From these observations, we propose a new model

TAGNet, that works by reducing the number of redundant or empty messages propagated via a

set of constraints on the messages passed. We observe that TAGNet can propagate up to 90%

less messages than baseline models, while achieving similar or even better performance than

other models.

1.3 Outline

In Chapter 2, we observe that the current evaluation setting for LP is unrealistic. We then

propose a new method – HeaRT, which more closely resembles LP in real-world application. In

Chapter 3, we introduce a new method for LP, which uses a Transformer architecture to model the

various underlying link-formation mechanisms. In Chapter 4, we study the problem of degree bias

in KG completion. We show that it manifests itself differently from other graph tasks. We then

propose a simple data augmentation strategy, KG-Mixup, to help alleviate the bias. In Chapter 5,
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we aim to improve the efficiency of path-based GNNs for KG completion. We show that existing

methods tend to propagate many unnecessary messages, a propose a new method TAGNet to

remove them. Lastly, we conclude the dissertation in Chapter 6 with a discussion of future research

directions.
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CHAPTER 2

EVALUATING GRAPH NEURAL NETWORKS FOR LINK
PREDICTION: CURRENT PITFALLS AND NEW

BENCHMARKING

2.1 Introduction

The task of link prediction is to determine the existence of an edge between two unconnected

nodes in a graph. Existing link prediction algorithms attempt to estimate the proximity of different

pairs of nodes in the graph, where node pairs with a higher proximity are more likely to interact [69].

Link prediction is applied in many different domains including social networks [27], biological

networks [57], and recommender systems [46].

Graph neural networks (GNNs) [125] have gained prominence in recent years with many new

frameworks being proposed for a variety of different tasks. Corresponding to the rise in popularity

of GNNs, there has been a number of studies that attempt to critically examine the effectiveness of

different GNNs on various tasks. This can be seen for the task of node classification [101], graph

classification [34], knowledge graph completion (KGC) [95, 3, 105], and others [32].

However, despite a number of new GNN-based methods being proposed [139, 20, 136, 120]

for link prediction, there is currently no work that attempts to carefully examine recent advances

in link prediction methods. Upon examination, we find that there are several pitfalls in regard to

model evaluation that impede our ability to properly evaluate current methods. This includes:

1. Lower than Actual Performance. We observe that the current performance of multiple models

is underreported. For some methods, such as standard GNNs, this is due to poor hyperparameter

tuning. Once properly tuned, they can even achieve the best overall performance on some metrics

(see SAGE [42] in Table 2.1). Furthermore, for other methods like Neo-GNN [136] we can

achieve around an 8.5 point increase in Hits@50 on ogbl-collab relative to the originally reported

performance. This results in Neo-GNN achieving the best overall performance on ogbl-collab

in our study (see Table 2.2). Such problems obscure the true performance of different models,

making it difficult to draw reliable conclusions from the current results.

2. Lack of Unified Settings. For Cora, Citeseer, and Pubmed datasets [131], there exists no
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unified data split and evaluation metrics used for each individually. For the data split, some

works [115, 153] use a single fixed train/valid/test split with percentages 85/5/10%. More recent

works [20, 120] use 10 random splits of size 70/10/20%. In terms of the evaluation metrics, some

studies [20, 120] use ranking-based metrics such as MRR or Hits@K while others [54, 153]

report the area under the curve (AUC). This is despite multiple studies that argue that AUC is

a poor metric for evaluating link prediction [129, 47]. Additionally, for both the planetoid (i.e.,

Cora, Citeseer and Pubmed) and ogbl-collab datasets, some methods incorporate the validation

edges during testing [20, 43], while others [136, 120] don’t. This lack of a unified setting makes

it difficult to draw a comparison and hampers our ability to determine which methods perform

best on these datasets.

3. Unrealistic Evaluation Setting. During the evaluation, we are given a set of true samples (i.e.,

positive samples) and a set of false samples (i.e., negative samples). We are tasked with learning

a classifier 𝑓 that assigns a higher probability to the positive samples than the negatives. The

current evaluation setting uses the same set of randomly selected negative samples for each

positive sample. We identify two potential problems with the current evaluation procedure.

(1) It is not aligned with real-world settings. In a real-world scenario, we typically care about

predicting links for a specific node. For example, in friend recommendations, we aim to

recommend friends for a specific user 𝑢. To evaluate such models for 𝑢, we strive to rank node

pairs including 𝑢. However, this does not hold in the current setting as 𝑢 is not included in most

of the negative samples. (2) The current evaluation setting makes the task too easy. As such, it

may not reflect the model performance in real-world applications. This is because the nodes in

a randomly selected negative “node pair” are likely to be unrelated to each other. As shown in

Figure 2.1, almost all negative samples in the test data have no common neighbors, a typically

strong heuristic, making them trivial to classify them.

To account for these issues, we propose to first conduct a fair and reproducible evaluation

among current link prediction methods under the existing evaluation setting. We then design a new

evaluation strategy that is more aligned with a real-world setting and detail our results. Our key
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(a) ogbl-collab (b) ogbl-ppa (c) ogbl-citation2

Figure 2.1 Common neighbor distribution for the positive and negative test samples for the
ogbl-collab, ogbl-ppa, and ogbl-citation2 datasets under the existing evaluation setting.

contributions are summarized below:

1. Reproducible and Fair Comparison. We conduct a fair comparison of different models across

multiple common datasets. To ensure a fair comparison, we tune all models on the same set

of hyperparameters. We further evaluate different models using multiple types of evaluation

metrics. For the Planetoid datasets [131], we further use a unified data split to facilitate a

point of comparison between models. To the best of our knowledge, there are no recent efforts

to comprehensively benchmark link prediction methods (several exist for KGC [105, 3, 95]).

Furthermore, we open-source the implementation in our analysis to enable others in their

analyses.

2. New Evaluation Setting. We recognize that the current negative sampling strategy used in

evaluation is unrealistic and easy. To counter these issues, we first use a more realistic setting

of tailoring the negatives to each positive sample. This is achieved by restricting them to be

corruptions of the positive sample (i.e., containing one of its two nodes as defined in Eq. (2.3)).

Given the prohibitive cost of utilizing all possible corruptions, we opt instead to only rank

against 𝐾 negatives for each positive sample. In order to choose the most relevant and difficult

corruptions, we propose a Heuristic Related Sampling Technique (HeaRT), which selects them

based on a combination of multiple heuristics. This creates a more challenging task than the

previous evaluation strategy and allows us to better assess the capabilities of current methods.
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The rest of the paper is structured as follows. In Section 2.2 we introduce the models, datasets,

and settings used for conducting a fair comparison between methods. In Section 2.3 we show

the results of the fair comparison under the existing evaluation setting and discuss our main

observations. Lastly, in Section 2.4 we introduce our new evaluation setting. We then detail and

discuss the performance of different methods using our new setting.

2.2 Preliminaries

2.2.1 Task Formulation

In this section we formally define the task of link prediction. Let G = {V, E} be a graph where

V and E are the set of nodes and edges in the graph, respectively. Furthermore, let 𝑋 ∈ R |𝑉 |×𝑑 be

a set of 𝑑-dimensional features for each node. Link prediction aims to predict the likelihood of a

link existing between two nodes given the structural and feature information. For a pair of nodes 𝑢

and 𝑣, the probability of a link existing, 𝑝(𝑢, 𝑣), is therefore given by:

𝑝(𝑢, 𝑣) = 𝑝(𝑢, 𝑣 | G, 𝑋). (2.1)

Traditionally, 𝑝(𝑢, 𝑣) was estimated via non-learnable heuristic methods [74, 65]. More recently,

methods that use learnable parameters have gained popularity [139, 20]. These methods attempt to

estimate 𝑝(𝑢, 𝑣) via a learnable function 𝑓 such that:

𝑝(𝑢, 𝑣) = 𝑓 (𝑢, 𝑣 | G, 𝑋,Θ), (2.2)

where Θ represents a set of learnable parameters. A common choice of 𝑓 are graph neural

networks [55]. In the next subsection we detail the various link prediction methods used in this

study.

2.2.2 Link Prediction Methods

In this section we given an overview of the different methods used in this study. Conventional

methods [74, 65] often exploit hand-craft graph structural properties (i.e., heuristics) between node

pairs. GNNs attempt to learn the structural information to facilitate link prediction [141, 120, 20].

Given the strong performance of pairwise-based heuristics [136, 120], some recent works use both

GNNs and pairwise information, demonstrating strong performance.
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For our study, we consider both traditional and state-of-the-art GNN-based models. They can

be roughly organized into four categories. 1) Heuristic methods: Common Neighbor (CN) [81],

Adamic Adar (AA) [2], Resource Allocation (RA) [151], Shortest Path [65], and Katz [49]. These

methods define a score to indicate the link existence based on the graph structure. Among them,

CN, AA, and RA are based on the common neighbors, while Shortest Path and Katz are based on the

path information. 2) Embedding methods: Matrix factorization (MF) [74], Multilayer Perceptron

(MLP) and Node2Vec [39]. These methods are trained to learn low-dimensional node embeddings

that are used to predict the likelihood of node pairs existing. 3) GNN methods: GCN [132],

GAT [115], SAGE [42], and GAE [54]. These methods attempt to integrate the multi-hop graph

structure based on the message passing paradigm. 4) GNN + Pairwise Information methods:

Standard GNN methods, while powerful, are not able to capture link-specific information [141]. As

such, works have been proposed that augment GNN methods by including additional information

to better capture the relation between the nodes in the link we are predicting. SEAL [141],

BUDDY [20], and NBFNet [153] use the subgraph features. Neo-GNN [136], NCN [120], and

NCNC [120] are based on common neighbor information. Lastly, PEG [117] uses the positional

encoding derived from the graph structure.

2.2.3 Datasets and Experimental Settings

In this section we summarize the datasets and evaluation and training settings. We note that the

settings depend on the specific dataset. More details are given in Appendix A.3.

Datasets. We limit our experiments to homogeneous graphs, which are the most commonly

used datasets for link prediction. This includes the small-scale datasets, i.e., Cora, Citeseer,

Pubmed [131], and large-scale datasets in the OGB benchmark [43], i.e., ogbl-collab, ogbl-ddi, ogbl-

ppa, and ogbl-citation2. We summarize the statistics and split ratio of each dataset in Appendix A.3.

Metrics. For evaluation, we use both the area under the curve (AUC) and ranking-based

metrics, i.e., mean reciprocal rank (MRR) and Hits@K. For Cora, Citeseer, and Pubmed we adopt

𝐾 ∈ {1, 3, 10, 100}. We note that 𝐾 = 100 is reported in some recent works [20, 120]). However

due to the small number of negatives used during evaluation (e.g., ≈ 500 for Cora and Citeseer)
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𝐾 = 100 is likely not informative. For the OGB datasets, we adopt 𝐾 ∈ {20, 50, 100} to keep

consistent with the original study [43]. Please see Appendix A.2.1 for the formal definitions of the

various evaluation metrics.

Hyperparameter Ranges. We conduct a grid hyperparameter search across a comprehensive

range of values. For Cora, Citeseer, and Pubmed this includes: learning rate (0.01, 0.001), dropout

(0.1, 0.3, 0.5), weight decay (1e-4, 1e-7, 0), number of model layers (1, 2, 3), number of prediction

layers (1, 2, 3), and the embedding size (128, 256). Due to the large size of the OGB datasets,

it’s infeasible to tune over such a large range. Therefore, following the most commonly used

settings among published hyperparameters, we fix the weight decay to 0, the number of model

and prediction layers to be 3, and the embedding size to be 256. The best hyperparameters are

chosen based on the validation performance. We note that several exceptions exist to these ranges

when they result in significant performance degradations (see Appendix A.3 for more details). We

further follow the existing setting and only sample one negative sample per positive sample during

training.

Existing Evaluation Settings. In the evaluation stage, the same set of randomly sampled

negatives are used for all positive samples. We note that one exception is ogbl-citation2, where they

randomly sample 1000 negative samples per positive sample. For Cora, Citeseer, and Pubmed the

number of negative samples is equal to the number of positive samples. For the OGB datasets, we

use the existing fixed set of randomly chosen negatives found in [43]. Furthermore, for ogbl-collab

we follow the existing protocol [43] and include the validation edges in the training graph during

testing. This setting is adopted on ogbl-collab under both the existing and new evaluation setting.

2.3 Fair Comparison Under the Existing Setting

In this section, we conduct a fair comparison among link prediction methods. This comparison

is spurred by the multiple pitfalls noted in Section 5.1, which include lower-than-actual model

performance, multiple data splits, and inconsistent evaluation metrics. These pitfalls hinder our

ability to fairly compare different methods. To rectify this, we conduct a fair comparison adhering

to the settings listed in section 2.2.3.
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Table 2.1 Results on Cora, Citeseer, and Pubmed(%) under the existing evaluation setting. We
highlight the results ranked first, second, and third as green, blue, and orange, respectively.

Models Cora Citeseer Pubmed
MRR AUC MRR AUC MRR AUC

Heuristic

CN 20.99 70.85 28.34 67.49 14.02 63.9
AA 31.87 70.96 29.37 67.49 16.66 63.9
RA 30.79 70.96 27.61 67.48 15.63 63.9

Shortest Path 12.45 81.08 31.82 75.5 7.15 74.64
Katz 27.4 81.17 38.16 75.37 21.44 74.86

Embedding
Node2Vec 37.29 ± 8.82 90.97 ± 0.64 44.33 ± 8.99 94.46 ± 0.59 34.61 ± 2.48 93.14 ± 0.18

MF 14.29 ± 5.79 80.29 ± 2.26 24.80 ± 4.71 75.92 ± 3.25 19.29 ± 6.29 93.06 ± 0.43
MLP 31.21 ± 7.90 95.32 ± 0.37 43.53 ± 7.26 94.45 ± 0.32 16.52 ± 4.14 98.34 ± 0.10

GNN

GCN 32.50 ± 6.87 95.01 ± 0.32 50.01 ± 6.04 95.89 ± 0.26 19.94 ± 4.24 98.69 ± 0.06
GAT 31.86 ± 6.08 93.90 ± 0.32 48.69 ± 7.53 96.25 ± 0.20 18.63 ± 7.75 98.20 ± 0.07
SAGE 37.83 ± 7.75 95.63 ± 0.27 47.84 ± 6.39 97.39 ± 0.15 22.74 ± 5.47 98.87 ± 0.04
GAE 29.98 ± 3.21 95.08 ± 0.33 63.33 ± 3.14 97.06 ± 0.22 16.67 ± 0.19 97.47 ± 0.08

GNN+Pairwise Info

SEAL 26.69 ± 5.89 90.59 ± 0.75 39.36 ± 4.99 88.52 ± 1.40 38.06 ± 5.18 97.77 ± 0.40
BUDDY 26.40 ± 4.40 95.06 ± 0.36 59.48 ± 8.96 96.72 ± 0.26 23.98 ± 5.11 98.2 ± 0.05

Neo-GNN 22.65 ± 2.60 93.73 ± 0.36 53.97 ± 5.88 94.89 ± 0.60 31.45 ± 3.17 98.71 ± 0.05
NCN 32.93 ± 3.80 96.76 ± 0.18 54.97 ± 6.03 97.04 ± 0.26 35.65 ± 4.60 98.98 ± 0.04

NCNC 29.01 ± 3.83 96.90 ± 0.28 64.03 ± 3.67 97.65 ± 0.30 25.70 ± 4.48 99.14 ± 0.03
NBFNet 37.69 ± 3.97 92.85 ± 0.17 38.17 ± 3.06 91.06 ± 0.15 44.73 ± 2.12 98.34 ± 0.02

PEG 22.76 ± 1.84 94.46 ± 0.34 56.12 ± 6.62 96.15 ± 0.41 21.05 ± 2.85 96.97 ± 0.39

The results are split into two tables. The results for Cora, Citeseer, and Pubmed are shown

in Table 2.1 and OGB in Table 2.2. For simplicity, we only present the AUC and MRR for

Cora, Citeseer, and Pubmed. For OGB datasets, we include AUC and the original ranking metric

reported in [43] to allow a convenient comparison (Hits@20 for ogbl-ddi, Hits@50 for ogbl-collab,

Hits@100 for ogbl-ppa, and MRR for ogbl-citation2). We use “>24h" to denote methods that

require more than 24 hours for either training one epoch or evaluation. OOM indicates that the

algorithm requires over 50Gb of GPU memory. Since ogbl-ddi has no node features, we mark

the MLP results with a “N/A". Additional results in terms of other metrics are presented in

Appendix A.6. We have several noteworthy observations concerning the methods, the datasets, the

evaluation settings, and the overall results. We highlight the main observations below.

Observation 1: Better than Reported Performance. We find that for some models we are able to

achieve superior performance compared to what is reported by recent studies. For instance, in our

study Neo-GNN [136] achieves the best overall test performance on ogbl-collab with a Hits@50 of

66.13. In contrast, the reported performance in [136] is only 57.52, which would rank seventh under

our current setting. This is because the original study [136] does not follow the standard setting
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Table 2.2 Results on OGB datasets (%) under the existing evaluation setting. We highlight the
results ranked first, second, and third as green, blue, and orange, respectively.

Models ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
Hits@50 AUC Hits@20 AUC Hits@100 AUC MRR

Heuristic

CN 61.37 82.78 17.73 95.2 27.65 97.22 74.3
AA 64.17 82.78 18.61 95.43 32.45 97.23 75.96
RA 63.81 82.78 6.23 96.51 49.33 97.24 76.04

Shortest Path 46.49 96.51 0 59.07 0 99.13 >24h
Katz 64.33 90.54 17.73 95.2 27.65 97.22 74.3

Embedding
Node2Vec 49.06 ± 1.04 96.24 ± 0.15 34.69 ± 2.90 99.78 ± 0.04 26.24 ± 0.96 99.77 ± 0.00 45.04 ± 0.10

MF 41.81 ± 1.67 83.75 ± 1.77 23.50 ± 5.35 99.46 ± 0.10 28.4 ± 4.62 99.46 ± 0.10 50.57 ± 12.14
MLP 35.81 ± 1.08 95.91 ± 0.08 N/A N/A 0.45 ± 0.04 90.23 ± 0.00 38.07 ± 0.09

GNN

GCN 54.96 ± 3.18 97.89 ± 0.06 49.90 ± 7.23 99.86 ± 0.03 29.57 ± 2.90 99.84 ± 0.03 84.85 ± 0.07
GAT 55.00 ± 3.28 97.11 ± 0.09 31.88 ± 8.83 99.63 ± 0.21 OOM OOM OOM
SAGE 59.44 ± 1.37 98.08 ± 0.03 49.84 ± 15.56 99.96 ± 0.00 41.02 ± 1.94 99.82 ± 0.00 83.06 ± 0.09
GAE OOM OOM 7.09 ± 6.02 75.34 ±15.96 OOM OOM OOM

GNN+Pairwise Info

SEAL 63.37 ± 0.69 95.65 ± 0.29 25.25 ± 3.90 97.97 ± 0.19 48.80 ± 5.61 99.79 ± 0.02 86.93 ± 0.43
BUDDY 64.59 ± 0.46 96.52 ± 0.40 29.60 ± 4.75 99.81 ± 0.02 47.33 ± 1.96 99.56 ± 0.02 87.86 ± 0.18

Neo-GNN 66.13 ± 0.61 98.23 ± 0.05 20.95 ± 6.03 98.06 ± 2.00 48.45 ± 1.01 97.30 ± 0.14 83.54 ± 0.32
NCN 63.86 ± 0.51 97.83 ± 0.04 76.52 ± 10.47 99.97 ± 0.00 62.63 ± 1.15 99.95 ± 0.01 89.27 ± 0.05

NCNC 65.97 ± 1.03 98.20 ± 0.05 70.23 ± 12.11 99.97 ± 0.01 62.61 ± 0.76 99.97 ± 0.01 89.82 ± 0.43
NBFNet OOM OOM >24h >24h OOM OOM OOM

PEG 49.02 ± 2.99 94.45 ± 0.89 30.28 ± 4.92 99.45 ± 0.04 OOM OOM OOM

of including validation edges in the graph during testing. This setting, as noted in Section 2.2.3,

is used by all other methods on ogbl-collab. However it was omitted by [136], resulting in lower

reported performance. Furthermore, on ogbl-citation2 [43], our results for the heuristic methods

are typically around 75% MRR. This significantly outperforms previously reported results, which

report an MRR of around 50% [141, 20]. The disparity arises as previous studies treat the ogbl-

citation2 as a directed graph when applying heuristic methods. However, for GNN-based methods,

ogbl-citation2 is typically converted to a undirected graph. We remedy this by also converting

ogbl-citation2 to an undirected graph when computing the heuristics, leading to a large increase in

performance.

Furthermore, with proper tuning, conventional baselines like GCN [55] and GAE [54] generally

exhibit enhanced performance relative to what was originally reported across all datasets. For

example, we find that GAE can achieve the second best MRR on Citeseer and GCN the third best

Hits@20 on ogbl-ddi. A comparison of the reported results and ours are shown in Table 2.3. We

note that we report AUC for Cora, Citeseer, Pubmed as it was used in the original study. These

observations suggest that the performance of various methods are better than what was reported in

their initial publications. However, many studies [20, 120, 141] only report the original performance
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Table 2.3 Comparison of ours and the reported results for GCN and GAE.

ogbl-collab ogbl-ppa ogbl-ddi ogbl-citation2 Cora Citeseer Pubmed
GCN Hits@50 Hits@100 Hits@20 MRR GAE AUC AUC AUC

Reported 47.14 ± 1.45 18.67 ± 1.32 37.07 ± 5.07 84.74 ± 0.21 Reported 91.00 ± 0.01 89.5 ± 0.05 96.4 ± 0.00
Ours 54.96 ± 3.18 29.57 ± 2.90 49.90 ± 7.23 84.85 ± 0.07 Ours 95.08 ± 0.33 97.06 ± 0.22 97.47 ± 0.08

for comparison, which has the potential to lead to inaccurate conclusions.

Observation 2: Divergence from Reported Results on ogbl-ddi. We observe that our results

in Table 2.2 for ogbl-ddi differ from the reported results. Outside of GCN, which reports better

performance, most other GNN-based methods report a lower-than-reported performance. For

example, for BUDDY we only achieve a Hits@20 of 29.60 vs. the reported 78.51 (see Appendix A.4

for a comprehensive comparison among methods). We find that the reason for this difference

depends on the method. BUDDY [20] reported 1 using 6 negatives per positive sample during

training, leading to an increase in performance. Neo-GNN [136] first pretrains the GNN under

the link prediction task, and then uses the pretrained model as the initialization for Neo-GNN.2

For a fair comparison among methods, we only use 1 negative per positive sample in training

and we don’t apply the pretraining. For other methods, we find that a weak relationship between

the validation and test performance complicates the tuning process, making it difficult to find the

optimal hyperparameters. Please see Appendix A.5 for a more in-depth study and discussion.

Observation 3: High Model Standard Deviation. The results in Tables 2.1 and 2.2 present the

mean performance and standard deviation when training over 10 seeds. Generally, we find that for

multiple datasets the standard deviation of the ranking metrics is often high for most models. For

example, the standard deviation for MRR can be as high as 8.82, 8.96, or 7.75 for Cora, Citeseer,

and Pubmed, respectively. Furthermore, on ogbl-ddi the standard deviation of Hits@20 reaches as

high as 10.47 and 15.56. A high variance indicates unstable model performance. This makes it

difficult to compare results between methods as the true performance lies in a larger range. This

further complicates replicating model performance, as even large differences with the reported

results may still fall within variance (see observation 2). Later in Section 2.4.3 we find that our
1https://github.com/melifluos/subgraph-sketching
2https://github.com/seongjunyun/Neo-GNNs
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new evaluation can reduce the model variance for all datasets (see Table 2.6). This suggests that

the high variance is related to the current evaluation procedure.

Observation 4: Inconsistency of AUC vs. Ranking-Based Metrics. The AUC score is widely

adopted to evaluate recent advanced link prediction methods [54, 153]. However, from our results

in Tables 2.1 and 2.2 we observe that there exists a disparity between AUC and ranking-based

metrics. In some cases, the AUC score can be high when the ranking metric is very low or even

0. For example, the Shortest Path heuristic records a Hits@K of 0 on ogbl-ppa. However, the

AUC score is > 99%. Furthermore, even though RA records the third and fifth best performance

on ogbl-ppa and ogbl-collab, respectively, it has a lower AUC score than Shortest Path on both.

Previous works [47, 129] argued that AUC is not a proper metric for link prediction. This is due to

the inapplicability of AUC for highly imbalanced problems [28, 99].

2.4 New Evaluation Setting

In this section, we introduce a new setting for evaluating link prediction methods. We first

discuss the unrealistic nature of the current evaluation setting in Section 2.4.1. We then present

our new evaluation setting in Section 2.4.2, which aims to align better with real-world scenarios.

Lastly, in Section 2.4.3, we present and discuss the results based on our new evaluation setting.

2.4.1 Issues with the Existing Evaluation Setting

The existing evaluation procedure for link prediction is to rank a positive sample against a set of

𝐾 randomly selected negative samples. The same set of𝐾 negatives are used for all positive samples

(with the exception of ogbl-citation2 which uses 1000 per positive sample). We demonstrate that

there are multiple issues with this setting, making it difficult to properly evaluate the effectiveness

of current models.

Issue 1: Non-Personalized Negative Samples. The existing evaluation setting uses the same set

of negative samples for all positive samples (outside of ogbl-citation2). This strategy, referred to

as global negative sampling [123], is not a commonly sought objective. Rather, we are often more

interested in predicting links that will occur for a specific node. Take, for example, a social network

that connects users who are friends. In this scenario, we may be interested in recommending new
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(a) Negative sample genera-
tion for one positive sample.

(b) Process of determining negative samples that contain a node 𝑎.

Figure 2.2 Pipeline for generating the hard negative samples for a positive sample (a, b).

friends to a user 𝑢. This requires learning a classifier 𝑓 that assigns a probability to a link existing.

When evaluating this task, we want to rank links where 𝑢 connects to an existing friend above those

where they don’t. For example, if 𝑢 is friends with 𝑎 but not 𝑏, we hope that 𝑓 (𝑢, 𝑎) > 𝑓 (𝑢, 𝑏).

However, the existing evaluation setting doesn’t explicitly test for this. Rather it compares a true

sample (𝑢, 𝑎) with a potentially unrelated negative sample, e.g., (𝑐, 𝑑). This is not aligned with the

real-world usage of link prediction on such graphs.

Issue 2: Easy Negative Samples. The existing evaluation setting randomly selects negative

samples to use. However given the large size of most graphs (see Table A.1 in Appendix A.3),

randomly sampled negatives are likely to choose two nodes that bear no relationship to each other.

Such node pairs are trivial to classify. We demonstrate this by plotting the distribution of common

neighbors (CN), a strong heuristic, for all positive and negative test samples in Figure 2.1. Almost

all the negative samples contain no CNs, making them easy to classify. We further show that the

same problem afflicts even the smaller datasets in Figure A.1 in Appendix A.1.

These observations suggest that a more realistic evaluation strategy is desired. At the core

of this challenge is which negative samples to use during evaluation. We discuss our design for

solving this in the next subsection.
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2.4.2 Heuristic Related Sampling Technique (HeaRT)

In this subsection, we introduce new strategy for evaluating link prediction methods. To

address the concerns outlined in Section 2.4.1, we design a new method for sampling negatives

during evaluation. Our strategy, HeaRT, solves these challenges by: (a) personalizing the negatives

to each sample and (b) using heuristics to select hard negative samples. This allows for the negative

samples to be directly related to each positive sample while also being non-trivial. We further

discuss how to ensure that the negative samples are both personalized and non-trivial for a specific

positive sample.

From our discussion in Section 2.4.1, we are motivated in personalizing the negatives to

each positive sample. Since the positive samples in the current datasets are node pairs, we seek

to personalize the negatives to both nodes in the positive sample. Extending our example in

Section 2.4.1, this is analogous to restricting the negatives to contain one of the two users from the

original friendship pair. As such, for a positive sample (𝑢, 𝑎), the negative samples will belong to

the set:

𝑆(𝑢, 𝑎) = {(𝑢′, 𝑎) | 𝑢′ ∈ V} ∪ {(𝑢, 𝑎′) | 𝑎′ ∈ V}, (2.3)

where V is the set of nodes. This is similar to the setting used for knowledge graph completion

(KGC) [13] which uses all such samples for evaluation. However, one drawback of evaluating each

positive sample against the entire set of possible corruptions is the high computational cost. To

mitigate this issue we consider only utilizing a small subset of 𝑆(𝑢, 𝑎) during evaluation.

The key challenge is how to generate a subset of 𝑆(𝑢, 𝑎). If we randomly sample from 𝑆(𝑢, 𝑎),

we risk only utilizing easy negative samples. This is one of the issues of the existing evaluation

setting (see Issue 2 in Section 2.4.1), whereby randomly selecting negatives, they unknowingly

produce negative samples that are too easy. We address this by selecting the negative samples via

a combination of multiple heuristics. Since heuristics typically correlate well with performance,

we ensure that the negative samples will be non-trivial to classify. This is similar to the concept

of candidate generation [41, 33], which only ranks a subset of candidates that are most likely to be

true.
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Table 2.4 Results on Cora, Citeseer, and Pubmed (%) under HeaRT. We highlight the results
ranked first, second, and third as green, blue, and orange, respectively.

Models Cora Citeseer Pubmed
MRR Hits@10 MRR Hits@10 MRR Hits@10

Heuristic

CN 9.78 20.11 8.42 18.68 2.28 4.78
AA 11.91 24.10 10.82 22.20 2.63 5.51
RA 11.81 24.48 10.84 22.86 2.47 4.9

Shortest Path 5.04 15.37 5.83 16.26 0.86 0.38
Katz 11.41 22.77 11.19 24.84 3.01 5.98

Embedding
Node2Vec 14.47 ± 0.60 32.77 ± 1.29 21.17 ± 1.01 45.82 ± 2.01 3.94 ± 0.24 8.51 ± 0.77

MF 6.20 ± 1.42 15.26 ± 3.39 7.80 ± 0.79 16.72 ± 1.99 4.46 ± 0.32 9.42 ± 0.87
MLP 13.52 ± 0.65 31.01 ± 1.71 22.62 ± 0.55 48.02 ± 1.79 6.41 ± 0.25 15.04 ± 0.67

GNN

GCN 16.61 ± 0.30 36.26 ± 1.14 21.09 ± 0.88 47.23 ± 1.88 7.13 ± 0.27 15.22 ± 0.57
GAT 13.84 ± 0.68 32.89 ± 1.27 19.58 ± 0.84 45.30 ± 1.3 4.95 ± 0.14 9.99 ± 0.64
SAGE 14.74 ± 0.69 34.65 ± 1.47 21.09 ± 1.15 48.75 ± 1.85 9.40 ± 0.70 20.54 ± 1.40
GAE 18.32 ± 0.41 37.95 ± 1.24 25.25 ± 0.82 49.65 ± 1.48 5.27 ± 0.25 10.50 ± 0.46

GNN+Pairwise Info

SEAL 10.67 ± 3.46 24.27 ± 6.74 13.16 ± 1.66 27.37 ± 3.20 5.88 ± 0.53 12.47 ± 1.23
BUDDY 13.71 ± 0.59 30.40 ± 1.18 22.84 ± 0.36 48.35 ± 1.18 7.56 ± 0.18 16.78 ± 0.53

Neo-GNN 13.95 ± 0.39 31.27 ± 0.72 17.34 ± 0.84 41.74 ± 1.18 7.74 ± 0.30 17.88 ± 0.71
NCN 14.66 ± 0.95 35.14 ± 1.04 28.65 ± 1.21 53.41 ± 1.46 5.84 ± 0.22 13.22 ± 0.56

NCNC 14.98 ± 1.00 36.70 ± 1.57 24.10 ± 0.65 53.72 ± 0.97 8.58 ± 0.59 18.81 ± 1.16
NBFNet 13.56 ± 0.58 31.12 ± 0.75 14.29 ± 0.80 31.39 ± 1.34 >24h >24h

PEG 15.73 ± 0.39 36.03 ± 0.75 21.01 ± 0.77 45.56 ± 1.38 4.4 ± 0.41 8.70 ± 1.26

An overview of the generation process is given in Figure 2.2. For each positive sample, we

generate 𝐾 negative samples. To allow personalization to both nodes in the positive sample equally,

we sample 𝐾/2 negatives with each node. For the heuristics, we consider RA [151], PPR [15],

and feature similarity. A more detailed discussion on the negative sample generation is given

in Appendix A.7. It’s important to note that our work centers specifically on negative sampling

during the evaluation stage (validation and test). This is distinct from prior work that concerns the

negatives sampled used during the training phase [130, 91]. As such, the training process remains

unaffected under both the existing and HeaRT setting.

2.4.3 Results and Discussion

In this subsection we present our results when utilizing HeaRT. We follow the parameter ranges

introduced in Section 2.2.3. For all datasets we use 𝐾 = 500 negative samples per positive sample

during evaluation. Furthermore for ogbl-ppa we only use a small subset of the validation and test

positive samples (100K each) for evaluation. This is because the large size of the validation and

test sets (see Table A.1 in Appendix A.3) makes HeaRT prohibitively expensive.
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Table 2.5 Results on OGB datasets (%) under HeaRT. We highlight the results ranked first,
second, and third as green, blue, and orange, respectively.

Models ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
MRR Hits@20 MRR Hits@20 MRR Hits@20 MRR Hits@20

CN 4.20 16.46 6.71 38.69 25.70 68.25 17.11 41.73
AA 5.07 19.59 6.97 39.75 26.85 70.22 17.83 43.12
RA 6.29 24.29 8.70 44.01 28.34 71.50 17.79 43.34

Shortest Path 2.66 15.98 0 0 0.54 1.31 >24h >24h
Katz 6.31 24.34 6.71 38.69 25.70 68.25 14.10 35.55

Node2Vec 4.68 ± 0.08 16.84 ± 0.17 11.14 ± 0.95 63.63 ± 2.05 18.33 ± 0.10 53.42 ± 0.11 14.67 ± 0.18 42.68 ± 0.20
MF 4.89 ± 0.25 18.86 ± 0.40 13.99 ± 0.47 59.50 ± 1.68 22.47 ± 1.53 70.71 ± 4.82 8.72 ± 2.60 29.64 ± 7.30

MLP 5.37 ± 0.14 16.15 ± 0.27 N/A N/A 0.98 ± 0.00 1.47 ± 0.00 16.32 ± 0.07 43.15 ± 0.10

GCN 6.09 ± 0.38 22.48 ± 0.81 13.46 ± 0.34 64.76 ± 1.45 26.94 ± 0.48 68.38 ± 0.73 19.98 ± 0.35 51.72 ± 0.46
GAT 4.18 ± 0.33 18.30 ± 1.42 12.92 ± 0.39 66.83 ± 2.23 OOM OOM OOM OOM
SAGE 5.53 ± 0.5 21.26 ± 1.32 12.60 ± 0.72 67.19 ± 1.18 27.27 ± 0.30 69.49 ± 0.43 22.05 ± 0.12 53.13 ± 0.15
GAE OOM OOM 3.49 ± 1.73 17.81 ± 9.80 OOM OOM OOM OOM

SEAL 6.43 ± 0.32 21.57 ± 0.38 9.99 ± 0.90 49.74 ± 2.39 29.71 ± 0.71 76.77 ± 0.94 20.60 ± 1.28 48.62 ± 1.93
BUDDY 5.67 ± 0.36 23.35 ± 0.73 12.43 ± 0.50 58.71 ± 1.63 27.70 ± 0.33 71.50 ± 0.68 19.17 ± 0.20 47.81 ± 0.37

Neo-GNN 5.23 ± 0.9 21.03 ± 3.39 10.86 ± 2.16 51.94 ± 10.33 21.68 ± 1.14 64.81 ± 2.26 16.12 ± 0.25 43.17 ± 0.53
NCN 5.09 ± 0.38 20.84 ± 1.31 12.86 ± 0.78 65.82 ± 2.66 35.06 ± 0.26 81.89 ± 0.31 23.35 ± 0.28 53.76 ± 0.20

NCNC 4.73 ± 0.86 20.49 ± 3.97 >24h >24h 33.52 ± 0.26 82.24 ± 0.40 19.61 ± 0.54 51.69 ± 1.48
NBFNet OOM OOM >24h >24h OOM OOM OOM OOM

PEG 4.83 ± 0.21 18.29 ± 1.06 12.05 ± 1.14 50.12 ± 6.55 OOM OOM OOM OOM

The results are shown in Table 2.4 (Cora, Citeseer, Pubmed) and Table 2.5 (OGB). For

simplicity, we only include the MRR and Hits@10 for Cora, Citeseer, Pubmed, and the MRR and

Hits@20 for OGB. Additional results for other metrics can be found in Appendix A.8. We note that

most datasets, outside of ogbl-ppa, exhibit much lower performance than under the existing setting.

This is though we typically use much fewer negative samples in the new setting, implying that the

negative samples produced by HeaRT are much harder. We highlight the main observations below.

Observation 1: Better Performance of Simple Models. We find that under HeaRT, “simple"

baseline models (i.e., heuristic, embedding, and GNN methods) show a greater propensity to

outperform their counterparts via ranking metrics than under the existing setting. Specifically,

we focus on MRR in Table 2.1, 2.4, and 2.5, and the corresponding ranking-based metrics in

Table 2.2. Under the existing setting, such methods only rank in the top three for any dataset a total

of 5 times. However, under HeaRT this occurs 10 times. Furthermore, under the existing setting

only 1 “simple" method ranks best overall while under HeaRT there are 3. This suggests that recent

advanced methods may have benefited from the easier negative samples in the existing setting.

Another interesting observation is that on ogbl-collab, heuristic methods achieve strong per-
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Table 2.6 Mean model standard deviation for the existing setting and HeaRT. We use Hits@20 for
ogbl-ddi, Hits@50 for ogbl-collab, Hits@100 for ogbl-ppa, and MRR otherwise.

Dataset Existing HeaRT % Change

Cora 5.19 0.79 -85%
Citeseer 5.94 0.88 -85%
Pubmed 4.14 0.35 -92%
ogbl-collab 1.49 0.96 -36%
ogbl-ppa 2.13 0.36 -83%
ogbl-ddi 6.77 3.49 -48%
ogbl-citation2 1.39 0.59 -58%

formance and are able to outperform more complicated models. Specifically, we find that Katz is

ranked the second and RA the third. Note that this underscores the significance of the common

neighbors information (i.e., paths of length 2), as this information is incorporated in both RA and

Katz. Of note is that ogbl-collab is a dynamic collaboration graph, which is different from other

datasets. Because of this, the negative sampling strategy also differs slightly from the other datasets.

Please see Appendix A.9 for more discussion.

Observation 2: Lower Model Standard Deviation. We observed earlier that, under the existing

evaluation setting, the model variance across seeds was high (see observation 3 in Section 2.3).

This complicates model comparison as the model performance is unreliable. Interestingly, we find

that HeaRT is able to dramatically reduce the variance for all datasets. We demonstrate this by

first calculating the mean standard deviation across all models on each individual dataset. This

was done for both evaluation settings with the results compared. As demonstrated in Table 2.6,

the mean standard deviation decreases for all datasets. This is especially true for Cora, Citeseer,

and Pubmed, which each decrease by over 85%. Such a large decrease in standard deviation is

noteworthy as it allows for a more trustworthy and reliable comparison between methods.

We posit that this observation is caused by a stronger alignment between the positive and

negative samples under our new evaluation setting. Under the existing evaluation setting, the same

set of negative samples is used for all positive samples. One consequence of this is that a single

positive sample may bear little to no relationship to the negative samples (see Section 2.4.1 for

more discussion). However, under our new evaluation setting, the negatives for a positive sample
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are a subset of the corruptions of that sample. This allows for a more natural comparison via

ranking-based metrics as the samples are more related and can be more easily compared.

Observation 3: Lower Model Performance. We observe that the majority of datasets exhibit a

significantly reduced performance in comparison to the existing setting. For example, under the

existing setting, models typically achieve a MRR of around 30, 50, and 30 on Cora, Citeseer, and

Pubmed (Table 2.1), respectively. However, under HeaRT the MRR for those datasets is typically

around 20, 25, and 10 (Table 2.4). Furthermore for ogbl-citation2, the MRR of the best performing

model falls from a shade under 90 on the existing setting to slightly over 20 on HeaRT. Lastly, we

note that the performance on ogbl-ppa actually increases. This is because we only utilize a small

subset of the total test set when evaluating on HeaRT, nullifying any comparison between the two

settings.

These outcomes are observed despite HeaRT using much fewer negative samples than the

original setting. This suggests that the negative samples generated by HeaRT are substantially

more challenging than those used in the existing setting. This underscores the need to develop

more advanced methodologies that can tackle harder negatives samples like in HeaRT.

2.5 Conclusion

In this work we have revealed several pitfalls found in recent works on link prediction. To over-

come these pitfalls, we first establish a benchmarking that facilitates a fair and consistent evaluation

across a diverse set of models and datasets. By doing so, we are able to make several illuminating

observations about the performance and characteristics of various models. Furthermore, based on

several limitations we observed in the existing evaluation procedure, we introduce a more practical

setting called HeaRT (Heuristic Related Sampling Technique). HeaRT incorporates a more real-

world evaluation setting, resulting in a better comparison among methods. By introducing a more

rigorous and realistic assessment, HeaRT could guide the field towards more effective models,

thereby advancing the state of the art in link prediction.
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CHAPTER 3

LPFORMER: AN ADAPTIVE GRAPH TRANSFORMER FOR
LINK PREDICTION

3.1 Introduction

Link prediction (LP) attempts to predict unseen edges in a graph. It has been adopted in many

applications including recommender systems [46], social networks [27], and drug discovery [1].

Traditionally, hand-crafted heuristics were used to identify new links in the graph [81, 151, 2].

Heuristics are often chosen based on factors that typically correlate well with the formation of new

links. For example, a popular heuristic is common neighbors (CNs), which assume that the links

are more likely to exist between node pairs with more shared neighbors. It has been found that

these factors, which we refer to as “LP Factors”, often stem from the local and global structural

information and feature proximity [72]. We give an example in Figure 4.1 that demonstrates

different heuristic scores for multiple candidate links. Each heuristic score corresponds to one of

the LP factors: CNs for local information, Katz for global, and Feat-Sim for feature proximity.

We can observe that the pair (source, 5) has the highest CN and Katz score of the candidate links,

indicating an abundance of local and global structural information between the pair. On the other

hand, the feature similarity for (source, 5) is the lowest among the candidate links. This indicates

that different LP factors and heuristics have distinct assumptions about why links are formed.

More recently, message passing neural networks (MPNNs) [37], which are able to learn effective

node representations via message passing, have been widely adopted for LP tasks. They predict

the existence of a link by combining the node representations of both nodes in the link. However,

such a node-centric view is unable to incorporate the pairwise information between the nodes in

the link. Because of this, conventional MPNNs have been demonstrated to be poor link predictors

due to their limited capability to learn effective and expressive link representations [142, 102]. To

address this issue, recent efforts [140, 154] have attempted to move beyond the node-centric view of

traditional MPNNs by equipping them with pairwise information specific to the link being predicted

(i.e. the “target link”) [140, 154]. This is done by customizing the message passing process to each
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Figure 3.1 Example of multiple heuristic scores for the candidate links (source, 5), (source, 6), and
(source, 7). Each heuristic corresponds to a different LP factor – local (CNs), global (Katz), and
feature proximity (Feat-Sim).

target link. However, a concern with this approach is that it can be prohibitively expensive [20], as

message passing needs to be run for each individual target link. This is as opposed to traditional

MPNNs which only run message passing once for all target links.

To overcome these inefficiencies, recent methods [136, 20, 121] have instead explored ways to

inject pairwise information into the model, without individualizing the message passing to each

target link. This is done by decoupling the message passing and link-specific pairwise information.

By doing so, the message passing only needs to be done once for all target links. To include the

pairwise information, these methods, which we refer to as “Decoupled Pairwise MPNNs” (DP-

MPNNs), instead learn a “pairwise encoding” to encode the pairwise relationship of the target

link. The choice of pairwise encoding is often based on heuristics that correspond to common LP

factors (e.g., common neighbors). DP-MPNNs have gained attention as they can achieve promising

performance while being much more efficient than methods that customize the message passing

mechanism.

However, DP-MPNNs are often limited in the choice of pairwise encoding, using a one-

size-fits-all solution for all target links. This has two limitations. (1) The pairwise encoding

may fail to consider some integral LP factors. For example, NCNC [121] only considers the 1-

hop neighborhood when computing the pairwise encoding, thereby ignoring the global structural

information. This suggests the need for a pairwise encoding that considers multiple types of LP

factors. (2) The pairwise encoding uses the same LP factors for all target links. This assumes that

all target links need the same factors. However, it may not necessarily be true. Recently, [72] have
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shown that different LP factors are necessary to classify different target links. It is evident that

even for the same dataset, multiple LP factors are needed to properly predict all target links. This

further applies to different datasets, where certain factors are more prominent than others. As such,

it faces tremendous challenges when considering multiple types of LP factors. While one factor

may effectively model some target links, it will fail for other target links where those patterns aren’t

present. It is therefore desired to consider different LP factors for different target links.

These observations motivate us to ask – can we design an efficient method that can adaptively

determine which LP factors to incorporate for each individual target link? Essentially, it requires a

pairwise encoding that (a) models multiple LP factors, (b) can be tailored to fit each individual target

link, and (c) is efficient to calculate. By doing so, we can flexibly adapt the pairwise information

based on the existing needs of each target link. To achieve this, we propose LPFormer – Link

Prediction TransFormer. LPFormer is a type of graph Transformer [78] designed specifically

for link prediction. Given a target link (𝑎, 𝑏), LPFormer models the pairwise encoding via an

attention module that learns how 𝑎 and 𝑏 relate in the context of various LP factors. This allows

for a more customizable set of pairwise encodings that are specific to each target link. Extensive

experiments validate that LPFormer can achieve SOTA on a variety of benchmark datasets. We

further demonstrate that LPFormer is better at modeling several types of LP factors, highlighting

its adaptability, while also maintaining efficiency on denser graphs.

3.2 Background

3.2.1 Related Work

Link prediction (LP) aims to model how links are formed in a graph. The process by which

links are formed, i.e., link formation, is often governed by a set of underlying factors [8, 65]. We

refer to these as “LP factors”. Two categories of methods are used for modeling these factors –

heuristics and MPNNs. We describe each class of methods. We further include a discussion on

existing graph transformers.

Heuristics for Link Prediction. Heuristics methods [81, 151] attempt to explicitly model

the LP factors via hand-crafted measures. Recently, [72] have shown that there are three main
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factors that correlate with the existence of a link: (1) local structural information, (2) global

structural information, and (3) feature proximity. Local structural information only considers the

immediate neighborhood of the target link. Representative methods include Common Neighbors

(CN) [81], Adamic Adar (AA) [2], and Resource Allocation (RA) [151]. They are predicated on

the assumption that nodes that share a greater number neighbors exhibit a higher probability of

forming connections. Global structural information further considers the global structure of the

graph. Such methods include Katz [49] and Personalized PageRank (PPR) [15]. These methods

posit that nodes interconnected by a higher number of paths are deemed to have larger similarity

and, therefore, are more likely to form connections. Lastly, feature proximity assumes nodes with

more similar features connect [79]. Previous work [83, 145] have shown that leveraging the node

features are helpful in predicting links. Lastly, we note that [72] has recently shown that to properly

predict a wide variety of links, it’s integral to incorporate all three of these factors.

MPNNs for Link Prediction. Message Passing Neural Networks (MPNNs) [37] aim to learn

node representations via the message passing mechanism. Traditional MPNNs have been used

for LP including GCN [53], SAGE [42], and GAE [54]. However, they have been shown to be

suboptimal for LP as they aren’t expressive enough to capture important pairwise patterns [141, 102].

SEAL [140] and NBFNet [154] try to address this by customizing the message passing process to

each target link. This allows for the message passing to learn pairwise information specific to the

target link. However, these methods have been shown to be unduly expensive as they require a

separate round of message passing for each target link. As such, recent methods have been proposed

to instead decouple the message passing and pairwise information [136, 20, 121], reducing the time

needed to do message passing. Such methods include NCN/NCNC [121] which exploit the common

neighbor information and BUDDY [20] and Neo-GNN [136] which consider the global structural

information.

Graph Transformers. Recent work has attempted to extend the original Transformer [114]

architecture to graph-structured data. Graphormer [133] learns node representations by attending

all nodes to each other. To properly model the structural information, they propose to use multiple
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types of structural encodings (i.e., structural, centrality, and edge). SAN [58] further considers the

use of the Laplacian positional encodings (LPEs) to enhance the learnt structural information. Al-

ternatively, TokenGT [51] considers all nodes and edges as tokens in the sequence when performing

attention. Due to the large complexity of these models, they are unable to scale to larger graphs.

To address this, several graph transformers [22, 124] have been proposed for node classification

that attempt to efficiently attend to the graph. However, while some work [23, 85] have formulated

transformers for knowledge graph completion, to our knowledge, there are no graph transformers

designed specifically for LP on uni-relational graphs.

3.2.2 Preliminaries

We denote a graph as G = {V, E}, where V and E are the sets of nodes and edges in G,

respectively. The adjacency matrix is represented as 𝐴 ∈ R|𝑉 |×|𝑉 |. The 𝑑-dimensional node

features are represented by the matrix 𝑋 ∈ R|𝑉 |×𝑑 . The set of neighbors for a node 𝑣 is given by

N(𝑣). The set of overlapping neighbors between two nodes 𝑎 and 𝑏, i.e., the common neighbors

(CNs), is expressed by NCN
(𝑎,𝑏) . We further denote the set of nodes that are 1-hop neighbors of

only one of 𝑎 or 𝑏 as N1
(𝑎,𝑏) and the nodes that are >1-hop from both nodes as N>1

(𝑎,𝑏) . Lastly, the

personalized pagerank (PPR) score for a root node 𝑣 and an arbitrary node 𝑢 is given by ppr(𝑣, 𝑢).

3.3 The Proposed Framework

In Section 5.1, we highlighted the importance of adaptively modeling multiple types of LP

factors. However, current methods that use pairwise encodings, i.e., DP-MPNNs, struggle to

appropriately achieve this goal. This is due to two issues: (1) They only attempt to model a subset

of the potential LP factors (e.g., only local structural information), limiting their ability to model

multiple factors. (2) They use a one-size-fits-all approach in regard to pairwise encoding, using the

same combination of LP factors for each target link. These issues strongly limit the potential of

such methods to properly model a variety of different target links. To overcome these problems, we

propose LPFormer, a new transformer-based method that can adaptively customize the pairwise

information for each target link by considering a variety of different LP factors in an efficient

manner.
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Figure 3.2 An overview of LPFormer. (1) Encode the nodes via a MPNN. (2) For a given target
link, we determine which nodes to attend to (N̂ (𝑎, 𝑏)) via the PPR-based thresholding technique
in Eq. (3.10). (3) The pairwise encoding is computed by attending to each node, 𝑢 ∈ N̂ (𝑎, 𝑏)
using the feature and relative positional encoding rpe(𝑎,𝑏,𝑢) . (4) The pairwise encoding, node
representations, and counts of different node types are concatenated and used to compute the final
probability of the target link existing.

3.3.1 A General View of Pairwise Encodings

Recent MPNNs for LP use a decoupled strategy to include the pairwise information [20,

121, 136]. These methods, DP-MPNNs, predict the existence of a link (𝑎, 𝑏) via both the node

representations and a pairwise encoding 𝑠(𝑎, 𝑏). They follow the formulation below:

𝐻 = MPNN(𝐴, 𝑋),

𝑝(𝑎, 𝑏) = 𝜎
(
MLP

(
h𝑎 ⊙ h𝑏 ∥ 𝑠(𝑎, 𝑏)

))
, (3.1)

where ℎ𝑖 is the representation of node 𝑖 encoded by the MPNN. Various DP-MPNNs adopt different

ways to model the pairwise encoding. For example, NCN [121] models the pairwise encoding

𝑠(𝑎, 𝑏) as the summation of the node representations of the CNs. The definitions of 𝑠(𝑎, 𝑏) for

other prominent DP-MPNNs can be found in Appendix B.1. The pairwise encodings in these

existing methods are typically manually selected or extracted from the graph, which limits the LP

factors they can cover. For example, 𝑠(𝑎, 𝑏) in NCN and NCNC only capture the local structural

information. BUDDY [20] ignores the node features when computing the pairwise encoding.
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To flexibly model multiple types of LP factors, we propose a general formulation for pairwise

encodings as follows,

𝑠(𝑎, 𝑏) =
∑︁
𝑢∈V

𝑤(𝑎, 𝑏, 𝑢) ⊙ ℎ(𝑎, 𝑏, 𝑢), (3.2)

where 𝑤(𝑎, 𝑏, 𝑢) measures the importance of node 𝑢 to (𝑎, 𝑏), and ℎ(𝑎, 𝑏, 𝑢) is the encoding of

node 𝑢 relative to (𝑎, 𝑏). By considering which nodes should be considered for (𝑎, 𝑏) and how

they are related to the node pair, Eq. (3.2) can model different LP factors by manually defining

𝑤(𝑎, 𝑏, 𝑢) and ℎ(𝑎, 𝑏, 𝑢). In particular, we demonstrate how the heuristic methods corresponding

to different LP factors can fit into this framework.

Common Neighbors (CNs) [81]: CNs considers the local structural information and is defined

for a pair of nodes (𝑎, 𝑏) asNCN
(𝑎,𝑏) = N(𝑎)∩N (𝑏). Eq. (3.2) is equal to the CNs when ℎ(𝑎, 𝑏, 𝑢) = 1

and:

𝑤(𝑎, 𝑏, 𝑢) =


1, when 𝑢 ∈ N (𝑎) ∩ N (𝑏)

0, else

 . (3.3)

Katz Index [49]: The Katz index models the global structural information. It is defined as

weighted summation of the number of paths of different lengths connecting 𝑎 and 𝑏 and a decay

weight 𝛽 ∈ [0, 1],

Katz(𝑎, 𝑏) =
∞∑︁
𝑙=1

𝛽𝑙𝐴𝑙𝑎,𝑏 .

This is equivalent to Eq. (3.2) where 𝑤(𝑎, 𝑏, 𝑢) = ∑∞
𝑙=1 𝛽

𝑙𝑒𝑇𝑎 𝐴
𝑙 and

ℎ(𝑎, 𝑏, 𝑢) =

𝑒𝑇
𝑏
, when 𝑢 = 𝑏

0, else

 ,
where 𝑒𝑖 ∈ B|V| is a one-hot vector for a node 𝑖.

Feature Similarity: The feature similarity of the pair of nodes (𝑎, 𝑏) is expressed by dis(x𝑎, x𝑏)

where x𝑎 are the node features of node 𝑎 and dis(·) is a distance function (e.g., euclidean distance).

This can be rewritten as Eq. (3.2) by substituting 𝑤(𝑎, 𝑏, 𝑢) = dis(x𝑎, x𝑢) and ℎ(𝑎, 𝑏, 𝑢) = 𝑒𝑇
𝑏
.

These examples demonstrate that the general formulation can indeed model many different LP

factors including local and global structural information and feature proximity. We further show
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in Appendix B.2 that Eq. (3.2) can model a variety of additional LP factors including RA [151],

the pairwise encodings used in NCN/NCNC [121] and Neo-GNN [136]. However, fitting these

methods into the formulation in Eq. (3.2) requires manually defining both 𝑤(𝑎, 𝑏, 𝑢) and ℎ(𝑎, 𝑏, 𝑢).

This constrains the information represented by 𝑠(𝑎, 𝑏) based on the choice of design. Motivated

by this, in the next section we introduce our method that does not rely on a handcrafting both

𝑤(𝑎, 𝑏, 𝑢) and ℎ(𝑎, 𝑏, 𝑢).

3.3.2 Modeling Pairwise Encodings via Attention

In Section 3.3.1, we introduced a general formulation for pairwise encodings in Eq. (3.2), which

is able to capture a variety of different LP factors. However, it requires manually defining both

terms in the equation. This limits our ability to customize the pairwise information to each target

link. As such, we further aim to move beyond a one-size-fits-all pairwise encoding, and enable

the model to produce customized pairwise encoding for each target link. This allows the model to

handle more realistic graphs that often contain multiple prominent LP factors for different target

links as shown in [72].

In particular, we consider the following question: How can we model Eq (3.2) such that it can

customize the used LP factors to each target link? We consider parameterizing both 𝑤(𝑎, 𝑏, 𝑢)

and ℎ(𝑎, 𝑏, 𝑢). This allows us to learn how to personalize them to each target link. To achieve

this, we leverage softmax attention [6]. This is due to its ability to dynamically learn the relevance

of different nodes to the target link. As such, for multiple target links, it can emphasize the

contributions of different nodes, thereby flexibly modeling different LP factors. We note that since

the attention is between different sequences (i.e., a target link and nodes), it can be considered a

form of cross attention [114].

To enhance the adaptability of the pairwise encoding for various links, it is essential to incor-

porate various types of information. This allows the attention mechanism to discern and prioritize

relevant information for each target link, facilitating the effective modeling of diverse LP factors.

In particular, we consider two types of information. The first is the feature information. This

includes the feature representation of both nodes in the target link and the node being attended
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to. The node features are included due to their role in link formation and relationship to structural

information [79]. Second, we consider the relative positional information. The relative posi-

tional information reflects the relative position in the graph of a node 𝑢 to the target link (𝑎, 𝑏)

in the local and global structural context. Due to the importance of local and global structural

information [31, 45], it is vital to properly encode both. By including both the structural and feature

information, we are able to cover the space of potential LP factors (see Section 3.2.1).

We denote the feature representation of a node 𝑢 as h𝑢 and the relative positional encoding

(RPE) as rpe(𝑎,𝑏,𝑢) . The node importance 𝑤(𝑎, 𝑏, 𝑢) is modeled via attention as follows:

𝑤̃(𝑎, 𝑏, 𝑢) = 𝜙
(
h𝑎, h𝑏, h𝑢, rpe(𝑎,𝑏,𝑢)

)
,

𝑤(𝑎, 𝑏, 𝑢) = exp(𝑤̃(𝑎, 𝑏, 𝑢))∑
𝑣∈V̄(𝑎,𝑏) exp(𝑤̃(𝑎, 𝑏, 𝑢)) , (3.4)

where V̄ (𝑎, 𝑏) = V \ {𝑎, 𝑏}. The attention weight 𝑤(𝑎, 𝑏, 𝑢) can be considered as the impact of a

node 𝑢 on (𝑎, 𝑏) relative to all nodes in G. This allows the model to emphasize different LP factors

for each target link. The node encoding ℎ(𝑎, 𝑏, 𝑢) includes the features of node 𝑢 in conjunction

with the RPE and is defined as:

ℎ(𝑎, 𝑏, 𝑢) = W
[
h𝑢 ∥ rpe(𝑎,𝑏,𝑣)

]
. (3.5)

By substituting Eq. (3.4) and Eq. (3.5) into Eq. (3.2) we can compute the pairwise information

𝑠(𝑎, 𝑏). We further define 𝜙(·) in Eq. (3.4) as the GATv2 [17] attention mechanism. The detailed

formulation is given in Appendix B.4. The feature representations h𝑖 are computed via a MPNN.

We use GCN [55] in this work. However, it is unclear how to properly encode the RPE of a node

𝑢 relative to (𝑎, 𝑏), rpe(𝑎,𝑏,𝑢) . We aim to design the RPE to capture both the local and global

structural relationship between the node and target link while also being efficient to calculate. In

the next section, we discuss our solution for modeling rpe(𝑎,𝑏,𝑢) .

3.3.3 PPR-Based Relative Positional Encodings

In this section, we introduce our strategy for computing the RPE of a node 𝑢 relative to a

target link (𝑎, 𝑏). Intuitively, we want the RPE to reflect the positional relationship between 𝑢 and
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(𝑎, 𝑏) such that different types of information (i.e., local vs. global) are encoded differently. Using

Figure 4.1 as an example, since node 3 is a CN of (source, 5) we expect it to have a much different

relationship to the target link than node 6, which is a 2-hop neighbor of both nodes. An enticing

option is to use the double radius node labeling (DRNL) trick introduced by [140]. However, [20]

have shown it to be prohibitively expensive to calculate for larger graphs. Furthermore, existing

RPEs are typically infeasible to calculate on larger graphs as they often rely on pairwise distances

or the eigenvectors of the Laplacian [88].

As such, we seek an RPE that can both distinguish the relationship of different nodes to the

target link while also being efficient to calculate. To motivate our RPE design, we draw inspiration

from the following Proposition.

Proposition 1. Consider a target link (𝑎, 𝑏) and a node 𝑢 ∈ V \ {𝑎, 𝑏}. The PPR [15] score

of a root node 𝑖 and target node 𝑗 with teleportation probability 𝛼 is denoted by ppr(𝑖, 𝑗). Let

𝑟 𝑘𝑎 (𝑢) be the probability of a walk of length 𝑘 beginning at node 𝑎 and terminating at 𝑢. We define

𝑟 𝑘
𝑎,𝑏

(𝑢) := 𝑟 𝑘𝑎 (𝑢) + 𝑟 𝑘𝑏 (𝑢). We also define a weight 𝛾𝑘 := 𝛼(1 − 𝛼)𝑘 for all walks of length 𝑘 .

The PPR scores, 𝑝𝑝𝑟 (𝑎, 𝑢) and 𝑝𝑝𝑟 (𝑏, 𝑢), along with the random walk probabilities of disparate

lengths, are interconnected through the following relationship.

Γ(𝑎, 𝑏, 𝑢) = ppr(𝑎, 𝑢) + ppr(𝑏, 𝑢) =
∞∑︁
𝑘=0

𝛾𝑘𝑟 𝑘𝑎,𝑏 (𝑢). (3.6)

The detailed proof is given in Appendix B.3. From Proposition 1, we can make the following

observations: (1) The PPR scores encode the weighted sum of the probabilities of different length

random walks connecting two nodes. (2) Walks of shorter length are given higher importance, as

evidenced by the dampening factor 𝛾𝑘 = 𝛼(1 − 𝛼)𝑘 which decays with the increase in 𝑘 . These

observations imply that – a larger value of Γ(𝑎, 𝑏, 𝑢) correlates with the existence of many

shorter walks connecting node 𝑢 to the both nodes in the target link (𝑎, 𝑏).

Therefore, the PPR scores can be used as an intuitive and useful method to understand the

structural relationship between node 𝑢 and both nodes in the target link (𝑎, 𝑏). If both scores,

ppr(𝑎, 𝑢) and ppr(𝑏, 𝑢), are high, there exists a high probability that many shorter walks connect
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𝑢 to both nodes in the target link. This implies that node 𝑢 has a stronger impact on the nodes in

the target link. On the other hand, if both PPR scores are low, there is likely very little relationship

between 𝑢 and the target link. This allows for a convenient way of differentiating how a node

structurally relates to the target link. Furthermore, we note that the PPR matrix can be efficiently

pre-computed using the algorithm introduced by [5], allowing for easy computation and use.

Following this idea, to calculate the RPE of a node 𝑢, we use the PPR scores of a node 𝑢

relative to both nodes in the target link (𝑎, 𝑏). Instead of considering the sum of PPR scores as in

Proposition 1, we further parameterize Γ(·) via an MLP,

rpe(𝑎,𝑏,𝑢) = MLP (ppr(𝑎, 𝑢), ppr(𝑏, 𝑢)) . (3.7)

By introducing learnable parameters to Γ(·), it allows for the model learn the importance of

individual PPR scores and how they interact with each other. To ensure that Eq. (3.7) is invariant

to the order of the nodes in the target link, i.e., (𝑎, 𝑏) and (𝑏, 𝑢), we further set the RPE to be equal

to the summation of the representations given by both (𝑎, 𝑏) and (𝑏, 𝑎):

rpe(𝑎,𝑏,𝑢) = rpe(𝑎,𝑏,𝑢) + rpe(𝑏,𝑎,𝑢) . (3.8)

However, a concern with Eq. (3.8) is that it is not guaranteed to be able to distinguish certain types

of nodes from each other. For example, it is necessary to clearly distinguish CNs from other nodes

due to their important role in link formation [81]. To overcome this issue, we fit three separate

MLPs for when 𝑢 is a: CN of (𝑎, 𝑏), a 1-hop neighbor of either 𝑎 and 𝑏, and a >1-hop neighbor of

both 𝑎 and 𝑏. This ensures that we can properly distinguish between these three types of nodes. We

verify the effectiveness of this design in Section 3.4.4. Lastly, we note that while other work [75, 63]

has considered the use of random-walk based positional encodings, they are only designed for use

on the node-level and are unable to be used for link-level tasks like LP.

3.3.4 Efficiently Attending to the Graph Context

The proposed attention mechanism in Section 3.3.2 attends to all nodes in the graph, sans those

in the link itself. This makes it difficult to scale to large graphs. Motivated by selective [73] and

sparse [25] attention, we opt to attend to only a small portion of the nodes.
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At a high level, we are interested in determining a subset of nodes N̂ (𝑎, 𝑏) ∈ V to attend to for

the target link (𝑎, 𝑏). Our goal is to choose the set of nodes N̂ (𝑎, 𝑏) such that they are (a) few in

number to improve scalability and (b) provide important contextual information to the pair (𝑎, 𝑏)

to best learn the pairwise information. This can be achieved by only considering all nodes where

the importance of the node 𝑢 to the target link (𝑎, 𝑏) is considered high. Formally, we can write

this as the following where I(𝑎, 𝑏, 𝑢) is a function that denotes the importance of a node 𝑢 to the

target link (𝑎, 𝑏):

N̂ (𝑎, 𝑏) = {𝑢 ∈ V \ {𝑎, 𝑏} | I(𝑎, 𝑏, 𝑢) > 𝜂}. (3.9)

The threshold 𝜂 allows us to distinguish those nodes that are sufficiently important to the target

link. This allows for a simple and efficient way of determining the set N̂ (𝑎, 𝑏). However, what

do we use to model the importance I(𝑎, 𝑏, 𝑢)? For ease of optimization and better efficiency, we

avoid parameterizing the function I(𝑎, 𝑏, 𝑢). Instead, we want to choose a metric such that can

properly serve as a proxy for the importance of a node 𝑢 to (𝑎, 𝑏) while also being concentrated in

a small subset of nodes. Such a metric will allow Eq. (3.9) to choose a small but influential set of

nodes to attend to.

A measure that satisfies both criteria is Personalized Pagerank (PPR) [15]. In Section 3.3.3

we discussed that the PPR score can serve as a good tool to model the influence of a one node

on another. Furthermore, existing work [38, 80, 5] shows that the PPR scores tend to be highly

localized in a small subset of nodes. Therefore by making I(𝑎, 𝑏, 𝑢) contingent on the PPR scores

of (𝑎, 𝑢) and (𝑏, 𝑢) we can extract a small but important set of nodes to attend to for the target link.

Following this idea, for a target link (𝑎, 𝑏), we keep all nodes whose PPR score is above some

threshold 𝜂 relative to both nodes in the target link. As such, we only keep a node 𝑢 if it is related

in some capacity to at least one of the nodes in the target link. Similarly to Section 3.3.3, we treat

CN, 1-Hop, and >1-Hop nodes differently by applying a different threshold for them. The filtered

node set for each category of nodes is given by:

N̂ 𝜋
(𝑎,𝑏) = {𝑢 ∈ N 𝜋

(𝑎,𝑏) | ppr(𝑎, 𝑢) > 𝜂𝜋, ppr(𝑏, 𝑢) > 𝜂𝜋}, (3.10)
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Table 3.1 Dataset statistics. The split ratio is the % of samples for train/validation/test.

Cora Citeseer Pubmed ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2

#Nodes 2,708 3,327 18,717 235,868 4,267 576,289 2,927,963
#Edges 5,278 4,676 44,327 1,285,465 1,334,889 30,326,273 30,561,187

Split Ratio 85/5/10 85/5/10 85/5/10 92/4/4 80/10/10 70/20/10 98/1/1

where N̂ 𝜋
(𝑎,𝑏) is the filtered node set for all nodes of the type 𝜋 ∈ {CN, 1−Hop, >1−Hop} and 𝜂𝜋 is

the corresponding PPR threshold. We note that while other work [10, 134] has used PPR to filter

the nodes on the node-level, no existing work has done so on the link-level.

We corroborate this design by demonstrating that LPFormer can achieve SOTA performance in

LP (Section 3.4.2) while achieving a faster runtime than the second-best method, NCNC [121], on

denser graphs (Section 3.4.7). This is despite the fact that LPFormer can attend to a wider variety

of nodes. We further show in Section 3.4.5 that the performance is stable with regards to the values

of 𝜂 chosen, allowing us to easily choose a proper threshold on any dataset.

3.3.5 LPFormer

We now define the overall framework – LPFormer. The overall procedure is given in Figure 3.2:

(1) We first learn node representations from the input adjacency and node features via an MPNN.

We note that this step is agnostic to the target link. (2) For a target link (𝑎, 𝑏) we extract the nodes

to attend to, i.e. N̂ (𝑎, 𝑏). This is done via the PPR thresholding technique defined in Section 3.3.4.

(3) We apply 𝐿 layers of attention, using the mechanism defined in Section 3.3.2. The output is the

pairwise encoding 𝑠(𝑎, 𝑏). (4) We generate the prediction of the target link using three types of

information: the element-wise product of the node representation, the pairwise encoding, and the

number of CN, 1-Hop, and >1-Hop nodes identified by Eq. (3.10). The score function is given by:

𝑝(𝑎, 𝑏) = 𝜎
(
MLP

(
h𝑎 ⊙ h𝑏 ∥ 𝑠(𝑎, 𝑏) ∥ |N̂CN

(𝑎,𝑏) | ∥ |N̂1
(𝑎,𝑏) | ∥ |N̂>1

(𝑎,𝑏) |
))

(3.11)

We demonstrate in Section 3.4.4 that the inclusion of the node counts is helpful, as it provides

complementary information to the pairwise encoding.

3.4 Experiments

In this section, we conduct extensive experiments to validate the effectiveness of LPFormer.

Specifically, we attempt to answer the following questions: (RQ1) Can LPFormer consistently
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outperform baseline methods on a variety of different benchmark datasets? (RQ2) Is LPFormer

able to model a variety of different LP factors? (RQ3) Can LPFormer be run efficiently on large

dense graphs? We further conduct studies ablating each component of our model and analyzing

the effect of the PPR-based threshold on performance.

3.4.1 Experimental Settings

Datasets. We include Cora, Citeseer, and Pubmed [131] and ogbl-collab, ogbl-ppa, ogbl-

ddi, and ogbl-citation2 [44]. Furthermore, for Cora, Citeseer, and Pubmed we experiment under

a single fixed split (see Appendix B.5.1 for further discussion). The detailed statistics for each

dataset are shown in Table A.1.

Baseline Models. We compare LPFormer against a wide variety of baselines including:

CN [81], AA [2], RA [151], GCN [55], SAGE [42], GAE [54], SEAL [140], NBFNet [154],

Neo-GNN [136], BUDDY [20], and NCNC [121]. Results on Cora, Citeseer, and Pubmed are

taken from [61]. Results for the heuristic methods are from [44]. All other results are either from

their respective study or [20].

Hyperparameters: The learning rate is tuned from {1𝑒−3, 5𝑒−3}, the decay from {0.95, 0.975, 1},

and the dropout from [0, 0.7], and the weight decay from {0, 1𝑒−4, 1𝑒−7}. The size of the hidden

dimension is set to 64 for ogbl-ppa and ogbl-citation2, 128 for Cora, Pubmed, and ogbl-collab, and

256 for Citeseer. Lastly, the PPR threshold is tuned from {1𝑒−2, 1𝑒−3, 1𝑒−4}.

Evaluation Metrics. Each positive target link is evaluated against a set of given negative links.

The rank of the positive link among the negatives is used to evaluate performance. The two types

of metrics that are used to evaluate this ranking are Hits@K and MRR. For the OGB datasets

we use the metric used in the original study. This includes Hits@50 for ogbl-collab, Hits@100

for ogbl-ppa and MRR for ogbl-citation2. For Cora, Citeseer, Pubmed we follow [61] and use

MRR. Lastly, the same set of negative links is used for all positive links except on ogbl-citation2,

where [44] provides a customized set of 1000 negatives for each individual positive link.
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Table 3.2 Results on benchmark datasets. OOM is an out of memory error. We highlight the
results ranked first, second, and third as green, blue, and orange, respectively.

Cora Citeseer Pubmed ogbl-collab ogbl-ppa ogbl-citation2 Mean Rank

Metric MRR MRR MRR H@50 H@100 MRR

CN 20.99±0.00 28.34±0.00 14.02±0.00 56.44±0.00 27.65±0.00 51.47±0.00 11.0
AA 31.87±0.00 29.37±0.00 16.66±0.00 64.35±0.00 32.45±0.00 51.89±0.00 8.5
RA 30.79±0.00 27.61±0.00 15.63±0.00 64.00±0.00 49.33±0.00 51.98±0.00 8.7

GCN 32.50±6.87 50.01±6.04 19.94±4.24 44.75±1.07 18.67±1.32 84.74±0.21 8.0
SAGE 37.83±7.75 47.84±6.39 22.74±5.47 48.10±0.81 16.55±2.40 82.60±0.36 7.7
GAE 29.98±3.21 63.33±3.14 16.67±0.19 OOM OOM OOM NA

SEAL 26.69±5.89 39.36±4.99 38.06±5.18 64.74±0.43 48.80±3.16 87.67±0.32 6.2
NBFNet 37.69±3.97 38.17±3.06 44.73±2.12 OOM OOM OOM NA

Neo-GNN 22.65±2.60 53.97±5.88 31.45±3.17 57.52±0.37 49.13±0.60 87.26±0.84 7.0
BUDDY 26.40±4.40 59.48±8.96 23.98±5.11 65.94±0.58 49.85±0.20 87.56±0.11 5.7
NCN 32.93±3.80 54.97±6.03 35.65±4.60 64.76±0.87 61.19±0.85 88.09±0.06 3.8
NCNC 29.01±3.83 64.03±3.67 25.70±4.48 66.61±0.71 61.42±0.73 89.12±0.40 3.8

LPFormer 39.42±5.78 65.42±4.65 40.17±1.92 68.14±0.51 63.32±0.63 89.81±0.13 1.2

3.4.2 Main Results

We present the results of LPFormer compared with baselines on multiple benchmark datasets.

Note that we omit ogbl-ddi from the main results due to recent issues discovered by [61] (see

Appendix B.5.2 for more details). The results are shown in Table 4.1. We observe that LPFormer can

achieve SOTA performance on 5/6 datasets, significantly outperforming other baselines. Moreover,

LPFormer is also the most consistent of all the methods, achieving strong performance on all

datasets. This is as opposed to previous SOTA methods, NCNC and BUDDY, which tend to

struggle on Cora and Pubmed. We attribute the consistency of LPFormer to the flexibility of our

model, allowing it to customize the LP factors needed to each link and dataset.

3.4.3 Performance by LP Factor

In this section, we measure the ability of LPFormer to capture a variety of different LP factors.

To measure this, we identify all positive target links when there is only one dominant LP factor.

For example, one group would contain all target links where the only dominant factor is the local

structural information. We focus on links that correspond to one of the three groups identified

in [72]: local structural information, global structural information, and feature proximity.
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We identify these groups by using popular heuristics as proxies for each factor. For local

structural information, we use CNs [81], for global structural information we use PPR [15] as

it’s the most computationally efficient of all global methods, and for feature proximity, we use

the cosine similarity of the features. Using these heuristics, we determine if only one factor is

dominant by comparing the relative score of each heuristic. This is done by first computing the

score for each factor 𝑖 for the target link (𝑎, 𝑏) – 𝑠𝑖 (𝑎, 𝑏). For each factor, we then compute the

score corresponding to the 𝑝-th percentile among all links, 𝑠𝑖. We choose a larger value of 𝑝 (i.e.

90%) such that a score ≥ 𝑠𝑖 indicates that a significant amount of pairwise information exists for

that factor. For a single target link, we then compare the score of each factor 𝑠𝑖 (𝑎, 𝑏) to 𝑠𝑖. If

𝑠𝑖 (𝑎, 𝑏) ≥ 𝑠𝑖 is true for only one factor, this implies that the score for only one factor is “high”.

Therefore there is a notable amount of pairwise information existing for only one factor for the link

(𝑎, 𝑏). This ensures that only one factor is strongly expressed. If this is true, we then assign the

target link (𝑎, 𝑏) to factor 𝑖. Please see Appendix B.5.4 for a more detailed explanation.

We demonstrate the results on Cora, Citeseer, and ogbl-collab in Figure 3.3. We observe that

LPFormer typically performs best for each individual LP factor on all datasets. Furthermore, it

is also the most consistently well-performing on each factor as compared to other methods. For

example, on Cora the other methods struggle for links that correspond to the feature proximity

factor. LPFormer, on the other hand, is able to significantly outperform them on those target links,

performing around 33% better than the second best method. Lastly, we note that most methods tend

to perform well on the links corresponding to the global factor, even if they don’t explicitly model

such information. This is caused by a strong correlation that tends to exist between local and global

structural information, often resulting in considerable overlap between both factors [72]. These

results show that LPFormer can indeed adapt to multiple types of LP factors, as it can consistently

perform well on samples belonging to a variety of different LP factors. Additional results are given

in Appendix B.5.5.
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(a) Cora (b) Citeseer (c) ogbl-collab

Figure 3.3 Performance on links that contain one dominant LP factor. Results are on (a) Cora, (b)
Citeseer, and (c) ogbl-collab.

3.4.4 Ablation Study

We further include an ablation study to verify the effectiveness of the proposed components

in LPFormer. In particular, we introduce 6 variants of LPFormer. (a) w/o Learnable Att: No

attention is learned. As such, we set all attention weights to 1 and remove the RPE. (b) w/o

Features in Att: We remove the node feature information from the attention mechanism. (c) w/o

RPE in Att: We remove the RPE from the attention mechanism. (d) w/o PPR RPE: We replace

the PPR-based RPE with a learnable embedding for each of CN, 1-Hop, and >1-Hop nodes. (e) w/o

PPR RPE by Node Type: We don’t fit a separate function for each node type when determining

the PPR RPE (see Section 3.3.3). Instead we use one for all nodes. (f) w/o Counts: We remove

the counts of different nodes from the scoring function.

The results are shown in Table 4.4. We include ogbl-collab, ogbl-ppa, and Citeseer. We

observe that ablating a component always decreases the performance. However, the magnitude of

the decrease is dataset-dependent. For example, on ogbl-collab, ablating the feature information in

the attention marginally affects the performance. However, on ogbl-ppa and Citeseer, removing the

feature information results in a large decrease in performance. On the other hand, while removing

learnable attention results in a modest decrease on ogbl-ppa, for the other two datasets we see a

large drop. This highlights the importance of each component of our framework, as they are each

necessary for consistently strong performance across multiple datasets.
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Table 3.3 Ablation Study on LPFormer.

Method ogbl-collab ogbl-ppa Citeseer

w/o Learnable Att 65.05±0.50 62.77±1.03 56.23±1.75

w/o Features in Att 68.04±0.79 56.98±1.55 53.40±9.30

w/o RPE in Att 65.26±0.56 61.20±0.69 56.70±3.79

w/o PPR RPE 67.09±0.51 61.91±1.22 51.96±15.2

w/o PPR RPE by Node Type 67.95±0.54 62.92±1.06 57.40±5.71

w/o Counts 67.75±0.41 44.37±1.89 54.39±5.30

LPFormer 68.14±0.51 63.32±0.63 65.42±4.65

Table 3.4 Effect of Varying the PPR Thresholds.

Threshold ogbl-collab ogbl-citation2

1-Hop >1−Hop 1-Hop >1−Hop

1e-4 68.24±0.25 67.73±0.65 89.81±0.13 89.14±0.22
1e-2 67.60±0.31 68.24±0.25 89.49±0.18 89.81±0.13

1 67.08±0.65 68.14±0.51 89.49±0.16 89.26±0.39

3.4.5 Effect of the PPR Thresholds

We examine the effect of varying the PPR threshold for both 1-Hop and >1−Hop nodes as

described in Eq. (3.10). The results for ogbl-collab and ogbl-citation2 are shown in Table 3.4.

When varying the 1-Hop threshold, we fix the value of the >1−Hop threshold to 1e-2 for both

datasets. When varying the >1−Hop threshold, we fix the value of the 1-Hop threshold to 1e-4 for

both datasets.

We can observe that modifying the threshold has little effect on the underlying performance of

the model. For both datasets, a value of 1e-2 works well for the >1−Hop threshold and 1e-4 works

well for the 1-Hop threshold. We typically find that setting both values to 1e-2 provides a good

trade-off between performance and efficiency.

3.4.6 Performance on HeaRT Setting

We further test the performance of our method on the HeaRT [61] evaluation setting, which

considers a more realistic and difficult evaluation setting for link prediction. This is done by

introducing a much harder and more realistic set of negative samples during evaluation. [61] observe

that this results in a large decrease in performance on all datasets. Furthermore, compared to the
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Table 3.5 Results (MRR) under HeaRT. We highlight the results ranked first, second, and third as
green, blue, and orange, respectively.

Models Cora Citeseer Pubmed ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2 Mean Rank

CN 9.78 8.42 2.28 4.20 6.71 25.70 17.11 11.1
AA 11.91 10.82 2.63 5.07 6.97 26.85 17.83 9.6
RA 11.81 10.84 2.47 6.29 8.70 28.34 17.79 8.1

GCN 16.61 ± 0.30 21.09 ± 0.88 7.13 ± 0.27 6.09 ± 0.38 13.46 ± 0.34 26.94 ± 0.48 19.98 ± 0.35 4.7
SAGE 14.74 ± 0.69 21.09 ± 1.15 9.40 ± 0.70 5.53 ± 0.5 12.60 ± 0.72 27.27 ± 0.30 22.05 ± 0.12 4.7
GAE 18.32 ± 0.41 25.25 ± 0.82 5.27 ± 0.25 OOM 3.49 ± 1.73 OOM OOM NA

SEAL 10.67 ± 3.46 13.16 ± 1.66 5.88 ± 0.53 6.43 ± 0.32 9.99 ± 0.90 29.71 ± 0.71 20.60 ± 1.28 6.4
NBFNet 13.56 ± 0.58 14.29 ± 0.80 >24h OOM >24h OOM OOM NA

BUDDY 13.71 ± 0.59 22.84 ± 0.36 7.56 ± 0.18 5.67 ± 0.36 12.43 ± 0.50 27.70 ± 0.33 19.17 ± 0.20 5.9
Neo-GNN 13.95 ± 0.39 17.34 ± 0.84 7.74 ± 0.30 5.23 ± 0.9 10.86 ± 2.16 21.68 ± 1.14 16.12 ± 0.25 7.4

NCN 14.66 ± 0.95 28.65 ± 1.21 5.84 ± 0.22 5.09 ± 0.38 12.86 ± 0.78 35.06 ± 0.26 23.35 ± 0.28 4.4
NCNC 14.98 ± 1.00 24.10 ± 0.65 8.58 ± 0.59 4.73 ± 0.86 >24h 33.52 ± 0.26 19.61 ± 0.54 4.8

LPFormer 16.80 ± 0.52 26.34 ± 0.67 9.99 ± 0.52 7.62 ± 0.26 13.20 ± 0.54 40.25 ± 0.24 24.70 ± 0.55 1.4

original evaluation setting, MPNNs designed specifically for link prediction are often outperformed

by heuristics or other MPNNs.

The full results can be found in Table 3.5. We observe that LPFormer performs considerably

better than all other models. For instance, the mean rank of LPFormer is 3.1x better than the 2nd

best-performing model, NCN. This indeed shows the advantage of LPFormer, as it can consistently

achieve extraordinary performance across all datasets under the much more challenging HeaRT

evaluation setting. This is as opposed to other LP-specific methods that often perform similarly to

standard MPNN methods.

3.4.7 Runtime Analysis

In this section, we compare the runtime of LPFormer against NCNC, which is the strongest

performing baseline. The results are shown in Figure 3.4 on all four OGB datasets We further

include the mean degree of each dataset in parentheses. We observe that LPFormer shines on

denser datasets, taking significantly less time to train one epoch. This is despite that LPFormer

can attend to nodes beyond the 1-hop radius of the target link. This underscores the importance of

the PPR thresholding technique introduced in Section 3.3.4, as it allows for efficient attention to a

wider variety of nodes. Lastly, we note that LPFormer struggles on the ogbl-citation2 dataset due

to the large number of nodes in the dataset (i.e., 2,927,963), which requires the sparse PPR matrix

to be quite large. For future work we plan on exploring pre-computing the necessary PPR scores as
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an efficient pre-processing step, thereby removing the need to store the costly PPR matrix. Please

see Appendix B.5.7 for more details.

Figure 3.4 Comparison of training time of 1 epoch between LPFormer and NCNC. The mean
degree is in parentheses.

3.5 Conclusion

In this paper we introduce a new framework, LPFormer, that aims to integrate a wider variety

of pairwise information for link prediction. LPFormer does this via a specially designed graph

transformer, which adaptively considers how a node pair relate to each other in the context of the

graph. Extensive experiments demonstrate that LPFormer can achieve SOTA performance on a

wide variety of benchmark datasets while retaining efficiency. We further demonstrate LPFormer’s

supremacy at modeling multiple types of LP factors. For future work, we plan on exploring other

methods of incorporating multiple LP factors with an emphasis on global structural information.

We also plan to investigate the potential of alternative relative positional encodings.
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CHAPTER 4

TOWARD DEGREE BIAS IN EMBEDDING-BASED
KNOWLEDGE GRAPH COMPLETION

4.1 Introduction

Knowledge graphs (KGs) are a specific type of graph where each edge represents a single fact.

Each fact is represented as a triple (ℎ, 𝑟, 𝑡) that connects two entities ℎ and 𝑡 with a relation 𝑟.

KGs have been widely used in many real-world applications such as recommendation [18], drug

discovery [77], and natural language understanding [67]. However, the incomplete nature of KGs

limits their applicability in those applications. To address this limitation, it is desired to perform

a KG completion (KGC) task, i.e., predicting unseen edges in the graph thereby deducing new

facts [93]. In recent years, the embedding-based methods [13, 29, 7, 100] that embed a KG into

a low-dimensional space have achieved remarkable success on KGC tasks and enable downstream

applications.

However, a common issue in graph-related tasks is degree bias [107, 56], where nodes of lower

degree tend to learn poorer representations and have less satisfactory downstream performance.

Recent studies have validated this issue for various tasks on homogeneous graphs such as classi-

fication [107, 146, 68] and link prediction [56]. However, KGs are naturally heterogeneous with

multiple types of nodes and relations. Furthermore, the study of degree bias on KGs is rather

limited. Therefore, in this work, we ask whether degree bias exists in KGs and how it affects the

model performance in the context of KGC.

To answer the aforementioned question, we perform preliminary studies to investigate how the

degree affects the KGC performance. Take a triple (ℎ, 𝑟, 𝑡) as one example. The in-degree of entity

𝑡 is the number of triples where 𝑡 is the tail entity. Furthermore, we define the tail-relation degree

as the number of triples where 𝑡 and the relation 𝑟 co-occur as the tail and relation (Eq. (4.2)).

An example in Figure 4.1 is the tail-relation pair (Germany, Has Country). Since the pair only

co-occurs as a relation and tail in one triple, their tail-relation degree is 1. Our preliminary studies

(Section 4.3) suggest that when predicting the tail entity 𝑡, the in-degree of 𝑡 and especially the
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Figure 4.1 Example of multiple facts in a KG. Since each country only co-occurs with the relation
Has Country as the tail on one edge, they each only have a tail-relation degree of one with the
relation Has Country.

tail-relation degree of (𝑡, 𝑟) plays a vital role. That is, when predicting the tail for a triple (ℎ, 𝑟, 𝑡),

the number of triples where the entity 𝑡 and relation 𝑟 co-occur as an entity-relation pair correlates

significantly with performance during KGC. Going back to our example, since Germany and Has

Country only co-occur as a relation and tail in one triple their tail-relation degree is low, thus

making it difficult to predict Germany for the query (Europe, Has Country, ?).

Given the existence of degree bias in KGC, we aim to alleviate the negative effect brought

by degree bias. Specifically, we are tasked with improving the performance of triples with low

tail-relation degrees while maintaining the performance of other triples with a higher tail-relation

degree. Essentially, it is desired to promote the engagement of triples with low tail-relation degrees

during training so as to learn better embeddings. To address this challenge, we propose a novel

data augmentation framework. Our method works by augmenting entity-relation pairs that have

low tail-relation degrees with synthetic triples. We generate the synthetic triples by extending the

popular Mixup [137] strategy to KGs. Our contributions can be summarized as follows:

• Through empirical study, we identify the degree bias problem in the context of KGC. To the best

of our knowledge, no previous work has studied the problem of degree bias from the perspective

of entity-relation pairs.

• We propose a simple yet effective data augmentation method, KG-Mixup, to alleviate the degree

bias problem in KG embeddings.
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• Through empirical analysis, we show that our proposed method can be formulated as a form of

regularization on the low tail-relation degree samples.

• Extensive experiments have demonstrated that our proposed method can improve the performance

of lower tail-relation degree triples on multiple benchmark datasets without compromising the

performance on triples of higher degree.

4.2 Related Work

KG Embedding: TransE [13] models the embeddings of a single triple as a translation in the

embedding space. Multiple works model the triples as a tensor factorization problem, including [84,

127, 7, 4]. ConvE [29] learns the embeddings by modeling the interaction of a single triple via a

convolutional neural network. Other methods like R-GCN [100] modify GCN [55] for relational

graphs.

Imbalanced/Long-Tail Learning: Imbalanced/Long-Tail Learning considers the problem of

model learning when the class distribution is highly uneven. SMOTE [21], a classic technique,

attempts to produce new synthetic samples for the minority class. Recent work has focused on

tackling imbalance problems on deeper models. Works such as [90, 106, 66] address this problem

by modifying the loss for different samples. Another branch of work tries to tackle this issue by

utilizing ensemble modeling [119, 150, 122].

Degree Bias: [76] demonstrate the existence of popularity bias in popular KG datasets, which

causes models to inflate the score of entities with a high degree. [11] show the existence of entity

degree bias in biomedical KGs. [93] demonstrate that the performance is positively correlated with

the number of source peers and negatively with the number of target peers. [56] analyze the degree

bias of random walks. To alleviate this issue, they propose a debiasing method that utilizes random

graphs. In addition, many studies have focused on allaying the effect of degree bias for the task of

node classification including [107, 146, 68]. However, there is no work that focuses on how the

intersection of entity and relation degree bias effects embedding-based KGC.

Data Augmentation for Graphs There is a line of works studying data augmentation for homo-

geneous graphs [149, 147]. Few of these works study the link prediction problem [148] but they
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(a) In and Out Degree Analysis (b) Tail In-Degree Analysis (c) Controlling for Degrees

Figure 4.2 MRR when predicting the tail for TuckER on FB15K-237 when varying the (a)
in-degree and out-degree of the head and tail entity, (b) tail-relation and other-relation in-degree,
and (c) other-relation in-degree for smaller sub-ranges of the tail-relation degree.

do not address the issues in KGs. To augment KGs, [108] generate synthetic triples via adversarial

learning; [118] use a GAN to create stronger negative samples; [59] use rule mining to identify

new triples to augment the graph with. However, all these methods do not augment with for the

purpose of degree bias in KGs and hence are not applicable to the problem this paper studies.

4.3 Preliminary Study

In this section we empirically study the degree bias problem in KGC. We focus on two repre-

sentative embedding based methods ConvE [29] and TuckER [7].

We first introduce some notations. We denote G = {V,R, E} as a KG with entities V, relations

R, and edges E. Each edge represents two entities connected by a single relation. We refer to an

edge as a triple and denote it as (ℎ, 𝑟, 𝑡) where ℎ is referred to as the head entity, 𝑡 the tail entity,

and 𝑟 the relation. Each entity and relation is represented by an embedding. We represent the

embedding for a single entity 𝑣 as x𝑣 ∈ R𝑛𝑣 and the embedding for a relation 𝑟 as x𝑟 ∈ R𝑛𝑟 , where

𝑛𝑣 and 𝑛𝑟 are the dimensions of the entity and relation embeddings, respectively. We further define

the degree of an entity 𝑣 as 𝑑𝑣 and the in-degree (𝑑 (𝑖𝑛)𝑣 ) and out-degree (𝑑 (𝑜𝑢𝑡)𝑣 ) as the number of

triples where 𝑣 is the tail and head entity, respectively.

Lastly, KGC attempts to predict new facts that are not found in the original KG. This involves

predicting the tail entities that satisfy (ℎ, 𝑟, ?) and the head entities that satisfy (?, 𝑟, 𝑡). Follow-

ing [30], we augment all triples (ℎ, 𝑟, 𝑡) with its inverse (𝑡, 𝑟−1, ℎ). As such, predicting the head
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entity of (ℎ, 𝑟, 𝑡) is analogous to predicting the tail entity for (𝑡, 𝑟−1, ?). Under such a setting, KGC

can be formulated as always predicting the tail entity. Therefore, in the remainder of this work, we

only consider KGC as predicting the tail entities that satisfy (ℎ, 𝑟, ?).

In the following subsections, we will explore the following questions: (1) Does degree bias

exist in typical KG embedding models? and (2) Which factor in a triple is related to such bias? To

answer these questions, we first study how the head and tail entity degree affect KGC performance in

Section 4.3.1. Then, we investigate the impact of the frequency of entity-relation pairs co-occurring

on KGC performance in Section 4.3.2.

4.3.1 Entity Degree Analysis

We first examine the effect that the degree of both the head and tail entities have on KGC per-

formance. We perform our analysis on the FB15K-237 dataset [111], a commonly used benchmark

in KGC. Since a KG is a directed graph, we postulate that the direction of an entity’s edges matters.

We therefore split the degree of each entity into its in-degree and out-degree. We measure the

performance using the mean reciprocal rank (MRR). Note that the degree metrics are calculated

using only the training set.

Figure 4.2a displays the results of TuckER (see Section D.3.5 for more details) on FB15K-237

split by both entities and degree type. From Figure 4.2a we observe that when varying the tail entity

degree value, the resulting change in test MRR is significantly larger than when varying the degree

of head entities. Furthermore, the MRR increases drastically with the increase of tail in-degree

(blue line) while there is a parabolic-like relationship when varying the tail out-degree (orange

line). From these observations we can conclude: (1) the degree of the tail entity (i.e. the entity we

are trying to predict) has a larger impact on test performance than the degree of the head entity; (2)

the tail in-degree features a more distinguishing and apparent relationship with performance than

the tail out-degree. Due to the page limitation, the results of ConvE are shown in Appendix C.4,

where we have similar observations. These results suggest that KGC displays a degree bias in

regards to the in-degree. Next, we will examine which factors of a triple majorly contribute to such

degree bias.
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4.3.2 Entity-Relation Degree Analysis

In the previous subsection, we have demonstrated the relationship between the entity degree

and KGC performance. However, it doesn’t account for the interaction of the entities and relation.

Therefore, we further study how the presence of both the relation and entities in a triple together

impact the KGC performance. We begin by defining the number of edges that contains the relation

𝑟 and an entity 𝑣 as the relation-specific degree:

𝑑𝑣,𝑟 = |{(ℎ, 𝑟, 𝑡) ∈ E | ℎ = 𝑣 ∨ 𝑡 = 𝑣}|. (4.1)

Based on the results in Section 4.3.1, we posit that the main indicator of performance is the in-

degree of the tail entity. We extend this idea to our definition of relation-specific degree by only

counting co-occurrences of an entity and relation when the entity occurs as the tail. For simplicity

we refer to this as the tail-relation degree and define it as:

𝑑
(𝑡𝑎𝑖𝑙)
𝑣,𝑟 = |{(ℎ, 𝑟, 𝑣) ∈ E}|. (4.2)

The tail-relation degree can be understood as the number of edges that an entity 𝑣 shares with 𝑟,

where 𝑣 occupies the position we are trying to predict (i.e. the tail entity). We further refer to the

number of in-edges that 𝑣 doesn’t share with 𝑟 as “Other-Tail Relation” degree. This is calculated

as the difference between the in-degree of entity 𝑣 and the tail-relation degree of 𝑣 and relation

𝑟, i.e. 𝑑
(𝑖𝑛)
𝑣 − 𝑑 (𝑡𝑎𝑖𝑙)𝑣,𝑟 . It is easy to verify that the in-degree of an entity 𝑣 is the summation of

the tail-relation degree and “Other-Tail Relation” degree. We use Figure 4.1 as an example of the

tail-relation degree. The entity Sweden co-occurs with the relation Has Country on one edge. On

that edge, Sweden is the tail entity. Therefore the tail-relation degree of the pair (Sweden, Has

Country) is one. We note that a special case of the tail-relation degree is relation-level semantic

evidence defined by [64].

Figure 4.2b displays the MRR when varying the value of the tail-relation and “Other-Tail

Relation” degree of the tail entity. From the results, we note that while both degree metrics

correlate with performance, the performance when the other-tail-relation degree in the range [0, 3)

is quite high. Since both metrics are highly correlated, it is difficult to determine which metric
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is more important for the downstream performance. Is the “Other-Tail Relation” the determining

factor for performance or is it the tail-relation degree? We therefore check the performance when

controlling for one another. Figure 4.2c displays the results when varying the “Other-Tail Relation”

degree for specific sub-ranges of the tail-relation degree. From this figure, we see that the tail-

relation degree exerts a much larger influence on the KGC performance as there is little variation

between bars belonging to the same subset. Rather the tail-relation degree (i.e. the clusters of bars)

has a much larger impact. Therefore, we conclude that for a single triple, the main factor of degree

bias is the tail-relation degree of the tail entity.

Remark. Our analysis differs from traditional research on degree bias. While previous works focus

only on the degree of the node, we focus on a specific type of frequency among entity-relation pairs.

This is vital as the frequencies of both the entities and relations are important in KGs. Though we

only analyze KGs, findings from our analysis could be applicable to other types of heterogeneous

graphs.

4.4 The Proposed Method

Grounded in the observations in Section 4.3.2, one natural idea to alleviate the degree bias in

KGC is to compensate the triples with low tail-relation degrees. Based on this intuition, we propose

a new method for improving the KGC performance of triples with low tail-relation degrees. Our

method, KG-Mixup, works by augmenting the low tail-relation degree triples during training with

synthetic samples. This strategy has the effect of increasing the degree of an entity-relation pair

with a low tail-relation degree by creating more shared edges between them. Therefore, KG-Mixup

is very general and can further be used in conjunction with any KG embedding technique.

4.4.1 General Problem

In Section 4.3.2 we showed that the tail-relation degree of the tail entity strongly correlates with

higher performance in KGC. As such we seek to design a method that can increase the performance

of such low-degree entity-relation pairs without sacrificing the performance of high-degree pairs.

To solve this problem, we consider data augmentation. Specifically, we seek to create synthetic

triples for those entity-relations pairs with a low tail-relation degree. In such a way we are creating
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more training triples that contain those pairs, thereby “increasing” their degree. For each entity-

relation pair with a tail-relation degree less than 𝜂, we add 𝑘 synthetic samples, which can be

formulated as follows:

Ẽ𝑣,𝑟 =


E𝑣,𝑟∪{( ℎ̃, 𝑟, 𝑡)}𝑘𝑖=1 𝑑

(𝑡𝑎𝑖𝑙)
𝑣,𝑟 < 𝜂,

E𝑣,𝑟 else,
(4.3)

where (ℎ, 𝑟, 𝑣) ∈ E𝑣,𝑟 are the original training triples with the relation 𝑟 and the tail entity 𝑣, ( ℎ̃, 𝑟, 𝑡)

is a synthetic sample, and Ẽ𝑣,𝑟 is the new set of triples to use during training.

Challenges. We note that creating the synthetic samples as shown in Eq. (4.3) is non-trivial and

there are a number of challenges:

1. How do we produce the synthetic samples for KG triples that contain multiple types of embed-

dings?

2. How do we promote diversity in the synthetic samples ( ℎ̃, 𝑟, 𝑡)? We want them to contain

sufficient information from the original entity and relation embeddings we are augmenting,

while also being distinct from similar triples in E𝑣,𝑟 .

3. How do we achieve such augmentation in a computationally efficient manner?

These challenges motivate us to design a special data augmentation algorithm for knowledge graph

completion and we detail its core techniques in the next subsection.

4.4.2 KG-Mixup

We now present our solution for producing synthetic samples as described in Eq. (4.3). Inspired

by the popular Mixup [137] strategy, we strive to augment the training set by mixing the represen-

tations of triples. We draw inspiration from mixup as (1) it is an intuitive and widely used data

augmentation method, (2) it is able to promote diversity in the synthetic samples via the randomly

drawn value 𝜆, and (3) it is computationally efficient (see Section D.2.2).

We now briefly describe the general mixup algorithm. We denote the representations of two

samples as 𝑥1 and 𝑥2 and their labels 𝑦1 and 𝑦2. Mixup creates a new sample 𝑥 and label 𝑦̃

by combining both the representations and labels via a random value 𝜆 ∈ [0, 1] drawn from
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Algorithm 4.1 KG-Mixup Training Procedure
Require:

𝐺 = {𝑉, 𝑅, E} ⊲ Training graph
𝑘, 𝜂 ⊲ # of samples to generate and degree threshold
𝑋,𝑊 ⊲ Model embeddings and parameters

1: Randomly initialize 𝑋 and𝑊
2: Pre-train to obtain initial 𝑋
3: Randomly re-initialize𝑊
4: while not converged do
5: for 𝑒 = (ℎ𝑖 , 𝑟𝑖 , 𝑡𝑖) ∈ E do
6: if 𝑑 (𝑡𝑎𝑖𝑙)𝑡𝑖 ,𝑟𝑖

< 𝜂 then
7: 𝐶 = {(ℎ∗, 𝑟∗, 𝑡𝑖) ∈ E}
8: 𝑆 = Rand-Sample(𝐶, 𝑘)
9: Emix = {Mix(𝑒, 𝑠) ∀𝑠 ∈ 𝑆} ⊲ Eq. (4.6)

10: else
11: Emix = {}
12: end if
13: Update model parameters on {𝑒} ∪ Emix
14: end for
15: end while
16: return 𝑋 and𝑊

𝜆 ∼ Beta(𝛼, 𝛼) such that:

𝑥 = 𝜆x1 + (1 − 𝜆)x2, (4.4)

𝑦̃ = 𝜆y1 + (1 − 𝜆)y2. (4.5)

We adapt this strategy to our studied problem for a triple (ℎ, 𝑟, 𝑡) where the tail-relation degree is

below a degree threshold, i.e. 𝑑 (𝑡𝑎𝑖𝑙)𝑡,𝑟 < 𝜂. For such a triple we aim to augment the training set by

creating 𝑘 synthetic samples {( ℎ̃, 𝑟, 𝑡)}𝑘
𝑖=1. This is done by mixing the original triple with 𝑘 other

triples {(ℎ𝑖, 𝑟𝑖, 𝑡𝑖)}𝑘𝑖=1.

However, directly adopting mixup to KGC leads to some problems: (1) Since each sample

doesn’t contain a label (Eq. 4.5) we are unable to perform label mixing. (2) While standard mixup

randomly selects samples to mix with, we may want to utilize a different selection criteria to better

enhance those samples with a low tail-relation degree. (3) Since each sample is composed of

multiple components (entities and relations) it’s unclear how to mix two samples. We go over these

challenges next.
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4.4.2.1 Label Incorporation in KGC

We first tackle how to incorporate the label information as shown in Eq. (4.5). Mixup was

originally designed for classification problems, making the original label mixing straightforward.

However, for KGC, we have no associated label for each triple. We therefore consider the entity we

are predicting as the label. For a triple 𝑒1 = (ℎ1, 𝑟1, 𝑡1) where we are predicting 𝑡1, the label would

be considered the entity 𝑡1.

4.4.2.2 Mixing Criteria

Per the original definition of Mixup, we would then mix 𝑒1 with a triple belonging to the set

{(ℎ2, 𝑟2, 𝑡2) ∈ E | 𝑡2 ≠ 𝑡1}. However, since our goal is to predict 𝑡1 we wish to avoid mixing it.

Since we want to better predict 𝑡1, we need to preserve as much tail (i.e. label) information as

possible. As such, we only consider mixing with other triples that share the same tail and belong

to the set {(ℎ2, 𝑟2, 𝑡1) ∈ E | ℎ1 ≠ ℎ2, 𝑟1 ≠ 𝑟2}. Our design is similar to SMOTE [21], where only

samples belonging to the same class are combined. We note that while it would be enticing to only

consider mixing with triples containing the same entity-relation pairs, i.e. (ℎ2, 𝑟1, 𝑡1) ∈ E𝑡1,𝑟1 , this

would severely limit the number of possible candidate triples as the tail-relation degree can often

be as low as one or two for some pairs.

4.4.2.3 How to Mix?

We now discuss how to perform the mixing of two samples. Given a triple 𝑒1 = (ℎ1, 𝑟1, 𝑡1) of

low tail-relation degree we mix it with another triple that shares the same tail (i.e. label) such that

𝑒2 = (ℎ2, 𝑟2, 𝑡1). Applying Eq. (4.4) to 𝑒1 and 𝑒2, a synthetic triple 𝑒 = ( ℎ̃, 𝑟, 𝑡) is equal to:

𝑒 = 𝜆𝑒1 + (1 − 𝜆)𝑒2, (4.6)

𝑒 = 𝜆(ℎ1, 𝑟1, 𝑡1) + (1 − 𝜆) (ℎ2, 𝑟2, 𝑡1), (4.7)

𝑒 = 𝜆(xℎ1 , x𝑟1 , x𝑡1) + (1 − 𝜆) (xℎ2 , x𝑟2 , x𝑡1), (4.8)
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where xℎ𝑖 and x𝑟 𝑗 represent the entity and relation embeddings, respectively. We apply the weighted

sum to the head, relation, and tail, separately. Each entity and relation are therefore equal to:

𝑥 ℎ̃ = 𝜆xℎ1 + (1 − 𝜆)xℎ2 , (4.9)

𝑥𝑟 = 𝜆x𝑟1 + (1 − 𝜆)x𝑟2 , (4.10)

𝑥𝑡 = x𝑡1 . (4.11)

We use Figure 4.1 to illustrate an example. Let 𝑒1 = (Europe, Has Country, Germany) be the

triple we are augmenting. We mix it with another triple with the tail entity Germany. We

consider the triple 𝑒2 = (Belgium, Borders, Germany). The mixed triple is represented as 𝑒 =

(Europe+Belgium, Has Country+Borders, Germany). As 𝑒1 contains the continent that Germany

belongs to and 𝑒2 has the country it borders, we can understand the synthetic triple 𝑒 as conveying

the geographic location of Germany inside of Europe. This is helpful when predicting Germany in

the original triple 𝑒1, since the synthetic sample imbues the representation of Germany with more

specific geographic information.

4.4.3 KG-Mixup Algorithm for KGC

We utilize the binary cross-entropy loss when training each model. The loss is optimized

using the Adam optimizer [52]. We also include a hyperparameter 𝛽 for weighting the loss on the

synthetic samples. The loss on a model with parameters 𝜃 is therefore:

L(𝜃) = L𝐾𝐺 (𝜃) + 𝛽LMix(𝜃) , (4.12)

where L𝐾𝐺 is the loss on the original KG triples and LMix is the loss on the synthetic samples.

The full algorithm is displayed in Algorithm 4.1. We note that we first pre-train the model before

training with KG-Mixup, to obtain the initial entity and relation representations. This is done as it

allows us to begin training with stronger entity and relation representations, thereby improving the

generated synthetic samples.

4.4.4 Algorithmic Complexity

We denote the algorithmic complexity of a model 𝑓 (e.g. ConvE [29] or TuckER [7]) for a

single sample 𝑒 as 𝑂 ( 𝑓 ). Assuming we generate 𝑁 negative samples per training sample, the

51



training complexity of 𝑓 over a single epoch is:

𝑂 (𝑁 · |E | · 𝑂 ( 𝑓 )) , (4.13)

where |E | is the number of training samples. In KG-Mixup, in addition to scoring both the positive

and negative samples, we also score the synthetic samples created for all samples with a tail-relation

degree below a threshold 𝜂. We refer to that set of samples below the degree threshold as Ethresh. We

create 𝑘 synthetic samples per 𝑒 ∈ Ethresh. As such, our algorithm scores an additional 𝑘 · |Ethresh |

samples for a total of 𝑁 · |E | + 𝑘 · |Ethresh | samples per epoch. Typically the number of negative

samples 𝑁 >> 𝑘 . Both ConvE and TuckER use all possible negative samples per training sample

while we find 𝑘 = 5 works well. Furthermore, by definition, Ethresh ⊆ E rendering |E | >> |Ethresh |.

We can thus conclude that 𝑁 · |E | >> 𝑘 · |Ethresh |. We can therefore express the complexity of

KG-Mixup as:

≈ 𝑂 (𝑁 · |E | · 𝑂 ( 𝑓 )) . (4.14)

This highlights the efficiency of our algorithm as its complexity is approximately equivalent to the

standard training procedure.

4.5 Regularizing Effect of KG-Mixup

In this section, we examine the properties of KG-Mixup and show it can be formulated as a

form of regularization on the entity and relation embeddings of low tail-relation degree samples

following previous works [19, 138].

We denote the mixup loss with model parameters 𝜃 over samples 𝑆 as LMix(𝜃). The set 𝑆

contains those samples with a tail-relation degree below a threshold 𝜂 (see line 6 in Algorithm

4.1). The embeddings for each sample 𝑒𝑖 = (ℎ𝑖, 𝑟𝑖, 𝑡) ∈ 𝑆 is mixed with those of a random sample

𝑒 𝑗 = (ℎ 𝑗 , 𝑟 𝑗 , 𝑡) that shares the same tail. The embeddings are combined via a random value

𝜆 ∼ Beta(𝛼, 𝛼) as shown in Eq. (4.9), thereby producing the synthetic sample 𝑒 = ( ℎ̃, 𝑟, 𝑡). The

formulation for Lmix(𝜃) is therefore:

LMix(𝜃) =
1
𝑘 |𝑆 |

|𝑆 |∑︁
𝑖=1

𝑘∑︁
𝑗=1
𝑙𝜃 (𝑒, 𝑦̃) , (4.15)
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where 𝑘 synthetic samples are produced for each sample in 𝑆, and 𝑦̃ is the mixed binary label.

Following Theorem 1 in [19] we can rewrite the loss as the expectation over the synthetic samples

as,

LMix(𝜃) =
1
|𝑆 |

|𝑆 |∑︁
𝑖=1

E𝜆, 𝑗 𝑙𝜃 (𝑒, 𝑦̃) , (4.16)

where 𝜆 ∼ D𝜆 and 𝑗 ∼ Uniform(E𝑡). The distribution D𝜆 = Beta[ 1
2 ,1]

(𝛼, 𝛼) and the set E𝑡 contains

all samples (ℎ 𝑗 , 𝑟 𝑗 , 𝑡) with tail 𝑡. Since the label 𝑦 for both samples 𝑖 and 𝑗 are always 1, rendering

𝑦̃ = 1, we can simplify Eq. (4.16) arriving at:

LMix(𝜃) =
1
|𝑆 |

|𝑆 |∑︁
𝑖=1

E𝜆, 𝑗 𝑙𝜃 (𝑒) . (4.17)

For the above loss function, we have the following theorem.

Theorem 1. The mixup loss LMix(𝜃) defined in Eq. (4.17) can be rewritten as the following where

the loss function 𝑙𝜃 is the binary cross-entropy loss, L(𝜃) is the loss on the original set of augmented

samples 𝑆, and R1(𝜃) and R2(𝜃) are two regularization terms,

LMix(𝜃) = L(𝜃) + R1(𝜃) + R2(𝜃). (4.18)

The regularization terms are given by the following where each mixed sample 𝑒 is composed of a

low tail-relation degree sample 𝑒𝑖 and another sample with the same tail entity 𝑒 𝑗 :

R1(𝜃) =
𝜏

|𝑆 |

|𝑆 |∑︁
𝑖=1

𝑘∑︁
𝑗=1

(1 − 𝜎 ( 𝑓 (𝑒𝑖)))
𝜕 𝑓 (𝑒𝑖)𝑇
𝜕𝑥 ℎ̃

Δℎ, (4.19)

R2(𝜃) =
𝜏

|𝑆 |

|𝑆 |∑︁
𝑖=1

𝑘∑︁
𝑗=1

(1 − 𝜎 ( 𝑓 (𝑒𝑖)))
𝜕 𝑓 (𝑒𝑖)𝑇
𝜕𝑥𝑟

Δ𝑟, (4.20)

with 𝜏 = E𝜆∼D𝜆
(1 − 𝜆), Δℎ =

(
𝑥ℎ 𝑗 − 𝑥ℎ𝑖

)
, Δ𝑟 =

(
𝑥𝑟 𝑗 − 𝑥𝑟𝑖

)
, 𝜎 is the sigmoid function, and 𝑓 is the

score function.

We provide the detailed proof of Theorem 1 in Appendix C.6. Examining the terms in Eq (4.18),

we can draw the following understandings on KG-Mixup:
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1. The inclusion of L(𝜃) implies that the low tail-relation degree samples are scored an additional

time when being mixed. This can be considered as a form of oversampling on the low tail-relation

degree samples.

2. If the probability is very high, i.e. 𝜎( 𝑓 (𝑒𝑖)) ≈ 1, both R1 and R2 cancel out. This is intuitive

as if the current parameters perform well for the original low-degree sample, there is no need to

make any adjustments.

3. We can observe that R1 and R2 enforce some regularization on the derivatives as well as

the difference between the embeddings Δℎ and Δ𝑟. This motivates us to further examine the

difference between the embeddings. In Section 4.6.3, we find that our method does indeed

produce more similar embeddings, indicating that our method exerts a smoothing effect among

mixed samples.

4.6 Experiment

In this section we conduct experiments to demonstrate the effectiveness of our approach on

multiple benchmark datasets. We further compare the results of our framework to other methods

commonly used to address bias. In particular we study if KG-Mixup can (a) improve overall KGC

performance and (b) increase performance on low tail-relation degree triples without degrading

performance on other triples. We further conduct studies examining the effect of the regularization

terms, ascertaining the importance of each component in our framework, and the ability of KG-

Mixup to improve model calibration.

4.6.1 Experimental Settings

4.6.1.1 Datasets

We conduct experiments on three datasets including FB15K-237 [111], CoDEx-M [97], and

NELL-995 [126]. We omit the commonly used dataset WN18RR [29] as a majority of entities have

a degree less than or equal to 3, and as such does not exhibit any degree bias towards triples with a

low tail-relation degree. The statistics of each dataset is shown in Table C.1.

54



4.6.1.2 Baselines

We compare the results of our method, KG-Mixup, with multiple popular methods proposed for

addressing imbalanced problems. Such methods can be used to mitigate bias caused by the initial

imbalance. In our case, an imbalance in tail-relation degree causes algorithms to be biased against

triples of low tail-relation degree. Specifically, we implement: (a) Over-Sampling triples below a

degree threshold 𝜂. We over-sample 𝜂 − 𝑑 (𝑡𝑎𝑖𝑙)𝑣,𝑟 times, (b) Loss Re-Weighting [135], which assigns

a higher loss to triples with a low tail-relation degree, (c) Focal Loss [66], which assigns a higher

weight to misclassified samples (e.g. low degree triples).

4.6.1.3 Evaluation Metrics

To evaluate the model performance on the test set, we report the mean reciprocal rank (MRR)

and the Hits@k for 𝑘 = 1, 10. Following [13], we report the performance using the filtered setting.

4.6.1.4 Implementation Details

In this section, we detail the training procedure used to train our framework KG-Mixup. We

conduct experiments on our framework using two different KG embedding models, ConvE [29] and

TuckER [7]. Both methods are widely used to learn KG embeddings and serve as a strong indicator

of our framework’s efficacy. We use stochastic weight averaging (SWA) [48] when training our

model. SWA uses a weighted average of the parameters at different checkpoints during training

for inference. Previous work [89] has shown that SWA in conjunction with data augmentation

can increase performance. Lastly, the synthetic loss weighting parameter 𝛽 is determined via

hyperparameter tuning on the validation set.

4.6.2 Main Results

In this subsection we evaluate KG-Mixup on multiple benchmarks, comparing its test perfor-

mance against the baseline methods. We first report the overall performance of each method on

the three datasets. We then report the performance for various degree bins. The top results are

bolded with the second best underlined. Note that the Standard method refers to training without

any additional method to alleviate bias.

Table 4.1 contains the overall results on each method and dataset. The performance is reported
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Table 4.1 Knowledge Graph Completion (KGC) Comparison.

Model Method FB15K-237 NELL-995 CoDEx-M

MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

ConvE

Standard 33.04 23.95 51.23 50.87 44.14 61.48 31.70 24.34 45.60

+ Over-Sampling 30.45 21.85 47.81 48.63 40.99 60.78 27.13 20.17 40.11
+ Loss Re-weighting 32.32 23.32 50.19 50.89 43.83 62.17 28.38 21.12 42.68
+ Focal Loss 32.08 23.29 50.09 50.43 44.00 60.70 27.99 20.93 41.48
+ KG-Mixup (Ours) 34.33 25.00 53.11 51.08 43.52 63.22 31.71 23.49 47.49

TuckER

Standard 35.19 26.06 53.47 52.11 45.51 62.26 31.67 24.46 45.73

+ Over-Sampling 34.77 25.48 53.53 50.36 44.04 60.40 29.97 22.27 44.19
+ Loss Re-weighting 35.25 26.08 53.34 51.91 45.76 61.05 31.58 24.32 45.41
+ Focal Loss 34.02 24.79 52.48 49.57 43.28 58.91 31.47 24.05 45.60
+ KG-Mixup (Ours) 35.83 26.37 54.78 52.24 45.78 62.14 31.90 24.15 46.54

Table 4.2 MRR for tail-relation degree bins. The range for the zero, low, medium and high bins
are [0, 1), [1, 10), [10, 50), and [50, ∞), respectively.

Model Method FB15K-237 NELL-995 CoDEx-M

Zero Low Medium High Zero Low Medium High Zero Low Medium High

ConvE

Standard 7.34 12.35 34.95 70.97 35.37 57.16 65.99 91.90 8.38 7.97 34.64 65.29

+ Over-Sampling 8.37 12.45 33.01 68.75 36.67 57.33 56.09 79.57 8.09 7.52 29.51 54.80
+ Loss Re-weighting 5.03 9.89 30.56 63.34 36.16 57.96 63.69 89.52 8.79 7.09 29.09 58.10
+ Focal Loss 7.52 11.89 33.96 68.75 34.72 58.00 65.60 90.89 6.78 6.80 33.42 56.96
+ KG-Mixup (Ours) 10.90 13.92 35.74 70.72 35.38 59.56 65.41 90.64 9.74 8.96 32.63 64.38

TuckER

Standard 10.41 14.65 38.49 71.39 37.02 58.21 69.17 90.55 9.99 8.29 35.23 63.94

+ Over-Sampling 12.25 14.28 36.79 70.50 34.50 55.46 65.68 93.47 10.98 7.76 32.50 60.25
+ Loss Re-weighting 10.61 14.40 37.66 72.28 36.59 59.00 67.19 91.17 10.44 8.62 35.00 63.39
+ Focal Loss 10.84 13.53 37.00 69.28 34.18 53.60 62.67 91.02 9.68 8.17 33.95 64.13
+ KG-Mixup (Ours) 11.83 15.61 39.45 70.86 36.12 60.73 71.67 92.27 9.14 8.70 32.38 65.28

for both ConvE and TuckER. KG-Mixup achieves for the best MRR and Hits@10 on each dataset

for ConvE. For TuckER, KG-Mixup further achieves the best MRR on each dataset and the top

Hits@10 for two. Note that the other three baseline methods used for alleviating bias, on average,

perform poorly. This may be due to their incompatibility with relational structured data where

each sample contains multiple components. It suggests that we need dedicated efforts to handle the

degree bias in KGC.

We further report the MRR of each method for triples of different tail-relation degree. We split

the triples into four degree bins of zero, low, medium and high degree. The range of each bin

is [0, 1), [1, 10], [10, 50), and [50, ∞), respectively. KG-Mixup achieves a notable increase in
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performance on low tail-relation degree triples for each dataset and embedding model. KG-Mixup

increases the MRR on low degree triples by 9.8% and 5.3% for ConvE and TuckER, respectively,

over the standard trained models on the three datasets. In addition to the strong increase in low

degree performance, KG-Mixup is also able to retain its performance for high degree triples. The

MRR on high tail-relation degree triples degrades, on average, only 1% on ConvE between our

method and standard training and actually increases 1% for TuckER. Interestingly, the performance

of KG-Mixup on the triples with zero tail-relation degree isn’t as strong as the low degree triples.

We argue that such triples are more akin to the zero-shot learning setting and therefore different

from the problem we are studying.

Lastly, we further analyzed the improvement of KG-Mixup over standard training by comparing

the difference in performance between the two groups via the paired t-test. We found that for the

results in Table 4.1, 5/6 are statistically significant (p<0.05). Furthermore, for the performance

on low tail-relation degree triples in Table 4.2, all results (6/6) are statistically significant. This

gives further justification that our method can improve both overall and low tail-relation degree

performance.

4.6.3 Regularization Analysis

In this subsection we empirically investigate the regularization effects of KG-Mixup discussed

in Section 4.5. In Section 4.5 we demonstrated that KG-Mixup can be formulated as a form of

regularization. We further showed that one of the quantities minimized is the difference between

the head and relation embeddings of the two samples being mixed, 𝑒𝑖 and 𝑒 𝑗 , such that (𝑥ℎ 𝑗 − 𝑥ℎ𝑖 )

and (𝑥𝑟 𝑗 − 𝑥𝑟𝑖 ). Here 𝑒𝑖 is the low tail-relation degree sample being augmented and 𝑒 𝑗 is another

sample that shares the same tail. We deduce from this that for low tail-relation degree samples,

KG-Mixup may cause their head and relation embeddings to be more similar to those of other

samples that share same tail. Such a property forms a smoothing effect on the mixed samples,

which facilitates a transfer of information to the embeddings of the low tail-relation degree sample.

We investigate this by comparing the head and relation embeddings of all samples that are

augmented with all the head and relation embeddings that also share the same tail entity. We
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denote the set of all samples below some tail-relation degree threshold 𝜂 as Ethresh and all samples

with tail entity 𝑡 as E𝑡 . Furthermore, we refer to all head entities that are connected to a tail 𝑡 as

H𝑡 = {ℎ 𝑗 | (ℎ 𝑗 , 𝑟 𝑗 , 𝑡) ∈ E𝑡} and all such relations as R𝑡 = {𝑟 𝑗 | (ℎ 𝑗 , 𝑟 𝑗 , 𝑡) ∈ E𝑡}. For each sample

(ℎ𝑖, 𝑟𝑖, 𝑡) ∈ Ethresh we compute the mean euclidean distance between the (1) head embedding xℎ𝑖

and all xℎ 𝑗 ∈ H𝑡 and (2) the relation embedding x𝑟𝑖 and all x𝑟 𝑗 ∈ R𝑡 . For a single sample 𝑒𝑖 the

mean head and relation embedding distance are given by ℎdist(𝑒𝑖) and 𝑟dist(𝑒𝑖), respectively. Lastly,

we take the mean of both the head and relation embeddings mean distances across all 𝑒 ∈ Ethresh,

𝐷rel = Mean (𝑟dist(𝑒𝑖) | 𝑒𝑖 ∈ Ethresh) , (4.21)

𝐷head = Mean (ℎdist(𝑒𝑖) | 𝑒𝑖 ∈ Ethresh) . (4.22)

Both 𝐷head and 𝐷rel are shown in Table 4.3 for models fitted with and without KG-Mixup. We

display the results for ConvE on FB15K-237. For both the mean head and relation distances,

KG-Mixup produces smaller distances than the standardly-trained model. This aligns with our

previous theoretical understanding of the regularization effect of the proposed method: for samples

for which we augment during training, their head and relation embeddings are more similar to

those embeddings belonging to other samples that share the same tail. This to some extent forms a

smoothing effect, which is helpful for learning better representations for the low-degree triplets.

Table 4.3 Mean Embedding Distances on FB15K-237.

Embedding Type Head Entity Relation

w/o KG-Mixup 1.18 1.21
KG-Mixup 1.09 1.13

% Decrease -7.6% -6.6%

4.6.4 Ablation Study

In this subsection we conduct an ablation study of our method on the FB15K-237 dataset using

ConvE and TuckER. We ablate both the data augmentation strategy and the use of stochastic weight

averaging (SWA) separately to ascertain their effect on performance. We report the overall test

MRR and the low tail-relation degree MRR. The results of the study are shown in Table 4.4.
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KG-Mixup achieves the best overall performance on both embedding models. Using only our data

augmentation strategy leads to an increase in both the low degree and overall performance. On the

other hand, while the SWA-only model leads to an increase in overall performance it degrades the

low degree performance. We conclude from these observations that data augmentation component

of KG-Mixup is vital for improving low degree performance while SWA helps better maintain or

even improve performance on the non-low degree triples.

Table 4.4 Ablation Study on FB15K-237.

Method ConvE TuckER

Low Overall Low Overall

Standard 12.35 33.04 14.65 35.19
+ SWA 12.27 33.69 14.18 35.77
+ Augmentation 13.99 33.67 15.64 35.62
KG-Mixup (Ours) 13.92 34.33 15.61 35.83

4.6.5 Parameter Study

In this subsection we study how varying the number of generated synthetic samples 𝑘 and the

degree threshold 𝜂 affect the performance of KG-Mixup. We consider the values 𝑘 ∈ {1, 5, 10, 25}

and 𝜂 ∈ {2, 5, 15}. We report the MRR for both TuckER and ConvE on the CoDEx-M dataset.

Figure 4.3a displays the performance when varying the degree threshold. Both methods peak at a

value of 𝜂 = 5 and perform worst at 𝜂 = 15. Figure 4.3b reports the MRR when varying the number

of synthetic samples generated. Both methods peak early with ConvE actually performing best at

𝑘 = 1. Furthermore, generating too many samples harms performance as evidenced by the sharp

drop in MRR occurring after 𝑘 = 5.

4.6.6 Model Calibration

In this subsection we demonstrate that KG-Mixup is effective at improving the calibration of

KG embedding models. Model calibration [40] is concerned with how well calibrated a models

prediction probabilities are with its accuracy. Previous work [87] have discussed the desirability of

calibration to minimize bias between different groups in the data (e.g. samples of differing degree).

Other work [116] has drawn the connection between out-of-distribution generalization and model
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(a) Varying degree threshold (b) Varying # of samples

Figure 4.3 MRR of TuckER and ConvE on CoDEx-M (a) when varying the degree threshold and
(b) when varying the number of samples generated.

calibration, which while not directly applicable to our problem is still desirable. Relevant to our

problem, [110] has shown that Mixup is effective at calibrating deep models for the tasks of image

and text classification. As such, we investigate if KG-Mixup is helpful at calibrating KG embedding

models for KGC.

Table 4.5 Expected Calibration Error (ECE). Lower is better.

Model Method FB15K-237 NELL-995 CoDEx-M

Low Overall Low Overall Low Overall

ConvE Standard 0.19 0.15 0.34 0.27 0.28 0.26
KG-Mixup 0.08 0.05 0.08 0.08 0.02 0.09

TuckER Standard 0.20 0.35 0.63 0.56 0.05 0.34
KG-Mixup 0.07 0.1 0.26 0.20 0.01 0.06

We compared the expected calibration error (see Appendix C.5 for more details) between

models trained with KG-Mixup and those without on multiple datasets. We report the calibration

in Table 4.5 for all samples and those with a low tail-relation degree. We find that in every

instance KG-Mixup produces a better calibrated model for both ConvE and TuckER. These results

suggest another reason for why KG-Mixup works; a well-calibrated model better minimizes the

bias between different groups in the data [87]. This is integral for our problem where certain groups
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of data (i.e. triples with low tail-relation degree) feature bias.

4.7 Conclusion

We explore the problem of degree bias in KG embeddings. Through empirical analysis we find

that when predicting the tail 𝑡 for a triple (ℎ, 𝑟, 𝑡), a strong indicator performance is the number of

edges where 𝑟 and 𝑡 co-occur as the relation and tail, respectively. We refer to this as the tail-relation

degree. We therefore propose a new method, KG-Mixup, that can be used in conjunction with

any KG embedding technique to improve performance on triples with a low tail-relation degree.

It works by augmenting lower degree entity-relation pairs with additional synthetic triples during

training. To create synthetic samples we adapt the Mixup [137] strategy to KGs. Experiments

validate its usefulness. For future work we plan on expanding our method to path-based techniques

such as NBFNet [153].
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CHAPTER 5

DISTANCE-BASED PROPAGATION FOR EFFICIENT
KNOWLEDGE GRAPH REASONING

5.1 Introduction

Knowledge graphs (KGs) encode facts via edges in a graph. Because of this, one can view the

task of predicting unknown edges (i.e. link prediction) as analogous to uncovering new facts. This

task is referred to as knowledge graph completion (KGC) and has attracted a bevy of research over

the past decade [14, 112, 100, 154]. Most work has focused on learning quality representations for

all nodes (i.e. entities) and edge types (i.e. relations) in the graph to facilitate KGC.

Recently, methods [154, 96, 143], have been introduced that move away from the embedding-

based approach and focus instead on learning directly from path-based information. One recent

GNN-based method, NBFNet [154], draws inspiration from the Bellman-Ford algorithm by com-

puting path information through dynamic programming. By doing so, it learns pairwise embeddings

between all node pairs in an inductive fashion. It achieves state-of-the-art performance in both the

transductive and inductive KGC settings. In this work, we refer to such methods as path-based

GNNs. However, a downside of path-based GNNs is their inefficiency. This limits their ability

in large real-world graphs. Furthermore, it inhibits their ability to propagate deeply in the graph.

Two recent methods have been proposed to address the inefficiency problem, i.e., A∗Net [152] and

AdaProp [144], by only propagating to a subset of nodes every iteration. However, they still tend

to propagate unnecessary and redundant messages.

For path-based GNNs, only the source node is initialized with a non-zero message at the

beginning of the propagation process. Such models often run a total of 𝑇 layers, where, in each

layer, all nodes aggregate messages from their neighboring edges. We identify that this design is

inefficient by making the following two observations. (1) Empty Messages: In the propagation

process, a node only obtains non-empty messages when the number of propagation layers is ≥

the shortest path distance between the source and the node. This means that a large number

of nodes far from the source node only aggregate “empty” messages in the early propagation
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layers. Nonetheless, path-based GNN models such as NBFnet propagate these unnecessary “empty

messages” in these early propagation layers. (2) Redundant Messages: To ensure path information

from the source reach distant nodes, the number of layers 𝑇 needs to be sufficiently large. However,

a large 𝑇 induces the propagation of redundant messages for those nodes that are close to the source

node. Intuitively, short paths contain more significant information than long ones [50]. The “close”

nodes typically aggregate enough information from shorter paths in the early propagation layers.

Propagating messages for longer paths in later layers for “close” nodes does not provide significant

information and needlessly adds to the complexity. More details on these two observations are

provided in Section 5.3.1.

To address these limitations and make the propagation process more efficient, we aim to develop

an algorithm that limits the propagation of “empty” and “redundant” messages. In particular, we

propose a new method TAGNet - TruncAted propaGation Network. TAGNet only aggregates paths

in a fixed window for each source-target pair, which can be considered a form of path pruning. Our

contributions can be summarized as follows:

• We propose a new path-based GNN, TAGNet, which customizes the amount of path-pruning for

each source-target node pair.

• We demonstrate that the complexity of TAGNet is independent of the number of layers, allowing

for efficient deep propagation.

• Extensive experiments demonstrate that TAGNet reduces the number of aggregated messages by

up to 90% while matching or even slightly outperforming NBFNet on multiple KG benchmarks.

5.2 Preliminary

In this section, we first introduce the notation used throughout the paper. We then introduce the

path formulation from [154], the generalized Bellman-Ford algorithm [9], and NBFNet [154].

5.2.1 Notations

We denote a KG as G = {V,R, E} with entities V, relations R, and edges E. An edge is

denoted as a triple and is of the form (𝑠, 𝑞, 𝑜) where 𝑠 is the subject, 𝑞 the query relation, and 𝑜

the object. for an incomplete fact (𝑠, 𝑞, ?). In such a problem, we refer to the node entity 𝑠 as
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(a) Example of propagating for three iterations with 𝛿=1. (b) Update status of nodes when 𝛿=1.

Figure 5.1 Example of our algorithm when 𝛿 = 1. We note that an undirected blue edge indicates
that both nodes aggregate each other. A directed edge indicates that only the head node
aggregates the tail node. E.g., at iteration 2 node 2 aggregates node 1, however node 1 doesn’t
aggregate node 2.

the source node and any possible answer ? as the target node. Lastly, we denote the shortest path

distance between nodes 𝑠 and 𝑜 as dist(𝑠, 𝑜). We assume an edge weight of 1 since KGs typically

don’t contain edge weights.

5.2.2 Path Formulation

[154] introduce a general path formulation for determining the existence of an edge (𝑠, 𝑞, 𝑜).

They consider doing so by aggregating all paths between 𝑠 and 𝑜, conditional on the query 𝑞. We

denote the maximum path length as 𝑇 (in their paper they set 𝑇 = ∞), 𝑃𝑡𝑠,𝑜 represents all paths of

length 𝑡 connecting nodes 𝑠 and 𝑜, and w𝑞 (𝑒𝑖) is the representation of an edge 𝑒𝑖 conditional on the

relation 𝑞. The representation of an edge (𝑠, 𝑞, 𝑜) is given by h𝑞 (𝑠, 𝑜):

h𝑞 (𝑠, 𝑜) =
𝑇⊕
𝑡=1

⊕
𝑝∈𝑃𝑡

𝑠,𝑜

|𝑝 |⊗
𝑖=1

w𝑞 (𝑒𝑖). (5.1)

[154] show that this formulation can capture many existing graph algorithms including the Katz

index [50], Personalized PageRank [15] and others.

5.2.3 Generalized Bellman-Ford

Due to the exponential relationship between path length and the number of paths, calculating

Eq. (5.1) for large 𝑇 is unfeasible. As such, [154] instead model Eq. (5.1) via the generalized

Bellman-Ford algorithm [9] which recursively computes such path information in a more efficient
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manner. It is formulated as:

h(0)
𝑞 (𝑠, 𝑜) = 1𝑞 (𝑠 = 𝑜), (5.2)

h(𝑡)
𝑞 (𝑠, 𝑜) =

( ⊕
(𝑥,𝑟,𝑜)∈E(𝑜)

h(𝑡−1)
𝑞 (𝑠, 𝑥) ⊗ w𝑞 (𝑥, 𝑟, 𝑜)

)
⊕ h(0)

𝑞 (𝑠, 𝑜), (5.3)

where E(𝑜) represents all edges with 𝑜 as the object entity, i.e., (∗, ∗, 𝑜). [154] prove that 𝑇

iterations of the generalized Bellman-Ford is equal to Eq. (5.1) with a max path length of 𝑇 .

5.2.4 NBFNet

[154] extend Eq. (5.2) via the inclusion of learnable parameters. w𝑞 (𝑥, 𝑟, 𝑜) is replaced with a

learnable embedding w𝑞 (𝑟) for each relation 𝑟. A linear transformation is further included in the

aggregation. It is formulated as the following where for convenience we set h(𝑡)
𝑞 (𝑠, 𝑜) = h(𝑡)

𝑜 and

w𝑞 (𝑥, 𝑟, 𝑜) = w𝑞 (𝑟):

h(0)
𝑜 = INDICATOR(𝑢, 𝑣, 𝑞),

h(𝑡)
𝑜 = AGG

({
MSG(h(𝑡−1)

𝑥 ,w𝑞 (𝑟)) | (𝑥, 𝑟, 𝑜) ∈ E(𝑜)
}
∪ {h(0)

𝑜 }
)
.

(5.4)

The representation of the source node h(0)
𝑠 is initialized to a learnt embedding, q𝑟 , corresponding to

the query relation 𝑟 . For all other nodes (𝑜 ≠ 𝑠), they learn a separate initial embedding. However

in practice they simply initialize the other nodes to the 0 vector. For the AGG function they consider

the sum, max, min and PNA operations. For the MSG function they consider the TransE [14],

DistMult [127], and RotatE [104] operators. The final representation is passed to a score function

𝑓 which is modeled via an MLP.

5.3 The Proposed Framework

In this section, we propose a new approach to improve the efficiency of path-based GNN models.

Inspired by two observations in Section 5.3.1, we proposed a simple but effective distance-based

pruning strategy. We then introduce a truncated version of the generalized Bellman-Ford algorithm

that achieves the goal of our proposed pruning strategy. Finally, we describe a neural network

model based on the truncated Bellman-Ford.
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5.3.1 Motivation

In this subsection, we discuss the motivation behind our framework design. In particular,

we suggest that the inefficiency of path-based GNNs is mainly due to two observations: (1) the

aggregation of many empty messages and (2) the proliferation of redundant messages when the

number of layers is large. Next, we detail our observations and how they inspire us to design a

more efficient method.

Observation #1: Empty Messages. Most path-based GNNs aggregate empty messages that do not

contain any path information. This has the effect of increasing the model complexity without any

obvious benefit. We provide an illustrative example. In Figure 5.1a, during the first iteration, node

7 will try to aggregate path information from node 6. However, all node representations, outside of

the source, are initialized to zero ("empty messages"). Hence, a non-informative “empty message”

will be passed to node 7 from node 6. In fact, in the first iteration, only the 1-hop neighbors of the

source aggregate non-empty messages which contains information on paths with length 1. Only

after two iterations will node 6 contain path information from the source. Therefore aggregating

any messages before the third iteration will not lead to any path information for node 7. However,

both NBFNet [154] and A∗Net [152] will aggregate such messages, leading to increased complexity

without any gain in additional path information. This observation suggests that a node 𝑜 of distance

dist(𝑠, 𝑜) from the source can only aggregate path information from iteration 𝑡 = dist(𝑠, 𝑜) onwards.

Observation #2: Redundant Messages. Due to their design, path-based GNNs with 𝑇 layers can

only learn representations for nodes within 𝑇 hops of the source node. However, since the time

complexity of all existing methods is proportional to the number of layers, learning representations

for nodes far from the source (i.e., distant nodes) can be very inefficient. In particular, as we

discussed in Section 5.1, this mainly afflicts target nodes closer to the source. Again, we utilize

Figure 5.1a for illustration. In the first two iterations the node 4 aggregates two paths including

(source, 4) and (source, 3, 4). These paths provide significant information between the source and

4. Comparatively, in the 6-th iteration node 4 aggregates paths1 of length 6, which reach further
1Strictly, these walks are not paths, as they contain repeated nodes and edges. In this paper, we follow the

convention of the path-based GNN papers to loosely call them paths.
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nodes and return to node 4. Since these paths already contain information present in shorter paths,

little information is gained by aggregating them. Our empirical study in Section 5.4.3 also verifies

that aggregating paths of longer length relative to the target node have little to no positive effect on

performance.

These two observations suggest that the efficiency of path-based GNN methods is low when

there are nodes of diverse distances to the source. We verify this by analyzing the distance

distribution for all test samples on the WN18RR [30] dataset. For each sample we calculate the

shortest path distance between both nodes and plot the distribution of the distances over all samples.

The results are shown in Figure 5.2. We note that around 25% of samples have a shortest distance

≥ 5. To aggregate information for these distant nodes, it is necessary to set 𝑇 to ≥ 5. In this case,

nodes of larger distance will propagate empty messages for the first few iterations (Observation 1).

Furthermore, about 35% of the samples have a shortest distance of 1. Such samples will aggregate

redundant messages after a few iterations (Observation 2). Our Design Goal: The key to improving

the efficiency of path-based GNNs is to modify their aggregation scheme. In particular, based on

the aggregation scheme of path-based GNNs, all target nodes are aggregating paths with lengths

ranging from 1 to 𝑇 . Such paths contain many empty and redundant messages. To reduce the

aggregation of those non-informative messages, we propose to customize the aggregations for each

target node. Specifically, for close nodes, we do not aggregate long paths as they are redundant.

For distant nodes, we do not aggregate short paths as they are empty. As such, we customize the

aggregation process for each target node according to its distance from the source. Based on this

intuition, we reformulate the path formulation, Eq. (5.1), as follows.

x𝑞 (𝑠, 𝑜) =
dist(𝑠,𝑜)+𝛿⊕
𝑡=dist(𝑠,𝑜)

⊕
𝑝∈𝑃𝑡

𝑠,𝑜

|𝑝 |⊗
𝑖=1

𝑤(𝑒𝑖), (5.5)

where 𝛿 ≥ 0 is an offset. The parameter 𝛿 can be considered as a form of path pruning as it

controls the paths we aggregate relative to the shortest path distance. For example, when 𝛿 = 0, it

only aggregates those paths of the shortest distance for all node pairs. Empirical observations in

Section 5.4.3 validate our use of pruning based on an offset 𝛿.
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Figure 5.2 Test Distance Distribution for WN18RR.

Due to the high complexity of Eq. (5.5), it is not practical to directly calculate it. Hence, based

on the generalized Bellman-Ford algorithm [9], we propose a truncated version of the Bellman-Ford

algorithm for calculating Eq. (5.5) in a more efficient fashion.

5.3.2 Truncated Bellman-Ford

From our design goal, we are interested in capturing all paths of length dist(𝑠, 𝑜) ≤ 𝑙 ≤

dist(𝑠, 𝑜) + 𝛿. To achieve this goal, for node 𝑜, we begin aggregating at iteration 𝑡 = dist(𝑠, 𝑜) and

stop aggregation after iteration 𝑡 = dist(𝑠, 𝑜) + 𝛿. This helps avoid aggregating empty messages

before dist(𝑠, 𝑜)-th iteration and redundant messages after dist(𝑠, 𝑜) + 𝛿 iterations. However,

during the iterations between dist(𝑠, 𝑜) and dist(𝑠, 𝑜) + 𝛿, there are still potential empty messages.

For example, any node 𝑣 with the shortest distance to source larger than dist(𝑠, 𝑜) + 𝛿 always

contains empty messages during these iterations. Hence, to further avoid aggregating many empty

messages, we only allow aggregation from a subset of the neighboring nodes of 𝑜. More formally,

we formulate the above intuition into the following constrained edge set C(𝑠, 𝑜, 𝑡) through which

node 𝑜 aggregates information at iteration 𝑡.

C(𝑠, 𝑜, 𝑡) =


∅, if 𝑡 < dist(𝑠, 𝑜) or 𝑡 > dist(𝑠, 𝑜) + 𝛿

{(𝑣, 𝑟, 𝑜) ∈ E(𝑜) | dist(𝑠, 𝑣) < dist(𝑠, 𝑜) + 𝛿}, else
(5.6)
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Based on this constraint set of edges for node 𝑜, we update the generalized Bellman-Ford algorithm

(Eq. 5.2) as follows where C = C(𝑠, 𝑜, 𝑡):

x(𝑡 )
𝑞 (𝑠, 𝑜) =

( ⊕
(𝑣,𝑟 ,𝑜) ∈C

x(𝑡−1)
𝑞 (𝑠, 𝑣) ⊗ w𝑞 (𝑣, 𝑟, 𝑜)

)
⊕ x(0)

𝑞 (𝑠, 𝑜). (5.7)

The following theorem shows that the aggregation scheme proposed in Eq. (5.7) results in aggre-

gation of the correct paths as described in Eq. (5.5).

Theorem 2. Given a source node 𝑠, query 𝑞, and target node 𝑜, the final representation, x𝐹𝑞 (𝑠, 𝑜)

only aggregates all path representations whose path length is between dist(𝑠, 𝑜) and dist(𝑠, 𝑜) + 𝛿

for all 𝑜 ∈ 𝑉 . It therefore contains all information present in Eq. (5.5) such that,

x𝐹𝑞 (𝑠, 𝑜) =
dist(𝑠,𝑜)+𝛿⊕
𝑡=dist(𝑠,𝑜)

⊕
𝑝∈𝑃𝑡

𝑠,𝑜

|𝑝 |⊗
𝑖=1

𝑤(𝑒𝑖). (5.8)

The detailed proof of Theorem 2 is provided in Appendix D.1. This design has the following

advantages. (1) We don’t begin aggregating messages until layer 𝑡 = dist(𝑠, 𝑜). This helps avoid

the aggregation of many empty messages for nodes far from the source. (2) We stop aggregating

messages at layer 𝑡 = dist(𝑠, 𝑜) + 𝛿. This ensures that for close nodes we don’t aggregate many

redundant messages. Furthermore, it ensures that we will always aggregate paths of 𝛿 + 1 different

lengths for all target nodes regardless of their distance from the source. (3) In Section D.2.2, we

demonstrate that the complexity of this design is independent of the number of layers, allowing for

deep propagation.

An Illustrative Example. We given an example of the effect of constraints on propagation in

Figure 5.1 where 𝑠 = source. Figure 5.1a shows the involved nodes and edges over three iterations

when 𝛿 = 1. We observe that only a portion of the nodes and edges are involved at any one iteration.

For example, at iteration 1 only the 1-hop neighbors and the edges connecting them to the source

are involved. This is because they are the only nodes and edges able to receive any path information

at that stage. Figure 5.1b details the update status of nodes by distance from the source node. We

note how as the iteration increases the number of nodes updated shift to the right in groups of two.

Furthermore since we only iterate for three iterations, the 4+ hop neighbors never update as there

is no available path information for them until iteration 4.
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5.3.3 Degree Messages

An effect of pruning paths, especially with low 𝛿, is that it can lead to very few messages

being aggregated. This is especially true for smaller or sparser graphs. One consequence of few

messages being aggregated is that it can make it difficult for a node to discern the properties of its

neighborhood (e.g. degree). We give an example of node 4 in Figure 5.1. For each of the first

2 iterations, it only aggregates messages from 2/4 of it’s neighbors. As such, it never aggregates

messages from all its neighbors at the same iteration. This can lead to a failure of node 4 to properly

discern it’s degree, as the number of non-empty messages in each iteration is only a portion of the

overall degree. Since the degree is known to be an important factor in link prediction [81, 2], we

want to preserve the degree information for all nodes.

In order to preserve the degree information for each node, we consider encoding the degree

via the use of pseudo messages. Specifically, we want to add enough messages such that the

total number of messages aggregated for a node 𝑜 is equivalent to its degree. We refer to such

messages as degree messages. Going back to our example in Figure 5.1, for node 4 at iteration 1

and 2 we would add 2 degree messages so that the total number of messages is 4. Formally, we

denote the degree of a node 𝑜 as 𝑏𝑜. The number of messages to add at iteration 𝑡 is given by

𝜌𝑜 = 𝑏𝑜 − |𝐶 (𝑠, 𝑜, 𝑡) |.

For the value of the messages, we learn a separate embedding denoted as x(𝑡)
deg that is the same

across all nodes. Since the value of each message is the same we can avoid explicitly aggregating

each degree message individually. Instead, we just aggregate one message that is equal to the

number of degree messages multiplied by the degree embedding,

x(𝑡)
deg(𝑠, 𝑜) = 𝜌𝑜 · x(𝑡)

deg, (5.9)

where x(𝑡)
deg(𝑠, 𝑜) is the value of the degree message for node 𝑜 at iteration 𝑡. This edge is then

added to the set of messages to be aggregated, 𝐶 (𝑠, 𝑜, 𝑡). Since this is equivalent to computing

and aggregating only one edge, it has no effect on the model complexity. Experimental results in

Section 5.4.4 validate the effectiveness of degree messages.
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5.3.4 GNN Formulation

We follow similar conventions to NBFNet when converting Eq. (5.6) and Eq. (5.7) to a GNN.

We denote the embedding of a source node 𝑠 and arbitrary target node 𝑜 as x𝑞 (𝑠, 𝑜). We further

represent the indicator query embeddings as x𝑞 and the layer-wise relation embeddings as x(𝑡)
𝑟 .

We utilize the INDICATOR function described in Section 5.2.4, PNA [26] for the AGGREGATE

function, and DistMult [127] for the MSG function. The probability of a link existing between a

source-target pair is determined via a score function 𝑓 . Both the final representation of the pair and

the query embedding are given as input. The output of 𝑓 is then passed to a sigmoid to produce a

probability,

𝑝(𝑠, 𝑜) = 𝜎
(
𝑓

(
xF
𝑞 (𝑠, 𝑜), x𝑞

))
, (5.10)

where xF
𝑞 (𝑠, 𝑜) is the final pair representation. The full algorithm is detailed in Appendix D.2.1. We

run a total of 𝑇 layers. We further show in in Appendix D.2.2 that time complexity is independent

of the number of layers. This enables TAGNet to propagate for more layers than existing path-based

GNNs.

Furthermore, due to its general design, TAGNet can also be integrated with other efficiency-

minded methods like A∗Net. This is described in more detail in Appendix D.2.3. Extensive

experiments in Sections 5.4.1 and 5.4.2 also demonstrate that combining both methods can signif-

icantly reduce the number of messages propagated by A∗Net without sacrificing performance.

5.3.5 Target-Specific 𝛿

A drawback of our current design is that we assume a single offset 𝛿 for all possible node pairs.

However, for some pairs we may want to consider propagating more or less iterations. For example,

in Figure 5.1 we may only want to consider 𝛿 = 0 for the target node 2 due to the limited number

of paths connecting it to the source. However for node 4, which is concentrated in a denser portion

of the subgraph, we may want to consider a higher value of 𝛿 such as 1 or 2 to capture more path

information. We next detail our method for achieving this.
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5.3.5.1 Target-Specific 𝛿 via Attention

A target-specific 𝛿 can be attained by realizing the connection between the hidden representa-

tions and the value of 𝛿. Let’s denote the value of the hyperparameter 𝛿 as 𝛿. For a source-target

node pair (𝑠, 𝑜), we only aggregate paths from length dist(𝑠, 𝑜) to dist(𝑠, 𝑜) + 𝛿. At iteration

𝑡 = dist(𝑠, 𝑜) we aggregate paths of length dist(𝑠, 𝑜) and at iteration 𝑡 = dist(𝑠, 𝑜) + 1 only those

paths of length dist(𝑠, 𝑜) + 1, and so on until 𝑡 = dist(𝑠, 𝑜) + 𝛿. The set of hidden representations

for a node pair is as follows where for convenience we represent x𝑞 (𝑠, 𝑜) as x(𝑠,𝑜):

Hiddens(𝑠, 𝑜) =
[
xdist(𝑠,𝑜)
(𝑠,𝑜) , · · · , x(dist(𝑠,𝑜)+𝛿)

(𝑠,𝑜)

]
. (5.11)

The first hidden representation only contains paths of shortest length and therefore corresponds

to 𝛿 = 0. Since the paths accumulate over hidden representations via a self-loop, x(dist(𝑠,𝑜)+1)
(𝑠,𝑜)

contains all paths of length dist(𝑠, 𝑜) and dist(𝑠, 𝑜) + 1, corresponding to 𝛿 = 1. As such, the final

hidden representation is equivalent to 𝛿 = 𝛿. Therefore, choosing a target-specific 𝛿 is achieved by

selecting one of the hidden representations as the final representation.

We utilize attention to determine which value of 𝛿 is best for a specific target node. This is

formulated as the following:

xF
(𝑠,𝑜) =

𝛿∑︁
𝛿=0

𝛼𝛿(𝑠,𝑜)x
(dist(𝑠,𝑜)+𝛿)
(𝑠,𝑜) , (5.12)

where 𝛼𝛿(𝑠,𝑜) is the corresponding attention weight for the hidden representation x(dist(𝑠,𝑜)+𝛿)
(𝑠,𝑜) . For

each possible value of 𝛿, 𝛼𝛿(𝑠,𝑜) is given by:

𝛼̃𝛿(𝑠,𝑜) = 𝑔
(
x(dist(𝑠,𝑜)+𝛿)
(𝑠,𝑜) , x𝑞

)
𝛼𝛿(𝑠,𝑜) = Softmax(𝛼̃𝛿(𝑠,𝑜)).

We model 𝑔 as an MLP that takes both the hidden representation and the query embedding as input.

Taking inspiration from A∗Net [152], we conjecture that a well-learned score function can help

determine which representations are better than others. As such, we further consider modeling 𝑔

as its own function or having it share parameters with the score function 𝑓 , Eq. (5.10). Lastly, we

show in Appendix D.2.2 that the time complexity is unchanged when using a target-specific 𝛿.
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Table 5.1 Transductive Results. Best results are in bold and the 2nd best underlined.

Method Type Method FB15k-237 WN18RR
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

Embeddings

TransE 0.294 - 0.465 0.226 - 0.501
DistMult 0.241 0.155 0.419 0.43 0.39 0.49
ComplEx 0.247 0.158 0.428 0.44 0.41 0.51

GNNs R-GCN 0.273 0.182 0.456 0.402 0.345 0.494
CompGCN 0.355 0.264 0.535 0.479 0.443 0.546

Path-Based

DRUM 0.343 0.255 0.516 0.486 0.425 0.586
RED-GNN 0.374 0.283 0.558 0.533 0.485 0.624
AdaProp 0.392 0.309 0.555 0.553 0.502 0.652
NBFNet 0.415 0.321 0.599 0.551 0.497 0.666
A∗Net 0.414 0.324 0.592 0.547 0.490 0.658

TAGNet
+ A∗Net 0.409 0.323 0.577 0.555 0.502 0.657
Fixed 𝛿 0.421 0.328 0.602 0.562 0.509 0.667
Specific 𝛿 0.417 0.328 0.592 0.565 0.513 0.667

Table 5.2 Inductive Results (evaluated with Hits@10). Ours results are averaged over 5 runs.

Method FB15k-237 WN18RR
v1 v2 v3 v4 v1 v2 v3 v4

NeuralLP 0.468 0.586 0.571 0.593 0.772 0.749 0.476 0.706
DRUM 0.474 0.595 0.571 0.593 0.777 0.747 0.477 0.702
GraIL 0.429 0.424 0.424 0.389 0.760 0.776 0.409 0.687
RED-GNN 0.483 0.629 0.603 0.621 0.799 0.780 0.524 0.721
AdaProp 0.470 0.651 0.620 0.614 0.798 0.836 0.582 0.732
NBFNet 0.607 0.704 0.667 0.668 0.826 0.798 0.568 0.694
A∗Net 0.535 0.638 0.610 0.630 0.810 0.803 0.544 0.743

TAGNet + A∗Net 0.541 0.646 0.604 0.623 0.813 0.805 0.535 0.745
TAGNet (fixed 𝛿) 0.596 0.700 0.677 0.666 0.816 0.796 0.534 0.734
TAGNet (specific 𝛿) 0.596 0.698 0.675 0.661 0.818 0.803 0.544 0.737

5.4 Experiment

In this section, we evaluate the effectiveness of our proposed framework on KGC under both

the transductive and inductive settings. We also empirically analyze the efficiency and conduct

ablation studies on each component. The experimental details are listed in Appendix D.3. We

note that for a fair comparison between path-based GNNs, we run each model using 6 layers and a

hidden dimension of 32 as is done in both [154] and [152]. Please see Appendix D.3.2 for more

details.
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5.4.1 Effectiveness of TAGNet

In this subsection, we present the results of TAGNet compared with baselines on both trans-

ductive and inductive settings. We further detail the results when combining TAGNet with A∗Net.

Transductive Setting: The results on the transductive setting are shown in Table 5.1. We

observe that TAGNet achieves strong performance with just a fixed 𝛿. In particular, it outperforms

A∗Net and AdaProp on most metrics. Also compared to NBFnet, which doesn’t utilize pruning,

TAGNet achieves comparable or even stronger performance. This indicates that the proposed

pruning strategy mostly reduces redundant aggregations that do not impair the models effectiveness.

Inductive Setting: Table 5.2 shows the results on the inductive setting. TAGNet achieves strong

performance on both datasets. In particular, it achieves comparable performance to the non-pruning

version of NBFNet. Furthermore, TAGNet significantly outperforms A∗Net and AdaProp on the

FB15k-237 splits, demonstrating the advantage of the proposed pruning strategy.

TAGNet + A∗Net: We further test combining the pruning strategy of both TAGNet and

A∗Net together (see Appendix D.2.3 for more details). Compared to A∗Net, we observe that

TAGNet+A∗Net achieves comparable if not better performance under all settings despite aggregat-

ing much fewer messages (see subsection 5.4.2). This suggests that the pruning strategy in A∗Net

fails to prune many irrelevant paths, allowing TAGNet to work complementary to it.

5.4.2 Efficiency of TAGNet

In this subsection, we empirically evaluate the efficiency of our model against NBFNet. Specif-

ically, we compare the mean number of messages aggregated per sample during training.

Figure 5.3 shows the % decrease in the number of messages of TAGNet as compared to NBFNet.

All models are fit with 6 layers. We observe two trends. The first is that both FB15k-237 datasets

follow a similar relationship that is close to what’s expected of the worst-case complexity detailed

in Appendix D.2.2. On the other hand, the WN18RR datasets pass much fewer messages as they

hover above 90% for all 𝛿. This is likely because WN18RR is a very sparse graph. This gives

TAGNet plenty of opportunities to prune paths.

We further compare the efficiency of just A∗Net and A∗Net + TAGNet. As before, we calculate
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Figure 5.3 % Decrease in NBFNet Messages.

the total number of messages passed for both methods. We fix 𝛿 = 2. Table 5.3 show the %

decrease in the number of messages when utilizing both techniques compared to just A∗Net. We

observe a large reduction in both the inductive and transductive setting. Since the performance of

A∗Net + TAGNet is on par with just A*Net, it suggests that A*Net fails to prune many unneeded

messages that do not improve performance. Furthermore, we find that the reduction in the number

of messages becomes more pronounced with more layers, suggesting that TAGNet is even more

useful when deep propagation is necessary.

Table 5.3 % Decrease in # Msgs for A∗Net vs. A∗Net + TAGNet.

Dataset 6 Layers 7 Layers 8 Layers

FB15k-237 39% 51% 59%
FB15k-237 v1 30% 44% 66%
WN18RR 10% 17% 26%
WN18RR v1 25% 37% 46%

5.4.3 Effect of 𝛿

In this subsection, we evaluate the effect of the offset 𝛿 on TAGNet test performance (w/o the

target-specific setting). We fix the number of layers at 6 and vary 𝛿 from 0 to 5. We report results for

both the transductive and inductive settings in Figures 5.4 and 5.5, respectively. For the inductive

setting, we chose version v1 of both datasets as the representative datasets. For both transductive

datasets, we find that the performance plateaus at 𝛿 = 2. A similar trend is observed for FB15k-237

v1. Interestingly, for WN18RR v1,the performance is constant when varying 𝛿. This suggests that
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for some datasets almost all of the important information is concentrated in paths of the shortest

length.

Figure 5.4 Performance varying 𝛿 on Transductive setting.

Figure 5.5 Performance varying 𝛿 on Inductive setting.

5.4.4 Effect of Degree Messages

We demonstrate the effect of the degree messages described in Section 5.3.3. Table 5.4

shows the performance of TAGNet when trained with and without degree messages. We report

the performance on all of the inductive splits for both FB15k-237 and WN18RR. Interestingly,

we observe that while there is a consistent gain on FB15k-237, it often hurts performance on

WN18RR. This may imply that preserving the degree information of each node is more important

on FB15k-237 than WN18RR.
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Table 5.4 Effect of Degree Messages on Inductive Splits.

Dataset Split w/o Msgs with Msgs

FB15k-237

V1 0.594 0.596
V2 0.684 0.698
V3 0.653 0.675
V4 0.648 0.661

WN18RR

V1 0.815 0.818
V2 0.803 0.781
V3 0.544 0.465
V4 0.737 0.718

5.5 Related Work

We give a brief overview of different types of KGC methods. (1) Embedding-Based Methods:

Such methods are concerned with modeling the interactions of entity and relation embeddings.

TransE [14] models each fact as translation in the embedding space while DistMult [127] scores

each fact via a bilinear diagonal function. ComplEx [112] extends DistMult by further modeling

the embeddings in the complex space. Lastly, Nodepiece [36] attempts to improve the efficiency

of embedding-based KGC methods by representing each entity embedding as a combination of a

smaller set of subword embeddings. Since this method concerns embedding-based techniques, it

is orthogonal to our work. (2) GNN-Based Methods: GNN methods extend traditional GNNs

by further considering the relational information. CompGCN [113] encodes each message as a

combination of neighboring entity-relation pairs via the use of compositional function. RGCN [100]

instead considers a relation-specific transformation matrix to integrate the relation information. (3)

Path-Based Methods: Path-based methods attempt to leverage the path information connecting

two entities to perform KGC. NeuralLP [128] and DRUM [96] learn to weight different paths by

utilizing logical rules. More recently, NBFNet [154] considers path information by learning a

parameterized version of the Bellman-Ford algorithm. A similar framework, RED-GNN [143]

also attempts to take advantage of dynamic programming to aggregate path information. Both

A∗Net [152] and AdaProp [144] attempt to prove upon the efficiency of the previous methods by

learning which nodes to propagate to.

77



5.6 Conclusion

In this paper we identify two intrinsic limitations of path-based GNNs that affect the efficiency

and representation quality. We tackle these issues by introducing a new method, TAGNet, which is

able to efficiently propagate path information. This is realized by only aggregating paths in a fixed

window for each source-target pair. We demonstrate that the complexity of TAGNet is independent

of the number of layers. For future work, we plan on exploring methods to capture path information

without having to perform a separate round of propagation for every individual source node.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

In this work we propose enhancing link prediction from multiple perspectives through a data-centric

framework. To do so, we first study the evaluation setting of link prediction, showing that it is

unrealistic. We then promote a new evaluation procedure which corresponds to a more realistic

evaluation of link prediction. Next, we propose a new method, LPFormer, that can efficiently

model the factors necessary for LP in a data-driven way. The design of LPFormer is based on

our empirical understanding of LP performance. We then focus on KG completion, seeking to

mitigate problems with bias and efficiency. We first study the problem of degree bias in KGC,

finding that it differs from traditional degree bias in node classification. We then propose a new

data augmentation method to alleviate this bias. Lastly, we study the inefficiency of path-based

GNNs used for KGC. We find that much computation is spend on redundant or empty messages.

We then propose a new method for reducing these messages.

In the future, we plan to further explore LP and Graph ML in various ways:

1. Generalizable LP: To properly work with real-world data, it’s necessary to design methods that

can generalize to out-of-distribution (OOD) samples. Recent work has shown [92] has shown

that for LP, methods often struggle to properly generalize across covariate distribution shifts.

However, there is little work exploring how to practically overcome these issues and design

methods that can generalize. Furthermore, it’s unclear how current methods can generalize to

links that follow different structural patterns. I plan to explore both directions in future work.

2. Trustworthy LP: It has been shown that AI is susceptible to malicious attacks on the input

given to models. It is necessary to safeguard against such potential attackers given its potential

to cause great harm in safety-critical and real-world applications. Recent work [60] has further

shown that for the task of LP, diffusion models can be helpful in protecting against certain types

of adversarial attacks. However, despite the real-world use of such protection, it is still relatively

unexplored. We therefore plan on continuing this line of research by exploring how current LP

models can protect against a more diverse set of adversarial attacks and whether we can design
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more efficient models to counterattack such attacks.

3. Foundation models for graph data. Recently, we’ve seen the emergence of “foundation

models” (FMs), which are a single model that can be used on a broad spectrum of downstream

tasks and datasets. The key advantage of FMs are that they allow us to sidestep the need to train

a new model for each dataset and task. However, despite the success in other fields like CV and

NLP, FMs have yet to take hold in the graph domain. Current graph foundation models (GFMs)

are limited, only working for specific domains (e.g., KG reasoning) or with natural language

node features. Recent work of ours has explored creating LP models that can generalize across

different datasets and domains [60], a key requirement for any FM. I plan to continue developing

GFMs that can be applied to graphs of various domains and for multiple different tasks. In

order to do this, they are several key questions that we need to answer: How to handle the

heterogeneity of the initial node features, not only in size but in semantic meaning? How do we

contend with the fact that different tasks (e.g., node classification and LP) and domains require

different inductive biases and therefore different final representations to perform optimally? Can

we learn to extract a shared set of information that is useful across different tasks and domains?

I argue that is necessary to answer these questions if we hope to create meaningful GFMs.
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APPENDIX A

EVALUATING GRAPH NEURAL NETWORKS FOR LINK
PREDICTION: CURRENT PITFALLS AND NEW

BENCHMARKING

A.1 Common Neighbor Distribution

In Figure 2.1 we demonstrate the common neighbor (CN) distribution among positive and

negative test samples for ogbl-collab, ogbl-ppa, and ogbl-citation2. These results demonstrate that

a vast majority of negative samples have no CNs. Since CNs is a typically good heuristic, this

makes it easy to identify most negative samples.

We further present the CN distribution of Cora, Citeseer, Pubmed, and ogbl-ddi in Figure A.1.

The CN distribution of Cora, Citeseer, and Pubmed are consistent with our previous observations

on the OGB datasets in Figure 2.1. We note that ogbl-ddi exhibits a different distribution with

other datasets. As compared to the other datasets, most of the negative samples in ogbl-ddi have

common neighbors. This is likely because ogbl-ddi is considerably denser than the other graphs.

As shown in Table A.1, the average node degree in ogbl-ddi is 625.68, significantly larger than

the second largest dataset ogbl-ppa with 105.25. Thus, despite the random sampling of negative

samples, the high degree of node connectivity within the ogbl-ddi graph predisposes a significant

likelihood for the occurrence of common neighbors.

We also present the CN distributions under the HeaRT setting. The plots for Cora, Citeseer,

Pubmed are shown in Figure A.2. The plots for the OGB datasets are shown in Figure A.3. We

observe that the CN distribution of HeaRT is more aligned with the positive samples. This allows

for a fairer evaluation setting by not favoring models that use CN information.

A.2 Additional Definitions

A.2.1 Evaluation Metrics

In this section we define the various evaluation metrics used. Given a single positive sample

and 𝑀 negative samples, we first score each sample and then rank the positive sample among the

negatives. The rank is then given by rank𝑖. I.e., a rank of 1 indicates that the positive sample
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(a) Cora (b) Citeseer

(c) Pubmed (d) ogbl-ddi

Figure A.1 Common neighbor distribution for the positive and negative test samples for the Cora,
Citeseer, Pubmed, and ogbl-ddi under the existing evaluation setting.

has a higher score than all negatives. The hope is that the positive sample ranks above most or

all negative samples. Various metrics make use of this rank. We use 𝑁 to denote the number of

positive samples.

Hits@K. It measures whether the true positive is within the top K predictions or not: Hits@K =

1
𝑁

∑𝑁
𝑖=1 1(rank𝑖 ≤ K). rank𝑖 is the rank of the 𝑖-th sample. The indicator function 1 is 1 if rank𝑖 ≤ K,

and 0 otherwise.

Mean Reciprocal Rank (MRR). It is the mean of the reciprocal rank over all positive samples:

MRR = 1
𝑁

∑𝑁
𝑖=1

1
rank𝑖 , where rank𝑖 is the rank of the 𝑖-th sample.

AUC. It measures the likelihood that a positive sample is ranked higher than a random negative

sample: AUC =

∑
𝑖∈D0

∑
𝑗∈D1 1(rank𝑖<rank 𝑗 )
|D0 |·|D1 | , where D0 is the set of positive samples, D1 is the set

of negative samples, and rank𝑖 is the rank of the 𝑖-th sample. The indicator function 1 is 1 if

rank𝑖 < rank 𝑗 , and 0 otherwise.
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(a) Cora (b) Citeseer (c) Pubmed

Figure A.2 Common neighbor distribution for the positive negative samples under both evaluation
settings for Cora, Citeseer, Pubmed.

(a) ogbl-collab (b) ogbl-ddi

(c) ogbl-ppa (d) ogbl-citation

Figure A.3 Common neighbor distribution for the positive negative samples under both evaluation
settings for the OGB datasets.

A.2.2 Negative Sampling

Since only positive links are observed, there is a need to generate negative links (i.e., edges

that don’t exist in G) to both train and evaluate different models. We detail how these samples are

generated in both training and evaluation.
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Training Negative Samples. During training, the negative samples are randomly selected,

with all nodes being equally likely to be selected. Let V and E be the set of nodes and edges in G.

Furthermore, we define 𝑣 ∈ Rand(V) as returning a random node in V. A single negative sample

(𝑎−, 𝑏−) is given by:

(𝑎−, 𝑏−) = (Rand(V),Rand(V)) . (A.1)

Typically one negative sample is generated per positive sample.

Evaluation Negative Samples. For the existing setting, a fixed set of randomly selected samples

are used as negatives during evaluation. Furthermore, the same set of negative samples are used for

each positive sample. This is equivalent to Eq. (A.1). The only exception is the ogbl-citation2 [43]

dataset. For ogbl-citation2, each positive sample is only evaluated against its own set 1000 negative

samples. For a positive sample, its negative samples are restricted to contain one of its two nodes

(i.e., a corruption). The other node is randomly selected from V. This is equivalent to selecting a

set of random samples from the set 𝑆(𝑎, 𝑏) as defined in Eq. (2.3).

A.3 Datasets and Experimental Settings

A.3.1 Datasets

Table A.1 Statistics of datasets. The split ratio is for train/validation/test.

Cora Citeseer Pubmed ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2

#Nodes 2,708 3,327 18,717 235,868 4,267 576,289 2,927,963
#Edges 5,278 4,676 44,327 1,285,465 1,334,889 30,326,273 30,561,187

Mean Degree 3.9 2.81 4.74 10.90 625.68 105.25 20.88
Split Ratio 85/5/10 85/5/10 85/5/10 92/4/4 80/10/10 70/20/10 98/1/1

The statistics of datasets are shown in Table A.1. Generally, Cora, Citeseer, and Pubmed are

smaller graphs, with the OGB datasets having more nodes and edges. We adopt the single fixed

train/validation/test split with percentages 85/5/10% for Cora, Citeseer, and Pubmed. For OGB

datasets, we use the fixed splits provided by the OGB benchmark [43].

A.3.2 Experimental Settings

Training Settings. We use the binary cross entropy loss to train each model. The loss is

optimized using the Adam optimizer [52]. During training we randomly sample one negative
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sample per positive sample. Each model is trained for a maximum of 9999 epochs, with the process

set to terminate when there are no improvements observed in the validation performance over 𝑛

checkpoints. The choice of 𝑛 is influenced by both the specific dataset and the complexity of the

model. For smaller datasets, such as Cora, Citeseer, and Pubmed, we set 𝑛 = 50 uniformly across

models (except for NBFNet and SEAL where 𝑛 = 20 due to their computational inefficiency).

When training on larger OGB datasets, we use a stratified approach: 𝑛 = 100 for the simpler

methods (i.e., the embedding and GNN-based models) and 𝑛 = 20 for the more advanced methods.

This is due to the increased complexity and runtime of more advanced methods. An exception is

for ogbl-citation2, the largest dataset. To accommodate for its size, we limit the maximum number

of epochs to the recommended value from each model’s source code. Furthermore, we set 𝑛 = 20

for all models.

In order to accommodate the computational requirements for our extensive experiments, we

harness a variety of high-capacity GPU resources. This includes: Tesla V100 32Gb, NVIDIA RTX

A6000 48Gb, NVIDIA RTX A5000 24Gb, and Quadro RTX 8000 48Gb.

Table A.2 Hyperparameter Search Ranges.

Dataset Learning Rate Dropout Weight Decay # Model Layers # Prediction Layers Embedding Dim

Cora (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
Citeseer (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
Pubmed (0.01, 0.001) (0.1, 0.3, 0.5) (1e-4, 1e-7, 0) (1, 2, 3) (1, 2, 3) (128, 256)
ogbl-collab (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256
ogbl-ddi (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256
ogbl-ppa (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 256
ogbl-citation2 (0.01, 0.001) (0, 0.3, 0.5) 0 3 3 128

Hyperparameter Settings. We present the hyparameter searching range in Table A.2. For

the smaller graphs, Cora, Citeseer, and Pubmed, we have a larger search space. However, it’s

not feasible to tune over such large space for OGB datasets. By following the most commonly

used settings among published hyperparameters, we fix the weight decay, number of model and

prediction layers, and the embedding dimension. Furthermore, due to GPU memory constraints,

the embedding size is reduced to be 128 for the largest dataset ogbl-citation2.

We note that several exceptions exist to these ranges when they result in significant performance
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degradations. In such instances, adjustments are guided by the optimal hyperparameters published

in the respective source codes. This includes:

• PEG [117]: Adhering to the optimal hyperparameters presented in the source code,1 when

training on ogbl-ddi we set the number of model layers to 2 and the maximum number of epochs

to 400.

• NCN/NCNC [120]: When training on ogbl-ddi, we adhere to the suggested optimal hyperparam-

eters used in the source code.2 Specifically, we set the number of model layers to be 1, and we

don’t apply the pretraining for NCNC to facilitate a fair comparison.

• NBFNet [153]: Due to the expensive nature of NBFNet, we further fix the weight decay to 0 when

training on Cora, Citeseer, and Pubmed. Furthermore, we follow the suggested hyperparameters 3

and set the embedding dimension to be 32 and the number of model layers to be 6.

• SEAL [139]: Due to the computational inefficiency of SEAL, when training on Cora, Citeseer

and Pubmed we further fix the weight decay to 0. Furthermore, we adhere to the published

hyperparameters 4 and fix the number of model layers to be 3 and the embedding dimension to

be 256.

• BUDDY [20]: When training on ogbl-ppa, we incorporate the RA and normalized degree as input

features while excluding the raw node features. This is based on the optimal hyperparameters

published by the authors.5

A.4 Reported vs. Our Results on ogbl-ddi

In Section 2.3 (see observation 2), we remarked that there is divergence between the reported

results and our results on ogbl-ddi for some methods. A comprehensive comparison of this

discrepancy is shown in Table A.3. The reported results for Node2Vec, MF, GCN, and SAGE are

taken from [43]. The results for the other methods are from their original paper: SEAL [141],

BUDDY [20], Neo-GNN [136], NCN [120], NCNC [120], and PEG [117].
1https://github.com/Graph-COM/PEG/
2https://github.com/GraphPKU/NeuralCommonNeighbor/
3https://github.com/DeepGraphLearning/NBFNet/
4https://github.com/facebookresearch/SEAL_OGB/
5https://github.com/melifluos/subgraph-sketching/
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Table A.3 Comparison results between ours and reported results on ogbl-ddi (Hits@20).

Node2Vec MF GCN SAGE SEAL BUDDY Neo-GNN NCN NCNC PEG

Reported 23.26 ± 2.09 13.68 ± 4.75 37.07 ± 5.07 53.90 ± 4.74 30.56 ± 3.86 78.51 ± 1.36 63.57 ± 3.52 82.32 ± 6.10 84.11 ± 3.67 43.80 ± 0.32
Ours 34.69 ± 2.90 23.50 ± 5.35 49.90 ± 7.23 49.84 ± 15.56 25.25 ± 3.90 29.60 ± 4.75 20.95 ± 6.03 76.52 ± 10.47 70.23 ± 12.11 30.28 ± 4.92
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Figure A.4 Validation vs. test performance for GCN, BUDDY, NCN and Neo-GNN on ogbl-ddi
under the existing evaluation setting.

A.5 Additional Investigation on ogbl-ddi

In this section, we present the additional investigation on the ogbl-ddi dataset. In Section A.5.1

we examine under the existing evaluation setting, there exists a poor relationship between the vali-

dation and test performance on ogbl-ddi for many methods. We then demonstrate in Section A.5.2

that under HeaRT this problem is lessened.

A.5.1 Existing Evaluation Setting

Upon inspection, we found that there is a poor relationship between the validation and test

performance on ogbl-ddi. Since we choose the best hyperparameters based on the validation set,

this makes it difficult to properly tune any model on ogbl-ddi. To demonstrate this point, we

record the validation and test performance at multiple checkpoints during the training process.

The experiments are conducted over 10 seeds. To ensure that our results are not caused by our

hyperparameter settings, we use the reported hyperparameters for each model. Lastly, we plot the

results for GCN, BUDDY, NCN, and Neo-GNN in Figure A.4. It is clear from the results that there

exists a poor relationship between the validation and test performance. For example, for NCN,

a validation performance of 70 can imply a test performance of 3 to 80. Further investigation is

needed to uncover the cause of this misalignment.
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Figure A.5 Validation vs. test performance when utilizing HeaRT for GCN, BUDDY, NCN and
Neo-GNN on ogbl-ddi. We find they have a much stronger relationship than under the existing
setting (see Figure A.4).

A.5.2 New Evaluation Setting

Under our new setting, we find that the validation and test performance have a much better

relationship. In Section A.5.1 we observed that there exists a poor relationship between the

validation and test performance on ogbl-ddi under the existing evaluation setting. This meddles

with our ability to choose the best hyperparameters for each model, as good validation performance

is not indicative of good test performance. However, this does not seem to be the case under the

new evaluation setting. In Figure A.5 we plot the relationship between the validation and test

performance by checkpoint for various models. Compared to the same plots under the existing

setting (Figure A.4), the new results display a much better relationship.

While it’s unclear what is the cause of the poor relationship between the test and validation

performance under the existing setting, we conjecture that tailoring the negatives to each positive

sample allows for a more natural comparison between a positive sample and its negatives. This

may help produce more stable evaluation metrics, thereby strengthening the alignment between the

validation and test performance.

A.6 Additional Results Under the Existing Setting

We present additional results of Cora, Citeseer, Pubmed and OGB datasets in Tables A.4-A.7

under the existing setting. We also omit the MRR for ogbl-collab, ogbl-ddi, and ogbl-ppa. This is

because the large number of negative samples make it very inefficient to calculate.
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Table A.4 Additional results on Cora(%) under the existing evaluation setting. We highlight the
results ranked first, second, and third as green, blue, and orange, respectively.

Models Hits@1 Hits@3 Hits@10 Hits@100

Heuristic

CN 13.47 13.47 42.69 42.69
AA 22.2 39.47 42.69 42.69
RA 20.11 39.47 42.69 42.69

Shortest Path 0 0 42.69 71.35
Katz 19.17 28.46 51.61 74.57

Embedding
Node2Vec 22.3 ± 11.76 41.63 ± 10.5 62.34 ± 2.35 84.88 ± 0.96

MF 7.76 ± 5.61 13.26 ± 4.52 29.16 ± 6.68 66.39 ± 5.03
MLP 18.79 ± 11.40 35.35 ± 10.71 53.59 ± 3.57 85.52 ± 1.44

GNN

GCN 16.13 ± 11.18 32.54 ± 10.83 66.11 ± 4.03 91.29 ± 1.25
GAT 18.02 ± 8.96 42.28 ± 6.37 63.82 ± 2.72 90.70 ± 1.03
SAGE 29.01 ± 6.42 44.51 ± 6.57 63.66 ± 4.98 91.00 ± 1.52
GAE 17.57 ± 4.37 24.82 ± 4.91 70.29 ± 2.75 92.75 ± 0.95

GNN+heuristic

SEAL 12.35 ± 8.57 38.63 ± 4.96 55.5 ± 3.28 84.76 ± 1.6
BUDDY 12.62 ± 6.69 29.64 ± 5.71 59.47 ± 5.49 91.42 ± 1.26

Neo-GNN 4.53 ± 1.96 33.36 ± 9.9 64.1 ± 4.31 87.76 ± 1.37
NCN 19.34 ± 9.02 38.39 ± 7.01 74.38 ± 3.15 95.56 ± 0.79

NCNC 9.79 ± 4.56 34.31 ± 8.87 75.07 ± 1.95 95.62 ± 0.84
NBFNet 29.94 ± 5.78 38.29 ± 3.03 62.79 ± 2.53 88.63 ± 0.46

PEG 5.88 ± 1.65 30.53 ± 6.42 62.49 ± 4.05 91.42 ± 0.8

Table A.5 Additional results on Citeseer(%) under the existing evaluation setting. We highlight
the results ranked first, second, and third as green, blue, and orange, respectively.

Models Hits@1 Hits@3 Hits@10 Hits@100

Heuristic

CN 13.85 35.16 35.16 35.16
AA 21.98 35.16 35.16 35.16
RA 18.46 35.16 35.16 35.16

Shortest Path 0 53.41 56.92 62.64
Katz 24.18 54.95 57.36 62.64

Embedding
Node2Vec 30.24 ± 16.37 54.15 ± 6.96 68.79 ± 3.05 89.89 ± 1.48

MF 19.25 ± 6.71 29.03 ± 4.82 38.99 ± 3.26 59.47 ± 2.69
MLP 30.22 ± 10.78 56.42 ± 7.90 69.74 ± 2.19 91.25 ± 1.90

GNN

GCN 37.47 ± 11.30 62.77 ± 6.61 74.15 ± 1.70 91.74 ± 1.24
GAT 34.00 ± 11.14 62.72 ± 4.60 74.99 ± 1.78 91.69 ± 2.11
SAGE 27.08 ± 10.27 65.52 ± 4.29 78.06 ± 2.26 96.50 ± 0.53
GAE 54.06 ± 5.8 65.3 ± 2.54 81.72 ± 2.62 95.17 ± 0.5

GNN+heuristic

SEAL 31.25 ± 8.11 46.04 ± 5.69 60.02 ± 2.34 85.6 ± 2.71
BUDDY 49.01 ± 15.07 67.01 ± 6.22 80.04 ± 2.27 95.4 ± 0.63

Neo-GNN 41.01 ± 12.47 59.87 ± 6.33 69.25 ± 1.9 89.1 ± 0.97
NCN 35.52 ± 13.96 66.83 ± 4.06 79.12 ± 1.73 96.17 ± 1.06

NCNC 53.21 ± 7.79 69.65 ± 3.19 82.64 ± 1.4 97.54 ± 0.59
NBFNet 17.25 ± 5.47 51.87 ± 2.09 68.97 ± 0.77 86.68 ± 0.42

PEG 39.19 ± 8.31 70.15 ± 4.3 77.06 ± 3.53 94.82 ± 0.81
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Table A.6 Additional results on Pubmed(%) under the existing evaluation setting. We highlight
the results ranked first, second, and third as green, blue, and orange, respectively.

Models Hits@1 Hits@3 Hits@10 Hits@100

Heuristic

CN 7.06 12.95 27.93 27.93
AA 12.95 16 27.93 27.93
RA 11.67 15.21 27.93 27.93

Shortest Path 0 0 27.93 60.36
Katz 12.88 25.38 42.17 61.8

Embedding
Node2Vec 29.76 ± 4.05 34.08 ± 2.43 44.29 ± 2.62 63.07 ± 0.34

MF 12.58 ± 6.08 22.51 ± 5.6 32.05 ± 2.44 53.75 ± 2.06
MLP 7.83 ± 6.40 17.23 ± 2.79 34.01 ± 4.94 84.19 ± 1.33

GNN

GCN 5.72 ± 4.28 19.82 ± 7.59 56.06 ± 4.83 87.41 ± 0.65
GAT 6.45 ± 10.37 23.02 ± 10.49 46.77 ± 4.03 80.95 ± 0.72
SAGE 11.26 ± 6.86 27.23 ± 7.48 48.18 ± 4.60 90.02 ± 0.70
GAE 1.99 ± 0.12 31.75 ± 1.13 45.48 ± 1.07 84.3 ± 0.31

GNN+heuristic

SEAL 30.93 ± 8.35 40.58 ± 6.79 48.45 ± 2.67 76.06 ± 4.12
BUDDY 15.31 ± 6.13 29.79 ± 6.76 46.62 ± 4.58 83.21 ± 0.59

Neo-GNN 19.95 ± 5.86 34.85 ± 4.43 56.25 ± 3.42 86.12 ± 1.18
NCN 26.38 ± 6.54 36.82 ± 6.56 62.15 ± 2.69 90.43 ± 0.64

NCNC 9.14 ± 5.76 33.01 ± 6.28 61.89 ± 3.54 91.93 ± 0.6
NBFNet 40.47 ± 2.91 44.7 ± 2.58 54.51 ± 0.84 79.18 ± 0.71

PEG 8.52 ± 3.73 24.46 ± 6.94 45.11 ± 4.02 76.45 ± 3.83

Table A.7 Additional results on OGB datasets(%) under the existing evaluation setting. We
highlight the results ranked first, second, and third as green, blue, and orange, respectively.

ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
Hits@20 Hits@100 Hits@50 Hits@100 Hits@20 Hits@50 Hits@20 Hits@50 Hits@100

CN 49.98 65.6 26.51 34.52 13.26 19.67 77.99 77.99 77.99
AA 55.79 65.6 27.07 36.35 14.96 21.83 77.99 77.99 77.99
RA 55.01 65.6 19.14 31.17 25.64 38.81 77.99 77.99 77.99

Shortest Path 46.49 66.82 0 0 0 0 >24h >24h >24h
Katz 58.11 71.04 26.51 34.52 13.26 19.67 78 78 78

Node2Vec 40.68 ± 1.75 55.58 ± 0.77 59.19 ± 3.61 73.49 ± 3.18 11.22 ± 1.91 19.22 ± 1.69 82.8 ± 0.13 92.33 ± 0.1 96.44 ± 0.03
MF 39.99 ± 1.25 43.22 ± 1.94 45.51 ± 11.13 61.72 ± 6.56 9.33 ± 2.83 21.08 ± 3.92 70.8 ± 12.0 74.48 ± 10.42 75.5 ± 10.13

MLP 27.66 ± 1.61 42.13 ± 1.09 N/A N/A 0.16 ± 0.0 0.26 ± 0.03 74.16 ± 0.1 86.59 ± 0.08 93.14 ± 0.06

GCN 44.92 ± 3.72 62.67 ± 2.14 74.54 ± 4.74 85.03 ± 3.41 11.17 ± 2.93 21.04 ± 3.11 98.01 ± 0.04 99.03 ± 0.02 99.48 ± 0.02
GAT 43.59 ± 4.17 62.24 ± 2.29 55.46 ± 10.16 69.74 ± 10.01 OOM OOM OOM OOM OOM
SAGE 50.77 ± 2.33 65.36 ± 1.05 93.48 ± 1.36 97.37 ± 0.55 19.37 ± 2.65 31.3 ± 2.36 97.48 ± 0.03 98.75 ± 0.03 99.3 ± 0.02
GAE OOM OOM 12.39 ± 8.74 14.03 ± 9.22 OOM OOM OOM OOM OOM

SEAL 54.19 ± 1.57 69.94 ± 0.72 43.34 ± 3.23 52.2 ± 1.78 21.81 ± 4.3 36.88 ± 4.06 94.61 ± 0.11 95.0 ± 0.12 95.37 ± 0.14
BUDDY 57.78 ± 0.59 67.87 ± 0.87 53.36 ± 2.57 71.04 ± 2.56 26.33 ± 2.63 38.18 ± 1.32 97.79 ± 0.07 98.86 ± 0.04 99.38 ± 0.03

Neo-GNN 57.05 ± 1.56 71.76 ± 0.55 33.88 ± 10.1 46.55 ± 13.29 26.16 ± 1.24 37.95 ± 1.45 97.05 ± 0.07 98.75 ± 0.03 99.41 ± 0.02
NCN 50.27 ± 2.72 67.58 ± 0.09 95.51 ± 0.87 97.54 ± 0.7 40.29 ± 2.22 53.35 ± 1.77 97.97 ± 0.03 99.02 ± 0.02 99.5 ± 0.01

NCNC 54.91 ± 2.84 70.91 ± 0.25 92.34 ± 2.42 96.35 ± 0.52 40.1 ± 1.06 52.09 ± 1.99 97.22 ± 0.78 98.2 ± 0.71 98.77 ± 0.6
NBFNet OOM OOM >24h >24h OOM OOM OOM OOM OOM

PEG 33.57 ± 7.40 55.14 ± 2.10 47.93 ± 3.18 59.95 ± 2.52 OOM OOM OOM OOM OOM
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A.7 Additional Details on HeaRT

As described in Section 2.4.2, given a positive sample (𝑎, 𝑏), we seeks to generate 𝐾 negative

samples to evaluate against. The negative samples are drawn from the set of possible corruptions

of (𝑎, 𝑏), i.e, 𝑆(𝑎, 𝑏) (see Eq. (2.3)). Multiple heuristics are used to determine which 𝐾 negative

samples to use. Furthermore, the negative samples are split evenly between both nodes. That is,

we generate 𝐾/2 negative samples that contain either node 𝑎 and 𝑏, respectively. This process is

illustrated in Figure 2.2.

The rest of this section is structured as follows. In Section A.7.1 we describe how we use

multiple heuristics for estimating the difficulty of negative samples. Then in Section A.7.2 we

describe how we combine the ranks given by different heuristic methods.

A.7.1 Determining Hard Negative Samples

We are first tasked with how to choose the negative samples. As discussed and shown in

Section 2.4.2, we want to select the negative samples from 𝑆(𝑎, 𝑏) such that they are non-trivial

to classify. Hence, as inspired by the candidate generation process in real-world recommender

systems [41, 33], we aim to select a set of ’hard’ negative samples that are more relevant to the

source node. The candidate generation process is typically based on some primitive and simple

link prediction heuristics. These heuristics can be also treated as link prediction methods (see

Tables 2.1 and 2.2).

We use multiple heuristics that capture a variety of different information. Most link prediction

heuristics can be categorized into two main categories: local heuristics and global heuristics [69].

Local heuristics attempt to capture the local neighborhood information that exists near the node pair

while global heuristics attempt to use the whole graph structure. To capture the local information

we use resource allocation (RA) [151], a CN-based approach. Existing results show that RA can

achieve strong performance on most datasets (see Tables 2.1 and 2.2). To measure the global

information we use the personalized pagerank score (PPR) [15]. Random walk based methods are

commonly used for candidate generation [41, 33]. Lastly, we further include the cosine feature

similarity for the Cora, Citeseer, and Pubmed datasets. This is due to the strong performance of
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a MLP on those datasets. By combining these heuristics, we are able to generate a diverse set of

negative samples for each positive sample.

For each heuristic we then rank all the possible negative samples. We first denote the score of

a heuristic 𝑖 for a pair of nodes 𝑎 and 𝑏 as ℎ𝑖 (𝑎, 𝑏). Let’s say we want to rank all negative samples

that contain a node 𝑎, i.e., (𝑎, ∗). The rank across all nodes is given by:

𝑅𝑖 = ArgSort
𝑣∈𝑉̄

ℎ𝑖 (𝑎, 𝑣), (A.2)

where 𝑅𝑖 denotes the ranking for heuristic 𝑖 and and 𝑉̄ is a subset of the set of nodes in the graph

𝑉 . We apply a filtering process to exclude all positive training samples, self-loops, and the sample

itself under consideration from being selected as negative samples. Additionally, when choosing

negative samples for the test samples, we disallow validation samples to be chosen as well. As

such, we only consider a subset of nodes 𝑉̄ ∈ 𝑉 . This is analogous to the filtered setting used

in KGC [13]. However, we adopt a distinct filtering strategy for the ogbl-collab dataset, which is

a dynamic collaboration graph. Specifically, positive training samples are not excluded in the

generation of negative samples for validation and test. Similarly, positive validation samples are

not omitted when creating negative test samples. This approach is justified for ogbl-collab which

is a dynamic graph, as prior collaboration between authors does not necessarily indicates future

collaborations. Further details and discussions are provided in Appendix A.9.

We now have all possible negative samples ranked according to multiple heuristics. However,

it is unclear how to choose the negative samples from multiple ranked lists. In the next subsection

we detail how we combine the ranks according to each heuristic. This will give us a final ranking,

of which we can choose the top 𝐾/2 as the negative samples for that node.

A.7.2 Combining Heuristic Ranks

In this subsection we tackle the problem of combing the negative sample ranks given by multiple

heuristics. More concretely, say we use 𝑚 heuristics and rank all the samples according to each.

We want to arrive at a combined ranking 𝑅total that is composed of each rank,

𝑅total = 𝜙(𝑅1, 𝑅2, · · · , 𝑅𝑚). (A.3)
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Algorithm A.1 Generating Negative Samples of Form (𝑎, ∗)
Require:

𝑎 = Node to generate samples for
𝑉̄ = Possible nodes to use for negative samples
H = {ℎ1, ℎ2, · · · , ℎ𝑚} ⊲ Set of 𝑚 heuristics

1: for 𝑖 ∈ |H | do
2: 𝑅𝑖 = ArgSort

𝑣∈𝑉̄
ℎ𝑖 (𝑎, 𝑣) ⊲ Sort by each heuristic individually

3: end for
4: for 𝑣 ∈ 𝑉̄ do
5: 𝑅total(𝑎, 𝑣) = min (𝑅1(𝑎, 𝑣), 𝑅2(𝑎, 𝑣), · · · , 𝑅𝑚(𝑎, 𝑣)) ⊲ Combine the rankings
6: end for

7: 𝑅 𝑓 = ArgSort
𝑣∈𝑉̄

𝑅total(𝑎, 𝑣) ⊲ Sort by combined ranking

8: return 𝑅 𝑓 [: 𝐾/2] ⊲ Return the top K/2 ranked nodes

We model 𝜙 via Borda’s method [12]. Let 𝑅𝑖 (𝑎, 𝑣) be the rank of the node pair (𝑎, 𝑣) for heuristic

𝑖. The combined rank 𝑅total(𝑎, 𝑣) across 𝑚 ranked lists is given by:

𝑅total(𝑎, 𝑣) = 𝑔 (𝑅1(𝑎, 𝑣), 𝑅2(𝑎, 𝑣), · · · , 𝑅𝑚 (𝑎, 𝑣)) , (A.4)

where 𝑔 is an aggregation function. We set 𝑔 = min(·). This is done as it allows us to capture a

more distinct set of samples by selecting the “best" for each heuristic. This is especially true when

there is strong disagreement between the different heuristics. A final ranking is then done on 𝑅total

to select the top nodes,

𝑅 𝑓 = ArgSort
𝑣∈𝑉̄

𝑅total, (A.5)

where 𝑅 𝑓 is the final ranking. The highest 𝐾/2 nodes are then selected from 𝑅 𝑓 . Lastly, we note

that for some nodes there doesn’t exist sufficient scores to rank 𝐾/2 total nodes. In this case the

remaining nodes are chosen randomly. The full generation process for a node 𝑎 is detailed in

Algorithm A.1.

A.8 Additional Results Under HeaRT

We present additional results of Cora, Citeseer, Pubmed, and OGB datasets under HeaRT in

Table A.8 and Table A.9. These results include other hit metrics not found in the main tables.
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Table A.8 Additional results on Cora, Citeseer, and Pubmed(%) under HeaRT. We highlight the
results ranked first, second, and third as green, blue, and orange, respectively.

Cora Citeseer Pubmed
Models Hits1 Hits3 Hits100 Hits1 Hits3 Hits100 Hits1 Hits3 Hits100

CN 3.98 10.25 38.71 2.2 9.45 33.63 0.47 1.49 19.29
AA 5.31 12.71 38.9 3.96 12.09 33.85 0.74 1.87 20.37
RA 5.31 12.52 38.52 4.18 11.21 34.07 0.72 1.78 20.04

Shortest Path 0.57 2.85 55.6 0.22 3.52 53.85 0 0.02 21.57
Katz 4.64 11.95 59.96 3.74 11.87 55.82 0.74 2.12 32.78

Node2Vec 5.69 ± 0.81 15.1 ± 0.99 77.21 ± 2.34 9.63 ± 0.82 23.5 ± 1.37 84.46 ± 1.86 0.75 ± 0.14 2.4 ± 0.32 52.27 ± 0.65
MF 1.46 ± 0.8 5.46 ± 1.67 59.68 ± 3.41 2.68 ± 0.92 7.25 ± 0.98 53.25 ± 2.91 1.13 ± 0.24 3.25 ± 0.44 50.56 ± 1.11

MLP 5.48 ± 0.99 14.15 ± 1.56 77.0 ± 1.02 10.44 ± 0.82 26.46 ± 1.24 86.83 ± 1.36 1.28 ± 0.22 4.33 ± 0.28 76.34 ± 0.79

GCN 7.59 ± 0.61 17.46 ± 0.82 85.47 ± 0.52 9.27 ± 0.99 23.19 ± 0.98 89.1 ± 2.13 2.09 ± 0.31 5.58 ± 0.27 73.59 ± 0.53
GAT 5.03 ± 0.81 13.66 ± 0.67 80.87 ± 1.32 8.02 ± 1.21 20.09 ± 0.82 86.83 ± 1.09 1.14 ± 0.16 3.06 ± 0.36 67.06 ± 0.69
SAGE 5.48 ± 0.97 15.43 ± 1.07 81.61 ± 0.96 8.37 ± 1.62 23.74 ± 1.62 92.33 ± 0.68 3.03 ± 0.46 8.19 ± 1.0 79.47 ± 0.53
GAE 9.72 ± 0.73 19.24 ± 0.76 79.66 ± 0.95 13.81 ± 0.82 27.71 ± 1.34 85.49 ± 1.37 1.48 ± 0.23 4.05 ± 0.39 59.79 ± 0.67

SEAL 3.89 ± 2.04 10.82 ± 4.04 61.9 ± 13.97 5.08 ± 1.31 13.68 ± 1.32 68.94 ± 2.3 1.47 ± 0.32 4.71 ± 0.68 65.81 ± 2.43
BUDDY 5.88 ± 0.60 13.76 ± 1.03 82.46 ± 1.79 10.09 ± 0.50 26.11 ± 1.26 92.66 ± 0.92 2.24 ± 0.17 5.93 ± 0.21 72.01 ± 0.46

Neo-GNN 5.71 ± 0.41 13.89 ± 0.82 80.28 ± 1.08 6.81 ± 0.73 17.8 ± 1.19 85.51 ± 1.01 1.90 ± 0.24 6.07 ± 0.47 76.57 ± 0.58
NCN 4.85 ± 0.81 14.46 ± 0.98 84.14 ± 1.24 16.77 ± 2.05 30.51 ± 0.97 90.42 ± 0.98 1.13 ± 0.18 3.95 ± 0.24 71.46 ± 0.97

NCNC 4.78 ± 0.71 14.72 ± 1.24 85.62 ± 0.83 11.14 ± 0.82 27.21 ± 0.96 92.73 ± 1.16 2.73 ± 0.49 7.05 ± 0.72 79.22 ± 0.96
NBFNet 5.31 ± 1.16 14.95 ± 0.72 76.24 ± 0.68 5.95 ± 1.06 14.53 ± 1.19 72.66 ± 0.95 >24h >24h >24h

PEG 6.98 ± 0.57 14.93 ± 0.61 82.52 ± 1.28 9.93 ± 0.6 21.91 ± 0.59 90.15 ± 1.43 0.88 ± 0.18 2.61 ± 0.39 64.95 ± 1.81

Table A.9 Additional results on OGB datasets(%) under HeaRT. We highlight the results ranked
first, second, and third as green, blue, and orange, respectively.

ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
Models Hits50 Hits100 Hits50 Hits100 Hits50 Hits100 Hits50 Hits100

CN 30.52 42.80 70.12 86.53 80.53 86.51 57.56 68.04
AA 33.74 45.20 71.08 87.36 81.93 87.55 58.87 69.39
RA 36.68 46.42 76.39 90.96 81.65 86.84 58.88 68.83

Shortest Path 33.77 45.85 0 0 1.34 1.4 >24h >24h
Katz 39.18 48.80 70.12 86.53 80.53 86.51 54.97 67.56

Node2Vec 28.56 ± 0.17 41.84 ± 0.25 98.38 ± 0.7 99.91 ± 0.01 69.94 ± 0.06 81.88 ± 0.06 61.22 ± 0.16 77.11 ± 0.13
MF 30.83 ± 0.22 43.23 ± 0.34 95.52 ± 0.72 99.54 ± 0.08 83.29 ± 3.35 89.75 ± 1.9 29.64 ± 7.3 65.87 ± 8.37

MLP 28.88 ± 0.32 46.83 ± 0.33 N/A N/A 5.36 ± 0.0 22.01 ± 0.01 61.29 ± 0.07 76.94 ± 0.1

GCN 35.29 ± 0.49 50.83 ± 0.21 97.65 ± 0.68 99.85 ± 0.06 81.48 ± 0.48 89.62 ± 0.23 70.77 ± 0.34 85.43 ± 0.18
GAT 32.92 ± 1.41 46.71 ± 0.84 98.15 ± 0.24 99.93 ± 0.02 OOM OOM OOM OOM
SAGE 33.48 ± 1.40 48.33 ± 0.49 99.17 ± 0.11 99.98 ± 0.01 81.84 ± 0.24 89.46 ± 0.13 71.91 ± 0.1 85.86 ± 0.09
GAE OOM OOM 28.29 ± 13.65 48.34 ± 15.0 OOM OOM OOM OOM

SEAL 33.57 ± 0.84 43.06 ± 1.09 82.42 ± 3.37 92.63 ± 2.05 87.34 ± 0.49 92.45 ± 0.26 65.11 ± 2.33 77.64 ± 2.43
BUDDY 39.04 ± 0.11 50.49 ± 0.09 97.81 ± 0.31 99.93 ± 0.01 82.5 ± 0.51 88.36 ± 0.32 67.47 ± 0.32 81.94 ± 0.26

Neo-GNN 36.11 ± 2.36 49.25 ± 0.81 83.45 ± 11.03 94.7 ± 4.82 81.21 ± 1.39 88.31 ± 0.19 62.14 ± 0.51 79.13 ± 0.42
NCN 34.53 ± 0.98 45.69 ± 0.42 98.43 ± 0.22 99.96 ± 0.01 89.37 ± 0.28 93.11 ± 0.27 71.56 ± 0.03 84.01 ± 0.05

NCNC 34.96 ± 3.80 46.93 ± 2.04 >24h >24h 91.0 ± 0.24 94.72 ± 0.18 72.85 ± 0.9 86.35 ± 0.51
NBFNet OOM OOM >24h >24h OOM OOM OOM OOM

PEG 30.12 ± 0.63 45.40 ± 0.66 84.21 ± 9.2 95.76 ± 3.48 OOM OOM OOM OOM
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Table A.10 Results on ogbl-collab under HeaRT when excluding the positive train/validation
samples of being negative samples during testing. We highlight the results ranked first, second,
and third as green, blue, and orange, respectively.

MRR Hits20 Hits50 Hits100

CN 12.60 27.51 38.39 47.4
AA 16.40 32.65 42.61 50.25
RA 28.14 41.16 46.9 51.78

Shortest Path 46.71 46.56 46.97 48.11
Katz 47.15 48.66 51.07 54.28

Node2Vec 12.10 ± 0.20 25.85 ± 0.21 35.49 ± 0.22 46.12 ± 0.34
MF 26.86 ± 1.74 38.44 ± 0.07 43.62 ± 0.08 51.75 ± 0.14

MLP 12.61 ± 0.66 23.05 ± 0.89 35.32 ± 0.74 51.09 ± 0.37

GCN 18.28 ± 0.84 32.90 ± 0.66 43.17 ± 0.36 54.93 ± 0.14
GAT 10.97 ± 1.16 29.58 ± 2.42 42.07 ± 1.51 53.45 ± 0.64
SAGE 20.89 ± 1.06 33.83 ± 0.93 43.02 ± 0.63 54.38 ± 0.27
GAE OOM OOM OOM OOM

SEAL 22.53 ± 3.51 36.48 ± 2.55 43.5 ± 1.75 49.25 ± 1.39
BUDDY 32.42 ± 1.88 45.62 ± 0.52 50.57 ± 0.18 55.63 ± 0.68

Neo-GNN 21.90 ± 0.65 38.40 ± 0.29 46.93 ± 0.17 53.81 ± 0.19
NCN 17.51 ± 2.50 37.07 ± 2.97 45.89 ± 1.11 52.36 ± 0.33

NCNC 19.02 ± 5.32 35.67 ± 6.78 44.76 ± 4.64 52.41 ± 2.09
NBFNet OOM OOM OOM OOM

PEG 15.68 ± 1.10 29.74 ± 0.95 38.71 ± 0.17 49.34 ± 0.70

A.9 Additional Investigation on ogbl-collab

As introduced in Section A.7.1, we adopt a different strategy to generate the hard negative

samples for ogbl-collab which is a dynamic collaboration graph. In this dataset, nodes represent

authors and edges represent a collaboration between two authors. Each edge further includes an

attribute that specifies the year of collaboration. Specifically, each edge takes the form of (Author

1, Year, Author 2). The task is to predict collaborations in 2019 (test) based on those until 2017

(training) and 2018 (validation).

Contrary to other datasets, we do not exclude the positive training samples when generating

the negative samples for validation and test. We note that we also do not exclude positive validation

edges when generating the negatives for test. In simpler terms, when creating negative samples

for testing, both positive samples from training and validation are considered. This means that

negative samples during testing could present in the training and validation positive samples. This

approach is reasonable and well-aligned with the real-world scenario in the context of collaboration

graphs. Specifically, authors who collaborated in the past might not do so in the future. For
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instance, just because the positive sample (Author 2, 2017, Author 3) exists, it does not imply that

(Author 2, 2019, Author 3) is also true. However, this is implied to be true if we exclude positive

train/validation samples from appearing as negative samples during testing.

We validate this approach by contrasting it with the strategy that excludes train/validation data

when generating hard negatives. The results are presented in Table A.10. We observed that under

this setting, both the Shortest Path and Katz perform considerably well on ogbl-collab. Specifically,

the MRR gap between the second-ranked method (Shortest Path) and the third (BUDDY) is 14.29.

We found that it is due to the ogbl-collab being a dynamic graph. Of the positive samples in the test

set, around 46% also appear as positive samples in the training set. In particular, an edge (Author

1, 2017, Author 2) in the training data may also “appear” in the test data in the form of (Author 1,

2019, Author 2). This is because two authors who collaborated in the past often tend to collaborate

again in the future. As such, when evaluating the test sample (Author 1, 2019, Author 2), there

exists path of length 1 between the two authors in the graph. Furthermore, this phenomenon is

common among positive samples but not observed among negatives. This is because we exclude the

positive training samples when generating the negative samples for evaluation. As a result of this

exclusion, the presence of a direct link (i.e., a shortest path of length 1) between two authors

suggest a positive sample, while its absence often corresponds to a negative sample. As such,

it provides an easy “shortcut” to distinguish positive and negative samples during testing. This

explains why methods like Shortest Path and Katz can achieve good performance on ogbl-collab

when excluding positive train/validation samples of being negative samples during testing.

On the contrary, when allowing positive train/validation samples to also be negative samples for

HeaRT, the results on ogbl-collab, shown in Tables 2.5 and A.9, indicate that Shortest Path does not

maintain its superior performance as observed in Table A.10. Additionally, the overall results under

HeaRT are inferior to the ones in Table 2.5. For instance, while all the MRR values in Table 2.5

exceed 10, the highest MRR in Table A.10 is approximately 6. This indicates that excluding those

positive samples from being negative samples disproportionately helps the Shortest Path.
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A.10 Dataset Licenses

The license for each dataset can be found in Table A.11.

Table A.11 Dataset Licenses.

Datasets License

Cora NLM License
Citeseer NLM License
Pubmed NLM License

ogbl-collab MIT License
ogbl-ddi MIT License
ogbl-ppa MIT License

ogbl-citation2 MIT License

A.11 Limitation

One potential limitation of HeaRT lies in the generation of customized negative samples for each

positive sample. This design may result in an increased number of negative samples compared to the

existing setting. Although this provides a more realistic evaluation, it could have an impact on the

efficiency of the evaluation process, especially in scenarios where a significant number of positive

samples exist. Nonetheless, this limitation does not detract from the potential benefits of HeaRT

in providing a more realistic and meaningful link prediction evaluation setting. Furthermore, as

each evaluation node pair is independent, it offers scope for parallelization, mitigating any potential

efficiency concerns to a large extent. Future work can investigate ways to optimize this process.

A.12 Social Impact

Our method HeaRT harbors significant potential for positive societal impact. By aligning the

evaluation setting more closely with real-world scenarios, it enhances the applicability of link pre-

diction research. This not only contributes to the refinement of existing prediction methods but also

stimulates the development of more effective link prediction methods. As link prediction has far-

reaching implications across numerous domains, from social network analysis to recommendation

systems and beyond, improving its performance and accuracy is of paramount societal importance.

We also carefully consider the broader impact from various perspectives such as fairness, security,

and harm to people. No apparent risk is related to our work.
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APPENDIX B

LPFORMER: AN ADAPTIVE GRAPH TRANSFORMER FOR
LINK PREDICTION

B.1 Existing Formulations of Pairwise Encodings

In this section we give an overview of existing formulations of pairwise encodings using in

DP-MPNNs. The standard formulation of DP-MPNNs is given in Eq. 3.1 where 𝑠(𝑎, 𝑏) is the

pairwise encoding. We briefly describe other existing solutions below:

NCN [121]: NCN only considers the CNs of the target link (𝑎, 𝑏) by summing the node represen-

tation of each. The pairwise encoding, 𝑠(𝑎, 𝑏), is written as:

𝑠(𝑎, 𝑏) =
∑︁

𝑢∈NCN
(𝑎,𝑏)

h𝑢, (B.1)

where h𝑢 is the node representation encoded by a MPNN.

NCNC [121]: NCNC extends NCN by further considering the 1-hop neighbors of the node pair that

aren’t CNs. To account for the difference, they are weighted by the probability of they themselves

being CNs of the other node in the pair. This is given for a target link (𝑎, 𝑏) as:

𝑠(𝑎, 𝑏) =
∑︁
𝑢∈V

𝑤(𝑎, 𝑏, 𝑢) h𝑢, (B.2)

where

𝑤(𝑎, 𝑏, 𝑢) =



1, when 𝑢 ∈ NCN
(𝑎,𝑏)

NCN(𝐴, 𝑋, 𝑏, 𝑢) when 𝑢 ∈ N (𝑎)

NCN(𝐴, 𝑋, 𝑎, 𝑢) when 𝑢 ∈ N (𝑏)

0, else


. (B.3)

This weighting scheme ensures that CNs play a larger role in the pairwise information than non-CNs.

BUDDY [121]: BUDDY considers counting the number of nodes that correspond to different labels

given by the double radius node labeling trick [142]. We first define the number of nodes that are

a distance 𝑑𝑎 and 𝑑𝑏 from nodes 𝑎 and 𝑏 as A𝑎𝑏 [𝑑𝑎, 𝑑𝑏]. We further define the number of nodes

111



where max(𝑑𝑢, 𝑑𝑣) > 𝑘 as 𝛽𝑎𝑏 [𝑑]. The pairwise encoding concatenates the counts belonging to all

combination of 𝑑 = 1 · · · 𝑘 . The counts are estimated using subgraph sketching algorithms [35, 16]

and are denoted Â and B̂. The pairwise encoding for a target link (𝑎, 𝑏) is given by the following

where [𝑘] = {1 · · · 𝑘}:

𝑠Â (𝑎, 𝑏) = ∥
𝑑𝑎 ,𝑑𝑏∈[𝑘]

Â𝑎𝑏 [𝑑𝑎, 𝑑𝑏], (B.4)

𝑠𝛽 (𝑎, 𝑏) = ∥
𝑑∈[𝑘]

𝛽𝑎𝑏 [𝑑], (B.5)

𝑠(𝑎, 𝑏) = 𝑠Â (𝑎, 𝑏) ∥ 𝑠𝛽 (𝑎, 𝑏). (B.6)

Neo-GNN [121]: Neo-GNN considers the higher-order neighbor overlap between two nodes. This

is done by first learning a structural representation for each node 𝑖, 𝑥𝑠𝑡𝑟𝑢𝑐𝑡
𝑖

. This is given by:

𝑥𝑠𝑡𝑟𝑢𝑐𝑡𝑖 = 𝑓1
©­«

∑︁
𝑗∈N (𝑖)

𝑓2
(
𝐴𝑖 𝑗

)ª®¬ . (B.7)

To consider the 𝐿-hop structural information, the structural representations are diffused over 𝐿 hops

and weighted by a hyperparameter 𝛽:

𝑍 = MLP

(
𝐿∑︁
𝑙=1

𝛽𝑙−1𝐴𝑙𝑋 𝑠𝑡𝑟𝑢𝑐𝑡

)
, (B.8)

where 𝑋 = diag(𝑥𝑠𝑡𝑟𝑢𝑐𝑡). (B.9)

The pairwise encoding 𝑠(𝑎, 𝑏) is the dot product of both the final representations,

𝑠(𝑎, 𝑏) = 𝑧𝑇𝑎 𝑧𝑏 . (B.10)

B.2 Special Cases of the General Pairwise Encoding

In this section we demonstrate that multiple popular heuristics and pairwise encodings can be

formulated as special cases of the general pairwise encoding given in Eq. (3.2).

Common Neighbors (CNs) [81]: The CNs of a pair of nodes (𝑎, 𝑏) is defined the overlapping

1-hop neighbors of both nodes:

NCN
(𝑎,𝑏) = N(𝑎) ∩ N (𝑏). (B.11)
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Eq. (3.2) is equal to the CNs when ℎ(𝑎, 𝑏, 𝑢) = 1 and 𝑤(𝑎, 𝑏, 𝑢) is:

𝑤(𝑎, 𝑏, 𝑢) =


1, when 𝑢 ∈ N (𝑎) ∩ N (𝑏)

0, else

 . (B.12)

Adamic-Adar (AA) [2]: AA is defined as the reciprocal log-degree weighted CN score where 𝑑𝑢

is the degree of node 𝑢:

AA(𝑎, 𝑏) =
∑︁

𝑢∈NCN
(𝑎,𝑏)

1
log(𝑑𝑢)

. (B.13)

Eq. (3.2) can be rewritten as the AA when ℎ(𝑎, 𝑏, 𝑢) = 1/log(𝑑𝑢) and 𝑤(𝑎, 𝑏, 𝑢) is equal to

Eq. (B.12).

Resource Allocation (RA) [151]: RA is defined as the reciprocal degree weighted CN score:

RA(𝑎, 𝑏) =
∑︁

𝑢∈NCN
(𝑎,𝑏)

1
𝑑𝑢
. (B.14)

Eq. (3.2) can be rewritten as the AA when ℎ(𝑎, 𝑏, 𝑢) = 1/𝑑𝑢 and 𝑤(𝑎, 𝑏, 𝑢) is equal to Eq. (B.12).

Katz Index [49]: The Katz index is a global structural measure. It is defined as weighted summation

of the number of paths of different lengths connecting 𝑎 and 𝑏. It is given by the following where

the decay weight 𝛽 ∈ [0, 1],

Katz(𝑎, 𝑏) =
∞∑︁
𝑙=1

𝛽𝑙𝐴𝑙𝑎,𝑏 . (B.15)

This is equivalent to Eq. (3.2) when:

𝑤(𝑎, 𝑏, 𝑢) =
∞∑︁
𝑙=1

𝛽𝑙𝑒𝑇𝑎 𝐴
𝑙 , (B.16)

where 𝑒𝑖 ∈ B|V| is a one-hot vector for a node 𝑖. We further set,

ℎ(𝑎, 𝑏, 𝑢) =

𝑒𝑇
𝑏
, when 𝑢 = 𝑏

0, else

 . (B.17)

Personalized Pagerank (PPR) Score [15]: The personalized pagerank score is the pagerank score

localized to a root node 𝑢. The localization is via a teleportation probability 𝛼 that transports the
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random walk back to the root node. We show that Eq. (3.2) can be rewritten as the PPR score when

setting ℎ(𝑎, 𝑏, 𝑢) equal to (B.17) and, following [24], setting 𝑤(𝑎, 𝑏, 𝑢) to:

𝑤(𝑎, 𝑏, 𝑢) = 𝛼
∞∑︁
𝑙=0

(1 − 𝛼)𝑙𝑒𝑇𝑎 (𝐷−1𝐴)𝑙 . (B.18)

Feature Similarity: The feature similarity of the pair of nodes (𝑎, 𝑏) is expressed by dis(x𝑎, x𝑏)

where x𝑎 are the node features of node 𝑎 and dis(·) is a distance function (e.g., euclidean distance).

This can be rewritten as Eq. (3.2) by substituting:

𝑤(𝑎, 𝑏, 𝑢) = dis(x𝑎, x𝑢), (B.19)

and ℎ(𝑎, 𝑏, 𝑢) = 𝑒𝑇
𝑏

where 𝑒𝑖 ∈ B|V| is a one-hot vector for a node 𝑖.

NCN [121]: The pairwise encoding used in NCN is defined as the summation of the representations

for the CNs of a link. Eq. (3.2) can be rewritten as NCN when 𝑤(𝑎, 𝑏, 𝑢) is equal to Eq. (B.12).

ℎ(𝑎, 𝑏, 𝑢) is equal to the node representation 𝑢 encoded by a MPNN, i.e., ℎ(𝑎, 𝑏, 𝑢) = h𝑢 where

𝐻 = MPNN(𝐴, 𝑋).

NCNC [121]: NCNC extends NCNC by further weighting the 1-hop (non-CN) by their probability

of linking to the other nodes. Given Eq. (3.2), the weight 𝑤(𝑎, 𝑏, 𝑢) is equal to following where

1-hop neighbors are weighted by their probability of linking with the other node:

𝑤(𝑎, 𝑏, 𝑢) =



1, when 𝑢 ∈ NCN
(𝑎,𝑏)

NCN(𝐴, 𝑋, 𝑏, 𝑢) when 𝑢 ∈ N (𝑎)

NCN(𝐴, 𝑋, 𝑎, 𝑢) when 𝑢 ∈ N (𝑏)

0, else


. (B.20)

NCN(𝐴, 𝑋, 𝑎, 𝑢) is the probability of 𝑎 and 𝑢 being linked using the NCN model. We further define

ℎ(𝑎, 𝑏, 𝑢) = h𝑢.

Neo-GNN [136]: The pairwise encoding used in Neo-GNN considers the higher-order neighbor-

hood overlap between two nodes. The formulation is given in Section B.2. When 𝑙 = 1, it can be
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expressed using Eq. (3.2) by setting:

ℎ(𝑎, 𝑏, 𝑢) = 𝑓1
©­«

∑︁
𝑣∈N (𝑢)

𝑓2 (𝐴𝑢𝑣)ª®¬
2

, (B.21)

and

𝑤(𝑎, 𝑏, 𝑢) =


1, when 𝑢 ∈ NCN
(𝑎,𝑏)

0, else

 . (B.22)

B.3 Proof of Proposition 1

Proposition 1. Consider a target link (𝑎, 𝑏) and a node 𝑢 ∈ V \ {𝑎, 𝑏}. The PPR [15] score

of a root node 𝑖 and target node 𝑗 with teleportation probability 𝛼 is denoted by ppr(𝑖, 𝑗). Let

𝑟 𝑘𝑎 (𝑢) be the probability of a walk of length 𝑘 beginning at node 𝑎 and terminating at 𝑢. We define

𝑟 𝑘
𝑎,𝑏

(𝑢) := 𝑟 𝑘𝑎 (𝑢) + 𝑟 𝑘𝑏 (𝑢). We also define a weight 𝛾𝑘 := 𝛼(1 − 𝛼)𝑘 for all walks of length 𝑘 .

The PPR scores, 𝑝𝑝𝑟 (𝑎, 𝑢) and 𝑝𝑝𝑟 (𝑏, 𝑢), along with the random walk probabilities of disparate

lengths, are interconnected through the following relationship.

Γ(𝑎, 𝑏, 𝑢) = ppr(𝑎, 𝑢) + ppr(𝑏, 𝑢) =
∞∑︁
𝑘=0

𝛾𝑘𝑟 𝑘𝑎,𝑏 (𝑢). (3.6)

Proof. Per [24], the PPR vector for a root node 𝑠, pr𝑠, is equivalent to:

pr𝑠 = 𝛼
∞∑︁
𝑘=0

(1 − 𝛼)𝑘𝑊 𝑘𝑥𝑠, (B.23)

where 𝑊 is a the random walk matrix and 𝑥𝑠 is a preference vector that is a one-hot vector for

element 𝑠. We note that pr𝑠 (𝑡) represents the landing probability of node 𝑡 given the root node 𝑠.

As such, by definition, pr𝑠 (𝑡) = ppr(𝑠, 𝑡). Furthermore, it is clear that 𝑟 𝑘𝑠 = 𝑊 𝑘𝑥𝑠 ∈ RV represents

the probability of a walk of length 𝑘 beginning at node 𝑠 and stop all other nodes, individually.

Also, the probabilities of all walks of length 𝑘 are weighted by 𝛾𝑘 = 𝛼(1 − 𝛼)𝑘 . Γ (𝑎, 𝑏, 𝑢) can be

obtained by first taking the sum of the PPR vectors for nodes 𝑎 and 𝑏,

pr𝑎 + pr𝑏 = 𝛼
∞∑︁
𝑘=0

(1 − 𝛼)𝑘𝑊 𝑘𝑥𝑎 + 𝛼
∞∑︁
𝑘=0

(1 − 𝛼)𝑘𝑊 𝑘𝑥𝑏,

pr𝑎,𝑏 = 𝛼
∞∑︁
𝑘=0

(1 − 𝛼)𝑘𝑊 𝑘 (𝑥𝑎 + 𝑥𝑏) , (B.24)
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where pr𝑎,𝑏 = pr𝑎 + pr𝑏. From this, we can express Γ(𝑎, 𝑏, 𝑢) as:

Γ(𝑎, 𝑏, 𝑢) = ppr(𝑎, 𝑢) + ppr(𝑏, 𝑢),

= pr𝑎,𝑏 (𝑢), (B.25)

= pr𝑎 (𝑢) + pr𝑏 (𝑢),

which as shown in Eq. (B.24) is equivalent to the probability of a walk that originates from either

node 𝑎 or 𝑏 and terminates at node 𝑢. This completes the proof.

B.4 Attention Formulation

For a target link (𝑎, 𝑏), LPFormer attends to the nodes in the set V̄ (𝑎, 𝑏). The attention

mechanism used in LPFormer is defined in Section 5.3 as follows where 𝑤(𝑎, 𝑏, 𝑢) is the attention

weight of 𝑢 to the target link and V̄ (𝑎, 𝑏) = V \ {𝑎, 𝑏}:

𝑤̃(𝑎, 𝑏, 𝑢) = 𝜙
(
h𝑎, h𝑏, h𝑢, rpe(𝑎,𝑏,𝑢)

)
,

𝑤(𝑎, 𝑏, 𝑢) = exp(𝑤̃(𝑎, 𝑏, 𝑢))∑
𝑣∈V̄(𝑎,𝑏) exp(𝑤̃(𝑎, 𝑏, 𝑢)) . (B.26)

The function 𝜙(·) is modeled via the attention mechanism defined in GATv2 [17]. We define

𝑎 ∈ R2𝑑′ and𝑊 ∈ R𝑑×𝑑
′ . The raw attention weights are then given by:

𝑤̃(𝑎, 𝑏, 𝑢) = a𝑇 LeakyReLU
[
𝑊 h𝑎 ∥𝑊 h𝑏 ∥𝑊 h𝑢 ∥ rpe(𝑎,𝑏,𝑢)

]
. (B.27)

The final attention weights, 𝑤(𝑎, 𝑏, 𝑢), are given by passing 𝑤̃(𝑎, 𝑏, 𝑢) through a softmax activation

layer.

B.5 Additional Experimental Details

B.5.1 Planetoid splits

We note that for each of Cora, Citeseer, Pubmed we use a fixed split. This follows the recent

work of [61]. [61] observe that for Cora, Citeseer, Pubmed there exists no unified data split between

studies. They find that while recent work [20, 121] use 10 random splits, prior work [154, 115]

use a fixed split and train over 10 random seeds. Furthermore, there exists discrepancies in the

preprocessing between those works that use the random splits. [20] only use the largest connected
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component of each dataset while [121] use the whole dataset. This makes any comparison of the

published results difficult. Due to these discrepancies, we use the performance on the fixed split

given by [61], as it’s the only split where all methods are evaluated and compared under the same

setting.

B.5.2 Omission of ogbl-ddi under the Existing Evaluation

We further omit the results of ogbl-ddi in Table 4.1. This is due to the observation made

by [61] that there exists a poor relationship between the validation and test performance. This

extends to recent pairwise MPNNs, including NCN [121], Neo-GNN [136], and BUDDY [20].

This makes tuning on the validation set difficult, as it doesn’t guarantee good test performance. Due

to this, they observe that when tuning on a fixed set of hyperparameter ranges, they are unable to

achieve comparable results to the reported performance. Often they observe that the performance

is actually much lower. Due to these concerns we believe ogbl-ddi is not suitable for the task of

transductive link prediction and don’t report the performance. For more details and discussion,

please see Appendix D in [61]. However, they show that this problem does not afflict ogbl-ddi

under the newly proposed HeaRT [61] evaluation setting. As such, we further include the results

for our method under HeaRT in Table 3.5.

B.5.3 Computation of the PPR Matrix

We compute the PPR matrix via the efficient approximation algorithm introduced by [5]. The

estimation is controlled by a tolerance parameter 𝜖 . The parameter 𝜖 controls both the speed of

computation and the sparsity of the solution (i.e., a higher value of 𝜖 will produce a sparser PPR

matrix). We use: 𝜖 = 1𝑒−7 for Cora and Citeseer, 𝜖 = 5𝑒−5 for ogbl-collab and ogbl-ppa, 𝜖 = 1𝑒−5

for Pubmed, and 𝜖 = 5𝑒−3 for ogbl-Citation2. The value of 𝜖 is chosen as a trade-off between

accuracy and sparsity to allow for ease of storage in GPU memory.

B.5.4 Splitting Target Links by LP Factor

In Section 3.4.3 we demonstrate the performance on samples that correspond to a single

LP factor. In this section we further detail the algorithm used to determine the set of samples

corresponding to each factor. We consider the three main factors: local structural information,
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global structural information, and feature proximity. We measure each using a single representative

heuristic: CNs [81] for local information, PPR [15] for global information, and cosine feature

similarity for feature proximity. For each sample, we check if the score is only high in one

heuristic. In this way, it tells us that there is a dominant factor present in the pairwise information.

This determination is done by comparing the the heuristic scores of each target link against a

threshold value. For a LP factor 𝑖 and target link (𝑎, 𝑏), we denote the heuristic score as 𝑠𝑖 (𝑎, 𝑏).

The threshold value for factor 𝑖 is represented by 𝑠𝑖 and is chosen such that it corresponds to a

higher score. We desire 𝑠𝑖 to be a higher score such that any score ≥ than it indicates that a plethora

of pairwise information exists corresponding to factor 𝑖. This is done by setting the threshold equal

to the 𝑝-th percentile value for that heuristic among all target links. For example, for CNs, the 80th

percentile score on one dataset may be 9. The value of 𝑝 is chosen to be high (e.g., 80%) due to the

aforementioned reasoning. Given these inputs, for each target link we compare the score for factor

𝑖 against the threshold value of that factor. Continuing our example, if (𝑎, 𝑏) only has 2 CNs, it

is below the previously defined threshold. We only consider a sample as “belonging” to a single

factor when it is 𝑠𝑖 (𝑎, 𝑏) ≥ 𝑠𝑖 is true for one only one factor 𝑖. So if the heuristic score for (𝑎, 𝑏) is

below the 𝑝-th percentile threshold for CNs and PPR but above for feature similarity, then feature

proximity will be considered the dominant LP factor. However, if it’s above the threshold for both

local and structural information, it will not be assigned to any group. This is done as we want to

isolate links that only highly express one LP factor. This allows us to better understand how certain

methods can model that specific factor. The detailed algorithm is given in Algorithm B.1.

We note that each target link may not belong to a category. This can be due to there being no

or many dominant LP factor. We further set the percentile equal to 90% on all datasets except for

ogbl-collab for which we use 80%. These values were chosen as we wanted the percentile to be

suitably high such that we are confident that the corresponding factor is relevant to the target link.

Furthermore, we use a lower value for ogbl-collab as we found it produced a more even distribution

of links by factor.
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(a) Pubmed (b) ogbl-ppa

Figure B.1 Performance for target links when there is only one LP factor strongly expressed.
Results are on (a) Pubmed, (b) ogbl-ppa. We note that due the quality of features used, we omit
the feature proximity factor for ogbl-ppa from our analysis.

B.5.5 Additional Results for the LP Factor Experiments

In Section 3.4.3 we observed the performance of various methods on target links where only

a single LP factor is expressed. This is done through the use of heuristic scores. We further

demonstrate the results on the Pubmed and ogbl-ppa datasets. Of note is that for ogbl-ppa the initial

node features are one-hot vectors that signify the species that the protein belongs to. We observe

that due to the sparseness of these features, feature proximity measures are unable to properly

predict any target links on their own. As such, the factor corresponding to feature proximity is not

expressed. We therefore exclude that factor for this analysis on ogbl-ppa.

The results for both Pubmed and ogbl-ppa datasets are given in Figure B.1. As shown earlier

in Figure 3.3, LPFormer can most consistently perform well across each factor. This suggests that

LPFormer is best able to both model a variety of factors and adapt accordingly for each target link.

B.5.6 Performance on Heterophilic Datasets

In this section we evaluate LPFormer on multiple heterophilic datasets. Heterophily refers to

the tendency of dissimilar nodes to be connected. This is as opposed to homophily, in which nodes

with similar attributed are more likely to be connected. Since most graphs used for benchmark
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datasets tend to contain homophilic patterns, heterophilic graphs present an interesting challenge

regarding the effectiveness of graph-based methods. For a more detailed discussion on heterophilic

graphs, please see [71].

We test on two prominent heterophilic datasets, Squirrel and Chameleon [94]. The statistics

for each are in Table B.1. We limit our comparison to those LP methods that tend achieve the

best results, including GCN, BUDDY, and NCNC. In Table B.2, we report the MRR over five

random seeds. Note that we test under the original evaluation setting and not HeaRT. We observe

that LPFormer can achieve a large increase over other methods, with a 14% and 9% increase in

performance on Squirrel and Chameleon, respectively. These results indicate the superior ability

of LPFormer to accurately model LP on heterophilic graphs, as compared to other methods.

Table B.1 Heterophilic Dataset Statistics.

Squirrel Chameleon

#Nodes 5201 2277
#Edges 198,353 31,371

Split Ratio 85/5/10 85/5/10

Table B.2 Results on Heterophilic Datasets.

Method Squirrel Chameleon

GCN 22.77 ± 4.54 20.74 ± 8.08
BUDDY 9.69 ± 0.99 6.30 ± 2.40
NCNC 32.37 ± 5.46 26.24 ± 3.37

LPFormer 36.77 ± 2.77 28.61 ± 6.68
% Improvement 14% 9%

B.5.7 More Efficiently Incorporating the PPR Scores

In Figure 3.4 we compare the training time between LPFormer and NCNC. We observe that on

the denser datasets, ogbl-ppa and ogbl-ddi, LPFormer is considerably more efficient. Furthermore,

on ogbl-collab, both methods have a fast runtime. However, we find that LPFormer struggles on

ogbl-citation2 in comparison to NCNC. We observe that this is due to the need of the PPR matrix,

which while sparse, requires a large amount of memory and processing time. In the future, we plan
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Algorithm B.1 Determining Samples by LP Factor
Require:

CN(·) = Maps (𝑖, 𝑗) to # of CNs of the pair
PPR(·) = Maps (𝑖, 𝑗) to PPR score of the pair
FS(·) = Maps (𝑖, 𝑗) to feature cosine similarity of the pair
𝑝 = Percentile used to determine whether a factor is present
Etest = Positive test links

1: // Compute the score corresponding to the 𝑝-th percentile for each heuristic
2: 𝑠CN = Percentile(𝑝, {𝐶𝑁 (𝑖, 𝑗) | (𝑖, 𝑗) ∈ Etest})
3: 𝑠FS = Percentile(𝑝, {𝐹𝑆(𝑖, 𝑗) | (𝑖, 𝑗) ∈ Etest})
4: 𝑠PPR = Percentile(𝑝, {𝑃𝑃𝑅(𝑖, 𝑗) | (𝑖, 𝑗) ∈ Etest})

5: Create empty lists 𝐿CN, 𝐿PPR, and 𝐿FS

6: for (𝑖, 𝑗) ∈ Etest do
7: link-cn = CN(𝑖, 𝑗)
8: link-fs = FS(𝑖, 𝑗)
9: link-ppr = PPR(𝑖, 𝑗)

10: // Assign sample to corresponding list based on scores
11: if link-cn ≥ 𝑠CN and link-fs < 𝑠FS and link-ppr < 𝑠PPR then
12: Append(𝐿CN, (𝑖, 𝑗))
13: else if link-cn < 𝑠CN and link-fs ≥ 𝑠FS and link-ppr < 𝑠PPR then
14: Append(𝐿FS, (𝑖, 𝑗))
15: else if link-cn < 𝑠CN and link-fs < 𝑠FS and link-ppr ≥ 𝑠PPR then
16: Append(𝐿PPR, (𝑖, 𝑗))
17: end if
18: end for
19: return 𝐿CN, 𝐿PPR, 𝐿FS

to fix this problem by performing a simple and efficient pre-processing step. Specifically, before

training, we can iterate over all target links and extract the relevant PPR scores. This would obviate

the need to store the PPR matrix and determine the nodes for each link. Furthermore, this only

needs to be done once before tuning the model. This would greatly reduce the storage and time

needed to train LPFormer on all datasets and is an avenue we plan to explore in the future.
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APPENDIX C

TOWARD DEGREE BIAS IN EMBEDDING-BASED
KNOWLEDGE GRAPH COMPLETION

C.1 Dataset Statistics

The statistics for each dataset can be found in Table C.1.

Table C.1 Dataset Statistics.

Statistic FB15K-237 NELL-995 CoDEx-M

#Entities 14,541 74,536 17,050
#Relations 237 200 51
#Train 272,115 149,678 185,584
#Validation 17,535 543 10,310
#Test 20,466 2,818 10,311

C.2 Infrastructure

All experiments were run on a single 32G Tesla V100 GPU and implemented using PyTorch

[86].

C.3 Parameter Settings

Each model is trained for 400 epochs on FB15K-237, 250 epochs on CoDEx-M, and 300 epochs

on NELL-995. The embedding dimension is set to 200 for both methods except for the dimension

of the relation embeddings in TuckER which is is tuned from {50, 100, 200}. The batch size is set to

128 and the number of negative samples per positive sample is 100. The learning rate is tuned from

{1𝑒−5, 5𝑒−5, 1𝑒−4, 5𝑒−4, 1𝑒−3}, the decay from {0.99, 0.995, 1}, the label smoothing from {0, 0.1},

and the dropout from {0, 0.1, 0.2, 0.3, 0.4, 0.5 }. For KG-Mixup we further tune the degree

threshold from {3, 5, 10}, the number of samples generated from {5, 10}, and the loss weight for

the synthetic samples from {1e-2, 1e-1, 1 }. Lastly, we tune the stochastic weight averaging (SWA)

initial learning rate from { 1e-5, 5e-4 }. The best hyperparameter values for ConvE and TuckER

using KG-Mixup are shown in Figures C.2 and C.3, respectively.
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C.4 Preliminary Study Results using ConvE

In Section 4.3 we conduct a preliminary study using TuckER [7] on the FB15K-237 dataset [111].

In this section we further include the corresponding results when using the ConvE [29] embedding

models. The plots can be found in Figure C.1. We note that they show a similar pattern to those

displayed by TuckER in Figure 4.2.

Table C.2 Hyperparameter values for ConvE on each dataset.

Hyperparameter FB15K-237 NELL-995 CoDEx-M

Learning Rate 1𝑒−4 5𝑒−5 1𝑒−5

LR Decay None None None
Label Smoothing 0 0.1 0.1
Dropout #1 0.2 0.4 0.1
Dropout #2 0.5 0.3 0.2
Dropout #3 0.2 0.1 0.3
Degree Threshold 5 5 5
# Generated 5 5 5
Synth Loss Weight 1 1 1
SWA LR 5𝑒−4 1𝑒−5 1𝑒−5

Table C.3 Hyperparameter values for TuckER on each dataset.

Hyperparameter FB15K-237 NELL-995 CoDEx-M

Learning Rate 5𝑒−5 5𝑒−5 1𝑒−5

LR Decay 0.99 None 0.995
Label Smoothing 0 0 0
Dropout #1 0.3 0.3 0.3
Dropout #2 0.4 0.3 0.5
Dropout #3 0.5 0.2 0.5
Rel Dim 200 100 100
Degree Threshold 5 25 5
# Generated 5 5 5
Synth Loss Weight 1 1𝑒−2 1
SWA LR 5𝑒−4 1𝑒−5 5𝑒−4

C.5 Expected Calibration Error

Expected calibration error [40] is a measure of model calibration that utilizes the model accuracy

and prediction confidence. Following [40], we first split our data into𝑀 bins and define the accuracy
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(a) In and Out Degree Analysis (b) Tail In-Degree Analysis (c) Controlling for Degrees

Figure C.1 MRR when predicting the tail for ConvE on FB15K-237 when varying the (a)
in-degree and out-degree of the head and tail entity, (b) tail-relation and other-relation in-degree,
and (c) other-relation in-degree for smaller sub-ranges of the tail-relation degree.

(acc) and confidence (conf) on one bin 𝐵𝑚 as:

acc(𝐵𝑚) =
1

|𝐵𝑚 |

|𝐵𝑚 |∑︁
𝑖=1

1( 𝑦̂𝑖 = 𝑦𝑖), (C.1)

conf(𝐵𝑚) =
1

|𝐵𝑚 |

|𝐵𝑚 |∑︁
𝑖=1

𝑝𝑖, (C.2)

where 𝑦𝑖 is the true label for sample 𝑖, 𝑦̂𝑖 is the predicted label, and 𝑝𝑖 the prediction probability

for sample 𝑖. A well-calibrated model should have identical accuracy and confidence for each bin.

ECE is thus defined by [40] as:

ECE =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑛

|acc(𝐵𝑚) − conf(𝐵𝑚) |, (C.3)

where 𝑛 is the total number of samples across all bins. As such, a lower ECE indicates a better

calibrated model. For KGC we split the samples into bin by the tail-relation degree. Furthermore

to calculate the accuracy score (acc) we utilize His@10 to denote a correct prediction. For the

confidence score (conf) we denote 𝜎( 𝑓 (ℎ, 𝑟, 𝑡)) as the prediction probability where 𝑓 (ℎ, 𝑟, 𝑡) is

a KG embedding score function and 𝜎 is the sigmoid function. When calculating the ECE over

all samples Eq. (C.3) is unchanged. When calculating ECE for just one bin of samples (e.g. low

degree triples) it is defined as:

ECE𝑚 = |acc(𝐵𝑚) − conf(𝐵𝑚) |, (C.4)

where ECE𝑚 is the expected calibration error for just bin 𝑚.
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C.6 Proof of Theorem 1

In this section we prove Theorem 1. Following recent work [19, 138] we examine the regular-

izing effect of the mixup parameter 𝜆. This is achieved by approximating the loss 𝑙𝜃 on a single

mixed sample 𝑒 using the first-order quadratic Taylor approximation at the point 𝜏 = 1 − 𝜆 near 0.

Assuming 𝑙𝜃 is differentiable, we can approximate 𝑙𝜃 , with some abuse of notation as:

𝑙𝜃 (𝜏) = 𝑙𝜃 (0) + 𝑙′𝜃 (0)𝜏. (C.5)

We consider the case where 𝑙𝜃 is the binary cross-entropy loss. Since the label 𝑦𝑖 𝑗 = 1 is always

true, it can be written as,

𝑙𝜃 (𝑒) = 𝑙𝑜𝑔 𝜎 ( 𝑓 (𝑒)) , (C.6)

where 𝜎 is the sigmoid function and 𝑒 =
(
ℎ̃, 𝑟, 𝑡

)
is the mixed sample. Since 𝜏 = 1 − 𝜆, we can

rewrite the mixed sample as:

𝑒 = ((1 − 𝜏)ℎ𝑖 + 𝜏ℎ 𝑗 , (1 − 𝜏)𝑟𝑖 + 𝜏𝑟 𝑗 , 𝑡). (C.7)

As such, setting 𝜏 = 0 doesn’t mix the two samples resulting in 𝑒 = (ℎ𝑖, 𝑟𝑖, 𝑡). The term 𝑙𝜃 (0) is

therefore equivalent to the standard loss L(𝜃) over the samples 𝑆. We can now compute the first

derivative in Eq. (C.5). We evaluate 𝑙′
𝜃

via the chain rule,

𝑙′𝜃 =
𝜕 𝑙𝑜𝑔 𝜎 ( 𝑓 (𝑒))
𝜕𝜎 ( 𝑓 (𝑒)) · 𝜕𝜎 ( 𝑓 (𝑒))

𝜕 𝑓 (𝑒) · 𝜕 𝑓 (𝑒)
𝜕𝜏

, (C.8)

where 𝜕 𝑓 (𝑒)
𝜕𝜏

is evaluated via the multivariable chain rule to:

𝜕 𝑓 (𝑒)
𝜕𝜏

=

(
𝜕 𝑓 (𝑒)
𝜕𝑥 ℎ̃

𝜕𝑥 ℎ̃

𝜕𝜏
+ 𝜕 𝑓 (𝑒)

𝜕𝑥𝑟

𝜕𝑥𝑟

𝜕𝜏
+ 𝜕 𝑓 (𝑒)

𝜕𝑥𝑡

𝜕𝑥𝑡

𝜕𝜏

)
. (C.9)

Evaluating 𝑙′
𝜃
:

𝑙′𝜃 =
1

𝜎 ( 𝑓 (𝑒)) · 𝜎 ( 𝑓 (𝑒)) (1 − 𝜎 ( 𝑓 (𝑒))) · 𝜕 𝑓 (𝑒)
𝜕𝜏

, (C.10)

= (1 − 𝜎 ( 𝑓 (𝑒))) · 𝜕 𝑓 (𝑒)
𝜕𝜏

, (C.11)

= (1 − 𝜎 ( 𝑓 (𝑒)))
[
𝜕 𝑓 (𝑒)
𝜕𝑥 ℎ̃

(𝑥ℎ 𝑗 − 𝑥ℎ𝑖 ) +
𝜕 𝑓 (𝑒)
𝜕𝑥𝑟

(𝑥𝑟 𝑗 − 𝑥𝑟𝑖 )
]
, (C.12)
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where the term related to 𝑥𝑡 in Eq. (C.9) cancels out since 𝜕𝑥𝑡/𝜕𝜏 = 0. Since we are evaluating

the expression near 𝜏 = 0, we only consider the original sample in the score function, reducing the

above to the following where Δℎ = (𝑥ℎ 𝑗 − 𝑥ℎ𝑖 ), and Δ𝑟 = (𝑥𝑟 𝑗 − 𝑥𝑟𝑖 ),

𝑙′𝜃 (0) = (1 − 𝜎 ( 𝑓 (𝑒𝑖)))
[
𝜕 𝑓 (𝑒𝑖)
𝜕𝑥 ℎ̃

Δℎ + 𝜕 𝑓 (𝑒𝑖)
𝜕𝑥𝑟

Δ𝑟

]
. (C.13)

Plugging in 𝑙𝜃 (0) and 𝑙′
𝜃
(0) into Eq. (C.5) and rearranging the terms we arrive at:

LMix(𝜃) = L(𝜃) + R1(𝜃) + R2(𝜃), (C.14)

where R1(𝜃) and R2(𝜃) are defined over all samples 𝑆 as:

R1(𝜃) =
𝜏

|𝑆 |

|𝑆 |∑︁
𝑖=1

𝑘∑︁
𝑗=1

(1 − 𝜎 ( 𝑓 (𝑒𝑖)))
𝜕 𝑓 (𝑒𝑖)𝑇
𝜕𝑥 ℎ̃

Δℎ, (C.15)

R2(𝜃) =
𝜏

|𝑆 |

|𝑆 |∑︁
𝑖=1

𝑘∑︁
𝑗=1

(1 − 𝜎 ( 𝑓 (𝑒𝑖)))
𝜕 𝑓 (𝑒𝑖)𝑇
𝜕𝑥𝑟

Δ𝑟, (C.16)

with 𝜏 = E𝜆∼D𝜆
(1 − 𝜆) where D𝜆 = Beta(𝛼, 𝛼).
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APPENDIX D

DISTANCE-BASED PROPAGATION FOR EFFICIENT
KNOWLEDGE GRAPH REASONING

D.1 Proof Details of Theorem 2

We prove Theorem 2 via induction on the path length 𝑙. We denote all nodes a distance 𝑙 from

the source node 𝑠 as 𝑉 𝑙𝑠 . The path length offset is represented by 𝛿. Lastly, for convenience we split

the constraints in Eq. (5.6) into two: a node constraint and an edge constraint. We formulate it

as the following where Node𝛿 (𝑠, 𝑜, 𝑡) represents the node constraint and EdgeC𝛿 (𝑠, 𝑜, 𝑢) the edge

constraint:

Node𝛿 (𝑠, 𝑜, 𝑡) = 𝑡 − 𝛿 ≤ dist(𝑠, 𝑜) ≤ 𝑡, (D.1)

EdgeC𝛿 (𝑠, 𝑜, 𝑢) = dist(𝑠, 𝑢) < dist(𝑠, 𝑜) + 𝛿 (D.2)

Base Case (𝑙=1): We want to show for all 𝑙 = 1 hop neighbors of 𝑠, 𝑜 ∈ 𝑉1
𝑠 , their final representation

𝑥𝐹𝑞 (𝑠, 𝑜) aggregates all path representations in the range [0, 1+𝛿]. To be true, the embedding 𝑥𝐹𝑞 (𝑠, 𝑜)

must satisfy two conditions:

• Condition 1: The final embedding 𝑥𝐹𝑞 (𝑠, 𝑜), contains all paths representations of length less than

or equal to 1 + 𝛿 between 𝑠 and 𝑜.

• Condition 2: The final embedding 𝑥𝐹𝑞 (𝑠, 𝑜) contains no other path information.

Condition 1: For it to be true, a node 𝑜 ∈ 𝑉1
𝑠 must aggregate all edges of the form (𝑢, 𝑟, 𝑜) where

𝑢 belongs to the set:

𝑈
(0,𝛿)
𝑠,𝑜 = {𝑢 | (𝑢, 𝑟, 𝑜) ∈ E𝑜, 𝑢 ∈ {𝑉0

𝑠 , 𝑉
1
𝑠 , · · · , 𝑉 𝛿𝑠 }}, (D.3)

where E𝑜 represents all edges where 𝑜 is the target node. It’s intuitive that all paths starting at 𝑠 of

length ∈ [0, 𝛿 + 1] must pass through the nodes in the set 𝑈 (0,𝛿)
𝑠,𝑜 in order to reach 𝑜. We prove in

Theorem 3 that 𝑜 will aggregate all nodes in the set𝑈 (0,𝛿)
𝑠,𝑜 .

Condition 2: We want to demonstrate that the representation of node 𝑜 aggregates no other path

information such that 𝑥 (𝛿+1)
𝑞 (𝑠, 𝑜) = 𝑥𝐹𝑞 (𝑠, 𝑜). This is true as per the node constraint (Eq. (D.1)) the

representation of a node 𝑜 stops updating after iteration 𝑘 = 1 + 𝛿.
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Inductive Step: We assume that for all m-hop neighbors of 𝑠, 𝑜 ∈ 𝑉𝑚𝑠 , their final representation

𝑥𝐹𝑞 (𝑠, 𝑜) aggregates all path representations of length between [𝑚, 𝑚 + 𝛿]. This is achieved by a

node 𝑜 aggregating all edges (𝑢, 𝑟, 𝑜) where 𝑢 belongs to the set:

𝑈
(𝑚−1,𝑚−1+𝛿)
𝑠,𝑜 = {𝑢 | (𝑢, 𝑟, 𝑜) ∈ E𝑜, 𝑢 ∈ {𝑉𝑚−1

𝑠 , · · · , 𝑉𝑚−1+𝛿
𝑠 }}, (D.4)

as all such paths must pass through these nodes. We note that this implies that:

• The set of nodes 𝑈 (𝑚−1,𝑚−1+𝛿)
𝑠,𝑜 must themselves only contain all path representations of lengths

[𝑚 − 1, 𝑚 − 1 + 𝛿] when aggregated by 𝑜 ∈ 𝑉𝑚𝑠 .

• The set of nodes𝑈 (𝑚−1,𝑚−1+𝛿)
𝑠,𝑜 must obtain such path information by iteration 𝑘 = 𝑚 − 1+ 𝛿. This

must be true as per the node constraint 𝑜 will last update at iteration 𝑘 = 𝑚 + 𝛿.

We now want to show for all (𝑚 + 1) hop neighbors of 𝑠, 𝑜 ∈ 𝑉𝑚+1
𝑠 , their final representation

𝑥𝐹𝑞 (𝑠, 𝑜) aggregates all path representations of of length between [𝑚 + 1, 𝑚 + 1 + 𝛿]. This requires

showing that 𝑥𝐹𝑞 (𝑠, 𝑜) (1) contains all paths representations between [𝑚 + 1, 𝑚 + 1 + 𝛿] between 𝑠

and 𝑜 and (2) it contains no other path information.

Condition 1: For 𝑜 ∈ 𝑉𝑚+1
𝑠 to aggregate all paths of length between 𝑚 + 1 and 𝑚 + 1 + 𝛿, their

representation must aggregate all edges (𝑢, 𝑟, 𝑜) where 𝑢 belongs to the set:

𝑈
(𝑚,𝑚+𝛿)
𝑠,𝑜 = {𝑢 | (𝑢, 𝑟, 𝑜) ∈ E𝑜, 𝑢 ∈ {𝑉𝑚𝑠 , · · · , 𝑉𝑚+𝛿𝑠 }}. (D.5)

Such edges are aggregated by 𝑜 ∈ 𝑉𝑚+1
𝑠 via the edge constraint. Furthermore,

• From the inductive step we know that nodes 𝑈 (𝑚−1,𝑚−1+𝛿)
𝑠,𝑜 = 𝑈

(𝑚,𝑚+𝛿)
𝑠,𝑣 \ 𝑉𝑚+𝛿𝑠 have already

aggregated all path representations of lengths [𝑚 − 1, 𝑚 − 1 + 𝛿] by iteration 𝑘 = 𝑚 + 𝛿.

• From both constraints we know that ∀𝑢 ∈ 𝑉𝑚+𝛿𝑠 will only contain all path representations of

length 𝑚 + 𝛿 (i.e. shortest path) by iteration 𝑘 = 𝑚 + 𝛿.

As such, after aggregating the nodes in the set𝑈 (𝑚,𝑚+𝛿)
𝑠,𝑜 the representation 𝑥 (𝑚+𝛿)𝑞 (𝑠, 𝑢) will contain

all paths representations between 𝑚 and 𝑚 + 𝛿. Per the node constraint, ∀𝑜 ∈ 𝑉𝑚+1
𝑠 last update at

iteration 𝑘 = 𝑚+1+𝛿. Therefore by aggregating𝑈 (𝑚,𝑚+𝛿)
𝑠,𝑜 at iteration 𝑘 = 𝑚+1+𝛿, the representation

𝑥
(𝑚+1+𝛿)
𝑞 (𝑠, 𝑜) will contain all path representations between length 𝑚 + 1 and 𝑚 + 1 + 𝛿.
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Condition 2: Lastly, we want to show that ∀𝑜 ∈ 𝑉𝑚+1
𝑠 the final representation 𝑥𝐹𝑞 (𝑠, 𝑜) will

only contain path representations of length 𝑚 + 1 to 𝑚 + 1 + 𝛿. This is true as per the node

constraint the representation of a node 𝑜 ∈ 𝑉𝑚+1
𝑠 last updates at iteration 𝑘 = 𝑚 + 1 + 𝛿. Therefore

𝑥
(𝑚+1+𝛿)
𝑞 (𝑠, 𝑜) = 𝑥𝐹𝑞 (𝑠, 𝑜). As such, the final representation only aggregates paths of length between

𝑚 + 1 and 𝑚 + 1 + 𝛿.

Theorem 3. We are given a source node 𝑠, query 𝑞, and target node 𝑜 which is a 1-hop neighbor

of 𝑠. The final representation of a 1-hop neighbor 𝑜, x𝐹𝑞 (𝑠, 𝑜), will at minimum aggregate all path

representations whose path length is between 1 and 1 + 𝛿. It therefore at least contains the path

information,

𝜂 =

1+𝛿⊕
𝑙=1

⊕
𝑝∈𝑃𝑙𝑠,𝑜

|𝑝 |⊗
𝑖=1

𝑤(𝑒𝑖). (D.6)

This is equivalent to stating that 𝑜 will aggregate all nodes in the following set by iteration 𝑘 = 1+𝛿,

𝑈
(0,𝛿)
𝑠,𝑜 = {𝑢 | (𝑢, 𝑟, 𝑜) ∈ E𝑜, 𝑢 ∈ {𝑉0

𝑠 , 𝑉
1
𝑠 , · · · , 𝑉 𝛿𝑠 }}. (D.7)

We prove this Theorem via induction on the layer iteration 𝑘 in our algorithm D.1 (denoted

their as 𝑙).

Base Case (𝑘=1): We want to first show that after one iteration, the representation of a 1-hop

neighbor 𝑥1
𝑞 (𝑠, 𝑜) aggregates all paths of length 1 from the source. This is achieved by 𝑥1

𝑞 (𝑠, 𝑜)

aggregating all edges connecting 𝑜 to 𝑠, i.e. (𝑠, 𝑟, 𝑜). Such edges are aggregated by 𝑜 as both the

edge and node constraints are satisfied:

EdgeC𝛿 (𝑠, 𝑜, 𝑠) = 0 < 1 + 𝛿, (D.8)

NodeC𝛿 (𝑠, 𝑜, 1) = 1 − 𝛿 ≤ 1 ≤ 1. (D.9)

Inductive Step: We assume that at some iteration 𝑘 = 𝑛, s.t. 𝑛 < 1 + 𝛿, the representation 𝑥𝑛𝑞 (𝑠, 𝑜)

for 𝑜 ∈ 𝑉1
𝑠 aggregates all path representations up to a length 𝑛 from the source. This is achieved by

aggregating all edges that contain nodes in the set:

𝑈
(0,𝑛−1)
𝑠,𝑜 = {𝑢 | (𝑢, 𝑟, 𝑜) ∈ E𝑜, 𝑢 ∈ {𝑉0

𝑠 , 𝑉
1
𝑠 , · · · , 𝑉𝑛−1

𝑠 }}. (D.10)

129



Since we assume that 𝑥𝑛𝑞 (𝑠, 𝑜) contains all path representations up to length 𝑛, then it follows that

∀𝑢 ∈ 𝑈 (0,𝑛−1)
𝑠,𝑜 their corresponding representation 𝑥𝑛𝑞 (𝑠, 𝑜) must also contain all paths up to length

𝑛 − 1. As such, by node 𝑜 aggregating𝑈 (0,𝑛−1)
𝑠,𝑜 it extend the length of each path by 1.

We want to prove that at iteration 𝑘 = 𝑛 + 1, the representation 𝑥 (𝑛+1)
𝑞 (𝑠, 𝑜) aggregates all path

representations up to a length 𝑛 + 1 from the source. This is achieved by aggregating all edges that

contain the nodes in the set:

𝑈
(0,𝑛)
𝑠,𝑜 = {𝑢 | (𝑢, 𝑟, 𝑜) ∈ E𝑜, 𝑢 ∈ {𝑉0

𝑠 , 𝑉
1
𝑠 , · · · , 𝑉𝑛𝑠 }}. (D.11)

Per the previous inductive step, we assumed that the representations 𝑥𝑛𝑞 (𝑠, 𝑜) ∀𝑜 ∈ 𝑉𝑛𝑠 contain all

path representations up to length 𝑛. Furthermore we noted that at iteration 𝑘 = 𝑛, the representations

for each node in the set 𝑈 (0,𝑛−1)
𝑠,𝑜 must also contain all path representations up to a length 𝑛 − 1.

Since𝑈 (0,𝑛)
𝑠,𝑜 = 𝑈

(0,𝑛−1)
𝑠,𝑜 ∪𝑉𝑛𝑠 , this implies that𝑈 (0,𝑛)

𝑠,𝑜 contain all path representations up to length 𝑛.

Thereby when 𝑥 (𝑛+1)
𝑞 (𝑠, 𝑜) aggregates the nodes in𝑈 (0,𝑛)

𝑠,𝑜 it aggregates all path representations up to

a length 𝑛 + 1. A node 𝑜 ∈ 𝑉1
𝑠 will aggregate such nodes at iteration 𝑘 = 𝑛 + 1 per both constraints.

This proves by induction that for 𝑜 ∈ 𝑉1
𝑠 , their representation 𝑥 (1+𝛿)𝑞 (𝑠, 𝑜) aggregates all path

representations of length less than or equal to 1 + 𝛿.

D.2 Further Details on TAGNet

D.2.1 TAGNet Algorithm

The algorithm for TAGNet, with a fixed 𝛿, is presented in Algorithm D.1.

D.2.2 Time Complexity Analysis

Per the constraints in Eq. (5.6), each node can be updated at most 𝛿 + 1 times and each edge

can be aggregated at most 𝛿 + 1 times. The shortest path distance from a source node 𝑠 to all other

nodes can be calculated in linear time via a breadth-first search. The worst-case complexity for the

standard version of TAGNet is therefore:

𝑂

(
(𝛿 + 1) ·

(
|𝑉 |𝑑2 + |𝐸 |𝑑

))
. (D.12)

Of note is that the worst case-complexity is independent of the number of layers. This allows for

much deeper propagation.
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Algorithm D.1 TAGNet Algorithm (fixed 𝛿)
Require:

𝑠 = Source node
𝑞 = Query relation
𝑇 = Max Number of Layers
x = Embeddings
𝛿 = Offset
Agg-Degree = Whether to include degree msgs

1: Initialize:
𝑥
(0)
(𝑠,𝑜) = 0, ∀𝑜 ∈ V
𝑥
(0)
(𝑠,𝑜) = x𝑞

2: for 𝑡 = 1...𝑇 do
3: for 𝑜 ∈ V do
4: if 𝑡 − 𝛿 ≤ dist(𝑠, 𝑜) ≤ 𝑡 then
5: C(𝑠, 𝑜, 𝑡) = {(𝑢, 𝑟, 𝑜) ∈ E(𝑜) | dist(𝑠, 𝑢) < dist(𝑠, 𝑜) + 𝛿}
6: Msgs = {x(𝑡−1)

(𝑠,𝑢) ⊙ x(𝑡 )
𝑟 | (𝑢, 𝑟, 𝑜) ∈ C(𝑠, 𝑜, 𝑡)}

7: if Agg-Degree then
8: 𝜌𝑜 = 𝑏𝑜 − |Msgs|
9: Msgs = Msgs ∪

{
𝜌𝑣 · x(𝑡 )

deg

}
10: end if
11: x(𝑡 )

(𝑠,𝑜) = Aggregate{ Msgs }
12: end if
13: end for
14: end for
15: return x(dist(𝑠,𝑜)+𝛿 )

(𝑠,𝑜) for all 𝑜 ∈ V

We further discuss the complexity when utilizing degree messages and a target-specific 𝛿. As

noted in Section 5.3.3, the inclusion of degree messages is equivalent to aggregating an additional

edge each iteration. As such, it doesn’t effect the model complexity. Furthermore, when utilizing

a target-specific 𝛿, an additional (𝛿 + 1) · 𝑑2 operations are added to calculate the attention scores.

This is equivalent to updating each one node one additional time and therefore also has no effect

on the model complexity.

D.2.3 TAGNet + A∗Net

We further experiment with combining the pruning strategy of both A∗Net and TAGNet. This

is achieved by taking the intersection of the edge sets produced by both methods for a node pair

(𝑠, 𝑜) at iteration 𝑡. This is because we only want to aggregate an edge if it is not pruned by both
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methods. For TAGNet, the edge set C(𝑠, 𝑜, 𝑡) is defined as in Eq. (5.6). We further denote the edge

set for A∗Net as A(𝑠, 𝑜, 𝑡). Adapting Eq. (5.7) we arrive at:

x(𝑡)
𝑞 (𝑠, 𝑜) = ©­«

⊕
(𝑣,𝑟,𝑜)∈C(𝑠,𝑜,𝑡)∩A(𝑠,𝑜,𝑡)

x(𝑡−1)
𝑞 (𝑠, 𝑣) ⊗ w𝑞 (𝑣, 𝑟, 𝑜)ª®¬ ⊕ x(0)

𝑞 (𝑠, 𝑜). (D.13)

The performance and efficiency when combining both methods is detailed in Section 5.4.1 and 5.4.2,

respectively. Lastly, we note that we don’t consider combining with the pruning strategy in

AdaProp [144] due to its strong similarity with that of A∗Net.

D.3 Experimental Settings

D.3.1 Datasets

We conduct experiments on both the transductive and inductive settings. For the transductive

setting, we consider FB15K-237 [111] and WN18RR [30]. For the inductive setting, where the train

and test entities are disjoint, we consider the splits generated by [109] from both FB15K-237 and

WN18RR. Of note is that we omit the NELL-995 [126] dataset from both sets of our experiments.

This is due to concerns raised by [98], where they argue that most of the triples in NELL-995 are

either meaningless or trivial. The statistics for all the transductive and inductive datasets are given

in Tables D.1 and D.2, respectively.

Table D.1 Statistics for Transductive Datasets.

Statistic FB15K-237 WN18RR

#Entities 14,541 40,943
#Relations 237 11
#Train 272,115 86,835
#Validation 17,535 3,034
#Test 20,466 3,134

D.3.2 Baselines

In the transductive setting, following [154], we consider a variety of different models. For

embedding-based methods we consider TransE [14] (performance from [82]), DistMult [127],

ComlEx [112]. For GNN methods we include R-GCN [100] (performance on WN18RR taken

from [154]) and CompGCN [113]. For path-based methods we include DRUM [96], NBFNet [154],
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Table D.2 Statistics for Inductive Datasets.

Dataset #Relations Train Validation Test
#Entities #Query #Fact #Entities #Query #Fact #Entities #Query #Fact

FB15k-237

v1 180 1,594 4,245 4,245 1,594 489 4,245 1,093 205 1,993
v2 200 2,608 9,739 9,739 2,608 1,166 9,739 1,660 478 4,145
v3 215 3,668 17,986 17,986 3,668 2,194 17,986 2,501 865 7,406
v4 219 4,707 27,203 27,203 4,707 3,352 27,203 3,051 1,424 11,714

WN18RR

v1 9 2,746 5,410 5,410 2,746 630 5,410 922 188 1,618
v2 10 6,954 15,262 15,262 6,954 1,838 15,262 2,757 441 4,011
v3 11 12,078 25,901 25,901 12,078 3,097 25,901 5,084 605 6,327
v4 9 3,861 7,940 7,940 3,861 934 7,940 7,084 1,429 12,334

RED-GNN [143], A∗Net [152], and AdaProp [144]. We note that for AdaProp the original results

from [144] utilize 7 and 8 layers for FB15k237 and WN18RR, respectively (see Table 7 in [144]).

For other methods such as TAGNet, NBFNet, and A∗NET, the number of layers is fixed at 6. To

facilitate a fair comparison, we run AdaProp on both datasets using 6 layers. We utilize the official

source code 1 and the published hyperparameters.

For the inductive setting, following [109, 154], we include GraIL [109], CoMPILE [70], and

NeuralLP [128] in addition to NBFNet and A∗Net. We note that embedding methods aren’t

applicable to the inductive setting as the train and test entities are disjoint. For NBFNet, the results

on the inductive FB15k-237 splits are reported by us while the results for the WN18RR splits are

from [152]. This is because we observed that we can achieve better performance for NBFNet on

the FB15k-237 splits than what was reported in [152]. Lastly, as with the transductive setting, we

run AdaProp with 6 layers to facilitate a fair comparison between it and other path-based GNNs.

We also set the hidden dimension to 32 as is with all other path-based GNNs.

D.3.3 Evaluation Metrics

In the transductive setting, we report the mean reciprocal rank (MRR), Hits@1, and Hits@10

following the filtered setting as described in [14]. For the inductive setting, following [144, 152],

we only report the Hits@10.

D.3.4 Hyperparameter Settings

We list the parameters settings for TAGNet. Under the fixed-𝛿 formulation it is trained for 20 and

16 epochs on the transductive and inductive setting, respectively. For the specific-𝛿 formulation,
1https://github.com/LARS-research/AdaProp
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we train for 25 and 20 epochs on the transductive and inductive setting, respectively, as we’ve found

it takes longer to converge. For all transductive and inductive experiments in Table 5.1 and 5.2

we set the maximum number of layers to 6 and the hidden dimension to 32. This is to facilitate

a fair comparison with NBFNet and A∗Net. Furthermore the transductive batch size is fixed at

16. The number of negative samples is tuned from {128, 512, 1024, 2048}, the dropout from the

range [0, 0.7], the learning rate decay from {0.9, 0.95, 1}, the weight decay from [1e-8, 1e-3],

and the adversarial temperature from {0.5, 1}. For the target specific setting we further test on

setting 𝑔 as its own function or as equal to the score function, 𝑔 = 𝑓 . We further tune the softmax

temperature for attention from {0.5, 1, 5}. For the inductive setting we further tune the batch size

from {16, 32, 64, 128} and the learning rate from [1e-4, 1e-2]. Lastly, for all experiments, the offset

𝛿 is tuned from {1, 2, 3}.

D.3.5 Implementation Details

The framework is implemented with PyTorch [86]. All experiments were run on a single 32G

Tesla V100 GPU. We train TAGNet with the binary cross-entropy loss optimized via the Adam

optimizer [52]. We follow [128] and augment the graph by including reciprocal edges, such that

for an edge (ℎ, 𝑟, 𝑡), its reciprocal edge (𝑡, 𝑟−1, ℎ) is included. In this scenario 𝑟−1 is considered a

distinct relation from 𝑟.

D.4 Additional Analysis on TAGNet

In this section we take a closer look as to what kind of messages are pruned by TAGNet. As

noted in Section 5.3.1 we strive to limit the number of empty and redundant messages. We first

analyze how well TAGNet can prune both of those messages. We then examine the reason why

some datasets may prune more empty or redundant messages.

We first analyze the number of empty and redundant messages pruned for both transductive

datasets. We report the results in Table D.3 as a % of the total number of pruned messages. E.g.,

For FB15k-237 51% of the total number of pruned messages are empty messages. For simplicity,

we limit this study to the the best versions of each model, i.e. 𝛿 = 2 for FB15K-237 and 𝛿 = 3 for

WN18RR. We find that on FB15k-237, the messages pruned are split evenly between empty and
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redundant messages. On the other hand, for WN18RR over 90% of the messages pruned are empty

messages.

Table D.3 % of Messages Pruned that are either Empty or Redundant.

Dataset % Empty % Redundant

FB15k-237 51% 49%
WN18RR 91% 9%

An obvious question is: Why does the composition of pruned messages differ between datasets?

We believe this can be explained via two properties of each datasets, the density and distance

distribution. We measure the sparsity via the mean degree, which is shown in Table D.4. We do

this as graphs with a low mean degree will contain few connections between nodes, resulting in

fewer paths between different nodes and thereby fewer redundant paths. Furthermore, there will

be a lower chance of a node visiting another node already on the path, as most nodes are linked to

only a handful of nodes. We further show the distance distribution of the test samples, i.e., the %

of test samples that are a distance 𝑘 from each other, in Table D.5. This is because when nodes

are typically far from each other, the target nodes will aggregate many empty messages. Using

Figure 5.1a as an example, the source and node 7 are a distance 3 from each other. Because of this,

in the first two iterations NBFNet will propagate node 6 to node 7, even though node 6 contains

no information. However, this is less of an issue between nodes of shorter distances as there fewer

iterations needed to reach it. From this, we hypothesize that graphs that feature, on average, a larger

distance between nodes will propagate more empty messages.

Table D.4 Mean Degree of Transductive Datasets.

Dataset Mean Degree

FB15k-237 18.7
WN18RR 2.1

From the results in Table D.4 and D.5 we make the following observations: (a) WN18RR is

much sparser than FB15k-237. The higher density of FB15k-237 leads to many more paths and

subsequent opportunities to visit a node already on the path. The opposite is true for WN18RR as
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Table D.5 Distance Distribution of Test Samples on the Transductive Datasets.

Distance FB15k-237 WN18RR

1 0% 35%
2 73% 9%
3 26% 21%
4 0.2% 7%
5 0.005% 9%

6+ 0% 18%

since the average degree is low, few paths exist in the graph. This results in many more redundant

paths existing in FB15k-237 as compared to WN18RR. (b) For FB15k-237, the vast majority of

test samples are close to each other. This leads to less empty messages. However, for WN18RR

the distance covers a much wider range. For example, over 33% of test samples have a distance of

4+ between them. This is only true for 0.205% of samples on FB15k-237. This helps explain why

TAGNet mostly prunes empty messages on WN18RR, as the larger distance between nodes leads

to many messages that contain no information.
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