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ABSTRACT 

Agricultural land plays a critical role not only in food production, but also in advancing 

environmental sustainability and renewable energy goals. Given these diverse functions, 

landowners face complex decisions that require balancing agricultural productivity with 

environmental objectives. Their decisions can be shaped by the quality of information guiding 

expected returns and varying policy and market incentives. This dissertation investigates how 

agricultural landowners make land use and management decisions when faced with tradeoffs, 

imperfect information, and differing incentives.  

The first chapter examines the tradeoff that landowners’ face between farming and 

conservation. It focuses on estimating the opportunity cost of precision conservation, a practice 

that converts low-yielding areas into conservation area while minimizing foregone revenue. Using 

fine-scale yield maps from Michigan corn and soybean fields from 2020 to 2024, we calculate the 

opportunity costs of foregone yields, yield effects on adjacent cropland, and input cost savings. 

Assuming a 10-year conservation period under a corn-soybean rotation, results show that precision 

conservation improves profitability in 19 of 29 fields, with an average annualized profit increase 

of $74/ac. Compared to whole-field conservation, precision conservation substantially reduces 

costs of conservation. On average, the opportunity costs of whole-field conservation is $235/ac 

higher than that of precision conservation, with differences ranging from $135/acre lower to 

$349/acre higher.  

The second chapter evaluates how different sources of information affect the profitability 

of variable rate nitrogen (VRN) application. Utilizing 17 field-years data from 13 Midwest fields 

during 2021-2023, it compares VRN prescriptions based on remotely-sensed early-season 



 

 

vegetative vigor (NDVI) and historical yield maps. Applying linear regression and spatial 

discontinuity analysis, the study finds a heterogeneous treatment effect, with profitability gains 

from NDVI compared to yield history prescriptions ranging from $-410 ha-1 to $350 ha-1. NDVI-

based prescriptions were more profitable when weather conditions diverged from historical trends 

and remained stable throughout the season (e.g., 2021), while yield history outperformed when 

early-season signals failed to persist and conditions ultimately reverted to historical norms (e.g., 

2023). These results highlight the value of adapting nitrogen management to seasonal weather 

conditions by combining long-term yield patterns with real-time crop vigor signals.  

The third chapter examines the effects of two overlapping policy interventions on wind 

energy development in Michigan: the revision of Public Act 116, which eased land-use restrictions 

on preserved farmland, and the Wind Energy Resource Zone designation under Public Act 295, 

which supported infrastructure development in areas with high wind potential. Employing a 

difference-in-differences framework, the analysis spans townships and cities in Michigan, 

Minnesota, and Wisconsin from 2000 to 2023. The findings indicate that the PA116 revision had 

no statistically significant effect, whereas the Wind Zone designation led to an additional 90 

megawatts (MW) of installed electrical generation capacity. These results underscore the varying 

effectiveness of land-use policies. Because the farmland preservation program offered limited 

economic incentives to begin with, loosening its restrictions had minimal impact. In contrast, the 

proactive designation of Wind Zones with clear development signals and coordinated 

infrastructure planning significantly accelerated wind turbine deployment in Michigan. 
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CHAPTER 1. OPPORTUNITY COST OF PRECISION CONSERVATION 1 

 

Abstract: Conservation practices provide public benefits such as improved water quality and 

biodiversity, but the associated private costs are often borne by farmers. Typically, the largest of 

these is the opportunity cost of potential revenue lost due to taking land out of production. 

Precision agriculture technologies can help reduce these costs by identifying low-yielding areas, 

thereby minimizing foregone revenue. This study estimates the opportunity cost of such precision 

conservation on 29 commercial corn and soybean fields in Michigan, USA, using fine-scale yield 

maps collected between 2020 and 2024. Opportunity costs are calculated by assessing foregone 

yields and input cost savings within conservation areas plus any crop yield changes on nearby 

cropland. Results show that on average precision conservation enhances profitability for corn 

fields but not for soybeans. Under a corn-soybean crop rotation, precision conservation improves 

profitability in 19 of 29 fields, as opportunity costs in most cases turned out to be negative. The 

annualized opportunity cost is -$74/ac on average, ranging from -$424/acre to $233/acre. By 

contrast, whole-field conservation on the same fields would lead to far higher foregone yields, 

resulting in the differences in opportunity cost that average $235/acre, with a range from -$135/acre 

to $349/acre. Precision conservation that targets low-yielding field areas can be profitable in many 

instances without subsidy, although subsidies may help attract early adopters.  

 

  

 
1 This chapter is based on work intended for publication in collaboration with Scott M. Swinton and Bruno Basso 
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1.1 Introduction 

Crop production and biodiversity conservation vie for limited land. Homogenous and simplified 

agricultural fields produce high yields, but they aggravate biodiversity losses, which can lead to 

reductions in ecosystem services (Landis, 2017). Conservation areas within agricultural fields can 

deliver environmental benefits including reduced nutrient and sediment export (Schulte et al., 2017; 

Zhou et al., 2014; Helmers et al., 2012), wildlife habitat (King and Savidge, 1995; Lane et al., 

2020), and enhanced soil productivity (De et al., 2020; Li et al., 2018). Balancing land use between 

crop production and conservation becomes important amid rising food demand and heightened 

environmental concerns. 

Shifting land from crop production to conservation imposes opportunity costs on farmers, 

who forgo potential crop yields. Research has shown that opportunity costs increase when 

conservation is implemented on higher-yielding land, as the foregone yields are greater (Tyndall 

et al., 2013; McConnell and Burger, 2011). Arbuckle Jr. and Rosesch-McNally (2015) highlights 

that these costs are a significant concern for farmers considering prairie strips, which cut across 

crop fields. Compensating farmers for these opportunity costs often requires substantial subsidies, 

creating financial burdens on government programs. Given these challenges, more cost-effective 

conservation strategies are needed. 

Precision conservation targets low yielding zones of a crop field. It offers a potential 

solution for achieving a harmonious balance between environmental conservation and agricultural 

productivity. Leveraging spatial technologies such as global positioning systems (GPS), remote 

sensing, and geographic information systems (GIS), precision conservation allows for targeting 

specific areas that either minimize producers’ costs or address significant environmental impacts, 

such as soil erosion or water quality improvement. This targeted approach allows farmers to 
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simultaneously engage in both farming and conservation. This conservation strategy diverges from 

conventional conservation policy, which focuses on conserving entire fields (Swinton, 2022) or 

else on prairie strips that have similar consequences for foregone yield. 

Agronomic research has demonstrated significant yield variability within fields and has 

shown that low-yielding areas can be reliably identified for targeted conservation (Brandes et al., 

2016; McConnell and Burger Jr., 2017; Basso, 2021). While these findings support the potential 

of precision conservation, its costs under farmer management remain underexplored. Existing 

studies on conservation costs typically rely on accounting approaches using average land rent 

values (Tyndall et al., 2013; Meng et al., 2022), pre-conservation yield data (McConnell and 

Burger, 2011; Jeffrey et al., 2014; Capmourteres et al., 2018), or randomized experiments (Pywell, 

et al., 2015). However, these methods fail to account for the strategic placement of conservation 

areas on low-yielding land and the potential yield changes in adjacent cropland after conservation 

implementation. To date, no research has estimated the opportunity cost of precision conservation 

areas using statistical methods to predict foregone yield and the associated changes in net revenue. 

This study aims to fill that gap by estimating the opportunity costs of converting low-

yielding areas into conservation areas on 29 commercial corn and soybean fields in Michigan, 

USA. We consider three main components of opportunity cost. The first is the foregone profit 

within the conservation area due to the absence of crop cultivation. By modeling yield as a function 

of distance from the conservation area, we capture the inherent characteristics of low-yielding 

areas, where yield tends to be lower closer to these areas and gradually increases with distance 

from the low-yielding zone. 

The second component is the potential impact of conservation areas on crop yields on 

adjacent cropland. Conservation areas may increase nearby crop yields by providing habitat for 
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beneficial insects (Pywell et al., 2015; Kordbachech et al., 2020; Kemmerling et al., 2022) or by 

enhancing soil health (Dutter et al., 2023; Senaviratne et al., 2012). Alternatively, they may reduce 

yields by harboring pests (Fiedler and Landis, 2007), fostering weeds (Hirsh et al., 2013), or 

competing for water and nutrients with crops (Anderson et al., 2009). As the literature offers no 

consensus on the net impact of conservation areas, our study provides an important assessment of 

these dynamics on farm fields. We examine how the impact of conservation areas evolves as the 

ecosystems within them mature, and we estimate the resulting yield changes in the surrounding 

cropland. 

In addition to the ecological impact generated within conservation areas, crop yields near 

conservation areas may be affected by increased wildlife attracted to these areas. Wildlife related 

crop damage can pose significant concern for farmers (McGowan et al., 2006; McKee et al., 2020), 

with deer being the most commonly reported source of damage in field crops (U. S. Department 

of Agriculture [USDA], 2002; Wywialowski, 1994). Deer typically graze along wooded field edges 

(McGowan et al., 2006), where yields are often lower than the field average (Robinson, et al., 2022; 

Fincham et al., 2023). When conservation areas are placed along field edges, deer may shift their 

foraging deeper into the field, where yields are higher, potentially increasing overall crop losses. 

To assess this impact, we use the distance to the nearest wooded edge as a proxy for deer abundance 

and examine whether crop yields decline following the establishment of conservation areas.  

The third component of opportunity cost includes input cost savings and implementation 

costs. Input cost savings reduce opportunity costs, as conservation areas are no longer cultivated 

and inputs such as seeds and fertilizers are no longer applied. On the other hand, the cost of 

implementing conservation areas increases opportunity costs. Implementation costs include 

technical expenses for precision conservation such as identifying ideal conservation areas or using 
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GPS devices, as well as costs associated with purchasing seed mixes, planting, and maintaining 

the conservation areas. 

To account for price fluctuations and market risks, we use Monte Carlo simulations to 

generate hypothetical price trajectories over a 10-year period. These simulations, based on a 

Geometric Brownian Motion (GBM) model, reflect the random nature of price movements and 

capture correlations among grain prices and input costs for corn and soybeans. By integrating these 

simulated prices with yield response distributions, we simulate ten-year conservation opportunity 

costs for precision conservation under a corn-soybean rotation. The costs are aggregated and 

annualized to evaluate the financial variability and risks of precision conservation. We compare 

these annualized costs to the opportunity costs of whole-field conservation and the payments 

provided by government conservation programs. 

1. 2 Conceptual Model 

In this section, we develop a conceptual model to capture various factors that affect a farmer’s 

decision to implement conservation area. We model effects of conservation areas on crop 

productivity and construct the opportunity cost of conservation by comparing the gross margins 

with and without conservation areas. We assume that the conservation area does not influence the 

farmer’s other practices or underlying field site characteristics. 

Assume there are two types of land within a field: area I, which is relatively high-yielding 

crop land, and area J, a low-yielding area identified as potential conservation area. Assume further 

that the field is divided into a grid, with individual grid cells within area I labeled as i and those 

within area J labeled as j (Figure 1.1).  
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Figure 1.1: Representation of a field divided into crop area and conservation area 

A potential conservation area, cell j, correlates to crop yield in cell i through two pathways. 

Since conservation areas are strategically placed in low yielding zones, yield increases with the 

distance from conservation cell j to crop area cell i (𝐷𝑖𝑗). 𝐷𝑖𝑗 represents a proxy for an unobserved 

and time-invariant spatial gradient of land quality between conservation area and crop area, which 

remains constant regardless of whether the area j is used for conservation or crop production. 

When a farmer converts part of a field into a conservation area, the crop yield outside the 

conservation area may be influenced by ecosystem services or disservices from the conservation 

area j. These effects can include positive ecosystem services, such as pollinator habitat or active 

carbon, as well as negative impacts such as increased weed or pest pressure (Zhang et al 2007). 

Although we cannot directly measure each ecosystem service associated with a conservation area, 

examining how the proximity and maturity of conservation areas affect crop yield allows us to 

capture the overall impact of these areas on crop profitability.  

The ecosystem services and/or disservices evolve and intensify progressively over time as 

the ecosystem develops within conservation areas (Hirsh et al., 2013; Morandin and Kremen, 2013; 

Kordbacheh, et al., 2020; Dutter, 2022). The maturity of a conservation area is represented by its 

age at time t (aget). As the distance between crop area i and the conservation area increases, the 

ecosystem services and disservices to crop tend to diminish (Nekola and White, 1999; Morlon et 
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al., 2008; Mitchell et al., 2015; Kemmerling et al., 2022). This varying magnitude of ecosystem 

services/disservices on crop area i is captured by the distance variable 𝐷𝑖𝑗.  

Crop yield y is also affected by inputs (𝑥), weather conditions (weather), and site-specific 

characteristics (site). Site characteristics include topography and static soil attributes that only 

change over extended temporal scales, such as the quantity of soil organic carbon and the soil pH. 

While these site characteristics themselves are time-invariant, their interaction with weather 

conditions or age of conservation area can lead to varying effects on crop yield. For example, 

topographic features like hilltops may improve drainage and have a positive impact during periods 

of excessive rain (Basso et al., 2009). Similarly, proximity to woodland is a fixed site characteristic, 

but when used as a proxy for deer abundance, it can interact with time-varying factors, such as age 

of conservation area, resulting in different impacts on yield over time. Considering these factors, 

the yield in crop area i is,  

𝑦𝑖𝑡 = 𝑓(𝐷𝑖𝑗 , 𝑎𝑔𝑒𝑗𝑡 , 𝑥𝑖𝑡 , 𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑖𝑡, 𝑠𝑖𝑡𝑒𝑖𝑡)     (1) 

The crop yield that would have occurred in conservation area j without establishment of 

the conservation area is projected using the same function as yield on area i, and the yield becomes 

zero once the area is put into conservation. In the absence of a conservation area, the maturity of 

the conservation area (agejt) is set to zero, as no conservation area exists. 

𝑦𝑗𝑡 = {
𝑓(𝑥𝑗𝑡, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑗𝑡, 𝑠𝑖𝑡𝑒𝑗𝑡, 𝐷𝑗𝑗, 𝑎𝑔𝑒𝑗𝑡 = 0),  𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 

0                                                                      ,  𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎
   (2) 

Assuming that grain price (𝑝𝑡) and input costs (𝑐(𝑥𝑖𝑡)) are given, the total gross margin of 

the field differs depending on whether a conservation area is implemented. In the scenario without 

the implementation of conservation area, the total gross margin is the sum of the gross margins in 

area i and j. Conversely, once a conservation area is implemented, the gross margin excludes yield 
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from area j but incorporates any yield changes in area i resulting ecosystem services or disservices 

from the conservation area as it matures (agejt=t). 

𝑔𝑟𝑜𝑠𝑠 𝑚𝑎𝑟𝑔𝑖𝑛𝑡 = 

{
(𝑝𝑡 ∗ 𝑦𝑖𝑡|𝐷𝑖𝑗,𝑎𝑔𝑒𝑗𝑡=0 − 𝑐(𝑥𝑖𝑡)) + (𝑝𝑡 ∗ 𝑦𝑗𝑡|𝐷𝑗𝑗,𝑎𝑔𝑒𝑗𝑡=0 − 𝑐(𝑥𝑗𝑡)) , 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎

𝑝𝑡 ∗ 𝑦𝑖𝑡|𝐷𝑖𝑗,𝑎𝑔𝑒𝑗𝑡=𝑡 − 𝑐(𝑥𝑖𝑡)                                                             , 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎
   

(3) 

The opportunity cost of implementing a conservation area is then the difference in gross 

margin between the same field at time t, without the conservation area and with it.  In other words, 

it is the difference between the counterfactual gross margin without the conservation area and the 

observed gross margin with it. The opportunity cost at time t is, 

𝑂𝑝𝑝𝐶𝑜𝑠𝑡𝑡 = ∑ ∑  𝐽
𝑗=1

𝐼
𝑖=1 𝑝𝑡 ∗ 𝑦𝑗𝑡|𝐷𝑗𝑗,𝑎𝑔𝑒𝑗𝑡=0 − 𝑐(𝑥𝑗𝑡) + 𝑝𝑡 ∗ (𝑦𝑖𝑡|𝐷𝑖𝑗,𝑎𝑔𝑒𝑗𝑡=0 − 𝑦𝑖𝑡|𝐷𝑖𝑗,𝑎𝑔𝑒𝑗𝑡=𝑡)  

 (4) 

The disparity in profit between scenarios with and without a conservation area comes from 

1) the foregone gross margin inside the conservation area incurred by allocating land to 

conservation rather than production and 2) the crop revenue change outside the conservation area 

resulting from the ecological influence of the conservation area. The opportunity cost of 

conserving area j rises with an increase in grain prices and falls with higher crop input costs. 

Ecosystem services that enhance yields reduce these opportunity costs, while those disservices that 

lower yields increase them.  

When considering conservation over multiple years, the net present value of opportunity 

cost must also account for the one-time establishment cost (EstCost) incurred in the first year (t=0) 

and the annual opportunity costs (𝑂𝑝𝑝𝐶𝑜𝑠𝑡𝑡) up to final period T. Using the discount parameter 𝛿, 

the net present value of total opportunity cost is, 
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𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑝𝐶𝑜𝑠𝑡 =  ∑ 𝑂𝑝𝑝𝐶𝑜𝑠𝑡𝑡 ∗ 𝛿𝑡𝑇
𝑡=0 + 𝐸𝑠𝑡𝐶𝑜𝑠𝑡    (5) 

Total opportunity costs over period T are amortized to represent annual costs, enabling 

comparison with other government programs, which are typically reported on per-acre, per-year 

basis.  

1.3 Experimental design 

This study analyzes the opportunity costs of precision conservation using experimental data 

collected and provided by the Digital Agriculture Lab (Principal investigator: Bruno Basso) at 

Michigan State University. Prior to implementing conservation areas, the Digital Agriculture Lab 

identified low-yield areas suitable for potential conservation, based on historical yield, total 

production costs, and grain prices. They calculated an indicative gross margin value for each cell 

and crop within a field by multiplying historical yield data by grain prices and then subtracting 

total input costs. The grain prices and input costs reported in 2020 were used to calculate gross 

margins for all prior years. The annual gross margin was then averaged across years with available 

yield maps. A cell where the average gross margin fell below -$15/ac was identified as unprofitable. 

After removing unprofitable pockets smaller than 2 acres within the profitable area, the 

unprofitable area was initially suggested to a farmer as a potential conservation area. The suggested 

area example is illustrated in the left panel of Figure 1.2. 
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Note: In the left picture, the yellow shaded area represents the conservation area initially suggested 

based on the profit. The right picture shows the finalized conservation area chosen by a farmer, 

marked with an orange header. 

Figure 1.2: Aerial image of a field with conservation area 

Based on the suggested low-yielding areas, farmers selected the location and size of 

conservation areas balancing anticipated negative profitability with farming practicability (e.g., 

right panel of Figure 1.2). On average, farmers allocated 16% (median: 15%) of their field area to 

conservation. The distribution of conservation area shares across fields is provided in the chapter 

Appendix. Participating farmers were responsible for establishing the conservation areas, typically 

carried out in fall after the crop harvest in 2020. They planted the areas in native perennial plants 

only once, in the first year of participation. Commonly planted species included Indian grass 

(Sorghastrum nutans), big bluestem (Andropogon gerardii), and bergamot (Monarda fistu losa). 

These species were chosen for their low maintenance requirements and additional benefits, such 

as preventing soil erosion and supporting wildlife. While the seeds were provided to the farmers 

free of charge, the actual seed costs amounted to $250 per acre. Participation in the project required 

a commitment to maintaining the conservation area for a minimum of five years. The participating 

farmers received a payment of $175/ac/year for the retired acres. 

1.4 Empirical Methods and Data 

To analyze the opportunity costs of precision conservation, we estimate the forgone yield within 
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conservation areas and any yield changes outside conservation areas using the estimated yield 

response model. Based on these yield changes, we calculate the opportunity costs for 10-year 

periods under corn-soybean rotation. To account for price uncertainty, we employ Monte Carlo 

simulations. We compare the opportunity costs of precision conservation with those of whole-field 

conservation to evaluate cost-effectiveness of precision conservation. 

1.4.1 Yield response function estimation 

To evaluate the ecological impact of conservation areas on agricultural yield and quantify the 

associated opportunity cost, we begin by estimating a yield response model based on Equation (1). 

This model uses the distance and age of the conservation area as proxies for the ecosystem services 

or disservices provided by the conservation area. It also accounts for other factors, including site 

characteristics and farming practices. Field by year fixed effects capture farming practices, such 

as input use, that are applied uniformly for each field but adjusted each year. Site characteristics 

(𝑠𝑖𝑡𝑒𝑖) include variables such as edge effects and headlands, while weather conditions (𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑖𝑡) 

account for factors like growing degree days and growing season precipitation. Detailed 

information on variables and their sources is provided in the following data section. 

The distance variable (𝐷𝑖𝑑) is generated for each grid cell within a field, with the grid cell 

serving as our unit of analysis. This variable is designed to capture three effects: proximity to the 

conservation area, its size, and its spatial configuration. To fully represent these factors, we define 

𝐷𝑖𝑑 as the total size of conservation areas within specific distance intervals (d) from each grid cell. 

This approach allows us to model nonlinear distance impacts on yield, capturing how different 

sizes and spatial arrangements of conservation areas influence yield at varying distances.  

We incorporate two distance intervals: 0-10m and 10-50m. These intervals are determined 

based on the preliminary results, estimated using only data from periods prior to conservation 
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implementation. To test the robustness of our distance variable definition, we compare models 

using different definitions: 1) size of conservation area with various distance intervals (every 10, 

20, and 50 meters), 2) distance to the nearest conservation area, and 3) the aggregate size of 

conservation areas weighted by their inverse distances from each crop cell. Results remain robust 

across these distance definitions, as presented in the chapter Appendix. 

Measuring the ecological effect of conservation areas on crop yield is complicated by the 

fact that conservation areas are intentionally located where crop yields are low.  Hence, we need 

to disentangle the yield effect due to ecosystem services emanating from the conservation area 

(whether positive or negative) from the yield effect due to its site characteristics. Because 

conservation areas were selected for low crop yields, the pure site effect based on distance Dij from 

conservation area j to crop at site i is likely to be positive, meaning that yield would increase with 

distance from the conservation area. To capture the ecosystem services effect (if any), we rely on 

the assumption that ecosystem services such as pollination and natural biocontrol of crop pests 

will increase over early years as the conservation area matures and becomes able to provide habitat 

for beneficial or malign species.  Hence, we interact distance from crop area i to conservation area 

j (𝐷𝑖𝑗) with the conservation area’s age (𝑎𝑔𝑒𝑗𝑡). The coefficient on this interaction term allows us 

to examine how the impact of conservation area evolves over time, alongside the constant impact 

from the site characteristics, as shown in Equation (6). 

𝑦𝑖𝑡 = 𝛼 ∙ 𝑎𝑔𝑒𝑡 + ∑ 𝛽𝑑 ∙ 𝐷𝑖𝑑𝑑 + ∑ 𝛾𝑑 ∙ 𝑎𝑔𝑒𝑡 ∙ 𝐷𝑖𝑑𝑑 + 𝜆1𝑠𝑖𝑡𝑒𝑖 + 𝜆2𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑖𝑡 + 𝜆3𝐹𝑖𝑒𝑙𝑑𝑖  (6) 

We test the validity of the estimated model using k-fold cross validation (Fushiki, 2011), 

in which the data is randomly divided into 10 equal subsets. For each iteration, one subset serves 

as the test set, while the model is trained on the remaining nine subsets. Model performance is then 

evaluated by comparing the predicted values with the actual values in the test set. This process is 
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repeated ten times, once for each subset, and we report the average R-squared value and Root 

Mean Squared Error (RMSE) across all iterations.  

To assess whether conservation areas lead to increased deer-related damage on crop yield, 

we examine yield differences between areas located within 500 meters of the nearest woodland 

and those situated beyond that distance. We use proximity to woodland as a proxy for deer presence, 

based on research findings that wooded cover influences deer habitat use (Long et al., 2005; Heit 

et al., 2023). We choose a 500m threshold based on the estimates of the annual home range size of 

nonmigratory white-tailed deer, which range from 146 ac to 1,828 ac (Marchinton and Hirth, 1984; 

Pusateri, 2003). This distance is also sufficient to help isolate other potential ecological impact 

associated with proximity to woodland areas. 

To estimate the potential yield impact associated with deer activity, we estimate Equation 

(7).  We interact the distance from crop area i to conservation area j (𝐷𝑖𝑗) with two binary variables, 

one indicating whether the cell is located within 500m of woodland (near_wood), and the other 

indicating whether it is from the period after the conservation areas were implemented. We choose 

to use the binary indicator after, rather than the full set of age variables. Our rationale is that 

including multiple interaction terms between age and near_wood variables increases the number 

of parameters, which can lead to unstable estimates due to small sample sizes in some subgroups. 

Also, including many interaction terms increases the likelihood of Type 1 errors (List et al., 2016). 

Using a simpler after indicator allows for more stable estimation while still capturing the key 

temporal difference. The estimated coefficient 𝛾𝑑  allows us to assess whether there is any 

difference in yield near the conservation area conditional on proximity to woodland. We present 

the estimation results with the full set of age variables instead of the binary variable after in the 

chapter Appendix.  
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𝑦𝑖𝑡 = ∑ 𝛽𝑑 ∙ 𝐷𝑖𝑑𝑑 + ∑ 𝛾𝑑 ∙ 𝑎𝑓𝑡𝑒𝑟 ∙ 𝐷𝑖𝑑𝑑 + ∑ 𝛾𝑑 ∙ 𝑎𝑓𝑡𝑒𝑟 ∙ 𝑛𝑒𝑎𝑟_𝑤𝑜𝑜𝑑 ∙ 𝐷𝑖𝑑𝑑 + 𝜆1𝑠𝑖𝑡𝑒𝑖 +

𝜆2𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑖𝑡 + 𝜆3𝐹𝑖𝑒𝑙𝑑𝑖  (7) 

1.4.2 Data 

The data set covers five years of yield maps (2020 - 2024) from 52 commercial corn and soybean 

fields located on two Michigan farms. Corn and soybeans were planted on these fields following 

farmers’ crop rotation schedules. Because not all fields grew both corn and soybeans during the 

study period, the opportunity cost simulation under a corn-soybean rotation was limited to the 29 

fields that did. We use data from the remaining fields to estimate the yield response functions.   

Each field is divided into grid cells of 9m by 9m (30ft by 30ft). Each grid cell serves as an 

observation unit for this analysis, and the average yield is computed for each cell. A cell is 

categorized as a conservation area if a conservation measure is installed on the majority of that 

cell. This issue arises from overlaying a square grid on the field, causing conservation and crop 

areas not to align perfectly with the grid. We exclude two types of cells from the analysis: 1) cells 

classified as conservation areas, defined as having more than 50% conservation coverage, but 

containing yield data from the remaining portion, and 2) cells defined as cropped areas but lacking 

yield data. The dropped cells account for 1.4% of the entire sample. After cleaning, the dataset 

includes 934,825 observations in total over the five years of analysis. 

Site characteristics (𝑠𝑖𝑡𝑒𝑖 ) include edge, headland, as well as soil characteristics. Crop 

yields are often lower on field edges due to greater environmental stresses, such as wind exposure, 

shading, and uneven application of inputs. In headlands, where farmers turn their equipment 

around, frequent machinery traffic leads to soil compaction, further contributing to yield reduction. 

To control for these effects, we generate the dummy variable, edge1, by assigning a value of 1 to 

cells located at the outermost edge of the field. To examine how the impact of the edge changes as 
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we move further into the field, we also identify cells 50m from the outermost edge of the field 

(edge2). The average value of the edge1 variable across the full sample is 0.1, indicating that 10% 

of observations are located within 10 meters of the field edge. Similarly, the average of edge2 is 

0.4, suggesting that around 40% of observations are within 50 meters of the edge (Table 1.1). 

We further categorize the type of edge based on the adjacent land: 1) neighboring field, 2) 

developed land such as houses or paved roads, and 3) grassland or woodland. We generate the 

dummy variable, headland, by identifying cells situated within 20 meters of the headland side of 

the edge. The 20 meter value arises from the width of the input applicators used by participating 

farmers. The average value of the headland variable is 0.1, indicating around 10% of observations 

are located in the headland. To examine the potential deer damage, distance to the nearest wood is 

calculated. We draw soil characteristics from the Soil Survey Geographic Database (SSURGO, 

2020), including the amount of soil organic carbon (SOC in g/m2) and available water storage 

(AWS in cm) in the top 100 cm of soil. SOC contributes to soil fertility as it affects soil capacity 

to retain water and nutrients while mitigating topsoil loss (Reeves et al., 1997; Robertson et al., 

2014). AWS represents the maximum amount of plant-available water a soil can provide, a critical 

factor influencing corn yield (Leeper et al., 1974).  

All the sample fields are rainfed.  As a proxy for soil moisture data, we use the Topographic 

Wetness Index (TWI). The TWI measures potential water accumulation based on landscape 

position and slope, providing an estimate of soil moisture across the field. A higher value of TWI 

indicates that water is more likely to accumulate and persist in an area, while a lower one suggests 

that water is less likely to persist. Using elevation data from the US Geological Survey’s Digital 

Elevation Model (DEM), the average Topographic Wetness Index is generated for each grid cell 

(Gessler et al., 1995). We use daily weather data at a resolution of 800m from the Parameter-
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elevation Relationships on Independent Slopes Model (PRISM, 2025) to construct the growing 

degree days (GDD) and Total Precipitation variables for the duration of the growing season, 

spanning from April through September. To capture potential non-linear effects of weather on crop 

outcomes, we include both the linear and squared terms of GDD and precipitation in the analysis. 

Table 1.1 presents the average values of variables used in the estimation model. The 

average of the D10 variable reflects the number of conservation area cells located within 10 meters 

of a crop cell. The average D10 is 0.3 for Farm A and 0.2 for Farm B, indicating that on average 

each crop cell has approximately 0.3 and 0.2 conservation area cells within a 10 meter radius, 

respectively. Similarly, the D50 variable captures the number of conservation area cells located 

between 10 and 50 meters from a crop cell. The average D50 is 4.2 for Farm A and 3.9 for Farm B, 

suggesting that each crop cell is surrounded by roughly 4.2 and 3.9 conservation area cells within 

the 10-50 meter interval. 

Table 1.1: Mean values of grid cell data from 52 fields, two Michigan farms, 2020-24 

Variables in 

conceptual model 
Empirical model 

Farm A 

(n = 800,195) 

Farm B 

(n = 134,630) 

Yield  Yield (bu/ac) 
Corn: 148 

Soybeans: 49 

Corn: 177 

Soybeans: 64 

Distance 
D10 0.3 0.2 

D50 4.2 3.9 

Site 

Edge1 0.1 0.1 

Edge2 0.4 0.4 

Headland 0.1 0.1 

SOC (g/m2) 7329 7606 

AWS (cm) 147 149 

TWI -19 -19 

Distance_wood (m) 413 278 

Weather 
GDD (April-Sept) 1490 1479 

Precipitation (mm) 616 514 

1.4.3 Opportunity cost calculation 

The opportunity cost of the conservation area is defined as the sum of three key components: 1) 
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the foregone gross margin from crops not grown inside the conservation area, 2) changes in 

revenue in the cultivated area due to the presence of the conservation area, and 3) the cost of 

establishing the conservation area. Specifically, the foregone gross margin on the conservation 

area entails the lost revenue from crop yield minus the input costs saved by not applying inputs to 

the conservation area. 

We compute the foregone yield within the conservation area and the yield changes outside 

of the conservation area based on the estimated yield function (Equation 6). The foregone yield 

within conservation areas is calculated by extrapolating the estimated yield function under the 

assumption that the conservation area is not yet implemented (agejt=0). The yield change outside 

of conservation area is calculated using the estimated coefficients of the distance-age interaction 

term. These two yield values are then converted into opportunity costs using grain prices and input 

costs.  

The total cost of establishing and maintaining conservation areas includes labor, machinery 

use, and seed expenses. Establishment involves tillage and planting, with annual mowing required 

for maintenance. The associated costs are calculated using custom hire rates from the Iowa Farm 

Custom Rates Survey (Plastina and Johanns, 2024), which account for both labor and machinery 

expenses. Although seeds for the conservation area were provided to farmers at no cost during this 

project, their market value was $250/acre. Since perennial species were planted, seed and 

implementation costs were incurred only in the initial year. The total establishment cost for the 

initial year is $283/acre, with the annual maintenance cost of mowing at $25/acre thereafter. 
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Table 1.2: Costs associated with conservation area establishments and maintenance 

Tasks Charge ($/ac) Source 

Maintenance Mowing 25 
Plastina and Johanns 

(2024) 
Establishment 

Tillage 20 

Planting 13 

Seed 250 From this study 

We first calculate the one-year conservation opportunity costs for corn and soybean fields 

in 2024. The foregone yield within the conservation area and yield changes outside the 

conservation area are converted into opportunity costs using farmer-reported grain prices ($/bu) 

and input costs ($/ac) presented in Table 1.3, to reflect differences in management practices that 

affect crop yield. The input costs reported by the participating farmers exceed the average input 

costs for the Heartland region reported by the USDA (USDA, 2025). However, since input usage 

is closely tied to yield outcomes, we opt to using the farmer-reported values. As the farmer reported 

prices were collected only in 2020, we adjust the prices to 2024$ using the Producer Price Index 

for farm products. The input costs for corn are higher than soybeans because corn typically requires 

more intensive management, including higher fertilizer and pesticide applications, as observed in 

our sample farms. 

Table 1.3: Farmer reported price parameters (in 2024$) 

 
Corn Soybeans 

Farm A Farm B Farm A Farm B 

Grain price ($/bu) 4.40 5.30 12.60 12.60 

Input costs ($/ac) 534 840 340 478 

We then calculate the ten-year conservation opportunity costs assuming a corn-soybean 

rotation. The objective of this modeling is to reflect the long-term nature of conservation programs, 

which typically extend beyond a single growing season. By extending the analysis to ten years, we 

incorporate price fluctuations over time, providing a more realistic representation of market 

variability and its impact on opportunity costs. By incorporating a corn-soybean rotation, the 
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model captures the differing opportunity costs associated with these crops, as corn and soybeans 

have distinct yield potentials, input costs, and ecological impacts. The amortized results enable 

comparisons with other long-term conservation initiatives and subsidy programs that are often 

structured over similar timeframes. 

 In our model, yield changes due to ecosystem services from conservation areas are 

observed only over time. We assume the yield effect evolves until the fourth year and remains 

constant at the fourth-year level thereafter. This assumption aligns with the establishment period 

of perennials typically planted in conservation areas (Sargent and Carter, 1999). As a robustness 

check, we also calculate opportunity costs under the assumption that conservation areas have no 

ecological impact on adjacent cropland. Both the foregone yield within conservation areas and 

yield changes outside conservation areas are converted into profit using grain prices and input 

costs. 

To account for potential price fluctuations and market risks, we use Monte Carlo simulation 

to generate hypothetical price scenarios. Price fluctuations are a major component of farm income 

risk (Sherrick, 2012), alongside yield variability, as they directly influence gross margins and 

overall profitability. Ignoring price variability would result in an incomplete measurement of 

profitability risk, overlooking the potential range of financial outcomes for farmers.  

Through the simulation, we measure the range of possible profitability outcomes from 

precision conservation. While farmer-reported values provide accurate information on the actual 

prices received and input usage, they do not capture variability across years since they were 

collected only for 2020. To address this limitation, we simulate prices using a Geometric Brownian 

Motion (GBM) model based on farmer-reported values starting in 2024. We use farmer-reported 

grain prices and input costs as initial parameters and apply GBM to capture the random walk 
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behavior of prices, reflecting their tendency to evolve unpredictably over time (Marathe and Ryan, 

2007; Turvey, 2007). Parameters for the simulation, including drift rate, volatility, and correlation, 

are calculated from historical grain price and input cost data for the Heartland region (1975–2023) 

published by the USDA. All values are deflated to 2024$, using the Producer Price Index for farm 

products (BLS, 2024). The simulation incorporates the correlation among corn grain price, 

soybean grain price, corn input costs, and soybean input costs. We generate 10,000 hypothetical 

price trajectories for these variables over a 10-year period. Figure 1.3 illustrates the average prices 

for each time period across the simulations. Using these simulated prices, we calculate 10,000 

iterations of 10-year conservation opportunity costs to capture variability and market risks. 

 
Note: The prices in Time before 1 represent farmer reported values. Lighter shaded lines illustrate 

50 examples of simulated price trajectories. All values are in 2024$. 

Figure 1.3: Simulated corn prices over time – average of 10,000 simulations with example paths 

across farms 

We calculate 10-year opportunity costs by aggregating annual opportunity costs to the field 

level. We randomly draw foregone yields and ecological yield benefits from distributions based 
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on the yield response model. Simultaneously, we apply a set of hypothetical grain prices and input 

costs from the 10,000 simulated sets derived from the Monte Carlo simulation. Using the randomly 

drawn yields, simulated prices, and input costs, we calculate the average annual opportunity cost 

for each field.  

In order to evaluate the ten-year conservation opportunity cost of precision conservation 

under a corn-soybean rotation, we aggregate the estimated annual opportunity costs for each field. 

We use a 5% discount rate (r) reflecting the real rate of return to owner equity in the farm sector 

(Erickson et al., 2004). The aggregated opportunity cost over the duration of conservation (T=10) 

is amortized to calculate the annualized opportunity cost of precision conservation (Equation 8). 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑂𝑝𝑝𝐶𝑜𝑠𝑡 =
𝑟[𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ+ ∑

𝐶𝑜𝑟𝑛𝑂𝑝𝑝𝐶𝑜𝑠𝑡

(1+𝑟)𝑡−1
𝑇
𝑡=𝑐𝑜𝑟𝑛𝑌𝑒𝑎𝑟 +∑

𝑆𝑜𝑦𝑂𝑝𝑝𝐶𝑜𝑠𝑡

(1+𝑟)𝑡−1
𝑇
𝑡=𝑠𝑜𝑦𝑌𝑒𝑎𝑟 ]

1−(1+𝑟)−𝑇    (8) 

We assume that national grain prices are independent of field-level crop yields, allowing 

price and yield distributions to be estimated and drawn separately. Although previous studies have 

shown evidence of a negative price-yield correlation in the Corn Belt (Harwood et al., 1999), this 

correlation tends to be small in regions like Michigan that are minor producers (Skees et al., 1998). 

In 2023, Michigan accounted for only 2% of the U.S. value of corn production and 3% for soybeans 

(USDA, 2024).  

To evaluate the cost-effectiveness of precision conservation relative to the whole-field 

conservation approach, we compare their respective opportunity costs. The opportunity costs of 

whole-field conservation include the forgone gross margin from both the designated conservation 

area and the remaining crop area. Thus, the per-acre difference in opportunity costs between 

whole-field conservation and precision conservation is equal to the forgone gross margin from the 

crop area under whole-field conservation, minus the ecological yield benefits near conservation 
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area, plus the implementation costs of the precision conservation area. We estimate forgone gross 

margin and revenue gain using the estimated yield response function and simulated price 

trajectories. For implementation costs, we use seed and land preparation expenses, which amount 

to $283/ac (Table 1.2). 

1.4.3 Representativeness of the study 

Although this study is based on two commercial farms in southern Michigan, the data span five 

growing seasons (2020-2024) and reflect a wide range of weather and production conditions, 

providing insight into how precision conservation may perform under diverse seasonal scenarios 

typical of the Upper Midwestern United States. Figure 1.4 illustrates the overall yield trends in 

Michigan and the U.S. from 2020 to 2024. Detailed monthly temperature and precipitation patterns 

for the study period are presented in the chapter Appendix. In the first year of conservation (2021), 

Michigan experienced favorable weather, leading to record high crop yields. However, dry 

conditions in 2022 resulted in lower yields, while 2023 saw improved weather, but statewide yields 

remained comparable to those in 2021. In 2024, a warm and wet growing season again produced 

record-high yields. These weather fluctuations on the sample farms reflect broader variability 

observed across Michigan, providing a context for examining how opportunity costs evolve over 

time.  
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Note: Solid lines indicate average annual yields, while dashed lines indicate linear yield trend from 

2020 to 2024 

Figure 1.4: Michigan and U.S. Average Corn Yields by Year (2020-2024) 

The participating farms follow conventional crop rotations and operate at commercial scale, 

making them broadly representative of farming systems across the Midwest. The price they 

received in 2020, which are used as the baseline for both the one-year opportunity cost calculation 

and the 10-year opportunity cost simulations, reflect typical market conditions. The corn prices 

they received in 2020 fell within 0.5 standard deviations of the average monthly corn price in 

Michigan from 2020 to 2024 (Figure 1.5; soybean prices are presented in chapter Appendix), 

supporting the representativeness of their economic conditions.  

While the sample is generally reflective of regional conditions, certain characteristics may 

lead to conservative estimates of opportunity costs. In particular, both farms reported higher input 

costs than the USDA Heartland average in 2023. As illustrated in Figure 1.6, the average corn yield 

of the sample fields in this study (155 bu/ac) is lower than the U.S. average, whereas the average 
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soybean yield (55 b/ac) is higher. Higher input costs combined with lower corn yield would be 

expected to reduce forgone revenue within conservation areas, potentially resulting in lower 

opportunity cost estimates compared to farms using inputs less intensively.  

 

Figure 1.5: Monthly corn prices across Michigan and the US average (2020-2024) 
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Figure 1.6: Distribution of field-level soybean and corn yields in 2020-2024, 52 Michigan fields 

1.5 Results 

1.5.1 Estimated yield function 

In both corn and soybean, the crop yield near conservation areas is lower (Table 1.4). For corn, 

yields within 10 meters of the conservation areas are 11 bu/ac lower, and for soybeans, they are 5 

bu/ac lower, corresponding to reduced income of $55/ac and $65/ac respectively. Between 10 and 

50 meters from conservation areas, corn yields are 0.8 bu/ac lower, and soybean yields are 0.2 

bu/ac lower. While these differences are statistically significant, the yield changes in the 10-50m 

interval translate on average to less than $4/ac for each crop, indicating a slight yield impact 

beyond 10 meters from conservation areas. 

We observe yield impacts that evolve over time in both corn and soybeans within 10 meters 

of the conservation areas (Figure 1.7). For corn, the distance-age interaction terms increase over 

time and become statistically significant in year 4. In year 4, the estimated yield impact is 12 bu/ac, 
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corresponding to a revenue gain of $60/ac. In contrast, soybeans exhibit an earlier response. The 

distance-age interaction term is statistically significant and positive beginning year 1 and continues 

to grow through year 3. The revenue increase from these positive yield impacts amount to $39 to 

$48 per acre. However, the yield impact is statistically insignificant in year 4.  

Beyond 10 meters from the conservation area, there is no evidence of a consistent 

ecological impact over time. In the soybean model, none of the distance-age interaction terms are 

significant. For corn, the interaction term for the 50 meter interval and Year 1 is significant, but 

this effect disappears in subsequent years. Given the lack of persistence, we do not interpret these 

findings as evidence of ecological impact within the 50 meter interval. 

We use the estimated coefficients of the distance-age interaction terms to calculate the 

impact of the conservation area on crop yields outside the conservation area. For the area within 

10m from the conservation area, we include all coefficients, even those that are not statistically 

significant, to capture the full potential effect. This approach allows us to estimate an upper-bound 

of the possible ecological impact of the conservation area. As there is no consistent evidence of 

ecological effects beyond 10 meters, we assume no impact beyond this range and exclude the 50 

meter interval coefficients from the yield impact calculation.  
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Table 1.4: Estimated effects of conservation areas on yield of corn and soybeans (bu/ac) 

Variable 
Coefficient (Std. Err.) 

Corn Soybeans 

D10 
-11.3 *** 

(2.6) 

-5.2 *** 

(0.8) 

D10 · Year 1 
0.7 

(3.5) 

2.9 ** 

(1.4) 

D10 · Year 2 
0.6 

(3.6) 

5.0 *** 

(1.2) 

D10 · Year 3 
4.9 

(3.9) 

6.0 *** 

(1.5) 

D10 · Year 4 
11.5 ** 

(4.4) 

2.2 

(1.5) 

D50 
-0.9 ** 

(0.3) 

-0.2 ** 

(0.1) 

D50 · Year 1 
1.0 ** 

(0.5) 

-0.2 

(0.2) 

D50 · Year 2 
-0.4 

(0.5) 

0.003 

(0.1) 

D50 · Year 3 
-0.6 

(0.4) 

0.1 

(0.1) 

D50 · Year 4 
-0.8 

(0.5) 

0.02 

(0.1) 

Soil characteristics Yes Yes 

Site characteristics Yes Yes 

Weather Yes Yes 

Field by Year fixed effect Yes Yes 

R2 0.60 0.69 
***, **, * represent statistical significance at the 1%, 5%, and 10% levels; all standard errors are 

clustered in the field level. 

As we do not measure ecosystem services directly, the exact mechanism driving the 

observed yield increases remains unknown. However, the positive yield impacts can be partly 

explained by the role of conservation areas in providing habitat for beneficial species, such as 

pollinators and natural enemies of pests. Studies have shown that implementing flower strips or 

hedgerows can enhance pollination services (Albrecht et al., 2020; Schulte et al., 2017), and 

Kemmerling et al. (2022) observed increased pollination up to 20 meters from prairie strips after 

one year. While neither corn nor soybeans require pollinators, increased pollination can improve 

soybean yields (Garibaldi et al., 2021). In addition to pollination, studies have reported natural 
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biocontrol of soybean aphid (Fox et al, 2004) and of armyworm in corn as well as weed seeds in 

various crops (Landis et al, 2005).  

 
Note: Error bars indicate confidence intervals at 10% level. 

Figure 1.7: Estimated ecological yield impact within 10m across age of conservation area 

The earlier yield response observed in soybeans compared to corn may be explained by the 

more immediate benefits of certain ecosystem services, particularly those related to pollinator 

habitats. While corn is primarily wind-pollinated and does not rely on insect pollinators, soybeans 

show a modest dependence on pollinators (Morse and Calderone, 2000). Pollinator populations 

can respond relatively quickly to conservation efforts. Levenson and Tarpy (2023) documented a 

significant increase in bee population within the first two years of establishing pollinator habitats 

within agricultural land. In contrast, ecosystem services such as improved soil fertility typically 

take longer to develop, often requiring more than three years to show measurable effects (Wood 

and Bowman, 2021). 
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Based on k-fold cross-validation, the corn yield model achieves an average R-squared 

value of 0.77 and a Root Mean Squared Error (RMSE) of 24. For the soybean yield model, the 

average R-squared value is 0.83, with an RMSE of 8. These RMSE values represent approximately 

15% of the sample average yield for corn and soybean, reflecting the predictive error of 

extrapolated yields within conservation areas. 

We extrapolate yields within conservation areas using the estimated yield response function. 

Since land produces crops only when not placed into conservation use, we set the age of the 

conservation area to zero for extrapolation. Conservation areas are typically located in historically 

low-profit areas, resulting in estimated yields that are lower than those outside conservation areas. 

Figure 1.8 illustrates that precision conservation areas are concentrated in the lower tail of the corn 

yield distribution, highlighting their strategic placement in low-productivity zones. The estimated 

average corn yield within conservation areas is 66 bu/ac (standard deviation = 38), compared to 

the observed average of 159 bu/ac (standard deviation = 34) outside conservation areas. Similarly, 

the estimated average soybean yield inside conservation areas is 24 bu/ac (standard deviation = 

14), compared to the observed average of 55 bu/ac (standard deviation = 14) outside conservation 

areas. 
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Note: Light shaded bars indicate the number of cells in conservation area and dark shaded bars 

indicate number of cells in crop area. Dashed line represents the average of simulated yield within 

conservation area and the sold line represents the average of yield in crop area. 

Figure 1.8: Corn yield distribution across observed and simulated yield 

1.5.1.1 Deer damage 

The results indicate no statistically significant differences in yields near conservation areas 

between areas located within 500m of woodland and those farther away, suggesting that 

conservation areas did not contribute to increased dear-related crop damage (Table 1.5). We present 

the estimation results with full set of age variables instead of the binary variable after in the chapter 

Appendix. 
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Table 1.5: Estimated effects of deer damage on yield near conservation area (bu/acre) 

Variable 
Coefficient (Std. Err.) 

Corn Soybeans 

D10 
-11.2 *** 

(2.7) 

-5.1 *** 

(0.8) 

D10 · after 
0.7 

(5.2) 

2.6 

(1.8) 

D10 · after · near_wood 
3.6 

(4.3) 

0.8 

(1.7) 

D50 
-0.8 ** 

(0.4) 

-0.2 ** 

(0.1) 

D50 · after  
-0.6 

(0.4) 

-0.1 

(0.2) 

D50 · after · near_wood 
0.3 

(0.3) 

0.002 

(0.1) 

Soil characteristics Yes Yes 

Site characteristics Yes Yes 

Weather Yes Yes 

Field by Year fixed effect Yes Yes 

R2 0.60 0.69 

***, **, * represent statistical significance at the 1%, 5%, and 10% levels; all standard errors are 

clustered in the field level. 

1.5.2 Opportunity costs 

We calculate the opportunity costs for three scenarios: corn fields in 2024, soybean fields in 2024, 

and 10-year conservation under a corn-soybean rotation. For the 2024 opportunity costs, we use 

farmer-reported prices reported from 2020, adjusted to 2024 dollars as presented in Table 1.3, 

while for the 10-year opportunity costs, prices are simulated using Monte Carlo simulations to 

account for variability in prices. Finally, we compare the opportunity costs of precision 

conservation with those of whole-field conservation to evaluate their relative cost-effectiveness. 

1.5.2.1 Corn fields in 2024 

Without considering the ecological yield benefits on nearby crops, the opportunity costs of 

precision conservation range from -$460/ac to $171/ac. The negative average of -$144 per acre of 

conservation area, indicates that for most sample fields, implementing precision conservation in a 

corn field enhances profitability by removing low-yielding land from production, even without 
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any subsidies or ecological benefits. The estimated foregone yield inside the conservation area is 

80 bu/ac, which is insufficient to offset the farmer-reported input costs of corn (Table 1.3). 

Consequently, converting low-yielding crop area into conservation use proves cost-effective in 

most instances.  

Analyzing the opportunity costs across the 50 fields where corn was planted, we find that 

80% of fields (40 out of 50 fields) have negative opportunity costs (Figure 1.9). The estimated 

foregone yield inside the conservation area has a high, positive correlation of 0.81 with the average 

actual yield outside the conservation area, so corn fields with higher overall yields tend to incur 

higher opportunity costs when their relatively lower-yield areas are converted to conservation use. 

With positive yield benefits from conservation areas, crop yields near conservation areas 

increase over time, reducing the opportunity costs of precision conservation. However, the 

magnitude of the effect is marginal. As the ecosystems within conservation areas mature, the yield 

benefit increases, resulting in the lowest opportunity costs in year 4. In year 1, the yield benefit is 

modest (1 bu/ac increase) and statistically insignificant. By Year 4, however, yield benefit 

increases to 11 bu/ac within 10m of conservation area. When we convert the yield benefits in terms 

of revenue increase per acre of conservation area, the average revenue increase amounts to on 

average $14/ac of affected area in year 4, which is 9% of the average opportunity cost of precision 

conservation in year 4. 
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Note: Black points indicate estimated opportunity costs without considering ecological impact. 

Colored points represent opportunity costs 1 year after (red), 2 years after(yellow), 3 years after 

(light green), and 4 years after(green) implementing conservation areas. Error bars indicate 95% 

confidence intervals; standard errors are bootstrapped (N=1,000) and fields are ordered from the 

lowest to the highest opportunity cost. 

Figure 1.9: Estimated opportunity cost of conservation area by maturity across 50 corn fields in 

2024 

1.5.2.2 Soybeans fields in 2024 

The opportunity costs of precision conservation on soybean fields differ from those on corn fields 

in two respects.  First, input costs are lower in soybeans, resulting in higher foregone revenue 

within conservation area.  Second, as they age, the conservation areas affect the yields of nearby 

soybean plants growing within ten meters only up to year 3. In year 4, the yield benefit declines to 

the year 1 level.  

The total opportunity cost without considering the ecological impacts in soybean fields is 

$92/ac on average, ranging from -$306/ac to $292/ac. The average foregone soybean yield within 

conservation areas is 30 bushels per acre, exceeding the break-even yield, meaning conservation 
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areas reduce profits when they remove soybeans from production. Across 32 soybean fields, over 

71% (23 out of 32 fields) have positive opportunity costs, with the full set ranging from -$352/ac 

to $253/ac (Figure 1.10). Similar to corn, the estimated foregone yield within conservation areas 

has a high, positive correlation of 0.88 with the average yield outside conservation areas, so 

soybean fields with higher overall yields tend to incur higher opportunity costs when implementing 

precision conservation. 

Ecological yield impacts on crops adjacent to conservation areas partially offset these costs 

by increasing yields. Each additional grid cell (0.02 acres) of conservation area within 10 meters 

of crops raises yields approximately by 2 bu/ac annually until Year 3. Since the ecological impact 

only affects crops within 10 meters, conservation areas farther from crops do not provide this 

benefit. The average ecological yield impact per acre of conservation area is 0.6 bu/ac, equivalent 

to $7.8 in additional revenue per acre of conservation area at the 2024 soybean price. 
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Note: Error bars indicate 95% confidence intervals; standard errors are bootstrapped (N=1000). 

Fields are ranked by mean opportunity cost in the first year. Black points and error bars show 

costs without ecological yield benefits.  

Figure 1.10: Estimated opportunity cost of conservation area across 32 soybean fields in 2024 

1.5.2.3 Configuration of conservation area 

The extent of ecological yield benefits varies across fields depending on the configuration of 

conservation areas. Since yield benefits occur only within 10 meters of conservation areas, adding 

conservation area beyond that distance provides no additional benefits and reduces the average 

yield benefit per acre of conservation area. To illustrate, Fields A and B (Figure 1.11) have similar 

conservation area sizes—1.92 acres and 1.90 acres, respectively, differing by only 0.02 acres 

(equivalent to one grid cell). However, the configuration differs significantly: Field A has more 

clustered conservation areas, while Field B has a more dispersed configuration with long strips 

measuring 9.14 m (30 ft) in width. 

Despite having similar total conservation area, the ecological benefits differ substantially 
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between fields A and B. In Year 4, when corn yield benefits are most pronounced, we observe a 

yield benefit of 1 bushel per acre of conservation area in Field A, while Field B experiences a 5 

bu/ac increase. For soybeans, the peak benefits occur in Year 3, with Field A showing a 0.5 bu/ac 

increase and Field B showing a 4 bu/ac increase. These findings align with the existing literature, 

which suggests that the optimal configuration of ecosystem service-providing areas consists of 

smaller patches distributed across the landscape (Bianchi and van der Werf, 2003; Zhang et al., 

2010). 

  

Note: Red hues indicate crop yield, with darker red higher yield. Green cells indicate 

conservation area. 

Figure 1.11: Yield maps of Field A and B illustrate different yield effects of conservation areas 

1.5.2.4 10-year conservation opportunity costs under corn-soybean rotation 

The opportunity costs of precision conservation under a corn-soybean crop rotation reflect its 

opportunity cost under each crop, as shown above. When starting with a corn year, the ten-year 

conservation opportunity costs range from -$424/ac to $233/ac, with an average of -$74/acre. In 

19 out of the 29 fields analyzed under corn-soybean rotations, implementing precision 

conservation improves field profitability by strategically removing unproductive land from 

production. When starting with a soybean year, the differences compared to corn starting year is 

marginal. The results range from -$419/ac to $238/ac, with an average of -$70/ac. Precision 

conservation improves profitability in 18 out of the 29 fields under soybean-corn rotations.  In this 

paper, we present the results with corn as starting year. The results with soybeans as starting year 
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are presented in the chapter Appendix. 

  
Note: Fields are ordered from the lowest to the highest opportunity costs of precision conservation. 

Error bars mark the 75th and 25th quantiles from 10,000 simulations. 

Figure 1.12: Opportunity costs of 10-year precision conservation under corn-soybean rotation, 

for 29 Michigan fields 

Input cost savings and forgone revenue within the conservation area comprise the largest 

components of total opportunity costs, averaging $494/ac and $367/ac respectively (Figure 1.13), 

underscoring that effectively selecting low-yielding areas is critical to making precision 

conservation economically viable. As examined in the previous section, positive yield effects on 

crops adjacent to conservation areas reduce the opportunity costs. However, the magnitude of this 

effect is relatively small. On average, these ecological benefits lower the annual cost by $8.50 per 

acre of conservation area, with the largest observed reduction reaching $25/ac. Estimates of 

opportunity costs excluding the ecological benefits are provided in the Appendix. 
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Figure 1.13: Breakdown of opportunity costs, averaged across 29 Michigan fields 

1.5.2.5 Cost difference compared to whole-field conservation 

Precision conservation significantly reduces conservation costs by targeting unproductive zones 

rather than removing entire fields from production. On average, precision conservation is $235/ac 

less expensive than whole-field conservation. The cost difference ranges from -$135/ac to $349/ac, 

with only two fields where whole-field conservation is more cost-effective, due to higher 

implementation costs associated with precision conservation. In 27 out of 29 fields (93%), whole-

field conservation is more expensive compared to precision conservation. This finding underscores 

the cost-saving potential of precision conservation compared to whole-field conservation, 

particularly when low-yielding areas are targeted effectively.  
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Note: Fields are ordered from the lowest to the highest opportunity costs of precision conservation. 

Points indicate the average of total simulations. Error bars mark the 75th and 25th quantiles from 

10,000 simulations of the cost difference. 

Figure 1.14: Difference in annualized opportunity cost of whole field conservation and precision 

conservation, simulated 10-year corn-soybean rotations, 29 Michigan fields 

1.6 Discussion and Conclusion 

While agricultural conservation delivers numerous public benefits, such as improved water quality, 

biodiversity, and carbon sequestration, it often imposes private costs on the farmers who ultimately 

decide whether to adopt these practices. This study focuses on the economic viability of precision 

conservation from the farmer’s perspective. By quantifying private costs, we offer insights into 

where conservation can be implemented with minimal or even negative cost to producers, thereby 

increasing the likelihood of voluntary adoption and long-term sustainability. 

Analysis of 29 commercial fields in Michigan shows that precision conservation fully 

covered its costs in most cases, so the opportunity costs were largely negative. Specifically, 

implementing precision conservation on corn-soybean rotation field over a simulated 10-year 
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period increases profit by $74/ac on average. As precision conservation does not incur net costs 

for 65 % of these fields (19 out of 29), it is profitable even in the absence of subsidies. Compared 

to conventional conservation methods that convert entire fields to conservation, precision 

conservation is more cost-effective on 93% (27 out of 29) of fields, averaging of $235/ac lower 

cost than whole-field conservation. 

In precision conservation, where only low-yielding areas are designated for conservation, 

marginal land can typically be conserved even without subsidy, as retiring these marginal cropland 

areas often increases profitability. Precision conservation can be economically self-sustaining, 

especially when compared to conventional whole-field conservation approaches. For instance, the 

average Conservation Reserve Program (CRP) payment rate for the sample fields was $140/acre 

in 2024 (USDA, 2024), which would incentivize conservation on only two fields in our sample if 

the entire field were to put into conservation. However, if the same payment were applied to 

precision conservation, it would be sufficient to incentivize conservation on all sample fields.  

As of mid 2025, there are several subsidy programs supporting part-of-field conservation. 

New CRP initiatives allow part-of-field conservation through prairie strips (CP-43) and subsidies 

for practices such as Field Border (NRCS Code 386) and Filter Strips (NRCS Code 393). These 

programs compensate farmers for foregone income, with CP-43 set at 90% of standard CRP rates 

and NRCS programs offering compensation rates that vary by county. In counties where our 

sample farms are located, the average payment for prairie strip CRP is $130/ac, and for NRCS 

Field Border and Filter Strips programs the payment ranges from $41/ac to $60/ac depending on 

the practices. Both programs also provide cost-sharing for establishment costs, making current 

subsidy levels higher than the estimated opportunity costs of conservation for most sample fields. 

Conserving low-yielding areas within a field can reduce the private costs of conservation, 
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but its environmental benefits require further investigation. Tyndall et al. (2013) estimated the 

ecosystem benefits of prairie strips in central Iowa at $359/acre (2012$), focusing on water quality 

improvements such as reduced sediment, phosphorus, and nitrogen retention. Similarly, Johnson 

et al. (2016) calculated that riparian CRP land in Iowa’s Indian Creek watershed provides 

ecosystem benefits valued at $4,478–$6,401/acre over 10 years (2013$), accounting for flood 

damage reduction, water quality improvements, and greenhouse gas mitigation. Further research 

is needed to explore how ecosystem services differ when conservation targets low-yielding areas 

and only small parts of fields are converted, as well as to evaluate the associated value of the 

ecosystem services.  

By targeting low-yielding areas and conserving land at a relatively low cost, precision 

conservation can serve as a cost-effective tool for promoting sustainable agricultural practices. Our 

results show that the opportunity costs of precision conservation are negative in most of the fields 

studied, indicating that retiring low-yielding cropland can often be economically beneficial for 

producers. In spite of these favorable private returns, subsidies may still be needed to trigger initial 

adoption due to behavioral and economic considerations. One the behavioral side, decision-makers 

may be discouraged by upfront implementation costs and may undervalue long-term benefits, 

which reduces the likelihood of adoption (De Groote and Verboven, 2019). Because precision 

conservation may generate positive externalities, such as increased biodiversity, it may be optimal 

to offer higher subsidies early on to overcome initial inertia and promote socially desirable levels 

of adoption (Langer and Lemoine, 2022).  

While this study focuses on private costs, future research is needed to explore how 

precision conservation can target areas that maximize environmental benefits. As these strategies 

evolve, conservation programs could transition from offering broad subsidies for adoption to 
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performance-based payments that directly reward environmental outcomes, aligning public 

investments more closely with ecological gains.  

 

 

 

 

  



43 

 

REFERENCES 

Albrecht, M., Kleijn, D., Williams, N. M., Tschumi, M., Blaauw, B.R., Bommarco, R., ... and 

Sutter, L. 2020. “The effectiveness of flower strips and hedgerows on pest control, 

pollination services and crop yield: a quantitative synthesis.” Ecology letters, 23(10), 

1488-1498. 

Anderson, S.H., Udawatta, R.P., Seobi, T., and Garrett, H.E. 2009. “Soil water content and 

infiltration in agroforestry buffer strips.” Agroforestry Systems 75:5–16. 

Arbuckle Jr, J. G., and Roesch-McNally, G. 2015. “Cover crop adoption in Iowa: The role of 

perceived practice characteristics.” Journal of Soil and Water Conservation, 70(6), 418-

429. 

Basso, B., Cammarano, D., Chen, D., Cafiero, G., Amato, M., Bitella, G., and Basso, F. 2009. 

“Landscape position and precipitation effects on spatial variability of wheat yield and 

grain protein in Southern Italy.” Journal of Agronomy and Crop Science, 195(4), 301-

312. 

Basso, B. 2021. “Precision conservation for a changing climate.” Nature Food 2:322–323. 

Bianchi, F. J., and Van der Werf, W. 2003. “The effect of the area and configuration of 

hibernation sites on the control of aphids by Coccinella septempunctata (Coleoptera: 

Coccinellidae) in agricultural landscapes: a simulation study.” Environmental 

Entomology, 32(6), 1290-1304. 

Brandes, E., McNunn, G. S., Schulte, L. A., Bonner, I. J., Muth, D. J., Babcock, B. A., and 

Heaton, E. A. 2016. Subfield profitability analysis reveals an economic case for cropland 

diversification. Environmental Research Letters, 11(1). 

Bureau of Labor Statistics. 2024. “Producer Price Index by Commodity: Farm Products 

(WPU01)” Bureau of Labor Statistics. 

Capmourteres, V., Adams, J., Berg, A., Fraser, E., Swanton, C., and Anand, M. 2018. “Precision 

conservation meets precision agriculture: A case study from southern Ontario.” 

Agricultural Systems 167:176–185. 

De Groote, O., and Verboven, F. 2019. “Subsidies and time discounting in new technology 

adoption: Evidence from solar photovoltaic systems.” American Economic 

Review, 109(6), 2137-2172. 

De, M., Riopel, J.A., Cihacek, L.J., Lawrinenko, M., Baldwin-Kordick, R., Hall, S.J,. and 

McDaniel, M.D. 2020. “Soil health recovery after grassland reestablishment on cropland: 

The effects of time and topographic position.” Soil Science Society of America Journal 

84:568–586. 



44 

 

Dutter, C.R. 2022. “The spatial and temporal effects of prairie strip restoration on soil health.” 

PhD dissertation, Department of Soil Science, Iowa State University. 

Dutter, C.R., Rutkoski, C.E., Evans, S.E., McDaniel, M.D. 2023. “Contour prairie strips alter 

microbial communities and functioning both below and in adjacent cropland soils.” 

Applied Soil Ecology, 199, 105424 

Erickson KW, Moss CB, Mishra AK. 2004. “Rates of return in the farm and nonfarm sectors: 

how do they compare?” Journal of Agricultural and Applied Economics, 36, 789–795 

Fiedler, A.K., and Landis, D. 2007. “Attractiveness of Michigan native plants to arthropod 

natural enemies and herbivores.” Environmental Entomology 36:751–765. 

Fincham, W.N., Redhead, J.W., Woodcock, B.A., and Pywell, R.F. 2023. “Exploring drivers of 

within-field crop yield variation using a national precision yield network.” Journal of 

Applied Ecology 60:319–329. 

Fox, T. B., Landis, D. A., Cardoso, F. F., and Difonzo, C. D. 2004. "Predators Suppress 

Aphisglycines Matsumura Population Growth in Soybean." Environmental Entomology 

33(3): 608-618. 

Fushiki, T. 2011. “Estimation of prediction error by using K-fold cross-validation.” Statistics and 

Computing, 21, 137-146. 

Gessler, P.E., Moore, I.D., McKenzie, N.J., and Ryan, P.J. 1995. “Soil-landscape modeling and 

spatial prediction of soil attributes.” International Journal of GIS. 9(4):421-432. 

Harwood, J. L. 1999. Managing risk in farming: concepts, research, and analysis (No. 774). US 

Department of Agriculture, ERS. Washington, DC. 

Heit, D. R., Millspaugh, J. J., McRoberts, J. T., Wiskirchen, K. H., Sumners, J. A., Isabelle, J. L., 

… and Moll, R. J. 2023. “The spatial scaling and individuality of habitat selection in a 

widespread ungulate.” Landscape Ecology, 38(6), 1481-1495 

Helmers, M.J., Zhou, X., Asbjornsen, H., Kolka, R., Tomer, M.D., and Cruse, R.M. 2012. 

“Sediment removal by prairie filter strips in row-cropped ephemeral watersheds.” 

Journal of Environmental Quality 41:1531–1539. 

Hirsh, S.M., Mabry, C.M., Schulte, L.A., and Liebman, M. 2013. “Diversifying agricultural 

catchments by incorporating tallgrass prairie buffer strips.” Ecological Restoration 

31:201–211. 

Johnson, K.A., Dalzell, B.J., Donahue, M., Gourevitch, J, Johnson, D.L., Karlovits, G.S., ... and 

Smith, J.T. 2016. “Conservation Reserve Program (CRP) lands provide ecosystem service 

benefits that exceed land rental payment costs.” Ecosystem Services, 18, 175-185. 



45 

 

Kemmerling, L. R., Rutkoski, C. E., Evans, S. E., Helms IV, J. A., Cordova-Ortiz, E. S., Smith, J. 

D., ... and Haddad, N.M. 2022. “Prairie strips and lower land use intensity increase 

biodiversity and ecosystem services.” Frontiers in Ecology and Evolution, 10, 833170. 

King, J.W., and Savidge, J.A. 1995. “Effects of the Conservation Reserve Program on wildlife in 

southeast Nebraska.” Wildlife Society Bulletin 23(3):377–385. 

Kordbacheh, F., Liebman, M., and Harris, M. 2020. “Strips of prairie vegetation placed within 

row crops can sustain native bee communities.” PLoS One 15. 

Landis, D. A., Menalled, F. D., Costamagna, A. C., and Wilkinson, T. K. 2005. "Manipulating 

plant resources to enhance beneficial arthropods in agricultural landscapes." Weed 

Science 53: 902-908. 

Landis, D.A. 2017. “Designing agricultural landscapes for biodiversity-based ecosystem 

services.” Basic and Applied Ecology 18:1–12. 

Langer, A., and Lemoine, D. 2022. “Designing dynamic subsidies to spur adoption of new 

technologies.” Journal of the Association of Environmental and Resource 

Economists, 9(6), 1197-1234. 

Lane, I.G., Herron-Sweet, C.R., Portman, Z.M., and Cariveau, D.P. 2020. “Floral resource 

diversity drives bee community diversity in prairie restorations along an agricultural 

landscape gradient.” Journal of Applied Ecology 57:2010–2018. 

Leeper, R., Runge, E., and Walker, W. 1974. “Effect of Plant-Available Stored Soil Moisture on 

Corn Yields. I. Constant Climatic Conditions 1.” Agronomy Journal 66:723–727. 

Levenson, H.K., and Tarpy, D.R. 2023. “Planted pollinator habitat in agroecosystems: How does 

the pollinator community respond?” Frontiers in Ecology and Evolution, 11, 1060834. 

Li, C., Fultz, L.M., Moore-Kucera, J., Acosta-Martinez, V., Kakarla, M., and Weindorf, D.C. 

2018. “Soil microbial community restoration in Conservation Reserve Program semi-arid 

grasslands.” Soil Biology and Biochemistry 118:166–177. 

List, J. A., Shaikh, A.M., and Yang, X. 2016. “Multiple Hypothesis Testing in Experimental 

Economics.” NBER Working Paper No. 21875, Cambridge, MA. 

https://www.nber.org/system/files/working_papers/w21875/w21875.pdf [Accessed 2025-

04-05] 

Long, E. S., Diefenbach, D. R., Rosenberry, C. S., Wallingford, B. D., and Grund, M. D. 2005. 

“Forest cover influences dispersal distance of white-tailed deer.” Journal of Mammalogy, 

86(3), 623-629 

McConnell, M., and Burger, L.W. 2011. “Precision conservation: a geospatial decision support 



46 

 

tool for optimizing conservation and profitability in agricultural landscapes.” Journal of 

Soil and Water Conservation, 66(6), 347-354. 

McConnell, M.D., and Burger Jr, L.W. 2017. “Precision conservation to enhance wildlife 

benefits in agricultural landscapes.” Precision conservation: geospatial techniques for 

agricultural and natural resources conservation, 59, 285-312. 

McGowan, B., Humberg, L.A., Beasley, J.C., Devault, T.L., Retamosa, M.I., and Rhodes, JR., 

O.E. 2006. “Corn and Soybean Crop Depredation by Wildlife. (Report No. FNR-265-W)” 

Purdue Extension. https://ag.purdue.edu/department/agry/faculty-pages/soybean-

station/_docs/fnr-265-w.pdf (Accessed 13 Apr. 2025) 

McKee, S.C., Shwiff, S.A., and Anderson, A.M. 2020. “Estimation of wildlife damage from 

federal crop insurance data.” Pest Management Science, 77(1), 406-416 

Marchinton, R.L., and Hirth, D.H. 1984. “Behavior.” Pages 129-168 in L. K. Hall, editor. White-

tailed deer: ecology and management. Stackpole, Harrisburg, PA. 

Marathe, R.R., and Ryan, S.M. 2005. “On the validity of the geometric Brownian motion 

assumption.” The Engineering Economist, 50(2), 159-192. 

Meng, N., McConnell, M.D., and Burger, W.L. 2022. “Economically targeting conservation 

practices to optimize conservation and net revenue using precision agriculture tools.” 

Precision Agriculture 23:1375–1393. 

Mitchell, M.G., Bennett, E.M., and Gonzalez, A. 2015. “Strong and nonlinear effects of 

fragmentation on ecosystem service provision at multiple scales.” Environmental 

Research Letters 10:094014. 

Morandin, L.A., and Kremen, C. 2013. “Bee preference for native versus exotic plants in 

restored agricultural hedgerows.” Restoration Ecology 21:26–32. 

Morlon, H., Chuyong, G., Condit, R., Hubbell, S., Kenfack, D., Thomas, D., Valencia, R., and 

Green, J.L. 2008. “A general framework for the distance–decay of similarity in ecological 

communities.” Ecology Letters 11:904–917. 

Morse, R. A. and N. W. Calderone 2000. “The Value of Honey Bees as Pollinators of U.S. Crops 

in 2000.” Bee Culture. 128: 1-15. 

Nekola, J.C., and White, P.S. 1999. “The distance decay of similarity in biogeography and 

ecology.” Journal of Biogeography 26:867–878. 

Plastina, A. and Johanns, A. M. 2024. Iowa Farm Custom Rate Survey. Ag decision maker. Iowa 

State University Extension. File A3-10. Page 2-5 



47 

 

PRISM. PRISM Group, 2025. Oregon State University, https://prism.oregonstate.edu, data 

created 2 Jan 2025, accessed 16 Apr 2025. 

Purdue Extension. 2022. “2022 Purdue Crop Cost & Return Guide” 

https://ag.purdue.edu/commercialag/home/resource/2022/03/2022-crop-cost-and-return-

guide/ (Accessed 25 May 2024) 

Pusateri J. S. 2003. “White-tailed deer population characteristics and land-scape use patterns in 

southwestern Lower Michigan.” Thesis, Michigan State University, East Lansing, MI. 

Pywell, R.F., Heard, M.S., Woodcock, B.A., Hinsley, S., Ridding, L., Nowakowski, M., and 

Bullock, J.M. 2015. “Wildlife-friendly farming increases crop yield: evidence for 

ecological intensification.” Proceedings of the Royal Society B: Biological 

Sciences, 282(1816), 20151740. 

Reeves, M., Lal, R., Logan, T., and Sigara´n, J. 1997. “Soil nitrogen and carbon response to 

maize cropping system, nitrogen source, and tillage.” Soil Science Society of America 

Journal 61:1387–1392. 

Robertson, G.P., Gross, K.L., Hamilton, S.K., Landis, D.A., Schmidt, T.M., Snapp, S.S., and 

Swinton, S.M. 2014. “Farming for ecosystem services: An ecological approach to 

production agriculture.” BioScience 64:404–415. 

Robinson, S.V., Nguyen, L.H., and Galpern, P. 2022. “Livin'on the edge: Precision yield data 

shows evidence of ecosystem services from field boundaries.” Agriculture, Ecosystems & 

Environment, 333, 107956. 

Sargent, M.S., and Carter, K.S. 1999. “Managing Michigan wildlife: a landowners guide.” 

Michigan Department of Natural Resources and Michigan United Conservation Club, 

Lansing, MI. 

Schulte, L.A., Niemi, J., Helmers, M.J., Liebman, M., Arbuckle, J.G., James, D.E., Kolka, R.K., 

O’Neal, M.E., Tomer, M.D., Tyndall, J.C. 2017. “Prairie strips improve biodiversity and 

the delivery of multiple ecosystem services from corn–soybean croplands.” Proceedings 

of the National Academy of Sciences 114:11247–11252. 

Senaviratne, G.A., Udawatta, R.P., Nelson, K.A., Shannon, K., and Jose, S. 2012. “Temporal and 

spatial influence of perennial upland buffers on corn and soybean yields.” Agronomy 

Journal 104:1356–1362. 

Sherrick, B. 2012. “Relative Importance of Price vs. Yield Variability in Crop Revenue 

Risk.” farmdoc daily, 2:198, Department of Agricultural and Consumer Economics, 

University of Illinois at Urbana-Champaign, October 12, 2012. 

Skees, J. R., Harwood, J., Somwaru, A., and Perry, J. 1998. “The potential for revenue insurance 



48 

 

policies in the South.” Journal of Agricultural and Applied Economics, 30(1), 47-61. 

SSURGO. 2020. Soil Survey Staff. The Gridded Soil Survey Geographic (gSSURGO) Database 

for Michigan. United States Department of Agriculture, Natural Resources Conservation 

Service. Available online at https://gdg.sc.egov.usda.gov/. November 16, 2020 (202007 

official release). 

Swinton, S.M. 2022. “Precision conservation: linking set-aside and working lands policy.” 

Applied Economics Perspectives and Policy 44(3): 1158-1167. 

Turvey, C. G. 2007. “A note on scaled variance ratio estimation of the Hurst exponent with 

application to agricultural commodity prices.” Physica A: Statistical Mechanics and its 

Applications, 377(1), 155-165. 

Tyndall, J.C., Schulte, L.A., Liebman, M., and Helmers, M. 2013. “Field-level financial 

assessment of contour prairie strips for enhancement of environmental quality.” 

Environmental Management 52:736–747. 

U.S. Department of Agriculture. 2000. “Farm Resource Regions (Agricultural Information 

Bulletin Number 760)” 

https://www.ers.usda.gov/webdocs/publications/42298/32489_aib-760_002.pdf 

(Accessed 22 October 2024) 

U.S. Department of Agriculture. 2002. “U.S. Wildlife Damage.” National Agricultural Statistics 

Service.  

U.S. Department of Agriculture. 2022. “User Guide for the National Commodity Crop 

Productivity Index (NCCPI) Version 3.0” 

U.S. Department of Agriculture. 2023. “2022 Michigan Crop Values Summary (NR-23-14-MI)” 

https://www.nass.usda.gov/Statistics_by_State/Michigan/Publications/Current_News_Rel

ease/2023/nr2314mi.pdf (Accessed 25 May 2024). 

U.S. Department of Agriculture. 2024. “CRP 2022 County Average SRRs” 

https://www.fsa.usda.gov/Assets/USDA-FSA-

Public/usdafiles/Conservation/Excel/CRP%202022%20County%20Average%20SRRs%2

0-%20Public.xlsx (Accessed 1 June 2024) 

U.S. Department of Agriculture. 2024. “Agriculture Across Michigan” Vol. 45 No. 3, March 

https://www.nass.usda.gov/Statistics_by_State/Michigan/Publications/Ag_Across_Michi

gan/2024/aam2403.pdf (Accessed 10 November 2024) 

U.S. Department of Agriculture, Economic Research Service. “Commodity Costs and Returns 

data.”  https://www.ers.usda.gov/data-products/commodity-costs-and-returns (Accessed 

13 April 2025) 



49 

 

Wood, S.A. and Bowman, M. 2021. “Large-scale farmer-led experiment demonstrates positive 

impact of cover crops on multiple soil health indicators.” Nature Food 2, 97–103. 

Wywialowski, A.P. 1994. “Agricultural producers’ perceptions of wildlife-caused losses.” 

Wildlife Society Bulletin. 22:370-382 

Zhang, W., Ricketts, T.H., Kremen, C., Carney, K., and Swinton, S.M. 2007. “Ecosystem 

Services and Dis-Services to Agriculture.” Ecological Economics 64(2): 253-260. 

Zhang, W., Van Der Werf, W., and Swinton, S.M. 2010. “Spatially optimal habitat management 

for enhancing natural control of an invasive agricultural pest: Soybean aphid.” Resource 

and Energy Economics, 32(4), 551-565. 

Zhou, X., M.J. Helmers, H. Asbjornsen, R. Kolka, M.D. Tomer, and R.M. Cruse. 2014. “Nutrient 

removal by prairie filter strips in agricultural landscapes.” Journal of Soil and Water 

Conservation 69:54–64. 

  



50 

 

APPENDIX 1 

In section A1.1, we present the distribution of the shares of field area allocated to conservation 

across 29 fields in the sample. The average share of field area converted to conservation is 16% 

(median: 15%), ranging from a minimum of 1% to a maximum of 66%. 

In section A1.2, we present supplementary figures for section 1.4.3 Representativeness of the study, 

including monthly temperature and precipitation from 2020 to 2024, and soybean prices.  

In section A1.3, we present yield response regression estimations under varying distance 

definitions. All models use pre-conservation data to establish baseline response functions, 

excluding any time-evolving effects of conservation areas. The estimations include 45,833 cells 

from 16 corn fields and 66,070 cells from 17 soybean fields. Across all specifications, the results 

consistently show that the impact of conservation areas becomes statistically insignificant beyond 

50m from conservation areas. 

In section A1.4, we present estimation results using interaction terms between proximity to 

woodland (near_wood) and the full set of age variables, rather than a simple binary indicator for 

the post-conservation period. This specification allows us to test for potential deer-related crop 

damage after conservation areas are established. The results suggest that there is no evidence of 

significant deer damage on crops near conservation areas. 

In section A1.5, we present estimated opportunity costs of 10-year conservation under a soybean-

corn rotation across 29 fields. The results are consistent with the estimates based on a rotation 

beginning with corn. On average, starting the crop rotation with soybeans results in opportunity 

costs that are approximately $4 per acre lower than in rotations that begin with a corn crop.  
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A1.1 Distribution of the conservation area share 

 

Figure A1.1: Distribution of conservation area share across 29 fields 
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A1.2 Weather pattern in 2020-2024 

 

Note: Black dotted lines represent the past 10-year average temperature from 2010 to 2021, and 

the gray shaded area indicates one standard deviation from this average. 

Figure A1.2: Average monthly temperature, two counties in Michigan 
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Note: Black dotted lines represent the past 10-year average precipitation from 2010 to 2021, and 

the gray shaded area indicates one standard deviation from this average. 

Figure A1.3: Average monthly precipitation, two counties in Michigan 
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Figure A1.4: Monthly soybean prices across Michigan and the U.S average (2020-2024) 
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A1.3 Yield response estimations under varying distance definitions 

A1.3.1 Yield response estimation to conservation area size by 10m interval 

 

Note: Error bars indicate 90% confidence intervals; standard errors are clustered at the field level. 

Figure A1.5: Estimated yield impact of conservation areas using 10m distance intervals 
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A1.3.2 Yield response estimation to conservation area size by 20m interval 

 

Note: Error bars indicate 90% confidence intervals; standard errors are clustered at the field level. 

Figure A1.6: Estimated yield impact of conservation areas using 20m distance intervals 
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A1.3.3 Yield response estimation to conservation area size by 50m interval 

 

Note: Error bars indicate 90% confidence intervals; standard errors are clustered at the field level. 

Figure A1.7: Estimated yield impact of conservation areas using 50m distance intervals 
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A1.3.4 Yield response estimation using a binary distance variable to the nearest conservation area 

 

Note: Error bars indicate 90% confidence intervals; standard errors are clustered at the field level. 

The reference category for the binary distance variables is set to 100 meters or greater. 

Figure A1.8: Estimated yield impact of conservation areas using binary distance variables 
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A1.3.5 Yield response to inverse distance-weighted conservation area size 

Table A1.1: Estimated corn yield effect (bu/ac) by different distance decay parameters 

Variable 

Conservation area definitions 

𝑎𝑟𝑒𝑎

𝑑
 

𝑎𝑟𝑒𝑎

𝑑2
 

𝑎𝑟𝑒𝑎

𝑑3
 

(𝛾 = 1) (𝛾 = 2) (𝛾 = 3) 

Conservation area 
-14.8 ** 

(5.2) 

-570.3 *** 

(167.1) 

-9150.0 *** 

(234.3) 

headland 
-19.8 *** 

(3.7) 

-18.3 *** 

(3.5) 

-18.7 *** 

(3.5) 

edge1 (10m, outmost) 
-52.8 *** 

(7.5) 

-52.0 *** 

(7.8) 

-55.1 *** 

(8.4) 

edge1 (10m, outmost) · field 
31.9 *** 

(6.7) 

31.0 *** 

(6.8) 

33.2 *** 

(7.0) 

edge1 (10m, outmost) · developed 
28.1 *** 

(7.0) 

26.5 *** 

(7.1) 

29.5 *** 

(7.6) 

edge2 (10 - 20m) 
-25.8 *** 

(6.7) 

-25.7 *** 

(7.2) 

-28.4 *** 

(7.8) 

edge2 (10 - 20m) · field 
14.6 ** 

(6.0) 

14.5 ** 

(6.4) 

16.4 ** 

(6.6) 

edge2 (10 - 20m) · developed 
8.9 

(7.3) 

8.5 

(7.6) 

10.8 

(8.0) 

Soil characteristics Yes Yes Yes 

Weather Yes Yes Yes 

R2 0.42 0.42 0.42 
***, **, * represent statistical significance at the 1%, 5%, and 10% levels and all standard errors are 

clustered in the field level. 
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Table A1.2: Estimated soybean yield effect (bu/ac) by different distance decay parameters 

Variable 

Conservation area definitions 

𝑎𝑟𝑒𝑎

𝑑
 

𝑎𝑟𝑒𝑎

𝑑2
 

𝑎𝑟𝑒𝑎

𝑑3
 

(𝛾 = 1) (𝛾 = 2) (𝛾 = 3) 

Conservation area 
-5.7 ** 

(2.1) 

-198.8 *** 

(52.8) 

-3131.0 *** 

(599.2 

headland 
-6.1 *** 

(0.9) 

-5.5 *** 

(0.9) 

-5.5 *** 

(0.8) 

edge1 (10m, outmost) 
-11.8 *** 

(1.5) 

-11.8 *** 

(1.6) 

-12.4 *** 

(1.6) 

edge1 (10m, outmost) · field 
1.2 

(1.9) 

1.1 

(1.9) 

1.7 

(1.9) 

edge1 (10m, outmost) · developed 
2.1 

(1.4) 

1.8 

(1.3) 

2.3 * 

(1.1) 

edge2 (10 - 20m) 
-6.6 *** 

(0.9) 

-6.8 *** 

(1.0) 

-7.3 *** 

(1.0) 

edge2 (10 - 20m) · field 
1.4 

(0.8) 

1.6 

(0.9) 

2.0 * 

(1.0) 

edge2 (10 - 20m) · developed 
1.8 ** 

(0.8) 

2.0 ** 

(0.7) 

2.3 *** 

(0.7) 

Soil characteristics Yes Yes Yes 

Weather Yes Yes Yes 

R2 0.56 0.56 0.56 
***, **, * represent statistical significance at the 1%, 5%, and 10% levels and all standard errors are 

clustered in the field level. 
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A1.4 Yield response estimation to deer damage across years 

Table A1.3: Estimated effects of near wood on yield near conservation area (bu/ac) 

Variable 
Coefficient (Std. Err.) 

Corn Soybeans 

D10 
-11.5 ** 

(4.7) 

-4.7 *** 

(1.4) 

D10 · Year 1 
2.9  

(4.9) 

1.8 

(2.5) 

D10 · Year 2 
2.9 

(6.7) 

5.0 ** 

(2.1) 

D10 · Year 3 
0.7 

(6.9) 

0.1 

(2.5) 

D10 · Year 4 
-6.8 

(11.1) 

2.4 

(3.2) 

D10 · Year 1 · near_wood 
-2.2 

(4.1) 

0.9 

(2.2) 

D10 · Year 2 · near_wood 
-1.3 

(4.7) 

-0.4 

(1.9) 

D10 · Year 3 · near_wood 
6.8 

(7.3) 

5.6 ** 

(2.5) 

D10 · Year 4 · near_wood 
19.8 

(12.2) 

-1.1 

(3.0) 

D50 
-0.8 ** 

(0.4) 

-0.2 * 

(0.1) 

D50 · Year 1 
1.3 *** 

(0.4) 

-0.2 

(0.2) 

D50 · Year 2 
-0.9 

(0.5) 

0.2 

(0.2) 

D50 · Year 3 
-0.9 * 

(0.5) 

0.4 

(0.1) 

D50 · Year 4 
-0.6 

(0.6) 

0.02 

(0.2) 

D50 · Year 1 · near_wood 
-0.5 ** 

(0.2) 

-0.03 

(0.2) 

D50 · Year 2 · near_wood 
0.6 * 

(0.4) 

-0.1 

(0.1) 

D50 · Year 3 · near_wood 
0.4 

(0.6) 

-0.2 *** 

(0.1) 

D50 · Year 4 · near_wood 
-0.4 

(0.4) 

0.1 

(0.2) 

Soil and site characteristics Yes Yes 

Weather Yes Yes 

Field by Year fixed effect Yes Yes 

R2 0.60 0.69 
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Table A1.3 (cont’d) 

Note: ***, **, * represent statistical significance at the 1%, 5%, and 10% levels; all standard errors are 

clustered in the field level. 

For corn, we observe statistically significant differences near woodland in years 1 and 2 within 50 

meters of conservation areas; however, the yield impact is marginal at less than 1 bu/ac. For 

soybeans, we find a statistically significant difference in year 3. Within 10 meters of conservation 

areas, yields are 6 bu/ac higher near woodland, while within 50 meters, yields are 0.2 bu/ac lower. 

Since all yield differences are either marginal (less than 1 bu/ac) or positive, we conclude that there 

is no evidence of significant deer damage associated with proximity to conservation areas. 
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A1.5 10-year conservation opportunity costs under soybean-corn rotation 

 

Note: Fields are ordered from the lowest to the highest opportunity costs of precision 

conservation. Error bars mark the 75th and 25th quantiles from 10,000 simulations. 

Figure A1.9: Opportunity costs of 10-year precision conservation under soybean-corn rotation, 

for 29 fields 
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Note: Fields are ordered from the lowest to the highest opportunity costs of precision 

conservation. Error bars mark the 75th and 25th quantiles from 10,000 simulations. Navy error 

bars with triangular points indicate opportunity cost estimates excluding ecological impacts. 

Figure A1.10: Opportunity costs of 10-year precision conservation with and without ecological 

impacts, for 29 Michigan fields 
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CHAPTER 2.  

COMPARING PROFITABILITY OF VARIABLE RATE NITROGEN PRESCRIPTIONS 

 

A version of this chapter was previously published in Precision Agriculture and is reproduced with 

the permission of the journal and co-authors.  

Lee, S. W., Swinton, S. M., and Basso, B. 2025. “Comparing profitability of variable rate nitrogen 

prescriptions.” Precision Agriculture, 26(4): 1-19. https://doi.org/10.1007/s11119-025-10256-y 

 

Abstract: As sensing technology and spatial data analysis become more accessible and advanced, 

nitrogen management is shifting from reliance on traditional soil sampling to the use of remotely 

sensed imagery and yield maps. While studies often compare variable rate nitrogen (VRN) 

fertilization to uniform rates, the profitability of information sources guiding VRN 

recommendations remains unclear. This study fills that gap by investigating the ex post profitability 

of variable rate nitrogen prescriptions derived from different sources of information. Utilizing 17 

field-years of data from 13 Midwest fields during 2021-2023, we compared nitrogen prescriptions 

based on early season vegetative vigor to ones based on yield history. We developed a quasi-

experimental design to mitigate non-random treatment assignment and employed complementary 

analytical methods – spatial linear regression and spatial discontinuity analysis, which were 

designed to be easily expandable and replicable. Our finding revealed a heterogeneous treatment 

effect, with estimated profitability ranging from $-410 ha-1 to $350 ha-1 for prescriptions based on 

remote sensing data compared to yield history. In 2021, when unusually favorable weather 

conditions continued throughout the season, in-season NDVI information proved to be more 

profitable. In contrast, in 2023, yield history-based prescriptions were more profitable, as early 

season weather patterns failed to persist. Given the way that seasonal moisture availability enables 

N uptake and crop yield response, these findings highlight the profitability of adapting VRN 
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management to seasonal weather variability by supplementing long-term yield response 

information from yield history with early season crop vigor from NDVI. The two information 

sources complement one another, depending on whether early season growing conditions persist 

until grain fill is complete. 

2.1 Introduction 

Variable rate fertilization is one of the notable advancements in modern agricultural technology, 

offering the potential to tailor nutrient applications to the specific needs of crops within different 

areas of a field. While this tailored approach can lead to increased productivity and more efficient 

use of inputs (Swinton and Lowenberg‐DeBoer, 1998; Roberts et al., 2000; Basso et al., 2016a, b), 

the implementation of variable rate fertilization also introduces new costs, particularly related to 

the acquisition and analysis of site-specific information required to generate fertilization 

prescriptions. Among the various nutrients applied using variable rate fertilization, nitrogen (N) 

presents unique management challenges because its highly leachable nature and complexity to 

account for N mineralized in the soil by microbes, making it difficult to predict its availability to 

the crops throughout their growing cycle.   

Information cost has not been a major focus in traditional uniform rate nitrogen 

recommendations, which primarily rely on data from state-level research experiments. Even as N 

recommendations from land-grant universities evolved from a nutrient replacement, yield goal 

approach to a maximum return to N approach (Sawyer et al., 2006), soil tests continued to be the 

key information source. However, the high cost of grid soil sampling began to trigger the search 

for alternatives (Hurley et al., 2001; Koch et al., 2004). Initially, the alternatives focused on less 

dense sampling schemes based on topographical or soil type zones (Fiez et al., 1994), which still 

relied on soil test nutrient levels to guide recommendations for variable rate fertilization. For 
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sidedress N applications in a growing crop like corn, spatially sampled soil and leaf tissue tests 

may be accurate (Tremblay et al., 2011), but they are costly and time-consuming to analyze and 

convert into an N application map.  A less costly, more timely alternative was needed. 

Two major information sources have become available to farmers to meet the need for 

detailed in-field, site-specific data to inform variable rate nitrogen (VRN) recommendations. The 

first type of information is the yield history (YH) accumulated from yield maps of past crop 

performance (Park et al., 2024; Khakbazan et al., 2021; Laboski and Peters, 2012).  Although this 

type of information does not account for the current season, it reflects historical yield trends and 

averages. The second class of new information comes from sensing technologies. The most widely 

used sensing technologies in agriculture use spectral reflectance captured remotely by satellite, 

airplane, or drone. Converting such information into measures like the Normalized Difference 

Vegetation Index (NDVI) enables assessment of vegetative vigor as an indicator of nitrogen needs 

(Holland and Schepers, 2010; Solie et al., 2012). Remotely sensed images captured during the 

season provide real-time information of current crop conditions. By combining data from historical 

yield maps with just-in-time measures of vegetative vigor, new algorithms aim to enhance the 

predictive accuracy of nitrogen prescriptions (Maestrini and Basso, 2018; Pedersen et al., 2023). 

Given the information costs associated with VRN, several studies have attempted to assess 

which information sources contribute most to farm profit. Evaluating returns to alternative 

information sources for VRN prescriptions has commonly been conducted through randomized 

field trials. These trials estimate the yield response function and assess how well information 

explains the optimal nitrogen rate (Hurley et al., 2001; Schmidt et al., 2011), or else they randomly 

assign different prescriptions across field strips to estimate the treatment effect of each information 

source (Stefanini et al., 2019; Boyer et al., 2011). While randomized experiments can effectively 
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control for confounding factors, they are costly to implement (Aggarwal, 1995; Grassini et al., 

2015). Some studies have utilized crop growth simulation models to predict profitability under 

various scenarios (Watkinson et al., 1998; Pedersen et al., 2021). However, this approach has 

limitations in expanding analyses to other fields and time periods, as models may require 

recalibration or rely on inputs that are difficult to obtain in commercial agricultural settings. (Boote 

et al., 1996). 

In this paper, we introduce a quasi-experimental method that utilizes nonexperimental 

VRN data to compare the value of two information sources for VRN prescriptions, offering an 

alternative approach to randomized field experiments and crop growth simulation models. To 

compare prescriptions based on remotely sensed data with those based on yield history, we propose 

two analytical methods: linear regression and spatial discontinuity analysis. We demonstrate their 

use on 13 fields where variable rate nitrogen was applied during 2021-23. This research addresses 

gaps in the current literature by 1) comparing information sources underpinning two VRN 

prescriptions, and 2) proposing quasi-experimental methods that are easy to replicate and expand. 

2.2 Conceptual framework 

Consider a farm field that is partitioned into a grid. A variable rate nitrogen (VRN) applicator 

allows each cell to receive a different rate of nitrogen fertilizer, based on the information provided. 

In this setup, the gross margin (π) of a cell i at time t is calculated as follows: 

𝜋𝑖,𝑡 = 𝑃𝑌 ∗ 𝑌(𝑁𝑖,𝑡(𝑖𝑛𝑓𝑜𝑡), 𝑠𝑖𝑡𝑒𝑖, 𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑡) − 𝑃𝑁 ∗ 𝑁𝑖,𝑡(𝑖𝑛𝑓𝑜𝑡) − 𝑐(𝑖𝑛𝑓𝑜𝑡)  (1) 

A gross margin measures revenue minus selected costs. It measures the profitability of specific 

management actions under the ceteris paribus assumption that all other factors hold constant. In 

this case, revenue is from crop sales. The relevant selected costs include nitrogen fertilizer and 

variable rate nitrogen application (c) which depends on source of information (info). 𝑃𝑌 and 𝑃𝑁 
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refer to the expected prices of the crop and of fertilizer nitrogen. The crop yield (Y) is a function 

of fertilizer nitrogen N, site characteristics (site) such as soil properties and topography, and 

weather. The amount of nitrogen fertilizer applied depends on the choice of information (info) that 

guides the fertilizer recommendations.  

 We assume that the farmer’s objective in choosing the information to acquire is to 

maximize the expected gross margin from the entire field. Because the yield response to applied 

N is conditional on annually variable weather conditions, different information sources offer 

distinct comparative advantages in prescribing the N rate. For example, N recommendations based 

on yield history reflect typical long-term conditions shaped by past weather patterns. In contrast, 

recommendations based on current-season vegetative vigor provide real-time crop condition up to 

the time of image capture. This in-season information may be more effective when current 

conditions deviate from historical averages and persist throughout the growing season. 

In the following sections, we investigate the ex post profitability of two information sources 

by analyzing the gross margin calculated based on Equation (1), omitting the cost of variable rate 

nitrogen application. Results can be interpreted as the farmer’s implied willingness to pay for a 

specific source of VRN recommendation information. As outlined in Equation (1), farmers base 

their fertilization decision on expected yield and prices. Note that the decision that appeared 

optimal before the season began (ex ante) may not yield the highest profit after it ends (ex post).  

The final outcome will depend on the weather and prices that come to pass. Nonetheless, final 

outcomes are what determine farm profitability over the long term. In this paper, we propose 

methods to examine the realized gross margin and compare which source of information yielded 

higher profit ex post. 
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2.3 Data 

Data collection was undertaken in partnership with three farmers via an on-farm research approach 

that is gaining momentum worldwide (Lacoste et al., 2022). We utilized corn yield data from 13 

fields located on two farms in Michigan and one farm in Indiana, covering the period from 2021 

to 2023. The dataset includes 17 field-years, with data from 10 fields in 2021, 3 fields in 2022, and 

4 fields in 2023. Due to crop rotation practices and uneven data availability, only four of the fields 

were included in multiple years.  

Raw yield monitor data provided by participating farmers were processed to generate 

cleaned yield maps for each year. First, the data points located outside the field boundary were 

removed. Then, outliers were removed using a median-based filtering approach. For each year and 

crop, the median yield value was calculated after excluding data points with zero yield. 

Observations with yield values less than 10% of the median or greater than three times the median 

were excluded from the dataset (Maestrini and Basso, 2018; Maestrini and Basso, 2021). To 

address duplicate spatial entries, data points with identical latitude and longitude coordinates were 

averaged to generate a single representative. Each field was divided into a grid, where the width 

of each cell was set equal to the width of the fertilizer applicator. The average yield value was 

calculated for each grid cell. Each grid cell served as an observation unit for this analysis, with a 

total of 10,439 samples examined. 

The nitrogen rate was varied solely for the second side-dress nitrogen application. Nitrogen 

fertilizers are typically applied to a corn crop at multiple times during the year, including prior to 

planting, at planting, and one or more times at side-dress when the crop is growing. In this on-farm 

experiment, the participating farmers maintained the uniform nitrogen rates for the preplant and 
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first side-dress applications but adjusted the nitrogen rate for the second side-dress application 

based on the given prescription.  

The gross margin calculations utilized USDA corn prices from Michigan and Indiana 

(USDA, 2023a; 2023b), and the nitrogen fertilizer price was sourced from the USDA Agricultural 

Marketing Service's Illinois Production Cost Report (USDA, 2023b). The different corn prices 

reflect differences in the price basis, which nets out transportation costs between local elevators 

and major markets (like Chicago). Due to globally integrated supply chains, wholesale fertilizer 

prices tend to be more geographically uniform within a region (Bekkerman et al., 2020; USDA, 

2022a). Since side-dress nitrogen was applied as 28% liquid nitrogen fertilizer, we calculated the 

nitrogen price by dividing the liquid nitrogen price by 0.28, under the assumption that the 

fertilizer’s only value derived from its 28% nitrogen content. Prices for each year were adjusted to 

2023 dollars using the Consumer Price Index, with the specific prices applied in the calculations 

presented in Table 2.1. Acknowledging that the prices of corn and nitrogen could have varied, we 

also conducted a price sensitivity analysis using data from the same sources covering the 25 years 

2009 through 2023. 

Table 2.1: Corn and nitrogen price used to calculate gross margin for base analysis 

Year 
Corn price ($ kg-1) 

Nitrogen price ($ kg-1) 
Indiana Michigan 

2021 0.19 0.17 2.13 

2022 0.27 0.25 2.58 

2023 0.27 0.26 1.42 

Based on the theoretical model (Equation 1), we incorporated weather and site 

characteristics variables to control for additional factors that influence profitability. We used daily 

weather data at a resolution of 800m from the Parameter-elevation Relationships on Independent 
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Slopes Model (PRISM) dataset to construct the growing degree days (GDD)1, total precipitation, 

and number of days with maximum temperature below 15℃ during the growing season, spanning 

from April through September. The site characteristics, including available water storage and soil 

organic carbon at 20-50 cm soil depth, as well as the National Commodity Crop Productivity Index 

(NCCPI) of corn, were sourced from Soil Survey Geographic Database (SSURGO). 

Descriptive statistics of the data used in the analysis are presented in Table 2.2. For the 

entire sample, the average corn yield is 11.7 Mg ha-1, with a standard deviation of 2.9. The average 

gross margin from corn over the cost of the second side-dress nitrogen application is 2590 $ ha-1, 

with a standard deviation of 950. 

Table 2.2: Descriptive statistics for key variable rate nitrogen profitability variables, 17 field-

years, Michigan and Indiana, from 2021 to 2023 (n=10,439) 

Variable Average Std. Dev. Min Max 

Gross margin ($ ha-1) 2590 950 -148 4240 

Yield (Mg ha-1) 11.7 2.9 0.31 17.3 

2nd sidedress N rate (kg ha-1) 51.1 41 0 123 

Information sources     

   NDVI level (Low=1, 

     Med=2, High=3) 
2.15 0.71 1 3 

   YH level (Low=1,  

      Med=2, High=3) 
1.92 0.47 1 3 

Weather     

   Growing degree days  

     (Apr-Sep) 
1526 91 1393 1704 

   Total precipitation  

     (mm; Apr-Sep) 
602 68 503 746 

   Max temp below 15℃  

     (days during Apr-Sep) 
26.6 3.36 20 32 

Site characteristics     

   Available water storage (mm) 46.6 5.87 24.1 98.3 

   Soil organic carbon (g/m2) 2277 1311 711 17226 

   NCCPI 0.64 0.05 0.14 0.82 

 

 

 
1 𝐺𝐷𝐷 = ∑ 𝑀𝑎𝑥[𝑎𝑣𝑔 𝑡𝑒𝑚𝑝 (℃) − 10, 0] 
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2.3.1 Nitrogen prescriptions 

Each farmer provided geo-referenced yield maps from past seasons in electronic format, which 

were used to construct yield history maps. Although the number of years varies among farmers, 

all provided a minimum of three historical yield maps. Three levels of historical yield (high, 

medium, and low) were established based on the average of normalized yields (Blackmore, 2000; 

Basso et al., 2007). For each field and year, yields were normalized, and then the multi-year mean 

of these normalized yields was calculated. If the average normalized yield exceeds 0.2, it was 

classified as high; if it falls below -0.2, it was classified as low. Values in between were categorized 

as medium. Additional details can be found in Maestrini and Basso (2021). 

The NDVI data set measures the crop vegetative vigor using remote sensing imagery 

(transformed into the Normalized Differential Vegetation Index). Data for the NDVI 

recommendation algorithm were collected after the first nitrogen side-dress application. NDVI 

levels are classified into three levels (high, medium, and low) using Iso Unsupervised 

Classification in ArcGIS.  

Both the levels of YH and the NDVI data classifications were integrated into the SALUS 

crop growth model (Basso et al., 2006) to generate a nitrogen rate prescription for each field. Three 

nitrogen fertilizer levels (high, medium, low) were prescribed for each field as described in Basso 

et al., (2011, 2016a, b). The specific rate of nitrogen at each level varies by field. From the SALUS 

model, a single prescription was generated for each field. Depending on circumstances, the 

prescription aligned with either NDVI or YH information, or both when NDVI and YH provided 

the same recommendation. All prescriptions were provided to farmers free of charge. 
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2.4 Methods 

From a single set of grid cell based prescriptions, we generated pseudo-treatment variables by 

leveraging the fact that the prescription algorithm integrated two sets of information, NDVI and 

YH. Given that the treatment was not randomly assigned, we developed a quasi-experimental 

design employing two methodologies to control for confounding factors that may affect gross 

margin as well as for potential selection bias into each treatment. 

The cost of generating nitrogen prescriptions and associated information was omitted in 

order to calculate the value added by each information source, independent of any assumed fee 

structure. By excluding associated costs, such as marketing margins or service fees that 

commercial agricultural service providers may charge, the value of the information itself is isolated. 

Under this assumption, the estimated contribution of each information source to gross margin can 

be interpreted as the maximum amount a farmer would be willing to pay for a prescription based 

on that source. 

2.4.1 Creation of pseudo-treatment variables 

As all the nitrogen prescriptions given to farmers are based on the combination of NDVI and YH, 

we generated treatment variables according to the correspondence between each information 

source and the nitrogen rate applied in each cell. For each treatment, we created a binary variable 

taking the value of 1 if the rate was prescribed following that information source or zero otherwise. 

For example, if the cell received the high nitrogen rate and its NDVI level was also high, the value 

of the NDVI treatment variable for that cell is 1. If the same cell had a high YH level, then its YH 

treatment variable also equals 1. However, if the cell received the low nitrogen rate and its YH was 

low but its NDVI level was high, the value of the NDVI treatment variable for that cell is 0 while 

the value of the YH treatment variable is 1.  
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Figure 2.1 describes two examples of how the pseudo-treatment variables are generated. 

Cell A, which has high NDVI and medium YH, received high nitrogen rate. So its NDVI treatment 

variable is 1 because its nitrogen recommendation is consistent with NDVI information, whereas 

its YH treatment variable is 0 because YH alone would not have given a high nitrogen 

recommendation. On the other hand, Cell B received medium nitrogen rate and both of its NDVI 

and YH levels are medium. Therefore, the NDVI and YH treatment variables are both 1.  

 

Figure 2.1: Example of pseudo-treatment variable creation 

 2.4.2. Estimation strategies 

Although we can generate pseudo-treatment variables, their non-random assignment calls for care 

in statistically estimating the treatment effect. Profitability is influenced by numerous factors such 

as soil characteristics, topography, and plant vigor, all of which also influence VRN prescriptions. 

These shared factors create many confounding variables that can impact both treatment 

assignments and profitability. Non-random treatment assignment increases the likelihood of 

systematic differences in these confounding variables between the treatment and control groups, 

affecting profitability beyond the treatment itself. For example, if a prescription uses yield history 
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to target high-yield areas, cells treated based on yield history will inherently differ in characteristics 

from untreated cells, as they have historically produced higher yields in the past.  

We propose two estimation strategies to control for the confounding effects of nonrandom 

treatment assignment: linear regression and spatial discontinuity analysis. Given that the gross 

margin is closely related to applied nitrogen rate, site characteristics, and weather conditions, the 

proposed estimation strategies control for the effects other than the choice of information utilized 

for prescription and allows us to examine the treatment effect while holding all other factors equal. 

Linear regression incorporates covariates to capture non-treatment effects on gross margin, while 

spatial discontinuity analysis leverages the fact that contiguous cells can be assumed to have 

similar characteristics. 

2.4.2.1 Linear regression 

The profitability of each treatment is estimated with the following equation. 

𝜋𝑖𝑡 = ∑ (𝛽1𝑗𝑁𝐷𝑉𝐼𝑖𝑡 + 𝛽2𝑗𝑌𝐻𝑖𝑡) ∗ 𝐹𝑖𝑒𝑙𝑑𝑌𝑒𝑎𝑟𝑖𝑡𝐹𝑖𝑒𝑙𝑑𝑌𝑒𝑎𝑟=𝑗 + 𝛾1𝑋𝑖𝑡 + 𝛾2𝐹𝑖𝑒𝑙𝑑𝑖 + 𝛾3𝑌𝑒𝑎𝑟𝑡 

 (2) 

For each grid cell i within field j, the dependent variable is the gross margin of corn revenue 

minus the cost of nitrogen fertilizer. 𝑁𝐷𝑉𝐼𝑖𝑡  and 𝑌𝐻𝑖𝑡  indicate the NDVI treatment and YH 

treatment respectively. The effects of the prescription information sources are interacted with field-

year indicator variable (𝐹𝑖𝑒𝑙𝑑𝑌𝑒𝑎𝑟𝑖 ), representing the differential impacts of the information 

contingent on field and year. Xit is a vector of all confounding variables that are specific to each 

cell and year, including NDVI and YH levels, total applied nitrogen rates, site characteristics, and 

weather conditions. 𝛾1 is a vector of coefficients capturing the correlation between confounding 

variables and gross margin. 𝐹𝑖𝑒𝑙𝑑𝑖 represents a binary variable to identify each field controlling 

for all field-specific effects such as the farmer, soil type, and location with 𝛾2 representing their 
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effects on gross margin. 𝑌𝑒𝑎𝑟𝑖 represents year fixed effects, capturing factors that impact all fields 

uniformly within a given year, such as weather patterns and market conditions and 𝛾3 represents 

the year effects on gross margin. 

The effects of the NDVI treatment and YH treatment of field-year j are represented by the 

coefficients 𝛽1𝑗 and 𝛽2𝑗 respectively in Equation (2). The standard errors are clustered by field to 

account for the more highly correlated random errors that prevail within a field compared to 

between fields. This method is characterized by its ease of implementation, its capacity to control 

for the effects of non-treatment variables that may be correlated with the gross margin, and its 

ready statistical interpretation.  

2.4.2.2 Spatial discontinuity analysis 

This method compares the gross margin responses of adjacent grid cells under the assumption that 

all site characteristics are virtually identical except for the information used to make the nitrogen 

prescription. Specifically, we focus on comparing pairs of cells that received the same nitrogen 

rate. By doing so, we isolate the impact of information choice on gross margin, as any difference 

observed between adjacent cells with different information choices can be attributed to the 

information used for nitrogen prescription. 

This approach bears resemblance to the spatial regression discontinuity design (Keele and 

Titiunik, 2015), which also involves the consideration of spatial factors. However, we cannot 

classify this method as the spatial regression discontinuity design because the spatial factor alone 

in this approach does not dictate the treatment assignment. Rather, the spatial component is only 

used as the basis for assuming similarity between two adjacent cells. 

We consider “rook” neighbors, which are grid cells that share a side of non-zero length. As 

a robustness check, results using “queen” neighbors, grid cells that share either a side or a corner, 
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are presented in the Appendix. Cell i is defined as a YH treated unit and cell j is defined as an 

NDVI treated unit if the following conditions are met: 1) they have received the same nitrogen 

rate, 2) cell i is prescribed following YH level, 3) cell j is prescribed following NDVI level, and 4) 

the YH and NDVI levels of cells i and j do not match. The fourth condition ensures that we exclude 

cases when both the NDVI and YH method prescribe the same nitrogen rate. We then compare the 

yield averages of two samples using a paired t-test by field-year.  

This method uses two tactics to address the limitations of linear regression that there may 

be unobserved heterogeneity, and the treatment assignment is not random. First, it avoids the 

problem of capturing all relevant variables by assuming that closely located cells have only 

marginal differences in site characteristics. Second, treatment assignments are independent of 

other cell characteristics. 

2.4.2.3 Price sensitivity analysis 

In order to evaluate the robustness of our findings to deviations in market prices from those that 

prevailed in 2021-23, we conducted a price sensitivity analysis. We evaluated the extremes of the 

corn to nitrogen price ratio over the past 15 years. Prices for Michigan corn, Indiana corn, and 

nitrogen from 2009 to 2024 are adjusted to 2023 dollars using the consumer price index (BLS, 

2024). From these two series of adjusted prices, we selected the maximum and minimum values 

from each series, forming two sets of prices: one with maximum corn and minimum nitrogen price 

(the minimum 
𝑃𝑁

𝑃𝑌
), and another with minimum corn and maximum nitrogen prices (the maximum 

𝑃𝑁

𝑃𝑌
) (Table 2.3).  
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Table 2.3: Prices used for sensitivity analysis (in 2023 dollars) 

 Minimum 2021 Maximum 

Nitrogen price ($ kg-1) 0.99 1.23 2.27 

Corn price ($ kg-1) 
Michigan 0.15 0.23 0.31 

Indiana 0.16 0.24 0.34 

Price ratio (
𝑃𝑁

𝑃𝑌
) 

Michigan 0.06 0.10 0.27 

Indiana 0.05 0.09 0.26 

The N fertilizer to corn price ratio utilized in the sensitivity analysis spans from 0.05 to 

0.27, representing scenarios where the nitrogen price is 5% of the corn price to cases where the 

nitrogen price exceeds 25% of the corn price. The prices used for this sensitivity analysis align 

with the range specified in Tri-State Fertilizer Recommendations (Culman et al., 2020). These 

recommendations indicate suggested nitrogen rates for Michigan within a ratio range of 0.05 to 

0.20, and for Indiana, within a ratio range of 0.08 to 0.33 (Camberato et al., 2021).  

We then performed regression and spatial discontinuity analysis using these newly selected 

prices, following the same methodology as before. We examined the outcomes across fields to 

assess the robustness of the results. 

2.5 Results 

2.5.1 Linear regression results 

In the estimated model for the linear regression method, the outcome variable is the gross margin 

($ ha-1). We control for variables that assign the treatment, NDVI and YH levels, as well as field 

fixed effect, applied nitrogen rate, growing degree days, total precipitation, days with maximum 

temperature below 15 ℃, and site characteristics: available water storage, soil organic carbon, and 

the National Commodity Crop Productivity Index (NCCPI) of corn (as a measure of site soil 

quality). Standard errors are clustered at the field, to account for unobserved correlation within a 

field. The description of the complete estimated model is presented in the Appendix. 
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The results (Table 2.4) show how nitrogen prescriptions based on different information 

sources impact average gross margins. The last column presents the relative effectiveness of NDVI 

based prescriptions compared to those based on YH, where the positive value indicates that NDVI 

based prescription resulted in a higher gross margin than YH. In 2021 and 2022, no clear pattern 

emerged regarding which information source was more effective. In 2023, YH outperformed 

NDVI in three out of four fields and in the other field, while in the remaining field, the difference 

between NDVI and YH was not statistically significant. 
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Table 2.4: Linear regression estimated treatment variable coefficients ($ ha-1) by prescription 

method  

Year Farm Field 

Coefficient  

(clustered standard error) NDVI-YH 

(clustered std. err.) 
NDVI YH 

2021 

MI_A 

1 
68 *** -110 * 178 *** 

(20) (60) (63) 

2 
663 *** 313 *** 350 *** 

(50) (118) (103) 

3 
323 *** 105 *** 218 *** 

(28) (18) (38) 

MI_B 

1 
-148 *** -68 ** -80 *** 

(25) (33) (20) 

2 
23 -8 30 

(55) (40) (48) 

3 
-95 -13 -83 

(105) (58) (88) 

4 
-253 *** -93 ** -160 ** 

(78) (28) (65) 

IN_A 

1 
-165 *** 93 *** -258 *** 

(60) (20) (73) 

2 
-90 * -160 *** 70 

(53) (18) (60) 

3 
25 28 -1 

(-75) (28) (65) 

2022 MI_B 

5 
-78 *** -30 *** -48 *** 

(13) (15) (18) 

6 
5 -63 *** 68 *** 

(13) (18) (13) 

7 
-10 -25 ** 15 

(10) (10) (13) 

2023 

MI_A 2 
-70 ** -10 -60 

(33) (70) (90) 

MI_B 

1 
-33 123 ** -155 *** 

(33) (58) (55) 

2 
-98 210 *** -308 *** 

(95) (38) (80) 

3 
-33 378 *** -410 *** 

(60) (58) (40) 
***, **, * indicate significance level at less than 1%, 5%, and 10% respectively. 
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2.5.2 Spatial discontinuity design results 

We sampled adjacent pairs that received the same nitrogen rate but differed in their prescription 

information sources. A total of 2013 pairs meet the comparison criteria, although the number of 

pairs varies across fields. Table 2.5 presents the average gross margins of cells that received 

nitrogen based on NDVI and YH. The last column shows the difference in gross margin between 

NDVI based prescription and YH based prescriptions, where positive values indicate that NDVI 

resulted in higher gross margins than YH. In 2021 and 2022, using NDVI led to higher gross 

margin than YH in five fields, while the remaining fields showed no statistically significant 

difference between NDVI and YH. In 2023, YH was more effective than NDVI in one field, while 

in the other three fields, the difference was not statistically significant.  
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Table 2.5: Spatial discontinuity average gross margin by information source: Paired t-test results  

Year Farm 

Field 

(number of 

compared pairs) 

Average gross margin ($ ha-1) 
NDVI – YH 

(std. err.) NDVI YH 

2021 

MI_A 

1 

(326) 
1913 1875 

38 ** 

(18) 

2 

(64) 
2198 2145 

53 

(83) 

3 

(133) 
2863 2720 

143 *** 

(33) 

MI_B 

1 

(219) 
3688 3645 

43 *** 

(15) 

2 

(200) 
3493 3428 

65 *** 

(13) 

3 

(31) 
1028 1098 

-28 

(70) 

4 

(219) 
2940 2900 

40 ** 

(10) 

IN_A 

1 

(111) 
3268 3298 

-28 

(23) 

2 

(11) 
3058 3113 

-58 

(125) 

3 

(80) 
3218 3258 

-38 

(35) 

2022 MI_B 

5 

(179) 
2803 2823 

-20 

(13) 

6 

(170) 
2853 2828 

25 * 

(15) 

7 

(157) 
2963 2693 

20 

(18) 

2023 

MI_A 
2 

(31) 
1083 1270 

-185 *** 

(53) 

MI_B 

1 

(31) 
878 918 

-40 

(38) 

2 

(49) 
888 898 

-10 

(20) 

3 

(12) 
1028 1098 

-28 

(70) 
***, **, * indicate significance level at less than 1%, 5%, and 10% respectively. 

2.5.3 Sensitivity analysis results 

Within the range of prices during 2009-23, the results are robust to variations in corn and nitrogen 

prices. When we use the minimum nitrogen price and maximum corn price (minimum 
𝑃𝑁

𝑃𝐶
), the 
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differences in gross margin effects between NDVI and YH increase. Conversely, with the 

maximum nitrogen price and minimum corn price (maximum 
𝑃𝑁

𝑃𝐶
), the differences between NDVI 

and YH decrease. However, the difference in relative prices was never sufficient to alter which 

information source contributed to the higher gross margin. Detailed results are presented in 

Appendix. 

2.6 Discussion 

2.6.1 Temporal weather patterns and the value of agronomic information  

The effects of different information sources on gross margins are analyzed using two analytical 

approaches: linear regression and spatial discontinuity analysis. In this discussion, we focus on 

cases where both methods yielded consistent results. The linear regression method compares gross 

margin across the entire sample while controlling for the effects of covariates. However, potential 

unobserved factors influencing both gross margins and treatment assignment may still introduce 

bias, given the non-random nature of treatment. Spatial discontinuity analysis, which limits the 

comparison to the neighboring cells, mitigates some of these concerns. However due to the small 

number of comparable samples, the standard errors for the spatial discontinuity estimates are larger 

than those in the linear regression, making the results more conservative in determining which 

information source is more effective. To assess the robustness of our findings, we compare the 

results from both methods. Considering cases where at least one method indicated statistically 

significant relative effectiveness, linear regression and spatial discontinuity analysis produced 

consistent results in 65% of the fields (11 out of 17 cases).  

In Michigan Farm A, NDVI outperformed YH in three out of four cases, but all of these 

cases occurred in 2021. For Field 2, NDVI performed better in 2021, whereas YH performed better 

in 2023, demonstrating intertemporal variation. This shift was also observed in Michigan Farm B. 
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In 2021, there was no statistical difference between NDVI and YH in all four fields. However, in 

2023, YH outperformed NDVI in three of the four fields with available data. In 2022, no consistent 

pattern emerged regarding which method was superior, as it involved different fields. Similarly, 

on the Indiana farm in 2021, YH performed better in one out of three fields, while in the other two 

fields, there was no statistically significant difference between the two methods. 

Table 2.6: Summary of results from regression and spatial discontinuity analysis 

Year Farm Field 
Linear 

Regression 

Spatial 

Discontinuity 

Consistent 

Results 

2021 

MI_A 

1 NDVI *** NDVI ** NDVI 

2 NDVI *** NDVI NDVI 

3 NDVI *** NDVI *** NDVI 

MI_B 

1 YH *** NDVI *** - 

2 NDVI NDVI *** NDVI 

3 YH NDVI - 

4 YH ** NDVI ** - 

IN_A 

1 YH *** YH YH 

2 NDVI YH - 

3 YH YH - 

2022 MI_B 

5 YH ** YH YH 

6 NDVI *** NDVI * NDVI 

7 NDVI NDVI - 

2023 

MI_A 2 YH YH *** YH 

MI_B 

1 YH ** YH YH 

2 YH *** YH YH 

3 YH *** YH YH 
***, **, * indicate significance level at less than 1%, 5%, and 10% respectively. 

The heterogeneity in the effectiveness of different information sources correlates with how 

the weather and subsequently crop conditions diverge from historical trends. The sample years 

(2021–2023) represent a range of variability in weather conditions. In 2021, corn yields in 

Michigan and Indiana marked record highs, owing to favorable weather conditions, causing yields 

to diverge positively from the historical trend. In 2022 and 2023, corn yields in Michigan came 

back to the historical trend due to dry conditions (Figure 2.2).  
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Figure 2.2: Annual corn yield in Indiana and Michigan, 2005-24 (Source: USDA) 

NDVI-based nitrogen prescriptions were more profitable than those based on yield history 

(YH) in 2021, whereas YH outperformed NDVI in 2023; no clear pattern was evident in 2022. 

NDVI, which provides in-season information on vegetation growth, proved to be more effective 

in 2021 by enabling higher nitrogen application under favorable weather conditions, resulting in 

greater gross margins compared to YH-based prescriptions. Figures 2.3 and 2.4 illustrate weekly 

corn crop conditions in Michigan during 2021 and 2023, showing the percentage of planted corn 

rated as good or excellent. The NDVI image was collected after the first side-dressing, around the 

first week of July. In 2021, crop conditions at that time were significantly better than the five-year 

average and remained favorable throughout the season (Figure 2.3). Consequently, in-season 

information allowed for more responsive nitrogen management, outperforming historical data in 

optimizing input use. 

In contrast, YH-based prescriptions were more effective in 2023 by reducing excessive 

nitrogen applications, leading to higher gross margins than NDVI-based prescriptions. When in-

season data was collected, crop conditions were below the five-year average due to early-season 
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drought (Figure 2.4). However, as the season progressed, weather conditions improved, and crop 

conditions converged to historical norms. In 2023, nitrogen prescriptions based on early-season 

NDVI underestimated crop needs, as actual crop conditions later aligned more closely with 

historical averages. 

 
Data source: USDA QuickStat (https://quickstats.nass.usda.gov/); figure reproduced by the author 

Figure 2.3: Weekly crop conditions in 2021  

 

 

Data source: USDA QuickStat (https://quickstats.nass.usda.gov/); figure reproduced by the author 

Figure 2.4: Weekly crop conditions in 2023  
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2.6.2 Potential measurement error from yield data cleaning 

Yield monitor data cleaning is an important step in preparing spatial gross margin analysis. Yield 

data collected from commercial combines often contain measurement errors arising from factors 

such as GPS signal drift, operational errors, and flow delays between crop intake and grain flow 

measurement (Blackmore and Moore, 1999; Sun et al., 2013). While these sources of error are 

well recognized, perfect correction is particularly challenging in commercial production settings, 

where detailed calibration procedures and machine-specific metadata are often unavailable. Our 

cleaning process addresses these challenges pragmatically by removing extreme outliers based on 

data-driven thresholds and assuming flow delay is consistent within each field.  

We acknowledge that this approach may not eliminate all sources of measurement errors. 

However, because these errors are consistent within fields and not systematically correlated with 

treatment assignment, they do not bias our estimation of treatment effects (Hausman, 2001). Any 

remaining measurement error in yield may only increase standard errors and reduce statistical 

significance (Hausman, 2001). Moreover, since our analysis focuses on relative differences in 

gross margins rather than absolute values, any residual measurement error in the yield data would 

not compromise the validity of our conclusions. 

2.7 Conclusion 

Variable rate nitrogen (VRN) application is a promising method for reducing excess nitrogen 

fertilizer and mitigating environmental pollution. However, the need for farmers to choose among 

new forms of timely and spatially detailed information to calculate recommended fertilizer rates 

calls for a critical evaluation of their respective contributions to profitability. While several 

methods based on low-cost and site-specific information sources, such as yield maps and remotely 

sensed images have been proposed for N rate prescription, comparative analyses of their 
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profitability remain scarce in the literature. Existing studies often rely on data from randomized 

field experiments, which hinder our ability to compare prescriptions.  

To address this gap, we proposed two methods that compare the profitability of nitrogen 

fertilizer prescriptions based on remotely sensed imagery and yield history using non-randomized 

data. We utilized gridded yield maps from 17 field-years from 13 commercial corn fields across 

three years. By using cells from gridded yield maps as a unit of observation, we can incorporate 

within-field variation more effectively, allowing for higher statistical efficiency. The estimated 

profitability of prescriptions based on NDVI compared to yield history ranges from $-410 ha-1 to 

$350 ha-1, indicating a heterogenous treatment effect across fields.  

The effectiveness of nitrogen prescription methods varied across years, with NDVI-based 

prescriptions proving more profitable when early season crop growth deviated from the historical 

mean in a manner that persisted.  This occurred in 2021, when unusually favorable early season 

conditions continued for the rest of the growing season.  By contrast, yield history (YH)-based 

prescriptions were more profitable when early season conditions failed to deviate from the norm 

or failed to carry on, as was the case in 2023. In 2021, favorable early-season crop conditions that 

persisted allowed NDVI to optimize nitrogen application, leading to higher gross margins. By 

contrast, in 2023, early-season drought conditions caused NDVI-based prescriptions to 

underestimate nitrogen needs, whereas YH-based prescriptions, which accounted for long-term 

trends, resulted in more efficient nitrogen use and higher profitability. Given the way that seasonal 

moisture availability enables N uptake and crop yield response, these findings highlight the 

profitability of adapting VRN management to seasonal weather variability by supplementing long-

term yield response information from yield history with early season crop vigor from NDVI.  The 
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two information sources complement one another, depending on whether early season growing 

conditions persist until grain fill is complete. 

This finding underscores how the value of information can be context-dependent. In zones 

where yield is unstable, varying significantly from year to year, spatial yield patterns are strongly 

driven by soil-climate interaction (Maestrini and Basso, 2021). In such context, the better predictor 

of yield can shift depending on annual weather conditions. Maestrini and Basso (2018) 

demonstrated that historical yield maps were more reliable in stable zones, areas where yield is 

relatively consistent across years, while NDVI performed better in unstable zones, where yield is 

more sensitive to annual weather variation. These results emphasize the need to strategically 

integrate different information sources to better account for both spatial and temporal variability 

in crop performance.  

This paper contributes to the literature in two ways. First, we develop a quasi-experimental 

method, using the data from an on-farm experiment and apply two analytical methods: linear 

regression and a novel application of spatial discontinuity analysis. These methods are easily 

expandable and replicable, allowing other researchers to apply and build upon our approach in 

diverse agricultural contexts. Second, we compare the effects of different VRN prescriptions on 

crop yields, a topic that has been relatively unexplored in existing research.  

This study provides an exploratory analysis based on 17 field-years of data, suggesting 

three avenues for future research. First, expanding the dataset to include more years and fields 

would allow for a more comprehensive assessment of the long-term profitability of different 

information sources under varying weather conditions, facilitating the identification of specific 

weather patterns that drive profitability. Second, the profitability analysis could be deepened by 

incorporating a range of possible information costs.  The current  gross margin over fertilizer costs 
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provides the necessary base of measuring potential ability to pay for YH and NDVI information.  

Additional research that explores information costs would contribute further toward assessing 

profitability of VRN prescriptions.  Third, the more complete profitability analysis emerging from 

these two research advances would set a more accurate base for measuring the environmental value 

of developing information-based VRN recommendations that abate excess N fertilization. 
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In this appendix, we outline the algorithm used to prescribe nitrogen and the results of the price 

sensitivity analysis. Table A2.1 presents the nitrogen prescription algorithm based on the 

combination of in-season NDVI imagery and historical yield. In Table A2-A5, we examine the 

robustness of our results to different corn and nitrogen prices.  

Table A2.1: Nitrogen prescription algorithm 

Assignment criteria 
Prescribed level of N 

Chosen 

information NDVI YH, Stability1 

High 

High High - 

Medium High NDVI 

Low Low YH 

Medium 

High Medium NDVI 

Medium Medium - 

Low 
Stable Medium NDVI 

Unstable Low YH 

Low 

High Low NDVI 

Medium 
Stable Medium YH 

Unstable Low NDVI 

Low Low - 
1: Stability indicates the temporal variance of crop yield and it is calculated following Maestrini and Basso 

(2018)2.   

 

2 Maestrini, B., and Basso. B. (2018) Drivers of within-field spatial and temporal variability of 

crop yield across the US Midwest. Scientific Reports 8:1-0. 
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Table A2.2: Linear regression analysis results ($ ha-1) with minimum nitrogen price and maximum 

corn price (the minimum 
𝑃𝑁

𝑃𝑌
) 

Year Farm Field 

Coefficient  

(clustered standard error) 
NDVI-YH 

(clustered std. err.) 
NDVI YH 

2021 

MI_A 

1 
62 ** 126 175 ** 

(27) (72) (62) 

2 
768 *** 288 *** 383 *** 

(54) (141) (133) 

3 
356 ** 146 *** 210 *** 

(37) (27) (54) 

MI_B 

1 
-203 *** -91 ** -111 *** 

(37) (42) (22) 

2 
44 30 15 

(67) (44) (59) 

3 
-86 20 -106 

(121) (77) (101) 

4 
-294 *** -84 *** -208 *** 

(89) (32) (77) 

IN_A 

1 
-200 *** 114 *** -312 *** 

(72) (25) (86) 

2 
-94 -190 *** 96 

(62) (22) (69) 

3 
40 40 0.5 

(89) (37) (104) 

2022 MI_B 

5 
-89 *** -40 ** -52 *** 

(15) (17) (20) 

6 
7 -82 *** 89 ** 

(15) (20) (15) 

7 
-7 -32 *** 25 * 

(12) (12) (15) 

2023 

MI_A 2 
-242 *** 64 -306 *** 

(42) (94) (124) 

MI_B 

1 
-84 ** -136 ** 54 

(35) (67) (64) 

2 
-153 109 **  -262 *** 

(116) (44) (84) 

3 
-96 425 *** -524 *** 

(69) (67) (49) 
***, **, * indicate significance level at less than 1%, 5%, and 10% respectively. 
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Table A2.3: Linear regression analysis results ($ ha-1) with maximum nitrogen price and minimum 

corn price (the maximum 
𝑃𝑁

𝑃𝑌
) 

Year Farm Field 

Coefficient  

(clustered standard error) NDVI-YH 

(clustered std. err.) 
NDVI YH 

2021 

MI_A 

1 
30 ** -62 * 175 *** 

(12) (25) (62) 

2 
373 *** 185 *** 185 *** 

(27) (69) (64) 

3 
173 *** 69 *** 104 *** 

(17) (12) (27) 

MI_B 

1 
-99 *** -44 ** -54 *** 

(17) (20) (10) 

2 
22 12 10 

(32) (22) (30) 

3 
-42 10 -49 

(59) (37) (49) 

4 
-141 *** -42 *** -99 *** 

(44) (15) (37) 

IN_A 

1 
-104 *** 54 *** -158 *** 

(35) (12) (42) 

2 
-49 -84 *** 35 

(30) (10) (35) 

3 
7 22 -15 

(42) (17) (49) 

2022 MI_B 

5 
-44 *** -20 ** -25 ** 

(7) (7) (10) 

6 
2 -40 *** 42 *** 

(7) (10) (7) 

7 
-5 -17 *** 12 * 

(5) (5) (7) 

2023 

MI_A 2 
-119 *** 32 -151 ** 

(20) (44) (59) 

MI_B 

1 
-40 ** -67 * -27 

(17) (32) (32) 

2 
-74 52 ** -126 *** 

(57) (22) (40) 

3 
-47 205 *** -252 *** 

(35) (32) (25) 
***, **, * indicate significance level at less than 1%, 5%, and 10% respectively. 
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Table A2.4: Spatial discontinuity analysis results with minimum nitrogen price and maximum 

corn price (the minimum 
𝑃𝑁

𝑃𝑌
) 

Year Farm 

Field 

(number of 

compared pairs) 

Average gross margin ($ ha-1) 
NDVI – YH 

(std. err.) NDVI YH 

2021 

MI_A 

1 

(326) 
2384 2340 

44 ** 

(22) 

2 

(64) 
2723 2661 

64 

(96) 

3 

(133) 
3506 3336 

170 *** 

(40) 

MI_B 

1 

(219) 
4510 4458 

52 *** 

(20) 

2 

(200) 
4277 4201 

77 *** 

(15) 

3 

(31) 
4013 3993 

20 

(42) 

4 

(219) 
3622 3573 

49 *** 

(12) 

IN_A 

1 

(111) 
4203 4238 

-35 

(30) 

2 

(11) 
3944 4013 

-72 

(153) 

3 

(80) 
4136 4183 

-47 

(42) 

2022 MI_B 

5 

(179) 
3773 3798 

-25 

(17) 

6 

(170) 
3828 3795 

32 * 

(17) 

7 

(157) 
3657 3635 

22 

(22) 

2023 

MI_A 
2 

(31) 
2491 2827 

-339 * 

(96) 

MI_B 

1 

(31) 
2229 2300 

-72 

(49) 

2 

(49) 
2254 2273 

-20 

(37) 

3 

(12) 
2511 2637 

-126 

(79) 
***, **, * indicate significance level at less than 1%, 5%, and 10% respectively. 
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Table A2.5: Spatial discontinuity analysis results with maximum nitrogen price and minimum 

corn price (the maximum 
𝑃𝑁

𝑃𝑌
) 

Year Farm 

Field 

(number of 

compared pairs) 

Average gross margin ($ ha-1) 
NDVI – YH 

(std. err.) NDVI YH 

2021 

MI_A 

1 

(326) 
857 835 

22 ** 

(10) 

2 

(64) 
1018 988 

30 

(47) 

3 

(133) 
1411 1327 

82 *** 

(20) 

MI_B 

1 

(219) 
1833 1809 

25 *** 

(10) 

2 

(200) 
1717 1680 

37 *** 

(7) 

3 

(31) 
1658 1651 

10 

(20) 

4 

(219) 
1404 1379 

25 *** 

(7) 

IN_A 

1 

(111) 
1559 1574 

-17 

(12) 

2 

(11) 
1433 1465 

-32 

(72) 

3 

(80) 
1537 1559 

-22 

(-20) 

2022 MI_B 

5 

(179) 
1525 1537 

-12 

(7) 

6 

(170) 
1557 1542 

15 * 

(10) 

7 

(157) 
1473 1463 

12 

(10) 

2023 

MI_A 
2 

(31) 
882 1045 

-163 *** 

(47) 

MI_B 

1 

(31) 
689 724 

-35 

(25) 

2 

(49) 
694 704 

-10 

(17) 

3 

(12) 
818 880 

-62 

(37) 
***, **, * indicate significance level at less than 1%, 5%, and 10% respectively. 
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CHAPTER 3. ASSESSING THE IMPACT OF POLICY SHIFTS ON WIND TURBINE 

DEPLOYMENT 1 

 

Abstract: This paper evaluates the impact of two concurrent policy interventions on wind energy 

development in Michigan: The revision of Public Act 116, which removed land-use restrictions on 

preserved farmland, and the Wind Energy Resource Zone designation under Public Act 295, which 

facilitated infrastructure expansion in high wind potential areas. Using a difference-in-differences 

approach, we analyze townships and cities in three Midwest states—Michigan, Minnesota, and 

Wisconsin—from 2000 to 2023. The results show that the PA116 revision did not have statistically 

significant impact while the Wind Zone designation contributed an additional 90 MW across the 

Wind Zone. These findings highlight that land-use policies can vary in effectiveness. Relaxing a 

weakly constraining preservation program had little effect, whereas strategically designated areas 

with clear development guidance and infrastructure support significantly promoted wind turbine 

installation. 

3.1 Introduction 

As demand for clean energy sources increases, wind energy infrastructure is being deployed at 

scale across the U.S. Midwest. Wind energy requires large, flat, and unobstructed areas, conditions 

that frequently coincide with productive agricultural land. In the Midwest, the overlap is especially 

pronounced, with 94% of wind turbines being installed on cropland (Maguire et al., 2024). This 

spatial overlap between land suitable for wind energy and land used for agriculture creates a 

context in which renewable energy projects are sited on farmland, raising important considerations 

for how land-use policies interact.  

 
1 This chapter is based on work intended for publication in collaboration with Scott M. Swinton,  
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In addition to overlapping geographically, policies may also overlap in time. Multiple 

policies are often implemented as part of a “policy mix” or “policy package” to enhance overall 

effectiveness and address the limitations of individual measures (Cunningham et al., 2009; Howlett 

and Rayner, 2013; Justen et al., 2014). This approach is especially important in the energy and 

environmental policy, where challenges are cross-sectoral and require coordinated interventions 

(Kern et al., 2019; Duffy and Cook, 2019).  

Michigan provides an example of spatial and temporal policy overlap. In 2008, the state 

introduced several major policies to accelerate wind energy development. These included a 

Renewable Portfolio Standard (RPS) mandate, which was introduced alongside Clean and 

Renewable Energy and Energy Waste Reduction Act (Public Act 295) and the revision of 

Farmland and Open Space Preservation Act (Public Act 116). These policies share the same 

objective of promoting wind energy but operate through different institutional mechanisms. Public 

Act 295 provided infrastructure by facilitating transmission planning in high-potential wind areas.  

The revision of Public Act 116 removed a potential land constraint by permitting wind turbine 

construction on preserved farmland. These policies were implemented concurrently and targeted 

overlapping land, where preserved farmland coincided with high wind energy potential.  

In this paper, we disentangle the independent and joint effects of these two concurrent 

renewable energy policies. This paper provides empirical evidence on how policy shapes 

renewable energy siting in spatially constrained settings where land is both agriculturally 

productive and technically suitable for renewable energy infrastructure. We explore how these two 

policies interacted and affected total installed wind power capacity across county subdivisions 

from 2000 to 2023. 
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This paper contributes to the growing body of literature on the effects of government 

policies on renewable energy development. While agricultural land is closely linked to wind power 

generation, there remains a research gap regarding how agricultural land use policies influence 

wind power deployment. Most existing studies focus on general wind turbine deployment without 

considering the agricultural context (Deschenes et al, 2023; Lehmann et al., 2023; Hitaj, 2013; 

Hasani-Marzooni and Hosseini, 2011). This study addresses this gap by investigating the impact 

of agricultural land use policies on wind turbine deployment. 

The determinants of wind turbine deployment in the existing literature can be broadly 

categorized into three categories: policy considerations, wind power profitability, and landowner 

characteristics. Most of the literature examining the impact of policies focuses on the effect of 

renewable portfolio standards (RPS), which are state-level policies that require utilities to produce 

or purchase a certain percentage of their electricity from renewable energy sources. Empirical 

evidence on the effectiveness of RPS varies depending on how RPS is measured. In earlier studies, 

where RPS is a binary variable (1 when in effect, 0 otherwise), the effect tends to be insignificant 

(Yin and Powers, 2010) or even negative (Delmas and Montes-Sancho, 2011). However, when 

state variation in specific RPS provisions are incorporated into the estimation model, such as 

clauses regarding existing renewable energy infrastructure and Renewable Energy Certificate 

(REC) trading, researchers tend to find a positive effect of RPS (Yin and Powers, 2010; Joshi, 

2021; Deschenes et al., 2023; Greenstone and Nath, 2020; Feldman and Levinson, 2023).  

Profitability of wind turbines, the second factor driving their installations, is contingent on 

several factors including the quantity and consistency of power generation, the efficiency of 

electricity transmission, and the demand for wind power. Wind speed plays a crucial role, with 

higher and more consistent speeds resulting in greater power output (U.S. Department of Energy 
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[DOE], 2023). Geographical features, such as elevation and mountain gaps can also influence wind 

characteristics (U.S. Energy Information Administration [EIA], 2023). Once electricity is 

generated, transmission costs are influenced by the distance between the plant and the grid, with 

greater distance incurring higher costs for the plant owner (Hitaj, 2013). Local factors such as 

wages and taxes can also affect the profitability of wind turbines by influencing construction and 

operating costs. 

Lastly, the deployment of wind turbines is linked to the decisions of landowners who 

choose to host wind projects. While profitability is a key consideration for landowners, it is not 

the sole factor impacting their decisions. Past studies have often focused on state-level analyses of 

wind turbine deployment, and they either aggregated or overlooked landowner-specific 

characteristics. One study that included sub-state level variables is Bessette and Mills (2021). 

Based on a survey of 46 energy professionals who were familiar with wind projects, they found 

that the percentage of farmers who resided on their farms, the population that worked at home, and 

the population that voted for Trump were the statistically significant precursors to wind turbine 

opposition. Winikoff and Parker (2023) observed that an increase in land ownership concentration 

correlates with a rise in installed wind energy capacity. Studies by Hitaj (2013) and Winikoff and 

Parker (2023) controlled for such variables as the distance to the nearest city and population 

density, using them as proxies for the number of people exposed to negative externalities 

associated with wind energy deployment. 

To examine the factors affecting wind turbine deployment, existing literature has employed 

various statistical models. Hitaj (2013) utilized the Tobit model. However, the Tobit model faces 

limitations due to the incidental parameter problem which causes biased estimators, leading to the 

exclusion of fixed effect variables. This omission of fixed effects prevented the Tobit model from 
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fully leveraging the panel structure of the data. Deschenes et al. (2023), Upton and Snyder (2017), 

Yin and Powers (2010), Joshi (2021), Winikoff and Parker (2023) employed the linear Two-way 

Fixed Effect model incorporating a difference-in-differences interpretation. The majority of 

studies employing panel data focused on state-level capacity, neglecting sub-state level 

characteristics in their analyses. This limitation hinders a comprehensive understanding of the 

nuanced factors influencing wind turbine deployment at a more localized level. In this study, we 

address this gap by leveraging a granular, sub-county level dataset to examine wind turbine 

deployment patterns across three comparable states.  

3.2 Background information  

3.2.1 Michigan’s Clean, Renewable, and Efficient Energy Act – Public Act 295 

On October 6, 2008, the Michigan legislature passed the Clean, Renewable, and Efficient Energy 

Act, also known as Public Act (PA) 295, which introduced a policy package to accelerate 

renewable energy deployments in Michigan. It established a Renewable Portfolio Standard (RPS), 

requiring electricity providers to increase the share of electricity generated from renewable 

sources. To support compliance, the Act facilitated infrastructure development such as 

transmission upgrades and allowed utilities to recover associated costs through regulated rates. It 

also included requirements and incentives to promote energy efficiency. 

In addition to the RPS and other state-wide measures, PA295 also promoted wind energy 

development by prioritizing regions with strong wind generation potential. It created the Wind 

Energy Resource Zone Board, which was tasked with identifying regions in Michigan with the 

highest wind energy potential. Based on this designation, the Michigan Public Service 

Commission was authorized to promote and approve transmission expansion plans within 180 days 

in those regions, with the goal of streamlining the siting process for new transmission lines. This 
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provision aimed to align infrastructure development with wind energy potential and to bring 

projects online more efficiently.  

In 2009, a Wind Energy Resource Zone was officially designated (Figure 3.1), and in 2010 

a new transmission project was launched in Michigan’s Thumb region. The Thumb region is a 

predominantly agricultural area in the eastern part of the state that extends into Lake Huron. The 

project involved installing 140 miles of 345 kV transmission lines across this region. The project 

was completed in phases between 2013 and 2015.  

 

Figure 3.1: Designated High Wind Energy Potential Regions under Clean, Renewable, and 

Efficient Energy Act (PA295), effective January 2010 

3.2.2 Michigan’s farmland preservation policy – Public Act 116 

Both federal and state governments implement policies to safeguard farmland, including 

conservation easements, property tax benefits, and non-monetary measures. Conservation 

easements involve relinquishing land development rights in exchange for compensation, 
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restricting usage exclusively to agriculture. While the easement approach offers a certain way to 

preserve land for agriculture, its permanent commitment may deter farmer participation, and it 

entails higher costs to the state government. Property tax relief programs encourage farmland 

retention by offering reduced taxes on agricultural land. Certain non-monetary policies also 

support agriculture.  For example, right-to-farm laws protect compliant farmers from nuisance 

lawsuits. State-level variations exist across policies, with some requiring enrollment and 

contractual commitments for tax or non-monetary benefits. 

Michigan distinguishes itself through a unique farmland preservation program governed 

by the Farmland and Open Space Preservation Act, commonly known as Public Act (PA) 116. It 

was established in 1975 and is overseen by the Michigan Department of Agriculture and Rural 

Development (MDARD). To participate in PA116, landowners must enroll their land by signing 

an agreement with the state. The program protects one-third of all farmland in Michigan, with over 

43,900 agreements.  

Under PA116, when the land is enrolled in the program, the state of Michigan acquires 

development rights to the land, ensuring its dedicated use for agricultural purposes throughout the 

contract’s duration. These agreements span 10 to 90 years with the possibility of extensions for a 

minimum of seven years. Enrolled landowners receive Michigan income tax credits based on the 

farm’s property tax and the total household income of the landowner. Land enrolled in the program 

is exempt from special assessment for sewers, water, lights, or non-farm drainage. If the contract 

is terminated early, a landowner is obligated to repay any tax credits received during the last seven 

years of the agreement.  

On October 7, 2008, the Michigan attorney general’s office revised PA116, allowing wind 

turbines to be constructed on land enrolled in PA116. Under the new ruling, wind turbines may be 
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placed on the enrolled land if the turbines do not substantially hinder the farming operation. In 

contrast, states like Wisconsin and Minnesota, which operate programs similar to PA116, do not 

allow the placement of commercial wind turbines on land enrolled in their farmland preservation 

programs. Once the land is enrolled in those states, wind turbines cannot be installed unless the 

landowner chooses to terminate the contract early, thereby repaying a portion or the entirety of the 

tax benefits received. This divergence in farmland preservation policies provides a unique 

opportunity for analysis, as states vary in their approaches to wind turbine placement on preserved 

land.  

By exploiting policy variations across time and space, this study examines the impact of 

two policies in Michigan: the revision of PA116, which allowed wind turbines on preserved 

farmland and the designation of Wind Zone under PA295, which targeted specific areas for wind 

development. We evaluate the PA116 revision using a cross-state comparison with Minnesota and 

Wisconsin, leveraging the fact that all three states operate similar farmland preservation programs 

that require contractual enrollment, but only Michigan revised its program to allow wind turbines 

on preserved farmland. This policy divergence allows us to isolate the impact of the PA116 

revision by comparing trends across otherwise similar states. For the Wind Zone designation, we 

use within-state comparisons between designated and non-designated areas in Michigan, which 

enables us to assess the effects of spatially targeted incentives while accounting for the statewide 

influence of the PA116 revision. Analyzing these two policies provides insight into how different 

types of regulatory decisions, one focused on land-use restrictions and the other on spatial planning, 

shape renewable energy development. The following theoretical model outlines the mechanisms 

through which these policies affect wind turbine siting decisions. 
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3.3 Theoretical model 

We develop a theoretical framework to identify the key factors influencing wind power installation 

decisions. We assume that there are two types of agents: developer and landowner. A developer 

offers a lease payment to a landowner in exchange for a land parcel on which to build wind 

turbines. A wind turbine can be installed only if a developer’s maximum willingness to pay (WTP) 

meets or exceeds a landowner’s minimum willingness to accept (WTA). Below, we describe the 

factors that influence each party’s WTP and WTA. 

While investments in wind turbines inherently involve dynamic decision-making, the 

current analysis adopts a simplified approach by employing a static model where all dynamic 

prices and costs are annualized or fixed. We assume that all variables remain constant over time, 

reflecting the long-term expectations held by wind developers and landowners at the time of 

decision-making. This approach allows the model to capture decisions based on anticipated 

average conditions, rather than short-term fluctuations. This assumption is consistent with the 

common contractual arrangement where a landowner transfers all rights for construction and 

operation to the developer in exchange for a fixed lease payment agreed upon at the time of signing 

the lease contract (Emanuel and Martin, 2012). For simplicity, we assume that the developer and 

the landowner use the same discount rate (𝛿).  

 A developer’s WTP for a lease is determined by the expected profit of the wind turbine 

project. The expected profit (πi) from installing turbines on landowner i’s land includes the revenue 

from selling electricity, offset by the costs of constructing and operating the turbines. 

Governmental policies, such as subsidies or other incentives, can affect electricity prices or 

operating costs. This expected profit defines the upper limit of the developer’s willingness to pay 

for the land. 
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E[𝜋𝑖] = ∑ 𝛿𝑡([𝑒𝑖(𝑝 − 𝑐 + 𝑝𝑜𝑙𝑖𝑐𝑦𝑑𝑒𝑣)] − 𝐹𝐶𝑖)𝑇
𝑡=0 ≥ WTP to lease land 𝑖   (1) 

Equation (1) describes a developer’s profit, where e represents the amount of electricity 

generated on land i. The price of electricity generated by wind is denoted by p. Variable c 

represents the operational cost per unit generated. The developer’s revenue is also influenced by 

policy (𝑝𝑜𝑙𝑖𝑐𝑦𝑑𝑒𝑣) which can affect the market value of wind-generated electricity or operating 

costs. For example, Renewable Portfolio Standards (RPS) require utilities to source a portion of 

their electricity from renewables, increasing demand and allowing developers to receive a price 

premium for renewable energy. FCi is annualized fixed costs. These costs may vary 

geographically, reflecting regional differences in topography, wages, and subsidies.  

A landowner’s WTA for a lease is determined by their net utility change from leasing land 

for wind turbines. This includes the perceived disamenities associated with having turbines on 

their property, offset by any additional compensation from governmental policies. A landowner is 

willing to accept the lease payment offered by the developer as long as the lease payment exceeds 

the monetized value of their utility change from hosting wind turbine on their land.  

WTA for lease land 𝑖 ≥ 𝐸[𝑈𝑖] = ∑ 𝛿𝑡[
𝜆𝑖

𝜇𝑖
𝑑𝑖𝑠𝑎𝑚𝑒𝑛𝑖𝑡𝑦𝑖 − 𝑝𝑜𝑙𝑖𝑐𝑦𝑙𝑎𝑛𝑑]𝑇

𝑡=0    (2) 

Wind turbines may affect a landowner’s personal utility by causing displeasure 

(𝑑𝑖𝑠𝑎𝑚𝑒𝑛𝑖𝑡𝑦𝑖 ) due to noise or landscape alterations. Policies (𝑝𝑜𝑙𝑖𝑐𝑦𝑙𝑎𝑛𝑑 ) that offer financial 

compensation for hosting wind turbines can influence the landowner’s utility by offsetting these 

potential disamenities. In Equation (2), µi and λi represent landowner i’s marginal utility of income 

and the marginal disutility of wind turbines, respectively and 
𝜆𝑖

𝜇𝑖
 represents the marginal rate of 

substitution between a disamenity and income, monetizing the perceived disamenity from hosting 

wind turbines.  
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As noted at the outset of this section, a wind power development project can only proceed 

on land i if a developer’s maximum WTP for lease exceeds a landowner’s minimum WTA.  

∑ 𝛿𝑡([𝑒𝑖(𝑝 − 𝑐 + 𝑝𝑜𝑙𝑖𝑐𝑦𝑑𝑒𝑣)] − 𝐹𝐶𝑖)𝑇
𝑡=0 ≥ ∑ 𝛿𝑡[

𝜆𝑖

𝜇𝑖
𝑑𝑖𝑠𝑎𝑚𝑒𝑛𝑖𝑡𝑦𝑖 − 𝑝𝑜𝑙𝑖𝑐𝑦𝑙𝑎𝑛𝑑]𝑇

𝑡=0   (3) 

The likelihood of wind turbines being installed on land i depends on the probability that 

the condition specified in Equation (3) is satisfied. Hence, the variables in Equation (3) are all 

relevant factors that influence decisions in wind turbine installation. Assuming the probability of 

lease payment is normally distributed, this probability is expressed using the standard normal 

cumulative distribution function Φ, as shown in Equation (4). Wind turbines are more likely to be 

situated on land i when there is a broader agreement on the range of lease payments between 

landowner i and a developer. For instance, an increase in price leads to a higher offer from a 

developer and therefore increases the probability of wind turbines being constructed. Conversely, 

when there is an increase in the landowner’s marginal disutility from wind turbines, it increases 

the landowner’s minimum acceptable lease payment. This, in turn, narrows the potential range of 

acceptable lease payments and reduces the probability of wind turbines being built. 

𝑃𝑟𝑜𝑏𝑖(𝑊𝑖𝑛𝑑 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝐵𝑢𝑖𝑙𝑡) 

= Φ [∑ {𝛿𝑡[𝑒𝑖(𝑝 − 𝑐 + 𝑝𝑜𝑙𝑖𝑐𝑦𝑑𝑒𝑣) − 𝐹𝐶𝑖 − (
𝜆𝑖

𝜇𝑖
𝑑𝑖𝑠𝑎𝑚𝑒𝑛𝑖𝑡𝑦𝑖 − 𝑝𝑜𝑙𝑖𝑐𝑦𝑙𝑎𝑛𝑑)]}𝑇

𝑡=0 ]   (4) 

A policy that increases the net benefit to developers (𝑝𝑜𝑙𝑖𝑐𝑦𝑑𝑒𝑣), by increasing electricity 

prices or decreasing operating costs raises the likelihood of installation (
𝜕𝑃𝑟𝑜𝑏(𝑊𝑖𝑛𝑑 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝐵𝑢𝑖𝑙𝑡)

𝜕𝑃𝑜𝑙𝑖𝑐𝑦𝑑𝑒𝑣
>

0). Similarly, a policy that compensates landowners (𝑝𝑜𝑙𝑖𝑐𝑦𝑙𝑎𝑛𝑑 ) and offsets the disamenities 

associated with wind turbines also increases the likelihood of installation 

(
𝜕𝑃𝑟𝑜𝑏(𝑊𝑖𝑛𝑑 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝐵𝑢𝑖𝑙𝑡)

𝜕𝑃𝑜𝑙𝑖𝑐𝑦𝑙𝑎𝑛𝑑
> 0). Although the effects of policies targeting developers or landowners 

are theoretically positive, their marginal impacts remain an empirical question.   
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While Equation (4) provides the theoretical framework on how policies targeting wind 

developers and landowner influence wind turbine installation, we estimate a reduced-form 

specification where installed wind turbine capacity is modeled as a function of the variables in 

Equations (3) and (4). The following empirical analysis explores the impacts of two policies,  

PA295 and the revision of PA116, on wind turbine installations. Wind Zone designation under 

PA295 targets developers by reducing operating costs through the provision of transmission 

infrastructure. The revision of PA116 targets landowners by compensating them for hosting wind 

turbines through tax credits. We examine how, and to what extent, the PA116 revision and PA295 

influence wind turbine construction on farmland. 

3.4 Data 

We employ a dataset that spans from 2000 to 2023 and covers Michigan, Minnesota, and 

Wisconsin. The unit of analysis is county subdivisions, such as townships and cities, and all 

variables are measured accordingly. As we specifically focus on wind turbines situated on 

farmland, we construct the dependent variable by combining the data from United States Wind 

Turbine Database (USWTDB; Hoen et al., 2025) and the Cropland Data Layer (CDL; U.S. 

Department of Agriculture, 2025). To isolate wind turbines located on farmland, we use a GIS 

program to connect wind turbine placement with the corresponding land use. In instances where 

CDL data is unavailable, we utilize National Land Cover Database (NLCD), assuming that the 

land cover remains constant during periods when CDL data is unavailable. Then the information 

on wind turbines located on farmland is aggregated at the township/city level based on the 

boundaries as of 2022.  

The dependent variable is newly added wind energy capacity. Instead of total (cumulative) 

capacity, we use annual added capacity, defined as the wind capacity that became operational in 
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each calendar year, as the outcome variable to ensure a valid assessment of parallel trend 

assumption. When the rate of annual additions is similar across township/city, the parallel trends 

assumption is likely to hold. However, when we use cumulative outcomes, even small differences 

in the slope of annual additions can lead to increasingly divergent cumulative values over time and 

this compounding effect can create the appearance of non-parallel trends, even if the underlying 

trend in annual additions is consistent. By focusing on annual additions, we preserve the linearity 

of the outcome and enable a clearer comparison of trends. The analysis includes a total of 6268 

county subdivisions, including 1580 in Michigan, 2761 in Minnesota, and 1927 in Wisconsin.  

Factors influencing a wind power developer’s decision to install wind turbines include the 

amount of electricity that can be generated (𝑒𝑖), government policy (𝑝𝑜𝑙𝑖𝑐𝑦𝑑𝑒𝑣), and fixed costs 

for installation (𝐹𝐶𝑖) (Equation 1). Electricity generation potential is primarily determined by 

natural characteristics such as wind speed and topography. Fixed costs for installation reflect 

regional differences in wages and taxes. Since these factors are time-invariant, we control them 

using the county fixed effect. We do not include electricity prices (𝑝) and operational costs (𝑐) 

from the analysis, as these factors exhibit little spatial variation within the study area. 

Although proximity to transmission infrastructure can introduce spatial variation in wind 

turbine operating costs (𝑐) by lowering transmission expenses (Lamy et al., 2016), we do not 

include a transmission line related variable in our analysis due to methodological and data 

limitations. First, transmission line developments are highly endogenous to wind turbine 

deployment. While access to transmission infrastructure facilitates wind energy expansion, the 

construction of wind turbines can, in turn, create congestion in existing lines (LaRiviere and Lyu, 

2022; Bell et al., 2016), thereby promoting further transmission investment. One strategy to 

address this endogeneity is to use lagged variables. However, this would shorten the post-treatment 
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period available for analysis due to limited historical data. Second, publicly available data on 

transmission infrastructure with exact transmission line locations is limited to data from Homeland 

Infrastructure Foundation-Level Data (HIFLD), which includes transmission lines that are 

currently in operation. However, this dataset does not include information on when the line was 

constructed, making it unsuitable for our empirical setup. Another publicly available data source 

includes transmission line construction permits which can be obtained from state Public Service 

Commissions. However, while Minnesota and Wisconsin require public permitting for high-

voltage transmission lines, Michigan does not, resulting in inconsistent coverage of data across 

states. Taken together, these limitations make the inclusion of detailed transmission line data 

impractical.  

For policies targeting wind power developers, we include variables related to local zoning 

ordinances, Renewable Portfolio Standards (RPS), and year fixed effects. Local zoning ordinances 

governing wind turbine installation reflect county or sub-county level policies. Ordinance data is 

mainly from WINDExchange (2023) and Lopez and Levine (2022). We include an indicator 

(ordinance) for whether the area has any zoning ordinances related to wind energy in place, but 

do not account for the specific provisions of the zoning. To address missing values, we cross-

referenced local zoning ordinances. The RPS_GWh variable is taken from Barbose (2023), where 

the author measured each state’s RPS stringency by considering Renewable Energy Credits 

(RECs) that would be required given each state’s total electricity sales and existing infrastructure. 

We also include a binary variable indicating whether a state has RPS policy (RPS_yes) to account 

for additional policies bundled with RPS, such as net metering, that are not captured by the 

renewable energy generation requirement (RPS_GWh) alone. We account for the potential impact 
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of all federal level policies using year fixed effects, as federal policies affect all counties uniformly 

in a given year. 

On the landowners’ side, we proxy the perceived amount of disamenity (𝜆𝑖 ∙ 𝑑𝑖𝑠𝑎𝑚𝑒𝑛𝑖𝑡𝑦𝑖 

in Equation 2) using the local population (population), under the assumption that the more people 

residing near a turbine, the greater the total perceived disamenity. To capture the marginal utility 

of income (𝜇𝑖) that affects landowner’s WTA (Equation 2), we include median household income 

(income). Under the assumption of diminishing marginal utility, landowners with higher income 

have lower marginal utility of income. As a result, they are expected to require a higher lease 

payment to be willing to accept the wind turbine installation. Other landowner characteristics in 

township/city level are sourced from the American Community Survey.  

Table 3.1: Summary statistics – average and standard deviation of control variables of entire 

samples 

Theoretical variables 
Empirical 

variables 
Average 

Standard 

deviation 

Developer’s side 

𝑝𝑜𝑙𝑖𝑐𝑦𝑑𝑒𝑣,𝑖 

ordinance 0.18 0.38 

RPS (GWh) 6153 5364 

RPS_yes 0.70 0.35 

Year FE - - 

𝑒𝑖 County FE - - 
𝐹𝐶𝑖 

Landowner’s 

side 

𝜆𝑖 ∙ 𝑑𝑖𝑠𝑎𝑚𝑒𝑛𝑖𝑡𝑦𝑖 population 3313 16066 

𝜇𝑖 income 55297 20114 

𝑝𝑜𝑙𝑖𝑐𝑦𝑙𝑎𝑛𝑑,𝑖 MI*After2008 0.17 0.37 

3.5 Empirical Methods 

To disentangle the impact of multiple policies on wind turbine investments, we employ a 

difference-in-difference (DiD) approach by comparing the total installed wind power capacities in 

treated county subdivisions with those in the relevant control group. The DiD addresses the 
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potential endogeneity of the treatment assignment, which may arise if it is selectively adopted by 

states with high potential benefits. We rely on the assumption that, conditional on covariates, the 

treatment is unconfounded.  

We estimate the impacts of PA116 revision and Wind Energy Resource Zone (hereafter, 

Wind Zone) designation separately, using different subsets of data to isolate the effects of two 

distinct policies. This approach is motivated by concern about potential bias arising from 

“contamination weights” in two-way fixed effects (TWFE) models, as discussed by de 

Chaisemartin and D’Haultfoeuille (2023). When we include multiple treatments simultaneously in 

TWFE models, the estimated coefficient for one treatment may incorporate not only a weighted 

average of its own treatment effects, but also a weighted average of the effects of the other 

treatment(s). The second term is referred to as “contamination weights”, and it can bias the 

treatment effect estimator if treatment effects vary across groups or time. In our study, the Wind 

Zone designation (PA295) was implemented only to a subset of the units that are also exposed to 

the PA116 revision, creating overlap between the two treatments. This overlap can introduce 

contamination bias when estimating both treatment effects in the same model, as units exposed to 

both treatments or only one may be incorrectly used as controls for the other, leading to biased 

estimates.  

To avoid this source of bias, we estimate separate models on subsamples in which only one 

policy varies. To identify the impact of the PA116 revision, we exclude units that were designated 

as Wind Zone and compare units that had comparable farmland preservation policies until 2008. 

To estimate the impact of Wind Zone designation, we restrict the sample to units already exposed 

to the PA116 revision and compare outcomes between designated and non-designated areas. 

3.5.1 Estimating the impact of the PA116 revision 
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To estimate the impact of PA116 revision, we compare Michigan with Wisconsin and 

Minnesota. Wisconsin and Minnesota serve as suitable counterfactuals for Michigan, given their 

geographical proximity and similar agricultural settings. Importantly, their farmland preservation 

policies closely resemble Michigan’s, which is essential for estimating the impact of the 2008 

revision to PA 116. All three states require contractual commitment from landowners in exchange 

for tax benefits, a distinctive feature that shapes how farmland preservation programs operate. 

Prior to 2008, none of these states permitted wind turbines on preserved farmland. In 2008, 

Michigan introduced the PA116 revision enabling wind turbines on enrolled lands, while wind 

turbine installations remained restricted on preserved farmland in Wisconsin and Minnesota. 

Equation (5) present employed DiD specification for estimating the impact of the PA116 revision. 

𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑖𝑡 = 𝛽1𝑀𝐼𝑖 ∙ 𝑃𝑜𝑠𝑡2008𝑡 + 𝑋𝑖𝑡 + 𝜌𝑖 + 𝜎𝑡 + 𝜖𝑖𝑡     (5) 

𝑀𝐼𝑖 is an indicator for treatment group, and Post2008t is an indicator for years after the policy 

implementation. 𝑋𝑖𝑡 is a vector of control variables, including an indicator variable for the presence 

of zoning ordinance, population, median household income, an indicator variable for whether RPS 

is in place, and the amount of electricity required to come from renewable sources under the RPS 

(GWh). To address potential reverse causality where wind turbine projects might influence the 

enactment of zoning ordinances, we include a three-year lag of the zoning ordinance variable 

(𝑜𝑟𝑑𝑖𝑛𝑎𝑛𝑐𝑒𝑡−3). 𝜌𝑖  is a county fixed effect to control for time-invariant county characteristics 

such as landscape and natural amenities. Year fixed effect 𝜎𝑡 control for time-varying impacts that 

affect all samples such as federal policy or technological advances. The dependent variable, 

𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑖𝑡 represents wind power capacity installed in county-subdivision i during year t. The 

coefficient of interest 𝛽1 indicates the average treatment effect of PA116 revision. 

3.5.1.1 Identification strategy for estimating the PA116 Revision’s impact 
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We interpret the estimated effect as causal under the parallel trends assumption that the county 

subdivisions in Michigan (treated group) and in the other states (non-treated groups) would have 

followed the same time trend in wind turbine capacity, if there was no policy.  To assess the 

plausibility of the parallel trends assumption, we conduct event study analyses by estimating 

Equations (6), 

𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑖𝑡 = ∑ 𝛾𝜏𝑀𝐼𝑖 ∙ 𝑌𝐸𝐴𝑅𝜏 + 𝑋𝑖𝑡 + 𝜌𝑖 + 𝜎𝑡 + 𝜖𝑖𝑡  𝜏≠2007     (6) 

where YEARτ is an indicator variable for the year τ. 𝑀𝐼𝑖 is an indicator variable for treated group. 

𝑀𝐼𝑖 identifies all townships and cities in Michigan that were affected by the PA116 revision in 

2008.  

Figure 3.2 presents the estimated coefficients 𝛾𝜏, which capture the average differences in 

added wind power capacity between treated and control groups over time. To test the validity of 

the parallel trends assumption, we conduct a Wald test of the null hypothesis that the pre-treatment 

coefficients jointly equal zero. The test yields a test statistic of 8 with a p-value of 0.11, indicating 

there are no statistically significant differences between the counties in Michigan and the 

comparison counties prior to the 2008 policy revision.  
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Note: Error bars indicate 95% confidence intervals. Standard errors are clustered at township/city 

level. 

Figure 3.2: Estimated effect of PA116 revision from event study – 6187 townships/cities in 

Michigan, Minnesota, and Wisconsin 

The potential concern is the presence of spillover effects between treatment and control 

groups. Specifically, the treatment may influence not only the treated areas but also the control 

areas by stimulating wind development more broadly. To assess this possibility, we examine the 

structure of wind turbine manufacturing industry. Wind turbine suppliers primarily operate at the 

national scale, with GE Vernova, Vestas, and Siemens Energy AG accounting for nearly 90% of 

installed capacity in the United States (Wilson, 2023). In Michigan, turbines are sourced from 

these major manufacturers as well as local firms. In 2010, Michigan accounted for only 0.4% of 

total installed wind power capacity in the US (EIA, 2025). Given this marginal share, it is unlikely 

that policy changes in Michigan had any meaningful impact on the broader wind manufacturing 

market in other states.  
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Another potential source of spillover effects is the relocation of wind developers in 

response to the policy change. If wind developers shifted their investment from control areas to 

treated areas due to the newly enacted policies, such a spillover could lead to overestimation of 

the treatment effect. To assess this possibility, we examine all operators who constructed wind 

turbines in Michigan, Wisconsin, and Minnesota between 2002 and 2023, identifying whether any 

developers were active in more than two states. Although there are no legal barriers preventing 

out-state construction, we find that no operator constructed wind turbines in more than two states, 

suggesting that this form of spillover effect is unlikely. 

3.5.2 Estimating the impact of the Wind Zone designation under PA295 

We examine the effect of the Wind Zone designation, which was implemented in a subset of 

Michigan townships and cities (Figure 3.1). To estimate the impact of Wind Zone designation, we 

compare townships and cities that were designated as Wind Zone with those in Michigan that were 

not designated as Wind Zone. Equation (7) present employed DiD specifications.  

𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑖𝑡 = 𝛽2𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒𝑖 ∙ 𝑃𝑜𝑠𝑡2008𝑡 + 𝑋𝑖𝑡 + 𝜌𝑖 + 𝜎𝑡 + 𝜖𝑖𝑡    (7) 

𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒𝑖 is an indicator for treated township/city, and Post2008t is an indicator for years after 

the policy implementation. 𝑋𝑖𝑡 is a vector of control variables. It includes the same set of controls 

used in the PA116 revision analysis, excluding the RPS variables. Since the estimation for the 

Wind Zone designation impact is limited to townships and cities within Michigan, the RPS 

variables are not included in Equation (7) because they do not vary within the state. All other 

variables in Equation (7) are defined as in Equation (5). The coefficient of interest 𝛽2 represents 

the average treatment effect of Wind Zone designation. 

We further examine the heterogeneity in the Wind Zone designation treatment effect based 

on the amount of land enrolled in PA116. While all townships and cities in Michigan were subject 

to the 2008 PA116 revision, areas with more acres under PA116 may have experienced a greater 
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change in land-use constraints, with the PA116 revision effectively freeing up more land for 

potential wind development. To test this, we interact the treatment indicator with 𝑃𝐴116𝑖, which 

is total acres enrolled in PA116 in 2005, 2006, and 2007. We exclude post-2008 enrollment data 

to avoid endogeneity, as the policy revision could itself influence subsequent enrollment. We begin 

with 2005 data due to limited data availability prior to that year. Equation (8) presents the 

specification used to estimate the heterogeneous effect of the Wind Zone designation with respect 

to previously enrolled PA116 acres.  

𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑖𝑡 = 𝛽3𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒𝑖 ∙ 𝑃𝑜𝑠𝑡2008𝑡 ∙ 𝑃𝐴116𝑖 + 𝛽4𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒𝑖 ∙ 𝑃𝑜𝑠𝑡2008𝑡 + 𝑋𝑖𝑡 + 𝜌𝑖 + 𝜎𝑡 + 𝜖𝑖𝑡 

  (8) 

3.5.2.1 Identification strategy for estimating Wind Zone designation impact 

As in the previous section, we apply a similar event study specification to test for any statistically 

significant differences between the Wind Zone designated units and the control units prior to the 

policy’s implementation. Equation (9) presents the specification used for the event study analysis. 

𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑖𝑡 = ∑ 𝜔𝜏𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒𝑖 ∙ 𝑌𝐸𝐴𝑅𝜏 + 𝑋𝑖𝑡 + 𝜌𝑖 + 𝜎𝑡 + 𝜖𝑖𝑡  𝜏≠2007    (9) 

YEARτ is an indicator variable for the year τ and 𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒𝑖 identifies designated as Wind Zone 

areas. All other variables are defined as in Equation (8).  

Figure 3.3 presents the estimated coefficients 𝜔𝜏 . The estimated results suggest an 

anticipation effect prior to the official Wind Zone designation. In 2008, when PA295, which 

established the committee to identify Wind Energy Resource Zones, was enacted, there was a 

statistically significant increase in newly added wind capacity in areas that would later be officially 

designated as Wind Zone in 2009. Based on this event study, we assume that the effect of PA295 

began in 2008, when the planning process was initiated, rather than in 2009 when the designation 

was formally announced.  
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Note: Error bars indicate 95% confidence intervals. Standard errors are clustered at township/city 

level. 

Figure 3.3: Estimated effect of Wind Zone designation from event study – 1580 townships/cities 

in Michigan 

3.5.3 Time discrepancy between policy revision and observed wind turbine increase 

The event study results in Figure 3.2 and 3.3 show an increase in wind turbine capacity beginning 

in 2012. The lag between policy revision and the observed increase in wind capacity likely reflects 

the time required for planning, permitting, and constructing wind turbines. While the actual 

construction of a 50 MW wind farm typically takes less than a year, the permitting process requires 

approvals from various authorities at the local, state, interstate, and federal levels. This process 

extends over multiple years, with potential delays arising from factors such as litigation and 

negotiations between developers and landowners (Sud and Ptnaik, 2022). Deschenes et al., (2023) 

demonstrated that there is a statistically significant effect of RPS on wind capacity after 5 years. 

Similarly, Greenstone and Nath (2020) utilized a 7-year timeframe following RPS enactment to 

capture the effects of RPS on electricity prices. Looking specifically at Michigan, Harsh et al. 

(2008) notes that contract duration often involves multiple years of evaluation or discovery phase 
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where developers analyze the economic viability of projects and await favorable market conditions 

before turbine construction. Figure 3.4 illustrates the time discrepancy between agents’ decision-

making timing and the observed data on wind turbines. Because the PA116 revision and the Wind 

Zone designation were implemented within a short time span, and wind projects typically require 

several years to plan and construct, both policies should be considered together when estimating 

the impact of each. This approach helps account for their temporal overlap and avoids 

misattributing effects from one policy to the other. 

 

Figure 3.4: Why there is lag between agents’ decision making and data on wind turbine 

installation 

3.6 Results and discussion 

3.6.1 Policy impact on wind turbine capacity 

Table 3.3 presents the estimated results of the difference-in-differences specifications. Column (1) 

reports the estimated impact of PA116 revision, using townships and cities in Michigan, Minnesota, 

and Wisconsin, excluding those in Michigan that are designated Wind Zones. Column (2) presents 

the estimated impact of Wind Zone designation using townships in Michigan. 

Following the PA116 revision in 2008, which allowed wind turbines on preserved farmland, 

Michigan’s townships and cities did not experience statistically significant increase in added wind 

turbine capacity. In Table 3.2, Column (1), the coefficient of the term 𝑀𝐼 ∗ 𝑃𝑜𝑠𝑡2008, indicating 
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units treated with PA116 revision, is statistically insignificant, suggesting that the policy change 

did not meaningfully affect siting decisions. The coefficient of the term income is -1.20 and 

statistically significant at the 10% level, indicating that each $1000 increase in median household 

income (income) is associated with 1.2 kW decrease in added wind capacity. In contrast, the 

coefficient of the term RPS_GWh is 0.01 and statistically significant at the 10% level, indicating a 

100 GWh increase in RPS requirement (RPS_GWh) leads to a 1kW increase in added wind 

capacity. Given that Michigan’s average RPS requirement since its introduction in 2008 is 9824 

GWh (Barbose, 2023), the implied impact of RPS is at about 98 kW per township/city. The 

indicator variable for having an RPS (RPS_yes) is not statistically significant, suggesting that most 

of the RPS’s impact stems from the renewable energy generation requirement, rather than from 

auxiliary measures such as net metering or other incentives. 

The Wind Zone designation significantly boosted wind turbine capacity in the affected 

townships. The interaction term𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 in Column (2) is statistically significant at 

1110 indicating that Wind Zone designation effectively increased the added wind capacity in 

treated areas. The Wind Zone designation under PA295 led to an average increase of 1110 kW per 

designated township, totaling about 90 MW across the Wind Zone, which covers only 3% of 

Michigan’s land area. While PA116 revision did not have any significant impact on wind power 

capacity, the Wind Zone designation had a concentrated and substantial impact.  
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Table 3.2: Estimated impact of PA116 revision and Wind Zone designation using DiD from 

2003 to 2023 

 Impact on newly added wind capacity (kW) 

 
(1) 

PA116 revision 

(2) 

Wind Zone designation 

𝑀𝐼 ∙ 𝑃𝑜𝑠𝑡2008 
36.3 

(25.1) 
- 

𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 - 
1110*** 

(281) 

Ordinance (t-3) 
-37.5 

(44.4) 

-320 

(205) 

population (1000 people) 
-0.670 

(0.455) 

-0.433 

(0.899) 

income ($1000) 
-1.20* 

(0.705) 

-1.38 

(2.42) 

RPS_GWh 
0.00609* 

(0.00368) 
- 

RPS_yes 
8.15 

(25.5) 
- 

Number of Township FE 
6187 

(In MI, MN, WI) 

1580 

(In MI only) 

Number of Year FE 21 21 

R squared 0.06 0.07 
***, **, * represent statistical significance at the 1%, 5%, and 10% levels; all standard errors are clustered at 

the township/city level. 

We further examine the heterogeneity in the treatment effect based on the amount of land 

enrolled in PA116.  The results suggest that while the Wind Zone designation had a positive impact 

on wind capacity, this effect did not vary with the level of prior PA116 enrollment. The interaction 

term between the treatment indicator and PA116 acreage (𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 ∙ 𝑃𝐴116) is not 

statistically significant. This result suggests that although PA116 revision expanded the land 
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available for potential wind development, within Wind Zone, those areas with more newly 

available land did not necessarily see greater wind turbine deployment.  

Table 3.3: Estimated impact of Wind Zone designation using DiD and interaction with 2005-

2007 PA116 acres 

 Newly added wind capacity (kW) 

 Wind Zone designation 

𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 
997*** 

(315) 

𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 ∙ 𝑃𝐴116 
1.24 

(1.45) 

Ordinance (t-3) 
-311 

(206) 

population (1000) 
-0.421 

(0.892) 

income ($1000) 
-1.34 

(2.42) 

Number of Township FE 
1580 

(In MI only) 

Number of Year FE 21 

R squared 0.07 
***, **, * represent statistical significance at the 1%, 5%, and 10% levels; all standard errors are clustered at 

the township/city level. 

3.6.2 Robustness check 

As discussed in the earlier section, because contamination weights can bias the estimated policy 

impact when multiple policy indicators are included simultaneously, our preferred specification 

estimates each policy’s impact separately using different subsets of the data. As a robustness check, 

however, we also report estimates from two model specifications that incorporate both PA116 

revision and the Wind Zone designation (Table 3.4). Column 1 presents estimates from the model 

that includes both PA116 revision and Wind Zone designation simultaneously. Column 2 extends 

the model by incorporating a heterogeneous Wind Zone impact that varies with PA116-enrolled 

acres from 2005 to 2007. Column 1 corresponds to the results presented in Table 3.2, and Column 

2 aligns with Table 3.3.  
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 The estimated effect of the PA116 revision is consistent across specifications, suggesting 

that this result is robust to model choice. In contrast, the estimated impact of Wind Zone 

designation is larger when included alongside the PA116 revision. In the model without 

heterogeneous impact of Wind Zone designation (Table 3.4, Column 1), the estimated coefficient 

of 𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 is 1165 compared to 1110 in the preferred specification that excludes the 

impact of PA116 revision (Table 3.2, Column 2). In the model with heterogeneous impact of Wind 

Zone designation (Table 3.4, Column 2), the coefficient of 𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 is 1031, again 

higher than 997 estimated in the corresponding preferred specification (Table 3.3). In both models, 

the estimated effect of the Wind Zone designation appears to be upwardly biased, likely due to 

contamination weights stemming from overlapping treatment timing and the interactions between 

the policies.  
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Table 3.4: Estimated impact of PA116 revision and Wind Zone designation using models that 

include two policies simultaneously 

 Impact on newly added wind capacity (kW) 

 (1) (2) 

𝑀𝐼 ∙ 𝑃𝑜𝑠𝑡2008 
36.1 

(25.2) 

35.9 

(25.2) 

𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 
1170*** 

(282) 

1030*** 

(318) 

𝑊𝑖𝑛𝑑𝑍𝑜𝑛𝑒 ∙ 𝑃𝑜𝑠𝑡2008 ∙ 𝑃𝐴116 - 
1.45 

(1.46) 

Ordinance (t-3) 
-48.9 

(47.9) 

-47.5 

(47.9) 

population (1000) 
0.0903 

(0.368) 

0.0926 

(0.367) 

income ($1000) 
-1.12 

(0.718) 

-1.12 

(0.717) 

RPS_GWh 
0.00414 

(0.00379) 

0.00416 

(0.00379) 

RPS_yes 
14.2 

(25.7) 

14.3 

(25.7) 

Number of Township FE 
6268 

(In MI, MN, WI) 

6268 

(In MI, MN, WI) 

Number of Year FE 21 21 

R squared 0.06 0.06 
***, **, * represent statistical significance at the 1%, 5%, and 10% levels; all standard errors are clustered at 

the township/city level. 

3.6.3 Relative magnitudes of policy incentives from PA116 

The results indicate that the PA116 revision did not have a statistically significant impact on its 

own, whereas PA295 did.  Moreover, the impact of PA295 did not vary in response to prior PA116 

enrollment levels. These findings suggest that increased land availability played a limited role in 

influencing wind development within the designated Wind Zone. One possible explanation for this 
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null effect of PA116 revision is that the policy revision did not offer a substantially stronger 

incentive compared to the previous policy, due to the structure of its tax credit. While the PA116 

revision had theoretical potential to influence a landowner’s willingness to accept a wind power 

lease by offering tax credits (𝑝𝑜𝑙𝑖𝑐𝑦𝑙𝑎𝑛𝑑 in Equation 4), its empirical magnitude appears not to 

have been large enough to meaningfully affect wind turbine development.  

The amount of tax credit offered to PA116 participants is calculated based on property tax 

and household income, as shown in the equation below. 

𝑇𝑎𝑥 𝑐𝑟𝑒𝑑𝑖𝑡 = 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑡𝑎𝑥 − 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 ∗ 3.5%  (10) 

Under the PA116 program, landowners are eligible for a tax credit only when property taxes 

exceed 3.5% of household income. However, since 2009, property taxes as a share of personal 

income in Michigan have been declining and have consistently remained below this 3.5% 

threshold at the state level (Figure 3.5), suggesting that eligible tax credit amount is likely to be 

small. Although annual PA116 tax credit data are not publicly available, Harlow (2012) reports 

that in 2012, $43.9 million tax credits were issued for 3.2 million enrolled acres, which indicates 

that approximately $14 per acre in tax credits was paid to owners of farmland.  
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Source: US Census Bureau Annual Survey of State and Local Government Finances, 1977-2022 

(compiled by the Urban Institute Accessed 2023-11-28) 

Figure 3.5: Property taxes as a share of personal income in Michigan have been declining below 

3.5% 

Compared to the modest tax credit offered through PA116 program, the financial incentive 

for leasing land for wind turbines is substantially higher, offering landowners a strong motivation 

to terminate preservation contracts in favor of wind development. The typical lease payment in the 

U.S. is approximately $3000 /MW/year, though payments can vary based on location, profitability, 

and land area (DOE, 2015). In Michigan, wind developers paid nearly $39 million annually in 

lease payments as of 2022 (ACP, 2022). Given Michigan’s total installed wind power capacity of 

3102 MW in 2022 (State of Michigan, 2022), the average lease payments is estimated to be around 

$12000 per MW. Assuming each megawatt of wind capacity requires 79 acres 2 (Denholm et al., 

 
2 While wind turbines and associated infrastructure physically occupy a relatively small portion of land (2.5 ac/ 

MW, Denholm et al., 2009), turbine spacing and setback requirements significantly increase the total land area 

needed per turbine. In wind energy leasing, although developers typically do not hold rights to the entire area 

surrounding the turbines, landowners lease larger portions of land to accommodate turbine placement and spacing 

requirements. As a result, areas beyond the physical footprint of the infrastructure are dedicated to the project. 

Therefore, in this calculation, we use the total land area required per megawatt of capacity. 
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2009), this translates to about $152 per acre. The typical U.S. lease payment of $3000 per MW 

translates to approximately $38 per acre.  

The stark contrast between the high wind lease payments and the relatively small PA116 

tax credit underscores the limited role of PA116 in influencing wind turbine deployment. While 

wind lease payments average approximately $152 per acre in Michigan, the PA116 tax credit 

amounted to an average of about $14 per acre.  In many cases, landowners may have received no 

tax credit at all if their property taxes failed to exceeded 3.5% of household income. As a result, 

even after the policy change allowing wind turbines on PA116-enrolled land, the impact was likely 

limited, as the tax credit remained negligible for many landowners both before and after the 

revision. 

3.7 Conclusions 

This study examines the interaction between farmland preservation and wind energy policies in a 

context where agricultural land overlaps with areas of high wind energy potential. Using sub-

county level data from 2000 to 2023 across Michigan, Minnesota, and Wisconsin, and employing 

a difference-in-differences framework, we evaluate the effects of two policy changes in Michigan: 

1) the revision of the PA116 farmland preservation program, which permitted wind turbine 

installation on preserved farmland, and 2) the designation of Wind Zones under PA295, which 

prioritized areas for wind energy development and transmission planning.  

 Our findings offer several contributions to literature. First, while prior studies have 

emphasized the restrictive effects of land-use regulations, such as setback requirements and 

environmental zoning, on renewable energy development (O’Brien and Hagerty, 2025; Lehmann 

and Tafarte, 2024; Meier et al., 2024; Lopez et al., 2023; Winikoff and Parker, 2023; Lauf et al., 

2020), we investigate the opposite scenario: whether relaxing such restrictions facilitates wind 
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turbine deployment. We find that permitting wind turbine on preserved farmland did not lead to a 

measurable increase in wind turbine capacity.  

This stands in contrast to findings from Germany, where expanding the designated priority 

areas for wind development significantly boosted turbine deployment (Lauf et al., 2020; Meier et 

al., 2023). In those cases, municipalities typically only permitted wind turbines within the 

designated priority areas, making the policy binding and highly influential in shaping land use.  

While this approach is functionally similar to the PA116 revision, as it expands the land area where 

wind development is legally permissible, the difference lies in how binding the policy is. In 

Germany, the restrictions were strictly applied. By contrast, before the revision, Michigan’s PA116 

program did not substantially constrain wind development in practice. Because wind development 

offered significantly greater financial returns, landowners had flexibility to forgo the PA116 tax 

credit and opt out of the program. As a result, the PA116 revision did not represent a substantial 

loosening of constraints on wind development. These findings underscore that for land-use policies 

to meaningfully shape landowner behavior, especially in the presence of lucrative alternative uses, 

they must be backed by compelling economic incentives. 

 Second, we document strong positive effects from the Wind Zone designation, a policy 

that resembles spatial planning strategies implemented elsewhere, such as Sweden’s National 

Areas of Interest for Wind Power (nationella intresseområden för vindkraft), Australia’s 

Renewable Energy Zone, and Texas’ Competitive Renewable Energy Zones (CREZ). The 

incentives associated with these designations differ by context. In Sweden, the designation 

expedites the permitting process. In Australia, it reduces operation costs. In Texas, it provides 

infrastructure in advance of new renewable energy projects. Michigan’s Wind Zone designation 

facilitated infrastructure, making it most comparable to Texas’ CREZ. While existing literature on 
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Texas’ CREZ primarily focused on its impact on grid congestion or market outcomes (Fell et al., 

2019; LaRiviere and Lyu, 2022), our study provides evidence on how such designations influence 

the deployment of new wind capacity. We find that areas designated as Wind Zones experienced 

90MW increases in newly added capacity. The effect emerged even before the transmission line 

projects were launched, demonstrating the anticipatory response of developers to policy signals. 

 Together, these results extend the literature on land-use and renewable energy policy by 

showing that not all land constraints are equally binding in practice. Because the economic 

incentives underpinning the farmland preservation program were already weak, relaxing its 

restrictions had little effect, whereas proactively designating Wind Zones with clearer 

development signals and infrastructure planning substantially boosted wind turbine installation.  
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