A COMPARATIVE STUDY OF ADAPTED BACTERIOPHAGE WITH SHIGELLA DYSENTERY ANTIGENS AND THE PURIFICATION OF BAGTERIOPHA GE- TOXINS AND EXOTOXIN Thesis for the Degree o f Ph.D. C h a r l e s K. Larwood MlChlGAisi STATE COLLEGE of AGRICULTURE AND ^PPLlED SCIENCE A COMPARATIVE STUDY OF ADAPTED BACTERIOPHAGE Wi t h SHIGELL^ DYSENTERY ANTIGENS «ND THE PURIFICATION OF BAGTERIOPHXGE-TOXINS a ND EXOTOXIN, By C h a r l e s H. Larwood A TRESIS IN BACTERIOLOGY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOE THE DEGREE OF DOCTOR OF PHILOSOPHY TO THE GRADUATE FACULTY OF THE DEPARTMENT OF BACTERIOLOGY AND HYGIENE East Lansing, Michigan, 1939 ProQuest Number: 10008360 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10008360 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 AOKN0 GLEDCHEN X The a u t h o r a c k n o w l e d g e s w i t h g r a t i ­ t u d e h i s i n d e b t e d n e s s t o Dr. ‘V. L. Malltnann u n d e r w h o s e d i r e c t i o n and g u i d a n c e t h i s work was c a r r i e d o u t , and t o t h a n k Dr. K. Vi/. Larkurn and Dr. 1. F o r e s t H u d d l e s o n f o r t h e i r many h e l p f u l s u g g e s t i o n s . This r e s e a r c h was made p o s s i b l e by a g r a n t f rom t h e U p j o h n Company. 125808 TABLE OF CONTENTS I n t r o d u c t i on Ex per i m e n t a l Mediums u s e d and t h e i r Source preparations of c u lt u r e s Preparation of exotoxins Preparation of endotoxins Preparation of Preparation of bacteriophage Preparation of bacteriophage-exotoxins Preparation of b a c t e r i o p h a g e - e x o t o x o i d s Preparation of p u rified bacteriris bacteriophage a. Purified agar b. Purified bacteriophage Preparation of purified Preparation of antisera exotoxin Bacteriophage a n tisera Exotoxin a n tisera Endotoxin a n tisera Bacterin antisera Bacteriophage-exotoxin Bacteriophage-toxoid Purified D iscussion: Summary: antisera antisera bacteriophage a n tis e r a INTRODUCTION The d y s e n t e r i e s are s e v e r e that or m i l d are at least evacuations present eric in have a f f l i c t e d inflammations p artially man f c r of the lower i n t e s t i n a l characterized by f r e q u e n t of b l o o d y m u c o p u r u l e n t s t o o l s . the glands, in testin al b u t do n o t tract, centuries. tract, painful The o r g a n i s m s a r e and o c c a s i o n a l l y invade the u r in a r y They tract in the mesent­ or t h e blood stream. Th e r e a r e two mai n t y p e s 1*. S h i g e 11a d v s e n t e r i a e w h i c h produces acid and w h i c h p r o d u c e s no a c i d in mannite, l a c t o s e , and d u l c i t e , 2* Shigella nite The S h i g a and d o e s n o t paradvsenteriae and o t h e r s ) type differentiated immune sera. f orm i n d o l e . (Flexner, which produce a c i d is type-specific in I t produces ( enterotoxin)» ( Y ) , Strong, in g lu c o se and man­ the an tig en content and an e x o t o x i n The p r e s e n c e ( n e u r o t o x i n ) as w e l l as o f t h e s e two t o x i n s investigators an have during years. In 1898, Shiga (1) s u f f e r i n g from d y s e n t e r y his Hiss f r o m t h e p a r a d y s e n t e r y g r o u p by s p e c i f i c b e e n d e t e r m i n e d by a number o f i n d e p e n d e n t recent in glucose and f o rm i n d o l e . may be endotoxin of dysentery b a c i l l i ; name. and F l e x n e r discovered i n Japan, F o l l o w i n g S h i g a ' s wo r k , in t h e P h i l i p p i n e s in the s t o o l s of patients, the m icro-organism which bears discoveries further by K r u s e i n Jermany c o n f i r m e d S h i g a ' s T^ork that of bacteria cause dysentery. paradysentery, the Shiga lated iae type, ha ve been s t u d i e d The g e n e r a l it is true for the Shiga impression t o be found is that of S h ig e lla Michigan, tained through the co u rtesy The t r a n s m i s s i b l e was d i s c o v e r e d 1917. of lytic independently d ' H e r e l l e has s t a t e d in Mexico, in cells of S h i g e l l a search of this of this substance, tnat to d e lv e further study the a n tig e n ic Holm, Anderson, This s tu d y w i l l and t h e i r into is (2) w i l l It the characters and L e o n a r d a s sporadic products. para­ out­ A t Owo s s o, type i s brought to d y s e n t e r y was called ob­ is still in t h e p h e n o me n o n , disease a subject of locusts. of d isp u te, the absence of b a c t e r i a l lead, not bacteriophage, observed the no d o u b t , to purpose o f further this nature of b a cteriop hage, designated by Larkum ( 3 ) re­ but to and later " S tap h ylococcus B a c t e r io p h a g e Toxoid. e m p h a s i z e r e s e a r c h on l y s e d S h i g . bacterial by t h e 1915 and by d ' H e r e l l e he f i r s t substance in point. and the Michigan Department of H e a l t h . by Twort i n by K r u e g e r and B a l d w i n clarification are caused u s u a l l y 19C9, w h i l e w o r k i n g on a b a c t e r i a l production severest countries, are o c c a s i o n a l The n a t u r e o f b a c t e r i o p h a g e bu t t h e in i t s occurrence of th is The Owosso s t r a i n differences type for r e s e a r c h . most o u t b r e a k s of the of these re­ These b a s i c or s e m i t r o p i c a l there to of S h ig. dvsenter- dysentery in the United S t a t e s . an i n s t a n c e our a t t e n t i o n . that that dysentery in t r o p ic a l d y s e n t e r y and r e l a t e d g r o u p s breaks t han produce n e u r o t o x i n . w e r e t h e mai n f a c t o r s sim ilarities but t h e v i r u l e n c e t y p e s h a s b e e n shown t o be l e s s form i s a number o f s t r a i n s w i t h some c u l t u r a l and a n t i g e n i c and t h e y do n o t while In r e c e n t y e a r s dvsenter iae c e l l s The i n v e s t i g a t i o n s this subject ficities. indicate Animals of b a c t e r i o l o g i s t s that b a c t e r io p h a g e s have a n t i g e n i c injected with bacteriophage corresponding antibacterial antibodies. bacteriophage is of t o x o id not an a n t i g e n ties that endo-and toxin. staphylococcus since it that does to r a b b i t s , the to x ic proper­ Holm, A n d e r s o n and Le o n a r d ( 4 ) bacteriophage exotoxin p r in c ip le s develop states innocuous produce a n t i t o x i n which n e u t r a l i z e s of s ta p h y lo c o c c u s state Larkum ( 3 ) is speci­ filtrates character, p r o d u c e h e m o l y s i s and d e r m o n e c r o s i s , and w i l l who h a v e s t u d i e d in s o l u t i o n toxoid contains both which they d e s i g n a t e " A m b o - t o x i d ". It is the purpose bacteriophage antigens Shig. are toxoid or t o x i n to determine if in character for d v s e n t e r i a e and t o c ompa r e b a c t e r i o p h a g e and p u r i f i e d teriophage with S h i g e ll a toxin, endotoxin cedure bacterin, exotoxins b a c t e r i o p h a g e No. led th e purification bac­ bacteriophage-exo- of b a c t e r io p h a g e accord in g o f K r u e g e r and Tamada ( 1 1 ) Shigella exotoxin, these and b a c t e r i o p h a g e - e x o t o x o i d . The p u r i f i c a t i o n that of t h is research author of S h i g e l l a and t h e s u b s e q u e n t d i s c o v e r y 18 c o n t a i n e d to attempt exotoxin. to th e pro­ a sim ilar b o t h e n d o - and procedure for the EXPERIMENTAL A review of the medi a r e q u i r e d for indicates s e v e r a l media (7) that have c a r r i e d toxin. production isms f o r f i v e was p r o d u c e d of definitely dysen ter i a e between th e e x o t o x i n by g r o w i n g t h e w hile their endotoxin f rom a g a r g r o w t h s The f i l t r a t e from t h e organ­ latter in med­ the endotoxin. Subsequent t wo t y p e s o f me d i a data w i l l for experiments show t h a t the production two t y p e s prepare b a cterio p h a g ic and e n d o t o x i n s the organisms two d a y s . of and e n d o t o x i n the S h ig e lla T h e i r e x o t o x i n was o b t a i n e d for to types u s e d . Olifcsky and K l i g l e r study of quite by i n c u b a t i n g i um c o n t a i n e d antigens on n u t r i e n t b r o t h and n u t r i e n t ferm entation agar. it is u n n ecessary to use of both t o x i n s o f media were used i n b r o t h as w e l l in but in t h e order to as e x o t o x i n s agar. C u l t u r e me d i a f o r g r o w t h o f for exotoxin days in a l k a l i n e - e g g b r o th , solution author's in r e f e r e n c e must be out e x t e n s i v e They d i f f e r e n t i a t e and e n d o t o x i n . salt the literatuie Each wa s r e a c t i o n s were the organi sms w e r e n u t r i e n t adjusted 1 per cent t o pH 7 . 6 . peptone water Medi a con­ t a in i n g Andrade's i n d i c a t o r w i t h 0 * 5 per c e n t e a c h o f g l u c o s e , mannite, and d u l c i t e . The t e s t in p eptone water lactose, 7 day o l d c u l t u r e t wo d r o p s 1 per c e n t of E h r lic h 's (6) for r e a g e n t was a d d e d ; i n d o l e was made on i n w h i c h one or preparation Strains b ility if of m e d i a of S h ig . dvsenteriae rapidly frequent transplants are lose n o t made. medium u s e d o n c e a mont h m a i n t a i n e d their via­ sem i-solid a the t o x ic it y of th e or­ ganism. The medium was p r e p a r e d a s f o l l o w s ; 1. Seai-solid Whites Medium of 2 eggs Yolk of 1 egg 200 cc d i s t i l l e d Mix t h e e g g s ing the w a ter. first i z e at water- t h o r o u g h l y w i t h an e g g b e a t e r B o il 2 minutes, through a w ire s t r a i n e r , 15 l b s . pressure for To a s t e r i l e 0 . 5 p Na Cl ) and a l l o w t o solid ify. Mi x , a gar (1 .5 $ agar, S teril­ soft 1% p e p t o n e , o f 5 cc o f t u b e under a s e p t i c Stab c u ltu r e s quite Filter 15 m i n u t e s . e g g mi x i n t h e p r o p o r t i o n of agar. The medium i s constantly. and t h e n t h r o u g h c o t t o n . veal infusion add s t e r i l e m ix t u r e t o 2 cc stirring b e f o r e add­ egg conditions, a r e made. but w i l l solidify s omewhat on c ooling. This viability o f medium w i l l of organisms, transplanted. "seed ings" type I t was in n u t r i e n t not s u f f i c e to m aintain the e x c e p t when t h e s t r a i n s are f r e q u e n t l y found t h a t r a p i d t r a n s f e r s broth net only rendered of ten or more the organisms viable but enhanced t h e p r o d u c t i o n 2. Nutrient A. o f b o t h e x o - and e n d o t o x i n s Broth Formula; Ground v e a l , Peptone, fat free Proteose, Sodium c h l o r i d e , (Infusion) 5 0 0 gms 15 gms Bacto 5 gms G. P . 10 cc. 1000 cc. S t e r i l e 25$ d e x t r o s e s o l u t i o n D i s t i l l e d water B. Procedure; 5 0 0 gms . in of chopped, 1 liter night in of d i s t i l l e d v e a l were placed w a t e r and i n f u s e d the r e f r i g e r a t o r . f o r an h o u r , 20 m i n u t e s a t ed o v e r n i g h t and c o t t o n , autoclaved in th e r e f r i g e r a t o r . was t h e n skimmed f r o m t h e s u r f a c e salt to for to filtered 15 pounds p r e s s u r e ume was made up t o over I t was t h e n b o i l e d passed through a p r e s s , through c h e e s e c l o t h for defatted 1 liter. and c o o l ­ The f a t and t h e v o l ­ The p e p t o n e and we r e ad d e d and t h e r e a c t i o n was a d j u s t e d pH 7 . 6 . The me d i a w e r e h e a t e d 10 m i n u t e s . pH 7 . 6 . Erlenmeyer One c c . t o 100°C. The r e a c t i o n was r e a d j u s t e d lOOcc p o r t i o n s w e r e p l a c e d flasks portions and s t e r l i z e d of 25/a s t e r i l e i o n was added a s e p t i c a l l y to under in pressure. dextrose each f l a s k solut­ prior to use. All flasks were in c u b a te d at 35-36°C. f o r 48 hours t o c h eck s t e r i l i t y . 3. N u t r i e n t Agar. a. Formula; Na C l ( G . P . ) 5 gms. Neo-Peptone 15 gms. V e a l I n f u s i o n ( p r e p a r e d a s i n 2b 5 0 0 b u t made d o u b l e s t r e n g t h ) cc. D istilled cc. water 500 Agar b. 4 0 g ms . The medium-was p r e p a r e d a s i n 2 b. SOURCE OF CULTURES S h ig . dvsenteriae number o f u n i v e r s i t i e s tity c u l t u r e s were k i n d l y and b i o l o g i c a l o f e a c h c u l t u r e was c h e c k e d glucose, mannite, lactose laboratories. and d u l c i t e , by i n d o l e and by a g g l u t i n a t i o n dysenteriae antisera obtained listed f r om t h e N a t i o n a l The c u l t u r e s w i t h t h e i r i n T a b l e 1. tests by a The i d e n ­ by f e r m e n t a t i o n t e s t s i n Dunham' s s o l u t i o n Health. supplied on production with S h ig . Institute biochemical rea ctio n s are of TABLE I THE DIFFERENTIAL CULTURAL CHARACTERISTICS OF SHIGELLA w co o o p> o * / Organism #1 - # 1 — N o r t h w e s t e r n U n i v e r s i t y 2 = #0.35 " " / 3 = #2 " " / 4 = #K7A W a s h i n g t o n U n i v e r s i t y / 5 = D e tr o it Dept, of Health / 6 = # 1 3 3 9 P a r k e D a v i s & Co. / 7 = / 8 t #0.1675 * M # 2 0 2 L e d e r l e B i o l o g i c a l Labor' atories 9 = U niversity 10 ” / of W isconsin " " / " / 11 = S t a n f o r d U n i v e r s i t y i 12 - N a t i o n a l Type C u l t u r e (London) #4837 / 13 = U n i v e r s i t y / of C in c in n a ti 14 = N a t i o n a l Type C u l t u r e (London) # 3 5 1 0 / 15 = H ^ - S h i g a , I m p e r i a l U n i v e r ­ s i t y , Japan / 16 = j 2 M n « -/■ 17 = N " " " 4 18 = ii n » / « n / of Health / 19 = 20 = q h — Michigan Dept, = acid formation H n S IS 3 w cc o Eh o Q W ■J o PI s n Remarks PREPARATION OF EAOTQa INS S t r a i n Mo. 18 was t r a n s f e r r e d dextrose nutrient broth. included four lo o p f u l s four hours ferred or l e s s , t o a 100 c c of t h i s ture which p e r c e p t i b l y flask cc o f the 24 h o u r s . containing of organisms o f a 4 0 cm. a layer last of the layer coarse thread. silk Erlenmeyer flask of c u l t u r e was t r a n s ­ at absorbent co tto n physiological for Even d i s t r i ­ or s l i g h t l y c u r v i n g about the curved area w h i c h was s e c u r e d w i t h solution i n a 500 cc p r e s s u r e for 30 minutes# loosened with salt transplant to K o lle c u l ­ " s p r e a d e r " was s t e r i l i z e d 15 l b s . bro th which o r t h e a g a r was o b t a i n e d by The o r g a n i s m s w e r e g r o wn 20 h o u r s t h e gr o wt h was agar. i r o n w i r e and c o v e r i n g This « b r o t h in of n u t r i e n t nutrient in of the broth One c u b i c c e n t i m e t e r over t h e s u r f a c e stiff with a thin ate 10 c c clouded c o n t a i n i n g 2b c c m a x i n g a " s p r e a d e r rt t h r o u g h a p r o c e s s 10 cm. in 24 h o u r b r o t h c u l t u r e was made a s e p t i c a l l y flasks bution Each t r a n s p l a n t then 0 .1 then was i n c u b a t e d f o r f o u r or more t i m e s a "spreader" on n u t r i e n t after agar and 5 t o 10 c c had b e e n a d d e d and a l l o w e d to of macer­ two h o u r s . PROCEDURE FOR SEPARATION OF Ea QIQa IN FROM ORGa MlGMS 1. 60c c for the of S h i g e l l a 1 h o u r and c h e c k e d f o r 2. by r a p i d Suspensions Supernatant e x o t c x i n was f i l t e r e d at sterility. f l u i d was centrifugation. organism s were neated separated The s u p e r n a t a n t f rom t h e fluid suspension which c o n t a in s through a Pasteur-Chamber land L3. c a n d l e and c h e c x e d 3. venous M. L. D. injection paration for sterility. of t h e e x o t o x i n was d e t e r m i n e d in the m arginal vein 4. The p r e c i p i t a t e d of e n d o t o x in . cells of the by i n t r a ­ ear o f a r a b b i t . were r e t a in e d for future pre­ PREPARATION OF ENDOTOXIN Boivin and M e s r o b e a n u ( 3 ) h a v e s hown t h a t mostable in acteristic l e t h a l amounts, This paralysis me t h o d o f B o i v i n The c e l l s NagGOg f o r s i x t y from S h i g . s u b s ta n c e does not for dvsenteriae into susceptible followed by d e a t h produce the char­ t e c h n i q u e , w h i c h was a m o d i f i c a t i o n and M e s r o b e a n u , were d i g e s t e d was c a r r i e d an a d d i t i o n a l added u n t i l the c e l l s ed t o s t a n d th r e e hours, sixty m i x t u r e was now c e n t r i f u g e d . hours. w it h a change of d i s t i l l e d and d i g e s t i o n was c o n Trichloracetic a c i d was and t h e m i x t u r e was a l l o w ­ The s u p e r n a t a n t d istilled water every contained and 0 . 5 ; o n e u t r a l i s e d w i t h N / 1 NaOH. by means o f a c e l l o p h a n e s a c a g a i n s t the the t r y p s i n was r e p l e n i s h e d , g a v e a pH o f 3 . 5 then of out as f o l l o w s ; with 0.5^ trypsin h o u r s and t h e n t h e the d i a l y s i s - s a c a ther­ exotoxin. no more s o d i u m c a r b o n a t e was a d d e d , tinu§d technique, produces diarrhea of the The a u t h o r ' s in acid b o d i e s o f S f o r m w h i c h , when i n j e c t e d i n 24 t o 4 8 h o u r s . but c o lla b o r a tio n w ith Cglalb) trichloracetic s u b s t a n c e c a n be e x t r a c t e d bacterial animals by t h e (in l i q u i d was d i a l y z e d water 12 h o u r s . endotoxin. The f o r 36 h ou rs The m a t e r i a l The d i a l y s a t e was filtered t h r o u g h a P a s t e u r - C h a m b e r l a n d L . 3 c a n d l e and g r a d u a t e d amo u n t s w e r e i n j e c t e d intravenously d e t e r m i n e t h e minimum l e t h a l d o s e . into rabbits to preparation sh ig e lla bactsein of The same p r o c e d u r e f o r p r e p a r a t i o n used for S h ig ella bacterin. e x u d a t e s we r e l e f t were i n j e c t e d imum l e t h a l intact The b a c t e r a l c e l l s after intravenously rabbits w ith the adaptation injected duced p a r a l y s i s the d iff e r e n t of bacteriophage intravenously. and d i a r r h e a D e a t h o c c u r r e d when l a r g e r Shigella successive times transfer loops clouding in through c o t t o n , This b a c t e r io p h a g e a l s o injected followed bacteria in subcutaneously. at least four w e r e u s e d when four l C c c di d n o t p r o d u c e d e f i n i t e less incubation. sewage. by f i l t r a t i o n e a r t h and f i n a l l y free. pro­ d o se s were g i v e n . of organisms or 8. a rab b it weighing 2 and a d d i t i o n a l t r a n s p l a n t s coated with f u l l e r ' s activity for No. began N o . 18 b a c t e r i o p h a g e d v s e n t e r i a e was t r a n s p l a n t e d four hours antigens t© S h i g e l l a in r a b b i t s o b t a in e d from f r e s h u n t r e a t e d it t h e min­ BAGTERIOPHa GE of had a minimum l e t h a l d o s e o f 4 c c render to determ ine c o m p a r i s o n was made w i t h s t r a i n kilograms a mo u nt s dose. The p r e l i m i n a r y wor k f o r that and b a c t e r i a l h e a t i n g and g r a d u a t e d into preparation The f i n a l o f e x o t o x i n was After B a c t e r i o p h a g e was The s e w a g e was f i l t e r e d through f i l t e r paper by u l t r a f i l t r a t i o n su fficien t rapid to transfers o f t h e b a c t e r i o p h a g e was d e t e r m i n e d by t h e methods the r e c o mme nd e d by d ' H e r e l l e Krueger (9) for (8) as p r e l i m i n a r y t e s t s the f i n a l t e s t s . After t h e b a c t e r i o p h a g e had reached a "fixed" stage the succeeding f i l t r a t e s for inoculations. fu tu re animal Another Mal l mann ( 5 ) . s o u r c e o f b a c t e r i o p h a g e was t h a t The b a c t e r i o p h a g e r e a d i l y 18 and a f t e r 10 t r a n s f e r s , the t i t r e lysing checked a gain after titre Subsequent increase in checks for The l a r g e abundant supply of b a c te r io p h a g e as to the r e la t iv e toxicity Bacteriophage with from u n a l t e r e d sewage. were r e s e r v e d obtained lysed S h ig e lla o b t a i n e d was strain 10“ ©. and 150 t r a n s f e r s number This so th at g a v e no a check could lysed bacterial a final titre of 10-8. be made products. was isolated B a c t e r i o p h a g e t h a t was s i x mo n t h s larger doses 10-9 o f t r a n s f e r s g a v e an of the produced death w ith s l i g h t l y f rom 50 t r a n s f e r s w e r e made was 100 t r a n s f e r s the t i t r e . and by than w i t h t h e old freshly prepared b a c te r io p h a g e . PREPARATION OF BACTERIOPHAGE-EXOTQXIN B a c t e r i o p h a g e - e x o t o x i n was p r e p a r e d p h a g e and e x o t o x i n The M . u . D . in proportion to their by a d d i n g b a c t e r i o ­ minimum l e t h a l dose. o f t h e b a c t e r i o p h a g e - e x o t o x i n was t h e n d e t e r m i n e d . PREPARATION OF Ba CTEKIQPHAGE-EAOTOXOID B a c t e r i o p h a g e - e x o t o x o i d was p r e p a r e d a s f o l l o w s : 0.4 per c e n t form alin (U.tf.P.) bacteriophage-exotoxin. CM. a . B . - 4 c c ) was added t o the f l a s k s o The m i x t u r e was i n c u b a t e d I t was t h e n checxed for for f o u r weeks a t 4 0 ° 0 . toxicity. The same q u a n t i t y was u s e d f o r used i n bacteriophage-toxin i m m u n i z a t i o n a s was immunizations. PREPARATION OF PURIFIED BACTERIOPHAGE (a) Tne P r o c e d u r e f o r t h e P u r i f i c a t i o n The p r e p a r a t i o n o f r e l a t i v e l y been presen ted purification order oy K r u e g e r process, t o use agar h u n d r e d grams o f a g a r liters boiling in eight was c o n t i n u a l l y precipitated form was d i s s o l v e d at a temperature j u s t at white sedim ent. The m e l t e d or more l i t e r s w h i c h had b e e n s l i g h t l y fluid Two h u n d r e d and f i f t y in a double b o i l e r . a th in stream i n t o hol, out t h e a g a r was u s e d a s a s u b s t r a t e . i n a powder of hot water kept point To c a r r y In t h e au tho r has m o d i f i e d t h e p r o c e d u r e recom­ mended by D o m i n i k i e w i c z ( 1 2 ) . four p u r e b a c t e r i o p h a g e has and Tamada ( 1 1 ) . purified o f ^g ar acidified stirred After the f l u i d the sediment had s e t t l e d and t h e a g a r s e d i m e n t was p o u r e d w h i c h was s t r e t c h e d to The p r e c i p i t a t e d a g a r was w a s h e d traces of a c e t i c acid. with a c e t ic 60°C. The a g a r was s t o r e d acid while rod. The a g a r s h a k e n and t h e a l c o h o l was d e c a n t e d , of fine-meshed ten liters i n 95% a l c o h o l in g l a s s the i n t h e f o r m o f a spongy^ jar of I t was d r i e d to o f 95 per c e n t a l c o ­ on a p i e c e over a b a t t e r y three below the had b e e n v i g o r o u s l y th e bottom, in a g a r was p o ure d by means o f a g l a s s o n c e f rom t h e s o l u t i o n to three capacity. t o r e mo v e a l l i n an o v e n f o r containers. linen, two h o u r s a t The r e m o v a l o f traces of a c e t i c acid so t h a t was n e u t r a l was a p r o b l e m t h a t had t o he s o l v e d . that the particles o f agar r e t a i n e d (12). and f i r m l y p r e s s e d in The p r e c i p i t a t e d ten 250cc q u a n t i t i e s gave a n e u tr a l The p r e p a r a t i o n slight recomme nded by K r u e g e r and Tamaf i a is a well-known fact commonl y a s s o c i a t e d c u l t u r e medium u s e d f o r i t s emphasized by B r o n f e n b r e n n e r that th ese non-specific terious. (14) i mme r s e d four times, each, This p r o c e s s Andrews, of R e l a t i v e l y of relatively p e n s i o n was c a r r i e d o u t w i t h phage, cloth o f 95 per c e n t a l c o h o l . Preparation is as recommended by Dom- agar. (b) It even a f t e r a g a r was a l t e r n a t e l y out t h r o u g h a l i n e n agar I t was f o u n d co n sid era b le acid e x c e s s i v e washings w ith n e u tr a l a lc o h o l inikiew icz the Bulloch, pure b a c t e r i o p h a g e s u s ­ m o d i f i c a t i o n of the procedure (11). that the lytic with c o l l o i d a l preparation. ( 1 3 ) , and i t protein agent, bacterio­ substances This point Feldes, of the h as b e e n appears quite substances Dreyer, Pure B a c t e r i o p h a g e obvious may p r o v e q u i t e Le d i n g h a m, dele­ and Wo l f state; "Since the horse i s a h ig h ly s u s c e p t i b l e animal, a s t a r t must be made w i t h v e r y s m a l l d o s e s . The a c t u a l q u a n t i t y o f t h e t o x i n t o be i n j e c t e d w i l l d e pe nd on i t s strength. The s t r o n g e r t h e t o x i n t h e b e t t e r , s i n c e t h e v o l u me i n j e c t e d w i l l be t h e s m a l l e r . Aftej. e v e r y i n j e c t i o n , a c a r e f u l w a t c h must be k e p t on t h e a n i m a l . The i n t e n s i t y o f t h e l o c a l r e a c t i o n e v i d e n c e d by i n f i l ­ t r a t i o n at the s i t e of i n j e c t i o n , the tem p erature, appe­ t i t e , and g e n e r a l c o n d i t i o n o f t h e a n i m a l a r e t o be n o t e d and r e c o r d e d . Among t h e i l l - e f f e c t s t h a t may f o l l o w t o x i n i n j e c t i o n s , t h e 'most s e v e r e a r e p a r a l y s i s and d e a t h o f t h e h o r s e w i t h f a t t y d e g e n e r a t i o n o f t h e h e a r t and d e g e n e r a t i v e changes in the k id n e y . A c h r o n i c ma l a d y s o m e t i m e s s u p e r v e n e s in the a n i m a l s w hich have under gon e f o r some y e a r s c o n t i n u o u s c o u r s e s o f a n t i t o x i n - p r o d u c t i o n . The f i r s t s i g n i s an e n f e e b l e m e n t o f t h e a n t i ­ t o x i n - p r o d u c i n g power. The a n i m a l s o o n b e c o me s i l l and e v e n t u a l l y d i e s w i t h a m y l o i d d e g e n e r a t i o n o f t h e s p l e e n and l i v e r , and w i t h h e p a t i c and p e r i t o n ­ e a l hemorrhages.'1 Muir to made a s i m i l a r the r e s u l t s been is (15) but i t of absorption of toxins elaborated as statement follow ing bacterial in applies t h e body, infection. more t o which have The s t a t e m e n t follow s; "Toxins a r e absorbed from t h e s i t e o f b a c t e r i a l g r o w t h and. a r e c a r r i e d by t h e b l o o d s t r e a m t h r o u g h o u t t h e body# Hence t h e r e i s o f t e n seen in i n f e c t i o n s a g e n e r a l t o x i c a c t i o n , t h e i n j u r y b e i n g more d i f f u s e but l e s s s e v e r e . Various r e t r o g r e s s i v e changes are th us produced in v a r i o u s organs — cloudy s w e l l i n g , f a t t y d e g e n e r a t i o n , sometimes f o c i o f a c t u a l n e c r o s i s . T h e s e a r e mo s t marked i n h i g h l y s p e c i a l i z e d c e l l s , and in organs concerned in the e x c r e t i o n of t o x i n s , es p e c ­ i a l l y t h e k i d n e y s and l i v e r . " ' The a p p a r a t u s and m a t e r i a l s phage are e x p la in e d dimensions for the t u b e a r e 15 cm. stoppers. The c y l i n d e r s in c e the pyrex g la ss of bacterio­ Convenient by 5 cm. w i t h a t o t a l v o l u m e A pyrex g l a s s w i t h 70% a l c o h o l w h i c h was l a t e r solution, purification in th e accompanying diagram. o f a p p r o x i m a t e l y 295 c c . 2 one-hole for c y l i n d e r was u s e d w i t h and s t o p p e r s were s t e r i l i z e d removed w i t h s t e r i l e saline o c c a s i o n a l l y would break w it h autoclaving. The b r i d g e s w e r e i n v e r t e d and f i l l e d 3 per c e n t distal with s t e r i l e purified a g a r c o n t a i n i n g 2 per c e n t NaCl# by a t t a c h i n g t o t h e end o f e a c h t u b e a p i e c e of s o f t rubber c l o s e d w i t h a Mohr's tu bin g clamp. the lower s t o p p e r were i n s e r t e d der and s u c c e s s i v e bridge and layers of 3, 2, t u b i n g w h i c h was When t h e a g a r wa s h a r d e n e d 1, into the pyrex c y l i n ­ and O.b p e r c e n t t a i n i n g 0 . 2 p e r cent, NaCl we r e p i p e t t e d into the g l a s s agar c o n ­ cylinder, but e a c h tor l a y e r was f i r s t b e f o r e adding th e divided so th a t approximately the allowed succeeding total one-half a g a r was c o n g e a l e d s u s p e n s i o n was between ter its le n g th of over i t position. A current 100 t o of minus th e inserts. quantity cf bacteriophage allow a space of 125 v o l t s After 1 t o 2 cm. s t o p p e r when t h e and f rom 5 t o lat­ 10 m i l l i a m - series four-45 volts t o w h i c h was a t t a c h e d direct current voltmeter of sufficient a maximum c a p a c i t y ohms r e s i s t a n c e . calibrations o f 0 . 1 0 a mp s , radio and a r h e o s t a t and a p p r o x i m a t e l y 2 7 , 0 0 0 The c u r r e n t was p a s s e d t o 24 h o u r s solutions to stopper to by c o n n e c t i n g i n and m i l l i a m m e t e r 20 the c y lin d er by t h e r u b b e r was p l a c e d i n "B" b a t t e r i e s for The l a y e r s w e r e e q u a l l y u p p e r s u r f a c e and t h e r u b b e r p e r e s was s u p p l i e d with layer. a sufficient layered congeal in the r e f r i g e r a ­ s p a c e o c c u p i e d was e q u i v a l e n t the s p a c e w h i c h was o c c u p i e d the to through the apparatus and t h e c o p p e r c h l o r i d e and s o d i u m c h l o r i d e i n w h i c h t h e e l e c t r o d e s w e r e i mmers ed w e r e c h a n g e d once during that respectively, period. The e l e c t r o d e s were washed t h o r o u g h l y at u t i o n s were changed. of s i l v e r and c o p p e r t h e same t i m e t h e s o l ­ B a c t e r i o p h a g e was c h a n g e d once during the procedure. The 0 . 5 sterile in spatula a sterile per c e n t as Petri it layers to g i v e of was f o r c e d dish physiological saline a g a r was s l i c e d into f rom t h e c y l i n d e r and was m a c e r a t e d for future agar were t r e a t e d sections for purification. 12 t o with a and r e c e i v e d 15 h o u r s i n The r e m a i n i n g i n t h e same manner and w e r e f o u n d a n e g a tiv e r e a c t i o n with Hopkins-Cole (16) reagent. The p h a g e c o n c e n t r a t i o n gave a range between w h i c h was i n marked c o n t r a s t report 10 —16 . greater com pletely The lysed "layer" susceptible met hod h a s o f t h e uDpe r l a y e r o f p a r t i a l l y for to 10“ ^ , t o K r u e g e r and Tamada ( 1 1 ) , a mount o f t h e c o l l o i d a l may be u s e d 10““® bacteria at a d i l u t i o n the ad van tages aggregates, purified future p u r ific a tio n . who of of removing a and t h e r e t e n t i o n b a cterio p h a g e which F i g . 1. A ^ p r s t u p f o r n r e p f r p t i o n of r e l a t i v e l y oure be c t e r i c u b a g e . b e c t e r i o o h age s u s o e n n i on. B, g e l s o f 3 p e r c e n t 2 o e r c e n t , 1 o e r c e n t end 0 . 5 p e r c e n t n u r l f i e d a ^ r end 0 . 2 ; oer c e n t c . p . Ne C l i n d i s t i l l e d w a t e r . end D, g l a s s b r i d g e s c o n t a i n i n g 3 . 0 p e r c e n t o u r e e g e r g e l w i t h 0. 2. n e r c e n t c . o . NeCl. E, e o r c e l e i n c u n w i t h c r y s t a l s o f CuCl2 e t b o t t o m . 'V eter to l e v e l of d o t t e d l i n e . Negative D o l e ( c n p o e r ) o f D. C. c i r c u i t d i n s i n t o c r y s t a l s . F, n o r c e l e i n c u p w i t h c r y s t r a l s o f NeCl e t b o t t o m . ‘V e t e r t o le v e l of dotted lin e . S ilv e r f o i l attended to o o s it l v e o o l e o f D. C. c i r c u i t d i n e i n t o c r y s t a l s . k, C Adanted from K r u e g e r, J. G -en. P h y s i o l . , lro l . 1 3. RREPal Ui l ON OF PURIFIED EXQTOAlN The p u r i f i c a t i o n phoresis of S h ig e lla made p o s s i b l e exotoxin. the r e te n tio n toxin. The e x o t o x i n u s e d f o r of 0 . 0 5 cc perceptible reaction in 5 cc q u a n t i t i e s , death. Since positive the re­ a rabbit (0.5 o f t h e same e x o ­ intravenously, bacteriophage per c e n t ) , of b acteriophage, per c e n t paralysis layer of of exo­ had an k . L . D . no filtr­ w h i c h was r e ­ was i n j e c t e d was f o l l o w e d in by a g a r g a v e a weak r e a c t io n w ith the Hopkins-Gole t e s t , this by p a s . s i n g t h r o u g h a n o t h e r 0 . 5 and o n l y a s l i g h t It retain lose and fraction per c e n t layer. p r o d u c e d an e x o t o x i n w i t h a n e g a t i v e H o p k i n s - G o l e r e ­ action w hile purification When t h e characteristic the 0 .5 was r e p u r i f i e d This into agar the p u r i f i c a t i o n to the When 10 cc occurred. the top layer of jected of the endo- the p u r i f i c a t i o n for a 2.0 K g .r a b b it . p u r i f i e d was i n j e c t e d of part from t o x i n . The p r o c e d u r e was a p p l i e d ate in by e l e c t r o ­ T h i s p r o c e d u r e o f f e r e d an o p p o r t u n i t y f o r mo v a l o f e x t r a n e o u s m a t e r i a l s toxin bacteriophage is difficult some o f its toxicity. in t o x i c i t y . t o u n d e r s t a n d why b a c t e r i o p h a g e toxicity e x o t o x i n under its loss when p u r i f i e d i d e n t i c a l methods T h i s may be d u e , in t h e agar s u b s t r a t e but checks onstrate this cultures by e l e c t r o p h o r e s i s purification however, cn t h i s should to v a r i a b i l i t y point failed tc dem­ as the c a u s e . The ma j o r p o r t i o n ed w i t h of should (Shigella received "0"), of t h e e x p e r i m e n t a l worx was c o n d u c t ­ s t r a i n No. from t h e 18, which i s one o f the f i v e Imperial U n iv e r s it y , Japan, in January, 1937. T h i s c u l t u r e was d e m o n s t r a t e d t o be t h e mos t v i r u l e n t .. Of t h e 19 s t r a i n s 13 ( S h i g a M o o r e ) , nounced r e a c t i o n 15, tested, 16, 1 7, Strains o b t a i n e d f rom t h e w e r e a s a g r o u p t h e mo s t t o x i c . 18 was much more t o x i c tests Of t h e s e than the other t h e same r e l a t i o n s h i p 8 ( No . 202-Lederle, to r a b b i t s 15, 16 , 1 7, pro­ 18 and 19, Imperial U n iv e r s ity , five strains, strain f o u r . By i n t r a v e n o u s i n ­ as i n d i c a t e d by i n t r a d e r m a l wa s o b t a i n e d . S t r a i n No. 20 g a v e c u l t u r a l , agglutinating, characteristics like Strain 18. Shigella c u l t u r e No . 8 was u s e d for No s . 18 and 19 g a v e intraderm ally. which were t h e c u l t u r e s oculation strains antigenic the s p e c i f i c study of b a c t e r io p h a g e . and t o x i n in the p relim inary At first injections tests with b a c t e r i o p h a g e were made d a i l y . The i n j e c t i o n s w e r e made b o t h s u b c u t a n e o u s l y and i n t r a ­ venously on a l b i n o rabbits. Shigella Bacteriophage I n je c tio n s; The a g g l u t i n a t i n g t i t r e used for i n j e c t i o n s was less of n o r ma l s e r a than 1 to 5. The f o l l o w i n g a n i m a l s r e c e i v e d 1Q^9 later, ative as indicated, prepared follow ed with S h ig e lla antigenic value: of a l l r a b b its l Oc c from S h i g . No. of b a c t e r io p h a g e , d v s e n t e r i a e No. 8 and, 18 b a c t e r i o p h a g e f o r c o m p a r ­ O > e 43 , OF RABBITS WITH SHIGELLA BACTERIOPHAGE 43 • ©=& 43 O rO 1—4 ©^ PS IMMUNIZATION a II 03 02 03 to 00 03 • to 00 o> « e > t> 02 c * 02 43 £ £ C • 03 t> • 03 02 43 • 02 O CO 00 rH • CO £ 00 43 # 02 ss •H O pan PO 1 O' 00 O' • • to > c O 02 rH • CO -• to PC £ t£ CO 00 rH rH * CO CO h O rH POO • POI to * 02 c O l> • 03 o O' • 02 43 43 • 02 o •H P> o ra © S **~3 CO c O •H © rH E O o E HH £*"5 rH ■H © Q E ^ •H po c 43 £> 43 UJ © -fc PC o 43 s co 02 O O rH • to o •H +J e S •p H 43 m 43 CO © = fc PC o 43 o o> E CO 01 cr> * 02 03 © «H E O O E H to +» rH s © o . a> • 02 00 o © to in H O r l pan ♦ POI t o 03 03 00 • 03 02 © H ©© Jh b © *H £ © E © E H O rH 43 02 43 CO ©^ PC O' o 3 tO 02 © CO 02 43 * CO CO = r CO 03 • to O' 02 • to O' H O 03 POO • POI to o 00 O' « CO cO *H © p» 03 jh ci— • • o o co a. -*-3 o je O PO •1-4 o © 02 in 43 43 43 * m • 03 43 O 43 « o 43 43 CO NO. > • © -G TABLE 00 43 CO ■p ©=4fc PC 3-t © P» C C o o S O o 02 tO 02 CO • CO £ CO CO • 02 £ = • • CO CO 00 CO « • rH p jn POI CO H-3 « 03 rH o« 03 CO CO c © & p> 03 43 tO © y-t 6-i 43 to 43 CO o 00 03 03 o> 02 02 03 43 CO 03 CO 43 to 43 \ 02 to co \ co CO CO CO CO 43 43 CO CO o "V 43 rH \ 03 tO CO co CO CO *H rH o 4) 43 c0 CO \ O' 43 02 43 CO rH LO * * * H ■ H cH =%r O'* • 02 O tO 4 tO o M3 02 00 to 02 00 4 02 4^1 CT> • 02 o 03 4 02 rH O b0M3 m i 4 02 -« o tiOM) (30 | 4 T3 O o in to O rH 0 0 (30 1 CQ rH < 5 *"H O rH O 4 0 2 CO .a M3 4# 02 * T3 * o a s O O cH tO i o M) • 'a * O to 02 « CO M3 CO « to • o rH O 02 bDM3 • (30 | rH CO s o tH t-H 4 * 02 00 02 M3 CT> « 02 o o o CO Ptr o 02 o (30 in 4 (30 1 H 02 03 LSI M s £> CO rH «H a> bO ■rH x3 CO I a> £30 CO Jd CL O •rH Ci © +3 O CO O O O in 02 CO o in • co o a o • a 02 CO 0 2 CO 00 O O O 4 0 2 tO CO CO • CO o in 4 to O 4 co O rH 4 O 02 CO 00 CO =fcr • CO M3 4tf CO LO 4 CO 02 CO 00 M3 « to o in * cO O 4 CO 00 CO • CO *-* o 530 lO 1 to < q -« • o r—t Or to in • i rH CO to 1 £> 1—4 1—1 « O s a fJQ m: Sh o CO © o t-H LO mo in 4 to 1 CO < Q r H 4tf o LO CO CO CO M3 M3 CO 'x tO M3 CO lO to \ >02 02 oh \ LO >1 LO1 n M3 4 OS Pi 02 M) • cO 02 CO 00 LO ♦ 02 lQ CO M3 o O r~4 * CO in 1—4 O U C o o * ^ O M> CO rH O u •o P O o -P O O CO O M3 O • O CO 02 02 O o 02 02 • 00 + 3 4 pS CO • i> -*j * S3 CO M3 . C" +3 4 ^ co •o 4 ‘ O' . to * M3 00 S 4 CO o O • O += 0 0 4 CO £> CO l> CO rH rH r-H "T-* i-H M3 'M1 CO O 02 T3 O •H O (30 M3 © O rH LO (30 I CQ rH rH o to aa IH 00 CO ♦ CO T3 a \ in T3 © -H O © O Q 0M 3 rH LO & 0 1 PQ rH < Q rH T3 © •-H PQ T3 02 4^ CO — s o O O CO CO O 4^ in * rH © (30in © rH OQ rH C" CO " v o rH b O lO o GO (30 1 rH < ; rH (30 | « 02 NO* TABLE O LO . tO O 4 ■23 II a, continued 00 4tf t> • 02 00 00 in 4 02 to o »H O O Tables III a and b show t h e data o b t a i n e d i n g t h e minimum l e t h a l d o s e o f e x o t o x i n . dose f o r r a b b i t s w e i g h i n g 2 . 0 Kg. Tables Nos. 3 0 and 3 r e s p e c t i v e l y obtained for the minimum l e t h a l exotoxin dose Tables IV and V. t o b e t h e same a s for the for exotoxin p r e p a r a t io n of Rabbits 3g, the data for 10, 1 0, mals were i n j e c t e d the inject­ be t h e same determining of ra b b its 11 and 1 2 . normal s e r a ‘i t i s of in also, the ra b b its f rom any of the ex p e r im e n t. into two g r o u p s , one g r o u p s u b c u t a n e o u s l y and t h e o t h e r and S q we r e i n j e c t e d 11 and 12 i n t r a v e n o u s l y . daily pro­ rabbits immune s e r a w e r e f r e e at t h e s t a r t 5 a> of alone. we r e d i v i d e d injections and r a b b i t s 9 , to The minimum l e t h a l d o s e s w e r e f o u n d , The r a b b i t s ously. prior o u t i n t h e s ame manner a s f o r in ter ferin g antibodies receiving two h o u r s of normal p o o l e d s e r a These d em on strate th at used of rab­ alone. ®2» 5 a» ^7» anc* s 8 an(^ r a b b i t s 9 , c e d u r e was c a r r i e d determining when n o r m a l s e r a d o s e s w e r e f ound t o T a b l e s VI and VI I p r e s e n t the cc. w e r e added t o d i l u t i o n s a t 37° C f o r The minimum l e t h a l ast h a t was f ound t o b e 0 . 5 dose of e x o t o x i n , e x o t o x i n and i n c u b a t e d ion. The minimum l e t h a l IV and V show t h e d a t a o b t a i n e d i n t h e minimum l e t h a l bits in d e t e r m i n ­ intraven­ subcutaneously All of f o r 7 d a y s and t h e n w e e k l y the a n i ­ for 10 weeks * One w e e k a f t e r bled from t h e h e a r t to g e t a large the f i n a l injections, into clean s t e r i l e proportion of clear test sera, e a c h r a b b i t was tubes. the t e s t In order t u b e s "’e r e examined f o r i n t e r n a l roughness did not placed that ton show an e v e n , in each tu b e, smooth s u r f a c e . After from t h e t e s t frigerator sterile until over the blood c o a g u l a t e d , night, and k e p t so of the c o t­ s u r f a c e was f r e e d then p laced in r e ­ and p l a c e d in in r e f r i g e r a t o r was p r e v i o u s l y (Tabl<@ I I a ana b . ) antibody t i t r e for subcutaneously against Shigella T a b l e IX p r e s e n t s 11 and determined to have a o f 0 . 5 c c f o r r a b b i t s w i t n an a v e r a g e w e i g n t Kilograms r a b b i t s Nos. the antibody . Table X p r e s e n t s e r i o p h a g e No. r a b b its Nos. Sg, Shigella b a c t e r i o p h a g e No. titre 10, 11 and T a b le XI I shows t h e 18. One we e k a f t e r agglutination against the antibody 9, 10, bacteriophage f o r r a b b i t s Nos. the antibody final titre titre intravenously bact­ for against 18. data fo r intravenous E a c h a n i m a l was i n j e c t e d w e e k l y 1 to 5. . No s . Shigella titre 12 i mmuni zed injection e a c h a n i m a l was injections for of e ig h t weeks. b l e d and t h e determined. The n o r ma l a g g l u t i n a t i o n than for ra b b its 8 i mmu n i z e d s u b c u t a n e o u s l y a g a i n s t S h i g e l l a b a c t e r i o p h a g e No. s t r a i n No. the 5a , 8 7 and S g i mm u n i z e d 18 and T a b l e XI p r e s e n t s 9, of 2 . 0 T a o i c VIII p r e s e n t s 12 i mmuni z ed i n t r a v e n o u s l y £ 2 > 5 a> S 7 and S 3 less needles, slanted used. M. L- D. 8 its when s e r a was drawn o f f tubes which were s ea le d The e x o t o x i n No. and t u b e s one or t wo c e n t i m e t e r s tube w ith t r a n s f e r that A p p r o x i m a t e l y 5 c c was p l u g s we r e i n s e r t e d t h e b l o o d came w i t h i n plugs. and t u b e s we r e d i s c a r d e d titre for all a n i m a l s u s e d was The immunizing dose used for each a n t i g e n was o n e - h a l f the minimum l e t h a l d o s e . Rabbits LR 1, 2 and 3 were t r e a t e d wi t h e x o t o x i n ; LR 4, 5 and 6 wi t h e n d o t o x i n , LR 7, 8 and 9 wi t h b a c t e r i n , LR 11, 12 and 13 with e x o t o x i n - b a c t e r i o p h a g e ; LR 14, 15 and 16 with p u r i f i e d b a ct eri opha g e; LR 17, 18 and 19 w i t h b a c t e r i o p h a g e, LR 20, 21 and 22 w i t h ba c t e r i oph a g e e x o t o x ­ oid. Nos. LR 10 and 23 were c o n t r o l s . The a g g l u t i n a t i o n t i t r e s f or the r e s p e c t i v e a n t i ­ gens were as f o l l o w s ; Exot oxi n l e s s than 1 to 5 Endotoxin ranged from 1-3000 to 1-5000 B a c t e r i n ranged from 1-1600 to 1-2000 E x o t o x i n - b a c t e r i o p h a g e from 1-20 to 1-25 P u r i f i e d bact eri ophage from 1-50 to 1-60 Bac t e ri ophage 1 to 50 B a c t e r i c p h a g e - e x o t o x i d 1 to 60 In order t o have s u f f i c i e n t e x o- en d o t o x i n to carry out the t e s t s for e v a l u a t i o n of antibody production o f Shig. d y s e n t e r i a e , v a r i o u s batches o f the exo - en d ot o x i n were pooled so t h a t a c o n s t a n t M.L.D. could be o b t a i n e d . Since the range of t o x i c i t y of the s e v e r a l batches was 0 . 0 5 to 0 . 2 c c , the d i f f e r ­ ent b a t c h e s were mixed in such pr o p o r t i o ns t hat the M.L.D. of the f i n a l mixture was 0 . 1 c c . The method for de t e r mi n at i on of proport ion of the bat­ ches i s i l l u s t r a t e d as f o l l o w s : ( 1) 1 20; (2) .05 1 10; 0.1 1 0.2 5 Solution; 0.05 20 1 part 10 0.2 5 10 2 parts The r a t i o of 0 . 0 5 M.L.D. tc .2 M.L.D. i s 1 part to 2 p a r t s , or f or every cubi c c e nt i me t e r of 0 . 0 5 M.L.D., two cubi c cen­ t i m e t e r s of 0 . 2 M.L.D. should be used. For car e of o p e r a t i o n and c l e a r comparative r e s u l t s , animals of approxi mat el y t he same age and weight were used. This made i t p o s s i b l e tc g i v e each animal e x a c t l y the same dosage. DETERMINATION OF M . L . D . OF EXOTOXIN FROM STRAIN 1 8 . TABLE I I I a Rabbit Weight Saline 1 2.08 2 3 Exotoxi n Result 0.4cc 0.6cc d . 29 h r . 2.06 0.5cc 0 . 5cc d. 56 hr. 2.08 0. 6cc 0.4cc S l i g h t Par­ alysis DETERMINATION OF M.L.D. OF EXOTOXIN FROM STRAIN 18. TABLE I I I b Rabbit 4 RECKECK OF I I I a Weight Saline 2.00 Result 0.4cc 0. 6cc d.39 hr. 0 . 5cc d . 72 hr. Q.4cc Paralysi s i Exctoxin CM o 0.5cc 6 2.01 Q.tocc CM 5 DETERMINATION OF M.L.D. OF EXOTOXIN MIXED WITH NORMAL SERUM OF1 RABBIT NO. SO. TABLE IV Rabbit Weight Serum Saline 1 2*02 lcc 0.4cc 0*6cc d . 38 hr 2 2*00 lcc 0* 5cc 0. 5cc d . 60 hr 3 2.01 lcc 0* 6cc 0 . 4cc Paralysii Exotoxin Results DETERMINATION OF M.L.D. OF EXOTQXIN MIXED WITH NORMAL SERUM OF RABBIT NO. S. TABLE V Rabbit Weight Serum Saline Exotoxin Results 1 2*00 lcc 0.4cc Q.6cc d*40 hrs 2 1*99 lcc 0.5cc 0*5cc d*59 hrs 3 1.98 lcc 0.6cc Q.4cc Lived DETERMINATION OF M . L . D . OF EXOTOXIN MIXED WITH POOLED NORMAL SERUM OF RABBITS S 2 , 5 a , S 7 , a n d S 8 TABLE VI Rabbi t Weight 1 2.03 loc 0.4cc 0 . 6cc d.39 hr. 2 2.02 lcc 0 . 5cc 0 . 5cc d *79 hr. 3 2 . 04 lcc 0 . 6cc 0.4cc Slight Paralysis Pooled Sera Saline Exot oxi n Results DETERMINATION OF M.L.D. OF EXOTOXIN MIXED WITH POOLED NORMAL SERUM OF RABBITS 9, 10, 11 and 12 TABLE VII Pooled Sera Saline Exotoxi n Rabbit Weight 1 2.01 lcc 0 . 4 cc 0. 6cc d.52 h r . 2 2.01 lcc 0 . 5cc 0.5cc d . 92 hr. 3 2.00 lcc 0.6cc 0.4cc Lived Results DETERMINATION OF M.L.D. OF EXOTOXIN MIXED WITH SERA FROM RABBITS S 2 , 5a, 37 and 38 IMMUNIZED SUBCUTANEOUSLY WITH SHI GA- BACTER10PHAGE NO. 8 TABLE VIII Rabbit Weight 2*08 1*96 1 2 3 4 5 1*93 2*06 6 2* 00 2 * 1 0 Pooled Sera lcc lcc lcc lcc lcc lcc Saline 0 . 4cc 0.4cc 0.5cc 0*5cc 0 . 6 cc G. 6 cc Exotcxi n . 6 cc . 6 cc 0#5cc 0 *5cc 0*4cc 0*4cc 0 0 Results d . 4 8 hr d *4 6 hr d. 69 hr d*70 hr Survived Survived DETERMINATION OF M.L.D. OF EXOTOXIN MIXED WITH SERA FROM RABBITS 9 , 10, 11 and 12 IMMUNIZED INTRAVENOUSLY WITH SHIGA-BACTERIOPHAGE NO. 8 TABLE IX Rabbit 1 2 3 4 5 5 Weight Pooled Sera Saline Exctoxin Resu I t s 2.04 2.08 lcc lcc 0.4cc 0.4cc 0 . 6 cc . 6 cc d ♦56 hr d *50 hr 2 .0 1 lcc lcc 0.5cc 0*5cc 0*5cc 0.5cc d .84 hr d • 74 hr, 2 .0 0 0 2*03 lcc Q. 6 cc 0.4cc Survived ____ 1 »9 9_________ l c c __________ 0. 6 cc________ Q.4cc____ S u r v i v e d DETERMINATION OF M.L.D. OF EXOTOXIN MIXED WITH SERA FROM RABBITS S2, 5a, S7 and S8 SUBCUTANEOUSLY WITH SHIGA-BACTERIOPHAGE NO.18 TABLE X Rabbit Weight 1 2 3 4 1 . 99 2*02 2.04 2*01 2*00 1.98 5 6 Pooled Sera lcc lcc lcc lcc lcc lcc Saline 0.4cc Q.4cc 0.5cc 0.5cc 0 . 6cc 0 . 6cc Exotoxin 0.6cc 0*6cc 0.5cc 0.5cc 0 . 4cc 0.4cc Results d .74 hr d •79 hr Survived Survived Survived Survived DETERMINATION OF M.L.D. OF EXOTOXIN MIXED WITH SERA FROM RABBITS 9, 10, 11 and 12 IMMUNIZED INTRAVENOUSLY WITH SHIGA-BACTERIOPHAGE NO.18 TABLE XI Rabbit Weight 1 2 3 4 5 6 2.03 1.9b 2.02 2.00 2.03 1.99 Pooled Sera lcc lcc lcc lcc lcc lcc Saline 0.4cc 0.4cc 0.5cc 0*5cc 0.6cc 0 . 6cc Exotoxin 0 • 6cc 0 . 6cc 0.5cc 0.5cc 0.4cc 0.4cc Results d • 83 hr d .83 hr, Survived Survived Survived Survived bO bO • £ ■ < rH o o *a • INJECTIONS WITH SHIGA-18-ANTIGENS rH GO • • OF INTRAVENOUS * 03 03 o• in• o a lo rH UD • -• 03 03 O 00 o 03 O O ao o o•s>• X^LO O COo vl1 • • 03 03 o o 03 O 03 O X rn oo t o o« ^« 03 RECORD • O o^ Vi1!/) O O O vi1 • • toin o o £> * * O o o rH O • • O o rH « o ♦ 03 00 lO O to • o o • 03 o o o 03 o o m o•o• tO o o O rH o o in o o • • t0 o o rH vi1 « o CO 03 03 o o o o« to co o O to • o • CQ o o 0 0 CQ o *H O* to* • CO 03 oo o O lO rH IQ • CQ O Oo (O rH « CQ CQ o lO 03 • 00 00 * o o rH O * vi1 03 CM «H • 03 ♦ o o a oo rH 00 • • 03 O oo «H O • • to 00 03 o o in oo O CO • • o o in O o a> • • 03 o X o O O O 00 0 0 O v* lO • o o vJ1 o•co• 03 03 03 o o 00 o O O rH vJ1 * O o in v* o•co« a» o 'x. o toin o o• t>• * o o m o o« o* to 03 03 • o rH O in o O £> « « 03 LO • O O O rH cr> 03 03 • O CQ O o o<• to O o o rH 00 o • CO O • CQ • CQ O o CO o o» o• o rH » CO CQ O o o m oo • * rH 0 3 O O^ t n oo • ♦ rH CQ O o m in co • « «H CQ o • • rH CQ O O CQ LO • <• rH CQ t» oo 03 ♦ * •H CQ T» 03 'O rH GQ o LO • to LO in • to to Vi1 • to O CQ rH [ n. • 03 O C5 in • • rH CQ CQ i n « « rH 0 3 to o O CQ cH cjQ • CQ O O CQ rH CO * 03 O o rH i n • CQ 00 rH • CO O O 00 rH ^ • CQ O 03 rH 0 0 * CQ O o CO CQ O «H ♦ • CQ in rH a no rH • CQ O O CO rH • CQ 00 oo O O Oo rH • CQ O oo • rH CO CQ o O00 o O rH ^ CQ CO • 00 co • a> • CQ CQ o o t> rH LO * CQ O a cq rH tO • 03 CO 00 • CQ to !> • CQ X w hJ & 53 53 2 t— i I M 03 I M to I ^ to X < CO CQ X o E-» P5 »JCd H CQ • 02 © © OO 0 2 «—1 • to © © 02 0 2 {> • 02 © © o 02 02 * CO © © o 0 2 to © o 00 02 00 « © © O © O ©o © si* © © o 0 2 rH • CO cont *h INJECTIONS WITH SHIGA-18-ANITGENS, T5 © H CQ © © O 02 • 02 RECORD OF INTRAVENOUS © © o 0 2 £> • 02 © © s}* 02 00 © o o 0 2 £> • 02 © © to 0 2 I>- • *H « rH © © © si* 02 < ■ © • 02 © © 00 0 2 !> • 02 © © st 02 * to • 02 'S s © o 02 00 • rH © © 02 0 2 0> • tH X o H to to Eh O -X to to © © © — • 02 PQ rH to © © © rH O t o 02 to © © © rH OO PQ «H to © © © rH O PQ 02 to © © o o 02 rH • 02 © © 02 02 to * tO © © o 02 O • CO © © si* 02 to • CO © © 02 02 00 • 02 02 rH • 03 © © o 02 rH • 02 © © si* 02 in * CO o © 03 02 a> • 02 © © 02 02 in * CO © © to 02 t> . 02 to O • tO to 02 rH • 02 © © O 02 02 • 02 © © to 02 to • to © © o 02 00 • 02 © © 02 02 si* • CO © © 00 02 to • 02 to 00 • 02 © © 02 02 02 • 02 © © o 02 to « CO oi m © © 00 © © 00 02 «H * CO © © si* 02 in • 02 © © to 02 O • 02 © © to 02 to * tO © © to 02 CO • 02 © © O 02 O • to © © to 02 si* • 02 O to * 02 © © O 02 02 • 02 © © si* 02 to • CO © © si* 02 rH • 02 © © 00 02 C" « 02 O © O 02 CO « 03 to CO • 02 © © 00 02 O • 02 © © 02 02 O • CO © © 02 02 cr> • «H © © O 02 in • 02 © © Sf 02 O • 02 00 rH • 02 © © to 02 rH • 02 © © o 03 to • CO © © o 02 {> • rH © © O 02 in • 02 © © 02 02 O • 02 to P X 3 to P to o p W P W p 3 3 3 X o t-H o t-H o H Q tH H O 3 to p O tH IH O to X to O EH Eh o q ♦ rH >-2 t o rH to © o rH o M to to H o <*; to to rH • 02 © © 03 a t-H X 02 O H H -tte q © o to © © O 0 2 rH © © 02 3 © © 02 P QrH O to rH o to X rH © © 00 02 in • 02 to i a. O in © © 02 0 2 «-H © to © • to UQ ♦ 02 o in \ rH © 02 02 ^ • 02 « 02 02 to » tH X t o rH O H EH p to iH 3 CQ T3 © > ■rH > Sh 3 © o o O O o O O iH « o rH • o CO o • o LO o • o o o o o LO CO • o o o > cO cm tH rH CM CM oo 02 o vO • 'a • T3 * TD « *o • •o o o O O O o o o • O • CM « O CM • o 'O © > *rH > t4 3 © *o © p» •H > u 3 © s 3 U © CO H © S Sh o +> 3 O X! +3 5S T3 C CO x: +3 •iH 5: c ♦H X o +3 o T3 C W 1 o X (a M IH l- l X © <-• t o T5 c W 1 o X W c «|H X o H * rH CO 5 CO XI W CU o o O O LO CM * O o o LO CM • o o o LO o o lO co • o tH o o o o o o o o o o o o o o o o CM • o O « rH co • o o • o • rH • tH • rH CO 4 II CO *H © CO rH CO & u O S T3 CD i—1 O o P-4 43 Xl tiD •rH Q> o V O * rH o O o * o o o o o o o o * rH o o • rH •■ o O O o o o o • H • o <0 o o • o o o o o o * rH o o • d •H X o 43 O 'O c w 1 o X W • Q • ♦ * fctO X •H 00 • tH # oo s> • 1—1 CM 00 « rH •—) CM co LQ i> « iH CO 00 • «H G> • H O 00 • tH tH ao • tH CM 00 • tH £> 00 cr> o H A iH CO EH +3 ■rH d d CO w tH • o tO * cO • CO *-4 Xj 00 •p H • to u XJ 00 X) 00 • « T5 -a Cl o o 3 CO 0 DC T3 T3 *o *o T5 0 0 > 0 > 0 > 0 > u P J-i 0 0 O a •H CS > > 1-4 CS a P- W 0 TJ 0 T3 0 T3 0 > > P> > P> > Jh 3 > > 0 H 3 0 0 0 O O O O 3 u CS O T3 C C M *iH t X o o X eh prl rH 0 O C CO •H 0 0 >> 0 x J 03 Oh f-4 •rt +» o • • o o o o o o * rH 0 rH o« o• o o o a O 03 o 02 O o o 02 o o CQ o o o o o o o o o o o* o• H r-H • o o rH * *H • o o « o o o o o • CO CO • • o o o in O O in o • « o o O in o a o in o « o o o o in o in tH rH o o o a o• o* H r-H o• O• O O a o in o o in to« co « o o co* o CO • c Jh 0 o 03 f-Q > i— I X 0 H £2 C C J 0 P 0 0 •H +3 o o c C • • • iH rH tH r ■1 CQ CO • oo o O' 00• * cr> 1— 1 r-H m O « 00 00 CQ 00 t—i rH r—H rH !> 00 CT> • rH « * • tH •«H XI x» 0 PC O r-H • 03 U X3 • 03 U JC! * 'O CM • X> CM £> CO « • T3 o o o o O o o o 1x o X PH • o • o 03 • o H Q) OC o o o o o ♦ o £2 CO CO i— 4 *H zs 01 •rH > u zs 01 T3 a> > •rH P> Sn 3 03 TJ •o 0) P> ■H P» > U f-i SS 3 01 03 O O o o in O • o O o in o • o TJ *0 0 a) > > •iH ■rH > > u f-t zs zs tn 03 03 • o o o rH « o rH * o o o o o o o o o o * o 03 • o 03 • o CO « o CO •• o o o o o m in CO CO « « o o o o o o a o o o o o o o o o o o o o O • rH o • r-i o * H O • r-H o • rH o • rH o • r-H o « rH o o « « o o a> r« rH rH CO • rH rH CO CO • * rH «— t £> « H 00 • •—1 rH H co • rH 0> £> * i— H GO r~ CO • • rH i— H rH CM co in <£> •H -rH 03 «—i >s £0 ♦ 03 U £2 o o in o * o O O in o • o o o o o LO n CO co • rH r-H oo Q) 1h 03 •* 03 -d co Oh (D rH T3 © > • o Pi 3 CQ • T> © > •H > d 3 CQ • « o TJ T3 > P» •«H J» Pi © •rH > Pi 3 © O o © T3 'XD TJ •o > > •rH •rH > •iH J> Pi © © P- •rH CQ 3 © > u 3 © O O to 3 o « • o o I> Pi © © P> Pi 3 3 CQ © © O o to o« o• o o O o LO O O to o o • • o o o o LO CO o o o o CO CO o o to CO o • o o o o o o o• rH fH in in « rH • rH CO p« © CQ •rH +3 d ;>< CQ U -d •rH +3 C c • JO t o b0!*i •rH © *3 d Tj« 00 « rH rH iH 00 00 00 • • rH rH rH rH Cv2 CO • rH £> H o oo • • O') 00 • o rH t- H LO r-H CO Fh 0) CQ • co Fh d o 73 c c (x) *rH 1 o o X E-t W CM CM •rH a> > Fh •H CM CM t> • 73 • 73 • 73 73 CQ Fh 3 CQ O O o o O o o o a o O o • O • O o o o o • CM CM o o o o o • • 3 > o rH • O o o o o fH • 73 CD !> 73 CD 73 CD > > •rH -rH I> Fh t-H P> Fh > > }-i > Fh 3 3 3 3 CQ CO CO CO O O o o in 3 O in o o o LO O 4 O O O o o to tO 4 o o LO CO 4 o o CO o o in CO o rH rH o o •rH LO o• 73 CD o4 o4 CD to CO d Ou o •rH Fh CD H-3 o CO CQ • r-H O CD •H C CQ -H o LO CM CM o o« o o o o +3 C <4 o o o o o o o o o o o o o o o o O O TO CD o• O • o• o• o• o• o• o4 t-H H rH rH <-H r-H rH rH rH o• o• o o cHI 00 « CO CM CO CM 00 • oo 00 • 4 o> £> * co oo • o 00 ■ 00 • oo £> • «-H rH rH rH i-H ^H rH in iO E> oo < ji t*>rH -Cl co Pu CO o • • co 4 CO • o o * * 73 CD •rH •rH Fh 3 a. HH t-H > >< CD rH d CO Fh CD CO •rH O O d . <0 tn +> d • tjo bOfcd •rl CD C ^ • r-H rH CM CO o -rH +3 •rH -O CO PC rH o rH CQ i—1 3 CQ > •rH ■rl ?> > tH tH 3 3 CQ 03 T3 13 > -rH ■rH > > tH tH 3 3 CQ CQ •o T3 <12 a> p» ;» ■H ■H > > tH U 3 3 CQ CQ O o rH o O O ■—1 • o O O to o • o O O to o • o O o to o • o o o a o to cO • o o o to CO • o o o o o to to CO CO • • «H rH o o o o O o o o o o o ft o • O a o o o o o o o o O • o o O 02 • o 02 ft o CO co • « o o o o o o o o o o o o o o o O O LO O • o tH 02 •pH E E ■rl X o -P • «H 0 o c •rH -rH 02 *H >> 03 x j 03 Ou a ft o TD E w CO tH > X 0) rH X» CO <12 02 ■rH c 5> CD cn o rH ft • o ft • o • o Ph +> • x : bO bQX •H <12 E *rH {> cO 00 ft H rH OO 00 • • -P •iH x> x> co cc to © +3 rH 3 (Q © o c c W -H 1X o o X Fh *3 fa CO Ct © CO •rl c <; © taO «5 .3 cm o 'rH Cl © +3 o CO 0Q CO ^ 03 ^ • • *3 -3 3 o o ^ T}l * • o o O CO IH © to •rH -P *3 © rH o O Ph o o • r—1 o o 0 © r-H -Q (0 -3 0 X -3 • rH © O 3 o c o o •rl H tO rH O O >» CO • * -3 CO o o CU X i—i • * to to C» Cl • H • to Cl 3 C\2 t> • 3 o • to Ci 3 CT> to * 3 3 o o 03 03 3 © > •H ?* Cl 3 CQ 3 © •rl > ct 3 CQ O O • * o o o 3 o o 02 0 3 • • o o o o co co • * o o o 3 o o o o • * rH rH 3 O o 3 o o 3 © > *H > Sh 3 3 3 3 m © •r>H > Cl 3 © o o 3 3 3 3 O O • « o o O o LO o• O to 3 o LO to « o © > *iH > U o o LO to • o o o o o o• o• r—1 I—1 3 © > -H p> Cl 3 ra 3 3 3 o• O 3 3 O 3 3 lO CO CO • • t—1 rH O O O • o 3 3 O • o Eh P • 3 W faOX •rH © 3 *5 *iH ^ to 00 oo • • rH rH 00 rH to rH ^1 oo * » rH i— 1 rH O 03 • • rH rH 00 00 00 co co • * rH rH 00 00 LO to £> 00 cn> O rH CO •H 3 3 © 03 ^ « © IH 73 G © ?> LO -rH C" P» S-» • 3 73 © CQ +3 r-H 3 © © CO U © CQ •rH H-» C 73 •H O X o +j o X W I © faO o 73 c c W *rH 1X o o X H W O O lO O O 73 © > © > •rH > 3 > p 3 ca co o o o o UD • • o o • • o o 73 CD > ■rH P» 3 73 Q> > *rH f> J-t 3 CQ CQ 73 © > ■ri > U 3 CQ 73 Q) > -r-i > Jh 3 CQ 73 73 © 0 > •H > *«H > > U »-4 3 3 CQ CQ O O O O O CVJ CM o o o o O 73 73 > ■H ?> -rH 3 3 © > u (D > u CQ CQ O o o • o O o o • o o o to LO LO lO o o o o O o o o • • o o • b0 o t-H © O 3 •rH *rH © r-H >» © x j a j CU o o o • o o o o • o o o o o • * o o CM CM • • CO CO • * o o o o o o o o o a o o o o o o to to CO CO • • lO lO CO CO o o o o o • o ^ CO o o CO -a CH o •rH © O co cq >> x f © r-H XI CO tH CO tl © CQ ■rH o o o o o o * • C 00 a> rH o 00 ^ 00 5? oo H +3 •rH X> rQ © OS CM DISCUSSIOW This study was i n s t i g a t e d p ri ma r i l y by the f a c t t ha t Larkum had demonstrated t h a t a s t a p h y l o c o c c u s b a c t er i op h a g e , a l t h o u g h i t was not t o x i c , would s t i m u l a t e in the r a b b i t t he producti on of a n t i t o x i n . Inasmuch as the i n j e c t i o n of S h i g e l l a b a c t e r i n i n t o an animal c a u s e s marked t o x i c e f f e c t , i t was hoped t ha t S h i g e l l a b act eri ophage would be n o n - t o x i c and s t i l l capabl e of s t i m u l a t i n g the production of a n t i t o x i n . Such an immunizing agent would be of c o n s i d e r a o l e v a l u e in the c o n t r o l of d y s e n t e r y . A bact eri o pha ge was prepared for S h i g . d. ysenteriae s t r a i n 8* This m a t e r i a l was i n j e c t e d i n t o r a b b i t s d a i l y for 7 days and weekly f o r 12 weeks (Table* I I ) . The bact eri ophage was i n j e c t e d in lOcc doses through the e n t i r e p e r i o d . animal s showed l i t t l e The or no t o x i c e f f e c t from the i n j e c t i o n s . The b a c t er i op h a g e a n t i s e r a were t e s t e d a g a i n s t a known e x o t o x i (Table VIII and IX), and were found to co n t a i n no a n t i t o x i n . A second b a c t er i op h a g e was prepared from S h i g . d.ysenteriae s t r a i n 18. This ba c t er i oph a g e in c o n t r a s t to the f i r s t prepar a t i o n showed marked t o x i c e f f e c t . of 4cc for a 2 Kg. r a b b i t . The m a t e r i a l had a M.L.D. determined. Accordingl y b a c t e r i n s , e n d o t o x i n s and e x o t o x i n s were prepared. These a n t i g e n s were t e s t e d on r a b b i t s in the same manner (Table X I I ) . The u n i t s are approximate v a l u e s of each a n t i g e n in p r o t e c t i v e pres ent e d in TablesXIV, XV,XVIII and XIX. The r e l a t i v e v a l u e s were as f o l l o w s : B a c t e r i n .......................................... 2 Exot oxin ......................................... 1 Endotoxin 1 ..................................... B a c t e r i o p h a g e .................................. 2 To obtain the t o x i c o g e n i c e f f e c t o f the endotoxi n con­ t a i n e d in the b a c t er i op h a g e and t he e xo t ox i n prepared from culture f i l t r a t e s , mixtures of the two were prepared. The i n j e c t i o n dose o f t h i s mixture was l i m i t ed due to the t o x i c nature of both s u b s t a n c e s . The preparat i on of the a n t i ­ s e r a i s shown in Table XII. To reduce t he t o x i c i t y of the above mixture, a b a c t e r i o p h a g e - e x o t o x o i d mixture was prepared as p r e v i o u s l y o u t l i n e d . A n t i s e r a f or t h i s m a t e r i a l was prepared as shown in Table XII. These a n t i s e r a were then t e s t e d a g a i n s t exo - en d o t o x i n to determine t h e i r r e l a t i v e p r o t e c t i v e v a l u e s . p res en t e d in Tables XVI and XX. The r e s u l t s are The r e l a t i v e v a l u e s of t he s e mixtures were as f o l l o w s ; Bacteriophage-exotoxin . . . Bacteriophage-exotoxoid .2 . . .5 In the p r epa ra t i o n of t h i s b a c t er i o p h a g e, the S h i g e l l a c u l t u r e was allowed t o develop 8 hours bef ore the a d d i t i o n of t h e b a c t e r i o p h a g e . Later t e s t s showed t ha t when the c u l t u r e was allowed to develop f or 24 hours pr i o r to the i n t r o d u c t i o n of t he b a c t e r i oph ag e , a very t o x i c f i l t r a t e was o b t a i n e d . In a l l i n s t a n c e s , the f i l t r a t e s from s t r a i n 18 showed marked t o x i c e f f e c t s . To e l i m i n a t e the t o x i c e f f e c t of f r e s h "green" b ac t e r i oph a ge , the f i l t r a t e s were aged in t he r e f r i g e r a t o r for peri ods as long as 18 months w i t h o u t any m a t e r i a l diminution of t o x i c i t y . Exotoxin pre­ pared from t h i s same s t r a i n of S h i g . d y s e n t e r i a e r e t a i n e d i t s t o x i c i t y for 18 months in a s i m i l a r manner. The data i n d i c a t e that the p roduc t i on of b act eri ophage w i t h t o x i c p r o p e r t i e s i s dependent upon the t o x i c p r o p e r t i e s of the S h i g . d y s e n t e r i a e s t r a i n used. Shig. dysenteriae s t r a i n 8, which f a i l e d to show t o x i c e f f e c t s , toxicogenic properties. f a i l e d t o show On the other hand, a t o x i c s t r a i n ( s t r a i n 13), when l y s e d , produced a t o x i c bact eri ophage which had marked t o x i c o g e n i c p r o p e r t i e s . I t would appear from t h e s e data that t he t o x i c o g e n i c p r o p e r t i e s of S h i g e l l a bact ­ e r i o p h a g e were dependent upon the t o x i n cont ent of t he f i l ­ trate . To a r r i v e at an e v a l u a t i o n of the t o x i c o g e n i c val ue of b a c t e r i op h a g e prepared from s t r a i n 18, t o x i c o g e n i c v a l ues of b a c t e r i n s , e n d o t o x i n s and e x o t o x i n s of t h i s s t r a i n were I t w i l l be observed from t he s e data t hat t he b a c t e r i o p h a g e - e x o t o x o i d , a l t hough i n j e c t e d in the same amounts as t he b a c t e r i o p h a g e - e x o t o x i n , produced c o ns i d e r a b l y more pro­ t e c tiv e units. Not only was the b a c t e r i o p h a g e - e x o t o x o i d more a n t i g e n i c in t he s t i m u l a t i o n of a n t i t o x i n , but i t s i n j e c t i o n was a t t e nd e d with c o n s i d e r a b l y l e s s t o x i c e f f e c t d ur i ng the c o u r s e of immunization. The i n j e c t i o n of the e q u i v a l e n t of 2 M.L.D, doses of b a c t e r i o p h a g e - e x o t o x i n in t he form o f the b a c t e r i o p h a g e - e x o t o x o i d f a i l e d to show any toxic e f f e c t s . Due to the f a c t t hat b act eri ophage c o n t a i n s c o n s i d e r a b l e ext ranenous m a t e r i a l from the broth and the lysed b a c t e r i a l cells, i t was thought a d v i s a b l e to p u r i f y the b act eri ophage to be sure t hat t h e s e products and compounds might not i n ­ t e r f e r e wi t h the a n t i g e n i c p r o p e r t i e s of the b a c t er i op h a g e . A c c o r d i n g l y , p u r i f i e d bact eri ophage was prepared. This mat­ e r i a l was i n j e c t e d i n t o r a b b i t s as i n d i c a t e d in Table XII. The antiserum was t e s t e d a g a i n s t e x o - en d o to x i n . are presented in Table XVII. The r e s u l t s The r e l a t i v e p r o t e c t i v e value was t he same as t h a t obtained wi t h the unp ur i f i ed materi al i n d i c a t i n g t h a t the p u r i f i c a t i o n did not change t he a n t i g e n i c value» The a g g l u t i n o g e n i c and toxicogenic p r o p e r t i e s of the var­ i ous immunizing a ge n t s did not p a r a l l e l each other. For example, in Table XII the endot oxi n showed an a g g l u t i n a t i o n t i t r e o f 1 to 5000 and a a n t i t o x i n t i t r e ( Table XVIII) of 1, whereas the b a c t e r i o p h a g e - e x o t o x o i d (Table XII) showed an a g g l u t i n a t i o n t i t r e of 1 to 60 and an 5 (Table XX). a n t i t o x i n t i t r e of S U M M A R Y The t o x i c o g e n i c va l u e o f b a ct eri oph a ge appeared to be dependent upon the t o x i c o g e n i c val ue of the S h i g . d y s e n t e r i a e s t r a i n used in t he preparat ion of t he ba c t er i oph a g e . There appeared t c be no evi de nc e t ha t b act eri ophage in i t s e l f had t o x i c o g e n i c p r o p e r t i e s . Ba c t e ri op h ag e appeared to be of v a l u e as an agent for t he l i b e r a t i o n of e ndo t o xi n and p o s s i b l y e xo t o xi n through t he a b i l i t y to l y s e the b a c t e r i a l c e l l s . The aging of bact eri ophage f i l t r a t e s did not d e c r e a s e i t s toxic properties. The a g g l u t i n o g e n i c p r o p e r t i e s o f the b a c t er i op h a g e , ex o to x in s , endotoxins, and b a c t e r i n s do not p a r a l l e l the toxicogenic properties. A t oxoi d p r e p a r a t i o n of b a c t e r i o p h a g e - e x o t o x i n was found to be the b e s t means of producing a n t i t o x i n . The t o x i c o g e n i c v a l u e of p u r i f i e d bact eri ophage was the same as the u n p u r i f i e d b a c t e r i op h a g e . The procedure o u t l i n e d in t h i s r e s e a r c h for the pre­ p a r a t i o n of b a c t e r i op h a ge - e xo t o xo i d appears to o f f e r a p r a c t i c a l means f or immunization a g a i n s t Sh_ig. d y s e n t e r i ae toxin. L i t e r a t u r e Cited 1. S h i g a , K. , Ueber den Erreger der D y s e n t e r i e in Japan Ce n t r a l Ba k t . , Abt. I , 23; 599, 1898. 2. Krueger, A . P . , and Baldwin, D.M., Producti on of Phage in the Absence of B a c t e r i a l C e l l s . , Soc. Exoer. B i o l , and Med. 37: 393, 1937. 3. Larkum, N.W., Producti on of A n t i t o x i n s by Means of Ba c t e r i o p h a g e , Am. J . Pub. He al t h, 23; 1155, 1933. 4. Holm, A. , Anderson, J . F . , and Leonard, G. F., Staphyl o­ coc cus Bacteriophage Toxoid, Am. J. Pub. Health 26; 1001, 1936. 5. Mallmann, W.L., S t u d i e s on Bacteriophage in Re l a t i o n to Sal monel l a and Pullorum D i s e a s e . Tech. B u l l . No. 109. Agri. Exp. S t a . , Michigan S t a t e C o l l e g e , 1931. 6. S t i t t , E. R. , Clough, R.W., and Clough, M.C., P r a c t i c a l B a c t e r i o l o g y , Haematology, and Animal P a r a s i t o l o g y , 842; Ninth Ed., 1938. 7. O l i t s k y . P . K . , and K l i g e r , I . J . , Toxins and A n t i t o x i n s of B a c i l l u s D y se n t er i a e S h i g a . , J . , Exper. Med., 31; 19, 1920. 8. B o i v i n , M., Andre, and Mesrobeanu, Lydia, B a c t e r i a l Toxins, Comptes Rendus, 204; 302, 1937. 9. Krueger, A.P. , ja method for the Q u a n t i t a t i v e determina­ t i o n o f Ba c t e r i o p h a g e , J. Gen. P h y s i o l . S e p t . 1929. 10. Sollmann, Torald, A Manual of Pharmacology, F i f t h Ed., 1936. 11. Krueger, A . P . , and Taraada, H. T., The Pre par at i on of R e l a t i v e l y Pure B a c t e r i o p h a g e , J. Gen. P h y s i o l . , 13: Orig. Abt— I I , 1929. 12. Domi ni ki e wi cz, M. , Lodz., Zur Frage itber d i e Ei nh ei t der Zusammensitzung und K e r s t e l l u n g s w e i s e n von n a h r s u b s t ra t en fur B a k t e r i e n . 13. Bronfenbrenner, J . , S t u di es on the Bacteriophage o f d ' H e r e l i e , J . Exp. Med., 14; 873, 1927. 14. Andrews, F.W., B u l l o c h , W., Dougl as, S . R . , Dreyer, G . , F el d e s , P . , Ledingham, J . C . , and Wolf, C . G . , D i p h t h e r i a — I t s B a c t e r i o l o g y , Pathology and Immun­ o l o g y . His Majesty*s S t a t i o n e r y O f f i c e , (London) 131: 1923. 15. Muir, R. , Textbook of P a t h o l o g y . , J . B . L i p p i n c o t t Com­ pany, P h i l a d e l p h i a , 140: 1934. 16. Hawk, P h i l i p , B. and Bergeim, Olaf , P r a c t i c a l P h y s i o l ­ o g i c a l Chemistry, Tenth Ed. 1931.