EFFECT OF APPLIED NUTRIENTS ON THE CHEMICAL COMPOSITION OF SOIL AND GREEN SUGAR BEET TISSUE AND THE YIELD AND SUCROSE CONTENT OF SUGAR BEET ROOTS

Ву

GEORGE ROBERT McQUEEN

AN ABSTRACT

Submitted to the School of Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Soil Science

R.L. Coo Approved:

ProQuest Number: 10008382

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10008382

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

ABSTRACT

Field experiments on sugar beets were conducted at 17 locations in the Saginaw valley - Thumb area of Michigan. The effect of several factors on the chemical composition of leaf petioles, the yield of roots, and the percent sucrose was determined. These factors included (1) heavy fertilizer applications for the establishment of nutrient levels, (2) foliar application of nutrients, (3) fertilizer ratios and rates of application, and (4) deep plowing and rates of fertilizer application.

Treatments of 0, 750, and 1500 pounds per acre of ammonium nitrate; 2208, 3680 and 5520 pounds per acre of 49 percent treble superphosphate; and 1785, 3675, and 4725 pounds per acre of 60 percent nuriate of potash did not establish field levels of these nutrients corresponding to laboratory fixation tests of the soil. Soil nitrate levels were increased by the heaviest application of ammonium nitrate but phosphorus levels were not affected by phosphorus applications. Soil potassium was increased by potassium applications to levels higher than desired but application of the heaviest amount resulted in no higher level than the medium application. Nitrates in the petioles from areas receiving the two higher nitrogen applications were increased markedly but phosphorus was decreased.

The yield of roots was significantly increased by the addition of nitrogen but percent sucrose was decreased. The interaction of nitrogen and potassium was significant in that, at the lowest nitrogen level, the addition of potassium reduced yield of roots but, with the higher amounts of nitrogen applied, yield of roots was not reduced.

The lack of agreement of soil test values reached in the laboratory and the field together with lack of correlation of chemical composition to nutrient levels in the soil was probably due to the nutrient supplying and fixing power of the soil, the physical condition of the soil and/or weather conditions.

The application of phosphorus to a soil low in phosphorus or as a foliar spray increased the phosphorus concentration of the tissue. Nitrogen applications resulted in a decrease in the phosphorus concentration of the tissue. Foliar sprays of phosphorus tended to increase the concentration of phosphorus in the tissue in proportion to the amount applied but did not appear to appreciably influence the yield of roots or percent sucrose. Where various ratios of fertilizer were applied, precise correlations could not be made due to variability with respect to soil type, soil tests, and fertilizer amounts and ratios. However, the following general trends are suggested. On soils medium or low in potassium the concentration of potassium and sodium in the petiole increased during the growing season and usually increased with increasing amounts of applied potassium fertilizer. On soils low in phosphorus the concentration of phosphorus in the tissue increased with increasing amounts of applied potassium fertilizer.

The differences between yield of roots from areas where various fertilizer ratios were applied were small except in one case. In this case where the soil was low in phosphorus and low to medium in potassium, increasing the amount of K_20 applied from 0 to 80 pounds per acre resulted in an increased yield of roots of about 46 percent. This would indicate that an x-2-1 ratio of fertilizer is probably adequate for these soils.

The effect of date of sampling on chemical composition of the petiole varied with location and would fall into four categories; (1) no distinct trend, (2) increase, (3) decrease, and (4) highest concentration at intermediate dates.

Soil penetrometer data indicate that soil compaction is an important deterrent to high yields.

Plowing to a depth of sixteen inches decreased the soil pH and the percent of sprangly roots but tended to increase soil moisture retention.

EFFECT OF APPLIED NUTRIENTS ON THE CHEMICAL COMPOSITION OF SOIL AND GREEN SUGAR BEET TISSUE AND THE YIELD AND SUCROSE CONTENT OF SUGAR BEET ROOTS

By

GEORGE ROBERT McQUEEN

A THESIS

Submitted to the School of Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Soil Science

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Dr. R. L. Cook and Dr. J. F. Davis for their encouragement, assistance and guidance in developing the research reported in this thesis.

Special appreciation is extended to Mr. P. A. Reeve of the Farmers and Manufacturers Beet Sugar Association, Mr. M. G. Frakes of Michigan Sugar Company, Mr. G. E. Nickol of Monitor Sugar Company, and to the cooperating farmers on whose land these experiments were carried out.

Special appreciation is acknowledged to my wife, Marilyn, for the patience, encouragement and assistance tendered in completion of this research.

VITA

George Robert McQueen candidate for the degree of Doctor of Philosophy

Final examination, May 13, 1958, 10:00 A.M., Room 210, Agriculture Hall

Thesis:

Effect of Applied Nutrients on the Chemical Composition of Soil and Green Sugar Beet Tissue and the Yield and Sucrose Content of Sugar Beet Roots.

Outline of Studies:

Major	subject:	Soil	Science		
Minor	subjects:	Crop	Production,	Plant	Physiology

Biographical Items:

Born; April 29, 1926, Snover, Michigan

Married; August 30, 1947, to Marilyn T. Cooley, and presently have four girls and a boy

Undergraduate studies; Michigan State University,

1946-1949, B.S. degree with major in Soil Science Graduate studies; Michigan State University, 1949-1950, M.S. degree with major in Soil Science and minors in Agricultural Engineering and Agricultural Economics. Michigan State University, 1951-1958.

Experience:

Born and raised on a dairy - general crop farm in Sanilac County, Michigan
Served two years in United States Infantry during World War II including duty in Europe
Three years as research agronomist with Farmers and Manufacturers Beet Sugar Association
Four years as plant physiologist with The Dow Chemical Company developing new chemical plant growth regulators
Farmed own and rented land for five years in the Saginaw Valley area

One paper accepted for publication

Holder of patent number 2763539, Method and composition for the control of the growth of vegetation

Member of Sigma Xi

Member of American Society of Agronomy

TABLE OF CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	2
Soil composition effect on sucrose	2
Effect of heavy nutrient applications on sucrose	2
Plant tissue analysis	2
Nutrient relations to sucrose content	3
Effect of heavy nutrient applications on yield	3
Analytical methods	5
Map of test area	7
Legal description of farms and soil types	8
PART I. NUTRIENT LEVELS	10
Pracedure	10
Results and discussion	12
Analysis of variance	16
PART II. PHOSPHORUS-NITROGEN INTERACTION AND FOLIAR APPLICATIONS	20
Procedure	20
Results and discussion	22
PART III. FERTILIZER RATIOS	27
Procedure	27
Results and discussion	28

	Page
PART IV. DEPTH OF PLOWING	45
Procedure	45
Results and discussion	47
SUMMARY	54
BIBLIOGRAPHY	57

LIST OF TABLES

Table The effect of applied nutrients on soil test 1. values, percent sucrose and yield of roots and gross sugar, Rader farm - - - - -12 2. The effect of applied nutrients on the chemical composition of green sugar beet petioles at three different dates, Rader farm - -14 Final analysis of variance table for 1950 - - - -3. 16 4. The effect of applied phosphate and nitrogen on the phosphorus content of green sugar beet petioles sampled October 15, 1951, Bobit farm - -22 5. The effect of soil applications of phosphate and foliar applications of phosphate and urea at three nitrogen levels on the yield of roots, percent sucrose and gross sugar per acre of Bobit farm, 1951 - - - -- - - -23 The effect of one, two and three foliar sprays 6. of P^{32} on specific activity of sugar beet The effect of applied P^{32} to various portions of 7. the sugar beet plant on the specific activity of 26

Page

- 8. The effect of fertilizers on the chemical composition of sugar beet petioles (three sampling dates), percent sucrose and yield of roots and gross sugar per acre on Whittemere sandy clay loam and sandy loam, Timm farm, 1956 - - - - - 28
- 9. The effect of fertilizers on the chemical composition of sugar beet petioles (three sampling dates), percent sucrose and yield of roots and gross sugar per acre on Essexville sandy loam, Foret farm, 1956 - 29
- 10. The effect of fertilizers on the chemical composition of sugar beet petioles (three sampling dates), percent sucrose and yield of roots and gross sugar per acre on Sims loam, Geiser farm, 1956 - - - - - - - - 30
- 11. The effect of fertilizers on the chemical composition of sugar beet petioles (three sampling dates), percent sucrose and yield of roots and gross sugar per acre on Sims clay loam and Kawkawlin loam, Meylan and Streffling farm, 1956 - - - - - - - - 31

12. The effect of fertilizers on the chemical composition of sugar beet petioles (four sampling dates), percent sucrose and yield of roots and gross sugar per acre on Capac 32 The effect of fertilizers on the chemical 13. composition of sugar beet petioles (three sampling dates), percent sucrose and yield of roots and gross sugar per acre on Kawkawlin 33 14. The effect of fertilizers on the chemical composition of sugar beet petioles (four sampling dates), percent sucrose and yield of roots and gross sugar per acre on Kawkawlin 34 The effect of fertilizers on the chemical 15. composition of sugar beet petioles (four sampling dates), on Nester loam, Hauck farm, 35 16. The effect of fertilizers on the chemical composition of sugar beet petioles (four sampling dates) on Capac loam, Draher farm, 1956 - 36

Table

- 17. The effect of fertilizers on the chemical composition of sugar beet petioles (three sampling dates), percent sucrose and yield of roots and gross sugar per acre on Kawkawlin loam, Charboneau farm, 1956. - - - - - - - - 38
- 18. The effect of fertilizers on the chemical composition of sugar beet petioles (four sampling dates), percent sucrose and yield of roots and gross sugar per acre on Sims clay loam, Wieland farm, 1956 - - - - - - - 39
- 19. The effect of fertilizers on the chemical composition of sugar beet petioles (four sampling dates), percent sucrose and yield of roots and gross sugar per acre on Sims clay loam, Wackerle farm, 1956 - - - - - - - 40
- 20. The effect of fertilizers on the chemical composition of sugar beet petioles (two sampling dates), percent sucrose and yield of foots and gross sugar per acre on Kawkawlin loam, Steckert farm, 1956 - - - 41

- 21. The effect of depth of plowing on the chemical composition of sugar beet petioles (four sampling dates), percent sucrose and yield of roots and gross sugar per acre on Kawkawlin sandy loam, Kurzer farm, 1956 - - - 47
- 22. The effect of depth of plowing on the chemical composition of sugar beet petioles (four sampling dates), percent sucrose and yield of roots and gross sugar per acre on Sims clay loam, Gremel farm, 1956 - - - - - 50
- 23. The effect of depth of plowing on sprangling of sugar beet roots, Kurzer farm, 1956 - - - 53
 24. The effect of depth of plowing on soil moisture content at various depths, September 21, 1956, Kurzer farm - - - - - 53

LIST OF PLATES

Pl ate		Page
1.	Locations of farms included in this study in the	
	Saginaw valley and Thumb area of Michigan	7
2.	Equipment used for deep plowing	45p
3.	None	
4.	Sprangly beet roots on land plowed at a conventional	
	Depth	53p
5.	Yields of sprangly and well shaped beet roots from deep	
	and conventional plowed areas	53pa

INTRODUCTION

Yield responses of sugar beets to applications of nitrogen, phosphorus, and potassium fertilizers have varied from several tons per acre to an actual decrease, particularly when high rates of nitrogen have been applied. Excess quantities of nitrogen may also decrease the percent of sucrose in the roots.

Therefore, fertilization of sugar beets should be concerned with increasing tonnage or increasing percent sucrose or both.

This paper presents data from studies of some of the variables involved in fertilization of sugar beets and suggests practices for more efficient and effective use of fertilizers.

REVIEW OF LITERATURE

Wiley (16*) found that soil variation produced large differences in yield of sugar beet roots but had little effect upon the sugar percentage. Andrlik (2) observed that heavy applications of nitrogen decreased percent sucrose in sugar beet roots, heavy applications of manure produced no injurious effect and addition of potash and phosphorus largely reduced the injurious effect of applications of up to one thousand pounds per acre of nitrate of soda. Lill and Rather (5) reported that heavy applications of phosphate or a combination of phosphate and sodium nitrate profitably increased sugar beet yields following alfalfa in a rotation, but sodium nitrate alone did not increase yields. Roboz (7) found that, as the quantity of phosphate and potash applied to the soil increased, the sucrose percentage of beet roots was increased. However, beets growing on plots receiving insufficient amounts of phosphate and potash contained a lower content of sugar.

Analysis of the plant tissue of sugar beets by Zitkowski, Potvliet and Reed (17), Andrlik and Urban (3), U. S. D. A. (14), and Wilfarth and Wimmer (15) showed that a positive correlation existed between the phosphorus content and percent sucrose of the root. However, as the phosphorus content in

* Numbers in parentheses refer to literature cited.

the beet tops decreased the percent sucrose in the roots increased. Alexander, et.al. (1) noted a nitrogen - phosphorus interaction in the foliar tissue at late sampling dates. Schropp and Arenz (8) and Andrlik and Urban (3) also found that sulfur was a major factor in improving percent sucrose. A probable explanation is that the sulfur decreased the non-protein nitrogen content of the plant.

The use of plant and soil analysis for the determination of optimum nutrient application and utilization has been studied and reported quite extensively in recent years. Ulrich (13) correlated sugar beet weight with the concentration of nutrients in the tops. His findings indicated that plants possibly had three levels of nutrition for each nutrient: 1) an adequacy or luxury concentration at which no increase in plant growth is found with increasing concentrations, 2) level of transition or poverty adjustment, and 3) level of starvation at which the nutrient concentrations are relatively constant but yields differ in accordance with the nutrients available.

Carlson (4) recognized through soil tests on two soil types and tissue tests of the tops and roots of sugar beets that phosphate influenced top and root development. Skuderna and Doxtator (10), Tolman (12) and Skuderna (9) found that results from application of various ratios of fertilizers

varied with the location and levels of fertility of the fields investigated. Heavy rates of application were found to be uneconomical.

Analytical methods

Soil samples were analyzed for pH, nitrates, phosphorus, and potassium by either the Spurway reserve or the Spurway active testing procedures (11).

Green tissue samples consisted of petioles from young, fully expanded leaves from each of fifteen sugar beet plants.

Samples consisting of ten grams of thinly sliced tissue taken from the petiole approximately one-third of the distance from the base to the leaf blades were analyzed. This material was added to 100 ml. of distilled water and one-fourth teaspoon of activated charcoal and then mascerated in a Waring Blendor for a period of two minutes. After passing through Whatman No. 1 filter paper the filtrate was analyzed directly for K and Na using a Perkin-Elmer flame photometer. Phosphorus was determined by adding six drops of a standard ammonium molybdate - hydrochloric acid solution to 10 ml. of extract, then reducing with three drops of F-S reducing The solution was allowed to stand 15 minutes. A agent. Coleman colorimeter equipped with a red filter and utilizing a wave length of 565 mu was used to determine colorimetrically the amount of phosphorus in the solution. Five drops of ten percent Brucine (alkaloid) in chloroform was added to three ml. of extract, followed by the addition of six ml. of concentrated sulfuric acid (specific gravity 1.84). The solu-

tion was allowed to stand twenty minutes. A Coleman colorimeter equipped with a blue filter and utilizing a wave length of 420 mu was used to determine colorimetrically the amount of nitrate in the solution. Calcium and magnesium were determined with a Beckman flame photometer.

Yields were taken by weighing the topped roots harvested from the center two rows of four-row plots.

Locations of farms included in this study in the Saginaw valley and Thumb area of Michigan Plate I.

Legal descriptions of farms and soil types

included in this study

- C. Bobit farm Gratiot county; Bethany township; T12N, R2W, sec. 26. Parkhill loam.
- C. Charboneau farm Bay county; Fraser township; T16N, R4E, sec. 30. Kawkawlin loam.
- 3. H. Draher farm Sanilac county; Elmer township; TllN, R13E, sec. 6. Capac loam
- H. Draher farm Sanilac county; Moore township; T12N, R13E, sec. 32. Capac loam and silt loam.
- 5. O. Foret farm Bay county; Hampton township; T14N, R6E, sec. 27. Essexville sandy loam.
- 6. H. Geiser farm Bay county; Monitor township; T14N, R4E, sec. 30. Sims loam.
- 7. H. Gremel farm Huron county; Sebewaing township; T15N, R9E, sec. 9. Sims clay loam and Kawkawlin loam.
- R. Hauck farm Isabella county; Nottawa township; T15N, R5W, sec. 15. Nester loam.
- 9. A. Kurzer farm Huron county; Sebewaing township; T15N, R9E, sec. 32. Kawkawlin sandy loam and Sims sandy loam.
- 10. Meylan and Streffling farm Bay county; Monitor township; T14N, R4E, sec. 13. Kawkawlin loam.

- 11. P. O'Laughlin farm Bay county; Fraser township; T16N, R4E, sec. 29. Kawkawlin loam.
- 12. E. Rader farm Saginaw county; Saginaw township; T12N, R4E, sec. 34. Wisner clay loam.
- E. Sprenger farm Midland county; Geneva township; T15N, R2W, sec. 2. Kawkawlin loam.
- 14. W. Steckert farm Saginaw county; Saginaw township; T12N, R4E, sec. 20. Kawkawlin loam and Brookston loam.
- 15. A. Timm farm Bay county; Portsmouth township; T13N, R6E, sec. 5. Whittemore sandy clay loam - Whittemore sandy loam.
- 16. R. Wackerle farm Bay county; Monitor township; T14N, R4E, sec. 10. Sims clay loam.
- 17. W. Wieland farm Bay county; Monitor township; T14N, R4E, sec. 13. Sims clay loam and Kawkawlin loam - Bannister sandy loam smears.

PART I. NUTRIENT LEVELS

Procedure

Soil fixation tests utilizing the Spurway active testing method for NO_3 , P, and K were made on Wisner clay loam (location 12) in order to estimate the nutrient application rates for the establishment of field soil levels of 25, 50, and 75 p.p.m. of NO_3 ; 5, 10, and 15 p.p.m. of P; and 15, 30, and 45 p.p.m. of K. Treble superphosphate containing 49 percent P_2O_5 at rates of 2208, 3680, and 5520 pounds per acre and potassium chloride containing 60 percent K_2O at rates of 1785, 3675, and 4725 pounds per acre were broadcast on the surface of the soil on May 1. The plots were harrowed twice with a spring tooth harrow to mix the fertilizer with the soil. Ammonium nitrate containing 33.5 percent N was sidedressed in bands on the soil surface on July 27th and 29th at rates of 0, 750, and 1500 pounds per acre.

Sugar beet seed (var. 216X226) was planted May 3rd, but emergence was slow. The beets emerged following 0.87 inches of rainfall on May 22nd and 23rd, but beets in the field adjoining had emerged shortly after planting. The beets were blocked and thinned June 15th, and harvested October 21st. The plots were each 0.01 acre in area and each treatment was replicated 6 times in a modified latin square design.

The soil was sampled by taking eight cores to a depth of 6 inches from each plot on June 29th, August 29th, and September 6th, and analyzed by the Spurway active method for NO_3 , P, and K.

Results and discussion

Table 1. The effect of applied nutrients on soil test values, percent sucrose and yield of roots and gross sugar, Rader farm.

Desired level (p.p.m.)			Test (1	ted lev	vel)*	Tons per	Percent sucrose	Pounds gross
NO3	P	K	NO3	P	- K	acre **	**	sugar per acre
25	5	15	0	3.1	32	17.1	19.2	6559
25	5	30	0	4.0	67	16.4	18.9	6176
25	5	45	2	3.6	69	14.3	18.7	5330
25	10	15	3	3.4	36	16.4	19.3	6326
25	10	30	l	3.8	51	15.6	18.8	5853
25	10	45	2	3.7	64	13.9	18.9	5246
25	15	15	6	3.4	38	15.6	19.0	5913
25	15	30	1	3.4	49	15.6	18.5	5766
25	15	45	0	3.7	59	14.5	18.5	5357
50	5	15	1	3.8	46	18.4	15.3	5651
50	5	30	1	4.0	60	17.6	15.2	5419
50	5	45	5	3.7	63	17.1	14.8	5054
50	10	15	1	3.6	40	18.6	14.9	5539
50	10	30	3	3.6	64	17.1	15.1	5133
50	10	45	1	3.5	64	18.1	15.5	5592

Desired level (p.p.m.)			Tes (j	ted le	vel)*	Tons per	Percent sucrose	Pounds gross
NO3	Р	K	NO3	Р	- K	acre **	**	sugar per acre
50	15	15	0	3.7	31	17.8	15.1	5365
50	15	30	9	3.5	60	18.1	15.1	5457
50	15	45	1	3.7	67	16.9	14.6	4917
75	5	15	31	3.5	34	17.0	14.5	4901
75	5	30	33	3.6	67	18.0	14.1	5044
,75	5	45	28	3.8	51	18.2	14.1	5096
75	10	15	35	3.5	51	16.4	14.3	4662
75	10	30	12	3.6	60	15.6	14.3	4425
75	10	45	103	3.6	68	17.6	14.9	5271
75	15	15	19	3.6	50	17.9	14.5	5167
75	15	30	11	3.7	64	16.3	14.1	4572
75	15	45	33	3.9	54	18.6	13.8	5142
Adja	acent	field	3	3.2	3			
*	Avera	age of	two sa	mples.				<u></u>

Table 1. (continued)

Average of six replications. **

Petiole samples were taken August 29th, September 8th, and September 11th by removing young, fully expanded petioles from fifteen plants.

		11	К	7480 7630 7620	7720 7670 7580	7670 7620 7760	6580 7210 7350	7300 7210 7440	7530 7670 7530
	(•m•)	otember	ር በ	125 86 87	107 93 111	138 123 96	61 57 63	62 57 64	47 61 90
rm.	tissue (p.	Ser	^{NO3}	000	000	၀ဂ္က၀	480 360 360	0000 900 900	360 600 600
etioles at three different dates, Rader fan	etiole	tember 8	М	7290 7600 7800	7800 7800 7930	7830 7900 7800	7850 7800 7800	7720 7720 7800	7720 7720 7580
	reen p(ቤ	86 104 81	136 136 89	144 105 87	43 103 63	123 64 74	80 80 81
	t in g	Sej	NO3	000	000	000	300 240 300	210 300 600	180 150
	ent conten	gust 29	К	7300 7640 7700	7300 7720 7300	7540 7300 7720	6840 7760 6670	6960 7260 6530	7380 7640 7440
	Nutrie		ሲ	134 87 61	105 100 95	86 103 117	48 37 64	74 55 55	3 228
		Aı	^C ON	000	000	000	120 300 750	360 360 540	600 150 150
beet I	soil.	теvет 1	К	400 100 100 100	100 400 70 70	150 450 75	400 400 100 100 100 100 100 100 100 100	150 450 450	400 400 200
	Lred a	lent .p.m.	ዋ	ഗഗഗ	1001	ы С С С С С С С С С С С С С С С С С С С	ഗവവ	1001	ччч Горо
	Desi	nutr. (1	No3	$\mathcal{G}\mathcal{G}\mathcal{G}\mathcal{G}$	$\delta\delta\delta$	$\mathcal{G}\mathcal{G}\mathcal{G}\mathcal{G}$	0000	000 000	000 000

The effect of applied nutrients on the chemical composition of green Table 2.

	· •	oer 11	К	2 7120 2 7350 7760	6800 17400 17530	L 6960 3 7530 . 7800	7280
	m•d•d	eptem	<u>д</u>	362	ዾኯ፟፟፟ኯ፝	1985	Ц
	tissue (S	^E ON	300 360 540	240 480 240	000 14 000 14 000 14	C
	oetiole	er 8	K	7800 7530 7850	7260 7900 7620	7620 7620 7560	7650
	green p	eptembe	д	52 84 84	78 31 79	64 80 87	47
	Nutrient content in g	ŭ	20N	450 360 360	360 360 360	270 450 360	С
		29	К	6440 7260 7720	6900 7440 7350	6900 7220 7800	
		ugust	Ч	46 31 68	58 74 61	50 50	
		ł	^E ON	300 150 510	660 420 300	600 240 150	(check)
	soil	level n.)	К	400 100 100 100	5001 1001	1001 4001	field
	sired	rient (p.p.r	ட	ഗവവ	1001	ц Ч Ч Ч Ч Ч	acent
	De	nut)	NO3	75 75 75	75 75 75	75 75 75	Ad 16

Table 2. (continued)

Yields of roots were taken from each plot and the percent sucrose determined.

Source	DF	Yield o	f roots	Per cent	sucrose	Gross
		Sums of	Mean	Sums of	Mean	sugar_
		squares	squares	squares	squares	squares
						(x 1000)
total	161	674.0	۰	765.9		
replicates	5	53.4		30.2		
Р	2	8.9	4.5	2.6	1.3	445
rep. x P	10	86.2	8.6	10.2	1.0	572
К	2	13.4	6.7	2.2	1.2	1,694*
rep. x K	10	22.9	2.3	5.9	.6	266
РхК	4	10.2	2.5	4.2	1.1	448
rep. x P x	к 20	60.4	3.0	16.2	.8	376
N	2	152.9	76.4**	647.9	324.0**	11,358**
N X K	4	61.7	15.4**	1.3	•3	2,059**
rep. x N) rep. x Nx K)	- 30	68.1	2.3	11.5	•4	414
N x P	4	12.5	3.1	•5	.1	246
ΝχΡχΚ	8	18.3	2.3	1.6	.2	308
rep. x N x P x K remainder	}- 60	105.3	1.8	31.5	•5	215

Table	3.	Final	analysis	of	variance	table	for	1950.
-------	----	-------	----------	----	----------	-------	-----	-------

* Significant at the 5% level.

** Significant at the 1% level.

- -

The data in Table 1 show that the desired or predicted nutrient levels in the soil were not obtained. The applications of phosphate showed no significant differences due to rates, and only a slight increase over the phosphorus found in the untreated field samples. Potassium levels were increased markedly over the untreated field samples. The potassium levels obtained, however, were about twice as high as desired for levels of 15 and 30 p.p.m. Soil tests for the 45 p.p.m. predicted level were only slightly higher than for the 30 p.p.m. level. The nitrate levels indicated by the soil tests from field samples were lower than the predicted levels except in one case where levels of 75, 10, and 45 p.p.m. of NO₃, P, and K respectively were attempted. These differences from the desired levels could be due in part to insufficient mixing of the phosphorus and potassium carriers with the soil and subsequent difficulty in obtaining a representative sample. The failure to account for all of the nitrogen added to the soil apparently was due to its rapid and almost complete uptake by the sugar beet plants as shown by the green tissue tests in Table 2.

The yield data in Tables 1 and 3 show that the yield of roots was significantly increased at the one percent level by the addition of nitrogen, but the highest level of nitrogen was no better than the medium. Both percent sucrose and

gross sugar, however, were significantly reduced at the one percent level by the addition of either the medium or highest level of nitrogen.

Phosphorus applications had no effect on yield of roots, percent sucrose, or gross sugar.

The application of potassium significantly decreased gross sugar per acre at the 25 p.p.m. and 50 p.p.m. levels. The interaction of nitrogen and potassium was significant at the one percent level on yield of roots and gross sugar per acre (Table 1).

The data in Table 2 show that the plant tissue was very high in nitrates throughout the season where nitrogen was applied at the 50 and 75 p.p.m. rates. The resulting increase in top growth observed could account in part for the failure to find nitrates by the soil test.

The potassium content of the tissue samples from the plots was not materially different from that obtained from the adjacent field. However, the tissue sampled from beets growing on plots receiving 30 and 45 p.p.m. levels did not
differ from each other but tended to show a higher potassium concentration than where the 15 p.p.m. treatment was applied.

PART II. PHOSPHORUS - NITROGEN INTERACTION AND FOLIAR APPLICATIONS

Procedure

A location having a history of marked crop response to phosphate was selected on Parkhill loam (location 1). Phosphate as 18 percent superphosphate was applied at rates of 0, 60, or 120 pounds of P_2O_5 per acre. Certain plots received 10 weekly or 5 bi-weekly foliar sprays of a saturated water solution of 18 percent superphosphate amounting to 2.8 pounds per acre for each spraying. Other plots received two foliar applications of urea at a rate of 10 pounds per acre. Nitrogen was applied to the soil surface of all plots at the time of blocking and thinning at rates of 0, 50, or 100 pounds of nitrogen per acre. All plots received 60 pounds of K₂O at the time of planting.

Sugar beet seed was planted May 18, 1951, using the disease-resistant variety 48B3-00. The beets were blocked and thinned June 12th. Green tissue samples of the sugar beet petioles were taken October 15th and analyzed colorimetrically for phosphorus. The plots were 0.01 acre in size and the treatments duplicated. Yields were taken by harvesting the center two rows from each plot on October 18th and percent sucrose was determined.

Radioactive phosphorus, P^{32} , as PO_4 in 0.043 N HCl at a concentration of 0.3% of H_3PO_4 was applied at two locations as a foliar spray to sugar beets. The original P^{32} source was used throughout the test. Treatments consisted of 1, 2, and 3 sprays at two-week intervals with the final spray applied two weeks before taking green tissue samples on August 28th. Each plot was 0.005 acre in area and each treatment was replicated six times in a randomized block design.

The green tissue was oven dried, compressed into uniform discs one inch in diameter and weighing two grams each. The disc were placed in an autoscaler and specific activity measured during four time intervals.

Results and discussion

Table 4. The effect of applied phosphate and nitrogen on the phosphorus content of green sugar beet petioles sampled October 15, 1951, Bobit farm.

Pounds P ₂ 0 ₅	Pounds P ₂ 0 ₅	Pounds	p.p.m.	Phosp	horus
per acre	per acré	urea	Pounds	N per	acre
(SOIL)	(spray)	per acre	0	50	100
0	0	0	79	39	87
120	0	0	171	247	165
120	14 (5 sprays)	0	243	200	137
120		20 (2 sprays)	238	147	140

The increase in phosphorus concentration in the green tissue with applications of phosphorus to the soil is apparent. The differences shown in Table 4 are in agreement with the data (Table 2) showing the interaction between nitrogen and phosphorus concentrations in green tissue in that, when nitrogen is applied, the concentration of phosphorus in the green tissue decreases. The apparent inconsistency in phosphorus concentration at the 50 pound nitrogen and 120 pound P_2O_5 application might be due to experimental error.

It is doubtful if this inverse nitrogen:phosphorus ratio is a "dilution" factor attributable to stimulated tissue growth due to the applied nitrogen. No differences in top

growth were apparent between any of the plots at these two rates of nitrogen application nor between the two rates (Plate 1).

Table 5. The effect of soil applications of phosphate and foliar applications of phosphate and urea at three nitrogen levels on the yield of sugar beet roots, percent sucrose, and gross sugar per acre, Bobit farm, 1951.

Pounds P205 per acre (soil)	Pounds P205 per acre (spray)	Pounds nitrogen per acre	Tons roots per acre*	Per cent sucrose*	Pounds gross sugar per acre*
0	0	0 50 100	19.5 (1) 11.8** 12.3**	17.6 16.4 15.7	6864 3846 3890
60	0	0 50 100	16.5 16.4 16.1	18.4 16.6 16.2	6055 5429 5202
120	0	0 50 100	17.3 18.2 (1) 18.0 (1)	18.1 17.2 15.9	6229 6260 5724
120	14 (5 sprays)	0 50 100	15.1 18.8 19.3	17.4 16.3 16.1	522 3 6129 6181
120	28 (10 sprays)	0 50 100	17.5 18.2 20.4	17.6 16.8 17.5	6142 6116 7 12 7
120	20 (urea) (2 sprays)	0 50 100	16.4 17.8 19.2	18.2 16.7 16.5	5936 5951 6316
* ave ** poc	erage of two or stand	replicati	ons		<u> </u>

(1) one plot yield only

Yield results (Table 5) show a possible interaction of nitrogen and phosphorus in the yield and sucrose content of roots. With the addition of each increment of nitrogen at the higher rates of phosphate application to the soil, the yield of roots increased and the percent sucrose decreased. With the addition of each increment of phosphorus and phosphate sprays the yield increased and, with the weekly spraying of phosphate, the percent sucrose apparently was maintained at levels nearly as high with the application of nitrogen as without added nitrogen.

This might indicate that, if the phosphorus content of the plant can be maintained at a high concentration just prior to harvest, the percent sucrose could be at a high level even if nitrates were available to the plant. From the results of Part I this would appear to be best accomplished by one or two phosphate sprays applied one to two weeks prior to harvest. Further experimental work should establish the best spray material and time of spraying.

Table 6. The effect of one, two and three foliar sprays of P^{32} on specific activity of sugar beet petioles at two locations, 1952.

Pounds P ₂ 0 ₅ per acre (spray)	Number of sprays	Specific activity Rader farm	of plants*, c.p.m. Wieland farm
1.7	1	3090	955
3.4	2	4708	1809
5.1	3	4479	2566

* average of twelve samples (counts per minute)

In another experiment the P^{32} spray was applied to the plant in three different ways; (1) to one-half of the plant, (2) to the crown, and (3) to the new growth. The counts found in petioles taken from various positions on the plant are shown in Table 7.

Table 7. The effect of applied P³² to various portions of the sugar beet plant on the specific activity of sugar beet petioles.

Position of		F	legion c	of Applica	tion	
tissue sample	One of	-half plant	Cr	own	New	growth
	Rader farm	Wieland farm	Rader farm	Wieland farm	Rader farm	Wieland farm
•	Sp	ecific ac	tivity	(counts p	er minu	ite)
new leaves	2145	2040	1430	1324	1490	1331
mature leaves	477	500	455	59 8	884	471
mature leaves (sprayed)	2458	1760				

The data in Tables 6 and 7 show that phosphorus accumulates in the sugar beet petioles with successive sprayings, and the amount accumulated is related directly to the amount applied. The applied phosphate accumulates in new tissue regardless of the plant portion to which it is applied. Therefore, to achieve the highest concentration of phosphate in the green tissue, the entire plant should be sprayed.

PART III. FERTILIZER RATIOS

Procedure

A number of fields on farms in the Saginaw valley and Thumb area of Michigan were fertilized at various rates of phosphate and potash to study such effects on the yield of roots and chemical composition of the green tissue of sugar beets. Soil tests were by the Spurway reserve method (11).

Duplicate plots in the fields were planted and harvested. Duplicate green tissue samples were taken at various times during the season with the last sample taken as near to harvest as practical. They were analyzed for N, P, K, and Na.

The results from individual farms together with the soil tests in the plot area are shown in Tables 8 through 20.

Penetrometer (6) readings were taken at each location.

s on the chemical composition of sugar beet dates), percent sucrose and yield of roots on Whittemore sandy člay loam and sandy	p.p.m. of nutrient in green tissue Aug. Sept. Aug. Aug. Sept. 28 21 9 21 28 21	P	161 200 36 108 125 180 192 53 127 111 187 198 86 134 117 190 200 41 119 108
of fertiliz three sampli sugar per ac farm, 1956.	Aug.		86 0 0 66 80
e 8. The effect petioles (and gross a loam, Timm	ds per acre P ₂ 05 K ₂ 0		115 115 78 115 40 40
Tabl	Poun N		0005 1000

Results and	d discussion
-------------	--------------

Na

1120 1465 840 840

4920 5010 3980

3960 3870 3300

3210 3680

115 115 115 115

0555 1-000

2990 2850

Ы

1390 1390 1245 1510 1280 1510 1340 1560 Pounds gross sugar per acre 4677 4813 4973

Percent

Tons roots

7.9; 138; 11 The penetrometer pressure 60 pounds respectively. and 205; 48 sucrose 20.5 20.5 20.6 Soil tests for pH, pounds P and K per acre: 7.6; required to insert 0-4 and 0-6 inches was 40 and respectively for the 0-6 and 12-18 inch samples. acre 11.8 11.8 12.2 per 115 78 115 115 0050 0000

effect of fertilizers on the chemical composition of sugar beet ioles (three sampling dates), percent sucrose and yield of roots gross sugar per acre on Essexville sandy loam, Foret farm, 1956.	re p.p.m. of nutrient in green tissue	2 ⁰ Aug. Aug. Sept. Aug. Aug. Sept. 9 28 21 9 28 21	q	00 94 94 194 78 141 128 50 93 179 192 78 166 146 00 96 175 195 62 168 127	K Na	00 3120 2810 3320 450 790 900 50 2610 2510 3320 410 690 850 00 2910 2780 3740 370 710 690	Mons montis Pancant. Polinds moss	per acre sucrose sugar per acre	00 12.4	50 II.4	00 –– ––	r pH, pounds P and K per acre: 7.7; 193; 55 and 7.8; 103; 31 for the 0-6 and 12-18 inch samples. The nenetrometer pressure
ne effect of fer etioles (three s nd gross sugar p	acre	K20 Aue 9		100		100 50 100 261 291		1 De	100	50	100	for pH, pounds F y for the 0-6 an

Tabl	e 10.	The effect of petioles (thre and gross suga	fertiliz ee sampli ar per ac	ers on th ng dates) re on Sin	ne chemical cor), percent such As loam, Geisen	npositic cose and farm,	n of sugar yield of 1956.	beet roots
Pound	ls per	acre		p.p.m.	of nutrient ir	ı green	tissue	
N	P205	K20	Aug. 10	Aug. 30	Sept. 22	Aug. 10	Aug. 30	Sept. 22
				N			Ъ	
100 110	3999 3999 3999	67 57 33 57	120 172 195	0 34 0	181 187 185	103 110 111	140 88 75	158 178 177
				K			Na	
р 1 1 1 1 1	390 6	65 65 67	3110 3000 3120	3440 2630 2630	4590 4580	880 930 830	1260 910 860	1260 1260 1120
			Tons roo per acr	ts e	Percent sucrose		Pounds ₍ sugar pei	gross acre
100 110	3999 3999 3999	65 33 67	13.5 12.85 13.0		0011 00.01 00.4		50410	
Soil resp requ	tests sctive Lred t	for pH, pounds ly for the 0-6 o insert 0-4 ar	s P and K and 12-1 nd 0-7 in	per acre 8 inch sa ches was	:: 7.3; 130; 13 umples. The pe 40 and 65 poun	6 and netrome ds resp	7.7; 48; 7 ter pressur ectively.	ဝ စ

The effect of fertilizers on the chemical composition of sugar beet petioles (three sampling dates), percent sucrose and yield of roots	and gross sugar per acre on Kawkawlin loam, Meylan and Streffling field, 1956.	
rable 11.		

Poun	ds per	acre		•ď	p.m. of	nutrient	in gı	reen tiss	ue
N	P205	K ₂ 0		Aug. 10	Aug. 30	Sept. 22	Aug. 10	Aug. 30	Sept. 22
					N			ይ	
12	48	48	(K20)	189	52	189	168	171 171	155
n n n n	717	100	(KC1)	196	00	190 190	524 524	100 100 100	1 1 1 1 1
6 6 6 6	117 117	200	(KC1) (K_2SO_4)	196 196	00	145 73	224 224	159 159	218 84
					К			Na	
12 70 7	48 717	84 7	(K ₂ 0)	4480 3500	4030 3570	5270 3810	620	950 050	1060
n n n n n n	117	100	(KC1)	920 920 920 920 920 920 920 920 920 920	3570	4710		2000	1180
70 70	117	200	(KCSO4)	3500 3500	3570	4320 1730		950 950	029 1120
				Tons r	oots	Percen'	4	Pounds	gross
				per a	cre	SUCPOS	٥I	sugar pe	r acre
20	48 117	8 ⊂ 7	(K ₂ 0)	(7 7	Ľ	ς α Γ			_
200	117	100	(KCI)		∖ !	0 1 1 1			4+
00 00	117 117	0 0 0	(KC1) (K ₂ S04)	ง.ง ศ.ศ	യറ	10.0 10.0		181	∽ +
Soil	tests	for p	oH, pounds P and K per	acre:	7.3; 13	3; 87 and	d 7.4	; 138; 1	
resp	ectivel	ly for	the 0-6 and 12-18 inc	h samp	les. T	he penetra	ometer	pressur	۵) ا
requ	ired to	o inse	ert U-4, U-6, U-8, and	TT-0	nches W	as 35, 50	, 50,	and 60 p	spunc
resp	ectivel	Ly.							

Table	12.	The effect petioles (: and gross	of fer four sa sugar p	tilizer mpling er acre	s on th dates), on Car	te chemical percent s ac silt lo	composit ucrose an am, Drahe	tion of nd yiel er farm	sugar d of ro 1, 1956.	beet ot s
Pound	s per	acre		đ	· p·m· o	of nutrient	in greer	n tissu	e	
N	P205	K ₂ 0	Aug. 2	Aug. 14	Aug. 31	Sept. 19	Aug. 2	Aug. 14	Aug. 31	Sept. 19
				N				д		
0000 5555	ଚ୍ଚିତ୍ରତ୍କର୍	120 80 40	196 197 198	144 190 195 172	123 188 152 107	76 93 179	961 961 96	62 92 47	600 49 40 40 40 40	71 35 22
				М				N	ർ	
0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	හිතිහිති	120 40 120	2960 3140 3660 3660	3060 2700 2 6 40 2760	1660 2340 1830 1830	3860 2450 1990 1520	610 520 460	710 810 640 620	630 740 670	1170 880 940 630
			Tons r	oots cre		Percen' sucros	e t	ά	Pounds (ugar pei	gross acre
0 0 0 0 0 0 0 0		120 40 00	01000	н. 		18.2 18.0 17.8	-	1	302(4) 302(4)	0,0,0
	3	>	-			1.01				- -
Soil respe requi	tests ctive: red to	for pH, po Ly for the insert O-	unds P 0-6 and 4 and 0	and K p 12-18 -8 inch	er acre inch sa es was	:: 7.0; 41; umples. The 35 and 60]	99 and e penetrc pounds re	7.5; meter] specti	15; 39 pressure vely	0

Table	13.	The effec petioles and gross	t of fertili (three sampl sugar per a	zers on t ing dates cre on Ka	the chemical co), percent suc .wkawlin loam,	mposition rose and O'Laughli	n of sugar yield of J in farm, 19	beet roots 956.
Pound	s per	acre		-m•d•d	of nutrient i	n green t	iissue	
N	P205	K20	Aug. 10	Aug. 30	Sept. 18	Aug. 10	Aug. 30	Sept. 18
				N			Ъ	
000 1 1 1 1	2000 2000	50 50 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	173 196 141	0 07	93 125 188	103 114 66	74 53 121	138 81 117
				К			Na	
1332	500 1000 1000	000 000 000	3050 3090 3090	2120 2320 2900	2220 1590 2700	775 830 930	870 1000 980	88 0 630 1430
			Tons ro per acr	ots e	Percent sucrose		Pounds sugar pe	gross r acre
n n n n n n n n	000 000	50 20 20 20			21.0 21.4 20.4			
Soil respe requi respe	tests ctive red to ctive	for pH, p ly for the o insert O. ly.	ounds P and 0-6 and 12- -4, 0-7, and	K per acr 18 inch s 0-10 incl	e: 7.1; 30; 67 amples. The pe hes was 30, 60	and 7. enetrometo , and 70]	7; 181; 39 er pressur pounds	υ

Table Pound	e 14. Is per Poon	The effect petioles (and gross <u>acre</u> K ₂ 0	t of fer four sa sugar p Aug.	tilizer mpling er acre Aug.	s on the dates), e on Kawl	e chemice percent cawlin l cavin l Sept.	al compos sucrose cam, Spre cam, Epre Aug.	sition and yi enger f en tis Aug.	of sugar eld of r arm, 195 sue Sept.	beet oots 6. Sept.
	1	J	m	15	7 N	18	ε	15	Р 7	18
0000 00000	100 1000 1000	150 50 0	200 71 196 198	181 187 182 157	93 0 93 19 0 93	179 89 180	200 63 158	99 120 97	153 100 112	173 88 164 143
0000 00000	1000 1000 1000	150 50 0	4020 4140 3120	3420 3120 2840 2760	K 3630 2260 3160	2910 2350 2510 2790	580 790 960 1070	1150 1110 1280	Na 1110 730 1120 1210	930 960 1020 1220
<i>00000</i>	100 1000 1000	1120 2000	Tons r per a 11.	000ts 44 66 44	Percission 128	cent cose 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 8 8 8 7 8	Percent purity 86 85 85 85 85 85		Pounds Sugar pe 356 333 356	gross gross 00 00 00 00 00 00 00 00 00 00 00 00 0
Soil resp resp	tests sctive. ired to sctive.	for pH pou Ly for the c insert O. Ly.	unds P a 0-6 and -4, 0-8,	nd K pe 12-18 and 0-	rr acre: inch san 12 inche	7.3; 193 mples. 1 ss was 29	3; 267 a Phe penet 5, 45, an	nd 7. rometer d 55 po	2; 151; 7 r pressur ounds	6 ø

Tablé	15.	The effe petioles and gros	ect of fer s (four se ss sugar p	rtllizer umpling Der acre	s on the dates), e on Nest	e chemica percent cer loam,	L compos sucrose Hauck f	sition and yi arm, 1	of sugar eld of r 956.	beet oots
Pound	ls per	acre			o.m.q.c	? nutrien	it in gre	en tis	sue	
N	P205	K ₂ 0	Aug. 3	Aug. 15	Sept. 7	Sept. 18	Aug. 3	Aug. 15	Sept. 7	Sept. 18
				4	ł				Ъ	
00000 00000	130 120 120	210 120 0	181 0 194 193	1001 1005 1804 1804 1804	182 0 0 89 893 0 18	191 191 288	28 107 142 163	116 105 122	97 92 117 88	95 128 62 62
				, , ,	.				Na	
0000 00000	130 120 120	210 120 60	3990 4020 3480 3480	3770 3200 2280 2580	2450 2720 2500 2450	2160 2550 2150 2160	1010 650 820 840	1010 890 1040 930	1020 1030 1140 1120	1220 1130 1140 1030
			Tons I	roots	Perc	tent	Percent		Pounds	gross
10000 100000	120 120 120	210 120 60		9 10 10 10 10 10 10 10 10 10 10 10 10 10			83 83 87 80 87 80 87 80 80 80 80 80 80 80 80 80 80 80 80 80		3315 3315 315 315 315 315 315 315 315 31	
			-	>		-	60			1
Soil tive	tests ly for	for pH, the 0-6	pounds P and 12-18	and K r 3 inch s	ber acre: samples.	6.5; 44 The pen	; 166 a etromete	nd 7.5; r press	: 4; 16 r sure requ	'espec- lired
to Li	nsert	0-4, 0-8,	, and 0-12	2 inches	3 Was 25,	35, and	45 poun	ds rest	bectively	•

e t	_
r bé	956.
ugai	, 10
of S	farn
osition	Draher
comp	loam,
chemical	n Capac
he	, S
ц Ц	es)
ວ ທ	date
fertilizer	sampling (
of	our
effect	ioles (f
The	peti
16.	
Table	

	Sept. 19		69 17 13 13 16	40 1	71 88 51	72 38 72 72 72
e	Aug. 31		123 77 87	68 7	82 117 72	94 77 106 105
n tissu	Aug. 14	д	8582	67 67	84 87 106	73 82 73
in greei	Aug. 2		117 120 61	50 50 7	38 65 105	
ent 1						
f nutri	Sept. 19		1380 88 1380 8	5 0 †	107 131 152	4007 4007
o .m.q.	Aug. 31		147 118 107	120	92 74 70	128 124 122
đ	Aug. 14	N	12833 1283 1283	60 79	71 63 64	116 74 74 74
	Aug. 2		1196 1198 1198	0	0 34 195	
acre	K ₂ 0		37 150 150	37	150 150 225	37 37 150 225
ds per	P205		525 525 525 525 525 525 525 525 525 525	ر) 150	1700 1700	ភេទាទា ខេត្តទា ខេត្តទា
Poun	N		<u></u>	0 3 03	9999 099	00000 00000

Pound	s ner	acre			F	ۍ بو	n11 +n 10	5 4 7	neern	dra sti		
N	P205	K ₂ 0	Aug. 2	Aug. 14	Aug. 31	Sept. 19	Aug.	Aug. 14	Aug. 31	Sept. 19	Aug. 31	Aug. 31
					К				Na		Ca	Mg
0000 00	25 25 25 25	37 75 150 225	4710 4710 4470 4590	3460 4380 4620 4620	3960 4550 4550	4370 3650 5240 4520	760 750 810	990 1210 1300 1010	1380 1380 1420 1420	1560 1230 1590 1450	00000 00000	310 310 310 310
00000 00000		37 75 150 225	4260 4530 3870	4340 4020 4710 5280	3560 4200 4490 4690	4170 4580 4760 4700	1010 750 630 710	1300 1060 1220 1160	1520 1280 1320 1170	2070 1440 1530 1570	00000	3300 3300 350
33993 99999	225 225 225 225 225 225 225 225 225 225	37 37 150 225		3490 4410 4760 4360	3780 3960 4090 4420	4200 3430 2430 4540		930 1270 900	1260 1440 1490 1200	1840 1520 1270 1120	0000 00000	290 320 330 330
Soil resp: requi	tests sctivel red to	for pH, y for th insert	pounds ne 0-6 0-4 an	P and and 12 d 0-8	K per -18 in inches	acre: ch samp was 35	6.7; 2 les. and 6	4; 169 The per	and netrom ds res	7.1; 3; eter pre pective]	2; 95 essure ly.	

Table 16. (continued)

Tabl	e 17.	The effect of petioles (thr and gross sug	fertiliz ee sampli ar per ac:	ers on th ng dates) re on Kaw	e chemical com , percent sucr kawlin loam, C	position ose and J harboneau	of sugar beet /ield of roots 1 farm, 1956.	a ch
Poun	is per	acre		p.p.m.	of nutrient in	green ti	ssue	
N	P205	K20	Aug. 10	Aug. 30	Sept. 18	Aug. 10	Aug. Sep 30 18	
				N			ĥ	
777 444	186 186 161	186 161 186	162 97 191	ဝမ္လဝ	141 96 84	72 62 94	118 117 111 66	0000
				К			Na	
477 447	186 186 161	186 161 186	2970 3270 3200	2800 2980 3200	1740 3060 1590	1060 1110 910	112 990 970 1190 1050 510	000
			Tons roo per acre	e cr s s	Percent sucrose		Pounds gross sugar per aci	re
47 47	186 186	186 161	8 1		21.0 20.8			
47	161	186	1		20.6		1	
Soil tive to i	tests ly for lsert (for pH, pound the 0-6 and 1 0-4, 0-6, and	s P and K 2-18 inch 0-8 inche:	per acre samples. s was 40,	: 7.4; 76; 71 The penetrom 55, and 65 pou	and 7.7 eter pres unds resp	; 7; 39 respec sure required ectively.	0

ct.		Pt.		6 6 6 6 6		0000	ss Cre		
bee oots		N. N.				120.13.	gros er ac	502	e e
f sugar 1d of r m, 1956	ue	Aug. 30	0.	11.91 11.3 84	Na Na	1220 1270 1300	Pounds sugar pe	408 414 514	169; 16 pressur vely.
ition o and yie and far	en tissl	Aug. 10	-	92 92		1020 1140 1140		1	7.5; ometer especti
composi tcrose a 1, Wiela	in gree	July 27		138 105 105		1150 1030 960			59 and penetr ounds r
.cal it su loam	ent						ent ose	нон	87; The 60 b
le chemi , percer ns clay	of nutri	Sept. 22		98 172 185		3250 2520 4490	Perc	20. 20.	: 7.5; umples. 40 and
rs on th dates), e on Sir	0.p.m. 0	Aug. 30		155 124 0		3270 3680 3320			er acre inch sa les was
rtilizer ampling per acre		Aug. 10	Ч	200 182 196	Å	2940 3110 3410	roots tere	400	and K p 1 12-18)-6 inch
t of fei (four sa sugar I		July 27		188 196 194		3570 3120 3870	Tons 1 per 8		ounds P 0-6 and -4 and (
The effec petioles and gross	acre	K ₂ 0		8000 8000 8000		80 80 00 00		80 0 0 80 0 0 80 0	for pH, p ly for the o insert O
e 18.	ds per	P205		4000 1488		4880 4000		4-88 0 0 0	tests ective: ired to
Tabl	Poun	N		0 0 0 5 5 5		50 50 50 50		50 50 50 50 50	Soil resp requ

Tabl	e 19.	The eff petiole and gro Wackerl	ect of fei s (four se ss sugar r e farm, 19	rtilize ampling per acr 956.	rs on tl dates) e on Sin	ne chemical , percent su ms clay loan	compos ucrose m to Pi	ition o and yie ckford	f sugar 1d of r clay lo	beet oots am,
Pour	ds per	acre			.m.q.o	of nutrient	in gre	en tiss	ue	
N	P205	К ₂ 0	July 27	Aug. 10	Aug. 30	Sept. 18	July 27	Aug. 10	Aug. 30	Sept. 18
					ч				പ	
1000	72 36	72 36 72	200 196 196	102 197 200	1880 1880	196 0	1000 1000 1000	111 94	109 122 100	118 139 79
					Y				Na	
18 188 188	72 362 36	72 36 72	2550 2670 3060	2760 2700 2750	2610 2990 2810	2760 2850 2780	1340 1030 1000	1120 1060 1030	1170 1200 1300	1220 1230 1310
			Tons 1 per 5	roots acre		Percent sucrose			Pounds sugar pe	gross r acre
1000 1000 1000	72 36 36	72 36 72		10 m-4		10.00 10.00 0.080	ſ	,	583 6001 6001	8 H 8
Solj rest requ	tests ective irred t	s for pH, ly for t o insert	pounds P the 0-6 and 0-4, 0-8,	and K 1 12-18 , and 0.	ber acre inch sa -11 inch	e: 7.2; 72; amples. The les was 30,	103 ar e peneti 45, and	nd 7.4. rometer 1 60 pou	; 157; 5 pressur unds	က် စ
resi	ective	•T7.								

beet ots 6.		Sept. 22	đ	1260	1250	780	gross er acre 51 56 90
of sugar Id of ro 17m, 195	le	Aug. 30	Ň	1130	1180	1220	Pounds sugar po 31(33(30)
sition c and yie] ckert fs	en tissu	Sept. 22		4370	4160	3680	
ul compo sucrose am, Ste	in gree	Aug. 30	M	4530	4130	4510	10 14
e chemica bercent s tawlin lc	nutrient	Sept. 22		187	168	141	Percen sucros 18.8 18.4 18.4
s on the lates), r on Kawk	p.m. of	Aug. 30		113	141	126	
ertilizer umpling d per acre	Q	Sept. 22	7	194	173	160	roots acre 4 4 4
ct of fe (two se is sugar		Aug. 30	4	0	0	0	Tons r per a 8.
The effe petioles and gros	1						
Table 20.	Pounds of A			65	105	25	65 105 25

The penetrometer pressure required to insert 0-4 and 0-6 inches was 35 and 55 pounds respectively. The data shown in Tables 8 through 20 were variable in respect to soil type, soil tests and fertilizer application and subsequently no precise correlations could be made. However, the following general observations were evident.

The data in Tables 8 and 9 show that, on soils very high in P but low in K, the concentration of N, P, K and Na in the petiole increased during the growing season. The amount of K in the tissue tended to correlate with the amount of K applied in the fertilizer. Fertilizers had no apparent effect on yield of roots or percent sucrose.

The data in Tables 10 and 11 show that on soils very high in P but medium in K the concentration of K and Na in the petiole increased during the growing season but the concentration of P in the petiole was variable with respect to date of sampling and amounts of phosphate and potash applied. The very low values obtained on the September 22nd tissue test for the K_2SO_4 application probably was due to experimental error. Fertilizer did not affect yield of roots and percent sucrose to any appreciable degree.

The data in Tables 12 and 13 show that on soils low in P and medium in K the concentration of P, K and Na in the petiole, in general, was directly related to the amounts of potash applied, but the concentration of K in the tissue tended to decrease as the season progressed. The yield of

roots was increased by potash application but no effect on percent sucrose (Table 12) occurred.

The data in Tables 14, 15, 16 and 17 show that on soils either high in P and K and/or receiving heavy fertilizer applications the concentration of P and K in the petiole was not correlated with season or treatment. However, the data in Tables 15 and 16 show that Na increased in the petiole during the season. The Ca and Mg contents of the petiole were not affected by fertilization (Table 16). Data in Tables 13 and 14 indicate no apparent effect of fertilizer on yield of roots, percent sucrose or percent purity.

The data in Tables 18 and 19 show that on soils medium in P and K and receiving moderate fertilizer applications the concentration of P and K in the petiole was not correlated with season or fertilizer. However, Na did tend to increase in the tissue during the season. Fertilizers had no significant effect on yield of roots or percent sucrose.

The data in Table 20 show increasing nitrogen applications had no apparent effect on the concentration of P, K and Na in the petiole or on yield of roots and percent sucrose.

No consistent relationship is apparent between nitrogen concentration in the petiole with the amount of fertilizer applied to the soil. Instead, nitrogen concentration in the

tissue would appear to be related to possible climatic factors which, in turn, would influence nitrogen availability in the soil.

The data in Tables 8 through 20 show that the only marked yield response (Table 12) was due to application of potassium fertilizer. This occurred when the concentration of K in the petiole at the later sampling dates was less than 2200 p.p.m. and the Na concentration below 1000 p.p.m.

The penetrometer data show that those fields with the highest yield of roots had the lowest readings. This might indicate that soil compaction is an important deterrent to high yields of beets.

Yield of roots, percent sucrose and nutrient concentration in the petiole could not be correlated with soil tests of samples taken at the 12 to 18 inch depth.

PART IV. DEPTH OF PLOWING

Procedure

Two experiments located on a Sims clay loam and a Kawkawlin-Sims sandy loam complex in Huron county (locations 7 and 9) were initiated in 1956 to study the effect of depth of plowing on growth of beets.

On the Gremel farm (location 7) the depths of plowing were 10 inches using a moldboard type plow and 16 inches using the disc type plow shown in Plate 2. A 5-20-20 analysis fertilizer was applied about 1 inch to the side and 2 inches below the seed at a rate of 600 to 700 pounds per acre.

Duplicate 0.24 acre plots were planted on April 17th using US 400 variety. The plots were harvested October 18th and yield of roots per acre, percent sucrose and percent purity determined.

Green tissue samples were taken from each plot at various dates during the season and the chemical composition determined. Penetrometer readings were made at different depths on August 13th and September 7th.

On the Kurzer farm (location 9) the depths of plowing were 7 inches using a moldboard type plow and 16 inches using the disc plow. A 5-20-20 analysis fertilizer was used.

Plate 2. Equipment used for deep plowing.

The four treatments at each depth of plowing consisted of: 0; 700 pounds per acre plowed under; 700 pounds per acre 1 inch to the side and 2 inches below the seed at planting time; and 700 pounds per acre plowed under with 700 pounds per acre 1 inch to the side and 2 inches below the seed at planting time.

Three replications of each treatment were planted to sugar beets May 25th using US 400 variety and 0.005 acres of each were harvested October 18th and yield of roots per acre, percent of sprangly roots, percent sucrose, and percent purity determined.

Green tissue samples were taken at various dates during the season and the chemical composition determined. Penetrometer readings were made at different depths on September 7th. Duplicate soil moisture determinations were made at various depths on September 21st.

Table 21.	The effect of depth of plowing on the chemical composition of
	sugar beet petioles (four sampling dates), percent sucrose
	and yield of roots and gross sugar per acre on Sims clay loam,
	Gremei Iarm, 1950.
Depth of	p.p.m. of nutrient in green tissue

-

		·/- 6 ::: +*	• ~ ^					
)epth of			o.p.m.	of nutrie	ent in gree	n tissı	ue	
olowing (inches)	Aug. 2	Aug. 13	Aug. 28	Sept. 21	Aug. 2	Aug. 13	Aug. 28	Sept. 21
		[N				പ	
16	87	200	182	181	119	207	144	116
IO	185	96	198	168	66	132	174	98
			M				Va	
16	3890	3840	3900	04440	860	690	950	1220
10	4200	3840	3350	3870	840	810	980	1340
	Tons	roots acre	Pe	rcent crose	Percent purity		Pounds sugar pe	gross r acre
16	18	4.		9.4	83	,	265	9
10	18	ņ	Ч	9.4	84		596	17

47

Table 21. continued.

Soil tests for pH, pounds P and K per acre when plowed 16 inches deep: 7.0; 121; 142 and 7.3; 93; 75 respectively for the 0-7 and 8-15 inch samples; and when plowed 10 inches deep: 7.5; 37; 85 and 7.7; 66; 13 respectively for the 0-6 and 12-18 inch samples. The penetrometer pressure recorded August 13th required to insert 0-4, 0-8, and 0-12 inches was 35, 50, and 50 respectively when plowed 16 inches deep; for the same depth of insertion, 25, 35, and 40 respectively when plowed 10 inches deep. The penetrometer pressure recorded September 7th required to insert 0-4 and 0-8 inches was 35 and 60 respectively when plowed 16 inches deep; and, for the same depths of insertion, 35 and 50 respectively when plowed to 10 inches.

The data in Table 21 show that, on a Sims clay loam, medium to low in P and K, the concentration of K in the tissue at the last two sampling dates was higher where the soil had been deep plowed. Sodium concentration in the tissue increased during the season.

Where the soil was plowed 16 inches deep soil test results show a decrease in pH and an increase in P and K at both depths of sampling.

sugar of farm,		Sept. 21		129 106 122		820 760 1030 860	gross r acre	NHON	90		
ion of ^s d yield Kurzer	s s ue	Aug. 28	۵.	127 116 111 117	Na	640 670 730 750	Founds sugar pe	477 4759 4770 4770	362 285	310 365	
omposit cose an 7 loam,	reen ti	Aug. 13		187 129 124 117	Ľ	200 420 460 150	cent ity s	4 7 8 8 V	8	<u>ლ</u> ჟ	
al co suci sandj	in gr	ug. 2		225 243 243 275		400 370 350	Per pur	ωωωω	0000	ωω	
e chemic percent wkawlin	utrient	pt. A		සැවසුලි		00 140 50	Percent sucrose	20.0 20.1 20.4	20.0 20.0	20.0	
on th tes), on Ka	of n	Se				4496 4496	oots cre	0040	നവം	4	
owing Ing de acre	m d o	Aug 28	7	11000	M	5140 3990 3760 4560	Per a	112 122 122 122	0.0	-9-1 1-2-0	
l of ple sampl: sar per		Aug. 13	[200 200 94	-	6200 4790 4530 5570		ı	ler)	ler)	
f depths (four s (four oss sug		Aug. 2		198 1980 1966		5730 4920 51 3 0 5940			wed und	wed und	
The effect o beet petiole roots and gr 1956.	Pounds	5-20-20 per acre		1400 700 1400 1400		1400 700 700 1400		1400 700 1400 1400	700 (pic	0 700 (pic	
Table 22.	Depth of	plowing (inches)		16 16		776 16		116 116	10 110		

Table 22. continued.

Soil tests for pH, pounds P and K per acre when plowed 16 inches deep: 7.3; 84; 88 and 7.2; 72; 93 respectively for the 0-7 and 8-15 inch samples; and, when plowed 7 inches deep: 7.9; 66; 79 and 7.9; 199; 39 respectively for the 0-6 and 12-18 inch samples. The penetrometer pressure required to insert 0-4, 0-7, 10-14 and 10-17 inches was 40, 70, 40 and 65 respectively when plowed to 16 inches deep; and, for the same depths of insertion, 40, 70, 40 and 70 respectively when plowed to 7 inches deep.

The data in Table 22 show that, on a Kawkawlin-Sims sandy loam complex, medium to low in P and K, the concentration of P and K in the petiole increased with the amount of fertilizer applied. Sodium concentration in the tissue increased during the season.

Fertilizer markedly increased yield of roots. Where 1400 pounds per acre was applied the highest yield of roots with an average of 13.8 ton per acre was obtained. Where 700 pounds per acre was applied at planting time, the average yield of roots was 12.5 tons per acre. In this experiment, 700 pounds per acre of fertilizer plowed under to a depth of 7 inches was apparently nearly as effective as the application of 700 pounds per acre in a band 1 inch to the side and 2 inches below the seed.

Where plowed to a depth of 16 inches, yield of roots was reduced compared with areas plowed to a depth of 7 inches by 1.2 ton per acre where no fertilizer was applied and by 1.8 ton per acre where 700 pounds of fertilizer was plowed under but none applied at planting time.

Where the soil was plowed 16 inches deep, soil test results show a decrease in pH at both depths of sampling.

Table 23. The effect of depth of plowing on sprangling in sugar beet roots, Kurzer farm, 1956.

Depth	of plowing	Percent	sprangly	beets
16	inches		13	
7	inches		39	

The data shown in Table 23 indicate that the percent of sprangly roots as shown in Plate 4 from conventional plowing was greater than those from deep plowing. This difference is indicated by the piles of roots from some typical plots on the Kurzer farm (Plate 5).

Table 24. The effect of depth of plowing on soil moisture content at various depths, September 21, 1956, Kurzer farm.

Depth	of plowing	Depth o	of sample	Percent moisture
16	inches	4	inches	10.5
		9-12	inches	10.0
		15-18	inches	9.3
7	inches	4	inches	10.0
		9-12	inches	8.7
		15-18	inches	8.1

The data in Table 24 indicate that deep plowing may have increased moisture retention but no yield difference could be shown.

Plate 4. Sprangly beet roots on land plowed at a conventional depth.

Plate 5. Yields of sprangly and well shaped beet roots from deep and conventional plowed areas. The two piles on the left (2) are from deep ploving and on the right (1) are from normal plowing.

SUMMARY

Treatments of 0, 750, and 1500 pounds per acre of ammonium nitrate; 2208, 3680 and 5520 pounds per acre of 49 percent treble superphosphate; and 1785, 3675, and 4725 pounds per acre of 60 percent nuriate of potash did not establish field levels of these nutrients corresponding to laboratory fixation tests of the soil. Soil nitrate levels were increased by the heaviest application of ammonium nitrate but phosphorus levels were not affected by phosphorus applications. Soil potassium was increased by potassium applications to levels higher than desired but application of the heaviest amount resulted in no higher level than the medium application.

Nitrates in the petioles from areas receiving the two higher nitrogen applications were increased markedly but phosphorus was decreased.

The yield of roots was significantly increased by the addition of nitrogen but percent sucrose was decreased. The interaction of nitrogen and potassium was significant. in that, at the lowest nitrogen level, the addition of potassium reduced yield of roots but with the higher amounts of nitrogen applied yield of roots was not reduced.

54

The lack of agreement of soil test values reached in the laboratory and the field together with lack of correlation of chemical composition to nutrient levels in the soil was probably due to the nutrient supplying and fixing power of the soil, the physical condition of the soil and/or weather conditions.

The application of phosphorus to a soil low in phosphorus or as a foliar spray increased the phosphorus concentration of the tissue. Nitrogen applications resulted in a decrease in the phosphorus concentration of the tissue. Foliar sprays of phosphorus tended to increase the concentration of phosphorus in the tissue in proportion to the amount applied but did not appear to appreciably influence the yield of roots or percent sucrose.

Where various ratios of fertilizer were applied, precise correlations could not be made due to variability with respect to soil type, soil tests, and fertilizer amounts and ratios. However, the following general trends are suggested. On soils medium or low in potassium the concentration of potassium and sodium in the petiole increased during the growing season and usually increased with increasing amounts of applied potassium fertilizer. On soils low in phosphorus the concentration of phosphorus in the tissue increased with increasing amounts of applied potassium fertilizer.

55

The differences between yield of roots from areas where various fertilizer ratios were applied were small except in one case. In this case where the soil was low in phosphorus and low to medium in potassium, increasing the amount of K_20 applied from 0 to 80 pounds per acre resulted in an increased yield of roots of about 46 percent. This would indicate that an x-2-1 ratio of fertilizer is probably adequate for these soils.

The effect of date of sampling on chemical composition of the petiole varied with location and would fall into four categories; (1) no distinct trend, (2) increase, (3) decrease, and (4) highest concentration at intermediate dates.

Soil penetrometer data indicate that soil compaction is an important deterrent to high yields.

Plowing to a depth of sixteen inches decreased the soil pH and the percent of sprangly roots but tended to increase soil moisture retention.

56

BIBLIOGRAPHY

- Alexander, J. T., et.al. The effect of fertilizer applications on leaf analysis and yield of sugar beets. Proc. Amer. Soc. Sugar Beet Tech. 2:370-379, 1954.
- Andrlik, K. The injurious effect of nitrogen in the sugar beet. Ztschr. Zukerindus. Bohem. 31:277-284, 1907.
- Andrlik, K. and J. Urban. The effect of defoliating sugar beets. Ztschr. Zukerindus. Bohmen. 31:708-761, 1907.
- 4. Carlson, W. E. Mineral assimilation of sugar beets. Proc. Amer Soc. Sugar Beet Tech. 81-100, 1942.
- 5. Lill, J. G. and H. C. Rather. Sugar beets after alfalfa. Mich. Agr. Exp. Sta. Quart. Bul. 26, No. 2, 129-133, 1943.
- Robertson, L. S. and C. M. Hansen. A recording soil penetrometer. Mich. Agr. Exp. Sta. Quart. Bul. 33, 1-4, 1950.
- 7. Roboz, E. Harmful constituents of the beet factors which influence the harmful nitrogen. Proc. Amer. Soc. Sugar Beet Tech. 515-528, 1942.
- 8. Schropp, W. and B. Arenz. The effect of a sulfur deficiency on the morphology, yield and nitrogen economy of some cultivated plants. Bodenkunde u. Pflanzenernahr. 20:68-81, 1940.
- 9. Skuderna, A. W. Resume of commercial fertilizer studies with sugar beets. Proc. Amer. Soc. Sugar Beet Tech. 138-146; 1942.
- 10. Skuderna, A. W. and C. W. Doxtator. A study with sugar beets on two fertility levels of soil. Proc. Amer. Soc. Sugar Beet Tech. 112-119, 1942.
- 11. Spurway, C. H. Soil testing: A practical system of soil diagnosis. Mich. Agr. Exp. Sta. Tech. Bul. 132 (3rd rev.), 1944.

- 12. Tolman, B. Response to nitrogen and phosphate fertilizers in the intermountain area. Proc. Amer. Soc. Sugar Beet Tech. 45-53, 1946.
- 13. Ulrich, A. Plant analysis as a guide to fertilization of crops. Better Crops with Plant Food, Amer. Potash Inst., Inc. No. 6, p. 6, June-July, 1956.
- 14. U.S.D.A., Div. of Chem. Bul. 27:54-57, 1890.
- 15. Wilfarth, H. and G. Wimmer. The effect on plants of a deficiency of nitrogen, phosphoric acid or potash. Jour. Landw. 51:2:129-138, 1903.
- 16. Wiley, H. Influence of soil and climate on composition of sugar beets. U.S.D.A. Div. of Chem. Bul. 74, 1903.
- 17. Zitkowski, M. P., M. P. Potvliet and I. W. Reed. Composition of sugar beets at various stages of the growing season. Sugar, 18:296-298, 1916.