THE OXIDATION OF COEN OIL BY BACTEBIA by JOHN ORVIN MUNDT A THESIS S u b m i t t e d to t h e G raduate S c h o o l o f M ic h ig a n S t a t e C o l l e g e o f A g r i c u l t u r e and A p p l i e d S c ie n c e in p a r t i a l f u lf ilm e n t o f the requirem ents f o r th e degree o f DOCTOR OF PHILOSOPHY Department o f B a c t e r i o l o g y 1943 ProQ uest Number: 10008394 All rights reserved INFO RM ATION TO ALL USERS The quality o f this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete m anuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQ uest 10008394 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This w ork is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQ uest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 Aeknowle dgement The a u t h o r w i s h e s t o e x p r e s s h i s s i n c e r e a p p r e c ­ i a t i o n t o D r . F . W. F a b i a n f o r h i s i n s p i r a t i o n a l encouragem ent and h is p rofound i n t e r e s t in t h i s w o r k ; t o P r o f e s s o r C . D. B a l l f o r h i s g u i d a n c e w i t h t h e c h e m i c a l a n a l y s e s ; a n d t o D r . C. H o p p e r t , who s u g g e s t e d a p o r t i o n o f t h e w o r k . TABLE OF CONTENTS Page In trod u ction 1 R evie w o f t h e L i t e r a t u r e 3 Experim ental procedure 11 a . General procedure 11 b* The a b i l i t y o f b a c t e r i a to u se c o r n o i l 19 c* Comparison o f t h e o x i d a t i o n o f c o r n o i l w i t h l i p o l y s i s o f c o r n and b u t t e r o i l s and t h e p roduction o f o xid ase 28 d . Rate o f c o n s u m p t io n o f o x y g e n a s measured m a n o m e tr ic a lly , the e v o l u t io n o f carbon d i o x i d e , and t h e r e s p i r a t o r y q u o t i e n t 34 e* The e f f e c t o f lo w e r e d pH and o f sodium c h l o r ­ i d e upon b a c t e r i a l r e s p i r a t i o n 42 £. The e f f e c t o f t h e p h o s p h a te i o n , h y d r o q u i n o n e , A v e n e x , and r a n c i d o i l upon t h e co n su m p tio n o f oxygen 48 g . C hem ical d e t e r m i n a t i o n s 53 D isc u ssio n o f the r e s u lts 64 Summary and c o n c l u s i o n s 72 A pp en d ix A 74 L iterature c ite d 76 TABLES T a b le 1 . Cmm. o f o x y g e n t a k e n up by b a c t e r i a i n t h e Warburg i n b u f f e r e d s a l i n e s o l u t i o n , and i n b u ffe r e d s a l i n e p lu s e m u ls if ie d corn o i l or M/30 g l y c e r o l T a b l e 2 . M in u te s r e q u i r e d by one m l. o f c e l l s to r e ­ duce m e t h y l e n e b lu e i n b u f f e r e d s a l i n e s o l u t i o n , and i n b u f f e r e d s a l i n e p l u s e m u l s i f i e d corn o i l o r M/30 g l y c e r o l T a b le 3 . Comparison o f t h e o x i d a t i o n o f c o r n o i l and g l y c e r o l w i t h l i p o l y s i s o f c o r n and b u t t e r o i l s and w i t h t h e p r o d u c t i o n o f o x i d a s e T a b le 4# Cmm. o f o x y g en t a k e n up by b a c t e r i a i n t h e p r e s e n c e o f c o r n o i l , t h e carbon d i o x i d e e v o l v e d and t h e r e s p i r a t o r y q u o t i e n t T a b le 5 . The e f f e c t o f pH o f t h e c o n t e n t s o f t h e cup upon t h e cmm. o f o x y g e n u t i l i z e d by b a c t e r i a in th e presence o f corn o i l T a b le 6 . The e f f e c t o f t h e p e r c e n t a g e o f NaCl i n t h e cup upon t h e cmm. o f oxygen u t i l i z e d by b a c t e r i a i n t h e p r e s e n c e o f c o r n o i l a t pH 6 . 8 5 T a b l e 7 . The e f f e c t o f th e p r e s e n c e and th e a b s e n c e o f th e p h o s p h a t e i o n upon t h e cmm. o f o x y g e n u t i l i z e d by b a c t e r i a i n t h e p r e s e n c e o f e m u l s i ­ f i e d co r n o i l T a b l e 8 . The e f f e c t o f hydroquin one and o f Avenex upon th e cmm. o f oxy g en u t i l i z e d by b a c t e r i a in the p resen ce o f e m u ls if ie d corn o i l T a b l e 9 . The e f f e c t o f f r e s h and o f r a n c i d corn o i l upon t h e cmm. o f oxy g en u t i l i z e d by b a c t e r i a i n t h e Warburg ap p ar a tu s Page T a b le 10* The e f f e c t o f b a c t e r i a l growth i n m i n e r a l s a l t s - f r e s h c o r n o i l medium upon ( a ) a c i d num­ ber ( b ) p e r o x i d e number ( c ) i o d i n e number ( d ) s a p o n i f i c a t i o n number ( e ) r e f r a c t i v e i n d e x ( f ) a ld e h y d e number ( g ) K r e i s t e s t and ( h ) a cid s in l i q u i d resid ue 60 T a b l e 1 1 . The ( a ) a c i d number ( b ) p e r o x i d e number ( c ) i o d i n e number ( d ) K r e i s t e s t o f o i l s from c o r n o i l - m i n e r a l s a l t s medium; th e medium p l u s h y d r o q u i n o n e ; t h e medium p l u s Avenex; and ea c h o f t h e media p l u s one p er c e n t p e p t o n e , f o l l o w ­ in g growth o f A l c a l i g e n e s l i n o l y t i c u s and P s e u d o ­ monas a e r u g i n o s a 63 -1 - INTBODUCT ION The f a c t has that b e e n known t o teur. It study. is, bacteria oxidize bacteriologists however, t wo s e p a ra te problem s: the o th e r ; Because o f terial the hydrolysis greater ease however, both as and f a c i l i t i e s regards lipolysis acids there are frequently economic e f f e c t s or lipolysis, fo r study, deals w ith th is and a lso upon f l a v o r . It is the subject. that the dairym an, s h o u l d be interested problem . made o f bacteria ed; this problem . relatively The a b i l i t y to o x id iz e o r u t i l i z e b u t much o f the detail of fatty and those and o i l s , by b a c t e r i a is few s t u d i e s have been of less certain species triglycerides th e problem is * T h e t e r m s " f a t ” a n d ’' o i l ” a r e triglycerides. true liberated making use o f f a t s c o mmo n , a n d c o n s e q u e n t l y is under which of food in d u s tr ie s The o x i d a t i o n o f t r i g l y c e r i d e s and the This operators in t h is of bac­ much t h e g r e a t e r e f f e c t of the natural in­ exceptions. th e mechanism and c o n d i t i o n s occurs, esters and o x id atio n . one p r o b l e m triglycerides, amount o f l i t e r a t u r e tim e o f P a s ­ n eg lected phase of lipolysis far-reaching of the a lte r a tio n of glycerol T h e t wo a p p a r e n t l y go t o g e t h e r ; volves since a relatively The m i c r o b i o l o g i c a l involves fats*~ ( t r i g l y c e r i d e s ) lim ited is unquestion­ as y e t in th is of unknown. paper to -2 H ydrolysis fats or oxidation of " ra n c id /1 that tionable notes is, the flavors and odors* rancid condition, the drolytic" or "oxidative," ification in the given r is e to a relativ ely adaptable to the triglyceridesigators study; are recent but tool, Several confirm ed; a n d s o me f a c t s have u n p le a s a n t and o b j e c ­ the is which de­ The t y p e o f is "hy­ used fre q u e n tly w ithout evident qual r e a c t i o n which has from the context. groundwork f o r th e a p p l i c a t i o n th e Warburg a p p a r a t u s , which is m icrobiological oxidation of conclusions problems of re n d e r the may b e m o d i f i e d b y e i t h e r the study o f frequently The n o u n " r a n c i d i t y , " condition This p a p e r p r e s e n t s of fats literatu re- this fats are interest r e a c h e d by o t h e r i n v e s t ­ suggested fo r are presented- future -3 - KEVIEW OF THE LITERATURE In a s e r ie s blatt the fur especially to (1898) reports the stated unsaturated fa tty that various growth R itsert to (1920) Holm, G reenbank, essential the He r e ­ of acids triglycerides and g l y c e r o l , R itsert* (quoted m icroorganism s, notably into the organism s rancidity rancid could not in la r d and b u t t e r - combined a c t i v i t y o f oxygen and In t h i s , a n d Emery a n d H e n l e y and Deyscher z i k e r a n d Hosman ( 1 9 1 7 ) groups- introduced bacteria. fo r oxidation- by b a c t e r i a , fats. believed th a t r a t h e r th an to Salkowski however, in sweet wa s d u e c h i e f l y were upon (1889) and F a h rio n were u t i l i z e d * if reports of butter o il the c o n s t it u e n t s o i d ia ,* * and y e a s ts , in itiate (1902) by D u c l a u x a n d G r o e l g e r growth o c cu rre d ; lig h t, acids by h y d r o l y s i s , by J e n s e n ) fat fatty who f o u n d t h a t o f lib erated fats, of in the C e n tra l- by t h e Pseudom onas an d S e r r a t i a in b u tte r o i l , m olds, published B a k te rio lo g ie , O rla Jensen u tilizatio n fers of a rtic le s It (1927) Browne ( 1 8 9 9 ) , (1922) stated concurred, th a t oxygen is may b e s i g n i f i c a n t failed to include w hile t h a t Hun- bacteria in t h e i r * R itsertInaugural d is s e rta tio n . Berne, S w itzerlan d , 1899- Q u o t e d by O r l a J e n s e n , C e n t r a l b l * f . B a k t - , I I Abt ♦, ^8:11-16, 1902* * The te r m " o i d i a " i s a l i t e r a l t r a n s l a t i o n o f t h e word f o u n d i n t h e p h r a s e " S c h i r a m e l p i l z e , O i d i e n und H e f e n . " c f . O rla Jensen, lo c . s i t . -4 d is c u s s io n o f agents Fierz-D avid volved (1985) in oxidative Schreiber bringing about o x id a tio n of fats* did not b e liev e that that the (1902) s t a t e d that u tilization of p re s e n c e o f oxygen* review that pure all cases the discrim inate, It sible of changes n o ted the fat, to converted o le ic He c o u l d n o t find carbon dioxide J e n s e n and G -re ttie oxidized the fat fatty cultures* lim iting acids fat, is in acids. lipolytic elaidic are respon­ fats 'De bacteria acid, and a c i d upon c o n t i n u e d interm ediate the in­ accompanying m ani­ a c i d to latter and products of w e r e o x i d i z e d com­ and water* ( 1 9 3 7 ) o b t a i n e d two o r g a n i s m s w h i c h of bacon. Peppier (1941) and th e stu d ied the de- u tilizatio n of i n m edia o f known c o m p o s i t i o n by w a s h e d The l e n g t h o f factor in a b rie f f o l l o w e d by t h e that bacteria nine com position o f pure t r i g l y c e r i d e s pure demanded t h e glycerol fatty and the and in f la v o r and c h a r a c t e r i s t i c s * o x i d a t i o n and co n clu d ed t h a t pletely that u tiliz a tio n of disappearance of the incubation. almond o i l (1906) p o in te d o u t (1907) o b t a i n e d from s o i l which a p p a r e n t l y in­ m icroorganism s, component u t i l i z e d , complete as by b a c t e r i a n i t r o g e n was n e c e s s a r y ; first fat w e r e known w h i c h a t t a c k e d the o x id a tio n of festations * to has been p roved a d e q u a te ly for K ruyff fats D r. Rahn few b a c t e r i a th at organic were rancidity. ( w i t h w h i c h h e w o r k e d ) wa s u s e l e s s also bacteria in the the fatty hydrolysis acid of the c h ain proved a e s t e r and the -5 oxidation of Fouts although the acid* (1940) the n o t e d t h a t s o me b u t t e r s a m p l e s w e r e fatty sam ples w ith h ig h tio n the a c i d n u m b e r o f e a c h was l o w , w h i l e o t h e r titratab le known f o r t h e i r acids. Schonbrunner bond in o l e i c illus a c i d wa s L ivschitz, are Jensen, interm ediate (1936) to and cap- the of t h e a c i d was t h e s o l e are agreed 1902; 1906; 1928; oxidation of on th e and o th e r s ) fatty o th e r hand, products. Both Derx (1925) found th a t methyl ketones a n d Hammer were evanescent th a t of Jacobson nut o il reported that appeared only ycetes. oxalic e a r l i e r work is Schenker and o le ic classical work o f the under the (1921), acids, fruity of high m o lecu lar ester of using A s p e rg illu s (1924) (1918) ra n c id coco­ influence of c e rta in and g ly c e r o l, Starkle acids do p r o d u c e w eight. is De H orow itz-V lassow a and and C h a rik , Molds, (Rahn, acids i n which i t double c o l l , Bac­ p ro d u cts o f the o x id a tio n of f a t t y Among t h e u tilize medium. products of the recovered. and Bryant reported th at sodium s a l t Pigulew ski interm ediate seldom such 1935; caproic, of bac­ f l u o r e s c e n s , a n d o t h e r unnamed investigators 1907; O r l a were a b le butyric, carbon in a s y n th e tic A number o f K ruyff, of Investiga­ species s a t u r a t e d by E s c h e r i c h i a m i c r o o r g a n i s m s when t h e of ability (1940) s u b t i l i s . Pseudomonas source and several lipolytic sodium an d c a lc iu m s a l t s ry lic that a c i d i t y were " s w e e t . " showed t h a t O o sp o ra l a c t i s teria rancid, Phycom- n ig e r, recovered from o l i v e o i l . The s h o w s how m e t h y l k e t o n e s may -6 be p ro d u ced from f a t t y acids beta-oxidation, ketonic acid decarboxylated, leaving the b o n atom t h a n sessed. the Stokoe due t o However, the fatty is acid, w h i c h was correspondingly (1921) the at found t h a t (1928) ketones the of B acteria triglycerides action the color m oisture, results (1939) o b t a i n e d a c e to n e f o u r te e n carbon atom s, not detrim ental in a l l using the instances may a c c r u e products Tracey, as th e (K ertesz, Bamsey, is than in m ilk of sen, and W hitaker (1937). o x i d a t i o n o f m arket milks butterfat the resu lt of b a c te ria l 1934 a n d 1935; an d Ruehe, according A lthough a l l H i t t e r and 1933). h ig h er and the b a c t e r i a l standard grade, to D efinitely content the and a i r . media on w h i c h the that in h e p t y l - , and nonyl- o c c u r r e d i n m a r k e t m ilk s o f premium g r a d e , sible defects. factors flavors fat pos­ from media chief light, car­ in coconut o i l s w i t h which th e y a r e a s s o c i a t e d * 1935; then glaucum . are in d a iry C hristen, f o u r to is acid. of o il-g ela tin T h aler and O e is t acids By precursor, as were c e r t a i n were distillatio n s mold P e n i c i l l i u m beneficial "perfume" he r e p o r t e d o b t a i n i n g a m y l-, molds had grow n. acid isolated tim e he b e l i e v e d t h a t by s t e a m from f a t t y its higher f a t t y a c t i o n o f m olds, that this molds* m ethyl keto n e w ith one l e s s rancidity of trig ly cerid es L ater formed; A number o f s u c h k e t o n e s w ere containing wa s the by th e a c t i o n o f Oxidized in which content low er, to B o la n d , reactions are not yet understood, plays a not insignificant Soren­ in the it is role pos­ (Rol­ -7 and and T re b lo r, to the tains The b e n e f i c i a l growth o f b a c t e r i a in the 1931 a , b). W hite (1941) that according B acillus to Beckman point out and o x id iz e d a criterion of c o u l d be u s e d t o (1930), delbrueckia^ for carbohydrate flavor rancidity and p ro te in the anaerobic in m ateria ls recovery of o i l s . the o ils w o u l d n o t b e a l t e r e d by b a c t e r i a . On t h e o t h e r hand, that fats are bacteria carbon in Imhoff tanks dioxide as copra and w a te r , u tilize to facili­ conditions, the not s p a re d because o f types of organic shown by t h e work o f Neave a n d B u s w e ll use o f decom position o f Under a n a e ro b ic t h e i r occurrence w ith o th e r advantage, who r e c o m m e n d e d t h e tate to (F ra z ie r and fat. The o x y g e n r e l a t i o n s h i p that t u r n main­ considered the o x id atio n - r e d u c t io n p o t e n t i a l o f bacon f a t of potential to o x i d a t i o n may b e t r a c e d which i n Webb a n d H i l e m a n ( 1 9 3 7 ) a n i n c r e a s e d E^ l e a d s i n m i l k a n d cream* effects product, a low ered o x id a tio n -re d u c tio n W hittier, that 1937)* m aterials (1927), fats, while o t h e r is who f o u n d converting them types of o rg an ic m a t t e r a p p e a r to be s p a r e d . Few i n v e s t i g a t o r s which b a c t e r i a bring is to due in p a rt not been o b ta in e d the h ave r e p o r t e d upon t h e about fact the o x id a tio n of f a t t y that from b a c t e r i a l *-B a c i l l u s d e l b r u e c k i a ed itio n ). is mechanism by interm ediate cultures not lis te d acids. products and f a t t y in B ergey's This have sub- Manual (fifth strates containing v o lv ed in the V lassova t r y g l y c e r i d e s , and in p a r t study of and L i v s c h i t z , upon o l e i c acid, branch of physiology 1935)* although chem ical o x i d a t i o n , tion- this and aldehydes a re attacks upon th e iodine fat fat tubes of the b a c t e r i a l m etabolism , carbon dioxide soybean o i l this is using from o l i v e fa t as hundred years heptylic, source O ther products, oil r e s u l t of purely the Pow ick, on th e s u b je c t suberic, betw een end pro d u cts o f the sole pim elic, of carbon, however, (1938) have have isolated in which P u r p u r o b a c t e r i a and a ld e h y d es were used* the E ther-insoluble oxystearic p o ssib ly because of were to which wide v a r i a t i o n s agreed that b u t a s m a ll number o f bacteria the the acid, and as r e c o v e r e d from e m u l s i f i e d by H o ro w itz a n d L i v s c h i t z found as the acid, are and w ater- grown- w e ll as ketones direct The i n a d e q u a c y o f t h i s Thus, P ig u le w s k i and C h a rik r o d forms have numbers, uninnoculated c o n tro ls- Many i n v e s t i g a t o r s acid view o f respira­ peroxide One o f t h e m o s t had been added- duplicate ketostearic bacterial r e c o v e r e d from c u l t u r e s r e a l i z e d when o n e n o t e s been found- in­ p r o b l e m was t h a t o f P i g u l e w s k i a n d C h a r i k method i s are tim e (Horowitz- point of numbers, tim e-consum ing♦ ( 1 9 3 8 ) who w e i g h e d t h e known am ounts o f from th e be a p p l i e d t o The d e t e r m i n a t i o n o f the The c h e m i c a l e x p e r i m e n t a t i o n fru itfu l cannot to (1935)- In com parison, compounds w h i c h h a v e b e e n chem ical o x id a tio n of o le ic s m a ll amount o f work i n w hich reviewing the (1923), adipic, literatu re reports azelaic, the of a finding of dihydroxystearic, -9 b utyric, acetic, form ic, pelargonic, w e ll as h e p t y l i c , caproic, aldehydes* (1908) o b t a i n e d Scala oenanthylic, idative the (1931), acids, nonic acid, acids. conditions iso-oleic E llis acid, (1932), tion. However, tissue or of to none o f biological om ega-oxidation bacterial (1931) treatm ent. a c i d a t 100° acid, of form ic and in o rd er to method o f in th e ir decomposi­ ma de u s e o f studies. living No r e ­ theories of beta1940) sim ulate and have been a p p l i e d respiration. the (1941) h a d shown t h a t c o u l d be a d a p t e d to (sesame o i l ) , corn o i l (1) instances made u s e o f q u i t e m i l d investigators ( r e v i e w e d by H a r r o w , Warburg a p p a r a t u s cludes The o x ­ C lutterbucl? and Raper (1925), catalysts Since Johnston and Frey tio n of fa t drastic and t r a c e s have been fo u n d i n which t h e tio n of correspond­ dihydroxystearic determ ine the these capronic, and from l a r d * o f o x i d a t i o n by c h e m i c a l means b io lo g ic al oxidation, to butyric, purified oleic as and ep ih y d ric w e l l as th e recovered 9:10 a n d Smedley-MacLean and P e a rc e cords as r e s u l t of very oxidizing w ithout a c a ta ly s t, acetic form ic, from r a n c i d o l i v e o i l d eriv ed as Skellon crude butyric, p r o d u c t s m e n t i o n e d b y P o w i c k w e r e i n s o me compounds C. pelargonic, and p e la r g o n ic ing a ld eh y d es, and caproic a cid s; the p resen t the stu d y of a p p lic a tio n of the ap p aratu s Thunberg te c h n iq u e ; (3) (2) a correlation the oxida­ s tu d y upon th e b y b a c t e r i a wa s u n d e r t a k e n . m icrobiological oxidation of o il; the the This to u tiliza­ report in­ a study of results with the between l i p o l y s i s and -1 0 oxidation; upon the the the effect of u tiliz a tio n of respiratory growth as (4) corn o i l; coefficient; upon s e v e r a l o f t h e criteria of made p r e v i o u s l y various and fat (5) (6) a determ ination of the e f f e c t o f b a c t e r i a l constants chem ical c o n s t i t u t i o n . th a t the latter however, so literature, in the include s e v e r a l of the results since it commonly e m p l o y e d The s t a t e m e n t h a s b e e n type of proved u n sa tisfa c to ry ; infrequently organic m ateria ls i n v e s t i g a t i o n has actual is values are given deemed a d v i s a b l e of the p re s e n t study. to -1 1 EXPERIMENTAL WORK a. C ultures• General procedure T hirty-five cultures These included sp o ru latin g ative rods, cultures, P rior to various rods, m icrococci, to g eth er w ith b a c t e r i a were Gram p o s i t i v e a n d Gr am n e g are listed th e y were p l a t e d o u t during used. and a p la n t pathogen* th e ir sources, e x p e rim e n ta l work, exam ined p e r i o d i c a l l y of the course of the below . for purity experim ent, and checked m i c r o s c o p i c a l l y and p h y s i o l o g i c a l l y a t of the fifth e x p erim e n tal work. The t e r m i n o l o g y The the end to the conforms e d i t i o n o f B e rg e y 's Manual. C ultures from th e M ichigan S t a t e C o lle g e C o l l e c t i o n : A lcaligenes faecalis Serratia marcescens indica Proteus ammoniae S erratia Sarcina lutea Pseudomonas f l u o r e s c e n s (a) M icrococcus aurantiacus Pseudomonas a e r u g in o s a M icrococcus flavescens Flavobacterium M icrococcus cinnabareus F la v o b a c te riu m synxanthum arborescens Staphylococcus aureus Phytomonas t u m e f a c i e n s Staphylococcus citreus B acillus m esentericus Staphylococcus albus B acillus vulgatus B acillus mycoides B acillus cereus E scherichia coli A ero b acter aerogenes E scherichia coli var. coramunior -1 2 C ultures f r o m D r . K. W. P e p p i e r , A lcaligenes Kansas S t a t e C ollege; lipolyticus Achrom obacter lip o ly tic u m B acillus s u b t i l l s , f r o m D r . W. B. S a r l e s , U n i v e r s i t y o f Wiscons i n C ultures f r o m Dr- H. F . Ps eudomonas f r a s i i Long, Iowa S t a t e C ollege; (b) Pseudoraonas sraveolans Pseudomonas fluorescens Pseudomonas m ephitica (b) Pseudomonas m ucidolans C ultures from D r. P. E. Pseudomonas putrefaciens Pseudomonas fragii C ultures isolated laboratory, L. 1 - E lliker, Purdue: (a) from b u t t e r in the B a cterio lo g y M ichigan S t a t e C o lle g e: a Pseudomonas (lipolytic) L* 2 - a Gr am n e g a t i v e , unidentified L. very sh o rt 3 - a Gr a m p o s i t i v e , The c u l t u r e s , ferred daily for r e f r i g e r a t e d when n o t several days p r i o r rod ( l i p o l y t ic ) rod (non l i p o l y t i c ) in use, to use as were t r a n s ­ inoculum. They w ere grown e i t h e r i n b r o t h o r o n a g a r medi um o f t h e follow ing as u s e d by Nunheimer an d F a b i a n com position, (1942) 15- B a c to P ep to n e 0.5% Bacto 0 Beef E x tra c t . Bacto Y e a s t E x tr a c t 0 . 2^ Bacto P e p to n iz e d Milk Q .Z % (Shredded ag ar) T h e me d i u m w a s a d j u s t e d t o lized in the autoclave at the pH o f 7 .0 to 7.1, 15 p o u n d s p r e s s u r e and s t e r i ­ f o r 20 m in­ utes . During bacteria the first part became a p p a r e n t t h a t of the species as surface of the in did the h arv est broth the c e l l s . in a b o ttle many c e l l s cultures, sterile the were grown i n activ ity of broth, th e e x p e r i m e n t a l work, w e r e g r o w n o n l y o n me d i u m c o n t a i n i n g a g a r . it the of saline quite the the When s u p p l y o f a g a r was l i m i t e d , the b ro th , It w ithout wa s f o u n d t h a t sim ilar surface of to many im pairing 100 m l. o f t h e a Ro u x f l a s k y i e l d e d a s 50 m l . o f a g a r o n t h e same t y p e o f b o t t l e . flat The q u a n t i t y o f c e l l s c o u l d be i n c r e a s e d m a t e r i a l l y by s w i r l i n g or flo o d in g the ag ar su rfa c e w ith solution, s e v e r a l hours the 10 m l . o f before harvesting the cells. Th e b a c t e r i a w e r e g r o w n f o r 22 t o 26 h o u r s a t p e r a t u r e w h i c h was o p t i m u m f o r t h e s p e c i e s . moved from a g a r by w ash ing w i t h s t e r i l e (0.85 per c e n t sodium c h l o r i d e ) . through c o tto n , th e washings were p r e c i p i t a t e d A ll combined, in a c e n trifu g e . the tem­ G r o w t h was r e ­ saline solution l i q u i d s were f i l t e r e d and th e bacteria The s u p e r n a t a n t liquid -1 4 was r e m o v e d by s i p h o n i n g a n d t h e saline solution. tim es. cells C e l l s v/ere washed i n t h i s The a m o u n t o f s a l i n e s u s p e n s i o n wa s l i m i t e d to 10 m l . per b o ttle beads, shaken fo r fiv e through c o tto n . was stored in the P r i o r to washed a i r If not to m inutes, period, the of the these but c e lls culture for th ir ty of th is the basis and also the cause of f o r various and the harvest. suspensions as to at Because a t t e m p t s w e r e made q u a n t i t y p e r m l. on in Thunberg t u b e s , m icro- N e i t h e r method p r o v e d s a t i s f a c t o r y , reasons This re­ I t was f o u n d b y a s d e t e r m i n e d by t h e v a r ie ty of organisms 10 m l . as uniform ity. p a r t o f the work, unreliable, only sta n d a rd iz a tio n m entioned: m inutes, d i f f i c u l t y was e n c o u n t e r e d w i t h by n i t r o g e n c o n t e n t the the p r e p a r a tio n (see S an d ifo rd and o f r e d u c t io n o f methylene b lu e K j e l d a h l method. filtered age were seldom u s e d . in m aintaining standardize containing c o u ld have been u sed o v er a f o u r - d a y D uring the e a r ly to "restin g ” cells heavy su s p e n s io n , some s p e c i e s in the h a r v e s t. and a g a in commended by Q u a s t e l a n d Whetham ( 1 9 2 5 ) . 1951) re­ t h e s u s p e n s i o n was a e r a t e d b y p a s s i n g through W ooldridge, third refrigerator. use, experim ent th a t the a bottle used im m ediately, fresh fashion three s o l u t i o n used a t The s u s p e n s i o n was t h e n t r a n s f e r r e d glass suspended in of saline tim es employed. also P late be­ counts, were d i s c o n t i n u e d , a t t e m p t e d was t h a t a l r e a d y so lu tio n per b o ttle p r o v e d t o be t o o h e a v y , in the and the -1 5 s u s p e n s i o n wa s s u i t a b l y the activity either o f one s p e c i e s of b acteria t h e Warburg s y s te m o r i n th e quantitatively species, ically d i l u t e d whe n n e c e s s a r y * for numbers o f b a c t e r i a substrate pure Since trig ly cerid e. corn o i l , ly because of its this follow ing containers, is not of another p e r ml* a r e was not numer­ type of s tu d y m aterial is is was s e l e c t e d o n t h e purchased lo c a l used throughout this b e e n f u r n i s h e d by t h e work. Io d in e Value F re e F a t t y Acids -10 to -20° 113 t o 128 maximum 05% S a p o n i f i c a t i o n Value 188 to 193 U n sap o n ifiab le M atter 1.3 S a t u r a t e d F a t ty Acids 10 to 12 U n s a t u r a t e d F a t t y Acids 88 t o 90 S pecific G ravity at 15° 0 .9 2 1 3 to 0.9268 R efractive 15.5° 1.475 to Index a t ** Th e l e t t e r is to i n c lu d e d as A ppendix A The m anufactur­ and Chemical C o n s ta n ts Point a rather scarce, R e f i n i n g Company. ** Physical Solidifying this B a l l . Mazola o i l , in fo rm a tio n has th e Corn P r o d u c ts for uniform ity, o f P r o f e s s o r C . D. in sm all ers, Thunberg tu b e s , in equal. C o r n o i l . The i d e a l advice in a menstruum, comparable w ith the a c t i v i t y the Therefore, 1.7 1.477 -1 6 Smoke P o i n t 400° to 4 5 0 ° F . Flash Point 620° t o 6 4 0 ° F . Burning P o in t 694°F. A cetyl 7.5 to Value 9.0 Compos i t i o n Palm itic S tearic This Acid 1*1% Acid 3.5 A ra c h id ic Acid 0.4 L ig n o ceric Acid 0.2 O le ic Acid 45.5 L i n o l e i c Acid 40.9 analysis corresponds quite closely to t h a t g i v e n by Baughman a n d J a m i e s o n (1 9 2 1 ) * The c o m m u n i c a t i o n f r o m t h e m anufacturers states HWe h a v e no i n f o r m a t i o n o n t h e nature pigments of the dications tain has in the a trace of further: literature sterols; that in Emulsions 99 m l . tim es. its corn o i l it distilled probably is stable a b s e n t . 11 to bo th tim e and a u to corn o i l and w a te r through a hand hom ogenizer t h r e e The m a j o r i t y o f f o u r te e n m icrons may c o n ­ i n Mazola these are w e r e p r e p a r e d by p a s s i n g o n e m l . o f of in­ We h a v e no i n f o r m a t i o n b u t we b e l i e v e o f corn o i l , There a re presence at present the U n sap o n ifiab le * on hydrocarbon c o n te n t, claving, refined however, not been wholly confirm ed; contained to in re fin e d corn o i l . the f a t globules in diam eter, m e a s u r e d from f i v e w ith a very few l a r g e r , -1 7 a n d many s m a l l e r * During th e first sodium a l g i n a t e ize the wa s a d d e d t o em ulsion; realized that p a rt of the use o f it the study, d i s t i l l e d w ater to Therefore, ium h y d r o x i d e were added to No d i f f i c u l t y wa s to o x id iz e t wo it according the to Dixon ( 1 9 3 4 ). at 35.2° C ., the w ater b efo re This number o f hom ogenization. The t h e r m o - r e g u l a t o r o f t h e length of standardized 15 m i n u t e s Gases were to cm., 100 p e r m i n u t e . 60 m i n u t e s , perm it by b a t h wa s s e t t h e s t r o k e was t h r e e wa s 96 t o a r y t i m e o f o p e r a t i o n wa s equilibrium . Maryland* mercury w eight method, as o u t l i n e d revolutions v a l o f 12 t o a n d show i n s t r u m e n t wa s m a n u f a c t u r e d th e manometers and cups were the was d r o p s o f N /1 0 s o d ­ b y t h e A m e r i c a n I n s t r u m e n t Company o f B a l t i m o r e , of stab il­ encountered w ith cream ing. The Warburg A p p a r a t u s ♦ The c o n t e n t s 1:10,000 wa s d i s c o n t i n u e d w h e n i t some b a c t e r i a w ere a b l e a consum ption of oxygen. one m l. o f and th e The c u s t o m ­ p r e c e d e d by a n i n t e r ­ tem peratures to c a l c u l a t e d a c c o rd in g to come t o the form­ plus 0.2 u l a e g iv e n by D ixon. Liquids added to m l . o f 20 p e r determ ining ic acid e a c h cup t o t a l l e d c e n t sodium h y d r o x i d e carbon dioxide, (by volume) in the of filte r p a p e r was a d d e d t o dioxide. The successively (by w e i g h t ) , 0 .2 ml. o f central or, when four per cent sulphur­ receptacle. facilitate cups were c l e a n e d a f t e r w ith hot w ater, 3.6 m l., A sm all a b so rp tio n of carbon each d e te r m in a tio n 95 % e t h y l strip alcohol, diethyl -1 8 - ether, and again rin se d before further is used in the use. cups• w ith very hot w a te r; This p ro c e d u re is then d rain ed r e c o m m e n d e d wh e n o i l -1 9 b. The a b i l i t y Many s p e c i e s fats and o i ls ; compounds self is chiefly one less to of of b a c te ria the a b i l i t y represents preferred of b acteria and C o llin s bacteria lip olytic This applicab ility u tilizatio n of the sole to of bacteria (1927) of the results dem onstrated nine strains o n ly one h y d r o ly z e d determ ine the to a study o f the as w ell would u t i l i z e as d e te rm in in g which corn o i l as th e The q u a n t i t y o f o x y g e n u t i l i z e d w a s d e t e r ­ m ined f o r one ml. o f c e l l s pH 7 . 0 a n d s a l i n e , saline, buffer, of bacteria it, attack check the of saline om ission o f same q u a n t i t y o f and one ml. o f e i t h e r G lycerol w h ich to in the p resen ce o f b u ffe r a t and f o r th e o r M /3 0 g l y c e r o l - the assume t h a t because o f was d e s i g n e d t o in g e n e ra l, it­ with o th e r o i l s , to found t h a t , butterfat, corn o i l these source of energy. E xperim ental. tity is not s a fe t h e Warburg a p p a r a t u s of oils species (1933) u tilize many w o r k e r s h a v e activity Va n d e r W a l l e experim ent of since w i l l be h y d r o l y z e d , fact, corn o i l . It to S pecifically, lipolytic anim al o r i g i n . o b ta in e d w ith a n o th e r. of o f the organisms a n unknown f a c t o r , investigate use c o rn o i l a r e k n o wn w h i c h h y d r o l y z e w e ll known. type o f e s t e r this to is and i t activity c e l ls w ith em ulsified corn o il i n c l u d e d b e c a u s e many s p e c i e s offers of the a good s u b s t r a t e w ith suspensions. s o l u t i o n u s e d wa s a d j u s t e d t o carbon-containing liquids, The q u a n ­ compensate f o r so t h a t the final -2 0 volume o f liq u id w ithin experim ents, bacteria was 3*8 m l . group of shown i n T able R esults * ure 1 or given is other determ ine th e g l y c e r o l would ta k e experim ent. The r e s u l t s of bacteria are 1. to assume t h a t in succeeding an average of representative ism- It is or to e x p e r i m e n t s w i t h 35 c u l t u r e s turn, technique, manometers, c o n d itio n s of the I t w o u ld be f a l s e in Table and in a l l S i m i l a r a d j u s t m e n t s w e r e made w h e n e m u lsifie d corn o i l up o x y g e n u n d e r t h e this cup i n t h i s , were o m i t t e d from t h e w hether the of the also tables duplicate of several of less absolute. given Each f i g ­ determ inations, determ inations d o u b tfu l whether, a difference are the f ig u re s and in fo r the organ­ co n sid erin g m anipulative than te n p e r cen t is signif­ icant . I n s p e c tio n o f the used, ten per B acillus show t h e f r o m an i n c r e a s e 255 p e r cent is cent or less present. increase, of varied, f o r Pseudomonas Apart the members o f t h e agar, it fo r B acillus fluorescens is of carbon. It is s u b t i l i s » to a_. To j u d g e species from on min- d o u b t f u l w h e t h e r many o f t h e s e would grow i n d e f i n i t e l y w i t h c o rn o i l source genus 60 m i n u t e p e r i o d , s m a l l a m o u n t o f g r o w t h o f many o f t h e eral-salts-corn oil from t h o s e show­ increase. during the 17 p e r c e n t 35 c u l t u r e s in the q u a n t i t y o f oxygen low est per cent The p e r c e n t a g e the shows t h a t o f t h e 27 d e m o n s t r a t e a n i n c r e a s e t a k e n u p whe n c o r n o i l ing table probable that as the o i l the so le is oxidized -2 1 - t o f u r n i s h e n e r g y , b u t i s n o t u sed f o r growth* ever, T h i s , how­ i s s p e c u l a t i o n , and i s n o t a c o n c l u s i o n to be drawn from t h e d ata p r e s e n t e d * P r o t e u s ammoniae. members o f t h e g e n e r a S t a p h y l o c o c c u s and E s c h e r i c h i a , F l a v o b a c t e r i u m syn xanth um , and t h e u n i d e n ­ tified c o c c u s f a i l e d t o show an i n c r e a s e i n the u t i l i z a t i o n o f oxygen in the p resence o f corn o i l * They d i d , h ow ever, o x id iz e glycerol* N e i t h e r c o r n o i l n o r g l y c e r o l , i n the a b s e n c e o f b ac­ teria , a b s o r b e d o x y g e n under t h e c o n d i t i o n s o f t h e e x p e r i ­ m en t. Equally i n t e r e s t i n g i s the stu d y o f the a b i l i t y o f t h e s e m ic r o o r g a n i s m s to d e h y d r o g e n a t e corn o i l , m e t h y l e n e b l u e as t h e h y d r o g e n a c c e p t o r . using T h is s t u d y i s c a r r i e d o u t by means o f Thunberg t u b e s * E x p e r i m e n t a l . The Thunberg t u b e c o n t a i n e d one m l. o f phos­ p h a t e b u f f e r a t pH 7 * 3 5 , one m l. o f s a l i n e s o l u t i o n , one m l . o f 1 : 5 , 0 0 0 m e th y le n e b l u e ( f i n a l c o n c e n t r a t i o n o f the d ye was 1 : 2 5 , 0 0 0 ) , on e m l. o f c e l l s , and one m l. o f e i t h e r on e p e r c e n t e m u l s i f i e d c o r n o i l o r o f M/30 g l y c e r o l . A d d i­ t i o n a l s a l i n e s o l u t i o n r e p l a c e d t h e co r n o i l and g l y c e r o l in the co n tro l tu b e s . The c e l l s were p l a c e d i n t h e s i d e - arm and t h e tu b e was e v a c u a t e d w i t h w a te r s u c t i o n f o r 150 seconds. The p r e s s u r e , c h e c k e d w i t h a vacuum g a u g e , was r e ­ d uced c o n s i s t e n t l y by 640 mm. A f t e r e v a c u a t i o n , t h e tube was p l a c e d in a w a t e r b a th a t 3 5 . 2 ° C . When t h e c o n t e n t s -8 2 - T a b le 1 Cram* o f o x y g e n t a k e n up by b a c t e r i a in Warburg i n b u f f e r e d s a l i n e s o l u t i o n , and i n b u f f e r e d s a l i n e p l u s e m u l s i f i e d c o r n o i l o r M/30 g l y c e r o l C ulture C ontrol Corn o i l Per c e n t Glycer< increase A lcaligen es fa e c a lis 20*6 42.7 107 49.2 A lca lig en es lip o lv tic u s 35.3 82.7 134 74.2 P r o t e u s ammonias 24 .2 22.4 7 199.0 Sarcina lu te a 68.9 205.5 198 87.8 S t a p h y l o c o c c u s au reus 46.7 35.9 -29 2 58.9 S taphylococcus c itr e u s 13 .2 13.7 -3 27.5 S ta p h y lo co ccu s albus 10.0 11.0 10 26.5 M icrococcus au ran tia cu s 78.3 2 1 7 .0 177 181.0 M icrococcus f la v e s c e n s 92.8 415.0 325 189.0 M icrococcus cinnabareus 21.2 31.5 48 27.6 E sch erich ia c o l i 20.1 21.4 6 102.4 E s c h e r i c h i a c o l i v a r . com. 29.5 30.5 3 208.7 A erobacter aerogenes 37.5 52.9 41 26.4 S e r r a t i a marcescens 34.3 74.2 116 186.2 S err a tia in d ica 46 . 4 125.7 149 143.9 A eh rom obacter l y p o l y t i c u m 36.5 68.6 88 148.0 F lavobacterium a r b o r e s c • 81.5 1 1 5 .8 42 83 .3 F l a v o b a c t e r i u m synxanthum 34.2 2 6 .S -21 50.6 Phytomonas t u m e f a c i e n s 32.7 44.5 36 68 . 6 Pseudomonas f l u o r e s c e n s a 108.3 3 8 4 .5 255 218.1 Pseudomonas f l u o r e s c e n s b 133.0 238.3 154 298 .0 -2 3 Table C ulture 1 (Continued) C ontrol Corn o i l Per cent G lycerol i n c r e a s e __________ 72.9 2 2 1 .4 204 1 37.6 1 34.4 242.4 80 353.4 Ps eudornonas aeruginosa Pseudomonas putrefaciens P s eudornonas fragii a 34.9 77.5 119 51.2 P s eudornonas fragii b 99.0 174.3 76 250.8 Pseudomonas graveolans 52.7 121.5 131 92.3 Pseudoraonas m ephitica 35.9 76.4 113 126.0 Pseudomonas muc i d o I a n s 35.0 85.5 144 72.8 21.1 24.7 17 24.3 B acillus su b tilis B acillus cereus 166.3 197.9 19 2 20.3 B acillus m esentericus 111.3 129.4 16 128.3 B acillus vulgatus 34.2 42.7 24 34.8 88.0 258.6 194 137.3 L •2 65.2 137.2 110 127.1 L. 3 10.3 5 .1 -50 48.3 L. 1 C ontrol 0 0 0 -24tiad r e a c h e d the tube, this and th e b l u e was n o t e d * is tim e o f it by b a c t e r i a Table were d e c o lo r a tio n o f the methylene experim ent, than the investigated, as corn o il* 27 w ere a b l e ism s: Sarcina to lutea, table R esults to layed reductions and the glycerol* alone 35 dehydrogenate dehydrogenate g ly c e ro l* M icrococcus o f methylene Four o rg a n ­ c in n a b a r e u s « Micrococcus blue showed g r e a t l y in the presence of de­ the l a t t e r organism also a p p e a r e d i n h i b i t e d by No e x p l a n a t i o n o f this is apparent; settled did the the d e c o lo r a tio n of m ethylene b lu e , a u r a n t i a c u s » a n d Ps eudornonas m u c i d o l a n s as are given shows t h a t o f e i g h t were a b l e shown by t h e w hile cocci glycerol was b e l i e v e d t o be a t t a c k e d more Exam ination o f t h i s corn o i l, o il, tipped into 2* R esults * cultures the c e l l s As i n t h e p r e v i o u s in clu d ed because readily in tem perature, to th e bottom of the members o f t h e p r o b a b ly does n o t tube fairly genus B a c i l l u s » b u t serve to explain the th e m icrorapidly, this fact delayed de­ coloration. The p r e s e n c e o f c o r n o i l of r e d u c tio n o f m ethylene 23 o f the cultures* blue h a s no influence in the Two s p e c i e s , tim e o f time in the case o f the m a jo rity , Escherichia c o m m u n i o r a n d P s e u d o m o n a s m e p h i t i c a , do n o t difference upon t h e re d u c tio n to c o li var. s how s u f f i c i e n t be c o n s i d e r e d p o s i t i v e . -2 5 T a b le 2 M i n u t e s r e q u i r e d b y o n e ml* o f c e l l s t o r e d u c e m e t h y l e n e b lu e i n b u f f e r e d s a l i n e s o l u t i o n , and in b u f f e r e d s a l i n e p l u s e m u l s i f i e d c o r n o i l o r M/30 g l y c e r o l C ulture C ontrol Corn o i l Glyc A lcali^enes faecalis 42 42 20 A lcaligenes lipol.yticus 53 15 16 Proteus ammoniae 26 27 6 Sarcina lutea 20 26 16 Staphylococcus aureus 90 90 21 Staphylococcus albus 60 60 35 Staphylococcus citreus 60 60 36 M icrococcus aurantiacus 31 90 35 M icrococcus flavescens 29 30 5 Micro coccus cinnabareus 27 104 14 Escherichia coli 120 120 22 E scherichia coli com# 1 4 0 120 19 62 37 20 120 120 10 var* A erobacter aerosenes S erratia m arcescens S erratia indica 21 21 12 A chrom obacter ly p o ly ticu m 36 36 27 Flavobacterium arborescens 58 57 29 Flavobacterium synxanthum 29 30 30 60 60 18 Phytornonas tum efaciens Pseudomonas fluorescens a 23 13 11 Pseudomonas fluorescens b 22 22 19 -2 6 Table C ulture 2 (Continued) Control Corn o i l G lycerol Pseudomonas aeruginos a 14 9 6 Pseudomonas putrefaciens 10 7 5 P s e u d o mo n a s fragii a 28 18 16 P s eudornonas f r a g i i b 12 12 7 43 27 21 Pseudomonas g ra v e o la n s Pseudomonas m ephitica 29 26 20 Pseudomonas muc i d o I a n s 30 52 44 B acillus subtilis inf. inf. inf Bac i l l u s cereus inf* inf. inf B acillus m egatherium 15 17 B acillus vulgatus inf. in f. 15 inf L. 1 24 12 12 L. 2 26 26 20 L. 3 60 60 6 C ontrol inf. inf. i n f • - no d e c o l o r a t i o n w i t h i n t wo h o u r s # inf -2 7 K e n d a ll and Ishikaw a dehydrogenate th e y were to those an increase in the state that bacteria w ill which th ey would a t t a c k them f o r e n e rg y and growth* in Table 3, ence o f co rn o i l from t h i s substances utilize be p o in ted out (1929) ma ny o f t h e b a c t e r i a c o n s u m p t i o n o f o x y g e n due t o apparently are substrate* unable to if As w i l l w h i c h s how the pres­ remove h y d r o g e n -28- c . Comparison o f t h e o x i d a t i o n o f c o r n o i l w i t h l i p o l y s i s o f c o r n and b u t t e r o i l s and t h e p r o d u c ­ t io n o f oxid ase Because of th e number o f c u l t u r e s work, opportunity teria to o x i d i z e ties is g i v e n to compare t h e corn o i l w ith th e ir ab ility lipolytic and w ith the p ro d u c tio n of oxidase# G arrard latter (1940) of bac­ proper­ C a s t e l l and a t t a c h e d much s i g n i f i c a n c e to the property# E xperim ental * L ipolytic d e te r m in e d by s t r e a k i n g taining nile heavy cream , for used in th is five plates blue su lp h ate as d ir e c te d days# d i c a t e d by t h e globules activity of t h e b a c t e r i a wa s of tryptose a g a r con­ and e i t h e r c o rn o i l o r by M i l l a r d , H ydrolysis of the appearance of and in c u b a tin g triglycerides b lu e pigment is in­ in the f a t a ro u n d th e colony# T h e p r e s e n c e o f o x i d a s e wa s d e t e r m i n e d b y f l o o d ­ ing n u t r i e n t w ith the ide, as a fte r streak inoculation dye t e t r a r a e t h y l - p h e n y l e n e d i a m i n e done by C a s t e l l a u t h o r s were experim ent tity a g a r 48 h o u r s able into to and G a r r a r d divide several the groups, of oxidase produced. ence o r absence of oxidase, hydrochlor­ (1940)# bacteria These used in t h e i r based upon th e quan­ In th is table, the p re s­ a s shown by th e reaction -2 9 to the ple dye, color is indicated* in the colony The a p p e a r a n c e o f a p u r ­ indicates the presence of oxidase • The ism s to in fo rm a tio n as to oxidize rem oving the corn o i l hydrogen is are Several Table A ll those drogenate strate* ies to corn o i l dehydrogenate* oil are unable M icrocoecus the to members o f t h e able able to schitz years points are able to a n d t h e com­ however, w ithout are is not shown i n able to true; dem onstrating Several species dehy­ this sub­ many s p e c ­ the a b i l i t y which o x i d i z e dehydrogenate glycerol* the These a re m upidoIans, and genus B a c illu s * not in c lu d in g the it* spore-form ers, w ith o u t being H o r o w i t z —V l a s s o v a a n d L i v — (1935) b e li e v e d t h i s ago, because 3* add oxygen to to add oxygen to corn o i l , hydrolyze 1 and 2. organism s which a r e a u r a n t i a c u s , Pseudomonas Ten s p e c i e s , are experim ents interesting The c o n v e r s e , do a d d o x y g e n , o f the organ­ by a d d i n g o x y g e n o r by shown s u m m a r i l y i n T a b l e R esults* 3* ability t a k e n from T a b l e s The r e s u l t s o f t h e s e parisons the to be th e case t h e y f o u n d no g l y c e r o l several in t h e i r T a b le 3 C om p arison o f t h e o x i d a t i o n o f c o r n o i l and g l y c e r o l w i t h l i p o l y s i s o f c o r n o i l and b u t t e r f a t and w i t h t h e p ro d u c ____________________________ t i o n o f _o x i d a s e _______________________ C ulture _______________ O x i d a t i o n Meth. b lu e L i p o l y s i s O xidof re du ced of ase c o r n g l y c - c o r n g l y c - c o r n b u t t e r p rod uco il erol o il erol o i l fat ed _____ Ale# faecalis 4 4 - 4 — A le. lipolyticus 4 4 4 4 4 — 4 ? Proteus ammoniae - 4 - 4 - - 4 Sarcina lutea 4 4 - 4 - - 4 Staph, aureus - 4 - 4 4* 4 - Staph, citreus - 4 - 4 - - 4 Staph, albus - 4 - 4 - - 4 M. a u r a n t i a c u s 4 + - - - - 4 M. 4 4 - 4 - - 4 M. c i n n a b a r e u s 4 4 - 4 - - 4 E scherichia - 4 4 - - - - 4 - 4 - - - A erobacter aerog. 4 4 4 + - - 4 Ser* m arcescens 4 4 - 4 + 4 4 Ser. 4 4 - 4 + 4 4 E. flavescens coli var. coli c o m. indica ^chr. lipolvticum 4 4 - 4 4 4 - Flav. arborescens f - - 4 - - 0 Flav. svnxanthum - 4 - - 4 4 0 4 t - 4 4 4 4 Phyto. tum efaciens -31 Table C ulture _______________ 3 (Continued) O xidation Meth. b l u e of reduced c o m g ly c- corn glycoil erol o i l erol L ipolysis of corn b u t te r oil fat Oxidase produced Ps# f l u o r e s c e n s b 4 4 - 4 4 4 4 P s • aeruginosa 4 4 •f 4 4 4 4 P s • p u trefacien s 4 4 4 4 4 4 4 P s. fra g ii a 4 4 4 4 4 4 4 Ps* f r a g i i b t 4 - 4 4 4 4 Ps • g r a v e o l a n s 4 4 4 4 - - P s- m ep hitica 4 4 - 4 - - P s * m u c id o la n s 4 4 - - 4 - Bac. s u b t i l i s 4 + - - Bac. cereus 4 4 - - - - Bac# megatherium 4 4 - - - - Bac# v u l g a t u s 4 - - - - - L# 1 4 4 4 4 4 4 L# 2 4 4 - 4 4 4 L. 3 — 4 - 4 - - - no t yes 0 not determ ined ? questionable - - -3 2 - soybean o i l c u ltu r e o f A erobacter a e r o g e n e s , y e t c h a n g e s o c c u r r e d i n t h e c o m p o s i t i o n o f th e s u b s t r a t e * The experim ents firm this summarized in Table observation* The s p e c i e s , A erobacter aerogenes. a re : cIna 3 appear to l u t e a ; M icrococcus con­ in a d d itio n A lcaligenes to f a e c a l i s ; Sar- a u r a n t i a c u s , Micrococcus e s c e n s , and Micrococcua f lav- c in n a b a re u s; Flavobacterium a r b o r e s c e n s : Pseudom onas g r a v e o l a n s » and Pseudomonas m ephitica* terest, ing to are because this the Pseudomonas m u cid o lan s it ability latter h y d r o l y z e s c o r n o i l w i t h o u t show­ w ith b u tte r fat, or else u s e d so r a p i d l y change is of p e c u lia r in ­ that fat. It is the products either inert of hydrolysis the c h a r a c t e r i s t i c color does n o t o ccu r* Two o r g a n i s m s w e r e f o u n d w h i c h h y d r o l y z e d c o r n o il and b u t t e r the form er, the Thunberg te c h n iq u e . lococcus plates fat, either aureus yet in to o x i d i z e t h e W arburg a p p a r a t u s o r by These org anism s a re Staphy­ and F la v o b ac te riu m synxanthum* on w hich t h i s slightly s h o w no a b i l i t y altered, o f bo th organism s hydrolysis indicating The was s h o w n w e r e b u t that lipolytic ab ility i s weak. No c o r r e l a t i o n is d e m o n s tra te d between th e possession o f o x i d a s e and t h e a b i l i t y to o x i d i z e c o r n o i l * A ll b a c t e r i a w h i c h add o x y g e n t o t h e o i l p o s s e s s o x i d a s e e x c e p t A ch rom obacter l i p o l y t i c u m ; h o w e v e r , s e v e r a l s p e c i e s do c o n t a i n t h e enzyme, w i t h o u t a d d in g oxygen* -3 4 d* R a t e o f c o n s u m p t i o n o f o x y g e n a s m e a s u r e d manom e t r i c a l l y , th e e v o l u t i o n o f c a r h o n d i o x i d e , and t h e resp ira to ry quotient The f a c t uble that and r e s i d u a l would indicate mine fatty that imal m etabolism , terial some i n v e s t i g a t o r s the is the quotient, corn o il* m enstrua 0*71 t h e o r e t i c a l one in l i b e r a t e d by b a c t e r i a The r e s p i r a t o r y quantity of quotient carbon dioxide an­ fo r bac­ T h i s e x p e r i m e n t was d e s i g n e d t o q u a n t i t y o f o x y g e n t a k e n up a n d t h e carbon dioxide ing the than recovered in s o l­ from o i l - c o n t a i n i n g respiratory less m etabolism* the acids have deter­ quantity of in the p resen ce of is c a l c u l a t e d by d i v i d ­ e v o l v e d by t h e quantity o f oxygen tak e n up. E xperim ental* D uplicate, determ ining the rate dioxide evolution* viously described, 0 * 2 ml* o f calculated o f oxygen u t i l i z a t i o n and o f B oth manometers were s e t e x c e p t t h a t one o f four per cent receptacle* p a i r e d manometers were used i n sulphuric up a s p r e ­ the p a ir acid carbon in the contained central The q u a n t i t y o f c a r b o n d i o x i d e e v o l v e d was by t h e indirect m e t h o d as d e m o n s t r a t e d by D i x o n (1934)* R esults * Table four species monas lutea, 4 shows t h e of b a cteria, cmm. o f o x y g e n t a k e n Pseudomonas a e r u g i n o s a , P seudo­ p u tr e f a c ie n s , A lcaligenes the cmm. o f up by l i p o l y t i c u s , and S a rc in a carbon dioxide evolved, and t h e res- -3 5 piratory Figures the quotient 1 to at each tim e 4 show t h e evolution of the i n t e r v a l o f 15 m i n u t e s # tre n d s * o f the gases during consum ption and o f the period o f 180 to 210 m inutes * S traight lines sum ption o f oxygen, may b e d r a w n t o a lth o u g h each s u c c e s s iv e oxygen consum ed does not The a v e r a g e an average deviation of 30.4 w ith an a v e ra g e 1.9 S traight the the low, the rises sible, if experim ents ing all by A l c a l - deviation of c mm. , w i t h a n a v e r a g e be draw n t o d e m o n s t r a t e is rapidly the the l u t e a t 24.5 fo r the q u a n tity less than t h a t respiratory during that 3 . 4 cmm. ; c mm . , w i t h a n a v e r a g e Mor e s i g n i f i c a n t slow ly the 5 5 * 3 c mm. , w i t h by P s e u d o m o n a s p u t r e f a c i e n s , d ev iatio n of cannot early periods depicting in itially period is cmm. ; carbon dioxide, la te r periods. figure increm ent of cmm. lines evolution of during 7.7 a n d by S a r c i n a deviation of of e a c h 15 m i n u t e l i p o l y t i c u s , 24.7 3*5 cmm.; o f con­ q u a n t i t y o f o x y g e n t a k e n up b y P s e u d o m o n a s during igenes rate e x a c tly correspond w ith the average# aeruginosa c mm. , s how t h e course of at the is the quotient. first, oil evolved during curve in each The q u o t i e n t and con tin u es determ inations. It had been co n tin u ed long had been o x i d iz e d rate evolved to is is rise pos­ enough, q u o t i e n t o f 0 .7 1 would have b e e n r e a c h e d , the the provid­ to c a rb o n d i o x i d e and w ater. * The w r i t e r i s i n d e b t e d t o M r . P i o b e r t S t o e t z e r , C o lle g e , f o r a s s i s t a n c e in p l o t t i n g the d a ta . o f Hobart -3 6 Table 4 Cmm# o f o x y g e n t a k e n u p by b a c t e r i a i n t h e p r e s e n c e o f c o r n o i l , the carb o n d ioxide ev olved and the r e s p i r a t o r y quotient Ps eudornonas a e r u g i n o s a Time i n m inutes 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 Cmm. Og consumed 0.0 48.4 103.5 177.7 249.7 318.3 372.2 435.2 489.2 543.1 592.7 646.7 680.5 744.6 795.1 Pseudomonas 0 15 30 45 60 75 90 105 120 135 150 165 180 Cmm. COg evoIved 0.0 7.35 24.5 55.3 89.6 119.2 149.9 183.1 210.2 248.0 273.0 299.8 311.0 353.4 384.7 R espiratory quotient 0.0 0.15 0.24 0.31 0.32 0.37 0.40 0.42 0.43 0.45 0.46 0.46 0.46 0.47 0.48 putrefaciens 0.0 36.0 65.2 88.8 115.3 142.8 169.8 200.1 228.3 259.8 296.9 328.4 364.4 0.0 13.4 27.1 42.3 51.0 70.0 78.7 98 . 1 113.0 131.5 152.3 170.8 193.8 0.0 0.37 0.41 0.47 0.44 0.48 0.46 0.49 0.49 0.50 0.51 0.52 0.52 -3 7 Table 4 (C ontinued) Cmm# o f o x y g e n t a k e n up b y b a c t e r i a i n t h e p r e s e n c e o f c o r n o i l , t h e c a r b o n d i o x i d e e v o l v e d , and t h e r e s p i r a t o r y qu o ­ tien t Time i n m inutes Cmm. Og consumed A lcaligenes 0 15 30 45 60 75 90 105 120 135 150 165 180 R espiratory quotient lipolyticus 0 15 30 45 60 75 90 105 120 135 150 165 180 Sarcina Cmm. GOg evolved 0.0 31.0 59.8 86.3 110.7 132.8 163.8 186.0 210.3 225.8 245.7 267.9 294.5 0.0 11.8 26.2 38.3 52.1 62.8 78.2 96.4 109.4 114.0 125.9 140.3 153.5 0.0 0.38 0.43 0.44 0.47 0.47 0.47 0.51 0.52 0.51 0.51 0.52 0.52 0,0 15.5 23.0 36.5 51.6 65.1 78.5 92.0 110 •5 124.1 136.5 0.0 0.48 0.40 0.45 0.47 0.50 0.51 0.52 0.54 0.55 0.55 lutea 0.0 31.9 59.0 79.9 105.7 129.3 152.9 175.4 200.0 224.8 246.2 269 .8 293.4 F ig . 1. dioxide T h e cmm. o f o x y g e n c o n s u m e d a n d o f c a r b o n p r o d u c e d by Pseudomonas a e r u g i n o s a , and th e re sp ira to ry quotient o x y g e n consumed carbon dioxide produced re sp ira to ry quotient 2.QD cmm 6 0 0 cmm 5 0 0 cmm 4 0 0 cmm 0.6 3 0 0 cmm 0.5 0.4 2 0 0 cmm 0.3 0.2 0.1 Time 0 15 30 45 60 75 i n mi n u t e 90 105 120 135 150 165 180 190 210 .350 cmm 5 0 0 cmm 3 5 0 cmm 3 0 0 cmm 0.4 150. cmm 0.3 5_0 c mm 0 15 30 45 60 75 90 105 130 135 150 165 1 8 0 Ti me i n m i n u t e s F i g . 3. The cmm. o f o x y g e n c o n s u m e d a n d o f c a r b o n d i o x i d e p r o d u c e d by P s e u d o m o n a s p u t r e f a c l e n s , a nd t h e r e s p i r a t o r y quotient ♦ * oxygen consumed carbon d io x id e produced re sp ira to ry quotient 3 5 0 cmm 3 0 0 cmm 2 5 0 cmm 2.0Q cm 1 5 0 cmm 0,3 1 0 0 cmm — __ !________i_______ I________________ ________ ________________ ________________ ________ ________ 0 15 30 45 60 75 Time 90 105 120 135 150 165 1 8 0 in minutes F ig . 3. T h e cram, o f o x y g e n c o n s u m e d a n d o f c a r b o n d i o x i d e p r o d u c e d by A l c a l i g e n e s l i p o l . y t i c u m , and t h e r e s p i r a t o r y quotient * / oxygen consumed carbon dioxide produced re s p ira to ry quotient 3 5 0 cmm R. Q 5 0 0 cmm 0. 6 2 5 0 cmm 0.5 2 0 0 cmm 0.4 1 5 0 cmm 0.5 1 0 0 cmm 5 0 c mm 0 Q1 1 30 15 45 60 75 90 105 120 135 150 165 1 8 0 T i me i n m i n u t e s F ig . 4. T h e cmm. o f o x y g e n c o n s u m e d a n d o f c a r b o n d i o x i d e p r o d u c e d by S a r c i n a l u t e a » a n d t h e r e s p i r a t o r y q u o t i e n t + > o x y g e n consumed carbon dioxide produced resp ira to ry quotient -4 2 e. T h e e f f e c t o f l o w e r e d pH a n d o f s o d i u m c h l o r i d e upon b a c t e r i a l r e s p i r a t i o n Because o f the f o o d economy, ces decom position. gested ation. acids lower the pH, producing on t h e sodium surface and D ahlberg of b u tte r, Hus s o n g by s a l t , butter c o n tin u e d to s a me c o n d i t i o n s . under the reported that to tal N elson, butter type of d e t e r i o r ­ inhibitors are black d isc o lo r­ i n h i b i t e d by 1 . 2 5 p e r found t h a t Pseudo­ the count the b a c t e r i a l the oxidizing in u n s a lte d b u t t e r rose salted C aulfield, growth of th e types and c o n t r o l f r om, g a t h e r e d salt­ into quick­ and G arrard (1939) lactic of organisms, and M a r tin Washburn d e c r e a s e wh e n b r o u g h t C astell could count of the a d d itio n o f seven per cent s a l t inhibited count of is (1933) (1917) showed t h a t ly the been sug­ b u t n o t by b u t t e r c u l t u r e . w hile and of to compre­ arom a-producing organism , a war m r o o m , ed cream subject the 1940) h a s a r e d d i s h brown t o chloride. inhibited stored (see instan­ and sodium c h l o r i d e . monas f r a g i i , a l i p o l y t i c , ed, in our (19 4 0 ) h a s shown t h a t Pseudomonas n i g r i f i c a n s , an organism be antioxidants prevent o r delay the o x id ativ e W hite cent A number o f food-stuffs Among t h e m o r e common b a c t e r i a l to ation and a c i d u l a t i o n of r e v i e w o f Br o wn a n d T h u r s t o n , to and o i l s emphasis has been p la c e d in c e r t a i n upon s a l t i n g hensive im portance of f a t s to g a t h e r ­ acid b a c te ria , but that the final creams were s i m i l a r . (1942) o b t a i n e d cream to which s a l t a better had been added, -4 3 the improvement b e in g bacteria, yeasts, due t o the in h ib itio n of c ertain and molds. M a n o m e t r ic a l l y , Ingram (1940) found th a t a sm all q u a n t i t y o f sodium chlorid.e of E scherichia coli concentrations tio n not inhibited was 7 . 3 f o r latter. Fouts E xperim ental. wa s chloride upon t h e w hile of the the itated cells i um i o n is u tilization still salt, and h e a t . of oxygen. The t o t a l using but 0.6 m l., s o l u t i o n was i n c r e a s e d but the con­ 3*8 m l . , to 1.1 desired concentration sodium c h l o r i d e , suspended in phosphate b u ffe r; present, lipolytic e f f e c t o f a c i d and sodium o b ta in the f i n a l M/ 3 0 d i p o t a s s i u m phosphate, acid, To o b t a i n 0 . 0 p e r c e n t were acid f o u n d t h a t Ps e u d o r n o n a s rem ained th e same, T h e d e s i r e d pH v a l u e s o f t h e tratin g cream w i t h e m u l s i f i e d o i l was d e c r e a s e d t o in o r d e r to salt. wh e n l a c t i c but of th e Pseudomonas gro u p were study of the quantity of sa lt the retardation, of lip o ly s is in to le ra n t of o f t h e Warburg cups amount o f and 6 .3 f o r th e found a d e f i n i t e Six species for m l., form er organism, c u l t u r e s were a d d ed to selected the The pH a t o p t i m u m r e s p i r a ­ L o n g a n d Hammer ( 1 9 4 1 ) putrefaciens tents this. inhibition, acid organism s. the (1940) a complete and la c tic in c re a s e d the r e s p i r a t o r y r a te % and o f B a c i l l u s c e re u s , but t h a t l a r g e r chlorine buffers ion is the precip­ sod­ absent. w ere o b t a i n e d by t i ­ p h o s p h a t e w i t h M/ 30 m o n o p o t a s s i u m the g lass electrode a n d a B e c k m a n pH m e t e r . -4 4The in itial were as placed into the the pH v a l u e s result pH o f t h e taken a t most the the are cup, those and a r e liquid were in the cup, end o f th e bacteria the is pH d e t e r m i n a t i o n s experim ental p e rio d , conditions shown i n T ab le 5, concentrations of pH v a l u e o f presence of o il d efinitely at 6.85, one hour# The f i r s t t h a n was t h e upon r e s p i r a t i o n and the e f f e c t s sodium c h l o r i d e , The t wo s p e c i e s , an a cid ity is using b u ffe r servations of others, in the upon r e s p i r a ­ Pseudomonas f l u o r e s c e n s definitely to t h e i r unfavorable# w ill effect rem aining fo u r sp e cies acid condition of o f pH i n d i c a t e d v e r y have an adverse a slig h tly acids levels aeruginosa, quite l o w e r e d pH# case, Al­ a r e shown i n T ab le 6 . various th a t acids Pseudomonas of errors To c h e c k T h e cmm. o f o x y g e n t a k e n up b y t h e b a c t e r i a tio n . latter added# the various w ith the o f t h e a d d i t i o n o f sodium c h l o r i d e # R e s u l t s ♦ The e f f e c t o f a c i d i c the as unadjusted fo r i n v a r i a b l e , t h e s e were n e a r e r n e u t r a l i t y buffer of of the b u ffers inhibit bacterial sensitive to undoubtedly fin d lik in g , The r e s u l t s th a t natural are and but too great confirm th e ob­ s o u r in g and th e a d d i t i o n respiration, and in t h i s the o x id a tio n o f o il* Likew ise, vestigators, aeruginosa is sodium c h l o r i d e , detrim ental. a s fo u n d by p r e v i o u s Two s p e c i e s , in­ Ps eudomonas. , and Pseudomonas m e p h i t i c a , u t i l i z e the g r e a t— -45- est quantity A sm all o f oxygen in the quantity, stim ulating to brings several of about the le v e l of atio n of cent of the presence to endogenous cells per in the inhibition instances salt of the proves b u t w ith the in the except that p e r c e n t sodium c h l o r i d e amount of Pseu­ brings amount o f oxygen consumed below respiration, alone w ith o u t o il* the endogenous organism s, ion# f r a g i i _a 0 * 4 9 6 p e r c e n t o f t h i s In a l l f l u o r e s c e n s , 2.5 about a decrease the a noticeable o f oxygen u tiliz e d * domonas chlorine 0#336 p e r c e n t sodium c h l o r i d e , e x c e p t i o n o f Pseudomonas salt absence of the lowered the that the respir­ A c o n c e n t r a t i o n o f 1*5 rate of r e s p i r a t io n em ulsified o il nearly respiration. is, to in a point equal -4 6 - Table 5 T h e e f f e c t o f pH o f t h e c o n t e n t s o f t h e c u p u p o n t h e cmm. o f o x yg e n u t i l i z e d by b a c t e r i a i n t h e p r e s e n c e o f c o r n o i l pH o f buffer Ps e u d o r a o n a s graveomuc i d o - f r a g i i lans Ians me p h i t ica fluorescens aeruginosa 7 *4 0 218 248 53 56 54 50 6.85 221 233 41 40 39 47 6.21 220 202 86 62 66 60 5.60 148 191 79 54 63 51 5.00 183 97 73 36 34 45 4.53 49 97 64 21 42 — 92 35 . 22 32 Endogenous respiration 30 -4 7 - Table 6 The e f f e c t o f t h e p e r c e n t a g e o f NaCl i n t h e cup upon t h e cmm. o f o x y g e n u t i l i z e d b y b a c t e r i a i n t h e p r e s e n c e o f c o r n o i l a t pH 6 . 8 5 ( u n c o r r e c t e d ) Final percentage o f NaCl fluorescens aeruginosa Ps e u d o m o n a s graveomucidoIans lens fragii mephi tica 0.0% 229 211 — 49 -- 85 0.236^ 289 181 76 64 30 75 0. 496%' 237 76 53 27 57 0.85% 238 173 36 52 34 17 1.50% 194 100 32 34 24 17 2.50% 88 75 15 21 20 17 5 .00% 37 25 6 8 13 — 7 . 50% -- 20 10.00% 19 35 - 22 32 Endogenous respiration 30 9 * 92 -4 8 f. The e f f e c t o f t h e p h o s p h a t e i o n , h y d r o q u i n o n e , A v e n e x , and r a n c i d o i l upon t h e c o n s u m p ti o n o f oxygen E xperim ental. the Because o f metabolism o f the carbohydrates review b y We r kma n a n d Wo o d , gested that ides influence be o b s e r v e d . one o f ing its duplicate in manometers see the the u tilization of with sa lin e triglycer­ the buffer of s o l u t i o n and m easur­ R esults are given in 7. is or other have been p ro p o sed , to p re v e n t o x i d a t i v e substrates, H y d r o q u i n o n e was o il-soluble This - ion in 1 9 4 2 - Dr* C* A. H o p p e r t s u g ­ T h i s wa s d o n e b y r e p l a c i n g Many a n t i o x i d a n t s w hich phosphate a n d amino a c i d s th e amount o f oxygen consumed. Table the ro le of the resultant selected, antioxidants was e m p l o y e d a t oil* w ith changes because (M attill, the ra te Avenex r e p r e s e n t s of lipoidal m aterial, a lte ra tio n of flavor. it is one o f 1931; O l c o t t , 10 p a r t s one o f th e the better 1943). per m illion of favored w a te r-so l­ antioxidants T his p r o d u c t was e m p l o y e d i n t h e W a r b u r g c u p s a t a c o n c e n ­ one 0.07 ml. o f 0 .2 5 given in Table Fresh o i l shallow layer meyer f l a s k per cent, per cent C orbet and T rac y , and i n the c o n t r o l s o l u t i o n was u s e d . 1941). manometers R esults are 8. wa s a l l o w e d t o in a la rg e , and le a v in g s e v e r a l weeks. 1941; purpose of uble tratio n of (A lcott, of the At t h e it dry, b e come r a n c i d by p l a c i n g a loosely stoppered E rlen- i n a warm room i n end o f t h i s light for time a s tr o n g l y p o s i t i v e -4 9 Table 7 The e f f e c t o f t h e p r e s e n c e a n d t h e a b s e n c e o f t h e p h o s ­ p h a t e i o n u p o n t h e cram, o f o x y g e n u t i l i z e d b y b a c t e r i a i n th e presence of e m u lsified corn o i l _. C ulture _ Phosphate ion p resen t Phosphate ion absent C ontrol Pseudomonas a e r u g in o s a 94.5 72.0 -------- Pseudomonas a e ru g in o sa 255.2 211.3 83.8 Sarcina 186.6 186.9 52.9 A lcaligenes ( 6 0 M) 55.2 l i p o l y t i c u s ( 1 2 0 M) 1 2 1 . 4 52.7 90.9 ___ _ -------- lutea Table 8 T h e e f f e c t o f h y d r o q u i n o n e a n d o f A v e n e x u p o n t h e cmm. o f o x y g e n u t i l i z e d by b a c t e r i a i n t h e p r e s e n c e o f e m u l s i f i e d c o r n o i l , a n d i n t h e p r e s e n c e o f Avenex C ulture Pseudomonas Pseud, Sarcina A le. aeruginosa putrefaciens lutea lipolyticus M icro, flavescens Corn Corn o i l Corn o i l Avenex o i l & Hydro * & A venex Con­ trol 339.6 326.1 405.8 445.8 79.8 -------- 237.8 232.9 288.7 --------- 153.9 172.0 163.2 208.5 62.0 99.5 108.1 111.4 50.7 52.4 100.2 108.0 150.9 115.4 35.4 50- Table 9 T h e e f f e c t o f f r e s h a n d o f r a n c i d c o r n o i l u p o n t h e cmm# o f o x y g e n u t i l i z e d by b a c t e r i a i n t h e Warburg a p p a r a t u s C ulture Pseudomonas a e r u g in o s a Ps eudomonas p u t r e f a c i e n s Sarcina lutea A le. lipolyticus M icro, flavescens Fresh corn oil Bancid corn oil C ontrol 394.8 379.3 79.1 85.7 114.8 61.7 186.4 208.1 86.8 103.5 103.5 36.5 98.9 94.5 20.1 -51K reis the test are em ulsified given f r e s h corn o i l in Table R esults♦ in the The of this amount o f latter; hour the ther, in of form er organism, is absence the namely, oil three at the of the a ratio stim ulating. was n o t o b t a i n e d ; o x y g e n was the effects lip o ly ticu s. in each a n d i n two h o u r s instance, fo r the per cent is in one noted be­ lutea of th e experim ent had been a t t a i n ­ ion does appear in f lu e n tia l presence of corn o i l . five instances instance, fresh but the u t i l i z e d w ith were n o t t wo The p r o b l e m was n o t p u r s u e d f o r - T h e cmm. o f o x y g e n u t i l i z e d p u t r e f a c i e n s , using presence at r e s p ir a tio n of Sarcina of ten parts In one cent No d i f f e r e n c e phosphate in the aeruginosa approxim ately fiv e in the purpose that respiration ion brin g s about a a n d by A l c a l i g e n e s l a t t e r organism . its since phosphate is about 20 p e r end o f one h o u r . In the organism , decrease fo r the cause ed: the the by P s e u d o m o n a s decrease one hour fo r the and R esults q u a n t i t y o f o x y g e n consumed i n t h e e m u ls ifie d corn o i l dilutions was d e t e r m i n e d . it 9. The a b s e n c e o f decrease at T h i s o i l wa s e m u l s i f i e d a n d q u a n t i t y o f o x y g e n t a k e n up b y b a c t e r i a w i t h w ith of was o b t a i n e d . shown, it was corn o i l the severely in per m illio n proved s l i g h tl y slightly by o n e s p e c i e s , fact hydroquinone that Fseudomonas w ithout hydroquinone, a large antioxidant felt. inhibitory. quantity of indicates that The d i f f e r e n c e s in -5 2 the q u a n t i t y o f oxygen consumed w ith hydro qu in on e and absent ence, is are although not slig h t, indicative sufficiently Avenex, increase less a n d no a p p a r e n t increase is Pseudomonas putrefaciens• all of source of of energy, Table 8, w ith w ith th is organism , noted in the Avenex i t s e l f used in th is figures respiration shown i n column s i x o f Rancid o i l fresh oil faciens other b y two species and S a rc in a three apparent apparently species influence are this table. is utilized resp ira tio n of is utilized of rancidity is by i n column f i v e lip o ly ticu s; respiration, mo r e which rapidly Pseudomonas in magnitude observed* than putre- The v a l u e s o b t a i n e d w i t h comparable slight, in the presence of of b a c te ria , lutea- is flaves- e x p e r i m e n t as a A v e n e x was o n a l e v e l w i t h e n d o g e n o u s is lutea exception of A lcaligenes the a significant up b y P s e u d o m o n a s of Sarcina a s s h o w n by t h e the differ­ retardation, l i p o l y t i c u s , and M ic r o c o c c u s respiration bacteria or of brought about cmm. o f o x y g e n t a k e n The i n c r e a s e d This t o be c o n s i d e r e d s i g n i f i c a n t - on the o th e r hand, in the species of stim u la tio n , great aeru g in o sa , A lcaligenes cens # th a n ten per cent# present the a n d no -53g. The c h a n g e s o ils subjected several in the to chem ical com position o f f a t s have g iv en Jensen (1902) fatty the H orow itz-V lassova acids, o il. but his Investigators are various from t h o s e notable substrate occurring to (Jensen, date* iodine numbers, of dairy c o n t a i n e d t h e compounds a n d was n o t p u r e b u t t e r this the Orla values of b u t t e r f a t aspect of b a c te ria l although changes constants," exception instances discussing agreed th a t "fat in to s p e c ie s and s p e c ie s found in d airy p ro d u cts, m etabolism the changes and s a p o n i f i c a t i o n in which s e v e r a l b a c t e r i a l norm ally and L iv s c h itz most co m p le te r e p o r t determ ined the m olds had grown, and b a c t e r i a l a c t i o n h a v e b e e n s t u d i e d by investigators* (1935) free Chemical d e te rm in a tio n s do o c c u r i n c h a n g e s do n o t differ in s t r i c t l y chem ical o x id a tio n . this a c i d n u m b e r a n d i n some 1902) is the the decrease in s o lu b le The fatty acids. R eports values in the of the fat seemed a d v i s a b l e the substrate, fat, literature constants to study regarding are these sin ce Je n se n 's and H orow itz-V lassova meagre. the changes o f Therefore, it changes w ith co rn o i l as w o r k was d o n e w i t h b u t t e r - and L i v s c h i t z had used soy bean o il. E xperim ental m ethods. salts The b a s i c medium o f C l i f t o n , the Cahen, medi um was t h e m ineral a n d Mo r r o w ( 1 9 3 6 - 7 ) . -5 4 - Large, f l a t 3 5 ml * bottles fresh when c o o l containing corn o i l i n o c u l a t e d w i t h o n e ml* o f a n o t i c e a b l y controls, to were incubated tem peratures flat, and the cover the basic the m ineral hydroquinone salts and o f Avenex, and 0 .2 5 in the to alchohol diethyl all ous and e t h e r in the e m p lo y e d was n o t s u f f i c i e n t To d e t e r m i n e 10 p a r t s thus perm itting the con­ adding th is latter the effects per m illion of o i l before p e r cent of the the of the to m a t e r i a l was incubation period, the b o ttle s and o th e r s grew s c a n t i l y . of Ten m l. o f e t h y l t h e Ro u x b o t t l e , a separatory funnel, l a y e r s were s e p a r a t e d . r i n s e d w ith second and t h i r d and th e aqueous failed an e q u a l m i x t u r e o f p e t r o l e u m and were added to into were Growth in a l t h o u g h some o r g a n i s m s a n d 25 m l . ethers were l a i d was h e a v y , l i q u i d was p o u r e d tures, The b o t t l e s c o n ta m in a tio n and f o r growth. instances grow a t proper incuba­ aqueous menstruum. end o f examined f o r together w ith o f o r g a n i c m a t t e r upon th e medium. the most the turbid o n e p e r c e n t p e p t o n e wa s a d d e d t o dissolved At the th ree weeks. effects fo rm er were dissolved darkness a t and of gases. the o i l , b ottle, The b o t t l e s , aqueous menstruum c o m p l e t e l y , To s t u d y of for in quantity of o il an in te rc h a n g e stants me d i u m a n d were p re p a re d and s t e r i l i z e d , s u s p e n s i o n o f washed b a c t e r i a . tion 1 0 0 ml* o f t h i s in entire and th e The f l a s k s portions of the discard the aque­ were e t h e r mix­ each in stan ce e x ce p t the last wa s p e r m i t t e d to flow into the new e t h e r m i x t u r e . The c o m b i n e d e t h e r e x t r a c t was f i l t e r e d flasks t h r o u g h W h a t m a n N o . 43 f i l t e r washed w ith chips e th e r before and th e w ater bath at 90 C . S ev eral sm all b o ilin g volatile bination and re d u c tio n o f p re s s u re fatty the o i l are in a by 6 4 0 mm. has one s e r i o u s objection a c i d s may b e d r i v e n o f f b y t h e o f h e a t and red u c ed p r e s s u r e ; procedures in e th e r e t h e r s w e re removed by h e a t i n g method o f o b t a i n i n g free, suction p a p ers w hich were and one m l. o f 0 . 0 0 2 p e r c e n t h y d ro q u in o n e were added, This use. into however, com­ drastic n e c e s s a r y to remove th e l a s t o f t h e ethers, a n d no o t h e r m e t h o d h a s o c c u r r e d w h e r e b y t h e o i l may b e extracted, or the ethers c o m p l e t e ly removed. The m e t h o d o u t l i n e d a b o v e Pigulew ski ever, the and C harik dried th e ir present m itted to (1928). oil that employed a ls o These i n v e s t i g a t o r s , by adding sodium s u l p h a t e , investigation settle is was and c o a le s c e , w hich were f i t t e d o il caught and th e o i l in c le a n , w ith sh o rt was w e i g h e d b y d i f f e r e n c e fo r the ^ * Th e determ inations a cid number. hydroxide required listed This to how­ w hile in r e s i d u a l w a t e r d r o p l e t s were p e r then decanted w h i l e wa r m t h r o u g h w a s h e d a n d d r i e d f a t - f r e e The f i l t r a t e by is filter papers sm all Erlenm eyer fla s k s pipettes and s t o p p e r s . to o b t a i n The the q u a n titie s below. the ml. o f normal sodium neutralize the free fatty acids -56- i n 100 g r a m s o f o i l . The p e r o x i d e of peroxide number. iodide solution. 3. of expressed iodine term ined in the is used, Because o f th e Th e i o d i n e as This m o d i f i e d by E w e b a n k so lu tio n of than of a s a tu r a te d low v a l u e s o b t a i n e d , a b s o rp tio n number. This is results the percentage absorbed p e r weight of the o i l . according fifth moles wa s d e t e r m i n ­ a 50 p e r c e n t rather the in m illim o le s . to t h e Hanus m e t h o d , It was d e ­ as o u t l i n e d e d i t i o n o f t h e O f f i c i a l Methods o f A g r i ­ c u ltu ra l A nalysis. (1940). ^ • The s a p o n i f i c a t i o n n u m b e r . m illigram s o f potassium ify e x p r e s s e d as method (1932), i n w h ic h one m l. o f potassium are is p e r 1000 g r a m s o f o i l * e d by W h e e l e r s (1942), This hydroxide c o m p l e t e l y one gram o f te r m in e d a c c o rd in g to T h is number r e f e r s the to th e r e q u i r e d to sa p o n ­ fat or o il. T h i s wa s d e ­ method o u t l i n e d i n t h e A. 0 . A. C. 5# The r e f r a c t i v e term ined w ith index. The i n d e x o f r e f r a c t i o n was d e ­ t h e Abbe r e f r a c t o m e t e r a t a tem perature o f 20°C. 6. The a l d e h y d e n u m b e r . number o f ml. This number i s of 0.003 normal of o il. The m e t h o d i s W hite*s recommendation iodine e x p r e s s e d as th e t a k e n up p e r g r a m t h a t o f Lea ( 1 9 3 4 ) , (1941). t y wa s e n c o u n t e r e d i n o b t a i n i n g At first, without much d i f f i c u l ­ good c h e c k s , but it -5 7 was found th a t freshly diluting boiled, cooled, the s o l u t i o n w i t h ICO ml* o f distilled w ater gave b e t t e r resu lts• 7 • Tlie K r e i s test» ml * o f o i l , This t e s t wa s made b y a d d i n g t o t wo ml* o f c o n c e n t r a t e d h y d r o c h l o r i c two acid, o n e ml * o f e t h e r c o n t a i n i n g 0.1 p er cent p h lo ro g lu c in - ol, ether. and f o u r m l. according ty to and th e S m ith's of diethyl Powick (1 9 3 3 ) presence indicates oxidative of epihydric observations (1920) A positive are aldehyde, not test, rancidi­ although in complete a g re e ­ ment . 8. The v o l a t i l e acids * w e r e made o n b o t h t h e tra c tio n of o il, using tion, of the o il, o f the aqueous shown on page 168, R esults * litre of the The r e s u l t s given in Tables res id u e » several other made. E scherichia grow b u t residual o f a few o f 10 a n d 1 1 . shown, slig h tly e th e r ex­ of the fifth edi­ A g ric u ltu ra l Chem ists. This result liquid the and P r o te u s is expressed r e q u i r e d to to neutral phenoIphthalein* determ inations In a d d i t i o n to determ inations coli acids and T e n t a t i v e Methods o f A n a ly s i s t h e ml* o f n o r m a l s o d i u m h y d r o x i d e iz e one to after and on w e ig h e d q u a n t i t i e s apparatus the O f f i c i a l for v o la tile liq u id residue the A s s o c ia tio n of O f f i c i a l Acids as of the D eterm inations the are results and o b s e r v a t i o n s were a mmo n i a e w e r e a b l e and b r in g a b o u t a f a i n t l y perceptible -5 8 turbidity* Sarcina The o t h e r o r g a n i s m s l u t e a , which u t i l i z e d oxygen but failed to any tim e , grow a t included in th is to r e p o r t e d grew a b u n d a n t l y * ra th e r large decolorize quantities m e t h y l e n e b l u e , wa s u n a b l e and r e s u l t s with th is species are from b o t t l e s h a d grown a b u n d a n t l y c r y s t a l l i z e d in which the in the bacteria refrigerator; other o ils , in which b a c t e r i a had grown b u t s l i g h t l y not rem ained liq u id . A lso, all, oils of the g r o u p h a d a d e e p e r amber c o l o r t h a n d i d t h e u le w s k i and C h a rik but this (1988) be an e t h e r - s o l u b l e are Th e o i l crease in m oles) and in the o il. to in Table in the o il from t h e the peroxide since Proteus up oxygen in flasks number ( t h i s aldehyde number, is the medium d u r i n g was definitely growth but three Fig- cells. t h a t changes shows an i n ­ expressed in m i l l i ­ decrease. This is chem ical o x id a tio n . Warburg s y s te m . the latter; as com pared w i t h f r e s h ammoniae and E s c h e r i c h i a the former as a r e s u l t o f b a c t e r i a l control in s t r i c t l y or t h e p i g m e n t may 10 i n d i c a t e The o t h e r n u m b e r s show a s l i g h t be e x p e c t e d the observed pigm entation, compound fr o m b a c t e r i a l given brought about action. also may b e o f no s i g n i f i c a n c e , The v a l u e s not table. The e x t r a c t e d o i l s at of coli They grew s l i g h t l y week p e r i o d , not deeply did not take since the in medi um turbid* This quantity of c o u l d b e e x p e c t e d when r e s t i n g cells are placed -5 9 into a favorable environm ent, of carbon, according It is possible red also during extent protection ide S a n d if o r d and W ooldridge that a sm all sterilizatio n , that species to the is are offered, if compared w ith the the No a p p a r e n t values obtained fo r those of fresh o i l . as would expect in each that be l i p o l y t i c , the lines changes tion ly instance is a l t h o u g h one th e a c i d number o f o i l in which the all number a nd t h e these iodine i n some i n s t a n c e s . values are q u ite A ll values rem aining organisms show The s a p o n i f i c a ­ a b s o r p t i o n number d ro p marked­ The p e r o x i d e n u m b e r s a n d t h e alde­ l o w ; o n e may h a v e e x p e c t e d h i g h e r f o r each of th e s e . However, bacteria may b e a b l e remove t h e o x y g e n from t h e m o l e c u l e o f o i l , w itz-V lassova h a s made u s e o f logical" for test with high, when c o m p a r e d w i t h t h e f r e s h o i l . hyde numbers to w ith add The a c i d num­ a b o v e name d o r g a n i s m h a d g r o w n w o u ld be l o w . on to p r e v i o u s l y d e t e r m i n e d mano- a n d h a v e b e e n shown t o the o i l The p e r o x ­ showed an a b i l i t y e x c e p t i o n o f Pseudomonas g r a v e o l a n s . ber of these r a t h e r high. The r e m a i n i n g o r g a n i s m s m etrically, (1931). and t h e s e organism s grew to th e numbers a r e em ulsified o il, source amount o f h y d r o l y s i s o c c u r freed g ly cero l perm itted. and aldehyde oxygen to w ithout a u t il i z a b le oxidative this ab ility rancidity. f o r Horo- in h is 1!b i o - -6 0 - —OQ fh 0 o £> • OS rH IQ 02 • ET­ CH 00 to • 02 CO CO O • 4 4 + 4- + 4 4 4 4 44* CO in • o IP i—1 • rH os 00 m 02 as oo • I—1 CO • 03 CO H4 eH4 • 1 —1 i—1 CO C" H4 « i—I 02 02 CH4 • 1--1 o H4 DH4 • rH H4 c• O CF4 1— 1 H4 rH • 0> CO rH CD • tO 00 1—1 H4 • CTi 00 1—1 CO o • rH CO 1—1 E> i—1 • a> i—i i—l Fi—1 • to 1—1 1—1 £> 03 • to o * 1—1 o CO • o- o o i—1 O • o r "1 CO O • tn 03 tO • Os as o • CO o O ■§ LO rH • as H4 O i—1 • i—i 02 as • H4 H4 H4 • CO H4 H4 H4 4 4 4- + + 4 4 4 4 4* 4 4 4 4 + + 44 44* + 4 4 4 4 4 4 tO CO O O 03 tD O 03 O ■ i—1 ■ —i rH rH rH r— 1 H4 • rH LO O H4 • O o to H4 • rH rH 03 H4 in to » D- to o to CO • 02 0 C D •0 J>* P 0 nzJ pH 0 0 — 0 Vt «H -—» —- •H P {=1 O *H 0 F-t 0 > ' P P 0 JHH4 • i— 1 CO as tO H4 • o a> tO H4 • o» as to ■sh • rH rH rH CO in as rH • CO 00 in • H4 00 03 CO • LD in CO • in i—i 00 02 * as rH to 02 • CO rH H as 00 • to CO 00 « o • i —i 00 1—1 H4 i— 1 • as rH rH 0 rH rH rH CO O • tO t>as • CO 03 to tO O •rH P >5 rH O P, •H i—1 p o •H P t>s rH O Ph •rH rH • •nil • < il 0 1—I tO • in CO in • 00 £>rH D~ in• O• to to • tO Di—1 •—l rH CO to • !>- P i—I 03 H4 • O i—1 r—1 CO CO i—i iH • 03 in • o rH • D- IQ r—i tO CO • H4 rH i—1 GO i—1 • r—1 to 0 0 0 0 0 O 0 0 O Fh 0 S 0 O 0 0 Fh O i—1 0 0 0 i—1 O 0 t> 0 Fh eiC • fH 0 CO • 0 Ph i • 0 Ph • 0 Ph 0 O as o O* rH CO 03 « as 0 0 o p •H aO P 0 CO • CO CO 0 0 rH • -6 0 - o I>• CT> 1—I fa 03 • e '­ en P P P P P P P P p 00 LO • o LO (—1 • rH Os CO • 03 CJS 00 » rH 02 £>- i—1 to O 03 03 C- • i—1 • i—1 O rH • as CO i—i A -] •Hfa fa g d ©3 0 d fa -—. d fa o d o •h -p 0 d pfa d d O o fa o C O0 fa fa 1 fa 0 i— 0 0 0 0 0 d d »— PJ fa •rH fa fa fa ------ fa t o W fa •rH 0 wd *0 -p -— T — t O fa fa - d •rl at '— 0 •rH P t 00 o fa 0 fa fa at fa C71 fa d 0 fa at 0 > fa fHfa fa © HP d d 3 O •h •H d 0 d 0 0 0 fa fa •rl © d fa fa »iH d O 0 —* fa o ■ -P d © {» — -P £ 0 -■ O Pi P 0 — - d fa fa © — *■fa 1 — I *> 0 S fa 3 —•rH d d d 0 © -p fa d fa o g o d 0 3 •ri 0 fa d -p 0 P fa fa O 0 O *rHfa 0 o fa P -P 0 fa o d 0 ■ — . o •H 0 > dfl " rf ar — -—■ © — -—■- fa ■■—- ■ — o '— ■ u w fa 0 Pi 0 fa —- 0 d 0 d 0 M * — ....— 0 o < fa Pr fa Eh d ----- ■ — " o • o as 1—1 03 O • 1--1 02 rH cO o • 1— act to CD • «— o rH • Os i— 1 rH o CO * o co fa • o LO i—1 • OS o 1— 1 • LO (—1 to • P P P P + P ip to • 03 to CO • 1—1 O as • o H* £> 03 rH tN as cO • 1--1 • r—I * --1 * 00 « CO 00 ■—1 • Os 00 rH fa o I—( • CO I— 1 1—I o o • 02 1— 1 o CO % u ps p f— t d O at Xt to CD d fa rO P o d M r » 03 02 CO as cO i—1 i—* * r—1 • 1--I • rH fa rH O HH • 1—1 fa rH 02 ♦ to co i—i 00 rH fa » 00 £>i— 1 02 r—1 02 GO to as i—I ■ — l as i— 1 fa 1— 1 ao p p p 4— • 1--1 C D O • o * o ♦ o # fa to P P P o o H t m H * fa 03 cO • as •rH o d 0 XI O as o • CO O- fa rH i—1 fa rH i—I co o * as CO GO CO CO • • o as • 02 cO CD cO fa cO • act fa oD| ISI -6 1 The r e f r a c t i v e taken a t 20°C ., index of fre s h o i l , v a r i e d somewhat from t h e b y Baughman a n d J a m i e s o n m anufacturer of the oil may n o t b e c o m p a r a b l e , 15.5°C# S ignificant to which b a c t e r i a the in m olecule a re doubt, 1.4742 to (1921). value The v a l u e (se e Appendix A ), since the latter decreases occur indicated, because of the but the 1.4717 g i v e n g i v e n by t h e 1.475 value in the have b e e n expo sed. 1.4747, to is 1.477, taken at various Internal oils changes o f interpretations numerous p o s s i b l e are intram olecular changes• Table n ificant 11 s h o w s t h e determ inations follow ing media; same, plus same as t h e same (1) 10 p a r t s results o f f o u r o f t h e mo r e s i g ­ upon c o r n o i l extracted m ineral s a lts - c o r n (2) the p e r m illio n of hydroquinone; (3) f i r s t , plus 0.25 oil; from th e the p e r c e n t Avenex; (4) the as th e f i r s t , p lu s one p e r c e n t p e p to n e ; (5) the same as th e s e c o n d , p lus one p e r cent peptone; same as thet h ir d , p l u s o n e p e r c e n t p e p t o n e . Two o r g a n ­ isms were u s e d : A lcaligenes lipolyticus and (6) the and Pseudomonas aeruginosa. Th e p r o t e c t i o n o f to the o i l numbers case is reflected and the lesser of A lcaligenes form er v a lu e , a utilizable in the change organic decrease in the m aterial given in the iodine numbers l i p o l y t i c u s , and a d e c r e a s e and the relatively high io d in e peroxide in the o f the numbers in the case tone is K reis o f Pseudomonas a e r u g i n o s a . also test- reflected Both the in the Th e p r e s e n c e o f p e p - lowered i n te n s i t y of antioxidants, Avenex in the concentrations used, iceably. The c o n c e n t r a t i o n s , the hydroquinone or protect the o i l n o t ­ incidentally, are those re­ commended f o r e a c h . No r e f e r e n c e s atile oil acids. or in the a r e made t o None w e r e aqueous none were formed, or and subsequently lost residue. that Two c o n c l u s i o n s in the are possible ethers, d u ring the v o l a t i l i z a t i o n of the free were cultures either of vol­ t h e y w e r e t a k e n up b y t h e The f o r m e r p o i n t the determ inations f o u n d a t any t i m e , solvents. acids the found in th e upon t i t r a t i o n . seems more p r o b a b l e , aqueous residue since o f many o f -6 3 T ab le 11 The ( a ) a c i d n u m b er ( b ) p e r o x i d e number ( c ) i o d i n e number ( d ) K r e i s t e s t o f o i l s from c o r n o i l - m i n e r a l s a l t s medium; t h e m e d i u m p l u s h y d r o q u i n o n e ; t h e medi um p l u s A v e n e x ; a n d e a c h o f t h e m ed ia p l u s one p e r c e n t p e p t o n e , f o l l o w i n g g r o w t h o f A l c a l i g e n e s l i p o l y t i c u r n and Pseudomonas a e r u g i n o s a (a) Fresh o il A lcaligenes 1.83 (b) (c) (d) 0.19 121.76 0 8.01 115.98 ++++ lipolyticum M ineral s a l ts - c o r n oil 17.53 M ineral s a lts -c o rn o i l & hydroquinone 19.53 7.60 114.67 ++++ M ineral s a lts - c o r n o i l & Avenex 12.79 6.23 120.58 +++ M ineral s a lts -c o rn o i l 8c p e p t o n e 25.37 5*22 120.20 1*+ + M ineral s a l ts - c o r n o i l p e p t o n e 8c h y d r o q u i n o n e 23.46 2.74 M ineral s a l ts - c o r n p e p t o n e 8c A v e n e x 70.85 2.97 Ps eudomonas M ineral ? + oil 119.58 ■+ 119.28 ++•*■•* 119.63 +++■ + ++++ aeruginosa salts-corn oil 114*86 M ineral s a l ts - c o r n o il & hydroquinone 113.32 M ineral s a lts -c o rn & Avenex oil 7.88 7.28 84.10 6.58 119.43 M ineral s a l ts - c o r n o i l & peptone 112.31 6.95 119.19 M ineral sa lts -c o rn o il p e p t o n e 8c h y d r o q u i n o n e 98.98 6.81 119.28 +++ 128.60 4.85 118.09 +++ M ineral s a lts - c o r n p e p t o n e & Avenex oil -64DISCUSSION OF THE RESULTS The W a r b u r g a p p a r a t u s term ination of and o i l s . ly It the has ability the and a c c u r a t e l y , involved rather a unique tool of b a c te ria whereas methods of fo r the to o x i d i z e advantage of g iv in g long p erio d s tedious is results fats rapid­ p r e v i o u s l y u s e d have incubation, f o l l o w e d by t h e pro ced u res of e x t r a c t i o n of the o i l chem ical a n a l y s i s . not d i s t i n g u i s h between chem ical and b i o l o g i c a l o x i d a t i o n , this d istinction. fat or that this conclusively is instrum ent w ill no t y p e o f a n a l y s i s The W a r b u r g a p p a r a t u s a n unknown s t r a i n does, makes however, t h a t a given sp e c ie s of capable of o x id iz in g a o r an o i l . M ention has of true is oxidized; e n a b l e one to pro v e bacteria is and o f the once a tr ig ly c e r id e It de­ b e e n made p r e v i o u s l y chem ical changes of f a t s distinguishing and o i l s agency o f b a c t e r i a . drastic of oxidation, methods are employed. conclusion. are inconclusive b e t w e e n o x i d a t i o n by s t r i c t l y and th ro u g h th e ducts, th a t determ inations In these This resulting The d a t a o f t h i s determ inations, The o n l y biological c h e m i c a l means true unless in p e c u l i a r pro­ paper confirm t h is the p e rio d of c u b a t io n has been u n ifo rm ly th r e e weeks, investigators is in in­ although o th e r h a v e e m p l o y e d much l o n g e r p e r i o d s a t t i m e s . a lt e r a t io n of f a ts action is the and o i l s a l t e r a t i o n of the due s o l e l y to a c i d number. -6 5 Even th is criterion is H o r o w it z - V la s s o v a and L i v s c h i t z aware, investigators to u tilize is undependable* who h a v e s h o w n t h a t a triglyceride T heir stu d ies s i s , is not ed above, add sev eral of these atus* a fat organisms to to These s p e c ie s l u t e a : M icrococcus M icrococcus Phytomonas o r an o i l , investigations species this take are: then, reported list, is has been is paper w ill up o x y g e n i n t h e W a r b u r g a p p a r ­ A lcaligenes f a e c a l i s : Sarcina a u r a n t i a c u s ; Micrococcus flevescens: arborescens; m ephitica* dem onstrated with fat. may b e a d d e d t o me mb e r s o f probable needed before The lipoly- t u m e f a c i e n s ; Pseudomonas g r a v e o l a n s , Pseudo- gen which th e it is, of b a s e d upon t h e a b i l i t y c in n a b a re u s ; Flavobacterium but not w ith b u tte r and that in th is m o n a s m u c i d o l a n s may n o t p r o p e r l y b e l o n g B acillus ab ility To t h e o r g a n i s m m e n t i o n ­ monas m u c i d o l a n s , a n d Pseudomonas lipolysis the only A erobacter aerogenes* determ ining the com pletely re lia b le * the are the w rite r a m i c r o o r g a n i s m wa s a b l e u n c o v e r e d one s p e c i e s , to a t t a c k as w ithout previous hydrolysis* The c u s t o m a r y m e t h o d o f a species As f a r they lipolytic puzzling* that are in th is this the list; the fam ily take further list; in corn o i l , S e v e r a l me mb e r s o f t h e genus amounts o f oxy­ up a r e sm all, i n v e s t i g a t i o n w i l l be definitely activity Several it Pseudo­ included o r excluded. o f Pseudomonas m ucidolans reasons may be a d v a n c e d a s to -6 6 failure fat to medium: rapidly, the detect the lipolysis products and th is gives or tective properties ly tic that that is of the ab ility organisms differences fo r the coli and W alker coccus lipase, albus found th a t to lost after this ab ility conditions I t wa s p o i n t e d o u t e a r l i e r species of bac­ hydrolyzed o liv e found i t some oil, negative (1933) found i t butter fat. re­ while to butter and S taphy lo ­ Peppier low m o l e c u l a r w e i g h t , of the Staphylococcus in lip o ly tic i s o l a t e d Staphylococcus of is found S ta p h y lo c o cc u s aureus to hydrolyze hydrolyzed esters It W ells and C o rp er (1912) (1914) while B erry a freshly lipo­ have been found l i p o ­ of several of opinion e x ist* Day, the above* determ ination of lip a s e , The f o r m e r a u t h o r s possess not hydro­ oils* reactions th at E scherichia K endall, species substrates. between d i f f e r e n t to media listed have n o t e d a d i f f e r e n c e Because of the fat. is found in heavy cream o f f e r a p r o ­ some o f t h e s e investigators ported actually very d e t e c t i o n by made i n B e r g e y * s M a n u a l t o on o t h e r f a t t y teria for utilized action* possible only no o p p o r t u n i t y th at m aterials No r e f e r e n c e lytic o rg a n is m on b u t t e r - of h y d ro ly sis are usual means; the b u t t e r f a t lyzed; the by t h i s five months experim ents a u r e u s was l i p o l y t i c aureus but th at in s to c k . reported (1941) in it Under this paper, on b u t t e r f a t and “67on corn o i l , ab ility to and none o f th e s e organism s u tilize manometers* It is indicated corn o i l as a source of energy in the possible th a t Staphylococcus w ould show an i n c r e a s e d u p ta k e o f oxygen i n cup if sufficient about hydrolysis of a substrate state, relatively few, however, blue. K endall the distinction Sarcina m eter; genating may b e ma de dehydrogenate and Ishikawa is n o r does is therefore, possible, the o i l is the as available to in the decolirize (1929) state that used as The f a c t i n d i c a t e d by t h e that a fact in the that ma no­ that g r o w i n a s y n t h e t i c me d i u m sole source o f carbon. th is organism as a source o f energy, possibility the it the assum ption should not volved, corn o i l d o e s n o t d e c o l o r i z e m e t h y l e n e b l u e by d e h y d r o “ the o i l ; sidering it consumes oxygen v e ry r a p i d l y corn o i l This to o x i d iz e d ehydrogenated which a re i n which th e u tilize and fo r growth. b o th energy and grow th. lutea it fo r energy, as shown by the a b s o r p t i o n o f oxygen; compounds a r e source of bring s h o u l d b e made b e t w e e n t h e are able em ulsified those t h e Warburg of the o i l . A number o f o rganism s m ethylene aureus tim e were g iv e n th e organism to A pparently a d is tin c tio n u tilizatio n the be made, that able to but not fo r growth. however, w ithout con­ o t h e r f a c t o r s may b e i n ­ a c c e ss o ry growth f a c t o r s nitrogen. is It and the type o f -6 8 Because o f o c c a s io n a l f l a v o r foods containing d u c t s , due to natural paper, h ib itin g action, and s a l t i n g , as entirely, Under th e the conditions ion processes involving o i l . is shown t o although fu r th e r available for is, contain that in decreasing, of these be influential if not in ­ processes. experim ents, the in o x id ativ e The p r o b l e m h a s n o t b e e n p u r ­ investigation is indicated. An su p p ly o f phosp h orus would a p p ea r d e s i r a b l e oxidation, relatively bacteria conditions. ated inhibitors. and c o n firm e d by d a t a rapid oxidation of fa tty m ateria ls. preclude especially use o f sodium biological oxidative phosphate sued, that successful dairy pro­ acidulation, shown by o t h e r s are in c e r t a i n especially h a v e b e e n e m p l o y e d as b a c t e r i a l B oth p ro c e ss e s , this and o i l s , m icrobial souring, chloride, of fats defects are large the it i s w e l l known t h a t b a c t e r i a quantities capable A lso, activity since Absence would n o t of this of existing elem ent, under q u ite consequences of prolonged, h a v e b e e n s h o w n i n many f i e l d s and adverse deceler­ of investiga­ tion. A ntioxidants m aterials fats of as w e ll and o i l s . s o me o f are to employed in f o o d s t u f f s prevent the G ortner these. antioxidants are It is (1958) chem ical a l t e r a t i o n of has review ed the a c tio n possible protective and o th e r that in th a t some s o - c a l l e d they fu rn is h a more -6 9 desirable substrate for b acterial action, thereby spar­ ing tr ig l y c e r i d e s . Hydroquinone of oxygen in the quinone three w ith a n d A v e n e x do n o t p r e v e n t a c o n s u m p t i o n manometers. stim ulates of the the rate four species t h e Warburg s y s te m tects the corn o i l Table 8 in d ic a te s t h a t hydro­ o f a b s o r p t i o n o f oxygen f o r of b a c te ria . It is not p o ssib le to d e t e r m i n e w h e t h e r Avenex p r o ­ from o x i d a t i o n , s i n c e Avenex i t s e l f is r e a d i l y o x i d i z e d by f o u r s p e c i e s of bacteria, it is m aterial. the sole source of oxidizable ism a p p a r e n t l y n o t o x i d i z i n g it, of columns 5 and 6 o f Table 8, in this able instance, w ith the when The o r g a n ­ a s s h o w n by c o m p a r i s o n is A lcaligenes the endogenous r e s p i r a t i o n lipolyticus; is compar­ r e s p i r a t i o n o b t a i n e d when A v e n e x i s present w ith the b a c te r ia . L ittle inform ation dissim ilation to apply the of fatty is available acids. theories of It beta- ture tract Pearce to from th e C lutterbuck may b e p r e s u m p t u o u s to b a c t e r i a l m etabolism . f o u n d no e x p e r i m e n t a l e v i d e n c e which a f f i r m e d th e s e o f evidence to th e b a c t e r i a l and o m e g a - o x i d a t i o n as r e ­ v i e w e d by G - o r t n e r a n d b y H a r r o w , The w r i t e r as the theories, contrary possibilities and Raper (1925) (1931) each have in the and th e sm all does n o t o f n e c e s s i t y of these litera­ amount de­ types of o x id a tio n . and Smedley-MacLean and advanced t h e o r ie s as to p o s s i b l e m ethods o f tiated u tilization, but th e s e have n o t by p r o o f o f a b i o l o g i c a l n a t u r e . It is probable that, more t h a n one m eth od o f and th e constituents upon th e in the case of m icroorganism s, d issim ila tio n of exists. acids, acids; uses uses a n d t h a t B. b u t y r i glycerol, acids the g ly c e ro l but brings a s s o c ia te d with the g ators, Fouts including Jensen (1940), action in the have the t h a t Leuconostoc I I * -, a l i p o l y t i c the f a t t y organism, a b o u t no c h a n g e in the triglycerides. O ther shown t h a t Peppier bacteria of fatty in itially during that inform ative, low v a l u e s the is, is early oxygen stages is p o ssib ility exists, tion by th e occurs fo u r organism s, faciens, of indicate however; this and exert a selectiv e respira­ conclusive. the The processes of oxidation are being added to investi­ acids. but not that fatty (1941), The i n f o r m a t i o n g a i n e d b y d e t e r m i n i n g t h e tory quotient occurring chiefly additive; the carbon ch ain . is that removal o f hydrogen. further dehydrogenating Three o f the putre- l i p o l y t i c u s , have proved cap a b le corn o i l ; No s p e c i e s o f b a c t e r i a B e r g e y 's Manual ( f i f t h Another desatura­ Pseudom onas a e r u g i n o s a , Pseudomonas and A lc alig e n es who unsaturated and o x i d i z e s (1902), utilization is based and L iv s c h itz , saturates w i t h no f u r t h e r a t t a c k ; m esenteroides triglycerides This s ta te m e n t fin d in g s of H orow itz-V lassova found th a t Bacterium cloacae fatty been s u b s ta n ­ the fo u rth organism , o f t h i s name i s edition). listed in Sarcina -7 1 l u t e a . is unable to do s o * Th e a d d i t i o n o f o x y g e n a t bonds appears that several type of a reasonable acid site process, investigators fatty the of the double in view o f th e fact have r e c o v e r e d th e s t e a r i c f r o m a me di um c o n t a i n i n g o l e i c acid initially* The a s s u m p t i o n that the presence a b s o r p t i o n o f o x y g e n by c e r t a i n of corn o il the o il* case; sis It is however, of the it oil the result It the theories (1927); of is in these the that such is source of the oxidations. decarboxylation of arise as the the result of double bonds, the analy­ that oxida­ It carbon could a r is e fatty acids, as o r as of the continued o x id a ­ in accordance with a d v a n c e d b y P o w i c k ( 1 9 2 3 ) ; Hol m a n d G - r e e n b a n k T sirsch and Barben ( 1 9 2 4 ) ; -and T s irs c h of this point biological oxidations the to b e l i e v e taken place. disputable site C larification the in the o f om ega-oxidation of the hydrolyzed a c id . could also tion at paper in the o x id a tio n of c a n b e p r o v e d o n l y whe n c h e m i c a l has recovered result of bacteria i n t h e W arburg cup d e m o n s t r a t e s Sim ilarly the has r e s u l t e d reasonable t i o n of the o i l dioxide h a s b e e n made t h r o u g h o u t t h i s individual fatty must a w a i t of fa ts , acids. (1925). fu rth e r study of o ils, and above a l l , -7 2 SUMMARY AND CONCLUSIONS It able, of is shown t h a t tim e-saving bacteria tions t h e Warburg a p p a r a t u s instrum ent to o x i d i z e show i t to fats The a b i l i t y than and o i l s * to add oxygen to c o r n o i l , is the a b i l i t y These than the a depend­ investiga­ usual plate study* by t h e Warburg a p p a r a t u s , of bacteria in determ ining be more r e l i a b l e and c u l t u r a l methods o f is the is a s shown p o s s e s s e d b y mor e s p e c i e s ab ility to remove h y d r o g e n , as shown by t h e Thunberg te c h n iq u e * A lcaligenes f a e c a l i s . S a rc in a l u t e a , Micrococcus a u r a n t i a c u s . M icrococcus c in n a b a r e u s . M icrococcus flaves- c e n s , F la v o b a c te r i u m a r b o r e a c e n s . Phytomonas tumefac i e n s , Pseudom onas g r a v e o l a n s , and Pseudomonas m e p h itic a a r e able to o x i d i z e organism s previous are triglycerides in a d d itio n investigators The r e s p i r a t o r y teria oxidizing The rise not in itially slow ly quotients of the low v a l u e during exceed three are this ability* four species of g r e a t l y below th e rises abruptly, bac­ theoretical complete o x i d a t i o n o f f a t s the p e rio d of hours. These to A e ro b a c te r a e r o g e n e s . which h a d shown to p o s s e s s corn o i l v alue proposed fo r w ithout hydrolysis* and o ils * and continues investigation, to which did -7 3 - The c h e m i c a l by b a c t e r i a l ges resulting changes of t r i g l y c e r i d e s activity are from s t r i c t l y Two a n t i o x i d a n t s , w a t e r - s o l u b l e Avenex, oil is in the indistinguishable the the study, employed. as hydroquinone five The l a t t e r species whereby f a t t y apparently acids are and corn compound employed i n this s h o w n by t h e a m o u n t o f o x y ­ g e n consumed i n th e Warburg a p p a r a t u s . Phosphates chan­ non-biological oxidation. oil-soluble a t t a c k e d by f o u r o f t h e about from t h e do n o t p r e v e n t o x i d a t i o n o f concentrations experim ent of brought enter utilized* into th e mechanism -7 4 APPENDEX A L e t t e r from Mr. L. B. R o th e , T e c h n i c a l S e r v i c e , P r o d u c t s R e f i n i n g Company, A r g o , I l l i n o i s . F e b r u a r y 17, o f Corn 1943 Mr. J . 0 . M u n d t , D ept, of B iology, Hobart C olleg e, G e n e v a , New Y o r k Dear S ir: We h a v e y o u r l e t t e r o f J a n u a r y 3 0 t h r e q u e s t i n g i n f o r m a t i o n on th e p h y s i c a l and chem ical c o n s ta n ts and co m position o f Mazo l a . T h is i s a h i g h l y r e f i n e d c o r n o i l p r o d u c e d from o i l p r e s s e d from th e c o rn germ. The i n f o r m a t i o n g i v e n b e ­ low r e p r e s e n t s t h e a v a i l a b l e d a t a on t h i s p r o d u c t . Ph.ys i c a 1 a n d C h e m i c a l C o n s t a n t s : Mazo l a S o lid ify in g Point I o d i n e Value Free F a t t y Acids S a p o n i f i c a t i o n Value U nsaponifiable M atter S a t u r a t e d F a t t y Acids U n s a tu ra te d F a tty Acids S p e c i f i c G r a v i t y a t 15°C R e f r a c t i v e In d e x a t 15.5°C -1 0 to -20°C 113 to 128 . 0 5 % maximum 188 t o 1 9 3 1 . 3 to 1 .7 10 t o 12 88 t o 90 0 .9213 to 0.9268 1 .4 7 5 to 1.477 S mo k e P o i n t Flash Point Burning Point A c e t y l Value 400 - 4 5 0 ° F 620 - 640°F 694° F 7.5 - 9.0 Compos i t i o n M a zo la i s composed o f g l y c e r i d e s follow ing f a tty acids: combined w ith the S a t u r a t e d F a t t y Acids Palm itic Stearic A rachidic L ignoceric 7.7 % 3.5 0.4 0.2 -75- Compos i t i o n C o n t 1 d . U n s a t u r a te d F a t t y Acids O leic L inoleic U nsaponifiable 45.5 40.9 1.7 M a z o l a c o n t a i n s a maxi mum o f . 0 5 % F r e e F a t t y A c i d s b u t t h i s w i l l i n c r e a s e s l i g h t l y upon e x p o s u re to a i r and m oisture. T h e r e f o r e , Mazola i s packed in an a i r - t i g h t c o n ­ t a i n e r an d so f i l l e d t h a t t h e r e i s o n l y a v e r y s m a l l p o r ­ t i o n o f the o i l exposed to a i r and a p r a c t i c a l absence of mo i s t u r e . We h a v e no i n f o r m a t i o n o n t h e n a t u r e o f t h e p i g m e n t s i n r e ­ f in e d corn o i l . There a r e in d ic a tio n s i n the l i t e r a t u r e t h a t r e f i n e d c o r n o i l may c o n t a i n a t r a c e o f s t e r o l s h o w e v e r , i t s p r e s e n c e i n Mazola has n o t been w h o lly c o n firm e d ; i f p r e s e n t i t probably is contained in the U n sap o n ifiab le . We h a v e no i n f o r m a t i o n o n h y d r o c a r b o n c o n t e n t , b u t we b eliev e th ese are absent. I f y o u d e s i r e f u r t h e r i n f o r m a t i o n o n M a z o l a we w i l l g l a d to g i v e i t to you i f such is a v a i l a b l e . be -7 6 LITERATURE CITED B a u g h m a n , W. F . , a n d J a m i e s o n , G. S . i c a l com position of corn o i l . J. 43:2696-2702. 1921. The c h e m ­ A m e r . Chem. S o c . , B e c k m a n , J . W. 1930. Recovery o f v e g e tab le o i l s and f a t s by a b a c t e r i a l p r o c e s s . J . I n d . Eng. Chem., 22:117-118. B e r g e y ' s Manual o f D e t e r m i n a t i v e B a c t e r i o l o g y . th e E d ito r s o f B ergey 's Manual. W illiams Company, B a l t i m o r e . F ifth E dition. 1939. by and W ilkins B e r r y , J . A. 1933. D etection of m icrobial lip a s e c o p p er soap fo rm a tio n . J . B a c t ., 2 5 :433-454. by B r o w n , W. C . , a n d T h u r s t o n , L . M. 1940. A review of o x i d a t i o n in m ilk and m ilk p ro d u c ts as r e l a t e d to flavor. J . D a i r y S c i . , 22^:629-685. B r o w n e , C . A. 1899. A c o n t r i b u t i o n to th e c h em is try o f butterfat. V I . The c h e m i s t r y o f r a n c i d i t y i n b u t t e r fat. J . Am. Chem. S o c . , 2 1 : 9 7 5 - 9 9 4 . C a s t e l l , C. H . , a n d G a r r a r d , E . H. 1939. Preserving cream w ith s a l t . C a n . D a i r y and I c e Cream J . , 1 8 : 7 , 1 9 . A b s t r a c t in J . D a iry S c i . , 2 5 : A21,1940. — 1940. "Oxidase r e a c t i o n ” o f b a c t e r i a in r e l a ­ t i o n to d a iry p r o d u c ts . Food R e s . , ^5:215-222. C l i f t o n , C . E . , C a h a n , S . F . , a n d M o r r o w , G. 1936-7. M etab o lic a c t i v i t i e s o f E sc h e ric h ia co1i in s y n th e tic medium. P r o c - S o c. Exp. B i o l , and Med., 3 5 :1 4 0 . C l u t t e r b u c k , P . W . , a n d R a p e r , H. S . 1925. A study of t h e o x i d a t i o n o f t h e ammonium s a l t s o f n o r m a l s a t u r a t e d f a t t y a c id s and i t s b io l o g i c a l s i g n i f ic a n c e . Biochem. J . , 19:385-396. C o l l i n s , M. A. 1933. The a c t i o n o f l i p o l y t i c b a c t e r i a o n s o me s i m p l e t r i g l y c e r i d e s a n d some n a t u r a l f a t s . Ia. S ta te C o ll. J . of S c i., 8J187-189. C o r b e t t , W. J . , a n d T r a c e y , P . H . 1941. E x p e r im e n t on th e use o f c e r t a i n a n ti o x i d a n t s f o r c o n tro l o f o x id iz e d f la v o r in dairy p ro d u cts. Food R e s . , ^6:445-459. -7 7 De K r u y f f , E . 1907* Les b a c t e r i e s h y d r o l y s a n t e t o x y d a n t Xes g r a i s s e s • B u l l e t i n du d e p a r t m e n t de 1 *a g r i c u l t u r e aux Indes N e 'e rla n d . No. IX. (B u iten zo rg 1907). C e n t r a l b l e * f . B a k t., I I A b t., 20:610-611. D e r x , H* G. 1925. The s p l i t t i n g up o f f a t s by o x i d a t i o n c a u s e d by m o ld s . V e r s l a g . Akad. W eterschap pen Am ster­ d a m, J33: 5 4 5 - 5 5 8 , Chem. A b s t . 19:2554,1925. D ixon, Malcolm. 1934. M an om etric methods - as a p p l i e d to t h e m easurem ent o f c e l l r e s p i r a t i o n and o t h e r p r o c e s s e s . Cambridge a t th e U n i v e r s i t y P r e s s . E l l i s , W. G. 1932. A utoxidation o f the f a tty a c id s . The oxygen u p ta k e o f e l a i d i c , o l e i c , and s t e a r i c a c i d s . Biochem. J . , 2 6 :7 9 1 -8 00. E m e r y , J . A . , a n d H e n l e y , R. R. 1922. S tu d ie s on r a n c i d ­ ity . I . The i n f l u e n c e o f a i r , l i g h t , a n d m e t a l s on the development o f r a n c i d i t y . J . I n d . Eng. Chem., 14:937-939. Ewebank, Fay. Co l i e g e • 1942. F i e r z - D a v i d , H. E . Chem., 3 8 : 6 - 8 . F o u t s , E. L. butterfat M aster's T hesis. Michigan S t a t e 1925. .R a n c id ity o f f a t s . 2. Chem. A b s t . _19:1503, 1 9 2 5 . Ange. 1940. R elation of v o la tile acid ity of to r a n c i d i t y . J . D airy S c i., 23:307-513. F r a z i e r , W. C . , a n d W h i t t i e r , E . 0 . 1 9 3 1 a . S t u d i e s on t h e i n f l u e n c e o f b a c t e r i a on t h e o x i d a t i o n - r e d u c t i o n p o t e n ­ t i a l of m ilk. I . In flu e n c e o f pure c u ltu r e s o f m ilk organism s. J . B a c t., 21:259-252. ------------------- 1 9 3 1 b . S t u d i e s on t h e i n f l u e n c e o f b a c t e r i a on the o x i d a t i o n - r e d u c t i o n x>otential of m ilk. II. In­ f lu e n c e of a s s o c i a t e d c u ltu r e s of m ilk organism s. J. B a c t., 21:255-266. G o r t n e r , R. A . 1938. O u tlin e s of B iochem istry. J o h n W i l e y a n d S o n s , I n c . , New Y o r k . Second e d i t i o n . H a m m e r , B. W . , a n d B r y a n t , H. W. 1936. A flavor consti­ tu e n t o f blue cheese (Roquefort ty p e ). Ia. S tate C o ll. J . S c i . , 11:281-285. Harrow, B enjam in. 1940. Textbook o f B io c h e m istry . W. B. ^ S a u n d e rs Company, P h i l a d e l p h i a and London. S e c o n d e d i t i o n . -7 8 H o l m , G. E . , G r e e n b a n k , G-. R . , a n d D r e y s h e r , E . F . 1927. S u s c e p t i b i l i t y o f f a t s to a u to x i d a t i o n . J . In d . Eng. Chem., 1 9 : 1 5 6 - 1 5 8 . H o r o w i t z - V l a s s o v a , L . M . , a n d L i v s c h i t z , M. J . 1935. Zur F r a g e d e r Wirkung d e r M ikroben a u f F e t t e . Cent r a l b l . f . B a k t., I I A b t., 92:424-455. H u n z i k e r , 0 . F . , a n d H o s m a n , D. F . 1917. Tallowy b u t t e r i t s cause and p re v e n tio n . J . D a iry S c i . , JL:320-346. H u s s o n g , R . V. 1933. The r e l a t i o n s h i p s o f a l i p o l y t i c o rg an ism to r a n c i d i t y o f b u t t e r . la . State C oll. J. S c i . , 8_: 1 9 9 - 2 0 1 • I n g r a m , M. 1940. The e n d o g e n o u s r e s p i r a t i o n o f B a c i l l u s cereus. I I I . The c h a n g e s i n t h e r a t e o f r e s p i r a t i o n c a u s e d by sodium c h l o r i d e , i n r e l a t i o n to h y d r o g e n ion c o n c e n tra tio n . J . B act. 40:685. J a c o b s e n , H. C . 1918. F o lie n M ic ro b io lo g ie n , Deel V., A fl. 2(N ov.). Q u o t e d b y S t o k o e , W. N . , J . S o c . C h e m. I n d . , 4 0 : 7 7 T , 1 9 2 1 . J e n s e n , L. B ., organism s a n d G - r e t t i e , D. P . on f a t s . Food Res. 1937. A ction of m icro­ 2y97-l20. Jensen, O rla. 1902. S t u d i e n u e b e r das R a n zig w e rd en d e r B utter. C e n t r a l b l . f . B a k t . , I I A b t ., 8y11 -16; 107114; 211-216; 248-252. J o h n s o n , W. R . a n d F r e y , C. N. 1941. A u to x id a tio n measure ments on f a t t y o i l s u s in g B a r c r o f t-W a rb u r g a p p a r a t u s . J . I n d . Eng. Chem., A n a l. E d ., 1 3 :4 7 9 . K e n d a l l , A . , I . , D a y , A . A . , a n d W a l k e r , A. W. 1 9 1 4 . S tu d ies in b a c t e r i a l m etabolism . XXXVI I I . O b s e r v a ­ t i o n s on f a t - s p l i t t i n g i n m i l k by b a c t e r i a l l i p a s e . J . Am. Che m. S o c . , 5 6 : 1 9 6 2 - 1 9 6 6 . K e n d a l l , A. I . , a n d I s h i k a w a , M. 1929. The s i g n i f i c a n c e o f c e r t a i n r e a c t i o n s in d u c e d by " r e s t i n g b a c t e r i a . " J . I n f . D is ., 44:282K err, R . W. 1918. rancidity. J. Chemical t e s t s f o r th e d e te c tio n o f I n d . Eng. Chem., 1 0 :47 1-474. K e r t e s z , Th. 1934. The q u e s t i o n o f t h e c o m p o s i t i o n o f my p r e p a r a tio n "R eductobacterium frigidum n e u tr a le ." Schw eitz. M i l c h - Z . , 6 0 : 5 9 7 ; Che m. A b s t . , 2 9 : 1 5 2 5 , 1 9 5 5 * -79- ------------------- 1 9 3 5 * The l i v i n g " R e d u c t o b a c t e r i u m f r i g i d u m " and the e f f e c t o f b a c t e r i a l a c t i o n on ta l l o w i n e s s o f m ilk and cream. Schw eitz. M ilch-Z ., 61:61-62 , 6 9 - 7 0 ; Che m. A b s t . , 8 9 : 2 6 1 2 , 1 9 3 5 . Lea, C. H . 1934. E s tim a tio n o f aldehydes in ra n c id f a t s . J . I n d . E ng. Chem., A n a l. E d . , ^6:241-246. L o n g , H . F . , a n d H a m m e r , B . W. 1941. C l a s s i f ic a t i o n of th e organisms im p o rtan t in d a iry p ro d u c ts . III. Pseudomonas p u t r e f a c i e n s . I a . A g r. Exp. S t a . R e s . B u l l . 28. M a t t i l l , H . H. of fa ts . J. 1931. B iol. A n t i o x i d a n t s and the a u t o x i d a t i o n Chem., 9 1 :141-151. M i l l a r d , E . W. 1940-1942. Unx>ublished d a t a o b t a i n e d i n D r . F . W. F a b i a n ' s L a b o r a t o r y , M i c h i g a n S t a t e C o l l e g e . N eave, S. L ., and B usw ell, sludge d ig e s tio n . J. A. M. 1927. Fate of g rease in I n d . Eng. Chem., 1 9 :1 0 1 2 - 1 0 1 4 . N e l s o n , F . E . , C a u l f i e l d , W. J . , a n d M a r t i n , W. H. 1942. F u r t h e r s t u d i e s on th e use o f s a l t f o r im proving the q u a l i t y o f cream f o r b u t te r - m a k i n g . J . D airy S c i., 25:59-70. N u n e h i m e r , T . D . , a n d F a b i a n , F . W. 1942. R espiratory stu d ie s of the M icrococoi. J . B a c t., 4 4 :215-232. O f f i c i a l and T e n t a t i v e Methods o f A n a l y s i s o f t h e A s s o c i a ­ tio n of O f f i c i a l A g r ic u ltu r a l Chem ists. 1940. Pub­ l i s h e d by t h e A s s o c i a t i o n o f O f f i c i a l A g r i c u l t u r a l C h e m i s t s , W a s h i n g t o n , D. C. F ifth edition. O l c o t t , H. S . of f a ts . 1934. A n tio x id a n ts and the a u to x id a tio n VI. J * Am. Ch e m. S o c., 5 6 :2492-2495. ----------------1941. A n t i o x i d a n t s f o r e d i b l e f a t s and o i l s . O i l and S o a p , _18:(4) 77; A b s t . i n J . D a i r y S c i . , 24:A 283,1941. P e p p i e r , H. J . and t h e i r 1941. B a c t e r i a l u t i l i z a t i o n o f pure components. J . Bact. 4 2 :288. fats P i g u l e w s k i , G. , a n d C h a r i k , M. 1928. Z e r s e t z u n g des O l i v e n o l s , u n t e r dem E i n f l u s s d e r v i t a l e n T a t i ^ k e i t e i n i g e r M i k r o o r g a n i s m e n ; Umwa ndl ung v o n O l e i n s a u r e i n K etostearinsclure. Biochem. Z . , 20(9:201-210. -8 0 P o w i c k , W. C . 1923. Compounds d e v e l o p e d i n r a n c i d f a t s , w i t h o b s e r v a t i o n s on th e mechanism o f t h e i r form a­ tion. J . Agr. Res. 26:325-362. Q u a s t e l , J . H . , a n d W h e t h a m , M. D. p r o d u c e d by r e s t i n g b a c t e r i a . 1925. D ehydrogenations Biochem. J . , 1 9 ;5 2 0 -5 5 1 . Rahn, O t t o . 1906. Die Z e r s e tz u n g d e r F e t t e . f . B ak t., I I A b t., 15:55-61. C entralbl. R i t t e r , W . , a n d C h r i s t e n , M. 1934. The c o m p o s i t i o n o f 11r e d u c t o b a c t e r i u m f r i g i d u m , " t h e d r i e d p r e p a r a t i o n o f K ende-K ertesz. S c h w e i t z . M i l c h - Z . , 6 0 : 3 7 3 - 3 7 4 ; Chem. A b s t . , ^29:1524-1526, 1935. R o l a n d , C . T. , S o r e n s e n , C. M. , a n d Y / h i t a k e r , R. 1937. A s tu d y o f o x id iz e d f l a v o r in commercial p a s t e u r i z e d m ilk. J . D airy S c i ., 20:213-218. S a l k o w s k i , E. 1919. The r a n c i d i t y o f f a t * G e n u s s e n . , 34_: 305; Chem. A b s t . , J L 4 : 7 8 4 , Z. N a h r . 1920. S a n d i f o r d , B . R. , a n d W o o l d r i d g e , W. R. 1931. bacteria. Biochem. J . , 25:2 1 72 -2 1 80 . S c a l a , A. 1908. On v a l a t i l e a n d n o n v o l a t i l e found in ra n c id f a t s . G azz. chim. i t a l * , 3 0 7 - 3 2 7 ; Ch e m. A b s t . , 2 : 2 0 2 4 , 1 9 0 8 . ’’R e s t i n g " products 38:(1) S c h e n k e r , R. 1931. Zur K e n n t n i s d e r L i p a s e von A sp er­ g i l l u s n i g e r (van T i e g h ) . Biochem. Z ., 1 2 0 :16 4 -1 9 6 . Schonbrunner, J . 1940. B a c te ria l hydrogenation of o le ic a c id and so rb ic a c id and the e ff e c t of b i le s a l t s . B i o c h e m . Z . , 3 0 4 : 2 6 - 3 6 ; Chem. A b s t . , 3 4 : 4 1 0 2 , 1 9 4 1 . S c h r e i b e r , K. A rchiv. f . 1902. 1902. F e t tz e r s e t z u n g durch M ikroorganismen. Hyg . , _ 4 1 : 3 2 8 - 3 4 7 ; Chem. Z e n t r a l b l . , 7 5 : 9 4 5 , S k e l l o n , J . H. 1931. The o x i d a t i o n o f u n s a t u r a t e d f a t t y acids. I . O xidation of highly p u rifie d o le ic acid by g a s e o u s oxygen w ith and w ith o u t c a t a l y s t s . J . Soc. Chem. I n d . , 5 0 : 3 8 8 - 3 8 6 T . Smedley-MacLean, I . , and P e a r c e , t i o n o f o l e i c a c i d by means and w ith o u t the a d d i t i o n of analogy w ith i t s o x id atio n 25:1252-1256. M.S.B. 1931* The o x i d a ­ of hydrogen p e roxide with copper sulphate; a p o ssib le in v ivo. Biochem. J . , -8 1 S m i t h , W* B . 1920* The K r e i s r e a c t i o n o f c o t t o n - s e e d o i l products* J . I n d . E n g. Chem., 1 2 : 7 6 4 - 7 6 6 . S t a r k l e , Max. 1924. D ie M e t h y l k e t o n e i n o x y d a t i v e n Abbau e i n i g e r T r i g l y c e r i d e (bzw . F e t t s a u r e n ) d u r c h Schimmelp ilz e u n te r B eriicksichtigung der besonderen H an zid itat des K o k o s fe tte s . Biochem. Z ., 1 5 1 :371-415. S t o k o e , W. N. 1921. I n v e s t i g a t i o n s on th e r a n c i d i t y of b u t t e r and m argerine f a t s . J . S o c . Che m. I n d . , 4 0 : 75-81T. ------------------------ 1 9 2 8 . mold a c t i o n . The r a n c i d i t y Biochem. J . , of coconut o i l 2 2 :80-95. p r o d u c e d by T h a l e r , H . , a n d G e i s t , G-. 1939. The c h e m i s t r y o f k e t o n e rancidity. I . D e c o m p o s i t i o n o f f a t t y a c i d s by P e n i c illiu m glaucum . I I . F o rm a tio n o f m ethyl k e t o n e s from b e t a - h y d r o x y g a t t y a c i d s by P e n i c i l l i u m g l a u c u m . B i o c h e m . Z . , 3 0 2 : 1 2 1 - 1 3 6 , 3 6 9 - 3 8 3 ; Chem. Abs t . , 3 4 : 5111, 1940. T h u n b e r g , T. 1918. Zur K e n n tn is d e r Einw irkung t i e r i s c h e r Gewebe a u f M e t h y l e n b l a u . Skand. Arch. f . P h y s io lo g ie , 35:163-195* T r a c e y , P . H . , R a m s e y , R. J . , a n d Rue h e , H. A. 1933. C e r t a i n b i o l o g i c a l f a c t o r s r e l a t e d to t a l l o w i n e s s m ilk and cream . I I I . Agr. Exp. S t a . B ui. 389. in T s i r s c h , A. 1925. A u to x id a tio n in f a t s , r e s i n s , t e r p i n e s , and ta n n in s . Chem. U m s c h a u , 3 2 _ : 2 9 - 3 1 ; Chem. A b s t . , JL9 : 1 5 5 7 , 1 9 2 5 . T s i r s c h , A . , a n d B a r b e n , A. 1924. R ancidity of f a t s . A p o . Z t g . , 6 2 : 2 8 1 - 2 8 5 ; Chem. A b s t . , 1 8 : 2 9 7 0 , 1 9 2 4 . V a n d e r W a l l e , N. 1927. b a k t e r i e l l e Lipasen. 70:369-373. U e b e r s y n t h e t i s c h e Wirkung C en tralb l. f. B akt., II A bt., W e l l s , H . G. , a n d C o r p e r , H. J . 1912. The l i p a s e o f B a c illu s tu b erc u lo s is and o th e r b a c t e r i a . J. Inf. B i s . , 11:388-396. W a s h b u r n , R. M . , a n d D a h l b e r g , A. C. 1917. The i n f l u e n c e o f s a l t on t h e changes t a k i n g p la c e in s t o r a g e b u t t e r . J . D a i r y S c i . , 1_:114-126. -8 2 - W e b b , R. E . , a n d H i l e m a n , J . L* 1937. The r e l a t i o n o f o x i d a t i o n - r e d u c t i o n p o t e n t i a l of m ilk to o xidized flavor. J . D airy S c i . , 20:47. W e r k m a n , C. H . , a n d Wood, H. G. 1942. of b acteria. B o t . R e v . , *3:1-68. W h e e l e r , D. H. 1932. Peroxide autoxidative d e te rio ra tio n . W h i t e , A. H . butter. On t h e metabolism f o r m a tio n as a measure of O i l and Soap, 9^:89-97. 1940. A b a c te ria l discoloration of print S c i. A g r ., 20:658-645. W h i t e , W. H . 1941. Methods f o r i n v e s t i g a t i o n o f r a n c i d ­ i t y , t h e i r i n t e r r e l a t i o n , and a p p l i c a t i o n to b a c o n fat. C a n . J . o f R e s . , S e c . D, 1 9 : 2 7 8 - 2 9 3 .