HALOGENATION OF PHENOL SULFONIC ACIDS

IN NITRO BENZENE

A Thesis

Submitted to the Faculty of the

Michigan State College of Agriculture and Applied Science

in partial fulfillment of the requirements for

the Degree of

Doctor of Philosophy

bу

Arthur House Neeley

1935

ProQuest Number: 10008395

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10008395

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

AC KNOWLEDGMENT

The author wishes to express his appreciation to Dr. R. C. Huston for his advice and supervision in the accomplishment of this investigation.

TABLE OF CONTENTS

reservations		Pages
Introd	uotion	1
Histor:	loal	1
Experi	mentalessessessessessessessessessessessessess	11-25
` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2,6-dibromophenol and 2-bromophenol	12-14
, (1944) 1	7able	14
	2,6-dichlerophenol and Z-chlorophenol	14-15
	Zablessessessessessessessesses	15
	6-bromo-c-cresol	15-16
	6-ohloro-o-cresol	16
	2-brono-m-oresol, 4-brono-m-oresol, 6-brono-m-	
	cresol and 2,6-dibromo-m-cresol	16-17
	Proof of structure of 2,6-dibromo-m-crospl	14-50
	Scheme of reaction	20
	2-chlore-m-cresol, 2,4-dichlore-m-cresol, 2,6-	
	dichlero-m-cresol and 4-chloro-m-cresol.	21-22
	Proof of structure of 2,4-dichlors-m-oresol	22
	Proof of structure of 2,6-dichloro-m-crescl	22-25
	Scheme of reaction	24
Discuss	B10D++++++++++++++++++++++++++++++++++++	26-27
		99

INTRODUCTION

For the most part, the methods recorded in the literature for the preparation of these halogenated phenols in which the halogena occur adjacent to the hydroxyl group are unsatisfactory. Either the preparation requires the use of expensive chemicals or the method is too involved or laborious and quite often the yields are extremely low.

This investigation was undertaken with the view of develeping a more convenient efficient procedure for the production of
these compounds, together with a study of the properties and
structure of the less well known ones.

HISTORICAL

A review of the literature reveals a great many methods for the preparation of ortho-mone- and dihalogenated phenols. A brief resume of this material follows:

O-BROMOPHENOL.

1. Direct bromination of phonol in various solvents.

Mibner, Brenken, Ber., 6, 171.

Gordon, Proc., (1891), 64.

Helleman, Rinkes, Chem. Zentr., 1910 II

Meldela, Streatfield, J. Chem. Soc., 75, 681 (1898).

Dinwiddie, Kastle C. A. <u>6</u>, 482 (1912).

Baines, J. Chem. Sec., 121, 2815 (1922).

Skraup, Beifuss, Bul. Soc. Shim., 48, 809 (1927).

2. Heating of 3-brome-2-hydroxy bensels acid in the presence of water at 180° for several hours.

Sellman, Grothman, Ber., 17, 2726.

3. Replacement of the amine group in e-bromeaniline with hydroxyl by means of a diagonnium intermediate.

Körner, Gazz. chim. ital., 4, 388.

Fettig, Mager, Ber. 6, 362.

Bolleman, Rukkes, Rec. trav. chim. 50, 51.

4. Replacement of the amino group in 2-amino phenol with bromine by the Sandmeyer reaction.

Meldola, Streatfield, J. Chem. Soc., 78, 685.

5. Passing of bromine vapor through phenol at a temperature of 150-180°.

Merck D.R.P. 76597; Ber. 27, R 957.

Holleman, Runkes, Rec. trav. chim., 30, 77.

6. Bromination of phonol sulfonic acid and carboxyllic acid with a mixture sedium bromide and sodium hypobromite.

Obermiller, Ber., 42, 4361.

7. Slow bromination of a water solution of the sodium salt of pheneldisulfenic soid at room temperature and subsequent soid by drolysis at high temperature.

Takagi, Kutani, J. Pharm. Soc. Japan, 517, 247 (1925).

Takagi, Kutani, C. A. 20, 2669.

Ballard, Organic Syntheses, Vol. XIV, page 14.

8. Bromination of phenol with a mixture of potassium bromide and dichleroures.

Likhosherstov, J. Ruse. Phys. Chem. Soc., <u>61</u>, 1019, (1929). C. A. 24, 856.

2, 6-DIBROMOPHENOL.

1. Replacement of the emine group in 2,6-dibremeaniline with hydroxyl through a diagonnium intermediate.

Hieniehen, Ann., 255, 281.

Orton, Coates, Burdelt, J. Chem. Soc. 91, 51.

2. Replacement of the amine group of 2,6-dibromo-4-aminephonol with hydrogen through a diagonnium intermediate.

Mohlan, Bor., 15, 2494.

5. Distillation of tetra bromophenolphthalien with concentrated sulfuric acid.

Bacyer, Ann., 202, 138.

4. Heating of tetra bromocyclohexane to 120-1300.

Wallach, Chem. Zentr., 1905 II, 676.

5. Heating of 3,5-dibromo-4-hydroxy benzoic acid to 165° in the presence of NaOH.

Pope, Wood, J. Chem. Soc., 101, 1827.

O.CHLOROPHENOL.

1. Direct chlorination of phonol in various solvents.

Paust, Miller, Ann., 175, 303.

Varnhelt, J. prakt. Chem. (2) 36, 22.

Lessen, D.R.P. 155651, Chem. Zentr., 1904 II, 1486.

- 2. Treatment of phenol with sodium hypochlorite solution.
 Chandelon, Ber., 16, 1749.
- 5. Heating of 2-chlore-phonel sulfenic acid-4 in an autoclave.

 Hazard, Flamand D.R.P. 141751, Chem. Zentr., 1905 I, 1824.
- 4. Replacement of the amino group in e-chlorouniline by an hydroxyl group.

Beilstein, Eulatow, Ann., 176, 39.

5. Replacement of the amino group in e-aminophenol with chlerine.

Sandmeyer, Ber., 17, 2651.

- 6. Passing of chlorine through molten phenol at 150-160°.

 Merck, D.R.P., 76597.
- 7. Chlorination of an 2,4-phenol disulfonis acid with subsequent hydrolysis of the sulfonic groups at 200°.

Takagi, Kutani, J. Pharm. Soc. Japan, <u>517</u>, 247. C. A. <u>20</u>, 2669.

2.6-DICHLOROPHENOL.

- 1. Direct chlorination of melted phenol.

 Holleman, Rec. trav. chim., 37, 97.

 Fischer, Ann. (spl.), 7, 181.
- 2. Replacement of the amine group in 2,6-dichlore-4-aminephonel with hydrogen by means of a diagonnium intermediate.

 Beifert, Ann. (spl.), 7, 208.
- S. Treatment of phenol with sodium hypochlorite.
 Chandelon, Ber., 16, 1752.

4. Heating of 3,5-dichloro-4-hydroxy benseic acid with calcium oxide.

Zineke, Ann., 261, 251.

5. Chlorination in alkaline solution of the sodium selt of p-phenol sulfonic acid and the removal of the sulfonic group by hydrolysis at a high temperature.

Tanaki, Kutani, J. Pharm. Soc. Japan, <u>541</u>, 196 (1927). C. A. <u>21</u>, 2255.

6-BROMO-O-CRESOL.

1. Heating 5-bromo-4-hydroxy-5-methyl benzeic acid with lime.

Robertson, J. Chem. Sec., 98, 789.

6_CHLORO_O_CRESOL.

1. Heating the potassium salt of 3-chlore-2-hydroxy toluene sulfonic acid (5) with dilute sulfurio acid to about 150°.

Pahlberg, List & Co., D.R.P. 256345, Chem. Zentr.

1913 I, 866.

Kaschig, D.R.P. 160304, Chem. Zentr., 1905 I. 1448.

2.BROMO-M-C RESOL.

1. Reduction of 2-nitro-m-crosol to the corresponding amino and replacement of the amino group with bromine.

Hedgsen, Beard, J. Chem. Sec., 127, 498 (1925).

2. Direct bromination of m-cresol in four volumes of fuming sulfurio acid and removing the sulfonic groups by hydrolysis

with steam at 180-2009.

Husten, Peterson, J. Am. Chem. Sec., 55, 5880 (1988).

1. Direct bromination of m-crescl in carbon tetrachloride at -5° to -10°. The compound melted at 62°. No proof of structure was given.

Walther, Zipper, J. pr. Chem. 91, 364-414.

2. Replacement of the amine group of 4-amine-m-crescl with bremine by diagetization. A melting point of 38° was obtained.

Hodgson, Moore, J. Chem. Soc., (1906) 2036.

5. Direct bromination of m-crosel in chloroform at -100.

Husten and Butchinson, J. Am. Chem. Sec. 54, 1504, (1952).

4. Bromination acet-m-toluidine in acetic seid to form
2-brome-5-aminoteluene, followed by the replacement of the
amino group with hydroxyl by the discensium reaction.

Huston, Hutchinson, J. Am. Chem. Soc., 54, 1504 (1952).

5. Direct bromination of m-crosol in glacial acetic acid
in the cold. A melting point of 65° is reported.

Darenze and Levey, Compt. rend., 193, 292 (1931).

1. Along with 4-bromo-m-cresol by bromination of m-cresol in chloroform at -10°. The product did not solidify.

Huston, Britchinson, J. Am. Chem. Soc., 54, 1504 (1952).

2. By replacement of the amino group in the hydrochloride of 6-amino-merceol with bromine by the Sandmeyer reaction.

Muston, Peterson, J. Am. Chem. Soc., 55, 3880 (1933).

2,6-DIBROMO-M-CRESOL was reported from this laboratory by Busten and Peterson. It was obtained as an oil.

Huston, Peterson, J. Am. Chem. Sec., 55, 3880 (1988).

E-CHLORO-M-CRESOL.

1. Along with 4-chloro- and 6-chloro-m-crosol by the chlorination of m-crosol in carbon titra chloride with a saturated solution of chlorine in carbon tetra chloride.

Gibson, J. Chem. Sec., 1424 (1926).

2. Replacement of the amino group in 2-amine-m-crescl with chlorine by the diagonnium reaction.

Auston, Chen, J. Am. Chem. Sec., 55, 4214 (1933).

5. Direct chlorination of the sedium salt of 4,6-phenel
disulfonic acid with subsequent hydrolysis of the sulponic
groups at 200°.

Buston, Chen, J. Am. Chem. Soc., 55, 4214 (1988).

4_CHLORO_M_CRESOL.

- 1. Direct chlorination of m-crosel in the vapor state.

 Bredermann, Ber., 6, 325 (1678).
- 2. Chlorination of m-crosol in a cold solution of glacial acetic acid. M.p. 560.

Ealle and Co., D.R.P. 90847; 93694.

- 5. Action of sulfuryl chloride on m-crescl. M.p. 52-55°.

 Peratener and Condorelli, Gass. chim. itel., 28 I.

 215 (1898).
- 4. Chlorination of a technical mixture of m- and p-crosols with sulfuryl chloride. Only the m-crosol was found to be attacked.

Reschig, D.R.P., 252071.

5. Chlerination of mixed crescls followed by sulfenation.
Only the 4-chlore-m-crescl is sulfenated and can be readily separated.

Siebrecht, D.R.P., 255116.

6. Along with 2-chloro- and 6-chloro-m-cresol by chlorinating a carbon tetra chloride solution of m-cresol with a saturated solution of chlorine in carbon tetra chloride.

Gibson, J. Chem. Soc. 1424 (1926).

7. Treatment of m-crescl with a mixture of sulfuryl chloride and chloring.

Laschinger, M. S. 1847566.

8. Hitration of e-chlorotoluene to form a-chlore-5-nitrotoluene. Reduction of this compound and replacement of the amine group by hydroxyl by means of a diagonnium intermediate.

Huston, Chen, J. Am. Chem. Soc. 55, 4214 (1935).

2.4-DICHLORO-M-CRESOL.

1. Passing a calculated amount of chlorine into a warm solution of 4-chlore-m-crosol in equeous sodium hydrogen carbonate. M.p. 45-46°.

Walther, Zipper, J. prakt. chem., <u>91</u>, 574 (1864).

2. Chlorination of m-cresol in earbon tetra chloride in the cold.

Tanaki, Morakawa, Sakameto, J. Chem. Sec. Japan, 51, 275 (1930). C. A. 26, 706.

5. Direct chlorination of 2-chlore-m-crescl with a calculated amount of chlorine in chloreform in the cold. M. p. 58°.

Haten, Chen, J. Am. Chem. Sec., <u>65</u>, 4217 (1935).

4. Direct chlorination of 4-chloro-m-cresol with a calculated amount of chlorine in chloroform in the cold. M.p. 58°.

Huston, Chen, J. Am. Chem. Soc., 55, 4217 (1933).
MIXED BROMO-CHLORO-M-CRESOLS.

1. Replacement of amino group in 2-chloro-4-bromo-6-aminom-cresol with chlorine yielded 2,6-dichloro-4-bromo-m-cresol, melting at 65°.

Raiford, Leavell, J. Am. Chem. Sec., 36, 1509.

2. Direct bromination of 4-chlore-m-crescl in glacial acetic acid gave 2,6-dibrome-4-chlore-m-crescl melting at 70-75.5°.

Walther, Zipper, J. pr. Chem.(2) 91, 378.

SULFONATION OF PHENOIS.

Investigations into the use of sulfonic acid groups as pretesting agents in halogenation and nitration of phenols has been carried out by a number of workers. It is well known that replacements of sulfonic acid groups by halogen take place with more or less case in the presence of aqueous acid.

Datma (J. Am. Chem. Sec., 43, 505 (1921)) reported quanti-

tative yield of 2,4,6-tribromophenel when an aqueous solution of phenel mone- and di-sulfenic acids are treated with bromine;

2, 4, 6-trichlerophenel when they are chlorinated. He found that the ring was activated in the position occupied by the sulfenic group, allowing the bromine to enter with greater case than in the unoccupied positions. The chlorination of 2,6-m-cresol desulfenic acid in aqueous solution (Datta, Mitter, J. Am. Chem. Sec., 41, 2038 (1919)) yielded a compound melting at 45° which was assumed to be 2,6-dichlero-m-cresol.

On the other hand it has been found that if the sulfenie groups are in the form of their sedium salts, they are not readily replaced by halogen and serve as efficient blocking agents. Tanaki and Kutani (J. Pharm. Sec. Japan, 541, 196 (1927); C. A. 21, 2255) obtained good yields of 2,6-dichloro phenel by chlorinating the sedium salt of p-phenel sulfenic acid in alkaline solution and remarking the sulfenic group by hydrolysis at high temperature in the presence of acid. By a modification of this method, Takagi and Kutani (J. Pharm. Sec. Japan, 517, 260 (1925); C. A. 20, 2669) have prepared 2-chloro phenel in good yield and 2-brome phenel in somewhat lower yield.

Ballard (Organic Syntheses, Vel. XIV, p. 14) has developed a technique for the efficient production of 2-bramophenol.

Modifying a method developed by Kauffmann and DePay (Ber., 57, 725 (1904)) for the preparation of 2-nitroresoreinel, Gibson (J. Chem. Sec., 125, 1269, (1925)) and later Hodgeon and Beard (J.

Chem. Sec. 127, 498 (1925)) used fuming sulfuric acid to protect the four and six positions of m-crosel during nitration.

Good yields of 2-brome-m-cresol (Huston, Peterson, J. Am. Chem. Sec., 55, 3880 (1955)) and 2-chlore-m-cresol (Huston, Chen, 55, 4214 (1955)) were obtained in this laboratory by brominating or chlorinating m-cresol directly with one mol of halogen in four volumes of fuming sulfuric acid and then removing the sulfanic acid groups by hydrolysis with superheated steam at 180-200°.

EXPERIMENTAL

Numerous attempts to adapt this method to the preparation of 2,6-dibromophenol and 2-bromophenol failed to give satisfactory results. It was found that if enough sulfuric acid was used to keep the phenols in solution during the bromination, that sulfonation took place to too great an extent and the phenols would react with only a small portion of the calculated bromine. If only enough sulfuric acid was used to sulfonate one position, the phenols would solidify after a small amount of bromine had been added and further addition of bromine would result in the formation of tribromophenol. Finally, however, a small amount of 2,6-dibromophenol was obtained by the following procedure:

51 grams of phonol was treated with 68 grams of concentrated sulfuric acid at 100° for 5 hours, cooled, and a mixture of 45 grams

of fuming sulfurie soid (48%) and 25 grams of cono. sulfuric soid added. 55 grams of bromine was added before the mass solidified. Bromination was discontinued and the mass subjected to steam distillation at 200°. 20 grams of 2,6-dibromophenol was obtained, boiling at 80-90° (4 mm.).

effectively blocking the para position of the phenol and that the halogenation might take place as desired if carried out in an inert anhydrous solvent. Accordingly, a number of runs were made in various selvents, including petroleum, ether, gasoline, kerosene and nitrobensene. It was found that freshly distilled nitrobensene was very well suited to the purpose and the fellowing procedure was developed which gave excellent yields of 2,6-dibromephenol.

Slight modifications gave satisfactory yields of 2-bromephenol.

2,6-dichlerophenol, 2-chlorophenol, 6-brome-e-cresol, and 6-chloro-c-cresol.

2,6-DIBROMOPHENOL AND 2-BHOMOPHENOL: A mixture of 51.5 grams (1/5 mol) of phenol and 50 grams of concentrated sulfurie acid (d. 1.84) was heated with stirring at 100-116° for two hours on an oil bath. It was cooled and 100 grams of freshly distilled nitrobensene added. Cooling was continued while 15 grams of fuming sulfuric acid (49%) was added at such a rate that the temperature did not rise above 10°. 107 grams (2/5 mol) of bromine dissolved in 50 grams of nitrobensene was added dropwise over a period of 2 heurs, and stirring was continued for an hour to complete bromination. One liter of water in which 5-10 grams of sedium bisulfite

had been dissolved was added. The water and reaction mixture was thoroughly stirred for 15 minutes to facilitate extraction of the brominated phenol sulfenic acids. For the most part the tribromephenol remained in the nitrobensone. This was drawn off by means of a separating funnel and the solution of sulfenic acids was evaperated from a 2-liter flask, suitably equipped for steam distillation, on an oil bath maintained at 2000. The distillate obtained during the evaporation contained a small amount of nitrobensene and was discarded. When the temperature of the sulfenic acid solution reached 1150, steam, superheated in a copper coil, was passed through it. The temperature of the oil bath was maintained at 2000, while the temperature of the contents of the flask continued to rise to 175-1800 during the hydrolysis. The brominated phenols were extracted from the distillate with other and the phenol residue. after evaporation of the other, was distilled under reduced pressure (4 mm.) from a modified Claisen flask having a 35 cm. column. Under these conditions a 10.4% yield of 2-bromophenol boiling at 55-600 (4 mm.)-190-191 (740 mm.) - and a 72.7% yield of 2,6-dibromophenol (M.p. 55-56°) boiling at 80-90° (4 mm.)-255-256° (740 mm.)- were obtained.

Analysis. Calc. for C6H2OBr2: Br. 63.4. Found: Br. 62.9.

In order to determine the effect of the amount of sulfuric acid on the yields of 2,6-dibrome- and 2-bromophenol, a number of runs were made using the above procedure with the exception that increasing amounts of sulfuric acid were used in succeeding runs, starting with 45 grams. As would be expected, the amount of bromine can be gradually reduced, without reducing the yield, as the amount of sulfuric acid is increased.

I. BROLOPHENOLS

Order of runs	Grams of H ₂ SO ₄ used	Yield of 2,6-Dibromophenol	Yield of 2-Bromophenol (%)
1	45	60.0	10.0
2	50	72.7	10.4
3	55	69.5	14.0
4	60	64.8	18.2
5	65	5 4 . 9	25.4
6	70	51.4	29.3
7	7 5	40.0	32. 6
8	80	35.0	34,8
9	85	32.8	36.0
10	90	29.6	45.0
11	95	9.5	46.5
12	100	8.5	46.0

2,6-DICHLOROPHENOL, 2-CHLOROPHENOL: Reactants were used in the same quantities and under the same conditions as in the preparation of the bromophenols except that 200 grams of nitroben-zone and the nitrobenzene solution of sulfonic acids was maintained at 55° while chlorine was passed until no further reaction took place.

The following table gives the yields resulting from the use of increasing amounts of sulfuric acid:

II. CHLOROPHEROLS

Order of year	Grams of NgSO ₄ wood	Yield of 2,6-Dichlerophenel (%)	Field of 2-Chlerophenel (%)
1	55	63	19
:2	59	65.4	20
3	62	64	18
• 4	68	70.3	17
8	71	66 . G	18
6	80	50	89
7	85	39	52.8
. 8	96	39	55.1
9 ,	95	31	59
10	100	24	72
33	105	27.4	66.8
12	110	29	.64
18	115	33	62

A maximum yield of 70.8% of 2,8-dichlerophenel (M.p. 66-67°) boiling at $80-85^\circ$ (4 mm.)-219-220° (740 mm.) and 72.0% of 2-chlerophenel beiling at $50-55^\circ$ (4 mm.)-177-178° (740 mm.) were obtained.

Analysis. Cale. for C6H20Cl2: Cl, 45.5. Found: Cl, 45.4.

6-BROMO-Q-CRESOL: Bromination of 36 grams of o-crosol at 5-10°, using 55 grams of concentrated sulfurio acid, 100 grams of nitrobensone and 60 grams of bromine in 50 grams of nitrobensone gave a 60% yield of crude 6-bromo-c-crosol boiling at 55-65° (4 mm.) which contained about 8% c-crosol. When redistilled through a

90 cm. column (surrounded by an evacuated jacket) a pure product was obtained. B. p. 206-207 (740 mm.).

Analysis. Caled. for C7B70Br: Br, 42.77. Found: Br, 42.5.

A small amount of 4,6-dibreme-e-cresol was obtained boiling at 105° (4 mm.).

6-CHLORO-O-CRESOL: 36 grams of o-cresol chlorinated at 55°, using 60 grams of concentrated sulfuric acid and 200 grams of nitrobensene, yielded 30% 6-chloro-c-cresol boiling at 45-80° (4 mm.)-188-189° (740 mm.)-and 12% 4,6-dichloro-c-cresol boiling at 75-78° (4 mm.).

2.6-DIBROND-M-CRESOL: Several runs were carried out using 36 grams of m-cresol, 36 grams of concentrated sulfuric acid, (Ber., 20, 3089 (1887)) and other reagents in the amounts given in the procedure for bromophenels. It was found necessary to brominate at 55-60° to prevent precipitation of the sulfenic acids before the reaction was completed. Two fractions were obtained. The first, boiling at 60-65° (4 mm.) - 214-215° (743 mm.) - was identified as 2-bromomeresol. It was obtained in an average of 7% and solidified on standing in the receiver. When crystallized rapidly from a small amount of petroleum other, it formed a sheaf of tetragonal crystals. Slower crystallization from a greater amount of solvent gave large solid prisms, m. p. 61-62°.

Analysis. Caled. for CoHooss: Br. 42.77. Found: Br. 42.4.
The second fraction, boiling at 102-1050 (4 mm.) also

solidified in the receiver. However, toward the end of the distillation a small amount of material came over at about the same temperature which did not solidify. (This was assumed to be due to the presence of a small amount of 4-brome-m-crescl and 2,4-di-brome-m-crescl, which have approximately the same boiling point.) This solid fraction was shown by analysis and the following series of reactions to be 2,6-dibrome-m-crescl. Yield 25%. It crystallized from petroleum other in clusters of needles which melted at 56.5-57.5° and formed a p-toluene sulfenyl ester (Einhorn and Holland, Ann., 501, 95 (1898)) melting at 151-152°.

Analysis. Calcd. for CyHoBrg: Br. 60.15. Found: Br. 59.7.

PROOF OF STRUCTURE OF 2,6-DIBROMO-M-CRESOL: Pure 4-nitrom-cresol, prepared by the method of Staedel and Kolb (Ann., 259,
210 (1890)) was brominated with two mole of bromine in glacial
acetic acid (Claus, J. prakt. Chem.(2) 39, 61 (1888)) at 15-20°
and the resulting 2,6-dibromo-4-nitro-m-cresol was reduced by means
of stannous chloride and hydrochloric adid (Raeford, Am. Chem. J.,
46, 419 (1911)).

The hydrochleride of 2,6-dibromo-4-amine-m-crescl was diszetized by the procedure of Bigelow, Johnson and Sandborn (Organic Syntheses, Vol. VI, p. 16) and an unsuccessful attempt was made to prepare 2,6-dibromo-m-crescl by reducing the dissensium group with slephel in the presence of finely divided copper. (Huston and Peterson, J. Am. Chem. Soc., 550, 3881 (1935)). The first fraction obtained by the steam distillation of the reaction mixture re-

mained an oil, while subsequent fractions solidified in the receiver and were shown by analysis to be 2,6-dibrome-4-chlore-m-cresol. Recrystallization from petroleum ether gave needle clusters melting at 682-6920. Analysis of the liquid fraction coming over in the first stages of the steam distillation for halogen indicated a mixture of 2,6-dibrome-m-cresol and 2,6-dibrome-4-chlore-m-cresol. Direct chlorination of this fraction in chloroform, after repeated attempts to purify it had failed, gave 2,6-dibrome-4-chlore-m-cresol melting at 682-6920. The p-toluene sulfonyl ester (Einhorn and Helland, Ann., 301, 95, (1898)) recrystallized from alcohol melted at 108-1090.

cresol was obtained by chlorinating it directly in chloroform to the 2,6-dibromo-4-chloro-m-cresol which was also prepared by the bromination of 4-chloro-m-cresol with two mels of bromine. In all cases the identity of the products was checked by ester formation and analysis.

An attempt to prepare 2-bromo- and 6-bromo-m-crescl was made by brominating 36 grams of m-crescl (1/3 mol) and 36 grams of concentrated sulfuric acid in nitrobenzene at 5-10°. However, the reaction was found to yield a mixture of 25 grams (40%) of 2-bromo-m-crescl bailing at 67-70° (4 mm.) and 5 grams (8%) of 4-bromo-m-crescl boiling at 103-105° (4 mm.). The latter formed a mass of very fine needles when recrystallized from petroleum ether which melted at 582-592°. Its p-toluene sulfonyl ester melted at 112-113°. Recrystallization of 4-bromo-m-crescl, prepared by Huston

and Satehinsen (J. Am. Chem. Sec., 54, 1505 (1932)) gave the same melting point from the same solvent, and its petaluene sulfonyl ester also melted at 112-115°. To further prove the structure of the 103-105° fraction, 4-nitro-m-crosel was reduced by tin and hydrobremic acid in alcoholic solution, the method used being adapted from that of Raiford, (Am. Chem. J., 46, 419 (1911)). The hydrobremide of 4-amino-m-crosel was dissetted in hydrobremic acid solution. Replacement of the dissensium group with bromine by the Sandmeyer reaction (Organic Syntheses, Coll. Vol. I, p. 131.) yielded 4-bromo-m-crosel, which was identified by the melting point and that of its p-toluene sulfonyl ester.

In order to prove the structure of 2,4-dichloro-m-cresol obtained in the chlorination of m-cresol sulfenic acid-6, 6-brome-m-cresol was prepared by the following sequence of reactions:

6-nitro-m-creacl, the velatile fraction obtained in the nitration of m-creacl by the method of Staedel and Kolb (Ann., 259, 210 (1890)) was reduced to the corresponding amine compounds with addium hydrosulfine (Anwers, Borache and Weller, Ber. 54, 1315 (1921)); (Buston and Peterson, J. Am. Chem. Soc., 55, 3880 (1933)). The 6-amine-m-creacl thus obtained was diagotized in sulfuric acid solution and the diagonnium group replaced by bromine in the presence of suprous bromide and hydrobromic acid according to the method reported by Bigelow (Organic Syntheses, Coll. Vol. I, p. 131). The product was obtained as an oil by extraction with other and was purified by distillation under reduced pressure (4 mm.) B. p. 70-78° (4 mm.) - 210-212° (745 mm.). Upon standing in the

receiver the 6-bromo-m-cresol solidified. It formed in solid angular prisms when recrystallized from petroleum ether. M. p. $38\frac{1}{2}$ - $39\frac{1}{2}$ 0.

Its p-toluene sulfonyl ester melted at 89.5-90.5 when crystallized from alcohol.

Analysis. Calcd. for C7H70Br: Br 42.77. Found: Br, 42.8.

SCHEME OF REACTION

$$\begin{array}{c}
OH \\
OH \\
CH_{3} \\
OH \\
CH_{3} \\
OH \\
SO_{2}H
\end{array}$$

$$\begin{array}{c}
OH \\
CH_{3} \\
OH \\
SO_{3}H
\end{array}$$

$$\begin{array}{c}
OH \\
CH_{3} \\
OH \\
SO_{3}H
\end{array}$$

$$\begin{array}{c}
OH \\
CH_{3} \\
OH \\
SO_{3}H
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH_{3} \\
SO_{3}H
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH_{3} \\
SO_{3}H
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH_{3} \\
SO_{3}H
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH_{3} \\
SO_{4}H
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH_{3} \\
SO_{4}H
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH_{3} \\
SP \\
CH_{3} \\
CH
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH_{3} \\
CH
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH_{3} \\
CH
\end{array}$$

$$\begin{array}{c}
OH \\
SP \\
CH
\end{array}$$

$$\begin{array}{c}
OH \\
CH$$

$$\begin{array}{c}
OH \\
CH
\end{array}$$

$$\begin{array}{c}
OH \\
CH$$

$$\begin{array}{c}$$

2-CHIORO-M-CRESOL, 2,4-DICHIORO-M-CRESOL, 2,6-DICHIORO-M-CRESOL AND 4-CHIORO-M-CRESOL: A number of chlorinations of meresol sulfonic acid were carried out by a procedure similar to that used for the brome-m-cresols. 56 grams of m-cresol, 36 grams of concentrated sulfuric acid and 200 grams of nitro bensene were used. Chlorination was carried on to saturation at room temperature.

In this case three fractions were obtained from carefull distillation under reduced pressure in a modified Claisen flask having a 56 cm. column (2 cm. bore), the first fraction boiling at 53-57° (4 mm.) - 195-196° (740 mm.) - solidified in the receiver and upon rapid crystallisation from a small amount of petroleum other gave a sheaf of fine tetragonal crystals melting at 49-50°. From a greater amount of solvent large solid prisms were obtained. Analysis and properties of this compound identifies it as 2-chloromeresel. Yield - 14%.

Analysis. Calcd. for C₇H₇OCl: Cl, 24.91. Found: Cl, 24.8.

The second fraction, coming over at 75-80° (4 mm.) - 255
236° (745 mm.) - also solidified in the receiver and crystallized

from petroleum other in clusters of needles melting at 58-59°. Its

p-toluene sulfonyl ester formed in small platelets from alcohol

which melted at 101-102°. These constants and the sequences of

reactions below show it to be 2,4-dichloro-m-cresol. Yield - 25%.

Analysis. Calcd. for $C_7H_6OCl_2$: C1, 40.11. Found: C1, 39.35. The third fraction boiling at 80-85° (4 mm.) - 239.5-240.5

(745 mm.) - remained an oil at room temperature. Analysis and the reactions given below show it to be 2,6-dichloro-m-cresol. Yield - 6%.

PROOF OF STRUCTURE OF 2,4-DICHLORO-M-CRESOL: 2,4-dichloro-m-cresol obtained in the chlorination of m-cresol sulfonic acid-6 in nitro benzene was brominated with one mol of bromine in chloro-form at O°. Clusters of feathery crystals crystallized from petro-leum ether which melted at 58-59°, the p-toluene sulfonyl ester of which melted at 95-96°. Analysis of the compound showed it to be a monobrome-dichloro-m-cresol.

Analysis. Calcd. for C7H OBrCl2: halogen, 58.98.
Found: halogen, 59.6.

6-brome-m-crescl prepared from 6-nitro-m-crescl by the reactions discussed above, was directly chlorinated in chloreform at 0° with an amount of chlorine calculated to occupy two positions. (Houben Die Methoden der organischen Chemie, Vol. III, p. 799; Ber., 35, 43u, 2754 (1902)). The compound obtained was shown by melting point, analysis and ester formation to be the same as the one obtained by brominating 2,4-dichlore-m-crescl.

proof of STRUCTURE OF 2,6-DICHLORO-M-CRESOL: 2,6-dichloro-m-cresol was isolated along with 2,4-dichloro-m-cresol in the reactions described above. It was brominated directly with one mol of bromine in chloroform at 0° to 4-bromo-2,6-dichloro-m-cresol which crystallized in needle clusters from petroleum ether melting at 64-65°. The p-toluene sulfonyl ester of 4-bromo-2,6-dichloro-m-cresol formed in needles from alcohol which melted at 105½-106½°.

Analysis. Calcd. for C7H_OBrCl2: halogen, 58.98.

Found: halogen, 59.6.

4-nitro-m-oresol (Staedel, Kolb, Ann., 259, 210 (1890)) was chlorinated with two mols of chlorine in glacial acetic acid (Huston, Chen, J. Am. Chem. Soc., 55, 4217 (1933)). The 4-nitre-2,6-dichloro-m-cresol thus obtained was reduced with tin and hydrobromic acid. (135 grams of 4-nitro-2,6-dichloro-m-cresol was dissolved in 500 cc. of alcohol and 105 grams of mossy tin added. 450 co. of 48% hydrobromic acid was added to the beiling mixture dropwise, with continued refluxing. After reduction was complete the het solution was poured in an equal volume of 48% hydrobromic acid. The crystals of the hydrobromide formed in fine needles upon cooling overnight in a refrigerator, and were removed by filtration.) Replacement of the amine with bromine was accomplished by the procedure of Bigelow (Organic Syntheses, Coll. Vol. I, p. 131) and the cil obtained was fractionated at 4 mm. to remove the underchlorinated portion. The desired 4-brome-2,6-dichlere-m-crescl came over at 110-120° (4 mm.). It crystallized from petroleum ether in needle clusters melting at 64-65° and its p-toluene sulfenyl ester melted at 1051-1061 ·

SCHOOL OF REACTION

$$\begin{array}{c} OH \\ A 2C/5 \\ Sa_3H \\ \end{array} \begin{array}{c} OH \\ A 2C/5 \\ Sa_3H \\ \end{array} \begin{array}{c} OH \\ CI \\ Sa_3H \\ \end{array} \begin{array}{c} OH \\ OH \\ Sa_3H \\ \end{array} \begin{array}{c} OH \\ Sa_3H$$

Meresel was chlorinated by the procedure used for the preparation of 2,4-dichloro-meresel, 2,6-dichloro-meresel and 2-chloromeresel with the exception that 45 grams of sulfuric acid was used
for 56 grams of meresel and chlorination was carried out at 80°. At
this temperature about 5% of the meresel was chlorinated in the 4
position, the greater part being recovered unchlorinated. The 4-chloromeresel boiled at 83-86° (4 mm.) and formed a mass of fine needles
from petroleum ether which melted at 55-56°.

During the chlorination of m-cresol at 25°, a mass of yellow leaflets precipitated from the nitrobensene which were removed by filtration. They were slightly soluble in alcohol and other, but insoluble in petroleum ether, hot water, and cold concentrated sulfurie acid. They dissolved in hot concentrated sodium hydroxide, the solution darkening to green-black.

Qualitative analysis for elements showed carbon, hydrogen and chlorine to be present; sulfur to be absent. Saponification tests indicated chlorination of the side chain. Decomposition occurred at 196° when crystallized from alcehol. It is possible the compound may be m-hydroxy-benzo-trichloride.

DISCUSSION

It is reported by Claus and Krauss (Ber., 20, 3089 (1887)) that sulfonation of m-crescl with an equal amount of sulfuric acid at 110-120° for 2 to 3 hours produces a 5/6 yield of m-cresol sulfonic acid-4. Since similar conditions yield p-phenol sulfonic acid, bromination and chlorination of m-cresol sulfonic acid in anhydrous nitro benzene was expected to yield mainly 2,6-dibromo- and 2,6-dichloro-m-crescls. This was true in the bromination reactions although a small amount of oil was obtained along with the 2.6dibromo-m-cresol fraction which would not solidify. In the chlorination reactions 2,4-dichloro-m-cresol was obtained in greatest yield along with an oil which was shown to be 2.6-dichloro-phenol. Under modified conditions both 4-bromo- and 4-chlore-m-cresol were obtained. It would seem in the light of these results that m-cresol sulfonic acid is not formed in the amounts reported by Claus and Krauss but that a mixture of the 4 and 6 sulfonic acids is formed. This conclusion is supported by the work of Haworth and Lapworth (J. Chem. Soc., 125, 1299 (1924)), who studied the action of concentrated sulfuric acid on m-cresol at various temperatures. Treatment for one hour at 30-350 gave the 4 and 6 sulfonic acids in a ratio of 1 to 2.7; 1 to 2 at 100°, while at 120° the product was mainly m-cresol sulfonic acid-6. That 2,6-dibromo-, 4-bromo- and 2,4-dibromo-m-cresol could come over in the same fraction, and 2,6-dichloro-, 2,4-dichloro- and 4-chlorom-cresol could come over at approximately the same temperature is shown by the following boiling points for these substances:

4-brome-m-cresel	135-140° (16 mm.)	
2,4-dibrome-m-cresol	130-140° (16 mm.)	
2,6-dibrome-m-cresol	140-145° (16 mm.)	
4-chlore-m-cresol	251-255° (745 mm.)	
2,4-dichlore-m-crescl	235-286° (745 mm.)	
2.6-dichlors-m-cresol	239.5-240.5° (745 mm.)	

SUMMARY

- I Bromination and chlorination of p-phenel sulfonic acid in anhydrous nitro bensone gave excellent yields of 2,6-dibrome-,
 2,6-dichlore-, 2-brome- and 2-chlorophenels.
- II Bromination and chlorination of the para sulfonic acid of ocrescl in anhydrous nitro bensene gave 6-brome-o-crescl and
 6-chloro-o-crescl.
- III Bromination and chlorination of a mixture of m-cresol sulfonic acid-4 and m-cresol sulfonic acid-6 in anhydrous nitro bensone under various conditions gave 2-bromo-m-cresol, 4-bromo-m-cresol, 2,6-dib#omo-m-cresol, 2-chloro-m-cresol, 4-chloro-m-cresol, 2,4-dichloro-m-cresol and 2,6-dichloro-m-cresol.
 - IV 6-brome-m-cresel was prepared in crystalline form from 6-nitrom-cresel.
 - y Sulfonio acid groups on the benzene ring of phenol and phenol derivatives were shown to be stable toward halogenation if carried out in an inert anhydrous solvent.