STUDIES OF CERTAIN PHYSICAL PROPERTIES OF THE HALOGEN FLUORIDES AND THEIR HYDROGEN FLUORIDE SOLUTIONS By M orton B . P u n is h A THESIS S u b m itte d t o th e S c h o o l o f G ra d u a te S tu d ie s o f M ichigan S t a t e C o lle g e o f A g r i c u l tu r e and A p p lie d S c ie n c e i n p a r t i a l f u l f i l l m e n t o f t h e req u irem en t® f o r th e d e g re e o f DOCTOR OF PHILOSOPHY D ep artm en t o f C h e m istry ProQuest Number: 10008399 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest, ProQuest 10008399 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This w ork is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ACKNOWLEDGMENT The a u th o r w ish e s t o e x p re ss h i s s in c e r e a p p r e c i a t i o n t o P r o f e s s o r M. T . R o g e rs f o r h i s g u id a n c e an d a s s i s t a n c e th ro u g h o u t th e c o u rs e o f t h i s w o rk , t o D r . J . L . S p e ir s and D r . H. B . Thompson f o r t h e i r h e lp i n th e p r e p a r a t i o n o f m a t e r i a l s and e q u ip m e n t, and t o t h e Atomic E nergy C om m ission f o r a g r a n t s u b s i d i z i n g t h i s re se a rc h . •g-KBjg ** * VITA M orton B . P a n is h C a n d id a te f o r t h e D egree o f D o c to r o f P h ilo s o p h y D is s e r ta tio n * S tu d ie s o f C e r t a i n P h y s ic a l P r o p e r t i e s o f t h e H alo g en F l u o r i d e s and T h e ir Hydrogen F l u o r id e S o lu tio n s O u tlin e o f S tu d ie s * M ajo r S u b je c t — P h y s ic a l C h e m istry M inor S u b je c ts — O rg an ic C h e m is try , P h y s ic s B io g r a p h ic a l Item s* B o rn , A p r i l 8 , 1929, Hew Y ork, N. Y. U n d e rg ra d u a te S t u d i e s , B ro o k ly n C o l l e g e , D enver U n i v e r s i t y , 19U7-50 G rad u a te S t u d i e s , M ic h ig a n S t a t e C o lle g e , 1950-51*, M . S . 1952 iv TABLE OF CONTENTS Page I . INTRODUCTION.............................................................................................................. 1 II. HISTORICAL SUMMARY................................................................................................ 3 A. The H alo g en F l u o r i d e s ............................... .......................................... B . H ydrogen F l u o r i d e .............................................................................. 3 6 III. PREPARATION AND HANDLING OF MATERIALS.................................................... 9 IV . VAPOR PRESSURE STUDIES OF HALOGEN FLUORIDE-HYBROGEN FLUORIDE SOLUTIONS............................................................................................................. 12 A. B. C. D. T h e o r e t i c a l A s p e c ts .................. A p p a ra tu s and M eth o d . . . . . . . . . . ......................... D a ta and C a l c u l a t i o n s ......................................... ............................. .. D is c u s s io n o f th e R e s u l t s .................................... 12 16 21 21 V . CRYOSCOPIC STUDIES OF THE HALOGEN FLUORIDESAND THEIR HYDROGEN FLUORIDE SOLUTIONS................................................................... 31 38 38 1*3 L3 U5 L8 £0 £0 51 51 52 68 68 69 71 V I . DENSITIES AND AVERAGE MOLAL VOLUMES OFHALOGEN FLUORIDEHYDROGEN FLUORIDE SOLUTIONS................................................................... 72 . A. T h e o r e t i c a l A s p e c ts ............................................................................... C ry o s c o p ic S tu d ie s of P u re M a t e r i a l s ................................. Two-Coraponent L iq u id - S o lid P h ase E q u i l i b r i a ................. B . A p p a ra tu s and M ethod ............................................................................ The F r e e z in g P o in t C e l l .............................................................. T e m p e ra tu re M easu rem en t............................................................... T herm ocouple C a l i b r a t i o n an d C o n s t r u c t i o n .. The I c e - p o i n t R e fe re n c e ............................................ The D e te rm in a tio n o f / \ E ....................................... H a n d lin g P ro c e d u re s and P r e p a r a t io n o f S o l u t i o n s . . . P r e p a r a t i o n o f S o l u t i o n s ..................................................... H ydrogen F l u o r i d e .......................................................... H ydrogen F lu o r id e - P o ta s s iu m F lu o r id e S o l u t i o n s . , C . D a ta and C a l c u l a t i o n s ............. D. D is c u s s io n o f th e R e s u l t s ................................................................. The P u re M a t e r i a l s ............................................................... The P h ase D ia g ra m s.......................................................................... H e a ts o f F u s i o n . ........................................................... 31 31 V TABLE OF CONTENTS - C ontinued A# B. C. D. V II. Page T h e o r e t i c a l A s p e c ts . ............................................................... A p p a ra tu s and M eth o d .......................................................................... D a ta and C a l c u l a t i o n s . ........................................................ D is c u s s io n o f th e R e s u l t s ............................................................... 72 7h 75 78 CONDUCTANCE STUDIES OF THE HALOGENFLUORIDES ANDTHEIR HYDROGEN FLUORIDE SOLUTIONS................................................................. 80 A. T h e o r e t i c a l A s p e c ts ............................................................................. 80 80 M easu rem en t . . ........................... S p e c if ic and E q u iv a le n t C o n d u c ta n c e s .............................. 81 ............. 83 Non-Aqueous S o l u t i o n s B . A p p ara tu s and M ethod ........................... 81* The C o n d u ctan ce B rid g e .................. 81* The C o n d u ctance C e l l s ........................................... 86 86 C e l l D e s ig n .................. C e l l C a l i b r a t i o n .................................................. 89 Sample P r e p a r a t i o n and H a n d lin g P r o c e d u r e s ......................103 C . D a ta and C a l c u l a t i o n s .......................................................................... 105 D. D is c u s s io n o f th e R e s u l t s ................................................................. 123 ................. 125 C o n d u ctan c es o f th e H alo g en F l u o r i d e s C o n d u ctan c es o f th e H alogen F lu o rid e -H y d ro gen F lu o r id e S o l u t i o n s .................................. 127 V III. MAGNETIC SUSCEPTIBILITIES OF THE HALOGENFLUORIDES...................... 129 A . T h e o r e t i c a l A sp e c ts . ........... 129 132 B . A p p a ra tu s and M eth o d ...................................... The Gouy M a g n e tic B a la n c e ............. 132 The S u s c e p t i b i l i t y T u b e ...................... ..................................... I 3I4 Sample P r e p a r a t i o n and P r o c e d u r e s ....................... 13l* C. D a ta and C a l c u l a t i o n s .................................................................. ll*0 D. D is c u s s io n o f th e R e s u l t s ........................... 11*8 IX . SUMMARY........................................................................................................................150 BIBLIOGRAPHY 152 vi LIST OP TABLES TABLE I. II. Page The c o n d u c ta n c e s and f r e e z i n g p o i n t s o f th e h a lo g e n f l u o r i d e s and t h e i r s o l u t i o n s w ith o t h e r compounds as r e p o r t e d i n th e l i t e r a t u r e ........................................................ 5 The v a p o r p r e s s u r e s o f brom ine p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s a t 0 , 1 5 , and 25° C ..................................................... 22 The v a p o r p r e s s u r e s o f io d in e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s a t 15° C .................................... ........... ........................... 2k IV . The v ap o r p r e s s u r e s o f c h l o r id e t r i f l u o r i d e - h y d r o g e n f l u o r i d e s o l u t i o n s a t 0 ° C ............................................................................... 26 III. V. C a l i b r a t i o n d a t a f o r th e c o p p e r - c o n s t a n t an th e rm o c o u p le IUi V I. C ry o s c o p ic d a t a f o r i o d in e p a n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s .................. 53 V I I . C ry o s c o p ic d a t a f o r brom ine p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o lu tio n s ............. 58 V I H . The f r e e z i n g p o i n t s o f i o d in e p e n t a f l u o r i d e , brom ine p e n ta ­ f l u o r i d e , and h y d ro g en f l u o r i d e ................................................................. 62 IX . C ry o s c o p ic d a t a f o r s e v e r a l h y d ro g en f lu o r id e - p o ta s s i u m f l u o r i d e s o l u t i o n s ............................................................................................... 6k X. C ry o s c o p ic c o n s ta n ts and h e a t s o f f u s i o n o f brom ine p e n ta ­ f l u o r i d e , io d in e p e n t a f l u o r i d e , and h y d ro g en f l u o r i d e .............. 67 X I. D e n s i t i e s and a v e ra g e m o la l volum es f o r h a lo g e n f l u o r i d e h y d ro g en f l u o r i d e s o l u t i o n s a t 25° C ....................................... 77 X I I . C a l i b r a t i o n o f c e l l I u s in g a s o l u t i o n c o n ta in i n g O.3663 grains o f p o ta s s iu m c h l o r id e p e r l i t e r o f w a t e r ........................... 90 X I I I . C a l i b r a t i o n o f c e l l I u s in g a s o l u t i o n c o n ta in in g 0 . 7 U59 gram s o f p o ta s s iu m c h l o r id e p e r l i t e r o f w a t e r .............................. 95 XXV. C a l i b r a t i o n d a t a f o r c e l l I I ....................................................................... 96 XV. D a ta f o r r e c a l i b r a t i o n o f c e l l I I .............................................................. 100 v ii LIST OF TABLES - C ontinued Page XVI. D a ta f o r c a l i b r a t i o n o f c e l l U a t -7 8 °C ...............................................102 XVII* The s p e c i f i c c o n d u c ta n c e o f io d in e p e n t a f l u o r i d e a t v a r io u s te m p e ra tu re s .................................................................................................... 108 X V III. The s p e c i f i c c o n d u c ta n c e s o f brcanine p e n t a f l u o r i d e and c h l o r i n e t r i f l u o r i d e a t v a r io u s t e m p e r a tu r e s ........................... XIX. C o n d u ctan c es o f i o d i n e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s , r u n B®.................................... ................................................ 112 113 XX. C o n d u ctan ces o f io d in e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s , r u n C ' . . . . . .......................... ........ .................. ............... ............. I l l ; XXI. C o n d u ctan c es o f i o d i n e p e n ta f lu o r id e - h y d r o g e n f lu o r i d e s o l u t i o n s w ith v e ry h ig h h y d ro g en f l u o r i d e c o n c e n t r a t i o n s . . 115 X X H . C o n d u c tan c es o f brom ine p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s , ru n E®.............................................................................................. 118 X X III. C o n d u ctan c es o f b ro m ine p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s , r u n F ' . . . .......................................................................................... 119 XXIV. C o n d u ctan ces o f c h l o r in e t r i f l u o r i d e - h y d r o g e n f l u o r i d e s o l u t i o n s ............................................. ......................................................... .. XXV. S p e c i f ic c o n d u c ta n c e s o f th e h a lo g e n f l u o r i d e s . . ........................... 122 125 XXVI. A p p are n t w e ig h t ch an g es f o r th e em pty s u s c e p t i b i l i t y t u b e , c a l i b r a t i o n I ................................................................ ...................................... 138 XXVII. F i r s t c a l i b r a t i o n o f th e s u s c e p t i b i l i t y t u b e ................................... 138 X X V III. The m a g n e tic s u s c e p t i b i l i t y o f io d in e p e n t a f l u o r i d e ....................U|2 XXIX. The m a g n e tic s u s c e p t i b i l i t y o f brom ine p e n t a f l u o r i d e ................. 1U3 XXX. A p p aren t w e ig h t c h an g es f o r t h e empty s u s c e p t i b i l i t y t u b e , sec o n d c a l i b r a t i o n ............................................................................................... lld i XXXI. Second c a l i b r a t i o n o f th e s u s c e p t i b i l i t y t u b e ................................. I U 4 XXXII. The m a g n e tic s u s c e p t i b i l i t y o f c h lo r in e t r i f l u o r i d e ................... 1U5 X X X III. A p p a re n t w e ig h t ch an g es f o r t h e em pty s u s c e p t i b i l i t y t u b e , t h i r d c a l i b r a t i o n ........................................................ ...... ................................IJ4.6 XXXIV. T h ird c a l i b r a t i o n o f th e s u s c e p t i b i l i t y t u b e .................................... lU 6 v iii LIST OF TABLES - C o n tin u e d XXXV. The m a g n e tic s u s c e p t i b i l i t y o f brom ine t r i f l u o r i d e Page Ili7 XXXVI. The m a g n e tic s u s c e p t i b i l i t i e s o f some l i q u i d f l u o r i d e s ............ ll*9 ix LIST OF FIGURES ;ure Page 1 . S ch e m atic d iag ram o f th e s t i l l , g as h a n d lin g , and s o l u t i o n h a n d lin g sy stem f o r th e h a lo g e n f l u o r i d e s .......................... 11 2 . T y p ic a l v a p o r p r e s s u r e — c o m p o sitio n d ia g ra m ................................... 15 3 . D iagram o f t h e p r e s s u r e m e a s u rin g d e v i c e . . ...................................... 19 li. Sample c a l i b r a t i o n c u rv e f o r th e p r e s s u r e m e a s u rin g d e v ic e . 20 5 . V apor p r e s s u r e - c o m p o s itio n d iag ram f o r brom ine p e n t a f l u o r i d e h y d ro g en f l u o r i d e s o l u t i o n s a t 0 , 1^ and 2 5 ° C . . . ........................ 23 6 . V apor p r e s s u r e - c o m p o s itio n diagram f o r io d in e p e n t a f l u o r i d e 25 h y d ro g en f l u o r i d e s o l u t i o n s a t 15° C .................. 7 . V apor p r e s s u r e - c o m p o s itio n diagram f o r c h lo r in e t r i f l u o r i d e h y d ro g en f l u o r i d e s o l u t i o n s a t 0°C ..................................................... 27 8 . T y p ic a l c o o lin g c u rv e f o r a s o lv e n t c o n t a in in g a s m a ll amount o f s o l u t e ..................................................... ............... . ......................... 33 9 . T y p ic a l p h a s e d iag ram s f o r two com ponent s y s te m s ........................ 35 1 0 . T y p ic a l c o o lin g c u rv e f o r a sam ple o f a two com ponent sy stem w ith no compound f o r m a tio n ......................................... 37 X I . D iagram o f t h e f r e e z i n g p o i n t c e l l ipL .................................. 1 2 . D iagram o f th e f r e e z i n g p o in t c e l l u s e d f o r brom ine p e n t a ­ f l u o r i d e .................. hZ 1 3 . T herm ocouple c a l i b r a t i o n c u r v e ................................................................. U6 l h . D iagram o f t h e a p p a r a tu s f o r th e c a l i b r a t i o n p o i n t a t -78°C hi 15 . D iagram o f t h e i c e - p o i n t t u b e ................................................................... J48 1 6 . D iagram o f t h e p o te n tio m e te r and b u c k in g v o lta g e a p p a r a tu s . h9 1 7 . Some r e p r e s e n t a t i v e c o o lin g c u rv e s f o r io d in e p e n t a f l u o r i d e h y d ro g en f l u o r i d e s o l u t i o n s ........................................................................ 5U 1 8 . Some r e p r e s e n t a t i v e c o o lin g c u rv e s f o r io d in e p e n t a f l u o r i d e h y d ro g en f l u o r i d e s o l u t i o n s ......................................... 55 1 9 . P h ase d iag ram o f t h e sy ste m io d in e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e .................................................................................................................... 56 LIST OF FIGURES - C ontinued Page 2 0 . D e t a i l o f t h e p h a se diagram o f th e io d in e p e n t a f l u o r i d e h y d ro g en f l u o r i d e sy stem show ing p o s s i b l e p e r i t e c t i c p o i n t ............................................................................................ 57 2 1 . Some r e p r e s e n t a t i v e c o o lin g c u rv e s f o r b rom ine p e n ta ­ flu o rid e -h y d ro g e n * f l u o r i d e s o l u t i o n s ................................................. 59 2 2 . P h ase d iag ram o f t h e sy stem brom ine p e n ta f lu o r id e - h y d r o g e n flu o rid e .............................................................................. 60 2 3 . D e t a i l o f th e p h a s e diagram o f th e sy stem brom ine p e n t a ­ f lu o r id e - h y d r o g e n f l u o r i d e show ing a p o s s i b l e s o l i d p h a s e t r a n s i t i o n ......................................................................................... 61 2h . C o o lin g cu rv e f o r p u re io d in e p e n t a f l u o r i d e ................................. 63 2 5 . D e t a i l o f th e p h a se diagram o f th e h y d ro g en f l u o r i d e p o ta s s iu m f l u o r i d e s y s te m .......................................................................... 65 2 6 . The p y c n o m e te r.................................................................................................... 76 2 7- D e n s i t i e s o f t h e h y d ro g en f l u o r i d e s o l u t i o n s o f same h a lo g e n f l u o r i d e s .................................................................. 79 2 8 . S im p lif ie d d iag ram o f t h e c o n d u c ta n c e b r i d g e . . . . . . ................. 85 2 9 . D iagram o f c o n d u c ta n c e c e l l I ........................................... 87 3 0 . D iagram o f c o n d u c ta n c e c e l l I I .................... ... ...................................... 88 3 1 . S p e c i f ic c o n d u c ta n c e v e r s u s te m p e r a tu re f o r a s ta n d a r d p o ta s s iu m c h l o r id e s o l u t i o n (0 .3663 gram s p e r l i t e r o f w a te r) .................................. 93 3 2 . C a l i b r a t i o n c u rv e f o r c o n d u c ta n c e c e l l I . .................................... 9ii 3 3 . S p e c i f i c c o n d u c ta n c e v e r s u s te m p e r a tu re f o r 0 .0 0 1 N p o ta s s iu m c h l o r i d e s o l u t i o n ...................................................................... 97 3 ^ . C a l i b r a t i o n c u rv e f o r c o n d u c ta n c e c e l l 98 I I .................................... 35- The g l a s s c o n d u c ta n c e c e l l ...........................................................................101 3 6 . The m ix in g sy stem f o r brom ine p e n t a f l u o r i d e s o l u t i o n s 103 3 7 . S p e c i f i c c o n d u c ta n c e v e r s u s te m p e r a tu re f o r io d in e p e n t a ­ f l u o r i d e ( ru n A ) ..................................................................................................109 LIST OF FIGURES - C ontinued Page 38. S p e c if ic flu o r id e c o n d u c ta n c e (ru n B ) v ersu s te m p e r a tu re f o r io d in e p e n ta ­ 110 39. S p e c if ic f lu o rid e c o n d u c ta n c e (ru n C ) v e rsu s te m p e r a tu re f o r io d in e p e n ta ­ Ill hO. M o lar c o n d u c ta n c e v e r s u s s q u a re r o o t o f t h e m o l a r i t y o f h y d ro g e n f l u o r i d e i n io d in e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s a t 25°C ......................................... 116 111. P e r c e n t change i n c o n d u c ta n c e o f io d in e p e n t a f l u o r i d e h y d ro g e n f l u o r i d e s o l u t i o n s a t 20°C ................................ 117 1*2. C o n d u c ta n c e -c o n c e n tr a tio n r e l a t i o n s h i p s f o r brom ine p e n t a ­ f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s a t v a r io u s 120 tem p e r a t u r e s .................. 1*3. M o lar c o n d u c ta n c e v e r s u s t h e s q u a re r o o t o f th e m o l a r i t y o f h y d ro g en f l u o r i d e f o r h y d ro g en f lu o r id e - b r o m in e p e n ta ­ f l u o r i d e s o l u t i o n s a t 25°C ....................................................................... 121 1*1*. C o n d u c ta n c e —c o n c e n tr a tio n r e l a t i o n s h i p s f o r c h lo r in e t r i ­ f l u o r i d e - h y d r o gen f l u o r i d e s o l u t i o n s a t two d i f f e r e n t t e m p e r a t u r e s ............................................................. 123 h$. M o lar c o n d u c ta n c e v e r s u s th e s q u a re r o o t o f th e m o l a r i t y o f h y d ro g e n f l u o r i d e i n c h l o r in e t r i f l u o r i d e - h y d r o gen f l u o r i d e s o l u t i o n s 25°C ................................................ 12h 1*6. D iagram o f th e Gouy m ag n etic b a l a n c e ....................................................136 hi* D iagram o f th e V ycor s u s c e p t i b i l i t y tu b e and d i s t i l l i n g a p p a r a t u s .................. 137 1*8. C a l i b r a t i o n c u rv e f o r th e Gouy b a l a n c e 139 ......................... x ii LIST OF PLATES PLATE F o llo w in g Page 1 . The s t i l l , g a s - h a n d l i n g , and s o l u t i o n h a n d lin g system f o r th e h a lo g e n f l u o r i d e s .............................................................................. 11 2 . The p r e s s u r e m e a s u rin g d e v i c e ..................................................................... 18 3 . The s o l u t i o n m ix in g s y s te m .................................... . . . . . ........................... 20 h . The f r e e z i n g p o i n t c e l l . . . . . ............... bZ 5 . C on d u ctan ce c e l l H . . . . . ................................................................................. 86 1 X INTRODUCTION The tre m e n d o u s p o s t- w a r grow th i n th e f i e l d o f f l u o r i n e c h e m is tr y a s a r e s u l t o f t h e i n c r e a s i n g u s e and a v a i l a b i l i t y o f f lu o r o c a r b o n s , h a lo g e n f l u o r i d e s , and in o r g a n ic f l u o r i d e s , b o th i n i n d u s t r y and i n th e program o f th e A tom ic E n erg y C om m ission, h a s c r e a t e d an i n c r e a s i n g i n t e r e s t i n t h e p h y s i c a l p r o p e r t i e s o f th e h a lo g e n f l u o r i d e s and th e v a r i o u s h a lo g e n f l u o r i d e s y s te m s , A d e t a i l e d s tu d y o f t h e p h y s ic a l p r o p e r t i e s o f th e h a lo g e n f l u o r i d e s w as c o n s id e r e d t o b e i n o r d e r , and t h e r e f o r e th e d e s ig n and c o n s t r u c t i o n o f e q u ip m e n t f o r t h e h a n d l i n g , p u r i f i c a t i o n and s tu d y o f th e h a lo g e n f l u o r i d e s an d t h e i r h y d ro g e n f l u o r i d e s o l u t i o n s was u n d e r ta k e n . As w i l l b e d e s c r i b e d i n d e t a i l i n t h i s w o rk , s t u d i e s w ere made o f t h e m a g n e tic s u s c e p t i b i l i t i e s o f c e r t a i n p u r e h a lo g e n f l u o r i d e s . C o n d u c ta n c e , c ry o ­ s c o p ic and v a p o r p r e s s u r e s t u d i e s o f th e hyd ro g en f l u o r i d e s o l u t i o n s o f t h e s e compounds w ere a l s o m ade. No p r e v io u s w ork h a s b een r e p o r te d on t h e m a g n e tic s u s c e p t i b i l i t i e s o f t h e s e com pounds. T he e l e c t r i c a l c o n d u c t i v i t i e s o f t h e h a lo g e n f l u o r i d e s h av e b e e n m easu red u s i n g m a t e r i a l o f unknown p u r i t y b u t no d a t a have b e e n r e p o r t e d f o r th e c o n d u c ta n c e s o f t h e h y d ro g en f l u o r i d e s o l u t i o n s o f t h e h a lo g e n f l u o r i d e s , T h e re a re same c r y o s c o p ic d a t a o n th e p u re compounds and on b i n a r y sy ste m s o f b rom ine t r i f l u o r i d e and c e r t a i n m e t a l l i c s a l t s , b u t none on t h e h y d ro g en f l u o r i d e s o l u t i o n s o f t h e h a lo g e n f l u o r i d e s . V apor p r e s s u r e d a t a a r e a v a i l a b l e f o r th e p u re h a lo g e n f l u o r i d e s , b u t n o t f o r t h e i r h y d ro g en f l u o r i d e s o l u t i o n s . 2 The e x tr e m e ly h ig h r e a c t i v i t y o f th e h a lo g e n f l u o r i d e s made th e u s e o f s p e c i a l h a n d lin g m ethods and h ig h ly r e s i s t a n t m a t e r i a l s n e c e s s a r y . * I n t h i s w ork f u l l u s e was made o f t h e r e s i s t a n t p r o p e r t i e s o f M o n el, n i c k e l , f l u o r i n a t e d p o ly e th y le n e p l a s t i c s , and q u a r t z . * T ra d e m ark o f t h e I n t e r n a t i o n a l N ic k e l Company 3 II HISTORICAL SUMMARY A . The H alo g en F lu o r id e s A lth o u g h o u r know ledge o f th e p r o p e r t i e s o f th e h a lo g e n f l u o r i d e s h a s made s i g n i f i c a n t s t r i d e s s in c e th e end o f W orld War I I , t h e s e com­ p o u n d s hav e b e e n known f o r seme t im e . Kammerer1 p r o b a b ly p r e p a r e d i o d i n e p e n t a f l u o r i d e a s e a r l y a s 1 8 6 2 , b u t th e p r e p a r a t i o n was p la c e d on a p r a c t i c a l b a s i s by M o is s a n .2 The m a jo r s h a r e o f th e e a r l y w ork on th e h a lo g e n f l u o r i d e s was done b y R u ff and h i s c o -w o rk e rs who e i t h e r d i s ­ c o v e r e d , o r im p ro v e d u p o n , t h e p r e p a r a t i o n o f s e v e n o f th e com pounds, and s t u d i e d many o f t h e i r p h y s ic a l and c h e m ic a l p r o p e r t i e s . 3 ” 11 T h e re a r e s e v e n known s t a b l e h a lo g e n f l u o r i d e s , nam ely c h l o r i n e m o n o f lu o r id e , c h l o r i n e t r i f l u o r i d e , brom ine m o n o flu o r id e , brom ine t r i ­ f l u o r i d e , b ro m in e p e n t a f l u o r i d e , io d in e p e n t a f l u o r i d e , and io d in e h e p ta flu o rid e , M ary o f t h e i r p h y s i c a l p r o p e r t i e s a r e a l r e a d y known. T h e re a r e s e v e r a l good r e v ie w s on t h e s u b j e c t 12" 14 and a c h a p te r b y B ooth and P in k s to n h a s b e e n d e v o te d t o th e s e compounds i n Simons® F l u o r in e C h e m is try . T h is d i s s e r t a t i o n i s p r i m a r i l y c o n c e rn e d w ith c r y o s c o p ic , c o n d u c t­ a n c e , and v a p o r p r e s s u r e s t u d i e s o f th e h a lo g e n f l u o r i d e s and t h e i r h y d ro g e n f l u o r i d e s o l u t i o n s , and m a g n e tic s u s c e p t i b i l i t i e s o f t h e p u r i ­ f i e d h a lo g e n f l u o r i d e s . O n ly w r k w hich i s r e l a t e d t o th e s e t o p i c s w i l l b e d is c u s s e d h e r e . The c r y o s c o p ic d a t a w h ich a r e a v a i l a b l e f o r th e h a lo g e n f l u o r i d e s a r e l i m i t e d a lm o s t e x c l u s i v e l y t o the compounds themselves, and do n o t , h i n g e n e r a l , e x te n d t o t h e i r s y s te m s w ith o t h e r s u b s t a n c e s . o n ly i n f o r m a t i o n a v a i l a b l e , o t h e r th a n d a t a o b ta in e d i n t h i s O f te n , th e la b o ra to ry , i s t h e o r i g i n a l d a t a o f R u ff and h i s c o - w o r k e r s . E u t e c t i c p o i n t s a t 3 .1 and -O .l;0 C w ere o b s e rv e d b y H a e n d le r 17 f o r b i n a r y s y ste m s o f b rom ine t r i f l u o r i d e w ith barium f l u o r i d e and sodium f lu o r id e , re s p e c tiv e ly . T he f r e e z i n g p o i n t s r e p o r t e d i n t h e l i t e r a t u r e f o r t h e h a lo g e n f l u o r i d e s a r e g iv e n i n T a b le X. The c o n d u c ta n c e s o f m o st o f th e h a lo g e n f l u o r i d e s have b e e n r e p o r t e d p r e v i o u s l y and t h e v a lu e s o b ta in e d a r e shown i n T a b le I . The c o n d u c ta n c e s o f b ro m in e t r i f l u o r i d e and b ro m in e p e n t a f l u o r i d e have b e e n r e p o r t e d t o h a v e n e g a tiv e te m p e r a tu r e c o e f f i c i e n t s . T h is h a s b e e n a t t r i b u t e d , a t l e a s t i n t h e c a s e o f b ro m in e t r i f l u o r i d e , t o th e r m a l i n s t a b i l i t y o f th e io n s . i ® , 19 On t h e b a s i s o f t h e in f o r m a tio n a v a i l a b l e on th e p r o p e r t i e s o f i o d in e p e n t a f l u o r i d e and b ro m in e t r i f l u o r i d e a s s o l v e n t s , 20" 22 th e c o n d u c t i v i t i e s o f th e s e compounds have b een a t t r i b u t e d t o th e s e l f io n iz a tio n e q u ilib ria 2BrFa - B rF 2+ + B rF 4~ and 2 IF 6 * IF 4 + IF 6 The e x i s t e n c e o f compounds su c h a s KBrF4 , K lF6 , B rF3[SbF6 ] , and IF 4 [S bF 6 ] le n d s s u p p o rt to t h i s h y p o th e s is . R e c e n tly D . F . S m ith 24 h a s shown t h a t t o a v e r y s m a ll d e g r e e , a o n e - to - o n e c o m p le x , h y d ro g e n f l u o r i d e - c h l o r i n e t r i f l u o r i d e (RF»CXF3) , i s fo rm ed i n t h e v a p o r s t a t e . No e v id e n c e f o r com plexes o r in t e r m e d i a t e 5 TABLE I THE SPECIFIC CONDUCTANCES AND FREEZING POINTS OF THE HALOGEN FLUORIDES AND THEIR SOLUTIONS WITH OTHER COMPOUNDS AS REPORTED IN THE LITERATURE* S p e c if ic C o n d u ctan ce ohms“ 1cin":t F r e e z in g P o in t °C Compound C1F - 1 5 5 .6 16) C lF a - 8 2 .6 ( 10) B rF 3 8 .7 7 (1 6 ) BrFg if 7 — 3 x lO - 9 a t ? °C 113) 8 .0 x 10“ 3 a t 25°C (1 8 ) - 6 1 .3 17) 8 .3 x 1 0 '7 a t ? °C (19) 9 .6 (9 ) 1 .9 2 x 10"® a t 25°C (1 2 ) 6 (1 1 ) — BrF6 - HF ^ e q u im o la r) — 1 x 10“ 3 a t ?°C BrFg - KF — I n c r e a s e s m a rk e d ly upon (18) a d d i t i o n o f KF B rF 3 — I n c r e a s e s m a rk e d ly upon a d d i t i o n o f SbFe (18) IF 6 - KF — I n c r e a s e s m a rk e d ly upon a d d i t i o n o f KF (2 2 ) IF e - KF — No n o t i c e a b l e change upon a d d i t i o n o f KF SbF3 IF 6 - SbFe — (1 9 ) (1 2 ) I n c r e a s e s m a rk e d ly upon a d d i t i o n o f SbFQ (22) * R eferen ces a re in d ic a te d i n p a r e n th e s e s . 6 coin p o u n d s was fo u n d i n a s tu d y o f th e l i q u i d - s o l i d e q u i l i b r i a i n th e b ro m in e -b ro m in e t r i f l u o r i d e s y s te m ;36 l i q u i d i r r a n i s c i b i l i t y and th e a b s e n c e o f s o l i d s o l u t i o n w ere o b s e rv e d . The s p e c i f i c c o n d u c ta n c e o f a s i n g l e e q u ira o la r s o l u t i o n o f brom ine t r i f l u o r i d e - h y d r o g e n f l u o r i d e was fo u n d by Hyman, Andrews and K a tz 19 t o b e a p p r o x im a te ly 1 x 10 -.3 mho p e r c e n t i m e t e r . A n e g a tiv e c o n d u c t- a n c e - te m p e r a tu r e c o e f f i c i e n t was o b s e rv e d w ith t h i s s o l u t i o n . T h e re a r e no v a p o r p r e s s u r e d a ta a v a i l a b l e f o r h a lo g e n f l u o r i d e s o l u t i o n s o f o t h e r com pounds, and no m a g n e tic s u s c e p t i b i l i t y m easurem ents h a v e b e e n r e p o r t e d on t h e h a lo g e n f l u o r i d e s . B. H ydrogen F lu o r id e H ydrogen f l u o r i d e was f i r s t o b ta in e d b y M a rg g ra ff i n 176826 and f i r s t c h a r a c t e r i z e d i n 1771 b y S c h e e le . 27 I t i s p re p a re d i n d u s t r i a l l y b y t h e r e a c t i o n o f s u l f u r i c a c i d w ith f l u o r s p a r a f t e r w h ich th e r e a c t i o n p r o d u c t i s co n d en sed and d i s t i l l e d . H ig h ly p u r i f i e d h y d ro g e n f l u o r i d e may b e o b ta in e d from t h e d e c o m p o s itio n o f p o ta s s iu m b i f l u o r i d e . The p h y s i c a l p r o p e r t i e s o f h y d ro g en f l u o r i d e h av e b e e n s t u d i e d r a t h e r e x t e n s i v e l y and t h e r e i s an e x c e l l e n t r e v ie w b y S im ons. le b t 16C A nhydrous l i q u i d h y d ro g en f l u o r i d e re s e m b le s w a te r and ammonia i n i t s p h y s ic a l p r o p e r t i e s . I t s b o i l i n g p o i n t i s above t h a t o f h y d ro g en c h l o r i d e j u s t a s t h e b o i l i n g p o i n t s o f w a te r and ammonia a r e above th o s e o f h y d ro g e n s u l f i d e and p h o s p h in e , and i t s d i e l e c t r i c c o n s ta n t ( 8 3 . 6 a t 0°C) i s r e l a t i v e l y h i g h . 26 Sim ons29 h a s r e p o r t e d t h a t th e l i q u i d d e n s i t y i s g iv e n a s a f u n c t i o n o f te m p e r a tu re by th e r e l a t i o n 7 d * 1 .0 0 2 - ,0 0 2 2 6 2 £ t + .0 0 0 0 0 3 1 2 5 t3 w here d i s gpn./m l. and t i s t h e te m p e r a tu r e i n d e g r e e s C e n tig r a d e . The m o st r e c e n t v a p o r p r e s s u r e d a t a b e tw e e n 0 ° and 105>°C a r e r e p r e s e n t e d by e i t h e r o f t h e f o llo w in g r e l a t i o n s h i p s 30 l o g P - 0 .3 0 0 3 6 - ■ or l o g P - 1 .9 1 1 7 3 - 9 1 8 .2 l* /t -3 .2 1 5 ^ 2 lo g t w here P i s t h e v a p o r p r e s s u r e i n mm. o f Hg and t i s th e te m p e r a tu r e i n d e g re e s C e n tig ra d e . The p h y s i c a l p r o p e r t i e s o f h y d ro g e n f l u o r i d e i n d i c a t e t h a t i t i s a m o st u n u s u a l l i q u i d . I t s h ig h d i e l e c t r i c c o n s ta n t and a b i l i t y t o form v e r y h i g h l y c o n d u c tin g s o l u t i o n s 1615 i n d i c a t e t h a t i t i s a p o l a r l i q u i d , y e t i t s low v i s c o s i t y ( 0 .2 5 6 c e n t i p o i s e a t 0°C) and lo w s u r f a c e te n s i o n ( 1 0 .1 d y n e s/c m . a t 0 °C )a ° i n d i c a t e t h a t t h e l i q u i d i s n o n - p o la r . I n t h e g a se o u s s t a t e h y d ro g e n f l u o r i d e h a s been fo u n d t o b e a h i g h l y im p e r f e c t g a s . A s s o c ia tio n o c c u rs t o a r a t h e r l a r g e e x t e n t and h a s b e e n i n v e s t i g a t e d b y Sim ons3x and o t h e r s . T h ere h a s b e e n a c o n s id e r ­ a b le am ount o f dLssagrem ent among th e v a r io u s w o rk ers a s t o w hich p o ly m ers a r e t h e m o st i m p o r t a n t . Some v a p o r d e n s i t y w ork seem s t o i n d i c a t e t h a t a s i x membered r i n g p r e d o m in a te s , where a s d i p o l e moment s t u d i e s 32 *33 and X -ra y s t u d i e s 34” 36 seem t o i n d i c a t e a c h a i n - l i k e s t r u c t u r e . R e c e n tly J o h n s to n 37 h a s m easu red th e h e a t c a p a c i t y , h e a t o f f u s i o n and h e a t o f v a p o r i z a t i o n o f liydrogen f l u o r i d e . No t r a n s i t i o n s s u c h as a r e o b s e rv e d w ith th e o t h e r h y d ro g en h a l i d e s w ere fo u n d . The h e a t o f f u s i o n a t t h e m e l t i n g p o i n t t-8 3 .3 7 ° C ) was fo u n d t o b e 9 3 8 .6 c a l o r i e s p e r m ole* J o h n s t o n 8s m e ltin g p o i n t v a lu e i s i n s l i g h t d is a g re e m e n t w ith p r e v i o u s l y r e p o r t e d v a lu e s o f - 8 3 .0 7 and - 8 3 Compa r i s on o f e n tr o p y v a l u e s from h e a t c a p a c i t y m easurem ents and s p e c tr o s c o p ic d a t a show ed a l a r g e d is c r e p a n c y w hich was a c c o u n te d f o r by assu m in g th e g a s t o b e a m ix tu r e o f m onom er, d im e r , t r i m e r , e t c . , a s a co n seq u en ce o f h y d ro g e n b o n d in g . The r e c e n t s p e c tr o s c o p ic w ork o f D, F . S m ith 34 seem s t o i n d i c a t e , h o w e v e r, t h a t a t low te m p e r a tu r e s o n ly t h e hexam er i s im p o r ta n t i n th e v a p o r s t a t e , and t h a t t h e r e i s no e v id e n c e f o r p o ly m e rs o t h e r t h a n th e t e t r a in e r and h ex am er. 9 III PREPARATION AND HANDLING OF MATERIALS The s tu d y o f t h e h a lo g e n f l u o r i d e s h a s i n c r e a s e d g r e a t l y i n th e p o s t- w a r p e r i o d , p a r t l y a s a r e s u l t o f t h e a v a i l a b i l i t y o f m a t e r i a l s w h ich a r e h i g h l y r e s i s t a n t t o t h e a c t i o n o f t h e h a lo g e n f l u o r i d e s . The m o st im p o r ta n t o f th e s e m a t e r i a l s a r e f l u o r i n a t e d p o ly e th y le n e -x p l a s t i c s s u c h a s f lu o r o t h e n e and T e f lo n . I n o r d e r t o o b t a i n t h e h a lo g e n f l u o r i d e s i n t h e p u re f o r m , i t i s n e c e s s a r y t h a t th e y b e s e p a r a te d i n some m anner from v o l a t i l e and non­ v o l a t i l e i m p u r i t i e s , and t h a t th e y b e s t o r e d i n su c h a way t h a t th e y do n o t become c o n ta m in a te d . The p r i n c i p a l s o u rc e s o f c o n ta m in a tio n a r e u s u a l l y c o r r o s i o n p r o d u c ts and d e c o m p o s itio n p r o d u c ts from th e r e ­ a c t i o n w ith w a te r v a p o r . I n o r d e r t o overcam e th e above d i f f i c u l t i e s a vacuum s y s te m , w hich h a s b e e n d e s c r ib e d p r e v i o u s l y , 12 was c o n s tr u c t e d . T h is s y s te m , w hich i s i l l u s t r a t e d i n F ig u re 1 and P l a t e 1 , p r o v id e d a m eans f o r f r a c t i o n a l d i s t i l l a t i o n o f th e im pure h a lo g e n f l u o r i d e tin d er i t s own p r e s s u r e o r i n an i n e r t a tm o s p h e re . I t a l s o p r o v id e d a means o f p e rfo rm in g s u c h o p e r a t i o n s a s t r a p - t o - t r a p d i s t i l l a t i o n s , v a p o r o r l i q u i d p h a s e t r a n s f e r s , and p r e p a r a t i o n o f h y d ro g e n f l u o r i d e s o l u t i o n s o f t h e h a lo g e n f l u o r i d e s . The vacuum system was a ls o p r o v id e d w ith a tu b e c o n t a i n i n g c o b a l t i c f l u o r i d e th ro u g h w hich th e hydrogen f l u o r i d e from th e ta n k was p a s s e d i n o r d e r t o rem ove m o is t u r e . I n o r d e r t o p r o v id e t h e maximum r e s i s t a n c e t o c o r r o s io n tiie vacuum l i n e was c o n s tr u c t e d a lm o st e n t i r e l y o f n i c k e l and M onel e x c e p t f o r th e E . I . d u P o n t de Nemours and C o. 10 s t i l l h e a d , s to r a g e c o n t a i n e r s and s to r a g e tu b e s w hich were c o n s tr u c te d ° f f lu o r o t h e n e and T e f l o n . The v a lv e s w ere c o n s tr u c te d o f n i c k e l , w ith p h o s p h o r-b ro n z e b e llo w s and f lu o r o th e n e g a s k e t s , e x c e p t on th e s t i l l t a k e - o f f sy stem w here v a lv e b o d ie s c o n s tr u c t e d o f f lu o r o th e n e r e p la c e d th o s e o f n i c k e l . I n some p la c e s s m a ll v a lv e s c o n ta in in g b r a s s b e llo w s w ere u s e d . The g e n e r a l p ro c e d u re f o r th e p u r i f i c a t i o n o f io d in e p e n t a f l u o r i d e and b ro m in e p e n t a f l u o r i d e i s a s f o llo w s : th e c o m m e rc ia lly a v a i l a b l e ■tt h a lo g e n f l u o r i d e was c o n d en sed o r p o u re d i n t o a f lu o r o th e n e c o n ta i n e r w h ich c o u ld b e s e a l e d , and from w hich t h e m a t e r i a l c o u ld be s ip h o n e d i n t o th e s t i l l p o t. I n t h i s c o n t a i n e r th e m a t e r i a l was p r e t r e a t e d w ith c h lo rin e t r i f l u o r i d e . T h is r e a c t e d w ith any io d in e o r brom ine id iic h m ig h t hav e b e e n p r e s e n t t o g iv e io d in e p e n t a f l u o r i d e , o r brom ine p e n ta ­ f l u o r i d e , and c h l o r i n e . The m ix tu re was th e n p u l l e d th ro u g h a n ic k e l tu b e i n t o t h e s t i l l p o t w here as much o f th e h ig h ly v o l a t i l e com ponents as p o s s i b l e was pumped o f f . The m ix tu re re m a in in g was th e n f r a c t i o n a l l y d i s t i l l e d , t h e c o n s ta n t b o i l i n g p o r t i o n b e in g c o l l e c t e d d i r e c t l y i n th e l a r g e f lu o r o t h e n e s to r a g e c o n t a in e r a s shown i n F ig u r e 1 and P l a t e 1 . T he p ro c e d u re s u s e d f o r p u r i f y i n g and h a n d lin g b rom ine t r i f l u o r i d e and c h l o r i n e t r i f l u o r i d e a re d e s c r ib e d i n l a t e r s e c t io n s w hich d e a l w ith t h e e x p e rim e n ts i n w hich t h e s e compounds w ere u s e d . The d i f f e r e n t ty p e s o f e x p e rim e n ts p e rfo rm e d i n t h i s work r e q u i r e d v a r io u s m ethods o f s o lu ­ tio n p re p a ra tio n . The s p e c i f i c p r o c e d u re s u s e d w i l l be d e s c r ib e d i n t h e s e c t i o n s w h ere th e y a r e a p p l i c a b l e . ■» H arshaw C h em ical Co. IX J I To a u x i l i a r y vacuum >k l i n e To b a c k o f hood To pump -o l ^ / x x T o ^ \K To v ap o r p re ssu re m e a su rin g d e v ic e P re ssu re ' re g u la to r ^ - ^ T o f lu o r o l u b e o i l m anom eter To b a c k o f hood o r t o vacuum l i n e F ig u r e 1 . S ch em atic d iag ram o f th e s t i l l , g as ■‘h a n d lin g , and s o l u t i o n h a n d lin g sy ste m f o r h a lo g e n f l u o r i d e s : A, t o a i r d r y in g s y s te m ; B , C, and D , t o t a n k s o f liy d ro g en f l u o r i d e , c h l o r in e t r i f l u o r i d e , and brom ine p e n t a f l u o r i d e ; E , e x t r a l i n e o u t l e t ; F and G, aluminum t r a p s f o r h a n d l­ i n g and s t o r i n g m a t e r i a l s ; H , c o p p e r ta n k f o r s to r a g e o f g a s e s ; X and J , H e l i c o i d p r e s s u r e g a u g e s ; K, c o b a l t t r i f l u o r i d e c o n t a i n e r ; L , f l u o r o ­ th e n e s to r a g e t u b e ; H , s t i l l h e a d ; fl, s t i l l ; 0 , a n d P , s to r a g e c o n t a i n e r s ; q , p r e t r e a t i n g c o n t a i n e r ; B and S , tu b e s o r a p p a r a tu s i n w hich s o lu t i o n s a r e p r e p a r e d ; T , aluminum s to r a g e tu b e f o r m a t e r i a l s t o be d i s c a r d e d ; U, s t i l l p o t ; ® l a r g e v a lv e s w ith p h o sp h o r b ro n a e b e llo w s ; • s m a ll v a l v e s w ith b r a s s b e llo w s . KLate 1. The s t i l l , gas-handLing and solution system for the halogen f lu o r id e s h an d lin g 12 IV VAPOR PRESSURE STUDIES OF HALO(J£N FLUGRIDB-ttlDROGEN FLUORIDE SOLUTIONS s& A. T h e o r e t i c a l A s p e c ts W henever a s u b s ta n c e i s d is s o lv e d i n a s o lv e n t th e v a p o r p r e s s u r e o f t h e s o l v e n t i s lo w e r e d . I n 186b F . M. R a o u lt was a b le t o show t h a t f o r a c o n s id e r a b l e number o f s o l u t e s an d s o lv e n ts th e e q u a tio n -R'-ZJU p* was a p p ro x im a te ly f o llo w e d . * na n3 + nx » Xa The p r e s s u r e s o f t h e p u re s o lv e n t and th e s o l v e n t i n s o l u t i o n a r e p* and p , r e s p e c t i v e l y ; nj, and n 3 a r e th e number o f m o les o f s o l u t e and s o l v e n t i n th e s o l u t i o n , r e s p e c t i v e l y ; and x 3 i s th e m ole f r a c t i o n o f t h e s o l u t e . By s u b t r a c t i n g u n i t y from e a c h s id e o f th e above e q u a t io n , i t i s o b v io u s t h a t P « -a 1 - x3 « x x p* w here i s t h e m ole f r a c t i o n o f th e s o l v e n t . The l a s t m e n tio n e d e q u a tio n i s known a s R a o u l t*s la w . I t c a n be s e e n t h a t i n t h i s i d e a l i z e d c a s e th e v a p o r p r e s s u r e o f a s o lv e n t i n a s o lu tio n i s d ir e c tly p ro p o rtio n a l t o i t s m ole f r a c t i o n . I n t h e s tu d y o f l i q u i d m ix tu r e s an i d e a l s o l u t i o n i s d e f in e d w hich o b ey s R a o u lt* s la w o v e r th e e n t i r e ra n g e o f c o n c e n t r a t i o n s . two v o l a t i l e c o m p o n en ts, 1 and 2 , i f a s one For 13 Pi = Pi o v e r th e e n t i r e ra n g e o f c o n c e n t r a t i o n s , th e n ta k in g th e lo g a r ith m o f b o tli s i d e s and d i f f e r e n t i a t i n g w ith r e s p e c t t o x ^ x% d ln P i dxx a n d , b y u s e o f t h e Duhem -M argules e q u a t io n , -1 dx2 I n t e g r a t i n g t h e l a t t e r e q u a tio n and n o tin g t h a t p 2 * p 2 when x 2 « 1 , Pa ° Pa x2 w hich i s R a o u lt* s la w f o r th e seco n d com ponent. Thus i f a m ix tu re o f two c o m p le te ly m is c ib l e l i q u i d s b eh av es i d e a l l y a p l o t o f t h e p a r t i a l p r e s s u r e o f e i t h e r com ponent s h o u ld be a s t r a i g h t l i n e p a s s i n g th ro u g h t h e o r i g i n , a s shown i n F ig u r e 2 - a . The t o t a l v ap o r p r e s s u r e i s t h e sum o f th e p a r t i a l p r e s s u r e s , and i n th e i d e a l c a s e w ould b e t h e t i e l i n e c o n n e c tin g p i and p i i n F ig u re 2 - a . I t s h o u ld b e n o te d t h a t m ix tu re s w hich beh av e i d e a l l y a r e g e n e r a lly fo u n d t o b e o n es i n w hich th e com ponents a r e s i m i l a r b o th p h y s i c a l l y and c h e m ic a lly , s in c e i n t h e i d e a l s o l u t i o n th e r e s h o u ld be l i t t l e d i f f e r e n c e b e tw e e n t h e e n v iro n m e n t o f a g iv e n com ponent i n th e p u re l i q u i d and i n th e m i x t u r e . The p r i n c i p a l r e a s o n t h a t a s o l u t i o n may n o t show i d e a l b e h a v io r i s t h a t th e i n t e r m o l e c u l a r f o r c e s b etw een t h e d i f f e r e n t m o le c u le s may be e i t h e r l a r g e r o r s m a l l e r t h a n t h e in te r m o le c u la r f o r c e s betw een th e m o le c u le s o f th e p u re s u b s t a n c e s , le a d in g t o n e g a tiv e o r p o s i t i v e d e ­ v i a t i o n s from R a o u lt* s la w , r e s p e c t i v e l y . 1h The ty p e o f v a p o r p r e s s u r e - c c s n p o s itio n diagram o b ta in e d when th e d e v i a t i o n s from R a o u l t* s law a r e p o s i t i v e i s shown i n F ig u r e 2 - b . It s h o u ld b e n o te d t h a t th e p a r t i a l - p r e s s u r e c u r v e s f o r th e s o lv e n t a p p ro ach i d e a l i t y a t i n f i n i t e d i l u t i o n , b u t th e t o t a l - p r e s s u re c u rv e does n o t . The ty p e o f v a p o r p r e s s u re - c o m p o s itio n d iag ram o b ta in e d when th e r e a r e n e g a tiv e d e v i a t i o n s from R a o u l t 1s law i s i l l u s t r a t e d i n F ig u r e 2 - c . I n t h e i l l u s t r a t i o n s sh o w n , th e c u rv e s f o r th e t o t a l p r e s s u r e show a maximum o r a minimum. A t th e maximum o r minimum p o i n t s th e v a p o r h a s th e same c o m p o s itio n a s th e l i q u i d and th e m ix tu re i s c a l l e d an a a e o t r o p e . The a z e o tr o p ic c o m p o sitio n depends on th e te m p e r a tu re . A c t u a l l y t h e d e v i a t i o n s a r e g e n e r a l l y n o t so extrem e a s t o c a u se a maximum o r a minimum. 15 Pi o Pi T o ta l v Pa o Pa Pi Pi o Pi U) F ig u r e 2 . u) T y p ic a l v a p o r p r e s s u re - c o m p o s itio n diagram 16 B . A p p a ra tu s and M ethod The P r e s s u r e M e a su rin g D evice D e s ig n . The d e v ic e f o r m easurem ent o f th e v ap o r p r e s s u r e above a m ix tu re o f h a lo g e n f l u o r i d e and h y d ro g en f l u o r i d e m ust o f c o u rs e b e one w h ich w i l l n o t b e a f f e c t e d by th e h ig h r e a c t i v i t y o f th e s e com­ pounds. I n t h i s w ork t h e d e v ic e w hich i s i l l u s t r a t e d i n F ig u re 3 and P l a t e 2 was u s e d . I t c o n s i s t s e s s e n t i a l l y o f th e p r e s s u r e - s e n s i t i v e * p a r t o f a H e lic o id gauge w hich i s m ounted i n su c h a m anner t h a t i t s movement d u e t o p r e s s u r e w ith in t h e M onel B ourdon Tube may be a c c u r a t e l y d e te rm in e d b y m eans o f a m ic ro m e te r s c re w . In a c tu a l p ra c tic e th e re was a m e ta l s h a f t a b o u t f o u r in c h e s lo n g s o ld e r e d t o th e t i p o f th e t u b e . The m ic ro m e te r sc re w made c o n t a c t w ith a s i l v e r s t r i p s o ld e r e d t o th e end o f t h e s h a f t . Added s e n s i t i v i t y was p r o v id e d b y h a v in g th e t i p o f t h e m ic ro m e te r s c re w and th e s h a f t a c t a s c o n t a c t s w hich opened and c l o s e d th e c i r c u i t o f a m agic eye tu b e when c o n t a c t was made o r b r o k e n . I n t h i s m annsr t h e p o i n t a t w hich c o n ta c t wa3 made c o u ld b e r e a d t o th e n e a r e s t f i v e - t h o u s a n d t h s o f a m i l l i m e t e r ( 0 .0 0 5 m m .). The gauge was p r o v id e d w ith tw o v a l v e s , one o f w hich p r o v id e d a d i r e c t o u t l e t t o th e vacuum l i n e , and th e o t h e r o f w hich was a tta c h e d d i r e c t l y t o th e tu b e c o n t a i n i n g th e s o l u t i o n . The p r e s s u r e s e n s i t i v e p a r t o f t h e gauge was e n c lo s e d i n a n i n s u l a t e d b o x w ith in w h ich a c o n s t a n t te m p e r a tu r e was m a in ta in e d by m eans o f a C en c o -d eK h o tin sk y r e g u l a t o r and an e l e c t r i c l i g h t b u l b . * A m erican C h a in and C a b le C o. The C e n t r a l S c i e n t i f i c C o. 17 The H e l i c o i d gauge w hich was u s e d i n t h i s work was one w hich o r i g ­ i n a l l y gave a f u l l s c a l e d e f l e c t i o n o f l£ 0 0 mm. o f m e rc u ry , th e t o t a l movement o f t h e t i p o f t h e B ourdon tu b e b e in g a b o u t it mm. o v e r th e f u l l p re ssu re ra n g e . T h is w ou ld g iv e a t h e o r e t i c a l s e n s i t i v i t y o f a b o u t p l u s o r m in u s one m i l l i m e t e r o f m ercury* I n a c t u a l p r a c t i c e i t was fo u n d t h a t when c a l i b r a t i n g t h e in s tr u m e n t th e s e n s i t i v i t y was a b o u t p lu s o r m in u s two mm. o f m e rc u ry . When m e a s u rin g t h e v a p o r p r e s s u r e s o f s o lu ­ t i o n s t h e r e p r o d u c i b i l i t y was g e n e r a l l y o b s e rv e d t o b e p lu s o r m inus t h r e e t o f i v e mm. o f m e rc u ry d e p e n d in g upon th e d i f f i c u l t y e n c o u n te re d i n b r in g ­ in g t h e s o l u t i o n i n t o e q u ilib r iu m w ith t h e v a p o r . The s o l u t i o n was p l a c e d i n a f lu o r o th e n e tu b e m achined w ith a fe m a le s t a n d a r d - t a p e r t o p ; th e m a tin g p lu g had a h o le d r i l l e d th ro u g h i t and a n i c k e l tu b e w ith a f l a r e f i t t i n g th r e a d e d i n t o t h e h o le * The f l a r e f i t t i n g was a t t a c h e d d i r e c t l y t o th e e n tr a n c e v a lv e o f th e gauge a s i l l u s t r a t e d i n F ig u re 3 . A s m a ll T e flo n - c o v e re d m a g n e tic s t i r r e r was p la c e d i n s i d e t h e t u b e . C a lib ra tio n * I n o r d e r t o c a l i b r a t e th e g a u g e , th e e n tr a n c e v a lv e w h ich o r d i n a r i l y h e ld th e s o l u t i o n tu b e was a tta c h e d d i r e c t l y t o one arm o f a d i f f e r e n t i a l m e rc u ry m an o m eter. t o t h e vacuum l i n e . The o th e r v a lv e rem a in e d a tta c h e d The p r e s s u r e w i t h i n th e gauge was v a r ie d by chang­ i n g t h e p r e s s u r e w i t h i n t h e vacuum l i n e and was th e n r e a d d i r e c t l y from th e m an o m eter. The m ic ro m e te r screw was a d ju s t e d so t h a t i t j u s t con­ t a c t e d th e s i l v e r s t r i p on t h e end o f th e s h a f t and th e r e a d in g on th e m ic ro m e te r s c a l e was re c o rd e d * F ig u r e 1*. A sam ple c a l i b r a t i o n c u rv e i s g iv e n i n lb S o l u t i o n P r e p a r a t i o n and P ro c e d u re The h a lo g e n f l u o r i d e , t h e p u r i f i c a t i o n and s to r a g e o f w hich i s d e s c r i b e d a b o v e , was s ip h o n e d d i r e c t l y from th e s to r a g e c o n t a i n e r ^ see P l a t e 3) i n t o th e p r e v i o u s l y w eighed f lu o r o th e n e t u b e . In th e case o f c h l o r i n e t r i f l u o r i d e a c ru d e p u r i f i c a t i o n was o b ta in e d by d i s t i l l i n g d i r e c t l y from t h e ta n k on t h e vacuum l i n e i n t o th e tu b e and th e n d i s t i l l ­ i n g o u t o f th e tu b e u n t i l t h e v a p o r p r e s s u r e became c o n s t a n t . Dry a i r was l e t i n t o t h e t u b e , th e v a lv e o v e r th e tu b e was c lo s e d and t h e l i n e c le a n e d b y e v a c u a tin g and h e a t i n g . The tu b e was th e n rem oved from th e s t o r a g e c o n t a i n e r , c lo s e d w ith a p lu g , and w eighed on a T o r s io n B a la n c e .* The c o n t e n t s o f t h e tu b e w ere f r o z e n w ith a Dry I c e - c a r b o n t e t r a c h l o r i d e c h lo ro fo rm b a th p la c e d aro u n d th e t u b e . The assem b ly was th e n a t ta c h e d t o t h e gauge and e v a c u a te d w h ile s t i l l f r o z e n . A f te r e v a c u a tio n th e v a lv e t o t h e vacuum l i n e was c l o s e d , and th e c o n te n ts w ere b r o u g h t t o th e d e s i r e d te m p e r a tu re b y p l a c in g a Dewar f l a s k c o n ta in in g w a te r a t t h a t te m p e r a tu r e aro u n d i t . m ag n et o u t s i d e th e t u b e . A g i t a t i o n was a c c o m p lish e d b y m oving a When th e s c a l e r e a d in g became c o n s ta n t th e r e a d ­ i n g was t a k e n . The f i r s t h y d ro g e n f l u o r i d e s o l u t i o n was p r e p a re d b y f r e e z i n g th e c o n t e n t s o f th e tu b e a g a in and c o n d e n sin g h y d ro g en f l u o r i d e i n t o t h e tu b e from t h e ta n k on t h e vacuum l i n e . The w eig h in g and p r e s s u r e - m e a s u r in g p r o c e d u r e s w ere i d e n t i c a l t o t h o s e i n d i c a t e d a b o v e . T h is p ro c e d u re was r e p e a t e d so t h a t i t was p o s s i b l e t o o b ta in m easurem ents o f s e v e r a l sam ples o f h y d ro g e n f l u o r i d e s o l u t i o n from each sam p le o f h a lo g e n f l u o r i d e p r e p a r e d . * The T o r s io n B a la n c e C o. 1? To vacuum l i n e 110V F ig u r e 3„ The p r e s s u r e m e a s u rin g d e v ic e s A, B ourdon t u b e , B , s o l u t i o n tu b e and m a g n e tic s t i r r e r ; C , m ic ro m e te r; D, p l a s t i c r o d ; E , c i r c u i t d iag ram f o r t h e m ag ic-ey e tu b e ; F , te m p e r a tu r e c o n t r o l s y s te m . 20 S c a le R ea d in g 18.0 17.0 16.0 0 300 600 900 P r e s s u r e (nm . o f Hg) F ig u r e i*. Sample c a l i b r a t i o n c u rv e f o r th e p r e s s u r e m e a s u rin g d e v i c e . 21 C. D ata and C a lc u l a ti o n s E ach r u n i n d i c a t e d i n th e f o llo w in g t a b l e s was s t a r t e d w ith a s i n g l e sam p le o f h a lo g e n f l u o r i d e . The o b s e rv e d v a p o r p r e s s u r e s f o r s o l u t i o n s o f brom ine p e n t a f l u o r i d e and h y d ro g e n f l u o r i d e a r e g iv e n i n T a b le I I and F ig u re 5 . The o b se rv e d v a p o r p r e s s u r e s f o r s o l u t i o n s o f i o d i n e p e n t a f l u o r i d e and h y d ro g en f l u o r i d e a r e g iv e n i n T a b le I I I and F ig u re 6 , and th e o b s e rv e d v a p o r p r e s s u r e s f o r s o l u t i o n s o f c h l o r in e t r i f l u o r i d e and h y d ro g en f l u o r i d e a r e g iv e n i n T a b le IV and F ig u r e 7The b ro m in e p e n t a f l u o r i d e r u n s a t 2f?°C show l a r g e e r r o r s b e c a u s e t h e te m p e r a tu r e was c l o s e t o room te m p e ra tu re and i t was n o t p o s s i b l e t o c o n t r o l t h e te m p e r a tu re o f th e to p o f th e tu b e an d ta p e r e d p lu g . The e r r o r i n d i c a t e d f o r each v a p o r p r e s s u r e v a lu e i s b a s e d upon th e a c c u r a c y w ith w h ich t h a t p a r t i c u l a r r e a d in g c o u ld be re p ro d u c e d a f t e r c h a n g in g t h e p r e s s u r e s l i g h t l y . D. D is c u s s io n o f th e R e s u lts The v a p o r p r e s s u r e s o f th e h a lo g e n f lu o r id e - h y d r o g e n f l u o r i d e s o lu ­ t i o n s i l l u s t r a t e d i n F ig u r e s 5 , 6 , and 7 a l l show a m arked p o s i t i v e d e v i a t i o n from R a o u lt* s la w . I f i t i s p o s s i b l e to c o n s id e r th e brom ine p e n t a f l u o r i d e s o l u t i o n s as a t y p i c a l c a s e , i t a ls o a p p e a rs t h a t t h e r e i s a v e r y m arked i n c r e a s e i n t h i s d e v i a t i o n w ith i n c r e a s i n g te m p e r a tu r e . I t i s a c t u a l l y q u i t e d i f f i c u l t t o draw d e f i n i t e c o n c lu s io n s from t h e sh a p e o f t h e v a p o r p r e s s u r e c u rv e s b e c a u s e v e ry l i t t l e i s known a b o u t 22 TABLE I I THE VAPOR PRESSURES OF BROMINE PiENTAFLUORIDE-HIDROGEN FUJORIDE SOLUTIONS AT 0 , and 2£°C T e m p e ra tu re °C H o le P e r c e n t HP 2 5 .0 2 5 .0 2 5 .0 2 5 .0 2 5 .0 2 5 .0 S un I * 0 ,0 0 2.1*0 3 .5 5 1 5 .0 3 7 .9 1*6 .2 2 5 .0 2 5 .0 2 5 .0 Hun 11* 17 .U 1*2.8 6 2 .0 81*6 £ 5 927 i 10 980 + 10 2 5 .0 2 5 .0 2 5 .0 Hun X U * 1 0 0 .0 8 7 .8 5 9 .3 920 1 10 1077 - 10 111*5 - 30 0 .0 0 .0 0 .0 0 .0 0 .0 Run IV 6 .6 £ l .2 6 9 .0 8 2 .1 9 1 .5 11*2 300 350 368 380 £ £ + I 3 3 3 3 3 1 5 .0 0 .0 1 5 .0 0 .0 Run V 0 .6 0 .0 6 3 .3 6 3 .3 258 136 612 331* £ £ £ £ 3 3 6 6 0 .0 1 5 .0 1 5 .0 0 .0 1 5 .0 Hun VI 26.8" 2 6 .8 1*7.5 7 8 .6 7 8 .6 21*0 505 585 365 61*0 £ £ £ £ i 5 10 5 10 5 P re ssu re nun. 337 61*9 696 988 1000 990 £ £ + + i £ *The p r e s s u r e s fo u n d f o r h y d ro g en f l u o r i d e from th e ta n k a re 398 i 3 0°G and 66U — 5 ®t 15>°C. 5 10 5 5 5 5 23 1000 P re ssu re Oram, o f Hg) 500 0 $0 Mole P e r c e n t H ydrogen F lu o r id e F ig u r e 5>. V apor p r e s s u r e - c o m p o s itio n diagram s f o r brom ine p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s a t 0 ° , 15° and 25>°C. E r r a t i c r e s u l t s o b ta in e d a t 2£°C made i t n e c e s s a r y t o show o n ly t h e m o st p r o b a b le a r e a f o r th e c u r v e . 100 2h TABLE I I I THE VAPOR PRESSURES OF IODINE PENTAFLUORIDE-HIDROQEN FLUORIDE SOLUTIONS AT I<°C Mole P e r c e n t HF P re ssu re mm. Run I 0 + 1 0 .0 21*6 ; $ 3 6 .2 H CJ 1 0 .S 537 - 3 8 2 .6 597 1 3 +1 r— 21* .5 Run I I 13. h 155 - 3 5 9 .1 M*7 : 3 25 700 P re ssu re Cnm . o f 350 0 0 50 M ole P e r c e n t H ydrogen F lu o r id e F ig u r e 6 # V apor p r e s s u r e - c o r a p o s itio n diagram f o r io d in e p e n t a f l u o r i d e - h y d r o gen f l u o r i d e s o l u t i o n s a t 15 °C . 100 26 TABLE IV THE VAPOR PRESSURES OF CHLORINE TRIFLU GRIDE-HYDROGHK FLUORIDE SOLUTIONS AT ZERO DEGREES Mole P e r c e n t HF P re ssu re ram „ o .o 1*1*8 1 3 1 0 .5 562 1 5 3 3 .2 592 - 5 6 9 .0 61*5 i 5 8 6 .0 527 I 5 600 300 o o 50 100 M ole P e r c e n t H ydrogen F lu o r id e F ig u r e 7* V apor p r e s s u re - c o m p o s itio n d iag ram f o r c h lo r in e t r i f l u o r i d e - h y d r o gen f l u o r i d e s o l u t i o n s a t 0 ° C . 28 t h e l i q u i d s t a t e o f t h e h a lo g e n f l u o r i d e s th e m s e lv e s , and b e c a u se o u r know ledge o f th e l i q u i d s t a t e o f h y d ro g en f l u o r i d e i s q u a l i t a t i v e a t best . The d i e l e c t r i c c o n s t a n t s o f th e h a lo g e n f l u o r i d e s a re a p p a r e n tly a p p r e c i a b l y lo w e r th a n t h a t o f h y d ro g en f l u o r i d e , Thompson1 2 h as fo u n d th e d i e l e c t r i c c o n s ta n t o f l i q u i d io d in e p e n t a f l u o r i d e t o f o llo w th e r e la tio n £ * U6.22 - 0 .3 8 8 t , t h a t o f B rF6 to f o l l o w t h e r e l a t i o n € - 9 .0 2 - 0 .0 1 1 7 t , and t h a t o f c h l o r in e t r i f l u o r i d e t o f o llo w t h e r e l a t i o n i * U.75U - 0 .0 1 8 7 1 He a l s o fo u n d t h a t t h e d i e l e c t r i c c o n s ta n t o f c h lo r in e t r i f l u o r i d e i n ­ c r e a s e s m a rk e d ly when h y d ro g en f l u o r i d e i s a d d e d . The d i e l e c t r i c c o n s ta n t o f h y d ro g e n f l u o r i d e h a s b een fo u n d b y F re d e n h a g e n 28 t o v a r y from 1 7 k .8 a t -73°C t o 8 3 .6 a t 0 ° C , T h e re i s some d o u b t as to th e a c c u ra c y o f th e s e r e s u l t s , h o w ev er. The above d a t a le a d t o th e c o n c lu s io n t h a t th e h a lo g e n f l u o r i d e s , a lth o u g h u n d o u b te d ly somewhat a s s o c i a t e d , a r e l e s s , a s s o c i a t e d th a n h y d ro g e n f l u o r i d e i n th e l i q u i d s t a t e . I t i s th e re fo re n o t s u rp ris in g t h a t t h e s o l u t i o n s show an a p p r e c ia b le p o s i t i v e d e v i a t i o n from R a o u l t 's la w . C h lo r in e t r i f l u o r i d e - h y d r o g e n f l u o r i d e m ix tu re s would i n f a c t be e x p e c te d to show th e g r e a t e s t d e v i a t i o n , and t h i s seems t o b e th e c a s e when F ig u r e s 5 , 6 and 7 a r e com pared. The g r e a t d i f f e r e n c e b etw e e n th e d i e l e c t r i c c o n s ta n ts o f l i q u i d h y d ro g en f l u o r i d e and o f th e h a lo g e n 29 f l u o r i d e s d o es n o t , h o w ev er, e x p la in t h e f a c t t h a t t h e r e i s l e s s d e v i ­ a t i o n a t lo w e r te m p e r a tu r e s . T h is d e c r e a s in g d e v i a t i o n would seem t o i n d i c a t e t h a t t h e r e a re a c t u a l l y two e f f e c t s s u p e rim p o se d . R e c e n tly D. F . S m ith 24 h a s shown b y means o f s p e c tr o s c o p ic s t u d i e s o f m ix tu r e s o f c tilo r in e t r i f l u o r i d e and h y d ro g en f l u o r i d e i n th e v a p o r s t a t e t h a t t h e com plex F F -C l . . . F-H F i s fo rm ed t o a v e ry s m a ll d e g r e e . The e q u ilib r iu m c o n s ta n t i s and t h e h e a t o f f o r m a tio n i s - 3 ,9 2 k c a l . p e r m o le . A lth o u g h S m ith was n o t a b le t o f i n d any e v id e n c e f o r i t , i t i s a l s o p o s s i b l e t h a t h y d ro g e n b o n d in g m ig h t o c c u r a t lo w er te m p e r a tu r e s and i n th e l i q u i d . I f t h i s w ere th e c a s e , th e d e v i a t i o n s n o te d w ould be th e r e s u l t o f t h e i n t e r a c t i o n o f two e f f e c t s : t h e n e g a tiv e d e v i a t i o n c a u se d b y com plex fo rm a tio n o r h y d ro g en b o n d in g , and th e p o s i t i v e d e v ia ti o n c a u s e d b y th e v e r y d i f f e r e n t in te r m o le c u l a r atm o sp h e re s o f th e h a lo g e n f l u o r i d e s and h y d ro g en f l u o r i d e , th e fo rm er becom ing i n c r e a s i n g l y im­ p o r t a n t a t lo w er t e m p e r a t u r e s . A n o th er p o s s i b l e c a u se o f th e phenomena n o te d c o u ld be t h a t th e a s s o c i a t i o n o f h y d ro g en f l u o r i d e i s b ro k e n down t o some e x t e n t b y th e p r e s e n c e o f h a lo g e n f l u o r i d e s . T h is w ould i n c r e a s e th e v a p o r p r e s s u r e o f t h e h y d ro g e n f l u o r i d e above th e s o l u t i o n . I t i s a ls o q u i t e p o s s ib l e 30 t h a t su ch a n e f f e c t c o u ld d e c r e a s e w ith d e c r e a s in g te m p e ra tu re a s i s n o te d i n F ig u r e 5 . A c tu a lly b o th o f t h e p r o c e s s e s m en tio n ed above a re p r o b a b ly p r e s e n t i n th e s o l u t i o n s t o some d e g r e e . V CRXOSCOFIC STUDIES OF THE HALOGEN FLUORIDES AND THEIR HYDROGEN FLUORIDE SOLUTIONS A . T h e o r e t i c a l A s p e c ts 3 6 >a 9 C ry o s c o p ic S tu d ie s o f P u re M a te r i a l s T he p r in c ip & £ v a r i a b l e s w h ich in f lu e n c e th e s t a t e o f a p u re m a t e r i a l a r e te m p e r a tu r e and p r e s s u r e . When a p u re c r y s t a l l i n e s o l i d i s h e a te d u n d e r i t s own v a p o r p r e s s u r e a te m p e r a tu re i s re a c h e d a t w hich th e s o l i d s u d d e n ly l i q u i f i e s . e q u ilib riu m . A t t h i s p o i n t th e l i q u i d , s o l i d , and v ap o r a re i n As i s o b v io u s , th e r e i s one more p h a se p r e s e n t a t t h i s p a r t i c u l a r p o i n t , w hich i s known a s th e t r i p l e p o i n t , and t h e r e f o r e th e sy stem becom es i n v a r i a n t . I n a c t u a l p r a c t i c e i t i s g e n e r a l l y fo u n d t h a t th e te m p e r a tu re a t w hich t h e t r a n s i t i o n o c c u r s i s o n ly s l i g h t l y d e p e n d e n t upon th e p r e s s u r e . F o r m o st p u r p o s e s t h e te m p e r a tu re a t w hich t h e t r a n s i t i o n o c c u rs i s d e te rm in e d a t a tm o s p h e ric p r e s s u r e . T h is te m p e r a tu re i s known as th e f re e z in g p o in t o f th e s u b s ta n c e . S in c e i t i s r a r e l y i f e v e r p o s s i b l e t o o b ta i n a s u b s ta n c e w hich i s a b s o l u t e l y p u r e t h e f r e e z i n g p o i n t w hich i s m easu red s h o u ld , i f p o s s i b l e , b e c o r r e c t e d i n some m anner f o r th e e f f e c t o f d is s o lv e d i m p u r i t i e s . The e f f e c t o f a s o l u t e upon t h e f r e e z i n g p o i n t o f a p u re s u b s ta n c e i s g iv e n i n t h e f o llo w in g e q u a tio n 32 w here i s t h e f r e e z i n g p o i n t lo w e r in g , R i s th e m o la r gas c o n s t a n t , T0 i s t h e f r e e z i n g p o i n t o f th e p u r e s o lv e n t and Ns i s th e m ole f r a c t i o n o f s o lu te . T h is c an b e s i m p l i f i e d to Z1T f = R T0 m t f X (lOOO/jyi-J ATj * or K^m w here K^ i s d e f in e d b y th e e q u a tio n Kf - R To________ Lf X 10O0/tix i s t h e m o le c u la r w e ig h t o f th e s o l v e n t , and m i s th e m o l a l i t y . A t y p i c a l c o o lin g c u rv e f o r a compound c o n ta in in g a s m a ll amount o f d i s s o lv e d im p u r ity i s g iv e n i n F ig u r e 8 . As th e te m p e ra tu re o f th e sam ple i s re d u c e d t h e p l o t o f te m p e r a tu re v e r s u s tim e re s e m b le s c u rv e AB. A t B t h e sam ple h a s s u p e rc o o le d and j u s t begun t o c r y s t a l l i z e . The p r o c e s s o f c r y s t a l l i z a t i o n r e l e a s e s h e a t so t h a t t h e te m p e r a tu re s u d d e n ly r is e s to C. C o n tin u e d c o o lin g c a u s e s th e c r y s t a l l i z a t i o n o f more s o l i d , th e te m p e r a tu r e f o llo w in g a lo n g th e cu rv e CJ5. T h is o c c u rs b e c a u se th e s o l i d i s e s s e n t i a l l y p u r e s o l v e n t th u s c a u s in g th e s o lu t e t o c o n c e n tr a te i n th e l i q u i d p h a s e and lo w e r i t s f r e e z i n g p o i n t . i s fro z e n . At E th e e n t i r e sam ple An e x t r a p o l a t i o n o f c u rv e CDE t o A g iv e s th e tim e and te m p e r­ a t u r e a t w h ich f u s i o n w ould have o c c u r re d w ith o u t s u p e r c o o lin g . A t tim e T l/s j t h e sam p le w i l l b e h a l f f r o z e n and th e c o n c e n tr a t io n o f im p u r ity w i l l b e x / 2 , i f t h e r a t e o f c o o lin g i s c o n s t a n t . At t h i s p o i n t th e s o l u t e 6)*-* 33 T e m p e ratu re x /2 Time F ig u r e 8 . T y p ic a l c o o lin g c u rv e f o r a s o lv e n t c o n ta in in g a s m a ll amount o f s o l u t e . 3h c o n c e n t r a t i o n w i l l be d o u b le t h a t a t p o i n t A. I t c an be s e e n from th e re la tio n ATf * t h a t t h e f r e e z i n g p o i n t d e p r e s s i o n a t D would be d o u b le t h a t a t A, so th a t T0 - Tf - 1 /2 1 T 0 - T y a) . The t r u e f r e e z i n g p o i n t T 0 may t h e r e f o r e be d e te rm in e d from t h e c o o lin g c u rv e o f a sa m p le c o n t a i n i n g a s m a ll am ount o f im p u r ity b y th e above m ethod w hich was d e v e lo p e d b y W hite and m o d ifie d b y W itsc h o n k e .40 Two-Component L iq u id - S o lid P h ase - E q u ilib r ia The same g e n e r a l c o n s i d e r a t i o n s m en tio n ed i n th e p r e v io u s s e c t i o n w i l l h o ld i n a d i s c u s s i o n o f th e p h a s e e q u i l i b r i a o f tw o-com ponent s y s te m s . I t i s o b v io u s from th e p r e c e d in g d i s c u s s io n t h a t th e p re s e n c e o f a s u b s ta n c e o t h e r t h a n th e s o lv e n t w i l l in tr o d u c e a t h i r d v a r i a b l e , n a m ely , c o n c e n t r a t i o n . As d is c u s s e d i n th e p r e v io u s s e c t io n t h e f r e e z i n g p o i n t o f t h e system w i l l be ta k e n a s th e p o i n t a t Tdiich th e l i q u i d - s o l i d t r a n s i t i o n o c c u rs u n d e r a p r e s s u r e o f one a tm o sp h e re . The s im p le s t ty p e o f tw o-com ponent l i q u i d - s o l i d system i s one i n w hich th e com ponents do n o t r e a c t t o form a n o th e r compound. sy stem i s i l l u s t r a t e d i n F ig u r e 9 . Such a The f r e e z i n g p o i n t s o f th e v a r io u s m ix tu r e s o f two s u c h com ponents w ould f a l l a lo n g th e c u rv e CDE. f r e e z i n g p o i n t c u r v e s o f A i n B , and B i n A, i n t e r s e c t a t D. The When a m ix tu re o f any c o m p o s itio n b etw een A and x * , o r x* and B , i s c o o l e d , th e s o l i d p h a s e w h ich s e p a r a t e s f i r s t i s p u re A o r p u re B , r e s p e c t i v e l y . 35 * b A x U) T e m p e ra tu re lb ) x A B B A id ) (c) — C o m p o sitio n F ig u r e 9 . B Some t y p i c a l p h a s e d iag ram s f o r two com ponent s y s te m s . 36 A t x 1, h o w e v e r, b o th s o l i d s c r y s t a l l i z e o u t o f th e s o l u t i o n a t th e same tim e . Thus an a d d i t i o n a l s o l i d p h a se h a s b een in tr o d u c e d and th e system becom es i n v a r i a n t . A t y p i c a l c o o lin g c u r v e , su c h as w ould be o b ta in e d when a s o l u t i o n o f c o m p o s itio n x i s c o o le d , i s i l l u s t r a t e d i n F ig u re 1 0 . The e x p la n a tio n o f t h i s c u rv e i s i d e n t i c a l w ith t h a t g iv e n f o r F ig u re 9 e x c e p t t h a t a e u te c tic h a l t o ccu rs j u s t p r io r to t o t a l s o l i d i f i c a t i o n . T h is h a l t was n o t shown i n F ig u r e 8 s in c e i t would be v e r y d i f f i c u l t to o b se rv e w ith o n ly a v e r y s m a ll am ount o f s o l u t e . When compound f o r m a tio n o c c u rs th e s i t u a t i o n can become c o n s id e r a b ly m ore c o m p lic a te d . i s fo rm e d . The s im p le s t c a s e i s t h a t i n w hich a s t a b l e compound I f th e d iag ram shown i n F ig u re 9b i s d iv id e d i n t o two p a r t s a t x , t h e r e s u l t i n g two s e c t i o n s a r e e a c h i d e n t i c a l w ith F ig u r e 9 a . A c o n s id e r a b l y m ore c o m p lic a te d s i t u a t i o n a r i s e s when t h e compound fo rm ed i s u n s t a b l e a s i l l u s t r a t e d i n F ig u r e 9 c . I n t h i s c a s e th e f r e e z i n g p o i n t and c o m p o s itio n o f t h e compound form ed ca n o n ly be o b ta in e d by e x tr a p o la tio n ,a s i l l u s t r a t e d . A c o o lin g c u rv e f o r s u c h a s y s te m , o f c o m p o s itio n x , d i f f e r s from t h a t shown i n F ig u re 10 o n ly i n t h a t th e f i r s t t r a n s i t i o n may b e q u i t e i n d e f i n i t e . The sy ste m s d e s c r ib e d above a r e a l l ones i n w hich t h e com ponents a re c o m p le te ly m i s c i b l e i n t h e l i q u i d s t a t e , and i n w hich th e o n ly s o l i d s w h ich e p p e a r a t p o i n t s o t h e r th a n t h e e u t e c t i c p o i n t a re p u re com ponents o r com pounds. O th e r sy ste m s w hich m ig h t be in c lu d e d i n t h i s g e n e r a l group w ould b e c o m b in a tio n s o f t h e o c c u r re n c e s m en tio n ed a b o v e . 37 T e m p eratu re Time F ig u r e 1 0 . T y p ic a l c o o lin g c u rv e f o r a sam ple o f a tw o com ponent sy stem w ith no compound f o r m a tio n . 38 O th e r ty p e s o f l i q u i d - s o l i d p h a s e e q u i l i b r i a w hich cars o c c u r a re o n es i n w h ich th e com ponents form m ixed c r y s t a l s , an u n b ro k e n s e r i e s o f s o l i d s o l u t i o n s , o r s o l i d s o l u t i o n s w ith p a r t i a l m i s c i b i l i t y . A d e ta ile d d i s c u s s i o n o f t h e s e o t h e r s i t u a t i o n s w i l l be o m itte d h e r e e x c e p t f o r th e c a s e o f s o l i d s o l u t i o n f o r m a tio n w ith p a r t i a l m i s c i b i l i t y i n th e s o l i d phase. I n t h i s c a s e , a s i l l u s t r a t e d i n F ig u re 9 d , s o l i d A c a n d is s o lv e a g iv e n amount o f s o l i d B , and s o l i d B c a n d is s o lv e a g iv e n amount o f s o l i d A. I f th e l i m i t s o f s o l u b i l i t y a r e ex ceeded two s o l i d p h a s e s a re fo rm ed and i t i s th u s p o s s i b l e to have one l i q u i d p h a se and two s o l i d p h a s e s , w hich c a n be s o l i d s o l u t i o n s o r p u re com pounds, e x i s t i n g a t th e same t im e . When t h i s o c c u rs th e sy stem becomes i n v a r i a n t and a t r a n s i ­ ti o n , o r a e u te c tic p o in t, i s p o s s ib le . F ig u r e 9d shows su ch a system w ith a e u t e c t i c p o i n t . ®* A p p a ra tu s and M ethod The F r e e z in g P o i n t C e ll The c e l l , w hich i s i l l u s t r a t e d i n F ig u re 11 and i n P l a t e It, was u se d f o r t h e d e te r m in a tio n o f t h e f r e e z i n g p o i n t s o f th e hyd ro g en f l u o r i d e s o l u t i o n s , and o f th e p u re h a lo g e n f l u o r i d e s . I t was c o n s tr u c te d e n t i r e l y o f f l u o r o t h e n e and T e f l o n , t h e th erm o c o u p le b e in g th e o n ly m e t a l l i c p a r t o f th e c e l l . The c e l l c o n s i s t s o f a f lu o r o th e n e tu b e w ith a m achined fe m a le s t a n d a r d - t a p e r to p i n t o w hich i s i n s e r t e d a T e flo n p l u g . The th e rm o c o u p le l e a d s a re wound aro u n d a tu b e a tta c h e d to th e p lu g ; g ro o v es f o r th e w ir e were m a ch in ed a lo n g th e t u b e . The p lu n g e r i t s e l f w hich 39 o p e r a t e s th r o u g h a h o le i n th e tu b e and p l u g , c o n s i s t s o f a f lu o r o th e n e c y l i n d e r m a c h in e d on t h e o u t s id e to re se m b le a h e l i c a l g e a r . F o r m o st o f t h e s e m easu rem en ts v ig o ro u s and s a t i s f a c t o r y s t i r r i n g was o b ta in e d b y u s in g a r e c i p r o c a l s t i r r i n g a c t i o n w ith a s tr o k e o f a b o u t one and o n e—h a l f in c h e s . I n th e d e te r m in a tio n o f th e f r e e z i n g p o i n t o f p u re i o d i n e p e n t a f l u o r i d e , h o w e v e r, c i r c u l a r s t i r r i n g was u se d f o r some o f th e m e a s u re m e n ts . The c e l l a s d e s c r ib e d above was n o t a i r - t i g h t . To p r e v e n t a i r and v a p o rs from b e in g pumped i n t o and o u t o f th e tu b e by th e a c t i o n o f th e r e c i p r o c a l s t i r r e r th e c e l l was f i t t e d w ith a hood w hich was f a b r i c a t e d from t h i n s h e e t f l u o r o t h e n e . The hood was t i g h t l y s e a le d aro u n d th e tu b e and t h e p lu n g e r arm , and th e s e a l a t th e p lu n g e r arm was l u b r i c a t e d ■# w ith F lu o r o lu b e o i l t o p e r m it f r e e a c t i o n th ro u g h th e h o o d . When th e p lu n g e r was i n o p e r a t i o n th e s i d e s o f th e hood eaqpanded and c o n tr a c te d b u t d id n o t a llo w v a p o r t o e n t e r o r le a v e th e e n c lo s e d s y s te m . I n a c t u a l o p e r a t i o n th e c e l l was e n c lo s e d i n a g l a s s a i r - j a c k e t . The f r e e z i n g p o i n t assem b ly p lu s th e a i r j a c k e t was i n s e r t e d i n t o a o n e l i t e r Dewar f l a s k f i l l e d w ith a p p r o p r ia te c o o l a n t . A c l e a r Dewar f l a s k w rapped w ith t r a n s p a r e n t S c o tc h ta p e was u s e d t o o b s e rv e w h e th e r o r n o t t h e r e was any i m m i s c i b i l i t y i n th e l i q u i d p h a s e . Som etimes an i n t e r ­ m e d ia te b a th o f t r ic h lo r o f lu o r o m e th a n e was u se d i n s t e a d o f th e a i r j a c k e t . W h eth er an i n t e r m e d i a t e b a t h was u s e d , and w h eth er Dry I c e - a c e to n e o r l i q u i d n i t r o g e n w ere u se d a s c o o l a n t s , depended upon th e r a t e o f c o o lin g * " F lu o ro lu b e 5M was o b ta in e d from th e H ooker E le c tr o c h e m ic a l C o ., b u f f a l o , N. Y. hO d e s ire d . The r a t e o f c o o lin g was a l s o c o n t r o l l e d t o some e x te n t by th e u s e o f a i r j a c k e t s o f v a r io u s s i z e s . T h is c e l l , when u s e d w ith r e c i p r o c a l s t i r r i n g , was q u ite s a t i s f a c t o r y f o r m o st p u r p o s e s . When t h e f r e e z i n g p o i n t s o f th e p o re l i q u i d s were d e te rm in e d , h o w e v e r, i t was fo u n d t h a t th e s e l i q u i d s f r o z e on th e s id e s o f t h e tu b e and jammed t h e s t i r r e r . S in c e i t i s im p o rta n t to know when t h e l i q u i d i s c o m p le te ly f r o z e n i n o r d e r to d e te rm in e th e d e g re e o f i m p u r i t y , t h i s i s a s e r i o u s o b j e c t i o n t o th e u s e o f th e r e c i p r o c a l s t i r r e r . The u s e o f v ig o ro u s c i r c u l a r s t i r r i n g f o r m easurem ents o f th e f r e e z i n g p o i n t o f p u re io d in e p e n t a f l u o r i d e p ro v e d to b e somewhat more s a t i s f a c t o r y , and some s a t i s f a c t o r y ru n s were o b ta in e d w ith r e c i p r o c a l s t i r r i n g fo llo w e d b y m anual s h a k in g a f t e r th e p lu n g e r h ad jammed. W ith p u r e b ro m in e p e n t a f l u o r i d e th e r e c i p r o c a l s t i r r e r was in a d e q u a te s in c e th e s t i r r e r f r o z e i n when o n ly ab o u t 20 p e r c e n t o f th e m a t e r i a l was fro z e n . A ro u g h d e te r m in a tio n o f th e p u r i t y o f brom ine p e n t a f l u o r i d e was o b ta in e d u s in g a d i f f e r e n t ty p e o f c e l l i l l u s t r a t e d i n F ig u re 12 . T h is c e l l was c o m p le te ly s e a l e d and s t i r r i n g was acco m p lish e d by v e ry v ig o ro u s s h a k in g o f t h e e n t i r e c e l l by m eans o f a s in g l e - c y l i n d e r r e c i p r o c a l - a c t i o n a i r m o to r. T h is a p p a r a t u s , when u sed as d e s c r i b e d , d id n o t p e r m it th e u se o f a n a i r j a c k e t b e tw e e n th e c e l l and th e c o o lin g medium and th u s p r e s e n t e d a s e r i o u s s a f e t y h a z a r d . T h is m eth o d , how ever, c o u ld p r o b a b ly b e m o d ifie d t o p e r m it th e u s e o f an a i r j a c k e t and u n d e r su ch c o n d itio n s m ig h t a ls o p ro v e u s e f u l f o r c ry o s c o p ic s tu d i e s o f s o l u t i o n s w ith h ig h v a p o r p r e s s u r e s su c h a s c h l o r i n e t r i f l u o r i d e - h y d r o g e n f l u o r i d e m ix tu re s . hi rid F ig u r e 11* The f r e e z i n g p o i n t c e l l s A , th erm o c o u p le l e a d s ; B , h o o d ; C , aluminum c o l l a r ; D, f lu o r o th e n e p lu g ; E , a i r j a c k e t ; F , f lu o r o th e n e tu b e ; G, th erm o c o u p le tu b e ; H, f lu o r o ­ th e n e p l u n g e r ; I , Dewar f l a s k ; J , c o o la n t* )\2 lT S / h v //f x &7\ F ig u r e 12* The f r e e z i n g p o i n t c e l l u s e d w ith p u re brom ine p e n t a f l u o r i d e s A, t a p e r e d T e f lo n p lu g s ; B , b r a s s cap* ^3 An a tte m p t was made t o d is c o v e r w h eth er t h e r e w ere any s o l i d s t a t e t r a n s i t i o n s i n io d in e p e n t a f l u o r i d e i n th e r e g io n b etw een i t s f r e e z i n g p o i n t ^ +9.^°C ) and -2 0 C . F o r t h i s p u rp o se a sim p le a p p a r a tu s c o n s i s t ­ i n g o f a f lu o r o t h e n e tu b e w ith a s ta n d a r d t a p e r t o p , p lu s a th erm o co u p le s e a l e d th ro u g h a f lu o r o th e n e p l u g , was u s e d . A slo w r a t e o f c o o lin g was a c h ie v e d b y u se o f a l a r g e a i r j a c k e t and a c o o la n t m ix tu re o f i c e and w a te r t o w h ich a lc o h o l was added a t a s te a d y r a t e . T e m p e ratu re M easurem ent T herm ocouple c a l i b r a t i o n and c o n s t r u c t i o n . The th e rm o c o u p le s u sed w ere p r e p a r e d from a s i n g l e s p o o l e a c h o f number 2h co p p er w ir e and number 2ii c o n s ta n t a n w ire o b ta in e d from t h e L eeds and N o rth ro p com pany. The ju n c ­ t i o n s w ere s i l v e r s o l d e r e d . The th e rm o c o u p le s w ere c a l i b r a t e d a t t h r e e te m p e r a tu re s w it h in th e ra n g e o f f r e e z i n g p o i n t m easu rem ents made and w ere exposed t o io d in e p e n ta flu o rid e b e fo re c a lib r a tio n . C a l i b r a t i o n p o i n t s a t - 6 3 . £°C and a t -3 8 .8 S °C w ere o b ta in e d by u s in g th e r e c i p r o c a l - a c t i o n f r e e z i n g p o i n t c e l l ^ F ig u re 11) w ith p u r i f i e d c h lo ro fo rm and w ith m e rc u ry , r e s p e c t i v e l y . F o r t h e m e rc u ry c a l i b r a t i o n p o i n t t h e p lu n g e r was removed and a s m a ll g l a s s tu b e i n s e r t e d . a g ita tio n . A ir was b u b b le d th ro u g h t h i s tu b e to p ro v id e The th e rm o c o u p le i t s e l f was c o a te d w ith a t h i n l a y e r o f f lu o r o ­ th e n e t o p r e v e n t a m a lg a m a tio n . A t h i r d c a l i b r a t i o n p o i n t was o b ta in e d a t -7 8 .3 9 °C b y u s i n g an e q u ilib r iu m m ix tu re o f c ru sh e d Dry Ic e and carb o n d io x id e v a p o r . © te r To o b t a i n t h e l a t t e r p o i n t a p la tin u m r e s i s t a n c e therm om - w h ich had b e e n c a l i b r a t e d by th e B u reau o f S ta n d a rd s was u s e d . * L eed s and N o rth ro p s e r i a l # 1 0 16073. hh Tine th e rm o c o u p le w hich was t o be c a l i b r a t e d was p la c e d around th e r e ­ s i s t a n c e th e rm o m e te r w h ile a tt a c h e d to th e p lu g o f th e f r e e z i n g p o i n t c e l l and th e e n t i r e a sse m b ly was p la c e d i n a o n e - l i t e r Dewar f l a s k con­ t a i n i n g c ru s h e d D ry I c e ( s e e F ig u re 12;) . The Dewar was co v e re d w ith a c o r k and th e m ix tu r e a llo w e d t o come t o e q u i l i b r i u m . The r e s i s t a n c e o f t h e p la tin u m r e s i s t a n c e th erm o m eter was m easured by means o f a M u e lle r B rid g e * w hich was a l s o c a l i b r a t e d by th e B u reau o f S ta n d a r d s . The B ureau o f S ta n d a rd s c e r t i f i c a t e i n d i c a t e d t h a t th e r e s i s t a n c e d i f f e r e n c e s co u ld b e r e a d t o - 0 .0 2 $ on th e M u e lle r B r id g e . The c o r r e c t te m p e ra tu re was o b ta in e d from t h e B u reau o f S ta n d a rd s e q u a tio n Rt * Ro f l - ^ < .v u - t A o o ) t / 1 0 0 ] . i s t h e r e s i s t a n c e a t t d e g r e e s C e n tig ra d e and th e v a lu e s f o r th e con­ s ta n ts and v a r e 0.00392601* and 1.1*919, r e s p e c t i v e l y . R0 has p r e v io u s ly b e e n fo u n d t o b e 2 5 .5 0 3 1 o h m s.12 The c a l i b r a t i o n d a t a a re g iv e n i n th e f o llo w in g t a b l e . TABLE V CALIBRATION DATA FOR THE COPPER-CONSTANTAN THERMOCOUPLE Compound A E ( m ic r o v o lts ) o ^ T* C T«°C A T *°C CHCla llt2 2 - 6 3 .7 - .02 - 6 3 .5 -tO.2 Hg co2 2251) - 3 8 .8 0 1 .02 - 3 8 .8 5 -0.05 2726 -7 8 .7 8 1 .02 -7 8 .3 9 +0.39 * L eed s and N o r th r u p , ty p e G - l , s e r i a l #10111*19. U5 A E i s th e d i f f e r e n c e b etw een th e p o t e n t i a l o f th e c o ld ju n c tio n a t 0°C and t h a t o f t h e th e rm o c o u p le t o be c a l i b r a t e d , T *° i s th e te m p e ra ­ t u r e o b ta in e d from th e s ta n d a r d th e rm o c o u p le t a b l e s , 4° and Tw i s th e te m p e r a tu re o f t h e f r e e z i n g p o i n t s o f c h lo ro fo rm and m e r c u ry ,41 o r th e te m p e r a tu r e o f t h e c ru sh e d Dry I c e m i x t u r e , r e a d from th e r e s i s t a n c e th e rm o m e te r. The e x p e r im e n ta l e r r o r s shown a r e th e e r r o r s i n r e a d in g t h e c o o lin g c u r v e s . I t s h o u ld be n o te d t h a t th e above p ro c e d u re a c t u a l l y c a l i b r a t e d th e e n t i r e sy stem f o r th e d e te r m in a tio n o f AE. The c a l i ­ b r a t i o n c u rv e i s p l o t t e d i n F ig u r e 1 3 , The m ethod f o r o b t a i n i n g A E f o r a l l th e c ry o s c o p ic work i s g iv e n b e lo w . • The i c e - p o i n t r e f e r e n c e . The m easurem ent o f te m p e r a tu re by means o f a th e rm o c o u p le r e q u i r e s a s te a d y and a c c u r a t e l y known r e f e r e n c e te m p e ra tu re s in c e t h e p o t e n t i a l m easu red ( A E) depends upon th e te m p e ra tu re o f th e two j u n c t i o n s . The i c e p o i n t i s th e m ost c o n v e n ie n t r e f e r e n c e p o i n t f o r t h i s ty p e o f w o rk . The i c e p o i n t was o b ta in e d by th e u s e o f a m o d if i c a tio n o f a d e v ic e d e s c r ib e d b y W hite , 43 The g la s s tu b e i l l u s t r a t e d i n F ig u re 15 was f i l l e d w ith c r u s h e d i c e p r e p a r e d from w a te r wliich was d i s t i l l e d and th e n d e­ io n iz e d . T h is i c e was th e n w ashed b y p a s s in g p u re c h i l l e d w ater th ro u g h th e s i d e tu b e s and th e n was l e f t p a r t i a l l y f i l l e d w ith w a te r and i c e . The th e rm o c o u p le was p la c e d i n t o th e i c e m ix tu re th ro u g h th e c e n t e r tu b e and th e e n t i r e assem b ly was p la c e d i n a Dewar f l a s k c o n ta in in g c ru sh e d ic e . T h is d e v ic e h o ld s t h e te m p e r a tu re s te a d y a t 0 .0 0 0 0 1 ,0001°C f o r ho - 0.2 T°C c o rrn . O -1*0 -8 0 T e m p e ratu re F ig u r e 1 3 . T herm ocouple c a l i b r a t i o n c u rv e f o r c o r r e c t i o n s t o b e a p p lie d t o te m p e r a tu r e s o b ta in e d from s ta n d a r d th e rm o c o u p le ta b le s . h7 F ig u r e 1 4 , D ia g ra n o f th e a p p a r a tu s f o r o b ta in i n g t h e c a l i b r a t i o n p o i n t a t -7 8 .3 9 °C s A , t h e p la tin u m r e s i s t a n c e th e rm o m e te r; B , t h e t a p e r e d f lu o r o th e n e p lu g and th erm o ­ c o u p le from th e f r e e z i n g p o in t c e l l . hb up t o 2h h o u rs a c c o r d in g t o W h ite . T h is a c c u ra c y i s , o f c o u r s e , f a r g r e a t e r th a n t h a t r e q u i r e d f o r th e s e m e a su re m e n ts. F ig u r e 1 5 . The d e te r m in a tio n o f The i c e - p o i n t tu b e s T i s a th e rm o c o u p le . A E. The d i f f e r e n c e i n p o t e n t i a l ( A E) b etw een t h e th e rm o c o u p le i n t h e f r e e z i n g p o i n t c e l l and th e r e f e r e n c e th erm o c o u p le was d e te rm in e d b y u s e o f a Brown R e c o rd in g P o te n tio m e te r and a L eeds and N o rth ru p ty p e K-2 P o t e n t i o m e te r . A sim p le d e v ic e was u s e d t o p r o v id e a s te a d y b u c k in g p o t e n t i a l w hich c o u ld b e v a r i e d a t w i l l ( s e e F ig u re 1 6 ) . W ith t h i s d e v ic e i t was p o s s i b l e t o o b t a i n an o u tp u t p o t e n t i a l o f s u c h a m a g n itu d e t h a t t h e r e c o r d in g p o te n ti o m e t e r , when u se d i n c o n ju n c tio n w ith a L eeds and f lo rth ru p D. C . a m p l i f i e r , had a s e n s i t i v i t y o f o n e - q u a r te r t o o n e - h a l f d e g re e p e r i n c h . The z e r o l i n e on t h e r e c o r d in g p o te n tio m e te r i s t h u s e q u a l t o t h e b u c k in g p o t e n t i a l and A E i s o b ta in e d d i r e c t l y by a d d in g t h e b u c k in g p o t e n t i a l t o th e p o t e n t i a l r e c o r d e d . The b u c k in g U9 C o ld f u n c tio n C e ll th e rm o c o u p le Type K-2 p o te n tio m e te r Brown R e c o rd in g P o te n tio m e te r Leeds & flo rth ru p D #C . A m p lifie r F ig u re 1 6 . The a p p a r a tu s f o r th e d e te r m in a tio n o f te m p e ra tu re u s in g a th e rm o c o u p le : Rx , s ta n d a r d d ecad e r e s i s t a n c e b o x ; Ra , s t u d e n t p o t e n t i o m e t e r ; a known b u c k in g v o lta g e i s ta k e n from R a. 50 v o lta g e was d e te rm in e d d i r e c t l y w ith th e ty p e K-2 p o te n tio m e te r . The b u c k in g v o lta g e was fo u n d t o have a maximum v a r i a t i o n o f p lu s o r m inus one m ic r o v o lt d u r in g a p e r i o d o f tw e lv e h o u r s . The ty p e K-2 p o te n tio m e te r was a ls o c o n n e c te d d i r e c t l y a c r o s s th e th e rm o c o u p le l e a d s so t h a t r e a d in g s c o u ld be ta k e n w h ile th e r e c o r d e r was o p e r a t i n g . Im n ie d ia te ly a f t e r th e r e a d in g on th e K-2 p o te n tio m e te r was r e a d i t was th ro w n o u t o f b a la n c e and th e c o n t a c t c lo s e d f o r an in s ta n t. T h is p u t a m ark on th e c h a r t o f th e r e c o r d in g p o te n tio m e te r and th u s t h e r e a d i n g s o f th e two p o te n tio m e te r s w ere s im u lta n e o u s ly re c o rd e d on th e same g r a p h . The ty p e K-2 p o te n tio m e te r th u s s e rv e d as a c a l i b r a t ­ in g d e v ic e f o r t h e r e c o r d i n g p o te n tio m e t e r . The above s e t up f o r th e r e c o r d in g o f th erm o c o u p le v a lu e s when mak­ in g p h a s e s t u d i e s i s v e r y c o n v e n ie n t as i t p e r m its one to r e c o r d c o o lin g c u rv e s d i r e c t l y w ith a r e c o r d in g p o te n tio m e te r o v e r any g iv e n te m p e ra tu re ran g e. H a n d lin g P ro c e d u re s and P r e p a r a t i o n o f S o lu tio n s P r e p a ra tio n o f th e s o lu tio n s . The h a lo g e n f l u o r i d e , th e p u r i f i c a t i o n and s to r a g e o f w hich h a s b ee n d e s c r ib e d a b o v e , was sip h o n ed d i r e c t l y from th e s to r a g e c o n t a i n e r ^ P la te 3) i n t o a p r e v i o u s l y w eighed f lu o r o th e n e tu b e f i t ­ t e d w ith a p lu g and a v a l v e . The v a lv e o v e r th e tu b e was th e n c lo s e d and th e l i n e c le a n e d by e v a c u a tio n and h e a t i n g . The tu b e and v a lv e assem bly was th e n rem oved and w eighed on a T o rs io n b a la n c e . The assem b ly was th e n p la c e d on th e m e ta l vacuum l i n e and th e l i q u i d was f r o z e n by u se o f a Dry I c e a c e to n e m i x t u r e . The v a lv e was th e n opened and hydrogen f l u o r i d e was 51 co n d en sed d i r e c t l y i n t o t h e tu b e from a ta n k c o n n e c te d t o th e l i n e . The w e ig h in g p ro c e d u re was r e p e a te d as d e s c r ib e d a b o v e . A f t e r t h e s o l u t i o n was p r e p a re d i t was c h i l l e d t o j u s t above th e f r e e z i n g p o i n t , t h e p lu g and v a lv e w ere rem oved, and th e s t i r r i n g assem bly was i n s e r t e d i n t o t h e t u b e . The amount o f im p u r ity in tro d u c e d b y t h i s b r i e f e x p o s u re t o th e a tm o sp h ere i s c o n s id e re d t o b e n e g l i g i b l e . H ydrogen f l u o r i d e . The f r e e z i n g p o i n t o f th e hydro g en f l u o r i d e o b ta in e d d i r e c t l y from t h e c y l i n d e r was d e te rm in e d t o b e - 8 2 .9 * 0.1°C by th e p r o c e d u re i n d i c a t e d a b o v e . T h is a g r e e s r e a s o n a b ly w e ll w ith p r e v io u s ly r e c o r d e d v a lu e s o f - 8 3 .3 7 ° C ,37 and - 8 3 .0 7 ° C .i e ^> The hydrogen f l u o r i d e from t h e c y l i n d e r was th u s assumed to be s u i t a b l e f o r th e s e m easu rem en ts. I t was n o t p o s s i b l e t o d e te rm in e th e ap p ro x im a te amount o f im p u r ity p r e s e n t i n t h e h y d ro g e n f l u o r i d e b e c a u se th e s t i r r e r jammed b e f o r e an a p p r e c ia b le f r a c t i o n o f t h e m a t e r i a l f r o z e o u t , and p o o r c o o lin g c u rv e s w ere o b t a i n e d . H ydrogen f lu o r i d e - p o t a s s i u m f l u o r i d e s o l u t i o n s . The c o o lin g c u rv e s f o r s e v e r a l h y d ro g e n f lu o r id e - p o ta s s iu m f l u o r i d e s o l u t i o n s were ru n a t h ig h h y d ro g e n f l u o r i d e c o n c e n t r a t i o n s t o h e lp co m p lete t h e d a ta o f C ad y .44 F o r t h i s p u rp o s e a w eig h ed amount o f p o ta ssiu m b i f l u o r i d e ■K was p la c e d i n t h e f lu o r o t h e n e tu b e and a w eighed amount o f hydrogen f l u o r i d e was added a s d e s c r i b e d a b o v e . * M erck & C o. 52 C. D a ta and C a lc u la tio n s On t h e f o llo w in g p a g e s th e d a t a f o r th e c ry o s c o p ic s t u d i e s a re p r e s e n t e d i n t a b u l a r and g r a p h ic a l form . The f r e e z i n g p o i n t s f o r each i n d i v i d u a l s o l u t i o n were d e te rm in e d from t h e r e c o r d e d c o o lin g c u rv e s (som e i l l u s t r a t i o n s o f w hich a r e g iv en i n F ig u r e s 1 7 , 18 and 2 1 ) . The e r r o r i n d i c a t e d f o r each f r e e z i n g p o in t i s e s tim a te d from t h e p a r t i c u l a r c o o lin g c u rv e in v o lv e d ; h o w ev er, none o f t h e v a lu e s a r e b e t t e r th a n - 0 .02°C as t h i s i s th e ap p ro x im a te l i m i t o f th e a c c u r a c y o f th e th e rm o c o u p le c a l i b r a t i o n . V ery l a r g e e r r o r s f o r c e r t a i n p o i n t s i n d i c a t e , i n g e n e r a l , t h a t t h e s lo p e o f th e f r e e z i n g p o i n t c u rv e was v e ry s t e e p . O th e r i n f o r m a tio n r e g a r d in g th e f o llo w in g t a b l e s i s p r e s e n te d e i t h e r a s a f o o tn o t e t o t h e t a b l e i n q u e s ti o n , o r i n th e t e x t im m e d ia te ly p r e c e d in g t h e t a b l e . 53 table VI CRYOSCOPIC DATA FOR IODINE PENTAFLUORIDE-HYDROGEN FLUORINE SOLUTIONS* W eight HF tg m .) 0 .2 6 0 .2 6 0 .5 2 1.1*0 1 .0 0 3 .3 7 6 .9 0 9 .7 5 1 1 .0 6 1 2 .6 7 1 6 .5 5 2 2 .1 5 2 3 .7 0 2 6 .1 0 2 6 .2 6 3 2 .1 0 3 1 .5 5 2 8 .8 5 1*0.8 la .17 1*2.28 1*2.35 1*6.55 W eig h t IF 6 lg m .) M ole P e r c e n t HF 11*0.8 1 3 7 .7 2 3 1 .3 2 0 3 .1 1 2 7 .6 1 5 3 .0 1 3 8 .8 1 1 8 .9 1 1 8 .6 1 1 5 .9 1 0 8 .5 101*.2 8 5 .2 9 3 .7 61*.5 5 9 .5 51*.8 31*. 88 31*.1*3 2 1 .1 8 1 7 .0 0 6 .9 0 3 .0 0 1 *99 2 .0 6 l* .5 l 7 .1 0 6 .0 0 1 9 .6 3 5 .6 1*7.7 5 0 .6 7 5 5 .1 9 6 2 .6 7 7 0 .1 9 7 5 .5 7 5 .7 8 1 .2 6 5 .6 9 66.1*7 9 0 .1 9 9 2 .9 9 5 .5 9 9 6 .5 2 9 8 .5 9 9 .5 F r e e z in g P o in t°C 6 .11 8 .0 0 6 .7 0 1*.1*6 1*.1*6 -0.21* - 6 .0 0 - 1 0 .3 6 - 1 0 .0 6 - 1 2 .2 0 - 1 5 .1 0 - 1 7 .5 - 2 0 .5 -20.1* - 2 3 .1 5 - 2 5 .9 - 2 6 .7 - 3 1 .2 - 5 3 .1 -1*1*.8 - 5 2 .0 - 7 2 .9 -83.1*9 ! o .02 1 0 .0 3 1 0 .0 2 1 0 .0 6 1 0 .0 6 1 0 .0 6 i 0 .0 6 1 0 .0 2 1 0 .0 6 1 0 .0 2 1 0 .0 6 - 0 .3 1 0 .3 i 0 .1 ± 0 .0 6 1 0 .3 1 0 .3 1 0 .3 - 0 .5 il.O i 0 .3 1 0 .1 * 1 0 .0 6 E u t e c ti c P o in t°C MMW --------- ------83.1*** ----8 0 t o - 8 ^ — - — - 8 3 .5 5 - — -t- 3 . :>' -83.1*9 -83.1*9 -83.1*9 -83.1*3 -83.1*9 *The e u t e c t i c p o i n t i s a t 9 9 .5 m ole p e r c e n t h y d ro g en f l u o r i d e and -t55M9°C. The e x p e r im e n ta l e r r o r g iv e n f o r th e f r e e z i n g p o i n t i s ta k e n a s t h e maximum e r r o r i n r e a d in g ea c h i n d i v i d u a l c o o lin g c u r v e . T h is e r r o r i n c r e a s e s w ith in c r e a s in g hydrogen f l u o r i d e c o n c e n t r a t i o n b e c a u s e o f th e i n c r e a s i n g s lo p e o f th e c o o lin g c u r v e , i n a l l c a s e s th e e r r o r l i s t e d h e r e i s th e same a s , o r g r e a t e r t h a n , t h e e r r o r i n t h e th e rm o c o u p le c a l i b r a t i o n . **The e u t e c t i c was re a c h e d i n th e s e c a s e s by m anual s h a k in g a f t e r th e p lu n g e r had jammed. 15 A 8 o -10 Time eo a r e 3 .8 0 and 1 .7 6 k i l o c a l o r i e s p e r m o le , r e s p e c t i v e l y . A p o s s i b l e e x p la n a tio n o f t h e s e r e s u l t s i s t h a t th e assu m p tio n t h a t s o l i d s o l u t i o n s a r e n o t form ed i s i n c o r r e c t . A c tu a lly i t i s p o s s ib le t h a t s o l u t i o n s w ith a v e ry s t e e p l i q u i d u s - s o l i d u s c u rv e a r e fo rm ed . T h is would i n v a l i d a t e any h e a t o f f u s i o n c a l c u l a t i o n s b a s e d upon th e p h ase diagram s p re s e n te d . 72 VI DENSITIES AND AVERAGE MOLAR VOLUMES OF HALOGEN FLUORIDEHYDROGEN FLUORIDE SOLUTIONS A . T h e o r e t i c a l A s p e c ts A p a r t i a l m o la l q u a n t i t y i s d e f in e d as th e p a r t i a l d e r i v a t i v e o f an e x te n s iv e q u a n t i t y w ith r e s p e c t t o th e number o f m oles o f a p a r t i c u l a r s u b s t i t u e n t , when ta k e n a t c o n s ta n t te m p e r a tu r e , p r e s s u r e , and c o m p o s itio n . T hus th e p a r t i a l m o la l volum e o f s u b s t i t u e n t 1 i n a tw o-com ponent s o l u t i o n is u) w here V i s th e volume o f th e s o l u t i o n , P and T a re th e p r e s s u r e and t e m p e r a t u r e , r e s p e c t i v e l y , and n A and n 2 a re th e number o f m oles o f each c o n s titu e n t. T h ere a r e a number o f g e n e r a l r e l a t i o n s b etw e e n p a r t i a l m o la l quan­ t i t i e s w h ich a p p ly t o t h e s e q u a n t i t i e s f o r any e x te n s iv e p r o p e r t y . In g e n e ra l w here G i s t h e e x te n s iv e p r o p e r ty and t h e same r e s t r i c t i o n s and d e f i ­ n i t i o n s g iv e n above h o l d . S in c e i n e a c h o f th e above e q u a tio n s th e c o n c e n tr a tio n o f th e re m a in ­ i n g c o n s t i t u e n t s re m a in s c o n s t a n t , f o r a change i n G a t c o n s ta n t te m p e r­ a tu r e and p r e s s u r e 13) 73 or dG = Gxdnx + G2dn 2 + . . (i±) I f th e r e l a t i v e p r o p o r t i o n s o f th e c o n s t i t u e n t s rem ain u n ch an g ed 3 th e n i n t e g r a t i o n from nx = n 2 = 0 and G - 0 t o nx - n x , n 2 - nz , and G = G y ie ld s G = G-jnx + G2n 2 + . . (5 ) F o r any i n f i n i t e s i m a l change i n c o m p o sitio n dG = n 1 c)G1 + Gx c)nx + n 2 ^G 2 + G2 c?n2 + . . . and s u b t r a c t i n g (,£) from (6 ) n A <) Gj_ + n 2 'd G2 + . . + + n 113 . = 0 (7) and d i v i d i n g b y c* n x 'd tii (5, _ nx 375 'd n x 0 Cb) When d e a l i n g w ith one mole o f s o l u t i o n we may d e f in e th e av erag e v a lu e o f th e e x t e n s iv e p r o p e r t y p e r m ole as gi = and s in c e n 1 + n 2 -— 2 nx + n2 + . . + (9 ) . = 1 , and w1 + n 2 + . . . - 1, (10) from E q u a tio n 5> gi * D iv id in g E q u a tio n G^ n x + 7b y G2n 2 +. . + n2 + + and d i v i d i n g th e above by 3 N j + . * . .w e . . ^ ll) o b ta in . - 0 U 2) C6) 714 Ni 1 d Nx • ]\t Wa i. 2^3 . + * * * = o (i J U 3; W ith a tw o-com ponent s o l u t i o n i t i s p o s s i b l e t o p l o t the- a v e ra g e v a lu e o f th e e x t e n s iv e p r o p e r t y p e r m ole , , v e r s u s m ole f r a c t i o n , The t a n g e n t t o th e c u rv e o b ta in e d a t any p o i n t w i l l i n t e r s e c t th e o r d i ­ n a t e s o f e a c h p u r e com ponent a t p o i n t s w h ich a r e th e p a r t i a l m o la l volum es o f t h e s u b s t i t u e n t s i n q u e s tio n a t th e c o m p o sitio n o f th e p o i n t a t w hich t h e t a n g e n t to u c h e s th e c u rv e . B. A p p a ra tu s and M ethod To c a l c u l a t e th e a p p a r e n t m o la l volum es and e q u iv a le n t c o n d u c ta n c e s o f t h e h a lo g e n f l u o r i d e - h y d r o gen f l u o r i d e s o lu t i o n s a t 2£°C , i t was n e c e s s a r y t o d e te rm in e th e d e n s i t i e s o f th e s o l u t i o n s a t 23>°C. The p y cn o m eter i l l u s t r a t e d i n F ig u r e 26 was c o n s tr u c te d f o r t h i s p u r p o s e . S in c e i t was e x tr e m e ly d i f f i c u l t t o f i l l th e pycnom eter t o a g iv e n m ark w h ile i t was on t h e vacuum l i n e , i t was c a l i b r a t e d s e p a r a t e l y f o r ea ch s o l u t i o n , a c c o r d in g t o th e f o llo w in g p r o c e d u r e . w eighed and p la c e d on th e vacuum l i n e . The pycnom eter was S o lu tio n s w ere p r e p a re d and w e ig h ts o f ea ch com ponent were d e te rm in e d i n th e same m anner as w i l l be d e s c r ib e d f o r t h e c o n d u c ta n c e c e l l , e x c e p t t h a t each s o l u t i o n was p r e p a r e d from a new sam ple o f h a lo g e n f l u o r i d e . I t was n e c e s s a r y t o have th e u p p er l e v e l o f t h e s o l u t i o n come up i n t o th e n a rro w neck o f th e p y c n o m e te r. The p y c n o m e ter was th e n p la c e d i n a w a te r b a th a t 25>°C and when e q u i­ l ib r iu m was re a c h e d t h e h e ig h t o f th e s o l u t i o n i n th e n e c k was m arked. The p y c n o m e te r was t h e n c le a n e d and r e -w e ig h e d . Benzene a t 25°C was 75 added t o t h e m ark and i t was w eighed a g a in . Knowing th e d e n s it y o f th e b e n zen e , t h e volume o f s o l u t i o n w hich th e p y cn o m eter had c o n ta in e d c o u ld b e d e te r m in e d . A somewhat s m a lle r p y cn o m eter was u se d f o r t h e io d in e p e n t a f l u o r i d e s o l u t i o n s , b u t t h e p ro c e d u re fo llo w e d was th e sam e. C. D ata and C a lc u l a tio n s S in c e th e d a t a r e q u i r e d f o r th e c a l c u l a t i o n o f th e d e n s i t i e s o f th e s o l u t i o n s a ls o was s u f f i c i e n t t o c a l c u l a t e th e av e ra g e m o la l volume o f th e s o l u t i o n b y t h e u s e o f v* 1 * Volume o f S o lu tio n M easured T o ta l number o f moles’ ’ ' where v i i s t h e a v e ra g e m o la l v o lu m e, t h i s q u a n t i t y h a s b e e n c a l c u l a t e d f o r e a c h s o l u t i o n and i s g iv e n i n th e t a b l e on page 7 7 . The i d e a l m o la l volume o f th e s o l u t i o n was a ls o c a l c u l a t e d from vi - « X VX + N2f a w here v i i s t h e i d e a l m o la l volume o f th e s o l u t i o n , m ole f r a c t i o n s o f c o n s t i t u e n t s 1 and 2 , and and Na a re th e and V3 are th e m o la l volum es o f t h e p u re c o n s t i t u e n t s . I n o r d e r t o g iv e a b e t t e r p i c t u r e o f th e change i n volume due to n o n - i d e a l i t y , t h e p e r c e n t change i n ^ A v-j/ ( p e r c e n t) = was o b ta in e d from 100 (v,^1 - v*) ------------ — t-------A— 76 R > yyyy F ig u r e 2 6 # The p y c n o m e te r; a l l p a r t s a re o f f lu o r o t h e n e e x c e p t th e clam p in g d e v i c e . 77 V m «> < t^ - sQ r»d • • * CM sQ r d t I I 2 © O. O • O H (d fd • • • CM rH rH I I I -d I I Pd I | I G © O 73 © G CO o # • Ud • O s_ d Pd P d CM CM ao* CO• CM rH OS _ G CO • • • • • CM CM CO I d O cm r»d P d - d p - O Pd Xfd Pd - P d • • • o dd_d - d c j oj CM CO* -d1 o • 03• • • OO CM CM OS sO O CM P d P d -G C— O Ud ■o • US Pd © ■P cd o 3 © a © O O •H G 0 1 §> © P d O s C '-'u s c— • • • • • H rH rH CM CM i— I C''— O s i—( —d © U o ffl O w n O © 5 73 O n CM Q CO SO G o A G -§ & © -d O • Pd • i—I i—I rH r—I i—I rH i—I i—I rH CM s g o d o •P CO G d \ir \o P d Is- CM rH - G P d ♦ • • © © •H •H E-* Pk 73 0> 73 *H •H G © E !> * P rl o >> - d (M H so c ^ tn • • • CM H H P d rH • • rH CM rH rH ctf 43 -p 3 cd O ptj O G 53 £ © g 4 3 <1> tjO O •H G © © & P-. Os O CM O U d sO • • • m3 On OJ Md CO On d H C N C O O • • • • §3 ft aCO -p Acl4m. *ri £ A lid G sO sO © bO O ■a G • C —sO CMOs O os r—so -g •rH O GO MD CM CM O O Pd_d H -d m t--s O s o O * ♦ • • r—CMr-I rH • O © ctf © 3 G o t> - U d U d • * • Pd Ud „ Q sO ♦ O • Os © 43 o CO 0O Q H O Os CM IA C O ^ O s O _ d O sO _ G O O H O 14d P d Osl O rH f 3 H X) * * * m H • • • • ft 3 rcd—fPd cm O Pd O s a o t" - cm r~O s O s O O CO -d_d -d• ud CM P d O s CM C—• rH H CM CM O lid • • • » G © G © t© -G © ao ♦ O H © © CM •H c--— •P -G Os o Pd © N )l © G * § M 3 d m • • • CM i—1 rH O O 3 43 so Os cti o Os 03 O o *H G © a? -g G o o -P H •H -P • • CM rH s73%373f t 3 3 73 rH O 43 © G ft 70 S in c e t h e d e n s i t i e s a r e e s tim a te d t o be a c c u r a te to ab o u t one p e r ­ c e n t , i t i s o b v io u s t h a t if* th e v a lu e s o f a re low th e y w i l l o n ly b e i n d i c a t i v e o f t h e o r d e r o f m ag n itu d e o f th e e f f e c t . D. D is c u s s io n o f th e R e s u lts The p r im a r y r e a s o n f o r th e d e te r m in a tio n o f th e d e n s i t i e s o f th e h y d ro g en f l u o r i d e s o l u t i o n s o f some o f th e h a lo g e n f l u o r i d e s was to o b t a i n d a t a f o r th e c a l c u l a t i o n o f th e e q u iv a le n t c o n d u c t i v i t i e s w hich a r e d is c u s s e d i n t h e n e x t s e c t i o n . The v a lu e s o b ta i n e d , w hich a re g iv e n i n T a b le XI and p l o t t e d on F ig u re 2 7 , were s u f f i c i e n t f o r t h a t p u r p o s e . The v a lu e s o b ta in e d f o r p e r c e n t a re s m a ll, n e g a tiv e , and o f th e o r d e r o f m ag n itu d e o f f i v e p e r c e n t o r l e s s . T h is i n d i c a t e s t h a t f o r t h e s e s o l u t i o n s t h e r e i s alw ays a s m a ll d e c re a s e i n th e a v e ra g e m o la l volum es o f th e s o l u t i o n s , and th u s th e r e i s alw ays a s m a ll d e c re a s e in th e p a r t i a l m o la l volum es o f th e c o n s t i t u e n t s upon m ix in g . T h is m ig h t i n d i c a t e t h a t t h e p u re s u b s t i t u e n t s have a more open s t r u c t u r e i n th e liq u id s ta te . The h y d ro g en bonded s t r u c t u r e o f h y d ro g en f l u o r i d e , f o r e x a m p le , may be b ro k e n up i n th e s o l u t i o n . may o c c u r i n th e m ix tu r e . A ls o , some ty p e o f a s s o c i a t i o n B o th o f th e s e e f f e c t s m ig h t o c c u r. T h e re i s o n ly one p r e v io u s r e p o r t on p a r t i a l m o la l volum es i n a h a lo g e n f l u o r i d e s y s te m . S t e in and V ogel have s tu d ie d th e system b ro m in e t r i f l u o r i d e - b r o m i n e p e n t a f l u o r i d e and have r e p o r te d a d e c re a s e o f l e s s th a n one p e r c e n t i n th e p a r t i a l m o la l volum e. 79 3 .0 D e n s ity 25 2 .0 1.0 o 25 5o 75 loo W eig ht P e r c e n t H ydrogen F lu o r id e F ig u re 2 7 . D e n s i t i e s o f h y d ro g en f l u o r i d e s o l u t i o n s o f some h a lo g e n f l u o r i d e s : A , io d in e p e n t a f l u o r i d e ; B , brom ine p e n ta ­ f lu o r i d e ; C , c h lo r in e t r i f l u o r i d e . 80 V II CONDUCTANCE STUDIES OF THE HALOGEN FLUORIDES AND THEIR HYDROGEN FLUORIDE SOLUTIONS A. T h e o r e t i c a l A s p e c ts 61 M easurem ent When an e l e c t r i c a l p o t e n t i a l d i f f e r e n c e i s a p p lie d t o a l i q u i d con­ t a i n i n g i o n s , t h e io n s w i l l be s u b je c te d t o an a c c e l e r a t i n g f o r c e w hich w i l l g iv e r i s e t o an e l e c t r i c c u r r e n t . G e n e ra lly i t i s fo u n d , h o w ev er, t h a t when d i r e c t c u r r e n t m easurem ents a r e made th e r e s i s t a n c e o f th e l i q u i d d oes n o t s t r i c t l y obey Ohm*s law b e c a u s e o f e l e c t r o d e p r o c e s s e s w hich may te n d t o i n c r e a s e th e a p p a re n t r e s i s t a n c e o f th e l i q u i d . T h is e f f e c t i s l a r g e l y o f f s e t b y th e u s e o f an a l t e r n a t i n g e l e c t r i c fie ld . T hus th e m easurem ent becom es an im pedance r a t h e r th a n a r e s i s t a n c e m ea su re m e n t. The c u r r e n t w hich r e s u l t s from t h e u se o f an a l t e r n a t i n g f i e l d stem s from two s o u r c e s . The f i r s t , and t h e one w hich i s o f m a jo r im p o rta n c e h e r e , i s th e m ig r a tio n o f io n s i n th e f i e l d . r e o r i e n t a t i o n o f th e c h a rg e d i s t r i b u t i o n . The second i s At f r e q u e n c ie s i n th e au d io ra n g e th e c u r r e n t com ponent w hich I s due t o r e o r i e n t a t i o n i s n o t con­ d u c tiv e s in c e no n e t lo n g ra n g e m ig r a ti o n c an o c c u r and th e r e d i s t r i b u t i o n c a n ta k e p l a c e i n a v e r y s h o r t t im e . When c o n d u c ta n c e m easu rem ents a r e made i n th e ra n g e o f a u d io f r e ­ q u e n c ie s i t h a s b e e n found® 2 t h a t p a r t o f th e m easu red Impedance i s n o t due to t h e s o l u t i o n i t s e l f , b u t as i n th e d i r e c t c u r r e n t m easu rem en ts, i s due t o e l e c t r o d e p r o c e s s e s . and a r e a c t i v e com ponent. T h is e f f e c t may have b o th a r e s i s t i v e G e n e r a lly t h e s e e f f e c t s c a n be e lim in a te d , by t h e u se o f p l a t i n i z e d — p la tin u m e l e c t r o d e s , th e v e r y la r g e s u r f a c e a r e a o f w hich re d u c e s th e e l e c t r o d e r e a c t a n c e s t o a n e g l i g i b l e m a g n itu d e . I n t h i s w o rk , how ever, th e n a t u r e o f t h e s o l u t i o n s whose c o n d u c ta n c e was b e in g m easu red made i t n e c e s s a r y t o u s e u n p l a t i n i z e d p la tin u m e le c t r o d e s s in c e a f i n e l y d iv id e d s u r f a c e w ould h av e b e e n c h e m ic a lly a t t a c k e d . I n o r d e r to overcom e th e above d i f f i c u l t i e s u se h a s b een made o f th e f a c t t h a t t h e r e s i s t i v e and r e a c t i v e com ponents o f th e e l e c tr o d e p r o ­ c e s s e s h av e b e e n fo u n d t o v a ry a p p ro x im a te ly l i n e a r l y w ith th e in v e r s e s q u a re r o o t o f th e f r e q u e n c y .13 Thus i f th e sum o f th e r e s i s t i v e com­ p o n e n ts o f t h e s o l u t i o n and o f th e e le c tr o d e p r o c e s s e s a r e p l o t t e d a g a in s t th e i n v e r s e s q u a re r o o t o f th e fre q u e n c y and e x tr a p o l a te d t o i n f i n i t e f r e q u e n c y , th e r e s i s t i v e com ponent o f th e s o l u t i o n a lo n e i s o b ta in e d . S p e c i f i c and E q u iv a le n t C on d u ctan ces The s p e c i f i c c o n d u c ta n c e o f a c o n d u c to r i s d e f in e d a s th e r e c i p r o c a l o f th e r e s i s t a n c e o f a cube w ith s id e s one s q u a re c e n tim e te r i n a r e a , and h a s u n i t s o f r e c i p r o c a l ohms p e r cm. S in c e i t i s o b v io u s ly v e ry d i f f i c u l t and i m p r a c t i c a l to d e s ig n a c e l l o f e x a c t l y th e s e d im e n s io n s , a g iv e n co n d u c ta n c e c e l l i s c a l i b r a t e d b y th e u s e o f a s o l u t i o n o f known c o n d u c ta n c e . The r e s i s t a n c e o f any c o n d u c to r o f c o n s ta n t c r o s s s e c t i o n a l a r e a v a r i e s d i r e c t l y w ith i t s l e n g t h (d ) and i n v e r s e l y w ith i t s a r e a (.&) • That i s b2 w here R i s t h e t o t a l r e s i s t a n c e and

®s w ith s o lv e n ts o f bh low d i e l e c t r i c c o n s t.a n t i t i s v e r y o f t e n fo u n d t h a t th e r e i s a minimum i n t h e e q u i v a l e n t c o n d u c ta n c e a t some c o n c e n t r a t i o n . I n aqueous s o lu ­ t i o n s th e e q u i v a l e n t c o n d u c ta n c e r i s e s s t e a d i l y as d i l u t i o n i s i n c r e a s e d . The c o n d u c ta n c e minimum a p p e a rs t o move to h ig h e r c o n c e n tr a tio n s as th e d i e l e c t r i c c o n s ta n t o f th e medium i n c r e a s e s . The e q u i v a l e n t c o n d u c ta n c e s o f s tr o n g e l e c t r o l y t e s a t i n f i n i t e d i ­ l u t i o n i n s o l v e n t s su c h a s a l c o h o l s , n i t r i l e s o r n i t r o - d e r i v a t i v e s can b e o b ta in e d b y m ethods s i m i l a r t o t h a t f o r w a te r . F o r m ed ia o f low d i ­ e l e c t r i c c o n s ta n t s u c h a p r o c e d u re i s n o t p o s s i b l e . B. A p p aratu s and M ethod The C onductance B rid g e The c o n d u c ta n c e b r id g e u s e d i n t h i s work h a s been d e s c r ib e d i n d e t a i l e l s e w h e r e .13 The b r id g e c o n s is te d p r i n c i p a l l y o f an a u d io -fre q u e n c y g e n e r a t o r , a s e l e c t i v e d e t e c t o r , and th e b r id g e c i r c u i t ; th e l a t t e r i n ­ c lu d e d a r a t i o b o x , s ta n d a r d r e s i s t o r s and s ta n d a r d c a p a c i t o r s . B alan c e was d e t e c t e d on an o s c il l o s c o p e b y means o f L issa jjo u s f i g u r e s , and a r e f e r e n c e s i g n a l was u s e d t o g iv e t h e h o r i z o n t a l d e f l e c t i o n . The o s c i l l o ­ sco p e was u s e d i n su c h a m anner t h a t b o th th e m agnitude and t h e r e l a t i v e p h a se o f t h e b r id g e o u t p u t c o u ld b e o b s e rv e d . Thus i t was p o s s ib le to o b s e rv e b o th Rs and C s , th e r e s i s t a n c e and c a p a c ita n c e s e t t i n g s a t b a l a n c e , on th e s ta n d a r d d e c a d e s . shown i n F ig u r e 2 8 . A s i m p l i f i e d c i r c u i t diagram o f th e b r id g e i s 65 F ig u r e 2 8 . S im p lif ie d b r id g e c i r c u i t : Rj. and Ra a r e 1 :1 r a t i o r e s i s t o r s ( R ^ R a ) ; Rs 1S a s ta n d a r d d ecad e r e s i s t a n c e b o x , Cs i s a s ta n d a r d d ecad e c a p a c ita n c e b o x ; Rx and Cx a r e th e r e ­ s i s t i v e and c a p a c i t i v e com ponents o f th e unknown im pedance; D i s t h e d e t e c t o r ; a / i s th e s i g n a l g e n e r a t o r . The b r id g e i s a t b a la n c e when Cx and Rx a r e e q u iv a le n t t o th e p a r a l l e l c o m b in a tio n o f Rs and Cs . I t h a s b e e n shown12 t h a t Rs Rx ” 1 + Cl>x Cs 2 Rs a Thus i t i s s e e n t h a t i t i s n e c e s s a r y t o know th e fre q u e n c y i n o rd e r t o c a l c u l a t e Rx . The s i g n a l g e n e r a to r p ro d u ced f i v e f ix e d f r e q u e n c ie s . T hese w ere UOOO, 2 0 0 0 , 1 0 0 0 , 6 0 0 , and U00 c y c le s p e r s e c o n d , r e s p e c t i v e l y . I n o r d e r t o o b t a i n a p l o t o f Rx v e r s u s 1/V T “ > m easurem ents o f Rx were made a t e a c h o f th e above f r e q u e n c ie s f o r a g iv e n co n d u ctan ce m easu rem en t. 86 The C o n d u ctan ce C e ll s C e ll d e s ig n . u s e d i n t h i s w o rk . The tw o c e l l s i l l u s t r a t e d i n F ig u r e s 29 and 30 were They w ere b o th c o n s tr u c te d e n t i r e l y o f f lu o r o th e n e e x c e p t f o r t h e p la tin u m p l a t e s , p la tin u m l e a d s , and c o p p e r - c o n s ta n ta n th e rm o c o u p le s * C e l l I was u se d f o r p u re io d in e p e n t a f l u o r i d e and f o r i o d i n e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e m ix tu r e s . C e l l I I was u s e d f o r p u re c h l o r in e t r i f l u o r i d e , p u r e brom ine p e n t a f l u o r i d e , and f o r t h e i r h y d ro g e n f l u o r i d e s o l u t i o n s . The o n ly m a jo r d i f f e r e n c e b etw een th e two c e l l s was t h a t i n C e l l I f lu o r o th e n e wax was u s e d e x t e n s iv e ly f o r s e a l i n g p u r p o s e s . The u se o f wax was a v o id e d i n C e l l I I b e c a u s e i t s h ig h s o l u b i l i t y i n brom ine p e n t a f l u o r i d e and i n c h l o r i n e t r i f l u o r i d e gave t r o u b l e . C e ll I I was a ls o d e s ig n e d t o have a much lo w er c e l l c o n s ta n t th a n c e l l I b e c a u se o f th e v e ry low c o n d u c t i v i t i e s o f b rom ine p e n t a f l u o r i d e and c h l o r in e t r i f l u o r i d e . I t was n e c e s s a r y t o change th e wax i n C e l l I a f t e r each u s e w ith h y d ro g en f l u o r i d e . Such a p ro c e d u re was n o t n e c e s s a r y w ith C e l l I I . As can b e s e e n i n th e i l l u s t r a t i o n s , th e c e l l s a r e o f th e d ip p in g e l e c t r o d e ty p e and were c o n s tr u c te d so t h a t th e e n t i r e e l e c tr o d e assem bly i s a p a r t o f th e ta p e r e d p lu g w hich f i t s i n t o th e t u b e . In b o th c e l l s th e p la tin u m l e a d s w ere s h i e l d e d so t h a t th e l e v e l o f th e l i q u i d d id n o t e f f e c t th e c e l l c o n s t a n t . B oth c e l l s w ere f i t t e d w ith v a lv e s so th e y c o u ld b e a tta c h e d d i r e c t l y t o th e vacuum l i n e and th e s o lu t i o n s p r e p a re d d i r e c t l y i n th e m . P l a t e 5* C onductance c e l l I I a? F ig u r e 2 9 , C o n d u ctan ce c e l l i ; A, f lu o r o th e n e th erm o co u p le w e l l ; B and C , t lu o r o th e n e wax s e a l s ; D , f lu o r o th e n e in s u la tio n . 88 Bottom v ie w o f e l e c t r o d e assem b ly S ide v iew F ig u re 3 0 . C o n d u ctan ce c e l l I I ; A , f lu o r o th e n e tu b e s ; B , T e f lo n p a c k in g p lu g ; C , f lu o r o t h e n e wax p a c k in g ; D, th e rm o c o u p le w e ll (shown o n ly i n lo w e r p a r t o f s i d e v ie w ) ; B, p la tin u m p l a t e s . Ce11 c a l i b r a t i o n . B o th c e l l s w ere c a l i b r a t e d p e r i o d i c a l l y t o d e­ te r m in e w h e th e r any change had o c c u rre d i n th e c e l l c o n s ta n ts due to h a n d lin g . The d a t a and p r o c e d u re s f o r some o f th e s e c a l i b r a t i o n s a re g iv e n h e r e . C e l l I was i n i t i a l l y c a l i b r a t e d o v e r th e ra n g e o f te m p e ra tu re from a b o u t 0 t o 30°C u s in g a v e ry d i l u t e p o ta ss iu m c h lo r id e s o l u t i o n . p o ta ss iu m c h l o r i d e s o l u t i o n c o n ta in e d O.3663 1000 c c . o f w a t e r . The p o ta ss iu m c h l o r id e p e r The d a t a o b ta in e d a r e g iv e n i n T a b le X I I . S in c e t h e c o n c e n t r a t i o n o f th e s ta n d a r d s o l u t i o n was lo w e r th a n t h o s e f o r w h ich c o n d u c ta n c e d a t a i s g iv e n i n s ta n d a r d c o n d u c ta n c e t a b l e s , t h e d a t a o f B re n n e r64 and S h edlovsky66 were u se d t o c a l c u l a t e th e s p e c i f i c c o n d u c ta n c e o f t h e p o ta s s iu m c h l o r id e s o l u t i o n o v e r th e te m p e r a tu re ra n g e in d ic a te d . B re n n e r t a b u l a t e d th e c o e f f i c i e n t s b e lo w v e r s u s te m p e r a tu re and p o ta s s iu m c h l o r i d e c o n c e n t r a t i o n . e ffic ie n ts d A yv d V ----- p e r l i t e r o f w a te r. T em pnature °C d A A dt o b ta in e d f o r O.3663 gm p o ta ss iu m c h lo r id e The u n i t s o f A 0 0298 U sin g h i s d a t a th e f o llo w in g c o - 5 a r e cm2 e q u iv ^ o h m " 1 . 10 .0272 15 . 021*9 .0229 20 .0212 25 .0197 S h ed lo v sk y d e te rm in e d th e e q u iv a le n t c o n d u c ta n c e s o f p o ta ssiu m c h l o r id e s o l u t i o n s a t 18 and 2 5 °C . The e q u iv a le n t c o n d u c ta n c e o f th e above p o ta s s iu m c h l o r i d e s o l u t i o n i s 1 2 1 .0 11*3.6 ohm"1 cm" 1 a t 25°C . ohm**1 cm"1 a t 18°C , and The e q u iv a l e n t c o n d u c ta n c e s o f th e above p o ta ss iu m c h l o r i d e s o l u t i o n a t v a r io u s te m p e r a tu re s w ere d e te rm in e d from th e s e d a t a by a m ethod o f s u c c e s s iv e a p p ro x im a tio n . 90 TABLE XII CALIBRATION OF CELL I USING A SOLUTION CONTAINING 0 . 3663 GRAMS OF' POTASSIUM CHLORIDE PER LITER OF WATER T e m p e ra tu re Cs 2 9 .5 R« y ** Ex 23.U cs Rs y Rx c s 20.3 Rs y ^X 18.1 cs Rs r Rx 17.3 1 5 .1* 20b0 F re q u e n c y 1000 0 .0 0 8 216 0 .0 0 2 216 0 .0 3 0 219 0 .0 0 7 218 0 .0 0 7 21a 0 .0 0 2 21*0 600 1|00 0 .0 8 7 225 0 .0 1 3 222 0 .3 0 230 0 .0 7 216 0.1*0 2b7 0 .6 6 233 208 0 .0 2 7 2U3 0 .0 0 7 21a. 0 .0 9 0 25U 0 .0 1 8 2h9 0 .1 8 259 0 .0 3 251 0 .3 5 275 0 .0 6 260 229 0 .0 0 7 256 0 .0 0 2 255 0 .0 2 1 258 0 .0 0 5 257 0 .0 7 8 268 0 .0 1 5 26b 0 .1 6 273 0 .0 3 266 0 .3 0 286 0 .0 5 273 2h7 0 .0 0 6 270 0 .0 0 2 269 0 .0 1 7 272 0 .0 5 b 280 0 .0 0 7 278 0 .1 0 28b 0 .0 1 281 0 .2 0 293 0 .0 2 287 0.11* 286 0 .0 2 279 0 .2 5 300 o.ool* 271 0 .0 1 8 27b Rtohm s)* 260 k K 0 .0 0 7 272 0 .0 0 2 271 o.ool* 272 0 .0 6 7 28b 0 .0 1 2 280 c3 0 .0 0 5 287 0 .0 0 1 287 0 .0 1 5 291 0 .0 0 3 290 0 .0 5 3 300 0 .0 0 9 297 0 .1 0 0 303 0 .0 1 299 0 .2 0 31b 0 .0 3 306 279 0 .0 0 5 306 0 .0 0 2 306 0 .01U 309 0 .0 0 3 308 0 .0 5 1 318 0 .0 0 9 315 0 .1 0 323 0 .0 1 319 0 .2 0 335 0 .0 3 326 296 RS y Rx c s 1 2 .8 boob Rs y Rx 0.01* 261* 290 C o n tin u e d n e x t page 91 TABLE XII - continu ed liOOO 2000 F re q u e n c y 1000 600 LOO ^s Rs X Rx 0 .0 0 5 322 0 .0 0 2 322 0 .0 1 3 32U 0 .0 0 3 323 0.01*7 333 0 ,0 0 9 330 0 .0 1 336 0 .0 1 5 331 0 .1 b 3^8 0 .0 2 9 338 31i4 Rs X Rx 0 .0 0 3 U5 0 .0 0 1 Ui5 O.OOti L i8 0 .0 0 2 1*17 0 .0 3 0 U28 0 .0 0 6 bZS 0 .0 6 h33 0 .0 1 U29 0 .1 2 U+5 0 .0 2 h37 L05 T e m p e ra tu re 9 .7 0 0 RCohms)* * R i s o b ta in e d b y e x t r a p o l a t i n g a p l o t o f Rx v e r s u s 1 / sfT~ t o i n f i n i t e fre q u e n c y . ** X = Cj2 Rs 2 Cs 3 Cs i s i n m i c r o f a r a d s . Rs i s i n ohm s. 92 A sam p le c a l c u l a t i o n o f th e e q u i v a le n t c o n d u c ta n c e a t lij.0C i s g iv e n h ere. The mean v a lu e o f d A / A d t b etw een 11° and 18°C i s e s tim a te d t o be 0 .0 2 3 3 cm*1 from a p l o t o f B r e n n e r 's d a t a . F i r s t a p p r o x im a tio n : d A * 0.0233 X b X 1 2 b .0 cm ^equiv-^-olun” 1 = 1 1 .6 cm2e q u iv ~ 1ohm"''1 S eco n d a p p r o x im a tio n : d A = A » 1 2 lu 0 - 1 1 . 6 = 1 1 3 .0 A « I 2b .0 - 1 0 .5 = 1 1 3 .5 0 .0 2 3 3 X b X 113 « 1 0 .5 T h is was r e p e a t e d a t 1 0 ° , 5 ° and 0 ° C u s in g i n e a c h c a s e th e v a lu e o f A o b ta in e d a t th e p r e c e d in g te m p e ra tu re as a f i r s t a p p ro x im a tio n . The s p e c i f i c c o n d u c ta n c e (L) was th e n c a l c u l a t e d from th e e q u a tio n L = ~!C65S------- . oton"1™ - 1 The v a lu e s o f L v e r s u s T f o r th e s o l u t i o n o f O.3663 gm p o ta ss iu m c h lo r id e p e r l i t e r o f w a te r a re p l o t t e d i n F ig u re 31.. U sin g th e c o n d u c ta n c e s c a l c u l a t e d i n t h i s m anner th e c e l l c o n s ta n ts ilU w ere c a l c u l a t e d from K = ^KCl * ^ w here th e v a lu e s o f R a re o b ta in e d from p l o t s o f Rx v e r s u s th e in v e r s e sq u a re r o o t o f th e fre q u e n c y . v e r s u s te m p e r a tu r e . F ig u re 32 i s a p l o t o f th e c e l l c o n s ta n t S in c e we a r e m a in ly i n t e r e s t e d i n th e c e l l c o n s ta n t a t 25°C th e s l i g h t e r r o r s c a u s e d by th e above a p p ro x im a tio n s a t lo w er te m p e r a tu r e s a r e n o t c o n s id e r e d to b e im p o r ta n t. A se c o n d c e l l c o n s ta n t r u n was made a t 2 lj.9 0C a f t e r s e v e r a l io d in e p e n t a f l u o r i d e s o l u t i o n s had b e e n m e a su re d . F o r t h i s d e te r m in a tio n a s o l u t i o n o f 0.7U 59 gm. p o ta ss iu m c h l o r id e p e r l i t e r o f w a te r was u s e d . 20 10 7 .5 3 .5 S p e c i f i c C onductance (L) X lO 4 F ig u r e 3 1 . S p e c i f i c c o n d u c ta n c e v e r s u s te m p e r a tu re f o r a s o l u t i o n c o n t a i n i n g 0 . 3663 grams o f p o ta ss iu m c h lo r id e p e r l i t e r o f w a te r. 9k 0 20 10 T em p e ratu re F ig u re 3 2 . The c e l l c o n s ta n t o f c e l l I a t v a r io u s te m p e r a tu r e s . 30 95 The s p e c i f i c c o n d u c ta n c e o f t h i s s o l u t i o n h a s b e e n fo u n d t o be 0.0011*10 cm"1 ohm"1 . 42 The p e r t i n e n t d a t a a re g iv e n i n T a b le X I I I . The c e l l con­ s t a n t o f 0 .1 5 9 cm "1 i s i n c l o s e ag reem en t w ith t h a t o b ta in e d ab o v e . TABLE X III CALIBRATION DATA FOR CELL I USING A SOLUTION CONTAINING 0.71*59 GRAMS POTASSIUM CHLORIDE PER LITER OF WATER AT 2l*.9°C F re q u e n c y 1000 600 1*000 2000 1*00 Gs 0 .0 2 1 0.01*3 0.11*3 0 .2 7 o .5 3 Rs 120 122 127 125 13U 0 o.ool* o.ool* 0 .0 1 3 0 .0 2 0 .0 3 Rx 119 121 125 123 130 R ohm K cm*’1 111* 0 .1 5 9 C e l l I I was f i r s t c a l i b r a t e d o v e r a ra n g e o f te m p e r a tu re from 6 t o 21°C u s in g t h e s o l u t i o n c o n ta in in g 0.71*59 gm. p o ta ssiu m c h lo r id e p e r l i t e r o f w a te r . The p e r t i n e n t d a t a a r e g iv e n i n T a b le XIV. F ig u re 33 i s a p l o t o f s p e c i f i c c o n d u c ta n c e v e r s u s te m p e ra tu re f o r a p o ta ssiu m c h l o r id e s o l u t i o n o f t h i s c o n c e n t r a t i o n . 42 F ig u re 3U shows a p l o t o f th e c e l l c o n s ta n t (K) v e r s u s te m p e r a tu re f o r t h i s c e l l . A f te r t h i s c e l l was u s e d f o r th e co n d u ctan ce ru n s w ith th e h alo g en f l u o r i d e s and t h e i r h y d ro g e n f l u o r i d e s o lu t i o n s i t was n e c e s s a r y t o r e ­ p la c e th e b o tto m f lu o r o t h e n e s u p p o r t. th e c e l l c o n s ta n t. m a te ly -7 8 ° C . T h is cau sed a s l i g h t change i n The c e l l was th e n r e c a l i b r a t e d a t 25 0 and a t a p p ro x i­ S in c e th e c e l l c o n s ta n t a t -78°C was d e s ir e d f o r th e c e l l 96 TABLE X IV CALIBRATION DATA FOR CELL I I l*06 o 2000 0.15U 0 .3 6 0 0 .9 9 — 2 .7 4 Rs UT .3 50 .u 59.0 —~ 6 2.0 5 0 . 03 U 0.052 0 .1 3 5 US.7 U7 .6 5 2 .0 --- 62.2 0.1 5 3 0 .3 6 3 0 .9 6 1 .7 5 2.7 5 UU.8 50.0 60.0 66*0 86.0 V 0 .0 3 5 0.052 0 .131 0 .1 9 0 .3 4 Rx U7.2 U7.0 53.0 5 5 .5 64.0 Cs 0 .1 3 5 0 .3 0 0 0 . 6U0 1 .4 9 2.42 Rs V 5U.1 55.5 65.5 7 2 .0 9 1 .0 0 . 03U 0 . 0W1 0.119 0 .1 6 0.31 RX 5 2 .3 53.2 5 5 .0 61.7 69.6 Cs 0 .1 0 0 0.220 0 .6 5 0 1 .1 4 1.88 Rs v/ it 6 6 .6 69.0 80.1* 65. 4 1 0 4 .4 0 .0 2 0 0.036 0 .1 0 0 0.134 0 .2 4 4 6U.8 6 6 .6 7 2 .6 7 6 .6 83.9 T em perature 25.0 22 A RS V 1 6 .2 6.1 Frequency 1000 600 Rx 4<& R ohms K cm-1 h k .o 0.0622 4 6 .5 0.0623 5 2 .0 0 .0614 63 .h O.O506 0 .3 2 0 #0010 5 10 15 20 Temperature °C F igu re 3 3 . S p e c if ic conductance versus tem perature fo r O.OOlw potassium c h lo r id e . Data from th e Handbook o f Chemistry and P h y s ic s . cm-1 20 10 Temperature F igure 3h. °c C e ll con stan t o f c e l l I I a t d if fe r e n t tem peratures. 99 b e f o r e th e s u p p o r t was c h a n g e d , i t was assumed t h a t th e p e r c e n t change a t 25°C was t h e same as th e p e r c e n t change a t -7 8 ° C . The d a t a f o r th e r e c a l i b r a t i o n a t 2£°C a r e g iv en i n T a b le XV. The p ro c e d u re f o r th e c a l i b r a t i o n o f c e l l 11 a t - 78°C was as f o llo w s : s o l u t i o n s o f two grams o f p o ta ssiu m h y d ro x id e p e r l i t e r o f e t h a n o l , two m i l l i l i t e r s o f c o n c e n tr a te d h y d r o c h lo r ic a c id p e r l i t e r o f e t h a n o l , and two m i l l i l i t e r s o f c o n c e n tr a te d h y d r o c h lo r ic a c id p e r l i t e r o f a c e to n e , w ere p r e p a r e d . The c o n d u c ta n c e s o f th e s e s o lu t i o n s a t - 78°C w ere d e te rm in e d a p p ro x im a te ly b y u s in g t h e g la s s c e l l i l l u s t r a t e d i n F ig u re 3 5 , The m easu rem en ts were made w h ile t h i s c e l l was im m ersed i n a D ry l c e - a c e t o n e m i x t u r e . The c e l l c o n s ta n t o f th e g la s s c e l l has p r e v i o u s l y b e e n shown t o b e 0 .8 8 8 a t 2 £ ° C .1:l The t o t a l d is t a n c e betw een t h e p l a t e s o f ' t h i s c e l l i s 3&nm. a t 2£°C and ch an g es by l e s s th a n one mm. on c o o lin g t o - 78° C . I t i s t h e r e f o r e r e a s o n a b le to assume t h a t th e c e l l c o n s ta n t o f th e g l a s s c e l l changed l e s s th a n two p e r c e n t on c o o lin g . M easurem ents w ere th e n made on th e same s o lu t i o n s i n c e l l I I a t -7 8 °C . The d a t a f o r th e s e r u n s a r e t a b u l a t e d i n T a b le XVI. i t c a n be s e e n from th e d a ta o f T a b le XVI t h a t when th e c e l l con­ s t a n t a t 25°C i s 0 . 05U cm"”1 , t h e a v e ra g e v a lu e f o r th e c e l l c o n s ta n t o a t -7 8 C i s 0 .0 6 0 „ 0 .0 0 £ . Assum ing t h a t th e change due t o re p la c e m e n t o f t h e s u p p o rt was t h e same a t e a c h te m p e r a tu r e , th e c e l l c o n s ta n t was 0 .0 7 1 t 0 .0 0 6 cm"1 a t -78°C when i t was 0 .0 6 2 2 cm" 1 a t 25°C . 100 TABLE XV RECALIBRATION OF CELL I I AT 25°C F re q u e n c y 1*000 2000 1000 600 Cs 0 .0 3 3 0 .0 6 3 0.360 0.666 Rs 3 9 .0 3 9 .2 Uo.o 1*0.0 * 0.001 0.002 0 .0 0 8 0.010 Rx 3 9 .0 3 9 .1 3 9 .7 3 9 .6 R oftm K cm“ i 38.6 0.05U 1 101 F igu re 3 5 . The g la s s conductance c e l l ; A, mercury co n ta ct; B , platinum e le c tr o d e s . 102 TABLE XVI CALIBRATION OF CELL I I AT -?0°C F req u e n c y C e ll iiOOO 2000 1000 olims D 600 1*00 ohm v cm"1 A . Two gram s o f p o ta ss iu m h y d ro x id e p e r l i t e r o f e th a n o l G lass C e ll I I 30,800 31,200 31,700 32,000 32,200 29,500 1,81*0 1,850 1 ,8 5 0 1 ,8 5 0 1 ,8 5 0 1 ,8 5 0 0 .0 5 5 B . Two m i l l i l i t e r s o f c o n c e n tr a te d h y d r o c h lo r ic a c id p e r l i t e r o f e th a n o l. G lass 3 2 ,2 0 0 3 2 ,9 0 0 3 3 ,^ 0 0 33,6 0 0 3 3 ,7 0 0 C e l l 11 .2,250 2,250 2,260 2,260 2,260 3 0 ,5 0 0 2 , 2i*0 0.065 C . Two m i l l i l i t e r s o f c o n c e n tr a te d h y d r o c h lo r ic a c id p e r l i t e r o f e th a n o l. G lass C e ll I I 2 1 ,6 0 0 22,200 22,200 22,200 22,200 1 ,5 1 0 1 ,5 1 0 1 ,5 1 0 1 ,5 1 0 1 ,5 1 0 K m ean = ° - 0 6 0 " 20,000 t o 22,600 1 ,5 1 0 0.066 t o 0.060 ° * 0U 5 cm _1 Cs was fo u n d to be n e g l i g i b l e t h e r e f o r e o n ly Rx i s g iv e n ab o v e . 103 Sam ple P r e p a r a t i o n and H a n d lin g P ro c e d u re s F o r t h e c o n d u c ta n c e work i t was fo u n d n e c e s s a r y t o c a r e f u l l y d i s t i l th e h a lo g e n f l u o r i d e d i r e c t l y i n t o th e w eighed co n d u ctan ce c e l l . I f th e compound was sip h o n e d th ro u g h th e m e ta l l i n e , o r i f th e d i s t i l l a t i o n was so r a p i d a s t o form a s p r a y , i m p u r i t i e s were in tr o d u c e d i n t o th e c e l l and h ig h c o n d u c ta n c e v a lu e s w ere o b ta in e d . The i o d i n e p e n t a f l u o r i d e was sip h o n e d from th e s to r a g e c o n ta in e r i n t o an a u x i l i a r y tu b e and th e n d i s t i l l e d from th e tu b e i n t o th e c e l l . Brom ine p e n t a f l u o r i d e was d i s t i l l e d d i r e c t l y from t h e s to r a g e c o n ta in e r i n t o th e c e l l . The s e tu p i s i l l u s t r a t e d i n F ig u re 36. To vacuum l i n e $ <8> F ig u re 36. The M ixing System f o r B rom ine P e n ta f lu o r i d e S o lu tio n s 10k C h lo r in e t r i f l u o r i d e was d i s t i l l e d d i r e c t l y from a h a l f empty ta n k s in c e i t was n o t p o s s i b l e t o f r a c t i o n a l l y d i s t i l i t w ith th e equipm ent u s e d f o r io d in e p e n t a f l u o r i d e and brom ine p e n t a f l u o r i d e . The c h lo r in e t r i f l u o r i d e was assum ed t o b e f a i r l y p u r e s in c e i t s c o n d u ctan ce was v e ry c l o s e t o c o n d u c ta n c e s p r e v i o u s l y r e p o r t e d . . F o llo w in g th e a d d i t i o n o f th e h a lo g e n f l u o r i d e th e c e l l was rem oved from th e l i n e , re w e ig h e d , and r e t u r n e d t o th e l i n e . The le a d s from th e c o n d u c ta n c e b r id g e w ere c o n n e c te d , a b a th a t th e d e s ir e d te m p e ra tu re was p la c e d a ro u n d t h e t u b e , and t h e th erm o c o u p le was i n s e r t e d i n t o th e th e rm o c o u p le w e l l . The te m p e r a tu r e - v e r s u s - tim e cu rv e was re c o rd e d b y a Brown r e c o r d i n g p o t e n t i o m e t e r . When th e s lo p e became z e ro th e te m p e ra tu re o f th e i n t e r h a l o g e n was assum ed t o b e th e same as t h a t o f th e b a t h . The r e s i s t a n c e o f t h e c e l l was th e n m easu red a t v a r io u s f r e q u e n c ie s by u se o f th e c o n d u c ta n c e b r i d g e . The h y d ro g e n f l u o r i d e s o l u t i o n s w ere p re p a re d by c o n d e n sin g hydrogen f l u o r i d e d i r e c t l y i n t o t h e h a lo g e n f l u o r i d e sam ples p r e p a re d as ab o v e . The w e ig h in g and c o n d u c ta n c e m e a su rin g p ro c e d u re was r e p e a te d a s ab o v e. I n t h i s m anner i t was p o s s i b l e to p r e p a r e s e v e r a l hyd ro g en f l u o r i d e s o lu ­ t i o n s from e a c h sam ple o f h a lo g e n f l u o r i d e . F o r m o st o f t h e s e ru n s th e hydrogen f l u o r i d e was p a s s e d s lo w ly o v e r c o b a l t i c f l u o r i d e t o remove m o i s t u r e . M easurem ents o f th e hydrogen f l u o r i d e c o n d u c ta n c e , h o w ev er, i n d i c a t e d t h a t i t was r a t h e r im pure from a c o n d u c ta n c e s t a n d p o i n t . The m ain d i f f i c u l t y ap p e a re d t o be t h a t im­ p u r i t i e s d e s o rb e d from th e s i d e s o f th e p l a s t i c tu b e i n t o th e hydrogen f lu o rid e . T h is d i f f i c u l t y was n o t e n c o u n te re d w ith th e h a lo g e n f l u o r i d e s . 105 B ecause o f th e above d i f f i c u l t y v e r y few m easurem ents were made a t e x ­ tre m e ly h ig h h y d ro g e n f l u o r i d e c o n c e n t r a t i o n s . The te m p e r a tu r e b a t h was m a n u a lly c o n t r o l l e d . T em p eratu re was re a d on a c a l i b r a t e d m e rc u ry th e rm o m eter whose s c a le was s u b d iv id e d t o te n th s of a d eg ree. F o r th o s e m easurem ents done a t 0° and -7B°C an ic e - w a te r o r Dry I c e - a c e t o n e b a t h was u s e d . G e n e r a lly th e te m p e ra tu re was a l t e r ­ n a t e l y r a i s e d and lo w e re d t o d e te rm in e w h eth er th e e f f e c t b e in g m easured was r e v e r s i b l e . C. D a ta and C a lc u l a tio n s JLn th e f o llo w in g p a g e s th e c o n d u ctan ce d a t a f o r c e r t a i n h a lo g e n f l u o r i d e s and t h e i r hyd ro g en f l u o r i d e s o l u t i o n s i s p r e s e n te d i n t a b u l a r and g r a p h i c a l fo rm . I n f o r m a tio n p e r t a i n i n g t o th e c a l c u l a t i o n o f c e r t a i n o f th e q u a n t i t i e s p r e s e n te d i n th e t a b l e s i s g iv en h e r e . The s p e c i f i c c o n d u c ta n c e o f hyd ro g en f l u o r i d e , re c o rd e d as was o b ta in e d b y s u b t r a c t i n g th e c o n d u c ta n c e o f th e s t a r t i n g s o lv e n t from t h e s p e c i f i c c o n d u c ta n c e o f th e s o l u t i o n ^L) . L i s o b ta in e d from th e e q u a tio n L = K . i R where K i s t h e c e l l c o n s ta n t d is c u s s e d i n th e p re v io u s s e c t i o n , and R , th e t o t a l r e s i s t a n c e o f th e c e l l , i s o b ta in e d by p l o t t i n g Rx v e r s u s th e i n v e r s e s q u a re r o o t o f th e f re q u e n c y and e x t r a p o l a t i n g to i n f i n i t e f re q u e n c y . A c t u a l l y i n many c a s e s R was found t o be v e ry s m a ll and Rx a t f o u r th o u s a n d c y c le s p e r seco n d was ta k e n as R . The s p e c i f i c 106 c ir c u m s ta n c e s u n d e r w hich t h i s was done a r e d is c u s s e d below i n th e t a b l e s c o n c e rn e d . Th® p l o t s u s e d to o b ta i n R from R__ a r e d is c u s s e d i n th e s e c t i o n on th e o r y ab o v e ) . I n m ost c a s e s Cg was n e g l i g i b l e and t h e r e f o r e o n ly Rx was g iv e n . M o lar c o n d u c ta n c e s o f h y d ro g en f l u o r i d e i n th e s o l u t i o n s were c a lc u ­ l a t e d b y u se o f t h e e q u a tio n M ac 1000 Lnliw r C where M is the molar conductance and C is the molarity defined by C * number o f equivalents o f HF total weight/density The u n i t s o f M a r e o h m s ^ c m ^ o le s 1 and w i l l n o t be r e p e a te d i n th e t a b l e s f o llo w in g . The d e n s i t i e s o f some h a lo g e n f lu o r id e - h y d r o gen f l u o r i d e s o lu t i o n s w ere d e te rm in e d i n t h i s work and t h e d a ta a re g iv e n i n T a b le XI and F ig u re 2 7 . I n some c a s e s t h e c o n d u c ta n c e s o f th e s o lu t i o n s a t te m p e ra tu re s o t h e r th a n 25°C w ere d e te rm in e d i n o r d e r t o d is c o v e r w hether t h e r e was any u n u s u a l te m p e r a tu re - c o n d u c ta n c e r e l a t i o n s h i p . I n th e c a s e o f io d in e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s th e v a r i a t i o n i n th e te m p e r a tu re co n d u c ta n c e r e l a t i o n s h i p a t v a r io u s c o n c e n tr a tio n s was q u ite s l i g h t and i n o r d e r t o make th e e f f e c t o b v io u s i t was n e c e s s a r y t o p l o t th e p e r c e n t change i n c o n d u c ta n c e a t 20°C v e rs u s c o n c e n tr a tio n o f hydrogen f l u o r i d e . The p e r c e n t ch an g e i n c o n d u c ta n c e a t 20°C was d e te rm in e d f o r each s o l u t i o n whose c o n d u c ta n c e had b een m easu red a t v a r io u s te m p e r a tu r e s , by d e te r m in in g th e s lo p e o f p l o t s o f s p e c i f i c co n d u ctan ce v e r s u s te m p e ra tu re f o r th o s e s o l u t i o n s a t 20°C and th e n u s in g th e e q u a tio n 107 p e r c e n t change a t 20°C = — -^ e f ^99---------- c o n d u c ta n c e a t 20UC A lth o u g h some s o l u t i o n c o n d u c ta n c e s w ere d e te rm in e d i n ru n A u s in g th e c o n ta m in a te d io d in e p e n t a f l u o r i d e and i n r u n D u s in g th e c o n ta m in a te d brom ine p e n t a f l u o r i d e , th e s e have been o m itte d h e re b e c a u se th e c o n ta m i­ n a t i o n r e n d e r e d them m e a n in g le s s . The p r o b a b le e r r o r f o r e a c h r u n i s p r e s e n te d w ith th e d a ta i n q u e s ti o n . O th e r p e r t i n e n t in f o r m a tio n r e g a r d in g e a c h s p e c i f i c t a b l e i s g iv e n below e a c h t a b l e . F o r th e c o n d u c ta n c e r u n s a lr e a d y p r e s e n te d th e h y d ro g en f l u o r i d e from t h e c y l i n d e r was s lo w ly p a s s e d o v e r c o b a l t i c f l u o r i d e t o remove any m o is tu r e w hich may have b e e n p r e s e n t . I t was fo u n d , h o w ev er, t h a t th e co n d u c ta n c e o f t h e h y d ro g en f l u o r i d e was r a t h e r h ig h , , 2-5 x 10 at O O 16b 25 C com pared to 1 .5 x 10 a t 15 p r e v io u s ly r e p o r t e d , and t h a t i t d rifte d ra th e r ra p id ly . A p p a re n tly i m p u r i t i e s d e s o rb in g from th e w a lls o f th e f lu o r o t h e n e tu b e ca u sed t h i s e f f e c t . I n o r d e r t o g e t some i d e a o f th e sh ap e o f th e e q u iv a le n t co n d u ctan ce c u rv e f o r t h e io d in e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e s o l u t i o n s a few d e te r m in a tio n s w ere made s t a r t i n g w ith hydrogen f l u o r i d e w hich had been d r ie d o v e r c o b a l t i c f l u o r i d e and s t o r e d i n a new f lu o r o th e n e t u b e . The co n d u cta n ce was c h a n g in g w ith tim e d u r in g th e ru n and th e r e s u l t s a re p ro b a b ly n o t a c c u r a te t o b e t t e r th a n tw e n ty p e r c e n t . Rx m easurem ents w ere made a t f o u r th o u s a n d c y c le s o n ly , and th e v a lu e s o f th e s p e c i f i c c o n d u c ta n c e o f h y d ro g en f l u o r i d e ( L ^ ) were o b ta in e d by s u b tr a c t i n g th e co n d u c ta n c e o f th e h y d ro g en f l u o r i d e a lo n e from th e m easured co n d u c ta n c e o f th e s o lu tio n . The r e s u l t s a r e t a b u l a t e d i n T a b le XXI. ic y TABLE XVII THE SPECIFIC CONDUCTANCE OF IODINE PENTAFLUORIDE AT VARIOUS TEMPERATURES* T°C F req u e n c y booo 20 O0 1000 ohms boo R ohms 6000 6501 6000 650 b 5992 6888 6563 7151 790b 8529 6567 7157 7905 8531 6559 71U0 7893 600 L X Run A** 30.1 5993 2 5 .2 2 5 .0 6b91 6562 20.3 15.1 11 .b 71U7 7897 8532 599b 6b98 6563 71b9 7899 8530 5998 6500 6563 7151 7901 8529 8529 2.67 2 .8 7 2 .8 8 2 .2 7 2 .0 1 1 .8 6 -SHSr-K- Run B 25.8 2 3 .6 1 7 .9 13.0 30320 32250 32250 35200 35270 38750 38775 30350 3O36 O 32280 30370 35310 30365 32300 35320 38800 38820 38830 32310 35320 3O33 O 3223 O 35200 38700 0 .5 3 8 0 .5 1 6 0.1460 0 .lily 27800 0.572 0 . 5I4U 0.898 0.1i87 Run C 2 5 .0 21.9 1 6 .9 15 .b 28020 29290 31820 32730 28080 29380 31880 32790 251bO 29b20 31910 32820 28150 29bb0 31930 32830 28160 29b50 31935 328bO 29200 31800 32700 * Cs was n e g l i g i b l e f o r a l l tn e s e r u n s . The v a lu e s given a re f o r Rx ( i n ohms) a t th e v a r io u s f r e q u e n c i e s . -JHt- The i o d i n e p e n t a f l u o r i d e i n t h i s r u n was d i s t i l l e d i n t o t h e c e l l v e r y r a p i d l y and a p p a r e n tly c a r r i e d o v er some im p u r i tie s . *** The c e l l c o n s ta n t f o r t h i s r u n was 0 .1 6 3 cm” 1 , th e s l i g h t change b e in g due to a change i n h e ig h t o f th e i n s u l a t i o n around th e p la tin u m le a d s o f c e l l I . -Stshbj- I n t h i s ru n th e a v e ra g e e r r o r f o r R i s '100 ohms , and th e av erag e e r r o r f o r L i s 0 .0 0 2 X 10”* . T h is e r r o r i s due to e r r a t i c p l o t s o f Rx v e r s u s 1 / fT* . 109 2.7 2.1 10 20 30 Temperature °C F igu re 3 7 . S p e c ific conductance as a fu n c tio n o f tem perature fo r io d in e p e n ta flu o r id e (ru n A) . 110 12 22 16 T e m p e ra tu re 26 o C F ig u r e 38 # S p e c i f i c c o n d u c ta n c e a s a f u n c t io n o f te m p e r a tu re f o r i o d i n e p e n t a f l u o r i d e ( ru n B ) , Ill o MB 15 18 22 25 F ig u r e 3 9 . S p e c i f ic c o n d u c ta n c e a s a f u n c t i o n o f te m p e ra tu re f o r i o d i n e p e n t a f l u o r i d e ( r u n C) . 112 TABLE m il THE SPECIFIC CONDUCTANCES OF BROMINE PENTAFLUOR1DE AND CHLORINE TRIFLUORIDE AT VARIOUS TEMPERATURES F re q u e n c y T°C "Vobo 2OXf” ^ io o b 60U k ilo h m s S66~ X 1 0 “ 3ohms ^ X lO ’ cm"1 o h m s'1 Run D 2 5 .0 1 9 .1 1 2 .2 5 .8 122 13^ 137 iia 122 135 138 1U3 122 135 139 1 hh 122 135 139 114 122 136 139 114 122 133 136 139 800 680 625 629 900 5.08 U.73 U.U5 a . 2i Run E 2 5 .0 736 772 800 790 v 0 .9 1 Run F 2 5 .0 0 .0 60 626 629 900 627 629 630 630 — ... — — — — — — C h lo rin e T r i f l u o r i d e 3 R Rx X 10” 6 ohms X 10" ohms 2 5 .0 ‘78 1 2 .8 1 0 .8 — — — — — — — — 1 2 .8 1 0 .8 0 .9 9 1 0.88U 0 .7 8 L X 1 0 9 ohm"1 cm"1 U.86 6 .5 The b ro m in e t r i f l u o r i d e f o r t h i s r u n was r a p i d l y d i s t i l l e d , and p r o b a b ly c o n ta in e d some im p u r ity from th e m e ta l vacuum l i n e . T h e re i s an e r r o r o f p l u s o r m inus_one th o u sa n d ohms i n R due to e r r a t i c c u r v e s f o r Rx v e r s u s 1 / \[f . The c o rre s p o n d in g e r r o r in L i s a b o u t p l u s o r m inus one p e r c e n t . F o r ru n s B and C th e brom ine p e n t a f l u o r i d e was v e ry c a r e f u l l y d i s t i l l e d . The e r r o r h e r e i s a b o u t p lu s o r m inus f i v e p e r c e n t due m a in ly t o t h e u se o f a u x i l i a r y r e s i s t o r s o f d o u b tf u l a c c u r a c y . The v a lu e a t -60°C i s ap p ro x im a te s in c e th e c e l l c o n s ta n t f o r -78°C i s u s e d . Where f re q u e n c y v a r i a t i o n i s o m itte d i t i s n eg ­ l i g i b l e com pared t o o t h e r e r r o r s . The e r r o r a t -78°C i s a p p ro x im a te ly p lu s o r m inus te n p e r c e n t due t o c e l l c o n s ta n t e r r o r . 113 o D LA CM o o O o CD CD CM O ■P flj I 05 -P G CD a) 03 O G (D G XJ CONDUCTANCES OF IODINE PENTAFLUORIDE-hYDROGEN FLUORIDE SOLUTIONS OT J*' CA ca 9 o 1 oCA • o O r— (— CA • O On oo CM • O CO CA la + o H I 0e rt 1 TO CO CnJ LA vO oO • O la CM CO • O CA C— c— 9 O oo oA t '* O CO NO o• rH o & R OCA 8 oo oCO orH iC—M1 CM CO i—1 ON rH CM CM rH O O s CA -G 8 ~o0AT O CO CM CM CO O CM iCM —1 LA CM i— 1 rH rH n O s § o G 0) O CO G cn O S o © G (i, o o oCM o o s o o •in CM “S CO O LA On CO rH O CA On OO rH O CM On GO r—1 O rH On CO i- t nO f—1 • o o o E-* G o S> © ■a 43 O © XJ © • XJ © G O {>s « ■a g *849 O rH CA fccO O rH * J 1 •H rH O w CQ la c\ j NO • o © XJ o- A CO •H C O n ss o *6 & CO CO G la PQ o •H CD 8> ft »H la G X> ft r— o# O o’ O • O• O C"— O• o o o- o• NO CM CM On — NO CM i1 9 O la • GO CM • rH o • LA CM d jh g oj E-4 E~t E Ilk o o CO UA CM CVJ CM C\J ^ •H Q Q O O O Q O O C M C M C M o * o * o * o ♦ q * o • q o • q ♦ * o * o • q ♦ o » -Mf _ zj - p q * o * q » o o o o o o o o o o o o o o o o I O 1- t U AO rH O J V O ^ J _ ^ U \0 '£ > O CONDUCTANCES OP IODINE PENTAFLUORIDE-HYDRQGEN FLUORIDE SOLUTIONS i—t i—I r t r« 1 h3 TO m3 I f A UA H c < -\ rH r—I i—I © ^QCMCMNOHH^rin O t^ H U A N O O O O CM O O r llA i— I i—I i—I i—I CAi—I i—4 i—I Q O £'— '-A PArH 8 8 8 8 S S S N O tH H r ) CM CM i—I rH O O O O C*AgOU\rHUAC~-t*-UAUAUAC—C— PA - f i UA UA H O H H (H ^ -O n -4 -5 -^ C MW CMr l H H - 4 Oj_4 O On CO -Cf rH rH rH CMCMrH rH OOOO-4fMHQ0(A0\0\0\HCM-4N ------fi_fi_fi\0 M 3 r—_fi _ct (H A l A H ^ o 25 m H O H f -j n OAHf H f J H O U _ ^ O O s CO -X f rH H H CM CM rH H o O Q) rH o o o o to cr fi © fi ft W w OJ H H H O O h T ^ O ^ iv m ^ O n O cm -fi r — UAH'LA'O C rt f i -rt HD\0 t-~_fi_fi.fi Q r H r H O A C - .O N -f if if iC M f i CM f i O On c o -fi r l H H CM CM i—I rH CM C Mh H H O Q O UA O ON CO C M U A U A U A C — 0 Q O \ C M f i O UA ^ - 4 _ } - 4 ^ 0 \ 0 vO r ^ f i f i i—I O i—I rH PA C-— ON J _fi H CM CM CMi—I r—I rH f i CM _ f i O O n X )-4 H H H CM CM rH rH O O A O I A C O C - rH U A U A f i ^ 0 0 3 C K H H r l A H O f i MO nO -fi f i f i MJ nO MD P A - d - H f H O rH rH r r\ o - CK f i f i f i CM CM CM H H H J C M - 4 0 On CO f i rH H r l CM CM rH rH o oUA CM *§ (0 oo e-i • o c 3 £« •H O J - 4 O O D vO GO O H H H M 5'55lA rj H H H H i— i TO o 4m O O O H H r l W O O O Q C K C ^ ua r» I 0s > E-4 O CM UA UA CM -M± CO ON UAUA GO r—_d c*Ao— CO UA rH PA MO CO C— U \ UA UA CO ~ _ O O f i C— A - C— CM PA p a PA M3 M3 NO t>- c-~ t — • O • • • * O ♦ • * • • • • • • • * i—I PA PA PA C— i—I i—I i—I O O O PA PA PA iH rH rH C M C M C M C M C M C M CO CO CM PA On f i f i f i O O M3 QO CO CO J O O O r l H H PA M3M3 MD UA UA UA CM CM CM rH rH rH CM CM CM O O O CM CO CM O (M CM CM O- f i f i f i rH rH rH On On On O On U A C O U A H A U A P N O n UA U A U A M 3 O UA UA UA On f i f i 0 \ f i UA O s f i CMCMCMi HCMCMCMCMr Hr HCMr Hr HCMr Hr H XS •H O 3 rH a P a © ft « S3 o 92 •rH *3 •H P XJ d o rH •H O CO 43 X -P <0 o a) p q © •H TJ •H © U xl O •rH 3 U rH O » 43 CO £ XJ to $ fc> u CO ao +3 o -• CO CM u C— — m pt P 43 *H fi -P fi rH O to cr O f-4 CD © TO o 43 0 -P X) © rH fi TO ? H d •p © 43 59 fi JH S > CD •H bO to O J>> • (3 -P CO O c fi •H • 1 *d o # *P 43 to ■rH d P P © rH fi fi fi xJ O •H to rH fi CO to O p fi C TO •H fi P O fi % fi 0 DD -p fi © TO rt to bO © £ -p 43 IQ 0 h rt P O u 43 iH •rH E-i 5 fi © fc4 to • © © XJ 43 rH > XJ fi -P rH •H o to rt fi O s to •rH o fi rt to p rH xJ 43 «H o -P p to ■8 C P O rt © rA ■P © bO CD H o * X> •H o •H TO 8 XI JH XJ •H O 0 43 > o o q Em (3 i—I *9 XJ fl TO 43 fi TO o 59 rt •H o rt rO o u to r« i-l fr* •(0 59 to f fi o o C p © fi © © 43 •3 © > > rt fi rt CP © 43 O © •H 43 P *» *V O o O UAUA CM CM fi P rt rt 43 P TO © fi O • © fi 43 rt © P p fi O o 3 fi P TO XJ rt © fi fi fi o © P o ft P rt o 6© fi H p © fij -H TO g o fi © © TO P f t fi TO P > rt bD fi to © to TO *8 fi rt p £ Xl o fi © fi © P xs © rt S3 o 43 o © •3 o o rt a •H 43 O TO TO © XJ © to © O 3 § .S O fi H p (0 to P fi P X) o o p T O © t> rH © TO E a +> fi • a s p © •H O S fi © P ft fi © © P > TO -H •H «H 59 C T o o rt o 43 >* bD rH *H ■a* P TO o rt fi ft © P © fi >> rt rt S XJ fi to rt o fi xl rt ©P P o rt fi © xJ f t fi © o fi to to fi 43 *H XJ fi ■3 8 O fi o © TO rH P rH fi rt © 1 S fi © © 3 o 59 rt to to 43 S P © ** p fi Po © rt to fi © © 43 f t P © 43 fi bO O 3 o P 43 fi P o 3 ■a 115 TABLE XXI CONDUCTANCES OF IODINE PENTAFLUORINE-HYDROGEN FLUORIDE SOLUTIONS WITH VERY HIGH HYDROGEN FLUORIDE CONCENTRATIONS* Grams IF e 0 .0 C HF ----- R ohms Cat IjDOO c y c le s ) L ohm s"1cm“ 1 X 10~4 LHF ohm s"1cm” X 10*"4 Mo a t 25 C 5U5 2 .9 ----- ----- l .U 1*8 280 5 .7 2 .8 0 .0 6 3 3 .5 1*5 225 7 .1 h.2 0 .0 9 2 6 .2 hh 205 7 .8 a .9 0 .1 1 * S t a r t i n g w ith 1 5 .0 5 gram s o f hydrogen f l u o r i d e , and m easured a t 25 C . See p r e v io u s p ag e f o r o t h e r in fo r m a tio n c o n c e rn in g t h i s t a b l e . 116 om o o -=r o CM in 1 a t 20°C * 0.0 0 6 12 16 2k C (m oles per l i t e r ) F igu re lil • P ercen t change in s p e c if ic conductance o f io d in e p en ta flu o rid e-h yd ro gen flu o r id e s o lu tio n s versu s m olar con­ c e n tr a tio n s o f hydrogen flu o r id e (d a ta from run C1) . 118 TABLE XXII CONDUCTANCES OF BROMINE PENTAFLUORIDE-HIDROGEN FLUORIDE SOLUTIONS RUN E»* T°C Grams HF 2 5 .0 0 .0 -60 2 5 .0 o .o -6 0 2 5 .0 1 5-5 0 .0 2 5 .0 0 .1 9 0 .1 9 0 .1 9 0.1*0 o.i*o 0.1*0 1 .0 5 1 .0 5 1 .0 5 2.25 CHF a t 25 C 0 .3 2 — - — o.6U - — — 1.61* — _ — 3 .3 8 R ohms a t 1*000 C y cles 1 8 7,000 1 6 2,000 252,000 7 8 ,3 0 0 7 6 ,0 0 0 1 3 0,000 2 6 ,0 5 0 2 6 ,1 0 0 27,5 0 0 8 ,9 0 0 L l hF ohms~1cm“ :L ohms-1 cm-1 X 107 X 107 3.3U 3.U3 2 .8 8 .0 5 7 .3 0 5.U 6 2 3 .8 2 3 .5 2 0 ,2 7 0 .0 2.1*3 M X 104 a t 25°C 7 .6 -------- — ----- ------- 7 . Ill 1 1 .2 - — ------- — - ------- 2 3 .6 1U.5 ------- -------- — ------- 7 0 .0 20 .7 * T h is r u n was s t a r t e d b y ad d in g h y d ro g en f l u o r i d e t o th e brom ine p e n ta f l u o r i d e u s e d i n r u n E . T h e re was a t o t a l o f 7 7 .0 0 grains o f brom ine p e n ta flu o rid e in each s o lu tio n . The c e l l was le a k i n g hy d ro gen f l u o r i d e d u r in g t h i s r u n and t h e r e f o r e a l l v a lu e s o f c o n d u c ta n c e a t h ig h e r c o n c e n tr a tio n s a re p ro b a b ly lo w . T h ere i s no way o f e s ti m a t in g th e e r r o r due t o l o s s o f hydrogen flu o rid e . T h ere i s a c o n s id e r a b le e r r o r i n th e v a lu e s a t ab o u t -60°C becau se th e r e a d in g s w ere a c t u a l l y ta k e n as th e l a s t r e s i s t a n c e m easurem ent b e f o r e th e s o l u t i o n b eg an t o f r e e z e . The e r r o r i s th e r e f o r e due to m aking th e m easurem ent a t a te m p e r a tu re o th e r th a n t h a t a t wliich th e c e l l was c a l i b r a t e d ( t h e c a l i b r a t i o n a t -78°C was u se d ) f and a ls o t o th e f a c t t h a t th e r e a d in g s h ad t o be made r a p i d l y . R ea d in g s w ere ta k e n a t f o u r th o u sa n d c y c le s o n ly s in c e th e v a r i a t i o n w ith fre q u e n c y was fo u n d to be v e ry s l i g h t . 119 TABLE XXIII CONDUCTANCES OF BROMINE PENTAFLUORINE-HYDROGEN FLUORIDE SOLUTIONS RUN F * T°C Grams HF CHF a t 25°C 2 5 .0 0.0 -6 0 2 5 .0 0 .0 25.0 0.0 -60 2 5 .0 0 .0 -60 25.0 0.0 - 60-70 25.0 0.0 - 60-70 2 5 .0 0 .0 - 60-70 0 .2 7 0 .2 7 0 .2 7 0.38 0 .3 8 0 .5 3 0 .5 3 0 .5 3 0 .9 3 0 .9 3 0 .9 3 2 .1 3 2 .1 3 2 .1 3 4 .2 3 4 .2 3 i t . 23 6 .8 6 6 .8 6 6 .8 6 0 .4 3 — --0.60 — 0.83 — — l.U ? — — 3 .2 0 — —$ .9 h — — 8 . dk —— * R ohms a t hOuO c y c le s 103,500 102,700 122,000 60,600 5 9 ,3 0 0 3)4,1400 30,000 8,000 13,7 0 0 12,700 L,ooo 3,000 2,700 liiO O bho 875 1,000 h96 525 900 L ohms~1cm 1 X 10 7 5 .9 9 5 .ia 5 .8 1 0 .2 9Sh 1 8 .0 18.8 88 U5 hh 175 190 206 500 739 635 710 1250 1080 780 lhf ohms” 1cm~ 1 X 107 5.00 — — 9 .2 — 17 .0 — — hh — — 190 — — 738 — — 1250 — m m +m M a t 25°C X 10 4 11.8 — — 1 5 .4 --2 0 .5 — — 30 — — 60 — — 125 — — 15U — * T h is r u n was s t a r t e d b y ad d in g h y d ro g en f l u o r i d e t o th e brom ine p e n ta f l u o r i d e i n r u n F . T h e re was a t o t a l o f 7 7 .5 9 grains o f brom ine p e n ta f l u o r i d e i n ea c h s o l u t i o n . T h e re i s a p o t e n t i a l l y l a r g e e r r o r i n th e v a lu e s f o r th e co n d u c ta n c e s a t v e ry low te m p e r a tu re s s in c e th e c e l l was c a l i b r a t e d o n ly a t -78 C. The o v e r - a l l e r r o r s i n t h e c o n d u c ta n c e s a re p ro b a b ly ab o u t f i v e p e r ­ c e n t f o r t h e s o l u t i o n s a t lo w er c o n c e n tr a tio n s b eca u se o f some un­ c e r t a i n t y i n th e v a lu e s f o r th e a u x i l i a r y r e s i s t a n c e s u sed w ith th e c o n d u c ta n c e b r i d g e . P r e c i s i o n r e s i s t o r s i n th e p ro p e r ran g e were n o t a v a ila b le . R e s is ta n c e s w ere m ea su re d a t f o u r th o u sa n d c y c le s o n ly s in c e th e change w ith f re q u e n c y was s m a ll. 120 12 9 6 3 O O 2 U 6 8 C a t 25°C F ig u r e k 2 . S p e c i f i c conduc ta n c e - c o n c e n tr a tio n r e l a t i o n ­ s h i p o f b ro m in e p e n ta flu o rid e -h g rd ro g e n f l u o r i d e s o lu t i o n s b a s e d upon r u n F f o n ly* A , 25>°C; B , 0°C ; C , -6 0 t o - 70°C . 'IT S Csl 'LPv 1A O XA vrv (0 o M 2: Figure U3. Holar conductance versus the square root of the m o la rity of hydrogen fluoride for bromine pentafluoride-hydrogen fluoride s o lu tio n s at 25°Cs © run □ run E 1. The points in run E* were d riftin g due to loss of hydrogen f lu o r i d e . 121 122 TABLE XXIV CONDUCTANCES OF CHLORINE TKIFLUORIDE-HYDROGEN FLUORIDE SOLUTIONS'* T°C 2 5 .0 -76 2 5 .0 -78 2 ^ .0 -7 8 25 .0 -78 Grams HF C HI? a t 2S°C R ohms a t 1+000 c y c le s X 10” 3 L oluns” 1crn“ 1 X 10 s lhf , -1cm-1 ohms X HT H a t 25 C X 106 0 .6 2 1 .0 2 ,1 0 0 2 .9 6 2.1+7 2.1+7 0 .6 2 --- 1 ,5 3 0 1+.5 — — 0 .8 + 1.35 960 5.U9 6 .0 0 1+.1+5 7U0 9 .5 — ll+2 U3.7 1+3.2 85 8 2 .5 — 0 .8 + 1 .6 2 1 .6 2 — 2 .5 7 — 3 .0 5 I+.67 18 350 3 .0 5 — 15 i+OO 350 — 1 6 .8 — 75 — — « T h is r u n was s t a r t e d by a d d in g hydrogen f l u o r i d e to th e c h lo r in e t r i ­ f l u o r i d e u s e d f o r th e p u re c h l o r in e t r i f l u o r i d e r u n . T here was a t o t a l o f £ 6 .0 £ grams o f c h l o r in e t r i f l u o r i d e i n e a c h a d d i t i o n . The o v e r - a l l e r r o r s i n c o n d u c ta n c e s a re p ro b a b ly a b o u t f i v e p e r c e n t due t o u n c e r t a i n t y i n th e r e s i s t a n c e v a lu e s f o r th e a u x i l i a r y r e s i s t ­ a n ce s u se d on t h e c o n d u c tan ce b rid g e * P r e c i s i o n r e s i s t o r s in th e p r o p e r ra n g e w ere n o t a v a i l a b l e . F o r th e low te m p e r a tu r e m easurem ents t h e r e i s an u n c e r t a i n t y o f te n p e r c e n t due t o u n c e r t a i n t y i n th e v a lu e f o r th e c e l l c o n s ta n t. R e s is ta n c e s w ere m easu red a t f o u r th o u sa n d c y c le s o n ly f o r th e same r e a s o n s m e n tio n e d p r e v i o u s l y . 123 ho 30 L X 10 ,7 ohm*' cm -75 c 20 10 o 0 1 2 3 k C a t 25°C F ig u r e hi* • S p e c i f ic c o n d u c ta n c e - c o n c e n tr a tio n r e l a t i o n s h i p s f o r c h l o r i n e t r i f l u o r i d e - h y d r o gen f l u o r i d e s o lu t i o n s a t two d i f f e r e n t te m p e r a t u r e s . 6 k 2 O 2 .0 Vc~ F ig u r e lif>. M o lar c o n d u c ta n c e v e r s u s t h e sq u a re r o o t o f h y d ro g e n f l u o r i d e m o l a r i t y f o r s o l u t i o n s o f h y d ro g en f l u o r i d e i n c h l o r i n e t r i f l u o r i d e a t 2 $ °0 . 125 D. D is c u s s io n o f th e R e s u lts C o n d u ctan c es o f th e H alogen F lu o r id e s The s p e c i f i c c o n d u c ta n c e s w hich have been d e te rm in e d f o r th e h alo g e n f l u o r i d e s i n t h i s w ork a r e i n g e n e r a l i n good agreem ent w ith , o r somewhat lo w e r t h a n , c o n d u c ta n c e s r e p o r t e d p r e v i o u s l y . In th e fo llo w in g t a b l e th e r e s u l t s o b ta in e d i n t h i s r e s e a r c h a re com pared w ith th e b e s t p r e v io u s ly re p o rte d r e s u l t . TABLE XXV SPECIFIC CONDUCTANCES OF THE HALOGEN FLUORIDES Compound L B e s t V alue O b ta in e d H ere i n ohm s'^cm - 1 a t 25 C L B e s t P r e v io u s ly R e p o rte d V alue ohms*~1cm” R eferen ce 5.3 x i c f 6 1 .9 2 X 10'® a t 25°C 12 BrFe 9 .1 X 1 0 " e 19 C1F3 k .9 x 10~9 8 .5 X 10-7 a t ? °C _9 0 3 X 10 at ? C 13 E m eleu s, W o o lf, and S h a r p e ,20"*22 s u g g e s te d t h a t th e c o n d u c tiv ity o f io d i n e p e n t a f l u o r i d e i s due t o s e l f - i o n i s a t io n a c c o rd in g to th e e q u i­ l ib r iu m r e a c t i o n 2XFe = IF 4 + + I F S~ T h is a ssu m p tio n i s b a s e d upon r e a c t i o n s s u c h as SbFB + 1F6 = U F**) SbF6” ) 126 and KF + IF e = K+.[f 6‘ e a c h o f w h ich c a u s e s an i n c r e a s e i n c o n d u c ta n c e , i f , how ev er, p o tassiu m f l u o r i d e i s added t o th e an tim o n y p e n t a f l u o r i d e - i o d i n e p e n ta f lu o r id e s o l u t i o n a n e u t r a l i z a t i o n r e a c t i o n o f th e ty p e KlF 6 + i f 4SbF6 - KSbFe + re s u lts . i f i t i s p o s s i b l e t o draw an an alo g y betw een io d in e p e n ta f l u o r id e and b ro m in e p e n t a f l u o r i d e i t would seem t h a t th e c o n d u c tiv ity o f brom ine p e n t a f l u o r i d e w ould be due to th e e q u ilib r iu m 2BrF6 * B rF4+ + B rF 6~ The c o n d u c ta n c e o f brom ine p e n t a f l u o r i d e h a s been fo u n d i n t h i s work t o v a ry o n ly s l i g h t l y w ith te m p e r a tu r e . P r e v io u s ly i t had b een r e p o r te d t o have a n e g a tiv e te m p e r a tu re c o e f f i c i e n t , however th e p u r i t y of th e m a t e r i a l u s e d p r e v i o u s l y seems to h av e b een somewhat l e s s th a n t h a t ob­ t a i n e d i n t h i s work and i t i s t h e r e f o r e somewhat d o u b tfu l w h eth er th e r e s u l t s c an be co m p ared . A s m a ll o r n e g a tiv e te m p e ra tu re c o e f f i c i e n t m ig h t be assum ed to be due t o th e rm a l i n s t a b i l i t y o f th e io n s i n q u e s tio n . The c o n d u c ta n c e o f c h l o r in e t r i f l u o r i d e i s so e x tre m e ly low t h a t i t i s somewhat d o u b t f u l w h e th e r w hat co n d u c ta n c e i t does d e m o n stra te i s d e p e n d e n t upon a s e l f i o n i z a t i o n , such as t h a t p ro p o se d f o r brom ine t r i ­ f lu o rid e , 2BrF3 = h rF a+ o r th e p r e s e n c e o f i m p u r i t i e s . + BrF4~ I t i s i n t e r e s t i n g t o n o t e , h o w ever, t h a t c h l o r i n e t r i f l u o r i d e a p p e a rs t o have a n e g a tiv e te m p e ra tu re c o e f f i c i e n t , o f c o n d u c ta n c e , a s d oes b ro m in e t r i f l u o r i d e . 127 C o n d u c ta n c es o f H alogen F lu o r id e —H ydrogen F lu o r id e S o lu tio n s The c o n d u c ta n c e s o f t h e h y d ro g en f l u o r i d e s o l u t i o n s o f th e h a lo g e n f l u o r i d e s p r e s e n t a r a t h e r more c o m p lic a te d problem th a n t h a t o f th e p u re h a lo g e n f l u o r i d e s . I t c a n be se e n from F ig u r e s hO, h3 and kS t h a t , a lth o u g h th e c u rv e s f o r b rom ine p e n t a f l u o r i d e and c h lo r in e t r i f l u o r i d e a re r a t h e r in c o m p le te , t h e r e i s p ro b a b ly a minimum i n th e m o lar c o n d u c ta n c e - c o n c e n t r a t io n c u rv e f o r e a c h o f th e s e r i e s o f s o lu t i o n s m ea su re d . T h is i s i n f u l l ag reem en t w ith o th e r work done w ith s o l u t i o n s o f su b ­ s ta n c e s i n n o n -aq u e o u s s o lv e n ts . The p o s i t i o n o f th e minimum i n t h i s ty p e o f c u rv e c a n som etim es be e s tim a te d b y u se o f th e e x p r e s s io n 36 m in w here i s t h e c o n c e n t r a t i o n a t w hich th e minimum o c c u r s , D i s th e d i e l e c t r i c c o n s ta n t o f th e medium, and k i s a c o n s ta n t w hich a p p lie d t o a g iv e n e l e c t r o l y t e i n d i f f e r e n t s o l v e n t s . U n f o rtu n a te ly th e d i ­ e l e c t r i c c o n s ta n ts o f th e m ix tu re s are n o t known and th e p o s i t i o n o f th e minimum i s n o t known i n some c a s e s . The m olar c o n d u c ta n c e s a t th e minimum c a n b e ro u g h ly a p p ro x im a te d from th e f i g u r e s m e n tio n e d . The v a lu e s a re r o u g h ly as fo llo w s * IF e -hF 3 X 10“ 3 BrFa -HF 7 X 10“ 4 c i f 3- h f b X 1CT6 The r e a s o n f o r th e o c c u rre n c e o f a minimum i s o b scu re a t b e s t , b u t m ig h t b e due t o some ty p e o f io n a s s o c i a t i o n . 128 The e q u i v a l e n t c o n d u c ta n c e o f liydrogen f l u o r i d e i n th e s e s o l u t i o n s o v e r t h e w hole ra n g e o f c o n c e n tr a tio n s m easu red seems to be e x tre m e ly low and th u s i t a p p e a rs t h a t h y d ro g en f l u o r i d e a c ts as a v e ry weak e le c tro ly s e . A n e g a tiv e te m p e r a tu re c o e f f i c i e n t , o r a te n d e n c y to w ard i t , seems t o be q u i t e g e n e r a l as c a n be s e e n i n F ig u re s U l, h2 and UU. The m ost p r o b a b le e x p la n a t i o n i s t h a t th e n e g a tiv e te m p e ra tu re c o e f f i c i e n t i s a s s o c i a t e d w ith th e rm a l i n s t a b i l i t y o f th e i o n s . I t i s d i f f i c u l t t o s a y j u s t w hat th e c u r r e n t c a r r y in g s p e c ie s a re i n t h e s e s o l u t i o n s on th e b a s is o f t h i s w o rk . On a n a lo g y w ith th e p o ta s s iu m f l u o r i d e - i o d i n e p e n t a f l u o r i d e sy stem i t m ig h t be assumed t h a t an e q u ilib r iu m s u c h as HF + IF 6 = H+ + 1F6“ e x i s t s , w h ile an a n a lo g y w ith th e antim ony p e n t a f l u o r i d e - i o d i n e p e n t a ­ f l u o r i d e sy stem m ig h t i n d i c a t e t h a t an e q u ilib r iu m su ch as HF + IF6 = HF2" + IF 4 + i s m o st im p o r ta n t. T h is work does n o t p ro v id e any way o f d i f f e r e n t i a t i n g betw een th e two m ech an ism s. A s i m i l a r s i t u a t i o n e x i s t s f o r th e brom ine p e n t a f l u o r i d e - h y d ro g en f l u o r i d e and c h l o r i n e t r i f l u o r i d e - h y d r o g e n f l u o r i d e s y s te m s . 129 V III MAGNETIC SUSCEPTIBILITIES OF THE HALOGEN FLUORIDES A. T h e o r e t i c a l A sp e c ts E very s u b s ta n c e p o s s e s s e s m a g n e tic p r o p e r t i e s t o some d e g r e e . These p r o p e r t i e s m a n i f e s t th e m s e lv e s i n one o f th r e e w ays; d ia n a g n e tis m , p a r a ­ m a g n etism , o r fe rro m a g n e tis m . The g e n e r a l b e h a v io r o f s u b s ta n c e s p o s s e s s ­ in g t h e s e d i f f e r e n t ty p e s o f m agnetism may be d e s c r ib e d as f o llo w s : if two m a g n e tic p o le s d e s ig n e d as m^ and ma a re s e p a r a te d by a d is ta n c e r , t h e n th e f o r c e b e tw ee n t h e p o le s i s p w here th e q u a n t i t y = Mi m2 a *- r a i s assum ed t o be e q u a l t o u n i t y i n a vacuum . q u a n t i t y r e p r e s e n t e d by The i s th e m a g n e tic p e r m e a b ility o f th e m edium . I t i s a m easu re o f t h e te n d e n c y o f th e m a g n e tic l i n e s o f f o r c e to p a s s th ro u g h th e medium r a t h e r th a n th ro u g h a s u rro u n d in g vacuum. m a g n e tic s u b s ta n c e s m- F or p a ra ­ i s s l i g h t l y g r e a t e r th a n u n i t y , f o r f e rro m a g n e tic s u b s ta n c e s i t i s much g r e a t e r th a n u n i t y ( o f th e o r d e r o f 103) and f o r d ia m a g n e tic s u b s ta n c e s i t i s v e ry s l i g h t l y l e s s th a n u n i t y . I f t h e s t r e n g t h o f th e m a g n e tic f i e l d i s H , th e p r o d u c t m H can be shown86 t o be /U-K <= k I f I + H and t h e r e f o r e ^ ^ I 1 - w here I i s th e i n t e n s i t y o f th e m agnetism in d u c e d by th e f i e l d i n th e m edium . V e c to r q u a n t i t i e s a r e d e n o te d by an u n d e r l i n e . The r e l a t i o n s h i p 130 b etw een H and i s d e f in e d by I = KH where K i s t h e volume s u s c e p t i b i l i t y . I t h as b e e n fo u n d t h a t i n g e n e r a l th e d ia m a g n e tic s u s c e p t i b i l i t y o f a s u b s ta n c e i s in d e p e n d e n t o f te m p e ra tu re o r f i e l d s t r e n g t h , w hereas th e p a ra m a g n e tic s u s c e p t i b i l i t y o f a s u b s ta n c e h a s an in v e r s e te m p e ra tu re re la tio n s h ip . F e rro m a g n e tic s u s c e p t i b i l i t i e s v a r y w ith b o th te m p e ra tu re and f i e l d s t r e n g t h . The c l a s s i c a l t h e o r y o f diam agnetism i s due t o L angevin,® 7 who showed t h a t when a m a g n e tic f i e l d i s a p p lie d t o a system o f e l e c t r o n s m oving a b o u t a n u c le u s t h e r e i s a p r e c e s s io n o f th e e l e c t r o n o r b i t s . The a n g u la r v e l o c i t y o f th e p r e c e s s io n i s e q u a l to -eH/2mc where e and m are t h e c h a rg e and m ass o f th e e l e c t r o n and c i s th e v e l o c i t y o f l i g h t . I t c an a l s o b e shown t h a t th e c l a s s i c a l m a g n e tic moment o f an e le c tro n in i t s o r b it i s 2 I 2 c w here 63 The Gouy m ag n etic b a la n c e u sed i n t h i s work i s i l l u s t r a t e d i n F ig u re 2*6 and h as b een d e s c r ib e d i n d e t a i l e ls e w h e r e .64 The Gouy m ethod c o n s i s t s e s s e n t i a l l y o f su sp e n d in g a c y l i n d r i c a l sam ple o f th e m a t e r i a l t o be m easu red b etw e e n th e p o le s o f an e le c tro m a g n e t i n su c h a m anner t h a t one end o f th e sam ple i s i n a. r e g io n o f uniform h ig h f i e l d i n t e n s i t y and t h e o th e r end i s i n a r e g io n o f low o r n e g l i g i b l e f i e l d i n t e n s i t y ; t h e change i n w e ig h t o f th e sam ple when a m ag n etic f i e l d i s a p p lie d i s m e a s u re d . The p o le p i e c e s o f th e m agnet i l l u s t r a t e d a re a d ju s ta b le a lo n g t h e i r common a x i s . T h e re a re lljiiO t u r n s o f co p p e r w ire aro u n d each p o l e , th e t o t a l r e s i s t a n c e f o r b o th c o i l s i n s e r i e s b e in g a b o u t f i v e ohms. Any c u r r e n t from one t o tw e n ty am peres may be a p p lie d to th e c o i l s . When h ig h c u r r e n t s a r e u se d i t i s n e c e s s a r y to c o o l th e co;i.ls by c i r c u l a t i o n o f o i l th ro u g h th e w in d in g s . o p e r a t i n g a t 110 v o l t s . The s o u rc e o f power was a D. C . g e n e r a to r The c u r r e n t from th e g e n e r a to r was v a r ie d by means o f s e r i e s r e s i s t o r s and c o u ld be c o n t r o l l e d t o o n e - te n th o f an am p ere. The change i n w e ig h t o f th e sam ple i s m easured by su sp e n d in g i t i n t o t h e f i e l d from one arm o f a sem i-m ic ro b a la n c e . W eight changes as 133 s m a ll as tw o —h u n d re d th s o f a m illig r a m can b e d e te c te d when "this a r r a n g e ­ ment i s u s e d . The f i e l d s t r e n g t h o f th e m agnet w ith v a r io u s v a lu e s o f a p p lie d c u r r e n t was d e te rm in e d by m e a su rin g th e change i n w eig h t o f sam ples o f a s ta n d a r d n i c k e l c h l o r id e s o l u t i o n ^29.20$ n i C l 2 by w e ig h t) . The f i e l d s t r e n g t h was c a l c u l a t e d from th e f o llo w in g r e l a t i o n s i - ft2) H3A = g Aw where ftx = volume s u s c e p t i b i l i t y o f th e l i q u i d f t3 * volume s u s c e p t i b i l i t y o f A = a r e a o f th e t u b e , p a r a l l e l t o th e p o le f a c e s , from septum t o r e f e r e n c e m ark; found t o be 1 .88 g aw H a ir cm 2. = g r a v i t a t i o n a l c o n s ta n t * a p p a r e n t change i n w eig h t o f th e sam ple when p la c e d i n th e f i e l d . * f i e l d s tre n g th The r e s u l t s o b ta in e d a re t a b u l a t e d i n T a b le XXVII, and shown g ra p h ic ­ a l l y i n F ig u re 1*8. The c a l i b r a t i o n o f th e f i e l d s t r e n g t h b y t h i s method i s o n ly a p p ro x i­ m ate s in c e i t assum es t h a t th e s u s c e p t i b i l i t y tu b e c o n ta in s a unifo rm s a m p le , and t h a t th e septum i s p e r f e c t l y f l a t . T h is m ethod a c t u a l l y g iv es a q u a n t i t a t i v e c a l i b r a t i o n o f a p a r t i c u l a r m ag n etic s u s c e p t i b i l i t y tu b e so t h a t th e e x a c t m a g n e tic s u s c e p t i b i l i t y o f any o th e r m a t e r i a l p la c e d i n i t may be d e te r m in e d . u k The S u s c e p t i b i l i t y Tube The s u s c e p t i b i l i t y tu b e which was u se d i n t h i s work i s i l l u s t r a t e d i n F ig u re 5 3 . I t was c o n s tr u c te d e n t i r e l y o f V y co rV t o r e s i s t th e c o r ­ r o s i v e a c t i o n o f th e h a lo g e n f l u o r i d e s . The tu b e i s a d o u b le o r com pensated tub© w ith t h e h a lv e s s e p a r a te d by a sep tu m . T h is red u ced th e change o f w e ig h t o f th e tu b e i t s e l f i n th e f i e l d to n e a r ly z e r o . C o r r e c tio n v a lu e s f o r t h e empty tu b e a re g iv en i n T a b le XXVI. The tu b e was r e c a l i b r a t e d a f t e r e a c h ru n t o c o r r e c t f o r th e c o r r o ­ s iv e a c t i o n o f t h e compounds u s e d . are f o r th e i n i t i a l c a l i b r a t io n . The c a l i b r a t i o n d a t a m en tio n ed above S u b seq u en t c a l i b r a t i o n d a ta were e s s e n t i a l l y t h e sam e. F o r e a c h c a l i b r a t i o n t h e tu b e was f i l l e d t o a s p e c i f i c r e f e r e n c e m ark a b o u t f o u r in c h e s above th e se p tu m . When th e s u s c e p t i b i l i t y o f th e h a lo g e n f l u o r i d e s was d e te r m in e d , h o w ev er, th e tu b e was f i l l e d above th e m ark s in c e i t i s v e ry d i f f i c u l t t o t r a n s f e r an e x a c t q u a n ti ty o f h alo g en flu o rid e . T h is d id n o t m a t e r i a l l y e f f e c t th e r e s u l t s b ecau se th e f i e l d s t r e n g t h a t t h a t p o i n t was n e g l i g i b l e and th e d e n s i t i e s o f th e s u b s ta n c e s were known. Sample P r e p a r a t io n and P ro c e d u re s I t was fo u n d t h a t th e h a lo g e n f l u o r i d e s c o u ld n o t be d i s t i l l e d d i r e c t l y from th e m e ta l vacuum l i n e i n t o th e m ag n etic s u s c e p t i b i l i t y tu b e * C o rn in g G la ss C o. 135 w ith o u t i n t r o d u c i n g m in u te <3uaj* t i t i e s o f p a ra m a g n e tic m a t e r i a l . F or t h i s r e a s o n th e s m a ll V ycor a p p a ra tu s i l l u s t r a t e d i n F ig u re 1+7 was con­ s tru c te d . The h a lo g e n f l u o r i d e s were d i s t i l l e d o r sip h o n ed d i r e c t l y from th e s to r a g e c o n t a i n e r s i n t o th e a p p a ra tu s i l l u s t r a t e d and d i s t i l l e d from t h e r e i n t o t h e s u s c e p t i b i l i t y t u b e . I n th e c a s e o f brom ine t r i f l u o r i d e a sam ple was d i s t i l l e d d i r e c t l y from t h e ta n k i n t o an aluminum tu b e on th e vacuum l i n e and th e n r e d i s ­ t i l l e d from th e aluminum tu b e t o th e Vycor a p p a r a tu s . th e n r e d i s t i l l e d I n t o th e s u s c e p t i b i l i t y t u b e . The sam ple was The brom ine t r i f l u o r i d e th u s o b ta in e d was p r o b a b ly c o n ta m in a te d w ith brom ine m o n o flu o rid e s in c e th e sam ple had a b ro w n ish c o l o r . A s m a ll amount o f c o n ta m in a tio n w ith a d ia m a g n e tic s u b s t a n c e , h o w ev er, would n o t m a t e r i a l l y a f f e c t th e r e s u l t o f t h e m e a su re m e n t. The e l i m i n a tio n o f p a ra m a g n e tic o r fe rro m a g n e tic m e t a l l i c s a l t s was a c c o m p lish e d by t h i s p r o c e d u r e . The c o n s ta n c y ob­ s e rv e d f o r th e s u s c e p t i b i l i t i e s o f a g iv e n s u b s ta n c e a t d i f f e r e n t f i e l d s t r e n g t h s showed t h a t f e rr o m a g n e tic m a t e r ia ls were a b s e n t. S u s c e p t i b i l i t y m easu rem ents w ere made on e a c h s u b s ta n c e a t H f 15 and 20 a m p e re s, c o r re s p o n d in g t o a ra n g e i n f i e l d s t r e n g t h from UOOO t o 1 2 ,0 0 0 O e r s te d s . A f t e r e a c h sam ple had b e e n m easured th e r e s i d u a l m agnetism o f th e p o le p i e c e s was rem oved b y s lo w ly re d u c in g th e c u r r e n t and r e p e a t e d ly r e v e r s i n g i t s d i r e c t i o n by m eans o f a r e v e r s i n g s w itc h . 136 t— F igu re 1*6. The Qcmy magnetic b a la n ce. 137 To vacuum lin e e and rubber bands To balance Gold ch ain [Copper wire Septum D i s t i l l i n g apparatus w ith s u s c e p t ib ilit y tube attached S u s c e p t ib ilit y Tube as su s­ pended from balance F igure hi • Diagram o f th e Vycor s u s c e p t ib ilit y tube and d i s t i l l i n g apparatus* 13d TABLE XXVJ. APPARENT WEIGHT CHANGES FOR THE EMPTY SUSCEPTIBILITY TUBE — CALIBRATION I - C u rren t Amp. W eight (gm) 0 15.26255 5 1 5 . 2621*7 - 0 .0 0 0 0 8 8 15.26235 0 .0 0 0 2 0 11 15.26217 0 .0 0 0 3 0 15 15.26205 0 .0 0 0 5 0 20 1 5 .2 6181* 0 .0 0 0 7 0 A W eight Cgm) TABLE XXVII FIRST CALIBRATION OF THE SUSCEPTIBILITY TUBE WITH NICKEL CHLORIDE C u rre n t Amp. W eight Cgm.) A W eight C o rr. .* H calc O e rs te d s H O e rs te d s 0 17 .83925 5 17.86585 0.0267 1*770 1*780 8 17 .90310 0 . 061*1 7325 7360 11 17.93580 0 . 0961 * 9080 9060 15 17.96825 0.1295 10500 101*70 20 17.9973 0.1587 11600 — # U n p u b lish e d w ork o f R o b e rt E . V&nder Vennen 139 12000 2*000 10 o 15 Amperes F ig u r e 1*8, C a l i b r a t i o n c u rv e f o r t h e Gouy b a la n c e . 20 liiO C. D ata and C a l c u la tio n s I n t h e f o llo w in g p a g e s th e m a g n e tic s u s c e p t i b i l i t y d a ta f o r c e r t a i n h a lo g e n f l u o r i d e s w i l l b e p r e s e n te d i n t a b u l a r fo rm . In fo r m a tio n p e r ­ t a i n i n g t o t h e c a l c u l a t i o n o f c e r t a i n o f th e t a b u l a t e d q u a n t i t i e s w i l l be p re s e n te d f i r s t . The m a g n e tic s u s c e p t i b i l i t y o f a s u b s ta n c e may be d e te rm in e d w ith o u t a know ledge o f H by a r e l a t i v e m eth o d . The a p p a re n t c h a n g es i n w e ig h t o f b o th a s u b s ta n c e o f known, and o f unknown s u s c e p t i ­ b i l i t y a re m e a su re d u s in g t h e same v a lu e s o f c u r r e n t , and th e same s u s ­ c e p t i b i l i t y tu b e . From t h e r e l a t i o n g iv e n on p ag e H2 * 2g Aw Ki " K2 Thus f o r two s u b s t a n c e s , one o f known m a g n etic s u s c e p t i b i l i t y , and one o f unknown m a g n e tic s u s c e p t i b i l i t y , whose a p p a re n t w e ig h t change h as b e e n m ea su re d a t th e same f i e l d s t r e n g t h _ * *1 - Ka K, 2g Awx Kx - Ka = t f X - Ka) + Ka AWX w here Kx , K3 , g , and have b e e n d e f in e d p r e v i o u s l y , Kx i s th e volume s u s c e p t i b i l i t y o f th e unknown, and a p p a re n t change i n w e ig h t o f th e unknown when p l a c e d i n t h e m a g n etic f i e l d . The s p e c i f i c s u s c e p t i b i l i t y o f th e unknown { volum e s u s c e p t i b i l i t y d iv id e d by th e d e n s i t y . th e se c a lc u la tio n s i s th e re fo re ) i s d e f in e d as th e The f i n a l e q u a tio n u s e d i n where X w i s t h e gram s u s c e p t i b i l i t y . M olar s u s c e p t i b i l i t i e s ( % a re c a l c u l a t e d by m u l t i p l y i n g th e s p e c i f i c s u s c e p t i b i l i t y by th e m o le c u la r w e ig h t o f t h e s u b s t a n c e . A ll aw v a lu e s g iv e n a r e c o r r e c t e d f o r th e a p p a r e n t change i n w e ig h t o f t h e s u s c e p t i b i l i t y tu b e when p la c e d i n th e m a g n etic f i e l d . I n t h e f o llo w in g t a b u l a t i o n o f r e s u l t s th e f i r s t c a l i b r a t i o n h a s b e e n o m itte d s in c e i t h a s a lr e a d y b e e n p r e s e n te d i n th e p re v io u s s e c t i o n . 1U2 TABLE XXVIII THE MAGNETIC SUSCEPTIBILITY OF IODINE PENTAFLUOftIDE AT 25°C C u rren t Amperes W eight Grams ^ w ( c o r r e c te d ) Grams X v x 10® 0 .0 2 1 . 351*20 5 .0 2 1 .35220 -0 .0 0 1 9 2 -0 .2 6 6 8 .0 21.31*91*5 o.ooi+55 0 .2 6 2 1 1 .0 21.31*695 0 .00695 0 .2 6 5 1 5 .0 21.31*1*55 0.00915 0 .2 6 1 2 0 .0 21.31*21*5 0.0 1 1 0 5 0 .2 5 7 A verage % w = -0 .2 6 2 X 10"® A verage d e v ia t io n = 0 .0 0 3 X 10 _6 X M = - 5 8 .1 X 1 0 - 6 The d e n s i t y a t 25°C was ta k e n t o be 3 ,1 9 g?n. p e r c c . 18b 1h j TABLE XXIX THE MAGNETIC SUSCEPTIBILITY OF BROMINE PENTAFLUGRIDE AT 25°C* C u rren t Amperes W eight Grams c o r r e c te d ) Grams "X w x 106 0 .0 2 1 .50600 5 .0 2 1 . 501+50 - 0 .0011+2 - 0 .2 5 6 6 .0 2 1 . 502U0 0 .0031+1+ 0 .2 5 7 1 1 .0 2 1 .5 0 0 5 0 0 .0 0 5 2 6 0 .2 5 9 1 5 .0 21.1+9870 0 .00699 0 .2 5 6 2 0 .0 21.1+9705 0 .0 0 6 6 1 0 .2 6 0 A verage ^ * - 0 .258 X 1 0 “ A verage d e v ia tio n = 0 .0 0 1 X 10 •v A h _6 = -ii5 .1 X 106 ■K" The c a l i b r a t i o n d a t a on th e f o llo w in g ps-ge was u sed f o r t h i s r u n . The d e n s i t y a t 25°C was ta k e n as 2 .hi gm. p e r c c . 16b lUi TABLE XXX apparent weight changes for t h e m p t y s u s c e p t ib il it y tube FOR THE SECOND CALIBRATION C u rren t Amperes W eight Grams 0 .0 16.2*8971 5 .0 16.1*8963 -0 .0 0 0 0 8 8 .0 16.1*8955 0 .0 0 0 1 6 1 1 .0 16.1*891*7 0 .00021* 1 5 .0 1 6 . 1*891*0 0 .0 0 0 3 1 2 0 .0 16.1*8937 0.000314 ^ w Grams TABLE XXXI SECOND CALIBRATION OF THE SUSCEPTIBILITY TUBE WliH NICKEL CHLORIDE C u rre n t Amperes W eight Grams 1 c o r r e c te d ) Grams H c a lc . O e rste d s H* O e rste d s 0 .0 19.01*710 5 .0 1 9 .0 7 3 3 5 0 .0 2 6 3 U7U5 1*780 8 .0 1 9 .1 1 0 3 0 0 .063I* 7380 7360 1 1 .0 19.11431 0 .0 9 6 0 9060 9060 1 5 .0 1 9 . 171+9 0 .1 2 8 1 101*80 101*70 2 0 .0 1 9 .2 0 3 5 0 .1 5 6 7 11610 ---- lh $ TABLE XXXII THE MAGNETIC SUSCEPTIBILITY OF CHLORINE TRIFLUORIDE AT 30°C C u rren t Ajnperes W eight Grams 0 .0 2 1 .01*250 5 .0 21.01*130 -0 .0 0 1 1 2 -0 .2 7 2 8 .0 2 1 .0391*7 0 .0 0 2 8 7 0 .2 8 9 1 1 .0 2 1 .0379$ 0 .001*31 0.281* 1 5 .0 21.0361*5 0.00571* 0 .2 8 6 2 0 .0 21.03515 0.0 0 7 0 1 0.2 8 7 A verage -V A* W = - 0 .2 8 6 X 10“ 6 Aw ^ c o r r e c te d ) Grams X 106 (5 am pere ru n o m itte d ) • A verage d e v i a t i o n ** 0 .0 0 2 X 10“ 6 -26.1* X 10*e The d e n s i t y a t 30°C i s ta k e n as 1 .8 0 gm p e r c c . 1613 116 TABLE XXXIXI APPARENT WEIGHT CHANGES FOR THE EMPTY SUSCEPTIBILITY TUBE FOR THIRD CALIBRATION C u rre n t Amperes W eight Grams 0 .0 16.^2760 5 .0 16.U2750 -0 .00010 8 .0 1 6 .U27U0 0 .0 0 0 2 0 1 1 .0 I6 .li2 7 3 0 0.00030 1 5 .0 1 6 .1*2720 0 .0001*0 2 0 .0 16.U2710 0 .0 0 0 5 0 ^ w Grams TABLE XXXIV V THIRD CALIBRATION OF THE SUSCEPTIBILITY TUBE WITH NICKEL CHLORIDE scxt? ^ c o r r e c te d ) Grams H e a le . O e rs te d s H1 O e rs te d s C u rren t Amperes W eight Grams 0 .0 1 9 .0 1 7 2 5 5 .0 19.010*1 - 0.0268 U770 U780 8 .0 19.0610 0.0 6 3 7 736u 7360 1 1 .0 1 9 .1 1 3 7 0 .0 9 6 5 9080 9060 1 5 .0 19.11x65 0 .1 2 9 3 10300 10L70 2 0 . 0 1 9 .1 7 5 3 0 .1 5 8 1 11600 TABLE XXXV THE MAGNETIC SUSCEPTIBILITY OF BROMINE TRIFLUORIUE AT 2Q°0 C u rren t Amperes W eight Grams 0 .0 2 1 .2 9 0 6 0 5 .0 2 1 .2 8 8 8 0 -0 .00170 -0 .2 6 7 8 .0 21.2 8 6 6 0 0.00380 0.250 1 1 .0 21.281+65 0 .0 0 5 6 5 0.2+ 6 i5 .o 2 1 .2 8 2 7 0 0.00730 0.236 2 0 .0 2 1 .2 8 1 0 0 0.00910 0.21l0 A verage 'JC w = -0.21+8 X 10“ 6 A verage d e v ia tio n = 0 .0 1 0 X 10 ^ % (c o rre c te d ) Grams —6 M = - 3 3 .9 X 10”6 The d e n s i t y a t 28°C i s ta k e n as 2 .7 9 grains p e r c c . ^ ■W X IO6 1 Lb D. D is c u s s io n o f th e R e s u lts The p r e d i c t i o n o f m a g n e tic s u s c e p t i b i l i t i e s h as m et w ith v a ry in g d e g re e s o f s u c c e s s d e p en d in g upon th e m ethod w hich h as oeen u s e d . P ascal d e v is e d an e m p ir ic a l t a b l e o f ato m ic m ag n etic s u s c e p t i b i l i t i e s freon e x p e r im e n ta l d a t a f o r o r g a n ic com pounds. H is t a b l e s have p ro v en to be q u i t e s u c c e s s f u l i n p r e d i c t i n g th e s u s c e p t i b i l i t i e s o f m ost o rg a n ic compounds b u t n o t th o s e o f in o r g a n ic com pounds. The m ost s u c c e s s f u l t r e a t m e n t o f t h i s problem from a t h e o r e t i c a l p o i n t o f v iew i s due to A ngus60 who c a l c u l a t e d a s e t o f io n ic s u s c e p t i b i l i t i e s . I n t h i s w ork we a r e i n t e r e s t e d i n Angus*s i o n i c s u s c e p t i b i l i t i e s fo r Cl Br , h r* 6 , I* 8 F \ h i s v a lu e s f o r - ^ ^ X 106 a r e 8 .3 9 , 1 7 .6 7 , 1 1 . 8U, 2 2 .1 7 , and 7 .2 5 , r e s p e c t i v e l y . The t a b l e on th e f o llo w ­ in g p ag e shows a c o m p ariso n betw een th e e x p e r im e n ta l and c a l c u l a t e d m a g n e tic s u s c e p t i b i l i t i e s f o r th e compounds whose s u s c e p t i b i l i t i e s were d e te rm in e d h e re and f o r a few o th e r l i q u i d f l u o r i d e s . T h e re i s an a p p r e c ia b le d if f e r e n c e b etw een th e c a l c u l a t e d and e x p e ri m e n ta l v a l u e s . T h is i s n o t s u r p r i s i n g when one c o n s id e r s t h a t th e c a lc u ­ l a t i o n s a r e b a s e d upon th e a ssu m p tio n t h a t th e a c t u a l io n s m en tio n ed do e x is t. S in c e th e compounds l i s t e d a re u n d o u b te d ly c o v a le n t i n c h a r a c te r t h i s a s su m p tio n w ould c a u se some e r r o r . Angus has shown t h a t h i s v a lu e s w i l l g e n e r a l l y p r e d i c t th e m a g n e tic s u s c e p t i b i l i t y o f io n ic compounds v e ry a c c u r a t e l y . I t i s a l s o p o s s i b l e t h a t th e p o s i t i v e term o f th e quantum m e c h a n ic a l e q u a tio n i s n o t n e g l i g i b l e i n th e s e c a s e s and con­ t r i b u t e s t o th e d i f f e r e n c e s betw een th e c a l c u l a t e d and e x p e r im e n ta l v a lu e s . 1 19 TABLE XXXVI MAGNETIC SUSCEPTIBILITIES FOE SOME LIQUID FLUORIDES % Compound O bserved sf6 x 106 C a lc u la te d -w SeF6 -51* -51 TeF6 -66» -61 MoF6 -26*' wf 6 -liO» -6 6 g if3 -2 6 -3 0 BrFa -3U -39 BrFB -U5 -55 -58 -6 6 * R e fe re n c e 62 150 IX SUMMARY P ro c e d u re 3 eq u ip m en t^ and "techniques f o r h a n d lin g th e h a lo g e n f l u o r i d e s and t h e i r h y d ro g en f l u o r i d e s o l u t i o n s y and f o r m e a su rin g t h e i r vapor p re s s u re s f r e e z i n g p o i n t s y a p p a re n t m o la l volum es9 c o n d u c t i v i t i e s and m a g n e tic s u s c e p t i b i l i t i e s , have b een d e v e lo p e d and a re d e s c r ib e d in d e ta il. New v a lu e s were o b ta in e d f o r th e c o n d u c t i v i t i e s and f r e e z i n g p o in ts o f c e r t a i n r e l a t i v e l y p u re h a lo g e n f l u o r i d e s . The p u r i t i e s were e s t i ­ m ated from t h e c o o lin g c u rv e s o b ta in e d . The v a p o r p r e s s u r e c u rv e s f o r th e hydrogen f l u o r i d e s o l u t i o n s o f i o d i n e p e n t a f l u o r i d e , brom ine p e n t a f l u o r i d e and c h l o r in e t r i f l u o r i d e were d e te rm in e d and th e te m p e ra tu re v a r i a t i o n o f th e p o s i t i v e d e v ia tio n from R a o u l t 's law i s i n t e r p r e t e d i n term s o f v a r io u s p r o c e s s e s w hich m ig h t o c c u r i n th e l i q u i d p h a s e . P h ase d iag ram s f o r th e sy stem s io d in e p e n ta f lu o r id e - h y d r o g e n f l u o r i d e and brom ine p e n ta f lu o r id e - h y d r o g e n f l u o r i d e were o b ta in e d , f iu te c tic p o in ts w ere o b s e rv e d i n t h e r e g i o n o f h ig h hydrogen f l u o r i d e c o n c e n tr a tio n i n b o th cases . D i s c o n t i n u i t i e s i n th e f r e e z i n g p o i n t c u rv e s a re d is c u s s e d i n term s o f p o s s i b l e s o l i d - s t a t e t r a n s i t i o n s and u n s ta b le compound f o rm a tio n . The a p p a r e n t m o la l volum es o f some o f th e s o l u t i o n s were m easured and fo u n d t o be s l i g h t l y s m a lle r th a n w ould be e x p e c te d i f th e s o lu t io n s w ere i d e a l . A more open s t r u c t u r e i n th e p u re l i q u i d s th a n i n th e s o lu ­ t i o n s i s p o s t u l a t e d t o e x p l a i n th e s e o b s e r v a tio n s . 151 C o n d u ctan ce m easu rem en ts o f th e Iiydrogen f l u o r i d e s o l u t i o n s o f s e v e r a l h a lo g e n f l u o r i d e s w ere made a t v a r io u s te m p e r a tu r e s . The d a ta o b ta in e d i n d i c a t e d t h a t h y d ro g en f l u o r i d e a c ts as an e x tre m e ly weak e l e c t r o l y t e i n s o l u t i o n w ith th e h a lo g e n f l u o r i d e s and t h a t th e c o n d u c t­ in g s p e c i e s a r e th e r m a lly u n s t a b l e . The m a g n e tic s u s c e p t i b i l i t i e s o f s e v e r a l o f th e p u re h alo g en f l u o r i d e s w ere m ea su red and com pared to v a lu e s p r e d i c te d by A ngus. The o b s e rv e d v a lu e s a r e , i n g e n e r a l, lo w e r th a n c a l c u l a t e d , th e d e v ia tio n s becom ing l a r g e r th e h e a v ie r th e m o le c u le s . T h is was t o b e e x p e c te d s in c e t h e c a l c u l a t i o n s a r e b a s e d upon an io n i c m o d el. BIBLIOGRAPHY 152 BIBLIOGRAPHY 1 . H . Kam m erer, J . P r a k t . C hem ., 8 5 , U52 (1 8 6 2 ). 2 . H . M o is s a n , Le F lu o r e t s e a C om poses, S t e i n h e i l , P a r i s , 1900. 3. 0. R u f f and E . A s c h e r, 2 . a n o rg . a llg e m . C hem ., 1 7 6 , h. 0 . R u f f , Z. angew . C hem ., U l, 1289 ( 1 9 2 9 ). 5. 0. R u ff, Z. angew . C hem ., h 2 , 807 (1929) . 258 ( 1 9 2 9 ). 6 . 0 . R u f f and S . L a a s s , Z. a n o r g . a llg e in . C hem ., 1 8 3 . 21h (1 9 2 9 ). 7 . O. R u f f and 8. 0 . R u ff, F . 29 ( 1 9 3 2 ) . W. M e n a e l, 2 . a n o rg . a llg e m . C hem ., 1 9 8 , S l b e r t , and W. M e n z e l, 2 . a n o r g . a llg e m . 375 (1 9 3 1 ). C hem ., 2 0 7 , 9 . 0 . R u ff and A. B r a i d a , Z . a n o rg . a llg e m . C hem ., 211*. 91 (1 9 3 3 ). 1 0 . 0 . R u f f and H . K ru g , Z . a n o r g . allgem C hem ., 190 . 270 (1 9 3 0 ). 1 1 . 0 . R u f f and W. Klemm, Z . a n o r g . a llg e m . C ham ., 1 9 3 , 176 ( 1 9 3 0 ). 1 2 . H . B . Thom pson, An I n v e s t i g a t i o n o f C e r t a i n P h y s ic a l P r o p e r t i e s o f th e H alo g en F l u o r i d e s , t h e s i s , M ich ig an S t a t e C o lle g e (1 9 5 3 ). 1 3 . N. N . G reenw ood, R e v s . P u re and A p p lie d C hem ., A u s t r a l i a , 1 , 81* (1 9 5 1 ). 1 ^ . A. G. S h a r p e , Q u a r t. R e v ., L , 115 ( 1 9 5 0 ). 1 5 . J . H. S im o n s, E d ., F lu o r in e C h e m is try , Academic P r e s s , I n c . , New Y o rk , 1 9 5 0 . a . H. S , B o o th and J . T . P i n k s t o n , J r . , The H alogen F l u o r i d e s , C h a p . 1*. b . J . H . S im o n s, H ydrogen F l u o r i d e , C hap. 6 . c . G. d o c k e r , The T h e o r e t i c a l A sp ects o f F lu o r in e C h e m is try , C h ap . 1 0 . 1 6 . G. P . O l i v e r and J . W. Q r i s a r d , J . Am. Chem. S o c . , 7U, 7205 (1952) . 1 7 . H . W. H a e n d le r , P r o g r e s s R e p o rt t o Atom ic E nergy C om m ission, U n iv . o f New H a m p sh ire , Aug. 1 , 1 953. 153 1 8 . A. A. B a n k s , H . J . Em eleus 2861. and A. A. W oolf, J . Chem. Soc . 191+9 * ------- 1 9 . H. H . Hyman, H . Andrews and J . J . K a tz , A b s tr a c ts o f P a p e rs P r e ­ s e n te d a t t h e A m erican C hem ical S o c ie ty M e e tin g , C h ic a g o , 1 1 1 ., S e p te m b e r, 1 9 5 0 . 2 0 . H . J . Em eleus and A. A. W oolf, J . Chem. S o c ., 191+9, 2886. 2 1 . H . J . Em eleus and A. G. S h a rp e , J . Chem. S o c ., 191+9. 2206. 2 2 . A. A. W o o lf, J . Chem. S o c ., 1 9 5 0 » 3 678. 2 3 . A. A. W oolf and N . N. G reenwood, J . Chem. S o c ., 1 9 5 0 , 2200. 2i+. D . F . S m ith and J . P . P e rn s le r, Siymposia on M o le c u la r Spefcra and S p e c tr o s c o p y , Ohio S t a t e U n i v e r s i t y , Ju n e 1 8 , 1951a. 25* J* F i s c h e r , R . K. S te u n e n b e rg , and R . C . V o g e l, Argonne N a tio n a l L a b o r a to r y , R e p o rt 5 0 8 7 , J u l y , 1 953. 2 6 . A . S . M a r g g r a f f , Memores de B e r l i n (1 7 6 8 ). 2 7 . K a r l S h e e l e , S v en s. V eten s* A cad . , 120 (1771) . 2 8 . K. F re d e n h a g e n and J . D ahm los, 2 . a n o rg . a llg e m . C hem ., 1 7 8 . 272 (1 9 2 9 ). 29. J . H . Sim ons and J . W. B o u k n ig h t, J . Am. Chem. S o c ., 5 5 , 11+58 (1 9 3 3 ). 30. J . H . Sim ons and R . 0 . 3 1 . J . H. Simons and J . H. D re s d n e r, J . Am. Chem. S o c ., 6 6 , 1070 (191+1+) . H ild e b r a n d , J . Am. Chem. S o c ., 1+2, 2138 (1921+) . 3 2 . S . H. B a u e r , J . X. B each and J . H. S im ons, J . Am. Chem. S o c ., 6 1 , 1238 ( 1 9 3 9 ) . 3 3 . N . B . Hannay and C . Sm yth, J . Am. Chem. S o c ., 6 8 , 171 (191+6). 3l+. G. B r i e g l e b , 2 . p h y s i k . Chem. , B $ l » 9 (191+1). 3 5 . G. B r i e g l e b , 2 . p h y s ik . C hem ., B g2, 368 (191+2). 3 6 . G. B r i e g l e b , 2 . p h y s ik . C hem ., B 5 3 . 225 (191+3). 3 7 . J . H. D a v id , H . U . W hite and H . L . J o h n s to n , J . Am. Chem. S o c ., 7 5 , 1 2 3 2 , ( 1 9 5 3 ;. 3 8 . S . GQLasstone, T ex tb o o k o f P h y s ic a l C h e m is try , 2nd E d ., D. Van N o s tra n d and C o ., I n c . , New Y o rk , 191+6. 15k 3 9 . A . F i n d l a y and A. N . C a m p b e ll, P hase R u le , 9 th E d . , Dover P u b l i s h e r s . I n c . , New Y o rk , 1 9 5 1 , hO. C . R . W itsc h o n k e , A n a l. C hem ., 2k , 350 (1 9 5 2 ). k l . N a t i o n a l B u reau o f S ta n d a r d s , C i r c u l a r Number 50 8 , R e fe re n c e T a b le s f o r T h e rm o c o u p le s, ( 1 9 5 1 ). h2. H andbook o f C h e m is try and P h y s ic s , 3 0 th E d ., C hem ical Rubber P u b l i s h i n g C o ., 1 9 k 8 . 1*3. W. R . W h ite , J . Am. Chem. S o c ., £ 6 , 20 (193k) . kh. G. H . C ad y , J . Am. Chem. S o c . , 5 6 , lk 3 1 ( 1 9 3 k ) . k 5 . I . I*. M i l l i e a n , A. F . J o s e p h and T . M. Low ry, J . Chem. S o c ., 1 2 1 , 95k ( 1 9 2 2 ) . ’ * 1+6. W. 0 . R a b e , 2 . p h y s ik . C hem ., J 8 , 175 ( 1 9 0 1 ) . 1+7• The I n t e r n a t i o n a l C r i t i c a l T a b le s , M cG raw -H ill Book C o ., I n c . New Y o rk , 1 9 3 3 . 1+8. L . S t e i n , R . C . V o g e l, A b s tr a c ts o f p a p e r s p r e s e n te d b e f o re th e D i v i s i o n o f P h y s i c a l and I n o r g a n ic C h e m is try o f th e Am erican C h em ical S o c i e t y , K ansas C i t y , M arch 2 3 , 195k. i+9. J . L . S p e i r s , H . B . Thom pson, M. B. P a n i s h , and M. T . R o g e rs , t o b e p u b lis h e d i n th e J o u r n a l o f th e Am erican C hem ical S o c ie ty . 5 0 . J . L . S p e i r s , H. B . Thompson and M. T . R o g e rs , U n p u b lish ed r e s u l t s . 5 1 . S . G la s s to n e , The E le c tr o c h e m is tr y o f S o l u t i o n s , D. Van N o stran d C o ., I n c . , New Y o rk , 1 9 3 0. 5 2 . G. J o n e s and S . M. C h r i s t i a n , J . Am. Chem. S o c ., 5 7 , 272 (1 9 3 5 ). 5 3 . L . F . A u d rie th and J . K le in b e r g , Non-Aqueous S o lv e n ts , John W iley and S o n s , I n c . , New Y o rk , 1 9 5 0 . 51+. R . W. B r e n n e r , J . Am. Chem. S o c ., 6 ^ , 1+1+1+ (1 9 k k ) . 55. T . S h e d lo v s k y , J . Am. Chem. S o c . , 5 k , I k l l ( 1 9 3 2 ). 5 6 . L . Page and N . Adams, P r i n c i p l e s o f E l e c t r i c i t y , 2nd E d ., D. Van N o s tra n d C o . , I n c . , New Y o rk , 1 9 k 9 . 5 7 . E . C . S t o n e r , M agnetism and M a t t e r , M ethuen and C o ., L t d . , London, 193k. 1 55 5 8 . J . H. Van V le c k , T h e o ry o f E l e c t r i c and M ag n etic S u s c e p t i b i l i t i e s , O x fo rd U n i v e r s i t y P r e s s , O xford .,1932. 5 9 . L . P a u l i n g , P roc . R oy. S o c ., (L o n d o n ), A H lj, 118 (1 9 2 7 ). 6 0 . W. P . A ngus, P r o c . R oy. S o c ., (L o n d o n ), A 136. 569 (1 9 3 2 ). 6 1 . P . W. S elw o o d , M a g n e to c h e m istry , I n t e r s c i e n c e New Y o rk , 19U3* P u b lis h e r s ,I n c . , 6 2 . P . H en k el and W. Klemra, Z , a n o rg . a llg e m . C hem ., 2 2 2 , 70 (1 9 3 5 ). 6 3 . L . G. G ouy, Com pt. r e n d . , 1 0 9 . 935 (1 8 8 9 ). 6U. R . E . V en d er V ennen, A M agnetochem ical I n v e s t i g a t i o n o f th e A d s o rb tio n o f P a ra m a g n e tic S a l t s , u n p u b lis h e d M aster o f S cien ce t h e s i s , M ic h ig a n S t a t e C o lle g e ( 1 9 5 1 /.