A 3ILVICAL STUDY OF CERTAIN FACTORS
CONTRIBUTING TO THE DIFFERENTIAL HEIGHT GROWTH OF
PLANTATION-GROWN TULIP POPLAR
(LIRIODENDRON TULIP IF ERA L .)
By
R o bert Dean Shipman
A THESIS
S u b m itte d to th e School o f G radu ate S tu d i e s o f M ichigan
S t a t e C o lle g e o f A g r i c u l t u r e and A p p lie d S cien ce
i n p a r t i a l f u l f i l l m e n t o f th e r e q u ire m e n ts
f o r th e d e g re e o f
DOCTOR OF PHILOSOPHY
DEPARTMENT OF FORESTRY
1952
ProQuest Number: 10008427
All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.
uest,
ProQuest 10008427
Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.
ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106 - 1346
AOKNOVILEDGrMSKDS
The a u th o r i s in d e b te d t o many p e r s o n s f o r a s s i s t a n c e , a d v i c e , and
s u g g e s t i o n s i n t h e a n a l y s i s o f r e s e a r c h upon w hich t h i s d i s s e r t a t i o n i s
b a s e d and i n t h e c o l l e c t i o n o f f i e l d d a t a .
P a r t i c u l a r acknowledgment i s
g iv e n to t h e f o l l o w i n g members of th e f a c u l t y of M ichigan S t a t e C o lle g e ,
who th r o u g h t h e i r e n co u ragem ent, i n t e r e s t , and p r o v i s i o n o f a s s i s t a n c e
f a c i l i t a t e d th e e x e c u tio n o f th e r e s e a r c h ;
D r. T e r r i l l D. S te v e n s ,
whose a d m i n i s t r a t i v e h e l p c o n t r i b u t e d to th e c o l l e c t i o n and assem bly o f
f i e l d d a ta ;
D r. Eugene P . W h ite s id e , who a id e d in mapping t h e s o i l s of
th e e x p e r im e n t a l a r e a .
D r. K irk Lawton, who gave in v a l u a b l e a d v ic e on
c e r t a i n c h e m ic a l d e t e r m i n a t i o n s o f th e s o i l s ;
D r. Lloyd M. Turk, whose
c r i t i c i s m o f th e m i c r o b i o l o g i c a l s t u d i e s was i n e s t i m a b l e ;
D r. S ta n a r d G.
B e r g q u i s t and D r. W illia m B. Drew, whose s u g g e s tio n s and a d v ic e on th e
g e o lo gy and b o ta n y o f t h e a r e a r e s p e c t i v e l y , c o n t r i b u t e d to th e e c o lo g
i c a l p h a s e s o f th e s tu d y ;
D r. Edward D. D evereux, who p r o v id e d b a c t e r i a l
media f o r t h e m i c r o b i a l d e t e r m i n a t i o n s ; and Dr. W illiam D* B a te n , who
a d v is e d upon th e s t a t i s t i c a l a n a l y s i s of th e d a t a .
The w r i t e r d e e p ly a p p r e c i a t e s th e f i n a n c i a l s u p p o rt o f f e r e d th ro u g h
th e Alumni P r e - B o c t o r a l F e llo w s h ip , School of G raduate S t u d i e s , M ichigan
S t a t e C o lle g e .
The i n v e s t i g a t o r e x te n d s h i s s i n c e r e th a n k s to Mr. C. I n g e r s o l l
A rn o ld , F o r e s t e r - i n - C h a r g e , Russ E x p e rim e n ta l F o r e s t , f o r h i s a s s i s t a n c e
and p e r m i s s i o n to u se m a t e r i a l s and equipment on th e Russ F o r e s t , Cass
C ounty, M ich ig an .
To my w i f e , L o u e l l a Shipman, who c o n t r i b u t e d t o th e t y p in g of
c e r t a i n p h a s e s o f t h e m a n u s c r ip t , g r a t e f u l acknowledgment i s g iv e n
fo r her p a tie n t effo rt*
The a u t h o r w is h e s t o e x p r e s s h i s s i n c e r e th a n k s to a layman,
Mr* L o u is R. P o t t s , S u p e r in t e n d e n t o f S c h o o ls , M a r s h a ll County,
West V i r g i n i a , u n d e r whose c o n tin u e d en cou ragem en t, i n s p i r a t i o n , and
u n f a i l i n g i n t e r e s t t h i s i n v e s t i g a t i o n was c o m p le te d .
R o b e rt Dean Shipman
c a n d i d a t e f o r th e d e g re e o f
D o c to r o f P h ilo s o p h y
P i n a l e x a m in a tio n :
D isse rta tio n :
O c to b er 2 2, 195^* 2:00 P . M,
Room 11, F o r e s t r y B u ild in g
A S i l v i c a l Study o f C e r t a i n F a c t o r s C o n t r i b u t i n g to th e
D i f f e r e n t i a l H e ig h t Growth o f P la n ta tio n - G r o w n T u lip
P o p l a r ( L ir io d e n d r o n t u l i p i f e r a L .)
O u tlin e of S tu d ie s :
M ajor s u b j e c t : F o r e s t r y
Minor s u b j e c t s : S o i l S c ie n c e , B otany
B i o g r a p h i c a l Ite m s :
B o rn , May 12, 1921, M o u n d s v ille , West V i r g i n i a
U n d e rg ra d u a te S t u d i e s , S y rac u se U n i v e r s i t y , 1939“ ^2 ,
U n i v e r s i t y o f M ichigan,
G ra d u a te S t u d i e s , U n i v e r s i t y of M ichigan, 19*+7-^9*
M ichigan S t a t e C o lle g e , 1950-52
E x p e r ie n c e :
Member;
F o r e s t S o i l s R e se a rc h A s s i s t a n t , C h ild s -W o lc o tt F o r e s t , 19^-2;
Member U n ite d S t a t e s Army A ir F o r c e , 19^2-A-6; P a rk F o r e s t e r ,
West V i r g i n i a , 19^7? A g r i c u l t u r a l A id e , U .S. F o r e s t S e r v i c e ,
19^9; F o r e s t R e s e a rc h Ass i s t a n t , M ichigan S t a t e C o lle g e , 1950;
G ra d u a te A s s i s t a n t , M ichigan S t a t e C o lle g e , 1950-5^1 G ra d u ate
F e llo w , M ichigan S t a t e C o lle g e , 1951-52
Xi Sigma P i , R a t i o n a l F o r e s t r y H onorary; P h i E p s ilo n P h i ,
R a t i o n a l B o t a n i c a l H on o rary ; S o c ie ty of American F o r e s t e r s ;
A merican F o r e s t r y A s s o c i a t i o n ; S o i l S c ie n ce S o c ie ty o f America
A SILVICAX STUDY 05* CERTAIN FACTORS CONTRIBUTING TO THE DIFFERENTIAL HEIGHT
GROWTH OF PLANTATION-GROWN TULIP POPLAR ( LIRIODENDRON TULIPIFERA L«)
By
R obert Bean Shipman
AN ABSTRACT
S ubm itted to th e School o f G raduate S tu d ie s o f M ichigan
S ta te C o lleg e o f A g r ic u ltu r e and A p p lied Science
in p a r t i a l f u l f i l l m e n t o f th e re q u ire m e n ts
f o r th e degree of
DOCTOR OF PHILOSOPHY
D epartm ent o f F o r e s tr y
Approved
ABSTRACT
A com prehensive s i l v i c a l s tu d y o f p la n ta tio n -g ro w n t u l i p p o p la r
(L irio d o n d ro n t u l i p i f e r a L*) was conducted a t th e F red S uss E x p erim en tal
F o r e s t i n Cass C ounty, M ichigan, d u rin g th e grow ing seasons 1951-52.
T h is i n v e s t i g a t i o n In c lu d e d th e r e s u l t s o f b o th f i e l d and la b o r a to r y
s tu d ie s i n an e f f o r t to d eterm in e th e s i l v i c a l req u ire m e n ts o f p l a n t a t i o n grown t u l i p p o p lar*
A knowledge o f th e grow th h a b its o f t h i s s p e c ie s
under th e c lim a tic c o n d itio n s o f so u th w estern M ichigan seemed a d v isa b le *
In th e v i c i n i t y o f th e ex p e rim e n ta l a r e a th e re i s a la r g e number o f
fa rm e rs and p r i v a t e la n d owners who a r e i n t e r e s t e d i n c o n v e rtin g abandoned
farm la n d in to t r e e farm s
a s a c o n tin u e d investm ent*
S ince t u l i p p o p la r
i s a d e s ir a b le s p e c ie s from th e s ta n d p o in t o f econom ical r e f o r e s t a t i o n ,
th e p r e s e n t stu d y was I n i t i a t e d to determ ine th e f e a s i b i l i t y o f recom
mending t u l i p p o p la r p la n tin g s f o r such e n te r p r is e s *
The r e s e a r c h work was c a r r i e d o u t on a 15 y e a r o ld -2 0 a c re t u l i p
p o p la r - c a ta lp a p la n ta tio n *
O b serv atio n o f th e t u l i p t r e e s i n t h i s
p a r t i c u l a r p l a n t a t i o n r e v e a l a marked d i f f e r e n t i a l r a t e o f h e ig h t grow th
on t r e e s o f th e same age and d e n sity *
T his d if f e r e n c e i n h e ig h t grow th
i s a s s o c ia te d w ith th e p re se n c e o f an o ld -g ro w th hardwood s ta n d a d jo in in g
th e p l a n t a t i o n on th e so u th and west*
The e x p e rim e n ta l a r e a was a r b i
t r a r i l y d iv id e d i n t o two d i s t i n c t s i t e s (A rea X and A rea Y) f o r r e s e a r c h
p u rp o s e s .
E daphlc ( p h y s ic a l and c h e m ic a l), m icro c li m a tic , and q u a n t ita t iv e
s o i l m ic ro b io lo g ic a l d a ta were o b ta in e d a t th e same sam pling p l o t s i n b o th
a re a s*
The app ro ach to th e problem was to d eterm in e what f a c t o r o r s e t o f
f a c t o r s were c o n tr ib u tin g to th e marked d i f f e r e n t i a l h e ig h t grow th o f
p la n ta tio n -g ro w n t u l i p p o p la r .
2
L a b o ra to ry e x p erim e n ts on th e p h y s ic a l-e d a p h ic f a c t o r s o f th e two
compared s i t e s , r e v e a le d o n ly two p r o p e r t i e s o f an a c tu a l and s t a t i s t i c a l l y
s i g n i f i c a n t d iff e r e n c e *
These two r e l a t e d f a c t o r s , th e amount o f f in e
c la y and th e w a te r-h o ld in g c a p a c ity , were th e o n ly p h y s ic a l-e d a p h ic f a c t o r s
w h ic h
d i f f e r e d s i g n i f i c a n t l y betw een A rea
X
and A rea T.
Ten p h y s ic a l-
e d ap h ic p r o p e r t i e s were s tu d ie d i n d e t a i l and t r e a t e d s t a t i s t i c a l l y by
a n a l y s i s o f v a ria n c e *
The p h y s ic a l s o i l f a c t o r s in v e s tig a te d i n r e l a t i o n
to h e ig h t grow th were s o i l t e x t u r e , s p e c i f i c g r a v i ty , volume w e ig h t,
p o r o s i t y , h y g ro sc o p ic c o e f f i c i e n t , w a te r-h o ld in g c a p a c ity , m o istu re
e q u iv a le n t, s o i l e v a p o ra tio n l o s s , depth o f l a t e r a l r o o t p e n e t r a tio n ,
and th e w a te r t a b l e f lu c tu a tio n *
A s t a t i s t i c a l tre a tm e n t o f seven im p o rta n t ch em ical-ed ap h ic f a c t o r s
in each a r e a in d ic a te d no o u ts ta n d in g a c t u a l o r s t a t i s t i c a l l y s i g n i f i c a n t
d i f f e r e n c e betw een th e a r e a s o f good and p oor h e ig h t grow th o f t u l i p
p o p la r*
F u r th e r v e r i f i c a t i o n of th e la c k o f an y chem ical s o i l d if f e r e n c e
was s u b s t a n t i a t e d by a stu d y o f seven in d iv id u a l m ajor n u t r i e n t elem ents*
A grow ing seaso n stu d y o f Beven m lc ro c lim a tic f a c t o r s in r e l a t i o n to
s o i l f a c t o r s o f b o th a r e a s in d ic a te d in v i r t u a l l y e v ery case t h a t th e
i n t e g r a te d elem en ts o f e v a p o ra tio n , r e l a t i v e h u m id ity , a i r te m p e ra tu re ,
s u rfa c e s o i l te m p e ra tu re , p e r c e n t a v a ila b le m o is tu re , and l i g h t i n t e n s i t y ,
were c lo s e ly r e l a t e d to th e marked d i f f e r e n t i a l h e i ^ i t grow th o f t u l i p
p o p l a r , i n s o f a r a s th e s e f a c t o r s c o n d itio n e d th e s o il- m o is tu r e regimen*
S upplem ental s tu d ie s on grow th r a t e s , sun s c a ld , b a rk th ic k n e s s , h erbaceous
p l a n t s u c c e s s io n , and s o i l m ic ro b io lo g ic a l co u n ts f u r t h e r s u b s ta n tia te d
th e e f f e c t o f m ic ro c lim a te on s o l 1 -m o istu re requirem ents*
The co n tin u o u s s o il- m o is tu r e regim en th ro u g h o u t th e grow ing season
R obert D. Shipman
3
was found to be th e p r i n c i p a l l i m i t in g f a c t o r c o n tr ib u tin g to th e marked
d i f f e r e n t i a l h e i g h t grow th o f p la n ta tio n -g ro w n t u l i p p o p lar*
R obert D. Shipman
COHTENTS
Page
Acknowledgments
X.
II.
III.
IV.
V.
V I.
V II.
V III.
IX.
X.
X I.
S ta te m e n t o f th e P roblem
1
Review o f L i t e r a t u r e
7
H i s t o r y o f Russ F o r e s t and D e s c r i p t i o n o f E x p e rim e n ta l A rea
19
Scope o f E x p e rim e n ta l Work
144
S o i l Sam pling T echnique and S t a t i s t i c a l A n a ly s is o f D ata
*+7
L a b o r a t o r y E x p erim en ts (Phys i c a l - E d a p h ic )
51
A.
Summary and I m p l i c a t i o n o f R e s u l t s
B.
Root P e n e t r a t i o n in R e l a t i o n to Edaphic F a c t o r s
101
C.
W a te r-T a b le F l u c t u a t i o n and P h y s ic a l - E d a p h ic F a c t o r s
107
96
L a b o r a to r y E xp erim ents ( C hem ical-E daphic)
110
Summary and I m p l i c a t i o n of C hem ical-E daphic F a c t o r s
1^3
F i e l d - P l a n t a t i o n E x p erim ents
151
A.
Growth R ate of T u lip P o p l a r
151
B.
P r e c i p i t a t i o n and Tem perature in R e l a t i o n to Growth
l6H
C.
R a d i a l Growth in A d jo in in g Hardwoods
17S
D.
S u n s c a ld i n R e l a t i o n to H e ig h t Growth
181
E.
H erb aceo us V e g e ta tio n in R e l a t i o n to S o i l M o is tu r e
187
F.
M i c r o c l i m a t i c F a c t o r s and H e ig ht Growth
198
S o i l M i c r o b i o l o g i c a l E x p erim en ts
212
Summary and C o n c lu sio n s
2^0
L i t e r a t u r e C ite d
2^6
A SILVICAL STUDY OF CERTAIN FACTORS
CONTRIBUTING TO THE DIFFERENTIAL HEIGHT GROWTH
OF PLANTATION-GROWN TULIP POPLAR (LIRIODENDRON TULIPIFERA L .)
By
R o b e rt Dean Shipman
STATEMENT OF THE PROBLEM
T u l i p P o p l a r ( L i r io dend r on t u l i p i f e r a L .)
i s one o f th e most
v a l u a b l e hardwood t r e e s from th e s t a n d p o i n t o f th e f o r e s t e r .
A c co rdin g
to Harlow ( 1 9 ^ 1 ) , t h i s s p e c i e s may r e a c h a maximum h e i g h t o f tw o-h u nd red
f e e t w i t h a maximum d ia m e te r o f tw e lv e f e e t .
The a v e r a g e - s i z e d o ld
g ro w th t r e e i s a p p ro x im a te ly o n e -h u n d re d f e e t t a l l and f o u r to s i x f e e t
in d i a m e t e r .
The b o l e i s s t r a i g h t , t a l l ,
c l e a r o f s i d e b ra n c h e s f o r a
c o n s i d e r a b l e d i s t a n c e above gro u nd l e v e l , and i n f o r e s t s ta n d s i t s u p p o r ts
a r a t h e r n a rro w , open crown.
I t s r o o t system i s u s u a l l y deep and w ide-
s p r e a d in g and b e s t g row th i s o b t a i n e d on m o is t b u t w e l l - d r a i n e d s o i l s of
lo o s e t e x t u r e and o f m oderate d e p th .
I n o ld f o r e s t s ta n d s i t i s n e v e r
v e ry a b u n d an t and o c c u r s u s u a l l y in m ix tu r e w ith o t h e r hardw oods.
In
M ich ig an , i t i s o f t e n a s s o c i a t e d w i t h b e e c h , m aple, basswood, b l a c k
c h e r r y , and th e o a k s .
Some s e e d i s p ro d u ced a n n u a l l y and th e minimum
com m ercial se e d b e a r i n g age o f t h i s s p e c i e s i s f i f t e e n to tw e n ty y e a r s ;
th e a v e r a g e g e r m in a tiv e c a p a c i t y is low (a b o u t 10 to 12 p e r c e n t ) .
1.
S u b m itte d in p a r t i a l f u l f i l l m e n t of th e re q u ire m e n t f o r th e
d e g re e o f D o c to r of P h ilo s o p h y to th e School of G ra d u a te S t u d i e s ,
M ichigan S t a t e C o lle g e o f A g r i c u l t u r e and. A p p lie d S c ie n c e .
2.
Names and d a t e s r e f e r to " L i t e r a t u r e C i t e d . "
2
A n o th e r s i l v i c a l c h a r a c t e r i s t i c o f t h i s s p e c i e s i s th e d e c id e d i n t o l e r
ance o f t h e t r e e , end o f t e n i t w i l l n o t compete s u c c e s s f u l l y even w i t h
th e o a k s .
N a t u r a l s e e d l i n g s o c c u r most f r e q u e n t l y in abandoned f i e l d s
o r o t h e r p l a c e s where a m in e r a l seed bed i s a v a i l a b l e and com peting
v e g e ta tio n sp arse .
S in c e t h i s s p e c i e s i s h i g h l y d e s i r a b l e a s a f o r e s t
t r e e , w i t h i t s f a i r l y r a p i d grow th and o t h e r d e s i r a b l e s i l v i c a l c h a r a c
t e r i s t i c s , a t t e m p t s a r e b e in g made to grow and p l a n t l a r g e numbers o f
se e d lin g s.
B ecause o f i t s u t i l i t y f o r numerous wood p r o d u c t s , i t s low
s u s c e p t i b i l i t y to s e r i o u s d i s e a s e s and i n s e c t s , t h i s s p e c i e s w i l l c o n tin u e
to be a p o p u l a r one in r e f o r e s t a t i o n and p l a n t a t i o n e n t e r p r i s e s .
I n s o u t h e r n M ich ig an , w hich r e p r e s e n t s t h e n o rth e rn m o s t l i m i t o f
i t s r a n g e i n t h i s s t a t e , t u l i p p o p l a r has be en p l a n t e d i n s e v e r a l e x per
im e n ta l f o r e s t s u n d e r v a r i e d s p a c in g c o n d i t i o n s and in b o t h p u r e and
mixed p l a n t a t i o n s .
One such e x p e r im e n t a l t u l i p p o p l a r p l a n t a t i o n i s
l o c a t e d a t th e Russ E x p e rim e n ta l F o r e s t in V o l i n i a Township, Cass County,
M ic h ig a n .
The d i s s e r t a t i o n h e r e p r e s e n t e d d e a l s s p e c i f i c a l l y w i t h a
15 y e a r o ld - 2 0 a c r e t u l i p p o p l a r - c a t a l p a . p l a n t a t i o n on t h e Russ F o r e s t .
T h is p l a n t a t i o n was e s t a b l i s h e d in o r d e r to o b s e rv e t h e g ro w th and
s i l v i c a l r e q u ir e m e n ts o f t h i s s p e c i e s u n d e r th e e n v iro n m e n ta l c o n d i t i o n s
o f s o u th w e s te r n M ich ig an ,
I t i s a w e ll known f a c t t h a t many o f th e
abandoned a g r i c u l t u r a l s o i l s in t h i s a r e a a r e r e l a t i v e l y p o o r i n n u t r i
e n t s and so low in c o l l o i d s and o r g a n ic m a t t e r t h a t th e y p o s s e s s unde
s i r a b l e p h y s i c a l and c h em ica l q u a l i t i e s f o r a g r i c u l t u r a l u s e .
T u l ip
p o p l a r t r e e s were p l a n t e d on t h e s e abandoned la n d s in o r d e r to o b s e rv e
t h e m ag n itu d e of t h e s e a p p a r e n t d e f i c i e n c i e s w ith r e s p e c t to t r e e s , and
to s tu d y th e re s p o n s e o f t u l i p p o p l a r to f a c t o r s o t h e r t h a n s o i l .
3
The f o l l o w i n g e c o l o g i c a l s tu d y on t u l i p p o p l a r has be en p ro p o s e d and
c a r r i e d o u t in c o n j u n c t i o n w i t h and s u p p le m e n ta l to a r e s e a r c h s tu d y begun
by t h e M ichigan A g r i c u l t u r a l Experim ent S t a t i o n u n d e r d i r e c t i o n of th e
F o r e s t r y D epartm ent o f M ichigan S t a t e C o lle g e .
As o r i g i n a l l y s e t u p , t h i s
r e s e a r c h p r o j e c t was e s t a b l i s h e d to s tu d y o n ly t h e m i c r o c l i m a t i c and
e d a p h ic f a c t o r s a f f e c t i n g th e r e s p o n s e end groiwth o f t u l i p poplar* on a
15 y e a r o l d - 20 a c r e p l a n t a t i o n .
A l l d a t a c o n ce rn e d w ith t h e two above
m e n tio n e d f a c t o r s a r e t h e p r o p e r t y o f A g r i c u l t u r a l E xperim ent S t a t i o n
r e c o r d s and a r e to be u se d in t h i s d i s s e r t a t i o n as s u p p o r t i n g c r i t e r i a
o n ly .
S p e c if ic a l ly , th e se f i e l d d a ta r e f e r to seasonal reco rd s o f s o i l
m o i s t u r e , r a t e o f e v a p o r a t i o n , r e l a t i v e h u m id ity , s o i l t e m p e r a t u r e , and
a i r te m p e ra tu re .
A l l o t h e r d a t a o f an edaphic., c l i m a t i c , o r b i o l o g i c a l
n a .tu re , a s w e ll as i t s i n t e r p r e t a t i o n and a n a l y s i s , a r e t h e p r o p e r t y of
th e i n v e s t i g a t o r .
H e e d le s s to s a y , i n an e c o l o g i c a l s tu d y o f th e ty p e
h e r e p r e s e n t e d , a l l f a c t o r s must be i n t e g r a t e d and w e ig h te d as t o t h e i r
e c o l o g i c a l and s t a t i s t i c a l s i g n i f i c a n c e .
H e igh t G-rowth D i f f e r e n t i a l
I t h a s be en o b s e rv e d t h a t t r e e s of t u l i p p o p l a r in t h i s p a r t i c u l a r
p l a n t a t i o n show marked d i f f e r e n t i a l r a t e s o f h e i g h t g ro w th on t r e e s o f
s i m i l a r ag e and d e n s i t y ( F i g s . 1 and 2 ) .
An a tte m p t is h e re b y made to
a s c e r t a i n th e e x t e n t o f th e c au se o r c a u s e s f o r t h i s marked v a r i a t i o n in
h e i g h t g ro w th .
I t i s th e c o n t e n t i o n of th e a u th o r t h a t i f t h e s e v a r i
a b l e s can be i s o l a t e d and p ro v e n s i g n i f i c a n t from an e c o l o g i c a l end
s i l v i c a l v ie w p o in t, th e n t h e s e f i n d i n g s may become a p p l i c a b l e to f u t u r e
p l a n t a t i o n s of t u l i p p o u l a r on t h i s and r e l a t e d a r e a s .
The answer would
k
F i g . 1.
A view showing t h e marked d i f f e r e n t i a l h e i g h t grow th o f
t u l i p p o p la r.
I n t h e fo r e g r o u n d , th e d im in u ti o n i n h e i g h t
g row th can he o b s e rv e d . I n th e b ack g ro u n d , s o u th o f th e p l a n
t a t i o n p r o p e r , i s Woods HB " , an o ld grow th mixed-hardwood f o r e s t .
T re e s a d j a c e n t to th e woods a r e !§■ - 2 tim e s th e h e i g h t o f th e
t r e e s n o r t h o f th e woods in th e same p l a n t a t i o n . Note th e b a s a l
s p r o u t i n g o f t u l i p t r e e s in th e immediate f o r e g r o u n d .
F ig . 2.
T h is view o f th e e x p e r im e n ta l p l a n t a t i o n shows th e g r a d a t i o n
in h e i g h t g row th p r o c e e d in g from th e o ld g ro w th woods i n t h e back
g ro u n d t o t h e t u l i p t r e e s i n t h e f o r e g r o u n d . Note t h e t u l i p t r e e s
in immediate fo r e g r o u n d which were "drowned o u t" a s a r e s u l t o f
e x ce ssiv e s o i l m o istu re .
6
m a t e r i a l l y a i d t h e f a r m e r in t h i s r e g i o n and p r o v i d e a sound in v e stm e n t
f o r c o n v e r t i n g abandoned l a n d to f o r e s t p l a n t a t i o n s in s o u th w e s te r n
M ic h ig a n ,
I n o r d e r to expand and s tu d y t h i s problem more c o m p re h e n s iv e ly ,
a n o t h e r p h a s e o f th e o v e r a l l a n a l y s i s was added,
With th e c o n s e n t o f th e
F o r e s t r y D epartm ent o f M ichigan S t a t e G o lie g e , i t was deemed a d v i s a b l e to
c a r r y o u t a s tu d y to i n v e s t i g a t e some o f th e s o i l b i o l o g i c a l f a c t o r s t h a t
m igh t be in v o lv e d in th e d i f f e r e n t i a l h e i g h t g ro w th .
T his p h a s e o f th e
s tu d y w i l l a tte m p t t o d e te rm in e i f any d i r e c t c o r r e l a t i o n e x i s t s betw een
th e numbers o f organism s in th e s o i l and th e o t h e r f a c t o r s b e in g s t u d i e d
by th e F o r e s t r y D e p artm en t.
No a tte m p t w i l l be made to a s c e r t a i n a l l of
t h e b i o l o g i c a l i n t e r p r e t a t i o n s as r e l a t e d to th e d i f f e r e n c e in h e i g h t
g ro w th .
The m i c r o b i a l p h a se o f th e s tu d y w i l l r e s t r i c t i t s e l f to th e
i n v e s t i g a t i o n o f th e q u a n t i t a t i v e m i c r o f l o r a o f th e sam pling a r e a s .
T h is
p o r t i o n o f t h e d i s s e r t a t i o n w i l l a tte m p t to p l a c e m i c r o b i o l o g i c a l s t u d i e s
i n su ch a p e r s p e c t i v e as to d e m o n s tra te th e e c o lo g y o f th e s o i l o rg a n ism p l a n t community a s r e l a t e d t o th e f o r e s t e r ' s c o n c e p t o f s i t e q u a l i t y .
r e s u l t s o f t h i s i n v e s t i g a t i o n from i t s i n c e p t i o n in May 1951
1952 form th e b a s i s f o r t h i s s t u d y .
The
Septem ber
7
REVIEW OP LITERATURE
That toil ip p o p l a r ( L i r io d e n d ro n t u l i p i f e r a L .)
is a r a th e r c r i t i c a l
and. e x a c t i n g s p e c i e s w ith r e g a r d to i t s s i t e r e q u ir e m e n ts h a s been
d e m o n s tr a te d by v i r t u a l l y a l l r e s e a r c h w ork ers s tu d y in g th e s i l v i c a l
re q u ir e m e n ts o f t h i s s p e c i e s .
T u l i p p o p l a r h a s been l i s t e d by numerous
w r i t e r s a s b e i n g an i n t o l e r a n t t r e e , p r i m a r i l y w ith r e s p e c t to i t s l i g h t
re q u ire m e n ts.
More r e c e n t r e s e a r c h by th e p r e s e n t i n v e s t i g a t o r and
o t h e r s shows t h a t t u l i p p o p l a r must be c o n s id e r e d i n t o l e r a n t w i t h c e r t a i n
q u a lific a tio n s.
S p e c i f i c a l l y , t h i s s p e c i e s v a r i e s in i t s d e g re e of
i n t o l e r a n c e th r o u g h o u t i t s p h y s i o l o g i c a l g ro w th and de v elo p m en t.
For
exam ple, young t u l i p p o p l a r must have a c e r t a i n amount o f l i g h t in
e a r l y l i f e , b u t n o t to o much, and in more m ature days a l l th e l i g h t i t
can g e t .
Thus, i n d i s c u s s i n g th e s i l v i c a l re q u ir e m e n ts o f t h i s s p e c i e s
w i t h s p e c i a l r e f e r e n c e to p l a n t a t i o n g ro w th and s u r v i v a l , i t would a p p e a r
t h a t th e f o r e s t e r w ould p r o f i t by u n d e r s ta n d in g i t s r e q u ir e m e n ts a t
v a r i o u s s t a g e s o f c o n tin u in g grow th r a t h e r th a n a t a f i x e d s t a g e of
m a tu rity .
L i t e r a t u r e p e r t a i n i n g to t h e s p e c i f i c ty p e of d i s s e r t a t i o n h e r e
p r e s e n t e d i s n o t v o lu m in o u s.
F o r t h i s r e a s o n , t h e i n v e s t i g a t o r h as
sou g ht t o f i n d and r e v ie w in f o r m a t io n which b e a r s p r i n e i p a J . l v upon
p e r i p h e r y s t u d i e s r e l a t e d to th e p r e s e n t t h e s i s .
Those s t u d i e s c l o s e l y
r e l a t e d to t h i s i n v e s t i g a t i o n a r e p r e s e n t e d f i r s t and s u p p le m e n ta l s t u d i e s
fo llo w .
C ra ib (1929) made e x h a u s tiv e a n a l y s e s o f s o i l m o is tu r e in th e open
and i n th e f o r e s t a t Keene, New H am pshire.
He fo u n d t h a t in d ry p e r i o d s
s
th e s o i l s i n open s i t u a t i o n s c o n t a i n c o n s i d e r a b l y more m o is tu r e th a n th e
f o r e s t s o i l s , "based upon e i t h e r volume o r w eig ht d e t e r m in a tio n s *
T his
means t h a t th e l o s s o f w a te r th ro u g h th e combined a c t i o n of t r a n s p i r a t i o n
and e v a p o r a t i o n in t h e f o r e s t exceeds t h a t in th e open.
F orest s o ils
were fou n d to become p r o g r e s s i v e l y d r i e r w ith i n c r e a s e in d e p th , d e s p i t e
th e f a c t t h a t th e t r e e r o o t s were c o n c e n t r a t e d l a r g e l y i n th e s u r f a c e
la y e r s *
I n th e o pen, d u r in g v e r y d ry p e r i o d s , more m o is tu r e i s fo un d i n
th e s ec o n d 10 c e n t i m e t e r s o f s o i l t h a n in th e f i r s t .
T his i s due to th e
d r y in g e f f e c t o f th e e x p o su re o f th e f i r s t l a y e r t o sun and x^rind.
He
fo u n d th e m o i s t u r e c o n t e n t o f th e s u r f a c e l a y e r in th e two a r e a s te n d e d
to b e e q u a l .
I n t h i s l a y e r th e h ig h l o s s o f m o is tu r e by t r a n s p i r a t i o n
i n t h e f o r e s t te n d s to be e q u a l i z e d by an e q u a l l y h ig h l o s s o f m o is tu r e
by e v a p o r a t i o n in th e open.
His work i s c o r r e l a t e d w ith th e t r e n c h i n g
e x p e r im e n ts o f Tourney ( 1 9 2 9 ) .
S te w a r t (1933) c o n d u c te d a s tu d y to g iv e a p i c t u r e o f th e m ajor
p h y s i c a l , c h e m ic a l, and b a c t e r i o l o g i c a l d i f f e r e n c e s betx^een th e v a r i o u s
g ro u p s o f f o r e s t and p a s t u r e a s s o c i a t i o n s .
He s t u d i e d s o i l p r o f i l e s in
t h e f i e l d , d e te r m in e d p e r m e a b i l i t y o f s o i l s in th e f i e l d , and c o n d u cte d
o t h e r p h y s i c a l and c h e m ic a l s o i l i n v e s t i g a t i o n s .
The b a c t e r i o l o g i c a l
work c o n s i s t e d o f t h e d e t e r m i n a t i o n o f t h e amounts o f
and
formed
a f t e r s t o r a g e , c o u n ts on A z o to b a c te r and th e p r e s e n c e o r a b se n c e o f
legume o rg a n is m s .
A u te n (19^5) c o n d u c te d a s t u d y on 77 n a t u r a l , s e c o n d -g ro w th y e llo w
p o p l a r s ta n d s v a r y in g i n age from 12 to 6 l y e a r s in T e n n e ss e e , K entucky,
O hio, I n d i a n a , and I l l i n o i s , f o r th e p u rp o s e o f s e t t i n g v a lu e s on s o i l
p r o p e r t i e s and to p o g r a p h ic f e a t u r e s as a g u id e i n p r e d i c t i n g s i t e q u a l i t y
9
f o r y e llo w p o p la r .
He e s t a b lis h e d the f a c t th a t th e depth o f in c o r p o r a tio n
o f o rg a n ic m atter in th e su r fa c e s o i l h o rizo n a ffo r d s a u s e fu l c r i t e r i o n o f
th e s i t e in d ex .
I f th e depth o f in c o r p o r a tio n (A^ h orizon ) i s l e s s than
one in c h , t u l i p poplar* does not show s a t i s f a c t o r y developm ent; average or
b e t t e r s i t e s f o r y e llo w p op lar occur where depth o f th e A-^ h o rizo n i s
th re e in ch es or more.
Auten found the depth to t ig h t s u b s o il was a b e tt e r
c r i t e r i o n o f s i t e in d ex f o r t u l i p p o p la r .
The p resen ce o f a t ig h t s u b s o il
l e s s than tw e n ty -fo u r in ch es below the s u r fa c e r e s u lt s in p oorer than
average s i t e s .
P o o r e st growth o f t u lip p op lar was observed on r id g e s and
exposed s i t e s .
W ithin the range o f s o i l s s tu d ie d , he found no c o r r e la tio n
betw een s i t e
of s o ils .
index and cs,lcium , magnesium, phosphorus, and potassium co n ten t
A lso s i t e index m s not r e la t e d to r e a c tio n (pH v a lu e) o f the
s o i l o f any h o r iz o n .
Prom 190S to 1919 P n g le r (1919) co n d u cted e x p e rim e n ts on s o i l d e n s i t y ,
p o re s p a c e , w a t e r - h o l d i n g c a p a c i t y , w a te r c o n t e n t , p e r m e a b i l i t y and evapo
r a t i o n , c o r r e l a t i n g i n each c a s e t h e e f f e c t o f t h e f o r e s t on t h e f a c t o r in
q u e stio n .
A f t e r an e x h a u s tiv e e l e v e n - y e a r s tu d y , H ngler c o n c lu d e d t h a t
t h e combined l o s s o f w a te r from t r a n s p i r a t i o n and e v a p o r a t i o n from open
s o i l s ex ce e d s t h a t from f o r e s t s o i l s , t h u s mailing th e f o r e s t e x e r t a
b e n e f i c i a l i n f l u e n c e on th e w a te r re g im e n .
F o r t h i s r e a s o n he c o n c lu d e s
t h a t more m o is tu r e i s fo u n d in f o r e s t s o i l s d u r in g d r y p e r i o d s o f summer
th a n i s fo u n d in s i m i l a r open s o i l s .
These r e s u l t s were s i m i l a r to
s t u d i e s made by B u rg e r ( 1 9 2 3 ) w ith t h e e x c e p tio n t h a t B u rg e r fo u n d t h a t ,
d u r in g th e d r i e s t p e r i o d s o f th e summer months, t h e f o r e s t s o i l c o n s i s t e n t l y
m a in ta in e d a low er w a te r c o n te n t th a n s i m i l a r a g r i c u l t u r a l o r meadow s o i l s .
T h i s , he s t a t e s , i s due to th e h ig h r a t e o f w a te r l o s s th ro u g h t r a n s p i r a t i o n
by th e f o r e s t .
10
The work o f E ngler has been r e fu te d and c o n tr a d ic ts th e work o f v a rio u s
in v e s t ig a t o r s such as Ebermayer (1 8 8 9 ). Burger (1923)* and Halden ( 1926) .
These l a t t e r in v e s t ig a t o r s found th a t th e f o r e s t e d a rea s co n ta in ed co n sid
era b ly l e s s m oistu re than th e open areas during th e growing season*
Halden
(1926) a ls o found th a t both in the open and in th e f o r e s t th e su r fa c e la y e r
i s th e more m o is t, bu t during p e r io d s of drought t h is d is t r ib u t io n in th e
open may be r e v e r se d .
McCarthy (1933) p o in ts out th a t th e r e are many in d ic a tio n s in th e
ob served b eh avior o f younger t u l i p p op lar t r e e s , th a t in e a r ly youth the
s p e c ie s must have adequate l i g h t and m o istu re .
In a d d itio n to t h i s , t u lip
p o p la r must be fa v o r e d by c lim a te , both in p r o te c tio n from extrem es of
tem perature and a ssu ran ce o f a rea so n a b ly lo n g growing sea so n .
I n d ic a tio n s
of th e e f f e c t of c lim a te are found in in ju r y to th e th in bark o f young
tr e e s through sun s c a ld s , which have been noted by McCarthy in southern
In d ia n a .
In i t s extreme sou th ern range, y e llo w pop lar grows o n ly on m oist
s i t e s where i t is p r o te c te d from extrem e d ry in g .
McCarthy was unable to
determ ine to what d egree tem perature i s a fa c to r in grow th.
McCarthy p o i n t s o u t t h a t good g ro w th o f t u l i p p o p l a r on sandy s o i l s ,
a s on th e Cumberland P l a t e a u o f T e n n e s s e e , a p p e a rs to be s u i t a b l e o n ly i f
f r e e from e x c e s s i v e d r y i n g .
He s t a t e s t h a t t h r i f t y t r e e s a r e n e v e r fou nd
on v e ry d r y o r v e r y wet s o i l s ; t h e t r e e i s c h a r a c t e r i s e d by b e in g v e ry
e x a c t i n g in s o i l - m o i s t u r e r e q u i r e m e n t s .
He found t h a t th e i n f l u e n c e o f
c h em ica l c o m p o sitio n o f s o i l on th e g ro w th of p o p l a r i s a p p a r e n t l y s l i g h t ;
i t grew w e ll on s o i l s h ig h in lim e and on th o s e d e f i c i e n t in lim e .
McCarthy
o b s e r v e s t h a t d ry s i t e c o n d i t i o n s a r e r e f l e c t e d in a marked r e d u c t i o n o f
g row th r a t e and l o v e r d e n s i t y o f n a t u r a l s t a n d s .
On s te e p h i l l s i d e s y e llo w
11
p o p la r w ill
d ista n ce
o f t e n e x h i b i t a marked d i f f e r e n c e in h e i g h t g ro w th w i t h i n a
o f 50 f e e t up o r down t h e s l o p e .
He p o i n t s o u t t h a t marked d i f f e r e n c e s in h e i g h t and d ia m e te r grow th
may o c c u r on e ro d e d f i e l d s , w ith t r e e s o f th e same a g e .
The r a t e o f d i a
m e te r g ro w th o f y e llo w p o p l a r i s d e te rm in e d by th e s i z e o f t h e crown formed
and r e t a i n e d by t h e t r e e .
I f a g o o d ly p o r t i o n o f th e t o t a l h e i g h t i s
o c c u p ie d by t h e crown, th e t r e e w i l l grow r a p i d l y i n d ia m e te r , b u t t h e b o le
w i l l t a p e r v e r y s h a r p l y w i t h i n t h e crown.
S h i r l e y (1929) in d i s c u s s i n g t h e h e i g h t and d ia m e te r g ro w th o f t r e e s
sta te s,
nlow l i g h t i n t e n s i t i e s s t i m u l a t e h e i g h t g ro w th a t th e expense o f
d ia m e te r grovvrth, to p grow th a t t h e expense o f r o o t grovrth, l e a f a r e a dev
elopm ent a t th e exp en se o f l e a f t h i c k n e s s , and s u c c u le n c e a t th e expense
o f s t r e n g t h and s t u r d i n e s s .
A c co rd in g t o T a y lo r (1917) t u l i p p o p l a r i s e x a c t i n g i n i t s s o i l ,
m o i s t u r e , and l i g h t r e q u i r e m e n t s .
y e t m o ist.
I t demands a s o i l t h a t i s w e ll d r a in e d
L ig h t san d s and heavy c l a y s a r e u n f a v o r a b le to i t s grow th.
T u l ip p o p l a r w i l l n o t t h r i v e in th e sh a d e ; i f o v e rto p p e d f o r a s h o r t
tim e by o t h e r t r e e s i t soon d i e s .
The c l e a n , smooth t r u n k i s e v id e n c e t h a t
i t c an n o t t o l e r a t e sh a d e .
Tourney and K o r s t i a n (1937) made th e o b s e r v a t i o n t h a t a v a i l a b l e w a te r
and e v a p o r a tio n work t o g e t h e r in c a u s in g d i f f e r e n c e s in gro w th form.
p ira tio n
i s a p h y s i o l o g i c a l p r o c e s s d e te rm in e d
f a c t o r s . The e x t e r n a l f a c t o r s a r e e v a p o r a tio n
T ran s
by b o th e x t e r n a l and i n t e r n a l
which i n f l u e n c e s p a r t s above
g ro u n d , and a v a i l a b l e s o i l w a te r which in f l u e n c e s t h e p a r t s below g ro u n d .
E v a p o r a tio n th u s by a f f e c t i n g s o i l c o n d i t i o n s , a l s o i n f l u e n c e s t h e p a r t s o f
t r e e s below th e s u r f a c e .
12
A c o r r e l a t i o n a p p e a r s to e x i s t "between h e i g h t grow th o f t r e e s and a v a i l a b l e
w a te r s u p p ly .
A d e c r e a s e in th e w a te r r e q u ir e m e n ts f o r optimum g ro w th r e s u l t s
in a r a p i d f a l l i n g o f f in h e i g h t growth* e s p e c i a l l y d u r in g t h e grow ing s e a s o n .
T h in s o i l s i n which t h e r e i s a s c a n t y su p p ly o f m o is tu r e d u r in g th e growing
s e a s o n p ro d u c e t r e e s o f low h e i g h t f o r th e s p e c i e s ( C o i l e , 1 9 3 5 )-
Dry s o i l
and h i g h e v a p o r a t i o n c a u s e t r e e s to assume a c h a r a c t e r i s t i c s t u n t e d g ro w th .
H ic o ck , Morgan, L u tz , B u ll and L unt (1931) s t u d i e d th e r e l a t i o n s h i p be
tween s o i l ty p e and v e g e t a t i o n on f o u r e x p e r im e n ta l t r a c t s , a g g r e g a t i n g 210
a c r e s in C o n n e c t i c u t .
Woody v e g e t a t i o n was c h a r t e d on t r a n s e c t s and t h e
h e rb a c e o u s v e g e t a t i o n s t u d i e d by means o f q u a d r a t s .
C o r r e l a t i o n o f a g iv e n
t r e e s p e c i e s w ith a s p e c i f i c s o i l ty p e was l a r g e l y u n s u c c e s s f u l .
By c l a s s
i f y i n g t h e s o i l s i n t o f o u r b ro a d g ro u p s on th e b a s i s o f m o is tu r e c o n d i t i o n s ,
some c o r r e l a t i o n was e v i d e n t .
T u l ip p o p l a r formed l e s s th a n one p e r c e n t o f th e
t o t a l and t h r e e p e r c e n t o f th e p r i n c i p a l s t a n d .
I t was found t o some e x t e n t
on a l l b u t th e d r i e s t s o i l s , b u t was most abundant on s o i l s h a v in g a h ig h
m o istu re c o n te n t.
P o p l a r was n o t fo u n d on muck, and i t seemed to show a
marked p r e f e r e n c e f o r t h e h e a v i e r w e l l - d r a i n e d s o i l s .
D a ta o b t a i n e d by t h e s e i n v e s t i g a t o r s i n d i c a t e t h a t th e s lo w ly d r a i n e d
s o i l s s u p p o r t a g r e a t e r number o f b o th s p e c i e s and i n d i v i d u a l s o f h e rb a c e o u s
and shru bb y p l a n t s th a n t h e r a p i d l y d r a i n e d s o i l s .
A tte m p ts were l a r g e l y
u n s u c c e s s f u l in u s in g p l a n t s a s i n d i c a t o r t y p e s , e x c e p t in b ro a d s o i l d i v i s
io n s b a se d upon s o i l - w a t e r r e l a t i o n s .
They found m eso ph ytic s p e c i e s on th e
slo w ly d r a i n e d loams and x e ro -m e s o p h y tic p l a n t s on th e more r a p i d l y d r a i n e d
and d r i e r s o i l s .
The g e n e r a l l a c k o f c o r r e l a t i o n betw een c e r t a i n p l a n t s and
s o i l ty p e s was p o s s i b l y due to th e f a c t t h a t th e g e n e r a l e x c e l l e n c e o f c l i m a t i c
f a c t o r s may com pensate to some e x t e n t f o r p o v e r ty of c e r t a i n s o i l c o n d i t i o n s .
13
T h is would "be p a r t i c u l a r l y t r u e w i t h i n r a t h e r n arrow l i m i t s o f s o i l v a r i a t i o n .
K ie n h o lz (19^-1) s t u d i e d th e s e a s o n a l c o u rs e o f h e i g h t g row th in c e r t a i n
hardwoods i n C o n n e c t i c u t ,
The s e a s o n a l c o u rs e o f h e i g h t g ro w th o f t r e e s ,
f i r s t y e a r s p r o u t s , and second y e a r s p r o u t s was m easured d u r in g f o u r grow
in g s e a s o n s .
Most o f t h e s p e c i e s s t a r t e d h e i g h t gro w th l a t e in A p r i l o r
v e r y e a r l y May; t h e r e was a s u r p r i s i n g l y l i t t l e d i f f e r e n c e "between th e
d i f f e r e n t s p e c i e s examined in th e tim e o f s t a r t i n g g row th .
K ie n h o lz g ro up ed
t h e hardwoods i n t o two main c l a s s e s on t h e b a s i s o f t h e i r s e a s o n a l h e i g h t
gro w th b e h a v i o r .
The seco n d c l a s s i s r e p r e s e n t e d by g ra y and w h ite b i r c h ;
s c a t t e r e d m easurem ents i n d i c a t e d t h a t t u l i p p o p l a r has s i m i l a r g ro w th c u r v e s .
Growth f o r s p e c i e s a l l i e d to t u l i p p o p l a r s t a r t e d in l a t e A p r i l , r o s e
g r a d u a l l y t o a p e a k o f maximum grow th in m id -Ju n e , f e l l o f f g r a d u a l l y t o
c e a s e i n m id-A ugust — a grow ing s e a s o n o f 110 d a y s .
N in e ty p e r c e n t o f th e
h e i g h t g ro w th was co m p le ted in a bo ut 60 days from May 20 to J u l y 20.
The
s e a s o n a l p r o g r e s s o f g ro w th was g r a p h i c a l l y shown by p l o t t i n g a v e ra g e d a i l y
in c re m en t in m i l l i m e t e r s a g a i n s t w eekly p e r i o d s .
The curve o f g ro w th o f any
g i v e n s p e c i e s was q u i t e s i m i l a r from y e a r to y e a r , e s p e c i a l l y th e tim e o f
r e a c h in g th e p e ak o f most r a p i d g row th .
D i l l e r ( 1930 ) c o n d u cte d an i n v e s t i g a t i o n on t h e r e l a t i o n o f te m p e r a tu r e
and p r e c i p i t a t i o n to th e g row th o f b e ec h i n n o r t h e r n
In d ia n a .
He d e te rm in e d
t h e a v e ra g e a n n u a l r i n g w id th f o r t e n dominant b e ec h t r e e s in e ach o f sev en
beec h -m a p le woodlands f o r th e p e r i o d 1913-1933•
From h i s r e s u l t s , y e a r l y
v a r i a t i o n s in th e w id th o f a n n u al r i n g s f o r a 2 0 - y e a r p e r i o d were i n v e r s e l y
c o r r e l a t e d w ith th e a v e r a g e te m p e r a tu r e f o r th e month o f J u n e .
Y e a rly v a r
i a t i o n s i n th e w id th of th e a n n u a l r i n g s f o r t h e same p e r i o d were c o r r e l a t e d
d i r e c t l y in c e r t a i n woodlands w ith th e t o t a l p r e c i p i t a t i o n f o r th e month o f
Ik
J u n e a t s t a t i o n s n e a r e s t th e woodlands s t u d i e d .
D i l l e r fo u n d t h a t in most
c a s e s , d r o u g h t y e a r s showed t h e i r e f f e c t s on g ro w th t h e f o l l o w i n g y e a r
p r o b a b ly due t o an a cc u m u la te d d e f i c i e n c y in s o i l m o i s t u r e , w hereas wet
y e a r s showed an i n c r e a s e in g row th t h e same y e a r .
He s u rm is e s t h a t i f t h i s
p e r i o d o f d ro u g h t y e a r s c o n tin u e s o v e r an e x ten d e d p e r i o d t h e r e p r o b a b ly
would be a g r a d u a l r e t r o g r e s s i o n o f t h e b e ech-m ap le ty p e w ith t h e c o rre s p o n d
in g ad van ce o f th e oak-m aple and o a k - h ic k o r y f o r e s t t y p e s .
Bogue ( 1905 ) d e te r m in e d th e a v e ra g e w id th o f th e a n n u a l r i n g s o f k2
t r e e s n e a r L a n s in g , M ich ig an , f o r th e y e a r s 1%92 and 190^ and fo u n d a
c o r r e l a t i o n betw een p r e c i p i t a t i o n and w id th o f a n n u al r i n g s .
He s t a t e s t h a t
an a b n o rm a lly l a r g e o r sm a ll an n u al p r e c i p i t a t i o n i s e v id e n c e d by th e t r e e
g ro w th t h e f o l l o w i n g y e a r .
S te w a r t ( 1 9 1 3 ) compared th e w id th o f a n n u a l r i n g s o f an oak stump a t
York, Hew Y ork, w ith w e a th e r r e c o r d s a t R o c h e s te r , 25 m ile s n o r t h .
G reater
c o r re s p o n d e n c e was fo u n d betw een v a r i a t i o n s in r a i n f a l l f o r June and J u l y and
r i n g w id th t h a n betw een r a i n f a l l f o r th e e n t i r e grow ing s e a s o n and r i n g w id th .
P e a r s o n (1918) compared t h e a n n u al h e i g h t g row th o f P o n d e ro s a P in e
s a p l i n g s and th e p r e c i p i t a t i o n f o r v a r i o u s p e r i o d s .
p re c ip ita tio n
He fo u n d t h a t s p r i n g
( A p r i l and May) was a p p a r e n t l y th e c o n t r o l l i n g f a c t o r .
F a c to rs
r e f l e c t i n g th e a tm o s p h e r ic c o n d i t i o n s i n c lu d in g e v a p o r a tio n showed a c l o s e ,
tho u g h n o t c o n s i s t e n t , r e l a t i o n to h e i g h t gro w th .
The h e i g h t grow th v a r i e d
i n v e r s e l y w ith th e te m p e r a t u r e p ro b a b ly b e ca u se o f th e in f l u e n c e of tem per
a t u r e on t r a n s p i r a t i o n and t h e r e f o r e on th e r e l a t i v e w a te r s u p p ly .
A r e c e n t s tu d y by Tryon and Myers (1952) shows t h a t p e r i o d i c p r e c i p i t a t i o n
th ro u g h o u t th e summer months (May 1 to June 3$) f o r a l o c a l i t y in West V i r g i n i a ,
was h i g h l y c o r r e l a t e d w ith w id th o f a n n u al r i n g f o r t u l i p p o p l a r .
Hine t u l i p
15
p o p l a r t r e e s i n th e co -d o m in a n t and dom inant c r o w n - e la s s e s were examined f o r
r a d i a l g ro w th by means o f in c re m en t c o r e s f o r t h e p e r i o d 1929 to 19 ^ 9 *
E e su lts
i n d i c a t e d a b e t t e r r e l a t i o n s h i p betw een r a d i a l g ro w th and p r e c i p i t a t i o n
d u r in g May 1 t o Ju n e 3^» t h e e a r l y p o r t i o n o f t h e grow ing s e a s o n , th a n f o r th e
p e r i o d most n e a r l y c o v e r in g th e e n t i r e grow ing s e a s o n , May 1 to August 31*
C o r r e l a t i o n c o e f f i c i e n t s f o r th e f i r s t p e r i o d was 0 .6 7 5 and t h a t o f t h e
l a t t e r 0 .5 5 9 -
Growth r i n g b o r in g s on t r e e s ta k e n on o t h e r s p e c i e s in th e
s t a n d showed no a p p a r e n t c o r r e l a t i o n w ith p r e c i p i t a t i o n , i n d i c a t i n g t h a t
t h e s e s p e c i e s a r e l e s s s e n s i t i v e to low s o i l m o is tu r e th a n t h e y e llo w p o p l a r .
M in c k le r (19^-1, 19^3) r e p o r t e d on f i r s t - y e a r s u r v i v a l o f t u l i p p o p l a r
on o l d - f i e l d p l a n t a t i o n s i n t h e G re at A p p a la c h ia n V a lle y .
S e e d lin g s o f 1-0
s t o c k o f t u l i p p o p l a r were p l a n t e d on o n e - f o u r t h a c r e e x p e r im e n ta l p l o t s ,
each p l o t c o n t a i n i n g 297 t r e e s .
A n a ly s is o f t h e d a t a was b a se d upon p e r
c e n ta g e s u r v i v a l p e r p l o t a t th e end o f t h e f i r s t grow ing s e a s o n .
Three s o i l
t y p e s , two s lo p e a s p e c t s and two grow ing s e a s o n s were u s e d a s c r i t e r i a f o r
su rv iv a l.
M in c k le r fo u n d t h a t in a v e r y d ry y e a r , t u l i p p o p l a r gave o n ly
f a i r s u r v i v a l on lim e s to n e s o u th s lo p e s and f a i l e d e n t i r e l y on s h a l e s o u th
slo p es.
White p i n e was much l e s s a b l e to t o l e r a t e heavy v e g e t a t i v e comp
e t i t i o n t h a n was y e llo w p o p l a r .
M o r t a l i t y c aused by d ro u g h t was g r e a t e s t f o r
t u l i p p o p l a r on s h a l e and l im e s to n e s o u th s l o p e s .
When a l l s o i l t y p e - a s p e c t
c l a s s e s were c o n s i d e r e d t o g e t h e r , a s h and xiralnut c o n s t i t u t e d th e h i g h e s t
s u r v i v a l g ro u p , y e llo w 1 p o p l a r was sec o n d , and w h ite p i n e and s h o r t l e a f p in e
were t h i r d .
The im p o rtan c e o f th e c o n d i t i o n o f th e B s o i l h o r iz o n was
i l l u s t r a t e d by th e f o l l o w i n g com p arison s on v a r i o u s s i t e s .
On f r i a b l e ,
p l a s t i c , and s t i f f B h o r i z o n s , y e llo w p o p l a r mean h e i g h t g ro w th i n two y e a r s
was 2 . 5 , 1.5» a^d 0 .8 f e e t r e s p e c t i v e l y .
These r e s u l t s show t h e re s p o n s e o f
16
h e i g h t g ro w th to c o n d i t i o n of re d u c e d r a i n f a l l on y e llo w p o p l a r i s much
g r e a t e r on s o i l s w i t h a r e l a t i v e l y h a r d and im perv io us B h o r i z o n ; t u l i p
p o p l a r showed b e t t e r g ro w th on n o r t h e r l y th a n on s o u t h e r l y s l o p e s .
In
g e n e r a l , t h e h e i g h t g ro w th of t u l i p p o p l a r was r e l a t e d to d e p th o f th e A
s o il h o riz o n .
F o r y e llo w p o p l a r , 35 p l a n t a t i o n s w ith an A h o r iz o n d e p th
o f s e v e n in c h e s o r o v e r grevr 30 p e r c e n t more th a n Ul com parable p l a n t a
t i o n s w i t h a c o r r e s p o n d in g d e p th of l e s s th a n sev e n in c h e s .
B in e p l a n
t a t i o n s on s i t e s abandoned s i x y e a r s o r more grew 1*5 f e e t a s compared
w i t h O.g f e e t on ^1 p l a n t a t i o n s l o c a t e d on s i t e s abandoned l e s s t h a n s i x
years.
The d r y - y e a r p l a n t i n g s o f y e llo w p o p l a r showed a marked r e d u c t i o n
in g ro w th as compared to w e t- y e a r p l a n t i n g s .
Yellow p o p l a r d r y - y e a r
p l a n t i n g s grew a s w e ll as w e t- y e a r p l a n t i n g s on f r i a b l e s o i l , b u t o n ly
62 p e r c e n t and
36 p e r c e n t a s w e ll r e s p e c t i v e l y on p l a s t i c and s t i f f s o i l s .
P e a r s o n (1930) a tte m p te d to a s c e r t a i n w h ether t h e u p p e r f o o t o f s o i l
a c t u a l l y becomes d r i e r un der o r n e a r g ro up s of t r e e s , th a n in open s i t u a
tio n s.
H is r e s u l t s were o b ta in e d a t th e S o u th w e ste rn F o r e s t E xperim ent
S ta tio n .
He found i n e v e ry i n s t a n c e t h a t t h e r e was more m o is tu r e a t
d e p th s o f s i x and tv /elv e in c h e s un d er th e t r e e g ro u p s th a n j u s t o u t s i d e
th e crowns to t h e e a s t o r w e s t.
Shade and l e a f l i t t e r p ro b a b ly e x p l a i n
th e h i g h e r m o is tu r e c o n t e n t u nd er th e t r e e s .
P e a rs o n c o n clu d e d t h a t in
f o r e s t s o f th e S o u th w e s t, h e a t a p p e a rs to be s c a r c e l y l e s s im p o r ta n t t h a n
m o istu re .
S o i l m o is tu r e i s a c r i t i c a l f a c t o r in th e e a r l y l i f e of seed
l i n g s i n t h e S o u th w e s t, b u t a f t e r t h e r o o t s have p e n e t r a t e d a f o o t or
more t h e e f f e c t s o f d e f i c i e n t m o is tu r e a r e m a n if e s t e d more in slow grow th
th a n i n a c t u a l d e a t h .
17
K ozlo w sk i (19^9) s t u d i e d th e e f f e c t s o f s h a d in g on a p p a r e n t p h o to
s y n th e s is f o r s e e d lin g s of t u l i p p o p la r.
I n o r d e r t o t e s t th e e f f e c t o f
re d u c e d l i g h t i n t e n s i t y on th e p h o t o s y n t h e t i c c a p a c i t y of t u l i p p o p l a r ,
s e e d l i n g s o f t h i s s p e c i e s were grown u n d e r c h e e s e c l o t h sh ad es a t f i v e
d iff e r e n t lig h t in te n sitie s*
P h o to sy n th e tic r a t e s o f t u l i p p o p la r,
e x p r e s s e d a s m illi g r a m s o f C0? p e r s q u a r e d e c im e te r o f f o l i a g e p e r h o u r,
were d e te r m in e d and a n a ly z e d s t a t i s t i c a l l y from a L a t i n s q u a re arrangem ent*
An a n a l y s i s o f v a r i a n c e i n d i c a t e d no r e a l d i f f e r e n c e s c o u ld he a t t r i b u t e d
to t h e s h a d in g p r e t r e a t m e n t a lon e*
P h o t o s y n t h e t i c r a t e s o f y e llo w p o p l a r
shoved no s i g n i f i c a n t d i f f e r e n c e s betw een sh ade grown and l i g h t grown
groups.
He found t h a t y e llo w p o p la r re a c h e d a v e r y h ig h p e r c e n t a g e o f
p h o t o s y n t h e s i s a t low l i g h t i n t e n s i t y .
The e f f e c t o f l i g h t i n t e n s i t y
was s t a t i s t i c a l l y s i g n i f i c a n t f o r p i n e and r e d m aple, b u t n o t f o r t u l i p
p o p la r.
E l l i o t t (1915) p o i n t s o u t t h a t tw o -y e a r s e e d l i n g s grew as w e ll as
c o u ld be e x p e c te d f o r th e f i r s t y e a r i n an open f i e l d b o rd e re d on one
end and a lo n g i t s two s i d e s by v i r g i n f o r e s t s which c a s t a shadow o v er
t h e b o r d e r o f th e f i e l d .
At th e end o f th e f o u r t h y e a r p r a c t i c a l l y a l l
were dead e x c e p t th o s e e n jo y in g th e shade o f th e a d j a c e n t f o r e s t ; th e
c o n d i t i o n o f th o s e i n p a r t i a l shade v a r i e d in th e r a t i o o f t h e i r n e a r n e s s
to t h e f o r e s t ; th e p l a n t s in th e rows n e x t to t h e woods b e in g f a r th e b e s t .
E l l i o t t s u rm is e d t h a t th e " f o r e s t f l o o r " had som ething to do w ith th e
re su lt.
Ho m a t t e r how e x a c t i n g f o r l i g h t th e t u l i p t r e e may be when p e s t
th e age o f i t s in f a n c y , i t can have to o much l i g h t and s u n s h in e in i t s
e arly l i f e .
He s u g g e s t s r e d p in e or European l a r c h as " n u rse t r e e s " f o r
18
t u l i p p o p l a r p l a n t a t i o n s , s e t o u t ©, few y e a r s b e f o r e th e t u l i p t r e e s to
g iv e th e n eed ed s h a d e , t h e s e to be p l a n t e d in a l t e r n a t e rows o r a l t e r
n a t e l y i n th e ro w s.
in t h i n n i n g .
I f p u re t u l i p i s d e s i r e d , remove th e n u r s e t r e e s
E l l i o t t say s t h a t young t u l i p p o p l a r must have a c e r t a i n
amount o f l i g h t i n e a r l y l i f e , b u t n o t too much, and in l a t e r l i f e a l l
th e l i g h t t h e y can g e t .
19
HISTORY OF RUSS FXPHRIMMTAL F0R3ST
The sam plin g a r e a u n d e r c o n s i d e r a t i o n r e p r e s e n t s a f o r e s t p l a n t a
t i o n i n Cass County, s o u th w e s te r n M ich ig an, which was p l a n t e d to t u l i p
p o p l a r "by Mr. F r e d Russ in 193&* u s in g h a n d - p l a n t i n g m ethods.
The Russ
F o r e s t o f 5 SO a c r e s was d o n a te d to M ichigan S t a t e C o lleg e in 19^2 hy
Mr. F r e d
Russ o f C a s s o p o lis , M ichigan.
I t in c lu d e s most o f th e a r e a
f o r m e r l y known as th e Newton Farm, an e a r l y government l a n d
g r a n t to
th e Newton f a m ily in whose hands t h e p r o p e r t y rem ain ed f o r 99 y e a r s .
Some 220 a c r e s a r e co v ered w ith m ature tim b e r and 320 a c r e s a r e in
p la n ta tio n s.
An e x t r a c t from th e d i a r y o f Mr. F re d R uss, d o n o r, i s
q u o te d a s f o l l o w s :
" I n J u n e , 1935» 1 bought a c r e s o f th e Newton Farm —
known a s th e Newton Woods. There were a b o u t 2^0 a c r e s o f woods
on th e p a r t I b o u g h t.
Soon a f t e r th e purcha.se I d e c id e d to p l a n t th e n o r t h h a l f
of th e s o u t h e a s t q u a r t e r s e c t i o n 29 to T u l i p s . This SO a c r e s
had ab o u t e i g h t a c r e s o f young t r e e s m o s tly Beech and Maple
i n th e s o u th w e s t c o r n e r . The r e s t o f t h e la n d had been r u n
q u i t e b a d l y . I t was la n d where T u l ip s grew n a t u r a l l y and th e
SO a c r e s j u s t s o u t h o f i t has some o f th e l a r g e s t T u l ip s in
t h i s p a r t o f M ich ig an . The w a te r l e v e l on t h i s la n d i s a b ou t
s i x f e e t below th e s u r f a c e . I t i s a s i l t sand w ith some c l a y
in t h e s u b s o i l .
I t was p r o b a b ly a la k e bottom a t one t i m e . "
The l a t t e r p o r t i o n of th e above d i a r y e x t r a c t r e f e r s to t h e a r e a
in which th e p r e s e n t i n v e s t i g a t i o n was c a r r i e d o u t .
With th e excep
t i o n o f Mr. R u s s 1 d i a r y and s e v e r a l p e r s o n a l a c c o u n ts g iv e n bj?" l o c a l
r e s i d e n t s , th e in f o r m a t io n c o n c e rn in g t h i s p l a n t a t i o n i s r a t h e r s c a n t .
The o n ly o t h e r in f o r m a t io n r e l a t i v e to th e grow th and c o n d i t i o n of
t h i s p l a n t a t i o n i s a s u r v i v a l and g ro w th s tu d y made in 19^9 by
20
Mr* C. I n g e r s o l l A r n o ld , F o r e s t e r , Russ
F o rest.3
T his s tu d y i s r e s t r i c t e d
to h e i g h t and d i a m e t e r m easurem ents and e x t e n t o f s u r v i v a l f o ll o i- ’ing
p a th o lo g ic a l in ju ry .
No a tte m p t was made in th e above r e p o r t to d e t e r
mine th e c au se o r c a u s e s f o r d i f f e r e n c e s in h e i g h t grovrth, o t h e r th a n
sp ec u la tio n .
3.
A rn o ld , C. I n g e r s o l l . E a r ly S u r v i v a l , Growth, and D is e a s e in
T u l ip Tree P l a n t a t i o n s in S o u th e rn M ich ig an . U n p u b lish ed
m a n u s c r ip t . M ichigan S t a t e C o lle g e , J a n u a r y , 19^9*
21
DESCRIPTION OP EXPERIMENTAL AREA,
A l l d e s c r i p t i v e d a t a f o r th e p l a n t a t i o n •under c o n s i d e r a t i o n as v e i l
as i n f o r m a t i o n on t h e hardwood f o r e s t a d j a c e n t to th e e x p e r im e n ta l a r e a
r e f e r to a 15 y e a r o ld -2 0 a c r e mixed t u l i p p o p l a r - c a t a l p a p l a n t a t i o n
(P ig . 3 ) .
T h is a r e a l i e s w i t h i n t h e Gray-Brown P o d z o lic s o i l g rou p of
s o u th w e s te r n M ich ig an .
The to p o g ra p h y i s m a in ly l e v e l o r g e n t l y undu
l a t i n g w i t h an e l e v a t i o n o f a p p r o x im a te ly 900 f e e t above s e a l e v e l .
The
e x p e r im e n t a l a r e a c o n s i s t s o f an outw ash p l a i n and o t h e r sandy d r i f t of
g la c ia l o rig in .
The s o i l was form ed from sand and g r a v e l d e p o s i t e d by
w a te r i s s u i n g from t h e i c e b o r d e r betw een th e in n e r and o u t e r r i d g e s of
th e Kalamazoo M o ra in e.
b o u ld e rs or s to n e s .
S o i l s in t h i s a r e a a r e g e n e r a l l y f r e e from l a r g e
The s o i l s on th e e x p e r im e n ta l p l o t a r e a c i d v a r i a n t s
o f t h r e e r a t h e r c l o s e l y r e l a t e d s o i l ty p e s , th e Pox sandy loam, Warsaw
sandy loam , and B ronson sandy loam (Map 1 ) .
In i s o l a t e d s p o t s , loam
o r c la y e y loam may o v e r l i e t h e g r a v e l l y s u b s o i l as a r e s u l t of p a s t
m ixing o f t h e p r o f i l e by p lo w in g .
The a r e a i s d r a i n e d by m eandering
D ovagiac Creek and t h e o v e r a l l d r a in a g e i s m oderate t o good, w ith th e
e x c e p tio n o f s e v e r a l d e p r e s s i o n s p o t s .
D e tailed p r o f i l e d e s c rip tio n s
o f each s o i l ty p e a r e in c lu d e d f o r r e a d y r e f e r e n c e to ed ap h ic and
m ic ro b ia l r e la tio n s h ip s .
The f i e l d s in q u e s t i o n had be en h e a v i l y farm ed f o r many y e a r s p r i o r
to t h e t u l i p p o p l a r p l a n t i n g .
Very l i t t l e a t t e n t i o n had b e en g iv e n to
r e b u i l d i n g t h e s o i l w i t h f e r t i l i z e r of any t y p e .
As a r e s u l t , t h e s o i l s
v e re so d e p l e t e d t h a t f o r th e l a s t few y e a r s p r i o r to t h e d is p o s a l, o f th e
22
MAP 1 .
S O IL S MAP OF THE PLANT AT I ON-GROWN
T U L IP POPLAR EXPERIMENTAL AREA WITH IT S
CORRESPONDING SOIL BOUNDARIES
N
B r a d y s a n d y lo a m
a c id v a ria n t
LEGEND:
'
B ronson
s a n d y lo a m
a c id
v a ria n t
A IV
W
W arsaw l o a m
a c id v a ria n t
A III
Fox s a n d y lo a m
a c id v a ria n t
AI
A II
-A -
c lim a tic
S ta tio n
S c a le : l"
= 220'
23
li&flYiLLOW POPLAR
^
L IR IO D fN O R O N T U U P IF B * * -
L
Sr
H
,f
8
p | \ N T f f i BY M R. R U S S IN I f t 8 _
tm
1
F ig . 3 .
A g e n e r a l view o f th e e x p e r im e n ta l a r e a lo o k in g s o u th w e s t.
T his p h o to was t a k e n A p r i l 19, 1952, p r i o r to "budding o f th e t r e e s .
Note t h e a b se n c e o f c u l t i v a t i o n betw een rows and th e e x t e n t o f
fo rest l i t t e r .
T h is p a r tic u la r * p o r t i o n o f th e 15 y e a r o l d - 20 a c r e p l a n t a t i o n
i s d e s i g n a t e d as A rea l,Y", o r th e a r e a o f po o r h e i g h t g ro w th.
MAP NO. l a
2k
MAP OF THE PROBLEM AREA AND ADJOINING LANDS
c
o
o
Z
c
o
Q
m
CD
Z
s
o
Z
-o
«*:
c
o
,r>
Q
c
-2
cl
I
©
0
5
i
I
w
<1
i
i
t
' PQ
%
O
CM
«*>
it
—
«
o
V)
©
©
a-
o O ft)
CL J tn
u_
O- C
— to
u
w
JS
CL '~ n
Q_ —
O’
-O U
fa
a c k-XJ Q
(0 (0 - ~
CL
|2
<
a ?
UJ
*
O
^
c
O
£
4&
C
re
cl
C “D
O
—
CL V
o ,r
25
p r o p e r t y "by th e o r i g i n a l owner, t h e le n d was u n a b le to p ro d u c e p a y in g
cro p s,
“Wheat and c o rn were th e two c h i e f c ro p s grown, and no th o u g h t
was g i v e n to c ro p r o t a t i o n o r s o i l e n r i c h i n g a g e n t s .
Where th e s o i l
had n e v e r be en u s e d f o r a g r i c u l t u r a l p u r p o s e s , t h e to p s o i l was a. r i c h ,
b l a c k , s a n d y - c l a y loam o c c u r r i n g a s a rem nant o f th e o l d p r a i r i e o f
s o u th w e s te r n M ich ig an .
I n 193$» tw en ty a c r e s o f t u l i p p o p l a r were p l a n t e d on t h e Sg- of
N-Jr o f SBy o f Sec 29, T^S, RlUw, Oass County, M ich igan.
These t r e e s
were home grown by Mr. Russ and p l a n t e d in th e s p r i n g .
T ree s were s e t
l ^ ' S ’1 a p a r t w ith s t a g g e r e d rows 7 ,^ n a p a r t , and c u l t i v a t e d th e f i r s t
year o n ly .
year.
T here was a v e ry low m o r t a l i t y o f young s e e d l i n g s th e f i r s t
In 1939» c a t a l p a t r e e s were p l a n t e d in rows betw een t h e t u l i p
p o p l a r and were n o t c u l t i v a t e d .
g ro w th and s u r v i v a l .
These t r e e s have s i n c e shown v e ry p o o r
By O c to b e r, 19^1, th e t u l i p p o p l a r t r e e s were
m o s tly f o u r f e e t to e i g h t f e e t t a l l w ith some o f them tw e lv e f e e t or
m ore.
The f i r s t , t h i r d , f i f t h , and s e v e n th rows a c r o s s th e n o r t h end
o f t h e p l a n t a t i o n were grown from see d ta k e n from t h e l a r g e t u l i p p o p l a r
s o u th o f th e p l a n t a t i o n .
The t o t a l number o f t u l i p t r e e s l i v i n g and
dead in t h e e n t i r e tw e n ty a c r e s i s £ft-63» o r *4-23 t r e e s p e r a c r e .
R e fe re n c e
to Maps l a and 2 - g i v e an a c c u r a t e d e s c r i p t i o n o f th e e x p e r im e n ta l a r e a
and th e a d j a c e n t hardwood s t a n d .
An a e r i a l p h o to g ra p h ( F i g . h) ta k e n in
1950 has been in c lu d e d t o show t h e f o r e s t c o v e r and s u rro u n d in g la n d .
The 15 y e a r o ld -2 0 a c r e p l a n t a t i o n ru n n in g 660' e a s t - w e s t and 1320'
n o r t h - s o u t h i s b o r d e r e d by a d e n s e , m a tu re , mixed hardwood f o r e s t l o c a t e d
n o r t h , s o u t h , and w est o f th e p l a n t a t i o n .
Those t u l i p p o p l a r t r e e s which
a r e p l a n t e d c l o s e to th e f r i n g e o f Woods A, B, and C (waps l a and 2) a r e
26
one and. o n e - h a l f to two tim e s t h e a v e r a g e h e i g h t o f t r e e s o f t h e same a g e,
d e n s i t y , and same p l a n t a t i o n f u r t h e r removed from t h e woods (T a b le 1 ) .
The a v e r a g e d ia m e te r g row th i s one and o n e - h a l f tim e s g r e a t e r on t r e e s
l o c a t e d c l o s e t o t h e o ld - g r o w th vn od s.
This o b s e r v a t i o n of th e d i f f e r
ence in h e i g h t g ro w th th u s n e c e s s i t a t e s th e e s ta b lis h m e n t o f a l i n e to
d i s t i n g u i s h t u l i p t r e e s l y i n g i n s i d e and o u t s i d e t h i s l i n e .
k
The
" i n f l u e n c e l i n e " i s u sed to d e s i g n a t e p o s s i b l e cau se from e f f e c t .
T his
term was s e l e c t e d in o r d e r to a v o id any p r e s u p p o s i t i o n as to t h e s o u rc e
o f th e c a u se f o r re d u c e d o r in c r e a s e d h e i g h t g ro w th on o p p o s i t e s i d e s o f
th e " i n f l u e n c e l i n e . "
Having e s t a b l i s h e d th e f a c t from o b s e r v a t i o n t h a t
th e d i f f e r e n c e in h e i g h t grow th is s t r i k i n g l y marked, th e term " in c id e n c e "
was s e l e c t e d to d e n o te a cau se o r s e t o f c au ses f o r t h i s d i f f e r e n c e , b u t
n o t y e t v e r i f i e d by i n v e s t i g a t i o n . ^
A c c o rd in g ly , f o u r s t r a i g h t - l i n e
t r a n s e c t s were ru n (two in each c a r d i n a l d i r e c t i o n )
in o r d e r to t a l l y
th e h e i g h t s and d ia m e te r s of t u l i p t r e e s along t h e s e t r a n s e c t s (Map 2 ) .
Some c r i t e r i a was n eed ed to d e s c r i b e t h e s e t r a n s e c t s in term s o f b o th
i n f l u e n c e and in c i d e n c e , and f o u r c l a s s e s o r d e g re e s o f in c id e n c e were
s e t up f o r e ach t r a n s e c t i n t a b u l a r form (T ab le 1 ) .
4.
In t h i s s t u d y , t h e " i n f l u e n c e l i n e " of th e woods i s u se d to
d e n o te an e f f e c t o r r e s u l t , so as to p r e c l u d e any p re s u p
p o s i t i o n of i t s cau se o r c a u s e s .
5.
The te rm , " i n c i d e n c e , " i s used t o d e n o te some c a u s a l f a c t o r
or se t of fa c to rs .
These c a u s e s mar be in term s o f p r o t e c
t i o n o f f e r e d by t h e woods, such as s h a d in g , re d u c e d tem per
a t u r e , re d u c e d e v a p o r a t i o n , o r re d u c ed wind, v e l o c i t y .
27
MAP NO. 2
a2
2
nfl
W
V
>
C
O
oo
o
c\j
UJ
c
ci>
Ul
-0 c
0 "0 i-+- 0>1
c
H 00
<0 i
1
l 1 t
4-V
■3
*5
V
E
v»
V
c
H
I
2
rv
u
in
c
o
VO
u
2
I
28
TABLE 1.
INCIDENCE CRITERIA
T ransect
Number
A verage H e ig h t i n R e l a t i o n
t o " I n f l u e n c e " L in e
D i r e c t i o n and E x te n t o f
I n c id e n c e Along T r a n s e c t
O u ts id e
In sid e
1
^ 7 .0 ± ^ . 2 *
2 3 .5 ± S . 5*
From SW p l u s no in c id e n c e
2
3 6 . 0 ± lH .O '
2 5 .0 i
8.3 *
From S and SW
3
2 3 .0 ±
7 .1 '
1 7 .1 t
6.11
No in c id e n c e N, S, and E
(some in c id e n c e W)
if
2 8 .0 ±
9 *2 '
1 9 .0 i
2.5'
I n c id e n c e S p l u s no
in c id e n c e from S
A verage
3 3 .5 1 s . 6 *
1 9 .8 ± 6 . 3 '
U sing t h e above in c id e n c e c r i t e r i a as a "basis, th e a v e r a g e h e i g h t s and
d ia m e te r s a s w e ll a s th e h e i g h t s and d ia m e te r s o f i n d i v i d u a l t r e e s were
p l o t t e d to show t h e e f f e c t s of p r e s e n c e o r a b se n c e of woods on o p p o s i t e
s i d e s o f th e " i n f l u e n c e l i n e , "
I n a d d i t i o n , p r o f i l e diagram s were p l o t t e d
to s c a l e in o r d e r to f u r t h e r b r i n g o u t th e r e l a t i o n s h i p o f th e in c id e n c e
c r i t e r i a u s e d , and t h e a p p a r e n t e f f e c t o f t h i s in c id e n c e .
The s ta n d a r d
d e v i a t i o n was computed f o r h e i g h t and d ia m e te r in a l l f o u r t r a n s e c t s on
b o th sid es of th e " in flu e n c e l i n e . "
F o r p u r p o s e s of s i m p l i f i c s . t i o n and f u r t h e r r e f e r e n c e to t h e two a r e a s
s e p a r a t e d by th e " i n f l u e n c e l i n e , " two d i s t i n c t p o r t i o n s of th e experim en
t a l a r e a e x i s t ass
AREA X - The a r e a e x h i b i t i n g good h e i g h t g ro w th , l i t t l e o r no
s u n s c a l d , good d ia m e te r g ro w th, and l y i n g a d j a c e n t to
Woods A and B. ( F i g s . U-, 5> a &d 6 ) .
AREA Y - The a r e a e x h i b i t i n g p o o r h e i g h t gro w th , extrem e
s u n s c a ld w ith su b se q u e n t wind b r e a k a g e , p o o r d ia m e te r
g ro w th , end o c cup yin g a p o s i t i o n in th e c e n t e r of th e
p l a n t a t i o n d i s t a n t from th e o ld -g r o w th woods.
(F ig s. 3,
and 7 ) .
29
P i g . H.
An a e r i a l p h o to g ra p h ta k e n August 10, 1950, showing
t h e e x p e r im e n ta l p l a n t a t i o n and a d j a c e n t m a tu re , mixedhardwood f o r e s t . A w h ite arrow d e s i g n a t e s th e r e c t a n g u l a r
20 - a c r e e x p e r im e n t a l p l o t .
X s
A rea o f good h e i g h t grow th
Y -
A rea o f p o o r h e i g h t grow th
N
*
W
S c a le :
E
1" =
750*
30
G r a p h ic a l R e p r e s e n t a t i o n o f Pour
S t r a i g h t - L i n e T r a n s e c t s TaJcen in th e E x p e rim e n ta l A rea **
** T r a n s e c t number d e s i g n a t i o n s c o rre s p o n d to
th e same t r a n s e c t s shown on Map 2.
31
TRANSECT NO. 1
100
I n f lu e n c e L in e
80
H t . 60
In
Feet
40
T u lip P o p la r
20
PROFILE DIAGRAM ALONG A SOUTH TO NORTH TRANSECT
SHOWING INCIDENCE FROM SOUTHWEST PLUS NO INCIDENCE
|<-----------------------------------
/3 2 0 '
TRANSECT NO. 2
100
I n f lu e n c e L in e
80
O ld
G r o w th
H a rd w o o d
H t . 60
In
Feet
40
T u lip P o p la r
20
PROFILE DIAGRAM ALONG A WEST TO EAST TRANSECT
SHOWING INCIDENCE FROM SOUTH AND SOUTHWEST
^
£20 '
>\
TRANSECT NO. 1
SD = Standard
D e v ia tio n
32
ir\r*"\
CO r-I
p p
CO CO
<0 CO
O K\
. cr*
o
U ir \ r—
•
•
K\K\
3 5 5
S
P * *•
in
nj
3*
E
O
fu
INFLUENCE LINE
0
©
©
10
V*
o
&
ft
O^
8> 4> pq
o WP
10
»d «S
r-t W
O
o
in
o
-n
o\j
<
o
Q
*
JfflOIHH p r a Hffa
o
A HEIGHT - DIAMETER TRANSECT OF INDIVIDUAL TREES IN
RELATION TO DISTANCE FROM OLD GROWTH HARDWOOD
»d cvj
AN
HEIGHT
-
A
•6
A
rH
^° - U
©
•P
(=»
o
sC
IS
o
o
SOUTH
O
ALONG
NORTH
TRANSECT
O
R ELA TIO N SH IP
WITH
TREES
o
DIAMETER
nj
AVERAGE
OF
THE
SAME
AGE
33
TRANSECT N O . 1
3^
fig . 5 .
A view ta k e n in A rea X (good h e i g h t g ro w th ) . The a v e ra g e
d ia m e te r o f t u l i p p o p l a r i n t h i s a r e a i s 6 .3 in c h e s w ith an
a v e r a g e h e i g h t o f ^7-0 f e e t . Note t h e o ld g row th hardwood
(Woods ,,Att) in t h e "background a d j o i n i n g t h e p l a n t a t i o n .
35
TRANSECT NO.
2
ctf
>
©
p
'd
3
4^
at
C~•\
©
o
P
3
H
/i
§
o
>fr
O
QD
o
M
Q)
O
V
VS
^q^TOH puu HSa
o
■v
36
TRANSECT NO . 2
<0
3 «
K\
»d o>
3 d
If
"J
Ul
o
**
o
o 0
M>*
c!? 'd
'd r-«
(fl s
o
o
<0
r\J
J im
UT JiH O IK H
'O
vS>
AN AVERAGE HEIGHT - DIAMETER RELATIONSHIP ALONG A WEST TO EAST
TRANSECT WITH TREES OP THE SAME AGE
S3 §
37
F ig . 6 .
A t y p i c a l view o f A rea X lo o k in g n o r t h w e s t . The c a t a l p a
t r e e i n t e r p l a n t i n g shows v e r y p o o r g ro w th . Compare t h e l e a f l i t t e r
on t h e f o r e s t f l o o r w ith t h e l i t t e r shown in F ig . 3* T h is photo
was ta k e n in A p r i l , 1952, p r i o r to budding o f th e t r e e s . Uo su n s c a l d i s o b s e r v a b le in t h i s a r e a .
38
TRANSECT NO. 3
20
T u lip P o p la r
15
H t.
10
in
Feet
5
PROFILE DIAGRAM ALONG A WE3T TO EAST TRANSECT
SHOVING- ABSENCE OF INCIDENCE N, S , AND E .
TRANSECT NO. 4
100
I n f lu e n c e L in e
O ld
G ro w th
H a rd w o o d
80
H t.
in
Feet
60
40
T u lip P o p la r
20
PROFILE DIAGRAM ALONG A SOUTH TO NORTH TRAN3E
SHOWING INCIDENCE FROM SOUTH PLUS NO INCIDENC
K-
>1
Old Growth
Hardwood
TRANSECT NO. 3
JEOISH Pi*13 HHQ
ko
TRANSECT NO.
3
O
EAST
<\i
TO
0) «H
r-t +*
u
©
-
©
(0 *H
r-t «*»
8-5
ft. a
(0
ftH
•H
(1|
X
to
*©©,£ HT
in
TT
AN
O K'v
*d r-t
AVERAGE
HEIGHT
o
SAME
THE
OF
ALONG
to
R ELA TIO N SH IP
1
TREES
to
©
DIAMETER
o
ro
WITH
•H Pn
A GE
A WEST
m
Q *r 4
TRANSECT
§• 5
bi
A view taken in th e a rea o f poor h e ig h t growth (Area Y ).
Sunscald i s o b serv a b le on th e t u lip p op lar to th e r ig h t o f th e
p h o to . Note th e dark p a tch es appearing as burns; th e s e are mats
o f Haircap Moss (Polytrichum commune H edw.). The t u lip poplar
in t h is area e x h ib it s e x te n s iv e sprout growth from the base o f
th e t r e e s ; t h i s abn orm ality i s th e r e s u lt o f su n sca ld and tr e e
c r ic k e t a c t i v i t y . The average h e ig h t o f tr e e s in t h is area is
17.1 f e e t w ith an average diam eter o f 3
i nches .
k2
£
o
tr\
+2
Cj
>
CD
R
dt-t
TEANSECT NO. k
•rt
o
at
*d
P
ct
-*->
C/3
R
C/3
*
I
c
- Ov
xr\VD
LO
;zi
H
P PI
WW
Oj -
St
©o o
•
•
<4 O
M
<0
-* CVi
a]
•
«S .
m
d +» Q
a> W R
o
o
e
£
t*0
CD
*► >
rH - 4
fn
<
p
M
O
CS
O
o
puu HSQ
Q
d
a3
US
A =
■e R
> ts
O
f-i
P
d
rH
O
R
J2J P3
o
TRANSECT NO. k
SI
J 1H 0 I
3H
44
SCOPE OF EXPERIMMIEAL WOBK
The s tu d y s.s o r i g i n a l l y c o n c e iv e d "by t h e F o r e s t r y D epartm ent in
J u n e , 1951»
d e v is e d to measure th e e d a p h ic and a tm o s p h e ric f a c t o r s
w i t h i n th e t u l i p p o p l a r p l a n t a t i o n .
D uring t h e summer o f 1951 f o u r sample
p l o t s w ere e s t a b l i s h e d a s c l i m a t i c s t a t i o n s .
Two o f t h e s e s t a t i o n s were
l o c a t e d on t h e s o u t h and w est s i d e s of th e p l a n t a t i o n b o rd e re d by woodland
where t h e t r e e s e x h i b i t th e g r e a t e s t h e i g h t g row th ; th e re m a in in g two
s t a t i o n s were l o c a t e d n e a r th e c e n t e r o f th e p l a n t a t i o n where th e t r e e s
show l i t t l e h e i g h t g ro w th .
Measurements ta k e n d a i l y by t h e F o r e s t r y
D epartm ent th r o u g h o u t two grow ing s e a s o n s b e g in n in g in 1951 were th e
fo llo w in g :
( l ) a tm o s p h e ric f a c t o r s , end (2) e d a p h ic f a c t o r s .
The f i r s t
o f t h e s e f a c t o r s in c lu d e measurement o f th e e v a p o r a tio n r a t e by u s e o f
th e L i v i n g s t o n atm om eter b u lb ; a i r te m p e r a tu r e and r e l a t i v e h u m id ity by
u s e o f t h e h y g ro th e rm o g rap h and s l i n g p s y c h r o m e te r .
The e d a p h ic f a c t o r s
s t u d i e d were s o i l m o is tu r e by u se o f Bouyoucos s o i l - m o i s t u r e b lo c k s a t
d e p th s o f s i x and e i g h t e e n in c h e s r e s p e c t i v e l y ; s o i l te m p e r a tu r e was ta k e n
d a i l y u s in g a s o i l therm om eter a t a one in c h d e p th below th e s o i l s u r f a c e .
The f i e l d d a t a on th e above f a c t o r s was measured d a i l y where p o s s i b l e .
A lth o u g h o t h e r s o i l p h y s i c a l d e t e r m in a tio n s were p ro p o s e d in th e
o r i g i n a l p l a n o f th e F o r e s t r y D ep artm en t, th e a c t u a l c o l l e c t i o n and
a n a l y s i s o f t h e s e d a t a were l e f t to th e p r e s e n t i n v e s t i g a t o r .
The f o l l o w
ing d e t e r m i n a t i o n s on t h e p h y s i c a l - e d a p h i c f a c t o r s a r e th e j o i n t p r o p e r t y
o f th e F o r e s t r y D epartm ent and th e p r e s e n t a u t h o r : ( l ) P h y s i c a l d e t e r
m in a tio n s,
in c l u d i n g t o t a l , c a p i l l a r y , and n o n - c a p i l l a r y p o r o s i t y , volume
w e ig h t, maximum w a te r - h o ld in g c a p a c i t y , s p e c i f i c g r a v i t y , m o is tu re
^5
e q u i v a l e n t , h y g ro s c o p ic c o e f f i c i e n t , s o i l e v a p o r a t i o n , and a mechanical,
a n a ly sis,
F u r t h e r f a c t o r s in c lu d e ( 2 ) chem ica l d e t e r m i n a t i o n s such a,s
o r g a n i c m a t t e r c o n t e n t , pH, t o t a l n i t r o g e n , C/il r a t i o , "base exchange
c a p a c i t y , e x c h a n g e a b le hy d ro g e n , t o t a l b a s e s , and t h e n u t r i e n t c o n te n t
of in d iv id u a l h o riz o n s.
To g i v e g r e a t e r co m p reh en siv en ess and scope to t h e p r o j e c t , th e
f o l l o w i n g b i o l o g i c a l d e t e r m i n a t i o n s were deemed a d v i s a b l e : ( l ) Micro
b i o l o g i c a l d e t e r m i n a t i o n s , which were in c lu d e d to show q u a n t i t a t i v e s o i l
o rg a n ism d i f f e r e n c e s f o r b o th th e a r e a o f good h e i g h t grow th (A rea X) and
p o o r h e i g h t grow th (A rea Y) w ith r e f e r e n c e t o :
a . D epth o f s o i l h o r iz o n
b . Seasonal v a r ia tio n
in m i c r o b i a l c o u n ts
c . The pH in r e l a t i o n
to m ic r o b ia l c o u n ts
d . M o is tu r e c o n te n t in r e l a t i o n to abundance o f organ ism s
e . The numbers o f f u n g i , b a c t e r i a , and a c tin o m y c e te s as
r e l a t e d t o t h e e co lo g y o f each a r e a .
I n o r d e r t o o b s e rv e th e e f f e c t s
o f th e h e rb a c e o u s v e g e t a t i o n
upon
m i c r o b i a l and e d a p h ic f a c t o r s , a s y s t e m a t i c g r i d sam pling o f th e l e s s e r
v e g e t a t i o n was t a l l i e d and p h o to g ra p h e d th ro u g h o u t th e growing s e a so n as
an in d e x t o t h e s u c c e s s i o n o f f l o w e r i n g
tio n
to th e
p o ssib le c o rre la
s o i l m o i s t u r e c o n te n t o f each h a b i t a / t .
O b s e r v a tio n o f t h e stems o f
a t i o n show
p l a n t s and t h e i r
t u l i p t r e e s in th e c e n t e r of th e p l a n t -
t h a t t h e s e t r e e s have extrem e s u n s c a ld damage.
In ord er
to
6 . The term " s u n s c a ld " as u sed h e r e r e f e r s to damage r e s u l t i n g
from an extrem e d e g re e o f f l u c t u a t i o n in te m p e r a tu r e on th e
young b a r k . T his damage may be th e r e s u l t o f combined d e s i c c a t i o n
e f f e c t s and r e p e a t e d p a s s i n g back and f o r t h th ro u g h th e f r e e z i n g
po i n t .
^6
s tu d y t h e e f f e c t and e x t e n t o f t h i s damage to t h e p l a n t a t i o n , a com plete
stem anaJLysis o f i n d i v i d u a l t r e e s was made as w e ll as m a cro sc o p ic c r o s s
s e c t i o n s o f damaged t r e e s , so as to e x h i b i t th e e x t e n t , d a t e o f s u n s c a ld ,
and i t s p o s s i b l e r e l a t i o n s h i p to h e i g h t and d ia m e te r grow th o f th e s t a n d .
To o b t a i n t h e t o t a l scope o f th e e c o l o g i c a l problem a d d i t i o n a l d a t a
were o b t a i n e d on (a ) d e p th to t h e w a te r t a b l e th ro u g h o u t t h e s e a s o n (b)
k i n d and e x t e n t o f f o r e s t l i t t e r (c ) c o n c e n t r a t i o n and p o s i t i o n o f r o o t s
in t h e s u r f a c e s o i l h o r i z o n , and (d) l i g h t i n t e n s i t y m easurements a t
v a r i o u s p o i n t s w i t h i n t h e sam pling a r e a .
The s tu d y as shown by th e above e x p e r im e n ta l c r i t e r i a was in te n d e d
to be com preh en sive in i t s s co p e .
in v e stig a te d c o n sist of:
so il-c h em ica l)
A b ro a d c l a s s i f i c a t i o n of th e p h a se s
(1) L a b o ra to ry e x p e rim e n ts ( s o i l - p h y s i c a l and
( 2 ) F i e l d - p l a n t a t i o n e x p e rim e n ts (grovrth, m ic r o c lim a te ,
and p l a n t s u c c e s s io n ) and ( 3 ) S o i l m i c r o b i o l o g i c a l e x p e rim e n ts ( q u a n t i t a t iv e ).
These p h a s e s w i l l be ta k e n up i n d i v i d u a l l y in th e above named o r d e r .
A summary o f a l l f a c t o r s i s p r e s e n t e d a f t e r d i s c u s s i n g each v a r i a b l e .
*+7
SOIL SMILING TECHNIQUE
L a b o r a to r y E xp e rim en ts - P h y s i c a l and Chemical
Equipment Used
The s o i l sam ples f o r "both t h e p h y s i c a l and chem ical s o i l determinart i o n s were ta k e n w i t h a f i e l d s o i l - c o r e s a m p le r.
T h is sam p ler h a s been
u s e d e x t e n s i v e l y by t h e U n ite d S t a t e s S o i l C o n s e rv a tio n S e r v ic e f o r s o i l s
research .
The ty p e u s e d in t h e s e i n v e s t i g a t i o n s employs
a3x3
in c h
aluminum c y l i n d e r w ith a w e ig h te d d r i v i n g assem b ly.
Sampling P r o c e d u re
P i t s were dug a t e ach sam pling s t a t i o n and each s o i l h o r iz o n o f th e
p r o f i l e was sampled s e p a r a t e l y .
The h o r iz o n sampled was b a se d upon th e
a c t u a l d e p th o f a p a r t i c u l a r h o r i z o n as mapped in t h e f i e l d .
were t a k e n a t o r n e a r f i e l d c a p a c i t y .
A l l samples
The s o i l c o r e s o b t a i n e d were th e n
b ro u g h t i n t o th e l a b o r a t o r y and th e p h y s i c a l and ch em ical d e t e r m i n a t i o n s
made.
Where a m o d i f i c a t i o n i n t h e te c h n iq u e o f making a p a r t i c u l a r
d e t e r m i n a t i o n was n e c e s s a r y , a p p r o p r i a t e n o t a t i o n i s made u n d e r th e
e x p e r im e n ta l method f o r t h a t p r o c e d u r e .
P lo t D e sc rip tio n
The sam plin g a r e a s were s e t up in su ch a manner t h a t a s t a t i s t i c a l
a n a l y s i s c o u ld be a p p l i e d to th e d a t a .
F o r most o f th e s o i l f a c t o r s
i n v e s t i g a t e d , sam ples were ta k e n a t f o u r main c l i m a t i c s t a t i o n s d e s ig
n a t e d by Roman n u m e ra ls , as S t a t i o n s I , I I , I I I , and IV.
S t a t i o n s I and I I
a r e l o c a t e d in t h e a r e a o f good h e i g h t grovrth (A rea X) and S t a t i o n s I I I
and IV a r e in th e a r e a o f p o o r h e i g h t grow th (A rea Y ) .
At each main
s t a t i o n , f o u r s u b s t a t i o n s were e s t a b l i s h e d a t random and d e s i g n a t e d as
ks
S u b s t a t i o n s 1, 2 , 3» aud
S o i l h o r iz o n s f o r each p r o f i l e were d e s ig
n a t e d i n t h e u s u a l m anner, a s AQ »
e tc .
The above n o t a t i o n f o r each
s o i l sam ple i s a p p l i e d to a l l t h e ed ap h ic f a c t o r s i n v e s t i g a t e d .
Thus, an
i n d i v i d u a l sam ple m ight be d e s i g n a t e d a s I I 3 Ag , which r e f e r s to main
s t a t i o n , s u b s t a t i o n , and s o i l h o r iz o n r e s p e c t i v e l y .
R e fe re n c e to a l l
s o i l p r o f i l e s i s p r e s e n t e d u n d e r th e c a p t i o n R e p r e s e n t a t i v e P r o f i l e and
D e s c r i p t i o n f o r e ac h s o i l ty p e a s shown l a t e r .
S t a t i s t i c a l A n a ly s is o f D ata
The s o i l e x p e rim e n ts ( p h y s i c a l and chem ical) were so d e s ig n e d t h a t
a l l data, c o n c e rn in g a p a r t i c u l a r s o i l f a c t o r c o u ld be s u b j e c t e d to a n a l y s i s
of v a ria n ce .
I n a l l c a s e s , th e v a r i a n c e betw een a r e a s h as been s e g r e g a te d
from t h e t o t a l v a r i a n c e .
The s h o r t - c u t method f o r i n d i v i d u a l d e g re e s of
freedom h a s been u s e d to c a l c u l a t e th e mean s q u a re and E - v a lu e as shown
by S n e d e co r (19^-6).
Experim ents were d e s ig n e d f o r i n d i v i d u a l com parisons
among t r e a t m e n t s , where th e sum o f s q u a r e s f o r n tr e a t m e n t s i s s u b d iv id e d
in t o n - 1 p a r t s , each c o rre s p o n d in g to a s i n g l e d e g re e o f freedom ; t h e s e
p a r t s were th e n t e s t e d i n d i v i d u a l l y a g a i n s t e x p e r im e n ta l e r r o r .
The
r e s u l t s o f t h i s method g iv e a n o t a b l e i n c r e a s e in t h e in f o r m a tio n f u r
n i s h e d by th e e x p e r im e n t.
T h is method i s a p p l i c a b l e where th e two sums
a r e made up o f th e same number o f i n d i v i d u a l s .
By comparing th e e r r o r
v a r i a n c e betw een a r e a s , th e p r e s e n c e o r absence o f s i g n i f i c a n t d i f f e r e n c e
can b e d e t e c t e d from t h e E - t e s t .
I n o r d e r to d e te rm in e betw een a r e a s i f
a s i g n i f i c a n t d i f f e r e n c e e x i s t s , i t i s n e c e s s a r y to e x p re ss what c o n s t i t u t e s
a s i g n i f i c a n t d i f f e r e n c e in term s o f th e u n i t in which th e s i l v i c a l f e a t u r e
was m e asu re d .
I n t h e c a s e o f w a te r - h o ld in g c a p a c i t y , th e u n i t i s p e r c e n t
m o i s t u r e ; in t h e c a s e o f a v a i l a b l e c alc iu m c o n t e n t , t h e u n i t i s
49
r a i l l i e q u i v a l e n t s p e r 100 grams o f s o i l .
Thus, "by e x p r e s s i n g in p e r c e n t
m o i s t u r e t h e d i f f e r e n c e betw een s o i l h o r iz o n s o f A rea X and A rea Y, i t i s
p o s s i b l e t o d e te r m in e betw een which s o i l f a c t o r a s i g n i f i c a n t d i f f e r e n c e
e x ists.
The method o f making t h e s e c a l c u l a t i o n s i s shown in t h e fo rm u lae
w hich f o l l o w :
mean s q u a r e t r e a t m e n t
T* v a lu e
mean s q u a re e r r o r
854.00
“
24.4
* *
3 7.07
** S in c e t h e F - v a lu e i s l a r g e r th a n 4 .6 0 o r S .S 6 (from S i g n i f i c a n c e
T a b le ) t h e d i f f e r e n c e betw een a r e a tr e a tm e n t means i s s i g n i f i c a n t a t b o th
t h e f i v e p e r c e n t and one p e r c e n t l e v e l .
The mean s q u a r e t r e a tm e n t f o r A rea X v s . A rea Y i s d e r iv e d from th e
c a lc u la tio n :
( t x - t 2)
k
-
=
C. T.
n
w here:
k r
n z
mean s q u a re
and t 2 “ sum o f i n d i v i d u a l item s
sum o f a l l m easurem ents
C,
4 2
T. - c o r r e c t i o n term
The c o r r e c t i o n term
_
(C .T .) i s o b ta in e d by th e fo rm u la :
m
V• J- •
„
( sum i n d i v i d u a l
1
--- ---—
item s)
— -■■- ■ ■■
■
t o t a l item s
To c a l c u l a t e t h e e r r o r te rm :
E
=
E - I
w here:
S
R
= E rror
z T otal v arian ce
K
“ V a r i a t i o n betw een a r e a s
50
By e x a m in a tio n o f th e m agnitude o f th e F -'v a lu e , th e e x t e n t o f th e
v a r i a t i o n can he i n t e r p r e t e d .
Thus, i f th e F - v a lu e o b ta in e d f o r A rea X
f o r any one s o i l h o r i z o n i s l a r g e in com parison to o t h e r h o r iz o n s o f th e
same s o i l ty p e , most v a r i a t i o n e x i s t s a t t h a t h o r i z o n ; s i m i l a r l y , a sm all
F -v alu e in d ic a te s l e s s v a r i a t i o n f o r a p a r t i c u l a r h o rizo n .
At th e c o n c lu s io n o f th e d a t a o b t a i n e d f o r b o th th e p h y s i c a l and
ch e m ic a l f a c t o r s i n v e s t i g a t e d , a summary t a b l e i s p r e s e n t e d to i n d i c a t e
th e r e l a t i o n s h i p o f F - v a l u e s f o r a l l s o i l v a r i a b l e s t h a t were s t u d i e d .
51
laboratory experiments
P h y s i c a l — Edaphic C h a r a c t e r i s t i c s
1 . M ec h a n ica l A n a ly s is
7
E x p e rim e n ta l Method:
A mechanical, a n a l y s i s o f th e s o i l s in th e e x p e r im e n ta l a r e a was
made "by t h e h y d ro m e te r method, employing th e te c h n iq u e o f Bouyoucos (193&) •
The s o i l sam ples ( l 6 sam ples p e r s t a t i o n tim e s f o u r s t a t i o n s =
were th o r o u g h l y a i r - d r i e d and p a s s e d th ro u g h a two mm. s i e v e .
t r e a t m e n t a f i f t y - g r a m sample was u s e d .
samples)
Por each
To d i s p e r s e th e s o i l th e f i f t y -
gram sam ple was added d i r e c t l y to a s t i r r i n g cup, and d i s t i l l e d w a te r added.
The d i s p e r s i n g a g e n t u s e d was a commercial p ro d u c t known as C algon, a
sodium h ex am e ta p h o sp h a te compound.
S in c e t h i s d i s p e r s i n g a g e n t had n o t
been u s e d p r e v i o u s l y , i t was n e c e s s a r y t o ru n a few t e s t sam ples to d e t e r
mine i f t h e amount o f Calgon u s e d p e r sample was c r i t i c a l w ith t h i s p a r t i c
u la r s o i l ty p e.
H aving d e te rm in e d by t e s t ru n t h a t th e c o n c e n t r a t i o n o f
d i s p e r s i n g a g e n t u s e d was n o t s i g n i f i c a n t l y d i f f e r e n t betw een u s e o f t e n c c .
to t w e n t y - f i v e c c . i n c l u s i v e , a f i f t e e n c c . Calgon c o n c e n t r a t i o n v/as
employed as a d i s p e r s i n g a g e n t.
A f t e r s o ak in g and s u b se q u e n t s t i r r i n g o f
th e s o i l w ith th e d i s p e r s i n g a g e n t , th e c o n te n t s were th e n p o u re d i n t o th e
s p e c i a l c y l i n d e r , s h a k e n , and th e tim e r e c o r d e d .
A te m p e r a tu r e c o r r e c t i o n
was a p p l i e d to e ach h y d ro m e te r r e a d in g and a summation o f th e r e s u l t s f o r
b o th A re a X and A rea Y i s g iv e n in T able 2.
7. The number p r e c e d i n g th e p h y s i c a l s o i l f a c t o r und er i n v e s t i g a t i o n
c o rre s p o n d s t o th e same f a c t o r summarized s t a t i s t i c a l l y in T ab le 21.
52
TABLE 2.
MECHANICAL ANALYSIS OF FIELD SOILS BY HORIZON IN AREA X AND AREA Y
P ercent
A rea X ( S t a t i o n s I - I I )
S o i l H o riz o n
Sand
S ilt
IAX
A2
b2
B-2
6 1 .9
7 6 .7
7 3 .6
91.6
9 4 .0
2 1 .9
9*1
6.0
1.0
0.0
3S .I
23.3
26.4
2 .4
6.0
3*0
1*7
1.0
1 .0
0.0
13.2
12.5
1 9 .4
6 .4
6.0
IIA 1
a2
b2
B-t
6 1 .1
63.2
76.0
Sg.O
9 4 .0
22.6
17*9
4 .0
0.0
32.9
36.s
24.0
1 2 .0
13.1
16.2
1S.0
0.0
6.0
3*2
2 .7
2.0
2. 6
0.0
4 3 .1
3 6 .3
29.6
6.0
5*o
3*2
7 .2
2.1
1.0
0.6
15.4
1 8.0
23.1
5.0
4 .4
3 3 .5
37*3
3 2 .4
10.0
3*2
2.5
2.0
0.6
1.0
1 4 .9
19.1
2 0.4
9 .4
4 .4
S ilt
p l u s Olay
Clay
F in e Clay
9.4
6.0
A rea Y ( S t a t i o n s I I I - I V )
IIIA i
a2
b2
5
IVAX
a2
b2
Cl
56.9
61.7
70. 4
9 4 .0
95*0
2 4 .5
13.1
4 .4
0.0
61.5
62.7
67.6
90.0
9 4 .6
2 0 .4
15*7
10.0
0.0
0.0
0.0
5.4
D is c u s s i o n o f R e s u l t s
The m e c h a n ic a l a n a l y s i s d a t a r e v e a l th e o v e r a l l sandy n a t u r e o f
sam ples ta k e n in s i x t e e n d i f f e r e n t l o c a t i o n s .
V a r i a t i o n in t e x t u r e a cc o rd
in g t o t h e U n ite d S t a t e s D epartm ent o f A g r i c u l t u r e t e x t u r a l c l a s s i f i c a t i o n
i s shown on th e R e p r e s e n t a t i v e P r o f i l e D e s c r i p t i o n s f o r each s o i l t y p e .
The
v a r i a t i o n i n t e x t u r e i s most marked in th e amount o f f i n e c la y in th e A-j_
and Ag h o r i z o n s when c o n t r a s t i n g Area, X w ith A rea Y.
This v a r i a n c e in th e
f i n e c l a y c o n te n t i s th e h a s i s f o r t h e d i s t i n c t i o n o f t h r e e s o i l ty p e s
53
o f th e same d r a in a g e c a t e n a .
The t h r e e main s o i l ty p e s r e p r e s e n t e d a r e
a c i d v a r i a n t s o f t h e Pox sandy loam , Bronson sandy loam, and 'Warsaw sandy
loam.
The p r o f i l e d e s c r i p t i o n s "bring o u t t h e s e r e l a t i o n s h i p s more c l e a r l y
(P ig s. 9 -1 2 ).
To d e te r m in e t h e e x t e n t and s i g n i f i c a n c e of th e v a r i a t i o n
in t h e in d iv id u a l, s e p a r a t e s , an a n a l y s i s o f v a r i a n c e was made f o r f i n e
c l a y , s i l t p l u s c l a y , and t o t a l s a n d , f o r b o th A rea X and A rea Y (T a b le s
3, 4 , and 5 ) .
TABLE 3 .
ANALYSIS OP VARIANCE FOR MECHANICAL ANALYSIS AREA X v s . AREA Y
T e x t u r a l G lass - P in e c l a y ( l e s s th a n 2 m icron d i a . )
B a s i s : 32 samples
H o riz o n
^1
^2
Source
D egrees o f Freedom
Sum o f Squares
Mean Square
T otal
X vs Y
E rror
15
1
l4
36 . 1 0
16 . 0 0
20.10
16.00
1.43
1 1 . 1 **
T o tal
X vs Y
E rror
15
1
l4
^ 9 .3 9
184.96
264.43
184.96
18 .80
l 4 . 6 **
p
B a s i s : k samples
B2
5
cl
T o tal
X vs Y
E rro r
3
1
2
13.93
9 .3 0
U.63
9 .3 0
2.31
4 .0 2
T o tal
X vs Y
E rror
3
1
2
1 4.6 7
.49
14.18
.49
7.09
.07
T otal
X vs Y
E rror
3
1
2
2.56
2.56
0.00
2.56
0.00
0.00
** S i g n i f i c a n t a t 5$
1$
The a n a l y s i s o f v a r i a n c e f o r th e f i n e c la y f r a c t i o n is h ig h ly s i g n i f g
i c a n t a t b o th th e 551 and Vi l e v e l in t h e Aj and A2 h o r i z o n s .
In v e stig ato rs
such a s A l b e r t (1925) and B ornebusch (1931) have f r e q u e n t l y r e p o r t e d t h a t
5^
t h e c o n t e n t o f m a t e r i a l s m a l l e r t h a n . 2 mm. in sandy s o i l s has an im p o rtan t
b e a r i n g on s i t e q u a l i t y .
table
4.
ANALYSIS OF VARIANCE FOR MECHANICAL ANALYSIS AREA X v s . AREA Y
T e x t u r a l C la ss - S i l t p l u s c la y
B a s is : 32 samples
H o riz o n
A1
a2
b2
c.
B-jj
C
Source
D egrees o f Freedom
Sum o f Squares
Mean Square
F
T o tal
X vs Y
E rror
3
1
2
16.19
5 .2 9
10.90
5.29
5 .4 5
.97
T o tal
X vs Y
E rror
3
l
2
1 5 1 . U9
59.86
91.63
59 .86
4 5 . SI
1.31
T o tal
X vs Y
E rror
3
l
2
U2 . 9 U
3 6 . 1 *+
6 . so
36.14
3 .4 o
10.62
T o tal
X vs Y
E rror
3
l
2
19.32
4 .s4
i4 .4 g
4 .S 4
7 .2 4
.67
T o tal
X vs Y
E rror
3
l
2
.72
.64
.o s
.64
.04
16.00
S. When u s e d in d i s c u s s i n g e x p e r im e n ta l d a t a , th e word " s i g n i f i c a n t “ ,
i s a p p l i e d in a s t a t i s t i c a l s e n s e . T here a r e v a r i o u s d e g re e s o f
s i g n i f i c a n c e now re c o g n iz e d s t a t i s t i c a l l y , b u t th e two most
commonly u sed a r e a t th e 1# and 5$ l e v e l s . The fo rm er l e v e l , i n i n d i c a t e s t h a t t h e r e a r e n i n e t y - n i n e chances in one hundred t h a t
t h e d i f f e r e n c e in means i s n o t due to random sam pling in a homo
geneous p o p u l a t i o n . T h is 1$ l e v e l i s r e f e r r e d to as v e ry or
h i g h l y s i g n i f i c a n t . The l a t t e r p e r c e n t l e v e l i n d i c a t e s t h a t t h e r e
a r e n i n e t y - f i v e chances in one hundred t h a t th e d i f f e r e n c e in
means i s n o t due to random sam pling o f a homogeneous p o p u l a t i o n ,
and i s commonly spoken o f a s s i g n i f i c a n t . The F - v a lu e i s a
s t a t i s t i c a l in d e x to d e te rm in e th e m agnitude o f th e s i g n i f i c a n t
l e v e l and w i l l be u t i l i z e d th ro u g h o u t th e re m a in d er o f t h i s
m a n u s c r i p t . The p l o t r e p l i c a t i o n method o f a n a l y s i s w i l l be
fo llo w e d a c c o r d in g to Snedecor (19*4-6).
A lthough t e x t u r e , nor any o th er s in g le s o i l p ro p erty , seldom d e te r
mines th e q u a l i t y o f s i t e ,
i t i s g e n e r a l l y re c o g n iz e d t h a t loam and loamy
55
s o i l s a r e more f a v o r a b l e f o r f o r e s t growth, th a n e i t h e r c o a r s e sands o r
fin e c la y s.
I t i s t h e r e f o r e p e r t i n e n t to p o i n t out t h a t th e i n f l u e n c e o f
s o i l t e x t u r e on t h e grow th o f t u l i p p o p l a r may be masked by th e i n f l u e n c e
of o th e r f a c t o r s .
The p r e s e n c e o f a Warsaw loam s o i l ty p e in A rea Y v h e re
th e t r e e s a r e s m a l l e s t i s a rough i n d i c a t i o n t h a t s o i l t e x t u r e a lo n e may
n o t be a l i m i t i n g f a c t o r f o r th e h e i g h t g row th o f t u l i p p o p l a r .
Thus, in
a l l t h e s t a t i s t i c a l a n a ly s e s t h a t f o ll o w f o r a l l s o i l f a c t o r s and o t h e r s ,
t h e a n a l y s i s o f v a r i a n c e i s u sed o n ly to p o i n t o u t s t a t i s t i c a l d i f f e r e n c e s
and n o t t o p o r t r a y t h e i r e c o l o g i c a l s i g n i f i c a n c e .
The r e l a t i o n s h i p o f
t e x t u r e t o o t h e r s o i l f a c t o r s w i l l be b ro u g h t o u t i n s o f a r as t e x t u r e r e
l a t e s to a s e t o f i n t e r r e l a t e d s o i l and m o is tu r e phenomena.
TABLE 5.
ANALYSIS OF VARIANCE FOR MECHANICAL ANALYSIS AREA X v s . AREA Y
T e x t u r a l C lass - Sand ( l e s s th a n 1000 m icron d i a . )
B a sis:
32 samples
H o riz o n
Source
D egrees of Freedom
Sum o f Squares
Mean Square
F
A1
T o tal
X vs Y
E rror
15
1
Ik
212,20
21.62
190.61
21.62
13.62
1.61
T o tal
X vs Y
E rror
15
1
Ik
1993.56
237.16
1 7 5 6 .k2
B a s i s : U sam ples
237. I 0
1 2 5 . ko
1.90
T o tal
X vs Y
E rror
3
1
2
3 3 . 6U
6 . SO
3 3 .64
3 .^ 0
9.S9
T otal
X vs Y
E rror
3
1
2
1 9.32
H.gh
ih .
U.sh
7 . 2^
.67
T o tal
X vs Y
E rror
3
1
2
.7 2
. 6^
.OS
. 6U
.oh
16.0
A2
Bpd.
3
_L
56
The g r a p h i c r e l a t i o n betw een com parable d e p th s to a l l s o i l h o r iz o n s
f o r b o t h a r e a s i s s h o rn in F i g . S.
S tu d i e s by Auten (1937 and 19*4-5) u s in g
d e p th o f b o th t h e A and B h o r iz o n s a s i n d i c e s o f s i t e e v a l u a t i o n f o r t u l i p
p o p l a r , have shown no e s t a b l i s h e d r e l a t i o n s h i p betw een t h i c k n e s s o f th e B
h o r i z o n and s i t e in d e x .
The com pactness o r d e n s i t y o f th e B h o r iz o n i s th e
c h a r a c t e r r e s p o n s i b l e f o r h i n d e r i n g w a te r movement and p e r m e a b i l i t y r a t h e r
th a n t h i c k n e s s .
The t h i c k n e s s o f th e A h o r iz o n i s n o t a good c r i t e r i o n o f
s i t e f o r t u l i p p o p l a r ; d e p th to a heavy c l a y s u b s o i l i s a much b e t t e r
m easu re o f t h e p e r m e a b i l i t y o f w a te r .
Auten (19*4-5)
c o r r e l a t i o n f o r d e p th to s u b s o i l and s i t e in d e x .
shown a h ig h
He has shown t h a t on s o i l s
whose d e p th to t i g h t s u b s o i l i s l e s s th a n 2*4- in c h e s would have a s i t e index
o f l e s s th a n 8 5 *
I f t h i s c r i t e r i o n was a p p l i e d to t h e p r e s e n t i n v e s t i g a t i o n ,
th e h i g h e s t s i t e in d e x e x p e c te d f o r th e b e s t h e ig h t grow th would be 82,
assum ing t h a t o t h e r t e x t u r a l and c l i m a t i c c h a r a c t e r i s t i c s were n o t l i m i t i n g .
The r a t h e r s t r i k i n g s i m i l a r i t y o f d e p th to com parable h o r iz o n s and t e x t u r e
i s shown in F i g . 8 .
The d e p th t o s u b s o i l does n o t v a ry m arkedly when con
t r a s t i n g th e t h r e e r e l a t e d s o i l ty p e s u n d e r i n v e s t i g a t i o n .
A uten (1937) fou n d a p o s i t i v e c o r r e l a t i o n betw een s i t e e v a l u a t i o n and
d e p th of th e u n d i s t u r b e d Aj h o r i z o n f o r s o i l s s u p p o r tin g t u l i p p o p l a r .
P o p l a r was g e n e r a l l y n o t fo u n d on s o i l whose A-^ h o r iz o n was l e s s th a n one
in c h t h i c k , and s i t e in d e x in c r e a s e d w ith t h i c k n e s s o f t h e A^ h o r iz o n between
t h e l i m i t s o f one and e i g h t i n c h e s , a p p ro x im a te ly t h r e e s i t e - i n d e x p o i n t s
f o r e a c h in c h o f A^.
u n d istu rb e d s o i l .
These f i n d i n g s were v a l i d o n ly on th o s e a r e a s hav in g
H is r e s u l t s were b a se d upon th e r e l a t i o n between o r g a n ic
m a t t e r i n c o r p o r a t i o n and i n d i r e c t measure o f s o i l m o is tu r e .
I n th e p r e s e n t i n v e s t i g a t i o n , u s in g A u te n 's c r i t e r i o n of
d e p th , i t
CO
s
Ill
Fl rH
CO
FJ
O
CM
O
rH
rH
/
I
O
X
rH
CO
GRAPHIC RELATIOTT BETWEEN EQUAL-AGED TULIP POPLAR AIR) DEPTH TO
COMPARABLE SOIL KORIZOTI ITT AREAS O
P GOOD AITD POOR
HEIGHT GROWTH
F ig.
8 .
57
rH
_ © r*S
>> +* rd
O
53
would be p o s s i b l e to a c h ie v e a s i t e in d e x o f a p p ro x im a te ly 93 f o r
d om inant t r e e s a t 50 y e a n s .
However, t h i s s u p p o s i t i o n would be v a l i d
o n ly when o t h e r s i t e re q u ir e m e n ts c o u ld be m et, such a.s good s u b s o i l
d r a i n a g e , a d e q u a te s o i l m o is tu r e , and on s i t e s which a r e n o t un du ly ex
p o s e d to r a p i d s u r f a c e s o i l a i r - d r y i n g .
The p r o f i l e s tu d y o f th e p r e s e n t i n v e s t i g a t i o n r e v e a l s no r e l a t i o n s h i p
to th ic k n e s s of th e B h o riz o n .
However, t h e r e a p p e a rs to be some c o r r
e l a t i o n betw een t h e w a t e r - h o l d i n g c a p a c i t y o f th e A h o r iz o n and s u b se q u e n t
s o il-m o is tu re ev ap o ratio n .
These r e s u l t s , in t u r n , a f f e c t p e r m e a b i l i t y
and d r y n e s s o f t h e s u r f a c e
s o i l s in b o th a r e a s .
e l a t i o n betw een th e amount
o f o r g a n ic m a t t e r and f i n e c la y c o n te n t o f th e
T h is s tu d y shows a c o r r
A-j_ and A^ h o r i z o n s , w ith r e s p e c t t o s o i l - m o i s t tire r e l a t i o n s h i p s .
These
p r o f i l e c h a r a c t e r i s t i c s a r e s u b s t a n t i a t e d by s t a t i s t i c a l s i g n i f i c a n c e be
tw een A re a X and A re a Y as
Thus, i t a p p e a rs t h a t
shown i n T ab le 3*
t e x t u r e and o r g a n ic m a t t e r i n c o r p o r a t i o n o f th e
A^ and Ag h o r i z o n s , and t h e i r a t t e n d a n t s o i l - m o i s t u r e h o ld in g c a p a c i t y , i s
d e f i n i t e l y r e l a t e d t o o t h e r c l i m a t i c f a c t o r s such as e v a p o r a tio n , a i r
t e m p e r a t u r e , s o i l t e m p e r a t u r e , and growing s e a s o n p r e c i p i t a t i o n ,
in v e stig a tio n .
in t h i s
The manner in which th e A1 and Ag h o r iz o n s a r e r e l a t e d to
th e r a d i a l and h e i g h t grow th o f t u l i p p o p l a r and th e growing s e a so n p r e
c ip ita tio n ,
i s d i s c u s s e d under c l i m a t i c f a c t o r s .
59
SOIL PROFILE DESCRIPTIONS
6o
S o i l P r o f i l e and R e l a te d C h a r a c t e r i s t i c s
A rea X - S t a t i o n I
The s o i l p r o f i l e exposed in t h i s a r e a r e p r e s e n t s t h e s i t e where th e
h e i g h t and d i a m e te r grow th i s g r e a t e s t .
T h is a r e a i s im m ediately a d j a c e n t
t o Woods 11A11 on t h e w est and Woods "B" t o th e s o u th .
There i s no s u n s c a ld
damage to t r e e s on t h i s s i t e ; t h e lo w er b ra n c h e s a r e s e l f - p r u n e d and no
s p r o u t i n g o c c u r s a t t h e b a se o f th e t r e e s .
Numerous su g ar maple s e e d l i n g s
a r e to be fo u n d , and th e l i t t e r i s n o t i c e a b l y g r e a t e r in amount th a n t h a t
fou nd f u r t h e r o u t in th e p l a n t a t i o n .
The h e rb a ce o u s v e g e t a t i o n on t h e
f o r e s t f l o o r i n d i c a t e s s p e c i e s which a r e more a k in to th e a d j o i n i n g woods
th a n t h e f l o r a fo un d in th e a r e a o f p o o r h e i g h t gro w th .
To a d e p th o f a p p ro x im a te ly f i f t e e n in c h e s t h e r e i s a sandy loam o f
a d a r k brown c o l o r .
Below th e A h o r iz o n and i n t o t h e B h o r i z o n , c l a y i s
fo u n d , g r a d in g i n t o a loamy sand a t th e 3^ h o r i z o n .
At a d e p th o f t h i r t y
in c h e s and beyond t h e r e i s a y e l l o w i s h brown s a n d , w ith no lim e p r e s e n t .
The s o i l ty p e in t h i s a r e a i s a Pox sandy loam, a c i d v a r i a n t .
The t u l i p
p o p l a r r o o t zone i s fo u n d e x c l u s i v e l y in th e A^ and A2 h o r iz o n s to a, d e p th
o f a p p r o x im a te ly tw e lv e in c h e s .
Most o f t h e w a te r f a l l i n g on t h i s s o i l i s
removed i n t e r n a l l y ; t h e r e i s a te n d e n c y t o d ry in g o u t under extrem e ex
p o s u r e , e s p e c i a l l y where t h i s s o i l ty p e i s n o t co v ered w ith t r e e s .
F ig . 9 .
SOILS ANALYSIS
61
REPRESENTATIVE PROFILE AND DESCRIPTION
A rea X - P l o t I
In.
F t.
P ro file
D epth
H orizon
Sandy lo a m . Dark r e d d i s h
b r o w n ( 6 YR 3 / 2 ) . Weak
m edium g r a n u l a r . pH 5 * 5 5
z 4
0M
- 9Alt
-
6
D escrip tio n
8
JO ~ J
9"-15"
A2
1 5 ' ’- 2 3 ”
B2
23”-30”
B3
30"-38”
up
Ci
2
3
Sandy lo a m . B ro w n -d ark
b r o w n ( 7 . 5 YR A / 2 ) . Weak
m ediu m g r a n u l a r t o f i n e
c r u m b . pH 5 . 3 3
Sandy
loam t o san d y c l a y lo a m .
D a r k b r o w n ( 7 . 5 YR 3 / 3 ) . M ed .
t o c o a r s e n u c i f o r m . Some
g r a v e l . D a r k c o a t i n g s on
s t r u c t u r a l f a c e s . pH 5 . AO
Loamy
sand t o s a n d . Reddish
brown
( 6 , 0 YR A / 3 ) . V e r y w ea k
n u c i f o r a t o s i n g l e c c r a i n . Some
s t r a t i f i c a t i o n . No l i m e p r e s e n t
D a r k c o a t i n g s on s t r u c t u r a l
f a c e s . pH 5 . A 2
S a n d . Y e llo w is h brown
10 YR 5 / A . S t r u c t u r e l e s s . No
l i m e p r e s e n t , pH 5 . 1 8
4
S o i l T y p e - Fox s a n d y l o a m , a c i d v a r i a n t
Topography - N e a rly l e v e l
D r a i n a g e - Good
E r o s i o n - None
P e rm e a b ility - M oderately ra p id
C l a s s i f i c a t i o n - C ra y Brown P o d z o l i c
L o c a tio n :
E& o f N-J o f S E i o f S e c 2 9 T5S RlAw
C ass C ou n ty, M ic h ig a n
62
S o i l P r o f i l e and R e l a t e d C h a r a c t e r i s t i c s
A rea X - S t a t i o n I I
The s o i l p r o f i l e exposed in t h i s a r e a a l s o e x h i b i t s t u l i p p o p l a r
o f e x tre m e h e i g h t gro w th i n c o n t r a c t to A rea Y.
t o Woods "B*1 on th e s o u t h .
T h is s i t e i s a d j a c e n t
A gain , t h e r e i s an abundance o f s u g a r maple
s e e d l i n g s , s e l f - p r u n i n g o f low er b r a n c h e s , ab se n c e o f s u n s c a l d , and no
b a sa l sp ro u tin g .
The h e rb a c e o u s v e g e t a t i o n e x h i b i t s s p e c i e s which have
a p p a r e n t l y m ig r a te d from t h e hardwood f o r e s t to th e s o u th .
T h is a r e a i s s i m i l a r to S t a t i o n I w ith th e e x c e p tio n o f a few minor
d i f f e r e n c e s in d e p th to t h e w a te r t a b l e .
The A h o r iz o n i s a d a rk r e d d i s h
brown, which g r a d e s i n t o a loamy sand B h o r i z o n .
A gain, th e C h o r iz o n a t
a d e p t h o f 3 ^ i n c h e s , i s a y e l l o w i s h brown s a n d .
No lim e i s p r e s e n t in
t h e lo w e r p a r t o f th e B h o r iz o n o r t h e G h o r i z o n .
The t u l i p p o p l a r
l a t e r a l r o o t zone i s found e n t i r e l y w i t h i n th e f i r s t t h i r t e e n in c h e s o f
th e p r o f i l e .
As b e f o r e , th e s o i l i s a Pox sandy loam, a c i d v a r i a n t , w e ll
to somewhat e x c e s s i v e l y d r a i n e d .
is removed i n t e r n a l l y .
c o n d itio n s.
Most o f th e w a ter f a l l i n g on t h i s s o i l
T h is s o i l ty p e te n d s t o be d ro u g h ty under exposed
F ig . 1 0 .
SOILS ANALYSIS
63
REPRESENTATIVE PROFILE AND DESCRIPTION
Area X - P lo t I I
In * F t*
P ro file
D epth
H orizon
2 H
0"-8"
4
6
Al
D escription
Sandy l o a m . Dark r e d d i s h
b r o w n ( 6 YR 3 / 2 ) . Weak
medium g r a n u l a r . pH 5 . 3 9
—
a to -
8"-14"
14"-27"
27"-34"
34"-43"
up
A2
Sandy lo a m . B ro w n -d ark brown
( 7 . 5 YR 4 / 2 ) . V e r y w e a k m e d .
g ra n u la r to fin e blo ck y .
Medium p l a t y . pH 5 . 2 0
B2
Sandy loam t o san d y c l a y
l o a m . D a r k b r o w n ( 6 . 5 YR 3 / 3 ) •
Weak c o a r s e b l o c k y . G r a v e l l y
d a r k c o a t i n g s on s t r u c t u r a l
f a c e s . pH 5 . 1 5
B-
Lo amy s a n d . R e d d i s h b r o w n
( 5 . 5 YR 4 / 3 ) . V e r y w ea k c o a r s e
blocky to s in g le g r a in .
G r a v e l l y d a r k c o a t i n g s on
s t r u c t u r a l f a c e s . pH 5 . 1 4
S a n d . Y e l l o w i s h brown
( 1 0 YR 5 / 4 ) . S i n g l e g r a i n .
l i m e p r e s e n t . pH 5 . 4 0
No
S o i l T y p e - Fox s a n d y l o a m , a c i d v a r i a n t
Topography - N early l e v e l 1^ t o N
D r a i n a g e - Good
E r o s i o n - None
P e rm e a b ility - M oderately ra p id
C l a s s i f i c a t i o n - G r a y Brow n P o d z o l i c
L o c a tio n :
Ei of
o f S E j o f S e c 29 T5S R14W
C ass C ou n ty, M ic h ig a n
6k
S o i l P r o f i l e and R e l a te d C h a r a c t e r i s t i c s
A rea Y - S t a t i o n I I I
A p r o f i l e e x po sed in t h i s a r e a i s r e p r e s e n t a t i v e o f th e s i t e f o r
p o o r h e i g h t gro w th o f t u l i p p o p l a r .
th is area.
Eo woods o f any ty p e a r e a d j a c e n t to
Sugar maple s e e d l i n g s a r e a b s e n t , t h e r e i s extrem e s u n s c a ld
damage and s u b s e q u e n t wind b r e a k a g e , b a s a l s p r o u t i n g o f th e t r e e s , and a
p r e d o m in a n tly g r a s s and a n n u a l weed h e rb a ce o u s v e g e t a t i o n .
A lthough t h e r e
i s some o v e r l a p o f h e rb a c e o u s s p e c i e s w ith t h a t o f A rea X, p r a c t i c a l l y no
s p e c i e s o c c u r h e r e which a r e found in t h e o l d grow th hardw oods.
The s o i l ty p e i s a Warsaw loam to sandy loam, a remnant o f t h e o l d
p r a i r i e s o i l o f s o u th w e s te r n M ichigan.
The A h o r iz o n i s a d a rk g r a y to
b l a c k loam e x te n d in g some t h i r t e e n in c h e s t o th e B h o r iz o n .
T here i s no
a c t u a l Ag h o r i z o n , b e in g r e p l a c e d by a t r a n s i t i o n a l A-^ h o r i z o n .
l a t t e r i s a v e ry d a rk loam.
The
At a d e p th o f f o u r t e e n in c h es th e B2 i s
r e a c h e d , where t h e r e i s a d e f i n i t e c l a y l a y e r .
The bottom o f th e B h o r i
zon i s a loamy s a n d , and a t J>6 in c h e s th e y e l l o w i s h brown sand is re a c h e d .
The l a t e r a l r o o t zone o f t u l i p p o p l a r e x ten d s to a p p ro x im a te ly f i f t e e n
in c h e s in d e p th ; t h e w a te r t a b l e i s c l o s e r to th e s u r f a c e th a n in A rea X.
E x t e r n a l d r a in a g e o r s u r f a c e r u n o f f i s s l i g h t ; i n t e r n a l d r a in a g e i s
m o d e ra te to r a p i d .
The Warsaw s o i l ty p e which i s r e p r e s e n t a t i v e o f A rea Y i s d e s ig n a te d
by V e atc h (1927) a s th e “dry" p r a i r i e r e g io n o f s o u th w e s te rn M ichigan.
A
d e s c r i p t i o n o f th e s o i l p r o f i l e h e r e p r e s e n t e d , c l o s e l y c o i n c i d e s w ith
t h a t o f V e a tc h .
A lso su ch f e a t u r e s as to p o g ra p h y , g e o lo g y , o rg a n ic m a t t e r
c o n t e n t , c l a y c o n t e n t , p r e c i p i t a t i o n , t e m p e r a t u r e , and d r a in a g e one n e a r l y
i d e n t i c a l to t h a t d e s c r i b e d by th e above a u t h o r .
With r e f e r e n c e to th e B2
65
h o r i z o n , V e a tc h p o i n t s o u t t h a t t h i s h o r i z o n becomes v e ry compact u n d e r
c e r t a i n c o n d i t i o n s , so much so t h a t i t i s r e f e r r e d to l o c a l l y a s " h a rd
pan".
The c o l l o i d a l o r c l a y c o n t e n t p r e s e n t i s s t r o n g l y c o h e s iv e o r ad
h e s i v e and p o s s e s s e s v e ry h i g h t e n s i l e s t r e n g t h upon d r y i n g .
The s o i l
h o ld s o n ly r e l a t i v e l y s m a ll amounts o f v rater, b u t s l i g h t l y h i g h e r t h a n th e
a s s o c ia te d f o r e s te d sands.
The u p p e r p a r t o f th e s u b s tr a tu m i s d ry o r
v e r y low in m o i s t u r e and th e whole p r o f i l e i s p e n e t r a b l e to t r e e r o o t s .
Chem ical a n a l y s e s o f t h e Warsaw ty p e r e v e a l no u n u s u a l o r abnormal
p e c u l i a r i t i e s in c o m p o s itio n .
The o r g a n ic m a t t e r and n i t r o g e n c o n te n t s
a r e somewhat h i g h e r t h a n f o r com parable f o r e s t e d s o i l s and th e amounts o f
v a r i o u s i n d i v i d u a l n u t r i e n t s a r e n o t d i f f e r e n t from th o s e o f o r i g i n a l l y
f o r e s t e d s o i l s o f s i m i l a r t e x t u r e th ro u g h o u t s o u th e r n M ichigan.
fo u n d t h e
re a c tio n .
and
V eatch
h o r iz o n s s t r o n g l y to v e ry s t r o n g l y a c i d in
The most marked d i f f e r e n c e in th e p r o f i l e o f th e Warsaw and th e
p r o f i l e o f a f o r e s t e d s o i l a s s o c i a t e d w ith th e p r a i r i e , i s t h e o r g a n ic
c o n t e n t o f t h e s u r f a c e h o r i z o n s ; o th e r w is e th e y a r e s i m i l a r c h e m ic a lly and
p h y s i c a l l y and i n p r o f i l e a rra n g e m e n t.
I t a p p e a rs from o b s e r v a t i o n t h a t
t h e r e may be s l i g h t l y more com paction in th e B h o r iz o n o f t h e p r a i r i e s o i l .
I n f e r t i l i t y and p r o d u c t i v e n e s s th e d ry p r a i r i e s o i l i s c o n s id e r e d to
be i n t e r m e d i a t e , b e in g somewhat h i g h e r th a n t h e f o r e s t e d s a n d s , and l e s s
t h a n t h e f o r e s t e d more l e v e l c l a y s o i l s o f t h i s r e g i o n .
Lack o f s u f f i c i e n t
m o i s t u r e a t c r i t i c a l p e r i o d s o f th e growing sea so n i s p ro b a b ly th e c h i e f
l i m i t i n g f a c t o r in p r o d u c t i o n o f h ig h y i e l d s o f a g r i c u l t u r a l c r o p s .
In
p e d o l o g i c te r m in o lo g y , t h e Warsaw s o i l ty p e i s " m a tu re ", and s u p p o r ts a
t h e o r y t h a t th e p r a i r i e s were o r i g i n a l l y t r e e l e s s .
The p r o f i l e i n d i c a t e s
66
t h a t t h e s o i l d e v e lo p e d un der c o n d i t i o n s o f r e l a t i v e l y low m o i s t u r e ,
v a r i a b l e in t h e s u r f a c e h o r i z o n , r e l a t i v e l y low in th e B h o r i z o n , and
v e r y low in t h e 0 h o r i z o n , b e g in n in g a t d e p th s o f two to t h r e e f e e t .
A c c o rd in g t o V e atc h (1927) t h e r e i s no e v id e n c e in th e s o i l p r o f i l e o f
t h e p e c u l i a r i t i e s common to e x c e s s i v e m o is tu r e o r w a te r lo g g in g i f th e s e
c o n d itio n s ever e x is te d .
T here i s no e v id e n c e t o s u p p o rt a c o n t e n t i o n
t h a t some c h e m ic a l c o n d i t i o n in th e p r a i r i e s o i l i n h i b i t s t r e e g row th .
F ig .
11 .
SO IL 3 ANALYSIS
67
REPRESENTATIVE PROFILE AND DESCRIPTION
A rea Y - P l o t I I I
In,
F t,
2
-
4
—
6
P ro file
—
D epth
H orizon
0"-llM
Ax
11"-13”
A3
1 3 ,,- 2 4 f'
B2
D escrip tio n
Loam. Very d a r k g r a y t o
b l a c k ( 5 . 0 YR 2 . 5 / 1 . 5 ) .
Medium g r a n u l a r . pH 5 . 8 5
a—
/O
—
2
24-36
B3
Loamy s a n d t o s a n d . B ro w n t o
d a r k b ro w n ; one b a n d d a r k
b r o w n a t b o t t o m ( 6 . 5 YR 4 / 3
t o 7 . 5 YR 3 / 2 ) a t b o t t o m .
V e r y w eak n u c l f o r m t o s i n g l e
g r a i n . D a r k c o a t i n g s on
a g g r e g a t e s . G r a v e l l y . pH 5 . 1 7
CX
S a n d . Y e llo w is h brown w ith
d a r k brown i n t h i n b a n d s .
( 1 0 YR 5 / 4 t o 7 . 5 YR 3 / 2 i n
th in bands) . S ingle g ra in over
s t r a t i f i c a t i o n . No l i m e p r e s e n t
pH 5 . 4 2
3
36 - 4 6
up
4
L o a m . D a r k b r o w n ( 7 . 5 YR
3 / 1 . 7 5 ) . T r a n s i t i o n a l . pH 5 . 1 6
C lay loam t o san d y c l a y lo a m .
D a r k b r o w n ( 7 . 5 YR 3 / 2 ) .
Medium t o c o a r s e n u c l f o r m .
D a r k c o a t i n g s on a g g r e g a t e s .
G r a v e l l y • pH 5 . 0 2
S o i l T y p e - Warsaw l o a m o r s a n d y l o a m , a c i d
T o p o g r a p h y - N e a r l y l e v e l 1% t o N
v arian t
D r a i n a g e - G o o d ; W a t e r t a b l e 2-§-'
E r o s i o n - None
P e rm e a b ility - M oderately ra p id
C lassificatio n - P ra irie
L o c a tio n :
o f N-J- o f 5E-J- o f S e c 2 9 T5S R14W
C ass C o u n ty , M ic h ig a n
6s
S o i l P r o f i l e and E e l a t e d C h a r a c t e r i s t i c s
A rea Y - S t a t i o n 17
As i n t h e p r e c e d i n g s o i l t y p e , t h e p r o f i l e exposed a t S t a t i o n IY
i s r e p r e s e n t a t i v e o f th e s i t e f o r p o o r h e i g h t grow th o f t u l i p p o p l a r .
T h is p r o f i l e was made in th e a p p ro x im a te c e n t e r o f th e p l a n t a t i o n , f r e e
from any a d j o i n i n g woods.
A g ain , s u g a r maple s e e d l i n g s a r e a b s e n t ,
s u n s c a l d damage i s s e v e r e , b a s a l s p r o u t i n g o f t h e t r e e s i s p r e v a l e n t ,
and a h e rb a c e o u s g r a s s v e g e t a t i o n i s do m inant.
The p r o f i l e d e s c r i p t i o n f o llo w s much t h e same p a t t e r n a s f o r th e
Pox san dy loam .
However, t h e B ronson sandy loam, a c i d v a r i a n t , h e r e
d e s c r i b e d , i s o n ly m o d e ra te ly w e l l - d r a i n e d in c o n t r a s t to t h e w e ll to
e x c e s s i v e l y d r a i n e d Pox s e r i e s .
a t th e
A c l a y loam to sandy c l a y loam e x i s t s
h o r i z o n , g r a d in g i n t o a, loamy sand a t th e
h o rizo n .
As in
th e t h r e e s o i l ty p e s p r e s e n t , a c o a r s e sand i s found
a t a p p ro x im a te ly
31 in c h e s .
th e C]_ h o r iz o n was
At t h e tim e o f
sam p lin g o f t h i s p r o f i l e ,
c o m p le te ly s a t u r a t e d w ith w a te r .
P r a c t i c a l l y a l l o f th e w a te r f a l l i n g
on t h i s s o i l ty p e i s removed i n t e r n a l l y ; i n t e r n a l d r a in a g e i s m oderate
t o rap id, in th e u p p e r p a r t
o f th e s o i l and slow in th e low er p a r t , due
to a r e l a t i v e l y h i g h w a te r t a b l e .
Pig. 12.
69
3C IL 3 ANALYSIS
.REPRESENTATIVE PROFILE AND DESCRIPTION
A r e a Y - P l o t IV
In.
Ft •
P ro file
D epth
H orizon
Sandy lo a m . Dark r e d d i s h
b r o w n ( 6 . 0 YR 3 / 2 ) . Weak
m ed iu m g r a n u l a r . pH 5 . 3 5
2 ■
4
Ofl- 8 "
—
6 —
8 —
8 " -1 2 "
10 —
D escrip tio n
A.
1 2 " - 2 2 " B.
2 2 " - 3 1 " B3
31" -4 0 "
up
C,
Sandy lo a m . Dark brown
( 7 . 5 YR 4 / 2 ) . Weak med ium
g ra n u la r to fin e blocky.
pH 4 . 9 4
C lay loam t o sandy c l a y lo a m .
B r o w n t o d a r k b r o w n ( 7 . 5 YR
4 / 3 ) . Medium t o c o a r s e b l o c k y *
G r a v e l l y . pH 4 . 7 0
Loamy s a n d t o s a n d . D a r k
r e d d i s h b r o w n ( 5 . 0 YR 3 / 3 ) .
V ery weak c o a r s e b l o c k y .
pH 4 . 8 3
C o a rse s a n d . P a l e brown t o
d a r k r e d d i s h brown ( m o t t l e d ) .
( 1 0 YR 6 / 3 t o 6 . 0 YR 3 / 3 ) .
S a t u r a t e d w a t e r . No l i m e p r e s e n t ,
pH 5 . 8 2
S o i l Type - B r o n s o n s a n d y lo a m , a c i d v a r .
Topography - N early l e v e l
D r a i n a g e - M o d e r a t e ; W a t e r t a b l e 2-g-*
E r o s i o n - None
P e rm e a b ility * M oderately ra p id
C l a s s i f i c a t i o n - G r a y B ro w n P o d z o l i c
L o c a tio n :
Eg- o f N-J o f S E j o f S e c 2 9 T5S KL4W
C ass C ou n ty, M ic h ig a n
70
2 . S p e c i f i c G r a v i t y o r R eal D e n s ity
E x p e r im e n ta l Method:
The s p e c i f i c g r a v i t y was d e te rm in e d on t h i r t y - t w o sam ples in
d u p l i c a t e r e p r e s e n t i n g th e A-|_ and A2 h o r iz o n s f o r each o f f o u r sam pling
s t a t i o n s , a c c o r d in g t o th e t e c h n i q u e o f L utz (1 9 4 4 ).
S o i l s from t h e f i e l d
were a i r - d r i e d and p a s s e d th ro u g h a two mm. s i e v e ; t h e s e sam ples were th e n
p l a c e d in a p ic n o m e te r w ith f r e s h l y b o i l e d d i s t i l l e d w a te r .
By r e p e a t e d
e v a c u a t i o n i n a vacuum d e s i c c a t o r th e i n t e r s t i t i a l a i r was g r a d u a l l y r e
p l a c e d by w a te r .
A f t e r a l l th e a i r had been removed from t h e s o i l ,
a p p r o p r i a t e te m p e r a t u r e s and tim e were r e c o r d e d end th e s p e c i f i c g r a v i t y
d e te r m in e d by d i v i d i n g th e w eigh t o f th e o v e n -d ry sample by t h e volume of
so il.
A summation o f t h e v a lu e s o b ta in e d f o r two h o r iz o n s i s p r e s e n t e d in
T a b le 6 .
TABLE 6 .
SPECIFIC GRAVITY OF THE "A" HORIZON OF SOILS IN AREA X AND AREA Y
Area, X ( S t a t i o n s I - I I )
H orizon
IIA i
IIA 2
Oven-dry VJeight (gins.)
Volume of S o i l (ml)
17-42
20.50
6.77
19*5^
21. S6
7. 62
S . 42
S . 12
S p e c i f i c G ra v ity
2.60
2.52
Area Y (S ta tio n s III-IV )
7.37
ih a 2
21.02
i 7. l l
6.23
2.39
2 .7 4
IVA-i
iv a 2
19.23
17.85
6.35
6.73
2 .S 4
2. 7b
IIIA -l
71
D is c u s s io n o f R e su lts
The s p e c i f i c g r a v it y , or r e a l d e n s ity o f a s o i l is u n a ffe c te d by
s t r u c t u r e , and thus the s p e c i f i c g r a v ity d i f f e r s from th e volume w eight
of s o ils .
Wide v a r ia t io n in m in eral s o i l s does not e x is t as shown by the
p r e ce d in g d a ta .
The average s p e c i f i c g r a v ity fo r Area X, which in c lu d e s
both th e A-^ and Ag h o r iz o n s , is 2 .$ 8 ; th e s p e c i f i c g r a v ity fo r Area Y o f
the same h o r iz o n s i s 2 .6 4 .
These v a lu e s r ep re sen t on ly a d if fe r e n c e o f
.06 betw een the two a r e a s , and o b v io u sly i s i n s ig n if ic a n t even though
th er e are th re e in d iv id u a l s o i l ty p es r ep r e se n te d .
The v a lu e s o b tain ed
in Table 5 are used in th e form ula fo r computing th e t o t a l p o r o s ity .
To determ ine th e s t a t i s t i c a l d iffe r e n c e in s p e c i f i c g r a v ity o f the
s o i l s fo r th e area o f good and poor h e ig h t growth o f t u lip p o p la r, an
a n a ly s is o f v a ria n ce fo llo w s in Table 7*
N eith er th e A^ nor th e A2
h o rizo n shows any s t a t i s t i c a l s ig n if ic a n c e .
TABLE 7 .
ANALYSIS OF VARIANCE FOR SPECIFIC GRAVITY AREA X v s . AREA Y
B a s is : 32 samples
Hor izo n
Ax
A2
Source
D egrees o f Freedom
T otal
X vs Y
Error
15
1
l4
T otal
X vs
Error
15
Y
Sum o f Squares
.27
.02
.23
Mean Square
F
.02
.018
1 .1
.4-1
1
.0 1
.0 1
l4
.40
.028
.36
72
3* Volume Weight o r A p p aren t D e n s ity
E x p e rim e n ta l Method;
The volume w e igh t was d e te rm in e d on t h i r t y - t w o f i e l d samples
t a k e n i n s i t u hy u s e o f a s o i l c o r e sam pler a c c o rd in g to B aver ( l 9 4 g ) .
Core sam ples were ta k e n from th e
and A2 h o r iz o n s in each a r e a .
A fte r
d e te r m in in g th e w e ig h t o f each c o re a t f i e l d c a p a c i t y , a d i s k o f f i l t e r
p a p e r and c h e e s e c l o t h was f i r m l y a t t a c h e d t o one end o f th e c o r e .
By means
o f an o v e r f lo w cup t h e volume o f s o i l and c y l i n d e r were o b t a i n e d .
The
f i l l e d c o r e s were p l a c e d in a pan o f w a te r and a llo w e d to s a t u r a t e f o r 24
hours.
F o r t h e s e u n d i s t u r b e d c o r e s , o v e n -d ry w e ig h ts were c a l c u l a t e d as a
f i n a l s t e p i n th e p r o c e d u r e and from th e above te c h n iq u e th e volume w eight
was d e te r m in e d by d i v i d i n g th e o v e n -d ry w eig ht o f each samole by t h e volume
of s o i l .
T h is method d i f f e r s e s s e n t i a l l y from th e s p e c i f i c g r a v i t y
TABLE S.
VOLUME WEIGHT OP THE "A" HORIZON OP SOILS IN AREA X AHD AREA T
A rea X ( S t a t i o n s I - I I )
H o riz o n
O ven-dry Weight (gm s.)
453-15
11^
IIA g
Volume o f S o i l (m l.)
344.25
Volume Weight
5 9 9 -l 4
371.00
1 .31
l.b O
509.S3
606.29
359-00
3 74.00
1 .4 l
1 .6 2
Area Y ( S ta tio n s III-IV )
11IAI iia "
4 9 1 .7 7
5 3 3.2 2
367.50
364.00
IVA-,
iv a 2
4 g g .l0
633.17
363.25
375.75
73
d e t e r m i n a t i o n in th e f a c t t h a t th e in c lu d e d p o re space i s m easu red , th u s
g i v i n g lo w e r v a l u e s th a n f o r s p e c i f i c g r a v i t y .
The volume w eight e x p r e s s e s
t h e r a t i o "between t h e d ry w e ig h t o f a g iv e n volume o f u n d i s t u r b e d s o i l and
t h e w e ig h t o f an e q u a l volume o f w a te r .
The v a lu e s o b ta in e d in T ab le &
r e p r e s e n t t h e number of tim e s a p a r t i c u l a r sample i s h e a v i e r th a n an e q u al
volume o f w a te r .
D is c u s s i o n o f R e s u l t s
S in c e t h e volume w eig ht d e t e r m i n a t i o n in c lu d e s th e a i r sp ace i t i s
e v i d e n t from t h e above c a l c u l a t i o n s t h a t in e v ery c a s e th e A]_ h o r iz o n shows
s m a l l e r v a l u e s th a n th e Ag, an i n d i c a t i o n o f th e g r e a t e r a i r c a p a c i t y in t h e
topm ost h o r i z o n .
The a v e ra g e volume w eight f o r Area. X i s 1 .^ 9 aud f o r
A rea T i t i s 1 . ^ 2 .
A s l i g h t d i f f e r e n c e o f .07 i s r e c o g n i z a b l e in t h e two
a r e a s , d e s p i t e t h e f a c t t h a t loam s o i l s a r e e v id e n t in A rea Y.
TABLE 9 .
ANALYSIS OF VARIANCE 3T0R VOLUME WEIGHT AREA X v s . AREA Y
B a s i s : l 6 sam ples
H o riz o n
Source
D egrees o f Freedom
A1
T otal
X vs Y
E rror
15
1
lb
.03
.00
.03
. 00
. 00 2
.00
T o tal
X vs Y
E rror
15
1
lb
.2b
. 05
.19
.05
.013
3 .sU
A2
Sum of Squares
Mean Square
F
I n o r d e r to f u r t h e r check th e s t a t i s t i c a l s i g n i f i c a n c e o f th e two a r e a s
u n der c o n s i d e r a t i o n , an a n a l y s i s o f v a r i a n c e was made to d e te rm in e th e
m agnitude o f d i f f e r e n c e s .
No s i g n i f i c a n t d i f f e r e n c e s in e i t h e r t h e Ap o r A2
h o r i z o n were a p p a r e n t f o r volume w e ig h t.
74
A c c o rd in g t o L u tz and C hand ler (19^6) th e volume w eigh t o f th e Ap
h o r i z o n o f f o r e s t s o i l s is commonly l e s s th a n 1 .0 0 .
T his v a lu e i s con
s i d e r a b l y lo w e r t h a n th e v a l u e s o b t a i n e d and i s in a c c o rd v i t h th e f a c t
t h a t t h e s o i l s b e in g i n v e s t i g a t e d a r e n o t s t r i c t l y " m a tu re ” f o r e s t s o i l s ,
and a r e l e s s p o ro u s t h a n f o r e s t s o i l s i n s o f a r as th e volume w eight is
c o n c e rn e d .
The h ig h volume w e ig h ts o b ta in e d a r e an i n d i c a t i o n o f th e
s t r u c t u r e o f th e s e s o i l s s i n c e th e low p o re volume i n d i c a t e s h ig h e r
volume w e ig h ts .
A lso t h e h ig h volume w e ig h ts i n d i c a t e in a g e n e r a l way
t h e low o r g a n ic m a t t e r as w e ll as th e h ig h c o n te n t of sand in t h e s e s o i l s .
P o re Volume ( T o t a l , C a p i l l a r y , and N o n - c a p i lla r y )
E x p e rim e n ta l Method:
The p o r e volume was d e te rm in e d on t h i r t y - t w o d u p l i c a t e f i e l d
sam ples t a k e n in s i t u by u se o f a s o i l c o re s am p ler.
These sam ples were
ta k e n from t h e A]_ and Ag h o r iz o n s f o r A rea X and A rea Y.
A fte r d e te r
m ining t h e s a t u r a t e d w eigh t o f each c o r e , th e c y l i n d e r s were p l a c e d on
a pE t a b l e a t a s o i l pE of 1 . 6 f o r tw e n ty - f o u r h o u rs .
The c o r e s were
w eighed a f t e r d r a i n i n g on th e pE t a b l e and th e n o v e n - d r ie d a c c o rd in g to
B aver (l9*+g) .
From t h e s e d e t e r m i n a t i o n s th e p e r c e n t t o t a l p o r o s i t y , non
c a p i l l a r y p o r o s i t y , and c a p i l l a r y p o r o s i t y were c a l c u l a t e d .
T o tal p o ro s ity
was o b t a i n e d by d i v i d i n g t h e s p e c i f i c g r a v i t y minus th e volume w eight by
th e s p e c i f i c g r a v i t y and m u l t i p l i e d by 100.
To g e t th e p e r c e n t c a p i l l a r y
p o r o s i t y , s u b t r a c t t h e t o t a l p o r o s i t y minus th e n o n - c a p i l l a r y p o r o s i t y .
A summation of p o r e volume v a lu e s i s g iv e n in T able 10.
75
TABLE 1 0 .
PORE VOLUME OP THE "An HORIZON OP SOILS IN AREA X AND AREA Y
P ercent p o ro s ity
A re a X ( S t a t i o n s I - I l )
H o riz o n
C ap illary
H o n -c ap illary
T o tal P o ro sity
IA i
ia 2
2 4.9
21.0
25.2
16.3
50.1
3 7 .3
IIA X
iia 2
25.9
26.4
17-5
1 1.7
4 3 .4
38.1
A rea Y ( S t a t i o n s I I I - I V )
I I IA i
IIIA 2
26.0
29.1
21.5
15.3
4 7 .8
4 4 .4
IVAp
IVA2
2 8 .0
2 6 .7
22.2
1 3 .8
50.2
4 0 .8
A verage V alues Combined S t a t i o n s
I-IIA i
i-iia 2
25.4
25+.1
2 1 .3
13.6
4 6 .8
37. s
I 1 I-IV A !
iii-iv a 2
27.0
2 7 .9
21. 5
1 4 .6
4 8.9
4 2 .5
I —I I AtAp
I I I - I V a xa 2
2 4 .g
2 7 .5
1 7 .4
IS . 2
4 2 .8
4 5 .7
D is c u s s i o n o f R e s u l t s
The r e l a t i v e p r o p o r t i o n s o f a i r and w a te r in a s o i l w i l l c o n s t a n t l y
ch an ge.
I t i s c o n v e n ie n t to employ th e c o n cep t o f l a r g e and s m a ll p o re s
which d e te r m in e t o a g r e a t e x t e n t th e a e r a t i o n and i n t e r n a l d r a in a g e o f
th e s o i l .
The above v a lu e s a r e b e s t e v a lu a te d by a v e ra g e s o f th e comb
in e d s t a t i o n s in d u p l i c a t e f o r th e t h r e e main c l a s s e s o f p o re volume.
The
v a l u e s o b t a i n e d in Ta.ble 10 i n d i c a t e t h a t t h e r e i s g r e a t e r n o n - c a p i l l a r y ,
c a p i l l a r y , and t o t a l p o re space in A rea Y th a n in Area X.
T h is i s t r u e f o r
b o th t h e Ax and A2 h o r iz o n s in e v ery c a s e , and c o r r o b o r a t e s th e volume
76
w e ig h t d e t e r m i n a t i o n s .
g re a t.
However, th e m agnitude o f t h e d i f f e r e n c e s i s n ot
The r e la /b iv e p r o p o r t i o n o f c a p i l l a r y to n o n - c a p i l l a r y p o re space
i s more marked in th e A2 h o r iz o n th a n in th e
A re a Y.
h o r iz o n in d o th A rea X and
An a n a l y s i s o f v a r i a n c e (T a b le 11) i n d i c a t e s no s i g n i f i c a n t
d i f f e r e n c e in p o r e volume o f any c l a s s i f i c a t ion by comparing th e v a lu e s
o f A re a X and Area, Y.
TABLE 11.
ANALYSIS OP VARIANCE OP PORE VOLUME POR SOILS OP THE "A" HORIZON IN AREA X
v s . AREA Y
B a s i s : l 6 sam ples
P ercent c a p il la r y p o ro s ity
H orizon
Source
D egrees o f Preedom
A1
T o tal
X vs Y
E rror
15
1
lb
58.05
10.^9
1+7-66
IO .39
3 . bo
3 .0 5
T o tal
X vs Y
E rror
15
l
l^l-
1+18.59
5 6 .6 3
361.96
56.63
25.35
2.19
a2
Ai
a2
T otal
X vs Y
E rror
T o tal
X vs Y
E rror
Sum o f Squares
Mean Sq.ua.re
P ercen t N o n -c ap illary P o ro s ity
292 .29
15
.96
l
lb
291.33
15
l
i^
30 3. 23
3*70
299.53
P
.96
20.80
. 0 l+
3*70
21.39
*17
P ercen t T otal P o ro sity
A-ij.
A2
T o tal
X vs Y
E rror
15
1
ib
291. ^
1 7 . 61+
2 7 3 . go
1 7 .6 4
19.55
.90
T otal
X vs Y
E rror
15
l
i^
5 U2 .0 0
S9 . 3 0
U5 2 . 7 0
39.30
3 2 . 3O
2.76
77
B av e r (19^-0) p o i n t s o u t t h a t th e t o t a l p o r o s i t y o f s o i l s i s
u s u a l l y i n t h e neighborhood, o f f i f t y p e rc e n t*
The a v e ra g e v a lu e s ob
t a i n e d in a l l sam ples h e r e investiga/fced ra n g e s from a low o f 37*3 Per_
c e n t t o a h ig h o f 50 -2 p e r c e n t t o t a l p o r o s i t y .
from t h e A]_ to th e
P o re volume d e c r e a s e d
h o r iz o n f o r a l l c l a s s e s o f p o r o s i t y in b o th a r e a s .
I n A re a X t h e c a p i l l a r y p o re sp a c e i s 7*^ p e r c e n t g r e a t e r th a n th e non
c a p i l l a r y p o r e s p a c e ; A rea Y has a s i m i l a r s i t u a t i o n w ith a 9*3 p e r c e n t
g r e a t e r c a p i l l a r y p ore space.
The n a t u r e o r k in d o f p o re space w i l l
d e te r m in e t h e f i e l d c a p a c i t y , i n t e r n a l d r a i n a g e , and amount o f a e r a t i o n .
The a i r c a p a c i t y o f s o i l s i s o f t e n c o n s id e r e d as b e in g e q u i v a l e n t to th e
n o n - c a p i l l a r y p o r e volume.
C a p i l l a r y p o re volume may be e x p r e s s e d as
e q u iv a le n t to th e f i e l d c a p a c ity .
The n a t u r e o f th e n o n - c a p i l l a r y p o re s
i s f a c i l i t a t e d by m easurem ents o f t h e r a t e o f i n f i l t r a t i o n o f w a te r .
A
l a r g e number o f in te r-c o m m u n ic a tin g n o n - c a p i l l a r y p o r e s u s u a l l y means
h ig h i n f i l t r a t i o n r a t e s .
The a i r c a p a c i t y i s a l s o r e l a t e d to s o i l
te x tu re .
5* H y g ro sco p ic C o e f f i c i e n t
E x p e rim e n ta l Method:
To d e te r m in e t h e h y g r o s c o p ic c o e f f i c i e n t , as o u t l i n e d by Baver
( 191+g) , tw e n ty f i e l d sam ples were ta k e n a t f i v e s o i l h o r iz o n s in A rea X
and A re a Y.
The sam ples were a i r - d r i e d and f i v e grams o f each was p l a c e d
in w eighed w eig h in g c a n s .
The u n c o v ered cans were p l a c e d in an oven a t
105° C f o r tw e n t y - f o u r h o u r s , w eighed, and th e h y g ro s c o p ic c o e f f i c i e n t
d e te r m in e d .
An in d e x o f th e s u r f a c e a c t i v i t y o f s o i l s is th u s o b t a i n e d ,
o r t h e amount o f w a te r a d so rb e d on th e s u r f a c e of s o i l p a r t i c l e s in an
18
a tm o s p h e re o f w a te r v a p o r o f known, r e l a t i v e h u m id ity .
The c o e f f i c i e n t s
o b t a i n e d a r e s u p p o se d t o mark th e u p p e r l i m i t o f th e h y g ro s c o p ic m o is tu r e
r a n g e a t a p p r o x im a te ly a, pF of 4 . 5 .
A summation o f r e s u l t s i s g iv e n in
T a b le 12.
TABLE 12.
HYGROSCOPIC COEFFICIENT VALUES FOR FIVE SOIL HORIZONS AREA X AND Y
P ercent
A rea X ( S t a t i o n s I - I I )
H o riz o n
IA-i
A-2
b2
b3
Cl
IIA-i
a2
b2
B3
*1
Weight o v e n -d ry s o i l
Weight w a te r l o s t
H y groscop ic C o e f f i c i e n t
6 .U7
5 .5 6
5-51
5 .9 1
5*59
.03
.025
.055
.01
.005
.46
.45
• 998
*17
.09
4 .6 7
5*55
4 .9 5
5*78
^*77
.02
.03
.03
.015
.01
.5 4
.61
.2 6
.21
A rea Y ( S t a t i o n s I I I - I V )
I IIA-i
a3
B2
ici
IVA-iX
ACL
p
b2
B3
o3
i
4 .7 5
5*70
6.09
6.06
5*91
.04
.06
*075
.005
.005
.84
1.05
1.23
.08
.084
5*07
4.94
4.65
5*9 8
5 . 3^
.025
.0 4
.03
.02
.003
*49
.81
.64
*33
.09
D is c u s s i o n o f R e s u l t s
I n s p i t e o f th e u n s a t i s f a c t o r y n a t u r e o f h y g ro s c o p ic m o is tu r e v a l u e s ,
P u r i (1925) and Keen (1 9 3 1 ), t h i s c o n s t a n t has found wide u s e .
In th e
79
p r e s e n t i n v e s t i g a t i o n , t h e v a lu e s o b t a i n e d f o r th e Ag and B2 h o r iz o n s o f
A re a Y a r e h i g h e r t h a n th o s e in A rea X.
I n g e n e r a l , th e h i g h e s t v a lu e s o f
h y g r o s c o p ic c o e f f i c i e n t a r e fo u nd in s o i l s h a v in g a h ig h c o n t e n t o f c o l l o i d s .
The r e l a t i o n s h i p betw een th e m e c h a n ic a l a n a l y s i s and th e h y g ro s c o p ic co
e f f i c i e n t i s d e f i n i t e l y b ro u g h t o u t h e r e as e v id e n c e d by th e h i g h e r v a lu e s
o f A re a Y ( S t a t i o n I I I ) *
h o r i z o n s f o r A re a Y.
In g e n e r a l , h ig h e r v a lu e s a r e fo u nd in a l l
A s t a t i s t i c a l a n a l y s i s (T a b le 13 ) I n d i c a t e s no s i g
n ific a n t d iffe re n c e s.
TABLE 13.
ANALYSIS OP VARIANCE OP HYGROSCOPIC COEFFICIENT FOR FIVE SOIL HORIZONS AREA X
(GOOD HEIGHT GROWTH) v s . AREA Y (POOR HEIGHT GROWTH)
B a s i s : 25 sam ples
H o riz o n
A1
A2
cL
Bv
j
J.
Source
D egrees o f Freedom
Sum o f Squares
T o tal
X vs Y
E rror
3
1
2
.110
.050
.060
.050
.030
T o tal
X vs Y
E rror
3
1
2
.22 27
.1898
.0329
.1898
.0164
T o tal
X vs Y
E rror
3
1
2
.245
.014
.231
.014
• 115
.012
T otal
X vs Y
E rror
3
1
2
.035^
.0001
.0333
.0001
.0176
.005
T o tal
X vs Y
E rror
3
1
2
.0115
.0042
.0073
.0042
.OO36
Mean Square
F
1.67
15.73
1 .1 7
80
6.
Maximum W ate r-H o ld in g C a p a c ity
S x p e r im e n ta l Method:
I n o r d e r to d e te rm in e th e maximum w a te r - h o ld in g c a p a c i t y o f
th e t h r e e s o i l ty p e s u n d e r i n v e s t i g a t i o n , s i x t y - f o u r sam ples were
c o l l e c t e d from th e p r o f i l e s r e p r e s e n t i n g f i v e h o r iz o n s in A rea X and
A rea Y.
These sam ples were a i r - d r i e d and p a s s e d th ro u g h a two mm. siev e*
A t h i r t y gram sample was th e n p l a c e d in s q u a re m o is tu r e e q u i v a l e n t boxes
and f i l t e r p a p e r p l a n e d in th e bo tto m o f th e box.
The c o n t a i n e r s were
p l a c e d in a one cm. l a y e r o f w a te r and a llo w e d to s a t u r a t e f o r tw e n ty f o u r h o u r s , a f t e r which tim e th e y were d r a in e d f o r t h i r t y m in u te s ,
w eigh ed, and t h e p e r c e n t a g e m o is tu r e d e te rm in e d a t th e maximum w a te r h o ld in g c a p a c i t y , as o u t l i n e d by B aver (1 9 ^ 8 ).
As a c o m p ariso n betw een u s in g a i r - d r y samples and s o i l s i n t h e i r
n a t u r a l c o n d i t i o n , t h i r t y - t w o more sam ples were c o l l e c t e d in s i t u by
means o f a c o re sam p ler a c c o rd in g to th e o r i g i n a l method o f Schumacher
(1 S 6 4 ).
The same p ro c e d u re was c a r r i e d o u t on th e c o re sam p les, and th e
w a t e r - h o l d i n g c a p a c i t y d e te rm in e d on s o i l s o f th e same a re a b u t in t h e i r
u n d istu rb e d c o n d itio n .
This com parison o f methods was deemed a d v i s a b l e
s i n c e v a r i o u s i n v e s t i g a t o r s have s h o rn v id e d i f f e r e n c e s in th e two m ethods.
By a i r - d r y i n g and s i e v i n g a sample, th e n o n - c a p i l l a r y , in te rc o m m u n ic a tin g
p o re s p a c e and n a t u r a l s t r u c t u r e o f th e s o i l i s a l t e r e d .
reasons,
For th ese
i t i s p r e f e r a b l e to c o l l e c t s o i l s in s i t u f o r w a te r - h o ld in g
c a p a c ity d e te rm in a tio n s.
The n a t u r a l c o r e s were ta k e n from a l l h o riz o n s
w ith th e e x c e p t i o n o f th e C^.
A condensed summary of th e v a l u e s f o r a i r -
d ry and n a t u r a l c o r e s , i n c lu d in g p e r c e n ta g e d i f f e r e n c e s f o r th e "A" and
“B 11 h o r i z o n s in th e two m ethods, is g iv e n in T ab le l b .
21
TABLE l 4 .
MAXIMUM WATER-HOLDING- CAPACITY OP SOILS REPRE3ENT IIIG- PIYE SOIL HORIZONS
IN AREA X AND AREA Y
P e r c e n t M o istu re
A rea X ( S t a t i o n s I - I I )
S o i l H o riz o n
W a te r- h o ld in g C a p a c ity
( A i r - d r i e d and s ie v e d )
IA X
Ap
%
B2
IIA p
A£
B2
W a te r-h o ld in g C a p a c ity
( N a tu r a l c o n d itio n )
Avg. D i f f e r e n c e
A ir-d ry vs.
N a tu r a l
52.1
4 6 .9
4 4 .3
22.3
22.5
4 2 .5
26.3
23.3
22.7
—
15.6
20.6
21.0
5 .6
—
5 6 .9
4 4 .4
3 9 .3
3 1 .3
2 9.5
3 5 .2
2 4 .2
25.9
23 .3
2 1.7
20.2
1 3 .4
2.0
A rea Y ( S t a t i o n s I I I - I V )
IIIA-i
A,
4
B3
CI
IVAx
Ao
Boc.
C31
5 9 .6
63.6
5 2 .5
30.1
22.0
22.9
3 2 .7
27.6
20.9
5 7 .4
37.3
4 6 .7
36.0
29.0
3 2.9
29.2
25.5
24.5
—
—
20.7
30-9
2 4 .9
9 .2
—
20.5
22.1
21.2
11.5
—
D is c u s s i o n o f R e s u l t s
S in c e t h e c o n t i n u i t y o f w a te r su p p ly f o r f o r e s t t r e e s i s f u l l y as
im p o r ta n t as th e t o t a l amount, a measure o f th e w a te r—h o ld in g r e t e n t i o n of
i n d i v i d u a l s o i l h o r iz o n s is v e ry im p o r ta n t.
The w a te r r e t a i n e d in s o i l s
a f t e r g r a v i t a t i o n a l w a te r has d r a in e d o f f , or th e c a p i l l a r y and h y g ro s c o p ic
w a te r , may “become c r i t i c a l f o r c e r ta .in s p e c i e s of t r e e s .
T h is i s espe
c i a l l y t r u e where th e s o i l s a r e s u b j e c t to h ig h e v a p o r a tio n and su b se q u e n t
S2
d r y in g o u t a t c e r t a i n p e r i o d s o f th e grow ing s e a s o n .
T ree s grow ing in
s o i l s o f low f e r t i l i t y r e q u i r e l a r g e r amounts of w a te r th a n t r e e s g ro wing
in f e r t i l e s o i l s , b a s e d upon th e w a te r re q u ire m e n t f o r e ach u n i t o f d ry
m a t t e r p ro d u c e d .
I n humid r e g i o n s , c o a r s e sandy s o i l s h a v in g deep w a te r
t a b l e s a r e o f t e n p o o r e r s i t e s th a n s o i l s o f medium o r f i n e t e x t u r e .
In
a c o n s i d e r a t i o n o f s o i l - m o i s t u r e r e l a t i o n s h i p s one must alw ays c o n s id e r
t h e n a t u r e o f t h e d e e p e r s o i l h o r iz o n s and u n d e r ly in g s t r a t a , s in c e th e
low er h o r i z o n s o f t e n d e te r m in e th e r e p le n is h m e n t of w a te r a t c r i t i c a l
p e rio d s.
P e a r s o n and Marsh (1935) have p o i n t e d out t h a t l a y e r s o f f i n e -
t e x t u r e d m a t e r i a l l y i n g s e v e r a l f e e t below th e s o i l surfa,ce may be h ig h ly
im p o r ta n t in t r e e g ro w th .
The w a t e r - h o l d i n g v a lu e s o b ta in e d in t h i s
i n v e s t i g a t i o n show a d e f i n i t e r e l a t i o n s h i p to s o i l t e x t u r e and to th e
d e p th o f t h e u n d e r l y i n g w a te r t a b l e .
An a n a l y s i s of v a r i a n c e o f th e
w a t e r - h o l d i n g c a p a c i t y by h o r iz o n s shows a d e f i n i t e s i g n i f i c a n c e in th e
h o r iz o n o f s i r - d r y and n a t u r a l c o r e s , when A rea X and A rea Y a r e
com pared.
No s t a t i s t i c a l s i g n i f i c a n c e i s found betw een S t a t i o n s I and I I
o r b e tw e e n S t a t i o n s I I I and IV f o r th e A^ h o r i z o n , b u t a marked d i f f e r e n c e
i s fo u n d betw een combined A rea X and A rea Y.
T h is a n a l y s i s s u b s t a n t i a t e s
th e f i n d i n g s o f th e t e x t u r a l c l a s s i f i c a t i o n (m e c h an ic a l a n a l y s i s ) .
The
s t a t i s t i c a l a n a l y s i s i s p r e s e n t e d in T able 15*
7.
M o is tu r e E q u i v a le n t
Experimental Method:
M o is tu r e e q u i v a l e n t d e t e r m i n a t i o n s were made on tw enty f i e l d
sam ples r e p r e s e n t i n g f i v e h o r iz o n s f o r A rea X and f i v e h o riz o n s f o r A rea Y.
The method o f B rig g s and S han tz (1912) was u t i l i z e d in a l l d e t e r m i n a t i o n s ,
TABLE 1 5 .
ANALYSIS OF VARIANCE OF THE MAXIMUM WATER-HOLDING CAPACITY FOR AIR DRY
AND NATURAL SOIL CORES IN AREA X v s . AREA Y
A i r - d r i e d and s i e v e d sam ples
B a s i s : 32 sam ples
H o riz o n
A1
“^2
b2
j
°1
S ource
D egrees o f Freedom
Sum o f Squares
Mean Square
F
*+.2
6.58
.6*4
T o tal
X vs Y
E rror
15
1
1*4-
96. b
b .z
92.2
T o tal
X vs Y
E rror
15
1
1*4
13 ^ 5 . 0
85 U.0
1+9 1 . 0
B a s i s : *+ samples
T o tal
X vs Y
E rro r
3
1
2
90.16
6 0 . %b
29.32
6 0 .S*+
1*4.66
*+.15
T o tal
X vs Y
E rror
3
1
2
32.^7
10.56
21.91
10.56
10.95
.96
T o tal
X vs Y
E rror
3
1.25
.25
1.00
.25
.50
.005
.0 2
16.66
.001
1
2
85*+.0
35 .07
2U.14**
N a tu r a l Core Samples
B a s i s : l 6 samples
Ai
Ao
c.
A pC-
CL
T o tal
X vs Y
E rror
15
1
i*+
T o tal
X vs Y
E rror
15
1
ib
T o tal
S u b sta tio n s
L o c a tio n
E rror
15
6
1
T o tal
S u b sta tio n s
L o c a t ion
E rror
15
6
1
g
233.51
.02
233-^9
*+71*37
1 30.37
3^ 1 . 0 0
Combined S t a t i o n s I - I I
130.37
2 *+.35
5 . 35*
g*+0 . IS
283-55
25.00
s
531.^3
Combined S t a t i o n s I I I - I V
*47.26
25.00
66,*45
. 3s
79.51
I 5 6 . 2U
59.90
2 .b l
** S i g n i f i c a n t a t 1$ and 5^
* S i g n i f i c a n t a t ^f0
1 1 1 2 . 5 *+
*177.08
1 5 6 . 2 *+
*+79.22
sk
with, a p p r o p r i a t e m o d i f i c a t i o n where n e ed e d .
T h i r t y grams o f a i r —d ry s o i l ,
p r e v i o u s l y p a s s e d th ro u g h a two mm. s i e v e , was pla.ced in th e "bottom o f
s c r e e n e d m o is tu r e e q u i v a l e n t b o x e s .
These "boxes were th e n p la c e d in a
one cm. l a y e r o f w a te r and a llo w e d to s a t u r a t e f o r tw e n ty - f o u r h o u rs .
A f t e r d r a i n i n g f o r t h i r t y m in u te s th e boxes were p l a c e d in a c e n t r i f u g e
f o r t h i r t y m in u te s a t a speed o f 2 UhO r e v o l u t i o n s p e r m in u te , e q u i v a l e n t
to 1000 tim e s th e f o r c e o f g r a v i t y .
The boxes were th e n weighed and
sam ples o v e n - d r i e d ; th e m o is tu r e e q u i v a l e n t was th e n c a l c u l a t e d from th e
above r e s u l t s .
A summation of th e v a l u e s o b ta in e d by h o r iz o n i s g iv e n
i n T a b le l 6 .
D is c u s s i o n o f R e s u l t s
The m o is tu r e e q u i v a l e n t i s one o f th e most f r e q u e n t l y u se d c o n s t a n t s
f o r e x p r e s s i n g th e m o is tu r e r e l a t i o n s o f s o i l s .
In c e n t r i f u g i n g th e
s a m p le s , th e f o r c e i s c o n s id e r e d to remove th e w a te r h e ld in th e l a r g e r
p o re s *
I n t h i s i n v e s t i g a t i o n th e m o is tu r e e q u i v a l e n t i s u t i l i z e d to
express s o i l te x tu r e .
A ccording to Yeihmeyer and H e nd rick so n (1931) i t
g i v e s a f a i r l y r e l i a b l e measure o f th e f i e l d c a p a c i t y of f i n e - t e x t u r e d
so il.
The v a lu e s would no doubt be h ig h e r in t h i s s tu d y when u s in g th e
m o is tu r e e q u i v a l e n t as a measure of th e f i e l d c a p a c i t y , s i n c e th e s o i l s
s tu d ie d are of a coarse te x tu re .
The v a lu e s of T able 1 6 show a f a i r l y
c l o s e c o r r e l a t i o n w ith th e v a lu e s o b ta in e d f o r th e m e ch a n ic al a n a l y s i s .
G r e a t e s t d i f f e r e n c e s o c c u r in t h e
and
h o r i z o n s , and th e h i g h e s t
v a lu e s o c c u r in A rea Y a t S t a t i o n I I I , where th e s o i l tyoe a p p ro ach es a
loam to c l a y loam.
From t h e s e r e s u l t s i t is e x p e c te d t h a t th e s o i l s of
A rea Y would r e a c h f i e l d c a p a c i t y so o n er th a n th e s o i l s of A rea X.
M oisture e q u iv a le n t v a lu e s in c r e a s e v i t h in c r e a s e in c o l l o i d a l content
25
TABLE 16.
MOISTURE EQUIVALENT VALUES FOR FIVE SOIL HORIZONS AREA X AND AREA I
P ercent
A rea X ( S t a t i o n s I - I I )
H o riz o n
IA i
A2
Bg
B3
ci
IIA j.
A2
b2
°x
¥ t . o v e n -d ry (gm s.)
Wt. w a te r l o s t (gm s.)
M o istu re E q u iv a le n t
29 .55
29.66
3 0 .0 3
2 9 .4 1
3 7-27
1 .99
1 .3 9
1.70
.23
.09
6.73
4 .7 0
5.66
.78
.25
3 0 .8 5
2 9.37
29.60
3 1 .0 4
27-89
2 .1 4
1 .4 4
1 .7 4
.70
.03
6.93
4.90
5 .S 6
2.25
.23
A rea Y ( S t a t i o n s I I I - I Y )
IIIA- l
A2
b2
B3
Cl
IVA-i
a 2CL
B2
B7
Cl
2 9.2 6
3 0 .5 7
30.61
30.32
2 3.7 1
2 .23
3.49
3 .2 3
.23
.15
10.73
.74
.54
2 9 .0 4
2 0 .03
23.21
2 9.31
2 3 .5 6
2 .0 3
1 .3 4
1.86
•39
.03
6.99
6.67
6 . 6s
1.31
.23
7.79
n.4o
as “b orn e o u t by com pering th e c l a y c o n te n t of th e above t h r e e s o i l t y p e s .
An a n a l y s i s o f v a r i a n c e (T a b le 17) shows no s i g n i f i c a n t s t a t i s t i c a l
d i f f e r e n c e betw een th e m o is tu r e e q u i v a l e n t s of A rea X and A rea Y,
g.
S o i l M o is tu r e E v a p o r a tion
(Ground Cover Absent)
E x p e rim e n ta l Method:
S o i l c o re s in s i t u were ta k en a t f i v e d i s t i n c t s o i l h o riz o n s
r e p r e s e n t i n g tw e n ty i n d i v i d u a l c o re s from A rea X and Area Y.
The samples
were s a t u r a t e d in a two cm. l a y e r of w a te r f o r tw e n ty - f o u r h ou rs and th e n
s6
TABLE 1 7 .
ANALYSIS OF VARIANCE 01 MOISTURE EQUIVALENT FOR AREA X v s . AREA Y
P e r c e n t M o istu re
B a s i s ! 20 samples
H o riz o n
A1
Ag
b2
D
Cl
w eig h ed.
Source
D egrees of Freedom
T o tal
X vs Y
E rror
3
1
2
T oted
X vs Y
E rror
Sum o f Squares
Mean Square
F
.65
.31
*3^
•31
.17
1.00
3
1
2
29 .14
17.93
11.21
17.93
5.60
3.21
Tot ad
X vs Y
E rror
3
1
2
16. ss
s . 67
S . 21
g .67
4 .1 0
2.11
T o tal
X vs Y
E rror
3
1
2
1 .4 g
.24
1 .2 4
.24
.62
.30
T otal
X vs Y
E rror
3
1
2
. 016
. 017 4
.91
.0509
.016
.O3 U9
Us ing t h e s a t u r a t e d w eight as a b a s i s , th e c o re s were th e n
a i r - d r i e d f o r a t o t a l p e r i o d o f e le v e n d a y s.
Room te m p e ra tu re and
r e l a t i v e h u m id ity were ta k e n in o r d e r to in s u r e a c o n sta n c y f o r each
d e te rm in a tio n .
M easurements in th e l o s s of w e ig h t due to e v a p o r a tio n
were ta k e n a t tw o-day i n t e r v a l s in o r d e r to d e te rm in e th e l o s s i n amount
and r e l a t i v e r a t e o f w a te r l o s s from u n d i s t u r b e d c o re s w ith o u t ground
cover.
These v a l u e s were th a n p l o t t e d f o r th e combined A and B h o riz o n s
f o r e ach sam p lin g area, u s in g a v e ra g e v l a u e s .
R eco rdin g s o f t h e l o s s in
s o i l w a te r were made u n t i l t h e l o s s in w eig ht r e a c h e d a c o n s t a n t amount.
The o b j e c t i v e o f t h i s euroeriment was to d e te rm in e th e e v a p o r a tio n l o s s on
u n d i s t u r b e d c o r e s w ith o u t ground c o v er
v a l u e s a r e g iv e n i n T a b le IS .
or tra n s p ira tio n a l lo sse s.
These
87
TABLE l g .
ACCUMULATIVE AMOUNT AND RATE OF SOIL MOISTURE EVAPORATION FROM SOIL CORES
WITHOUT GROUND COVER IN AREA X AND AREA Y
W ater l o s s - grams a i r - d r y
A rea X ( S t a t i o n s I - I I )
f t . S atu rated
Core
72
Loss
Time in h o u rs
216
120
168
Loss Loss Loss
261+
Loss
T otal
Accumulative
IA]
h
B£
B,
982.2
IOU3 . 2
1092.6
1 0 7 9 .^
5 7 .6
65.7
5 I+.1+
^ 3 .3
2 8 .6
2 3 .O
30.2
1 9 .7
1 6 .9
19.5
16.5
13.2
13.8
10.6
9 .8
11.0
7 .0
M
4 .5
6.7
123.9
123.7
115.1+
9 3.9
11 A]
Ar
Bt
1060.0
IO 5 8 . 5
1067.3
IO 5 I .3
38.8
1+2.7
1+2 . 9
61+. 6
2 3 ‘9
29.0
21+. 1+
22.2
20.8
17.8
16.0
11.2
13.6
1 0 .5
12.5
9 .7
9.U
5.0
7.0
3 .5
106.5
105.0
102.8
111.2
T otal I - I I
882.1+
Area Y ( S t a t io n s I I I - ■IV)
I IIA i
a2
b2
IO 3 5 . 8
1027.3
1067.5
1 0 55 .7
^7-9
53.3
1+6 . 1
^ 9 .7
2 5.9
22.5
25.6
22.5
20.0
1 3.3
16.3
10.5
17.0
9 .7
1 9 .5
7 .0
8.0
8.0
12.0
3 .9
1 18 .8
106.8
119.5
93-6
IVAx
A2
b2
Bt
1 02 3.7
98 U .8
101+1+.0
1020.8
55 a
66.8
1+U. 0
87-7
27.8
21+.S
2 2.5
16.1
16.5
21.2
2 3 .U
8.3
13.0
13.0
15.1
5.2
6.0
7 .5
5.6
5 .0
118.7
133.3
110.6
122.3
T o tal III-IV
9 23 .6
D is c u s s io n o f R e s u lts
The r e s u l t s on t h e r e l a t i v e amount o f e v a p o r a tio n show t h a t A rea Y
h a s a h i g h e r e v a p o r a t i o n l o s s f o r th e e n t i r e p r o f i l e th a n A rea X.
The
a cc u m u la te d amount o f w a te r l o s t in grams f o r an e le v e n -d a y p e r i o d f o r
A rea Y i s 9 2 3 . 6 grams as compared to a l o s s o f 882.1+ grams in A rea X.
This t o t a l p r o f i l e e v a p o r a t i o n l o s s r e p r e s e n t s a t o t a l a ccu m u lated l o s s
P ig . 1 3 .
THE AMOUNT AND RATS OP SOIL MOISTUPE EVAPORATION
L 0 3 3 USING NATURAL SOIL GORES WITHOUT GROUND
COVER IN AREA OP GOOD HEIGHT GROWTH AND POOR
HEIGHT GROWTH
H o r i z o n s A-. - A,
60
A rea X
- - A rea Y
40
W a te r
L oss
In c c .
20
10
i___________________ i___________________ i___________________ i___________________ i—
72
120
168
Tim e - H o u r s
216
264
H o r i z o n s B0 -B
60
A rea X
50
— A rea Y
40
W a te r
L oss
I n c c • 30
20
10
120
T im e -
168
H o u rs
216
89
d i f f e r e n t i a l o f 1+1.2 grams betw een Area. X and A re a Y.
E x p re s s e d a s a
p e r c e n t a g e l o s s from s a t u r a t i o n , th e t o t a l l o s s would be 11 .1 8 p e r c e n t
f o r A re a Y and 10.1+6 p e r c e n t f o r A rea X.
I f th e e v a p o r a tiv e s u r f a c e is
c o n s i d e r e d a s b e in g o n ly th e A^ and A^ h o r i z o n s , th e n th e a c c u m u la tiv e
l o s s d i f f e r e n c e be tw ee n t h e two a r e a s would be 7*1 grams f o r th e A^
and 1 1 . 1+ grams f o r t h e A^ h o r i z o n .
A s i m i l a r s i t u a t i o n e x i s t s w ith r e f e r e n c e to t h e r a t e a t which
ev ap o ratio n ta k es p la c e .
For A rea X, t h e l o s s in w a te r f o r th e f i r s t
f o r t y - e i g h t h o u rs o f e v a p o r a tin g tim e in th e combined A^j^tp h o r iz o n s is
a t th e r a t e o f .5 2 grams p e r h o u r , w hereas th e r a t e f o r A rea Y i s .61+
grams p e r h o u r .
th e r a t e
A f t e r th e i n i t i a l l o s s f o r a p e r i o d o f n i n e t y - s i x h o u r s ,
and amount o f w a te r l o s s te n d s to l e v e l o f f in b o th a r e a s a t
a b o u t th e same m a g n itu d e .
ences in th e combined
A rea Y.
A p p ro x im a te ly th e same r a t e of l o s s d i f f e r
h o r iz o n s i s e v id e n t f o r b o th A rea X and
The a c t u a l amount o f w a te r l o s s i s g r e a t e r in th e A h o r iz o n
th a n in th e B h o r i z o n f o r b o th a r e a s .
Curves showing th e r a t e and amount
o f w a te r
l o s s b r i n g o u t t h e s e r e l a t i o n s h i p s more c l e a r l y ( F i g s . 13 and ll+) •
S.
M oisture Evaporation
S o il
(Sim ulated G-round Cover)
Experimental Method:
In order to o b ta in data concerning the s o i l water evaporation
l o s s w ith a sim ulated ground c o v er , the same core samples were used as
th o se f o r e va p o ra tio n l o s s w ithout ground cover*
A fte r s a tu r a tin g the
c o r e s , a sawdust mulch sim u la tin g a c tu a l ground cover was then ap p lie d
to each c o r e .
The amount o f sawdust and depth a p p lie d to samples from
Area X was tw ice th e amount added to samples of Area Y.
This sawdust
90
r a t i o o f 2 : 1 i s a p p r o x im a te ly th e a c t u a l r a t i o o f l i t t e r (w e ig h t "basis)
t h a t i s found, i n th e f o r e s t p l a n t a t i o n *
The o b j e c t o f th e sim ulated,
ground, c o v e r m easurem ents was to d e te r m in e what e f f e c t th e f o r e s t l i t t e r
would have upon th e amount and r a t e o f e v a p o r a tio n from u n d i s t u r b e d
h o riz o n s , e x clu siv e of tr a n s p ir a tio n a l lo s s e s .
r e c o r d e d f o r a t o t a l p e r i o d o f e le v e n d a y s.
The l o s s in w e ig h t was
These r e s u l t s a r e g iv e n
i n T a b le 19*
D is c u s s i o n of R e s u l t s
As b e f o r e , in th e e x p e rim e n t w ith o u t ground c o v e r , t h e amount o f
w a te r l o s s due to e v a p o r a tio n was g r e a t e s t in A rea Y.
The a ccu m u lated
amount o f w a te r l o s s f o r th e combined p r o f i l e f o r a p e r i o d o f e le v e n
days was 1191*1 grams f o r A rea Y as compared to a l o s s of 1099*1 grams
f o r Area. X.
T h is e v a p o r a tio n l o s s f o r th e e n t i r e p r o f i l e r e p r e s e n t s a
t o t a l a.ccum ulated l o s s d i f f e r e n t i a l betw een th e two a r e a s o f 91*3 grams.
The t o t a l l o s s from th e s a t u r a t i o n p o i n t i s 13*^0 p e r c e n t f o r A rea Y and
1 2 .0 7 p e r c e n t f o r A re a X, when t h e e n t i r e p r o f i l e i s c o n s id e r e d .
I f th e e v a p o r a t i v e s u r f a c e i s c o n s id e r e d as b e in g o n ly th e A-^ and A2
h o r i z o n s , th e a c c u m u la tiv e l o s s d i f f e r e n c e betw een th e two a r e a s would
be 6 5 . 2 grams f o r th e A-^ h o r iz o n and 2h.Q grams f o r th e A,-, h o r i z o n .
A
s i m i l a r s i t u a . t i o n e x i s t s w ith r e f e r e n c e to th e r a t e a t which e v a p o r a tio n
ta k e s p l a c e .
F o r A re a X, th e l o s s in w a te r f o r th e f i r s t f o r t y - e i g h t
h o u rs f o r t h e combined A^-Ag h o r iz o n i s a t th e r a t e of 1 . 2 6 grams p e r
h o u r, w hereas th e r a t e f o r A rea Y i s I . 7 6 grams p e r h o u r.
A f t e r th e
i n i t i a l l o s s in w a te r t h e amount and r a t e tend to l e v e l o f f a t a p p ro x i
m a te ly t h e same m a g n itu d e .
The amount o f w ater l o s s i s g r e a t e r in th e
B h o r iz o n th a n in th e A h o riz o n f o r A rea X; how ever, th e w ater l o s s i s
91
TABLE 1 9 .
ACCUMULATIVE AMOUNT AND RATE OF SOIL MOISTURE EVAPORATION FROM SOIL CORES
WITH SIMULATED GROUND COVER IN AREA X AND AREA Y
Water l o s s - grams a i r - d r y
A rea X ( S t a t i o n s I - I I )
H o riz o n
Wt. S a t u r a t e d
72
Loss
Time in h ou rs
216
120
l5 s
Loss Loss Loss
■264
Loss
94.1
S3.0
82.0
94.9
28.9
21.0
2 4 .4
21.9
12.0
13.5
12.3
11.2
7 .2
4 .o
5.0
4 .1
152.5
12S. 7
132.0
139*0
74.0
85-5
97*4
116.1
19.9
12.s
13.1
3.2
7.1
7.3
3*7
116.7
137.0
l 4g «3
T o ta l
A c cu m u lative Loss
Core
IAi
a2
b2
b3
IO63.O
1123.0
1 1 7 1 .0
ll6 s.5
IIA n
llHi.o
a2
1150.0
II63.O
1126.0
b2
b3
2 1 .0
22. k
s.6
1 2 .2
10.7
10.3
7 .2
8 .3
6.9
6.8
1 0 .3
9 .0
6.5
T o ta l I - I I
1 ^ 5 .6
1099.8
A rea Y ( S t a t i o n s I I I - I V )
5.7
7-5
7 .7
7-5
3 .6
1 4 9 .2
137.0
11S.5
142.9
10.1
9*g
1 0 .4
o.S
S. 2
6.2
S .3
5*7
IS5 .2
152.7
151.6
154.0
T o ta l I I I -I V
1191.1
11 LA,
Ao(2.
B ci
?
b3
1111.5
1100.0
113 s . 5
1123.6
109.0
86.3
69.3
106.3
10.3
is .3
s .9
l4 .i
12.1
13. S
17.S
1 3 .2
10.3
10.9
15.0
IVAn
1131.5
105 s . 4
1123. s
1079.0
135.3
1 9 .5
26.7
24.9
13 .7
12.1
l4 .l
1S.1
10.0
a2
Bp
B-^
95.9
S9.9
112.3
g r e a t e r i n th e A h o r iz o n th a n in th e B h o r iz o n f o r A rea Y.
T h is te n d s
to s u b s t a n t i a t e th e f a c t t h a t th e l i t t e r i s e f f e c t i v e in h o ld in g th e
w a te r a t a lo w e r h o r i z o n in A rea X.
I n A rea Y where th e l i t t e r i s
s p a r s e , th e s o i l w a te r te n d s to e v a p o r a te from th e s u r f a c e h o r iz o n more
re a d ily .
However, u n d e r a c t u a l f i e l d c o n d i t i o n s , th e a i r tu r b u l e n c e or
92
F ig . 1 4 ,
THE AMOUNT AND RATS OF 3 0 IL MOISTURE EVAPORATION
LOSS USING- NATURAL SOIL CORES WITH SIMULATED
-GROUND COVER IN AREA OF GOOD HEIGHT GROWTH AND
POOR HEIGHT GROWTH
H o r i z o n s A^-Ag
A rea
100
"" A r e a
80
W a te r
Loss
6o
In ec *
AO
20
120
168
216
Tim e - H o u r s
H o r i z o n s B g -B ^
A rea
100
W a te r
L oss
I n cc .
-- A rea
60
40
20
168
120
T im e -
H o u rs
216
264
93
wind v e l o c i t y would "be an im p o r ta n t f a c t o r to c o n s i d e r in c o n ju n c t io n
w ith t h e l i t t e r e f f e c t .
A ir t u r b u l e n c e would be e s p e c i a l l y im p o rta n t
in a f f e c t i n g th e r a t e o f s o i l e v a p o r a t i o n .
The r e s u l t s on e v a p o r a t i o n l o s s w ith and w ith o u t ground c o v e r do
n o t show any s i g n i f i c a n t s t a t i s t i c a l d i f f e r e n c e s in e i t h e r th e r a t e o r
amount of ws,ter l o s s .
"Under b o th s e t of c o n d i t i o n s , however, Area Y
l o s t more w a te r and a t a f a s t e r i n i t i a l r a t e th a n A rea X.
Thus, th e
same r e l a t i o n s h i p e x i s t s in b o th c a s e s w ith o r w ith o u t ground c o v e r .
S in c e t h e c o re s were a i r - d r i e d a t th e same te m p e ra tu re and r e l a t i v e
h u m id ity in b o th c a s e s and f r e e o f any t r a n s p i r e ! i o n a l l o s s e s ,
i t is
a p p a r e n t t h a t s o i l t e x t u r e and i t s a t t e n d a n t p o re space must be c o n t r i b
u t i n g to t h e d i f f e r e n c e in w a te r l o s s of th e two a r e a s .
I t i s r e a s o n a b le
to assume t h a t u n d e r h ig h e r te m p e ra tu re s o f c r i t i c a l p e r i o d s in th e
grow ing s e a s o n , t h e s e d i f f e r e n c e s would be m a g n ifie d many t i m e s .
This
a s s u m p tio n i s d e f i n i t e l y b orn e o u t by t h e r e s u l t s ta k e n in th e e x p e r i
m e n ta l a r e a as o b t a i n e d w ith th e atmometer b u lb th ro u g h o u t two growing
seasons.
These d a t a a r e p r e s e n t e d u n d e r th e c l i m a t i c p h ase of th e
in v e stig a tio n .
An a n a l y s i s o f v a r i a n c e f o r s o i l m o is tu re e v a p o r a tio n is g iv e n by
s o i l h o r i z o n in T a b le 20.
94
TABLE 20 .
ANALYSIS OF VARIANCE FOR ACCUMULATIVE AMOUNT OF SOIL MOISTURE EVAPORATION
LOSS FROM SOIL CORES WITH AND WITHOUT GROUND COVER AREA X v s . AREA Y
B a s i s : 20 sam ples
Water l o s s in c u b ic c e n t i m e t e r s
Ground Cover A bsent
H o riz o n
^1
A
C
®2
B3
J
Source
D eg rees o f Freedom
T o tal
X vs Y
E rror
3
T otal
X vs Y
E rror
3
T o tal
X vs Y
E rror
3
T o tal
X vs Y
E rro r
1
2
1
2
1
2
3
1
2
Sum o f Squares
Kean Square
F
163.99
12.60
151.39
12.60
75.69
.166
558.46
32.49
525.97
32.49
262.9S
.123
15^.39
3 5 . 4o
11S.99
35.40
59.49
.595
590.65
29.16
561.49
29.16
2S0 .7 4
.103
S im u la te d Ground Cover
At
JL
h .
c.
Bp
B,
3
2351.5s
1062.76
12SS.S2
1062.76
644. 4i
1.649
301.69
144.00
157.69
144.00
7 8 . S4
1 .826
2
706.66
26.01
680.65
26.01
340.32
.076
3
l
2
121,21
37.82
S3-39
3 7 . S2
41.69
.907
T o tal
X vs Y
E rror
3
T otal
X vs Y
E rror
3
T o tal
X vs Y
E rror
3
T o tal
X vs Y
E rro r
1
2
1
2
1
95
TABLE 21.
A STATISTICAL SUMMARY OF "F” VALUES FOR EDAPHIC-PHYSICAL
CHARACTERISTICS IN AREA X v s . AREA Y
LABORATORY EXPERIMENTS
S o i l H o rizon
A1
A verage D epth
0-9”
9- 14"
B2
B3
°l
14-23"
23 - 3 3 ”
33”
V a ria b le I n v e s tig a te d :
1.
M e c h a n ic a l A n a ly s is
a . F in e c l a y
b . Sands
c. S i l t p in s clay
11.1**
1.60
.97
l4 .6 * *
1.92
1.31
.13
9.S9
10.63
.07
.67
.67
.00
16.00
16.00
.36
-
-
-
.00
3 .8 4
-
-
-
3.05
.90
2.19
.17
2.76
5-
H y g ro sco p ic C o e f f i c i e n t 1 . 6 7
15.73
6.
Wat e r - h o I d in g Capac i t y
a . Maximum a i r - d r y
b . Maximum n a t u r a l
24.4**
5.35*
4.15
1.36
.96
.027
. 00 [
—
3.21
2.11
.30
.91
2.
S p e c i f i c G r a v ity
3*
Volume Weight
4.
P o re Volume
a. C a p illa ry
b. N o n -c ap illary
c. T o tal p o ro s ity
1.1
.o4
.6 4
.001
1 .8 0
7*
M o is tu re E q u iv a le n t
g.
So i l E v a p o ra t io n
a* W ith ou t g ro un d
. 166
cover
b . S im u la te d ground
1.649
cover
** S i g n i f i c a n t a t 1fa and 5$
* S i g n i f i c a n t a t 5$
.
—
.012
—
—
—
.005
1.17
.123
.595
.103
1.826
.076
.907
—
96
Summary and I m p lic a tio n o f R e su lts
Edaphic-Pbys i c a l C h a r a c t e r is t ic s
Having e s t a b l i s h e d the f a c t from o b s e r v a tio n and measurement th at a
marked d i f f e r e n t i a l r a t e o f h e ig h t growth e x i s t s in the experimented
p l a n t a t i o n under i n v e s t i g a t i o n , a ra th er complete la b o ra to ry a n a ly s is of
the p h y s i c a l s o i l p r o p e r t ie s was undertaken.
The o b j e c t iv e o f both the
p h y s i c a l and chem ical edaphic s t u d ie s was to determine what e f f e c t the
s o i l f a c t o r s might have upon the h e ig h t growth o f t u l i p p o p la r, e it h e r
d i r e c t l y or in combination w ith o th er f a c t o r s .
These s o i l p r o p e r tie s
were i n v e s t i g a t e d s e p a r a t e ly and then combined to show t h e i r r e l a t i v e
a p p l i c a t i o n to each o th er and to r e la t e d p r o p e r t ie s .
For reasons which
are o b v io u s, in an e c o l o g i c a l stu d y , no one f a c t o r per se can be i s o l a t e d
w ithout r e f e r e n c e to i t s a s s o c ia t e d environment.
I t i s th e purpose o f
the p r e s e n t summary to analyze the im p lic a tio n s o f the study thus f a r ,
and to p o in t out th o se f a c t o r s which may be s i g n i f i c a n t l y c o n tr ib u tin g
to th e e n t i r e stu d y .
Three d i s t i n c t but r e la t e d s o i l typ es o f the same s o i l ca ten a were
mapped and p l o t t e d by p r o f i l e .
The ttarsaw sandy loam and Bronson sandy
loam r e p r e s e n t the ar ea o f poor h e ig h t growth; the Fox sandy loam is
r e p r e s e n t a t iv e o f th e s o i l s where the h e ig h t growth i s b e t t e r .
From the
sta n d p o in t o f t e x t u r e , the s o i l s in the area of poor h e ig h t growth c o n ta in
a s i g n i f i c a n t l y g r e a t e r amount of f i n e c la y in the ^
in th e area o f good h e ig h t growth.
and k 2 horizons than
I f i t is assumed th at the f i n e c la y
c on ten t has an important bearing upon h e ig h t growth or s i t e q u a l i t y , then
from the t e x t u r a l v ie w p o in t, the s o i l s in the area of good h e ig h t growth
97
s h o u ld r e v e a l t h e h i g h e r f i n e c l a y c o n t e n t .
The r e s u l t s o b ta in e d in
t h i s s t u d y b e a r o u t th e o p p o s i t e s i t u a t i o n .
Thus, s o i l t e x t u r e a lo n e
must not be a l i m i t i n g f a c t o r cau sin g th e d if f e r e n c e in h e ig h t growth.
S o i l t e x t u r e may be masked by the c o n tr ib u tio n o f some oth er f a c t o r or
s e t o f f a c t o r s , such as the s o i l —m oisture or chemical, r e la t io n s h ip *
Sin ce i t i s g e n e r a l l y r eco gn ized th a t loam s o i l s are more fa v o r a b le f o r
f o r e s t growth than e i t h e r c o a rse sands or f i n e c l a y s , one might in f e r
th a t Area Y (poor h e ig h t growth) would produce th e b e s t h e ig h t growth.
A gain, t h i s s i t u a t i o n i s r ev e r se d as borne out by the mechanical a n a ly s is
o f the th r e e s o i l t y p e s , s in c e the s o i l most c l o s e l y approaching a loam
i s found in Area Y.
The s p e c i f i c g r a v i t y o f the s o i l s in both areas did not d i f f e r
s i g n i f i c a n t l y , e i t h e r in a c tu a l v a lu e or s t a t i s t i c a l l y .
A comparison o f volume w eights shoved very l i t t l e d if f e r e n c e in the
two a rea s i n v e s t i g a t e d .
The volume weight v a lu e s do r e v e a l the f a c t that
in a l l the s o i l s s t u d ie d , the v a lu e s were f a i r l y high, thus p o in tin g out
th a t th e s e s o i l s are not “mature” f o r e s t s o i l s .
Low organic matter
c o n te n t and high sand content o f a l l s o i l s in v e s t ig a t e d i s in d ic a te d by
the volume w eight v a lu e s .
Greater n o n - c a p i l l a r y , c a p i l l a r y , and t o t a l pore volume i s in d ic a te d
in th e area o f poor h e ig h t growth.
This is p a r t i c u l a r l y tru e fo r the root
zone a r e a , the A and A0 h o r iz o n s .
1
^
The d if f e r e n c e in p o r o s it y between the
two s i t e s i s not extreme, however*
R e s u l t s o b ta in ed from the h ygroscop ic c o e f f i c i e n t d eterm ination corrob
o r a te the r e s u l t s found in the m echanical a n a l y s i s .
In g e n e r a l, higher
v a lu e s were found in a l l horizons fo r the area o f poor h e ig h t growth,
98
TABLE 2 2 .
A COMPOSITE SUMMATION OF PHYSICAL-EDAPHIC CHARACTERISTIOS
BY SOIL HORIZON NOR AREA OF GOOD HEIGHT GROWTH AND AREA
OF POOR HEIGHT GROWTH OF TULIP POPLAR
p
©
p
•rH
to
•rH
ta
u
o
W
dO
C
O
'yR
^
m
5
t
t
3CD d
O
•rH
r -1
ft
PP
tH
•rH
O
©
rH
•H
*H
C CO
O
C
O
£f t
ft
O
CO
fto
hr
a
rH
•H
-
O
Fh
o
PL,
H
p
*
3(d
oJ
O
o
P
■H
P
ctf
r—1
o
CO
•rH
k,
p
•H
to
o
u
o
ft
o
I
d
s
;
O
*3
-p
o
Eh
o
•rH
ft
O
o
©
o
Fn
6t0
m
O
cd
ft
td
o
fl
*H bj
n3 L
rH
O 1
X{ F-i
f
Ih td
© •—r
p
cd
p
o
cd
P )r \
cd to
o ©
-rH
u
hD O
3 o
o
5I—1 dCj
o h
W 3
l p
Ih td
© p}
P ■
—
•H
3
o'
m
©
Fh
3
p
©
•H
O
•s<
3
O
-H
P
cd
Ih
O
ft
cd
£
•
a il
\R
-p
e
\R.
Fh
3
P r—s
to to
•H ©
O Fh
S O
O
rH 'r '
-rH
O
CO
A rea X
Ag
13 .2
12.5
b2
13.b
I A-|
5
6 .U
6.0
13.1
16 .2
18.0
B3
°1
S-b
6.0
61.9
76.7
7 3 -6
91.6
9too
38.1
23.3
26.1+
8.U
6.0
2.60
2.52
1.31
1.60
—
61.1
63.2
76.0
88.0
9too
38.9
36.8
2too
12.0
6.0
2.55
2.61
1.62
—
—
—
—
—
21.0
25.2
16.3
50.1
37.3
—
—
—
—
i.b i
25.9
26.4
—
—
17.5
11.7
—
—
2b.s
—
—
—
—
.to
.^5
.99
.17
.09
4 3 . H .*3
3S.1 . 5 b
—
.61
—
.26
.21
to. 5
26.3
23.3
22.7
6.73
1+. 70
5.66
.78
.25
153
129
132
139
35.2
2to2
25.9
23*3
6.93
4.90
5.S6
2.25
.28
117
137
59.6
63.6
52.5
30.1
28.0
3S.9 7.79
32.7 11.
27.6 10.73
20.9
.7^
—
— .54
lbs
57.^
57.3
14-6.7
36.0
29.0
32.9
29.2
25.5
214-.5
58.1
to.9
to . 3
28.3
28.5
56.9
bb.b
39.3
31.3
29-5
—
—
—
ito
1U6
—
A rea Y
n iA ! 1 5 .b
a 2 18.0
b 2 23.1
B, 5.0
°1
u.u
ITAX
lto9
19.1
B22 2 0 . b
b 3 9 -b
Cl b . b
56.9
61.7
7 0 .^
9too
95-0
^3.1
38.3
29.6
6.0
5. 0
2.39
2.7U
61.5
62.7
67.6
90.0
9U.6
3^-5
37.3
32. b
10.0
5 -b
2.S1+
2.76
—
—
—
—
1.33
1.14-6
—
—
1.3b
1.56
—
—
26.0
29.1
—
—-
28.0
26.7
—
—
21.5
15.3
—
—
22.2
13.8
—.
—
^7.5
.zb
—
—
1.05
1.23
.08
.08
50.2
to. 5
—
—
.to
.81
.6k
.33
.09
—
6.99
b.67
6.6s
1.31
.28
137
119
1U3
—-
185
153
152
151+
—
99
■where th e h ig h e r c o n te n t o f c o l l o i d s i s p r e s e n t .
The d if f e r e n c e is not
s t a t is t ic a lly sig n ific a n t.
The water—h o ld in g c a p a c ity o f s o i l s in the a r ea of poor h e ig h t growth
r e v e a ls a h ig h ly s i g n i f i c a n t d i f f e r e n c e in the A^ horizon when compared
w ith Area X.
o f Area Y.
This r e s u l t i s in accord w ith the high er f i n e c la y content
The v a lu e s o btained f o r t h i s s o i l property are in d ic a te d as
s i g n i f i c a n t in both a i r —d r ie d and s ie v e d samples, as w e ll as w ith n atural
s o il cores.
A measure o f the m oistu re e q u iv a le n t in both areas d i s c l o s e s no
s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e between th e two s i t e s .
However, use
o f the m o istu re e q u iv a le n t as a measure o f te x t u r e , brings out the f a c t
th a t th e v a lu e s in c r ea se d w ith an in c r e a se in c o l l o i d a l c o n te n t.
Again,
the area o f poor h e ig h t growth showed the higher m oisture e q u iv a len t
v a lu e s.
The r e s u l t s on the measurement o f s o i l water evaporation l o s s from
n a tu r a l s o i l co res r e v e a ls both a g r e a t e r amount and i n i t i a l r a te of
ev a p oratio n l o s s from th e area o f poor h e ig h t growth.
Although the a c tu a l
v a lu e s show no s t a t i s t i c a l d if f e r e n c e on compared s i t e s , t h i s f a c t o r may
be extrem ely important a t c r i t i c a l p e r io d s of the growing season .
The
e v a p oration experim ents are l i m i t e d in t h e ir s p a t i a l a p p lic a t io n but are
important as an i n d ic a t io n of the s o il- m o i s t u r e r e l a t i o n s h i p s .
I t is
s u f f i c i e n t to p o in t out a t t h i s s ta g e o f the in v e s t i g a t i o n , th a t g r e a te r
i n i t i a l l o s s e s and r a te o f evaporation occur in Area Y, both w ith end
w ithout sim u la ted ground cover.
The s t a t i s t i c a l summary o f a l l p h y s ic a l s o i l f a c t o r s under i n v e s t i
g a tio n r e v e a ls o n ly two p r o p e r tie s o f s t a t i s t i c a l s i g n i f i c a n c e .
These two
100
f a c t o r s , th e amount o f f i n e c la y and th e w a te r-h o ld in g c a p a c ity , a,re the
o n ly v a r i a b l e s which d i f f e r s i g n i f i c a n t l y between Area X and Area Y.
It
i s important to n o te that th e s e two s o i l p r o p e r tie s are d e f i n i t e l y r e la t e d
to each o t h e r , insofa,r as the s o i l - m o i s t u r e r e l a t i o n s h i p i s concerned.
The manner in which the more ou tstan d in g p h y s ic a l s o i l v a r ia b le s
r e l a t e to th e c l i m a t i c , ch em ica l, and m ic r o b io lo g ic a l phases o f the
p r e s e n t i n v e s t i g a t i o n w i l l be d is c u s s e d and analyzed in th e f i n a l summary
of a l l fa c to r s.
101
D epth o f Root P e n e t r a t i o n in R e l a t i o n to th e Ph y s ic a l- E d a p h i c Charac t e r i s t i c s
I n o r d e r to d e te r m in e w h e th er any s i g n i f i c a n t d i f f e r e n c e s e x i s t e d
b etw een th e a r e a s o f good and p o o r h e i g h t gro w th t? ith r e s p e c t to e x t e n t
o f l a t e r a l r o o t p e n e t r a t i o n , p r o f i l e s ex p o sin g th e r o o t system were made
i n e a c h a r e a ( F i g s . 15 and 1 6 ) .
These p r o f i l e s were dug a t random
l o c a t i o n s in each a r e a and t h e r o o t p e n e t r a t i o n d e p th s were re c o rd e d
t h r o u g h o u t t h e grow ing s e a s o n in o r d e r to a r r i v e a t a s u b s t a n t i a l a v e ra g e
ro o t d ep th p e n e tr a ti o n .
A r e c o r d o f th e p r o f i l e s exposed and t h e i r c o r r e
sp o n d in g d e p th s i s as f o l l o w s ;
P ro file
1
2
3
k
5
6
7
S
9
10
11
12
D ate Exposed
A p r i l I S , 1952
ft
ti
it
May 20, 1952
ti
ti
ti
June 20, 1952
ii
11
tt
J u ly 31, 1952
ih
11
15
16
17
ti
A ugust 3 1 * 3-952
11
is
11
19
20
11
11
S ta t ion
I
II
III
17
S ta tio n ¥0 .
D epth o f Maximum L a t e r a l
Root P e n e t r a t i o n in In ch es
I
II
11.0
10.0
15.0
19.0
15.0
13.0
10.0
1 3 .0
13.0
12.0
11.0
16.0
16.0
13.0
12.0
15.0
12.0
1 1 .0
III
IV
lU.Q
1S.0
I
II
III
17
I
II
III
IV
I
II
III
IV
I
II
III
IV
Average Depth Root P e n e tr a tio n in
1 3 .^
l i . s
12.h
17.2
10??
F i g . 15.
A s o i l p r o f i l e exposed in th e a r e a o f good h e i g h t growth
(A rea X ). The e f f e c t i v e d e p th o f l a t e r a l r o o t p e n e t r a t i o n in
t h i s a r e a i s a p p ro x im a te ly 11 in c h e s . The c o n c e n t r a t i o n o f
f l e s h y l a t e r a l r o o t s o f t u l i p p o p la r a r e found e x c l u s i v e l y in
t h e ’’A" s o i l h o r i z o n . Note th e hardwood l e a f l i t t e r a t th e
s o il surface.
103
In hardwood s p e c ie s such as t u l i p p o p la r , the depth and form o f root
system appears to he c o r r e la t e d w ith water c on ten t o f the s o i l .
Tulip
p o p la r i s a s p e c ie s w ith long i n i t i a l ta p ro o ts and prominent l a t e r a l s .
Most e v id e n c e r e v e a l s t h a t t h i s t y p e r o o t system i s c h a r a c t e r i s t i c o f
s p e c i e s r e a c h i n g optimum developm ent on s o i l s w hich, hecau.se o f t h e i r
p h y s i c a l p r o p e r t i e s and p r o f i l e c h a r a c t e r i s t i c s , have a f a i r l y u n ifo rm
a v a i l a b l e w a te r c o n t e n t th ro u g h o u t.
Such s o i l s a r e n e c e s s a r i l y deep,
w e l l - d r a i n e d and o f u n ifo rm t e x t u r e w i t h m od erate p e r m e a b i l i t y .
A ccording
to Tourney and K o r s t i a n (1937) t u l i p p o p l a r draws i t s w a te r and n u t r i e n t
s u p p l i e s v e r y l a r g e l y from th e s u r f a c e l a y e r s o f th e s o i l , a l th o u g h t h i s
s p e c i e s h a s a d e e p ly p e n e t r a t i n g t a p r o o t .
T h is f a c t i s s u b s t a n t i a t e d i n
th e p r e s e n t i n v e s t i g a t i o n as shown by exposed p r o f i l e and r o o t d e p th
p e n e t r a t i o n m easurem ents.
Hoot p o s i t i o n r e f l e c t s to a g r e a t d e g re e th e
s o i l m o i s t u r e c o n d i t i o n s , and a s tu d y o f r o o t h a b i t g iv e s v a l u a b l e in
f o r m a ti o n on t h e a d a p t a b i l i t y o f v a r i o u s s p e c ie s f o r a. p a r t i c u l a r s i t e .
R e su lts and [Discussion
From th e r e s u l t s ob ta in ed on the exposure o f l a t e r a l r o o ts in twenty
in d iv id u a l p r o f i l e s o f both Area. X and Area T, -no extreme d if f e r e n c e s were
found in depth o f root p e n e tr a tio n .
The g r e a t e s t root p e n e tr a tio n o f the
fou r l o c a t i o n s exposed was n in e te e n in c h e s.
The average depths obtained
fo r each o f fou r sep a ra te s t a t i o n s shows the g r e a t e s t p e n e tr a tio n at
S t a tio n IV.
As in d ic a te d by s o i l type and poor h eig h t growth, t h i s s o i l
i s th e d r i e s t of the fou r s t a t i o n s observed.
I t is surmised th at the
deeper root development o f t h i s area is i n d ic a t iv e of a d r ie r s i t e than
oth er l o c a t i o n s in the experim ental t r a c t .
The water ta b le l e v e l at the
10U
P ig . l 6 .
A s o i l p r o f i l e exposed in the area o f poor h e ig h t grovrth
(Area Y ). The e f f e c t i v e depth o f l a t e r a l root p e n e tr a tio n in
t h i s l o c a t i o n i s approximateljr 15 inches; the f l e s h y l a t e r a l
r o o t s are found e x c l u s i v e l y in the ,,A11 s o i l h o rizon . Note the
dominant g r a ss v e g e t a l l i t t e r ;it the s o i l su r fa c e in c o n tr a st
t o the l e a f l i t t e r o f Area X.
105
same s t a t i o n i s c l o s e r to the ground s u r fa c e than at any o th er s t a t i o n .
I t i s e n t i r e l y p o s s i b l e th a t the deeper ro o t p e n e tr a tio n in t h i s l o c a t i o n
i s in f lu e n c e d by s a tu r a te d s o i l c l o s e to the water t a b le l e v e l during the
e a r ly p a r t o f the growing seaso n .
Again, during the
and summer drought, th e r o o ts o f t r e e s at S t a t io n IT
dry p e r io d o f August
maybecome more
d e e p ly p e n e t r a t in g in respon se to a v a ila b le s o i l m oisture vrith a c o rre
sponding drop in the water t a b le l e v e l .
The downward growth o f r o o ts must
heep pace w ith the l o s s o f m oistu re from the s u p e r fic ia l, la y e r s o f s o i l
during th e p e r io d o f drought.
The root system o f t u l i p p o p la r , which i s
f l e s h y and s u c c u le n t , i s not ad. ju s ted to s i t e s which
are swampy or to
th o se s i t e s in which the s u r fa c e la y e r s are su b jec t to d e s i c c a t i o n .
Thus,
the r e s u l t s here o b ta in e d denote th a t t u l i p pop lar i s adapting i t s e l f ,
w ith regard to i t s ro o t system , to a c o n d itio n somewhere between the
extreme l i m i t s o f s a t u r a t io n and p h y s i o l o g i c a l d ry n ess.
The e f f e c t i v e
zone o f l a t e r a l r o ot p e n e tr a tio n f o r both Area X and Area Y i s found
e n t i r e l y in th e Ap and Ag s o i l h o r iz o n s .
The e f f e c t s o f e v a p o r a tio n ,
s o i l tem perature, and s o i l m oisture fo r th ese h o r iz o n s , in r e l a t i o n to
r oot p e n e t r a t io n , w i l l be d is c u s s e d under c lim a t i c i n v e s t i g a t i o n s .
It is
i n t e r e s t i n g to note th a t the on ly s t a t i s t i c a l l y s i g n i f i c a n t t e x t u r a l s o i l
d i f f e r e n c e between Area X and Area Y i s found in the same ho rizon s (A-j_ amd
A^) as th e e f f e c t i v e zone o f l a t e r a l r o ot p e n e tr a tio n .
Thus, in d is c u s s
ing th e e f f e c t o f c l i m a t i c f a c t o r s on s o il- m o i s t u r e r e l a t i o n s h i p s in t h i s
stu d y , v i r t u a l l y a l l r e l a t i o n s between growth and s o i l m oistu re w i l l
r e f e r to the l a t e r a l root zone a r ea , s in c e t h i s i s the zone where the
t r e e s are p r im a r ily d e r iv in g t h e i r n u t r ie n t s and water supply.
The r o le
10 6
o f f e e d e r r o o t s in r e l a t i o n to w a te r s u p p ly i n e ach a r e a vjas n o t in
v e stig a te d ,
(ta p ro o ts)
g ro w th .
T h is i s n o t t o imply t h a t t h e more d e e p ly e n tr e n c h e d r o o t s
a r e n o t im p o r ta n t in s u p p ly in g w a te r a t c r i t i c a l p e r i o d s o f
E f f e c t i v e l a t e r a l r o o t p e n e t r a t i o n and i t s r e l a t i o n to th e
p h y s i c a l - e d a p h i c c h a . r a c t e r i s t i c s o f t h e e x p e r im e n ta l a r e a was th e
o b j e c t i v e o f t h i s p h a s e o f th e s tu d y .
loy
W ater T a b le F l u c t u a t i o n in R e l a t i o n to th e P h y s ic a l - E d a p h ic Char a c t e r i s t i c s
T hro ug h ou t th e grow ing s e a s o n o f 1952, th e d e p th to t h e u n d e r ly in g
w a te r t a b l e was r e c o r d e d f o r com parison "between th e a r e a o f good and po o r
h e i g h t g ro w th o f t u l i p p o p l a r .
t a b l e i s shown in F i g . 1 7 .
T h is f l u c t u a t i o n in d e o th to t h e w a te r
A c o n tin u o u s drop in wa.ter t a b l e l e v e l , as th e
s e a s o n p r o g r e s s e d , i s g r a p h i c a l l y r e c o r d e d f o r b o th A rea X and A rea Y.
S in c e i t h a s b e en shown by s e v e r a l i n v e s t i g a t o r s t h a t c a p i l l a r y r i s e
o f w a te r from a w a te r t a b l e w i t h i n f i f t e e n f e e t o f th e s u r f a c e is im p ort
a n t in p r o v i d i n g r o o t s w ith m o i s t u r e , f l u c t u a t i o n s in th e w a te r t a b l e f o r
t u l i p p o l a r a r e s i g n i f i c a n t in term s o f t r e e g ro w th .
The waiter t a b l e in
A rea X o c c u r s a t an a v e ra g e d e p th o f a p p ro x im a te ly s i x f e e t , whereas
A re a Y h a s a w a te r t a b l e o c c u r r i n g a t a p p ro x im a te ly t h r e e f e e t below th e
su rface.
R e s u l t s and D is c u s s i o n
The c h a r a c t e r o f th e v e g e t a t i o n h a s an im p o rta n t e f f e c t upon th e
h e i g h t o f th e w a te r t a b l e and o t h e r f a c t o r s a s s o c i a t e d w ith t h e w a te r
ta b le le v e l.
I n A re a X th e t r e e s a r e more m assiv e in h e i g h t and volume
and hence r e q u i r e more w a te r f o r t r a n s p i r a t i o n a l p u r p o s e s ; t h i s w a te r is
drawn from t h e g rou nd w a te r s u p p ly o r e l s e from t h e s o i l b e f o r e i t p en e
t r a t e s to t h e w a te r t a b l e l e v e l .
T h is o b s e r v a t i o n , co u p led w ith such
r e c o r d e d c l i m a t i c f a c t o r s a s re d u c e d s o i l w a te r e v a p o r a t i o n , low er s o i l
t e m p e r a t u r e s , re d u c e d s u r f a c e s o i l t e m p e r a t u r e s , and a sandy loam s o i l
ty p e , c o n t r i b u t e d i r e c t l y to t h e low er w a te r t a b l e l e v e l in A rea X.
In
c o n t r a s t to t h i s s i t u a t i o n , A rea Y p o s s e s s e s a w a te r t a b l e c l o s e to th e
s u r f a c e a s a r e s u l t o f in c r e a s e d c a p i l l a r i t y and in c r e a s e d s o i l evapo
ra tio n .
The s o i l o f A rea Y is a deep s o i l in an a b s o l u t e s e n s e , b u t ,
10s
F ig .
1 7 .
THE WATER-TABLE FLUCTUATION THROUGHOUT
THE GROWING 3EA30N OF 1 9 5 2
A rea X
I
II
A rea Y
III
---------------- IV
20
40
D e p t h To
W a te r-T a b le
In
In ch es
60
80
100
A p ril
May
June
M o n th o f O b s e r v a t i o n
J u ly
A ugust
109
b e c a u s e o f a r e l a t i v e l y im p erv io u s l a y e r ( h i g h c la y c o n t e n t o f A h o riz o n )
and h i g h w a te r t a b l e ,
i t i s a s h a llo w s o i l in a p h y s i o l o g i c a l s e n s e , which
i n h i b i t s norm al h e i g h t g ro w th .
A c l i m a t i c s tu d y o f t h e c o n t r a s t between
b o t h a r e a s u t i l i z i n g such f a c t o r s as r e l a t i v e h u m id ity , s o i l e v a p o r a tio n
l o s s , a i r and s o i l te m p e r a t u r e , s o i l - m o i s t u r e r e l a t i o n s h i p s and wind
movement, b e a r o u t t h e c o r r e l a t i o n betw een th e w a te r t a b l e l e v e l s in each
area.
E x p e rim en ts have shown t h a t c a p i l l a r y r i s e o f w a te r in s o i l s ta k e s
p l a c e s lo w ly , b u t t o th e g r e a t e s t h e i g h t in c l a y s o i l s , and most r a p i d l y
in sandy s o i l s .
From t h e r e s u l t s o f th e w a te r t a b l e f l u c t u a t i o n in b o th a r e a s i t is
a p p a r e n t t h a t th e w a te r t a b l e l e v e l
in p l a n t a t i o n s o f t h i s ty p e becomes
im p o r ta n t a s an in d e x to p l a n t i n g s i t e s ,
i n s o f a r as th e s e d a t a a r e s u p p le
m ented w i t h o t h e r c l i m a t i c and e d a p h ic f a c t o r s .
A gain, th e c r i t i c a l s o i l -
m o i s t u r e r e q u ir e m e n ts f o r t u l i p p o p l a r p l a n t a t i o n s i s e v i d e n t .
Thus,
A rea Y a p p a r e n t l y h a s a l l t h e s i t e re q u ire m e n ts n e c e s s a r y to good h e ig h t
g ro w th o f t u l i p p o p l a r , y e t th e b e s t grow th o c c u r s somewhere beyond th e s e
l i m i t a t i o n s , as e x h i b i t e d by A rea X.
The two main f a c t o r s , as e v id en c e d
by t h i s s tu d y , which a r e c o n t r i b u t i n g most to t h e d i f f e r e n c e in th e w a te r
t a b l e l e v e l s o f b o th a r e a s , a r e e v a p o r a t i o n and t r a n s p i r a t i o n o f th e t u l i p
p o p la r s i t e s .
110
LABORATORY EXPERIMENTS
Chemical - Edaphie C h a r a c t e r i s t i c s
1 . S o i l A c i d i t y (pH)^
E x p e rim e n ta l Method:
Samples f o r th e d e t e r m i n a t i o n o f t h e h y d ro g e n -io n c o n c e n t r a t i o n
we r e ta k e n from f i v e s o i l h o r iz o n s on t h i r t y - t w o randomly s e l e c t e d s p o ts
in A re a X and A re a Y.
Ten-grata s o i l sam ples were ta k e n in d u p l i c a t e in
J u l y 1951* and s e a l e d im m ediately in p a r a f f i n c o n t a i n e r s .
The pH o f each
s o i l was th e n d e te r m in e d e l e c t r o m e t r i c a l l y "by u se o f th e Beckman pH M ete r,
as shown by Reed and Cummings (19^5)» aJ1d th e r e c i p r o c a l v a lu e s o b ta in e d
were a v e r a g e d f o r e ac h d u p l i c a t e s e t o f sam p les.
A s o i l - w a t e r e x t r a c t in
t h e r a t i o o f 1 :1 was u sed in a l l d u p l i c a t e d e t e r m i n a t i o n s .
By means o f th e
U n ite d S t a t e s S o i l C o n s e rv a tio n S e r v ic e c l a s s i f i c a t i o n c r i t e r i a , th e
r e l a t i v e pH and i t s c o r r e s p o n d in g c l a s s of a c i d i t y was p l o t t e d f o r each
a r e a by d e p th o f h o r i z o n .
The a v e ra g e v a lu e s o b ta in e d by h o r iz o n and
d e p th i s p r e s e n t e d in T a b le 2 3 .
D is c u s s i o n o f R e s u l t s
Most f o r e s t s o i l s a r e a c i d in r e a c t i o n .
T his r e a c t i o n i s n o t always
c o n s t a n t b u t shows v a r i a t i o n d u r in g th e c o u rs e of t h e yea.r.
However,
H e h rin g (193^) a German i n v e s t i g a t o r , found t h a t v a r i a t i o n s in pH d id n o t
exceed 0 . 8 pH o v e r a o n e - y e a r p e r i o d .
c o m p arable r e s u l t s .
O th er i n v e s t i g a t o r s have found
Marked d i f f e r e n c e s in pH a r e o f t e n found in d i f f e r e n t
9 . The number p re c ed in g ' th e c h em ical s o i l f a c t o r un d er i n v e s t i g a t i o n
c o rre s p o n d s to th e same f a c t o r summarized s t a t i s t i c a l l y in T ab le *+2.
I ll
TABLE 2 3 .
THE HYDROGEN-ION CONCENTRATION OP SOILS REPRESENTING FIVE SOIL HORIZONS
IN AREA X AND AREA Y
L o g a rith m o f r e c i p r o c a l o f t h e h y d ro g e n -io n c o n c e n t r a t i o n
A rea X ( S t a t i o n s I - I I )
i l H o riz o n
A verage pH
IA-,
a2
b2
b3
cx
5 .5 5
5 .3 3
5 .^ 0
5>2
5 .1 S
IIA j
Ap
5 .3 9
5 .2 0
5 .1 5
5 .1 ^
5 .U0
B2
C31
Combined S t a t i o n s
A verage pH
I- 1 1 An
2
B2
B3
C1
Avg. D i f f e r e n c e
5^7
5 .2 6
5.27
5.2S
5.29
-.1 3
+ .2 1
+ .4 l
+ .2S
-•33
5 .6 0
5.05
U .g 6
5 .0 0
5 .6 2
+ .13
-.2 1
-.U l
-.2 8
+ •33
A rea Y ( S t a t i o n s I I I -IV)
h l a -l
5 .S5
5 .1 6
5 .0 2
5 .1 7
5 . k2
a2
b2
B3
Cl
IVA-j
III-IVA-.
a2
B2
B3
5-35
k .sk
4 .7 0
U.S 3
5.S2
4
B2
B3
** A minus s i g n (■- ) i n d i c a t e s g r e a t e r a c i d i t y th a n compared a r e a
and a p i n s (+) s i g n i n d i c a t e s l e s s a c i d th a n compared area,.
h o r i z o n s of a p a r t i c u l a r p r o f i l e .
I n th e r e s u l t s h e r e o b t a i n e d , c o n s i d e r a b l e
v a r i a t i o n w i t h i n h o r i z o n s may be s e e n , b u t th e f i n d i n g s i n d i c a t e t h a t a
co m p ariso n o f A rea X end A re a Y show l i t t l e o v e r a l l v a r i a t i o n .
The h i g h e s t
pH fo u n d was 5 .S 5 and th e lo w e s t was ^ .7 0 ; t h e s e v a lu e s in c lu d e a l l h o r iz o n s
in b o t h a r e a s .
A rea Y e x h i b i t s lo w er i n d i v i d u a l h o r i z o n a l a c i d i t i e s th a n
A rea X b u t b o th a r e a s a r e in th e c a te g o r y o f s t r o n g l y a c i d to v e ry s t r o n g l y
c—
-
Ti
_ /
-
Cry T3
.
Ti
m
S 7
113
a c i d , when a v e r a g e v a l u e s a r e c o n s i d e r e d .
The B h o r iz o n of A rea X and
A re a Y a p p e a r s to be s l i g h t l y more a c i d th a n th e A o r C h o r iz o n s ( F i g . 1 8 ).
A lso t h e g re a -te r pH d i f f e r e n c e betw een t h e two compared a r e a s o c c u rs in th e
B h o riz o n .
A s tu d y by A uten (19*4-5)
77 s e c o n d -g ro w th y e llo w p o p l a r s ta n d s from
12 to 6 l y e a r s o f age on o ld f i e l d s and c u to v e r a r e a s , showed t h a t i f th e
s o i l r e a c t i o n was c o n s id e r e d a t th e r o o t zone d e p th , most s o i l s were a c i d .
A uten c i t e s an example o f a 1 2 - y e a r o ld s ta n d which grew a t th e r a t e of
f e e t p e r y e a r on a s o i l w ith a pH o f 5*8 a.t th e s u r f a c e and 5*6 in t h e sub
so il.
T h is s i t u a t i o n i s an alo g o u s to th e r e s u l t s of th e p r e s e n t i n v e s t i
g a t i o n , where i n s u f f i c i e n t tim e h a s e la p s e d f o r th e c a lc a r e o u s y e llo w
p o p l a r l i t t e r to a l t e r th e r e a c t i o n to l e s s a c i d c o n d i t i o n s .
In tim e , th e
l i t t e r o f t h i s p l a n t a t i o n w i l l become r i c h e r in lim e and change th e s o i l
r e a c t i o n to n e u t r a l o r s l i g h t l y a l k a l i n e c o n d i t i o n s .
A c co rd in g to L u tz and C handler (19*4-6) t h e r e i s v e ry l i t t l e
e v id en c e
t h a t low pH p e r s e i s r e s p o n s i b l e f o r p o o r grow th o f f o r e s t t r e e s .
A g ri
c u l t u r a l p l a n t s may be s e n s i t i v e to h ig h c o n c e n t r a t i o n s o f hydrogen ions
b u t t h i s i s l e s s marked f o r f o r e s t t r e e s p e c i e s .
High a c i d i t y v a l u e s ,
how ever, may a f f e c t t h e s o i l f a u n a and f l o r a , c e r t a i n p h y s i c a l and chem ical
f a c t o r s , and even t o x i c i t y of s e n s i t i v e s n e c i e s .
These e f f e c t s a r e i n d i r e c t ,
b u t a l t e r a p e r i o d o f tim e may become h i g h l y im p o r ta n t.
An a n a l y s i s o f
v a r i a n c e shows t h e g r e a t e s t d i f f e r e n c e in pH between A rea X and A rea Y
o c c u r r i n g in th e B2 h o r i z o n .
However, no h o riz o n e x h i b i t s any s t a t i s t i c a l
s i g n i f i c a n t d i f f e r e n c e (T a b le 2 b ).
lib
TABLE
2b.
ANALYSIS OF VARIANCE FOR TER HYDRO G-EN-ION COECENTRATXON OF FIVE SOIL HORIZONS
IN AREA X v s . AREA Y
B a s i s : 32 samples
pH
A1
a2
Source
D egrees o f Freedom
Sum o f S q uares
T o ta l
X vs Y
E rror
15
1
Ik
1 .2 1
.0 6
1 .1 5
.0 6
.032
*73
T o tal
X vs Y
E rror
15
1
1^
1 .2 1
.19
1 .0 2
.19
.073
2 .6 1
Mean Square
F
B a s i s : b sam ples
B2
b3
T o tal
X vs Y
E rror
3
1
2
.25
.17
.OS
.17
.o b
1+.25
T o tal
X vs Y
E rror
3
1
2
.I S
.0 7
.11
.07
.055
1 .3 2
T o ta l
X vs Y
E rror
3
1
2
.21
.1 1
.10
.1 1
.0 5
2 .2 1
2. S o i l O rg a n ic M a tte r
E xperim ental Method:
S o i l sam ples v e r e c o l l e c t e d from A rea X and A rea Y r e p r e s e n t i n g
f i v e s o i l h o r iz o n s in each a r e a .
A t o t a l o f tw enty i n d i v i d u a l sam ples was
ta k e n and t h e s e sam ples v e re a i r - d r i e d and p a s s e d th ro u g h a two mm. s i e v e .
The d ry c o m b ustion method f o r a n a l y s i s o f o rg a n ic m a t t e r was employed.
F iv e
grains o f 60 mesh carb o n f r e e alundum and .25 grams o f manganese d io x id e vas
added to a two gram sample o f s o i l .
These v e re v e i l mixed and p l a c e d in a
s i l i c a co m b ustio n b o a t and i n s e r t e d in to a h o t s i l i c a tu b e f u r n a c e ,
115
TABLE 2 5 .
THE AMOUNT OF SOIL ORGANIC MATTER IN FIVE HORIZONS FROM AREA X AND AREA Y
P ercent
A rea X ( S t a t i o n s I - I I )
H o riz o n
Carbon d io x i d e (gins.)
P e r c e n t carb o n d io x id e *
O rganic M a tte r
IA1
4
B2
B3
°1
.1 0 0
.o b i
.0 3 0
.0 1 5
.0 1 2
1 0 .0
b .l
3 .0
1 .5
1 .2
2-35
.96
-71
-35
.28
IIA 1
a2
b2
B?
.073
.0 3 0
.028
.0 1 7
.0 1 2
7 .3
3 .0
2 .8
1 .7
1 .2
1 .7 2
-71
. 66
.bo
.28
°1
A re a Y ( S t a t i o n s I I I - I V )
IIIA-i
a3
B2
b3
°1
I7A i
A2
b2
B3
.113
.0 5 0
.035
.0 1 5
.0 1 5
11.3
5 .0
3 .5
1 .5
1 .5
2 .6 6
1 .1 8
-S3
-35
-35
.0 7 0
.0 3 8
.0 3 2
.0 1 3
.0 0 6
7 .0
3 .8
3 .2
1 .3
0 .6
I .6 5
.90
-75
•31
.lb
B a s is one-gram sample
* P e r c e n t c a rb o n d i o x id e c o n v e r te d to o rg a n ic m a t t e r by m u l t i p l y i n g
by th e f a c t o r 0 .^ 7 1 ( a f t e r S c h o lle n b e r g e r )
p r e v i o u s l y h e a t e d to at)out 950° C.
A f t e r a p p r o p r i a t e oxygen flo w r a t e was
a d j u s t e d , t h e sample was s u b j e c t e d to v a r i o u s p u r i f i c a t i o n p r o c e s s e s , and
th e n removed a f t e r tw en ty m in u te s .
Carbon d io x id e was o o lle c te u . in a,
p r e v i o u s l y w eighed a s c a r i t e tu b e and th e u e r c e n t o r g a n ic m a t t e r computed by
u s i n g th e f a c t o r O.U71 to c o n v e r t amount o f carb o n d io x id e to o rg a n ic
i**
n6
m a t t e r ( a f t e r S c h o l l e n b e r g e r , 19*+5) *
^he p e r c e n t o r g a n ic m a t t e r was th e n
re d u c e d to a one-gram b a s i s and p l o t t e d to s c a l e ( F i g .
19).
D is c u s s i o n o f R e s u l t s
A dynamic e q u i l i b r i u m e x i s t s betw een th e s u p p ly o f f r e s h o r g a n ic
d e b r i s and i t s s u b s e q u e n t d e c o m p o s itio n .
Changes which a l t e r t h i s e q u i
l i b r i u m w i l l r e s u l t in e i t h e r a d e c r e a s e o r i n c r e a s e o f o r g a n ic m a t t e r .
The im p o rta n c e o f o r g a n i c m a t t e r in a f f e c t i n g th e p h y s i c a l and ch em ical
c h a r a c t e r i s t i c s o f s o i l s c an no t be o v e r e s t i m a t e d .
The c o m p o sitio n and t h e
q u a n t i t y o f o r g a n ic m a t t e r in s o i l s i s th u s e x tre m e ly v a r i a b l e .
V alues
o b t a i n e d in t h i s i n v e s t i g a t i o n compare q u i t e f a v o r a b l y w ith th e f i n d i n g s o f
many i n v e s t i g a t o r s on s i m i l a n s o i l t y p e s .
A s tu d y by Auten ( l 9 1+5) showed
t h a t y e llo w p o p l a r o f t e n re p ro d u c e s and grows r a p i d l y on deep s o i l s from
which o r g a n i c m a t t e r has been removed by o x i d a t i o n and e r o s i o n .
Thus, i f
y e llo w p o p l a r would n o t r e s e e d , become e s t a b l i s h e d , and t h r i v e on s o i l s
which have a low o r g a n i c c o n t e n t , one m ight deduce t h a t h e i g h t grow th was
d e p e n d e n t upon o r g a n i c m a t t e r .
Such, however, i s n o t th e c a s e .
A lthough
o r g a n i c m a t t e r d e p o s i t e d as l i t t e r i n f l u e n c e s grow th r a t e as th e accumu
l a t i o n becomes g r e a t e r ,
i t s p r e s e n c e i s n o t a p rim a ry cause o f in c r e a s e d
t r e e g ro w th , b u t a r e s u l t .
An e x a m in a tio n o f th e d a t a o b t a i n e d in T ab le 23
w i l l im m e d ia te ly show t h a t th e amount o f o rg a n ic m a t t e r i s r e l a t i v e l y low
in b o t h A rea X and A rea Y.
d e p th o f t h e p r o f i l e .
I n a l l c a s e s th e amount d e c r e a s e s w ith in c r e a s e d
The h i g h e s t c o n te n t of o r g a n ic m a t t e r o c c u rs on th e
Warsaw sandy loam , a c i d v a r i a n t t y p e , where a t o t a l c o n te n t o f 5 .3 7 p e r c e n t
i s fo u n d f o r th e e n t i r e p r o f i l e ; th e h i g h e s t v a lu e o f 2.b6 p e r c e n t i s a ls o
fo u n d h e r e in th e
h o rizo n .
The re m a in in g s o i l ty p e s do n o t d i f f e r
a p p r e c i a b l y in t h e i r c o n te n t o f o r g a n ic m a t t e r f o r any h o r i z o n .
An
F ig .
19.
1:Ly
PERGSNT OF ORGANIC MATTER EXISTING- IN FIV E SOIL
HORIZONS FOR THE A.REA OF GOOD HEIGHT GROWTH v s .
AREA OF POOR HEIGHT GROWTH
3 .0
2 .7
(i v n
A r e a "X
2 .5
2 .2
A rea " y "
2.0
u
®
4»
4»
£
f1*7
g l
CD
.5
K
©
ft
1.2
1.0
.7
.5
.2
S o il H o riz o n
118
a n a l y s i s o f v a r i a n c e shows th e g r e a t e s t d i f f e r e n c e "between A rea X and
A rea Y o c c u r s in th e A2 h o riz o n *
However, no s t a t i s t i c a l s i g n i f i c a n t
d i f f e r e n c e i n o r g a n i c m a t t e r e x i s t s "between A rea X and A rea Y (T a b le 2 6 ) .
TABLE 2 6 .
ANALYSIS OF VARIANCE OF CffiG-AMIC MATTER IN FIVE SOIL HORIZONS FOR AREA. X v s .
AREA Y
P ercent
B a s i s : 20 sam ples
Source
D egrees o f Freedom
A1
T o tal
X vs Y
E rror
3
1
2
T o tal
X vs Y
E rro r
B3
j
°1
3*
F
.73
.0 2
.71
.0 2
•35
.0 6
3
1
2
.1 1
.05
.0 6
.05
.03
1 . 6l
T o tal
X vs Y
E rror
3
1
2
.0 2
.0 2
.00
.0 2
.0 0
T o tal
X vs Y
E rror
3
1
2
.003
.0 03
.0 0
.003
.0 0
T o tal
X vs Y
E rror
3
1
2
.03
.00
.03
.0 0
.015
.00
0
0
b2
Mean Square
•
A2
Sum o f Squares
0
0
H o riz o n
T o t a l N itr o g e n and C arb o n -H itro g e n R a tio
E x p e rim e n ta l Method:
T o t a l n i t r o g e n was d e te rm in e d 011 combined s u b s t a t i o n d u p l i c a t e
sam ples f o r t h e A and B h o r iz o n s o f A rea X and Area Y*
made a c c o r d in g to th e K j e l d a h l p ro c e d u re ( 1 9 ? 0 ) .
D e te r m in a tio n was
Ten grams o f s o i l were
added to K j e l d a h l f l a s k s and th e o r g a n ic m a t t e r was o x id iz e d by b o i l i n g
119
TABLE 27 .
THE RELATIONSHIP BETWEEN THE AMOUNT OE TOTAL NITROGEN
AND CARBON IN SOILS OE AREA X AND AREA Y
P ercen t
A rea X
H o riz o n
(S tatio n s I - I I )
P e r c e n t N itr o g e n
P e r c e n t Carbon*
IA,
A2
b2
.1 2 5
.0*47
.0*49
2.72S
1.118
.818
2 1 .8 2 : 1
23 .79 : 1
1 6 .6 9 : 1
XIA-i
a2
bI
.1 1 3
.0*4*4
. 0*41
1.9 91
.818
• 76*4
1 7 .6 2 : 1
18 .59 : 1
I 8 .6 3 : 1
.*419
s . 237
117.1*4 : 1
A re a Y
C a rb o n -N itro g e n R a t io
(S ta tio n s III-IV )
IIIA 1
Ap
.133
.0 7 2
.0 60
3 .0 8 2
1.36>4.95*4
2 3 .1 7 : 1
18.9*4 : 1
15 .90 : 1
IVAn
a2
b2
.1 2 1
.05*4
.055
1.909
1 .0 3 6
.873
15.7S : 1
1 9 .1 8 : 1
1 5 .87 : 1
.*495
9.21S
1 0 8 .S*4 : 1
* D e riv e d from e q u a ti o n :
T o tal
C +
Atomic w e ig h t c arb on _________
M o le c u la r w e ig h t c arb o n d io x id e
O2 ——>*
T o tals
C02
12.01
W .o T
z
.272s X ^C0 2
”
p e r c e n t c arbo n
120
F ig .
20.
A COMPARISON OF THE CAHBON-NITROGEN RELATIONSHIP
OF SOILS IN THE AREA OF GOOD HEIGHT GROWTH v a THE
AREA OF POOR HEIGHT GROWTH
|
|
-
C arbon
N itro g e n
X
2 .5
1 9 .4 :1
1 9 .7 :1
X
Good H e i g h t
G r o w th
Y
P oor H e ig h t
G r o w th
2.0
P er
cent
1 .5
Y
1 9 .0 :1
X
1.0
.
2 1 2:1
Y
X
1 7 .7 rl
.5
S o il H o riz o n
1 5 .8 :1
121
w ith s u l f u r i c a c id .
A p p r o p r i a t e c a t a l y s t s were added t o h a s t e n o x i d a t i o n .
A f t e r d i g e s t i o n and c o o l i n g , an e x c e s s o f sodium h y d ro x id e was added and
t h e ammonia was d i s t i l l e d i n t o s t a n d a r d a c i d .
The p e r c e n t t o t a l n i t r o g e n
th u s o b t a i n e d i n c l u d e s t h e ammoniacs.l and c e r t a i n n i t r a t e forms o f
n itro g e n th a t are p re s e n t.
The p e r c e n t o f c a rb o n was d e r i v e d from th e o r g a n ic m a t t e r d e te r m i
n a tio n s.
The p e r c e n t c a rb o n d io x id e o b ta in e d in th e d ry com bustion
method i s c o n v e r t e d to p e r c e n t c arb o n by m u l t i p l y i n g each d e t e r m i n a t i o n
by th e f a c t o r .2 7 2 8 .
R e s u l t s of t h e s e c a l c u l a t i o n s a r e p r e s e n t e d in
T a b le 27D iscu ssio n of R e su lts
The change o f n i t r o g e n in combined complex forms to t h e a v a i l a b l e
s o i l n i t r o g e n i s a b i o l o g i c a l p r o c e s s in f l u e n c e d by many f a c t o r s .
From
an e c o l o g i c a l s t a n d p o i n t t h e c a r b o n - n i t r o g e n r a t i o o f s o i l s i s in f l u e n c e d
by s o i l f e r t i l i t y and s ta n d c o m p o s itio n .
F o r f o r e s t t r e e s p e c i e s , v e ry
l i t t l e n i t r o g e n i s l i b e r a t e d as th e n i t r a l e form u n t i l th e c a r b o n n i t r o g e n r a t i o h as narro w ed as a r e s u l t of d e c o m p o s itio n .
An in d e x to
th e d e g r e e o f r e l e a s e of n i t r o g e n was o b ta in e d in t h i s i n v e s t i g a t i o n by
u t i l i z i n g th e carb o n -n itro g e n r a t i o .
The p e r c e n t o f b o th carbo n and
n i t r o g e n i s h i g h e r in th e a r e a of p o o r h e i g h t grow th th an in th e a r e a of
good h e i g h t g ro w th .
C o n s e q u e n tly , th e C/ltf r a t i o is more narrow in A rea Y,
i n d i c a t i n g g r e a t e r d e c o m p o s itio n and re le a .s e of th e n i t r a t e form of
n itro g e n .
The d i f f e r e n c e s in th e C/U r a t i o a r e no t marked betw een a r e a s .
These r e s u l t s d i s c l o s e t h a t th e l e s s dense s i t e (A rea Y) w ith a h i g h e r
c o n t e n t o f o r g a n ic m a t t e r w i l l r e l e a s e more n i t r o g e n th a n th e d e n s e r Area X.
At any g i v e n tim e th e amount of a v a i l a b l e n i t r o g e n w i l l f l u c t u a t e c o n s i d e r a b l y .
122
S in c e a d e t e r m i n a t i o n o f t o t a l n i t r o g e n in c lu d e s more t h a n one form o f
n itro g e n ,
i t i s n o t p o s s i b l e to d i f f e r e n t i a t e th e ammoniacal from th e
n i t r a t e fo rm s i n t h i s d e t e r m i n a t i o n .
However, a c l o s e a p p ro x im a tio n o f
t h e n i t r o g e n c o n t e n t and i t s a v a i l a b i l i t y w i l l be i n v e s t i g a t e d u n d er th e
m i c r o b i o l o g i c a l , p h a se o f th e s tu d y .
TABLE 28.
ANALYSIS OF VARIANCE FOR TOTAL NITROGEN CONTENT CF SOILS IN AREA X v s . AREA Y
P ercent
B a s i s : 12 sam ples ( i n d u p l i c a t e )
A*-
U.
S ource
D egrees o f Freedom
T otal
X vs Y
E rro r
3
1
2
T o tal
X vs Y
E rror
T o tal
X vs Y
E rror
Sum o f Squares
Mean Square
F
.0030
.0005
.0025
.0005
.0 0 1 2
.k2
3
1
2
. 00^5
.OO35
.0010
.0035
.0005
.70
3
1
2
.0 0 2
.001
.0 01
.0 0 1
.0 005
2 .0 0
Cat io n-E xchange O a p ac ity
E x p e rim e n ta l Method:
S o i l sam ples were ta k e n from f i v e s o i l h o r iz o n s r e p r e s e n t i n g
A rea X and A re a Y a c c o r d in g to th e method o f S c h o lle n b e r g e r and Simons
( X9 U5 ) ,
These s o i l s <»ere a i r - d r i e d and p a s s e d th ro u g h a two mm. s i e v e .
T w e n ty -f iv e grams o f a i r - d r y s o i l were p l a c e d in a 3 00 m i l l i l i t e r f l a s k
and le a c h e d w ith 250 m i l l i l i t e r s of IN ammonium a c e t a t e s o l u t i o n and a g a in
le a c h e d w ith .IN ammonium a c e t a t e .
A f t e r th e s o i l in th e f u n n e l had
f i n i s h e d d r a i n i n g , t h e f u n n e l and m o is t s o i l were w eighed.
The s o i l in
123
TABLE 2 9 .
THE CATION-EXCHANGE CAPACITY, EXCHANGEABLE HYDROGEN, TOTAL BASES,
AM) PERCENT BASE SATURATION OP PIVE SOIL HORIZONS IN AREA X AND AREA Y
A rea X
H o riz o n
Cat ion-E xchange
C a p a c ity
m. e . / 100 gms.
IAi
Ar
BI
S. 20
6 . 0S
1 0 .64
B*
13*?F
.4 4
IIA .
Ai
B2
-3
Exchangeable
Hydrogen*
m . e . / 100 gms.
P e r c e n t Base
S a tu r a tio n * *
T o t a l Bases
m .e. / 100
gms.____
7.5693
5.6152
10.1172
2 . 9S11
1.2177
.6307
.H6Hg
. 522 s
• 33g9
.2223
S . Ho
4 . OS
1.60
6.2.766
5.2573
7 . 6S04
3.6975
1.2799
. 523 ^
. 5^27
.7196
. 3^25
.3201
7 .69
8 .b j
8 .56
9*37
2 0.00
56.96
52.2922
667s
9 9 .9 6
10.33
•6. Si
6.97
17.17
6 .so
6.40
7 .6 9
7.64
4.91
10.20
1 5 .^3
T o t a ls
A rea Y
IIIA .
Ag
2
C1
ITA-,
7.72
1 0 .6 s
11. ss
1 .3 6
.24
6.9066
9.9733
11.0516
1.1264
.813^
10.96
s . 72
S . 2S
6 .Us
s.s4
IO.51H3
s . 1161
7.7754
6.1655
s . 6132
.HH57
.6039
. 50H6
.31H5
. 226s
4 ,o 6
6.92
6.09
H.S5
2.56
7^.92
7 0 .2b2k
913 H
6 5 .7 6
.7067
.828b
.2336
. 236 S
H .
** T o t a l "bases d i v i d e d "by c a t io n -e x c h an g e c a p a c i t y X
* Cat io n -e x c h a n g e c a p a c i t y minus t o t a l b a se s
Notes
100
One m illi g r a m e q u i v a l e n t ( m .e .) d e n o te s th e e q u i v a l e n t
w e ig h t, o r t h e ato m ic w e ig h t d iv id e d by th e v a le n c e .
T o tals
12b
th e f u n n e l was t h e n s lo w ly le a c h e d w i t h 2oO m i l l i l i t e r s o f 10 p e r c e n t
NaCl*
T h is s a l t f i l t r a t e was p l a c e d in a K j e l d s h l f l a s k , tw en ty m i l l i l i
t e r s o f 2N HaOH were ad d ed, and th e n d i s t i l l e d i n t o f i f t y m i l l i l i t e r s of
^ p e r c e n t "boric a c i d s o l u t i o n *
The d i s t i l l a t e was th e n t i t r a t e d w ith
0.1N HC1 u s in g h ro m c re s o l g re e n a s an i n d i c a t o r *
From th e s e d e te r m i
n a t i o n s th e m i l l i e q u i v a l e n t s o f a d s o rb e d ammonia, p e r t w e n t y - f i v e grams
o f s o i l were c a l c u l a t e d and th e n c o n v e r te d t o a d so rb e d ba,ses p e r 100 grams
of s o il.
The c a t ion—exchange c a p a c i t y in terms o f m i l l i e q u i v a l e n t s p e r
100 grams o f s o i l i s p r e s e n t e d in T able 29*
D is c u s s i o n of R e s u l t s
The c a ti o n - e x c h a n g e c a p a c i t y o f s o i l s i s l a r g e l y a f u n c t i o n o f th e
k in d s and amounts o f c o l l o i d a l m a t e r i a l and th e t o t a l b a s e s p r e s e n t .
This
p r o p e r t y i s u n d o u b te d ly th e most im p o rta n t c h a r a c t e r i s t i c o f c o l l o i d a l
c la y .
I t i s im p o r ta n t to r e c o g n iz e t h a t th e exchange of c a t i o n s i s a s s o
c i a t e d w i t h t h e c o l l o i d a l m a t e r i a l and t h i s a d s o r p t i o n and d is p la c e m e n t
of io n s i s im p o r ta n t in s u p p ly in g t h e n e c e s s a r y b a s e s to p l a n t s .
The
c a t io n -e x c h a n g e r e a c t i o n is r a p i d and r e v e r s i b l e , and r e p r e s e n t s th e
c a p a c i t y of s o i l c o l l o i d s f o r h o ld in g c a t i o n s .
I f th e exchange c a p a c i t y
is s a t i s f i e d by m e t a l l i c c a t i o n s , th e s o i l i s c o n s id e r e d t o be b a s e s a tu ra te d .
However, in f o r e s t s o i l s of humid r e g io n s t h i s c o n d i t i o n i s
r a r e , s i n c e th e b a s e s a r e c o n t i n u a l l y b e in g r e p l a c e d by hydrogen ions and
th e s o i l c o l l o i d s te n d to be b a s e - u n s a t u r a t e d .
The r e s u l t s o b t a i n e d by s o i l h o r iz o n in Column 1, T able 29
re v e als
th e c l o s e r e l a t i o n s h i p o f c a t ion -exchan ge c a p a c i t y to th e amount of f i n e
c la y o r e s e n t.
T h is r e l a t i o n i s most marked in Area X where
f i n e c l a y c o n t e n t and c a t io n -e x c h an g e c a n - c i t y a r e found in
th e h i g h e s t
th e B2 h o r i z o n .
125
The h i g h e s t i n d i v i d u a l c a t i o n exchange v a lu e i s found in t h e
o f A re a Y*
h o r iz o n
An a n a l y s i s o f v a r i a n c e r e v e a l s t h a t no s i g n i f i c a n t s t a t i s
t i c a l d i f f e r e n c e i s fo u n d betw een A rea X and A rea Y, a lth o u g h d i f f e r e n c e s
in th e A^ h o r iz o n c l o s e l y a p p ro a c h e s th e f i v e p e r c e n t s i g n i f i c a n t l e v e l .
The p r e s e n t i n v e s t i g a t i o n shows d e f i n i t e l y t h a t th e c a t io n -e x c h an g e
c a p a c i t y i s more c l o s e l y r e l a t e d to t h e in o r g a n ic c o l l o i d s th a n to th e
o r g a n i c c o l l o i d s , as e v id e n c e d by t h e f i n e c l a y c o n te n t o f i n d i v i d u a l
h o riz o n s *
5.
T o t a l B ases and P e r c e n t B ase S a t u r a t i o n
E x p e rim e n ta l Method:
U t i l i z i n g th e same sam pling p ro c e d u re a s f o r th e c a t io n -e x c h an g e
c a p a c i t y d e t e r m i n a t i o n s , t w e n t y - f i v e grams of a i r - d r y s o i l were le a c h e d
w i t h IK and *1K ammonium a c e t a t e .
r a t e d t o d ry n e s s on a h o t p l a t e .
T h is f i l t r a t e was c o l l e c t e d and evapo
The r e s i d u e was t r a n s f e r r e d to a
p o r c e l a i n e v a p o r a t i n g d i s h and i g n i t e d o v er a Meker b u r n e r .
A f t e r c o o lin g ,
a c a l c u l a t e d e x c e s s o f .2U HC1 was added and th e s o l u t i o n b a c k - t i t r a t e d
w ith 0,1K HaOK.
From t h e s e d e t e r m i n a t i o n s th e m i l l i e q u i v a l e n t s of s o i l
b a s e s p e r 100 grams o f s o i l were c a l c u l a t e d .
To d e te rm in e th e p e r c e n t
b a s e s a t u r a t i o n sim p ly d iv id e th e t o t a l b a se s o b ta in e d by th e c a t i o n exchange c a p a c i t y .
The c o n te n t o f e x ch a n g e ab le hydrogen p l u s th e c o n te n t
of e x c h a n g e a b le m e t a l l i c c a t i o n s is e q u a l to th e t o t a l c a t io n -exchan ge
c ap a c ity .
C o n v e rs e ly , by s u b t r a c t i n g th e t o t a l b a se exchange from th e
t o t a l c a t io n -e x c h a n g e c a p a c i t y , th e ex ch an g eab le hydrogen is o b t a i n e d .
The p e r c e n t ba.se s a t u r a t i o n of a s o i l
is th e d e g re e to w hich th e a d s o r b in g
s u r f a c e o f s o i l c o l l o i d s is s a t u r a t e d w ith m e t a l l i c c a t i o n s .
This s o i l
p r o p e r t y , b e in g a f u n c t i o n of th e t o t a l b a s e s and c a tio n - e x c n a n g e c a p a c i t y
126
i s v e r y i m p o r t a n t , s i n c e i t d e te r m in e s i n p a r t th e a v a i l a b i l i t y of th e
v a r i o u s ' b a s e s to p l a n t s .
R e s u l t s o f t h i s i n v e s t i g a t i o n show t h a t th e h i g h e s t i n d i v i d u a l ba.se
s a t u r a t i o n e x i s t s in th e
h o r iz o n o f A rea X.
I f in d iv id u a l s o il h o ri
zons a r e c o n s i d e r e d w ith r e f e r e n c e to b a se s a t u r a t i o n , th e v a r i a t i o n
betw een A rea X and A rea Y i s n o t e x tre m e .
( T a b le 33)
An a n a l y s i s o f v a r i a n c e
p e r c e n t b a se s a t u r a t i o n shows a s i g n i f i c a n t d i f f e r e n c e a t
f i v e p e r c e n t betw een A rea X and A rea Y a t th e C-^ h o r i z o n ; t h i s i s th e
o n ly s t a t i s t i c a l l y s i g n i f i c a n t s o i l p r o p e r t y of th e f o u r f a c t o r s h e r e
stu d ie d .
I n o r d e r to show t h e r e l a t i o n s h i p of t h e s e v a l u e s , th e combined
d a t a a r e p r e s e n t e d in T ab le 29.
I t i s i n t e r e s t i n g to n o te th e combined
t o t a l s f o r t h e s e f o u r s o i l p r o p e r t i e s an d how t h e s e p r o f i l e t o t a l s r e l a t e
to th e s o i l ty p e u n d e r i n v e s t i g a t i o n .
The g r e a t e s t t o t a l c a tio n -e x c h a n g e
c a p a c i t y e x i s t s i n A rea Y (p o o r h e i g h t g ro w th ) .
There i s a v e ry c lo s e
r e l a t i o n s h i p h e r e to t h e amount o f f i n e c l a y e x i s t i n g in t h i s s o i l ty p e ,
b o th a s to i n d i v i d u a l h o r iz o n s and t o t a l p r o f i l e .
e x c h a n g e a b le hydrogen i s fo un d in Area Y a l s o .
The g r e a t e s t t o t a l
This r e v e a l s th e c l o s e
r e l a t i o n s h i p of t h e pH v a lu e s o b t a i n e d f o r th e same s o i l s , s i n c e Area Y
shows a s l i g h t l y g r e a t e r a c i d i t y th a n A rea X, when a l l h o r iz o n s a r e
averaged.
T o t a l b a s e c o n t e n t does n o t d i f f e r much in comparing Area X
w ith A re a Y; a s l i g h t l y l a r g e r t o t a l b a se c o n t e n t e x i s t s in Area. Y b u t
t h i s d if f e r e n c e is i n s i g n i f i c a n t .
The l a s t s o i l p r o p e r t y , t h e p e r c e n t
b a s e s a t u r a t i o n , r e v e a l s a l a r g e t o t a l p r o f i l e d i f f e r e n c e betw een A rea X
and A re a Y.
A lth o u g h th e t o t a l d i f f e r e n c e i s i n s i g n i f i c a n t s t a t i s t i c a l l y ,
e x c e p t a t th e C-j_ h o r i z o n , th e p e r c e n t b a se s a t u r a t i o n i s d e f i n i t e l y more
127
TABLE 3 0 .
ANALYSIS OF VARIANCE FOR CATI ON-EXCHANGE CAPACITY POP GOOD HEIGHT
GROWTH (AREA X) v s . POOR HEIGHT GROWTH (AREA Y)
H o riz o n
A1
A?
Bg
B3
j
°1
S ource
M i l l i e q u i v a l e n t s p e r 100 grams s o i l
D egrees o f Freedom Sum o f S qu ares Mean Square
P
T o tal
X vs Y
E rro r
3
1
2
3-7S
3 .3 9
•39
3-39
.19
17 .8
T o tal
X vs Y
E rro r
3
1
2
1 3 .9 ^
11.97
1 .9 7
11.97
.98
12 .2
T o tal
X vs Y
E rror
3
l
2
9.29
.31
S . 98
.31
4 .4 9
.069
T o tal
X vs Y
E rror
3
l
2
1 3 .4 4
.05
1 3 .3 9
.05
6 .6 9
.007
T otal
X vs Y
E rror
3
1
2
4 7 .5 0
g .4 i
3 9.0 9
S .4 l
10.54
• ^3
TABLE 31 .
ANALYSIS OP VARIANCE POR EXCHANGEABLE HYDROGEN FOR GOOD HEIGHT
GROWTH (AREA X) v s . POOR HEIGHT GROWTH (AREA Y)
M i l l i e q u i v a l e n t s p e r 100 grams s o i l
Mean Square
An
A2
B.
T o tal
X vs Y
E rro r
3
1
2
10.51
3.19
7.32
3 .6 6
T otal
X vs Y
E rror
3
1
2
27.19
14. 4S
12.71
l 4 . 4g
6.35
T o tal
X vs Y
E rror
3
1
2
s . 61
T o tal
X vs Y
E rror
3
1
2
T o tal
X vs Y
E rror
3
1
2
3.19
.26
.2 6
s . 35
4.17
13.00
.09
12.91
46.40
9.33
37.07
F
.87
2.2S
.0 6
.09
6 .4 5
.01
9.33
18.53
.50
128
ta b le 32.
ANALYSIS OF VARIANCE FOR TOTAL BASES FOR GOOD HEIGHT
GROWTH (AREA X) v s . POOR HEIGHT GROWTH (AREA Y)
M i l l i e q u i v a l e n t s p e r 100 grams s o i l
H o riz o n
S ource
D eg rees o f Freedom
A1
T o tal
X vs Y
E rror
3
1
2
T o tal
X vs Y
E rro r
A2
Cm
BO
d
B3
j
C
Mean Square
F
.0759
.0100
.0659
.0100
.0329
• 33
3
1
2
.0373
.0 300
.0073
.O3 OO
.OO36
S . 33
T otal
X vs Y
E rror
3
1
2
.077S
.0100
.067 8
.010 0
.0339
.3 *
T o tal
X vs Y
E rror
3
1
2
.0090
.0050
. 00 H0
.0 05 0
.0 0 2 0
2 .3 0
T o tal
X vs Y
E rror
3
1
2
.0 113
.0062
.0051
.0 0 6 2
.0 0 2 5
2 .H 8
Sum o f Squ ares
TABLE 3 3 .
ANALYSIS OF VARIANCE FOR PERCENT BASE SATURATION FOR GOOD HEIGHT
GROWTH (ARM X) vs-. POOR HEIGHT GROWTH (AREA Y)
H o riz o n
2
b2
B,
3
C-,1
Source
P ercent
D egrees o f Freedom Sura o f Squares
T o tal
X vs Y
E rror
3
1
2
2 1 .0 9
.15
T o ta l
X vs Y
E rror
3
1
2
2 .0 6
1 .6 6
T otal
X vs Y
E rror
Mean Square
F
.15
1 0 . H7
.0 1
.Ho
1*66
.2 0
s . 30
3
1
2
7.09
.oH
7 .0 5
.oH
3 .5 2
.0 1
T otal
X vs Y
E rror
3
1
2
77.73
1 .5 0
7 6 .2 3
1 .5 0
3 S .il
.03
T o tal
X vs Y
E rror
3
1
2
282.82
2 7 0 .1 0
1 3 .7 2
2 7 0 .1 0
6 .s 6
* S ig n if ic a n t a t
2 0 .9H
39.37*
129
c l o s e l y c o r r e la te d w ith th e area o f good h e ig h t growth than w ith th e area
o f poor h e ig h t grow th.
An a n a ly s is o f v a r ia n c e of th e fou r s o i l p r o p e r tie s
examined i s p r e se n te d in support o f th e p r e se n t d is c u s s io n .
These r e la t io n
s h ip s w i l l he d is c u s s e d fu r th e r when th e com plete a n a ly s is o f a l l chem ical edaphie f a c t o r s i s c o n sid e r e d .
S.
I n d iv id u a l F u tr ie n t Elements
(Ca, Mg, P, K, ¥ a , F e, Mn)
E xperim ental Method:
A d e te r m in a tio n o f th e amount o f calcium , magnesium, and sodium
was o b ta in e d by u se o f th e flam e photom eter.
T ransm ission v a lu e s fo r each
n u tr ie n t elem ent were p lo t t e d a g a in s t standard v a lu e s fo r th a t elem en t, and
th e corresp on d in g n u tr ie n t v a lu e was read from th e standard cu rve.
The
p a r ts p er m illio n thus ob tain ed were con verted to m illie q u iv a le n t s per 100
grams o f s o i l u sin g ap p rop riate co n v ersio n v a lu e s .
A n a ly sis o f v a ria n ce fo r
each elem ent was based upon p a r ts per m illio n o f th a t n u tr ie n t e x is t in g in
th e s o i l .
The amount o f a v a ila b le phosphorus and exchangeable potassium was
o b ta in e d by th e c o lo r im e tr ic method, u t i l i z i n g th e Lumetron P h o t o - e le c t r ic
c o lo r im e te r .
Ammonium f lu o r id e was used as the e x tr a c tin g agent fo r
phosphorus and ammonium molybdate as the reducing a g en t.
For pota.ssium ,
th e s o i l s were e x tr a c te d w ith sodium n it r a t e and reduced w ith sodium
c o b a lt i n i t r i t e s o lu t io n .
The amount o f a v a ila b le iron and manganese was ob tain ed by e x tr a c tin g
the s o i l s w ith h y d ro c h lo r ic a c id .
To determ ine the manganese c o n te n t,
sodium b ism u th ate was used as an o x id iz in g a g en t.
For a v a ila b le ir o n ,
130
F ig ♦ 2 1 .
A. COMPARISON OF TOTAL. INDIVIDUAL NUTRIENT ELEMENT:
EXPRESSED AS A PERCENT OF TOTAL- PROFILE CONTENT
Good H e i g h t G r o w th ( A r e a X)
40
-
30
-
20
-
10
-
Per
cent
Ca
Mg
P
K
Na
Fe
Mn
Fe
Mn
N u t r i e n t E lem en t
P o o r H e i g h t G r o w th ( A r e a Y)
40
-
30
Per
cent
»
20
-I
10
-
Ca
Mg
P
K
N u t r i e n t E le m e n t
Na
131
h y d ro x y l amine h y d r o c h l o r i d e was u s e d w ith 0 —p h e n a n t h r o l i n e to keep th e
i r o n in th e f e r r o u s s t a t e .
A f t e r c o n v e r t i n g t h e s e e lem en ts to m i l l i e q u i v a l e n t s p e r 100 grams of
s o i l , t h e p e r c e n t a g e o f th e t o t a l e le m e n ts p r e s e n t was d e te rm in e d f o r each
n u trie n t.
F o r th e sake o f b r e v i t y , th e d e t a i l e d p r o c e d u re f o r o b t a i n i n g each
elem en t i s o m i t t e d ; s t a n d a r d c u rv e s f o r t h e same elem ents a r e n o t in c lu d e d .
A summary o f a l l n u t r i e n t e le m e n ts , o c c u r r i n g by s o i l h o r iz o n in each
s a m p lin g a r e a i s g iv e n i n T a b le 3 ^ .
The r e l a t i o n s h i p o f i n d i v i d u a l e lem en ts
fo u n d in t h e a r e a o f good h e i g h t gro w th and p o o r h e i g h t gro w th w i l l now be
d i s c u s s e d , f o llo w e d by a g e n e r a l summary o f th e e d a p h ic -c h e m ic a l im p lic a
tio n s.
A l l p e r c e n t a g e f i g u r e s g iv e n f o r each elem ent r e f e r to th e p e r c e n t
o f t o t a l n u t r i e n t s t h a t were i n v e s t i g a t e d f o r combined t o t a l profiles.-*-®
Calcium r e l a t i o n s
S in c e c a lc iu m e x e r t s a p ro fo u n d i n f l u e n c e upon th e p h y s i c a l , c h em ica l,
and b i o l o g i c a l p r o p e r t i e s o f s o i l s ,
re la tio n s.
i t i s im p o rta n t in f o r e s t s o i l f e r t i l i t y
Combined d a t a p u b l i s h e d by s e v e r a l i n v e s t i g a t o r s , su ch as
K i t t r e d g e (1933) » h u n t (1935) » nnd C handler ( 1 9 ^ ) have shown t h a t th e
c a lc iu m c o n te n t o f f r e s h l y f a l l e n l e a v e s o f t u l i p p o p l a r i s a p p ro x im a te ly
2 .9 6 p e r c e n t.
T h is v a l u e was s u r p a s s e d o n ly by basswood, when a c o n s id e r
a t i o n o f t w e n ty - f o u r t r e e s p e c i e s were i n v e s t i g a t e d f o r c alc iu m c o n te n t of
fre s h le av e s.
I t h a s been shown t h a t a h ig h c o n te n t of c a lc iu m in f o r e s t
1 0 . S in c e o t h e r n u t r i e n t e le m e n ts such as b o ro n , z in c , s u l f u r , and
c o p p e r may be p r e s e n t in th e s o i l in v e ry sm a ll q u a n t i t y , th e
p e r c e n t o f t o t a d n u t r i e n t s and b a se s a t u r a t i o n i s p r o b a b ly
s l i g h t l y h i g h e r th a n p e r c e n ta g e s g iv e n in T able 3^*
132
TABLE 3 4 .
THE NUTRIENT CONTMT OP SOILS BY SOIL HORIZON AND TOTAL PROFILE
IN AREA X AND AREA Y
M i l l i e q u i v a l e n t s p e r 100 grams s o i l
A re a X
N u t r i e n t Element
H o riz o n
IA1
A2
b2
B3
11 At
a2
b|
B3
Ci
Ca
•3375
.1925
.1975
.0575
.0 2 0 0
Mg
.1229
.1024
.1065
.0918
.0893
P
.0257
.0737
.0873
.0446
.0 3 6 8
K
.0 5 6 2
.0 3 0 6
.075^
.0664
.0383
Na
.0327
.0205
.0135
.0629
.0197
Fe
.0193
.0247
.0412
.0143
.0 1 6 8
Mn
. 036 U
.0204
.0014
.0014
.0014
T o ta l
.63 07
.4648
.52 88
•33s 9
.2223
.1 9 0 0
.2 2 0 0
.2950
.0 6 0 0
.0*400
.1 3 1 1
.1 3 1 1
.1303
.1 2 2 1
.12 29
.0485
.0970
.1087
.0 9 3 2
.0543
.0613
.0 3 3 2
.0997
.0639
.0485
.0428
.0 2 6 2
.0598
.0187
.0441
.0154
.0 3 0 1
.0247
.0 2 3 2
.0089
.0343
.0 0 5 1
.o o i4
.0014
.o o i4
.5234
.5427
.7196
•3S25
.3201
1.6100
1.1504
. 669s
*5735
.3 ^ 9
.2186
.1046
4.6678
.0157
.0483
.o4 s3
.0136
.0096
.0481
.0014
.0014
.0014
.o o i4
.8134
.7067
.8284
.2336
.2368
.016s
.0412
.0530
.0232
.0129
.0145
.o o i4
.0014
.0102
.o o i4
.4457
.6039
.5046
.3145
.2268
.2826
.0826
U . 913 U
T otal
A rea Y
IIIA,
.5250
.1U34
.03^9
.0485
Ap
-U075
-1229
b2
.U700
. 1 U3 U
.0370
.0332
.0306 .0157
.0664 .0117
.1074 .0209
.0511 .0192
B,
.0250
.0901
Ci
.0 3 7 5
.0 9 0 1
.oH'g5
.0332
.0165
IVA,
Ap
.1900
.3200
.1311
.1377
.0466
.0466
. 03^5
. 03 S3
.0122
.0187
b2
B,
.1 6 7 5
-1352
.O36S
.075^ .0353
Ci
. 0 ^x5
.0225
2.2065
.1295
.12!+5
I . 2U79
.0407
.0174
.3882
.0511
.0281
. 51bl
.0183
.0200
.1885
T o ta l
133
tre e l i t t e r
i n c r e a s e s t h e amount o f e x c h a n g e ab le c alc iu m in t h e s o i l .
T h ere i s a d i s t i n c t te n d e n c y f o r th e n u t r i e n t c a lc iu m to he c o n c e n t r a t e d
in th e up perm ost l a y e r s , and th e n d i s t r i b u t e d v e r t i c a l l y th ro u g h o u t th e
h o r i z o n a c c o r d in g to th e d e g re e o f l e a c h i n g and r o o t p e n e t r a t i o n .
The r e s u l t s o f t h i s i n v e s t i g a t i o n show t h a t c alciu m i s p r e s e n t in
h i g h e r c o n c e n t r a t i o n th a n any o f th e re m a in in g s i x n u t r i e n t e le m e n ts ,
w i t h t h e e x c e p t i o n o f h y dro gen.
I n A rea X, t h e calc iu m r e p r e s e n t s 3^*5
p e r c e n t o f th e t o t a l n u t r i e n t s fo u n d ; in A rea Y t h e calc iu m r e p r e s e n t s
M+.9 p e r c e n t o f th e t o t a l n u t r i e n t s u p p ly .
The v e r t i c a l d i s t r i b u t i o n o f
c a lc iu m i n t h e p r o f i l e o f A rea X shows a d i s t i n c t d e c r e a s e in amount from
u p p e r to lo w er h o r i z o n s , b u t a t S t a t i o n I o n ly .
At S t a t i o n I I , th e
c a lc iu m i s h i g h e s t a t t h e Bg h o r i z o n .
F o r A rea Y, a t S t a t i o n I I I , th e
c a lc iu m i s g r e a t e s t a t th e A-^ h o r i z o n .
At S t a t i o n IV, th e c a lc iu m i s
h ig h e st a t th e ^
h o rizo n .
Thus, th e v e r t i c a l d i s t r i b u t i o n o f calcium
in t h e s e p r o f i l e s f o ll o w s no s e t p a t t e r n , b u t v a r i e s c o n s i d e r a b l y .
How
e v e r , t h e d i s t r i b u t i o n o f c alc iu m in i n d i v i d u a l h o r iz o n s shows a c lo s e
c o r r e l a t i o n to t h e t o t a l b a se c o n te n t o f th e same h o r i z o n s .
A g re a te r
t o t a l p r o f i l e c a lc iu m c o n te n t e x i s t s in A rea Y, though th e amount i s n o t
s i g n i f i c a n t l y g r e a t e r th a n A rea X.
T h is f a c t i s n o te w o rth y , s i n c e th e
amount o f f r e s h l i t t e r in A rea X i s n e a r l y tw ic e th e amount in A rea Y.
An a n a l y s i s o f v a r i a n c e (T ab le 35) e x h i b i t s no s t a t i s t i c a l l y s i g n i f i c a n t
d i f f e r e n c e in th e amount o f a v a i l a b l e calc iu m between Area X and A rea Y.
However, th e F - v a l u e d e n o te s th e g r e a t e s t d i f f e r e n c e o c c u r r in g a t th e Ag
h o riz o n .
I n g e n e r a l , t h e g r e a t e s t d i f f e r e n c e in c alc iu m c o n te n t is
r e s t r i c t e d to t h e s u r f a c e h o r i z o n s , when comparing th e two s i t e s .
13^
TABLE 35.
ANALYSIS OF VARIANCE FOR CONTENT OF AVAILABLE CALCIUM BY SOIL HORIZON IN
AREA X v s . AREA Y
P a r t s p e r m i l l i o n ( p . p .m . ) s o i l
D eg rees o f Freedom Sum o f S qu ares Mean Square
H o riz o n
S ource
h.
T o tal
X vs Y
E rro r
3
1
2
U0 2 3 .1 9
3 5 1 .5 6
3671.63
3 5 1 .5 6
1S35.S1
T o tal
X vs Y
E rror
3
1
2
I I 6 0 . 5O
992.25
l 6 S . 25
9 9 2 .2 5
S^ .1 2
1 1.79
T o tal
X vs Y
E rro r
3
1
2
2 2 3 0 .5 0
2 1 0 .2 5
2 0 2 0 .25
2 1 0 .2 5
1 0 1 0 .1 2
.2 1
T o tal
X vs Y
E rror
3
1
2
3 1.5 S
2 6 .0 1
5 .57
2 6 .0 1
2 .7S
9 .3 6
T otal
X vs Y
E rror
3
1
2
1 2 .5 0
0 .0 0
1 2 .5 0
0 .0 0
6 .2 5
0 .0 0
A2
b2
C
F
.191
TABLE 3 6 .
ANALYSIS OF VARIANCE FOR CONTENT OF AVAILABLE MAGNESIUM BY SOIL HORIZON IN
AREA X v s . AREA Y
H o riz o n
Source
T otal
X vs Y
E rror
Ar
B,
B-
T otal
X vs Y
E rror
P a r ts p e r m illio n (p .p .m .) s o i l
D egrees o f Freedom Sum o f S q uares Mean Square
3
1
2
3
1
2
3.19
I.56
I.63
1.56
.S I
10. ^7
2.72
2.72
7.75
3 .S7
6.50
T o tal
X vs Y
E rror
3
1
2
11.21
6.50
4.71
T otal
X vs Y
E rror
3
IS.U 9
1
2
i s
T o tal
X vs Y
E rror
3
1
2
F
1.92
.70
2 .3 5
2.76
. 37
.12
9.1s
.01
17.25
.02
17.23
.02
s .61
.0 0 2
.12
135
Magnesium r e l a t i o n s
The seco n d h i g h e s t n u t r i e n t elem ent o c c u r r i n g in th e p r o f i l e s o f "both
A re a X and A re a Y i s magnesium.
I n g e n e r a l , magnesium fo llo w s th e same
v e r t i c a l d i s t r i b u t i o n as c a lc iu m , e x ce p t t h a t t h e g r e a t e s t s t a t i s t i c a l
d i f f e r e n c e "between a r e a s i s a t th e B2 h o r iz o n (T a b le 3 6 ) .
The l a r g e r
t o t a l amount o f magnesium ( a s w ith calcium ) o c c u rs in A rea Y.
I n A rea X,
th e t o t a l p r o f i l e c o n t e n t o f magnesium i s 2 ^ .6 p e r c e n t and f o r A rea Y th e
t o t a l c o n ten t is
p e rc en t.
Magnesium, in t h e p r o f i l e s s t u d i e d , shovrs
l i t t l e v a r i a t i o n betw een h o r iz o n s in b o th a r e a s and i s n o t as d i s t i n c t l y r e s t r i c t e d by h o r i z o n a s c a lc iu m .
I t i s n o te w o rth y t h a t th e combined
calcium -m agnesium c o n t e n t r e p r e s e n t s 59 p e r c e n t and 70 p e r c e n t o f th e
t o t a l n u t r i e n t s p r e s e n t , f o r A rea X and A rea Y r e s p e c t i v e l y .
No s i g n i f i c a n t
F - v a l u e i s fo u n d f o r c o n te n t of a v a i l a b l e magnesium a t any h o r i z o n .
P ho sph oru s r e l a t i o n s
V a rio u s i n v e s t i g a t o r s have em phasized th e im p ortance o f a v a i l a b l e
p h o s p h o ru s t o s o i l p r o d u c t i v i t y .
However, Hennecke (1935) was u n a b le to
e s t a b l i s h any c l e a r r e l a t i o n s h i p betw een th e pho sp h oru s c o n t e n t o f sandy
s o i l s and s i t e q u a l i t y .
The amount o f p ho sp ho rus in s o i l s i s u s u a l l y s m a l l.
The p r e s e n t i n v e s t i g a t i o n r e v e a l s t h a t A rea X has a 1^.3 p e r c e n t t o t a l
p r o f i l e p h o sp h o ru s c o n t e n t as c o n t r a s t e d to a 7*9 p e r c e n t t o t a l p r o f i l e
c o n t e n t in A rea Y.
T h is p e r c e n ta g e d i f f e r e n c e r e p r e s e n t s n e a r l y tw ic e th e
amount o f a v a i l a b l e p h o sp h o ru s in A rea X as t h a t in A rea Y.
The l i g h t e r
s o i l s o f A re a X i n d i c a t e a c o r r e l a t i o n betw een t h e amount of p ho sp h o ru s and
th e f i n e c lay f r a c t i o n .
Thus, in th e Bg h o r iz o n which c o n t a i n s th e g r e a t e s t
f i n e c l a y c o n t e n t , t h e amount o f p hosphorus is h ig h e r th a n in o t h e r h o r iz o n s
o f A re a X.
F o r A re a Y, t h i s r e l a t i o n s h i p i s l e s s marked, and th e ph osph o rus
136
te n d s t o be more e v e n ly d i s t r i b u t e d th ro u g h o u t t h e p r o f i l e , w ith s l i g h t l y
g r e a t e r amounts i n t h e u p p e r h o r i z o n s .
The amount o f a v a i l a b l e ph osphorus
a p p e a r s t o "be more c l o s e l y r e l a t e d to th e c o l l o i d a l c la y th a n to th e
co n ten t of o rg a n ic m a tte r.
The o r g a n ic m a t t e r c o n te n t a p p e a rs to f o ll o w
a d e c r e a s e i n amount from s u r f a c e to s u b s u r f a c e h o r i z o n s .
Prom t h e r e s u l t s
o b t a i n e d , A re a Y a p p e a rs to have more t o t a l pho sph oru s " t i e d - u p " th a n
A re a X, s i n c e t h e amounts o f c o l l o i d a l c l a y and o r g a n ic m a t t e r a r e h i g h e s t
in A re a Y.
An a n a l y s i s of v a r i a n c e (T a b le 37) shows a s i g n i f i c a n t l y
d i f f e r e n t p h o sp h o ru s c o n te n t a t th e 51° l e v e l , f o r th e
h o riz o n .
T his is
f u r t h e r e v id e n c e o f t h e c o r r e l a t i o n betw een th e amount o f p h osph oru s and
th e c o n t e n t of f i n e c o l l o i d a l c l a y in A rea X.
P o ta s s iu m r e l a t i o n s
The amount o f e x ch a n g e ab le s o i l p o ta s s iu m i s u s u a l l y p l e n t i f u l f o r
good t r e e g ro w th , e x c e p t in sandy s o i l s .
o f p o ta s s iu m i n c r e a s e s w ith s o i l d e p th .
Por most s o i l s , th e t o t a l amount
The r e l e a s e o f p o ta ss iu m depends
upon t h e s t a t u s o f th e p o ta s s iu m e q u i l i b r i u m , amount and k in d o f c la y
m a t e r i a l p r e s e n t , and th e p e r c e n t b a se s a t u r a t i o n .
rium i s r a t h e r complex in s o i l s .
The p o ta s s iu m e q u i l i b
When p o ta s s iu m i s " f ix e d " i t may be t i e d
up by b i o l o g i c a l f i x a t i o n , tr a p p e d on o r g a n ic m a t t e r c o a t i n g s , f o r c e d in to
t h e c r y s t a l l a t t i c e s t r u c t u r e , o r t i e d up in p o ta s s iu m - lr o n - p h o s p h a t e
com plex es.
Whether p o ta s s iu m i s " f ix e d " o r " r e l e a s e d " depends upon th e
f l u c t u a t i o n o f th e p o ta s s iu m e q u i l i b r i u m .
The p r e s e n t i n v e s t i g a t i o n r e v e a l s a t o t a l p r o f i l e c o n te n t of 12-3
p e r c e n t p o ta s s iu m in A rea X end a 10 .5 p e r c e n t c o n te n t in A rea Y, when
p e r c e n t o f t o t a l n u t r i e n t s i s c o n s id e r e d .
G r e a t e s t amounts o f p o ta s s iu m
o c c u r in t h e B2 h o r i z o n f o r a l l f o u r p r o f i l e s .
In a l l of th e s o i l ty p e s
TABLE 37.
137
ANALYSIS OF VARIANCE FOR CONTENT OF AVAILABLE INORGANIC PHOSPHORUS IN
AREA X v s . AREA Y
H o riz o n
KX
a2
B2
b3
c
S ou rce
P a r t s p e r m i l l i o n ( p .n .m . ) s o i l
D eg rees o f Freedom Sum o f S quares
Mean Square
F
T o tal
X vs Y
E rro r
3
1
2
3 .6 2
. 11+
2 . 4g
.14
1 .2 4
.1 1 2
T o tal
X vs Y
E rro r
3
1
2
i s . 96
1 6 .0 0
2 .9 6
1 6 .0 0
1.4S
10. SO
T o tal
X vs Y
E rror
3
1
2
4 l .9 S
3 9 .56
2 . 1+2
3 9 .5 6
1 .2 1
3 2 . 69 *
T o tal
X vs Y
E rror
3
1
2
2 3 .6 3
1 0 . S3
1 2 . SO
T otal
X vs Y
E rro r
3
1
2
S . 1*3
1 .6 9
6 .7 4
1 0 . S3
6 . 4o
1 .6 9
1 .6 9
3 .3 7
.50
* S i g n i f i c a n t a t 5^
TABLE 3S.
ANALYSIS OF VARIANCE FOR CONTENT OF EXCHANGEABLE POTASSIUM BY SOIL HORIZON
IN AREA X v s . AREA Y
P a r t s p e r m i l l i o n ( p .p .m .) s o i l
D egrees of Freedom Sum o f Squares Mean Square
H o riz o n
Source
A1X
T o tal
X vs Y
E rror
3
k 20
CL
3
Cl1
F
2
10S.21+
1 0 5 .0 6
3.1S
IO5.O6
1 .5 9
6 6 . 07 *
T o tal
X vs Y
E rror
3
1
2
1 2 5 .0 0
6 4 .00
6 1 .0 0
64.oo
3 0 .5 0
2.09
T otal
X vs Y
E rror
3
1
2
125.55
2 .2 5
I 2 3 . 3O
' 2 .2 5
6 1 .6 0
T o tal
X vs Y
E rror
3
1
30.75
30.25
.50
3 0 .2 5
.2 5
T o tal
X vs Y
E rror
3
35.00
2 5 .0 0
1 0 .0 0
2 5 .0 0
5 .0 0
1
2
1
2
** S i g n i f i c a n t a t 51°
* S i g n i f i c a n t a t 5$
1 /®
.036
1 2 1 . 0 0 **
5 .0
133
h e r e i n v e s t i g a t e d , t h e amount o f a v a i l a b l e p o ta s s iu m a p p e a rs to be
c o r r e l a t e d w ith t h e amount of o r g a n ic m a t t e r and t h e calc iu m —p o ta s s iu m
r a t i o o f t h e A-^ and B-^ h o r iz o n s r e s p e c t i v e l y .
An a n a l y s i s o f v a r i a n c e
shows a d e f i n i t e s i g n i f i c a n t d i f f e r e n c e a t th e
l e v e l f o r p o ta s s iu m in
th e A-^ h o r i z o n , and a d i f f e r e n c e a t th e *yjo and 1% l e v e l s f o r p o ta s s iu m in
B-^ h o r i z o n .
Even
th o u g h th e P - v a lu e d e n o te s t h i s h o r iz o n d i f f e r e n t i
a t i o n , t h e t o t a l c o n te n t betw een
A rea X and A rea
Y i s no t s i g n i f i c a n t .
Sodium r e l a t i o n s
Sodium i s a common c o n s t i t u e n t of p l a n t s and in f l u e n c e s t h e c a t i o n i n t e r r e l a t i o n s h i p in th e p l a n t .
I t i s n o t d e f i n i t e l y known to be e s s e n t i a l
f o r p l a n t g ro w th , e x c e p t f o r c e r t a i n p l a n t s .
As w ith p o ta s s iu m , th e g r e a t e s t d i f f e r e n c e in th e amounts o f sodium
was fo u n d in th e A-j_ h o r iz o n in comparing A rea X w ith A rea Y.
In A rea X,
sodium r e p r e s e n t s 7*3
p e r c e n t of t h e t o t a l b a s e s
p r e s e n t and in A rea Y
sodium r e p r e s e n t s 3*$
p e r c e n t o f th e t o t a l b a se s
p re se n t.
An a n a l y s i s of
v a r i a n c e shows t h e d i f f e r e n c e in amount o f e x ch ang eab le sodium to be
s i g n i f i c a n t a t th e 5$ l e v e l in th e A^ h o r i z o n .
Here a g a in , th e amount of
sodium a p p e a rs to be r e l a t e d to th e c a t io n -ex ch an g e c a p a c i t y , th e amount
o f o r g a n ic m a t t e r , and t h e p o ta ss iu m -so d iu m r e l a t i o n s h i p , f o r th e s o i l
ty p e s u n d e r i n v e s t i g a t i o n .
Iron re la tio n s
The amount o f a v a i l a b l e i r o n p r e s e n t in s o i l s is o f t e n dep end en t upon
t h e p a r e n t m a t e r i a l and th e c l i m a t i c c o n d i t i o n s -under which th e s o i l s
d e v e lo p e d .
R e s u l t s o f t h i s i n v e s t i g a t i o n show a r a t h e r d i s t i n c t accumula
t i o n o f t h i s n u t r i e n t in th e B h o r i z o n , p o s s i b l y due to le a c h i n g e f f e c t s .
A v e r y c l o s e r e l a t i o n s h i p seems to e x i s t between th e smount o f a v a i l a b l e
TABLE 3 9 .
139
ANALYSIS OF VARIANCE FOR CONTENT OF EXCHANGEABLE SODIUM BY SOIL HORIZON
IN AREA X v s . AREA Y
H o riz o n
A*1
a2
b2
b✓
3
ci
S ou rce
P a r t s p e r m i l l i o n ( p . p . m .) s o i l
D egrees o f Freedom Sum o f S q uares
32.67
29.70
2.97
T o tal
X vs Y
E rro r
3
T o tal
X vs Y
E rror
3
T o tal
X vs Y
E rror
3
T o tal
X vs Y
E rro r
3
T o tal
X vs Y
E rror
3
1
76.53
25.50
51.03
25 . S6
9.S6
2
16.00
l
2
1
2
1
2
1
2
5 .5 5
3.42
2 .I 3
65 .U3
3 . SO
61.63
Mean Square
29.70
i.4s
F
20 . 07 *
3.42
1.06
3.23
3 . SO
30 . SI
.123
25.50
25.51
1 .0 0
9 .S6
s . 00
1.23
* S i g n i f i c a n t a t 5^
TABLE 40.
ANALYSIS OF VARIANCE FOR CONTENT OF AVAILABLE IRON BV' SOIL HORIZON IN
AREA X v s . AREA Y
H o riz o n
A^l
Ap
B0
2
B?
j
Cl
Source
P a r t s p e r m i l l i o n (p i.p .m .) s o i l
D egrees o f Freedom Sum o f Squares Mean Square
T o tal
X vs Y
E rror
3
T o tal
X vs Y
E rror
3
26.65
23.52
2
T o tal
X vs Y
E rror
3
3.13
35.93
24.50
11.43
6 . 7s
T o tal
X vs Y
E rror
T otal
X vs Y
E rror
1
2
1
1
2
3
.7*
.09
.65
.09
.32
,2S
23.52
I .56
15.0S
24.50
5.71
4.29
.01
.0 1
2
6.77
3.3S
3
3.03
1
1
2
.20
2 . S3
F
.003
.20
1.41
.l4 l
ii+o
TABLE 1+1.
ANALYSIS OP VARIANCE FOR CONTENT OP AVAILABLE MANGANESE BY SOIL HORIZON
IN AREA X vs * AREA Y
P a r ts per m illio n o f s o i l
H orizon
A2
Source
D egrees o f Freedom
Sum o f Squares
Mean Square
F
T o ta l
X vs Y
Error
3
l
2
P - 71
1.21
^■2.R0
2 1 .2 5
T o ta l
X vs Y
Error
3
1
2
I S . 1+3
9 .6 1
g .8 2
9 .6 1
l+.l+l
2.18
T o ta l
X vs Y
Error
3
l
2
H.32
l.S+3
2.39
1.1+3
1.1+4
1 .0 0
1.21
.0 5 6
b2
3
ci
——
i r o n and th e c o l l o i d a l c o n te n t o f th e B2 h o r iz o n .
Under th e a c i d
c o n d i t i o n s o f th e s o i l s h e re s t u d i e d , t h e i r o n i s r e l a t i v e l y s o l u b l e .
A p p a r e n t ly t h e r e i s s u f f i c i e n t a e r a t i o n and d ra in a g e to cau se le a c h in g
o f t h e i r o n i n t o th e B h o r i z o n .
S in c e s o l u b l e iro n i s o f t e n a s s o c i a t e d
w ith a n a e r o b ic c o n d i t i o n s , th e l a r g e r amounts o f t h i s elem ent fou nd in
A rea Y may b e e x p l a i n e d on th e b a s i s of g r e a t e r w a te r - h o ld in g c a p a c i t y
o f t h i s s i t e , l e s s a v a i l a b l e oxygen, or e l s e due to i n c r e a s e d l e a c h in g
from t h e u p p e r h o r i z o n s .
Ares, X r e p r e s e n t s 1+.7 p e r c e n t o f th e t o t a l
n u t r i e n t s s t u d i e d and A rea Y r e p r e s e n t s 5 .S p e r c e n t i r o n c o n te n t o f a l l
bases p re s e n t.
The amount of o r g a n ic m a t t e r does n o t a p p ea r to be
c l o s e l y r e l a t e d to th e ir o n c o n te n t o f any s o i l type i n v e s t i g a t e d , s i n c e
th e g r e a t e s t amount o f ir o n i s fou nd in th e B h o r iz o n .
■ygLriance shows no s i g n i f i c a n t d i f f e r e n c e s betw een a r e a s .
An a n a l y s i s o f
ib i
Manganese r e l a t i o n s
Very l i t t l e
i s known c o n c e rn in g t h e im p ortan ce o f manganese in
th e n u t r i t i o n of f o r e s t t r e e s .
However, th e amounts o f manganese
a b s o r b e d by t r e e s may be c o n s i d e r a b l e , o f t e n e x ce e d in g calc iu m in some
ty p e s o f f o r e s t humus.
I n t h i s s tu d y , t h e manganese e x i s t s in th e s m a l l e s t
amount o f t h e sev e n b a s e s c o n s i d e r e d .
A rea X r e p r e s e n t s 2 . 2 p e r c e n t and
A re a T 1*7 p e r c e n t o f th e t o t a l n u t r i e n t s i n v e s t i g a t e d by t o t a l p r o f i l e .
G r e a t e s t amounts o f manganese a r e fo un d in th e A h o riz o n o f b o th A rea X
and A re a Y.
T h is would te n d to r e l a t e th e amount fou nd w ith th e c o n te n t
o f o r g a n i c m a t t e r , s i n c e low manganese o f t e n i n d i c a t e s low o r g a n ic m a tte r
c o n ten t.
The manganese o c c u r r i n g i n b o th a r e a s seems to f o l l o w th e
t r e n d o f t h e p r o f i l e from s u r f a c e to s u b s u r f a c e h o riz o n s in t h e same
manner a s th e o r g a n i c m a t t e r .
Ho s i g n i f i c a n t d i f f e r e n c e e x i s t s i n th e
manganese c o n t e n t betw een a r e a s .
Ik2
TABLE 42.
A STATISTICAL SUMMARY OE "P" VALUES EOR EDAPHIC-CHEMICAL
CHARACTERISTICS IN AREA X v s . AREA Y
LABORATORY EXPERIMENTS
A1
A verage D ep th 0- 9 "
S o i l H o rizon
a2
b2
9 - i 4«
1^23"
B3
23 - 3 3 "
Cl
33" ■«
V a ria b le In v e s tig a te d :
S o i l A c i d i t y (pH)
*73
2.61
4.25
1.32
2.21
2.
O rg a n ic M a tt e r
.06
1.61
.00
.00
.00
3*
T o t a l N itr o g e n
.42
.70
2.00
---
—
4.
Cat ion-E xch an g e
Capac i t y
17. so
12.20
.069
•
O
O
—
•J
1.
.*3
5-
T o t a l B ases
*33
S . 33
.3*
2.50
2 . 4S
6.
B ase S a t u r a t i o n
.01
s . 30
.01
.03
39 . 37*
7.
E x c hang eab le
Hydrogen
.87
2.2S
.06
.01
.50
S.
A v a i l a b l e Calcium
.191
11.79
.21
9.36
.00
9.
A v a i l a b l e Magnesium
.70
2.76
.01
1.92
.002
.50
.112
1 0 . SO
32. 69*
11. E xchang eab le
P o ta s s iu m
66. 07*
2.09
.036
121.00**
5.00
12. E x c hang eab le
Sodium
20.07*
3*23
.123
1.00
1.23
10. A v a i l a b l e Ph o sph o rus
13* A v a ila b le Iro n
.28
1 5 .OS
4.29
i 4 . A v a ilab le
Manganese
.056
2 .1 s
.00
** S ig n if ic a n t at ifo and 5%
* S ig n if ic a n t at 3%
1.69
.003
1.00
.l4 l
.00
143
Summary and I m p l i c a t i o n o f R e s u l t s
E d ap hic-C hem ical C h a r a c t e r i s t i c s
I n c o n s i d e r i n g th e i m p l i c a t i o n s h r o u gh t o u t by th e r e s u l t s of th e
s o i l - c h e m i c a l d e t e r m i n a t i o n s , i t i s im p o rta n t to r e c o g n iz e t h a t th e
i n t e g r a t i o n o f a l l p o s s i b l e c o n t r i b u t i n g f a c t o r s is n e c e s s a r y .
The
p u r p o s e o f th e p r e s e n t summary i s to p o i n t o u t th o s e f a c t o r s which may
o r may n o t be c o n t r i b u t i n g d i r e c t l y to th e d i f f e r e n c e in h e i g h t g row th
of tu lip p o p la r.
A c om parison o f th e s o i l r e a c t i o n (pH) in b o th a r e a s does n o t
e x h i b i t any s i g n i f i c a n t v a r i a t i o n .
r e a c t i o n th a n A re a X.
A rea Y i s s l i g h t l y more a c i d in
B oth a r e a s a r e s t r o n g l y to v e ry s t r o n g l y a c i d end
th e B h o r i z o n a p p e a r s to be s l i g h t l y more a c i d th a n th e A o r 0 h o r i z o n s .
The lo w e s t i n d i v i d u a l pH v a lu e s a r e o b t a i n e d in th e B^ h o r iz o n of b o th
areas.
S o i l r e a c t i o n p e r s e does n o t a p p ea r to be d i r e c t l y c o n t r i b u t i n g
t o h e i g h t g ro w th d i f f e r e n c e s .
The pH v a l u e s , however, may be i n d i r e c t l y
a f f e c t i n g o t h e r s i t e f a c t o r s such as th e s o i l b i o l o g i c a l and h erb aceo u s
fa c to rs.
The p e r c e n t o f o r g a n ic m a t t e r i n e ach sam pling a r e a i s v e ry low.
G -re a test s t a t i s t i c a l d i f f e r e n c e s betw een a r e a s a r e found in th e Ag
h o riz o n .
The amount of o r g a n ic m a t t e r d e c r e a s e s w ith in c r e a s e d d e p th
f o r b o th A re a X and A rea Y.
S l i g h t l y g r e a t e r amounts of o r g a n ic m a tte r
a r e fo u n d in A rea Y a t th e A ^ A2 , and B2 h o r iz o n s ; th e amounts below th e
B2 h o r i z o n d i f f e r v e r y l i t t l e .
No s i g n i f i c a n t s t a t i s t i c a l d i f f e r e n c e
e x i s t s betw een A rea X and A rea Y i n s o f a r as th e d i r e c t e f f e c t of o rg a n ic
m a t t e r c o n t e n t i s c o n c e rn e d .
lUU
B o th c a rb o n and n i t r o g e n a r e fo un d in g r e a t e r amounts in A rea Y.
A ls o , t h e c a r b o n - n i t r o g e n r a t i o i s more narrow in t h i s a r e a , i n d i c a t i v e
o f g r e a t e r d e c o m p o s itio n o f c a rb o n ac eo u s and n i tr o g e n o u s m a t e r i a l .
The
d i f f e r e n c e i n t h e c a r b o n - n i t r o g e n r a t i o between a r e a s i s n o t e x tre m e.
R a t i o s f o r b o t h s i t e s f a l l w i t h i n th e ra n g e o f a p p ro x im a te ly 1 5 :1 to 23:1
f o r any one i n d i v i d u a l h o r i z o n .
The g r e a t e s t s t a t i s t i c a l d i f f e r e n c e f o r
t o t a l n i t r o g e n c o n t e n t i s fo u nd a t th e
and A re a Y.
h o r i z o n , when c o n t r a s t i n g A rea X
As w i t h t h e c o n te n t o f o r g a n ic m a t t e r , th e n i t r o g e n and
c a rb o n o c c u r in s l i g h t l y g r e a t e r amounts i n th e a r e a o f p o o r h e i g h t grow th.
D e c o m p o sitio n a p p e a rs t o b e more r a p i d in t h e more exposed and l e s s dense
site .
A c l o s e c o r r e l a t i o n e x i s t s betw een th e c a t io n-exchange c a p a c i t y and
t h e amount o f f i n e c l a y p r e s e n t i n A rea X.
marked in A re a Y.
T his r e l a t i o n s h i p i s l e s s
A c l o s e r r e l a t i o n seems to o ccur between t h e c a t i o n -
exchange and th e c o l l o i d a l com plex, th a n betw een c a tio n -e x c h a n g e and th e
o rg a n ic c o llo id s .
A n a ly s is o f v a r i a n c e r e v e a l s t h a t th e g r e a t e s t d i f f e r
ence betw een a r e a s f o r c a t io n -e x c h an g e c a p a c i t y e x i s t s a t th e A-^ h o r iz o n .
A rea Y has a l a r g e r t o t a l p r o f i l e exchange c a p a c i t y th a n A rea X.
The t o t a l b a s e c o n te n t shows no s i g n i f i c a n t d i f f e r e n c e between a r e a s .
A s l i g h t l y l a r g e r t o t a l b a s e c o n t e n t is found in A rea Y.
L argest in d i
v i d u a l d i f f e r e n c e s a r e fo u n d a t t h e A2 h o r iz o n .
The p e r c e n t b a s e s a t u r a t i o n shows a l a r g e t o t a l p r o f i l e v a r i a t i o n
b e tw een A re a X and A rea Y.
a t th e C-], h o r i z o n .
T h is d i f f e r e n c e is s i g n i f i c a n t s t a t i s t i c a l l y
A c l o s e r c o r r e l a t i o n e x i s t s i n A rea X w ith r e f e r e n c e
to b a s e s a t u r a t i o n th a n in A rea Y.
1^5
The g r e a t e s t t o t a l exchangeable hydrogen is found in the area o f
poor h e ig h t grow th.
T his r e v e a ls th e c lo s e r e la t io n s h ip o f th e pH v a lu e s
o b ta in e d fo r th e same s o i l s , s in c e Area T e x h ib it s a s l i g h t l y g r e a te r
a c i d i t y than Area X, when a l l h o rizo n s are averaged.
Thus, a summation o f s i x r a th e r important s o i l chem ical p r o p e r tie s
by s o i l h o rizo n ten d s to show no o u tsta n d in g d ir e c t or s t a t i s t i c a l l y
s i g n i f i c a n t d if f e r e n c e betw een th e a rea o f good h e ig h t growth and poor
h e ig h t grow th o f t u l i p p o p la r.
The data b rin g out r a th e r v iv id ly th e
h o r iz o n a l d if f e r e n c e s , p o s s ib le environm ental fa c to r s r e s p o n sib le fo r
th e s e v a r ia t io n s , and th e magnitude o f the complex o f fa c to r s which
c o n tr ib u te to th e s e d if f e r e n c e s .
As a f u r t h e r v e r i f i c a t i o n o f th e ab se n c e of s t a t i s t i c a l s i g n i f i c a n c e
i n th e above s o i l p r o p e r t i e s , a p e r u s a l and summation o f i n d i v i d u a l
n u t r i e n t e le m e n ts v j i l l now be ta k e n u p .
An a tte m p t w i l l b e made to
r e l a t e t h e o v e r a l l m ajor chem ical p r o p e r t i e s to i n d i v i d u a l n u t r i e n t
s u p p l i e s o f th e same s o i l s .
T his combining and s u p p le m e n ta tio n o f a l l
chemical, p r o p e r t i e s p r e s e n t s an i n s i g h t i n to t h e t o t a l complex of
c h e m ic a l- e d a p h ic f a c t o r s in each a r e a .
lb G
Summary o f I n d i v i d u a l N u t r i e n t s
A t o t a l of s e v e n i n d i v i d u a l n u t r i e n t e lem en ts was i n v e s t i g a t e d and
r e c o r d e d by h o r iz o n and t o t a l p r o f i l e c o n te n t f o r b o th th e a r e a o f good
and p o o r h e i g h t g ro w th .
R e s u l t s o f t h i s i n v e s t i g a t i o n r e v e a l e d t h a t th e t o t a l amounts o f
a l l n u t r i e n t e le m e n ts d i d n o t d i f f e r a p p r e c i a b l y between A rea X and
A rea Y.
A p e r c e n t a g e summation, b a se d upon p e r c e n t o f t o t a l p r o f i l e ,
i s p r e s e n t e d in T a b le 1*3-
The t o t a l amount o f a l l n u t r i e n t s was v e ry
low f o r b o t h a r e a s :
TABLE ^3.
TOTAL INDIVIDUAL NUTRIENT ELEMENTS EXPRESSED AS A PERCENT
OF TOTAL PROFILE CONTENT FOR AREA X AND AREA Y
P ercent
A rea Y
A re a X
Ca - 3 U . 5 O
Ca - ^U.9 3
Mg - 2 ^ .6 5
Mg - 25.1*1
P - 1 U. 3 U
E - I O . 5O
K - 12.2S
P -
7-90
Na -
7-31
Fe -
5-75
Fe -
U .6S
Na -
3 .S3
Mn -
2 . 2b
Mn -
1 . 6S
1 0 0 .0 0 %
1 0 0 .0 0 fo
The r e s u l t s in T a b le *+3 g iv e th e o r d e r of m agnitude of n u t r i e n t
e le m e n ts in A rea X a s :
Ca> Mg>P > E > N a > F e >Mn.
A s l i g h t v a r i a t i o n in
147
t h i s o r d e r e x i s t s i n A rea Y a s i
Ca> Mg> K> P > Fe > Na> Mn.
The s t r i k i n g
s i m i l a r i t y i n b o th amount and m agn itud e o f n u t r i e n t e lem en ts i s r e v e a l e d
by c o n t r a s t i n g t h e a r e a o f good and p o o r h e i g h t growth*
A ltho ug h i t i s
n o t t o be assumed t h a t t h e t o t a l amount o f n u t r i e n t p r e s e n t d e te rm in e s
i t s a v a i l a b i l i t y to th e t r e e , t h e f a c t t h a t a t l e a s t one of t h e s e a r e a s
i s e x h i b i t i n g good h e i g h t grow th i s e v id e n c e t h a t th e t o t a l amount i s
s u f f i c i e n t to s a t i s f y th e t r e e re q u ire m e n ts u n d e r e x i s t i n g c o n d itio n s *
T hus, s i n c e th e two a r e a s a r e so s i m i l a r in actua,l c o n te n t of n u t r i e n t s ,
i t may be c o n j e c t u r e d t h a t b o th a r e a s have s u f f i c i e n t chem ica l n u t r i e n t s
to s a t i s f y t h e i r t r e e r e q u i r e m e n t s .
Hov/ever, in th e c a s e of A rea Y,
th e s e r e s u l t s d i s c l o s e t h a t some o t h e r f a c t o r may b e masking t h e n u t r i e n t
s u p p ly a s 8, cau se f o r p o o r h e i g h t grov/th.
The s t a t i s t i c a l summary (T a b le 42) o f a l l c h em ical n u t r i e n t s u n der
i n v e s t i g a t i o n r e v e a l s t h a t s i g n i f i c a n t d i f f e r e n c e s o c c u r f o r phosphorus
a t t h e Br, h o r i z o n , p o ta s s iu m a t th e A^ and
th e A^ h o r i z o n .
h o r i z o n s , and sodium a t
I f th e n u t r i e n t c o n te n t had been d e term in e d by t h e u s u a l
methods o f many i n v e s t i g a t o r s , o n ly th e upperm ost h o riz o n s would have
shown any d i f f e r e n t i a t i o n .
However, by e x t r a c t i n g s o i l samples a t th e
n a t u r a l h o r i z o n f o r each p r o f i l e , a c l e a r e r d i a g n o s i s as to h o riz o n
d i f f e r e n t i a t i o n , l e a c h i n g e f f e c t s , p r e s e n c e o f f i n e c l a y , and o rg a n ic
m a t t e r can be f u l f i l l e d .
The i m p l i c a t i o n o f t h e s e d i f f e r e n c e s f o r
p h o s p h o r u s , p o ta s s iu m , and sodium i s n o t to be i n t e r p r e t e d d i r e c t l y in
term s o f l i m i t i n g f a c t o r s .
R a t h e r , th e s t a t i s t i c a l d i f f e r e n c e s a r e
i n d i c a t i o n s of s u p p le m e n ta l f a c t o r s which l i m i t a p a r t i c u l a r n u t r i e n t
e le m e n t in any one h o r i z o n .
I f th e d i f f e r e n c e s had been extrem e i n t h e i r
m a g n itu d e , i t would be j u s t i f i a b l e to s u s p e c t a p o s s i b l e l i m i t i n g f a c t o r
148
table
44.
A COMPOSITE SIMULATION OF CHMCAL-EDAPHIC CHARACTERISTICS
BY SOIL HORIZON FOR AREA OF GOOD HEIGHT GROWTH AND AREA
OF POOR HEIGHT GROWTH OF TULIP POPLAR
02
+»
•H i
O
a00
ta
a} to*
S3
O
N
•ri
u
o
m
i—i
•rH
O
CO
S3
O
•rH
43
O
ca
0)
pi
3
o
CQ
U
CD
43
43
ca
s
o
•H
S3
CD
o
Ft
43
•H
^5
S
Fh
o
+3
O
Eh
o
o ^
02
EH
pq
ca
&o
o
® rH
rH
-ft"''
CO
©
.
W ) CD
ft§ s
o
M
ft
aEU
O
oo
r-l
.
CD
•
CO
a)
w
o
o1—1
CD
»
g
a
O
o
a
a
1
§
JH
,§
a
•H
O
■H
CO
CD
S3
o
»
a
ft
ft
p
<0
atiD
at
o
o
a
tiO
o
orH
<0
a
qD
oo
oo
CD
CQ
CO
rN
GROWING
NO
THE
!
NO
THROUGHOUT
o
MOISTURE
H
01
J?
O
AVAILABLE
B
CO
PERCENT
%
OF
O
U
©
#
CO
UN
CM
O
0
1
o
rH
CM
O
o
On
©j u ^ s io w exq.'BTI'e^V ^ u e o j o a
O
CO
209
i s a p p aren tly * due t o t h e f a c t t h a t t h e w a te r t a h l e l e v e l i s c l o s e r to th e
s u r f a c e i n A re a Y a t t h e s e p e r io d s #
m a te ria l
However, th e r e s u l t s i n d i c a t e no
d i f f e r e n c e i n a v a i l a b l e iv a te r betw een th e two a r e a s d u r in g th e
c r i t ic e d p e r i o d o f g ro w th ( J u l y , A u g u s t) .
L ig h t I n t e n s i t y
At v a r i o u s i n t e r v a l s th ro u g h o u t t h e grow ing s e a s o n , l i g h t i n t e n s i t y
m easurem ents were ta k e n in b o th Area. X and A rea Y.
These r e a d i n g s were
r e c o r d e d w ith a p h o t o e l e c t r i c c e l l u t i l i z i n g th e i n t e n s i t y o f r e f l e c t e d
l i g h t e x p r e s s e d in term s o f a p e r c e n t of f u l l s u n lig h t#
of th e l i g h t in t e n s i t y
S in c e no r e c o r d
made a t any tim e p r i o r to th e p r e s e n t r e a d i n g s ,
th e n u m e r ic a l r e s u l t s a r e n o t in c lu d e d h e r e .
Howre v e r , th e r e s u l t s o f th e
p r e s e n t s t u d y r e v e a l t h a t t h e a v e ra g e l i g h t i n t e n s i t i e s in A rea Y a r e
c o n s i d e r a b l y g r e a t e r th a n in A rea X.
T his r e s u l t was a n t i c i p a t e d due to
t h e more shad ed end l e s s exposed s i t e c o n d i t i o n s o f A rea X.
W ith t h e l i m i t e d d a t a a v a i l a b l e i t i s d i f f i c u l t to d e te r m in e what
e f f e c t l i g h t i n t e n s i t y p la y s in t h e r o l e o f a s e p a r a t e c l i m a t i c f a c t o r .
F u r th e r m o r e , i t i s d i f f i c u l t to e x p re s s q u a n t i t a t i v e l y which p o r t i o n o f
th e s o l a r r a d i a t i o n e x i s t s as l i g h t i n t e n s i t y ,
S in c e no
l i g h t q u a lity , or as h e a t.
l i g h t r e a d i n g s have b een ta k e n d u r in g t h e 1 5 -y e a r i n t e r v a l
p r e v i o u s to t h e e s t a b l i s h m e n t o f t h i s p l a n t a t i o n , i t i s v i r t u a l l y im p o s s ib le
t o e s t a b l i s h any c o n c r e t e e v id e n c e as to t h e d i r e c t e f f e c t o f l i g h t upon
h e i g h t g ro w th , w ith t h e e x c e p tio n o f th e e x t e r n a l e v id e n c e o f s u n s c a l d .
The r o l e o f l i g h t in b o th a r e a s i n t h i s s t u d y is t h e r e f o r e b a se d upon th e
i n d i r e c t o b s e r v a t i o n a l r e s u l t s of s o l a r r a d i a t i o n r a t h e r th a n a c a u s e of
h e ig h t d if f e r e n tia tio n #
210
C e rta in an atom ical fe a tu r e s o f t u lip tr e e s in Area X su g g e st a
resp o n se to low er l i g h t in t e n s it i e s *
Such fe a tu r e s as n a tu r a l pruning
o f th e low er branches in t h is a rea in d ic a te th e e f f e c t o f the p resen ce
o f th e o ld growth hardwood and th e g r e a te r h e ig h t growth o f th e s e t r e e s .
G ross o b s e r v a tio n on the th ic k n e ss o f l e a v e s , l e a f c o lo r , and g e n e r a l
l e a f su c c u le n c e does not r e v e a l any marked d if fe r e n c e in the two h a b it a t s .
At th e tim e o f e sta b lish m e n t o f t h is p la n ta tio n and fo r many y e a rs fo llo w
ing t h i s i n i t i a l grow th, i t i s presumed th a t a l l tr e e s in th e p la n ta tio n
were r e c e iv in g app roxim ately th e same l i g h t in t e n s it y , and th a t d i f f e r
e n t ia t io n in h e ig h t grow th ba,sed upon l i g h t c o n d itio n s per se i s not
te n a b le .
Thus, w ith th e lim it e d d ata a v a ila b le , i t appears th at l i g h t is
com p lexly a s s o c ia t e d w ith th e oth er in te g r a te d s i t e f a c to r s in t h i s
stu d y .
Por exam ple, in Area Y, the g r e a te r l i g h t in t e n s it y
is a s s o c ia te d
w ith th e d r ie r h a b ita t and h igh er tr a n s p ir a tio n r a te s as shown by
su p p lem en tal e v id e n c e .
Most o f th e ev id en ce in t h is t h e s is p o in ts to
th e f a c t th a t l i g h t i s in te g r a te d w ith th e oth er s i t e fa c to r s but i s
b ein g masked by o th e r more lim it in g fa c to r s w ith r e fe r e n c e to th e h e ig h t
grow th d i f f e r e n t i a l .
D is c u ss io n o f R e su lts
A grow ing season stud y o f seven m ic r o clim a tic fa c to r s in Area X and
Area Y shows in v i r t u a l l y every c a se th a t th ese in te g r a te d f a c t o r s ,
supplem ented by edaphic and b io l o g ic a l f a c t o r s , are a s s o c ia te d w ith a
marked d i f f e r e n t i a l h e ig h t growth fo r plan ta t ion-grown t u lip p o p la r .
A ll o f th e s e m ic r o c lim a tic f a c t o r s in d ic a te th a t the m oisture regim en,
211
e i t h e r d i r e c t l y or in d i r e c t l y , i s most l i k e l y th e major fu n c tio n r e s u lt in g
in th e d i f f e r e n t i a l h e ig h t growth o f th e exp erim en tal p la n ta tio n *
The
p r e se n c e o f an o ld —g ro v th hardv/ood sta n d a d ja c e n t to Area X has a lte r e d
th e m ic r o clim a te in t h is area and, r e v e a ls ra th e r c le a r ly some o f the
s i l v i c a l fe a tu r e s to "be co n sid ered in g ro v in g p la n ta tio n t u lip p o p la r .
The m icro c l im a tic fe a tu r e s o f Area X and Area Y have p r e v io u s ly "been
v a l i d a t e d s t a t i s t i c a l l y w ith r e fe r e n c e to p r e c ip it a t io n and tem p eratu re.
212
SOIL MICROBIOLOGICAL EXPERIMENTS ( QUANTITATIVE)
The R e l a t i o n Between Numbers o f S o i l Organisms and t h e Edaphic
and M ic r o c l i m a t i c F a c t o r s o f A rea X and A rea Y
F i e l d E x p e rim e n ta l Method:
D u rin g t h e grow ing s e a s o n o f 1951* s o i l sam ples f o r m i c r o b i o l o g i c a l
s t u d i e s were ta k e n from A rea X and A rea Y.
These sam ples were c o l l e c t e d
and p r e s e r v e d by a method o r i g i n a t e d by th e p r e s e n t i n v e s t i g a t o r .
At
a p p r o p r i a t e i n t e r v a l s th ro u g h o u t th e growing sea so n th e s o i l s were
sam pled f o r numbers o f f u n g i , b a c t e r i a , and a c tin o m y c e te s e x i s t i n g i n
f o u r s e p a r a t e s o i l h o r iz o n s i n each e x p e r im e n ta l a r e a ( F ig u r e s 50“ 53)*
A r e v i s e d method o f c o l l e c t i n g m i c r o b i a l s o i l samples was c a r r i e d o u t as
fo llo w s:
1.
G la ss c o n t a i n e r s of 65 m i l l i l i t e r c a p a c i t y were s t e r i l i z e d
in an
oven a t 105° C f o r a p e r i o d o f one h o u r.
S te rile lid s
were th e n screw ed t i g h t l y to t h e empty g l a s s c o n t a i n e r s and
ta k e n d i r e c t l y i n t o th e f i e l d .
2.
By means o f a p o s t - h o l e d i g g e r , s o i l p r o f i l e s were exposed
to an
a p p ro p ria te d e ath .
U sing an o r d i n a r y s t e r i l e , wooden
ic e - c r e a m spoon, enough s o i l was ta k en a t d e f i n i t e s o i l
h o r iz o n d e p th s to f i l l each c o n t a i n e r .
A f t e r each i n d i v i d u a l
s o i l s a m p lin g , th e wooden snoon was d i s c a r d e d .
T h is method
e l i m i n a t e s th e u s u a l t e d i o u s and cumbersome p ro c e d u re o f
i g n i t i n g a l c o h o l on a tro w e l p r i o r to e a c h sam p ling in o r d e r
to p r e v e n t c o n ta m in a tio n .
213
3 * A fte r th e sam ples were taken a t each n a tu r a l s o i l h o rizo n ,
a beaker o f p a r a ff in wax was m elted and the sample c o n ta in er s
em ersed, thus s e a lin g them from a ir and co n ta m in a tio n .
T his
w a x -s e a lin g p r o c e ss en a b les th e in v e s tig a to r to keep the
sam ples i n d e f i n i t e l y u n t il th e s o i l s are ready to be sampled
fo r m icro b es.
In a d d itio n , the s o i l s can be run a t th e same
pH and m o istu re co n ten t as o r ig i n a lly sam pled.
The m ic r o b ia l s o i l samples were taken a t app roxim ately th e same area
l o c a t io n as th e m ic r o cl imat ic d a ta .
U niform ity in th e c o r r e la t io n o f
edaphic and c lim a t ic d ata w ith th e m ic r o b io lo g ic a l changes was thus
o b ta in e d .
la b o r a to r y E xperim ental Method:
The la b o r a to r y procedure u sed in i s o la t i n g th e d e sir e d organism s from
each s o i l sample d iv id e s i t s e l f in to two p a r ts:
1.
From th e s o i l sam ples taken a t S ta tio n s I and I I , a com posite
sample was made to r ep r e se n t each horizon in Area X;
s im ila r ly , com posite samples were made fo r each h orizon in
Area Y.
S o il d ilu t io n s o f each com posite s o i l were
f o llo w s :
prepared as
The a d d itio n o f 10 grams o f s o i l to 1000 c c . o f
s t e r i l e d i s t i l l e d water g iv in g a d ilu t io n o f 1 :1 0 0 .
A fte r
the c o a rse p a r t ic le s had s e t t l e d out a f t e r sh a k in g , 10 cc*
o f th e 1:100 d ilu t io n was p ip e t te d in to 90 c c . o f s t e r i l e
d i s t i l l e d w ater.
S u c c e ss iv e tr a n s fe r s were made r e s u lt in g in
a s e r i e s o f d il u t io n s .
and 1 :1 ,0 0 0 ,0 0 0 .
These were 1 :1 0 0 ,
1 :1 0 0 0 ,
A ll work was done a s e p t i c a l l y .
1 :1 0 ,0 0 0 ,
2lk
2.
S e le c t io n o f media and c u ltu r in g procedure fo r "bacteria,
a c tin o m y ce te s and fu n g i:
From th e above d i l u t i o n s , 1 c c . o f each was d isp en sed by
s t e r i l e p ip e t t e s in to a s e l e c t i v e m edia and poured a s e p t ic a ll y
in to s t e r i l e p e t r i d is h e s .
T his m ixture o f agar* and s o i l
d il u t io n was allow ed to harden and th e c u ltu r e s were p la c e d in
a c u ltu r e room at 28° 0 .
The b a c te r ia and a ctin o m y cetes were
p e r m itted to grow one week or l e s s b e fo r e observa/tions were
made and th e fu n g i were a llo w ed fo u r days b e fo r e o b se r v in g .
The medium used f o r b a c te r ia was N utrose agar; f o r fu n g i;
a P e p to n e -g lu c o se a c id agar used w ith a pH between
so th a t b a c t e r ia would not d e v e lo p .
and 4*0
The media used were as
fo llo w s :
B a c te r ia and A ctinom ycetes - U utrose agar
Agar
Hutrose
G lucose
12 .5 grams
2.0
1 .0
K2HP0i^
0 .2
MgSO^.7H20
FeS0i |. 7H20
Tap Water
R e a c tio n pH
0 .2
tra c e
1 .0 l i t e r
6.3 (no a d ju s tm e n t)
Fungi
-
Peptone g lu c o se a cid agar
Agar
KH^PO^
MgS01+.7H20
Peptone
G lucose
D i s t i l l e d Water
R e a c tio n pH
25.O grams
1 .0
0 .5
5*0
1 0 .0
1 .0 l i t e r
3*# t0 ^*0 ( a d j u s t e d )
In a l l c a se s where in o c u la tio n s were made, g la ssw a re was th orou ghly
s t e r i l i s e d and the media used were autocla.ved p r io r to each s o i l 11run11 in
215
o r d e r to p r e v e n t c o n t a m i n a t i o n .
jHach d i l u t i o n was ru n i n d u p l i c a t e b o th
f o r b a c t e r i a and f u n g i , in a d d i t i o n to c o n t r o l s *
The number o f o rganism s
computed from t h e p l a t e s r e p r e s e n t th e a v e r a g e v a lu e s o f t h r e e d i l u t i o n s ,
o r t h e a v e r a g e v a l u e of s i x i n d i v i d u a l p l a t e s f o r e ach s o i l h o r i z o n .
M o is tu r e c o n t e n t s w ere o b t a i n e d f o r e ach h o r iz o n im m e d ia te ly b e f o r e th e
i s o l a t i o n s were made*
T h is was done by h e a t i n g t h e com posite sam ples
a t 90° C u n t i l a l l vrater was l o s t ; t h e p e r c e n ta g e f i g u r e s o b t a i n e d were
i n d i c a t i v e o f t h e amount o f w a te r l o s t in each sam ple, and th e number o f
o rg a n is m s p r e s e n t p e r gram d ry w e ig h t o f s o i l was computed from t h e s e
r e s u l t s , u s in g t h e p l a t e method f o r c o u n tin g m ic ro b e s .
F o r e ac h s o i l
h o r i z o n , th e a c i d i t y (pH) was o b t a i n e d by th e g l a s s - e l e c t r o d e pH m e te r .
S e v e r a l exem plary p h o to g ra p h s o f t h e p l a t e c o u n t were made in o r d e r
to i l l u s t r a t e t h e p r i n c i p l e s in v o lv e d ( F ig u r e s 5 ^ 5 ^ ) *
The number o f
o rg a n ism s on e ach p l a t e was c o u n te d by means o f a m icro sco pe and c o u n tin g
p la te .
Only t h e 1 :1 00 and 1:1000 d i l u t i o n s were u s e d f o r s t a t i s t i c a l
p r e s e n t a t i o n o f numbers o f o rg a n ism s a p p e a rin g on th e p l a t e s .
A fte r
c o r r e c t i o n f o r m o is tu r e c o n t e n t , th e numbers o f org an ism s were p l o t t e d i n
o r d e r t o compare q u a n t i t a t i v e l y t h e d i f f e r e n c e i n m ic ro b ia l c o u n ts betw een
A re a X and A rea Y.
O b je c ti v e s
The p r e s e n t m i c r o b i o l o g i c a l i n v e s t i g a t i o n s were co n ce rn e d w ith tile
s o i l a s a mass o f l i v i n g d e b r i s ,
f u n g i , a l g a e and p r o t o z o a .
o f th e s o i l f l o r a and f a u n a .
in c lu d in g c e r t a i n b a c t e r i a , a c ti n o m y c e te s ,
These l i v i n g m icrobes a r e n o t a co m p lete l i s t
However, th e b a c t e r i a , f u n g i and a c tin o m y c e te s
e x e r t a p ro f o u n d i n f l u e n c e upon t h e g e n e t i c a l developm ent o f s o i l p r o f i l e s
as w e ll as an i n d i r e c t e f f e c t uuon f o r e s t t r e e s .
T his s tu d y i s s t r i c t l y
216
q u a n t i t a t i v e in i t s approach..
I n most s o i l s t h e q u a l i t a t i v e d i s t r i b u t i o n
of o rg a n ism s re m a in s much t h e same, b u t t h e r e a r e v e r y marked d i f f e r e n c e s
in th e q u a n t i t a t i v e r e l a t i o n s h i p s .
B i o l o g i c a l t r a n s f o r m a t i o n s b ro u g h t
a b o u t by s o i l o rg a n ism s a r e e x tre m e ly complex, and i t i s assumed t h a t t h e
f o r e s t e r p o s s e s s e s a g e n e r a l background i n th e i m p l i c a t i o n s o f t h i s s t u d y .
No a t t e m p t h a s b e en made t o e n a b le th e r e a d e r t o a n a ly z e th e r e s u l t s of
t h e s e e x p e r im e n ts by means o f a s t r i c t ind ex t h a t w i l l h o ld t r u e in a l l
cases.
N e v e r t h e l e s s , t h e r e s u l t s a r e a f u n c t i o n of two in d e p en d e n t
b o d i e s , th e s o i l and th e f o r e s t , e ach o f w hich a r e a c t e d upon by c l i m a t i c
i n f l u e n c e s , a l l o f which a r e i n t e g r a t e d p a r t s o f th e same dynamic system
i n f l u e n c i n g th e g ro w th o f t u l i p p o p l a r .
I n a l l c o m p a ra tiv e s t u d i e s
c e r t a i n v a r i a b l e s and i n c i d e n t a l f a c t o r s e n t e r in ; no d i r e c t o r i n d i r e c t
c o r r e l a t i o n betw een t h e s o i l and th e grow th o f th e f o r e s t s ta n d s d e s c r i b e d
can be e x p e c te d to h o ld t r u e in a l l s i t u a t i o n s .
Since no i d e n t i c a l s t u d i e s
l i k e t h e one p r e s e n t e d h e re have been made, i n t e r p r e t a t i o n o f d a t a i s
o n ly i n d i c a t i v e o f p r i n c i p l e s and t r e n d s s u p p le m e n ta l t o o t h e r f a c t o r s .
P r a c t i c a l l y no s i l v i c a l s t u d i e s have s p e c i f i c a l l y shown t h e r e l a t i o n s h i p
o f o rg a n is m s to a s e t o f i n t e g r a t e d s i t e f a c t o r s th ro u g h t a growing s e a s o n .
T h is p o r t i o n o f th e d i s s e r t a t i o n has th e f o llo w in g s p e c i f i c o b j e c t i v e s :
1.
To p r e s e n t q u a n t i t a t i v e d a t a c o n c e rn in g b a c t e r i a , f u n g i , and
a c ti n o m y c e te s in two c o n t r a s t i n g s i t e s o f th e same age and
d e n sity .
These two s i t e s r e p r e s e n t an a r e a o f good h e i g h t
g ro w th and an a r e a o f po or h e i g h t grow th o f p la n t a t i o n - g r o w n
t u lip p o p la r.
2.
To show t h e f l u c t u a t i o n in th e p o p u l a t i o n of o rg a n ism s th r o u g h o u t
th e gro w in g sea.son
on compared t u l i p p o p l a r s i t e s , by u t i
l i s i n g s o i l h o riz o n s a s th e d i f f e r e n t i a t i n g c r i t e r i o n .
217
3*
To c o r r e l a t e t h e f l u c t u a t i o n in p o p u l a t i o n o f org an ism s
t h r o u g h o u t t h e growing s e a s o n w ith th e f o l l o w i n g m ajor
m i c r o c l i m a t i c and e d a p h ic f a c t o r s in each a r e a :
(1)
s o i l - s u r f a c e te m p e r a tu r e
( 2)
m o istu re c o n te n t o f
(3)
ra te
(H)
so il
o r g a n ic m a t t e r
(5)
so il
a c i d i t y (pH)
s o i l to a d e p th o f s i x in c h e s
o f e v a p o r a t i o n and a i r te m p e r a tu r e
I n i n t e r p r e t i n g t h e r e s u l t s o f a q u a n t i t a t i v e m i c r o b i a l s tu d y i t s h o u ld
be c o n s t a n t l y k e p t in mind t h a t th e numbers o f organism s r e f e r r e d to a r e
o n ly r e l a t i v e f i g u r e s *
They sh o u ld n o t be i n t e r p r e t e d as r e p r e s e n t i n g a,
c o n s t a n t number o f o rg a n ism s in a p a r t i c u l a r s o i l ; th e c o u n ts r e f e r o n ly
to t h e r e l a t i v e abundance o f c e r t a i n ty p e s o f m ic r o b ia l c e l l s a t th e t i n e
t h a t t h e d e t e r m i n a t i o n was made.
m e n ta l c o n d i t i o n s a r e m o d if ie d .
G re a t changes o c cu r when c e r t a i n e n v ir o n
The manner i n which t h e s e organ ism s v a ry
w i t h a s e t o f i n t e g r a t e d s i t e f a c t o r s th ro u g h o u t an e n t i r e grow ing se a so n
in two c o n t r a s t i n g t u l i p p o p l a r h a b i t a t s is th e o b j e c t i v e o f t h i s m ic ro
b io lo g ic a l stu d y .
In e s s e n c e , th e f i n d i n g s o f t h i s b i o l o g i c a l i n v e s t i g a t i o n
m e re ly a tte m p t to c o r r o b o r a t e and v a l i d a t e t h e m i c r o e l i m a t i c and ed ap h ic
stu d ie s.
The r o l e o f m ic ro o rg a n ism s a s to t h e i r f u n c t i o n , a c t i v i t i e s , and
t r a n s f o r m a t i o n s a r e n o t in c lu d e d h e r e .
This i n v e s t i g a t i o n i s d e s ig n e d to
d e m o n s t r a t e how m i c r o b i a l s t u d i e s can be in c o r p o r a te d i n t o t h e f o r e s t e r ' s
c o n c e p t o f s i t e q u a l i t y by i n t e g r a t i n g t h e s o i l f l o r a w ith o t h e r s i t e
fa c to rs.
S in c e th e s u r f a c e s o i l h o r iz o n s r e f l e c t th e e x t e r n a l e f f e c t s o f
t h e im m ediate e n v iro n m e n t, th e q u a n t i t a t i v e c o r r e l a t i o n o f o rg a n ism s to
s o i l and c l i m a t e i s i n t e r p r e t e d a n d p l o t t e d by s o i l h o r i z o n s , AQ and A^.
218
Pig. 50.
VERTICAL DISTRIBUTION OP SOIL MICROBES IN AREA X
AND AREA Y DURING THE SPRING
Area Area
X
Y
2 .0
30
1.5
120
Nuniberfl of organisms per gram
dry weight o f s o il
-
-
a
80
h 1 *0
*ri
ss
m
5
u
I
5
+»
+>
•h «
W
O
o
43
£3 CO
5
<*!
trj
3 s
O +»
co X
s
pel
E4
o
«rl +3 £
O *H
* TO
1 " &
CO
CO
Ki
•
ir\
rH
r—
«
JrH
CM
*
CM
H
•
LTV
CM
•
LTV
ro»
LO.
rd |
CQ Pi N
d TO *H
i—1
O
•H E?£>*H Pi
O Pi 43 0
•H •H Pi *H
•d P i © 43
TO Pi
OOP)
CO W
CT\
LO
®
Ph
•d
55
43
P in
TOrH
a
43
•rl
01
O
TO
to
Pi
rH
1
£3
•rl
HI
■H Pi
4-5 O
Pi »H
ffi 43
P-t 5H TO
*ra O
Pi Pi O
P* 3
0
•rH
O «
•rl •H
p-i
M
O
Pi
©
Pi
O
£3
pi
oN
•H
Pi
O
m
O
Pj rH
d
3
o !*, TO
HI
CM
CM
PP
product of four seasonal is o la tio n s
per soil horizon taken p e rio d ic a lly
o
uo
Each value rep re se n ts the average
the average of fo r ty -e ig h t plates
O
LPi
CO
233
5
Ln►
CO
rH
in
oun
o
o
o
o
o
to
o
LTV
a
h-
co
vo
VO
CM
rH
co
5
CO
CO
times six dup licate p l a t e s , or
throughout the growing s e a s o n .
tH-\
VO
CO
O
O
VO
«*
w
CO
CM
+> +5
p
o3
•P
£
o
P
cb
+3
■&
m
•rH
VO
rH
o ptj
to
t—
CM
©
O
P
©
in
VO
O
o
JO
co
*23 P i
O +a
d 0) c
•H p p
VO
rH
(ii - p o
EhjO +> P
r—-
cm’
Ph «J ©
O A Ph
■of
rH
•H
o
rH
f©.
s
*P
©
+3
©©
03 -P
EH
S
o
^ i -1
a *P
o §
1 -3
0
<3 h» w
o to o
O rH
-P
>a
a *
o S
hJ w
W cd HJ
•rH p *H
O H
CO ©
o
O rH
•P
r—I
O
©
09
P -p
P p
-P ©
0) O
•rH P
o
LO
tO
VO
«
O
CM
VO
CM
rH
CO
©
£3 PH
P
O
i—l •rH
•rH •P w
O o p)
CO cd
•
m
o
in
in
in
h~
•
•
«
©
Ph
•P
p
©
rH a
•rH -p
O cd
CO ©
P
EH
m
in
rH W
P
■P td
© o>
«d
S
1
N
•rH
rH
CiO *H
+3
O
• H • a fH
p., ©
P PhVI
•r~D O
P P o
P
o
•rl
HH o p
ra
P
o
p
•H
•H
•P
oS
•H
O
O
*P
O
m
'Ci t
f
p N
©
rH
UD •rH
P P
•rH P
Pi ©
PX> P i V
’f~
O
P P o
n o p
p
rH O
tH N
o •H
CO P
'p
p
o
•rH
■P
©
© d IS)
P Co •rH
o
rH
» H w •rl
O p +3
•rl
P
'P P h ©
CM
< r
P
o
•rl
-P
P P i V Cd
O
P P O
t-H o P
•O
*3
i—1
O +5 O
03
©
p
o
*25
CM
PQ
product of four seasonal is o la tio n s
per soil horizon taken p e rio d ic a lly
CM
VO
orH
to
O
O
O
om
Each value rep re se n ts the average
the average of f o r ty - e ig h t plates
O
CV1
23^
F o r A re a Y, th e g r e a t e s t a c tin o m y c e te p o p u l a t i o n v/as found in
th e Aq h o r i z o n , where t h e co u n t r i s e s to 62,120 p e r gram.
6.
I n A re a X, th e " b a c te r ia l p o p u l a t i o n in th e s u r f a c e h o r i z o n s ,
Aq and A^, was g r e a t e s t in t h e s p r i n g , d rop p ed to a minimum
in mid-summer, and re a c h e d a se c o n d a ry maximum in e a r l y autumn.
I n A rea Y, however, th e b a c t e r i a re a c h e d a maximum in e a r l y
summer, a m inimu m in mid—summer, and a se c o n d a ry maximum in
e a r l y autumn.
I n b o th Area X and Y, th e a c tin o m y c e te s
fo llo tu e d much th e same s e a s o n a l f l u c t u a t i o n a s th e f u n g i .
C o n c lu sio n s R eg ard in g B a c t e r i a and A ctinom ycete R e s u l t s :
The e f f e c t s o f y e a r s o f i n j u d i c i o u s cro p p in g w ith o u t f e r t i l i z a t i o n
o f any k i n d i s s t r i k i n g l y p o r t r a y e d by th e r e l a t i v e l y lovr b a c t e r i a l c o u n ts
o f t h i s s t u d y , ta k e n th ro u g h o u t t h e grow ing s e a s o n .
The s i m i l a r i t y in
t o t a l numbers o f b a c t e r i a and a c tin o m y c e te s f o r b o th Area X and A rea Y
te n d s t o p o i n t o u t ( a s w ith t h e f u n g a l p o p u la tio n ) t h a t th e s e two s i t e s
a r e e s s e n t i a l l y m i c r o b i o l o g i c a l l y s i m i l a r and t h a t t o t a l organism
e q u i l i b r i u m i s b e in g e s t a b l i s h e d a t a low Q u a n t i t a t i v e l e v e l i n b o t h s i t e s .
As w i t h t h e f u n g i , t h e t o t a l b a c t e r i a l p o p u l a t i o n i s s l i g h t l y h i g h e r in
A rea Y th a n
in A rea X.
The c o r r e l a t i o n o f m ic ro c lim a t ic f a c t o r s f o r th e
A and A^ i s m arkedly shown by comparing th e s e two h o r i z i o n s in each
area.
I n A re a X, th e g r e a t e s t b a c t e r i a l p o p u l a t i o n i s fo u n d in th e Aq h o r iz o n ,
w ith a v e r y low c o u n t in th e
i s fo u n d in th e A-j_ h o r i z o n .
in A rea Y, the g r e a t e s t b a c t e r i a l count
This r e s u l t i s c l e a r l y a f u n c t i o n of th e
g r e a t e r a v a i l a b l e s o i l m o i s t u r e , lo w e r e v a p o r a tio n r a t e , low er s o i l s u r f a c e
t e m p e r a t u r e s and h i g h e r r e l a t i v e h u m id ity of A rea X.
The canopy o f th e
t r e e crowns in A rea X i s a p o t e n t f a c t o r i n p r e v e n t i n g t h e e f f e c t of the
F ig .
56
235
o
ft*
Air Temperature
85
80
75
70
65
60
Surface S o il Temperature
75
70
65
a>
&
60
55
A vailable S o il Moisture 6" Depth
# 90
10
0
June
12
20
June
30
July
50
July
31
60
70
Aug.
80
Aug,
31
90
Sept.
14
vP Cl
m
^30
eS
m
I
g 20
10
ta 3
oa
Fungi
Bacteria
•H
rH
rH
2
©
1
O
0
Etetrly Summer
Spring
July 21
June 22
June 2
Aug. 21
Early Autumn '
Sept. 14
THE RELATION BETWEEN NUMBERS OF ORGANISMS AND
MICROCLIMATE IN THE AREA OF GOOD HEIGHT GROWTH OF TULIP POPLAR
Pl.cr. 57 .
236
A i r Temperature
90
o 80
Pm
70
6
Q
> 60
E~(
50
S u rfa c e S o i l Tem perature
95
o
85
Em
75
65
100
-p
A v a i l a b l e S o i l M o istu re 6 B D epth
90
g 80
20
0
June
12
10
20
Ju ne
30
40
Ju ly
B ac te ria
50
Ju ly
31
60
70
Aug.
80
Aug.
31
90
S e p t.
14
Fungi
•H
S p r in g
June 2
E a r l y Summer
J u l y 21
I E a r l y Autumn
Aug. 21
THE DELATION BETWEEN NUMBERS OF ORGANISMS AND
MICROCLIMATE IN THE AREA OF POOR HEIGTTT GROWTH OF TULIP POPLAR
237
sun * s r a y s from
e v a p o r a tin g s o i l m o is tu r e d u r e c t l y a t th e s u rfa ,c e .
In
t h e more a r i d s o i l o f A rea Y, l a c k i n g su ch a p r o t e c t i v e l a y e r , th e number
o f b a c t e r i a a t t h e s u r f a c e i s l e s s , due to d e s i c c a t i o n e f f e c t s .
In a d d itio n
to m o i s t u r e c o n t e n t o f th e s u r f a c e h o r i z o n s , t h e s o i l s o f A rea X more
c l o s e l y a p p ro a c h a n e u t r a l o r l e s s a c i d c o n d i t i o n th a n th e s u r f a c e s o i l s
o f A re a Y.
A n e a r p e r f e c t c o r r e l a t i o n w i t h i n c r e a s e d d e p th o f h o r iz o n
i n A re a X i s i l l u s t r a t e d i n F i g u r e 5^*
These two f a c t o r s , m o is tu r e c o n t e n t
and s o i l a c i d i t y , a r e th u s i n c l o s e r e l a t i o n s h i p to th e o t h e r m i c r o c l i m a t i c
f a c to r s of th e in d iv id u a l a re a s.
(b a c te ria )
Here a g a in , by u s in g a m i c r o b i a l f a c t o r
i t i s p o s s i b l e to p o i n t o u t t h a t th e s o i l m o is tu re regim en,
a s a f u n c t i o n o f e x t e r n a l e d a p h ic a n d c l i m a t i c f a c t o r s , i s l i m i t i n g w ith
r e s p e c t to t h e s e t u l i p p o p l a r s i t e s .
As w ith th e f u n g a l r e s u l t s , th e
g r e a t e r b a c t e r i a l p o p u l a t i o n o f A rea Y cann o t be a s s o c i a t e d q u a n t i t a t i v e l y
w ith t h e p o o r h e i g h t gro w th of t u l i p p o p l a r , s i n c e A rea X p o s s e s s e s a
lo w e r m i c r o b i o l o g i c a l c o u n t.
I n r e g a r d to t h e a c ti n o m y c e te s , t h e l a r g e r t o t a l number fo u n d i n t h e
s u r f a c e h o r i z o n s o f A rea Y s u g g e s ts th e c lo s e r e l a t i o n s h i p to th e f u n g i
w i t h r e s u e c t to o r g a n i c m a t t e r , a v a i l a b l e oxygen, and s o i l a c i d i t y .
The
d e c r e a s e in numbers o f a c tin o m y c e te s w ith d e p th u n t i l th e B^ h o r iz o n i s
r e a c h e d , in A rea X, i s a s s o c i a t e n r a t h e r c l o s e l y w itn t h e more a c i d
c o n d i t i o n s a.t g r e a t e r d e p t h s , to th e p o s s i b l e washing down o f th e c o n i d i a
o r t o th e g r e a t e r r e s i s t a n c e o f t h e s e organism s to a l a c k o f oxygen.
The q u a n t i t a t i v e r e s u l t s o b ta in e d h e re f o r t h r e e d i s t i n c t g ro u p s o f
s o i l o rg a n ism s show t h a t th e b a c t e r i a a r e most s e n s i t i v e to m ic r o c l i m a t i c
f a c t o r s f o r u se as s u p p le m e n ta l e v id en c e in e v a l u a t i n g p l a n t a t i o n s i t e
a u a lity .
T his e v id e n c e is b a s e d upon th e p l a t e c ou nt method o f i s o l a t i n g
F ig .
58.
B a c t e r i a and a c tin o m y c e te c o lo n ie s shoving th e r e l a t i v e
d e n s i t y o f organism s by s o i l h o riz o n f o r th e a r e a of good
h e i g h t gro w th (A rea X). These s o i l m ic r o b i a l i s o l a t i o n s
were made i n th e S p rin g (May 20, 1951)* A n e a r l y p e r f e c t
c o r r e l a t i o n w ith i n c r e a s e d d e p th o f h o r iz o n i s i l l u s t r a t e d
by t h i s p l a t e c o u n t; th e numbers o f b a c t e r i a d e c r e a s e w ith
i n c r e a s e d d e p th in a l l t h r e e d i l u t i o n s . The a c tin o m y c e te
c o u n ts d e c r e a s e w i t h d e p th u n t i l th e B2 h o riz o n i s re a c h e d ,
i l l u s t r a t i n g t h e i r ten d en c y to fo llo w th e t r e n d o f f u n g i
f o r s i m i l a r h o r i z o n s . The h ig h e r b a c t e r i a l count o f t h e
A0 and
h o r iz o n s as shown above is c l o s e l y r e l a t e d to th e
more aJLkaline c o n d i t i o n s of th e s u r f a c e s o i l a s c o n t r a s t e d
to th e more a c i d c o n d i t i o n s a t g r e a t e r d e p th s in t h i s a r e a .
239
o r g a n is m s , a s u s e d in t h i s s tu d y .
The c o u n ts made f o r each group of
o rg a n is m s a r e ha.sed upon th e a v e ra g e v a lu e o f s i x d u p l i c a t e p l a t e s f o r
e ach s o i l h o r iz o n t a k e n f o u r tim e s th ro u g h o u t t h e growing s e a s o n , o r
t h e a v e r a g e of f o r t y - e i g h t c o u n ts .
SUMMARY MD COHOLUSIOKS
A co m p reh en siv e i n v e s t i g a t i o n of th e e d a p h ic , m icroclim a,t i c , and
m i c r o b i o l o g i c a l f a c t o r s c o n t r i b u t i n g to t h e d i f f e r e n t i a l h e i g h t g ro w th o f
p l a n t a t ion-grow n t u l i p p o p l a r (L ir io d e n d r o n t u l i p i f e r a L .) was u n d e r ta k e n .
T h is s i l v i c a l s t u d y was cond ucted a t th e F red Russ E x p e rim e n ta l F o r e s t in
Cass C ounty, M ich ig an , d u rin g t h e growing s e a so n s o f 1951 an
No. 3 , 164-181 / 1933*
F o r e s t s and s o i l s , p p. 114-120. The
U. S. D ept, o f A g r i c u l t u r e .
19 U9 .
S o il P h y sic s.
John Wiley and Sons, I n c . , Second e d . ,
U. S. Monthly Weather
2b 7
l6 .
C o i l e , T. S. The e f f e c t o f r a i n f a l l and te m p e r a tu r e on th e a n n u al
r a d i a l g ro w th o f p i n e in th e s o u th e r n U n ite d S t a t e s . E c o lo g ic a l
Monograph 6:
533 - 5 6 2 . 1 9 3 6 .
17* C r a ib , I a n J .
Some a s p e c t s o f s o i l m o is tu r e in th e open as compared
w i t h t h a t in th e f o r e s t . Y ale U n i v e r s i t y , School o f F o r e s t r y B u l l . 2 5 .
p p . 1- 6 2 . 1 9 2 9 .
18.
D aubenm ire, R. F .
Y ork. 191*7 .
P l a n t s and Environm ent.
John Wiley and Sons.
19.
D i l l e r , O l i v e r 3D. The r e l a t i o n o f te m p e ra tu re and p r e c i p i t a t i o n to
t h e g ro w th o f b e e c h in n o r t h e r n I n d ia n a . Ecology, V ol. 16, No. 1.
p p . 72 - 8 1 . 1 9 3 5 .
20.
D i l s , R. E. and M. W. Day. The e f f e c t o f p r e c i p i t a t i o n and te m p e ra tu re
upon t h e r a d i a l g row th o f r e d p i n e . U npublished m a n u s c rip t. U pp . 1951*
21.
D ix on , W. J . and P. J . Massey. I n t r o d u c t i o n to s t a t i s t i c a l a n a l y s i s .
M cGraw-Hill Book C o., p p . l6 2 ~ l6 8 . 1951.
22. E l l i o t , S. B.
C h a r a c t e r i s t i c s and s e e d in g o f th e t u l i p t r e e .
F o r e s t s 21: 1915*
New
Amer.
23.
E n g l e r , A.U n tersuch un gen u b e r des
d e r G-ewasser. M i t t e i l . d. Schweiz.
V ersuchsw esen . 12: I - 6 2 6 . 1919*
E i n f l u s s des Waldes a u f den Stand
Z e n t r a l a n s t a l t . F. d . f o r s t l .
2U.
F e r n a l d , M. L.
Co. 1950.
25.
H arlow , ¥• M. and E. S. H a r r a r . Textbook o f D endrology. Second e d . ,
New York and London. McGraw-Hill Book Co., In c . pp. 397-^01* 19^1*
2 6.
H ennecke, K. V e rg le ic h e n d e S ta n d o rts u n te rs u c h u n g e n in K ie f e r n b e s ta n d e n .
Z e i t s c h r . f . F o r s t - u . Jagdwesen 6 7 : 3^-55* 1935*
27.
H ic o ck , E. W. and M. F. Morgan, H. J . L u tz , Henry B u l l , and H. A. L u n t.
A s tu d y o f s o i l ty p e as a f a c t o r in d e te rm in in g th e c o m p o sitio n o f
n a t u r a l , unmanaged mixed hardwood s t a n d s . Conn. Agr. Exp. S t a . B u l l .
3 3 O. p p . 6 7 7 -7 1 3 . 1931*
28.
H i l e y , W . E. and N. C u n l i f f e . An i n v e s t i g a t i o n in to th e r e l a t i o n s
betw een h e i g h t grow th o f t r e e s and m e te o r o lo g ic a l c o n d i t i o n s . Oxford
F o r e s t r y Memoirs 1: 1-19* 1922.
2 9.
Horn, A l l e n F . The e f f e c t o f c e r t a i n c l i m a t i c f a c t o r s on th e h e ig h t
g ro w th o f r e d p i n e in Chippewa County, M ichigan, ^rl pp. U npublished
m a n u s c r i p t . M ich ig an S t a t e C o lle g e . 195^*
30.
K ie n h o lz, R.
C o n n ec tic u t.
Grrayfs Manual o f B otany.
E ig h th e d . , American Book
Seasonal course o f h e ig h t growth in some hardwoods in
Ecology Vol. 22, No. 3 PP* 2 H9- 2 5 8 . 19^1*
2bg
31*
K o zlo w sk i, Theodore T. L ig h t and w a te r in r e l a t i o n to grow th and
c o m p e t i t i o n o f Piedmont f o r e s t t r e e s p e c i e s . E c o lo g ic a l Monograph,
v o l . 1 9 , n o . 3 . p p. 209 - 2 3 1 . 191*9 .
32.
L u n t, H. A. E f f e c t o f w e a th e rin g upon d ry m a t t e r end c o m p o sitio n o f
hardwood l e a v e s . J o u r n a l o f F o r e s t r y 33? 607-609. 1935*
33•
L u t z , H. J . and R. F . C h an d ler.
I n c . , p p . 22 H- 37 I4.. 191*6 .
3^.
M cCarthy, E. F. Y ellow p o p l a r c h a r a c t e r i s t i c s , grow th and management.
U. S. D e p t. Agr. Tech. B u l l . 3 5 6 . 1933.
F orest S o ils.
John Wiley and Sons,
35* M in c k le r , Leon S. P l a n t a t i o n s u r v i v a l as r e l a t e d to s o i l ty p e , a s p e c t ,
and grow ing s e a s o n . J o u r n a l o f F o r e s t r y 39? 2 6-29 . 19 I+I.
36.
p . 685 - 6 8 8 .
b
The r i g h t t r e e in th e r i g h t p l a c e .
191*1 .
Journal of F o re stry
37*
--------------E f f e c t o f r a i n f a l l and s i t e f a c t o r s on th e grow th and
s u r v i v a l o f young f o r e s t p l a n t a t i o n s . J o u r n a l o f F o r e s t r y 1*1: 829-833*
19^3*
38.
O o s t in g , H. J . The s tu d y of p l a n t com m unities.
C o., C a l i f o r n i a , p p .
19l*S.
39*
P e a r s o n , G-. A. R e l a t i o n betw een s p r i n g p r e c i p i t a t i o n and h e ig h t grow th
o f w e s te r n y e llo w p i n e s a p l i n g s in A riz o n a . J o u r n a l o f F o r e s t r y l 6 :
6 7 7 -6 8 9 . 191S*
Uo.
... ■ ■- — L i g h t and m o is tu r e in f o r e s t r y .
p p . 1 U5 - 1 5 9 . 1 9 3 0 .
1*1,
______ ____ and R. E. Marsh. Timber growing and lo g g in g p r a c t i c e in
th e Southw est and in th e B la ck H i l l s R egion. TJ. S. Dept. Agr. Tech.
B u l l . 1*80. 80 p p . 1935*
1*2.
P u r i , A. N. and B. A. Keen.
and w a te r c o n t e n t o f s o i l s .
1*3 .
Reed, J . F. end R. W. Cummings. S o i l r e a c t i o n - g l a s s e l e c t r o d e and
c o l o r i m e t r i c methods f o r d e te r m in in g pH v a lu e s o f s o i l . S o i l S c ie n ce
5 9 : 97-101*. 191*5.
1+1*.
S c h o l l e n b e r g e r , C. J . D e te r m in a tio n o f s o i l o rg a n ic m a t t e r .
S c ie n c e 59? 5 3 -5 6 . 19^5*
I4.5 .
___ ____________ and R, H. Simons. Determination of exchange c a p a c ity
and e x c h a n g e a b le b a s e s in s o i l s . S o i l S cience 59?
13-21*. 19^5.
1+6.
Schumacher, W.
W. H. Freeman and
Ecology.
V ol. 11, No, 1.
The r e l a t i o n between th e vap o r p r e s s u r e
J o u r n a l o f Agr. S c i. 15? 68 - 8 8 . 1925.
D ie p h y s ik des bodens.
B e r lin .
1864.
S o il
39?
249
^7*
Shipman, R. D. S o i l organism s in a n a t u r a l and in a p l a n t a t i o n
f o r e s t . U n p u b lish ed M. F. t h e s i s . U n i v e r s i t y o f M ichigan. 74 pu.
19^7.
48.
S h i r l e y , Hardy L. The in f l u e n c e o f l i g h t i n t e n s i t y and l i g h t q u a l i t y
upon t h e grow th and s u r v i v a l o f p l a n t s . Amer. J o u r n a l B o t. l 6 :
3 5 4 -3 9 0 . 1929.
^9.
S n e d e c o r, G. W. S t a t i s t i c a l M ethods.
p p . 2 1 4 -2 53 . 19 ^ 6 .
50.
S t e w a r t , Guy R. A s tu d y o f s o i l changes a s s o c i a t e d w ith th e t r a n s
i t i o n from f e r t i l e hardwood f o r e s t la n d to p a s t u r e ty p e s of d e c r e a s i n g
fe rtility .
E c o lo g ic a l Monograph. V ol. 3 , No. 1. p p . 1 0 7 - l 4o . 1933*
51*
S t e w a r t , M. N. R e l a t i o n o f p r e c i p i t a t i o n to t r e e grow th.
M onthly W eather Review l 6 ; 1287. 1913-
52.
T a y l o r , A. E. The t u l i p p o p l a r — a f o r e s t t r e e o f im p o rta n t
com m ercial v a lu e f o r Ohio. Ohio Agr. Exp. S t a . Monthly B u l l . 2 (2)
1917.
53*
Tourney, J . W. The v e g e t a t i o n o f th e f o r e s t f l o o r ; l i g h t v e r s u s s o i l
m o i s t u r e . P r o c . I n t e r n a t i o n a l Congr. o f P l a n t S c ie n ce s 1: 575-590*
1929.
5 4.
--------- ------- and C. F. K o r s t i a n . F o u n d a tio n s o f s i l v i c u l t u r e upon an
eco lo g ica l b a s is .
Second e d i t i o n . John Wiley and Sons, New York.
p p . 130 - 131+. 1 9 3 7 .
55*
T ry on , E. H. and C. A. Myers. P e r i o d i c p r e c i p i t a t i o n a f f e c t s grow th
o f y e llo w p o p l a r on a West V i r g i n i a h i l l s i d e . Castanea., S o u th e rn
A p p a la c h ia n B o t. Club. Vol. 17, p p . 97-102. 1952.
56.
U n ite d S t a t e s F o r e s t S e r v ic e . Woody-plant seed manual. U. S. D ept,
o f A g r i c u l t u r e , W ashington, D* C. M isc e lla n e o u s p u b l i c a t i o n No. 6 5 4 .
p p . 222 - 2 2 3 . 1948.
57.
V e a tc h , J . 0. The dry p r a i r i e s of M ichigan.
A r t s and L e t t e r s , V ol. V I I I . 19 27 .
5 8.
V eihmeyer, F . J . and A. H. H en d rick so n . The m o is tu re e q u iv a l e n t as
a m easure o f th e f i e l d c a p a c i t y o f s o i l s . S o il S c i. 32: 181-1931931-
59 .
Waksman, S. A. P r i n c i p l e s o f s o i l m icrobiology.
W ilkins Co., Maryland. 1927*
60.
__________ and R. L. Starkey. The s o i l and the microbe.
and Sons, New York. pp. 1-25 1. 1931*
61.
W ilde, S. A. F o r e st s o i l s and f o r e s t growth.
Co. , Waltham, Mass.
p p . 6 5 - 1 0 5 . 1946 .
Iowa S t a t e C o lleg e P r e s s ,
U. S.
Mich. Acad, o f S c ie n c e ,
The Williams and
John Wiley
The Ghronica. B otanica