A 3ILVICAL STUDY OF CERTAIN FACTORS CONTRIBUTING TO THE DIFFERENTIAL HEIGHT GROWTH OF PLANTATION-GROWN TULIP POPLAR (LIRIODENDRON TULIP IF ERA L .) By R o bert Dean Shipman A THESIS S u b m itte d to th e School o f G radu ate S tu d i e s o f M ichigan S t a t e C o lle g e o f A g r i c u l t u r e and A p p lie d S cien ce i n p a r t i a l f u l f i l l m e n t o f th e r e q u ire m e n ts f o r th e d e g re e o f DOCTOR OF PHILOSOPHY DEPARTMENT OF FORESTRY 1952 ProQuest Number: 10008427 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest, ProQuest 10008427 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 AOKNOVILEDGrMSKDS The a u th o r i s in d e b te d t o many p e r s o n s f o r a s s i s t a n c e , a d v i c e , and s u g g e s t i o n s i n t h e a n a l y s i s o f r e s e a r c h upon w hich t h i s d i s s e r t a t i o n i s b a s e d and i n t h e c o l l e c t i o n o f f i e l d d a t a . P a r t i c u l a r acknowledgment i s g iv e n to t h e f o l l o w i n g members of th e f a c u l t y of M ichigan S t a t e C o lle g e , who th r o u g h t h e i r e n co u ragem ent, i n t e r e s t , and p r o v i s i o n o f a s s i s t a n c e f a c i l i t a t e d th e e x e c u tio n o f th e r e s e a r c h ; D r. T e r r i l l D. S te v e n s , whose a d m i n i s t r a t i v e h e l p c o n t r i b u t e d to th e c o l l e c t i o n and assem bly o f f i e l d d a ta ; D r. Eugene P . W h ite s id e , who a id e d in mapping t h e s o i l s of th e e x p e r im e n t a l a r e a . D r. K irk Lawton, who gave in v a l u a b l e a d v ic e on c e r t a i n c h e m ic a l d e t e r m i n a t i o n s o f th e s o i l s ; D r. Lloyd M. Turk, whose c r i t i c i s m o f th e m i c r o b i o l o g i c a l s t u d i e s was i n e s t i m a b l e ; D r. S ta n a r d G. B e r g q u i s t and D r. W illia m B. Drew, whose s u g g e s tio n s and a d v ic e on th e g e o lo gy and b o ta n y o f t h e a r e a r e s p e c t i v e l y , c o n t r i b u t e d to th e e c o lo g ­ i c a l p h a s e s o f th e s tu d y ; D r. Edward D. D evereux, who p r o v id e d b a c t e r i a l media f o r t h e m i c r o b i a l d e t e r m i n a t i o n s ; and Dr. W illiam D* B a te n , who a d v is e d upon th e s t a t i s t i c a l a n a l y s i s of th e d a t a . The w r i t e r d e e p ly a p p r e c i a t e s th e f i n a n c i a l s u p p o rt o f f e r e d th ro u g h th e Alumni P r e - B o c t o r a l F e llo w s h ip , School of G raduate S t u d i e s , M ichigan S t a t e C o lle g e . The i n v e s t i g a t o r e x te n d s h i s s i n c e r e th a n k s to Mr. C. I n g e r s o l l A rn o ld , F o r e s t e r - i n - C h a r g e , Russ E x p e rim e n ta l F o r e s t , f o r h i s a s s i s t a n c e and p e r m i s s i o n to u se m a t e r i a l s and equipment on th e Russ F o r e s t , Cass C ounty, M ich ig an . To my w i f e , L o u e l l a Shipman, who c o n t r i b u t e d t o th e t y p in g of c e r t a i n p h a s e s o f t h e m a n u s c r ip t , g r a t e f u l acknowledgment i s g iv e n fo r her p a tie n t effo rt* The a u t h o r w is h e s t o e x p r e s s h i s s i n c e r e th a n k s to a layman, Mr* L o u is R. P o t t s , S u p e r in t e n d e n t o f S c h o o ls , M a r s h a ll County, West V i r g i n i a , u n d e r whose c o n tin u e d en cou ragem en t, i n s p i r a t i o n , and u n f a i l i n g i n t e r e s t t h i s i n v e s t i g a t i o n was c o m p le te d . R o b e rt Dean Shipman c a n d i d a t e f o r th e d e g re e o f D o c to r o f P h ilo s o p h y P i n a l e x a m in a tio n : D isse rta tio n : O c to b er 2 2, 195^* 2:00 P . M, Room 11, F o r e s t r y B u ild in g A S i l v i c a l Study o f C e r t a i n F a c t o r s C o n t r i b u t i n g to th e D i f f e r e n t i a l H e ig h t Growth o f P la n ta tio n - G r o w n T u lip P o p l a r ( L ir io d e n d r o n t u l i p i f e r a L .) O u tlin e of S tu d ie s : M ajor s u b j e c t : F o r e s t r y Minor s u b j e c t s : S o i l S c ie n c e , B otany B i o g r a p h i c a l Ite m s : B o rn , May 12, 1921, M o u n d s v ille , West V i r g i n i a U n d e rg ra d u a te S t u d i e s , S y rac u se U n i v e r s i t y , 1939“ ^2 , U n i v e r s i t y o f M ichigan, G ra d u a te S t u d i e s , U n i v e r s i t y of M ichigan, 19*+7-^9* M ichigan S t a t e C o lle g e , 1950-52 E x p e r ie n c e : Member; F o r e s t S o i l s R e se a rc h A s s i s t a n t , C h ild s -W o lc o tt F o r e s t , 19^-2; Member U n ite d S t a t e s Army A ir F o r c e , 19^2-A-6; P a rk F o r e s t e r , West V i r g i n i a , 19^7? A g r i c u l t u r a l A id e , U .S. F o r e s t S e r v i c e , 19^9; F o r e s t R e s e a rc h Ass i s t a n t , M ichigan S t a t e C o lle g e , 1950; G ra d u a te A s s i s t a n t , M ichigan S t a t e C o lle g e , 1950-5^1 G ra d u ate F e llo w , M ichigan S t a t e C o lle g e , 1951-52 Xi Sigma P i , R a t i o n a l F o r e s t r y H onorary; P h i E p s ilo n P h i , R a t i o n a l B o t a n i c a l H on o rary ; S o c ie ty of American F o r e s t e r s ; A merican F o r e s t r y A s s o c i a t i o n ; S o i l S c ie n ce S o c ie ty o f America A SILVICAX STUDY 05* CERTAIN FACTORS CONTRIBUTING TO THE DIFFERENTIAL HEIGHT GROWTH OF PLANTATION-GROWN TULIP POPLAR ( LIRIODENDRON TULIPIFERA L«) By R obert Bean Shipman AN ABSTRACT S ubm itted to th e School o f G raduate S tu d ie s o f M ichigan S ta te C o lleg e o f A g r ic u ltu r e and A p p lied Science in p a r t i a l f u l f i l l m e n t o f th e re q u ire m e n ts f o r th e degree of DOCTOR OF PHILOSOPHY D epartm ent o f F o r e s tr y Approved ABSTRACT A com prehensive s i l v i c a l s tu d y o f p la n ta tio n -g ro w n t u l i p p o p la r (L irio d o n d ro n t u l i p i f e r a L*) was conducted a t th e F red S uss E x p erim en tal F o r e s t i n Cass C ounty, M ichigan, d u rin g th e grow ing seasons 1951-52. T h is i n v e s t i g a t i o n In c lu d e d th e r e s u l t s o f b o th f i e l d and la b o r a to r y s tu d ie s i n an e f f o r t to d eterm in e th e s i l v i c a l req u ire m e n ts o f p l a n t a t i o n grown t u l i p p o p lar* A knowledge o f th e grow th h a b its o f t h i s s p e c ie s under th e c lim a tic c o n d itio n s o f so u th w estern M ichigan seemed a d v isa b le * In th e v i c i n i t y o f th e ex p e rim e n ta l a r e a th e re i s a la r g e number o f fa rm e rs and p r i v a t e la n d owners who a r e i n t e r e s t e d i n c o n v e rtin g abandoned farm la n d in to t r e e farm s a s a c o n tin u e d investm ent* S ince t u l i p p o p la r i s a d e s ir a b le s p e c ie s from th e s ta n d p o in t o f econom ical r e f o r e s t a t i o n , th e p r e s e n t stu d y was I n i t i a t e d to determ ine th e f e a s i b i l i t y o f recom­ mending t u l i p p o p la r p la n tin g s f o r such e n te r p r is e s * The r e s e a r c h work was c a r r i e d o u t on a 15 y e a r o ld -2 0 a c re t u l i p p o p la r - c a ta lp a p la n ta tio n * O b serv atio n o f th e t u l i p t r e e s i n t h i s p a r t i c u l a r p l a n t a t i o n r e v e a l a marked d i f f e r e n t i a l r a t e o f h e ig h t grow th on t r e e s o f th e same age and d e n sity * T his d if f e r e n c e i n h e ig h t grow th i s a s s o c ia te d w ith th e p re se n c e o f an o ld -g ro w th hardwood s ta n d a d jo in in g th e p l a n t a t i o n on th e so u th and west* The e x p e rim e n ta l a r e a was a r b i ­ t r a r i l y d iv id e d i n t o two d i s t i n c t s i t e s (A rea X and A rea Y) f o r r e s e a r c h p u rp o s e s . E daphlc ( p h y s ic a l and c h e m ic a l), m icro c li m a tic , and q u a n t ita t iv e s o i l m ic ro b io lo g ic a l d a ta were o b ta in e d a t th e same sam pling p l o t s i n b o th a re a s* The app ro ach to th e problem was to d eterm in e what f a c t o r o r s e t o f f a c t o r s were c o n tr ib u tin g to th e marked d i f f e r e n t i a l h e ig h t grow th o f p la n ta tio n -g ro w n t u l i p p o p la r . 2 L a b o ra to ry e x p erim e n ts on th e p h y s ic a l-e d a p h ic f a c t o r s o f th e two compared s i t e s , r e v e a le d o n ly two p r o p e r t i e s o f an a c tu a l and s t a t i s t i c a l l y s i g n i f i c a n t d iff e r e n c e * These two r e l a t e d f a c t o r s , th e amount o f f in e c la y and th e w a te r-h o ld in g c a p a c ity , were th e o n ly p h y s ic a l-e d a p h ic f a c t o r s w h ic h d i f f e r e d s i g n i f i c a n t l y betw een A rea X and A rea T. Ten p h y s ic a l- e d ap h ic p r o p e r t i e s were s tu d ie d i n d e t a i l and t r e a t e d s t a t i s t i c a l l y by a n a l y s i s o f v a ria n c e * The p h y s ic a l s o i l f a c t o r s in v e s tig a te d i n r e l a t i o n to h e ig h t grow th were s o i l t e x t u r e , s p e c i f i c g r a v i ty , volume w e ig h t, p o r o s i t y , h y g ro sc o p ic c o e f f i c i e n t , w a te r-h o ld in g c a p a c ity , m o istu re e q u iv a le n t, s o i l e v a p o ra tio n l o s s , depth o f l a t e r a l r o o t p e n e t r a tio n , and th e w a te r t a b l e f lu c tu a tio n * A s t a t i s t i c a l tre a tm e n t o f seven im p o rta n t ch em ical-ed ap h ic f a c t o r s in each a r e a in d ic a te d no o u ts ta n d in g a c t u a l o r s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e betw een th e a r e a s o f good and p oor h e ig h t grow th o f t u l i p p o p la r* F u r th e r v e r i f i c a t i o n of th e la c k o f an y chem ical s o i l d if f e r e n c e was s u b s t a n t i a t e d by a stu d y o f seven in d iv id u a l m ajor n u t r i e n t elem ents* A grow ing seaso n stu d y o f Beven m lc ro c lim a tic f a c t o r s in r e l a t i o n to s o i l f a c t o r s o f b o th a r e a s in d ic a te d in v i r t u a l l y e v ery case t h a t th e i n t e g r a te d elem en ts o f e v a p o ra tio n , r e l a t i v e h u m id ity , a i r te m p e ra tu re , s u rfa c e s o i l te m p e ra tu re , p e r c e n t a v a ila b le m o is tu re , and l i g h t i n t e n s i t y , were c lo s e ly r e l a t e d to th e marked d i f f e r e n t i a l h e i ^ i t grow th o f t u l i p p o p l a r , i n s o f a r a s th e s e f a c t o r s c o n d itio n e d th e s o il- m o is tu r e regimen* S upplem ental s tu d ie s on grow th r a t e s , sun s c a ld , b a rk th ic k n e s s , h erbaceous p l a n t s u c c e s s io n , and s o i l m ic ro b io lo g ic a l co u n ts f u r t h e r s u b s ta n tia te d th e e f f e c t o f m ic ro c lim a te on s o l 1 -m o istu re requirem ents* The co n tin u o u s s o il- m o is tu r e regim en th ro u g h o u t th e grow ing season R obert D. Shipman 3 was found to be th e p r i n c i p a l l i m i t in g f a c t o r c o n tr ib u tin g to th e marked d i f f e r e n t i a l h e i g h t grow th o f p la n ta tio n -g ro w n t u l i p p o p lar* R obert D. Shipman COHTENTS Page Acknowledgments X. II. III. IV. V. V I. V II. V III. IX. X. X I. S ta te m e n t o f th e P roblem 1 Review o f L i t e r a t u r e 7 H i s t o r y o f Russ F o r e s t and D e s c r i p t i o n o f E x p e rim e n ta l A rea 19 Scope o f E x p e rim e n ta l Work 144 S o i l Sam pling T echnique and S t a t i s t i c a l A n a ly s is o f D ata *+7 L a b o r a t o r y E x p erim en ts (Phys i c a l - E d a p h ic ) 51 A. Summary and I m p l i c a t i o n o f R e s u l t s B. Root P e n e t r a t i o n in R e l a t i o n to Edaphic F a c t o r s 101 C. W a te r-T a b le F l u c t u a t i o n and P h y s ic a l - E d a p h ic F a c t o r s 107 96 L a b o r a to r y E xp erim ents ( C hem ical-E daphic) 110 Summary and I m p l i c a t i o n of C hem ical-E daphic F a c t o r s 1^3 F i e l d - P l a n t a t i o n E x p erim ents 151 A. Growth R ate of T u lip P o p l a r 151 B. P r e c i p i t a t i o n and Tem perature in R e l a t i o n to Growth l6H C. R a d i a l Growth in A d jo in in g Hardwoods 17S D. S u n s c a ld i n R e l a t i o n to H e ig h t Growth 181 E. H erb aceo us V e g e ta tio n in R e l a t i o n to S o i l M o is tu r e 187 F. M i c r o c l i m a t i c F a c t o r s and H e ig ht Growth 198 S o i l M i c r o b i o l o g i c a l E x p erim en ts 212 Summary and C o n c lu sio n s 2^0 L i t e r a t u r e C ite d 2^6 A SILVICAL STUDY OF CERTAIN FACTORS CONTRIBUTING TO THE DIFFERENTIAL HEIGHT GROWTH OF PLANTATION-GROWN TULIP POPLAR (LIRIODENDRON TULIPIFERA L .) By R o b e rt Dean Shipman STATEMENT OF THE PROBLEM T u l i p P o p l a r ( L i r io dend r on t u l i p i f e r a L .) i s one o f th e most v a l u a b l e hardwood t r e e s from th e s t a n d p o i n t o f th e f o r e s t e r . A c co rdin g to Harlow ( 1 9 ^ 1 ) , t h i s s p e c i e s may r e a c h a maximum h e i g h t o f tw o-h u nd red f e e t w i t h a maximum d ia m e te r o f tw e lv e f e e t . The a v e r a g e - s i z e d o ld g ro w th t r e e i s a p p ro x im a te ly o n e -h u n d re d f e e t t a l l and f o u r to s i x f e e t in d i a m e t e r . The b o l e i s s t r a i g h t , t a l l , c l e a r o f s i d e b ra n c h e s f o r a c o n s i d e r a b l e d i s t a n c e above gro u nd l e v e l , and i n f o r e s t s ta n d s i t s u p p o r ts a r a t h e r n a rro w , open crown. I t s r o o t system i s u s u a l l y deep and w ide- s p r e a d in g and b e s t g row th i s o b t a i n e d on m o is t b u t w e l l - d r a i n e d s o i l s of lo o s e t e x t u r e and o f m oderate d e p th . I n o ld f o r e s t s ta n d s i t i s n e v e r v e ry a b u n d an t and o c c u r s u s u a l l y in m ix tu r e w ith o t h e r hardw oods. In M ich ig an , i t i s o f t e n a s s o c i a t e d w i t h b e e c h , m aple, basswood, b l a c k c h e r r y , and th e o a k s . Some s e e d i s p ro d u ced a n n u a l l y and th e minimum com m ercial se e d b e a r i n g age o f t h i s s p e c i e s i s f i f t e e n to tw e n ty y e a r s ; th e a v e r a g e g e r m in a tiv e c a p a c i t y is low (a b o u t 10 to 12 p e r c e n t ) . 1. S u b m itte d in p a r t i a l f u l f i l l m e n t of th e re q u ire m e n t f o r th e d e g re e o f D o c to r of P h ilo s o p h y to th e School of G ra d u a te S t u d i e s , M ichigan S t a t e C o lle g e o f A g r i c u l t u r e and. A p p lie d S c ie n c e . 2. Names and d a t e s r e f e r to " L i t e r a t u r e C i t e d . " 2 A n o th e r s i l v i c a l c h a r a c t e r i s t i c o f t h i s s p e c i e s i s th e d e c id e d i n t o l e r ­ ance o f t h e t r e e , end o f t e n i t w i l l n o t compete s u c c e s s f u l l y even w i t h th e o a k s . N a t u r a l s e e d l i n g s o c c u r most f r e q u e n t l y in abandoned f i e l d s o r o t h e r p l a c e s where a m in e r a l seed bed i s a v a i l a b l e and com peting v e g e ta tio n sp arse . S in c e t h i s s p e c i e s i s h i g h l y d e s i r a b l e a s a f o r e s t t r e e , w i t h i t s f a i r l y r a p i d grow th and o t h e r d e s i r a b l e s i l v i c a l c h a r a c ­ t e r i s t i c s , a t t e m p t s a r e b e in g made to grow and p l a n t l a r g e numbers o f se e d lin g s. B ecause o f i t s u t i l i t y f o r numerous wood p r o d u c t s , i t s low s u s c e p t i b i l i t y to s e r i o u s d i s e a s e s and i n s e c t s , t h i s s p e c i e s w i l l c o n tin u e to be a p o p u l a r one in r e f o r e s t a t i o n and p l a n t a t i o n e n t e r p r i s e s . I n s o u t h e r n M ich ig an , w hich r e p r e s e n t s t h e n o rth e rn m o s t l i m i t o f i t s r a n g e i n t h i s s t a t e , t u l i p p o p l a r has be en p l a n t e d i n s e v e r a l e x per­ im e n ta l f o r e s t s u n d e r v a r i e d s p a c in g c o n d i t i o n s and in b o t h p u r e and mixed p l a n t a t i o n s . One such e x p e r im e n t a l t u l i p p o p l a r p l a n t a t i o n i s l o c a t e d a t th e Russ E x p e rim e n ta l F o r e s t in V o l i n i a Township, Cass County, M ic h ig a n . The d i s s e r t a t i o n h e r e p r e s e n t e d d e a l s s p e c i f i c a l l y w i t h a 15 y e a r o ld - 2 0 a c r e t u l i p p o p l a r - c a t a l p a . p l a n t a t i o n on t h e Russ F o r e s t . T h is p l a n t a t i o n was e s t a b l i s h e d in o r d e r to o b s e rv e t h e g ro w th and s i l v i c a l r e q u ir e m e n ts o f t h i s s p e c i e s u n d e r th e e n v iro n m e n ta l c o n d i t i o n s o f s o u th w e s te r n M ich ig an , I t i s a w e ll known f a c t t h a t many o f th e abandoned a g r i c u l t u r a l s o i l s in t h i s a r e a a r e r e l a t i v e l y p o o r i n n u t r i ­ e n t s and so low in c o l l o i d s and o r g a n ic m a t t e r t h a t th e y p o s s e s s unde­ s i r a b l e p h y s i c a l and c h em ica l q u a l i t i e s f o r a g r i c u l t u r a l u s e . T u l ip p o p l a r t r e e s were p l a n t e d on t h e s e abandoned la n d s in o r d e r to o b s e rv e t h e m ag n itu d e of t h e s e a p p a r e n t d e f i c i e n c i e s w ith r e s p e c t to t r e e s , and to s tu d y th e re s p o n s e o f t u l i p p o p l a r to f a c t o r s o t h e r t h a n s o i l . 3 The f o l l o w i n g e c o l o g i c a l s tu d y on t u l i p p o p l a r has be en p ro p o s e d and c a r r i e d o u t in c o n j u n c t i o n w i t h and s u p p le m e n ta l to a r e s e a r c h s tu d y begun by t h e M ichigan A g r i c u l t u r a l Experim ent S t a t i o n u n d e r d i r e c t i o n of th e F o r e s t r y D epartm ent o f M ichigan S t a t e C o lle g e . As o r i g i n a l l y s e t u p , t h i s r e s e a r c h p r o j e c t was e s t a b l i s h e d to s tu d y o n ly t h e m i c r o c l i m a t i c and e d a p h ic f a c t o r s a f f e c t i n g th e r e s p o n s e end groiwth o f t u l i p poplar* on a 15 y e a r o l d - 20 a c r e p l a n t a t i o n . A l l d a t a c o n ce rn e d w ith t h e two above m e n tio n e d f a c t o r s a r e t h e p r o p e r t y o f A g r i c u l t u r a l E xperim ent S t a t i o n r e c o r d s and a r e to be u se d in t h i s d i s s e r t a t i o n as s u p p o r t i n g c r i t e r i a o n ly . S p e c if ic a l ly , th e se f i e l d d a ta r e f e r to seasonal reco rd s o f s o i l m o i s t u r e , r a t e o f e v a p o r a t i o n , r e l a t i v e h u m id ity , s o i l t e m p e r a t u r e , and a i r te m p e ra tu re . A l l o t h e r d a t a o f an edaphic., c l i m a t i c , o r b i o l o g i c a l n a .tu re , a s w e ll as i t s i n t e r p r e t a t i o n and a n a l y s i s , a r e t h e p r o p e r t y of th e i n v e s t i g a t o r . H e e d le s s to s a y , i n an e c o l o g i c a l s tu d y o f th e ty p e h e r e p r e s e n t e d , a l l f a c t o r s must be i n t e g r a t e d and w e ig h te d as t o t h e i r e c o l o g i c a l and s t a t i s t i c a l s i g n i f i c a n c e . H e igh t G-rowth D i f f e r e n t i a l I t h a s be en o b s e rv e d t h a t t r e e s of t u l i p p o p l a r in t h i s p a r t i c u l a r p l a n t a t i o n show marked d i f f e r e n t i a l r a t e s o f h e i g h t g ro w th on t r e e s o f s i m i l a r ag e and d e n s i t y ( F i g s . 1 and 2 ) . An a tte m p t is h e re b y made to a s c e r t a i n th e e x t e n t o f th e c au se o r c a u s e s f o r t h i s marked v a r i a t i o n in h e i g h t g ro w th . I t i s th e c o n t e n t i o n of th e a u th o r t h a t i f t h e s e v a r i ­ a b l e s can be i s o l a t e d and p ro v e n s i g n i f i c a n t from an e c o l o g i c a l end s i l v i c a l v ie w p o in t, th e n t h e s e f i n d i n g s may become a p p l i c a b l e to f u t u r e p l a n t a t i o n s of t u l i p p o u l a r on t h i s and r e l a t e d a r e a s . The answer would k F i g . 1. A view showing t h e marked d i f f e r e n t i a l h e i g h t grow th o f t u l i p p o p la r. I n t h e fo r e g r o u n d , th e d im in u ti o n i n h e i g h t g row th can he o b s e rv e d . I n th e b ack g ro u n d , s o u th o f th e p l a n ­ t a t i o n p r o p e r , i s Woods HB " , an o ld grow th mixed-hardwood f o r e s t . T re e s a d j a c e n t to th e woods a r e !§■ - 2 tim e s th e h e i g h t o f th e t r e e s n o r t h o f th e woods in th e same p l a n t a t i o n . Note th e b a s a l s p r o u t i n g o f t u l i p t r e e s in th e immediate f o r e g r o u n d . F ig . 2. T h is view o f th e e x p e r im e n ta l p l a n t a t i o n shows th e g r a d a t i o n in h e i g h t g row th p r o c e e d in g from th e o ld g ro w th woods i n t h e back­ g ro u n d t o t h e t u l i p t r e e s i n t h e f o r e g r o u n d . Note t h e t u l i p t r e e s in immediate fo r e g r o u n d which were "drowned o u t" a s a r e s u l t o f e x ce ssiv e s o i l m o istu re . 6 m a t e r i a l l y a i d t h e f a r m e r in t h i s r e g i o n and p r o v i d e a sound in v e stm e n t f o r c o n v e r t i n g abandoned l a n d to f o r e s t p l a n t a t i o n s in s o u th w e s te r n M ic h ig a n , I n o r d e r to expand and s tu d y t h i s problem more c o m p re h e n s iv e ly , a n o t h e r p h a s e o f th e o v e r a l l a n a l y s i s was added, With th e c o n s e n t o f th e F o r e s t r y D epartm ent o f M ichigan S t a t e G o lie g e , i t was deemed a d v i s a b l e to c a r r y o u t a s tu d y to i n v e s t i g a t e some o f th e s o i l b i o l o g i c a l f a c t o r s t h a t m igh t be in v o lv e d in th e d i f f e r e n t i a l h e i g h t g ro w th . T his p h a s e o f th e s tu d y w i l l a tte m p t t o d e te rm in e i f any d i r e c t c o r r e l a t i o n e x i s t s betw een th e numbers o f organism s in th e s o i l and th e o t h e r f a c t o r s b e in g s t u d i e d by th e F o r e s t r y D e p artm en t. No a tte m p t w i l l be made to a s c e r t a i n a l l of t h e b i o l o g i c a l i n t e r p r e t a t i o n s as r e l a t e d to th e d i f f e r e n c e in h e i g h t g ro w th . The m i c r o b i a l p h a se o f th e s tu d y w i l l r e s t r i c t i t s e l f to th e i n v e s t i g a t i o n o f th e q u a n t i t a t i v e m i c r o f l o r a o f th e sam pling a r e a s . T h is p o r t i o n o f t h e d i s s e r t a t i o n w i l l a tte m p t to p l a c e m i c r o b i o l o g i c a l s t u d i e s i n su ch a p e r s p e c t i v e as to d e m o n s tra te th e e c o lo g y o f th e s o i l o rg a n ism p l a n t community a s r e l a t e d t o th e f o r e s t e r ' s c o n c e p t o f s i t e q u a l i t y . r e s u l t s o f t h i s i n v e s t i g a t i o n from i t s i n c e p t i o n in May 1951 1952 form th e b a s i s f o r t h i s s t u d y . The Septem ber 7 REVIEW OP LITERATURE That toil ip p o p l a r ( L i r io d e n d ro n t u l i p i f e r a L .) is a r a th e r c r i t i c a l and. e x a c t i n g s p e c i e s w ith r e g a r d to i t s s i t e r e q u ir e m e n ts h a s been d e m o n s tr a te d by v i r t u a l l y a l l r e s e a r c h w ork ers s tu d y in g th e s i l v i c a l re q u ir e m e n ts o f t h i s s p e c i e s . T u l i p p o p l a r h a s been l i s t e d by numerous w r i t e r s a s b e i n g an i n t o l e r a n t t r e e , p r i m a r i l y w ith r e s p e c t to i t s l i g h t re q u ire m e n ts. More r e c e n t r e s e a r c h by th e p r e s e n t i n v e s t i g a t o r and o t h e r s shows t h a t t u l i p p o p l a r must be c o n s id e r e d i n t o l e r a n t w i t h c e r t a i n q u a lific a tio n s. S p e c i f i c a l l y , t h i s s p e c i e s v a r i e s in i t s d e g re e of i n t o l e r a n c e th r o u g h o u t i t s p h y s i o l o g i c a l g ro w th and de v elo p m en t. For exam ple, young t u l i p p o p l a r must have a c e r t a i n amount o f l i g h t in e a r l y l i f e , b u t n o t to o much, and in more m ature days a l l th e l i g h t i t can g e t . Thus, i n d i s c u s s i n g th e s i l v i c a l re q u ir e m e n ts o f t h i s s p e c i e s w i t h s p e c i a l r e f e r e n c e to p l a n t a t i o n g ro w th and s u r v i v a l , i t would a p p e a r t h a t th e f o r e s t e r w ould p r o f i t by u n d e r s ta n d in g i t s r e q u ir e m e n ts a t v a r i o u s s t a g e s o f c o n tin u in g grow th r a t h e r th a n a t a f i x e d s t a g e of m a tu rity . L i t e r a t u r e p e r t a i n i n g to t h e s p e c i f i c ty p e of d i s s e r t a t i o n h e r e p r e s e n t e d i s n o t v o lu m in o u s. F o r t h i s r e a s o n , t h e i n v e s t i g a t o r h as sou g ht t o f i n d and r e v ie w in f o r m a t io n which b e a r s p r i n e i p a J . l v upon p e r i p h e r y s t u d i e s r e l a t e d to th e p r e s e n t t h e s i s . Those s t u d i e s c l o s e l y r e l a t e d to t h i s i n v e s t i g a t i o n a r e p r e s e n t e d f i r s t and s u p p le m e n ta l s t u d i e s fo llo w . C ra ib (1929) made e x h a u s tiv e a n a l y s e s o f s o i l m o is tu r e in th e open and i n th e f o r e s t a t Keene, New H am pshire. He fo u n d t h a t in d ry p e r i o d s s th e s o i l s i n open s i t u a t i o n s c o n t a i n c o n s i d e r a b l y more m o is tu r e th a n th e f o r e s t s o i l s , "based upon e i t h e r volume o r w eig ht d e t e r m in a tio n s * T his means t h a t th e l o s s o f w a te r th ro u g h th e combined a c t i o n of t r a n s p i r a t i o n and e v a p o r a t i o n in t h e f o r e s t exceeds t h a t in th e open. F orest s o ils were fou n d to become p r o g r e s s i v e l y d r i e r w ith i n c r e a s e in d e p th , d e s p i t e th e f a c t t h a t th e t r e e r o o t s were c o n c e n t r a t e d l a r g e l y i n th e s u r f a c e la y e r s * I n th e o pen, d u r in g v e r y d ry p e r i o d s , more m o is tu r e i s fo un d i n th e s ec o n d 10 c e n t i m e t e r s o f s o i l t h a n in th e f i r s t . T his i s due to th e d r y in g e f f e c t o f th e e x p o su re o f th e f i r s t l a y e r t o sun and x^rind. He fo u n d th e m o i s t u r e c o n t e n t o f th e s u r f a c e l a y e r in th e two a r e a s te n d e d to b e e q u a l . I n t h i s l a y e r th e h ig h l o s s o f m o is tu r e by t r a n s p i r a t i o n i n t h e f o r e s t te n d s to be e q u a l i z e d by an e q u a l l y h ig h l o s s o f m o is tu r e by e v a p o r a t i o n in th e open. His work i s c o r r e l a t e d w ith th e t r e n c h i n g e x p e r im e n ts o f Tourney ( 1 9 2 9 ) . S te w a r t (1933) c o n d u c te d a s tu d y to g iv e a p i c t u r e o f th e m ajor p h y s i c a l , c h e m ic a l, and b a c t e r i o l o g i c a l d i f f e r e n c e s betx^een th e v a r i o u s g ro u p s o f f o r e s t and p a s t u r e a s s o c i a t i o n s . He s t u d i e d s o i l p r o f i l e s in t h e f i e l d , d e te r m in e d p e r m e a b i l i t y o f s o i l s in th e f i e l d , and c o n d u cte d o t h e r p h y s i c a l and c h e m ic a l s o i l i n v e s t i g a t i o n s . The b a c t e r i o l o g i c a l work c o n s i s t e d o f t h e d e t e r m i n a t i o n o f t h e amounts o f and formed a f t e r s t o r a g e , c o u n ts on A z o to b a c te r and th e p r e s e n c e o r a b se n c e o f legume o rg a n is m s . A u te n (19^5) c o n d u c te d a s t u d y on 77 n a t u r a l , s e c o n d -g ro w th y e llo w p o p l a r s ta n d s v a r y in g i n age from 12 to 6 l y e a r s in T e n n e ss e e , K entucky, O hio, I n d i a n a , and I l l i n o i s , f o r th e p u rp o s e o f s e t t i n g v a lu e s on s o i l p r o p e r t i e s and to p o g r a p h ic f e a t u r e s as a g u id e i n p r e d i c t i n g s i t e q u a l i t y 9 f o r y e llo w p o p la r . He e s t a b lis h e d the f a c t th a t th e depth o f in c o r p o r a tio n o f o rg a n ic m atter in th e su r fa c e s o i l h o rizo n a ffo r d s a u s e fu l c r i t e r i o n o f th e s i t e in d ex . I f th e depth o f in c o r p o r a tio n (A^ h orizon ) i s l e s s than one in c h , t u l i p poplar* does not show s a t i s f a c t o r y developm ent; average or b e t t e r s i t e s f o r y e llo w p op lar occur where depth o f th e A-^ h o rizo n i s th re e in ch es or more. Auten found the depth to t ig h t s u b s o il was a b e tt e r c r i t e r i o n o f s i t e in d ex f o r t u l i p p o p la r . The p resen ce o f a t ig h t s u b s o il l e s s than tw e n ty -fo u r in ch es below the s u r fa c e r e s u lt s in p oorer than average s i t e s . P o o r e st growth o f t u lip p op lar was observed on r id g e s and exposed s i t e s . W ithin the range o f s o i l s s tu d ie d , he found no c o r r e la tio n betw een s i t e of s o ils . index and cs,lcium , magnesium, phosphorus, and potassium co n ten t A lso s i t e index m s not r e la t e d to r e a c tio n (pH v a lu e) o f the s o i l o f any h o r iz o n . Prom 190S to 1919 P n g le r (1919) co n d u cted e x p e rim e n ts on s o i l d e n s i t y , p o re s p a c e , w a t e r - h o l d i n g c a p a c i t y , w a te r c o n t e n t , p e r m e a b i l i t y and evapo­ r a t i o n , c o r r e l a t i n g i n each c a s e t h e e f f e c t o f t h e f o r e s t on t h e f a c t o r in q u e stio n . A f t e r an e x h a u s tiv e e l e v e n - y e a r s tu d y , H ngler c o n c lu d e d t h a t t h e combined l o s s o f w a te r from t r a n s p i r a t i o n and e v a p o r a t i o n from open s o i l s ex ce e d s t h a t from f o r e s t s o i l s , t h u s mailing th e f o r e s t e x e r t a b e n e f i c i a l i n f l u e n c e on th e w a te r re g im e n . F o r t h i s r e a s o n he c o n c lu d e s t h a t more m o is tu r e i s fo u n d in f o r e s t s o i l s d u r in g d r y p e r i o d s o f summer th a n i s fo u n d in s i m i l a r open s o i l s . These r e s u l t s were s i m i l a r to s t u d i e s made by B u rg e r ( 1 9 2 3 ) w ith t h e e x c e p tio n t h a t B u rg e r fo u n d t h a t , d u r in g th e d r i e s t p e r i o d s o f th e summer months, t h e f o r e s t s o i l c o n s i s t e n t l y m a in ta in e d a low er w a te r c o n te n t th a n s i m i l a r a g r i c u l t u r a l o r meadow s o i l s . T h i s , he s t a t e s , i s due to th e h ig h r a t e o f w a te r l o s s th ro u g h t r a n s p i r a t i o n by th e f o r e s t . 10 The work o f E ngler has been r e fu te d and c o n tr a d ic ts th e work o f v a rio u s in v e s t ig a t o r s such as Ebermayer (1 8 8 9 ). Burger (1923)* and Halden ( 1926) . These l a t t e r in v e s t ig a t o r s found th a t th e f o r e s t e d a rea s co n ta in ed co n sid ­ era b ly l e s s m oistu re than th e open areas during th e growing season* Halden (1926) a ls o found th a t both in the open and in th e f o r e s t th e su r fa c e la y e r i s th e more m o is t, bu t during p e r io d s of drought t h is d is t r ib u t io n in th e open may be r e v e r se d . McCarthy (1933) p o in ts out th a t th e r e are many in d ic a tio n s in th e ob served b eh avior o f younger t u l i p p op lar t r e e s , th a t in e a r ly youth the s p e c ie s must have adequate l i g h t and m o istu re . In a d d itio n to t h i s , t u lip p o p la r must be fa v o r e d by c lim a te , both in p r o te c tio n from extrem es of tem perature and a ssu ran ce o f a rea so n a b ly lo n g growing sea so n . I n d ic a tio n s of th e e f f e c t of c lim a te are found in in ju r y to th e th in bark o f young tr e e s through sun s c a ld s , which have been noted by McCarthy in southern In d ia n a . In i t s extreme sou th ern range, y e llo w pop lar grows o n ly on m oist s i t e s where i t is p r o te c te d from extrem e d ry in g . McCarthy was unable to determ ine to what d egree tem perature i s a fa c to r in grow th. McCarthy p o i n t s o u t t h a t good g ro w th o f t u l i p p o p l a r on sandy s o i l s , a s on th e Cumberland P l a t e a u o f T e n n e s s e e , a p p e a rs to be s u i t a b l e o n ly i f f r e e from e x c e s s i v e d r y i n g . He s t a t e s t h a t t h r i f t y t r e e s a r e n e v e r fou nd on v e ry d r y o r v e r y wet s o i l s ; t h e t r e e i s c h a r a c t e r i s e d by b e in g v e ry e x a c t i n g in s o i l - m o i s t u r e r e q u i r e m e n t s . He found t h a t th e i n f l u e n c e o f c h em ica l c o m p o sitio n o f s o i l on th e g ro w th of p o p l a r i s a p p a r e n t l y s l i g h t ; i t grew w e ll on s o i l s h ig h in lim e and on th o s e d e f i c i e n t in lim e . McCarthy o b s e r v e s t h a t d ry s i t e c o n d i t i o n s a r e r e f l e c t e d in a marked r e d u c t i o n o f g row th r a t e and l o v e r d e n s i t y o f n a t u r a l s t a n d s . On s te e p h i l l s i d e s y e llo w 11 p o p la r w ill d ista n ce o f t e n e x h i b i t a marked d i f f e r e n c e in h e i g h t g ro w th w i t h i n a o f 50 f e e t up o r down t h e s l o p e . He p o i n t s o u t t h a t marked d i f f e r e n c e s in h e i g h t and d ia m e te r grow th may o c c u r on e ro d e d f i e l d s , w ith t r e e s o f th e same a g e . The r a t e o f d i a ­ m e te r g ro w th o f y e llo w p o p l a r i s d e te rm in e d by th e s i z e o f t h e crown formed and r e t a i n e d by t h e t r e e . I f a g o o d ly p o r t i o n o f th e t o t a l h e i g h t i s o c c u p ie d by t h e crown, th e t r e e w i l l grow r a p i d l y i n d ia m e te r , b u t t h e b o le w i l l t a p e r v e r y s h a r p l y w i t h i n t h e crown. S h i r l e y (1929) in d i s c u s s i n g t h e h e i g h t and d ia m e te r g ro w th o f t r e e s sta te s, nlow l i g h t i n t e n s i t i e s s t i m u l a t e h e i g h t g ro w th a t th e expense o f d ia m e te r grovvrth, to p grow th a t t h e expense o f r o o t grovrth, l e a f a r e a dev­ elopm ent a t th e exp en se o f l e a f t h i c k n e s s , and s u c c u le n c e a t th e expense o f s t r e n g t h and s t u r d i n e s s . A c co rd in g t o T a y lo r (1917) t u l i p p o p l a r i s e x a c t i n g i n i t s s o i l , m o i s t u r e , and l i g h t r e q u i r e m e n t s . y e t m o ist. I t demands a s o i l t h a t i s w e ll d r a in e d L ig h t san d s and heavy c l a y s a r e u n f a v o r a b le to i t s grow th. T u l ip p o p l a r w i l l n o t t h r i v e in th e sh a d e ; i f o v e rto p p e d f o r a s h o r t tim e by o t h e r t r e e s i t soon d i e s . The c l e a n , smooth t r u n k i s e v id e n c e t h a t i t c an n o t t o l e r a t e sh a d e . Tourney and K o r s t i a n (1937) made th e o b s e r v a t i o n t h a t a v a i l a b l e w a te r and e v a p o r a tio n work t o g e t h e r in c a u s in g d i f f e r e n c e s in gro w th form. p ira tio n i s a p h y s i o l o g i c a l p r o c e s s d e te rm in e d f a c t o r s . The e x t e r n a l f a c t o r s a r e e v a p o r a tio n T ran s­ by b o th e x t e r n a l and i n t e r n a l which i n f l u e n c e s p a r t s above g ro u n d , and a v a i l a b l e s o i l w a te r which in f l u e n c e s t h e p a r t s below g ro u n d . E v a p o r a tio n th u s by a f f e c t i n g s o i l c o n d i t i o n s , a l s o i n f l u e n c e s t h e p a r t s o f t r e e s below th e s u r f a c e . 12 A c o r r e l a t i o n a p p e a r s to e x i s t "between h e i g h t grow th o f t r e e s and a v a i l a b l e w a te r s u p p ly . A d e c r e a s e in th e w a te r r e q u ir e m e n ts f o r optimum g ro w th r e s u l t s in a r a p i d f a l l i n g o f f in h e i g h t growth* e s p e c i a l l y d u r in g t h e grow ing s e a s o n . T h in s o i l s i n which t h e r e i s a s c a n t y su p p ly o f m o is tu r e d u r in g th e growing s e a s o n p ro d u c e t r e e s o f low h e i g h t f o r th e s p e c i e s ( C o i l e , 1 9 3 5 )- Dry s o i l and h i g h e v a p o r a t i o n c a u s e t r e e s to assume a c h a r a c t e r i s t i c s t u n t e d g ro w th . H ic o ck , Morgan, L u tz , B u ll and L unt (1931) s t u d i e d th e r e l a t i o n s h i p be­ tween s o i l ty p e and v e g e t a t i o n on f o u r e x p e r im e n ta l t r a c t s , a g g r e g a t i n g 210 a c r e s in C o n n e c t i c u t . Woody v e g e t a t i o n was c h a r t e d on t r a n s e c t s and t h e h e rb a c e o u s v e g e t a t i o n s t u d i e d by means o f q u a d r a t s . C o r r e l a t i o n o f a g iv e n t r e e s p e c i e s w ith a s p e c i f i c s o i l ty p e was l a r g e l y u n s u c c e s s f u l . By c l a s s ­ i f y i n g t h e s o i l s i n t o f o u r b ro a d g ro u p s on th e b a s i s o f m o is tu r e c o n d i t i o n s , some c o r r e l a t i o n was e v i d e n t . T u l ip p o p l a r formed l e s s th a n one p e r c e n t o f th e t o t a l and t h r e e p e r c e n t o f th e p r i n c i p a l s t a n d . I t was found t o some e x t e n t on a l l b u t th e d r i e s t s o i l s , b u t was most abundant on s o i l s h a v in g a h ig h m o istu re c o n te n t. P o p l a r was n o t fo u n d on muck, and i t seemed to show a marked p r e f e r e n c e f o r t h e h e a v i e r w e l l - d r a i n e d s o i l s . D a ta o b t a i n e d by t h e s e i n v e s t i g a t o r s i n d i c a t e t h a t th e s lo w ly d r a i n e d s o i l s s u p p o r t a g r e a t e r number o f b o th s p e c i e s and i n d i v i d u a l s o f h e rb a c e o u s and shru bb y p l a n t s th a n t h e r a p i d l y d r a i n e d s o i l s . A tte m p ts were l a r g e l y u n s u c c e s s f u l in u s in g p l a n t s a s i n d i c a t o r t y p e s , e x c e p t in b ro a d s o i l d i v i s ­ io n s b a se d upon s o i l - w a t e r r e l a t i o n s . They found m eso ph ytic s p e c i e s on th e slo w ly d r a i n e d loams and x e ro -m e s o p h y tic p l a n t s on th e more r a p i d l y d r a i n e d and d r i e r s o i l s . The g e n e r a l l a c k o f c o r r e l a t i o n betw een c e r t a i n p l a n t s and s o i l ty p e s was p o s s i b l y due to th e f a c t t h a t th e g e n e r a l e x c e l l e n c e o f c l i m a t i c f a c t o r s may com pensate to some e x t e n t f o r p o v e r ty of c e r t a i n s o i l c o n d i t i o n s . 13 T h is would "be p a r t i c u l a r l y t r u e w i t h i n r a t h e r n arrow l i m i t s o f s o i l v a r i a t i o n . K ie n h o lz (19^-1) s t u d i e d th e s e a s o n a l c o u rs e o f h e i g h t g row th in c e r t a i n hardwoods i n C o n n e c t i c u t , The s e a s o n a l c o u rs e o f h e i g h t g ro w th o f t r e e s , f i r s t y e a r s p r o u t s , and second y e a r s p r o u t s was m easured d u r in g f o u r grow­ in g s e a s o n s . Most o f t h e s p e c i e s s t a r t e d h e i g h t gro w th l a t e in A p r i l o r v e r y e a r l y May; t h e r e was a s u r p r i s i n g l y l i t t l e d i f f e r e n c e "between th e d i f f e r e n t s p e c i e s examined in th e tim e o f s t a r t i n g g row th . K ie n h o lz g ro up ed t h e hardwoods i n t o two main c l a s s e s on t h e b a s i s o f t h e i r s e a s o n a l h e i g h t gro w th b e h a v i o r . The seco n d c l a s s i s r e p r e s e n t e d by g ra y and w h ite b i r c h ; s c a t t e r e d m easurem ents i n d i c a t e d t h a t t u l i p p o p l a r has s i m i l a r g ro w th c u r v e s . Growth f o r s p e c i e s a l l i e d to t u l i p p o p l a r s t a r t e d in l a t e A p r i l , r o s e g r a d u a l l y t o a p e a k o f maximum grow th in m id -Ju n e , f e l l o f f g r a d u a l l y t o c e a s e i n m id-A ugust — a grow ing s e a s o n o f 110 d a y s . N in e ty p e r c e n t o f th e h e i g h t g ro w th was co m p le ted in a bo ut 60 days from May 20 to J u l y 20. The s e a s o n a l p r o g r e s s o f g ro w th was g r a p h i c a l l y shown by p l o t t i n g a v e ra g e d a i l y in c re m en t in m i l l i m e t e r s a g a i n s t w eekly p e r i o d s . The curve o f g ro w th o f any g i v e n s p e c i e s was q u i t e s i m i l a r from y e a r to y e a r , e s p e c i a l l y th e tim e o f r e a c h in g th e p e ak o f most r a p i d g row th . D i l l e r ( 1930 ) c o n d u cte d an i n v e s t i g a t i o n on t h e r e l a t i o n o f te m p e r a tu r e and p r e c i p i t a t i o n to th e g row th o f b e ec h i n n o r t h e r n In d ia n a . He d e te rm in e d t h e a v e ra g e a n n u a l r i n g w id th f o r t e n dominant b e ec h t r e e s in e ach o f sev en beec h -m a p le woodlands f o r th e p e r i o d 1913-1933• From h i s r e s u l t s , y e a r l y v a r i a t i o n s in th e w id th o f a n n u al r i n g s f o r a 2 0 - y e a r p e r i o d were i n v e r s e l y c o r r e l a t e d w ith th e a v e r a g e te m p e r a tu r e f o r th e month o f J u n e . Y e a rly v a r ­ i a t i o n s i n th e w id th of th e a n n u a l r i n g s f o r t h e same p e r i o d were c o r r e l a t e d d i r e c t l y in c e r t a i n woodlands w ith th e t o t a l p r e c i p i t a t i o n f o r th e month o f Ik J u n e a t s t a t i o n s n e a r e s t th e woodlands s t u d i e d . D i l l e r fo u n d t h a t in most c a s e s , d r o u g h t y e a r s showed t h e i r e f f e c t s on g ro w th t h e f o l l o w i n g y e a r p r o b a b ly due t o an a cc u m u la te d d e f i c i e n c y in s o i l m o i s t u r e , w hereas wet y e a r s showed an i n c r e a s e in g row th t h e same y e a r . He s u rm is e s t h a t i f t h i s p e r i o d o f d ro u g h t y e a r s c o n tin u e s o v e r an e x ten d e d p e r i o d t h e r e p r o b a b ly would be a g r a d u a l r e t r o g r e s s i o n o f t h e b e ech-m ap le ty p e w ith t h e c o rre s p o n d ­ in g ad van ce o f th e oak-m aple and o a k - h ic k o r y f o r e s t t y p e s . Bogue ( 1905 ) d e te r m in e d th e a v e ra g e w id th o f th e a n n u a l r i n g s o f k2 t r e e s n e a r L a n s in g , M ich ig an , f o r th e y e a r s 1%92 and 190^ and fo u n d a c o r r e l a t i o n betw een p r e c i p i t a t i o n and w id th o f a n n u al r i n g s . He s t a t e s t h a t an a b n o rm a lly l a r g e o r sm a ll an n u al p r e c i p i t a t i o n i s e v id e n c e d by th e t r e e g ro w th t h e f o l l o w i n g y e a r . S te w a r t ( 1 9 1 3 ) compared th e w id th o f a n n u a l r i n g s o f an oak stump a t York, Hew Y ork, w ith w e a th e r r e c o r d s a t R o c h e s te r , 25 m ile s n o r t h . G reater c o r re s p o n d e n c e was fo u n d betw een v a r i a t i o n s in r a i n f a l l f o r June and J u l y and r i n g w id th t h a n betw een r a i n f a l l f o r th e e n t i r e grow ing s e a s o n and r i n g w id th . P e a r s o n (1918) compared t h e a n n u al h e i g h t g row th o f P o n d e ro s a P in e s a p l i n g s and th e p r e c i p i t a t i o n f o r v a r i o u s p e r i o d s . p re c ip ita tio n He fo u n d t h a t s p r i n g ( A p r i l and May) was a p p a r e n t l y th e c o n t r o l l i n g f a c t o r . F a c to rs r e f l e c t i n g th e a tm o s p h e r ic c o n d i t i o n s i n c lu d in g e v a p o r a tio n showed a c l o s e , tho u g h n o t c o n s i s t e n t , r e l a t i o n to h e i g h t gro w th . The h e i g h t grow th v a r i e d i n v e r s e l y w ith th e te m p e r a t u r e p ro b a b ly b e ca u se o f th e in f l u e n c e of tem per­ a t u r e on t r a n s p i r a t i o n and t h e r e f o r e on th e r e l a t i v e w a te r s u p p ly . A r e c e n t s tu d y by Tryon and Myers (1952) shows t h a t p e r i o d i c p r e c i p i t a t i o n th ro u g h o u t th e summer months (May 1 to June 3$) f o r a l o c a l i t y in West V i r g i n i a , was h i g h l y c o r r e l a t e d w ith w id th o f a n n u al r i n g f o r t u l i p p o p l a r . Hine t u l i p 15 p o p l a r t r e e s i n th e co -d o m in a n t and dom inant c r o w n - e la s s e s were examined f o r r a d i a l g ro w th by means o f in c re m en t c o r e s f o r t h e p e r i o d 1929 to 19 ^ 9 * E e su lts i n d i c a t e d a b e t t e r r e l a t i o n s h i p betw een r a d i a l g ro w th and p r e c i p i t a t i o n d u r in g May 1 t o Ju n e 3^» t h e e a r l y p o r t i o n o f t h e grow ing s e a s o n , th a n f o r th e p e r i o d most n e a r l y c o v e r in g th e e n t i r e grow ing s e a s o n , May 1 to August 31* C o r r e l a t i o n c o e f f i c i e n t s f o r th e f i r s t p e r i o d was 0 .6 7 5 and t h a t o f t h e l a t t e r 0 .5 5 9 - Growth r i n g b o r in g s on t r e e s ta k e n on o t h e r s p e c i e s in th e s t a n d showed no a p p a r e n t c o r r e l a t i o n w ith p r e c i p i t a t i o n , i n d i c a t i n g t h a t t h e s e s p e c i e s a r e l e s s s e n s i t i v e to low s o i l m o is tu r e th a n t h e y e llo w p o p l a r . M in c k le r (19^-1, 19^3) r e p o r t e d on f i r s t - y e a r s u r v i v a l o f t u l i p p o p l a r on o l d - f i e l d p l a n t a t i o n s i n t h e G re at A p p a la c h ia n V a lle y . S e e d lin g s o f 1-0 s t o c k o f t u l i p p o p l a r were p l a n t e d on o n e - f o u r t h a c r e e x p e r im e n ta l p l o t s , each p l o t c o n t a i n i n g 297 t r e e s . A n a ly s is o f t h e d a t a was b a se d upon p e r ­ c e n ta g e s u r v i v a l p e r p l o t a t th e end o f t h e f i r s t grow ing s e a s o n . Three s o i l t y p e s , two s lo p e a s p e c t s and two grow ing s e a s o n s were u s e d a s c r i t e r i a f o r su rv iv a l. M in c k le r fo u n d t h a t in a v e r y d ry y e a r , t u l i p p o p l a r gave o n ly f a i r s u r v i v a l on lim e s to n e s o u th s lo p e s and f a i l e d e n t i r e l y on s h a l e s o u th slo p es. White p i n e was much l e s s a b l e to t o l e r a t e heavy v e g e t a t i v e comp­ e t i t i o n t h a n was y e llo w p o p l a r . M o r t a l i t y c aused by d ro u g h t was g r e a t e s t f o r t u l i p p o p l a r on s h a l e and l im e s to n e s o u th s l o p e s . When a l l s o i l t y p e - a s p e c t c l a s s e s were c o n s i d e r e d t o g e t h e r , a s h and xiralnut c o n s t i t u t e d th e h i g h e s t s u r v i v a l g ro u p , y e llo w 1 p o p l a r was sec o n d , and w h ite p i n e and s h o r t l e a f p in e were t h i r d . The im p o rtan c e o f th e c o n d i t i o n o f th e B s o i l h o r iz o n was i l l u s t r a t e d by th e f o l l o w i n g com p arison s on v a r i o u s s i t e s . On f r i a b l e , p l a s t i c , and s t i f f B h o r i z o n s , y e llo w p o p l a r mean h e i g h t g ro w th i n two y e a r s was 2 . 5 , 1.5» a^d 0 .8 f e e t r e s p e c t i v e l y . These r e s u l t s show t h e re s p o n s e o f 16 h e i g h t g ro w th to c o n d i t i o n of re d u c e d r a i n f a l l on y e llo w p o p l a r i s much g r e a t e r on s o i l s w i t h a r e l a t i v e l y h a r d and im perv io us B h o r i z o n ; t u l i p p o p l a r showed b e t t e r g ro w th on n o r t h e r l y th a n on s o u t h e r l y s l o p e s . In g e n e r a l , t h e h e i g h t g ro w th of t u l i p p o p l a r was r e l a t e d to d e p th o f th e A s o il h o riz o n . F o r y e llo w p o p l a r , 35 p l a n t a t i o n s w ith an A h o r iz o n d e p th o f s e v e n in c h e s o r o v e r grevr 30 p e r c e n t more th a n Ul com parable p l a n t a ­ t i o n s w i t h a c o r r e s p o n d in g d e p th of l e s s th a n sev e n in c h e s . B in e p l a n ­ t a t i o n s on s i t e s abandoned s i x y e a r s o r more grew 1*5 f e e t a s compared w i t h O.g f e e t on ^1 p l a n t a t i o n s l o c a t e d on s i t e s abandoned l e s s t h a n s i x years. The d r y - y e a r p l a n t i n g s o f y e llo w p o p l a r showed a marked r e d u c t i o n in g ro w th as compared to w e t- y e a r p l a n t i n g s . Yellow p o p l a r d r y - y e a r p l a n t i n g s grew a s w e ll as w e t- y e a r p l a n t i n g s on f r i a b l e s o i l , b u t o n ly 62 p e r c e n t and 36 p e r c e n t a s w e ll r e s p e c t i v e l y on p l a s t i c and s t i f f s o i l s . P e a r s o n (1930) a tte m p te d to a s c e r t a i n w h ether t h e u p p e r f o o t o f s o i l a c t u a l l y becomes d r i e r un der o r n e a r g ro up s of t r e e s , th a n in open s i t u a ­ tio n s. H is r e s u l t s were o b ta in e d a t th e S o u th w e ste rn F o r e s t E xperim ent S ta tio n . He found i n e v e ry i n s t a n c e t h a t t h e r e was more m o is tu r e a t d e p th s o f s i x and tv /elv e in c h e s un d er th e t r e e g ro u p s th a n j u s t o u t s i d e th e crowns to t h e e a s t o r w e s t. Shade and l e a f l i t t e r p ro b a b ly e x p l a i n th e h i g h e r m o is tu r e c o n t e n t u nd er th e t r e e s . P e a rs o n c o n clu d e d t h a t in f o r e s t s o f th e S o u th w e s t, h e a t a p p e a rs to be s c a r c e l y l e s s im p o r ta n t t h a n m o istu re . S o i l m o is tu r e i s a c r i t i c a l f a c t o r in th e e a r l y l i f e of seed­ l i n g s i n t h e S o u th w e s t, b u t a f t e r t h e r o o t s have p e n e t r a t e d a f o o t or more t h e e f f e c t s o f d e f i c i e n t m o is tu r e a r e m a n if e s t e d more in slow grow th th a n i n a c t u a l d e a t h . 17 K ozlo w sk i (19^9) s t u d i e d th e e f f e c t s o f s h a d in g on a p p a r e n t p h o to ­ s y n th e s is f o r s e e d lin g s of t u l i p p o p la r. I n o r d e r t o t e s t th e e f f e c t o f re d u c e d l i g h t i n t e n s i t y on th e p h o t o s y n t h e t i c c a p a c i t y of t u l i p p o p l a r , s e e d l i n g s o f t h i s s p e c i e s were grown u n d e r c h e e s e c l o t h sh ad es a t f i v e d iff e r e n t lig h t in te n sitie s* P h o to sy n th e tic r a t e s o f t u l i p p o p la r, e x p r e s s e d a s m illi g r a m s o f C0? p e r s q u a r e d e c im e te r o f f o l i a g e p e r h o u r, were d e te r m in e d and a n a ly z e d s t a t i s t i c a l l y from a L a t i n s q u a re arrangem ent* An a n a l y s i s o f v a r i a n c e i n d i c a t e d no r e a l d i f f e r e n c e s c o u ld he a t t r i b u t e d to t h e s h a d in g p r e t r e a t m e n t a lon e* P h o t o s y n t h e t i c r a t e s o f y e llo w p o p l a r shoved no s i g n i f i c a n t d i f f e r e n c e s betw een sh ade grown and l i g h t grown groups. He found t h a t y e llo w p o p la r re a c h e d a v e r y h ig h p e r c e n t a g e o f p h o t o s y n t h e s i s a t low l i g h t i n t e n s i t y . The e f f e c t o f l i g h t i n t e n s i t y was s t a t i s t i c a l l y s i g n i f i c a n t f o r p i n e and r e d m aple, b u t n o t f o r t u l i p p o p la r. E l l i o t t (1915) p o i n t s o u t t h a t tw o -y e a r s e e d l i n g s grew as w e ll as c o u ld be e x p e c te d f o r th e f i r s t y e a r i n an open f i e l d b o rd e re d on one end and a lo n g i t s two s i d e s by v i r g i n f o r e s t s which c a s t a shadow o v er t h e b o r d e r o f th e f i e l d . At th e end o f th e f o u r t h y e a r p r a c t i c a l l y a l l were dead e x c e p t th o s e e n jo y in g th e shade o f th e a d j a c e n t f o r e s t ; th e c o n d i t i o n o f th o s e i n p a r t i a l shade v a r i e d in th e r a t i o o f t h e i r n e a r n e s s to t h e f o r e s t ; th e p l a n t s in th e rows n e x t to t h e woods b e in g f a r th e b e s t . E l l i o t t s u rm is e d t h a t th e " f o r e s t f l o o r " had som ething to do w ith th e re su lt. Ho m a t t e r how e x a c t i n g f o r l i g h t th e t u l i p t r e e may be when p e s t th e age o f i t s in f a n c y , i t can have to o much l i g h t and s u n s h in e in i t s e arly l i f e . He s u g g e s t s r e d p in e or European l a r c h as " n u rse t r e e s " f o r 18 t u l i p p o p l a r p l a n t a t i o n s , s e t o u t ©, few y e a r s b e f o r e th e t u l i p t r e e s to g iv e th e n eed ed s h a d e , t h e s e to be p l a n t e d in a l t e r n a t e rows o r a l t e r ­ n a t e l y i n th e ro w s. in t h i n n i n g . I f p u re t u l i p i s d e s i r e d , remove th e n u r s e t r e e s E l l i o t t say s t h a t young t u l i p p o p l a r must have a c e r t a i n amount o f l i g h t i n e a r l y l i f e , b u t n o t too much, and in l a t e r l i f e a l l th e l i g h t t h e y can g e t . 19 HISTORY OF RUSS FXPHRIMMTAL F0R3ST The sam plin g a r e a u n d e r c o n s i d e r a t i o n r e p r e s e n t s a f o r e s t p l a n t a ­ t i o n i n Cass County, s o u th w e s te r n M ich ig an, which was p l a n t e d to t u l i p p o p l a r "by Mr. F r e d Russ in 193&* u s in g h a n d - p l a n t i n g m ethods. The Russ F o r e s t o f 5 SO a c r e s was d o n a te d to M ichigan S t a t e C o lleg e in 19^2 hy Mr. F r e d Russ o f C a s s o p o lis , M ichigan. I t in c lu d e s most o f th e a r e a f o r m e r l y known as th e Newton Farm, an e a r l y government l a n d g r a n t to th e Newton f a m ily in whose hands t h e p r o p e r t y rem ain ed f o r 99 y e a r s . Some 220 a c r e s a r e co v ered w ith m ature tim b e r and 320 a c r e s a r e in p la n ta tio n s. An e x t r a c t from th e d i a r y o f Mr. F re d R uss, d o n o r, i s q u o te d a s f o l l o w s : " I n J u n e , 1935» 1 bought a c r e s o f th e Newton Farm — known a s th e Newton Woods. There were a b o u t 2^0 a c r e s o f woods on th e p a r t I b o u g h t. Soon a f t e r th e purcha.se I d e c id e d to p l a n t th e n o r t h h a l f of th e s o u t h e a s t q u a r t e r s e c t i o n 29 to T u l i p s . This SO a c r e s had ab o u t e i g h t a c r e s o f young t r e e s m o s tly Beech and Maple i n th e s o u th w e s t c o r n e r . The r e s t o f t h e la n d had been r u n q u i t e b a d l y . I t was la n d where T u l ip s grew n a t u r a l l y and th e SO a c r e s j u s t s o u t h o f i t has some o f th e l a r g e s t T u l ip s in t h i s p a r t o f M ich ig an . The w a te r l e v e l on t h i s la n d i s a b ou t s i x f e e t below th e s u r f a c e . I t i s a s i l t sand w ith some c l a y in t h e s u b s o i l . I t was p r o b a b ly a la k e bottom a t one t i m e . " The l a t t e r p o r t i o n of th e above d i a r y e x t r a c t r e f e r s to t h e a r e a in which th e p r e s e n t i n v e s t i g a t i o n was c a r r i e d o u t . With th e excep­ t i o n o f Mr. R u s s 1 d i a r y and s e v e r a l p e r s o n a l a c c o u n ts g iv e n bj?" l o c a l r e s i d e n t s , th e in f o r m a t io n c o n c e rn in g t h i s p l a n t a t i o n i s r a t h e r s c a n t . The o n ly o t h e r in f o r m a t io n r e l a t i v e to th e grow th and c o n d i t i o n of t h i s p l a n t a t i o n i s a s u r v i v a l and g ro w th s tu d y made in 19^9 by 20 Mr* C. I n g e r s o l l A r n o ld , F o r e s t e r , Russ F o rest.3 T his s tu d y i s r e s t r i c t e d to h e i g h t and d i a m e t e r m easurem ents and e x t e n t o f s u r v i v a l f o ll o i- ’ing p a th o lo g ic a l in ju ry . No a tte m p t was made in th e above r e p o r t to d e t e r ­ mine th e c au se o r c a u s e s f o r d i f f e r e n c e s in h e i g h t grovrth, o t h e r th a n sp ec u la tio n . 3. A rn o ld , C. I n g e r s o l l . E a r ly S u r v i v a l , Growth, and D is e a s e in T u l ip Tree P l a n t a t i o n s in S o u th e rn M ich ig an . U n p u b lish ed m a n u s c r ip t . M ichigan S t a t e C o lle g e , J a n u a r y , 19^9* 21 DESCRIPTION OP EXPERIMENTAL AREA, A l l d e s c r i p t i v e d a t a f o r th e p l a n t a t i o n •under c o n s i d e r a t i o n as v e i l as i n f o r m a t i o n on t h e hardwood f o r e s t a d j a c e n t to th e e x p e r im e n ta l a r e a r e f e r to a 15 y e a r o ld -2 0 a c r e mixed t u l i p p o p l a r - c a t a l p a p l a n t a t i o n (P ig . 3 ) . T h is a r e a l i e s w i t h i n t h e Gray-Brown P o d z o lic s o i l g rou p of s o u th w e s te r n M ich ig an . The to p o g ra p h y i s m a in ly l e v e l o r g e n t l y undu­ l a t i n g w i t h an e l e v a t i o n o f a p p r o x im a te ly 900 f e e t above s e a l e v e l . The e x p e r im e n t a l a r e a c o n s i s t s o f an outw ash p l a i n and o t h e r sandy d r i f t of g la c ia l o rig in . The s o i l was form ed from sand and g r a v e l d e p o s i t e d by w a te r i s s u i n g from t h e i c e b o r d e r betw een th e in n e r and o u t e r r i d g e s of th e Kalamazoo M o ra in e. b o u ld e rs or s to n e s . S o i l s in t h i s a r e a a r e g e n e r a l l y f r e e from l a r g e The s o i l s on th e e x p e r im e n ta l p l o t a r e a c i d v a r i a n t s o f t h r e e r a t h e r c l o s e l y r e l a t e d s o i l ty p e s , th e Pox sandy loam, Warsaw sandy loam , and B ronson sandy loam (Map 1 ) . In i s o l a t e d s p o t s , loam o r c la y e y loam may o v e r l i e t h e g r a v e l l y s u b s o i l as a r e s u l t of p a s t m ixing o f t h e p r o f i l e by p lo w in g . The a r e a i s d r a i n e d by m eandering D ovagiac Creek and t h e o v e r a l l d r a in a g e i s m oderate t o good, w ith th e e x c e p tio n o f s e v e r a l d e p r e s s i o n s p o t s . D e tailed p r o f i l e d e s c rip tio n s o f each s o i l ty p e a r e in c lu d e d f o r r e a d y r e f e r e n c e to ed ap h ic and m ic ro b ia l r e la tio n s h ip s . The f i e l d s in q u e s t i o n had be en h e a v i l y farm ed f o r many y e a r s p r i o r to t h e t u l i p p o p l a r p l a n t i n g . Very l i t t l e a t t e n t i o n had b e en g iv e n to r e b u i l d i n g t h e s o i l w i t h f e r t i l i z e r of any t y p e . As a r e s u l t , t h e s o i l s v e re so d e p l e t e d t h a t f o r th e l a s t few y e a r s p r i o r to t h e d is p o s a l, o f th e 22 MAP 1 . S O IL S MAP OF THE PLANT AT I ON-GROWN T U L IP POPLAR EXPERIMENTAL AREA WITH IT S CORRESPONDING SOIL BOUNDARIES N B r a d y s a n d y lo a m a c id v a ria n t LEGEND: ' B ronson s a n d y lo a m a c id v a ria n t A IV W W arsaw l o a m a c id v a ria n t A III Fox s a n d y lo a m a c id v a ria n t AI A II -A - c lim a tic S ta tio n S c a le : l" = 220' 23 li&flYiLLOW POPLAR ^ L IR IO D fN O R O N T U U P IF B * * - L Sr H ,f 8 p | \ N T f f i BY M R. R U S S IN I f t 8 _ tm 1 F ig . 3 . A g e n e r a l view o f th e e x p e r im e n ta l a r e a lo o k in g s o u th w e s t. T his p h o to was t a k e n A p r i l 19, 1952, p r i o r to "budding o f th e t r e e s . Note t h e a b se n c e o f c u l t i v a t i o n betw een rows and th e e x t e n t o f fo rest l i t t e r . T h is p a r tic u la r * p o r t i o n o f th e 15 y e a r o l d - 20 a c r e p l a n t a t i o n i s d e s i g n a t e d as A rea l,Y", o r th e a r e a o f po o r h e i g h t g ro w th. MAP NO. l a 2k MAP OF THE PROBLEM AREA AND ADJOINING LANDS c o o Z c o Q m CD Z s o Z -o «*: c o ,r> Q c -2 cl I © 0 5 i I w <1 i i t ' PQ % O CM «*> it — « o V) © © a- o O ft) CL J tn u_ O- C — to u w JS CL '~ n Q_ — O’ -O U fa a c k-XJ Q (0 (0 - ~ CL |2 < a ? UJ * O ^ c O £ 4& C re cl C “D O — CL V o ,r 25 p r o p e r t y "by th e o r i g i n a l owner, t h e le n d was u n a b le to p ro d u c e p a y in g cro p s, “Wheat and c o rn were th e two c h i e f c ro p s grown, and no th o u g h t was g i v e n to c ro p r o t a t i o n o r s o i l e n r i c h i n g a g e n t s . Where th e s o i l had n e v e r be en u s e d f o r a g r i c u l t u r a l p u r p o s e s , t h e to p s o i l was a. r i c h , b l a c k , s a n d y - c l a y loam o c c u r r i n g a s a rem nant o f th e o l d p r a i r i e o f s o u th w e s te r n M ich ig an . I n 193$» tw en ty a c r e s o f t u l i p p o p l a r were p l a n t e d on t h e Sg- of N-Jr o f SBy o f Sec 29, T^S, RlUw, Oass County, M ich igan. These t r e e s were home grown by Mr. Russ and p l a n t e d in th e s p r i n g . T ree s were s e t l ^ ' S ’1 a p a r t w ith s t a g g e r e d rows 7 ,^ n a p a r t , and c u l t i v a t e d th e f i r s t year o n ly . year. T here was a v e ry low m o r t a l i t y o f young s e e d l i n g s th e f i r s t In 1939» c a t a l p a t r e e s were p l a n t e d in rows betw een t h e t u l i p p o p l a r and were n o t c u l t i v a t e d . g ro w th and s u r v i v a l . These t r e e s have s i n c e shown v e ry p o o r By O c to b e r, 19^1, th e t u l i p p o p l a r t r e e s were m o s tly f o u r f e e t to e i g h t f e e t t a l l w ith some o f them tw e lv e f e e t or m ore. The f i r s t , t h i r d , f i f t h , and s e v e n th rows a c r o s s th e n o r t h end o f t h e p l a n t a t i o n were grown from see d ta k e n from t h e l a r g e t u l i p p o p l a r s o u th o f th e p l a n t a t i o n . The t o t a l number o f t u l i p t r e e s l i v i n g and dead in t h e e n t i r e tw e n ty a c r e s i s £ft-63» o r *4-23 t r e e s p e r a c r e . R e fe re n c e to Maps l a and 2 - g i v e an a c c u r a t e d e s c r i p t i o n o f th e e x p e r im e n ta l a r e a and th e a d j a c e n t hardwood s t a n d . An a e r i a l p h o to g ra p h ( F i g . h) ta k e n in 1950 has been in c lu d e d t o show t h e f o r e s t c o v e r and s u rro u n d in g la n d . The 15 y e a r o ld -2 0 a c r e p l a n t a t i o n ru n n in g 660' e a s t - w e s t and 1320' n o r t h - s o u t h i s b o r d e r e d by a d e n s e , m a tu re , mixed hardwood f o r e s t l o c a t e d n o r t h , s o u t h , and w est o f th e p l a n t a t i o n . Those t u l i p p o p l a r t r e e s which a r e p l a n t e d c l o s e to th e f r i n g e o f Woods A, B, and C (waps l a and 2) a r e 26 one and. o n e - h a l f to two tim e s t h e a v e r a g e h e i g h t o f t r e e s o f t h e same a g e, d e n s i t y , and same p l a n t a t i o n f u r t h e r removed from t h e woods (T a b le 1 ) . The a v e r a g e d ia m e te r g row th i s one and o n e - h a l f tim e s g r e a t e r on t r e e s l o c a t e d c l o s e t o t h e o ld - g r o w th vn od s. This o b s e r v a t i o n of th e d i f f e r ­ ence in h e i g h t g ro w th th u s n e c e s s i t a t e s th e e s ta b lis h m e n t o f a l i n e to d i s t i n g u i s h t u l i p t r e e s l y i n g i n s i d e and o u t s i d e t h i s l i n e . k The " i n f l u e n c e l i n e " i s u sed to d e s i g n a t e p o s s i b l e cau se from e f f e c t . T his term was s e l e c t e d in o r d e r to a v o id any p r e s u p p o s i t i o n as to t h e s o u rc e o f th e c a u se f o r re d u c e d o r in c r e a s e d h e i g h t g ro w th on o p p o s i t e s i d e s o f th e " i n f l u e n c e l i n e . " Having e s t a b l i s h e d th e f a c t from o b s e r v a t i o n t h a t th e d i f f e r e n c e in h e i g h t grow th is s t r i k i n g l y marked, th e term " in c id e n c e " was s e l e c t e d to d e n o te a cau se o r s e t o f c au ses f o r t h i s d i f f e r e n c e , b u t n o t y e t v e r i f i e d by i n v e s t i g a t i o n . ^ A c c o rd in g ly , f o u r s t r a i g h t - l i n e t r a n s e c t s were ru n (two in each c a r d i n a l d i r e c t i o n ) in o r d e r to t a l l y th e h e i g h t s and d ia m e te r s of t u l i p t r e e s along t h e s e t r a n s e c t s (Map 2 ) . Some c r i t e r i a was n eed ed to d e s c r i b e t h e s e t r a n s e c t s in term s o f b o th i n f l u e n c e and in c i d e n c e , and f o u r c l a s s e s o r d e g re e s o f in c id e n c e were s e t up f o r e ach t r a n s e c t i n t a b u l a r form (T ab le 1 ) . 4. In t h i s s t u d y , t h e " i n f l u e n c e l i n e " of th e woods i s u se d to d e n o te an e f f e c t o r r e s u l t , so as to p r e c l u d e any p re s u p ­ p o s i t i o n of i t s cau se o r c a u s e s . 5. The te rm , " i n c i d e n c e , " i s used t o d e n o te some c a u s a l f a c t o r or se t of fa c to rs . These c a u s e s mar be in term s o f p r o t e c ­ t i o n o f f e r e d by t h e woods, such as s h a d in g , re d u c e d tem per­ a t u r e , re d u c e d e v a p o r a t i o n , o r re d u c ed wind, v e l o c i t y . 27 MAP NO. 2 a2 2 nfl W V > C O oo o c\j UJ c ci> Ul -0 c 0 "0 i-+- 0>1 c H 00 <0 i 1 l 1 t 4-V ■3 *5 V E v» V c H I 2 rv u in c o VO u 2 I 28 TABLE 1. INCIDENCE CRITERIA T ransect Number A verage H e ig h t i n R e l a t i o n t o " I n f l u e n c e " L in e D i r e c t i o n and E x te n t o f I n c id e n c e Along T r a n s e c t O u ts id e In sid e 1 ^ 7 .0 ± ^ . 2 * 2 3 .5 ± S . 5* From SW p l u s no in c id e n c e 2 3 6 . 0 ± lH .O ' 2 5 .0 i 8.3 * From S and SW 3 2 3 .0 ± 7 .1 ' 1 7 .1 t 6.11 No in c id e n c e N, S, and E (some in c id e n c e W) if 2 8 .0 ± 9 *2 ' 1 9 .0 i 2.5' I n c id e n c e S p l u s no in c id e n c e from S A verage 3 3 .5 1 s . 6 * 1 9 .8 ± 6 . 3 ' U sing t h e above in c id e n c e c r i t e r i a as a "basis, th e a v e r a g e h e i g h t s and d ia m e te r s a s w e ll a s th e h e i g h t s and d ia m e te r s o f i n d i v i d u a l t r e e s were p l o t t e d to show t h e e f f e c t s of p r e s e n c e o r a b se n c e of woods on o p p o s i t e s i d e s o f th e " i n f l u e n c e l i n e , " I n a d d i t i o n , p r o f i l e diagram s were p l o t t e d to s c a l e in o r d e r to f u r t h e r b r i n g o u t th e r e l a t i o n s h i p o f th e in c id e n c e c r i t e r i a u s e d , and t h e a p p a r e n t e f f e c t o f t h i s in c id e n c e . The s ta n d a r d d e v i a t i o n was computed f o r h e i g h t and d ia m e te r in a l l f o u r t r a n s e c t s on b o th sid es of th e " in flu e n c e l i n e . " F o r p u r p o s e s of s i m p l i f i c s . t i o n and f u r t h e r r e f e r e n c e to t h e two a r e a s s e p a r a t e d by th e " i n f l u e n c e l i n e , " two d i s t i n c t p o r t i o n s of th e experim en­ t a l a r e a e x i s t ass AREA X - The a r e a e x h i b i t i n g good h e i g h t g ro w th , l i t t l e o r no s u n s c a l d , good d ia m e te r g ro w th, and l y i n g a d j a c e n t to Woods A and B. ( F i g s . U-, 5> a &d 6 ) . AREA Y - The a r e a e x h i b i t i n g p o o r h e i g h t gro w th , extrem e s u n s c a ld w ith su b se q u e n t wind b r e a k a g e , p o o r d ia m e te r g ro w th , end o c cup yin g a p o s i t i o n in th e c e n t e r of th e p l a n t a t i o n d i s t a n t from th e o ld -g r o w th woods. (F ig s. 3, and 7 ) . 29 P i g . H. An a e r i a l p h o to g ra p h ta k e n August 10, 1950, showing t h e e x p e r im e n ta l p l a n t a t i o n and a d j a c e n t m a tu re , mixedhardwood f o r e s t . A w h ite arrow d e s i g n a t e s th e r e c t a n g u l a r 20 - a c r e e x p e r im e n t a l p l o t . X s A rea o f good h e i g h t grow th Y - A rea o f p o o r h e i g h t grow th N * W S c a le : E 1" = 750* 30 G r a p h ic a l R e p r e s e n t a t i o n o f Pour S t r a i g h t - L i n e T r a n s e c t s TaJcen in th e E x p e rim e n ta l A rea ** ** T r a n s e c t number d e s i g n a t i o n s c o rre s p o n d to th e same t r a n s e c t s shown on Map 2. 31 TRANSECT NO. 1 100 I n f lu e n c e L in e 80 H t . 60 In Feet 40 T u lip P o p la r 20 PROFILE DIAGRAM ALONG A SOUTH TO NORTH TRANSECT SHOWING INCIDENCE FROM SOUTHWEST PLUS NO INCIDENCE |<----------------------------------- /3 2 0 ' TRANSECT NO. 2 100 I n f lu e n c e L in e 80 O ld G r o w th H a rd w o o d H t . 60 In Feet 40 T u lip P o p la r 20 PROFILE DIAGRAM ALONG A WEST TO EAST TRANSECT SHOWING INCIDENCE FROM SOUTH AND SOUTHWEST ^ £20 ' >\ TRANSECT NO. 1 SD = Standard D e v ia tio n 32 ir\r*"\ CO r-I p p CO CO <0 CO O K\ . cr* o U ir \ r— • • K\K\ 3 5 5 S P * *• in nj 3* E O fu INFLUENCE LINE 0 © © 10 V* o & ft O^ 8> 4> pq o WP 10 »d «S r-t W O o in o -n o\j < o Q * JfflOIHH p r a Hffa o A HEIGHT - DIAMETER TRANSECT OF INDIVIDUAL TREES IN RELATION TO DISTANCE FROM OLD GROWTH HARDWOOD »d cvj AN HEIGHT - A •6 A rH ^° - U © •P (=» o sC IS o o SOUTH O ALONG NORTH TRANSECT O R ELA TIO N SH IP WITH TREES o DIAMETER nj AVERAGE OF THE SAME AGE 33 TRANSECT N O . 1 3^ fig . 5 . A view ta k e n in A rea X (good h e i g h t g ro w th ) . The a v e ra g e d ia m e te r o f t u l i p p o p l a r i n t h i s a r e a i s 6 .3 in c h e s w ith an a v e r a g e h e i g h t o f ^7-0 f e e t . Note t h e o ld g row th hardwood (Woods ,,Att) in t h e "background a d j o i n i n g t h e p l a n t a t i o n . 35 TRANSECT NO. 2 ctf > © p 'd 3 4^ at C~•\ © o P 3 H /i § o >fr O QD o M Q) O V VS ^q^TOH puu HSa o ■v 36 TRANSECT NO . 2 <0 3 « K\ »d o> 3 d If "J Ul o ** o o 0 M>* c!? 'd 'd r-« (fl s o o <0 r\J J im UT JiH O IK H 'O vS> AN AVERAGE HEIGHT - DIAMETER RELATIONSHIP ALONG A WEST TO EAST TRANSECT WITH TREES OP THE SAME AGE S3 § 37 F ig . 6 . A t y p i c a l view o f A rea X lo o k in g n o r t h w e s t . The c a t a l p a t r e e i n t e r p l a n t i n g shows v e r y p o o r g ro w th . Compare t h e l e a f l i t t e r on t h e f o r e s t f l o o r w ith t h e l i t t e r shown in F ig . 3* T h is photo was ta k e n in A p r i l , 1952, p r i o r to budding o f th e t r e e s . Uo su n s c a l d i s o b s e r v a b le in t h i s a r e a . 38 TRANSECT NO. 3 20 T u lip P o p la r 15 H t. 10 in Feet 5 PROFILE DIAGRAM ALONG A WE3T TO EAST TRANSECT SHOVING- ABSENCE OF INCIDENCE N, S , AND E . TRANSECT NO. 4 100 I n f lu e n c e L in e O ld G ro w th H a rd w o o d 80 H t. in Feet 60 40 T u lip P o p la r 20 PROFILE DIAGRAM ALONG A SOUTH TO NORTH TRAN3E SHOWING INCIDENCE FROM SOUTH PLUS NO INCIDENC K- >1 Old Growth Hardwood TRANSECT NO. 3 JEOISH Pi*13 HHQ ko TRANSECT NO. 3 O EAST <\i TO 0) «H r-t +* u © - © (0 *H r-t «*» 8-5 ft. a (0 ftH •H (1| X to *©©,£ HT in TT AN O K'v *d r-t AVERAGE HEIGHT o SAME THE OF ALONG to R ELA TIO N SH IP 1 TREES to © DIAMETER o ro WITH •H Pn A GE A WEST m Q *r 4 TRANSECT §• 5 bi A view taken in th e a rea o f poor h e ig h t growth (Area Y ). Sunscald i s o b serv a b le on th e t u lip p op lar to th e r ig h t o f th e p h o to . Note th e dark p a tch es appearing as burns; th e s e are mats o f Haircap Moss (Polytrichum commune H edw.). The t u lip poplar in t h is area e x h ib it s e x te n s iv e sprout growth from the base o f th e t r e e s ; t h i s abn orm ality i s th e r e s u lt o f su n sca ld and tr e e c r ic k e t a c t i v i t y . The average h e ig h t o f tr e e s in t h is area is 17.1 f e e t w ith an average diam eter o f 3 i nches . k2 £ o tr\ +2 Cj > CD R dt-t TEANSECT NO. k •rt o at *d P ct -*-> C/3 R C/3 * I c - Ov xr\VD LO ;zi H P PI WW Oj - St ©o o • • <4 O M <0 -* CVi a] • «S . m d +» Q a> W R o o e £ t*0 CD *► > rH - 4 fn < p M O CS O o puu HSQ Q d a3 US A = ■e R > ts O f-i P d rH O R J2J P3 o TRANSECT NO. k SI J 1H 0 I 3H 44 SCOPE OF EXPERIMMIEAL WOBK The s tu d y s.s o r i g i n a l l y c o n c e iv e d "by t h e F o r e s t r y D epartm ent in J u n e , 1951» d e v is e d to measure th e e d a p h ic and a tm o s p h e ric f a c t o r s w i t h i n th e t u l i p p o p l a r p l a n t a t i o n . D uring t h e summer o f 1951 f o u r sample p l o t s w ere e s t a b l i s h e d a s c l i m a t i c s t a t i o n s . Two o f t h e s e s t a t i o n s were l o c a t e d on t h e s o u t h and w est s i d e s of th e p l a n t a t i o n b o rd e re d by woodland where t h e t r e e s e x h i b i t th e g r e a t e s t h e i g h t g row th ; th e re m a in in g two s t a t i o n s were l o c a t e d n e a r th e c e n t e r o f th e p l a n t a t i o n where th e t r e e s show l i t t l e h e i g h t g ro w th . Measurements ta k e n d a i l y by t h e F o r e s t r y D epartm ent th r o u g h o u t two grow ing s e a s o n s b e g in n in g in 1951 were th e fo llo w in g : ( l ) a tm o s p h e ric f a c t o r s , end (2) e d a p h ic f a c t o r s . The f i r s t o f t h e s e f a c t o r s in c lu d e measurement o f th e e v a p o r a tio n r a t e by u s e o f th e L i v i n g s t o n atm om eter b u lb ; a i r te m p e r a tu r e and r e l a t i v e h u m id ity by u s e o f t h e h y g ro th e rm o g rap h and s l i n g p s y c h r o m e te r . The e d a p h ic f a c t o r s s t u d i e d were s o i l m o is tu r e by u se o f Bouyoucos s o i l - m o i s t u r e b lo c k s a t d e p th s o f s i x and e i g h t e e n in c h e s r e s p e c t i v e l y ; s o i l te m p e r a tu r e was ta k e n d a i l y u s in g a s o i l therm om eter a t a one in c h d e p th below th e s o i l s u r f a c e . The f i e l d d a t a on th e above f a c t o r s was measured d a i l y where p o s s i b l e . A lth o u g h o t h e r s o i l p h y s i c a l d e t e r m in a tio n s were p ro p o s e d in th e o r i g i n a l p l a n o f th e F o r e s t r y D ep artm en t, th e a c t u a l c o l l e c t i o n and a n a l y s i s o f t h e s e d a t a were l e f t to th e p r e s e n t i n v e s t i g a t o r . The f o l l o w ­ ing d e t e r m i n a t i o n s on t h e p h y s i c a l - e d a p h i c f a c t o r s a r e th e j o i n t p r o p e r t y o f th e F o r e s t r y D epartm ent and th e p r e s e n t a u t h o r : ( l ) P h y s i c a l d e t e r ­ m in a tio n s, in c l u d i n g t o t a l , c a p i l l a r y , and n o n - c a p i l l a r y p o r o s i t y , volume w e ig h t, maximum w a te r - h o ld in g c a p a c i t y , s p e c i f i c g r a v i t y , m o is tu re ^5 e q u i v a l e n t , h y g ro s c o p ic c o e f f i c i e n t , s o i l e v a p o r a t i o n , and a mechanical, a n a ly sis, F u r t h e r f a c t o r s in c lu d e ( 2 ) chem ica l d e t e r m i n a t i o n s such a,s o r g a n i c m a t t e r c o n t e n t , pH, t o t a l n i t r o g e n , C/il r a t i o , "base exchange c a p a c i t y , e x c h a n g e a b le hy d ro g e n , t o t a l b a s e s , and t h e n u t r i e n t c o n te n t of in d iv id u a l h o riz o n s. To g i v e g r e a t e r co m p reh en siv en ess and scope to t h e p r o j e c t , th e f o l l o w i n g b i o l o g i c a l d e t e r m i n a t i o n s were deemed a d v i s a b l e : ( l ) Micro­ b i o l o g i c a l d e t e r m i n a t i o n s , which were in c lu d e d to show q u a n t i t a t i v e s o i l o rg a n ism d i f f e r e n c e s f o r b o th th e a r e a o f good h e i g h t grow th (A rea X) and p o o r h e i g h t grow th (A rea Y) w ith r e f e r e n c e t o : a . D epth o f s o i l h o r iz o n b . Seasonal v a r ia tio n in m i c r o b i a l c o u n ts c . The pH in r e l a t i o n to m ic r o b ia l c o u n ts d . M o is tu r e c o n te n t in r e l a t i o n to abundance o f organ ism s e . The numbers o f f u n g i , b a c t e r i a , and a c tin o m y c e te s as r e l a t e d t o t h e e co lo g y o f each a r e a . I n o r d e r t o o b s e rv e th e e f f e c t s o f th e h e rb a c e o u s v e g e t a t i o n upon m i c r o b i a l and e d a p h ic f a c t o r s , a s y s t e m a t i c g r i d sam pling o f th e l e s s e r v e g e t a t i o n was t a l l i e d and p h o to g ra p h e d th ro u g h o u t th e growing s e a so n as an in d e x t o t h e s u c c e s s i o n o f f l o w e r i n g tio n to th e p o ssib le c o rre la ­ s o i l m o i s t u r e c o n te n t o f each h a b i t a / t . O b s e r v a tio n o f t h e stems o f a t i o n show p l a n t s and t h e i r t u l i p t r e e s in th e c e n t e r of th e p l a n t - t h a t t h e s e t r e e s have extrem e s u n s c a ld damage. In ord er to 6 . The term " s u n s c a ld " as u sed h e r e r e f e r s to damage r e s u l t i n g from an extrem e d e g re e o f f l u c t u a t i o n in te m p e r a tu r e on th e young b a r k . T his damage may be th e r e s u l t o f combined d e s i c c a t i o n e f f e c t s and r e p e a t e d p a s s i n g back and f o r t h th ro u g h th e f r e e z i n g po i n t . ^6 s tu d y t h e e f f e c t and e x t e n t o f t h i s damage to t h e p l a n t a t i o n , a com plete stem anaJLysis o f i n d i v i d u a l t r e e s was made as w e ll as m a cro sc o p ic c r o s s s e c t i o n s o f damaged t r e e s , so as to e x h i b i t th e e x t e n t , d a t e o f s u n s c a ld , and i t s p o s s i b l e r e l a t i o n s h i p to h e i g h t and d ia m e te r grow th o f th e s t a n d . To o b t a i n t h e t o t a l scope o f th e e c o l o g i c a l problem a d d i t i o n a l d a t a were o b t a i n e d on (a ) d e p th to t h e w a te r t a b l e th ro u g h o u t t h e s e a s o n (b) k i n d and e x t e n t o f f o r e s t l i t t e r (c ) c o n c e n t r a t i o n and p o s i t i o n o f r o o t s in t h e s u r f a c e s o i l h o r i z o n , and (d) l i g h t i n t e n s i t y m easurements a t v a r i o u s p o i n t s w i t h i n t h e sam pling a r e a . The s tu d y as shown by th e above e x p e r im e n ta l c r i t e r i a was in te n d e d to be com preh en sive in i t s s co p e . in v e stig a te d c o n sist of: so il-c h em ica l) A b ro a d c l a s s i f i c a t i o n of th e p h a se s (1) L a b o ra to ry e x p e rim e n ts ( s o i l - p h y s i c a l and ( 2 ) F i e l d - p l a n t a t i o n e x p e rim e n ts (grovrth, m ic r o c lim a te , and p l a n t s u c c e s s io n ) and ( 3 ) S o i l m i c r o b i o l o g i c a l e x p e rim e n ts ( q u a n t i t a t iv e ). These p h a s e s w i l l be ta k e n up i n d i v i d u a l l y in th e above named o r d e r . A summary o f a l l f a c t o r s i s p r e s e n t e d a f t e r d i s c u s s i n g each v a r i a b l e . *+7 SOIL SMILING TECHNIQUE L a b o r a to r y E xp e rim en ts - P h y s i c a l and Chemical Equipment Used The s o i l sam ples f o r "both t h e p h y s i c a l and chem ical s o i l determinart i o n s were ta k e n w i t h a f i e l d s o i l - c o r e s a m p le r. T h is sam p ler h a s been u s e d e x t e n s i v e l y by t h e U n ite d S t a t e s S o i l C o n s e rv a tio n S e r v ic e f o r s o i l s research . The ty p e u s e d in t h e s e i n v e s t i g a t i o n s employs a3x3 in c h aluminum c y l i n d e r w ith a w e ig h te d d r i v i n g assem b ly. Sampling P r o c e d u re P i t s were dug a t e ach sam pling s t a t i o n and each s o i l h o r iz o n o f th e p r o f i l e was sampled s e p a r a t e l y . The h o r iz o n sampled was b a se d upon th e a c t u a l d e p th o f a p a r t i c u l a r h o r i z o n as mapped in t h e f i e l d . were t a k e n a t o r n e a r f i e l d c a p a c i t y . A l l samples The s o i l c o r e s o b t a i n e d were th e n b ro u g h t i n t o th e l a b o r a t o r y and th e p h y s i c a l and ch em ical d e t e r m i n a t i o n s made. Where a m o d i f i c a t i o n i n t h e te c h n iq u e o f making a p a r t i c u l a r d e t e r m i n a t i o n was n e c e s s a r y , a p p r o p r i a t e n o t a t i o n i s made u n d e r th e e x p e r im e n ta l method f o r t h a t p r o c e d u r e . P lo t D e sc rip tio n The sam plin g a r e a s were s e t up in su ch a manner t h a t a s t a t i s t i c a l a n a l y s i s c o u ld be a p p l i e d to th e d a t a . F o r most o f th e s o i l f a c t o r s i n v e s t i g a t e d , sam ples were ta k e n a t f o u r main c l i m a t i c s t a t i o n s d e s ig ­ n a t e d by Roman n u m e ra ls , as S t a t i o n s I , I I , I I I , and IV. S t a t i o n s I and I I a r e l o c a t e d in t h e a r e a o f good h e i g h t grovrth (A rea X) and S t a t i o n s I I I and IV a r e in th e a r e a o f p o o r h e i g h t grow th (A rea Y ) . At each main s t a t i o n , f o u r s u b s t a t i o n s were e s t a b l i s h e d a t random and d e s i g n a t e d as ks S u b s t a t i o n s 1, 2 , 3» aud S o i l h o r iz o n s f o r each p r o f i l e were d e s ig ­ n a t e d i n t h e u s u a l m anner, a s AQ » e tc . The above n o t a t i o n f o r each s o i l sam ple i s a p p l i e d to a l l t h e ed ap h ic f a c t o r s i n v e s t i g a t e d . Thus, an i n d i v i d u a l sam ple m ight be d e s i g n a t e d a s I I 3 Ag , which r e f e r s to main s t a t i o n , s u b s t a t i o n , and s o i l h o r iz o n r e s p e c t i v e l y . R e fe re n c e to a l l s o i l p r o f i l e s i s p r e s e n t e d u n d e r th e c a p t i o n R e p r e s e n t a t i v e P r o f i l e and D e s c r i p t i o n f o r e ac h s o i l ty p e a s shown l a t e r . S t a t i s t i c a l A n a ly s is o f D ata The s o i l e x p e rim e n ts ( p h y s i c a l and chem ical) were so d e s ig n e d t h a t a l l data, c o n c e rn in g a p a r t i c u l a r s o i l f a c t o r c o u ld be s u b j e c t e d to a n a l y s i s of v a ria n ce . I n a l l c a s e s , th e v a r i a n c e betw een a r e a s h as been s e g r e g a te d from t h e t o t a l v a r i a n c e . The s h o r t - c u t method f o r i n d i v i d u a l d e g re e s of freedom h a s been u s e d to c a l c u l a t e th e mean s q u a re and E - v a lu e as shown by S n e d e co r (19^-6). Experim ents were d e s ig n e d f o r i n d i v i d u a l com parisons among t r e a t m e n t s , where th e sum o f s q u a r e s f o r n tr e a t m e n t s i s s u b d iv id e d in t o n - 1 p a r t s , each c o rre s p o n d in g to a s i n g l e d e g re e o f freedom ; t h e s e p a r t s were th e n t e s t e d i n d i v i d u a l l y a g a i n s t e x p e r im e n ta l e r r o r . The r e s u l t s o f t h i s method g iv e a n o t a b l e i n c r e a s e in t h e in f o r m a tio n f u r ­ n i s h e d by th e e x p e r im e n t. T h is method i s a p p l i c a b l e where th e two sums a r e made up o f th e same number o f i n d i v i d u a l s . By comparing th e e r r o r v a r i a n c e betw een a r e a s , th e p r e s e n c e o r absence o f s i g n i f i c a n t d i f f e r e n c e can b e d e t e c t e d from t h e E - t e s t . I n o r d e r to d e te rm in e betw een a r e a s i f a s i g n i f i c a n t d i f f e r e n c e e x i s t s , i t i s n e c e s s a r y to e x p re ss what c o n s t i t u t e s a s i g n i f i c a n t d i f f e r e n c e in term s o f th e u n i t in which th e s i l v i c a l f e a t u r e was m e asu re d . I n t h e c a s e o f w a te r - h o ld in g c a p a c i t y , th e u n i t i s p e r c e n t m o i s t u r e ; in t h e c a s e o f a v a i l a b l e c alc iu m c o n t e n t , t h e u n i t i s 49 r a i l l i e q u i v a l e n t s p e r 100 grams o f s o i l . Thus, "by e x p r e s s i n g in p e r c e n t m o i s t u r e t h e d i f f e r e n c e betw een s o i l h o r iz o n s o f A rea X and A rea Y, i t i s p o s s i b l e t o d e te r m in e betw een which s o i l f a c t o r a s i g n i f i c a n t d i f f e r e n c e e x ists. The method o f making t h e s e c a l c u l a t i o n s i s shown in t h e fo rm u lae w hich f o l l o w : mean s q u a r e t r e a t m e n t T* v a lu e mean s q u a re e r r o r 854.00 “ 24.4 * * 3 7.07 ** S in c e t h e F - v a lu e i s l a r g e r th a n 4 .6 0 o r S .S 6 (from S i g n i f i c a n c e T a b le ) t h e d i f f e r e n c e betw een a r e a tr e a tm e n t means i s s i g n i f i c a n t a t b o th t h e f i v e p e r c e n t and one p e r c e n t l e v e l . The mean s q u a r e t r e a tm e n t f o r A rea X v s . A rea Y i s d e r iv e d from th e c a lc u la tio n : ( t x - t 2) k - = C. T. n w here: k r n z mean s q u a re and t 2 “ sum o f i n d i v i d u a l item s sum o f a l l m easurem ents C, 4 2 T. - c o r r e c t i o n term The c o r r e c t i o n term _ (C .T .) i s o b ta in e d by th e fo rm u la : m V• J- • „ ( sum i n d i v i d u a l 1 --- ---— item s) — -■■- ■ ■■ ■ t o t a l item s To c a l c u l a t e t h e e r r o r te rm : E = E - I w here: S R = E rror z T otal v arian ce K “ V a r i a t i o n betw een a r e a s 50 By e x a m in a tio n o f th e m agnitude o f th e F -'v a lu e , th e e x t e n t o f th e v a r i a t i o n can he i n t e r p r e t e d . Thus, i f th e F - v a lu e o b ta in e d f o r A rea X f o r any one s o i l h o r i z o n i s l a r g e in com parison to o t h e r h o r iz o n s o f th e same s o i l ty p e , most v a r i a t i o n e x i s t s a t t h a t h o r i z o n ; s i m i l a r l y , a sm all F -v alu e in d ic a te s l e s s v a r i a t i o n f o r a p a r t i c u l a r h o rizo n . At th e c o n c lu s io n o f th e d a t a o b t a i n e d f o r b o th th e p h y s i c a l and ch e m ic a l f a c t o r s i n v e s t i g a t e d , a summary t a b l e i s p r e s e n t e d to i n d i c a t e th e r e l a t i o n s h i p o f F - v a l u e s f o r a l l s o i l v a r i a b l e s t h a t were s t u d i e d . 51 laboratory experiments P h y s i c a l — Edaphic C h a r a c t e r i s t i c s 1 . M ec h a n ica l A n a ly s is 7 E x p e rim e n ta l Method: A mechanical, a n a l y s i s o f th e s o i l s in th e e x p e r im e n ta l a r e a was made "by t h e h y d ro m e te r method, employing th e te c h n iq u e o f Bouyoucos (193&) • The s o i l sam ples ( l 6 sam ples p e r s t a t i o n tim e s f o u r s t a t i o n s = were th o r o u g h l y a i r - d r i e d and p a s s e d th ro u g h a two mm. s i e v e . t r e a t m e n t a f i f t y - g r a m sample was u s e d . samples) Por each To d i s p e r s e th e s o i l th e f i f t y - gram sam ple was added d i r e c t l y to a s t i r r i n g cup, and d i s t i l l e d w a te r added. The d i s p e r s i n g a g e n t u s e d was a commercial p ro d u c t known as C algon, a sodium h ex am e ta p h o sp h a te compound. S in c e t h i s d i s p e r s i n g a g e n t had n o t been u s e d p r e v i o u s l y , i t was n e c e s s a r y t o ru n a few t e s t sam ples to d e t e r ­ mine i f t h e amount o f Calgon u s e d p e r sample was c r i t i c a l w ith t h i s p a r t i c ­ u la r s o i l ty p e. H aving d e te rm in e d by t e s t ru n t h a t th e c o n c e n t r a t i o n o f d i s p e r s i n g a g e n t u s e d was n o t s i g n i f i c a n t l y d i f f e r e n t betw een u s e o f t e n c c . to t w e n t y - f i v e c c . i n c l u s i v e , a f i f t e e n c c . Calgon c o n c e n t r a t i o n v/as employed as a d i s p e r s i n g a g e n t. A f t e r s o ak in g and s u b se q u e n t s t i r r i n g o f th e s o i l w ith th e d i s p e r s i n g a g e n t , th e c o n te n t s were th e n p o u re d i n t o th e s p e c i a l c y l i n d e r , s h a k e n , and th e tim e r e c o r d e d . A te m p e r a tu r e c o r r e c t i o n was a p p l i e d to e ach h y d ro m e te r r e a d in g and a summation o f th e r e s u l t s f o r b o th A re a X and A rea Y i s g iv e n in T able 2. 7. The number p r e c e d i n g th e p h y s i c a l s o i l f a c t o r und er i n v e s t i g a t i o n c o rre s p o n d s t o th e same f a c t o r summarized s t a t i s t i c a l l y in T ab le 21. 52 TABLE 2. MECHANICAL ANALYSIS OF FIELD SOILS BY HORIZON IN AREA X AND AREA Y P ercent A rea X ( S t a t i o n s I - I I ) S o i l H o riz o n Sand S ilt IAX A2 b2 B-2 6 1 .9 7 6 .7 7 3 .6 91.6 9 4 .0 2 1 .9 9*1 6.0 1.0 0.0 3S .I 23.3 26.4 2 .4 6.0 3*0 1*7 1.0 1 .0 0.0 13.2 12.5 1 9 .4 6 .4 6.0 IIA 1 a2 b2 B-t 6 1 .1 63.2 76.0 Sg.O 9 4 .0 22.6 17*9 4 .0 0.0 32.9 36.s 24.0 1 2 .0 13.1 16.2 1S.0 0.0 6.0 3*2 2 .7 2.0 2. 6 0.0 4 3 .1 3 6 .3 29.6 6.0 5*o 3*2 7 .2 2.1 1.0 0.6 15.4 1 8.0 23.1 5.0 4 .4 3 3 .5 37*3 3 2 .4 10.0 3*2 2.5 2.0 0.6 1.0 1 4 .9 19.1 2 0.4 9 .4 4 .4 S ilt p l u s Olay Clay F in e Clay 9.4 6.0 A rea Y ( S t a t i o n s I I I - I V ) IIIA i a2 b2 5 IVAX a2 b2 Cl 56.9 61.7 70. 4 9 4 .0 95*0 2 4 .5 13.1 4 .4 0.0 61.5 62.7 67.6 90.0 9 4 .6 2 0 .4 15*7 10.0 0.0 0.0 0.0 5.4 D is c u s s i o n o f R e s u l t s The m e c h a n ic a l a n a l y s i s d a t a r e v e a l th e o v e r a l l sandy n a t u r e o f sam ples ta k e n in s i x t e e n d i f f e r e n t l o c a t i o n s . V a r i a t i o n in t e x t u r e a cc o rd ­ in g t o t h e U n ite d S t a t e s D epartm ent o f A g r i c u l t u r e t e x t u r a l c l a s s i f i c a t i o n i s shown on th e R e p r e s e n t a t i v e P r o f i l e D e s c r i p t i o n s f o r each s o i l t y p e . The v a r i a t i o n i n t e x t u r e i s most marked in th e amount o f f i n e c la y in th e A-j_ and Ag h o r i z o n s when c o n t r a s t i n g Area, X w ith A rea Y. This v a r i a n c e in th e f i n e c l a y c o n te n t i s th e h a s i s f o r t h e d i s t i n c t i o n o f t h r e e s o i l ty p e s 53 o f th e same d r a in a g e c a t e n a . The t h r e e main s o i l ty p e s r e p r e s e n t e d a r e a c i d v a r i a n t s o f t h e Pox sandy loam , Bronson sandy loam, and 'Warsaw sandy loam. The p r o f i l e d e s c r i p t i o n s "bring o u t t h e s e r e l a t i o n s h i p s more c l e a r l y (P ig s. 9 -1 2 ). To d e te r m in e t h e e x t e n t and s i g n i f i c a n c e of th e v a r i a t i o n in t h e in d iv id u a l, s e p a r a t e s , an a n a l y s i s o f v a r i a n c e was made f o r f i n e c l a y , s i l t p l u s c l a y , and t o t a l s a n d , f o r b o th A rea X and A rea Y (T a b le s 3, 4 , and 5 ) . TABLE 3 . ANALYSIS OP VARIANCE FOR MECHANICAL ANALYSIS AREA X v s . AREA Y T e x t u r a l G lass - P in e c l a y ( l e s s th a n 2 m icron d i a . ) B a s i s : 32 samples H o riz o n ^1 ^2 Source D egrees o f Freedom Sum o f Squares Mean Square T otal X vs Y E rror 15 1 l4 36 . 1 0 16 . 0 0 20.10 16.00 1.43 1 1 . 1 ** T o tal X vs Y E rror 15 1 l4 ^ 9 .3 9 184.96 264.43 184.96 18 .80 l 4 . 6 ** p B a s i s : k samples B2 5 cl T o tal X vs Y E rro r 3 1 2 13.93 9 .3 0 U.63 9 .3 0 2.31 4 .0 2 T o tal X vs Y E rror 3 1 2 1 4.6 7 .49 14.18 .49 7.09 .07 T otal X vs Y E rror 3 1 2 2.56 2.56 0.00 2.56 0.00 0.00 ** S i g n i f i c a n t a t 5$ 1$ The a n a l y s i s o f v a r i a n c e f o r th e f i n e c la y f r a c t i o n is h ig h ly s i g n i f g i c a n t a t b o th th e 551 and Vi l e v e l in t h e Aj and A2 h o r i z o n s . In v e stig ato rs such a s A l b e r t (1925) and B ornebusch (1931) have f r e q u e n t l y r e p o r t e d t h a t 5^ t h e c o n t e n t o f m a t e r i a l s m a l l e r t h a n . 2 mm. in sandy s o i l s has an im p o rtan t b e a r i n g on s i t e q u a l i t y . table 4. ANALYSIS OF VARIANCE FOR MECHANICAL ANALYSIS AREA X v s . AREA Y T e x t u r a l C la ss - S i l t p l u s c la y B a s is : 32 samples H o riz o n A1 a2 b2 c. B-jj C Source D egrees o f Freedom Sum o f Squares Mean Square F T o tal X vs Y E rror 3 1 2 16.19 5 .2 9 10.90 5.29 5 .4 5 .97 T o tal X vs Y E rror 3 l 2 1 5 1 . U9 59.86 91.63 59 .86 4 5 . SI 1.31 T o tal X vs Y E rror 3 l 2 U2 . 9 U 3 6 . 1 *+ 6 . so 36.14 3 .4 o 10.62 T o tal X vs Y E rror 3 l 2 19.32 4 .s4 i4 .4 g 4 .S 4 7 .2 4 .67 T o tal X vs Y E rror 3 l 2 .72 .64 .o s .64 .04 16.00 S. When u s e d in d i s c u s s i n g e x p e r im e n ta l d a t a , th e word " s i g n i f i c a n t “ , i s a p p l i e d in a s t a t i s t i c a l s e n s e . T here a r e v a r i o u s d e g re e s o f s i g n i f i c a n c e now re c o g n iz e d s t a t i s t i c a l l y , b u t th e two most commonly u sed a r e a t th e 1# and 5$ l e v e l s . The fo rm er l e v e l , i n i n d i c a t e s t h a t t h e r e a r e n i n e t y - n i n e chances in one hundred t h a t t h e d i f f e r e n c e in means i s n o t due to random sam pling in a homo­ geneous p o p u l a t i o n . T h is 1$ l e v e l i s r e f e r r e d to as v e ry or h i g h l y s i g n i f i c a n t . The l a t t e r p e r c e n t l e v e l i n d i c a t e s t h a t t h e r e a r e n i n e t y - f i v e chances in one hundred t h a t th e d i f f e r e n c e in means i s n o t due to random sam pling o f a homogeneous p o p u l a t i o n , and i s commonly spoken o f a s s i g n i f i c a n t . The F - v a lu e i s a s t a t i s t i c a l in d e x to d e te rm in e th e m agnitude o f th e s i g n i f i c a n t l e v e l and w i l l be u t i l i z e d th ro u g h o u t th e re m a in d er o f t h i s m a n u s c r i p t . The p l o t r e p l i c a t i o n method o f a n a l y s i s w i l l be fo llo w e d a c c o r d in g to Snedecor (19*4-6). A lthough t e x t u r e , nor any o th er s in g le s o i l p ro p erty , seldom d e te r ­ mines th e q u a l i t y o f s i t e , i t i s g e n e r a l l y re c o g n iz e d t h a t loam and loamy 55 s o i l s a r e more f a v o r a b l e f o r f o r e s t growth, th a n e i t h e r c o a r s e sands o r fin e c la y s. I t i s t h e r e f o r e p e r t i n e n t to p o i n t out t h a t th e i n f l u e n c e o f s o i l t e x t u r e on t h e grow th o f t u l i p p o p l a r may be masked by th e i n f l u e n c e of o th e r f a c t o r s . The p r e s e n c e o f a Warsaw loam s o i l ty p e in A rea Y v h e re th e t r e e s a r e s m a l l e s t i s a rough i n d i c a t i o n t h a t s o i l t e x t u r e a lo n e may n o t be a l i m i t i n g f a c t o r f o r th e h e i g h t g row th o f t u l i p p o p l a r . Thus, in a l l t h e s t a t i s t i c a l a n a ly s e s t h a t f o ll o w f o r a l l s o i l f a c t o r s and o t h e r s , t h e a n a l y s i s o f v a r i a n c e i s u sed o n ly to p o i n t o u t s t a t i s t i c a l d i f f e r e n c e s and n o t t o p o r t r a y t h e i r e c o l o g i c a l s i g n i f i c a n c e . The r e l a t i o n s h i p o f t e x t u r e t o o t h e r s o i l f a c t o r s w i l l be b ro u g h t o u t i n s o f a r as t e x t u r e r e ­ l a t e s to a s e t o f i n t e r r e l a t e d s o i l and m o is tu r e phenomena. TABLE 5. ANALYSIS OF VARIANCE FOR MECHANICAL ANALYSIS AREA X v s . AREA Y T e x t u r a l C lass - Sand ( l e s s th a n 1000 m icron d i a . ) B a sis: 32 samples H o riz o n Source D egrees of Freedom Sum o f Squares Mean Square F A1 T o tal X vs Y E rror 15 1 Ik 212,20 21.62 190.61 21.62 13.62 1.61 T o tal X vs Y E rror 15 1 Ik 1993.56 237.16 1 7 5 6 .k2 B a s i s : U sam ples 237. I 0 1 2 5 . ko 1.90 T o tal X vs Y E rror 3 1 2 3 3 . 6U 6 . SO 3 3 .64 3 .^ 0 9.S9 T otal X vs Y E rror 3 1 2 1 9.32 H.gh ih . U.sh 7 . 2^ .67 T o tal X vs Y E rror 3 1 2 .7 2 . 6^ .OS . 6U .oh 16.0 A2 Bpd. 3 _L 56 The g r a p h i c r e l a t i o n betw een com parable d e p th s to a l l s o i l h o r iz o n s f o r b o t h a r e a s i s s h o rn in F i g . S. S tu d i e s by Auten (1937 and 19*4-5) u s in g d e p th o f b o th t h e A and B h o r iz o n s a s i n d i c e s o f s i t e e v a l u a t i o n f o r t u l i p p o p l a r , have shown no e s t a b l i s h e d r e l a t i o n s h i p betw een t h i c k n e s s o f th e B h o r i z o n and s i t e in d e x . The com pactness o r d e n s i t y o f th e B h o r iz o n i s th e c h a r a c t e r r e s p o n s i b l e f o r h i n d e r i n g w a te r movement and p e r m e a b i l i t y r a t h e r th a n t h i c k n e s s . The t h i c k n e s s o f th e A h o r iz o n i s n o t a good c r i t e r i o n o f s i t e f o r t u l i p p o p l a r ; d e p th to a heavy c l a y s u b s o i l i s a much b e t t e r m easu re o f t h e p e r m e a b i l i t y o f w a te r . Auten (19*4-5) c o r r e l a t i o n f o r d e p th to s u b s o i l and s i t e in d e x . shown a h ig h He has shown t h a t on s o i l s whose d e p th to t i g h t s u b s o i l i s l e s s th a n 2*4- in c h e s would have a s i t e index o f l e s s th a n 8 5 * I f t h i s c r i t e r i o n was a p p l i e d to t h e p r e s e n t i n v e s t i g a t i o n , th e h i g h e s t s i t e in d e x e x p e c te d f o r th e b e s t h e ig h t grow th would be 82, assum ing t h a t o t h e r t e x t u r a l and c l i m a t i c c h a r a c t e r i s t i c s were n o t l i m i t i n g . The r a t h e r s t r i k i n g s i m i l a r i t y o f d e p th to com parable h o r iz o n s and t e x t u r e i s shown in F i g . 8 . The d e p th t o s u b s o i l does n o t v a ry m arkedly when con­ t r a s t i n g th e t h r e e r e l a t e d s o i l ty p e s u n d e r i n v e s t i g a t i o n . A uten (1937) fou n d a p o s i t i v e c o r r e l a t i o n betw een s i t e e v a l u a t i o n and d e p th of th e u n d i s t u r b e d Aj h o r i z o n f o r s o i l s s u p p o r tin g t u l i p p o p l a r . P o p l a r was g e n e r a l l y n o t fo u n d on s o i l whose A-^ h o r iz o n was l e s s th a n one in c h t h i c k , and s i t e in d e x in c r e a s e d w ith t h i c k n e s s o f t h e A^ h o r iz o n between t h e l i m i t s o f one and e i g h t i n c h e s , a p p ro x im a te ly t h r e e s i t e - i n d e x p o i n t s f o r e a c h in c h o f A^. u n d istu rb e d s o i l . These f i n d i n g s were v a l i d o n ly on th o s e a r e a s hav in g H is r e s u l t s were b a se d upon th e r e l a t i o n between o r g a n ic m a t t e r i n c o r p o r a t i o n and i n d i r e c t measure o f s o i l m o is tu r e . I n th e p r e s e n t i n v e s t i g a t i o n , u s in g A u te n 's c r i t e r i o n of d e p th , i t CO s Ill Fl rH CO FJ O CM O rH rH / I O X rH CO GRAPHIC RELATIOTT BETWEEN EQUAL-AGED TULIP POPLAR AIR) DEPTH TO COMPARABLE SOIL KORIZOTI ITT AREAS O P GOOD AITD POOR HEIGHT GROWTH F ig. 8 . 57 rH _ © r*S >> +* rd O 53 would be p o s s i b l e to a c h ie v e a s i t e in d e x o f a p p ro x im a te ly 93 f o r d om inant t r e e s a t 50 y e a n s . However, t h i s s u p p o s i t i o n would be v a l i d o n ly when o t h e r s i t e re q u ir e m e n ts c o u ld be m et, such a.s good s u b s o i l d r a i n a g e , a d e q u a te s o i l m o is tu r e , and on s i t e s which a r e n o t un du ly ex­ p o s e d to r a p i d s u r f a c e s o i l a i r - d r y i n g . The p r o f i l e s tu d y o f th e p r e s e n t i n v e s t i g a t i o n r e v e a l s no r e l a t i o n s h i p to th ic k n e s s of th e B h o riz o n . However, t h e r e a p p e a rs to be some c o r r ­ e l a t i o n betw een t h e w a t e r - h o l d i n g c a p a c i t y o f th e A h o r iz o n and s u b se q u e n t s o il-m o is tu re ev ap o ratio n . These r e s u l t s , in t u r n , a f f e c t p e r m e a b i l i t y and d r y n e s s o f t h e s u r f a c e s o i l s in b o th a r e a s . e l a t i o n betw een th e amount o f o r g a n ic m a t t e r and f i n e c la y c o n te n t o f th e T h is s tu d y shows a c o r r ­ A-j_ and A^ h o r i z o n s , w ith r e s p e c t t o s o i l - m o i s t tire r e l a t i o n s h i p s . These p r o f i l e c h a r a c t e r i s t i c s a r e s u b s t a n t i a t e d by s t a t i s t i c a l s i g n i f i c a n c e be­ tw een A re a X and A re a Y as Thus, i t a p p e a rs t h a t shown i n T ab le 3* t e x t u r e and o r g a n ic m a t t e r i n c o r p o r a t i o n o f th e A^ and Ag h o r i z o n s , and t h e i r a t t e n d a n t s o i l - m o i s t u r e h o ld in g c a p a c i t y , i s d e f i n i t e l y r e l a t e d t o o t h e r c l i m a t i c f a c t o r s such as e v a p o r a tio n , a i r t e m p e r a t u r e , s o i l t e m p e r a t u r e , and growing s e a s o n p r e c i p i t a t i o n , in v e stig a tio n . in t h i s The manner in which th e A1 and Ag h o r iz o n s a r e r e l a t e d to th e r a d i a l and h e i g h t grow th o f t u l i p p o p l a r and th e growing s e a so n p r e ­ c ip ita tio n , i s d i s c u s s e d under c l i m a t i c f a c t o r s . 59 SOIL PROFILE DESCRIPTIONS 6o S o i l P r o f i l e and R e l a te d C h a r a c t e r i s t i c s A rea X - S t a t i o n I The s o i l p r o f i l e exposed in t h i s a r e a r e p r e s e n t s t h e s i t e where th e h e i g h t and d i a m e te r grow th i s g r e a t e s t . T h is a r e a i s im m ediately a d j a c e n t t o Woods 11A11 on t h e w est and Woods "B" t o th e s o u th . There i s no s u n s c a ld damage to t r e e s on t h i s s i t e ; t h e lo w er b ra n c h e s a r e s e l f - p r u n e d and no s p r o u t i n g o c c u r s a t t h e b a se o f th e t r e e s . Numerous su g ar maple s e e d l i n g s a r e to be fo u n d , and th e l i t t e r i s n o t i c e a b l y g r e a t e r in amount th a n t h a t fou nd f u r t h e r o u t in th e p l a n t a t i o n . The h e rb a ce o u s v e g e t a t i o n on t h e f o r e s t f l o o r i n d i c a t e s s p e c i e s which a r e more a k in to th e a d j o i n i n g woods th a n t h e f l o r a fo un d in th e a r e a o f p o o r h e i g h t gro w th . To a d e p th o f a p p ro x im a te ly f i f t e e n in c h e s t h e r e i s a sandy loam o f a d a r k brown c o l o r . Below th e A h o r iz o n and i n t o t h e B h o r i z o n , c l a y i s fo u n d , g r a d in g i n t o a loamy sand a t th e 3^ h o r i z o n . At a d e p th o f t h i r t y in c h e s and beyond t h e r e i s a y e l l o w i s h brown s a n d , w ith no lim e p r e s e n t . The s o i l ty p e in t h i s a r e a i s a Pox sandy loam, a c i d v a r i a n t . The t u l i p p o p l a r r o o t zone i s fo u n d e x c l u s i v e l y in th e A^ and A2 h o r iz o n s to a, d e p th o f a p p r o x im a te ly tw e lv e in c h e s . Most o f t h e w a te r f a l l i n g on t h i s s o i l i s removed i n t e r n a l l y ; t h e r e i s a te n d e n c y t o d ry in g o u t under extrem e ex­ p o s u r e , e s p e c i a l l y where t h i s s o i l ty p e i s n o t co v ered w ith t r e e s . F ig . 9 . SOILS ANALYSIS 61 REPRESENTATIVE PROFILE AND DESCRIPTION A rea X - P l o t I In. F t. P ro file D epth H orizon Sandy lo a m . Dark r e d d i s h b r o w n ( 6 YR 3 / 2 ) . Weak m edium g r a n u l a r . pH 5 * 5 5 z 4 0M - 9Alt - 6 D escrip tio n 8 JO ~ J 9"-15" A2 1 5 ' ’- 2 3 ” B2 23”-30” B3 30"-38” up Ci 2 3 Sandy lo a m . B ro w n -d ark b r o w n ( 7 . 5 YR A / 2 ) . Weak m ediu m g r a n u l a r t o f i n e c r u m b . pH 5 . 3 3 Sandy loam t o san d y c l a y lo a m . D a r k b r o w n ( 7 . 5 YR 3 / 3 ) . M ed . t o c o a r s e n u c i f o r m . Some g r a v e l . D a r k c o a t i n g s on s t r u c t u r a l f a c e s . pH 5 . AO Loamy sand t o s a n d . Reddish brown ( 6 , 0 YR A / 3 ) . V e r y w ea k n u c i f o r a t o s i n g l e c c r a i n . Some s t r a t i f i c a t i o n . No l i m e p r e s e n t D a r k c o a t i n g s on s t r u c t u r a l f a c e s . pH 5 . A 2 S a n d . Y e llo w is h brown 10 YR 5 / A . S t r u c t u r e l e s s . No l i m e p r e s e n t , pH 5 . 1 8 4 S o i l T y p e - Fox s a n d y l o a m , a c i d v a r i a n t Topography - N e a rly l e v e l D r a i n a g e - Good E r o s i o n - None P e rm e a b ility - M oderately ra p id C l a s s i f i c a t i o n - C ra y Brown P o d z o l i c L o c a tio n : E& o f N-J o f S E i o f S e c 2 9 T5S RlAw C ass C ou n ty, M ic h ig a n 62 S o i l P r o f i l e and R e l a t e d C h a r a c t e r i s t i c s A rea X - S t a t i o n I I The s o i l p r o f i l e exposed in t h i s a r e a a l s o e x h i b i t s t u l i p p o p l a r o f e x tre m e h e i g h t gro w th i n c o n t r a c t to A rea Y. t o Woods "B*1 on th e s o u t h . T h is s i t e i s a d j a c e n t A gain , t h e r e i s an abundance o f s u g a r maple s e e d l i n g s , s e l f - p r u n i n g o f low er b r a n c h e s , ab se n c e o f s u n s c a l d , and no b a sa l sp ro u tin g . The h e rb a c e o u s v e g e t a t i o n e x h i b i t s s p e c i e s which have a p p a r e n t l y m ig r a te d from t h e hardwood f o r e s t to th e s o u th . T h is a r e a i s s i m i l a r to S t a t i o n I w ith th e e x c e p tio n o f a few minor d i f f e r e n c e s in d e p th to t h e w a te r t a b l e . The A h o r iz o n i s a d a rk r e d d i s h brown, which g r a d e s i n t o a loamy sand B h o r i z o n . A gain, th e C h o r iz o n a t a d e p t h o f 3 ^ i n c h e s , i s a y e l l o w i s h brown s a n d . No lim e i s p r e s e n t in t h e lo w e r p a r t o f th e B h o r iz o n o r t h e G h o r i z o n . The t u l i p p o p l a r l a t e r a l r o o t zone i s found e n t i r e l y w i t h i n th e f i r s t t h i r t e e n in c h e s o f th e p r o f i l e . As b e f o r e , th e s o i l i s a Pox sandy loam, a c i d v a r i a n t , w e ll to somewhat e x c e s s i v e l y d r a i n e d . is removed i n t e r n a l l y . c o n d itio n s. Most o f th e w a ter f a l l i n g on t h i s s o i l T h is s o i l ty p e te n d s t o be d ro u g h ty under exposed F ig . 1 0 . SOILS ANALYSIS 63 REPRESENTATIVE PROFILE AND DESCRIPTION Area X - P lo t I I In * F t* P ro file D epth H orizon 2 H 0"-8" 4 6 Al D escription Sandy l o a m . Dark r e d d i s h b r o w n ( 6 YR 3 / 2 ) . Weak medium g r a n u l a r . pH 5 . 3 9 — a to - 8"-14" 14"-27" 27"-34" 34"-43" up A2 Sandy lo a m . B ro w n -d ark brown ( 7 . 5 YR 4 / 2 ) . V e r y w e a k m e d . g ra n u la r to fin e blo ck y . Medium p l a t y . pH 5 . 2 0 B2 Sandy loam t o san d y c l a y l o a m . D a r k b r o w n ( 6 . 5 YR 3 / 3 ) • Weak c o a r s e b l o c k y . G r a v e l l y d a r k c o a t i n g s on s t r u c t u r a l f a c e s . pH 5 . 1 5 B- Lo amy s a n d . R e d d i s h b r o w n ( 5 . 5 YR 4 / 3 ) . V e r y w ea k c o a r s e blocky to s in g le g r a in . G r a v e l l y d a r k c o a t i n g s on s t r u c t u r a l f a c e s . pH 5 . 1 4 S a n d . Y e l l o w i s h brown ( 1 0 YR 5 / 4 ) . S i n g l e g r a i n . l i m e p r e s e n t . pH 5 . 4 0 No S o i l T y p e - Fox s a n d y l o a m , a c i d v a r i a n t Topography - N early l e v e l 1^ t o N D r a i n a g e - Good E r o s i o n - None P e rm e a b ility - M oderately ra p id C l a s s i f i c a t i o n - G r a y Brow n P o d z o l i c L o c a tio n : Ei of o f S E j o f S e c 29 T5S R14W C ass C ou n ty, M ic h ig a n 6k S o i l P r o f i l e and R e l a te d C h a r a c t e r i s t i c s A rea Y - S t a t i o n I I I A p r o f i l e e x po sed in t h i s a r e a i s r e p r e s e n t a t i v e o f th e s i t e f o r p o o r h e i g h t gro w th o f t u l i p p o p l a r . th is area. Eo woods o f any ty p e a r e a d j a c e n t to Sugar maple s e e d l i n g s a r e a b s e n t , t h e r e i s extrem e s u n s c a ld damage and s u b s e q u e n t wind b r e a k a g e , b a s a l s p r o u t i n g o f th e t r e e s , and a p r e d o m in a n tly g r a s s and a n n u a l weed h e rb a ce o u s v e g e t a t i o n . A lthough t h e r e i s some o v e r l a p o f h e rb a c e o u s s p e c i e s w ith t h a t o f A rea X, p r a c t i c a l l y no s p e c i e s o c c u r h e r e which a r e found in t h e o l d grow th hardw oods. The s o i l ty p e i s a Warsaw loam to sandy loam, a remnant o f t h e o l d p r a i r i e s o i l o f s o u th w e s te r n M ichigan. The A h o r iz o n i s a d a rk g r a y to b l a c k loam e x te n d in g some t h i r t e e n in c h e s t o th e B h o r iz o n . T here i s no a c t u a l Ag h o r i z o n , b e in g r e p l a c e d by a t r a n s i t i o n a l A-^ h o r i z o n . l a t t e r i s a v e ry d a rk loam. The At a d e p th o f f o u r t e e n in c h es th e B2 i s r e a c h e d , where t h e r e i s a d e f i n i t e c l a y l a y e r . The bottom o f th e B h o r i ­ zon i s a loamy s a n d , and a t J>6 in c h e s th e y e l l o w i s h brown sand is re a c h e d . The l a t e r a l r o o t zone o f t u l i p p o p l a r e x ten d s to a p p ro x im a te ly f i f t e e n in c h e s in d e p th ; t h e w a te r t a b l e i s c l o s e r to th e s u r f a c e th a n in A rea X. E x t e r n a l d r a in a g e o r s u r f a c e r u n o f f i s s l i g h t ; i n t e r n a l d r a in a g e i s m o d e ra te to r a p i d . The Warsaw s o i l ty p e which i s r e p r e s e n t a t i v e o f A rea Y i s d e s ig n a te d by V e atc h (1927) a s th e “dry" p r a i r i e r e g io n o f s o u th w e s te rn M ichigan. A d e s c r i p t i o n o f th e s o i l p r o f i l e h e r e p r e s e n t e d , c l o s e l y c o i n c i d e s w ith t h a t o f V e a tc h . A lso su ch f e a t u r e s as to p o g ra p h y , g e o lo g y , o rg a n ic m a t t e r c o n t e n t , c l a y c o n t e n t , p r e c i p i t a t i o n , t e m p e r a t u r e , and d r a in a g e one n e a r l y i d e n t i c a l to t h a t d e s c r i b e d by th e above a u t h o r . With r e f e r e n c e to th e B2 65 h o r i z o n , V e a tc h p o i n t s o u t t h a t t h i s h o r i z o n becomes v e ry compact u n d e r c e r t a i n c o n d i t i o n s , so much so t h a t i t i s r e f e r r e d to l o c a l l y a s " h a rd pan". The c o l l o i d a l o r c l a y c o n t e n t p r e s e n t i s s t r o n g l y c o h e s iv e o r ad­ h e s i v e and p o s s e s s e s v e ry h i g h t e n s i l e s t r e n g t h upon d r y i n g . The s o i l h o ld s o n ly r e l a t i v e l y s m a ll amounts o f v rater, b u t s l i g h t l y h i g h e r t h a n th e a s s o c ia te d f o r e s te d sands. The u p p e r p a r t o f th e s u b s tr a tu m i s d ry o r v e r y low in m o i s t u r e and th e whole p r o f i l e i s p e n e t r a b l e to t r e e r o o t s . Chem ical a n a l y s e s o f t h e Warsaw ty p e r e v e a l no u n u s u a l o r abnormal p e c u l i a r i t i e s in c o m p o s itio n . The o r g a n ic m a t t e r and n i t r o g e n c o n te n t s a r e somewhat h i g h e r t h a n f o r com parable f o r e s t e d s o i l s and th e amounts o f v a r i o u s i n d i v i d u a l n u t r i e n t s a r e n o t d i f f e r e n t from th o s e o f o r i g i n a l l y f o r e s t e d s o i l s o f s i m i l a r t e x t u r e th ro u g h o u t s o u th e r n M ichigan. fo u n d t h e re a c tio n . and V eatch h o r iz o n s s t r o n g l y to v e ry s t r o n g l y a c i d in The most marked d i f f e r e n c e in th e p r o f i l e o f th e Warsaw and th e p r o f i l e o f a f o r e s t e d s o i l a s s o c i a t e d w ith th e p r a i r i e , i s t h e o r g a n ic c o n t e n t o f t h e s u r f a c e h o r i z o n s ; o th e r w is e th e y a r e s i m i l a r c h e m ic a lly and p h y s i c a l l y and i n p r o f i l e a rra n g e m e n t. I t a p p e a rs from o b s e r v a t i o n t h a t t h e r e may be s l i g h t l y more com paction in th e B h o r iz o n o f t h e p r a i r i e s o i l . I n f e r t i l i t y and p r o d u c t i v e n e s s th e d ry p r a i r i e s o i l i s c o n s id e r e d to be i n t e r m e d i a t e , b e in g somewhat h i g h e r th a n t h e f o r e s t e d s a n d s , and l e s s t h a n t h e f o r e s t e d more l e v e l c l a y s o i l s o f t h i s r e g i o n . Lack o f s u f f i c i e n t m o i s t u r e a t c r i t i c a l p e r i o d s o f th e growing sea so n i s p ro b a b ly th e c h i e f l i m i t i n g f a c t o r in p r o d u c t i o n o f h ig h y i e l d s o f a g r i c u l t u r a l c r o p s . In p e d o l o g i c te r m in o lo g y , t h e Warsaw s o i l ty p e i s " m a tu re ", and s u p p o r ts a t h e o r y t h a t th e p r a i r i e s were o r i g i n a l l y t r e e l e s s . The p r o f i l e i n d i c a t e s 66 t h a t t h e s o i l d e v e lo p e d un der c o n d i t i o n s o f r e l a t i v e l y low m o i s t u r e , v a r i a b l e in t h e s u r f a c e h o r i z o n , r e l a t i v e l y low in th e B h o r i z o n , and v e r y low in t h e 0 h o r i z o n , b e g in n in g a t d e p th s o f two to t h r e e f e e t . A c c o rd in g t o V e atc h (1927) t h e r e i s no e v id e n c e in th e s o i l p r o f i l e o f t h e p e c u l i a r i t i e s common to e x c e s s i v e m o is tu r e o r w a te r lo g g in g i f th e s e c o n d itio n s ever e x is te d . T here i s no e v id e n c e t o s u p p o rt a c o n t e n t i o n t h a t some c h e m ic a l c o n d i t i o n in th e p r a i r i e s o i l i n h i b i t s t r e e g row th . F ig . 11 . SO IL 3 ANALYSIS 67 REPRESENTATIVE PROFILE AND DESCRIPTION A rea Y - P l o t I I I In, F t, 2 - 4 — 6 P ro file — D epth H orizon 0"-llM Ax 11"-13” A3 1 3 ,,- 2 4 f' B2 D escrip tio n Loam. Very d a r k g r a y t o b l a c k ( 5 . 0 YR 2 . 5 / 1 . 5 ) . Medium g r a n u l a r . pH 5 . 8 5 a— /O — 2 24-36 B3 Loamy s a n d t o s a n d . B ro w n t o d a r k b ro w n ; one b a n d d a r k b r o w n a t b o t t o m ( 6 . 5 YR 4 / 3 t o 7 . 5 YR 3 / 2 ) a t b o t t o m . V e r y w eak n u c l f o r m t o s i n g l e g r a i n . D a r k c o a t i n g s on a g g r e g a t e s . G r a v e l l y . pH 5 . 1 7 CX S a n d . Y e llo w is h brown w ith d a r k brown i n t h i n b a n d s . ( 1 0 YR 5 / 4 t o 7 . 5 YR 3 / 2 i n th in bands) . S ingle g ra in over s t r a t i f i c a t i o n . No l i m e p r e s e n t pH 5 . 4 2 3 36 - 4 6 up 4 L o a m . D a r k b r o w n ( 7 . 5 YR 3 / 1 . 7 5 ) . T r a n s i t i o n a l . pH 5 . 1 6 C lay loam t o san d y c l a y lo a m . D a r k b r o w n ( 7 . 5 YR 3 / 2 ) . Medium t o c o a r s e n u c l f o r m . D a r k c o a t i n g s on a g g r e g a t e s . G r a v e l l y • pH 5 . 0 2 S o i l T y p e - Warsaw l o a m o r s a n d y l o a m , a c i d T o p o g r a p h y - N e a r l y l e v e l 1% t o N v arian t D r a i n a g e - G o o d ; W a t e r t a b l e 2-§-' E r o s i o n - None P e rm e a b ility - M oderately ra p id C lassificatio n - P ra irie L o c a tio n : o f N-J- o f 5E-J- o f S e c 2 9 T5S R14W C ass C o u n ty , M ic h ig a n 6s S o i l P r o f i l e and E e l a t e d C h a r a c t e r i s t i c s A rea Y - S t a t i o n 17 As i n t h e p r e c e d i n g s o i l t y p e , t h e p r o f i l e exposed a t S t a t i o n IY i s r e p r e s e n t a t i v e o f th e s i t e f o r p o o r h e i g h t grow th o f t u l i p p o p l a r . T h is p r o f i l e was made in th e a p p ro x im a te c e n t e r o f th e p l a n t a t i o n , f r e e from any a d j o i n i n g woods. A g ain , s u g a r maple s e e d l i n g s a r e a b s e n t , s u n s c a l d damage i s s e v e r e , b a s a l s p r o u t i n g o f t h e t r e e s i s p r e v a l e n t , and a h e rb a c e o u s g r a s s v e g e t a t i o n i s do m inant. The p r o f i l e d e s c r i p t i o n f o llo w s much t h e same p a t t e r n a s f o r th e Pox san dy loam . However, t h e B ronson sandy loam, a c i d v a r i a n t , h e r e d e s c r i b e d , i s o n ly m o d e ra te ly w e l l - d r a i n e d in c o n t r a s t to t h e w e ll to e x c e s s i v e l y d r a i n e d Pox s e r i e s . a t th e A c l a y loam to sandy c l a y loam e x i s t s h o r i z o n , g r a d in g i n t o a, loamy sand a t th e h o rizo n . As in th e t h r e e s o i l ty p e s p r e s e n t , a c o a r s e sand i s found a t a p p ro x im a te ly 31 in c h e s . th e C]_ h o r iz o n was At t h e tim e o f sam p lin g o f t h i s p r o f i l e , c o m p le te ly s a t u r a t e d w ith w a te r . P r a c t i c a l l y a l l o f th e w a te r f a l l i n g on t h i s s o i l ty p e i s removed i n t e r n a l l y ; i n t e r n a l d r a in a g e i s m oderate t o rap id, in th e u p p e r p a r t o f th e s o i l and slow in th e low er p a r t , due to a r e l a t i v e l y h i g h w a te r t a b l e . Pig. 12. 69 3C IL 3 ANALYSIS .REPRESENTATIVE PROFILE AND DESCRIPTION A r e a Y - P l o t IV In. Ft • P ro file D epth H orizon Sandy lo a m . Dark r e d d i s h b r o w n ( 6 . 0 YR 3 / 2 ) . Weak m ed iu m g r a n u l a r . pH 5 . 3 5 2 ■ 4 Ofl- 8 " — 6 — 8 — 8 " -1 2 " 10 — D escrip tio n A. 1 2 " - 2 2 " B. 2 2 " - 3 1 " B3 31" -4 0 " up C, Sandy lo a m . Dark brown ( 7 . 5 YR 4 / 2 ) . Weak med ium g ra n u la r to fin e blocky. pH 4 . 9 4 C lay loam t o sandy c l a y lo a m . B r o w n t o d a r k b r o w n ( 7 . 5 YR 4 / 3 ) . Medium t o c o a r s e b l o c k y * G r a v e l l y . pH 4 . 7 0 Loamy s a n d t o s a n d . D a r k r e d d i s h b r o w n ( 5 . 0 YR 3 / 3 ) . V ery weak c o a r s e b l o c k y . pH 4 . 8 3 C o a rse s a n d . P a l e brown t o d a r k r e d d i s h brown ( m o t t l e d ) . ( 1 0 YR 6 / 3 t o 6 . 0 YR 3 / 3 ) . S a t u r a t e d w a t e r . No l i m e p r e s e n t , pH 5 . 8 2 S o i l Type - B r o n s o n s a n d y lo a m , a c i d v a r . Topography - N early l e v e l D r a i n a g e - M o d e r a t e ; W a t e r t a b l e 2-g-* E r o s i o n - None P e rm e a b ility * M oderately ra p id C l a s s i f i c a t i o n - G r a y B ro w n P o d z o l i c L o c a tio n : Eg- o f N-J o f S E j o f S e c 2 9 T5S KL4W C ass C ou n ty, M ic h ig a n 70 2 . S p e c i f i c G r a v i t y o r R eal D e n s ity E x p e r im e n ta l Method: The s p e c i f i c g r a v i t y was d e te rm in e d on t h i r t y - t w o sam ples in d u p l i c a t e r e p r e s e n t i n g th e A-|_ and A2 h o r iz o n s f o r each o f f o u r sam pling s t a t i o n s , a c c o r d in g t o th e t e c h n i q u e o f L utz (1 9 4 4 ). S o i l s from t h e f i e l d were a i r - d r i e d and p a s s e d th ro u g h a two mm. s i e v e ; t h e s e sam ples were th e n p l a c e d in a p ic n o m e te r w ith f r e s h l y b o i l e d d i s t i l l e d w a te r . By r e p e a t e d e v a c u a t i o n i n a vacuum d e s i c c a t o r th e i n t e r s t i t i a l a i r was g r a d u a l l y r e ­ p l a c e d by w a te r . A f t e r a l l th e a i r had been removed from t h e s o i l , a p p r o p r i a t e te m p e r a t u r e s and tim e were r e c o r d e d end th e s p e c i f i c g r a v i t y d e te r m in e d by d i v i d i n g th e w eigh t o f th e o v e n -d ry sample by t h e volume of so il. A summation o f t h e v a lu e s o b ta in e d f o r two h o r iz o n s i s p r e s e n t e d in T a b le 6 . TABLE 6 . SPECIFIC GRAVITY OF THE "A" HORIZON OF SOILS IN AREA X AND AREA Y Area, X ( S t a t i o n s I - I I ) H orizon IIA i IIA 2 Oven-dry VJeight (gins.) Volume of S o i l (ml) 17-42 20.50 6.77 19*5^ 21. S6 7. 62 S . 42 S . 12 S p e c i f i c G ra v ity 2.60 2.52 Area Y (S ta tio n s III-IV ) 7.37 ih a 2 21.02 i 7. l l 6.23 2.39 2 .7 4 IVA-i iv a 2 19.23 17.85 6.35 6.73 2 .S 4 2. 7b IIIA -l 71 D is c u s s io n o f R e su lts The s p e c i f i c g r a v it y , or r e a l d e n s ity o f a s o i l is u n a ffe c te d by s t r u c t u r e , and thus the s p e c i f i c g r a v ity d i f f e r s from th e volume w eight of s o ils . Wide v a r ia t io n in m in eral s o i l s does not e x is t as shown by the p r e ce d in g d a ta . The average s p e c i f i c g r a v ity fo r Area X, which in c lu d e s both th e A-^ and Ag h o r iz o n s , is 2 .$ 8 ; th e s p e c i f i c g r a v ity fo r Area Y o f the same h o r iz o n s i s 2 .6 4 . These v a lu e s r ep re sen t on ly a d if fe r e n c e o f .06 betw een the two a r e a s , and o b v io u sly i s i n s ig n if ic a n t even though th er e are th re e in d iv id u a l s o i l ty p es r ep r e se n te d . The v a lu e s o b tain ed in Table 5 are used in th e form ula fo r computing th e t o t a l p o r o s ity . To determ ine th e s t a t i s t i c a l d iffe r e n c e in s p e c i f i c g r a v ity o f the s o i l s fo r th e area o f good and poor h e ig h t growth o f t u lip p o p la r, an a n a ly s is o f v a ria n ce fo llo w s in Table 7* N eith er th e A^ nor th e A2 h o rizo n shows any s t a t i s t i c a l s ig n if ic a n c e . TABLE 7 . ANALYSIS OF VARIANCE FOR SPECIFIC GRAVITY AREA X v s . AREA Y B a s is : 32 samples Hor izo n Ax A2 Source D egrees o f Freedom T otal X vs Y Error 15 1 l4 T otal X vs Error 15 Y Sum o f Squares .27 .02 .23 Mean Square F .02 .018 1 .1 .4-1 1 .0 1 .0 1 l4 .40 .028 .36 72 3* Volume Weight o r A p p aren t D e n s ity E x p e rim e n ta l Method; The volume w e igh t was d e te rm in e d on t h i r t y - t w o f i e l d samples t a k e n i n s i t u hy u s e o f a s o i l c o r e sam pler a c c o rd in g to B aver ( l 9 4 g ) . Core sam ples were ta k e n from th e and A2 h o r iz o n s in each a r e a . A fte r d e te r m in in g th e w e ig h t o f each c o re a t f i e l d c a p a c i t y , a d i s k o f f i l t e r p a p e r and c h e e s e c l o t h was f i r m l y a t t a c h e d t o one end o f th e c o r e . By means o f an o v e r f lo w cup t h e volume o f s o i l and c y l i n d e r were o b t a i n e d . The f i l l e d c o r e s were p l a c e d in a pan o f w a te r and a llo w e d to s a t u r a t e f o r 24 hours. F o r t h e s e u n d i s t u r b e d c o r e s , o v e n -d ry w e ig h ts were c a l c u l a t e d as a f i n a l s t e p i n th e p r o c e d u r e and from th e above te c h n iq u e th e volume w eight was d e te r m in e d by d i v i d i n g th e o v e n -d ry w eig ht o f each samole by t h e volume of s o i l . T h is method d i f f e r s e s s e n t i a l l y from th e s p e c i f i c g r a v i t y TABLE S. VOLUME WEIGHT OP THE "A" HORIZON OP SOILS IN AREA X AHD AREA T A rea X ( S t a t i o n s I - I I ) H o riz o n O ven-dry Weight (gm s.) 453-15 11^ IIA g Volume o f S o i l (m l.) 344.25 Volume Weight 5 9 9 -l 4 371.00 1 .31 l.b O 509.S3 606.29 359-00 3 74.00 1 .4 l 1 .6 2 Area Y ( S ta tio n s III-IV ) 11IAI iia " 4 9 1 .7 7 5 3 3.2 2 367.50 364.00 IVA-, iv a 2 4 g g .l0 633.17 363.25 375.75 73 d e t e r m i n a t i o n in th e f a c t t h a t th e in c lu d e d p o re space i s m easu red , th u s g i v i n g lo w e r v a l u e s th a n f o r s p e c i f i c g r a v i t y . The volume w eight e x p r e s s e s t h e r a t i o "between t h e d ry w e ig h t o f a g iv e n volume o f u n d i s t u r b e d s o i l and t h e w e ig h t o f an e q u a l volume o f w a te r . The v a lu e s o b ta in e d in T ab le & r e p r e s e n t t h e number of tim e s a p a r t i c u l a r sample i s h e a v i e r th a n an e q u al volume o f w a te r . D is c u s s i o n o f R e s u l t s S in c e t h e volume w eig ht d e t e r m i n a t i o n in c lu d e s th e a i r sp ace i t i s e v i d e n t from t h e above c a l c u l a t i o n s t h a t in e v ery c a s e th e A]_ h o r iz o n shows s m a l l e r v a l u e s th a n th e Ag, an i n d i c a t i o n o f th e g r e a t e r a i r c a p a c i t y in t h e topm ost h o r i z o n . The a v e ra g e volume w eight f o r Area. X i s 1 .^ 9 aud f o r A rea T i t i s 1 . ^ 2 . A s l i g h t d i f f e r e n c e o f .07 i s r e c o g n i z a b l e in t h e two a r e a s , d e s p i t e t h e f a c t t h a t loam s o i l s a r e e v id e n t in A rea Y. TABLE 9 . ANALYSIS OF VARIANCE 3T0R VOLUME WEIGHT AREA X v s . AREA Y B a s i s : l 6 sam ples H o riz o n Source D egrees o f Freedom A1 T otal X vs Y E rror 15 1 lb .03 .00 .03 . 00 . 00 2 .00 T o tal X vs Y E rror 15 1 lb .2b . 05 .19 .05 .013 3 .sU A2 Sum of Squares Mean Square F I n o r d e r to f u r t h e r check th e s t a t i s t i c a l s i g n i f i c a n c e o f th e two a r e a s u n der c o n s i d e r a t i o n , an a n a l y s i s o f v a r i a n c e was made to d e te rm in e th e m agnitude o f d i f f e r e n c e s . No s i g n i f i c a n t d i f f e r e n c e s in e i t h e r t h e Ap o r A2 h o r i z o n were a p p a r e n t f o r volume w e ig h t. 74 A c c o rd in g t o L u tz and C hand ler (19^6) th e volume w eigh t o f th e Ap h o r i z o n o f f o r e s t s o i l s is commonly l e s s th a n 1 .0 0 . T his v a lu e i s con­ s i d e r a b l y lo w e r t h a n th e v a l u e s o b t a i n e d and i s in a c c o rd v i t h th e f a c t t h a t t h e s o i l s b e in g i n v e s t i g a t e d a r e n o t s t r i c t l y " m a tu re ” f o r e s t s o i l s , and a r e l e s s p o ro u s t h a n f o r e s t s o i l s i n s o f a r as th e volume w eight is c o n c e rn e d . The h ig h volume w e ig h ts o b ta in e d a r e an i n d i c a t i o n o f th e s t r u c t u r e o f th e s e s o i l s s i n c e th e low p o re volume i n d i c a t e s h ig h e r volume w e ig h ts . A lso t h e h ig h volume w e ig h ts i n d i c a t e in a g e n e r a l way t h e low o r g a n ic m a t t e r as w e ll as th e h ig h c o n te n t of sand in t h e s e s o i l s . P o re Volume ( T o t a l , C a p i l l a r y , and N o n - c a p i lla r y ) E x p e rim e n ta l Method: The p o r e volume was d e te rm in e d on t h i r t y - t w o d u p l i c a t e f i e l d sam ples t a k e n in s i t u by u se o f a s o i l c o re s am p ler. These sam ples were ta k e n from t h e A]_ and Ag h o r iz o n s f o r A rea X and A rea Y. A fte r d e te r­ m ining t h e s a t u r a t e d w eigh t o f each c o r e , th e c y l i n d e r s were p l a c e d on a pE t a b l e a t a s o i l pE of 1 . 6 f o r tw e n ty - f o u r h o u rs . The c o r e s were w eighed a f t e r d r a i n i n g on th e pE t a b l e and th e n o v e n - d r ie d a c c o rd in g to B aver (l9*+g) . From t h e s e d e t e r m i n a t i o n s th e p e r c e n t t o t a l p o r o s i t y , non­ c a p i l l a r y p o r o s i t y , and c a p i l l a r y p o r o s i t y were c a l c u l a t e d . T o tal p o ro s ity was o b t a i n e d by d i v i d i n g t h e s p e c i f i c g r a v i t y minus th e volume w eight by th e s p e c i f i c g r a v i t y and m u l t i p l i e d by 100. To g e t th e p e r c e n t c a p i l l a r y p o r o s i t y , s u b t r a c t t h e t o t a l p o r o s i t y minus th e n o n - c a p i l l a r y p o r o s i t y . A summation of p o r e volume v a lu e s i s g iv e n in T able 10. 75 TABLE 1 0 . PORE VOLUME OP THE "An HORIZON OP SOILS IN AREA X AND AREA Y P ercent p o ro s ity A re a X ( S t a t i o n s I - I l ) H o riz o n C ap illary H o n -c ap illary T o tal P o ro sity IA i ia 2 2 4.9 21.0 25.2 16.3 50.1 3 7 .3 IIA X iia 2 25.9 26.4 17-5 1 1.7 4 3 .4 38.1 A rea Y ( S t a t i o n s I I I - I V ) I I IA i IIIA 2 26.0 29.1 21.5 15.3 4 7 .8 4 4 .4 IVAp IVA2 2 8 .0 2 6 .7 22.2 1 3 .8 50.2 4 0 .8 A verage V alues Combined S t a t i o n s I-IIA i i-iia 2 25.4 25+.1 2 1 .3 13.6 4 6 .8 37. s I 1 I-IV A ! iii-iv a 2 27.0 2 7 .9 21. 5 1 4 .6 4 8.9 4 2 .5 I —I I AtAp I I I - I V a xa 2 2 4 .g 2 7 .5 1 7 .4 IS . 2 4 2 .8 4 5 .7 D is c u s s i o n o f R e s u l t s The r e l a t i v e p r o p o r t i o n s o f a i r and w a te r in a s o i l w i l l c o n s t a n t l y ch an ge. I t i s c o n v e n ie n t to employ th e c o n cep t o f l a r g e and s m a ll p o re s which d e te r m in e t o a g r e a t e x t e n t th e a e r a t i o n and i n t e r n a l d r a in a g e o f th e s o i l . The above v a lu e s a r e b e s t e v a lu a te d by a v e ra g e s o f th e comb­ in e d s t a t i o n s in d u p l i c a t e f o r th e t h r e e main c l a s s e s o f p o re volume. The v a l u e s o b t a i n e d in Ta.ble 10 i n d i c a t e t h a t t h e r e i s g r e a t e r n o n - c a p i l l a r y , c a p i l l a r y , and t o t a l p o re space in A rea Y th a n in Area X. T h is i s t r u e f o r b o th t h e Ax and A2 h o r iz o n s in e v ery c a s e , and c o r r o b o r a t e s th e volume 76 w e ig h t d e t e r m i n a t i o n s . g re a t. However, th e m agnitude o f t h e d i f f e r e n c e s i s n ot The r e la /b iv e p r o p o r t i o n o f c a p i l l a r y to n o n - c a p i l l a r y p o re space i s more marked in th e A2 h o r iz o n th a n in th e A re a Y. h o r iz o n in d o th A rea X and An a n a l y s i s o f v a r i a n c e (T a b le 11) i n d i c a t e s no s i g n i f i c a n t d i f f e r e n c e in p o r e volume o f any c l a s s i f i c a t ion by comparing th e v a lu e s o f A re a X and Area, Y. TABLE 11. ANALYSIS OP VARIANCE OP PORE VOLUME POR SOILS OP THE "A" HORIZON IN AREA X v s . AREA Y B a s i s : l 6 sam ples P ercent c a p il la r y p o ro s ity H orizon Source D egrees o f Preedom A1 T o tal X vs Y E rror 15 1 lb 58.05 10.^9 1+7-66 IO .39 3 . bo 3 .0 5 T o tal X vs Y E rror 15 l l^l- 1+18.59 5 6 .6 3 361.96 56.63 25.35 2.19 a2 Ai a2 T otal X vs Y E rror T o tal X vs Y E rror Sum o f Squares Mean Sq.ua.re P ercen t N o n -c ap illary P o ro s ity 292 .29 15 .96 l lb 291.33 15 l i^ 30 3. 23 3*70 299.53 P .96 20.80 . 0 l+ 3*70 21.39 *17 P ercen t T otal P o ro sity A-ij. A2 T o tal X vs Y E rror 15 1 ib 291. ^ 1 7 . 61+ 2 7 3 . go 1 7 .6 4 19.55 .90 T otal X vs Y E rror 15 l i^ 5 U2 .0 0 S9 . 3 0 U5 2 . 7 0 39.30 3 2 . 3O 2.76 77 B av e r (19^-0) p o i n t s o u t t h a t th e t o t a l p o r o s i t y o f s o i l s i s u s u a l l y i n t h e neighborhood, o f f i f t y p e rc e n t* The a v e ra g e v a lu e s ob­ t a i n e d in a l l sam ples h e r e investiga/fced ra n g e s from a low o f 37*3 Per_ c e n t t o a h ig h o f 50 -2 p e r c e n t t o t a l p o r o s i t y . from t h e A]_ to th e P o re volume d e c r e a s e d h o r iz o n f o r a l l c l a s s e s o f p o r o s i t y in b o th a r e a s . I n A re a X t h e c a p i l l a r y p o re sp a c e i s 7*^ p e r c e n t g r e a t e r th a n th e non­ c a p i l l a r y p o r e s p a c e ; A rea Y has a s i m i l a r s i t u a t i o n w ith a 9*3 p e r c e n t g r e a t e r c a p i l l a r y p ore space. The n a t u r e o r k in d o f p o re space w i l l d e te r m in e t h e f i e l d c a p a c i t y , i n t e r n a l d r a i n a g e , and amount o f a e r a t i o n . The a i r c a p a c i t y o f s o i l s i s o f t e n c o n s id e r e d as b e in g e q u i v a l e n t to th e n o n - c a p i l l a r y p o r e volume. C a p i l l a r y p o re volume may be e x p r e s s e d as e q u iv a le n t to th e f i e l d c a p a c ity . The n a t u r e o f th e n o n - c a p i l l a r y p o re s i s f a c i l i t a t e d by m easurem ents o f t h e r a t e o f i n f i l t r a t i o n o f w a te r . A l a r g e number o f in te r-c o m m u n ic a tin g n o n - c a p i l l a r y p o r e s u s u a l l y means h ig h i n f i l t r a t i o n r a t e s . The a i r c a p a c i t y i s a l s o r e l a t e d to s o i l te x tu re . 5* H y g ro sco p ic C o e f f i c i e n t E x p e rim e n ta l Method: To d e te r m in e t h e h y g r o s c o p ic c o e f f i c i e n t , as o u t l i n e d by Baver ( 191+g) , tw e n ty f i e l d sam ples were ta k e n a t f i v e s o i l h o r iz o n s in A rea X and A re a Y. The sam ples were a i r - d r i e d and f i v e grams o f each was p l a c e d in w eighed w eig h in g c a n s . The u n c o v ered cans were p l a c e d in an oven a t 105° C f o r tw e n t y - f o u r h o u r s , w eighed, and th e h y g ro s c o p ic c o e f f i c i e n t d e te r m in e d . An in d e x o f th e s u r f a c e a c t i v i t y o f s o i l s is th u s o b t a i n e d , o r t h e amount o f w a te r a d so rb e d on th e s u r f a c e of s o i l p a r t i c l e s in an 18 a tm o s p h e re o f w a te r v a p o r o f known, r e l a t i v e h u m id ity . The c o e f f i c i e n t s o b t a i n e d a r e s u p p o se d t o mark th e u p p e r l i m i t o f th e h y g ro s c o p ic m o is tu r e r a n g e a t a p p r o x im a te ly a, pF of 4 . 5 . A summation o f r e s u l t s i s g iv e n in T a b le 12. TABLE 12. HYGROSCOPIC COEFFICIENT VALUES FOR FIVE SOIL HORIZONS AREA X AND Y P ercent A rea X ( S t a t i o n s I - I I ) H o riz o n IA-i A-2 b2 b3 Cl IIA-i a2 b2 B3 *1 Weight o v e n -d ry s o i l Weight w a te r l o s t H y groscop ic C o e f f i c i e n t 6 .U7 5 .5 6 5-51 5 .9 1 5*59 .03 .025 .055 .01 .005 .46 .45 • 998 *17 .09 4 .6 7 5*55 4 .9 5 5*78 ^*77 .02 .03 .03 .015 .01 .5 4 .61 .2 6 .21 A rea Y ( S t a t i o n s I I I - I V ) I IIA-i a3 B2 ici IVA-iX ACL p b2 B3 o3 i 4 .7 5 5*70 6.09 6.06 5*91 .04 .06 *075 .005 .005 .84 1.05 1.23 .08 .084 5*07 4.94 4.65 5*9 8 5 . 3^ .025 .0 4 .03 .02 .003 *49 .81 .64 *33 .09 D is c u s s i o n o f R e s u l t s I n s p i t e o f th e u n s a t i s f a c t o r y n a t u r e o f h y g ro s c o p ic m o is tu r e v a l u e s , P u r i (1925) and Keen (1 9 3 1 ), t h i s c o n s t a n t has found wide u s e . In th e 79 p r e s e n t i n v e s t i g a t i o n , t h e v a lu e s o b t a i n e d f o r th e Ag and B2 h o r iz o n s o f A re a Y a r e h i g h e r t h a n th o s e in A rea X. I n g e n e r a l , th e h i g h e s t v a lu e s o f h y g r o s c o p ic c o e f f i c i e n t a r e fo u nd in s o i l s h a v in g a h ig h c o n t e n t o f c o l l o i d s . The r e l a t i o n s h i p betw een th e m e c h a n ic a l a n a l y s i s and th e h y g ro s c o p ic co­ e f f i c i e n t i s d e f i n i t e l y b ro u g h t o u t h e r e as e v id e n c e d by th e h i g h e r v a lu e s o f A re a Y ( S t a t i o n I I I ) * h o r i z o n s f o r A re a Y. In g e n e r a l , h ig h e r v a lu e s a r e fo u nd in a l l A s t a t i s t i c a l a n a l y s i s (T a b le 13 ) I n d i c a t e s no s i g ­ n ific a n t d iffe re n c e s. TABLE 13. ANALYSIS OP VARIANCE OP HYGROSCOPIC COEFFICIENT FOR FIVE SOIL HORIZONS AREA X (GOOD HEIGHT GROWTH) v s . AREA Y (POOR HEIGHT GROWTH) B a s i s : 25 sam ples H o riz o n A1 A2 cL Bv j J. Source D egrees o f Freedom Sum o f Squares T o tal X vs Y E rror 3 1 2 .110 .050 .060 .050 .030 T o tal X vs Y E rror 3 1 2 .22 27 .1898 .0329 .1898 .0164 T o tal X vs Y E rror 3 1 2 .245 .014 .231 .014 • 115 .012 T otal X vs Y E rror 3 1 2 .035^ .0001 .0333 .0001 .0176 .005 T o tal X vs Y E rror 3 1 2 .0115 .0042 .0073 .0042 .OO36 Mean Square F 1.67 15.73 1 .1 7 80 6. Maximum W ate r-H o ld in g C a p a c ity S x p e r im e n ta l Method: I n o r d e r to d e te rm in e th e maximum w a te r - h o ld in g c a p a c i t y o f th e t h r e e s o i l ty p e s u n d e r i n v e s t i g a t i o n , s i x t y - f o u r sam ples were c o l l e c t e d from th e p r o f i l e s r e p r e s e n t i n g f i v e h o r iz o n s in A rea X and A rea Y. These sam ples were a i r - d r i e d and p a s s e d th ro u g h a two mm. siev e* A t h i r t y gram sample was th e n p l a c e d in s q u a re m o is tu r e e q u i v a l e n t boxes and f i l t e r p a p e r p l a n e d in th e bo tto m o f th e box. The c o n t a i n e r s were p l a c e d in a one cm. l a y e r o f w a te r and a llo w e d to s a t u r a t e f o r tw e n ty f o u r h o u r s , a f t e r which tim e th e y were d r a in e d f o r t h i r t y m in u te s , w eigh ed, and t h e p e r c e n t a g e m o is tu r e d e te rm in e d a t th e maximum w a te r h o ld in g c a p a c i t y , as o u t l i n e d by B aver (1 9 ^ 8 ). As a c o m p ariso n betw een u s in g a i r - d r y samples and s o i l s i n t h e i r n a t u r a l c o n d i t i o n , t h i r t y - t w o more sam ples were c o l l e c t e d in s i t u by means o f a c o re sam p ler a c c o rd in g to th e o r i g i n a l method o f Schumacher (1 S 6 4 ). The same p ro c e d u re was c a r r i e d o u t on th e c o re sam p les, and th e w a t e r - h o l d i n g c a p a c i t y d e te rm in e d on s o i l s o f th e same a re a b u t in t h e i r u n d istu rb e d c o n d itio n . This com parison o f methods was deemed a d v i s a b l e s i n c e v a r i o u s i n v e s t i g a t o r s have s h o rn v id e d i f f e r e n c e s in th e two m ethods. By a i r - d r y i n g and s i e v i n g a sample, th e n o n - c a p i l l a r y , in te rc o m m u n ic a tin g p o re s p a c e and n a t u r a l s t r u c t u r e o f th e s o i l i s a l t e r e d . reasons, For th ese i t i s p r e f e r a b l e to c o l l e c t s o i l s in s i t u f o r w a te r - h o ld in g c a p a c ity d e te rm in a tio n s. The n a t u r a l c o r e s were ta k e n from a l l h o riz o n s w ith th e e x c e p t i o n o f th e C^. A condensed summary of th e v a l u e s f o r a i r - d ry and n a t u r a l c o r e s , i n c lu d in g p e r c e n ta g e d i f f e r e n c e s f o r th e "A" and “B 11 h o r i z o n s in th e two m ethods, is g iv e n in T ab le l b . 21 TABLE l 4 . MAXIMUM WATER-HOLDING- CAPACITY OP SOILS REPRE3ENT IIIG- PIYE SOIL HORIZONS IN AREA X AND AREA Y P e r c e n t M o istu re A rea X ( S t a t i o n s I - I I ) S o i l H o riz o n W a te r- h o ld in g C a p a c ity ( A i r - d r i e d and s ie v e d ) IA X Ap % B2 IIA p A£ B2 W a te r-h o ld in g C a p a c ity ( N a tu r a l c o n d itio n ) Avg. D i f f e r e n c e A ir-d ry vs. N a tu r a l 52.1 4 6 .9 4 4 .3 22.3 22.5 4 2 .5 26.3 23.3 22.7 — 15.6 20.6 21.0 5 .6 — 5 6 .9 4 4 .4 3 9 .3 3 1 .3 2 9.5 3 5 .2 2 4 .2 25.9 23 .3 2 1.7 20.2 1 3 .4 2.0 A rea Y ( S t a t i o n s I I I - I V ) IIIA-i A, 4 B3 CI IVAx Ao Boc. C31 5 9 .6 63.6 5 2 .5 30.1 22.0 22.9 3 2 .7 27.6 20.9 5 7 .4 37.3 4 6 .7 36.0 29.0 3 2.9 29.2 25.5 24.5 — — 20.7 30-9 2 4 .9 9 .2 — 20.5 22.1 21.2 11.5 — D is c u s s i o n o f R e s u l t s S in c e t h e c o n t i n u i t y o f w a te r su p p ly f o r f o r e s t t r e e s i s f u l l y as im p o r ta n t as th e t o t a l amount, a measure o f th e w a te r—h o ld in g r e t e n t i o n of i n d i v i d u a l s o i l h o r iz o n s is v e ry im p o r ta n t. The w a te r r e t a i n e d in s o i l s a f t e r g r a v i t a t i o n a l w a te r has d r a in e d o f f , or th e c a p i l l a r y and h y g ro s c o p ic w a te r , may “become c r i t i c a l f o r c e r ta .in s p e c i e s of t r e e s . T h is i s espe­ c i a l l y t r u e where th e s o i l s a r e s u b j e c t to h ig h e v a p o r a tio n and su b se q u e n t S2 d r y in g o u t a t c e r t a i n p e r i o d s o f th e grow ing s e a s o n . T ree s grow ing in s o i l s o f low f e r t i l i t y r e q u i r e l a r g e r amounts of w a te r th a n t r e e s g ro wing in f e r t i l e s o i l s , b a s e d upon th e w a te r re q u ire m e n t f o r e ach u n i t o f d ry m a t t e r p ro d u c e d . I n humid r e g i o n s , c o a r s e sandy s o i l s h a v in g deep w a te r t a b l e s a r e o f t e n p o o r e r s i t e s th a n s o i l s o f medium o r f i n e t e x t u r e . In a c o n s i d e r a t i o n o f s o i l - m o i s t u r e r e l a t i o n s h i p s one must alw ays c o n s id e r t h e n a t u r e o f t h e d e e p e r s o i l h o r iz o n s and u n d e r ly in g s t r a t a , s in c e th e low er h o r i z o n s o f t e n d e te r m in e th e r e p le n is h m e n t of w a te r a t c r i t i c a l p e rio d s. P e a r s o n and Marsh (1935) have p o i n t e d out t h a t l a y e r s o f f i n e - t e x t u r e d m a t e r i a l l y i n g s e v e r a l f e e t below th e s o i l surfa,ce may be h ig h ly im p o r ta n t in t r e e g ro w th . The w a t e r - h o l d i n g v a lu e s o b ta in e d in t h i s i n v e s t i g a t i o n show a d e f i n i t e r e l a t i o n s h i p to s o i l t e x t u r e and to th e d e p th o f t h e u n d e r l y i n g w a te r t a b l e . An a n a l y s i s of v a r i a n c e o f th e w a t e r - h o l d i n g c a p a c i t y by h o r iz o n s shows a d e f i n i t e s i g n i f i c a n c e in th e h o r iz o n o f s i r - d r y and n a t u r a l c o r e s , when A rea X and A rea Y a r e com pared. No s t a t i s t i c a l s i g n i f i c a n c e i s found betw een S t a t i o n s I and I I o r b e tw e e n S t a t i o n s I I I and IV f o r th e A^ h o r i z o n , b u t a marked d i f f e r e n c e i s fo u n d betw een combined A rea X and A rea Y. T h is a n a l y s i s s u b s t a n t i a t e s th e f i n d i n g s o f th e t e x t u r a l c l a s s i f i c a t i o n (m e c h an ic a l a n a l y s i s ) . The s t a t i s t i c a l a n a l y s i s i s p r e s e n t e d in T able 15* 7. M o is tu r e E q u i v a le n t Experimental Method: M o is tu r e e q u i v a l e n t d e t e r m i n a t i o n s were made on tw enty f i e l d sam ples r e p r e s e n t i n g f i v e h o r iz o n s f o r A rea X and f i v e h o riz o n s f o r A rea Y. The method o f B rig g s and S han tz (1912) was u t i l i z e d in a l l d e t e r m i n a t i o n s , TABLE 1 5 . ANALYSIS OF VARIANCE OF THE MAXIMUM WATER-HOLDING CAPACITY FOR AIR DRY AND NATURAL SOIL CORES IN AREA X v s . AREA Y A i r - d r i e d and s i e v e d sam ples B a s i s : 32 sam ples H o riz o n A1 “^2 b2 j °1 S ource D egrees o f Freedom Sum o f Squares Mean Square F *+.2 6.58 .6*4 T o tal X vs Y E rror 15 1 1*4- 96. b b .z 92.2 T o tal X vs Y E rror 15 1 1*4 13 ^ 5 . 0 85 U.0 1+9 1 . 0 B a s i s : *+ samples T o tal X vs Y E rro r 3 1 2 90.16 6 0 . %b 29.32 6 0 .S*+ 1*4.66 *+.15 T o tal X vs Y E rror 3 1 2 32.^7 10.56 21.91 10.56 10.95 .96 T o tal X vs Y E rror 3 1.25 .25 1.00 .25 .50 .005 .0 2 16.66 .001 1 2 85*+.0 35 .07 2U.14** N a tu r a l Core Samples B a s i s : l 6 samples Ai Ao c. A pC- CL T o tal X vs Y E rror 15 1 i*+ T o tal X vs Y E rror 15 1 ib T o tal S u b sta tio n s L o c a tio n E rror 15 6 1 T o tal S u b sta tio n s L o c a t ion E rror 15 6 1 g 233.51 .02 233-^9 *+71*37 1 30.37 3^ 1 . 0 0 Combined S t a t i o n s I - I I 130.37 2 *+.35 5 . 35* g*+0 . IS 283-55 25.00 s 531.^3 Combined S t a t i o n s I I I - I V *47.26 25.00 66,*45 . 3s 79.51 I 5 6 . 2U 59.90 2 .b l ** S i g n i f i c a n t a t 1$ and 5^ * S i g n i f i c a n t a t ^f0 1 1 1 2 . 5 *+ *177.08 1 5 6 . 2 *+ *+79.22 sk with, a p p r o p r i a t e m o d i f i c a t i o n where n e ed e d . T h i r t y grams o f a i r —d ry s o i l , p r e v i o u s l y p a s s e d th ro u g h a two mm. s i e v e , was pla.ced in th e "bottom o f s c r e e n e d m o is tu r e e q u i v a l e n t b o x e s . These "boxes were th e n p la c e d in a one cm. l a y e r o f w a te r and a llo w e d to s a t u r a t e f o r tw e n ty - f o u r h o u rs . A f t e r d r a i n i n g f o r t h i r t y m in u te s th e boxes were p l a c e d in a c e n t r i f u g e f o r t h i r t y m in u te s a t a speed o f 2 UhO r e v o l u t i o n s p e r m in u te , e q u i v a l e n t to 1000 tim e s th e f o r c e o f g r a v i t y . The boxes were th e n weighed and sam ples o v e n - d r i e d ; th e m o is tu r e e q u i v a l e n t was th e n c a l c u l a t e d from th e above r e s u l t s . A summation of th e v a l u e s o b ta in e d by h o r iz o n i s g iv e n i n T a b le l 6 . D is c u s s i o n o f R e s u l t s The m o is tu r e e q u i v a l e n t i s one o f th e most f r e q u e n t l y u se d c o n s t a n t s f o r e x p r e s s i n g th e m o is tu r e r e l a t i o n s o f s o i l s . In c e n t r i f u g i n g th e s a m p le s , th e f o r c e i s c o n s id e r e d to remove th e w a te r h e ld in th e l a r g e r p o re s * I n t h i s i n v e s t i g a t i o n th e m o is tu r e e q u i v a l e n t i s u t i l i z e d to express s o i l te x tu r e . A ccording to Yeihmeyer and H e nd rick so n (1931) i t g i v e s a f a i r l y r e l i a b l e measure o f th e f i e l d c a p a c i t y of f i n e - t e x t u r e d so il. The v a lu e s would no doubt be h ig h e r in t h i s s tu d y when u s in g th e m o is tu r e e q u i v a l e n t as a measure of th e f i e l d c a p a c i t y , s i n c e th e s o i l s s tu d ie d are of a coarse te x tu re . The v a lu e s of T able 1 6 show a f a i r l y c l o s e c o r r e l a t i o n w ith th e v a lu e s o b ta in e d f o r th e m e ch a n ic al a n a l y s i s . G r e a t e s t d i f f e r e n c e s o c c u r in t h e and h o r i z o n s , and th e h i g h e s t v a lu e s o c c u r in A rea Y a t S t a t i o n I I I , where th e s o i l tyoe a p p ro ach es a loam to c l a y loam. From t h e s e r e s u l t s i t is e x p e c te d t h a t th e s o i l s of A rea Y would r e a c h f i e l d c a p a c i t y so o n er th a n th e s o i l s of A rea X. M oisture e q u iv a le n t v a lu e s in c r e a s e v i t h in c r e a s e in c o l l o i d a l content 25 TABLE 16. MOISTURE EQUIVALENT VALUES FOR FIVE SOIL HORIZONS AREA X AND AREA I P ercent A rea X ( S t a t i o n s I - I I ) H o riz o n IA i A2 Bg B3 ci IIA j. A2 b2 °x ¥ t . o v e n -d ry (gm s.) Wt. w a te r l o s t (gm s.) M o istu re E q u iv a le n t 29 .55 29.66 3 0 .0 3 2 9 .4 1 3 7-27 1 .99 1 .3 9 1.70 .23 .09 6.73 4 .7 0 5.66 .78 .25 3 0 .8 5 2 9.37 29.60 3 1 .0 4 27-89 2 .1 4 1 .4 4 1 .7 4 .70 .03 6.93 4.90 5 .S 6 2.25 .23 A rea Y ( S t a t i o n s I I I - I Y ) IIIA- l A2 b2 B3 Cl IVA-i a 2CL B2 B7 Cl 2 9.2 6 3 0 .5 7 30.61 30.32 2 3.7 1 2 .23 3.49 3 .2 3 .23 .15 10.73 .74 .54 2 9 .0 4 2 0 .03 23.21 2 9.31 2 3 .5 6 2 .0 3 1 .3 4 1.86 •39 .03 6.99 6.67 6 . 6s 1.31 .23 7.79 n.4o as “b orn e o u t by com pering th e c l a y c o n te n t of th e above t h r e e s o i l t y p e s . An a n a l y s i s o f v a r i a n c e (T a b le 17) shows no s i g n i f i c a n t s t a t i s t i c a l d i f f e r e n c e betw een th e m o is tu r e e q u i v a l e n t s of A rea X and A rea Y, g. S o i l M o is tu r e E v a p o r a tion (Ground Cover Absent) E x p e rim e n ta l Method: S o i l c o re s in s i t u were ta k en a t f i v e d i s t i n c t s o i l h o riz o n s r e p r e s e n t i n g tw e n ty i n d i v i d u a l c o re s from A rea X and Area Y. The samples were s a t u r a t e d in a two cm. l a y e r of w a te r f o r tw e n ty - f o u r h ou rs and th e n s6 TABLE 1 7 . ANALYSIS OF VARIANCE 01 MOISTURE EQUIVALENT FOR AREA X v s . AREA Y P e r c e n t M o istu re B a s i s ! 20 samples H o riz o n A1 Ag b2 D Cl w eig h ed. Source D egrees of Freedom T o tal X vs Y E rror 3 1 2 T oted X vs Y E rror Sum o f Squares Mean Square F .65 .31 *3^ •31 .17 1.00 3 1 2 29 .14 17.93 11.21 17.93 5.60 3.21 Tot ad X vs Y E rror 3 1 2 16. ss s . 67 S . 21 g .67 4 .1 0 2.11 T o tal X vs Y E rror 3 1 2 1 .4 g .24 1 .2 4 .24 .62 .30 T otal X vs Y E rror 3 1 2 . 016 . 017 4 .91 .0509 .016 .O3 U9 Us ing t h e s a t u r a t e d w eight as a b a s i s , th e c o re s were th e n a i r - d r i e d f o r a t o t a l p e r i o d o f e le v e n d a y s. Room te m p e ra tu re and r e l a t i v e h u m id ity were ta k e n in o r d e r to in s u r e a c o n sta n c y f o r each d e te rm in a tio n . M easurements in th e l o s s of w e ig h t due to e v a p o r a tio n were ta k e n a t tw o-day i n t e r v a l s in o r d e r to d e te rm in e th e l o s s i n amount and r e l a t i v e r a t e o f w a te r l o s s from u n d i s t u r b e d c o re s w ith o u t ground cover. These v a l u e s were th a n p l o t t e d f o r th e combined A and B h o riz o n s f o r e ach sam p lin g area, u s in g a v e ra g e v l a u e s . R eco rdin g s o f t h e l o s s in s o i l w a te r were made u n t i l t h e l o s s in w eig ht r e a c h e d a c o n s t a n t amount. The o b j e c t i v e o f t h i s euroeriment was to d e te rm in e th e e v a p o r a tio n l o s s on u n d i s t u r b e d c o r e s w ith o u t ground c o v er v a l u e s a r e g iv e n i n T a b le IS . or tra n s p ira tio n a l lo sse s. These 87 TABLE l g . ACCUMULATIVE AMOUNT AND RATE OF SOIL MOISTURE EVAPORATION FROM SOIL CORES WITHOUT GROUND COVER IN AREA X AND AREA Y W ater l o s s - grams a i r - d r y A rea X ( S t a t i o n s I - I I ) f t . S atu rated Core 72 Loss Time in h o u rs 216 120 168 Loss Loss Loss 261+ Loss T otal Accumulative IA] h B£ B, 982.2 IOU3 . 2 1092.6 1 0 7 9 .^ 5 7 .6 65.7 5 I+.1+ ^ 3 .3 2 8 .6 2 3 .O 30.2 1 9 .7 1 6 .9 19.5 16.5 13.2 13.8 10.6 9 .8 11.0 7 .0 M 4 .5 6.7 123.9 123.7 115.1+ 9 3.9 11 A] Ar Bt 1060.0 IO 5 8 . 5 1067.3 IO 5 I .3 38.8 1+2.7 1+2 . 9 61+. 6 2 3 ‘9 29.0 21+. 1+ 22.2 20.8 17.8 16.0 11.2 13.6 1 0 .5 12.5 9 .7 9.U 5.0 7.0 3 .5 106.5 105.0 102.8 111.2 T otal I - I I 882.1+ Area Y ( S t a t io n s I I I - ■IV) I IIA i a2 b2 IO 3 5 . 8 1027.3 1067.5 1 0 55 .7 ^7-9 53.3 1+6 . 1 ^ 9 .7 2 5.9 22.5 25.6 22.5 20.0 1 3.3 16.3 10.5 17.0 9 .7 1 9 .5 7 .0 8.0 8.0 12.0 3 .9 1 18 .8 106.8 119.5 93-6 IVAx A2 b2 Bt 1 02 3.7 98 U .8 101+1+.0 1020.8 55 a 66.8 1+U. 0 87-7 27.8 21+.S 2 2.5 16.1 16.5 21.2 2 3 .U 8.3 13.0 13.0 15.1 5.2 6.0 7 .5 5.6 5 .0 118.7 133.3 110.6 122.3 T o tal III-IV 9 23 .6 D is c u s s io n o f R e s u lts The r e s u l t s on t h e r e l a t i v e amount o f e v a p o r a tio n show t h a t A rea Y h a s a h i g h e r e v a p o r a t i o n l o s s f o r th e e n t i r e p r o f i l e th a n A rea X. The a cc u m u la te d amount o f w a te r l o s t in grams f o r an e le v e n -d a y p e r i o d f o r A rea Y i s 9 2 3 . 6 grams as compared to a l o s s o f 882.1+ grams in A rea X. This t o t a l p r o f i l e e v a p o r a t i o n l o s s r e p r e s e n t s a t o t a l a ccu m u lated l o s s P ig . 1 3 . THE AMOUNT AND RATS OP SOIL MOISTUPE EVAPORATION L 0 3 3 USING NATURAL SOIL GORES WITHOUT GROUND COVER IN AREA OP GOOD HEIGHT GROWTH AND POOR HEIGHT GROWTH H o r i z o n s A-. - A, 60 A rea X - - A rea Y 40 W a te r L oss In c c . 20 10 i___________________ i___________________ i___________________ i___________________ i— 72 120 168 Tim e - H o u r s 216 264 H o r i z o n s B0 -B 60 A rea X 50 — A rea Y 40 W a te r L oss I n c c • 30 20 10 120 T im e - 168 H o u rs 216 89 d i f f e r e n t i a l o f 1+1.2 grams betw een Area. X and A re a Y. E x p re s s e d a s a p e r c e n t a g e l o s s from s a t u r a t i o n , th e t o t a l l o s s would be 11 .1 8 p e r c e n t f o r A re a Y and 10.1+6 p e r c e n t f o r A rea X. I f th e e v a p o r a tiv e s u r f a c e is c o n s i d e r e d a s b e in g o n ly th e A^ and A^ h o r i z o n s , th e n th e a c c u m u la tiv e l o s s d i f f e r e n c e be tw ee n t h e two a r e a s would be 7*1 grams f o r th e A^ and 1 1 . 1+ grams f o r t h e A^ h o r i z o n . A s i m i l a r s i t u a t i o n e x i s t s w ith r e f e r e n c e to t h e r a t e a t which ev ap o ratio n ta k es p la c e . For A rea X, t h e l o s s in w a te r f o r th e f i r s t f o r t y - e i g h t h o u rs o f e v a p o r a tin g tim e in th e combined A^j^tp h o r iz o n s is a t th e r a t e o f .5 2 grams p e r h o u r , w hereas th e r a t e f o r A rea Y i s .61+ grams p e r h o u r . th e r a t e A f t e r th e i n i t i a l l o s s f o r a p e r i o d o f n i n e t y - s i x h o u r s , and amount o f w a te r l o s s te n d s to l e v e l o f f in b o th a r e a s a t a b o u t th e same m a g n itu d e . ences in th e combined A rea Y. A p p ro x im a te ly th e same r a t e of l o s s d i f f e r ­ h o r iz o n s i s e v id e n t f o r b o th A rea X and The a c t u a l amount o f w a te r l o s s i s g r e a t e r in th e A h o r iz o n th a n in th e B h o r i z o n f o r b o th a r e a s . Curves showing th e r a t e and amount o f w a te r l o s s b r i n g o u t t h e s e r e l a t i o n s h i p s more c l e a r l y ( F i g s . 13 and ll+) • S. M oisture Evaporation S o il (Sim ulated G-round Cover) Experimental Method: In order to o b ta in data concerning the s o i l water evaporation l o s s w ith a sim ulated ground c o v er , the same core samples were used as th o se f o r e va p o ra tio n l o s s w ithout ground cover* A fte r s a tu r a tin g the c o r e s , a sawdust mulch sim u la tin g a c tu a l ground cover was then ap p lie d to each c o r e . The amount o f sawdust and depth a p p lie d to samples from Area X was tw ice th e amount added to samples of Area Y. This sawdust 90 r a t i o o f 2 : 1 i s a p p r o x im a te ly th e a c t u a l r a t i o o f l i t t e r (w e ig h t "basis) t h a t i s found, i n th e f o r e s t p l a n t a t i o n * The o b j e c t o f th e sim ulated, ground, c o v e r m easurem ents was to d e te r m in e what e f f e c t th e f o r e s t l i t t e r would have upon th e amount and r a t e o f e v a p o r a tio n from u n d i s t u r b e d h o riz o n s , e x clu siv e of tr a n s p ir a tio n a l lo s s e s . r e c o r d e d f o r a t o t a l p e r i o d o f e le v e n d a y s. The l o s s in w e ig h t was These r e s u l t s a r e g iv e n i n T a b le 19* D is c u s s i o n of R e s u l t s As b e f o r e , in th e e x p e rim e n t w ith o u t ground c o v e r , t h e amount o f w a te r l o s s due to e v a p o r a tio n was g r e a t e s t in A rea Y. The a ccu m u lated amount o f w a te r l o s s f o r th e combined p r o f i l e f o r a p e r i o d o f e le v e n days was 1191*1 grams f o r A rea Y as compared to a l o s s of 1099*1 grams f o r Area. X. T h is e v a p o r a tio n l o s s f o r th e e n t i r e p r o f i l e r e p r e s e n t s a t o t a l a.ccum ulated l o s s d i f f e r e n t i a l betw een th e two a r e a s o f 91*3 grams. The t o t a l l o s s from th e s a t u r a t i o n p o i n t i s 13*^0 p e r c e n t f o r A rea Y and 1 2 .0 7 p e r c e n t f o r A re a X, when t h e e n t i r e p r o f i l e i s c o n s id e r e d . I f th e e v a p o r a t i v e s u r f a c e i s c o n s id e r e d as b e in g o n ly th e A-^ and A2 h o r i z o n s , th e a c c u m u la tiv e l o s s d i f f e r e n c e betw een th e two a r e a s would be 6 5 . 2 grams f o r th e A-^ h o r iz o n and 2h.Q grams f o r th e A,-, h o r i z o n . A s i m i l a r s i t u a . t i o n e x i s t s w ith r e f e r e n c e to th e r a t e a t which e v a p o r a tio n ta k e s p l a c e . F o r A re a X, th e l o s s in w a te r f o r th e f i r s t f o r t y - e i g h t h o u rs f o r t h e combined A^-Ag h o r iz o n i s a t th e r a t e of 1 . 2 6 grams p e r h o u r, w hereas th e r a t e f o r A rea Y i s I . 7 6 grams p e r h o u r. A f t e r th e i n i t i a l l o s s in w a te r t h e amount and r a t e tend to l e v e l o f f a t a p p ro x i­ m a te ly t h e same m a g n itu d e . The amount o f w ater l o s s i s g r e a t e r in th e B h o r iz o n th a n in th e A h o riz o n f o r A rea X; how ever, th e w ater l o s s i s 91 TABLE 1 9 . ACCUMULATIVE AMOUNT AND RATE OF SOIL MOISTURE EVAPORATION FROM SOIL CORES WITH SIMULATED GROUND COVER IN AREA X AND AREA Y Water l o s s - grams a i r - d r y A rea X ( S t a t i o n s I - I I ) H o riz o n Wt. S a t u r a t e d 72 Loss Time in h ou rs 216 120 l5 s Loss Loss Loss ■264 Loss 94.1 S3.0 82.0 94.9 28.9 21.0 2 4 .4 21.9 12.0 13.5 12.3 11.2 7 .2 4 .o 5.0 4 .1 152.5 12S. 7 132.0 139*0 74.0 85-5 97*4 116.1 19.9 12.s 13.1 3.2 7.1 7.3 3*7 116.7 137.0 l 4g «3 T o ta l A c cu m u lative Loss Core IAi a2 b2 b3 IO63.O 1123.0 1 1 7 1 .0 ll6 s.5 IIA n llHi.o a2 1150.0 II63.O 1126.0 b2 b3 2 1 .0 22. k s.6 1 2 .2 10.7 10.3 7 .2 8 .3 6.9 6.8 1 0 .3 9 .0 6.5 T o ta l I - I I 1 ^ 5 .6 1099.8 A rea Y ( S t a t i o n s I I I - I V ) 5.7 7-5 7 .7 7-5 3 .6 1 4 9 .2 137.0 11S.5 142.9 10.1 9*g 1 0 .4 o.S S. 2 6.2 S .3 5*7 IS5 .2 152.7 151.6 154.0 T o ta l I I I -I V 1191.1 11 LA, Ao(2. B ci ? b3 1111.5 1100.0 113 s . 5 1123.6 109.0 86.3 69.3 106.3 10.3 is .3 s .9 l4 .i 12.1 13. S 17.S 1 3 .2 10.3 10.9 15.0 IVAn 1131.5 105 s . 4 1123. s 1079.0 135.3 1 9 .5 26.7 24.9 13 .7 12.1 l4 .l 1S.1 10.0 a2 Bp B-^ 95.9 S9.9 112.3 g r e a t e r i n th e A h o r iz o n th a n in th e B h o r iz o n f o r A rea Y. T h is te n d s to s u b s t a n t i a t e th e f a c t t h a t th e l i t t e r i s e f f e c t i v e in h o ld in g th e w a te r a t a lo w e r h o r i z o n in A rea X. I n A rea Y where th e l i t t e r i s s p a r s e , th e s o i l w a te r te n d s to e v a p o r a te from th e s u r f a c e h o r iz o n more re a d ily . However, u n d e r a c t u a l f i e l d c o n d i t i o n s , th e a i r tu r b u l e n c e or 92 F ig . 1 4 , THE AMOUNT AND RATS OF 3 0 IL MOISTURE EVAPORATION LOSS USING- NATURAL SOIL CORES WITH SIMULATED -GROUND COVER IN AREA OF GOOD HEIGHT GROWTH AND POOR HEIGHT GROWTH H o r i z o n s A^-Ag A rea 100 "" A r e a 80 W a te r Loss 6o In ec * AO 20 120 168 216 Tim e - H o u r s H o r i z o n s B g -B ^ A rea 100 W a te r L oss I n cc . -- A rea 60 40 20 168 120 T im e - H o u rs 216 264 93 wind v e l o c i t y would "be an im p o r ta n t f a c t o r to c o n s i d e r in c o n ju n c t io n w ith t h e l i t t e r e f f e c t . A ir t u r b u l e n c e would be e s p e c i a l l y im p o rta n t in a f f e c t i n g th e r a t e o f s o i l e v a p o r a t i o n . The r e s u l t s on e v a p o r a t i o n l o s s w ith and w ith o u t ground c o v e r do n o t show any s i g n i f i c a n t s t a t i s t i c a l d i f f e r e n c e s in e i t h e r th e r a t e o r amount of ws,ter l o s s . "Under b o th s e t of c o n d i t i o n s , however, Area Y l o s t more w a te r and a t a f a s t e r i n i t i a l r a t e th a n A rea X. Thus, th e same r e l a t i o n s h i p e x i s t s in b o th c a s e s w ith o r w ith o u t ground c o v e r . S in c e t h e c o re s were a i r - d r i e d a t th e same te m p e ra tu re and r e l a t i v e h u m id ity in b o th c a s e s and f r e e o f any t r a n s p i r e ! i o n a l l o s s e s , i t is a p p a r e n t t h a t s o i l t e x t u r e and i t s a t t e n d a n t p o re space must be c o n t r i b ­ u t i n g to t h e d i f f e r e n c e in w a te r l o s s of th e two a r e a s . I t i s r e a s o n a b le to assume t h a t u n d e r h ig h e r te m p e ra tu re s o f c r i t i c a l p e r i o d s in th e grow ing s e a s o n , t h e s e d i f f e r e n c e s would be m a g n ifie d many t i m e s . This a s s u m p tio n i s d e f i n i t e l y b orn e o u t by t h e r e s u l t s ta k e n in th e e x p e r i ­ m e n ta l a r e a as o b t a i n e d w ith th e atmometer b u lb th ro u g h o u t two growing seasons. These d a t a a r e p r e s e n t e d u n d e r th e c l i m a t i c p h ase of th e in v e stig a tio n . An a n a l y s i s o f v a r i a n c e f o r s o i l m o is tu re e v a p o r a tio n is g iv e n by s o i l h o r i z o n in T a b le 20. 94 TABLE 20 . ANALYSIS OF VARIANCE FOR ACCUMULATIVE AMOUNT OF SOIL MOISTURE EVAPORATION LOSS FROM SOIL CORES WITH AND WITHOUT GROUND COVER AREA X v s . AREA Y B a s i s : 20 sam ples Water l o s s in c u b ic c e n t i m e t e r s Ground Cover A bsent H o riz o n ^1 A C ®2 B3 J Source D eg rees o f Freedom T o tal X vs Y E rror 3 T otal X vs Y E rror 3 T o tal X vs Y E rror 3 T o tal X vs Y E rro r 1 2 1 2 1 2 3 1 2 Sum o f Squares Kean Square F 163.99 12.60 151.39 12.60 75.69 .166 558.46 32.49 525.97 32.49 262.9S .123 15^.39 3 5 . 4o 11S.99 35.40 59.49 .595 590.65 29.16 561.49 29.16 2S0 .7 4 .103 S im u la te d Ground Cover At JL h . c. Bp B, 3 2351.5s 1062.76 12SS.S2 1062.76 644. 4i 1.649 301.69 144.00 157.69 144.00 7 8 . S4 1 .826 2 706.66 26.01 680.65 26.01 340.32 .076 3 l 2 121,21 37.82 S3-39 3 7 . S2 41.69 .907 T o tal X vs Y E rror 3 T otal X vs Y E rror 3 T o tal X vs Y E rror 3 T o tal X vs Y E rro r 1 2 1 2 1 95 TABLE 21. A STATISTICAL SUMMARY OF "F” VALUES FOR EDAPHIC-PHYSICAL CHARACTERISTICS IN AREA X v s . AREA Y LABORATORY EXPERIMENTS S o i l H o rizon A1 A verage D epth 0-9” 9- 14" B2 B3 °l 14-23" 23 - 3 3 ” 33” V a ria b le I n v e s tig a te d : 1. M e c h a n ic a l A n a ly s is a . F in e c l a y b . Sands c. S i l t p in s clay 11.1** 1.60 .97 l4 .6 * * 1.92 1.31 .13 9.S9 10.63 .07 .67 .67 .00 16.00 16.00 .36 - - - .00 3 .8 4 - - - 3.05 .90 2.19 .17 2.76 5- H y g ro sco p ic C o e f f i c i e n t 1 . 6 7 15.73 6. Wat e r - h o I d in g Capac i t y a . Maximum a i r - d r y b . Maximum n a t u r a l 24.4** 5.35* 4.15 1.36 .96 .027 . 00 [ — 3.21 2.11 .30 .91 2. S p e c i f i c G r a v ity 3* Volume Weight 4. P o re Volume a. C a p illa ry b. N o n -c ap illary c. T o tal p o ro s ity 1.1 .o4 .6 4 .001 1 .8 0 7* M o is tu re E q u iv a le n t g. So i l E v a p o ra t io n a* W ith ou t g ro un d . 166 cover b . S im u la te d ground 1.649 cover ** S i g n i f i c a n t a t 1fa and 5$ * S i g n i f i c a n t a t 5$ . — .012 — — — .005 1.17 .123 .595 .103 1.826 .076 .907 — 96 Summary and I m p lic a tio n o f R e su lts Edaphic-Pbys i c a l C h a r a c t e r is t ic s Having e s t a b l i s h e d the f a c t from o b s e r v a tio n and measurement th at a marked d i f f e r e n t i a l r a t e o f h e ig h t growth e x i s t s in the experimented p l a n t a t i o n under i n v e s t i g a t i o n , a ra th er complete la b o ra to ry a n a ly s is of the p h y s i c a l s o i l p r o p e r t ie s was undertaken. The o b j e c t iv e o f both the p h y s i c a l and chem ical edaphic s t u d ie s was to determine what e f f e c t the s o i l f a c t o r s might have upon the h e ig h t growth o f t u l i p p o p la r, e it h e r d i r e c t l y or in combination w ith o th er f a c t o r s . These s o i l p r o p e r tie s were i n v e s t i g a t e d s e p a r a t e ly and then combined to show t h e i r r e l a t i v e a p p l i c a t i o n to each o th er and to r e la t e d p r o p e r t ie s . For reasons which are o b v io u s, in an e c o l o g i c a l stu d y , no one f a c t o r per se can be i s o l a t e d w ithout r e f e r e n c e to i t s a s s o c ia t e d environment. I t i s th e purpose o f the p r e s e n t summary to analyze the im p lic a tio n s o f the study thus f a r , and to p o in t out th o se f a c t o r s which may be s i g n i f i c a n t l y c o n tr ib u tin g to th e e n t i r e stu d y . Three d i s t i n c t but r e la t e d s o i l typ es o f the same s o i l ca ten a were mapped and p l o t t e d by p r o f i l e . The ttarsaw sandy loam and Bronson sandy loam r e p r e s e n t the ar ea o f poor h e ig h t growth; the Fox sandy loam is r e p r e s e n t a t iv e o f th e s o i l s where the h e ig h t growth i s b e t t e r . From the sta n d p o in t o f t e x t u r e , the s o i l s in the area of poor h e ig h t growth c o n ta in a s i g n i f i c a n t l y g r e a t e r amount of f i n e c la y in the ^ in th e area o f good h e ig h t growth. and k 2 horizons than I f i t is assumed th at the f i n e c la y c on ten t has an important bearing upon h e ig h t growth or s i t e q u a l i t y , then from the t e x t u r a l v ie w p o in t, the s o i l s in the area of good h e ig h t growth 97 s h o u ld r e v e a l t h e h i g h e r f i n e c l a y c o n t e n t . The r e s u l t s o b ta in e d in t h i s s t u d y b e a r o u t th e o p p o s i t e s i t u a t i o n . Thus, s o i l t e x t u r e a lo n e must not be a l i m i t i n g f a c t o r cau sin g th e d if f e r e n c e in h e ig h t growth. S o i l t e x t u r e may be masked by the c o n tr ib u tio n o f some oth er f a c t o r or s e t o f f a c t o r s , such as the s o i l —m oisture or chemical, r e la t io n s h ip * Sin ce i t i s g e n e r a l l y r eco gn ized th a t loam s o i l s are more fa v o r a b le f o r f o r e s t growth than e i t h e r c o a rse sands or f i n e c l a y s , one might in f e r th a t Area Y (poor h e ig h t growth) would produce th e b e s t h e ig h t growth. A gain, t h i s s i t u a t i o n i s r ev e r se d as borne out by the mechanical a n a ly s is o f the th r e e s o i l t y p e s , s in c e the s o i l most c l o s e l y approaching a loam i s found in Area Y. The s p e c i f i c g r a v i t y o f the s o i l s in both areas did not d i f f e r s i g n i f i c a n t l y , e i t h e r in a c tu a l v a lu e or s t a t i s t i c a l l y . A comparison o f volume w eights shoved very l i t t l e d if f e r e n c e in the two a rea s i n v e s t i g a t e d . The volume weight v a lu e s do r e v e a l the f a c t that in a l l the s o i l s s t u d ie d , the v a lu e s were f a i r l y high, thus p o in tin g out th a t th e s e s o i l s are not “mature” f o r e s t s o i l s . Low organic matter c o n te n t and high sand content o f a l l s o i l s in v e s t ig a t e d i s in d ic a te d by the volume w eight v a lu e s . Greater n o n - c a p i l l a r y , c a p i l l a r y , and t o t a l pore volume i s in d ic a te d in th e area o f poor h e ig h t growth. This is p a r t i c u l a r l y tru e fo r the root zone a r e a , the A and A0 h o r iz o n s . 1 ^ The d if f e r e n c e in p o r o s it y between the two s i t e s i s not extreme, however* R e s u l t s o b ta in ed from the h ygroscop ic c o e f f i c i e n t d eterm ination corrob­ o r a te the r e s u l t s found in the m echanical a n a l y s i s . In g e n e r a l, higher v a lu e s were found in a l l horizons fo r the area o f poor h e ig h t growth, 98 TABLE 2 2 . A COMPOSITE SUMMATION OF PHYSICAL-EDAPHIC CHARACTERISTIOS BY SOIL HORIZON NOR AREA OF GOOD HEIGHT GROWTH AND AREA OF POOR HEIGHT GROWTH OF TULIP POPLAR p © p •rH to •rH ta u o W dO C O 'yR ^ m 5 t t 3CD d O •rH r -1 ft PP tH •rH O © rH •H *H C CO O C O £f t ft O CO fto hr a rH •H - O Fh o PL, H p * 3(d oJ O o P ■H P ctf r—1 o CO •rH k, p •H to o u o ft o I d s ; O *3 -p o Eh o •rH ft O o © o Fn 6t0 m O cd ft td o fl *H bj n3 L rH O 1 X{ F-i f Ih td © •—r p cd p o cd P )r \ cd to o © -rH u hD O 3 o o 5I—1 dCj o h W 3 l p Ih td © p} P ■ — •H 3 o' m © Fh 3 p © •H O •s< 3 O -H P cd Ih O ft cd £ • a il \R -p e \R. Fh 3 P r—s to to •H © O Fh S O O rH 'r ' -rH O CO A rea X Ag 13 .2 12.5 b2 13.b I A-| 5 6 .U 6.0 13.1 16 .2 18.0 B3 °1 S-b 6.0 61.9 76.7 7 3 -6 91.6 9too 38.1 23.3 26.1+ 8.U 6.0 2.60 2.52 1.31 1.60 — 61.1 63.2 76.0 88.0 9too 38.9 36.8 2too 12.0 6.0 2.55 2.61 1.62 — — — — — 21.0 25.2 16.3 50.1 37.3 — — — — i.b i 25.9 26.4 — — 17.5 11.7 — — 2b.s — — — — .to .^5 .99 .17 .09 4 3 . H .*3 3S.1 . 5 b — .61 — .26 .21 to. 5 26.3 23.3 22.7 6.73 1+. 70 5.66 .78 .25 153 129 132 139 35.2 2to2 25.9 23*3 6.93 4.90 5.S6 2.25 .28 117 137 59.6 63.6 52.5 30.1 28.0 3S.9 7.79 32.7 11. 27.6 10.73 20.9 .7^ — — .54 lbs 57.^ 57.3 14-6.7 36.0 29.0 32.9 29.2 25.5 214-.5 58.1 to.9 to . 3 28.3 28.5 56.9 bb.b 39.3 31.3 29-5 — — — ito 1U6 — A rea Y n iA ! 1 5 .b a 2 18.0 b 2 23.1 B, 5.0 °1 u.u ITAX lto9 19.1 B22 2 0 . b b 3 9 -b Cl b . b 56.9 61.7 7 0 .^ 9too 95-0 ^3.1 38.3 29.6 6.0 5. 0 2.39 2.7U 61.5 62.7 67.6 90.0 9U.6 3^-5 37.3 32. b 10.0 5 -b 2.S1+ 2.76 — — — — 1.33 1.14-6 — — 1.3b 1.56 — — 26.0 29.1 — —- 28.0 26.7 — — 21.5 15.3 — — 22.2 13.8 —. — ^7.5 .zb — — 1.05 1.23 .08 .08 50.2 to. 5 — — .to .81 .6k .33 .09 — 6.99 b.67 6.6s 1.31 .28 137 119 1U3 —- 185 153 152 151+ — 99 ■where th e h ig h e r c o n te n t o f c o l l o i d s i s p r e s e n t . The d if f e r e n c e is not s t a t is t ic a lly sig n ific a n t. The water—h o ld in g c a p a c ity o f s o i l s in the a r ea of poor h e ig h t growth r e v e a ls a h ig h ly s i g n i f i c a n t d i f f e r e n c e in the A^ horizon when compared w ith Area X. o f Area Y. This r e s u l t i s in accord w ith the high er f i n e c la y content The v a lu e s o btained f o r t h i s s o i l property are in d ic a te d as s i g n i f i c a n t in both a i r —d r ie d and s ie v e d samples, as w e ll as w ith n atural s o il cores. A measure o f the m oistu re e q u iv a le n t in both areas d i s c l o s e s no s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e between th e two s i t e s . However, use o f the m o istu re e q u iv a le n t as a measure o f te x t u r e , brings out the f a c t th a t th e v a lu e s in c r ea se d w ith an in c r e a se in c o l l o i d a l c o n te n t. Again, the area o f poor h e ig h t growth showed the higher m oisture e q u iv a len t v a lu e s. The r e s u l t s on the measurement o f s o i l water evaporation l o s s from n a tu r a l s o i l co res r e v e a ls both a g r e a t e r amount and i n i t i a l r a te of ev a p oratio n l o s s from th e area o f poor h e ig h t growth. Although the a c tu a l v a lu e s show no s t a t i s t i c a l d if f e r e n c e on compared s i t e s , t h i s f a c t o r may be extrem ely important a t c r i t i c a l p e r io d s of the growing season . The e v a p oration experim ents are l i m i t e d in t h e ir s p a t i a l a p p lic a t io n but are important as an i n d ic a t io n of the s o il- m o i s t u r e r e l a t i o n s h i p s . I t is s u f f i c i e n t to p o in t out a t t h i s s ta g e o f the in v e s t i g a t i o n , th a t g r e a te r i n i t i a l l o s s e s and r a te o f evaporation occur in Area Y, both w ith end w ithout sim u la ted ground cover. The s t a t i s t i c a l summary o f a l l p h y s ic a l s o i l f a c t o r s under i n v e s t i ­ g a tio n r e v e a ls o n ly two p r o p e r tie s o f s t a t i s t i c a l s i g n i f i c a n c e . These two 100 f a c t o r s , th e amount o f f i n e c la y and th e w a te r-h o ld in g c a p a c ity , a,re the o n ly v a r i a b l e s which d i f f e r s i g n i f i c a n t l y between Area X and Area Y. It i s important to n o te that th e s e two s o i l p r o p e r tie s are d e f i n i t e l y r e la t e d to each o t h e r , insofa,r as the s o i l - m o i s t u r e r e l a t i o n s h i p i s concerned. The manner in which the more ou tstan d in g p h y s ic a l s o i l v a r ia b le s r e l a t e to th e c l i m a t i c , ch em ica l, and m ic r o b io lo g ic a l phases o f the p r e s e n t i n v e s t i g a t i o n w i l l be d is c u s s e d and analyzed in th e f i n a l summary of a l l fa c to r s. 101 D epth o f Root P e n e t r a t i o n in R e l a t i o n to th e Ph y s ic a l- E d a p h i c Charac t e r i s t i c s I n o r d e r to d e te r m in e w h e th er any s i g n i f i c a n t d i f f e r e n c e s e x i s t e d b etw een th e a r e a s o f good and p o o r h e i g h t gro w th t? ith r e s p e c t to e x t e n t o f l a t e r a l r o o t p e n e t r a t i o n , p r o f i l e s ex p o sin g th e r o o t system were made i n e a c h a r e a ( F i g s . 15 and 1 6 ) . These p r o f i l e s were dug a t random l o c a t i o n s in each a r e a and t h e r o o t p e n e t r a t i o n d e p th s were re c o rd e d t h r o u g h o u t t h e grow ing s e a s o n in o r d e r to a r r i v e a t a s u b s t a n t i a l a v e ra g e ro o t d ep th p e n e tr a ti o n . A r e c o r d o f th e p r o f i l e s exposed and t h e i r c o r r e ­ sp o n d in g d e p th s i s as f o l l o w s ; P ro file 1 2 3 k 5 6 7 S 9 10 11 12 D ate Exposed A p r i l I S , 1952 ft ti it May 20, 1952 ti ti ti June 20, 1952 ii 11 tt J u ly 31, 1952 ih 11 15 16 17 ti A ugust 3 1 * 3-952 11 is 11 19 20 11 11 S ta t ion I II III 17 S ta tio n ¥0 . D epth o f Maximum L a t e r a l Root P e n e t r a t i o n in In ch es I II 11.0 10.0 15.0 19.0 15.0 13.0 10.0 1 3 .0 13.0 12.0 11.0 16.0 16.0 13.0 12.0 15.0 12.0 1 1 .0 III IV lU.Q 1S.0 I II III 17 I II III IV I II III IV I II III IV Average Depth Root P e n e tr a tio n in 1 3 .^ l i . s 12.h 17.2 10?? F i g . 15. A s o i l p r o f i l e exposed in th e a r e a o f good h e i g h t growth (A rea X ). The e f f e c t i v e d e p th o f l a t e r a l r o o t p e n e t r a t i o n in t h i s a r e a i s a p p ro x im a te ly 11 in c h e s . The c o n c e n t r a t i o n o f f l e s h y l a t e r a l r o o t s o f t u l i p p o p la r a r e found e x c l u s i v e l y in t h e ’’A" s o i l h o r i z o n . Note th e hardwood l e a f l i t t e r a t th e s o il surface. 103 In hardwood s p e c ie s such as t u l i p p o p la r , the depth and form o f root system appears to he c o r r e la t e d w ith water c on ten t o f the s o i l . Tulip p o p la r i s a s p e c ie s w ith long i n i t i a l ta p ro o ts and prominent l a t e r a l s . Most e v id e n c e r e v e a l s t h a t t h i s t y p e r o o t system i s c h a r a c t e r i s t i c o f s p e c i e s r e a c h i n g optimum developm ent on s o i l s w hich, hecau.se o f t h e i r p h y s i c a l p r o p e r t i e s and p r o f i l e c h a r a c t e r i s t i c s , have a f a i r l y u n ifo rm a v a i l a b l e w a te r c o n t e n t th ro u g h o u t. Such s o i l s a r e n e c e s s a r i l y deep, w e l l - d r a i n e d and o f u n ifo rm t e x t u r e w i t h m od erate p e r m e a b i l i t y . A ccording to Tourney and K o r s t i a n (1937) t u l i p p o p l a r draws i t s w a te r and n u t r i e n t s u p p l i e s v e r y l a r g e l y from th e s u r f a c e l a y e r s o f th e s o i l , a l th o u g h t h i s s p e c i e s h a s a d e e p ly p e n e t r a t i n g t a p r o o t . T h is f a c t i s s u b s t a n t i a t e d i n th e p r e s e n t i n v e s t i g a t i o n as shown by exposed p r o f i l e and r o o t d e p th p e n e t r a t i o n m easurem ents. Hoot p o s i t i o n r e f l e c t s to a g r e a t d e g re e th e s o i l m o i s t u r e c o n d i t i o n s , and a s tu d y o f r o o t h a b i t g iv e s v a l u a b l e in ­ f o r m a ti o n on t h e a d a p t a b i l i t y o f v a r i o u s s p e c ie s f o r a. p a r t i c u l a r s i t e . R e su lts and [Discussion From th e r e s u l t s ob ta in ed on the exposure o f l a t e r a l r o o ts in twenty in d iv id u a l p r o f i l e s o f both Area. X and Area T, -no extreme d if f e r e n c e s were found in depth o f root p e n e tr a tio n . The g r e a t e s t root p e n e tr a tio n o f the fou r l o c a t i o n s exposed was n in e te e n in c h e s. The average depths obtained fo r each o f fou r sep a ra te s t a t i o n s shows the g r e a t e s t p e n e tr a tio n at S t a tio n IV. As in d ic a te d by s o i l type and poor h eig h t growth, t h i s s o i l i s th e d r i e s t of the fou r s t a t i o n s observed. I t is surmised th at the deeper root development o f t h i s area is i n d ic a t iv e of a d r ie r s i t e than oth er l o c a t i o n s in the experim ental t r a c t . The water ta b le l e v e l at the 10U P ig . l 6 . A s o i l p r o f i l e exposed in the area o f poor h e ig h t grovrth (Area Y ). The e f f e c t i v e depth o f l a t e r a l root p e n e tr a tio n in t h i s l o c a t i o n i s approximateljr 15 inches; the f l e s h y l a t e r a l r o o t s are found e x c l u s i v e l y in the ,,A11 s o i l h o rizon . Note the dominant g r a ss v e g e t a l l i t t e r ;it the s o i l su r fa c e in c o n tr a st t o the l e a f l i t t e r o f Area X. 105 same s t a t i o n i s c l o s e r to the ground s u r fa c e than at any o th er s t a t i o n . I t i s e n t i r e l y p o s s i b l e th a t the deeper ro o t p e n e tr a tio n in t h i s l o c a t i o n i s in f lu e n c e d by s a tu r a te d s o i l c l o s e to the water t a b le l e v e l during the e a r ly p a r t o f the growing seaso n . Again, during the and summer drought, th e r o o ts o f t r e e s at S t a t io n IT dry p e r io d o f August maybecome more d e e p ly p e n e t r a t in g in respon se to a v a ila b le s o i l m oisture vrith a c o rre­ sponding drop in the water t a b le l e v e l . The downward growth o f r o o ts must heep pace w ith the l o s s o f m oistu re from the s u p e r fic ia l, la y e r s o f s o i l during th e p e r io d o f drought. The root system o f t u l i p p o p la r , which i s f l e s h y and s u c c u le n t , i s not ad. ju s ted to s i t e s which are swampy or to th o se s i t e s in which the s u r fa c e la y e r s are su b jec t to d e s i c c a t i o n . Thus, the r e s u l t s here o b ta in e d denote th a t t u l i p pop lar i s adapting i t s e l f , w ith regard to i t s ro o t system , to a c o n d itio n somewhere between the extreme l i m i t s o f s a t u r a t io n and p h y s i o l o g i c a l d ry n ess. The e f f e c t i v e zone o f l a t e r a l r o ot p e n e tr a tio n f o r both Area X and Area Y i s found e n t i r e l y in th e Ap and Ag s o i l h o r iz o n s . The e f f e c t s o f e v a p o r a tio n , s o i l tem perature, and s o i l m oisture fo r th ese h o r iz o n s , in r e l a t i o n to r oot p e n e t r a t io n , w i l l be d is c u s s e d under c lim a t i c i n v e s t i g a t i o n s . It is i n t e r e s t i n g to note th a t the on ly s t a t i s t i c a l l y s i g n i f i c a n t t e x t u r a l s o i l d i f f e r e n c e between Area X and Area Y i s found in the same ho rizon s (A-j_ amd A^) as th e e f f e c t i v e zone o f l a t e r a l r o ot p e n e tr a tio n . Thus, in d is c u s s ­ ing th e e f f e c t o f c l i m a t i c f a c t o r s on s o il- m o i s t u r e r e l a t i o n s h i p s in t h i s stu d y , v i r t u a l l y a l l r e l a t i o n s between growth and s o i l m oistu re w i l l r e f e r to the l a t e r a l root zone a r ea , s in c e t h i s i s the zone where the t r e e s are p r im a r ily d e r iv in g t h e i r n u t r ie n t s and water supply. The r o le 10 6 o f f e e d e r r o o t s in r e l a t i o n to w a te r s u p p ly i n e ach a r e a vjas n o t in­ v e stig a te d , (ta p ro o ts) g ro w th . T h is i s n o t t o imply t h a t t h e more d e e p ly e n tr e n c h e d r o o t s a r e n o t im p o r ta n t in s u p p ly in g w a te r a t c r i t i c a l p e r i o d s o f E f f e c t i v e l a t e r a l r o o t p e n e t r a t i o n and i t s r e l a t i o n to th e p h y s i c a l - e d a p h i c c h a . r a c t e r i s t i c s o f t h e e x p e r im e n ta l a r e a was th e o b j e c t i v e o f t h i s p h a s e o f th e s tu d y . loy W ater T a b le F l u c t u a t i o n in R e l a t i o n to th e P h y s ic a l - E d a p h ic Char a c t e r i s t i c s T hro ug h ou t th e grow ing s e a s o n o f 1952, th e d e p th to t h e u n d e r ly in g w a te r t a b l e was r e c o r d e d f o r com parison "between th e a r e a o f good and po o r h e i g h t g ro w th o f t u l i p p o p l a r . t a b l e i s shown in F i g . 1 7 . T h is f l u c t u a t i o n in d e o th to t h e w a te r A c o n tin u o u s drop in wa.ter t a b l e l e v e l , as th e s e a s o n p r o g r e s s e d , i s g r a p h i c a l l y r e c o r d e d f o r b o th A rea X and A rea Y. S in c e i t h a s b e en shown by s e v e r a l i n v e s t i g a t o r s t h a t c a p i l l a r y r i s e o f w a te r from a w a te r t a b l e w i t h i n f i f t e e n f e e t o f th e s u r f a c e is im p ort­ a n t in p r o v i d i n g r o o t s w ith m o i s t u r e , f l u c t u a t i o n s in th e w a te r t a b l e f o r t u l i p p o l a r a r e s i g n i f i c a n t in term s o f t r e e g ro w th . The waiter t a b l e in A rea X o c c u r s a t an a v e ra g e d e p th o f a p p ro x im a te ly s i x f e e t , whereas A re a Y h a s a w a te r t a b l e o c c u r r i n g a t a p p ro x im a te ly t h r e e f e e t below th e su rface. R e s u l t s and D is c u s s i o n The c h a r a c t e r o f th e v e g e t a t i o n h a s an im p o rta n t e f f e c t upon th e h e i g h t o f th e w a te r t a b l e and o t h e r f a c t o r s a s s o c i a t e d w ith t h e w a te r ta b le le v e l. I n A re a X th e t r e e s a r e more m assiv e in h e i g h t and volume and hence r e q u i r e more w a te r f o r t r a n s p i r a t i o n a l p u r p o s e s ; t h i s w a te r is drawn from t h e g rou nd w a te r s u p p ly o r e l s e from t h e s o i l b e f o r e i t p en e­ t r a t e s to t h e w a te r t a b l e l e v e l . T h is o b s e r v a t i o n , co u p led w ith such r e c o r d e d c l i m a t i c f a c t o r s a s re d u c e d s o i l w a te r e v a p o r a t i o n , low er s o i l t e m p e r a t u r e s , re d u c e d s u r f a c e s o i l t e m p e r a t u r e s , and a sandy loam s o i l ty p e , c o n t r i b u t e d i r e c t l y to t h e low er w a te r t a b l e l e v e l in A rea X. In c o n t r a s t to t h i s s i t u a t i o n , A rea Y p o s s e s s e s a w a te r t a b l e c l o s e to th e s u r f a c e a s a r e s u l t o f in c r e a s e d c a p i l l a r i t y and in c r e a s e d s o i l evapo­ ra tio n . The s o i l o f A rea Y is a deep s o i l in an a b s o l u t e s e n s e , b u t , 10s F ig . 1 7 . THE WATER-TABLE FLUCTUATION THROUGHOUT THE GROWING 3EA30N OF 1 9 5 2 A rea X I II A rea Y III ---------------- IV 20 40 D e p t h To W a te r-T a b le In In ch es 60 80 100 A p ril May June M o n th o f O b s e r v a t i o n J u ly A ugust 109 b e c a u s e o f a r e l a t i v e l y im p erv io u s l a y e r ( h i g h c la y c o n t e n t o f A h o riz o n ) and h i g h w a te r t a b l e , i t i s a s h a llo w s o i l in a p h y s i o l o g i c a l s e n s e , which i n h i b i t s norm al h e i g h t g ro w th . A c l i m a t i c s tu d y o f t h e c o n t r a s t between b o t h a r e a s u t i l i z i n g such f a c t o r s as r e l a t i v e h u m id ity , s o i l e v a p o r a tio n l o s s , a i r and s o i l te m p e r a t u r e , s o i l - m o i s t u r e r e l a t i o n s h i p s and wind movement, b e a r o u t t h e c o r r e l a t i o n betw een th e w a te r t a b l e l e v e l s in each area. E x p e rim en ts have shown t h a t c a p i l l a r y r i s e o f w a te r in s o i l s ta k e s p l a c e s lo w ly , b u t t o th e g r e a t e s t h e i g h t in c l a y s o i l s , and most r a p i d l y in sandy s o i l s . From t h e r e s u l t s o f th e w a te r t a b l e f l u c t u a t i o n in b o th a r e a s i t is a p p a r e n t t h a t th e w a te r t a b l e l e v e l in p l a n t a t i o n s o f t h i s ty p e becomes im p o r ta n t a s an in d e x to p l a n t i n g s i t e s , i n s o f a r as th e s e d a t a a r e s u p p le ­ m ented w i t h o t h e r c l i m a t i c and e d a p h ic f a c t o r s . A gain, th e c r i t i c a l s o i l - m o i s t u r e r e q u ir e m e n ts f o r t u l i p p o p l a r p l a n t a t i o n s i s e v i d e n t . Thus, A rea Y a p p a r e n t l y h a s a l l t h e s i t e re q u ire m e n ts n e c e s s a r y to good h e ig h t g ro w th o f t u l i p p o p l a r , y e t th e b e s t grow th o c c u r s somewhere beyond th e s e l i m i t a t i o n s , as e x h i b i t e d by A rea X. The two main f a c t o r s , as e v id en c e d by t h i s s tu d y , which a r e c o n t r i b u t i n g most to t h e d i f f e r e n c e in th e w a te r t a b l e l e v e l s o f b o th a r e a s , a r e e v a p o r a t i o n and t r a n s p i r a t i o n o f th e t u l i p p o p la r s i t e s . 110 LABORATORY EXPERIMENTS Chemical - Edaphie C h a r a c t e r i s t i c s 1 . S o i l A c i d i t y (pH)^ E x p e rim e n ta l Method: Samples f o r th e d e t e r m i n a t i o n o f t h e h y d ro g e n -io n c o n c e n t r a t i o n we r e ta k e n from f i v e s o i l h o r iz o n s on t h i r t y - t w o randomly s e l e c t e d s p o ts in A re a X and A re a Y. Ten-grata s o i l sam ples were ta k e n in d u p l i c a t e in J u l y 1951* and s e a l e d im m ediately in p a r a f f i n c o n t a i n e r s . The pH o f each s o i l was th e n d e te r m in e d e l e c t r o m e t r i c a l l y "by u se o f th e Beckman pH M ete r, as shown by Reed and Cummings (19^5)» aJ1d th e r e c i p r o c a l v a lu e s o b ta in e d were a v e r a g e d f o r e ac h d u p l i c a t e s e t o f sam p les. A s o i l - w a t e r e x t r a c t in t h e r a t i o o f 1 :1 was u sed in a l l d u p l i c a t e d e t e r m i n a t i o n s . By means o f th e U n ite d S t a t e s S o i l C o n s e rv a tio n S e r v ic e c l a s s i f i c a t i o n c r i t e r i a , th e r e l a t i v e pH and i t s c o r r e s p o n d in g c l a s s of a c i d i t y was p l o t t e d f o r each a r e a by d e p th o f h o r i z o n . The a v e ra g e v a lu e s o b ta in e d by h o r iz o n and d e p th i s p r e s e n t e d in T a b le 2 3 . D is c u s s i o n o f R e s u l t s Most f o r e s t s o i l s a r e a c i d in r e a c t i o n . T his r e a c t i o n i s n o t always c o n s t a n t b u t shows v a r i a t i o n d u r in g th e c o u rs e of t h e yea.r. However, H e h rin g (193^) a German i n v e s t i g a t o r , found t h a t v a r i a t i o n s in pH d id n o t exceed 0 . 8 pH o v e r a o n e - y e a r p e r i o d . c o m p arable r e s u l t s . O th er i n v e s t i g a t o r s have found Marked d i f f e r e n c e s in pH a r e o f t e n found in d i f f e r e n t 9 . The number p re c ed in g ' th e c h em ical s o i l f a c t o r un d er i n v e s t i g a t i o n c o rre s p o n d s to th e same f a c t o r summarized s t a t i s t i c a l l y in T ab le *+2. I ll TABLE 2 3 . THE HYDROGEN-ION CONCENTRATION OP SOILS REPRESENTING FIVE SOIL HORIZONS IN AREA X AND AREA Y L o g a rith m o f r e c i p r o c a l o f t h e h y d ro g e n -io n c o n c e n t r a t i o n A rea X ( S t a t i o n s I - I I ) i l H o riz o n A verage pH IA-, a2 b2 b3 cx 5 .5 5 5 .3 3 5 .^ 0 5>2 5 .1 S IIA j Ap 5 .3 9 5 .2 0 5 .1 5 5 .1 ^ 5 .U0 B2 C31 Combined S t a t i o n s A verage pH I- 1 1 An 2 B2 B3 C1 Avg. D i f f e r e n c e 5^7 5 .2 6 5.27 5.2S 5.29 -.1 3 + .2 1 + .4 l + .2S -•33 5 .6 0 5.05 U .g 6 5 .0 0 5 .6 2 + .13 -.2 1 -.U l -.2 8 + •33 A rea Y ( S t a t i o n s I I I -IV) h l a -l 5 .S5 5 .1 6 5 .0 2 5 .1 7 5 . k2 a2 b2 B3 Cl IVA-j III-IVA-. a2 B2 B3 5-35 k .sk 4 .7 0 U.S 3 5.S2 4 B2 B3 ** A minus s i g n (■- ) i n d i c a t e s g r e a t e r a c i d i t y th a n compared a r e a and a p i n s (+) s i g n i n d i c a t e s l e s s a c i d th a n compared area,. h o r i z o n s of a p a r t i c u l a r p r o f i l e . I n th e r e s u l t s h e r e o b t a i n e d , c o n s i d e r a b l e v a r i a t i o n w i t h i n h o r i z o n s may be s e e n , b u t th e f i n d i n g s i n d i c a t e t h a t a co m p ariso n o f A rea X end A re a Y show l i t t l e o v e r a l l v a r i a t i o n . The h i g h e s t pH fo u n d was 5 .S 5 and th e lo w e s t was ^ .7 0 ; t h e s e v a lu e s in c lu d e a l l h o r iz o n s in b o t h a r e a s . A rea Y e x h i b i t s lo w er i n d i v i d u a l h o r i z o n a l a c i d i t i e s th a n A rea X b u t b o th a r e a s a r e in th e c a te g o r y o f s t r o n g l y a c i d to v e ry s t r o n g l y c— - Ti _ / - Cry T3 . Ti m S 7 113 a c i d , when a v e r a g e v a l u e s a r e c o n s i d e r e d . The B h o r iz o n of A rea X and A re a Y a p p e a r s to be s l i g h t l y more a c i d th a n th e A o r C h o r iz o n s ( F i g . 1 8 ). A lso t h e g re a -te r pH d i f f e r e n c e betw een t h e two compared a r e a s o c c u rs in th e B h o riz o n . A s tu d y by A uten (19*4-5) 77 s e c o n d -g ro w th y e llo w p o p l a r s ta n d s from 12 to 6 l y e a r s o f age on o ld f i e l d s and c u to v e r a r e a s , showed t h a t i f th e s o i l r e a c t i o n was c o n s id e r e d a t th e r o o t zone d e p th , most s o i l s were a c i d . A uten c i t e s an example o f a 1 2 - y e a r o ld s ta n d which grew a t th e r a t e of f e e t p e r y e a r on a s o i l w ith a pH o f 5*8 a.t th e s u r f a c e and 5*6 in t h e sub­ so il. T h is s i t u a t i o n i s an alo g o u s to th e r e s u l t s of th e p r e s e n t i n v e s t i ­ g a t i o n , where i n s u f f i c i e n t tim e h a s e la p s e d f o r th e c a lc a r e o u s y e llo w p o p l a r l i t t e r to a l t e r th e r e a c t i o n to l e s s a c i d c o n d i t i o n s . In tim e , th e l i t t e r o f t h i s p l a n t a t i o n w i l l become r i c h e r in lim e and change th e s o i l r e a c t i o n to n e u t r a l o r s l i g h t l y a l k a l i n e c o n d i t i o n s . A c co rd in g to L u tz and C handler (19*4-6) t h e r e i s v e ry l i t t l e e v id en c e t h a t low pH p e r s e i s r e s p o n s i b l e f o r p o o r grow th o f f o r e s t t r e e s . A g ri­ c u l t u r a l p l a n t s may be s e n s i t i v e to h ig h c o n c e n t r a t i o n s o f hydrogen ions b u t t h i s i s l e s s marked f o r f o r e s t t r e e s p e c i e s . High a c i d i t y v a l u e s , how ever, may a f f e c t t h e s o i l f a u n a and f l o r a , c e r t a i n p h y s i c a l and chem ical f a c t o r s , and even t o x i c i t y of s e n s i t i v e s n e c i e s . These e f f e c t s a r e i n d i r e c t , b u t a l t e r a p e r i o d o f tim e may become h i g h l y im p o r ta n t. An a n a l y s i s o f v a r i a n c e shows t h e g r e a t e s t d i f f e r e n c e in pH between A rea X and A rea Y o c c u r r i n g in th e B2 h o r i z o n . However, no h o riz o n e x h i b i t s any s t a t i s t i c a l s i g n i f i c a n t d i f f e r e n c e (T a b le 2 b ). lib TABLE 2b. ANALYSIS OF VARIANCE FOR TER HYDRO G-EN-ION COECENTRATXON OF FIVE SOIL HORIZONS IN AREA X v s . AREA Y B a s i s : 32 samples pH A1 a2 Source D egrees o f Freedom Sum o f S q uares T o ta l X vs Y E rror 15 1 Ik 1 .2 1 .0 6 1 .1 5 .0 6 .032 *73 T o tal X vs Y E rror 15 1 1^ 1 .2 1 .19 1 .0 2 .19 .073 2 .6 1 Mean Square F B a s i s : b sam ples B2 b3 T o tal X vs Y E rror 3 1 2 .25 .17 .OS .17 .o b 1+.25 T o tal X vs Y E rror 3 1 2 .I S .0 7 .11 .07 .055 1 .3 2 T o ta l X vs Y E rror 3 1 2 .21 .1 1 .10 .1 1 .0 5 2 .2 1 2. S o i l O rg a n ic M a tte r E xperim ental Method: S o i l sam ples v e r e c o l l e c t e d from A rea X and A rea Y r e p r e s e n t i n g f i v e s o i l h o r iz o n s in each a r e a . A t o t a l o f tw enty i n d i v i d u a l sam ples was ta k e n and t h e s e sam ples v e re a i r - d r i e d and p a s s e d th ro u g h a two mm. s i e v e . The d ry c o m b ustion method f o r a n a l y s i s o f o rg a n ic m a t t e r was employed. F iv e grains o f 60 mesh carb o n f r e e alundum and .25 grams o f manganese d io x id e vas added to a two gram sample o f s o i l . These v e re v e i l mixed and p l a c e d in a s i l i c a co m b ustio n b o a t and i n s e r t e d in to a h o t s i l i c a tu b e f u r n a c e , 115 TABLE 2 5 . THE AMOUNT OF SOIL ORGANIC MATTER IN FIVE HORIZONS FROM AREA X AND AREA Y P ercent A rea X ( S t a t i o n s I - I I ) H o riz o n Carbon d io x i d e (gins.) P e r c e n t carb o n d io x id e * O rganic M a tte r IA1 4 B2 B3 °1 .1 0 0 .o b i .0 3 0 .0 1 5 .0 1 2 1 0 .0 b .l 3 .0 1 .5 1 .2 2-35 .96 -71 -35 .28 IIA 1 a2 b2 B? .073 .0 3 0 .028 .0 1 7 .0 1 2 7 .3 3 .0 2 .8 1 .7 1 .2 1 .7 2 -71 . 66 .bo .28 °1 A re a Y ( S t a t i o n s I I I - I V ) IIIA-i a3 B2 b3 °1 I7A i A2 b2 B3 .113 .0 5 0 .035 .0 1 5 .0 1 5 11.3 5 .0 3 .5 1 .5 1 .5 2 .6 6 1 .1 8 -S3 -35 -35 .0 7 0 .0 3 8 .0 3 2 .0 1 3 .0 0 6 7 .0 3 .8 3 .2 1 .3 0 .6 I .6 5 .90 -75 •31 .lb B a s is one-gram sample * P e r c e n t c a rb o n d i o x id e c o n v e r te d to o rg a n ic m a t t e r by m u l t i p l y i n g by th e f a c t o r 0 .^ 7 1 ( a f t e r S c h o lle n b e r g e r ) p r e v i o u s l y h e a t e d to at)out 950° C. A f t e r a p p r o p r i a t e oxygen flo w r a t e was a d j u s t e d , t h e sample was s u b j e c t e d to v a r i o u s p u r i f i c a t i o n p r o c e s s e s , and th e n removed a f t e r tw en ty m in u te s . Carbon d io x id e was o o lle c te u . in a, p r e v i o u s l y w eighed a s c a r i t e tu b e and th e u e r c e n t o r g a n ic m a t t e r computed by u s i n g th e f a c t o r O.U71 to c o n v e r t amount o f carb o n d io x id e to o rg a n ic i** n6 m a t t e r ( a f t e r S c h o l l e n b e r g e r , 19*+5) * ^he p e r c e n t o r g a n ic m a t t e r was th e n re d u c e d to a one-gram b a s i s and p l o t t e d to s c a l e ( F i g . 19). D is c u s s i o n o f R e s u l t s A dynamic e q u i l i b r i u m e x i s t s betw een th e s u p p ly o f f r e s h o r g a n ic d e b r i s and i t s s u b s e q u e n t d e c o m p o s itio n . Changes which a l t e r t h i s e q u i­ l i b r i u m w i l l r e s u l t in e i t h e r a d e c r e a s e o r i n c r e a s e o f o r g a n ic m a t t e r . The im p o rta n c e o f o r g a n i c m a t t e r in a f f e c t i n g th e p h y s i c a l and ch em ical c h a r a c t e r i s t i c s o f s o i l s c an no t be o v e r e s t i m a t e d . The c o m p o sitio n and t h e q u a n t i t y o f o r g a n ic m a t t e r in s o i l s i s th u s e x tre m e ly v a r i a b l e . V alues o b t a i n e d in t h i s i n v e s t i g a t i o n compare q u i t e f a v o r a b l y w ith th e f i n d i n g s o f many i n v e s t i g a t o r s on s i m i l a n s o i l t y p e s . A s tu d y by Auten ( l 9 1+5) showed t h a t y e llo w p o p l a r o f t e n re p ro d u c e s and grows r a p i d l y on deep s o i l s from which o r g a n i c m a t t e r has been removed by o x i d a t i o n and e r o s i o n . Thus, i f y e llo w p o p l a r would n o t r e s e e d , become e s t a b l i s h e d , and t h r i v e on s o i l s which have a low o r g a n i c c o n t e n t , one m ight deduce t h a t h e i g h t grow th was d e p e n d e n t upon o r g a n i c m a t t e r . Such, however, i s n o t th e c a s e . A lthough o r g a n i c m a t t e r d e p o s i t e d as l i t t e r i n f l u e n c e s grow th r a t e as th e accumu­ l a t i o n becomes g r e a t e r , i t s p r e s e n c e i s n o t a p rim a ry cause o f in c r e a s e d t r e e g ro w th , b u t a r e s u l t . An e x a m in a tio n o f th e d a t a o b t a i n e d in T ab le 23 w i l l im m e d ia te ly show t h a t th e amount o f o rg a n ic m a t t e r i s r e l a t i v e l y low in b o t h A rea X and A rea Y. d e p th o f t h e p r o f i l e . I n a l l c a s e s th e amount d e c r e a s e s w ith in c r e a s e d The h i g h e s t c o n te n t of o r g a n ic m a t t e r o c c u rs on th e Warsaw sandy loam , a c i d v a r i a n t t y p e , where a t o t a l c o n te n t o f 5 .3 7 p e r c e n t i s fo u n d f o r th e e n t i r e p r o f i l e ; th e h i g h e s t v a lu e o f 2.b6 p e r c e n t i s a ls o fo u n d h e r e in th e h o rizo n . The re m a in in g s o i l ty p e s do n o t d i f f e r a p p r e c i a b l y in t h e i r c o n te n t o f o r g a n ic m a t t e r f o r any h o r i z o n . An F ig . 19. 1:Ly PERGSNT OF ORGANIC MATTER EXISTING- IN FIV E SOIL HORIZONS FOR THE A.REA OF GOOD HEIGHT GROWTH v s . AREA OF POOR HEIGHT GROWTH 3 .0 2 .7 (i v n A r e a "X 2 .5 2 .2 A rea " y " 2.0 u ® 4» 4» £ f1*7 g l CD .5 K © ft 1.2 1.0 .7 .5 .2 S o il H o riz o n 118 a n a l y s i s o f v a r i a n c e shows th e g r e a t e s t d i f f e r e n c e "between A rea X and A rea Y o c c u r s in th e A2 h o riz o n * However, no s t a t i s t i c a l s i g n i f i c a n t d i f f e r e n c e i n o r g a n i c m a t t e r e x i s t s "between A rea X and A rea Y (T a b le 2 6 ) . TABLE 2 6 . ANALYSIS OF VARIANCE OF CffiG-AMIC MATTER IN FIVE SOIL HORIZONS FOR AREA. X v s . AREA Y P ercent B a s i s : 20 sam ples Source D egrees o f Freedom A1 T o tal X vs Y E rror 3 1 2 T o tal X vs Y E rro r B3 j °1 3* F .73 .0 2 .71 .0 2 •35 .0 6 3 1 2 .1 1 .05 .0 6 .05 .03 1 . 6l T o tal X vs Y E rror 3 1 2 .0 2 .0 2 .00 .0 2 .0 0 T o tal X vs Y E rror 3 1 2 .003 .0 03 .0 0 .003 .0 0 T o tal X vs Y E rror 3 1 2 .03 .00 .03 .0 0 .015 .00 0 0 b2 Mean Square • A2 Sum o f Squares 0 0 H o riz o n T o t a l N itr o g e n and C arb o n -H itro g e n R a tio E x p e rim e n ta l Method: T o t a l n i t r o g e n was d e te rm in e d 011 combined s u b s t a t i o n d u p l i c a t e sam ples f o r t h e A and B h o r iz o n s o f A rea X and Area Y* made a c c o r d in g to th e K j e l d a h l p ro c e d u re ( 1 9 ? 0 ) . D e te r m in a tio n was Ten grams o f s o i l were added to K j e l d a h l f l a s k s and th e o r g a n ic m a t t e r was o x id iz e d by b o i l i n g 119 TABLE 27 . THE RELATIONSHIP BETWEEN THE AMOUNT OE TOTAL NITROGEN AND CARBON IN SOILS OE AREA X AND AREA Y P ercen t A rea X H o riz o n (S tatio n s I - I I ) P e r c e n t N itr o g e n P e r c e n t Carbon* IA, A2 b2 .1 2 5 .0*47 .0*49 2.72S 1.118 .818 2 1 .8 2 : 1 23 .79 : 1 1 6 .6 9 : 1 XIA-i a2 bI .1 1 3 .0*4*4 . 0*41 1.9 91 .818 • 76*4 1 7 .6 2 : 1 18 .59 : 1 I 8 .6 3 : 1 .*419 s . 237 117.1*4 : 1 A re a Y C a rb o n -N itro g e n R a t io (S ta tio n s III-IV ) IIIA 1 Ap .133 .0 7 2 .0 60 3 .0 8 2 1.36>4.95*4 2 3 .1 7 : 1 18.9*4 : 1 15 .90 : 1 IVAn a2 b2 .1 2 1 .05*4 .055 1.909 1 .0 3 6 .873 15.7S : 1 1 9 .1 8 : 1 1 5 .87 : 1 .*495 9.21S 1 0 8 .S*4 : 1 * D e riv e d from e q u a ti o n : T o tal C + Atomic w e ig h t c arb on _________ M o le c u la r w e ig h t c arb o n d io x id e O2 ——>* T o tals C02 12.01 W .o T z .272s X ^C0 2 ” p e r c e n t c arbo n 120 F ig . 20. A COMPARISON OF THE CAHBON-NITROGEN RELATIONSHIP OF SOILS IN THE AREA OF GOOD HEIGHT GROWTH v a THE AREA OF POOR HEIGHT GROWTH | | - C arbon N itro g e n X 2 .5 1 9 .4 :1 1 9 .7 :1 X Good H e i g h t G r o w th Y P oor H e ig h t G r o w th 2.0 P er­ cent 1 .5 Y 1 9 .0 :1 X 1.0 . 2 1 2:1 Y X 1 7 .7 rl .5 S o il H o riz o n 1 5 .8 :1 121 w ith s u l f u r i c a c id . A p p r o p r i a t e c a t a l y s t s were added t o h a s t e n o x i d a t i o n . A f t e r d i g e s t i o n and c o o l i n g , an e x c e s s o f sodium h y d ro x id e was added and t h e ammonia was d i s t i l l e d i n t o s t a n d a r d a c i d . The p e r c e n t t o t a l n i t r o g e n th u s o b t a i n e d i n c l u d e s t h e ammoniacs.l and c e r t a i n n i t r a t e forms o f n itro g e n th a t are p re s e n t. The p e r c e n t o f c a rb o n was d e r i v e d from th e o r g a n ic m a t t e r d e te r m i­ n a tio n s. The p e r c e n t c a rb o n d io x id e o b ta in e d in th e d ry com bustion method i s c o n v e r t e d to p e r c e n t c arb o n by m u l t i p l y i n g each d e t e r m i n a t i o n by th e f a c t o r .2 7 2 8 . R e s u l t s of t h e s e c a l c u l a t i o n s a r e p r e s e n t e d in T a b le 27D iscu ssio n of R e su lts The change o f n i t r o g e n in combined complex forms to t h e a v a i l a b l e s o i l n i t r o g e n i s a b i o l o g i c a l p r o c e s s in f l u e n c e d by many f a c t o r s . From an e c o l o g i c a l s t a n d p o i n t t h e c a r b o n - n i t r o g e n r a t i o o f s o i l s i s in f l u e n c e d by s o i l f e r t i l i t y and s ta n d c o m p o s itio n . F o r f o r e s t t r e e s p e c i e s , v e ry l i t t l e n i t r o g e n i s l i b e r a t e d as th e n i t r a l e form u n t i l th e c a r b o n n i t r o g e n r a t i o h as narro w ed as a r e s u l t of d e c o m p o s itio n . An in d e x to th e d e g r e e o f r e l e a s e of n i t r o g e n was o b ta in e d in t h i s i n v e s t i g a t i o n by u t i l i z i n g th e carb o n -n itro g e n r a t i o . The p e r c e n t o f b o th carbo n and n i t r o g e n i s h i g h e r in th e a r e a of p o o r h e i g h t grow th th an in th e a r e a of good h e i g h t g ro w th . C o n s e q u e n tly , th e C/ltf r a t i o is more narrow in A rea Y, i n d i c a t i n g g r e a t e r d e c o m p o s itio n and re le a .s e of th e n i t r a t e form of n itro g e n . The d i f f e r e n c e s in th e C/U r a t i o a r e no t marked betw een a r e a s . These r e s u l t s d i s c l o s e t h a t th e l e s s dense s i t e (A rea Y) w ith a h i g h e r c o n t e n t o f o r g a n ic m a t t e r w i l l r e l e a s e more n i t r o g e n th a n th e d e n s e r Area X. At any g i v e n tim e th e amount of a v a i l a b l e n i t r o g e n w i l l f l u c t u a t e c o n s i d e r a b l y . 122 S in c e a d e t e r m i n a t i o n o f t o t a l n i t r o g e n in c lu d e s more t h a n one form o f n itro g e n , i t i s n o t p o s s i b l e to d i f f e r e n t i a t e th e ammoniacal from th e n i t r a t e fo rm s i n t h i s d e t e r m i n a t i o n . However, a c l o s e a p p ro x im a tio n o f t h e n i t r o g e n c o n t e n t and i t s a v a i l a b i l i t y w i l l be i n v e s t i g a t e d u n d er th e m i c r o b i o l o g i c a l , p h a se o f th e s tu d y . TABLE 28. ANALYSIS OF VARIANCE FOR TOTAL NITROGEN CONTENT CF SOILS IN AREA X v s . AREA Y P ercent B a s i s : 12 sam ples ( i n d u p l i c a t e ) A*- U. S ource D egrees o f Freedom T otal X vs Y E rro r 3 1 2 T o tal X vs Y E rror T o tal X vs Y E rror Sum o f Squares Mean Square F .0030 .0005 .0025 .0005 .0 0 1 2 .k2 3 1 2 . 00^5 .OO35 .0010 .0035 .0005 .70 3 1 2 .0 0 2 .001 .0 01 .0 0 1 .0 005 2 .0 0 Cat io n-E xchange O a p ac ity E x p e rim e n ta l Method: S o i l sam ples were ta k e n from f i v e s o i l h o r iz o n s r e p r e s e n t i n g A rea X and A re a Y a c c o r d in g to th e method o f S c h o lle n b e r g e r and Simons ( X9 U5 ) , These s o i l s <»ere a i r - d r i e d and p a s s e d th ro u g h a two mm. s i e v e . T w e n ty -f iv e grams o f a i r - d r y s o i l were p l a c e d in a 3 00 m i l l i l i t e r f l a s k and le a c h e d w ith 250 m i l l i l i t e r s of IN ammonium a c e t a t e s o l u t i o n and a g a in le a c h e d w ith .IN ammonium a c e t a t e . A f t e r th e s o i l in th e f u n n e l had f i n i s h e d d r a i n i n g , t h e f u n n e l and m o is t s o i l were w eighed. The s o i l in 123 TABLE 2 9 . THE CATION-EXCHANGE CAPACITY, EXCHANGEABLE HYDROGEN, TOTAL BASES, AM) PERCENT BASE SATURATION OP PIVE SOIL HORIZONS IN AREA X AND AREA Y A rea X H o riz o n Cat ion-E xchange C a p a c ity m. e . / 100 gms. IAi Ar BI S. 20 6 . 0S 1 0 .64 B* 13*?F .4 4 IIA . Ai B2 -3 Exchangeable Hydrogen* m . e . / 100 gms. P e r c e n t Base S a tu r a tio n * * T o t a l Bases m .e. / 100 gms.____ 7.5693 5.6152 10.1172 2 . 9S11 1.2177 .6307 .H6Hg . 522 s • 33g9 .2223 S . Ho 4 . OS 1.60 6.2.766 5.2573 7 . 6S04 3.6975 1.2799 . 523 ^ . 5^27 .7196 . 3^25 .3201 7 .69 8 .b j 8 .56 9*37 2 0.00 56.96 52.2922 667s 9 9 .9 6 10.33 •6. Si 6.97 17.17 6 .so 6.40 7 .6 9 7.64 4.91 10.20 1 5 .^3 T o t a ls A rea Y IIIA . Ag 2 C1 ITA-, 7.72 1 0 .6 s 11. ss 1 .3 6 .24 6.9066 9.9733 11.0516 1.1264 .813^ 10.96 s . 72 S . 2S 6 .Us s.s4 IO.51H3 s . 1161 7.7754 6.1655 s . 6132 .HH57 .6039 . 50H6 .31H5 . 226s 4 ,o 6 6.92 6.09 H.S5 2.56 7^.92 7 0 .2b2k 913 H 6 5 .7 6 .7067 .828b .2336 . 236 S H . ** T o t a l "bases d i v i d e d "by c a t io n -e x c h an g e c a p a c i t y X * Cat io n -e x c h a n g e c a p a c i t y minus t o t a l b a se s Notes 100 One m illi g r a m e q u i v a l e n t ( m .e .) d e n o te s th e e q u i v a l e n t w e ig h t, o r t h e ato m ic w e ig h t d iv id e d by th e v a le n c e . T o tals 12b th e f u n n e l was t h e n s lo w ly le a c h e d w i t h 2oO m i l l i l i t e r s o f 10 p e r c e n t NaCl* T h is s a l t f i l t r a t e was p l a c e d in a K j e l d s h l f l a s k , tw en ty m i l l i l i ­ t e r s o f 2N HaOH were ad d ed, and th e n d i s t i l l e d i n t o f i f t y m i l l i l i t e r s of ^ p e r c e n t "boric a c i d s o l u t i o n * The d i s t i l l a t e was th e n t i t r a t e d w ith 0.1N HC1 u s in g h ro m c re s o l g re e n a s an i n d i c a t o r * From th e s e d e te r m i­ n a t i o n s th e m i l l i e q u i v a l e n t s o f a d s o rb e d ammonia, p e r t w e n t y - f i v e grams o f s o i l were c a l c u l a t e d and th e n c o n v e r te d t o a d so rb e d ba,ses p e r 100 grams of s o il. The c a t ion—exchange c a p a c i t y in terms o f m i l l i e q u i v a l e n t s p e r 100 grams o f s o i l i s p r e s e n t e d in T able 29* D is c u s s i o n of R e s u l t s The c a ti o n - e x c h a n g e c a p a c i t y o f s o i l s i s l a r g e l y a f u n c t i o n o f th e k in d s and amounts o f c o l l o i d a l m a t e r i a l and th e t o t a l b a s e s p r e s e n t . This p r o p e r t y i s u n d o u b te d ly th e most im p o rta n t c h a r a c t e r i s t i c o f c o l l o i d a l c la y . I t i s im p o r ta n t to r e c o g n iz e t h a t th e exchange of c a t i o n s i s a s s o ­ c i a t e d w i t h t h e c o l l o i d a l m a t e r i a l and t h i s a d s o r p t i o n and d is p la c e m e n t of io n s i s im p o r ta n t in s u p p ly in g t h e n e c e s s a r y b a s e s to p l a n t s . The c a t io n -e x c h a n g e r e a c t i o n is r a p i d and r e v e r s i b l e , and r e p r e s e n t s th e c a p a c i t y of s o i l c o l l o i d s f o r h o ld in g c a t i o n s . I f th e exchange c a p a c i t y is s a t i s f i e d by m e t a l l i c c a t i o n s , th e s o i l i s c o n s id e r e d t o be b a s e s a tu ra te d . However, in f o r e s t s o i l s of humid r e g io n s t h i s c o n d i t i o n i s r a r e , s i n c e th e b a s e s a r e c o n t i n u a l l y b e in g r e p l a c e d by hydrogen ions and th e s o i l c o l l o i d s te n d to be b a s e - u n s a t u r a t e d . The r e s u l t s o b t a i n e d by s o i l h o r iz o n in Column 1, T able 29 re v e als th e c l o s e r e l a t i o n s h i p o f c a t ion -exchan ge c a p a c i t y to th e amount of f i n e c la y o r e s e n t. T h is r e l a t i o n i s most marked in Area X where f i n e c l a y c o n t e n t and c a t io n -e x c h an g e c a n - c i t y a r e found in th e h i g h e s t th e B2 h o r i z o n . 125 The h i g h e s t i n d i v i d u a l c a t i o n exchange v a lu e i s found in t h e o f A re a Y* h o r iz o n An a n a l y s i s o f v a r i a n c e r e v e a l s t h a t no s i g n i f i c a n t s t a t i s ­ t i c a l d i f f e r e n c e i s fo u n d betw een A rea X and A rea Y, a lth o u g h d i f f e r e n c e s in th e A^ h o r iz o n c l o s e l y a p p ro a c h e s th e f i v e p e r c e n t s i g n i f i c a n t l e v e l . The p r e s e n t i n v e s t i g a t i o n shows d e f i n i t e l y t h a t th e c a t io n -e x c h an g e c a p a c i t y i s more c l o s e l y r e l a t e d to t h e in o r g a n ic c o l l o i d s th a n to th e o r g a n i c c o l l o i d s , as e v id e n c e d by t h e f i n e c l a y c o n te n t o f i n d i v i d u a l h o riz o n s * 5. T o t a l B ases and P e r c e n t B ase S a t u r a t i o n E x p e rim e n ta l Method: U t i l i z i n g th e same sam pling p ro c e d u re a s f o r th e c a t io n -e x c h an g e c a p a c i t y d e t e r m i n a t i o n s , t w e n t y - f i v e grams of a i r - d r y s o i l were le a c h e d w i t h IK and *1K ammonium a c e t a t e . r a t e d t o d ry n e s s on a h o t p l a t e . T h is f i l t r a t e was c o l l e c t e d and evapo­ The r e s i d u e was t r a n s f e r r e d to a p o r c e l a i n e v a p o r a t i n g d i s h and i g n i t e d o v er a Meker b u r n e r . A f t e r c o o lin g , a c a l c u l a t e d e x c e s s o f .2U HC1 was added and th e s o l u t i o n b a c k - t i t r a t e d w ith 0,1K HaOK. From t h e s e d e t e r m i n a t i o n s th e m i l l i e q u i v a l e n t s of s o i l b a s e s p e r 100 grams o f s o i l were c a l c u l a t e d . To d e te rm in e th e p e r c e n t b a s e s a t u r a t i o n sim p ly d iv id e th e t o t a l b a se s o b ta in e d by th e c a t i o n exchange c a p a c i t y . The c o n te n t o f e x ch a n g e ab le hydrogen p l u s th e c o n te n t of e x c h a n g e a b le m e t a l l i c c a t i o n s is e q u a l to th e t o t a l c a t io n -exchan ge c ap a c ity . C o n v e rs e ly , by s u b t r a c t i n g th e t o t a l b a se exchange from th e t o t a l c a t io n -e x c h a n g e c a p a c i t y , th e ex ch an g eab le hydrogen is o b t a i n e d . The p e r c e n t ba.se s a t u r a t i o n of a s o i l is th e d e g re e to w hich th e a d s o r b in g s u r f a c e o f s o i l c o l l o i d s is s a t u r a t e d w ith m e t a l l i c c a t i o n s . This s o i l p r o p e r t y , b e in g a f u n c t i o n of th e t o t a l b a s e s and c a tio n - e x c n a n g e c a p a c i t y 126 i s v e r y i m p o r t a n t , s i n c e i t d e te r m in e s i n p a r t th e a v a i l a b i l i t y of th e v a r i o u s ' b a s e s to p l a n t s . R e s u l t s o f t h i s i n v e s t i g a t i o n show t h a t th e h i g h e s t i n d i v i d u a l ba.se s a t u r a t i o n e x i s t s in th e h o r iz o n o f A rea X. I f in d iv id u a l s o il h o ri­ zons a r e c o n s i d e r e d w ith r e f e r e n c e to b a se s a t u r a t i o n , th e v a r i a t i o n betw een A rea X and A rea Y i s n o t e x tre m e . ( T a b le 33) An a n a l y s i s o f v a r i a n c e p e r c e n t b a se s a t u r a t i o n shows a s i g n i f i c a n t d i f f e r e n c e a t f i v e p e r c e n t betw een A rea X and A rea Y a t th e C-^ h o r i z o n ; t h i s i s th e o n ly s t a t i s t i c a l l y s i g n i f i c a n t s o i l p r o p e r t y of th e f o u r f a c t o r s h e r e stu d ie d . I n o r d e r to show t h e r e l a t i o n s h i p of t h e s e v a l u e s , th e combined d a t a a r e p r e s e n t e d in T ab le 29. I t i s i n t e r e s t i n g to n o te th e combined t o t a l s f o r t h e s e f o u r s o i l p r o p e r t i e s an d how t h e s e p r o f i l e t o t a l s r e l a t e to th e s o i l ty p e u n d e r i n v e s t i g a t i o n . The g r e a t e s t t o t a l c a tio n -e x c h a n g e c a p a c i t y e x i s t s i n A rea Y (p o o r h e i g h t g ro w th ) . There i s a v e ry c lo s e r e l a t i o n s h i p h e r e to t h e amount o f f i n e c l a y e x i s t i n g in t h i s s o i l ty p e , b o th a s to i n d i v i d u a l h o r iz o n s and t o t a l p r o f i l e . e x c h a n g e a b le hydrogen i s fo un d in Area Y a l s o . The g r e a t e s t t o t a l This r e v e a l s th e c l o s e r e l a t i o n s h i p of t h e pH v a lu e s o b t a i n e d f o r th e same s o i l s , s i n c e Area Y shows a s l i g h t l y g r e a t e r a c i d i t y th a n A rea X, when a l l h o r iz o n s a r e averaged. T o t a l b a s e c o n t e n t does n o t d i f f e r much in comparing Area X w ith A re a Y; a s l i g h t l y l a r g e r t o t a l b a se c o n t e n t e x i s t s in Area. Y b u t t h i s d if f e r e n c e is i n s i g n i f i c a n t . The l a s t s o i l p r o p e r t y , t h e p e r c e n t b a s e s a t u r a t i o n , r e v e a l s a l a r g e t o t a l p r o f i l e d i f f e r e n c e betw een A rea X and A re a Y. A lth o u g h th e t o t a l d i f f e r e n c e i s i n s i g n i f i c a n t s t a t i s t i c a l l y , e x c e p t a t th e C-j_ h o r i z o n , th e p e r c e n t b a se s a t u r a t i o n i s d e f i n i t e l y more 127 TABLE 3 0 . ANALYSIS OF VARIANCE FOR CATI ON-EXCHANGE CAPACITY POP GOOD HEIGHT GROWTH (AREA X) v s . POOR HEIGHT GROWTH (AREA Y) H o riz o n A1 A? Bg B3 j °1 S ource M i l l i e q u i v a l e n t s p e r 100 grams s o i l D egrees o f Freedom Sum o f S qu ares Mean Square P T o tal X vs Y E rro r 3 1 2 3-7S 3 .3 9 •39 3-39 .19 17 .8 T o tal X vs Y E rro r 3 1 2 1 3 .9 ^ 11.97 1 .9 7 11.97 .98 12 .2 T o tal X vs Y E rror 3 l 2 9.29 .31 S . 98 .31 4 .4 9 .069 T o tal X vs Y E rror 3 l 2 1 3 .4 4 .05 1 3 .3 9 .05 6 .6 9 .007 T otal X vs Y E rror 3 1 2 4 7 .5 0 g .4 i 3 9.0 9 S .4 l 10.54 • ^3 TABLE 31 . ANALYSIS OP VARIANCE POR EXCHANGEABLE HYDROGEN FOR GOOD HEIGHT GROWTH (AREA X) v s . POOR HEIGHT GROWTH (AREA Y) M i l l i e q u i v a l e n t s p e r 100 grams s o i l Mean Square An A2 B. T o tal X vs Y E rro r 3 1 2 10.51 3.19 7.32 3 .6 6 T otal X vs Y E rror 3 1 2 27.19 14. 4S 12.71 l 4 . 4g 6.35 T o tal X vs Y E rror 3 1 2 s . 61 T o tal X vs Y E rror 3 1 2 T o tal X vs Y E rror 3 1 2 3.19 .26 .2 6 s . 35 4.17 13.00 .09 12.91 46.40 9.33 37.07 F .87 2.2S .0 6 .09 6 .4 5 .01 9.33 18.53 .50 128 ta b le 32. ANALYSIS OF VARIANCE FOR TOTAL BASES FOR GOOD HEIGHT GROWTH (AREA X) v s . POOR HEIGHT GROWTH (AREA Y) M i l l i e q u i v a l e n t s p e r 100 grams s o i l H o riz o n S ource D eg rees o f Freedom A1 T o tal X vs Y E rror 3 1 2 T o tal X vs Y E rro r A2 Cm BO d B3 j C Mean Square F .0759 .0100 .0659 .0100 .0329 • 33 3 1 2 .0373 .0 300 .0073 .O3 OO .OO36 S . 33 T otal X vs Y E rror 3 1 2 .077S .0100 .067 8 .010 0 .0339 .3 * T o tal X vs Y E rror 3 1 2 .0090 .0050 . 00 H0 .0 05 0 .0 0 2 0 2 .3 0 T o tal X vs Y E rror 3 1 2 .0 113 .0062 .0051 .0 0 6 2 .0 0 2 5 2 .H 8 Sum o f Squ ares TABLE 3 3 . ANALYSIS OF VARIANCE FOR PERCENT BASE SATURATION FOR GOOD HEIGHT GROWTH (ARM X) vs-. POOR HEIGHT GROWTH (AREA Y) H o riz o n 2 b2 B, 3 C-,1 Source P ercent D egrees o f Freedom Sura o f Squares T o tal X vs Y E rror 3 1 2 2 1 .0 9 .15 T o ta l X vs Y E rror 3 1 2 2 .0 6 1 .6 6 T otal X vs Y E rror Mean Square F .15 1 0 . H7 .0 1 .Ho 1*66 .2 0 s . 30 3 1 2 7.09 .oH 7 .0 5 .oH 3 .5 2 .0 1 T otal X vs Y E rror 3 1 2 77.73 1 .5 0 7 6 .2 3 1 .5 0 3 S .il .03 T o tal X vs Y E rror 3 1 2 282.82 2 7 0 .1 0 1 3 .7 2 2 7 0 .1 0 6 .s 6 * S ig n if ic a n t a t 2 0 .9H 39.37* 129 c l o s e l y c o r r e la te d w ith th e area o f good h e ig h t growth than w ith th e area o f poor h e ig h t grow th. An a n a ly s is o f v a r ia n c e of th e fou r s o i l p r o p e r tie s examined i s p r e se n te d in support o f th e p r e se n t d is c u s s io n . These r e la t io n ­ s h ip s w i l l he d is c u s s e d fu r th e r when th e com plete a n a ly s is o f a l l chem ical edaphie f a c t o r s i s c o n sid e r e d . S. I n d iv id u a l F u tr ie n t Elements (Ca, Mg, P, K, ¥ a , F e, Mn) E xperim ental Method: A d e te r m in a tio n o f th e amount o f calcium , magnesium, and sodium was o b ta in e d by u se o f th e flam e photom eter. T ransm ission v a lu e s fo r each n u tr ie n t elem ent were p lo t t e d a g a in s t standard v a lu e s fo r th a t elem en t, and th e corresp on d in g n u tr ie n t v a lu e was read from th e standard cu rve. The p a r ts p er m illio n thus ob tain ed were con verted to m illie q u iv a le n t s per 100 grams o f s o i l u sin g ap p rop riate co n v ersio n v a lu e s . A n a ly sis o f v a ria n ce fo r each elem ent was based upon p a r ts per m illio n o f th a t n u tr ie n t e x is t in g in th e s o i l . The amount o f a v a ila b le phosphorus and exchangeable potassium was o b ta in e d by th e c o lo r im e tr ic method, u t i l i z i n g th e Lumetron P h o t o - e le c t r ic c o lo r im e te r . Ammonium f lu o r id e was used as the e x tr a c tin g agent fo r phosphorus and ammonium molybdate as the reducing a g en t. For pota.ssium , th e s o i l s were e x tr a c te d w ith sodium n it r a t e and reduced w ith sodium c o b a lt i n i t r i t e s o lu t io n . The amount o f a v a ila b le iron and manganese was ob tain ed by e x tr a c tin g the s o i l s w ith h y d ro c h lo r ic a c id . To determ ine the manganese c o n te n t, sodium b ism u th ate was used as an o x id iz in g a g en t. For a v a ila b le ir o n , 130 F ig ♦ 2 1 . A. COMPARISON OF TOTAL. INDIVIDUAL NUTRIENT ELEMENT: EXPRESSED AS A PERCENT OF TOTAL- PROFILE CONTENT Good H e i g h t G r o w th ( A r e a X) 40 - 30 - 20 - 10 - Per cent Ca Mg P K Na Fe Mn Fe Mn N u t r i e n t E lem en t P o o r H e i g h t G r o w th ( A r e a Y) 40 - 30 Per cent » 20 -I 10 - Ca Mg P K N u t r i e n t E le m e n t Na 131 h y d ro x y l amine h y d r o c h l o r i d e was u s e d w ith 0 —p h e n a n t h r o l i n e to keep th e i r o n in th e f e r r o u s s t a t e . A f t e r c o n v e r t i n g t h e s e e lem en ts to m i l l i e q u i v a l e n t s p e r 100 grams of s o i l , t h e p e r c e n t a g e o f th e t o t a l e le m e n ts p r e s e n t was d e te rm in e d f o r each n u trie n t. F o r th e sake o f b r e v i t y , th e d e t a i l e d p r o c e d u re f o r o b t a i n i n g each elem en t i s o m i t t e d ; s t a n d a r d c u rv e s f o r t h e same elem ents a r e n o t in c lu d e d . A summary o f a l l n u t r i e n t e le m e n ts , o c c u r r i n g by s o i l h o r iz o n in each s a m p lin g a r e a i s g iv e n i n T a b le 3 ^ . The r e l a t i o n s h i p o f i n d i v i d u a l e lem en ts fo u n d in t h e a r e a o f good h e i g h t gro w th and p o o r h e i g h t gro w th w i l l now be d i s c u s s e d , f o llo w e d by a g e n e r a l summary o f th e e d a p h ic -c h e m ic a l im p lic a ­ tio n s. A l l p e r c e n t a g e f i g u r e s g iv e n f o r each elem ent r e f e r to th e p e r c e n t o f t o t a l n u t r i e n t s t h a t were i n v e s t i g a t e d f o r combined t o t a l profiles.-*-® Calcium r e l a t i o n s S in c e c a lc iu m e x e r t s a p ro fo u n d i n f l u e n c e upon th e p h y s i c a l , c h em ica l, and b i o l o g i c a l p r o p e r t i e s o f s o i l s , re la tio n s. i t i s im p o rta n t in f o r e s t s o i l f e r t i l i t y Combined d a t a p u b l i s h e d by s e v e r a l i n v e s t i g a t o r s , su ch as K i t t r e d g e (1933) » h u n t (1935) » nnd C handler ( 1 9 ^ ) have shown t h a t th e c a lc iu m c o n te n t o f f r e s h l y f a l l e n l e a v e s o f t u l i p p o p l a r i s a p p ro x im a te ly 2 .9 6 p e r c e n t. T h is v a l u e was s u r p a s s e d o n ly by basswood, when a c o n s id e r ­ a t i o n o f t w e n ty - f o u r t r e e s p e c i e s were i n v e s t i g a t e d f o r c alc iu m c o n te n t of fre s h le av e s. I t h a s been shown t h a t a h ig h c o n te n t of c a lc iu m in f o r e s t 1 0 . S in c e o t h e r n u t r i e n t e le m e n ts such as b o ro n , z in c , s u l f u r , and c o p p e r may be p r e s e n t in th e s o i l in v e ry sm a ll q u a n t i t y , th e p e r c e n t o f t o t a d n u t r i e n t s and b a se s a t u r a t i o n i s p r o b a b ly s l i g h t l y h i g h e r th a n p e r c e n ta g e s g iv e n in T able 3^* 132 TABLE 3 4 . THE NUTRIENT CONTMT OP SOILS BY SOIL HORIZON AND TOTAL PROFILE IN AREA X AND AREA Y M i l l i e q u i v a l e n t s p e r 100 grams s o i l A re a X N u t r i e n t Element H o riz o n IA1 A2 b2 B3 11 At a2 b| B3 Ci Ca •3375 .1925 .1975 .0575 .0 2 0 0 Mg .1229 .1024 .1065 .0918 .0893 P .0257 .0737 .0873 .0446 .0 3 6 8 K .0 5 6 2 .0 3 0 6 .075^ .0664 .0383 Na .0327 .0205 .0135 .0629 .0197 Fe .0193 .0247 .0412 .0143 .0 1 6 8 Mn . 036 U .0204 .0014 .0014 .0014 T o ta l .63 07 .4648 .52 88 •33s 9 .2223 .1 9 0 0 .2 2 0 0 .2950 .0 6 0 0 .0*400 .1 3 1 1 .1 3 1 1 .1303 .1 2 2 1 .12 29 .0485 .0970 .1087 .0 9 3 2 .0543 .0613 .0 3 3 2 .0997 .0639 .0485 .0428 .0 2 6 2 .0598 .0187 .0441 .0154 .0 3 0 1 .0247 .0 2 3 2 .0089 .0343 .0 0 5 1 .o o i4 .0014 .o o i4 .5234 .5427 .7196 •3S25 .3201 1.6100 1.1504 . 669s *5735 .3 ^ 9 .2186 .1046 4.6678 .0157 .0483 .o4 s3 .0136 .0096 .0481 .0014 .0014 .0014 .o o i4 .8134 .7067 .8284 .2336 .2368 .016s .0412 .0530 .0232 .0129 .0145 .o o i4 .0014 .0102 .o o i4 .4457 .6039 .5046 .3145 .2268 .2826 .0826 U . 913 U T otal A rea Y IIIA, .5250 .1U34 .03^9 .0485 Ap -U075 -1229 b2 .U700 . 1 U3 U .0370 .0332 .0306 .0157 .0664 .0117 .1074 .0209 .0511 .0192 B, .0250 .0901 Ci .0 3 7 5 .0 9 0 1 .oH'g5 .0332 .0165 IVA, Ap .1900 .3200 .1311 .1377 .0466 .0466 . 03^5 . 03 S3 .0122 .0187 b2 B, .1 6 7 5 -1352 .O36S .075^ .0353 Ci . 0 ^x5 .0225 2.2065 .1295 .12!+5 I . 2U79 .0407 .0174 .3882 .0511 .0281 . 51bl .0183 .0200 .1885 T o ta l 133 tre e l i t t e r i n c r e a s e s t h e amount o f e x c h a n g e ab le c alc iu m in t h e s o i l . T h ere i s a d i s t i n c t te n d e n c y f o r th e n u t r i e n t c a lc iu m to he c o n c e n t r a t e d in th e up perm ost l a y e r s , and th e n d i s t r i b u t e d v e r t i c a l l y th ro u g h o u t th e h o r i z o n a c c o r d in g to th e d e g re e o f l e a c h i n g and r o o t p e n e t r a t i o n . The r e s u l t s o f t h i s i n v e s t i g a t i o n show t h a t c alciu m i s p r e s e n t in h i g h e r c o n c e n t r a t i o n th a n any o f th e re m a in in g s i x n u t r i e n t e le m e n ts , w i t h t h e e x c e p t i o n o f h y dro gen. I n A rea X, t h e calc iu m r e p r e s e n t s 3^*5 p e r c e n t o f th e t o t a l n u t r i e n t s fo u n d ; in A rea Y t h e calc iu m r e p r e s e n t s M+.9 p e r c e n t o f th e t o t a l n u t r i e n t s u p p ly . The v e r t i c a l d i s t r i b u t i o n o f c a lc iu m i n t h e p r o f i l e o f A rea X shows a d i s t i n c t d e c r e a s e in amount from u p p e r to lo w er h o r i z o n s , b u t a t S t a t i o n I o n ly . At S t a t i o n I I , th e c a lc iu m i s h i g h e s t a t t h e Bg h o r i z o n . F o r A rea Y, a t S t a t i o n I I I , th e c a lc iu m i s g r e a t e s t a t th e A-^ h o r i z o n . At S t a t i o n IV, th e c a lc iu m i s h ig h e st a t th e ^ h o rizo n . Thus, th e v e r t i c a l d i s t r i b u t i o n o f calcium in t h e s e p r o f i l e s f o ll o w s no s e t p a t t e r n , b u t v a r i e s c o n s i d e r a b l y . How­ e v e r , t h e d i s t r i b u t i o n o f c alc iu m in i n d i v i d u a l h o r iz o n s shows a c lo s e c o r r e l a t i o n to t h e t o t a l b a se c o n te n t o f th e same h o r i z o n s . A g re a te r t o t a l p r o f i l e c a lc iu m c o n te n t e x i s t s in A rea Y, though th e amount i s n o t s i g n i f i c a n t l y g r e a t e r th a n A rea X. T h is f a c t i s n o te w o rth y , s i n c e th e amount o f f r e s h l i t t e r in A rea X i s n e a r l y tw ic e th e amount in A rea Y. An a n a l y s i s o f v a r i a n c e (T ab le 35) e x h i b i t s no s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e in th e amount o f a v a i l a b l e calc iu m between Area X and A rea Y. However, th e F - v a l u e d e n o te s th e g r e a t e s t d i f f e r e n c e o c c u r r in g a t th e Ag h o riz o n . I n g e n e r a l , t h e g r e a t e s t d i f f e r e n c e in c alc iu m c o n te n t is r e s t r i c t e d to t h e s u r f a c e h o r i z o n s , when comparing th e two s i t e s . 13^ TABLE 35. ANALYSIS OF VARIANCE FOR CONTENT OF AVAILABLE CALCIUM BY SOIL HORIZON IN AREA X v s . AREA Y P a r t s p e r m i l l i o n ( p . p .m . ) s o i l D eg rees o f Freedom Sum o f S qu ares Mean Square H o riz o n S ource h. T o tal X vs Y E rro r 3 1 2 U0 2 3 .1 9 3 5 1 .5 6 3671.63 3 5 1 .5 6 1S35.S1 T o tal X vs Y E rror 3 1 2 I I 6 0 . 5O 992.25 l 6 S . 25 9 9 2 .2 5 S^ .1 2 1 1.79 T o tal X vs Y E rro r 3 1 2 2 2 3 0 .5 0 2 1 0 .2 5 2 0 2 0 .25 2 1 0 .2 5 1 0 1 0 .1 2 .2 1 T o tal X vs Y E rror 3 1 2 3 1.5 S 2 6 .0 1 5 .57 2 6 .0 1 2 .7S 9 .3 6 T otal X vs Y E rror 3 1 2 1 2 .5 0 0 .0 0 1 2 .5 0 0 .0 0 6 .2 5 0 .0 0 A2 b2 C F .191 TABLE 3 6 . ANALYSIS OF VARIANCE FOR CONTENT OF AVAILABLE MAGNESIUM BY SOIL HORIZON IN AREA X v s . AREA Y H o riz o n Source T otal X vs Y E rror Ar B, B- T otal X vs Y E rror P a r ts p e r m illio n (p .p .m .) s o i l D egrees o f Freedom Sum o f S q uares Mean Square 3 1 2 3 1 2 3.19 I.56 I.63 1.56 .S I 10. ^7 2.72 2.72 7.75 3 .S7 6.50 T o tal X vs Y E rror 3 1 2 11.21 6.50 4.71 T otal X vs Y E rror 3 IS.U 9 1 2 i s T o tal X vs Y E rror 3 1 2 F 1.92 .70 2 .3 5 2.76 . 37 .12 9.1s .01 17.25 .02 17.23 .02 s .61 .0 0 2 .12 135 Magnesium r e l a t i o n s The seco n d h i g h e s t n u t r i e n t elem ent o c c u r r i n g in th e p r o f i l e s o f "both A re a X and A re a Y i s magnesium. I n g e n e r a l , magnesium fo llo w s th e same v e r t i c a l d i s t r i b u t i o n as c a lc iu m , e x ce p t t h a t t h e g r e a t e s t s t a t i s t i c a l d i f f e r e n c e "between a r e a s i s a t th e B2 h o r iz o n (T a b le 3 6 ) . The l a r g e r t o t a l amount o f magnesium ( a s w ith calcium ) o c c u rs in A rea Y. I n A rea X, th e t o t a l p r o f i l e c o n t e n t o f magnesium i s 2 ^ .6 p e r c e n t and f o r A rea Y th e t o t a l c o n ten t is p e rc en t. Magnesium, in t h e p r o f i l e s s t u d i e d , shovrs l i t t l e v a r i a t i o n betw een h o r iz o n s in b o th a r e a s and i s n o t as d i s t i n c t l y r e s t r i c t e d by h o r i z o n a s c a lc iu m . I t i s n o te w o rth y t h a t th e combined calcium -m agnesium c o n t e n t r e p r e s e n t s 59 p e r c e n t and 70 p e r c e n t o f th e t o t a l n u t r i e n t s p r e s e n t , f o r A rea X and A rea Y r e s p e c t i v e l y . No s i g n i f i c a n t F - v a l u e i s fo u n d f o r c o n te n t of a v a i l a b l e magnesium a t any h o r i z o n . P ho sph oru s r e l a t i o n s V a rio u s i n v e s t i g a t o r s have em phasized th e im p ortance o f a v a i l a b l e p h o s p h o ru s t o s o i l p r o d u c t i v i t y . However, Hennecke (1935) was u n a b le to e s t a b l i s h any c l e a r r e l a t i o n s h i p betw een th e pho sp h oru s c o n t e n t o f sandy s o i l s and s i t e q u a l i t y . The amount o f p ho sp ho rus in s o i l s i s u s u a l l y s m a l l. The p r e s e n t i n v e s t i g a t i o n r e v e a l s t h a t A rea X has a 1^.3 p e r c e n t t o t a l p r o f i l e p h o sp h o ru s c o n t e n t as c o n t r a s t e d to a 7*9 p e r c e n t t o t a l p r o f i l e c o n t e n t in A rea Y. T h is p e r c e n ta g e d i f f e r e n c e r e p r e s e n t s n e a r l y tw ic e th e amount o f a v a i l a b l e p h o sp h o ru s in A rea X as t h a t in A rea Y. The l i g h t e r s o i l s o f A re a X i n d i c a t e a c o r r e l a t i o n betw een t h e amount of p ho sp h o ru s and th e f i n e c lay f r a c t i o n . Thus, in th e Bg h o r iz o n which c o n t a i n s th e g r e a t e s t f i n e c l a y c o n t e n t , t h e amount o f p hosphorus is h ig h e r th a n in o t h e r h o r iz o n s o f A re a X. F o r A re a Y, t h i s r e l a t i o n s h i p i s l e s s marked, and th e ph osph o rus 136 te n d s t o be more e v e n ly d i s t r i b u t e d th ro u g h o u t t h e p r o f i l e , w ith s l i g h t l y g r e a t e r amounts i n t h e u p p e r h o r i z o n s . The amount o f a v a i l a b l e ph osphorus a p p e a r s t o "be more c l o s e l y r e l a t e d to th e c o l l o i d a l c la y th a n to th e co n ten t of o rg a n ic m a tte r. The o r g a n ic m a t t e r c o n te n t a p p e a rs to f o ll o w a d e c r e a s e i n amount from s u r f a c e to s u b s u r f a c e h o r i z o n s . Prom t h e r e s u l t s o b t a i n e d , A re a Y a p p e a rs to have more t o t a l pho sph oru s " t i e d - u p " th a n A re a X, s i n c e t h e amounts o f c o l l o i d a l c l a y and o r g a n ic m a t t e r a r e h i g h e s t in A re a Y. An a n a l y s i s of v a r i a n c e (T a b le 37) shows a s i g n i f i c a n t l y d i f f e r e n t p h o sp h o ru s c o n te n t a t th e 51° l e v e l , f o r th e h o riz o n . T his is f u r t h e r e v id e n c e o f t h e c o r r e l a t i o n betw een th e amount o f p h osph oru s and th e c o n t e n t of f i n e c o l l o i d a l c l a y in A rea X. P o ta s s iu m r e l a t i o n s The amount o f e x ch a n g e ab le s o i l p o ta s s iu m i s u s u a l l y p l e n t i f u l f o r good t r e e g ro w th , e x c e p t in sandy s o i l s . o f p o ta s s iu m i n c r e a s e s w ith s o i l d e p th . Por most s o i l s , th e t o t a l amount The r e l e a s e o f p o ta ss iu m depends upon t h e s t a t u s o f th e p o ta s s iu m e q u i l i b r i u m , amount and k in d o f c la y m a t e r i a l p r e s e n t , and th e p e r c e n t b a se s a t u r a t i o n . rium i s r a t h e r complex in s o i l s . The p o ta s s iu m e q u i l i b ­ When p o ta s s iu m i s " f ix e d " i t may be t i e d up by b i o l o g i c a l f i x a t i o n , tr a p p e d on o r g a n ic m a t t e r c o a t i n g s , f o r c e d in to t h e c r y s t a l l a t t i c e s t r u c t u r e , o r t i e d up in p o ta s s iu m - lr o n - p h o s p h a t e com plex es. Whether p o ta s s iu m i s " f ix e d " o r " r e l e a s e d " depends upon th e f l u c t u a t i o n o f th e p o ta s s iu m e q u i l i b r i u m . The p r e s e n t i n v e s t i g a t i o n r e v e a l s a t o t a l p r o f i l e c o n te n t of 12-3 p e r c e n t p o ta s s iu m in A rea X end a 10 .5 p e r c e n t c o n te n t in A rea Y, when p e r c e n t o f t o t a l n u t r i e n t s i s c o n s id e r e d . G r e a t e s t amounts o f p o ta s s iu m o c c u r in t h e B2 h o r i z o n f o r a l l f o u r p r o f i l e s . In a l l of th e s o i l ty p e s TABLE 37. 137 ANALYSIS OF VARIANCE FOR CONTENT OF AVAILABLE INORGANIC PHOSPHORUS IN AREA X v s . AREA Y H o riz o n KX a2 B2 b3 c S ou rce P a r t s p e r m i l l i o n ( p .n .m . ) s o i l D eg rees o f Freedom Sum o f S quares Mean Square F T o tal X vs Y E rro r 3 1 2 3 .6 2 . 11+ 2 . 4g .14 1 .2 4 .1 1 2 T o tal X vs Y E rro r 3 1 2 i s . 96 1 6 .0 0 2 .9 6 1 6 .0 0 1.4S 10. SO T o tal X vs Y E rror 3 1 2 4 l .9 S 3 9 .56 2 . 1+2 3 9 .5 6 1 .2 1 3 2 . 69 * T o tal X vs Y E rror 3 1 2 2 3 .6 3 1 0 . S3 1 2 . SO T otal X vs Y E rro r 3 1 2 S . 1*3 1 .6 9 6 .7 4 1 0 . S3 6 . 4o 1 .6 9 1 .6 9 3 .3 7 .50 * S i g n i f i c a n t a t 5^ TABLE 3S. ANALYSIS OF VARIANCE FOR CONTENT OF EXCHANGEABLE POTASSIUM BY SOIL HORIZON IN AREA X v s . AREA Y P a r t s p e r m i l l i o n ( p .p .m .) s o i l D egrees of Freedom Sum o f Squares Mean Square H o riz o n Source A1X T o tal X vs Y E rror 3 k 20 CL 3 Cl1 F 2 10S.21+ 1 0 5 .0 6 3.1S IO5.O6 1 .5 9 6 6 . 07 * T o tal X vs Y E rror 3 1 2 1 2 5 .0 0 6 4 .00 6 1 .0 0 64.oo 3 0 .5 0 2.09 T otal X vs Y E rror 3 1 2 125.55 2 .2 5 I 2 3 . 3O ' 2 .2 5 6 1 .6 0 T o tal X vs Y E rror 3 1 30.75 30.25 .50 3 0 .2 5 .2 5 T o tal X vs Y E rror 3 35.00 2 5 .0 0 1 0 .0 0 2 5 .0 0 5 .0 0 1 2 1 2 ** S i g n i f i c a n t a t 51° * S i g n i f i c a n t a t 5$ 1 /® .036 1 2 1 . 0 0 ** 5 .0 133 h e r e i n v e s t i g a t e d , t h e amount o f a v a i l a b l e p o ta s s iu m a p p e a rs to be c o r r e l a t e d w ith t h e amount of o r g a n ic m a t t e r and t h e calc iu m —p o ta s s iu m r a t i o o f t h e A-^ and B-^ h o r iz o n s r e s p e c t i v e l y . An a n a l y s i s o f v a r i a n c e shows a d e f i n i t e s i g n i f i c a n t d i f f e r e n c e a t th e l e v e l f o r p o ta s s iu m in th e A-^ h o r i z o n , and a d i f f e r e n c e a t th e *yjo and 1% l e v e l s f o r p o ta s s iu m in B-^ h o r i z o n . Even th o u g h th e P - v a lu e d e n o te s t h i s h o r iz o n d i f f e r e n t i ­ a t i o n , t h e t o t a l c o n te n t betw een A rea X and A rea Y i s no t s i g n i f i c a n t . Sodium r e l a t i o n s Sodium i s a common c o n s t i t u e n t of p l a n t s and in f l u e n c e s t h e c a t i o n i n t e r r e l a t i o n s h i p in th e p l a n t . I t i s n o t d e f i n i t e l y known to be e s s e n t i a l f o r p l a n t g ro w th , e x c e p t f o r c e r t a i n p l a n t s . As w ith p o ta s s iu m , th e g r e a t e s t d i f f e r e n c e in th e amounts o f sodium was fo u n d in th e A-j_ h o r iz o n in comparing A rea X w ith A rea Y. In A rea X, sodium r e p r e s e n t s 7*3 p e r c e n t of t h e t o t a l b a s e s p r e s e n t and in A rea Y sodium r e p r e s e n t s 3*$ p e r c e n t o f th e t o t a l b a se s p re se n t. An a n a l y s i s of v a r i a n c e shows t h e d i f f e r e n c e in amount o f e x ch ang eab le sodium to be s i g n i f i c a n t a t th e 5$ l e v e l in th e A^ h o r i z o n . Here a g a in , th e amount of sodium a p p e a rs to be r e l a t e d to th e c a t io n -ex ch an g e c a p a c i t y , th e amount o f o r g a n ic m a t t e r , and t h e p o ta ss iu m -so d iu m r e l a t i o n s h i p , f o r th e s o i l ty p e s u n d e r i n v e s t i g a t i o n . Iron re la tio n s The amount o f a v a i l a b l e i r o n p r e s e n t in s o i l s is o f t e n dep end en t upon t h e p a r e n t m a t e r i a l and th e c l i m a t i c c o n d i t i o n s -under which th e s o i l s d e v e lo p e d . R e s u l t s o f t h i s i n v e s t i g a t i o n show a r a t h e r d i s t i n c t accumula­ t i o n o f t h i s n u t r i e n t in th e B h o r i z o n , p o s s i b l y due to le a c h i n g e f f e c t s . A v e r y c l o s e r e l a t i o n s h i p seems to e x i s t between th e smount o f a v a i l a b l e TABLE 3 9 . 139 ANALYSIS OF VARIANCE FOR CONTENT OF EXCHANGEABLE SODIUM BY SOIL HORIZON IN AREA X v s . AREA Y H o riz o n A*1 a2 b2 b✓ 3 ci S ou rce P a r t s p e r m i l l i o n ( p . p . m .) s o i l D egrees o f Freedom Sum o f S q uares 32.67 29.70 2.97 T o tal X vs Y E rro r 3 T o tal X vs Y E rror 3 T o tal X vs Y E rror 3 T o tal X vs Y E rro r 3 T o tal X vs Y E rror 3 1 76.53 25.50 51.03 25 . S6 9.S6 2 16.00 l 2 1 2 1 2 1 2 5 .5 5 3.42 2 .I 3 65 .U3 3 . SO 61.63 Mean Square 29.70 i.4s F 20 . 07 * 3.42 1.06 3.23 3 . SO 30 . SI .123 25.50 25.51 1 .0 0 9 .S6 s . 00 1.23 * S i g n i f i c a n t a t 5^ TABLE 40. ANALYSIS OF VARIANCE FOR CONTENT OF AVAILABLE IRON BV' SOIL HORIZON IN AREA X v s . AREA Y H o riz o n A^l Ap B0 2 B? j Cl Source P a r t s p e r m i l l i o n (p i.p .m .) s o i l D egrees o f Freedom Sum o f Squares Mean Square T o tal X vs Y E rror 3 T o tal X vs Y E rror 3 26.65 23.52 2 T o tal X vs Y E rror 3 3.13 35.93 24.50 11.43 6 . 7s T o tal X vs Y E rror T otal X vs Y E rror 1 2 1 1 2 3 .7* .09 .65 .09 .32 ,2S 23.52 I .56 15.0S 24.50 5.71 4.29 .01 .0 1 2 6.77 3.3S 3 3.03 1 1 2 .20 2 . S3 F .003 .20 1.41 .l4 l ii+o TABLE 1+1. ANALYSIS OP VARIANCE FOR CONTENT OP AVAILABLE MANGANESE BY SOIL HORIZON IN AREA X vs * AREA Y P a r ts per m illio n o f s o i l H orizon A2 Source D egrees o f Freedom Sum o f Squares Mean Square F T o ta l X vs Y Error 3 l 2 P - 71 1.21 ^■2.R0 2 1 .2 5 T o ta l X vs Y Error 3 1 2 I S . 1+3 9 .6 1 g .8 2 9 .6 1 l+.l+l 2.18 T o ta l X vs Y Error 3 l 2 H.32 l.S+3 2.39 1.1+3 1.1+4 1 .0 0 1.21 .0 5 6 b2 3 ci —— i r o n and th e c o l l o i d a l c o n te n t o f th e B2 h o r iz o n . Under th e a c i d c o n d i t i o n s o f th e s o i l s h e re s t u d i e d , t h e i r o n i s r e l a t i v e l y s o l u b l e . A p p a r e n t ly t h e r e i s s u f f i c i e n t a e r a t i o n and d ra in a g e to cau se le a c h in g o f t h e i r o n i n t o th e B h o r i z o n . S in c e s o l u b l e iro n i s o f t e n a s s o c i a t e d w ith a n a e r o b ic c o n d i t i o n s , th e l a r g e r amounts o f t h i s elem ent fou nd in A rea Y may b e e x p l a i n e d on th e b a s i s of g r e a t e r w a te r - h o ld in g c a p a c i t y o f t h i s s i t e , l e s s a v a i l a b l e oxygen, or e l s e due to i n c r e a s e d l e a c h in g from t h e u p p e r h o r i z o n s . Ares, X r e p r e s e n t s 1+.7 p e r c e n t o f th e t o t a l n u t r i e n t s s t u d i e d and A rea Y r e p r e s e n t s 5 .S p e r c e n t i r o n c o n te n t o f a l l bases p re s e n t. The amount of o r g a n ic m a t t e r does n o t a p p ea r to be c l o s e l y r e l a t e d to th e ir o n c o n te n t o f any s o i l type i n v e s t i g a t e d , s i n c e th e g r e a t e s t amount o f ir o n i s fou nd in th e B h o r iz o n . ■ygLriance shows no s i g n i f i c a n t d i f f e r e n c e s betw een a r e a s . An a n a l y s i s o f ib i Manganese r e l a t i o n s Very l i t t l e i s known c o n c e rn in g t h e im p ortan ce o f manganese in th e n u t r i t i o n of f o r e s t t r e e s . However, th e amounts o f manganese a b s o r b e d by t r e e s may be c o n s i d e r a b l e , o f t e n e x ce e d in g calc iu m in some ty p e s o f f o r e s t humus. I n t h i s s tu d y , t h e manganese e x i s t s in th e s m a l l e s t amount o f t h e sev e n b a s e s c o n s i d e r e d . A rea X r e p r e s e n t s 2 . 2 p e r c e n t and A re a T 1*7 p e r c e n t o f th e t o t a l n u t r i e n t s i n v e s t i g a t e d by t o t a l p r o f i l e . G r e a t e s t amounts o f manganese a r e fo un d in th e A h o riz o n o f b o th A rea X and A re a Y. T h is would te n d to r e l a t e th e amount fou nd w ith th e c o n te n t o f o r g a n i c m a t t e r , s i n c e low manganese o f t e n i n d i c a t e s low o r g a n ic m a tte r c o n ten t. The manganese o c c u r r i n g i n b o th a r e a s seems to f o l l o w th e t r e n d o f t h e p r o f i l e from s u r f a c e to s u b s u r f a c e h o riz o n s in t h e same manner a s th e o r g a n i c m a t t e r . Ho s i g n i f i c a n t d i f f e r e n c e e x i s t s i n th e manganese c o n t e n t betw een a r e a s . Ik2 TABLE 42. A STATISTICAL SUMMARY OE "P" VALUES EOR EDAPHIC-CHEMICAL CHARACTERISTICS IN AREA X v s . AREA Y LABORATORY EXPERIMENTS A1 A verage D ep th 0- 9 " S o i l H o rizon a2 b2 9 - i 4« 1^23" B3 23 - 3 3 " Cl 33" ■« V a ria b le In v e s tig a te d : S o i l A c i d i t y (pH) *73 2.61 4.25 1.32 2.21 2. O rg a n ic M a tt e r .06 1.61 .00 .00 .00 3* T o t a l N itr o g e n .42 .70 2.00 --- — 4. Cat ion-E xch an g e Capac i t y 17. so 12.20 .069 • O O — •J 1. .*3 5- T o t a l B ases *33 S . 33 .3* 2.50 2 . 4S 6. B ase S a t u r a t i o n .01 s . 30 .01 .03 39 . 37* 7. E x c hang eab le Hydrogen .87 2.2S .06 .01 .50 S. A v a i l a b l e Calcium .191 11.79 .21 9.36 .00 9. A v a i l a b l e Magnesium .70 2.76 .01 1.92 .002 .50 .112 1 0 . SO 32. 69* 11. E xchang eab le P o ta s s iu m 66. 07* 2.09 .036 121.00** 5.00 12. E x c hang eab le Sodium 20.07* 3*23 .123 1.00 1.23 10. A v a i l a b l e Ph o sph o rus 13* A v a ila b le Iro n .28 1 5 .OS 4.29 i 4 . A v a ilab le Manganese .056 2 .1 s .00 ** S ig n if ic a n t at ifo and 5% * S ig n if ic a n t at 3% 1.69 .003 1.00 .l4 l .00 143 Summary and I m p l i c a t i o n o f R e s u l t s E d ap hic-C hem ical C h a r a c t e r i s t i c s I n c o n s i d e r i n g th e i m p l i c a t i o n s h r o u gh t o u t by th e r e s u l t s of th e s o i l - c h e m i c a l d e t e r m i n a t i o n s , i t i s im p o rta n t to r e c o g n iz e t h a t th e i n t e g r a t i o n o f a l l p o s s i b l e c o n t r i b u t i n g f a c t o r s is n e c e s s a r y . The p u r p o s e o f th e p r e s e n t summary i s to p o i n t o u t th o s e f a c t o r s which may o r may n o t be c o n t r i b u t i n g d i r e c t l y to th e d i f f e r e n c e in h e i g h t g row th of tu lip p o p la r. A c om parison o f th e s o i l r e a c t i o n (pH) in b o th a r e a s does n o t e x h i b i t any s i g n i f i c a n t v a r i a t i o n . r e a c t i o n th a n A re a X. A rea Y i s s l i g h t l y more a c i d in B oth a r e a s a r e s t r o n g l y to v e ry s t r o n g l y a c i d end th e B h o r i z o n a p p e a r s to be s l i g h t l y more a c i d th a n th e A o r 0 h o r i z o n s . The lo w e s t i n d i v i d u a l pH v a lu e s a r e o b t a i n e d in th e B^ h o r iz o n of b o th areas. S o i l r e a c t i o n p e r s e does n o t a p p ea r to be d i r e c t l y c o n t r i b u t i n g t o h e i g h t g ro w th d i f f e r e n c e s . The pH v a l u e s , however, may be i n d i r e c t l y a f f e c t i n g o t h e r s i t e f a c t o r s such as th e s o i l b i o l o g i c a l and h erb aceo u s fa c to rs. The p e r c e n t o f o r g a n ic m a t t e r i n e ach sam pling a r e a i s v e ry low. G -re a test s t a t i s t i c a l d i f f e r e n c e s betw een a r e a s a r e found in th e Ag h o riz o n . The amount of o r g a n ic m a t t e r d e c r e a s e s w ith in c r e a s e d d e p th f o r b o th A re a X and A rea Y. S l i g h t l y g r e a t e r amounts of o r g a n ic m a tte r a r e fo u n d in A rea Y a t th e A ^ A2 , and B2 h o r iz o n s ; th e amounts below th e B2 h o r i z o n d i f f e r v e r y l i t t l e . No s i g n i f i c a n t s t a t i s t i c a l d i f f e r e n c e e x i s t s betw een A rea X and A rea Y i n s o f a r as th e d i r e c t e f f e c t of o rg a n ic m a t t e r c o n t e n t i s c o n c e rn e d . lUU B o th c a rb o n and n i t r o g e n a r e fo un d in g r e a t e r amounts in A rea Y. A ls o , t h e c a r b o n - n i t r o g e n r a t i o i s more narrow in t h i s a r e a , i n d i c a t i v e o f g r e a t e r d e c o m p o s itio n o f c a rb o n ac eo u s and n i tr o g e n o u s m a t e r i a l . The d i f f e r e n c e i n t h e c a r b o n - n i t r o g e n r a t i o between a r e a s i s n o t e x tre m e. R a t i o s f o r b o t h s i t e s f a l l w i t h i n th e ra n g e o f a p p ro x im a te ly 1 5 :1 to 23:1 f o r any one i n d i v i d u a l h o r i z o n . The g r e a t e s t s t a t i s t i c a l d i f f e r e n c e f o r t o t a l n i t r o g e n c o n t e n t i s fo u nd a t th e and A re a Y. h o r i z o n , when c o n t r a s t i n g A rea X As w i t h t h e c o n te n t o f o r g a n ic m a t t e r , th e n i t r o g e n and c a rb o n o c c u r in s l i g h t l y g r e a t e r amounts i n th e a r e a o f p o o r h e i g h t grow th. D e c o m p o sitio n a p p e a rs t o b e more r a p i d in t h e more exposed and l e s s dense site . A c l o s e c o r r e l a t i o n e x i s t s betw een th e c a t io n-exchange c a p a c i t y and t h e amount o f f i n e c l a y p r e s e n t i n A rea X. marked in A re a Y. T his r e l a t i o n s h i p i s l e s s A c l o s e r r e l a t i o n seems to o ccur between t h e c a t i o n - exchange and th e c o l l o i d a l com plex, th a n betw een c a tio n -e x c h a n g e and th e o rg a n ic c o llo id s . A n a ly s is o f v a r i a n c e r e v e a l s t h a t th e g r e a t e s t d i f f e r ­ ence betw een a r e a s f o r c a t io n -e x c h an g e c a p a c i t y e x i s t s a t th e A-^ h o r iz o n . A rea Y has a l a r g e r t o t a l p r o f i l e exchange c a p a c i t y th a n A rea X. The t o t a l b a s e c o n te n t shows no s i g n i f i c a n t d i f f e r e n c e between a r e a s . A s l i g h t l y l a r g e r t o t a l b a s e c o n t e n t is found in A rea Y. L argest in d i­ v i d u a l d i f f e r e n c e s a r e fo u n d a t t h e A2 h o r iz o n . The p e r c e n t b a s e s a t u r a t i o n shows a l a r g e t o t a l p r o f i l e v a r i a t i o n b e tw een A re a X and A rea Y. a t th e C-], h o r i z o n . T h is d i f f e r e n c e is s i g n i f i c a n t s t a t i s t i c a l l y A c l o s e r c o r r e l a t i o n e x i s t s i n A rea X w ith r e f e r e n c e to b a s e s a t u r a t i o n th a n in A rea Y. 1^5 The g r e a t e s t t o t a l exchangeable hydrogen is found in the area o f poor h e ig h t grow th. T his r e v e a ls th e c lo s e r e la t io n s h ip o f th e pH v a lu e s o b ta in e d fo r th e same s o i l s , s in c e Area T e x h ib it s a s l i g h t l y g r e a te r a c i d i t y than Area X, when a l l h o rizo n s are averaged. Thus, a summation o f s i x r a th e r important s o i l chem ical p r o p e r tie s by s o i l h o rizo n ten d s to show no o u tsta n d in g d ir e c t or s t a t i s t i c a l l y s i g n i f i c a n t d if f e r e n c e betw een th e a rea o f good h e ig h t growth and poor h e ig h t grow th o f t u l i p p o p la r. The data b rin g out r a th e r v iv id ly th e h o r iz o n a l d if f e r e n c e s , p o s s ib le environm ental fa c to r s r e s p o n sib le fo r th e s e v a r ia t io n s , and th e magnitude o f the complex o f fa c to r s which c o n tr ib u te to th e s e d if f e r e n c e s . As a f u r t h e r v e r i f i c a t i o n o f th e ab se n c e of s t a t i s t i c a l s i g n i f i c a n c e i n th e above s o i l p r o p e r t i e s , a p e r u s a l and summation o f i n d i v i d u a l n u t r i e n t e le m e n ts v j i l l now be ta k e n u p . An a tte m p t w i l l b e made to r e l a t e t h e o v e r a l l m ajor chem ical p r o p e r t i e s to i n d i v i d u a l n u t r i e n t s u p p l i e s o f th e same s o i l s . T his combining and s u p p le m e n ta tio n o f a l l chemical, p r o p e r t i e s p r e s e n t s an i n s i g h t i n to t h e t o t a l complex of c h e m ic a l- e d a p h ic f a c t o r s in each a r e a . lb G Summary o f I n d i v i d u a l N u t r i e n t s A t o t a l of s e v e n i n d i v i d u a l n u t r i e n t e lem en ts was i n v e s t i g a t e d and r e c o r d e d by h o r iz o n and t o t a l p r o f i l e c o n te n t f o r b o th th e a r e a o f good and p o o r h e i g h t g ro w th . R e s u l t s o f t h i s i n v e s t i g a t i o n r e v e a l e d t h a t th e t o t a l amounts o f a l l n u t r i e n t e le m e n ts d i d n o t d i f f e r a p p r e c i a b l y between A rea X and A rea Y. A p e r c e n t a g e summation, b a se d upon p e r c e n t o f t o t a l p r o f i l e , i s p r e s e n t e d in T a b le 1*3- The t o t a l amount o f a l l n u t r i e n t s was v e ry low f o r b o t h a r e a s : TABLE ^3. TOTAL INDIVIDUAL NUTRIENT ELEMENTS EXPRESSED AS A PERCENT OF TOTAL PROFILE CONTENT FOR AREA X AND AREA Y P ercent A rea Y A re a X Ca - 3 U . 5 O Ca - ^U.9 3 Mg - 2 ^ .6 5 Mg - 25.1*1 P - 1 U. 3 U E - I O . 5O K - 12.2S P - 7-90 Na - 7-31 Fe - 5-75 Fe - U .6S Na - 3 .S3 Mn - 2 . 2b Mn - 1 . 6S 1 0 0 .0 0 % 1 0 0 .0 0 fo The r e s u l t s in T a b le *+3 g iv e th e o r d e r of m agnitude of n u t r i e n t e le m e n ts in A rea X a s : Ca> Mg>P > E > N a > F e >Mn. A s l i g h t v a r i a t i o n in 147 t h i s o r d e r e x i s t s i n A rea Y a s i Ca> Mg> K> P > Fe > Na> Mn. The s t r i k i n g s i m i l a r i t y i n b o th amount and m agn itud e o f n u t r i e n t e lem en ts i s r e v e a l e d by c o n t r a s t i n g t h e a r e a o f good and p o o r h e i g h t growth* A ltho ug h i t i s n o t t o be assumed t h a t t h e t o t a l amount o f n u t r i e n t p r e s e n t d e te rm in e s i t s a v a i l a b i l i t y to th e t r e e , t h e f a c t t h a t a t l e a s t one of t h e s e a r e a s i s e x h i b i t i n g good h e i g h t grow th i s e v id e n c e t h a t th e t o t a l amount i s s u f f i c i e n t to s a t i s f y th e t r e e re q u ire m e n ts u n d e r e x i s t i n g c o n d itio n s * T hus, s i n c e th e two a r e a s a r e so s i m i l a r in actua,l c o n te n t of n u t r i e n t s , i t may be c o n j e c t u r e d t h a t b o th a r e a s have s u f f i c i e n t chem ica l n u t r i e n t s to s a t i s f y t h e i r t r e e r e q u i r e m e n t s . Hov/ever, in th e c a s e of A rea Y, th e s e r e s u l t s d i s c l o s e t h a t some o t h e r f a c t o r may b e masking t h e n u t r i e n t s u p p ly a s 8, cau se f o r p o o r h e i g h t grov/th. The s t a t i s t i c a l summary (T a b le 42) o f a l l c h em ical n u t r i e n t s u n der i n v e s t i g a t i o n r e v e a l s t h a t s i g n i f i c a n t d i f f e r e n c e s o c c u r f o r phosphorus a t t h e Br, h o r i z o n , p o ta s s iu m a t th e A^ and th e A^ h o r i z o n . h o r i z o n s , and sodium a t I f th e n u t r i e n t c o n te n t had been d e term in e d by t h e u s u a l methods o f many i n v e s t i g a t o r s , o n ly th e upperm ost h o riz o n s would have shown any d i f f e r e n t i a t i o n . However, by e x t r a c t i n g s o i l samples a t th e n a t u r a l h o r i z o n f o r each p r o f i l e , a c l e a r e r d i a g n o s i s as to h o riz o n d i f f e r e n t i a t i o n , l e a c h i n g e f f e c t s , p r e s e n c e o f f i n e c l a y , and o rg a n ic m a t t e r can be f u l f i l l e d . The i m p l i c a t i o n o f t h e s e d i f f e r e n c e s f o r p h o s p h o r u s , p o ta s s iu m , and sodium i s n o t to be i n t e r p r e t e d d i r e c t l y in term s o f l i m i t i n g f a c t o r s . R a t h e r , th e s t a t i s t i c a l d i f f e r e n c e s a r e i n d i c a t i o n s of s u p p le m e n ta l f a c t o r s which l i m i t a p a r t i c u l a r n u t r i e n t e le m e n t in any one h o r i z o n . I f th e d i f f e r e n c e s had been extrem e i n t h e i r m a g n itu d e , i t would be j u s t i f i a b l e to s u s p e c t a p o s s i b l e l i m i t i n g f a c t o r 148 table 44. A COMPOSITE SIMULATION OF CHMCAL-EDAPHIC CHARACTERISTICS BY SOIL HORIZON FOR AREA OF GOOD HEIGHT GROWTH AND AREA OF POOR HEIGHT GROWTH OF TULIP POPLAR 02 +» •H i O a00 ta a} to* S3 O N •ri u o m i—i •rH O CO S3 O •rH 43 O ca 0) pi 3 o CQ U CD 43 43 ca s o •H S3 CD o Ft 43 •H ^5 S Fh o +3 O Eh o o ^ 02 EH pq ca &o o ® rH rH -ft"'' CO © . W ) CD ft§ s o M ft aEU O oo r-l . CD • CO a) w o o1—1 CD » g a O o a a 1 § JH ,§ a •H O ■H CO CD S3 o » a ft ft p <0 atiD at o o a tiO o orH <0 a qD oo oo CD CQ CO rN GROWING NO THE ! NO THROUGHOUT o MOISTURE H 01 J? O AVAILABLE B CO PERCENT % OF O U © # CO UN CM O 0 1 o rH CM O o On ©j u ^ s io w exq.'BTI'e^V ^ u e o j o a O CO 209 i s a p p aren tly * due t o t h e f a c t t h a t t h e w a te r t a h l e l e v e l i s c l o s e r to th e s u r f a c e i n A re a Y a t t h e s e p e r io d s # m a te ria l However, th e r e s u l t s i n d i c a t e no d i f f e r e n c e i n a v a i l a b l e iv a te r betw een th e two a r e a s d u r in g th e c r i t ic e d p e r i o d o f g ro w th ( J u l y , A u g u s t) . L ig h t I n t e n s i t y At v a r i o u s i n t e r v a l s th ro u g h o u t t h e grow ing s e a s o n , l i g h t i n t e n s i t y m easurem ents were ta k e n in b o th Area. X and A rea Y. These r e a d i n g s were r e c o r d e d w ith a p h o t o e l e c t r i c c e l l u t i l i z i n g th e i n t e n s i t y o f r e f l e c t e d l i g h t e x p r e s s e d in term s o f a p e r c e n t of f u l l s u n lig h t# of th e l i g h t in t e n s i t y S in c e no r e c o r d made a t any tim e p r i o r to th e p r e s e n t r e a d i n g s , th e n u m e r ic a l r e s u l t s a r e n o t in c lu d e d h e r e . Howre v e r , th e r e s u l t s o f th e p r e s e n t s t u d y r e v e a l t h a t t h e a v e ra g e l i g h t i n t e n s i t i e s in A rea Y a r e c o n s i d e r a b l y g r e a t e r th a n in A rea X. T his r e s u l t was a n t i c i p a t e d due to t h e more shad ed end l e s s exposed s i t e c o n d i t i o n s o f A rea X. W ith t h e l i m i t e d d a t a a v a i l a b l e i t i s d i f f i c u l t to d e te r m in e what e f f e c t l i g h t i n t e n s i t y p la y s in t h e r o l e o f a s e p a r a t e c l i m a t i c f a c t o r . F u r th e r m o r e , i t i s d i f f i c u l t to e x p re s s q u a n t i t a t i v e l y which p o r t i o n o f th e s o l a r r a d i a t i o n e x i s t s as l i g h t i n t e n s i t y , S in c e no l i g h t q u a lity , or as h e a t. l i g h t r e a d i n g s have b een ta k e n d u r in g t h e 1 5 -y e a r i n t e r v a l p r e v i o u s to t h e e s t a b l i s h m e n t o f t h i s p l a n t a t i o n , i t i s v i r t u a l l y im p o s s ib le t o e s t a b l i s h any c o n c r e t e e v id e n c e as to t h e d i r e c t e f f e c t o f l i g h t upon h e i g h t g ro w th , w ith t h e e x c e p tio n o f th e e x t e r n a l e v id e n c e o f s u n s c a l d . The r o l e o f l i g h t in b o th a r e a s i n t h i s s t u d y is t h e r e f o r e b a se d upon th e i n d i r e c t o b s e r v a t i o n a l r e s u l t s of s o l a r r a d i a t i o n r a t h e r th a n a c a u s e of h e ig h t d if f e r e n tia tio n # 210 C e rta in an atom ical fe a tu r e s o f t u lip tr e e s in Area X su g g e st a resp o n se to low er l i g h t in t e n s it i e s * Such fe a tu r e s as n a tu r a l pruning o f th e low er branches in t h is a rea in d ic a te th e e f f e c t o f the p resen ce o f th e o ld growth hardwood and th e g r e a te r h e ig h t growth o f th e s e t r e e s . G ross o b s e r v a tio n on the th ic k n e ss o f l e a v e s , l e a f c o lo r , and g e n e r a l l e a f su c c u le n c e does not r e v e a l any marked d if fe r e n c e in the two h a b it a t s . At th e tim e o f e sta b lish m e n t o f t h is p la n ta tio n and fo r many y e a rs fo llo w ­ ing t h i s i n i t i a l grow th, i t i s presumed th a t a l l tr e e s in th e p la n ta tio n were r e c e iv in g app roxim ately th e same l i g h t in t e n s it y , and th a t d i f f e r ­ e n t ia t io n in h e ig h t grow th ba,sed upon l i g h t c o n d itio n s per se i s not te n a b le . Thus, w ith th e lim it e d d ata a v a ila b le , i t appears th at l i g h t is com p lexly a s s o c ia t e d w ith th e oth er in te g r a te d s i t e f a c to r s in t h i s stu d y . Por exam ple, in Area Y, the g r e a te r l i g h t in t e n s it y is a s s o c ia te d w ith th e d r ie r h a b ita t and h igh er tr a n s p ir a tio n r a te s as shown by su p p lem en tal e v id e n c e . Most o f th e ev id en ce in t h is t h e s is p o in ts to th e f a c t th a t l i g h t i s in te g r a te d w ith th e oth er s i t e fa c to r s but i s b ein g masked by o th e r more lim it in g fa c to r s w ith r e fe r e n c e to th e h e ig h t grow th d i f f e r e n t i a l . D is c u ss io n o f R e su lts A grow ing season stud y o f seven m ic r o clim a tic fa c to r s in Area X and Area Y shows in v i r t u a l l y every c a se th a t th ese in te g r a te d f a c t o r s , supplem ented by edaphic and b io l o g ic a l f a c t o r s , are a s s o c ia te d w ith a marked d i f f e r e n t i a l h e ig h t growth fo r plan ta t ion-grown t u lip p o p la r . A ll o f th e s e m ic r o c lim a tic f a c t o r s in d ic a te th a t the m oisture regim en, 211 e i t h e r d i r e c t l y or in d i r e c t l y , i s most l i k e l y th e major fu n c tio n r e s u lt in g in th e d i f f e r e n t i a l h e ig h t growth o f th e exp erim en tal p la n ta tio n * The p r e se n c e o f an o ld —g ro v th hardv/ood sta n d a d ja c e n t to Area X has a lte r e d th e m ic r o clim a te in t h is area and, r e v e a ls ra th e r c le a r ly some o f the s i l v i c a l fe a tu r e s to "be co n sid ered in g ro v in g p la n ta tio n t u lip p o p la r . The m icro c l im a tic fe a tu r e s o f Area X and Area Y have p r e v io u s ly "been v a l i d a t e d s t a t i s t i c a l l y w ith r e fe r e n c e to p r e c ip it a t io n and tem p eratu re. 212 SOIL MICROBIOLOGICAL EXPERIMENTS ( QUANTITATIVE) The R e l a t i o n Between Numbers o f S o i l Organisms and t h e Edaphic and M ic r o c l i m a t i c F a c t o r s o f A rea X and A rea Y F i e l d E x p e rim e n ta l Method: D u rin g t h e grow ing s e a s o n o f 1951* s o i l sam ples f o r m i c r o b i o l o g i c a l s t u d i e s were ta k e n from A rea X and A rea Y. These sam ples were c o l l e c t e d and p r e s e r v e d by a method o r i g i n a t e d by th e p r e s e n t i n v e s t i g a t o r . At a p p r o p r i a t e i n t e r v a l s th ro u g h o u t th e growing sea so n th e s o i l s were sam pled f o r numbers o f f u n g i , b a c t e r i a , and a c tin o m y c e te s e x i s t i n g i n f o u r s e p a r a t e s o i l h o r iz o n s i n each e x p e r im e n ta l a r e a ( F ig u r e s 50“ 53)* A r e v i s e d method o f c o l l e c t i n g m i c r o b i a l s o i l samples was c a r r i e d o u t as fo llo w s: 1. G la ss c o n t a i n e r s of 65 m i l l i l i t e r c a p a c i t y were s t e r i l i z e d in an oven a t 105° C f o r a p e r i o d o f one h o u r. S te rile lid s were th e n screw ed t i g h t l y to t h e empty g l a s s c o n t a i n e r s and ta k e n d i r e c t l y i n t o th e f i e l d . 2. By means o f a p o s t - h o l e d i g g e r , s o i l p r o f i l e s were exposed to an a p p ro p ria te d e ath . U sing an o r d i n a r y s t e r i l e , wooden ic e - c r e a m spoon, enough s o i l was ta k en a t d e f i n i t e s o i l h o r iz o n d e p th s to f i l l each c o n t a i n e r . A f t e r each i n d i v i d u a l s o i l s a m p lin g , th e wooden snoon was d i s c a r d e d . T h is method e l i m i n a t e s th e u s u a l t e d i o u s and cumbersome p ro c e d u re o f i g n i t i n g a l c o h o l on a tro w e l p r i o r to e a c h sam p ling in o r d e r to p r e v e n t c o n ta m in a tio n . 213 3 * A fte r th e sam ples were taken a t each n a tu r a l s o i l h o rizo n , a beaker o f p a r a ff in wax was m elted and the sample c o n ta in er s em ersed, thus s e a lin g them from a ir and co n ta m in a tio n . T his w a x -s e a lin g p r o c e ss en a b les th e in v e s tig a to r to keep the sam ples i n d e f i n i t e l y u n t il th e s o i l s are ready to be sampled fo r m icro b es. In a d d itio n , the s o i l s can be run a t th e same pH and m o istu re co n ten t as o r ig i n a lly sam pled. The m ic r o b ia l s o i l samples were taken a t app roxim ately th e same area l o c a t io n as th e m ic r o cl imat ic d a ta . U niform ity in th e c o r r e la t io n o f edaphic and c lim a t ic d ata w ith th e m ic r o b io lo g ic a l changes was thus o b ta in e d . la b o r a to r y E xperim ental Method: The la b o r a to r y procedure u sed in i s o la t i n g th e d e sir e d organism s from each s o i l sample d iv id e s i t s e l f in to two p a r ts: 1. From th e s o i l sam ples taken a t S ta tio n s I and I I , a com posite sample was made to r ep r e se n t each horizon in Area X; s im ila r ly , com posite samples were made fo r each h orizon in Area Y. S o il d ilu t io n s o f each com posite s o i l were f o llo w s : prepared as The a d d itio n o f 10 grams o f s o i l to 1000 c c . o f s t e r i l e d i s t i l l e d water g iv in g a d ilu t io n o f 1 :1 0 0 . A fte r the c o a rse p a r t ic le s had s e t t l e d out a f t e r sh a k in g , 10 cc* o f th e 1:100 d ilu t io n was p ip e t te d in to 90 c c . o f s t e r i l e d i s t i l l e d w ater. S u c c e ss iv e tr a n s fe r s were made r e s u lt in g in a s e r i e s o f d il u t io n s . and 1 :1 ,0 0 0 ,0 0 0 . These were 1 :1 0 0 , 1 :1 0 0 0 , A ll work was done a s e p t i c a l l y . 1 :1 0 ,0 0 0 , 2lk 2. S e le c t io n o f media and c u ltu r in g procedure fo r "bacteria, a c tin o m y ce te s and fu n g i: From th e above d i l u t i o n s , 1 c c . o f each was d isp en sed by s t e r i l e p ip e t t e s in to a s e l e c t i v e m edia and poured a s e p t ic a ll y in to s t e r i l e p e t r i d is h e s . T his m ixture o f agar* and s o i l d il u t io n was allow ed to harden and th e c u ltu r e s were p la c e d in a c u ltu r e room at 28° 0 . The b a c te r ia and a ctin o m y cetes were p e r m itted to grow one week or l e s s b e fo r e observa/tions were made and th e fu n g i were a llo w ed fo u r days b e fo r e o b se r v in g . The medium used f o r b a c te r ia was N utrose agar; f o r fu n g i; a P e p to n e -g lu c o se a c id agar used w ith a pH between so th a t b a c t e r ia would not d e v e lo p . and 4*0 The media used were as fo llo w s : B a c te r ia and A ctinom ycetes - U utrose agar Agar Hutrose G lucose 12 .5 grams 2.0 1 .0 K2HP0i^ 0 .2 MgSO^.7H20 FeS0i |. 7H20 Tap Water R e a c tio n pH 0 .2 tra c e 1 .0 l i t e r 6.3 (no a d ju s tm e n t) Fungi - Peptone g lu c o se a cid agar Agar KH^PO^ MgS01+.7H20 Peptone G lucose D i s t i l l e d Water R e a c tio n pH 25.O grams 1 .0 0 .5 5*0 1 0 .0 1 .0 l i t e r 3*# t0 ^*0 ( a d j u s t e d ) In a l l c a se s where in o c u la tio n s were made, g la ssw a re was th orou ghly s t e r i l i s e d and the media used were autocla.ved p r io r to each s o i l 11run11 in 215 o r d e r to p r e v e n t c o n t a m i n a t i o n . jHach d i l u t i o n was ru n i n d u p l i c a t e b o th f o r b a c t e r i a and f u n g i , in a d d i t i o n to c o n t r o l s * The number o f o rganism s computed from t h e p l a t e s r e p r e s e n t th e a v e r a g e v a lu e s o f t h r e e d i l u t i o n s , o r t h e a v e r a g e v a l u e of s i x i n d i v i d u a l p l a t e s f o r e ach s o i l h o r i z o n . M o is tu r e c o n t e n t s w ere o b t a i n e d f o r e ach h o r iz o n im m e d ia te ly b e f o r e th e i s o l a t i o n s were made* T h is was done by h e a t i n g t h e com posite sam ples a t 90° C u n t i l a l l vrater was l o s t ; t h e p e r c e n ta g e f i g u r e s o b t a i n e d were i n d i c a t i v e o f t h e amount o f w a te r l o s t in each sam ple, and th e number o f o rg a n is m s p r e s e n t p e r gram d ry w e ig h t o f s o i l was computed from t h e s e r e s u l t s , u s in g t h e p l a t e method f o r c o u n tin g m ic ro b e s . F o r e ac h s o i l h o r i z o n , th e a c i d i t y (pH) was o b t a i n e d by th e g l a s s - e l e c t r o d e pH m e te r . S e v e r a l exem plary p h o to g ra p h s o f t h e p l a t e c o u n t were made in o r d e r to i l l u s t r a t e t h e p r i n c i p l e s in v o lv e d ( F ig u r e s 5 ^ 5 ^ ) * The number o f o rg a n ism s on e ach p l a t e was c o u n te d by means o f a m icro sco pe and c o u n tin g p la te . Only t h e 1 :1 00 and 1:1000 d i l u t i o n s were u s e d f o r s t a t i s t i c a l p r e s e n t a t i o n o f numbers o f o rg a n ism s a p p e a rin g on th e p l a t e s . A fte r c o r r e c t i o n f o r m o is tu r e c o n t e n t , th e numbers o f org an ism s were p l o t t e d i n o r d e r t o compare q u a n t i t a t i v e l y t h e d i f f e r e n c e i n m ic ro b ia l c o u n ts betw een A re a X and A rea Y. O b je c ti v e s The p r e s e n t m i c r o b i o l o g i c a l i n v e s t i g a t i o n s were co n ce rn e d w ith tile s o i l a s a mass o f l i v i n g d e b r i s , f u n g i , a l g a e and p r o t o z o a . o f th e s o i l f l o r a and f a u n a . in c lu d in g c e r t a i n b a c t e r i a , a c ti n o m y c e te s , These l i v i n g m icrobes a r e n o t a co m p lete l i s t However, th e b a c t e r i a , f u n g i and a c tin o m y c e te s e x e r t a p ro f o u n d i n f l u e n c e upon t h e g e n e t i c a l developm ent o f s o i l p r o f i l e s as w e ll as an i n d i r e c t e f f e c t uuon f o r e s t t r e e s . T his s tu d y i s s t r i c t l y 216 q u a n t i t a t i v e in i t s approach.. I n most s o i l s t h e q u a l i t a t i v e d i s t r i b u t i o n of o rg a n ism s re m a in s much t h e same, b u t t h e r e a r e v e r y marked d i f f e r e n c e s in th e q u a n t i t a t i v e r e l a t i o n s h i p s . B i o l o g i c a l t r a n s f o r m a t i o n s b ro u g h t a b o u t by s o i l o rg a n ism s a r e e x tre m e ly complex, and i t i s assumed t h a t t h e f o r e s t e r p o s s e s s e s a g e n e r a l background i n th e i m p l i c a t i o n s o f t h i s s t u d y . No a t t e m p t h a s b e en made t o e n a b le th e r e a d e r t o a n a ly z e th e r e s u l t s of t h e s e e x p e r im e n ts by means o f a s t r i c t ind ex t h a t w i l l h o ld t r u e in a l l cases. N e v e r t h e l e s s , t h e r e s u l t s a r e a f u n c t i o n of two in d e p en d e n t b o d i e s , th e s o i l and th e f o r e s t , e ach o f w hich a r e a c t e d upon by c l i m a t i c i n f l u e n c e s , a l l o f which a r e i n t e g r a t e d p a r t s o f th e same dynamic system i n f l u e n c i n g th e g ro w th o f t u l i p p o p l a r . I n a l l c o m p a ra tiv e s t u d i e s c e r t a i n v a r i a b l e s and i n c i d e n t a l f a c t o r s e n t e r in ; no d i r e c t o r i n d i r e c t c o r r e l a t i o n betw een t h e s o i l and th e grow th o f th e f o r e s t s ta n d s d e s c r i b e d can be e x p e c te d to h o ld t r u e in a l l s i t u a t i o n s . Since no i d e n t i c a l s t u d i e s l i k e t h e one p r e s e n t e d h e re have been made, i n t e r p r e t a t i o n o f d a t a i s o n ly i n d i c a t i v e o f p r i n c i p l e s and t r e n d s s u p p le m e n ta l t o o t h e r f a c t o r s . P r a c t i c a l l y no s i l v i c a l s t u d i e s have s p e c i f i c a l l y shown t h e r e l a t i o n s h i p o f o rg a n is m s to a s e t o f i n t e g r a t e d s i t e f a c t o r s th ro u g h t a growing s e a s o n . T h is p o r t i o n o f th e d i s s e r t a t i o n has th e f o llo w in g s p e c i f i c o b j e c t i v e s : 1. To p r e s e n t q u a n t i t a t i v e d a t a c o n c e rn in g b a c t e r i a , f u n g i , and a c ti n o m y c e te s in two c o n t r a s t i n g s i t e s o f th e same age and d e n sity . These two s i t e s r e p r e s e n t an a r e a o f good h e i g h t g ro w th and an a r e a o f po or h e i g h t grow th o f p la n t a t i o n - g r o w n t u lip p o p la r. 2. To show t h e f l u c t u a t i o n in th e p o p u l a t i o n of o rg a n ism s th r o u g h o u t th e gro w in g sea.son on compared t u l i p p o p l a r s i t e s , by u t i ­ l i s i n g s o i l h o riz o n s a s th e d i f f e r e n t i a t i n g c r i t e r i o n . 217 3* To c o r r e l a t e t h e f l u c t u a t i o n in p o p u l a t i o n o f org an ism s t h r o u g h o u t t h e growing s e a s o n w ith th e f o l l o w i n g m ajor m i c r o c l i m a t i c and e d a p h ic f a c t o r s in each a r e a : (1) s o i l - s u r f a c e te m p e r a tu r e ( 2) m o istu re c o n te n t o f (3) ra te (H) so il o r g a n ic m a t t e r (5) so il a c i d i t y (pH) s o i l to a d e p th o f s i x in c h e s o f e v a p o r a t i o n and a i r te m p e r a tu r e I n i n t e r p r e t i n g t h e r e s u l t s o f a q u a n t i t a t i v e m i c r o b i a l s tu d y i t s h o u ld be c o n s t a n t l y k e p t in mind t h a t th e numbers o f organism s r e f e r r e d to a r e o n ly r e l a t i v e f i g u r e s * They sh o u ld n o t be i n t e r p r e t e d as r e p r e s e n t i n g a, c o n s t a n t number o f o rg a n ism s in a p a r t i c u l a r s o i l ; th e c o u n ts r e f e r o n ly to t h e r e l a t i v e abundance o f c e r t a i n ty p e s o f m ic r o b ia l c e l l s a t th e t i n e t h a t t h e d e t e r m i n a t i o n was made. m e n ta l c o n d i t i o n s a r e m o d if ie d . G re a t changes o c cu r when c e r t a i n e n v ir o n ­ The manner i n which t h e s e organ ism s v a ry w i t h a s e t o f i n t e g r a t e d s i t e f a c t o r s th ro u g h o u t an e n t i r e grow ing se a so n in two c o n t r a s t i n g t u l i p p o p l a r h a b i t a t s is th e o b j e c t i v e o f t h i s m ic ro ­ b io lo g ic a l stu d y . In e s s e n c e , th e f i n d i n g s o f t h i s b i o l o g i c a l i n v e s t i g a t i o n m e re ly a tte m p t to c o r r o b o r a t e and v a l i d a t e t h e m i c r o e l i m a t i c and ed ap h ic stu d ie s. The r o l e o f m ic ro o rg a n ism s a s to t h e i r f u n c t i o n , a c t i v i t i e s , and t r a n s f o r m a t i o n s a r e n o t in c lu d e d h e r e . This i n v e s t i g a t i o n i s d e s ig n e d to d e m o n s t r a t e how m i c r o b i a l s t u d i e s can be in c o r p o r a te d i n t o t h e f o r e s t e r ' s c o n c e p t o f s i t e q u a l i t y by i n t e g r a t i n g t h e s o i l f l o r a w ith o t h e r s i t e fa c to rs. S in c e th e s u r f a c e s o i l h o r iz o n s r e f l e c t th e e x t e r n a l e f f e c t s o f t h e im m ediate e n v iro n m e n t, th e q u a n t i t a t i v e c o r r e l a t i o n o f o rg a n ism s to s o i l and c l i m a t e i s i n t e r p r e t e d a n d p l o t t e d by s o i l h o r i z o n s , AQ and A^. 218 Pig. 50. VERTICAL DISTRIBUTION OP SOIL MICROBES IN AREA X AND AREA Y DURING THE SPRING Area Area X Y 2 .0 30 1.5 120 Nuniberfl of organisms per gram dry weight o f s o il - - a 80 h 1 *0 *ri ss m 5 u I 5 +» +> •h « W O o 43 £3 CO 5 <*! trj 3 s O +» co X s pel E4 o «rl +3 £ O *H * TO 1 " & CO CO Ki • ir\ rH r— « JrH CM * CM H • LTV CM • LTV ro» LO. rd | CQ Pi N d TO *H i—1 O •H E?£>*H Pi O Pi 43 0 •H •H Pi *H •d P i © 43 TO Pi OOP) CO W CT\ LO ® Ph •d 55 43 P in TOrH a 43 •rl 01 O TO to Pi rH 1 £3 •rl HI ■H Pi 4-5 O Pi »H ffi 43 P-t 5H TO *ra O Pi Pi O P* 3 0 •rH O « •rl •H p-i M O Pi © Pi O £3 pi oN •H Pi O m O Pj rH d 3 o !*, TO HI CM CM PP product of four seasonal is o la tio n s per soil horizon taken p e rio d ic a lly o uo Each value rep re se n ts the average the average of fo r ty -e ig h t plates O LPi CO 233 5 Ln► CO rH in oun o o o o o to o LTV a h- co vo VO CM rH co 5 CO CO times six dup licate p l a t e s , or throughout the growing s e a s o n . tH-\ VO CO O O VO «* w CO CM +> +5 p o3 •P £ o P cb +3 ■& m •rH VO rH o ptj to t— CM © O P © in VO O o JO co *23 P i O +a d 0) c •H p p VO rH (ii - p o EhjO +> P r—- cm’ Ph «J © O A Ph ■of rH •H o rH f©. s *P © +3 ©© 03 -P EH S o ^ i -1 a *P o § 1 -3 0 <3 h» w o to o O rH -P >a a * o S hJ w W cd HJ •rH p *H O H CO © o O rH •P r—I O © 09 P -p P p -P © 0) O •rH P o LO tO VO « O CM VO CM rH CO © £3 PH P O i—l •rH •rH •P w O o p) CO cd • m o in in in h~ • • « © Ph •P p © rH a •rH -p O cd CO © P EH m in rH W P ■P td © o> «d S 1 N •rH rH CiO *H +3 O • H • a fH p., © P PhVI •r~D O P P o P o •rl HH o p ra P o p •H •H •P oS •H O O *P O m 'Ci t f p N © rH UD •rH P P •rH P Pi © PX> P i V ’f~ O P P o n o p p rH O tH N o •H CO P 'p p o •rH ■P © © d IS) P Co •rH o rH » H w •rl O p +3 •rl P 'P P h © CM < r P o •rl -P P P i V Cd O P P O t-H o P •O *3 i—1 O +5 O 03 © p o *25 CM PQ product of four seasonal is o la tio n s per soil horizon taken p e rio d ic a lly CM VO orH to O O O om Each value rep re se n ts the average the average of f o r ty - e ig h t plates O CV1 23^ F o r A re a Y, th e g r e a t e s t a c tin o m y c e te p o p u l a t i o n v/as found in th e Aq h o r i z o n , where t h e co u n t r i s e s to 62,120 p e r gram. 6. I n A re a X, th e " b a c te r ia l p o p u l a t i o n in th e s u r f a c e h o r i z o n s , Aq and A^, was g r e a t e s t in t h e s p r i n g , d rop p ed to a minimum in mid-summer, and re a c h e d a se c o n d a ry maximum in e a r l y autumn. I n A rea Y, however, th e b a c t e r i a re a c h e d a maximum in e a r l y summer, a m inimu m in mid—summer, and a se c o n d a ry maximum in e a r l y autumn. I n b o th Area X and Y, th e a c tin o m y c e te s fo llo tu e d much th e same s e a s o n a l f l u c t u a t i o n a s th e f u n g i . C o n c lu sio n s R eg ard in g B a c t e r i a and A ctinom ycete R e s u l t s : The e f f e c t s o f y e a r s o f i n j u d i c i o u s cro p p in g w ith o u t f e r t i l i z a t i o n o f any k i n d i s s t r i k i n g l y p o r t r a y e d by th e r e l a t i v e l y lovr b a c t e r i a l c o u n ts o f t h i s s t u d y , ta k e n th ro u g h o u t t h e grow ing s e a s o n . The s i m i l a r i t y in t o t a l numbers o f b a c t e r i a and a c tin o m y c e te s f o r b o th Area X and A rea Y te n d s t o p o i n t o u t ( a s w ith t h e f u n g a l p o p u la tio n ) t h a t th e s e two s i t e s a r e e s s e n t i a l l y m i c r o b i o l o g i c a l l y s i m i l a r and t h a t t o t a l organism e q u i l i b r i u m i s b e in g e s t a b l i s h e d a t a low Q u a n t i t a t i v e l e v e l i n b o t h s i t e s . As w i t h t h e f u n g i , t h e t o t a l b a c t e r i a l p o p u l a t i o n i s s l i g h t l y h i g h e r in A rea Y th a n in A rea X. The c o r r e l a t i o n o f m ic ro c lim a t ic f a c t o r s f o r th e A and A^ i s m arkedly shown by comparing th e s e two h o r i z i o n s in each area. I n A re a X, th e g r e a t e s t b a c t e r i a l p o p u l a t i o n i s fo u n d in th e Aq h o r iz o n , w ith a v e r y low c o u n t in th e i s fo u n d in th e A-j_ h o r i z o n . in A rea Y, the g r e a t e s t b a c t e r i a l count This r e s u l t i s c l e a r l y a f u n c t i o n of th e g r e a t e r a v a i l a b l e s o i l m o i s t u r e , lo w e r e v a p o r a tio n r a t e , low er s o i l s u r f a c e t e m p e r a t u r e s and h i g h e r r e l a t i v e h u m id ity of A rea X. The canopy o f th e t r e e crowns in A rea X i s a p o t e n t f a c t o r i n p r e v e n t i n g t h e e f f e c t of the F ig . 56 235 o ft* Air Temperature 85 80 75 70 65 60 Surface S o il Temperature 75 70 65 a> & 60 55 A vailable S o il Moisture 6" Depth # 90 10 0 June 12 20 June 30 July 50 July 31 60 70 Aug. 80 Aug, 31 90 Sept. 14 vP Cl m ^30 eS m I g 20 10 ta 3 oa Fungi Bacteria •H rH rH 2 © 1 O 0 Etetrly Summer Spring July 21 June 22 June 2 Aug. 21 Early Autumn ' Sept. 14 THE RELATION BETWEEN NUMBERS OF ORGANISMS AND MICROCLIMATE IN THE AREA OF GOOD HEIGHT GROWTH OF TULIP POPLAR Pl.cr. 57 . 236 A i r Temperature 90 o 80 Pm 70 6 Q > 60 E~( 50 S u rfa c e S o i l Tem perature 95 o 85 Em 75 65 100 -p A v a i l a b l e S o i l M o istu re 6 B D epth 90 g 80 20 0 June 12 10 20 Ju ne 30 40 Ju ly B ac te ria 50 Ju ly 31 60 70 Aug. 80 Aug. 31 90 S e p t. 14 Fungi •H S p r in g June 2 E a r l y Summer J u l y 21 I E a r l y Autumn Aug. 21 THE DELATION BETWEEN NUMBERS OF ORGANISMS AND MICROCLIMATE IN THE AREA OF POOR HEIGTTT GROWTH OF TULIP POPLAR 237 sun * s r a y s from e v a p o r a tin g s o i l m o is tu r e d u r e c t l y a t th e s u rfa ,c e . In t h e more a r i d s o i l o f A rea Y, l a c k i n g su ch a p r o t e c t i v e l a y e r , th e number o f b a c t e r i a a t t h e s u r f a c e i s l e s s , due to d e s i c c a t i o n e f f e c t s . In a d d itio n to m o i s t u r e c o n t e n t o f th e s u r f a c e h o r i z o n s , t h e s o i l s o f A rea X more c l o s e l y a p p ro a c h a n e u t r a l o r l e s s a c i d c o n d i t i o n th a n th e s u r f a c e s o i l s o f A re a Y. A n e a r p e r f e c t c o r r e l a t i o n w i t h i n c r e a s e d d e p th o f h o r iz o n i n A re a X i s i l l u s t r a t e d i n F i g u r e 5^* These two f a c t o r s , m o is tu r e c o n t e n t and s o i l a c i d i t y , a r e th u s i n c l o s e r e l a t i o n s h i p to th e o t h e r m i c r o c l i m a t i c f a c to r s of th e in d iv id u a l a re a s. (b a c te ria ) Here a g a in , by u s in g a m i c r o b i a l f a c t o r i t i s p o s s i b l e to p o i n t o u t t h a t th e s o i l m o is tu re regim en, a s a f u n c t i o n o f e x t e r n a l e d a p h ic a n d c l i m a t i c f a c t o r s , i s l i m i t i n g w ith r e s p e c t to t h e s e t u l i p p o p l a r s i t e s . As w ith th e f u n g a l r e s u l t s , th e g r e a t e r b a c t e r i a l p o p u l a t i o n o f A rea Y cann o t be a s s o c i a t e d q u a n t i t a t i v e l y w ith t h e p o o r h e i g h t gro w th of t u l i p p o p l a r , s i n c e A rea X p o s s e s s e s a lo w e r m i c r o b i o l o g i c a l c o u n t. I n r e g a r d to t h e a c ti n o m y c e te s , t h e l a r g e r t o t a l number fo u n d i n t h e s u r f a c e h o r i z o n s o f A rea Y s u g g e s ts th e c lo s e r e l a t i o n s h i p to th e f u n g i w i t h r e s u e c t to o r g a n i c m a t t e r , a v a i l a b l e oxygen, and s o i l a c i d i t y . The d e c r e a s e in numbers o f a c tin o m y c e te s w ith d e p th u n t i l th e B^ h o r iz o n i s r e a c h e d , in A rea X, i s a s s o c i a t e n r a t h e r c l o s e l y w itn t h e more a c i d c o n d i t i o n s a.t g r e a t e r d e p t h s , to th e p o s s i b l e washing down o f th e c o n i d i a o r t o th e g r e a t e r r e s i s t a n c e o f t h e s e organism s to a l a c k o f oxygen. The q u a n t i t a t i v e r e s u l t s o b ta in e d h e re f o r t h r e e d i s t i n c t g ro u p s o f s o i l o rg a n ism s show t h a t th e b a c t e r i a a r e most s e n s i t i v e to m ic r o c l i m a t i c f a c t o r s f o r u se as s u p p le m e n ta l e v id en c e in e v a l u a t i n g p l a n t a t i o n s i t e a u a lity . T his e v id e n c e is b a s e d upon th e p l a t e c ou nt method o f i s o l a t i n g F ig . 58. B a c t e r i a and a c tin o m y c e te c o lo n ie s shoving th e r e l a t i v e d e n s i t y o f organism s by s o i l h o riz o n f o r th e a r e a of good h e i g h t gro w th (A rea X). These s o i l m ic r o b i a l i s o l a t i o n s were made i n th e S p rin g (May 20, 1951)* A n e a r l y p e r f e c t c o r r e l a t i o n w ith i n c r e a s e d d e p th o f h o r iz o n i s i l l u s t r a t e d by t h i s p l a t e c o u n t; th e numbers o f b a c t e r i a d e c r e a s e w ith i n c r e a s e d d e p th in a l l t h r e e d i l u t i o n s . The a c tin o m y c e te c o u n ts d e c r e a s e w i t h d e p th u n t i l th e B2 h o riz o n i s re a c h e d , i l l u s t r a t i n g t h e i r ten d en c y to fo llo w th e t r e n d o f f u n g i f o r s i m i l a r h o r i z o n s . The h ig h e r b a c t e r i a l count o f t h e A0 and h o r iz o n s as shown above is c l o s e l y r e l a t e d to th e more aJLkaline c o n d i t i o n s of th e s u r f a c e s o i l a s c o n t r a s t e d to th e more a c i d c o n d i t i o n s a t g r e a t e r d e p th s in t h i s a r e a . 239 o r g a n is m s , a s u s e d in t h i s s tu d y . The c o u n ts made f o r each group of o rg a n is m s a r e ha.sed upon th e a v e ra g e v a lu e o f s i x d u p l i c a t e p l a t e s f o r e ach s o i l h o r iz o n t a k e n f o u r tim e s th ro u g h o u t t h e growing s e a s o n , o r t h e a v e r a g e of f o r t y - e i g h t c o u n ts . SUMMARY MD COHOLUSIOKS A co m p reh en siv e i n v e s t i g a t i o n of th e e d a p h ic , m icroclim a,t i c , and m i c r o b i o l o g i c a l f a c t o r s c o n t r i b u t i n g to t h e d i f f e r e n t i a l h e i g h t g ro w th o f p l a n t a t ion-grow n t u l i p p o p l a r (L ir io d e n d r o n t u l i p i f e r a L .) was u n d e r ta k e n . T h is s i l v i c a l s t u d y was cond ucted a t th e F red Russ E x p e rim e n ta l F o r e s t in Cass C ounty, M ich ig an , d u rin g t h e growing s e a so n s o f 1951 an No. 3 , 164-181 / 1933* F o r e s t s and s o i l s , p p. 114-120. The U. S. D ept, o f A g r i c u l t u r e . 19 U9 . S o il P h y sic s. John Wiley and Sons, I n c . , Second e d . , U. S. Monthly Weather 2b 7 l6 . C o i l e , T. S. The e f f e c t o f r a i n f a l l and te m p e r a tu r e on th e a n n u al r a d i a l g ro w th o f p i n e in th e s o u th e r n U n ite d S t a t e s . E c o lo g ic a l Monograph 6: 533 - 5 6 2 . 1 9 3 6 . 17* C r a ib , I a n J . Some a s p e c t s o f s o i l m o is tu r e in th e open as compared w i t h t h a t in th e f o r e s t . Y ale U n i v e r s i t y , School o f F o r e s t r y B u l l . 2 5 . p p . 1- 6 2 . 1 9 2 9 . 18. D aubenm ire, R. F . Y ork. 191*7 . P l a n t s and Environm ent. John Wiley and Sons. 19. D i l l e r , O l i v e r 3D. The r e l a t i o n o f te m p e ra tu re and p r e c i p i t a t i o n to t h e g ro w th o f b e e c h in n o r t h e r n I n d ia n a . Ecology, V ol. 16, No. 1. p p . 72 - 8 1 . 1 9 3 5 . 20. D i l s , R. E. and M. W. Day. The e f f e c t o f p r e c i p i t a t i o n and te m p e ra tu re upon t h e r a d i a l g row th o f r e d p i n e . U npublished m a n u s c rip t. U pp . 1951* 21. D ix on , W. J . and P. J . Massey. I n t r o d u c t i o n to s t a t i s t i c a l a n a l y s i s . M cGraw-Hill Book C o., p p . l6 2 ~ l6 8 . 1951. 22. E l l i o t , S. B. C h a r a c t e r i s t i c s and s e e d in g o f th e t u l i p t r e e . F o r e s t s 21: 1915* New Amer. 23. E n g l e r , A.U n tersuch un gen u b e r des d e r G-ewasser. M i t t e i l . d. Schweiz. V ersuchsw esen . 12: I - 6 2 6 . 1919* E i n f l u s s des Waldes a u f den Stand Z e n t r a l a n s t a l t . F. d . f o r s t l . 2U. F e r n a l d , M. L. Co. 1950. 25. H arlow , ¥• M. and E. S. H a r r a r . Textbook o f D endrology. Second e d . , New York and London. McGraw-Hill Book Co., In c . pp. 397-^01* 19^1* 2 6. H ennecke, K. V e rg le ic h e n d e S ta n d o rts u n te rs u c h u n g e n in K ie f e r n b e s ta n d e n . Z e i t s c h r . f . F o r s t - u . Jagdwesen 6 7 : 3^-55* 1935* 27. H ic o ck , E. W. and M. F. Morgan, H. J . L u tz , Henry B u l l , and H. A. L u n t. A s tu d y o f s o i l ty p e as a f a c t o r in d e te rm in in g th e c o m p o sitio n o f n a t u r a l , unmanaged mixed hardwood s t a n d s . Conn. Agr. Exp. S t a . B u l l . 3 3 O. p p . 6 7 7 -7 1 3 . 1931* 28. H i l e y , W . E. and N. C u n l i f f e . An i n v e s t i g a t i o n in to th e r e l a t i o n s betw een h e i g h t grow th o f t r e e s and m e te o r o lo g ic a l c o n d i t i o n s . Oxford F o r e s t r y Memoirs 1: 1-19* 1922. 2 9. Horn, A l l e n F . The e f f e c t o f c e r t a i n c l i m a t i c f a c t o r s on th e h e ig h t g ro w th o f r e d p i n e in Chippewa County, M ichigan, ^rl pp. U npublished m a n u s c r i p t . M ich ig an S t a t e C o lle g e . 195^* 30. K ie n h o lz, R. C o n n ec tic u t. Grrayfs Manual o f B otany. E ig h th e d . , American Book Seasonal course o f h e ig h t growth in some hardwoods in Ecology Vol. 22, No. 3 PP* 2 H9- 2 5 8 . 19^1* 2bg 31* K o zlo w sk i, Theodore T. L ig h t and w a te r in r e l a t i o n to grow th and c o m p e t i t i o n o f Piedmont f o r e s t t r e e s p e c i e s . E c o lo g ic a l Monograph, v o l . 1 9 , n o . 3 . p p. 209 - 2 3 1 . 191*9 . 32. L u n t, H. A. E f f e c t o f w e a th e rin g upon d ry m a t t e r end c o m p o sitio n o f hardwood l e a v e s . J o u r n a l o f F o r e s t r y 33? 607-609. 1935* 33• L u t z , H. J . and R. F . C h an d ler. I n c . , p p . 22 H- 37 I4.. 191*6 . 3^. M cCarthy, E. F. Y ellow p o p l a r c h a r a c t e r i s t i c s , grow th and management. U. S. D e p t. Agr. Tech. B u l l . 3 5 6 . 1933. F orest S o ils. John Wiley and Sons, 35* M in c k le r , Leon S. P l a n t a t i o n s u r v i v a l as r e l a t e d to s o i l ty p e , a s p e c t , and grow ing s e a s o n . J o u r n a l o f F o r e s t r y 39? 2 6-29 . 19 I+I. 36. p . 685 - 6 8 8 . b The r i g h t t r e e in th e r i g h t p l a c e . 191*1 . Journal of F o re stry 37* --------------E f f e c t o f r a i n f a l l and s i t e f a c t o r s on th e grow th and s u r v i v a l o f young f o r e s t p l a n t a t i o n s . J o u r n a l o f F o r e s t r y 1*1: 829-833* 19^3* 38. O o s t in g , H. J . The s tu d y of p l a n t com m unities. C o., C a l i f o r n i a , p p . 19l*S. 39* P e a r s o n , G-. A. R e l a t i o n betw een s p r i n g p r e c i p i t a t i o n and h e ig h t grow th o f w e s te r n y e llo w p i n e s a p l i n g s in A riz o n a . J o u r n a l o f F o r e s t r y l 6 : 6 7 7 -6 8 9 . 191S* Uo. ... ■ ■- — L i g h t and m o is tu r e in f o r e s t r y . p p . 1 U5 - 1 5 9 . 1 9 3 0 . 1*1, ______ ____ and R. E. Marsh. Timber growing and lo g g in g p r a c t i c e in th e Southw est and in th e B la ck H i l l s R egion. TJ. S. Dept. Agr. Tech. B u l l . 1*80. 80 p p . 1935* 1*2. P u r i , A. N. and B. A. Keen. and w a te r c o n t e n t o f s o i l s . 1*3 . Reed, J . F. end R. W. Cummings. S o i l r e a c t i o n - g l a s s e l e c t r o d e and c o l o r i m e t r i c methods f o r d e te r m in in g pH v a lu e s o f s o i l . S o i l S c ie n ce 5 9 : 97-101*. 191*5. 1+1*. S c h o l l e n b e r g e r , C. J . D e te r m in a tio n o f s o i l o rg a n ic m a t t e r . S c ie n c e 59? 5 3 -5 6 . 19^5* I4.5 . ___ ____________ and R, H. Simons. Determination of exchange c a p a c ity and e x c h a n g e a b le b a s e s in s o i l s . S o i l S cience 59? 13-21*. 19^5. 1+6. Schumacher, W. W. H. Freeman and Ecology. V ol. 11, No, 1. The r e l a t i o n between th e vap o r p r e s s u r e J o u r n a l o f Agr. S c i. 15? 68 - 8 8 . 1925. D ie p h y s ik des bodens. B e r lin . 1864. S o il 39? 249 ^7* Shipman, R. D. S o i l organism s in a n a t u r a l and in a p l a n t a t i o n f o r e s t . U n p u b lish ed M. F. t h e s i s . U n i v e r s i t y o f M ichigan. 74 pu. 19^7. 48. S h i r l e y , Hardy L. The in f l u e n c e o f l i g h t i n t e n s i t y and l i g h t q u a l i t y upon t h e grow th and s u r v i v a l o f p l a n t s . Amer. J o u r n a l B o t. l 6 : 3 5 4 -3 9 0 . 1929. ^9. S n e d e c o r, G. W. S t a t i s t i c a l M ethods. p p . 2 1 4 -2 53 . 19 ^ 6 . 50. S t e w a r t , Guy R. A s tu d y o f s o i l changes a s s o c i a t e d w ith th e t r a n s ­ i t i o n from f e r t i l e hardwood f o r e s t la n d to p a s t u r e ty p e s of d e c r e a s i n g fe rtility . E c o lo g ic a l Monograph. V ol. 3 , No. 1. p p . 1 0 7 - l 4o . 1933* 51* S t e w a r t , M. N. R e l a t i o n o f p r e c i p i t a t i o n to t r e e grow th. M onthly W eather Review l 6 ; 1287. 1913- 52. T a y l o r , A. E. The t u l i p p o p l a r — a f o r e s t t r e e o f im p o rta n t com m ercial v a lu e f o r Ohio. Ohio Agr. Exp. S t a . Monthly B u l l . 2 (2) 1917. 53* Tourney, J . W. The v e g e t a t i o n o f th e f o r e s t f l o o r ; l i g h t v e r s u s s o i l m o i s t u r e . P r o c . I n t e r n a t i o n a l Congr. o f P l a n t S c ie n ce s 1: 575-590* 1929. 5 4. --------- ------- and C. F. K o r s t i a n . F o u n d a tio n s o f s i l v i c u l t u r e upon an eco lo g ica l b a s is . Second e d i t i o n . John Wiley and Sons, New York. p p . 130 - 131+. 1 9 3 7 . 55* T ry on , E. H. and C. A. Myers. P e r i o d i c p r e c i p i t a t i o n a f f e c t s grow th o f y e llo w p o p l a r on a West V i r g i n i a h i l l s i d e . Castanea., S o u th e rn A p p a la c h ia n B o t. Club. Vol. 17, p p . 97-102. 1952. 56. U n ite d S t a t e s F o r e s t S e r v ic e . Woody-plant seed manual. U. S. D ept, o f A g r i c u l t u r e , W ashington, D* C. M isc e lla n e o u s p u b l i c a t i o n No. 6 5 4 . p p . 222 - 2 2 3 . 1948. 57. V e a tc h , J . 0. The dry p r a i r i e s of M ichigan. A r t s and L e t t e r s , V ol. V I I I . 19 27 . 5 8. V eihmeyer, F . J . and A. H. H en d rick so n . The m o is tu re e q u iv a l e n t as a m easure o f th e f i e l d c a p a c i t y o f s o i l s . S o il S c i. 32: 181-1931931- 59 . Waksman, S. A. P r i n c i p l e s o f s o i l m icrobiology. W ilkins Co., Maryland. 1927* 60. __________ and R. L. Starkey. The s o i l and the microbe. and Sons, New York. pp. 1-25 1. 1931* 61. W ilde, S. A. F o r e st s o i l s and f o r e s t growth. Co. , Waltham, Mass. p p . 6 5 - 1 0 5 . 1946 . Iowa S t a t e C o lleg e P r e s s , U. S. Mich. Acad, o f S c ie n c e , The Williams and John Wiley The Ghronica. B otanica