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The proton resonance line in nematic liquid crystals 
was detected by means of a twin-T radio frequency bridge 
with its conventionally associated components. The obser­
vations were made at a field of the order of 7300 gauss and 
at a frequency of about 31 me.

In the normal liquid states of para-azoxyanisole and 
para-azoxyphenetole the line width is very narrow for both 
the compounds. At the transition point (135° C), between 
the liquid and the liquid crystal phase of para-azoxyanisole, 
the single line splits into three components whose peak to 
peak separation varies from 2,3 to 3*5 gauss throughout 
the entire liquid crystal range. At the second transition 
point (118° C) the compound passes into solid state and 
exhibits a wide line whose half width is of the order of 
8 gauss* In para-azoxyphenetole, as in para-azoxyanisole, 
the single line splits into three at the transition point 
(166,6° C) between the liquid and the liquid crystal phase0 
At very low temperatures, in the liquid crystal range, 
five lines were observed. The peak to peak separation varies 
from 3 to 5*5 gauss throughout the entire liquid crystal 
range, and at the second transition temperature (138° C) 
the compound passes into the solid state and exhibits a 
wide line whose half width is of the order of 7 gauss.

The line structure observed in the liquid crystal range 
was found to be field independent and is considered to be 
due to the nuclear magnetic dipole interaction. The
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theoretical analysis for the line shape in the liquid 
crystal range of these compounds has been considered with 
different possible orientations of the molecules under the 
external magnetic field. Theoretical line shape due to 
random orientation of the molecules with Gaussian external 
broadening is used to interpret the experimental line 
shapes. Further coincidence between experimental and 
theoretical values is brought through the hypothesis of 
partial orientation of the molecules.
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I. INTRODUCTION

A restricted group of organic substances which exhibit 
one or more phases intermediate to the crystalline and normal 
liquid phases are called liquid crystals. While they flow 
like ordinary liquids, they also show, in the presence of 
an electric or magnetic field, the anisotropy commonly 
associated with the crystalline state. As a result of 
their peculiar properties which differentiate them from 
liquids and solids, they have been of interest to many 
i nve s ti gator s•

If a material which exhibits a liquid crystal phase 
is cooled from the normal liquid phase to the liquid 
crystal phase, the onset of the latter phase can be easily 
detected by observing the change from a clear to a cloudy 
or milky appearance of the liquid. The study of the dif­
fusion of polarized light through the nematic (rod like) 
type of liquid crystals by Par Pierre Chatelain has shown 
that scattering is due to large particles and by comparison 
of the scattering in the forward and backward directions 
he found the dimensions of these particles to be of the 
order of 0.2 al • Prom the X-ray study of para-azoxyanisole 
W. Kast concludes that the groups of the molecules do not

1» Par Pierre Chatelain, Acta Crysta I:3l£ (19^8) 
20 W. Kast, Ann. Physik 8^:ip.8 (1927)7
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form straight chains but their length is undoubtedly much 
greater than any other dimension. Furthermore, his X-ray 
results agree with Stewart^ in indicating that in the liquid 
crystal phase there is an aggregation of molecules much 
larger in size than the aggregation of molecules in the 
liquid phase. According to Kast^", in the liquid crystal 
phase these groups of molecules or swarms, as they are 
called by some authors, consist of about 10^ molecules.
The molecules are rod shaped and their centers are arranged 
haphazardly. Monotonic liquids or those whose molecules 
are symmetrical in shape do not form such swarms. These 
swarms are considered to be equal in size but with increasing 
temperature they diminish in size because of the increase 
in thermal motion. Because of the small distance between 
the molecules as compared to the distance between the swarms, 
the interaction between the swarms is much weaker than that 
between the molecules in the same swarm. The direction of 
the swam which is the same as the direction of the mole­
cules in the swam, is different from one swam to another 
and will remain so unless there is some external magnetic 
or electric force which serves to orient them.

The swam theory of liquid crystal phase has not been 
accepted by all investigators. In application the theory 
meets certain difficulties. It has not yet been shown

3o Or. W. Stewart, Phy. Rev. 38:931 (1931).
i+. Kast, op, cit., p. 1+18.
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theoretically that the intermolecular forces in these 
substances are such as to bring about a swarm formation.

It has previously been indicated that electric or 
magnetic fields can cause liquid crystals to exhibit a 
considerable anisotropy in their physical properties. We 
shall now consider certain experiments which demonstrate
their anisotropy and shall try to associate this anisotropy

*

with the structure of the molecule,
Zazewski^ has shown that dielectric constants parallel

and perpendicular to the direction of the magnetic field
€ 6are different. W. Mair has explained the dielectric

anisotropy by assuming that the magnetic field orients the
molecules which in turn orient the electric dipole moments,
since the electric dipole moments are fixed with respect

7to the molecular axes. Recent experiments concerning the 
microwave dielectric constant have also shown that a mag­
netic field can produce an anisotropy in both real and 
imaginary parts of the dielectric constant. In both the 
static and dynamic dielectric constants, it has been found
that the orienting effect of the magnetic field saturates

M t flat fields of the order of 1000 gauss. M. C. Mangun hasA

studied the optical properties of liquid crystals and has

M. zl^pwski, z. Physik ^0:153 (1927).
6. W. Mair, Z. Naturforschung 8_:1|5>8 (August, 1947)*
7* E. Carr and R. Spence, Bull. Am. Phys. Soc. 28(1) ;Q

(19S3& • M. G. Manguii, Compt. rend. I$2:l680 (1911).
A
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found that they are spontaneously bi-refringent and uni­
axial. When subjected to a strong magnetic field their 
molecules are oriented such that their optic axes are 
parallel to the lines of force.

Foex and Royer^ have measured the magnetic suscepti­
bility of several nematic liquid crystals and found that

I
they are diamagnetic. Below the melting point the sub­
stance forms a crystalline powder which is almost isotropic. 
At the melting point there is a sudden decrease of the
diamagnetic susceptibility. As the temperature is raised
there is a small gradual increase of the diamagnetic sus­
ceptibility until the transition temperature between liquid 
and liquid crystal phase is reached. There is a very rapid 
rise in the susceptibility as the substance enters the 
liquid phase. The susceptibility in the liquid phase is 
slightly lower than the susceptibility in the crystalline 
phase. By supercooling, the curve for decreasing temperature 
can be extended to lower temperatures. At the moment of 
crystallization the susceptibility rises sharply to the 
value found in the solid state.

We now consider the origin of the diamagnetic aniso­
tropy of these compounds. It has been observed^ that 
crystals with layer-like lattices exhibit a marked aniso­
tropy in the diamagnetic susceptibility, the susceptibility

9. Foex and Royer, Compt. rend, l80;1912 (1925>).
10. K. S. Krishanan, Proc. Ind. Soc. Cong. Madras 

Session (1929)#
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being abnormally large when measured in a direction normal
11to the layers. It was pointed out by Raman and Krishanan 

that the abnormal susceptibility probably arises from the 
Larmour procession of electrons in orbits including many

•I Onuclei. F. London has given a quantum theoretical treat­
ment of this effect for aromatic molecules while Pauling"^ 
has worked out a semiclassical theory of the1 effect using 
electrical circuit theory. In the case of aromatic mole­
cules, he assumes that the outermost six electrons of the 
six-carbon atom of benzene (one per carbon atom) are free 
to move from one carbon atom to an adjacent carbon atom 
in the ring under the influence of the impressed field and 
give rise to extra magnetic fields in a direction normal 
to the plane of the benzene ring. On Pauling's model of 
magnetic susceptibility the value of the susceptibility will 
be much greater along an axis perpendicular to the plane 
of the benzene ring than along either of the two axes in 
the plane of the ring. Similarly, this model can be 
extended to other molecules having different combinations 
of benzene rings. For the case of the nematic type of 
liquid crystals there are two or more benzene rings. They 
give rise to a separate induced current in the presence of 
a magnetic field. This induced current results in producing

11. Krishanan, op. cit.
12. F. London, J. Phys. radium 8:397 (1937)*
13. L. Pauling, J. Chem. Phys. J:673 (1936).
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Induced magnetic fields perpendicular to the direction of 
the molecular axis. Foex^ has shown that the least value 
of diamagnetic susceptibility is in the direction of the 
longer axis of the molecule, hence on the application of 
a magnetic field the molecules will tend to orient them­
selves With their long axes parallel to the field. Since 
nematic liquid crystals do not contain free radicals, they 
do not have permanent magnetic dipole moments and their 
orientation in the magnetic field is simply due to the 
presence of diamagnetism in these compounds*

All the above experimental results show that the 
molecules are oriented in a magnetic field in the liquid 
crystal phase along the direction of the magnetic field 
and this alignment decreases with increasing temperature 
until finally In the liquid state local thermal effects 
dominate those of the magnetic field.

According to Frankel^ and Landau1^ the change in the 
phase from liquid crystal to liquid is associated with 
transition from an ordered to a disordered state, and there
is no longer any preferred orientation of the molecules in

17the liquid phase. Kreutzer is of the opinion that there 
are some motions of rotation and oscillation associated

liq. Poex, J. de Phys. et le Rad. VI (X):i+21 (1929)*
1>* J. Frankel, Kinetic Theory of"Tiquids. Oxford 

University Press, London, 19^6 • Chpt. 2,
16, L. Landau, Physik. Zeits. Sowjetunion 11(26):5 4̂-5 

(1937)c17* Kreutzer, Ann, Physik 33:192 (1938)*
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with the molecules when the compound is in the liquid
crystal phase and that they change to free rotation in the
liquid phase. His experimental results on specific heat
of the nematic type of liquid crystal show a higher value
in the liquid crystal phase than in the liquid phase. He
considers this change due to the different types of motion
associated with the different phases. He has also measured
the value of the heat of trans^&mation from the normal
liquid phase to the liquid crystal phase in the nematic

18type of liquid crystals. From Alpert's studies of the 
phase transition in solids by means of the nuclear magnetic 
resonance, it appears that one should be able to observe 
the phase transition of the nematic liquid crystal phase 
by means of proton magnetic resonance. This thesis reports 
the results of the study of the phase transitions and of 
the structure of the proton magnetic resonance line in 
nematic liquid crystals.

18, N. L. Alpert, Phys. Rev. 7^:398 (19^9).



II. THEORY

Dipole Dipole Interaction

In this section certain quantum mechanical results 
will be summarized which will ultimately be required for 
the explanation of the experimental work. These deal with 
the quantum mechanical description of the interaction between 
nuclear nagnetic dipoles and its effect on the shape of 
the nuclear magnetic resonance line.

The classical expression for the interaction energy 
between two dipoles situated at a distance r is given by,

two nuclei under consideration.
Let /a = % p S
where S =r nuclear spin in units of E , 

= nuclear £ - factor 
ft = nuclear magneton .

(/ >
j (1)

where r^2 kh® Internuclear vector and
z»12 is magnitude, 

ytb ̂  and/&_2 are k*1® dipole moments corresponding to
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Eq. (1) can be written as

£ »  -  3 )  . (2 )

The quantum mechanical expression for the interaction 
energy of two dipoles of two identical nuclei is given by 
the Hamiltonian

x "  -  / x  ( % ■  - 3 . 13)

where and are the two nuclear spin operators.
The total interaction energy of two dipoles in the 

presence of an external field H0 is given by the Hamiltonian

to) o > t . v)~U X + X >
(d ) Z

where - ^  Szj * (5)

The symbol denotes the z-metrix component of the spin 
angular momentum of the nucleftus of atom j, measured in 
multiplets of the quantum units ix,
Eq, (5) represents the Zeeman energy of the nuclear dipoles
in the external field H0, which is taken in Z-direction.

19Eq, (3) can be re-written as

- fin Si ' Si - 3 SZI SZ2 ) , (6)

19, Van Vleck, Phys, Rev, 7^:1168 (19J+Q) *
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where
n

0-^2 *3 tlie between the external field HQ and
the vector connecting nuclei 1 and 2. For a rigid lattice

solution of this perturbation problem will yield the 
detailed structure of the absorption line. Since in our 
problem we shall be particularly interested in the effect 
of the interaction of two dipoles on their Zeeman levels, 
we shall write down a brief outline for computing the energy 
level diagram for such a case.

With the usual notation (+) and (-) represent the 
normalized spin eigen functions of z-component of the total 
spin S. For the system of a pair of nuclei the four combi­
nations of orthonormal wave functions are

The first three wave functions represent triplet states 
while the last one represents the singlet state correspond­
ing to parallel and antiparallel spins respectively. Since

the matix elements of J"\ are computed using spin eigen
functions only and treating as constants.
treated,as perturbing the Zeeman levels of and theand the

(4 + )

(7)
(- -) /
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the selection rules for magnetic dipole transitions are 
/A \ o and /\ — ± l ythe transition from the

triplet to the singlet state is forbidden.
('/

The matrix element of the Hamiltonian are given by

H u  3 (  3 a  3  e  -  I )  ,
h} vX 22
K l ? - (0)H n  = _  I )

M 44 =  o ,

whs re 3 At = $ ft '
These are the eigen values corresponding to eigen functions
described in Eq. (7). The perturbed as well as unperturbed
energy levels are shown in Figure 1. Resonance absorption 
for the perturbed system occurs when the following conditions 
are satisfied,

m  = + 1  > 7v\ - a
, 2 j. (9)
h\) = 2 m  n o + 3 (3 C<w s —  i ) ,

A?
>n zz o — > on - -1
k  V - %> M  H  o - 3 ^3 6 ' I ) • (1°)

Putting L v  -  % m  H  in Eqs. (9) and (10) where
HX is the resonance value for the external field, then one
gets

H o  - H  ± HHL ̂  o r  ̂ \~ r 2 -JJ (3 t) — I ) t (11)
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This equation locates a pair of fine structure lines for 
each existing direction Q- in the sample.such that separation 
between these two lines is given by =. S^/y3, (3 C&j 0 - \)

■ , (V, Lt-<( I ■„ j, * J
j'Z.cl/A. IIQ

Figure 1

(Ha)
7fC A

kv ^ Ho -3 £±— (■$ Ca^ f? — I )
/£ v

—  E ° = ( 3 £<5 - 1 )

 5 "- M, (3 o - O
Energy level diagram showing the effect 
of the dipole dipole interaction on the 
ordinary Zeeman levels E”* of two proton 
system.

Effect of Rotation on Dipolar Splitting

If the nuclei which are at resonance rotate in the 
crystal lattice, then energy consists of the kinetic 
energy of rotation together with the potential energy 
due to its position and spin in the lattice and the 
Zeeman energy of their nuclear magnetic moment,

K  = 4  H j  = £  { T j  + Vj) ,j (12)
where T, and V are the kinetic and potential energy of

J j
the jth particle.
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Eigen function Y'' of Eq. (12) is given by the product of 
spin and orbital eigen functions, that is,

Y = TT Yj ,
where Xj __ j ( S ) (X' / f Yj / r, ) ̂

spin (s) and orbital ( &j ) co-ordinates are independent. 
Total energy is given by

E  - J  Y H Y  dzef ,

£ - i- faj Tj Yj du + € faj C f% Yî ̂ Zs) £ ^
j  J

r -  (13)
- ^  ^  Ij'q.*. + ^  J t t j l Vj )  i i j  cLZe.<f-J { J

where 1?/ 2̂ ~ J X j  V/' Xj X 7Tc. .

If we suppose that quantum mechanical average K'Vjy can 
be replaced by the classical average then

F ~ 4 <77> + £ 'Oj >
j Iv  J (13»)

Now we consider two interacting nuclei moving about an 
axis perpendicular to the line joining them, as shown in 
Figure 2.



X

Figure 2, Model for a nuclear pair in motion about 
an axis perpendicular to the internuclear 
axis.

By the method of transformation of coordinates

(11+)

80 that 3 CoJo - I = 3 C ^ t  - /
, jL u,where is the azm&thal or rotational angle of the inter­

nuclear vector OP about the rotation axis OA which makes 
/an angle Q  with the external field. For classical rotation 

where <p> ^ oot the average value of C&j <f' ober the 
rotation is l/2 so that

3 G ju e -  i >  =  /3 CW <f> Siv. e -  I ' X 0,(r
Y*  . 2 / (15)

, 3 2
- Vg ( I -  3 c<tJ ° )
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Eq. (11) shows that the absorption line at fixed frequency 
composed of two components at magnetic fields given by

H o = -+■ 3/g {+_ ( 3 u l  0 - I ) .
n  ~ *  - (it)

Under the effect of rotation the two components will have 
values

Ho =  y  ±  ^  A  < V c ~  8 - 0  ,jjp "  ■? f'c V- -  > (17)

and the doublet separation is half as great as for the 
stationary pair. In the case of a powder sample, the ran­
dom orientation of microcrystals provides all values of

^ 20 either 0 or for all states of motion. Pake has
shown that for the case of a powder sample the doublet
separation is 3 ̂ jy while on increasing the temperature,

rotation of the molecules takes into play and thereby 
separation becomes half 
pair, that is '
separation becomes half as wide as for the stationary

z

Calculation of the Mean Square Absorption Frequency.
2-The definition of mean square of ~)) is given by

< v >  =  ^  (18.
frnictv ^Pi (l8)

where P (V) is the probability density.

20. (r. E. Pake, J. Chem. Phys. 16:327 (19i|8).
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In Eq. (Ij.) j \  represents Hamiltonian matrix for the 
system of nuclear dipoles and S spin quantum number. If 

* L  be the matrix element of S* - £. 5*. which
j J

connects the states n and n1, the corresponding frequency is

v '"Vi
—  k

if I ( S O * ,  ̂ | is the transition probability density

between the states n and n*, then according to Eq. (18)
the mean square absorption frequency is given by

Z ^
< / >  _ y ™ '  [( z ) ™ ' /  (20j

** = r f , u s , ) ^ i z '

Both the numerator and the denominator of Eq.(20) can be 
expressed as diagonal sums „

21Van Vleck has shown that

£  £/ | (S*)r,* I = TV ( S<).Vi v, '

£  £ vtj I(S<) t̂ k / ~ - T r  [ K S ^ - S y K  ]vi r\J

so that

0 >  - - Tr [ K & - S ,  K J  . ( a ,
L ‘ T , (S, r

21. Van Vleck, op. cit,, p. 1168.
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He makes use of the well known theorem of the transformation 
theory that the trace is independent of the representation. 
Writing Eq. (i|) in the form

f;> S i . S K +  <22>

where 2-
fljK - (  3 / a  <Sj'k -  V z  )  ,

iK

B j k  =  -ill  ( 3/, V.) .
tfjh

The common commutation and trace relations are

S*j —  SvfK Syj - L Sj* ,

I Y S> =; (/3 S ( S - H )  S -f I ) > (23)

Tr S ]J -  ° ,

where S is the nuclear spin quantum number of an individual 
atom#

Also ~Jy S%j — IySkj - Tr S x l< •= O (J ^  ̂  / ztc <
Proceeding in this fashion one finds that

7y ( S*) - 3" N S £ S + I ) f -2 S + J ) ^

X-S*-S«X ~  . Bjk ( S y j  S g l( + S j k S|j)̂
\J /J
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7? ̂ KSv^SyK -f_ n / i^HS (S+D + ■§- s(s.+ \) £ Bj*
(as+ij* 4 '<7J

where
i  £  Bj\ _  j^
'<>J 2 K*j AV̂  *

/. Eq. (21) yields

£< v ? , - tvQLIx - S_x X I  w
k* lr (S7f

-  _ <tPH +  A_ scs+i )  £
A- +  3 " ~ H k ^  f,j J '

The second moment of the absorption line is defined2.
as the average value of(V — V°) over the symmetrical line 
shape, that is 

2
< ( v - v « . )  i  =  < ( ^ \ v =  < v 2>  -  v :

where 'Vo ^  H(J ft

(25)

<(4 V ) >„, = < V> - ?_/* H = v, £ Bi k
^  /v1- *  In2- k,j-

< ( ? < « * - 0 >
2 </ k *  t 7J ----   V (26)l<

where N is the number of the nuclei at resonance which are 
present in the elementary dipole interaction cell.
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The root second mean ( A  Hs. ) is related to (  ( A V  ) 
by the relation

i I S/?-
^  ')fi 't A v  • (27)

So the value of the second moment for a particular orienta­
tion of the dipole with respect to ’H is given by

A H *  =  3 /, s_ c s . j j  f , A  £  £  3 ^ -  , > „  . ( 2 8 )
l<7J ---- Yju.

In the case of crystalline powder, the constituent
microcrystals are presumed to be randomly distributed among
all directions in space, so averaging over

H , Z

« 3 C . . V , ) £  =  V r -
J A- 6 c( $

One obtains for the case of powder sample the relation

z 2 2 /  I (30)AH; £ .• 1
l</j k

Effect of Rotation on the Second Moment

In Eq. (28) the pointed brackets denotes the average 
value of the orbital factor over the rotation.

We consider the classical rotation involving the 
azmUthal angle cj> as shown in Figure 3*
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Here o P  is the internuclear vector.
Figure 3. Model for a nuclear pair in motion about 

any axis.

For this case the addition theorem for spherical harmonies 
is given by

/ f̂  (C&j 0jK ) y> Ft C Cg~j 6 ) Pi (C&zcL I \<̂)' ê> s
Toy L =  2

and the second moment for a system rotating about an axis
/

making an angle 6 with !T0 is given by,

e - 1 ) [ 3/fc S i s + O | V . (32)

^jk



21

For the case of a crystal powder, the second moment is 
22given by

rotational axis is perpendiqular to the internuclear vector 
then the second moment for a powder, in which such rotation 
occurs, is one-fourth as great as if the lattice were rigid. 
In general there is no simple relation between the half 
width of a line and the root mean square width. However, 
if one assumes the relation the line shape is Guassian 
one finds

(A HA

For a special case where that is, if the

(314-)

where A  Hz - root mean second moment
= half line width of an absorption curve „

22. Gutowsky and Pake, J. Chem. Phys. 18:162 (19!?0).



III. THE EXPERIMENTAL METHOD

The general experimental arrangement is shown in the 
block diagram, Figure 4. A General Radio 620-A Wave meter 
served as a signal generator in all the experiments. A 
frequency range from 300 Kc to 300 Me was available, and 
the frequency could be determined accurately within one 
kilocycle. Most of the experimental work was done at a 
frequency in the neighborhood of 31 Me. At this frequency 
the magnetic field strength for proton resonance was about 
7300 gauss.

The output of the signal generator was fed into the 
twin-T bridge. An r.f. coil wnich contained the sample 
formed part of the tuned circuit of the bridge and was 
placed between the poles of a large electromagnet. At 
resonance the signal from the unbalanced bridge was ampli­
fied by either one broad band pre-amplifier or two of these 
amplifiers in series. After pre-amplification, the signal 
was detected by a Hallicrafter SX-62 receiver whose power 
supply was regulated electronically.

An alternating field modulated the static magnetic 
field, HQ. The modulating magnetic field was provided by 
a thirty or sixty cycle alternating voltage applied to two 
Helmoholtz coils mounted one on each pole piece. With the
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static field, H0, near resonance, the modulating field 
caused H0 to pass through the resonance value either 60 
or 120 times per second. Application of the resonance 
signal from the receiver to the vertical plates of an 
oscilloscope and syncronization of the sweep with the 
modulating voltage permitted the resonance line to be 
displayed on the oscilloscope. The signal appearing on 
the oscilloscope may represent either absorption or dis­
persion depending upon whether the successive signals on 
the oscilloscope trace are symmetrical or anti-symmetrical• 
When a 30 cycle sine-sweep voltage was applied to the hori­
zontal plates of the oscilloscope, two resonance curves 
appeared on the oscilloscope screen. Proper adjustment of 
the phase of the horizontal sweep voltage brought these two 
curves into coincidence, A Polaroid Land camera photographed 
the resonance curves directly from the oscilloscope.

For the case of broad and weak signals a lock-in 
amplifier was used with a 30 cycle modulating field of 
low amplitude. In order to provide a very slow sweep to 
run over the whole resonance line, a separate coil was 
mounted on one pole piece. The auxiliary coil supplied a 
small additional field parallel to the magnetic field, H0,
The direct current voltage of a few volts across the coil 
was varied slowly. In order to produce a voltage variation, 
a constant speed motor which changed the position of a 
rheostat contact was used.



The output of the lock-in amplifier is proportional 
to the slope of the resonance curve, and this output is 
connected to either a micro-ammeter or to a Millivac 
Sanborn chart recorder. Prom the recorder one obtains a 
trace of the derivative of the resonance curve. In this 
case the absorption component of the resonance is more 
generally used, and the width measured is the distance 
between the inflection points.

The samples used were heated by placing the sample 
coil inside a fiber tube through which hot air from an 
electric heater circulated. The voltage across the electric 
heater was controlled by a variac, and the rate of heating 
of the sample was quite uniform. The temperature of the 
sample was measured with a copper-constantan thermocouple 
placed directly in the sample. The maximum error in the 
measured temperature was about 1° C,

We shall now describe the experimental apparatus in 
more detail.

The Radio Frequency Bridge

The twin-T bridge described by Anderson J was used for 
all of the experimental work. A circuit diagram of the 
bridge is shown in Figure I4., The sample coil whose inside 
diameter is three-eighths inch and length five-eighths inch

23. H. L, Anderson, Phys. Rev, 76:li|62 (19^9).



consists of seven turns of No. llj. copper wire. The axis 
of the coil was perpendicular to the external magnetic 
field. One cubic centimeter of the compound which was 
being studied was placed in a glass- test tube and the test 
tube was placed inside the coil. The coil is connected to
the bridge by means of a coaxial line about ten inches long0
The outer conductor of the line is a piece of brass tubing 
whose diameter is one-half inch. The brass tubing is
grounded to the chassis of the bridge and the coil is
connected to the tuning capacitor C, through the Inner 
conductor of the coaxial line. The three series condensers 
Ci, C2> and C'i, are ceramic trimmers with a capacitance 
variable from five to ten /^/tf, The tuning condensers C 
and C* have a range from about 10 to The trimmer
on C consists of two brass discs. One disc is attached to 
a micrometer screw; and hence, a precise adjustment of the 
capacitance can be made. The trimmer on C' is a two-plate 
variable condenser, and a worm gear drive permits a slow 
variation of the capacitance.

One can balance the bridge by observing the oscillo­
scope pattern. Unless the bridge is balanced the trace 
remains smooth, but at balance the characteristic random 
noise appears on the screen. Adjustment of the field, HQ, 
to its proper value produces resonance.
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The Phase-sensitive Amplifier and Thirty Cycle Generator

The circuit diagram of the tuned, phase-sensitive 
audio amplifier is shown in Figure In this lock-in 
amplifier the twin-T filter stage, which is tuned for 
thirty cycles, passes a narrow band of harmonics; and hence, 
the noise is reduced, since the static field, HQ, is modu­
lated by a 30-cycle alternating voltage applied to the 
modulating coils. A 30-cycle voltage from the generator 
is applied to the suppressor grids of the tubes and V^, 
and the 30-cycle signal which is proportional to the deriva­
tive of the resonance line is applied to the control grid 
of the same tube. Consequently, the final result is both 
frequency and phase discrimination. The last stage is a 
balanced, direct-current amplifier. The generator which 
supplies the 30-cycle voltage is shown in Figure 6. The 
generator consists of a multivibrator and filters. A power 
amplifier provides the current for the modulation coils, 
and a phase-shifter circuit and amplification stage supplies 
the voltage for the suppressor grids of the phase-sensitive 
amplifier. The generator also provides the horizontal 
sweep-voltage of the oscilloscope.

The Electromagnet

The pole pieces of our magnet are six inches in diameter, 
and a central portion whose diameter is approximately three
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inoh.es, is flat within one-half a wave length of sodium 
light. The gap between the pole pieces was varied from 
one inch to two and one-half inches, but the maximum 
homogeneity of the field was obtained for a two-inch gap. 
Storage batteries with a capacity of 600 ampere-hours supplied 
the current for the magnet.

The normal operating field, 7300 gauss^ required a 
current of If? amperes; and the current was determined from 
the voltage drop across a small shunt resistor. The magnet 
was air cooled. The wire for the field coil was insulated 
with a coating of heavy Formex.

In order to obtain a more homogeneous magnetic field 
the pole pieces were simmed. The shims were made from 
"Delta-max”, a ferro magnetic material. The "Delta-max” 
was soldered to brass pieces about two millimeters thick.
These shims were moved about the faces of both pole pieces 
until the maximum homogeneity of the field was obtained.

In order to find the most homogeneous region of the 
magnetic field, the sample coil was moved about In the gap 
between the pole pieces. That region of the field in which 
the narrowest resonance line together with the maximum 
number of "wiggles” accompanied by an exponential decay 
appeared on the oscilloscope was considered the most 
homogeneous,

The "wiggles” phenomenon is a transient effect which



always appears after the sweep has passed through resonance. 
At resonance all the protons are in phase. The time lapse 
between successive wiggles varies as a function of the 
amplitude or the frequency of the sweep. The amplitude of 
these wiggles decays as the protons get out of phase with 
each other. The rate of decay of wiggles is given by^" 

fit C AY\ + °
£

where A H  — line width in gauss
&"H = inhomogeneity of the field over the volume of 

the sample
f& — a constant for a given modulating field 
t = time

One can measure either of two things from the decay.
If £ H, the inhomogeneity of the field, is small then one 
can neglect it; and the rate of decay measures the width 
of the line. On the other hand, if & H is small as compared 
with £ H (e.g., distilled water where a H  = 3 x 10"^ gauss), 
the decay measures the inhomogeneity of the field over the 
volume of the sample. In our case the inhomogeneity, £ H, 
is about .05 gauss over a sample whose volume is one cubic 
centimeter.

25For a linear sweep, it has been shown theoretically 
that in order to obtain a resonance line free of wiggles

2^, Jacobson, Wangsness, Phys. Rev. 73:91+2 (19^8). 
25. Ibid., p. 9̂ -2.
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1 N /?the relation 72 ( Y ~ ~ 2 y ^  \ ‘J ^  I must be valid.
t yt j

In this relation T2 is the relaxation time;
Y  is the gyromagnetic ratio; and 
jis the modulating field strength.

For the particular case of a Gaussian line shape

=  T a H ‘ ‘ (35)

N°w Hmod = |-Lsu»At ,
where A  is the angular frequency.
At the observation points

- A  „ (36)

Here we are approximating the exact result

A H  ^ H * . C J U - t -  (d d i _ + -) ,3,4 6 *

hJ A H  - .

This approximation introduces an error of a few percent. 
Hence, for no wiggles

H-v. , A X ( A H )^  II Jl 2
0*706 (Z\H ) for 60 cycles modulation

\'̂\ ( A  H ) for 30 cycles modulation.
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Calibration of the Modulating Field

In order to calibrate the modulating fields, we suppose 
that Hc is the d.c0 value of the field and that the modulating
a.c, field (Hm ) is superimposed on Hc«

Suppose resonance occurs at the times (1) and (2) in
Figure 7. Then from the Larmour frequency relation

^  I r: y ( H D + H w ) J

> (37)

A  U) C. 2 Y H w

^  l - U  =
2 y

where ^  = angular frequency
Y = 4.2^7 x 103 -

i

2I

Figure 7. Total magnetic field plotted against time

When the signals are symmetrically placed they appear at 
the points A, B, C, etc. On increasing the frequency the 
signals at A and B move towards each other and ^/corres­
ponds to the frequency when they both disappear at position
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no, 1. Similarly on decreasing frequency, signals at B
and C move towards each other and ^-.^corresponds to the
frequency when they both disappear at the position no. 2«
Then A  CO is the difference in the value of angular frequency
in the two extreme cases, The magnitude of the modulating
field strength, depends upon the voltage applied to the
modulating coils. A plot of field strength vs. voltage is
a straight line except for voltages near zero.

Many factors contribute to the broadening of the
resonance line. The modulating field can cause broadening

26unless the relation

is valid. (Once again, this relation assumes a linear sweep). 
The symbols are explained in the previous section. For a 
Gaussian line shape

where we have made the same approximation as in the previous

(38)

Therefore, at the observation points

section. Hence, for a negligible broadening effect

0‘H3 ( A H ) f o r  60 cycle modulation 
Z

»•&££ (AH) for 30 cycle modulation .
26. Ibid, p. 9^2.
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Measurement of the Line Width

In order to measure the line width, let H0 be the 
value of d.c. field. The modulating field is superimposed 
on H0 as shown in Figure 8,

Figure 8 , Total magnetic field plotted against time

The magnetic field at any point on this curve is given 
by the relation

If we change the frequency of the generator in such a way 
that we observe the signal near the zero of the sine curve, 
then

and A t  is the duration time for the line width. The quantity

(39)

On differentiation one gets
oLH C+jA-k oit .

or for small variation
/\ H — dl. A t

where J L is the angular frequency of the modulating field;
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/\t. is obtained by recording with the resonance signal a 
time signal for a known frequency generated by a Hewlett 
Packard Audio Oscillator. Consequently, we were able to 
measure the width in gauss of the resonance line.



IV. RESULTS

Para-azoxyani sole CH^Q-dZ^- N-N- < >-QCH>,
0

In the normal liquid phase of p-azoxyanisole, the
proton resonance line is quite narrow and its apparent
width is determined by the field inhomogeneity and the
modulation effect. As the temperature is reduced below
the clear point, i.e. the transition point between the
liquid and the liquid crystal phase, p-azoxyanisole shows

oa first order transition at 135 C. The amplitude of the 
signal decreases greatly and the line splits into three 
components whose separation is somewhat greater than one 
gauss between the components. The line shape for p-azoxy­
ani sole in liquid crystal phase is shown in Figure 9 and 
its derivative recorded with a Sangorin recorder is shown 
in Figure 10. The central line remains about 1.5 times 
as strong as the satellites throughout the liquid crystal 
phase with the intensity ratio of 2:3:2 among the three 
lines which is in good agreement with the areas under the 
maxima and also with the heights of these maxima. The 
behavior of the satellite separation with temperature in 
the range between the clear point (135° 0 .) and the solidi- 
fication temperature (117 C«) is shown in Figure 11* The
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Fig. 9. Proton resonance line-shape of para-azoxyanisole 
in the liquid crystal phase.

-h , —

Fig. 10. Derivative of the resonance line for para- 
-azoxyanisole in the liquid crystal phase.
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error in determining the satellite separation at a given 
temperature arises primarily from our inability to read 
the peak positions accurately from our records and amounts 
to about + ,35 gauss. If the frequency of the modulating 
field is decreased to about 15 cycles/sec. the central line 
of the liquid crystal phase of p-azoxyanisole exhibits 
three closely spaced oeaks at the top. With a little care 
the liquid crystal phase may be supercooled but the staellite 
separation in such a case remains at essentially the value 
at the solidification temperature. On passing into the 
solid state 117° C., the signal again decreases and the 
line spreads out to a half width of the order of 8 gauss 
with a probable error estimated at + • .5 gauss. In the solid 
state of p-azoxyanisole, the proton resonance line has a 
narrow central spike,

Para-azoxyphenetole C gHqO-< >-N-N-< >- PC
0

In the case of p-azoxyphenetole the line width in the 
normal liquid is very narrow as found in p-azoxyanisole, As 
the compound undergoes the transition at 166.6° C. from the 
liquid to the liquid crystal phase, the amplitude of the 
signal decreases considerably and the line splits into 3 
components with the intensity ratio approximately 2:5:2 
just near the transition temperature. But the central 
component shrinks down to the level of the satellite as the



temperature is reduced. At the lower temperature two ad­
ditional small staellites appear near the central component, 
making a total of five components. This observation has 
been further checked by comparison with the differentiated 
line shape obtained from the lock-in amplifier and recorded 
with a Sanborn recorder and is shown in Figure 12,
Successive stages in this process are shown 1at temperatures 
166°, 165°, 15>9°, 144° and l[j.O° C. in Figure 13 (a, b, c, d 
and e, respectively). The behavior of the separation of 
the outer satellite with temperature in the range between 
the clear point 166.6° C. and the solidification temperature 
13^° C. for the case of p-azoxyphenetole is shown in Figure II4.* 
In this case the accuracy to which one can measure the 
position of the satellite is much poorer than in the case 
of p-azoxyanisole since the satellites grow progressively 
more poorly defined as the temperature is reduced. The 
line width in the solid state is about 7 gauss.

Dipropyloxy-azoxybenzene C 0~ <! 1>-N= N- <( -0 C ^
0

In the normal liquid phase of dipropyloxy-azoxybenzene 
the proton resonance line is quite narrow as in the case of 
p-azoxyanisole and p-azoxyphenetole. As the temperature is 
reduced below the clear point, it shows three lines. As 
this compound was considered to be impure, further investi­
gation was not made*
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Fig. 12. Derivative of the resonance line of para-azoxyphenetole 
in the liquid crystal phase.
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m

id) <P )

Fig. 13.Proton resonance line shape of para-azoxyphenetole 
in the liquid crystal phase at different temproture,
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V. DISCUSSION

The very interesting line shapes which appear in the 
liquid crystal phase of para-azoxyanisole and para-azoxy- 
phenetole were found to be field independent in the small 
range of the fields available to us. This fact has beenA

further verified by Dr. Gutowsky^ and his colleagues at 
the University of Illinois. It therefore appears that the 
observed structure of the absorption lines is due to the 
magnetic dipolar interactions of the protons in these 
materials*

In order to calculate the lines from single molecules 
of para-azoxyanisole and para-azoxyphenetole, we consider 
the models of these compounds as shown in Figure 15>*

H

1

H

i

_____________ Figure lj? _________________ _______
27. Spence, Gutowsky and Holm, J. Chem. Physics 21;l891

(1953)0
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In these models the following assumptions have been made;
a) Para-azoxyanisole

1. The protons in the CH^ group lie in a plane perpen­
dicular to 0-C bond*

2. There is rotation about 0-C and C-0 bonds*
3* There is also rotation about the molecular axis, 

although this assumption is not essential.
b) p ara-az oxyphene tole

1# The protons in the CH^ group lie in a plane perpen­
dicular to C-C bond,

2* The protons in the CEL, group lie in a plane perpen­
dicular to 0-C bond,

3* There is rotation about C-C, 0-C and C-0 bonds,
20The molecular constants used in the above models are:

1, r^ = 2olj.5 A
2. r2 ^ 1,79 A°
3* bond angles - 110°, ^  = j3̂  = 7 0 °
[}., fio is the angle that the molecular axis makes

with the direction of the magnetic field.
In order to find lines arising from dipole-dipole interaction
for the case of a single molecule, we use the Eq. (11) in a

29more general form:

J=lL ^  J~lo ± (3 "  1 ) , (^J-a)

where constant \i has the following values:
28, Gordy, Microwave spectroscopy, John "Wiley & Sons,

(1953), p. 371. 0 ,29» Andrew and Bersohn, J. Chem. Physics 19:159 (1950),
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1, Constants for para-azoxyanisol©

X, cL\ = i-44 gauss (41b)

o(j2_
A 2 ' ~T

3/'..
t k \

3 A
lol

y6̂ is proton magnetic moment and is equal to 2,79 nuclear 
magnetons or is equal to 14*09 x 10" ^  gauss per cm^, 
w i is the weight of each line which depends upon the number 
of protons representing that line and has the following values:

Wi = iL x -L = 0.286 7 T
Wo = -JtL tt  ̂ = 0.1072 7 T
= i. T i- - 0.214

* 7 2
such that 2 + 2 «2 + = 1

2* Similarly, the constants for para-azoxyphentole are;

X, - a i , = 1*44 gauss
. 2.

\ 5 _ oLl (3 C&J /? — I ) r~  ̂ ‘ ' ' = 0.60 gauss
/ 2 z

• ^ 3  (3 ^ , - 1) ^ ^ - !  ) = Q>39 gauss {k2)

/ 4 ~ O =-0 gauss



The weight of each line is given by:
w, * Jfc. X 1  = .222x 9 2

wP = 2 x 1 = .111
9 2

W, = Jl__ X _1__ — ,083
9 1*.

wk = JL' x -L - *l67^ 9 2

In order to find the line shape for the entire sample, 
one has to make some assumption about the orientation of the 
molecular axes with respect to the magnetic field* We shall 
consider the following possible assumptions as to the orien­
tation of the molecular axes and shall discuss them in the 
order in which they are listed.

I. Complete orientation
II. Random orientation 

III. Partial orientation
For the complete orientation of the molecular axes with 

the magnetic field will be zero, so that Eq. (IpO) becomes

and the separation between the pair of lines is given by

For the case of para-azoxyanisole, the components of the

Line Shape for the Entire Sample

4 ( W )



lines are separated as follows;
1, The hydrogens on the benzene ring give rise to a

doublet whose components are separated by

^  =■ 5>«76 gauss* The intensity
of each line is given by w-̂  = 0.286,

2, The hydrogens on the CH^ group give rise to a triplet. 
The central line is surrounded by an equally spaced 
doublet separated by

M l  - 4 )s±. = gauss
The central line has an intensity =• 0,21^, while the two
surrounding lines have their intensities each equal to
W£ - 0,107. The complete picture is shown in Figure 16.

Figure 16
The components of the lines in the case of para-azoxy- 

phentole are as follows;
1. The hydrogens on the benzene ring give rise to a

• doublet whose components are separated by
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oJr̂  i - 4  A| = 5*76 gauss. Each of these lines 
has an intensity equal to w^ = 0.222.

2. The hydrogen(s) on the CH2 group give rise to a
doublet separated by

•d j-i z =: 4 y 2l =• 2,Jj. gauss. Intensity
of each line is equal to Wg - 0,111.

The hydrogens on the CH^ group give rise to a triplet. The
central line is surrounded by an equally spaced doublet
separated by C n

o JH 3 - 4  ^ 3  = 1.56 ga^ss.
The central line has an intensity = 0.167, while each
line of the doublet has an intensity ~ O.O83. The whole
picture is shown in Figure 17.

.2-S& ‘7* 5'c- 1-2 -i

O

Figure 17

If the assumption of complete orientation were correct 
then the outer lines should be equally wide for both para- 
azoxyanisole and para-azoxyphenetole, and their spacing should 
be independent of temperature. However, our experimental
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results show that neither of these two things is true. The 
outer lines of para-azoxyphenetole show a greater separation 
than para-azoxyanisole. Furthermore, the separation of the 
outer lines in para-azoxyanisole, as shown in Figure 16, is 
much wider than observed in our experiment. Moreover, there 
are only three lines observed throughout the liquid crystal 
range and not five as shown above. Similarly, in the case 
of para-azoxyphenetole there have been observed either three 
lines at high temperature or five lines at low temperature 
in the liquid crystal range and not seven as shown in 
Figure 17. On the whole the predictions based on the hy­
pothesis of complete orientation of the molecules by the 
magnetic field are very different from the experimental 
results we have obtained. Consequently, we are forced to 
consider that our experiment shows that even in the large 
magnetic fields employed. in our experiment, the orientation 
is not complete.

We next consider the case of random orientation of the 
molecular axes with the magnetic field. The orientation of 
the axes of a crystalline powder or an aggregate of swarms
may be described by an isotropic distribution in angle.

(4/a)
Such a distribution defines through Eq. , a distribution

(41*)of resonance lines in the magnetic field. Since in Eq*
(3 cos2y£?0-l) takes on all of its values in the range p Q  = 0 
to pQ * IT , we write the angular distribution function over 
only this range of J3q variation. The number of transitions
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per unit time governed by the positive sign, N+ , is the same 
as that of those governed by the negative sign, N_. Let N 
be the total number of transitions per unit time, and dN 
be the number of transitions arising from protons in 
crystallites whose axes lie in the solid angle cL j I. Then

IN = N
But c+N+ - cl N- -

cl N+ *  -  M- dL CCs-s P ' )  (i44)

Prom Eq* (1+0);

Cstofazijz. C ^  Ti ) when
J3 ikS)

and f—11 — - k
= ±y|- ^ — A-_ j - 2 At $ iv 5- At

/*-

Also, differentiating Eq. (1+0) one gets

- ± £ Ai. oL (C&ifio)

Prom Eq. (1+1+)
I

/M+ - £L ( ol (C** fie )
Z J \.

_ £j_ | ck ki (l+6a)
£ //o->t

where R(k\) cL Mi is the probability that a transition 
for the positive sign in Eq. (1+0-) occurs in a range cL K  i •



b:>

(41 fr) / //? [7Using Eq. (i+O) * cl (CtopQJ may be expressed in terms of
and hi , so that from Eq. (i|6a) we get

2.Xi

N+ = M  ( -  r dk
% J i )\ i / / -h Jsl \

n - ® - x  r  — v - * c i k

L 6 m  ( , ~ T h
The resultant total distribution function is given by

POO = i  h(k)
t

where . for the ith group
jj ■ ' V t

 - s ^ U - x

where w^ is the intensity of
ith line.

W  , W

-V
, n , ^ j 3 . u - ( i + 4 - , ) /"--- ---------- -
? ^ Xl

ih-7)

‘'r*(id - U n  )

where w^ is intensity of the
central line

The line shape P(h) calculated on the basis of the hypothesis



of random orientation of the axes of the swarms or crystallites 
in para-azoxyanisole is shown in Figure 18. In calculating 
the line shape of para-azoxyanisole the molecular constants 
given in section 1, Eq. (ip.) have been employed. The 
theoretical line shape for the case of para-azoxyphenetole 
is shown in Figure 19. This result is based on the molecular 
constants given in section 2, Eq. (1*2). Since the oscillo­
scope recording technique employed in this experiment yields 
the line shapes'1, without integration, the theoretical line 
shapes for para-azoxyanisole and para-azoxyphenetole given 
in Figures 18 and 19 may be directly compared with the 
corresponding experimental shapes given in Figures 9 and 10#
If we do so, we notice in each case that the theoretical and 
experimental line shapes differ in width, but their structure 
exhibits some similarity apart from the extra discontinuities 
which are present in the calculated line shape. Such dis­
continuities in the theoretical line shape are smoothed out 
if we introduce the external broadening effect contributed 
by the neighboring molecules as well as from the different 
groups of the same molecule. We shall assume that the 
external broadening is,of Gaussian type, although the use of 
only a Gaussian function is not rigorously justified, but 
is a simple approximation which indicates the broadening

^Actually a more sensitive comparison of line shapes 
could probably have been obtained by using a lock-in-ampli­
fier which yields the derivative of the line shape and 
comparing such results with the derivative of the theoretical 
line shapes#
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Figure 18. para-azoxyanisole
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1̂  ^

Figure 19. para-azoxyphenetole



effect of neighboring groups.
If P1(h) is the resultant distribution function under

the effect of Gaussian broadening, then 
/ /

P(l') = z k(V /= ( }
/

whore j,.(k} s f^.(k-k,)  ^ (h)  M
 CO «3_ Chid.

“ d £ £ k' U )  = ~7i e

x

(48)

where is the dispersion of the local fields at the ith
group,

/po>) r £
•-w 1 ' - (L-k'±
L* P  e &

= ' -*Ai ^
R’ ( k i )  d l u (49a)

2.

J
f(k) =

_  ill—  
Jhh J  1

<r„_, ^  i"

1~n~ 1/ J f  U)i£
L - I 6 AL JJn~ 6i.

<T 2 /i i

Zhi

-h

' n z± i2
: * <*ie

_ y  y  / + idJ At

oik
(49b)

This may be written as
3 _ ,
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where

and

Z 2/, Z <£i 
cL l =

ii 
■t i

i-

i-

L l
At
1

Now we set

then
/ C0(v

S;
Si

/ + U
A i.

A
At

2
* - x j

e ^  c/y
v/v

p w  = e _  
<rw.

JF isN-i r 
£ <5̂-/ </ t

* <r 7 T  UL-\
( d ^ . ) U O

(50)

Now the problem consists of the calculation of the integrals,
3 (x-vj

G h J . ) , j t f ±  f  - i - "  *•,
J T

Let = <y and

S  ' J S F  i f
Let F = 7 - c

£  ((•*$): j l ) - fzn j u T

X  - ?7_/ ‘ p
%  _ ( y - p /

£ _______   ^  i?
J T

e - d Z  . ■
J £' — v

(Si)

(52)

Now if fy77 0, the main contribution to the integrand comes



from around Z = 0, we may expand the radical about Z - 0
to calculate the integral.

-  2*Now since ^ is equal to 0,007 when ? = 75" , we
may replace the limits with + ox? and . c^5 if ^  7*

*y 7 ■!$

or « J ?  ^  ^
then ^

(</ )̂ Jol') = jffi J ( + \  (*%)-(je )(
 o-o Q

, l z ±
* 3*4 I 5“/ ■ * ) ..................  ) i  ^

thus

£ ( )  - J^- Ti (M) +  j
since X = oL ̂  and ?  = %

£ ( * , < ( )  =  £ ■ / =  ( , +    )

if JS aC -$ X ^  3 -  (J?*C)

We next consider the case = -3^^ + £*
where |£ | ^

If 3/> ^  -75” w® may take the lower limit = -
- €  ? 2

(S3)



* V 6
where P(£ ) =  j L .  j ' e  ^  J  %

7 ̂  ® 00 Z
a  J i . - i  f  e- ?

, _ 6 2 

M  ) ^ U  J f T  7=y- j I- ^ ^ . - f t t - T T/  & J3+U  <f / ZJV (  &  *  £ )

X  - ^  o— X  £ - X - 3
«5<r 2.

.,,„ p f - y ) . - P ( v )

(£E>)

If ^  o non© of the previous methods work. If ^  ,
we may take the upper limit as + oo an<i write

30# B. 0* Peirce, A short table of integrals, Ginn and 
Company, (1910), p» 116.



61

/.

4

'■ F (r,)fzv j z ;  ' 1 (56)

00 - C <?- »/ /
where f [£,) - / _ e ______  ^

J  r>j- <
<5

j- £
We set ^

X  r r  ' (Srt
■ - ft ’£ ,  , ? f t ' * i (5# ^ (' 4 r ;
^  , ........I (S>)

/S,S£4
*

-  (<?-?; f—   cl ?i
Jyj~ i may be computed numerically. Results for
F(G) are:

G F{ Or)
- 1.5 0.100
- 1.0 0.ii-09
- o.5 1.051
+ 0 1.807
+ o.5 2.12
+ 1.0 1.9if9
+ 1.5 1.595

2 1.299
+ 3 1.038
+ b 0.8925
+ 5 0.7895
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With the help of Eqs. (53), (55) and (56), the function
) was calculated for different values of ^  , i#o,, 

d  = 0.10, 0.15, 0.20, 0.30 and O.ljO, The results are shown 
in Figure 20. Thus, from Eq. (50) line shape P»(h) has been 
calculated for different values of the external broadening 
factor <5T for t'he case of para-azoxyanisole and para-azoxy­
phenetole and are shown in Figures 21 to 26, In these plots 
c/i has been considered to be the same for all groups of 
the molecule# This procedure may be justified roughly as 
follows: In the expression

^/. __ .,/E—

L decreases as the number of axes about which the ith group 
is rotating is increased. On the other hand, represents
the dispersion of the local field experienced by the protons 
in the ith group and should also decrease as the number of 
axes of rotation is increased. Therefore «/t should remain 
approximately constant for all groups#

For the case of para-azoxyanisole, the following values 
of <&> have been used for different groups of the molecules

7 2 - ■

from the relation  ̂ -~
AtPara-azoxyani sole

(1) For c/l = 0 . 1
6, = 0.102 gauss 

= 0.085 gauss
(2) For c/i — 0 #2
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Figure 21
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Figure 23

Para-azoxyanisole
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61 = 0«20l| gau3s
62 = 0.170 gauss

(3) For d-i = 0,3
& 1 — 0,306 gauss 
62 = 0.2^5 gauss 

If w© look carefully on the line shape plots of para- 
azoxyanisole, shown in Figures 21, 22 and 23 for 0/  Walues 
of 0,1, 0.2 and 0.3 respectively, one notices that the 
separation of the outer.peaks is hardly affected by the 
external broadening in the above range. In Figure 21 the 
central line is too high and there are dips in the outer 
peaks. Both of these objections are reduced as the broad­
ening is increased as shown in Figures 22 and 23* £ compari­
son of the line shapes of Figures 22 and 23 of para-azoxy- 
anisole with that of its experimental line shape in Figure 9 
shows that it and the theoretical curve for 0/  = 0.2 and 0.3 
are almost identical except for the facts that the central 
line of the theoretical curves is too high and the outer 
"humps” do not appear in the experimental lines. As the 
signal to noise ratio was not too good, it is possible that 
we might have failed to observe the outer "humps” in the line. 
Recently it has been noticed from one of Dr. Gutowskyts 
differential plots on para-azoxyanisole that when it is 
integrated it gives some indication of outer "humps" in the 
line.

For the case of para-azoxyphenetole the values of



71

used are 0.2, 0.3 and 0,1|. and are shown in Figures 21+, 25 
and 26 respectively with the following values of for
the different groups of the molecule?

Para-azoxyphenetole
(1) c/ i  = 0.2

^  =■ 0.20^ gauss 
6X = 0.08^8 gauss
61 = 0.0550.gauss

(2) c/ l = 0 . 3
6 \ — 0.306 gauss (58b)
6tz. - 0,1272 gauss 
63 = 0.0825 gauss

(3) ' J~l = O.i).
= 0,if08 gauss

62 = 0.1696 gauss 
61 — 0.1100 gauss

For — 0.2, the central line is quite high and the outer 
peaks are also quite sharp. But as we increase the value of
^  , the central line decreases in its height. Also, the
sharpness of the outer peaks decreases with the increase in
the value of oC until at &L - 0,lj. the outer peaks have
practically been removed by the broadening effect and are 
no longer resolved.

It may be noted that' the inner peaks are due in large
measure to the central component of the primitive line shape
as shown in Figure 19* The distance between the outer peaks
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as well as In the inner peaks is hardly affected by the 
external broadening in this range.

A comparison of the line shape of Figure 2\\ for o L - 0.2 
with the experimental line shape for para-azoxyphenetole at 
temperature 11^° C in Figure 13© shows that it and the 
theoretical curve are almost identical in shape except that 
the central line is too high and the outer peaks are not as 
wide as shown experimentally. The explanation of the fact 
that the outer ’’humps” of the theoretical line were not 
observed experimentally is possibly the same as given in 
para-azoxyanisole. Similarly, line shapes in Figures 2$ 
and 26 compare quite favorably with those of Figures 13b 
and 13a at temperatures 1^9° C and 166° C, respectively.
At low temperature the outer peaks are farther apart experi­
mentally than shown theoretically. The possible explanation 
for this is that there is an addition of another group, i.e., 
CHg group in the molecule of para-azoxyphenetole which was 
not present in the case of para-azoxyanisole and so the 
probability of interaction between the different groups of 
the molecule has increased, especially at low temperature 
and consequently broadens the lines. But in general the 
agreement between the theoretical and experimental curves 
shows that the theory based on a random orientation of 
swarms gives results which are at least in qualitative 
agreement with the experiment. The agreement is certainly 
much better than that obtained by use of the hypothesis of
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complete orientation. In order to complete this discussion 
of random orientation of the molecular axes with the magnetic 
field, we calculate the various moments of the theoretical 
line shape and compare the results for the second moment 
with that of its experimental value*

The nth moment of the unbroadened distribution function 
P(h) is civen bv

) (£9)

where is given by Eq. (47)o
Therefore /\ L 1/ <2 ̂-a s

t

3
(60)

L
I - >

3

where 'H (60a)

■ **



7k

k" * l<
=  J3 £  J L (~° ^ ! (3 )' '

K-o 2(b-k)+t (p-k)! l<!

—  L~ ̂  s '*1 }<
l?  = £  ^  /  2 ( 3 )

( <so  2 ( ^ - k ) - » - )  H )

, > r
tzi (62)

k  |< on-k

l = 4  2 1 -* - 01 ~  (3 .—
~ 2 (’•vi - k )+) C * - * ) !  )<i

where
/ < »

1 = 1.6

Calculated values of the moments 
—  L/ ^  fyL
L c: £  (a)i A c is given below.

1st
For the case of para-azoxyanisole

k = 1.1965 gauss^
^  = 3.989 gauss^-

- 19.U1 gauss®
If = 115*1 gauss®

(61)

^4  = 2 . 71*286 (61).)

U  = 6.7772 (65)

= 20.008226

(66)



For the case of para-azoxyphenetole

= 0.82016 gauss^
= 2.63 gauss^-
=■ 13«35 gauss^

k* = 86.038ij. gauss^V
The expression for the moments given in Eq. (62) is quite
general for the cases in which Eq. (4*£-) is valid. One
could obtain higher moments from the simple expression 
very easily. Van*Vleck has calculated moments only up to 
fourth order# If that technique Is continued further for 
higher moments, it becomes too difficult to get a simplified 
expression for higher moments# In obtaining the above 
moments, we have made use of the distribution function P(h) 
given in Eq. (47) • One could also find the second moment 
without knowing the distribution function P(h) by making use 
of Eq. (30). This device ^  has been used for the calculation 
of the second moment for the case of para-azoxyanisole, and 
could also be used for the case of para-azoxyphenetole.

In order to calculate the experimental value of second 
moments of these compounds, the area of the curve obtained 
from h P(h), where P(h) represents any of the experimental 
line shape, was normalized by its original area, and thus 
gives the required second moment of that particular curve#
The areas of all these enlarged curves were measured with the

31 • Spence, Gutowsky and Holm, op/ cit., p. 1891*
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help of a planimeter. For the case of para-azoxyanisole,

we compare the above values of para-azoxyanisole with those 
derived, in Eq* (66) for the second moment, we notice that 
the calculated value lies in the range of our observation*
But if we compare the line shapes from which these moments 
have been calculated, we have to consider the broadening 
effect which has not been taken into consideration in the 
calculation of Eq. (66). For the case of para-azoxyphenetole 
the calculated value of second moments in Eq. (67) is much 
less than the experimental values. So the next step would 
be to calculate the effect of a Gaussian broadening function 
on the moments* The distribution function under the effect 
of Gaussian broadening is given by:

The moments of the Gaussian broadening distribution are

the experimental values of second moments are 0,95 gauss2, 
1*15 gauss2 and 1.25 gauss2 at 134° C, 127° C, and 118° C, 
respectively. In the case of para-azoxyphenetole, the 
experimental values of second moments varies from 1.75 gauss2 
at temperature 166° C to 5 gauss2 at temperature II4.G0 C0 If

where

(69)

where e  * 6 * (70)
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C - .  /  / L"b'(L)c/k
tzl -2 Ki!:N ^ 2/\/ 4 co (71)

H** [  J r  ^  h ~ ^  ̂ ĵ L ^ 1 j  &tk
L ~  t

. ~ 2 /* i - 00 2.
i=/v *<*> ^(l-a,)
£ f/A f [fijfg- e A (k,) oLL,]dly
/: I • -GO 2-2/< /
i  *  IV 2 \ i  —  k\ -f-Oo  _Z— 7.

-/ f ( f * k,) l  /—--:‘ k - ( k , ) c i k ,  l e ( f
i-> y  . -oo v ^ "  dV -J

-lyt-ki k.-ki ~ ^ j etk-cCf (72)
For simplicity we first take the case for n = 2

- si
if f (f̂ 1) ka.Uk,̂
**• -lli-k, fzlF 6t I 2 (73)
i-» 2>*-^i i-rx

= / /  /

A  ̂  __ 2
= / ( k*+ ̂ L6i )
/=» 12-where K is the unbroadened 

/̂v second moment
k

~ ^  L J l -h d>i
(71*)

Similarly, the higher moments may be calculated by making 
use of Eq, (62) for the unbroadened part, together with the

tGaussian broadening part, for which the general expression
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for the nth moment is given by^2 
—  >)  ̂̂

£ <T 6 = [ r 3 - i ~   r*--;7
if n is even

TO
6

( 7 5 )

= 0 if n is odd

k. =  ^  U)L & Lz 6l +  3 )

—  7 (1 
tv, - ^ U)i At + /r̂ 4 At 67 +4S~jli At 6i -+ 3

L
f

I $ *-7 /  0 0 \  D 4  ' ^
W. ~ ^ £ / t  -/- 2 £ b> £ }\(. £L -f 2  10 0 4  A 7  &L -h 4Zo (j2_ A  £

* B \+  f O f  C l )
etc.- - - - - -

Now we shall calculate the second moment under the broad­
ening effect by amking use of expression in Eqs. (58a), (58b) 
and (75)•

For the case of para-azoxyanisole the calculated second 
moments are

= 1.2115 gauss2 for = 0.2
Ta- ? / (77)\rv = 1 *23o35 gauss for c?C = 0,3 

These values are quite close to the values observed near 
125° C and 121° C and also the calculated line shapes 
coincide fairly well with the experimental line shapes

32* Margenau and Murphy, D. Van Nostrand Company, (19^3) > 
p. i|-22.
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except that the central line is too high.
For the case of para-azoxyphenetole, the calculated 

second moment under the broadening effect is given by

Although the above values of the calculated second moments
do not lie in the range of observed values, the line shapes 
in general agree fairly well with the experimental line 
shapes excepting that as in para-azoxyanisole, the central 
line is too high.

Thus we see that excepting the calculated high value 
of the central line in para-azoxyanisole and para-azoxy­
phenetole and the low value of second moment in para-azoxy­
phenetole, the theory based on a random orientation of swarm 
gives quite satisfactory results. No doubt the second moment 
and the other higher moments are very sensitive to the exact 
line shape in the outer protons of the line, and as the outer 
portions of our observed line shapes are not known exactly 
on account of lew 3ignal to noise ratio, we can expect a 
small variation in the experimental and the calculated value 
of the second moment of the line shape of para-azoxyanisole 
and para-azoxyphenetole. The above explanation may be 
satisfactory in the case of para-azoxyanisole, but certainly 
is not satisfactory in the case of para-azoxyphenetole, as 
in the latter case the difference in the calculated and the 
experimental value of the second moment is too ^arge to be

0,930^1 gauss for 
0,86126 gauss^ for (78)



explained on the basis of inaccuracies in the outer portion 
of the line.

In order to explain the experimental results of the high 
value of the second moment in the case of para-azoxyphenetole 
and of small values of the central lines in para-azoxyanisole 
and para-azoxyphenetole, we must consider the case of partial 
orientation of the molecular axes with the magnetic field.

In order to discuss the case of partial orientation, 
we modify the Eq. (I4I1-) as follows:

clN = J± fchjB. cLft. (79)
An approximate form of the function ^  ) for liquid
crystals has been suggested by 0nsager^3, He gives

i0) = Ik C sk>L C K C**/3-) (80)

Eq. (79) becomes
cl N -  J ± ( ̂  ( K C«x> ) ) d p o (81)

^ Sl/vxiv. K
where the parameter K presumably depends upon temperature*

K = 0 corresponds to random orientation 
K — c?o corresponds to complete orientation.

The distribution for the ith group is then given by Eq. (82) 
instead of Eq. (Ip7).

'/> 'k (h K) , wi (K ) (<" X;
I  ̂S'L K

— 2 A l $ U - A a

33. Onsager, Ann. N. Y. Acad. Sci., $1 (L|.):627
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S k ~ k  K  /N S k 4 v k

‘ ^ ' k ^= t K U) i

Skvk K  

^{bj K) - 'b ( b )

K&>£(&0+jj_) /,+ jYY1 -Aik J (82)
Ac Y  k Z A*

We can now calculate the broadened distribution function by 
inserting the above expressions for ( A ) in Eq. (49a) •
Similarly, the broadened moment for the case of partial 
orientation can be calculated from Eqs. (74) an8 (76), 
excepting that Jsvk in Eq. (60a) is replaced with the quantity,

J£r
^  v J 3. cL I

f  (3/ - ' ) C ^ L  k f  d f
We note in particular that

i v k 0) = ^

S-'t/Vvx'k K

'W
and 4.1 ^

u v - £ z ,  I < 3 / - ' > < ^ ' r J r

= « r i t
i<*

(83)

(84)
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The height of uhe line fit the center (h = 0) for partial 
orientation is given by

P(0,KU  ̂  -y- +  /  _ _
Siv^v’j ™  6»-i I'I

L'N .1

7 “  +f K CwljoCi) 85
/21T (in — i J3 /u 2 ^

where function is given in Figure 20 and is
approximately equal to for all small M  . The
corresponding expression of P»(0) for random orientation is 
given by
f* (o,a) C

I UJl
r ^ J3” XLJrn U )  ^
OOn J  , ^

L si
In the above discussion the factor

has the form shown in Figure 27•

(86)

ho

FCK)
f -6

*4

K
„r £ fo

Figure 27
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Thus since F(K) <_ 1 for K y 0 partial orientation will reduce 
the height of the center of the line in each case.

In order to calculate the values of K as a function of 
temperature we first note the expression given by Zwetkoff-^" 
for Si^~ fio 77"

5 T / V  = k  fj ( A )  otp.

Here CM )  13 given by Eq. (80)

•• - 2 [\ C&4: l< - -j^i J
and  __

&  A * ' + * [ - & '

(87)

(8 8)

-+- +  -  ± -  k +  A _  y f - ......
d  4 f  W s ~  4726'

(89)

Figure 28 shows the relation between C&o ĵQ and K.
Zwetkoff has given experimental values of long range order 
parameter S, as a function of temperature ° 0 for para-azoxy­
anisole where____________ ______________

S = i K *

His results are given in the first three columns of the
following table (Table I), —  ---■

Figure 29 shows the relation between C<$o and
temperature 0 C for para-azoxyanisole. Now from the plots

34* Zwetkoff, Acta Physichimica (USSR) 18:132 (19^2),
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TABLE I

Temperature 
( °  C)

s p0 K

1 1 7 .0 .08 .787 8 .25 1*..3272

1 2 1 .0 .65 .767 7 .5 if . 1272

1 2 2 .0 .6  if .760 7 .2 If , 0256

1 2 8 .0 .58 .720 6 .0 3.6696

1 2 8 .5 .57 .713 5.85 3 .6200

1 3 0 .0 .51f .693 5.35 3 .ifl|2i+

1 3 2 .0 .5o .667 14- a 3.2J+24

135 .0 .600 3 .6 2 .7 68 0

of Figures 28 and 29 we construct another plot relating K 
and temperature ° C, which is shown in Figure 30 and for 
which data is tabulated in the first and the fourth columns 
of Table I. From the data given in Table I we may now 
compute the second moment at different temperatures by 
assuming different values of oCL . Furthermore it is also 
possible to evaluate the quantity P\o,oX/^ . which is a

/ p L o P '

measure of the relative reduction of the amplitude of the 
central line produced by partial orientation. The results
are given in Table II,

The comparison between the calculated and experimental 
second moments is very unsatisfactory, since the calculated 
values of are the order of twice the experimental values.
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TABLE II 
CALCULATED VALUES OP h2

Temperature 
(° 0)

h ?

( = 0.1) (
h2

= 0.2) (

! 
H o

'
y

• 1 ^ (exptl.)
f(0/O)
ffck.)

117 3*23 3.21* 3.26 1.25 .752
125 3.08 3.09 3.11 1.15 .796
134 2.18 2,20 2.22 0.95 .920

The reduction of the amplitude of the central line is 
encouraging, but in itself is not sufficient to justify the 
assumption of partial orientation. We are therefore faced 
with three alternatives. Either (1) Onsager's distribution 
function is much too crude to be used in this computation,
(2) the orientation is essentially random, (3) the entire 
molecular model on which these computations are based are 
incorrect. If we disregard the third alternative tempor­
arily we may cite one piece of evidence which appears to 
indicate that orientation does indeed exist in the liquid 
crystal phase of para-azoxyanisole and therefore the
difficulty lies in the use of Onsager's distribution

( W
function. Prom Eq, (h®) we 36 h

f W M c A ) -  ■ P ( k ) t  <»>
Let J&t>m he the value of at which the function D
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is a maximum. The corresponding value of h is

-4a_ = t (3
A C

the satellite separation is then

M  = c*X„, - /)

Zwetkoff*s long range order parameter S is given by

Z S  - 5 6 s / „  - /  * -2
j
0 1

(92a)

(92b)

(93)

vJ tVWe now make the assumption that D belongs to that class of 
distribution functions for which the mean and the mode of 
the function are approximately equal. Then from Eq, (93)

2  S -- 3  -J ^  3  C o  - / (9W

For p-azoxyanisole the satellite lines should then occur at 

h 2Z + 2 ̂  J =t(2.88)S gauss (95a)

h + 2 A* 5 =t(2,^0)S gauss (95b)
If we assume that these lines coalesce to give a single
pair of satellites at the average position

h ~  + (2.6i|)S gauss (96)
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the satellites* separation is

A A  (5.28)S (97)

Table III compares the values of A h  calculated by this 
formula with the experimental values.

TABLE III
COMPARISON OF CALCULATED AND EXPERIMENTAL VALUES 

OF ^  h FOR PARA-AZOXYANISOLE

Temperature
( 6 c)

&  h
(exptl,)

A h
(calc•)

1 1 7 .0 3 .50 3.59

121 .0 3 .^0 3.1/-3

1 2 2 ,0 3 .35 3.38

1 2 8 ,0 2 .95 3 .0 6

1 2 8 .£ 2 .9 0 3.01

1 3 0 .0 2 .7 5 2 .85

1 3 2 ,0 2 .5 0 2.6/4.
135 .0 2 .2 0 2.11

The agreement indicated here is well within the experimental 
error. Thus we have shown that there exists a class of 
distribution functions which give satellite separation in 
complete agreement with the experimental results for para- 
azoxyanisole.

Unfortunately there appears to be no data on the value
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of S available for para-azoxyphenetole and therefore we 
cannot use Eq# (97) to calculate A h# However, if we 
assume that a similar equation can also be applied to 
para-azoxyphenetole it might be used to predict the long 
order parameter S which has not thus far been reported 
in the literature, v

TABLE IV
LONG RANGE ORDER PARAMETER S FOR

PARA-AZOXYPHENETOLE COMPUTED FROM A h  ^ £ .££  s

Temperature A h s
( °  c) (exptl•)

138 £•££ 1 .0 0

Ikk £ .£0 0 .9 9

11+7 £.^0 0 .9 7

l £ 0 £•33 0 .9 6

l£ll. £ .1 0.92

l£ £ £ .0 0.90

l£ 8 U-.7 0 .85

160 0.79

163 3 .9 0 .70

1 6 6 ,6 3 .0 0.£i^

We still cannot completely exclude the possibility that the 
molecular model we have employed is incorrect. In particular 
the intermolecular forces in liquid crystals are not well
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understood and there does not as yet appear any positive 
evidence that one can exclude the possibility that the 
observed line shapes are produced by some complicated 
mixture of intramolecular and intermolecular effects. 
However, it seems that the points of agreement between the 
simple theory we have outlined here and the experimental 
results are too numerous to be a coincidence*



VI, SUMMARY

Nematic liquid crystals show an intermediate phase 
between the crystalline and normal liquid phase. They 
flow like ordinary liquids and show in the presence of* 
an electric or magnetic field the anisotropy commonly 
associated with the crystalline state. X-ray studies 
show that in the liquid crystal phase there is an aggre­
gation of molecules much larger in size than the aggre­
gation of molecules in the liquid phase. It has been found 
that there is a discontinuity in the values of viscosity, 
static electric and magnetic susceptibility at the tran­
sition points of the liquid crystal states.

Phase transitions in nematic liquid crystals, such as 
para-azoxyanizole and para-azoxyphenetole from their liquid 
to their liquid crystal phase and from liquid crystal to 
their solid phase, have been observed by means of proton 
magnetic resonance. The magnetic resonance absorption was 
observed by means of a twin-T radio frequency bridge with 
conventionally associated components. The observations 
were made at a field of the order of 7300 gauss modulated at 
a frequency of 30 cps.

In the normal liquid state of both para-azoxyanisole 
and para-a zoxypheneto1e the line width is very narrow. At 
the transition point (13£° C) between the liquid and the
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liquid crystal phase of para-azoxyanisole the single line 
splits into three components and at the second transition 
point (118° C) the compound passes into the solid state 
and exhibits a wide line. In the case of para-azoxyphenetole 
the single line splits into three components at the tran­
sition point (1 6 6 ,6 °  C ), between the liquid and the liquid 
crystal phase. At a very low temperature, in the liquid 
crystal range, five lines were observed. At the second 
transition point (138° C) the compound passes into the 
solid state and exhibits a wide line similar to that 
found in para-azoxyanisole.

The line shape that appears in the liquid crystal 
range of above compounds is found to be field independent 
and considered to be due to nuclear magnetic dipole 
interaction. The quantum mechanical results of the inter­
action between nuclear magnetic dipoles has been summarized 
in order to use them for explaining the experimental results. 
The theoretical analysis of the line shape found in the 
liquid crystal phase of these compounds has been attempted. 
This analysis is based on certain molecular models and 
certain assumptions about the orientation of the molecules 
under the influence of the external magnetic field. 
Theoretical line shape due to random orientation of the 
molecules with Gaussian external broadening has been used 
to interpret the experimental line shapes. Further coin­
cidence between experimental and theoretical values is
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brought through the hypothesis of partial orientation of 
the molecules.

In order to obtain a further check on the proposed 
explanation of the structure arising in the liquid crystal 
range, it would be profitable to replace the hydrogen on 
the end groups of para-azoxyanisole by deutrons and to 
observe the signal in the liquid crystal range. According 
to the above proposed interaction, only the lines arising 
from the hydrogens on the benzene ring should appear with 
no further resonance line appearing from the deutrated 
group of the molecule.
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Preparation of the Azoxy Compounds

Azoxy compounds can be prepared by various ways^ :
I. Reduction of nitrophenol ether with glucose’and sodium 

hydroxi de
II. P©r acetic acid oxidation of respective azo compounds

Reactions involved in the first method are:

(a) j,0 N - < O £ r f   NtxOh N a n Q H n ;
Or ' ---
N c v

( b)  z0N-<Z>-ONo. ^ > R o - < Z > - N 0^ + N * X

O  r \  / —  N . a  j ( i *  ^  N c . o H  +  C S €  /■> /— — v  .  1 s ---------v  P )(o) KO <Z> /vqj--   >Ro-<O N - N - < d > - o R
Q//

where Rx is the alkyl halide group,

I. (A). Etherification of p-nitrophenol,
2J4. gm of Na metal was dissolved in 5>00 cc of absolute 

alcohol. One mole of p-nitrophenol was put in a three­
necked flask and 50 cc of absolute alcohol was added. The 
Na metal solution was added while stirring. 1,5 moles of 
Alkyl halides were added dropwise from a dropping funnel, 
with thorough stirring. Then the mixture was allowed to 
reflux for 8 to 10 hours. The mixture was allowed to cool

1. Chemical Reviews 9:110 (1931)*
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and filtered. Excess alcohol was distilled off and the 
residue was extracted with ether and washed with 5 to 7 
percent alkaline solution. Then the ether î as distilled 
off and crystallized from alcohol,

(B), Reduction of p-nitrophenol alkyl ether^’^
One mole p-nitrophenyl alkyl ether was^taken in a 

three-necked flask and 25 percent solution of 1.5 moles of 
NaOH was added while stirring. The temperature was raised 
to 80° C. and 1.5 moles of glucose was added slowly while 
maintaining temperature at 80° 0. in 30 to lp5 minutes. The 
mixture was filtered and washed with water. Then the 
precipitates were steam distilled to remove impurities; 
for example, an unreacted nitrophenyl alkyl ether or any 
side products. Then the product was purified further by 
recrystallization from alcohol and benzene. This method 
gives almost quantitative yield if temperature is maintained 
at 80° C and glucose is added with thorough stirring. 
Insufficient stirring or incorrect temperature reduces the 
yield considerably, 25$ NaOH solution seems to be optimum,

II. The following reactions are involved in this methods 

Po <Z> N Ha -^.£— >Ro Q  NHa- Hct.
m  H O O  =1 ' +(?o<p>NHi-//c£

C J t>
' S C  ( 7  Q C

2, Can. J. Research 2?B;890b (191+9)*
3. H. W. Galbraith, E. P-. Degering and E. F, Hitch,

J. Am. Chem. Soc. 73:1323 (1951)*
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(C) R a Q N  =  n O o  H —  ■ S- ~ — > R o - 0 - n  =  n < O o ' <

(d) R o -< Z > N  = N q  0 = N O o /  .
0

In the above method reaction steps (a), (b), and (c) 
give theoretical yields, but the reaction product in (d) 
is very susceptible to light in presence of excess HAc and 
H^C^* In sunlight it undergoes further oxidation very 
easily. The reaction product is very difficult to separate 
but this method was tried to obtain unsymmetrical azoxy 
compounds in which CH^, or group combination is
possible. Chromic anhydride oxidation of azo compound 
RO<( ^>N=N <C y OR’ in sealed tube is worthy of investigation.

4, Chemical Abstract l\.2i 2588


