I . S p e c tro g ra p h ic D ete rm in a tio n of Calcium, Magnesium, p o ta ssiu m , Manganese, Iro n and Phosphorus in Small Samples I I . S p e c tro g ra p h ic D ete rm in a tio n o f Zinc, Cadmium, Copper and Ir o n in C on cen trated N ic k e l S u l f a t e S o lu tio n s By MABEL FLOREY WILSON A THESIS P re s e n te d t o t h e Graduate School of Michigan S t a t e C ollege of A g r ic u ltu r e and .Applied S cience in P a r t i a l F u l f i ll m e n t of Requirements f o r th e Degree of Doctor of P hilo sop hy C hem istry Department E ast L ansing, Michigan 1 9 3 7 ProQuest Number: 10008469 Ail rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10008469 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 I S p e c tro g ra p h ic D ete rm in a tio n of Calcium, Magnesium, P otassium , Manganese, Iro n and Phosphorus i n Small Samples I n tr o d u c ti o n The s p e c tro g ra p h i s p a r t i c u l a r l y a d a p te d to two t y p e s of a n a l y s i s : f i r s t , th e d e te r m in a tio n of t r a c e s o f m e t a l l i c s u b s ta n c e s or i m p u r i t i e s , such a s manganese i n s t e e l ; second, th e a n a l y s i s of samples when only v e ry sm all amounts a r e a v a i l a b l e , such a s b i o l o g i c a l ash. This a r t i c l e w i l l be c o n fin e d t o th e second ty p e , t h a t i s , t o th e d e te r m in a tio n of calcium , magnesium, manganese, p o tassiu m , phosphorus and i r o n in samples where th e amount i s to o sm all t o be an a ly z e d by o r d i n a r y wet methods. The method employed i s s i m i l a r to t h a t f i r s t u sed by N itc h ie and Standen ( N itc h ie and Standen, In d . and Eng. Chem. Anal. E d., ]L, 1 -7 (1 9 3 9 )), of ex p o sin g th e s p e c t r a of th e samples between th o se of a s e r i e s of s ta n d a r d s o l u t i o n s c o n ta in in g v a ry in g known amounts of th e su b sta n c e b e in g determ in ed . M clc-We io i v« a From th e d e n s i t i es of th e l i n e s working curves were fo rm u la te d a c c o rd in g t o 2 . t h e method of Twym&n and H itchen (Twyman and H itchen, P ro o . of Royal Soc. of London, S e r ie s A, 1 3 3 , 7 2 .) From th e s e s ta n d a r d cu rv es, unknowns were d i r e c t l y d e te rm in e d . E xperim ental A pparatus. A Bausch and Lomb medium q u a r tz s p e c tr o g r a p h g iv in g a d i s p e r s i o n of about n in e inch es f o r wave l e n g t h s of 2000 to 8000 A° was employed in th e e x p e rim e n ta l p ro c e d u re . The e l e c t r o d e s were h e ld toy a n a d j u s t a b l e Bausch and Lomb e l e c tr o d e s ta n d . A r e v o l v i n g s e c t o r c u t down the p e rc e n ta g e of l i g h t from t h e a r c re a c h in g th e s l i t . E x c i t a t i o n of th e samples was o b ta in e d by a r c i n g g ra p h ite e l e c t r o d e s w ith d i r e c t c u r r e n t f u r n is h e d by a 15 am pere-300 v o lt motora c k ( ? Y ) i Y '- c j S g e n e r a to r . Line de n s i t -i es were determ ined by means o f a Bausch and Lomb d e n s i t y com parator. p r e p a r a t i o n of E le c tr o d e s . Acheson g r a p h ite ro d s 5/16 in c h e s in d ia m e te r were c u t in co n v en ien t l e n g t h s f o r a rc in g , (toe end of each was d r i l l e d ap p ro x im ately se v e n m i ll i m e t e r s deep; o n e - te n th m i l l i l i t e r of th e s o l u t i o n was p la c e d i n each c r a t e r ; th e e l e c t r o d e s were d r i e d a t 110°, and were used a s low er e l e c t r o d e s or an o d e s. The c a th o d e s c o n s i s t e d of s i m i l a r le n g t h s b ro k e n from th e same ro d . s p e c ia l g r a p h it e ro d s very f r e e of m e t a l l i c i m p u r i t i e s were u sed i n t h e calcium de t e r mi n a t i on e . S e le c tio n of Base. The f i r s t problem t o be con­ s i d e r e d i n th e p r e p a r a t i o n of s ta n d a rd s was th e m a te r i a l f o r use a s a b a s e . This su b stan ce se rv e s two p u rp o se s: f i r s t , a s a Hf i l l e r H, g iv in g a g r e a te r amount of sub­ s ta n c e in th e e le c tr o d e ; second, a s a means of h o ld in g back th e carbon u n t i l v o l a t i l i z a t i o n of th e sample i s c o m p le te . Much more even ex p o su res and l i g h t e r back­ groun ds were o b ta in e d by employing a b ase. Since i t i s w e ll known t h a t c h l o r i d e s give much s h a r p e r l i n e s th a n o th e r n e g a tiv e r a d i c a l s , a l l d e t e r ­ m in a tio n s were c a r r i e d out in h y d ro c h lo ric a c id s o l u t i o n . Samples of a type a n a ly z ed by t h i s method were found t o be r e a d i l y s o lu b le in h y d ro c h lo ric a c id . T h e re fo re , only c h l o r i d e s were c o n s id e re d f o r a base m a t e r i a l . Zinc c h l o r i d e was found t o v ap o riz e too r e a d i l y ; le a d c h l o r i d e was to o in s o lu b le ; sodium c h lo r id e in l a r g e amounts caused th e a r c t o f l a r e g iv in g very uneven ex p o su re s; very s a t i s f a c t o r y a r c i n g c o n d itio n s and even e x p o s u re s r e s u l t e d from th e u se of ammonium c h lo r id e b u t th e s p e c t r a l l i n e s of th e su b sta n c e s d e s i r e d f o r u s e in a n a l y s i s were n o t sharp and c l e a r . A number of m ix tu re s of sodium and ammonium c h l o r i d e were t r i e d and one c o n s i s t i n g of 10$ sodium c h l o r i d e and 9C)$ ammonium c h l o r i d e was found t o give s a t i s f a c t o r y r e s u l t s f o r a r c i n g and f o r s h a rp n e s s of lin e s. Both s u b s ta n c e s a r e e a s i l y o b ta in a b le in very p u re c o n d itio n and d is s o lv e r e a d i l y . The base s o l u t i o n f i n a l l y s e l e c t e d c o n s i s t s of f i v e grams of sodium c h l o r i d e and f o r t y - f i v e grams of ammonium c h l o r i d e i n 4 .5 $ h y d ro c h lo ric a c i d s o l u t i o n . Calcium S ta n d a rd s. No two elem ents u nd er i d e n t i c a l a r c i n g c o n d itio n s gave th e same v a r i a t i o n in l i n e dens4»t^t e s f o r an equal change in c o n c e n tr a tio n . Thus i t was n e c e s s a r y t o t r y v a rio u s c o n c e n tr a tio n s u n t i l a s e r i e s o f d i l u t i o n s was o b ta in e d which gave a g r a d a tio n of b l a c ^ Yt \ l i n e d e n s itie s s u ita b le fo r a n a ly sis. Enough pure caloium n i t r a t e was d is s o lv e d in th e b ase s o l u t i o n t o y i e l d 2 grams of calcium p e r l i t e r . From t h i s , u s i n g th e base s o l u t i o n f o r d i l u t i n g , a s e r i e s o f s ta n d a r d s was p re p a re d c o n ta in in g 1 .0 , 0 .5 , 0 .3 , 0 .2 , 0 .1 , 0 .075 , 0 .0 5 , 0.03, 0 .0 2 , 0 .0 1 , 0.005 and 0.0025 grams of calcium p e r l i t e r . Magnesium S ta n d a rd s. Magnesium s o l u t i o n s were p r e p a r e d i n e x a c t l y th e same manner u s in g magnesium c h l o r i d e , g iv in g a f i n a l s e r i e s c o n ta in in g 5 .0 , 2 .5 , 1 . 0 , 0 .5 , 0 .3 , 0 .2 5 , 0 .2 , 0 .1 , 0.05 , 0.025 , 0.01 and 0 .0 0 5 grams of magnesium p er l i t e r . Manganese S ta n d a rd s. Manganese c h l o r i d e was d i s s o l v e d i n th e base s o l u t i o n to y i e l d 2 grams of manganese p e r l i t e r . Lower c o n c e n tr a tio n s of 1 .0 , 0 . 5 , 0 .2 5 , 0 .1 , 0 .0 5 , 0 .02 5, 0.01 and 0.005 grams p e r l i t e r were p re p a re d by combining th e manganese s o l u t io n w ith p ro p e r amounts of base. Potassium S ta n d a rd s. The behavior of p otassiu m i s d i f f e r e n t th a n t h a t of magnesium, manganese and c a lc iu m . Large amounts of p o tassiu m show a marked bl t-yi a • g r a d a t io n of l i n e den s i t i e s . Thus h ig h e r p e rc e n ta g e s may be s u c c e s s f u l l y an aly zed d i r e c t l y from th e sample w ith o u t employing a “ f i l l e r " or d i l u t i o n o f sam ples. Four groups of p o tassiu m s ta n d a r d s were p re p a re d in t h i s in v e s tig a tio n . The f i r s t group combined potassium and phosphorus i n a calciu m and magnesium b a s e . A and B were p re p a re d . Two s e p a r a te s o l u t i o n s , S o lu tio n A c o n ta in e d enough p o ta s s iu m c h l o r i d e and p o tassiu m a c id p hosphate in 4 .5 $ h y d ro c h lo ric a c id s o l u t i o n t o y i e l d 4 grams of phosphorus and 96 grams of p o tassiu m p e r l i t e r , so lu tio n 6 . B c o n ta in e d 50 grams each of calcium and magnesium in 4 .5 $ a c i d . By com bining th e two s o l u t i o n s in th e p ro p e r p r o p o r t i o n s a s e r i e s c o n ta in in g 48 , 40, 38, 24, 16, 12, 8, 4 .8 , 2 .4 , 1 .2 , 0 .2 4 and 0.12 grams of p o tassiu m p e r l i t e r were made up. The phosphorus c o n te n t was in a r a t i o of 2 t o 48 t o th e p o tassiu m c o n te n t. The second group was a d u p l i c a t e of th e f i r s t group e x c e p t f o r th e a d d i t i o n of i r o n in a c o n c e n tr a tio n equal t o t h a t of phosphorus. Since iro n was added in th e form o f f e r r o u s ammonium s u l f a t e which has a tendency t o p r e c i p i t a t e calciu m , s p e c ia l a t t e n t i o n was given t o th e o r d e r of a d d i t i o n . The f e r r o u s ammonium s u l f a t e , po­ ta s s iu m a c id phosphate and p o tassiu m c h l o r id e were a l l d i s s o l v e d s e p a r a t e l y , th e f i r s t two combined and slo w ly added t o th e t h i r d . This combined m ix tu re , 9$ a c id , was d i l u t e d w ith a calcium-magnesium base c o n ta in in g no a c i d . For the t h i r d group enough potassium c h l o r id e t o y i e l d 30 grams of p o tassiu m p e r l i t e r was d is s o lv e d in t h e sodium-ammonium c h lo r id e b ase. D ilu tio n s w ith th e base were made g iv in g a s e r i e s c o n ta in in g 30, 25, 20, 1 7 .5 , 15, 1 2 .5 , 10 and 5 grams of p o tassiu m per l i t e r . A f o u r t h group was p re p a re d f o r th o s e samples i n w hich th e p o ta ssiu m c o n te n t was low and a g r e a t e r amount o f th e su b stan ce was n e c e s s a r y , p o tassiu m c h lo r id e was d i s s o l v e d i n 9$ a c i d t o give 25 grams of p o tassiu m p e r lite r. D ilu tio n s were made t o y i e l d 20, 15, 1 2 .5 , 10, 7 .5 , and 5 grams o f p o tassiu m p e r l i t e r . Phosphorus and Iro n S ta n d a rd s. In a d d i t i o n t o th e pho sph orus and i r o n s ta n d a rd s combined w ith potassium a n o t h e r s e r i e s was p re p a re d in th e sodium-ammonium c h lo rid e base. The ir o n c o n c e n tr a tio n was 1, 0 .5 , 0 .2 5 , 0 . 1 , 0 .0 5 , 0 .025 , O.Ql, 0.005 and 0.0025 grams p e r l i t e r . The phosphorus c o n te n t was double t h a t of ir o n . P r e p a r a t i o n of sam ples. When ash samples were t o be an a ly z ed , 0 .0 5 gram samples were weighed out and t r e a t e d w ith 1 m i l l i l i t e r of c o n c e n tra te d h y d ro c h lo ric a c id . This was allow ed t o s ta n d f o r an hour; a base of sodium-ammonium c h lo r id e s o l u t i o n was th e n added t o a t o t a l of 10 m i l l i l i t e r s so t h a t th e r e s u l t i n g concen­ t r a t i o n was 5 grams of a sh in 4 .5 $ a c id , c o n t a in in g 5 grams sodium c h lo r i d e and 45 grams of ammonium c h l o r i d e per l i t e r . Samples f o r p otassium a n a l y s i s were s i m i l a r l y p r e p a r e d , but c o n ta in e d 20 grams of a sh p e r l i t e r . A s y n t h e t i c a s h was p re p a re d f o r a n a l y s i s by d i s s o l v i n g th e s a l t s i n a 4 .5 $ a c id s o l u t i o n so t h a t th e r e s u l t i n g c o n c e n t r a t i o n s were: 0.7 grams of calcium , 0 . 4 grams of magnesium, 0.01 grams of manganese, 0.15 grams of phosphorus, 0.05 grams of ir o n and 14 grams of p o ta ss iu m p e r l i t e r . C o n d itio n s of Exposure. Eastman 1133“ commercial p l a t e s were u sed f o r a l l a n a ly s e s except th o se in which i r o n i n t e r f e r e d w ith p o tassiu m . W ratten - Wainwright p r o c e s s Panchrom atic p l a t e s gave s a t i s f a c t o r y r e s u l t s in t h i s case. The “ 33“ p l a t e s were chosen because t h e i r c h a r a c t e r i s t i c s were s u i t a b l e f o r th e p a r t i c u l a r condi­ t i o n s r e q u ir e d f o r such a n a ly s e s . Both ty p e s of p l a t e s were developed in Eastman d e v e lo p e r form ula D -ll f o r f i v e m inutes a t 18^. The method of “co n tin u o u s exposure11 e x t e n s i v e l y employed by t h i s l a b o r a t o r y f o r some time was used t o d e te rm in e th e b e h a v io r of th e s i x su b s ta n c e s upon v o la tiliz a tio n . The p l a t e was p la c e d in r e a d in e s s f o r e x p o s u re , th e s l i t opened and th e e l e c t r o d e s a d ju s te d . Each f i f t e e n seconds from th e i n s t a n t of a r c i n g , th e p l a t e was moved r a p i d l y , a llo w in g th e a r c t o burn c o n t i n u o u s ly f o r fo u r or f i v e m inutes. In t h i s manner t h e com parative amounts of each su b stan ce v o l a t i l i z e d 9. in any f i f t e e n second i n t e r v a l co u ld be d eterm in ed a s w e ll a s th e tim e r e q u ir e d f o r th e v o l a t i l i z a t i o n of each t o p ro c e e d t o a p o i n t where no e f f e c t was shown on the p h o to g ra p h io p l a t e under th e c o n d itio n s of exposure employed. From th e d a ta o b ta in e d on such a p l a t e th e time f o r ex p o su re of each su b stan ce was found. The amount of l i g h t used was a l s o found e x p e rim e n ta lly . Enough l i g h t was u se d so t h a t th e h e a v ie s t l i n e s t o be used f o r a n a l y s i s were w ell under maximum b la c k e n in g . In t h i s bWdkcTO \V\-3 way a g ra d a tio n o f l i n e d o n s i t i e s was o b ta in e d f o r th e lo w e r c o n c e n t r a t i o n s . The amount of l i g h t re a c h in g th e s l i t was r e g u la te d by th e a d j u s t a b l e r e v o lv in g s e c t o r . The fo llo w in g t a b l e shows th e c o n d itio n s of exposure used f o r each su b stan ce when a c u r r e n t of t e n amperes was c a r e f u l l y m a in ta in e d . 10. TABLE I Seconds Time £ L ight S e c to r Potassium i n 9f0 a c id in NHH-Na base i n Ca-Mg base 40 40 SO 5 5 6 .2 5 1 /1 0 1 /1 0 1 /8 I r o n and Phosphorus i n NH^-Na base i n Ce^Mg base 60 90 5 6 .2 5 HH I r o n (a lo n e ) 60 2 1/2 5 Magnesium 40 3.125 1/16 Manganese 40 2 1/2 5 Calcium 40 1.625 1/3 2 o Substance S l ig h t v a r i a t i o n s were made when only th e h ig h e r or lo w er c o n c e n tr a tio n s of a s e r i e s were u sed. L'.vve E v a lu a tio n of pla ^ e - Be n s i t i g B . The d e n s i t i e s of t h e p ro p e r l i n e s from the v a rio u s a n a ly s e s were re a d on t h e d e n s i t y com parator. Only p l a t e s f r e e o f fo g g in g were u se d ; any which were s l i g h t l y fogged or n o t e n t i r e l y c l e a r were d is c a r d e d . A re a d in g f o r b la c k n e ss when no l i g h t e n te r e d th e s l i t was ta k e n f i r s t . Each l i n e was r e a d in d e p e n d e n tly u n t i l an a c c u r a te check was o b tain ed . The p l a t e was th e n moved to a c l e a r background in th e same re g io n . ground" . This re a d in g was re c o rd e d a s th e «back­ The d i f f e r e n c e s between th e d e n s i t y of th e l i n e and a b s o lu te b la c k n e s s and a l s o between th e back­ ground and a b s o l u t e b la c k n e s s were c a l c u l a t e d . The r a t i o s of th e s e d i f f e r e n c e s wesfeplotted a g a in s t th e lo g a rith m s of c o n c e n t r a ti o n s t o o b ta in th e working curv e or “ s ta n d a r d c u rv e ” , th e method of Tyman and H itchen (trie b>Iqc p r e v i o u s l y c i t e d . The d e n o ity r a t i o s f o r th e unknowns were l o c a t e d on th e s ta n d a rd curve and th e c o rre sp o n d in g c o n c e n t r a t i o n s re a d d i r e c t l y from th e c u rv e . No a tte m p t was made t o c a l i b r a t e th e p l a t e s a s th e s ta n d a r d curve and unknowns t o be determ in ed were a l l p l a c e d on one p l a t e . D u p licate p l a t e s were made t o check r e s u l t s . R esu lts "C ontinuous E x posu re.11 The b eh av io r of each of t h e s i x su b s ta n c e s upon v o l a t i l i z a t i o n was i n d i v i d u a l . P otassiu m , a lth o u g h p r e s e n t in th e l a r g e s t amount, v o l a t i l i z e d most r a p i d l y and d isa p p e a re d in f o r t y - f i v e seco n d s. phosphorus a l s o v o l a t i l i z e d t o an e x te n t t h a t no e f f e c t co u ld be observed on a p h o to g rap h ic p l a t e . It was unique in b e h a v io r, v o l a t i l i z a t i o n b e g in n in g slow ly, g r a d u a l l y i n c r e a s i n g t o a peak and th en slo w ly d e c re a s ­ in g . About two m inutes were r e q u ir e d , a lth o u g h th e b u lk of i t v a p o riz e d in s i x t y seconds, th e time of ex p o su re u sed f o r a n a l y s i s . Manganese v o l a t i l i z e d very r a p i d l y a t f i r s t , most o f i t d is a p p e a r in g in f o r t y - f i v e seconds. A f a in t trace re m a in e d f o r f o r t y - f i v e t o s i x t y seconds lo n g e r. Magnesium d i d not v o l a t i l i z e co m p letely . As in t h e ca se of manganese, f o r t y - f i v e seconds were s u f f i c i e n t f o r th e g r e a t e r p o r t i o n to b urn out. A fte r t h a t time th e amount v o l a t i l i z e d in each i n t e r v a l g r a d u a lly d e c re a se d and f i n a l l y re a c h e d a c o n s ta n t. Calcium acted somewhat s i m i l a r t o magnesium, except t h a t i t behaved very e r r a t i c a l l y when only a t r a c e re m a in i. I r o n was found to be th e most p e r s i s t e n t of any of th e s i x s u b sta n c e s ■under i n v e s t i g a t i o n . However, very c o n s i s t e n t r e s u l t s were o b ta in e d when s i x t y second e x p o s u re s were u se d . F ig u re 1 shows g r a p h ic a l ly how th e s u b s ta n c e s com­ p a r e in speed of v o l a t i l i z a t i o n and in th e amounts of e a c h v o l a t i l i z e d i n any time i n t e r v a l . Q t k e-vi \ w c* s Line den% i4ies a r e p l o t t e d a s o r d in a t e s a g a in s t time i n t e r v a l s a s a b sc issa e . P otassium has th e s t e e p e s t slo p e ; magnesium, 33 31 30 29 28 2? 20 IS 18 1 2 3 4 5 6 7 T im e I n t e r v a l e 8 9 10 11 12 FIGURE 1 . BEHAVIOR UPON VOLATILIZATION 1 . P h o s p h o r u s - 2 5 3 6 . 38 A 2 . M a g n e siu m - 2 7 7 6 .7 1 A 3 . iT on - 3 0 2 0 .6 5 A 4 . M a n g a n e s e - 2 5 7 6 .1 2 A 5 . C a lc i u m - 3 1 5 8 .8 7 A 6 . P o t a s s i u m - 3 4 4 7 .3 8 A 13 manganese and i r o n behave somewhat a l i k e ; calcium shows a slow er r a t e of v o l a t i l i z a t i o n ; and th e e r r a t i c b e h a v io r of phosphorus i s very e v id e n t. S u i ta b le L ines f o r A n a ly s is . Very few Mr a i e s u l ti m e s ” a r e s u i t a b l e f o r use i n q u a n t i t a t i v e a n a l y s i s u s i n g th e method of a rc e x c i t a t i o n a s th e y show maximum b la c k e n in g in c o m p a ra tiv e ly low c o n c e n tr a tio n s . A lin e u s e d e f f e c t i v e l y must show two c h a r a c t e r i s t i c s : first, i t must be p e r s i s t e n t even i n very low c o n c e n tr a tio n s ; a n d second, i t must show a d e f i n i t e change in l i n e d ens-gty f o r a sm all change in c o n c e n tr a tio n . L in es w hich f u l f i l l th e s e re q u ire m e n ts give very s a t i s f a c t o r y s t a n d a r d curves over a s h o rt range of c o n c e n t r a t i o n s . Many l i n e s of each substance were i n v e s t i g a t e d and th o s e s e l e c t e d were found to be most s a t i s f a c t o r y u n d e r th e c o n d itio n s of e x c i t a t i o n and exposure employed. They a r e a s fo llo w s : P otassium 3446.37 and Magnesium 2776.71 and Calcium 3158.87 and Iro n 2598.08 and Phosphorus 2536.38 Ab Manganese 2576.12 and 3447.38 2779.85 3179.33 2599.40 A° Jf A° A° 2605.69 A^ In s p e c ia l c a s e s o th e r l i n e s had to be employed. I n th e case of h ig h i r o n c o n te n t, th e calcium l i n e a t 3 179.33 A° was n o t s a t i s f a c t o r y . For th e same re a s o n , 14 t h e p o ta ssiu m l i n e s m entioned above were u n s a t i s f a c t o r y . I n t h a t case th e p o tassiu m l i n e a t 5782.6 A was employed. This n e c e s s i t a t e d th e use of W ratten- W ainwright P ro c e ss Panchrom atic p l a t e s . For hig h con­ c e n t r a t i o n s of i r o n th e d o u b le t m entioned d id n ot show s a t i s f a c t o r y g r a d a tio n and th e u n re so lv e d d o u b let a t 3021.08 and 3020.65 A was used. Table I I shows a t y p i c a l s e t of d a ta from which th e s t a n d a r d curve f o r po tassium and th e c o n c e n tr a tio n s of t h e unknowns a r e o b ta in e d . TABLE I I g /l of K 25 20 15 ( l ) unknown 1 2 .5 1 0 .0 7 .5 5 .0 ( 2 ) unknown 3446.37 X 2 9 .0 26.7 24.6 2 2 .4 2 3 .3 2 2 .3 2 2 .2 2 3 .4 23.6 Complete b la c k n e s s : 36.2 Background R atio 15 .8 1 6 .4 1 6 .4 1 6 .5 16.7 16.7 1 7 .3 1 7 .9 1 6 .3 .35 .48 .59 .70 .66 .71 .7 4 .70 .63 15 A sample c a l c u l a t i o n of r a t i o s i s shown below. 36.2 - 2 9 .0 = 7 .2 36.2 - 1 5 .8 = 2 0 .4 — 2 0 .4 F ig u re 2 shows the s ta n d a rd curve f o r p otassiu m p l o t t e d from th e d a t a given in Table I I , and th e d e t e r m i n a t i o n of th e c o n c e n tr a tio n s of two unknowns. F ig u re 3 g iv e s t y p i c a l s ta n d a rd cu rv es f o r p h o sp h o ru s, i r o n , manganese, magnesium and calcium , a l l p l o t t e d from ex p e rim e n ta l d a ta . Table I I I shows th e r e s u l t s o b ta in e d by th e a p p l i c a t i o n of t h e s e methods t o th e a n a l y s i s of a s y n t h e t i c a sh of d e f i n i t e com position in grams p e r l i t e r . 45 .5 0 to U/n/e ° .5 5 .7 5 7 .5 10: 10.5 1 2 .5 ? 15 14 Lo^ari-Mm* c* couocatratUon, STANDARD C U x f Uh t 1 ^ * 1 L* 20 18 10 3 SO .3 0 S .4 0 .5 0 c 60 * J .7 0 £0 I .8 0 .01 08 .0 8 5 .0 5 .a .9ft .ft Logarithms of Concentration riGURE 3. STANDARD CURVES. 1 . P h o s p h o r u s - 2 5 3 6 .3 8 A 3. M anganese - 2 6 0 5 .6 9 A 2. 4. I r o n - 2 5 9 9 .4 A M agnesium - 2 7 7 9 .8 5 A 16 TABLE I I I . S ubstance S p e c tro g ra p h ic Chemical $ E rro r Magnesium 0.370 0 .4 0 0 0.390 0.400 0.400 0.400 7 .5 0 2 .5 Manganese 0.0112 0.0103 0.0099 0.Q100 0.0100 0.0100 1 2 .0 3 .0 6 .0 phosphorus 0.148 0.148 0 .1 5 3 0.150 0.150 0.150 1 .3 1 .3 2 .0 P otassium 1 5 .0 0 1 4 .2 5 1 3 .0 0 1 4 .0 0 14.00 1 4 .0 0 1 4 .0 0 1 4.00 6 .7 1 .7 6 .7 0 Iro n 0.048 0.0 52 0.05 0.05 4 .0 6 .0 Calcium 0.68 0 .6 8 0.7 0.7 3 .0 3 .0 F ig u re 4 i s ta k e n from an a n a l y s i s f o r phosphorus an d i r o n . The phosphorus l i n e 2536.38 A and th e ir o n d o u b le t 2598.08 and 2599.40 a a re shown d o t te d . The g r a d a t io n s of b o th a r e a p p a re n t t o th e eye. F ig u re 5 shows two a n a ly s e s of a sample, one f o r magnesium and one f o r manganese. The magnesium group o f f i v e l i n e s in th e re g io n of 2780 A i s marked and a l s o t h r e e manganese l i n e s in th e re g io n of 2600 a . FIGURE 4 17 D is c u s sio n V a r ia tio n of Line D engitrtee Due t o Other S ubstances. I n an a r t i c l e d e a l i n g w ith th e a n a l y s i s of s o l u t i o n s by means of th e sp e c tro g ra p h by Duffendach, Wylie and Owens (D u ffen d ach , Wylie and Owens, Ind. and Eng. Chem., Anal. E d ., 7_, 410-413, (1 9 3 5 )) i t was found t h a t magnesium, c a lc iu m , sodium and p o tassiu m a f f e c t e d th e r e l a t i v e i n t e n s i t y of th e s p e c t r a l l i n e s of each of th e o th e r e le m e n ts w ith r e g a rd t o th e s p e c t r a l i n t e n s i t y of an i n t e r n a l s ta n d a r d . They a l s o found t h a t th e a d d i t i o n o f Zfo sodium had th e e f f e c t of e li m in a t in g f u r t h e r v a r i a t i o n s due t o th e o th e r elem en ts. The e f f e c t o f calcium , p o tassiu m and sodium on th e k^n i l i n e d e n s i t i e s o f magnesium was measured and found t o be w e ll w ith in th e range of experim en tal e r r o r f o r the c o n d i t i o n s of exposure employed. The a d d i t i o n of sodium c h lo r id e i n th e base m a t e r ia l would a l s o e lim in a te s l i g h t v a r i a t i o n s due t o sm all amounts of o th e r s u b s ta n c e s . No a tte m p t was made t o remove any su b sta n c e from t h e a s h b e fo re a n a ly z in g f o r th e s i x su b sta n c e s d e te rm in e d . As shown by th e graph r e s u l t i n g from a c o n tin u o u s ex p o su re , a l l su b sta n c e s were v aporized co n c u rre n tly . 18 P hosphorus. The p o s s i b l e e x c e p tio n t o th e g e n e ra l r a t e of v o l a t i l i z a t i o n i s phosphorus. However, an i n c r e a s e in th e tim e of exposure compensated f o r the d i f f e r e n c e in r a t e . The f a c t t h a t 0.148 of th e 0.150 grams of phosphorus i n th e s y n t h e t i c ash were re g a in e d by t h i s method p o i n t s t o i t s f e a s i b i l i t y . was o n ly 1 .3 $ . The e r r o r However, th e range w ith in which phos­ p h o ru s can be d eterm in ed i s l i m i t e d . No a tte m p t to show i t in l e s s th a n 0.01 gram p e r l i t e r was s u c c e s s f u l. I n c a s e s where th e phosphorus c o n te n t was low, th e sample was no t d i l u t e d as much. Even i n i n s t a n c e s where phosphorus was no t a t f i r s t shown t o be p r e s e n t , a c o n c e n t r a t i o n o f th e a s h s o l u t i o n y ie ld e d a p o s i t i v e ph o sp h o ru s d e te r m in a tio n . The s o l u t io n s f o r phosphorus y i e l d e d a very s a t i s f a c t o r y s ta n d a r d curve between th e l i m i t s of 0.01 and 10 grams p e r l i t e r , making d e t e r ­ m in a tio n s of unknowns w ith a h ig h degree of accu racy . There were no l i n e s of any s u b s ta n c e s used o r im puri­ t i e s o c c u rrin g in th e re g io n of th e phosphorus l i n e , namely 2536.38 A and no background to i n t e r f e r e . The l i n e was e a s i l y r e a d on th e d e n s i t y com parator and gave a smooth curve when p l o t t e d . Iro n . I r o n had the advantage of h av in g a number o f l i n e s which showed a d e f i n i t e g ra d a tio n of l i n e s a t i s f a c t o r y s ta n d a rd c u rv e s. The 19 u n re s o lv e d d o u b le t a t 3020.65 and 3021.08 A gave a u s a b l e curve f o r c o n c e n tr a tio n s of iro n from 0.05 up t o 20 grams p e r l i t e r . This d o u b le t would be more e f f e c t i v e on an in stru m e n t w ith h ig h e r r e s o l v i n g power. The p a i r a t 2598.38 and 2599.40 A a re th e most s a t i s ­ f a c t o r y over a lo n g range. From a range of 2 gram p e r l i t e r down t o a s low a s 0.0005 grams p e r l i t e r , a s t a n d a r d curve can be made. However, i t h a s l e s s change i n deft c i t y - f o r a sm all change in c o n c e n tr a tio n th a n does t h e d o u b le t a t about 3020 A . When only i r o n i s b ein g d e te rm in e d , th e l a t t e r i s t o be p r e f e r r e d except in e x tre m e ly low c o n c e n t r a t i o n s . I n c o n ju n c tio n w ith phos­ p h o r u s , th e p a i r a t 2598.38 and 2599.4 A were most e x t e n s i v e l y u sed . They occur in a re g io n c l e a r of background, f r e e of i n t e r f e r i n g l i n e s and a re brought o u t s a t i s f a c t o r i l y “u nder th e same c o n d itio n s u sed f o r p h o sp h o ru s. I t i s w e ll, however, in a s e r i e s of a n a l y s e s t o use th e same l i n e th ro u g h o u t. An ac c u ra c y o f 6f0 was found in th e ca se of iro n in a c o n c e n tr a tio n o f 0 .0 5 grams p e r l i t e r . Manganese. o Two l i n e s , m ainly 2576.13 and 2605.69 A giv e s ta n d a r d c u rv e s f o r manganese over a range of 0.00 1 t o 5 .0 grams p e r l i t e r by v ary in g th e amount of lig h t. In th e ca se of an an aly zed s y n th e t i c ash c o n ta in ­ i n g 0.01 grams p e r l i t e r , th e e r r o r was e s tim a te d a t 20 5 t o 10^. As th e manganese was found t o c o n ta in a s m a ll amount of i r o n , th e e r r o r was n o t extrem e. The c u rv e f o r manganese was very smooth, g iv in g both th e s h o u ld e r and to e of th e curve a s w ell a s th e s t r a i g h t p o rtio n . D e te rm in a tio n s of h ig h e r c o n c e n tr a tio n s are more e a s i l y made, bein g on a s t r a i g h t p a r t of th e curve. Magnesium. Magnesium was th e e a s i e s t t o an aly ze o f any of th e s i x s u b s ta n c e s . The curves o b ta in e d from t h e l i n e s a t 2776.71 and 277S.85 A more n e a r ly re se m b le d E u rte r and D r i f f i e l d cu rv es th a n any of th e o t h e r s h an d led . Over th e c o m p a ra tiv e ly s h o rt range of 0 .0 1 t o 1 . 0 gram p e r l i t e r a complete curve was o b ta in e d by p ro p e r e x p o su re . R e s u lts on magnesium showed a l s o , t h e s m a lle s t p e rc e n ta g e of e r r o r , a n a l y s e s , th e a v e ra g e e r r o r was 3$. i n a group of f i v e Magnesium may be d e te rm in e d very s a t i s f a c t o r i l y in a range of 5 .0 down t o 0.001 grams p e r l i t e r . A lso, i t i s p ro b a b ly th e most a c c u r a te of th e s i x a n a ly s e s . P o tassiu m . The most d i f f i c u l t t o o b ta in s u c c e ss ­ f u l l y by th e method employed was p o tassiu m . Many d i f f e r e n t e r r o r s e n t e r i n t o such a d e te rm in a tio n . t h e f i r s t p l a c e , th e range i s very l i m i t e d . In G radation o f l i n e den o itipes may be o b ta in e d only between 1 . 0 and 50 grams p e r l i t e r , and on ly w ith g r e a t d i f f i c u l t y u nder 21 5 grams p e r l i t e r . The sample must he heavy in p o ta s s iu m t o he an a ly z e d a t a l l ; t h i s i s s c a r c e l y f e a s i b l e in most c a s e s , a s th e advantage of th e g e n e ra l method i s t o u t i l i z e very sm all sam ples. I r o n in any c o n c e n tr a tio n g r e a t e r th a n 0.1 grams p e r l i t e r i n t e r f e r e s w ith th e u n re so lv e d d o u b le t a t 3446.37 and 3447.38 A making th e employment of th e se l i n e s f o r a n a l y s i s im p o ssib le . An attem p t t o c u t down on th e exposure and use th e p a i r a t 4044.16 and 4047.22 A was o n ly p a r t i a l l y s u c c e s s f u l. Potassium l i n e s a r e accom panied by a co n tin u o u s background in th e same r e g io n g r e a t l y i n c r e a s i n g th e background re a d in g , r e s u l t i n g i n very sm all r a t i o s much l e s s s e n s i t i v e th a n f o r o th e r s u b s ta n c e s . Another l i n e o b ta in a b le on s p e c i a l r e d - s e n s i t i v e p l a t e s , 5782.6 A , can be used betw een l i m i t s f o r ap p ro x im atio n s but has to o much c o n tin u o u s background t o be used f o r fo rm u la tin g a s t a n d a r d cu rv e. The s ta n d a r d curve o b ta in e d f o r p o tassiu m u s in g 3447.38 A in a range of c o n c e n tr a tio n s from 5 t o 30 grams p e r l i t e r i s very e a s i l y o b ta in e d and s a t i s f a c t o r y f o r c o n c e n t r a t i o n s w ith in t h a t range when ir o n i s a b s e n t or p r e s e n t in an amount l e s s than 0.05 gram p e r lite r. A s p e c tr o g ra p h g iv in g a g r e a t e r r e s o l u t i o n of 22 th e d o u b le t, th u s f r e e i n g i t from i n t e r f e r e n c e by ir o n , would y i e l d v ery s a t i s f a c t o r y r e s u l t s . R e s u lts o b ta in e d on f o u r samples of p o tassiu m c o n t a i n i n g l e s s th a n 0,05 grams of iro n p e r l i t e r , and known t o c o n ta in 14 grams of potassium , gave th e r e s u l t s of 1 5 .0 , 1 4 .2 5 , 1 3 .0 and 1 4 .0 grams p e r l i t e r , a n av e rag e of ab out 5$ e r r o r . Calcium. Calcium i s p r e s e n t in an a p p r e c ia b le amount i n most g r a p h ite ro d s o r d i n a r i l y used f o r a n a ly sis. I t was n e c e s s a ry f o r c o n s i s t e n t and r e l i a b l e r e s u l t s t o use v ery pure c a rb o n s. Calcium g iv es a s t a n d a r d curve w ith a slope n e a r l y h o r i z o n t a l . Although a s e r i e s of s ta n d a r d s o l u t i o n s give a smooth curve, b>l<3.c t h e r e i s v ery l i t t l e change in d o n o ity f o r a l a r g e change in c o n c e n t r a t i o n , due t o th e extreme p e r s i s t e n c e o f ca lc iu m even i n very m inute amounts. Thus th e d e te r m in a tio n of unknowns i s much l e s s a c c u ra te f o r c a lc iu m th a n , f o r example, magnesium. Only two l i n e s o f c a lc iu m were found t o y i e l d s a t i s f a c t o r y sta n d a rd c u r v e s ; 3158.87 and 3179.33 A . Between th e co n c e n tra ­ t i o n s of O.QQl and 5 grams p e r l i t e r , smooth s ta n d a rd c u r v e s were o b ta in e d and s u c c e s s fu l d e te rm in a tio n s made. However, th e p e r c e n t e r r o r was h ig h e r f o r calcium th an f o r magnesium, manganese, i r o n or phosphorus, p a r t i c u - 23 l a r l y when th e c o n c e n tr a tio n of th e unknown was very low. A ctual a p p l i c a t i o n s of th e methods j u s t d is c u s s e d were made i n th e a n a ly s e s o f p l a n t ash t i s s u e s f o r th e B otany departm ent under th e d i r e c t i o n of Dr. R. p . H ib b ard . The r e s u l t s w i l l a p p e ar in a forthcom ing p u b l i c a t i o n o f t h a t departm ent. Summary Calcium, magnesium, manganese, po tassiu m , ph o sp h o ru s and ir o n may be determ ined i n a s o l u t io n o f t h e i r s a l t s by means of th e sp e c tro g ra p h by th e methods j u s t d esc rib ed * Under th e c o n d itio n s of e x p o su re and a r c i n g used, a d e f i n i t e range of concen­ t r a t i o n s f o r each element was found s a t i s f a c t o r y ; th e y are : (1 ) For calciu m , Q.OQl t o 5 grains p e r l i t e r . (2 ) For p o tassiu m , 1 t o 50 grams p e r l i t e r . (3 ) For i r o n , 0.0005 to 2 grams p e r l i t e r . (4 ) For magnesium, 0.001 to 5 grams p e r l i t e r . (5 ) For manganese, O.OQI t o 5 grams p e r l i t e r . ( 6 ) For phosphorus, 0.01 t o 10 grams p e r l i t e r . 24 L in es s a t i s f a c t o r y f o r th e a n a l y s i s of th e rang es j u s t m entioned u n d er th e c o n d itio n s of exposure em ployed a r e a s fo llo w s : Calcium 3158.87 and 3179.33 A P o tassiu m 3446.37 and 3447.38 A Iron 2598.08 and 2599.40 A Magnesium 2776.71 and 2779.85 A Manganese 2576.12 and Phosphorus 2536.38 A 2605.69 A 25 II S p e e tro g ra p h ic D ete rm in atio n of Z inc, Cadmium, Copper and I r o n in C o n cen trated B ickel S u lf a te S o lu tio n s . I n tr o d u c ti o n I t has been found t h a t sm all amounts of z in c , cadmium, copper and ir o n m a t e r i a l l y e f f e c t th e p h y s i c a l p r o p e r t i e s of n i c k e l when e l e c t r o l y t i c a l l y d e p o s i te d from s u l f a t e s o l u t i o n . O rdinary chemical methods of a n a l y s i s f o r th e s e m e tals when p r e s e n t in amounts o f a few m illig ra m s p e r l i t e r of s o l u t i o n a r e d i f f i c u l t , te d i o u s and n o t very a c c u r a t e . The s p e c tr o g r a p h ic method i s very r a p i d and a c c u ra te even f o r t h e s e e x c e e d in g ly sm all amounts. In th e p ro c ed u re fo llo w ed in t h i s i n v e s t i g a t i o n th e s o l u t i o n s a r e p la c e d in hollow g r a p h ite e l e c t r o d e s , a r c e d and th e s p e c t r a photographed. t> la c N The den p i t y of th e l i n e s of th e m etal t o be determ ined i s compared w ith th e d e n s i t y of th e c o rre sp o n d in g l i n e s made by t h e s ta n d a r d s o l u t i o n s and th e r e s u l t s r a p i d l y in te rp re te d . 26 p r e p a r a t i o n of M a te r ia ls A ll s u b s ta n c e s u sed in th e d e te r m in a tio n s were f i r s t a n a ly z e d s p e c t r o g r a p h i c a l l y f o r t r a c e s of th e m e ta ls t o be d eterm in ed and were found t o be s u f f i ­ c i e n t l y f r e e of c o n ta m in a tio n . S u f f i c i e n t z in c s u l f a t e t o make a s o l u t i o n c o n t a i n i n g one gram of zinc p e r l i t e r was d is s o lv e d i n d i s t i l l e d w a te r. To 70 m i l l i l i t e r s of t h i s s o l u t i o n were added 30 grams of n ic k e lo u s s u l f a t e an d th e r e s u l t i n g s o l u t io n made up t o 100 m i l l i ­ l i t e r s v o lu m e tr ic a lly . S im i la r l y , o th e r s o l u t io n s w ere p re p a re d so t h a t th e f i n a l range of c o n c e n tra ­ t i o n s was 700, 350, 300, 250, 200, 150, 100 and 50 m illig ra m s of zin c p e r l i t e r of s o l u t i o n c o n ta in in g a l s o 6 2 .7 grams of n i c k e l . A s to c k s o l u t i o n of n i c k e l s u l f a t e g iv in g a c o n c e n t r a t i o n of 6 2 .7 grams of n ic k e l p e r l i t e r was p r e p a r e d w ith d i s t i l l e d w a te r. Another s o l u t io n c o n t a i n i n g enough cadmium s u l f a t e t o y i e l d 1400 m illig ra m s p e r l i t e r of cadmium was a l s o p re p a re d . From t h e s e two s to c k s o l u t i o n s a s e r i e s o f d i l u t i o n s was made y i e l d i n g a f i n a l range of 1400, 700, 350, 200 and 50 m illig ra m s p e r l i t e r of cadmium in a s o l u t i o n of n i c k e l s u l f a t e c o n t a i n i n g 62.7 grams of 27 n ic k e l per l i t e r . Enough copper s u l f a t e t o y i e l d 200 m illig ra m s o f copper p e r l i t e r was d is s o lv e d in 100 m i l l i l i t e r s of th e sto c k s o l u t i o n of n i c k e l s u l f a t e . To 10 m i l l i l i t e r s of t h i s s o l u t i o n were added 90 m i l l i ­ l i t e r s of th e n i c k e l s o l u t i o n y ie ld in g one c o n ta in in g 20 m illig ra m s p e r l i t e r of co p p er. S im ila r ly , one was p r e p a r e d c o n t a i n i n g 2 m illig ra m s of copper p e r l i t e r . I n e x a c t l y th e same manner, u s in g f e r r o u s ammonium s u l f a t e , t h r e e s o l u t i o n s c o n ta in in g 200, 20 and 2 m illig ra m s of ir o n p e r l i t e r were p re p a re d . R e - g r a p h itiz e d Ache son g r a p h ite rod s were cu t i n t o co n v e n ie n t l e n g t h s f o r a r c i n g . One h a l f were d r i l l e d a t one end t o make c r a t e r s f o r th e s o lu tio n ; th e o th e r h a l f were f i l e d wedge shaped. One t e n t h m i l l i l i t e r p o r t i o n s of th e s o l u t io n s were p i p e t t e d i n t o th e p re - i g n i t e d c r a t e r s while th e c a rb o n s were s t i l l warm. i n an e l e c t r i c oven a t 100 A fte r b e in g th o ro u g h ly d r i e d th e y were re a d y f o r a rc in g . 28 P ro ced u re Eastman p l a t e s were used on a medium q u a rtz s p e c tr o g ra p h g iv in g a n in e in c h d i s p e r s i o n co v e rin g wave l e n g t h s from a p p ro x im a te ly 2100 t o 5000 angstrom u n its. The e l e c t r o d e s c o n ta in in g th e s o l u t i o n s were made t h e anodes and were a rc e d u s in g 300 v o l t s D.C. The l e n g t h of th e exposure depended upon th e m etal t o be d eterm in ed . In th e case of z in c , one m in u te ex posures were made a t nine amperes. The l i g h t from th e a r c was c u t down t o 1 p e rc e n t by a r o t a t i n g s e c to r a f t e r p a s s in g thro ugh a l e n s . M e t a l l i c zin c was f l a s h e d on t o give th e R.U. l i n e s f o r q u ic k i d e n t i f i c a t i o n . One minute exposures of each zin c sample were made, b e g in n in g w ith the g r e a t e r c o n c e n t r a ti o n and en d in g w ith n i c k e l s o l u t io n f r e e of z in c . The method of d ete rm in in g th e amount of zinc in com m ercial b a th s c o n s i s t s of exposing t h r e e known c o n c e n t r a t i o n s of zinc in n i c k e l ; one of a concen­ t r a t i o n j u s t e q u a l t o th e Ms a f e t y H p o i n t , one g r e a t e r a n d one l e s s . The spectrum of th e sample t o be a n a ly z e d i s p la c e d between t h e s e s p e c t r a l s ta n d a rd s 29 u s i n g a s n e a r l y a s p o s s i b l e th e same c o n d itio n s of e x p o s u re . \d \a c k e-TO \ 5 By a com parison of l i n e ebcf t o i t i o s- th e unknown can be v ery r a p i d l y determ ined a s f a l l i n g betw een d e f i n i t e l i m i t s . I n th e case o f cadmium th e same p ro ced u re may be employed ex cep t t h a t th e le n g t h of exposure may be s h o r te n e d t o f o r t y - f i v e seconds a s cadmium v o l a t i l i z e s more r a p i d l y . S o lu tio n s c o n ta in in g 1400, 700, 350, 200 and 50 m illig ra m s of cadmium p e r l i t e r were used. N e ith e r i r o n nor copper w i l l vap orize t o th e p o i n t of n o t a f f e c t i n g a ph otograp hio p l a t e and th u s t h e method f o r t h e i r d e te rm in a tio n depends e n t i r e l y upon un ifo rm ex p o su re . f o r cop per. T h ir ty seconds a r e s u f f i c i e n t I r o n r e q u i r e s a s l i g h t l y lo n g e r tim e. Very sm a ll amounts of bo th a r e r e a d i l y d i s c e r n i b l e in n ic k e l so lu tio n s. Although th e g r a d a tio n s of v ary in g amounts of t h e s e m e ta ls a r e a p p a re n t t o th e eye, p r e c i s i o n measures W a c k e 'Y u - r v ^ were made of th e d e n s it-le s of th e l i n e s w ith th e d e n s i t y com parato r. Readings on b o th l i n e s and backgrounds were r e p e a t e d ■until s a t i s f a c t o r y checks were o b ta in e d . A 30 r e a d in g of th e galvanom eter when no l i g h t re ach ed th e c e l l was a l s o ta k e n and term ed th e 11zero11 re a d in g . The d i f f e r e n c e of both th e l i n e and background re a d in g s from ze ro were c a lc u l a t e d . The r a t i o s of th e s e d i f f e r e n c e s were p l o t t e d as o r d i n a te s a g a i n s t th e l o g a r i t h m s of th e c o n c e n tr a tio n s a s a b s c is s a e . The r e s u l t i n g curve resem bles an H urter and D r i f f i e l d curve o l o s e l y , and i s term ed th e s ta n d a rd cu rv e. T a b u la tio n of Data T y p ical s e t s of re a d in g s and c a l c u l a t e d r a t i o s f o r th e s ta n d a rd cu rv es of zin c and cadmium a r e shown i n th e fo llo w in g t a b l e s . TABLE I ZINC IN NICKEL SULFATE SOLUTION mg Zn/1 Zinc l i g e 3303.6 A Zinc l i n e 3345.0 A Back Ground 700 350 300 350 300 150 100 50 3 6 .4 35.6 35.7 3 5 .0 3 4 .4 33.5 31.6 31.7 38 .5 37.6 37.8 37.1 36.8 35.8 34.3 2 3 .9_ 30.7 3 0 .3 30.8 30.7 30.5 3 0 .0 1 9 .9 31 .0 Complete b la c k n e ss: 35.5 _____ 5 at i o s 3303.6 A 3325.0 A .61 .65 .67 .73 .74 .77 .89 .95 .47 .53 .53 .57 .58 .63 .72 .80 31 TABLE I I CADMIUM IN NICKEL SULFATE SOLUTION mg Cd/1 Line 3261.05 k Back Ground 1400 700 350 300 50 30,9 3 0 .4 3 0.0 2 3 .8 26.6 1 9 .4 1 9 .5 1 9 .3 1 8 .3 1 8 .8 R a tio Line 4799.91 k Back Ground R a tio .29 . 32 .34 .39 .53 30.5 2 9 .4 2 6 .4 2 4 .0 22.7 21.5 2 1 .5 21.6 2 0 .4 2 0 .4 .36 . 37 .65 .76 .85 Complete b la c k n e s s : 35.5 The d e n s i t y com parator g iv e s very s e n s i t i v e and a c c u r a te measurements n o t a p p a re n t t o th e eye. For a l l a c c u r a t e q u a n t i t a t i v e work i t sho uld he u sed , h u t f o r c o n t r o l work, t h a t i s t o say , between d e f i n i t e l i m i t s , b>lac t h e l i n e den s i t i e s- do not need t o he measured. Care must he tak en n o t t o re ach th e p o in t of complete b la c k e n in g of th e l i n e s or th e d i f f e r e n c e s in imnnitqi due t o change i n c o n c e n tr a tio n a re not a p p a re n t. F ig u re 1 shows fo u r t y p i c a l cu rves o b ta in e d by (vne \o\cxc. e~n \ m p l o t t i n g r a t i o s o f dens-i t i ee a g a in s t th e lo g a rith m s of c o n c e n t r a t i o n ; ( l ) and (2 ) a r e f o r zin c and (3 ) and (4 ) a r e f o r cadmium. The two cu rv es f o r zin c a re very n e a r l y p a r a l l e l , th e l i n e of th e g r e a t e r i n t e n s i t y l y i n g above th e l i g h t e r l i n e . 30 35 45 .5 0 55 60 .6 5 V *70 . 75 . 80 85 90 L o g a rith m s o f C o n c e n tr a tio n FIGURE 1 . STANDARD CURVES. 1 . Z in c - 3 3 0 2 .6 A 2 . Z i n c - 3 3 2 5 .0 A 3 . Cadmium - 3 2 6 1 .0 5 A 4 . Cadmium - 4 7 9 9 .9 1 A 32 The two cadmium l i n e s shown a re from d i f f e r e n t r e g i o n s of th e spectrum . The one ahove (326 1.05 A ) i s v ery n e a r l y maximum b la c k e n in g and g iv e s only th e u p p e r p a r t of th e s ta n d a rd c u rv e. The low er l i n e (4 79 9 .9 1 A ) g iv e s a t y p i c a l curve f o r c o r r e c t exp o su re. F ig u re 2 i s a p r i n t of th e p l a t e from which r e a d i n g s on th e d e n s i t y com parator were made and r e c o r d e d in Table I . The two used in p r e p a r in g th e s t a n d a r d cu rv es a r e shown d o tte d on th e p l a t e . A p e c u l i a r phenomenon was observed on t h i s p l a t e . A lin e j u s t t o th e r i g h t of 3302.60 A appeared t o in c re a s e i n i n t e n s i t y a s th e zinc l i n e d ec rease d . However, upon m easu rin g i t on th e d e n s ity com parator, i t was found t o be c o n s ta n t and m erely an o p t i c a l i l l u s i o n . The l i n e was i d e n t i f i e d as an i r o n l i n e , 3305.978 A , ir o n o c c u r r in g a s an im p u rity in th e zin c. F ig u re 3 shows the p l a t e from which l i n e s of cadmium were s e l e c t e d t o make th e s ta n d a rd cu rv es shown in f i g u r e 1 . The two l i n e s of cadmium marked a r e 3261.05 and 4799.91 A . F ig u re 4 shows how iro n may be d e te c te d in n i c k e l i n v ery sm all amounts. The d o u b le t 2598.377 and 2 5 9 9 .4 A was found t o be most s a t i s f a c t o r y f o r very FIGURE 2 FIGURE 3 FIGURE 4 33 sm all amounts of i r o n . The upper spectrum r e p r e s e n t s 300 m illig ra m s p e r l i t e r , th e second 30 m illig ra m s p e r l i t e r and th e t h i r d 3 m illig ra m s p e r l i t e r . The l a s t one i s pure n i c k e l . Copper a n a ly s e s were made in th e same manner a s th o s e f o r ir o n . Although th e methods were worked out u s in g a medium q u a r tz sp e c tro g ra p h , i t has been ad ap ted in t h i s l a b o r a t o r y t o th e use of an in stru m en t of l e s s d i s p e r ­ sio n . The r e s u l t s w i l l be s e t f o r t h i n a forthcom ing p u b lic a tio n . Summary Very sm all amounts of z i n c , cadmium, iro n and co p p e r in n i c k e l s u l f a t e s o l u t io n s were r e a d i l y d e te rm in e d by s p e c tr o g ra p h ic methods u s in g s o lu tio n s i n g r a p h it e e l e c t r o d e s . L in e s of each substance were s e l e c te d which showed li vie b Uc y>' 3 d e f i n i t e g r a d a t io n s of dassafcfcy f o r small changes in c o n c e n t r a t i o n , and which were p e r s i s t e n t in very low co n c e n tra tio n s. Such l i n e s a r e : z in c , 3302.60 and 3345.60 A ; cadmium, 3261.05, 4799.91 and 3763.9 A ; i r o n , 2598.36 and 2599.39 A J and copper, 3273.96 A .