By JASPER GUY WOODROOF A THESIS Presented to the Graduate School of Michigan State College of Agri­ culture and Applied Science in Partial Fulfillment of Require­ ments for the Degree of Doctor of Philosophy Horticulture Department East Lansing, Michigan 1930 ProQuest Number: 10008498 All rights reserved IN FO R M ATIO N TO ALL USERS The quality o f this reproduction is depe n de n t upon the q uality of the copy subm itted. In the unlikely event that the a uth or did not send a com plete m anuscript and there are m issing pages, these w ill be noted. Also, if m aterial had to be rem oved, a note w ill indicate the deletion. P roQ uest 10008498 Published by ProQ uest LLC (2016). C opyright o f the D issertation is held by the Author. All rights reserved. This w ork is protected against unauthorized copying under Title 17, United S tates Code M icroform Edition © ProQ uest LLC. ProQ uest LLC. 789 East E isenhow er Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 S T U D IE S O F T H E S T A M IN A T E IN F L O R E S C E N C E A N D P O L L E N O F H IC O R IA P E C A N 1 By J. G. W oodroof 2 A ss o c ia te H o r tic u ltu r is t, G eorgia A g r ic u ltu r a l E x p e r im e n t S ta tio n IN T R O D U C T IO N F rom th e producer's stan d p o in t one of the m ost im p o rtan t lim iting factors to profits in pecan culture is low yields. These m ay be due to any one or to a com bination of several factors, such as the failure of the trees to differentiate flowers, more especially pistillate flowers, poor pollen, unfavorable w eather during the flowering season, or insect or disease a tta c k upon flowers or developing fruits. C on­ siderable stu d y has been devoted to some of these questions. L ittle, however, has been recorded regarding the developm ent of pollen in th e pecan, though pollen deficiencies are known to be responsible for u n satisfactory fru it setting in certain varieties of apples, pears, plum s, grapes, and m any other fruits. I t therefore appeared to the w riter th a t a stu d y of the m orphology of the stam in ate inflorescence and physiology of the pollen would throw some light on practical questions of pollination. R EV IE W OF L IT E R A T U R E U nfruitfulness of the pecan (Hicoria pecan B rit.) is associated more closely w ith the initiation and developm ent of pistillate th an of stam in ate flowers, and it is therefore logical th a t the pistillate flowers should have been studied first. Studies of the m orphology of pistillate flowers of pecans have been m ade by W oodroof {27, 28),3 S h u h art {21), and Isbell {12), and the results have shown close agreem ent as to the time and m anner of developm ent. S tam i­ n ate flowers have received secondary attention, b u t fragm entary descriptions have appeared in a few reports {23, 26, 12, 27, 28). S tuckey {23) studied the developm ent of stam inate flowers of 33 varieties of pecans. H e divided the varieties into two groups on the basis of th e length and size of the catkins, length of bracts, and tim e of shedding pollen. W oodroof {26, 27) found th a t catkins were differentiated in lateral buds throughout the growing season of 1 R e c e iv e d for p u b lic a tio n S ep t. 19, 1929; issu e d .Tune, 1930. P r e sen te d to th e fa c u lty of M ic h ig a n S ta te C o lleg e o f A g r ic u ltu r e a n d A p p lie d S cien ce, in p a rtia l fu lfillm e n t of th e r e q u ire m e n ts for th e d egree of d o cto r of p h ilo s o p h y a n d p u b lish ed w ith th e a p p r o v a l of th e d irector of th e G eorgia A g r ic u ltu r a l E x p e r i­ m e n t S ta tio n as p ap er N o , 31, J o u rn a l Series. 2 In th e in v e stig a tio n s h ere reported N a o m i C. W o o d ro o f, of th e D e p a r tm e n t of B o t a n y , a n d J. E . B a ile y , o f th e D ep artm en t, of H o rticu ltu r e , o f th e Georgia. A g r ic u ltu r a l E x p e r im e n t S ta tio n , a id ed in co llectin g field d a ta and in p reparin g m a teria l for la b o r a to r y s tu d ie s . O tis W o o d a rd , of th e G eorgia C o a sta l P la in E x p e r im e n t S ta tio n , fu rn ish ed a p a rt of th e d a ta for T a b le 5; C . F. W illia m s , of th e N o r th C a ro lin a A g ri­ c u ltu r a l E x p e r im e n t S ta tio n , a n d R . M . M id d le to n , of th e G eorgia s ta tio n , fu rn ish ed a part of th e data for th e sa m e (ab le. M e m b e r s o f th e D e p a r tm e n t of H o rticu ltu r e of M ic h ig a n S ta le C o lleg e offered su g ­ g e stio n s in th e p la n n in g of th e w ork a n d cr itic iz ed th e m a n u sc rip t; a n d W . C . D u tt o n a id ed in m a k in g p h o to m ic r o g r a p h s , R eferen ce is m a d e b y n u m b e r (ita lic ) to “ L iter a tu r e c it e d ,” p. 1103. J o u r n a l of A g r ic u ltu r a l R esea rch , W a sh in g to n , D . C . 109031—30 1 V o l. 40, N o . 12 J u n e 15, 1930 K e y N o . Ga.-G (105 9 ) 1060 Jo u rn a l of A gricultural Research VoJ. 40, N o . 12 th e y e a r prio r to th e shedding of pollen. H e re p o rted m easurem ents of catk in s of th e tw o groups of v arieties during th e w inter stage and described th e m eth o d of shedding b u d scales th e following spring. Isbell (12) published 13 photom icrographs illu stra tin g progressive stages of c a tk in d evelopm ent during th e sum m er. H iggins (JO) described a disease (Microstroma juglandis (B ereng.) Sacc., var. robustum, n. v ar.) of pecan catkins th a t appeared on all of th e v arieties observed and som etim es d estroyed o n e-th ird of th e pollen. T h e tissues of th e c a tk in wTere n o t killed o u trig h t, b u t the pollen grains degenerated, often leaving collapsed walls. T his disease is com m on in th e orchard in w hich th e p resen t stu d ies were m ade, b u t care was ta k e n to avoid using diseased m aterial. S ch u ster (18) s ta te d th a t th e am o u n t of pollen produced by filberts in Oregon varies from season to season and is influenced by m any factors. M an y varieties produce a h eav y crop of sta m in a te and p istillate flowers one year, and a light crop of b o th th e following year. V alleau (24), w orking w ith straw berries, D orsey (8) w ith plum s, K now lton (15) w ith th e J. H . H ale peach, an d Asarni (3) w ith Shanghai peach, re p o rt t h a t th e first abnorm al developm ent in pollen was seen a t th e tim e of lib eratio n from th e te tra d w all; th ere­ afte r m icrospores were found in various stages of abortion. S hoem aker (19, 20) found lagging chrom osom es in th e h etero ty p ic division, giving rise to abnorm al pollen in th e apple and cherry. T he germ ination of pollen on artificial m edia has been u n sa tis­ factorily accom plished w ith pollen of m an y p lan ts. W ood 4 found th a t alm ond an d w aln u t pollen did n o t germ inate well on sugar-agar m edia, and concluded th a t th ere was no satisfac to ry lab o ra to ry m ethod of ascertaining the v iab ility of pollen of various varieties. A nthony and H a rla n (2) a tte m p te d to duplicate n a tu ra l conditions for g erm inating barley pollen by placing a piece of m esophyll from th e leaf of the garden pea in the cell to supply w ater. T h e cell was covered w ith a cover glass and placed in th e open to allow th e con­ d ensation of m oisture on th e pollen grains. G erm ination was accom ­ plished w ith b o th m esophyll an d drops of w a te r for hum idifiers. B eau m o n t and K n ig h t (5) and K now lton (15) a tte m p te d to approach n a tu ra l conditions for germ inating apple pollen by adding stigm as of th e sam e or different varieties to a hanging drop a t th e sam e tim e the pollen was added. T h ey concluded th a t fu rth e r im p ro v em en t of th e m ethod of germ ination was necessary to produce pollen-tube len g th equal to th a t produced un d er n a tu ra l conditions. L idforss (17) rep o rted th a t artificial m edia for g erm inating pollen m u st co n tain n o t only the essential n u tritiv e substances b u t th a t it m u st n o t contain su b stan ces w hich p rev en t grow th, especially m ineral salts, as calcium . T h e m ost satisfacto ry results, from pollen-germ ination tests in general, have been o b tain ed by using from 1 to 2 per ce n t agar or gelatin and 5 to 20 per cent sucrose in the m edia. H o w le tt (11) used 10 p er cent sucrose and 2 per cent agar; B eau m o n t and K n ig h t (d) used 5 p er cent sucrose and 1 p er cent gelatin for g erm in atin g apple pollen; B ooth (6‘) used 15 per cent sucrose an d l l/ 2 p er cen t g elatin for g erm in atin g plum pollen and 10 per cent sucrose and 5 p er cen t g elatin for g erm inating cherry pollen; S chuster (18) o b tain ed b est germ in atio n of filbert pollen in 12 to 15 per cent sucrose b u t observed b u rstin g of * W o o d , M . N . p o l l e n s t u d ie s o f a l m o n d a n d w a l n u t . C a lifo r n ia .) 1917. ( M a s t e r ’s t h e s is . U n iv e r s it y of June is, 1930 Stam inate Inflorescence and Pollen of Hicoria pecan 1061 pollen grains and tubes; A uchter (4) germ inated apple pollen in distilled w ater; and K n ig h t (14) increased apple-pollen germ ination b y adding a trace of asparagine to the m edium . V alleau (24) determ ined the percentage of defective grains in straw b erry pollen and reported th a t— lactic acid has the advantage over water or alcohol for this purpose as it is not volatile and seldom, if ever, breaks the pollen grains through osmotic pressure. It readily enters and expands the normal grains, while it leaves the aborted grains collapsed. D orsey (8) studied plum pollen and reported th a t the ex ten t of pollen ab o rtio n in selected form s was determ ined p a rtly from m ounts in lactic acid and p a rtly from stained sections. In S hoem aker’s (19) w ork w ith apples lactic acid was em ployed to afford a liquid m edium w hich would p rev en t bursting and germ ination of the pollen grains. B eau m o n t and K n ig h t (5) hand-pollinated apple blossoms, and after the pollen h ad germ inated and p en e trated the stigm as the la tte r were flatten ed on a cover glass and m ounted in lactic acid which killed and fixed the pollen tube. Snow (22) used lactic acid in a sim ilar m anner in stu d y in g the pollen of stocks. F lo rin ’s (9) germ ination tests closely checked w ith the lactic acid exam inations of apple and pear pollen. M E TH O D S M a te ria l for m orphological studies was tak en from an orchard of 28 varieties a t the G eorgia E xperim ent S tation. T he location is a b o u t 150 miles n o rth of the center of pecan production in Georgia. M o st of the trees are 20 years old and have had uniform culture. D a ta on pollen dissem ination were tak en in com m ercial orahards near B arnesville, Ga. In general, th e m ethods of collecting, killing, fixing, em bedding, sectioning, and staining m aterial for m icroscopical studies were the sam e as those described in previous reports (27, 28, 31). T he Alley and F rotscher varieties were chosen as typical of Groups 1 and 2, respectively, according to S tu c k e y ’s classification (23). O ther varieties were repeatedly used to verify results. J u e l’s fixative 5 and picro-sulphurous acid 6 were used as killing and fixing agents, the la tte r giving the b e tte r results. M aterial was taken a t 15-day in terv als th ro u g h o u t the year from each variety, alternating the fixatives. N orm al buds were selected from representative shoots, and norm al flowers were tak en from catkins typical of the variety. F ro m the m other-cell stage until pollen shedding, catkins of the S tu a rt v arie ty were collected daily; and during the reduction division, m aterial of the F rotscher and S tu a rt varieties was collected a t 3-hour in terv als. B uds collected during the actively growing season wrere sec­ tioned 5 m icrons in thickness. T he hairy n atu re of w inter buds ren­ dered it difficult to section them sufficiently thin for cellular studies. A m odification of the sm ear m ethod, as described by K aufm ann (13), was used to determ ine the num ber of tetra d s per an th er and the n u m b er of pollen grains per pollen sac. An an th er in the te tra d stage w'as placed in a drop of w ater on a slide and thoroughly m acerated w ith a needle. T he tetra d s separated from the an th er wmll and floated in d ep en d en tly in the m edium . A fter the fragm ents of the an th er * J u e l ’s fix a tiv e : Z n C h , 2 g m .; a c e tic a cid , 2 c. c.; a lco h o l, 95 per c e n t, 50 c. c.; d is tille d H 2O,_50 c. c. * P ic r o -su lp h u r o u s acid : S u lp h u r o u s a c id , 6 per c e n t, 10 c. c.; p icric a c id , 1X A gm .; a lco h o l, 75 per c e n t, 11)62 Journal of A gricultural Research V ol. 40, N o . 12 wail were rem oved the te tra d s were stain ed w ith eosin, covered w ith a cover glass, an d exam ined u n d er th e high pow er of th e m icroscope. D issem in atio n of pollen w as stu d ied by ca tch in g pollen from th e a ir on slides greased w ith vaseline, a m eth o d sim ilar to th a t used by W au g h {25) for catch in g plum , pear, an d apple pollen. Tw o y a rd ­ sticks w rap p ed w ith cheesecloth an d loosely b olted to g e th e r m ade a convenient holder for 12 slides. A b o u t tw o -th ird s of th e length of each slide was exposed, th e re m a in d er being held firm ly betw een th e y ardsticks. T h ree series of slides w ere m o u n ted on a slender pole, F ir , c u e 1. — A, P o le 30 feet h ig h s u p p o r te d b y g u y w ir e s to w h ic h w ere a t ta c h e d th r ee se rie s of g rea sed slid e s for c a tc h in g p o l l e n fro m th e air; H, v ia ls c o n t a in in g w a te r a n d c a lc iu m c h lo r id e , in w h ic h w ere p la c ed s m a lle r v ia ls c o n t a in in g p e c a n p o lle n w h ic h w a s k e p t “ m o is t " a n d " d r y ’’ r e s p e c t iv e ly ; C , c ells f o r g e r m in a tin g p o lle n . A r r o w s in e a c h ca se in d ic a te p o s itio n of th e p o lle n one series each 10, 20, and 30 feet above th e ground. T h e slides were set on th e leew ard side of th e trees, a t a 45° angle w ith the ground, the greased face of th e slide being tu rn e d to w ard th e pollenshedding trees. T he slides were changed by low ering an d raising the pole w ith th ree guy wires. (Fig. 1, A.) Pecan pollen grains on th e greased slides were identified and co un ted un d er the low-power objective of th e m icroscope. A fter the area ol th e m icroscopical lield was calculated, th e n u m b e r of g rains in 200 fields were counted, averaged, an d calcu lated to the n um ber of grains per square centim eter. June is, 1930 Stam inate Inflorescence and Pollen of Hicoria pecan 1063 T h e w ind velocity was determ ined by the use of a R obinson cup an em o m eter w ith electric connections and a buzzer which indicated th e n u m b er of miles per hour. T he relative h um idity was determ ined by th e use of a sta tio n a ry hygrom eter placed in the orchard. M ETRIC F ig u r e 2 .— A . .M icrospore p rin t m a d e from a p eca n c a tk in of G ro u p 1 s h o w in g th e ca se w ith w h ic h pec m p o lle n m a y be c o lle c te d in q u a n tity ; If. p h o to m icrograph of lo n g itu d in a l s e c tio n of A lle y v a r ie t y a n th e r w h ile in th e m o th e r -c ell s ta g e on A p ril 1; in so m e e a ses th ere se em to he ro w s of m o th e r c e lls Pollen for germ ination tests was obtained from ripe anthers which were allowed to dehisce in the laboratory. (Fig. 2.) In this way th e tim e of dehiscence could be determ ined to w ithin two hours, ('ells for germ inating pollen were m ade by shellacking six hard 1064 Jour nal of A gricultural Research Vol. 40, N o . 12 ru b b e r rings, 15 m m . in d iam eter an d 10 m m . high, to glass slides 2 inches w ide an d 3 inches long. W a te r to su p p ly m o istu re for g erm in atio n w as placed in th e b o tto m of each cell. A drop of sterile g erm in atin g m edium was placed on a cover glass while h o t an d allowed to solidify. T h e pollen was d u sted on th e m edium an d th e cover glass was in v erte d an d sealed on th e cell w ith vaseline. E x a m in a ­ tions were m ade a t in terv a ls u n d e r low pow er w ith o u t d istu rb in g the cell. (Fig. 1, C.) D ry an d m oist storage conditions w ere provided by placing cal­ cium chloride a n d w ater, respectively, in tw o 50 c. c. vials. A 10 c. c. vial co n taining pollen was placed in each 50 c. c. vial a n d the la tte r was corked. (Fig. 1, B .) A du p licate series w as set up for each v a rie ty an d tem p eratu re. E lectric ovens pro v id ed tem pera- F ig u r e 3 .— A, T w ig from .Stuart p e c a n tree w h ic h bore 3 p o u n d s of n u t s la st y ea r; B , t w ig fro m -M obile treo w h ic h bore 29 p o u n d s of n u t s la st y ea r. T h is tree a n d t h a t in A are b o th 12 y e a r s o ld an d h a v e r e c e iv e d th e sa m e fer tilize r arid c u ltu r a l t r e a t m e n ts sin c e b e in g se t in th e o rch a rd . C , T w ig from -M cA lister v a r ie t y , a s u p p o s e d h y b r id b e t w e e n H ic o ria p e c a n a n d C 'anja alba, w h ic h has a c a tk in p r o d u c in g h a b it lik e C. a lba, i. e ., o n ly th e t e r m in a l b u d p r o d u c e s c a tk in s tu res co n stan t a t 32°, 25°, 23°, an d 22° C .; and a re frig erato r p ro ­ vided a tem p eratu re of 5° C. M o u n tin g pollen in lactic acid for m icroscopical d eterm in a tio n of the percen tag e of defective grains seems a m ore reliable m eth o d th a n g erm in atin g it on artificial m edia. Tw o drops of 90 per cen t lactic acid placed on a slide w ith a sm all a m o u n t of pollen an d covered w ith a cover glass render th e grains containing a norm al a m o u n t of p rotoplasm d istin ct from those containing less th a n th e n o rm a l am o u n t. A bout three m inutes are req u ired for com plete p e n e tr a ­ tion; afte r three hours the grains becom e bleached an d d ifferen tiatio n of defective and norm al grains is uncertain. F resh m ounts an d high m agnification are necessary for one to m ake reliable co u n ts by th is m ethod. June i5, 1930 Stam inate Inflorescence and Pollen of Hicoria pecan 1065 P R E S E N T A T IO N OF E X P E R IM E N T A L D ATA T he lateral buds of a growing shoot on a bearing pecan tree differ­ en tiate ca tk in prim ordia by the tim e the subtending leaf is one-tenth grown {26, 27). D ifferentiation begins about two weeks after active grow th s ta rts in th e spring (April 15) and continues throughout the grow ing season. In the pecan, catkins are alw ays produced in lateral, axillary buds (figs. 3, 4), and the num ber of catkin prim ordia formed is in pro p o rtio n to th e n u m ber of leaves produced on th a t shoot. N orm ally th ere are two groups of three catkins each produced at each node. In o th er native hickories {Carya alba, C. ovalis, C. glabra) th e catkins are produced in the term inal bud. (Fig. 3, C.) F i g u r e 4.— A, T w ig fro m M o b ile tree w h ic h bore 58 p o u n d s of n u t s la st y ea r; tree from v a r ie ty of G ro u p 1; B , t w ig from A lle y tree w h ic h bore 34 p o u n d s o f n u t s la st year; tree from v a r ie t y of G ro u p 1; C , tw ig from F r o tsc h e r v a r ie t y w h ic h bore 100 p o u n d s of n u ts la st year; tree from v a r ie ty of G ro u p 2; D , t w ig from S tu a r t tre e w h ic h bore n o n u ts la st year; tree from v a r ie t y of G ro u p 2. A ll of th e se trees are 20 yea rs o ld a n d h a v e r e ce iv e d th e sa m e fertilizer a n d c u ltu r a l tr e a tm e n ts sin ce b e in g s e t. A r r o w in d ic a te s p o in t of a b sc issio n of th e c a tk in b u d s on A p ril 'J T he ch aracteristics of th e buds and inclosed catkin prim ordia have been previously described by the w riter {26). T he central catk in is form ed and develops som ew hat in advance of the catkins borne on eith er side, and ultim ately reaches a g reater length at m a tu rity . (Figs. 5, 6, 4.) T H E TW O G R O U P S O F V A R IE T IE S S tu c k ey ’s {23) description of th e two groups of varieties was based on ch aracteristics of the catkins a t the tim e of pollen shedding. The w riter {26) found th a t th e catkin prim ordia of G roup 1 have a greater diam eter an d lesser length th a n those of G roup 2 in both O ctober an d J a n u a ry {26). Such m easurem ents aid in differentiating the Journal of A gricultural Research 1066 V o l. 40, N o . 12 i-A -i F ig u r e 5 - C a t k in s o f p e c a n v a r ie tie s in G ro u p 1: A , A lle y ; B , J er o m e ; C , M o b ile ; D , M o b ile fro m n o n v ig o r o u s b u d (0.57 n a tu r a l size) its I -A v* & £ ¥■ % ■ ^ A ik J ^ M |I '.— A , C am era lu e id a d r a w in g of cross s e c tio n o f a s to m iu m o f a m a tu r e a n th er; B , lo n g i­ tu d in a l s e c tio n o f a m ic r o sp o r a n g iu m s h o w in g t h e m a tu r e m o th e r c e lls, m , ju s t b e fo re r o u n d in g up; th e ta p e tu m ce lls, t , s h o w in g th e first s ig n s of d is in te g r a tio n ; th e c e lls b e tw e e n t h e lo c u li. I, a n d th e e p id e r m is, e of cells next to it do n o t disintegrate, b u t increase in rad ial diam eter. T he cells of the m iddle layers continue to d isin te g rate u n til th e pollen is m atu re and the w asting aw ay of th e wall sep a ratin g tw o loculi on eith er side of th e a n th er allows th em to fuse in to one, and is a p a r t of the process of dehiscence. ,iunc la, i93o Stam inate Inflorescence and Pollen of Hicoria pecan 1077 T he m o th er cells do n o t increase in num ber after the tap etu m cells reach full size (35 to 40 days before pollen shedding). As the tap etu m cells d isintegrate, th e m other cells become separated and loosely fill 10.—-A, C am era lu c id a d r a w in g of lo n g itu d in a l se c tio n of a n a n th e r of th e A lle y v a r ie ty on A p ril 1 s h o w in g th e m o th e r c e lls b r e a k in g a p art a n d t h e t a p e tu m c ells r a p id ly d is in te g r a tin g , X 110; B , A s h o w n in cross s e ctio n ; X HO; C , e n la rg e m e n t of A ; X 1003. T h e F r o tsc h e r v a r ie ty r ea ch ed t h is s a m e sta g e on A p ril 15 F igure the sporangium . R ounding up occurs about 21 days before pollen and reduction division follows im m ediately. D ivision of th e m other cells and form ation of tetrad s apparently require only a few hours and the entire process seems to go to com­ pletion in an an th er at a specific tim e on a single day. (Fig. 18.) sh ed d in g 1078 Journal of Agricultural Research vol. 40 , ni. 12 TETRAD I t is d u rin g th e h e tero ty p ic and hom otypic divisions th a t th e first abnorm al beh av ior has been observed. T h e appearance of all of the m o th er cells is norm al, and th e y seem v ery uniform in cell contents, stain in g reaction, and size and shape. (Figs. 2, 14, and 19.) In the process of division various types of abnorm alities occur. D ividing cells were found in th e F ro tsc h e r v a rie ty A pril 26 a t 9 a. m . P ra c ­ tically all steps in th e process of h etero ty p ic and hom o ty p ic divisions were p resen t in a single an th er. In th e fo rm atio n of new nuclei the organization of th e ch ro m atin re su lts in nuclei of various sizes and 17.— C am era lu c id a d r a w in g of cro ss s e c tio n o f a n th e r j u s t b efore d e h is c e n c e ( A ) ," a n d la ta n g e n tia l lo n g itu d in a l s e c tio n of th e s a m e ( B ) ; sto m iu r n at s, S tu a r t v a r ie t y , M a y 13. X 110 F igure density as d eterm ined by the in te n sity of staining. B ecause of the m inuteness of the chrom osom es the n u m b er has n o t been definitely determ ined. In m ost cases the haploid n u m b er w as found to be 12, in o th ers only 10. In some cases w here th e nucleus was in th e a n a ­ phase stage of th e first division, one or two chrom osom es were lagging slightly, b u t in some of th e m ore advanced stages th e y h ad com pletely cau g h t up w ith the o th er chrom osom es. B o th the successive and sim ultaneous m ethods of division of the m o th er cells are com m on in pecans, producing b ilatera l an d te tr a ­ h edral arran g em ents, respectively, of the m icrospores. (Figs. 20, and 21.) In the bilateral arran g em en t th e spindles lie in th e sam e or Juno is, 1930 Stam inate Inflorescence and Polleyi of Hicoria pecan 1079 in perpendicular planes, and no wall is form ed betw een the successive divisions. T he two arrangem ents are abou t equally common. No case has been observed where the four m icrospores were in a row w ithin the te tra d wall, nor has a failure of four m icrospores to form been found. Sm all supernum erary m icrospores are often seen which, according to Shoem aker (19), m ay be the result of sm all nuclei formed from lagging chromosom es, or, according to C oulter and C ham berlain (7), from division of one or m ore m em bers of the tetra d . Small m icrospores are especially num erous in lots of pollen containing a c 1 F ig u r e 18 — A , C a m era lu c id a d r a w in g of cross s e ctio n of an a n th er of th e F r o tsc h e r v a r ie ty on A p ril 26 s h o w in g th e tetr a d s ta g e w ith fra g m e n ts of th e ta p e tu m cells; X 82; B , e n la rg e m e n t of A ; X 400. A lle y rea ch ed th is sta g e on A p ril 10 high percentage of defective grains and are alm ost always partially or to tally void of cell contents. A few oversized grains were found, and the cell contents of m ost of them appeared norm al. The norm al n um ber of pores is three, and variance is very rare w ith norm al or undersized m icrospores; however, oversized m icrospores often have five or six pores. A t m a tu rity some of the m icrospores are w ith o u t nuclei and others w ith o u t either nuclei or cytoplasm . T he lack of protoplasm ic con­ te n ts is the basis of the lactic acid m ethod of determ ining the p ercent­ 1080 Journal of A gricultural Research V ol. 40, N o . 12 age of defective pollen. B y th e use of this m eth o d defective grains w ere found in all lots exam ined, th e n u m b er ran g in g from 0.3 to 81.7 p er cent. Flow ers of th e B everage v a rie ty were found in th e te tra d stage on A pril 24, and co u n ts were m ade as follows: F o u r a n th ers tak en from th e base of a c a tk in contained 294, 373, 331, and 357 te tra d s, respec­ tiv ely ; and four a n th ers tak en from th e m iddle of th e c a tk in contained 380, 380, 317, an d 488 te tra d s. Since each a n th e r contains four pollen sacs, and each te tra d contains four m icrospores, th e above figures also F i g u r e 19.— A , C a m e r a lu c id a d r a w in g o f m a tu r e m o th e r c e lls th a t a p p e a r n o r m a l; B , m o th e r c e lls w it h a b n o r m a l m ic r o ­ sp o r e s. X 850 rep resen t th e average n u m b er of pollen grains per pollen sac in th e respective an th ers, th e general average being 365. L ib eratio n of th e m icrospores (pollen grains) occurs from 15 to 20 days before the pollen is shed. B ecause of th e d isin te g ratio n of th e ta p e tu m and surrounding cells, th e pollen sac is only p a rtia lly filled w ith pollen. U pon lib eratio n from th e te tra d wall th e grains w ander in d ep en d en tly w ithin th e pollen sac and rap id ly enlarge in size, b u t as th e ca v ity continues to enlarge, owing to th e continued d isin te g ra­ tion of th e su rro unding sterile cells, th e pollen sac rem ains only p a r­ tially filled. June is, 1930 Staminate Inflorescence and Pollen of Hicoria pecan 1081 DEHISCENCE OF ANTHERS T h e fusion of th e four pollen sacs into two loculi b y the dissolution of th e sep aratin g wall occurs only a few days before th e opening of F 20.— C a m e r a lu c id a d r a w in g s o f s ta g e s o f d iv is io n s of p o lle n m o th e r c ells at 9 'a . m . r A p r il 26; F r o tsc h e r v a r ie t y . N o t e fo rm a tio n of b o th b ila te r a l a n d tetr a h e d r a l a rra n g em en ts o f m ic r o sp o r es; a ll h a d r e a ch ed t h e te tr a d sta g e t h e fo llo w in g d a y . X 850 ig u r e th e a n th e r on either side by m eans of a stom ium , w ith consequent lib eratio n of pollen grains a t m a tu rity . (Figs. 15 and 17.) The an th e r wall is two cells thick, w ith fragm ents of one or m ore additional Journal of Agricultural Research 1082 V ol. 40, N o . 12 layers. T h e opening of th e a n th e r is due to d ry in g of th e ex terio r or ep iderm al cells an d consequent co n tractio n of th e o u te r in p ro p o rtio n to th e in n er surface. R eclosing of a n th e rs occurs when m o istu re is F i g u r e 2 1 .— C a m e r a lu c id a d r a w in g s o f te t r a d s a n d y o u n g p o lle n g r a in s: E , F , G , a n d H a p p e a r n o r m a l; K , N , a n d Q c o n t a in m o re t h a n four m ic r o sp o r es; a t P are sh o w n , p o lle n g ra in s t w o d a y s a fter l ib e r a tio n from t h e m o th e r c e ll w a ll, s o m e of t h e g r a in s b e in g d e ­ fe c tiv e . X 450 restored. N o opening takes place in an atm o sphere m ore th a n ab o u t 85 p er cent sa tu ra te d . (T ables 2 and 3.) T a b l e _ 2 .— D ata on dehiscence of rip e anthers when plained in m oist a n d d ry a ir at different tem peratures T e m p e r a tu r e 3° C . 22° C 23° C 32° C H u m id ity f M o is t l D r y ._ /M o is t iD r y .. / M o is t I D r y .. /M o is t \D r y _ _ C o n d it io n o f a n th e r s F a ile d to D e h is c e d F a ile d t o D e h is c e d F a ile d to D e h is c e d F a ile d to D e h is c e d d e h is c e . in 5 d a y s . d e h is c e . in 2 d a y s . d e h is c e . in 18 h o u r s. d e h is c e . in 6 h o u r s . 1083 eo l-HN fliH N O ICHHlO rji COrfi NT Q1— O1O N tscO H H riN^C O 1-1 1*tltO 5 O^^O GCOc3 CO1-1TliC^aJW (N 00 Tj*o (M© CO’’T CNiO 00 N o o ^ -i, © t’- © ^ o O ’*3tcocoe 03 03 © CO© f- © N os os 03 © CO^ COto oo (NW© I"* © CO •H W hii>O C O O iO O C C O O O O O O O O O (M O ^ CO cocoes •— * l »-< © NMCOCO CO CN© O eo ^ co o c^ tjieo eo co iN 03 H N N rt © CO © 00 00 0 3 1—© 66 .6 M ile s \per hour G rain s .Per centi vr G O N -© © © i'»oor-© O' 00 © © l-« 03 © © ©© ^ io H H t f lo o ^ < o o o H o c o H o o ii; » o w t > w o ©©r''©©t''.CT3r-t''-OO*’-QOaO03©©t'’-OGOOt'-a3 ^ ( ^ O i - i O f ' O M M O O iD O ^ O O H O O N O OJ N cocoes iHIO 1-1 1—( (NCnOTti't£’l> 'O O C :£1'DP*tOdis'ts-iO tD N N N cC '0 N500DN ^ h o O '# ^ IDtD^NCOWOCOOtOOOOOrtOiOlOOOOMOM tOOO‘ivtDI^NP'{OOOaOO‘OCiaOO:N^NCiODO> 000©»OiCTji©t-©C^»-iOO^?OOiCO^C^O>0>rt* © © t*»t>-© © p'*l'-© © © t,'-©r-.Ttl©©P>-l> © © If COo Til © © 2 MM c5 C$ S « cl cS M c? >-1 N M -tfW 5 000005 R k k r ih Q Q Q Q ,n ,n ,Q ,« « « « « ^ CC^ © © P» OC £>> ^ >> > c3 c3 «J as ca c: s s s s s s May 9 ___ M a>r 1 0 . . May 1 1 . . O' h w o n m J M ile s per hour G ra in s Per cent 1 <0 W CJN tP 72.3 ’c^r'-cor-iiot'-^ooiocco^i'r'-iNOcqTjHCi’ — T— 1 J— 1 t-H1“^ |— 1i© 1 72.8 M ile s per hour G ra in s M ile s \per hour ; G ra in s Per centi O' 1929 Per cent Apr. 1 8 - . P o lle n R e la ­ per W in d sq u a r e tive h u ­ v e lo c ity c e n ti­ m id i t y m ete r T em ­ pera ­ tu r e P o lle n R e la ­ per W in d sq u a re tive h u ­ v e lo c ity j c e n ti­ m id it y i m ete r 1 P o lle n T em ­ R e la ­ per W in d sq u a re tive h u ­ pera ­ v e lo c ity c e n ti­ m id it y tu r e m ete r R e la ­ T em ­ tive h u ­ pera­ m id it y tu r e IN 1 1 oOOa5b-©N?OCOfl) f*. £ OOHOC'OOOO^ONrtCOOCOHHNHifl'^O r i|> i£ 5 0 c 0 ^ ffl i-i f-4 i-< i-H T em ­ p era ­ tu r e P o lle n per R e la ­ W in d sq u a r e tive h u ­ v e lo c i t - c e n ti­ m id it y i m ete r coTrccoc^TticOffOocq ^•© © ir—N -© © N *N -io© © N -© r'-T ti© © t'-t" -© © D a te 3 p. m. to 6 p. m . 12 m. to 3 p. m . 9 a. m. to 12 m . j 6 a. m. to 9 a .m . 6. p. m. to 6 a. m . 3.— Summary of data or pollen dissemination s V. O j Z'L 1 Table s,O Ii> M , NO»HCiOOO■ 2232S222§3?3S voi.^o.No. n : June is, 1930 Staminate Inflorescence and Pollen of Hicoria pecan 1085 An idea of the m a tu rity of pollen can be had from the stiffness of the catk in . A catk in th a t would n o t shed pollen w ithin 48 hours is relatively stiff; one th a t would norm ally shed w ithin 12 hours in warm , sunny w eath er is lim ber. W ithin two days after pollen is shed the catk in becomes dry, very stiff, and falls to the ground. T he stage of m a tu rity of pollen can best be determ ined by the color of the an thers. F rom the tim e of em erging from the bud scales u ntil 48 hours before pollen would norm ally shed under suitable conditions, the an th ers are the sam e color as the bracts and leaves. A fter this tim e, however, the green color gradually disappears and the anthers take on m ore and more of the orange-yellow color of the pollen. W hen fully ripe th e a n th er is pale greenish yellow. If conditions are suitable, dehiscence will occur im m ediately, b u t if the tem perature is too low, or the hum id ity above about 85 per cent, the catkin m ay rem ain for five days or more w ith o u t falling to the ground. T he ra p id ity of opening of ripe anthers depends som ew hat on tem ­ p eratu re b u t largely on the relative hum idity of the air. On a warm , sunny d ay a single a n th er will com pletely shed its contents in an hour after opening begins. D ue to variations in catkins, twigs, trees, and varieties under the sam e conditions, a single catkin will shed pollen for 2 days, a single tree will shed pollen for 5 or 6 days, a single v ariety will furnish pollen for 10 or 12 days, and a collection of three or m ore varieties of each group will furnish pollen for ab o u t 3 weeks. If w ilting was produced very rapidly by the high tem peratures im m ediately after the catkins were rem oved from the tree, opening did n o t occur. Likewise, if the relative hum idity was above 82 per cent the an thers rem ained closed. P a rtly or com pletely open anthers closed in a few m inutes when subjected to a relative hum idity of m ore th an 90 per cent. C atkins th a t had fallen from the tree and become d ry reabsorbed m oisture and the anthers closed in the pres­ ence of high hum idity. R ecords tak en in the orchard a t 3-hour intervals showed th a t the tim e of m ost rapid shedding of pollen varied from day to day, d e­ pending on the tem perature and the relative hum idity of the air. No shedding occurred when the relative hum idity was above 85 per cent. On some days the peak was reached before 9 a. m. On other days it was delayed until after 3 p. m., b u t it never occurred between 6 p. m. and 6 a. m. T he tem perature, relative hum idity, and windvelocity d a ta in Table 3 were taken a t the end of the tim e of exposure of the slides, and in some cases do n o t accurately indicate the condi­ tions th a t prevailed during the period of exposure. The apparatus for catching pollen (fig. 1, A) rem ained in the sam e place throughout the pollen-shedding season for three years. In 1928, in the m idst of the pollen-shedding season, a period of 64 hours elapsed w ith no shedding because of rain. T hree 24-hour periods occurred during the same season when no pollen was shed. As a resu lt of low tem peratures and high hum id ity in 1929, not more th a n 5 days o u t of 21 covered in the pollen-shedding season were really favorable for pollen dissem ination. T he relative hum idity and tem p eratu re reached during clear nights w ith a gentle breeze were not sufficient to cause an th ers already open to close, b u t they did p rev en t the fu rth e r opening of anthers. A dew or rain which caused 1086 Journal of Agricultural Research V ol. 40, N o . i2 th e relativ e h u m id ity to rise above 90 p er cent caused all an th e rs to close and delayed shedding u n til several hours a fte r sunrise on the following m orning. Since very high or very low tem p eratu res do n o t occur a t th e tim e th a t pecans shed th eir pollen, the influence of te m p e ra tu re an d w ind velocity is chiefly in d irect in re g u latin g the relativ e h u m id ity of the air. T h o u g h th ere is no opening of a n th ers d u rin g dam p, ra in y w eather, im m a tu re an th ers continue to reach th e stage of m a tu rity , therefore a period of high relativ e h u m id ity followed by a prolonged, period of low relative h u m id ity is accom panied by th e shedding of a v ery large q u a n tity of pollen for several hours. Close observ ation and careful records k e p t for a n u m b er of years (30) show th a t the length of the receptive period of th e p istillate flow­ ers is as responsive to conditions of te m p e ra tu re an d h u m id ity as th a t of stam in ate flowers. T h e sam e conditions w hich delay th e shedding of pollen also prolong the receptive period of th e stigm as. T rees on w hich the stigm as becam e receptive a t a tim e unfav o rab le for pollen shedding an d favorable for pollen germ in atio n did n o t have a h eavy M ay " d ro p .” T he effect of high h u m id ity is m ainly th a t of re ta rd a tio n . I n ­ stances have been observed in w hich stigm a tic surfaces dried as m uch in 24 hours u n d er dry, w indy conditions as th ey did in tw o weeks of dam p, cloudy w eather. D u rin g a prolonged d ro u g h t th e su scep ti­ bility of the stig m atic surfaces to ra p id d rying increases as the recep­ tive stage is approached, and on th e second d ay a fte r becom ing receptive the roughened surface darkens, shrinks, and dies. In rain y w eather the receptive stage is reached very g radually, and afte r ab o u t 10 days th e stigm atic surfaces show sym ptom s of drying. If cloudy w eath er continues th e stigm as do n o t becom e com pletely d ry for ab o u t 15 days. T h e n orm al period of re cep tiv ity of a single flower is ab o u t five days. O bservations of ab o u t 25 varieties for seven years show th a t during rain y seasons there are usually enough su n n y days to effect pollina­ tion; and th a t d ry w eather, though op tim u m for pollen dissem ination often precedes a heavy M ay drop. D a ta in this paper in d icate th a t the degree of h u m id ity optim um for pollen shedding is not sufficient to cause germ in ation of pollen; also a low relativ e h u m id ity m arkedly reduces the v iab ility of the pollen. T able 4 shows the am o u n t of pollen cau g h t on greased slides a t various distances from pollen-shedding trees. T h e a p p a ra tu s was alw ays k e p t on the leew ard side of the trees. T he difference betw een the am o u n t of pollen caught a t a height of 10, 20, or 30 feet is insignifi­ can t. T h e am o u nt of pollen th a t will be blow n by the w ind depends on the h u m id ity , tem p eratu re, and velocity of th e circu latin g air. T he p a th of the pollen from a sm all g ro u p of trees is narrow a t a given tim e, b u t the horizontal direction of air cu rren ts is likely to v ary g reatly during the 10 or 12 days of pollen shedding of a single variety . T h ro u g h o u t the so u th eastern p a rt of the U n ited S ta tes winds from th e east and south are som ew hat m oist an d are n o t as conducive to pollen shedding as winds from the west and n o rth w est. June is, 1930 Staminate Inflorescence and Pollen of Hicoria pecan 1087 T a b l e 4.— A m ou n t of pollen blown by a % to 5 m ile-per-hour w in d fro m a 20-yearvld pecan orchard of M obile, Stu art, and Teche varieties, 1927 and 1928 D is ta n c e from orchard H e ig h t fro m g ro u n d P o lle n p er D a y after p o lle n s q u a r e c en tim e te r I R e d d in g b eg a n Y e a r a n d t im e of d a y 1927 Feet 500 f e e t___ D o ... D o ... D o ... D o ... D o ... 800 f e e t .. . D o ... D o ... D o ... D o ... D o ... 1,000 f e e t . D o ._ . D o__. D o ... D o ... D o .. D o ... D o ... D o ... D o ... D o ... D o ... D o ... D o ... D o D o .. D o .. D o .. 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 2 p . m . to 5 p . m . . . d o _____________ do ................ 6 p . m , to 7 a . m ._ d o _____________ d o _____________ 8 a. m . to 11 a. m ._ d o _____________ d o . . . ................... d o .......................... d o _____________ do ................ 11 a. m , t o 2 p . m . d o ____________ d o ____________ 2 p . m . to 5 p . m . . d o .......................... do ................ 5 p . m . t o 7 a. m . . d o _______ _____ do ____ 7 a, m . to 11 a. m _. d o ____________ d o ____________ 11 a. m . to 2 p . m . d o ____________ d o ____________ 2 p . m . to 5 p . m _ . d o ____________ d o ____________ G rain s 70 .7 80 .7 92 .6 0 .8 3 .7 4 .5 137.8 162.5 156.5 3 .8 5 .2 5 .6 19.3 2 8 .0 28.3 8 .3 16.6 15.5 13.1 21.4 19.1 11.1 13.2 13.5 64 .9 107.1 134.7 28 .6 4 4 .8 39 .7 F ir st. D o. Do D o. D o. D o. Second. D o. D o. F o u r th . D o. D o. D o. D o. D o. D o, D o. D o. D o. D o. D o. F ifth . D o. D o, D o. D o. D o. D o. D o. D o. 10.6 8 .4 10.6 13.3 13.6 F ir st. Second. T h ir d . F o u r th . F ifth . 1928 3,000 fe e t. D o ... D o ... D o ... D o ... 2 p . m . to 2 p . m . “ _ d o ______________ d o ______________ d o ______________ d o ______________ » 24 h o u rs. T a b l e 5.— D ales on which pollen w as shed an d on which p istilla te flowers were receptive of com m ercial varieties of pecans in leading pecan-growing centers of southeastern U n ited States 1926 P o lle n s h e d d in g P is tils r e ce p tiv e L o c a tio n a n d v a r ie t y o f p eca n B egan T if to n , G a.: A lle y ...................................................................... .......... B ig Z _________________ ____________________ B r a d l e y .. ______________________ ___________ C u r t is ___________ _________ ______________ D e i m a s ............ ................... .................................. ........ F r o tse h e r ....................... ................................ .............. M o b ile ___________ _________ ____________ _ M o n e y m a k e r ___________ _______________ M o o r e _________ _______ _____________________ N e l s o n . . ....................... .................................................. P a b s t ............................................. ................................... P r e s id e n t .......................... .............................................. S c h l e y ..................... ...................... ......................... S tu a r t....................................... ..................................... S u m m e r s ......................................................................... T e c h e .................................................... ...................... V a n D e m a n ___________ _________ ___________ A p r 27 A p r. 29 A p r. 28 M ay 1 M ay 4 A p r. 26 M ay 1 A p r . 26 A p r. A p r. A p r. A p r. A p r. A p r. 28 29 30 26 30 28 Ended B egan A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. 30 28 26 28 27 29 28 27 26 27 28 30 28 29 28 A p r . 25 E nded I SelfG ro u p j p o lliI n a te d 1 2 2 2 2 2 1 2 1 1 1 2 2 2 1 2 2 Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. Y es. 1088 Journal of Agricultural Research V ol. 40, N o . 12 T a b l e 5.— D ates on which pollen w as shed a n d on which p istilla te flow ers w ere receptive o f com m ercial varieties o f pecan s in leadin g pecan -grow ing centers o f southeastern U n ite d S tates — Continued 1927 P o lle n s h e d d in g P i s t i ls r e c e p t iv e S e lf- G ro u p L o c a tio n a n d v a r ie t y of p e c a n B egan T if t o n , G a.: ......... A lle y B ig Z ................... B r a d le y ............. C u r tis ................. D e l m a s _______ F r o t s c h e r ____ M o b ile ............... M o n eym ak er. M o o r e ________ N e ls o n ________ P a b s t ________ P r e s id e n t ____ S c h le y . S u c c e s s ............... T e c h e .................. V a n D e m a n ... E n ded B egan E n ded A p r . 29 M ay 7 A p r . 28 M ay 3 A p r . 29 A p r . 18 M ay 6 A p r . 21 A p r . 26 A p r . 22 A p r . 29 A p r . 26 A p r . 29 — . d o ......... . . . d o ____ . . . d o ____ A p r . 21 A p r . 29 A p r. 21 A p r. 22 A p r . 26 A p r . 12 A p r . 29 A p r . 18 A p r . 21 A p r. 9 A p r. 18 A p r. 21 . - . d o ......... . . . d o ......... . . . d o ____ A p r . 26 p o lli­ n a te d N o. N o. N o. N o. Y es. Y es. N o. Y es. Y es. N o. N o. Y es N o. N o. N o. Y es. 1928 T if to n , G a.: A lle y B ig Z ................... B r a d le y .............. M o b ile _______ M on eym ak er. M o o r e ________ N e l s o n . . - ......... P a b s t _________ P r e s id e n t _____ S c h l e y ________ S u c c e s s _______ T e c h e _________ Tifton, Ga.: Alley_______ Big,Z ......... Bradley . Curtis______ Delmas-......... Frotscher___ Mobile_____ Moneymaker. Moore______ Nelson______ Pabst_______ President___ Rome ..... Schley . Stuart............. Success . Summers____ Teche. . Van Deman--. Williams........ Cordele, Ga.: Frotscher___ Mobile______ Moore______ Nelson______ Schley______ Stuart______ Van Deman__ Albany, Ga.: Schley . Stuart . Van-Dcman.. M ay M ay M ay M ay M ay M ay A p r . 28 ! M ay 2 I M ay 5 | M ay 2 ! M ay 5 L . - d o ____ A p r . 30 A p r . 28 . . - d o ........ A p r . 30 . . . d o ........ A p r . 28 A p r . 21 A p r. 30 . . . d o ____ A p r . 28 . . . d o ____ A p r . 30 A p r . 20 1 2 2 2 2 2 1 2 1 1 1 2 1 2 2 1 1 2 2 2 N o. N o. N o. N o. Y es. N o. N o. Y es. N o. N o. N o. Y es. N o. Y es. N o. N o. N o. N o. Y es. Y es. A p r . 19 2 1 1 1 2 2 2 Y es. N o. Y es. N o. Y es. Y es. N o. A p r . 25 A p r . 26 A p r . 25 2 2 2 Y es. Y es. Y es. A p r . 20 A p r . 21 A p r . 20 A p r . 21 A p r. 18 A p r . 23 A p r. 19 A p r. 21 A p r. 18 A p r . 22 A p r. 21 A p r. A p r. A p r. A p r. A p r. 22 21 20 25 24 A p r . 20 A p r . 20 A p r . 18 A p r. 22 A p r. 21 A p r . 18 A p r . 19 A p r . 22 A p r . 21 A p r. 21 A p r . 24 A p r . 21 A p r . 23 . . . d o ____ . . . d o ____ Apr? 20 A p r. 22 A p r. 23 A p r . 20 A p r . 20 A p r . 18 A p r . 20 A p r . 29 A p r . 18 A p r . 22 . . . d o ____ . . . d o ____ Y es. N o. N o. Y es. Y es. Y es. N o. Y es. Y es. Y es. N o. Y es. A p r . 22 A p r . 22 . . . d o ____ A p r . 24 A p r . 20 ..d o _____ A p r . 23 1 2 2 1 2 1 1 1 2 2 1 2 A p r . 20 A p r . 21 A p r . 20 - . . d o ____ j une is, 1030 Staminate Inflorescence and Pollen of H icoria pecan 1089 T a b l e 5.— D ates on which pollen w as shed an d on which p istilla te flow ers were receptive o f com m ercial varieties of pecans in leading pecan-grow ing centers of southeastern U n ited S tates — 'Continued 1929 P o lle n s h e d d in g P is t ils r e c e p tiv e G ro u p L o c a tio n a n d v a r ie t y of p e c a n B egan Monticello, Fla.: Curtis............. . Frotscher . Mahan______ Moore_______ Russell______ Schley . Stuart.............. Teche_______ Experiment, Ga.: Alley ....... Appomattox.. Beverage......... Bradley . Centennial__ Curtis______ Delmas........... Indiana........... Jerome______ Mantura........ Mobile............ Moore............. Nelson______ Pabst. ......... Randal........... Robson........... Rome_______ San Saba____ Schley............ Stuart............. Success_____ Teche_______ Van Deman... Thomasville, Ga.: Frotscher___ Mobile........... Stuart............. Schley............ Athens, Ga.: Alley ......... Delmas_____ Frotscher........ Jerome______ Mobile.. . Nelson______ Pabst.............. Success........... Schley. ___ Stuart______ Teche.............. Van Deman... Raleigh, N. C.: Appomattox. . Bradley......... Curtis............. Delmas . Frotscher____ Georgia_____ Krakezy......... Louisiana....... Manture......... Mobile______ Moneymaker. Pabst.............. President........ Russel............. Schley______ Sovereign____ Stuart______ Success........... Teche.............. Van Deman... E nded A p r. A p r. A p r. A p r . 18 E n ded A p r . 19 A p r. 25 A p r . 22 A p r, 23 A p r . 21 A p r . 22 A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. A p r. do. M ay A p r. A p r. ..d o ...d o .. ...d o . A p r. A p r. . .. d o . A p r. A p r. A p r. ...d o . A p r. A p r. M ay B egan A p r . 22 A p r . 23 A p r. 21 A p r. 24 M ay 3 A p r. 24 M ay 7 A p r. 25 M a y 12 M ay 7 M a y 12 A p r. 30 A p r. 23 A p r . 24 A p r. 23 A p r. 24 . . . d o ____ A p r. 27 A p r . 24 A p r. 30 A p r, 26 M ay 7 M ay 8 A p r . 26 M ay 7 M ay 8 A p r . 28 M a y 8 A p r . 22 M a y 1 ...d o .- i. M ay 6 . . . d o ------ A p r . 26 A p r . 25 M a y 3 A p r. 23 M a y 2 A p r. 21 . . . d o ____ A p r . 30 M ay 8 A p r . 24 M a y 9 A p r . 22 M a y 1 A p r. 22 A p r . 30 . . . d o ____ . . . d o -----A p r. 23 A p r, 24 . . . d o ___ A p r. 22 . . . d o ____ A p r . 25 A p r . 20 A p r. 21 A p r. 22 A p r. 21 A p r . 18 A p r. 22 A p r. 22 ...d o . M ay A p r. M ay M ay M ay ...d o . M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay doM ay M ay M ay 3 M ay 9 M ay 8 M ay 3 M ay 7 M ay 9 A p r. 24 A p r. 28 A p r . 24 . . . d o ___ M ay 3 M a y 15 M ay 6 . . . d o ____ . . . d o -----M ay 3 M ay 9 M a y 13 . . . d o ____ M a y 14 . . . d o ____ M a y 15 M M M M ay ay ay ay 6 3 1 5 M a y 13 M a y 11 M ay 9 M a y 13 M ay M a y 13 M ay 2 M ay 3 M ay 2 A p r . 30 M M M M . . . d o ------ A p r . 29 . . . d o ____ M a y 23 M a y M a y 19 M a y M a y 21 M ay 6 M ay M a y 1 .-.d o M a y 15 M ay 5 M ay M ay 1 M ay M a y 16 M a y 15 M a y M a y 23 M a y M a y 19 M a y M a y 23 M a y M ay 3 M ay M a y 21 M ay M a y 18 M a y M a y 22 M ay M a y 21 a y 10 a y 12 a y 11 ay 9 M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay M ay 10 1 19 11 3 23 21 8 18 23 3 23 11 10 17 24 13 24 15 10 S elfp o lli­ n a te d Y es. N o. Y es. N o. Y e s. Y es. Y es. Y es. .N o . Y es. Y es. N o. N o. Y es. Y es. Y es. Y es. Y es. N o. Y es. Y es. N o. N o. Y es. Y es. Y es. Y es. Y es. Y es. N o. N o, N o. N o. Y es. Y es. N o. Y es. Y es. Y es. N o. .N o . Y es. .Vies. Y es. Y es. Y es. Y es. N o. Y es. Y es. Y es. N o. Y es. N o. Y es. N o. N o. N o. Y es. Y es. Y es. Y es. N o. Y es. Y es. Y es. N o. Journal of Agricultural Research 1090 V ol. 40, N o . 12 T ab le 5 con tains incom plete d a ta on d ates of beginning an d ending of pollen shedding and beginning an d ending of re c e p tiv ity of stigm as of 142 v arieties from eight pecan-producing sections in th ese S tates. In v arieties of G roup 1 th ere were 31 in stan ces of hom ogam y and 25 in stan ces of com plete dichogam y, all of th e la tte r being p ro tan drous. I n v arieties of G roup 2 th ere w ere 57 in stan ce s of hom ogam y and 29 in stan ces of dichogam y— 11 in stan ce s of p ro ta n d ry and 18 in stances of pro togyny. I F j K 22 .— C a m e r a lu c id a d r a w in g s of p o lle n g r a in s in la c tic a c id m o u n ts ; A , B , C , D , E , H , I , J, a n d K c o n ta in a s m a ll a m o u n t o f f in e ly g r a n u la r c y to p la s m ; G a n d M are e lo n g a te d grain s; 11, a gra in w it h s e v e n p ores; F , a n o r m a ] g r a in . X 850 ig u r e E X A M IN A T IO N OF PO LLEN T h e w riter h as confirm ed S tu c k ey ’s (23) o b serv atio n th a t “ in size, shape and general ch aracter, the pollen of th e tw o groups of varieties of pecans differ alm ost none.” H ow ever, th e grains are n o t “ ra th e r flatten ed , ” as he described them . D ry pollen grains from a single v a rie ty v a ry slightly in size and shape, are scu lp tu red, and uniform ly pale yellow. T h e y are spherical b u t becom e sh ru n k en im m ediately afte r shedding, an d w hen exposed to very d ry air th e shrinking increases. F resh pollen ta k e n from an atm osphere 80 p er ce n t s a tu ra te d a t 21° C. an d p laced in an oven a t 32° lo st 5.5 p er ce n t m oisture; w hen placed in an oven a t 60° i t lo st 10 p er cen t. D ry grains containing no p ro to p lasm can n o t be distinguished from those w ith protoplasm . T h o u g h the increased am o u n t of sh rin k age w hich accom panies th e absence of p ro to p lasm June i5,1930 Staminate Inflorescence and Pollen of Hicoria pecan 1091 m ay serve as^ a m eans of identifying certain defective grains, m any abnorm al grains appear norm al w hen dry. N orm al pollen grains m o u n ted in distilled w ater swell im m ediately and tu rn d ark. G rains w ith o u t protoplasm fail to swell, and grains containing p ro to plasm in less th a n the norm al am ount swell so th a t they are indistinguishable from norm al grains. W hen m o u n ted in lactic acid, norm al grains become light cream in color and spherical in outline, and assum e in one m inute an appear­ ance d istin ct from defective grains. T he la tte r either fail to swell and rem ain opaque, or swell and becom e alm ost tran sp aren t. T he F 2 3 .— C a m e r a lu c id a d r a w in g s o f p o lle n g ra in s in la c tic a cid m o u n ts : A , N o r m a l g ra in w it h c o a r se ly g ra n u la r c y to p la s m (Jero m e); B , C , D , L , a n d M c o n ta in n o c y to p la s m (Jerom e); F , a gra in o f le s s t h a n n o r m a l s iz e (J ero m e); E , G , H (J ero m e), I , K (B e v e r a g e ), g ra in s e n la rg e d , a b n o r m a lly sh a p e d . X 800 ig u r e lack of norm al protoplasm ic co n ten t in certain grains is clearly evident. Some grains are w ith o u t eith er protoplasm or pores, indicating th a t abnorm ality began early in th e developm ent; others contain a sm all am ount of pro to plasm and one or m ore pores; still others have the norm al n u m b er of pores and swell norm ally, b u t the protoplasm granules are v ery fine and sufficiently different from norm al grains to be term ed defective. A single pollen grain observed in lactic acid am ount is spherical w ith a roughened surface. W hen the percentage of norm al grains is high they are extrem ely uniform in size, b u t if th e percentage of Journal of Agricultural Research 1092 V o l 40, N o . 12 defective grains is high th ere are nu m ero u s large, sm all, an d odd­ sh ap ed grains. (Figs. 22 an d 23.) A n o rm al grain is a b o u t 50 m i­ crons in d iam eter (23) w ith a w all a b o u t 2 m icrons in thickness. T here is no appreciable difference in th e size of pollen of an y of th e varieties stu d ied except v aria tio n s due to a larg e am o u n t of defective pollen. PERCENTAG E OF D E F E C T IV E PO LLEN T ab le 6 co n tain s d a ta on th e am o u n t of defective pollen found when 169 lo ts w ere exam ined b y th e lactic acid m eth o d . T h e to ta l n u m b er of grains exam ined w as 169,000. T able 6 .— Percentage of defective pollen as fo u n d b y counting 1 ,0 0 0 grains in lactic acid m ounts, 1928 an d 1929 a 1928 P e c a n v a r ie t y a n d v ig o r A ver­ age de­ fe c tiv e g r a in s P e r c e n ta g e of d e fe c ­ t iv e g r a in s fo u n d a t p o s itio n in d i­ c a te d A p ex 19 .5 3 .0 6 .7 8. 3 35.1 6 .3 5 4 7 .9 6. 4 M id d le B ase 3. 7 2 .5 2 .9 10. 2 33. 5 8. 6 4. 4 9. 2 6. 0 8 .9 34. 5 6. 7 7 .6 3 .1 7. 3 6 .3 3 7 .1 4 1 4. 1 6. 3 6 .0 Jerom e: N o n v ig o r o u s N e ls o n ____________ 2 7 .2 3 5 .2 7 1 .2 23 .8 20. 2 20 .2 P e c a n v a r ie t y a n d v ig o r A ver­ ag e de' f e c tiv e g ra in s 3 2 .4 3 1 .6 3 7 .1 3 3 .5 4 2 .2 4 0 .5 10. 6 4 4 .8 16.3 P e r c e n ta g e of d e fec ­ t iv e g r a in s fo u n d a t p o s itio n in d i­ c a te d A p ex P a b s t: V ig o r o u s _____ N o n v ig o u r o u s R a n d a l___________ R o b s o n ___________ R om e ............ S a n Saba: V ig o r o u s ............ N o n v ig o r o u s_ _ S c h le y .......................... S t u a r t .......................... T e c h e _____________ U nknow n . V a n D e m a n ............ W auchenah -_ M id d le B ase 4 .5 4 .4 5 .9 7 .1 2 9 .6 6 .7 1 0 .3 1 3 .4 1 4 .3 4 6 .6 7 .5 13.1 2 9 .2 5 .8 14 7 5 .4 1 1 .3 12.8 16.0 2 7 .6 5 .1 9 .4 4 4 .5 6 3 14 .0 20 . 6 9 .4 1 7 .6 3 7 ,5 5 .3 81. 7 8.0 12.2 35. 6 5. 7 4 .0 1929 A verP e c a n v a r ie t y L o c a tio n V ig o r P e r c e n ta g e o f d e fe c ­ t iv e g r a in s fo u n d a t p o s itio n in d ic a t e d fe c t iv e g r a in s A p ex A lley..................... E x p e r im e n t , G a . Appomattox______ - - . - d o ...... ............... . Beverage ......... do .............. . Bradley______ ____ d o ___________ Centennial________ do _____ Curtis .............. d o ___________ Delmas______ ____ d o ___________ Ga. Giant________ T if to n , G a ______ Indiana__________ E x p e r im e n t , G a . Jerome ______ do ......... Mahan ______ M o n t ic e llo , F l a - . Mantura--------------------- Experiment, Ga McAlister_______ do....... ......... Mobile_________ ...d o ________ Do ----------Oordele, Ga............. D o. .............. . Milner, Ga____ D o.............................. Barnsville, G a.. Do_______________ . . ...d o ................. Do..............................j____ do________ D o----------do..... ........... Do....................... do________ Do ..................... do________ Do_______________I_____do________ M e d iu m . d o ________ d o ________ d o ________ d o ________ d o ________ V ig o r o u s _____ d o ________ M e d iu m _____ d o ________ V ig o r o u s .......... M e d iu m .......... d o . _ .......... d o .. . d o _______ V ig o r o u s . d o ________ d o ________ d o _______ M e d iu m _____ d o ________ N o t v ig o r o u s . d o . . .......... M id d le B a s e 10.2 .3 .9 6 .9 3 1 .7 4 .6 7 .0 1 0 .4 3 .3 3 .3 1 .4 7 .7 4 .3 1 .4 4 .4 0 8 .5 2 .3 4 .4 12.0 20.0 8.2 1. 1 8 .4 1 .7 3 .7 .8 1 .4 2. 6 8.0 5 .4 3 .6 3 .0 2 .3 _ a P o lle n from v a r io u s p e c a n v a r ie t ie s w h e n e x a m in e d in 1 9 2 9 ,1 3 y e a r s a fte r c o lle c tio n , s h o w e d t h e f o llo w m g p e r c e n ta g e s of d e f e c t iv e g r a in s: F r o tsc h e r , 4.5; M o n e y m a k e r , 6.2; P a n A m e r ic a n , 9 8: P i e s i d e n t , 4 1* T e c h e , 30.6; V a n D e m a n , 3. ' 1093 June 15,1930 Staminate Inflorescence and Pollen of Hicoria pecan T a b l e 6.— Percentage o f defective pollen a s fo u n d by counting 1,000 g rain s in lactic acid m ounts, 1928 and 1929 —-Continued 1929 P e c a n v a r ie ty L o c a tio n V ig o r M o o r e ___________________ ..........d o ............................................ B a r n s v ille . G a ____________ _____d o _______ _______ E x p e r im e n t, G a ___________ ...d o . . R o b s o n . _______________ ......... d o ............................. S an S a b a .................... ............ D o ...................................... P a b s t ........................................ D o ...................................... D o __________________ D o . . .................................. S u m m er s ............................. S tu a r t........................................ S u c c e ss..................................... T eche . . .................. . . . V a n D e m a n .......................... D o ...................................... ____ d o ___________ D o ...................................... D o . . . _______________ D o __________________ W a u c h e n a h ........................... W illia m s ....... .......................... P e r c en ta g e of d efec­ A v e r ­ t iv e grain s fo u n d at p o s itio n in d ic a te d age d e­ fec tiv e g ra in s A p ex M id d le B a s e 6 .3 5. G 12 .3 1 .0 6 .5 2 .7 5 .2 5 .9 6 .0 37 .5 6 .0 16.4 7 .2 3 .7 1.2 41.0 32.1 4 0 .0 9 .6 26 .0 11.2 10.4 6 .7 6 .8 9 .8 5 .4 2 .5 4 .6 1.1 .9 .9 3 .7 5. G 3 .2 7 .8 5.7 2 .2 2 .9 6 .5 36 .6 4 6 .0 4 1 .5 F e r tiliz e r S t u a r t ........... ........ ................... D o __________________ D o ______________ _ D o ...................................... D o ................ ..................... Do............................ E x p e r im e n t, G a .................. ____ d o ____ __ . . . ________ ____ d o _____ _____ ____ ..........d o ........................................... H ig h N ............ ..........d o ............................................ H ig h K _______ ____ d o . __________________ 5 .4 3 .0 5. G S. 6 7 .2 6 .5 In 1928 pollen was m uch m ore plentiful in the orchards th a n in 1929, and th e percentage of defective grains was ab o u t twice as high. T h e differences betw een th e percentages of defective pollen shed from th e apex, m iddle, and base of th e sam e catkins is negligible. T he C enten­ nial and M a n tu ra were the only varieties th a t produced pollen m ore th a n 19 p er cent of w hich was defective in 1928 and 1929, and the P a b st was th e only v ariety th a t produced pollen less th a n 5 per cent of which was defective in b o th years. T he v ariatio n in percentages of defective pollen of the M obile variety, tak en from four localities and from trees of unequal vigor in 1929, is very sm all; also the v ariatio n in percentages of defective pollen tak en from S tu a rt trees w hich received different lands of fertilizers is insignificant. O n th e o th er han d , Schley pollen from nonvigorous trees a t Griffin h a d ab o u t six tim es as high a percentage of defective pollen as th a t g ath ered a t E xperim ent, Bacon ton, or T ifton, and V an D em an pollen from vigorous trees a t Cordele h ad ab o u t one-third as high a percentage of defective pollen as th a t from trees of m edium vigor a t B aconton an d ab o u t one-fourth as high as th a t from vigorous trees a t E x perim ent or T ifton. T able 7 shows th e m agnitude of v aria tio n of defective grains in successive lots of 100, th a t is, th e percentage of defective grains in successive lots. ^ T h e table includes 6 varieties an d 12 lots of 1,000 grains each w hich were shown in T able 6 . In general, it m ay be said th a t in counting 1,000 grains in lots of 100 grains each, the Journal of Agricultural Research 1094 V ol. 40, N o . 12 low est percen tag e of defective grains is a b o u t h alf t h a t of th e highest p ercentage. T 7 .— M agn itu de of the variation (per cent ) o f defective g rain s as counted in able successive lots of 100 P e r c e n ta g e o f d e fe c tiv e g r a in s in p o lle n from — P e r c e n ta g e of d e f e c t iv e g r a in s a t p o s itio n m e n tio n e d in p o lle n fro m — C e n te n n ia l S c h le y Jerom e A lle y A p ex M id d le B ase A p ex M id d le B a se A p ex M id d le M antu r a C u rtis B ase 34 30 35 35 32 33 43 34 45 19 32 34 30 34 38 40 29 36 34 38 30 32 33 44 41 44 42 34 33 38 33 19 36 24 40 30 36 31 40 35 33 35 47 37 33 35 46 34 39 30 44 38 42 40 45 43 47 54 39 30 11 13 9 15 10 16 10 15 17 12 20 14 16 15 22 17 13 17 14 12 13 21 15 12 9 8 16 13 18 14 30 16 16 13 17 19 25 21 17 21 57 72 80 57 74 74 68 77 28 81 54 51 52 53 54 77 60 56 56 48 33 .5 3 4 .5 37.1 3 2 .4 37. 1 4 2 .2 12.8 16 14 19. 5 7 1 .2 56 .1 T h e d a ta recorded in T ab le 8 w ere o b tain ed w hen th e ru b b er-rin g cells w ere used, as previously described. T able 8 .— P ollen germ in ation under va ryin g conditions S E R I E S 1 <■ Sugar u sed M a lt o s e .. D o ... D o ... D o ... S u cro se. _ D o ... D o ... D o ... L a e to s e .. D o ... D o ... D o ... G lu c o s e .. D o ... D o ... D o ... F r u c to se . D o ... D o ... D o ... G a la c to se D o ... D o ... D o ... S tr e n g th P e r cent 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10 5 20 15 10 5 G e r m i­ n a tio n 0 .5 .5 1 .0 1 .0 2 5 .0 3 0 .0 50. 0 4 0 .0 5 0 .0 4 0 .0 3 0 .0 3 0 .0 1 5 .0 1 0 .0 5 .0 2 .0 0 .5 1 .0 1 .0 2 0 .0 15 .0 10.0 5 .0 T u b e le n g th S h o r t. ------- d o - - .d o .d o L o n g .. ------- do - ..d o ------- do - .- ..d o .d o ------- do ------- d o Short ------- d o ..........d o ----- d o ------- do - - - .d o - ..d o - - - .d o - ...d o ----- d o .d o . .d o Grains b u r s tin g F ew . D o. D o. D o. N on e. D o. D o. D o. D o. D o. D o. D o. F ew . D o. D o. D o. D o. D o. D o. D o. D o. M any. D o. D o. <* U s in g 2 p er c e n t a gar, p o lle n s to r e d in la b o r a to r y for 24 h o u r s, g e r m in a t io n a t 25° C ., 4 d r o p s of w a te r in b o t to m of cell. 109 5 June 15,1930 Staminate Inflorescence and Pollen of H icoria pecan T a b le 8. — P ollen germ in ation under varyin g con dition s — C o n tin u e d S E R IE S 2 * A m ount u sed G er m i­ n a tio n P e r cent 1 .0 .5 .I 1 .0 .5 D o ___________________________ .1 Do .. ....................... 1 .0 .5 . 1 D o ........................................................ 1 .0 S o d iu m h y d r o x id e ....... ........................ .5 ___ _____________ Do . 1 Do . ______________ ____ .0 3 D o ............ - _______ _____________ .025 D o _______ ____________________ C h e c k ______ _______________ P e r cent 75 80 85 0 0 0 20 50 75 0 0 0 20 30 75 R eagen t added D o .................................. ..................... D o _________ __________________ T u b e le n g th L o n g .. do. do. G ra in s b u r stin g R em arks P e r cent 10 10 10 0 0 0 L o n g .. do. do. 10 15 20 0 0 0 L o n g .. do. do S ta in e d b r o w n . D o. D o. 20 20 10 S E R IE S 3 ■ S torage c o n d itio n s Sto ra g e p erio d H o u rs F r e s h .................... .............................. ................. M o is t c h a m b e r . . ............ .............. .. 25° C ., d r y ....... ................. .............................. L a b o r a to r y ____ _________ . .. _________ . . M o is t c h a m b e r _____ 25° C ,, d r y . ............................. ......................... L a b o r a to r y ............................... ............ M o is t c h a m b e r ________ . . .............. O n i c e .. ........................................................... O n ic e _____ _________ . . ........... .... M o is t c h a m b e r .. __________ ______ ____ O n ic e ................. .................................................. I n m a il, m o is t ___________ ____ I n m a il, s e m i m o i s t .. ________ I n m a il, d r y _____ __' ......................... In m a il, m o i s t .. . ___________ _________ I n m a il, s e m i m o i s t . . .......... . . _ ____ I n m a il, d r v ___ __ _ ________ 48 48 48 48 48 72 72 72 72 16 96 90 1.0 1 .0 1 .0 144 144 48 43 48 192 192 192 G erm i­ n a tio n T u b e le n g th P e r cent 7 0 .0 25. 0 0 3 0 .0 20 .0 40. 0 15. 0 ___ d o . . . . 10. 0 0 30. 0 .2 10 .0 10 0 0 5. 0 10.0 ......... d o ....................... 0 2 .0 2 5 .0 1 0 .0 ......... d o ___ 5 0 5 0 2. 0 0 G ra in s b u r stin g N on e. D o. D o. D o. D o. E ew . M any, D o. N on e. M any. F ew . D o. M any. N on e. D o. M any. N on e. M any. D o. D o. D o. D o. D o. Few . &U s in g 10 per c e n t su c r o se , 1 ^ p er c e n t agar, S u c c e ss p o lle n sto r e d in la b o r a to r y for 21 h o u r s, g e r m in a ­ tio n a t 22° C ., cell h a lf fille d w ith w a te r . e U s in g 20 per c e n t su c r o se , 2 p e r c e n t agar, g e r m in a tio n a t 25° C „ 4 d ro p s o f w a te r in c e ll. Journal oj Agricultural Research 1096 V ol. 40, N o . 12 T a b l e 8 .— P ollen germ in ation under va ryin g co n d itio n s— C o n tin u e d S E R I E S 4 ** P e r c e n ta g e g e r m in a tio n u n d e r s to r a g e c o n d itio n s in d ic a t e d P e r io d of sto r a g e P e c a n v a r ie t y D ry S c h le y ....................... . _______ . . . S t u a r t ........................................... ........... S c h le y .................................... . . . . . S t u a r t .............. ................. ................ S c h le y ______________ __________ S t u a r t . . ........................... ................. .. . . _________ N e l s o n ................... .. R o b s o n .................................... .. . . . C e n t e n n ia l_______________ . . . . . .. .. A l l e y __________ _____ _ H ou rs 24 24 24 48 48 48 72 72 72 96 96 96 120 120 120 120 120 120 120 120 23° c . 32° c . M o is t D ry I n o rch a rd 22= c . M o is t D r y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 80 50 50 65 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M o is t D r y 65 80 50 55 70 40 20 25 10 0 0 0 — - M o is t D r y 30 45 25 0 0 0 64 so 45 60 75 45 30 45 20 15 25 10 0 0 0 0 0 0 0 0 _ 0 0 0 0 0 5° c . 0 0 0 0 0 M o is t 50 65 45 25 35 20 0 0 0 65 80 60 75 45 55 65 40 30 40 25 3 5 0 0 3 2 0 1 0 0 0 0 0 SERIES a* 1 P e r c e n ta g e g e r m in a ­ t io n of— P e r c e n ta g e g e r m in a ­ t io n of— G e r m in a tin g te m p e r a ­ tu r e G e r m in a tin g te m p e r a ­ tu r e S c h le y 3° C ............................................ 22° C ______________________ 0 60 S tu a r t 0 75 V an D em an 0 50 S c h le y S tu a r t V an D em an 65 0 80 0 50 0 1 23° C 32° C d U s in g 20 per c e n t s u c r o se , \ } i p er c e n t agar, g e r m in a tio n a t 23° C ., c e lls h a lf fille d w it h w a te r (p e rc e n ta g e g e r m in a tio n ). * U s in g 10 p er c e n t s u c r o se , 1 \ i p er c e n t agar, c e ll h a lf fille d w it h w a te r , fresh p o lle n . M ed ia co n tain ing 10 p er ce n t sucrose, \ }{ p er ce n t ag ar, plus e ith e r one of th e following form ed a p re cip itate, failed to solidify a t 20° C ., and w as n o t u sed: U n ited S ta tes P harm acopoeia citric acid, 1, 0 .5 , an d 0.1 p er c e n t; 91 p er cen t lactic acid, 0.5 an d 0.1 p e r ce n t; U n ited S ta tes P h arm aco poeia tan n ic acid, 1 p er cent. U n d e r su itab le conditions pollen began to g erm in ate in 1% hours an d com pleted g erm ination in 12 hours, b u t 14 to 18 h o u rs were req u ired for pollen tu b es to reach full len g th before b u rstin g . If allowed to rem ain longer th a n ab o u t 18 h o u rs th e tu b es b u rs t and em p tied th e ir c o n te n ts into th e surrounding m edium . (Fig. 24.) B u rstin g of pollen tu b es is d istin c t from “ pseudo g e rm in a tio n ” or b u rstin g of u n g erm in ated grains as described b y A ndronescu (1) and as used in T able 8 . If th e conditions rem ain favorable for g ro w th all of th e pollen tu b es will b u rs t in ab o u t 30 hours. N o tu b es in artificial m edia have been found to b ra n ch , as occurs in th e tu b e g ro w th in th e pistils (31); n o r h as a n y of th e g erm in atio n p ercentages equaled th e percentage of n orm al pollen as show n by co u n ts in lactic acid. Ju n e is, 1930 Staminate Inflorescence and Pollen of Hicoria pecan Pollen failed to germ inate in pure w ater, or in any concentration of agar which did n o t solidify a t 25° C. S atisfactory results were obtained w ith l){ or 2 per cent agar w hen sugar was added. N o germ ination was obtained when no w ater was placed in th e cell to provide m oisture for th e pollen. F rom four to eight drops of w a te r were found best for th is; less th a n this am ount did n o t keep th e pollen sufficiently m oist for germ ination, and m uch m ore th a n this caused excessive b ursting of grains. D a ta in T able 8 show th a t of the six sugars used in the m edia for germ inating pollen, lactose and sucrose gave highest percentage F i g u r e 24.— C a m era lu e id a d r a w in g o f sta g e s in th e g e r m in a tio n of p o lle n grain s on sugar-agar m e d iu m : A , N o r m a l g e r m in a tio n ; B , fo rm a tio n of t w o tu b e s from a sin g le p o lle n grain; B a n d E , s w e ll­ in g a t en d o f tu b e w h ic h m a y la ter burst; C , t w o n u c le i in th e p o lle n tu b e; D , a n o r m a l tu b e ; F , se ctio n of a p o lle n gra in 10 d a y s before sh e d d in g . X 750 germ ination and least bursting of the grains; galactose and glucose produced fair germ ination; and fructose and m altose c a u s e d ’ an extrem ely low percentage germ ination and a high percentage of bursting. O ne-tenth of 1 or one-half of 1 per cent asparagine w hen added to the m edium produced a slight increase in percentage of g erm ination; 1 per cent n eith er increased nor decreased the percentage of germ ina­ tion. M ore th an 0.1 per cent of peptone caused a decrease in p e r­ centage of germ ination. T annic acid prevented germ ination w hen 1, 0.5, or 0.1 per cent was added to th e m edium . Sodium hydroxide decreased germ ination when as low as 0.025 per cent was added to th e medium , and m ore th a n 0.1 per cent prev en ted germ ination. Journal of Agricultural Research 1098 V o l. 40, N o . 12 P ollen w as stored u n d er te n te m p e ra tu re and h u m id ity conditions. T h a t stored u n d er b o th m oist and d ry atm ospheric conditions a t 32° C. lost its v ita lity in 24 hours. T h a t sto red a t e ith e r 23° o r 22° in a d ry atm o sp h ere did n o t g erm in ate afte r 24 hours, b u t o th e r lots g erm in ated afte r being stored for 48 and 72 hours, respectively, u n d e r m oist conditions. T h a t stored d ry a t 5° g erm in a te d a fte r 48 hours, an d th a t sto red m oist germ in ated a fte r 96 hours. N o te m p e ra tu re an d h u m id ity condition w as found u n d e r w hich pollen could be stored for longer th a n 96 h ours w ith c e rta in ty of g erm ination. T h e op tim u m te m p e ra tu re for g erm ination was found to be ab o u t 23° C. R E L A T IO N O P SIZ E O F C R O P P R O D U C E D I N O N E Y E A R T O N U M B E R P R O D U C E D T H E F O L L O W IN G Y E A R OF FLOW ERS In T ab le 9 is show n th e relatio n betw een th e size of crop of n u ts of one y e a r and th e size of crop of stam in ate an d p istilla te flowers of th e n ex t y ear. In o rder th a t th e d a ta from trees of different v arieties and ages m ig h t be com parable, each tree w as ra te d an d placed in one of six groups. T h e su m m ary of all varieties shows t h a t a large or v ery large crop of n u ts is followed by a som ew hat reduced crop of b o th sta m in a te and p istillate flowers th e following season; an d no crop or a fair, poor, or v ery poor crop of n u ts is followed by a large crop of b oth sta m in a te an d p istillate flowers. / T a b l e 9 . — R elation between the size of crop of nuts o f one year a n d the produ ction o' catkin s and p istilla te flow ers the fo llo w in g yea r [ A = v e r y large crop; B = la rg e crop; C = fair crop; D = po o r crop; E = v e r y p o o r crop: F = n o crop] R a t in g o f 1929 cro p of— P e c a n v a r ie t y A g e of tree 1928 cro p o f n u t s 1928 cro p r a tin g Y e a rs A l l e y ______________ ____ _ _ ___ D o ________ _____________________ D o .......... ..................................... ............. D o ............ ................................................. D o .......... ................................................... A p p o m a t t o x _ __ _____________ . . . A t la n ta .. _____________________ B everage . . . . __ _________ B r a d le y _____ . .. ..................... C e n t e n n ia l. . .. .. . _ _ C u r t is ___ _______ _______________ D e l m a s .................. _ ... . . . __ D o ________ _____________________ D o _____ ______ __________________ D o ______________________________ D o _____ ______ _________ _____ _ D o _________ ______ ____________ D o ___________________ __________ F r o tsc h e r . ________ _____ _________ D o ______________________________ D o ______________________________ D o ............................ ................................. D o ______________________________ D o ______________________________ D o ______________________________ D o ______________________________ D o ______________________________ D o ______________________________ D o ______________________________ D o ________ _____ ________________ D o ________ _____________________ D o ______________________________ D o . . _________ __________________ D o _______________ _________ J e r o m e ___________ _______ ________ M a n tu r a ___ __ ____________ _ . . D D D C C B A D B 7 7 18 20 18 20 20 20 20 18 12 18 18 18 20 20 20 20 20 10 E B D D D D E E E A A A A B B B B B B B B B B B 10 20 20 20 20 20 20 20 20 20 20 20 12 12 20 20 34 p o u n d s ____ ______ E E c C C a t k in s P is tilla t e flo w er s c c c B B B D D B F A A A A F F A c F B A B B B A A A F F E E c c C c c c c c c c c A c E A A A A A A F F B B B B B B B B B B B B B F j une is, 1930 Staminate Inflorescence and Pollen of Hicoria pecan T a b l e 9. 1099 R elation between the size of crop of nuts of one year an d the production of catkins an d p istilla te flow ers the follow in g year— C o n tin u e d R a tin g of 1929 crop of— P e c a n v a r ie t y A g e of tree 1928 crop r a tin g 1928 cro p of n u ts C a tk in s D o ............................................................. D o _______ ______ ________ _______ D o ______________________________ D o ______________________________ D o ............................................................. D o ............................................................. D o ............................................................. D o ______________________________ D o ______________________________ D o ______________________________ D o __________ ______________ _____ D o ............................................................. D o _______________ ______________ D o ______________________________ D o ______________________________ D o .................................... ........................ D o ............................................................. D o ............................................... ............. D o __________ __________ ________ D o ______________________________ D o ............................................................ D o ____ ____________ D o ............................................................. D o .................................... ........ ............... D o ____ ____________ Do . __________ D o ............................................................. D o _______ ____________ Do ... ......................... D o. ....................... Do D o. . Do ....................... D o .................................... ............. ........... D o ........ ......................... Do ___ Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do Do D o . . ........................................................ 0 N u t s p o o r ly fille d . Y ears 18 18 18 18 18 18 18 18 18 18 18 18 25 22 11 11 11 11 11 11 11 20 12 12 20 18 19 19 19 19 19 19 19 19 19 19 19 19 16 16 16 20 20 20 12 20 18 12 18 18 18 8 9 18 18 18 18 18 22 22 22 22 22 16 18 20 18 18 18 18 18 18 18 16 4,704 n u t s ° 33 p o u n d s .. ____ ____________ 43 p o u n d s ........................................ P F F F F F F F A A D A D A A A A A A A C b 1,504 n u ts ___ 1,779 n u ts *..................................... 91 p o u n d s ___________ - ... 40 p o u n d s .. ............ 25 p o u n d s .. . . . . ... ... - 22 p o u n d s _____ ___________ . 615 n u t s . .................... . . . . 689 n u t s . . . . ------------2,161 n u t s . .................. ........ 1,961 n u t s . . ------- ------------------999 n u t s .................... ------2,136 n u t s ____________________ 1,273 n u t s ____________________ 992 r u t s ______________________ 1,533 n u t s ------------ -----------------852 n u t s . ---------- --------------------- E A A A A A A A A A A A A A A A A A A A C 0 c c A A A A B B A A A A A D D D D E B C E C c D C c D C c E A A A A A A A A A A A F B F F F F F F F F A A B B E E E E E E E E E E E E A A A B F B B B B E C C c c c D C B B B B B B c c D D A B B B B B B B c P is tilla te flow ers A A A A A A D c A F B F F F F F F F F A A F F B F F F F F F F F F F B B c B F F D B B B E A A A C E A A A B B B B B B B B B B B B B B B B B B Journal of Agricultural Research 1100 V o l. 40, N o . 12 T a b l e 9 . — R elation between the size o f crop o f n u ts o f one year a n d the produ ction o f catkin s a n d p istilla te flow ers the fo llo w in g y ea r — C ontinued R a t in g o f 1929 cro p of— P e c a n v a r ie t y A ge of tr e e 1928 cro p o f n u t s 1928 c r o p r a tin g C a t k in s Yea S tu a rt . D o _____ D o .......... D o .......... D o .......... D o ........... D o ........... D o ........... D o _____ D o ........... D o _____ D o ........... D o ........... D o _____ D o .......... D o ........... D o ........... D o ........... D o ........... D o ........... D o _____ D o .......... D o ........... D o ........... D o .......... D o ........... D o ........... D o ........... D o ........... D o _____ D o ........... D o _____ D o ........... D o _____ D o .......... D o ........... D o .......... D o .......... S u c c e s s _____ T e c h e ............. D o ........... D o _____ D o _____ D o _____ D o _____ D o ........... D o ........... D o ........... D o ........... D o ........... D o ........... D o _____ D o ........... D o ........... D o _____ D o _____ V an D em an D o _____ D o _____ D o _____ D o ........... D o _____ D o ........... D o .......... W ils o n _____ D o .......... 717 n u t s . . lo 4 n u t s .. 763 n u t s . . 607 n u t s . . 625 n u t s . . 663 n u t s . . 3 p o u n d s .. 2 p ou n d s. 7 p ou n d s. 1 p o u n d ... 4 p o u n d s ., 17 p o u n d s l p o u n d .. 4 p o u n d s ., 3 p o u n d s ., 7 p ou n d s. 16 p o u n d s 3 p ou n d s. 13 p o u n d s 9 p ou n d s. 12 p o u n d s 17 p o u n d s. 17 p o u n d s 6 p o u n d s .. 9 p o u n d s ., 1 p o u n d .. 16 p o u n d s 9 p ou n d s. 9 p ou n d s. 6 p o u n d s ., 6 p o u n d s ., 17 p o u n d s 6 p o u n d s ., 8 p o u n d s ., U pounds 16 p o u n d s 8 p ou n d s. 2 p o u n d s ., 4 p o u n d s ., 55 p o u n d s 81 p o u n d s 61 p o u n d s 71 p o u n d s 258 n u t s .. 1,083 n u ts . 1,167 n u ts . 434 n u t s .. . 24 p o u n d s 21 p o u n d s 18 p o u n d s 8 p o u n d s .. 18 p o u n d s 15 p o u n d s 7 p ou n d s. 24 p o u n d s 20 p o u n d s 19 p o u n d s P i s t i ll a t e flo w er s June is, 1930 Staminate Inflorescence and Pollen of Hicoria pecan 1101 T a b l e 9 . — R elation between the size of crop o f n u ts of one year an d the production o f catkins a n d p istilla te flow ers the follow in g year — Continued R a t in g o f 1927 cro p of— P e c a n v a r ie t y M o b ile ..................... D o ..................... D o ..................... D o ............ .. D o __________ D o _____ _____ D o ..................... D o ..................... D o .............. . . . D o __________ S tu a r t___________ D o ...................... D o ..................... D o ................... D o __________ D o __________ D o ..................... D o . ................... D o ............ .. D o _________ D o ................. A g e of tre e 1926 cro p r a tin g Y ears 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 A A A A A A A A A A C C c c c c c c c c c R atin R of 1927 cro p o f— A g e of tre e P e c a n v a r ie t y C a tk in s P is til­ la te flo w er s F F F F F F F F F F A A A A A A A A A A A F F F F F F F F F F A A A C A A A A A A A 1926 cro p r a tin g C a tk in s P is t il­ la te flow ers Y e a rs 9 Do Do Do Do Do Do Do Do Do Do ____ ___ ___ ___ ____ D o ____ D o ..................... D o ................ D o ________ D o _____ D o ____ D o ................... D o - .............. D o ________ S U M M A R Y O F A L L V A R IE T IE S C u rr e n t y e a r ’s crop of— P r e v io u s y e a r ’s crop of n u t s A 66 A ’s ............................................... 27 B ’s ...................................... .. 71 C ’s ____ _____ ____________ 31 D ' s _____________ _________ 29 E ’s ........................................ .. 6 F ’s ...................................... ........... P is tilla t e flow ers C a tk in s 5 2 52 16 26 6 B 6 0 13 14 2 0 D c 7 15 2 1 1 0 E 0 5 3 0 0 0 14 2 0 0 0 0 F 24 3 1 0 0 0 A 10 2 24 12 9 6 B 7 14 23 19 19 0 C 1 4 11 0 1 0 D F E 1 I 5 0 0 0 2 2 0 O' 0 0 35 4 8 0 0 0 D ISC U SSIO N T he general course of developm ent of th e pollen of the pecan is the sam e as th a t of o th er fruits. T h e fact th a t floral differentiation occurs a y ea r before th e pollen sheds shows th a t either th e q u an tity or th e q u ality of pollen m ay be influenced by th e condition of the trees during th e sum m er, fall, or w inter previous to th e shedding of pollen. On th e other han d , p istillate flower differentiation occurs only ab o u t fo u r m onths before the flowers become receptive. T here­ fore i t would be expected th a t th e condition of th e tree during the previous y ea r would influence stam in ate flower developm ent m uch more th a n it would p istillate flower developm ent. Irreg u larities and abnorm alities were found in th e developm ent of pollen in b o th groups of varieties. In a few cases there were ra th e r high percentages of defective pollen. H ow ever, in view of the ra th e r universal abundance of catkin form ation, and therefore of pollen, it seems unlikely th a t pollen defects or im potence are factors of lm- 110 2 Journal of Agricultural Research V ol. 40, N o . 12 p o rtan ce in lim iting th e settin g of fru it, except in cases of an isolated tree or v ariety , and th en only w hen conditions are such as to cause a failure of sta m in a te flowers to develop. On th e o th er h an d , th e m ore or less com plete dichogam y th a t characterizes th e pecan m ay occasion pollination difficulties. T his is accen tu ated by th e fa ct th a t pollen shedding is p ra ctically in h ib ited when th e h u m id ity rem ains above a certain po in t for an y considerable period. I t is still fu rth e r accen tu ated b y th e fa ct th a t th e period of re cep tiv ity of the stigm as is g reatly reduced if th e w eath er is very dry. In selecting varieties, therefore, th e question of securing proper pollination should be considered. F o r p ractical purposes it seems th a t at least two varieties of each group should be included in a com ­ m ercial planting. T his w ould provide for a t least one v a rie ty to shed pollen early in th e season and a t least one v a rie ty to shed late. I t also seems th a t th e n u m b er of trees of eith er of these two v arie­ ties could be reduced to on e-tw en tieth of th e to ta l n u m b er of trees. SUM M ARY A N D C O N C L U SIO N C atk in p rim ordia are differentiated in la te ra l buds on new shoots th ro u g h o u t the growing season. In varieties of G roup 1, a n th ers are d ifferentiated in the fall of the y ea r in w hich th e c a tk in prim o rd ia are form ed; in varieties of G roup 2 an th ers are d ifferen tiated early the following spring. No ab n orm al behavior was observed in the d evelopm ent of ca tk in prim ordia, in d iv idual flower prim ordia, archesporial-cell stage or the m other-cell stage, b u t abnorm alities occurred in all varieties stu d ied during the reduction-division stage. T h e sm ear m eth o d for counting the n u m b er of te tra d s p er an th er, and the lactic acid m eth o d for determ ining the percen tag e of defective grains of pollen, have been successfully applied to pecan pollen studies. A m ethod for q u a n tita tiv e ly catching pollen from th e air a t various distances from pollen-shedding trees and a t various heights from the ground was developed. T h o u g h an entirely satisfacto ry m ethod for g erm inating pecan pollen has not been developed, m uch was learned ab o u t the te m p e ra tu re , h u m id ity , and n u tritio n a l requirem ents for germ in atio n on artificial m edia. T h e longevity of pollen was found to he ab o u t equal to or less th a n the period of re cep tiv ity of th e stigm as, w hich in d icates th a t there m u st be a continuous shedding of pollen th ro u g h o u t the period of re cep tiv ity of the stigm as. V! hen 1,000 grains from each of 169 lots of pollen were exam ined by the lactic acid m ethod, the defective grains were found to range from 0 to 81.7 per cent. Pollen produced on trees of low vigor or on trees which bore very heavy crops of catk in s had a slightly higher percentage of defective grains th a n pollen produced on trees of high vigor or on trees w hich had a light crop of catkins. R ecords of bloom ing dates showed th a t eith er hom ogam y, p rc tan d ry , or p ro to g yny m ay occur in pecans. I t was found th a t pollen sheds only w hen the relativ e h u m id ity of the air is below ab o u t 85 per cent and th a t p ractically all shedding occurs betw een 9 a. m. and sundow n. C onditions which were op tim u m for pollen shedding were d e stru c ­ tive to the v ita lity of pollen. O ptim um conditions for shedding of pollen are those w hich exist in the o rch ard on a w arm , su n n y d ay ; June is, 1930 Stam inate Inflorescence and Pollen of Hicoria pecan 1103 and o p tim u m conditions for germ ination are found in an orchard on a warm , dew y night. F rom the d a ta contained herein it seems th a t all of the m ethods of studying pecans w hich involve hand pollination, used by the w riter and others, have been som ew hat a t fa u lt in th a t account was not taken of the fact th a t during tim es of low h u m id ity there m ay be an enor­ mous am o u n t of pollen in the air even a t great distances from pollenshedding trees. T he size of the crop of n u ts of one year was found to influence the size of crop of b o th stam in ate and pistillate flowers of the following year. A very heavy crop of n u ts usually follows and is followed by a lighter crop. C ertain varieties of pecan produce a m edium-size crop of stam in ate flowers, pistillate flowers, and n u ts each year. L IT E R A T U R E C IT E D D . I. (1 A n d ron escu , (2 A n t h o n y , S., and H a r l a n , 1920. g e r m i n a t i o n o f (3 A sa m i, (4 THE PHYSIOLOGY OF ZEA MAYS WITH SPECIAL REFERENCE TO VITAL­ ITY. 36 p., illus. (Thesis, University of Illinois, Urbana). 1915. y. 1927. Publ. by D ept. Agr., Kingdom of Roumania. H, V. b a r ley p o lle n . Jour. Agr. 525-536, illus. Research 18: Jour. Sci. Agr. SoC. [English abstract Japan. Jour. Bot. PO L L E N A B O R TIO N IN T H E SH A N G H A I PEACH . Japan 297: 364-372, illus. 4: (1). 1928.] E. C. A u ch ter, 1922. A P P L E PO LLE N A N D PO LLIN A T IO N S T U D IE S IN M AR YL AND . Amer. Soc. Hort. Sci. Proc. (1921) 18: 51-80. (5 B e a u m o n t , J. H., and K n i g h t , L. I. 1923. a p p l e p o l l e n g e r m i n a t i o n s t u d i e s . Amer. Soc. Hort. Sci. Proc. (1922) 19: 151-163. (6 B o o t h , N . O . 1908. s o m e p h a s e s o f p o l l i n a t i o n . Amer. Soc. Hort. Sci. Proc. (1906) 4: 20-26. (7 C o u l t e r , J. M., a n d C h a m b e r l a i n , C . J. 1915. m o r p h o l o g y o f a n g i o s p e r m s . Illus. D. Appleton & Co., New York. (8 D o r s e y , M. J. 1919. a s t u d y o f s t e r i l i t y i n t h e p l u m . Genetics 4: 417-488, illus. (9 F l o r i n , R. 1927. P O L L E N P R O D U C T I O N A N D I N C O M P A T I B I L I T I E S I N A P P L E S A N D P E A R S . Mem. Hort. Soc. N. Y. 3: 87-118, illus. (10 H i g g i n s , B. B. 1917. a d i s e a s e o f p e c a n c a t k i n s . Phytopathology 7: 42-46, illus. (11 H o w l e t t , F. S. 1927. A P P L E p o l l i n a t i o n s t u d i e s i n o h i o . Ohio Agr. Expt. Sta. Bui. 404, 84 p., illus. (12 I s b e l l , C. L. 1928. g r o w t h s t u d i e s o f t h e p e c a n . Ala, Agr. Expt. Sta. Bui. 226, 68 p., illus. . (13 K a u f m a n n , B. P. 1927 t h e v a l u e o f t h e s m e a r m e t h o d f o r p l a n t c y t o l o g y . Stam Technol. 2: 88-90. (14 K n i g h t , L. I. 1918. (15 p h y sio lo g ic a l a sp ects o f s e lf-s te r ility o f th e apple. Amer. Soc. Hort, Sci. Proc. (1917) 14: 101-105. , H. E. K n o w lto n 1922. S T U D I E S IN POLLEN WITH SPECIAL REFERENCE TO LONGEVITY. N. Y. Cornell Agr. Expt. Sta. Mem. 52, p. 751-793. (16 [1925] POLLEN ABORTION IN (1924) 21: 67-69. THE PEACH. AlllCl'. SoC. Hort. Sci. Pl'OP. 1104 (17) Journal of Agricultural Research L lD F O R S S , V ol. 40, N a . 12 B. 1896. (18) z u r b io lo g ie d e s p o lle n s . Jahrb. W iss. B ot. 29: 1-38, illus. S c h u s t e r , C. E. 1 9 2 4 . F IL B E R T S . PART I. G R O W IN G F I L B E R T S I N OREGON. PA RT II. E X P E R IM E N T A L D A T A O N F IL B E R T P O L L IN A T IO N . (1 9 ) Sta. Bul. 208, 39 p., illus. S h o e m a k e r , J. S . 1926. P O L L E N D E V E L O P M E N T I N T H E to (20) ---------1928. (21) ch ro m o so m e b e h a v io r. c h e rry S h u h a rt, 1927. p o llin a tio n s tu d ie s . APPLE, W IT H B ot. Gaz. Oreg. Agr. E xpt. S P E C IA L 81: REFERENCE 1 4 8 - 1 7 2 , illu s . Ohio Agr. E xpt. Sta. Bul. 422, 34 p., illus. D . V. THE M O R P H O L O G IC A L o f th e pecan. D IF F E R E N T IA T IO N OF P IS T IL L A T E Jour. Agr. Research 34: 687-696, FLOW ERS illu s . (22) S n o w , R , 1925. G E R M IN A T IO N TESTS W IT H PO LLEN OF STO C K S. JoU T . Genetics 15: 237-243. H . P. (23) S tu c k e y , 1916. T H E T W O G R O U P S O F V A R I E T I E S O F T H E H IC O R I A P E C A N A N D T H E I R re la tio n to s e lf-s te rility . Ga. Agr. E xpt. Sta. Bul. 124, (24) V a lle a u , 1918. (25) (26) p. 125-148, illus. W. D . s t e r i l i t y in th e s tr a w b e r r y . Jour. Agr. Research 12: 613-670, illus. F. A. W augh, 1901. r e p o r t o f t h e h o r t i c u l t u r i s t . V t. Agr. E xpt. Sta. Ann. R pt. (1 8 9 9 /1 9 0 0 ) 1 3 : 3 3 3 - 3 7 3 , illu s . W o o d r o o f , J. G. 1924. t h e d e v e l o p m e n t o f p e c a n b u d s a n d t h e q u a n t i t a t i v e p r o d u c ­ t i o n o f POLLEN. Ga. Agr. E xpt. Sta. Bul. 144, p . 134r-161, illu s . (27) ---------1926. T H E F R U IT -B U D , T H E F L O W E R , A N D T H E N T H E PECAN N U T. N atl. Pecan Growers’ Assoc. Proc. 25: 81-92, illus. (28)------------and W o o d r o o f , N . C. 1 9 2 6 . F R U IT -B U D D IF F E R E N T IA T IO N A N D S U B S E Q U E N T D E V E L O P M E N T O F f lo w e r s in h ic o r ia p e c a n . Jour. Agr. Research 33: 677-685, illus. (29)------------and W o o d r o o f , N . C. 1927. T H E D E V E L O P M E N T O F flo w e r TO THE m a tu rity . PECAN NUT (H I C O R I A PECAN) FROM Jour. Agr. Research 34: 1049-1063, illus, (30) (31) — ----- W o o d r o o f , N . C., and B a i l e y , J. E. 1928. u n f r u it f u ln e s s o f t h e p e c a n . Ga. Agr. E xpt. Sta. Bul. 1 4 9 , 4 0 p ., illu s . W o o d r o o f , N . C. 1928. d e v e l o p m e n t o f t h e e m b r y o s a c a n d y o u n g e m b r y o i n h i c o r i a pecan. Amer. Jour. Bot. 15: 416-521, illus. U. S. G O VE R N ME N T P R I N T I N G O F F I C E : 1 9 3 0