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ABSTRACT 

STUDIES OF CHARGE NEUTRAL FCC LATTICE GAS WITH YUKAWA INTERACTION 
AND ACCELERATED CARTESIAN EXPANSION METHOD 

 
By 

He Huang 

      In this thesis, I present the results of studies of the structural properties and phase transition 

of a charge neutral FCC Lattice Gas with Yukawa Interaction and discuss a novel fast calculation 

algorithm -- Accelerated Cartesian Expansion (ACE) method.  

       In the first part of my thesis, I discuss the results of Monte Carlo simulations carried out to 

understand the finite temperature (phase transition) properties and the ground state structure of a 

Yukawa Lattice Gas (YLG) model. In this model the ions interact via the potential 

 where qi,j are the charges of the ions located at the lattice sites i and j with 

position vectors Ri and Rj; r ij =Ri-Rj, κ is a measure of the range of the interaction and is called 

the screening parameter. This model approximates an interesting quaternary system of great 

current thermoelectric interest called LAST-m, AgSbPbmTem+2. I have also developed rapid 

calculation methods for the potential energy calculation in a lattice gas system with periodic 

boundary condition bases on the Ewald summation method and coded the algorithm to compute 

the energies in MC simulation. Some of the interesting results of the MC simulations are: (i) how 

the nature and strength of the phase transition depend on the range of interaction (Yukawa 

screening parameter κ) (ii) what is the degeneracy of the ground state for different values of the 

concentration of charges, and (iii) what is the nature of two-stage disordering transition seen for 

certain values of x.  In addition, based on the analysis of the surface energy of different nano-

i j  ij  ijexp( ) /q q r rκ−



clusters formed near the transition temperature, the solidification process and the rate of 

production of these nano-clusters have been studied. 

        In the second part of my thesis, we have developed two methods for rapidly computing 

potentials of the form R-ν. Both these methods are founded on addition theorems based on 

Taylor expansions. Taylor’s series has a couple of inherent advantages: (i) it forms a natural 

framework for developing addition theorem based computational schemes for a range of 

potentials; (ii) only Cartesian tensors (or products of Cartesian quantities) are used as opposed to 

special functions. This makes creating a fast scheme possible for potential of the form R-ν. 

Indeed, it is also possible to generalize the proposed methods to several potentials that are 

important in mathematical physics. An interesting consequence of the approach has been the 

demonstration of the equivalence of FMMs that are based on traceless Cartesian tensors to those 

based on spherical expansions for ν = 1. Two methods are introduced; the first relies on exact 

translation of the origin of the multipole whereas the second relies on cascaded Taylor’s 

approximations. Finally, we have shown the application of this methodology to computing 

Coulombic, Lennard-Jones, Yukawa potentials and etc. We have also demonstrated the efficacy 

of this scheme for other (non-integer) potential functions.  
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PART A 

 

CHAPTER 1 Lattice Gas Models with Frustration 

 

1.1 Introduction and Review  

Lattice gas models (LGM) have been extensively used over last several decades to 

understand the thermodynamic and dynamic properties of structural ordering of atoms or ions in 

solids. A lattice gas is a collection of atoms whose position s can take on only discrete values. 

Each lattice site can be occupied by at most one atom. We neglect the kinetic energy of an atom 

in LGM. The potential energy of the system is equivalent to that of a gas in which the atoms are 

located only on lattice sites and interact through a two-body potential (| |)i jV −r r .  For example, 

two types of long-range models have been studied. One is Coulomb lattice gas (1/R), or CLG, 

and the other one is lattice Coulomb gas (LnR), or LCG. Studies of various models of one[1-4] 

and two  [4-6] dimensional CLG and LCG using different methods have shown the existence of 

multiple phase transitions, complexity in phase diagrams and their practical applications to real 

materials, for example, KCu7−xS4[1-4], Ni1−xAlx(OH)2(CO3)x/2·yH2O[4]. In LGM the space is 

divided into cells (usually with a given lattice structure) in which the occupation number (n) of 

an atom can be either 0 or 1. Due to strong short range repulsion between atoms, n=2 is 

energetically unfavorable, i.e., two atoms do not occupy the same cell. The LGM can be also 

mapped onto an Ising model where the Ising variable takes appropriate values. 

Once we map a physical problem onto a lattice gas model, the next thing to consider is the 

structure of the underlying lattice (simple cubic, BCC, FCC etc) and the nature of the interaction 

between the particles. It is known that the BCC lattice can be represented in the form of two 

mutually penetrating simple cubic sub-lattices. In accordance with this, if atoms of one kind, e.g. 
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atoms, occupy the sites of one sub-lattice, and B atoms, of the other sub-lattice, a superstructure 

with the AB stoichiometric composition arises. This only superstructure (at such a division of the 

BCC lattice) is called by Selissky  [7] a first rank superstructure. Then, each of the two cubic sub-

lattices with a period can be represented by means of two FCC sub-lattices with 2a period. Thus, 

the initial BCC lattice turns out to be represented in the form of four FCC sub-lattices. For 

example, in a simple binary alloy (AB) problem on a BCC lattice where two different atoms A 

and B can occupy the BCC lattice sites, we have ni =1. If there are some vacant sites (defects) ni 

=0 for that site. However to distinguish between the two atoms at a given site one constructs an 

Ising model where the Ising variable i 1σ = ± , corresponds to A and B, respectively. The nature 

of the exchange interaction in the Ising model depends on the physical interaction between AA, 

BB, and AB pairs. If A and B atoms like to be nearest neighbors (nn) and the interaction is short 

ranged then the model reduces to nn antiferromagnetic Ising model. Furthermore if the number 

of A and B atoms is the same then  0iσ =∑ . 

 

1.2 Geometrical Frustration and Frustration from Competing Interaction 

 

(Fig.1.1.1 Face centered cubic lattice, where a is lattice constant) 
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Physicists have made great efforts to understand the basic mechanisms responsible for 

spontaneous ordering as well as the nature of phase transition in many kinds of systems. For 

example, the study of order-disorder phase transition is a fundamental problem in equilibrium 

statistical mechanics. In particular, during the last several decades, much attention has been paid 

to “frustration” in the lattice systems. The idea of “frustration” is well-known in Ising spin 

models. The word "frustration" was introduced by Toulouse and Vannimenus[8, 9]  in 1977 to 

describe the situation where a spin (or a number of spins) in the ground state of a system cannot 

find an orientation that “fully satisfies” simultaneously interactions with all other spins. Here, 

“ fully satisfies” means that each interaction is at its minimum possible value. Early work on this 

subject includes a study of the Ising model on a triangular lattice with nearest-neighbor spins 

coupled anti-ferromagnetically by Wannier[10]  in 1950. In a parallel development interacting 

spins with competing interactions (for example when nearest and next nearest neighbor 

interactions lead to conflicting spin orientations) also resulted in frustration. Also, unlike Ising 

spins, for vector spins which can assume all possible orientations, non collinear spin 

configurations due to competing interactions were discovered independently in 1959 by 

Kaplan[11], Yoshimori[12] and  Villain[13]. Here again there is frustration because all spin 

interactions are not at their minimum in the ground state. In general, “frustration” is caused 

either by the lattice structure as in the case of triangular and face-centered cubic (FCC) (See Fig. 

1.1.1) lattices with anti-ferromagnetic nearest-neighbor (nn) interaction or by competing 

interactions (See the later section of this chapter for a detailed description of competing 

interaction).  

Effects of frustration on physical properties of a system such as the ground state, its 

degeneracy and thermodynamic properties are rich and often unexpected. In addition, real 
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magnetic materials are often frustrated due to several kinds of interactions. Also frustrated spin 

systems have their own fundamental significance in statistical mechanics. 

Recent studies show that many established methods and theories have encountered 

difficulties in dealing with frustrated systems[8, 9] [14, 15]. A well-known example is the 

pyrochlore lattice, where frustration arises from the fact that the spins occupy the vertices of a 

network of linked tetrahedra, and one cannot find a configuration of the pyrochlore lattice that all 

interactions have their minimum possible values simultaneously[8, 9]. In some sense, frustrated 

systems are excellent candidates to test approximations and to improve theoretical methods of 

statistical mechanics. Therefore it is important to find out and analyze the effect of frustration by 

simulating a spin system. The results of simulation can not only help us to understand 

qualitatively the behavior of real systems which are in general much more complicated, but also 

test the accuracy of approximate theoretical methods.  

Next, we discuss some of the basic concepts of “frustration”, resulting from  geometrical 

structure of the lattice (with only nearest neighbor interaction) and competing interaction.  

 

    (a)                                          (b) 

(Fig. 1.2.1 Effects of frustration on a square[8, 9]) 
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Consider a system with pair-wise nearest neighbor (nn) interaction energy given by

( )i jE J σ σ= , where J is usually called the exchange constant and ,( 1)i jσ = ±  are the spins at 

sites i and j. If J is ferromagnetic ( )0J < then the minimum of E is -|J| which corresponds to the 

configuration in which iσ  is parallel to jσ . On the other hand, if J is anti-ferromagnetic ( )0J > , 

the minimum of E corresponds to the configuration where iσ  is anti-parallel to jσ . 

 

                                   (a)                                                  (b) 

(Fig. 1.2.2 Effect of frustration on a triangle[8, 9]) 

 

It is easy to see that in a spin system with nn ferromagnetic interaction, the ground state (GS) 

corresponds to a spin configuration where all the spins are parallel: the interaction of every pair 

of spins is fully satisfied. This is true for any lattice structure and there is no frustration.  

Now let us consider when “frustration” occurs. If J is anti-ferromagnetic, the spin 

configuration of the GS depends on the lattice structure: 

• For lattices containing no elementary triangles, i.e. bipartite lattices (such as square 

lattice, simple cubic lattices and body centered cubic lattice) (see Fig. 1.2.1a) the GS 
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configuration is such that each spin is anti-parallel to its neighbors, i.e. every bond is 

fully satisfied. The spin “question mark” is spin-up, so there is no “frustration”.  

• For lattices containing elementary triangles such as the triangular lattice, the FCC lattice, 

one cannot construct a GS where all the (nn) bonds are fully satisfied (see the triangle at 

Fig. 1.2.2a and Fig. 1.2.2b). The GS does not correspond to the minimum of the 

interaction of every spin pair. In this case, we can say that the system is frustrated – this 

is referred to Geometrical Frustration. 

Based on the above analyses, it appears that geometrical “frustration” cannot occur when the 

interactions are purely ferromagnetic (i.e., 0J < ).  

Now we consider another situation where the spin system can be “frustrated” but for a 

different reason: this is the case where different kinds of conflicting (or competing) interactions 

are present in energy expression (or Hamiltonian) and the GS does not correspond to the 

minimum of energy interaction. For example, consider a chain of spins where the nearest-

neighbor (nn) interaction (J1) is ferromagnetic while the next nn (nnn) interaction (J2) can be 

either ferromagnetic or anti-ferromagnetic. The Hamiltonian is given by  

1 2i j i j
nn nnn

H J Jσ σ σ σ= +∑ ∑ , where 1, 2( )J  are the nn and nnn exchange constants. 

 

(Fig. 1.2.3 One of the configurations of 1-D ANNNI model[16]) 

When J2 is ferromagnetic, obviously the system is ferromagnetic (see Fig. 1.2.3). When J2 

is anti-ferromagnetic, as long as 2 1J J<< ,  the GS configuration will be same as Fig. 1.2.3 and 

the system GS is ferromagnetic: every nn bond is then satisfied but the nnn bonds are not. 
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According to the definition of “frustration”, we know that nnn bonds are frustrated (such as 1-3, 

2-4 bonds and etc.). When 2J  exceeds a critical value, the GS becomes quite complex and all 

the nn and nnn bonds are not fully satisfied. For this situation, we can say that the system is fully 

frustrated – this is referred to as Competing Interaction. 

 

(Fig. 1.2.4 Frustration in a square lattice [17]) 

 

Let us look at (Fig. 1.2.4); there is no frustration between nn pair wise spins 

(antiferromagnetic J1) but there are frustrations for the nnn pair wise spins (antiferromagnetic J2). 

Obviously, frustration is affected by the range of interaction in this lattice model. For example, if 

there is only nn interaction (J2=0), there will be no frustration for the square lattice system.  

In summary, we can say that a spin system is “frustrated” when one cannot find a ground 

state configuration of the spins that fully satisfies the interaction between every pair of spins. 
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Based on the discussions above, we know that there can be two kinds of “frustration” associated 

with a system:  

1) “Geometrical frustration” which changes with the system geometry but with a fixed 

Hamiltonian. 

2) “Frustration” from competing interaction which changes with the Hamiltonian of the 

system but with a fixed geometry.  

Now we would like to discuss in more detail some of the well studied models with 

“frustration”. 

 

1.2.1 1-D Anti-ferromagnetic Next Nearest-Neighbor Ising Model 

The anisotropic (or axial) next-nearest-neighbor Ising model, usually known as the ANNNI 

model (discussed above) is a variant of the standard nn Ising model. In this model competing 

ferromagnetic and anti-ferromagnetic exchange interactions couple spins at nearest and next-

nearest neighbor sites. The model is used to describe complex spatially modulated magnetic 

superstructures in many crystals. The model was introduced in 1961 by Elliott[18], but the name 

“ANNNI model” was given by Fisher and Selke[19] in 1980. It provides a theoretical basis for 

understanding numerous experimental observations on commensurate and incommensurate 

structures, as well as accompanying phase transitions in magnets, alloys and other solid state 

systems. Now let us consider the 1-D ANNNI model; the Hamiltonian is given by 

1 1 2 2i i i i
i i

H J Jσ σ σ σ+ += +∑ ∑                   (1.2.1.1) 

where 1,2( )J  are the exchange constants, ( 1)iσ = ±  are the i-site spins.  

Let us consider the case 1 2( 0,  0)J J> ≥  to see how frustration works. When 2 0J = , there 

is no frustration and the ground state will be 



9 
 

 

 

(Fig. 1.2.1.1 One of the configurations of 1-D ANNNI model[18]) 

However there is frustration when 2 0J ≠ . When 2 1J J<< , the GS will be still given by 

Fig. 1.2.1.1. Any spin will be anti parallel with its nearest neighbor and satisfies its’ nn bond but 

will be parallel and not satisfy with its it’s nnn bond. There is frustration in the bonds between 

next nearest neighbor spins and this frustration increases with increasing J2/J1 due to a more 

competitive J2 interaction. 

 

 

(Fig. 1.2.1.2 One of the configurations of 1-D ANNNI model[18])  

 

When 2 1J J>> , the GS is Fig. 1.2.1.2; a given spin is  anti-parallel to its next nearest- 

neighbor spin and satisfies the nnn bonds; but some spins are parallel to their nearest neighbors, 

i.e., there is frustration between some nearest neighbor spins and this frustration increases with 

increasing J1/J2 due to a more competitive J1 interaction. 

 

1.2.2 Heisenberg Model  

A. Geometrical Frustration in a Simple Nearest-Neighbor Classical Heisenberg Model 
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(Fig. 1.2.2.1 Classical spins orientation along the easy axes of a tetrahedron [11, 12]) 

 

Until now we were considering Ising spins which can be either “up” or “down”. Now let us 

look at a system of classical vector spins where the spins have fixed lengths and can take all 

possible orientations in space. The spins are called “Heisenberg spins”. The simple nearest-

neighbor Heisenberg anti-ferromagnetic model can be described by the Hamiltonian 

2

( ,

2

) ( )
2

2 i
i

i j i i j
i i ij j

SJH J
><

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟= ⋅ = − − ⋅⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑SS S S S             (1.2.2.1a) 

 

Where J is the exchange constant ( 0)J > , the sum (i, j) means the nearest- neighbor (nn) 

interaction, the sum (i><j) run over all pairs other than nn pairs and 2 1i =S  is the unit vector 

spin. For 1-D chain of Heisenberg spins, the GS will be as shown in Fig. 1.2.1.1, all the spins are 

collinear and any spin will be anti parallel to the nearest neighbor spin and there is no frustration.   

Now let us look at a different case where the spins are located at the vertices of a 

tetrahedron (See Fig. 1.2.2.1). From equation (1.2.2.1a), we can use 
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( , )

2
2

2i j i
i j i

i
i

H SJJ
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟= ⋅ = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑ ∑S S S               (1.2.2.1b) 

to obtain the energy of the ground state by letting 0i
i

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠
∑S . For example, if the spins can 

orient along the easy axes (that is, directly towards or away from the centre of the tetrahedron), 

then it is possible to arrange the four spins so that there is no net spin (Figure 1.2.2.1). For this 

configuration, i.e., the angle between the nearest neighbor spins is o2arcsin( 6 / 3) 109θ = ≈ . 

There is “geometrical” frustration because all the pair wised spin interaction energies are not at 

their minimum simultaneously. However the frustration is equally shared by all the nearest 

neighbor bonds. In contrast, if we put the spins on the corner of a cube, then the nearest neighbor 

spins will be anti-parallel to and there will be no geometrical frustration. 

 

B. Frustration in Heisenberg Model with Competing Interaction 

Now we consider first 1-dimention classical Heisenberg model with the Hamiltonian 

1 2
, ,

i j i j
i j i j

H J J= ⋅ + ⋅∑ ∑S S S S
                                     

(1.2.2.2) 

where 1,2( )J  are the exchange constants, iS  (|Si|=1) is a vector spin of unit length 

occupying the ith  lattice site and the sums  and  run over nearest neighbor (nn) and next 

nn (nnn) pairs, respectively.  

It is difficult to find the minimum energy of the Heisenberg Hamiltonian (Eq. 1.2.2.2) for a 

frustrated spin system in general. But in special cases when frustration is uniformly distributed 

over all bonds one can indeed find the exact ground state configuration as shown in the left panel 
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of Fig. 1.2.2.2. For further details see the review article by  Diep[20-22]. We discuss below 

briefly how to get the ground state configuration following Diep[20-22]. 

 

(Fig. 1.2.2.2 One-dimensional classical Heisenberg model with competing interactions, (a) 

Helical ordering (b) Phase diagram for the model with a nearest-neighbor exchange J1 and a 

next-nearest-neighbor exchange J2 [20-22]) 

 

         For any combination of J1 and J2, if the angle between the nearest neighboring spins is θ 

(leading to uniform distribution of frustration) as shown in Fig.1.2.2.2 (a), we simplify the 

Hamiltonian to  

1 2 1 2
, , , ,

cos cos 2 cos cos 2i j i j
i j i j i j i j

H J S S J S S J Jθ θ θ θ= + = +∑ ∑ ∑ ∑               (1.2.2.3) 
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Obviously in the ground state, the system is stabilized by taking 0H
θ

∂
=

∂
, which results in 

1 2 (  4  cos ) sin   0J J θ θ+ =                  (1.2.2.4) 

There are  multiple solutions to this equation, one of which is sin 0θ =  giving rise to θ = 0o 

or θ = 180o (corresponding to ferromagnetic and anti-ferromagnetic ordering) and the other is, 

1 2
1cos /
4

J Jθ = −                   (1.2.1.5) 

The second solution brings about, besides the usual ferromagnetism and anti-

ferromagnetism depending on the relative value of J1 over J2, the so-called helical order (or 

spirals). If |J1| > 4|J2|, only ferromagnetism or anti-ferromagnetism (depending on the sign of J1) 

is allowed, this forms the most part of phase diagram in Fig. 1.2.2.2 (b).  

If |J1| < 4|J2|, we have to be more careful. For J2 < 0, the sign of J1 determines the spin order, 

and J2  substantiates this order since next-nearest-neighboring spins are always parallel no matter 

it is ferromagnetic or anti-ferromagnetic. For J2 > 0, the next-nearest-neighboring interaction 

dominates and we will expect helical magnetic order, as shown in the triangle area of Fig. 

1.2.2.2(b).  

For a relevance and later comparison to my study on the Yukawa lattice gas system 

(although my system is Ising-like and 3-dimensional) we consider here the case where all the 

interactions are anti-ferromagnetic ( 1,2 0J > ), namely, the upper right part of the phase diagram 

in Fig.1.2.2.2(b). We summarize some essential points for this 1-dimensional system below: 
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1) When 2 1J J<< , the GS will be as shown in Fig. 1.2.1.1, one spin will be anti-parallel to 

its nearest neighbor but will be parallel to its next nearest neighbor, i.e., there is 

frustration between the next nearest neighbor spins.  

2) When 2 1J J>> , one spin will have a right angle with respect to its nearest-neighbor, as 

shown in Fig. 1.2.2.2(b). Therefore, this spin will be anti-parallel to its next nearest-

neighbor.  

3) The critical point occurs at J1 = 4J2, as we have mentioned above, and it separates helical 

order from usual anti-ferromagnetism 

 

 

(Fig. 1.2.2.3(a) The elementary cubes [23]) 

 

The non-collinear ground state spin alignment caused by competing nn and nnn interactions 

is found not only in 1-dimensinoal system, but also in many well-known high-dimensional 

systems such as the anti-ferromagnetic FCC lattice[22], fully frustrated simple cubic (SC) 

lattice[21] and so on. For the sake of illustration we choose here the SC lattice system. For this 
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simple cubic lattice (see Fig. 1.2.2.3a ), the classical ground state can be determined numerically 

by an iterative procedure, minimizing the local energies until the internal energy is 

stabilized[21, 24]. 

 

(Fig. 1.2.2.3(b) Tetrahedron which is characterized [25]) 

 

(Fig. 1.2.2.3(c) Particular GS configuration [23]) 
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It was found that, similar to 1-dimensional frustrated spin system, SC also has a J1 = 4J2 

boundary in the phase diagram[26]. For 2 10 0.25J J< < , the classical GS is the collinear anti-

ferromagnetic structure. For 2 10.25J J> , the classical GS has a large frustration. 

The elementary cubes containing two tetrahedra formed by the nnn sites and stacked as in 

Fig. 1.2.2.3(a). The spin configurations (black site or white site) a, b, c, and d of the nnn 

tetrahedra are those of the elementary tetrahedra in the GS of the FCC anti-ferromagnets[25]: 

each nnn tetrahedron is characterized by two angles, θ , formed by two up spins (or two down 

spins) and φ , as shown in Fig. 1.2.2.3(b),  formed by the plane containing the two up spins and 

the plane containing the two down spins[25]. For collinear spin alignment, the three 

configurations (one line up, one line down) are particular GS configurations in this range of 

parameters (see Fig. 1.2.2.3(c)). As we will see later for the frustrated Ising YLG on a FCC 

lattice, some of the ground state configurations are very similar to the collinear spin structures 

seen in the frustrated Heisenberg models. Even if the spins can orient to any direction, frustration 

forces them to be collinear. 

 

1.2.3 Degeneracy Caused by Frustration 

For the Ising model the system entropy SG associated with the ground state can be written as 

lnGS D∝ , where D is the degeneracy, ND α= [10], N is the number of spins in the lattice and  

1 2α≤ ≤  [10]. One fundamental question is whether there is any relationship between frustration 

and degeneracy (or system entropy)? For certain anti-ferromagnetic systems, we know that all 

pair interaction energies cannot be simultaneously minimized due to either “ geometric 

frustration” or “competing interaction”. This can sometimes lead to a large macroscopic 

(thermodynamically significant) degeneracy of the ground state. We would like to discuss the 
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nature of degeneracy caused by frustration in simple models consisting of a small number of 

spins.  

Let us consider an anti-ferromagnetic Ising Model 
 

1 2i j i j
nn nnn

H J Jσ σ σ σ= +∑ ∑
                             

(1.2.3.1) 

where (J1,2 > 0)  is constant and (J1>>J2), (σi,j = ±1) is spin value. 

 

 

(Fig. 1.2.3.1 Spins on a triangle with anti-ferromagnetic interaction [11, 12]) 

 

A. Triangle Model 

A simple 2D example is given in Figure 1.2.3.1. Now let us look at the “spin or magnetic 

ordering”. Three spins reside on the corners of a triangle with anti-ferromagnetic interactions 

between them, i.e., the energy is minimized when each spin is aligned opposite to its neighbors. 

Once the first two spins align anti-parallel, the third one is frustrated because its two possible 

orientations, up and down, give the same energy. The third spin cannot simultaneously minimize 
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its interactions with both of the other two. Thus, the ground state is twofold degenerate, for this 

3-spins system with fixed 2-spins. 

 

B. Tetrahedron Model 

 

(Fig. 1.2.3.2 Spins on a tetrahedron with anti-ferromagnetic interaction [11, 12]) 

 

Similarly in three dimensions, four spins arranged in a tetrahedron (Fig. 1.2.3.2) also 

experience Geometric frustration. If there is an anti-ferromagnetic interaction between spins, 

then it is not possible to arrange all the spins so that interactions between spins are anti-parallel. 

There are six nearest-neighbor interactions, four of which are anti-parallel and thus satisfied, but 

two of which (between 1 and 2, and between 3 and 4 in the fig. 1.2.3.2) are not satisfied. It is 

impossible to have all the interactions satisfied simultaneously, and the system is frustrated. The 

ground state is twofold degenerate with fixed 2-spins.  

This idea of frustration caused degeneracy of a finite cluster (triangle or a tetrahedron) 

generalizes to a macroscopic system. However the calculation of D for a macroscopic system is 

highly nontrivial. A classic example is the case of a 2-dimensional triangular Ising model with nn 
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AF interaction. For this model, Wannier has calculated the degeneracy of the ground state and 

finds ND α= , where 5/122α = . 

 

1.3 Real Lattice Gas and Its Ising Model Mapping 

 

1.3.1 Real Lattice Gas 

Recently, the quaternary thermoelectric compound (AgSbTe2)x(PbTe)2(1−x), or equivalently 

AgSbPbmTem+2 (also called “LAST-m”, LAST stands for Lead, Antimony, Silver and Tellurium) 

[27] has emerged as a material for potential use in efficient thermoelectric power generation. The 

concentration x above is related to the quantity m by the relation  
2

( 2)
x

m
=

+
 . 

 

 (Figure1.3.1 A. A high resolution transmission electron microscopy image of AgSbPb18Te20 

sample. B. An extended region of a AgSbPb10Te12 specimen [27]).  

 

In Fig. 1.3.1A, a high resolution transmission electron microscopy image of AgSbPb18Te20 

sample shows nano-sized region (a “nano-dot” shown in the enclosed area) of the crystal that is 

Ag-Sb–rich in composition. The surrounding structure, which is epitaxially related to this feature, 
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is Ag-Sb–poor in composition with a unit cell parameter of 6.44 Å, close to that of PbTe. Fig. 

1.3.1B shows compositional modulations over an extended region of a AgSbPb10Te12 specimen. 

The spacing between the bands is ~20 to 30 nm. In essence, the observed compositional 

modulation is conceptually similar to the one found in the artificial PbSe/PbTe super-lattices 

which also show excellent thermoelectric properties[27]. In the latter system, the compositional 

modulation exists along the stacking direction.  

 

 

(Fig. 1.3.2.1. Example of ionic mixing on the Pb fcc sublattice of the NaCl type structure of 

PbTe [28]. In LAST-m this sublattice is occupied by Pb (blue balls), Ag (yellow balls) and Sb 

(green balls). However the average structure of LAST-m is that of a NaCl lattice (See Fig. 

1.3.2.2) ) 

 

PbTe has a number of derivatives that have shown some of the most promising results to 

date among bulk materials[28]. Early studies of AgPbmSbTe2+m (LAST-m) system reported it to 

be a solid solution between PbTe and AgSbTe2 (both rock salt NaCl type structures) with p-type 
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properties and an unusually low lattice thermal conductivity. X-ray diffraction studies of the 

compound AgSbPbmTem+2  (See Fig. 1.3.2.1 obtained by Sootsman, Chung and Kanatzidis[28]) 

shows that the average lattice structure is NaCl-type (Fig. 1.3.2.2), where the cation (Na) sites 

are occupied by Ag, Sb, and Pb and the anion (Cl) sites are occupied by Te. The lattice constant 

changes nearly linearly with Pb/Te ratio (See Fig.1.3.2.2). One can consider a lattice gas model 

when the Na-sub-lattice of NaCl-type structure, which is a FCC lattice, is occupied by three 

types of ions, Ag, Sb and Pb. 

 

(Fig. 1.3.2.2 NaCl structure) 

 

1.3.2 Screening Effect 

    Consider a positive charge placed in the electron gas and the charge’s position is fixed, 

Poisson’s equation tell us that 

2 ( ) 4 ( )φ πρ−∇ =r r ,                   (1.3.2.1) 
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where ( )φ r is the physical potential and ( ) ( ) ( )ext indρ ρ ρ= +r r r  is the total charge density, 

where ( )indρ r  is the charged density induced in the electron gas due to the presence of the 

external particle and ( )extρ r  is the charge density associated with this external particle. 

    Suppose that ( )φ r and ( )extφ r  are related linearly; we will then have  

( ) ' ( , ') ( ')ext dφ ρ ε φ= ∫r r r r                 (1.3.2.2) 

Fourier transforms give 

3

( ) ( )

1( ) ( )
(2 )

i

i

d e

d e

ε ε

ε ε
π

− ⋅

⋅

=

=

∫

∫

q r

q r

q r r

r q q
                 (1.3.2.3) 

which implies that in Fourier space, we have  

1( ) ( )
( )

extφ φ
ε

=q q
q

.                  (1.3.2.4) 

This equation shows that the potential in Fourier space is reduced by a factor 
1
( )ε q

. Actually, the 

quantity ( )ε q  was studies by Thomas-Fermi and is well known as the TF dielectric constant: 

2

2( ) 1
q
κε = +q  .                  (1.3.2.5) 

To understand the physical meaning of the parameter κ , we can consider the following case: 

( )ext Q
r

φ =r                     (1.3.2.6) 

and it’s Fourier space form: 
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2
4( )ext Q
q
πφ =q                    (1.3.2.7) 

So the total potential takes the form 

2 2
4( ) Qq

q
πφ
κ

=
+

                              (1.3.2.8) 

The potential in real space is the inverted Fourier space form, which is  

3 2 2
4( )

(2 )

r
id Q er e Q

rq

κπφ
π κ

−
⋅= =

+∫ q rq
                (1.3.2.9) 

     This equation means that total potential is of Coulombic form times an exponential damping 

factor re κ− .  Here κ is called the screening parameter and  
re

r

κ−
 is called the screened potential. 

     In PbTe system, Pb and Te ions attract each other through Coulomb potential in the presence 

of itinerant electrons or holes resulting from doping which is necessary for energy and charge 

transport. In the region of higher doping the Coulomb interaction is weaker due to the screening 

effect that naturally affects the internal field.  

 

1.3.3 Ionic Model for LAST-m, Yukawa Lattice Gas (YLG) Model 

Now consider the following interaction model for the system: 

(| |)i j i j
i j

E f Q Q
< ≠ >

= −∑ R R                              (1.3.2.1) 

where iR  and iQ  are, respectively, the position and the charge of an atom at site i of the lattice.  

As mentioned before, we consider the NaCl-type structure made of two interpenetrating 

FCC lattices with mixtures of different atomic species at the Na sites, i.e. j = {Na(i.e. Ag, Sb, Pb), 

Cl(i.e., Te)}. Ionic mixing occurs on the Na sites (not on the red sites, see Fig. 1.3.2.1). For PbTe, 
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if we look at “Periodic Table”, we can know that Pb is of structure [Hg]6p2 and Te is of structure 

[Kr]4d105s25p4. For the combination of PbTe, because Pb prefers to donate 2 electrons and Te 

prefers to accept 2 electrons, the combination of PbTe will be stable. So in an ionic model for 

LAST-m, we can assume the Pb ion 2+, Te ion is 2-, Ag ion is 1+ and Sb ion is 3+. So the charge 

of the Na site will be 2 q+ Δ , where { 1,0, 1}qΔ = − + .  

The total energy can be written as 

( )

( )

i j i j
i j

m n m n PbTe c PbTe
m n

E f Q Q

f q q E E E

< ≠ >

≠

= −

= − Δ Δ + = +

∑

∑

R R

r r
                (1.3.2.2) 

where PbTeE  is the total Madelung energy of the ideal PbTe lattice. Obviously, contribution to 

Ec comes from the occupation of a FCC lattice only (i.e., Na site, see Figure 1.3.2.3). 

 

 

(Fig. 1.3.2.3 Mapping NaCl structure (left) to FCC Lattice(right) ) 
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(Fig. 1.3.2.4 Frustration in FCC Lattice) 

 

       As we will show below Ec will be mapped onto an Ising model on a FCC lattice with 

antiferromagnetic interaction whose range can be tuned. It is well known that short range anti-

ferromagnetic Ising models on a FCC lattice involve “frustration” [11, 12] (see Fig. 1.3.2.4). So, 

it is of considerable interest to see the effects of frustration in Yukawa systems when tuning the 

range of interaction. 

• If 1( )
| |i j

i j
f − =

−
R R

R R
, we get the Coulomb Lattice Gas (CLG) model.  

• If
| |

( )
| |

i j

i j
i j

ef
κ− −

− =
−

R R
R R

R R
, we get the Yukawa Lattice Gas (YLG) model. 

Now we can map the above lattice gas model to the following Ising spin model 

( )c m n m n
m n

E J σ σ
< ≠ >

= −∑ r r
                           

(1.3.2.3) 
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where ( 1, 0)mσ = ±   , +1 for Sb, -1 for Ag and 0 for Pb.  Since the number of Ag and Sb ions are 

the same we have 0m
m
σ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∑ . In AgSbPbmTem+2 system, the content of Ag and Sb ions is 

defined as the concentration x, which is given by 22 / ( 2) (1/ ) i
i

x m N σ= + = ∑ . 

        The CLG model was investigated by Hoang, Desai and Mahanti (HDM)  [29]. In the next 

chapter, we will introduce their work. Note that YLG model becomes CLG model when the 

Yukawa screening parameter κ =0. 

 

1.4 Monte Carlo Simulation (MC)  

In order to study the physical properties of the ionic lattice gas system using YLG model 

(for example, its structural and thermodynamic properties), we have to calculate the Free energy 

(partition function) corresponding to the Hamiltonian (Eq.1.3.2.3) for an infinite system. There 

are several approaches available: (i) exact solution which is very difficult; (ii) mean field 

approximation which works well if we know something about the structural order for different 

concentrations x (works well when there is no frustration) and (iii) simulation of finite but large 

systems. Because of the complex nature of our system, such as both geometrical frustration and 

frustration caused by competing interactions, we will use the third, Monte Carlo (MC) simulation 

approach. MC simulations have been extremely useful in understanding the physical properties 

of classical spin systems  [14, 30]. MC simulations, in fact all simulation studies, are usually 

limited by the memory size and the central processor of computers. The size of the system (N = 

number of lattice sites = number of spins) one can simulate depends on the number of 

configurations. For a 2-state Ising model the number of configuration is 2N. Also the size of the 

system one can simulate depends on the nature of the interaction between the spins. For example, 
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for a simple nearest neighbor ferro or anti-ferro interaction, one can simulate systems up to 

N=106 or more. On the other hand for long range interactions it becomes difficult to simulate 

systems N>103. In MC simulation, the main idea is to generate a large number of highly 

probable configurations randomly and then compute averages of physical quantities such as 

energy, magnetization etc over these generated configurations. For systems in thermodynamic 

equilibrium the configurations are generated with Boltzman distribution. The details of the MC 

algorithm used in our simulation are discussed next. 

 

1.4.1 Monte Carlo Algorithm and Simulation Process 

 

(Fig. 1.4.1.1 Metropolis algorithm) 

As discussed above, to study phase transitions in the FCC YLG model by computing 

different thermodynamic averages we use Monte Carlo simulations. The straightforward 

application of the basic Monte Carlo method is not however the best way to compute these 

average values, because it samples all configurations uniformly. Instead, we generate random 

configurations which are highly probable which amounts to carrying out importance sampling. A 

better approach is to use Boltzmann factors themselves as a guide during the generation of a 

subset of sampled states. Metropolis algorithm generates a sequence of configurations that have 
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approximately the required probability distribution [31]. This is how the Metropolis algorithm 

works: 

1) One starts with a completely random configuration α 

2) To generate the next configuration β in the sequence one computes the energy change ΔE 

in going from state α to state β.  If ΔE is zero or negative, one accepts the new 

configuration (i.e., we always accept changes that lower the total energy). If ΔE is 

positive, one accepts the new configuration with probability P(ΔE) = exp(−ΔE/kBT), 

where T is the desired temperature. In practice, one generates a uniformly distributed 

random number x between 0 and 1, and accepts the new configuration if P(ΔE) > x. This 

constitutes a single MC step within Metropolis algorithm. The repeated Metropolis steps 

are also referred to as a Metropolis sweep. This Metropolis step is carried out a large 

number of times. The updated configurations are used in the calculation of averages as 

they become available. 

3) One carries out MC sweeps until thermal-equilibrium is achieved, i.e., when the averages 

of different physical quantities remain constant within a prescribed range. The range is 

chosen to obtain a balance between accuracy and the number of MC simulation (or 

equivalently the computer time of the simulation). These are referred to as equilibrium 

runs. Once the system approaches “thermodynamic equilibrium” one takes averages of 

physical quantities over an additional number of MC steps and uses these averages to 

represent thermodynamic averages. 

4) Typically, the Metropolis–Monte Carlo estimate of the ensemble average of a 

macroscopic quantity (say O) is given by 
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< >= ∑ ∑                         (1.4.1.1) 

ConfigO< >  is the value of O for a particular configuration and the summation is over the 

accepted configurations.  It is usually good to omit a certain number of configurations at 

the beginning of the simulation; these are not distributed with the proper probabilities, 

because the system has not yet reached thermal equilibrium. How long the system takes 

to thermalize depends on several factors such as the size of the system, the nature of the 

interaction, and the temperature of the system. The length of the required warm-up period 

is usually estimated empirically before starting the simulation. 

 

1.4.2 Limitations of the MC simulation 

Although MC simulation is a powerful and useful approach to investigate the equilibrium 

properties of complex physical systems, we still need to be aware of its limitations. For example, 

if we are studying a second order phase transition, then in a finite system there is a problem 

because there is no sharp transition (either as a function of the temperature or some other 

intensive parameter) between zero and non-zero magnetization or a sharp peak in the specific 

heat. As a result, the  critical point associated with a second order or continuous phase transition 

cannot be located accurately (Binney, Dowrick, Fisher and Newman) [32]. Furthermore, the 

absence of a sharp peak (or singularities) in the specific heat hinders in understanding the nature 

of its singularity at the critical point. The limitations of the Monte Carlo simulations are 

discussed nicely by Binder and Luijten[15]. We summarize some of these limitations below. 

1) Only in the limit M (the number of simulations) → ∞ one can expect to obtain exact 

results, while for finite M, there is a “statistical error”. The estimation of this error is a 
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nontrivial matter, since it depends sensitively on the choice of M and subsequently 

generated states are more or less correlated [30].  

2) If the total number of MC steps is not large enough, then there will be some “memory” of 

the (arbitrary) initial state from which MC simulation was started [33, 34]. 

3) In order to carry out a MC sweep, pseudo-random numbers are used both for constructing 

a trial state from a given state and for the decision whether or not to accept the trial state 

as a new state. For instance, in the Metropolis algorithm (see last sub-section), this is 

done if the transition probability exceeds a random number that is uniformly distributed 

in the interval from 0 to 1 (Binder)[14]. It is therefore necessary to carefully test the 

quality of the random numbers generated by the algorithm used since bad random 

numbers indeed cause systematic errors. However, this is again a nontrivial matter, since 

there is no unique way of testing random – number generators, and there is no absolute 

guarantee that a random – number generator that has passed all the standard tests does not 

yield true random numbers leading to systematic errors in a particular application ( Knuth) 

[35]. 

4) Monte Carlo methods apply to system of finite size only, and the results of calculations 

near a phase transition are affected by the finite size and by the boundaries. The finite 

size of the simulated lattice, typically a hyper-cubic lattice of linear dimension (L) with 

periodic boundary conditions in all lattice directions, causes a systematic rounding and 

shifting of the critical singularities. This is because singularities of the free energy can 

only develop in the thermodynamic limit L → ∞. This remark is particularly obvious for 

the correlation length ξ, which cannot diverge in a finite simulation box, so that serious 

finite – size effects must be expected when the correlation length ξ has grown to a size 
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comparable to L (Kim, Souza and Landau)[36]. Therefore, the results obtained by the 

Monte Carlo simulations depend sensitively on the numbers of Monte Carlo steps, the 

linear dimension L of the simulation box with periodic boundary conditions, the non-

equilibrium relaxation time of the system and the quality of the random – number 

generators, etc. Finally,  as the correlation length diverges at the critical point of a second 

order phase transition, physical fluctuations in the magnetization become very large[37]. 

These fluctuations cannot be entirely suppressed by the importance sampling and 

averaging over reasonable number of MC steps. In order to obtain a reliable average,  

MC simulations should be run for an inordinately long time (Butera and Comi)[37], and 

to reach the exact solution, unfortunately, for infinite time. Most importantly, any 

approximate method cannot provide exact information at or near the critical point, since 

whenever the thermodynamic functions have an essential singularity it is difficult to 

perform any computation by successive approximation because the convergence of 

approximation in such cases is notoriously slow (Onsager) [38].  

 

1.4.3 Application of  MC Simulation 

Nowadays, calculations of the Ising models have been performed on lattice sizes of L = 256 

~ 5888[39]. Up to date, most of 3D simulations with the lattice sizes lager than L=4800 are short 

runs, which can not produce well – equilibrated configurations at the critical point (Stauffer and 

Knecht)[39]. In a normal case, increasing the lattice sizes lowers the estimates of the critical 

point (Gupta and Tamayo)[40] (Binney, Dowrick, Fisher and Newman)[32], this would push the 

values of the critical temperatures collected in the Binder and Luijten’s review article towards 

the putative exact solution ( Binder and Luijten)[15]. For the 2D Ising model however, the MC 

simulations give much better results (Binder and Luijten) [15].  
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1.5 Total Energy Calculation in the YLG model 

For the YLG system on a lattice with periodic boundary condition (PB) the energy is given 

by  

| |1
2 | |

LI J
I J

I JI J

eE Q Q
L

κ− − +

≠

=
− +∑∑
R R n

n R R n                                       
(1.5.1) 

where κ is the screening parameter, L is the size of the cubic super-cell lattice, the outer sum is 

taken over all integer vectors nœ(nx, ny, nz), QI is the charge at  the Ith site RI.  Note that 

simulation box is cubic but the charges occupy the FCC lattice sites embedded in the cubic cell. 

Obviously, E reduces to that for a CLG when κ~ 0.  

Periodic boundary conditions are used to best simulate an infinite system. In principle, one 

should take larger and larger periodic cubic cells (size L) and then extrapolate L to infinity to 

extract results in the thermodynamic limit. To carry out simulations in systems with periodic 

boundary conditions (modeling an infinite systems) one uses Ewald’s method to carry out the 

summation over n in Eq. 1.5.1. This method will be discussed in the next section. However, if 

we are interested in seeing how charge ordering takes place in finite size systems such as PbTe 

nanoparticles doped with Ag and Sb, one has to carry out simulation without imposing periodic 

boundary conditions.  
 

 

1.5.1 Ewald summation for Yukawa interactions 

In fact, the speed of direct calculation of (Eq. 1.5.1) is very slow. One can use famous 

Ewald summation methods to accelerate the calculation speed. The key for Ewald summation is 

to divide the calculation of (Eq. 1.5.1) into two parts; one calculation runs on Fourier space and 

other runs on real space. In this section, we will show how to obtain the equation of Ewald 

summation for the YLG model.  
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We denote V a cube of side L and assume periodic boundary conditions. The Yukawa 

potential in real space will be defined as the Green’s function ( )Vψ r  of the Helmoltz equation 

2 2( ) ( ) 4  ( )VVκ ψ π δ∇ − = −r r                             (1.5.1.1) 

where  

[ ]{ }( ) ( ) ( ) ( ) ( )V L L L Lδ δ δ λρ λρ= + = + − + + +∑ ∑
nn

r r n r n r n r n  

where 
2/32

22( ) exp( )αρ α
π

⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠

r r  is a normalized Gaussian charge density and the vector n 

has three components (nx, ny, nz) along the three cubic axes, suppose that 

( ) ( ) ( )V D Fψ ψ ψ= +r r r  and  

[ ]{ }2 2( ) ( ) 4 ( ) ( )D L Lκ ψ π δ λρ∇ − = − + − +∑
n

r r n r n                            (1.5.1.2) 

[ ]{ }2 2( ) ( ) 4 ( )F Lκ ψ π λρ∇ − = − +∑
n

r r n                                                                  (1.5.1.3) 

For eq. (1.5.1.3), we already have solution, 

2| |
24 ·
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4( ) i

F
e e

L k

απλψ
κ

−

=
+∑
k

k r

k
r

                           
(1.5.1.4) 

where 
2

L
π

=
nk , is a reciprocal lattice vector associated with the cubic super cell of side L. 

Suppose  

[ ]1 2( ) ( ) ( )D L Lψ φ λφ= + − +∑r r n r n
n

                                                        (1.5.1.5) 

then we have two equations 
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2 2
1( ) ( ) 4 ( )L Lκ φ πδ∇ − + = − +r n r n                                                           (1.5.1.6) 

2 2
2( ) ( ) 4 ( )L Lκ φ πρ∇ − + = − +r n r n                                                         (1.5.1.7) 

For equation (1.5.1.6), we have solutions that satisfy 
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For equation (1.5.1.7), replace 2 ( )Lφ +r n  by ( )φ r , ( )Lρ +r n  by ( )ρ r and consider the 

following processes 
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Defining τ = r'- r ,τ = τ and r = r , we get, 
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           (1.5.1.8)

 Using  
( | |) 2lim
| |

erf α α
π′→

′−
→

′−r r

r r
r r

, choosing 
2 2/41 eκ α

λ
= and replacing ( )φ r  by 2 ( )Lφ +r n , 

then the equation (1.5.1.5 ) becomes
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(1.5.1.9)

 Usually, for a particle system with periodic boundary conditions, Ewald summation rewrites the 

interaction as a sum of two terms, the short-range term that sums quickly in real space and the 

long-range term that sums quickly in the Fourier space. 

 

Fourier Real( ) ( ) ( )Φ = Φ + Φr r r  

where, 
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where (Ω=L3) is the volume of the super lattice cell.  
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            (1.5.1.11) 

        In the final expression for the energy of a super-lattice cell, we need to exclude the 

contribution to the energy of the true Yukawa potential due to I evaluated at RI, the so called 
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self-term to avoid infinites. In fact, this arises from the term I

I

exp( )κ− −
−

r R
r R

 part of the real 

space summations, which must be dropped.  

Then we have: 
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        Using L’Hospital Rule, we get 
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Obviously, the self part is independent of r.  

For the charge neutral Yukawa Lattice Gas on a FCC Lattice System with PB conditions, 

based on above discussion, we have the total Yukawa energy in a the super lattice system given 

by  
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This is the main equation used in our MC simulation. The choice of the Ewald summation 

parameter, α and G, depends on the lattice system. We will discuss it next. 

 

1.5.2 Ewald Summation Parameters 

There are several parameters that control the convergence of Ewald summation for the YLG 

model. It is useful to discuss the choice of these parameters in the CLG model because the range 

of interaction is larger for the lattice model. If for certain choice of parameters the CLG model 

converges then it is obvious that for the same choice of parameters the YLG model will also 

converge. Independent of the model considered the choice of Ewald parameters should be based 

on several considerations: 

1) |nmax| is an integer which defines the range of the real-space sum and controls its 

maximum number of vectors. 
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2) Similarly |Gmax| is an integer defining the summation range in the reciprocal-space and 

its number of vectors. 

3) α, appearing in the Gaussian function, is the Ewald convergence parameter, which 

determines the relative rate of convergence between the real and reciprocal sums. Note 

that a large value of α, i.e. a narrow Gaussian distribution, makes the real-space sum 

converge faster. This means that a small number of n-vectors (i.e.  |nmax| is small) is 

sufficient for a rapid convergence. On the other hand, a small α causes the reciprocal-

space sum to converge faster, i.e. a small |Gmax| will suffice. 

4) For the calculation in the real-space sum, we introduce a cut-off radius (Rcutoff) which is 

the size in real-space we accept for a properly relative error ∆ in the calculation. Usually, 

the calculation of the cut-off radius will be determined by the supper-cell size L. The 

larger of the super-cell size and the cut-off radius we choose, the more accurate results 

we get. 

 

For the calculation of Columbic interaction potential with periodic boundary(PB) condition, 

Toukmaji and Board[41] found that the reciprocal sum was calculated more efficiently than the 

real sum, hence α is generally chosen to minimize the real sum and thus it dictates the value of 

truncation number in the Fourier space sums. The choice of the Ewald sum parameters for 

Columbic interaction with PB is system dependent and is subject to trade-offs between accuracy 

and speed which in turn is influenced by the algorithmic implementation. For a relative error ∆ 

that one accepts Perram and Petersen[42] have suggested using ~ 2 lnα − Δ  or  α~3.5/ Rcutoff . 
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1.5.3 Fast Calculation Method for Ewald Summation 

As discussed in the last section, for the YLG model on a FCC lattice, the total energy is the 

sum (Ewald sum) of three parts, namely, the real (direct) space sum, the reciprocal (imaginary, 

or Fourier) sum, and the constant term, known as the self-term. 

If we fix |nmax|  and |Gmax|, the calculation costs are the following: 

(1)  the reciprocal (imaginary, or Fourier) sum:     O(|nmax||Gmax|3) 

(2)  the self-term sum:                                             O(|nmax|) 

(3)  the real (direct) space sum:                               O(|nmax|2) 

From above cost estimation, we know, for a large lattice system with huge numbers of ions, 

the real (direct) space sum will take most CPU time. As we know, the error function erfc(x) ~ 0.0 

when the argument x > 2.5, so, for the YLG model the real (direct) space sum becomes a sum of 

Columbic potential in a small finite domain depended on a fixed cutoff radius, Rcutoff.  

Meanwhile, if we consider the expansion of  erfc(x) 

2
2 4

1 1 3erfc( ) 1
2 4

xx e
x xπ

− ⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

"
                 

(1.5.3.1)
 

the error function erfc(x) ~ 0.0000 when x > 2.5.  

For a relative error ∆ that we accept, we use (following Perram and Petersen[42]) 

~ 2 lnα − Δ   and α~3.5/ Rcutoff .  

Based on the above analysis, we can use the criterion 

I J cut-off

cut-off

| | 2.5
.2 3 5

L R
R

κ− +
− >

R R n

                          
(1.5.3.2) 

to decide if  the calculation can be stopped. 



40 
 

We don’t need to carry out total energy calculation directly for every MC because we will 

have an optimized method to get the energy difference between two different configurations if 

we just randomly switch two particles to get a new configuration of the system. When we 

interchange the position (or charge) of two particles, the energy change in the real (direct) space 

sum will be: 

Real
, ,

( )( ) erfc( ) erfc( )
N N

m n jn m i
mi nj

mi nji m n j m n

q q qq q qE R R
R R

α α
≠ ≠

−−
Δ = +∑ ∑

              
(1.5.3.3) 

There is no contribution to the change in energy from the self parts (See Eq. 1.5.1.13). 

Because the calculation cost for the Fourier space part is almost O(|nmax|), we can calculate the 

energy of the Fourier part (Efourier) directly for a new configuration of system and hence obtain 

the energy difference ( FourierEΔ ) between old configuration and new configuration. Therefore 

the change of total energy in a single MC move is given by Fourier RealE E EΔ = Δ + Δ . 

 

1.5.4 Evaluation of Madelung Constant – a Check 

In order to test our code for computing the energy for the YLG (and CLG) system we first 

calculate the well known Madelung constant for the NaCl lattice. This corresponds to our case 

x=1 (see eq. 1.3.2.4), which corresponds to no neutral sites (i.e., all sites have a charge, positive 

or negative). As we know, for NaCl, in the CLG model, the Madelung constant M can be obtain 

by using 

2

CLG
0 04

E Nq M
Rπε

= −
                  

(1.5.4.1)
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where any site is charged positive (q) or negative (-q), ECLG is the total potential energy of the 

lattice, N is the total number of charges and R0 is the nearest-neighbor distance. Madelung  [43] 

calculated this  constant exactly by using 

2 2 2 1/2
, ,

( 1) 1.7475
( )

j k l

j k l
M

j k l

∞ + +

=−∞

−
= ≈ −

+ +∑                          (1.5.4.2) 

where 0j k l= = = is to be left out. 

In our code testing, we use some of the ideas of choosing the parameters appearing in the 

Ewald sum (See Section 1.5.2 – 1.5.3) to accelerate the calculation and to reduce the calculation 

cost.  The following results were obtained based on our simulations for the NaCl lattice when we 

chose  α = 0.8 and |Gmax| = (5, 10),  

1) For 10x10x10 lattice,   M = -1.7476, -1.7476 

2) For 20x20x20 lattice,  M = (-1.7479, -1.7476) 

These results agree very well with Madelung’s result. We will use these parameters in our 

MC simulations.  
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CHAPTER 2 YLG Model on a FCC Lattice 

 

2.1 Introduction 

As we have discussed in Chapter 1, the YLG model for the LAST-m  system maps onto an 

anti-ferromagnetic spin-1 (3-state) Ising model.  By changing the Yukawa coupling constant κ 

one can go from the long range CLG model to a short range model where only the nearest 

neighbor interactions dominate. Anti-ferromagnetic interaction between Ising spins on a FCC 

lattice has both geometrical and competing interaction induced frustration. Also when the 

concentration 1x → , the 3-state Ising model goes to 2-state Ising model. Frustrated 2-state Ising 

systems with short range interactions have been known to have unusual properties such as large 

ground state degeneracy, large fluctuations and successive phase transitions as a function of 

temperature with complicated structures[44] [45] [46]. A simple model to understand these 

frustration dominated features is one where only the exchange interaction between nearest and 

next nearest neighbor spins are taken into account. The Hamiltonian is given by 

i j i j i
nn nnn

H J J hσ σ α σ σ σ= − + −∑ ∑ ∑"
          

(2.1.1) 

where ( 0)J >  is the exchange constant and ( 1)iσ =± . The nearest neighbor (nn) interaction is 

anti-ferromagnetic and leads to “geometric frustration” because of the FCC lattice (see 

Fig.2.1.1a). The next nearest neighbor (nnn) interaction can be changed from ferromagnetic to 

anti-ferromagnetic by changing the sign of α. For the YLG system, α<0. The external field h 

controls the average magnetization (or the average charge for the CLG or YLG). For the neutral 

ionic lattice gas system in which we are interested, the total charge (also magnetization) is zero 

and therefore we will consider the case h=0. There is a major difference between this 2 state 

model and our 3 state (spin-1) model. As mentioned before, the latter goes over to the 2-state 
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Ising model for x=1, which corresponds to the system AgSbTe2. This is the limit when the effect 

of frustration is maximum. When x is less than 1, some of the sites have no spins (or ions). This 

can help in reducing the effect of frustration by suitably choosing the neutral or σi = 0 sites as the 

nearest neighbors of charged σi = +1,-1.  

The ground state of Eq. (2.1.1) was first studied by Cahn and Allen  [45]. For 0.5 0α− < < , 

they found that the GS was 6-fold degenerate with the energy 0 2E α= − − . (To describe the 

structure we will use the magnetic or spin description. For the case of ions, one has to replace the 

spins by corresponding charged ions.) The structure is called type-III anti-ferromagnet and is 

shown in Fig. 2.1.1a. For 0.5α < − , there are two types of ground state structures called type II 

(Fig. 2.1.1c) and IIb (Fig. 2.1.1b) anti-ferromagentic structures with energy E0 = 3α and 

degeneracy 8. For α = 0 and α = -0.5 where the GS structure changes from one type to the other, 

the GS degeneracy is macroscopic (~bL, b>1. L is the linear dimension of the system). Slawny 

[46] later showed that although type II and IIb structures were degenerate for α<-0.5, the type-IIb 

structure (Fig. 2.1.1b) dominated at low temperatures. 

As we see, some of these GS structures caused by frustration are similar to what was found 

for the Heisenberg model in 3-dimensions with competing AF interactions (See section 1.2.2). 

The finite temperature properties of this model was studied in detail by Phani et al,[44]. Their 

Monte Carlo (MC) simulations showed that there was a 1st order phase transition from an 

ordered to disordered state for -1≤ α ≤ 0, whereas for α ≤ -1, the transition appeared continuous.   
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(a) 

(b) 

(c) 

(Fig. 2.1.1 One cube of the FCC lattice showing the three possible configurations (a) the type-III 

structure, (b) the type-IIb structure and (c) the type-II structure) 
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As far as we are aware the effect of introducing neutral sites on these properties i.e. looking at 

the 3-state Ising model on a FCC lattice with only nn and nnn AF interaction has not been done.  

 

 

 

(Fig 2.1.2 Concentration (x) versus Temperature (T), phase diagram constructed from the loci of 

the heat capacity maxima [29] for the CLG model.) 

 

Our interest here is to see how the introduction of longer range interaction such as the YLG, 

changes the phase transition (its order and the number of transitions, ground state degeneracy etc) 

for all values of x.  By increasing the strength of the Yukawa coupling we can make some 

contact with these earlier nn, nnn model calculations. The initial attempt to address some of these 

issues for long range interaction was made by Desai, Hoang, Mahanti (DHM) [29] who carried 

out limited MC study of the CLG model for the entire range 0 < x ≤1. The phase 

diagram obtained by DHM is shown in the Fig.2.1.2. 
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For the CLG, as a function of T, they found one (1st order) phase transition for x ≤ 0.5 and 

two phase transitions (one at lower T which is 1st order and the other at higher T which can be 

either 1st order or continuous depending on the value of x) for x > 0.5. The critical temperature 

Tc for the lower T 1st order transition was found to be a weak function of x except for very low 

and very high concentrations (see Fig. 2.1.2). Tc for this transition is 0 for x = 0 and x = 1. The 

higher T transition for x > 0.5 is strongly x-dependent. For x = 1, this transition was found to be 

1st order, in agreement with the results of Phani et al. [44], HDM [29] found that generic low T 

structures of the CLG model consisted of anti-ferromagnetic layers (sheets) (σi =+1,-1) separated 

by layers with σi=0. In the charge picture this corresponds to layers with ordered positive and 

negative charges (corresponding to sheets of AgSbTe2 for the actual physical system), separated 

by neutral layers (corresponding to Pb2Te2 layers). In addition to these layered structures, they 

also discovered a tubular structures for x=0.5, shown in Fig.2.1.3.  We will discuss about this 

tubular structure in more detail later. 

In the present work we generalize the result of DHM [29] to the YLG model. We will 

mainly focus on the region x ≤ 0.75 and not discuss results for 0.75< x ≤1 because of 

computational difficulties we faced. 

In DHM [29] paper, they did not elaborate on the differences in the structural properties in 

regions referred to as “solid”, “liquid” and “gas” for x > 0.5. We will discuss the differences 

between these regions for x=0.75 and also point out the differences in the nature of melting 

between “solid” and “liquid” and between “liquid” and “gas” regions. 
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(Figure 2.1.3 Tubular Structure [29]. Connected balls are for Ag/Sb, unconnected balls are for Pb; 

Te sub-lattice is not shown. Checker board pattern formed by AgSbTe2 and Pb2Te2.) 

 

First, we would like to give a brief summary of the MC simulation method. For each MC 

step, we pick a pair of sites randomly inside a super-cell of size L L L× × and then carry out the 

standard Metropolis algorithm. For each sweep, the change in energy in going from an initial 

state (Ei) to a final state (Ef) is computed. We accept the new state (Ef) if Ef < Ei. If Ef > Ei then 

we accept the state (Ef) if exp( / )BE k T r−Δ > , where r is a random number in the interval 

[0,1], ΔE =Ef - Ei is the energy difference, and T is the temperature. 

The results we present in this thesis (if not specifically mentioned) were calculated with 

system size L=8 (i.e., 8 simple cubic FCC cells in one direction, 4x83 FCC lattices sites in total) 
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with periodic boundaries. To achieve thermal equilibrium at each temperature, at least 2.048x108 

MC sweeps were simulated followed by another 106 sweeps to calculate the averages of physical 

quantities like energy, heat capacity (energy fluctuation) etc. In the present simulation the unit is 

chosen such that Boltzmann constant kB =1, the charge QI=0, ±1, and the distance between the 

nearest neighbors = (0.5)1/2. The error (SN) in the present calculation comes from the standard 

deviation of the averages from the final 106 MC sweeps: 

2

1

1 ( )
N

N i
i

S E E
N

=

= −∑                       (2.1.1) 

        By the way, in the rest of this thesis, energy calculation is based on 

2
( ) )

2 2
(i ji j i j i j

JE Q Q
a

e f R R f R Rσ σ
ε

= ≡− −∑ ∑
                   

(2.1.2) 

where ε  is the static dielectric constant, a is lattice constant, Ri and Qi are, respectively, the 

position and charge. 

The unit of energy in our calculations is 2 /J e aε=  where a defines a characteristic length 

(unit cell length of the FCC lattice) and J / kB defines the unit of temperature. 

 

2.2 Study of YLG Model on a FCC Lattice 

For the YLG model, we analyzed the ground state structure and calculated different physical 

quantities as a function of T and x and the screening parameter κ. Heat capacity can be calculated 

in two different ways. One, is to look at the T derivative of average energy <E> and the other 
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using the fluctuation dissipation theorem for a system in Canonical ensemble
22

2V
B

E E
C

k T
−

= . 

We also looked at different structures (charge ordering) as we changed T for different x values.  

 

2.2.1 First Order Phase Transition, Heat Capacity and Ground State Structure  

 

(Fig. 2.2.1.1 Average total energy as a function of T for x=0.25;  both heating and cooling runs 

are shown. Also shown are the charge ordered layered structures and how they melt when heated) 

Figure 2.2.1.1 gives a typical result obtained in our MC simulation. It gives <E> as a 

function of T for κ = 0 (CLG model) and x=0.25, both for the cooling and the heating runs. We 
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clearly see a 1st order transition in agreement with earlier simulation results of DHM [29]. There 

is a hysteresis associated with this transition confirming its 1st order nature. Below the melting 

temperature, charges are confined within layers because the thermal energy given to the charges 

are less than the binding energy. 

Except for the lower concentration x << 0.5, our MC simulations (slow cooling from high T) 

shows that the ordered layered structures (2-d sheets) dominate the ground state structure for all 

values of the Yukawa screening parameter κ.  This is consistent with earlier MC results of DHM 

for κ=0. This can be understood using the following simple argument. If we only consider the 

nearest neighbor interaction between the spins (or charged particles), we easily see that the 

ordered layered structure is nothing but an anti-ferromagnetic Ising model on a square lattice 

without any frustration in the nn bonds. However the nnn bonds are frustrated but the strength of 

these nnn bonds are 1
2

 of the nn bonds and the number of nn and nnn bonds are the same. As 

a result the ground state is the AF or (+,-) charge ordered state. 

For x < 0.5, the charged sheets are sandwiched between neutral sheets. Since the 

neighboring layers have no charge there is no frustration in the nn bonds. Physically, when x < 

0.5 the system removes frustration and lowers its energy by sandwiching neutral sheets between 

charge ordered layers with total charge zero. There is a small attractive interaction between these 

charged ordered layers coming from the nnn interaction if a positive charge from one layer is just 

above the negative charge of the other. 

Above the transition temperature Tc, the layered structure suddenly breaks up, charges leave 

their original layer and move into the neighboring neutral layers. One can understand the 1st 

order nature of the transition qualitatively using the following argument. The binding energy of 
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the charges is sufficiently strong so that a charged particle cannot escape from its layer for T < Tc. 

Above Tc, a charge moves into the neighboring layer by creating a local defect. At Tc many such 

defects are created thereby precipitating a 1st order phase transition.  

 

(Figure 2.2.1.2 Heat capacity and Phase transition in the 2D Ising model. The inset gives the T 

dependence of the average energy <E>) 

Now let us look at the heat capacity associated with the above transition. We know that the 

heat capacity is related to the fluctuation in energy through fluctuation dissipation (FD) theorem, 

given by  
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T
∂

− = − = =
∂                       

(2.2.1.1) 

To find the mean square fluctuation of energy, we did a series MC simulation where we 

recorded the average energy and its standard deviation for every temperature.  Before carrying 

out the calculations for the 3D YLG model we checked our calculations for the well known 2D 

nn Ising model. A 200x200 square lattice system with periodic boundary condition was 

considered. To achieve thermal equilibrium, we simulated 106 MC sweeps followed by another 

105 sweeps to get the average energy.  In figure 2.2.1.2, we show the average energy and the heat 

capacity calculated using both the derivative of <E> with respect to T, and the FD theorem. We 

found a phase transition at T= 2.25 (here we choose the unit 1Bk = ) and the results of two ways 

of calculating the heat capacity are in close agreement. The T dependence of <E> and CV  show 

the well known 2nd order phase transition with a logarithmic heat capacity. 

To check the simulations further we analyzed the change in entropy associated with this 

transition. We know that the entropy/spin lnS → Ω , where Ω is the number of accessible states. 

At very low temperature Ω=1 and at very high temperature Ω=2; so the change in entropy/spin in 

going from infinite to zero T will be  

0 0
ln 2 ln1 0.693

T T
V

T T

C dT dS
T

=∞ =∞

= =

= = − ≈∫ ∫ .               (2.2.1.2) 

Our simulation results using either of the two methods gave
0

0.7
T

T
dS

=∞

=

≈∫ , in good agreement 

with the result of Eq. 2.2.1.2.  
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Once we were convinced that our simulation time steps and the methods were adequate to 

reproduce rather accurately the well known 2D Ising model results, we proceeded to study the 

phase transition in the YLG model.  

The heat capacity results for κ=0 and x=0.25 are shown in Fig. 2.2.1.3. The (<E> vs. T) 

curve strongly suggests a 1st order transition.  

 

(Figure 2.2.1.3 Heat capacity and Phase transition in 3D YLG model on FCC lattice) 

 

The value of heat capacity will be different because of different process and measurement 

methods. To understand the difference, let us look at the figure (Fig. 2.2.1.3). In our simulation, 
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because there is hysteresis associated with this transition, we can observe two transition points. 

In simulation, we also observed a transition temperature associated with the peak in heat capacity 

(CV) obtained using the FD theorem, which is located between freezing and melting points. In 

the rest of thesis, the critical temperature used in this thesis is obtained based on the FD theorem.  

 

2.2.2 Effect of Screening Parameter (κ) and Concentration on the Phase Transition 

 

(Fig. 2.2.2.1 Melting (phase) transition of YLG with κ=0 for different concentrations x.) 
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       One of our main motivations for our MC simulation is to see what is the effect on the 

transition when we change interaction range by tuning the screening parameter κ. In our 

simulations, 1/a defines a characteristic unit of κ. Based on our investigation, we found that for 

the CLG model[29], the critical temperature is a weak function of concentration. Then we have a 

question, does this result work for the YLG? We run MC simulation to answer this. 

 

A. Critical Temperature, Change in Entropy across the Transition for Different x, κ=0 

In order to understand the nature of melting and freezing transitions starting from the low T 

layered structure, we slowly heated the system from a low T ordered structure (which was 

obtained from earlier cooling runs) until a very high T and then gradually cooled it back to low T. 

In Fig. 2.2.2.1 we give the heating results for κ=0 at four different concentrations. The first order 

melting transition can be easily seen. For x ≤ 0.5, the transitions occur almost at the same 

temperature. For x > 0.5, the Tc appears to be slightly higher. Also for x > 0.5, a second order 

(continuous) transition is seen at a higher temperature, in agreement with the previous work of 

DHM [29]. 

For the first order phase transitions in CLG model, the energy change ΔE at the critical 

temperature depends on the concentration x. Since at a 1st order transition, E T SΔ ∝ Δ , the 

entropy change ΔS at the transition also depends on x. For smaller x, the entropy change is larger, 

due to the larger accessible phase space. We know that CLG model corresponds to a long range 

interaction (κ→0) model, so if we consider the limit of short range interaction with κ→∞ which 

means there is no interaction between charged particles, there should be no transition. Now let us 

see how this 1st order melting transition changes when we change the range of interaction by 

increasing the value of the screening parameter κ. 
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B. Melting Transition in the YLG Model, κ Dependence for a Fixed x  

To study the phase transition in the YLG model and to see how the transition depends on the 

screening parameter κ for a fixed concentration, we have done a series MC simulation for 

different values of concentration x.  

In Fig. 2.2.2.2, we show the <E> vs. T for x=0.25 and several values of 0 < κ < 6.4. A value 

o f  κ  =  6 .4  co r r e spo n ds  t o  s t r on g  s c re en i n g ;  fo r  t h i s  va l ue  o f  κ  t he  r a t i o 

of nnn to nn coupling strength is ~0.1. Note that for κ = 0 this ratio is 1 0.707
2
= . 

 

(Fig. 2.2.2.2 Melting process of the YLG model for different κ and fixed x=0.25) 
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(Fig. 2.2.2.3 Melting process of the YLG model for different κ and fixed x=0.375. For a small κ, 

phase transition is the 1st order. Energy Change at Tc decreases with κ.) 

Now let us look at Fig. 2.2.2.2 (x = 0.25), Fig. 2.2.2.3(x = 0.375) and Fig. 2.2.2.4 (x = 0.5). 

We can find that the GS energy rises when screening parameter κ increases and for the 1st order 

transition, the critical temperature Tc decreases when κ increases. From our simulation results, 

we also find that, for a fixed x, the relationships, GS energy vs. screening parameter κ and 

critical temperature Tc vs. κ, are not liner. (We will discuss this in detail in the section 2.2.4) .We 
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find that there is a 1st order melting transition in the YLG model for small κ, but the transition 

appears to become continuous for large values of κ.  

 

(Fig. 2.2.2.4 Melting process of the YLG model for different κ and fixed x=0.5. For a small κ, 

phase transition is the 1st order. Energy Change at Tc decreases with κ) 

 

2.2.3 Critical Temperature vs. Change in Energy and Entropy at the 1st Order Phase 

Transition  
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To understand the change in entropy driving the 1st order melting phase transition, we have 

examined the dependence of the critical temperature (Tc) and the energy change per charged 

particle at the transition (ΔE) on x (See Fig 2.2.3.1) 

 

 

( Fig. 2.2.3.1 Energy change at Tc vs. Tc when the screening parameter κ is changed from 

0.0~6.4 for different values of x) 
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In Figure 2.2.3.1, for a given x, we plot ΔE as a function of Tc when the screening parameter 

κ is changed from 0.0~6.4 which in turn changes Tc. We can see that ΔE varies linearly with Tc. 

This relationship implies that for a fixed x the entropy change at 1st order transition remains 

constant, independent of Tc and hence κ. 

x
c x

E S
T
Δ

= Δ                     (2.2.3.1) 

The change in entropy at the melting transition is independent of the range of the interaction 

between the charge particles. It does however depend on the concentration of the charge particles. 

Thus we have 

( )
0xS

κ
∂ Δ

=
∂

                   (2.2.3.2) 

The above  results suggest that Tc  can be approximated as a product of two independent 

functions and so can the energy change, ΔE at Tc, i.e., 

( ) ( )

( , ) ( )

c Tc

E c

T f x g

E f x T g

κ

κΔ ∝

∝
                  (2.2.3.3) 

where ( )Tcf x and ( , )E cf x T are functions of concentration and ( )g κ is a function of κ only. 

 

 

2.2.4  Critical Temperature and Screening Parameter κ 

We found that Tc is a weak function of x for different values of κ,   in agreement  with the 

previous work of DHM[29] for κ=0 (CLG model, see Fig. 2.1.2). We have also investigated the 
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effect of κ on the melting transition. We present the simulation result showing the dependence of 

Tc as a function of κ for x=0.25, 0.375, 0.5, and 0.75 in Figure 2.2.4.1.  

 

(Fig. 2.2.4.1 The numerical results of Screen Parameter vs. Criticle Temperature) 

Further analysis indicated that when κ is close to 0.0, Tc or ( )g κ  (See Eq. 2.2.3.3) is almost 

a constant and when κ becomes large, Tc or ( )g κ  is close to 0.0 and decreases exponentially 

with κ. The equation for Tc we have obtained to fit the simulation results is 

( ) 2
1 Rc

c
cc

T f x e
RR

κκ −⎡ ⎤
∝ +⎢ ⎥

⎢ ⎥⎣ ⎦                            
(2.2.4.1) 
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where f(x) is a weak function of x and Rc is a measure of the average distance between the 

charges. 

In Eq. 2.2.4.1, we can see: when κ→0, ( ) 2
1

c
c

T f x
R

∝ , that means critical temperature depends 

only on concentration for CLG model; when κ is large enough,  ( )( ) 1Rc
c cT f x R eκκ

−
→ . 

 

(Fig. 2.2.4.2 Simulation results for Tc vs. κ for two different x (x=0.250 and x=0.375). The 

continuous curve is Eq. 2.2.4.1) 

Form Fig.2.2.4.2, we can see that the fitting equation is extremely good, except for very low 

and very high concentrations. Eq. 2.2.4.1 is useful for predicting the values of critical 

temperature  for a YLG on a FCC lattice. 
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2.2.5 Unusual Degeneracy for x =0.5  

In this section, we will show another important property of the YLG on a FCC lattice that 

we have discovered. In our simulations, we usually cool the system slowly (small change in the 

temperature and long equilibration times) to find different ground state and low T configurations. 

For each cooling process, we start from a random (disorder) configuration as the initial state, 

corresponding to very high T. For the YLG model, our simulations showed that the ordered 

layered structure dominated the ground state structures for x ≤  0.5.  
 

 

(Fig. 2.2.5.1 Layered Structure)                (Fig. 2.2.5.2 Tubular Structure) 

But for x = 0.5, we found that there are two ordered ground state structures with exactly the 

same energy, one layered (Fig.2.2.5.1) and the tubular (Fig.2.2.5.2), but with completely 

different charge orderings. In fact the tubular structure was already seen in the CLG simulation 

studies of DHM[23]. But we found that these two widely different structures have the same 

energy for all values of κ studied. That is this is an exact result for the YLG, at least for the 

values of κ we studied.  We conjecture that this might be true for all 0 ≤ κ  ≤ ∞. 

Concept of degeneracy is not new, since we know there should be degeneracy for competing 

interaction models on a FCC lattice because of the frustration (see our discussions in Chapter 1). 
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The interesting thing is that the degeneracy we have found is not macroscopic but it is 

independent of the nature of the interaction (long range or short range), rather it comes from 

unusual topologies of the two ordered structures. The interesting question is how to understand 

how these two totally different structures lead to the same energy, independent of the range of 

the interaction between the charges.  

 

Index of 

Neighbor 
Distance 

Layer Tubular 

#(+) #(‐) #(0) 
Total 

Charge
#(+) #(‐) #(0) 

Total 

Charge 
1 0.70711 0 4 8 ‐4 1 5 6 ‐4

2 1 4 2 0 2 2 0 4 2

3 1.22475 8 0 16 8 10 2 12 8

4 1.41422 4 8 0 ‐4 0 4 8 ‐4

…… …… …… …… …… …… …… …… 
599 18.0416 64 0 128 64 80 16 96 64

600 18.0555 88 176 0 ‐88 0 88 176 ‐88

601 18.0693 0 72 144 ‐72 18 90 108 ‐72

…… …… …… …… …… …… …… 
1145 24.9700 80 0 160 80 100 20 120 80

1146 24.9900 0 160 320 ‐160 40 200 240 ‐160

 

(Table 2.2.5.1, Topological equivalence (charge weighted connectivity) of the layered and 

tubular structures for x=0.5. After analyzing the structure up to 1146th neighbor in detail, we 

found that the two structures have exactly the same energy in the YLG model.) 
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To understand this unusual result further, we wrote a special computer code to trace the 

difference between these two structures and discovered something very interesting. Let us look at 

the charge distribution shown in the Table 2.2.5.1. If we start from a lattice site (chosen as the 

origin) with a positive ion we find that for any neighbor shell (all lattice points equidistant from 

the origin) the total charge is identical for the two different structures. For example look at the 

599th neighbor shell. There are 192 lattice sites in this shell. In the “layered structure”, there are 

64 positive charges, 0 negative charges, and 128 neutrals, giving a total charge of +64 in this 

shell. On the other hand, in the tubular structure, out of the same 192 lattice sites, there are 80 

positive charges, 16 negative charges, and 96 neutrals, again giving the total charge in the shell 

as +64. As a result the energy of the positive charge at the origin has exactly the same energy in 

both the structures. This is true for all the shells at different distances. Similarly, starting from 

any negative charge at the origin we have the same conclusion. This observation explains why 

the degeneracy between the two structures is true for any κ. So our observation of this unusual 

symmetry of the charge ordering implies that for these two different structures, if the pair-wise 

interaction depends only on the distance between two charges, the energies of two structures are 

going to be exactly the same. 

 

2.3 Nature of Two Phase Transitions for x > 0.5 

In the study of the CLG model on a FCC lattice by DHM[23] (See Fig. 2.1.2) it was found 

that for 0.5< x <1, there were two phase transitions. At x = 0.5, the two transition temperatures 

merged and at x = 1, only one, the high temperature one, remained. DHM designated the three 

phases seen for x > 0.5 as lattice “solid”, “liquid” and “gas”. The precise natures of these three 

phases were not explored in detail in these earlier studies.  
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(Fig 2.3.1 Total energy of super-lattice and heat capacity versus temperature for κ = 0.4 (YLG) at 

x = 0.75.) 

 

In this thesis, we have explored the nature of these three phases and the transition between 

them (“solid”-“liquid” and “liquid”-“gas”) in some detail. We have only explored one 

concentration, x = 0.75 and two values of κ = 0 and κ = 0.4.  
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(Fig 2.3.2 Melting process (“Solid”-“Liquid”) transition for κ=0 (CLG) at x=0.75. Before 

melting, “Solid”-structure (T=0.095) is built up by two parts. One part is of x =1 and other one is 

of x =0.5) 
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(Fig 2.3.3 “Liquid”-“Gas” transition for κ=0 (CLG) at x=0.75) 
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Look at Fig. 2.3.1, for κ = 0.4 at x = 0.75, phase transitions occur at T=0.02 and 0.06 which 

are 1st order and 2nd order transitions, respectively (See the figure “Heat Capacity vs. 

Temperature” in Fig. 2.3.1). 

 

 

(Fig 2.3.4 Melting process (“Solid”-“Liquid”) transition for κ=0.4 (CLG) at x=0.75. Before 

melting, “Solid”-structure (T=0.015) is built up by two parts. One part is of x =1 and other one is 

of x =0.5) 
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With increasing κ, the 1st melting point (Tc) becomes lower and lower. This evidence can be 

easily found in our series numerical simulations. Compare Fig. 2.3.2 with Fig. 2.3.4, for the 1st 

order transition at concentration x=0.75, we can see that, in going from κ =0.0 to κ =0.4, the 

critical temperature changes from Tc =0.10 to Tc =0.02 

 

 

(Fig 2.3.5 “Liquid”-“Gas” transition for κ = 0.4 (YLG) at x = 0.75) 
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(Fig 2.3.6, the GS structure for x=0.75) 

 

The GS structure for the case x = 0.75 is shown in Fig. 2.3.6. We can see that the GS 

structure is made up of two types of structures, layered structure (x =0.5) and condensed layered 

structure (x =1.0).  

 

For melting process at x=0.75, our main observations are summarized below: 

1) 1st order transition occurs in the region (x =0.5) because bond energy between layers is 

less than in the region (x =1.0). (See Fig. 2.3.2 and Fig. 2.3.4). This melting process 

corresponds to “Solid”-“Liquid” transition. The long range order associates the solid state 

structure is lost at this transition. 

2) If one keeps heating the lattice further the bond in the hybrid structures (the Structure for 

κ =0.0 at T =0.19 the structure κ =0.4 at T =0.06 are broken as second transition is found 

(See Fig. 2.3.3 and Fig. 2.3.5), which can be thought of a “liquid” to “gas” transition. 
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2.4 Nucleation of Nano “Tubular” and “Platelet” Structures 

As discussed earlier, the 1st order phase transition temperature Tc from “solid” to “gas” for x 

≤ 0.5 and from “solid” to “liquid” for x > 0.5 is nearly independent of x. In fact, the transition 

temperatures for the layered and the tubular structures for x = 0.5 are nearly same. Also we found 

that the average energy <E> is almost T independent until one reaches Tc. This implies that as 

we heat the system, a critical thermal energy is needed to create local defects which then 

proliferate leading to a 1st order melting (or evaporation) process.  

From the simulation of the cooling process, we found that initial size and distribution of 

charged clusters (or droplets) were quite similar for different x, and for two different structures 

with same x, even if our MC simulation started with different random configurations.  In order to 

understand the distribution of different types of clusters seen in our simulation we use nucleation 

theory, discussed in the following section.  

 

2.4.2 Nucleation Theory of Freezing - Basics 

According to the theory of freezing proposed by Ramakrishnan-Yussouff (RY)[47], the free 

energy  of the system (either liquid or solid) is a functional of the density. When the liquid 

transforms to a solid two things happen. The density changes and the crystalline order develops. 

The density ρs of the solid can be written 

 as  

(1 ) iG r
s l G

G
eρ ρ η μ ⋅

⎡ ⎤
= ⎢ + + ⎥

⎢ ⎥⎣ ⎦
∑                 (2.4.2.1) 
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where ρl is the density of the liquid, η is the fractional density change upon freezing, {μG} 

are the Fourier coefficients characterizing the periodic density of the solid, and {G} are the 

reciprocal-lattice vectors of the crystalline solid. To study the phase transition RY use the 

quantities {μG} and η  as order parameters and expand the free energy difference between the 

liquid and the solid in terms of the quantity [ρs - ρl] using a density-functional theory. Later 

Oxtoby, Haymet and Harrowell[48-50] improved upon the RY theory by adding gradient 

corrections and their expression of the free energy difference is given by  

22
0

1 3( , , ) ( , , ) ( )
2 2 G G

G
F T dr f T K K gη μ η μ η μ

⎡ ⎤
= ⎢ + ∇ + ⋅∇ ⎥

⎢ ⎥⎣ ⎦
∑∫             (2.4.2.2) 

where f is the bulk free energy density difference calculated by RY [47], K0 and {KG} are 

temperature dependent constants, and g is the unit vector in the G direction.  

The nucleation process consists of formation of droplets or clusters of the low T phase 

above the phase transition. These clusters form spontaneously as thermal fluctuations and if T is 

far above the transition temperature they decay rather quickly. But when T approaches Tc and 

goes below it (super-cooled metastable state) these droplets become more stable, form in large 

numbers and percolate giving rise to a sudden (precipitous or 1st order) transition to the low T 

ordered structure. Consider a given volume of liquid at a temperature ∆T below Tc with a free 

energy G1. If some of the liquids transform to a small sphere (bulk) of solid, the free energy of 

the system will change to G2.  
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                  (2.4.2.3) 

        Where: VS is the volume of the solid sphere; VL is the volume of the liquid; ASL is the 

solid/liquid interfacial area; S
VG  and L

VG  are free energies per unit volume of solid and liquid, 

respectively; σ is the solid/liquid interfacial free energy. 

Let the difference between the bulk free energy densities be given by 

L S
b V VG G GΔ = −                          (2.4.2.4) 

In this model the free energy change associated with the nucleation of a spherical “solid” 

droplet of radius R is given by  

2 344
3 bG R R Gππ σΔ = − Δ                  (2.4.2.5) 

The first term gives the energy increase due to the surface tension of the new interface and 

the second term shows the energy gain by creating a cluster of the ordered (solid) phase (only 

when T is below Tc). When 0bGΔ > , the critical nucleation size R* is determined by  

*
0

R R

G
R =

∂Δ
=

∂
,  

it gives R*=2σ/ΔGb . The change in free energy associated with the formation of this cluster is 

given by 

3
*

2
16( )

3 ( )b
G R

G
π σ

Δ =
Δ

                  (2.4.2.6) 

which is positive. Based on a field-theoretic approach to nucleation, Langer[51]  showed that the 

nucleation rate I of a cluster of size R* is given by  
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*( )/
0 G R k TBI eγ −Δ= Ω                  (2.4.2.7) 

where, the parameter γ gives the initial growth rate for a critical cluster and depends on the 

dynamics, the quantity Ω0 gives the amount of phase space accessible for a critical droplet 

fluctuation and is proportional to the volume. 
 

 

 

2.4.3 Different Types of Clusters and the Droplet Nucleation Model 

Now we will see whether the nucleation of cluster idea can be used to explain some of our 

simulation data about the rate of nucleation of different ordered structures.  For the YLG model, 

our slow cooling simulations showed that ordered layered structures dominates the ground state 

for x ≤ 0.5. For x = 0.5, due to the frustration of FCC lattice, there are two different structures 

(Fig. 2.2.5.1 and Fig 2.2.5.2), the layered structure and the tubular structure, which have the 

same energy at T = 0, they are degenerate. The degeneracy between two completely different 

structures led us to probe further the thermodynamic properties of these two structures, their 

melting and freezing characteristics. In particular, we wanted to see whether the melting 

mechanism depended on the range of interaction. When the system is cooled from a high T 

disordered phase one sees nucleation of “layer” and “tubular” nanostructures as one approaches 

the transition. These are precursors of the “layered” and “tubular” ground state structures. In 

addition we see structures which are different and we call them as “metastable” structures. We 

estimated the rate of generations of the first two structures in the following way. Let N = NMeta-

stable + NLayer + NTubular be the total number of the cooling simulations.  NLayer is the number 

of simulations when we saw layered structures, NTubular is the number of simulations when we 

saw tubular structures and NMeta-stable is the number simulations when we saw structures other 
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than Layered and Tubular structures (less than ~2%). We found Layer Tubular/ 0.35N N �  for the 

long range interaction (κ=0.0) and Layer Tubular/ 0.28N N �  for the short range interaction κ=2.6.  

The natural question is why these two different types of clusters appear with different 

probabilities even if their ground state energies are identical.  
 

 

A. Driving Force for Solidification in the YLG Model 

 

(Fig. 2.4.3.1 Gibb’s free energy Vs. Temperature for two phases, “liquid” and “solid”) 

 

Usually when we deal with a phase transition, we are often concerned with the difference in 

free energy between the two phases at temperatures away from the transition temperature. For 

the YLG model, if a disordered structure is under-cooled by ΔT below Tm, the solidification will 

be accompanied by a decrease in free energy ΔG as shown in Fig. 2.4.3.1. 
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(Fig. 2.4.3.2 Energy barrier in the solidification process) 

 

Consider a small piece of the solid at temperature T. The Gibb’s free energies/particle of the 

disordered (liquid) and the ordered (solid) phases are given by 

b
L L

S S

L

b
SG H

G H

TS

TS−

= −

=
                    (2.4.3.1) 

Where H and S are the enthalpy and entropy functions and T is the temperature. The bulk 

free energy difference ΔGb is bG H T SΔ = Δ − Δ , where L SH H HΔ = − and L SS S SΔ = − . For 

the lattice gas models, dV=0. Then from H U pV= + , we know H UΔ = Δ . At the melting 

temperature Tm,  ΔGb=0, 
m m

H LS
T T
Δ

Δ = = , where L is the latent heat at the transition.  For T 

close to Tm,   

( )b
m

m m m

L L TG L T T T L
T T T

Δ
Δ − = − =�                (2.4.3.2) 
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One can use this bulk free energy difference in the expression for the nucleation rate to 

estimate the size and shape of the clusters provided one knows the surface tension (Eq. 2.4.2.5) 

 

B. Energy Barrier and Generating Rate of Different Structure in the Solidification Process 

 

 

(Fig. 2.4.3.3 Basic cells of Layer and Tubular structures and crystal growing processes) 

 

For the YLG system, we put the bulk energy ΔGb (Eq. 2.4.3.2) into the formula (2.4.2.5) 

then we have  

2
* 316

3
mTG

L T
π σ⎛ ⎞Δ = ⎜ ⎟Δ⎝ ⎠

                  (2.4.3.3)  

Therefore, we know that the energy barrier to nucleate a droplet or a cluster is proportional 

to σ3. Based on Langer[51], the generation rate of the clusters in the solidification process is 
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given by */· G k TBI const Ne−Δ� , where N is the number of particles in the volume. It shows that 

the solidification process is proportional to the number of particles and depends on the energy 

barrier ∆G which depends on the basic bulks (clusters) of solid.  

Fig. 2.4.3.3 shows the basic clusters of the two structures (layered and tubular) and how the 

crystal grows from these clusters.  

Now let us estimate the surface energy of the basic cells (clusters) of layered and tubular 

structures. 

 For (m+n) particles system in domain (Ω1+Ω2)(See Fig. 2.4..3.4), the total energy of 

system can be described by ,i j
i j

E E
≠

=∑ , where ,i jE comes from interactions between charge i 

and charge j. Suppose there are n charges in sub-domain Ω2 (outside part of Ω1) with index (1, 2, 

3, …, n) and there are m charges in domain Ω1 with index (n+1, n+2, …, n+m), so the total 

energy of system can be described by 

 

,
,

1 2

, , ,
, , 1, 1 1

m n

i j
i j
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n m n n m n

i j i j i j
i j i j n i j i j n
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+

< >

Ω Ω
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∑

∑ ∑ ∑ ∑

                (2.4.3.4) 
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(Fig. 2.4.3.4 Surface between two domains)   

From Eq. 2.4.3.4, we know that the surface energy is contributed by 

,
1 1

n m n

surface i j
i j n

E E
+

= = +

=∑ ∑                   (2.4.3.5) 

For a basic cell of layered or tubular structure, starting from central particle, from Eq. 

2.4.3.4, the surface energy of basic cell is given by 1
2 Bacis Cell

S i
i

E E
∞

=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∑ . Suppose the surface 

area is A, then we obtain the surface energy density SE
Aσ = . Our simulation results show that 

although the layer and tubular structures have the same ground state energy, it is more difficult to 

generate clusters of “layered” structure compared to that of “tubular” structure. Based on the 

basic nucleation theory of clusters, we can roughly estimate the surface energy density assuming 

that only the nearest-neighbor interactions contribute.  
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For example, when κ = 2.6, the surface energy of the layer structure is about σL~0.27 and 

that of the tube structure σT~0.19. Putting the values of  σL and σT into Eq. (2.3.2.7), we obtain 

that the ratio of the rate of generation of the two structures is 0.31. This roughly matches the 

simulation result Layer Tubular/ 0.28N N � . 

 

2.5 Concentration and melting point 

 

(Fig. 2.5.1 Ground structure for different concentrations) 

 

        In our numerical simulations, we found that for a fixed concentration, no matter what is the 

value of the screening parameter κ, the configuration of the ground state is the same. For x=0.5, 
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we found two ground state structures (Layered and Tubular). For x<0.5, there are two co-existing 

structures that form the ground state configuration (See Fig. 2.5.1). One part is layered with 

x=0.5, the rest is neutral with x=0. For x>0.5, there are also two co-existing structures which the 

ground state configuration, one part is layered with x=0.5 and another part is full of charges  

(x=1).  

         In heating process, our simulations show that critical temperatures of 1st transition are 

nearly independent of concentration x and 1st transition always occurs in the region x=0.5, i.e., 

when the temperature is lower than the melting temperature, charged particles are confined to 

almost within layers. This might be understood as follows: 

• For charged particles, the binding energy in the area x<0.5 is less than the energy in the 

area x=0.5, this is the reason why 1st transition occurs in the area x<0.5 

• For the case x<0.5, when the temperature is below the melting point, the charged particles 

are confined within layers because the thermal energy obtained by particles is less than its’ 

binding energy. In fact, no matter what the global concentration is, for a particle within 

the layers, its local area is always of concentration 50%, this observation may explain 

why the 1st transition occurs almost at the same critical temperature, i.e., critical 

temperature is  nearly independent of concentration. 

• For the case x>0.5, for a particle confined within the layers, because of the contribution 

of extra-binding energy from x=1, the particle need to obtain more thermal energy to 

overcome the binding energy, so the melting temperature should be a little bit higher than 

the temperature in the case x<0.5. 
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2.6 Summary 

Monte Carlo simulation has been used to study the finite temperature (phase transition) 

properties and the ground state of Yukawa Lattice Gas model (YLG) on a FCC lattice, a system 

which is characterized by competing interaction and frustration. This model maps on to an anti-

ferromagnetic 3-state Ising model (σ = -1, 0, +1) on a FCC lattice with tunable range of 

interaction. We discussed the energy calculation method for the YLG model. We have explored 

how the nature and strength of the phase transition depend on the range of competing interaction 

by tuning the Yukawa screening parameter κ. We also investigated the degeneracy of the ground 

state for different concentrations and range of the interaction. We discussed the phase diagram 

and what the role frustration plays in YLG FCC lattice model. Monte Carlo simulation results 

show that our analyses can explain how the first order transition occurs. For 

(AgSbTe2)x(PbTe2)(1−x) systems, the concentration x plays a very important role, it determines 

the energy change and the change of entropy at the 1st order phase transition.  The concentration 

also determines what kind of the phase transition can be observed. We have given an empirical 

formula which gives the x and κ dependence of the 1st order transition from “solid” to “gas” or 

“liquid”. 

For  x = 0.5, we found two special structures which have identical ground state energy if the 

interaction between the charged particles is only a function of the distance between the two 

particles.. Our results show how frustration affects the degeneracy of the YLG lattice system. 

Based on an analysis of the surface energy density around the critical temperature, we studied the 

solidification process and the generating rate of clusters or droplets of different shapes and 

structures and used nucleation theory to explain our MC simulation results qualitatively.  
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In our MC simulations we used Ewald summation to calculate the total energy of the YLG 

model. The size of the system we simulated contains 4x83 lattice sites. For CLG model, consider 

a site closed to center of lattice, we can calculate the energy (E) of the site via Ewald Summation. 

In fact, if the lattice size is large enough, we can directly calculate (E) of the site in a finite 

domain. For a precision of 8 decimal figures, our calculation result indicates roughly that the size 

of a finite domain should contain, at least, 4x(8x8)3 lattice site for concentration (x=0.25). For a 

better understanding of the details of the 1st order and continuous transitions we need to simulate 

much larger systems. Usually, the calculation cost of Ewald summation is about O(N1.5). For 

simulation studies of large systems we can use our Accelerated Cartesian Expansions (ACE)[52] 

method, an O(N) methods, to compute energy (See Chapter 3 & Chapter 4). This method is 

discussed in the second part (Part B) of this thesis. Most of my ACE work has been published in 

2 papers and several conference proceedings. Reference to these works will be given later when 

necessary. Part B of my thesis is based primarily on these published papers. 

  



85 
 

PART B 

 

CHAPTER 3 Accelerated Cartesian Expansion (ACE) Based on Fast Multipole Method 

(FMM)  

 

3.1 Introduction 

The calculation of pair-wise interaction (~R-ν) (for instance,  Columbic or Yukawa 

interactions,  London potentials, or Van der Waal's potential etc.) is important in numerous 

research areas that are as diverse as biophysics, physics, computation chemistry, astrophysics, 

and electrical engineering to name a few. For example, 1,5,6,10ν = corresponds to Columbic 

interactions/gravitational potentials, London dispersion potentials, Van der Waals potentials, and 

H-bonds, respectively.  However, it is well known that these potentials’ calculation requires 

prohibitive computation resources, both in terms of CPU cycles and memory. These costs are 

exacerbated when such computation is required either in a molecular dynamics or a Monte Carlo 

setting. It is well known that the CPU cost of computing mutual interactions between N particles 

distributed in 
3ℜ  scales as 2( )O N . Consequently, this has engendered the need for 

computational methodologies that are efficient both in terms of memory and CPU time.  Some of 

these include cutoff techniques[53], particle mesh algorithms[54-56],  Ewald summation (based 

on an assumption of periodicity)[57, 58], tree-codes  [59-61] and fast multipole methods (FMM) 

[62‐65]. Tree codes (and FMM) are based on subdividing the computational domain into 

hierarchical subdomains, and computing the influence between subdomains that are sufficiently 

separated using multipole/local expansions. The fundamental differences between FMM and tree 

codes notwithstanding, these methods have revolutionized analysis in application domains 

ranging from astrophysics to biophysics to engineering sciences. 
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At this point, we note that there is rampant confusion in terminology; in fact, the terms Fast 

Multipole Methods (FMM) and tree codes are used interchangeably in the literature that we have 

come across. This is not surprising as the two techniques are closely related. The differences 

between these two methods, albeit subtle, are significant. As was elucidated in[66], tree codes 

compute interactions between source pairs using one of three methods:  

1) directly, 

2) evaluating fields at each observation point using multipole expansion due to a  cluster of 

sources, or  

3) using local expansion at observation clusters to find fields.  

The decision on the operation used depends on which one is computationally efficient. On 

the other hand, the algorithmic structure of FMM enables the computation of potentials in an 

optimal manner[66]. Two addition operations that permit this are aggregation and disaggregation 

functions. These permit the computation of information at coarser (or finer) using information at 

finer (or coarser) levels. It so happens that for 1ν = , tree codes typically rely on cartesian 

expansions, whereas FMM is based on spherical harmonics. In this part of my thesis, we develop 

theorems and operations necessary for constructing FMM methods for all ν  using cartesian 

tensors. 

Tree codes for computing the Lennard-Jones potential was developed as early as 1996[67]. 

More refined methods for computing the same were proposed by [68-70]. All three methods 

essentially use Taylor's expansion in the cartesian coordinates, and some of these use 

Gegenbauer polynomials based recursion techniques to accelerate translation of multipole 

expansion to fields at the observer. In 2005, Chowdhury and Jandhyala[70] proposed a variation 
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of these schemes using Taylor's series expansion in a different coordinate systems.  Other 

techniques that have been proposed rely on pre-corrected Fast Fourier Transform and using a 

singular value decomposition. Developing FMM-like techniques using special function has 

proven difficult [70] as functions using Gegenbauer polynomials in the spherical coordinate 

system are not separable. However, it is well know that Gegenbauer polynomials can be written 

in terms of Legendre polynomials. Sarin used this fact to develop a tree code; since Legendre 

polynomials are used, FMM scheme may be readily derived from these expressions as well. Also, 

[71] developed operators necessary to extend their scheme to a multilevel setting. However, 

using Gegenbauer polynomials either for recursion of for developing tree codes has a singular 

disadvantage; these polynomials are defined for 1/ 2ν ≥ − . Consequently, methods that rely 

explicitly on these cannot be generalized to non-oscillatory potentials (like the lattice gas 

potential) nor can one prove convergence ν∀ ∈ℜ . 

The motivations for this work are four fold:  

1) To formulate a fast method for 1 / Rν  in terms of totally symmetric tensors, and exploit 

these to reduce the costs. We also prove convergence ν∀ ∈ℜ .  

2) To introduce new theorems that enable exact traversal up and down the tree. This implies 

that one does not accrue error as the height of the tree increases. 

3) To prove convergence ν∀ ∈ℜ . 

4) To demonstrate the intimate connection between the classical FMM introduced by 

Greengard[62] and its Cartesian counterparts using traceless Maxwell Cartesian tensors. 

This connection will show that properly constructed Cartesian FMM schemes have the same 

computational complexity as classical FMM.  Other advantages of the proposed schemes are 

outlined in later in this section. 
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Fast methods for computing Columbic interactions have progressed along two fronts: (i) 

using spherical harmonics, and (ii) using Taylor's expansions. The latter was introduced at 

approximately the same time as the Greengard's first paper on three dimensional FMM[72], and 

has found extensive application in tree-codes. Recent, FMM codes based on Cartesian 

expansions have used recurrence relations to avoid derivatives[73].  Furthermore, asymptotic 

computational cost of schemes based on Cartesian expansions is higher. This is because spherical 

harmonics are optimal for representing harmonic functions in three dimensions. For a system 

with N mutually interacting particles, it can be readily proven that for a one-level implementation, 

the computational complexity of FMM scales as 4( )O p N  the latter 6( )O p N , where p  is the 

number of harmonics used in the computation. This cost can be reduced by choosing the number 

of particles at the lowest level in the tree in an optimal manner. Our interest in revisiting these 

schemes is motivated by the following observations: (i) Taylor's series expansions provides a 

natural framework for developing addition theorems[74]; (ii) Taylor's expansion involves 

representing the fields in terms of Cartesian Tensors. These connections are well known, and 

have been explored extensively (as early as Maxwell!); see [75-77] and references therein. In 

fact, the following statements hold true: (i) components of a traceless tensor of rank n serve as 

constant coefficients in a spherical harmonic of degree n, and (ii) there is a class of traceless 

tensors of rank n whose components are n-degree spherical harmonics functions of x, y, z. These 

connections imply that there should be an intimate connection between the two seemingly 

disparate methodologies, and one should be able to obtain a similar cost structure for both 

methods. As we will show, the recurrence relationship that were conjectured for translating 

multipole expansions [73] can be rigorously derived using traceless tensors. This implies that one 

should be able to derive a computational scheme using Cartesian tensors that are optimal in the 
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sense of FMM.  The method presented herein can be readily generalized to analyze potentials for 

all ν , or for that matter, to any potential function whose power series converges rapidly  [78], and 

more importantly, without the need to use special functions! 

 

Thus, this chapter will focus on the use of Cartesian tensors to derive fast computational 

schemes for all ν . Similar to FMMs, the methodologies developed herein will rely on a divide 

and conquer computational strategy. This is facilitated by a hierarchical partitioning of the 

computational domain through the construction of an oct-tree data structure. The underlying 

mathematics for two different computational methods will be derived; in the first, operators will 

be derived for traversing up, down and across the tree. This technique will rely on the using 

totally symmetric tensors. The salient feature of this method is that the traversal up and down the 

tree (or shifting the origin of the multipole/local expansion) is exact.  The second method 

produces optimal technique, in the sense of FMM, for 1ν = . This optimality is achieved using 

traceless totally symmetric tensors. For 1ν ≠ , it yields the same computational complexity as the 

first albeit a different error bound.  One of the most interesting features of both algorithms, and 

which separates the proposed technique from the ones presented earlier  [66, 68-71, 79], is the 

fact that the operators derived for traversing up, and down  the tree are independent of ν , and the 

ν  dependance comes in only when traversing across the tree. This is a powerful feature, as one 

can use a single traversal up and down the tree to compute the combined effects of different 

potentials! This also implies that this technique can be readily generalized to create a similar fast 

method for any potential function that is sufficiently smooth in R .  In fact, one of the examples 

presented will demonstrate the simulation of the lattice gas potential ( LnR ) that is used 

extensively in electronic structure calculations. Finally, the algorithm presented does not involve 
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any explicit (or numerical computation of) derivatives and quantities are expressed in terms of 

(products of) traceless (or totally symmetric) tensors. 

 

3.1.1 Divide and Conquer Strategy 

Typically, potentials are evaluated between source and observation pairs that are randomly 

distributed in a domain 3Ω∈ℜ . The computational scheme developed here will follow those 

typically used in FMM. To this end, the entire domain is embedded in a fictitious cube that is 

then divided into eight sub-cubes, and so on. This process continues recursively until the desired 

level of refinement is reached; an lN -level scheme implies 1lN −  recursive divisions of the 

domain. At any level, the domain that is being partitioned is called the parent of all the eight 

children that it is being partitioned into. At the lowest level, all source/observers are mapped 

onto the smallest boxes. This hierarchical partitioning of the domain is referred to as a regular 

oct-tree data structure. The interactions between all source and observation points are now 

computed using traversal up and down the tree structure. This is done using the following rule: at 

any level in the tree, all boxes/domains are classified as being either in the near or far field of 

each other using the following dictum: two subdomains are classified as being in the far field of 

each other if the distance between the centers is at least twice the side-length of the domain and 

their parents are in the near field of each other. Once, the interaction list have been built for all 

levels, the computation proceeds as follows; at the lowest level, the interactions two sub-domains 

are classified as being in the far field of each other if the distance between the centers is at least 

twice the side length of the domain, and their parents are in the near field of each other between 

the elements of boxes that are in the nearfield of each other is computed directly, i.e., using1 / Rν . 

All other interactions are computed using a three stage algorithm:  
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1) compute multipoles of a clusters of sources that reside in each box;  

2) convert these to local expansion at all boxes that are in its far field;  

3) from the local expansion, compute the field at each observer.  

It is apparent that one can gain more efficiency by embedding this scheme within itself. That 

is, if two domains that interact with each other are far away, then these clusters may be combined 

to form larger clusters that then interact with each other at a higher level and so on. As will be 

shown later, this computational strategy considerably mitigates the overall cost.  

To accomplish these sequence of tasks, it is necessary to develop theorems that enable the 

following:  

1) computation of multipoles at leaf (or smallest boxes);  

2) theorems to shift the origins of multipole so that effects of small clusters can be grouped 

together to form larger clusters;  

3) translate multipole expansion to local expansion;  

4) move the origin of local expansion so that expansions at the origin of the parent may be 

disaggregated to those of its children;  

5) finally, aggregate the local expansions in a box to compute the field at all the observers. 

These sequence of tasks are generally referred to as moving up, across, and down the tree, 

and is facilitated by the theorems developed next. 

 

3.1.2 General Statement of the Problem 

Consider a domain 3
sΩ ∈ℜ  that is populated with k sources and a domain 3

oΩ ∈ℜ  that 

contains k observers. With no loss of generality, assume that these domains are spherical and of 

radius a. These spherical domains completely enclose one of the cubical subdomains generated 
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earlier. The location of these points is random, however we will assume that the distribution in 

the domain is sufficiently dense and relatively uniform. Centers of sΩ  and oΩ  are denoted by 

sr  and or . It is assumed that s sΩ ⊂Ω  and o oΩ ⊂Ω  and s oΩ ∩Ω =∅ . In what follows, the 

domains sΩ  and oΩ  will be called parents of sΩ  and oΩ , respectively. As before, the parent 

domains will be assumed to be spherical of size 2a , and their center are denoted by p
sr  and p

or , 

respectively, and p
s s∉Ωr  and o o

p∉Ωr . The potential due to sources i s∀ ∈Ωr , i o∀ ∈Ωr  

observed at o∈Ωr  is given by 
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                   (3.1.1.1) 

This equation is derived using Theorem 2.10, and qi are values of the sources at locations ri. 

The exchange of the summation indices is permissible as the summation converges. Unless 

otherwise stated, the operator ∇ operates on r. In what follows, we will prescribe the means that 

will enable that rapid computation of equation (3.1.1.1).  

The presentation will be in two stages:  

1) We will develop expressions for computing these using totally symmetric tensors. In this 

algorithm, the operations for traversing up and down the tree are ``exact,'' i.e., once the 

multipole or local tensor is known at an origin, shifting the origin is exact.  
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2) We will develop another method that relies on cascaded Taylor's series expansion. 

 

However, in our thesis, we will specialize this technique for 1ν =  so as to cast it in terms of 

traceless tensors. Consequently, the resulting algorithm is optimal in the number of operations. 

We also give insights into how this method can be implemented. Parenthetically, we note that in 

both methods, the ν dependence exists only when traversing across the tree. 

 

3.2 Method 1: Cartesian Expansions with Totally Symmetric Tensors 

3.2.1 Multipole Expansion (Theorem 3.2.1) 

The total potential at any point o∈Ωr  due to k sources qi, 1, ,i k= "   located at points 

si ∈Ωr   is given 
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where ( )nM  is the totally symmetric multipole tensor about the origin {0, 0, 0}s =r  

Proof.  See equation (3.1.1.1) 

In the above equations, the tensor ( )nM  is of full rank and totally symmetric. This implies 

that the number of independent components is ( 1)( 2) / 2n n+ + . As we will show in the next 

subsection, if this tensor is contracted with another tensor that is traceless, then it is possible to 

use the traceless form of the multipole moment. As a traceless tensor contains only 2 1n +  

independent components it results in an method with lowered computational cost. 
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Next, we present the first addition theorem that enables shifting the origin of multipole 

expansions centered around sr  to that centered around p
sr . This is facilitated by the following 

theorem. Variations of this theorem have been developed in other contexts [43]. 

 

3.2.2 Multipole to Multipole Expansion (Theorem 3.2.2) 
 

Given a multipole expansion of k sources about the {0, 0, 0}s =r  

( )

1
( 1)

!

k
n n ni

i
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q
n

=

= −∑O r                   (3.2.2.1) 

then the multipole expansion about the point p
sr  can be expressed in terms of above equation as 

( )( ) ( )

1 0 ( , )

! !( 1) ( )
! !

k n n mn n p n p m
i s s

i m P m n

q m
n n

−

= =

= − − =∑ ∑ ∑M r r r O             (3.2.2.2) 

where ( , )P n m  is the permutation of all partitions of n into sets n-m and m. 

 

Proof: 

Using equation (3.2.2.1), Theorem A2.1, Theorem A2.10 and noting that the tensors O(n) 

n r ν−∇  are totally symmetric, results in 
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                             (3.2.2.3) 

Next, we prescribe the means to translate the multipole expansion that exists about p
sr  to a 

local expansion about p
or .  

 

There are two ways of deriving this translation operator;  

(i) using reciprocity and  

(ii) using a Taylor's series expansion.  

The theorem that is presented next uses the first approach whereas the second approach is 

used in presenting a similar operation for method 2. As is expected, both result in identical 

expressions. 

 

3.2.3 Multipole to Local Translation (Theorem 3.2.3) 

Assume that the domains sΩ  and oΩ  are sufficiently separated, and the distance between 

their centers | | | |p p p p
os os o sr = = −r r r  is greater than { }sdiam Ω and { }odiam Ω . If a multipole 
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expansion M(n) is located at p
sr , then another expansion L(n) that produces the same field 

o∀ ∈Ωr  is given by 
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where p
o= −ρ r r . 

Proof: 

The potential ( )� oφ ∀ ∈Ωrr  is given by equation (3.2.1.1). It follows by reciprocity that if 

the multipole M(n) were located at r  it would produce the same potential at p
sr . In other words, 

the potential at all points o∈Ωr  can be computed by placing the multipole moments at r  and 

evaluating 
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At p
sr . Here, i∇  is the derivative with respect to p

or . Since this valid at all points ∈Ωr , the 

multipole tensor M(n) at r may be translated to the center p
or  using the symmetric translation. 

Denoting the multipole tensor at p
sr  by O(n) and p

oρ = −r r , using the multipole expansion 

theorem, we obtain the potential 
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is obtained by gathering tensors that operate up on nρ . 

Next, we prescribe the means to traverse down from p
or  to or . This theorem is almost a 

mirror of that used to go up the tree. 

 

3.2.4 Local to Local Expansion (Theorem 3.2.4) 

A local expansion O(n) that exists in the domain oΩ  centered around p
or  can be shifted to 

the domain oΩ  centered at or  using 
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Proof: 

 From definition of ( )φ r , we use ( )p cp
o o o oi o= − + − = +ρ r r r r ρ r  to obtain 
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where 

( )( ) ( ) ( )
m nn m cp

o
m n

m
m n

m n

∞ −

=

⎛ ⎞
= ⋅ − ⋅⎜ ⎟−⎝ ⎠
∑L O r                (3.2.4.3) 

In deriving the above proof, we used Theorem A2.1 to permute the tensors, and then 

gathered terms associated with ( )moiρ to arrive at the final result. Finally, the potential at any 

point in the oΩ  can be obtained using 

( )( )

0
( ) nn

oi
n

nφ
∞

=
= ⋅ ⋅∑r L ρ                  (3.2.4.3) 

 

3.3 Method 2: Method 2: Cartesian Expansions with Cascaded Taylor's Series 

In the above subsection, the scheme presented relies on the use of totally symmetric tensors, 

and exact operations to traverse up and down the tree, i.e., once the multipole expansions at the 

lowest level are known, traversal up the tree is exact. Similarly, once the local expansions are 
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known at a level, traversal down the tree is exact. Alternatively one can derive a fast algorithm 

that is based on cascaded Taylor's series expansions. In fact, it can be shown that the classical 

FMM falls into this category as do the algorithms proposed by [67-69, 79]. Note also, that for a 

given error, method 1 will typically require lower value of P than method 2. However, our 

motivation herein is to demonstrate that for 1ν = , this algorithm can be formulated in terms of 

traceless tensors, thus, making the number of operations optimal in the sense of classical FMM. 

For 1ν ≠ , the translation operator is not traceless but a symmetric tensor. Consequently, the 

asymptotic cost is the same as method 1. 

• Traceless operations for 1ν =  

As is evident in Theorem 3.2.1, the multipole tensor is contracted with a tensor that 

is both totally symmetric and traceless. As was mentioned earlier, the latter has only 

(2 1)n+  independent components while the former has ( 1)( 2) / 2n n+ +  independent 

components. However, as was shown in Lemma A2.2, it may well be possible to derive 

another tensor that results in lower number of operations; here, we develop a method 

using traceless tensors that are henceforth denoted by a subscript t . The following 

Lemma demonstrates this fact: 

 

3.3.1 Traceless Multipole (Lemma 3.3.1) 

If the potential at a point is given in terms of contraction between the multipole tensor M(n) 

and a symmetric traceless tensor, then the same potential at that point may be obtained using an 

equivalent traceless symmetric tensor ( )n
tM . 

Proof:  Starting with equation (3.2.1.1), it follows that 
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Next, we need to translate the multipoles located at rs to one that is located at p
sr . In 

contrast to what was done in Theorem 3.2.2, the starting point of our expansion will be Theorem 

3.2.1. The following lemma prescribes the relation between the traceless tensor ( )n
tΟ  that exists 

at rs  to a traceless tensor ( )n
tM . 

 

3.3.2 Traceless Multipole to Multipole (Lemma 3.3.2) 

A traceless multipole tensor at {0, 0, 0}s =r  is related to that centered at p
sr  via 
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Proof: 

The proof presented herein relies on the repeated use of Theorems A2.6, A2.7, and 

Corollary A2.8. These theorems essentially permit manipulations of the detracted operator, as 
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long as one of the tensors involved in the contraction is traceless. As seen in equation A11, the 

tensor 1nr−∇  is traceless; consequently, all quantities that are contracted with it can be made 

traceless as well. Starting with Lemma 3.3.1.1 and using Taylor expansion (Theorem A2.10) 

results in 
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The next stage is the translation of the multipoles ( )n
tM  to local expansion. Indeed, the 

procedure for doing so is similar to the one derived for symmetric tensors. 
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3.3.3 Traceless Multipole to Local (Lemma 3.3.3) 

Assume that the domains sΩ  and oΩ  are sufficiently separated, and the distance between 

their centers is | | | |p p p p
os os o sr = = −r r r  is greater than }{ sdiam Ω and }{ odiam Ω . If a traceless 

multipole expansion ( )n
tM  for all n is located at p

sr , then another expansion L(n) that produces 

the same field o∀ ∈Ωr  is given by 
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Proof: 

The proof presented in this section relies on using another Taylor expansion to create the 

traceless local expansion ( )n
tL  as opposed to using reciprocity to derive similar operators for 

Method 1.  

Following Theorem 3.2.1, assume that a multipole expansion exists at p
ss ∈Ωr . Using 

Theorem 3.3, we can write the potential at any point ∈Ωr as 
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Because ( )p p p p p
s o o s os− = − + − = +r r r r r r ρ r , i∇ = ∇  (where i∇  denotes a derivative with 

respect to the p
osr  ), using Theorems A2.6 and A2.10, we can rewrite the above equation as 
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Next, we prescribe the means to shift the origin of the local expansion from p
or to or . This 

is facilitated by the following Lemma. 
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3.3.4 Traceless Local to Local (Lemma 3.3.4) 

Given a local expansion ( )n
tO  that exist in the domain oΩ  centered around p

or , it can be 

shifted to the domain oΩ  centered at or  using 
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Proof: 

The process of proving this expansion is similar to what was done for developing the 

expression for multipole to local translation. The crux of this proof is that all the tensors involved 

are totally symmetric. The potential at any point o∈Ωr  can be written as 
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finally, the fields at all observation points in the finest level can be obtained using 
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The proof for this statement can be obtained trivially from the Lemma 3.3.4. 

 

3.4 Error Bounds 

The error bounds derived herein will be for Method 1; the estimates for Method 2 can be 

obtained either by nesting those obtained here or using those  [63]. As was mentioned earlier, the 

shifting of origin of the multipole expansion is exact as is shifting the origin of the local 

expansion. This implies that the error primarily comes from two sources; (i) Taylor's expansion 

to create the multipole expansion at the level that it is being translated, and (ii) conversion to 

local expansion. We shall deal with both cases separately.  

In what follows, we will assume that the source/observation spheres are of radius a, then we 

have 
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Consider an arbitrary constant nth rank tensor, A(n). Then, the contractions will be 

( ) ( )
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n
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where Cm and Cq are constants, and ri,max is the vector corresponding to the charge that is 

farthest away from the origin. The proof for (3.4.3) can be derived using fumula (A12) or (A13). 

Likewise, the proof for (3.4.4) can be trivially derived. It follows from these expressions that the 

absolute error in making the multipole approximation may be obtained using 
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(3.4.5) 

 

Since the ratio of the distance to the radius of the sphere is always greater than 3, it implies 

that the series converges for all values of ν .  

Next, the error bounds on truncating the local expansions are derived as follows: 
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These equations imply that the approximations converge  ν∀ ∈\ . The above estimates are 

for the absolute error; similar estimates for the relative error can be readily obtained. 

Actually, using the Cauchy–Schwartz inequality, ,max ,max1i i ar⋅ ⋅ ≤ ≤r r r r ,  we could get 

more precise error bounds, those are: 
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                  (3.4.7) 

The proof of equation (3.4.7) can be obtained trivially followed by equations (3.4.5) and 

(3.4.6).  

Figure 3.4.1 shows the error bounds with different ν values (-3.3, -1.5, 1.0, 2.2, 3.3) and 

plots the predicted relative error for different values of P for interaction between two domains of 
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radius a whose centers are separated by 4a. The values of m chosen for this demonstration are 

those that are used in the numerical results section as well.  

 

 

(Fig. 3.4.1 analytically derived upper bound for the error for different values of ν for 

source/observation domains of radius a whose centers are separated by 4a.) 

 

The salient facts evident from Fig. 3.4.1 are:  

(i) the expansions converge for all m with increasing P, and  

(ii) the expansions converge faster for m < 0 than for m > 0.  
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Both these facts are borne out in numerical experiments in Chapter 4. On a slightly different 

note, relative error bounds derived here do not depend on the number of levels in the tree as no 

error is accrued in traversing either up (Multipole to Multipole expansion) or down (Local to 

Local expansion) the tree. The multipole (or local) error at any two levels in the tree are 

approximately the same due to the fact that both the distance r and the size of the box a at any 

level are scaled by the same factor with respect to the smallest box, and this factor drops out. 

 

3.5 Computational Methodology and Cost 

As mentioned earlier, the entire computational domain is embedded in a cubical domain that 

is recursively partitioned into smaller cubes. Both near and far interaction list are created at all 

levels. In what follows, we describe the computational methodology as well as the cost 

associated with each operation. The cost associated will be denoted by i
opC where 1, 2i =  

denotes the method used and “op” denotes the specific operation. It is to be noted that the cost 

2
opC  is specifically for 1ν =  and 1 2

op opC C=  for 1ν ≠ .  

The operations { , 2 , 2 , 2 , 2 , 2 }op NF C M M M M L L L L O∈  that stand for  

1) near field 

2) charge to multipole 

3) multipole to multipole 

4) multipole to local  

5) local to local, and (vi) local to observer.  

In what follows, we will denote the total number of interaction points by N, the number of 

harmonics by P, the number of levels in the tree by lN  and the number of boxes at any level by 

,b lN . It will be assumed that the interaction points are uniformly distributed in a volume. We will 
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also assume that the number of unknowns in each leaf box is s. It follows that ,1 /bN N s= , 

, 1 ,8b l b lN N− = , and ,
1

/
Nl

b i
i

N N s
=

∝∑ . With these preliminaries, the computational methodology 

can be prescribed as follows: 

 

3.5.1 Near Field Evaluation 

At the leaf level, all boxes that lie in the near field are tabulated. This implies that one 

computes the interaction between the points that are in the vicinity of each other using whatever 

method is classically used. Therefore, 1 2
NF NFC C= , and 

 

1

2

Total no. boxes Cost of interaction of each box with its near field

/ 27

27

NFC

N s s

Ns

∝ ×

∝ ×

∝                  

(3.5.1.1) 

 

3.5.2 Far Field Evaluation 

The far field evaluation comprises of four operations.  The terminology used in this paper 

will be similar to the one introduced in [63]. 

 

A. Multipole Expansion 

For all boxes at the lowest level, compute the multipole expansion for all charges that reside 

in it. This is done using Theorem 3.2.1 for method 1 or Lemma 3.3.1 for method 2. The former 

forms a set of totally symmetric tensors whereas the latter forms a traceless tensors. The cost for 

this operation is 
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2 total no of level 1 boxes Cost for each box

total no of level 1 boxes no. charges per box

   cost per tensor no of tensors

i
C MC ∝ ×

∝ ×

× ×
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B. Multipole to Multipole 

For all boxes, at any given level, we compute the multipole expansion for the parent box 

from those of its children. This operation is repeated at all levels. In ACE, same as the classical 

FMM, the number of operations is independent of child/parent levels. The cost for obtaining a 

term in the nth rank multipole tensor scales as (m - n + 1)(m - n + 2)/2 for m = n,…, P. Given 

that there are (n + 1)(n + 2)/2 independent terms in nth rank tensor, the cost for constructing all 

terms of the tensor scales as 
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The number of operations specified in this equation is exact and exploits the total symmetry 

of the tensors involved. Likewise, the number of operations required when using traceless 

tensors is 

2

0

2

0

Cost Child Multipole to Parent Multipole

(2 1) (2( ) 1)

( 1) (2 1)

P P

n m n

P

n

n m n

P n n

= =
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∑

                         (3.5.2.3)
 

This implies that the cost will be 

2

6
1

2
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Total number of multipole to multipole translations Cost per translation

( )                                                                                                       
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NC P i i
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∝ × − + +∑  

C. Multipole to Local Translation 

The cost for translating P+1 multipole tensors of one box to local tensors at another is that 

in equation (3.5.2.3) for symmetric tensors and (3.5.2.4). Consequently, the cost for translation 

scales as  

2

6
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D. Local to Local Translation 

The cost is exactly the same as that for multipole to multipole translation, i.e., 

1 1
2 2L L M MC C=   and 2

2
2

2
L L M MC C= . 

 

E. Local to Observer 

Again, the cost for this operation is exactly the same as that for mapping charge to 

multipoles, i.e., 1 1
2 2L O C MC C=  and 2

2
2

2
L O C MC C=  

 

The above analysis implies that the cost for the total analysis scales as 

2 2 2 2 2

6 3
1

4
2 2

   for 1, 2

27 191
720 3

27 191 2
6

i i i i i i i
cost NF C M M M M L L L L O

cost

cost

C C C C C C C i

N P NPC Ns
s

N PC Ns NP
s

= + + + + + =

∝ + +

∝ + +             (3.5.2.6) 

It is readily apparent that the optimal number of unknowns per box is 3 /10s P∝  for 

method 1, and  2s P∝  for method 2. Existing methods for R ν− [68, 80] do not use symmetry in 

their formulations. Consequently, their translation cost does not have a factor of 1/720, and their 

cost will be more expensive for a given value of P. Given that the cost reduction is a 

consequence of symmetric tensors, the application of method 2 to R ν− will have identical cost as 

method 1. The application of method 2 to 1R− results in a complexity that is very similar to that 

of the classical FMM algorithm that was presented in [63] with an exception of a factor of 1/2 in 

the translation term. However, recent improvements to the classical FMM scheme have reduced 

the P4 scaling to P3 by using a plane wave based translation operator [81]; using a plane wave 
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based translation operator has enabled some algorithmic changes that have further reduced the 

‘‘cost in front.’’ Similar modifications to method 2 are possible for 1ν = . 

 

3.6 Implementation Subtleties 

Two issues stand out when implementing ACE algorithm: 

1) the nth rank operators used for multipole to multipole translation from level l → l + 1 and 

those used for doing the same from level l + 1 → l + 2 differ by a multiplicative constant;  

2) similarly, the nth rank translation operator for translation of multipole from level l → l + 

1 and that used for translating multipoles from l + 1 → l + 2 are related by a constant.  

Both these statements can be proven by examining the explicit forms of the operators 

involved. These facts imply that these operators need to be constructed and stored only for 

boxes at the lowest level and all others can be readily obtained by the operations listed above. 

It is also evident that the key component of the cost equation is the number of translations 

and the number of operations necessary to compute each translation. Some modifications that 

were originally suggested in [81] can be adapted to this algorithm. Indeed, since the error in 

shifting the multipole expansion is negligible, one can cluster translations to further reduce the 

total number of translations. Furthermore, one can exploit the structure of the tensor contractions 

involved in translation. Some of these improvements have already had a positive impact on the 

speed of the resulting code [82-84].  

Finally, as with all tree codes (and FMM), the algorithm may be made adaptive in terms of 

the number of the tensors used, with very little loss in precision. For example, at higher levels in 

the tree (which correspond to interactions that are further away in space), one could reduce P as 

the potential is dominated by interactions that are closer. However, in the results presented herein, 
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this is not done. Finally, while the resulting power series expansion is convergent, a concern is 

the numerical stability of the resulting series. It will be evident in Section 3.8 that for the range 

of P, s and ν, this is not a concern. However, further insights into the behavior of the series can 

be gleaned from equation (A13), and using this expression to compute higher order derivatives 

yields stable results.  
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CHAPTER 4 Application of Accelerated Cartesian Expansion Methods 

 

We designed a new fast calculation method (ACE) (See Chapter 3) to calculate the 

interaction between N particles and our algorithm is based on the Cartesian tensor theorem and 

reduced the calculation cost to O(N) from O(N2) by using the scheme of Fast Multipole Method. 

In this chapter, we will demonstrate that, by using the expansion, our algorithm can calculate not 

only the 1/R Coulomb interaction, but any interaction in the form of R-υ such as Lenard-Jones 

potential. Also we will show how to get the exact solutions of the translation operator from the 

multipole to the local translation for the kernel of r ν− and Yukawa 
re

r

κ−
and how ACE works on 

different interactions. 

 

4.1 Preliminaries 
 

4.1.1 Generalized Maxwell Expansion (GME) 

From ACE, for an interaction with form r ν− we know that the kernel of ACE is Multipole to 

Local translation (Translation Operator) because only this operator depends on the parameter υ. 

The key part of the translation is to solve the expansion of n r ν−∇ . An expression for solid 

harmonics in terms of the gradient of the position r-1 was first derived by Maxwell of an arbitrary 

set of n axis [76]. In the Cartesian coordinate frame, his expressions reduce to 
 

1 (2 1)       Maxwell equatio( 1) nn n n
nr r− − +∇ = − nr                         (4.1.1.1) 

This relationship has been obtained by others [85, 86] as well.  
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Maxwell found the expression of 1n R−∇  80 years ago. Till the work done by us, to the best 

of our knowledge, there is no the exact expression for nr ν−∇  for  any  real  1ν ≠ .  To be a first 

one, I found that the element of the total symmetric tensor n r ν−∇  takes the form 
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to construct the n-fold gradient, where 1 2 3     n n n n= + + , 1 2 3     m m m m= + + . It can be 

readily shown that this definition reduces to that obtained for 1ν =  . 

Proof: 

• For n = 0, we can easy confirm GME. 

• For n = 1, when n3 = 1, then 1 2

1 2 3

0
0

n n
m m m

= =⎧
⎨ = = =⎩

 

2

2

the left side of GME = -

the right side of GME = -

z
r

z
r

ν

ν

ν

ν

+

+

 

                 Same as above, when n1 =1 or n2=1, we can verify GME. 

• Suppose when n1 = N1, n2 = N2,  n3 = N3, GME is right,  
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then if ( n3 = N3 + 1), we have 
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We know that 3 3 11
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N N +
+ =d t d t , finally we get 
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                   (4.1.1.3)  

For n1 = N1 + 1 and n2 = N2 + 1, the proof is same as above. 

GME is very important for ACE because a lot of interactions are in the form of r ν−  (such 

as Lenard-Jones potential) or can be expanded in the form of  r ν−  (such Yukawa interaction). 

We will see the applications of the equation (4.1.1.3) in our numerical simulations. 

 

4.1.2 New Expansion of Modified Bessel K (New K) 

For Multipole to Local translation of Yukawa interaction in ACE methods, we will find that 

the convergence of convention calculation method (by using GME) is not fast enough (See 

section 4.4).  
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In order to accelete the calculation speed of the translation operator, we need to find a new 

fast convergence formula to replace the convention one.  

Due to a good fortune, I found a new expression of Modified Bessel K function, that is 
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(4.1.2.1) 

where, N is a positive integer and K is Modified Bessel function.  

By using mathematical induction, we can prove formula (4.1.2.1) 

 

Proof: 

When N=0, we easily prove 
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Suppose, for N, New K formula is correct, 
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• For N+1, from the left side of New K formula, we have 
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• For N+1, from the right part of  New K formula, we have 
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Base on the Eq. 4.1.1.3 and 4.1.2.1, we can generate a fast kernel of ACE, the results we got 

will be shown on the section “Yukawa (Shielded Coulomb) Potential Calculation Based on ACE” 

of this chapter.   

 

4.2 The Error in Numerical Simulation Based on ACE 

 

In our simulations, the error will be computed by using the following: 

( )2

2 2

( ) ( )

( )

num i exact
i

exact i
i

L
φ φ

φ

−

=
∑

∑

ir r

r              (4.2.1) 

As is commonly done, all near field interactions are ignored. This gives us a measure of the 

error produced by the multipole representation. All timing runs are performed on a Linux 

desktop that has a 2.8 GHz Intel processor, and the run times reported are obtained using an 

intrinsic function dtime. Finally, P will denote the maximum rank of the tensor used in 

expansions. 

 

4.3 Numerical Simulation Results 

In this section, we will demonstrate the validity of the numerical method presented via 

numerous examples.  The overarching goals of this section are as follows:  

1) numerically show that the traversal up and down the tree can be performed exactly, 

2) demonstrate that the proposed method produces accurate results for different values of ν, 

3) demonstrate that this scheme can be used seamlessly for computing potentials that are 

superposition of potential of the form R-ν for multiple values of m using a single tree 

traversal, and 

4) Experimentally demonstrate that the proposed scheme scales as O(N).  



123 
 

 

. Level=3 Level=5 

P=2 3.268070962493E-03 3.268070962493E-03 

P=5 2.866109269814E-05 2.866109269814E-05 

P=8 4.207517301401E-07 4.207517302159E-07 

P=11 7.470454043400E-09 7.470454038638E-09 

Level=7 Level=10 

P=2 3.268070962493E-03 3.268070962493E-03 

P=5 2.866109269812E-05 2.866109269808E-05 

P=8 4.207517301963E-07 4.207517301868E-07 

P=11 7.470454030685E-09 7.470454009644E-09 

 

(Table 4.3.1 The variation of errors in multipole to multipole with fixed translation error for ν = 

2.2) 

       First, we will demonstrate the accuracy of operators used to traverse up and down the tree. 

The geometric configuration analyzed is as follows: 8000 source/observers populate a cube of 

dimension 4 x 4 x 4. Of these, 4000 are located at Ω1 = (0.0, 1.0) x (0.0, 1.0) x (0.0, 1.0), and the 

rest are located in Ω2 = (3.0, 4.0) x (3.0, 4.0) x (3.0, 4.0). The distribution of the points is 

uniformly random, i.e., the distribution in the domain is almost uniform. This arrangement 

ensures that following; particles in Ω1 and Ω2  interact with each other at level 3. For a given P, 

the error bound for this interaction can be computed. As we increase the number of levels, the 

change in the error norm can be attributed solely to the error multipole-to-multipole and local-to-

local translations. Table 4.3.1 documents the error obtained for different values of P and 

different levels (while we have data for all 10 levels, only some are presented). All computations 
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are carried out for ν = 2.2. As is evident from the results presented, the variation of the error 

obtained from using different levels in the tree is accurate to double precision. Next, we perform 

a similar experiment, but for the lattice gas potential ( ) lni i
i

qφ =∑r r -r  that is very 

commonly used in the electronic structure calculations. Again, as is evident from Table 4.3.2, the 

variation of errors for different levels is within double precision accuracy. Note, the translation 

operator for this function can be readily derived from the material presented earlier 

 

Level =3 Level =5 Level =7 

P=2 2.194595063535080E-04 2.194595063534780E-04 2.194595063534940E-04

P=5 2.949087946097280E-07 2.949087945862070E-07 2.949087945902640E-07

P=9 4.696476490009490E-10 4.696476221096200E-10 4.696476168731460E-10

P=15 5.455886813905550E-14 5.453948560581600E-14 5.451163061523900E-14

 

(Table 4.3.2 Variation of errors in multipole to multipole operations with fixed translation error 

for computing the lattice gas potential function) 

 

In the next series of numerical experiment, we demonstrate the efficiency and convergence 

of the proposed method. This is done by analyzing potentials due to randomly distributed sources 

at random observation points. In what follows, the source/observation points are co-located, and 

are randomly distributed. Four different computational domains are chosen: (0.0, 1.0)3, (0.0, 

2.0)3, (0.0, 4.0)3 and (0.0, 8.0)3. These domains are populated with 500, 4000, 32,000, and 

256,000 source/observers. As mentioned earlier, the size of the smallest box Ω0 depends on the 

degree of approximation P. This implies that the number of levels in the tree will vary with P. 



125 
 

Tables 4.3.3 – 4.3.5 demonstrate convergence and speed for ν = 1, 3.3, -3.3. All errors reported 

are computed using equation (4.2.1). 

 

As is evident from these tables, the proposed method converges rapidly for different values 

of ν, and is faster than the direct computation. The convergence behavior follows the trends 

expected for different values of ν, as does the timing data with respect to the number of 

harmonics. Again, as reported earlier, it is possible to choose the size of the smallest box to 

optimize the timing data; while this is not done precisely here, the size of the smallest box is 

varied depending on the desired accuracy (P). The breakeven point, of course, depends on the 

accuracy (and m). For ν = 1, and P = 2 (which results in an error of 10-4), the breakeven point is 

as low as 250 source/observers. It should be noted that in obtaining this timing data, we have not 

fully optimized the M2L stage in keeping with some of the development suggested in [81] and in 

papers thereafter. Even so, the timing data obtained for ν = 1 and accuracy of 10-4 favorably 

compares with some of the most optimized codes. 
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(Table 4.3.3 Errors in Coulomb potential (ν = 1) computed using the proposed scheme and the 

directly timing data for the two methods.) 
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(Table 4.3.4 Errors in Coulomb potential (1/R3.3) computed using the proposed scheme and the 

directly timing data for the two methods) 
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(Table 4.3.5 Errors in Coulomb potential (R3.3) computed using the proposed scheme and the 

directly timing data for the two methods) 
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Next, we demonstrate the application of this technique to compute the Lennard-Jones 

potential. The computational domain Ω = (0.0, 1.0)3 is filled with 12,167 source / observers 

whose location is uniformly random. The potential computed is of the form  

12 6
1 6( ) ir q

r r
φ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
                 (4.3.1) 

A uniform oct-tree with five levels are constructed. As was noted earlier, the traversal up 

and down the tree are independent of the potential, and only the translation across the tree 

depends on the specifics of the potential being computed. Table 3.7.6 tabulates the error with 

increasing P. As is evident, the potential computed converges rapidly with increasing P. 
 

P Error 

10 4.614155995813000E-02 

14 6.242473037897020E-03 

18 3.954018566296790E-04 

22 8.407075999784550E-05 

32 1.246581347878100E-06 

 

(Table 4.3.6 Error in the Lennard-Jones potential; the computations are performed using one tree) 

 

Finally, we compare the computational cost of the proposed scheme with that of direct 

computation. Timing data for domains of increasing size are obtained; the number of 

source/observation pairs vary from 500 to 1,000,000. The density of particles in the domain is 

chosen to be 500 per unit cube, the particles are randomly distributed in the domain, and ν = - 1.5. 

The precision P = {2, 4, 10}, which translates to errors ranging from 10-3, 10-6 and 10-8, 
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respectively. In the simulation, the size of the smallest box was kept the same, i.e., Ω0 = 0.25 for 

all values of P. All simulations are run on a Linux desktop (running Redhat9.0) with 2.8 GHz 

Intel Pentium processor with the Intel Fortan compiler. The timing data is obtained using the 

intrinsic function dtime.  

 

(Fig. 4.3.2. Cost scaling of the direct method and the fast algorithm (ACE) for different values of 

the precision P for computing the potential R1.5.) 

Fig. 4.3.2 compares the time required for computing pair-wise potentials classically and 

using the methodology presented herein. It is evident from Fig. 4.3.2 that the cost scales as O(N); 

the slopes of all three fast methods is approximately 1.0. A noteworthy fact is that the breakeven 
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point, i.e., the number of unknowns above which the proposed technique is computationally 

more efficient, is as low as 250 source/observation points for an error of 10-3. 

 

4.4 Yukawa (Screened Coulomb) Potential Calculation Base on ACE 

In the molecular systems, especially for large-scale physically realistic charged systems, the 

long-range interactions play a major role. All interactions between charged particles must be 

accounted for so that, typically, the exact calculation of the interactions by direct summation 

requires O(N2) operations in the framework of a N-body problem. 

As we know, many molecular systems of biological and physical significance, however, are 

governed by the screened Coulomb (also called the Debye-Huckel or Yukawa) potential. The 

Yukawa potential energy of a system containing N charged particles, is given by 

1

1 1
( )

rN i ij

i j
iji j

eq q
r

κ
φ

−−

= =
=∑∑r                      (4.4.1) 

where κ is the Debye-Huckel screening parameter (which is proportional to the square root 

of the ionic strength of the solution), qi is the charge of particle i, and rij is the separation 

distance between particles i and j. 

 

The cost of computing the Coulomb potential was amortized to O(N) via the development of 

the fast multipole method. The development of similar methods for the Yukawa potential is 

almost non-existent. A paper was presented by [87]. This method formulates the problem in 

terms of the addition theorems for the modified Bessel function and derives a series of 

approximations. However, the methodology presented is not rigorous, in the sense, that error 
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bounds on the set of approximations made are not provided, the convergence is not shown, and 

the overall methodology is fairly inaccurate. 

Since the publication of the seminal papers on fast method to compute potentials of the form 

r-1 [63] and because the researchers believed that the Taylor series represents a poor 

convergence for exp(-r), there have been a number of attempts to compute potentials of the form 

exp r
r
κ−⎛ ⎞

⎜ ⎟
⎝ ⎠

, and the work relies on spherical harmonic expansions, 

1 1
0 2 2

2 ˆ ˆ( ) (2 1) ( ) ( ) ( )
2 2

R

nn nn

e n I K r P r
R kr

κ κ π πφ κρ κ ρ
π κρ

− ∞

+ +=
= = + ⋅∑R          (4.4.2) 

where R = r -ρ .  

Unfortunately, the fast calculation based on traditional FMM will introduce the add-on error 

between the translations from multipole to multipole expansion and local to local expansion. And 

also, all the development of the fast calculation algorithms based on traditional FMM were an 

O(NlogN) methods before ACE was done. So, the motivations for writing this section are three 

fold:  

1) To introduce a new technique (Maxwell Cartesian tensor method) wherein the traversal 

up and down the tree are exact.  

2) We also prove quick convergence for this new method.  

3) This method can work on the wave equation 
e ikr

r
−

 in low frequency case.  

In this section, we will show, by combining Taylor's series expansion with Maxwell 

Cartesian tensors method, we can reach almost O(pN) algorithms. 

 

4.4.1 General Statement of the Problem 
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Consider a domain 3
sΩ ∈\  that is populated with k sources and a domain 3

oΩ ∈\  that 

contains k observers. With no loss of generality, assume that these domains are spherical and of 

radius a. These spherical domains completely enclose one of the cubical subdomains generated 

earlier.  

The location of these points is random, however we will assume that the distribution in the 

domain is sufficiently dense and relatively uniform. Centers of sΩ  and oΩ  are denoted by sr and 

or . It is assumed that s sΩ ⊂Ω  and o oΩ ⊂Ω  and s oΩ ∩Ω =∅ .  

In what follows, the domains sΩ  and oΩ  will be called parents of  sΩ  and oΩ , respectively. 

As before, the parent domains will be assumed to be spherical of size 2a , and their center are 

denoted by p
sr  and p

or , respectively, and p
s s∉Ωr  and p

o o∉Ωr .  

The potential due to sources i s∀ ∈Ωr i s∀ ∈Ωr  observed at o∈Ωr is given by 

| |

1

1 0

0 1
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| |

( 1)
!

( 1)
!

i
i

ii

n n ni
i

i n

n n ni
i

n i

m

rm

rm

q

q n
n r

e

q n
n r

e

e

κ

κ

κ

φ
−

=

∞

=

−

=

∞

=

−

=

−

=
−

= − ⋅∇

= − ⋅∇

⋅

⋅

∑

∑∑

∑∑

r r
r

r r
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r                 (4.4.1.1)

 

This equation is derived using Theorem 2.10, and iq  are values of the sources at locations ir . 

The exchange of the summation indices is permissible as the summation converges. Unless 

otherwise stated, the operator ∇ operates on r. In what follows, we will prescribe the means that 

will enable that rapid computation of equation (3.1.1.1).  
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4.4.2 Cartesian Expansions with Totally Symmetric Tensors 

Theorem 4.4.2.1 (Multipole Expansion)  

The total potential at any point o∈Ωr  due to k sources iq , 1, ,i k= "   located at points 

i s∈Ωr   is given 

( )

0

( )

1

( )

( 1)
!

n n

n
k

n n ni
i

i

r
n

r

q

e

n

κ
φ

∞

=

=

−
= ⋅ ⋅∇

−=

∑

∑

r M

M r
                                        (4.4.2.1)

 

where ( )nM  is the totally symmetric multipole tensor about the origin {0, 0, 0}s =r  

Proof: See formula (3.1.1.1) 

 

Theorem 4.4.2.2 (Multipole to Multipole Expansion) 

Given a multipole expansion of k sources about the {0, 0, 0}s =r  

( )

1
( 1)

!

k
n n ni

i
i

q
n=

= −∑O r
                          (4.4.2.2.1)

 

then the multipole expansion about the point p
sr  can be expressed in terms of above 

equation as 

( )( ) ( )

1 0 ( , )

! !( 1) ( )
! !

k n n mn n p n p m
i s s

i m P m n

q m
n n

−

= =
= − − =∑ ∑ ∑r rM Or

                     (4.4.2.2.2)
 

Where ( , )P n m  is the permutation of all partitions of n into sets n-m and m. 

Proof: Using equation (3.2.2.1), Theorem A2.1, Theorem A2.10 and noting that the tensors O(n) 

n r ν−∇  are totally symmetric, results in 
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                            (4.4.2.2.3) 

Next, we prescribe the means to translate the multipole expansion that exists about p
sr  to a 

local expansion about p
or .  

There are two ways of deriving this translation operator;  

1) using reciprocity and  

2) using a Taylor's series expansion.  

The theorem that is presented next uses the first approach whereas the second approach is 

used in presenting a similar operation for method 2. As is expected, both result in identical 

expressions. 

 

Theorem 4.4.2.3 (Multipole to Local Translation) 
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Assume that the domains sΩ  and oΩ  are sufficiently separated, and the distance between 

their centers | | | |p p p p
os os o sr = = −r rr  is greater than { }sdiam Ω  and { }odiam Ω . If a multipole 

expansion ( )nM   is located at 
p

sr , then another expansion ( )nL  that produces the same field 

o∀ ∈Ωr  is given by 

i
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where p
o= −ρ r r . 

Proof: The potential ( )� oφ ∀ ∈Ωrr  is given by equation (4.4.1.1). It follows by reciprocity that 

if the multipole ( )nM  were located at r  it would produce the same potential at 
p

sr . In other 

words, the potential at all points o∈Ωr  can be computed by placing the multipole moments at r 

and evaluating at
p

sr . 

i
| |

( )

0
( )

| |

p
snn
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∑
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r r                           (4.4.2.3.2)
 

Here, i∇  is the derivative with respect to
p

sr . Since this valid at all points ∈Ωr , the 

multipole tensor ( )nM  at r may be translated to the center 
p

or  using the symmetric translation. 

Denoting the multipole tensor at 
p

sr  by ( )nO  and p
o= −ρ r r , using the multipole expansion 

theorem, we obtain the potential 
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 is obtained by gathering tensors that operate up on nρ .  

Where the element of the total symmetric tensor 
r

n e
r

κ−
∇  takes the form 
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Proof : 
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By using New Modified Bessel K (formula 4.1.2.1), then we have 
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                     (4.4.2.3.7)

 

Next, we prescribe the means to traverse down from p
or  to r0. This theorem is almost a 

mirror of that used to go up the tree. 

 

Theorem 4.4.2.4 (Local to Local Expansion) 
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A local expansion ( )nO  that exists in the domain oΩ  centered around p
or  can be shifted to 

the domain oΩ  centered at r0 using 

( )( ) ( ) ( )
m nn m cp

o
m n

m
m n

m n

∞ −

=

⎛ ⎞
= ⋅ − ⋅⎜ ⎟−⎝ ⎠
∑ rL O

                     (4.4.2.4.1)
 

Proof. 

The proof is exact the same as Theorem 3.2.4. 

Finally, the potential at any point in the oΩ  can be obtained using 

( )( )

0
( )  nn

oi
n

nφ
∞

=
= ⋅ ⋅∑r ρL

                      (4.4.2.4.3)
 

 

4.4.3 Calculation Cost Based ACE  

Same as the cost we got in calculation for R-ν potential, the calculation cost for Yukawa 

potential includes the following parts: 

• Charge to Multipole 3
6
N P⎛ ⎞∝⎜ ⎟

⎝ ⎠
 

• Multipole to Multipole 
6

720
N P
s

⎛ ⎞
∝ ⎜ ⎟⎜ ⎟
⎝ ⎠

 

• Multipole to Local 
6

181
720

N P
s

⎛ ⎞
∝ ⎜ ⎟⎜ ⎟

⎝ ⎠
 

• Local to Local, and Local to Observer are the same as Multipole- to-Multipole and 

Charge-to-Multipole. 
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4.4.4 Error Bounds 

The absolute error in making the multipole approximation can be obtained using 
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where, we assume that the source/observation spheres are of radius a. 

 

Since the distance is always greater than the radius of the sphere, it implies that the series 

converges quickly for all negative values of κ and all imaginary value with low frequency k. 

Next, the error bounds on truncating the local expansions are derived as follows: 
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These equations imply that the approximations converge  ν∀ ∈\ . The above estimates are 

for the absolute error; similar the estimates for the relative error can be readily obtained. For 

example, from the Multipole expansion, 

1

)/
~

(

P
m m

mr r
C r a
r a re rκ

+

−
⋅ ⎛ ⎞= ⎜ ⎟− ⎝ ⎠

ε
ε                           (4.4.4.3) 

So, if we choose the computational accuracy of mrε , we can evaluate the truncation number 

"P" from the above equation (4.4.4.3). 

 

4.4.5 Simulation Results 

First, we will demonstrate the accuracy of operators used to traverse up and down the tree. 

The geometric configuration analyzed is as follows: 9000 source/received populate a cube of 

dimension 4 x 4 x 4. Of these, 4500 source/observers are located at Ω1 = (0.0, 1.0) x (0.0, 1.0)  x 

(0.0, 1.0), and the rest are located in Ω2 = (3.0, 4.0) x (3.0, 4.0) x (3.0, 4.0). The distribution of 
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the points is uniformly random, i.e., the distribution in the domain is almost uniform. This 

arrangement ensures that following; particles in Ω1 and Ω2 interact with each other at level 3.  

Level =3 Level =5 

p= 2 1.329108391195769E-003 1.329108391195763E-003 

p= 3 1.631733296883059E-004 1.631733296882647E-004 

p= 4 2.461467077927862E-005 2.461467077927824E-005 

p= 5 4.355505108030183E-006 4.355505108016297E-006 

p=6 9.477150289163246E-007 9.477150288876174E-007 

p= 7 2.036578472901254E-007 2.036578472487373E-007 

p= 8 5.499653006794869E-008 5.499653006720579E-008 

p=9 2.262098414476803E-008 2.262098417551747E-008 

Level =7 Level =10 

p= 2 1.329108391195766E-003 1.329108391195760E-003 

p= 3 1.631733296882652E-004 1.631733296882728E-004 

p= 4 2.461467077929170E-005 2.461467077929388E-005 

p= 5 4.355505108018203E-006 4.355505108017509E-006 

p=6 9.477150288988684E-007 9.477150288981971E-007 

p= 7 2.036578472441334E-007 2.036578472504749E-007 

p= 8 5.499653006677334E-008 5.499653006662830E-008 

p=9 2.262098417652223E-008 2.262098417231141E-008 

 

(Table 4.4.5.1 Variation of errors in multipole to multipole and local to local operations with 

fixed translation error) 
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no.source p a levels Error TFast Tdir 

500 2 0.25 3 1.262927728730094E-003 0.5000E-002 2.0000E-002 

4000 2 0.25 4 6.013826251951964E-004 4.5000E-002 1.3600 

32000 2 0.25 5 5.25555366251479E-004 0.68500 116.5300 

256000 2 0.25 6 4.763719518116608E-004 6.87500 7752.4000 

1000000 2 0.25 7 4.60E-004(est) 29.685 121338.88505(est)

500 6 0.35 3 5.99055086807625E-005 2.0000000E-02 1.0000000E-02 

4000 6 0.35 4 2.213037934701564E-005 0.250000 1.2200 

32000 6 0.35 5 1.0474747848110440E-005 2.84500 96.0000 

256000 6 0.35 6 1.679191839847712E-005 23.16 6505.4500 

4000 13 0.7 3 9.338207243842676E-007 0.46500 0.6800 

32000 13 0.7 4 4.416413887399910E-007 6.8750 85.6300 

256000 13 0.7 5 5.794151572000142E-007 69.22500 6500.7900 

32000 22 1.0 3 1.737072973803084E-008 24.8600 70.6700 

256000 22 1.0 4 5.436536138424175E-007 247.5200 6628.5000 

 

 (Table 4.4.5.2 Errors in Yukawa potential κ = -0.17, computed using the proposed scheme and 

the directly timing data for the two methods, a is the size of smallest box) 
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no.source p a levels Error TFast Tdir 

1000 2 0.25 3 1.436517045087933E-003 1.499999999E-002 0.22 

1000 9 0.25 3 9.433469534878107E-006 4.5000002E-002 0.22 

1000 16 0.25 3 3.397105761650021E-008 2.96 0.22 

8000 2 0.25 3 1.151710346719531E-003 2.9999999E-002 5.58 

8000 9 0.25 3 5.127398846981397E-006 9.1000000E-002 5.58 

8000 16 0.25 3 1.205115662289324E-008 3.965 5.58 

10000 2 0.25 3 1.106236796297262E-003 3.50000E-02 10.42 

10000 9 0.25 3 9.872487112520653E-007 0.905 10.42 

10000 16 0.25 3 1.160652577117371E-008 5.615 10.42 

64000 2 0.25 3 1.064273818861804E-003 0.175 373.07 

64000 9 0.25 3 1.957963023436753E-006 1.82 373.07 

100000 2 0.25 3 1.080898257008474E-003 0.27 913.11 

100000 9 0.25 3 9.051714873097575E-007 2.26 913.11 

 

(Table 4.4.5.3 Errors in Yukawa potential κ = -1.0, computed using the proposed scheme and the 

directly timing data for the two methods a is the size od smallest box) 

For a given P, the error bound for this interaction can be computed. As we increase the 

number of level, the change in the error norm can be attributed solely to the error multipole-to-

multipole and local-to-local translations.  

Table 4.4.5.1 documents the error obtained for different values of P and different levels 

(while we have data for all ten levels, only some are presented). Table 4.4.5.1 and Table 4.4.5.2 

are carried out for κ = -0.17 because usually the pion's up-limit is about 0.17Mev. As is evident 



145 
 

from the results presented, the variation of the error obtained from using different levels in the 

tree is accurate to double precision. 

 

Source P Error Tdir/TACE RACE RPWR 

1000 2 1.44E-03 0.22/1.50E-02 14.67 

1000 9 9.43E-06 0.22/4.50E-02 4.89 

8000 2 1.15E-03 5.58/3.00E-02 186 

8000 9 5.13E-06 5.58/0.91E-01 61.32 

8000 16 1.21E-08 5.58/3.965E-00 1.407 

10,000 2 1.11E-03 10.42/3.50E-02 297.71 

10,000 9 9.87E-07 10.42/0.905E-00 11.58 8.9 

10,000 16 1.16E-08 10.42/5.615E-00 1.86 

64,000 2 1.06E-03 373.07/0.175E-00 2131.83 

64,000 9 1.96E-06 373.07/1.82E-00 204.98 

100,000 2 1.08E-03 913.11/0.27E-00 1690.9 

100,000 9 9.05E-07 913.11/2.26E-00 404.03 57.83 

 

(Table 4.4.5.4 Comparison with "Plane Wave Representation (PWR)" under same error. Errors 

in case κ =1 at level 3, RXXX is the relative calculation speed, RACE = Tdir/TACE, RPWR = 

Tdir/TPWR) 
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P   Error   

 1    1.1726339E-002   

 3    4.8040578E-004   

 5    3.9361585E-005   

 9    4.3802832E-006   

 12    7.0297358E-007   

(Table 4.4.5.5 ACE Errors in Helmholtz potential 
jkre
r

 calculation in low frequency case with 

the largest box size = λ/2) 

 

4.5 Summary 

In this chapter, we have demonstrated the method for rapidly computing potentials of the 

form R-ν and Yukawa interaction 
re

r

κ−

. This method is founded on addition theorems based on 

Taylor expansions. Taylor’s series has a couple of inherent advantages:  

1) it forms a natural framework for developing addition theorem based computational 

schemes for a range of potentials;  

2) only Cartesian tensors (or products of Cartesian quantities) are used as opposed to special 

functions. This makes creating a fast scheme possible for potential of the form R-ν. 

Indeed, it is also possible to generalize the proposed methods to several potentials that are 

important in mathematical physics [52]. An interesting consequence of the approach has been the 

demonstration of the equivalence of FMMs that are based on traceless Cartesian tensors to those 

based on spherical expansions for ν = 1. 
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Finally, we have shown the application of this methodology to computing Columbic, 

Lennard-Jones, lattice gas potentials and Yukawa potential. We have also demonstrated the 

efficacy of this scheme for other (non-integer) potential functions. Current research is focused on 

generalizing the proposed methodology to analyze Yukawa and periodic columbic potentials, 

retarded and Helmholtz potential for sub-wavelength regimes. Finally, application of is scheme 

to problems in biophysics, electronic structure calculations, and MD codes are currently 

underway. 
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APPENDIX 

This section introduces basic notation and theorems that will be used in my thesis. The 

material presented builds upon some of the earlier work by Applequist [75, 85, 88]. For 

completeness, we have described some of the theorems given in his papers (without proofs) as 

well as added some of our own (with the necessary proofs). 

 

1. Tensors 

A Cartesian tensor A(n) of rank n is an array of 3n components and will also be denoted 

either in component notation as ( )
...1

n
n

Aα α where {1,2,3}jα ∈ . A totally symmetric tensor is one 

that is independent of the permutation of indices 1... nα α ; in compressed form it contains (n + 

1)(n + 2)/2 independent components, and is denoted by ( ) 1 2 3( , , )nA n n n where 1 2 3n n n n+ + = . 

Here, ni is the number of times the index i is repeated. For example, consider the direct product 

of the vectors N
 times
...

n
= nrr rr r . It forms a tensor of rank n (and will be referred to henceforth as a 

polyadic) whose component can be expressed in compressed form as 

( ) 31 21 2 3( , , ) nn nnA n n n x y z= . The trace of one index pair of a tensor results in a tensor of rank n - 

2 and is denoted by ( :1) ( )
...  ...3 3

n n
n n

A Aα α νν α α= ; the superscript ( : )n μ  indicates a trace in μ  index 

pairs, and will result in a tensor of rank 1n μ− − . If the trace vanishes for any index pair then the 

tensor is totally traceless. It follows from the above description that if a tensor is symmetric and 

traceless in one index pair, then it is traceless for all index pairs. 

 

2. Tensors Contraction 
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Consider two tensors A(m+n) and B(n). The n-fold contraction between these two tensors is 

given by ( ) ( )
... ... ...1 1 1 

m n n
m n n

A Bβ β α α α α
+  and will be denoted using ( ) ( ) ( )· ·n+=m m n nC A B . As usual, 

repeated indices denote a summation over that index. Similarly, a direct product between two 

tensors A(n) and B(m) results in a tensor of rank n + m. If A(n+m) and B(n) are two totally 

symmetric tensors, then the n-fold contraction between them can be written in compressed 

notation as 

 

( ) ( ) ( )

( ) ( ) ( )
1 2 3 1 1 2 2 3 3 1 2 3

1 2 3, ,1 2 3

· ·

!( , , ) ( , , ) ( , , )
! ! !

m m n n

m n m n

m m m

n

nC m m m A n m n m n m B n n n
n n n

+

+

=

= + + +∑

C A B

  

                         

(A1) 

It is evident that the number of operations involved in evaluating each term of the tensor 

( )
1 2 3( , , )mC m m m  is (n + 1)(n + 2)/2, and since there are (m + 1)(m + 2)/2 terms, the total cost 

of the above contraction is (m + 1)(m + 2)(n + 1)(n + 2)/4. Next, we consider contraction 

between a totally symmetric tensor and two other tensors. 

 

Theorem A2.1. In evaluating an (n + m)-fold contraction between a totally symmetric rank 

C(n+m) tensor and two tensors of B(n) and A(m) it is permissible to permute the order of 

contraction. In other words 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )m n n m n m n mn m n m+ +⋅ + ⋅ = ⋅ + ⋅A B C B A C                   (A2) 
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Proof. The proof is best derived in component form. The tensor C(n+m) is totally symmetric, and 

a permutation of any pair of indices does not alter the value of the tensor. Carrying this 

procedure between pairs of indices of the tensor C(n+m) results in 

( ) ( )
... ... ...1 1 1  ...1 

n m m n
n m m n

C Cβ β α α α α β β
+ += . 

 Thus, 

( ) ( ) ( )

( ) ( ) ( )
... ... ... ...1 1 1 1

( ) ( ) ( )
... ... ... ...1 1 1 1

( ) ( ) ( )

 

 

( )

( )

m n n m

m n n m
m n n m

n m n m
n m m n

n m n m

n m

A B C

B A C

n m

α α β β β β α α

β β α α α α β β

+

+

+

+

⋅ + ⋅

=

=

= ⋅ + ⋅

A B C

B A C  

Finally, we note a trivial fact that will be useful in generating methods with lower 

computational complexity. 

 

Lemma A2.2 (Non-uniqueness). Let A(n) , B(m) and C(m) be full rank tensors. Then it follows 

that if ( ) ( ) ( ) ( )· · · ·n n n nn n=A B C B , it implies that either ( ) ( ) ( )( )n n n
n− ⊥A B B  or ( ) ( )=n nA C

where n⊥  defines an n-fold orthogonality. 

 

3. Homogeneous Polynomials 

Consider a vector 3∈r \  and a homogeneous polynomial f(r) of degree n. The following 

lemma prescribes the relation between homogeneous polynomials and the polyadic rn. 
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Lemma A2.3 A polynomial of nth degree is homogeneous if and only if it can be written as 

( )( ) n n
nf n= ⋅ ⋅r A r                       (A3) 

Where A(n) is an nth rank Cartesian tensor that is independent of r. 

The proof for this lemma may be found in [75]. The following observations are also in order: 

(1) The polyadic rn is totally symmetric. This implies that one can recast Lemma A2.3 

as ( )( ) n n
n symf n= ⋅ ⋅r A r where the symmetric tensor ( )n

symA is related to the tensor

( )nA . This fact implies that a homogeneous polynomial can always be represented 

in terms of symmetric tensors. 

(2) The above expression can also be interpreted as a projection of an nth rank tensor 

along the vector r. 

(3) If the tensor A(n) is totally symmetric and the n-fold contraction with rn vanishes, 

i.e., ( ) 0nn n⋅ ⋅ ≡A r , then each component of A(n) vanishes. The proof for this 

assertion can be found in [75]. 

 

Next, the Gradient and Euler’s theorems are as follows: 

 

Theorem A2.4. If ( )nf r  is a homogeneous polynomial, i.e, ( )( ) n n
nf n= ⋅ ⋅r A r , then 

( )!( )�          )�    
( )

   
!

k n n k
n

nf n k for k n
n k

−∇ = − ≤
−

r A r
                     

(A4) 

 

Theorem A2.5. If ( )nf r   is a homogeneous polynomial of degree 0n ≥ , then 
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!( ) ( )( )
( )!

k
n n

nk f f k n
n k

⋅ ⋅∇ = ≤
−

kr r r
                     

(A5) 

In both these equations, and hereafter, the tensor operator n

n
∇ =∇ ∇"�	
 . The proofs for these 

theorems can be found in [75]. Likewise, it can be shown that if A(n) is totally traceless, then 

( )nf r  is a solid spherical harmonic of degree n. This fact will be used extensively to construct 

operators with low computational complexity. 

 

4. Detracer 

As seen in the previous subsection, a homogeneous polynomial can be represented in terms 

of a contraction of a polyadic with a traceless tensor. Obtaining a traceless tensor from a totally 

symmetric tensor is tantamount to projecting out an nth rank irreducible tensor [89, 90]. In what 

follows, we shall use the detracer operator that has been used for constructing Cartesian tensorial 

forms of spherical harmonics [75]. Formally, the detracer operator is defined as n , which, 

when acting on a totally symmetric tensor A(n), results in a traceless totally symmetric tensor. 

More specifically, this operation is defined as 

2
( ) ( : )

1 2 2 1 21 2 1
0 { }

( 1) (2 2 1)!!

n

n n mm
n m mn m n

m T
A n m Aα α α αα α α α

α
δ δ − +

=

= − − −∑ ∑" ""

d t

            
(A6a) 

where the sum over { }T α  is a sum over all permutations of 1 nα α" , and n!! denotes the 

double factorial of n. If ( )nA  is expressed in compressed form, the same equation can be 

rewritten as 
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( )

( )
1 2 3

31 2
2 2 2 31 2 ( : )

1 1 2 2 3 3
31 20 0 01 2 3

( , , )

( 1) (2 2 1)!! 2 , 2 , 2

n
n

nn n

m n m

m m m

n n n

nn n
n m A n m n m n m

mm m= = =

=

⎡ ⎤⎡ ⎤ ⎡ ⎤
− − − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑ ∑ ∑

A

d t d t d t

 

                        (A6b) 

where n=n1+n2+n3, m=m1+m2+m3, and 
!

2 !( 2 )!m
n n
m m n m
⎡ ⎤

=⎢ ⎥
−⎣ ⎦

 

Note, that a traceless totally symmetric tensor of rank n has only 2n+1 independent 

components. Some interesting properties associated with the Detracer (and the proofs for the 

theorems that follow) can be found in [85, 88] are as follows: 

 

Theorem A2.6 (Exchange theorem). If A(n) and B(n) are totally symmetric tensors, then 

( ) ( ) ( ) ( )n n n n
n nn n⋅ ⋅ = ⋅ ⋅A B A B                    (A7) 

 

Theorem A2.7 If A(n) is a traceless totally symmetric tensor, then 

( ) ( )(2 1)!!n n
n n= −A A                     (A8) 

 

Corollary A2.8 If A(n) is a totally symmetric tensor and B(n) is a traceless totally symmetric 

tensor then 

( ) ( ) ( ) ( )1
(2 1)!!

n n n n
nn n

n
⋅ ⋅ = ⋅ ⋅

−
A B A B

                (A9)
 

Proof: 
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( ) ( ) ( ) ( )

( ) ( )

        using Theorem1
(2 1)!!

1
(2 1)!!

A2.7

     using Theorem A2.6

n n n n
n

n n
n

n n
n

n
n

⋅ ⋅ = ⋅ ⋅
−

= ⋅ ⋅
−

=

A B A B

A B




                (A10)

 

 

Corollary A2.9 If A(l), B(n) and C(m) are traceless and symmetric tensors  

( ) ( ) ( ){ ( , ) : } and }l n m
nm

nm
n m l n m c∀ = + =∑A B C  then 

( ) ( ) ( )(2 1)!!
(2 1)!!(2 1)!!

l n m
l nm n m

nm

l c
n m

−
=

− −∑A B C  
           (A11)

 

Proof. Use Theorem A2.7. 

 

5. Maxwell Cartesian Tensors 

An expression for solid harmonics in terms of the gradient of the position r-1 was first 

derived by Maxwell of an arbitrary set of n axis [76]. In the Cartesian coordinate frame, his 

expressions reduce to 

 

1 (2 1)       Maxwell equatio( 1) nn n n
nr r− − +∇ = − nr              (A12) 

 

This relationship has been obtained by others [85, 86] as well.  

It has been shown that the components of n
nr  are solid harmonics of degree n. This 

relationship can be used to compute nr ν−∇ . It can be shown that the following expressions are 

valid in component form: 
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1

1 1

1 1 1 1

1 1

1 1 1 1

1 1 1 1 1 1 1 1
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From the above equation, i∂  denotes a partial derivative with respect to the component i. It 

is also evident that this function can be constructed in terms of the traceless tensors of the type 

defined in Maxwell equation. Furthermore, while the tensor is totally symmetric, it is not 

traceless. While this equation demonstrates the relationship between traceless Cartesian 

harmonics, it is easier to use 
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to construct the n-fold gradient, where n=n1+n2+n3, m= m1+m2+m3, and

( ), ( 2) ( 4) ( 2 )f n nν ν ν ν ν= × + × + × +" . It can be readily shown that this definition reduces to 

that obtained for 1ν =  [75]. 

Finally, consider a function ( )f r - r'  where r and r’ are used to denote the location of the 

observation and source points, respectively. An addition theorem for this function may be 

obtained using Taylor’s expansion. In tensor form, this is stated as follows: 
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Where r > r'  

Proof 
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        This theorem gives rise to the following corollary. 

 

Corollary A2.10 The function ( )f r - r'  takes the form 

0

0

( )     for r>r'

( )   
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(n)

n (n)

M r

r - r'

r L
 

where M(n) and L(n) are the multipole and local expansions. 

This formula is the foundation of fast methods that will be proposed in the next section. As 

an aside, it is interesting to note that an application of this theorem readily leads to an 

equivalence between Cartesian harmonics and spherical harmonics.  
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Let us consider the function 1( )f
R

=r -r' , where 'R = =R r -r . By using Theorem 2.10 

and Maxwell equation (A11), one can readily arrive at 
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           (A16)

 

 

The above equation is immediately recognizable as being equivalent to an expansion in 

terms of Legendre polynomials l( )nP ⋅r' r� , and provides the required equivalence between 

traceless Cartesian tensors and Legendre polynomials (see references in [75] for more details). In 

the next two sections, we will use some of these ideas to develop fast methods for potentials of 

the form R ν− . 

 

 

 

 

6. Gegenbauer Expansions (Addition Theorem A2.11) 
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