ISOLATION, I DENTI FI CATI ON, AND CHEMISTRY OF THE ANTIBACTERIAL ALKALOID SOLANOCAPSINE FROM SOLANUM PSEUDOCAPSICUM L. by P e r Msz^lgaard B o l l A THESI S S u b m itte d t o the School of Advanced G ra duate S t u d i e s of Michig an S t a t e U n i v e r s i t y o f A g r i c u l t u r e and A p p l i e d S c i e n c e in p a r t i a l f u l f i l l m e n t of t h e r e q u i r e m e n t s fo r the degree of DOCTOR OF PHILOSOPHY Department of C h e m i s t r y 1957 ProQuest Number: 10008506 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest, ProQuest 10008506 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ACKNOWLEDGEMENTS The a u t h o r w i s h e s to Dr. H a n s A. patience to e x p re ss Lillevik, whose t h i s work, of Drug P l a n t R e s e a r c h , greatly and t o D r . Department initiation of t h e p r o b l e m a nd f o r the of the course Appreciation me n t R. cooperation also of use of v a r i o u s advice the for with his facilitated E. H. Lucas, helpful advice the Professor of H o r t i c u l t u r e , to t h e member s o f from time for during to Department time the D epart­ and t o Dr . of H e a l t h f o r the b a c t e r i o l o g i c a l author wishes to t h a n k Dr . of A g r i c u l t u r a l testing. H. M. Sell, Chemistry, equipment. F i n a l l y , - he w i s h e s Health together the Michigan Department Research Professor, for i s due in c o n n e c t i o n w i t h In a d d i t i o n , appreciation study. of Chemistry fo r Y. G o t t s h a l l sincere interest and e n c o u r a g e m e n t have com pletion of his providing to funds thank the National in support Institute of t h i s work. of VI TA Per M^Igaard Boll candidate for Doctor Final examination: Dissertation: Outline the degree of of P h i l o s o p h y F e b r u a r y 25, 1957, 10:00 A. M. , C o n f e r e n c e Room, K e d z i e C h e m i c a l L a b o r a t o r y . I s o l a t i o n , I d e n t i f i c a t i o n , a n d C h e m i s tr y of A n t i b a c t e r i a 1 A l k a l o i d S o l a n o c a p s i n e from S o l a n u m p s e u d o c a p s i cum L . the of S tu d ies: Major subject: Minor subjects: Biographical Born, Organic Chemistry, 1 9, Undergraduate 1929, Herning, Studies: Studies: Experience: Chemistry D e n ma r k E x am in a tu sp h a rm a c iae , Royal Danish S c h o o l o f P h a r m a c y , 19Jf8 - 1950 . C a n d id a tu s pha rm a ciae, Royal Danish School of Pharmacy, 1950-1952; M i c h i g a n S t a t e U n i v e r s i t y , 1951+- 1957. Pharmaceutical Chemist, F re d e rik sb e rg H o s p i t a l , Co pe n hage n, Denmark, 1 9 5 2 - 19 5 3 ; P h a r m a c e u t i c a l C h e m i s t , Leo P h a r m a c e u t i c a l Product^, Cope nhage n, Denmark, J a n u a r y A p r i l , 195U-; S p e c i a l G r a d u a t e R e s e a r c h A s s i s t a n t , Michigan S tate U n i v e r s i ty , A p r il, 195^--December, 1955, S e p t e m b e r , 1 9 5 6 - F e b r u a r y , 1957; G r a d u a t e T e a c h i n g A s s i s t a n t , Mi chiga n S t a t e U n i v e r s i t y , J a n u a r y , 1956J u n e , 1956. Member o f A m e r i c a n C h e m i c a l Sigma X i , Analytical Items: July Graduate Biochemistry Society, and Danmarks f a r m a c e u t i s k e iii S o c ie ty of Selskab. the ISOLATION, IDENTI FI CATI ON, AND CHEMISTRY OF THE ANTIBACTERIAL ALKALOID SOLANOCAPSINE FROM SCLANUM PSEUDOCAPSICUM L. by Per M^Igaard Boll AN ABSTRACT S u b m i t t e d to the School of Advanced G r a d u a t e S t u d i e s of Mic h ig a n S t a t e U n i v e r s i t y o f A g r i c u l t u r e a nd A p p l i e d S c i e n c e in p a r t i a l f u l f i l l m e n t of t h e r e q u i r e m e n t s f o r t h e d e g r e e of DOCTOR OF PHILOSOPHY Department of Che mistry Ye a r Approved 1957 P e r Mj/lgaard B o l l I t was o b s e r v e d ous e x t r a c t of antibacterial isolate the p l a n t and c h e m i c a l l y associated identified as (2). wa s 3 for mice injected for for both these this possessed s u b s t a n c e ( s ). fraction alkaloid culture of the p la n t so 1 a n c a p s i n e . broth. The m e t h o d used by S c h l i t t l e r activity of pure a n d 200 mg. lethal for its hydrochloride. d o s e wa s 300 m g . / k g . to soiancapsine of body w e i g h t a colored p rin cip le of this from the colored alumina, acid s ho we d t h a t the cent (based 2 . 1 5 Pe r cent in l e a v e s p l u s So 1 a n o c a p s i n e Solanum whi ch h a s n o t content on d r y w e i g h t ) is the been isolate and p u r i f y a nd Dowex 5 0 . on p l a n t s alkaloid 2 . 2l+ p e r No f u r t h e r i m p u r i t i e s by column c h r o m a t o ­ alumina, determinations inhibiting s u b s t a n c e was u n d e r t a k e n . A t t e m p t s w i t h o u t much s u c c e s s w e r e made t o period dose compounds. wor k on t h e p u r i f i c a t i o n Alkaloid solan- The mi n i mu m l e t h a l g r o w t h o f D i p l o c o c c u s p n e u m o n i a e wa s f o u n d p r e s e n t . graphy using and p e r i t o n e a l l y wa s 5 0 - 1 0 0 m g . / k g . o f b o d y the In a d d i t i o n so 1a n o c a p s i n e an a q u e ­ s t u d y was t o antibacterial The a n t i t u b e r c u 1 a r so 1a n o c a p s i n e Subcutaneously, of i s o l a t i o n wa s t h a t if/m l, ocapsine weight for the alkaloid steroidal with m odifications that a g a i n s t M y c o b a c t e r Lum t u b e r c u l o s i s wa s w ith the the and U e h l i n g e r The p u r p o s e identify active (1) S o l a n u m p se u d o c a p s i cum L. properties. A substance found by L u c a s and a s s o c i a t e s g r o wn o v e r varied in r o o t s a three from 0. 83 year to and f r o m 1 . 5 3 t o stems. only alkaloid isolated from the plant as a g l y c o s id e . genus Therefore, 2 the p o s s i b i l i t y of being acted fully examined. in a b s o l u t e in th e an e x t r a o r d i n a r y l a b i l e upon e n z y m a t i c a l l y or Enzyme ethanol or in b o i l i n g w a t e r that did so 1a n o c a p s i n e the p l a n t s and u s i n g weak a c i d s not y ie ld is p r e s e n t bond i s o l a t i o n was c a r e ­ i n a c t i v a t i o n by p l a c i n g iso la tio n procedure regarded during glycosidic a glycoside. in t h e p l a n t It is as a f r e e alkaloid. It has been re p o rte d ocapsine the contains alkaloidal Paper spot glycoside corresponding found to the be a c r u d e crude amorphous to Of t h e s e , solanidine activity. only Tomatine and in a d d i t i o n solan- so 1 a n o c a p s i d i n e its solvents aglycone and F r a e n k e 1- C o n r a t (3), solanidine. revealed so 1 a n o c a p s i n e . alkaloid to o n l y one Solanocap(3) preparation, wa s which so 1a n o c a p s i n e . alkaloid preparation lated. found and alkaloid by B a r g e r c o u l d be c r y s t a l l i z e d Solanine solanine in d i f f e r e n t as d e s c r i b e d to the p la n t an a mo r p h o u s a l k a l o i d chromatography sidine, that f r o m Sol anum t u b e r o s u m and a from Solanum c a r o l i n e n s e solanine were iso­ s howe d we a k a n t i t u b e r c u l a r f r o m L y c o p e r s i c o n e s c u l e n t u m was likewise inactive. Some c h e m i c a l undertaken. structural s t u d i e s on so 1 a n o c a p s i n e wa s Two d e r i v a t i v e s p r e v i o u s l y N,N'-diacetylsolanocapsine 0 , N - d i a c e t y l s o 1a n o c a p s i n e The p i p e r i d i n e hydrogenolysis. ring of the thought both wa s f o u n d mo r e t o be identifiable as and 0 , N , N t - t r i a c e t y l s o l a n o c a p s i n e . s o l a s o d a n n u c l e u s wa s o p e n e d by 3 Schlittler ture for groups and U e h l i n g e r so 1a n o c a p s i n e unassigned. concluded t o be visionally proposed for left proposed a solasodan 3 position and t h e to the 8 p o s i t i o n . sol ano ca p s ine struc­ t h e p r i m a r y a mi n o a n d h y d r o x y l Fr o m t h e p r e s e n t w o r k t h e in the assigned and (2) a mi n o g r o u p w a s hydroxyl group p r o ­ Th e t e n t a t i v e structure i s 3o<_-am i n o so 1 a s o d a n - 8 - o 1 m o n o - hydrate . 1. F r i s b e y , A . , R o b e r t s , J . M. , J e n n i n g s , J . C . , G o t t s h a l l , R. Y . , a n d L u c a s , E . H „, Q u a r t . B u l l . M i c h . A g r . E x p . S t a . , M i c h . S t a t e C o l l . , V o l . 3 5 , 3_, 3 9 2 —ipOIp ( 1 9 5 3 ) . 35, 2. S c h l i t t l e r , E . , 2031^-20104- ( 1 9 5 2 ) . 3. B a r q e r , G . , 1936, 1 5 3 7- 15 02 . a nd U e h l i n g e r , H., Helv. a nd F r a e n k e 1 - C o n r a t , H. L . , C h i m. A c t a , J. Chem. Soc. TABLE OF CONTENTS Page I. INTRODUCT I O N ..................................................................................................... I II. H I S T O R I C A L .......................................................................................................... 2 A. H i s t o r y o f A n t i b a c t e r i a l A g e n t s f r o m H i g h e r P 1a n t s ......................................................................................................... .................................. 1. D e f i n i t i o n o f A n t i b i o t i c A g e n t s 2 . E a r l y D e v e l o p m e n t s .................................................................... 3 . Mo d e r n D e v e l o p m e n t s ............................................................... 1+. P l a n t s P o s s e s s i n g A n t i b a c t e r i a l A c t i v i t y . . . 2 2 3 5 7 B. C h e m i s t r y and P h a r m a c o l o g y of So l a n u m p s e u d o c a p s i c u m L .................................................................................... 10 Chemical on So I a n o c a p s i n e ..................................... 12 EXPER I ME N T A L .................................................................................................... 16 A. Apparatus . 16 B. Reagents, Materials, C. Experimental C. III. Studies a nd A n a l y t i c a l Procedures Methods . . . 18 .............................................................. 25 ISOLATION W O R K ....................................................................... 1. 2. 25 P relim in ary Experiments ..................................................... a . E x t r a c t i o n a g e n t s ............................................................... b. P o s s i b i l i t y o f an a n t i b a c t e r i a l a l k a l o i d , c. F r a c t i o n a t i o n using ion-exchange ..................... ......................... d. E x t r a c t i o n o f b a s i c p r i n c i p l e s I s o l a t i o n a n d P u r i f i c a t i o n o f So 1a n o c a p s i n e . a. A n t i b a c t e r i a l a c t i v i t y in e x t r a c t s of r o o t s a n d l e a v e s ................................................................. b. I s o l a t i o n of crude a l k a l o i d from r o o t s . . c. I s o l a t i o n o f c r u d e so 1a n o c a p s i n e from leaves ..................................................................... d . The c o m p l e t e n e s s o f a l k a l o i d e x t r a c t i o n . . e . P u r i f i c a t i o n o f so 1 a n o c a p s i n e ................... 38 f . Co l u mn c h r o m a t o g r a p h y on a l u m i n a , Dowex 50 and ac id a l u m i n a .......................... g . A l k a l o i d c o n t e n t i n t h e p l a n t ................................ h . D e r i v a t i v e s o f r o o t and l e a f a l k a l o i d . . . iv 25 25 26 27 30 31 31 32 35 37 1+0 1+9 52 V Page 3. 1|_. 5. A n t i b a c t e r i a l S p e c t r u m o f So 1a n o c a p s i n e . . . To x i c i t y , S t ud i e s on So 1 a n o c a p s i n e ......................... A t t e m p t s t o I s o l a t e an A l k a l o i d a l G l y c o s i d e . a . P o s s i b i l i t y o f a g l y c o s i d e ..................................... b . P a p e r c h r o m a t o g r a p h y ..................................................... c . I s o l a t i o n a t t e m p t s .......................................................... 6. P r i n c i p l e w i t h A n t i b a c t e r i a i A c t i v i t y a g a i n s t D. p n e umon i a e .............................................................................. 7. Ant i t u b e r c u l a r A c t i v i t y of O t h e r Solanum A l k a l o i d s .............................................................. ] [ ] . . . a . To ma t i n e .................................................................................... b . S o l a n i n e a nd s o l a n i d i n e ............................... c . C r u d e a l k a l o i d p r e p a r a t i o n f r o m S_. carolinense . . . . . . CHEMICAL STUDIES ON SOLANOCAPSINE 8. 9. 10. 11. 12 . 13. IV. V. ................................ P h y s i c a l C o n s t a n t s .................................... a . So 1 a n o c ap s i n e ................................................................... b . So 1a n o c a p s i n e d i h y d r o c h l o r i d e ......................... R e a c t i o n w i t h N i t r o u s A c i d .......................................... a . N i t r o s o so 1a n o c a p s i n e ................................................... b . D i g i t o n i d e o f n i t r o s o so 1a n o c a p s i n e . . . . c . D i h y d r o so 1 a n o c ap s i n e ................................................... d . ffN i t r o s od i h y d r o so 1 a n o c a p s i n e t f .......................... A c e t y l a t i o n S t u d i e s ..................................................................... a . 0 ?N - d i a c e t y l s o 1a n o c a p s i n e .......................................... b . 0 , N ?Nf - t r i a c e t y l s o 1a n o c a p s i n e .......................... M i s c e l l a n e o u s D e r i v a t i v e s ............................................... a . Tr ime t h y l so 1 a n o c ap s i n e .............................................. b . So 1a n o c a p s i n e p i c r a t e .............................................. c . So 1a n o c a p s i n e o x a l a t e . . . . d . I s o p r o p y l i d e n e s o 1a n o c a p s i n e ............................... e . A t t e m p t e d t o s y l a t i o n ................................................... f . Attempted dehydration .............................................. O x i d a t i o n S t u d i e s ............................... a . O p p e n a u e r o x i d a t i o n o f n i t r o s o so 1a n o ­ cap s i n e ............................................................... b. Chromic a ci d o x i d a t i o n of t r i a c e t y s o l a n o capsine ............................................................... C o l o r R e a c t i o n s .......................................................................... DISCUSSION AND CONCLUSIONS .......................................................... 53 5 k55 56 56 59 62 65 65 65 67 69 69 69 73 75 75 78 78 79 8l 8l 85 87 87 88 88 88 91 92 92 93 93 98 99 SUMMARY........................................................................................ B I B L I O G R A P H Y .............................................................................................................. APPENDIX I .............................................................................................................. APPENDIX I I ................................................................................................................... 120 129 131 L I S T OF TABLES Page R e s u l t s of V a r io u s E x t r a c t i o n S o l v e n ts w ith R o o ts o f S . p s e u d o c a p s i c u m .......................................................................... 26 A n t i b a c t e r i a l A c t i v i t y of F r a c t i o n s O b t a i n e d by I o n - E x c h a n g e ............................................................................................... 29 A n t i b a c t e r i a l A c t i v i t y of F r a c t i o n s O bta ine d from R o o t E t h a n o l i c E x t r a c t .................................................................... 31 A n t i b a c t e r i a l A c t i v i t y i n E x t r a c t s f r o m R o o t s a nd L e a v e s . ......................................................................................................... 32 A n t i b a c t e r i a l A c t i v i t y During Root A l k a lo i d E x t r a c t i o n .................................................................................................... 35 A n t i b a c t e r i a l A c t i v i t y D u r i n g So 1a n o c a p s i n e Pur i f i c a t ion ......................................................................... ko . . . Data f o r E l u t i o n C hr om atography of E x t r a c t from R o o t s o f S_. p s e u d o c a p s i cum on A 1 urn i n a .......................... 6-3 Data f o r E l u t i o n C hr om atography of Crude S o l a n o c a p s i n e f r o m R o o t s on A c i d A l u m i n a ..................................... 1+8 A l k a l o i d C o n t e n t i n _S. p s e u d o c a p s i c u m on D r y We i g h t B a s i s ............................................................................................... 5i Chemical . 52 A c t i v i t y o f C r u d e So 1a n o c a p s i n e A g a i n s t V a r i o u s M i c r o o r g a n i s m s ......................................................................................... 53 R ^ - V a i u e s f o r So 1a n o c a p s i n e , C r u d e L e a f A l k a l o i d , and Cr ude R o o t A l k a l o i d ............................................................... 58 Data C oncerning Attem pted I s o l a t i o n of A l k a l o i d Glycoside .................................................................................................... 61 R ^ - V a l u e s o f C o mp o u n d s I s o l a t e d b y a S t a n d a r d Procedure for A lkaloidal Glycosides ................................ 62 A n t i b a c t e r i a l A c t i v i t y of F r a c t i o n s During I s o l a ­ t i o n o f P r i n c i p l e A c t i v e A g a i n s t D. p n e u m o n i a e . . 66 Constants of Root vi and L e a f A l k a l o i d . . - vii Table XVI . XVII. XVIII. Page A n t i b a c t e r i a l A c t i v i t y of D i f f e r e n t Solanum A l k a l o i d s ......................................................................................................... 68 F r a c t i o n a t i o n o f D i a c e t y 1 so 1a n o c a p s i n e b y Co l u mn C h r o m a t o g r a p h y on A l u m i n a ............................................................. 82 F r a c t i o n a t i o n o f T r i a c e t y l s o 1a n o c a p s i n e C h r o m a t o g r a p h y on A l u m i n a ........................ 86 b y Co l u mn LI S T OF FIGURES F igure 1. 2. 3. 1|. Page Sc he me o f I o n - E x c h a n g e F r a c t i o n a t i o n o f R o o t E x t r a c t .............................................................................................................. Sc he me o f Isolation of A lk a lo id from R o o t s 27 . . . . 33 Data f o r E l u t i o n Chromatography of E x t r a c t from R o o t s o f S_. p s e u d o c a p s i c um on A l u m i n a .............................. 6.i| C o l o r I n t e n s i t i e s a n d Am o u n t s o f D r y M a t e r i a l i n F r a c t i o n s O b t a i n e d b y E l u t i o n C h r o m a t o g r a p h y on Dowex 5 0 ......................................................................................................... 6-6 o f So 1a n o c a p s i n e .............................. 71 o f So 1 a n o c a p s i n e ................................... 72 5. Infrared Spectrum 6. T i t r a t i o n Curve 7. In fra re d Spectrum o f So 1 a n o c a p s i n e D i h y d r o c h 1 o r i d e ........................................................................................................ 76- 8. Infrared S p e c t r u m o f N i t r o s o s o l a n o c a p s i n e ..................... 76 9. U l t r a v i o l e t S p e c t r a o f N i t r o s o s o l a n o c a p s i n e and "N i t r o s o d i h y d r o so 1 a n o c ap s i ne , f .................................................... 77 I n f r a r e d S p e c t r u m o f " N i t r o s o d i h y d r o s o 1a n o c a p s i n e f f ................................................................................................................... 80 10. 11. Infrared . 83 1 2. In f ra re d Spectrum o f 0 , N , N - T r i a c e t y 1 so 1a n o c a p 3 i n e ................................................................................................................... 81| 13. Infrared 89 16-. I n f r a r e d S p e c t r u m o f Tr ime t h y l so 1 a n o c ap s i ne H y d r o c h l o r i d e .............................................................................................. 90 I n f r a r e d Spectrum of D e r i v a t i v e O b ta in e d from O p p e n a u e r O x i d a t i o n o f N i t r o so so 1 a n o c a p s i n e . . . . 96- U l t r a v i o l e t Spectrum of O x i d a t i o n P r o d u c t of T r i a c e t y l s o 1a n o c a p s i n e .................................................................... 96 R e a c t i o n o f So 1a n o c a p s i n e a n d D i h y d r o s o 1a n o c a p s i n e w i t h N i t r o u s A c i d .................................................................................... 97 15. 16 . 17. Spectrum Spectrum o f 0 , N - D i a c e t y l s o 1a n o c a p s i n e o f T r i m e t h y l s o 1a n o c a p s i n e v i ii . . . . . I. INTRODUCTION The d i s c o v e r y a n d d e v e l o p m e n t typified by p e n i c i l l i n discoveries treatment and of b i o t i c work objective since of n a t u r a l l y This Several tracts inventions diseases the has e c l ip s e d the safe, occurring from larg e the a nd isolation antibacterial of They f ou nd t h a t antibacterial appeared q u ite of on an e x t e n s i v e seed p l a n t s principles and r a p i d Mos t anti­ has had as some o f the its hundreds to microorganisms. activity plants s hown b y e x ­ have been p u b l i s h e d . ) have c o n ­ screening program w ith possessing antibacterial a g a i n s t M y c o b a c t e r Turn t u b e r c u l o s i s . a considerable activity. promising n u mb e r Of t h e s e , (32). identifying of p l a n t s s h o we d On t h e b a s i s of these the purpose the main a n t i b a c t e r i a l in t h e p l a n t . 1 such S o l a n u m p s e u d o c a p s i c u m L. i n v e s t i g a t i o n wa s u n d e r t a k e n w i t h and c h e m i c a l l y effective ( 3 2, 3 3 , 3L|., 35, Ij-0, lj.1, 5 4 ^ 5 5 , finding especially previous compounds. antibacterial numbers of h i g h e r and r e p o r t e d agents, all of p e n i c i l l i n search has not been r e s t r i c t e d the purpose this isolation discovery surveys of activity, for antibiotic caused by m ic ro o rg a n is m s . the L u c a s and a s s o c i a t e s ducted (30,31), of of findings isolating principle or II. HISTORICAL A . H i s t o r y of A n t i b a c t e r i a l 1. Agents from Higher P l a n t s D e f i n i t i o n of A n t i b i o t i c A ntibiotic agents chemotherapeutic are, agents. in the The the concept Pasteur since in In t h i s a c o mp o u n d whereas the hibition It though use to inhibiting agent 1877 is w ithout indicate effect body. antibiotic is e f f e c t i v e hope use of them. The suggested the for the agent that antagonism is connected this or point to is too However, presence tissue its value that antibacterial in v ivo or activity. to is a p p li e d to growth of b a c t e r i a , _In_ v i t r o a c t i v i t y in the s u ffic ie n tly non-toxic istration, at a s an a n t i b i o t i c animal (68) associa­ growth in­ and o t h e r m i c r o o r g a n i s m s . s h o u l d be e m p h a s i z e d in the stance principle) of both b a c t e r i a it f r o m t he word o f one o f term ant ib ac te r ial term a n t i b i o t i c can be c l a s s e d the word, organisms. study the (or of antagonistic detriment i n f e c t i o n s m i g h t be c o m b a t e d b y m a k i n g between d i f f e r e n t sense is derived as the tio n between organisms to i s n o t n e w, truest term a n t i b i o s i s w h i c h ma y be d e f i n e d a nd A n t i b i o t i c A g e n t s 2 agent toxic alone is even to perm it sufficient if the sub­ of body f l u i d s and is cells only to p e rm it as a m ed icin a l ta ined. a substance safe admin­ c a n be e n t e r - 3 2. R e c o g n i t i o n of E arly Developments the medicinal value occurred very early in t h e h i s t o r y earliest to in t h e references ancient described who is Chinese in Pen-1sao said centuries to have i n 1597 A . D . literature (65)* One o f Plant included is found d r u g s were In t h e i n f o r m a t i o n was c o l l e c t e d Chinese m e d i c i n a l s which the w r i t t e n by Shen-nung, 3000 B. C. Li S h i h - c h e n p u b l i s h e d plants use of p l a n t s (the Great Herbal) about certain of mankind. the medicinal lived additional of in C h i n a , a 52-volume several following series plants used a nd on against s e p t i c wou nd s . Another the early sixteenth century i n a t o mb a t T h e b e s hundred h e rb a l still reference is the to p la n t E b e r s P a p y r us in 1873. remedies, drugs It from ap p ro x im ate ly (26), d e s c r i b e s mo r e i n c l u d i n g ma n y t h a t discovered than are seven familiar a nd used today. In t h e O l d T e s t a m e n t mo r e vention Even t h e of the d e ity than instructions He ze k ia h have of a s o me wh a t on u s e o f d r u g s Isaiah T a k e a lump o f f i g s . boil, a n d he r e c o v e r e d . " but medical thought evolved, considered in G r e e c e , to date and for laid saving character: along with later i n Rome , the time the "And laid inter­ the life sick. of Isaiah it on t h e kingdom of Egypt a new s c h o o l and mo d e r n m e d i c i n e from the on t h e in h e a l i n g And t h e y t o o k a n d decayed itself, (12) arbitrary said, Egyptian medicine s t r e s s was of is g e n e r a l l y of H i p p o c r a t e s (Lj.60-361 B . C . ) . 4 (307 to 2^6 B.C. ) Theophrastus described the therapeutic 193 A . D . ) a d v o c a t e d uses of p l a n t s in h i s w r i t i n g s place of m ineral preparations Greek surgeon to the the during the the and G a l e n (3). re ig n of T ib e r iu s , to who in Dioscor ides, dealt with medicinal Celsus, us e o f a number o f p l a n t s (103 use of v e g e t a b l e in m e d i c i n e . a r my o f N e r o , i n De u n i v e r s a me d i c i n a lived i n h i s H i s t o r i a P 1 a n t a r uin is b e l i e v e d mentioned in p r o v i d i n g a plants t o have i n De M e d i c i n a remedies for purul­ e n t wounds. Hippocrates cine for thinkers and G a l e n t o g e t h e r some f i f t e e n centuries. and e x p e r i m e n t e r s a nd b e c a m e distorted dominated European medi­ In t h e their absence teaching and m i s u n d e r s t o o d . turned same p e r i o d or According were stamped w i t h were intended. that if Hence, i t was be v a l u a b l e this purpose ma n y p e o p l e accessible to doctrine, sign of across, the By t h e and the its of "four In th e medicinal plants which they name t o the f a c t resembles a seal. t h e p l a n t would i t was w i d e l y u s e d f o r sixteenth century the firmly established. The h e r b a l Paracelsus of the signatures” use f o r section that preparations a n d ma n y c e n t u r i e s w e r e form. the o we s of dogma and d r y n e s s . " d o c t r ine of this " s e a l i n g ” wounds, (91). a l i s m h a d b e c o me the So 1o mo n * s S e a l is cut supposed for moisture, some o b v i o u s Thus, root cold, 1^00 A. D. until wa s p r o p a g a t e d . its heat, into The h e a l t h b o d y w a s t h o u g h t b y ma n y t o d e p e n d on a b a l a n c e principles,” i.e., of o r i g i n a l recorded (11^93-15^1) art of h e r b ­ re m e d ie s of in f a i r l y in h i s readily extensive 5 writings, istry began to bridge and t h u s f o u n d e d 1 ishman, in 1597. its gap b e t w e e n m e d i c i n e iatrochem istry. It is a c u r i o u s book, a m ix t u r e of and c o n t e m p o r a r y f o l k l o r e . c o n t e n t may be gathered o f P 1a n t e s accurate Some i d e a o f from the and c hem­ John G e r a r d e , an Eng- w r o t e The He r b a l 1 o r Ge ne r a i l H i s t o r i e cription of the following the des­ nature quotation (37) : D i o s c o r i d e s w r i t e t h t h a t t h e y e l l o w e W a l l f l o w e r i s most u s e d i n p h i s i c k e , a n d mo r e t h a n t h e r e s t o f s t o c k e g i l l o f l o w e r s , w h e r e o f t h i s i s h o l d e n t o be a k i n d e , w h i c h h a t h mo ve d me t o p r e f e r i t u n t o t h e f i r s t p l a c e . He s a i t h , t h a t t h e j u i c e m i x e d w i t h some u n c t i o n s o r o i l i e t h i n g , and b o i l e d t o t h e form of a l y n i m e n t , h e l p e t h t h e c h o p p e s or r i f t e s of t he fundament,. The h e r b b o i l e d w i t h w h i t e w i n e , h o n i e , a nd a l i t t l e a l l o m , d o t h c u r e h o t u l c e r s , and c a n k e r s o f t h e m o u t h . After tific the seventeenth and t he h e r b a l c e n t u r y b o t a n y b e c a me mo r e wa s g r a d u a l l y r e p l a c e d by t h e scien­ flora and the ph a rm aco p o eia. 3. Mo d e r n D e v e l o p m e n t s I n 19 1 0 w i t h P a u l arsenical Salvarsan Ehrlich's used in the s y n t h e s i s of treatment t h e m o d e r n e r a o f c h e m o t h e r a p e u t i c s wa s mochin, the synthetic modern s u l f a drugs, sulfadiazine gave hope fight any d i s e a s e less into the organic syphilis inaugurated. (27), Plas- a n t i m a l a r i a l , Domagk' s P r o n t o s i l , such as with c o n s i d e r a t ion of p l a n t s or of in Che mo t he ra p y that sulfanilamide, one d a y a synthetic as s u l f a t h i a z o 1e , a n d i t w o u l d be p o s s i b l e drug. suppliers a nd Consequently, to the o f m e d i c i n a l s w e n t mo r e t h e b a c k g r o u n d and A l e x a n d e r Fleming's observation 6 i n 1929 the (30) that t h e m o l d P e n i c i l l ium n o t a t urn c o u l d g ro w t h o f M i c r o c o c c u s pyo gene s v a r . a u r e u s unnoticed. About investigated taining the ten years same antibiotic Consequently, importance 191+0 t h e Florey agent have organisms as suppliers like s h o we d g r e a t p r o m i s e Since one organisms, is prone i t ma y b e to surprising of d i f f e r e n t species examined f o r antibacterial the r e s u l t s of the researches Insofar common t h e r a p e u t i c antibiotics, since microorganisms, it only appeared used t h e r a p e u ­ as p r o m is in g . a n tib io tic s with m icro­ that a large n u mb e r I t may b e c o n c e d e d dramatic that in h i g h e r p l a n t s success that has a t ­ on m i c r o o r g a n i s m s . has yet interest a g e n t s was a n ­ a u r s o m y c i n a nd and a r e antibiotics a s c a n be d e t e r m i n e d , from a seed p l a n t the the and a f t e r of h ig h e r p l a n t s have been activity. search for activity group r e - e s t a b l i s h e d of m e d i c in a ls to fin d and v a r i e t i e s as y e t met w i t h tended the associate in o b ­ (31). streptomycin, t i c a l l y w h e r e a s ma n y o t h e r s h a v e n o t creased succeeded o f a g r e a t ma n y a n t i b i o t i c Some o f t h e s e , terramycin, its a nd C h a i n a t O x f o r d and t h e work of t h e Ox f or d of p l a n t s isolation nounced. have not almost passed c r u d e p r e p a r a t i o n s w h i c h had r e m a r k a b l y h i g h a g a i n s t ma n y G r a m - p o s i t i v e the later, inhibit s hown s u f f i c i e n t use. Nevertheless, in h i g h e r plants is n o tic e d a few of a c t u a l l y have been u s e f u l no a n t i b i o t i c that isolated promise this to w a rra n t has not de­ as p o s s i b l e sources of even case in t h e t h e ma n y a n t i b i o t i c s therapeutically. of isolated 7 Ip. P l a n t s Several Possessing A ntibacterial surveys over higher a c t i v i t y have been p u b l i s h e d i n 192-1-3 ( 6 7 ) . tions are in (Ip, 14.5 ) , a nd W i l l e k e a complete are reports a n d Ma c D o n a l d (92). having a n d l p3. 2 p e r of a n t i b a c t e r i a l is w ith in to bacterial investiga­ a g a i n s t M. cent of the select plants Weatherwax, they carried c a n be that and that several places systematic in h i g h e r p l a n t s . seen from the (1^0,55,32) . plants activity a mo r e first I t was f o u n d t u b e r c u lo s is o ccu rred tested represent indicate on a t anticipate and W i n t e r do n o t antibacterial but in C a l i ­ (13), references principles reach, This demonstrates possible these in Canada significance; Cne c a n t h e r e f o r e goal activity in 16 .8 , in t h r e e consecutive through experience which p r o b a b l y w i l l 21.1, it exhibit is anti­ activity. Besides, i t may be c o n c l u d e d f r o m t h e antibacterial flowers These o f L u c a s and c o - w o r k e r s surveys. of wa s b y O s b o r n H u g h e s a nd a s s o c i a t e s screening programs are determination that Bishop ( 7l p) , only of p r e l i m i n a r y this of which the f i r s t a nd c o - w o r k e r s a t M i c h i g a n S t a t e s urve y of p l a n t s in t h e w o r l d . that Indiana i n G e r ma n y very active That of Lucas antibacterial ( 3 2 , 3 3 , 3]p, 3 5 , IpO, Ip1, £ip, 5 5 , 56 ) , S a n d e r s , a nd Mc Cl u n g fornia having Among t h e m o s t e x h a u s t i v e those University plants A ctivity and leaves activity o c c u r s most f r e q u e n t l y a nd frequently less R o o t s have n o t been examined to conclusions survey r e s u l t s c a n be d r a w n . in th e such an e x t e n t in the fruits that and seeds. similar 8 Phenolic and a c i d i c of b a c t e r i o l o g y exhibit it has been recognized antibacterial activity. i n Th ymu s v u l g a r i s . isolated Link Others Th e e a r l i e r and woods o f P i n u s because compounds. acid (19) are i t s monomethyl Lac t o n e s . - L a c t o n e s a s the roots cially The ether moderate isolated from the aucupar ia, ripe (86). against berries of example of of found to have (1|_2), prop­ carvacrol (78) from the h e a r t inhibited the fungi. seem t o e x h i b i t lactone kawain s howe d several antibacte­ isolated such a c t i v i t y , activity bacteria; from espe­ for So r b u s antibacterial (17)- responsible c a u s e d by e a t i n g disease acid lactone a substance this the Parasorbic an a n t i b a c t e r i a l cattle against but the mountain ash, ( 18 ) i s o l a t e d disease of c e r t a i n P r o t o a n e m o n i n a nd a n e m o n i n f r o m The c o mp o u n d r e s p o n s i b l e whi c h was a l s o and c a t e c h o l such s u b s t a n c e s . s ho we d c o n s i d e r a b l e and L i n k the hem orrhagic clover. present antibacterial acid c o m p o u n d s wa s f a i r l y h i g h . is another I n 19l fi C a m p b e l l for (17) activity t o x i c i t y of both substances A 1 1 ium c e p a , b y isolated a group unsaturated Gonococcus An e mo ne p u l s a t i l i a fungi, the examples of o f P i pe r me t h y s t i cum ( I l f ) against of s y 1v e s t r i s b y R e n n e r f e l d t properties. acid products Thujic g r o w t h o f a n u mb e r o f w o o d - r o t t i n g rial days is thymol, are p r o t o c a t e c h u i c interest o f many o f t h e Pinosylvine early phenolic One o f t h e s e work on s t e a m - v o l a t i l e and c h ami c the (58,2). gymnos per ms p r o v o k e d (19), that from a pigmented v a r i e t y of onion, and c o - w o r k e r s erties su b s ta n c e s. - Since sweet wa s d i c u m a r o l , properties (17)- 9 Alkalo i d s . - Since macological has been properties, given hyoscine, of b a c t e r i a their that This confirms bacterial antibacterial and c o c a i n e they all the action atropine, against a n u mb e r s h o we d o n l y n e g l i g i b l e finding that a s A t r o p a a nd D a t u r a e x h i b i t activity. interesting phar­ Ha i m ( Lp3) t e s t e d morphine, a nd f o u n d drug p l a n t s possible some a t t e n t i o n . aconitine, activity. alkaloids possess such w e ll- kn ow n no d e t e c t a b l e Lamb i n a n d B e r n h a r d (51) several alkaloids, such as apomorphine, strychnine against activity appreciable. B e r s c h a nd Dopp ( 9 ) on t h e o t h e r rt t h a t c e p h a r a t i n e , b e r b e r i n e , a nd s a n g u m a r i n e a l l M. were f a i r l y t ube r c u 1o s i s a n d f o u n d active a g a i n s t M. Lamb i n a n d B e r n h a r d concentration if/ m l . M. t u b e r c u l o s i s , whereas Bersch a concentration effect. These the results are influenced detecting examples to of only sim ilarly their 10 t o 1+0 testing. extent a nd Dopp tu b e r c u lo s i s at isolated several a n d Dopp antibacterial by B e r s c h that berberine the growth of inhibited ( 1 oc . c i t . ) m e n ­ if/ml. s how how d i f f i c u l t such a g r e a t tested g r o w t h o f M. I t wa s 150 of b a c t e r i o l o g i c a l a nd m e a s u r i n g sanguinarine against of ( 1oc . c i t . ) s t a t e d the ml . and tuberculosis. at the conessine, not hand f o un d tioned berberine, tested anti­ it for the i s t o compare The r e s u l t s obtained by the methods used f o r activity. The a l k a l o i d (lo c . c i t . ) inhibited c o n c e n t r a t ions 0 . 5 to b y J o h n s o n et_ aj^. same 5 (1+7) a n d f o u n d a c t i v e s p e c i e s o f E s c h e r i c h i a and A e r o b a c t e r . 10 The steroidal Fontaine a n d Ma ( 5 7 ) pyogene s v a r . E. alkaloid co1i . aureus On t h e toward c e r t a i n glycoside, tomatine, reported s h o we d l ow a c t i v i t y a nd B. s u b t i 1 i s a n d no a c t i v i t y other hand, it by against Micrococcus exhibited against a high a c t i v i t y fungi. B . C h e m i s t r y a n d P h a r m a c o l o g y o f S o l a n u m P s e u d o c a p s i c um L . So 1 anurn p s e u d o c a p s i c u m L. Cherry, C h r i s t m a s C h e r r y , or N a t a l branching feet. leafy shrub t h a t It has narrow, lanceolate a shiny surface. s o l i t a r y or few fruit in l a t e r a l makes it probably a native Madeira off tributed the northwest ornamental i n 1929 cent toxic clusters. (15) that (50) the identical perhaps regions It "Probably physalien to tomatoes the It green flowers orange island are cherry­ is of is widely d i s ­ of A f r i c a g r o wn a nd in g r e e n ­ in f i e l d s are the b e r r i e s cultivated. contain the Br e y e r - B r a n d w i j k r e p o r t ­ leaves contain 0.25 sola ine. four The p l a n t is w ide ly non-volatile with bright a n d c a n be g r o wn that dried of th ree ornamental. and p h y s a l i n . " * o f a n u n k n o wn , and n o t Its subtropical purposes is a small and w h i t e of A f r i c a . in F l o r i d a . i n 1927 pigments phyllorhodin per small in t h e U n i t e d S t a t e s where Kyi i n f o u n d ed and Jerusalem l e a v e s which are dark The coast (66), a height of t h e Old Wo r l d , has been n a t u r a l i z e d anywhere Cherry an a t t r a c t i v e in t r o p i c a l houses for c o mmo n l y c a l l e d g r o ws t o and p o s s e s s like (5), alkaloid, - 0.53 wh i c h was 11 Watt e_t_ al_. loid product circulatory called from the system. leaves the action in t h e i r irritation application of alkaloidal injected concentrations the heart a c t i o n by p r o d u c i n g wa s p o s s i b l e to Its administer toxicity alka­ The a l k a l o i d stomach, subcutaneously. toxic block, the p r e p a r a t i o n wa s second p a p e r . of aur i c u l o v e n t r i c u l a r subjects. wh e n of o f S o l anurn p s e u d o c a p s i cum on t h e p r o d u c e s v o m i t i n g wh e n g i v e n b y t h e local ization described The a m o r p h o u s s o 1a n o c a p s i n e irritant, gives (87,88,89) resulted and The in wide sinus disorgan­ arrhythmia, and w e a k e n i n g of the muscle. d o s e s of 0 . 0 8 1 | g. is about 0.06 to equal is to t h a t It t o huma n of c o c a i n e h y d r o c h 1o r i d e . Muenscher the alkaloid stated possess toxic Schnell that the b e r r i e s substances that (82) antibacterial inactive the p l a n t , solanine may c a u s e tested to and s o l a n i d i n e . s h o u l d n e v e r be e a t e n activity in_ v i t r o in a d d i t i o n as t h e y severe p o iso n in g . the b e r r i e s and f o u n d o f S_. p s e u d o - that an a q u e o u s a g a i n s t Micrococcus pyogene s co1i . Lucas et o f S. that and T h a y e r capsicum for and E. mentioned solanocapsine, contained He a l s o e x t r a c t was (66) a l. found ( 32) that a water p se u d o c ap s i c um wa s p r o m i s i n g l y extract active against t u b e r c u l o s i s and M i c r o c o c c u s pyogene s , w h e r e a s extract of pyogenes. the leaves The alkaloid characterized s h o we d a c t i v i t y by B a r g e r of the roots b o t h M. an e t h a n o l i c only a g a in s t Micrococcus so 1 a n o c a p s i n e w a s f i r s t a nd F r a e n k e 1 - C o n r a t (6), chemically who t h o u g h t 12 that t wo a l k a l o i d s w e r e p r e s e n t . ( 78 ) f o und o n l y o n e alkaloid, C . Chemical Schlittler and U e h l i n g e r n a m e l y so 1 a n o c a p s i n e . Studies on So 1a n o c a p s i n e I n 1929 B r e y e r - B r a n d w i j k p r e p a r e d f r o m t h e S o l a n n m p s e u d o c a p s i c um a n a m o r p h o u s which had a d e p r e s s a n t In 1936 B a r g e r leaves of assigned the the s i d e was this pentoses. such c o mp o u n d acid The the isolated from the a l k a l o i d which t h e y t wo w o r k e r s o b t a i n e d but the crude gave r e a c t i o n authors No a l k a l o i d alkaloid for conceived formed d u r in g glyco­ trea te d with 2 N carbohydrates that an a m o r ­ f o r m u l a C2 6 H^ 2 N2°1| so 1a n o c a p s i d i n e . the and f o r t wo b a s e s w e r e isolation and n o t p r e s e n t in the p l a n t . So 1a n o c a p s i n e w a s u s e d f o r reactions, b u t due hydrogenation, abundant in t h e (6) w h i c h was f o u n d t o h a v e t h e secondary products as a crystalline Furthermore, isolated; hydrochloric (15), f o r m u l a Cp^Hj ^ NpQp o r ^ 2 ^ 1^2^ 2 ^ 2 anC^ nam0<^ t h i s alkaloid and c a l l e d product of on t h e h e a r t . a n d F r a e n k e 1- C o n r a t same p l a n t so 1a n o c a p s i n e . phous effect alkaloid leaves this to so 1a n o c a p s i d i n e . to t wo e q u i v a l e n t s of n i t r o u s so 1a n o c a p s i n e . group, out for selenium de­ o n t h e mo r e Assuming a s i m i l a r i t y of they applied dehydrogenation a nitroso of m il d d e g r a d a t i o n insufficient material r e a c t i o n was c a r r i e d t wo a l k a l o i d s , acquired a n u mb e r acid; the results of So 1a n o c a p s i n e structure selenium reacted with a s e c o n d a r y a mi n o g r o u p a p r i m a r y a mi n o g r o u p wa s c o n v e r t e d 13 into a hydroxyl group, and p r o b a b l y t h e p r e s e n t was e l i m i n a t e d According s h o we d t h r e e four higher gen at (or active temperature, accounts two) of duced t h a t with for the one three a hydroxyl acetic Since that wa s of a c o mp o u n d t h a t the acetone acetyl these this workers acetyl ocapsidine, threne), second h y d r o ­ group fo r hydrogens, that reported t h e hydroxyl the second that it ring. a n d F r a e n k e 1- C o n r a t s h o we d o n l y o n e a c t i v e complex r e s u l t e d acetone hydrogen. in a m o n o a c e t y l attached split to off the (6) to y i e l d Acetylation so 1a n o c a p s i n e ; s e c o n d a r y a mi n o during isolation By s e l e n i u m d e h y d r o g e n a t i o n o f Diels hydrocarbon diacetyl they concluded i t was assumed c o u l d be c o n d e n s e d w i t h derivative. On h e a t i n g i t wa s r e a d i l y e l i m ­ the f u n c t i o n of by Barger a c e t o n e p a r t was that a double bond, Inasmuch as one i t wa s d e ­ a neutral ( i b i d . ) found and b e l i e v e d group was assumed group and t h e the and s e c o n d a r y a mi n o s o l a n o c a p s ine y i e l d e d n o t be d e t e r m i n e d , solanocapsine r o om t e m p e r a t u r e the active a heterocyclic I t wa s a l s o the four) ( ibid. ) solano- g r o u p wa s o r i g i n a l l y p r e s e n t . i t wa s t e r t i a r y . a member that Since as w a t e r w i t h f o r m a t i o n of oxygen atom co u ld at the f o u r t h being group. (or group d i d not' a c e t y l a t e inated hydrogens a n d t h e p r i m a r y a mi n o anhydride, derivative. of and F r a e n k e 1- C o n r a t i n t h e p r i m a r y a mi n o group originally as w a t e r . to Barger capsine hydroxyl of solan- ( 3 1- m e t h y l - e y e 1o p e n t e n o p h e n a n - 2 - m e t h y l - 5 - e t h y l p y r i d i n e , a nd l | - m e t h y 1 - 2 - e t h y l p y - r i d i n e were obtained. Based upon t h e s e results the authors 11). proposed n u mb e r for so 1a n o c a p s i n e as p re s e n te d 19lf5> R o c h e l m e y e r ( ?L|_) s u g g e s t e d so 1 a n o c a p s i n e w i t h 27 c a r b o n s , capsine in Solanum. line with Without formula given other a str uctural formula w h i c h would b r i n g solano- alkaloids any r e p o r t e d isolated experimental i n d r a w i n g n u mb e r evidence the ch5 HC CH- L OH "NH 2 I Schlittler and U e h l i n g e r s t r u c t ure, o f (78) sol anocaps i n e . i d e n t i t y of t h e i r c o mp o u n d w i t h (6); formula but wa s c l a s s i f i e d solanidine, of the published,in compound. the base isolated that and Fr a e n k e 1- C o n r a t By t h i s solasodine, (op_. the in agreement w i t h formula a s a n a g i y c o n e w i t h 27 c a r b o n s tomatidine, 1952? a paper T h e r e w a s no d o u b t they decided wa s mo r e analysis Vk "H 2 11 and F r a e n k e l - C o n r a t tary genus I I wa s s u g g e s t e d . HO the from the CH LH on t h e in drawing I. In for a structure et about by B a r g e r empirical their elemen­ so 1a n o c a p s i n e ( o th e r s being cetera) . c it . ) they maintained Like Barger that the c om­ pound had a p r i m a r y and a s e c o n d a r y a mi n o g r o u p a nd f o r m e d trimethyl derivative. one of o x y g e n a t o m s wa s e i t h e r They a l s o present concluded that as a t e r t i a r y hydroxyl a the group 1? or as a n o n r e a c t i v e oxygen was p r e s e n t Schlittler could not alkali. be secondary hydroxyl group, while the second a s an e t h e r . and U e h l i n g e r acetylated or (6) found eliminated By d e h y d r o g e n a t i o n o f that t h e h y d r o x y l group as w ater by a l c o h o l i c so 1a n o c a p s i n e w i t h selenium, D i e l s h y d r o c a r b o n was o b t a i n e d b e s i d e s B - e t h y l -%-met h y l p y r i dine. Short a basic tained time h e a tin g reacting all the of so 1a n o c a p s i n e w i t h c o mp o u n d w i t h carbon atoms, the into the dicate compound. that The c h l o r ide ultraviolet spectrum of s h o we d a mo r e under sults the hydroxyl given in d r a w i n g number influence authors proposed the hydroxyl Ill introduced in­ s o 1a n o c a p s i n e h y d r o band t h a n the i s why i t wa s of a c i d . a structure III. con­ and t h e s p e c t r u m s e e me d t o trimettyl intense It conjugated. so 1 a n o c a p s i n e , a n d t h a t r i n g E opened lost d o u bl e bond were d o u b l e bo nds were infrared of t r i m e t y l that the The f o r m u l a C^yH^NO. but had p r i m a r y a mi n o g r o u p s a n d t h r e e s e l e n i u m gave for spectrum suggested Fr o m t h e s e so 1a n o c a p s i n e re­ as III. EXPERIMENTAL A. A p p a r a t us Wiley l a b o r a to r y m i l l , knife cutter A r t h u r H. with No. 1 . - A small interchangeable Th o ma s Co mp a n y , sieve Philadelphia, F l a s h e v a p o r a t o r . - The r o t a t i n g by C r a i g and G r e g o r y (22) and b u i l t Kedzie Chemical L a b o r a t o r y . pressure and a temperature pH-meter. operated. with the the Sold by described shops of at the 17 t o 20 mm. below 50°C. c a p i l l a r y method. capillary. in the glasselectrode, line i n m a k i n g pH m e a s u r e m e n t s . a p p a ra tu s . - A mineral a mechanical rotary Pennsylvania. I t was o p e r a t e d pH m e t e r w a s u s e d beaker with openings. evaporator A Be c k ma n mo d e l H 2 , Melting point scale The stirrer liquid oil b a t h was used bath consisted and t h e r m o m e t e r M e l t i n g p o i n t s were of a supporting reported without correc- t ion. C h r o m a t o g r a p h y c o l u m n s . - Two t y p e s o f c o l u m n s w e r e The f i r s t reduced t y p e wa s to a small a straight diameter glass effluent a p l u g o f P y r e x g l a s s wo o l wa s outlet smaller tube than an e v en b a s e and c o v e r e d w i t h the inside for the column outlet inserted a filter diam eter of adsorbent. 16 (50 x 2 . 1 into paper ( 0 . 5 cm. the disk cm. used. i.d.) i.d.). top of the slightly thecolumn.T his p r o v i d e d 17 with The second the lower The f l o w r a t e the effluent paper t y p e was end c o m p r i s e d by a ground of the A p l u g of Pyrex inserted as d e s c r i b e d In o r d e r to saturate cylinder. plate that solvent. the paper cylinder When r e a d y f o r m a g n e t was r e mo v e d and t h e the trophotometer, and a f i l t e r as d e s c r i b e d side solvent to the (23). a piece other of of the on t o p o f t h e glass i r o n w i r e wa s h e l d b y t h e i n t h i s wa y k e p t development of above the level spots, of the bottom of the paper cylinder lowered spectrophotometer, - A recording infrared spec­ model 21, Connecticut, U ltraviolet trophotometer, rated, at solvent. Infrared Norwalk, by a stopcock p a p e r wa s u s e d the ( ^ 29/ 1+2) . above. a small magnet cylinder, I.d.) joint g l a s s wo o l the paper with By p l a c i n g covered ma g n e t and t h e into 1 filter i r o n w i r e wa s h o o k e d f r o m one paper the glass c h r o m a t o g r a p h y . - The a s c e n d i n g m e t h o d b y C r a m e r w i t h Wh a t ma n No. bent ( 6 0 x 2 . 2 cm. e l u e n t was c o n t r o l l e d outlet. d i s k were Paper a g l a s s column f r o m The P e r k i n - E l m e r Corporation, wa s u s e d . spectrophotometer. - A ratio recording m o d e l D K j ^ f r o m B e c k ma n I n s t r u m e n t s , South Pasadena, spec­ Incorpo­ C a l i f o r n i a wa s u s e d . Visible s p e c t r o p h o t o m e t e r . - A m anually o p e r a t e d Bausch h- C S t r e e t , cals, analysis. Elmont, Dowex 1 . - A n i o n a nd 12 p e r Co mp a n y , cent cal a nd I4. p e r Co mp a n y , Lon g Island, exchange r e s i n cent cross Midland, acid alumina activity grade I New Y o r k . o f 50 t o from 100 m e s h s i z e Dow C h e m i c a l Michigan. to resin linkage. of 100 t o 2 0 0 me s h Obtained f r o m Dow C h e m i ­ Michigan. 0 . 0 2 N HC1 . - P r e p a r e d hydrochloric this O b t a i n e d from Al upharm Chemi­ Dowex 5 0 ■ - C a t i o n e x c h a n g e size ( Wo e i m) ; cro sslinkage. Obtained Midland, "activity 1 2. Ac i d a l u m i n a . - A l u m i n u m o x i d e for 80 mesh, by d i l u t i n g 1 liter. 3 m l . of Standardized concentrated against borax, Na 2 B ^ 0 7 , 1 0 H2 0 . 0 . 0 2 N NaOH. - Twenty-five m i l l i l i t e r s d r o x i d e was d i l u t e d to 1 liter with f r e s h ly boiled water. N s o d i u m h y d r o x i d e wa s p r e p a r e d f r o m 50 p e r droxide. Standardized Tomatine. fer, against - Obtained by t h e p r o c e d u r e cent sodium h y ­ 0.02 N h y d ro ch lo ric t h r o u g h c o u r t e s y o f Dr. E a s t e r n U t i l i z a t i o n Research Branch, prepared of N sodium h y ­ of Fontaine Molisch*s r e a g e n t . - A 5 per cent et acid. P. U.S.D.A. al . S. Schaf­ a nd may be (31a) . ethanolic s o l u t i o n of 2 -------------> Procedure at digestion. HN0 2 ------------ » spontaneously r e s u ltin g time of a nd d e t e r m i n a t i o n . - The m e t h o d of n i tr o g e n reaction, as m o d if ie d + oxide: H2 0. according t o Mo r r o w (63). E l e m e n t a r y a n a l y s i s . - The a n a l y s e s w e r e p e r f o r m e d b y either Huffman M i c r o a n a l y t i c a l Wheatridge, Terrace, Colorado Hackensak, or G e l l e r adaptable for as (25) formed at 5, and 8 ). 120, lp73 B l a n c h a r d (e.g. fitted d e t e r m i n a t i o n of a s c a t a l y s t was us e d f o r oxidations.- were three O. Box 1 2 5 , "double bonds"). w i t h h o i 1o w - s t o p p e r e d v e s s e l s d e s c r i b e d by M i l t o n and W a t e r s Periodate b y Dy e r Laboratories, following hydrogenation reactions duced p l a t i n u m o x ide Procedure P. New J e r s e y . M i c r o h y d ro g e n a t ion A Warburg a p p a r a t u s Laboratories, used. Procedure The p e r i o d a t e and w i t h (62) was f o l l o w e d . a nd r e a g e n t s as given o x i d a t i o n s were p e r ­ hydrogen ion c o n c e n t r a t i o n s A l i q u o t s were titrated after as d e s c r i b e d re­ hydrogenation. different and 600 m i n u t e s is 3, 6, 12, in the p r o c e d u r e . (pH 2, 2 If, lf8 , 2U Test for a c e t o n e . - The iodoform t e s t from the p r o c e d u re d e s c r i b e d by C h e r o n i s Reagents t h o s e m e n t i o n e d by t he used were the procedure was scaled down s u c h t h a t c o mp o u n d a n d r e a g e n t s w e r e was an a d a p t a t i o n and E n t r i k i n t wo a u t h o r s ; only a tenth 1o s i s b e c a u s e of its long an e x t e n d e d b a c t e r i a l fast-growing by t h e dicated with activity s p e c t r u m was substance substances a sufficient b y D r . R. ities are expressed per m i l l i l i t e r the degree as the bacterial As t h e this in o r d e r to reason to find some e x t e n t I t was f o u n d in­ that the in­ The a s s a y s w e r e d e s i g n e d at of H e a l t h . be f o u n d of c u l t u r e wa y * least For tubercu- o f c e r t a i n t y by t e s t i n g Y. G o t t s h a l l the D i v i s i o n of L a b o r a ­ A d i s c u s s i o n of in t h e Appendix least the I. inhibits activity highest growth. is a ls o d i l u t i o n which the The a c t i v ­ n u mb e r o f m i c r o g r a m s b ro th which introductory experiments in a r e l a t i v e a nd D i - o f _5. p s e u d o c a p s i c u m c o u l d be Michigan Department methods of a s s a y w i l l at studied in q u e s t i o n . a g a i n s t D ip 1o c o c c u s p n e umon i a e . and d i r e c t e d a g a i n s t M. incubation period. organisms which are ant i tuber cul ar tories, followed by I s o l a t i o n work c o u l d have b e e n hamper ed b y S_. p s e u d o c a p s i c u m 1 s s p e c i f i c hibited of both assay-"- a g a i n s t M y c o b a c t e r i um t u b e r c u l o s i s p l o c o c c u s p n e umon i a e . but used. B i o a s s a y . - Th e p u r i f i c a t i o n p r o c e d u r e s w e r e biological (20). ( ^ ) In expressed inhibits growth. "' The a u t h o r w o u l d l i k e t o t h a n k M r s . S h i r l e y G e i s f o r c o n d u c t i n g t h e b i o a s s a y s on s a m p l e s f r o m t h i s p r o j e c t . 25 C. Experimental Procedures ISOLATION WORK 1. Lucas of Prelim inary Experiments and c o - w o r k e r s the m acerated r o o ts antibacterial (32) found that o f S o l a n u m p s e u d o c a p s i cum c o n t a i n e d principle. Therefore, the first were m o s t l y c o n c e rn e d w i t h f r a c t i o n a t i o n into different active w a t e r - immiscibie to the water fractions. s o l v e n t s or extract, for these introductory experiments more, the released soluble mo r e of s t u d y was u n d e r t a k e n to and t e s t i n g the extract the active in e th a n o l than roots out. During principle wa s f o u n d in w a t e r . Further­ re -e x tra c te d with ethanol antibacterial investigate solvents of the p r e c i p i ­ a c t i v i t y wa s c a r r i e d once w a t e r - e x t r a c t e d still a water By e x t r a c t i o n w i t h v a r i o u s collection antibacterial of the experiments a d d i t i o n of d i f f e r e n t tates c o n s i d e r a b l y mo r e an a q u e o u s e x t r a c t principle. the Thus a efficiency of v a r i o u s soIvent s . a. dried priate Extraction ag en ts. - Fifteen-gram portions r o o t powder were e x t r a c t e d w i t h solvent for l^O m i n u t e s in a ^ S o x h l e t obtained e x t r a c t s were f i l t e r e d , pressure in a f l a s h of r o o t weight to evaporator solvent 150 m l . to vol ume o f 1:1. r o o t p o w d e r w a s r e - e x t r a c t e d , now w i t h solvent. The e x t r a c t s w e r e f i l t e r e d to under give the appro­ apparatus. concentrated 15 m l . of the of The diminished a proportion The o n c e - e x t r a c t e d 15 0 m l . of a different and c o n c e n t r a t e d as 26 before to terial activity. made w i t h l£ ml. All c o n c e n t r a t e s were The a n t i b a c t e r i a l different solvents c a n be tested activity for of antibac­ the seen from the extracts data given i n Tab i e I . TABLE 1 RESULTS OF VARIOUS EXTRACTION SOLVENTS WITH ROOTS OF S. PSEUDOCAPSICUM 15 g . Root Extraction Sample Order No. I n h i b i t Growth o f : D.pneumoniae M . t u b e r c u l o s I s i n a D i l u t i o n Tn a U 1 i u t i o n of of Extraction S o l v e n t - ”- 1 , e x t r a c t ion ab so 1 . e t h a n o 1 2 . e x t r a c t ion water 1 . e x t r a c t ion 80% ethanol 2 . e x t r a c t ion 1 : 61+0 1 : 1021+ 1. i n a c t ive i n a c t i ve > 1 : 128 >1 : 1 2 8 0 water i n a c t i ve i n a c t i ve 1 . e x t r a c t ion water 1:61+ 1 :80 2 . e x t r a c t ion Q0% e t h a n o l 1 : 61+ 1:80 2. 3. A ll s o l u t i o n s have a r e l a t i v e t o 1 ml. o f s o l v e n t . b. Possibility of concentration an a n t i b a c t e r i a l o f 6 N ammoni um h y d r o x i d e or straw yellow color ethanolic of the acid to the 1 g. root extract appeared. same e x t r a c t of roots a lk a lo id . - Addition 6 N sodium h y d ro x i d e y e l l o w and a f l u f f y p r e c i p i t a t e hydrochloric of changed the to a deep A d d i t i o n of 6 N did not change its appear a n c e . Since tained all Solanum s p e c i e s alkaloids, investigated i t was t h o u g h t that so f a r have c o n ­ the p r e c i p i t a t e appearing 27 after addition of a mmoni um h y d r o x i d e c o u l d be A drop of Mayerr s r e a g e n t , a common a l k a l o i d added extract to ethanol 1 ml. of (Table the root 1 ) gave of of changed to the solution a c tio n between in t h e an a l k a l o i d . iodine (refer a blue. This the color T h i s ma y be due t o reagent) and cent indicated some t i m e a re­ starch present of the water extract p r e p a r e d by e x t r a c t ­ r o o t s p r e v i o u s l y e x t r a c t e d w i t h 80 p e r w ith Table Mayer1 s r e a g e n t . I) gave o n l y This c. a very indicates most p a r t were e x t r a c t e d the Fractionation that first using schematically represented as fo llo w s : I of r o o t s non-ionic the cloudiness with alkaloids in a batch p ro cess ) r egener at ion. w i t h 2N NaOH —:-----------------1. the ion-exchange a nd may be * c a t i o n s as salts ^ , ♦ , Dowex 50( H ) Na-salts ---------- 1 Sc he me o f for substances) Dowex 50 (H*") ____________r e g e n e r a t i o n w i t h (cations) 2 N HC1 ▼ Dowex l ( OH (anions) ethanol i o n - e x c h a n g e . - The out Ethanolic e x tra ct (anions, cations, slight cent time by e t h a n o l . f r a c t i o n a t i o n was c a r r i e d Figure wh e n solution. One m i l l i l i t e r ing t h e After (from the reagent, p r e p a r e d w i t h 80 p e r a white p r e c i p i t a t e . the p o s s i b i l i t y an a l k a l o i d . ion-exchange f r a c t i o n a t i o n free acids v n o n - i o n ic substances. of root extract. 28 Dowex 50 w a s in the free T w e n t y g r a ms was p r e p a r e d time w i t h 100 m i . with water until 0.05 N s i l v e r ium b a s e each time with with water by w a s h i n g the washings did not Dowex 1 wa s T w e n t y grams of 100 m l . until resin acid, to describes (RSO^OH) . twice, each a nd t h e n w a s h i n g give p r e c i p i t a t e with i n t h e q u a t e r n a r y ammon­ r e s i n wa s w a s h e d t w i c e , of N sodium h y d r o x i d e , neutral The f o l l o w i n g the acid form the of 2 N h y d ro ch lo ric nitrate. form. sulfonic and f i n a l l y litmus paper. stepwise the procedure of sepa- r a t ion: Step 300 m l . 1. o f 80 p e r three hours. rator to 50 r e s i n per and gave 1.85. in a S o x h l e t was c o n c e n t r a t e d a solution t h e pH wa s The with apparatus for in a f l a s h evapo­ o f pH extract wa s m i x e d w i t h t h e Dowex on a Be c k ma n p H - m e t e r . 1 . 9 a nd b o t h a f t e r three r e s i n w a s now w a s h e d w i t h 50 m l . a nd f i v e o f 80 ethanol. Step 3. - The e f f l u e n t t h e Dowex 1 r e s i n . wa s w a s h e d w i t h 5 0 m l , of 80 p e r s u b s t a n c e s were evaporator. cent added to one m i n u t e i | . 0 , 6 .5 and 9 . 5 , r e s p e c t i v e l y . S t e p 1+. - The e f f l u e n t non-ionic p l u s wash l i q u i d s wer e Th e pH wa s a f t e r a nd f i v e m i n u t e s a flash r o o t m e a l wa s e x t r a c t e d a n d t h e pH c h a n g e f o l l o w e d cent three ethanol - The e t h a n o l i c one m i n u t e minutes cent The e x t r a c t 150 m l . Step 2. After - T h i r t y grams o f and a f t e r The r e s i n ethanol. p lu s washings which c o n ta in evaporated a t 50°C. The r e s i d u e w a s d i s s o l v e d the to dryness in i n 30 m l . of 29 80 p e r cent ethanol Step 5. time w ith and t e s t e d 100 m l . tralization, of 2 N hydrochloric e t h a n o 1 was added o f 80 p e r contain the bacterial cent dryness. to produce This each greenish After a final neu­ volume of s o l u t i o n presumed to o r g a n i c c a t i o n i c m a t e r i a l s was t e s t e d 100 m l . of organic o f N sodium h y d r o x i d e . acids present free a c i d s by adding free acid form. to passed over the ethanol to near twice, a nd t h e 6 . - The Dowex 1 r e s i n wa s g e n e r a t e d time w ith ness; ethanol. acid activity. for anti­ activity. Step addition antibacterial - The Dowex 5 0 r e s i n wa s f e j e n e r a t e d c o l o r e d e f f l u e n t was e v a p o r a t e d 30 m l . for the in t h e t h e Dowex 5 0 r e s i n , the resin. and then te s te d The a c t i v i t i e s of sodium s a l t s t o a Dowex 50 r e s i n of a green ish color were c o l o r l e s s after The e f f l u e n t w a s e v a p o r a t e d r e s i d u e was d i s s o l v e d for each e f f l u e n t s were c o n v e r t e d effluents The e f f l u e n t s , The twice, i n 30 m i . o f 80 p e r antibacterial activity. the f r a c tio n s are given to on t h e before having to dry­ cent in T a b l e II. TABLE I I ANTIBACTERIAL ACTIVI TY OF FRACTIONS OBTAINED BY ION-EXCHANGE Fraction-"Inorganic cations n i t r o g e n o u s compounds Free Non acids ionic Inh ib i t Growth of : D. p n e u m o n i a e M. t u b e r c u l o s i s in a Di 1ut i on of in a D i l u t i o n of 1:8 inactive substances inactive A l l f r a c t i o n s had a r e l a t i v e to 1 m l . of s o l v e n t. c o n c e n t r a t i o n of 1:5 i n a c t ive i n a c t ive 1 g. of r o o t s 30 d. Extraction i t was f o u n d ionic that the substances, In t h e p r i n c i p l e s . - As r e p o r t e d a c t i v i t y was a s s o c i a t e d w i t h which would following by e t h e r of ba sic experiment include nitrogenous isolation the above cat­ compounds. of the b a sic principles e x t r a c t i o n was a t t e m p t e d . Thirty grams o f r o o t p o w d e r wa s e x t r a c t e d a p p a r a t u s w i t h 300 m l . The e t h a n o l of 80 p e r cent e x t r a c t wa s c o n c e n t r a t e d ethanol a n d ma de d i s t i n c t l y i t was e x t r a c t e d times with ethyl w i t h 250 ml. and t h e The e t h e r - e x t r a c t e d next four for in a f l a s h t o a v o l u m e o f 50 m l . five in a S o x h l e t evaporator ammoniacal. ether, times with 2 hours. Then the f i r s t time 100- m l . p o r t i o n s . w a t e r p h a s e wa s t e s t e d for antibacterial a c t iv i t y . The c o m b i n e d e t h e r sodium s u l f a t e and e v a p o r a t e d wa s r e d i s s o l v e d aliquot (or activity. erator i n 300 m l . 50 m l . ) wa s d i s s o l v e d t o r emove of e th y l was e v a p o r a t e d i n 5 nil • o f e t h a n o l over wa s p a s s e d extract. tered off through the ether and a o n e - s i x t h to dryness. and t e s t e d A white p r e c ip ita te ether w a s 275 itiq - To t e s t the p r e c i p i t a t e was d i s s o l v e d The a n t i b a c t e r i a l ethanolic extract This residue for antibacterial gas from a gen­ and dr i ed . for of seen of the o c c u r r e d w h i c h wa s f i l ­ The w e i g h t antibacterial i n 2 5 ni l . activity c a n be The r e s i d u e remaining f i v e - s i x t h and w a s h e d w i t h precipitate anhydrous solvent. A s t re a m of d r y hydrogen c h l o r i d e ether the e x t r a c t s were d r i e d of the activity of e t h a n o l . the v a rio u s in T a b l e III. fractions of 31 TABLE I I I ANTIBACTERIAL ACTI VI TY OF FRACT IONS OBTAINED FROM A ROOT ETHANOL IC EXTRACT I n h i b i t Gr o w t h o f : D . p n e umon i ae M. t u b e r c u l o s i s in a D i l u t i o n o f : in a D i l u t i o n of a) Fr a c t i on Ether e x t r a c t e d water phase 1:8 1:5 Bas ic substances in e t h e r 1 : 6 J4- 1 : 160 hydrochloride 1 :256 1 : 61+0 Cr ude a l k a l o i d E t h e r , a 1k a l o i d f r e e a) A l l f r a c t i o n s h a v e a r e l a t i v e r o o t s to 1 ml. of s o l v e n t . Fr om T a b l e the alkaloid 2. Isolation - only the reported roots a nd P u r i f i c a t i o n that which the activity 1 g. activity of followed o f So 1a n o c a p s i n e in e x t r a c t s leaves, in t h e p l a n t . and a s s o c i a t e s and (32) i t wa s d e c i d e d grams d r i e d i t wa s principle wa s c l o s e l y r e l a t e d Since alkaloid in th e p l a n t , antibacterial Twenty-five from r o o t s In t h e p r e c e d i n g p a r a g r a p h a n t i b ac t e r i a l is p re s e n t also possessed w e i g h t of of o f S_. p s e u d o c a p s i cum s h owe d a c t i v i t y tuberculosis. alkaloids from the the I t was o r i g i n a l l y f o u n d by L u c a s a g a i n s t M. sine, c a n be s e e n t h a t Antibacterial leaves. to the it concentration fraction. a. that III i n a c t ive inac t ive to the o n l y had b e e n t e s t whether the solanocapisolated leaves activity. and g r o u n d r o o t meal w e r e e x t r a c t e d for leaves four a nd t h e hours, each same in a 32 Spxhlet ml. apparatus. o f 80 p e r Each 25-g. cent ethanol. sample was e x t r a c t e d w i t h 250 Bo th e x t r a c t s were c o n c e n t r a t e d in a f l a s h evaporator t o 25 nil. minations, tested antibacterial for and, after dry weight deter­ activity. TABLE IV ANTIBACTERIAL ACTI VI TY IN EXTRACTS FROM ROOTS AND LEAVES Plant Part mg. Dry W t . / m l . Leave s 56 -a- Se e A p p e n d i x f o r details Th e a c t i v i t i e s one p a r t of th e of material the p l a n t dissolved activities contain I4I 4.0 s hown antibacterial b. in Table mained this t o be loid present But antibacterial except other Different alkaloid of it is confirmed as a source that crude alkaloid changes, leaves too the isolation f r o m r o o t s . - As a r e s u l t of had any a n t i b a c t e r i a l roots. the the principle. a s c e r t a i n e d whether fo r minor that amounts of b a l l a s t p s e u d o c a p s i c u m was a t t e m p t e d . in t h e indicate d u r i n g e x t r a c t ion c o u l d have changed of p r e v i o u s c o n s i d e r a t ions, whether of u n i t s . IV do n o t than the principle. Isolation o f S. J+U^ a nd d e f i n i t i o n s is b e t t e r reported. the 31+0 8 108 Root s roots I n h i b i t Growth o f ; D. p n e u m o n i a e M. t u b e r c u l o s i s the Besides from determining activity, s o l a n o c a p s i n e wa s t h e The m e t h o d u s e d f o r that alkaloid it re­ alka­ i s o l a t i o n was, g i v e n by S c h l i t t l e r a nd 33 Uehlinger leaves. (78) for The m e t h o d the i s o l a t i o n of used is o u tlin e d so 1a n o c a p s i n e in F i g u r e from the 2. I4.OO g . d r i e d a nd g r o u n d r o o t s p e r c o l a t e d w i t h 6 1 . of 80 per c en t e t h a n o l r Ethanol e x tr a c t (Te s t n o . 9 5 ) Re s i d u e (d i scarded) 1) C o n c e n t r a t e d t o 2 5 0 m l . 2) Made a m m o n i a c a l 3) E x t r a c t e d w i t h 5 0 0 m l . a n d 5 t i m e s w i t h 250 ml. p o r t i o n s Ether of e t h y l extract ether Aqueous ammoniacal 1aye r ( T e s t n o . 96) 1) E x t r a c t e d w i t h s m a l l p o r t i o n s o f ten per cent a cetic acid. U s e d 1250 ml Ac i d e x t r a c t Ether e x tra c t 1a y e r (Te s t n o . 9 7 ) 1) N e a r l y s a t u r a t e d b y a d d i t i o n o f 370 g . s o d i u m c h l o r i d e I 10 g. Figure crude a l k a l o i d hyd ro ch lo rid e ( Te s t n o . 9 9 ) 2. S c h e me o f isolation of alkaloid Mother 1 i qu or (Test n o . 9 8 ) from r o o t s . 3J+ Dried of 80 p e r lator and cent ground r o o t s ethanol equipped with prevent the i_l_8 h o u r s , minute glass r o o t powder from p l u g g in g a speed of After 10 d r o p s p e r to The c o n c e n t r a t e wa s made d i s t i n c t l y ammoniacal and once w i t h of %00 m l . the separatory funnel acetic used. acid for until of to tested antibacterial i n a n a mo u n t (370 the sufficient erator the alkaloid crystalline cent in a b s o l u t e acetic h y d r o c h l o r i d e was standing antibacterial activity. acid p h a s e wa s ethanol a nd 10.0 acid overnight solution the alkaloid in the refrig­ h y d r o c h l o r i d e wa s c o l l e c t e d g. sodium c h l o r i d e . a nd t h e acetic ether to p r e c i p i t a t e a t room t e m p e r a t u r e . hydrochloride 10 p e r activity. After of 10 p e r in a 2 - l i t e r amounts of extracted dissolved hydrochloride. a mo u n t small wa s a d d e d t o t h e g.) and d r i e d of acid as the on a f i l t e r with ammoni a­ activity. e x t r a c t ' s were p l a c e d evaporated Sodium c h l o r i d e a nd 5 t i m e s w i t h The r e m a i n i n g antibacterial 1250 ml. dryness, ether solvent. a nd e x t r a c t e d An a l i q u o t for of ethyl same The c o m b i n e d e t h e r a large stop cock. to ( 5 * 6 1 . ) wa s o b t a i n e d . was c o n c e n t r a t e d p h a s e wa s t e s t e d alkaloid at of c o t t o n evaporator 25 0 m l • p o r t i o n s wa s the glass perco­ in a f l a s h extracted cent in a c o n i c a l s t o p c o c k a nd a p l u g and a g o l d e n br own e x t r a c t 250 m l . w e r e m a c e r a t e d w i t h 6 1. J4.8 h o u r s p e r c o l a t i o n wa s p e r f o r m e d Th e e x t r a c t cal for (I 4.OO g . ) a c i d i c mother The y i e l d of crude and f o u n d c o n t a m i n a t e d w i t h Both the crude l i q u o r were alkaloid tested for 35 Two g r a m s o f c r u d e by h e a t i n g tinctly of over to give of w a te r. h y d r o c h l o r i d e was d i s s o l v e d The w a t e r ammoni acal was e x t r a c t e d portions dried i n 20 m l . alkaloid ethyl anhydrous 2 6 0 mg. activity ether. sodium s u l f a t e base. and t h e ether base wa s d e t e r m i n e d . The antibacterial fractions seen 100-ml. e x t r a c t s were and e v a p o r a t e d alkaloid the c a n be times with The c o m b i n e d e t h e r of crude of both three s o l u t i o n made d i s ­ to dryness The a n t i b a c t e r i a l e x tr a c te d water phase activity of t h e v a r i o u s i n T a b l e V. TABLE V ANTIBACTERIAL ACTI VI TY DURING ROOT ALKALOID ISOLATION 8/ml, Test no. Fraction 95 Ethanol 96 Ammoniacal 97 Ether 98 Mother 99 Crude mg. D r y Wt./ml. extract layer extract layer 1 iquor a l k a l o i d HC1 100 A l k a l o id b a s e 101 Aqueous phase from e x t r . of a lk a lo i d base c * Isolation b a tc h e s of of I n h i b i t Growth o f : D.pneumoniae M.tuberculosis On On B l o o d Agar Agar 138 30 5k 188 >100 >100 >100 i n a c t i ve inac t k- .6 72 5 5 .>5 >100 >100 >100 2 .,0 16 25 25 1 .,0 16 12 12 >100 85 so 1 a n o c a p s i n e so 1 a n o c a p s i n e w e r e i n a c t ive inac t from l e a v e s . - S e v e ra l isolated during this in v e s tig a t ion. 36 Th e p r o c e d u r e Schlittler and U e h l i n g e r Dried of 80 p e r The w i t h m i n o r m o d i f i c a t i o n s wa s t h a t and g r ou n d cent leaf material (78)* leaves ethanol (500 g . ) was f i l t e r e d for combined, deep g re e n f i l t r a t e s chlorophyll coating. 1+8 h o u r s w i t h to 1250 m l . separated in th e refrigerator ether of concentrate. times with the three extractions After em ulsification. extract were p o s s i b l y amounts of 10 p e r e x t r a c t s wa s a d d e d iness p e rs is te d frigerator. and t h e After in a f l a s h amounts of as a v i s c o u s acetic wa s r e m o v e d b y f i l t r a t i o n . into fractions In a 2-1 i t e r However, to o f 50 0 ml. separatory 1 1 . of The e t h e r acid. the last separate the t wo p h a s e s lipids present t wo in t h e ammoni um h y d r o x i d e . To t h e sodium c h l o r i d e (330 g.) the p r e c i p i t a t e small combined a c e t i c s o l u t i o n wa s t h e n p l a c e d 10 h o u r s phase during e x t r a c t s were e x t r a c t e d w i t h acetic ethyl during s a p o n i f i e d by t h e cent The standing overnight once w i t h Some o f t h e The c o m b i n e d e t h e r ethanol. a q u e o u s a mmoni a l a y e r i t was v e r y d i f f i c u l t and a g a i n glacial 500- m l . p o r t i o n s . extractions. due t o flask 9 1* f o r 1+8 h o u r s . large 200 ml. ammoniacal. r e a d i l y from the first the was t h e n d i v i d e d separated acid side e a c h f r a c t i o n wa s e x t r a c t e d and f i v e cent were c o n c e n t r a t e d chlorophyll a nd e a c h made d i s t i n c t l y funnel o f 80 p e r the chloro p h y ll The c o n c e n t r a t e jar on a B u c h n e r f u n n e l 9 1. on t h e the glass During c o n c e n tra tio n To p r e c i p i t a t e a c i d was a d d e d t o were m a c e r a t e d w i t h in a c y l i n d r i c a l extracted evaporator f o l l o w e d by until in the cloud­ re­ wa s c o l l e c t e d on 37 a filter and d r i e d gave o n l y an The y i e l d of crude weight of the Several a 1 .6 per h y d r o c h l o r i d e was 8 . 0 cent yield isolations gave y i e l d s alkaloid a large of using 1.26 per hydrochloride the procedure cent and scale 1 . of w a te r and t h e n e x t r a c t e d alcohol of e th a n o l for batch wa s r e m o v e d b y d i s t i l l a t i o n wa s f u r t h e r rator. The c o n c e n t r a t e wa s d i v i d e d concentrated up a s d e s c r i b e d loid hydrochloride per cent yield and U e h l i n g e r ether based extraction very slight obtained gave g. on d r y w e i g h t of (78) noticed layer Mayer’ s t e s t . leaves. the and t h e of remaining evapo­ 500-ml. fra c tio n s of crude corresponding to alka­ a 0.11 of r o o t s . extraction. - Schlittler concentrated f r o m an e x t r a c t particular apparatus in a f l a s h The y i e l d a highly positive When t h i s in the The m a i n p o r t i o n into alkaloid that r o o t m e a l wa s a l l o w e d to 2 1 . above. wa s o n l y 2 . 2 d * The c o m p l e t e n e s s ammoniacal of seven ho u rs. extract and w o r k e d cent i s o l a t i o n wa s a t t e m p t e d b y m a k i n g u s e o f to absorb the of des­ e x t r a c t o r . - To s i m p l i f y t h e c u mb e r s o m e p r o ­ A 2 kg. 12 1. 1 . 51+ p e r b a s e d on d r y w e i g h t extractor. with g., b a s e d on t h e d r y a Barnstead 2 liquor leaves. Barnstead cedure to The m o t h e r c l o u d i n e s s w ith Mayer’ s re a g e n t . s o 1a n o c a p s i n e additional above of crude room t e m p e r a t u r e . insignificant which c o r r e s p o n d s cribed at of a nd a q u e o u s leaves alkaloid after test with s t e p was c h e c k e d o n l y a c l o u d i n e s s w i t h M a y e r ’ s r e a g e n t was o b s e r v e d . Nevertheless, i t was d e c i d e d to r e - e x t r a c t the ether extracted 38 ammoniacal concentrate determine i f mo r e For this by Mo rt o n alkaloid purpose it is tion a liquid with a 1 i q u i d - 1 iquid a heavier formed the increased the mother in a s e p a r a t o r y f u n n e l . ■l i quor w e r e e x t r a c t e d c h l o r o f o r m and t h e five liquid; but for in t h i s extrac­ case than organophilic Since t h e vol ume of i t wa s n e c e s s a r y t o Purification part of gram o f of the c a p s i n e was g r e a t e r fraction, of t h e mother t i m e s w i t h 2 5 0 - ml . p o r t i o n s gas. used the to give in t h i s of saturated alkaloid a yield of 1.1 e x p e r i m e n t wa s o r i g ­ of r o o t meal, hence the y i e l d in on d r y w e i g h t . so I a n o c a p s i n e . - antibacterial than the the The p r e c i p i t a t e d and d r i e d f r o m 500 g. determine whether wa s e x t r a c t e d w i t h c h l o r o f o r m c ombi ned c h l o r o f o r m e x t r a c t s were c e n t wa s 0 . 2 2 b a s e d alkaloid ( 2 : 1 ). of e x t r a c t o r Two 7 5 0 - m l . p o r t i o n s concentrate inally obtained One type concentrate an a z e o t r o p ic m i x t u r e . liquor was f i l t e r e d The a m m o n i a c a l e. as d e s c r i b e d of ammoniacal so much t h a t dry hydrogen c h loride hydrochloride per to extraction. Instead with extractor of c h lo r o f o r m - e t h a n o l wa s mo r e h y d r o p h i l i c the e x t r a c t a n t stop 1250 m l . a very convenient c h l o r o f o r m a nd e t h a n o l mixture c o u l d be r e m o v e d . 11^.00 m l . Usually ethanol a chioroforin-ethanol ( 614.) w a s u s e d a n d wa s e x t r a c t e d w i t h of with crude, activity activity preceding In an a t t e m p t of the of pu re crude crude m a te ria l i n 70 m l . solano- alkaloid wa s p u r i f i e d . greenish preparation h y d r o c h l o r i d e was d i s s o l v e d to of leaf of 80 p e r g. 39 cent ethanol, heated to 60-70°C. The f i l t e r e d s o l u t i o n was t e s t e d to determine if ter ial the active and d e c o l o r i z e d w i t h N o r i t . for antibacterial c a r b o n had a d s o r b e d any a n t i b a c - mater i a l . The e t h a n o l i c s o l u t i o n wa s e v a p o r a t e d pended i n 3 N ammoni um h y d r o x i d e funnel seven tim e s w ith 100-ml. remaining a mmo n i a l a y e r activity, and t h e anhydrous s od i um s u l f a t e of c o l o r l e s s wa s and e x t r a c t e d portions saved combined e t h e r alkaloid to dryness, a nd t e s t e d for ocapsine of m e l t i n g point a c o mp o u n d m e l t i n g to the m a t e r i a l s for 212-211| °C. The y i e l d Recrystalliza­ crystalline solan- A second r e c r y s t a l l i z a t i o n 2 1 5 > - 2 l 6 ° C. antibacterial The antibacterial dryness. o b t a i n e d wa s l\.^0 mg. at ether. f r a c t i o n s were d r i e d w i t h and e v a p o r a t e d base sus­ in a s e p a r a t o r y of e t h y l t i o n f r o m e t h a n o 1- w a t e r ( 1 : I ) gave c o l o r l e s s , gave activity The r e s u l t s activity c a n be of seen testing in T a b l e VI . T a b l e VI alkaloid its s ho ws t h a t increased activity the a n t 1t u b e r c u l a r four-fold against D, p n e union i ae d e c r e a s e d T h i s ma y s u g g e s t that besides so 1 a n o c a p s i n e wa s p r e s e n t another w h i c h wa s d i f f i c u l t to sine c o u l d be o b t a i n e d while one a n d o n e - h a l f antibacterial of d i f f e r e n t resinous material crystallize. a nd c a u t i o u s p r e c i p i t a t i o n the c o mp o u n d in th e p l a n t . Often during r e c r y s t a l l i z a t i o n an a mo r p h o u s , of during the p u r i f i c a t i o n , times. so 1 a n o c a p s i n e activity b a t c h e s of wa s e n c o u n t e r e d , But by r e p e a t e d solution from e t h a n o l - w a t e r ( 1 : 1 ) solanocap- in c r y s t a l l i n e form. l+o TABLE VI ANTIBACTERIAL ACTI VI TY DURING SOLANOCAPSINE PURI FI CATION ^ml . Fraction mg. D r y Wt./ml. Cr u d e a l k a l o id h y d r o c h 1o r i d e I n h i b i t Growth o f : D . p n e umon i ae M.tuberculosis On On B l o o d Agar Agar 1 20 13 13 Decolorized alkaloid h y d r o c h l o r ide lit l it kk 22 Ether e x tra cted a mmo n i a l a y e r 20 78 >100 A lk a lo id base ( s o l a n o c ap s i n e ) 2 8 25 25 Solanocaps in e , r e c r y s t a l 1 i zed f o ur t ime s o.kS 30 3 3 f. C o l u mn c h r o m a t o g r a p h y . - task to p u r i f y crude were difficult carbon. to so 1 a n o c a p s i n e . remove, Only through repeated f r o m e t h a n o 1 - w a t e r ( 1 : 1 ) wa s pound; decided it possible the y i e l d wa s e x t r e m e l y to try separation t i o n on a l u m i n a , acid r o o t s wa s u s e d f o r preparation a n d Dowex 5 0 . alumina, alumina, from the the small. impurities activated so 1 a n o c a p s i n e a p u r e com­ Therefore, i t wa s f r a c t i o n by ad so rp ­ o r Dowex 50 • a crude r o o t s wa s u s e d f o r of to o b tain alkaloid whereas a very d i f f i c u l t treatment with crystallization but of I t wa s f o u n d The c o l o r e d even a f t e r inac t ive An e x t r a c t of the so 1 a n o c a p s i n e trials on a c i d alumina C o l u m n c h r o m a t o g r a p h y on a l u m i n a . - P r e p a r a t i o n o f e x ­ A 175 9* p o r t i o n tract: 1500 m l . tractor of 80 p e r cent (described wa s c o n t i n u e d f o r ness of extraction. r o o t powder liquid over vol ume o f the ethanol seven hours However, the The that i t was root sample. 1270 ml . to and f i l t e r e d , ^/ml . against column in small wa s t a p p e d all the the of effective­ so r a p i d l y to m a in ta in through a head of o b t a i n e d had a activity of )f/m l . 3 30 e x t r a c t was c o n c e n t r a t e d antibacterial a c t i v i t y b e c a me same o r g a n i s m . p a c k e d " w i t h 2 0 0 g. following about The e x t r a c t When t h e of e x ­ The e x t r a c t i o n flowed impossible type co mp lete removal existed solvent the C o l u mn p r e p a r a t i o n : in t he secure and an a n t i b a c t e r i a l tuberculos i s . 125 in a p e r c o l a t o r to some d o u b t a g a i n s t M. 1 2 5 ni l . r o o t powder was e x t r a c t e d w i t h in A p p a r a t u s S e c t i o n ) . alkaloids. the of The 50 x 2 . 1 of Alcoa alumina, fashion. portions gently with The cm. grade F-20, 8 0 me s h , a l u m i n a was p o u r e d into the and a f t e r each a d d it i o n , a rubber m allet. alumina a f i l t e r paper c o l u m n wa s " d r y - After d i s k wa s p l a c e d t h e column a d d i t i o n of on t o p o f the ad s o r b e n t . Introduction ethanol wa s a p p l i e d wa s d i s c a r d e d . into A b o u t I4.OO m l . t h e c o l u mn and t h e When o n l y a 2 mm. above the alumina, After the root that of e x t r a c t : the extract o n l y a 2 mm. root extract had p a s s e d liquid height height of of a b s o l u t e first effluent solvent remained wa s a d d e d t o t h e so f a r down into rem ained above th e column. the alumina alumina, the c o l u m n was e l u t e d w i t h 20 m l . were absolute collected ethanol e v a p o ra tio n of Table VII compounds absolute until a nd F i g u r e (=alkaloids) wa s a c c o m p l i s h e d . 11 w e r e in f r a c t i o n all It colored p a rt 2 s h o ws t h a t followed 3 parts. Part and p a r t s 2 and did. while of b a s i c the activity. from a l k a l o i d s here that highest rest for tested for five the fractions intensity in u l t r a v i o l e t colored The u p p e r light, hours with to activity. the dryness l ower colorless pneumoniae; but upper of dry m a t e r i a l , one-fourth which o f 80 p e r in a f l a s h cent None o f into in t h e y e l l o w zone 300 m l . of 80 p e r whereas a nd d i v i d e d E a c h s e c t i o n wa s e x t r a c t e d i n 20 m l . a g a i n s t D. in t h e a l u m i n a wa s o f wa s c o l o r l e s s . of t h e m a t e r i a l evaporated antibacterial s h owe d a c t i v i t y of The a l u m i n a wa s e x t r u d e d The e x t r a c t , 1 mg. the segments. wa s d i s s o l v e d tained impurities 3 we r e o b t a i n e d by d i v i d i n g apparatus origin a mo u n t antibacterial one-fourth 1 consisted rator, its of the s h o u l d be r e p o r t e d The u p p e r into 2 equal ethanol. the g a v e no f l u o r e s c e n c e lower p a r t Soxhlet s howed a f t e r 1+. a deep y e l l o w c o l o r , part Elution with no r e s i d u e yellow -colored with Extrusion: the of solvent. A p p a r e n t l y n o t much s e p a r a t i o n 1 to Fractions in t a r e d 5 0 - m l . b e a k e r s . wa s c o n t i n u e d the ethanol. ethanol the the of in a cent evapo­ a nd 3 fractions fra c tio n with the column c o n ­ s h o we d a n a n t i b a c t e r i a l ip co *i— 1 IA IA CO 1T\ CO A A- A in co co A3 m o m a- ro O -d - A d a •h *« a • A) A - • o S A d cd cd H O O d o £ d CD d Cl •—* pP o -d- ACO 1A 1A CO CA o CO o A) rH O AJ CO ’-- f ---1 AJ co AJ CO --- 1 CO CO CO < — r— A CA 1A ,— i ■— i -----1 O -d A) o A3 in AJ o co AJ ,—i .—i >—1 >—1 CO AJ co AJ .—i i—H .— t IA IA *—i <—I < —r i-- 1 c—t co A AA OO O IA »- 1 A) O A A A CA A.—i A) CA A .—i A t™ — ( CO IA O o o A IA A o IA f "I 1A Ai i CO A) -d* CA o -d A) o AJ CO * 1 ■—1 A A) IA A U cd A O cd o A) -—i O co T—f «--1 ■—r A o cd d •t-H —H •—i -d A) A A A) IA A < 14 .—r A U cd C o A3 O A) A co A3 o A o o o O O Q pp p_ H <* U i—i < Pp s £> X w s o o 1—1 X g 1—I ; x A u > Pu t— < to( w pp rd O O d 5! O H O Si Q o Cd oO o CP u. O c/1] E-h IXh, ^ o A w s cd d

> o sCD A) > A a d U tn a <£ d cd 3> CD CD d cd cd • «—I a cd d o £ d CD d r— H CD Pp * 1f A f* O cd d cu Q *1 I—I s • A 1—f A CD cd cd e i a *«— O CD- d ■i—\ H o IA £ d S-. o 1 i—i o *’— O In a cd PC >> N U s cd ---1 In CO cd O CO p CD a • O d ■ —i CD CD £ S S • o o A) o IA • • • » O O O O O O o CYI CO -d- in A3 A- CO rH • • • d • o X) -—i ••-i CD £ A A O d cd ■— 1 o AJ t-< W A o o o o o o o o o on A l u m i n a . ^ o -t-J C/) &>)D nu •'-< CO o x: for co Elution C h r o ma t o g r a p h y of CO Extract o from RootV of S. □p ^ pseudocapsicum TOH N ' I«i oj o J ___ -<} CO o X^JAT^DV \ Data \ S l U B J-Q o o o 3. A jq 3Ajq.B73H o CO C\J o o o CO o Fi g u r e JBT k-5 Ion-exchange c h r o m a t o g r a p h y . - C o l u mn p r e p a r a t i o n : The Dowex SO r e s i n w a s p r e p a r e d b y w a s h i n g the a lte rn a te ly with 2 N hydrochloric and 2 N s o d i u m h y d r o x ­ ide. After each addition washed w i t h w a t e r until of e i t h e r neutral. 2 N hydrochloric acid, first and t h e n w i t h with water now f i l l e d 39 x 2 . 1 into cm. the the decreased paper to ethanol was a l l o w e d the f i n a l g. the of c r u d e of crude so 1a n o c a p s i n e t h e col umn and a l l o w e d and 5 m l . o f until o n l y a 2 mm. h e i g h t small volume o f 60 p e r a nd a g a i n a l l o w e d were remained the the ethanol. resin resin The r e s i n , dimensions During in t h e settled, through neutral 135 m l . the r e s i n wa s washing with had the the column a filter and 60 p e r cent t h e column t o above the aid remained above ethanol i n 100 m l . a c i d wa s resin. to flow through, of i n 60 p e r introduced resin. resin Then a the developing and f r a c t i o n s cent to cent column collected, of solvent ethanol of of 60 p e r o n l y a 2 mm. h e i g h t Now t h e When 1 3 0 0 m l . w e r e 10 p e r the was a p p l i e d down u n t i l allowed ethanol. acetic A solution t o f l o w down t h r o u g h t h e ammoni um h y d r o x i d e collected. solution: from r o o t s cent cent cent r e s i n had glacial cent to pass s o l v e n t wa s c h a n g e d t o per l e n g t h of alkaloid into added, a final a vol ume o f to p erco late ethanol of S per 60 p e r on t o p o f cent liquid or base times, packing. Introduction 2.2 to When t h e d i s k wa s p l a c e d After in a s l u r r y , corresponding 3l± cm. acid several r e s i n was wa s h e d u n t i l column chromatographic process acid resin wa s 100 ml . e l u a t e the developing ammoni um h y d r o x i d e i n 60 k6 o o o >> cm ■a CD d o o CD oo -O Cd d <—( CD o o vQ •iH cd +j o CO d o u cd f- U-. O -d" o cd c. CD O O O OO O CO -*-> d d o £ < 'td + -> o (J d cd O O vO co d o d o o C\J -dh o o CD t- d CD mg. Dr y Mater i a l ft o o C M o sO t— I o o C M oo 1 — 1 o _d" o C M o — 1 * — H * • * o o O O o * o vO o • o -df o • o C \J o • o U CD ft nui o5Z I 13 Aouaqjosqv ^0. ft on Dowex o o >> t— t Q Chromatography C\J cd Elution O O + -> U7 In a d d i t i o n density to dry weight o f e a c h f r a c t i o n was d e t e r m i n e d a n d Lomb s p e c t r o p h o t o m e t e r . intended to give impurities. spectra of an several a n d a mo u n t The idea about The w a v e l e n g t h at at the 7 5 0 mji i n a B a u s c h distribution in the 7 5 0 mp. the o p t ic a l spectrophotometric o f 7 50 mji wa s fractions maxi mum a b s o r p t i o n sities determinations, of c o l o r e d selected, since r e g i o n l; 0 0 - 9 5 0 mp s h o we d Figure of dry m a t e r i a l d a t a were J_|_ r e c o r d s in the color different inten­ eluate f ractions. Paper c h r o m a t o g r a p h y was a p p l i e d to determine whether the o n l y one a l k a l o i d solanocaps i n e ." reagent No s e p a r a t i o n wa s 0 . 5 7 , t h e v a l u e of a l k a l o i d this in what of t h i s of the fractions a nd t o d e c i d e is c a l le d solvent and c o l o r e x p e r i m e n t wa s n e g a ­ alkaloid i m p u r i t i e s wa s from a l l for fractions so 1 a n o c a p s i n e . a c o mp o u n d w i t h R^ = 0 . 14.8 ; b u t c o mp o u n d w a s e l u t e d from the paper "crude chromatography. from c o l o r e d found c h a r a c t e r i s t i c The ^ w a s h i n g ” c o n t a i n e d eluted s e c t i o n on p a p e r result The R ^ - v a l . u e all so 1 a n o c a p s i n e wa s p r e s e n t in th e The o v e r a l l accomplished. of The c o m p o s i t i o n o f b o t h is described Result: tive. distribution to if a nd r e - c h r o m a t o g r a p h e d , t h e R ^ - v a l u e wa s 0 . 5 7 * Co l u mn c h r o m a t o g r a p h y on a c i d a l u m i n a . - The a c i d u s e d wa s Woe l m' s a n i o n o t r o p i c a l u m i n u m o x i d e , 1, and s p e c i f i e d grams of Water the for chromatographic activity analysis. 1- b u t a n o l wa s a p p l i e d to the grade One h u n d r e d a l u m i n a w a s f,d r y - p a c k e d " a s d e s c r i b e d saturated alumina before. column b e f o r e 1*8 TABLE V I I I DATA FOR ELUTION CHROMATOGRAPHY OF CRUDE SOLANOCAPS INE FROM ROOTS ON ACID ALUMINA Fr a c t ion Eluted Amo u n t o f Dry Mater ial in mg. J/5nl . Co l o r of F r a c t ion Inh ib i t s Gr owt h o f : D. pne umoni ae M.tube r c u l o s i s 1 1 colorless i n a c t i ve i n a c t i ve 2 1 colorless i n a c t i ve i n a c t i ve 3 2 colorless i n a c t i ve i n a c t i ve Ip 8 we a k ye 1 1 ow 25 i n a c t ive 5 106 we a k ye 1 1 ow 16 13 6 327 ye 1 1 ow 16 13 7 35k ye i 1 ow 16 13 8 2kk we a k y e 1 1 ow 16 13 9 81 we ak ye 1 1 ow 8 6 10 38 we a k ye 1 1 ow 60 k7 11 10 colorless 8 6 12 3 colorless 5 It 13 It colorless 6 5 Ik 2 colorless 3 2.5 15 3 colorless 5 k 16 2 colorless 3 2.5 17 1 colorless 1.5 1 .25 18 1 colorless 3 2.5 14-9 application of so 1 a n o c a p s i n e tanol was height alkaloid. from r o o t s introduced of liquid wa s e l u t e d of the 10 m l . were for for the the remained above t h e collected, the g. of c ru d e saturated alumina the 1- b u t a n o l . adsorbent Eluate fractions s o l v e n t wa s e v a p o r a t e d activity. 1- b u ­ All and t h e f r a c t i o n s were Table V I I I gives the data experiment. Result: Some separation a l k a l o i d wa s a c c o m p l i s h e d . s o 1a n o c a p s I n e i t y ”, but of c o l o r e d Fractions i n d i c a t e d by f a i r l y i m p u r i t i e s from consisted 11-18 constant of pure antibacterial activ­ t h e y i e l d wa s e x t r e m e l y s m a l l . g. Alkaloid known t o w h a t alkaloid 1.2 When o n l y a 2 mm. was d e t e r m i n e d . antibacterial of of water column. saturated amount o f d r y m a t e r i a l tested in 20 ml. into with water A solution extent content in the p l a n t . - Since so 1a n o c a p s i n e occurs d e t e r m i n a t i o n s were c a r r i e d is an a d a p t a t i o n of t h e method out. i t was n o t i n S. p s e u d o c a p s i c u m , The p r o c e d u r e given for Belladonna Leaf used in P h a r m a c o p e i a o f The U n i t e d S t a t e s : Extraction: me s h ) w a s p l a c e d wa s inserted Ten grams of d r i e d in an e x t r a c t i o n in a S o x h l e t leaf thimble, extractor. or r o o t powder and t h e ( IpO thimble The p l a n t m a t e r i a l wa s The a c t i v i t y o f t h e f r a c t i o n s c a n e a s i l y v a r y , s i n c e the d i l u t i o n t e c h n iq u e has e x p e rim e n ta l l i m i t a t i o n s . Besides, t h e amount o f d r y m a t e r i a l i s o n l y d e t e r m i n e d t o t h e n e a r e s t mg. When t h e a m o u n t o f d r y m a t e r i a l i n a f r a c t i o n i s i n t h e r a n g e o f 1 mg. a s l i g h t d e v i a t i o n i n t h e w e i g h t d e t e r m i n a t i o n can e a s i l y change the a c t i v i t y c o n s i d e r a b l y . 50 moistened with a mixture ide, absolute 10 m l . mixed of thoroughly, ethanol, and m a c e r a t e d wa s t h e n c o v e r e d w i t h material of 8 ml. a tuft was e x t r a c t e d for concentrated a nd 2 0 m l . for ammoni um h y d r o x ­ of ethyl six hours. of p u r i f i e d The t h i m b l e cotton, six hours with ether, and t h e p l a n t 1^0 m l . of e t h y l ether . Purification: The a l k a l o i d a l solution m a c e r a t i o n was c o n t a m i n a t e d w i t h o t h e r interfere with To e f f e c t the p u r i f i c a t i o n , the the volum etric s o l v e n t by e x t r a c t i n g l u t i o n wa s made solvent such as e t h y l The e t h e r extract extractor ethyl each time, separatory funnel. the e t h e r layer of N a c e t i c bined acidic and t h e free sive 50-ml. i t y upon t h e an a c i d , then a nd e x t r a c t e d wa s t r a n s f e r r e d wa s r i n s e d the with aqueous an so­ immiscible a nd t h e s e to a sep ara to ry funnel; twice with about r i n s i n g s were filtering each p o r t io n s o l u t i o n s were r e n d e r e d alkaloid portions and r e d i s s o l v e d This a l k a l o i d s were r emoved f r om by e x t r a c t i n g w i t h 7 s u c c e s s i v e acid, alkaloid. 10 m l . of added to the The a l k a l o i d wa s r e m o v e d c o m p l e t e l y f r o m t i o n of e x t r a c t i o n , acid. the the ether: the S o x h le t ether e x t r a c t i v e s wh i c h woul d d e t e r m i n a t i o n of with ammoniacal o b t a i n e d by t h i s wa s of 1 ml. addition ether. of the in 0 . 5 ml. solution of distinctly last portions The c o m­ ammoniacal, with 5 succes­ To d e t e r m i n e the comple­ e x t r a c t wa s e v a p o r a t e d approxim ately 0.5 N hydro ch lo ric should not of drawn o f f . immediately e x tr a c te d ethyl 10-ml. show mo r e t h an a s l i g h t a drop of Mayer1s r e a g e n t . turbid­ 51 Determination: ethyl ether was d r i e d and f i l t e r e d . e t h e r , and The solution by sha king w ith The f i l t e r t h e w a s h i n g wa s a d d e d t o t h e there by a d d i t i o n for of in a m e a s u r e d acid to to give insure methyl about and red with as years of e t h y l solution. This d r y n e s s on a s t e a m b a t h The r e s u l t i n g 1 m l . of sodium s u l f a t e 10 m l . ether in absolute and r e s i d u e wa s s o f t e n e d ethanol and d i s s o l v e d s u f f i c i e n t volume of 0 . 0 2 N h y d r o c h l o r i c complete Alkaloid three 15 m i n u t e s . an a c i d i c wa s t i t r a t e d to alkaloid anhydrous wa s w a s h e d w i t h s o l u t i o n was t h e n e v a p o r a t e d heated of p u r i f i e d solution. solution The m i x t u r e w a s g e n t l y h e a t e d of the alkaloid. 0 . 0 2 N sodium h y d r o x i d e The e x c e s s acid in t h e p r e s e n c e of indicator. determinations c a n be f o u n d on p l a n t m a t e r i a l in Table from the p a s t IX. TABLE IX ALKALOID CONTENT IN S. Ye a r of Harve st PSEUDOCAPSICUM ON DRY WE IGHT BASIS N i t r o g e n Level in S o i l A 1 k a l o i d P e r c e n t a ge i n : L e a v e s a nd S t e ms Root s 1953 normal 1 .53 0.83 1951| normal 2 . 11| 1 .53 1955 1 ow 2.21 1 .86 19 55 norma1 2.15 2 . 2 l| These fairly determinations u n i f o r m a mo u n t o f s h o we d t h a t alkaloid. the p l a n t Seasonal contains and o t h e r a 52 environmental but so f a r t h e y have not h. that isolated a nd identical iso lated by both Barger and U e h l i n g e r of ro o t antibacterial l e a v e s wa s (78) flu ctu atio n s within a nd points and p h y s i c a l second p a r t this table the with with so 1 a n o c a p s i n e the isolated alkaloid Details of t h i s so 1 a n o c a p s i n e ( 6 ) a nd S c h l i t t i e r of proce dure investigation. are of both c a n be from both c o n s t a n t s were d e t e r m i n e d constants identity a l k a l o i d . - To c o n f i r m alkaloid n u mb e r o f d e r i v a t i v e s p r e p a r e d . in the leaf a n d F r a e n k e 1- C o n r a t physical cribed lim its; been e x te n s iv e . Derivatives the roots f a c t o r s ma y c a u s e reported the root are d e s­ Only m e l t i n g i n T a b l e X. a nd and a leaf Fr om alkaloid seen. TABLE X CHEMICAL CONSTANTS OF ROOT AND LEAF ALKALOIDS A 1 k a l 0 id s f rom Leave s Roots F ound S c h l i t t l e r B a r g e r e t al . e t a l . Found Determ i n a t i o n B a s e , m.p . Dihydrochloride, 215- 6° >300° m.p. >300° m.p. Isopropylidene derivative, N itro so d e r i v a t i v e , m.p. T rim ethyl d e r i v a t i v e , m.p. Nitrogen, Optical per cent rotation, 3LS" [oC ]j> R a s t ' s m olecular weight de t e r m i n a t i o n N eutralization equivalent 0 *— 1 1 0 0 Oxalate, C\J 19 l p- 6 ° P ic r a te , m.p. 216-7° >300° 191+° 216- 6° >300° 198-9° 287-9° 233° 200° 205- 6 ° 209° 6.20 6.29 +25° + 22j ° J4.82 280° 288-9° m .p . 232-3° 19lt-6° i_l_5 6 , Ip81 222° I9k° 208° +25.5° 1+60 +23.6° 53 3. The A n t i b a c t e r i a l So 1a n o c a p s i n e sicum gave isolated an a n t i b a c t e r i a l S p e c t r u m o f So 1 a n o c a p s i n e from the l e a v e s o f S. spectrum as s hown pssudocap- in T ab l e X I . TABLE XI ACTI VI TY OF CRUDE SOLANOCAPSINE BASE AGAINST VARIOUS MICROORGANISMS O r g a n i s m s a n d S t r a i n No. Aerobacter Bacillus aerogenes Concentration Required f o r I n h i b i t i o n o f Growth 6l8 500 s u b t i l i s 231 78 Corynebacterium d ip h te ria e D i p l o c o c c u s p n e u m o n i a e Type Escherichia coli PW8 III 621 125 20 50 0 H i s t o p l a s m a c a p s u l a t u m Duke U n i v . , y e a s t p h a s e H i s t o p l a s m a c a p s u l a t u m Duke U n i v . , m o l d p h a s e 15 - 5 125 K l e b s i e l l a p n e u m o n i a e NIH I I I 500 M i c r o c o c c u s p y o g e n e s v a r . a u r e u s 20 9 P 312 M y c o b a c t e r Turn p h l e i 125 Mycobacterium smegmatis 125 Mycobacterium t u b e r c u l o s i s D.T. 31 Mycobacterium t u b e r c u l o s i s H37 31 Mycobacterium t u b e r c u l o s i s H37Rv 31 P r o t e u s s p . OXK 11+11+ Ps e udomona s a e r u g i n o s a R-P-CC 500 312 Salmonella typhimurium 9 500 S a r c i n i a l u t e a PCI 1001 Shigella paradysenteriae 300 9 1-56 312 S t r e p t o c o c c u s h e m o l y t i c u s 286 39 Xanthomonas p h a s e o l i 78 5i+ Since the a l k a l o i d was n o t preparations wa s less the than serves for on e o f inhibitory action that of of purposes, impurities provided Gottshall Michigan Department capsine cent out sterile sterile of 1, 0.1 2, ml. cavity weight of p r o p y l e n e base of 0 .9 propylene per cent injected either for 100 mg. glycol and of strain, mice were the slowly solution. into the in amounts injected with glycol. i t wa s n e c e s s a r y mg./kg. Y. solano- sodium c h l o r i d e route only 50-100 mg./kg. so 1 a n o c a p s i n e wa s t o l e r a t e d , The and s u b c u t a n e o u s l y and The c o n t r o l intraperitoneal succumbed. b y D r . R. so 1a n o c a p s i n e o f w h i t e mi c e' , W e b s t e r 1+, a n d 6 mg. By t h e a possible th e D i v i s i o n of L a b o r a t o r i e s , w a s made b y d i s s o l v i n g The c o m p o u n d s w e r e peritoneal table on So 1 a n o c ap s i ne s o l u t i o n of b o th in 2 m l . of adding 8 m l . of at the of Health'*. hydrochloride c o mp o u n d that d e t e r m i n a t i o n s were d i r e c t e d and c a r r i e d A 1 per However, i s g i v e n due c o n s i d e r a t i o n . L|_. T o x i c i t y S t u d i e s toxicity a g a i n s t M. t u b e r c u l o s i s other preparations. comparative enhancing e f f e c t The the most h i g h l y p u r i f i e d lethal to inject dose whereas with the 200 m g . / k g . by s u b c u t a n e o u s so 1 a n o c a p s i n e or of body before the free animal i n j e c t i o n wa s 300 so 1 a n o c a p s i n e hydrochlo- r ide . “ The a u t h o r w o u l d l i k e t o t h a n k M r s . conducting the t o x i c i t y determ inations. S h irle y Geis for 65 After injection of as little t h e mo u s e b e c a m e v e r y n e r v o u s . lation short strating the posterior limbs were m i n u t e s t h e mo u s e shallow. three Th e days tered. collapse sta rte d with almost the so 1 a n o c ap s i n e immobile. if animal after animal After inocu­ d e mo n ­ 15 m i n u t e s Following 30-60 b r e a t h i n g wa s r a p i d u s u a l l y remained c o ll a p s e d and t h e n e x p i r e d , Otherwise, the between s e i z u r e s . usually collapsed; animal of From 9 - 1 5 m i n u t e s jerky convulsions complete a s 0 . 2 5 nig. lethal and f r o m one t o dose had b e e n a d m i n i s ­ recovered a nd a p p e a r e d n o r m a l a nd a c t i v e . I n ma n y c a s e s into t h e mice a c r u s t y eczema over to the back. developed the A scabby sore entire sores, which o f t e n body or e l s e u s u a lly appeared at it the turned localized site of inject ion. 5. A t t e m p t s Ail alkaloids to isolated been g l y c o s i d e s w ith were to attach among s i m i l a r the compounds that alkaloid Two p l a u s i b l e the an A l k a l o i d a l so f a r reasons from the e x c e p t i o n of any s i g n i f i c a n c e one woul d c o n c l u d e and t h a t Isolate to isolated the Glycoside genus Solanum have so 1a n o c a p s i n e . genetic in the p l a n t for an a l k a l o i d finding Either a very active catalyses of the c o mp oun d a t vesting the plant or the species, so 1a n o c a p s i n e p r o b a b l y wa s an a r t i f a c t was p r e s e n t hydrolysis relationships from c l o s e l y r e l a t e d c o s i d e may b e p r o p o s e d : the I f one glycoside is as a g l y c o s i d e . and n o t a gly­ glycosidase the time of h a r ­ so l a b i l e that the 56 we a k a c i d used in the is o la tio n procedure w ill hydrolyze the compound. a.. P o s s i b i l i t y tions supported of the a g l y c o s i d e . - The f o l l o w i n g th eo ry of glycoside in th e p l a n t : difficult to p u rify s t a n t s were Different weak, for identical batches furfural tive leaf cases the after crude test ring at Paper root gave upon p a p e r aniline a blank root alkaloid Molisch t e s t . 5, 20, same the a reddish of a ra b in o s e . assumption th at the as a g l y c o s i d e , h y d r o l y s i s wa s a t t e m p t e d . A solution 0.1 M s u l f u r i c 15, gave, 1+) The hydrogen p h t h a l a t e , c h r o m a t o g r a p h y . - Un d e r 10, Inci­ c h r o m a t o g r a p h y and d e t e c t i o n so 1 a n o c a p s i n e wa s p a r t l y p r e s e n t i n 0 . 5 ml . o f test. 3) The m o t h e r comparable with the and e n z y m a t i c given a p o s i ­ w a t e r wa s f o u n d t o interface. of the a positive Acid h y d r o l y s i s : 0, distilled the B a t c h e s of a negative Molisch t e s t . wa s c o m p a r e d w i t h te s t with a characteristic substances. gave 2) u s u a l l y gave i n one c a s e h a v e so 1a n o c a p s i n e spots with both acid After only con­ so 1 a n o c a p s i n e . (l+3a), a t e s t s po t w i t h an R ^ - v a l u e b. found f o r test concentration, sugar the physical Molisch purple liquor that so 1 a n o c a p s i n e from r e c r y s t a l l i z a t i o n mother of those as a a l k a l o i d wa s v e r y root the b la n k show a f a i n t liquor with a n d f u r f u r a l - y i e 1d i n g Pure dentally, isolated such an e x t e n t so 1 a n o c a p s i n e test. In a l l 1) The occurring of crude but p o s itiv e crude to so 1 a n o c a p s i n e observa­ 1+0, o f i| . 8 mg. of crude a c i d wa s r e f l u x e d and 130 m i n u t e s alkaloid on s t e a m b a t h . 5-pl • a liq u o ts 57 were removed w i t h Wh a t ma n n o . a micropipet 1 filter paper. and d e p o s i t e d on a s h e e t The c h r o m a t o g r a m wa s d e v e l o p e d with 1- b u t a n o 1- e t h a n o l - w a t e r ( 8 0 : 2 0 : 2 0 ) and a s i n g l e spot of Rj,-value phthalate minutes 0 . 2 5 - 0 . 2 6 wa s d e t e c t e d w i t h reagent gave the In a n o t h e r dissolved (23). and Enzymatic hydrolysis: crystalline the on p a p e r hydrolysis five alone but a nd e x p e r i m e n t s were a nd Co mp a n y T a k a - D i a s t a s e in c h r o m a t o g r a p h y on p a p e r Neither for d i d m e t h a n o l y s i s of Table XII in the leaf so 1a n o c a p s i n e , a nd were e a c h c h r o m a t o g r a p h e d . of e th y l (1+9), w a s u s e d . pounds developed for test any such r e s u l t . so 1a n o c a p s i n e (85). 1 0 0 ° C. Other acetate-glacial All 15 p e r cent of records As acetic sol­ acid- a 85 p e r four m a t e r i a l s produced same R „ - v a l u e wh e n d e t e c t e d w i t h f reagent at 130 a l k a l o i d wa s in a small arabinose. w a t e r ( 3 : 1 : 3 ) t o w h i c h was a dded ethanol crude acid for A g a i n a s u g a r wa s d e t e c t e d so 1a n o c a p s i n e , c r u d e upper phase a n i l i ne h y d r o g e n a pentose. with any s u c c e s s . t h e c o mp o u n d p r o d u c e Crude r o o t Davis solutions; s u g a r wa s w i t h o u t the reddish hydrolyzed for spotted pentoses. identifiable buffered the of and h e a t e d A l i q u o t s were conducted w ith Parke, vent, expected 10 mg. sealed with d iffe re n t i t was most neutral aliquot in 1 m l . of N h y d r o c h l o r i c in an ov e n . together spot experiment t ube wh i c h t h e n was hours Only the reddish of cent s p o t s of a modified Dragendorff the R e v a l u e s above m e nt i on ed for and o t h e r the c om­ solvent o. 58 TABLE X I I R f -VALUES FOR SOLANOCAPS INE, CRUDE LEAF ALKALOID, AND CRUDE ROOT ALKALOID C r y s t a l 1 ine So 1a n o ­ cap s ine So 1v e n t 1- b u t a n o 1- e t h a n o 1 - w a t e r (8 0 : 2 0 : 2 0 ) 1) no Amorphous Crude Leaf A l k a l o id spot Amorphous Crude Root A l k a l o id no s p o t 0.25 Up p e r p h a s e o f e t h y l acetate-acetic acidwater ( 3 : 1 : 3 ) to which is added of 85% ethanol 2) 0.57 0 .5 6 0.57 1- b u t a n o 1- e t h a n o 1 p h o s p h a te b u f f e r (pH8.2) (8 0 : 2 0 : 2 0 ) 2) 0. 71; 0.75 0 .7 k E t h a n o l - N HC1 - w a t e r ( 5 0 : 2 :l|-8 ) 2) 0.73 0. 71; 0.73 1) S p o t s d e v e l o p e d w i t h 2) hydrogen p h th a la te reagent. Spots developed with modified Dragendorff reagent. These S. aniline findings indicated p s e u d o c a p s i c u m was t h e a glycoside. existence It of so 1 a n o c a p s i n e stated so 1 a n i d i n e w e r e p r e s e n t alcoholic extracts solanine, solanidine, side by side alkaloids. free Nevertheless, had b een in t h e The that alkaloid alkamine the results in the p l a n t in t he i n S. from the the isolated so 1 a n o c a p s i n e that leaves solanine solvent a nd Therefore, and s a m p l e s o f and t o m a t i n e wer e p a p e r aforementioned the as a g l y c o s i d e . p s e u d o c a p s i cum ( 6 6 ) . and a nd n o t did not d i s c l o s e literature roots from for chromatographed developing a l k a l o i d s were d e t e c t e d w i t h t h e m o d i f i e d 59 Dragendorff reagent. gave o n l y one spot w ith and r e - r u n these the front, liquid 0.08 and 0 . 0 7 , each while spot of 0 .5 7 . as extracts Then, whe n e l u t e d Solanidine followed a nd t o m a t i n e h a d R ^ - v a l u e s o f Thus i t wa s f o u n d given by the in R ^ - v a l u e ethanolic an Rf o f 0 . 2 2 . solanine r e s p e c t i v e 1y . identified and l e a f s p o t s had a R and o n l y a l k a l o i d wa s The r o o t that root a nd that leaf t h e one extracts given by a pure sampl e o f so 1 a n o c ap s i n e . c. Isolation possibility glycoside of a t t e m p t s . - As m e n t i o n e d p r e v i o u s l y , a glycosidase could not be e x c l u d e d . s u c h a n e n z y me w a s a t t e m p t e d vesting the p l a n t s . s o 1a n o c a p s i n e ether sides, is ethyl a poor 2) the the day of 1) stored dehydrated this class of har­ the basic but since f o r mo r e h y d r o p h i l i c time i n a c t i v a t i o n were in d r y glyco­ o f c o mp o u n d s ice utilized: in a b s o l u t e a nd s t o r a g e 1) ethanol and in deep f r e e z e i s o l a t i o n wh e n t h e y w e r e b o i l e d w i t h w a t e r . and t o p s a nd e a c h p a r t until after Isolating as a s o lv e n t, harvested plants The r o o t s separated inactivation as p o s s i b l e isolating of a ( 8 l|_). immediate f r e e z i n g until ether for Two m e t h o d s o f e n z y me Submersion of Therefore, as f a s t solvent a s t a n d a r d method was e m p l o y e d the h y d ro ly sis The m e t h o d u s e d f o r utilized probably catalyzing the for of 15 f r e s h p l a n t s w e r e covered with isolation. t o p s wa s m a c e r a t e d absolute A total of ethanol 1LpOO g. a nd of in a War i n g b l e n d e r w i t h immediately 60 Ilf 1 • o f 2 p e r cent acetic hours with occasional by f i l t r a t i o n and acid stirring. the p l a n t w i t h 5 .J- o f 2 p e r cent to about ing o v e r n i g h t collected acetic contained 100-ml. g. but from the mother liquor. move d a n d d r i e d at at of the to After stand­ each time f o r the which one green c olored methanol a c o mp oun d c r y s t a l l i z e d give and wa s r e f l u x e d f i v e adsorbed r a p i d l y green f r o m 60 p e r alkaline and t h e p r e c i p i t a t e salts, The c r y s t a l l i n e l±5°C. and f i l t e r e d . room t e m p e r a t u r e of methanol, evaporator clusters, recrystallized 2 l| h o u r s a precipitate. inorganic portions in a f l a s h needle sim ilarly re-extracted for drying 1+8 The d a r k b r o w n p r e c i p i t a t e , During c o n c e n tr a ti o n extracts stand for w e r e made d i s t i n c t l y After amounts of to s u p e r n a t a n t wa s r e m o v e d s u p e r n a t a n t wa s d e c a n t e d weighed 0 .7 6 large times with fine the acid to flo c c u la te on a f i l t e r . precipitate hour. 50°C. The p u l p was The c o m b i n e d f i l t r a t e s heated and a l l o w e d 20 mg. impurities precipitate of p ro d u ct. cent methanol in wa s r e ­ I t wa s w i t h n o t much s u c c e s s in d e c o l o r i z i n g . The r o o t s described yield of for the isolated 2) For harvested, freeze. placed (350g.) were tops. the in b o i l i n g w a t e r continued in t h e of in d r y glycoside for same way a s j u s t agent and see T a b l e X I I I . second p a r t time of in t he amounts of e x t r a c t i o n immediately placed At procedure For c o mp o u n d the treated the experiment 13 p l a n t s w e r e ice and p r e s e r v e d extraction 10 m i n u t e s t h e p l a n t s were and t h e n same wa y a s a b o v e . in deep isolation 61 Th e v a r i o u s summarized data concerned with these experiments are in T ab le X I I I . TABLE X I I I DATA CONCERNING ATTEMPTED ISOLATION OF ALKALOID GLYCOSIDE Yield 2 n d T ime 1 s t T ime of Crude We i g h t Mace r a t e d Ma c e r a t e d Stored ( Dehyw i t h 5% " g l y c o w i t h S% d r a t e d ) A c e t . A c id A c e t . A c id s i de" in Part Number of of P l a n t s P 1a n t s s t er ns and 6 1 . abs 1e ave s ethano1 15 r oot s 13 3 1 . ab s ethano1 deep freeze who 1 e p 1a n t s Th e t h r e e of 175-195°C. which gave 5.0 1. 0.76 g. 2 0 mg 1. 1 .0 1. 1 .28 g . 61 mg lip. 0 1 . 5.0 1 . 1 2 . 5 g- 11; . 0 1 . 350 g 3.5 2200 g compounds solvents mentioned all 114-00 g . isolated suggested all melted impurities. as 128 mg in the board range Chromatography i n T a b l e XIV s ho we d t h a t same a l k a l o i d R ^ . - v a l u e Yield of Cr ude "glycos i de' the three so 1 a n o c ap s i n e . If in t he c o mp o u n d s the com­ pounds were c h r o m a t o g r a p h e d in I - b u t a n o 1- e t h a n o l - w a t e r (8 0 : 2 0 : 2 0 ) and t h e aniline spots detected with c o mp o u n d isolated from the p l a n t from the f r o z e n p l a n t s The r e s u l t possible by t h e sides to of isolate conventional it s h o we d these tops spots ex pe r iments an a l k a l o i d and t h e strongly that c o mp o u n d only the isolated of D - g l u c o s e . indicate glycoside method used f o r suggests very hydrogen p h t h a l a t e , that f r o m S. isolating it is not pseudocapsicum glycosides. Be­ so 1 a n o c a p s i n e p r o b a b l y d o e s 62 not e x i s t in th e p l a n t loid, since yield a glycoside. as inactivation a glycoside, of a possible but as a genuine glycosidase alka­ did not TABLE XIV R f -VALUES OF COMPOUNDS ISOLATED BY A STANDARD PROCEDURE FOR ALKALOIDAL GLYCOSIDES So 1v e n t Solanocap s ine 1- b u t a n o l - e t h a n o l w a t er (8 0 : 2 0 : 2 0 ) 1) R^ - V a l u e of ; Compo und Compound Compound Isolated Isolated Isolated f r om f r om f r om Top s Who 1 e Roots P 1a n t no s p o t 0 .2 0 no s p o t 0.19 Up p e r p h a s e o f e t h y l acetate-acetic acidwater ( 3 : 1 :3 ) to which is added of 85% ethanol 2) 0.57 0.57 0.5 6 0.57 1- b u t a n o 1- e t h a n o 1 p h o s p h a t e b u f f e r (pH 8 . 2 ) (8 0 : 2 0 : 2 0 ) 2) 0.71+ 0.71+ 0.75 0.74 Ethanol-N HCl-water ( 50 : 2 : 1+8 ) 2) 0.73 0.71+ 0 .71+ 0.73 an i 1 ine h y d r o g e n p h t h a 1a t e r e a g e n t . 2) S p o t s d e v e l o p e d w i t h m o d i f i e d D r a g e n d o r f f r e a g e n t . 1) S p o t s d e v e l o p e d w i t h 6 . P r i n c i p 1 e w i t h A n t i b a c t e r i a l A c t iv i t y A g a i n s t D. p n e u m o n i a e In s e v e r a l that the instances antibacterial during activity this i t wa s o b s e r v e d a g a i n s t D. p n e u m o n i a e t o be a s s o c i a t e d w i t h the colored were f o u n d the fractions i n some o f study impurities. s e e me d Su c h e x a m p l e s o f an e t h a n o l i c extract 63 from r o o t s c h r o m a t o g r a p h e d on a l u m i n a the p u r i f i c a t i o n so 1a n o c a p s i n e of c o lo r e d of crude fraction Twenty grams o f of 80 p e r obtained e x tra c t a c i d wa s a d d e d , ml . p o r t i o n s cent ethanol ether. (solution II). ether hours with extractor. ml., 10 m l . The of a c e t i c twice with 200fractions evaporator to give a of a b s o l u t e ethanol t wo p r e p a r a t i o n s w e r e then te s te d for ethanol results that other extraction principle a f r a c t i o n wa s o b t a i n ­ a g a i n s t D. p n e u m o n i a s . principle of i n T a b l e XV. antibacterial since activity by an a t t e m p t (solution shown another is p r e s e n t , antibacterial T h i s wa s t e s t e d four in ^0 m l . s h o we d a c t i v i t y the to phase. T h i s r e s i d u e was p a r t l y d i s ­ cent a c t i v i t y with that for to prevent and t h e solanocapsine high the ether The c o m b i n e d e t h e r was d i s s o l v e d The by e t h e r I), T a b l e XV i n d i c a t e s ed w h i c h o n l y into in a S o x h l e t of m a t e r i a l . residue a direct i t wa s f r e e d e x t r a c t made a c i d i c in a f l a s h i n 50 itU . o f 8 0 p e r suggested as s o l u t i o n wa s e x t r a c t e d to dryness remaining fairly root wa s c o n c e n t r a t e d o f 2 1 0 mg. besides in a c t i v i t y of this principle r o o t s were r e f l u x e d of e t h y l antibacterial isolate going over and t h e were e v a p o r a t e d solved to of an e t h a n o l i c alkaloid yield the Also impurities. extraction 25*0 m l . solanocapsine, 1|1 ) . a g a i n s t D, p n e u m o n i a e d e c r e a s e d An a t t e m p t w a s made the (page to the of wa s solutions in f a c t isolate I a nd The II organophi1i c . this principle r o o t powder. by 61+ TABLE XV ANTIBACTERIAL ACTI VI TY OF FRACT IONS DURING ISOLATION OF PRI NCI PLE ACTIVE AGAINST D. PNEUMONIAE ^ / m l . I nh ib i t s Gr owt h o f : D. p n e u m o n i a e M. t u b e r c u l o s i s - Fraction ethanolic root extract 720 255 so 1u t i o n I 11 i nac t ive sol ut ion 11 22 i n a c t ive 19 8 water phase (m o t h e r 1 i q u o r ) Four hundred 1 . 6 1. of ethyl ( 61|) f o r grams o f ether. continuous l i q u i d was u s e d . outlet tube An a p p a r a t u s extraction A plug of the d r y r o o t p o w d e r wa s e x t r a c t e d w i t h of as d e s c r i b e d by Morton of a l i q u i d w i t h g l a s s wo o l wa s column and a heavier inserted i t wa s t h e n f i l l e d into the w ith the r o o t p o w d e r , w h i c h c o u l d be c o n t i n u o u s l y e x t r a c t e d w i t h e t h e r . By t h i s p r o c e s s 550 ml. wa s o b t a i n e d w h i c h , did not If anol, of wh e n t e s t e d for the p o w d e r w a s r e - e x t r a c t e d w i t h 80 p e r a s o l u t i o n was o b t a i n e d , a nd M. corresponded very c lo s e ly countered during Fr o m t h i s isolation experiment can e x t r a c t the a g a i n s t D_. p n e umon i a e . w h i c h had h i g h tuberculosis. to of it the These antibacterial solanocapsine c a n be principle solution activity, inhibiting root effect antibacterial show a n y b o t h D. p n e u m o n i a e ether a strongly yellow colored active activity activity eth­ against xe s u l t s activities from the seen t h a t cent en­ roots. although ethyl a g a i n s t D. p n e umon i_ae 65 fr om an e t h a n o l i c plant m aterial extract, directly. has not been f u r t h e r it The c a n n o t be e x t r a c t e d from the significance observation examined. 7. A n t i t u b e r c u l a r A c t i v i t y Since so 1a n o c a p s i n e wa s d e c i d e d plants test belonging a. lated to t um M i l l . certain leaves fungi. of is the ant itu b e rc u la r their and f o u n d Solanine (57) and found with its is e s p e c i a l l y high have been a l l o w e d to f r o m So 1a n a c e a e are found e r a t e d w i t h 2 1. and a l l o w e d to centrifuged in an method f o r Green p o ta to stand for is The h i g h e s t sprouts the p o t a t o i s o l a t i o n method f o r of 2 per solanidine (52) . tubers in d a y l i g h t . conventional (93). M. i s an a l k a l o i d in p o t a t o if l ow against against S o l anurn t u b e r o sum L. The c o n c e n t r a t i o n the iso­ inactive. aglycone solanine of activity i t wa s t e s t e d s o l a n id i n e . - Solanine sprout glycoside to have on l y v e r y but higher c o n e e n t r a t I ons of - The it t o be c o m p l e t e l y in the p o t a t o p l a n t , ification it g l y c o s i d e s of o t h e r an a l k a l o i d a l experiment together Isolation. activity tomato p l a n t Lycoper s icon e s c u l e n - most b a c t e r i a , In t h i s gly co s id e which present or Solanum A l k a l o i d s to S o la n a c e a e . against tuberculosis b. alkaloids Ma a n d F o n t a i n e activity of Other exhibited T o ma t i n e . - T o m a t i n e from the of t h i s cent I4.8 h o u r s . International alkaloid sprouts acetic acid The s o l a n i n e wa s a mod ­ glycosides ( 9 7 0 g. ) wa s m a c ­ in a Waring b l e n d e r s u s p e n s i o n wa s t h e n centrifuge (size 2) and t h e 66 s u p e r n a t a n t was f i l t e r e d cel. w ith the The r e m a i n i n g p l a n t with 750 m l . of 2 per aid of a l i t t l e r e s i d u e was r e - e x t r a c t e d , cent acetic acid. After s u s p e n s i o n was c e n t r i f u g e d a nd f i l t e r e d filtrate the was combined w i t h Concentrated br own f i l t r a t e s the turbidity solution of on a f i l t e r , droxide, 1 .) the until After a short 2l_i_ h o u r s and d r i e d inorganic time the of 5 per The y i e l d a nd By h e a t i n g the alkaloid wa s c o l l e c t e d cent ammoni um h y ­ at of crude 65°C. i n an solanine and The p r o d u c t wa s g r e a t l y c o n t a m i n a t e d salts. P u r i f i c a t i o n . - The idine is based ethyl ether, ble. Therefore, upon t h e whereas the d i n e wa s e x t r a c t e d separation fact that the basic solanine solanine aglycone 3 . 6 g. m i x t u r e three of of After evaporation of crude, s l i g h t l y brownish colored from a c e to n e (Lit. 217°C. [93]). insoluble solanine is to dryness the over solu­ of e t h y l anhydrous sodium t h e y i e l d wa s 30 mg. solanidine. c o mp o u n d m e l t e d a t No f u r t h e r in a nd s o l a n i ­ times with 200- m l . p o r t io n s sulfate. tallization is from s o l a n ­ solanidine e t h e r w h i c h we r e c o m b i n e d and d e h y d r a t e d value 1 ight remained crude over phosphorus pentoxide s o l a n i d i n e was 3 . 6 g. the and t h e to the a mmo n i a o d o r the p r e c i p i t a t e wa s h e d w i t h 50 ml . Abderhalden drying p i s t o l . with the time filtrate. s o l u t i o n wa s p e r m a n e n t . to 50- 70°C. for flocculated. first as b e f o r e , super- this 21; h o u r s ammoni um h y d r o x i d e wa s a d d e d (3.5 Hyflo Upon r e c r y s ­ 2 0 i ; - 2 0 7 C. a t t e m p t wa s ma de t o purify solanidine. activity The c o mp o u n d w a s t e s t e d and f o u n d t o be The r e m a i n i n g five times, cent ethanol. for The for activity to c o n c e n t r a t ion the solanine purification the w i t h 250 ml. residue (1.3 in a f l a s h c ry s ta l1ized. g.) o f 80 p e r wa s t e s t e d value cent ethanol 285-287°C. for During The y i e l d the [ 9 3 ] ). s o l a n i n e wa s t e s t e d fractions evaporator. of m e l t i n g p o i n t 255~260°C. f ro m 80 p e r (Lit. s o l a n i n e wa s r e f l u x e d and t h e combi ned e t h a n o l 250 ml . s o l a n i n e w a s 2 8 0 mg. at 278-280°C. crude o ne h o u r , were c o n c e n t r a t e d crystallization of undissolved antitubercular antitubercular inactive. residue each time for of crude After re­ c ompoun d m e l t e d Without further antitubercular ac­ tivity. The r e s u l t s activity (25 ^ / ml . ) . presence not against were D. s how a n y Crude This confirmation therefore The s h o we d we a k a n t i b a c t e r i a l a n d M. t u b e r c uu ll oo ss ii s (125 s h o we d no a n t i b a c t e r i a l insoluble activity residue obtained in the above alkaloid has been recorded information since p r e p a r a t i o n f r o m S. the a possibility is in e a r l y carolinense. - as c o n t a i n i n g literature solanine and r e q u i r e s i d e n t i f i c a t i o n wa s s u p e r f i c i a l of other alkaloidal a nd g l y c o s i d e s can n o t be e x c l u d e d . A 1000 g. and did inhibitoryeffect. Sol anurn c a r o l i n e n s e (90). solanine p n e u mo n i a e Solanine of b l o o d . c. that sample o f d r i e d s t e ms was m a c e r a t e d f o r a n d g r o u n d ( 2 0 me s h ) i;8 h o u r s in a l a r g e leaves glass 68 cylindrical acetic the jar acid. filtrate a nd t h e with The p l a n t alkaloid. a short After a filter, the time 2 l| h o u r s at a l k a l o i d were base. tested at 50-70°C. tuberculosis no f u r t h e r The r e s u l t s mentioned attempt obtained are to give a n t i t u b e r c u 1a r 32 mg. liquor from the crude on 11 g. the crude The m o t h e r inhibited the growth crude In v i e w o f t h i s a l k a l o i d wa s ma d e . testing summarized of and activity. inactive. the ammoni um h y d r o x ­ 1 :5 ? whereas to p u r i f y the the a yield of dry m atter of Heating wa s c o l l e c t e d cent the mother in a d i l u t i o n alkaloids glacial odor p e r s i s t e d flocculated of 5 per a l k a l o i d p r o d u c t wa s c o m p l e t e l y result the the p r e c i p i t a t e Both for liquor which c o n ta in e d o f M. until room t e m p e r a t u r e alkaloid of s o l u t i o n wa s p e r m a n e n t . washed w i t h 200 ml. i de , a n d d r i e d of crude of and 600 ml. r e s i d u e was removed by f i l t r a t i o n , w a s made a m m o n i a c a l turbidity solution for 30 1 . o f w a t e r of the above i n T a b l e XVI . TABLE XVI ANTIBACTERIAL ACTI VI TY OF D IFFERENT SOLANUM ALKALOIDS X?ml . I n h i b i t s t h e G r o w t h o f : D. p n e umon i ae M. t u b e r c u l o s i s On B l o o d Agar On A g a r Alkaloid Tom at in e So 1 a n i n e i n a c t i ve 25 i n a c t ive i n a c t i ve i n a c t i ve i n a c t i ve i n a c t ive i n a c t i ve i n a c t i ve 125 Sol an id i ne Alkaloid p reparation S . carolinense i n a c t i ve i n a c t ive from 69 CHEMICAL STUDIES ON SOLANOCAPSINE 8 . Physical n . Sol a noca p s ine . - F i v e sine dihydrochloride (1:1). By a d d i t i o n precipitated. The y i e l d recrystallization lized as p l a t e l e t s (Lit. value pressure over of crude solanocap­ o f e t h a n o 1- w a t e r solanocapsine s o l a n o c a p s i n e wa s f r o m e t h a n o 1- w a t e r (1:1) 370 mg. it crystal­ which melted w ith decomposition at 2l5-2 l6 °C . 2l6-217°C. analysis i n 10 m l . 6 N ammoni um h y d r o x i d e After For h u n d r e d m i 11 i g r arris o f was d i s s o l v e d of Constants the [78], 222°C. [ 6 ]). c o mp o u n d wa s d r i e d l_j_8 h o u r s phosphorus pentoxide and p a r a f f i n at at 17 mm. r oom temper a t u r e . An a l . C a l c ' d for C ^ y H ^ N ^ O ^ *HpO: N, 6 . 2 I4. % Found: N, 6.20, D e te rm in a tio n of water dried crystallization: in an A b d e r h a l d e n d r y i n g p i s t o l pressure over phosphorus p e n to x id e . r e f l ux ing 1 - b u t a n o l mg.) lost cent (calculated posure 2 5 . 6 mg. to air the (b.p. for 72 h o u r s which c o rre sp o n d s substance at to its ( 6 I4.2 . 3 3.98 per cent) . regained 2 mm. wa s h e a t e d by The c o mp o u n d 1 m o l e o f w a t e r I4..OI p e r anhydrous The c o mp o u n d wa s The p i s t o l 1I7-H8°C.). by d r y i n g , for 6.29 % (Kjeldahl) On e x ­ original we i g h t . Optical methanol rotation: A solution s h o we d a r o t a t i o n Calculated specific o f 0 . 2 0 6 mg. of + 2.061 rotation i n 5 ml ■ i n a 20 cm. [ct ] 2^ = + 2 5 . 0 1 °. tube. 70 R ast's 19k., 2 mg. ponding molecular weight camphor to depressed 7.6°C., Neutralization dissolved ing t o ethanol 12.05 ml. a molecular to 5.71+- m l . ( 8 . 6 mg.) a molecular oxidation hydroxide (oxidation Calculated for cribed groups used after attached oxidation recovered and t i m e wa s 3 methyl to carbon: a nd t i t r a t i o n 1+.80 m l . ( 7 . 1 mg. ) 0 . 0 1 3 N sodium six hours). 10.05 % croups: oxidation following the hydroxyl identified correspond­ Solanocapsine and d i s t i l l a t i o n oxidize ( 6 3 . 5 mg.) 0.0102 N h ydrochloric 10.28, did not o f 1+81 . o f 1+8 2 . Found: Oppenauer the m e l t i n g weight Solanocapsine 0.0 103 N sodium h y d r o x i d e . used a f t e r depressed a n d 1+0 m l . D e t e r m i n a t i o n of methyl So 1 a n o c a p s i n e 5 . 1 °C . , c o r r e s ­ 0 .0 12 0 N sodium h y d ro x i d e we i g h t in S e v e n t e e n and f o u r - camphor equivalent: i n 10 m l . a c i d consumed o f 1+56. i n 1 9 . 3 mg. corresponding 1 1 . 3 mg. the m elting point a molecular weight tenths milligrams point determination: 10.1+2 % the procedure group. later des­ S o l a n o c a p s i n e wa s through melting point and infrared spectrum. One m i l l i g r a m ultraviolet part of in met han ol the s h o we d no a b s o r p t i o n in the spectrum. No u n s a t u r a t i o n wa s d e t e c t e d w i t h p o t a s s i u m p e r m a n g a n a t e (8 0 ) or bromine (8 1 ). Solanocapsine a nd m i x e d w i t h (10 mg.) 10 m l . dissolved of a 1 per cent i n 10 m l . of ethanol digitonin solution in Solanocapsine (Nujol Mul l ) o to jc: cn C 0) > o o o o o CO u o i s s j uisuB j x T-uao uod o OJ cd Figure 5. £/) c o fo Infrared Spectrum of GO o OJ 1|0 ml. X o o C\J i— H ethanol and o o o c to cx dissolved in 10 ml. GO cd O in X o o o cd > u3 CJ d o X-l +-> cd x GO fcvO Ci) X G3 CD »H X o a CO CXI mg. of o c (63.5 Oj solanocapsine cd O N H C i) 0.01020 72 73 90 p e r cent ethanol remained c le a r , even a f t e r 10 h o u r s o f stand i n g . No c o n s u m p t i o n o f p e r i o d i c 10 h o u r s . a c i d wa s o b s e r v e d , The o x i d a t i o n wa s a t t e m p t e d at even a f t e r 3 different hydrogen ion c o n c e n t r a t i o n s : pH 2 : a nd S o l a n o c a p s i n e (20 mg . ) 10 m l . 0 . 0 2 1 6 m o l a r p e r i o d i c pH 2 ml. pH 8 : buffer, S o l a n o c a p s i n e ( ll|. m g . ) and 7 m l . Solanocapsine of c r u d e dissolved dissolved 32U° Before 17 mm. i n 10 ml. e t h a n o l , i n 10 0.0216 molar p e r i o d i c Th e y i e l d hydrochloride ml. e t h a n o l , acid. of pure wa s r e c r y s t a l l i z e d solanocapsine wa s 105 r ag. a nd d i d n o t m e l t b e l o w 3 0 0 ° C . [ 7 8 ], ethanol d i h y d r o c h l o r i d e . - Two h u n d r e d m i l l i g r a m s solanocapsine from w a t e r . ml. a n d 10 m l . 0 . 0 2 1 6 m o l a r p e r i o d i c a c i d . pH 9 b u f f e r b. i n 10 acid. S o l a n o c a p s i n e (20 mg.) pH 8 6 ml. dissolved twice dihydrochloride (Lit. value >300°C. [6]). analysis pressure the c o mp o u n d wa s d r i e d over phosphorus pentoxide for JL|_8 h o u r s and p a r a f f i n at at r oom t e m p e r a t u r e . A n a l .C a l c ' d for Found: D eterm ination of water c o mp o u n d wa s d r i e d a t 2mm. pressure lost 9.66; N, 5*37 % C, 62.27?* H, 9. J+0; N, 5-59 % 62.17; crystallization: A sample of t h e in an A b d e r h a l d e n d r y i n g p i s t o l over phosphorous p entoxide. h e a te d by r e f l u x i n g (576.8 mg.) H, C p y H ^ N ^ O ^ • 2HC1 ' H ^ O : C, 1-butanol 1 9 . if mg. (b.p. by d r y i n g , for 72 h o u r s The p i s t o l 117-li8°C.). corresponding wa s The c o mp o u n d to 3.36 per 7* in d o c. o •’H CO a o CD > (d o o CO o vO o u o j s s juisire o ji fuao o C\J o I nf r ar e d Spectrum of Solanocapsine D I h y d r o c h 1oride o Figure (Nujol Mul l ) /d- c e nt , (calculated posure to air for the 1 mole of w a t e r anhydrous 3.36 per substance cent) . regained its On e x ­ original we i g h t . As w i t h part of the solanocapsine no a b s o r p t i o n in the ultraviolet s p e c t r u m wa s o b s e r v e d . 9. R e a c t i o n w i t h N i t r o u s Acid a. N i t r o s o s o l a n o c ap s i n e . - T h i s d e r i v a t i v e wa s p r e p a r e d following the procedure When a s o l u t i o n of a c i d was t r e a t e d mg.), 110 mg. with only a slig h t of from a b s o l u t e ethanol methanol Unsaturation a c e t i c ac i d double of wa s f o r m e d . it melted at (16.9 But a d d i t i o n of produced 19i j . - 196°C. s p e c t r u m o f 0 . 2 5 mg. s h o we d a maxi mum a t a copious R e c r y s t a l 1 ized (Lit. value n i t r o s o so 1a n o c a p - 355 mp ( l o g E 2 . 1 | 2 ) . c o u l d be d e t e c t e d w i t h b r o m i n e in g l a c i a l One a n d o n e - h a l f m i l l i g r a m o f t h e should t h e o r e t i c a l l y bond). I t was f o u n d in 7 ml. nitrogen, absorb that ami no n i t r o g e n ( 2 1 . 3 mg.) 1 . 3 0 0 mg. sodium n i t r i t e (8 1 ) . Va n S l y k e c ap s i n e in 6 N a c e t i c o f c omp oun d wa s 8 0 mg. Microhydrogenation: c o mp o u n d of ( 6 ). [78]). The u l t r a v i o l e t sine/ml. solanocapsine sodium n i t r i t e The y i e l d 200°C. a nd F r a e n k e 1- C o n r a t 1 equivalent precipitate. [ 6 ], of precipitate a second e q u i v a l e n t 19I+0 C. of Barger of 71 75 p i . pi- of hydrogen wa s a b s o r b e d . determination: 6 N acetic corresponding (1 acid N i t r o s o so 1a n o g ave e v o l u t ion t o 0 . 9 9 mole of n i t r o g e n . 100 CO o o uoj ssjuisue jx 1 .1 1 3 3 o J3 j Infrared Spectrum of Nitrososolonocapsine CO 8. in M i c r o n s o Fi gur e Wavel engt h (Nuj ol Mull) 76 v0 O ■ "LA O • o • o CO CVj • * Aoueqaosqv o •—< o * 230 2^0 270 290 Wa v e l e n g t h in M i l l i m i c r o n s Fi gure 9. U l t r a v i o l e t Spectra of 330 N i t r o s o s o l a n o c a p s ine 310 and 370 390 ITN i t r o s o d i h y d r o s o i a n o c a p s ine . 3^0 77 78 b. Digitonide o f n i t r o s o s o l a n o c a p s i n e . - To a s o l u t i o n o f 70 m g . n i t r o s o s o l a n o c a p s i n e 20 m l . o f a 1 per ethanol. After wa s f i l t e r e d , digitonin standing The d e r i v a t i v e for 1+8 h o u r s solution overnight washed w i t h w a t e r digitonide. a nd d r i e d cent i n 20 m l . e t h a n o l at the was mixed in 80 p e r cent copious p r e c i p it a te and d r i e d to g i v e 1+5 mg. of was wa s h e d w i t h 5 m l . o f e t h a n o l 17 mm. p r e s s u r e over phosphorous pentox i d e . Anal. Calc'd 1(£ % for Found: c. 1.90 % (K jeld a h l) 182, D i h y d r o s o 1a n o c a p s i n e . - A m i x t u r e capsine a n d 2 0 0 mg. acetic acid After of p la tin u m oxide a n d 5 m l . o f e t h a n o l wa s of p r e s s u r e for 12 h o u r s filtration by d i s t i l l a t i o n tor. N, of under o f 2 0 0 mg. i n 10 m l . solano­ of g la c ia l shaken under 3 atmospheres i n a n Adams h y d r o g e n a t i o n a p p a r a t u s . the catalyst, the diminished pressure The r e s i d u e wa s d i s s o l v e d s o l v e n t wa s r e mo v e d in a f l a s h in e t h a n o l - w a t e r evapora­ (1:1) N ammoni um h y d r o x i d e w a s a d d e d f o r precipitation yield I t was r e c r y s t a l l i z e d of 1 7 0 mg. ethanol-water point with (1:1), at in 7 ml. of [06 ] a from show a n y d e p r e s s i o n . s howed a r o t a t i o n rotation give and a m i x e d m e l t i n g A s o l u t i o n o f 0 . 1 1 2 mg. ami no n i t r o g e n ( 6 . 7 mg.) 210-212°C. did not of methanol specific Van S l y k e c ap s i n e melted rotation: in 5 ml . Calculated t h e compound. solanocapsine Optical pound of to a nd 6 of of the 1.792 com­ . = + 1+0°. determination: D i h y d r o s o 1a n o - 6 N acetic g ave e v o l u t ion acid 79 of 0.791 mg. of nitrogen, corresponding to 1 . 9 7 mo l e of n i ­ trogen. Active hydrogen determ in atio n : h y d r o g e n was f o u n d 100°C. at Recalculated s u l t wa s 3 , 614- a c t i v e room t e m p e r a t u r e cent active a n d O . 8 I4. p e r t o numbers of a c t i v e hydrogens cent the at re­ hydrogens. T,N i t r o s od i h y d r o s o l a n o c a p s i n e . n - D i h y d r o so 1 a n o c ap 3 i n e d. (100 mg.) was t r e a t e d w i t h n i t r o u s described under acid n i t r o s o so 1 a n o c a p s i n e recrystallization at O.I 4.2 p e r from a b s o lu te in th e same ma n n e r and y i e l d e d 8 2 mg. ethanol as After t h e c o mp oun d m e t l e d 165-168°C. For pressure analysis the d e riv a tiv e wa s d r i e d I4.8 h o u r s over phosphorus pe ntoxide a nd p a r a f f i n at 17 mm. a t r oom t e m ­ perature . C alcl d for Anal. 3‘ ^2 ^ ? 77 - QIp; H, Found: Calc’ d for ^ 2 5 ^ 14.0 ^ 6 * A s o l u t i o n o f 0 . 2 0 mg. endabsorption in the ( 79a ) d i d not detect C, 6 8 .67; H, 9.38 % ^ 68.77; H, 9 . 2 I4. % compound/ml. methanol ultraviolet Sodium f u s i o n f o l l o w i n g IO.6I4. % part of the spectrum. the microprocedure any n i t r o g e n in t h e theoretically I t was f o u n d in g l a c i a l ( 8 1) . Microhydrogenation: should of S c h n e i d e r c o mp o u n d . U n s a t u r a t i o n c o u l d be d e t e c t e d w i t h b r o m i n e ace t ic ac id s h o we d o n l y that One a n d a b s o r b 93 p i s e v e n - t e n th s of the of hydrogen 109 p i w a s a b s o r b e d . c ompo und (1 d o u b l e b o n d ) . 100 10. Infrared Spectrum of CO CO o o uoj ss juisub jx T-tiao J3d o OJ " N i t r o s o d i h y d r o s o l a n o c a p s i n e rT (Nuj ol o CD Fi gur e M ull). 00 81 A solution gave w i t h cent of 10 mg. 10 m l . o f ethanol of a 1 per t h e c o mp o u n d cent i n 90 p e r Studies D i a c e t y l s o l a n o c a p s i n e . - The c o mp o u n d wa s p r e p a r e d the procedure lanocapsine allowed to pressure of Barger (150 mg.) a n d F r a e n k e 1- C o n r a t was d i s s o l v e d s t a n d w i t h 5 ml. The y e l l o w s o l u t i o n was e v a p o r a t e d a t 90°C. of sodium b i c a r b o n a t e cent with w ater. After e v a p o r a t i o n of precipitate the alumina. drying of benzene Eluate fractions composition of the Fractions anhydrous solution This after and f o r l_p8 h o u r s . under diminished 10-ml. in 2 0 ml portions and washed n e u t r a l sodium s u l f a t e 139 mg. acetylated and of g e l a t i n o u s a l k a l o i d wa s d i s ­ a n d c h r o m a t o g r a p h e d on 8 . 7 g. o f 20 m l . The were c o l l e c t e d . ether ( 1 : 9 )* product. drying melted at of in T ab le XVII. 1 0 - 1 3 w e r e c o m b i n e d a nd r e p r e c i p i t a t e d a crystalline precipiate over times with solution So­ dissolving f r a c t i o n s wa s a s f o l l o w s times from m e t h a n o l - e t h y l to o b ta in four chloroform was p r o d u c e d . in 9 ml. to dryness after (6 ). o f p y r id i n e anhydride The b r o w n r e s i d u e , was e x t r a c t e d 10 p e r i n 1|_ m l . of a c e t i c of c h l o r o f o r m , 1 9 6 ° C. solution a copious p r e c ip ita te . a. solved of e t h a n o l digitonin 10. A c e t y l a t i o n using i n 10 m l . three wa s n o t p o s s i b l e The a m o r p h o u s , 198-200°C. gelatinous (Lit. value 193- [78]). For a n a 1y s i s the d e r i v a t iv e was d r i e d over phosp h o ru s p e n to x i d e and p a r a f f i n at at 17 mm. p r e s s u r e room t e m p e r a t u r e . 82 TABLE XVI I FRACTIONATION OF DIACETYL SOLANOCAPSINE BY COLUMN CFfROMATOGRAPHY ON ALUMINA E 1ua n t F r a c t ion 1-3 benzene ll-5 benzene + Res idue 9 mg. brown o i l , s o l u b l e in e t h y l e t h e r 5% c h l o r o f o r m 7 mg. colorless oil, s o l u b l e in e t h e r 6-7 b e n z e n e + 10 % c h l o r o f o r m 9 mg . colorless oil, s o l u b l e in e t h e r 8-9 benzene + 25% c h i o r o f o r m 5 mg . colorless oil, s o l u b l e in e t h e r 10-13 c h l o r o f o r m 4- 1% m e t h a n o l 79 mg. w h i t e f o a m, i n ­ s o l u b l e in e t h e r 11J.-16 c h l o r o f o r m + 2% m e t h a n o l 6 mg . Anal . C a l c ' d for £ 3 1 ^ 5 0 ^ 2 ^ 11/ ^ 2 ^ * Found: D e t e r m in a t io n of 1 .3 equivalents hydrolysis for equivalents greenish o il, i n s o l u b l e in e the r ^ > 70.77; H,9.62 % C, H,9.81| % 69.90; of a c e t y l groups: o f 0 , N- a c e t y l ~ ' ~ ) ( 6 . $ mg. 1.9 hour and d i s t i l l a t i o n consumed a f t e r 1. 58 ml. of 0.0103 N sodium h y d r o x i d e ) . 1.6 e q u iv a le n t s hydrolysis for five of 0 ,N -acety l hours ) (5-lj- rag. c o n s u m e d a f t e r and d i s t i l l a t i o n 1.63 ml. of 0.0103 N sodium h y d r o x i d e ) . “*) The c a l c u l a t i o n s s ine . are based on a d i a c e t y 1 so 1 a n o c a p - 100 CO CO o o OJ uoj ss j uistre jx T-uao Jaj Infrared Spectrum of 0,N - Diacetylsolanocapsine CO 11. in Mi c r o n s o Fi gur e Wavel engt h ( Nuj ol M ull). 83 oj 100 Spectrum of o oo ‘O uor ss tuisub jx m ao Jad o 0,N,N* - T r i a c e t y l s o l a n o c a p s i n e CO Infrared o 12. in M i c r o n s o Fi gure Wa v e l e n gt h (Nuj ol Mull). 81* 'L-T\ 85 0.9 equivalents hydrolysis of 0 - a c e ty l* ) and t i t r a t i o n 0.91 ml. ( 5 . 7 mg. consumed a f t e r of 0. 0103 N sodium h y d r o x ­ ide ) . D i a c e t y l s o 1a n o c a p s i n e wa s soluble A solution t h e compound/ml. of 0 . 2 0 mg. s h owe d no a b s o r p t i o n b. ultraviolet solanocapsine in an o i l ( 6 ) wa s f o l l o w e d . and 10 m l . bath for diminished p ressure five of product melting a nd t h e brown, to at did not melting point of 150-160°C. A further material into on a l u m i n a . in 5 m l . of it spectrum. o f 5 0 0 mg. turbidity Thus a y i e l d solution of dissolved in a n d t h e c om­ o f J4.OO mg. of The c ompound in h o t a crystalline the p u r i f ie d benzene- c o mp o u n d . c o mpo und wa s 1 5 0 - 1 5 5 ° C . The (Lit. [ 6 ]). a t t e m p t wa s ma de t o c o n v e r t a crystalline A solution the amorphous c o mp o u n d by c o l u m n c h r o m a t o g r a p h y o f 8 3 mg. of a c e t y l a t e d b e n ze n e was c h r o m a t o g r a p h e d “ ) The c a l c u l a t i o n s s i ne . to the a nd F r a e n k e 1- C o n - residue 1[]_0-150°C. wa s o b t a i n e d . change of methanol s o l v e n t wa s r e mo v e d u n d e r oily slight crystallize. acid. a n h y d r i d e wa s r e f l u x e d The wa s a m o r p h o u s a n d e v e n r e p e a t e d value of A mixture acetic hours. W a t er was added pound a l l o w e d t o ligroin part Tr i a c e t y l s o l a n o c a p s i n e . - B a r g e r rat' s procedure ethanol. in the of in 6 N a c e t i c are based on 9 g. solanocapsine of alumina on a d i a c e t y 1 so 1a n o c a p 86 and e l u a t s t i o n of fractions the o f 20 m l . were c o l l e c t e d . f r a c t i o n s was a s f o l l o w s The c o m p o s i ­ in Table XVIII. TABLE XV 111 FRACTIONATION OF TRI ACETYL SOLANOCAPSINE BY COLUMN CHROMATOGRAPHY ON ALUMINA F r a c t ion E 1u a n t Re s idue 1-3 benzene k-5 benzene + 5% c h l o r o f o r m k mg. c o l o r l e s s o i l , s o l u b l e in e t h e r 6-7 b e n z e n e + 10% c h l o r o f o r m 6 mg . c o l o r l e s s o i l , s o l u b l e in e t h e r 8-9 b e n z e n e + 29% c h l o r o f o r m k mg. c o l o r l e s s o i l , s o l u b l e in e t h e r 10-13 c h l o r o f o r m + 1% m e t h a n o l 5 6 mg . wh i t e f 0 a m, i n s o l ­ u b l e in e t h e r 111-16 c h l o r o f o r m + 2% m e t h a n o l 5 mg . g r e e n i sh o i l , i n s o l u b l e in e t h e r Fractions so 1 v e n t gave For at 17 mm. 5 mg . b r o w n i s h o i l , u b l e in e t h y l 1 0 - 1 3 w e r e c o m b i n e d and a f t e r an amorphous p r o d u c t analysis pressure the expected still triacetyl e v a p o r a t i o n of melting at derivative over phosphorus p e n to x id e Found: C 9 71-17; H, C, H, 9i| 9 % 71-61; l50-l55°G. wa s d r i e d and p a r a f f i n r oom t e m p e r a t u r e . A n a l . C a l c f d f o r C^ 3H^ 2 N2 ° 5 : sol­ ether 9l| 2 % at 87 D eterm in atio n of e q u iv a le n t s equivalents 2 .8 hydrolysis for eight of of 0 ,N -acety i hours acetyl groups: ) ( i | . 3 mg. and d i s t i l l a t i o n consumed a f t e r ml. 2 .11 of 0 . 0 1 0 3 N sodium h y d r o x i d e ) . Triacetylsolanocapsine wa s f o u n d A solution of insoluble in 6 N a c e t i c ac i d . of only endabsorption 11 . a. 0 . 2 0 mg. in the ultraviolet part (150 mg.) of S c h l i t t l e r was r e f l u x e d b a t h w i t h 0 . 7 n l . o f 1|0 p e r cent formic acid. cent for four formaldehyde E v o l u t i o n of gas oil. 5 m l . of w ater and 2 m l . o f N h y d r o c h l o r i c s o l u t i o n was f i r s t and e v a p o r a t e d and w e i g h e d anol, h o u r s on a w a t e r and 0 . 8 m l . soon began extracted four acid. times with The 10 m l . ammoniacal w i t h d i l u t e 1 IpO mg. of in t he combined, dried to dryness. over R e c r y s t a 11 i z e d t w i c e t h e c o mp o u n d m e l t e d " ) The c a l c u l a t i o n at anhydrous The r e s i d u e 208°C. (Lit. acidic of e t h y l ammoni um and e x h a u s t i v e l y e x t r a c t e d w i t h e t h e r . e x t r a c t s were (78). The r e a c t i o n p r o d u c t wa s d i l u t e d w i t h t h e n ma de d i s t i n c t hydroxide fate spectrum. and U e h l i n g e r yellow colored ether of the Miscellaneous Derivatives the procedure Solanocapsine ether, m e t h a n o l s howed Tr i m e t h y l s o 1a n o c a p s i n e . - The d e r i v a t i v e wa s p r e p a r e d following 100 p e r t he compound/ml. The latter sodium s u l ­ wa s c r y s t a l l i n e from a b so lu te meth­ v a l u e 2 09 C. [78]). i s b a s e d on a t r i a c e t y l s o l a n o c a p s i n e . 85 For dried analysis the expected t r i m e t h y l s o 1a n o c a p s i n e wa s over phosphorus pentoxide and p a r a f f i n at 17 mm. p r e s ­ sure . A n a l . C a l c 1d f o r c 2 qh ^ 2 N2 ° 2 : ^ N, b. So 1 a n o c a p s i n e 5 8 6 , 572 % ( K j e l d a h l ) p i c r a t e . - The p i c r a t e described by S c h l i t t l e r a nd U e h l i n g e r (100 mg.) in 3 ml. of was d i s s o l v e d saturated ethanolic s o l u t i o n was h e a t e d w a t e r wa s a d d e d . After standing picric to 19 9 ° C. (Lit. c. I4.O mg. value dropwise w ith When t h e calculated cent a copious p r e c i p i t a t e washed w i t h the absolute derivative. 228- 289°C. d. needles crystallized. 166 mg. of c ru de recrystallized a melting point of of 198- absolute acid e t h a n o l wa s r e a c t e d in a b s o l u t e The d e r i v a t i v e and gave of A s o l u t i o n of a mo u n t o f e x a l i c appeared. ethanol from [78]). oxalic equimolar The of b o i l i n g ( 7 8 ) wa s f o l l o w e d . in 3 ml. 10 p e r gave excess was a d d e d . o x a l a t e . - Again the procedure a n d Ue h l i n g e r so 1 a n o c a p s i n e fine The d e r i v a t i v e , 200-20i°C. A small a nd 5 m l . refrigerator, ( 1 : 1 ) and d r i e d , So 1a n o c a p s i n e Schlittler point as So 1a n o c a p s i n e (1.25 ml.) By s l o w l y c o o l i n g , p i c r a t e was o b t a i n e d . e t h a n o 1- w a t e r acid in the (78). of e t h a n o l . the b o i li n g 12 h o u r s wa s p r e p a r e d after ethanol. a c i d wa s a d d e d , wa s t h o r o u g h l y d r y i n g l±2 mg. I t s m e l t i n g p o i n t wa s 2 8 7 - 2 8 9 ° C . (Lit. of value [ 78]). 1 s o p r o p y 1 i d e n e s o l a n o c ap s i n e . - The c ompou nd wa s made following the procedure of Barger a nd F r a e n k e 1 - C o n r a t ( 6 ). 100 39 90 O "O 3 2: cd tj to x o 0 u 'O >> X G) C *«—I o 01 a, O o o c O o O O CO •— I 2*"> x -t—I CD t-. H Oh o e +-> O Cl) O h T-T\ CO *o i~ (0 CD to C O O O •tH u Oh O '—l - c «—H •*-H CD C *r~t Cl) u . ■—i 100 0) > 03 o C\J o CO u oj ss^uisub j x dad O CD 91 So 1a n o c a p s i n e (70mg.) water bath for After standing and a few m i n u t e s for eight t a l s were separated product. Recrystallized pound m e l t e d The at a c e t o n e wa s h e a t e d crystals in th e from e t h y l (Lit. began to refrigerator, a nd y i e l d e d appear. the c r y s ­ 67 mg. acetate-acetone, v a l u e 233°C. on a of t h e com­ [6]). t h e c o m p l e x wa s e x a m i n e d b y s h a k i n g t h e of or w i t h h y d r o c h l o r i c acid and t h e n t e s t i n g acetone: 1) T e n m i l l i g r a m s of w a ter micropipet. 2) of in a c e n t r i f u g e s i o n was c e n t r i f u g e d , ml. until hours 232-233°C. stability of by c e n t r i f u g a t i o n c o mp o u n d w i t h w a t e r for 10 m l . The of of 2 N h y d r o c h l o r i c a d d e d a nd t h e tested for gave The for so 1 a n o c a p s i n e 100 mg. of p -to lu e n e in 2 . s t i r r e d w i t h 0.1 sodium h y d r o x i d e The a iodoform t e s t . a few m i n u t e s . of Three-tenths s o l u t i o n wa s s u p e r n a t a n t wa s solanocaps in e . - A solution ml ■ sulfonyl (1:1). suspen­ i o d o f o r m t e s t wa s p o s i t i v e . was w a s h e d w i t h muc h w a t e r . of p y r i d i n e wa s t r e a t e d w i t h chloride. After standing resulting 12 precipitate The p r o d u c t wa s r e c r y s t a l l i z e d O n l y s o l a n o c a p s i n e wa s r e c e i v e d e v id e n c e d by mixed m e l t i n g p o i n t compound. a negative o f w a t e r wa s a d d e d and t h e from e t h a n o 1- w a t e r The drawn o f f w i t h c o mp o u n d w a s cent tosylation 100 mg. s t i r r e d w i t h 0. 1 ml. a few m i n u t e s . supernatant the acid 10 p e r acetone. 5> m l . for c o n t e n t was c e n t r i f u g e d . e. A ttempted hours, tube supernatant of c o mp o u n d wa s a nd t h e Ten m i l l i g r a m s of a m i l l i l i t e r the a nd infrared sp ect rum of as the 92 f • Attempted By a c i d d e h y d r a t ion of c a t a l y s i s . - A s o l u t i o n of i n 15 ml . c o n c e n t r a t e d wa s r e f 1 u x e d f o r the sol a n o c a p s ine . - h y d r o c h l o r i c a c i d a n d 35 ml . s t h a n o l 10 h o u r s . After s o l u t i o n wa s ma d e d i s t i n c t l y four t ime s w i t h ether 1 0 0 —m l . f r a c t i o n s were evaporated dried (1:1). over 50 m l . o f w a t e r wa s a d d e d , ammoniacal portions to dryness. e t h a n o 1- w a t e r 50 m g . so 1a n o c a p s i n s of e t h y l anhydrous and t h e n e x t r a c t e d ether. The c omb i ne d sodium s u l f a t e The r e s i d u e wa s r e c r y s t a l l i z e d O n l y so 1a n o c a p s i n e wa s r e c o v e r e d e v i d e n c e d by m i x e d m e l t i n g point and infrared a nd from as spectrum of the compound. By b a s e procedure of Barger A solution of 10 p e r 1 0 0 ° C. c a t a l y s i s . - Dehydration of a nd F r a e n k e l - C o n r a t 60 mg. of with ethyl four hours. ether, crystallized melting point and The y i e l d infrared ( 6 ) wa s a s f o l l o w s : dihydrochloride in 5 ml. which and F r a e n k e 1- C o n r a t o x i d a t i o n was p e r f o r m e d of solvent, at extraction an amor phous Re­ ( 1: 1) t h e p r o d u c t wa s f o u n d by s p e c t r u m t o be is c o n t r a r y Oppenauer of w ater, o f p r o d u c t wa s 36 mg. so 1a n o c a p s i n e 12. a. and removal f r o m e t h a n o 1- w a t e r recovered with acetone, Up on a d d i t i o n drying r e s i d u e wa s o b t a i n e d . by B a r g e r so 1a n o c a p s i n e s o l u t i o n by t h e c e n t m e t h a n o l i c p o t a s s i u m h y d r o x i d e was h e a t e d for The in b a s i c so 1a n o c a p s i n e . gave a c o n d e n s a t i o n p r o d u c t to t h e c o mp o u n d t h u s obtained (6). Oxidation Studies oxidation following o f n i t r o s o so 1a n o c a p s i n e . - The the procedure of P r e l o g and 93 Szpilfogel (71). N i t r o 30 so 1 a n o c a p s i n e on s t e a m b a t h w i t h 8 m l . lute benzene, and 1 g, of anhydrous a ce to n e , of 20 m i . tube containing The anhydrous sulfate. The r e a c t i o n m i x t u r e w a s r e a c t e d w i t h w a t e r hydroxide ethyl of a b s o ­ 2l\. h o u r s . alumi num phe nox ide f o r c o n d e n s e r wa s e q u i p p e d w i t h d r y i n g calcium ( 1 0 0 m g . ) wa s r e f l u x e d and e x t r a c t e d ether. tallized The y i e l d three For c r y s ta ls melting analysis the ( Lp: 1 ) t h e at was h e a t e d solid of Recrys­ transformed to 258-260°. oxidized over phosphorus p e n to x i d e drying p is to l 30-ml. portions o f y e l l o w r e s i d u e wa s 60 mg. f r o m e t h a n o 1- w a t e r colorless times with and 6 N s o d i u m n i t r o s o so I a n o c a p s i n e wa s d r i e d and p a r a f f i n by r e f l u x i n g at 17 mm. p r e s s u r e . methanol. Anal . C a l c ’ d f o r C ^ H ^ O ^ : C, 73.60: H, 9.15; N, 6.36 % Found: C, 72.89; H, 9.16; N, 6.03% A solution endabsorption of 0 . 2 0 mg. in th e compound/ml. ultraviolet The c o mp o u n d d i d n o t give part The methanol of the showed o n l y spectrum. any p r e c i p i t a t e with d ig ito n in c o n t r a r y t o n i t r o s o so 1 a n o c a p s i n e , b . Chromic acid o x i d a t i o n of t r i a c e t y l The o x i d a t i o n w a s p e r f o r m e d d a t i o n of 600 mg. acetic acid of tomatidine triacetyl after by Sato et the procedure a l . (76). so 1a n o c a p s i d i n e a c i d wa s a d d e d d r o p w i s e w i t h i n 10 m l . t u r e was k e p t of 80 per at cent c a . 1 0 ° C. so 1 a n o c a p s i n e . - stirring by c o o l i n g acid. in oxi­ To a s o l u t i o n o f i n 20 m l . acetic used for of glacial 5 0 0 mg. of chromic The r e a c t i o n m i x ­ ice-water. After 100 15. to CO o o o vO uoj ss juisueux T-'U^D d3d o D e r i v a t i v e Obt a i n e d (Nujol M u l l ) . 00 10 c o u (J A +-> CD c 0) «— I (0 > cd :s I n f r a r e d Spectrum of Nitrososolanocapsine after o Fi gur e Oppenauer Oxidation of 9k 95 standing at room t e m p e r a t u r e s o l u t i o n was p o u re d The e t h e r e a l carbonate 1.5 hours, ice-water sodium s u l f a t e and w a t e r 135 rng. To p u r i f y cedure c o mp o u n d f u r t h e r , impurities recrystallization the point 70 mg. ( T) (79) wa s 61 mg. of derivative semi-crystalline the to of t h e c ompou nd separate the k e t o n i c the The p r o ­ wa s f o l l o w e d . a nd o f Y i e l d of "ketonic" material "ketonic" material 158-160°C. (0.20 mg./ml. wa s a f t e r The u l t r a v i o l e t methanol) showed a n 2 8 5 mp. elementary temperature of anhydrous non-ketonic m aterial. from methanol a b sorption peak at For or by f t e i c h s t e i n The m e l t i n g spectrum of over sodium R e c r y s t a l 1 i.zed f r o m d i l u t e m e t h a n o l "non-ketonic'1 m aterial 10 mg. dilute 1 3 i ^ - 1 3 5 ° C. the described dried The y i e l d wa s t r e a t e d w i t h G i r a r d 1 s r e a g e n t from dark-brown and e x t r a c t e d w i t h e t h e r . again, and e v a p o r a t e d . m e l t i n g p o i n t was material the s o l u t i o n wa s w a s h e d w i t h w a t e r , solution p r o d u c t was into for analysis the derivative over phosphorus pentoxide wa s d r i e d and p a r a f f i n at a t r oo m 17 mm. pressure. An a l . Found: C, Lj.2.82; H, 8.80; It has not been p o s s ib l e a reasonable empirical The d e r i v a t i v e dinitrophenylhydrazine 13.06 % from these formula for gave N, analyses the o x id a tio n product. a yellow p r e c ip ita te (79). to c o n stru ct with 2 , 6 “ 16. U ltraviolet of OJ o o OJ o CO OJ o o o o A oueqjosqv o o Oxidation o o Spectrum Product of T riacetylsolanocapsine. CO Fi g ur e 96 97 001 h o t s s juisine j x ^ u a o jo j 13. Color R eactio n s liebermann-Burchard color test as d e s c r i b e d by F i e s e r (28) wa s n e g a t i v e with ocapsine Mn i t r o s od i h y d r o so 1 a n o c a p s i n e . TT and so 1a n o c a p s i n e , b u t p o s i t i v e w i t h n i t r o s o l a n - Rosenheim co lo r test (83) gives an immediate r e d c o l o r w i t h compounds c o n t a i n i n g a conjugate system or -position group. a double bond in the N i t r o so so 1 a n o c a p s i n e ga v e no c o l o r selenium dioxide to a double bond. of the group steriod. selenium, test in a c e t i c the p o s i t i o n in t h e intense d oubl e bond a hydroxyl a nd T,n i t r o s od i h y d r o so 1 a n o c ap s i ne " reaction. S e 1e n i um d i o x i d e adjacent to a nd (28) . acid detectable first can The e a s e d o u b l e bond The The m i l d oxidation introduce an a c e t o x y g r o u p o f o x i d a t i o n d e p e n d s on in r e l a t i o n selenium dioxide to the hydroxy is reduced to as a y e l l o w c o l l o i d a l a nd t h e n a s a r e d p r e c i p i t a t e . agent solution B o t h n i t r o s o so 1a n o c a p s i n e a n d " n i t r o s o d i h y d r o so 1a n o c a p s i n e ” g a v e a r e d p r e c i p i t a t e 100°C., but not at 20°C. o r ]+0°C. at IV. D I S C U S S I O N AND CONCLUSI ONS I so I a t i o n . - The p u r p o s e and c h e m i c a l l y identify the of this r e s e a r c h wa s t o antibacterial isolate substance(s) in S o l anum p s e u d o c a p s i c u m L . L u c a s and a s s o c i a t e s cular reported a c t i v i t y was a s s o c i a t e d w i t h a c t i v i t y was p r e s e n t the (32) case, of th e since the in the tops. s u b s t a n c e wa s f o u n d the roots antituber- and t h a t no s u c h T h i s wa s n o t f o u n d t o be ant itu b e rc u la r t o p s was a p p r o x i m a t e l y t h e tubercular the that activity s a me . of the roots The p r i n c i p a l t o be t h e steroidal and anti- alkaloid so 1a n o c a p s i n e . Besides, a substance p n e u m o n i a e was p r e s e n t . extract found The of if the p lan t of identify ethyl ether, b u t no a c t i v i t y was extracted with ethyl extract. to separate isolate ether. green colored I t had a c e r t a i n and w a s v e r y d i f f i c u l t a f f i n i t y for from the a nd c h e m i c a l l y substance. So 1a n o c a p s i n e which h a s not be en wa s a s s u m e d u n t i l present growth of Di p l o c o c c u s c o u l d be r e m o v e d f r o m a n e t h a n o l i c No a t t e m p t wa s made t o this the s e e me d t o be c o n n e c t e d w i t h t h e the p l a n t so 1 a n o c a p s i n e alkaloid. It t h e p l a n t was d i r e c t l y substance fraction with inhibiting is the only alkaloid isolated as a g l y c o s i d e . c o n tr a r y evidence in t h e p l a n t from the as a g l y c o s i d e . 99 that genus Solanum In t h i s study so 1a n o c a p s i n e wa s Either a glycosidase it 100 catalyzed of the hydrolysis harvesting able to or the hydrolyze acid the moiety. fore by e i t h e r or in ethanol so 1a n o c a p s i n e . Fairly partially thought that tography. the but could be One m u s t artifact, That but a cussion of the the have moiety has an acetal seems has nucleus. so 1a n o c a p s i n e and enzyme a glycoside, but amounts of D-glucose were preparations. in t h e s e It and used solvent was tried change the result; the that plant water always present was that for for be­ first it chroma­ developing only solano- structural a primary All other in this found to be ( 8 i p) . in so 1 a n o c a p s i n e is not the as isolated. conclusion will group linkage be seen studies, amino position possibility the this for it the dis­ was found in p o s i t i o n alkaloid and to from where group steroidal attached The s a me f o r m an 3 on glycosides carbohydrate hydroxyl through an N - g l y c o s i d e rem ote. Barger nocapsine ine. was in b o i l i n g solvent time procedure inactivate plants the yield acidic not in chemical been the conclude reasonable a hydroxyi to to at detected. so 1a n o c a p s i n e steroid isolation was p re s e n t, did glycoside compound alkaloid fairly present is not reacting it the attempt large therefore it that the A basic alkaloid, capsine did purified in in placing a glycoside was h y d r o l y z e d used The absolute in th e an e x i s t i n g precursor a carbohydrate isolation of a n d F r a e n k e 1- C o n r a t they During found the an (6) amorphous isolation and reported compound purification that called of besides sola- so 1a n o c a p s i d - so 1a n o c a p s i n e 101 an a m o r p h o u s , resinous material wa s a l w a y s p o s s i b l e ethanol to change Schlittler paper this the material fact chromatography, sidine to c r y s t a l l i n e (78) observed the that it so 1 a n o c ap s i ne . same r e s u l t . This o n l y o ne c o mp o u n d wa s o b t a i n e d b y leads to is n o n - e x i s t e n t ( op . c i t . ) c a l l e d but by r e p e a t e d p r e c i p i t a t i o n from aqueous and U e h l i n g e r together with was o f t e n o b t a i n e d ; the conclusion that and what B a r g e r solanocapsidine is soianocap- a n d F r a e n k e 1- C o n r a t impure, amorphous solano- cap s i n e . It tains has been solanine isolated graphy, stated and the non-existent, capsine oidal to the the name o f to by p a p e r so 1a n o c a p s i n e . suggested that so 1a n o c a p s i d i n e . in l i n e w i t h For name o f the as t wo c o mp o u n d s we r e chromato­ Therefore c o mp o u n d ” so 1a n o c a p s i d i n e ” a p p a r e n t l y alkaloids. let These s p ro u ts but did not, i t m i g h t be name S_. p s e u d o c a p s i cum c o n ­ s h o u l d be r e v i s e d . be c h a n g e d bring the (66). same R ^ - v a l u e such a s t a t e m e n t Now t h a t the p lan t solanidine from p o t a t o give that this the the class aglycone t h e name f o r solano- Such a c h a n g e woul d nomenclature for of a l k a l o i d s end is it other ster­ is customary in - id i n e , w h e r e a s t h e c o r r e s p o n d ing g l y c o s i d e h a s t h e suffix - ine. ( 16,14.9,52,57,8!+) . Concerning the p o s s i b i l i t y of tubercular drug, it extremely large, but injected i n t o mice c a n be the are said side so 1a n o c a p s i n e that effects serious. the of Before toxicity as an a n t i is not t h e c o mp o u n d whe n one c o u l d e v e n t e s t 102 t h e compound c l i n i c a l l y , i n s u c h a wa y t h a t Chemical nitrogen analyses of (78) ization equivalent weight for together with from the reagent. bon gave digitonin Ring after a value analyses for of C, the bromine o f 1+56, JL+8 1, a t o m com­ suggested so 1a n o c a p s i n e 2 7 - c a r b o n atom A d o u b l e bond in g l a c i a l No 0 - m e t h y l methyl neutral­ acetic or N - m e t h y l groups groups a tta c h e d to c a r ­ No p r e c i p i t a t e wa s f o r m e d w i t h in e t h a n o l . structure. - Barger d e h y d r o g e n a t ion of Diels hydrocarbon After three. Therefore, genus Solanum. acid nor p erm anganate but and t h e a 27-carbon the other by n e i t h e r it f o r m u l a C2 rj Hl^GN2 ° 2 ’ 2 6 - c a r b o n a t o m c ompou nd a s (6). and derivatives, determination c o u l d n o t be d e t e c t e d were p r e s e n t , hydrogen, in a greement w i t h S c h l i - a g r e e mo r e w i t h and F r a e n k e 1- C o n r a t isolated its it disappeared. so 1 a n o c a p s i ne g a v e v a l u e s These r e s u l t s c a n be c l a s s i f i e d alkaloids effects has the em pirical pound t h a n w i t h a 2 ^ - o r by Ba rger and so 1a n o c a p s i n e , Rast' s molecular and 1+82. side so 1 a n o c a p s i n e that and Uehl i n g e r • undesirable s t u d i e s . - By m e a n s o f c a r b o n , c a n be c o n c l u d e d tler the i t w o u l d be n e c e s s a r y t o m o d i f y sam e c o m p o u n d . authentical TTso 1 a n o c ap s id i n e TT w i t h of tube, Since so 1a n o c a p s i n e w i t h Schlittler this isolated selenium, and u l t r a v i o l e t selenium at and W e h l i n g e r c ompound wa s c o mp o u n d w i t h r e s p e c t melting point (6) ( 3 f - m e t h y l c y c 1o p e n t e n o - p h e n a n t h r e n e ) ( I ) . 12 h o u r s h e a t i n g in an e v a c u a t e d a n d F r a e n k e 1- C o n r a t (78) identical to m elting p o in t, spectrum, no d o u b t 320 isolated with the mixed remains 103 about s o l a n o c a p s ine b e i n g extraction of a steroidal t h e mat e r i a l obtained alkaloid. Through acid f r om s e 1e n i um d e h y d r o g e n a - CH 3 2 HC— (\ ( I I ) > / CH3 CIU I ^ 9 IHG (III) CH3 t i o n of so 1a n o c a p s i n e , t h e latter c o mp o u n d 2 - e t h y l ~ ^ ~ m e t h y l p y r i d i n e Conrat (6) isolated 5-m e t h y l p y r i d i n e and after one w i l l (II). isolated Barger as the only and F r a e n k e l - selenium d e h y d r o g e n a t i o n b o t h 2 - e t h y l - its I f one c a n a t t a c h ships, authors assume i s o m e r l4_“met h y l - 2 - e t h y l p y r i d i ne ( I I I ) . e. any importance to biogeiytic r e l a t i o n ­ that so 1a n o c a p s i n e h a s a s o l a s o d a n 24 CH -H3 CH CH 27 (v) ( iv) structure ( I V) . Since w i t h 27 c a r b o n a t o m s it is g e n e ra lly thought are p r e c u r s o r s for the that steroids steroidal alkaloids I ok (16), it does not that Barger (III) seem l i k e l y relationships a n d F r a e n k e 1 - C o n r a t * s i p - m e t h y l —2 —e t h y 1p y r i d i n e was c o r r e c t l y isolated, from b i o g e n e t i c identified. If an u n e x p e c t e d p r e c u r s o r have had a m e t h y l group a t this for c o mpou nd r e a l l y wa s so 1a n o c a p s i n e c a r b o n 2 Ip i n s t e a d of at should the usual c a r b o n 25 p o s i t i o n ( I ) . Functional a nd S c h l i t t l e r possesses hydroxyl g r o u p s . - Both Barger and U e h l i n g e r a p r i m a r y amino, group. (78) and f o r m a l d e h y d e , which found t h a t the for atoms w i t h f o r m i c a trimethyl evidence for wa s g i v e n b y S c h l i t t l e r capsine with n itro u s and i t wa s f u r t h e r with 2 e q u iv a le n ts nitroso sis of derivative, indicated that the e x iste n ce a nd U e h l i n g e r acid. In t h i s of th e (78) at 355 of a n i t r o s a m i n o ( VI ) two a mi n o g r o u p s study the solano- same wa s o b s e r v e d d e t e r m i n e d t h a t by r e a c t i n g so 1a n o c a p s i n e of n i t r o u s unsaturated acid, a neutral, ^27^1p2^2^3, r e s u l t e d . 1 mole a mi n o g r o u p w a s p r e s e n t . intensity investigation. by r e a c t i n g A Va n S l y k e The u l t r a v i o l e t derivative (Figure ( I ° 9 E 2.1p2) group. analy­ o f n i t r o g e n wa s l i b e r a t e d p e r mo l e so 1a n o c a p s i n e , f r o m w h i c h c a n be c o n c l u d e d obtained nitroso acid derivative T h i s o b s e r v a t i o n was c o n f i r med by t h e p r e s e n t , Further a nd a h a v i n g t wo a mi no g r o u p s nitrogen gave (6) so 1a n o c a p s i n e a s e c o n d a r y a mi n o g r o u p , The e v i d e n c e came f r o m m e t h y l a t i o n o f a nd F r a e n k e 1 - C o n r a t 9) that a primary s p e c t r u m of t he s howe d a p e a k o f and s u g g e s t e d l ow the presence D i ( e y e 1o h e x y l m e t h y l ) - N - n i t r o s a m i n e s h o ws t wo a b s o r p t i o n p e a k s at 2)p0 mji ( l o g E 3 . 9 ) and 105 c h 2— in —c h 2 ^ N -N -0 ( VI ) (vii) 355 inji ( l o g E 1 | . 2 5 ) , while a t 2 5 5 my ( l o g E J+. 25) peak a t the longer 1- n i t r o s o p i p e r id ine a n d 3 ^ 0 mp ( l o g E 2 . 0 ) w a v e l e n g t h wa s p r e s e n t (VII) (38). has peaks Only the in n i t r o s o s o l a n o c a p - s ine . I t was assumed by B a r g e r during the formation o f n i t r o s o so 1a n o c a p s i n e group, o r i g i n a l l y p r e s e n t water, in t he m o l e c u l e , whereas S c h l i t t l e r likely that the in t h e leave group the hydroxyl a mi n o g r o u p s intact. since often resu lts in t h i s Conrat*s f i n d in g s that the hydroxyl wa s e l i m i n a t e d (7 8 ) thought as i t mor e a c i d o n t h e p r i m a r y ami no in the The l a t t e r s e e ms l i k e a d e a m i n a t i o n of p r i m a r y f o r m a t i o n of both u n s a t u ­ c o r r e s p o n d i n g h y d r o x y compounds. study so 1a n o c a p s i n e , w h i c h (6) f o r m a t i o n o f a d o u b l e b o n d and explanation, r a t e d compounds and t h e experiences and U e h l i n g e r a c t i o n of n i t r o u s group would r e s u l t mo r e p l a u s i b l e a n d F r a e n k e 1- C o n r a t i t wa s n o t p o s s i b l e to dehydrate is c o n tr a d ic t o r y to Barger and c o n s e q u e n t l y supports Fr om a nd F r a e n k e l - Schlittler and Uehlinger*s conclusions. Nevertheless, of Barger t h e r e ma y be v a l i d i t y and F r a e n k e l - C o n r a t S o 1a n o c a p s i n e does not give in t h e ( o p . c i t . ) due t o any p r e c i p i t a t e contentions the f o llo w in g : with dig ito n in and 106 this i s why t h e can not hydroxyl group s h o u l d n o t ho 3 ^ —h y d r o x y . be a 3 c^. —h y d r o x y g r o u p e i t h e r , been p o s s i b l e to dehydrate gives a p r e c ip ita te therefore, that Digitonin such a group. with digitonin, and soluble with 3 c*, - h y d r o x y that a r e mu c h mo r e which complexes with steroids. The soluble. latter Usually, i t woul d ha ve N i t r o s o so 1a n o c a p s i n e i t m u s t be a s s u m e d , t h e p r i m a r y a mi n o g r o u p wa s is a g ly co sid e, form s p a r i n g l y since It in t h e 3 position. is g e n e r a l l y regarded 3($ - h y d r o x y , to but not type pro d u ce s complexes only 3^ -hydroxy s te r o id s VH3 CHO OH (c h ^ n OH ( I X) (VIlI) ( w i t h 3 -OH a n d alkaloids 10- CH^ c i s t o e a c h o t h e r ) tomatidine, solanidine, tated as d ig ito n id e s . Exceptions c ompounds a r e group and (IX), conessine which has an a l d e h y d e among n a t u r a l l y o c c u r r i n g which has a group Haworth e t derivatives a nd al . group in the is p r e c i p i t a t e d (U-1-I-) h a v e and f o u n d steroidal s ol a so d ins are p r e c i p i ­ is p r e c i p i t a t e d with d i g i t o n i n 3 p-hydroxy tene (VIII), and such as t he (10) - d ime t h y 1 am i no and s t r o p h a n t i d in 10 p o s i t i o n b e s i d e s with d ig ito n in synthesized several a (70). aminocholes- t h a t / V ^ - c h o 1 e s t e n e - 3 ^3- a m i n e (X) 107 A5 n and & - c h o l e s t e n e - 3 p - I s o p r o p y l i d e n e a mi n e 3o( - e p i m e r s , readily Be r t h o et_ aA_. a mi n e (XII) (11) yielded reported (XI), that A 7 - c h o 1 e s t e n e - 3 |3 - d ime t h y l - with d ig itonin. CHt I 9 CH-CHo'CHp-CHp'CH- (XII) = ( c h 3 ) 2 c =n - Since it iL R = -NH2 r (x so I a n o c a p s i n e g a v e no p r e c i p i t a t e c a n now be a s s u m e d b y a n a l o g y w i t h o t h e r that the i i i ) CH R = (CH3 ) 2N= c y 1QN- r with d igitonin, 3 - a m i n o c o mp o u n d s a mi n o g r o u p p r o b a b l y h a s a 3 <*.- c o n f i g ur a t i o n . i n v e r s i o n o f c o n f i g u r a t i o n must have happened d u r i n g deamination. as involving Ingold an ( l_j_6) e x p l a i n s intermediate inverted L-RNH H ills + (59) with n itro u s reaction. configuration, has described and found Equatorial the and a f f o r d s i on an a l c o h o l of e.g.: HNO ------- » RN2 + acid An the deamination re a c tio n f o r m a t i o n of a d i a z o n i u m whi ch de compo se s by an S^l p r o c e s s large the p r e c i p i t a t e s with d ig ito n in . H-CH2'CH2 -CH2'CH-CH (x i ) not a n d Z^\7 - c h o l e s t e n e - 3 p - p i p e r id i n e (XI 1 1 ) g a v e no precipitate (X) but it > R+ > D-ROH + D. L-ROH d e a m in a t io n of am inodec alins t o be a t r u e a mi n o g r o u p s afforded s t e r e o spec i f i c a l c o h o l s of same 108 conf i g u r a t ion, while of c o n f i g u r a t i o n . the 3 axial That -hydroxy group configuration a mi n o g r o u p s r e a c t s d is in a g re e m e n t w i t h t h e in s t e r o i d s w i t h the as c h o l e s t e r o l t h e r m o d y n a m i c a l l y mo r e and a b o u t This changed observed so 1a n o c a p s i n e t o +J4.O0 . the Schlittler by r e d u c t i o n l i t h i u m aluminum h y d r i d e . A Va n S l y k e dihydro c o mp o u n d s howed t h a t specific give n i t r o samine the ultraviolet (Figure F was o p e n e d a s r oom 9). it illustrated r o t a t i o n had a nd Ue hl i n g e r of (78) so 1 a n o c a p s i n e w i t h a mi n o n i t r o g e n 2 mole s of g i v e n o f f p e r m o l e o f c o mp o u n d and t h a t did not at s howe d no d e p r e s s i o n o f m e l t i n g same r e s u l t s on t h e the and t h e r e f o r e , gave a d e r i v a t i v e w i t h m e l t i n g p o i n t so 1 a n o c a p s i n e , b u t fr om +20° that 3 atmospheres p r e s s u r e s with reduced derivative p o i n t mixed w ith concept stable. platinum oxide c a t a l y s t 2 10-212°C. inversion same s t e r e o c h e m i c a l is e q u a to r ia l R ing o p e n i n g . - H y d r o g e n a t i o n of temperature by the analysis n i t r o g e n wer e res u ltin g product absorption c h arac teristic is th e r e f o re in t h e CH concluded for that a ring following: HN02 C H 3 3 The h y d r o x y — CH 3 Pt O^ steroid obtained s o l anoc ap s i n e w i t h nitrous 1 mole o f h y d r o g e n and gave This hydroxy steroid acid after r e a c t i o n of d i h y d r o ­ absorbed a precipitate derivative is not a little mor e t h a n with dig ito n in . completely identified, solanocapsine riNO- n itrososolanocapsin e ^ — —Ci CH C C )= (C ) dipvdrcsc a n o c a diq'tom n d sine HNO2 precipitate H3 ni t r o s o d ' h vd r c t o i a n o c a p s i se n / HO— \ r*-u ^ i < CH, (c)=(0 Figure 17. R e a c t i o n o f So 1a n o c a p s i n e and D i h y d r o s o 1a n o c a p s i n e with N itrous Acid. precipitate 110 since the carbon elementary analysis i s mo r e a t o m c o mp o u n d t h a n a 2 7 - c a r b o n The r e a c t i o n s of d i h y d r o s o 1a n o c a p s i n e nitrous in agreement wit h a t o m c o mp o u n d . acid with as d e s c r i b e d a 25- so 1a n o c a p s i n e above a r e and summarized in F i g u r e 17. Schlittler spectrum of intense free base. at of band Besides, 6.1 authors ride (78) observed th a t t r i m e t h y l s o 1a n o c a p s i n e h y d r o c h l o r i d e hydroxyl a band the and U e h l i n g e r the opened under than the the spectrum of sp ect rum of ji c h a r a c t e r i s t i c of suggested that trimethyl derivative influence of its infrared showed a m o r e corresponding the hydrochloride a C=N b a n d . r i n g E of the s howed To e x p l a i n in the p r o d u c t i o n of acid the this the hydrochlofree base (XIV) (XV): NaOH (XV) ( XI V) under Furthermore, they proposed that influence a c i d opened in the no s i m i l a r of evidence of this These o b s e r v a t i o n s spectra (Figures Acetyl pared 13 a n d a s c a n be acetyl s i d e r e d b y t h e m t o be so 1a n o c a p s i n e same m a n n e r , b u t f o u n d infrared spectrum. seen from the infrared 1]+) h a v e b e e n c o n f i r m e d . derivatives. an a mor phous in the r i n g E of - Schlittler derivative and U e h l i n g e r of (78) p r e ­ so 1a n o c a p s i n e , c o n ­ a N, N - d i a c e t y l so 1a n o c a p s i n e . Ba^ed 111 up on c a l c u l a t i o n analysis gave for 2 acetyl 11+.97 p e r groups cent of the pound w h e r e a s theoretically t h i s work th e amorphous d i a c e t y l tain 11+.22 p e r rather cent acetyl an 0 , N - d i a c e t y l it and they found total s h o u l d be weight derivative acetyl o f t h e c o m­ 16.73 pe r derivative suggests that cent. In wa s f o u n d t o c o n ­ that the compound t h a n a N,Nf - d i a c e t y l is deriva- t i ve . The r e a s o n s The d e r i v a t i v e that a basic spectrum of tio n bands for was such a c o n c l u s i o n are soluble in d i l u t e group p r o b a b l y the for derivative an O - a c e t y l group N-acetyl (CH^CO-NHR) Normally the imately the found tive t o be t h e of t h e band; this than it at 6 . 0 6 p, given infrared for a s e c o n d a r y a mi d e o r The s p e c t r u m o f in F i g u r e s p e c t r u m of 11. that the is approx­ (8). T h i s was diacetyl same a s t h a t f o u n d t o be t h e c a s e a nd s i n c e one c h a r a c t e r i s t i c i t ma y b e c o n c l u d e d is intensity of the for s h owe d a l i t t l e 6.1+5 p b a n d , deriva­ a p r i m a r y a mi n e a s e c o n d a r y a mi d e t h e the absorp­ and 9 . 7 5 p) i n s t e n s i t y o f an e s t e r is concluded was n o t (CH3CO-NRR* ) o n l y h a s occurring the is u s u a l l y the for 1) indicating (5»78 p, 8 . 0 0 p, o f a s e c o n d a r y a mi d e The 6 . 0 6 p b a n d anocapsine. absorption for Furthermore, 6.06 p band but that case and t h e r e f o r e acetylated. is absorption same a s acid 2) The ( 6 . 0 6 p a n d 6.1+5 p ) . so 1a n o c a p s i n e following: s ho we d t h e c h a r a c t e r i s t i c the bands c h a r a c t e r i s t i c diacetyl acetic is p r e s e n t . and a l s o the the 6.1+5 p diacetylsol- mor e intense a tertiary a mi d e a b s o r p t i o n band that the secondary 1 12 a mi n o g r o u p p r e s e n t Several exact just of attempts so 1 a n o c a p s i n e wa s p a r t l y to prepare elementary analysis as the less that in the tate, as rather Barger lation acetic i s mor e is not a pure (6) it acetylated for five seems t h a t in agreement w i t h the since hours a u th o rs based t h e i r and a c e t y l groups. infrared an O - a c e t y l Furthermore, than NRR1 ) o n l y the the group group insoluble analysis in d i l u t e investigation analysis the on I t wa s c o n s i d e r e d an e l e m e n t a r y a n a l y s i s whi ch a triacetate calcu­ When r e c a l c u l a t e d a triacetate. in t h i s and o b t a i n e d t o be a formula. i t wa s so 1a n o c a p s i n e i t wa s c o n s i d e r e d cedure The of a N,N1- d i a c e ­ On t h e prepared gave is Bu t t h e 150-160°C. The a c e t a t e higher c o mp o u n d . a so 1a n o c a p s i n e w i t h 2 7 - c a r b o n a t o m s , be a N , N - d i a c e t a t e for the procedure two a u t h o r s , with melting point elementary analysis But the conclusion after anhydride on t h e wr ong e m p i r i c a l b a s i s of Therefore, s u g g e s t e d by t h e an amo r p h o u s a c e t a t e diacetate. the a diacetylsolanocaps ine, prepared a n d F r a e n k e 1- C o n r a t the gave an 0 , N - d i a c e t a t e . by r e f l u x i n g w i t h of (78) for never g r o u p s a l w a y s gave a v a l u e groups. and U e h l i n g e r is n o t, but basis acetyl amorphous d i a c e t a t e Schlittler acetate expected d e r m i n a t i o n of t h a n t wo a c e t y l a diacetate acetylated. is also after to acids. their pro­ in agreement w i t h indicated 3 acetyl s p e c t r u m s howed t h e b a n d s c h a r a c t e r i s t i c a n d a s e c o n d a r y a mi d e intensity of t h e 6.1+5 p b a n d . ( CH^ CO- NHR) . 6 . 0 6 p b a n d wa s c o n s i d e r a b l y Since s h o ws o n e c h a r a c t e r i s t i c a tertiary a mi d e a b s o r p t i o n band ( CH^CO- at 6.06 p, 113 it is concluded the that s e c o n d a r y ami no considered or group. acetyl hydroxyl but not that to is t h e r e f o r e cholesterol considered group. t o be a t e r ­ T h i s c o n c l u s i o n wa s This i n v e s t i g a t i o n has the hydroxyl shown g r o u p c a n be a c e t y - group. - Nitrososolanocapsine a positive quirements necessary to except bond that and F r a e n k e 1- C o n r a t tosylated. L o c a t i o n of hydroxyl hydroxyl derivative (78) derivatives. as p r e v i o u s l y d i s c u s s e d like g r o u p wa s a t t a c h e d The a c e t y l and U e h l i n g e r an u n r e a c t i v e b a s e d on t h e lated, acetyl g r o u p wa s b y b o t h B a r g e r and S c h l i t t i e r tiary third t o be 0 , N , n ' - t r i a c e t y l s o l a n o c a p s i n e . The h y d r o x y l (6) the a double Lieberman-Burchard give a positive test. reaction gives The r e ­ a r e n o t known, s e e ms n e c e s s a r y t o g e t h e r w i t h a group. Lathosterol ( XVI ) i s o x i d i z e d by s e l e n i u m d i o x i d e 20 ° C . , w h e r e a s c h o l e s t e r o l ( XV I I ) requires 6 0 ° C. (28) at for ox i d a t i o n . HO' HO' ( XVI ) ( XVI I ) N i t r o s o s o 1a n o c a p s i n e w h i c h wa s f o u n d t o c o n t a i n a h y d r o x y l group (presumably at the 3 position) o x i d i z e d by s e l e n i u m d i o x i d e cluded that in e i t h e r of the the double at a nd a d o u b l e b o n d 100 C. Therefore, it io f i r o t io c o n ­ bond d o e s n o t o c c u p y a p o s i t i o n ao f o u n d t wo p r e v i o u s l y m e n t i o n e d sterolo. The Rosenheim t e s t double bond s y s t e m or the h y d r o x y l to t h i s is c h a r a c t e r i s t i c group. test, it for a d o u b l e bond Since suggests either a conjugated in t h e cX, (3 - p o s i t i o n n i t r o s o so 1a n o c a p 3 i ne that the d o u b l e bond to is n e g a t iv e is not between c a r b o n s if a n d 5 . An O p p e n a u e r oxidize If the the o x i d a t i o n of n i t r o s o s o l a n o c a p s i n e hydroxyl group in t h e 3 position d o u b l e bond p r e s e n t in t h e c omp oun d c a r b o n s If a n d 5 ( X V I I I ) saturated ketone to a keto group. is between e i t h e r o r c a r b o n s 5 and 6 ( XI X) s h o u l d be o b t a i n e d . ( XX) should an