THE SYNTHESIS OF 1-SUBSTITUTED TETRAZOLES AND SPECTROSCOPIC STUDIES TflTTH TETRAZOLES By F rances G ertrude F a llo n A THESIS Subm itted to th e C olleg e o f Advanced G raduate S tu d ie s o f M ichigan S ta te U n iv e r s ity o f A g ric u ltu re and A pplied S cience i n p a r t i a l f u lf i l l m e n t o f th e req u irem en ts f o r th e degree o f DOCTOR OF PHILOSOPHY D epartm ent of C hem istry 1956 ProQuest Number: 10008508 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10008508 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 9 ~ M 'S 7 6" ACKNOWLEDGMENT The au th o r w ishes to th an k D r, R obert M. H e rb st, under whose v a lu a b le guidance and help t h i s in v e s tig a tio n was c a r r ie d o u t. ii VITA F ran ces G ertrude F a llo n ca n d id a te f o r th e degree of D octor of P hilosophy F in a l ex am in atio n : D is s e r ta tio n * The S y n th e sis o f 1 -S u .b stitu te d T e tra z o le s and S p e ctro sc o p ic S tu d ie s w ith T e tra z o le s O u tlin e o f S tu d ie s M ajor s u b je c t* O rganic Chem istry Minor s u b je c ts * B io c h e m istry , P h y s ic a l C hem istry B io g ra p h ic a l Item s B orn, November 2 , 1923, Owing M i l l s , Maryland U ndergraduate S tu d ie s , Goucher C o lle g e , 191*2-1*6 G raduate S tu d ie s , M ichigan S ta te U n iv e r s ity 1950-56 Experience* L a b o rato ry T e c h n ic ia n , C hem istry L a b o ra to ry , Johns Hopkins H o s p ita l, 191*6-1*8; L ab o rato ry T e c h n ic ia n , Departm ent o f Pharmacology and E x perim ental T h e ra p e u tic s , Johns Hopkins U n iv e r s ity , 191*8-50; Graduate A s s is ta n t, M ichigan S ta te U n iv e r s ity , 1950-53, 195U-55; American V iscose C o rp o ratio n F e llo w sh ip , 1953-51*. Member o f P h i B eta Kappa, S o c ie ty of th e Sigma Xi iii THE SYNTHESIS OF 1 - SUBSTITUTED TETRAZOLES AND SPECTROSCOPIC STUDIES TOTH TETRAZOLES By F rances G ertrude F a llo n AN ABSTRACT S ubm itted to th e C ollege of Advanced G raduate S tu d ie s of M ichigan S ta te U n iv e r s ity o f A g ric u ltu re and A pplied S cience i n p a r t i a l f u lf i l l m e n t o f th e req u irem en ts f o r th e degree of DOCTOR OF PHILOSOPHY Departm ent o f C hem istry Year Approved _ 1956 ABSTRACT A lthough a g r e a t many ^ - s u b s titu t e d t e t r a z o l e s a re known, v ery few 1 - s u b s t it u t e d t e t r a z o l e s have been r e p o rte d up to th e p re s e n t tim e . I t was th e p urpose o f t h i s s tu d y to in v e s ti g a te th e p r e p a ra tio n and p r o p e r tie s o f f a r t h e r compounds o f th e 1 - s u b s titu te d t e t r a z o l e s e r i e s . The p r e p a ra tio n o f such a s e r i e s would a ls o a llo w com parative s p e c tr o ­ sc o p ic s t u d i e s , i n th e u l t r a v i o l e t and i n f r a r e d r e g io n s , o f a l k y l - and a r y l t e t r a z o l e s , in c lu d in g b o th 1 - and 5 -m o n o su b stitu ted compounds, as w e ll as 1 , 5- d is u b s ti t u t e d t e t r a z o l e s . Of th e methods employed to o b ta in th e seven known 1 - s u b s titu te d t e t r a z o l e s , th r e e have p o s s i b i l i t i e s as g e n e ra l m ethods. O liv e r i- M andala and Alagna ( l ) added hydrazoic a c id to v a rio u s iso c y a n id e s to o b ta in th e co rresp o n d in g t e t r a z o l e . II R - N - C - H N N D im roth and DeMontmollin (2) p re p a re d s e v e ra l 1 - a r y l t e t r a a o l e s by ad­ d i t i o n o f th e a p p ro p ria te diazonium c h lo rid e to an a lk a lin e s o lu tio n of d ifo rm y lh y d ra z in e . ArNa + 0H“ + H H * A r - N - C - H I II + H30aH * + Ha0 Two o f th e s e were u t i l i z e d i n th e p r e s e n t i n v e s ti g a tio n . v D uring th e p r e s e n t s tu d y , a s e r i e s o f seven 1 - a l k y lte tr a z o le s were p re p a re d from th e co rre sp o n d in g is o c y a n id e s . A ttem pts to p re p a re 1 - p h e n y lte tr a z o le b o th by th e iso c y a n id e and Dimroth methods showed t h a t n e i t h e r p ro ced u re i s e n t i r e l y s a t i s f a c t o r y . C onsequently a new method was d eveloped f o r th e s y n th e s is o f 1 - a r y l t e t r a z o l e s . The procedure employed i s an e x te n s io n o f th e von Braun method f o r th e p r e p a ra tio n o f 1 , 5- d is u b s ti t u t e d t e t r a z o l e s ( 3 ) , a nd c o n s is ts i n th e r e a c tio n o f phosphorus p e n ta c h lo rid e w ith f o rm a n ilid e s , fo llo w ed by th e a d d itio n of h y d razo ic a c id to th e r e a c tio n m ix tu re . z o le s was p re p a re d by t h i s m ethod. A s e r i e s o f e ig h t 1 - a r y l t e t r a - The same method was s u c c e s s f u lly extended t o th e s y n th e s is o f 1 - is o b u ty l te tr a z o l e from N -isobutylform am ide. S ix o f th e a l k y l t e t r a z o le s and s ix o f th e a r y l t e t r a z o l e s p rep ared a r e new compounds. I n f r a r e d and u l t r a v i o l e t a b s o rp tio n s p e c tra were o b ta in e d on a l l th e compounds s y n th e s iz e d . For com parison, s p e c tr a were a ls o o b tain ed on o th e r a l k y l and a r y l t e t r a z o l e s . T e tra z o le and i t s a lk y l d e r iv a tiv e s show l i t t l e a b s o rp tio n i n th e u l t r a v i o l e t re g io n exam ined. The 1 - a r y l­ t e t r a z o l e s show c o n s id e ra b le a b s o rp tio n , w ith cu rv es s im ila r to th o se o b ta in e d by W ilson (k ) f o r ^ - a r y l t e t r a z o l e s . In b o th a r y l s e r i e s , th e maxima a re s h i f t e d t o s h o r te r w avelengths when s t e r i c f a c to r s i n t e r f e r e w ith th e c o p la n a r ity o f th e phenyl and t e t r a z o l e r in g s . I n f r a r e d s p e c tr a were o b ta in e d f o r a t o t a l o f 1*6 t e t r a z o l e s , of which f i f t e e n were 1 - s u b s t i t u t e d , sev en teen were ^ - s u b s t i t u t e d , and t h i r t e e n were 1 ,5 - d i s u b s t i t u t e d . An a tte m p t lias been made to i d e n t i f y bands c h a r a c t e r i s t i c o f th e t e t r a z o l e r i n g , and e ig h t such bands have vi been t e n t a t i v e l y i d e n t i f i e d , th r e e o f which seem to be s p l i t in to two peaks i n many o f th e s u b s t i tu te d compounds. T h is confirm s and ex ten d s th e c o n c lu sio n s o f L ie b e r, e t a l . ( 5 ) , who found t h a t th e re g io n from 9 t o 10 m icrons (1111 to 1000 cm X) c o n ta in e d from one to th re e bands c h a r a c t e r i s t i c o f t e t r a z o l e s . REFERENCES 1 . O liv e ri-M a n d a la , E . , and A lagna, B ., Gazz. chira. i t a l . 1*0, 11 , u a - i M (1910) . 2 . D im roth, 0 . , and DeM ontmollin, G ., B e r. 1*3, 2901+-2915 (1 9 1 0 ). 3 . Von B rau n , J . , and Rudolph, W ., B e r. 7U, 26U-272 (191*1). 1*. W ilso n , K. R ., The Apparent A cidic D is s o c ia tio n C o n stan ts o f Some 5 - A r y l t e t r a z o l e s , M, S>. T h e s is , M ichigan 6i a t e C o lle g e , 5 . L ie b e r, E L e v e rin g , D. R ., and P a tte r s o n , L . J . , A nal. Chera. 23, m - l 60U (1 9 5 1 ). TABLE OF CONTENTS Page INTRODUCTION................................................................................................................. 1 DISCUSSION...................................................................................................................... 5 Iso cy an id e M ethod..................................................... Dim roth M ethod................................................................ Formamide M ethod.................................................................................................. S p e c tro sc o p ic S t u d i e s . . . . . . . ........................................................................ U l t r a v io l e t A b so rp tion S p e c tra ........................ I n f r a r e d A bso rp tio n S p e c tra .......................... 5 16 17 25 26 1*6 EXPERIMENTAL................................................................................................................... 116 . P re p a ra tio n of A lkyl Is o c y a n id e s ..................................................................116 n -B u ty l Is o c y a n id e ........................................ 117 E stim a tio n o f Iso c y a n id e s by T i t r a t i o n .....................................................118 116 R e a g e n ts ......................... P ro c e d u re ............................................. 119 P re p a ra tio n o f Sample................... 119 P re p a ra tio n o f 1 - A lk y lte tr a z o le s from I s o c y a n id e s .............................120 1 -n -A m y lte tra z o le ............................................................................................121 1 - n - H e x y lte tr a z o le ........................................................ 122 P re p a ra tio n of Phenyl Is o c y a n id e ................................................................. 123 P re p a ra tio n o f 1 -P h e n y lte tra z o le from Phenyl Is o c y a n id e ......................12l* P re p a ra tio n o f D ifo rm y lh y d ra z in e . ........................................................ 125 P r e p a ra tio n o f 1 -P h e n y lte tra z o le by th e Dim roth M ethod.................. 125 P re p a ra tio n of Formam ides................................................................................126 0 -F o rm o to lu id id e ...................................... *............................................. p -F o rm a n isid id e ............................................. 127 N -Iso b u ty lfo rm am id e............................................................ 127 P r e p a ra tio n of 1 - A r y lte tr a z o le s from F o rm a n ilid e s ............................. 128 1 -m -T o ly lte tra z o l e .............................. 129 1 -p -C h lo ro p h e p y lte tra z o le ...................................................... 130 1 - o - T o l y lt e t r a z o l e .............. T~131 P r e p a ra tio n o f 1 - I s o b u ty lte tr a z o le by th e Formamide M e th o d .... 132 U l t r a v i o l e t A b so rp tio n S p e c tra ...................................................................... 133 133 I n f r a r e d A b sorption S p e c tra ......................... SUMMARY AND CONCLUSIONS............................................................................................13U REFERENCES........................................................................................................................135 APPENDIX............................................................................................................................ 138 v iii 126 LIST OF TABLES TABLE PAGE I. A lkyl Is o c y a n id e s ...................................................................................... 9 II. A ttem pted E stim a tio n o f B u ty l Is o c y a n id e ................... ................. 12 l-A lk y lte tra z o la s 15 III. IV , 1-A ry lte tra z o le s ................................................................... , . ......................... 2k V, U l t r a v io l e t A bsorption Maxima o f Some A r y l t e t r a z o l e s , , . , , . 28 V I. Summary o f C h a r a c te r is tic I n fr a re d Bands o f 5 - A lk y lte tr a z o le 's ....................... Ii9 Summary o f C h a r a c te r is tic I n fr a re d Bands o f 5 - A r y lte tr a z o le s ..................... 50 Summary o f C h a r a c te r is tic I n f r a r e d Bands o f 1 - A lk y lte tr a z o l e s .............................. 51 Summary o f C h a r a c te r is tic I n f r a r e d Bands o f 1 - A r y lte tr a ­ z o l e s . . ........................................................................................ 52 Summary o f C h a r a c te r is tic I n fr a re d Bands o f T e t r a z o l e s . . . . 53 V II. V III. IX . X. X I. X II. X III. XIV. XV. XVI. C h a r a c t e r i s t i c Bands i n th e I n fr a re d S p ectra o f 5 -A lk y lte tra z o le s ...................................................... 139 C h a r a c te r is tic Bands i n th e I n f r a r e d S p ectra o f 5 -A ry lt e t r a z o l e s ....................... II 4O C h a r a c te r is tic Bands i n th e I n f r a r e d S p e c tra of 1 -A lk y lt e t r a z o l e s ....................... lU l T a b u la tio n o f C h a r a c te r is tic Bands o f 1 - A r y l t e t r a z o l e s . . . . ll|2 T a b u la tio n o f C h a r a c te r is tic Bands o f 1 ,5 - D is u b s titu te d T e tr a z o l e s .................................................................. 1^5 U l t r a v io l e t A bsorption Spectrum of 1 - P h e n y l t e t r a z o l e . . . . . . 1U7 XVII. U l t r a v io l e t A b so rption Spectrum o f 1 - r a - T o ly lte tr a z o le II 4.8 X V III. U l t r a v i o l e t A b sorption Spectrum o f 1 - p - T o ly lte tr a z o l e lU9 U l t r a v io l e t A bso rption Spectrum o f 1 -o -C h lo ro p h e n y lte tra ­ z o le 150 XIX. ix LIST OF TABLES - Continued TABLE XX. XXI. XXII. PAGE U l t r a v io l e t A b so rp tio n Spectrum of 1 -m -C h lo ro p h e n y lte tra z o l e . . . . ................................................................................... 151 U l t r a v i o l e t A bso rp tion Spectrum o f 1 -p -C h lo ro p h e n y lte tra ­ z o l e ......................................................................................... 1^2 U l t r a v i o l e t A b so rp tio n Spectrum o f 1 -o rM eth o x y p h en y ltetraz o l e .................................................................................................. 1^3 % X X III. XXIV. U l t r a v i o l e t A bsorption Spectrum o f 1 -p -M eth o x y p h en y ltetraz o l e ..................................................................................................................... 1 5h U l t r a v io l e t A bsorption Spectrum o f 5 > -m -T olyltetrazole 155 XXV. U l t r a v i o l e t A bsorption Spectrum o f 5 - p - T o l y l t e t r a z o l e . . . . . . 156 XXVIa. U l t r a v i o l e t A bsorption Spectrum o f T e tra z o le ( i n e t h a n o l ) .. 157 XXVIb. U l t r a v io l e t A b so rption %>ectrum o f T e tra z o le ( i n * * a t e r ) ..., l £8 XXVII. U l t r a v io l e t A b so rption Spectrum o f 1 - n - B u ty lte tr a z o le XXVIII. XXIX. 159 U l t r a v io l e t A b so rption Spectrum o f 1 -n -A m y lte tra z o le ................160 U l t r a v io l e t A bsorption Spectrum o f 1 -n -H e x y lte tr a z o le 161 XXX. U l t r a v io l e t A bsorption Spectrum o f 5 - n - B u ty lte tr a z o le . . . . . . 162 XXXI. U l t r a v io l e t A bsorption Spectrum o f 5 -n -H e x y lte tr a z o le . . . . . . 163 x LIST OF FIGURES FIGURE PAGE 1 . U l t r a v io l e t A b sorption Spectrum of 1 - F h e n y lte tr a z o le ................... 35 2 . U l t r a v io l e t A bsorption Spectrum o f 1 - ra - T o ly lte tr a z o le ................. 36 3 . U l t r a v io l e t A b sorption Spectrum o f 1 - p - T o ly lte tr a z o le ................. 37 1*. U l t r a v io l e t A b sorption Spectrum of 1 - o -C h lo ro p h e n y lte tra z o le . 38 5 . U l t r a v io l e t A bsorption Spectrum o f 1 -m -C h lo ro p h e n y lte tra z o le . 39 6 . U l t r a v io l e t A bsorption Spectrum o f 1 - p -C h lo ro p h e n y lte tra z o le . 1*0 7 . U l t r a v io l e t A bsorption Spectrum o f l-o -M e th o a ^ p h e n y lte tra z o le 1*1 8 . U l t r a v io l e t A bsorption Spectrum o f 1 -p -M eth o x y p h en y ltetrazo le 1*2 9 . U l t r a v io l e t A bsorption Spectrum o f 5 - m - T o ly lte tr a z o le ................. 1*3 1 0 . U l t r a v io l e t A bsorption Spectrum o f 5- p - T o ly lte t r a z o le ................. 1*1* 1 1 . U l t r a v io l e t A bsorption S p e c tra o f T e tra z o le and Some A lkylte tra z o le s ......................................................................... 1*5 12. In fra re d A b sorption Spectrum of T e t r a z o l e . . . , ................................. 58 13. In fra re d A b sorption Spectrum o f 5 -M e th y lte tra z o le ........................ 59 ll*. I n f r a r e d A bso rp tio n Spectrum of 5 - E th y l te tr a z o le ........................... 60 15. In fra re d A b sorption Spectrum o f 5-n -P ro p y lte t ra z o l e 61 16. In fra re d A bsorption Spectrum of 5 - n - B u ty lte tr a z o le ....................... 62 17. In fra re d A bso rp tio n Spectrum of 5 -n -A m y lte tra z o le ................... 63 18. In fra re d A b sorption Spectrum of 5 - Is o a m y lte tr a z o le .................. 61* 19. In fra re d A b sorption Spectrum o f 5 -n -H e jg rlte tra z o le ...................... 65 2 0 . I n fr a re d A bsorption Spectrum o f 5 - n - H e p ty lte tr a z o le .................... 66 21. I n f r a r e d A bsorption Spectrum o f 5 - F h e n y lte tr a z o le ......................... 67 22. In fra re d A b so rp tio n Spectrum of 5 - o - T o ly lte t r a z o le ................... 68 xi LIST OF FIGURES - C ontinued FIGURE PAGE 23. In fra re d A b so rp tio n Spectrum o f 5 - m - T o ly lte tr a z o le ...................... 69 2l+. I n f r a r e d A bsorption Spectrum o f 5 - p - T o ly lte tr a z o le . . . . . ........... 70 25. I n f r a r e d A bso rp tio n Spectrum o f 5 -o -C h lo ro p h e n y lte tra z o le . . . . 71 26. In fra re d A bso rp tio n Spectrum o f 5 -m -C h lo ro p h e n y lte tra z o le . . . . 72 27. In fra re d A bsorption Spectrum o f 5 -p -C h lo ro p h e n y lte tra z o le . . . „ 73 28. In fra re d A bso rp tio n Spectrum o f 5-o -M e th o x y p h e n y lte tra z o le . . . lh 29. I n f r a r e d A bsorption Spectrum o f 5 -p -M e th o x y p h e n y lte tra z o le . . . 75 30. In fra re d A bso rp tio n Spectrum o f l - E t h y l t e t r a z o l e ........................... 76 31. In fra re d A b sorption Spectrum o f 1 - n - B u ty lte tr a z o le ....................... 77 32. In fra re d A bsorption Spectrum o f 1 - I s o b u ty lte t r a z o le .................... 78 33. I n f r a r e d A bsorption Spectrum o f 1 - I s o b u t y lt e t r a z o l e ............... 79 3l+. I n f r a r e d A b sorption Spectrum o f 1 -n -A iq y lte tra z o le 80 35. I n f r a r e d A b sorption Spectrum o f 1 - Is o a m y lte tr a z o le ...................... 81 36. In fra re d A bsorption Spectrum o f l - n - H e ^ l t e t r a z o l e ....................... 82 37. I n f r a r e d A bsorption Spectrum of 1 - n - H e p ty lte tr a z o le .................... 83 38. In fra re d A bsorption Spectrum o f 1 - P h e p y lte tr a z o le ......................... 81+ 39. I n f r a r e d A b sorption Spectrum o f 1 - P h e n y lte tr a z o le ......................... 85 1+0. I n f r a r e d A bsorption Spectrum o f 1 - P h e n y lte tr a z o le ......................... 86 1+1. I n f r a r e d A bsorption Spectrum o f l- m - T o ly lte tr a z o le ................. 87 1+2. I n f r a r e d A b sorption Spectrum o f l- m - T o ly lte tr a z o le ............ 88 1+3. I n f r a r e d A b so rp tio n Spectrum o f 1 - p - T o ly lte tr a z o le ...................... 89 1+1+. I n f r a r e d A b sorption Spectrum o f 1 - p - T o ly lte tr a z o le ....................... 90 1+5. I n f r a r e d A b sorption Spectrum o f 1 -o -C h lo ro p h e n y lte tra z o le . . . . 91 x ii LIST OF FIGURES - Continued FIGURE PAGE U6 . I n f r a r e d A bsorption Spectrum of 1 -o -C h lo ro p h e n y lte tra z o le . . . . 92 1*7. I n f r a r e d A bso rp tio n Spectrum o f 1 -m -C h lo ro p h e n y lte tra z o le . . . . 93 U8 . I n f r a r e d A b sorption Spectrum o f 1 -m -C h lo ro p h e n y lte tra z o le . . . . 9h U9. I n f r a r e d A b so rp tio n Spectrum of 1 -p -C h lo ro p h e n y lte tra z o le . . . . 95 50. I n f r a r e d A b sorption Spectrum of 1 -p -C h lo ro p h e n y lte tra z o le . . . . 96 51. I n f r a r e d A bso rp tio n Spectrum of 1 -o -M eth o x y p h e n y lte tra z o le . . . 97 52. I n f r a r e d A bsorption Spectrum o f 1 -o -M e th o x y p h e n y lte tra z o le . . . 98 5 3 . I n f r a r e d A bsorption Spectrum o f l-p -M eth o acy p h en y ltetrazo le. . . 99 51*. I n f r a r e d A bsorption Spectrum o f 1 -p -M eth o x y p h e n y lte tra z o le . . . 100 55. I n f r a r e d A bsorption Spectrum o f 1 ,5-D im ethyl te t r a z o le ................101 5 6 . I n f r a r e d A bso rp tio n Spectrum o f l - E t h y l - 5 - I s o b u t y l t e t r a z o l e .. 102 57. I n f r a r e d A b sorption Spectrum o f l - E t h y l - 5 - I s o b u t y l t e t r a z o le .. 103 58. I n f r a r e d A bsorption Spectrum o f l- E th y l- 5 - I s o b u ty lt e t r a z o l e . . IOI4. 59. I n f r a r e d A b so rp tio n Spectrum o f l- I s o b u ty l- 5 - M e th y lte tr a z o le . 105 60. I n f r a r e d A b sorption Spectrum of 1 ,5 - D i- is o b u ty lte t r a z o le .........106 61. I n f r a r e d A bsorption Spectrum o f 1 ,5 -P e n ta m e th y le n e te tr a z o le .. 107 62. I n f r a r e d A bso rp tio n Spectrum of l- P h e n y l- 5 - M e th y lte tr a z o le ... 108 63. I n f r a r e d A b so rp tio n Spectrum of 1 - P h e n y l- 5 - E th y lte tra z o le . . . . 109 6k. I n f r a r e d A b sorption Spectrum of l- P h e n y l- 5 - I s o b u ty lte tr a z o le . 110 65. I n f r a r e d A bso rp tio n Spectrum of l-(p-M eth o ay p h en y l)-5 -M eth y l............................................................... I l l t e t r a z o l e .................... 66. I n f r a r e d A b so rp tio n Spectrum o f l- M e th y l- 5 - P h e n y lte tr a z o le ... 112 67 . I n f r a r e d A bso rp tio n Spectrum of l - E t h y l - 5 - P h e n y l t e t r a z o le .,.. I I 3 68. I n f r a r e d A b so rp tio n Spectrum o f l- I s o b u ty l- 5 - P h e n y lte tr a z o le . Ill* 69. I n f r a r e d A b sorption Spectrum o f 1 ,5 -D ip h en y l t e t r a z o l e .................. 115 x iii 1 INTRODUCTION A lthough a g r e a t many ^ - s u b s tit u te d t e t r a z o l e s a r e known, v ery few 1 - s u b s titu te d t e t r a z o l e s have been re p o rte d up to th e p r e s e n t tim e . In h i s rev iew o f th e c h e m istry o f t e t r a z o l e s i n 19U7, Benson ( l ) l i s t s o n ly seven exam ples, in c lu d in g 1 -h y d ro x y te tra z o le , th e i d e n t i t y of which he q u e s tio n s . I t was th e purpose o f t h i s s tu d y to i n v e s tig a te th e p r e p a ra tio n and p r o p e r tie s o f f u r t h e r compounds o f th e 1 - s u b s titu t e d te tra z o le s e r ie s . The p r e p a ra tio n o f such a s e r i e s would a ls o a llo w com parative s p e c tro s c o p ic s t u d i e s , i n th e u l t r a v i o l e t and in f r a r e d re g io n s , o f a l k y l - and a r y l t e t r a z o l e s , in c lu d in g b o th 1 - and m o n o su b stitu ted compounds, as w e ll a s l , £ - d i s u b s t i t u t e d t e t r a z o l e s . Of th e methods employed to o b ta in th e seven 1 - s u b s tit u te d t e t r a ­ z o le s l i s t e d by Benson, th re e have p o s s i b i l i t i e s as g e n e ra l m ethods, w h ile o th e r s a re s p e c i a l methods f o r p re p a rin g one p a r t i c u l a r compound. O liv eri-M an d ala and Alagna (2) o b ta in e d th e 1 -ra e th y l-, 1 - e t h y l - , and 1 - p h e n y lte tr a z o le s by th e a d d itio n o f hydrazoic a c id to th e co rresp o n d ­ in g iso c y a n id e s i n e t h e r s o lu tio n . E - N - C - H The r e a c ta n ts were mixed and allo w ed to s ta n d o v e rn ig h t a t room te m p eratu re o r warmed s e v e ra l hours on th e steam b a th . D ilu tio n o f th e r e a c tio n m ix tu re w ith e th e r was found to slow th e r e a c tio n . 1 - A r y lte tr a z o le s were p re p a re d by Dimroth and De M ontm ollin ( 3) b y adding th e a p p ro p ria te diazonium c h lo rid e t o an a lk a lin e s o lu tio n o f d ifo rra y lh y d ra z in e . * A r - N - C - H II + HBOgH + Ha0 The 1 -p h e n y l, 1 - p - t o l y l - , and 1 - p - n itr o p h e n y lte tr a z o le s were o b ta in e d b y t h i s m ethod. The o x id a tio n o f l- s u b s titu te d - 5 - m e r c a p to te tr a z o le s has fu rn is h e d 1 - s u b s t i t u t e d t e t r a z o l e s i n two c a s e s (h , $ ) . The m e rc a p to te tra z o le s were o b ta in e d by r e a c t i o n o f sodium a z id e o r h y d razo ic a c id w ith an is o th io c y a n a te , fo llo w ed by c y c liz a tio n through th e use o f h e a t o r an a lk a lin e r e a g e n t. A lthough only th e 1 -m e th y l- and 1 - p h e n y lte tr a z o le s have been p re p a re d by t h i s p ro c e d u re , a number o f o th e r 1 - s u b s t it u t e d - 5-m e rc a p to te tra z o le s have been r e p o rte d ( 1 ) . 3 A number o f more lim ite d methods have fu rn is h e d in d iv id u a l com­ pounds o f t h i s s e r i e s . The a lk y la tio n o f t e t r a z o l e w ith diazom ethane f u rn is h e d 1 -m e th y lte tra z o le ( it ) , w hile a lk y la tio n o f th e s i l v e r s a l t o f t e t r a z o l e w ith e t h y l io d id e produced a m ix tu re o f 1 - , and 2 - e th y lte tra z o le s (6 ). N i t r a ti o n o f 1 - p h e n y lte tra z o le produced a 1 - n itr o p h e n y lte tr a z o le , a p p a re n tly w ith th e n i t r o group i n th e p a ra p o s it i o n , a lth o u g h th e d e t a i l s o f i d e n t i f i c a t i o n o f t h i s compound were n o t given (5) . The co rre sp o n d in g am in o p h e n y lte tra z o le was a ls o p rep a re d by re d u c tio n of th e n i t r o g ro u p . Thermal decom position o f 1 -p h en y l-2 - a n i l in o te tr a z o le produced some 1 -p h e n y lte tr a z o le ( 7 ) , I t w i l l be n o te d from th e above t h a t th e only 1 - a l k y lte tr a z o le s p re v io u s ly known a r e th e m ethyl and e th y l compounds, A s e rie s of sev en 1 - a l k y l t e t r a z o l e s , in c lu d in g 1 - e t h y lt e t r a z o l e , has been p re p a re d in th e p r e s e n t s tu d y from th e co rresp o n d in g is o c y a n id e s . Four 1 - a r y l t e t r a z o l e s were known p r e v io u s ly . A ttem pts to p rep are 1 -p h e n y lte tr a z o le b o th by th e iso c y a n id e and Dimroth methods have shown t h a t n e ith e r p ro ced u re i s e n t i r e l y s a t i s f a c t o r y . C onsequently a new method was developed f o r th e s y n th e s is o f 1 - a r y l t e t r a z o l a s . The p ro ced u re employed i s an e x te n s io n o f th e von Braun method f o r th e p r e p a r a tio n o f 1 ,5 - d i s u b s t i t u t e d t e tr a z o le s ( 8 ) , and c o n s is ts i n th e r e a c t i o n o f phosphorus p e n ta c h lo rid e w ith f o rm a n ilid e s , fo llo w ed by th e a d d itio n o f h y d razo ic a c id to th e r e a c t io n m ix tu re . I n one in s ta n c e , th e same method has been s u c c e s s fu lly extended to th e p r e p a r a tio n o f a 1 - a l k y lt e t r a z o le from an N -alkylform am ide. h The i n f r a r e d and u l t r a v i o l e t s p e c tr a of th e s e compounds and o th e r a l k y l - and a r y l s u b s tit u t e d t e t r a z o l e s have been o b ta in e d . A lthough a number o f p re v io u s w orkers have re p o rte d s p e c tro s c o p ic d a ta on t e t r a z o l e d e r i v a t iv e s , most o f th e compounds in c lu d e d have b een £ -a m in o te tra z o le s , where th e a s s o c ia tio n o f s p e c tro s c o p ic d a ta w ith s t r u c t u r a l f e a tu r e s i s com p licated by th e p o s s i b i l i t y o f tau to m erism . 5 DISCUSSION Three methods f o r th e s y n th e s is o f 1 - s u b s titu te d t e t r a z o l e s were employed i n th e co u rse o f t h i s i n v e s t i g a t i o n . In th e fo llo w in g s e c t io n s , each o f th e s e p ro ced u res w i l l b e d isc u s s e d in d iv id u a lly . The r e a c tio n o f an a lk y l o r a r y l iso c y a n id e w ith hydrazoic a c id to form a 1 - s u b s t it u t e d t e t r a z o l e i s r e f e r r e d to i n th e d is c u s s io n below as th e iso c y a n id e m ethod. The c o u p lin g o f a diazonium s a l t w ith d i - fo rray lb y d raain e and subsequent c y c li z a tio n o f th e p ro d u ct to a 1 - a r y l t e t r a z o l e i s c a lle d th e Dimroth m ethod. The tre a tm e n t o f a fo rra a n ilid e or N -alkylform am ide f i r s t w ith phosphorus p e n ta c h lo rid e and th e n w ith h y d razo ic a c id t o y i e l d th e d e s ir e d t e t r a z o l e i s r e f e r r e d to as th e formamide m ethod. The work on th e s p e c tra o f th e compounds p re p a re d by th e s e m ethods, and o f o th e r t e t r a z o l e s , w il l be co n sid e re d i n th e l a t t e r p a r t o f t h i s d is c u s s io n . Iso cy an id e Method Since th e m ost g e n e ra l method o f p r e p a ra tio n f o r 1 - s u b s t itu t e d t e t r a z o l e s appeared to be t h a t u t i l i z i n g th e co rresp o n d in g is o c y a n id e s , th e f i r s t phase o f th e s tu d y was th e s e le c t io n o f a s u ita b l e method f o r o b ta in in g th e s e compounds. Iso c y a n id e s were f i r s t rec o g n iz e d as new compounds by G a u tie r ( 9 ,1 0 ) , who o b ta in e d them from th e r e a c tio n o f s i l v e r cy an id e w ith v a rio u s a lk y l io d id e s . He c a lle d a t t e n t i o n t o a number o f in s ta n c e s i n which members o f th e s e r i e s had been 6 o b ta in e d p re v io u s ly w ith o u t re c o g n itio n o f t h e i r i d e n t i t y . Almost s im u lta n e o u s ly , Hofmann ( U ) r e p o rte d th e r e a c tio n o f a n ilin e w ith ch lo ro fo rm and a lc o h o lic p otassium hydroxide to form phenyl is o c y a n id e . C6HgNH2 + 3K0H + CHQ13 > Cs HgNC + 3KC1 + 3Ha0 F u r th e r re fe re n c e s i n th e l i t e r a t u r e t o th e p r e p a ra tio n o f iso c y a n id e s r e p o r t th e u s e o f m o d ific a tio n s o f one o r th e o th e r o f th e above re a c tio n s . F o r th e Hofmann m ethod, th e more d e t a ile d d i r e c t io n s given b y Nef (12) a re u s u a lly c i t e d . However, B id d le ( 13 ) su g g ested t h a t th e low y ie ld s u s u a lly o b ta in e d p ro b ab ly were due to i n t e r a c t io n o f th e p ro d u c t w ith a lc o h o l. He r e p o rte d a p r e p a ra tio n o f phenyl iso c y a n id e i n which a lc o h o l was ex clu d ed and powdered p o tassiu m hydroxide was employed a s th e r e a g e n t. y ie ld r e p o rte d by N ef. The y ie ld was 35-1*0$, i n c o n tr a s t t o th e 15$ Hammick, e t a l . (ll*) o b ta in e d a 50$ y i e l d of phenyl iso c y a n id e by u s in g powdered sodium hydroxide and sm all amounts o f m eth a n o l, added o n ly as n e c e s sa ry to keep th e r e a c tio n go in g . Lindemann and "Wlegrebe (15) a ls o r e p o r t a 50$ y ie ld from a s im ila r p ro ced u re u sin g sm a ll amounts o f e th a n o l. L a te r , M a la te s ta (16) d e s c rib e d a s im ila r m o d ific a tio n , u sin g powdered p otassium hydroxide and e x cess ch lo ro fo rm as s o lv e n t. E x c e lle n t y ie ld s were re p o rte d f o r b o th a l k y l and a r y l is o c y a n id e s , b u t more r e c e n t w orkers have been u n ab le t o confirm th e s e h ig h y ie ld s ( 1 7 ) . In th e p r e s e n t s tu d y , phenyl is o c y a n id a was p re p a re d a c co rd in g to M a la te sta * s d i r e c t i o n s . The y ie ld i n t h i s in s ta n c e was 30$, w hile M a la te s ta re p o rte d a 70$ y i e l d . S ince t h i s i s a h etero g en eo u s r e a c t i o n , d iff e r e n c e s i n th e p a r t i c l e 7 s i z e o f th e p o tassiu m hydroxide and i n th e degree o f h e a tin g a r e p ro b a b ly r e s p o n s ib le f o r th e wide v a r ia t io n s i n th e r e s u l t s . The method d e s c rib e d b y G a u tie r f o r p r e p a r a tio n o f a l k y l i s o ­ cy an id es proved q u ite s u c c e s s f u l, w ith s l i g h t m o d ific a tio n s . The a lk y l io d id e and d ry s i l v e r cyanide were h eated u nder r e f lu x on a steam b a th f o r th e d e s ir e d r e a c tio n tim e . by i n s p e c tio n . P ro g re ss o f th e r e a c tio n was fo llo w ed F o r a p e rio d o f tim e , v a ry in g f o r each member o f th e s e r i e s , no change was e v id e n t. The s t a r t o f th e r e a c tio n was marked b y a cru m b lin g , m o ist appearance i n th e r e a c tio n m ix tu re . The double s a l t o f a lk y l iso c y a n id e and s i l v e r cyanide g ra d u a lly formed a syrupy l a y e r , v a ry in g from c o lo r le s s to d a rk red -b ro w n , w hile s i l v e r io d id e formed a compact low er l a y e r . A ccording to G a u tie r , e x cessiv e h e a tin g cau ses marked darkening and decom position o f th e double s a l t . In th e p r e s e n t s e r i e s o f p rep a­ r a t i o n s , a l l h e a tin g was c a r r ie d o u t on a steam b a th in s te a d o f th e s a l t w ater b a th and o i l b a th d e s c rib e d by G a u tie r f o r th e h ig h er hom ologues. The le n g th e n ed r e a c tio n tim e n e c e s s a ry a t low er tem pera­ tu r e s appeared to be d u e, a t l e a s t i n p a r t , t o a lo n g e r in d u c tio n p e r io d . The tim e o f t o t a l h e a tin g v a rie d i n in d iv id u a l c a se s from th re e t o e ig h t h o u rs . The double s a l t was decomposed by a d d itio n o f w ater and potassium c y a n id e , and th e p ro d u c t was i s o l a t e d by steam d i s t i l l a t i o n . RI + 2AgCN » RNOAgCN + KCN HNC’AgCN + Agl \ ENC + AgCN-KCN 8 Crude y ie ld s by t h i s method were e x c e l l e n t . Except f o r p re lim in a ry s tu d ie s w ith b u ty l is o c y a n id e , th e p ro d u c ts were n o t f u r t h e r p u r if i e d o r c h a r a c te r is e d , b u t were used im m ediately f o r p r e p a ra tio n o f th e c o rresp o n d in g t e t r a z o l e . A l i s t o f th e compounds p rep ared i s giv en i n T able I . The s e le c t io n o f s u it a b le r e a c tio n c o n d itio n s was g r e a tly s im p li­ f i e d by th e d a ta assem bled b y G uillem ard ( 1 8 ) , who in v e s tig a te d t h i s r e a c tio n i n g r e a t d e t a i l . He s tu d ie d th e r e a c tio n o f e th y l io d id e w ith a v a r i e t y o f m e ta llic and complex cy an id es a t tem p e ra tu re s from 80° C. to 160° C . f o r v a ry in g p e rio d s o f tim e . Each r e a c tio n was c a r r i e d o u t i n a s e a le d tu b e , and th e p ro p o rtio n s o f th e n i t r i l e and iso c y a n id e formed i n th e r e a c tio n m ix tu re were determ ined b y a n a l y t i c a l p ro c e d u re s . Only s i l v e r cy an id e was found t o form a lk y l iso c y a n id e s e x c lu s iv e ly a t low er te m p e ra tu re s , w hile even i n t h i s c a se some n i t r i l e was o b ta in e d a t 130° C. and above. The optimum y i e l d was o b ta in e d by h e a tin g a t 80° C. f o r fo u r to e ig h t h o u rs. In a second s e r i e s o f e x p erim en ts, G uillem ard p re p a re d o th e r a lk y l iso c y a n id e s by h e a tin g e q u a l w eights o f th e a l k y l io d id e and s i l v e r cyanide f o r fo u r hours a t te m p e ra tu re s from 80° to 160° C. b e s t y ie ld s w ere o b ta in e d a t 80° C . A gain, th e Although no n i t r i l e was d e te c te d a t t h i s te m p e ra tu re , th e h ig h e r homologues formed some n i t r i l e a t te m p e ra tu re s a s low a s 100° C. I t i s i n t e r e s t i n g to n o te t h a t no i s o ­ cy an id e and o n ly tr a c e s o f n i t r i l e were o b ta in e d from 2-io d o h ex an e, th e o n ly seco n d ary io d id e s tu d ie d by G uillem ard. G a u tie r had n o ted th e fo rm a tio n o f an alkBne and hydrogen cyanide i n c e r t a i n r e a c tio n s 9 TABLE I A lkyl Iso cy an id es RNC R Moles RI H eatin g Time ( h r s .) Y ield Crude P roduct Grains P e rc e n t c 3h6 0 .1 c 3h7 0 .2 0 .2 — 1 3 .6 12.9 C4H9-n 0 .1 0 .1 0 .2 1+ h 1+ 7.1+*, (3 .2 ) li+.O C4H9- is o 0 .2 c s Hn -n 0 .2 CgH^j-iso 0 .1 5 .5 0 .2 G^H^s-n O7Hjg-n 5 .5 a 100 99 93 89 (1+0) 81+ 15.8 95 9 .1 hi 8 8 .8 a (1+ .8) 11.9 91 (1+9) 61 0 .2 s 0 8.1+ 38 0 .2 0 .2 8 8 22.8 13.6 91 51+ 31 ( a ) Crude p ro d u c t. (b ) D eterm ined by t i t r a t i o n - see page 11. 10 where th e a lk y l io d id e was p ro b a b ly th e seco n d ary isom er o r a mix­ tu re . Since th e a lk y l iso c y a n id e s in th e p r e s e n t stu d y were to be con­ v e r te d im m ediately t o t e t r a z o l e s w ith o u t p u r i f i c a t i o n , a r a p id e s tim a tio n o f iso c y a n id e c o n te n t i n th e crude m a te r ia l appeared h ig h ly d e s ira b le . In p r e p a ra tio n f o r th e in v e s tig a tio n s d e s c rib e d ab o v e, G uillem ard developed s e v e r a l methods f o r th e a n a ly s is o f is o c y a n id e s . “When a known amount o f bromine was added dropw ise to e th y l is o c y a n id e , b o th r e a c ta n ts b e in g d i l u t e d w ith th e same s o lv e n t, th e bromine c o lo r d id n o t ap p ear u n t i l e x a c tly one m olar p ro p o rtio n o f bromine had been added. The ex trem ely u n s ta b le compound, C2HcNCBr2 , was i s o l a te d and d e s c rib e d . A n aly sis gave 7 3 *9% bromine c o n te n t, as compared to a t h e o r e t i c a l v alu e o f 7U.3#* Nef (12) had re p o rte d e a r l i e r th e p re p a ­ r a t io n and a n a ly s is o f th e more s ta b le c h lo r in e compounds, RNCC1S, from a number o f a r y l is o c y a n id e s . A number o f d e r iv a tiv e s were a ls o p r e ­ p ared by r e a c tio n w ith w a te r, a n i l i n e , e th a n o l, and o th e r r e a g e n ts . The p ro d u c ts i n each ca se confirm ed th e o r i g i n a l compound as th e a d d itio n p ro d u c t o f one mole o f c h lo rin e w ith one mole o f is o c y a n id e . Bromine and io d in e were a ls o s a id to be absorbed im m ediately by s o lu ­ tio n s o f an is o c y a n id e a t 0° C ., b u t th e r e s u l t i n g p ro d u c ts were o i l s and were n o t p u r i f i e d . G u ille m a rd ^ method in v o lv ed th e r e a c tio n o f th e is o c y a n id e w ith brom ine o r hypobrom ite and decom position o f th e p ro d u c t i n th e p re se n c e o f w ater to r e le a s e carbon d io x id e , which was p r e c i p i t a t e d a s barium c a rb o n a te and w eighed. A lthough G u ille m a rd ^ g ra v im e tric p ro ced u re was f a r to o lo n g f o r th e pu rp o ses o f th e p r e s e n t 11 s tu d y , th e r e p o r t o f i n s t a n t a b s o rp tio n o f bromine and a p p a re n tly q u a n t i t a t i v e r e a c t i o n su g g ested t h a t a t i t r a t i o n method m ight be fe a s ib le . A number o f w orkers have determ ined phenols by th e r e a c tio n w ith broraide-broraate s o lu t i o n , w h ic h a c t s , under a c id c o n d itio n s , as a s ta n d a rd s o lu tio n o f bromine ( 1 9 ,2 0 ) . S ince bromine i s r e le a s e d o n ly on a d d itio n o f a c i d , and s in c e th e $xcess i s co n v erted to bromide io n on a d d itio n o f p o tassiu m io d id e , b ro m in atio n tim e i s e a s i l y c o n tr o lle d . The a d d itio n o f p o tassiu m io d id e r e le a s e s io d in e i n p r o p o rtio n to th e ex cess brom ine. The io d in e i s th e n determ ined by t i t r a t i o n w ith s ta n d a rd t h i o s u l f a t e w ith s ta r c h as th e i n d i c a t o r . to ap p ly t h i s d e te rm in a tio n to is o c y a n id e s . An a ttem p t was made The e q u a tio n s f o r th e r e a c tio n s in v o lv ed a r e : KBrOa + 5KBr + 6HC1------- » 3Bra + 6KC1 HNC + B r2 ----- » ENCBra B ra + 2KI ----- » I a Xa + 2NaaSa0a — + + 3Ha0 2KBr 2NaI + NagS^Og The cru d e iso c y a n id e was ta k e n up i n b en zen e, d r ie d , and d ilu te d to a known volum e. A fte r a liq u o ts were removed f o r a n a l y s is , th e rem aining s o lu tio n was u sed im m ediately to form th e t e t r a z o l e . The method was a p p lie d to s e v e r a l r u n s , b u t t e s t s on weighed sam ples o f supposedly p u re b u ty l iso c y a n id e gave low r e s u l t s . summarized i n T able I I . The work i s Wien th e d i l u t i o n o f crude iso c y a n id e w ith benzene ap p eared to slow th e subsequent r e a c tio n w ith hydrazoic a c id 12 vO N r l H -d ' U \ CTv rH \ A OsH-O 00 vO-X* 'O'OtOUN _d_j n iA •XT fA_d CA CMCMCM O O O O CMCM CVI OJ r lH r lH vO Ov rH I H by two d i s t i l l a t i o n s I G *H © O O TJ *r) •H +3 XS G flJ P *-s• hO >s43 bO •H O r l ' - ' O Eh IS M 03 >s ^ VO CO rr\cvj PQ <4H ©r-^. OH • O o 0] M 4» 5OS«£ N •H >■» • 03 CJ bO •H r—t G O © w CO followed 0) TJ r-O * QH t s H PQ H o a c «J G 0 o +» CM AS •H ■P m KJ TJ P. g© -P •P Id rH H •P (0 <0 -P •H $ O 1 © -P rH r-v a u> s • bo •rl 3 s - / Ov rH VO* Ov rH 08 vO O * CO in © -p co £ TJ © •H *rt CM I xdi CM CM rH a w S © rH PQ O 8* to d is tilla tio n , CM by steam Eh •P X! Gw M < xt Samples B and C -were p urified at atmospheric p r e s s u r e . I ■S'® fc 5 & © 13 to o much, f u r t h e r work on t h i s a n a ly tic a l method was abandoned. A lthough i t has n o t been p o s s ib le to s u b s ta n tia te th e v a l i d i t y o f th e m ethod, i t s t i l l ap p ears to show p ro m ise. I t w i l l be n o tic e d t h a t th e sam ples o f b u ty l iso c y a n id e used were n o t u n ifo rm . The d a rk c o lo r i n crude sample B , and th e h ig h e r d e n s ity o f th e t w i c e - d i s t i l l e d p ro d u ct p ro b a b ly r e f l e c t th e p resen ce o f b u ty l io d id e a s a co n tam in an t. Davis and Y elland (21) r e p o r t th e b o ilin g * p o in t o f n - b u ty l iso c y a n id e a s 12li-125° C . a t 761.5 mm. G a u tie r (10) r e p o rts th e d e n s ity o f m ethyl iso c y a n id e as 0.7557 a t h0 , and t h a t o f e th y l is o c y a n id e a s 0.7591 a t ii° and O.7J4I 7 a t 2 1 .3 ° . He a ls o r e p o r ts a v alu e o f 0.7873 a t lt° f o r th e b u ty l compound he p re p a re d , b u t i t i s d o u b tfu l whether he a c t u a l l y had th e n - b u ty l isom er i n hand. In any c a s e , i t may r e a d i l y be seen t h a t sample G approaches th e s e p h y s ic a l c o n s ta n ts most c l o s e ly , and t h a t i t a ls o g iv e s th e b e s t r e s u l t s by titra tio n . I t seems p o s s ib le t h a t sample C i s s t i l l n o t e n t i r e l y p u r e , p a r t i c u l a r l y s in c e th e d e n s ity i s somewhat h ig h e r th a n t h a t expected from th e v a lu e s r e p o rte d f o r o th e r members o f th e s e r i e s . I f th is is t r u e , th e v alu e o b ta in e d may r e p r e s e n t th e a c t u a l iso c y a n id e c o n te n t. The in c re a s e d p r e c is io n i n th e d e te rm in a tio n s on sample C may be due to th e i n s e r t i o n o f one m inute b ro m in atio n tim e between a d d itio n of th e a c id and o f th e potassium io d id e . T h is agreem ent o f d u p lic a te d e te rm in a tio n s perform ed a t th e same tim e on th e same sam p le, and th e drop i n th e a p p a re n t iso c y a n id e c o n te n t w ith tim e , a s shown i n th e case o f sample A, i s a n o th e r b i t of evidence i n fa v o r o f th e id e a th a t th e is o c y a n id e i s a c t u a l l y determ ined by t h i s r e a c t i o n . The g ra d u a l lJU drop i n th e a p p a re n t iso c y a n id e c o n te n t i s n o t s u r p r is in g i n view o f th e known e a se w ith which th e s e compounds p o ly m e riz e . I n most p r e p a r a tio n s , a s has a lre a d y been m entioned, th e crude iso c y a n id e was i s o l a t e d by steam d i s t i l l a t i o n , d r ie d b r i e f l y over sodium s u l f a t e , and im m ediately mixed w ith a s o lu tio n o f h y d razo ic a c id i n benzene f o r co n v e rsio n t o th e t e t r a z o l e . The m ix tu re was warmed on th e steam b a th under r e f l u x f o r one to f iv e h o u rs , a f t e r which th e s o lv e n t was removed and th e re sid u e was b o ile d w ith a s tro n g s o lu tio n o f h y d ro c h lo ric a c id i n an a tte m p t to hydrolyze any polym eric iso c y a n id e p r e s e n t. The 1 - a l k y lt e t r a z o le s were th e n p u r if i e d by f r a c t i o n a l d i s t i l l a t i o n th ro u g h a sm all V igreux colum n. were u s u a lly n e c e s s a ry . S e v e ra l d i s t i l l a t i o n s I n e a r ly r u n s , b o th r e f r a c t i v e in d ex and i n f r a r e d spectrum were o b ta in e d f o r each f r a c t i o n . I t soon became a p p a r e n t, however, t h a t th e l - a l k y l t e t r a z o l e s showed rem arkable s im i­ l a r i t y t o one a n o th e r , b o th i n in f r a r e d s p e c tra and i n r e f r a c t i v e in d ic e s . T h e r e a f te r , i t was o n ly n e c e s sa ry to o b ta in in f r a r e d s p e c tra f o r th e f r a c t i o n s c lo se t o th e expected r e f r a c t i v e in d e x . o b ta in e d a re l i s t e d i n T able I H . The compounds Two of th e se gave a n a ly se s s l i g h t l y o u ts id e th e a c c e p ta b le ra n g e , b u t show marked s i m i l a r i t y in p h y s ic a l p r o p e r tie s to o th e r members o f th e s e r i e s . I t would appear t h a t th e co n ta m in a n t, i n th e case o f th e isoam yl compound, i s o f h ig h e r r e f r a c ­ t i v e in d e x th a n th e t e t r a z o l e . Pure 1 - i s o b u t y l t e t r a z o l e , o b ta in e d by th e forraamide method d e s c rib e d below , has a low er r e f r a c t i v e in d ex th a n th e norm al iso m e r. T h e re fo re , 1 - is o a ra y lte tra z o le sh o u ld p ro b ab ly have a r e f r a c t i v e in d e x somewhat low er th an t h a t r e p o r te d . 15 z CA On • M3 1A CM CA • a a CM CA• NO oM3 • c— a nO • a a NO On • On ca CA O LA CA • • On On ca CA LA rH • a CA O LA LA nO • • CM CM CA CA CM CM O- O n * • CO CO a rH • On CO CA CA rH * On O n rt a O' o On C— • NO ca TJ © CO a CM • CO srt a < a rH ON • c- CO CM a• rH r— LA a 0 a a On ♦ NO NO ♦ a On ca CO CO • * rH rH LA LA a c~* CO CA a• a• LA LALA a s * ■s •H © © a -p -P 2 E O JH «M © TJ © a -p & © © © ► •rH c- r- «M © a a a a a a• a a t- la TJ O 0 0 • 0 a O• O a M3 CA • M3 CA CA CA • CA CA on On a rt 3 a o •O3 (0 ID 3 3 1 43 © 43 3? rH -=m I i—I • CM M3 CM M3 • r^* -zf vO rA H 0 M M r— • o- M3 CJ u a On CM NO • c— LA • CO CA a• f— rH a LA 0 la ON O • LA » 03 On On • CA a• rH LA a LA LA a g a © -p n •H TJ a © a -a 8o rH • C- a Pi © CM LA LA • £ a bO 0) -P a JH d rt ^ rH I Z O a-z 8 1 © ra 5 S o o > tt a © bo NT a © K rt 0 M > %rt % H R a <0 © o O %rt ffi © O H1 *rH a (0 a 3 a tf n rH rt rt «£j K 0) a> a *2 O On La -zr a a iH rH rH O GO LA a © rH a© a a rH rH On 8 C’— CA M3 a rH rt 8 1—1 O taO S 1 H C • *H *rt O O OO a a ^ a rH^ ao l ba rH CA 1 CM CM "M . CM CA \ H 1 00 1 CA CM a rH H LA rt 0> a a r «f O a o © © V c s •rt j a t j 8 ph < ca CM rH I H CM rH 0 rH CW TJ TJ •H O E -p rt I n © ■H Sh O 4» <0 H o -a o « U a 8 M3 £ o a •rH -p 43 O •rt © rt rH 8 33 o c © O o 0) f c JS o of © •H «H rH M 5 ’S TJ C W O © JH «M O O O C 3=»x •3 a < l ‘ a‘ i ca 10 7 n < I -a I O "LA M3 a H rt '—rH rH a rl © V o <0 •H CO < CM © •h a a a© 3© a 5 43 © rH © 43 a e bJ>g © a Oj « a rt © o I G a » A V a I © I oo a cm & rt a I £?2 a ■rl «H g ■a o © © Pi © ©© rt © PA P. © S I 85 TJ O TJ © 16 A lthough y ie ld s o f p u re m a te r ia l a re somewhat low , th e above method i s re a so n a b ly s a t i s f a c t o r y f o r th e p r e p a ra tio n s o f 1 - a lk y lte tra z o le s . The c h ie f d i f f i c u l t y i s th e u n p le a s a n t c h a r a c te r o f th e in te r m e d ia te s , which a r e b o th h ig h ly to x ic and d i f f i c u l t to o b ta in i n p u re fo rm . I t seems p ro b ab le t h a t th e low y ie ld s a r e due c h i e f ly to th e f i r s t s te p . The s in g le a r y l compound p rep ared by t h i s method was 1-p h e n y lte tra z o le . The low y ie ld o f p h en y liso cy a n id e by M a la te sta * s m o d ifi­ c a tio n o f th e Hofmann r e a c tio n has a lre a d y been m entioned. The y ie ld i n th e second s t e p , c a lc u la te d on th e w eight o f crude iso c y a n id e u s e d , was a ls o q u ite low . The method th e r e f o r e appeared u n s a tis f a c to r y f o r p r e p a ra tio n o f a s e r i e s o f compounds. D im roth Method The pro ced u re d e s c rib e d by Dimroth and De M ontm ollin ( 3 ) appeared to be co n v en ien t f o r p re p a rin g th e 1 - a r y l t e t r a a o l e s . The p ro ced u re in v o lv e s a d d itio n o f a n e u tr a liz e d s o lu tio n o f a d ia z o tiz e d aro m atic amine t o an a lk a lin e s o lu tio n o f a d ia c y lh y d ra z in e . I n te r a c ti o n o f th e s e r e a c ta n ts le a d s to th e fo rm atio n of a d iazo h y d razid e and th e l a t t e r undergoes c y c liz a tio n t o form a s u b s titu te d t e t r a z o l e w ith e lim in a tio n o f a m olecule o f a c a rb o x y lic a c i d . When a p p lie d to d i - fo rm y lh y d ra z in e , th e end p ro d u c t i s a 1 - a r y l t e t r a z o l e . D iform y lh y d razin e was e a s i l y o b tain ed from sodium form ate said h y d ra zin e s u l f a t e a cc o rd in g to th e d ir e c tio n s o f P e l l i z z a r i ( 2 2 ) . The f i n e l y ground s o li d s were h eated to g e th e r on th e steam b a t h , a f t e r which th e p ro d u ct was e x tr a c te d from i t s m ix tu re w ith sodium s u l f a t e by means o f h o t a lc o h o l. On c o o lin g , th e e x tr a c t d e p o s ite d w h ite c r y s t a l s o f d ifo rra y lh y d ra z in e . The tim e o f h e a tin g d e s c rib e d b y P e l l i z z a r i appeared to be in ad eq u ate f o r a s a t i s f a c t o r y y i e l d . The c h ie f d i f f i c u l t y w ith th e Dim roth method .when a p p lie d to th e p r e p a r a tio n of 1 - a r y l t e t r a a o le s i s th e marked s e n s i t i v i t y o f th e diazonium s a l t t o b o th pH and te m p e ra tu re . C a re fu l c o n tr o l o f th e n e u t r a l i z a t i o n s te p would ap p ear to be an im p o rtan t c o n s id e r a tio n . N e u tr a liz a tio n t o litm u s cau ses immediate d arkening o f th e s o lu tio n ; n e u t r a l i z a t i o n to Congo Red appears to be more s a t i s f a c t o r y . A ll s ta g e s o f th e r e a c t i o n re q u ire c o n tr o l o f th e tem p eratu re below 0° C. A v e ry sm a ll amount o f impure 1 - p h e n y lte tr a z o le was o b ta in e d by t h i s m ethod. F u rth e r in v e s t i g a ti o n o f s u ita b le c o n d itio n s f a r th e r e a c tio n was n o t c a r r ie d o u t , sin c e th e formamide method d e s c rib e d below proved a more co n v en ien t ro u te t o th e 1 - a r y l t e t r a z o l e s . Formamide Method The d i f f i c u l t i e s en co untered i n th e s y n th e s is o f 1 - a r y lte tr a z o l e s by th e two methods d e s c rib e d above le d to a s e a rc h f o r a more co n ­ v e n ie n t p ro c e d u re . One method which had been a p p lie d s u c c e s s f u lly to th e p r e p a r a tio n of 1 , 5 - d is u b s titu te d t e t r a z o l e s was th e a d d itio n o f h y d razo ic a c id t o th e a p p ro p ria te iraide c h lo r id e . The in te rm e d ia te i s b e lie v e d to be an im ide a z id e , which c y c liz e s to th e t e t r a z o l e . 18 The f i r s t r e p o r t o f t h i s r e a c tio n was made by F o r s te r ( 2 3 ) , who o b ta in e d l-h y d r o x y -5 -p h e n y lte tra z o le from benzhydroxim ic c h lo r id e and powdered sodium a s i d e . The p r e p a ra tio n o f 1 , 5 - d ip h e n y lte tr a z o le by a s im ila r p ro ced u re was c a r r i e d o u t by S c h ro e te r (21+), w ith s i l v e r a z id e as t h e r e a g e n t. L a te r , von Braun and Rudolph (8) p o in te d o u t t h a t th e r e a c tio n co u ld b e ex ten d ed to more s e n s itiv e im ide c h lo r id e s by th e use o f h y d ra zo ic a c i d , which r e a c ts a t a low er tem p eratu re th a n th e m e ta l a z id e s . W ith t h i s m o d ific a tio n , von Braun and Rudolph were a b le to app ly th e r e a c tio n s u c c e s s f u lly to th e p r e p a ra tio n of a whole s e r i e s o f 1 , 5 - d i a r y l - and l - a l k y l - 5 - a r y l t e t r a z o l e s . No compounds were p re p a re d c o n ta in in g a lk y l groups i n th e 5 - p o s itio n , s in c e von Braun*s p re v io u s work on th e p r e p a r a tio n and p r o p e r tie s o f im ide c h lo r id e s had shown t h a t compounds o f th e ty p e R - N = CJ - CHR2 *, where R i s an Cl a lk y l o r a r y l group and R* i s hydrogen o r an a lk y l group, a r e u n s ta b le and r e a d i l y re a rra n g e and condense, w ith lo s s o f hydrogen c h lo r id e , to an a m id in e -lik e s t r u c t u r e , formed from two m olecules o f th e im ide c h lo r id e ( 2 5 ,2 6 ) . CHa - CHa - C * N - C6He | CHS = C - N - C6H6 Cl + HC1 The im ide c h lo r id e s o b ta in e d from N - s u b s titu te d benzam ides were found to be f a r more s t a b l e . At h ig h te m p e ra tu re s , th e s e compounds decompose 19 t o a n i t r i l e and an a l k y l o r a r y l c h lo r id e ( 25 ) . Ar - 9 « N - B ------> ArCN + RG1 H a r v i l l , H e rb s t, S c h re in e r and R oberts (27) showed t h a t th e r e ­ a c tio n co u ld be extended to l - a r y l - 5- a l k y l t e t r a z o l e s , and even t o 1 ,5 - d i a l k y l t e t r a z o l e s i f th e im ide c h lo rid e was n o t i s o l a t e d . T h e ir p ro ced u re c o n s is te d i n th e tre a tm e n t o f an N - s u b s titu te d amide in benzene s o lu tio n w ith phosphorus p e n ta c h lo r id e , and a d d itio n o f a benzene s o lu tio n o f h y d razo ic a c id t o th e r e a c tio n m ix tu re a t room te m p e ra tu re . of h e a t. The r e a c t i o n was b ro u g h t t o com pletion by th e a p p lic a tio n The y ie ld s r e p o rte d v a r ie d from 10 t o 15%. The a p p lic a tio n o f t h i s method to th e s y n th e s is o f 1 - a r y l t e t r a ­ z o le s would r e q u ir e th e u se o f s u b s t itu te d fo rm a n ilid e s a s s t a r t i n g m a t e r ia ls . Tffallach (28) had s tu d ie d th e r e a c tio n o f fo rm a n ilid e w ith phosphorus p e n ta c h lo rid e and r e p o rte d t h a t th e p ro d u c t was N, N '-d ip h e n y lform am idines C6Hg - N ■ 3 - - C6H8 However, he d id n o t use a s o lv e n t o r c o n tr o l th e tem p e ra tu re o f th e exotherm ic r e a c t i o n . P ro d u cts were f re q u e n tly i s o l a t e d by d i s t i l l a t i o n o f th e r e a c tio n m ix tu re a t atm ospheric p r e s s u r e . T h e re fo re , i t ap p eared q u ite p ro b ab le t h a t th e N, N’ -diphenylform am idine was formed from th erm a l d ecom position p ro d u c ts o f th e im ide c h lo r id e o r fo rm a n ilid e . I f e i t h e r th e im ide c h lo r id e o r th e iso c y a n id e form ed by i n t e r a c t i o n o f phosphorus p e n ta c h lo rid e and fo rm a n ilid e could b e s t a b i l i z e d by 20 c o n t r o ll i n g th e te m p e ra tu re and d i l u t i n g th e r e a c tio n m ix tu re , th e subsequent a d d itio n o f h y d razo ic a c id could le a d to fo rm a tio n o f th e d e s ir e d 1 - a r y l t e t r a z o l e s . C6HbNHDB0 + PC16 ___ ^ C6H6NHCHC12 CeHsNHCtfilg + P0C1 » C ^ N * CHC1 + IE1 C6H6N * CH31 ----- » C6HgN ff C ♦ H31 II C6He - N - C - H I n th e ex p erim en ts re p o rte d i n t h i s t h e s i s , to lu e n e was u sed as a d ilu e n t and s o lv e n t f o r th e r e a c t a n t s . The r e a c tio n m ixture was k ep t a t o r below room tem p eratu re d u rin g th e a d d itio n of th e phosphorus p e n ta c h lo r id e . On s e v e r a l o c c a s io n s , s t i r r i n g was stopped and th e ic e b a th low ered d u rin g th e co u rse o f th e r e a c tio n . I n th e se c a s e s , a heavy o i l , ran g in g from y e llo w to b r ig h t r e d , was n oted below th e to lu e n e l a y e r . W ith th e ic e b a th i n p la c e , t h i s sometimes appeared as a p a s ty s o l i d on th e w alls o f th e f l a s k . W hile th e r e a c tio n m ix tu re rem ained c o ld , l i t t l e o r no e v o lu tio n o f hydrogen c h lo rid e was d e te c te d a t th e to p o f th e c o n d e n se r. However, i f th e r e a c tio n m ix tu re was allo w ed to re a c h room tem p eratu re d u rin g th e f i r s t s te p , e v o lu tio n o f hydrogen c h lo r id e was n o te d . These o b se rv a tio n s were i n t e r p r e t e d by assum ing t h a t th e c o lo re d o i l was th e amide c h l o r id e , R-NH-CBE12, which 21 i s known t o be q u ite u n s ta b le and which decomposes to g iv e hydrogen c h lo r id e and th e im ide c h lo r id e . C ooling and s t i r r i n g were c o n tin u ed d u rin g th e a d d itio n o f h y d raz o ic a c id t o th e r e a c tio n m ix tu re . Towards th e end o f t h i s a d d itio n , th e i c e b a th was removed and th e s o lu tio n was allow ed t o warm to room te m p e ra tu re . V igorous e v o lu tio n o f hydrogen c h lo r id e o c c u rre d as soon a s th e a d d itio n o f th e h y d razo ic a c id was beg u n . E v o lu tio n o f hydrogen c h lo r id e c o n tin u e d f o r hours a t a g ra d u a lly d e c re a sin g r a t e . ■When th e a d d itio n o f h y d razo ic a c id was co m p lete, th e r e a c tio n m ixture had become homogeneous. I n most o f th e p r e p a ra tio n s o f th e 1 - a r y l s e r i e s , f i n e , w h ite n e e d le s were g ra d u a lly d e p o s ite d . was a t f i r s t th o u g h t t o be th e 1 - a r y l t e t r a z o l e . T his s o li d A ttem pts to f i l t e r t h i s m a te r ia l a t th e end o f th e r e a c tio n showed t h a t i t was q u ite s o lu b le i n w ater i n some c a s e s , w hile i n o th e r s tre a tm e n t w ith w ater m erely changed th e c h a r a c te r o f th e s o l i d w ith o u t d is s o lv in g a l l of it. The w a te r s o lu tio n was a c id to litm u s . These o b s e rv a tio n s su g g e st t h a t th e w h ite n e e d le s formed i n each case m ight be th e hydro­ c h lo rid e o f th e ex p ected p ro d u c t. To s im p lif y th e h an d lin g o f th e p r o d u c t, which appeared to occur i n p a r t a s th e f r e e b ase i n to lu e n e s o lu tio n , and i n p a r t a s th e e a s ily h y d ro ly zed h y d ro c h lo rid e , th e whole r e a c tio n m ix tu re was poured over ic e t o d e s tro y phosphorus o x y c h lo rid e , and th e n made a lk a lin e to con­ v e r t a l l o f th e p ro d u c t t o th e f r e e b a s e . I t was soon found t h a t c h i l l i n g o f th e r e s u l t i n g tw o-phase m ix tu re b rought b o th p ro d u c t and la r g e q u a n t i t i e s o f in o rg a n ic m a te r ia l o u t o f s o lu t i o n . The m ix tu re 22 was th e r e f o r e f i l t e r e d and th e f i l t e r cake washed c o p io u sly w ith w a te r. In many c a s e s , a l l o f th e s o lid re d is s o lv e d a t t h i s p o i n t . Any s o li d which d id n o t d is s o lv e was c o n sid e re d as p a r t o f th e crude p ro d u c t. The aqueous la y e r o f th e tw o-phase f i l t r a t e was s e p a ra te d , combined w ith th e aqueous w ash in g s, and e x tr a c te d w ith to lu e n e . The to lu e n e e x t r a c t was combined w ith th e to lu e n e la y e r from th e f i l t r a t e , and th e s o lu tio n was c o n c e n tra te d to a sm a ll volume. The cru d e p ro d u c t was u s u a lly co ntam inated w ith h ig h ly c o lo re d im p u ritie s . I n most c a s e s , a s e r i e s o f r e c r y s t a l l i z a t i o n s and t r e a t ­ m ents w ith d e c o lo r iz in g c h a rc o a l were n e c e s sa ry to o b ta in th e p u r e , c o l o r le s s m a t e r ia l. P ure m a te r ia l was most e a s i ly o b tain ed by th e use o f 99% is o p ro p y l a lc o h o l f o r r e c r y s t a l l i z a t i o n . However, most o f th e 1 - a r y l t e t r a z o l e s a re f a i r l y s o lu b le i n b o th e th y l and iso p ro p y l a lc o h o ls , so t h a t lo s s e s d u rin g r e c r y s t a l l i z a t i o n s were l a r g e . The u se o f aqueous iso p ro p y l a lc o h o l caused l e s s l o s s o f m a te r ia l on each r e c r y s t a l l i z a t i o n , b u t a ls o le d t o g r e a te r r e te n t io n o f c o lo re d im­ p u r i t i e s i n th e r e c r y s t a l l i z e d p ro d u c t. Since th e lo w -m eltin g members o f th e s e r i e s d id n o t c r y s t a l l i z e w ell from a lc o h o ls , cyclohexane was u sed f o r th e s e compounds. The crude m a te r ia l was e x tr a c te d r e p e a te d ly w ith sm all amounts o f warm cy clo h ex an e, and th e two la y e r s were s e p a ra te d by d e c a n ta tio n . Although t h i s p ro c e ss was te d io u s , th e y i e l d was f a r b e t t e r th a n i n th e c a se s where lo w -m eltin g compounds were r e c r y s t a l l i z e d from is o p ro p y l a lc o h o l. Two r e c r y s t a l l i z a t i o n s from cyclohexane u s u a lly s u f f ic e d to o b ta in pure m a te r ia l, w hile th e u s e o f is o p r o p y l a lc o h o l re q u ire d a number o f r e c r y s t a l l i z a t i o n s , w ith 23 c o n s id e ra b le l o s s o f m a t e r i a l. The 1 - a r y l t e t r a z o l e s p rep ared by th e fo rm a n ilid e method a r e l i s t e d i n T able IV . Tflhile th e y ie ld s a re f a i r l y lo w , th e d i f f i c u l t y would ap p ear to l i e more i n th e p u r i f i ­ c a tio n o f th e p ro d u c t th a n i n th e fo rm atio n o f th e t e t r a z o l e . S e v e ra l a tte m p ts t o p re p a re l - a l k y l t e t r a z o l e s acco rd in g to th e p ro ce d u re u sed f o r th e 1 - a r y l d eriv atiT ^ ^ ^ a ^ l e d to y i e l d any o f th e d e s ir e d p ro d u c t. I n th e s e u n s u c c e ss fu l s y n th e s e s , i t was noted t h a t e v o lu tio n o f hydrogen c h lo rid e began b e fo re a d d itio n o f h y d razo ic a c id . I t seemed p o s s ib le t h a t th e more r e a c tiv e a lk y l im in o -c h lo rid e s m ight form th e iso c y a n id e b e fo re r e a c tio n w ith h y d razo ic a c id . The long s t i r r i n g a t room te m p e ra tu re would a llo w many s id e - r 9 a c tio n s to i n t e r ­ f e r e w ith th e r e a c t i o n between iso c y a n id e and hydrazoic a c i d . C o n seq u en tly , th e r e a c t i o n c o n d itio n s were m odified somewhat. The re a g e n ts were added w ith c o o lin g and s t i r r i n g as b e f o r e , and s t i r r i n g was c o n tin u e d a t room tem p e ratu re f o r one h o u r. The r e a c tio n m ixture was th e n h e ated on th e steam b a th f o r th re e hours to com plete th e re a c tio n . A fte r th e r e a c tio n m ix tu re was poured over ic e and made a l k a l i n e , th e to lu e n e la y e r was d r ie d and d i s t i l l e d a t reduced p r e s s u r e . By t h i s m eans, a \yjL y ie ld o f 1 - is o b u ty l t e t r a z o l e was o b ta in e d . The p ro d u c t gave a s a t i s f a c t o r y e le m e n ta l a n a ly s is f o r th e te t r a z o l e and had th e same r e f r a c t i v e in d ex a s th e b e s t sample o f 1 - is o b u ty l te tr a z ole o b ta in e d by th e iso c y a n id e m ethod. The in f r a r e d s p e c tr a o f th e com­ pounds p re p a re d by th e s e two methods a re th e same ex cep t i n th o se a re a s b e lie v e d to in d i c a t e im p u r iti e s . I t would appear th e r e f o r e t h a t th e formamide method i s a ls o a p p lic a b le , w ith s u ita b le m o d ific a tio n , to 2k o rH O as o £5=33^ 9£ 1 i— I a? <0 0 1 o o© CM ON rH • CM ON CM ON • -rt UN CO • CM UN CO • CM CM On • CM rH NO • rt C— UN • -rt NO r• ON UN UN • VO -rt UN • NO -rt O O NO • NO -rt CO c— © -rt UN NO NO • rt UN vO • Ov rH 1 1 I 1 on rH CO • rH ON rH 03 • rH ON CO UN -rt -rt UN • -rt UN on a (a 3 CM O • rH ON 3 ©a •P rt H P © rH 5 rt 0 ' ^ ^•la H ON • rH ON CM On • -rt ON TJ +fH 3 © O CM CM ON • -rt •rt « a O o vO • CO r> rt '— -r H 0 a 1 1 l Cm © I l i 5 o 03 09 On vO • On rH 1 1 on H rt G -rt NO NO • Ov rH 1 1 -G ra Ov vO • On rH rH O on H • rH Ov « ON • UN rt• r~ m rH • Q vO i i 1 1 i i ON NO • On rrt ON V© • OV rH -rt on • CO ON CO Ov • -rt CO On « -rt ON O• rH ON ON O • rH ON on o• on On r- ON CM oo UN • -rt rt UN • -rt UN o O on un on on O • rH oN rt O « UN UN CM ON r-• CM CM UN • ru\ Ov ON • ON UN Ov Ov • Ov UN UN UN • NO -a UN UN « NO -rt UN UN * NO r t rH O rH O M* S5 © P3 to rH O • • r-• O • © a CO 3 d ,53 53 ©P OO rl h S H* 53© SC c* O ■* % X © o * 53 © S3 © O s p? fo a? cC3 n © % 05 © o *© 05 o © •H IH O ■s & 05 ■8 (5 © o JH VO « ©H Ph UN rH O • r t C*N r t • CO CM CO • o r t -rt * rN r t rH • CM ON O • CM ON CO • -rt ON © S' o rH ■g-s E?S -G O I © o c O1 & (5 £ X O rH © © 05w & JB o o A P. o o o CD rH M -g ftrH © X2 ft O o o » rH H <5 tn o o X ft o o o WH H «g I h £ Ji ft oo 001 H I © O G rH rt o X !>» © o H3 PnrH o o UX ft o Oo m rH H -rt o •H S £ © G tJ «J0 g -p • & o >0 -^ CU NO vO I un vO -rt UN 1 ON UN n £C 05 05 S -rt Ov 1 on Ov n X ft t— co 1 NO CO rH o CM Q «H 1 UN « O o NO xr\ H 1 UN * UN UN UN 0 CO -rt l UN • UN c— T vO rH rt H rH o© t35 o fl tc o V ft E p, U iH irt V © « © & I rt 25 th e p r e p a r a tio n o f 1 - a l k y l t e t r a z o l e s . While th e y ie ld and p u r it y o f th e p ro d u c t ap p ear no g r e a te r th a n in th e is o c y a n id e m ethod, th e advantage o f th e formamide method l i e s i n th e e a s i e r a c c e s s i b i l i t y of th e in te r m e d ia te s . I n th e a r y l s e r i e s , th e formamide method i s f a r more c o n v en ien t th a n th e o th e r two methods s tu d ie d . S p e c tro sc o p ic S tu d ie s Although Benson ( l ) s t a t e d i n 19ii7 t h a t no s p e c tro s c o p ic s tu d ie s o f t e t r a a o l e s had been made up to t h a t tim e , a number o f w orkers have s in c e r e p o rte d i n v e s tig a tio n s i n t h i s f i e l d . U l t r a v i o l e t s p e c tr a o f a sm a ll number o f compounds were r e p o rte d by Havinga and V e ld s tr a (29) and by S c h u e le r, Wang, F e a th e rs to n e and Gross ( 30) . In th e c o u rse of a s tu d y o f th e a lk y l a t i o n o f 5- p h e n y lte tr a z o le , E lp ern and Nachod (31) used th e u l t r a v i o l e t s p e c tr a o f th e p ro d u c t and r e fe re n c e compounds as ev idence t h a t a l k y l a t i o n occu rred i n th e 2 - p o s itio n on th e t e t r a z o l e rin g . Some o f t h e i r r e s u l t s w ill b e f u r t h e r d is c u s s e d below i n con­ n e c tio n w ith th o s e o b ta in e d i n th e p r e s e n t s tu d y . L ie b e r , L ev erin g and P a tte r s o n (32) s tu d ie d th e i n f r a r e d s p e c tr a o f t h i r t y - e i g h t h ig h -n itr o g e n compounds, in c lu d in g 13 t e t r a a o l e s . U n fo rtu n a te ly , many o f th e s e compounds were s e n s itiv e t o shock and co u ld n o t be ground lo n g enough to g iv e sh arp r e s o lu tio n to th e s p e c tr a o b ta in e d on o i l m u l l s . b a n d s. Assignm ents were su g g ested f o r a number o f The re g io n from 9 .0 to 10 m icrons (1111 to 1000 cm*1) was c o n s id e re d th e re g io n i n which bands c h a r a c t e r i s t i c o f th e t e t r a z o l e r in g a p p e a r. A lthough th e number o f bands i n t h i s r e g io n v a r ie d from 26 one to t h r e e , th r e e bands were found i n roost c a s e s . These r e s u l t s h a re been con firm ed by th e p r e s e n t s tu d y . The u l t r a v i o l e t a b s o rp tio n o f t e t r a z o l e i t s e l f and o f s e v e ra l a m in o -te tra z o le s has b een e x p lo re d by M ihina (33a) i n a c i d , b a s ic and n e u t r a l s o lu t i o n . G a rriso n (3^) examined b o th u l t r a v i o l e t and i n f r a ­ re d s p e c tr a o f some n itr a m in o te tr a z o le s . P e r c iv a l (35) s tu d ie d th e i n f r a r e d s p e c tr a o f s e v e r a l ty p e s o f s u b s t itu te d a m in o te tra z o le s and im in o te tr a a o lin e s and p o in te d o u t t h a t th e s e ty p e s could be d i s t i n ­ guish ed from one a n o th e r by i n f r a r e d s p e c t r a , Murphy and P ic a rd ( 36 ) a ls o s tu d ie d b o th i n f r a r e d and u l t r a v i o l e t s p e c tr a o f a m in o te tra z o le s and im in o te tr a z o lin e s . On th e b a s is o f th e r e s u l t s o b ta in e d i n th e s e i n v e s t i g a t i o n s , a tte m p ts have b een made t o e s ta b lis h th e s tr u c tu r e o f th e s e two groups o f compounds (3 U ,3 5 ,3 6 ), b u t no agreem ent has been re a c h e d . More r e c e n t l y , W ilson ( 37) s tu d ie d th e u l t r a v i o l e t s p e c tr a o f a s e r i e s o f 5~a r y l t e t r a a o l e s , Since th e r e s u l t s o f th e p r e s e n t i n v e s t i ­ g a tio n p a r a l l e l and supplem ent th o se o b ta in e d by W ilso n , h is co n clu ­ s io n s w i l l be d is c u s s e d more f u l l y l a t e r on. U l t r a v io l e t A b so rp tio n S p e c tra U l t r a v i o l e t a b s o rp tio n s p e c tr a were o b ta in e d f o r a l l e ig h t o f th e 1 - a r y l t e t r a z o l e s p re p a re d , and f o r th re e members o f th e 1 - a lk y l s e r i e s . Two 5 - a lk y l compounds were in c lu d e d f o r com parison. W ilson (37) had p r e v io u s ly s tu d ie d th e u l t r a v i o l e t s p e c tr a o f a s e r ie s o f 5-*ar y l te tra a o le s . S in ce he had n o t examined th e 5 -ro -to ly l and 5 - p - t o l y l d e r i v a t i v e s , th e se were in c lu d e d i n th e p r e s e n t in v e s tig a t io n to 27 com plete th e com parison. A ll o f th e a r y l t e t r a z o l e s were examined as 1 x 10" M s o lu tio n s i n 95% e th a n o l betw een 210 and 300 mp. The a b s o rp tio n maxima and e x t i n c t io n c o e f f i c i e n t s a re l i s t e d i n T able V. The c u rv e s a re shown i n F ig u re s 1 through 1 0 . A com parison o f th e s e r e s u l t s w ith th o se o b ta in e d by "Wilson shows a marked s i m i l a r i t y f o r co rresp o n d in g s u b s ti tu e n t s i n th e one and f iv e a p o s itio n s . In b o th c a s e s , p a r a - s u b s titu te d compounds absorb a t s l i g h t l y lo n g e r w avelengths th a n meta d e r i v a t iv e s , w hile o rth o d e r iv a ­ t i v e s show a pronounced s h i f t t o s h o r te r w av elen g th s. The peak i n 1 - o -c h lo r o p h e n y lte tra a o le has s h if t e d below 210 mp, so t h a t on ly a sh o u ld e r o c cu rs i n th e ran g e exam ined. A lthough 5 - o -c h lo ro p h e n y lte tra - z o le e x h i b i t s a maximum a t 2%. mp, th e 5-o-brom ophenyl d e r iv a tiv e shows a p i c tu r e s im ila r t o th e 1 -o -ch lo ro p h en y l compound. The 5 - a r y l t e t r a - z o le s have maxima a t s l i g h t l y lo n g e r w avelengths th a n th e co rresp o n d in g 1 -a ry lte tra z o le s . E x tin c tio n c o e f f i c i e n t s a re a ls o somewhat h ig h e r f o r 5 - s u b s t it u t e d compounds. N e ith e r t e t r a z o l e n o r i t s m onoalkyl d e r iv a tiv e s e x h i b it any _3 a p p re c ia b le a b s o rp tio n i n th e range exam ined. The cu rv es f o r 1 x 10 M s o lu tio n s i n 95% e th a n o l o f te t r a z o l e and i t s 1 - b u ty l , 1-am yl, 1 -h e x y l, 5- b u ty l , and 5 -h e x y l d e r iv a tiv e s a re g iv en i n F ig u re 1 1 . A lthough p l o t t e d on te n tim e s th e s c a le used f o r th e a r y l d e r i v a t i v e s , th e a b s o rp tio n i s s t i l l n o t s i g n i f i c a n t , and no maxima can b e d e te c te d above 210 mp. The 5 - b u ty l and 5 - h e x y lte tr a a o le s gave i d e n t i c a l c u r v e s , w ith in th e e r r o r o f th e in s tru m e n t. The same p a t t e r n o f a b s o rp tio n i s a ls o shown by 5 - c y c lo h e x y lte tra z o le ( 3 1 ) . These r e s u l t s confirm th o se 28 TABLE 7 U l t r a v i o l e t A bso rp tion Maxima o f Soma A r y lte tr a z o le s Compound Max. (mp) 1 - p h e n y lte tr a z o le 236 9,260 1 - m - to ly lte t r a z o le 239 8,7UO 1 - p - t o l y l t e t r a z o le 2li3 10,100 1 -o -c h lo ro -p h e n y lte tra z o le ( 2 l5 ) a (10,1^0) 1 -m -ch lo ro p h en y lte tra z o le CM CM G O0 8,830 8,780 1 -p -c h lo ro p h e n y lte tra z o le 2lt0.5 2lt3.5 ilt,oUo lit ,050 1-o-m ethoxyphenylte tra z o le 235 282.5 5,800 3,81tO 1-p-m ethoxyphenylte tra z o le 255 10,930 5 -m- t o l y l t e t r a z o l e 2lt3 13,6itO 5 -p -to ly lte tra z o le 2U6 16,720 (a ) S houlder 29 o b ta in e d by M ihina ( 3 3 a ) , who examined th e u l t r a v i o l e t spectrum of t e t r a z o l e i n a c i d , n e u t r a l and b a s ic aqueous medium. The a b s o rp tio n i n b a s ic s o lu tio n was somewhat h ig h e r th a n t h a t i n a c id ic o r n e u tr a l s o lu t i o n , b u t no peak o c cu rre d i n th e re g io n exam ined. R e-exam ination o f th e u l t r a v i o l e t a b s o rp tio n spectrum o f t e t r a z o l e i n b o th aqueous and a lc o h o lic s o lu tio n s d u rin g th e p r e s e n t i n v e s tig a tio n r e v e a le d s l i g h t l y h ig h e r a b s o rp tio n i n a lc o h o l th a n w a te r, b u t no maximum i n e ith e r c a se . The above r e s u l t s show t h a t th e t e t r a z o l e r in g i t s e l f i s n o t ca p a b le o f s tro n g a b s o rp tio n i n th e re g io n exam ined. i t i s s im ila r to th e c arb o x y l group. In t h i s r e s p e c t , An analogy betw een th e se two groups has been su g g e ste d p re v io u s ly ( 3 3 b ) , and has f re q u e n tly proved u s e fu l. Tiilson (37) e x p la in e d h is r e s u l t s w ith th e 5 - a r y l t e tr a z o le s by a t t r i b u t i n g th e s tro n g a b s o rp tio n to resonance i n t e r a c t i o n o f th e p h en y l and t e t r a z o l e r in g s . The s h i f t to much s h o r te r w avelengths i n o rth o d e r iv a tiv e s was th e n e x p la in e d by in te r f e r e n c e w ith th e a t t a i n ­ ment o f a c o p la n a r c o n f ig u ra tio n betw een th e two r i n g s , due to a b u lk y group i n th e o rth o p o s i t i o n . The r e s u l t s o b tain ed h ere su p p o rt t h i s i n t e r p r e t a t i o n , and s u g g e st f u r t h e r t h a t s t e r i c h in d ran ce may be g r e a te r i n th e 1 - p o s itio n th a n i n th e 5 - p o s itio n . I f th e p o s s i b i l i t i e s f o r resonance i n t e r a c t i o n betw een th e two r in g s a r e exam ined, th e fo llo w in g s tr u c tu r e s may be co n sid e re d f o r 1 - p h e n y lte tr a z o le : (2 forms) I n te r a c t i o n h e re i s l i m ite d to th e s h i f t o f a p a i r o f e le c tr o n s tow ards th e phenyl r i n g . The u n sh ared p a i r s o f e le c tr o n s on th e r in g n itro g e n s p re v e n t th e p henyl group from a c tin g as an e le c tr o n so u rc e . In th e f i v e - p o s i t i o n , th e p o s s i b i l i t i e s a re much g r e a t e r . F irs t o f a l l , th e r in g hydrogen atom m ight be a tta c h e d to any one o f th e f o u r n itr o g e n s . E lp ern and Nachod ( 31) su g g ested on th e b a s is o f s p e c tro s c o p ic ev id en ce t h a t th e isom er i n which th e hydrogen o ccu rs on th e 2 - o r 3 - p o s itio n i s th e m ost p ro b ab le s tr u c tu r e f o r £ - p h e n y lte tr a a o le . The s t r u c t u r e s c o n tr ib u tin g t o th e resonance o f 5 - p h e n y lte tra z o le would th e n in c lu d e 1 (-) (+) N = C H - Ns N : \ N 7/ - Q (-) :N - C (+) O O (2 form s) I n th e above s t r u c t u r e s , e le c tr o n s h i f t s a re tow ards th e t e t r a z o l e rin g . S tr u c tu r e s can a l s o be w r itte n f o r s h i f t o f e le c tr o n s away from th e t e t r a z o l e r in g : 31 (-) ' i ' O s i - r \ . W M " O ' w v •• (2 form a) * The ta u to m e r w ith th e hydrogen a t th e 1 p o s itio n on th e r i n g , allo w s f o r th e c o n tr ib u tio n of more forms to th e resonance h y b rid th a n th e 2-H iso m er. (+) H - N - C =( ( - ) sN: N: V \(+ ) O' H- N H- N II ^ ^ N :Nt / n/ ♦• (2 form s) JD c N Ns \ N^ (♦) H - N - C «, ! I -) sNs Ns 'N * • • (2 forma) (2 form s) '\ v H- N - C sN N: H - N - C * :N sNs . . % *' (-> E lp e rn and Nachod (31) have p o in te d o u t t h a t a lin e a r - c o n ju g a te d s t r u c t u r e , such a s s tr u c t u r e I , m ight be ex pected t o absorb a t ab o u t 270-290 m|x, w h ile a c ro s s -c o n ju g a te d compound, such as s tr u c tu r e I I , sh o u ld abso rb a t s h o r t e r w av elen g th s. 32 R - N - C N =C - O ■ O I II They o b ta in e d , by m e th y la tio n o f 5 - p h e n y lte tr a z o le , a p ro d u ct d i f f e r i n g i n m e ltin g p o in t from th e known l- m e th y l- 5 - p h e n y lte tr a z o le . T h is new p ro d u c t showed a maximum o f 2b0 mp, c o n s is te n t w ith t h e i r p r e d ic tio n f o r s tr u c t u r e I I (R = CHa ) . Since 5 - p h e n y lte tr a z o le showed a maximum o f 239 mji, i t was a ls o c o n sid e re d to have s tr u c tu r e I I (R « H ). However, 1 -me t h y l- 5 -p h e n y lt e tr a z o le d id not conform to th e th e o r y , s in c e i t ab so rb ed a t 232 mp, in s te a d o f i n th e p r e d ic te d 270-290 mu r e g io n . The a u th o rs e x p la in e d t h i s in c o n s is te n c y on th e b a s is o f c h arg e s e p a r a tio n i n s o l u t i o n . However, a c o n s is te n t e x p la n a tio n can a l s o be g iv en on th e b a s i s o f s t e r i c f a c t o r s . I f th e a b s o rp tio n i n th e u l t r a v i o l e t re g io n i s due to th e resonance i n t e r a c t i o n o f th e p h en y l and te t r a z o l e r in g s , any f a c to r s which i n t e r f e r e w ith c o p la n a r ity o f th e two r in g s should s h i f t th e a b s o rp tio n to low er w av elen g th s. Since n e i t h e r r in g system alo n e ab so rb s t o an a p p re c ia b le e x te n t i n th e re g io n exam ined, s u f f i c i e n t in te r f e r e n c e w ith c o p la n a r ity sh o u ld s h i f t th e a b s o rp tio n maximum below th e a v a i l ­ a b le r a n g e . T h is has a lre a d y been shown to occur in th e case o f 1 -o -c h lo ro p h e n y lte t r a z o le and 5-o-brom ophenyl t e t r a z o l e . I t i s th e r e f o r e co n c e iv a b le t h a t a m ethyl group on th e a d ja c e n t r in g atom sh ould i n t e r ­ f e r e w ith th e c o p la n a r ity o f th e two r i n g s , th u s s h i f t i n g th e maximum 33 to lo w er w av e len g th s, r a t h e r th a n to th e h ig h e r v a lu e p r e d ic te d f o r a co m p letely p la n a r system . The fo rm u la tio n o f 5 - a r y l t e t r a z o l e s as s tr u c t u r e H (R = H) could a ls o be defended on s t e r i c grounds, i n s p i t e o f th e g r e a te r number o f reso n an ce s tr u c t u r e s which may be w r itte n f o r s tr u c tu r e I (R = H ). I n 1 - a r y l t e t r a z o l e s , th e hydrogen on th e a d ja c e n t carbon atom i s f irm ly h e ld , and any in te r f e r e n c e which may occur w ith s u b s titu e n ts on th e p h en y l r in g can n o t be a v o id e d . In 5 - a r y l t e t r a z o l e s , however, i n te r f e r e n c e can be av o id ed i f th e hydrogen o ccu p ies th e tw o - p o s itio n . T h is would e x p la in th e a p p a re n tly g r e a te r d eg ree o f s t e r i c h in d ran ce a lr e a d y n o te d f o r a r y l s u b s ti tu e n t s i n th e o n e - p o s itio n as compared w ith th e same s u b s t i t u e n t s i n th e f iv e - p o s i ti o n . A d if f e r e n c e o f 3 -5 mp betw een th e a b s o rp tio n peaks o f co rresp o n d in g isom ers i s noted th ro u g h o u t th e s e r i e s , e x c ep t f o r th e o -m e th o x y p h e n y lte tra z o le s, which d i f f e r by U mp. I t i s i n t e r e s t i n g t o n o te t h a t A raax^ f o r th e s e l a t t e r two compounds reach es th e range p r e d ic te d by E lp ern and Nachod. W ilson (37) has a lre a d y su g g ested t h a t some m olecules of 5 -o -m e th o x y p h e n y lte tra z o le may re a c h c o p la n a r ity th rough i n t e r a c t io n o f th e methoxy group w ith th e hydrogen on th e t e t r a z o l e r i n g . The second peak a t s h o r te r w avelength i n each case may r e p r e s e n t th e ex p ected s h i f t to s h o r te r w avelengths due to in te r f e r e n c e betw een th e b u lk y m ethoxyl group and th e r i n g . The above e x p la n a tio n i s n o t in ten d ed t o exclude e le c tr o n ic e ffe c ts . P re s e n t d a ta a re n o t s u f f i c i e n t to e v a lu a te th e r e l a t i v e 3h r o le s o f e l e c t r i c a l and s t e r i c f a c t o r s . However, th e s p e c tro s c o p ic d a ta so f a r c o l l e c t e d can be c o r r e la te d on th e b a s is o f s t e r i c con­ s id e r a tio n s . I t may be n o ted t h a t th e u l t r a v i o l e t a b s o rp tio n maxima d eterm in e d f o r l- a r y l- 5 - a m in o te tr a z o le s by Murphy and P ic a r d ( 36 ) do n o t f i t th e above p a t t e r n a t a l l . F a c to rs o p e ra tin g i n th e two s e r i e s would ap p ear t o be q u ite d i f f e r e n t . 2h 23 22 21 20 19 18 17 16 15 lk 13 12 11 10 9 8 7 6 5 h 3 2 1 0 v r e l e n g t h (m p ) Figure 1 . U ltr a v io le t Absorption Spectrum o f 1-P h en yltetraaole. 2k 23 22 21 20 19 18 17 16 1* Ik 13 12 11 10 9 8 7 6 5 k 3 2 1 0 0 220 230 H a r e l e n g t h (m p ) Figure 2 . '' U ltr a v io le t Absorption Spectrum o f l-m -T o ly ltetra * ele 2k 23 22 21 20 19 18 17 16 1$ 11 * 13 12 11 10 9 8 7 6 5 k 3 2 1 0 f e r e l e n f t h (n rp ) Figure 3 . U ltr a v io le t Absorption Spectrum o f 1 -p -T o ly lte t r aa o le 2U 23 22 21 20 19 18 17 16 1$ lU 13 12 11 10 9 8 7 6 * h 3 2 1 0 290 30( fe re le n g th (n p ) ;ure h . U ltr a v io le t Absorption S p ectn n o f l-o-C hlorophenyltetra* 2li 23 22 21 20 19 18 17 16 15 1h 13 12 11 10 9 8 7 6 5 1* 3 2 1 0 L0 220 1 1 230 21*0 1 250 1 _ L_ X 260 270 280 290 30 MskTelength (ap) Sure 5 . U ltr a v io le t Absorption Spectrun o f l-n-C hlorophezqrltetras 2k 23 22 21 20 19 18 17 16 1? Ik 13 12 11 10 9 8 7 6 5 k 3 2 1 0 0 220 230 290 30< ▼ alength (gap) ure 6 . U ltr a v io le t Absorption Spectrum o f l-p-Chlorophenyltetra»< 2k 23 22 21 20 19 18 17 16 15 Hi 13 12 11 10 9 8 7 6 5 h 3 2 1 -J 0 L0 220 L230 1 JL 1 2li0 2J>0 260 270 ± 1 280 290 30( f e r e l e n g t h ( ihji) ■e 7 . U ltr a v io le t Absorption Spectrua o f l-o-M ethoayphenyltetraao! 2h 23 22 21 20 19 18 17 16 15 lb 13 12 11 10 9 a 7 6 5 k 3 2 1 0 220 0l e 2£0 260 270 280 290 n g t h ( afx) 8. U ltr a v io le t Absorption Spectrum o f l- p ’4 fetho;jgrphenyltetra*©li h 2h 23 22 a 20 19 18 17 16 15 lk 13 12 11 10 9 8 7 6 5 h 3 2 1 0 ) 220 230 r e l e n g t h {mjx) Figure 9 , U ltr a v io le t Absorption Spectrum o f 5 -n -T o ly ltetr a se le hJ 2l* 23 22 21 20 19 18 17 16 1$ 11* 13 12 11 10 9 8 7 6 5 1* 3 2 1 0 e le n g th (a ji) Figure 1 0 . U ltr a v io le t Absorption Spectrua o f 5 -p -T o ly ltetr a so l 210 220 230 W avelength (np) F ig u re 1 1 . 1^0 250 260 270 280 290 300 U l t r a v i o l e t A b s o r p t i o n S p e c t r a o f T e t r a a o l e a n d Som e A l k y l t e t r a s o l e s . U p p e ri 5 -B u ty lte tra » o le L ow er t A . T e tr a a o le 5 -H e jc y lte tra a o le B . 1 -n - B u ty lte tra a o le C . 1 -n -A n y lte tra a o le D . 1 -n -H e a y lte tra a o le h6 I n f r a r e d A b so rp tio n S p e c tra I n f r a r e d s p e c tr a were o b ta in e d f o r a l l f i f t e e n o f th e 1- s u b s t i ­ tu te d te tr a a o le s . The s o lid a r y l - s u b s t i t u t e d compounds were found to b e s u f f i c i e n t l y s o lu b le i n chloroform to a llo w s p e c tr a i n s o lu tio n as w e ll a s in o i l m u ll. In two c a s e s , a spectrum i n carbon t e t r a ­ c h lo rid e was a ls o o b ta in e d . The 1 - a lk y l compounds were examined o n ly a s p u re l i q u i d s . F o r p u rp o se s o f com parison, th e co rresp o n d in g ^ - s u b s titu te d t e t r a a o l e s were a ls o exam ined. A t o t a l o f sev e n te e n o f th e s e com­ pounds were a v a i l a b l e , in c lu d in g e ig h t w ith a lk y l s u b s titu e n ts and n in e w ith a r y l s u b s t i t u e n t s . z o le s were a ls o in c lu d e d . A group o f t h i r t e e n d is u b s ti tu te d t e t r a - In th e s e g ro u p s, o n ly th e s o lid m ulled in w h ite m in e ra l o i l was exam ined, ex cep t f o r a s in g le liq u id example in th e l a t t e r c l a s s . In a l l , s p e c tr a were o b ta in e d f o r a t o t a l o f f o r t y - s ix te tra a o le s . A f te r e lim in a tio n o f a l l bands which a re known to be due to th e phenyl r in g o r to a lk y l groups ( 38) , a s e a rc h was made f o r bands com­ mon t o a l l members o f a p a r t i c u l a r subgroup. th e A ppendix c o n ta in th e ta b u la te d r e s u l t s . T ables XI through XV in The c h a r a c t e r i s t i c bands found f o r each group o f rao n o su b stitu ted compounds a re summarised i n T ab les VI th ro u g h IX on b o th th e wave le n g th and wave number s c a l e s . The s p e c tr a v a ry w idely i n r e s o l u t i o n , p a r t i c u l a r l y among th o s e o b ta in e d from m u lls . F o r t h i s re a s o n , weaker_bands m ight n o t be d e te c ta b le i n th e p o o rly d e fin e d s p e c t r a . A lso , s in g le bands i n some compounds may be s p l i t i n t o two o r more bands i n o th e r members o f th e s e r i e s . b7 To a llo w f o r such s i t u a t i o n s , th e t h i r d column i n T ables VI through IX re c o rd s th e number o f confounds in which th e band a p p e a rs . The f o u r th column i n each ta b l e in d ic a te s th e r e l a t i v e i n t e n s i t y o f th e band. In th e a r y l compounds, th e c e r t a i n i d e n t i f i c a t i o n and e lim in a tio n o f a l l bands due to th e phenyl r in g was not p o s s i b le , s in c e a b s o rp tio n s due to th e p h en y l and t e t r a z o l e r in g s appear i n th e same r e g io n s , and p ro b a b ly o v e r la p . In th e 1600-1500 cm"1 r e g io n , somewhat a r b i t r a r y assig n m en ts were made, and t h i s has been in d ic a te d by in c lu d in g th e bands a t t r i b u t e d to p henyl i n th e summary. Below 1000 cm"1, th e s i t u ­ a t i o n i s l e s s c l e a r - c u t , s in c e v ib r a tio n s due to th e whole m olecule o cc u r i n t h i s r e g io n , and th e s p e c tr a co n seq u en tly vary more w idely th a n a t h ig h e r f r e q u e n c ie s . I n T able X, an a tte m p t has been made to c o r r e la t e bands in th e v a rio u s ty p e s o f compounds, and to make t e n t a t i v e assignm ents f o r some o f th e s e b a n d s. below . These assignm ents a re d isc u s s e d i n g r e a te r d e t a i l The assignm ent " rin g * in d ic a te s m erely t h a t th e band appears to be c h a r a c t e r i s t i c o f some p a r t o f th e t e tr a z o l e r in g system , and does n o t n e c e s s a r ily in v o lv e a s t r u c t u r a l v ib r a tio n o f th e rin g as a w hole. I n s e v e r a l c a s e s , a more d e f i n it e assignm ent i s a ls o su g g ested i n p a r e n th e s e s , b ased on a n a lo g ie s to o th e r ty p e s o f compounds. The s in g le numbers re p o rte d i n th e s e ta b le s a re each th e mid­ p o in t o f a ran g e o f v a lu e s . i n each c a s e . The e x te n t o f th e range i s a ls o in d ic a te d I t sh o u ld be n oted t h a t th e w ider ran g es i n T able X sometimes o b scu re d if f e r e n c e s betw een su b -g ro u p s. F o r in s ta n c e , 1*8 5 - a l k y lt e t r a z o l e s have a band a t 101*2 -6 cm**1, w hile i n most of th e 5 - a r y l compounds, two bands a p p e a r, a t 1053 -7 cm"1 and a t 1037 -It cm . The summary in c lu d e s th e whole range by re c o rd in g th e band as 101+7 - l k cm , a lth o u g h v a r ia t io n s w ith in each sub-group a re much l e s s th a n t h i s . In th e spectrum o f t e t r a z o l e and in th e ta b u la tio n s i n T ables XI t o XV i n th e A ppendix, square b ra c k e ts have been used to in d ic a te d o u b tfu l b a n d s, which can n o t be d is tin g u is h e d w ith c e r t a i n t y from background a b s o rp tio n . In many c a s e s , t h i s procedure has been j u s t i f i e d by th e appearance o f a more d e f i n it e band a t th e same f r e ­ quency i n th e s p e c tr a o f o th e r members o f th e same s e r i e s , T e tra z o le i t s e l f would t h e o r e t ic a l ly be expected to show 3N - 6, o r 1 5 , fundam ental b a n d s. I t seems p ro b ab le t h a t te n o f th e s e a re th e bands a t 151+3, 1508, 1328, 1252, lll+O, 1081, 101*1+, 1005, 898, and 661 cm"1 . The o th e r f iv e may be re p re s e n te d by bands a t 3135, 1805, 11+1+9, 952, and 721 cm"1 . I n th e s u b s t i t u t e d t e t r a z o l e s , th e p ic tu r e i s n o t c l e a r - c u t above 2000 cm"1 . R e s o lu tio n i s c o m p arativ ely poor i n t h i s re g io n w ith a ro ck s a l t p r is m , so v i b r a tio n s o f d i f f e r e n t atom p a i r s may be grouped to g e th e r h e r e . The weak and i l l - d e f i n e d a b s o rp tio n found i n th e 1+000 cm"1 re g io n o f most t e t r a z o l e s i s alm ost c e r t a i n l y due to o v e rto n e o r com bination b a n d s. The band n e a r 3135 cm i n t e t r a z o l e and i n b o th m o n o su b stitu te d s e r i e s i s e s p e c ia lly p u z z lin g . The r e g io n , i n g e n e r a l, i s c h a r a c te r iz e d by h y d ro g e n -s tre tc h in g v i b r a ti o n s , b u t w hether C-H o r N-H bo n d s, o r b o th , a re in v o lv ed h e re i s unknown. 1*9 TABLE VI Summary o f C h a r a c te r is tic I n f r a r e d Bands of 5 - A lk y lte tr a z o le s (8 Compounds) 'Wave L ength ( (i ) Wave Number (cm~1) Number o f Compounds R e la tiv e I n te n s it y 8 weak 3 .1 9 - .02 1*310 - 1*01*9 + 20 3135 8 medium 3.60-1*.75 2778 - 2105 8 s tr o n g , i l l d e fin e d 5 .5 1 - .09 1811* + 28 8 weak, broad 6 .3 3 - .02 1579 1* 8 medium t o s tro n g 6.1*1* i .05 1553 10 7 weak to medium 7 .0 9 ± .01* 11*11 8 7 weak to medium 7 .7 2 i .17 1295 + 28 6 weak to medium 7 .9 5 - .06 1258 + 10 8 v a r ia b le 9 .0 0 i .08 1111 10 8 medium t o s tro n g 9.21* i .01* 1082 5 5 medium to s tro n g 9 .6 0 - .05 101*2 6 8 v a r ia b le 10.12 - .08 988 8 6 weak to medium 13.99 - .09 715 5 8 weak to medium 2 . 32- 2 .1*7 + + + + + + + + 5o TABLE V II Summary of C h a r a c te r is tic I n f r a r e d Bands of 5 - A ry lte tr a z o le s (9 Compounds) Number o f Compounds R e la tiv e I n te n s it y Tffave Length (p ) Dfeve Number (cm*1) 2.35 - 2.1*5 1*2# - 1*082 8 weak 3 .6 0 - U.32 2778 - 2315 8 v a r ia b le , i l l d e fin e d 5 .3 6 - 5.1*3 1866 - 2 weak, broad 7 weak to medium 9 weak to medium .11 181*2 a + 1607 15 + 1573 23 + 25 15U5 9 weak to medium .09 11*19 18 9 weak to medium .15 1298 26 6 weak to medium .06 1250 9 9 v a r ia b le .13 1168 17 9 v a r ia b le .13 1115 16 7 weak to medium .07 1087 8 7 weak to medium .07 1053 7 8 medium to s tro n g .01* 1037 1* 6 medium to s tro n g 9 .8 6 + .10 + .08 10.12 1011* 10 8 weak to medium 8 7 v a r ia b le 6 8 medium to s tro n g 6 5 v a r ia b le 23 8 weak to medium 6.22 6.36 6.1*8 7 .0 ^ 7 .7 1 8.00 8.56 8.97 9.20 9 .5 0 9.61* 1 3 .3 8 1 3 .9 1 ll*. 87 + + + + + + + + + + + + + + .06 .09 988 .10 71*8 .12 719 .51 673 + + + + + + + + + + + + + (a ) A ssign ed t o phenyl group. 51 TABLE V III Summary o f C h a r a c t e r is ti c I n f r a r e d Bands of 1-JLLkylta tr a z o le s (7 Compounds) "Ware Length (p) % v e Number (cm- 1 ) Number o f Compounds R e la tiv e In te n sity - 2.28 - 2.50 1*386 - 1*000 6 v ery weak t o weak 2.82 - 2 .8 9 351*6 - 31*60 5 weak 3 .1 9 ± .03 3135 - 20 7 medium to s tro n g i*.50 - .02 2222 2 £ 6 weak to medium 5 .7 0 2 .01 1751* - 3 1* v ery weak to weak 6.03 - .11 165 8 2 32 5 v e ry weak to weak 6.73 - .03 11*87 - 6 7 medium to s tr o n g 6.80 2 .02 11*70 - 1* 6 medium to s tro n g 7 .3 2 - .05 1366 i 9 6 medium 7 .69 - .07 1301 2 12 7 weak 7 .8 6 : .05 1273 - 7 5 very weak to medium 8.01 2 .06 121*9 - 10 7 weak to medium 8.21 - . 11* 1219 2 21 5 weak to medium 8.56 2 .03 1168 2 k 7 s tro n g 8.99 - .02 1113 2 3 7 s tro n g 9.20 - .10 1087 - 12 7 v a r ia b le 9 .8 0 2 . 01* 1020 2 5 7 weak to medium 10.33 2 .05 968 2 5 7 medium to s tr o n g 1 1 . 1*2 i .01* 876 - 3 7 v a r ia b le 13.22 i .15 757 - 9 5 weak to medium 1 3 .9 1 - .06 719 - 3 ll* .8 0 - .01* 676 2 2 5 medium to s tro n g 1 5 .0 5 - .08 665 - 1* 7 medium to s tro n g 15.1*6 - .03 61*7 - 1 1* v a r ia b le weak to medium M T3 &0 S ®p y -p a cd CD H -P Q )C « M 05 H CO O rl M •H Sf > P ccj p o O TO .Q td •H •r l P ffl i—1 © rH £> .O cd T* U cd U cd > U CD > p CD rH rH x> c$ CD rH .O cd ■H •rl cd > U cd !> cd *H U cd. > i>- co' CD e > O cd s CD ® rH H .O ad 'cd •H •rH fcj cd I > » a to •rl W) w eak O o 00 a o k «h ra v o o o o o o o g o o o o o o d o o ao co 3 o *g JH 3 0) o 1 ! a is o a CM CA O -d CA 1 1 o - CA NO co © XA _d XA XA CM -d vO O ca +i XA cA CA -d« CM ON O CM CM _d as O xa CM CM I +I CO in aS e ■ 8 •H & > 0 iH S •H G Cd > sO OO ao Os H CM rH •GT i—1 +1 + 1 -G oo 4) rH •S •H cf*d. ~=t H H iH ■p O i—1 rH + 1 us _g o (1) © rH H ■ 3 •H 3•H U o ■p cd I cd f> so ao co *A CO XA P— rH H + 1 CA rH a + 1 ir \ rH Os Os + 1 + 1 Os 5 sO CO H ffl 1 a CSI CM u o f s r p re u u J i faeojcej Figure 19. Infrared Absorption oo CM uoT8®r«sa*.xx V*Sk*e«I of 5-n-Hs sprite traaole r-l Spectrum (Oil OO CM m u ll) . 66 i 00 CM H O 3$ ? % ? 1A * +» O CO 3 f« 5 CM <5 o CM o a o ^ s s p u o v a x ^ueoaej 67 V\ rH OO \f\ NO CM CM O CO I e o « $ *« * H CM CM © s CO CM oofSspESavax V»o*»<£ 70 vr\ co S O r? O Os P ® P so *? v¥• \ p o CO § ■H t 0 1 •o © § -=r CM CM a 2 o s CM aoTSBpurenwj, V»o«x®d Figure 2$. Infrared \A Absorption i— t OO H I 5 CM CM aojerpKScrejx v ie o a s j of 5 -o -C hlorophen yltetraaole CM Spectrum (Oil m u ll) . vr\ (H 72 CM 49 « 4» I IVf\ CO 4* 8 fi* 8 •H -P & 0 o 1 T> I sO CM •4 I CM * ir\ CO CM aoTS8pHSUBj£ ^ a e a z a j 73 XA ri d o ® H 0 N 2 4» • » .£ $ 1 a XfN OO *» 0 « £ g e* n© S •d © 1 a txoT&apKsavJA ^.aeoaaj 7U in A © oo I I 1 I •P f in S oo 4» O g Ito 'O * *8 CM CO CM w I $ CM CM uofsofaacnui ^.aeoaej 75 0 5 CM 3 % 6 1 ■p £» * vr\ Vi O § P O CO 8 •rt ■P vO t a Os CM 1 H s CM uo'Fffsponmix q.aesa«d Figure 30 . rH Infrared co cm aa izo?8«pK8av>i£ ^.naoae^ Absorption Spectram of 1 -Ethyl tetrassole (Pore CO l iq u i d ) 77 X A NO UN H T} tO* S CO l© 4» CO 0 & g 30 §• 1 NO CA a B CM X H I •H aojBBpasOTjj ^ a a o a e j 78 U\ T> tO' U .8 4» £ •8 & 0 A ■3 H ■*» 1 « H GO O w Xf\ H A s NO *o « CM •s & CM a rl * 5 CM CM aoyggf“SUiBai view er (*« F ig u re 33. In fra re d S p e c tru m of vO CM uo'pB&postre.xj; ^aeoa® j 1 -Is o b x x tjlte tra a o le CO A b s o rp tio n ( F o r a a m id e CM CM M e t h o d — P u re liq u id ). 80 l l CM H O 8 ■p •p f * H *-< O OO o a & I S N CM u o ts r p m r e jx ^ s o a a j £ 81 "UN 3 v 3 H © I CM »3 0 1© 5 s •? ■p u CO § t £ I xrv •o vO I CM i £ Io CM CM uoirsrpKStreJX ^ a e o a a j Figure CM j6. Absorption Spectrum iH vO CM eg u o p ssp B raeai *ue0J9< CSI I f r. s s o H '3 VS o o f srpB Stjvjj \ueo*9& 86 o o o CM ! s t & * H H * •p o g t CO r i ■o S s I V CM UN ao'pcepcunre.xj, ^ n a o o a j ■H W v\ CO *d 0 1 £ £ o rH O ■P o ! oo CO G 0 4» •H f 1 Xf\ TJ © 9 S CM CM aoTsspoRm ax V » « ® i 5 Figure 1*2. O CM CM uo^scroscnrjj, Infrared Absorption CO Spectrum of 1 -m -T o ly lte tra z o le (CHC13) iH Io S 89 xr\ vO \J\ a 0 c ■1p s •p s % oo % * £ I *8 & <^\ -a <0 c R H *3 CM CM uoTSspuRnux vx©o F ig u re U 8. In fra re d A b s o rp tio n of oo GO CM u o jsg p ifia v jx Vx®su9<£ 1 -n -C b lo ro p h e n y lte tra a o le CN S p e c tr u n eg CM (C IE lj). F ig u re vO CM CM uoTsrpoetttai ^neazaj 1*9, I n f r a r e d A b s o rp tio n CO S p e c tru m of H CM 1 -p -C h lo ro p h e n y lte tra s o le (O il n u ll). o H S 2 o 96 H* B 0 •§ 9 1+» * fe V ¥• ri * +» O CO c 5 £ I © 8 & V I CM XA a o ^ s tp w m jx VMOJ»£ 97 tr\ 5. Infrared Absorption Spectra® of 1 ,5 -D iiie th y lte tra a o le (Oil CO H t 3 CM sc i CM uo?s«punx9J£ toaO'Xdj m u ll) . 102 rH CSI oo 'O vr\ 3 Eo CM CM u of sgpastreoj, fvueoaej £ 103 IA * S p © * vr\ l O H ? P o GO \0 {a 9 Pm | S CM CM UO^StrBflVMl fBOOJej £ io U Vfv NO rt I 1 CM ao-fsrpwrcnwi ineojej 110 xrv co CM * I Ov •? Y H & £ *V GO 4» O * a o 4» fi* O *rl v\ n 3 CM ® & Jf 2 CSI ao?egpuo«.xj; ^aeoaej ill v\ © 2 § I H4 S H £ I l P. I H GO O 2 £ 0 1 •o © I -=r H Eo $ aopffrFUBtivj^ ^ o o a o j v> 'O © I 112 vr\ 3 2 4» © I * ■P I * oo a I I » f* Io H I CM CM uoT srpaw nw i v » o j» d •H * Figure 6?. Infrared Absorption CO 2 CM CM UO'FBffpUgOV'XX $aoaxed Spectrum of 1 -E th y l-5 -P h e n y lte traaole CM (Oil mull) . llii ■I 4* I * XA I I ■? H *4 O ■P O CO 8 vr\ £n 3 T> 2 t a s CM UN ao-^apjuK rejj £ o * 3O *w» cy E 3 S 4 ■LA •» +3 o a CO CO •g t I o a $ H I 3 CM g a » 116 EXPERIMENTAL P r e p a r a tio n o f A lkyl Isocyam 'dcs A ll o f th e a lk y l iso c y a n id e s were p rep ared by e s s e n t i a l l y th e same p ro ced u re t h a t was u sed by G a u tie r ( 9 ,1 0 ) , w ith v a r ia tio n s only * i n th e tim e o f h e a tin g . The a p p ro p ria te a lk y l io d id e was added to s o li d s i l v e r cyanide i n th e p ro p o rtio n s o f one mole o f io d id e to two o f c y a n id e . T his m ix tu re was h e ated under r e f l u x on a steam b a th f o r th e d e s ir e d le n g th o f tim e , a f t e r which w a te r, potassium cyanide and sodium hy d ro x id e were added to th e r e a c tio n f l a s k . The m ix tu re was th e n d i s t i l l e d over a f r e e flam e u n t i l the d i s t i l l a t e became c l e a r . The aqueous s o lu tio n i n th e d i s t i l l i n g f la s k was d is c a rd e d . The crude is o c y a n id e , which formed a c o lo r le s s o r p a le y ello w -g re e n upper la y e r i n th e d i s t i l l a t e , was s e p a ra te d from th e low er w ater l a y e r , d rie d o ver anhydrous sodium s u l f a t e , and used im m ediately to p re p a re th e co rre sp o n d in g t e t r a z o l e . In a few r u n s , th e iso cy a n id e was ta k e n up i n benzene b e f o re d r y in g , b u t t h i s d il u t i o n appeared to slow th e subsequent r e a c tio n w ith h ydrazoic a c id . The compounds p rep ared by t h i s method a re l i s t e d i n Table I . S in ce th e cru d e p ro d u c ts were n o t p u r if ie d b e fo re u s e , only a rough e s tim a te o f th e y i e l d can be made from th e weight o f crude m a te r ia l. I n a few c a s e s , as in d ic a te d by f o o tn o te s , th e w eight was tak en b e fo re d ry in g over sodium s u l f a t e . Y ield s c a lc u la te d from brom ide-brom ate t i t r a t i o n s have a ls o been in c lu d e d f o r com parison in two c a s e s . 117 U n less o th e rw ise i n d i c a t e d , th e w eight o f p ro d u ct i s th e d iff e r e n c e betw een th e w eight o f f l a s k , sodium s u lf a t e and p ro d u c t, and th e w eight o f f l a s k and wet sodium s u l f a t e a f t e r d e c a n ta tio n o f th e crude is o c y a n id e . The p r e p a r a tio n o f n -b u ty l iso c y a n id e i s given below as an exam ple. n -B u ty l Iso cy a n id e A m ix tu re o f 5 3 .6 g . (O.li mole) o f s i l v e r cyanide and 36.8 g . ( 0 .2 m ole) o f n - b u ty l io d id e was h e a te d under r e f lu x on th e steam b a th f o r f o u r h o u rs. W ater, 70 g . o f potassium cyanide and 16 g . of sodium hydroxide were ad d ed , and th e condenser was arran g ed f o r downward d is tilla tio n . On g e n tle h e a tin g w ith a f r e e fla m e , th e s o lid mass in th e d i s t i l l i n g f l a s k began to d is s o lv e , and an o i l y la y e r formed above th e aqueous l a y e r . A cloudy d i s t i l l a t e formed as th e crude p ro d u ct s te a m - d i s t i l l e d from th e r e a c tio n m ix tu re . "When th e d i s t i l l a t e became c l e a r and th e low er aqueous la y e r o f th e d i s t i l l a t e began t o in c re a s e n o tic e a b ly i n b u lk , d i s t i l l a t i o n was sto p p e d . The d i s t i l l a t e was t r a n s f e r r e d q u ic k ly to a sm all s e p a ra to ry f u n n e l. A fte r th e low er aqueous l a y e r had been drawn o f f and d is c a rd e d , th e upper la y e r was tr a n s f e r r e d t o a ta r e d f l a s k , and th e weight o f f l a s k and c o n te n ts r e c o rd e d . The w eight o f c ru d e , wet n - b u ty l iso c y a n id e was 1 6 .2 g . {98%). Anhydrous sodium s u lf a t e was added to th e f l a s k , which *©s sto p p e re d , s w ir le d , and allo w ed t o s ta n d a few m inutes u n t i l th e liq u id appeared c le a r. D uring t h i s tim e , th e f la s k and c o n te n ts were w eighed. d rie d p ro d u c t was d e ca n te d in to a round-bottom f la s k and used The 118 im m ediately f o r p r e p a r a tio n o f th e t e t r a z o l e . The w eight o f th e d ry ­ in g f l a s k and wet sodium s u l f a t e was re c o rd e d . By d if f e r e n c e , th e w eight o f crude n - b u ty l iso c y a n id e was 1U.0 g . ( 8 i$ ) . The lo s s i n w eight d u rin g d ry in g i s n o t e n t i r e l y due to removal o f w a te r, s in c e some p ro d u c t i s tra p p e d i n th e m o ist sodium s u lf a te m ass. E s tim a tio n o f Iso c y a n id e s by T i t r a t i o n An a tte m p t was made to e s tim a te c o n c e n tra tio n of iso c y a n id e s in benzene s o lu tio n by tre a tm e n t w ith ex cess s ta n d a rd brom ide-brom ate s o lu t i o n , a d d itio n o f p o tassiu m io d id e , and b a c k - t i t r a t i o n w ith sta n d a rd t h i o s u l f a t e , a method which has been used s u c c e s s fu lly f o r d e te rm in a tio n o f p henols ( 1 9 ) . The procedure follow ed i s e s s e n t i a l l y t h a t used b y S p lie th o f f (20) f o r th e t i t r a t i o n o f p h e n o ls. R eagents s A pproxim ately 0 .1 M Sodium T h io s u lfa te A s o lu tio n o f 2$ g . o f sodium t h i o s u l f a t e i n 975 m l. of w ater was s ta n d a rd iz e d a g a in s t potassium io d a te . Each sample o f potassium io d a te was weighed i n t o an io d in e f l a s k and t r e a t e d w ith 30 m l. o f w ater and 30 m l. of 10$ potassium io d id e . Beyond t h i s p o i n t , th e d e te rm in a tio n was completed was each sample b e fo re proceed in g w ith th e n e x t one. Three m i l l i l i t e r s o f 6 N h y d ro c h lo ric a c id was added through th e s to p p e r ; th e s o lu tio n was mixed by s w ir lin g , and im m ediately t i t r a t e d w ith th e sodium th i o s u lf a te s o lu tio n to a s ta r c h e n d p o in t. 119 A pproxim ately 0 . 1 N Bromate-Bromide S o lu tio n A m ix tu re o f 2 ,8 g , o f potassium brom ate and 15 g . o f p o tassiu m bromide was d is s o lv e d i n 980 m l. o f w a te r, 10% P otassium Io d id e One hundred grams of potassium io d id e was d iss o lv e d i n 900 m l, o f w ater. S ta rc h S o lu tio n One gram o f s o lu b le s ta r c h was added to 100 m l. o f b o ilin g w ater and s t i r r e d u n t i l a c le a r s o lu tio n was o b ta in e d . P ro ce d u re : The sam ples o f iso c y a n id e i n benzene s o lu tio n were tr a n s ­ f e r r e d by p i p e t t e to 2£0 m l. io d in e f la s k s ; a f la s k c o n ta in in g an eq u al volume o f benzene was used as th e b la n k . Ten m i l l i l i t e r s o f brom ate-brom ide s o lu tio n was added t o each f l a s k , u s in g a v o lu m etric p ip e tte . Beyond t h i s p o i n t , th e d e te rm in a tio n was com pleted w ith each sample b e fo re p ro ce ed in g w ith th e next o n e. Five m i l l i l i t e r s of c o n c e n tra te d h y d ro c h lo ric a c id was added through th e s to p p e r , washed down w ith d i s t i l l e d w a te r, s w irle d and t i t r a t e d im m ediately w ith sta n d a rd sodium t h i o s u l f a t e s o lu tio n . From th e d iffe re n c e between b la n k and sam p le, th e iso c y a n id e c o n te n t was c a lc u la te d . P r e p a r a tio n o f sam ple: A weighed, sample o f n - b u ty l iso cy a n id e was p la c e d i n a v o lu m e tric f l a s k and d i l u t e d t o th e m ark w ith benzene. A liq u o ts were 120 an aly zed by th e above p ro ce d u re and th e iso cy a n id e c o n te n t o f th e t o t a l sample was c a l c u l a t e d . The r e s u l t s a re summarized i n T able I I . The r i g h t hand column g iv e s th e tim e in t e r v a l betw een p u r if i c a t i o n of th e sample and com p letio n o f t i t r a t i o n s . steam d i s t i l l a t i o n a lo n e . Sample A was p u r if ie d by Samples B and C were p u r if ie d by steam d i s t i l l a t i o n , fo llo w ed by two d i s t i l l a t i o n s a t atm ospheric p r e s s u re . Sample B was d a rk a f t e r steam d i s t i l l a t i o n , w hile sample C was c o lo r­ le s s a t th is p o in t. In d e te rm in a tio n s on sample C, one m inute brom i- n a tio n tim e was allow ed betw een a d d itio n o f a c id and a d d itio n of p o tassiu m io d id e . P re p a ra tio n o f 1 - A lk y lte tr a z o le s from Iso cy an id es The crude is o c y a n id e was p la c e d i n a round-bottom f l a s k , tr e a te d w ith 100 m l. o f ap p ro x im ately 16% hydrazoic a c id in benzene and h eated under r e f l u x on th e steam b a th f o r one to f iv e h o u rs . Ifiiere th e s h o r te r h e a tin g tim e s were u s e d , th e m ixture was allow ed to sta n d o v e rn ig h t a t room tem p eratu re b e fo re removal o f th e s o lv e n t. The s o l ­ v e n t was removed a t reduced p re s s u re and th e re s id u e was h eated over a f r e e flam e f o r one hour w ith 8 m l. o f w ater and 10 m l. of c o n c e n tra te d h y d ro c h lo ric a c i d . sodium h y d ro x id e . The coo led a c id s o lu tio n was made a lk a lin e w ith The m ix tu re , which now c o n s is te d o f two la y e r s , was tr a n s f e r r e d to a s e p a ra to r y f u n n e l. washed w ith e t h e r , and d is c a rd e d . The low er la y e r was drawn o f f , The e th e r e x tr a c t and upper la y e r were combined and d r ie d o v er sodium s u l f a t e . The e th e r was s tr ip p e d o f f a t reduced p r e s s u r e , and th e p ro d u c t was f r a c t i o n a l l y d i s t i l l e d 121 th ro u g h a s m a ll V igreux column a t a p re s s u re o f 1-2 m illim e te rs o f m ercu ry . S in ce th e b o i l i n g p o in ts o f th e s e compounds a re q u ite h ig h , even a t t h i s p r e s s u r e , h e a tin g was done w ith a f r e e fla m e . R e fra c tiv e in d ic e s and i n f r a r e d s p e c tr a were used a s c r i t e r i a i n s e le c tin g f r a c ­ tio n s f o r a n a l y s i s . The 1 - a l k y lt e t r a z o l e s o b ta in e d by t h i s method a r e l i s t e d i n T able I I I , to g e th e r w ith t h e i r b o il in g p o i n ts , r e f r a c t i v e i n d i c e s , and a n a ly s e s . Due to th e d i f f i c u l t i e s o f p u r if y in g such sm a ll sam p les, no ad eq u ate p ic t u r e o f th e y ie ld s could be o b ta in e d . I n s e v e r a l c a s e s , a n a ly s is showed th e compound to be im pure. However, th e r e f r a c t i v e in d e x and i n f r a r e d spectrum in each case resem bled so c lo s e ly th o se o b ta in e d on compounds which gave s a t i s f a c t o r y a n a ly s e s , t h a t th e s e im pure p ro d u c ts a re a ls o in c lu d e d i n T able I I I . The d e t a i l s o f p r e p a r a tio n o f 1 -n -a m y lte tra z o le and l- n - h e x y lt e t r a z o l e a re g iv e n a s ex am ples. The l a t t e r i s th e o n ly case i n which a s in g le d i s t i l l a t i o n proved s u f f i c i e n t . 1 -n -A m y ite tra z o le A m ix tu re o f 8.6 g . o f crude n-am yl iso c y a n id e and 100 m l. of a 16# s o lu tio n o f h y d razo ic a c id in benzene was h e a te d under r e f l u x on th e steam b a th f o r f o u r h o u rs . The crude p ro d u c t was i s o l a t e d as d e s c rib e d above and f r a c t i o n a l l y d i s t i l l e d . 122 F r a c tio n Tem perature _ & .) P re s s u re (mm.) R e fra c tiv e Index/20°C . Tfeight (g.) 1 123-128 1 1.1*592 0.07 2 128-131 1 1.1*603 0 .5 8 3 128-132 1 l.i+ 601* 0 . 1*8 k 131-13!? 1 1.1*610 3.93 5 132-135 1 1.1*610 3 .2 1 — — — 0 .5 1 re s id u e F r a c tio n s 1* and 5 were combined and r e d i s t i l l e d . F r a c tio n Tem perature (5c . ) P re s s u re (mm.) R e f r a c tiv e Index/20°C . 6 up to 133 1-8 1.1*589 7 131-136 1 1.1*592 8 136-137 1 1.1*600 9 138-139 1 1.1*608 10 138-139 1 1.1*603 F r a c tio n 9 was shown by ele m e n ta l a n a ly s is to be pure p ro d u c t. On th e b a s is o f r e f r a c t i v e in d e x , f r a c t i o n s 1* and 5 from th e f i r s t d i s t i l l a t i o n would ap p ear to be m ostly 1 - n - a m y lte tr a z o le . From t h i s d a t a , th e y i e l d may be c o n sid e re d approxim ately 7 ,1 g , (37% o f th e t h e o r e t i c a l y i e l d , b ased on th e w eight o f iso c y a n id e u s e d .) 1 -n -H e x y ite tra z o le A m ix tu re o f 8 .0 g . o f cru d e n -h ex y l iso cy a n id e and 100 m l. o f a 16% s o lu tio n o f h y d razo ic a c id i n benzene was h e a te d under r e f l u x 123 f o r th r e e h o u rs on th e steam b a th . The crude p ro d u c t was i s o l a t e d as d e s c rib e d above and f r a c t i o n a l l y d i s t i l l e d . F r a c tio n Tem perature (X ) P re ss u re (mm.) R e fra c tiv e In d e x / 20°C . Tfeight (fit) 1 126-138 1 1.1*631 0.20 2 133 - 11*2 1 1 . 1*632 o.oi* 3 11*2-11*5 1 1.1*627 0.33 1* ll*i*-ll*6 1 1 . 1*610 6.31 $ 1 U8 1 1.1*606 0.31* F r a c tio n 1* was shown by e le m e n ta l a n a ly s is to be p u re 1 te tra z o le . T his r e p r e s e n ts $}% o f th e t h e o r e t i c a l y i e l d , based on th e w eight o f iso c y a n id e u se d . P re p a ra tio n o f Phenyl Iso cy an id e Phenyl iso c y a n id e was p re p a re d by th e method of M a la te s ta (1 6 ). A s o lu tio n o f 30 g . (0 .3 2 mole) o f a n i l i n e i n 75 g . (0.61* mole) of chloroform was added v e ry slow ly to a su sp en sio n of 80 g . ( 1 . 1*3 moles) o f powdered potassiu m hydroxide i n 200 m l. o f benzene i n a t h r e e ­ necked f l a s k equipped w ith r e f l u x co n d en ser, s t i r r e r and a d d itio n f u n n e l. The m ix tu re was h e ated f o r 15 m inutes on th e steam b a th , c o o le d , and d e c a n te d . The s o lid r e s id u e was washed w ith benzene and th e washings added t o th e main l i q u i d . The benzene s o lu tio n was e x tr a c te d w ith 0.12 M h y d ro c h lo ric a c i d , th e n washed once w ith a 0.2 M s o lu tio n o f sodium hy d ro x ide and re p e a te d ly w ith w ater u n t i l th e f i n a l w ashing was n e u t r a l t o l i t m u s . The benzene was d i s t i l l e d a t 12b atm o sp h eric p r e s s u r e u n t i l th e tem p eratu re ro s e to about 100° C. re sid u e was d i s t i l l e d a t reduced p r e s s u r e . The The p ro d u c t, which b o ile d a t 67-69° C . a t 10 mm., weighed 9 .9 g . (3050. I n a n o th e r r u n , fo llo w in g th e same procedure ex cep t t h a t 97 g . (1.1*3 m oles) o f powdered sodium hydroxide was u sed i n p la c e o f th e p o tassiu m h y d ro x id e , th e y i e l d was l i t . 2 g . (h2%) o f p ro d u c t, b o ilin g a t 62- 68° C. a t 12 mm. P r e p a ra tio n o f 1 -P h e n y lte tr a z o le from Phenyl Iso cy an id e A m ix tu re o f l i t . 2 g . o f crude phenyl iso c y a n id e ( b .p . 62-68° C. a t 12 mm.) and 100 m l. o f an ap p ro x im ately 16% s o lu tio n of h y d razo ic a c id i n benzene was h e ated u n d er r e f lu x f o r one hour on th e steam b a th , th e n allo w ed t o s ta n d a t room tem p eratu re f o r 2b h o u rs . The s o lv e n t was removed a t red u ced p r e s s u r e , and a few drops o f p h en y l iso c y a n id e d i s t i l l e d a t 60-68° C . a t lit mm. w ith w a te r. The r e s id u e was co o led and t r e a t e d A lthough some c r y s t a l s form ed, th e r e s u l t i n g o i l d id n o t s o l i d i f y c o m p le te ly . The w a te r la y e r was d ecanted and th e re s id u e ta k e n up i n is o p r o p y l a lc o h o l. and washed w ith w a te r. The c r y s t a l s which formed were f i l t e r e d The m other liq u o r was t r e a t e d w ith w ater to fo rc e more o f th e p ro d u c t o u t o f s o lu tio n . T h is second crop was tak en up i n a sm all amount o f is o p ro p y l a lc o h o l, f i l t e r e d , and th e c r y s t a l s added t o th e f i r s t c ro p . The t o t a l p ro d u c t was washed s p a rin g ly w ith is o p ro p y l a lc o h o l and p re ss e d o u t on f i l t e r p ap er t o d r y . The crude y ie ld was 2 .5 g . , m .p . 56-62° C. (1 2 ,b% of th e t h e o r e t ic a l y i e l d , b a se d on th e w eig h t o f p h en y l is o c y a n id e ) . One r e c r y s t a l l i z a t i o n from is o p ro p y l a lc o h o l gave 1 .6 g . , m .p. 63-61*° C. 125 P r e p a r a tio n o f D iform ylhydraz in e A m ix tu re o f 5 .2 g . (0,076 mole) o f sodium form ate and h .9 g . ( 0,038 m ole) o f h y d ra z in e s u l f a t e was ground i n a m o rta r, tr a n s f e r r e d t o a c r y s t a l l i z i n g d i s h , and h e a te d one hour on th e steam b a th w ith o c c a s io n a l s t i r r i n g . a g a in . The mass s o fte n e d to a p a s te , th e n hardened The s o li d mass was e x tr a c te d th r e e tim e s w ith 20 m l. p o r tio n s o f h o t 95# e th a n o l. The rem aining s o lid was d is c a rd e d . th e e x t r a c t d e p o s ite d d ifo rm y lh y d ra zin e as w hite n e e d le s . weighed one gram ( 30#) and m elted 157-162° C, On c o o lin g , The p ro d u c t P e l l i z z a r i (22) r e p o r ts a 77# y i e l d , m .p. 161° C. by t h i s m ethod. P r e p a r a tio n o f 1 - P h e n y lte tr a z o le by th e D im roth Method F o u rte e n m i l l i l i t e r s o f 7 N h y d ro c h lo ric a c id was added t o 1 .9 o g . o f a n i l i n e and th e r e s u l t i n g su sp en sio n cooled to 0 C. and m e ch a n ic ally s t i r r e d . A s o lu tio n o f l.U li g . of sodium n i t r i t e i n 5 m l. o f w ater was added d ro p w ise, so t h a t th e tem p eratu re rem ained below o 5 C. T h is d ia z o tiz e d a n i l i n e s o lu tio n was c a r e f u ll y n e u tr a liz e d to litm u s w ith s o li d sodium carb o n ate and added dropw ise to a w e l l - s t i r r e d s o lu tio n o f 1 .8 g . o f d ifo rm y lh y d ra zin e in 20 m l. of 5 W sodium hy d ro x id e and 20 m l. o f w a te r. o The tem p eratu re was k ep t below 5 C. A fte r s ta n d in g o v e r n ig h t, th e r e a c tio n m ixture was e x tr a c te d w ith e th e r. A f te r e v a p o ra tio n o f th e e th e r on th e steam b a t h , the re s id u e was wanned w ith 7 N h y d ro c h lo ric a c i d , and n e u tr a liz e d w ith sodium h y d ro x id e . C h illin g and s c ra tc h in g o f th e w alls caused s e p a r a tio n of a brown s o li d w eighing ab o u t 90 mg. R e c r y s ta lliz a ti o n from aqueous 126 is o p ro p y l a lc o h o l gave a few m illig ra m s o f p a le ta n n e e d le s , m .p. 60-61° C . P r e p a ra tio n o f Formamides The a p p r o p ria te amine was mixed c a u tio u s ly w ith an excess o f 88# fo rm ic a c i d , and d i s t i l l e d u n t i l the tem p eratu re o f th e vapor reached 105 C. The r e s id u e th e n c o n s is te d o f th e d e s ir e d p ro d u c t, c o lo re d i m p u r i t i e s , and some e x c e ss form ic a c i d . c a tio n were u s e d . S ev eral methods o f p u r i f i ­ L iq u id s were d i s t i l l e d a t reduced p r e s s u r e . S o lid s were ta k e n up i n e th a n o l and poured over i c e , w ith s t i r r i n g and s c r a tc h ­ in g t o induce c r y s t a l l i z a t i o n . A lthough crude y ie ld s were e x c e ll e n t, d i f f i c u l t y i n rem oving th e c o lo re d im p u r itie s and th e tendency o f th e s e compounds to s e p a ra te as o i l s made com plete p u r i f i c a t i o n d i f f i ­ c u lt. In many c a s e s , th e once r e c r y s t a l l i z e d p ro d u c t s t i l l r e ta in e d a f a i n t c o l o r , b u t was n e v e r th e le s s co n sid e re d p u re enough f o r u se in th e p r e p a r a tio n o f th e c o rresp o n d in g t e t r a z o l e . D e ta ils o f p r e p a r a tio n a r e g iven below f o r s e v e ra l compounds to i l l u s t r a t e th e p r e p a r a tio n o f fo rm a n ilid e s and o f N -alkylform am ides. A ll o f th e formamides p re p a re d a r e known. o -F o rm o to lu id id e A m ix tu re o f 107 g . (one mole) o f o - to lu id in e and 66 m l. o f 88# fo rm ic a c id was d i s t i l l e d u n t i l th e tem p eratu re o f th e vapor reached 105° C. The re d re s id u e was poured in to an Erlenm eyer f la s k and \ c h i l l e d . S c ra tc h in g o f th e w alls o f th e f la s k w ith a g la s s ro d induced s o lid ific a tio n . The cru d e p ro d u ct was s t i r r e d w ith 100 m l. o f c o ld 127 e th a n o l, f i l t e r e d and washed w ith a sm all amount o f e th a n o l. The f i l t r a t e was t r e a t e d w ith ic e and s o lid sodium carb o n ate to give a second c ro p . The combined crude p ro d u ct weighed 117.2 g . One r e c r y s t a l l i z a t i o n from aqueous e th a n o l and one from carbon t e t r a c h l o r i d e gave h i .5 g . (3 !$ ) o f alm ost c o lo r le s s m a te r ia l, m .p. 57-60° C. S e v e ra l v a lu e s f o r th e m e ltin g p o in t of t h i s compound have been reco rd e d : 62 , 57-59, 56 .5 -5 7 .5 ° c . U o ,li 2 , i 2 ) . p-Form anj s id id e A m ix tu re o f 123 g . (one mole) of p - a n is id in e and 66 m l. o f 88# fo rm ic a c id was d i s t i l l e d u n t i l th e vapor tem p eratu re reach ed 105° C. The r e s id u e was poured i n t o an Erlenm eyer and c h i l l e d to induce s o lid ific a tio n . The cru d e p ro d u c t was f i l t e r e d by s u c tio n and d r ie d . The crude p ro d u c t weighed 76 g . , m .p. 7^-80 C. The m a te r ia l was d is s o lv e d i n warm e th a n o l, t r e a t e d w ith d e c o lo r iz in g c h a r c o a l, f i l t e r e d , and poured o v e r i c e . T h is o n c e - r e c r y s ta lliz e d p ro d u ct weighed 67,h g . (It5#) and m elted 7 9 .5 -8 1 .5 ° C. The m eltin g p o in t given i n B e ils te in f o r p -fo rm a n is id id e i s 80-81° C. ( ip .) . The method d e s c rib e d above was a ls o u sed to o b ta in p -fo rm o to lu id id e (1+2), o -fo rm a n isid id e (1+3), o -c h lo ro fo rm a n ilid e (W t), m -ch lo ro fo rm an ilid e (1|5), and p -c h lo ro f o rm a n ilid e (It6) . M -Is obutylform am ide A m ix tu re o f 3 6 .5 (0 .5 mole) of iso b u ty lam in e and 52 g . o f 88# form ic a c id was d i s t i l l e d a t atm ospheric p re s s u re u n t i l th e vapor te m p e ra tu re ro se above 105° C, The re s id u e was allow ed to co o l 126 som ew hat, and th e n was d i s t i l l e d a t reduced p r e s s u r e . A fte r a f o r e ­ ru n had b een d is c a rd e d , th e m a te r ia l b o ilin g 1014- 113° C. a t 13 mm. was c o lle c te d . The l i t e r a t u r e v alu e f o r th e b o ilin g p o in t of th e p ro d u ct i s 111° C. a t 12 mm. ( ii7 ) . The p ro d u c t th u s c o lle c te d was a c o lo r le s s l i q u i d w eighing h i .2 g . (93%) . I t was used w ith o u t f u r th e r p u r i f i ­ c a tio n f o r th e p r e p a ra tio n of th e t e t r a z o l e . T h is method was a ls o u sed to o b ta in fo rm a n ilid e (1|2), m -fo rm o to lu id id e (1*8), N -raethylformamide (10) , and N -ethylform am ide (1*9). P r e p a ra tio n o f 1 - A r y lte tr a z o le s from F o rm an ilid es A s o lu tio n o f s lu r r y o f 0 .2 £ mole o f th e fo rm a n ilid e i n 100 m l. o f to lu e n e was p la c e d i n a th re e -n e c k e d f l a s k equipped w ith c o n d en ser, m ech an ical s t i r r e r and ru b b e r tu b e connected to a f l a s k c o n ta in in g powdered phosphorus p e n ta c h lo r id e . The m ixture was cooled by means o f an ic e b a th and s t i r r e d r a p id ly d u rin g th e g rad u al a d d itio n of $2 .1 g . (0 .2 5 mole) o f phosphorus p e n ta c h lo r id e , A p a s ty s o li d o r a heavy o i l u s u a lly ap p eared a t t h i s tim e , b u t th e r e was no evidence o f hydrogen c h lo r id e e v o lu tio n th ro u g h th e condenser in most c a s e s . A fte r f i v e to te n m in u tes f u r t h e r s t i r r i n g , 100 m l. o f an ap p ro x im ately 16$ s o lu tio n o f h y d ra z o ic a c id i n benzene was added slow ly from an a d d itio n f u n n e l. d u rin g t h i s s t e p . ad d ed . V igorous e v o lu tio n o f hydrogen c h lo r id e was n o te d A c l e a r s o lu tio n formed as the hydrazoic a c id was The ic e b a th was removed tow ards th e end o f t h i s s te p , and th e s o lu t i o n was s t i r r e d a t room tem p eratu re f o r 2h h o u rs , d u rin g which tim e f in e w h ite n e e d le s were d e p o s ite d in q u a n t i t i e s v ary in g w ith th e compound b e in g p r e p a re d . At th e end o f 2h h o u rs , th e r e a c tio n 129 m ix tu re was poured o v er i c e , made a lk a lin e w ith sodium h y d ro x id e , and filte re d . The f i l t e r c a te was washed w ith w a te r, whereupon most o f i t r e d is s o lv e d . Any s o l i d rem aining was crude p ro d u c t. l a y e r was s e p a ra te d from th e f i l t r a t e . The to lu e n e The aqueous l a y e r was combined w ith th e aqueous w ashings and e x tr a c te d w ith to lu e n e . The to lu e n e s o lu tio n s were combined and ev ap o rated to a sm all volum e. p ro d u c t which s e p a ra te d was f i l t e r e d and r e c r y s t a l l i z e d . The crude H igh-m elting members o f th e s e r i e s were r e c r y s t a l l i z e d from iso p ro p y l a lc o h o l, w ith th e u se o f d e c o lo r iz in g c h a r c o a l. Cyclohexane was found to be a moire s u i t a b l e s o lv e n t f o r r e c r y s t a l l i z a t i o n of th e lo w -m eltin g compounds. The 1 - a r y l t e t r a z o l e s o b ta in e d by t h i s method a re l i s t e d i n Table IV . D e ta ils o f p r e p a ra tio n a re g iv en below f o r 1 - m - to ly lte tr a z o le and 1 - p - c h lo r o p h e n y lte tr a z o le , t o i l l u s t r a t e s u c c e s s fu l p r e p a ra tio n s o f a lo w -m e ltin g and a h ig h -m e ltin g compound, r e s p e c ti v e ly . U n su ccessfu l a tte m p ts t o o b ta in 1 - o - t o l y l t e t r a z o l e a re a ls o d e s c rib e d . 1 -m -T o ly lte tra z o le A s o lu tio n o f 3 3 .8 g . (0 .2 5 mole) o f m -fo rm o to lu id id e in 100 m l. o f to lu e n e was s t i r r e d and co o led d u rin g th e a d d itio n o f 52.1 g . (0 .2 5 mole) o f phosphorus p e n ta c h lo r id e . To th e r e s u l t i n g b r ig h t y ello w s o lu tio n was added 100 m l. o f a 16$ s o lu tio n o f hydrazoic a c id i n to lu e n e . The m ix tu re was s t i r r e d a t room tem p eratu re f o r 2lt h o u rs, p oured o v er i c e , made a lk a lin e w ith sodium h y d ro x id e , and f i l t e r e d . The f i l t e r - c a k e was s t i r r e d w ith a s o lu tio n o f U g . o f sodium hydroxide i n 100 m l. o f w a te r, and f i l t e r e d . The s o lid so o b ta in e d was s t i r r e d w ith 100 m l. o f d i s t i l l e d w a te r, f i l t e r e d , and washed w ith w a te r. 130 The aqueous washes and th e w a te r la y e r from th e f i r s t f i l t r a t e were d is c a r d e d . The to lu e n e l a y e r from th e f i r s t f i l t r a t e was ev ap o rated to d ry n e ss to g iv e a second cro p o f crude p ro d u c t. p ro d u c t weighed 3 6 .5 g . (9 1 $ ). The t o t a l crude The two cro p s were combined and r e c r y s t a l l i s e d from aqueous iso p ro p y l a lc o h o l, in c lu d in g tre a tm e n t w ith d e c o lo r iz in g c h a r c o a l. The once r e c r y s t a l l i z e d m a te r ia l weighed 2 0 ,1 g . and s t i l l c o n ta in e d c o lo re d im p u r i tie s . The p ro d u ct was r e c r y s t a l l i z e d from cyclohexane by re p e a te d e x tr a c tio n s w ith sm a ll amounts o f th e h o t s o lv e n t. The cyclohexane la y e r was decanted and c h i l l e d t o cau se s e p a r a tio n of c o lo r le s s c r y s t a l s . Only sm all amounts o f p ro d u c t d is s o lv e d i n each e x tr a c ti o n , b u t r e p e t i t i o n o f t h i s p r o ­ ced u re f i n a l l y l e f t o n ly a sm a ll amount o f h ig h ly c o lo re d waxy r e s id u e . The t o t a l y ie ld o f p u re 1 - m - to ly lte tr a z o le o b ta in e d i n t h i s way was 1 3 .6 g . ( M ) , m .p . 5 3 -& ° C. 1 -p -C h lo ro p h e n y lte tra z o le A m ix tu re o f 3 8 .9 g . (0 .2 5 m ole) o f p -c h lo ro fo rra a n ilid e and 100 m l. of to lu e n e was s t i r r e d and c o o led d u rin g th e a d d itio n o f 52.1 g. of phosphorus p e n ta c h lo r id e , fo llo w e d by the a d d itio n o f 100 m l. of a 16% s o lu tio n o f h y d razo ic a c id i n to lu e n e . The r e a c tio n m ixture was s t i r r e d a t room te m p e ra tu re f o r 2k h o u rs, poured ov er i c e , made a lk a lin e w ith sodium h y d ro x id e , and f i l t e r e d . The f i l t e r cake was washed by s t i r r i n g w ith d i l u t e sodium h y d ro x id e , f i l t e r e d and d r ie d . The cru d e y ie ld was iiU.U g . (9&%) o f s l i g h t l y c o lo re d p r o d u c t, m .p, 1143-1500 C . The cru d e p ro d u c t was r e c r y s t a l l i z e d th re e tim e s from is o p ro p y l a lc o h o l, w ith th e u se o f d e c o lo riz in g c h a rc o a l i n th e f i r s t 131 tw o . A fte r d ry in g i n th e oven a t 110° C . , th e pure m a te r ia l weighed 9 .0 g . and m e lte d 15 5 .5 -1 5 6 ° C. M a te ria l reco v ered from th e r e c r y s t a l ­ l i s a t i o n m other l i q u o r s and from e v a p o ra tio n of th e to lu e n e l a y e r o f th e r e a c t i o n m ix tu re was r e c r y s t a l l i a e d tw ice from iso p ro p y l a lc o h o l to f u r n is h an a d d itio n a l 5.5 g . o f pu re p ro d u c t, m .p. 155-156° C. The to ta l yield of pure 1-p-chlorophenyltetrazole was lit .5 g. (32%). l-o - T o ly lte tra a p le A m ix tu re o f 2 0 .25 g . (0 .1 5 mole) of o -fo rm o to lu id id e and 60 m l. o f to lu e n e was s t i r r e d and co o led d u rin g th e a d d itio n o f 31.3 g . ( 0.15 mole) o f phosphorus p e n ta c h lo r id e , follow ed by th e a d d itio n o f 60 m l. o f a 16$ s o lu tio n o f hydrazoic a c id i n to lu e n e . was s t i r r e d a t room te m p eratu re f o r 38 h o u rs. over i c e , n e u t r a l i z e d , and c h i l l e d . d is c a rd e d . The r e a c t io n m ixture The m ix tu re was poured The w ater la y e r was s e p a ra te d and Removal o f th e to lu e n e a t reduced p re s s u re l e f t 23.3 g . o f a d a rk -re d o i l from which no s o lid could be i s o l a t e d . Since a su rv ey o f m e ltin g p o in ts o f th e o th e r 1 - a r y l te t r a z o l e s on hand su g g ested th a t 1 - o - t o l y l t e t r a z o l e m ight m e lt v e ry c lo s e to room te m p e ra tu re , th e p r e p a r a tio n was r e p e a te d . On th e a d d itio n o f phosphorus p e n ta c h lo rid e i n th e second ru n , th e fo rm a tio n o f an orange low er l a y e r was n o te d . A fte r a d d itio n of th e h y d raz o ic a c i d , a c l e a r s o lu tio n was o b ta in e d . The m ix tu re was s t i r r e d f o r 2k h o u rs , d u rin g which tim e a w hite p r e c i p i t a t e ap p eared . The r e a c t i o n m ix tu re was worked up i n th e same manner as th e f i r s t ru n . A f te r rem oval o f th e to l u e n e , an a tte m p t was made to d i s t i l l th e re s id u e a t red u ced p r e s s u r e . When no d i s t i l l a t e was o b ta in e d 132 even on h e a tin g to 200° C. a t 1 mm., th e h e a tin g was d isc o n tin u e d and th e a p p a ra tu s p a r t i a l l y d isa sse m b le d . At t h i s p o i n t , th e re s id u e began t o decompose w ith v ig o ro u s e v o lu tio n o f g a s . A lthough no ex­ p lo s io n o c c u rre d , i t was f e l t t h a t f u r th e r a tte m p ts to d i s t i l l t h i s m a te r ia l were in a d v is a b le . * P r e p a r a tio n o f l - I s o b u t y l t e t r a g p l e by th e Fprmamide Method A ttem pts to p re p a re 1 - is o b u ty l te tr a z o le a c c o rd in g to th e procedure d e s c rib e d above f o r th e p r e p a r a tio n o f th e 1 - a r y lt e tr a z o le s f a i l e d to y i e l d th e d e s ir e d p ro d u c t. The fo llo w in g m o d ific a tio n le d to th e fo rm a tio n o f th e ex p ected compound i n low y i e l d . A m ix tu re o f 1 7 .9 g . (0 .1 8 mole) o f is o b u ty l forroamide and 100 m l. o f to lu e n e was s t i r r e d and cooled d u rin g th e a d d itio n o f 37.1 g . (0 .1 8 m ole) o f phosphorus p e n ta c h lo r id e , fo llo w ed by th e a d d itio n o f 100 m l. o f a 16% s o lu t i o n o f h y d razo ic a c id i n to lu e n e . The r e a c tio n m ix tu re was s t i r r e d a t room te m p e ra tu re f o r one h o u r, and th e n on th e steam b a th f o r th r e e h o u rs . The m ixture was poured over i c e , and made a lk a lin e w ith sodium h y d ro x id e . w ith to lu e n e and d is c a r d e d . The w ater la y e r was s e p a r a te d , washed A fte r removal o f s o lv e n t a t reduced p r e s s u re from th e combined to lu e n e s o lu ti o n s , th e r e s id u e was f r a c o t io n a te d a t reduced p r e s s u r e . The f r a c t i o n b o ilin g a t 121-123 C. a t 1 ram. gave th e c o r r e c t e le m e n ta l a n a ly s is f o r 1 - i s o b u t y l t e t r a z o l e , and e x h ib ite d an i n f r a r e d spectrum s im ila r to t h a t o f th e o th e r 1 - a lk y lte tra z o le s . T h is f r a c t i o n weighed 2.88 g . and had a r e f r a c t i v e in d e x o f 1.1*590 a t 20° C. F u r th e r a tte m p ts to d i s t i l l th e r e s id u e were accom panied by ev id en ce o f d ecom position and r e s u l t a n t v a r i a t io n in 133 th e p r e s s u r e . A f r a c t i o n b o ilin g a t 127-130° C. a t 2-3 mm. had a r e f r a c t i v e in d e x o f 1.1*587 a t 20° C. , and may r e p re s e n t a f u r t h e r amount o f im pure p r o d u c t. T h is l i q u i d had a f a i n t y e llo w tin g e , in c o n tr a s t t o th e p u re p ro d u c t which was c o l o r l e s s . weighed 1 .1 g . The impure m a te r ia l The y i e l d m ight th e r e f o r e be e stim a te d as U.O g ., or 18% c r u d e , and a s 2 .9 g . , o r 13^, o f pure m a t e r ia l. U l t r a v i o l e t A b sorption S p e c tra The u l t r a v i o l e t s p e c tr a were o b ta in e d on 1 x 10 9$% e th a n o l. -4 M s o lu tio n s i n In a few c a s e s , s p e c tr a were a ls o o b ta in e d f o r 1 x 10 M _2 and 1 x 10 M s o lu tio n s i n th e same s o lv e n t. R eadings were made on a Beckmann Model DU S pectrophotom eter u s in g one c e n tim e te r c e l l s , w ith 9$% e th a n o l a s th e b la n k . a t f i v e mp i n t e r v a l s . The re g io n from 210 to 300 mji was scanned N ear a maximum, re a d in g s were made a t i n t e r v a ls o f one mp. I n f r a r e d A b so rp tio n S p e c tra The i n f r a r e d s p e c tr a were o b ta in e d on a Perkin-ELm er Doublebeam R ecording S p ec tro p h o to m e ter, Model 21. exam ined, u s in g a ro c k s a l t p ris m . The re g io n from 2 to 15 p was S p e c tra were o b ta in e d on o i l m u lls , s o lu tio n s i n ch lo ro fo rm o r carbon t e t r a c h l o r i d e , or pu re l iq u i d sam p les. Only th e 1 - s u b s t itu t e d t e t r a z o l e s were p re p a re d d u rin g th e p re se n t in v e s tig a tio n . (3 3 b ). The 5 - ^ lk y lte tr a z o le s were p re p a re d by M ihina The 5 - a r y l t e t r a z o l e s were p re p a re d by W ilson (37) and by M ihina ( 3 3 b ) . The 1 , 5 - d i s u b s t i t u t e d compounds were r e fe r e n c e sam ples from th e work o f H a r v i l l , e t a l . (27) ex cep t f o r 1 ,5 -p en tam eth y len et e t r a z o l e , which was a com m ercial sample o f M e tra z o le , o b ta in e d from E. B ilh u b e r , I n c . and u sed w ith o u t f u r t h e r p u r i f i c a t i o n . 13k SUMMARY AND CONCLUSIONS Seven 1 - a lk y lte tr a z .o le s have b een p rep ared from th e co rrespond­ in g iso c y a n id e s by a known m ethod. E ig h t 1 - a r y lte tr a z o le s have been •i p re p a re d from s u b s t i t u t e d fo rm a n ilid e s by a new method which c o n s is ts i n t r e a t i n g a to lu e n e s o lu tio n o r su sp en sio n of th e fo rm a n ilid e f i r s t w ith phosphorus p e n ta c h lo r id e , and th e n w ith a s o lu tio n of hydrazoic a c id i n to lu e n e . new m ethod. One 1 - a l k y lte tr a z o le has a ls o been o b ta in e d by t h i s Of th e compounds p re p a re d , s ix of th e 1 - a l k y lte tr a z o le s and s i x o f th e 1 - a r y l t e t r a z o l e s a r e new compounds. U l t r a v i o l e t and in f r a r e d a b s o rp tio n s p e c tr a o f th e new compounds have b een s tu d ie d . T e tra z o le and i t s a lk y l d e r iv a tiv e s show l i t t l e a b s o rp tio n i n th e u l t r a v i o l e t re g io n exam ined. The a r y l t e t r a z o l e s show c o n s id e ra b le a b s o rp tio n , w ith maxima s h if t e d to s h o r t e r wave­ le n g th s when s t e r i c f a c t o r s i n t e r f e r e w ith th e c o p la n a r ity o f the p henyl and t e t r a z o l e r i n g s . I n f r a r e d a b s o rp tio n s p e c tr a were a ls o o b ta in e d f o r se v e n te e n ^ - s u b s ti tu t e d t e t r a z o l e s and f o r t h i r t e e n 1 ,5 - d i s u b s t i t u t e d t e t r a z o l e s . A t o t a l of 1*6 t e t r a z o l e s were examined i n th e in f r a r e d r e g io n , and an atte m p t has been made to i d e n t i f y bands c h a r a c t e r i s t i c o f th e t e t r a z o l e r i n g . 135 REFERENCES " 1 . Benson, F . R . , Chem. R ev. U ., 1-61 (191*7). " 2 . 0 1 iv e ri-M a n d al£ , E . , and Alagna juux— mut ( 1910 ) . B ., Gazz. chirn. i t a l . liO, I I . 3 . D im roth, 0 . , and DeM ontmollin, G ., B e r. ij3 , 2901;-2915 (1 9 1 0 ). ^ b . S t o l i d , R ., and H en k e-S tark , F . , J . p r a k t. Chem. 12h , 261-300 (1 9 3 0 ). - 5 . F reu n d , M ., and P a r a d ie s , 6 . Oliveri-Mandala, E. I I , 1*65-1*75 (1 9 1 3 ). T ., B e r. 3U, 3110-3122 (1 9 0 1 ). and Passalacqua T., Gazz. chim. i t a l . U3, ~~ 7. O liv e ri-M a n d a la , E., Gazz. chim. i t a l . 5 2 , n , 139-ll*l* (1 9 2 2 ). - 8 . Von B rau n , J . , and R udolph, W ., B e r. j k , 26U—272 ( l9 l* l) . - 9 . G a u tie r, A ., Ann. li* 6 , 119-130 (1 8 6 8 ). - 1 0 . G a u tie r , A ., Ann. chim . [U ], 1 7 , 103-108; 203-260 (1 8 6 9 ). 1 1 . Hofmann, A. V , , Ann. 11*6, 107-119 (1 8 6 8 ). 1 2 . K e f, J . U ., Ann. 270 , 267-335 (1 8 9 2 ). 1 3 . B id d le , H. C ., Ann. 310, l-2 it (1 9 0 0 ). 1U. Hammiok, D. L ., New, R. C. A., Sidgwick, N. V., and Sutton, L. E., J . Chem. Soc. 1930 , 1876-1887. 1 5 . Lindemann, J . , and ’W iegrebe, L . , B e r. 63B, 1650-1657 (1 9 3 0 ). '■ 16. M a la te s ta , L . , Gazz. chim . i t a l . 77> 23 8—2U0 (191*7); C. A. 1|.2, 869 (191*8). - 1 7 . B a k e r, R . H ., and S ta n o n is , D ., J . Am. Chem. Soc. 7 3 , 699-702 (1 9 5 1 ). - 1 8 . G u illem ard , H ., Ann. chim . e t 19. phys. [ 8 ] , ll*, 311-1*32 (1 9 0 8 ). Ruderman, I . W., Anal. Chem. 1 8 , 753 (191*6). 136 2 0 . S p l i e t h o f f , W, L . , The K in e tic s and Mechanism o f th e R acem ization of P h e n y lm e th y lca rb in y l C h lo rid e b y P h e n o ls. P h. D.' T lie s ls . M ichigan S ta te C o lle g e } T £ 5 3 . 2 1 . D a v is . T . L . , and Y e lla n d , W. E (1 9 3 7 ). J . Am. Ghem. Soc. 59, 1998-1999 — 2 2 . P e l l i z z a r i , G ., Gazz. chim . i t a l . 39 , I , 520-51*0 (1 9 0 9 ). 2 3 . F o r s t e r , M. 0 . , J . Chen. Soc. 95, 18l*-191 (1 9 0 9 ). - 2l*. S c h ro e te r, G ., B e r. 1*2, 2336-231*9 (1 9 0 9 ). - 2 5 . Von B rau n , J . , J o s t e s , F . , and Heyraons, A ., B e r. 60B. 92-102 (1 9 2 7 ). 2 6 . Von B rau n , J . , and Heymons, A ., B e r. 62B, 1*09-1*13 (1929). 2 7 . H a r v i l l , E . K ., H e rb st, R . M ., S c h re in e r, E . C ., and R o b e rts, C . ¥ . , J . O rg. Chen. 15 , 662-670 (1950) . - 2 8 . W allach , 0 . , Ann. '2 9 . 21i*, 193-202 (1 8 8 2 ). H avinga, E . , and V e ld s tr a , H ., Rec. t r a v . chim . 66 , 257-272 (191*77. - 30 . S c h u e le r, F . W ., Wang, S . C ., F e a th e r s to n e , R. M ., and G ross, E . G ., J . P h a m , Exp. T h e r. 97, 266 (1 9h 9), 31 , E lp e rn , B ., and Nachod, F . C ., J . Am. Chem. Soc. 72, 3379-3382 (1 9 5 0 ). “ 3 2 . L ie b e r, E . , L e v e rin g , D. R ., and P a tte r s o n , L . J . , A nal. Chem. 2 3 , 159U-160U (1 9 5 1 ). 3 3 . a ) M ih in a, J , S . , u n p u b lish ed work. b ) M ih in a, J . S . , and H e rb s t, R. M ., J . Org, Chem. 1 5 , (1 9 5 0 ). 1082 - 3l*. G a rris o n , J . A ., The S y n th e sis and C h a r a c te r iz a tio n of N itram inot e t r a z o l e s . P h . D. T h e s is , M ichigan S ia te C o lleg e', 195U. 3 5 . P e r c i v a l , D. F . , A lk y la te d 5 -A m in o te tra z o le s. T h e ir P re p a ra tio n and P r o p e r t i e s . Ph. D. flies i s , M ichigan S ta te C o lle g e , 195^. 3 6 . Murphy, D. B . and P ic a r d , J . P . , J . O rg. Chem. 1 9 , 1807-1811* (1 9 5 U . 137 3 7 . W ilso n , K. R ., The Apparent A cidic D is s o c ia tio n C o n stan ts of Some 5 - A r y l t e t r a z o l e s . M, 5 . T h e s is . M ichigan S ta te C o lle g e . — 3 8 . B ellam y, L . J . , The I n f r a - r e d S p e c tra o f Complex M o lec u le s, Methuen and C o ., L t d . , London* John W iley and S o n s I n c . , New Y ork, 195L. 3 9. K oegel, R . J . , G re e n s te in , J . P . , W in itz , M ., Birnbaum, S, M ., and McCallum, R. A ., J . Am. Chem. S o c ., 77, 9708-5720 (1 9 5 5 ). U0. a ) Laderiburg, A ., B e r. 1 0 , 1123-1131 (1877). b ) H i r s t , H. R. and Cohen, J . B ., J . Chem. Soc. 67 , 829-831 (1 8 9 5 ). ~~ U l. F r o e h lic h , £ . , and W edekind, E . , B e r. L0, 1009-1013 (1 9 0 7 ). J+2. T o b ia s , G ., B e r. 1 5 , 2hb3-2k$2 (1 8 8 2 ). k 3 . D ie p o ld e r, E . , B e r. 3 2 , 351L-3517 (1 8 9 9 ). hh. C hattaw ay, F . D ., and O rto n , K. J . P . , B e r. 3 3 , 2396-21*00 (1 9 0 0 ). 1*5. D a v is , 0 . C. M ., J . Chem. Soc. 95, 1397-11*03 (1 9 0 9 ). 1*6. S lo sso n , E . E ., Am. J . Chem. 29, 289-319 (1 9 0 3 ). h i . Schm idt, 0 . , B e r. 36 , 21*59-21*82 (1 9 0 3 ). 1*8. Von N iem entow ski, S . , B e r. 20, 187L-1895 (1 8 8 7 ). 1*9. W u rtz, A ., Ann. chim . [ 3 ] h2 , 1*3-70 (185L ). APPENDIX 138 A b b re v ia tio n s Used i n T ables XI th ro u g h XV ¥ = weak M medium S s tro n g B = b ro ad sh = sh o u ld er P p la te a u [ ] - v e ry weak d o u b tfu l TABLE XI C h a r a c t e r i s t i c Bands i n th e I n f r a r e d S p e c tra o f 5 - A lk y lte tr a z o le s A lkyl Group iiOOO Region M ethyl U27I4W li2021feh 3l55Msh E th y l l3 1 0 ¥ i*219Wsh n -P ro p y l 28002000 1811 1579 1553 H ill [27782326] 1812WB 1582M 1 S63M [ l i a 23sh 3l2$Msh [27782326] 1795W 1575M [151*13 l563Wsh l2 # W 3 l3 5 ^sh 2717Ssh 1 ?86M [ 27032326] 1577S n -B u ty l b27bW b219W 3ll5M sh 27lOSsh 1808W 2591Ssh [2U393 1582M 1 51*ai lliOJMsh n-Amyl h292 h0b9W 3135S [27782105] 183$HB I577sh I5 6 5 sh 1555M lii08lfeh i-Amyl b27b¥ l;202T&h 3l2 5 ^sh 27^0S2353M l61i2kB 1582W 1550M l it 03M n-H exyl h27b¥ l|202Wsh 3115Msh 2703S2I463S 1818WB 1575M I5 5 » h l 51*JWsh n -H ep ty l U219W 3125M 2710S2 I4.69 18321© 1580M 1553M 15>li3Msh 3X35 llil8M H a ss lUOllM 139 Table XI C ontinued 1295 1258 1111 1267V 125&1 1112M 1103sh 1307M 1253M 1101M 1082S 10l*3S 995V [131*6] [1307] 1276M 1259S 1106S 1078S 10l*0B [990893JS 715M 1259M 1107 S IO 36VB [1015] [980] 715M 1263sh 1253M 1110M 1267V 1109M 1267Vs h 1259M 1253Vsh 126i*V 12l*8V 1121S 111 CM 1107S [1305] 132 % |1 3 0 7 ] 1082 101*2 988 101*7 1087M 715 [719] [715] 7l 5Msh IO 36B 10l*CM 985v 1082S 10l*3S 99l*M 1086M 10i*lS 98 m [733716] 710W s CO 'O o XA CM CO On CM CO 4) H 0 1 43 © On s ? XA H H rH H rl H H H XA RXA XA XA CM CM rH CM 9 nO nO XA P IS oo S X A -S t CM CM rH rH i=d - i3 j CM CM CM i5 Si CO s oo -= r CM CM CM &5 CM 3 ft o 3 $ CJ 01 ri XA pH I* CO nO XA JO cd B O r— XA CM XA rH XA XA XA 4 .a IS O - S fN XAXA H H On XA 3 5 o 4* NO NO 5 2 rH H CM NO rH f t 3 rH ft 8 £ R 8 NO S3 On XA rH n T3 P oj m •H •P I ■m"£j> co © H » On NO ON NO CM 77? CO iH CB PS n •H I O NO* - = r cm C~- PA CM CM XAXA CM H t — PA CM CM I *77 CM NO NO CM t*PA CM CM -= f C-NO A - O n cm NO X A CA CM CM CM CM CM &XA CM H fe. ■at a -aj CS o< PA CM -Sf -sr rH rH H O E4 1 o *» H O EH 1 E C*~ rH IS- PA CM CM i 1i PPA CM ftc ift PA-=t rH CM3 CM cA K -Sf i= 4 ■ f t £ Ph 'A I Cj> 0 , o _=f PAPA r-^ 8 R tsa t gs w r-i NO H r - rH CM CM -Sf u 1 8 B* 3 5 ^ p. A> 1 r—• O XA -SJ rH C*- PA CM CM Ko4 ' rH CO CM O -s f - s f -tf-S f o -M e th o jg rphenyl 1 [2 6 0 0 ] 6 m -C h lo ro phenyl a ft 3H s ■LA'S ■—i£ s &s la -5 la rH rH rH CM rH O O rH O O rH rH O rH CO (A O rH 5 CO CU\ O 3 LA 3 O rH rH rH A (W i—i On On CO 3 rH rH rH Sg o o OO PO O rH On O & © A CL ,Ci JO Ov On ^ CM R CM O rH a a _ a O CM3 CA CM O rlH H H rH H CM H rH O -P 3 © rH $ I rH O & O ■? PL O rH I O rH 6 & & & cp A. O O rH 6 & a s Cj> CL 6 Cj> cl cl fcrH .8 ^ S J5 * * O k jg & -p © d) A ^ A CL & ■a 0) 3O o -cr p- P- 00 -3 rH n -Xf H CO O A -G rH co rH CO -XT H CO A C— XT X5 m CO CO A H P- p-XT-XT H rH rH g O A CO A -XT rH CO rH P_=r rH C O oo A Xt S * M3 M3 -xr -x t rH rH C O a 00 On -= t -=f H r—t r g o On P- 0O O rH g CM A O rH <0 to -3 P- O rH t- .j A CM co o H W A On O rH CO drH -=*• H —i A CO A On O CO -=r -=s co P- M3 to © H 0 co ■LA o 8 -p A vO ® A A 'A OJ CM M3 P -M 3 rH r r.-J M3 1—I I—I * * €i£ a S co 3t^ 3rI M3 PrH rH CO O P~ f—1 rH On rH rH A CM rH CO O CO x j rH rH r- 1 r-j H NO co p- ■p rH £ pH 1 X* A PrH O 1—n Xj A PrH L—1 r—1 3 r p- —1 A .x t A A P~ P- A rH CM rH — J H i fn +3 O © <8* H H a a EH CM CM CM CM XJ ffl U £ aS S CM CM CM g £ S P~ CM CM CM CM CM CM CM CM CM CM CM CM CM rH X! CO Js p— rH aCM CM CM CM A x t CM a s 8 a CM rH -c t CM rH -x r CM rH -xr CM A *A CM H X3 © J3 43 LA A iH C •H A to A A i—I A to s , s »A dA &A A A rH A rH A n A rH A aA rH A A P- p- CM aNO A 3O S A CM si P - CM IQ T» a m o •rl 43 10 •H IH © 43 P G O -H, O Cq A © A fcj XJ © S S -d - A A x} A A 5S P- s -x r M3 -3 A -X * A A CM P'X} A rH O A I A 8 H A * CO CM A rH O © U £o I i—i nO Bo - &® ■J- « H -xr-=r o h © JO >» >k x; 43 M ^2 3: 3 PA CM -XT 43 CL LH &Cf cj: Q CO O A O ?c CM O #G A rH CM -x r ?>» 43 G m 1 PA CM -x r t© I c I •H 1 c A A CM -3 $£< © W I G M3 M3 A H SI 3 3 s i s * A A rH PA rH £G 43 w CO T G co A A A rH rH § PA >* 43 G pq T I 1U co p Os 3 jco- CO CO vO 3cr\ CM H & vO XA o vO 1aa XA vO vO co o r - vO € s 58 vO sO 3 vO vO CA CM OS (H P- CM X A P~ XA rH rH rH VO SO O- C^- CM rH 5 P O «A oo CO VO Os n sQ vO g M3 sO sCM CM N 3X A £ 3 r— Os VO Os sO p vO CSI p~ p vO so p^ aCM aCM p— r - & 3 aP— P— S oo vO -G p - 3P oo vO vO a 3 3 vO CSI C— vO CM i VO P - o CM 6 p - 3 -= J H CM CO CO oo -gt CO CO Os c— CO CO c— oo * £ 3 3 SO «CM gCM CM R vO Os VO Os c vO On VO Os a 3 vO Os A £ 3vO 01 I—M O t ? I G I •H C§ I C G, £I G CO Tabulation of Characteristic Bands in the Infrared Spectra of 1-Aryltetraaoles XA Os CA rH J3 CA H O O -3 -3 rH H CO sO H H H OO XA -3 -3 -3 H - 3 CA co co CA rH O co to n £5 CO SO CA CA H rH rH O s CO CA CA CO Os -3 rH *On -3 i— I CO -3 o CN O XA rH -3 xa r—I M3 Os "lA rH XA & £ 3 3 rH rH co XA fL XA XA XA O £Os CO -3 H rH 3 -3 CO CA Os CO -3 co -3 -3 i—I 3 M o a OS CM Os XA CA 8CO CO CM Os CO H H -3 rH CO & oo 8rH H 8sO CM sO TO CO XA XA rH rH CO 3 CO CO SO CO H Q - 3 CA -3 r— I XA XA Os CA -3 -3 rH * XA XA I CO sO sO XI -3 XA c— rH rH 3 CO co a co r— CO CO OJ vO -3 3 3 3 3 CO _3 H C— XA CA CA sO XA XA CM CO CM Os XA rH XA SO Os XA rH 3 G O •H . I c— CO rH xa 8 Ml IO ® Os CM CM CM CM (3 U\ -3 rH rH CA CA XA CA rH CA CA g$ O O LA Ov rH CM -3 >» g © 3 ft XA CM XA CA CM O -3 -3 XA O -3 -3 rH •rt O rH I 1—1 A- 6j CO CA S CA rH KS Os XA CA CA > > o G —* 2 £ 3 ft H H H C O '-' 1 B H H O ► >« H O O '—* E-r 1 B sO O « O O '— • £-4 ft rH O Ow ft s -3 rH H H I* !* -3 O -3 rt rH rH O XA CA sO s o sO _ 3 XA CA CM O -3 -3 CO XA sO r-\ G — » ft CA XA $CA -coc3a n rH a rH CA CO XA sO - 3 CA ca / —s rH S * XA XA gg r— H sO CM CM CM 3 X A -3 XA CA sO _ 3 CA CA c A pc{ CM CM CO XA XA rH XA I !» Os CVI Os O O s- 3 CM CM Os CA Os Os 3 > CO CO I CA CA CA Os O s rH CM CM I t O b ©o 3 ft ^ O H ' —' fe & d H ©o 3 3 '— o cu t E I o u o d 6 H r ? & a ©O 3 '- ' ft Ik2 I Os CO ON ON H X! CO X3 o roH oH i— I o rH rH Os O CO C*** CM CO O - & O UN O rH CO x t Os O H |g § O s sO U N -X T -XT CO r CO CO ON Os O rH orH O Js — H 1O s1 -x r O UN ft oo Continued next page xs to :§ HP. Qr-x t on HH CO r— CM O rH H rH rH d k si X! $ S rH rH UN H UN I* O s ON ON CM sO vO rH H I UN r —i CMUN rH CO c o On i-—j CNJ Ss C O 8 OO 8 8 »U>N cO •> O- Os sO-oaOs O O N-X T Os O CM CM CO s NO. rH co rH rH CM CO sO C— rH rH ON U N Os O CM CM Os ft CO O CM rH H ON O CO UN-3 sONo ON 3 ON PD CO 3 sO. CO ON rH UN |s ~ rH ON ON CM sO x t -XT CM UN 3 CM 8 -SI -XT CO O- OS sO rH CM CM CO UN sO rH CO UN UN UN OS UN Os rH rH CO sO sO rH rH rH co o ft OO OO rH rH d o CM CO o o O CM CM CM CM rH 1 rH C*~ CM sO CM rH r H rH CM CM rH ft -Cx ro *— O s vO i— I csi XI w UNCO UN O n I 38 $ &2 : d ft ft oI rH H<0 & &B ©O °3 Xi ^ V ft ft » h ss; ft X3 S 3 0) o © XJw 43 ^ O ft 5• p £© do a> x : v_ ^ ^ ft ft . s & s +9 © o © X i '— ' ^ ft ft % 1 rH £ © X! ft O so ON r H ON r*N n h © XI ft & S © XJ ft & ON rH < n rs B £ 3 sO OS CM iH rH " && a -p ® o © Xi o rH •H O r-s h CM O s ON CM rH rH ON t I O 5 8 O rH d > d H O O w *e? ^3 E O s-* ft to a a O rH OO CO -= t m3 O rH 3 S CO S CO vO CO N vO CM a oo o rH co CO O o XJ CV H H S CM iH CO f t ft ft ft frH r? * o § U I ISf Ia s O 1U3 ft ss O Os O fost CO c~- 8CO sO co sO pH 3 g s co C -X A so SO s o CO a s 33 •LA O Ov co CSI 5iH CO s£> o Os SO rH CM sO 03 i* sO H f t H r— rH M ft XA 03 Cl 1 r -> XA O XA-Of 0 3 03 ti_j sO ft CO CSI CO 03 CO Os o Ov CO 03 Os Os t>- 5 c— CO Continued CO CM next page I C*— ft f t XA 03 CO oo CO 3 OO i» o Os o Os CO H oo Hf Os Os Os fcasj CA Os 3 Si ft & s j Os S t Os Si 1 CSJ Os Si 8 oSI C sO ■LA Os fCtA sO Os is CO c— XA Os XA Os 3* s Os CO Os XA Os o co S. SO Os Ee i XA XA Os OS CO Os H & a C--3 CM CM H J3 m I •— ' - so r- r- XA Os Os CM H £ 5 Os Os Os Os CO ft S t Os Os Os Os Os Os t.rzJ H CO CO ft 03 Os Os Os Os Os Os Os Os CO CA Os OS X! J* f® jH S rs Ors J■PM fl> o ^ p .w p. CO CO CO os-d- O ca rp | p H i—I pr 03 H O O H I PS SfrHH 3-P S B © O * • CO ft CA rH H rH O o o rH I H H H H H O >»W & o Jg w X? ^ p . «a* Jb O to CO ^^ to m p > * rH rH J>»C3 CO ,C ^ to H S0 3O EH—• H SB Oo E-i s p rH rH S3 o o SB e ,.— 1 8 g Cl rH / s Or O O E H '- ’ to P ‘•1 o &g tjl fts-P £ ^ rH 1 ,§ S B XX o o 1 hh CO $ \D C^LA \Q vO LA § Ov vO r- oo O Ov Ov Ov CO co vO uv co CO ca LA c— QO CO O v TABLE XIV - C ontinued 1A Ov Ov Ov CO IC'-LA s vO {* <5 Ov Ov C O Ov OV £ CO LA vO LA ■LTV Ov Ov to vO \A Ov Ov c«Ov Ov Ov Ov s LA Ov LA Ov C O CA Ov CV1 Ov i P l JHt>y"** O d r-J a io *p -v G H © *H Ov CO vO Ov Ov rH O HO pH o ’bL' ■POO © Xi o ^ P £f* 5 &H -P © -H pv O H M P pj rH O CO H ©W A O AA o 9 P i'—' Cj> Pi'— P p 2 &’rH £ ©A o ^ o to S Ov CO Ov Ov QO O H la A vO Ov CO W CO LA 8 S * oo UN r CO UN ON ON rH rH TO TO TO TO2 C— UNUN CM CO UN _ d ON ON A .4 W CM «> CO | s On On CM UN g O 3 3 ON rH n nO rH -d rH C — ON rH 1U16S - 1U93S +» •H -P CO CN -d rH UN A TO A VI O ON ON 00 UN TJ CO I—I ON UN rH CO 03 ON O UN UN rH rH 1 a CO » C— rH CM rH UN UN rH rH UN UN no - d UN UN rH iH teal {S CO ON rH nO rH UN UN rH rH S 3 CM rH UN UN H rH NO o UN rH CO CO O UN m TO •H TO § & ■p On UN On ON 1A o 159$M o •H -P £ON UN rH TO VI 0 „ a o Q *H 5 o bq c*o to CM l-d« _d r— ON 3 -d U N t rH CM H -d _ d 5r — ON CM -d CM -d &UN [U200] o CM -d 1 EH c o •rl -P •H TO O UN >» •p G G -p ■g £ fl & ■8 d 43 o % +9 H M s TO TO 0 CU 1 £+» CD S •P M -p TO s a§ TO SO s &•P § 3L i O £ O CO 8 S TO TO hi rH •H rH O •H ■8 TO 3O ' G TO £ Isobutyl 1 ■5 *j,} d Q M * ■8 •g u 3 ( o il) E-< 13 TO ft. * § £ rH & TO A A, Phenyl 9 lk $ xs m R »B NO X A X f CM CM CM rl rl rl W CO 3! CM CO CM On On H O tA«A H H _ X! 5 t38 > 3 H c— NO CM CM rH rH IA CM rH SH SO SCO, 5o 5C - 3 CA CA CM rH i—I rH CM CA CM rH rH o 50 On On o H CO o- On On co On On O XT O Xt o s CA CA O o -g xr rH (O H rH 30 O rH xt rH rXA1 On m s CM (" XA -3 CM XA H CA XA 3 SrH CO NO * OO o On O rH O €rH CO NO CO CO XA orH rH 8 rH XA rH O CM 3 ao Jf £ 2 ,§ do 1rG a> PH ft rl P rH ft x: p © “H m 0 g J5 ft J! do •H O sO rH § d ft oCM '—' XAXA no r — CM rH rH rH r.—I d 1 JXAl s ■—1 J»s p G ,G o ]—1 P H IH r~> d•rl O O ft iH t ■8 to ■rl P tG a> XI ft XANO O rH rH rH rH rH O rH H 5 CO O 0rH CM O rt 0} O Ifu rH rH £ t s >» X! P w £ X! P w O P to d M* H O O r* rH £ p M g >» to a On ■§ O « H XA CO rH H i—I 8 rH rH 55 CA OO rH rH o CM 8 5 o o 1— I IS J5 n5 P G XI to ♦H % p § C0rH rH JoO a* o Mu p $ a> xt if ft CO CO rH rH oH d G to G L co c*- On sO 1 P- P 3On3c OO rH Xf CM O CM -d- o o H 3 3 On XA rH O CO XI jro s O vO H CM orH iH XA xr xr o CM CA O On NO I A rH H - oo % CA XA On On XJ & g xt X! to 3 ON On o o x; CA >t X 13 coo Os i OO next p a g e w Continued x; CO to CM ,CA C—XA CM CM H H © G £ d P O ©w d , G G •8 0) •8 03 G © ft 1U6 vO & CN CM CN CN CN CN VO oo Ov § O rH o rH * O v P rH J rn H o o rH rH 43 W § m o rH n"o OO CN oo o rH CN CN OO o rH Ov r - vO OOO rHrHH R O V ft* GO Ov CN *1 R 5 aom rH O s g Ov c o CN Ov p H. OO O rHrH rH -d o ■ — i rH O v e'­ e n Ov iH € R r— vO in o C M C M &co oo o CO f - O rH vO -d O rH oo rH l>O rH 43 CM H vO vO HO aOv>55 t* C O on rHrH ho o H H rH rH rH O H H rH rH rH vO 3 vO vO 43 W c o a u \R vO i n c-m rHrH rHrH rH rH I—I H rH ■— I s i 5 (H O H rHrH H rHrH rH £ vO O rH £3 mo H rHrH H f— rH SR c—i n in rHrH % © rH C O in o CM rH O CM rH CO CM CM H rH rH rH 0) 1 1 o & a 3 W O in c o •H -P •H CO o J? ■P © a Iwm £-P & i§ >5 □ © P. d do do dO rH * iH o •H O frni *c & ,£ 43 © Pi p. & © 43 P. £-P © & ©43 S1 P. Cl rH 4 3 -P © a JB Pi r•H H O £ JB Pi •H O o * rH •8 to x! H £© Pi 1U7 TABLE XVI U l t r a v i o l e t A bsorption Spectrum o f 1 -P h e n y lte tr a z o le ( l x 10”4 M s o lu t io n in 9$% e th a n o l) Tfeivelength 210 215 220 225 230 235 236 237 238 239 2U0 21a 2U2 2h3 2kb 2h$ 250 255 260 265 270 275 280 285 290 295 300 O p tic a l D en sity .826 .531 .568 .709 .81*8 .921 .921 .925 .920 .909 .899 .881 .861 .836 .811 .783 .611* .1*27 .268 .159 .088 .01*6 .020 .011 .010 .009 .005 8,260 5,310 5,680 7,090 8,1*80 9,210 9,210 9,250 9,200 9,090 8,990 8,810 8,610 8,360 8,110 7,830 6,ll*0 1*,270 2,680 1,590 880 1*60 200 110 100 90 50 11*8 TABLE XVII U l t r a v i o l e t A bsorp tion Spectrum o f 1 -m -T o ly lte tr a z o le (1 x 10"4M s o lu t io n i n 9$% e th a n o l) "Wavelength 210 215 220 225 230 235 236 237 238 239 2l*0 2 lil 21*2 2l*3 2l*i* 2U5 250 255 260 265 270 275 280 285 290 295 300 O p tic a l D en sity 1.889 l.U *7 .658 .608 .732 .837 .852 .865 .870 .871* .869 .861; .851* .81*2 .821* .808 .675 .503 .31*3 .217 . 11*1* .107 .065 .016 .Oil; .011 .009 & 18,890 11,1*70 6,580 6,080 7,320 8,370 8,520 8,650 8,700 8,71*0 8,690 8,61*0 8 , 51*0 8 , 1*20 8 , 21*0 8,080 6,750 5,030 3,1*30 2,170 1 , 1*1*0 1,070 650 160 11*0 110 90 1 1*9 TABLE XVIII U l t r a v i o l e t A b so rp tio n Spectrum o f 1 - p - T o ly lte tr a z o le ( l x 10 M s o lu tio n i n 95% e th a n o l) H k v elen g th 210 215 220 225 230 235 237 239 2jU0 21*1 21*2 21+3 2UU 214.5 250 255 260 265 270 275 280 285 290 295 300 O p tic a l D e n sity 1.102 .578 .1*55 .51*5 .726 .896 .91*5 .981 1.000 1.001 1.008 1 .0 1 0 1.0 0 6 1.002 .903 .731* .5M* .362 .212 .119 . 051* .007 -.0 0 3 -.0 0 3 -.0 0 5 £. 11,020 5,780, l*,55o 5,1*50 7,2 6 0 8,960 9,1*50 9,810 10,000 10,010 10,080 10,100 10,060 10,020 9,030 7,3U0 5,1*1*0 3,620 2,120 1,190 5i*o 70 0 0 0 150 TABUS XIX U l t r a v i o l e t A b so rp tio n Spectrum o f 1 -o -C h lo ro p h e n y lte tra z o le (1 x 10“ 4 M s o lu tio n i n 95/6 e th a n o l) W avelength 208 209 210 211 215 220 225 230 235 2l*0 2i*5 250 255 260 265 270 275 280 290 300 O p tic a l D e n sity 1.587 1.571 1.1*72 1 .3 6 0 1.01*1* Jh6 .5 la .UUl .359 .261 .165 .091* .055 .01*6 .01*7 .01*6 .038 .015 .001 .001 S* 15,870 15,710 Hi ,720 13,600 10,1*1*0 7,1*60 5,1*10 1*,1*10 3 ,5 9 0 2,610 1,650 91*0 550 1*60 1*70 1*60 380 150 10 10 151 TABLE XX U l t r a v i o l e t A bsorp tion Spectrum o f 1-m -C hlorophenyl T e tr a z o le ( l x 1C-4 M s o lu t io n i n 95/S e th a n o l) Ife v e le n g th 210 215 220 225 230 232 2 3k 235 236 237 238 239 2l*0 21*1 2i*2 2l*3 21*5 250 255 260 265 270 275 280 290 300 O p tic a l D e n sity 2.1*3 2.01 1.129 .691* .71*6 .788 .822 .852 .857 .872 .883 .873 .878 .858 .81*3 .822 .781* .616 .1*17 . 21*6 .130 .092 .073 .060 .017 .005 £> 2k , 300 20,100 11,290 6 , 91*0 7 , 1*60 7,880 8,220 8,520 8,570 8,720 8,830 8,730 8,780 8,580 8,1*30 8,220 7,81*0 6,160 i*,170 2,1*60 1,300 920 730 600 170 50 1*2 TABLE XXI U l t r a v i o l e t A b sorp tion Spectrum o f 1 -p -C h lo r o p h e n y lte tr a z o le ( l x 10“4 s o lu t io n in 95% e th a n o l) ^Wavelength 210 215 220 225 230 23* 237 239 2U0 2l+l 2l+2 2l+3 21+1+ 2b5 2i+6 21+8 250 255 260 265 270 275 280 290 300 O p tic a l D en sity 1.21+7 .767 .701 .863 1.101 1.289 1.31+7 1.391 1.1+02 1.1+01 1.399 1.1+00 1.1+03 1.393 1.381 1 .3 3 6 1.2 7 0 1.01+3 .773 .605 .300 .187 .102 .038 .025 £* 12 , 1+70 7,670 7,010 8,630 11,010 12,890 13,1+70 13,910 11+,020 ll+,010 13,990 11+,000 ll+ ,030 13,930 13,810 13,360 12,700 10,1+30 7,7 3 0 6,050 3,000 1,870 1,020 380 2*0 153 TABLE XXII U l t r a v i o l e t A bsorp tion Spectrum o f 1-o-M eth o x y p h en y ltetra zo le (1 x 1CT4 M s o lu t io n i n 9$% eth a n o l; Tfavelength 210 215 220 225 230 232 23U 235 236 238 2k0 2i*5 250 255 260 265 270 275 278 280 281 282 283 281* 285 290 295 300 O p tic a l D e n sity 1.652 1.277 .792 .551* .519 .51*7 .565 .580 .576 .575 .573 .1*88 .351* .213 .131* .151 .221* .311* .352 .371* .380 .381* .381* .381 .375 .29U .183 .086 £>■ 16,520 12,770 7,920 5,51*0 5,190 5,1*70 5,650 5,800 5,760 5,750 5,730 it, 880 3,51*0 2,130 1,31*0 1,510 2,21*0 3,11*0 3,520 3,71*0 3,800 3,81*0 3,81*0 3,810 3,750 2,91*0 1,830 860 15h TABLE XXIII U lt r a v i o l e t A b so rp tio n Spectrum o f 1 -p-M ethoixyphenyltetrazole (1 x 1 0 “4 M s o lu t io n i n 95% e th a n o l) "Wavelength 210 21$ 220 22$ 230 23$ 2U0 2h$ 2$0 2$2 2$U 2$$ 2$6 2$8 260 26$ 270 27$ 280 28$ 290 29$ 300 O p tic a l D en sity 1.110 .6$6 -hl5 .377 .U68 .633 .809 .912 1.07$ 1.082 1.0 8 6 1.093 1.079 1.0$8 1 . 0 U0 1.031 .772 .623 .U& .326 .182 .070 .018 6^ 11,100 6,$60 l4,l$0 3,770 li,680 6,330 8,090 9,120 10,7$0 10,820 10,860 10,930 10,790 10 ,$80 10,1*00 10,310 7,720 6,230 U,810 3,260 1,820 700 180 155 TABLE XXIV U lt r a v i o l e t A b sorp tion Spectrum o f 5 -m -T o ly lte tr a z o le (1 x 10-4 m s o lu t io n in %% eth a n o l) W avelength 210 215 220 225 233 23k 235 236 237 238 239 2l*0 2hl 2h2 2k3 2hh 2ii5 2l*6 2JU7 250 255 260 265 270 O p tic a l D en sity 1 .8 3 9 1.01*2 0.553 0.613 1.061* 1.119 1.166 1 .210 1.21*8 1.283 1.319 1.3U5 1 . 31*8 1.360 1.361* 1 . 31*6 1.332 1.295 1.265 1.1 5 1 0.789 0.1*59 0.15U 0.100 £ 18,390 10 , 1*20 5,530 6,130 10,61*0 11,190 11,660 12,100 12,1*80 12,830 13,190 13,1*50 13,1*80 13,600 13,61*0 13,1*60 13,320 12,950 12,6£0 11.510 7,890 1*,590 1,51*0 1,000 156 TABLE XXV U l t r a v i o l e t A b sorp tion Spectrum o f 5 -p -T o ly lte tr a z o le (1 x 10“4 M s o lu t io n in 9%% eth a n o l) Tfevelength 210 215 220 225 230 233 23U 235 236 237 238 239 2i*0 21*1 2I4.2 21*3 2l*l* 2l*5 21*6 2l*7 2kd 2k9 250 255 O p tic a l D en sity 1.1*08 0.51*6 0.1*31 0.615 0.930 1.137 1.20U 1.269 1.333 1.392 1.1*1*9 1.1*93 1 .5 3 9 1 .5 7 8 1.622 1.61*0 1.657 1.672 1.672 1.672 1.61*5 1.618 1.599 1.3U7 lU ,080 5,1*60 i*,310 6,150 9,300 11,370 12,01*0 12,690 13,330 13,920 li*,l*90 11*, 930 1^390 15,780 16,220 16,1*00 16,570 16,720 16,720 16,720 16 , 1*50 16,180 15,990 13,1*70 157 TABLE XXVIa U lt r a v i o l e t A b sorp tion Spectrum o f T e tr a z o le ( i n 95$ e t h a n o l, a t c o n c e n tr a tio n s g iv e n below) £ s « 1 0 rH Tfevelength 10 "4 M 350 310 310 350 370 380 370 360 350 3ho 280 270 210 160 210 200 120 110 110 120 70 70 70 60 1 1 1 210 215 220 225 227 229 230 232 23U 235 237 2l;0 2U5 250 255 260 265 270 275 280 289 290 295 300 1 0 '3 M 215 107 59 39 181 87 36 Ik - *» 32 5 - - 26 2 - - 20 2 1 1 1 1 1 lU 16 13 9 8 7 9 9 7 6 7 h 1 1 1 - 0 - 0 158 TABLE XXVIb U l t r a v i o l e t A b so rp tio n Spectrum o f T e tra z o le ( i n w a te r, a t c o n c e n tra tio n s given below) a W avelength 210 215 220 225 230 235 2ii0 2U5 250 255 260 265 270 275 280 285 290 295 300 10"4 M 280 130 70 30 30 ko 30 30 10 20 20 20 20 30 30 20 20 20 20 10“ 3 M 118 hi 17 6 3 2 1 1 1 1 1 1 1 1 1 0 0 0 0 159 TABLE XXVII U lt r a v i o l e t A b sorp tion Spectrum o f 1 - n -B u ty lt e t r a z o le ( i n 95$ e th a n o l, a t c o n c e n tr a tio n s g iv e n below ) ' ...... l& v e le n g th 10"*' M 10~3 H 10”^ M 210 215 220 225 230 235 2i+0 2U5 2£0 255 260 265 270 275 280 285 290 295 300 U30 230 160 100 30 30 20 10 20 10 0 0 0 0 0 0 0 0 0 350 186 10U 62 37 27 20 16 Ik 10 6 9 8 8 9 8 8 9 9 255 lUo 68 31 15 8 5 k h 3 3 2 2 2 2 2 2 ' ' ' - 1 160 TABLE XXVIII U l t r a v i o l e t A b so rp tio n Spectrum of 1 -n -A m y ltetrazo le ( i n 95% e th a n o l, a t c o n c e n tra tio n s giv en below) 210 215 220 225 230 235 2k0 2U5 250 255 260 265 270 275 280 285 290 295 300 690 il20 330 260 200 170 120 80 60 30 30 30 30 50 70 50 h0 1*0 0 K W avelength H O 1 * £. 10"3 M ia ? 21*8 179 1 U3 131 112 76 57 53 50 k7 37 31 29 28 21* 20 17 13 10“ :3 H 256 139 6li 27 11 5 3 2 2 2 2 1 1 1 1 1 1 1 161 TABLE XXIX U l t r a v i o l e t A bsorption Spectrum o f 1 -n -H e x y lte tr a z o le ( in 9$% e th a n o l, a t c o n c e n tr a tio n s g iv e n below ) W avelength 10“ 3 M 10’ 2 M 210 215 220 225 230 235 2U0 2h5 250 255 260 265 270 275 280 285 290 300 b66 309 198 12h 71 b$ 31 25 21 17 13 10 8 7 7 283 273 185 116 70 U2 27 22 19 16 12 9 7 6 5 b h 2 - 5 6 162 TABLE XXX U l t r a v i o l e t A b so rp tio n Spectrum o f 5 - n -B u ty lte tr a z o le ( i n 95% e th a n o l, a t c o n c e n tra tio n s g iv en below) W avelength 10“ 3 M 210 215 220 225 230 235 2ho 2h$ 250 255 260 265 270 275 280 285 290 295 300 37U 175 67 21 9 7 7 h b k k 2 2 3 2 3 2 3 3 10” 2 M 299 157 62 19 5 2 1 1 0 1 0 1 0 0 0 0 0 0 0 163 TABLE XXXI U l t r a v i o l e t A b so rp tio n Spectrum o f 5 - n -H e x y lte tra z o le ( i n 95% e th a n o l, a t c o n c e n tra tio n s g iv en below ) e W avelength 10"4 M 10~3 M 1 0 ":3 M 210 , 215 220 225 230 235 2lj0 2h5 250 255 260 265 270 215 280 285 290 300 110 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 377 167 66 22 8 6 3 1 1 1 1 1 0 0 2 0 1 0 260 160 61 19 9 2 1 0 0 0 0 0 0 0 0 0 0 0