SOLAR RADIATION AVAILABILITY ON SURFACES IN THE UNITED STATES AS AFFECTED BY SEASON, ORIENTATION, LATITUDE, ALTITUDE AND CLOUDINESS

By

Clarence Frederick Becker

AN ABSTRACT

Submitted to the School for Advanced Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

amer Sr Approved by

ProQuest Number: 10008519

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10008519

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

Radiation from the sun is the primary source of all energy used by mankind. The life expectancy of fossil and nuclear fuel reserves are difficult to determine with accuracy; however, the earth's supply of fuels is limited and severe shortages of this form of fuel are possible within a century.

There is a need to learn how to use directly the daily supply of energy from the sun before stockpiles of other energies are exhausted. Some of the potential uses for solar radiation on the farm, such as final drying of grain, hay and other agricultural crops can utilize solar radiation with little disadvantage due to the intermittency of the radiation.

It is necessary to know the availability of solar radiation at the surface of the earth if it is to be used in engineering applications. The United States has a network of Weather Bureau stations which measure and record solar radiation incident upon a horizontal surface. Records of radiation incident on vertical surfaces are available for one United States station.

Methods for estimating the quantity of solar radiation available on surfaces with various orientations in the United States are presented in this thesis.

Calculations of hourly and daily total cloudless day radiation incident on surfaces with various orientations and located at different north latitudes with elevations at or near sea level are presented. Seasonal curves showing the availability of the solar radiation on surfaces with various orientations have been constructed and polynomials have been determined for the curves representing the availability of solar radiation on a horizontal surface.

Optimum tilt angles of solar collectors for the various seasons and latitudes are presented and the ratios of solar radiation incident upon tilted surfaces with various tilt angles to that incident on horizontal surfaces are presented in the form of curves for which polynomials have been developed. The calculated ratios can be multiplied by the values given for a horizontal surface to give the corresponding value for a tilted surface at various tilt angles.

Curves and polynomials giving the percentage increase in solar radiation with altitude are shown which can be used to correct the values for conditions at or near sea level.

Comparisons between the calculated cloudless day radiation determined from the curves and polynomials developed above and recorded clear day solar radiation are presented.

The correlation between the ratio of observed to calculated cloudless day radiation and percentage of possible sunshine is developed. The resulting regression equation gives a method for correcting the cloudless day values for cloudiness by relating it to a parameter which is measured at many places and for which long time averages are available.

The variability of the availability of solar radiation is discussed and the distribution of days with various amounts of solar radiation and the mean total solar radiation in various categories are shown for Madison, Wisconsin based on data beginning July of 1941. The sequence of dark days for the various months is determined for the same station during the same period.

SOLAR RADIATION AVAILABILITY ON SURFACES IN THE UNITED STATES AS AFFECTED BY SEASON, ORIENTATION, LATITUDE, ALTITUDE AND CLOUDINESS

By

Clarence Frederick Becker

A THESIS

Submitted to the School for Advanced Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

ACKNOWLEDGMENTS

The author wishes to express his sincere thanks for the guidance and constant supervision of Doctor James Boyd of the Department of Agricultural Engineering of Michigan State University.

He is also greatly indebted to Doctors J. T. Anderson, W. D. Baten, W. M. Carleton, F. M. Stewart, L. M. Turk, and D. J. Montgomery for their helpful suggestions during the preparation of the manuscript.

Sincere thanks is extended Doctor Arthur Farrall, Head of the Department of Agricultural Engineering, for appropriation of the funds necessary for carrying on the work.

Acknowleagment is due Doctor Frederick Buelow of the Department of Agricultural Engineering for helpful suggestions offered during various aspects of the study.

The author is grateful to his wife, Irene, who typed and helped prepare the rough copy of the manuscript.

Clarence Frederick Becker candidate for the degree of Doctor of Philosophy June 14, 1956, 2:30 P.M., Room 218, Final Examination: Agricultural Engineering Building Solar Radiation Availability on Surfaces Dissertation: in the United States as Affected by Season, Orientation, Latitude, Altitude and Cloudiness Outline of Studies Major Subject: Agricultural Engineering Minor Subject: Statistics Biographical Items Born: March 27, 1920, Robers, Morth Dakota Undergraduate Studies: North Dakota Agricultural College, 1938-43, B.S., 1943. Graduate Studies: North Dakota Agricultural College, 1946-47, M.S., 1949; University of Wyoming, 1952-55; Michigan State University, 1955-56. Experience: U. S. Air Force, 1943-46; Graduate Research Assistant, North Dakota Agricultural College, 1946-47; District Representative, John Bean Mfg. Co., 1948-49; Assistant Agricultural Engineer, University of Wyoming, 1949-1956.

VITA

Honorary Societies: Alpha Zeta Phi Kappa Phi Blue Key Sigma Pi Sigma

Professional Societies: American Society of Agricultural Engineers

TABLE OF CONTENTS

PA	GE
INTRODUCTION	l
Statement of the Problem	l
Objective of Thesis	4
History of the Use of Solar Radiation	5
Solar Energy Outside the Atmosphere	6
Solar Constant	6 7
Position of Earth Rélative to the Sun	8
INTENSITY OF SOLAR RADIATION UPON SURFACES LOCATED AT	
THE SURFACE OF THE EARTH DURING CLOUDLESS DAYS	9
Direct Radiation	9
Direction Radiation during Cloudless Days	9
Surface Perpendicular to the Sun's Rays Solar Angles	10 11 14 15 15
Sky Radiation	15
Total Solar Radiation	17
DAILY TOTAL SOLAR RADIATION AVAILABLE AT THE SURFACE	
OF THE EARTH DURING CLOUDLESS DAYS FOR LOW ELEVATION	
AREAS	19
Procedure for Calculating Hourly Rates	19
Procedure for Calculating Daily Total Radiation.	20

TABLE OF CONTENAS (Cont.)

	Pase
Results	20
Horizontal Surface	21 24 24
Optimum Tilt Angles for Solar Collectors	28
Ratio of Tilted to Horizontal Surface Incident Radiation	31
Comparison between Galculated Cloudless Day and Recorded Clear Day Radiation	35
Procedure	35 37
Comparison between calculated and Observed Ratic of Vertical to Horizontal Surface Incident Relation	46
Procedure	46 48
VARIATION IN SOLAR RADIATION INTENSITY WITH ALTITUDE	50
Review of Literature	50
Procedure for Calculating Corrections due to Altitude	54
Percentage Increase of Solar Radiation Intensity with Altitude	55
Comparison between Calculated Cloudless Day and Recorded Clear Day Radiation for Two High Altitude Stations	56
EFFECT OF CLOUDS ON SOLAR RADIATION INTENSITY	60
Review of Literature	ÉO
Procedure and Results	<i>62</i>
DISTRIBUTION OF DAYS WITH VARIOUS AMOUNTS OF SOLAR	
RADIATION	64

TABLE OF CONTENTS (Cont.)

Page

Mean Total Solar Radiation in the Various • 75 APPENDIX I TABLES APPENDIX II SAMPLE COMPUTATION . . 101 GLOSSARY 104 BIBLIOGRAPHY 105

LIST OF FIGURES

F	FIGURE	
נ	. Direct solar radiation incident upon a surface perpendicular to sun's rays at sea level on the earth during cloudless days.	12
2	. Definition of solar angles.	13
3	Solar radiation (I_h) for various values of direct radiation $(I_h)^{dh}$ upon a horizontal surface during cloudless days with clearness ratio equal to one.	18
4	. Sky solar radiation (I _{dy}) upon a vertical surface for various solar altitudes (b) and wall solar azimuth (a) during cloudless days with clearness ratio equal to one.	18
5	• Daily total direct and sky radiation incident upon a horizontal surface at various north latitudes during cloudless days.	22
6	• Daily total direct and sky radiation incident upon a vertical south-facing surface at various north latitudes during cloudless days.	25
7	• Daily total direct and sky radiation incident upon a south-facing surface sloped 30° from vertical at various north latitudes during cloudless days.	26
8	Daily total direct and sky radiation incident upon a south-facing surface sloped 60° from vertical at various north latitudes during cloudless days.	27
9	• Number of degrees of tilt south-facing surface from vertical to make it perpendicular to sun's rays at solar noon.	n 30
10	• Ratio of direct and sky radiation incident upon south-facing surfaces of various tilt angles to radiation incident upon a horizontal surface.	32
11	• Ratio of direct and sky radiation incident upon south-facing surfaces of various tilt angles to radiation incident upon a horizontal surface.	33

LIST OF FIGURES (Cont.)

12.	Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at Madison, Wisconsin during days with 0 - 3 tenths cloud cover, 1950 through 1954.	38
13.	Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at Lincoln, Nebraska during days with 0 - 3 tenths cloud cover, 1950 through 1954.	39
14.	Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at Blue Hill, Massachusetts during days with 0 - 3 tenths cloud cover, 1950 through 1954.	40
15.	Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at East Lansing, Michigan during days with 0 - 3 tenths cloud cover, 1950 through 1954.	41
16.	Comparison between recorded and calculated direct and sky radiation incident upon a vertical surface at Blue Hill, Massachusetts during days with 0 - 3 tenths cloud cover, 1950 through 1954.	45
17.	Comparison between actual and calculated ratio of total radiation incident upon a south-facing vertical surface to that incident upon a horizon- tal surface at Blue Hill, Massachusetts during days with 0 - 7 tenths cloud cover, 1950 through 1954.	47
18.	Mean summer and winter transmission coefficients with cloudless sky at high level stations as a function of altitude.	52
19.	Percentage increase of solar radiation intensity with altitude.	5 3
20.	Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at Lander, Wyoming during days with 0 - 3 tenths cloud cover, 1950 through 1954.	57

LIST OF FIGURES (Cont.)

- 21. Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at Albuquerque, New Mexico, during days with 0 - 3 tenths cloud cover, 1950 through 1954. 58
- 22. Relationship between ratic of actual to calculated cloudless day radiation (I/I) and percentage of possible sunshine.
 63

LIST OF TABLES

TABLE		PAGE
I.	Coefficients of the polynomial, Y = a + bX + cX ² , (m), for the various curves of Figures 10 and 11	34
II.	Average distribution of days with various categories of radiation as received on a horizontal surface for Madison, Wisconsin 1941 through 1955	66
III.	Maximum sequence of days in category IV	70
IV.	Calculated solar radiation per square foot of surface during cloudless days 30° north latitude	76
۷.	Calculated solar radiation per square foot of surface during cloudless days 35° north latitude	80
VI.	Calculated solar radiation per square foot of surface during cloudless days 40° north latitude	84
VII.	Calculated solar radiation per square foot of surface during cloudless days 45° north latitude	88
VIII.	Ratio of horizontal to south-facing tilted surface incident radiation	92
IX.	Average number of clear, partly cloudy, and cloudy days	93
х.	Percentage of possible sunshine	95
XI.	Relationship between the ratio of observed (I) to calculated cloudless day radiation (I) and percentage of possible sunshine (S).	96
XII.	Monthly mean precipitable water in the United States	100

INTRODUCTION

Radiation from the sun is essentially the primary source of all energy used by mankind. Energy supplies that are most easily utilized, such as the fossil fuels, have undergone natural concentration. Energy from the sun lifts water vapor above the earth, and this energy is partially recoverable in the form of water power. Energy for moving masses of the atmosphere over the surface of the earth, or the production of wind, comes from the sun.

Statement of the Problem

The life expectancy of fossil fuel reserves is difficult to determine with accuracy, for it involves not only the uncertainty of estimates of the quantity of fuel present, but also the prediction of rates of production and of demand (2). In addition, there are coal, oil, and gas in the earth's crust that may never be used because it would not pay to dig to the depths necessary to recover them. The finding of large deposits of uranium in recent years will alleviate the energy situation, however, this type of fuel, like fossil fuels, cannot be considered inexhaustible.

It is evident that the earth's supply of fuels, wood, gas, oil and coal is limited and that severe shortages of this form of energy is possible within a century. There is a need to learn how to use the daily supply of energy from the sun directly before the stockpile of other energies is exhausted.

Solar radiation energy is immense in quantity but relatively low in intensity. Threlkeld (28) estimates that the solar radiation intercepted by the earth each day equals about 5600 million million BTU. Because of the vastness of the supply of solar energy, the direct conversion of solar radiation into useful forms of energy has great attractiveness. Solar radiation is currently being used on a limited basis for distillation of salt water, for manufacture of salt by solar evaporation, for water heating in Southern United States, and for generation of electricity by thermopiles, the photogalvanic effect, or by the solar battery utilizing a silicon p-n junction. Research is under way to determine other methods of transforming and storing solar energy. Work is being done in photosynthesis in an attempt to shorten the time necessary for completion of the process by which petroleum was naturally formed (22); this work is coupled with the culture of algae and the subsequent production of carbohydrates with the most desirable properties.

The utilization of solar energy by the above-mentioned methods is still very inefficient. However, the direct collection of solar energy as heat is much more efficient and the greatest progress is likely to take place in this direction in the near future. Experimental solar collectors for heating air have been built by Buelow (5), Telkes (26) and others (9), and collectors for heating water have been built by Hottel (12) and the University of Florida (9). These collectors show efficiencies as high as 50 to 80 percent.

The possibility of utilizing solar energy on the farm has been investigated only to a very limited extent, even though there are many potential uses. In many respects it seems to be the logical place to start, for one of the disadvantages of solar radiation, namely, its intermittency, is not critical for such uses as final drying of grain, hay and other agricultural crops. Where solar energy is to be used for space heating, some means of heat storage at relatively high temperatures is necessary. The efficiency of collection is thereby reduced, since threshold intensity of radiation must be reached before energy can be collected and stored. Solar radiation of relatively low intensity could be utilized for drying agricultural crops, where any amount of heating of air would be advantageous.

A solar energy collection and storage system could also supply supplemental heat to farm buildings.

There is a network of Weather Bureau Stations in the United States which measure and record solar radiation incident upon a horizontal surface. The first solar station in the United States was started at Madison, Wisconsin, in 1911. The number of stations has increased from ten in 1940 to twenty-five in 1949, and to seventy-five today. Daily total values of solar radiation incident upon a horizontal surface are published by the Weather Bureau (31). In addition to the data for radiation on horizontal surfaces, a station of the Weather Bureau at Blue Hill, Massachusetts, measures and publishes data for radiation incident upon vertical surfaces facing north, south, east and west.

Objective of Thesis

To utilize solar energy at the surface of the earth for engineering application, it is necessary to determine the availability of the supply.

In many cases it may be desirable to orient surfaces other than horizontally for more efficient collection of solar energy or for structural reasons. Frequently the collecting surface will be incorporated into the wall or roof of a house or farm building in which case the horizontal orientation may not be practical.

It is the purpose of this thesis to construct curves and develop equations useful for estimating quickly the

quantity of solar radiation energy available on surfaces with various orientations anywhere in the United States.

History of the Use of Solar Radiation

Investigations on potential and actual use of solar radiation are not new since the sun was recognized as a source of energy hundreds of years ago. Green (9) made a brief summary of the history of solar utilization which is quoted as follows:

In 1902 H. E. Willsie, American Engineer, built a binary-vapor pumping plant run by a collector. Heated water was stored and used to boil off sulphur dioxide which ran a small pumping engine. The heater and collector had an asphalt bottom, wooden sides, and was covered with glass. On later more efficient collectors he used a double glass cover and tilted the collector so that it was perpendicular to the sun's rays. Several such plants were built after 1909 by Frank Shuman, Philadelphia engineer.

The oldest method of collecting solar energy at high temperature was by concentrating the rays of the sun upon a surface by the means of mirrors. Archimedes is said to have used this method as early as 214 B.C. to set fire to Roman ships while they were at considerable distance from the shores of the island of Sicily.

In 1878 August Mouchot first generated power from the reflected and concentrated rays of the sun. He used a huge reflector shaped like a lamp shade and lined with burnished silver to reflect and concentrate rays of the sun upon a boiler located at the focal axis of the reflector. By using a large reflector area as compared to boiler area, he was able to get a steam pressure of 75 pounds per square inch (325 F approximately) and run a one-half horsepower engine. The diameter of the conoidal reflector was eight and one-half feet.

The noted engineer, John Ericson, later experimented with this type of equipment, using a parabolic

trough lined with small mirrors to reflect the rays of the sun upon a small tubular boiler located along the focal axis of the reflector. He obtained as high as 210 BTU per square foot of sunshine collector.

About 1901 the English inventor, A. G. Eneas, built several reflectors of the truncated-cone type that absorbed as high as 223 BTU per square foot of sunlight collected at their Arizona location.

In 1913 a successful steam plant using parabolictrough reflectors which were geared to an engine so as to be kept facing the sun continually, was built by Frank Shuman and Professor Boys at Meadi, Egypt. This plant developed 50 horsepower and collects 13,269 square feet of sunshine. (...) The University of Florida built a parabolic-

The University of Florida built a parabolictrough heater 3 x 4 feet in 1934 with one and onequarter inch pipe placed inside a 2-inch pipe located at the focus. Water circulated between the two pipes by gravity, provisions were made to measure the quantity of water and temperature rise; results showed as high as 128 BTU per square foot per hour of sunshine collected was possible. Operating temperatures as high as 220 F. were readily obtained. When filled with water and with all outlets closed, the steam pressure rose to 50 pounds per square inch gage, indicating a temperature in the absorber of approximately 300 F. (...)

Solar Radiation Outside the Atmosphere

Solar Constant

The solar constant is the energy incident upon a unit area located at mean distance of the earth from the sun and oriented perpendicular to the sun's rays outside the atmosphere. The most recent data available on the value of the solar constant is presented by Johnson (18). His value is 2.00 ± 0.04 calories per minute per square centimeter or about 440 BTU per square foot per hour. The latest value given by the Smithsonian Institute is 1.95 calories per minute per square centimeter. The difference between these two values lies in a rediscussion of the corrections applied to the measured data for the ultra violet and infrared spectral regions lying outside the observed region.

Spectral Distribution

The spectral distribution of solar energy outside the atmosphere is such that for all practical purposes, the energy lies between the limits of 0.22 and 7 microns. About 0.14 percent of the energy has wave length greater than 7 microns and 0.02 percent of it has wave length less than 0.22 microns.

According to Fritz (7), the energy in the ultra violet below 0.4 microns comprises about 9 percent of the total incident energy; the energy in the visible range (which contains the peak at 0.46 microns) is 41 percent and that in the infrared beyond 0.72 microns contains about 50 percent.

In tracing the solar spectrum down through the atmosphere, the short wave constituents are absorbed high in the ionosphere, principally by ozone. The absorption coefficient is such that the spectrum of solar energy at the ground is cut off below 0.29 microns.

There appears to be irregular changes in solar activity which change the solar constant. However, the effect on the integrated energy available for non-selective power sources is very small (11).

Position of the Earth Relative to the Sun

The angle at which the sun's rays reach a surface on the earth changes from day to day and from hour to hour owing to the changing position of the earth relative to the sun and the rotation of the earth about its axis.

As the earth moves about the sun in its seasonal orbit, its axis maintains a nearly constant angle of 66.5 degrees with the plane of its orbit. On June 21, the summer solstice, the sun is vertically overhead at solar noon at the Tropic of Cancer and has the greatest noon elevation in all north latitudes greater than 23.5 degrees. On December 21, the winter solstice, the axis of the earth points away from the sun and the angle which the sun's rays make with a horizontal surface on the earth is least in northern latitudes. The sun is directly overhead at noon at the equator on March 21, the vernal equinox, and on September 21, the autumnal equinox. Days and nights are of equal length throughout the world at the time of the equinox.

The sun is slightly off the center of the elliptical path which the earth makes around the sun. As a result, at aphelion (July 1), the distance of the earth from the sun is 1.034 that at perihelion (December 1). Hence, the intensity of sunshine outside the atmosphere on December 1, other things being equal, is approximately 1.069 that on July 1.

INTENSITY OF SOLAR RADIATION UPON SURFACES LOCATED AT THE SURFACE OF THE EARTH DURING CLOUDLESS DAYS

Direct Radiation

Direct Radiation during Cloudless Days

The quantity of direct solar radiation incident upon a surface located on the earth's surface is given by the formula: (see Glossary, page 104, for definition of terms)

$$I_{i} = (J_{o}/r^{2})t^{m} \cos i \qquad \dots \qquad (a)$$
where I_{i} = the solar energy incident upon the surface
 J_{o} = the solar constant
 r = the radius vector of the earth
 t = the transmission coefficient of the
atmosphere
 m = the air mass
 i = the angle of incidence.

In tracing the solar spectrum down through the atmosphere during cloudless days, depletion of the direct beam takes place by scattering and absorption (7, 21). Scattering is caused primarily by air molecules, dust, and to a certain extent, by water vapor along the path of the sun's rays to the surface of the earth. The principal absorbing agents are water vapor, ozone and cloud particles. Direct Solar Radiation Incident upon a Surface Perpendicular to the Sun's Rays

In a very important paper, Moon (23) has calculated the direct solar radiation incident upon a surface normal to the sun's rays during cloudless days. His calculations of the spectral distribution of the energy at sea level are based on an assumed atmospheric condition of 2 centimeters of precipitable water vapor, 300 dust particles per cubic centimeter and 0.28 centimeters of ozone at 760 millimeters of mercury pressure and 0 C. The calculations were made for air masses of 0, 1, 2, 3, 4 and 5. Curves constructed by Moon from the calculations show the spectrum of solar energy cut off below 0.29 microns wave length, and a large vertical separation of the curves for short wave lengths. This vertical separation shows the influence of ozone absorption as the sun passes through longer and longer paths. The absorption bands of water vapor are very evident in the infrared region; no energy reaches the surface of the earth in the stronger water vapor bands.

Moon's data have been taken as standard for cloudless day summer conditions by the American Society of Heating and Ventilation Engineers. The integrated direct solar radiation as a function of the solar altitude appears in the Heating, Ventilating and Air Conditioning Guide (1).

F. W. Hutchinson and W. P. Chapman (14) have applied Moon's calculations to a standard winter atmosphere with

assumed atmospheric conditions of 33 F dew-point, 300 dust particles per cubic centimeter, and 0.28 centimeters of ozone. The winter curve in Figure 1 is a copy of Hutchinson's data which show direct solar radiation at normal incidence as a function of the solar altitude angle. The summer curve is the result of a plot of the information presented in the Heating, Ventilating and Air Conditioning Guide (<u>op</u>. <u>cit</u>.). It is noted that for a given solar altitude, the summer value is lower than the winter value. The summer value is smaller because of an assumed higher moisture content and due to a greater solar distance.

Solar Angles

The sun as seen by an observer on the surface of the earth follows a circular arc from horizon to horizon. This position can be defined by the solar altitude (b), and the solar azimuth (a), Figure 2. These angles vary continuously from sunrise to sunset and are different for various days of the year. The diurnal variation is symetrical with respect to a north-south line and therefore with respect to solar noon.

The sun's altitude and azimuth can be secured from the United States Hydrographic Office Tables 214 (29) if the latitude, local hour angle, and declination of the sun are known. The declination of the sun can be secured from any

UTA

table of ephemeris. For all practical purposes, the declination is the same on January 21 and November 21, February 21 and October 21, March 21 and September 21, April 21 and August 21, and for May 21 and July 21; therefore, the solar geometry will be nearly the same on the dates with equal declinations. The local hour angle is expressed in degrees using 0 degrees for solar noon, 15 degrees for 11 a.m. and 1 p.m., 30 degrees for 10 a.m. and 2 p.m., etc.

Angle of Incidence for Direct Radiation

A formula for determining the angle of incidence of direct solar radiation upon a surface is given by Brown and Marco (4); their formula was changed to the following form by trigonometric substitution:

cos i = sin b sin e + cos b cos a cos e (b)
where i = angle of incidence
a = wall solar azimuth
b = solar altitude
e = angular tilt of surface from vertical.
Figure 2 defines the solar angles used.

<u>Horizontal surface</u>. For a horizontal surface, e in equation (b) is 90 degrees and the equation becomes:

 $\cos i = \sin b$ (c)

$$I_{h} = I_{o} \sin b \qquad (d)$$

I₀ = direct solar radiation incident upon a surface normal to the sun's rays (Figure 1).

<u>South-facing vertical surface</u>. For a vertical surface, e in equation b is 0 degrees and the equation becomes:

 $I_v = I_o \cos b \cos a$ (f) where $I_v =$ direct solar radiation incident upon a vertical surface.

South-facing tilted surface. For a south-facing tilted surface:

 $\cos i = \sin b \sin e + \cos b \cos a \cos e \dots (b)$ $I_{+} = I_{0} (\sin b \sin e + \cos b \cos a \cos e) \dots (g)$

Sky Radiation

It was stated earlier that as the solar radiation passes through the atmosphere to the surface of the earth, the depletion of the direct solar radiation is due partially to scattering. A portion of the scattered radiation will return to space, but some of it will reach the surface of the earth as sky radiation.

According to Fritz (7), for an average clear sky, the diffuse sky radiation on a horizontal surface is about 16 percent of the total when the sun is high in the sky and about 37 percent of the total when the solar elevation is about 10 degrees.

In addition to diffuse radiation from the sky, some of the radiation reflected from the ground may reach a surface. The amount of the reflected radiation that reaches a surface will depend on the orientation of the surface.

The theory of radiation scattering is rather involved and at this time no theoretical method for calculating the quantity of sky radiation is known. Several investigators have measured sky radiation separately from the direct radiation. Klien (21) gives a method for computing sky radiation in terms of atmospheric conditions and Hand (10) has published information on the ratio of direct to sky radiation during typical winter cloudless days for horizontal surfaces.

Possibly the best information on sky radiation availability at this time has been presented by Parmelee (24). He has measured sky radiation on horizontal and vertical surfaces. In the paper cited, Parmelee plotted sky solar radiation (I_{dh}) versus I_h for a horizontal surface and sky solar radiation (I_{dv}) versus solar altitude (b) and wall solar azimuth (a) for the vertical surface; each was plotted for atmospheres with clearness ratios of 1.0, 0.8 and 0.6. He

has defined the ratio of the observed intensity of direct radiation to that computed from Moon's data (Figure 1) as the clearness ratio because he noted that the direct radiation varied for a given solar altitude for cloudless skies and that as the intensity of direct radiation decreased, the intensity of the sky radiation increased. Figures 3 and 4 show Parmelee's data for a clearness ratio of one.

Total Solar Radiation

The total solar radiation during cloudless days incident upon a surface is found by adding the direct and sky radiation upon the surface.

Fig. 3. Sky solar radiation (I_h) for various values of direct radiation $(I_h)^{dh}$ upon a horizontal surface during cloudless days with clearness ratio equal to one. All values from Parmelee (24).

Fig. 4. Sky solar radiation (I_{dy}) upon a vertical surface for various solar altitudes (b) and wall solar azimuths (a) during cloudless days with clearness ratio equal to one.

DAILY TOTAL SOLAR RADIATION AVAILABLE AT THE SURFACE OF THE EARTH DURING CLOUDLESS DAYS FOR LOW ELEVATION AREAS

Procedure for Calculating Hourly Rates

The calculation of hourly rates of direct and sky radiation was carried out for the twenty-first of each month using the following procedure:

- (1) The solar declination was secured for the twentyfirst of each month from the Ephemeris (30).
- (2) With the solar declination known, the solar altitude and the solar azimuth were secured for each daylight hour of the day at 30°, 35°, 40° and 45° north latitude from the United States Hydrographic Office Tables Number 214 (29).
- (3) With the solar altitude for each hour known, the direct solar radiation at normal incidence (I) was secured from Figure 1, using the winter curve for the months of September through March and the summer curve for the remainder of the months.
- (4) The hourly rate of direct solar radiation incident upon a horizontal surface, south-facing vertical surface, and south-facing surfaces tilted 30° and 60° from vertical, was calculated by using formulas d, f, and g, respectively.

(5) With hourly values for the solar altitude, the wall solar azimuth, and the direct radiation incident upon a horizontal surface known, Figures 2 and 3 were used to determine the hourly rate of sky radiation incident upon a horizontal surface (I_{db}) and vertical surface (I_{dy}) .

Since there is no information on sky radiation incident upon a tilted surface (I_{dt}), this value was estimated by linear interpolation utilizing the equation:

 $I_{dt} = I_{dh} + (I_{dv} - I_{dh}) (\frac{90^{\circ} - e}{90^{\circ}}) \dots (h)$

(6) The total hourly rate of solar radiation was determined by adding the direct and the sky components.

Procedure for Calculating Daily Total Radiation

To determine the daily total radiation incident on the various surfaces, it is necessary to integrate the hourly values over the hours of the day. This integration was accomplished by using Simpson's Rule.

Results

Tables IV through VII show the results of the computations for 30°, 35°, 40° and 45° north latitude. The hourly rates of direct solar radiation agree fairly well with those presented by Hutchinson (15, 16, 17) except for the tilted surfaces, where he did not allow for any incident energy when the solar azimuth angle was greater than 90 degrees.

Horizontal Surface

Curves showing the daily total solar radiation incident upon a horizontal surface at 30°, 35°, 40° and 45° north latitude during cloudless days are shown in Figure 5.

A comparison of the curves in Figure 5 shows that the horizontal surface intercepts a maximum of radiation in summer, with the amount being nearly the same for all four latitudes in late June and early July at about 2650 BTU per day per square foot. This near equality is explained by the fact that the effect of greater solar altitudes near the middle of the day for the southern latitudes is counterbalanced by more daylight hours and by greater solar altitudes for the northern latitudes during the morning and later afternoon hours (see Tables IV through VII). The cloudless day radiation decreases from June to December to a value of about 50 percent of the summer value at 30° latitude and 25 percent of the summer value at 45° latitude. The decrease from summer to winter is explained by the greater angle of incidence owing to lower solar altitudes

and the smaller number of daylight hours for a given latitude in winter. The more pronounced change for northern latitudes in the number of daylight hours from summer to winter explains the larger decrease from summer to winter for 45° latitude as compared with 30° north latitude.

The shape of the curves was such that it suggested the possibility of being able to write equations for them. A method for determining the coefficients for a fourth degree polynomial suggested by Baten (3) was used in obtaining equations i, j, k, and l in Figure 5.

In computing these polynomials, the origin (X = 0) was located at June 21. X is the number of months, or factions thereof, from June 21. By using this origin and using X = 6 twice in the computation, fourth degree polynomials with exponents of the X and X^3 terms equal to zero were secured.

A sample computation using the computed data for 35° latitude is shown in Appendix II. The overall average deviation between the values determined from the polynomials and the corresponding calculated value for the 21st of each month is 15 BTU per square foot per day. The deviation amounts to less than 1 percent.

South-Facing Vertical Surface

Figure 6 shows the daily total solar radiation incident upon a south-facing vertical surface during cloudless days.

The curves of Figure 6 show that the solar radiation incident upon a south-facing vertical surface is at a maximum during the winter months. It is a maximum then because the lower solar altitudes have a more favorable angle of incidence on a vertical surface as shown by equa-The normally higher values for northern latition e. tudes are also explained by consistently lower solar altitudes than for southern latitudes. The dip in the curve for the more northern latitudes in December, which occurs even though the angles of incidence are more favorable then, is due to the increased depletion of the atmosphere and fewer daylight hours. It is noted that the curves for the four latitudes peak at between 1800 and 1900 BTU per day per square foot. The peaks are very nearly equal because the more favorable angle of incidence for the northern latitude is offset by more daylight hours and less depletion by the atmosphere for the southern latitudes.

South-Facing Tilted Surfaces

Curves for daily total solar radiation incident upon a south-facing surface tilted 30 degrees and 60 degrees from vertical are shown in Figures 7 and 8, respectively.

These curves reveal the importance of proper orientation of solar collector surfaces for the most efficient collection of solar energy. It is to be noted, for example, that for a surface tilted 30 degrees from the vertical, as compared with the vertical surface, the tilted surface shows a slight increase of incident cloudless day energy during mid-winter, and a substantial increase to a maximum of slightly more than 2200 BTU per day per square foot during the spring and fall months for north latitudes of 30° , 35° , and 40° . For 45° latitude, the tilted surface shows increased incident energy during spring, summer and fall, and a slight decrease during mid-winter.

A comparison of the curves for a south-facing surface tilted 60 degrees from vertical with curves for a horizontal surface shows that a slight attenuation occurs during the mid-summer period with small increases during the other summer months and much higher values for the remainder of the year.

Optimum Tilt Angles for Solar Collectors

It is apparent that the optimum tilt angle for a collector of solar radiation will depend on the latitude and on seasonal demand based on the uses to which the collected energy is to be put. In some cases it may be necessary to

determine the optimum tilt angle for a period of time rather than for a particular time because a solar collector on a farm, for example, will usually be incorporated into, or made a part of, a farm structure.

The daily total radiation incident upon a surface, for all practical purposes, will be a maximum if a south-facing surface is tilted so that the sun's rays are perpendicular to it at solar noon. A south-facing surface will be perpendicular to the sun's rays at solar noon if the tilt angle from vertical is equal to the solar altitude for that time. The solar altitudes for the 21st of each month at 30° , 35° , 40° and 45° north latitude are given in Tables IV through VII.

Figure 9 shows curves which give the number of degrees to tilt a south-facing surface from vertical to make it perpendicular to the sun's rays at solar noon and thus, for all practical purposes, the optimum tilt angle from vertical for maximum incident solar radiation for various times of the year. However, there is a slight difference to be noted. Calculations using formula g for June 21 showed a slight increase in daily total incident energy with small increases in the tilt angle from the apparent optimum angle. The small increase occurs because the increase in incident energy during early morning and late afternoon hours due to additional tilting of the surface more than counterbalances the decrease during mid-day. The above situation

Fig. 9. Number of degrees to tilt a south-facing surface from vertical to make it perpendicular to the sun's rays at solar noon.

is true only during mid-summer when the solar azimuth angles are relatively small during the early morning and late afternoon hours. It should be noted that the above situation would be even more pronounced at more northerly latitudes.

Ratio of Tilted to Horizontal Surface Incident Radiation

The ratios of the daily total solar radiation incident upon a south-facing vertical surface and upon south-facing surfaces tilted 30 degrees and 60 degrees from vertical to that incident upon a horizontal surface for the latitudes mentioned before, were calculated for 21st of each month. The calculated ratios are shown in Table VIII.

Figures 10 and 11 show a plot of the ratio of tilted to horizontal surface incident radiation. A polynomial, of the form shown in equation m below, was fitted by the method of least squares to each of the curves.

 $Y = a + b X + c X^2 \qquad (m)$ where X = the slope of the south-facing surface in degrees from vertical

> Y = the ratio of tilted to horizontal surface incident radiation.

Table I shows a tabulation of the coefficients of equation m for various latitudes and seasons. Equation m can be used to secure factors that can be multiplied by

Ratio of direct and sky radiation incident upon south-facing surfaces various tilt angles to radistion incldent upon a horizontal surface Fig. 10. With vario

Fig. 11. Ratio of direct and sky radiation incident upon south-facing surfaces with various tilt angles to radiation incident upon a horizontal surface.

Date	Latitude	Coefficient		
		a	b	с
Dec. 21	30° 35° 40° 45°	1.496 1.734 2.132 2.499	0.012657 .014313 0.12366 .010621	-0.0002025 .0002502 .0002774 .0003033
Jan. 21 and Nov. 21	30° 35° 40° 45°	1.322 1.510 1.827 2.154	0.014395 .013339 .013236 .012117	-0.0001999 .0002112 .0002500 .0002776
Feb. 21 and Oct. 21	30° 35° 40° 45°	0.997 1.141 1.312 1.500	0.014531 .015173 .014250 .013619	-0.0001613 .0001860 .0001972 .0002139
Mar. 21 and Sept. 21	30° 35° 40° 45°	0.638 .768 .872 1.011	0.016279 .015605 .015237 .015365	-0.0001361 .0001445 .0001532 .0001722
Apr. 21 and Aug. 21	30° 35° 140° 145°	0.314 .400 .492 .571	0.017447 .017659 .016878 .018014	-0.0001083 .0001221 .0001249 .0001472
May 21 and July 21	30° 35° 40° 45°	0.186 .244 .345 .399	0.016350 .016964 .015827 .016884	-0.0000806 .0000944 .0000944 .0001132
June 21	30° 35° 40° 45°	0.105 .205 .277 .326	0.016696 .016145 .016064 .017028	-0.0000744 .0000805 .0000889 .0001055

COEFFICIENTS OF THE POLYNOMIAL, $Y = a + bX + cX^2$, (m), FOR THE VARIOUS CURVES OF FIGURES 10 AND 11

TABLE I

values of Figure 5, or by the interpolated values of equations i, j, k and l, to secure the daily total cloudless day solar radiation incident upon a south-facing surface at any tilt angle between horizontal and vertical. Ratios for any day of the year can be secured by interpolation between the values secured for the 21st of the months between which the desired day comes.

Figures 10 and 11 show the importance of seasonal demand on proper orientation of a collector surface. It is noted that little can be gained by an orientation other than horizontal during the mid-summer months. The curves show the distinct advantage of a surface that is vertical, or very nearly vertical, during mid-winter months. The tilt angles for maximum incident radiation for the various latitudes agree with those given in Figure 9.

Comparison between Calculated Cloudless Day and Recorded Clear Day Radiation

Procedure

The information published in Climatogical Data, National Summary (31) on recorded total solar radiation was utilized to check the calculations previously presented. The information available is restricted to horizontal surfaces, except for the measurements made at Blue Hill, Massachusetts on vertical surfaces oriented at the cardinal compass points.

Supplements of Local Climatological Data (33) were secured from the United States Weather Bureau for Lincoln, Nebraska; Madison, Wisconsin; Boston, Massachusetts; Lander, Wyoming; Albuquerque, New Mexico and East Lansing, Michigan for the five-year period, 1950 through 1954. The average sky cover from sunrise to sunset in tenths was recorded for each day in the supplements mentioned. When the average sky cover from sunrise to sunset is three-tenths or less, the day was recorded as clear; four-tenths to seven-tenths, partly cloudy; and eight-tenths or more, cloudy. Technical Paper No. 12 of the United States Weather Bureau (32) summarizes the average number of clear, partly cloudy, and cloudy days from sunrise to sunset for over 200 United States Weather Bureau Stations; the Summaries included data for periods up to 77 years. Table IX shows a copy of the data for the stations used in connection with this study.

Dates when the average sky cover from sunrise to sunset was three-tenths or less were recorded for each of the stations mentioned for the five-year period, 1950 through 1954. Daily total incident radiation was then secured for the recorded clear days from Climatological Data, National Summary (<u>op. cit.</u>) for a horizontal surface at each of the stations and for a south-facing vertical surface at Blue Hill, Massachusetts. Average sky cover data was not available at the same location that solar radiation data was taken

3.

for Blue Hill, Massachusetts, so the sky cover data were taken from records made at the Logan International Airport, Boston, Massachusetts.

The solar radiation data was recorded in units of gram-calories per square centimeter per minute; the units were converted to BTU per square foot per hour by multiplying by 3.68.

Calculated solar radiation during cloudless days incident upon a horizontal surface for the 21st of each month was determined for each of the stations by interpolating between values secured from the equations in Figure 5 for the latitude of each station. Calculated cloudless day radiation was determined for a south-facing vertical surface at Blue Hill, Massachusetts by interpolation of values given in Figure 6.

Curves showing the calculated incident cloudless day radiation were constructed for each of the stations. Plots of points representing the recorded radiation during clear days were made in order to make a comparison between the recorded and the calculated cloudless day values for the various days of the year.

Results

Figures 12, 13, 14 and 15 show the comparison between calculated cloudless day and recorded clear day solar radiation incident upon a horizontal surface at Madison, Wisconsin;

Fig. 12. Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at Madison, Wisconsin during days with 0 - 3 tenths cloud cover, 1950 through 1954.

Fig. 13. Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at Lincoln, Nebraska, during days with 0 - 3 tenths cloud cover, 1950 through 1954.

Fig. 14. Comparison between recorded and calculated direct and sky radiation incident upon a horizontal surface at Blue Hill, Massachusetts, during days with 0 - 3 tenths cloud cover, 1950 through 1954.

Lincoln, Nebraska; Blue Hill, Massachusetts and East Lansing, Michigan, respectively. It is evident that the calculated curves, based on assumed standard atmospheric and sea level conditions, gave reasonably good correlation with the observed radiation at Madison, Lincoln, and Blue Hill which have elevations of 672, 938, and 1184 feet above sea level, respectively. It is noted, in each case, that the calculated values are low during the spring and early summer period and high during the last part of October and first part of November. This difference is possibly due to higher atmospheric moisture content than assumed during the October-November period and a lower atmospheric moisture content than assumed during the spring months. Table XII shows values of monthly mean precipitable water for all days in the United States published by the Weather Bureau (34) and values of precipitable water for cloudless days used for the computation of direct radiation at direct incidence (Figure 1). It is to be expected that cloudless day values will be less than the mean recorded values. However, the data indicates a tendency for low values of precipitable water during the spring months as compared with the fall months. The dashed curve of Figure 12 is a plausible calculated curve for actual precipitable water during cloudless days.

Figure 14, for Blue Hill, shows a great deal more scatter of the recorded radiation than do Figures 12 and 13 for Madison and Lincoln, respectively. One possible explanation of the greater scatter could be the location of the measuring pyrheliometer. Hand (10), in a report on solar radiation measuring stations in the United States, indicated that the Blue Hill pyrheliometer is located 10 miles south of Boston and that there is almost no smoke or dust except with winds of a northerly component which carry smoke from Boston. He also indicated that the pyrheliometer at Madison is located on top of a building located at the University of Wisconsin and that little smoke interference is noted. The Lincoln pyrheliometer is located in downtown Lincoln (since 1940).

Figure 15, which shows the comparison for East Lansing, Michigan, indicates that the computed values are consistently too high, varying from about 25 percent to 10 percent too high for winter and summer, respectively. The tendency for comparatively higher recorded values during spring is also noted for East Lansing. A possible explanation for the consistently low recorded values at East Lansing may be due to the fact that Michigan is surrounded, to a great extent, by large bodies of water over which the masses of air must move in their predominant easterly movement. The bodies of water and the large industrial activity in the whole area undoubtedly tend to increase the haziness and smoke content of the atmosphere

above the assumed amount for a normal atmosphere. Results of work by Fritz (8), who has constructed isolines of cloudless day solar radiation for horizontal surfaces in the United States for each month of the year, based on close analysis of recorded data supplemented by computed values where there were no recording stations, also showed consistently lower values for the Great Lakes Region, and in particular for Michigan, than for other parts of the country at the same latitude. Crabb (6) also noted the relative low amount of solar radiation at East Lansing as compared with other stations in the United States.

The variation noted for all stations can be attributed, in part, to varying cloud amounts because the recorded values used were for days with average cloud cover between zero and three-tenths. Additional variation may be caused by occasional presence of dust or moisture on the glass cover of, or by improper leveling of, the measuring pyrheliometer.

Figure 16 shows the comparison between calculated and recorded values of incident radiation on a south-facing vertical surface at Blue Hill, Massachusetts. Reasonably good average correlation is again shown. A great deal of variation in the recorded radiation is noted, particularly during the winter months. In addition to the explanation given for the variation of solar radiation on a horizontal surface at Blue Hill, the vertical surface will be subjected

to varying amounts of reflected radiation from the ground. The high recorded values can reasonably be attributed to increased ground reflection when the ground is covered with snow.

Comparison between Calculated and Observed Ratio of Vertical to Horizontal Surface Incident Radiation

Procedure

The only possible check of the calculated ratios of solar energy incident upon south-facing surfaces to that incident upon a horizontal surface, as presented in Figures 10 and 11, is to check the ratio of south-facing vertical to horizontal surface incident radiation for Blue Hill, Massachusetts.

The calculated ratio of south-facing vertical to horizontal incident radiation for Blue Hill was determined for the 21st of each month by interpolation between the values given for 45° and 40° north latitude in Table VIII for 42°-13', which is the latitude of Blue Hill. The curve in Figure 17 was constructed from the points determined by the method mentioned above.

Supplements of Local Climatological Data for Boston, Massachusetts (33) were used to determine the dates during the five-year period, 1950 through 1954, when the average sky cover from sunrise to sunset was classified as clear or

Ratio of South Vertical to Horizontal Radiation

47

during days with 0 - 7 tenths cloud cover, 1950 through 1954.

partly cloudy (0-7 tenths cloud cover, inclusively). Daily total solar radiation measured and recorded during the clear and partly cloudy days determined above, was secured from Climatological Data, National Summary (31) for the horizontal and south-facing vertical surface at Blue Hill. The ratio of the vertical to horizontal surface incident radiation was calculated and the values for the various days were plotted on Figure 17.

Results

Figure 17 shows good average correlation between calculated and observed ratio of daily total solar radiation incident upon a south-facing vertical surface to that incident upon a horizontal surface at Blue Hill, Massachusetts for clear and partly cloudy days. Only clear and partly cloudy days were used for this comparison because only a very small portion of the total radiation is available during cloudy days.

It is noted that there is considerably more scatter of points during winter months than during summer months. The very high ratios during the winter can be attributed to the increased radiation incident upon the south-facing vertical surface owing to increased reflection from the ground caused by snow cover. This increased reflection will affect the vertical surface more than the horizontal surface and consequently, increase the observed ratio. The observed ratios

which fall considerably below the calculatea ratios occurred on the relatively cloudy days because with increased cloudiness, the radiation tends to become equal in all directions, or the ratio tends toward unity.

VARIATION IN SOLAR RADIATION INTENSITY WITH ALTITUDE

Review of Literature

Preliminary comparisons between calculated cloudless day and recorded clear day solar radiation for Lander, Wyoming (5,563 ft.) and Albuquerque, New Mexico (5,310 ft.) indicated that the calculated results, based on the atmospheric and sea level conditions which were assumed, gave values that were much too low. The higher recorded values for Lander and Albuquerque are to be expected because the solar radiation has a shorter path through the atmosphere and less chance of depletion in reaching a surface at high altitude.

The earliest known information on the variation in solar radiation intensity with altitude was published in 1919 by Kimball (19). Prior to that time, in cooperation with the Weather Bureau and the Smithsonian Institute, he made studies on the increase in solar radiation intensity with altitude westward from the Atlantic Coast of the United States. Records of solar radiation intensity were taken at various places near sea level, in the Great Plains, and at various places at high altitude; such as Hump Mountain, North Carolina; Mount Wilson, California; Cheyenne,

Wyoming; Flagstaff, Arizona; and Santa Fe, New Mexico. From these studies, he arrived at a monthly mean increase in solar radiation with altitude as shown by the yearly curve of Figure 19. This work was continued and in 1948, Klein (21) summarized work which by that time had included results from 56 plateau and mountain stations supplemented by information from balloon ascents. He noted that the variation of the transmission of solar radiation with altitude depended on the season of the year and the length of the path of the sun's rays (air mass). His work indicated that the variation with altitude was logarithmic for the various air masses. (See Glossary for definition of Air Mass.) Figure 18 shows the results of his findings for summer conditions with air masses of one and two and for winter conditions with air mass of two. It is noted that the winter and summer lines, for air masses of two, come very nearly to being equal at four kilometers. Below this level, atmospheric transmission of solar radiation is lower during summer, which is as expected due to higher moisture content of the atmosphere.

Both Klein's (<u>ibid</u>.) and Kimball's (<u>loc</u>. <u>cit</u>.) data show the increase in atmospheric transmission of solar radiation with altitude as compared with that at threetenths of a kilometer (984.2 ft.) elevation because at lower elevations no definite relationship between transmission and

Fig. 18. Mean summer and winter transmission coefficients with cloudless sky at high level stations as a function of altitude, from data by Klein (21).

elevation could be established and differences appeared to be more a function of local conditions.

Procedure for Calculating Corrections Due to Altitude

Solar altitudes for June 21 at 40° north latitude for the various daylight hours (Table VI) were integrated by using Simpson's Rule; this integration resulted in an integrated mean solar altitude of 47.7 degrees. A mean solar altitude of 47.7 degrees corresponds to an integrated mean air mass of 1.35 as the secant of the zenith angle of the sun is a good approximation of the air mass. Interpolation for an air mass of 1.35 was then made between values of atmospheric transmission for air masses of one and two for summer conditions as shown in Figure 18.

Using the same method used for June 21, the integrated air mass for December 21 turned out to be about three; but since data were not available for air masses greater than two, the data shown in Figure 18 for a winter air mass of two were used to determine approximate corrections for altitude in winter.

Percentage Increase of Solar Radiation Intensity with Altitude

The percentage increase of solar radiation intensity with altitude was determined for winter and summer conditions according to the increase in the atmospheric transmission coefficients shown in Figure 18 for winter air mass of two and summer air mass of 1.35, respectively. The percentage increase for winter and summer is shown in Figure 19. The yearly mean increase with altitude, determined by Kimball (<u>loc. cit</u>.) is also shown in Figure 19. It is of interest to note how closely the curve for yearly mean increase approximates being an average between the summer and winter increases.

The curves were drawn to show no increase in solar radiation intensity with elevation up to 1000 feet above sea level because no definite relationship between atmospheric transmission of radiation and elevations to 1000 feet could be established from Klein's (<u>loc. cit.</u>) and Kimball's (<u>loc. <u>cit.</u>) data, and also due to the good correlation between the calculated and recorded values previously discussed for Blue Hill, Massachusetts; Lincoln, Nebraska; and Madison, Wisconsin which have altitudes above sea level of 672, 1184, and 938 feet, respectively.</u>

The method of least squares was used to determine equations n and o of Figure 19 for the summer and winter

curves, respectively. These equations can be used between altitudes of 2000 and 10,000 feet above sea level. Points calculated by the equations for 1000 feet intervals between 2000 and 10,000 feet fit the points used in plotting the curve with average deviations of 0.25 and 0.10 percent for summer and winter, respectively. The equations can be used to approximate the percentage increase of solar radiation with altitude for December 21 and June 21. Percentage increases for any other time of the year can be approximated by interpolation between the values given by the two equations.

Comparison between Calculated Cloudless Day and Recorded Clear Day Radiation for Two High Altitude Stations

Figures 20 and 21 show the comparison between calculated cloudless day and recorded clear day radiation incident upon a horizontal surface for Lander, Wyoming and Albuquerque, New Mexico, respectively. The period covered for the comparison was from April of 1950 through 1954 for Albuquerque because April 1 was the beginning date for publication of recorded solar radiation data in Climatological Data, National Summary (31) for Albuquerque. Publication of recorded data for Lander began July of 1950 and was interrupted during the first eleven months of 1951 and in January of 1952, which explains the relatively few points for the first months of the year.

Incident Radiation, BTU per (Day)(Sq. Ft.)

The procedure used in making this comparison was the same as the one used for Blue Hill, Madison, Lincoln and East Lansing except that corrections for altitudes of 5563 and 5310 feet above sea level were made for Lander and Albuquerque, respectively. The dashed curves in each case represent the calculated daily total solar radiation for sea level conditions for the latitudes of the respective stations.

Again, reasonably good average correlation between recorded and calculated values is noted, except, during July and August for Albuquerque when the calculated values are high. A good explanation for the latter is now known, except that it could possibly be due to the numerous thunderstorms at Albuquerque during those months.

EFFECT OF CLOUDS ON SOLAR RADIATION INTENSITY

Review of Literature

So far the discussion presented for calculated solar radiation intensity at the surface of the earth has been for cloudless skies, and the observed values referred to have been for clear days, or days when the average percentage of cloud cover was 30 percent or less. The sky, however, is not always cloudless; in fact, in some places during some seasons, cloudy conditions are very prevalent. Because of the great effect clouds have on solar radiation, it is one of the most important considerations in determining the availability of solar energy. The effect of clouds is also one of the most difficult to determine.

Fritz (7) states that if we look at the earth as a whole, the planet reflects about 35 percent of the solar radiation incident upon it back to space and that clouds are the major cause for this reflection. Haurwitz (11) has reported that the ratio of total radiation with complete overcast to total radiation with cloudless skies varies from about 0.83 for cirroform type clouds to 0.18 for fog. This ratio depends not only on cloud type, but also on the mean free path of the sun's rays through the cloud, drop size and

distribution, and liquid water content of the clouds. Because of the difficulty involved in approximating the parameters mentioned, which are needed to determine the effect of clouds, and owing to the non-homogeneous nature of clouds, it is more practical to correlate the measurements of solar radiation at a few stations with some other parameter, such as average cloudiness or percentage of possible sunshine, which are observed in many places.

Fritz (op. cit.), Kimball (20) and others, suggest correlating the ratio of average daily solar radiation to cloudless day radiation with percentage of possible sunshine. Percentage of possible sunshine is suggested in favor of average percentage of cloud cover because the photoelectric cell which is used to measure the minutes of sunshine only records when the intensity of solar radiation is more than 82 BTU per square foot per hour. Therefore, some of the very thin cirroform clouds will be ignored by the sunshine recorder as they reduce solar energy by relatively small amounts. United States Weather Bureau Technical Paper No. 12 (32) gives long time means, based on up to 58 years of data, of hours and percentage of possible sunshine for nearly 200 United States Stations. Table X shows a copy of this information for the stations used in this study.

Monthly means of the percentage of possible sunshine are currently recorded in the United States Weather Bureau Climatological Data, National Summary.

Procedure and Results

The mean daily recorded solar radiation on a horizontal surface and the mean percentage of possible sunshine were secured from Climatological Data, National Summary (31) for Albuquerque, Blue Hill, Madison, Lincoln and Lander for each month during the period, 1950 through 1954. Calculated total radiation incident upon a horizontal surface for cloudless days was calculated for each station for the 15th of each month using the equations in Figure 5 and interpolating for the latitude of the respective stations. The values secured from the computation for Lander and Albuquerque were corrected for the altitude of the respective stations by use of the equations in Figure 19.

Table XI shows a compilation of the percentage of possible sunshine (S), mean daily recorded radiation (I) and the ratio of recorded to calculated cloudless day radiation (I/I_0) , for the stations mentioned. The ratio, I/I_0 , for each month was plotted as a function of the percentage of possible sunshine in each case as shown in Figure 22. The method of least squares was used to determine the linear equation p. The coefficient of correlation between the ratio and percentage of possible sunshine is 0.82 and the standard error of estimate is 6.4 percent.

DISTRIBUTION OF DAYS WITH VARIOUS AMOUNTS OF SOLAR RADIATION

Average Number of Days in Various Categories for Madison, Wisconsin

The discussion so far presents a method for approximating the many-year average availability of solar radiation. Prediction of the day to day availability of radiation accurately is not possible because of the variation in cloudiness. The need for day to day predicting is great when energy is to be used for house heating, or for some other purpose, where solar energy is to be stored for use during night-time hours or during periods of cloudy weather, because the solar collector performance depends on solar intensity. Telkes (26) states that from the standpoint of solar house heating, the most important information to derive from solar statistics is the sequence of clear, partly cloudy and cloudy days.

The fact that there were relatively few stations in the United States with solar statistics extending over a very long period of time was pointed out in the introduction. In addition, until July of 1941, only the weekly mean of daily total solar radiation recorded by the Weather Burean were published; it has been only since that time that daily totals have been published.

Average distribution of days with various categories of solar radiation incident upon a horizontal surface at Madison, Wisconsin during the period July of 1941 through October of 1955 was determined as presented in Table II. Madison, Wisconsin was selected because it had the first solar station in the United States and because the records published for that station were fairly complete. Category I includes days with daily total radiation equal to, or greater than, the calculated cloudless day radiation from the formulas in Figure 5; category II is from the lower limit of category I to the calculated mean determined from the formulas in Figure 5 corrected for cloudiness by use of equation p and the 43year average percentage of possible sunshine from Table X; category III is from the lower limit of category II to 25 percent of the calculated cloudless day radiation; and category IV includes days with radiation less than the lower limit of category III. The range of the number of days in each category during the period studied is also shown. The wide range of the number of days which fall into each category points out the large variability in the day-to-day availability of solar radiation, about which nothing can be done except to derive probabilities on the number of, and sequences of, days in various categories when sufficient recorded data are available to do so. Generally speaking, solar radiation statistics of the kind mentioned would

TABLE II

Total Monthly Percentage Month Category Number of Days Radiation of BTU per (Ft²)(Month) Total Mean Range - 12 - 14 - 15 6,624 38.8 January Ι 7.4 3 7 5 1 6,582 38.6 II 10.1 15 8 3,457 20.2 9.7 III 378 IV 3.8 2.2 -- 13 - 14 - 12 8,212 6.6 37.3 3 7 February Ι 9.5 II 8,957 40.7 ે ાં 4,716 III 4 21.4 00.5 i 6 IV 3.1 120 8.5 - 13 - 16 March **3** 6 14,450 42.1 Ι II 9.6 12,924 37.6 7.9 4 - 11 2 - 10 5,940 17.3 2.8 III 4.9 IV 982 546 9.2 8.2 - 16 19,802 April 44.8 Ι - 13 - 15 - 8 II 14,284 32.3 9.6 9,373 738 III 21.2 2.9 0 IV 1.6 7.1 13 15 34•4 37•7 26•2 I 1 May -18,207 3 7 9.5 -II 19,981 11.7 III 20 13,870 -IV 2.6 5 809 1.5 0 9 15 15 5 5.2 June 2 7 7 25.4 Ι 14,383 -11.7 II 27,003 47.7 10.9 14,445 25.5 III 0 IV 2.1 683 1.2 5.5 July 2 8 14,575 Ι 23.7 -9 9 13.2 17 30,733 II . 50.1 15 -III 11.6 15,732 25.6 0 -IV •7 1 229 00.3

AVERAGE DISTRIBUTION OF DAYS WITH VARIOUS CATEGORIES* OF RADIATION AS RECEIVED ON A HORIZONTAL SURFACE FOR MADISON, WISCONSIN 1941 THROUGH 1955

Month	Category	<u>Numbe</u> Mean	r of Days Range	Total Monthly Radiation (BTU per (Ft ²)(Month)	Percentage of Total
August	I	4.8	1 - 9	11,280	21.2
	II	14.2	8 - 19	28,793	54.2
	III	10.8	8 - 14	12,653	23.8
	IV	1.1	0 - 5	325	00.6
September	I	6.3	3 - 10	12,027	30.2
	II	12.3	7 - 18	19,451	48.8
	III	8.5	5 - 13	7,548	18.9
	IV	3.3	0 - 7	757	1.9
October	I	4.9	1 - 11	6,804	22.8
	II	14.3	10 - 17	16,715	56.0
	III	8.8	5 - 12	5,725	19.1
	IV	3.4	0 - 7	587	1.9
November	I	2.1	0 - 5	1,966	13.9
	II	9.6	7 - 18	7,310	51.9
	III	9.8	4 - 14	4,008	28.4
	IV	6.7	3 - 10	786	5.5
December	I II III IV	3.5 10.4 9.3 5.3	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.800 6,158 2,884 485	22.7 49.9 23.3 3.9
Overall M	ean I II III IV				29.8 45.5 22.6 2.0

TABLE II (Cont.)

*Category I includes days with daily total radiation equal to or more than calculated cloudless day radiation from the formulas in Figure 5; Category II is from the lower limit of category I to the calculated mean determined from the formulas in Figure 5 corrected for cloudiness by use of equation p and percentage of possible sunshine from Table XI; Category III is from the lower limit of category II to 25 percent of calculated cloudless day radiation and category IV includes radiation less than the lower limit of category III. apply to a relatively small area immediately adjacent to the measuring station.

It is also possible that with advanced meteorological techniques, short range forecasts and relatively long range trends in solar radiation availability could be made by relating solar energy availability to some other meteorological factors which can be forecast.

Mean Total Solar Radiation in the Various Categories

The approximate means total radiation, in the various categories, mentioned in the last section, was determined for Madison, Wisconsin by multiplying the mean number of days by the most probable average radiation for each category. The percentage of the total radiation of each month in the various categories is also shown. The latter shows that, for the year, about 75 percent of the total radiation is available on days with above average solar radiation. Where solar energy is to be collected and stored at relatively high temperatures, the relative importance of the clear days, or days with above-average solar radiation, will be even greater. The importance of the latter was pointed out by Telkes (27) in a report on the Dover Solar House, where it was shown that almost 94 percent of the energy collected during the month of February 1949 occurred during days with above average radiation.

Sequence of Dark Days

The sequence of days with low amounts of solar radiation, during which little or no energy can be collected, is important, particularly where storage of energy is involved.

Table III shows the maximum sequence of days in category IV during the various months between July of 1941 and October of 1955 for Madison, Wisconsin. The importance of statistics of this kind is apparent from an examination of data for December which shows that the sequence of days in this category varies from none to five during the period of years studied. For solar collector and energy storage design, statistics of this kind would be needed, based on a threshold amount of solar energy below which the amount of energy collected and stored would be negligible. TABLE III

MAXIMUM SEQUENCE OF DAYS IN CATEGORY IV

Year						Mont	ths					
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
199449 19949 19	04440004940000		๛๚๛๚๛๚๛๚๛๚๛	ЧЧИООМОЧИИИЧЧЧ	ЧЧЧЧЧЧЧОЧЧЧЧ	анонанононон I н	чччочччччоччо	000000000000000000000000000000000000000	NNNHHHONUNNHONH	WNOONHHUHUOONU	ことことでもうかいちたりかって	N MONMA I HMANNI A I
Mean	1.57	1. 28	1.86	1.20	6•0	3 1.00	0.71	0.73	1.40	1.75	2.67	2.25
*CE cloudle	itegory ss day	IV in radia	cludes tion.	days h	vith .	less th	lan 25	percer	nt of c	alculat	ed	

70

•

CONCLUSIONS AND PROPOSED FUTURE RESEARCH

The amount of solar radiation available is very large but has the disadvantages of being intermittent and relatively low in intensity. Prediction of the day to day useful energy collection of a given solar collector is not possible owing to the random variation of meteorological factors, such as cloudiness, which are interrelated with solar radiation intensity.

The relative importance of cloudless day solar radiation is great because approximately 75 percent of the total solar radiation is available on days with above-average radiation intensity. In addition, the efficiency of collection with a solar collector is a function of solar intensity in such a way that even more importance is attached to the cloudless day solar radiation.

The cloudless day solar radiation intercepted by a horizontal surface is at a maximum and has little latitudinal variation during mid-summer in the United States. The amount of radiation incident upon a horizontal surface during midwinter decreases to about 50 percent and 25 percent of the summer value at 30° and 45° north latitude, respectively.

The increase in solar radiation intensity with altitude above sea level as we progress from east to west in the United States is significant with the increase being greater in summer than in winter.

The amount of solar radiation incident on a surface is affected to a very great extent by the orientation of the surface. The proper tilt angle of a south-facing surface is a function of the latitude and season of the year. Little increase in incident solar radiation is noted for an orientation other than horizontal during mid-summer while during midwinter the distinct advantage of a surface which is nearly vertical is evident. A south-facing surface with optimum tilt angle will have approximately 5 percent and 15 percent more incident cloudless day radiation than a vertical surface on December 21 at 45° and 30° north latitude, respectively. The optimum tilt angle from vertical increases from December to June when the optimum surface would be very nearly horizontal.

The curves and polynomials developed for estimating: (1) the amount of solar radiation available on horizontal surfaces during cloudless days, (2) the ratio of radiation incident upon a south-facing tilted surface to that incident on a horizontal surface, and (3) the increase in radiation with altitude, show reasonably good correlation with actual

recorded data except for the Great Lakes region where the calculated values are 10 percent to 25 percent high, depending on the season.

The regression equation relating the ratio of actual to calculated cloudless day radiation and percentage of possible sunshine, provides a method for estimating the average solar radiation for any season at a great many places. The percentage of possible sunshine is a parameter measured and recorded at many stations; long-time averages for the parameter are available. The estimates apply only to average values and are subject to large deviations in individual cases due to local variations in conditions such as, atmospheric pollution, ground reflection, snow cover and local variations due to large cities and industrial areas.

There is a need for verification of the ratio of solar radiation incident upon tilted surfaces to that incident on horizontal surfaces further than that presented in this thesis, as the only verification used was the ratio of vertical to horizontal incident radiation at one station. It is also conceivable that these ratios could be refined further by determining the affect of cloudiness upon them as it would be expected that the ratios would tend toward unity with increased cloudiness.

There is also a need for an intensive study of atmospheric moisture conditions and an extension of the data for

direct solar radiation at direct incidence, as shown in Figure 1, to include data for a wider range of atmospheric moisture conditions. It would then be possible to predict solar radiation intensity more accurately.

Methods of describing the variability of solar radiation availability in terms of average distribution of, and probabilities of, numbers and sequences of days with various categories of incident radiation are needed. The categories of incident radiation would conceivably be based on the performance factors of a solar collector design as affected by solar radiation intensity. A method could be devised by using data from one of the older recording stations such as from Madison, Wisconsin. The method could then be used for other localities as more recorded data becomes available. APPENDIX I

TABLES

TABLE IV

CALCULATED SOLAR RADIATION PER SQUARE FOOT OF SURFACE DURING CLOUDLESS DAYS

30° I	ati	tude	
-------	-----	------	--

Solar	Sun	Sun	Io BTUI	Hor	iz ont	al Sur	face	
Time 21st day of month	Azimuth Degrees	Altitude Degrees	per hour	cos i	I _h BTU per hour	I BTU per hour	Ith BTU per hour	cos i
Dec 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	126 136 148 163 180	11 21 29 35 37	196 263 288 300 302	0.192 .358 .485 .574 .602	38 94 140 172 182	17 26 30 31 32	55 120 170 203 214	0.577 .672 .742 .783 .799
Total BTU /day	,						1268	
Jan Nov 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	123 133 146 162 180	14 24 32 38 40	230 274 295 305 308	0.242 .407 .530 .616 .643	56 112 156 188 198	20 28 30 32 32	76 140 186 220 230	0.529 .623 .703 .749 .766
Total BTU /day							1412	
Feb Oct 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	107 116 126 140 158 180	7 19 30 40 47 49	140 256 290 309 315 316	0.122 .326 .500 .643 .731 .755	17 84 145 199 230 239	12 26 30 32 33 34	29 110 175 231 263 273	0.121 .412 .509 .587 .632 .656
Total BTU /day							1696	
Mar Sept 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	98 106 117 131 152 180	13 26 38 49 57 60	225 280 305 316 322 324	0.225 .438 .616 .755 .839 .866	51 123 188 239 270 281	20 28 34 35 35	71 151 220 273 305 316	0.135 248 .358 .430 .481 .500
Total BTU /day							2090	

TABLE IV (Cont.)

Ver	tical	Surface	Surfa Fro	ce Sl m Ver	oped 3 tical	0°	Sur: Fi	face S com Ve	loped rtical	60°
Iv BTU per hour	I _{dv} BTU per hour	Ity BTU per hour	cos i	It BTU per hour	I BTU per hour	I _{tt} BTU per hour	cos i	It BTU per hour	I _{dt} BTU per hour	I _{tt} BTU per hour
113 177 214 235 241	12 26 32 43 43	125 204 246 278 284	0.596 .761 .885 .965 .993	117 200 255 289 300	14 26 31 39 39	1 31 220 286 328 339	0.455 .646 .791 .889 .921	89 169 228 267 278	15 26 31 35 36	104 195 259 302 31 4
		1886	•			2173				1950
122 171 207 228 236	16 29 37 45 45	138 200 244 273 281	0.579 .743 .874 .957 .984	133 204 258 292 30 3	17 29 35 41 41	150 233 292 333 344	0.474 .664 .811 .908 .940	109 182 239 277 289	19 28 32 36 36	128 210 271 313 325
		1867				2229				2059
17 105 148 181 199 207	4 19 33 42 46 46	21 124 181 223 245 253	0.166 .520 .691 .829 .912 .945	23 133 200 256 287 299	10 20 32 39 42 42	33 153 232 295 329 341	0.166 .488 .688 .850 .949 .982	23 125 199 263 299 310	6 23 31 35 37 38	29 148 230 298 336 348
		1677				2193				2197
30 69 109 136 155 162	11 24 34 41 46 47	41 93 143 174 201 219	0.229 .434 .618 .749 .836 .866	51 121 188 236 269 281	14 25 33 42 43	65 146 221 275 311 324	0.263 .503 .712 .869 .967 1.000	59 140 217 274 311 324	17 27 33 36 39 39	76 167 250 310 350 363
		1345				2092				2366

Solar	Sun	Sun	Io	Horiz	contal	Surfa	ce	
Time 21st day of month	Azimuth Degrees	Altitude Degrees	BTU per hour	cos i	I BTU per hour	I _{dh} BTU per hour	I _{th} BTU per hour	cos i
Apr Aug 6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	81 39 94 103 116 139 180	6 19 32 45 57 67 72	80 195 240 266 281 288 290	0.105 .326 .530 .707 .839 .920 .951	8 64 127 133 236 265 275	52992 22992 33455 3355	13 86 156 220 270 300 311	-0.155 017 .059 .159 .239 .295 .309
Total BTU /dag	А						2401	
May Jul; Sam 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	, 79 85 93 103 122 180	10 23 35 48 61 73 80	122 210 248 270 284 291 293	0.174 .391 .574 .743 .875 .956 .985	21 82 142 201 249 278 289	14 25 30 32 35 35 35	35 107 172 233 283 313 324	-0.304 176 071 .035 .109 .155 .174
Total BTU /day	У						2589	
June 6am 6pm 7am 5pm 3am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	70 75 82 88 97 112 130	11 24 37 49 62 75 83	140 215 251 271 284 291 293	0.191 .407 .602 .755 .883 .966 .993	27 87 151 205 251 281 291	15 25 32 32 35 35 35	42 112 181 237 285 316 326	-0.336 237 111 023 .057 .097 .122
Total								

BTU /day

TABLE IV (Cont.)

Ver	tical	Surface	Surf Fr	ace S om Ve	loped rtical	30°	Surf Fr	ace S om Ve	loped rtical	60°
I BTU per hour	Idv BTU per hour	Itv BTU per hour	cos i	I BTU per hour	I BTU per hour	I bTU per hour	cos i	It BTU per hour	I dt BTU per hour	I BTU per hour
14 42 67 89	3 10 23 34 39 45 45	37 76 106 128 133	-0.148 .316 .491 .626 .715 .743	29 76 131 176 206 216	4 14 25 33 37 40 42	43 101 164 213 246 258	0.013 .273 .489 .692 .846 .944 .977	10 54 117 184 238 272 283	4 18 27 33 36 38 38	14 72 144 217 274 310 321
		7 99				1802				2379
9 31 45 51	5 12 16 32 37 43 44	16 41 68 88 95	-0.043 .225 .401 .531 .612 .643	9 56 108 151 178 188	8 16 21 32 36 40 41	8 25 77 140 187 218 229	-0.250 .461 .661 .813 .906 .940	52 114 178 231 264 275	11 25 32 38 38	11 73 139 210 266 302 313
		508				1 53 2	1 1 1 1			2317
16 28 36	5 12 16 20 30 14	20 53 70 80	-0.205 .357 .490 .567 .602	51 97 139 165 176	8 16 21 24 31 40 41	8 16 72 121 170 205 217	-0.233 .465 .642 .793 .885 .921	50 117 174 225 257 270	12 25 28 33 37 38	12 71 142 202 258 294 308
										00(0

TABLE V

CALCULATED SOLAR RADIATION PER SQUARE FOOT OF SURFACE DURING CLOUDLESS DAYS

Solar	Sun Azimuth	Sun Altitude		Ho	rizont	al Sur	face	
21st day of month	Degrees	Degrees	per hour	cos i	Ih BTU per hour	I _{dh} BTU per hour	I _{th} BTU per hour	cos i
Dec. 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	126 137 150 164 180	8 18 25 30 32	160 253 278 290 295	0.140 .310 .423 .500 .530	22 78 118 145 156	14 23 28 29 30	36 101 146 174 186	0.582 .695 .785 .832 .848
Total BTU ,'day							1076	
Jan Nov 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	124 135 148 163 180	11 22 29 33 35	196 261 288 298 302	0.192 .374 .485 .545 .575	38 98 140 163 174	17 27 31 32 33	55 125 171 195 207	0•549 •655 •742 •802 •819
Total BTU /day							1258	- - -
Feb Oct 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	108 117 128 143 160 180	6 17 27 36 42 44	120 248 283 301 310 312	0.105 .293 .454 .588 .669 .695	13 74 129 177 207 217	10 23 29 31 33 34	23 97 158 208 240 251	0.129 .434 .544 .646 .698 .719
Total BTU /day							1527	
Mar Sept 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon Total	98 108 120 135 155 180	12 24 35 45 55	208 274 300 313 319 320	0.209 .407 .574 .707 .788 .819	43 112 172 221 251 262	18 28 31 33 34 34	61 140 203 254 285 296 1940	0.136 .282 .410 .500 .558 .574

35° Latitude

TABLE V (Cont.)

Ver	tical :	Surface	Surf Fr	ace S om Ve	loped rtical	30°	Surf Fr	ace Si om Ver	loped rtical	60°
Iv BTU per hour	I _{dy} BTU per hour	Itv BTU per hour	cos i	It BTU per hour	I _{dt} BTU per hour	I _{tt} BTU per hour	cos i	It BTU per hour	I _{dt} BTU per hour	Itt BTU per hour
93 176 218 241 250	9 25 33 41 41	102 201 251 282 291	0.574 .759 .898 .971 .999	92 192 250 282 295	11 25 32 38 38	103 217 282 320 333	0.412 .620 .771 .849 .882	66 157 214 246 260	12 24 29 34 34	78 181 243 280 294
		1885				2100	(* . 			1802
108 171 215 238 247	12 29 39 42 44	120 200 254 280 291	0.571 .755 .886 .960 .990	112 197 255 286 299	14 28 36 39 41	126 225 291 325 340	0.441 .635 .791 .900 .939	86 166 228 268 283	15 27 33 35 36	101 193 261 303 319
		1894				2166				1952
16 108 154 194 216 2 <i>2</i> 4	3 17 30 45 45	19 125 186 234 261 269	0.173 .525 .716 .853 .939 .970	21 130 203 257 291 303	5 19 31 37 42	26 149 234 294 333 345	0.156 .474 .695 .832 .928 .962	18 118 197 250 288 300	7 21 30 34 37 38	25 139 227 284 325 338
,	1-	1746				2186				2107
28 77 123 157 178 184	10 24 31 41 46 47	38 101 154 198 224 231	0.223 .448 .642 .787 .888 .907	46 123 193 246 283 290	13 25 31 39 43	59 148 224 285 325 333	0.249 .493 .702 .862 .961 .996	52 135 211 270 307 318	15 27 31 35 38 38	67 162 242 305 345 356
·		1481				2149				2311

Solar	Sun	Sun	I	He He	orizon	tal Su	rface	
Time 21st day of month	Azimuth Degrees	Altitude Degrees	BTU per hour	cos i	I _h BTU per hour	I BTU per hour	Ith BTU per hour	cos i
Apr Aug								
6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	82 88 97 108 123 146 180	7 19 31 43 54 63 67	80 195 236 262 278 285 288	0.122 .326 .515 .682 .809 .891 .921	10 63 122 179 225 254 265	8 21 29 31 33 34 34	18 84 151 210 258 288 299	-0.138 038 .105 .226 .320 .376 .391
Total BTU /day							2310	
May Jul								
6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	73 82 89 98 111 134 180	11 23 36 48 60 70 75	140 210 250 270 283 290 291	0.192 .391 .588 .743 .866 .940 .966	27 82 147 201 245 273 281	11 25 30 32 34 35 35	38 107 177 233 279 308 316	-0.286 128 0 .093 .179 .238 .259
Total BTU /day							25 73	
June 6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	71 79 85 94 106 127 180	13 25 37 49 62 73 78	155 220 251 271 284 291 292	0.225 -423 -607 -755 -883 -956 -978	35 93 151 205 251 278 286	16 26 30 32 34 35 35	51 119 181 237 285 313 321	-0.317 - 173 - 069 .046 .129 .176 .208
Total BTU /day							2655	

TABLE V (Cont.)

								-	
Ver	tical	Surface	Surf Fr	ace S	loped	30°	Surface S	loped	60°
Iv BTU per hour	Idv BTU per hour	I bTU per hour	cos i	It BTU per hour	I dt BTU per hour	I BTU per hour	cos i BTU per hour	I dt BTU per hour	I _{tt} BTU per hour
25 59 89 107 113	4 11 24 33 45 46	11 49 92 130 152 159	0.134 •349 •537 •682 •772 •800	26 82 141 190 220 230	5 13 24 32 38 41 43	5 39 106 173 228 261 273	0.037 3 .263 51 .499 118 .704 184 .861 239 .960 274 .994 286	7 17 27 31 35 37 38	10 68 145 215 274 311 324
		916				1893			2367
25 51 69 75	4 15 26 340 45	15 51 85 109 120	0.085 .294 .453 .588 .676 .707	18 74 122 166 196 206	6 16 20 28 33 38 42	6 34 94 150 199 234 248	0.022 3 .275 58 .588 147 .690 186 .828 234 .933 271 .967 281	9 20 25 30 34 36 38	12 78 172 216 268 307 319
		630				1676			2411
12 37 51 61	7 12 15 33 43 45	15 45 76 94 106	0.062 .244 .418 .554 .630 .669	14 61 113 157 183 195	10 13 20 33 37 40 42	10 27 81 146 194 223 237	0.036 6 .279 61 .491 123 .677 183 .830 236 .916 267 .951 278	13 21 25 36 38 38	19 82 148 215 272 305 316
		55 3				1588			2390

TABLE VI

CALCULATED SOLAR RADIATION PER SQUARE FOOT OF SURFACE DURING CLOUDLESS DAYS

Solan	Sun	Sun	т	Honi	ronte	l Supf	0.00	
Time 21st day of month	Azimuth Degrees	Altitude Degrees	BTU per hour	cos i	I BTU per hour	I BTU per hour	Ith BTU per hour	cos i
Dec 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	127 138 151 165 180	5 14 21 25 26	110 234 263 278 280	0.087 .242 .358 .423 .438	10 56 95 118 123	8 13 26 28 29	18 69 121 146 152	0.600 .721 .817 .875 .899
Total BTU /day							848	
Jan Nov Sam lipm 9am 3pm 10am 2pm 11am 1pm 12 noon	125 136 149 164 180	8 17 24 28 30	160 248 274 287 290	0.139 .292 .406 .470 .500	22 72 111 135 145	15 23 28 30 30	37 95 139 165 175	0.568 .687 .783 .849 .866
Total BTU /day							1021 -	
Feb Oct 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	118 130 145 161 180	14 24 31 37 39	230 274 292 302 308	0.242 .406 .515 .602 .629	56 111 150 182 194	20 28 30 32 32	76 139 180 214 226	0.456 .587 .702 .756 .777
Total BTU /day							1383	
Mar Sept 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	100 110 123 138 157 180	11 23 33 42 48 50	196 272 297 310 316 317	0.191 .391 .545 .669 .743 .766	37 106 162 207 235 243	17 27 30 33 34 34	54 133 192 240 269 277	0.171 .315 .457 .552 .615 .643
BTU /day							1831	

40° Latitude

TABLE VI (Cont.)

یف، خده توریخ دانلاسی مراجع										
Ver	tical	Surface	Suri Fi	Cace 2 Com Ve	bloped ertical	30°	Surf Fr	ace Sl om Ver	oped 6	»0°
I BTU per hour	I _{dy} BTU per hour	I _{tv} BTU per hour	cos i	I _t BTU per hour	I _{dt} BTU per hour	I _{tt} BTU's per hour	cos i	It BTU per hour	I _{dt} BTU per hour	I _{tt} BTU per hour
66 166 215 243 252	6 17 33 36 37	72 183 248 279 289	0.520 •745 •886 •968 •998	57 174 233 269 279	7 16 31 34 35	64 190 264 303 314	0.375 .571 .719 .804 .829	41 134 189 224 232	7 14 28 30 31	48 148 217 254 263
		1804				1 920	,			1596
91 170 215 244 251	10 22 32 39 39	101 192 247 283 290	0.571 .751 .881 .970 1.000	91 186 241 278 290	11 22 31 36 36	101 208 272 314 326	0.404 .597 .744 .832 .866	65 148 204 239 251	14 23 29 33 33	79 171 233 272 284
		1858				2040				1736
105 161 205 228 239	16 29 37 42 42	121 190 242 270 281	0.516 .711 .865 .956 .987	119 195 253 289 304	17 29 36 39 39	136 224 289 328 343	0.437 .646 .797 .899 .934	101 176 233 271 288	19 28 32 35 35	120 204 265 306 323
		1818				2178				2010
34 86 136 171 194 204	7 21 34 45 46	41 107 170 212 239 250	0.243 -468 -668 -812 -904 -940	48 127 198 252 286 298	10 23 33 39 42 42	58 150 231 291 328 340	0.251 .497 .700 .855 .951 .985	49 135 208 265 300 312	14 25 31 35 37 38	63 160 239 300 337 340
		1590				2188				2264

Solar	Sun	Sun		Hoi	cizont	al Sur	face	
Time 21st day of month	Azimuth Degrees	Altitude Degrees	BTU per hour	cos i	I _h BTU per hour	I _{dh} BTU per hour	I _{th} BTU per hour	cos i
April Aug 6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	83 90 100 112 128 150 180	8 19 30 41 51 59 62	110 195 234 260 275 282 284	0.140 .326 .500 .656 .777 .857 .883	15 64 117 171 214 242 251	11 21 28 31 33 34 34	26 85 145 202 247 276 285	-0.121 .0 .151 .283 .387 .446 .470
Total BTU /day							2232	
May July 6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	72 83 92 104 119 142 180	13 24 36 47 58 66 70	160 215 250 269 281 288 290	0.225 .407 .588 .731 .848 .913 .940	36 88 147 197 238 263 273	17 25 30 32 34 35 35	53 113 177 229 272 298 308	-0.301 -0.111 .028 .165 .257 .321 .342
Total BTU /day							25147	
June 6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	72 80 89 100 114 138 180	15 26 37 49 60 69 73	170 220 251 271 283 289 291	0.259 .438 .602 .755 .866 .934 .956	44 97 151 205 245 271 279	18 27 28 33 34 36 36	62 124 179 238 279 307 315	-0.299 -0.156 .0 .114 .205 .266 .292
Total								

BTU /day

TABLE VI (Cont.)

Ver	tical	Surface	Surf Fr	ace S om Ve	loped rtical	30°	Sur Fi	face S com Ve	loped rtical	60°
Iv BTU per hour	I _{dy} BTU per hour	Ity BTU per hour	cos i	It BTU per hour	I _{dt} BTU per hour	Itt BTU per hour	cos i	It BTU per hour	I _{dt} BTU per hour	I BTU per hour
35 74 106 126 133	4 10 22 33 37 45	57 107 143 169 178	0.163 .381 .573 .723 .814 .848	32 89 149 199 230 241	7 24 33 36 40 42	7 46 113 182 235 270 283	0.282 .409 .710 .867 .965 1.000	55 96 185 238 272 284	9 18 26 31 34 37 38	9 73 122 216 272 309 322
		1084				1986				2342
7 11 72 92 99	7 12 24 34 40 44 47	7 12 31 78 112 136 146	0.107 .318 .508 .647 .734 .766	23 80 137 182 211 222	10 16 26 38 41 43	10 39 106 171 220 252 265	0.296 .523 .716 .863 .952 .985	64 131 192 243 274 286	14 21 28 32 36 38 39	14 85 169 224 279 312 325
		895				1850				2481
31 58 77 85	8 12 17 35 38 41 44	17 66 96 118 129	0.084 .341 .496 .611 .697 .731	18 86 134 173 201 213	11 17 20 34 37 39 41	11 35 106 168 210 240 255	0.301 .521 .711 .853 .942 .974	66 131 193 241 272 283	17 22 24 33 35 37 38	17 88 155 226 276 309 321
		716				1781				2463

TABLE VII

CALCULATED SOLAR RADIATION PER SQUARE FOOT OF SURFACE DURING CLOUDLESS DAYS

Solar	Sun	Sun	Io	Hoi	rizont	al Sur	face	
Time 21st day of month	Azimuth Degrees	Altitude Degrees	bru per hour	cos i	I _h BTU per hour	I BTU per hour	Ith BTU per hour	cos i
Dec 9am 3pm 10am 2pm 11am 1pm 12 noon	139 151 165 180	10 16 20 22	185 241 260 266	0.174 .276 .349 .384	32 67 91 102	16 23 26 27	48 90 117 129	0.744 .841 .908 .927
Total ETU /day	r						646	
Jan Nov 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	125 137 150 165 180	5 13 19 24 25	110 225 256 274 278	0.087 .225 .326 .419 .436	10 51 83 115 121	8 19 25 28 29	18 70 108 143 150	0.586 .712 .818 .883 .906
Total 520 /any	-						824	
Feb Oct 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	119 132 146 162 180	12 21 28 33 34	208 263 287 297 298	0.208 .366 .469 .545 .559	43 96 135 162 167	18 26 30 31 31	61 122 165 193 196	0.474 .625 .732 .798 .829
Total BTU /day	r						1232	
Mar Sept 7am Spm 8am 4pm 9am 3pm 1Cam 2pm 11am 1pm 12 noon	107 112 125 141 159 130	11 21 30 38 43 45	196 263 290 305 311 313	0.191 .366 .500 .616 .682 .707	37 96 145 188 212 221	17 26 30 32 33 33	54 122 175 220 245 254	0.287 .359 .509 .612 .683 .707
Total BTU /day							1678	

45° Latitude

Ver	tical	Surface	Surf Fr	ace S om Ve	lcped rtical	30°	Sur1 Fi	face S fom Ve	loped rtical	60°
I BTU per hour	I _{dv} BTU per hour	I _{tv} BTU per hour	cos i	It BTU per hour	Idt BTU per hour	I _{tt} BTU per hour	cos i	It BTU per hour	I dt BTU per hour	I bTU per hour
137 203 236 247	13 23 31 33	150 226 267 280	0.731 .866 .961 .994	135 209 250 264	14 23 30 31	149 232 280 295	0.522 .714 .756 .976	97 172 197 212	15 23 28 29	112 195 225 241
		1601				1651				1320
64 160 209 242 252	4 18 27 37 37	68 178 236 279 289	0.551 .730 .871 .975 .999	61 164 223 267 278	5 18 27 34 34	66 182 250 301 312	0.368 .551 .691 .804 .891	40 124 177 220 248	7 19 26 31 31	47 143 203 251 279
		1772				1875				1539
99 164 210 237 247	12 26 36 41 41	111 190 246 278 288	0.514 .724 .875 .964 .998	107 190 251 286 297	14 26 34 38 38	121 216 285 324 335	0.415 .629 .772 .871 .898	86 165 222 259 268	16 26 32 34 34	102 191 254 293 302
		1843				2125				1900
56 94 148 187 212 221	6 16 31 45 45	62 110 179 227 257 265	0.345 .494 .691 .838 .932 .966	68 130 200 256 290 302	9 19 31 37 41 41	77 149 231 293 331 343	0.308 .496 .687 .839 .932 .965	60 130 199 256 290 302	13 23 30 34 37 37	73 153 229 290 327 339
		1698				2210				2198

Solar	Sun	Sun	Io	Ноз	rizont	al Sur	face	
Time 21st day of month	Azimuth Degrees	Altitude Degrees	BTU per hour	cos i	I _h BTU per hour	I _{dh} BTU per hour	I BTU per hour	cos i
Apr Aug 6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	82 93 103 116 133 154 180	8 19 30 39 48 57	110 195 234 254 270 279 281	0.139 .326 .500 .629 .743 .819 .839	15 64 117 160 201 229 236	11 22 27 30 32 33 34	26 86 144 190 233 262 270	-0.138 .049 .195 .353 .456 .516 .545
Total BTU /day							2136	
May July 6am 6pm 7am 5pm 8am 4pm 9am 3pm 1Cam 2pm 11am 1pm 12 noon	76 84 96 109 125 148 180	14 25 356 52 65	160 220 248 268 279 284 287	C.242 .423 .574 .719 .819 .883 .906	39 93 142 193 229 251 260	17 26 30 32 33 34 34	56 119 172 225 262 285 294	-0.235 -0.063 .056 .231 .338 .400 .423
Total BTU /day							2491	•
June 6am 6pm 7am 5pm 8am 4pm 9am 3pm 10am 2pm 11am 1pm 12 noon	76 85 93 105 121 145 180	20 27 37 48 58 65 69	200 220 251 270 281 287 289	0.342 .454 .602 .743 .848 .906 .934	68 100 151 201 238 260 270	22 26 30 32 34 34 35	90 126 181 233 272 294 305	-0.227 -0.078 .042 .173 .273 .346 .358
Total BTU /day							2610	

Ver	tical	Surface	Surf	ace Si om Vei	Loped 1 tical	30°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0°	
I _v BTU per hour	I _{dv} BTU per hour	I _{tv} BTU per hour	cos i	I _t BTU per hour	I _{dt} BTU per hour	I _{tt} BTU per hour	cos i	I BTU per hour	I dt BTU per hour	I _{tt} BTU per hour
10 46 90 123 144 153	4 26 32 44 45	20 72 122 163 188 198	0.205 .419 .621 .767 .857 .892	40 98 158 207 239 251	6 13 26 31 37 41 42	6 53 124 189 244 280 293	0.091 .303 .530 .721 .871 .967 .999	10 59 124 183 235 270 281	9 18 27 31 34 37 38	19 77 151 214 269 307 319
		1186				2083				2381
14 62 94 114 121	8 127 340 44 45	41 96 134 158 166	0.517 •335 •560 •703 •788 •819	35 83 150 196 224 235	11 17 28 33 41 41	11 52 111 183 234 265 276	0.093 .334 .525 .738 .878 .965 .996	15 74 130 198 245 274 286	14 21 29 35 35 38	29 95 159 231 280 311 324
		994				1986				2521
11 47 77 99 103	10 12 20 37 38 43 45	30 84 115 142 148	0.159 .337 .522 .660 .753 .777	35 85 141 185 216 225	14 17 23 35 37 40 42	14 52 108 176 222 256 267	0.183 .359 .542 .729 .870 .958 .988	37 79 136 197 244 275 286	18 21 27 34 35 37 38	55 100 163 231 279 312 324
		875				1919				2558

TABLE VIII

RATIO OF HORIZONTAL TO SOUTH-FACING TILTED SURFACE INCIDENT RADIATION

Date	Angle of Surface		Tatituda					
	Degrees	30°	35°	40°	45°			
Dec. 21	0	1.49	1.75	2.13	2.48			
	30	1.71	1.95	2.26	2.55			
	60	1.54	1.68	1.87	2.04			
Jan. 21	0	1.32	1.51	1.82	2.15			
and	30	1.58	1.72	2.02	2.28			
Nov. 21	60	1.46	1.55	1.70	1.87			
Feb. 21	0	0.99	1.14	1.31	1.50			
and	30	1.29	1.43	1.57	1.73			
Oct. 21	60	1.29	1.38	1.45	1.54			
Mar. 21	0	0.64	0.77	0.87	1.01			
and	30	1.00	1.10	1.19	1.32			
Sept. 21	60	1.13	1.19	1.24	1.31			
Apr. 21	0	0.32	0.40	0.49	0.57			
and	30	.72	.82	.89	.98			
Aug. 21	60	.99	1.02	1.05	1.12			
May 21	0	0.19	0.25	0.35	0.40			
and	30	•59	.65	.72	.80			
July 21	60	•89	.94	.97	1.01			
June 21	0	0.11	0.21	0.28	0.33			
	30	.52	.60	.67	.73			
	60	.85	.90	.93	.98			

Yrs. of Data	Boston 63	Lansing 37	Lincoln 51	Albuquerque 53	M adis on 69	Lander 56
Month						
Jan. Clear Partly Clou Cloudy	9 .dy 9 13	4 7 20	11 8 12	18 7 6	8 9 14	12 13 6
Feb. Clear Partly Clou Cloudy	10 dy 8 10	5 8 15	9 8 11	14 8 6	7 8 13	11 12 5
Mar. Clear Partly Clou Cloudy	10 dy 9 12	7 9 15	10 9 12	16 10 5	8 9 1կ	10 1)4 7
April Clear Partly Clou Cloudy	9 .dy 10 11	8 9 13	9 9 12	15 10 5	7 10 13	8 13 9
May Clear Partly Clou Cloudy	9 .dy 10 12	9 10 12	8 11 12	17 10 4	8 11 12	9 14 8
June Clear Partly Clou Cloudy	10 dy 9 11	9 13 8	10 12 8	18 10 2	7 12 11	12 13 5
July Clear Partly Clou Cloudy	9 dy 13 9	12 13 6	13 12 6	12 15 4	10 14 7	13 15 7
Aug. Clear Partly Clou Cloudy	11 dy 11 9	11 13 7	12 12 7	12 15 4	10 13 8	14 13 4

TABLE IX

AVERAGE NUMBER OF CLEAR, PARTLY CLOUDY, AND CLOUDY DAYS*
Yrs. of	data	Boston 63	Lansing 37	Lincoln 51	Albuquerque 53	Madison 69	Lander 56
Sept. Clear Partly Cloudy	7 Clou 7	12 dy 9 9	10 10 10	ען 8 8	17 9 4	10 10 10	14 11 5
Oct. Clear Partl Cloud	y Clou	11 dy 10 10	10 9 12	15 7 9	20 7 4	10 9 12	14 11 6
Nov. Clear Partl Cloud	y Clou	9 dy 9 12	5 6 19	11 8 11	20 6 4	7 9 14	11 13 6
Dec. Clear Partly Cloudy	y Clou y	d y 9 13	4 6 21	10 9 12	18 7 6	6 8 17	12 13 6
Annual Clear Partly Cloud	y Clou y	118 dy118 129	94 113 158	132 113 120	197 114 54	98 122 145	140 155 170
*Te	chnica	1 Paper	No. 12, U	J. S. Depa	rtment of Con	nmerce Wee	ther

TABLE IX (Cont.)

Bureau

Yrs. of Data	Boston 54	Lansing 37	Lincoln 43	Albuquerque 25	M adis on 43	Lander 45
Month						
Jan.	49	33	57	71	43	66
Feb.	56	44	59	70	48	70
Mar.	58	53	60	74	51	71
Apr.	57	58	60	76	5 3	65
May	59	63	62	80	56	65
June	62	69	69	84	62	74
July	53	75	76	77	70	76
Aug.	63	68	70	77	64	75
Sept.	61	59	.66	79	57	71
Oct.	58	52	64	80	52	66
Nov.	48	35	57	77	39	60
Dec.	48	28	54	72	36	62
Annual	57	53	63	77	53	69

PERCENTAGE OF POSSIBLE SUNSHINE

*From Technical Paper No. 12, U. S. Department of Commerce Weather Bureau

TABLE X

TABLE XI

Dat	te	Radis	Blue	H111		Radia	Linc	oln	·	Mad Radi a	<u>ison</u> tion
24		Ly./	Day I	I/I _o	S	Ly./ I	Day I	I/I _o	S	Ly./	Day I
Jan.	150 1512 1523 1534	236	120 150 142 191 121	.51 .64 .60 .81 .51	30 38 37 40 33	244	186 218 188 185	•76 •89 •77 •76	54 738 59 59	217	136 168 142 124 152
Feb.	150 1512 1515 1514	325	183 215 220 226 192	•56 •66 •69 •59	37 39 51 52 44	344	258 241 255 274	•78 •73 •77 •83	63 51 50 58 71	306	208 189 206 210 204
Mar.	1512 1523 1534	442	380 257 274 265 323	.86 .58 .62 .60 .73	53 30 41 37	461	343 345 338 338	•74 •75 •73 •73	55359 55455	434	314 285 332 290 323
Apr.	150 151 152 153 154	564	387 424 376 354 394	.69 .75 .67 .63 .70	44 54 39 50	576	426 350 388 434	•74 •61 •67 •75	55 41 52 67	555	366 337 431 363 380
Мау	150 151 152 153 154	664	497 500 450 456 390	•75 •75 •68 •69 •59	49 50 40	669	504 202 510 485	•75 •75 •76 •72	61 05 68 64 64	6614	542 498 414 482 468
June	'50 '51 '52 '53 '54	713	602 487 555 479	.84 .68 .78 .92 .67	64 43 65 74 53	71.3	657 440 568 594	•92 •62 •80 •83	83 41 80 76 81	713	574 503 498 589 548

RELATIONSHIP BETWEEN THE RATIO OF OBSERVED (I) TO CALCULATED CLOUDLESS DAY RADIATION (I_O) AND PERCENTAGE OF POSSIBLE SUNSHINE (S)

						•					
Madiso	on		Land	ər			Albuquerque				
1/1 ₀	S	Radia Ly./ I _o	tion Day I	I/I _o	S	Radia Ly./ Io	tion Day I	I/I _o	S		
.63 .77 .65 .57 .70	48 45 41 36 46	257	220 226	.86 .88	56 58 69 64	352	267 307 302 341 312	•76 •87 •85 •97 •88	68 75 69 81 67		
.68 .62 .67 .69 .67	56 332 59 59	368	324 358 320	.88 .97 .87	72 64 66 75	455	373 388 388 409 456	.82 .85 .85 .90 1.00	71 73 70 70 92		
•72 •66 •76 •67 •74	55 55 56 68	496	442 492 437	.89 .97 .88	65 60 68 78 60	583	428 485 505 534 502	•74 •83 •86 •91 •86	73 68 68 73 72		
.66 .61 .78 .65 .68	48 35 64 42 51	642	600 582 589 559	•93 -90 •91 •87	69 64 68 67 79	700	601 600 619 639 668	-86 -86 -88 -91 -95	84 71 72 73 87		
.82 .75 .62 .73 .70	75 59 59 57	786	595 595 594 632	•76 •76 •76 •80	65 63 61 61 71	789	615 674 671 724 708	.78 .85 .85 .92 .90	88 74 75 76 79		
.81 .71 .70 .83 .77	75 54 72 69	840	716 - 747 738 679	.85 .89 .88 .81	78 76 79 86 73	840	683 778 732 745 777	.82 .93 .88 .89 .93	87 91 86 81 90		

TABLE XI (Cont.)

•

E		Blue Hill				Lincoln				son	
Date		Radia Ly./	tion Day T	т /т	q	Radia Ly./	tion Day T	т/т	ç	Radia Ly./	tion Day T
		-0	ـــــــــــــــــــــــــــــــــــــ	1/10		-0	 			<u>+</u> 0	
July	150 151 152 153 154	699	553 501 577 504	•79 •72 •83 •72	55 56 75 60	699	477 525 569 580	.68 .75 .81 .83	49 64 80 73 80	699	599 529 576 5 23 5 1 4
Aug.	'50 '51 '52 '53 '54	623	464 413 423 452 389	•74 •66 •68 •73 •62	5327 5556 52 56 52	626	518 479 471 552 449	.83 .77 .75 .88 .72	62 62 63 84 62	623	463 407 471 504 473
Sept.	'50 '51 '52 '53 '54	507	343 366 378 403 258	.68 .72 .75 .79 .51	45 60 69 49	515	386 315 474 482 437	•75 •61 •92 •94 •85	65 4 <i>2</i> 83 87 81	496	356 370 411 442 3 3 1
Cct.	150 151 152 153 154	385	302 224 262 240 225	.78 .58 .68 .62 .58	63 46 52 50	396	349 360 351 237	.88 - .91 .89 .60	82 51 82 83 47	384	274 232 312 291 211
Nov.	150 151 152 153 154	274	173 158 156 148 148	.63 .58 .57 .54 .54	42 50 44 47 51	279	218 213 185 229	•78 •76 •66 •82	53 59 71 57 76	257	171 170 161 127
Dec.	·50 ·51 ·52 ·53	206	127 143 86 124 110	.62 .69 .42 .60 .53	42 50 41 53 41	217	176 169 166 160	.81 .78 .77 .74	67 54 66 67 65	201	153 117 93 118

TABLE TABLE XI (Cont.)

Madison			Lander	¢	Albuquerque				
1/1 ₀	S	Radia Ly./ I _O	tion Day I	I/I _o	S	Radia Ly./ I _o	tion Day I	I/I _o	S
.86 .76 .82 .75 .74	76 72 74 64 73	818	637 719 670 702	•78 •88 •82 •86	72 75 79 83	826	679 691 688 690 724	.82 .84 .83 .84 .88	67 74 76 70 81
•74 •65 •76 •81 •76	65 56 80 67	732	611 573 585 610	.83 .78 .80 .83	74 69 68 77 87	759	649 620 640 671 645	.86 .82 .84 .86 .85	79 69 72 78 80
.72 .75 .83 .89 .67	61 61 78 81 59	593	415 561 528	.70 - 95 .89	63 69 82 84 85	645	4 91 600 555 619 568	•76 •93 •86 •96 •88	73 91 82 95 82
•73 •62 •84 •78 •56	65 52 75 55	434	365 405 344	.84 -93 -79	82 55 82 68 80	512	451 452 435 471 471	.88 .88 .85 .92 .92	93 81 93 86 86
•66 •66 •62 •49	41 522 522 45	298	234 231 246 239	•78 -77 -82 -80	56 61 54 62 77	396	299 335 336 348 374	•76 •84 •85 •88 •94	91 74 71 80 93
•76 •58 •46 •59	43 37 36 39 40	225	171 - 199 190 195	•76 •88 •84 •87	53 55 64 71 83	325	250 269 284 296 295	•77 •82 •87 •91 •90	89 64 62 72 74

TABLE XI (Cont.)

Month	Mean Precipitable Water Centimeters				
	Recorded [*] for All Days	Cloudless Day Value Used in Computation			
January	1.12	1.05			
Februar y	1.14	1.05			
March	1.24	1.05			
April	1.62	2.00			
May	2.14	2.00			
June	2.83	2.00			
July	3.32	2.00			
August	3.32	2.00			
September	2.78	1.05			
October	2.08	1.05			
November	1.50	1.05			
December	1.35	1.05			

TABLE XII

MONTHLY MEAN PRECIPITABLE WATER IN THE UNITED STATES

*From Technical Paper No. 10, United States Department of Commerce Weather Bureau

APPENDIX II

SAMPLE COMPUTATION

Sample Computation of Fourth Degree Polynomial for Solar Radiation Curves of Figure 5

For the sample computation shown below, the data from Table V for 35° Latitude is used. X is equal to the number of months from June 21 and Y is equal to the calculated cloudless daily total solar radiation incident upon a horizontal surface. Y' is the value of Y computed from the fourth degree polynomial.

Date	X	Y	Υľ
Dec. 21 Jan. 21 Feb. 21 Mar. 21 Apr. 21 June 21 July 21 Aug. 21 Sept.21 Oct. 21 Nov. 21 Dec. 21		1076 1258 1527 1940 2310 2573 2655 2573 2310 1940 1527 1258 1076	1091 1218 1550 1954 2319 2566 2566 2319 19550 19550 1218 1091

For the above data:

SX	=	0	$SX_{1}^{\zeta} =$	0
SY	25	24.054	sx4 =	4,550
SXY	=	0	sx5 ≖	0
sx2y		247.825	$SX_{-}^{6} =$	134,342
sx3y	==	Ū	$sx_{6} =$	0
SX4Y	-	5,537,449	$sx^{o} =$	4,285,190
sx ²	×	182		

The following normal equations are secured from the above data:

4,550f = 0f = 134,342f = 0f = 24,054 0 247,825 0 13a + 182c + 0b + 0d + 0c + 4,550c + 4,550a + 182b + 0a + 182a + 0ъ + 0d + 134,3524 + 0a + 4,550b + 0c + 0d + 4,285,190f = 5,537,449 4.550a + 134,342c + 0ъ +

The solution of the above normal equations yields:

a = 2656.9 b = 0 c = 89.671 d = 0e = 1.2824

Therefore the polynomial is:

$$Y = 2656.9 - 89.671x^2 + 1.2824x^4$$
 (j)

The average deviation between the values calculated by the polynomial (Y') and the corresponding Y value is 16.

GLOSSARY

Definition of Terms

<u>Air Mass, m</u>. Path length of light through the atmosphere, considering the vertical path at sea level as unity. The air mass is approximately the secant of the angle of incidence for a horizontal surface.

Angle of Incidence, i. Number of degrees between actual direction of the sun's rays and a normal to the surface.

<u>Radius Vector</u>. Actual distance between earth and sun, considering the mean distance between earth and sun as unity.

Solar Altitude. The angle, in a vertical plane, between the sun's rays and the horizontal.

<u>Solar Azimuth</u>. The angle, in a horizontal plane, from north to the horizontal projection of the sun's ray.

<u>Solar Constant</u>. The energy incident upon a unit area located at mean distance of the earth from the sun and oriented perpendicular to the sun's rays outside the atmosphere. The value of the solar constant is 2.00 ± 0.04 calories per minute per square centimeter or 440 BTU per square foot per hour.

<u>Solar Declination</u>. The angular distance of the sun north or south of the celestial equator.

Solar Noon. The time for any day when the sun reaches its maximum altitude for that day.

Transmission Coefficient. Portion of the solar energy incident at the top of the atmosphere which reaches the surface of the earth.

Wall Azimuth. The angle, in a horizontal plane, between a normal to the surface and north.

Wall Solar Azimuth. The angle, in a horizontal plane, between the sun's rays and a normal to the surface.

Zenith Angle. Number of degrees between actual direction of the sun's rays and a normal to a horizontal surface.

BIBLIOGRAPHY

- 1. American Society of Heating and Ventilating Engineers, New York. <u>Heating and Ventilating and Air Conditioning</u> <u>Guide 1954</u>, ed. 32, 1954, p. 275.
- 2. Ayres, E., and C. A. Scarlett. <u>Energy Source The</u> <u>Wealth of the World</u>. McGraw-Hill Book Co. Inc., New Yoek, 1952.
- 3. Baten, W. D., and A. H. Eichmeier. <u>A Summary of Weather</u> <u>Conditions at South Haven, Michigan from 1926 to 1952</u>. <u>Michigan State College, Agricultural Experiment Station</u>, pp. 50-52, 1955.
- 4. Brown, A. I., and S. M. Marco. <u>Introduction to Heat Trans-</u><u>fer</u>, ed. 2, McGraw-Hill Book Co. Inc., New York, p. 69, 1951.
- 5. Buelow, F. H., and J. S. Boyd. <u>Heating of Air with Solar</u> <u>Energy</u>. Paper presented for publication to the American Society of Agricultural Engineers, Chicago, 1955.
- 6. Crabb, G. A. <u>Solar Radiation Investigations in Michigan</u>. Michigan State College, Agricultural Experiment Station, Tech. Bull. 222, 1950.
- 7. Fritz, S. <u>Transmission of Solar Energy Through the</u> <u>Earth's Clear and Cloudy Atmosphere</u>. Paper presented for publication at the Conference on Solar Energy: The Scientific Basis. Tuscon, Arizona, 1955.
- 8. Solar Radiation During Cloudless Day. <u>Heating</u> and Ventilating, 46(1): 69-74, 1949.
- 9. Green, W. P. Air Conditioning by the Sun. <u>Mechanical</u> <u>Engineering</u>, 58: 369-371, 1936.
- 10. Hand, I. F. Review of United States Weather Bureau Solar Radiation Investigation. <u>Monthly Weather Review</u>, 65: 437, 1937.
- 11. Hauritz, B. Insolation in Relation to Cloudiness and Cloud Density. Journal of Meteorology, 2: 154-166, 1945.

105

- 12. Hottel, H. C., and B. B. Woertz. The Performance of Flat Plate Solar Heat Collectors. American Society of Mechanical Engineers Transaction, 64: 91-104, 1942.
- 13. Humphreys, W. J. <u>Physics of the Air</u>, ed. 3, McGraw-Hill Book Co. Inc., New York, Chapt. 6, 1940.
- 14. Hutchinson, F. W., and W. P. Chapman. A Rational Basis for Solar Heating Analysis. <u>Heating, Piping and Air</u> <u>Conditioning</u>, 18: 109-117, 1946.
- 15. Solar Irradiation of Walls and Windows South-Facing: October - April. Heating, Piping and Air Conditioning, 21: 102-104, 1949.
- 16. <u>Solar Irradiation of Walls and Windows</u>. <u>Heating, Piping and Air Conditioning</u>, 22: 106-108, 1950.
- 17. ______. Solar Irradiation of Walls and Windows. Heating, Piping and Air Conditioning, 26: 130-132, 1950.
- 18. Johnson, F. S. The Solar Constant. Journal of Meteorology, 11: 431-439, 1954.
- 19. Kimball, H. H. Variation in Total and Luminous Solar Radiation with Geographical Position in the United States. Monthly Weather Review, 47: 769-793, 1919.
- 20. Measurements of Solar Radiation Intensity and Determination of its Depletion by the Atmosphere. Monthly Weather Review, 55: 155-169, 1927.
- 21. Klein, W. H. Calculation of Solar Radiation and the Solar Heat Load on Man. Journal of Meteorology, 5(4): 119-129, 1948.
- 22. Meir, R. L. Hydrocarbon Fuels Via Photosynthesis: An Evaluation of the Processes and Their Economics. Paper presented for publication at the conference of Solar Energy. Tucson, Arizona, 1955.
- 23. Moon, P. Proposed Standard Radiation Curves for Engineering Use. Journal of the Franklin Institute, 240: 583-617, 1940.
- 24. Parmelee, G. V. Irradiation of Vertical and Horizontal Surfaces by Diffuse Solar Radiation from Cloudless Skies. Heating, Piping and Air Conditioning, 51: 129-136, 1954.

- 25. Putnam, P. C. <u>Energy in the Future</u>. Van Nostrand Co. Inc., New York, 1953.
- 26. Telkes, M. A Review of Solar House Heating. <u>Heating and</u> Ventilating, 46(9): 69-74, 1949.
- 27. , and E. Raymond. Storing Heat in Chemicals; A Report of the Dover House. <u>Heating and Ventilating</u>, 46(11): 85, 1949.
- 28. Threlkeld, J. L., and R. C. Jordon. Solar Radiation During Cloudless Days. <u>Heating, Piping and Air Condi-</u> tioning, 52: 1-6, 1955.
- 29. United States Hydrographic Office. Tables of Computed Altitude and Azimuth. United States Government Printing Office. Pub. No. 214, 1940.
- 30. United States Naval Observatory. The American Ephemeris and Nautical Almanac for Year 1955. United States Government Frinting Office, pp. 2-18, 1952.
- 31. United States Weather Bureau. Climatological Data, National Summary. United States Government Printing Office, 1950-1955.
- 32. at Select Stations in the United States, Alaska, Hawaii, and Puerto Rico. United States Government Printing Office. Tech. Paper No. 12, 1951.
- 33. Local Climatological Data Supplements. United States Government Printing Office, 1950-1954. 300 pp.
- 34. <u>Nean Precipitable Water</u> in the United States. United States Government Printing Office Tech. Paper No. 10, 1949.