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LEO LAPIDUS ABSTRACT

This thesis 1s a study in what has come to be known as
the field of abstract distance spaces, 1n the spirit of the
later work of Karl Menger, where the distances of the space
are elements of some abstract algebralc structure. In par-
ticular, the distances of this study are elements of a
lattice, more especially of a Brouwerian algebra, a genersal=-
ization of a Boolesan algebra.

First, a few lattice theoretic properties of Brouwerilan
algebras are developed In some detall, with considerable
attention given the Brouwerian complement, which generalizes
the famillar Boolean complement of set algebra.

Next, a Brouwerlasn algebra 1s metrized by symmetric
difference, a generalization again of the well known
symmetric difference of Boolean algebras. Many propertiles
of the resulting Brouwerian spaces are then derived and
nunerous theorems are obtained which serve to characterize
the Boolean algebras among the Brouwerian algebreas. The
congruence order of certaln Brouwerlan spaces relative to
the class of lattice-metrized spaces 1s established.

In the final section, properties of lattice=-metrized
spaces 1n general are obtained and in particular many of the
earlier results are extended. Finally, the notions of metric
and lattice betweenness are analyzed. By studying the effects
of thelr coilncldence on the algebralc structure of the under-
lying lattice,the Boolean algebras are then characterized
among the class of all lattices with I, in terms of the

betweenness conceptse.
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Introduction

If, with each two elements of an abstract set is
assoclated a number (real or complex), the resulting
structure is known as an ebstract distance space, (It is
convenlent and suggestive to refer to the elements of the set
as "points® and to the number associated with a pair of points
as the "distance" between them). This notion plays an import-
ant pnrf in Frechet's 1906 thesis, although tne concept was
undoubtedly known.to earlier workers in geometry,

The first systematic study of the geometric properties
of these spaces was due to Karl Menger [9], who referred to
these structures as semimetric spaces, Iﬁ addition, however,
to spaces in which distances were selected fram among the
real and complex numbers, Menger [10] and later Taussky (l1l2]
studied spaces whose distances were elements of a group.
Phis has led more recently to the study of spaces whose dis-
tances were selescted from even more general algebrailc
structures. In particular, Ellis [5], Blumenthal [3] and
Elllott [4] heve investigated spaces whose distances are
elements of a lattice. This notion may be generalized in the
following way:

If with each two elements (x,y) of an abstract set S,
1s associated an element a of a lattice L with least element
0, the association being denoted by a = d(x,y), the result-
ing structure 1s called a lattice-metrized, (or more briefly
an L-metrized) space, provided that (1) d(x,y) = 0 1f and



only if x =y, (2) d(x,y) = d(y,x), and (3) for each three
elements x,y,z of S, d(x,y) + d(y,z) > d(x,z), vwhere + 1is

the addition of the lattice and > the order relation, read
Bover" (in the wide sense). That this assoclatlon may be
reasonably regarded as a "metrization® of S 1s suggested by
the formal resemblance, at least, of the specified conditions
to the usual postulates for distance in a metric space, If,
in particuler, S = L, thlis association defines a binary

operation on L, termed a metrlc operation, and the lattice

is said to be autometrized.

The studies of Ellis, Blumenthal and Elliott referred
to above were concerned with a particular autometrization of
& Boolean algebra. Ellis observed that in such a lattice,
the symmetric difference ab' + a'D of two elements a and b
where a' is the complement of a, is s metric operation in the
sense described above,., Since, however, a Boolean algebra may
be metrized in other ways, (for example all distances between
distinct pairs of points may be set equal to the ssme element
a # 0), the term "autometrized Boolean algebra" will be used
in this thesis, 1f the metrization 1s any one which satisfies
the postulates (1),(2),(3), above, the designation "Boolesn
Geometry" being reserved for the speclal autometrization of
symmetric difference.

It 1s well known that a Boolean algebra is a ring under
the operation of symmetric difference as the addition of the
ring, and, indeed, Elliott has shown that the only operation

possible in a Boolean algebra which 1s simultaneously a



metric operation and a group operation is the symmetric
difference [li]. The group property of thils operation has
interesting consequences for Boolean geometries which will
be discussed later.

This thesis 1s concerned with the extension of certain
properties of Boolean geometries to a somewhat wider class
of spaces called Brouwerlan geomsetries, A further concern is
with properties of L-metrized spaces in general., What is of
special 1interest over and above the geometrlc properties
per se of these spaces 1s the interplay between these
geometric properties of a space and the algebralc structure
of its underlying lattlice.

Section 1 contalns known results used throughout this
theslis. In section 2 are developed in detall properties of
Brouwerian algebras, many of which are stated without proof
in [1]), (2] and [8). Brouwerlan geometries are introduced
and studied in section 3, In particular, numerous character-
ization theorems for Boolean algebras are obtained, and the
congruence order of certain Brouwerlan geometries is estab-~-
lished. In section L, L-metrized spaces in general are
studled. Purther, the notlon of metric betweenness in these
spaces is introduced, and consequences for the structure of
the underlying lattice, of the coincidence of metric and

lattice betweenness are derived.,



Section 1. Preliminary Results

The following lattice theory results are used through-
out this paper. Details may be found in {1].

A partlally ordered set is a collecfion of elements
together with a binary relation defined on the set, which
1s reflexive, asymmetric, and transitive. Denoting the
relation by the symbol <, read "under", the three axioms
satlsfied by a partially ordered set are:

(1) For all a, a < a

(2) a<b and b < a 1imply a =>bv

(3) a<b and b <c imply a < c.

a < b may also be written b > a and read b is "over" a.

If the order relation does not hold for two elements a and b,
they are called non-comparable, otherwise , they are called
comparablee.

In representing a partlally ordered set by a diagram,

a
a>b 1s indicated thus I , whereas if a and b are not

comparable, they appear thus? ao ob,

By an upper bound to a subset X of a partially ordered
set P is meant an element &€ P such that a > x for every
x€Xe A least upper bound (or l.u.b.) is an upper bound
which is under every other upper bound. Clearly a l.u.be. is
unique. Lower bound and greatest lower bound (g.l.b.) are
aimilarly defined. A lattice 1s a partially ordered set in

which every pair of elements has a l.u.b. and a gel.b. 1In

this thesis, these are denoted respectively by a + b and ab
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and are called the sum and product respectively of a and b,
(although " join", indicated by the symbol « , and "meet",
indicated by the symbol M are also found in the literature.)
Each operation is called the "dual" of the other. They are
readlly shown to be idempotent, commutative and assoclative,
and satisfy the absorption laws a + &b = a, and a{a + b) = a.
Further, a > b if and only if a + b = a and ab = b, A lattice
1s sald to be complete 1f any collection of elements has a
gelebe and l.u.be In particular, a complete lattice has a
least element 0 and a gresatest element I. A chain 1s a
lattice in which each two elements are comparable, and 1is
sald to be linearly ordered.

A lattice in which a < ¢ implies (a + D)c = a + be 1s
called modular ,and this "weak" distributive law is called

the modular lawe. A distributive lattice is one which satis~

fies the distributive laws a + bc = (a + b)(a + ¢) and

a{(b *+ ¢c) = ab + ac., Each of these implies the other.



Section 2. Brouwerian algebras

In this section, a Brouwerian algebra is defined and
some of 1ts most important properties are derived. Many of
these will be used in later sections of this thesis.

Definition 2.1, If with each two elements a and b of a

lattice L having a greatest element I, there is assoclated a
least element x such that b + x > &, then x is denoted by

& - b and the lattice is called a Brouwerian algebra [8].
Thus, if b + 2 > a, then 2z > x, This association will be
referred to as the subtraction operation.

It is of Interest to note that such an algebra 1s
egquivalent to a lattice formulation due to G. Birkhoff ([2]
(and called by him a "Brouwerlian logic!) of Heyting's post-
ulates for "intultionist loglc", (a logic consistent with
the philosophy of the intultionist school of mathematiclans,
whose leading exponent is Le Je. Broﬁwer). It is also the
dual of a relatively pseudo-complemented lattice [1].

It is convenient in practice to mske use of the following

Theorem 2.1l A lattice L with an I 1s a Brouwerian algebra,

if and only 1f, for each three elements Xx,y,z of L,
X ~y<g<«—>x<y*tasz,

To show first that this characterizetion implies the
original definitlion, since by the first postulate for a
poset, X ~y<x -y, it follows that x -y < z2——>
x <y + 2% lmplies x <y *+ (X = y)e Thus (x - y) is an

element of L which added to y ylelds an element over x.



And now X <y *+ z——> X -~y < 2 1lmplies that x - y 1is the
least such element.

To show that the original definition implies the above
characterization, suppose x - y is the least element of L
such that y + (x -~ y) > x. Then y + z > x implies z > x - y.
On the other hand, y + (x - y) > x implies z +y + (x - 5y) > x,
end if 2z > x - y, then 2z + (x - y) = z, hence z + y > x. This
completes the proof.

In what follows, if X 1s a subset of elements x_
of a lattice L, IIx, designates the lattice product of the

elements X, of X.

Theorem 2.2. If L 1s a Brouwerlan ailgebra, then

(i) L has a least element 0.
(1) L is a distributive lattice, 1.e. for all elements
X, ¥, 2, of L,
x +tyz = (x +y){x + z), and dually
x (y +2) = xy +# xz
(1i11) The distributive law for filnite addition with respect
to infinlte multiplication holds, 1.e. 1f X is any subset of
elements xx of L such that IIx« exists, then for every
element a of L, II(a + x« ) also exists and
(1) a *TIxq =II(a + x )
Proof of (1): This follows immediately from the definition

of a Brouwerian algebra, since I - I exists and clearly 1s
the least element, denoted by 0.

Proof of (ii): In any lattice L, for all elements




X, ¥, 2, of L,

(x +y) > (x+y)(x +2z) and (x + 2) > (x + y)(x + 2).
Thus y, 2z € U , where U 1s the class of elements uy
such that x + uy > (x + y)(x + z). By definition,

ITug = (x + y)(x + z2) - x exists, and since

y> (x +y)(x +2z) -x, and z >(x +y)(x + 2) ~ x, then

¥z >(x + y)(x + z) - x, hence
vz + x >[(x *y)(x + 2) ~x}] +x> (x +y)(x + 2) by
definition 1.e. Jz2 + x> (x + y)(x + z).

But in any lattice, the one sided distributive law

yz + x < (x ¥+ y)(x + z) holds
hence, yz + x = (x + y)(x + 2),
end the proof 1is éomplete.

Proof of (i1i1i). Clearly, IIx« < X implies

a + IIx, < a *+ x, for every £ , Suppose, then, p < a + x
for every « o Then p < (a + IIx« ) ¥ X4 , hence by

Theorem 2.1, p - (a *+ IIXx« ) < Xx , and since this holds
for every = , 1t follows that p ~ (a + JTIxx ) < IIx, , and
Theorem 2.1 agaln implies p < a + IIx_ «»

Thus, a +* IIxyx = II(a + x ) by definition of the lattice
product cf a set of elements.

Remark. It should be noted that distributivity alone is
insufficient to insure that a lattice be a Brouwerilan
algebra. The open subsets of the plane, for example,
constitute a distributive lattice. But if a and b are two
open circles with a non-null intersection, a - b falls to

exist, for the least set u, such that b + u > a 1s the set



& = ab of elements of a not alresdy in b. This set is not
open, since its complement is not closed. Moreover, any

open set contelining those points of a not already in b must
contaln, in particular, a neighborhood of each point of a - ab
which 1s an accumulation element of the complement of & =~ ab.
Since each of these neighborhoods may be arbitrarily small,
there 1s no least open set with the required property.
However, one does have

Theorem 2.%3. A complete lattice in which the dlstributive

law for finite addition with respect to infinite multiplica-
tion holds 18 a Brouwerilian algebra.

Proof. Let L be a complete lattice in which the distributive
law for finite addition with respect to infinite multiplica-
tion holds, i.e. for every subset X of elements x_ €L,

a ¥+ IIx, = I1I(a + X )e If X, y€ L, then since y + x > x,
the class U of elements ug such that y + ux » x is not
empty. Since L 1s complete, I] ux and II{(y + u.x ) exist.
Moreover, II(y + ux ) > x, and since II(y + ux )=y + II ux
by hypothesis, it fcllows that y + 1II u, > x. Hence

Il ue=x = y, by definition of the subtrection operation,
and L is a Brouwerlan slgebra,

Corellsry 2.%.1

Every finlte distributive lattice is a Brouwerian
algebra.
Proof: Such a lattice is a complete lattice in which (1),

of Theorem 2.2,(1ii) holds.
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Remark. A non-complete lattice which enjoys the distributive
law in question may or may not be a Brouwerian algebra. The
unit interval with an interilor peoint deleted, ard the unit
square without the point (1,0) are lattices where

X12¥p > xz,yé if and only 1if Xy 2 Xy, and ¥y, 2 Vo Each
enjoys the law in question whenever the preducts inveolved
exist, Nelther 1s complete. The former is a Brouwerilan
algebra; the latter is not, since (I - (x,1)] falls to exist
for any x, (0 < x < 1).

Theorem 2.4. Every chain with I and O i1s a Brouwerian

algebra,
Proof« For any two elements &,b of L with a > b, clearly
a-b=a, and b - a = 0., Hence L 1ls a Brouwerian algebra,

Definiticn 2.2 An element a of a subset X of a partially

ordered set P 1s a minimael element of X, if feor no element
x of X 1isa a » Xe.

Definition 2.3 A partially ordered set F is sald te satliafy

the descending chain condition, 1f and only 1f every non-vold
subset X of P contains a minimal element.

Theorem 2.5. Every dilstributive lattice L with a greatest

element I, which satisflies the descending chaln condition

1s a Brouwerlan algebrae.

Proofs For arbitrary elements a,b of L,since b + a > a, the
set X of elements X, such that b + x> a 1s non-voild. Then
X contains a minimal element x by hypothesis, Let y also be
@ minimal element of X, Now xye X, for xy exists and
b+x>a, b+y>a implyby the distributive law that



(b + x)(b +#y) =b + xy > a. But then neither x nor y would
be minlmal in X since Xy < x, and Xy < y. Hence there can be
at most one minimal element x in X.

Suppose x 1s not the least element in X. Then there
exists an element z in X with z f x.

By our previcus argument, xz€ X, l1.e. b + x2 > a., Since
Xz < x, again x 1s not mlnimal, a contradiction. Thus x 1is
the least element of X, and a - b exists.

Definition 2.3, A Boolean algebra 1s a complemented distribu-

tive lattice, l.e. corresponding to each element a of the
lattice, there exists an element a! called the'complement of
& such that a ¥+ a' = I and aa' = 0., It 1s readily shown that
complements are unique'and that complementsastion is ortho-
complementation, l.e. (8')' = a.[1l].

Theorem 2.,6. Every Boolean algebra B is a Brouweriean

algebra wherelin ab' = a - b, for a, beB.
Proof. It will be shown that b + ab' > a, and
if b + x > a, then x > ab',

Since b * b!' = 1 and Ia = a, a > a implies (b + b')a > a,
whence ab % ab! > a by distributivity. Moreover, since
b > ab it follows that b + ab!'! > ab + ab!' > g, 1l.e.
b + ab' > a. Furthermore, if b + x > a, then b'(b + x) > ab!
and bb* + b!' x > ab?!, 1.,e, b'x > ab?' since bBL* = 0. But
X » b'x > ab! so that x > ab', Thus‘ab' = & = b, and B 1s s
Brouwerien algebre, '

Thus 1t 1s evident that Brouwerian algebras comprise =a

rather large class of lattices, including as they do, all
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chains with I and 0, finite distributive lattices, distribu-
tive lattices satisfylng the descemding chain comiiltion,
complete lattices satisfying the distributive law for finite
addition with respect to infilnite multiplication, and the
Boolean algebras. Attentlion is called finally, to the
fellowing

Theorem. The algebra of clesed sets of a topological space,
and every subalgebra of this algebra 1s a Brouwerian algebra.
Conversely, every Brouwerilan algebra is isomorphic to a
subalgebra of the algebra of closed sets of a topological
space. [8].

Theorem 2+7. In a Brouwerian algebra, the following rela-

tions hold;

() a~b<a (b)) a<b if and only if a = b =0

(c) a = 0O = a (d) a - a =0 (e) a + (b - a) =a+b

(f) a <b lmplies a-c <b =-¢ (g) (& ~b) ~b=a =D

(h) (a +Db) =c = (a =~ c)*¥{(b - ¢c) (1)a = bc = (a - b)+(a ~ ¢)
(j) a <b implies ¢ = b <c - a (k) (e - Db) + ab = a

(1) (& = b) +a=a (m) a=-b<a+hb

() a =b=Db+=a 1if and only 1f a = b.

(o) a = b < a - be

(p) ¢ *+ (a =b) =c # {(c +a) = (c +D)]

Proof of Theorem Z2.7.

(a) a ~ b < a

Proof. & < a *+ b implies a - b < a by Theorem 2.1
(b) a < b if and only if a - b = 0

Proof. By Theorem 2.1, a < b + 0 iImplies a - b < O

hence a = b = 0. Moreover, if a = b = 0, then a - b < 0 and
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again by Theorem 2.1 a <b + 0, 1.e. a < b,
(c) a-0=a
Proof, By (a) a - 0 < a, and a = 0 > a by definition
Hence a = 0 = a
(d) a - a =0
Proof. This follows from the definition of subtrectlon.
(e) a + (b - a) =a+b
Proof. By (2) b -~ a < b. Hence a + (b - a) <a +b
but a ¥+ (b = a) > b by definition of (b - a). Hence
a+(b-a)>b +a, lees a + (b ~-a) =a+bd
(f) a < b implies a = ¢c < b =~ c.
Proofs b < ¢ +# (b - ¢c) by definition. Moreover, a < b
implies a < ¢ + (b - ¢c), hence a - ¢ < b = ¢ by Theorem 2,1
(g) (a =Db) -b=a =D,
Proof. (a ~b) =b <a~b by (a)e To show that
(a =b) -b>8 -b, clearly, (8 = b) - b < (a = b) = b,
therefore {(a - b) < [(a = Db) - b] + v,
a < [(a = b) - Db] + b,

and a~-b < [{(a -b) - b], by Theorem 2,1
Hence (a =b) ~b=a-=>
(h) (a + ) =c =(a~-c) #+ (b =-c)
Proof. a <c * (a - c) and b < ¢ + (b - ¢) by definition
Hence a + b <c¢c + (a =-c¢) *+ (b ~c), and by Theorem 2.1,
it follows that (& +b) = c < (a - ¢c) + (b - ¢c).

To show the reverse 1lnequality,
by {(a), (a*b)>(a=c)+(b=c)=[{a=c)=cl+[(b=c)=c] by (g).

Hence (a#b)-cv~{[(a-c)-cﬂ¢[(b-c}-c]} -C
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>{;l(&'c)-03~é} + {[(b-c)-c]-c} by (£).
Therefore (& +b) ~c > (a =c) + (b =¢c) by (g).
Hence (& + b) = ¢ = (a ~¢c) *+ (b - ¢)
(1) a = bc = (& = b) + (a - ¢c)
Proofs a <b + (a -Db) and a<c + (a - ¢c) by definition,
hence a < [b + (a=b)llc + (a=c)]
or a < bc + (a=b)ec *+ b(a=c) + (a=b)(a=c)
and a ~ bc < (a=b)c + (a=b)(a=c) + b(a=-c) < (a=b) + (a=c)
1.0, a - bc < (a=b) + (a=c)
To show that the reverse lnequality holds,
since a < a + b *+ bc, then a = b < a + be by Theorem 2,1
But by (e), a + bc = bc + (a=-bc), hence
8 - b < bc + (a~bec) and
a <b ¥+ bec + (a=bc) by Theorem 2.1
i.e. a <b + (a=bc), so again by Theorem 2.1
g2 - b <a = be
In like msanner we can show that
a - c¢c < a - bc
Thus (a=b) + (a=c) < a - be, and therefore
a - be = (a=b) *+ (a=c).
(j) a <b implies c = b <c = a
Proof. If a <b, then ab = a, hence
c - ab =c - a,and by (1)
¢c - a = (c-a) ¥ (c=b) 1.e.
c ~b<c¢c ~a
(k) (a=b) + ab = a

Proofs a - b < a by (8) end ab < a, hence
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(a=b) + ab < a
To show the reverse lnequality, (a=-b) + b > a by Theorem 2.1
Hence a(a-=b) + ab > a, and since a ~ b < a, a(a=b) = a - b,
therefore (a=b) + ab > a, consequently
(a=b) + ab = a,
(1) (a=b} + a = &
22222. Since a - b <« a, 1t follows that (a = b) + a = a.
(m) a-b<a+b
FProofe a - b <a<a+hb,
{(n) @a ~b =Db =-a 4if and only 1f a =b
Proof s+ The sufficiency 1s obvious. To show the necessity,
é -b<a, b~a<bby (a). But since a = b = b = a,
b~ a<aand a =b < b, Hence by Theorem 2.1
b <aand a <b, 1.6 a = b,
(o) a = b < a - be
Proofe. Since bc < b, this follows from (]).
(p) ¢ + (a=b) = c * [(cta) ~ (c+b))
Proof. Since (c + a) = (¢ *+b) < {(c *+a) ~ (c +b), it
follows that (c +a) < (c +b) + [{(¢c + a) = (c +b)]
and (c +a) =b<c # [{c +a) -~ (¢ +D)]
by Theorem 2.l.
Now (a = b) < a<c + a, hence (a - b) = b < (c +a) =D
by (a) and (f), and therefore, a - b < (c + a) = b by (g).
Thus ¢ + (& = b) <c *+ [(c # a) - (¢ *+ b)].
The reverse inequallty 1s established thus:
since ¢ + b ¥+ a > ¢, it follows that ¢ + b > ¢ -~ a

by Theorem 2.1, hence b + (¢ = b) > c - a by (e)
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and b + (¢ - Db) > (a + ¢c) - a by Corollary 2.7 (h).l. so that

(b + a) +#+ (¢ = b) > (a + ¢) by Theorem 2.1.
Then (& - b) + b + (¢ - b) > (a + ¢)
and (& - Db) + (b +¢c) >a +c by (e) so that

(a ~b) > (a+c) - (b +c) by Theorem 2.1 sgain,
and ¢ + (a = b) > ¢ *@ﬁga +c¢c) = (b +c))
Thus, finally, ¢ + {(a = b) =c + [(a +c) = (b + ¢)]
and the proof 1is complete.

Corollaries to Theorem 2.7

Corollary 2,7 (h).le (a *+ b) = b = a - b,
Proocf. Set ¢ = b in (h)
Corocllary 2.7 (1).l1. & = ab = a = b,

Proof. Set ¢ = a in (1)

Pefinition 2.5 The element I - x of a Brouwerlan algebre 1is

called the Brouwerisan complement of x, and is denoted by “}x.

Similarly, ‘\"Pc =71~ "‘x.

Remark. It is clear from Theorem 2.5 that the Brouwerian

complement ']x coincides with the usual complemént X' in the

Boolean case. It should further be noted that in the

Brouwerian algebra of the closed subsets of a topologlcel

space K, the Brouwerian complement of a (closed) subset A is

merely the closure of the usual (Boolean) complement of the

set A in the space of all subsets of K.
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Theorem 2.,8. 1In a Brouwerian elgebra, the followling rela-

tions hold:

(a) a < b implies "']b<“a (b)a+"]a=1

(¢) Jo=1, J1=0 (@) -Ja < &
(e) mnisk:! =7]a (f) "l(ab) = “]a + "Tb
(g)‘](a+b)<‘|a-—1b (h) Tj(a"Ja) =1

(1) a = a—']a+ e
(J) Tla =7)b = I implies|(a + b) =1I
(k) _‘(a + Do) = -l—\(_la *7) ®)
(1) TJ(a =) = Ja + 17
(m) (a + b) = I if and only 1fa>‘\b and b>’]a
(n) (1) Ta="a - a (111) 7171 1a =717 7a =71 &
(11) 7Jja ="\7a =Tla (iv) 7a =Ta - 1 a
(o) ‘{ x = Q implles x = I,
Proof of Theorem 2.8.
(a) a < b 1lmplles "]‘b < la
Proof. This follows from the definitlon of 7]x and Theorem 2.7 (J)e
(b) a + "'za =1
M. a + “!a > I by definition of ""Za. But
X » I implies x-= I, Hence a + ‘1& = I
(¢) Jo=1I, |I=0
FProof. These follow directly from the definition.
(d) 17 a < a.
Proof. This follows from {(b) and The orem 2.1

(e) 1172 = e
Proof. By (d) and (&-)) _'—Ija >—' 8,
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But again by (d), |7|( ]a) < la. Hence7ja =7 a

(£) "] (ab) =7]a +7]b

Proof. This follows directly from Theorem 2,7 (1)

(g) "|(a # p) <7|a <7D,

Proof. By (d), |la < a,7] |b < b, hence

q7la +71]o < a + b By (a) J(a + ) <7} (77)a +77TD), .
hence " (a + b) <—l('l(']a°"]b)) <7a "'lb by (f) and (4).
(R))(ea) = I

Proof. By Theorem 2.7 (i),

j (a}a) =1~ a']a= (I - a) + (I -—]a) =Ta +777a = I by (b).
(1) a = a'}Ja +7]7]a

Proof. a(7Ja +778) = a2 I = a, and a(ja *+]]a) = a7Ja +7|]a
since T|7a < a.

(j)1x =77y = I dmply J(x + y) =1

Proof. Let x+y+t=lsothaty+t>‘lx, leee y ¢+t =1
Then, t >}y, 1.6 t = I,

Thus the only element which, added to (x + y) ylelds an
element over I, is I 1tself. Hence I 1s the least element
with this property, i.e. |(x +3y) = I,

(k) T(a + ©) =1 1()a * ) b) [Dual of Theorem 12.21 (vi) p.j2
1131,

Proof. 7} (a7} a) =7](b7)b) = I, by (h).

Hence by (J) with x = a7Ja, ¥y =Db|b, 1t follows that

T (e7a + b b) =7 [(a+b)(a+ o) ( Ja+b)(Ja+tTb)]) = I .

Now (a+b)ja"]b < (a+d)(at]b)(Ja*b)(a*+1b) implies (by(a))
T (a*b)aTe] =7 (a+b) (a+]d) (7a+b) (Fa+Tb)] = I,

By (f) then,'](a+b) +7)(1a7b) = I, hence I =](7a]b) <7(a+b)



i.e.11(7a70) <] (a+b). Further,7a < a,]]b < b imply
Jla +7171b < a*b so that by (a)

"] (atb) <7 (77 a+77ID) =)7(7a b)) (oy £)

or’1(3+b) = W’Kja."]b), which completes the proof.
(1) [ (a=p) =7](a7b) =T a +7Jo.

Proof. -1(a-b) = 1 -~ (a=b) 1s the least element which
added to (a=b) yields I. What must be shown is that (1)
(a=b) +]a +77b = I and (2) if (a=b) + x = I,

then x >7a +7]7b.

To establish (1), let a-b =y, then a < Db + y,
Ta>"(loty) =)H T *TJy), T7a <M1 =Ty) =170 + 77y,
and1a =171b <]y, tees | Ja =770 < |](a-b) < (a=b)
by (a), (e), (k),(f), and (d).

Therefore ) Ja < (a=b) +11b, 1.es I =7Ja < (a=b) +7]b,
hence I < (a=b) + Ja +7} b, L.e. I = (a=b) + Ja +|]b.

To establish (2), since (a-b) + ](a-b) = I, it follows
from the definition of | (a=b) that x >7](a=b). Now a=b) < a
and a~b <7|b imply a=b < a"]b, hence ‘}(a’) b) < |(a=b).
Thus x >‘1(a-b) >"](a7]b) =T)a +77b by (f), which completes
the proof.

(m) a+b = I if and only if a >|b and b >"]a.
Proof. a *+b>1 implies a >7|b and b > ]a by Theorem 2.1.

Conversely, a > I = b and b > I -~ a imply a + b > I, 1.e.

a *b = 1.



(n)(1) Ja =7a - a
UiYT1a=j7a-ja
(111)77777a =717a =77 a
(iv) TJa =7a -7]7a
Proof. (1), (11) and (1i1) follow from Theorem 2.7 (g),
while (iv) follows from (n) (1i1) and (e) of this theorem.
{o) '}x = 0 implies x =1
Proofe I - x = 0 implies I - x < 0, hence I < x by Theorem 2.1,
hence x = I,

Corollaries to Theorem 2.8

Corollary 2.8 (k).l. J](a+b) =77a +]]b

Proof. J7(a*b) =1T17(Ta «}b) =7(Ja *b) =77a +1 b
by (e) and (f).

Corollary 2.8 (k).2. "|(x +y) = I implies™|x =]y =1

(Converse of (J))

Proofe I =" {x *+ y) =7]7(77x *7]y), and

0 =711 =117(1x *Ty) =71(7x «7y) =71x +7]1y by (e) and (f).
But)x +7]7]y = O impliesTx =77y = 0,

hencel])x =717y =710 = I, and7x =7y = I by (e).

Corollary 2.8 (k).3. 77x =77y = 0

implies (1) 7){x + y) = I and (2)771(xy) = 0.

Proof of (l1). By Corollary 2.8 (k).1,77](x + y) = 0,

hence 'W(X + y) = I by (o).

Proof of (2). 1 xy) =" 1()x +7y) =11{(7171x «J1y) =770 = o,
by (f£) and (4).

Remark. It should be noted that (2) holds independent of

property (k), since xy < x impliesTYxy) <\1x = 0



Corollary 2.8 (k).4.7)7(7a *77a) = 0

gzggg. Follows from (k),replacing b by 7] a.

Corollary 2.8.(1).1. (e =b) < J(77a =77b)

Proof, Follows from canplementation on]] a ~7]71b <] (a=b),

and (e).

Corollary 2.8.(1).2. T (a -7 a) =7a

Proof. Obtained by setting b =7Ja in (1).

Corollary 2.8.(1)«.3. “[(7a =7]7a) ="17a
Proof. Obtained by setting a =7]a in Corollary 2.8.(1).2.

Corollary 2.8.(1)e4s 7Jl(a = b) + (b - a)] =7(a + b) +77 (ab)

Proof: (atb) - ab = [(a+b) = &) + [(a+b) = b] = (a=b) +(b=~a)
by Theorem 2.7 (1), (h), and (d). .

Hence ~J[(a=p) + (b=a)] ="][(a+b) = ab] =7]{a+b) +77 (ab)
Remark. lDue to the prominence of the Boolean algebra of sets,
for example, in many areas of mathematics, it is of some
interest to see just how the Boolean algebras differ from the
more general Brouwerian algebras, The following properties,
which have been discussed in thls sectlion, show how these

two classes of algebras compare

Boolean algebras Brouwerian algebras
lea) x + x' =1 leb) x +7x =1
2.8) x * x' =0 2.b) x7[x # 0 in general
3.8) (x!)' = x 3.0) T|T)x < x
lhea) (xy)' =x' + y! Leoo) TJxy) =) x +7y
5.8) (x + y)! =x' ¢+ y! 5.0) [ (x +y) <Tx 7|y

Clearly 1l.) and h;) hold equally in both cases. In any

chain 5a holds,and a chaln of more than two elements 1is



A Brouwerian algebra which 1s not Boolean, so that 5a) does
not have sufficient strength to make a Brouwerian algebra
Boolean. However, either of 2a) or 3a) does. Thus one has

Theorem 2.9, A Brouwerian algebra L is a Boolean algebra

if end only if, for all elements x of L, x7|x o]

Proof + The necessity 1s part of the definition of a Boolean
algebra, If, on the other hand, x 7 x = 0 for all x, since
also x +_]x = 1, L 1s a complemented,distributive lattice,
hence a Boolean algebra.

Theorem 2,10, A Brouwerian algebra L is a Boolean algebra

if and only if, for all elements x of L,7][x = x.

Proof « The necessity 1s well known, following from the
uniqueness of complements in the Boolean case [1]. The
sufficiency follows readily from Theorem 2.8.(h), for,

‘"l (x7)x) =1 implies™] | (x"] x) =TI = 0. But as fcllows from
the hypothesls, |"|(x7}x) = x7] x, hence x7] x = 0 and L is

a Boolean algebra by Theorem 2.9. A further criterion 1s given by

Theorem 2.1l1s A Brouwerlan algebra L 1s a Boolean algebra,

if and only if, each element z of L is the complement of
some element x of L.
Proof. The necessity follows from ortho-complementation,
since z =] |z. For the sufficiency, z = 7| x lmplies
Tz =11 1x="]x =2, 1.6 [T 2 =2 for every element z
of L, and L 1s a Boolean algebra by Theorem 2.10.

It may be observed finally, that a fundemental differ-
ence between Boolean algebras and Broauwerlian algebras 1s that
Boolean algebras are dual with respect to the sum and product

operations while Brouwerian algebras may fall to be. [(8].
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Section 3, Brouwerian Geometries

In this section Brouwerian geometries are introduced
and many of their properties are derived. These lead to
numerous characterizations of Boolean algebras.

As 1lndicated in the 1introduction, a lattice may be
(auto)metrized in a variety of ways. In the case of
Brouwerian algebras, the particular metrization which will
be used here 1s that of symmetric dif ference, namely,

a b = (a=b) + (b-a).

Theorem 3.l. The symmetrlc difference in a Brouwerian

algebra is a metric operation.

Proof. Clearly (1) a # b = (a=b) + (b=a) = b % a

(2) a * a = 0, moreover, if (a-b) + (b=a) = 0, then by
definition of the lattice sum, O > b - a and 0 > a - b.
Hence & » b, b > a and a = b,

(3) The triangle ineguality, a #b < (b %*c¢c) + (a *c),

1s established as follows:

abc + (b # c)+{a % c) = abc + [(b=c)+{c=b)] + [(a=c)+{c=a)]
= abe + [(a=c)#(b=c)l+{(c~a)+(c=b)]

= gbc + [(a*b)=c)+[c=ab] by Theorem 2.7 (h) and (1)

= (ab)e + [c=ab] + [(atD)=c]

= c + [(atb)=c] by Theorem 2.7 (k)
= c + (a+*b) by Theorem (2.7)(e).
Hence

atbtc < abc + (b % ¢) + (a % c) and

(at+b+c) - abc < (b % ¢c) + (a % c) by Theorem 2.l.



Now (a+b+c) = abc > a - abe > a - b

and (a+b+c) - abc > b - abc > b - a by Theorem 2.7 (£) and (3),
so that (a=b) + (b=a) < (a + b + ¢c) ~ abc.

Therefore (a #b) < (b % ¢) + (a + ¢)

Theorem %.2. In a Brouwerian algebra,

(a+b) - ab and (a~ab) + (b-ab) are each equivalent to
symmetric diffefence, (a=b) + (b=-a).
Proof. Immediate from Theorem 2.7 (h), (1), and (4).

Definition 3.l. A Brouwerlan algebra (auto)metrized by the

symmetric difference 1ls called a Brouwerian geometry.

It 1s often convenlent to employ geometrical language

and regard a triple of elements a,b,c as the vertices of a
triangle with slides a # b, a % ¢, and b % c,
Theorem 3.1 asserts that the sides of any triangle in a
Brouwerian geometry satisfy the triangle inequality. The
notation a(a,b,c) will be used to designate the triangle
with vertlces a,b,c.

One reason why a Boolean geometry has so many novel
properties is that the symmetric difference in that instance
i1s a group operation. This is not true for Brouwerian
geometries, since Brouwerlan symmetric difference 1s not Iin
general associative, (although it does have the remaining
group properties). In a Brouwerian chain, for example, (a
chain (auto)metrized by symmetric difference), for a > b,

(a % a) % b = b, whereas a #* (a % b) = Os Thus, because of
the group property, a Boolean geometry can have no isosceles

triangles, since the equation a # x = b has one and only one
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solution. Brouwerian geometries, on the other hand, may
abound 1n isosceles triangles, as happens, for example, in
a8 Brouwerlan chain where one has

Theorem 3,3. Every trlangle of a Brouwerlan chain C is

isosceles.

Proof . For any two elements a > b of C, a % b =a -~ b = a,
since b - a = 0 by Theorem 2.7 (b). Hence for any three
elements a > b >¢c of C, a %b =a #c = a, However,

Theorem 3.4. A Brouwerian geometry is a Boolean geometry,

if and only if it 1s free of isosceles trisngles,

Proof. The necessity, as already indiceted, 1s clear,

To establish the sufficlency, let x be an arbitrary element

of the Brouwerian geometry L, and consider the a(0,I,x |x).

Now I # x = (I=x)+(x~I) ="]x for all x, hence I * O =710 = I,
while I # x |x =7](x7]x) = I by Theorem 2.8 (c) and (k). Since
there are no isosceles triangles, 1t follows that

O #x7]x=x7]x =0 and L is a Boolean algebra by Theorem 2.9.
Then a - b = ab?', b - a = &'t and a % b = ab!' + a'b, so that

L 1s a Booclean geometry.

Corollary 3%.4.l. A Brouwerian algebra is a Boolean algebra

ir and only if symmetrlc difference is a group operation.
Proof. It has already been indicated, as 1s well known, that
symmetric difference in a Boolean algebra ls a group opera-
tion. If it 1s a group operation in a Brouwerlan algebra L,
then the associated geometry contains no isosceles triangle,

and L 1s a Boolean algebra.
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Remark. The above corollary holds if the word “group" is

replaced by the word "assoclative®,

Definition 3.2. Three elements a,b,c of a lattice, L, are

sald to satisfy the triangle inequality if each 1s under the
sum of the other two, written (a,b,c)T.

Remark. Although three elements a,b,c of an (autc)metrized
lattice may be in this relation, there may not be any
triangle A(x,y,2z) in L which has sides a,b,c.(Wh&n such a
triangle exists, it will be designated as T(a,b,c) rather

than A(x,y,2z) if the sides, rather than the vertices are to

be emphasized).

Theorem 3.5. In & Brouwerian geometry, the relation (a,b,c)T
1s equivalent to each of the relations

(L) a +b=gag+c=Db+c=a+b+c

(2) a~-b<c,b-c<a,c=-a<b

(3) a #*b<c<a+hb

(L) b - a

Proof .

c -8, 8 =-b=c¢c =-b, a=-c=Db =-c.

(1) a+tb=a+c=Db+c=8a+b+c

If (a,b,c)T, then a <b + ¢ implies a + b + ¢c <b + c,
but since a + b +¢ > b +c, a+b+c =Db +c, Similarly
for the rewmaining equalities in (1). In words, the sum of

two sides of a triangle equals the sum of any other two sides.
(2 a = b <c, b =-c<a, c =ac<b,

These follow from (a,b,c)T and Theorem 2.1l. In words, the

difference of two sides of a triangle is under the third side.
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(3) a #b <c<a+b,.
This follows from (2) by adding inequalities.
(4) b ~a=c -a,a~-b=c - b, a~¢c=Db - c,
By Corollary 2.7 (h), 1, for any two elements a and b,
(a +b) =a=Db=-a, and (a + ¢c) ~a =c -~ a likewise,
By (1) of this theorem a + b = a + ¢, hence b - a = ¢ - a.
Simllarly for the remalning equalities,
To prove the converse,
(1) a+b+c=a+b implies (a + b) > ¢
(2) a = b < c implies a <b + ¢ Dby Theorem 2.1
(3) (a =b) < {(a=-Db) + (b -4a) <ec 1implies a <b + ¢
by Theorem 2.1 again, Moreover (b - a) < (a - b) + (b - a) < ¢
hence b < a + c,
(h) a-¢<b =c¢ 1implles a< (b=c¢c) +c Dby Theorem 2.l.
But b ~ ¢ < b by Theorem 2.7 (a). Herce,
a<(b=-c) +c<b+ec, lse. a <b + c,
The remaining relationships are similarly obtailned.

Corollary 3.5.l. I1f a and b are two elements of a Brouwerian

geometry, then (a,b,a % b)T and ab + (& * b)) = a + b,
Proof. In A(O,a,b), a * 0 = a, b # 0 = b, hence (a,b,a % b)T.

Further, by Thecrem 3.,5(1), a + (a #b) =a + b

Interchanging a and b and multiplying the two equalities gives,
using the distributive law, [a + (a % D)][b + (a * b)]

= (a + b)(a *+ b), or ab + (a % b) = a + b,

Theorem 3%.6. In a Brouwerian geometry the base of an

isoscelss triangle 1s "under" the vertex.
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Proot.
In the isosceles A(a,b,c), if b % ¢ =x, a #b =a % c = y,
then by Corollary 3%.5.1,
(a,0,y)T, (a,c,y)T and (b,c,x)T,
Hence, by Theorem 3.5(L4),

b-c = x~¢, ¢=b = x=b, y~-¢c = a=c, y~b = a-b
Now 1in T(x,y,y) clearly x < y, hence

Xx=¢c < y=¢c and Xx~b < y=b by Theorem 2.7(f).
Hence x = (b=c) * (c=b) = (x~c) + (x+~b) < (y=c) + (y=~b), there-
fore, x < (a=b) + (a=c) < a, the latter by Theorem 2.7(a),
which completes the proof.

It has been observed that whereas a Boolean geometry

has no lsosceles triangles, these may abound in a Brouwerian
geocmetry. However,

Theorem %.7. A Brouwerlan geometry contains no equilateral

triangle.

Procof. 1In A(a,b,c), If a % Db =Db % c = a *c¢c = x, then by
Corollary 3.5.1, (a,x,b)T,hence a + x = b + x = a + b, But

by Theorem 3,6, X < a, x < b, hence a + x = a, b + x = b,

so that a = b,which contradicts our assumption that a,b,c

are palrwise distinct vertices of a triangle, More generally,
a Brouwerian geometry contains no equilateral "n-gon" for

n odd. [ 7]

Theorem 3%+.8. A Brouwerian geometry is a chain i1f and only

if every trilangle ls 1sosceles.

Proof § The necessity was proved in Theorem 3. 3.
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The sufficiency is shown as follows:

If every trlangle of a Brouwerien geometry L 1s isosceles,
consider A(O,a,b) where a and b are arbitrary distinct els-
ments of L. Then a %+ b = a or a #b = b, since a % 0 = a and
b % 0 =Dbes If a % b = a, then b < a and L 1s a chain.

It has been indicated earlier that Brouwerian symmetric
difference lacks the associative property which makes the
Boolean symmetric difference a group operation and leads 1n
that case to the "uniqueness of solution"™ property. It is
instructive to see just how much of the assoclativity of the
Boolean symmetric difference remains in the symmetric differ-
ence operation in the Brouwerian case.

Ellils [5) has shown that in a Boolean geometry, for any
two pairwise distinct elements a snd b, if a % b = c, then
& % ¢ =Db and b % ¢ = a. In words, if a side of a triangle
equals the vertex opposite 1it, the same 1s true of the other
two sides. This is convenlently described by

Definition 3%.3. If each side of a triangle equals the

opposite vertex, the triangle 1s sald to have the property of
(trianguler) fixity.
It is readily extended by means of

Definition 3.4. If x,y,2z are the sides of a triangle in an

(auto)metrized space L, the trlangle with vertices x,y,z 1s

called the first distance triangle of the original one.

Similarly, the triasngle whose vertices are the sides of

the first distance triangle 1s the second distance triangle.
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Theorem 3.9. 1In a Boolean geometry, every first distance

triangle has fixity.
Proof: In A(a,b,c) let a # b = x, b #c =y, a ¥ ¢ = z, Then

in the first distance triangle

A(x,¥,2), x %y {(a % b)#(b * c)

(a * c)#(b 3 b) assoclativity)
l.e. X %y =a %c =12 since b % Db = 0.
Similarly for the remaining distances,

Corollary 3%.9.l. (Ellis) In a Boolean geometry,a % b = ¢

impliles a % ¢ =b, b % c = a,

Remark. It 1s clear from the proof of Theorem 3,9 that the

assoclativity alone of the metrlc operation implies the re-
sult. However, triliangular fixity and the assoc latlvity of the
metric are not quite equivalent. Nevertheless, the following
corollary and Theorem 3%.10 show how close this comes to being
the case,

Corollary 3.9.2. If the metric operation of an autometrized

lattice is assoclative, every first dlstance triangle with
palrwlse distinct vertices has fixity.

Theorem 3%.10. If every first distance trieangle of an auto-

metrized lattice L has fixity the metric operation on pair-
wlse distinct elements is assoclatlve,

Proof . Let x,y,z be pairwise distinct elements of an auto-
metrized lattice L, but otherwise arbitrary. Then, A(x,y,z)
is the first distance triangle of T(x, ¥, z)’

and since fixity implies x %y = z, y %z =X, and x % z = ¥y,

it foilows that (x #*y) % 2 = 2 %2 = 0 =Xx %#x =X % (y % 2).
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In Brouwerian geometries, although fixity no longer
holds in general, what does hold is

Theorem 3.ll. In a Brouwerlan geometry, each side of a first

distance triangle 1is under the opposite vertex.

i

Proof : In A(a,b,c) let b %¥c =x, a %#¢c =7y, a %Db z,
then (x,y,z)T and x % y < z by Theorem 3.5(3).
Since A(Xx,y,z) 1s the first distance triangle of A{a,b,c),

the theorem 1is proved. Furthermore,

Theorem 3%.l12. In a Brouwerian geometry, every second

distance triangle has fixity.
Proof. Define x,y,z as in Theorem 3.1l. Then A(x,y,z) with

W=y ¥2, v=x %32, andw=2x %y 1s the first distance
triangle of aA(a,pb,c), while A(u,v,w) with v % w = p, u #w = g,
and u % v = r 1s the second distance triangle., It is suffi-
cient to prove that p = u., By Theorem 3.l11, p < ue. It remains
to show u < p. 8ince (x,y,2)T, (x,w,y)T, and (x,v,2z)T, then

(4) of Theorem 3.5, implies

Yy -2 =X=-2=V =2, 8nd 2 -y =X =y =W -y. The
inequality w < z by Theorem 3,11 implies by (J) of Theorem 2.7
that v - 2 < v - we Llkewise, v < y Implies w -y < w = Vv,
Moreover, since y - z =V = 2z, 1t follows that y- 2 <v - w,
and 2z -y =w =y implies 2z -y <w =V,

Hence u = (y = z)#(z = y) < (v ~w)#(w = v) i.e. u < p.

Corollary 3%.l2.l. In a Brouwerlan geometry, every nth dis-

tance triangle has fixity for n > 1.
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Theorem 3.l13%, A Brouwerian geometry 1s a Boolean geometry

if and only if every first distance triangle has fixity.
Proof: The necessity was proved in Theorem 3.9. Conversely,
A Brouwerien geometry which is not a Boolean geometry would
contain an i1sosceles triangle, say T(x,x,y). In the first
distance triangle, A(X,x,y), fixity would imply y = x % x = 0,
a contradiction. Hence the theorem.,

Theorem 3%.,lL. A Brouwerian algebra is a Boolean algebra if

and only if it admits a metric group operation. Furthermore,
the operation must be symmetric difference.

Proof. If a Brouwerian algebra is a Boolean algebra it admits
é metric group operation, namely symmetric dif ference. As
Elliott has shown [4), this is the only metric group opera-
tion possible in a Boolean algebra. Conversely, if @ 1s a
metric group operation in a Brouwerlan algebra L, since

0fg 0= 0, the zero element of L is the group identity and

a g 0= a. The A(0,a,b) implies a -~ b <a g b and
b-a<a@b by Theorem 2.1 so that a *b < a g b,

Hence, in particular, I § a|la>1I % a7la =1, 1.e. I 4 a7ja =
But since I § 0 = I, it follows that aja = O since I §x =1
must have a unique solution, g being a group operatbn. There-
fore by Theorem 249, L 1s a Boolean algebra, and g is conse-
quently the symmetric difference.

Remark. Since any finite distributive lattice for example 1s
a Brouwerian algebra, the above result implies that any finite
distributive lattice which admits & metric group operation 1is

a Boolean algebra. It 1s natural to inguire as to whether

I.
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thils is true for arbitrary distributive lattices. The
theorems which follow have a direct bearing on this question,

Definition 3.5. If, to each member o~ of an index set 4,

there corresponds a lattice Lx , by the direct product,

{ L,(} » of the lattices, L« , 1s meant the set of all
functions x on A such that x(X )& L for esch o« of A.

Thus, an element { xd'} of {L,L} is a collection of

elements {Lx ,{1'; selected one from each lattice L x « Furthermore,
L X« > {y,(} means X o , Y € Ly and Xx > yo for
every £ of A. The lattice L o 1s the o th coordinate lattice,
and the element Xx i 1is the « th coordinate of the element

{ x*} of the direct product -{L,(} "

Theorem 3,15. The direct product {L,(} of a collection of

lattlices L « 1s a lattice, with addition and multiplication

in {L:,(} componentwise.

Proofe If X o 9 Yx € Lo , then x4 + yx > Xo , and

Xy * Y > Yx for every o of A, Henced xo + yx} > {xq})
and SLX"( + y‘,(‘} >{y.(} by definition. Furthermore, if

{z,(} >{x°<7§ and {z_ﬂ} >{y,(§ s then, In L ( , 2 4 > X ,
Z x4 > Jx and 2 > X * Yy o Hence {zi} >{x°( + yo(}

for every o of A, and {x,,( + yﬁk ={x,<& +{y,ﬂs .

Dually, %x&k‘iy*} ={x A y,(k , and {L,(‘S is a lattice,
Definition %.,6. Let 5 be a sublattice of a direct product

{ L4} of lattices L « . Then S is a sublattice of the
direct product {SA} of the sublattices 8 « of elements
of L x appearing as & -components (or « =coordinates)

of elements of S. S is called a subdirect product of the
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S o¢ and denoted by {S4| . It should be noted that every
element of S ¢ is an « - component of some element of S.

To clarify the concepts involved in the above defini-
tion, let °{I.d}be the direct product -{XY}'of the chalns
X and Y consisting of the points 1,2, and 3 of thex-axls
and the points 1 and 2 of the y-axis respectively. ‘{XY}
consists,then,of the six points (1,1),(1,2),(2,1),(2,2),(3,1),
(3,2) of the xy-plane.

The subset S of points (1,1) and (2,2) constitutes a
sub-lattice of {xy‘g and at the same time a sublattice of the
direct product of the sublattices Xs of X (consisting of
the points 1 and 2 of the x-axls) and Y of Y (consisting of
the points 1 and 2 of the y=-axis, 1i.e. Yg Z Y in this case.)
Then S 18 a subdirect product of the sublattices Xs and Ys’
but not a subdirect product of X and Y, since the point 3
of X for example, does not appear as a coordinate of any
point of the sublattice S. The sublattice 5* of $xXY§ ,
consisting of the points (1,1),(2,2), and (3,2), on the other
hand, is a subdirect product of X and Y, since each point
of X and each point of Y appears as a coordinate of some
point of S*.

Attenticn 1s called to the following representation
theorem for distributive lattices [1]p.1L0:

Theorem. Any distributive lattice (of more than one element}
is isomorphic with a subdirect product of chains of length

two (l1.e. chains conslsting of just two elements each,)
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One shows readily that a direct product of distributive
lattices is a distributive lattice, and in particular, a
direct product of Boolean slgebras is a Boolean algebra.

Theorem 3%.16., Any direct product of Brouwerian algebras

1s a Brouwerian algebra and subtraction is component-wise,
Proof. Let {L"‘YS be a direct product of Brouwerian
algebras Lx o

Then, for every « ,

and for X » YX € L,

by definition, y, * (X = ¥ ) > X

and 1f 2 x 1s any element such that

yc,( +Z°< >x,< ®

then Zo¢ P X = VTl o

Now, since T + (X, = Jx ) > Xx , 1t follows
+ -y b by definition

that {y,& {x* y,(), > {xdk y

of a direct product of lattices.

Moreover, since y, + 2 > X x

implies ZxX > Xk T T
then {y“} + {z,(} > {x.alk
implies {z,& > {xX, = y,(} .
Thus {x4§ ={3«} exists and equals {x, =¥}
Hence I  1is a Brouwerian algebra and subtraction

is component-wise.



Corollary %.16.l. Any direct product of Boolean algebras

is a Boolesn algebrsa.

Theorem %.,17., 1If a distributive lattice representable as

a direct product of chains (each having a greatest element I)
admlits a metric group operation, ,0', it must be a Boolean
algebra.
Proof . It will be shown that in these circumstanceél, the
chalns must each be of length two . Let {Cu| be the direct
product of a collection of chains C  « Let 0, and I, be
the least and greatest elements of C x respectlvely. Then
{O.L\g’ and {I,& are the least and greatest elements of {C.:zy .
Let {x& ’ O(gg be an element of {C .,«.% having one canponent
X« ¥ Ox and all other components Op, @ Fod o Lot x4 € Cy
with O < X« < Iy o Since g is a metric grour operation,
{O,& J '{04% = ‘{G.zk implies {Od} is the group identity.
Hence $0.} £ {xu , Op} = fxu , 05} end {olf B {1= {Igfg .
Thus A( {0;{} , 1L R {xd‘ ’ 0(33)’ ) implies
({x,( ’ 0@% ’ SLI.(E ’ i{xvﬁ ’ 0(3}} g {IAE)})To
Letting {z&‘g ={{x.( R O\,Jg J] {I«}}, the triangle inequality
implies (1) {x,( ’ O@k + {z*} = {Iﬂz .
Now, since addition in {C.,LE( is coordin atewise, for a given
element {a,(% € {C.& , the relation

2 Laad #{xg = {1
implies (3) ax ¥ x_ = I, for every K .
Moreover, since Co{ 1s a chaln, then for a A I

(3) holds if and only If xx = Ix « (Far ay = Iy , X,



may be arbltrary). Thus the solution of (2) is {xdk = {I&"}'
if and only if a,y, = I, for no « . Consequently, in (1),
{zaf={1.t.

Thus 104 B {L.f = {x4 , 0p} {1} = {1.f.

But this contradicts the unique solution property of the
group operation g. Hence an element x 4 with Oy < X« < I,
cannot exist for any « , and each chain contains precisely
two elements. Since such a chain 1s a Boolean algebra, {C«(;
1s a Boolean algebra by Cerellary3,16.4

Definition %.7. A (distributive) lattice representable as a

subdirect product ¢ Cuf , ©°f ¥ chalns (VY any cardinal), will

be called V¥ -dimensionsal.

Theorew 3.18. A finlite dimensional lattice{c.(} s Wwhich
admits a metric group operation 1s a Boolean algebra.,
Proof., It will be shown that each chain Cgy of {C;ﬂ:s has
only two elementse.

Assume as In Theorem 3.17 the exlstence of an element
Xy €& Cu such that Qu < X < Ix o If {xd)o@z\)é{c‘ﬂgs ’
Theorem 3%.17 applies. If this is not the case, then {Co{g—

s
contalns an element {y,(!; # {xo( s O@} , but with y, = x

for some , . This means that at least one coordinate other
than the oL th coorinate does not equal Oz for any B .
Case le Yo # I for any « . A consideration of

aldosl , {7« » {IJE) leads by the argument of Theorem 3,17
to the same contradiction.

Case 2. At least one coordinate of {ya(} other than x, 1is

equal to Iy for some < of the 1index set A. Consider again
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a( {Oa‘]g, ‘{EA%, {IA,}. To satisfy the triangle ineguality in
this case, viz,
{y,g +{{ya<:r ﬁ‘{l,&£= §1.% , does not require that
14t 8 {IJ,% ={ 1./, as was observed in Theorem 3.17. Now if
{z,} = {ydi 8 {14l , then fwgh =< ya {ZJféfbxfs, since {y.fe{cd ,
{2} é{rc“-} . and{c,(g . 1s a sublattice of {c(,d; . )

Moreover, for every « , Wy = y OFr WxX = zy according

a8 YA < 2 Or 2z, < Wy since CA 1is a chain, Hence, if
for some A , yot = I but 2 # Iy , then W = 2% Ioc
and if yo # I , then zx = Ix and again, we # I o

In any case, therefore, {wx} =~{ yq}{z,{i has at least one
fewer coordinates 1. than does {yf.(} « If now w = Iy for
no £ , Case 1 again applies., If thils 1s not the case, iterate
the above process with { w«} in the role of-{yx}'. Since the
lattice 1s finite dilmensional, in a finite number of steps
there wlll emerge an element-{u4} such that ux = Iy for.
no K . The argument of Theorem 3,17 will then apply. Thus
each chaln must contein precisely two element s. Hence the
lattice 1is finlte and is therefore a Boolean algebra in
accordance wilth the remark following Theorem 3.ll.

Definition 3%.8. A space S 1is sald to be congruent to a

space S' 1if there exists a one-to~one distance preserving
map of S onto S'.

A space S 1s said to have congruence order k relative
to a class of spaces M containlng S, provided that any space
of M is congruent (isometrlc) to a subset of S whenever each

k of its points are, and k 1s the smallest number with thils
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property. This concept is due to Menger [9], (p.l16), who
broved, for example, that the congruence order of
n-dimensional Euclidean space, E » relatlive to the class of
metric spaces is n + 3, In [5] 1t was shown that the
congruence order of a Boolean-geometry relative to the class
of L -metrized spaces is three. It 1s natural to seek the
congruence order of Brouwerian geocmetries. The theorems
which follow bear directly on this question.,

Theorem 3.l9. If the distance function of an autometrized

space 1s a group operatlon, the congruence order of the space
relative to the class of L-metrized spaces 1s three,

Proof; Let L denote the autometrized space whose distance
function % is a group operation, and suppose S 1s any
L-metrized space with the property that every three of 1ts
points can be congruently embedded in L. Conslder any fixed
element a of S, X an arbitrary element, and let d(a,x) = u,
where u € L. If @ 1s any point of L, then there exists
uniquely a point X € L such that & % X = u, since the
distance function 1s a group operation. This implies the
mapping X =——» x of S onto a subset of L is clearly

single valued. Moreover if y € 8, y # x, and d(a,y) = u,
then the isosceles triangle with vertices (a,x,y) is
congruent, by hypothesis to an isosceles trlangle in L,

a contradiction. Thus the l1lnverse mapping 1is single valued
and the described mapping is one-to-one. In particular,

if x = a, then u =0 and a—> &,
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We prove next that this mapplng 1s distence preservinge.
Let y € S and d(a,y) = v. Then a %y = v. Suppose d(x,y) = w,
w € L. Then a triangle exists in L with sides u,v,w. However,
1f two sides of a triangle in L are respectively equal to two
sides of another triangle in L, then the third sides are egqual.
This follows from the assoclative law of the group operation,
since if A(a,b,c) in L has a % b =u, b % ¢ = v, then
(a % D)#(b % c) = a % (b #b) % ¢c = a %c, 1. the third
side of the triangle is uniquely determined by the other two
sides. Thus X % § = W. A three point space with all distances
equal to the same non-zero element of L shows that the con-
gruence order 1s not two, since L contains no equilateral
triangle.

Corollary 3%.19.l. (Ellis). The congruence order of a Boolean

geometry relative to the class of L-metrlzed spaces 1s three,

Theorem 3.20. A Brouwerian geometry is a Boolean geometry 1f

and only if it has cangruence order three relative to the
class of L-metrized spaces.

Proof. In viewof Corollary 3.19.1, it is necessary only to
show that a Brouwerlian geometry with congruence order three
is a Boolean geometry. Suppose X "\x # 0, and conslder the
L-metrized space consisting of the four distinct elements
a,b,c,d with a % ¢ = b %¥d = x"|x and the remaining distances
equal to I. Each three points of S are congruently embeddable
on the polnts 0, I, x7|x, of the Brouwerian geometry, and by
hypothesis, the entire space ls so embeddable. This config-

uration, however, 1s impossible 1n an arbitrary Brouwerian
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geometry, for if a,b,c,d map respectively into al’bl’cl’dl’
of L, then x7]|x < a1, X |x < ¢, since the vertex of an

isosceles triangle is “over" the base. Then x [x < a.c

17y
and 8,0, * x7x = a,¢,+ But by Corollary 3.5.1, a;0q * 8] ¥ ¢y
= al + Cl, S0 that alcl + x‘.lx = al + cl‘ Hence
alcl = a, + Cq » therefore al = cl, l.e. 8y %* ¢, = x—Tx = 0,

a contradiction, and L is a Boolean geometry.

Theorem %.21e A Brouwerian chain has congruence order four

relative to the class of L-metrized spaces,
Froof. Since any chain with I, O is a Brouwerian algebra,
then metrized by symmetric difference, (whereln a - b = g
for a » b) it is a Brouwerilan geometry. Let C be such a
chaln, i.e. Brouwerian. Then (1) every triangle is isosceles,
(2) if a > b > c » d, thena % b = a % ¢ = a %4 = a,
bs#%c=Db%d=D>b, ¢c ¥4 =c¢, (3) Opposite sides of a
gquadruple cannot be equal, since a Brouwerlan geometry has no
equilateral triangle.,

Let S be any L-metrized space with the property that
every four points of S are congruently embeddable 1n C. ‘
If S contains a point 0! which is not the vertex of an
isosceles triangle, let O'!' be mapped into the 0 of C and
every point x' of S Into its distance x from 0'. This
establishes a one-to=-one distance preserving map x!'—— x
of S onto a subset of C. The one-to-oneness 1s obvious. That
the mapping 1s a congruence is seen as follows:; If x' and y!
are distinct elements of S whose distances from 0' are x

and y respectlvely, then d4(x,y) equals x or y, according as



X >y Oor y » X, since by hypothesis, the three points
O0',x',y' are congruently embeddable in C.

If S contains no point 0! as described above, then
every polnt 1s the vertex of an isosceles triangle, However,
two isosceles triangles with the same vertex must have their
legs equal, otherwise a quadruple including the vertex 1is
determined, which maps into a guadruple in C not satisfying
(3) above. Let each point x!' of S therefore be mapped into X,
the leg of an 1sosceles triéngle with vertex x!', This is a
one=to-one mapping of S onto a subset of C. The single
valuedness of the mapping is obvious. That the inverse mapp-
ing is single valued is seen asg follows: If x' and y' are
distinct points of S, each the vertex of an 1sosceles triangle
with leg x, say, then a quadruple including x' and y!' is
determined having opposlte sides equal to x, a contradiction,
since thils implies a similar configuration in C, violating (3).

To see that the mapping is a congruence, conslder two
distinct points x!',y! of S whose lmages under the mapping
are x and ye (Suppose x > y, S0 X % y = Xx,) Then x! 1s the
vertex of an isosceles triangle with leg x. Let x = x' % u?,
end let y' #%# u' = z, Then z # x by (3) so that d(x',y') = x
or z. If a{x',y') = 2, then z = y by definition of the mapp-
ing and x < y, a contradiction. Thus d(x',y') =X = x %*y.
Thus the congruence order is, at most, four, That 1t is not
less than four 1s shown by a four point L-metrized space S
with two opposite distances equal to a, and the remaining

distances equal to b where a < b and a,b are distinct
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elements of C. Each three points are embeddable in C, but

the entire space is not, since (3) is violated. This completes
the proof. Examples show that a Brouwerian geometry may have
congruence order four without being a chain.

Remarks Theorem 3,21 1s the analogue of a classical metric
theorem, namely: The congruence order of the Euclidean line
(El) relative to the class of semi-metric spaces is four.
Moreover its congruence order relative to the class of semi-
metric spaces containing more than four points is three, One
says in this case,that the quasi-congruence order of E, is

1l
three., This 1s not so for a Brouwerian chain, however, as

shown by the following example, Let S be an L-metrized space

of five points a,b,c,d,e with a % e =Db *e =c¢ %6 =4 %e = x,
a ¥ b =Db %c=c ¥d=d ¥a=y, and a ¥ ¢c =D ¥d = z.

Let the Brouwerlan chain C contaln the elements x > y > 2z > 0O,
Then each three points of S are congruently embeddable 1in C.

but 8 is not, for the quadruple (a,b,c,d) is not congruently
embeddable in C, since it violates (3) of Theorem 3.21.

Definition 3.9 The direct product-{Axﬁ of a collection of

autometrized lattices A« 1s defined as the lattlce dilrect
product with the metric operation coordinate-wise.

Theorem 3%.22e. I1f each autometrized lattlice A of a direct

product-{Adﬂ has congruence order k relative to the class
of L-metrized spaces, then the congruence order of-{A;%
relative to that class 1s also k.

Proof. Let S be an L-metrized space, each k of whose points

are congruently embeddable in {A;} . Let p,, Py be arbitrary



distinct points of S with d(pi,pj) = {zd}gﬁ{Ad} .

For each « , let A(O() be a space whose points
correspond one-to=-one to the points of S, with pi(‘=< ).P (<)
the respective correspondents of pi,pj, with d(pi(°< )’pj(°<))
= 2 € Ay « Thus the distance between any two points of
A(x‘) ls the = th coordinate of the distance between the
corresponding two points of S.

For each trilangle A(pi,pj,pk) of S with sides
b o {ud s foad o ({ad s fua} o {vad O7 tmpAes
{by definition of the lattice direct product)

(2 » Ualyp Ve )T in A , for every « . In particular,
then, if, say, 2,4 = Ox for some « , it follows that
(2t y Wty VX )T implies Ue¢ > Vo, Vx> Wex 5  hence
Ve = W o Thus, if in A(x) (=
(X)

for some £ , C_l(pi ),pj(tx)) = O »

we shall 1dentify Py with pj(a< ), and only 1in these
circumstances. Then, clearly, for tévery°<, A(O() is an
L-metrlzed space.

Consider now an arbitrary k-tuple (P), (a set of
k points, p,sPoyee- p,) € S, containing pi,pj, with
d(pi,pj) ={z a(} « Since (P) 1s congruently embeddable 1n{A,:§
by hypothesis, let (Q) be a k-tuple of{A,ﬂSto which (P) 1s
congruent. Let q43 {x*} ,qj: {y,,(} € (Q) Dbe respective
correspondents of pi,pj under this congruence, so that
d(qi'qj) = { z_& = {xd 3 yd} , (since distance in {AJJ is
coordinste-wise). Then, by definition of the asutometrized
direct product, there exists a k-tuple (Q &) in a for

every « , with qix: X ’ch( : ¥y € Ay corresponding
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respectively to qi’qj of {Ao{gwherein d(qio( ’qjo( ) = X H Fo e
Clearly, the k=tuple Q(a() in A(d) corresponding to the
k-tuple (P) in S 1s congruent to the k=-tuple Qx in A« ,

for every <, Thus each k points of A(O() are congruently
embeddable in A & , hence A(C’() 1s congruently embeddable

in A« for every X , under the hypotheses of the theorem.

Now, 1let pi,pJ be arbltrary distinct points of S with

d(py,p4) = ziefat , 1et pi(°<)’ o £2) ¢ L0

: J
as previously constructed, and let q P Xy 9 $ Y € A,
io( v, jo( =
be respective correspondents of pi(d‘),qi( ) under the

congruence of A(°<) into A « already established., Then

d(qi“ ,qjd ) S X #*Yx = 24 , and there exist points
SRR, ETERRAL: in {AL) with gy % g5 =3xu *y«}= {z 5.
Then the mapping Py—> Q45 P> q'j of 8 into {Ad} is a

J
congruence, established as follows:

According to the construction of the spaces A(&), the
{ S8
mapping py—=> pi( ‘), pj—a pj(d) of S onto A( ) for
every « is one=-to=-one. Moreover, under the establilshed

(<)

congruence of A into A o« , for every <, the mapping

(=<) () is also one-to-one. Finall
pi —_—> qio< ’pj qjx S 5 Tl a v

every o is one-to-one by the definition of the direct
product. Therefore the mapplng p;--—> qi,pj___> qJ of 8§
into iAﬁl} is one~-to=-one as well, Since

= = * q. the mappling is a congruence
d(pi’pj) {Z,(}' q an pping g )

as claimed.
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Corollary 3.22,1. Any autometrized lattice I which is

a direct product{(:x} of Brouwerlian chains C o has

congruence order foure.

Proof. The congruence order of each Brouwerian chain C o
relative to the class of L-metrized spaces 1s four. (Theorem

3¢21)

Corollary 3%.22.2. If each autometrized lattice A 4 of a

direct product gA,&fhas a finite congruence order relative
to the class of L-metrized spaces, the eongruence order of
{Ad\‘g ls the maximum of the congruence orders of the A . ,
if 1t exists.

Proof . Let the maximum congruence order be the k of the
theorem., If the congruence order of A« for some o is

(¢)

n < k, then, since each k points of A are congruently

embeddable In A o , each n points are certainly likewise

(°<). All other details of the

embeddable, hence so 1s A
proof are identical with those of the theorem.

Remark. The congruence order of an arbltrary Brouwerlan
geometry relative to the class of L-metrized spaces 1s still
an open guestion,

(This rectifies an earlier statement of L.M.Kelly and
the writer [Bulletin of the American Mathematical Society,
Vol. 62 Number 2, March 1956, pp.172-3] that the congruence
order in the general case was shown to be four. Further

investigation to date of subdirect products of Brouwerian

algebras continues to suggest strongly that this 1s indeed

the case.)
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Section L. General Theorems; Betweenness

In this section properties of L-metrized spaces in
general are established. Further, metric and lattice between-

ness are introduced, and the consequences of their coincidences

1s studied.

Theorem 4.1, In any L-metrized space, the sum of the

distances of the elements of a subset S from any element of
the subset 1s constant and equal to the sum of all the dis-~
tances of the subset, provided the sums exist.

Proof. Let p be any element of S, x and y arbitrary distinct

elements of S, with d{(x,y) = d , d(p,x) = p, and d(p,y) = p_.

Xy y
Then the trlangle inequality asserts that P, + p > d

hencepr+py=Z px>d ande>Z

X,y€ S X€S Xes X,¥€ S
But Z dxy > -_>: px » hence -_>: P, = E dx,y'
X,y€ S XE€ S xe 8 X,y S

Corollary L.l.l. In any L-metrized space, the sum of sny

two sides of a triangle equals the perimeter,

Corollary L.l.2. In any L-metrized space, the sum of two

éides of a triangle equals the sum of any other two sldes.

Definition L.l. Three points u,v,w, of an L-metrized space

are called linear if d(u,v) + d(v,w) = d(u,w).

Definition L.2e In sny L-metrized space, a triangle with

sides a,b,c will be designated T(e,b,c)}. (Note: this implies

(a,b,C)T)o
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Corollary L.1.3. In any L-metrized space, the vertices of

en 1sosceles triangle are linear.

Proofe In T(2,a,b), a +b =2a +a =a

Theorem 4.2, In any L-metrized space, a trisngle T(a,b,c)
1s isosceles if and only if a,b,c¢ form a chain (or a,b,c are
pair-wise comparable),

Proof, If a = b, say, then a + a = a > ¢,

Conversely, since a + b = b + ¢ = a + ¢, a>b > ¢ implles

a = b,

Theorem L .%3. In any L-metrized space, if, in T(a,b,c), a > b,

then a > c and b + ¢ = a (1.e. the vertices are linear).
Moreover, if T(a,b,c) is not isosceles, then b and c are
non=comparable,

Proof. 8Since a +b =Db +c¢c =a *+c, a>Db lmplies
a=a®*c=b+c l.6. a > ﬁ. If b and ¢ were comparable,
the elements would form a chain and the triangle would Dbe
isosceles.

Corollary L.3.,l. In any L-metrized space, a non-isosceles

triangle has elther precisely one palr of non-comparable
sides, or all three sides are pair-wise non=-comparsble.
Proof. Exactly two pairs of non-comparable sides leads
immediately to & contradiction of the theoreme.

Corcllary Le.3.2. In any L-metrized space, 1f precisely

one pair of sides b,c of a triangle are non-comparable, the
third side a 1s uniquely determined as their sum, a = b + c,

and again the vertices are linear,
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Corollary L.3.3. 1In any L-metrized spece, a triangle with

preclsely one pair of non-comparable sides is uniquely

determined by them.

Corollary Le.3.4. In any L-metrized space, the vertices of

a triéngle are linear, if and only if the triangle has a
palr of comparable sides,

fFroof. The sufficiency of the condition is a conclusion of
the theorem. On the other hand if a = b + ¢, a > b and a > ¢

by definltion of the lattice sum,

Corollary Le3.5. In any L-metrized space, the only triangles
whose vertlces are non-linear are those whose sides are pair-
wise non-comparable,

Proof. Any triangle without this property satisfies the
condltions of the theorem.

Definition lL.3. An L-metrized space whose distance lattice

l1s a chain C, is called a C-metrized space,

Theorem lL.je. Every triengle of a C-metrized space is 1sosceles.

Proof. This theorem follows from Theorem L.2.

Corollary lL.4.le Every triangle of an autometrized chaln

1s isosceles.

Remark. Every triangle of an L-metrlzed space may be
isosceles, sven though 1ts distance lattice 1s not a chain.
An example 1s the autometrized four element Boolean algebra
a,b,I,0 with d(a&,b) = a, d(0,I) =1 and all other distances

equal to I.
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Definition L.4. An sutcmetrized lattice L as well as its

metric operation is called regular if a 4% 0 = a for every

element a of L. (Thus Boolean and Brouwerian geometries are

readlly seen to be regular,)

It should be noted that every lattice admits the
regulsar metric operation a # b = a + b for a # b, and
a #a =0, for a # 0 =a + Q0= a, and since for any A(a,b,c),
(a % b) # (b #c) =(a+Db) + (b+c)=a+b+ec,

atb +c>at+tc=a%c, l.e. the triangle inequality holds.

Theorem L.5. In a regular autometrized lattice, (a,b,a #* b)T.
Proof . Evident from a consideration of A(a,0,b).
Although, as indlcated above, an autometrized lattice
in which every triangle 1s isosceles need not be a chaln,
one does have

Theorem L.6. A regular autometrized lattice L in which every

triangle is isosceles is a chain.

Proof. Let a and b be arbitrary distinct elements of L and
consider aA(a,b,0). Since a %# 0 = a and b % 0 = b, 1t follows
that a % b = a or a # b = b so that elther a > b or b > a.

Theorem 4.7 In a regular autometrized chain, for

a» b, a b = a,
Proof. In a(a,b,0), a * 0 = a, b % 0 =b, Since every trilangle
is 1sosceles, a #* b = a for a > Db,

Corollary L.7.l. Every regular autometrized chaln 1s a

Brouwerian geometry.

Proof. A chain 1s a Brouwerian algebra and for a > D,

a #b =a= (a=b) + (b=a).
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Corollary Le7e2e A regular autometrized chain has no egqui-

lateral triangles,

Proof+ A Brouwerian geometry has no egullateral triangles.

Theorem L.8. An autometrized chaln C of mare than three

elements is regular, if and only if, every quadruple of
elements a » b > ¢ > & has the distence pattern,

a b =ad#c¢c =a%d=a,b%*c=Db*d="5b, ¢cxd=c,
FProofs The regularity and the fact that every triengle is
isosceles ylelds the above pattern.

Conversely, If x 1s an arbitrary element of C, then in
any quadruple z > y » x > 0, the prescribed pattern yields
X % 0 = Xo.

Remark. A non=-regular autometrized chain may have a
gquadruple whose dlistances have the indlcated pattern but
the vertices of the quadruple need not be those indicated,

Theorem L .9. An eutometrized lattice L is regular if and

only if a + (a % b) = a + b for all elements a,b of L.
Proof, If L is regular, then (a,b,a * b)T by Theorem 4.5
and the condition follows from Corollary L.l.2. On the other
hand the condition implies, in particular, for the elements
O,x, that 0 + (0 #x) = 0 +#+ x = x, 1.e. 0 #*x = x.

Corollery L.9.1. In a regular autometrized lattice L,

a %b <a+ b for all elements a,b, of L.

Proof., Implied by (a,b,a % D)T 1in a(a,b,0).

Remafk. The condltion a # b < a + b 1s not sufficient to
ensure regularity as shown by the chain I » a > b > 0 with

I*a:I*b:I*O:I’a#b:a*0=b*0=b.
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Definition L4.5. An L-metrized space 1s called distributive

1f its distance lattice 1s dlstributive.

Corollary L.9.2. In a regular distributive autometrized
lattice, ab + (& % b) = a + be

Proofs Identical with that of Corollary 3.5.1.

Remark, The above condition even with regularity 1s not
sufficlent to yield distributivity. The condition holds for
every palr of elements of the non-modular five element
lattice {1]{page 6 figure 1ld.)with elements 1,0, a > b,

and c¢, if the autometrization is regular, a % b = a, and all
other distances are equal to I.

Definition 4.6. An autometrized lattice 1s called symmetric

if the distance between every two of its elements ié equal
tc the distance between their sum and product, Thus
Brouwerian, and Boolean geometrles are readily seen to be
symmetric.,

Theorem 4 .l0e. An autometrized lattice which is symmetric

and contains no isosceles triangle 1s distributive.

FProof. A non=distributive lattice must contaln one of the
two special five element lattlces shown below. [1](page 13L).
The symmetric property implies in each case the exlistence of
an isosceles triangle, contrary to assumption.

In figure 1, if x #y = u % v =y % z = x % z, then x,y,2

are vertices of an lsosceles ftriangle.

In figure 2, if y # 2 =x % 2 = u #v, then x,y,z are

vertices of an isosceles triangle.
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Definition L.7. In an L-metrized space, the element b 1is

metrically between a and ¢, if d(a,b) + d(b,c) = d(a,c).

The points (a,b,c) are said to be linear as already
indicated, and the relation is written (a,b,c)M.

It should be noted at the outset that this is not =a
betweenness relatlion in the usual sense, since it fails in
many instances to have the special inner point property. i.e.
(a,b,c)M and (a,c,b)M may both persist even though b and c
do not coinclide. None the less,it is convenient to use the
terminology which has been indicated. However, the relation
does have the other baslc betweenness property, viz., symme-
try in the outer points, i.e. (a2,b,c)M if and only if (c,b,a)M,
since the metric operatlon is commutative.

Theorem lL.ll. Three linear points of an L-metrized space

fail to have the special inner point property iflani only 1if

they are the vertices of an lsosceles triangle.,

Proof. If in »{a,b,c), d(a,b) = d(a,c), then (a,b,c)M and
(a,c,b)mbby corollary lL.l.2. Conversely, if these relations

nold, then d(a,b) + d(b,c) = d(a,c) and d(a,c} + d(b,c) = d(a,b).

Hence d(a,c) > d{a,b) and d(a,b) » d(e,c), l.e. d(a,b) = d(a,c),



Definition L,8. If a betweenness relation R has the

property that (a,b,c}R and (a,x,b)R imply (x,b,c)R, the
relation is sald to have transitivity tl « If the same two
relations Imply (a,x,c)R, the relation is sald tc have

transltivity t2. [11].

Theorem L,l2. Metric betweenness has transitivity ¢t

o
Proof . If * denotes the metric operation, then (a,b,c)M

and {a,x,b)M imply (a * b)+i{b % c¢c)=(a s c)and(a * x)+(x * b)=(a *b),
Hence, (a % x)#(x * b)+(b % c) =(a % c).Now, since

x %c < (x % Db)¥{(b % c) by the triangle inequality, it

follows that (a % x}+*(x % ¢c) < a % ¢, but the triangle

inequality implies that (a % x)+(x % c) » a * c, hence ,

(a % x)+(x % c) = (a s c), 1.es (a,x,c)M as claimed.

Remark. In general, metric betweenness falls to have tl’

notably in the case of an isosceles triangle, for if A(a,b,c)

has d(a,b) = d(a,c), then (a,b,c)M and (a,c,b)M hold, but

c,b,c)M is not valid. Indeed, this may happen in an

L-metrized space without isosceles triangles, as the follow-~

ing example shows:

T
?
% (S)
& 4 <
s c o
/kéﬂ — 4
A

00 fig.3



in 8,(figure 3), (1,3,4)¥ and (1,2,3)W but (2,3,4)U does
not hold.,

Definition 4.9. An element b of a lattice is“lattice
between" a and ¢, written (a,b,c)L, if and only if

ab + bc = b = (a + ¢)(b + c), [11] p.105. This relation has
transitivity t1[11], but not in general t,, since t, implles
modularity (and-conversely) {11]. It is a betweenness re=-
lation 1n the usual sense. Further, in any lattice, (a,b,c)L
implies ac < < a *+ ¢, but not, in general conversely.

However, in a distributive lattice, (a,b,c)L if and only if

ac < b <a+c [11]. Metric and lattice betweenness will be
sald to colnclde in an autometrized lattice provided (a,b,c)M
if and only if (a,b,c)L.

Theorem lj.1%. In an autometrized lattice L, metric and

lattice betweenness coinclide, if and only if (1) metric
betweenness has tl,(2) L is symmetric, (3) a < b < ¢ implies
(a,b,c)M.

Proof, Use is made here of a theorem due to Pitcher and
Smiley [11, Theorem 10.1]. In verifylng the hypotheses of
that theorem, one observes that (1) implies that L 1is free
of isosceles triangles and so by Theorem L +11 that metric
betweenness has the special inner point property. (2) and
(3) imply (a, a + b,b)M and (e,ab,b)M, for (3) implles

(a + b, a, ab)M and (a + b, b, ab)M,hence,letting

x =(a+b) ¥a, u=a % ab, y =(a +# b) *b, and v = b % ab,
we have x +tu =y *+ v = (a + b) % ab, Moreover, by (2)

(a # D) % ab = a % b, so that x ¢+ y #+ u + v = a % b, Hencs
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**y<a%b, andu+v<asb., But x + Yy >a ®%b and
u+ v >a#%b by the triangle inequality, hence, x + y = u
= a *b, 1.6 (a, a + b,b)M and (a,ab,b)M.
Conversely, if metric and latticé betweenness coincide, (1)
ad (3) are immediate. To establish the symmetric property,
canslder the quadruple (a,b,ab, a + b). (a + b, a, ab)L and
(a + b,b,ab)L imply, by the assumed coincidence,
(1) (atb)* al+(a * ab) = {(a+b)i bl+[b 3 abl=(a+b)* ab,
Similarly, (a,a + b,b)L and (a,ab,b)L imply
(i1) [(atp)+ al+[(atD)* bl=(a % ab)+(b % ab)= a * b.
Adding first and second members of(i) gives the same result
as adding first and second members of (i1i). Idempotency
yields

(a +#+ b) % ab = a % b,
Thus the theorem is established.,

Corollary lL.l3.le An autometrized lattice in which metric

and lattice betweenness colnclde 1s distributive,
Proof. By Theorem L.l0

Theorem l.ll. (Ellis) In a Boolean geometry, metric and

lattice betweenness colnclde.

EEQEE' A somewnat briefer proof than Ellis has glven 1s as
follows:; (a,b,&)L implies ac < b < a + ¢, in any lattice.
Taking complements of ac < b yields b' < a' + c'. Moreover o
(a % b)+(b % c) = ab! + a'b + be' + b'c

= (a + ¢c)b? + b(a* + c'), But b < a + ¢ implies

bl(at + ¢ct) < (a +c)(a? +¢c!') and b' < a' +# ¢! 1implles

v
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bf(a*c)<(a+c)(art+c?) so that b(at+c!)+b'(atc)<(atc)(at+c?),
l.60 (a % Db) + (b % ¢c) < a #c, But in any case,

(@ #* b)+(b % ¢c)> a % c, hence (a % b)+(b % ¢c) = a # Co 1.6
(a,b,c)u.

Conversely (m,b,c)M, 1.6, (ab'+a'b)+{bct+o'c)=acttalc
implies (a + c)b!' + b(a? #+ c') = ac! + a'c. Multiplying the
latter first by ac, then by a'c!, we obtain ach' = 0 and
a'c'® = 0. But xy' = 0 implies xy + xy' = Xy or x = Xy SO
that x < y. Hence ac < b, Similarly b(a'c'!) = 0 implies
b(atc)?! = 0, hence b <a + c, i.6, 8 < b < a + ¢ or since
a Boolean algebra is distributive, (a,b,c)L. This completes
the proof.

Remark. Since tl fails for an 1sosceles triangle, it falls
in any Brouwerlan geometry which 1s non-Boolean, hence
metric and lattice betweenness do not in general colincide in
Brouwerlan geometrles, Indeed this coincidence to~-gether
with regularity is sufficlent to characterize Boolean
geometries among the Brouwerlian geometrles as the following
theorems show.

Theorem L.l5. An autometrized lattice with an I 1s a Boolean

geometry if and only if 1t is regular, and metric and lattice
betweenness colincilde.

Proof. Theorem L.l establishes the necessity, since symmetric
difference 1s a regular metric operation. To prove the

suf ficlency, let a # I = x, I % x =y and consider the

points (0,I,a,x,ax). Regularity implies (a,I,x)T and

(x,I,y)T or a + x = I andx + y = I. Moreover (a,I,x)L



implies x + y = a % x since MB = IB. Hence, a % x = I,
Symmetry (by Theorem L4.13) implies further that
a % x = (a *x) % ax =1 % ax = I. But since
I#0=T1, a(0,I,ax) is isosceles. This is impossible since
tl must hold under our assumptions., Therefore ax % O = ax = O.
Thus the lattice 1s complemented, and, being distributive by
Corollary l.l13%3.1 is a Boolean algebra.

To show that a # b 1s symmetric difference, consider
the points (0,a,b,I),where a % I = a', b % I = b', since,
in a Boolean algebra, complements are unique, snd (a,I,a % I)T
(due to regularity) implies, in particular, that a + (a % I) = I.
Clearly a #* b < a * b, and a #b < a' + b*(since A(a,b,I)
implies (a',b?',a % b)T), whence a % b < (a+b)(a' + db')
= ab' + a'b, But, (& % b)+ ab = a + b (Corollary L.9.2),
implies that (atb) - ab < a * b, since a Boolean algebra is,
a fortiori, a Brouwerlan algebra., Thus a % b = (a=b)+{b-a),
a % b 1s therefore Boolean symmetric difference, and the
lattice 1s a Boolean geometry.

Corollary L.15.l. A lattice with an I is a Boolean algebra

if and only if it admits a metric group operation under which
metric and lattice betweenness coinclde.

Proof: The necessity 1s clear. The sufficlency is assured
since a metric group operation 1s regular,

Definition .10, An L-metrized space S 1s sald to be of

constant width, if (1) There exists in S, a maximal distance,
m, i.e. such that m > x for every distance x in S, and

(2) Corresponding to each element a € S there exists
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an element b € S such that d(a,b)

Theorem L.l6. A lattice with an I i1s a Boolean algebra

if and only if 1t admlts a metrization such that the space
1s of constant width, and metric and lattice betweenness
coincide.

Proof: The necessity 1s clear, since (1) Boolean symmetric
difference is a metrization under which metric and lattice
betweenness coincide and (2) being a group operation,the
equation a % x = ] always has a solution, namely y = a!',
{(Clearly I 1s the maximal distance in the space and it
actually occurs, since I % 0 = I)

To establlsh the sufficlency, let a and b be arbitrary
distinct elements of the lattice. Then, since metric and
lattice betweenness coincide, (I,a,0)M and (I,b,0)M, i.e.
(a % Q) + (a % I) = (b % 0) + (b % I) = I % 0., Since, in
A(I,a,b),(a % Db) < (a % I) + (b % I), then a %#b < I %0
since (a 3 I} + (b # I) < (I % O)yand I % O 1s the maximal
distance which occurs., Now, since the space 1s of constant
width, corresponding to an element x, there exlsts an
element y, such that x % y = I 4 O. Moreover,y 1s unique,
since there can be no isosceles triangles. Furthermore,
since the lattice must be symmetric by Theorem L.13,

(x+y) # xy =1 % 0, and [(x+y),(xy),0]M implies
L(X*y)w(xy)]*“[(xy) % 0]=(x+y) % O,1l.ee(I 3 0)+((xy) * 0)=(x+y)*0
But I %0 » (xy) % 0, hence (x+y) % Q0 =1 % 0. Since there

can be no isosceles triangles, x + y = I. Hence

I #xy =1 %0, and again, the absence of 1sosceles triangles
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lmplies xy = 0. Thus the lattice is a Boolean algebra.

Corollary L.16.l. A finite autometrized lattice in which

metrlic and lattice betweenness coincide i1s a Boolean

algebra,

Proof. By Theorem 4.13% the lattice can have no isosceles
triangles. If the lattlice has n elements, then each element

is a "vertex" of (n-1) distances. Since none of these can be
repeaﬁed, each element of the lattice (except 0) must occur

at each vertex as a distance, hence being finite, the lattice
has an I which occurs at each vertex. I being clearly maximal,
the lattice is of constant width, and 1s therefore a Boolean
algebra,.

Remark. In the infinite case even though no distance may be
repeated at a vertex, there 1s no assurance that every distance
must occur, Thus whether in an autometrized lattice with an I,
the coincidence of metric and lattice betweenness in and of
itself 1s sufficient to characterize a Boolean algebra is
still an open question,

Ellis has observed [5)] that the group of motions of a
Boolean geometry 1s slmply tFansitive, i.e. for any two points
a,b of the geometry, there 1s a motion {(a one~to-one distance
preserving map of the space onto itself) which carries b into a.
An examination of the Brouwerian chain of three elements shows
that the group of motions of a Brouwerilan geometry is not
simply transitive, and, indeed

Theorem Ls17. A Brouwerian geometry is a Boolean geametry if

and only if 1its group of motions 1s simply transitive.



t_l:giﬁ.The necessity as indicated has been observed by Ellis.
Suppose then that a Brouwerian geometry L has a simply
transitive group of motions, and consider that motion which
carries I into O. Then if x—> ¥y, I ¥ x =0 ®* Yy =1z =7
i,6¢ x—> 7|x. Hence 0 —» I, x"\ x—> | (x7] %) =1,

so that 0 = x7|x and L is a Bodl ean geometry.
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