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LEO LAPIDUS ABSTRACT

This thesis is a study in what has come to he known as 

the fie ld  of abstract distance spaces, in the spirit of the 

later work of Karl Menger, where the distances of the space 

are elements of some abstract algebraic structure. In par­

ticular, the distances of this study are elements of a 

la ttice , more especially of a Brouwerian algebra, a general­

ization of a Boolean algebra.

F irst, a few la ttice  theoretic properties of Brouwerian 

algebras are developed in some deta il, with considerable 

attention given the Brouwerian complement, which generalizes 

the familiar Boolean complement of set algebra.

Next, a Brouwerian algebra Is metrized by symmetric 

difference, a generalization again of the well known 

symmetric difference of Boolean algebras. Many properties 

of the resulting Brouwerian spaces are then derived and 

numerous theorems are obtained which serve to characterize 

the Boolean algebras among the Brouwerian algebras. The 

congruence order of certain Brouwerian spaces relative to 

the class of lattice-metrized spaces is established.

In the final section, properties of lattice-metrized 

spaces in general are obtained and in particular many of the 

earlier results are extended. Finally, the notions of metric 

and la ttice  betweenness are analyzed. By studying the effect 

of their coincidence on the algebraic structure of the under 

lying la t t ic e fthe Boolean algebras are then characterized 

among the class of a ll  la ttices with I, in terms of the 

betweenness concepts.
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Introduction

If , with each two elements of an abstract set is 

associated a number (real or complex), the resulting 

structure is known as an abstract distance space* (It is 

convenient and suggestive to refer to the elements of the set 

as “points1* and to the number associated with a pair of points 

as the “distance11 between them). This notion plays an import­

ant part in Frechet’s I 9 0 6  thesis, although the concept was 

undoubtedly known to earlier workers in geometry.

The f i r s t  systematic study of the geometric properties 

of these spaces was due to Karl Menger [91* who referred to 

these structures as semimetric spaces. In addition, however, 

to spaces in which distances were selected from among the 

real and complex numbers, Menger [10] and la te r  Taussky |12] 

studied spaces whose distances were elements of a group.

This has led more recently to the study of spaces ufaosc dis­

tances were selected from even more general algebraic 

structures. In particular, Ellis 15]  9 Blumenthal [3 ] and 

E llio tt  [ii] have Investigated spaces whose distances are 

elements of a la t t ice . This notion may be generalized in the 

following ways

If with each two elements (x,y) of an abstract set S,

Is associated an element _a of a la ttice  L with least element 

0 , the association being denoted by a = d(x,y), the resu lt­

ing structure is called a lattice-metrized, (or more briefly 

an L-metrized) space, provided that (1) d(x,y) = 0 If and
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only if  x = y, (2 ) d(x,y) = d(y,x), and (5 ) for each three 

elements x,y,z of S, d(x,y) + d(y,z) > d(x,z), where + Is 

the addition of the la ttice  and > the order relation, read 

'"over1® (in the wide sense)* That this association may be 

reasonably regarded as a "metrization1® of S is suggested by 

the formal resemblancer at least, of the specified conditions 

to the usual postulates for distance in a metric space* If , 

in particular, S 5 L, this association defines a binary 

operation on L, termed a metric operation, and the la ttice  

Is said to be autometrized.

The studies of E llis , Blumenthal and E llio tt referred 

to above were concerned with a particular autometrization of 

a Boolean algebra* Ellis observed that in such a la tt ice , 

the symmetric difference ab1 + a*b of two elements a and b 

where a 1 Is the complement of a, is a metric operation In the 

sense described above* Since, however, a Boolean algebra may 

be metrized in other ways, (for example all distances between 

distinct pairs of points may be set equal to the same element 

a /  0), the term "autometrized Boolean algebra1* will be used 

in this thesis, if  the metrization is  any one which satisfies 

the postulates (1),(2),(3), above, the designation "Boolean 

Geometry1* being reserved for the special autometrization of 

symmetric difference*

I t  is well known that a Boolean algebra is a ring under 

the operation of symmetric difference as the addition of the 

ring, and, indeed, E llio tt has shown that the only operation 

possible in a Boolean algebra which Is simultaneously a



metric operation and a group operation is the symmetric 

difference [If]. The group property of this operation has 

interesting consequences for Boolean geometries which will 

be discussed later*

This thesis is concerned with the extension of certain 

properties of Boolean geometries to a somewhat wider class 

of spaces called Brouwerian geometries* A further concern is 

with properties of L-metrized spaces in general# What is  of 

special Interest over and above the geometric properties 

per se of these spaces is the Interplay between these 

geometric properties of a space and the algebraic structure 

of i t s  underlying lattice*

Section 1 contains known results used throughout this 

thesis* In section 2 are developed in detail properties of 

Brouwerian algebras, many of which are stated without proof 

in [1], [2] and [8 ]* Brouwerian geometries are introduced 

and studied in section 3 * particular, numerous character­

ization theorems for Boolean algebras are obtained, and the 

congruence order of certain Brouwerian geometries is estab­

lished* In section if, L-metrized spaces in general are 

studied* Further, the notion of metric betweenness in these 

spaces is introduced, and consequences for the structure of 

the underlying la tt ice , of the coincidence of metric and 

la ttice  betweenness are derived*



S e c t i o n  1 .  P r e l im in a r y  R e s u l t s

The following la ttice  theory results are used through­

out this paper. Details may be found in [1].

A partially ordered set is a collection of elements 

together with a binary relation defined on the set, which 

is reflexive, asymmetric, and transitive. Denoting the 

relation by the symbol <, read “under11, the three axioms 

satisfied by a partially ordered set are:

(1) For a ll a, a < a

(2 ) a < b and b < a imply a = b

(3 ) a < b and b < c imply a < c.

a < b may also be written b > a and read b is "over" a.

If the order relation does not ho2.d for two elements a and b, 

they are called non-comparable, otherwise , they are called 

comparable•

In representing a partially ordered set by a diagram,

a > b is indicated thus , whereas if a and b are not

comparable, they appear thus, a© ®b.

By an upper bound to a subset X of a partially ordered 

set P is meant an element a£ P such that a > x for every 

x€X* A least upper bound (or l.u .b .) is an upper bound 

which is under every other upper bound. Clearly a l .u .b . is  

unique. Lower bound and greatest lower bound (g .l.b .) are 

similarly defined. A la ttice  is a partially ordered set in 

which every pair of elements has a l.u .b . and a g .l .b . In 

this thesis, these are denoted respectively by a + b and ab



and are called the sum and product respectively of a and b, 

(although "join", indicated by the symbol^ , and "meet", 

indicated by the symbols are also found in the litera ture .)  

Each operation is called the "dual" of the other. They are 

readily shown to be idempotent, commutative and associative, 

and satisfy the absorption laws a + ab = a, and a(a + b) = a. 

Further, a > b if  and only if  a + b = a and ab = b. A la ttice  

is said to be complete i f  any collection of elements has a 

g .l .b . and l .u .b . In particular, a complete la ttice  has a 

least element 0 and a greatest element I . A chain is a 

la ttice  in which each two elements are comparable , and Is 

said to be linearly ordered.

A la ttice  in  which a < c implies (a ♦ b)c = a + be is 

called modular.and this "weak" distributive law is called 

the modular law. A distributive lattice  is  one which sa tis ­

fies the distributive laws a + be = (a + b)(a + c) and 

a(b + c) = ab + ac. Each of these implies the other.



S e c t io n  2 .  B ro u w er ia n  a lg e b r a s

In this section, a Brouwerian algebra is  defined and 

some of i t s  most important properties are derived. Many of 

these will be used in later sections of this thesis.

Definition 2.1. If with each two elements a and b of a 

la ttice  L having a greatest element I , there is associated a 

least element x such that b + x > a, then x is denoted by 

a - b and the la ttice  is  called a Brouwerian algebra [8 ].

Thus, if  b + z  > a, then z > x. This association will be 

referred to as the subtraction operation.

I t  is  of interest to note that such an algebra Is 

equivalent to a la ttice  formulation due to G. Birkhoff [2]

(and called by him a "Brouwerian logic") of Heyting*s post­

ulates for "intuitionist logic", (a logic consistent with 

the philosophy of the intuitionist school of mathematicians, 

whose leading exponent is  L. J. Brouwer). I t  is  also the 

dual of a relatively pseudo-complemented la ttice  [1 J.

I t  is  convenient in practice to make use of the following 

Theorem 2.1. A la ttice  L with an I is a Brouwerian algebra, 

if  and only I f ,  for each three elements x,y,z of L, 

x - y < z  <- —- >  x < y + z.

To show f i r s t  that this characterization implies the

original definition, since by the f i r s t  postulate for a

poset, x - y < x - y, i t  follows that x - y < z >

x < y + z Implies x < y + (x - y)• Thus (x - y) is an

element of L which added to y yields an element over x.
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And now x < y + z > x - y < z implies that x - y is the

least such element*

To show that the original definition implies the above 

characterization, suppose x - y is the least element of L 

such that y + (x - y) > x* Then y + z  > x implies z > x - y.

On the other hand, y + (x - y) > x implies z + y + (x - y) > x, 

and if  z > x - y, then z + (x - y) = z, hence z + y > x. This 

completes the proof*

In what follows, i f  X is a subset of elements x^ 

of a la ttice  L, U x ^  designates the la ttice  product of the 

elements x^ of X*

Theorem 2*2* If L is a Brouwerian algebra, then 

(i) L has a least element 0 *

(ii)  L is a distributive la ttice , i*e* for a ll elements

Y p Z p of L, 

x + yz = (x + y)(x + z), and dually

x (y + z) = xy + xz

( i l l )  The distributive law for fin ite  addition with respect 

to infinite multiplication holds, i*e* If X is any subset of 

elements x* of L such that XIxo< exists, then for every

element a of L, II (a + x^ } also exists and

(1 ) a + Xlx^ = n  (a + x<* )

Proof of ( i ) : This follows immediately from the definition 

of a Brouwerian algebra, since I - I exists and clearly Is 

the least element, denoted by 0 .

Proof of ( i i ) : In any la ttice  L, for a ll  elements
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x, y, z, of L)

(x + y) > (x + y)(x + z )  and (x + z) > (x + y)(x + z). 

Thus y, z € u 9 where XJ is the class of elements u^

such that x + u^ > (x + y) (x + z) * By definition,

II u^ = (x + y) (x + z) - x exists, and since

y > (x + y)(x + z) - x, and z >(x + y)(x + z) - x, then

yz >(x + y)(x + z) - x, hence

yz + x >[(x + y)(x + z) - x] * x > (x + y) (x + z) by

definition i .e .  yz + x > (x + y)(x + z).

But in any la tt ice , the one sided distributive law 

yz + x < (x * y)(x + z) holds 

hence, yz + x = (x + y)(x + z), 

and the proof is complete.

Proof of ( i l l ) . Clearly, IIx* < x* implies

a + IIx^ < a + x^ for every <  • Suppose, then, p < a + x^

for every • Then p < (a + IIXo< ) ** , hence by

Theorem 2*1, p - (a + IIXc< ) < Xc* , and since this holds

for every , i t  follows that p - (a + IIx^ ) < IIx^ , and

Theorem 2.1 again implies p < a * IXx^ •

Thus, a + IIx* = II(a + x^ ) by definition of the lattice

product of a set of elements.

Remark * I t  should be noted that d istributivity  alone is 

insufficient to insure that a la ttice  be a Brouwerian 

algebra. The open subsets of the plane, for example, 

constitute a distributive la tt ice . But If a and b are two 

open circles with a non-null intersection, a - b fa ils  to 

exist, for the least set u, such that b + u > a is the set
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a - ab of elements of a not already in b. This set is not 

open, since i ts  complement is  not closed* Moreover, any 

open set containing those points of a not already in b must 

contain^ in particular, a neighborhood of each point of a - ab 

which is  an accumulation element of the c ample ment of a - ab* 

Since each of these neighborhoods may be arbitrarily  small, 

there is  no least open set with the required property* 

However, one does have

Theorem 2*3» A complete la ttice  in which the distributive 

law for fin ite  addition with respect to infinite multiplica­

tion holds is a Brouwerian algebra*

Proof• Let L be a complete lattice  in which the distributive 

law for f in ite  addition with respect to infinite multiplica­

tion holds,. i*e. for every subset X of elements x* £ L ,  

a + IIx^ = I I (a + x* )• If x, y € L, then since y + x > x, 

the class U of elements Uo< such that y + u*< > x is not 

empty. Since L is complete, II u and II(y + u* ) exist. 

Moreover, II(y + u<* ) > x, and since II(y + u^ )-y + II u^ 

by hypothesis, i t  follows that y  ̂ II u^ > x* Hence 

II u<* -  x - y, by definition of the subtraction operation, 

and L is a Brouwerian algebra.

Corollary 2*3*1

Every fin ite  distributive la ttice  is  a Brouwerian 

algebra.

Proof: Such a la ttice  is  a complete la ttice  in which (1), 

of Theorem 2*2,( i i i )  holds.
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Remark* A non-complete lattice which enjoys the distributive 

law in question may or may not be a Brouwerian algebra. The 

unit interval with an interior point deleted, and the unit 

square without the point (1 , 0 ) are la ttices where

xl*^l > x2#̂ 2 ^  and °nly ^  X1 — x2* 811 ̂  — y2* Each

enjoys the law in question whenever the products involved

exist. Neither is complete. The former is a Brouwerian

algebra; the la tte r  is  not, since [I - (x,l)] fa ils  to exist

for any x, ( 0  < x < 1 ).

Theorem 2.1+. Every chain with I and 0 is a Brouwerian

algebra.

Proof. For any two elements a,b of L with a > b, clearly 

a - b = a, and b - a = 0. Hence L is a Brouwerian algebra. 

Definition 2.2 An element a of a subset X of a partially 

ordered set P is a minimal element of X, if for no element 

x of X is a > x.

Definition 2.5 A partially ordered set P is said t© satisfy 

the descending chain condition, if  and only i f  every non-void 

subset X of P contains a minimal element.

Theorem 2.3* Every distributive la ttice  L with a greatest 

element I, which satisfies the descending chain condition 

Is a Brouwerian algebra.

Proof. For arbitrary elements a,b of Ls since b + a > a, the 

set X of elements x ^  such that b ** x^ > a Is non-void. Then 

X contains a minimal element x by hypothesis • Let y also be

a minimal element of X. Now xy€.X, for xy exists and 

b + x » a, b + y > a imply by the distributive law that
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(b + x)(b + y) = b + xy > a. But then neither x nor y would 

be minimal in X since xy < x, and xy < y. Hence there can be 

at most one minimal element x in X#

Suppose x is not the least element in X. Then there

exists an element z in X with z  ^  x.

By our previous argument, xz£X, i .e .  b + xz > a. Since 

xz < x, again x is not minimal, a contradiction. Thus x is 

the least element of X, and a - b exists.

Definition 2.3# A Boolean algebra is a complemented distribu­

tive la tt ice , i .e .  corresponding to each element a of the 

la tt ice , there exists an element a* called the complement of 

a such that a + a* = I and aa’ = 0. I t  is readily shown that 

complements are unique and that complementation is ortho- 

complementation, i .e .  (a1)* = a.£ l].

Theorem 2.6. Every Boolean algebra B is a Brouwerian 

algebra wherein ab® = a - b, for a, b 6 B.

Proof. I t will be shown that b + ab® > a, and 

if  b + x > a, then x > ah’ .

Since b + b® = I and la = a, a > a implies (b + b ')a  > a,

whence ab 4* ab® > a by d istribu tiv ity . Moreover, since 

b > ab i t  follows that b + ab® > ab + ab® > a, i .e .  

b + ab® > a. Furthermore, if  b + x > a, then b»(b + x) > ab®

and bb® + b* x > ab®, i .e .  b'x > ab® since bb* = 0 . But

x > b*x > ab® so that x > ab®. Thus ab® =* a - b, and B is a 

Brouwerian algebra.

Thus I t  is evident that Brouwerian algebras comprise a 

rather large class of la ttices , including as they do, all



- 1 2 -

chains with I and 0, fin ite  distributive la ttices , distribu­

tive la ttices satisfying the descending chain condition, 

complete la ttices satisfying the distributive law for f in ite  

addition with respect to infinite multiplication, and the 

Boolean algebras* Attention is called finally , to the 

following

Theorem* The algebra of closed sets of a topological space, 

and every subalgebra of this algebra is a Brouwerian algebra* 

Conversely, every Brouwerian algebra is  isomorphic to a 

subalgebra of the algebra of closed sets cf a topological 

space* [8 ]*

Theorem 2*7* In a Brouwerian algebra, the following re la­

tions hold;

(ft) a - b < a  (b) a < b if  and only if a i o' II o

<c) a - 0 * a (d) a -  a  = 0 ( e )  a  + (b -a )  ® a + b

I t ) a  < b implies a - c < b - c (g) ( a  - b) - b = a - b

(h) (a ► b) - c = (a - c)+(b - c) (i)a - be = (a - b)x(a

( j ) a < b implies c - b < c -  a (k) (a - b) +■ ab = a

(1) (a -- b) + a = a (m) a - b < a + b

(a) a - b = b - a if and only If a = b.

(o) a - b < a - be

(p) c + (a - b) = c ^ l(c + a) - (c + b )]

Proof of Theorem 2*7*

(a) a - b < a

Proof * a < a + b implies a - b < a by Theorem 2.1

(b) a < b if  and only i f  a • b = 0

proof. By Theorem 2*1, a < b + o implies a - b < 0

hence a - b = 0* Moreover, if  a - b = 0, then a - b < 0 and
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again by Theorem 2.1 a < b  + 0, i . e . a < b .

(c) a - 0  = a

Proof. By (a) a - 0 < a, and a - 0 > a by definition

Hence a - 0 = a

(d) a - a = 0

Proof. This follows from the definition of subtraction.

(e) a + ( b - a ) = a ^ b

Proof # By (a) b - a < b. Hence a + ( b - a ) < a ^ b  

but a 4 (b - a) > b by definition of (b - a). Hence

a + (b - a) > b + a, I .e . a + ( b - a ) = a + b

(f) a < b implies a - c < b - c.

Proof. b < c ^ ( b - c ) b y  definition. Moreover, a < b 

implies a < c 4 ( b - c ) ,  hence a - c < b - c by Theorem 2.1

(g) (a - b) - b -  a - b.

Proof. ( a - b ) - b < a - b  by (a). To show that 

( a - b )  - b > a - b, clearly, (a - b) - b < (a - b) - b, 

therefore ( a - b )  < [ ( a - b )  - b] 4-b,

a < [ (a - b) - b] + b,

and a - b  < [ ( a - b ) - b ] ,  by Theorem 2.1

Hence ( a - b )  - b = a - b

(h) (a + b) - c = (a - c) * (b - c)

Proof. a < c  + (a - c) and b < c + ( b - c ) b y  definition 

Hence a + b < c  + ( a - c )  +■ (b - c),  and by Theorem 2.1, 

i t  follows that (a + b) - c <  ( a - c )  4- ( b - c ) .

To show the reverse inequality, 

by (a), (a*b)»(a-c)^(b-c)=*[ (a-c)-c]+[ (b-c)-c] by (g).

Hence (a*b) -c> |  [ (a-c ) -C ']  + [ (b-c ) -c ]  ̂ -c
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> j4(a-c)-c]-cj + |[  (b-c)-c]-cj by (f).

Therefor© (a + b) - c > (a - c ) + (b - c) by (g)*

Hence (a + b) - c = (a - c) + ( b - c )

(i) a - be = (a - b) + (a - c)

Proof# a < b + ( a - b )  and a < c ^ ( a - c ) b y  definition,

hence a < [b + (a-b)][c + (a-c)]

or a < be + (a-b)c + b(a-c) + (a-b)(a-c)

and a - be < (a-b)c + (a-b)(a-c) + b(a-c) < (a-b) + (a-c)

i*e* a - b c <  (a-b) +■ (a-c)

To show that the reverse inequality holds, 

since a < a + b + be, then a - b < a + be by Theorem 2*1 

But by (e), a + be = be + (a-bc), hence 

a - b < be + (a-bc) and

a < b # be + (a-bc) by Theorem 2*1

i*e* a < b + (a-bc), so again by Theorem 2*1

a - b < a - be

In like manner we can show that

a - c < a - be

Thus (a-b) + (a-c) < a - be, and therefore 

a - be = (a-b) + (a-c)•

(j) a < b implies c - b < c - a

Proof* If a < b, then ab = a, hence

c - a b = c - a ? and by (i ) 

c - a = (c-a) + (c-b) i .e .

c - b < c - a

(k) (a-b) + ab = a

Proof* a - b < a by (a) and ab < a, hence
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(a-b) 4 ab < a

To show the reverse Inequality, (a-b) 4 b > a by Theorem 2.1

Henoe a(a-b) 4 ab > a, and since a - b < a, a(a-b) = a - b ,

therefore (a-b) 4  ab > a, consequently

(a-b) 4  ab = a.

(1 ) (a-b) 4  a = a

Proof* Since a - b < a, i t  follows that ( a - b )  4 a = a.

(m) a - b < a 4 b

Proof * a - b < a < a 4 b .

(n) a - b = b - a if  and only if  a = b

Proof * The sufficiency is obvious. To show the necessity, 

a - b  < a ,  b - a < b by (a). But since a - b = b - a ,  

b - a < a and a - b < b. Hence by Theorem 2.1

b < a and a < b, i .e .  a = b •

(o) a - b < a - be

Proof. Since be < b, this follows from ( j ) .

(p) c 4 (a-b) = c  4 [(c+a) - (c4b)]

Proof. Since (c 4 a) - (c + b) < (c 4 a) - (c + b), i t

follows that (c 4 a) < (c 4 b) 4  [ (c 4  a) - (c 4 b)]

and (c 4 a) - b < c 4  ((c 4  a) - (e 4  b)]

by Theorem 2.1.

Now ( a - b )  < a < c 4 a, hence ( a - b )  - b <  (c 4 a) - b  

by (a) and (f),  and therefore, a - b < (c 4 a) - b by (g). 

Thus c  4  ( a  -  b) <  c 4  [(c 4  a )  -  ( o  4  b)].

The reverse inequality is established thus: 

since c 4 b 4 a > c, i t  follows that c 4 b > c - a

by Theorem 2.1, hence b 4 ( c - b ) > c - a  by(e)
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and b + (c - b) > (a + c) - a by Corollary 2.7 (h). l .  so that

(b + a) + (c - b) > (a + c) by Theorem 2* 1.

Then (a - b) + b (c - b) > (a + c)

and ( a - b )  ^ (b + c) > a + c by (e) so that

( a - b )  > (a  ̂ c) - (b +■ c) by Theorem 2*1 again, 

and c + ( a - b ) > c  + c) - (b + c)]

Thus, finally , c + ( a - b )  = c + [(a + c) - (b  ̂ e)]

and the proof is complete •

Corollaries to Theorem 2.7

Corollary 2.7 (h). l .  (a + b) - b = a - b.

Proof. Set c = b in (h)

Corollary 2.7 (i)«l# a - ab - a - b.

.Proof. Set c = a in (1)

definition 2.3 The element I - x of a Brouwerian algebra is

called the Brouwerian complement of x, and is denoted by “j x.

Similar ly? ~|x -  I - “ |x .

Remark. I t  is clear from Theorem 2.6 that the Brouwerian

complement |x coincides with the usual complement x* in the

Boolean case. I t should further be noted that In the 

Brouwerian algebra of the closed subsets of a topological 

space K, the Brouwerian complement of a (closed) subset A is 

merely the closure of the usual (Boolean) complement of the 

set A in the space of all subsets of K.
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Theorem 2.8. In a Brouwerian algebra, the following rela 

tions hold;

(a) a < b implies *”']b < a

(c) ~]0 * I, - | l  = 0

(a)  I l i a  -  1  a

(g) ~] ( a  + b) < ~] a • ~| b

(b) a  + ~ ]a  = I

(d)  T ] a  < a

( f )  | ( ab )  = ~]a + “ )b

(h)  - ] ( a  " |  a)  = I

(i) a = a | a + ] ~) a

(j) ~ |a = ~j b = I implieal(a + b) = X

(k)  ~1 (a + b) = l ”|(~|a • b)

(1) -] (a - b) = ~]a + H lb

(m) (a + b) = I if  and. only if  a > lb  and b > ~l a

(n) (i) "|» =1& - a ( i i i )  1 H a  = “J H a  - ~ n  «

(ii)  H a  = l~|a -1 »  <iv) l a  = 1 & - H a

(o) 1 x = 0 implies x = I.

Proof of Theorem 2.8.

(a) a < b implies 1 b < ~] a
( ■

Proof. This follows from the definition o f ~ j x  and Theorem 2.7 (j)«

(b) a + ~“| a = I

Proof, a + a > I by definition of a. But

x > I implies x • = I . Hence a + = I .

(c) 1 0 = 1 ,  11  = 0

Proof. These follow directly from the definition.

(d )  1 1  a < a.

Proof. This follows from (b) and Theorem 2.1

(e) H l a  = l a

Proof. By (d) and (a), a > a.
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But again by (d) , H (  1 a) < ~|a. Hence~n~) a =-] a

( f ) 1  (ab) = -|a +“]b

Proof» This follows directly from Theorem 2 . 7  (i)

(g) " | (a + b) < “|a •~|b.

Proof . By (d),l"]a < a# ~| ~1 ̂  hence

“I") a + H b  < a + b .  By (a) l ( a  + b) < 1  ( H  a + 1 1 b ) ,
hence 1  (a + b) < 1 ( 1  (]a*!b)) ^ b  by (f) and (d).

(h>! ( a l  a) = I

Proof. By Theorem 2.7 (i)^

1  (a l  a) = 1 -  a-] a = (I - a) + (X ~1 a) = l a + 1 1 *  = I  by (b).

(i) a = a l  a + H  a

Proof. a(~ja + ”)”|a) = a I = a, and a( ”|a = a"|a + ~)7a

since “|~|a < a*

(j)~|x = "7y = I imply"] (x + y) = I

Proof* Let x + y # t  = I s o  that y + t >“jx, i .e .  y + t -  I .

Then, t  >"")y, i .e .  t - I#

Thus the only element which, added to (x + y) yields an

element over I , is I i t s e l f .  Hence I is the least element

with this property, i . e . ~ ^ ( x + y )  = 1 *

(k) ~~](a + b) =0~l(~)a b) [Dual of Theorem 12.21 (vi) p.i|2

1131-
Proof. 1  (a"] a) = J < | b) = I, by (h) .

Hence by (j) with x = a~| a, y = b~] b, i t  follows that 

"] ( a ] a  + b~] b) ="] [ (a+b) (a+ ") b) ( *] a+b) (-]a+“7 b) ] = I .

How (a^b)“ja^]b < (a+b) (a+7b) (7a+b) ("|a+j 1 b) implies (by(a))

"][ (a^b)'|a"]b] >~[l (a*b) (a+”]b) (-]a*b) (^a+’lb) ] = I .

By (f) then, ~](a*b) + ~)(]a7b) = I, hence I ~7(7a7b) <7(a+b)
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i .e .77(7a~)b) <7 (&^b). Further, “7 "]a < a, ”]"jb < b imply 

7 7 a ^77b < a^b so that by (a)

”1 (a+b) <"] (-)-j a+T1b) = 77 ( 1  a *7 b) (by f)

or'"'j(a+b) = 77^7 a •‘~]b), which completes the proof*

( l)^ (a -b )  ="](a^b) = “| a4 ’7~lb*

Proof * ~~| (a-b) = I - (a-b) is the least element which 

added to (a-b) yields I . What must be shown is that (1)

(a-b) ~| a + 77b = I and (2) i f  (a-b) + x = I,

then x > a b •

To establish (X), le t a-b = y, then a < b + y,

7  a >“|(b+y) =Tl(lb  •*] y),"]~[a <”|( ']b  •“) y) =17b +717*

and 7 7 a “l i t )  <7~jy* i • e . 7  7 a “1 7 b <77(a*“b) < (a“b)

by (a), (e), (k),(f)» and (d).

Therefore7 7 a < (a-b) ^77b, i.e* I - 7 a < (a"b) * 1 1  b, 

hence I < (a-b) ^ 7 a “̂ llb# i*e* X = (a-b) *  7 a ^7~]b.

To establish (2), sine© (a-b) +""|(a~b) ~ it; follows 

from the definition o f 7 ( a~b) that x>7(a*b). Now a-b) < a 

and a-b < 7  b imply a-b < a7b,  hence 7 ( a7 b) <7^a~b)*

Thus x > 7  ( a*"b) > 7  (a7 b) " 7 a + "*)7b by (f)# which completes 

the proof•

(m) a+b = I i f  and only i f  a > 7 b and b > 7 a *

Proof. a + b > I implies a >7b and b > 7  a by ‘Theorem 2.1. 

Conversely, a > I - b and b > I - a imply a + b > I, I .e .  

a + b = I#
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(n) (i) 7 a = 7  a - a

( i i )7 7 a  =77& - ^ a

( i i i )777a  =H7a - 7 7 a 

(iv) 7  a =7a -77a  

Proof . ( i ) ,  (i i)  and ( i i i )  follow from Theorem 2.7 (g), 

while (iv) follows from (n) (iii) and (e) of this theorem.

(o) 7  x = 0 implies x = I

Proof. I - x = 0 implies I - x < 0, hence I < x by Theorem 2.1, 

hence x = I .

Corollaries to Theorem 2.6 

Corollary 2.8 (k) . l . 77^a4b  ̂ = 77a

Proof. 7 7  (ft4hb) = 7 7 7 (7 a • > )  = 7 ( 7  a *7b) =7 7 a *1~lb

by (e) and (f).

Corollary 2.8 (k) .2. ~~] (x + y) = i implies7  x =7 7  = 1 

(Converse of (J))

Proof. i =7(x + y) =77( 7x *7 y)> and

0 = 7 1  = 1 1 7 ( 7  x  • 7 y) “ 1  ( ] x  *7 y) = 1 7  X + 7  1 y by (e ) and ( f ) . 

But7 7 x +77y - 0 implies 17X =117 = 0, 

hence7l7x =7“)17 = 7 0  = 1 , a n d ^ x  = ] y = I by ( © ) .

Corollary 2.8 (k).5» “71 x " 1 1 7  “ 0 

implies (1) 7 (x  + y) = I and (2)l7(xy) - 0.

Proof of (1). By Corollary 2.8 (k ).l,77  (x  ̂ y) = 0, 

hence "^(x + y) = I by (o).

Proof of (2). 77(xy) = 7 ( 7  x + 7  y) =17 ( 1 7  x *71 y) =77 0 = 0, 

by (f) and (d)•

Remark. I t  should be noted that (2) holds independent of 

property (k), since xy < x impliesl7 (xy) <7 lx  = 0
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Corollary 2.8 (k) .U.H l ( a * l ~ ] a )  = 0  

Proof* Follows from (k)j replacing b by ~j a.

Corollary 2 .8 .(1),1 . ”) (a - b) < "](T )a  -T? la)

P r o o f » Follows from canplementation on-)-) a -'J'jb < ~ ] ~ ] ( a - b ) ,  

and (©) •

Corollary 2.8.(1).2. (a -~|a) = 7  a 

Proof* Obtained by setting b ="] a in (1) •

Corollary 2 .8 .(1 ).5* 1  (1 a - 1 7 a) “ “l l a

Proof♦ Obtained by setting a = “]a in Corollary 2.8.(1).2. 

Corollary 2.8. (1) .1+. ~| [(a - b) + (b - a)] = ~[ (a + b) +*7"] (ab) 

Proofs (a+b) - ab -  [(a+b) - a] + [(a+b) - b ]  = (a-b)+(b-a) 

by Theorem 2*7 (1), (h), and (d).

Hence -7 [(a-b) + (b-a)] =”][(a+b) - ab] = ”|(a^b) +17 (ab) 

Remark. Due to the prominence of the Boolean algebra of sets, 

for example, in many areas of mathematics, i t  is of some 

interest to see just how the Boolean algebras differ from the 

more general Brouwerian algebras. The following properties, 

which have been discussed in this section, show how these 

two classes of algebras compare

Boolean algebras Brouwerian algebras

1.a) x + x® = I l#b) x + ~[ x = I

2 .a) x • x f = 0 2.b) x"]x ^ 0  in general

Clearly 1.) and J+.) hold equally in both cases. In any 

chain 5a holds^and a chain of more than two elements Is

5 *a) ( x 1)* -  x 

Ij-.a) (xy) = x* + y»

5 . a) (x + y) * = x f • y»

5 .b) ”p x  < x

U.b) *7 (xy) = *7 x +7 y

5 .b) “ j (x + y) <”]x • ”"]y
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A Brouwerian algebra which is not Boolean, so that 5a) does 

not have sufficient strength to make a Brouwerian algebra 

Boolean. However, either of 2a) or Ja) does. Thus one has 

Theorem 2.9* A Brouwerian algebra L Is a Boolean algebra 

if and only i f ,  for a l l  elements x of L, x^x  = 0 

Proof. The necessity is  part of the definition of a Boolean 

algebra. I f ,  on the other hand, x 7  x = 0 for all x, since 

also x +7x — I, L is a complemented,distributive la ttice , 

hence a Boolean algebra.

Theorem 2.10. A Brouwerian algebra L is a Boolean algebra 

if  and only i f ,  for a l l  elements x of L,7[7X = x.

Proof . The necessity is well known, following from the 

uniqueness of complements In the Boolean case [1]. The 

sufficiency follows readily from Theorem 2 .8 .(h), for,

~| (x7 x) = I im plies77 (x  "1 x) = 7 1 = 0. But as follows from

the hypothesis,7'7(x7 x) * x 7  x, hence x “ | x = 0 and L is 

a Boolean algebra by Theorem 2 .9 . A further criterion is given by 

Theorem 2.11. A Brouwerian algebra L Is a Boolean algebra,

If and only i f ,  each element z of L is  the complemont of 

some element x of L.

Proof. The necessity follows from ortho-complementation, 

since z  = 7  7  £ • For the sufficiency, 5 58 7  x implies 

7 7  z  =777 x =7x = % , i .e .  7^7 2 = 2 svery element z

of L, and L is a Boolean algebra by Theorem 2.10*

I t  may be observed finally , that a fundamental d iffer­

ence between Boolean algebras and Brouwerian algebras is that 

Boolean algebras are dual with respect to the sum and product 

operations while Brouwerian algebras may fa i l  to be. [8].
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S e c t i o n  3* B r o u w e r ia n  G e o m e t r i e s

In this section Brouwerian geometries are introduced, 

and many of their properties are derived. These lead to 

numerous characterizations of Boolean algebras.

As indicated in the introduction, a la ttice  may be 

(auto)metrized in a variety of ways. In the case of 

Brouwerian algebras, the particular metrization which will 

be used here is that of symmetric difference, namely, 

a b = (a-b) + (b-a).

The orem 3.1. The symmetric difference in a Brouwerian

algebra is  a metric operation.

Proof♦ Clearly (1) a * b = (a-b) + (b-a) = b # a

(2) a * a = Oj moreover, i f  (a-b) + (b-a) 38 0, then by 

definition of the la ttice  sum, 0 > b - a and 0 > a - b.

Hence a > b, b > a and a = b.

(3) The triangle inequality, a # b < (b * c) + (a c),

is established as follows:

abc + (b # c )  + (a # c) * abc + [ (b-c ) + (c-b) ] * [ (a-c ) + (c-a) ] 

* abc + [ (a-c)4-(b-c) ]*[ (c-a)+(c-b) ]

-  abc + [ (a4-b)-c) + [c-ab] by Theorem 2.7 (h) and (i)

= (ab)c + [c-ab] + [(a^bj-c]

= c + [(a^bj-c] by Theorem 2.7 (k)

s= c + (a+b) by Theorem (2.7) (e) •

Hence

a^b+c < abc + (b * c) +■ (a * c) and

(a^b^c) - abc < (b #  c) ^ (a * c) by Theorem 2.1.
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Now (a+b+c) - abc > a - abc > a - b

and (a+b+c) - abc > b - abc > b - a by Theorem 2.7 (f) and ( j) ,

so that (a-b) + (b-a) < (a + b + c) - abc.

Therefore (a * b) < (b * c) + (a * c)

Theorem In a Brouwerian algebra,

(a^b) - ab and (a-ab) + (b-ab) are each equivalent to 

symmetric difference, (a-b) + (b-a).

Proof. Immediate from Theorem 2.7 (h), (I),  and (d).

Definition 3«1« A Brouwerian algebra (auto)metrized by the 

symmetric difference is  called a Brouwerian geometry.

I t  Is often convenient to employ geometrical language 

and regard a trip le  of elements a,b,c as the vertices of a 

triangle with sides a b, a * c, and b * c.

Theorem 3*1 asserts that the sides of any triangle in a 

Brouwerian geometry satisfy the triangle inequality. The 

notation A(a,b,c) will be used to designate the triangle 

with vertices a,b,c.

One reason why a Boolean geometry has so many novel 

properties is that the symmetric difference in that instance 

is  a group operation. This is not true for Brouwerian 

geometries, since Brouwerian symmetric difference is not in 

general associative, (although i t  does have the remaining 

group properties). In a Brouwerian chain, for example, (a 

chain (auto)metrized by symmetric difference), for a > b,

(a * a) # b  = b, whereas a # ( a * b ) = 0 «  Thus, because of 

the group property, a Boolean geometry can have no isosceles 

triangles, since the equation a * x = b has one and only one
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solution. Brouwerian geometries, on the other hand, may 

abound in isosceles triangles, as happens, for example, in 

a Brouwerian chain where one has

Theorem 5«5» Every triangle of a Brouwerian chain C is 

Isosceles.

Proof. For any two elements a > b of C, a b = a - b = a, 

sine© b - a = 0 by Theorem 2*7 (*>) • Hence for any three 

elements a > b > c of C, a ' *b  — a # c  = a* However,

Theorem A Brouwerian geometry is a Boolean geometry,

if  and only if i t  Is free of isosceles triangles.

Proof. The necessity, as already indicated, is clear.

To establish the sufficiency, let x be an arbitrary element 

of the Brouwerian geometry L, and consider the a(0 ,I,x1x).

Now I *  x -  (I-x)4(x-l) =~] x for a ll x, hence 1 * 0  - “[ 0 = 1 ,  

while I * x~| x =- l (xlx)  = I by Theorem 2.8 (c) and (h). Since 

there are no isosceles triangles, i t  follows that 

0 * x~]x = x~”]x = 0 and L is a Boolean algebra by Theorem 2.9* 

Then a - b = ab®, b - a = a*b and a * b = abf + a fb, so that 

L Is a Boolean geometry.

Corollary 5.J+.1. A Brouwerian algebra is a Boolean algebra 

If and only i f  symmetric difference is  a group operation.

Proof.It has already been indicated, as is well known, that 

symmetric difference in a Boolean algebra is a group opera­

tion. If i t  I s a group operation in a Brouwerian algebra L, 

then the associated geometry contains no isosceles triangle, 

and L is a Boolean algebra.
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Remark. The above corollary holds if  the word, "group" is  

replaced by the word "associative".

Definition 5*2. Three elements a,b,c of a la ttice , L, are 

said to satisfy the triangle inequality i f  each is  under the 

sum of the other two, written (a,b,c)T.

Remark. Although three elements a,b,c of an (auto)metrized 

la ttice  may be in this relation, there may not be any 

triangle A(x,y,z) in L which has sides a,b,c.(^When such a 

triangle exists, i t  will be designated as T(a,b,c) rather 

than A(x,y,z) if  the sides, rather than the vertices are to 

be emphasized).

Theorem 5.3* In a Brouwerian geometry, the relation (a,b,c)T 

Is equivalent to each of the relations

(1 ) a + b = a + c = b + c = a + b + c

(2 ) a - b < c ,  b - c < a ,  c - a < b

( 3)  a # b < c < a 4 > b

(4 ) b - a = c - a, a - b =* c - b, a - c = b - c .

Proof .

(1 ) a + b  = a + c s= b 4 c = s a 4 b  + c

If (a,b,c)T, then a < b + c implies a + b  + c < b + c ^  

but since a + b + c  > b + c , a + b + c =  b +  c. Similarly 

for the remaining equalities in (1). In words, the sum of 

two sides of a triangle equals the sum of any other two sides.

(2 )* a - b < c , b  - c < a ,  c - a < b .

These follow from (a,b,c)T and Theorem 2.1. In words, the 

difference of two sides of a triangle is under the third side.
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(j) a * b < c < a + b.

This follows from (2) by adding inequalities.

( 4 )  b - a = c - a ,  a - b = c - b, a - c = b - c.

By Corollary 2*7 (h) , 1, for any two elements a and b,

(a + b) - a = b - a, and (a + c) — a = c — a likewise*

By (1) of this theorem a + b - a + c ,  hence b - a = c - a . 

Similarly for the remaining equalities*

To prove the converse,

(lj a + b + c = a +  b implies ( a +b )  > c

(2) a - b < c implies a < b + c by Theorem 2.1

(3 ) ( a - b )  < (a - b) + (b - a) < c implies a < b + c

by Theorem 2.1 again. Moreover (b - a) < ( a - b )   ̂ (b - a) <c  

hence b < a + c«

( 4 )  a - c < b - c implies a < ( b - c ) + c  by Theorem 2.1.

But b - c < b by Theorem 2*7 (a). Hence,

a < (b - c) + c < b + c, i .e .  a < b + c.

The remaining relationships are similarly obtained. 

Corollary 5*5»1« If a and b are two elements of a Brouwerian 

geometry, then (a,b,a * b)T and ab + (a # b) = a  ̂ b.

Proof. In A(0 ,a,b),  a # 0 = a, b * 0  = b, hence (a,h#a * b)T.

Further, by Theorem 3.5(1), a + ( a # b ) = a + b  

Interchanging a and b and multiplying the two equalities gives, 

using the distributive law, [a + (a #b)][b + (a *b)]

= (a + b)(a + b) , or ab + (a * b} = a + b.

Theorem 3.6. In a Brouwerian geometry the base of an 

isosceles triangle is "under" the vertex.
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P r o o f .

Xn the isosceles A(a,b,c), If b # c = x, a  ̂ b = a c = y, 

then by Corollary 3 .5*1,

(a»k*y)T, (a,c,y)T and (b,c,x)T,

Hence, by Theorem 3*5(4)#

b-c = x-c, c-b = x-b, y-c - a-c, y-b = a-b 

How in T(x,y,y) clearly x < y, hence

x-c < y-c and x-b < y-b by Theorem 2 . 7 (f).

Hence x = (b-c) + (c-b) = (x-c) + (x-b) < (y-c) + (y-b), there­

fore, x < (a-b) + (a-e) < a, the la tte r  by Theorem 2 . 7 (a), 

which completes the proof.

I t  has been observed that whereas a Boolean geometry 

has no Isosceles triangles, these may abound in a Brouwerian 

geometry. However,

Theorem 5*7* A Brouwerian geometry contains no equilateral 

triangle•

Proof. In A(a,b,c), if a # b  = b # c  = a # c = x ,  then by 

Corollary 3 * 5 (a,x,b)T?hence a + x  = b +  x = a +  b. But 

by Theorem 3 . 6 , x < a ,  x <b,  hence a + x = a, b + x =  b, 

so that a = b^which contradicts our assumption that a,b,c 

are pairwise distinct vertices of a triangle. More generally, 

a Brouwerian geometry contains no equilateral "n-gon1* for 

n odd. [ 7 1

Theorem 3.8. A Brouwerian geometry is a chain if  and only 

if  every triangle Is isosceles.

Proof* The necessity was proved in Theorem 3*3«
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The sufficiency is shown as follows;

If every triangle of a Brouwerian geometry L Is Isosceles, 

consider A(0,a,b) where a and b are arbitrary distinct ele­

ments of L. Then a ^  b = a or a # b = b, since a * 0 — a and 

b ^ O  — b* If a * b = a, then b < a and L Is a chain.

I t  has been indicated earlier that Brouwerian symmetric 

difference lacks the associative property which makes the 

Boolean symmetric difference a group operation and leads In 

that case to the "uniqueness of solution" property. I t  is 

instructive to see just how much of the associativity of the 

Boolean symmetric difference remains in the symmetric d iffer­

ence operation in the Brouwerian case.

Ellis [5 ] has shown that In a Boolean geometry, for any

two pairwise distinct elements a and b. If a * b = c, then 

a & c = b and b # c = a. In words, if  a side of a triangle 

equals the vertex opposite i t ,  the same is true of the other 

two sides. This is conveniently described by 

Definition 5 . 5 . If each side of a triangle equals the

opposite vertex, the triangle is said to have the property of

(triangular) fix ity .

I t  is readily extended by means of 

Definition 3.4* 1£ x#y#z are the sides of a triangle in an

(auto)metrized space L, the triangle with vertic es x,y,z is 

called the f i r s t  distance triangle of the original one.

Similarly, the triangle whose vertices are the sides of 

the f i r s t  distance triangle is  the second distance triangle.
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jlheorem 3*9* In a Boolean geometry, every f i r s t  distance 

triangle has f ixi ty.

Proof; In A (a,b ,c ) le t a # b = x, b ^ c = y, a — z. Then

In the f i r s t  distance triangle

A(x,y,z), x * y = (a * b)*(b * c)

= (a *  c)#(b # b) associativity)

i .e . x # y = a * c - z  since b * b = 0 .

Similarly for the remaining distances.

Corollary 3«9»1« (Ellis) In a Boolean geometry^a # b = c 

iraplie s a *■ c = b , b * c = a.

Remark. I t  is  clear from the proof of Theorem 3.9 that the 

associativity alone of the metric operation implies the re­

su lt. However, triangular fixity and the associativity of the

metric are not quite equivalent. Nevertheless, the following

corollary and Theorem $ . 1 0  show how close this comes to being 

the case.

Corollary $ . $ . 2 . If  the metric operation of an autometrized 

la ttice  Is associative, every f i r s t  distance triangle with 

pairwise distinct vertices has f ix ity .

Theorem 3.10. If every f i r s t  distance triangle of an auto­

metrized la ttice  L has fix ity  the metric operation on pair­

wise distinct elements Is associative.

Proof • Let x,y,z be pairwise distinct elements of an auto­

metrized la ttice  L, but otherwise arbitrary. Then, A(x,y,z) 

is the f i r s t  distance triangle of T(x  ̂ y, z )  j

ard since fixity implies x * y = z, y *• z = x, and x -> z = y, 

i t  follows that (x * y) * z = z  * z = 0  = x * x = x * (y *• z ) .
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In Brouwerian geometries, although fix ity  no longer 

holds in general, what does hold is

Theorem 5 *11. In a Brouwerian geometry, each side of a f i r s t  

distance triangle is under the opposite vertex.

Proof : In A(a,b,c) le t b * c = x, a * c = y, a *■ b = z,

then (x,y,z)T and x a- y < z by Theorem 3 . 5 (3 ).

Since A(x,y,z) is the f i r s t  distance triangle of A(a,b,c), 

the theorem is proved. Furthermore,

Theorem $ . 1 2 . In a Brouwerian geometry, every second 

distance triangle has f ix ity .

Proof . Define x,y,z as in Theorem 3 .11. Then A(x,y,z) with

u = y z, v = x * z, and w = x * y is the f i r s t  distance

triangle of A(a,b,c), while A(u,v,w) with v it w = p, u it w = q,

and u it v  = r is the second distance triangle. It is suffi­

cient to prove that p = u. By Theorem 3 .11, p < u . It remains

to show u < p. Since (x,y,z)T, (x,w,y)T, and (x,v,z)T, then

( 4 )  of Theorem 3*5# implies

y - z = x - z = v - z ,  and z - y = x - y  = w - y .  The 

inequality w < z by Theorem 3*11 implies by (j) of Theorem 2.7 

that v - z < v - w .  Likewise, v < y implies w - y < w - v .  

Moreover, since y - z = v - z, i t  follows that y - z <v - w, 

and z - y = w - y implies z - y < w - v.

Hence u = (y - z) Mz - y) < (v - w ) + (w - v) i .e .  u < p.

Corollary 5.12.1. In a Brouwerian geometry, every nth dis­

tance triangle has fix ity  for n > 1 .
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Theorem $ . 1 $ . a Brouwerian geometry Is a Boolean geometry 

if  and only If every f i r s t  distance triangle has fixi ty.

Proo£5 necessity was proved in Theorem 3 .9 . Conversely,

A Brouwerian geometry which is not a Boolean geometry would 

contain an isosceles triangle, say T(x,x,y). In the f i r s t  

distance triangle, A(x,x,y), fix ity  would imply y = x x = 0 ,  

a contradiction. Hence the theorem.

Theorem 3»l4* A Brouwerian algebra Is a Boolean algebra if 

and only if  i t  admits a metric group operation. Furthermore, 

the operation must be symmetric difference.

Proof. If a Brouwerian algebra is a Boolean algebra i t  admits 

a metric group operation, namely symmetric difference. As 

E llio tt has shown [41# this is the only metric group opera­

tion possible in a Boolean algebra. Conversely, if  0 Is a 

metric group operation in a Brouwerian algebra L, since 

0 0 0 - 0, the zero element of L is the group identity and 

a 0 0 = a. The A(G,a,b) implies a - b < a 0 b and

b - a < a 0 b by Theorem 2.1 so that a * b < a $ b.

Hence, in particular, I j Z f a ' ^ a > I *  a"]a = I, i .e .  1 0  a~| a = I.

But since I jZf 0 = I, i t  follows that a“J a = 0 since I 0 x = X
must have a unique solution, 0 being a group operation• There­

fore by Theorem 2*9# B is a Boolean algebra, and 0 is conse­

quently the symmetric difference.

Remark. Since any finite distributive la ttice  for example is 

a Brouwerian algebra, the above result implies that any fini te 

distributive la ttice  which admits a metric group operation is 

a Boolean algebra. I t  is  natural to inquire as to whether
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this is true for arbitrary distributive la ttices . The 

theorems which follow have a direct bearing on this question* 

Definition 5»^* If ,  to each member c< of an index set A, 

there corresponds a la ttice  , by the direct product*

{ p °T the lat t ices,  Lo< » is meant the set of a ll

functions x on A such that x(<* ) & L «<; for each of A.

Thus, an element { of |  is a collection of

elements ^ x ^  selected one from each la ttice  L • Furthermore,

\  >  i y»d ®eans x o< * y* €• L* and x  ^ > yu  for

every c< of A* The la ttice  L ©<. is the << th coordinate la ttice , 

and the element x ^  is the c< th coordinate of the element 

^ x of the direct product •

Theorem 5* 15* The direct product of a collection of

la ttices  L is a lat t ice,  with addition and multiplication 

in £ L ^  componentwise•

Proof * If x ^ , yo< 6  L *< , then x^  + >Xo< » and

x ^  + ye( > yc< for every ©< of A« Hencejx^ + y x } > ?

and x̂*< +■ y^J by definition. Furthermore, if

^ z > {x <\ and { z-d > » then, 1x1 L=>< » z > x <* ,

z ^ >  7»c and > x ♦ y^ . Hence { z^j. > -jx ,* + ŷ J-

for every «< of A, and  ̂x ^  + yx^ = £X«<J + •

D u a l l y ,  y ^  = { x <* y-<J » 8X1(1 i s  a  l a t t i c e .

Definition 5*6* Let S be a sublattice of a direct product 

of la ttices  L *< . Then $ is a sublattice of the 

direct product ^ S of the sublattices S o< of elements 

of L  ^  appearing as -components (or <=< -coordinates) 

of elements of S. S is called a subdirect pro due t of the
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S oC and denoted by I t  should be noted that every

element of S »< is an «>( * component or some element o f  S.

To clarify the concepts involved in the above defini­

tion, le t  L be the direct product |  xy} of the chains 

X and Y consisting of the points 1,2, and 3 of thex-axis 

and the points 1 and 2  of the y-axis respectively. ^XŶ  

consistsjthen^ of the six points (1 , 1 ) , (l ,2 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 3 , 1 ), 

(5 ,2 ) of the xy-plane.

The subset S of points (1,1) and (2,2) constitutes a 

sub-lattice of X̂Y \  and at the same time a sublattice of the

direct product of the sublattices X of X (consisting of
s

the points 1 and 2 of the x-axis) and Y of Y (consisting ofs '
the points 1 and 2 of the y-axis, i .e .  Y = Y in this case.)s
Then S is a subdirect product of the sublattice a X and Y ,s s
but not a subdirect product of X and Y, since the point 3 

of X for example, does net appear as a coordinate of any 

point of the sublattice S. The sub lattice  S* of ^XY^ , 

consisting of the points (1 , 1 ), (2 ,2 ), and (3 ,2 ), on the other 

hand, jLs a subdirect product of X and Y, since each point 

of X and each point of Y appears as a coordinate of some 

point of s \

Attention is called to the following representation 

theorem for distributive lattices [ l]p .l40:

Theorem. Any distributive lat t ice (of more than one element^ 

is isomorphic with a subdirect product of chains of length 

two ( i .e .  chains consisting of just two elements each.)
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One shows readily that a direct product of distributive 

la ttices  is a distributive lat t ice,  and in particular, a 

direct product of Boolean algebras is a Boolean algebra. 

Theorem 5*16. Any direct product of Brouwerian algebras 

is a Brouwerian algebra and subtraction is component-wise.

be a direct product of Brouwerian

algebras L ^ •

Then, for every

and for

by definition, y^ + ( x  ^  ) > x ̂  ,

and if z  is any element such that

*

then

Now, since y*< + (x* - y* ) > x^ , i t  follows

K “ y* V > {x-<[ fey definition

of a direct product of lat t ices.

Moreover, since y^ + > x ^

implies

then >

implies

Thus x ^  -{ y 4  exists and equals 

L is a Brouwerian algebra and subtractionHence

is component-wise •
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Corolhary ^ . 1 6 . 1 . Any direct product of Boolean algebras 

is a Boolean algebra.

Theorem 5 • 17 ♦ If a distributive lat t ice representable as 

a direct product of chains (each having a greatest element I) 

admits a metric group operation, j6 9 i t  must be a Boolean 

algebra.

P r o o f  ♦ I t  will be shown that in these circumstances, the 

chains must each be of length two • Let be the direct

product of a collection of chains C ^ . Let 0 ^ and 1 ^ be 

the least and greatest elements of C <*. respectively. Then 

 ̂ 0 j,| and -[i/^ are the least and greatest elements of •

Let , 0 ^  be an element of having one component

x oc ^ Qu and all other components 0^3 , (3 f&ol . Let 6

with 0 oc < x  aL < I o< • Since jii is a metric group operation,

\  0 , 4  0  { 0 ^  = -fo_( }■ Implies is the group Identity.

Hence \o+\ 0 { x u , 0^} = {x u. » Op ]  and = .

THua A( {O*} , I , {x* , Op J ) implies

Letting , 0 ^  0 I 1 *-If}* the triangle inequality

implies (1 ) + i z'<} " *

How, since addition in is coordin atewise, for a given

element {a* ] ;  £ {Cv} , the relation

(2J ^ a4 + ^ Xj- = ( 1^
implies (3 ) for every =< .

Moreover, since C.( ia a  chain, then for a„c 0  1  ̂ ,

(3 ) holds i f  and only i f  x* = lot. . (For a^ = I^  , xx
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may he arbitrary). Thus the solution of (2) is ,

i f  and only i f  0 ^ = 1  ̂ for no °< . Consequentlyj in (1),

{ zu] = {i^l .
Thus 0 { i ^  = (x ^  , 0^} 0 { l 4  = { l 4  .

But this contradicts th© unique solution property of the 

group operation 0 ,  Hence an element x ^ with 0^ < x u  < 

cannot exist for any &L , and each chain contains precisely 

two elements. Since such a chain is a Boolean algebra,  ̂C > 

is a Boolean algebra by lt«wĉ 3.l6.1.

Definitlon 3»7*  A (distributive) la ttice  representable as a 

subdirect product of V chains (V any cardinal), will

be cailed V-dimensional.

Theorem 5«l8» A fin ite  dimensional lattice |  C/} which 

admits a metric group operation is a Boolean algebra.

Proof. I t  will be shown that each chain of \  has

only two elements.

Assume as in Theorem 5 .17 the existence of an element 

x ei 6 such that 0 u <x*< < I • If -[x ; 0^6-(c^  ̂ , 

Theorem 5*17 applies. If this is not the case, then 

contains an element £y«<V * 0^} $ but with y^ = x^

for some ^ • This means that at least one coordinate other 

than the th coorinate does not equal 0^ for any •

Case 1. y^  /  ? o r  ^ 7 ^  • A consideration of

> { 7 * ]  >  ̂ leads b y the argument of Theorem 3 .17

to the same contradiction.

Case 2. At least one coordinate of {y^} other than x^ is 

equal to I ^  for some oC of the index set A* Consider again



^X̂ ij) • To satisfy the triangle Inequality in

this case, viz.

& {  * 4 \ = { ZA  ,  doe s not require that 

{ 7* 1  $  j; = ^X^,  as was observed in Theorem 3.1?. Now if

l z * \  “  & ^ I,4 i  9 "t l ie n  = i  7+1 i z ° t \ ,  s i n c e  -{y=<I es ^

{2 *} ^ G<*} and{c/L is a sublattice of J •
3 ^ 3  >

Moreover, for every d  , wo< = y«aC °r ŵ ; = according 

as y aL < z cl or 2 ^ < since G << is a chain. Hence, if 

for some , y ^ = I ^ but z^ ^ X  ̂ , then w ^  ^ X ̂  ,

and i f  y u  ^  X e* , then z ̂  ~ X̂  and again, ^  I  ^  .

In any case, therefore, w* j  = -j[y-tj{z^ has at least one 

fewer coordinates X<*/ than does ^y*| • If now w <x = X  ̂for 

no <?< , Case 1 again applies. If this is not the case, iterate 

the above process with «[ w*<| in the role of '[y*<j' • Since the 

la ttice  is f ini te dimensional, in a fini te number of steps 

there will emerge an element such that u ^  = X̂  for.

no «?< • The argument of Theorem 3 . 1 7  will then apply. Thus 

each chain must contain precisely two elements. Hence the 

la ttice  is  fin ite  and is therefore a Boolean algebra in 

accordance with the remark following Theorem 3*1̂ -*

Definition 5«8« A space S is said to be congruent to a

space S! i f  there exists a one-to-one distance preserving 

map of S onto 3 *•

A space 3  is said to have congruence order k relative 

to a class of spaces M containing S, provided that any space 

of M is congruent (isometric) to a subset of S whenever each 

k of i t s  points are, and k Is the smallest number with this
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property# This concept is due to Menger L9]* (p#ll6 ), who 

proved, for example, that the congruence order of 

n-dimensional Euclidean space, En, relative to the class of 

metric spaces is n + 3 * Xn 151 i t  was shown that the 

congruence order of a Boolean geometry relative to the class 

of L - metrized spaces is  three. I t is natural to seek the 

congruence order of Brouwerian geometries. The theorems 

which follow hear directly on this question.

Theorem 5«19« If the distance function of an autometrized 

space is a group operation, the congruence ©rder of the space 

relative to the class of L-metrized spaces is three.

Proof; Let L denote the autometrized space whose distance 

function ^ is a group operation, and suppose S is any 

L-metrized space with the property that every three of its 

points can he congruently embedded in L# Consider any fixed 

element a of S, x an arbitrary element, and le t d(a,x) = u, 

where u 6 L. If a is  any point of L, then there exists 

uniquely a point x £ L such that a # x = u, since the 

distance function is a group operation. This implies the 

mapping x ■—-» x of S onto a subset of L Is clearly 

single valued. Moreover if y 6  S, y /  x, and d(a,y) = u, 

then the isosceles triangle with vertices (a,x,y) is 

congruent, by hypothesis to an isosceles triangle in L, 

a contradiction. Thus the inverse mapping is single valued 

and the described mapping is one-to-one. In particular, 

i f  x = a, then u = 0  and a* > a.
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W© prove next that this mapping is dist&noe preserving*

Let y e- s and d(a,y) = v. Then a # y = v. Suppose d(x, y) = w, 

w 6  L* Then a triangle exists in L with sides u,v,w. However, 

if1 two sides of a triangle in L are respectively equal to two 

sides of another triangle in L, then the third sides are equal* 

This follows from the associative law of the group operation, 

since if  A(a,b,c) in L has a * h = u, b * c = v, then 

(a * b)^(b * c) — a * (b # b) * c = a * c, i*e. the third 

side of the triangle is  uniquely determined by the other two 

sides* Thus x * y = w* A three point space with all distances 

equal to the same non-zero element of L shows that the con­

gruence order is not two, since L contains no equilateral 

triangl e •

Corollary 5 * 1 9 (Ellis)* The congruence order of a Boolean 

geometry relative to the class of L-metrized spaces is three. 

Theorem 5*20* A Brouwerian geometry is a Boolean geometry if 

and only i f  i t  has congruence order three relative to the 

class of L-metrized spaces*

Proof * In view of Corollary 3 .I 9 .I ,  i t  is necessary only to 

show that a Brouwerian geometry with congruence order three 

is a Boolean geometry* Suppose x "]x  /  0, and consider the 

L-metrized space consisting of the four distinct elements 

a,b,c,d with a * c = b d = x”| x and the remaining distances 

equal to X. Each three points of S are congruently embeddable 

on the points 0, I , x“|x, of the Brouwerian geometry, and by 

hypothesis, the entire space is so embeddable. This config­

uration, however, is impossible In an arbitrary Brouwerian
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geometry, for i f  a,b,c,d map respectively into a ^

of L, then x ”|x < a-̂ > x~~|x < since the vertex of an 

isosceles triangle is Mover” the base. Then x~[x < a-̂c »̂ 

and + x"]x = But by Corollary 3.5.1, *2°^ * ai  * ci

“ al + cl* 30  that ai° i  + x ~lx = a 1 + c • Hence

al° l  ~ al + C1 * therefore a.̂  = c ^  i .e .  ^  * c1 = x ”|x = 0 ,

a contradiction, and L is a Boolean geometry.

Theorem 5»£I« A Brouwerian chain has congruence order four 

relative to the class of L-metrized spaces.

Proof. Since any chain with I ,  0 is a Brouwerian algebra, 

then metrized by symmetric difference, (wnerein a - b = a 

for a > b) i t  is a Brouwerian geometry. Let C be such a 

chain, i . e .  Brouwerian. Then (1) every triangle is isosceles,

(2 ) if  a > b > c > d, then a # b — a * c  = a * d  = a, 

b * * c = b ^ d  = b, c * d = c, (3) Opposite sides of a 

quadruple cannot be equal, since a Brouwerian geometry has no 

equilateral triangle.

Let S be any L-metrized space with the property that 

every four points of S are congruently embeddable in C.

If S contains a point 0f which is not the vertex of an 

Isosceles triangle, let  0! be mapped into the 0 of C and 

every point x* of S into i t s  distance x from O’. This

establishes a one-to-one distance preserving map x» > x

of S onto a subset of C. The one-to-oneness Is obvious. That 

the mapping Is a congruence is seen as follows: If x 1 and y1 

are distinct elements of S whose distances from 0* are x  

and y respectively, then d(x,y) equals x or y, according as
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x > y or y > x, since by hypothesis, the three points 

O'fXSy1 are congruently embeddable in C.

If S contains no point 0 * as described above, then 

every point is the vertex of an isosceles triangle. However, 

two isosceles triangles with the same vertex must have their 

legs equal, otherwise a quadruple including the vertex is 

determined, which maps into a quadruple in C not satisfying 

(3 ) above. Let each point x* of S therefore be mapped into x, 

the leg of an isosceles triangle with vertex x1. This is a 

one-to-one mapping of S onto a subset of C. The single 

valuedness of the mapping is obvious. That the inverse mapp­

ing is single valued is  seen as follows: If x 1 and y* are 

distinct points of S, each the vertex of an isosceles triangle 

with leg x, say, then a quadruple including x f and y* is 

determined having opposite sides equal to x, a contradiction, 

since this implies a similar configuration In C, violating (3)*

To see that the mapping is a congruence, consider two 

distinct points x*,y* of S whose images under the mapping 

are x and y. (Suppose x > y ,  s o x * y = x . )  Then x ! is the 

vertex of an isosceles triangle with leg x. Let x = x* # u*, 

and let  y* u» -  z. Then z /  x by (3 ) so that d(x»,y#) = x 

or z. If dCx^y1) = z, then z = y by definition of the mapp­

ing and x < y, a contradiction. Thus d(x»,y 1) = x = x * y.

Thus the congruence order is, at most, four. That i t  is not 

less than four is shown by a four point L-metrized space S 

with two opposite distances equal to a, and the remaining 

distances equal to b where a < b and a,b are distinct



elements of C. Each three points are embeddable in C, but 

the entire space is not, since (3 ) is violated. This completes 

the proof* Examples show that a Brouwerian geometry may have 

congruence order four without being a chain*

Remark: Theorem 3*2.1 is the analogue of a classical metric

theorem, namely; The congruence order of the Euclidean line 

(Ex) relative to the class of semi-metric spaces is four. 

Moreover i t s  congruence order relative to the class of semi­

metric spaces containing more than four points is three. One 

says in this case, that the quasi-congruence order of Ê  is 

three. This is not so for a Brouwerian chain, however, as 

shown by the following example. Let S be an L-metrized space 

of five points a,b,c,d,e with a * e = b * e = c e = d # e 

a # b — b # e  = c -«*d = d # a  = y, and a c = b * d = z.

Let the Brouwerian chain C contain the elements x > y > z > 0 .  

Then each three points of S are congruently embeddable in C. 

but S is not, for the quadruple (a,b,c,d) is not congruently 

embeddable in C, since i t  violates (3 ) of Theorem 3 .21. 

Definition 3 * 9 * The direct product of a collection of

autometrized lattices A©< is defined as the lattice direct 

product with the metric operation coordinate-wise•

Theorem 3.22. If each autometrized lattice Ac< of a direct 

product has congruence order k relative to the class

of L-mietrized spaces, then the congruence order of ^AoJ*

relative to that class is also k.

Proof. Let S be an L-metrized space, each k of whose points

are congruently embeddable in |Ax^ • L e t  p ± , be arbitrary
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distinct points of S with d(p±,p } = .

For each ‘K , let  A^°^ be a space whose points

correspond one-to-one to the points of S, with pJ ^
i  J

the respective correspondents of p . ,p . ,  with d(p.  ̂ ,p  ̂ }
J J

58 z&< 6  A o< • Thus the distance between any two points of 
( ^  )A is the &< th coordinate of the distance between the

corresponding two points of S.

For each triangle A(pi#Pj,Pk) of S with sides

{ Z » 1  » {u-<} » {v»<} * < { z < \  » {u=t} » {v<*} )T Implies 

(by definition of the lattice direct product)

* u * v* )T in Ao< > for every o( . In particular, 

then, i f ,  say, z^ 38 0 o< for some c< , i t  follows that 

(Zo<, Uo<, v o< )T implies ua< > v 0<, v ĉ > u 0< , hence

v^= u . Thus, i f  in Â  ̂ f o r  some ©< , d(p^*^ ) -  0c< ,
( <K ) (we shall identify p  ̂ § with pj , and only in these

(c* )
circumstances. Then, clearly, for every^ , A is an

L-metrized space.

Consider now an arbitrary k-tuple (P), (a set of 

k points, P1 ,P2#»** Pk) £ containing P±*Pj* with
^  "i

d(p. ,p ) = {z ^  ♦ Since (P) is congruently embeddable in-^A^Jj 

by hypothesis, le t  (Q) be a k-tuple of^A^to which (P) Is 

congruent. Let q±s ,q,s {y^ €  (Q) be respective

correspondents of Pj^P. under this congruence, so that 

d(qi#qj) = { z^  = {x* * y*] * <since distance in  ̂ is 

coordinate-wise) • Then, by definition of the autometrized 

direct product, there exists a k-tuple (^^) in for

every << , with q ± i x* 5 7 ^  Ac* corresponding
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respectively to q^q , of -^Ajwherein d(q ,q . ) = x ^  # y^ •
/  ^  \  /  /  v *  oC

Clearly, the k-tuple Q in A corresponding to the

k-tuple (F) in S is congruent to the k-tuple Q, ^ in ,

for every ^ . Thus each k points of ^  are congruently
( oC ^

embeddable in A e* » hence A is congruently embeddable

in A c< for every cK , under the hypotheses of the theorem.

Now, le t  P^#Pj l>e arbitrary distinct points of S with

dtp^Pj) = , le t  P1( °<), Pj(0<) <£ A(o< } be

as previously constructed, and let  q, s x^ , q. \ y , e Â
foO ^be respective correspondents of p^' under the

congruence of A into A ©< already established. Then 

) = * y* = 2 ^ , and there exist points
^ 0<. J o<

qi : ' qj s {y"  ̂ 111 (  A-<> with qi  * qj = I* *  * y ^  *
Then the mapping -> q^, P j  > q̂  of S into [ A^j is a

congruence, established as follows:

According to the construction of the spaces A^°^, the
( u  ) ( u  ) ( <=< )

mapping p^-—> p  ̂ , Pj > p̂  of S onto A for

every ©< is one-to-one. Moreover, under the established 

congruence of Â into Ac*, for every <=>< , the mapping

p ^ q q . is also one-to-one. Finally
i 1 o< J «J c<

the mapping q±  -----> ^i*1̂ -----* qj of A<* into {A^j- for

every is one-to-one by the definition of the direct

product. Therefore the mapping p^-------> Q-ĵ Pj*--> Qj of S

into  ̂A ^  Is one-to-one as well. Since

d(p #P ) = { = *  <*'• the ^aPPing is a congruence,
i j  ̂ y J

as claimed.
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Corollary 3 . 2 2 . 1 . Any autometrized lattice L which is 

a direct product j C^j of Brouwerisn chains has

congruence order four*

£r££f. The congruence order of each Brouwerian chain 

relative to the class of L—metrized spaces is four* (Theorem

3#21).

Corollary 5»22*2* If each autometrized lattice A c< of & 

direct product has a finite congruence order relative

to the class of L-metrized spaces, the congruence order of 

is the maximum of the congruence orders of the A ^  , 

i f  I t  exists*

iftroof. Let the maximum congruence order be the k of the

theorem* If the congruence order of A *< for some is
( oC}

n < k, then, since each k points of A are congruently

embeddable in A , each n points are certainly likewise
( o <  )

embeddable, hence so Is A . All other details of the 

proof are Identical with those of the theorem.

Remark* The congruence order of an arbitrary Brouwerian 

geometry relative to the class of L-metrized spaces is s t i l l  

an open question*

(This rectifies an earlier statement of L.M.Kelly and 

the writer [Bulletin of the American Mathematical Society, 

Vol. 62 Number 2, March 1956, PP.172“33 that the congruence 

order in the general case was shown to be four. Further 

Investigation to date of subdirect products of Brouwerian 

algebras continues to suggest strongly that this is indeed

the case.)
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S e c t i o n  J+. G e n e r a l  Theorem sj  B e t w e e n n e s s

In this section properties of L-metrized spaces in 

general are established. Further, metric and lattice  between­

ness are introduced, and the consequences of their coincidence 

is studied.

Theorem 1 .̂1. In any Lmetrized space, the sum of the 

distances of the elements of a subset S from any element of 

the subset is constant and equal to the sum of all the dis­

tances of the subset, provided the sums exist.

Proof♦ Let p be any element of S, x and y arbitrary distinct

elements of S, with d{x,y) = d , d(p,x) = p and d(p,y) = p .xy x y
Then the triangle inequality asserts that p + p > dx y xy 9

p > d and y  P > /  d . x xy ^— x ^— xy
x e s x,y e s

hence / p + P = zx y ^—
x#y€ s x65

z d > y  p , xy ^— x 9
X,ye s X €  S

henc e > p = >  d .^— x ^— xy
x € S x,y € S

Corollary 14-. 1.1. In any L-metrized space, the sum of any 

two sides of a triangle equals the perimeter.

Corollary if.1.2. In any L-metrized space, the sum of two 

sides of a triangle equals the sum of any other two sides. 

Definition 4.1. Three points u,v,w, of an L-metrized space 

are called linear if  d(u,v) + d(v,w) = d(u,w).

Definition In any L-metrized space, a triangle with

sides a,b,c will be designated T(a,b,c). (Note: this implies

(a,b,c)T).
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Corollary in any L-metrized apace, the vertices of

an isosceles triangle are linear.

P r o o f . In T(a,a,b), a + b  = a + a = a

Theorem I4-.2 . In any L-metrized space, a triangle T(a,b,c)

Is isosceles if  and only i f  a,b,c form a chain (or a,b,c are 

pair-wise comparable).

Froof. If a = b, say, then a + a  = a > c .

Conversely, since a + b = b + c =  a + c ,  a > b > c  Implies 

a = b.

Theorem 1+.3* In any L-metrized space, i f ,  in T(a,b,c), a > b, 

then a > c and b + c = a (i .e . the vertices are linear). 

Moreover, If T(a,b,c) is not isosceles, then b and c are 

non-comparable•

Proof. Since a + b = b  + c -  a + c, a > b  implies 

a = a ^ c = b + c  i .e .  a > c. If b and c were comparable, 

the elements would form a chain and the triangle would be 

Isosceles.

Corollary Ii.5.1. In any L-metrized space, a non-Isosceles

triangle has either precisely one pair of non-comparable 

sides, or all  three sides are pair-wise non-comparable.

Proof. Exactly two pairs of non-camparabi e sides leads 

immediately to a contradiction of the theorem.

Corollary In any L-metrized space, If  precisely

one pair of sides b,c of a triangle are non-comparable, the

third side a Is uniquely determined as their sum, a = b + c,

and again the vertices are linear.



Corollary Ij,.3»5« In any L-metrized space, a triangle with 

precisely one pair of non-comparable sides is uniquely 

determined by them.

Corollary In any L-metrized space, the vertices of

a triangle are linear, i f  and only if  the triangle has a 

pair of comparable sides.

Proof. The sufficiency of the condition is a conclusion of 

the theorem. On the other hand if  a = b + c, a > b  and a > c 

by definition of the lattice  sum*

Corollary U . 3 . 5 * In any L-metrized space, the only triangles 

whose vertices are non-linear are those whose sides are pair­

wise non-comparable.

Proof. Any triangle without this property satisfie s the 

conditions of the theorem.

Definition lj-.3. An L-metrized space whose distance lattice 

Is a chain C, Is called a C-metrized space.

Theorem ii.ij. Every triangle of a C-metrized space is isosceles

Proof. Tliis theorem follows from Theorem J+.2*

Corollary l+.l+.l. Every triangle of an autometrized chain 

is Isosceles.

Remark * Every triangle of an L-metrized space may be

isosceles, even though its  distance lattice is not a chain.

An example i s  the autometrized four element Boolean algebra 

a ,b , I , 0  with d(a,b) = a, d(0 ,I) = b and all other distances 

equal to I.
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Definitlon lul|. An autometrized lattice L as well as i ts  

metric operation is  called regular if  a # 0 = a for every 

element a of L. (Thus Boolean and Brouwerian geometries are

readily seen to he regular.)

It  should he noted that every la ttice  admits the

regular metric operation a # h = a + h for a ^ b, and

a * a — 0, for a # O ssa + Q = a, and since for any A(a,b,c),

(a ^ h) + (h ** c) = (a + h) + (h + c ) = a + b + c,

a + h  + c >  a + c = a * c, i .e .  the triangle inequality holds.

Theorem it-.5* In a regular autometrized la tt ice ,  (a,b,a # h)T.

Proof ♦ Evident from a consideration of A(a,0,b).

Although, as indicated above, an autometrized la t tice  

in which every triangle Is isosceles need not be a chain, 

one does have

Theorem It-.6 . A regular autometrized lattice L In which every 

triangle is isosceles is a chain.

Proof. Let a and b be arbitrary distinct elements of L and 

consider A(a,b,Q). Since a * 0 = a and b * 0 = b, i t  follows

that a # b  = a o r a # b = b s o  that either a > b or b > a.

Theorem if. 7. In a regular autometrized chain, for 

a > b, a b = a ,

Proof. In A(a,b,0) , a # 0 - a, b * 0 = b. Since every triangle 

Is isosceles, a # b = a for a > b*

Corollary Lt-.7.1. Every regular autometrized chain is a

Brouwerian geometry •

Proof. A chain is a Brouwerian algebra and for a > b, 

a b = a = (a-b) + (b-a).
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Corollary i^.7.2. A regular autometrized. chain has no equi­

lateral triangles.

Proof. A Brouwerian geometry has no equilateral triangles. 

Theorem 1+.8. An autometrized chain C of more than three 

elements is regular, i f  and only i f ,  every quadruple of 

elements a > b > c > d has the distance pattern, 

a * - b 5!:a jif-c = a * d = : a , b # c = b  d = b, c d = c . 

Proof ♦ The regularity and the fact that every triangle is 

Isosceles yields the above pattern.

Conversely, if x Is an arbitrary element of C, then in 

any quadruple z > y > x > 0, the prescribed pattern yields 

x 0 = x.

Remark. A non-regular autometrized chain may have a 

quadruple whose distances have the indicated pattern but 

the vertices of the quadruple need not be those indicated. 

Theorem i+.9« An autometrized la ttice  L is regular if and 

only If a + (a *-b) = a ^ b  for all elements a, b of L.

Proof. If L is regular, then (a,b,a * b)T by Theorem J4..5 

and the condition follows from Corollary I4.. 1.2* On the other 

hand the condition implies, in particular, for the elements

0,x, that 0 + (0 * x) = 0 + x = x, i . e .  0 * x = x.

Corollary ii.9*!* In a regular autometrized lattice L, 

a * b < a + b for all elements a,b, of L.

P r o o f .  Implied by (&,b,a * b)T in &(a,b,0).

Remark. The condition a * b < a + b is not sufficient to 

ensure regularity as shown by the chain I > a > b > 0 with 

I a = I # b = I * 0 = I, a # b = a # 0 = b -> 0 = b.
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Definition 1+. .̂ An L-metrized space is called distributive 

i f  i t s  distance lattice is distributive.

Corollary ii.9.2. In a regular distributive autometrized 

la t t ice ,  ab + (a * b) = a + b .

Proof • Identical with that of Corollary 5 . 5 *1 *

Remark. The above condition even with regularity is not 

sufficient to yield distrlbutiv ity• The condition holds for 

every pair of elements of the non-modular five element 

la tt ice  [l](page 6 figure Id.) with elements 1,0, a > b, 

and c, i f  the autometrization is regular, a * b = a, and all 

other distances are equal to I .

Definition i+.6. An autometrized lattice  is called symmetric 

i f  the distance between every two of i ts  elements is equal 

to the distance between their sum and product. Thus 

Brouwerian, and Boolean geometries are readily seen to be 

symmetric.

Theorem 4.10. An autometrized la tt ice  which is symmetric 

and contains no isosceles triangle is distributive.

Proof. A non-distributive lattice must contain one of the 

two special five element la tt ices shown below. [l](page 1 5 ^)* 

The symmetric property implies in each case the existence of 

an isosceles triangle, contrary to assumption.

In figure 1, i f x ^ y  = u ^ v = y * z = x ^ 2 , then x, y, z 

are vertices of an isosceles triangle.

In figure 2, i f  y '> z = x * z ~ u * v, then x,y,z are 

vertices of an isosceles triangle.
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A

X or © *

V  

f ig .l

(A

©

ir

f i g  . 2

D e f i n i t i o n  1+.7* In  an L - m e t r i z e d  s p a c e ,  t h e  e l e m e n t  b i s  

m e t r i c a l l y  b e t w e e n  a and c ,  i f  d ( a , b )  + d ( b , c )  = d ( a , c ) .

The points (a,b,c) are said to be linear as already 

indicated, and the relation is written (a,b,c)M.

It  should be noted at the outset that this is not a 

betweenness relation in the usual sense, since i t  fa ils  in 

many instances to have the special inner point property, i .e .  

(a,b,c)M and (a,c,b)M may both persist even though b and c 

do not coincide. None the le ss j i t  is convenient to use the 

terminology which has been indicated. However, the relation 

does have the other basic betweenness property, viz.,symme­

try in the outer points, i .e .  (a,b,c)M if  and only if  (c,b,a)M, 

since the metric operation is commutative.

Theorem ij-.ll. Three linear points of an L-metrized space 

fa i l  to have the special inner point property i f  and only if  

they are the vertices of an Isosceles triangle.

Proof. If in A(a,b,c), d(a,b) = d(a,c), then (a,b,c)M and 

(a,c,b)M by Corollary l+.l.2. Conversely, if  these relations 

hold, then d(a,b) + d(b,c) = d(a,c) and d(a,c) + d(b,c) = d(a,b). 

Hence d(a,c) > d(a,b) and d(a,b) > d(a,c), i .e .  d(a,b) = d(a,c).
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D e f i n i t i o n  i i+S , If a b e t w e e n n e s s  r e l a t i o n  R h a s  the 

property that (a,b,c)a snd {&,x,b)R imply (x,b,c)R, the

r e l a t i o n  is said to have transitivity t^ • If the same two

relations imply (a,x,c )R, the relation is said to have 

transitivity  [1 1 3 *

Theorem Metric betweenness has transitivity

Proof ♦ If * denotes the metric operation, then (a,b,c)M 

and (a,x,b)M imply (a * b)4*('b * c)=(a* c) and (a *-x)+-(x b)=(a *b)#

Hence, (a * x)+*(x * b)^(b * c) = (a * cJ.Now, since 

x  * c < (x # b)^(b * c) by the triangle inequality, i t  

follows that (a # x)^(x c) < a * c, but the triangle 

Inequality implies that (a x) + (x * c) > a *■ c, hence ,

(a x)^(x * c) = (a *-c), i.e* (a,x,c)M as claimed.

Remark, In general, metric betweenness fails to have t^, 

notably in the case of an isosceles triangle, for i f  &(a,b,c) 

has d(a,b) = d(a,c),  then (a,b,c)M and (a,c,b)M hold, but 

c,b,c)M is not valid. Indeed, this may happen in an 

L-metrized space without isosceles triangles, as the follow­

ing example shows:

f i g . 5
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In S,(figure 3 ), (1,3,)+)M and (1,2,3 )M but (2 , 3 ,lj.)M does 

not hold.

Definition lt-,9* An element b of a lattice is lattice 

between1* a and c, written (a,b,c)L, if  and only i f  

ab + be = b = (a + c)(b + c), [11] p,105* This relation has 

transitivity  t ^ [ l l ] , but not in general t^, since implies 

modularity (and conversely) [11], It is a betweenness re ­

lation in the usual sense. Further, in any lattice ,  (a,b,c)L 

implies a c < b < a + c ,  but not, in general conversely. 

However, in a distributive lattice ,  (a,b,c)L if  and only if  

ac < b < a + c [11] , Metric and lattice betweenness will be 

said to coincide in an autometrized lattice provided (a, b,c)M 

if and only if  (a,b,c)L,

Theorem i+,13* In an autometrized lattice L, metric and 

la tt ice  betweenness coincide, i f  and only i f  (1 ) metric 

betweenness has t^,(2) L is symmetric, (3 ) a < b < c implies 

(a,b,c)M,

Proof m Use is made here of a theorem due to Pitcher and 

Smiley [11, Theorem 10,1]# In verifying the hypotheses of 

that theorem, one observes that (1 ) implies that L is free 

of isosceles triangles and so by Theorem 4.11 that metric 

betweenness has the special inner point property, (2 ) and

(3 ) imply (a, a + b,b)M and (a,ab,b)M, for (3 ) implies 

(a + b, a, ab)M and (a + b, b, ab)M,hence, letting 

x = (a 4’ b) * a, u = a # ab, y = (a + b) * b, and v = b * ab, 

we have x + u = y +  v = (a + b) * ab, Moreover, by (2)

(a 4- b) # ab = a * b, so that x4>y+- u + v = a * b. Hence



-5 6 -

x + y < a # b , and u + v < a /$«'b. But x + y > a 4b b and

u  + v > a 4b fa t)y the triangle inequality, hence, x + y = u + v

58 a 4k fap i .e .  (a, a + b,b).M and (a,ab,b)M.

Conversely, if  metric and lattice betweenness coincide, (1 ) 

and (5 ) are immediate. To establish the symmetric property, 

consider the quadruple (a,b,ab, a + b). (a +* b, a, ab)L and 

(a h*3 b,b,ab)L imply, by the assumed coincidence,

(i)[(a^b)* a] + (a * ab) = [(a+b)* b] + [b # ab] = (a+b)* ab. 

Similarly, (a,a + b,b)L and (a,ab,b)L imply

(i i)  [ (a+b)# a] + [ (a^b)* b]-(a * ab) + (b * ab ) = a 4b fa ,

Adding f i r s t  and second members of(i) gives the same result 

as adding f i r s t  and second members of ( i i ) .  IdLempotency 

yields

(a + b) ^ab = a b •

Thus the theorem is established.

Corollary it-. 15.1. An autometrized lattice in which metric 

and lattice  betweenness coincide is distributive.

Proof. By Theorem 1̂ .10

Theorem 4.14* (Ellis) In a Boolean geometry, metric and 

la t t ice  betweenness coincide.

Proof. A somewhat briefer proof than Ellis has given is as 

follows: (a,b,c)L implies ac < b < a + c, in any la ttice .

Taking complements of ac < b yields b* < a’ + c». Moreover^

(a 4b b)^(b 4b o) = ab * + a*b + be * + b fc

= (a + c)bf +b(a* + c f). But b < a + c implies

b(a* + c *) < (a +c)(a* +c») and b* < a f * c* implies
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b , (a+c)<(a+c)(a,+c ») so that b(a»*c»)+b*(a+c)<(a+c)(a»*c*),

i . e .  (a * b) + (b * c) < a * c. But in any case,

(a b)+(b 4b c)> a * c, hence (a * b)+(b * c) = a * c. i .e .  

(a,b,c)M.

Conversely (a,b,c)M, i .e.  (ab*+a*b)+(bc*̂ b*c)=ac*̂ a!c 

implies (a + c)bf + b(a* + c 1) = ac* + a*c. Multiplying the 

la t te r  f i r s t  by ac, then by a fc*, we obtain acb * = 0 and 

a*c*b = 0. But xy * = 0 implies xy + xy* = xy or x = xy so 

that x < y. Hence ac < b. Similarly b(a*c*) = 0 implies 

b (a^c) * = 0 , hence b < a  ̂ c. i .e .  ac < b < a + c or since 

a Boolean algebra is  distributive, (a,b,c)L. This completes 

the proof.

Remark. Since t^ fa ils  for an isosceles triangle, i t  fails 

in any brouwerian geometry which is non-Boolean, hence 

metric and lattice betweenness do not in general coincide in 

Brouwerian geometries. Indeed this coincidence to -gether 

with regularity is  sufficient to characterize Boolean 

geometries among the Brouwerian geometries as the following 

theorems show.

Theorem 4.15. An autometrized lattice with an I Is a Boolean 

geometry i f  and only if  i t  is regular, and metric and lattice 

betweenness coincide.

Proof. Theorem Ij-.l4 establishes the necess ity^ since symmetric 

difference is a regular metric operation. To prove the 

sufficiency, let  a * I = x, I # x = y and consider the 

points (0,I,a ,x,ax). Regularity implies (a,I,x)T and 

(x,I,y)T or a * x = I and x + y = I. Moreover (a,I,x)L



Implies x + y = a * x since MB ^ LB. Hence, a * x = I.

Symmetry (by Theorem 1 3 ) implies further that 

a * x = (a + x) * ax = I ax = I. But since 

1 * 0 —1, A(0,I,ax) is isosceles. This is impossible since 

t-̂  must hold under our assumptions. Therefore ax * 0 = ax = 0. 

Thus the lattice Is complemented, and, being distributive by 

Corollary It-.lj .̂l is a Boolean algebra.

To show that a * b is symmetric difference, consider 

the points (0,a,b,1)^where a * I = a t , b * I = b » ,  since, 

in a Boolean algebra, complements are unique, and (a,I,a * I)T 

(due to regularity) Implies, in particular, that a & (a * I) = 

Clearly a * b < a + b ,  and a * b < a f + b* (since A(a,b,I) 

Implies (a*,b*,a *b)T),  whence a * b  < (a^b)(a* + b*)

- ab* + a*b. But, (a * b) + ab - a + b (Corollary 1+.9.2), 

implies that (a+b) - ab < a * b, since a Boolean algebra ia, 

a fo r t io r i ,  a Brouwerian algebra. Thus a * b = (a-b)^(b-a), 

a * b is therefore Boolean symmetric difference, and the 

lattice  is a Boolean geometry.

Corollary J+.15 + 1. A lattice with an I is a Boolean algebra 

if  and only if  it  admits a metric group operation under which 

metric and lattice betweenness coincide.

Proof 1 The necessity is clear. The sufficiency is assured 

since a metric group operation is regular.

Definition 4.10. An L-metrized space S is said to be of 

constant width, if (1) There exists in S, a maximal distance, 

m, i .e .  such that m > x for every distance x in S, and

(2) Corresponding to each element a e S there exists
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an element b 6 - S such that d(a,b) = m.

Theorem lj-.16. A lattice with an I is a Boolean algebra 

if  and only i f  i t  admits a metrization such that the space 

is of constant width, and metric and lattice betweenness 

coincide.

Proof: The necessity is clear, since (1) Boolean symmetric 

difference is a metrization under which metric and lattice 

betweenness coincide and (2 ) being a group operation,the 

equation a * x = X always has a solution, namely y = a*.

(Clearly X is the maximal distance in the space and It

actually occurs, since X * 0 - X)

To establish the sufficiency, let a and b be arbitrary 

distinct elements of the lattice* Then, since metric and 

la tt ice  betweenness coincide, (X,a,0)M and (X,b,0)M, I .e .

(a *0) + (a * X) = (b *0) + (b * X) = X * 0. Since, in 

A(I,a,b),(a * b) < (a * X )  + (b * X), then a * b < X * 0 

since (a * X) + (b * X) < (X * 0)^and X * 0 is the maximal 

distance which occurs. Now, since the space is of constant 

width, corresponding to an element x, there exists an 

element y, such that x * y - X * 0. More overly is unique, 

since there can be no isosceles triangles. Furthermore, 

since the lattice must be symmetric by Theorem J4..I5 ,

(x+y) 4k xy = X * 0, and [ (x+y), (xy) ,0]M implies

[ (x+y) *(xy) ] + [ (xy) * 0] = (x*y) *Q,i .e.(X *0)*((xy) * 0) = (x+y) *-Q 

But X * 0 > (xy) * 0, hence (x^y) * 0 = X * 0* Since there 

can be no isosceles triangles, x + y = X. Hence

X * xy = X * 0, and again, the absence of isosceles triangles
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implies xy — 0. Thus the lattice is a Boolean algebra.

Corollary I4-.I6 .I .  A finite  autometrized lattice in which 

metric and lattice betweenness coincide is a Boolean 

algebra.

Pr°££« By Theorem l+.l^ the lattice can have no isosceles 

triangles. If the lattice has n elements, then each element 

is a “vertex** of (n-X) distances. Since none of these can be 

repeated, each element of the lattice (except 0 ) must occur 

at each vertex as a distance, hence being fin ite ,  the lattice  

has an I which occurs at each vertex. I being clearly maximal, 

the la ttice is of constant width, and is therefore a Boolean 

algebra.

Remark. In the Infinite case even though no distance may be 

repeated at a vertex, there Is no assurance that every distance 

must occur. Thus whether in an autometrized lattice with an I, 

the coincidence of metric and lattice betweenness in and of 

I tse lf  Is sufficient to characterize a Boolean algebra is 

s t i l l  an open question.

Ellis has observed [5 ] that the group of motions of a 

Boolean geometry Is simply transitive, i .e .  for any two points
v

a,b of the geometry, there is a motion (a one-to-one distance 

preserving map of the space onto i tsel f)  which carries b into a. 

An examination of the Brouwerian chain of three elements shows 

that the group of motions of a Brouwerian geometry is not 

simply transitive, and, indeed

Theorem i-|..17. A Brouwerian geometry is a Boolean geometry i f  

and only i f  i ts  group of motions is simply transitive.
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Pir©£jfcThe necessity as indicated has been observed by Ellis* 

Suppose then that a Brouwerian geometry L has a simply 

transitive group of motions, and consider that motion which

carries I into 0* Then i f  x > y, I * x = 0 ** y = ~| x = y

i*e* x »~]x* Hence 0 —► I, x x  (x ~| x) = I,

so that 0 = x l x  and L is a Boolean geometry*
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