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ABSTRACT

The thesis discusses the interaction between the
lattice vibrations and the sodium nuclei of a crystal of
sodium chloride. One supposes that the quadrupolar inter-
action between the sodium nuclear quadrupole moment and
the electric field gradient in the crystal provides the
mechanism which makes possible an exchange of energy be-
tween the crystalline lattice and the nuclear spin sys-
tem.

If the sodium chloride crystal is in a constant ex-
ternal magnetic field, the Zeeman levels of the sodium
nuclei are split; and the nuclear-magnetic-resonance fre-
guency for the sodium nuclei is in the radiofrequency re-
gion. At room temperature, the intensity of such fre-
guencies in the spectrum of the lattice vibrations is
negligible. Using ultresonic energy, one cen, however,
excite the low-frequency wvibrational modes of the lat-
tice. If ! is the frequency of the ultrasonic radi-
ation, then one chooses 2/’ in such a way that (&,;E&,,,,)= h¥,
where ~v 1is the magnetic quantum number for the so-
dium nuclei. Consequently, the ultrasonic energy, by
means of the quadrupolar coupling between the lattice and
nuclear spin system, produces am =%2 transitions of the

sodium nuclei.



Experimentally, one subjects the sodium chloride
crystal to a pulse of ultrasonic energy. Several hun-

dred milliseconds later, one applies a radiofrequency
vl

5 -
radiofrequency energy produces am=x| transitions of the

pulse of frequency 2 , with v= Consequently, the
sodium nuclei. The amplitude of the nuclear induction
signal which follows the radiofrequency pulse is a meas-
ure of the difference between the populations of adjacent
Zeeman levels; hence, the amplitude of the induction sig-
nal permits one to study how effectively the ultrasonic
energy produces nuclear transitions. This means one can
check the hypothesis that the nuclear spin system and
crystalline lattice are coupled through the quadrupolar
interaction.

One assumes a simplified model for the sodium chlor-
ide lattice: +the six nearest neighbors of a sodium nu-
cleus are replaced by six equal point charges of magni-
tude ¥e , where Y 1is a parameter, and € 1is the
electronic charge. The experimental data enables one to
compute a numerical value for ¥ , and the result is
¥=0.08 . Measurement of the spin-lattice relaxation
time, T, for the sodium nuclei in sodium chloride is
also part of the experimental work. A value of V,=7T1§ sec.

is the result of the measurement.
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CHAPTER I
INTRODUCTION

Waller1 gave the first theoretical treatment of elec-
tronic paramagnetlic relaxation in crystals. The theory
assumed that the time variatlion of the crystalline magne-
tic field at the site of an electronic spin is responsible
for the coupling between the lattice and the spin system,
A simple modification made the theory applicable to nu-
clear paramagnetism; however, the theoretical relaxation
times were much longer than the experimental values. In
order to account for the nuclear spin-lattlc relaxation
times which were observed experimentally, Bloem.bergen2 and
Hatton and Rollin3 proposed that electronic paramagnetic
impurities were responsible for the spin-lattice coupling.
Indeed the presence of paramagnetic iImpurities explained
the relatively short spin-lattice relaxation times; how-
ever, nuclear magnetic resonance in solids had been con-
fined largely to either protons or nuclei with spin I =%f
Since the nuclear quadrupole moment of nuclei with spin

I<1 is zero, no quadrupole effects were observed.
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Pound4 presented the first discussion of nuclear
electric quadrupole interactions in crystals and their
effects on the nuclear resonance of atomlc nuclei in
solids. Pound's investigations showed that the inter-
action of a nuclear quadrupole moment with the electric
fleld gradient produced by neighboring charges broaden-
ed and split the nuclear resonance absorption line. Of
more importance for our discussion, however, 1s the fact
that the quadrupolar interaction could account for the
spin-lattice relaxation times. The experimental evi-
dence indicated that the nuclear quadrupolar interaction
was important in crystals with cubic symmetry. After
Pound's experimental work J. van Kranendonk5 wrote a the-
ory for the effect of the nuclear quadrupolar interaction
on the spin-lattice relaxation time.

Two processes account for the spin-lattice relaxation
of electrons or nuclei in solids: direct and indirect
processes. The indirect process is a Raman scattering of
phonons, and the direct process requires the annihilation
or creation of a phonon accompanied by a transition of an
electronic or nuclear spin between magnetic energy levels.
Van Kranendonk 1s concerned with the indirect process. He

assumes that a phonon of initial energy ha is scattered
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into a final state with the energy ha’. The absolute
value of the difference between hy and hyv' is the
energy of the nuclear spin transition. The nuclear
quadrupolar interaction is the only mechanism which van
Kranendonk considers responsible for the phonon scatter-
ing. If one assumes a Debye distribution for the lattice
oscillators, then the theory predicts that the probability
of a nuclear transition as a result of a thermal Raman
process 1is proportional to Tt where "T" is the absolute
temperature of the lattice, at temperatures below 0.026
(© is the Debye temperature). At higher temperatures the
transition probability is proportional to T2(a - b/T°),
where "a" and "b" are constants.

Van Kranendonk applies his theory to a model in which
a lattice of the sodium chloride type 1is replaced by a
central nucleus surrounded octahedrally by six equal point
charges. The magnitude of the point charges is a variable
parameter of the model. In order to obtain spin-lattice
relaxation times which agree with experimental values, van
Kranendonk finds the point charges must be from 100 to
1000 times the electronlic charge., It is difficult to make

a comparison between theoretical and experimental results.

One knows very little about the quadrupolar interaction.
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As Sternheimer6 and others7 have shown, the nuclear quad-
rupole moment induces a quadrupole moment in the electro-
nic shells associated with the nucleus. The induced mo-
ment can reduce or enhance (shlelding and antishielding
effect) the quadrupole moment of a bare nucleus. The ac-
tual electric field gradient which a nucleus in a crystal-
line lattice experiences 1is also difficult to estimate.
Wa'ckins,8 for example, found that strains in an ilonic
crystal can produce an electric field gradient. Apparent-
ly, the strains cause a mixing of p- and d-type orbitals
to the original s-type electronic wave functions of the
ions.

Two articles by C. A. Altshuler9’ 10 treat the absorp-
tion of ultrasonic energy by spin systems. One generally
supposes that the interaction of the electronic magnetic
moments with the lattice vibrations of a solid provides a
means for the relaxation of the electronic spins after
their excitation by resonance absorption of electromagne-
tic energy. Altshuler considers the possibility of split-
ting the electronic magnetic energy levels by placing a
paramagnetic salt in a constant magnetic field and then

producing transitions between the energy levels by means
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of ultrasonlc energy at the resonance frequency. (Acéord-
ing to Altshuler, the effect was also considered by
Zavolsky.) Lattice vibrations modulate the crystalline
electric fleld. Varlation of the crystalline electric
field affects the orbital motion of the electron, and the
lattice vibrations are coupled to the electron spin through
the spin-orbit lnteraction. In the second paper Altshuler
discusses the modulation of internal crystalline magnetic
fields as a second mechanism for the transfer of ultrasonic
energy from the lattice to electrons or nuclei.

Our discussion has mentioned the direct and indirect
processes which account for the spin-lattice relaxation
time of electrons and nuclei. Since transitions of elec-
tronic or nuclear spins correspond to frequencies which
lie in the radiofrequency region, the direct process 1s
negligible until one reaches liquid helium temperature.

One must keep in mind, however, that the ultrasonic excita-
tion of an electronic or nuclear magnetic moment to a high-
er energy state represents a direct process; hence, the
frequency of ultrasonlc energy will equal the transition
frequency.

Altshuler's order-of-magnitude estimates 1indicate

that the resonance absorption of ultrasound by nuclel in
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sollds would be very small. He considers both dipole-
dipole and quadrupole coupling of the nuclei to the
lattice of the crystal. In liquids, according to
Altshuler, conditions are quite favorable for the ab-
sorption of ultrasonic energy by nuclel; and he states
that one should observe ultrasonic saturation of the nu-
clear spin system. Now the possibility of indirectly
observing the absorption of ultrasound arises. For exam-
ple, suppose one observes nuclear magnetic resonance ab-
sorption of electromagnetic energy. Then the application
of an ultrasonic field of the correct frequency and the
subsequent saturation of the nuclear spins should destroy
the resonance absorption of electromagnetic energy. At
the present time absorption of ultrasound by nuclear spins
has been observed only by means of this indirect method.

Proctor and Tanttilall made the first observation of
the influence of ultrasonic energy on the nuclear spin-
lattice relaxation time. Ultrasonic vibrations whose fre-
quency equaled the frequency for a nuclear magnetic dipole
transition between the pure quadrupolar energy levels of
chlorine nuclel in sodium chlorate saturated the energy
levels. By applying pulsed radilofrequency energy of the

same frequency as the ultrasonic energy and observing the
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induction slgnal, the experimenters were able to detect
the degree of saturation of the energy levels. (The ap-
pearance of an induction signal as a result of the pre-
cession of a nuclear guadrupole moment in a non-uniform
electric fleld ls discussed in detail by Bloom, Hahn,
and Herzog.lg) The experimental results are compared with

a theory proposed by Chang.13

Chang's theory specifically
treats the pure qguadrupole resonance of chlorline in sodium
chlorate. Proctor and Tanttila find good agreement between
experiment and theory for the temperature dependence of the
indirect process; however, there is poor agreement between
experiment and theory for the dependence of the direct-
process relaxation time on the energy density of the ultra-
sound.

14 studied

In a later experiment Proctor and Robinson
the effect of ultrasound on the relaxatlion time of sodium
nuclel in sodium chloride. The experimenters made use of
the amplitude of the induction signal, which was produced
by the precessing nuclear magnetic moments in a steady
magnetic field, to sample the population difference be-

tween the magnetic energy levels of a sodium nucleus.

The ultrasonic vibrations produced nuclear spin transitions
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[0 |

which corresponded todm=%2 where "m" is the magnetic
quantum number of the nuclear spin. At the same time,

the radiofrequency field produced transitions which cor-
responded toAm=2|, On the basis of a classical model,
Roblnson computes the electric field gradient which a
sodium nucleus experilences. (The ultrésonic waves re-
move the cubic symmetry of the crystalllne electrilc
field.) He compares the calculted gradient with the value
obtained from his experimental data. Agreement between
the two values 1ls good, and Robinson suggests that van
Kranendonk's theory 1is unnecessary. The data do not tell
whether the dipolar or quadrupolar interaction 1ls the more
important in determining the spin-lattice relaxation time,
but it suggests that the quadrupolar interaction is more
important.

This thesls reports the results of an experiment
which is a modification of Proctor and Robinson's experi-
ment. Proctor and Robinson used a roughened sodlum chlo-
ride crystal for a sample and assumed that the ultrasonic
phonons were scattered isotropically by the irregularities
in the end of the sample. The experiment reported by this
thesls concerns unidirectional standing ultrasonic waves

in the sodlium chloride crystal.



CHAPTER II

EQUIPMENT

A block diagram of the apparatus appears in Fig. 1,
and a discussion of the individual components of the ap-

paratus follows.

The magnet

An electromagnet supplied a constant magnetic field.
Storage batteries served as a source of current for the
magnet, and three batteries in series (96 volts) provided
the most stable operating conditions. In order to obtain
the sodium resonance with a radiofrequency field of five
megacycles/sec., the magnet windings required a current
of 6.8 amperes. Three rheostats made possible variation
of the current through the windings. A "fine" adjustment
of the field was obtained by a rheostat which consisted
of flat nichrome wire wound on a ceramic cylinder. A
screw of the proper pitch allowed an electrical contact
to move along the nichrome wire as one rotated the screw.

The magnet windilngs and the rheostats were water-cooled.

9



Oscilloscope—""T =

9a

A

| [_‘L

[<3)
Q.
—_— QO | =
- 8 QL
ol &
= A~
g = A
< Pulser.
Y
Y
RF Ultrasonic Recei
, k eceiver
Oscillator Oscillator
L2 “
o) b / (o
Sy S erlode Voltmeter  «
= c LA
. — o & —
£ *’=< el 3
S o] o
= i
© . ’ Magnet Pole Face
Induction| -

] \“e"dj ’

Fig. | Block Diagram of Apparatus




10

The pole pieces of the magnet were eight inches 1n
diameter and unpolished. The experiments were perform-
ed with the pole pleces separated 1-1/8 inches. No at-
tempt was made to measure eilther the magnitude of the
magnetlc fleld in the gap or the homogeneilty of the
field.

Unfortunately, the magnetic field did not remain
constant for a period of time lbnger than one minute,
usually less; hence, the drift of the magnetic field was
a constant source of trouble. Although the storage bat-
teries had a capacity of 400 ampere-hours, the provision
of a steady magnetic fleld by current from them was inade-

quate for the experiment.

The induction head

Fig. 2 is a drawing of the induction head. The trans-
mitter colls A and B are orthogonal to the recelver coil R.
Each transmitter coll contains three turns of No. 16 copper
wire, and the receiver coil contains 16 turns of No. 18
copper wire.

Since a pulse of intense radiofrequency energy 1is ap-
plied to the transmitter colls, one must take measures to
prevent saturation of the radiofrequency recelver because

of coupling between the receiver c¢oll and the transmitter
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11
colls. Two features of the induction head are designed
to reduce inductive coupling between the coils. First,
the colls are orthogonal and second, screw S permits
one to displace transmitter coil A relative to both
transmitter coll B and the receiver coil. Capacitive
coupling remains, however, and other steps are necessary
to reduce receiver saturation.

Easy removal of the bottom plate of the induction
head facilitated introduction of samples for study into
the recelver coll., The coaxial fitting F provided a means
for connecting the ultrasonic osclllator to the induction
head, Aluminum plates covered the sides of the head and

supplied the necessary shielding.

The radiofrequency oscillator

Except for several minor changes, the circult for the
radiofrequency oscilllator is the same as the circuit which

12 used for thelr studles of free

Bloom, Hahn, and Herzog
magnetic induction in nuclear quadrupole resonance. A

change of the inductance of the tank circult allowed the
oscillator to operate at a frequency in the neighborhood

of five megacycles/sec. Values of several capacitors were

changed in order to obtailn a well-shaped rectangular pulse
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of radiofrequency energy when the oscillator was gated on.
During operation, the optimum value of the plate voltage
for the oscillator tube (829-B) was 1175 volts. Addition
of a potentiometer to grid circult of the 6L6 tube allowed
one to vary the negative blas of the grid. The maximum
amplitude of the radiofrequency envelope at the output

terminals of the oscilllator was 240 volts.

The pulser

Fig. 3 is a drawing of the pulsing circuit. The pul-
ser contains timing circults which subply either one pulse
of varlable duration or two successive pulses of variable
duration and spacing. Also the repetitlion rate of an
event (one pulse or two pulses in succession) is variable.
The pulser was used to make relaxation time measurements
as well as to study the effect of ultrasonic energy on
the relaxation time, Each experiment placed different re-
quirements on the pulser; consequently, the timing cir-
cults were modified for the different experiments.

Relaxation time measurements required a single pulse
with a varlable repetition rate and a pulse width which
was varliable from a few to several hundred microseconds.

By changing the time constants associated with the multi-
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13
vibrator V1, one changed the repetition rate. A double-
pole, double-throw switch made 1t possible to insert two
different combinations of resistance and capacitance;
and the potentiometer Rl allowed a continuous variation
of the repetition rate over the range determined by the
reslstance-capacitance combination. The circuit supplied
repetition rates from approximately 0.80 pulses/sec. to
0,085 pulses per second.

For the relaxation time measurements the plate of V3
was connected capacitively to the grid of VY. Tube V7
amplified the pulse, and one obtalned a positive pulse
whose amplitude was approximately 120 volts at the output
of the pulser. Appllication of the positive pulse to the
grid of the 6L6 in the radiofrequency oscillator caused
the tube, which was normally biased beyond cutoff, to con-~
duct; hence, the pulse gated the oscillator. Potentiome-
ter R2 allowed one to vary the width of the pulse.

The ultrasonic studies required two pulses in suc-
cession: first a pulse approximately four seconds long
and then approximately 300 milliseconds later a pulse of
the order of 60 microseconds long. Both the duration of
the pulses and thelr spaclng were variable. The four-

second pulse required long time constants in the circuilts
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of V3 and V4. Two microfarad capacitors supplied suffic-
lent capacltance. Variation of potentiometer R2 changed
the duration of the first pulse, and variation of R3 chang-
ed the spaclng between the first and second pulses. Poten-
tiometer R4 determined the width of the second pulse.

By means of a relay the first pulse gated an oscilla-
tor whose output drove a quartz transducer. The winding
of the relay coil replaced the resistor marked "X" in the
plate circult of V3. One pole of the relay was connected
to a source of approximately 400 volts dc; and the other
pole of the relay was connected to ground. The moving
contact of the relay was connected to the screen grid of
the 807 tube in the ultrasonic oscilllator (see Fig. 5).
Application of the positive voltage to the screen grid
gated the oscillator on, and connection of the screen grid
to ground turned the oscillator off. In this manner the
first pulse controlled the ultrasonlic oscillator.

Tube V6 supplied the second pulse. Tube V7 ampli-
fied and inverted the output from V6. As a result, one
obtained from V7 a positive pulse with an amplitude of
approximately 120 volts. The positive pulse gated the

radiofrequency oscillator just as it did for the relaxa-
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tion time measurements. During the ultrasonic experi-
ments, the repetition rate was constant at 0.085 pulses/
sec. A regulated power supply provided the plate volta-

ges for the tubes in the pulser circuits.

The recelver

The receiver supplied the most difficult electronic
problems. The experiments required the detection of a
nuclear induction signal which followed an intense pulse
of radiofrequency energy. Since it was impossible to avoild
pickup of the radiofrequency pulse by the receiver coil,
the possibility of recelver saturation was always present.
However, saturation of the receiver for more than several
microseconds after the radiofrequency pulse made 1t Impos-
sible to detect nuclear induction in solilds. Detection of
the sodium induction signal demanded that the receiver
have considerable gain with a good signal-to-noise ratio.
In general one can say that the experiments requlred a
high-gain recelver with a band pass of several megacycles.

Fig. 4 is a circuit diagram of the receiver. It has
four stages and a detector. Each stage 1s single-tuned by
means of a slug-tuned coil. The 6AC7 has large transcon-

ductance; and hence, provides a good mean stage gain for a
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band pass of several megacycles. Adjustment of the re-
celver for the best response to a nuclear induction sig-
nal determined the final tunlng. Variable capacitor Cl
together with the receiver coll formed a tuned input
circult for the receilver. Only the first stage was gain
controlled, and the control was accomplished by varying
the negative grid bilas of the first stage.

The circuit diagram shows two crystal diodes con-
nected to the grid lead of the first stage; thelr purpose
was to prevent excesslve saturation of the receiver. The
diodes with proper blas bypassed to ground all positive
and negative signals whose amplitudes exceeded seven micro-
volts. Consequently, the diodes reduced any pick up from
the radlofrequency pulse; but they allowed the nuclear in-
duction signal to pass freely.

The receiver was completely shielded, and it was con-
nected to an external ground through a heavy lead. A regu-
lated power supply provided the plate and screen voltages.

The recelver performed satisfactorily and adequately
for the experiments. One could obtain an induction signal
from protons in glycerine with a signal-to-noise ratio of

forty to one; and the signal-to-noise ratio for the induc-



17
tlion signal from the sodium nuclei in sodium chloride was
approximately 10:1, when the signals were displayed on a

Tektronix type 531 oscilloscope.

The ultrasonic oscillator

A Hartley-connected oscillator suppllied the driving
voltage for the ultrasonic transducer, and Fig. 5 shows
a clrcuit dlagram for the ultrasonlc oscillator. The re-
sistor in the screen-grid circuit made the oscillator res-
pond sharply to the gating pulse. A description of the
gating device and the method of gating appears in the dis-
cussion of the pulser,

In order to obtain a large output voltage, the pickup
coll was wound concentrically about the inductor in the
tank circuit. The output from the oscillator was connect-
ed through a coaxial cable to the terminals of the quartz
transducer. A variable plate supply voltage for the 807
tube permitted one to change the output voltage of the os-
cillator. In turn, a Variac connected across the primary
of the power transformer for the plate power supply made
possible variation of the plate voltage for the oscillator.
As a result the peak voltage, measured with a diode volt-

meter, across the terminals of the transducer was continu-

ously variable from 10 to 55 volts.
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The diode voltmeter used to measure the transducer
voltages consisted of & 6AL5 diode and a capacitor. A
Simpson meter comnnected across the capacitor indicated
peak voltage. The voltmeter was inserted in the coaxial
line which led from the osclllator to the transducer by
means of a coaxlal "T" connector. The "T" was located

approximately six inches from the induction head.



CHAPTER III
THEORY

The Ultrasonic Transition Probability

Consider a single crystal of sodium chloride placed
in a constant magnetic field,'ﬁ;. We are interested in
the interaction of the magnetic moment of a sodium nu-
cleus wi’ch"ﬁ° and the Interaction of the sodium nuclear
quadrupole moment wlth an electric field gradient produc-
ed by charges surrounding the sodium nucleus. We suppose
that the Zeeman interaction is much stronger than the
quadrupolar interaction; hence, we treat the quadrupolar
interaction as a perturbation of the Zeeman energy. A
sound wave in the crystal modulates the quadrupolar
interaction, and the quadrupolar interaction supplies a
coupling between a sodlum nucleus and the crystal lattice.
We choose a Cartesian coordinate system whlich 1s fixed in
the crystal and whose z-axlis coincides with the direction
of the magnetic fileld, ﬁ;. What is the probability per
unit time that the sound wave will produce a transition

of the sodium nucleus between its Zeeman energy levels?

19
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The electrostatic potential

Iet N be a sodium nucleus and 8,,, be an external
charge. Suppose the sound wave displaces the nucleus,
N by 3 and the charge %q DY "S'm(see Fig. 6). Here
CW¥) 1is the nuclear charge density at a position ¥'™
from the center of mass of the nucleus. We assume that
after a displacement of the nucleus the nuclear charge
distribution remains unchanged with respect to the nu-~
clear center of mass. After displacement the electro-

static potential at 'f“ due to the charge %“_ is

A\ ,l(«) M
We expand -’;?“’ as a function of r®, ¥  andcoe ®ys

and the term which arises from the nuclear quadrupole mo-

ment is

(rcan) » where P,(Con G ) 1is
the Legendre polynomial of order two. Now we have
= (a) =:(w)
r_ - C2)
Coa-® .= 5\
)

We write the Cartesian components of the vectors in Fig.

6 as follows:

~) .
“) (4=1,2,3)

(M’ (x (G g(m\ égm\) (x
R(d\z (x(-:) ),(-:) Zcﬂ) = (x‘:‘”) (4=1,2,3)

‘S"(-l): (X(‘"} w;w) = (x®), («=1,2,3)
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(o) (xm;(cn “”):(Xf,) (4=1,2,3)
Then F(,a) - ﬁ(d) . gcd)_ §co\ (2a)
or \"(‘0 (xu) x(d) xco)) - (X(‘) x(.d) x(o))

‘-.(ol)

The product ¥ “vecomes

P, Ben 2_ (x“%s x L x(‘”)“.‘ X.L ] 3)
With the definition X‘e’ (x"" x < x(o))

’

where (e) refers to a charge outside the nucleus, substi-
tution yields

r(ﬂ‘ (m) - 2 x xCM) - X x("" J-*
A=)
(i, J =1, 2, 3), where summation over the indices i and

J is implied.

From eq. (2) x‘e) (m) *)X(e)x(m) Lam
£ Passl
ey (e ey

The quadrupolar term of the electrostatic potential is now

\4_ (8’(‘”) [3 x(e)xw)JJ.)x © (m)J&"M (\'_ (m)) (rce)) l (1)

1 -—
Cav,CBd

Summation over 1indices jJ and m gives

V= 32 [_BX () <~0x( (‘»(m)) (r(e))] (4a)

A 2(\'“‘)5
Next we separate the coordinates X ‘™ anda X®©, i, e.,

we write the quantity in square brackets as

L 1= 5(X) g,
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We find that §(x‘®) 5| (x)=1 \'_3%""’;(:"- ey § “] X
4,4’ !

€l e entr4l
xE3X - rengtey

g‘* 32. (™) (i _ 244
[3X5x5 - (remyf 44 «

27 o(re)SS 2

and

@ 2 .
x 3XTXE- (revy g2y (s)
Each of the square brackets may be considered as the

components of a tensor. The potential WV, becomes

v Bu

o 6(\‘“‘”)5
where A and B are second-rank tensors. The multiplication

A.B, (6)

indicated by the double dot we define as the product ob-
tained by multiplying the component Bxx_of B by the compon-
ent A ;p of A. ILet us consider the tensor A:

AZ 3XT X - Cremytg
The tensor is symmetric; and there are five independent
components, since it has zero trace. Each component is a
homogeneous guadratic function of x, y, and z. For conveni-
ence we shall choose for a new basis the five linearly inde-
pendent functions Y});fn where y;” are the unnormalized
spherical harmonics of degree two. Then the five indepen-
dent components, which are sufficlent to define the tensor,

become 1in Cartesian coordinates
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Aot E (331 = rRlcned vy e
+ 4 +

An=33 (X =P (cmode =y (1)

A+:=3 (Xfig)lz r"a'z(ca@) eth'i k”){!z ) (he)

We drop the subscripts and write the Cartesian coordi-
nates explicitly. We also drop the superscripts and
keep 1n mind that the A's refer to nuclear coordinates.
We may treat the tensor B exactly as we have treated A
and reduce B to flve linearly independent components
analogous to the A's of egs. (7).

We must find the potential Vy in terms of the re-
duced tensors. We expand the product A:B with A and B
in their original forms. Each term of the expansion is
a product of a homogeneous quadratic function of the nu-
clear coordinates and a homogeneous quadratic function
of the external charge. The homogeneous quadratic func-
tions of the nuclear coordinates we express as linear
comblnations of the A; of egs. (7), and the homogeneous
quadratic functions of the coordinates of external charge
we express as linear comblnatlons of the analogous B,.

The explicit expression for Vy 1is
! -
8 s(A°B°+T;A"‘B"* &?A_‘Q_H-I-

~ Tren

+ g-q ALB + 5 ALB ).
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or

i

b ¢
AR . (s
Vo= e g_ZC&A“B_“ )

where the C,;, are numerical constants.

The quadrupolar interaction energy

One finds the contribution from the charge @q to
the nuclear quadrupolar interaction energy by multiply-
ing Vg with the nuclear charge density .Cv) and inte-

grating over the region occupled by the central nucleus:

W= S\i@mﬁ,\")d‘\'m , where W, 1is the
contrlibution to the Hamiltonlan from the charge 8,0,_ .
We find

& 2
]
H= C:B. dv . (q)
. [r(d‘}sé—z :8; (e A, 4,

Next we introduce the components of the nuclear

guadrupolar moment which we define as

Q= S(’m&v) A4, (4=o,x1,%2) . CGo)

The Ai are functions of the Cartesian coordinates of an
element of the nuclear charge. We want to write the Aj
as functions of the components of the nuclear spin opera-

tor. The theorem which Jjustifies the transformation from

Carteslan coordinate operators to spin operators 1is dis-
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cussed and proven without the use of group theory by
RamseylD. We choose a representation in which both
the operator I2 and the operator I are diagonal.

Then in operator form

Q=Cli (L -] (ha)
@247 %C [Ia (Ixt“LIa)“' (Ixz'ﬂ:;\ IQ Oibe)
Q1223C [T, 4 T,T" Gid,e)

We express the arbltrary constant C in terms of the

scalar
cQ= Se"“v\m\ﬁ‘l (331- *d,,
or Q= (TTI3L-T(T+)HIII)=2C(TINQ\IT).

Finally,
C=-E& . (12)
I@Xx-\)
The scalar Q is conventionally called, "the nuclear
quadrupole moment".
The Hamiltonian W, 1s now
g’ ¢ (at)
= % C.®. .87 . (13)
d D..(-«\]Si,-z A T4 T4
The superscript (o) on the By indicates that the quan-
tities By (%) gepend upon the coordinates of the external
charge %,“ . In particular, the By ) are functions of

the relative displacements of the charge %qwith respect
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to the displacement of the central nucleus. To find the
total contribution to the quadrupolar energy from all
external charges, we must sum over all charges 8’“ .

Hence, the total quadrupolar interaction energy H’ becomes

H:= 2!-! -2 [&;’] "Z‘zc B . ()

we are interested in the physical situation which ex-

ists when a sound wave displaces the nuclei and modulates
@)

—e
Dre®

in terms of the relative displacements of the charge 8’“

the quadrupolar interaction energy. We expand the

with respect to the central nucleus. For convenience we
shall make several changes of notation (see Fig. 6 and

(22)). Let Ly iy = ¢
_S(d) S@() o) _ ('gi’) (431,2,3)

ol C ) 0 (d)
and R Y (X 3, ).
Reference to Fig. 6 shows that R’of- R“) when f‘: o .
B

The general form for the expansion of _"‘g‘ is

o
B(ﬁ) _ i:ﬂ \ 3 a K B(-‘) \
RS RS -fg-"'é 350\ 55 ) fa

'Dl B(:l) \ () _ (o)
?2 az@’aﬁf‘( e:) b farere

(ct
where 1 = O, _{ 1, j 2. The explicit expressions for the B_;

are:

B{;nz "j_'[}(x;d)"' S;«O) - (R‘D\]
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B =3P L 5) 22 (X2 7))

R GIRMREEI e )

We consider only processes which produce transitions
of the central (the sodium) nucleus between nuclear magne-
tic energy levels determined by the quantum numbers ™ and
mt2 (the ama=+2 transitions). Here the quantum number
labels the allowed values of the nuclear spin operator Iz‘
Experimentally, the angular frequency W of the sound wave
must satisfy the condition E,, - E, . .. “tTHhw.

We must calculate the matrix elements

(T W'\ T me2). i)
The only components of the nuclear quadrupole moment whose

matrix elements connect the nuclear states m and ~m=t2 are

the Q+2 ; hence, from egs. (14) and (16)

)
(TN LT ma2) = (IM\Q-;\IM+1)§.%C*B+1., a)
and
(o)
(Tl W' VT mn-2) = (T, VT m-2) 2 RS C SR ()

Now

(T l@, \Tan-2) = SE2 (T T, A T, VT nea)

IQT-\

3e
2 o [T D eI Erama D) 5 ()
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¢ (x m\Q_\Tmr2)= 2EQ \[(I'\‘M'\-?.\(r':w\-\) X

T(AX-Y)
QUzL)
X \{(:*M“'\)(I-M) .
(ot) o)
Next we need the expansion of —= and —=* in
RS RS

terms of the relatlve displacements of the charge 8,0‘ .
Since the direct process interests us, we need examine
only the linear terms of the expansion (see van Kranen-

5 (C))
donk”) The coefficient of € Ao a ‘S“’Q )

- ) ‘ .
--R-.(x‘* s8N+ ijx‘:"»f $%0)xi (K Pr 591U 248,

@
ana 255 &Bn )\ = s (X P2 XY
gAu RS =3 (R¢

-\S
Loy XTix O o i M. G0

We shall use van Kranendonk's model of a sodium
chloride lattice and suppose that a sodium nucleus is
surrounded by six equal point charges. We also assume
that the axes of the Cartesian coordinate system coin-
clde with the cubic axes of the crystal. Then the coor-

dinates of the six charges (the sodium nucleus is at the

origin) are:
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o=\ ==
(X“ Xz, Xm) («,0,0) ()\b‘.) " X‘.n) (-a,0,0)
o=2 -ol==2
KO X2 XM= o) (XX X)) = (ora,0)
(20)
xX=3 ¥=-3

(X“) Xg:)) Xu))= (0,0, (X‘ » X( » X“’) (o0,0,-a)

. n

Here "a” 1s the equllibrium lattice constant. Then for

A=\, substitution of eq. (20) into eq. (19) gives
(\)
() .
3%, ( )\ - q"-l - x +6(£|.L+“J;-I)]- @)

We multiply eq. (21) by E:\: , the k-component of the
relative displacement, and sum over the index k:

s

u)

G(J. ""—(-S \ (0

q_‘i

- 9 1)) 6 .. V)
“@‘5‘. + @@,

If we retain only linear terms, we find

B,
+2 9 0) W
— ) —— g .
RS Q.I,‘ \ "\ g
' )
*2
Similarly, we find the linear terms for all the RS
ot
The results are:
W =)
Boe o BetDu e o
R? al Ch g3 ) RS ATy w3,
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Bu) q B&-z) q 2)
+2 Q) ' @ . By A=
L2 33 @ oo ~ - bx 23
E at gl a“ gz ) Q-; ad § E (33)
)
gf:l -12)
—— OO O . +2 oo
S o. (23¢)
R3 ) RE&
The complex conjugate of any of egs. (23a, b, c) equals the
(=)
linear terms for the expansion of the corresponding "s" .

The presence of a sound wave

Conslder a unidirectional standing sound wave propa-
gated 1n the dlrection of the x-axis. The displacement of

a lattice point is

Sz=Acn (hLx-5comwX
A 1is the amplitude of the sound wave, and d is an arbi-

, Wwhere fJa=32 aw >

trary phase factor., For the central nuckus we find

Sz Acen d conwX @)
while for the charge 8,
)}
S“ Aceor(ba-S) comwX. s)

Since the product Jaa is small for a direct process, we

make the approximation

Coa (ba-S)=ceed + ba arn§ - (26)
Combining egs. (24), (25), and (26), we have

§u) = Akacnd ceewX. 27)
Also 3.=%"=0. (29)

Computation of the relative displacements of the five other
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charges shows that:

§(1) g(‘z) _ §°” - o
3 g2
5:-‘)= "Araeind coawX
g“": Ebu =

3
) (- -
§ -g( ) K ‘)

-gtﬁ) (y)_‘b

(29)

gﬂ) .gw) (—3) o,

Substitution of the relative displacements in eqs. (23a, b
W)

2

c) ylelds —RJ'—- N——S-A,L & arin §coaX Cloal)
C=v)

2% o0 T Abo e Semmuk Gob)
-\

) ) Q) 3)
Ehz B+1 EL; 8+1
Rz_ R—q_ R 3 R—s3

Next we expand eq. (17a):

(3o)

)
(TmlQ. \Im-\-z\z C B—?:.
«“)

- 3C@_ \[(r*,..\ﬂ\u:-m-\) \J(r*-m-\-n(t-m\\cx {&’Tg% M

TQI-Y)

C~ ‘) (- z) (- 3’

.. B8 8. .
* 8 R:*'%s Rs"'?)-t_ﬁ?*&"-ﬁ"'%"—é%‘g'

Let Z'l= ¥e for all® , where ¥ 1s a constant and € is
the electronic charge. Substitution of eqgs. (30a, b, c)

in the expanded form of eq. (17a) determines the matrix

element CEMmIRN | Tme) s
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EmIHIT me)=- %Q(I*mn\(:-m-\) X

X \J(I*m-\-\)(]:-,w\) (% A«Lamé'conwi)_ (3)

) % (at)
If we recall that B, =8 » then from eq. (17b) we

find the matrix element

(IM\\\.\‘ \1,‘“-1 =- gel_ﬁ——-?i—\.) (a‘m*l)(t+m'|) b 4
X (I-m\-\»‘)(.I +~n) ( A.&;ws mwi) Q2)

3
With I =—3, egs. (31) and (32) become

(1M\H'\:~n+ﬂ=(Im\w\xm-z\ =
_3¢e Q\’

Q.\r’)( acnd mwi) ) (33)

Transition probablility per unit time

Since the matrix elements of the perturbation R’ are
time dependent, we must use time-dependent perturbation
theory to compute the probability per unit time of a &Am = x2
transition. We expand the state Y of the perturbed sys-
tem 1n terms of the eigenstates ‘PA of the unperturbed
system, Let Q’L(;t) be the coefficient of the eigenstate ¢
in the expansion. Then first-order perturbation theory

shows that (see Schiff, Quantum Mechanics, p. 195).
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¥l -"(w.‘bm"“W)-t -4(&.) -
sz Him | € -1 g =L
JN 2% a{‘m_._ w %M_ o ] 34)

‘o
where H_*m is time independent and E_L- S tw..&m'
If U -w>o , the first term of eq. (34) is negli-

gible compared with the second; and

o ..é(w”;w)x
o (&) = Db € :

If the system 1s initially 1n the statemn and the perturba-
tion is turned on at time X=e¢, the probability of finding
the system in the state b , after a time X is

| Hppn | it (U2 )
1 (w Wwt w)?

| Q, (¥ \1 = (3¢8)

Since the nuclear resonance line has a finite width, we
express the probability that a nucleus has a Larmor preces-
sional frequency between W and WwW+dw by the normalized
line-shape function guu). Then the probabllity that the
system makes a transition in the tlme X from the state ~n

to one of the statesluis

+ oo
\ o > H(Wi s W)X
W, = — o o o=
I S\H -\ Cloy o) gudde. G3)
~®
. 1 -
The functilon et (W s wlt is approximately a

(W, - w)*
S - function, and Siw) is zero outside a definite frequency
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interval; hence, we write eq., (36) as

WD Tl (s WY
W= —_’:‘-‘J had S Qg zw)® S

el &

The transi‘cion probablility per unit time is

T

Wi _ -.W_\_\;\::"—"nj— 3 Cw).

x ~ 2kt
We average over the frequency spread dw of the resonance
line and find the average transition probability per unit

time 2
W= ( *m‘) (37)
ar 4 ’RJU
where §¥ is the line width in frequency.

We have considered the case for (Wy =W)X o . This
means that the perturbed system absorbs energy from the
radiation field. When (%ﬁt W )¥o, we have emission of
energy by the perturbed system. In this case the second
term of eq. (34) is negligible in comparison with the first
term. Calculation of‘V%L~“yie1ds the same result as eq.
(37).

If we substitute the value of the matrix element
from eq. (33) into eq. (37), we find the probability per
unit time for aA~w=t 2 transition induced by ultrasonic

energy. The result is
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_ b (2R AL —
W“‘-Mﬁ»( 4 )(Q) s

Finally, when we average et $ over all values of

the arbitrary phase factor § , we find

‘ o P TS ¥
w- . 3?)
2T fraldv

The Nuclear Magnetization

We shall compute the magnitude of the macroscopic
magnetization of the sodium nuclear spin system and find
the effect of ultrasonic energy on the magnetization. We
consider the spin system in a steady magnetic field and
in the presence of ultrasonic energy; however, there is
no radiofrequency field present. First, we write the dif-
ferential equations which determine the populations of the
nuclear spin states as a functlon of time. Solution of
the equations for steady state conditions yleld the number
of sodium nuclei in each spin state, and the macroscopic

nuclear magnetization follows lmmediately.

The differential equations

In order to write the differentlal equations we must
take account of all processes whereby a sodlum nucleus can

make a transition from one spin level to another. Since
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ultrasonic energy is present, all Am=t2 , where ~ is
the magnetic quantum number, transitions are allowed.
The probability "W" of such a transition has been found
in a previous section, and eq. (38) is the expression
for "wW".

The spin system of the sodium nuclei is in thermal
contact with the sodium chloride lattice. Transitions of
the sodium nuclei between spin states strive to bring the
spin system and the crystalline lattice into thermal equi-
librium. For the thermal processes both am =%\ and
A~mn=%2 transitions are allowed. If we let "W' and "Wp"
be the probability of a e~ =-\ and &~ =-2 transition, re-
spectively, the probabilities for the corresponding downward

E. . E,,,.,..)

transitions &~ =24\ and &a~M=+2 are WMP( and

z"ﬂ’(&:’" En-n'l'l\ As an approximation we expand the expo-

nentials and wrlte

\,v
Wi &‘ + for am=+\ transitions
and W, (\+ 2L v__‘_) for am=+2 transitions,

where
(E_ -~ E oty Y= Who

The expansion of the exponentlals 1s valid, since hv«e XT

except at very low temperatures.
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There is a third process which is responsible for re-
arranging nuclear spins among the spin states. Mutual
Spin-spin flipping of the sodium nuclei is the third pro-
cess, and its effect on the populations of the spin states
was suggested by Abragam and Proctorl6. Each sodium nu-
cleus experiences a local magnetic field because of neigh-
boring sodlum nuclei. We may suppose that the local magne-
tic field consists of two components. The first, a static
component, arises from the dipolar interaction of the so-
dium nuclear moments. The second compénent is an oscilla-
ting field. Since the magnetic moment of each sodium nu-
cleus 1is precessing in the constant external magnetic field,
a nelghboring sodium nucleus experiences an oscillatory
field whose fregquency 1is the Larmor precessional frequency
of a sodium nucleus in the external magnetic field. As a
result, the osclllating field from nucleus "a" can flip the
spin of nucleus "b". While the spins flip there is an ex-
change of energy ketween nuclei "a" and "b". The process re-
quires conservation of the energy of the spin system, and
for mutual spin-spin flipping no energy leaks from the nu-
clear spin system to the crystalline lattice. Spin-spin

flipping takes place only between l1ldentlical nuclear species.
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Fig. 7 illustrates spin-flipping for the magnetic energy
levels of a sodium nucleus. Only AmT2| transitions
are allowed, and the probabilities P and P, for mutual
spin-flipping are explained in the diagram.
If we let M,, be the instantaneous number of sodium
nuclei in the energy state specified by the magnetic quan-

tum number ~» , then the differential equations which des-

cribe the populations of energy levels as a function of

time are:
dN; N. M;, M
T2 = MR ——*.-/v,zg-&-z MBS +N%Q—~—]-N;£W+M_..w

N M3 Mer M-3
ot aR S e
=

S )V
+ N-;i(.\ +1A\w,_+ N,/‘W' -

d L N.L Mo N;, M.

3 X = |ramege % MR R MR +2 M +
+M—%‘P‘_—&?"+N_|iﬂ_K,_}]-N_JiW+N;;-W-MtW."’
-'N-J‘._W,_(\-v-za)-'-h/_;iw.U+¢-\+N;.1Wz'

AN- N N M.

= —= N P_i MoP % Mo _

_.zN.{w‘—N.;i(zaw,)-N_kw-c- N-o W, +

+ NoW + Ny W, -
o T
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In these equatlons we have let A= -\\i&% .

8quare brackets express the spin-flipping processes, and

The terms in the

they require a word of explanation. Consider the situation
whereby a nuclear spin makes a transition from the state
“'“=*“‘:,_ to m= - -'7-_ through mutual spin-flipping. Then
from Fig. 7 we see that the spin-flipping involves proces-
ses b’ and ¢/ . (We can ignore processes a, a , and a'' ,
since they do not change the spin populations.) We shall
restrict ourselves to process o’ » and compute the change
per unit time in the population number NJ;- . The change
due to process b’ is proportional to \"? s the probability
per unit time of the mutual spin £lip (w _.;_--rm-g(m-;;_-»m-ai\;

it is proportional to the number of spins in the level N_gi',

and finally the process b’ cannot oceur if the state mmz=-%
dM\ _ N‘k
is not occupied. Consequently, we write —) =-MF—2,
X v r N
where N is the total number of spins in the spin system.
N-3
The factor _f'- represents the probabillty that the level
N

= - }}»_ is occupied.

Steady state equatilions

For steady state conditions we equate the derivatives

to zero, and we find the following equations:
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N.I- N.L
P R -N +

+N-li(W\"'AW.3 + N L (WH W, +2aw )= ) (39a)

N-1 M-
-MP_2 _N %
‘-_ %\ N ;:'.Pz—N +N_|iP

N_|. N.I-
Y_ LN.P 3 MNP Tl— -th Na..;.')_N}P — _‘_N}P‘_ "

L'N » ' :.",;,—

-l
+~.{f?_&_=]-~;(w+zw.+ aw, )+ N}w.

+ N.;’L\w-\- W,+2aw, )= o. (Ray)
N-s N M.
-2N_,0 2. - N
‘_ e M_%: _'.:'.- N...LP Na.-\-?_N.}P e N—;,P W‘;

Ny
+N-‘iP| -N—"]"'N;;_KW* W) =M (WHaw, +2aw,) +
+ N.3 (W, +aw, Y=o (3a¢c)

EN-;;.:’ - -;P +N ,.p ;,..N__,_p ,_]+N,’__(w-+w,)+
+ Moy W, -;i(lw‘-\-léw.-\-w) = o (ad)
In these four equatlons we have assumed thatl" W, =W, .
That 1is, the probabilities of a transition &~ = -\ and
Amn= -2 because of thermal relaxation are equal. We add
a fifth equation which expresses the fact that the total
number of spins must be constant:
/V%.+N_,£+ M__'i-t- N_;L—. N. (33¢)
Simultaneous solution of any four of the five equations

will yield the population numbers N,,.-

The linear approximation

We notice that the population numbers M., appear quad-
ratically in egs. (39a, b, ¢, d). To find a solution we

shall approximate the quadratlc equations by linear equations.
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Conslder, for example, the product (N3 N_, ) L- . Ac-
4 - N
cording to Abragam and Proctor's suggestion, the mutual
spin flips distribute the nuclear splins among the energy
levels 1n such a way that the population numbers N.. are
determined by a Boltzmann distribution for a spin tempera-

ture Tg . Therefore we write
L (N, N, \= TN - & £
N SN MY = G R ( &) e =)

E -
ﬁ‘-&%(f—._"i:)(,- %)

E- £
2RO 5 0- 28]
2'{7(N—_'i+~;i—% ).

We may treat all terms of the form MNp NB’ similarly and
find in general
L (N‘,NB\‘:’.-',_-‘-(NP-&- M) - B 40)
Using eq. (2), we find for eq. (la)
-4 (w-.si‘-N%\P. +ER-L vy ”&)‘:’z“‘%'r."z*"q @ I0- TNG R+
+ 4 (M + N"E)P"-_‘ih':'ppz - N;i(w*— 2w, )+ Ne (W +aw,) +

+ N.t(wq-w,-\-zaw.) -0 .
We find similar expressions for eqs. (39a, b, ¢, d), and

the linear approximation consists of the following equa-

tions:
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-N;;‘(ﬂ-i-P,_-t--rw-r%w,) +N,‘_.(1q *RraewWtvaw, )+
+N-L R-FrawWruw +vow,) - N-;iP.‘_= o (i)
N;,LLzP‘-s-P{mw.)- N (SRR Fawasw +uaw,) +

+N..|;_K‘\?,—Q)+N.;, (9-.,"’.+ww-\-ww,+?aw‘)=o (4\\y)
k™

N;;_QV,_-P.+‘§W+WW‘\+N,;_QQP‘_pt)_ (41 ¢)
= —J,-_QSP\*‘P{‘"*W“"“’|+8’AW‘)+N-;:_G\'-‘.+ P+ 4W,+ vaw,)=o.

-N;z'.P‘_‘- N,._;(?,_- P+ WEaw)+ N..i(zp..,. A+ 4w, ) -

— N-; (P‘-t P‘_'\'?W‘ +\2 aw, +'-|vw) O CIF)!
kS
N%+ N + N"i+ N.;{-'N (41€)

We shall solve the system of equations formed by egs. (4la,

b, d, e).

Solution of the linear approximation

The determinant of the coefficients of the system of

equations can be expanded to yield the followlng equatilon:
vetl. =2 ‘_2 (R+20 )+ Qbw,+ w2 e-w,)l X
X Y_— P ) (WHWw, +aw,) - R Gw, +4aw,) ~
4 (WHw,+aw,)(IwW,+ L&Aw,\:l . (42)

fw

As an approximation, we drop all terms which contain &= =

as a factor and retain only terms which involve the proba-
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bilities ¥, ang P, quadratically. our neglecting terms
which contain ¥, or ®, linearly is justified, since the
spin flips take place in a time which is very short com-
pared with the time required for a thermal relaxation
process, and W, W, << P\ ,P,_ . The approximations reduce
the determinant to
et x —2u) Eb?. (P22 (WHw) +4f (R+2e)w,]. C43)

Using eq. (43) and the system of equations, eqs. (41a,
b, d, e), we compute the population differences (A!\!,‘;'-/\/_,‘:),[N_,a__-)./__,’:)J
and (N‘; - M’;.) . To find the population differences,
we neglect terms which involve (A)2 but retain terms which

contain & linearly. For example,

“N(HaW)CIOR +Tw + Fwy +10aW, ) (R +21 8 + 5w, + 12awW,+4wW)
DeT¥,

(N;{ N.l;).?_

We also retain only terms which contain ¥ or €, quadratic-

ally. Then
Naw,(SP)Y(R+1P,)
(My= M) = = D
LGP (P4 1P YW+ W )+ 4 R(P+1RIW,

4 Sw,

Since L7, = -\'; , we may express eq. (44) in terms of the
)

spin-lattic relaxation time :

Na J (us)
N3 - o .
( % Ne) Y /+_§.w1'.
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Simllarly, we find the same result, eq. (45), for the popu-
lation differences (ML -~AL.) and (ALL:-AL; ) ; con-
2 2 k9 2

sequently, we have

(MmN Y= (N - N Y= (M-, Y A ' - )
R U peu v

The result, eq. (46), of the linear approximation pre-
dlcts that in general the temperature of the spin system is
higher than the lattice temperature. If the ultrasonic
transition probability W is zero, the population differences
equal an ;s but 1%?- is the population difference for the
8spin system and the crystalline lattice in thermal equilib-

rium,

The macroscopic magnetization

The macroscopic magnetization of the nuclear spins is

=3 4 - N, -3 = - 4 -
M :,N{" LML= 4 Mo iM’:’. %_QN}LN.;S)-i- L (V- Moy

In the absence of ultrasonic radiation, w =0 ; and we find

the nuclear magnetization

Na
=3 M2 L AL Na _ g N
Mo-/z_u\‘r M deral e vl C4)

With the ultrasonic transition probability not zero, we have

=3 +1L NMa !
Mw’lxn‘*l+1wn Y I+ EwT
- g N : . (4%)
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The ratio of eq. (47) and eq. (48) yields
Mw - '
Mo- [+5:-w-|'.

S
Eq. (49) predicts that for sufficiently large values of

. (49a)

the ultrasonic transition probability W, we can reduce

the nuclear magnetization to a small fractlion of 1ts

equilibrium value Mg



CHAPTER IV

THE EXPERIMENTAL METHOD

Measurement of the spin-lattice relaxation time, T4

The spin-lattice relaxatlion time, sometimes called the
longitudinal relaxation time, was introduced phenomenologic-
ally by Blockl7. Congsider a system of nuclear spins, for
example, a crystal, 1ln a vanishingly small magnetic field.
The nuclear Zeeman levels are degenerate., If we thrust the
spin system 1lnto a strong magnetic field, the degeneracy of
the Zeeman levels 1s removed, but the nuclear spins are
nearly equally distributed among the Zeeman levels. After
sufficient time, the Boltzmann law determines the distribu-
tion of the nuclear spins among the magnetic energy levels
as the spin system and lattice approach thermal equilib-
rium. We may say that the initial temperature of the spin
system in the magnetic field was greater than the lattilce
temperature, and its final temperature 1s the lattice tem-
perature. The spin lattice relaxation time T,, 1s a meas-
ure of the time required for the spin system to cool from a

high temperature to the lattice temperature. 1In the Intro-

46
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duction we mentioned several proposed mechanisms which
bring the spin system and the crystalline lattice into
thermal contact.

For a collection of nuclear spins each with spin:E=-%
one can show that the épproach of the spin system to
thermal equilibrium with the lattice is described by the
equation: _t

T

(No=-N) = (No-M ) € (So)

Where
Mo = number of excess nuclei in the lower

energy state at thermal equilibrium

Ng = number of excess nuclel in the lower
energy state at time t=zo.

If the nuclear spin I?i-, it is not always possible to in-
troduce a single spin-lattice relaxation time. Also a sing-
le relaxation time may not be vallid if more than one process
is effective in bringing the spin system to thermal equlilib-
rium with the lattice. Although for sodium =% , the quan-
tity which we determine experimentally is a measure of the
effectiveness of the relaxation mechanism or mechanisms;
and we shall call it the spin-lattice relaxation time, Tl.
Pulse techniques provide a convenlent means for measur-

ing Tl. In order to understand the method, we regard the
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net magnetization of the spin system as a macroscopic
magnetic moment. ILet Mo be the magnitude of the macro-
scopic moment for conditions of thermal equilibrium. Con-
slder a sample of sodium chloride placed in the coil R of
Flg. 2., Introduce a coordinate system with its x-axis co-
Incident with the oscillator colls A and B; its y-axis co-
incident wlth the recelver coil R; and its positive z-axis
colncldent with the direction of the steady magnetic
field “o . When the spin system and crystalline lattice
are in thermal equilibrium, Iqo is parallel to ﬁo . We
subject the sodium nuclei to a pulse of radiofrequency en-
ergy by connectling the colls A and B to a gated oscillator
tuned to the proper frequency. If the oscillator 1is tuned
to the Larmor frequency of precession of 7‘.1., about -\-io ’

the macroscopic moment Mo will precess toward the xy-plane

through a polar angle O¢
Oz w, L,=¥n X,

where
¥ = gyromagnetic ratio for sodium

W= intensity of the radlofrequency magnetic fileld
:k“-.;duration of the pulse of radiofrequency energy-.
It 1s convenlent to choose —\3, and t,,in a way which will
make €= 1.;'_- (a 90° -pulse); consequently, immedlately after
the pulse 7:1., lies in the xy-plane. With the radiofrequency

field no longer present, Fv\‘o precesses in the xy-plane and
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induces a voltage in the receiver coil R. The magnitude of
the induced voltage is proportional to M, . After amplifi-
cation one observes on an oscilloscope screen the nuclear
induction signal which follows the pulse.

If after application of a 90° -pulse we apply a second
90° -pulse at a time t<T,, the magnitude of the magnetiza-
tlon whilch precesses into the xy-plane during the second
pulse 1is proportional to the fraction of Fagwhich returned
to thermal equilibrium (became realigned with'ﬁ;) in the time
between the end of the first pulse and the application of the
second pulse. At any given tlime the magnitude of Mgin the
direction of 'ﬁo 1s proportional to the excess number of nu-
clei in each energy state relative to the next higher energy
state. For a 90o -pulse, N, in eq. (50) is zero, and we may

write for eq. (50)
L (N-N) = R - = ¢S 1)

T
The amplitude of the induction signal which follows the se-
cond pulse is proportional to N in eq. (51). Experiment-
ally, we can vary the time t of eq. (51) by varylng the re-
petition rate of the radiofrequency pulses. A semi-loga-
rithmic plot of (Me-N ) as a function of the time interval
between pulses ylelds a stralght line whose slope is 0—%5).

In the experiment, whose results we shall report, for
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measuring Tl of sodium nuclei in sodium chloride, the fre-
quency of the radiofrequency field.‘i‘was 5.00 megacycles
per sec.; and the variable repetition rate allowed the time
interval between successive pulses to be varied from 1.25
sec. to 11.8 sec. The sodium chloride crystal was supplied
by Harshaw Chemical Co.; and the same crystal was used later
for the ultrasonic experiments. The nuclear induction sig-
nal was observed visually on the oscilloscope. Signal ampli-
tudes were read directly from the calibrated oscilloscope
screen,

Preparation of the sodium chloride crystal for ultrasonlc
studies

The sodium chloride crystal was a cylinder one-half
inch in diameter and two inches long. The axis of the cy-
linder coincided with the (100)-crystalline axis. The
'ultrasonic waves were propagated in the direction of the
axis of the cylinder; and in order to insure good unidirec-
tional standing waves, the bases of the cylinder were ground
and polished to make them parallel., Optical grinding pow-
ders provided the grinding medium. For a lubricant during
the grinding both acetone and mineral oil were used; how-
ever, mineral oil was more satilsfactory than acetone. A

steel right-angle block was used as a gulde to keep the
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ground bases perpendicular to the axls of the cylinder.
As a further precaution during the grinding operation,
the sodium chloride cylinder was rotated about 1ts axis.
After polishing, a mechanical measurement showed that
the bases were parallel to within * 0,001 in.

A X-cut quartz plate with a fundamental frequency of
ten megacycles/%ec. was the transducer. The quartz was 3/h
in. square, and opposite faces were plated with aluminum.
Spring-loaded brass clips provided a means for connecting
opposite faces of the quartz plate to the output terminals
of the ultrasonic osclllator. The transducer was cemented
to one face of the sodium chloride crystal. A mixture of
talc and sodium silicate solution acted as the cementing me-
dium. Determination of the proper consistency of the cement
is somewhat of a problem. Cement which is too thin does not
provide proper bonding, and cement which is too thick har-
dens too rapidly. Before the cement sets, one must take
care that the face of the quartz transducer is parallel to
the face of the sodium chloride crystal. Finally, the so-
dium chloride and cemented transducer were placed in an elec-
tric oven, and the temperature was gradually raised from room

temperature to approximately g0o° C and then cooled slowly to
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room temperature. The heating and cooling took place over
a perlod of about 16 hours. Mechanical measurements show-
ed that the transducer and sodium chloride faces were paral-
lel within ¥ 0,003 in. Fig. 2 shows the transducer-sodium
chloride system in its experimental position in the induc-
tion head.

The 1impedance of the quartz was measured on a radiofre-
quency bridge over a frequency range from 9.800 megacycles/
sec. to 11.00 megacycles/sec. “After the quartz had been ce-
mented to the sodium chloride, the impedance of the combina-
tlon was measured over the same frequency range. Frequen-

cles were measured with a type BC 221 frequency meter.

Measurement of ultrasonic effects

With the lattice of the sodium chloride crystal and the
spin system of sodium nuclel at thermal equilibrium in the
steady magnetic fieldlﬁg, pulsed ultrasonic energy irradla-
ted the crystal for 3.95 sec. Following the ultrasonlc
pulse and 0.25 sec. later, a pulse of radiofrequency energy
sampled the population differences of the sodium nuclear
magnetic energy levels. The duration of the radlofrequency
pulse was [ifty-six microseconds. A nuclear induction sig-

nal followed the radiofrequency pulse, and the amplitude of
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the 1induction signal served to indicate any ultrasonically
induced transitions of the sodium nuclei. The induction
signals were observed visually, and their amplitudes were
ready directly from the calibrated screen of the Tektronix
oscillloscope. The sequence of events, ultrasonic pulse
followed by a radiofrequency pulse, was repeated every 9.75
sec. A stop watch timed the duration of the ultrasonic
pulse; the calibrated time sweep of the oscilloscope deter-
mined the length of the radliofrequency pulse. The interval
between the ultrasonic and radlofrequency pulse was measured
from the oscilloscope sweep.

The cholce of frequency of the ultrasonic energy was de-
termined by selecting a suitable point from the real part of
the impedance curve (Fig. 11) of the loaded quartz transdu-
cer, and the ultrasonic oscillator (see Fig. 1) was tuned to
the chosen frequency. The radlofrequency oscillator (see
Fig. 1) was tuned to one-half the ultrasonic frequency. The
frequencles were monitored by a Halllicrafters SX-62A receiver
and measured with a type BC 221 frequency meter.

When the ultrasonic and radiofrequency oscillators were
tuned to theilr proper frequencles and the apparatus was work-

ing satilsfactorily, the amplitude of the inductlon signal
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followlng the radlofrequency pulse was observed with no
ultrasonic energy present. Next the ultrasonic oscillator
was activated; and with a specific voltage across the
quartz transducer, the amplitude of the induction signal
was observed. The diode voltmeter (see Fig. 1) measured
the peak voltage applied to the transducer, and the ampli-
tude of the induction signhal was recorded for different

transducer voltages.



CHAPTER V

EXPERIMENTAL RESULTS

The spin-lattice relaxation time

Fig. 8 shows a plot of a representative set of experi-
mental data which one uses to determine the spin-lattice
relaxation time, T, . A discussion of the theory of the
measurement appears in Chapter IV, and Fig. 8 1s a plot of
eq. (51). From the slope of the line, we find

\
L Y-

’[; = 10 Sec,

Ten determinations of T; were made, and the average of the

ten values 1is T;:ﬂ.\s-:.z? sec,

The parameter Y

In the theory of Chapter III we replaced the ions of
the sodium chloride lattice by point charges of magnitude
¥€. We shall obtain a numerical value for ¥ from theob-
served ultrasonic attenuation of the nuclear induction sig-
nal.

Eq. (38) for the ultrasonic transition probability con-
tains A* , the amplitude squared of the displacement of an

ion due to the sound wave. If £ 1s the energy density of
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the ultrasound in the sodium chloride, then A = -2(3—5)_; )y (Sv)
where

Q= density of NaCl
w = angular frequency of the ultrasound

We compute the energy density £ , by finding the power Fy
dlssipated in the sodium chloride. The quartz transducer
and the transducer loaded with the sodium chloride were re-
placed by equivalent electrical cir'cuitsla’ 19. The equiv-
alent clrcult together with the values of the electrical com-
ponents are shown in Fig. 9.

The capacitance Co is the capacitance of the X-cut
qguartz, plated on opposlite faces, and treated as a parallel
plate capaclitor. The frequency for operating the transducer
was chosen from Fig, 10 and Flig. 11, and the value chosen
was ¥ =10.2 mc/sec. From Fig. 10 and the reactive part of
the impedance of the quartz one can determine the effective
reslstance of the unloaded quartz. From Fig. 11 and the re-
active part of the impedance of the loaded quartz one can de-
termine the effective resistance of the loaded quartz. The
small inductance in series with resistance was necessary to
maintain the capacitance C, constant. It is attributed to
the difficulty in feading small changes in the reactive part

‘of an impedance from the radiofrequenc§ bridge.

If V is the rms voltage across the quartz, one sees
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from Fig. 9 that the power P dissipated in the sodium chlo-

ride is R
s

Ps=—= V;
S R‘T )

effective resistance of the sodium chloride, and Ry is the

» where Ry is the

total effective resistance of the loaded quartz. From Fig.
9, R = 26200

Ry=2%70R0
Hence, Oz AUV watk, | (s3)

In order to determine the energy density E , we must
introduce the phonon relaxation time Tp. The phonon re-
laxation time 1s a measure of the time required for a pho-
non of frequency W to be scattered Into a phonon of frequen-
cy w’. We shall use the value of Vp measured by Proctor and
Robinson'*. The value quoted in reference (14) is incorrect,
and the corrected valueQO is 'T‘,-: .19 % \63 . Then with eq.

(53), we have

£ BT _ (Gan@s?) v?

v V! 2 s

where V' is the volume of the sodium chloride crystal. Since

'—
The ultrasonic transition probability, eq. (38) 1s

27 ef Q ¥ A L
3. -t\-"a\o sv

W =
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and we shall use the following values for the constants

which appear in this equation:

E=4.%0 % ‘O“?m) electron charge

-1
P =0-40X10"  em®, sodium nuclear electric quad-

rupocle moment

A= q’.b'LX\O_lC/M’ wave length of the ultrasonic
waves in sodium chloride

Jp=27w: 136 o

-4

QA= 282 X10 e equilibrium lattice spacing

? for sodium chlorige

From eq. (52) and eq. (53), we find

A= (x0T VE (St
where the density of the sodium chlorlde 1s @=2.1b amlcc,.
The width of the nuclear resonance line is gilven by JU:T—"'?;’
where T, 1is the spin-spin relaxation time. We estimate T
from the length of decay of the nuclear linduction signal.
Experimentally, we estimate T, = loo«ec.. Hence,

S = 348 X105 aec! . (s1)

Substitution of the numerical values for the constants, eq.

(56), and eq. (57) into eq. (38) yields

W= 3.9) (o) VYT e, (s%)
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Fig. 12 is an experimental plot of the ratio A/A°
as a function of the square of the rms voltage across the
transducer., Here A 1is the amplitude of the induction
signal with ultrasonic attenuation, and A, is the signal
amplitude in the absence of ultrasonic attenuation. Eq.

(49) 1s the theoretical expression for A/A,"

A = ' . Cu9)
Ao l*%WT.

If we arbitrarily set WT, =\, then from eq. (49) we find
A/Ao=0 384, Fig. 12 shows that when A/A,=o.384, the

kS
voltage V = 800 volts. Hence, if we write WT,=AV;

- ) - - -3
where o is a proportionality factor, we find L--g;;;- [25%x10°

3

With Je=VW2Sx10 ° |, eq. (49) becomes

A - ! . CSa)
Ao | + X (2s)0sV>

Fig. 13 is a plot of the theoretical curve, eq. (59).

Since WT, =\ and V= 800 volts, we can use the ex-

perimental value of 7 = 7.15 sec. and eq. (58) to deter-

mine the parameter ¥ . We find Y = ©.LS¥® .
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CHAPFTER VI
DISCUSSION

The spin-lattice relaxation time

The experimental value T =11s§t2g agrees with the
value 1, =™.S found by Proctor and Robinsonlu. The
writer is unaware of other determinations of T, for so-'

dium nucleil in sodium chloride.

The parameter X

The magnitude of ¥=0.6% calculated in this thesis
is one-half the value found by Proctor and Robinsonll*.
The value stated in reference (14) 1s incorrect, and in
a private communication to the writer Proctor and
Robinson find X= V.3b . On the basis of the six point-
charge model, a Y of 0.b§% indicates that a sodium nu-
cleus sees an effective charge slightly less or, within
the limits of accuracy of the experiment, equal to the
charge of a single electron on each of its six nearest
neighbors. One should not expect to find a ¥ looco as
suggested by van KranendonkS, since his calculation treats
only indirect processesj; but the treatment in this thesis
is concerned with direct processes. Comparison of Fig.l2

and Fig.l3 shows that the experimental results and theory
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agree quite well; however, the experimental curve does
not show sufficient attenuation for large voltages. The
effect is due to inhomogeneities in the external magnetic
field.

It is difficult to determine the amplitude of the
displacement of an ion in the presence of a sound wave.
Both this experiment and Proctor and RobinsonlLP use the
phonon relaxation time and the ultrasonic energy density
in the sodium chloride to find the displacement of an
ion. The computation of ¥ wused the value of the phonon
relaxation time measured by Proctor and Robinson for their
experimental conditions. It is possible that a different
experimental dondition would yield a different phonon re-
laxation time. The bridge measurements indicated that
energy losses in the quartz were small; hence, energy in-
put to the composite oscillator (quartz and sodium chlor-
ide combination) was quite effective in producing nuclear
transitions ultrasonically. One may question the validi-
ty of the use of the radiofrequency bridge for measuring
the losses in the sodium chloride. The sodium chloride
crystal does not cover the entire face of the transducers
hence, the gquartz is also radiating into the air. There-
fore, all of the energy losses indicated by the bridge
were not dissipated in the sodium chloride. The equiva-
lent circuit which was used neglected losses in the so-

dium silicate-talc cement; however, these losses should be
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small. In general the use of a phonon relaxation time and
equivalent circuit to compute the displacement of an ion
in the sodium chloride is unsatisfactory. It would be
desirable to measure the ionic displacements directly,
since the weakest point in this experiment was the compu-
tation of the displacenent.

The values of ¥ found by different experimenters
do not agree. In his most recent experiment Pro_ctor2l
has found ¥ =¥%.\ . Proctor's experiment employed a Q-
meter measurement and the phonon relaxation time to deter-
mine the amplitude of the sound wave in the sodium chlor-
ide. TUntil experimental methods are refined and one can
make reliable calculations of ¥ it is without point to
speculate about the significance of the parameter ¥ and
the correctness of the six point-charge model of the so-

dium chloride lattice.



APPENDIX

Theory of Pulsed Nuclear Induction

We consider a system of nuclear spins placed in a
constant magnetic field 'I.{'O. At time £ = o we apply a
pulsed radiofrequency field of magnitude 2H; and frequen-
cy W . The time duration of the field 'ﬁ.l is - ,
and its direction 1s at right angles to the steady field
Ty

During the time oe s X, the Hamiltonian for the

system of nuclear spins is
- =i = -ltn -
[ {\)

H= =4 Hy =42 H,
Let the steady magnetic field H, be directed along the z-
=
axis of a Cartesilan coordinate system and the field I
directed along the x-axis. Then eq.(1) becomes
MH==¥ R T Ho~ ¥ T, (AW Con X)), (2)
where ¥ is the gyromagnetic ratio of the nuclear species
which we are considering, Ta and Xy are the operators

for the z- and x- components, respectively, of the nu-

¢clear spin. For the total wave function ¥ we must solve

the Schrodinger equation

=4 _9_?_ (3
Xy AR =

Let the nuclei have a spin I= %— . We expand the
wave function ¥ :
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3
@ = 3 ol ¢, & w" ()

where

- '&Wm‘* "4wmx
x“:‘]:-i"“\'a ¢M§’- = Em¢me .
Substitution of egs.(2) and (4) into eq.(3) yields

TAYR N con Wk f_C W (X) e-‘éw“i_‘;:x¢ =

-

'&"?ZC UT)¢ SN o (s)

If we use the relatloqsh:.g Ix" 'li' (I++I.),

where Ty = (T + 4T and I_= (T, -4iT),

3)
we may write eq.(5) as

-,..w Jt

ikEC (XY, €

- - -iw, X
¥RHcn WK ZC (X)€ ¢ -

= ¥4, W con ik écm(ﬂé"’%:*gsm L)

The non-zero matrix elements of the operators X4 and T~

are (mIVI_lam+1) T J(I-m)(:: *rn i)

(rwn \I‘..,\M-\\‘:-JZI-\-M)(I-M-H) .
Using these matrix elements and the orthonormality of the

wave functions .. , we find from eq.(6)

. . -at(w -t m)x
C,m'-'-,(w, corwXk E Ty \m- |)C, (:t)e +
“‘-‘ fwu-l fm)x
+(~n|I-|m*\)C u\e ] )

)

where W=YW, . If we let aw=(wW -w )=(W W)

N - ‘

and require that the spin system absorbs energy from the
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radiofrequency field, then we have (u-aw)=o; and eq.(7)

yields the following differential equations for the coef-
ficients C__ (x%x):

C3 -AW-G'Z:C
2

(o)
. . J3
Cji-A.w‘C-_\i*‘Lw‘-—z-Q} (¥L)
C_J_"‘A.UJ -—C ;,-i-.uu CJ_ (%)
. \J'i
C,/uw = C-+ (¥d)

In eq.(8) we replace jl-i by the operator © , and we
have a set of four linear homogeneous equations for the C’m,
If the equations have a non-trivial solution, the deter-

minant formed from the coefficients of the Can must

vanisn:
1 D -iw‘.‘g}- o o
'Aw‘% D -4uw, )
' i, U3 (q)
o -AW D .t.w‘TZ_
. J3
o o AW, =5 D
Expansion of eq.(9) yields
94 * 9 L .
© *57:“7‘0*17.“’\ = o
with the roots D= ...._J-i_ (1oa)
R D= *Z’i Clob)
For 0'—'—""**’. we find from eq.(8) that
C-Ji- \5-3-'(:;,z > .-.I.." ""—"' C} C-;,— -C;, - W)
Since we may write -1\..:,32
Cz=A,@° 7
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where A-\- is an arbitrary constant, eq.(ll) determines
the C., in terms of the constant A, . Ue treat eq.(8)
similarly for each root of eq.(10). The complete solu-
tion of eq.(8) will express each C..as a linear combi-
nation of four terms: one term for each root of eq.(10).

We find, therefore,
< Wo .t 3w. x - 3‘-\). x

C;f A.€ T-l—A e’y B, € +B € (\2a)
A, AT et <3y -4 3
CJi--;e -'—\5:..5'8 *+V3B,e -yrae C12b)
A ““?‘x A. Aw' 3"‘" -438%
C..li=""\,-§-te """\ﬁ-‘ ""‘\)—3 e +\f—8€ ()
ALt _ e L3 ¢ -4 3w
C-;,-'A 6 +A_€E "$B+e" * "B_E* x-*. iad)

We must determine the four arbitrary constants Ay,
A.,B_,8, in eq.(12) from the condition of the spin
system at time X =o© . Suppose the system has been in
the steady magnetic field .I?o prior to application of the
pulse long enough for the spins to reach thermal equilib-
riuwm. We are interested in the number of excess spins in

3

each energy level relative to the level m=~- 35 - The en-

ergies of the magnetic energy levels are

EAVERG BT IYRN Elm L VR WG, EE- AT R,

At thermal equillbrlum we assume a Boltzmann distribution
of the spins among the energy levels. Then the excess

spins in each level are

Y
(M- ,};-)= __qu_ —%”_—‘r’ (3a)



4 4 T GW3))
W,
UV;, N';.\' BX\ET : 03c)

From eq.(13) we find that the probabilities for excess

spins in the four levels are:
o =L p=Lt.p_
E};,-O’P"‘i-tn’ai_?-up;‘z- (1)
Consequently, at time X=o the coefficients C., must

satisfy the conditions

|C-;£(o\|:=o |C-_.i(o\ I’.:- L G18)
|- ol =t |Cs (21 =3
A solution of eq.(1l5) is
C-} (Y=o Cyter=33 3 id Cie)
C-y m-—J— e*? c:,,co}- Fe*d

where & (3 and J are arbltrary phase factors. TUsing

eq.(12) and eq.(16), we obtain
Re (A, +A_*¥B B = -\'I—-;’CnJ (e
W (A++ A+B,+B)= -\%—-ws
—-—-—-— -J3 8.

(ML)
*}m(——--—'+xrs‘8+~ﬁe-)=«s<~w“
R - E +0T B UTR) =T oo Q)
Fon -“-i-ﬁ-'hrfeaﬁe.\—ozw@
Qg(“ A++A..+B-|-" B_) =0 14d)

¥ A +A_+B -B) =°
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Let EB—A.\."'X',E‘LA.:J‘) ER,B_._-;Q;&,B_: v (i
Substitution of eq.(18) into eq.(17) vields the system of

equations:

x+~a+u+ =—\;.-;-_c_..q,;

X _3 - - L

s \E*-O'a'u \)":i'\r—u_zc.o—»oc

-X - _‘L =L con Q)
3 *’J-\&n+\f§Lr Ve coa (D

TXY¥Aru-v=o.

The solution of eq.(19) is

. _ \ + 3 s
X—gmq ?O_C_o—a,@ ‘%’J‘im

==t g 3
é—?c«-o( ?J—C-an.(?:"- Coad

L\
(L)
=t coex+ "L"Ca—a-@ o s
® 391 VI
1 \ \
VEog sevat 3R SRt R oY

The imaginary parts of A+,A_,B.HB- follow from eq.(20)
if we replace "cosine" by "sine". Our solution for the

arbitrary constants A+, A, B, ,and B. is:

Lol @ 3 .

At (e etz et) @1
A= ..L(_ eoi.ol_ -—\,‘;; e).(%+ 3_ A.J) (210)
B ")

By = +(e* +\)--i€.“'”-!-\—;..--;GJ~ ) (21€)
B.= -’2—(- eid-o- -—'\J:I.e*ﬁ-r —\:—: J) 21 d)
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For time X ?X ., the solution of the Schrddinger equa-
tion is = Eaactes

¥ é a, ¢ e :
At time A=A, , we require of the coefficients O,.:

T_ z LW

la V=lc (x ) ora_=cC_.,)e* “‘:t“’
The phase W, X, is the angle through which a spin in
the state ~~ precesses in the time X, . Finally, the

wave function for time % 24, becomes

—a, (-2
¥p=2C (x)ge B : (22)

The magnitude at any time X2X, of the nuclear signal

induced in a coil with its axis parallel to the x=-axis is
proportional to the x-component ALy, of the resultant
nuclear magnetic moment. Since .«x=YtIx , we must compute
the expectation value of the nuclear spin operator I, .

We have

KT 7= (YIS I¥) =5 (T, + T o). (23)

Using the wave functions of eg.(22), we find that

iz, ¢)= \’?Cr:;C_:}z..ﬂ—;f,i(w__:—cq;) (t-X )+
* .
+ZC‘|£C_,1W.A (WJ;'CQ.,.;)(X'-JC.,U-) +

VT C3Coapp. (Wm0 IR £ L.
= 9. [iaw (-2 V3 clc, +

L. * 2
“C‘zc-‘i*"?%,?ﬂ; Qw)

where (w__,_-ugz)= (w_,;-u.:_.l_): (u)}-w_\i)=_éw.
2 a x> 3
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Also
P*IT14) =2t dowo (-2 NVTC C-L+’—C._c,_+\)“ch fJ. 69
We can compute the quantities in the square brackets of
eq.(24) and eq.(25) by using eq.(21) and eq.(12). (In
eq.(12) we must set £=Xur.) Computation shows that any
term in the expansion of eq.(24) or eqg.(25) which contains
a function of the phase factors &, (‘3, and d§ as a factor
vanishes when one averages the functions over all possible
values of the phase factors. Consequently, one finds

that

-,,; £,
(1T, 1 9) = 2. iaw(t- 2.0 (£ € .
rge )
¥ Ir1y)= Jz.;f[,caw (X-x ) (__ e-tw.iur_‘_
- rgE) e
Then
- w x"tw\
2¢1,>= - & (M gty (et -
_e:'Jnﬁw('t‘ uf)))
and . .
LM, 2= E—"“;‘E‘Mw‘kWMAw CX-X.L) . 1)

It follows from eq.(26a) and eq.(26b) that

LUy7= -s—:j-m—;\w,chn aw (X-X.). (2%)
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