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CHARGE TRANSFER UPON CONTACT BETWEEN METALS AND INSULATORS

The equilibrium charge distribution between sub­
stances in contact has been calculated for several cases in 
the one-dimensional approximation, e.g. metal-insulator, 
metal-semiconductor, and metal-metal. In addition to these 
cases, we have considered insulator-insulator contacts, and 
certain other metal-insulator contacts. The direction of 
charge transfer is, of course, such as to equalize the Fermi 
levels. The order of magnitude of the charge and of the 
effective depth of the charged regions depend on the rela­
tive positions of the energy bands in contact. Thus, for 
example, in the metal-insulator case it is possible to have 
either a large charge density ( 1 0 ^ statcoulombe/cra ) in a 
thin layer (10 cm), or small charge density (10“ statcou- 

lombs/cm^) in a thick layer (10 ~ cm). The insulator- 
insulator cases give rise to similar distributions. The 
energy levels in most insulators are too poorly known to 
permit strict quantitative comparison with experiment, but 
the results permit a semi-quantitative explanation of many 
of the observations in static electrification. The calcula­
tions were carried out assuming the bodies In immediate con­
tact. No consideration was given the problem of a dielectric 
gap separating the bodies.
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CHAPTER I

INTRODUCTION

Contact phenomena play an Important role in present- 
day physics. It is convenient to make a division into time- 
dependent and time-independent processes. Under the time- 
dependent type we have, for example, the point contact and 
the junction transistor where charge flows in more or less 
steady fashion. Under the time-independent type we have the 
phenomena of contact potentials and static electrification.
This paper is concerned with only the last process.

We have made an attempt to explain some results of 
static electrification as reported by Hersh and Montgomery[l] 
and by Harper[2]. Various authors have calculated the equil­
ibrium charge distribution between substances in contact for 
several cases in the one-dimensional approximation, e. g. metal- 
insulatorC3]» metal-semiconductor[3,^ J, metal-metal[4], Be­
sides these cases we have considered insulator-insulator con­
tacts and certain additional metal-insulator contacts. The 
direction of charge transfer is, of course, such as to equalize 
the Fermi levels. The order of magnitude of the charge and 
of the effective depth of the charged region depends on the 
relative position of the energy bands in contact. Assuming 
an energy-band structure for the substances, we have determined
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the sign of the charge transferred the charge density, field 
strength, and potential variation with distance in the 
materials. The calculations are carried out by applying 
Fermi-Dirac statistics in order to find the charge density.
We then solve Poisson°s equation in each region and match 
the solutions at the boundary by means of suitable boundary 
conditions. This procedure gives us the necessary conditions 
to determine the constants and, therefore, permits solution 
of the problem. The calculations show that ample charge is 
transferred to explain some experimental data and so in these 
cases it is unnecessary to invoke surface states or local 
heating. The calculations were carried out assuming the 
bodies in immediate contact, the interpenetration of the 
bodies being supposed deep enough so that the interior struc­
ture need only be considered. No consideration was given the 
problem of a dielectric gap separating the bodies, although 
it is believed that this will have an appreciable effect in 
reducing the magnitude of charge transferred.



CHAPTER II

PROPERTIES OF ELECTRONS IN SOLIDS, CHARGE 
DENSITY, AND ELECTRICAL CONTACTS

A. Electrons In Solids [53
The first theory of electrons in solids was given in 

1900 by Drude. He assumed that electrons in a metal were 
free and form an electron "gas" in a container. This 
simple model oredicts the law of Wiedemann and Franz that 
the ratio of the thermal conductivity K to the electrical 
conductivity <T is proportional to the absolute temperature 
T. In addition the value of the Lorentz number L s ^/g-f 
was in good agreement with experimental data. However, the 
temperature dependence for the electrical and thermal conduc­
tivities treated separately was in error. Lorentz extended 
the theory using Maxwell - Boltzmann statistics in a more 
detailed consideration of the collision phenomena. The 
results explained the Wiedemann— Franz law, but again failed 
to give the correct temperature dependence of the conductivi­
ties. Also the theory indicated that in connection with the 
mean free path of electrons there should be one free electron 
for each atom of the metal. If this were true it would lead 
to unusually large values for the specific heat of metals as 
compared with insulators, in contradiction with the law of



DuLong and Petit. Eventually Sommerfeld[6] applied Fermi- 
Dirac statistics, and resolved the difficulty of the specific 
heat, but the predicted value of the conductivity was still 
not in good agreement with experiment unless free paths 
of the order of a hundred interatomic units were assumed.
At that time there was no reason to expect such large free 
paths. In 1928, W. V. Houston[7] showed that an electron in 
a perfect crystallattice can move unhindered throughout the 
crystal. In reality there are lattice imperfections, in 
the form of vibrations and impurities, which cause a finite 
free path. The concepts of quantum mechanics show that when 
i solated atoms combine to form a solid the discrete energy level 
of an electron broaden into a band structure. WIlson[8] in 
1931 used these ideas to explain the difference between a 
metal and an insulator. Quantum mechanical calculations 
show that for nearly free and for tightly bound electrons the 
dependence of energy on the propagation vector k can be placed 

in the form[ref.5,p.^3]

■£ 1 X(1) E - ■£ h-A- (nearly free)
/»i

(2) £ = /7 - -f (tightly bound),*/>n
where /m* is the effective mass of the electron and in (2) fl 
is the energy at the top of the band; t) is Planck's constant 
divided by 2_7f . When the energy of an electron is given by 
(l) we have a normal energy band of standard form. It re­
presents the behavior of nearly free electrons (and in
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addition tightly bound electrons near the bottom of an 
energy band). When the energy is given by (2), we have an 
inverted band of standard form. It represents the behavior 
of tightly bound electrons near the top of an energy band. 
If we take into account the exchange energy the term[9J

must be subtracted from (1) and (2). k being the magnitude 
of the propagation vector corresponding to maximum energy, 
and e the electronic charge. The exchange energy has this 
form when the electrons are perfectly free and are consider­
ed as a degenerate Fermi gas filling all states up to a max­
imum level with two electrons of opposite spin.

The calculations that we wish to make require a know­
ledge of the electron charge density. This in turn depends 
upon the density of electronic states into which electrons 
may enter. Hence, we discuss the density of electronic 
states.

B. Charge Density

confined to a spatial volume V and occuoying a volume in 
momentum space is [lOj. Quantum statistical mechanics
tells us that the volume of the smallest cell in phase space 
associated with an electron of given spin direction is equal

We define to be the number of energy levels per unit

JL  I

k + k

The volume of phase space occupied by N electrons

to h?, The number of cells is therefore given by \ j  ̂
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volume (for one direction of electron spin) lying in the 
range cA £ at E. This gives  ̂ Expressing
■p. in terms of the propagation vector k we have, since p  f<̂%

(E)^E - ^  k *

For free electrons k-space fills up with spherical symmetry 
and so the volume in k-space contained between two concentric 
spheres of radii k and k + d k is ^ukoik \ and #4 k ^ tylf k ,

. , .- Hnh'Jk / , ,

Thus, ^ /T ^

Substituting from(l)and (2) the value of k in terms of E, we
have for the density of states for bands of standard and in­
verted form respectively,

(3) m(E)j£ 

w  (e)c>E -- f a  (

If each allowed state were occupied by an electron we would 
integrate the proper expression for the density of states 
over the required energy region in order to determine the 
number density of electrons in that range. Electrons, how­
ever, obey Fermi-Dirac statistics, and we must multiply the 
density of states by the Fermi-Dirac distribution function,

given by /✓_) _ I_________
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where E Is the energy of the state in question and J the 
Fermi level. Here k is Boltzmann's constant, and T again 
the absolute temperature. The number density of electrons 
in a range (a, b) is given by an expression of the form

r **
J  /n (£)"/ (E) (^(E 

a
Multiplying the number density by the charge on the electron 
gives the charge density. These concepts will be applied in 
the next and later chapters where we consider in detail the 
charge distribution at contacts.

C. Basic Properties of Contacts
As is well known, when two bodies are placed in con­

tact charge tends to flow so as to equalize their Fermi 
levels. This give rise to charge layers of opposite sign in 
the two bodies. In Figures 1, 2, k9 5» 6, 7, and 8 we see 
energy level diagrams of bodies before and after contact. 
Before contact the levels are shown constant up to the edge 
of the crystal. After contact, as a result of the transfer­
red charge, the potential energy of an electron within the 
crystal will change, the levels shifting accordingly. The 
total shift from one substance to the next is e 
where A Vf is the total shift in the electrostatic potential 
of an electron In the substance on the left and A  Vz the 
corresponding quantity for the substance on the right.

In the insulator we are concerned with the energy Yo
released when an electron at rest outside the crystal is
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taken into the lowest level in the uppermost nearly empty 
band. This quantity is the analog of the electron affinity 
A for a free molecule. We are concerned also with the 
energy V0 necessary to remove an electron from the highest 
level of the uppermost nearly filled band. This quantity 
is the analog of the ionization potential I for a free mole­
cule. The quantity X Q is usually called "electron affinity" 
in solid state literature* but we prefer some designation 
differentiating it from the quantity A for a free molecule. 
The quantity does not seem to have been called "ioniza­
tion potential," however, the reasons for such a designation 
are just as good as those for "electron affinity." At pre­
sent we do not wish to introduce a new terminology, nor 
continue to use what to us is undesirable, and so shall try 
to get by with the use of symbols only. In the metal we are 
concerned with the energy ^  released when an electron at 
rest outside the crystal is taken to the Fermi level, or 
absorbed when an electron Is taken from the Fermi level to 
a point outside the crystal. In a sense ^  may be considered 
the analog of either the electron affinity or the ionization 
potential for a free molecule. It has been given the special 
name, work function. We are also concerned with the energy 
of an electron at the bottom of the half-filled band in the 
metal and designate this by UJQ .

In the figures the energy parametersof the substance 
on the left contain the subscript one, and the substance on 
the right contain the subscript two; For example, Figure 1
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represents a raetal-metal contact in which the charge flows 
from metal 2 to metal 1. As a result the levels in 1 are 
shifted upward by an amount <2 ^ ^  while those in 2 downward
an amount . Near the contact the energy of an electron
is not constant, and so the variation is designated by i/J, 
and in the two metals respectively. The reference level is 
taken with respect to the shifted levels. In contacts in­
volving insulators we take X' and to indicate variable
energy parameters. Further details are given in the remain­
ing chapters of this paper.



CHAPTER III

METAL-METAL CONTACTS

A, Charge Density In the Metal
Owing to the large density of states of a metal we 

would expect the transferred charge to reside in a small 
spatial region. Suppose the metals placed in contact have 
the relative energy band structure shown in Figure 1. 
Electrons flow from right to left causing the metal on the 
left to become negatively charged, the one on the right 
positively charged.

To see in more detail the charge distribution and 
potential energy variation we turn to a discussion of the 
net charge density and solve PoissonII8 equation for the 
potential.

The electron charge density is
oo 14 cO

(^) - ~ l c j / (e)/nj£)cl£ -2-e jj~ te)m_(C)ei£
~U) ~ 00 ^  t e a l/

and the positive charge density is

P (#) = f (s)̂ j£)ct£ = Zzjf^ (£)/*\J£)cJ£ + (f) ̂ E)oiEi

~oO ~ 0Uf -tC <3̂
f  f£) being a distribution function for the positve charge

It is a step function _c /r) - ( 0 00 > £ ? T
I X > £ y <*>'



The factor 2 accounts forthe two directions of spin. 
Assuming that electrons are not excited out of the lower 
bands in the metal, the first terms in each expression for 
P  (*0 are equal but of opposite sign. Insofar as the 

electrons in a metal form a degenerate gas[ll] even at room 
temperature, we may replace (£) by the step function

positive charge. This is constant before and after contact 
(no ionic current); therefore, we can change the lower 

limit to cAJol+e.AVx.
We get, using (3) P* 6,

Combining the two expressions substituting the values of 
the net total charge density in the metal Is

/

t £AL/ ‘ //

The integral (£)ot £ 
j ̂ * a K

represents the number density of
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We take /nJE) =/̂ _(e) because we look at /n(£) as a 

density of states for numbers of particles. Changing 
variables in each integral to X  = an(i
X  =  £ - (u j + 1/ ), respectively, we have0| 1 * i

i t  e avJ

p, M  =
h

=  t|W'

This expression represents the net charge density in 
metal 1 as an intrinsic function of distance, the distance 
occurring in the variable UJf (V) . We are now ready to com­
pute the potential energy variation of an electron in the 
metal by means of Poissonfls equation.

B. Solution of Polsson 8 s Equation 
We are to solve

c f ̂

where V is the electrostatic potential and £ the dielectric 
constant of free space. Substituting the charge density 
derived in A we see
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of U>

/>»

' 7r. hl )
u>, - - e V/

cU( being the potential energy of an electron.

Let y, * j +<^\/),

X  = J-('uj»,+e/SV'J.

and then,
= T-r f

31' ~ 1

Placing A  X _ i A  ( A y ,

cA /v-

JL Z

2 ®fy(

L  /Xy.V
/

^y, \ - k .  y ;  - 1 :

Integrating from J/fW to the value of y f where /%

dJi y, u)

, / J y \ '  „  (  ,  *  * I * ' ' ' *

A t ) ‘ M ? *  -y« >-]
7.

- CO
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K / L
I s

u (  At1 I 1I s

K
XX

y-J oi

£

s

- 1 £
S

Now a *  -y ,  -yoi * u ,ei - u ; ,  ,

A  = 7,, » *y_, _ j + = j + ^'0<
-X, vOf 0J o/

where ^ = ^ ' / s
Oi

Our equation becomes

Since for a metal A y t i ̂  j j we may expand the first
terrn̂  obtaining

fob

y.Oi

J .c *■
X-

= K y ' r  * '*■ (j i 1-
neglecting higher order terms.
B ut y, = yoi + a_>,

<̂ 7. = <7 AJ,and

so
L

( 7 7 ^  =  I K ,  f  =  1  J f ,  x *

and
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where we must take the positive sign. Integrating from

- 0 to rpi
Ay,(*)   s'*

3  T /  k t ‘/ A tX  - i / M V  l u
a j m  Ay/

A yl c+)
X A j/'

&y, f»)

&y, (*)
e J W

(o) C-

-  ] /  i K  + ,

x, X,1' #

Now Ayto) = y/o) ~ y o<(v) = e AV, . a positive
quantity:

y, - y  = Zsjy, = - K - p  .
0 /

Thus, yU. ^

= -  e C

D,rinl"e ̂  ’ J T k T 7 ‘
 ̂ , we have

J. ( z. (y)(5) w,-w„, = - £ ''/ 1 ̂

We proceed in exactly the same manner to find the 
charge density and potential energy variation in metal 2. 
We find that

_ it
’  ^  /

Oc>z~ <̂>01 ~ ^ ̂  ̂  d. (A 2- °/ <3 h d £ z - t j ^
1/ z * -X*

where e AV^ is negative^and the negative sign in the expo­
nent is used since /p is positive.
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To evaluate the unknowns e A Y  3 c-AV * and 5 * we
match the two solutions at the boundary by means of the con­
dition that the field strength must be continuous across the 
boundary^ and that at infinity m oi = J and

These conditions give respectively A  V  _ J, .

' J.z

and ujcii teAV; - w lttc +

or 4Jo <-f 2  = A-l +eAV/1 .
If we assume the effective mass to be the same in metal 1 
as in 2, and £ AA € . then ^  Xfi / i. -■ * j 2. ^

A V  / y ^and --- ^  -\ £±-
A X  1/ y '6- '

Taking X ,  x  Z  e.v. , 70i=Je./..„ ^  -  ~^ . l3e.v:  t A z ~ ' 9e

^  . _ ,//
c a Vl
c a ^ -  eil/t = - Poi - 2.13 ,

e £ V z = - L o s y ̂ )

e A V  =• /. /7£ i ^ .6?
i *

and J* = ^  tC hV| - ~ 51 o i V  y.,

If the energy bands are such that the Fermi level in 
metal 1 is above that of metal 2 the charge flows in the op­
posite direction. The calculations proceed in exactly the

same manner.
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CHAPTER IV

METAL-INSULATOR CONTACTS

A. G-eneral Behavior
We now consider four cases of metal-insulator con­

tacts. Figure 2 represents the contact between a metal and 
an insulator when before contact the Fermi level in the metal 
lies above the Fermi level in the insulator, and when the 
Fermi level in the metal lies above the bottom of an empty 
band in the insulator. Then electrons can spill from the 
half-filled band in the metal into the empty band in the 
insulator. Hence, large charge is lost by the metal from a 
small spatial region, and a large amount gained by the in­
sulator within a small spatial region.

Figure ^ is the case where before contact the Fermi 
level in the metal lies below the Fermi level in the insul­
ator and where the top of a filled band of the insulator 
lies above the Fermi level in the metal. Electrons can 
spill from the filled band in the insulator to the half-filled 
band in the metal. Much charge is lost by the Insulator from 
a small spatial region, and much gained by the metal within 
a small spatial region.

Figure 5 is the case discussed by Mott and Gurney[3] 
when in isolation the Fermi level in the metal lies above



the Fermi level in the insulator, and when the bottom of 
the empty band of the insulator lies above the Fermi level 
in the metal. Electrons escape by thermal agitation from 
the filled band in the metal to the empty band of the insul­
ator. Small charge is lost by the metal in a small spatial 
region and the same amount gained by the insulator in a large 
spatial region.

Fermi level in the metal lies below the Fermi level in the 
inBulator, and when the top of the filled band of the insul­
ator lies below the Fermi level in the metal. Electrons 
escape from the insulator only by thermal agitation from the 
filled band in the insulator to the half-filled band in the
metal. Small charge is lost by the insulator from a large
spatial region and an equal charge gained by the metal within 
a small spatial region. Calculations which verify these 
statements are made in the remaining portion of this chapter.

B. Case of Large Charge Transfer from Metal to Insulator
From Figure 2 we see that the electron charge density

in the insulator is given by

Figure 6 represents the contact when in isolation the

yi+cA'/l X * e & v.Z 2.

/n ( E){f£)<?<£ -2-C- / » . _ ( £ ) 2 (£)yfj£)c*E ,
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while the positive charge density is given by

Pi/*) - Lc ^  (£)-/j£) ct£.

= 2

In the range zn t c zp/ to + e ̂  t/_ the energy level 

density is zero for electrons and positive charge. We have

because every possible state for positive charge is occupied 
below ana empty above 1/ f e^i/  ̂ this being based
on the assumption that the nuclei stay fixed in the process 
of charge transfer.

The first integral, which pertains to the lower band, is 
concerned with a nearly-filled band, and the density of states 
has the inverted form. The second integral concerning excess 
electrons near the bottom of the upper band has the density 
function of standard form. Then we have

C J  ) (P (*) +  ̂ t U )  Ze.J[i _ ̂  (£)] (£)dE - 2 (E)a _̂ (£)#(£

The net total charge density becomes

st y c&l/Z- 2
where /

/ - /-(E) = C ^ - £}/kT +/ '

oo



Changing variables in the first and second Integrals to

A T V  = ; kTf - + .-Jj;
and A T *  ~ E-(xt-*cAVj ; kT I = -(x ^ c a ^ - s) , 
respectively, where t <T - tr and ^ 
we have

^ ̂  °° _/ j 00
^<vj = V/re/z^ l hl) — ■* ^  _ q7, J z ™ * k r f '( *

Defining [12 ] r*o „ 0
r  (I) - I * -ft -J A£ ~ C I IO c ( ■* Iwe finally have

i
id

if the effective masses of the electrons in the two bands 
are equal. This relation, together with PoissonGs equation, 
will lead us to the potential variation in the insulator.

1. Solution of Poi8sonlls Equation. We have

^  - - a  e U )  - - ( t j l i f  < o j .
Letting V[ » - e ̂  >

= fj f Fj_ ft-[) -Fj (f)) . where f\ = llILE^(l'TlkZ)
l l " " > f. ' hx J

-  fl [- ^  )
Letting yz - K-* and
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Integrating, with the boundary condition that aj ^ — > oo 

the field strength vanishes (by conservation of charge), 
we have

U) ( F  t f  J  {
where °l

t̂eri ~ ẑ. d £ /Y-'  5 cO  , >7
Introducing the relation [iz] pi (̂) = t J F3 (°),

and integration from o to x we see 
/ UL

_C^s''J, C z  z- *■ £ J
, L t Twhere

U ^ = o )  = ctvl- Ĉ  U»i ' ^  ^ -

From Figure 2 we see that K and (J07_ are negative and 
is positive, and that they are in the order y 4 U0 < .
The function /“̂  ( ) increases rapidly for positive values

/ / 
of , but is small for negative value of U v . If we stay
sufficiently far from U02_ we may retain only the last term
in the denominator. We have then

U
[/v, 'z oj

T
where Uz ^ U0l-£ » £ being a positive quantity. This
gives us an intrinsic expression for the potential as a 
function of distance in the insulator.



24

From equation (5) of Chapter II we have the corres­
ponding equation for the metal

(if) /*. . ^  M  {St-Zo)

where &AV{ is negative.
Equations (3) and (4) contain the unknowns cAVt 

and c a Vl , They are determined by the conditions that 
at the contact the field strength is continuous and that at 
infinity = J ir̂  -J0l - 3 ,

2. Evaluation of the Quantities eAV, ,eAViand 5 
From equation (3) we find that

(5) \ __ ^ /7 #| , /  j 2 
1 J ’ 'i

/£- O

= h  i  4  +eA/j/tT]

where we have taken the positive sign since the slope is 
everywhere positive; and from (4)

J  L-°( I _  -  c  a  Vt(6)

From our conditions at infinity

(7 ) = TOi

(8) and if t e.a v , - y„. = sO I

SO

(9) or £ AV, -e^l/ = 'Ui + 70J. ,



Assuming 3 to lie half way between the bands, we 
have <T = Then (5) becomes

(10) c4Vt

Substituting (9) into (6) we find

(11) d<M‘\ = '*<».'ir ~e^i4
^  L-o v,

Equating (10) and (11), we get

( 19 ]  f r $ & ? ' ’ * % ] } -  .

If /| p = (<4, - X<“)/(r h°).

then (TfJ{s rl 'I>j V  ^  -
(3

(12) or , where A = "TtV ti/ 2. n 1.1 c

and B -
( i r i U  '

This equation may be solved graphically for A| ,
and hence e hV^ . We take f o r ^ t h e  normal mass of the
electron, and set ^ - / , and T = 300° K, R value of
V = assumed for half the band width (as would be01

— 8the value for sodium). This gives = .673 x 10 cm and 

- 6.26 x 10^ cm _1,

whence B = 2.38 and A = 2.38^3.
For a specific example.
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BO p = Z t l

and A = G><i. S".

Figure 3 shows a plot of (12). We see that the two 
curves intersect at at = 20, y = 22;

and = Z e.vx

From (8), ^ = 1/̂  +e 2̂ 1/ - . The gap between the valence
and conduction band of the insulator is CT"= - 3 ev, so

and J = - 5~e.i<.

From (?) cAl/  ̂J - - -0. ZJe.i/..

Knowing the shift in potential and the position of 
the Fermi level at equilibrium, we are ready to calculate 
the surface and volume charge density in the insulator.

application of Gauss * law to a plane conductor carrying a 
surface charge (T̂  , the electric field outside is given by 
E =2/“ ^  .

80

X 2

3. Calculation of the Surface Charge Density. By

Since E

dJi kL- kkj-
z7̂  Irrc cf'V'

where °jjdL is a function of as seen from equation (2). 
cAy
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The expression may he simplified as in equation (3) 

by defining X  = , to give

We have then

' kr
2/T e

where x is determined for corresponding values of -JT

by equation (3). It should be noted that <f̂  {o) is an ef­
fective "surface charge" density in the sense that it is a 
measure of the charge to the right of the contact.

The following table shows the results;

TABLE I
X ( fl) <̂ 6r; (*>“) }oo <Th (x) /(T% (la)

20 0 18300 100$
8 1.5 6050 33
0 7 720 3.9

-k 26 105 .57
-20 76,000 .035 .00019

i see that about 70$ of the charge is located within

1-1/2 angstroms from the interface.

4. Calculation of the Volume Charge Density. From 

equation (l) we have

CJ+)* dz- (Fj(r-f)'Fi(r) .
‘/ i re. [ " 7 1 J
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For values of say 30 we may approximate this 

exoression by

A ;

<-/J\ e. ( *■ )

The following table shows the results;

TABLE II
f ^(A) j lop

20 0 770 x 109 100$
0 7 8.8 x 109 l.i

26 0.21 x 109 .027

C. Case of Large Charge Transfer from Insulator to Metal 
An analysis for Figure 4 similar to that for Figure 

3 shows that the volume charge density in the insulator is

(11 ( w ; - * { rf ( , . ( ) to},
except that now <sAVt is positive and $ AVU negative.
We solve for the potential energy variation X  ~ — e ^  
by means of Poissonlls equation;

A *
I ~ ĵ'/̂ JftTrXi->-eAK-f)4T]~F[--(Xx'feAK ' A tJj

KT{ £ - ( \  ■'C*V2 -J-) .

Letting ^  \  tc Al/t -J W  ?t = 2t/AT-;

where

* 1
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Integrating with the boundary conditions that as 4. 
the field strength vanishes, we have

121 ( £ j  - .; 1
Introducing the relatlon[12] jF±(r])d'i + — (fi),

3 =- * * Ir ^  V

and integrating from o to x we see
/  ̂f*

h ri
2AA'

(Y+tJ)-jFi (y-'feJ-jfl fSf«)+M(-f Jj
where

q _ e&Vu 
t01 T r

Here the positive root is extraneous, and we discard it.
If we restrict the upper limit to ^  - f0l -t £ where £ ? o 
and is sufficiently large, we may retain only the first 
term giving

(3)

I «■
\t

h  (r + fJ/J *
_ C.AVi

We now have an expression for the potential versus 
distance in the insulator.

From Chapter III equation (5) we have the corres­
ponding equation for the metal

( J * )  ^  = J, -A cohere now e_AV, is positive

We solve foreAl/ and c in equation (3) and (4) by the 
condition that at the boundary the field strength must be
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continuous and that at infinity
32

(5) f  -f c A  [/ r J dud - i = J ,' a i I

1. Evaluation of the Quantities ê i/, t e ^ ^ a n d  1 . 
From equation (2)

(6) I -  /? [X <r't *** ~e r̂jJ
At - 0

and from (4)

(7)
Eliminating J from (5) gives e f A V ' = % r \ + ^  .

Continuity of field strength requires that (6) and 

(7) be equal: ^

5 ( f  < W  * JF (^,-V̂ )/kT (^°)
Placing

gives

(8) - j j  FI (f)l = 4 + 57
where A = ?/( ẑ =B =

Equation (8) may be solved graphically for e A ^  , Taking 
to be the normal mass of the electron, €t = ̂  = 3,

T = 300° K, and Ja/ = 2 we Set

— 2 / 7 77 \ ^^  673 x/o ok. ■ *= 6.l£y/o i
7 - /Ptw
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Therefore B = 2.38 and A* = 2.38 ,
For a specific example

*>X= v., u0l_- -s.fr Z.v, , <f,ot T-£.L.7e.vy

f  =

and A = - 6 9 .5 ©
x

We are to plot therefore tyVj ^ ^
just as in Figure 3. The curves are found to intersect at 
a t f =  20, y = 22.

Now ^ KtjXzi - c A K j ^ r = iO "}

therefore, c a V^— ~Zc, v.t

and assuming <T = -3 e.i/., = ~ y  ” ^*

$ = + ^
Finally,

e ̂ 1/ - J - <f>ot = . 2.3 
Knowing the shift of ootential and the position of 

the Fermi level at equilibrium, we are ready to calculate 
the surface and volume charge density in the insulator.

2. Calculation of the Surface and Volume Charge 
Density. As in part 3 of Section B we have for the surface 

charge density k T  (zflV f z r  , ,1 ‘ .
W  s I F r  J f  I  r i  UJp  <* ,7h

The variable t has the same values here as in part 3 of 
Section B since ̂  , therefore, the results are identical



3^
to those in Table I on page 28 except the charge has the 
opposite sign.

The volume charge density has the form

which is also identical with the result of part k of Sec­
tion B. Table II, in the same section is applicable with 
the charge of opposite sign.

D. The Case of Small Charge Transfer from Metal to Insulator

agitation from the filled band in the metal to the empty band 
of the insulator. A small amount of charge is lost by the 
metal in a small spatial region, and the same amount is gain­
ed by the insulator In a large spatial region.

Applying Fermi-DIrac statistics to the energy band 
structure we again arrive at the expression

In this example, Figure 5, electrons escape by thermal

(1 )

for the volume charge density. Letting X  -~*V we have
Z-

for Poissonl|s equation

and f

For a specific case let us take

v  £ e /r If =-//€.k (p 'w
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We see from the figure that f and are negative quantities 
with If*- f for all x,and so we may neglect the first term in 
the expression for the charge density provided we are not too 
far from the contact, giving for Poisson,ls equation

= - g  /! (!).

Since / is negative we may also use the series representa- 
tion[l2] for /u (0 and obtain

nti

S - / S

If f Is sufficiently large and negative, we may approximate 
the series by retaining only the first term. The error 
is about(.6% If f ~~k, and negligibly small for f- -ZO »
the greatest value of f occurring in our example.

We finally have

= - 2  e f A  = -g n ( \ ) .
j i-

Solving in the usual manner subject to the condition that 
at infinity the field strength vanishes, we find

(2) Xu - ATJ^[(Cj-y# +2J j
r  3^ -('AVrfyr j,where = —  e. D, - C

JrT
( 3) For the metal we have OOf - (jj0i — - di 1/ C ^1 ^  ~ ̂
where Is negative.

We make use of the boundary conditions at the contact 
as before in order to solve for the unknowns' eA\/ , andeAV^ .
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It can be shown that t/̂ Vl is negligible compared with eAl/ . 
We can then take J ̂  ^ and e z>l/ - ~~ ~ 2- 2-3e i/z

The surface charge density is computed in the usual manner:

w  w -  i r - f z

with* = c , roj - ̂  _ c ,̂i/ - - f.oi «•
U  ( o) =  3  ^  'J S'Td7c out C*n toS /  4,x / ^ ̂  /OWi .

The volume charge density is

(si p, w  - - ^ ( z g a f r a ) /
- “ «<r.

and

It can be seen that the charge density falls to 1/A
oof its value at the contact in 750A. In cases where

differ by say 0.5 to 1 e.v. this distance ranges from about 
 ̂ no10 to 10 angstrom units, a value much greater than ob­

tained in the previous two cases.

E. The Case of Small Charge Transfer from Insulator to Metal 
Figure 6 represents an example where electrons escape 

from the insulator only by thermal agitation from the filled 
band in the insulator to the half-filled band In the metal.
A small charge Is lost by the insulator from a large spatial 
region and an equal charge is gained by the metal within a 

small spatial region.
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Upon application of Fermi-Dirac statistics to the 

energy band structure, we have for the volume charge density 
again

(1) f>. (*) = [ r { h - r ) - r i  (r)j .

PoIssones equation becomes

n &TT \ L(z^kT) *“ 
where T£_--C l/ > f - - { X ^  and = - j —  \ — ^ — J

We solve In the same manner as Section D, except that we
neglect the second term in (l) compared with the first,
obtaining

(2) IT = - ft T L Q  + (£i)%] J {s%z°)

with = e ' kl .

and = P(\)QX .

*'/$t
For the metal we have O'- tuffi - - e l/ c (•*■ £ o)

where is positive.
Making use of the boundary conditions as before, we 

solve for cAl/ and e A . As in Section is neglig­
ible compared with ehl^ , and so jf ^  ^ . As a specific

example, take ^  c - Jc .v. s

then e AV£ - J - lg7 +_|T = - / ev/"

C *  A t

(&V-VAk T
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The surface and volume charge densities follow the 

same form as those of Section D with the exception that the 
charge is of opposite sign. It is, therefore, not worth­
while to discuss this case further here.



CHAPTER V

INSULATOR-INSULATOR CONTACTS

A. General Behavior
In this chapter we discuss two cases of lnsulator- 

insulator contacts. The energy band structure is represent­
ed in Figures 7 and 8. Figure 7 illustrates conditions 
where electrons can escape from the left-hand insulator to 
the right-hand one only by thermal agitation from a filled 
band into an empty band at higher energy. Hence, small 
charge (perhaps 10"” statcoulombs /cm2) is lost by the left-

fi nhand insulator from a large spatial region (perhaps 10 A ) 
and an equal charge gained by the right-hand insulator within 
a large spatial region. B’igure 8 is the case where electrons 
can spill from the filled band of the left-hand material into 
the empty band of the right-hand material. Large charge, say

k 210 statcoulombs /cm , is lost by the left-hand insulator
from a small spatial region, say 10 A°, and equal and oppo­
site charge is gained by the right-hand material in a small 
spatial region. The following calculations give the quanti­
tative data of the previous arguments.

B. Case of Small Charge Transfer
The insulator on the right has a band structure 

identical with that of the insulator in Figure 5.



bz

We have, therefore, a volume charge density

(1) ^  = y,7e [ (1-r) - /p ff)J

The solution of Poisson®s equation is

(2 )

where J) = r _ -3* ~feAV/*
J 1 7 T e

and B = a  r(k)
2. 1 *

The insulator on the left has a band structure simi­
lar to that of the insulator in Figure 6. The volume charge
density is

(3) f/V - //Te f̂ JLL'j’'^/T r>,_ - P  ffjj  ̂
and the solution of Poisson“s equation is

/. '■y
(A) = -ZkTJy,[-(Ĉ  t P,J > (*£*)

r, r  3, {cA^' s)/*T
where 2> * e J C ' ~ 7 r  &

and B = A P  (\)
/ /  '

After equilibrium has been reached we see from 
Figure 7 that at infinity

(5)

(6) and + - |T - J  ,
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These equations along with the condition at the 

boundary that the field strength must be continuous deter­
mine the unknowns and eA\/ .

From (2) and (3) respectively
<A X I . ^

= 2A 1 ( C lV
L-O \ 1

and = i k T  / f \ j
2.

The continuity of field strength requires

c r  c y

a  = X  '

Inserting values for the G 9 s and D ”s, and assuming the effec­
tive mass of electrons in the two insulators to be the same, 
we find that

(7) f = + X*i) .
From (6) and (?)

e AV f -  M ( x  - J r  ) ,2m I OZ Q\ /

and from (5) and (7)

cAl/ = .

For a specific case let us take K,'~7j 3ro/ ̂ - w/
This gives I i'e,!/ v e A \ Z - „ / e i/ and e AVJ_ r 2.c./,

The expressions for the surface and volume charge 
densities in the right-hand insulator are identical with 
those in Section D,Chapter IV. We have, therefore, a charge 
density and depth of penetration which behave in exactly



^5
the same manner. The left-hand Insulator has the same form 
as the Insulator in Section E, Chapter IV, and, therefore, 
the charge density and depth of penetration are similar to 
those found In that section.

C. Case of Large Charge Transfer
In Figure 8 the right-hand insulator has a band struc­

ture the same as that of the insulator in Figure 2. There­
fore, as developed in part 1 of Section B of Chapter IV, the 
charge density is

The insulator on the left has a band structure the 
same as that of Figure k. Therefore, as derived in Section 
C of Chapter IV, the volume charge density is

After equilibrium has been reached it is seen from Figure 8 

that an infinity

(1 )

and the solution of Polsson's equation is

(2)

(3)

and the solution of Poisson's equation is
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k?

(6) -y^ = j

These equations, together with the requirement that 
at the hounciary the field strengths must be equal, enable 
us to determine e and e A  . We find, assuming the 
effective mass of the electrons in the two substances to be 
equal,

eAV< = 

and S =
For a specific case let us take X = - 7 e . v  ir =~/oeu.,Oj_ J £̂^
= - £ e.K, and X 6/ = - .

Then
= — 6.5 c.i/.j

d = - /.5 *. K,

eAV/ = 2.e. i/,.

This case is illustrated in Figure 8.
Equations (1) and (3) for the volume charge densities 

for the two insulators are identical with those of Sections 
B and C of Chapter IV, respectively. The potential energy 
variations are identical with those of part 1 of Section B 
and Section 3 of Chapter IV. Therefore, we conclude that 
the volume and surface charge densities and depth of penetra­
tion of charge in the two insulators follow a form identical 
with those of parts 3 and *4- of Section B in Chapter IV.



CHAPTER VI

APPLICATIONS

A. Other Features of Contacts
Hersh and Montgomery[l] describe the experimental 

techniques and the results in a 3tudy on the static elec­
trification of filaments rubbed against one another, and 
Harper[2] describes the charge transferred by spheres 
touching one another. In the previous chapters we have 
presented a quantitative account of the charge transferred 
when several types of contacts are made. At the present 
state of knowledge we cannot hope for a complete explanation 
of static electrification. Experimentally, the physical and 
chemical natures of the contacting surfaces are not known, 
nor are the temperature and the force at contact. Theoret­
ically, we are not certain that the substances used possess 
the necessary periodicity for the application of the band 
structure of solids. However, we believe that some progress 
can be made, and we have approached the problem on the 
simplified picture that charge is transferred between two 
perfectly periodic structures and that part of the charge 
remains when separation occurs.

Our calculations were carried out under the assumption 
that the bodies in contact were in equilibrium. For



i+9

metal-raetal contacts equilibrium should be attained instantan­
eously, with a large charge per unit area of contact. In 
metal-insulator contacts, where electrons can spill freely 
from a filled band into an empty band, the transfer of 
charge near the interface should take place in a very short 
time. We see from Figures 2, k, and 8 that owing to the 
smaller gap between the filled and empty bands of the In­
sulator as compared with the other cases, an additional 
charge is furnished by thermal agitation to the empty band 
at large distances from the interface. The charge Is small, 
but the gap is large enough that an appreciable time may 
elapse before equilibrium is attained. The cases represented 
by Figures 5, 6, and 7» where electrons are transferred from 
one body to the other by thermal agitation alone, should 
cause a long time to be required for equilibrium, with only 
small amounts of charge being transferred. We could expect 
appreciable charge In these cases only if the Fermi levels 
are nearly at the same level in the isolated substances or 
if the temperature is very high.

In our picture we assume that the charge which has 
been transferred remains localized at the point of contact 
in the case of insulators but not of course in metals. Ex­
perimentally, we know that charge can be localized on 
insulators; but theoretically an electron in the conduction 
band is free to move throughout the crystal upon removal of 
the attractive force due to the oppositely charged layer 
of the other substance. G-onsalves[l3] has proposed a theory
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to explain localization based on surface states. Seitz 
[p.320-326] discusses localization from the point of view of 
imperfections on the surface, and Mott and Gurney [p.86-88, 
12*4-131 J put forth several models to trap electrons in the 
volume of the crystal. We merely say that some mechanism 
exists whereby electrons are immobilized within the volume 
of the insulators.

Harper[2] has made a study of the case of metal 
spheres as to how much charge remains upon separation. His 
results show that the fraction of charge remaining is prac­
tically independent of the speed of separation, amounting 
to perhaps one-half. The other half is returned by tunnel­
ing through the gap during the early portion of the separ­
ation. Harper does not consider in this respect any metal- 
insulator or Insulator-insulator contacts, but it is clear 
that more charge will be tunneled back in these cases be­
cause of the greater intensity of field strength per unit 
area. Let us assume that perhaps one-tenth of the charge 
remains upon separation in the insulator-insulator cases.
We now turn to comparison of our theoretical results with 
experiment.

B. Comparison with Experiment
A qualitative prediction of the theory is that a 

triboelectric series exists, that is, that substances can 
be ordered such that any substance above another substance 
in the series will become say positive when the two
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substances are rubbed together. This rule follows from the 
circumstance that the electrons flow from a substance with 
the higher to that with the lower Fermi level. Because the 
value of the Fermi level depends upon temperature, molecular 
structure, and state of strain as well as chemical composi­
tion, we can expect a definitely ordered series only if the 
state of each substance is carefully specified, or if we 
restrict ourselves to substances possessing well-developed 
Fermi levels. Triboelectric series are given in many places 
(see for instance reference 1). The existence of these 
series is evidence for some of the qualitative features of 
our picture.

Much more convincing evidence would be provided if 
we could predict the position of a substance in the series. 
Unfortunately we have almost no data on the positions of 
the energy bands in the substances used in the various ex­
periments, Hersh and Montgomery (nrivate communication) 
have made a start on predicting the values of certain of 
the energy parameters in the case of high polymers. They 
have been able to correlate the relative positions of sev­
eral synthetic polymers in the triboelectric series with 
the properties of the monomersC 1^,153. It is too early to 
say how meaningful this correlation is.

On the other hand, we may make use of the theory 
outlined in the earlier chapters of the present work to test 
our picture by a semi-quantitative procedure. We examine 
the sign and amount of charge transferred when a set of
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metals and insulators is rubbed against one another. Then 
we try to assign a set of values to the various energy para­
meters, and see if a consistent set of predictions is found.
At the present stage of investigation the details of the 
mechanism of charge return--in particular the dependence 
upon resistivity— during separation are so little known 
that we must restrict ourselves to only a semi-quantitative 
treatment.

Figures 9a and 9b, reproduced from reference 1,
Figures 26 and 29, show the experimental results of rubbing
insulators on insulators and metals on insulators,respec-
tively. We may correlate these results somewhat by the

f o renergy level scheme shown in Figure 10^where*the photoelectric 
work function has been taken as the value for the Fermi energy. 
Agreement is obtained in every case with regard to the sign 
of charge transferred and in most cases with order of magni­
tude. The Fermi level for magnesium lies above the bottom 
of the nearly-empty band of nylon, and so a large charge is 
lost from magnesium to nylon. This case is discussed in 
Section B of Chapter IV. Aluminum has its Fermi level below 
the nearly-empty band and as explained in Chapter IV, Sec­
tion DJ a small charge is lost from aluminum to the nylon.
The Fermi level for iron lies below that for nylon but not 
low enough so that electrons can spill from the filled band 
in the nylon to the iron and sô  as studied in Section E, 
Chapter IV̂  a small number of electron is gained by the metal. 
For platinum we see that electrons may spill from the filled
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band of the nylon into the half-filled band of the metal 
and, therefore, as explained in Section C of Chapter IV, 
large charge is lost by the nylon to the platinum. We have 
one serious disagreement in our diagram, acetate on nylon.
In this case we would expect a small charge transfer, as in 
Section B of Chapter V, but a large one is observed.

The data in reference 1 show that the maximum sur­
face charge density measured is from 10 to 100 statcoulombs 
per square centimeter. Under normal conditions of tempera­
ture and pressure the breakdown strength of air corresponds 
to a surface charge density of 5 to 10 esu on a plane sur­
face, and perhaps ten times this value for cylinders of the 
radius used in the experiments. According to our calcula­
tions in part 3 of Section B and part 2 of Section C of 
Chapter IV and Section C of Chapter V, we have densities of 
transferred charge of the order of 10,000 esu. Hence, we 
have an amount of charge transferred which Is far more than 
adequate to explain the amount measured. The charge re­
maining is decreased by a factor of ten, say, through the 
tunneling effect, and finally by a factor of 10 to 100 
through atmosphere breakdown. On the other hand, If the 
mechanism is that described in Sections D and E, Chapter IV, 
(electrons boiled up to an unfilled band), the maximum 
charge transferred over an energy gap greater than 0.5 ev 
is only 5.0 x 10”2 statcoulombs per square centimeter. The 
chief point to be established here is that large amounts of 
charge can be transferred even between insulators by the
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mechanism of Chapter V (electrons soilllns' ir.tc an incom­

pletely full band) without calling upon local heating, or the 
existence of surface states. We cannot reach a more de­
finite conclusion without additional experimental evidence 
on the position of the energy levels.

The same explanation would be valid for the results 
of Harper[2] on the light contacts of insulating surfaces 
with metals. Harper found that relatively large amounts of 
charge can be transferred when spheres of certain insulators 
are touched against spheres of various metals. These pheno­
mena can be explained on the basis of the mechanism just 
discussed. On the other hand, when the insulator is an 
exceptionally good one, the charge measured is negligible.
We believe that this finding can be explained by the large 
degree of reverse tunneling which must occur when the in­
sulator is very good. For then the charge localized at the 
point of contact cannot flow away, and the resulting high 
field will produce a greatly increased tunneling. Of 
course, the energy band structure might be such that only 
small charge would be transferred, but Harper studied enough 
different Insu3.ators that it seems impossible for all of 
those showing little electrification to'have the appropriate 

energy band structure.



CHAPTER V I I

CONCLUSION

The theory put forth in the preceding chapters 
appears to be able to explain semi-quantitatively at least 
the basic phenomena in static electrification. Our results 
are adequate to explain the experimental results without 
Invoking surface states. It is, of course, entirely possi­
ble that they do exist, and may even be the major cause of 
the charging process. The so-called "hot spots" proposed 
by Frenkel[l6] likewise may exist, and are the primary 
source of charging in certain cases where a large charge 
is observed when a small one would be predicted on the 
basis of energy bands alone. It Is evident that much more 
experimental evidence must be acquired before the proper 
choice can be made among the various theories.

The treatment could be refined by considering the 
problem in two or three dimensions[l?], and by including 
exchange and correlation energies in the energy term for an 
electron in a solid. It is doubtful whether it is worth 
while to refine the treatment until additional experimental 
data on static electrification are available or until there 
is more information on the actual values of the energy 
levels in the solids under consideration.
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