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CHARGE TRANSFER UPON CONTACT BETWEEN METALS AND INSULATORS

The equilibrium charge distribution hetween sub-
stances 1ln contact has been calculated for several cases in
the one-dimensional approximation, e.g. metal-insulator,
metal-semiconductor, and metal-metal. In additlon to these
cases, we have considered insulator-insulator contacts, and
certain other metal-insulator contacts. The direction of
charge transfer is, of course, such as to equalize the Fermi
levels, The order of magnitude of the charge and of the
effective depth of the charged regions depend on the rela-
tive positions of the energy bands in contact. Thus, for
example, in the metal-insulator case 1t 18 possible to have
either a large charge density (lOllstatcoulombS/cmB) in a
thin layer (10"8 cm), or small charge density (1ot statcou-

1ombs/cm3) in a thick layer (10_'2

cm). The insulator-
insulator cases give rise to similar distributions., The
energy levels in most insulators are too poorly known to
permit strict quantitatlive comparison with experiment, but
the results permit a semi-quantitative explanation of many
of the observations in static electrification. The calcula-
tions were carried out assuming the bodies in immedlate con-

tact. No consideration was given the problem of a dielectric

gap separating the bodlies.
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CHAPTER I
INTRODUCTION

Contact phenomena play an important role in present-
day physics. It 1s convenlent to make a division into time-
dependent and time-independent processes, Under the time-
dependent type we have, for example, the point contact and
the Jjunction transistor where charge flows 1n more or less
steady fashlon., Under the time-independent type we have the
phenomena of contact potentials and static electrification.
Thils paper 18 concerned with only the last process,

We have made an attempt to explain some results of
static electrification as reported by Hersh and Montgomery[1l]
and by Harper(2]. Various authors have calculated the equil-
ibrium charge distribution between substances in contact for
geveral cases in the one-dimensional approximation, e.g. metal-
insulator(3], metal-semiconductor(3,4], metal-metall4]. Be-
gides these cases we have considered insulator-insulator con-
tacts and certain additional metal-insulator contacts., The
direction of charge transfer 1s, of course, such as to equallze
the Fermi levels. The order of magnitude of the charge and
of the effective depth of the charged region depends on the
relative position of the energy bands in contact. Assuming

an energy-band structure for the substances, we have determined
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the slign nf the charge transferred the charge density, field
strength, and potential variation with distance in the
materials, The calculations are carried out by applying
Fermi-Dirac statistics in order to find the charge density.
¥e then solve Poisson's equation in each region and match
the solutions at the boundary by means of sultable boundary
conditions. This procedure gives us the necessary conditions
to determine the constants and, therefore, permlits solution
of the problem. The calculations show that ample charge 1is
transferred to explain some experimental data and so in these
cases8 1t 1s unnecessary to invoke surface states or local
heating. The calculations were carried out assuming the
bodles in immedlate contact, the interpenetration of the
bodies being supposed deep enough so that the interlor struc-
ture need only be Eonsidered. No consideration was given the
problem of a dielectric gap separating the bodles, although
it 18 believed that this will have an appreciable effect in

reducing the magnltude of charge transferred.



CHAPTER II

PROPERTIES OF ELECTRONS IN SOLIDS, CHARGE

DENSITY, AND ELECTRICAL CONTACTS

A, Electrons in Solids [5]

The firsttheory of electrons in solids was given in
1900 by Drude. He assumed that electrons in a metal were
free and form an electron "gas" 1n a container. This
g8imple model vnredicts the law of Wiedemann and Franz that
the ratio of the thermal conductivity K to the electrical
conductivity ¢ is proportional to the absolute temperature
T. In addition the value of the Lorentz number L = K/
was 1in good agreement with experimental data. However, the
temperature dependence for the electrical and thermal conduc-
tivities treated separately was 1n error, Lorentz extended
the theory using Maxwell — Boltzmann statistics in a more
detailed consideration of the collislion phenomena. The
results explained the Wiedemann--Franz law, but again falled
to give the correct temperature dependence of the conductivi-
ties, Also the theory indicated that in connection with the
mean free path of electrons there should be one free electron
for each atom of the metal. If thls were true it would lead
to unusually large values for the speciflic heat of metals as

compared with insulators, in contradietion with the law of



L
DuLong and Petit. Eventually Sommerfeld([6é6] applied Fermi-
Dirac statisticse, and resolved the difficulty of the specific
heat, but the predicted value of the conductivity was still
not in gbod agreement with experiment unless free paths
of the order of a hundred interatomic unlts were assumed.
At that time there was no reason to expect such large free
paths, 1In 1928, W, V. Houston[7] showed that an electron 1in
a perfect crystallattice can move unhindered throughout the
crystal. In reality there are lattice imperfections, in
the form of vibrations and impurities, which cause a finlte
free path. The concepts of quantum mechanics show that when
isolated atoms combine to form a s0lild the discrete energy levels
of an electron broaden into a band structure. Wilson(8] in
1931 used these ideas to explain the difference between a
metal and an insulator. Quantum mechanical calculations
show that for nearly free and for tightly bound electrons the
dependence of energy on the propagation vector k can be placed

in the form[ref.5,p.43]

(1) E =% ﬁaﬁj (nearly free)
m
(2) E = %7—-%>E:ﬁf (tightly bound),
Veaq?

where ~n 18 the effective mass of the electron and in (2) 4
18 the energy at the top of the band; f is Planck's constant
divided by 277 . When the energy of an electron is given by

(1) we have a normal energy band of standard form. It re-

presents the behavior of nearly free electrons (and in



additlion tightly bound electrons near the bottom of an
energy band). When the energy 1s given by (2), we have an

inverted band of standard form. It represents the behavior

of tightly bound electrons near the top of an energy band.

If we take into account the exchange energy the term(9]

e’ K-k " k -k
2—.; Zk,m+__—i"—/&h/ m }

it g —— et

k km\-t-k

must be subtracted from (1) and (2). kK _being the magnitude
of the propagatlon vector corresponding to maximum energy,
and e the electronic charge, The exchange energy has this
form when the electrons are perfectly free and are conslder-
ed as a degenerate Fermi gas fllling all states up to a max-
imum level with two electrons of opposlte spiln.

The calculations that we wish to make require a know-
ledge of the electron charge density. This in turn depends
upon the density of electronic states ilnto which electrons

may enter. Hence, we discuss the density of electronic

states.

B, Charge Density

The volume of phase space occupled by N electrons
confined to a spatial volume V and occuoying a volume 1in
momentum spaceaﬁe is Va@f[lO]. Quantum statistical mechanics
tells us that the volume of the smallest cell in phase space
associated with an electron of given spin direction 1s equal
to h3. The number of cells is therefore given by L““ﬁf/hg.

We define m(E)AE to be the number of energy levels per unit



volume (for one direction of electron spin) lying in the
ranged £ at E. This gives m(EJAE = 04{3/}73 . Expressing

j?, in terms of the propagation vector kx we have, sinceﬁ:ﬁk,
s

For free electrons k-space fills up with spherical symmetry
and so the volume in k-space contained between two concentric

spheresof radil k and k + A k 18 47 kofk ; and ok = 47 Ak

= -
gl _2.77‘/{0“{'

m(E)oAE =
Thus,

Substituting from{l)and (2) the value of k in terms of E, we
have for the denslty of states for bands of standard and in-
verted form respectively,

3
1

= 3/
(3) Mm(EIAE = ! Z *)Efdg =2/T(%;”—§'/1£1’:of£,

PRS- m
4t | TR
3
z 3
T e Zam )%, 5 2.m*)2 ¥
(b)) m[E)eIE = 725 'gl’ (A-E) i€ =Z'7(7'T’) f%}’-f) AE.
If each allowed state were occupiled by an electron we would
integrate the proper expression for the density of states
over the required energy region in order to determine the
number density of electrons in that range., Electrons, how-
ever, obey Fermi-Dirac statistics, and we must multiply the
density of states by the Fermi-Dirac distribution function,

given by fYE) - / ,
- efE"S)/kT ny




where E 18 the energy of the state in question and J the
Ferml level, Here k is Boltzmann's constant, and T again
the absolute temperature. The number density of electrons

in a range (a, b) is given by an expreesion of the form

b

/m () f (E)AE .

Qa
Multiplying the number density by the charge on the electron

gives the charge density. These concepts will be applied in
the next and later chapters where we consider in detall the

charge distribution at contacts,

C. Basic Properties of Contacts

Ag 18 well known, when two bodies are placed in con-
tact charge tends to flow so as to equalize their Ferml
levels., Thls give rise to charge layers of opposite sign in
the two bodles. 1In Figures 1, 2, 4, 5, 6, 7, and 8 we see
energy level diagrams of bodies before and after contact.
Before contact the levels are shown constant up to the edge
of the crystal. After contact, as a result of the transfer-
red charge, the potentlal energy of an electron within the
crystal will change, the levels shifting accordingly. The
total shift from one substance to the next is e (AV -AY),
where AV 1s the total shift in the electrostatic potential
of an electron in the substance on the left and AV, the
corresponding quantity for the substance on the right,

In the insulator we are concerned with the energy X;

released when an electron at rest outside the crystal 1is
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taken into the lowest level in the uppermost nearly enpty
band. This quantity 18 the analog of the electron affinity
A for a free molecule. We are concerned also with the
energy'Lg necessary to remove an electron from the highest
level of the uppermost nearly filled band. This quantity
is the analog of theionlzation potential I for a free mole-
cule., The quantity ); is usually called "electron affinity"
in solild state 1literature, but we prefer some designation
differentiating it from the quantity A for a free molecule.
The quantity VU, does not seem to have been called "ioniza-
tion potential," however, the reasons for such a designation
are Just as good as those for "electron affinity." At pre-
sent we do not wish to introduce a new terminology, nor
continue to use what to us 1s undesirable, and so shall try
to get by with the use of symbols only. In the metal we are
concerned with the energy %)xeleased when an electron at
rest outelde the crystal 1s taken to the Ferml level, or
absorbed when an electron is taken from the Ferml level to
a point outeside the crystal. In a sense lé may be considered
the analog of elther the electron affinity or the ionization
potential for a free molecule. It has been given the speclal

name, work function. We are also concerned with the energy

of an electron at the bottom of the half-fllled band in the
metal and designate this by W, .

In the figures the energy rarametersof the substance
on the left contain the subscript one, and the substance on

the right contain the subscript two; For example, Figure 1
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represents a metal-metal contact in which the charge flows
from metal 2 to metal 1. As a result the levels in 1 are
shifted upward by an amount € 4V, while those in 2 downward
an amount ¢ AV, ., Near the contact the energy of an electron
is not constant, and so the variation 1s designated by W/,
and W, in the two metals respectively. The reference levells
taken with respect to the shifted levele. In contacts in-
volving insulators we take X, and U, to indicate variable
energy parameters, Further detalls are given in the remain-

ing chapters of this paper.



CHAPTER IIl

METAL-METAL CONTACTS

A, Charge Density in the Metal

Owing to the large density of states of a metal we
would expect the transferred charge to reside in a small
spatial region. Suppose the metals placed 1ln contact have
the relative energy band structure shown'in Figure 1.
Electrons flow from right to left causing the metal on the
left to become negatively charged, the one on the right
positively charged,

To see in more detail the charge distribution and
potential energy variation we turn to a dliscussion of the

net charge density and solve Poisson's equation for the

potentlal.
The electron charge density 1s
o w, +eal el
G_(w)=-2e f (e)m (E)cdF =-2e | f (g)m (E)AE -?-e/f (€) m (E)AE ,
~on -0 & reay,
and the positive charge density 1s
w, 1e alf o0
o0
= ‘ (E)od
(’,+(4e) =+18 f+(£)/r;f£)olf =2e¢ ﬁ(g)m+(5)d5 tle [ £ (5) m(E)AE,
— o0 - of) {'U"l‘ed‘/(

F(E) being a distribution function for the positve charge.
-+

function F o} w FE 2%
It is a step fu *(£)= {,,
I)E)Q)?an :
/ [
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The factor 2 accounts forthe two directions of spin.
Assuming that electrons are not excited out of the lower
bands in the metal, the first terms in each expression for
(2 () are equal but of opposite sign. Insofar as the
electrons in a metal form a degenerate gas[l11l] even at room
temperature, we may replace j7 (E) by the step function

f’(f)::{' O o 2E>T

/ T > E > w, real,
Combining the two expressions substituting the values of f:{E))

the net total charge density in the metal 1s

=0 o0
() = —ZC/f_ (£)m (g)dAE +26/7f (£)m, (£) A E
('U/"CAV/ Uo;yeAV:
s 1
=-2¢ [ pn (g)ddE + 22 /r:(E) AE
“’;"CN’,’ wﬁcovl
b
The integral d/;+(EkJE represents the number density of
w,#f-AV;

positive charge. This is constant before and after contact
(no ilonic current); therefore, we can change the lower
1imit to w,, +e AV .

We get, using (3) p. 6,
b

6(4) - 4 —/)ﬁE (WH:AV)]JE ‘f‘///( ) [é -, ﬂ:zx\/ﬂa{f

Wy CAV » #cab{



We take m+(5) =mM(E) because we look at m(g) as a
density of states for numbers of particles. Changing
variables in each integral to f = [’-(u4+e¢>%) and

;r = [ - (w°‘+cA\/‘), respectivelyJ we have

I-(w 'CA‘/} J’(w ffL\V

_ _ Z/m*%
ﬂ(’)‘-)—yﬂ T)e[/j AT // a(/r

: 5

= %’1(2:‘) [j (w -}:Ll.\/] [S w, -HSA\/)]

P\l

-

This expression represents the net charge denslity in
metal 1 a8 an intrinsic function of distance, the distance
occurringin the varlable W (x) . We are now ready to com-
pute the potentlal energy variation of an electron in the

metal by means of Polsson's equation.

B. So0lution of Polsson's Equation

We are to solve

O’L:M = ‘f// ()(,%)

where V 18 the electrostatic potential and E, the dielectric
constant of free space, Substituting the charge density

derived in A we 8ee
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1

Aw

RS

s 3

4

3
32 _z g )2
where K = ...;-/i—e— (_%.@—) . dnd w, = -e V.
! £, /7"

W, Dbeing the potential energy of an electron.

Let y, = J-(wreav),

}fo, = j—(wa,-rcé\/,):
and then 2
’ ‘7‘)/; = T ( % %){
o 'H'( J j"} .
. Z
1act a(_?“r’,:,Ld,(&_"_{),’:_
lac ng (/{A‘i 2 Ay! f'i’ °

1o A% NS 1 ’
c Y, (CA")‘J K' /' jc”

Integrating from Y (») to )’o’ the value of Yy where n — -00.

/ 4y, J (%)

/ A¥ ) 3

5 A /ay) 4y = K Z( % }

2 Z L) AY - oA
J AY, L otx ! y‘ yﬂl Y
o]
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- I{E‘y/ _‘yo, 'y/ - ;‘ym }I
04)"\2 _ T/- 4 3 3{ 5/1
gln;/ "ll{—:{'—*yf —Z-ycu y, ﬁ:_/;:.ym J

How Ay' - 'y’ —‘yo, = wo: By,
i Y, +AYy
—_— = o T ' = f + A_\}!
Y%, Y., 5 I+ ¥,

where ¥ = Ay,/
Yo,
Our equation becomes
Ay :
Ay o
(—4')=}(Jb,{ (’*?‘) 2{1+%)+ %
ol
Since for a metal Ay, iz | we may expand the first

B

oy

term, obtaining

z Iy )
A e R R OVRY
4

]

NI
L /l"

£ 5
- Ky, 7
neglecting higher order terms,
But j( = \.>/o, +A)I
and %21 = Ziéy
o Ay
7{(‘*\‘_/) < o
80 -——‘—"—‘“ = —‘z : A.y/ - 3
() = e - 2 e
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where we must take the posltive sign. Integrating from

"~ =0 to 4,

BY, ()
/G”‘”' \/ Ko /0140 ;

Ay DY,
Ay, (%) —_—
4 3 -
e _—_\/Z-}f,y; o~
Ay, (o)
Ay (~) 61/3/1]5'. Yo b
Ay, (0) ‘
Now Ay roy= y (o) -, (0) = e AV, , a positive
quantity:
V=Y, T AY () = -,
!
rhus, V3R, v »
wr—w()l = _E‘A‘/l t .
Defining,f = / , We have
1 /B/L K( -\/ol&
£
(5) w -w, = -eAV, e (4-560

We proceed in exactly the same manner to find the
charge density and potentlal energy varlation in metal 2,
We find that "
7
o —-w =—€ﬂ\/z c ( 7,0) dnd /117

ra ot

where e AV, 18 negatlive,and the negative sign in the expo-

nent 18 used since /£ 1s positive,
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To evaluate the unknowns eéﬂ{)clﬁwj and § , we
match the two solutions at the boundary by means of the con-
dition that the field strength must be continuous across the
boundary, and that at infinity w, +eay, Ty, =% and
W,, te AV, 1Y, = At

These conditions give respectively AV Y

and w, +e¢gv:¢)gl

W“L TCL‘VZ +*yoz_d

or ¢ +c/‘\\/1 = ¢01 -ftﬁ\/l

G,

If we agssume the effective mass to be the same in metal 1

. P
as in 2,and € ¢ ¢, . then [{ = K,,

“
and AV, = —M,y_if,

égci )L’ﬁ
Taking yol = Jev , _yoz: e v ! ¢o: ='é.z3e.»<j C,ﬁoz: -Ye v .
AV
bl SN Y
cAVL
cAV-etV, = ¢ -4 =223,
eaV,= -loss
\ -8
QAS% = /172 ,ﬂ = 6% xio em
and j = [A)m+e,/,sk/,/-r‘ya‘ = ¢ +c£)\/_, = ~fofev.

Gy

If the energy bands are such that the Ferml level in
metal 1 is above that of metal 2 the charge flows in the op-

posite direction. The calculations proceed in exactly the

same manner.
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CHAPTER IV

METAL-INSULATOR CONTACTS

A, General Behavior

we now consider four cases of metal-insulator con-
tacts. Figure 2 represents the contact between a metal and
an lnsulator when before contact the Ferml level in the metal
lies above the Fermi level in the insulator, and when the
Fermi level in the metal lles above the bottom of an empty
band in the insulator. Then electrons can 8pill from the
half-rllled band in the metal into the empty band in the
insulator. Hence, large charge 1is lost by the metal from a
small spatial reglon, and a large amount gained by the in-
sulator within a small spatial region.

Figure 4 1s the case where before contact the Fermi
level in the metal lies below the Fermi level in the insul-
ator and where the top of a fillled band of the insulator
lies above the Fermli level in the metal. Electrons can
epill from the filled band in the insulator to the half-filled
band in the metal. Much charge 18 lost by the insulator from
a small spatial reglon, and much gained by the metal within
a small spatial region.

Figure 5 is the case discussed by Mott and Gurney(3]

when in isolation the Ferml level in the metal lies above
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the Fermi level in the insulator, and when the bottom of
the empty band of the insulator lies above the Fermi level
in the metal. Electrons escape by thermal agitation from
the fllled band in the metal to the empty band of the insul-
ator., Small charge 18 lost by the metal in a small spatial
reglion and the same amount gained by the insulator in a large
spatlial region.

Figure 6 represents the contact when in isolation the
Ferml level in the metal llies below the Fermi level in the
insulator, and when the top o the filled band of the insul-
ator lies below the Fermi level in the metal. Electrons
escape from the insulator only by thermal agltation from the
fi1lled band in the insulator to the half-filled band in the
metal., Small charge is lost by the insulator from a large
gspatial region and an equal charge galned by the metal within
a small spatial reglon. Calculations which verify these

statements are made in the remaining portion of this chapter.

B, Case of Large Charge Transfer from Metal to Insulator

From Figure 2 we see that the electron charge density

in the insulator is glven by

fo o)

C,(% = -2¢ [m(e)f(E)AE

- o0

Ve a,

= -2e [ m (E)fIE)AE ~2€ [ () f1EIAET2E [ m (c)f (€ AE

oo
J(z teavy,

- oo 1 eV, IL;*CLW;
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while the positive charge density is given by

oo

G, (%) = zc/m+ (€) 4 (E) S E
- o2
Y+ecay X, recay, o2
.=2i/aapg;@7%5+25 e, (E]f (E}AE *ZC/;-Qﬁ/deE,
T ee real, 1;rcAV
In the range [ rcaV to X, +eaV, the energy level

density 1s zero for electrons and positive charge. We have
31&7 i={,C> V, 1AV, LE £ o0 ,
I ooz F < v +ealy
because every possible state for positive charge 1s occupied
below U, +rc AV, , and emoty above U, s enl, , this being based
on the assumption that the nuclel stay fixed 1ln the process
of charge transfer,

The net total charge density becomes

lfl-rﬁél/l =<
L( ):: 2 ( =
(%) =@, ¢)+CZ+M} Za/[/~3/_(g)]m_ (E)AE = 2¢] 4 (5)m (€)ofE
e ]
/?:zfcél/z

/
where  , _ 4 (g) = o (TEAT "

The first integral, which vertains to the lower band, 1s
concerned wlth a nearly-filled band, and the density of states
has the inverted form. The second integral concerrlng excess
electrons near the bottom of the upver band has the density

function of standard form., Then we have

v, teaVy

N

A

()(/x) -/r"/"( )7 [Viteay, - Eja/«f —-"/// 2””" [E (x, +54v)] AE

o TEAT o€ f)//rr .

- o9
X +CAV,
L3
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Changing variables in the first and second integrals to

kTo = v, +eaV,-E 5 KTE = —(x +cay -3);

and A Tx = E-(X+eAV) , kTg = -(x fcb%-x)'
l

respectively, where X T =V, and y = J-//rT'

we have
3 oo

(JL("') = Y Z;:J{T)/ :i:_a;j)i - '//76: Zm, k'f')/d-"a{’i‘
€
o

+{
Defining{12]
Fo(E)= f’*d&.

¥ - f ’

we finally have

(1) P () = a/n'e.(z’:‘ kT) F, (¥-§) - F({) ,

if the effective masses of the electrnns in the two bands

are equal. This relation, together with Poisson's equation,

will lead us to the potential variation in the insulator.

1. Solution of Poisson's Equation. We have

2 3
oAV 2 - 3
o _ Y7 - _/67¢ Zom,k7j ) o
o 76 0%) L ( o {g{y ) @(r)},

Letting 1[=-¢ Vz )

1.1 > ;
Avw oy /Mw -0 wnere /72_46”6(’-""1"‘7;

ﬁl’& Ez. /71
or A Jv
IEETIFAC
-, [‘(7‘2*““4‘7}47_7}.
Letting Y, = VyrenV -3 =X 1ealf-73, and U, = )/,_/‘4,7_’

d ,L 0(u‘\2 — /7L ¢ - T - .
we have;(:‘;‘[z(_&—c;/j—— F_{/C_;{UL) /LZ(Y UL}}
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Integrating, with the bouncary condition that g5 .« — oo

the field strength vanishes (by conservation of charge),

we have
X u
(2) (f‘ﬁi) 24
Ax Z?:
where “or
uo;-;(/‘;_ At o —

Introducing the relation [j2]

and integration from o to x we see

{

e |

/E(UOL)'j/F;(YU )+

2l I
75

z f
2/7 Gi?z
2
CA\/ T
where Y
HLOy:q)= SR dud U,
I
From Figure 2 we see that ¥ and (/,

is positive, and that they

7
) 2//?(7)0(7 u

et

—

3

‘5 (a),

are negative and eAVL/A—T‘

are in the order Y< ( <enV jv.

!
The function /E (Lﬂ ) increases rapldly for positive values
123

!
of U,

i
, but is small for negative value of U,

If we stay

sufficiently far from (,, we may retaln only the last term

in the denominator.

VA
o |

; “u

-~

Z

—

o
02 —_—
r7

where U, € U,, -

We have then

/

A,

,4 Z
Sl x = - N
/fr) ) [#70-u)}"
c vy N

» £ being a positive quantity,

(x30)

This

gives us an intrinslc expression for the potentlial as a

function of distance in the insulator.
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From equation (5) of Chapter II we have the corres-

ponding equation for the metal

(&) % =,€,/&<<ﬁ;ﬁ1), (<o)
-e AV
where e AV, 18 negative,
Equations(3) and (4) contain the unknowns cAV
and €¢AV, . They are determined by the conditions that
at the contact the field strength is continuous and that at

infintty @ +coV =J and U tenV, -, =3 .

2. Evaluation of the Quantities ¢AV ,eAV, and 3

From equation (3) we find that

1
: i
1 A%| - ar) f 2, [l s, reatdfel)

Ay %470

where we have taken the positlive sign since the slope 1s

everywhere positive; and from (4)

A, —caV,
(6y | = <ol
51‘}“ pVRp) "1#

From our condltions at infinity

(7) d/ *CLNV;:)OJ

O
(8) and '(IOI,«—C,AVZ"%L=‘I’;

80 ¢

(9) or e AV -e DV = ¢): “"Va-z*)'o,_.
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Assuming § to lie half way between the bande, we

have ¢ = 2 .. Then (5) becomes

L (24,k7) {32/; [('?*“*‘4)4-7]}

Substituting (9) into (6) we find

(10)

ofu;/

(11) 05_‘1“_// %t iT —cay,
e | -

(%

(1L2) or ) where A =—(;%—JU
[%EW} =A-87, N ’
- and B = ———7— .
14.)z
(7{7 /el

This equation may'be solved gravhically for k{ s
and hence e AV, . We take for . the normal mass of the
electron, and set ¢ =¢ =/, and T = 300° K, A value of

Y, = 3./7ev 18 assumed for half the band width (as would be

the value for sodium). This gives j, = ,673 x 10~8 cm and
(%.—-4‘)2' = 6,26 x 107 cm —1.
7

whence B = 2.38 and A = 2.38@.

For a specific example.

X =-Jev ¢ ==-621ey Y,=—-1(0e.v

Gz o}



BO 922?1
and A =6C,/5_

Figure 3 shows a plot of (12), We see that the two

curves intersectat at 7 = 20, y = 22,

v, =X vV —
80 ( oz ve +C A ) = ZO,
Z : 4r

and CQVL =2 ev.

From (8), § =1/, +cAl, -y, . The gap between the valence

and conduction band of the insulator is ¢ = - 3 ev, 8o
Y. = ;273 = -/fey

and § = -6.5evu,

From (7) eAV =J-¢, = -0213cv.

Knowing the shift in potential and the position of
the Fermi level at equillbrium, we are ready to calculate

the surface and volume charge densgsity in the insulator.

3. Calculation of the Surface Charge Density. By

application of Gauss'® law to a plane conductor carrying a

surface chargeaz, the electric field outside is given by

E =214, .
Since B = - Eﬁé ,
oJ ¥
o __._// Ql/;, kr duL
T 27 5T T e !
Py 2ire ol

where qﬂgz is a function of U, as seen from equation (2).
Ay
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The expression may be simplified as in equation (3)
by defining A

Y-u, , to give

Z% B ) (z) }

We have then '
EENELTE

where x 1s determined for corresponding values of (, =¥ -1

]

a, (%)

by equation (3). It should be noted that Jj (o) 1s an ef-
fective "surface charge" density in the sense that it is a
measure of the charge to the right of the contact.

The following table shows the results:

TABLE I
A /Vz(/“?’) Gilr) (esu) j00 T (1) /7, (10)
—7;;- 0 18300 100%
8 1.5 6050 33
0 7 720 3.9
-4 26 105 .57
~20 76,000 .035 . 00019

We see that about 70% of the charge is located within

1-1/2 angstroms from the interface.

Iy, Calculation of the Volume Charge Density. From

equation (1) we have

Cw) = ”z [ﬁ(x §) - Fl(f}
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For values of say {>- 30 we may approximate this

exoression by

) = - o [/';(f))z,

4, e

The following table shows the results:

TABLE II
{ +(A) (’J’*)(’““) 100 ¢, (4)/&(0)
20 0 770 x 109 100%
0 7 8.8 x 107 1.1
-4 26 0.21 x 109 .027

C. _Case of Large Charge Transfer from Insulator to Metal

An analysls for Figure 4 similar to that for Figure

3 shows that the volume charge density in the insulator 1is
* 3
: 2 KT )%
(1) @@=eMz(Al ){?Q@d—@ﬁ&,

except that now ¢cAV is positive and eAV, negative.

We solve for the potential energy variation )(L = —€ %_

by means of Poisson's equation:

AY,

;l;_; = /ZL{/E;[((? Il-reésl/z—f)é]']”@[’(x{feé\% 'IfT]}J
where KTy = -(.XlﬂrcAl/z—I).
Letting _ZZ :J(Z +cAVl -J a nd Zz =% //\' T2

L= B laewiony
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Integrating with the boundary conditions that as x — oo

the field strength vanishes, we have

0("{11_ Z/qz.
o (2 - 32 (g0 R
Introducing the relation{[12] Z£ f;(%) J/f-(ﬁ)d7 +_,/; @

and integrating from o to x we see

f. ,
g
_(M;)‘ s )
kT {}2—6 (¥+7, ) /—-s (¥1?01) f/-:, fgoz)fjé %(-?1
ﬁt’c‘ﬁv‘/f'f' - ‘
where y
Z“‘- N e"kﬁf‘t 2 i:. z faa.

Here the positive root is extraneous, and we discard 1t.
If we restrict the upper limit to ¢, £/, +E£ where £ 70
and is sufficiently large, we may retailn only the first
term giving

/ £

,

” '('Z/?qu)”‘ } {-«me )}

_64“/:

Ne now have an expression for the potential versus
distance in the insulator,
From Chapter III equation (5) we have the corres-

ponding equation for the metal

(4) x =4 An (_—L—> ) (v < o)where now eV, is positive,

We solve foreal and e AV, in equation (3) and (4) by the

condition that at the boundary the field strength must be
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continuous and that at infinity

(5) y’%} tesly =7 and X, +eaV, -2 =3

1. Evaluation of the Quantities «4V | eAV and ¥

From equation (2)

) <
(6) i’ﬂ/ = - (24, 47) [:;.g[(m fo,.-wvl),frr]}
7"“ A0
and from (4)
(7) ;,—Li/ ( Yo 5 ‘c”“’i)//’,
SN P

Eliminating ¥ from (5) gives e(AVZ—A%) = Qé'*}(ol-;-%n

Continuity of field strength requires that (6) and

(7) be equal:

-L z
(1) {50z constrl) = (g )

Placing 7*

{ F(/])} /‘7+5‘
where A = ( j , B =/(%£_—")

Equation (8) may be solved graphically for eaV,, Taking /n,

[ 1]
-
™y 9
]
¢}
D
AN
ENN
—\i
N
a
QR
i
—~
9‘&
|
S
A\
\‘
—
N
S

glves

to be the normal mass of the electron, £ =¢& = 1,

4

= 300" Kjana J,, = Z/9e.v, we get

4 -
-¥ 24\ ;o=
/f = 673 xr70 om and 7':—{) = 6.26%/0 G,
! 7
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¥*

Therefore B = 2,38 and A*= 2.38 ,

For a specific example

X, = -25%ev, Yy = ~SSYev., ¢ =-6.Llev,
'*
¢ = -29.2,
and A=~ 69-59

. A -
We are to plot thererfore L, /2 (*f’)} = -[‘69.9 4 2.337’] ,
Just a8 in Figure 3. The curves are found to intersect at

*
at7 = 20, y = 22,
v - X .
Now (/1%715-6&%)4; =20,
therefore, cAV, =-ZLec.y,

and assuming ¢ = -3e.v, z, = -%_ = [.Sev,

I =X, ecol -2

—
o3,

—§.c¥ev,

"

Finally,
8[-\\/’ =7~ gé” = .23 e.v.,

Knowing the shift of votential and the position of
the ¥ermi level at equilibrium, we are ready to calculate

the surface and volume charge denglty in the insulator.

2. Calculation of the Surface and Volume Charge

Density. As in vart 3 of Sectlon B we have for the surface

0, (1) = S7e ) [ /5; (1)} wiTh £ z¥+g,.

The variable t has the same values here as in part 3 of

charge density

8ection B sincefi =-d, ,” therefore, the results are identlcal
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to those in Table I on page 28 except the charge has the

opprosite sign,

The volume charge denslty has the form

R = e {Fz' (zr-f)-—/‘; /f)}«

dne
which is also identical with the result of part 4 of Sec-

tion B, Table II, in the same section is applicable with

the charge of opposite sign.

D. The Case of Small Charge Transfer from Metal to Insulator

In thils example, Figure 5, electrons escape by thermal
agitation from the filled band in the metal to the empty band
of the insulator. A small amount of charge is lost by the
metal in a small spatial region, and the same amount 18 gain-
ed by the insulator in a large spatial reglon.

Applying Fermi-Dirac statistics to the energy band

structure we again arrive at the expression

* 3
kT )T
(1) ()c(f»}-: ‘//T&(é—éf"/f/ [/'/Z/ (3’-()'}; (f')}

for the volume charge density. Letting ‘sz—t\/ we have

for Polisson's equation

3
t ~ . 17 05 kT
A X‘ _ ﬁ {5/7_{) //LJ ({)} ot Th /-71. = ?__S_ (2 Z/r/),

i':,’} ¢ - /)L

and { = '-("XL *EAVI -«r)/kT -

For a specific case let us take

Y =-6ev VS o=~tle.v @ =—( L7V

[
[F2 ! !
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We see from the figure that § and ¥ are negative quantities
with ¥< § for all x,and so we may neglect the first term in
the expression for the charge density provided we are not too
far from the contact, giving for Poisson's equation
Ax
= - ’[/:_ /1‘-1 (f) ]

Av® !

Since [ is negative we may also use the serles representa-

tion(12] for £, ({) and obtain

2 =0 Sy S‘f—
AL g )0 5
0(421 J= v Ry =

If § 1s sufficlently large and negative, we may approximate
the seriee by retaining only the first term., The error

is abouti,6% if { =-4, and negligibly small for {= -205 ,
the greatest value of § occurring in our example.

We finally have

z i
&,—.—’ A = -8B c where -B,_ = ﬁ,_ ['(%) .
Ayt ‘

Solving in the usual manner subject to the condition that

at infinity the field strength vanlshes, we find

(2) X, =k71h[(gﬂi-majz («Z@)

{ - V
_(C'Al/-—_r)/ Z(x(,._ e L)/‘—T
where C¢ = /.?.; e ‘ kT dnd Dt - .
/
¥/
(3) For the metal we have W/ -cuo' .::—ez:)l/, e ‘?: (/’450)

where cA\/, is negative.
We make use of the boundary conditions at the contact

as before in order to solve for the unknowns§ €AV, andeLSV; .
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It can be shown that eaV, 1s negligible compared with e BV,

We can then tak = - T - ¢ - -
ake J ¢°l and caV = y-X, Z = 2.23ey

The surface charge density is computed in the usual manner:

’xl/ - “(f@[/‘.f)/; - X,
(5) T = LT o o THT _ eiuie ek T
2/1 & + ’
with » = o | X, (o) =X _col, == 23ev

(x4

&:(o) - 3‘ 52 S$STdTcowl om é!/mL )

The volume charge density is
3 2

/”N-\(~ 7 i,—q . /m*)" z F
(5) (%) = —977&(%/!) ; g)af -~ e (,‘_,.._l,s_.’fil')e
h

19 (X, eV, ~3)y
= —2'6‘)(/0@ c ‘ )1'7’

"

and 6,_(0‘)= -2.35 x.u 4 r7vFcqulam éS/ 3

L

It can be seen that the charge density falls to 1/4
of its value at the contact in 750&. In cases where I—;KL
differ by say0.5 to 1 e.v. this distance ranges from about
106 to 10lO angstrom unlits, a value much greater than ob-

tained in the previous two cases.

E. The Case of 3mall Charge Transfer from Insulator to Metal

Figure 6 represents an example where electrons escape
from the insulator only by thermal agltation from the filled
band in the insulator to the half-filled band in the metal,
A emall charge 18 lost by the insulator from a large spatial

region and an equal charge is galned by the metal withln a

small spatial regilon.
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Upon application of Fermi-Dirac statistics to the

energy band structure, we have for the volume charge density

agaln
24TV
-
(1) (01.("‘)=$’/7&(M) [F? (y-1)=F. (1)
h* : : '
Poisson's equation becomes

ey
Y ﬁt{ﬂ(k—r)f/‘:z(f)}g
Ax : :
T e (2om, &7
where U s-cl/ , f=-(K+cov-pfy and A = S (‘7;‘"’)

2

R

We solve 1ln the same manner as Section D, except that we
neglect the second term in (1) compared with the first,

obtaining

P
hre[Dor(@)%], ()

il-(_ 151 + CL\V,_)/I{T

(2) 1

[}

with D:. = €&

(av,-3)/,
T
C,_Be z k , and :_/))3-‘/.](73_)/[71
NG :
44471
For the metal we have OU,-(.UW:—CA\{C ’ (% <o)

where ¢ AV, 18 positive,

Making use of the boundary conditions as before, we
solve for eAV andeAl, . As in Sectlon D.eAV is neglig-

ible compared with caAV, , and so f £ ¢ . As a specific

°4]

example, take v ——Jev X z=-3cwv ¢a : - §e.v

ot

- a o _ .
then eA\;. =¥ -1, +,£ - | ev.
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Lo
The surface and volume charge denslties follow the

game form as those of Section D with the exception that the
charge 18 of opposite sign. It 1s, therefore, not worth-

while to discuss thils case further here.



CHAPTER V
INSULATOR- INSULATOR CONTACTS

A, General Behavior

In this chapter we discuss two cases of insulator-
insulator contacts. The energy band structure is represent-
ed ln Filgures 7 and 8. Figure 7 1llustrates conditions
where electrons can escape from the left-hand insulator to
the right-hand one only by thermal agltation from a filled
band into an empty band at higher energy. Hence, small
charge (perhaps 10"1 statcoulombs /cmz) is lost by the left-
hand insulator from a large spatial region (perhaps 106 A%)
and an equal charge gained by the right-hand insulator within
a large spatlial region, Figure 8 is the case where electrons
can spilll from the filled band of the left-hand material into
the empty band of the right-hand material. Large charge, say

4 statcoulombs /cmz, igs lost by the left-hand 1nsulator

10
from a small spatial region, say 10 A%, and equal and oppo-
site charge 1s gained by the right-hand material in a small
spatial region. The following calculations give the quanti-

tative data of the previous arguments,

B, Case of Small Charge Transfer

The 1insulator on the right has a band structure

jdentical with that of the insulator in Figure 5.
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We have, therefore, a volume charge density

(1) Piw = 97e "’”“”) {F{v i) m}

The solution of Poisson's equation is

1

(2) X (x)= 2KT An [(El_),,c +D,]- (% 30)

where j)z = Q%(X%'C‘Wz)/k-r C = B, C‘(em/g ‘f)ér
J 2 .;__;

ana B = a, /(%)

Tne insulator on the left has a band structure simi-
lar to that of the inaulator in Figure 6. The volume charge

density 1is

< \%
(3) (’,“‘)=7‘77€(§—%£Z) {/;(r-f) -/_{7(;)}

and the solution of Poisson's equation is

C\E
(L) 1((4‘)-’—",1'{’7_’&4-[-(,1_’)40#2] , (4050)
4 . kAK‘fL/T
where ) - C-:M, eaV,)/ L C - %e AJ

and % = A /1(%)‘

/

After equilibrium has been reached we see from

Figure 7 that at infinity

3

n

oz

(5) Y, +cav, - %
i

(6) anda 1, »esv -Z =5 .
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L
These equations along with the condition at the
boundary that the field strength must be continuous deter-

mine the unknowns €4V and €A\/J~ .

From (2) and (3) respectively

X L
AX, _ 25T /¢t
da | D -
=0 D \Z .
AV, 4
and ..._/ - z/fr(c,)l
Axn Yoo D 7 ’
The continuity of field strength requires
“ '/
CIL CLL
2 2,

Inserting values for the C's and D's, and assuming the effec-
tive mass of electrons in the two insulators to be the same,

we find that

oy S=7(%x,),

From (6) and (7)

eAV - 'izf(?(;z X, )a

4]

)

and from (5) and (7)

KA\{ = ‘Z/’{’U;/ '%z.)‘

For a specific case let us take V,=-7, X, =-%, 1, =~/ ond £ =-Gev.
This gives J =-6.5ev , e AV = oy and e AV, = ey -
‘The expressions for the surface and volume charge
densities in the right-hand insulator are identical with
those in Section D,Chapter IV, We have, therefore, a charge

density and depth of penetration which behave 1in exactly
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the same manner. The left-hand insulator has the same form
as the insulator in Section E, Chapter IV, and, therefore,
the charge density and depth of penetration are similar to

those found in that section.

C., GCase of Large Charge Transfer

In Figure 8 the right-hand insulator has a band struc-
ture the same as that of the insulator in Figure 2. There-
fore, as developed in part L of Section B of Chapter IV, the

charge density 1s

i
(1) () = 97e (%"_ﬂ) {/j(rr) ~/;(f)};

and the solutlion of Polsson's equation is
ul

L !
(2) Zﬁ‘- £ _ S 4,%(1 e — / (/x 2 O)
PE A {%/—E /v—u;’)}L

Uy~ (AV‘4T

The insulator on the left has a band structure the
pame as that of Figure 4, Therefore, as derived in Sectlon

C of Chapter IV, the volume charge density 1s
1k TV
(3) @M):Vﬁqcf%fj{vgﬁ-0~@(ﬁl

and the solution of Poisson's equatlion 1is

i ?l [
7 dg,
() _[2A4,), _ Zf 4 (x<0)
iT) {3’5 v ?')}
fot’cow/kT *

After equilibrium has been reached it 1is seen from Figure 8

that an infinity

(5) X 45A\/,-Z°‘=:§’.

oy i
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[¢)

(6) v, teaV -y =3

These equations, together with the requirement that
at the boundary the field strengths must be equal, enable
us to determine 5, eaV, and e AV, . We find, assuming the
effective mass of the electrons in the two substances to be

equal,
SA\/‘, = ZI‘(IOLV‘IOI)'
CAV’— = %(1/;1_%1))

ana 5 = £(%,+v,).

For a specific case let us take X =-7e.v U, =-t0e.v.
Oz 4 < <
Vo, ="6¢v, and X, =~ Yev. .
Then
3 = -6.5e.v,
&A\{ = —-/.52.V.'
Q,A\/ = ZG.V..

This case 1s illustrated in Figure 8.

Equations (1) and (3) for the volume charge densities
for the two insulators are identical with those of Sectlons
B and C of Chapter IV, respectively. The potential energy
variations are identical with those of part 1 of Sectlion B
and Section 3 of Chapter IV. Therefore, we conclude that
the volume and surface charge densities and depth of penetra-
tion of charge in the two insulators follow a form identical

with those of parts 3 and 4 of Section B in Chapter IV,



CHAPTER VI

APPLICATIONS

A. Other Features of Contacts

Hersh and Montgomery[l] describe the experimental
techniques and the results in a study on the static elec-
trification of filaments rubbed against one another, and
Harper{2] describes the charge transferrecd by spheres
touching one another. In the previous chapters we have
presented a quantitative account of the charge transferred
when several types of contacts are made, At the presgent
state of knowledge we cannot hope for a complete explanation
of static electrification. Experimentally, the physical and
chemical natures of the contacting surfaces are not known,
nor are the temperature and the force at contact, Theoret-
ically, we are not certain that the substances used possess
the necessary perilodicity for the aprlication of the band
structure of solids. However, we believe that some progress
can be made, and we have approached the problem on the
simplified picture that charge 18 transferred between two
perfectly perlodic structures and that part of the charge
remalns when separatlion occurs.

Our calculations were carried out under the assumption

that the bodies in contact were in equllibrium. For
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metal-metal contacts equilibrium should be attalned instantan-
eously,wlth a large charge per unit area of contact. In
metal-insulator contacts, where electrons can e8pill freely
from a filled band into an empty band, the transfer of
charge near the interface should take place in a very short
time. We see from Figures 2, 4, and 8 that owing to the
smaller gap between the fllled and empty bands of the in-
sulator as compared with the other cases, an additional
charge 1s furnished by thermal agltation to the empty band
at large distances from the interface. The charge 1s small,
but the gap 18 large enough that an appreciable time may
elapse before equilibrium is attained. The cases represented
by Figures 5, 6, and 7, where electrons are transferred from
one body to the other by thermal agitation alone, should
cause a long time to be required for equilibrium, with only
small amounts of charge being transferred., We could expect
appreciable charge in these cases only if the Ferml levels
are nearly at the same level 1in the 1lsolated substances or
if the temperature is very high,

In our picture we assume that the charge which has
been transferred remains localized at the point of contact
in the case of insulators but not of course 1n metals, Ex-
perimentally, we know that charge can be locallzed on
insulators; but theoretically an electron in the conduction
band 18 free to move throughout the crystal upon removal of
the attractive force due to the oppositely charged layer

of the other substance, Gonsalves{13] has proposed a theory
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to explain localization based on surface states, Seitz
[p.320-326] discusses localization from the point of view of
imperfections on the surface, and Mott and Gurney [p.86-88,
124-131] put forth several models to trap electrons in the
volume of the crystal. We merely say that some mechanism
exlsts whereby electrons are immobilized within the volume
of the insulators,

Harper[2] has made a study of the case of metal
spheres as to how much charge remains upon separation. His
results show that the fraction of charge remaining is prac-
tically 1independent of the speed of separation, amounting
to perhaps one-half., The other half 1is returned by tunnel-
ing through the gap during the early portion of the separ-
ation, Harper does not consider in thls respect any metal-
insulator or insulator-insulator contacts, but i1t 1is clear
that more charge will be tunneled back in these cases be-
cause of the greater intensity of fleld strength per unit
area. Let us assume that perhaps one-tenth of the charge
remains upon separation in the lnsulator-insulator cases.

We now turn to comparison of our theoretlcal results with

experiment,

B. Comparison with Experiment

A qualitative prediction of the theory 1s that a
triboelectric series exists, that is, that substances can
be ordered such that any substance above another substance

in the series will become say posltive when the two
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subatances are rubbed together, This rule follows from the
circumstance that the electrons flow from a substance with
the higher to that with the lower Ferml level. Because the
value of the Fermli level depends upon temperature, molecular
structure, and state of strain as well as chemical composi-
tion, we can expect a definitely ordered series only if the
state of each substance 18 carefully specified, or if we
restrict ourselves to substances possessing well-developed
Ferml levels. Triboelectric serles are given in many places
(see for instance reference 1). The existence of these
serles 18 evlidence for some of the qualitative features of
our picture.

Much more convincing evidence would be provided 1if
we could predlct the position of a substance in the series,
Unfortunately we have almost no data on the positions of
the energy bands in the substances used in the various ex-
veriments. Hersh and Montgomery (private communication)
have made a start on predicting the values of certaln of
the energy parameters in the case of high polymers. They
have been able to correlate the relative positions of sev-
eral synthetic polymers in the triboelectric serles with
the properties of the monomers(14,15]. It is too early to
say how meaningful this correlation 1s.

On the other hand, we may make use of the theory
outlined in the earller chapters of the present work to test
our picture by a semi-guantitative procedure. We examine

the sign and amount of charge transferred when a set of
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metals and insulators is rybbed agalnst one another. Then
we try to asslgn a set of values to the various energy para-
meters, and see Af a consistent set of predictions is found.
At the present stage of investigation the details of the
mechanism of charge return--in particular the dependence
upon resistivity--during separation are so little known

that we must restrict ourselves to only a seml-quantitative
treatmént.

Figures 9a and 9b, reproduced from reference 1,
Figures 26 and 29, show the experimental results of rubbing
insulators on insulators and metals on insulators, respec-
tively. We may correlate these results somewhat by the
energy level scheme shown 1n Figure lo,wheig:tg:.ng%Zelectric
work function has been taken as the value for the Ferml energy.
Agreement 1s obtained in every case wilth regard to the sign
of charge transferred and in most cases with order of magnl-
tude, The Fermi level for magnesium lies above the bottom
of the nearly-empty band of nylon, and so a large charge 1s
lost from magnesium to nylon. This case 1s discussed 1in
Section B of Chapter IV. Aluminum has 1ts Fermil level below
the nearliy-empty band and as explained 1in Chapter IV, Sec-
tion D; a small charge is lost from aluminum to the nylon.

The Ferml level for iron lies below that for nylon but not
low enough so that electrons can spill from the filled band
in the nylon to the iron and so,as studied in Section E,
Chapter 1V, a small number of electron 1s gailned by the metal.

For platinum we see that electrons may spill from the filled
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band of the nylon into the half-filled band of the metal

and, therefore, as explained in Section C of Chapter 1V,
large charge is lost by the nylon to the platinum, We have
one serious disagreement in our dlagram, acetate on nylon.
In this case we would expect a small charge transfer, as in
Section B of Chapter V, but a large one is observed.

The data in reference 1 show that the maximum sur-
face charge density measured is from 10 to 100 statcoulombs
per square centimeter. Under normal conditions of tempera-
ture and pressure the breakdown strength of ailr corrcsponds
to a surface charge density of 5 to 10 esu on a plane sur-
face, and perhaps ten times thls value for cylinders of the
radius used in the experiments. According to our calcula-
tions in part 3 of Section B and part 2 of Section C of
Chapter IV and 8ection C of Chapter V, we have densities of
transferred charge of the order of 10,000 esu, Hence, Wwe

have an amount of charge transferred which 1s far more than

adequate to explain the amount measured. The charge re-
maining is decreased by a factor of ten, say, through the
tunneling effect, and finally by a factor of 10 to 100
through atmosphere breakdown. On the other hand, 1f the
mechanism is that described in Sections D and E, Chapter IV,
(electrons bolled up to an unfilled band), the maximum
charge transferred over an energy gap greater than 0.5 ev
is only 5.0 x 1072 sﬁatcoulombs per square centimeter. The
chief point to be established here 1s that large amounts of

charge can be transferred even between insulators by the
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mechanism of Chapter V (electrons =riliing -~ an incom=-

pletely full band) without calling upon local heating, cr the

exlstence of surface states, We cannot reach a more de-
finite conclusion without additional experimental evidence
on the vosltion of the energy levels,

The same exXplanation would be valid for the results
of Harper[2] on the 1light contacts of insulating surfaces
with metals, Harper found that relatively large amounts of
charge can be transferred when spheres of certain insulators
are touched against spheres of various mctals. These pheno-
mena can be explained on the basis of the mechanism Jjust
discussed, On the other hand, when the insulator 1s an
excevtionally good one, the charge measured is negligible.
We believe that this finding can be explained by the large
degree of reverse tunneling which must occur when the in-
sulator is very good. For then the charge localized at the
point of contact cannot flow away, and the resulting high
field will produce a greatly increased tunneling. Of
course, the energy band structure might be such that only
small charge would be transferred, but Harper studled enough
different insulators that 1t seems impossible for all of
those showing little electrification to have the appropriate

energy band structure.



CHAPTER VII
CONCLUSION

The pheory put forth in the preceding chapters
appears to be able to explain semi-quantitatively at least
the basic phenomena in static electrification, Our results
are adequate to exnlaln the experimental results without
invoking surface states, It 1s, of course, entirely possi-
ble that they do exlist, and may even be the major cause of
the charging process., The so-called "hot spots" proposed
by Frenkel{16] likewlse may exist, and are the primary
source of charging in certain cases where a large charge
is observed when a emall one would be predicted on the
basis of energy bands alone. It 1s evident that much more
experimental evidence must be acquired before the proper
cholce can be made among the various theories.

The treatment could be refined by considering the
problem in two or three dimensions[17], and by including
exchange and correlation energies in the energy term for an
electron in a solid., It is doubtful whether it 1s worth
while to refine the treatment until additional experimental
data on statlic electrificationare available or untll there
18 more information on the actual values of the energy

levels in the solids under consideration.
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