A QUANTETAT'IVE STUDY OF THE ACIDITY OF CERTAIN HYDROCARBONS By R ichard Eben C rocker A THESIS S ubm itted to th e Scnool f o r Advanced Graduate S tu d ie s of M ichigan S ta te U n iv e rs ity o f A g ric u ltu r e and A pp lied S cience in p a r t i a l f u lf illm e n t of th e req u irem en ts f o r th e degree of DOCTOR OF PHILOSOPHY Department of C hem istry 1999 ProQuest Number: 10008554 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10008554 Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 ACKNOWLEDGMENT The a u th o r w ishes to ex p ress h i s d e e p e st a p p r e c ia tio n and g r a titu d e to P ro fe s so r H arold H art f o r h is v a lu a b le guidance and p erso n a l encouragement th roughout th e course of t h i s s tu d y . A p p re c ia tio n i s a ls o extended to Mr, S. Meyers on,, S tan d ard O il Company (In d ia n a ) , W h itin g , In d ia n a , who a n aly zed a l l 'deliberated hydrocarbons mass s p e c tro m e tr ic a lly and to th e Petroleum R esearch Fund of th e American Chemical S o c ie ty whose fe llo w s h ip program provided p erso n al fin a n ­ c ia l. a s s is ta n c e from Jan u ary , 199? th ro u g h Septem ber, 1998- My W ife & QUANTITATIVE STUDY OF THE ACIDITY OF CERTA IN HYDROCARBONS By R ichard Eben C rocker AN ABSTRACT Subm itted to th e School f o r Advanced G raduate S tu d ie s of M ichigan S ta te U n iv e rs ity o f A g r ic u ltu r e and A pp lied S eien ce i n p a r t i a l f u lf i l l m e n t of th e req u ire m en ts f o r th e degree of DOCTOR OF PHILOSOPHY Departm ent o f C hem istry Year 1959 Approved ABSTRACT The purpose o f t h i s in v e s ti g a tio n was to stu d y th e e f f e c t o f s t r u c t u r a l changes on th e a c i d i t y of th e alp h a-h y d ro g en s of c e r t a i n a lk y la ro m a tic h y d ro carb o n s. When a lk y la ro m a tic s a r e h e a te d i n th e p resen ce o f a s u it a b l e c a t a l y s t such a s potassium m e ta l, hydrogens on th e carbon a lp h a to th e a ro m a tic r in g may exchange. This r e a c tio n was i n v e s tig a te d a s a p o s s ib le method f o r d eterm in in g th e r e l a t i v e a c i d i t y o f h y d ro c a rb o n s. A. g e n e ra l pro ced u re f o r th e p r e p a ra tio n o f a lp h a - d e u te ra te d hydro­ carbons was developed which r e s u lte d i n l i t t l e or no deuterium in th e aro m a tic r in g . The method in v o lv ed cleav ag e o f th e a p p r o p ria te a r y l - a lk y l m ethyl e th e r w ith p otassium m etal fo llo w ed by h y d ro ly s is o f th e o rg a n o m e ta llic w ith deuterium o x id e. p rep ared i n t h i s manner: The fo llo w in g hydrocarbons were cumene-d•Q> , sec-*butylbenzene-d CL , 3-p h e n y l- p en tan e-d a , 2- p h en y lp en tan e-d ^, 2-ra e th y l-3-p h enylbutane~ da and 2 ,2 -d im e th y l-3 -p h e n y lb u ta n e -d a . These s ta n d a rd s were analyzed mass s p e c tr o m e tr ic a lly and th e n used f o r p re p a rin g in f r a r e d c a l i b r a t i o n cu rv es from which unknown amounts o f deuterium could be d eterm in ed . S e p a ra tio n o f sm all volum es o f hydrocarbon m ix tu res was accom plish­ ed by a d a p tin g a gas chrom atography a p p a ra tu s so t h a t reco v ery o f th e in d iv id u a l components was n e a r-q u a n t i t a t iv e . The e f f e c t s of s e v e ra l c a t a l y s t s , tem p eratu re ra n g e s , r e a c tio n v e s s e l s and compound ty p es w ere s tu d ie d . The exchange r a t e s v a r ie d d i r e c t l y w ith th e amount of c a t a l y s t and a r e a ls o dependent on th e m olar c o n c e n tra tio n s o f th e h y d ro carb o n s. C o n d itio n s found most s u i t ­ a b le f o r k i n e t i c experim ents in v o lv ed h e a tin g two hydrocarbons w ith eth y lb en aen e-d ^ f o r v a ry in g tim es a t 1$0° in se a le d tu b e s u s in g p o t a s s i u m m eta l a s th e c a t a l y s t . F i r s t o rd e r r a t e c o n s ta n ts were o b tain ed from p lo ts o f lo g (100/ 1C0-^D) v s . t , where %D was th e mole p e rc e n t o f deuterium i n th e hydro­ carbon a t tim e t . found t o b e : The o rd e r o f d e c re a sin g r e l a t i v e exchange r a t e s was cumene, 1 8 .9} s e c -b u ty lb e n z e n e , 8 .1 3 j 2 -ph en y lp en tan e, 6 .915 3 -p h en y lp en tan e , 1,96} 2-m ethyl-3“ p h en y lb u tan e, 1 . 90} 2 , 2 -d im e th y l3 - p h en y lb u tan e, 1 .0 0 . This o rd e r p a r a l l e l s t h a t o f p r e d ic te d a c i d i t y o f th e s e compounds. R e s u lts o b ta in e d a r e c o n s is te n t w ith a mechanism in v o lv in g i n i t i a l a tta c k by p otassium on th e alpha-hydrogen o f each com peting hydrocarbon to form th e organopotassium s a l t . T his i s follow ed by d eu teriu m tr a n s ­ f e r between th e c a rb an io n p o rtio n of th e s a l t aild e th y lb e n z e n e -d ^ . A tta c k by p o tassiu m i s b e lie v e d to be r a t e d e term in in g in th e case of most o f th e hydrocarbons s tu d ie d . Both p ath s a re b e lie v e d to be d i r e c t l y r e l a t e d to th e a c i d i t y . D iphenylm ethane d id n o t exchange protium f o r deuterium w ith e th y lbenzene~da u n d er a v a r i e t y o f c o n d itio n s . o ffe re d ; An e x p la n a tio n f o r t h i s i s An a tte m p te d c o m p e titio n r e a c tio n between cumene and p henyl- cyclopropane u n d er th e exchange c o n d itio n s r e s u lte d in deuterium t r a n s f e r to cumene b u t p o ly m e riz a tio n of phenylcyc'lopropane. TABLE OF CONTENTS Page INTRODUCTION.......................'................................... . .................................................. 1 EKPERIOTTAX................................................................... 7 £ . S y n th e s e s , ............. *................................................................., ................... E th y lb en zen e-d ct. ............................................................................... E th y lb en ® en e"d a,a - .........*...................................................... (a ) P re p a ra tio n o f ci-phenethyl c h lo r id e - d a ................... (b ) R eduction o f a -p h e n e th y l c h lo r id e - d ^ ....................... Diphenylmethane~d cumene v p h en y lcy clo h ex an e. Bryce--Smith (5) has s tu d ie d th e a c i d i t y o f s e v e ra l hydrocarbons by i n v e s t i g a t i n g th e m e ta la tlo n of alk v lb e n z e n e s by alk y l-so d iu m and -p o ta ssiu m compounds. He found t h a t th e tendency f o r r e a c tio n a t th e 3 TABLE I ACIDITY OF .VARIOUS COMPOUNDS STUDIED BY CONANT AND WHELAND (2) AND BY McEWEN (3) A cid Acid pK M ethanol 16 Iso p ro p y l a lc o h o l E th y l a lc o h o l B enzyl a lc o h o l 18 t e r t - B u t y l a lc o h o l A cetophenone Tr ip h e n y lc a rb in o l 19 9- P h en y lflu o re n e Indene P h en y lacety len e 21 M phenylam ine 23 pK F lu o ren e 25> A n ilin e 27 Di phenylb en zylm ethane 31 Triphenylm ethane 33 Diphenylmethane 3o 1 , 1- D iphenylpro pene 36 Cumene 37 E thane a lp h a - p o s itio n of th e s id e ch ain d ecreased in th e o rd e r, to lu e n e > ethylbenzerie cumene. He a ls o determ ined isom er r a t i o s f o r th e m e ta la tio n o f cumene by e th y l p otassium , n- pro p y l potassium , n-am ylpotassium and n-airylsodium , d is c o v e rin g t h a t th e m eta-isom er always predom inated. From th e d a ta o b tain ed i n th e c o m p e titiv e m e ta la tio n of benzene and cumene by e th y lp o ta ssiu m , p a r t i a l r a t e f a c to r s were c a lc u ­ l a t e d from w hich i t was c o n c lu d e d .th a t, q u a l i t a t i v e l y , each hydrogen atom i n cumene was l e s s a c id ic th a n a hydrogen atom i n benzene, th e o rd e r o f d e c re a s in g a c i d i t y b ein g p a ra - meta - a lp h a - o rth o - - b e ta . h C o n sid e ra b le work has been a p p e a rin g i n th e S o v ie t l i t e r a t u r e s in c e 19^0 d e a lin g w ith d eu teriu m exchange a s a method f o r com paring th e s tr e n g th o f v e ry weak a c i d s . The b u lk of t h i s work has been done by S h a te n s h te in ( 6 , 7 ) , who determ ined th e amount o f exchange f o r a number o f hydrocarbons i n D20 , ND3 and NJJ3 c o n ta in in g potassium amide a t v a rio u s te m p e ra tu re s . In clu d ed i n th e l i s t o f compounds s tu d ie d w ere benzene, to lu e n e , in d en e . .flu o ren e, trip h e n y lm e th a n e , d ip h e n y lm ethane, acenaphthene and n a p h th a le n e . S h a te n s h te in p o in te d out th e p a r a lle lis m betw een th e f i r s t o rd e r r a t e c o n s ta n ts which he o b ta in e d and th e i o n iz a tio n c o n s ta n ts o f Conant and Wheland ( 2 ) . A somewhat s im i l a r pro ced u re was fo llo w ed by R oberts ( 8 ) who determ ined th e exchange r a t e s o f v a rio u s o - , m- and p -d e u te ra te d benzene d e r iv a tiv e s w ith potassiu m amide i n l i q u i d ammonia. The r e s u l t s were in te r p r e te d on th e b a s is o f th e r e l a t i v e a c i d i t y of th e v a rio u s aro m atic h y d ro g en s. W hile th e method o f d eu teriu m -p ro tiu m exchange in hydrocarbons i n b a s ic media h as been l i t t l e used u n t i l r e c e n t y e a r s , exchange in acid media h a s been e x te n s iv e ly s tu d ie d . A l a r g e volume of work concerned w ith d eu teriu m exchange of a l i p h a t i c and a ro m atic hydrocarbons in d e u te r o s u lf u r ic a c id h as appeared i n th e l i t e r a t u r e , much b ein g done by Ingold and W ilson ( 9 ) , Stevenson (1 0 ), B urw ell (11) and Gold (1 2 ,1 3 ). S h a te n s h te in ( l l t , l ^ ) has a ls o s tu d ie d th e deuterium exchange of a number o f a ro m a tic hydrocarbons in l i q u i d hydrobrom ic a c id c o n ta in in g deu teriu m bromide and determ ined f i r s t o rd e r r a t e c o n s ta n ts f o r th e v a rio u s hydrogen atoms on th e aro m atic r in g . Some compounds in c lu d e d i n t h i s work were b enzene, to lu e n e , e th y lb e n z e n e , cumene, te r t- b u ty lb e n z e n e , 5 n -b u ty lb e n z e n e , n -p ro p y lb e n ze n e, 3“ p h en y lp en tan e, diphenylm ethane, trip h e n y lm e th a n e , n a p h th alen e and f lu o r e n e . I t was found in th e c a se of th e a lk y lb e n z e n e s t h a t a l l r in g - and alp h a-h y d ro g en s w ere exchanged f o r d e u teriu m , a lth o u g i hydrogens f u r t h e r removed from th e aro m atic rin g w ere n o t. R e c e n tly , R apoport and Sm olinsky (16) r e p o rte d th e s y n th e s is of flu o ra d e n e w hich c o n ta in s an u n u s u a lly a c id ic hydrogen. T his compound could be removed from benzene by w ashing w ith d i l u t e aqueous a l k a l i and exchanged hydrogen f o r deu teriu m i n b o ilin g deu teriu m e th o x id e . I t has a pKa v a lu e o f 11 ± 0 . 5 * A nother example o f th e a c id ic p r o p e r tie s of alp h a-h y d ro g en s in a lk y la ro m a tic compounds i s th e work of de P o s tis (U l) who r e p o rte d t h a t cesium m etal l i b e r a t e s hydrogen from to lu e n e . I t i s a p p a re n t from th e fo re g o in g d is c u s s io n t h a t , a lth o u g h th e r e l a t i v e a c i d i t y o f a w ide v a r i e t y o£ hydrocarbons has been d eterm in e d , th e b u lk o f th e work i s q u a l i t a t i v e . A lso , p re v io u s i n v e s tig a to r s have lim ite d th em selv es m ainly to compounds w ith r e l a t i v e l y la r g e d if f e r e n c e s in a c i d i t y , due, in. p a r t , to th e la c k o f a s e n s i t i v e method f o r d eterm in ­ in g sm all v a r i a t i o n s . The p re s e n t s tu d y was prompted by th e d isc o v e ry t h a t a lp h a-h y d ro g en s o f a lk y la ro m a tic s exchange a t m easurable r a t e s in th e presence of r e a c t i v e a l k a l i m e ta ls , m etal h y d rid e s and o th e r b a se s ( 1 7 ) . 6 For exam ple, e th y lb e n z e n e -d a , when r e flu x e d over potassium m e ta l, d i s p ro p o rtio n a te d to e th y lb e n z e n e - d ^ a and o rd in a ry e th y lb e n z e n e . CHDCH3 —^ < >-CD2CH3 + O' (v > C H 2CH3 (2) Presum ably an o rg a n o m e ta llic compound i s produced i n sm all q u a n tity 0 ° - — —-- — •— >C H 0 V > & CH3 ( o r d e u te ro n ) from th e a lp h a carbon atom o f a n o th e r hydrocarbon m olecule. In t h i s way exchange o c c u rs. I f th e a n io n ic s p e c ie s could s e l e c t betw een two so u rces o f a lp h a p ro to n s , presum ably i t would o b ta in th e p ro to n from th e more a c id ic so u rc e . The r e l a t i v e r a t e s o f deu teriu m exchange of two hydrocarbons m ight f u r n i s h , th e n , a method f o r m easuring t h e i r a c i d i t i e s . The purpose o f t h i s i n v e s t ig a tio n was to d eterm in e by t h i s method th e e f f e c t of s t r u c t u r a l changes on th e a c i d i t y o f th e alp h a-h y d ro g en o f c e r t a i n a lk y la r o m a tic s . B r i e f ly , t h i s in v o lv ed th e sy n th e se s o f v a rio u s a lk y la r o m a tic s , a llo w in g two n o n -d e u te ra te d hydrocarbons to compete f o r th e d eu teriu m o f a d e u te r a te d s p e c ie s i n th e p resen ce o f an a p p r o p ria te c a t a l y s t , ■s e p a r a tio n o f th e components and a n a ly s e s f o r d eu teriu m c o n te n t from which exchange r a t e s were c a lc u la te d . The ex p erim e n ta l s e c tio n which fo llo w s c o n ta in s d e t a i l s o f th e s y n th e s e s and exchange p ro ce d u re, in c lu d in g th e a n a l y t i c a l and s e p a r a tio n te c h ­ n iq u e s . Examples o f th e r a t e s o b ta in e d and a d is c u s s io n concerned w ith an i n t e r p r e t a t i o n of th e s e d a ta a re g iven jn th e s e c tio n on r e s u l t s and d is c u s s io n . I n th e appendix c a l i b r a t i o n cu rv es and exchange r e s u l t s and r a t e s a r e g iv e n . EXPERIMENTAL 7 EXPERIMENTAL A. S yntheses The d e u te r a te d hydrocarbons were sy n th e siz e d by th r e e g e n e ra l m ethods: (A) r e d u c tio n of s u it a b l e compounds with, lith iu m aluminum d e u te r id e and lith iu m d e u te r id e , (B) r e a c tio n of th e a p p ro p ria te G rignard re a g e n t w ith d eu teriu m oxide and (C) cleav ag e o f a -p h e n y la lk y l m ethyl e th e r s w ith m e ta llic potassium fo llo w e d by h y d ro ly s is w ith d eu teriu m o x id e . In in s ta n c e s where th e n o n -d e u te ra te d hydrocarbons were n o t a v a i l ­ a b le com m ercially, th e y were s y n th e s iz e d , u s u a lly by methods d i f f e r e n t from th o s e re q u ire d to make th e co rresp o n d in g a - d e u te r a te d compound. The p r e p a ra tio n of each o rd in a ry hydrocarbon i s im m ediately follow ed by th e s y n th e s is o f i t s d e u te ra te d c o u n te r p a rt. E thylbenz ene-d^ (P ro ced u re A) E th y lb en ze n e-d a was p rep ared acco rd in g to th e method of E l i e l (1 8 ). A 2f>0-m l. round-bottom ed f l a s k was equipped w ith a r e f lu x condenser p r o te c te d w ith a d ry in g tu b e , a 125>-ml. a d d itio n f u n n e l, a d ry argon i n l e t and a T ru -b o re s t i r r e r w ith a T eflo n b la d e . p ip e tte d In to t h i s v e s s e l was m l. o f te tra h y d ro f u ra n ( d i s t i l l e d from potassium h y droxide 8 and th e n f r e s h l y d i s t i l l e d from lith iu m aluminum h y d rid e ) follow ed by 1 .1 g. (0 .0 2 6 mole) o f lith iu m aluminum d e u te r id e (M etal H ydrides Inc.., 9&\% p u r ity ) and 3»2 g. (O.38 mole) of lith iu m d e u te rid e (M etal H ydrides I n c ., 98$ p u r i t y ) . Then, w ith o u t w a itin g f o r th e s lu r r y to d is s o lv e , 3U.5 g* (0 . 21+5 mole) o f a lp h a -p h e n e th y l c h lo r id e ( 19) was added w ith s tirrin g . No marked exotherm ic r e a c tio n was n o te d . The r e a c ta n ts were s t i r r e d a t g e n tle r e f lu x f o r tw e n ty -fo u r h o u rs, a f t e r which th e r e a c tio n m ix tu re was allow ed to co o l to room te m p e ra tu re . The excess h y d rid e s were removed by th e dropw ise a d d itio n of a s o lu tio n o f 20 ml. o f w ater i n 30 m l, o f te tr a h y d r o f u r a n . The m ixture was poured onto 100 g. of i c e and 20 m l. o f s u l f u r i c a c id . The bottom aqueous la y e r was s e p a ra te d and e x tr a c te d w ith 100 m l. o f pentane which was combined w ith th e o r ig i n a l o rg an ic l a y e r . These were washed s u c c e s s iv e ly tw ice w ith 100 ml., o f w a te r, fo u r tim e s w ith 100 ml. o f 85$ o rth o phosphoric a c id , tw ice w ith 100 m l. o f w a te r, once each w ith 100 ml. of 10$ potassium ca rb o n ate s o lu tio n and 100 ml, o f w a te r. The o rg an ic l a y e r was d rie d o v e rn ig h t over 10 g. o f anhydrous calcium c h lo r id e , th e n f r a c t i o n a l l y d i s t i l l e d th ro u g h a sm a ll g la s s h e lic e s -p a c k e d column. There was o b tain ed 2 1 . k g* ( 82$) o f eth y lb e n z e n e -d ^ , b . p . 132.5° \ (31 mm.), n ^° = 1 . 1+9 5 0 . k k ss s p e c tro m e tric a n a ly s is in d ic a te d d L = 98*5 - 0 . 1$, d0 = 1 .5 ± 0 .1$ and no d eu teriu m atoms in th e b e ta p o s itio n s . E thylbenz ene- S t ^ fvProcedure A) (a ) P r e p a ra tio n o f a -p h e n e th y l c h lo r id e -d a 9 The r e a c tio n v e s s e l d e s c rib e d i n th e p r e p a ra tio n o f e th y lb en zen e-d a was u s e d . To an ic e -c o o le d m ix tu re o f 0 .8 g. ( 0. 02 mole) of lith iu m aluminum d e u te r id e i n 25 m l. o f d ry te tra h y d ro f u ra n was added dropw ise w ith s t i r r i n g 8 .0 g. (0 .0 6 ? mole) o f aceto p h en o n e. The m ixture was th e n h e a te d a t r e f l u x f o r tw enty m in u tes, a f t e r which th e m ix tu re was cooled and 20 ml. o f w a te r slo w ly added dro p w ise. L ayers were s e p a ra te d , th e aqueous la y e r e x tr a c te d tw ice w ith 50 ml. of e th e r and th e combined o rg an ic l a y e r s washed s u c c e s s iv e ly w ith 30 m l. each o f w a te r, 10$ sodium c a rb o n a te s o lu tio n and w a te r. A f te r d ry in g o v e rn ig h t over 6 g. o f anhydrous magnesium s u l f a t e , th e e th e r was removed by d i s t i l l a t i o n and th e a -p h e n e th y l a lc o h o l-d a w hich rem ained, w ith o u t f u r t h e r p u r i f i ­ c a tio n , was added dropw ise to 16 g. (O.lU mole) o f th io n y l c h lo r id e . The m ix tu re was allo w ed to stan d f o r f o u r h o u rs, then f r a c t i o n a l l y d i s t i l l e d u s in g a sm all g la s s h e lic e s -p a c k e d column. The a-phenethyl. c h lo r id e -d a th u s o b ta in e d w eighed 6 .9 g- ( 73$ ) , b . p . 93~6°/Uo mm., ng5*3 = 1.5212. (b ) R eduction of a -p h e n e th y l c h lo rid e -d ^ The p ro ced u re d e s c rib e d i n th e p r e p a ra tio n of eth y lb en zen e-d a was fo llo w e d . From 6 .9 g- mole) o f a -p h e n e th y l c h lo r id e -d a , 0 .8 g. (0.09 mole) o f lith iu m d e u te r id e and 0 .2 g, (0.005 mcle) o f lith iu m aluminum d e u te r id e , th e r e was o b ta in e d 3*1 g» (59$) of e th y lb en zen e, b . p . 133“ ^ °(7 h6 mm.), ng5 - l.ij95U* Mass s p e c tro m e tric a n a l y s is showed d 2 *= 9 6 .6 t 0 , 1$, d x = 3 .U ± 0 .1$; d0 < 0 . 1$; no b e ta d eu teriu m atom s. 10 Di ph enylm ethan e-dq (P ro ced u re A) U sing th e pro ced u re d e s c rib e d in th e p re p a ra tio n of eth y lb en zen e-d a, 20.3 g « (0 .1 0 mole) o f ben zh y d ryl c h lo rid e (p rep ared i n 86% y ie ld from b en zh y d ro l and th io n y l c h lo r id e ) , 1 .3 g, (0 .1 6 mole) o f lith iu m d e u te rid e and 0.U g. (0 .0 1 mole) o f lith iu m aluminum d e u te rid e a f t e r r e a c tio n y ie ld e d [| .0 g . (2k%) o f sy m -te tra p h e n y le th a n e , m.p. 208° ( r e c r y s t a l l i z e d from c h lo ro fo rm ), and 8.3 g. \%0%) o f diphenylm ethane, b . p . 100°/3 mm., n^° = 1 . 5 / 6 / . The i n f r a r e d spectrum of th e sy m -tetra p h en y leth an e in d ic a te d th e ab sen ce o f any deuterium atom s. Mass s p e c tro m e tric a n a ly s is showed th e diphenylm ethane-dc to c o n ta in d x = 9 5 . 8/S, dQ = h *2/S. D iphenylm ethane-dq a (P ro ced u re A) The f i r s t a tte m p t to p re p a re d ip h e n y lm e th a n e -d ^ a was by th e r e d u c tio n of benzophenone d ic h lo r id e w ith lith iu m aluminum d e u te rid e and lith iu m d e u te r id e . Benzophenone d ic h lo r id e was o b tain ed in Q0% y i e l d from th e r e a c tio n o f benzophenone and phosphorous p en tach lo ri.d e (20). The g e n e ra l pro ced u re c i t e d in th e p re p a ra tio n of eth y lb en zen e-d a was fo llo w e d . A sm all amount o f l i q u i d b o ilin g from 95>-125°/3 nun. was c o lle c te d w hich was n o t f u r t h e r i d e n t i f i e d a lth o u g h th e in f r a r e d spectrum 11 was re c o rd e d . C o n sid e ra b le s o lid m a te r ia l rem ained w hich, upon s e v e ra l r e c r y s t a l l i z a t i o n s from benzene, produced a 20$ y ie ld of w h ite s o lid , m.p. 219- 20° and b e lie v e d - to be te tra p h e n y le th y le n e ( l i t . m.p. 220- 1° ( 21 ) ) . D ip h e n y lm e th an e -d ^ a was s u c c e s s f u lly p rep ared u s in g a procedure s im ila r to t h a t o f e th y lb en zen e-d a a by re d u c tio n o f benzophenone w ith lith iu m aluminum d e u te r id e to form benzhydrol-d00-ml. th re e -n e c k e d round-bottom ed f la s k equipped w ith a r e f lu x condenser p ro te c te d w ith a d ry in g tu b e , a therm om eter, a d d itio n f u n n e l, d ry argon i n l e t and a h ig h -sp e e d s t i r r e r was swept o v e rn ig h t w ith d ry argon and a ls o h eated w ith a f r e e flam e to a s s u re rid d a n ce o f w a te r. U sing a p i p e t t e , 200 ml. o f h ep tan e ( f r e e d from o l e f in s and w a te r by tre a tm e n t w ith potassium perm anganate, c o n c e n tra te d s u l f u r ic a c id , d ry in g , d i s t i l l a t i o n and s to r a g e over sodium m etal) and II4.8 g. (0.38 mole) of potassium m etal ( f r e s h l y c u t u n d e r h ep tan e) were added to th e r e a c tio n f l a s k . t u r e was h e a te d w ith an e l e c t r i c m antle to 65°. The mix­ When most o f th e po tassiu m m etal had m elted , th e s t i r r e r was tu rn e d on and 30.0 g. ( 0.20 m ole) o f 2-m ethoxy-2- phenyl pro pane was added dropw ise over a n in e ty m inute p e rio d . The c o lo r o f th e m ix tu re changed from th e i n i t i a l grey- m e ta llic th ro u g h cinnamon to a deep maroon. The tem p eratu re o f th e r e a c tio n m ix tu re was m a in tain e d between 614- 72° th ro u g h o u t t h i s p e rio d . The m ix tu re was s t i r r e d a t 70° f o r s ix h o u rs, th e n allow ed to co o l to room te m p e ra tu re . When th e s t i r r i n g was stopped, th e f in e ly - d iv id e d w in e -c o lo re d o rg a n o m e ta llic began to s e t t l e o u t. The a -p h e n y liso p ro p y l po tassiu m was n o t f u r t h e r i s o l a t e d b u t used in s i t u f o r th e p r e p a ra tio n o f cumene-do,. ( c ) H y d ro ly sis o f a -p h e n y liso p ro p y l potassium To th e f l a s k c o n ta in in g a -p h e n y liso p ro p y l potassium was added dro p w ise o v er t h i r t y m inutes a s o lu tio n of 8.2 g. (0.U5> mcle) of deuterium oxide (■> 9 9 .5 # Ds0 , o b ta in e d from th e S tu a r t Oxygen C o., San F ra n c isc o ) 15 i n 75 m l. o f te tra h y d ro f u ra n ( f r e s h l y d i s t i l l e d from lith iu m aluminum h y d rid e ) w ith s t i r r i n g . The w h ite m ix tu re was allow ed to stan d over­ n ig h t u n d er a b la n k e t o f d ry a rg o n . The fo llo w in g m orning th e m ix tu re was h e a te d a t g e n tle r e f lu x and s t i r r e d f o r t h i r t y m in u tes. Then 20 ml. o f w a te r was added and th e w h ite , s o lid potassium d e u te ro x id e d is s o lv e d . The bottom aqueous la y e r was e x tr a c te d w ith 50 ml. of pentane and th e combined o rg a n ic la y e r s d r ie d o v e rn ig h t over 1$ g. of anhydrous calcium c h lo r id e . The c o lo r le s s s o lu tio n was th e n d i s t i l l e d , th e f r a c t i o n b o ilin g a t 1 5 0 .5 ° (738 mm.) b ein g c o lle c te d . 1 3 .1 g. ( 57/0 o f cumene, n^° = 1.U903, was o b ta in e d . A y ie ld of Mass sp e c tro m e tric a n a ly s is showed i t to c o n ta in d x = 8 2 .6$, d0 = 1 7 - i$ , no b e ta -d e u te riu m . Cumene-d£ (P ro ced u re B) (a ) P re p a ra tio n of p-bromocumene The pro ced u re o f Brace and Todd (27) was fo llo w e d . To an i c e - co o led m ix tu re o f 1±5.0 g . (0.3.3.7 mole) of bromobenzene and 2 .2 g. (0 .0 1 6 mole) o f powdered anhydrous aluminum c h lo r id e was slow ly ( t h i r t y m in u tes) added w ith s t i r r i n g 15 g. (0 .1 9 mole) of iso p ro p y l c h lo r id e . The orange r e a c t i o n m ix tu re was h e a te d on a steam b a th f o r tw enty 16 minutes. The deep-red mixture was poured onto J4O g. of ice and the lower milky layer separated and washed with concentrated sulfuric acid eight times (until the acid layer became only slightly colored). The organic layer was then washed successively with water., dilute sodium bicarbonate solution and water. After drying overnight over 5 g. of anhydrous calcium chloride, the mixture was distilled and 29.7 g. {19%) of p-bromocumene was collected, boiling at 95”30/9 mm,, nj~c = 1.5V /0 (literature values: b.p. 89 °/lO mm., ng° = 1.5362 ( 28 ); b.p. 97 - 8 °/ 5 mm., ng° = 1.5569 (56)). (b) P re p a ra tio n and h y d ro ly s is o f th e G rignard re a g e n t from p-bromocumene. This pro ced u re was p a tte rn e d a f t e r th e method d e sc rib e d by H art (1 7 ). In a d ry 250-m l. th re e -n e c k e d f la s k equipped w ith a d ry n itro g e n i n l e t , a d d itio n f u n n e l, s t i r r e r and r e f lu x condenser f i t t e d w ith a d ry in g tu b e was p laced 2.1). g, (.0.10 mole) o f magnesium tu rn in g s and 20 ml. of d ry e th e r. Then a s o lu tio n o f 30 ml. o f e th e r and 20 g. (0 .1 0 mcle) of p-bromocumene was added dropw ise so a s to keep th e r e a c tio n m ix tu re a t g e n tle r e f l u x . A f te r t h i s a d d itio n th e m ixture was re flu x e d f o r one ho u r and th e n co o led w ith an ic e b a th . A s o lu tio n o f 6 .0 g. (0.33 mole) o f deuterium oxide (9-3+$ D20 , S tu a r t Oxygen C o., San F ra n c isc o ) in 50 m l. o f te tr a h y d r o f u r a n ( f r e s h l y d i s t i l l e d from lith iu m aluminum h y d rid e ) was added dropw ise over a th ir ty - m in u te p e rio d . The r e a c tio n m ixture was r e flu x e d two h o u rs, allow ed to s ta n d o v e rn ig h t and r e flu x e d a g a in one h o u r. A f te r c o o lin g , th e bottom aqueous la y e r was s e p a ra te d and. e x tr a c te d w ith two 50-m l. p o rtio n s o f e th e r . The combined o rg an ic 17 la y e r s .w e re d rie d o v e rn ig h t (anhydrous calcium c h lo r id e ) and d i s t i l l e d th ro u g h a s h o r t V igreaux column. The f r a c t i o n which b o ile d from I n ­ l35>° was r e d i s t i l l e d th ro u g h a sm all g la s s h e lic e s -p a c k e d column: th e f r a c t i o n b o ilin g a t llj.8- 1510 w eighed 11.7 g. {91%), n^° = I.J 4892, and th e mass s p e c tro m e tric a n a ly s is showed: d t = 8 2 .1%, d0 = 17*3$, no be b a-d eu teriu m . O x id a tio n o f p- and a-deuterocum enes In o rd e r to e s ta b li s h u n e q u iv o c a lly th e s id e c h a in and r in g d e u te r a tio n o f th e s e cumenes, th e y were o x id ized to benzoic a c id . The pro ced u re g iv en in O rganic S yntheses (29) was fo llo w ed u s in g 10 ml. of c o n c e n tra te d n i t r i c a c id , 30 m l. of w a te r and 2 .0 g. (0.016 mole) o f cumene (p - o r a - d e u te r o ) . The b en zo ic a c id was produced i n a p p ro x i­ m ate ly £0% y i e l d , w h ite n e e d le s r e c r y s t a l l i z e d from w a te r, m .p. 122°. O x id atio n s o f cumene u s in g a lk a lin e potassium perm anganate o r s u lf u r ic acid -so d iu m d ichrom ate r e s u l t e d i n v e ry low y ie ld s of benzoic a c id j th e l a t t e r method was b e lie v e d p a r t i c u l a r l y poor due to th e known a b i l i t y o f s u l f u r i c a c id to cause deuterium exchange ( 9 ) . sac-B u ty lb en zen e-d q (P ro ced u re C) (a ) P re p a ra tio n o f 2 -p h e n y l-2 -b iita n o l 18 T his was p re p are d u s in g a procedure s im ila r to t h a t d e s c rib e d in th e p r e p a ra tio n o f 2 -p h e n y l-2 -p e n ta n o l. To th e G rignard re a g e n t p re ­ p ared from 25*0 g . (,1.03 m oles) o f magnesium tu rn in g s and l^O g. (0 .9 6 mole) o f e th y l io d id e was added 60 g. (0 .5 0 mole) o f acetophenone. The 2-phenyl~2-bubanol th u s produced was f r a c t i o n a l l y d i s t i l l e d and 5 6 .0 g. (?5$) c o lle c te d , b .p . 65-*6°/2.0 mm,, n 20 = I .5187 ( l i t e r a t u r e v a lu e n 22 = l,5 lf> 8 ) (2 2 ). (b ) P re p a ra tio n o f 2-methoxy- 2- phenylbutane The procedure u sed was s im ila r to t h a t employed by W a llis (30) and Oonant (3 1 ). In a 500-m l. round-bottom ed f la s k was p laced 60.0 g. (0.1+0 mole) o f 2 - p h e n y l-2 -b u ta n o l, 100 ml.. (2*5 m oles) o f m ethanol and 3 .6 m l. o f c o n c e n tra te d s u l f u r i c a c id . stan d o v e rn ig h t a t room te m p e ra tu re . The m ixture was allow ed to E th e r (100 m l.) was added t o th e m ix tu re , fo llo w ed by 100 m l. of s a tu r a te d sodium c arb o n ate s o lu tio n . The l i q u i d was d ecan ted from th e sodium carb o n ate which p r e c ip ita te d , and th e e th e r and some m ethanol removed on a steam b a th . The bottom aqueous l a y e r th u s formed was s e p a ra te d and e x tra c te d u s in g two 100-m l. p o r tio n s o f e t h e r . The combined o rg an ic la y e r s were f i l t e r e d th ro u g h anhydrous magnesium s u l f a t e and d rie d o v e rn ig h t over 20 g . of anhydrous magnesium s u l f a t e . The m ix tu re was d i s t i l l e d i n v acu o . I4I4.I4. g. ( 68$) o f 2-m eth cx y -2 -p h en y lb u tan e b e in g o b ta in e d , b .p . 66-7°/5*0 mm.. 19 n^ 5 * 1 .1#68 ( l i t e r a t u r e v a lu e s : b ,p . 6 3 "5°/2-3 mm. (3 0 ), n^ 5 = 1.1+981, 1.1+991 ( 3 2 ) ) . ( c ) C leavage and h y d ro ly s is of 2-m ethoxy-2 - p h enylbutane. F o llow ing th e pro ced u re o u tlin e d in th e p re p a ra tio n o f cumene-da , ll+ *8 g. (O.38 mole) o f potassium m etal and 32.9 g» ( 0 .2 0 mole) of 2-m ethoxy-2-p h en y lb u ta n e were allow ed to r e a c t f o r seven hours a t 68° fo llo w ed by th e a d d itio n o f 8 .2 g. of deuterium o x id e. The s e c - b u ty l- benzene th u s produced was d i s t i l l e d , f r a c ti o n s bein g c o lle c te d b o ilin g a t ?U°/27 mm., n^° * I.I+89I+. m e tric a n a ly s is showed: The y ie ld was 16.5> g. (61+$)j mass spect-ro- d x = 1+6.6$, d0 = 53*k%, no b e ta - or gamma- d eu teriu m ato m s, 2 - Phenyl pentane ( a ) P re p a ra tio n of 2 -p h e n y l-2 -p e n ta n o l o The pro ced u re was s im ila r to t h a t d e sc rib e d f o r d im eth y lp h en y lc a r b in o l. The G rig n ard re a g e n t p rep ared from 7£.0 g. (0 .9 6 mole) of n -p ro p y l c h lo r id e and 2 ^ .0 g. (1 .0 3 mole) o f magnesium tu rn in g s in e th e r was t r e a t e d a t 0 ° w ith 60.0 g. (0.5*0 mole) of acetophenone in 20 d iy e t h e r . A f te r s t i r r i n g a t g e n tle r e f lu x f o r fo u r hours and w ork-up w ith w a te r (n o t a c i d ) , th e r e was o b tain ed 6 6 .6 g. (81$) of 2-phenyl2 -p e n ta n o l, b .p , 7 ^ ~ 6 °/2 .1 ran.,, n®° = l .£ l3 3 ( l i t e r a t u r e v a lu e : 112-3° /lU ram.) (2 2 ), (b ) D eh y d ratio n o f 2 -p h e n y l-2 -p e n ta n o l and h y d ro g en atio n of r e s u lti n g o le fin s , A ra o d ifica ti.o n o f th e method of Huston and Kaye (33) 'was u se d . 2 - P h en y l-2 - p e n ta n o l was d eh y d rated by h e a tin g a t r e f lu x and c o ll e c t in g th e w a te r formed i n a d i s t i l l i n g r e c e iv e r . A f te r rem oval of th e w ater l a y e r and d ry in g over anhydrous calcium c h lo rid e o v e rn ig h t, th e r e a c t i o n m ix tu re was d i s t i l l e d . 2-P h e n y l-2 - pentene (and iso m e rs), b .p ; IQ6-110°/U0 mm., was o b ta in ed in '(b% y ie ld (based on acetophenonej th e 2 - p h e n y l-2 -p e n ta n o l was n o t p u r if ie d in t h i s p r e p a r a tio n ) . T his o l e f i n was th e n p a r t i a l l y reduced by adding L.0 g. (1 .7 mole) o f sodium m e tal to a s o lu tio n o f 37 g* (9 .2 £ mole) o f o le f in i n 37!? ml. o f a b s o lu te e th a n o l„ A f te r th e sodium had r e a c t e d 300 ml. o f w ater was added, th e r e s u l t i n g la y e r s s e p a ra te d , th e bottom aqueous la y e r e x tr a c te d w ith th r e e 100-m l, p o r tio n s o f e th e r and th e combined o rg an ic la y e r s washed w ith 100 m l. of s a tu r a te d sodium c h lo rid e s o lu tio n . The r e s u l t i n g l i g h t y ello w s o lu tio n was shaken w ith 200 ml. of co ld s a tu r a te d potassiu m perm anganate f o r t h i r t y seco n d s, 20 g. o f sodium b i s u l f i t e added and. th e la y e r s s e p a ra te d . The w ater la y e r was e x tr a c te d tw ice w ith e th e r and th e combined o rg an ic la y e r s d rie d over lf> g* o f anhydrous sodium s u l f a t e . The d r ie d m ix tu re was f r a c t i o n a l l y d i s t i l l e d through a monel h e lic e s -p a c k e d column, 31 g. (81|$) b ein g c o lle c te d a t 21 6y.£-68.0°/9 mm,, nj^0 = 1.U92Y, However, when a sample of this product was p u t th ro u g h gas chrom atography a p p a ra tu s , th e p resence of a sm all amount o f s l i g h t l y h ig h e r b o il i n g im p u rity was a p p a re n t. T his was p ro b ab ly 2 -p h e n y l-2 -p e n te n e , an a u th e n tic sample of w hich, when putth ro u g h th e gas chrom atography a p p a ra tu s under th e same c o n d itio n s , caused a peak to be reco rd e d a t th e same tim e i n t e r v a l as th e im p u rity . To remove t h i s o l e f i n , th e m ix tu re was placed in a 500-m l. h y d ro g en atio n b o t t l e and 123 m l. o f a b s o lu te e th a n o l w ith 0.118 g. o f platinum d io x id e was added. A f te r th r e e and o n e -h a lf hours of h y d ro g en atio n , th e p re s s u re had dropped from $1.1 to >0 p . s . i . and ceased to d e c re a se . Work-up gave 2i+.2g., b .p . l87~8°(YUU mm.), n~° « I .I 4879 ( l i t e r a t u r e v a lu e : n~° = 1 . U876) ( 2 8 ) , o f c h ro m a to g ra p h ic a ily -p u re 2-p h e n y lp e n ta n e . 2 - P henylpentane-dq (P ro ced u re C) ( a ) P re p a ra tio n o f 2-m ethoxy-2-phenylpentane This was p rep ared in $6% y ie ld from $0 .0 g. (0 .3 0 mole) of 2 -p h en y l-2 ~ p en tan o 'l, 123 m l, ('3*0 m oles) o f m ethanol and 2 .6 m l. of s u l f u r i c a c id a s d e s c rib e d i n th e p r e p a ra tio n o f 2 -m ethoxy-2-phenylbutane. 22 P ro d u ct b o i l i n g from 66-9°/2.1+ mm., n^° = 1.1+959-1.1+982, was c o lle c te d . (b ) C leavage and h y d ro ly s is o f 2 -m ethoxy-2-phenylpentane. The same p ro ced u re as t h a t u sed f o r p re p a rin g cumene-da was employed. A f te r 8 .2 g. (0 .2 1 mole) of potassium m etal and 1 9 .6 g. (0 .1 1 mole) o f 2 -meth oxy- 2- ph eny 1 pen ta n e had been p e rm itte d to r e a c t a t 68° f o r tw elv e ho+irs, 5»0 g. (0 .2 5 mole) o f deuterium oxide was added. The 2 - p h enylpentane th u s produced was d i s t i l l e d , th e f r a c t i o n c o lle c te d b o ilin g a t 7 3 ° /l2 mm., n^° *= 1 . 1+880, n*5 = 1.1+857, weighed 1 0 .0 g. (6 1 $ ). Mass s p e c tro m e tric a n a ly s is showed: d 2 = 61+. 1%, d0 *= 3 5 -9%, no b e ta - , gamma- o r d e lta -d e u te riu m atom s. 3-Phenylpentane V r 7 C \ c h 2c h 3 // CHj.CHj A pro ced u re s im ila r to t h a t o f P in e s, V esely and I p a t i e f f (3l+) was fo llo w e d . In a t y p i c a l ru n , a 200-m l. s t a i n l e s s - s t e e l Magne-Dash a u to c la v e was charged w ith 1+6 g. (0 .5 0 mole) of to lu e n e , 0.89 g. (0.023 m ole) o f potassiu m m etal and 1+.1+ g. ( 0 .1 8 mole) o f sodium h y d rid e . The a u to c la v e was flu s h e d s e v e ra l tim es w ith dry n itr o g e n . E th y len e was th e n added to a p re s s u re o f 810 p . s . i . (by th e lo s s in w eig h t of th e e th y le n e ta n k , i t was determ ined t h a t 31 g. (1*1 m oles) of e th y le n e was ad d ed ), th e m agnetic s t i r r e r a d ju s te d to o p e ra te a t m oderate speed and th e a u to c la v e h e ated e l e c t r i c a l l y to 190°. A f te r e ig h t h o u rs, th e 23 p re s s u re had dropped to 61+0 p . s . i . The a u to c la v e was v en ted and a stream o f n itro g e n passed th ro u g h f o r s e v e ra l h o u rs. A f te r th e m ixture i n th e bomb was f i l t e r e d th ro u g h g la s s wool and 100 ml. of benzene used t o r i n s e th e a u to c la v e and g la s s woo]., th e f i l t r a t e and benzene w ashings w ere washed w ith 100 m l. o f w a te r, d rie d overnight, over 10 g. o f anhydrous calcium, c h lo r id e and d i s t i l l e d a t reduced p re s s u re th ro u g h a g la s s h e lic e s -p a c k e d column. F r a c tio n s were c o lle c te d which c o r r e s ­ ponded to to lu e n e , n -p ro p y lb en zen e, 3 "phenylpsntane and 3 - e th y l- 3 p h e n y lp e n ta n e . A f r a c t i o n b o ilin g a t 53“ 8 °/6 mm., w eighing 9*1 g* (1 2 $ ), n^° = 1.1+881+ ( l i t e r a t u r e v a lu e : n^° = 1,1+877) (2 8 ), was c o lle c te d as 3 - phenyl p entane and a f r a c t i o n b o ilin g a t 78- 8l ° /6 mm. w eighing '13-0 g. (15/6) was c o lle c te d a s 3 ~ e th y l-3 ~ p h en y lp en tan e. 3 - phenylpentane-dQ (P ro ced u re C) (a ) P r e p a ra tio n o f 3 ~ p h e n y l-3 -p e n tan o l F ollow ing th e pro ced u re d e s c rib e d i n th e p re p a ra tio n of 2 -p h en y l2 -p e n ta n o l, e th y l magnesium bromide (p re p a re d from 25 g. (1.01+ m oles) of magnesium tu rn in g s and 105 g* (0 .9 6 mole) of e th y l bromide) was 2k t r e a t e d w ith 67 g. (0 .5 0 mole) o f propiophenone. p e n ta n o l produced was c o lle c te d a t 1 .^1 2 6 ( l i t e r a t u r e v a lu e : 7U°/2 . U ram., The 3 - p h e n y l-3- nj~5 = n^° = 1 .5152, b .p . 8 5 - 8 ° /l mm., n^5 = 1.5128) (35) and w eighed 5 6 .8 g. (70%). (b ) P r e p a ra tio n o f 3~m ethoxy-3-phenylpentane. / CH.,CH3 “ C-OCH3 \ 3 c h 2c h 3 In a manner s im i l a r to t h a t d e sc rib e d in th e p re p a ra tio n of 2-methoxy2 -p h en y lb u ta n e , 5 9 .0 g. (9 .3 1 mole) o f 3~phenyl-3- pent.anol, 120 m l. (3 .0 m oles) of m ethanol and 2 .6 ml. of s u lf u r i c a c id were allow ed to sta n d f o r th re e d ay s. Upon d i s t i l l a t i o n , 22.0 g. (hl%) o f 3~methoxy-3- p h en y lp en tan e, b .p . 7L-5°/3«5 mm., n^° = 1.5030 was c o lle c te d . (c) C leavage and h y d ro ly s is o f 3-m ethoxy-3-phenyl p e n ta n e . U sing th e procedure d e s c rib e d u n d er th e p re p a ra tio n of cumene-da, 18. k g- (0.103 mole) of 3"methoxy-3-phenylpentane and (.( g. (0.20 mole) of potassium metal were permitted to react at 68° for eleven hours, after which 6.2 g. (0 . 3 1 mole) of deuterium oxide was added and the resulting 3“phenylpentane distilled. The fractions boiling at 6/.5-68.5°/19 mm., nj~° = l.lj.876 , weighed 8.3 g. (56$). Mass spectro- metric analysis indicated: dx «= 53*3$, d.0 = 1*6.7$, no betadeuterium atoms. or gamma- 25 2-M e th y l-3 - phenylbutane A ttem pts to p rep a re t h i s compound, by re d u c tio n o f 2 -m eth y l-3 p h e n y l-2 -b u ten e r e s u lte d i n m ix tu res o f th e o l e f in and s a tu r a te d hydro­ carb o n . The hydrocarbon was p rep ared u s in g P rocedure C, o rd in a ry w a te r b e in g used in s te a d of deu terium oxide in th e h y d ro ly s is s te p . (a ) P r e p a ra tio n o f 3 -m e th y l-2 -p h e n y l-2 -b u ta n o l. C-CH(CH3 ) .■ T his a lc o h o l was p rep ared i n a s im ila r manner to t h a t d e s c rib e d f o r 2 -p h e n y l-2 -p e n ta n o l. 75,0 To iso p ro p y l magnesium c h lo r id e ; formed from g. ( 0 .9 6 mole) o f iso p ro p y l c h lo rid e and 25-0 g. (1.03 m oles) of magnesium tu rn in g s ) was added 60 g. (0*50 mole) of acetophenone. a lc o h o l was o b ta in e d i n The y i e l d (UU-3 g.)> b .p . 76- 7 ° / 2 .5 mm., n^° = 1 .5 l8 9 ( l i t e r a t u r e v a lu e s : 7 7 ,0 -7 7 . 5 ° / 2 .6 -2 .9 mm., n£5 = 1.5137) (3 6 ). (b) P re p a ra tio n o f 2 -m eth o x y -3 -m ethyl-2-phenylbutane. c- c h ( c h 3 ) OCHo F o llo w in g th e pro ced u re o u tlin e d in th e p r e p a ra tio n of 2-methoxy2 - p h en y lb u tan e, 3 9 .6 g. (0 .2 i| mole) of 3 -m e th y l-2 -p h e n y lb u ta n -2 -o l, 100 m l. ( 2 .5 m oles) of m ethanol and 2 .5 ml. of s u l f u r i c a c id a f t e r 26 s ta n d in g th r e e days y ie ld e d 22.3 g. {$2%) of 2-m ethexy-3 -m eth y l-2phenylfcutan.e, b .p . 72-5°/l+.0 mm., ng° = 1.1+992. ( c ) C leavage and h y d ro ly s is o f 2 -m ethcxy-3 -m eth y l-2 -p h en y lb u tan e. To 1 1 .8 g. (0 .3 0 mole) o f potassium m etal and 27.0 g. (0 .1 5 mole) o f 2-methoxy-3** m e th y l-2 - phenylbutane in dry h ep tan e (which had been allo w ed to r e a c t a t 68° f o r s ix h o u rs) was added 10 ml. of w a te r in 75 m l. o f te tr a h y d r o f u r a n . Work-up gave 1 $ .6 g. {'(1%) of 2-m ethvl-3- p h en y lb u tan e, b .p , 63°/8«8 mm.j n£° = 1.1+912 ( l i t e r a t u r e v a lu e s : b .p . 6 6 .2 ° /l0 mm.? n ^ 0 = 1.1+86) ( 28) . 3-M e th y l-2 - p h en y lb u tan e-d a (P rocedure C) C-CH(CH3 ) 2 D U sing th e pro ced u re d e s c rib e d i n th e p re p a ra tio n of cumene-da, 20.8 g. (0 .1 2 mole) of 2-m ethoxy-3“m ethyl-2~ phenylbutane and 8.3 g. (0 .2 1 mole) o f p otassium m etal w ere allow ed to r e a c t f o r e ig h t hours a t 6 8 °. Then g* (0 .2 6 m ole) o f deuterium oxide was added and th e r e s u l t i n g 3-m e th y l-2 - phenylbutane c o lle c te d as th o se f r a c t i o n s b o ilin g from 69 .5 "7 0 .0 ° /1 2 ram., nj~° ~ 1.1+903Mass s p e c tro m e tric a n a ly s is showed: o r gamma-deuterium atom s. The y ie ld was 1 2 .1 g. ( 83$ ) . d x * (0.1%, d0 «= 29.1$, no b e ta - 27 2 , 2 -D im eth y l-3 -p h en y lb u tan e C-C(CH3 ) 3 This procedure i s s im ila r to t h a t employed by Schm erling and West (3 7 ). A o n e - l i t e r round-bottom ed th re e -n e c k e d f la s k equipped w ith a s t i r r e r , co n d en ser, a d d itio n fu n n e l and a dry argon i n l e t was th o ro u g h ly d r ie d u s in g a f r e e fla m e . To th e G rignard re a g e n t from th e io d in e - i n i t i a t e d r e a c tio n o f 20 g. (0 .8 2 mole) o f c le a n magnesium tu rn in g s w ith 92 g. ( 1 .0 m ole) o f t e r t - b u t y l c h lo r id e i n anhydrous e th e r was added dropw ise a t 0 ° a s o lu tio n o f 90 g. ( 0 .50 mole) o f a -p h e n e th y l brom ide (p re p a re d i n 8l$S y ie ld from a-m eth y lb en zy l a lc o h o l and phosphor­ ous trib ro m id e ) i n $0 ml. of d ry e th e r . Work-up a s u s u a l, u s in g d i l u t e h y d ro c h lo ric a c id f o r h y d r o ly s is , gave 20 g. o f p ro d u c t, b .p . y 6 -8 °/9 mm., n^° *= 1.1*973• A h ig h e r b o il i n g f r a c t i o n ( b .p . 130-160° /5 mm.) was a ls o c o lle c te d which c r y s t a l l i z e d upon c o o lin g . m ethanol gave w h ite n e e d le s , m .p. 123-1*° • be 2 ,3 -d ip h e n y lb u ta n e ( l i t e r a t u r e v a lu e : R e c r y s ta lliz a ti o n from T his s o lid was b e lie v e d to m .p. 1 2 6 ') (3 8 ). The li q u i d f r a c t i o n was r e flu x e d over sodium m etal f o r one h o u r, th e n f r a c t i o n a l l y d is tille d . P roduct b o i lin g from 63-lt°/5 mm., d| 5 = O .892, n~° = 1.1*951 ( l i t e r a t u r e v a lu e s : 5 0 - l ° / l mm., = 1.1*950) ( 3 /) , w eighing 1 0 .5 g- (13$) was c o lle c te d a s 2 , 2 -d im eth y l~ 3 -p h en y lb u tan e. 28 2 , 2-D im ethyl-3™ phenylbutane-da (P rocedure C) CH. c- cvch3 ) 3 D (a ) P re p a ra tio n o f 3 , 3™ dim ethyl-2-phenylbutan-2-ol CHl3 a C-C(CH3 ) 3 I OH The g e n e ra l method o u tlin e d f o r th e p re p a ra tio n of 2-p h e n y l-2p en tan o l was fo llo w e d . To t e r t - b u t y l magnesium c h lo rid e (p rep ared from 180 g . (1 .9 5 m oles) o f t e r t - b u t y l c h lo r id e and $0 g. ( 2.06 mole) of magnesium tu rn in g s ) was added 125 g. (l.o U mole) of acetophenone. D i s t i l l a t i o n th ro u g h a V igreaux column gave 9 1 -h g- o f p ro d u ct b o ilin g a t 53”"9 0 °/1 .2 mm. R e d i s t i l l a t i o n th ro u g h a packed column gave k l . 2 g. (23$) o f a p ro d u c t, b .p . l l ° / l . 2 mm., n^° = 1.516U. (b ) P re p a ra tio n o f 2-m ethoxy™ 3j3™ dim 3thyl-2-phenylbutane. CH. C-C(CH3 ) 3 och3 An a tte m p t to p re p a re t h i s compound from 3 ,3 “d im eth y l-2 -p h e n y lb u ta n - 2 -o l an.d m ethanol r e s u lte d on ly in reco v ery o f s t a r t i n g m a te r ia l. The e th e r was p re p a re d , however, em ploying a method s im ila r to t h a t of Z e is s (3 2 ). In a dry o n e - l i t e r th re e -n e c k e d round-bottom ed f la s k 29 equipped w ith an a d d itio n fu n n e l, condenser, d ry argon i n l e t and h ig h ­ speed s t i r r e r was p laced UOO m l. of anhydrous benzene and 3 6 . h g. (0.20U mole) of 3 ,3 -d im e th y l-2 -p h e n y lb u ta n -2 -o l. F r e s h ly - c u t potassium m etal ^8.1 g .j 0.21 mole) was th e n added to th e w a te r-w h ite s o lu tio n . R eflux f o r th re e days was n e c e ssa ry f o r th e red potassium s a l t to be produced. A f te r t h i s p erio d 85*0 g. (0 .6 0 mole) o f m ethyl io d id e was added and th e m ixture re flu x e d w ith s t i r r i n g f o r tw enty h o u rs . A f te r th e sodium io d id e was allow ed to s e t t l e , th e s o lu tio n appeared alm ost c o l o r le s s . W ater (120 m l.) was added to th e s t i r r e d m ix tu re , th e bottom aqueous 3.ayer s e p a ra te d and e x tra c te d w ith 200 ml. of e th e r , and th e combined o rg a n ic la y e r s d rie d over 20 g. of anhydrous magnesium s u lf a te . S olvent was removed u s in g a steam b a th and th e y e llo w re sid u e f r a c tio n a te d , y ie ld in g 2£.£ g. {'{&%) of 2 -m eth o x y -3 ,3 -d im eth y l-2 -p h en y lb u tan e , b .p . 79“ 8U°/3 *3 mm., n^° = 1 . ^ 0 i |l - l .5065. ,c) C leavage and h y d ro ly s is of 2 -m eth o x y -3 ,3 -d im eth y l-2 - p h en y lb u tan e. Follow ing th e procedure d e sc rib e d in th e p r e p a ra tio n of cumene-da, 25.5 g- (.0.133 mole) o f 2-m ethoxy-3,3“ d im e th y l-2 -phenylbutane and 10.3 g. ^0.26 mole) o f potassium m etal were allow ed to r e a c t f o r t h i r t e e n h ours a t 68°. Then y .£ g. (0 .3 8 mole) o f deuterium oxide was added and th e r e s u l t i n g 3 , 3 -d im ethyl~ 2-phenylbatane d i s t i l l e d . The f r a c t io n s b o ilin g from 6U -6°A -b mm., n*° *= l . l t f 5 2 , and w eighing 11.8 g. ($$%) were combined. Mass s p e c tro m e tric a n a ly s is gave d x = £ l.L $ , d0 * U8.6#, no b e ta - o r gamma-deuterium ato m s. 30 Hig h S u rface Sodium (HSS) F ollow ing th e g e n e ra l procedure d e sc rib e d i n th e b u l l e t i n ’-High S u rfa c e Sodium on I n e r t S o lid s" ( 3 ? ), 2£ g. of dry N o rite and 2 .5 g* o f f r e s h l y - c u t sodium m etal were s t i r r e d to g e th e r a t 160° f o r f o r t y m inutes and th e n allo w ed to co o l to room te m p e ra tu re . The HSS was removed th ro u g h a "goose-neck" w ith a 2I4./I4.O sta n d a rd ta p e re d j o i n t at. one end and a 1U/35 j o i n t a t th e o th e r . The sm a lle r j o i n t was tap ed to sm a ll, p re v io u s ly wei.ghed, sample v i a l s and th e la r g e r j o i n t was f i t t e d to th e r e a c tio n f l a s k . By t i l t i n g th e com plete a p p a ra tu s , th e IBS could be made to e n te r th e v i a l s , ap p ro x im ately one gram b ein g placed in each v i a l . High S u rfac e Potassium (HSP) was s im ila r ly p rep ared . B. Exchange S tu d ie s In p r in c ip l e , th e procedure c o n s is te d in h e a tin g a m ixture of an a - d e u te r a te d a lk y la ro m a tic and two n o n -d e u te ra te d a'lk y laro m atics in th e p resen ce o f an a p p ro p ria te c a t a l y s t , w ithdraw ing samples p e r io d ic ­ a l l y , s e p a ra tin g th e s t r u c t u r a l l y pare components and a n a ly z in g each f o r i t s deuterium c o n te n t. A v a r i e t y of c o n d itio n s was s tu d ie d b e fo re a s u it a b l e pro ced u re was developed which gave s a ti s f a c t o r y k in e t ic re s u lts . A n a ly tic a l P rocedure Because a mass sp ec tro m e te r was n o t a v a ila b le f o r r o u tin e a n a ly s e s , th e d eu teriu m c o n te n t of th e v a r io u s hydrocarbons, a f t e r being s u b je c te d 31 to exchange c o n d itio n s , was d eterm ined u s in g th e C-D s tr e tc h in g freq u en cy in th e i n f r a r e d . Samples o f a l l d e u te ra te d hydrocarbons were analyzed mass s p e c tr o m e tr ic a lly by Mr. S , Meyerson, S tan d ard O il Company (In d ia n a ) , W h itin g , In d ia n a. The in f r a r e d s p e c tra o f s o lu tio n s o f th e s e d e u te ra te d hydrocarbons i n carbon t e t r a c h l o r i d e were reco rd ed u sin g a Perkin-E lm er Model 21 double-beam in f r a r e d sp ectro p h o to m eter w ith sodium c h lo rid e c e l l s o f 0.£l5> mm. w id th . I t was o r i g i n a l l y in te n d e d to u se ethylbenzene-dcc as th e deuterium so u rce and to compare th e r a t e o f se lf-ex ch an g e o f eth y lb en zen e w ith th e r a t e o f exchange w ith a n o th e r hydrocarbon. A lthough th e r e a re a p p r e c ia b le d if f e r e n c e s i n th e in f r a r e d s p e c tra of th e pure o rd in a ry , mono-a, and d i - a , a d e u te ra te d eth y lb en zen es (se e F ig u re s 1$ and 1 6 ), a s u it a b l e a n a l y t i c a l method could n o t be worked out f o r m ix tu res of th e se th r e e due to th e o v erla p p in g o f t h e i r C-D a b s o rp tio n peaks. A s im ila r s i t u a t i o n was encountered i n th e case of o rd in a ry , mono-a and d i - a ,a diphenylm ethane. Hence, i t was d ecided to u se eth y lb en zen e-d a m erely a s a source o f deuterium and to a llo w two d i f f e r e n t hydrocarbons to compete f o r th e deuterium i n th e e th y lb e n z e n e -d ^ . C a lib r a tio n c u rv es were p rep ared c o r r e la ti n g th e deuterium c o n te n t o f th e v a rio u s hydrocarbons w ith th e i n t e n s i t y of th e C-D s tr e tc h in g fre q u e n c y in th e in f r a r e d re g io n n e a r U.'/ m icrons. Samples of known deu teriu m c o n te n t were p rep ared by d i l u t i n g th e mass s p e c tra n a liz e d d e u te ra te d sam ples w ith o rd in a ry hydrocarbon. The s o lv e n t was carbon t e t r a c h l o r i d e (M a llin c k ro d t " A n a ly tic a l R eagent") p u r if ie d (Uo) by r e f lu x in g over m ercury m e tal f o r th re e hours and under a s o lu tio n of 32 100 g. o f sodium hydroxide in 350 ml. o f w ater and 100 m l. of 9$% e th a n o l f o r two h o u rs, w ashing th r e e tim es w ith w a te r, once w ith d i l u t e s u l f u r i c a c id and th re e tim es w ith w a te r, d ry in g over anhydrous calcium c h lo r id e and c a r e f u l l y d i s t i l l i n g from phosphorus pentoxide th rough a tw e n ty -fo u r in c h g la s s h e lic e s -p a c k e d column (th e f i r s t 1$% b ein g d is ­ ca rd ed ). U su a lly th e volume r a t i o o f hydrocarbon to carbon t e t r a ­ c h lo r id e was 1 :1 .1 ;, Under th e exchange c o n d itio n s employed, seldom d id a hydrocarbon g a in more th a n 1%% deuterium . Thus, most c a l i b r a t io n cu rv es were p re p a re d u s in g sam ples c o n ta in in g from 0-1$% deuterium . The g e a rs o f th e in f r a r e d in stru m e n t were s e t to sp read th e re g io n o f i n t e r e s t (3 * 0 -6 .0 m icrons) over a 30 cm. ran g e. A t 3.000 m icrons, w ith b o th c e l l s f i l l e d w ith s o lv e n t and in p la c e , th e in stru m e n t was a d ju s te d to th e fo llo w in g s p e c if ic a tio n s : S l i t w idth 990 Response 1 Per c e n t T ransm ission Gain S u p p ressio n F ilte r Speed S l i t c o n tr o ls Scanning c o n tr o l 95 5 2 Auto U Auto For The spectrum o f s o lv e n t v e rs u s s o lv e n t was reco rd e d . The 0% tra n s m is s io n l i n e was o b tain ed by c lo s in g th e sample beam window and re c o rd in g th e spectrum o f s o lv e n t in only th e re fe re n c e beam ( t h i s a ls o 33 c o in c id e d w ith th e maximum a b s o rp tio n of th e C-H peak a t 3 -2 -3 -5 >0 • The s p e c tra o f s o lu tio n s c o n ta in in g known and v a ry in g amounts of d e u te ra te d hydrocarbon w ere re co rd ed and th e r a t i o of th e p e rc e n t tra n s m itta n c e of th e s o lv e n t to th e p e rc e n t tra n s m itta n c e o f th e sample ( I q/ i ) was d eterm in e d . The lo g a rith m o f t h i s r a t i o ( o p tic a l d e n s ity ) was p lo tte d a g a in s t p e rc e n t deuterium c o n te n t to o b ta in a l i n e a r r e l a t io n s h i p from which th e p e rc e n t deuterium in unknown samples was d eterm in ed . Table I I g iv es a t y p i c a l example showing q u a n titie s o f hydrocarbons used i n th e p r e p a ra tio n of a c a l i b r a t io n c u rv e. The volume r a t i o o f h y d ro carb on/carbon te tr a c h lo r id e o f Is 1.1+ was u sed f o r th e c a l i b r a t i o n c u rv es o f a l l d e u te ra te d hydrocarbons except 2 , 2 -d im e th y l-3“ p h enylbutane, f o r which a r a t i o of 1 . 80:0 .0 6 was u se d . S e v e ra l f a c t o r s e n te re d in to t h i s ch o ice of 1 : 1 .It. Forem ost, when a m ix tu re was s e p a ra te d u s in g th e Vapor F ra c to m e te r, volumes of only s l i g h t l y over 0 .1 m l. w ere c o lle c te d ( e s p e c ia lly when only a sm all c e n te r " c u t” was made to in s u r e u l t r a - c l e a n s e p a r a tio n ) . S ince a volume o f 0 .2 0 m l. was re q u ire d to f i l l th e in f r a r e d c e l l s , a volume of 0.100 m l. o f hydrocarbon and O.li+0 m l. o f carbon t e tr a c h lo r id e ( t o t a l volume 0 .2 U0 m l.) r e s u l t e d i n s u f f i c i e n t q u a n tity to f i l l th e c e l l s and a ls o produced in te n s e s p e c tra ca p ab le of d is c e rn in g sm all p e rcen tag es o f d eu teriu m . Table I I I g iv es th e a n a l y t i c a l d a ta used i n th e p r e p a ra tio n o f th e c a l i b r a t i o n curve (F ig u re 1) f o r sec-b u ty lb en zen e-d G, O ther c a l i b r a t i o n cu rv es were s im i l a r l y p rep ared and a re reco rd ed i n th e appen d ix o f th e t h e s i s (F ig u re s 1 0 - lli) . 3k p £ • >P H o cn ^ i—i o o PREPARATION OF sec-BUTYLBENZENE SAMPLES OF KNOWN, VARYING DEUTERIUM FOR THE CONSTRUCTION OF THE CALIBRATION CURVE CONTENT d >o p fcH S * 7© v-S3v © * N i-l o o o o o rH 0 vO 1 v© 10- - d © © . N H £ S © P rH * S>a H P o °O _d• o d) o o CM rH • o o o• o CO d l> 1 p ra p & © O« !h C© t, » -d on • On vO* CO H O0 CO CO -d !T \ MD CM © Ph s A CM 35 TABLE I I I CALCULATION OF OPTICAL DENSITY FROM C-D BAND AT U.68 MICRONS FOR sec-BUTYLBENZENE (2 .6 5 M) EN CARBON TETRACHLORIDE Sample ■ P e rcen t D I q/'I D[log ( I 0/ l ) ] 1 0 .0 1.105 0.0U3li 2 2.3 1.180 0 . 0/19 3 U.7 1.267 0.1028 h 9 .3 1 . J4I4.2 0.1590 5 1 8 .6 1.885 0 .2 /5 3 6 28,0 2 -I4J4O O.3 8 /U F ig u re 1 . P e rc e n t deu teriu m c o n te n t of m ix tu res o f s e c -b u ty lbenzene and se c -b u ty lb e n z e n e -d n i n “carbon t e t r a c h l o r i d e v s . o p t i c a l d e n s ity a t U ,68 m icro n s. (C o n c e n tra tio n o f hydrocarbon = 2 . 6 5 Mv) o.Uo Optical D en sity 0 .3 0 0.20 0 .10 P ercen t Deuterium 36 37 S e p a ra tio n P rocedure Because o f th e expense of th e d e u te ra te d compounds and u n a v a il­ a b i l i t y o f some o f th e o rd in a ry hydrocarbons, only sm all q u a n titie s w ere u sed i n th e exchange r e a c tio n . Thus, i t became n e c e ssa ry to dev elo p a procedure f o r s e p a ra tin g a three-com ponent hydrocarbon mix­ tu r e whose t o t a l volume was abo u t one m i l l i l i t e r . The f i r s t hydrocarbon chosen f o r exchange w ith ethylbenzene was d iph en y lm eth an e. I t was f e l t t h a t th e s e m ight be se p a ra te d u s in g a chrom atographic column. A lthough a c tiv a te d alum ina proved u n s u c c e s s fu l, 80 mesh s i l i c a g e l r e a d ily se p a ra te d th e two u s in g carbon t e t r a c h l o r i d e a s th e e lu e n t. The p ro g re ss of th e hydrocarbons through th e column was follow ed by ta k in g th e in f r a r e d spectrum of bach 2-3 m i l l i l i t e r f r a c t i o n a s i t was c o lle c te d . However, t h i s tech n iq u e d id n o t e a s ily le n d i t s e l f t o th e s e p a ra tio n of hydrocarbons more c lo s e ly r e l a t e d in s t r u c t u r e , e s p e c ia lly a three-com ponent hydrocarbon m ix tu re, so a n o th e r method was sought f o r accom plishing t h i s . t t appeared t h a t gas chrom atography was p a r t i c u l a r l y a t t r a c t i v e f o r s e p a ra tin g such m ix tu res an d , a c c o rd in g ly , a Perkin-E lm er Model Vapor F rac to m e te r was remodeled and adapted f o r t h i s purpose. A f te r c o n s id e ra b le e x p e rim e n ta tio n , b e s t r e s u l t s were o b tain ed u s in g an asb esto s-w rap p ed e l e c t r i c a l l y - h e a t e d s e c tio n o f o n e -e ig h th in ch copper tu b in g which Extended s ix in c h e s from th e e x it s id e o f th e in stru m e n t and to w hich was s e a le d a 10/30 sta n d a rd ta p e re d male j o i n t . Only s e v e ra l seconds e la p se d between th e tim e a s ig n a l was reco rd ed and th e tim e th e sam ple g iv in g r i s e to t h a t s ig n a l appeared a t th e e x i t . 38 The sam ples w ere c o lle c te d in s p i r a l tr a p s whose dim ensions a r e shown in F ig u re 2 , The e x i t end o f th e s p i r a l t r a p was p ro te c te d w ith a d ry in g tu b e c o n ta in in g D r i e r i t e . These t r a p s , which were cooled in l i q u i d a i r d u rin g th e c o l l e c t i o n , proved q u ite e f f i c i e n t f o r g a th e rin g n e a r - q u a n t i t a t i v e y ie ld s o f th e sam ples. A lso , t h i s method a ffo rd e d a c le a n s e p a ra tio n f o r th e hydrocarbons u se d . The most d i f f i c u l t com­ pounds to s e p a ra te from each o th e r were ethylbenzene and cumene, a lth o u g h even t h i s was done w ith l i t t l e d i f f i c u l t y as shown in F ig u re 3* O r ig in a lly , a tw o-m eter o n e -fo u rth in ch a n a l y tic a l column was used c o n ta in in g P erkin-E lm er packing ty pe ’’A" (d id e c y l p h th a la te on f i r e b r i c k ) . However, s in c e t h i s column was r e s t r i c t e d to samples of about 0.05 m l., o f te n f i v e to s ix ru n s were n e c e s sa ry in o rd e r to c o l l e c t a s u f f i c i e n t volume f o r q u a n tita tiv e in f r a r e d . This s i t u a t i o n was rem edied w ith th e a c q u i s it i o n of a th re e -m e te r o n e-in ch p r e p a ra tiv e column w ith packing of type ,;A'? and a s im ila r column of type "0" ( s ilic o n e p ac k in g ). These p r e p a ra tiv e columns p e rm itte d th e c le a n s e p a ra tio n of s e v e ra l m i l l i ­ l i t e r s of hydrocarbon m ix tu re in from two to th r e e h o u rs. The c a r r i e r gas used w ith th e s e l a r g e r columns was oil-pum ped n itro g e n and was u s u a lly re g u la te d from 5-10 p . s . i . th rough th e column. The column te m p era tu re was o p erated n e a r 100° u n t i l th e ethylbenzene was c o lle c te d , th e n o fte n r a is e d to 110-130° to h a s te n th e passage of th e rem aining com ponents. To in s u re a c le a n s e p a ra tio n , from two to s ix m inutes w ere allow ed to e la p se from th e tim e a peak began to appear on th e re c o rd e r u n t i l a t r a p was put in p lace to s t a r t th e c o lle c t io n of t h a t component. L ik ew ise, th e t r a p was removed s e v e ra l m inutes 39 10/30 Standard. Tapered j o i n t s 13 cm. 8 ram. P yrex tu b in g 6 cm. lli mm. Pyrex tu b in g F ig u re ?.. S p ir a l t r a p used w ith Vapor F rac tc m e te r f o r sample c o l l e c t io n . ko » T3 Pi cO © Pi © E P» O C\J ••> • to p H 01 cO [s to •H O 01 i—i «. H ■n eg © Pi © f i © cO N pi to t3 Pi © © © © Pt P rH Ps cO >» f t Pt Cm ft P Pi © © •H to o Ph O P o p cm Pi •H C Pi t o •H Pi • «> •rf P cOO ft U - f t ft On © to •N 01 © P ^ ©p! a;rt to p 5 'S 'g Pio ft Pi § © © S Pto f t Paj no I o_ £ ^ 'H fl ft. ctf 3 £to -1 53 O i— I oi Pin P o COCJ %© O ft T3 u pj ©ft po O ft o to ri O © in -p tsi © to SB-S © H tj C CO r'A !>jrj • r-l © P 2 cO T3 O © U P >H P> p I P P t o O Pi cO ■H [P © to © pi |> to b e fo re th e l a s t o f t h a t hydrocarbon had passed th rough th e d e te c to r . F u rth er^ th e e x i t tu b e was r in s e d w ith aceto n e and wiped c le a n b e fo re each t r a p was secu red in p la c e . As a t r a p was removed, a 10/30 male s ta n d a rd ta p e re d plug was q u ic k ly in s e r te d in th e e n tra n c e end o f th e t r a p an d , w ith th e d ry in g tu b e s t i l l on th e e x i t end, th e tr a p was allow ed to reach room tem p eratu re (h asten ed by warming in a stream of w a te r ) , Then tfye d ry in g tube was removed and an o th er plug in s e r te d in i t s p la c e . .A f te r th e l iq u id had d ra in e d to th e bottom of th e tr a p , th e d e s ire d volume ( u s u a lly 0.100 m l.) of compound was withdraw n u sin g a 0 .2 ml. p ip e tte g rad u a te d to 0.0 0 5 m l., th e a p p ro p ria te amount (u s u a lly 0 . 11*0 m l.) o f p u r if ie d carbon t e t r a c h l o r id e added, th e in f r a r e d spectrum of th e m ix tu re reco rd ed and th e p ercen t deuterium determ ined u s in g th e c a l i b r a t i o n curve p rep ared f o r t h a t hydrocarbon. Exchange Experim ents (a ) A pparatus An a u to c la v e o f th e ty p e used in p rev io u s exchange r e a c tio n s ( 17) d id n o t r e a d i l y le n d i t s e l f to th e sam pling n e c e ssa ry f o r k in e tic m easurem ents n o r d id th e tem p eratu re c o n tr o l seem ad e q u a te . A ccordingly, s e v e ra l c a t a l y s t s , te m p e ra tu re s and a p p a ra tu s d esig n s were s tu d ie d w ith th e hope o f f in d in g n o t only a more s u it a b le r e a c tio n v e s s e l, b u t optimum r e a c tio n c o n d itio n s . The v e s s e l f i r s t used c o n s is te d of a 50-ml. Erylenm eyer f la s k w ith a 20-cm, West condenser se a le d to th e to p of th e f l a s k . The c a t a l y s t and hydrocarbon components were added th ro u g h th e to p of th e condenser which was f i t t e d w ith a 19/38 fem ale sta n d a rd ta p e re d j o i n t . A f te r th e a d d itio n of th e r e a c t a n t s , a male 19/38 sta n d a rd ta p e re d j o i n t to which a stopcock was a tta c h e d was p laced in th e to p o f th e condenser. P e r io d ic a lly , sam ples were removed from th e f la s k th rough a heavy w alled c a p i l l a r y tu b in g which e n te re d th e s id e of th e Erylenm eyer th ro u g h a r in g s e a l . One end o f th e tu b in g extended to w ith in an e ig h th in c h of th e bottom of th e f l a s k , w h ile th e o th e r end le d to a th re e -w ay sto p co c k . By th e p ro p er m an ip u latio n of t h i s stopcock, th e v e s s e l could be flu s h e d w ith a stream of dry argon b e fo re or d u rin g a ru n , th e f la s k co u ld be ev acu ated , or a sample could be withdrawn.. Tem perature was re g u la te d by p la c in g th e f l a s k in a c o n s ta n t tem p eratu re b a th th r e e in ch es deep, u n d ern eath which was a Mag-Mix m agnetic s t i r r e r fo r a g ita tio n . In th e co u rse o f t h i s work, one hundred and n in e exchange r e a c tio n s w ere a tte m p te d , th e f i r s t t h i r t y b ein g done in th e a p p a ra tu s d e sc rib e d abov e. A p p ro p ria te c a t a l y s t s , tem p eratu re ranges and hydrocarbons s u it a b l e f o r k i n e t i c experim ents were determ ined in t h i s a p p a ra tu s . U n fo rtu n a te ly , t h i s r e a c tio n v e s s e l s u ffe re d from s e v e ra l d isad v a n ta g es f o r a c c u ra te k i n e t i c m easurem ents. These in clu d ed fre q u e n t plugging o f th e c a p i l l a r y tu b in g w ith c a t a l y s t and th e l i m i t a t i o n t h a t tem pera­ tu r e s above th e b o ilin g p o in t of any of th e components o fte n r e s u lte d in th e co n d en satio n c f t h a t compound in th e condenser th u s red u cin g th e p o s s i b i l i t y of exchange w ith t h a t hydrocarbon. Because of th e s e d i f f i c u l t i e s , i t was n e c e ssa ry to r e s o r t to se a le d tu b e s f o r th e k i n e t i c ex p erim en ts. A cco rd in g ly , segments o f 1$ mm. h3 Pyrex tu b in g e ig h t in c h e s lo n g se a le d a t one end and w ith a neck ap p ro x i­ m ately 8 nun. O.D. f iv e in c h e s from th e se a le d end were p rep ared . tu b e s were d r ie d a t 110° f o r s e v e ra l hours b e fo re u s e . The They were th en a tta c h e d to th e end of a t r a i n which could supply d ry argon (concen­ t r a t e d s u l f u r i c a c id , potassium hydroxide p e lle ts ) o r a vacuum, w ith s u it a b l e sto p co ck s and m ercury s a f e ty v a lv e . The tube was s u c c e s s iv e ly ev acu ated and f i l l e d w ith argon ap p ro x im ately tw enty tim es to in s u re removal o f w a te r vapor and oxygen. A f te r a f i n a l f i l l i n g w ith dry a rg o n , th e tu b e was removed and te m p o ra rily s to p p e re d . The a p p ro p ria te amount o f hydrocarbon m ix tu re was p ip e tte d in to th e tu b e follow ed by th e a d d itio n o f a p re v io u sly weighed q u a n tity of c a t a l y s t . U su ally i t was n e c e s sa ry to c u t th e c a t a l y s t in to s e v e ra l p ie c e s sc t h a t i t cou ld e a s i ly pass through th e c o n s tr ic tio n in th e tu b e . For th e o c c a s io n a l p ie c e t h a t d id g e t stu ck i n th e neck, a b ra s s rod was used t o push th e c a t a l y s t in to th e main body of th e tu b e . The tu b e was r e tu rn e d to th e argon t r a i n , a s l i g h t vacuum a p p lie d and th e tu b e se a le d o f f a t th e c o n s tr i c t i o n . Tem perature was c o n tr o lle d w ith in ± 0 . ^ J using an in s u la te d m in era l o i l b a th one f o o t i n d iam eter and one fo o t deep equipped w ith two 2^0w a tt k n if e h e a te r s and a b im e ta llic s p i r a l r e g u la to r . Thorough, co n tin u ­ ous m ixing was accom plished by mounting th e tu b es on e x te n s io n clamps which w ere a tta c h e d to one arm o f a Model BB, B u r r e ll ,rW rist-A c tio n ” S haker ( B u r r e ll C o rp o ra tio n , P itts b u r g h , P e n n sy lv an ia). The tu b e s were f ix e d a t r i g h t a n g le s to th e arms of th e sh ak er and th e c e n te r of each tu b e moved i n an a rc ap p ro x im ately th re e in ch es long and a lte r n a te d hh d i r e c t io n o v er one hundred tim es every tw enty seconds. The u se o f th e s e s e a le d tu b e s proved v ery s u c c e s s fu l and a l l q u a n tita tiv e r e s u l t s were o b ta in e d u s in g th e s e a s r e a c tio n v e s s e l s . (b) R eactio n C o n d itio n s S e v e ra l c a t a l y s t s were in v e s tig a te d . A v ery r e a c tiv e c a t a l y s t was d e s ir a b le f o r a llo w in g k i n e t i c s to be measured a t low te m p e ra tu re s. High s u rfa c e sodium (IKS) on charcoal, and h ig h s u rfa c e potassium (H3P) on th e sarnie su p p o rt were t r i e d . I t was found t h a t exchange occu rred w ith HSP a s low a s 65° , b u t u n f o rtu n a te ly n e it h e r of th e s e c a t a l y s ts was v e ry d isc rim in a tin g ,, a p p re c ia b le deuterium o c c u rrin g on th e arom atic r in g a s w e ll a s th e s id e ch a in a s shown by th e appearance of in f r a r e d bands a t U-UO m icrons (th e a l i p h a t i c C-D band appears n e a r U.68 m icrons) (See F ig u re 1;). The c a t a l y s t which was b e s t s u ite d f o r s id e -e h a in exchange proved to be potassium m etal w hich, a s id e from being more e a s i l y handled th a n HSS o r HSP, i s a l i q u i d above 63°, allo w in g a f r e s h s u rfa c e o f c a t a l y s t to be c o n tin u a lly exposed to hydrocarbon d u rin g exchange. So t h a t re p ro d u c ib le r e s u l t s could be o b ta in e d , samples o f p otassium had to be used which d id n o t d i f f e r from one a n o th e r in w eig h t. I t was found co n v en ien t to weigh th e samples on a m agnetically-dam ped ch ain cm atic a n a l y t i c a l b a la n c e . A w eighing b o t t l e tw o -th ird s f u l l of potassiu m m e ta l-d rie d m in era l o i l was weighed to th e n e a r e s t m illig ra m . Then a p ie c e o f potassium ro u g h ly th e w eig h t d e s ire d was f r e s h l y c u t u nd er d ry h e p ta n e , picked up w ith fo rc e p s , d rie d w ith ab so rb an t p ap er, p laced i n th e m in e ra l o i l i n th e w eighing b o t t l e and th e b o t t l e rew eighed. Percent T ransm ission 100 U.o 5-0 M icrons F ig u re 1.0 6.0 Microns 5-0 M icrons Ring exchange over h ig h su rfa c e sodium ;,HSS) on c h a r c o a l. A = E th y lb enz eneB = E th y lb enz ene-d^ a f t e r exchange w ith cumene a t 100° f o r 6 hours over HSS. C = Cumene a f t e r exchange w ith eth y lb en zen e-d a a t 100° f o r 6 h ours over HSS. Note th e appearance of two C-D bonds: U.UO^l and a l i p h a t i c C-D a t U.6 8 >u. aro m atic C-D a t 6.0 T h is p ro ce ss o f c u ttin g and rew eighing was re p e a te d u n t i l th e d e s ire d w eig h t o f c a t a l y s t was o b ta in e d . When i t became n e c e ssa ry to c u t th e potassium i n t o s e v e ra l p ie c e s to make a d d itio n to th e r e a c tio n tube e a s i e r , t h i s c u t t i n g was lik e w is e done under d ry h ep tan e, th e m etal b ein g touched d ry w ith a b so rb a n t paper b e fo re b ein g p laced in th e tu b e . A nother f a c t o r which was s tu d ie d was th e e f f e c t of te m p e ra tu re . E xperim ents were run u s in g th e v a rio u s c a ta ly s ts from 6£ - l? £ ° . In a l l cases h ig h e r te m p e ra tu re s r e s u lte d in an in c re a se d r a t e of deuterium exchange, b u t, u n f o rtu n a te ly , th e r a te o f arom atic r in g exchange in c re a s e d more r a p id ly th a n th e r a t e of s id e ch ain exchange. The tem p eratu re o f l £ 0° was f i n a l l y s e le c te d as a s u ita b le tem p eratu re f o r con d u ctin g th e k i n e t i c s u sin g potassium m etal as a c a t a l y s t because th e s id e c h a in exchange o ccu rred a t a d e s ir a b le r a t e w h ile th e aro m atic r in g exchange was sm a ll. (c) K in e tic Procedure For each k i n e t i c run a sto ck s o lu tio n c o n ta in in g th e p ro p er r a t i o o f hydrocarbon components was p re p a re d . W ith th e a id of a 1 ml. p ip e tte grad u ated t o 0 .0 1 m l., i d e n t i c a l volumes were placed in each tu b e from t h i s sto ck s o lu tio n . Most o f th e k i n e t i c s were done by p re p a rin g te n tu b e s and a llo w in g two tu b e s each to r e a c t a t 1^0° f o r two, f o u r, s ix , e ig h t and te n h o u rs. A t th e d e sig n a te d tim e, each tube was q u ic k ly removed from th e b a th , cooled f o r a m inute in a b eak er of m in era l o i l a t room te m p e ra tu re , th e n cooled i n an ic e b a th . A f te r s e v e ra l m inutes th e tu b e , which was u s u a lly covered in s id e w ith th e deep-red c o lo r c h a r a c t e r i s t i c o f th e o rg a n o m e ta llic formed, was opened and th e d eep -red l i q u i d removed u s in g a m edicine dropper p u lle d bo a c a p i lla r y and added to 1 m l. o f d i s t i l l e d w a ter in a 30-m l. s e p a ra to ry fu n n e l. There was some r e a c tio n when t h i s was done, alth o u g h u s u a lly no more th an a g e n tle e v o lu tio n o f hydrogen. When t h i s e v o lu tio n had subsided (h asten ed by s w irlin g th e f u n n e l), th e bottom y ello w , aqueous la y e r was withdrawn and th e w h ite hydrocarbon la y e r washed w ith a n o th er ml. of w a te r. A f te r rem oval o f t h i s aqueous phase, th e rem aining c l e a r , c o lo r le s s o rg an ic l a y e r was w ithdraw n th ro u g h th e to p o f th e fu n n e l w ith a c a p il­ l a r y m edicine d ropper and p la c e d , to g e th e r w ith s e v e ra l p ie c e s of D r i e r i t e , i n a t e s t - t u b e th r e e in ch es lo n g c o n s tru c te d from 8 mm. Pyrex tu b in g . la b e lle d . The tu b e was sto p p ered w ith a ru b b er serum b o t t l e cap and The purpose o f th e serum b o t t l e cap was th e ease w ith which one could w ithdraw th e sample in to a hypodermic sy rin g e and i n j e c t i t in to th e Vapor F racto m e te r f o r s e p a ra tio n . RESULTS AND DISCUSSION U8 RESULTS AMD DISCUSSION S y n th e tic Methods O rd in ary hydrocarbons which were needed f o r th e exchange e x p e ri­ ments w ere e i t h e r o b ta in e d com m ercially or sy n th e siz e d by methods r e p o rte d in th e l i t e r a t u r e . Samples of a lp h a -d e u te ra te d hydrocarbons of known deu teriu m c o n te n t were a ls o n e c e s sa iy f o r p re p a rin g c a l i b r a t io n cu rv es ( c o r r e l a t i n g p e rc e n t deuterium w ith th e i n t e n s i t y o f th e C-D peak i n th e I n f r a r e d ) so t h a t th e amount of deuterium exchanged could be d e te rm in e d , When i t became a p p a re n t t h a t .synthesis by re d u c tio n of th e appro­ p r i a t e t e r t i a r y c h lo rid e w ith lith iu m aluminum d e u te rid e and lith iu m d e u te rid e LiAlD. (3) r e s u lte d i n poor y ie ld s o f th e d e s ire d compound, a n o th e r ro u te was so u g h t. A method which appeared to be s u ite d f o r t h i s purpose was cleav ag e o f th e co rresp o n d in g a-m eth y l e th e rs w ith an a l k a l i m etal ( to form th e o rg a n o m e ta llic compound) follow ed by h y d ro ly s is w ith deu teriu m o x id e . C©K© - 5 4 O c -d L :k) k9 T his procedure proved to be a p p lic a b le f o r a l l th e re q u ire d compounds ( s e e Table IV ). D uring th e p r e p a ra tio n of cumene-* by t h i s p ro ced u re, a paper app eared by R u s se ll (1+2) who, claim ed t h a t cumene p repared in a s im ila r manner (m ajor d if f e r e n c e s were sodium -potassium a ll o y in s te a d of potassium o n ly , e th e r s o lv e n t r a th e r th a n heptane and deuterium c h lo rid e in s te a d o f deu teriu m oxide to in tro d u c e th e deuterium ) co n tain ed O .2I4 aro m atic d eu teriu m atoms p er m o lecule. He analyzed th e cumene by hig h r e s o lu tio n n u c le a r m agnetic re so n an ce, in f r a r e d and mass sp ectro sco p y . I t th e r e f o r e became n e c e s sa ry to e s ta b li s h th e p o s itio n o f th e deuterium i n th e d e u te r a te d cumene prepared by th e method d e sc rib e d in t h i s t h e s i s (Mass sp e c tro m e tric a n a ly s is o f fra g m e n ta tio n peaJcs u n f o rtu n a te ly does n o t a llo w one to d is tin g u is h r in g - from a lp h a-d eu teriu m (1+3 )) P roof o f S tr u c tu r e o f Cumene-d^ The in f r a r e d spectrum of our product showed e s s e n t i a l l y no aro m atic C-D band ( U.U m ic ro n s), b u t th e spectrum o f R u sse ll* s p ro d u ct a ls o showed o n ly s l i g h t aro m atic C-D a b s o rp tio n . In o rd er to examine t h i s band more c a r e f u l l y , cumene-dp was prepared by th e fo llo w in g scheme: Br Br D i- p r o p y l bromide A.1C1, CH(CH3 ) This p ro d u ct showed a s tro n g aro m atic C-D band a t U.liO m icrons (se e F ig u re 2 0 ). The p ercen tag e o f deuterium in th e cumene-d^. and cumene-dp 50 TABLE IV HELDS P D DEUTERIUM ANALYSES OF HYDROCARBONS PREPARED BY ETHER CLEAVAGE WITH POTASSIUM FOLLOWED BY HYDROLYSIS WITH DEUTERIUM OXIDE Y ield From E th er ( P ercen t) Hydrocarbon Mass S p ectro m e tric A n a ly sis P e rc e n t d^ P ercen t dd Cumene £7 82.6 17 .u sec-B u ty lb enzene 6k U6 .6 £3-U 2-P henylpentane 6k 6U.1 35.9 3 -P h en y lp en tan e $6 53.3 I46.7 2-M ethyl-3"phenylbutane 83 70.1 29.9 £L.U U8 .6 2 , 2 -d im e th y l-3 - phenjdLbutane Note: Mass- s p e c tro m e tric a n a ly se s a re w ith in 1% of a b s o lu te v a lu e and show no b e t a , gamma o r d e l t a deuterium atom s. were e s s e n t i a l l y i d e n t i c a l (8 2 ,6$ and 82,7$ r e s p e c tiv e l y ) . A rom atic deu teriu m was e a s i ly d is c e m a b le in m ix tu res c o n ta in in g a 1:9 and 1 : 1; r a t i o o f cumene-dp to cumene-dg. (se e F ig u re $ ) . I t i s s a fe to conclude, th e r e f o r e , t h a t a c c o rd in g to i n f r a r e d a n a ly s is , cumene-da prep ared by e th e r cleav ag e a s d e s c rib e d i n t h i s t h e s i s co n tain ed < 5$ aro m atic deuterium . F u rth erm o re, a sample of cumene-da prep ared by th e fo llo w in g scheme 0 II CH3-C-CH3 D T t A 111 ■■ ' I CH3-C-CH3 OH D PRr 1 ■ I CH3-C -C H 3 Br (6) 51 100 100 80 80 Percent T ransm ission ao W m •rl g •H Ui E-i 60 60 0 ) o o H bi\ Os bO t— I CM* o o -d" -d - o- 0 3 0 a © 43 CO 0 -P H A d 0 43 £ u +3 0 ■3-5. 0 0 fd £} Q3 CM CH OJ (H CM o /-----N rt 1 O 0 to to w 0 0 -P o $ -d " MO rH CM » % CM -d "14\ _d CM CM rH CM 00 rH M 44 CH O bt) sboito •H O o O m Oh 0 I ft eo o s §© 0 a © e g I r-< 43 t O 0 CO rH * O CM o o 61 cr\ <\J E-4 CD (D 0Q) tSl 6(D 1 H 3 ON O' 0 CD e o0 m ft) S s o ( 1) ft) £ f O) 0j P P pq -P VO • rH On » rH vO On CO A CM A "LA -pj "LA cA OJ 00 CO pi X> I o 0 to r o a I £ 0 0 CO CO 0 o CO •H vO Pi -pj 0 -P B o 0 £ 0 e -£ pi O O Pi 0 CL. 0 Pi 0 o 3 0 P J 0 O e CA "LA % o CM c- CM CO o H CO Xl CM rH v6 rH rH rH xs 00. "LA CM co H NO H o o o CM 0 Xl i> u 0 w P S3 I •a 3INI PI 0 p3 0 0 e .3 to to ctf £ faO 43 os -P f O CM • O A O CM • O O O CM • O A O CM * O x t O CM * O ON H CM O CM * vO On MD On vO On rH rH rH O CO 1 0 -P 0 CL. ^ 1* o £ Ti 0 .a W B) CL, El aO -P0 as r e a c tio n tem p eratu re. (These data are ta b u la te d in Table V I I . ) 6U C a lc u la tio n o f R ate C o n stan ts The r a t e c o n s ta n ts were c a lc u la te d u s in g th e v a lu e s f o r deuterium exchange found i n T ables VII and XI-XV. The o v e r - a ll e q u a tio n f o r i n i t i a l , exchange of equim olar q u a n titie s of two hydrocarbons (RH and R*H) w ith a t h i r d c o n ta in in g deuterium (R”D) may be w r itte n : RH (100 - x.) + R"D + R"H R*H (100 - y) where x = p e rc e n t o f RD a t tim e t y = p e rc e n t of R* D a t tim e t 100 - x = p e rc e n t o f RH a t tim e t 100 - y = p e rc e n t o f R*H a t tim e t The f i r s t o rd e r k i n e t i c e q u a tio n (I4I4.) , 2.303 k “ " t -i 100 g 100 - %l where %D i s e it h e r x or y was used f o r th e c a lc u la t io n o f th e r e a c tio n r a te c o n s ta n t, k , f o r each exchange. T ables VI I I and IX l i s t th e v a lu es' obtained from t h i s eq u a tio n , to g e th e r w ith th e v a lu e o f each run a s determ ined by th e l e a s t squares s lo p e (Uj?) o f lo g jlOO/lOO-$D) v e rsu s tim e f o r cumene and s e c -b u ty l­ b en zen e. C orresponding t a b le s fo r th e oth er exchanges may be found 65 i n th e A ppendix. F ig u re 9 shows a t y p i c a l l e a s t sq u ares p l o t. In most c a s e s , samples f o r d u p lic a te p o in ts were ru n a t th e same tim e to be a s su re d o f eq u al exchange c o n d itio n s . In one in s ta n c e , how ever, two s e p a ra te runs were made s e v e ra l weeks a p a r t, each c o n s is t­ in g o f f iv e sam ples (2 , U, 6, 8 and 10 h o u rs ). T ables T i l , V III and DC. . - e . 5-27 x 10 and 5*39 x 10 These d a ta a r e in The average r a t e c o n s ta n ts f o r cumene were _ 6 and f o r se c -b u ty lb en zen e, 2.1$ x 10 _ 6 and -6 2.39 x 10 . I t i s a p p a re n t t h a t th e r a te c o n s ta n ts were f a i r l y re p ro d u c ib le . Table X l i s t s th e r e l a t i v e r a t e s of exchange f o r a l l hydrocarbons s tu d ie d , a v a lu e of 1 .0 0 b ein g a s sig n e d to th e hydrocarbon w ith th e slo w e st exchange r a t e (2 ,2 -d im e th y l-3 -p h e n y lb u ta n e ). Mechanism Any ad eq u ate i n t e r p r e t a t i o n o f th e d a ta assem bled in th e p re s e n t in v e s t i g a t i o n would be supplem ented by a knowledge o f th e r e a c tio n mechanism (I4.6 ) . S ev e ral d i f f e r e n t mechanisms of m e ta la tio n have been advanced in r e c e n t y e a r s , th e main d if f e r e n c e b ein g th e r e l a t i v e im portance o f th e r o le p lay ed by th e a l k a l i m e ta l. From t h e i r p h y s ic a l p r o p e r tie s i t a p p e a rs t h a t a l k y l - and a ry l-p o ta s siu m compounds a r e p o la r and behave as u n d is s o c ia te d io n - p a ir s ( 1 ) . Morton ,'h7” 5 l) has v i s u a l i z e d s id e - c h a in m e ta la tio n of a lk y la ro m a tic s as an e l e c t r o p h i li c p ro c e ss where th e le a d in g r o l e was t h a t o f th e a lk a li- m e ta l c a tio n , th e a n io n a id in g b u t r e le g a te d to a m inor p a r t. In t h i s i n t e r p r e t a t i o n th e r e s i d u a l p o l a r i t y o f th e m etal c a tio n a t t r a c t s th e e le c tr o n s of th e carbon-hydro gen c o v a le n t bond in th e s id e c h a in , th u s lo o se n in g th e 66 TABLE V III FIRST ORDER. RATE CONSTANTS FOR DEUTERIUM TRANSFER TO CUMENE IN COMPETITION WITH see-BUTYLBEN?ENE (D euterium so u rc e : eth y lb en zen e-d ^ ; c a t a l y s t: potassium m e ta l; te m p e ra tu re : l 5 0 ° l r e a c tio n v e s s e l: se a le d tu b e s . Data c a lc u la te d from Table V II.) Sample 1 Tim e' ( s e c .) P ercen t D Log (100/100-^D) ki (xlO 6) ( s e c . — — 0 0 7200 2.5 0.01098 3.51 y 7200 3-0 0.01322 U.23 k llUiOO 8.2 0.03715 5 >9k f 1U400 7.0 0.03153 5.0U 6 21600 11.2 0,05158 5.50 7* 21600 12.2 0.05652 6.10 8 28800 16. £ 0.07831 6.26 r 28800 15. h 0.07262 5.81 10 36000 16.8 0.07986 5-11 11"' 36000 18.7' 0.08991 5.75 2 ) \/ \r Average L east Squares Slope 5.33 ± 0.68 5 .$ "These were run two weeks a f t e r th e even-numbered sam ples. 67 TABLE U FIRST ORDER RATE CONSTANTS FOR DEUTERIUM TRANSFER TO sec-BUTYLBENZENE IN COMPET' IT ION WITH CIJMENE (D euterium so u rc e : ethylbenzene=-da j c a t a l y s t: potassium m etal; te m p e ra tu re : 150 ; r e a c tio n v e s s e l: se a le d tu b e s . Data c a lc u la te d from T able V II.) Sample Time ( s e c .) 1 0 2 7200 1 .9 O.OO83I4. 2.6 / 3* 7200 1 .6 0.00702 2.25 k ll^OO 3.9 0.01728 2./6 r lUUoo 2. 6 0 .0111& 1.83 6 21600 U.3 0.01907 2.03 T 21600 5 .8 0.02596 2.77 8 28800 7.2 0.032L.6 2.60 28800 /•5 0.03387 2.71 10 36000 8.2 0.03715 2.38 11" 36000 8.3 0 .0 3 /6 3 2 .1i l P ercen t D 0 Leg (lOO/lOO-^D) k1 1 (xlO 6) ( s e c . ) — — V/ \t t./ 9" Average L e ast Squares Slope 2 .UU ± 0.26 2 .!© "'"These were run two weeks a f t e r th e even-numbered, sam ples. F ig u re 9• L e a st sq u ares slo p e s showing r a t e s of deuterium exchange c o m p e titio n between cumene and sec-b u ty lb en zen e 's e e .T ables V II, V III arid EX). 0.100 0.080 cumene 100- 100 0.060 bQ o H sec-b u ty lb en zen e 0.02 0 0 .0 0 0 Time ( h r s .) 68 69 TABLE T RELATIVE DEUTERIUM EXCHANGE PATES CALCULATED FPOM LEAST SQUARES SLOPES ( 2 , 2 -d im eth y l-3 -p h en y lb u tan e = l.OO) Number Hydrocarbon R e la tiv e Exchange Rate 1 2 ,2 -d im eth y l-3 -p h en y lb u tan e 1.00 2 2-m ethyl-3- phenylbutane 1.90 3 3 - phenylpentane 1.96 k 2 - phenylpentane 6.91 5 sec -b u ty lb e n z ene 8.13 6 cumene 18.9 p ro to n w hich i s th e n re c e iv e d by th e an io n i n a ’’p u s h -p a ll11 ty p e o f re a c tio n . This i s i l l u s t r a t e d below u s in g Morton*s n o ta tio n o f a heavy arrow i n d ic a tin g a m ajor fo rc e (R, R^ and R2 a r e a lk y l gro u p s): E l e c tr o p h ilic a tta c k by o rg a n o a lk a li re a g e n ts was ex p lain ed by Morton w ith t h i s mechanism. B ryce-Sm ith ( 5 ) , on th e o th e r hand, has suggested t h a t th e an io n i s th e more im p o rta n t s p e c ie s and v is u a l iz e s a t e t r a p o l a r t r a n s i t i o n s t a t e where th e f u n c tio n o f th e m etal c a tio n i s p u re ly e l e c t r o s t a t i c , 70 th e d r iv in g f o rc e f o r th e r e a c tio n b ein g th e energy d if f e r e n c e between c a rb a n io n s « T his concept i s i l l u s t r a t e d below: R' *•2 T? R, C Kl^ C - H (12) r X e n + RH - B ryce-S m ith has term ed t h i s ty p e of s u b s tit u ti o n " p r o t o p h i l i c ," in v o lv ­ in g th e rem oval of a p ro to n in th e ra te -d e te rm in in g s te p . This i s to be d is tin g u is h e d from a n u c le o p h ilio s u b s t itu tio n in v o lv in g RK which would in v o lv e a tta c k o n .carbon by R w ith subsequent removal o f a h y d rid e io n . As a t e s t o f t h i s mechanism, B ryce-Sm ith (£2) s tu d ie d th e m e ta la tio n o f deuterobenzene and t o l u e n e - b y e th y l potassium . He found t h a t protium was re p la c e d by potassium more r a p id ly th a n d e u te riu m , i n d ic a tin g t h a t , in d eed , th e b re a k in g o f th e carbon-hydro gen bond i s im p o rtan t in th e ra te -d e te rm in in g s te p . He f u r t h e r p o in ts out t h a t th e r a t e o f m e ta la tio n a t a given p o s itio n i s r e la t e d to th e a c i d i t y o f th e hydrogen which i s re p la c e d . O b jectio n s r a is e d by B ryce- Sm ith to Morton® s proposed scheme in c lu d e th e f a c t t h a t th e m etal c a tio n r e t a i n s th e same e le c tr o n ic c o n fig u ra tio n a f t e r r e a c tio n as b e fo re and t h a t an e l e c t r o p h i li c a tta c k by th e m etal c a tio n i s n o t in agreem ent w ith th e e x te n siv e m e ta - s u b s titu tio n o b tain ed in. th e m etal­ a t i o n o f cumene by e th y lp o ta ssiu m n o r w ith th e f a c t t h a t a lk y l groups ap p ea r to d e a c tiv a te th e r in g to s u b s titu tio n . In an a tte m p t to do away w ith th e o b je c tio n s of B ryce-Sm ith, Morton (1*7,53) supplem ented h is p rev io u s mechanism w ith an a l t e r n a t iv e r o u te , th e r e a c tio n c o n d itio n s d eterm in in g which p ro cess would 71 p re d o m in a te . T his a d d itio n a l p a th in v o lv e s th e concept of a r a d ic a l- p a ir a s opposed t o an i o n - p a ir . H e r e ,.th e f i r s t s te p i s assumed to be th e d i s s o c i a t i o n of th e o rg a n o a lk a li s a l t (w ith th e hydrocarbon c o o rd in a te d on th e c a tio n ) in to two r a d i c a l s , follow ed by th e rem oval o f th e most a c id ic hydrogen in th e hydrocarbon by atom ic a l k a l i m e ta l. The p ro c e ss i s te rm in a te d by accep tan ce o f t h i s hydrogen atom by th e a lk y l r a d i c a l . This sequence i s shown in th e fo llo w in g eq u atio n s: (13) R2 R l" C : r2 H Ri - c ;0 K© (iU ) + H* H- + R- -----> RH (15) Morton p o in te d o u t t h a t t h i s a l t e r n a t i v e p ro cess i s in agreem ent w ith th e rem oval o f a p ro to n in th e ra te -d e te rm in in g s te p . This mechanism i s reg a rd e d by B ryce-Sm ith (5U) a s u n ten ab le s in c e Morton d id n o t supply d i r e c t ex p erim en tal evidence f o r f r e e r a d ic a ls and because of o th e r c o n f l ic ti n g ev id en ce. R eg a rd less o f which mechanism i s c o r r e c t, bo th in v e s tig a to r s ag ree t h a t th e r e l a t i v e ease o f m e ta la tio n a t any given p o s itio n i s a func­ t i o n o f th e a c i d i t y o f th e hydrogen b e in g d is p la c e d , o r, s ta te d a n o th e r way, th e s a l t o f th e s tr o n g e s t a c id should be form ed. W ith t h i s f a c t i n m ind, th e p re s e n t i n v e s tig a tio n was u n d ertak en i n an attem p t to 72 c o r r e l a t e th e r e l a t i v e a c i d i t y of c e r t a i n hydrocarbo a c id s w ith t h e i r s tru c tu re . S e v e r a l p ro c e ss e s a r e e v id e n t i n th e exchange r e a c tio n s s tu d ie d ( 17) : (1) th e i n i t i a l a tta c k of th e c a t a l y s t on an a lp h a hydrogen to form th e o rg a n o a lk a li compound, (2) th e exchange r e a c tio n between a hydrocarbon and a c arb a n io n a n d /o r (3 ) exchange between in o rg a n ic h y d rid e and. an a lk y la r o m a tic . Only by th e s e p ath s can th e observed p ro d u cts be r a t i o n a l i z e d . The f i r s t s te p , a tta c k by c a t a l y s t , may be v is u a liz e d a s fo llo w s: ( 16 ) The hydrogen (o r deu teriu m ) atom formed can e i th e r u n i t e w ith a second hydrogen ( o r deuterium ) atom to form hydrogen gas, o r w ith an atom of potassium to form potassium h y d rid e (o r d e u te r id e ) . As has been p re v io u sly m entioned, a tta c k occurs on th e alp h a carbon due to reso n an ce s t a b i l i z a t i o n o f th e r e s u l t i n g benzyl c a rb an io n . The n e x t l i k e l y p ro cess i s th e t r a n s f e r o f an alp h a p ro to n (o r d eu tero n ) from a hydrocarbon to a carb an io n r e s u l t i n g in a new, l e s s b a s ic c a rb a n io n and l e s s a c id ic hydrocarbon. This i s i l l u s t r a t e d below: 73 A consequence o f p ath (17) i s t h a t i f equal c o n c e n tra tio n s of carb an io n s o f d i f f e r e n t b a s i c i t i e s ( i . e . a,a~ d im eth y lb en zy l and a -e th y l-n -m e th y lb e n z y l) w ere to compete f o r a source of deuterium ( i . e . e th y l b enz ene-da ) , th e l e s s a c id ic hydrocarbon formed (presum ably, sec-b u ty lb en zen e) should a c q u ire d eu teriu m more r a p id ly , o th e r f a c to r s b ein g e q u a l. A n o th er p o s s ib le p a th f o r exchange i s th e d i r e c t a tta c k of a d e u te rid e io n on th e a lp h a hydrogen of a hydrocarbon, as in d ic a te d : + H® (18) U n fo rtu n a te ly a t th e p re s e n t tim e , r e a c tio n (18) cannot be d e f i n i t e l y ru le d o u t a s a p o s s ib le p ro c e ss (alth o u g h th e r e i s l i t t l e precedence f o r t h i s ty p e o f r e a c t i o n ) . I t seems p robable t h a t t h i s p ath would lik e w is e be a m easure o f th e hydrocarbon a c i d i t y , le a d in g to th e same r e s u l t s a s s te p (17) ( th e l e s s a c id ic hydrocarbon exchanging w ith deuterium , a t a f a s t e r r a t e ) . I t w i l l be assumed i n f u r t h e r d is c u s s io n t h a t exchange o ccu rs predom inantly acco rd in g to ( 1 7 ). A ll th r e e p ath s a r e c o n s is te n t w ith f i r s t - o r d e r k i n e t i c s . From a c o n s id e ra tio n o f th e e l e c t r i c a l e f f e c t s o f th e v a rio u s a ,a - d ia lk y l. groups on th e hydrocarbons s tu d ie d , q u a l i t a t i v e p r e d ic tio n s a s to th e o rd e r o f r e l a t i v e a c i d i t y can be made. The o rd e r o f d e c re a s ­ in g e le c tr o n r e p u ls io n (in d u c tiv e e f f e c t ) i s -C(CH3 ) 3 > -CH(CH3 ) 2 > -CH2CH3 > -CH3 a c i d i t y a s fo llo w s : . T h is le a d s to an o rd e r of d e c re a s in g r e l a t i v e cumene > sec-b u ty lb en zen e - 2-phenylpentane > 3-p h e n y lp e n ta n e and 2-m eth y l-3 -p h en y lb u t a r e > 2 ,2 -d im e th y l-3 -p h e n y lb u ta n e . I f s te p (17) xs th e ra te -d e te r m in in g one, th e deuterium exchange r a t e s sh o u ld in c r e a s e i n th e o rd e r of d e c re a sin g a c i d i t y . The r e s u l t s o b tain ed a r e co m p letely re v e rs e d from t h i s o b s e rv a tio n , th e o rd e r o f d e c re a sin g r a t e s p a r a l l e l i n g t h a t o f p re d ic te d d e c re a sin g a c i d i t y . The observed r e s u l t s can, how ever, be r a tio n a li z e d by assuming t h a t s te p (1 6 ) , i n i t i a t i o n of th e exchange by c a t a l y s t , i s r a t e d e te rm in in g . T his seems e n t i r e ly re a so n a b le from th e f a c t d e c re a sin g th e amount o f c a t a l y s t d ecreased th e r a t e o f exchange. F u rth e r, i t i s f e l t t h a t t h i s s te p i s d i r e c t l y r e l a t e d to th e a c i d i t y of th e hydrogen d is p la c e d , th e more a c id ic hydrogen b ein g more e a s ily removed ''r e s u ltin g i n a h ig h e r c o n c e n tra tio n of th e l e s s b a s ic c a rb a n io n ). This b e l i e f i s s im ila r to Robert®s (8) assum ption t h a t th e r a t e c o n s ta n ts f o r rem oval o f p a r t i c u l a r hydrogens in a c id s of s im ila r s tr u c tu r e a re r e l a t e d to t h e i r e q u ilib riu m i o n iz a tio n c o n s ta n ts , Ha­ l t w i l l be n o te d t h a t th e s t e r i c req u irem en ts o f th e hydrocarbons s tu d ie d in c r e a s e w ith d e c re a sin g a c i d i t y . Because of t h i s , i t m ight be argued t h a t th e d e c re a se in r a t e o f deuterium exchange i s due s o le ly to a s te r ic f a c to r . I f s te p (16) ( a tta c k by a potassium atom) i s th e r a te -d e te r m in in g s te p a s p o s tu la te d , s t e r i c c o n s id e ra tio n s would be ex p ected to p la y a l e s s dom inant r o le th a n i f p ath (17) ( a tta c k by a c a rb a n io n ) w ere th e c o n tr o llin g s te p . I t i s , however, d i f f i c u l t to d iy o rc e th e s t e r i c f a c t o r s from any of th e p ro c e sse s which may be ta k in g p la c e . B ryce-S m ith (5) s tu d ie d th e c o m p etitiv e m e ta la tio n r e a c tio n of cumene and e th y lp o ta ssiu m and a ssig n e d th e o rd e r of d e c re a sin g r e l a t i v e a c i d i t y to th e hydrogens on cumene p a ra > meta. > a lp h a > o rth o > -> b e t a . 75 These r e s u l t s a r e n o t co m p atib le w ith th o se o b ta in e d by deuterium exchange where s u b s t i t u t i o n o ccu rred alm ost e x c lu s iv e ly in th e alp h a p o s itio n . B ryce-Sm ith*s r e s u l t s may be due to s e v e ra l f a c t o r s , some o f w hich a r e n o t d i r e c t l y r e l a t e d to th e a c i d i t y . One i s t h a t th e e th y l c a rb a n io n , b ein g v e iy b a s ic , i s n o t a s d is c r im in a tin g a s a potassiu m atom when d is p la c in g a hydrogen. T h e refo re , th e lik e lih o o d of p ro to n rem oval from th e r in g i s g r e a te r . Secondly, th e s t e r i c re q u ire m e n t o f th e e th y l carb an io n (p ro b ab ly fu n c tio n in g a s an io n p a i r w ith th e p otassium cati.on) i s c o n s id e ra b ly g r e a te r th a n a potassiu m atom . This would te n d to reduce th e p r o b a b ility o f a tta c k i n th e a lp h a p o s itio n and y e t have l i t t l e e f f e c t on th e meta and p ara p o s itio n s . The i n i t i a l a t t a c k , e q u a tio n (1 6 ), need n o t in v o lv e f r e e r a d i c a l s , th e p ro c e ss v e ry l i k e l y b ein g co n certed where th e hydrogen atom b ein g e x p e lle d i s a id e d by a second potassium atom . shown: _ T his may be p ic tu re d as _ R2 T? * _^C fH, Ri q0 K0 f 2K — > The r e a c tio n m ost p ro b ab ly o ccu rs on th e s u rfa c e of th e l i q u id potassium m e ta l. F u r th e r s tu d y on t h i s problem m ight h e lp to e lu c id a te th e mechanism. A more e x te n s iv e i n v e s t i g a t i o n in to th e e f f e c t v a ry in g amounts of c a t a l y s t produce on th e r a t e o f exchange would be o f v a lu e i n th e 76 e s ta b lis h m e n t o f s te p (16) a s r a te -d e te r m in in g . The q u e s tio n of w h eth er th e hydrogen atom d is p la c e d i n th e i n i t i a l a tta c k forms hydrogen gas o r potassiu m h y d rid e could be re so lv e d by a n a ly s is f o r hydrogen g as. A n o th er t e s t f o r th e p o s tu la te d mechanism would be th e a d d itio n of d e u te r id e io n to th e r e a c tio n m ix tu re . The r a t e should n o t change (p ro v id e d th e t o t a l so u rce o f deuterium was c o n s ta n t) i f p ath (16) i s r a te -d e te r m in in g , w hereas i f (18) were in v o lv e d , a r a t e in c re a s e would be o b serv e d . In c o n c lu s io n , i t i s f e l t t h a t th e r e l a t i v e r a t e s ta b u la te d in T able X r e p r e s e n t th e r e l a t i v e a c i d i t i e s o f th e s e hydrocarbons as m easured by d eu teriu m exchange over potassium m e ta l. D suterium exchange a s a method f o r m easuring a c i d i t y can be extended t o in c lu d e a w ide v a r i e t y o f compounds. Those p a r t i c u l a r l y s u ite d a r e hydro carb o n s c o n ta in in g b e n z y lic hydrogens. An i n t e r e s t i n g s e r i e s o f compounds to stu d y m ight be a lk y la ro m a tic s , such as cumene, mono- o r d i - s u b s t i t u t e d i n th e v a r io u s r in g p o s itio n s by groups which would n o t r e a c t w ith po tassiu m , b u t would be expected to in flu e n c e th e a c id ity . The t e r t - b u t y l and phenyl groups a re two such s u b s t itu e n ts . The s p e c ia l advantage such a system o f f e r s , a t l e a s t when th e o rth o p o s itio n s a r e u n s u b s titu te d , i s t h a t th e s t e r i c req u irem en ts o f a l l compounds in t h i s s e r i e s ( i . e . r in g s u b s titu te d cumenes) would be th e same. A nother i n t e r e s t i n g c o m p e titiv e exchange r e a c tio n would be t h a t o f to lu e n e and cumene u s in g e th y lb enz ene-dG a s th e d eu teriu m s o u rc e . Toluene i s th e m ost a c id ic and cumene th e l e a s t a c id ic of th e th r e e 77 h y d ro c arb o n s. Because o f t h i s , th e c o n c e n tra tio n o f benzyl c arb an io n s p r e s e n t i n .t h e r e a c tio n m ix tu re should exceed th o se o f a -p h e n y liso p ro p y l c a rb a n io n s, im p ly in g t h a t to lu e n e would exchange f a s t e r . The deuterium exchange betw een e th y lb en zen e-d a and th e an io n from cumene would be ex p ected t o proceed n o rm ally , th e d r iv in g fo rc e b ein g th e fo rm atio n o f th e l e s s b a s ic c a rb a n io n (a-p h e n y l e th y l) and th e l e s s a c id ic hydro­ carbon (cum ene). E q u ilib riu m should be on th e r i g h t s id e of th e e q u a tio n below: ■CHCH, However, i n o rd e r f o r exchange to occur between eth y lb en zen e-d ^ and th e a n io n from to lu e n e th e exchange in v o lv e s th e p ro d u c tio n o f th e more b a s ic a n io n ( a - phenyl e t h y l ) and th e more a c id ic hydrocarbon ( to lu e n e ) . E q u ilib riu m h e re should l i e on th e l e f t o f th e fo llo w in g e q u atio n : A stu d y o f th e s e r a t e s m ight show t h a t in t h i s r e a c tio n , p ath (17) (d e u te riu m exchange) becomes ra te -d e te rm in in g f o r to lu e n e w h ile cumene i s s t i l l dependent upon s te p (16) ( a tta c k by p o ta ssiu m ). The n e t r e s u l t may be t h a t cumene would have th e g r e a te r o v e r - a ll exchange r a t e i n s p i t e o f th e f a c t t h a t i t i s l e s s a c id ic . i n t e r e s t i n g t e s t o f th e proposed mechanism. T his would pro v id e an SUMMARY 78 SUHMA.RX 1 . A g e n e ra l s y n th e tic r o u te to a lp h a -d e u te ra te d a lk y la ro m a tic h y d ro carb o n s was d ev elo p ed . T h is Involved cleavage o f th e a p p ro p ria te a r y l a l k y l m ethyl e th e r w ith potassium m etal and h y d ro ly s is o f th e r e s u l t i n g o rg a n o m e ta llic w ith deuterium o x id e . Compounds p rep ared by t h i s method c o n ta in e d l i t t l e o r no deuterium on th e aro m atic r in g . fo llo w in g hydrocarbons were s y n th e siz e d u s in g t h i s procedure: The cumene-d^, s e c -b u ty lb e n z e n e -d c , 2- p h en y lp en tan e-d a, 3-p h en y lp en tan e-d a, 2-m e th y l,3-phenylbutane-d1058(1957)* HH. F . D a n ie ls , " O u tlin e s o f P h y sic a i C h em istry ,” John W iley and Sons, I n c ., Hew York, 1951, p. 3H6. H5* A. G. W orthing and J . G effn er, "T reatm ent of E xperim ental D a ta ,” John W iley and Sons, I n c ., New York, 19H3, p. 2H0. H6. For Review s, see re fe re n c e (1) and H. Gilman an d J . W. M orton, J r . , ’'O rganic R e a c tio n s ,” V ol. 8. John W iley and Sons, I n c ., New York, 195H, c h a p te r 6 . H7. A. A. M orton and C. E. C la f f , J r . , J . Org. Chem., 20, 981 (1955). H8. A. A. M orton and E. L. L i t t l e , J r . and W. 0 . S tro n g , J r . , Chem. S o c ,, 6 £ , 1339 (19H3) J . Am. H9- A. A. M orton, J . T. M assengale and M. L. Brown, J . Am. Chem. S o c ., 6 7 , 1620 ( 19 H5 ) . 50. A. A.Morton, J . Am. Chem. Soc., 69, 969 (19H?)* 5 1 . A. A. Morton and E. L. Little, Jr., J. Am. Chem. Soc., J 1 ,H 8 7 (19H9 ) . 5 2 . D. B ry ce-S m ith . V. Gold, D. P. N. S a tc h e ll, J . Chem. S o c ., 27ii3 (195H). 53* A. A. M orton, C. E. C la f f , Jr. and F. W. C o llin s , J. Org. Chen., 2 0 , H28 (1 9 5 5 ). 5H. D. B ryce-S m ith, J . Chem, S o c ,, 1603 (1956). 55* C. K. In g o ld , " S tr u c tu r e and Mechanism i n O rganic C h e m istry ,” C o rn e ll U n iv e r s ity P r e s s , I th a c a , New York, 1953, p. 71. 5 6 . J . W. Coperihaver, M. F. Roy and C. S. M arv ell, J . Am. Chem. S o c ., 1311 (1 9 3 5 ). 57* G. A. R u s s e ll, A b s tr a c ts o f P apers P resen ted a t American Chemical S o c ie ty M eeting, D iv is io n of O rganic C hem istry, Paper 57, Chicago, Septem ber 7 -1 2 , 1958* APPENDIX Optical D e n sity F ig u re 1 0 . P e rc e n t d eu teriu m c o n te n t o f m ix tu res o f cumene and cumene-d^ i n carbon te t r a c h l o r i d e v s . o p t i c a l d e n s ity a t k.6j? m icrons. (C o n c e n tra tio n o f hy drocarbon = 2.97 M.) 0.20 10 P e rc e n t Deuterium 83 F ig u re 1 1 . P e rc en t deuterium c o n te n t o f m ixture of 3“ phenylpentane. and 3~phenylpentane~dG in. carbon t e t r a ­ c h lo r id e v s . o p t i c a l d e n s ity a t 1+.68 m icrons. (C o n c e n tra tio n o f hydrocarbon = 2.1+0 M.) 32 Optical D e n sity 0 . 21+ 0.16 0.08 Percent Deuterium F ig u re 1 2 , P e rc e n t d e u te riu m 'c o n te n t of m ix tu res of 2 -phen y lp en tan e and 2 -p h en y lp en tan e-d a i n carbon t e t r a ­ c h lo r id e v s . o p tic a l, d e n s ity a t U*67 m icro n s. (C o n c e n tra tio n o f hydrocarbon = 2.39 M.) 85 0.20 0 .1 2 Optical D en sity 0.16 0.08 0 2 6 8 Percent Deuterium 10 12 86 F ig u re 1 3 . P e rc e n t deuterium c o n te n t o f m ix tu res of 2 -m e th y l-3 “ p henylbutane and 2-m ethyl-3~ phenylbutane-da in. carb o n t e t r a c h l o r i d e v s , o p tic a l d e n s ity a t U-70 m ic ro n s, . (Concent r a t io ii of hydrocarbon = 2.1+2 M.) 0.16 ~ Optical D e n sity 0.12 0.08 0.0U 10 Percent Deuterium F ig u re l l ; . P erc e n t deuterium c o n te n t o f m ix tu re s of 2 ,2 ~ d im eth y l-3 ~ p h en y lbutane and 2 ,2 -d im e th y l“3**phenylb u ta n e -d ^ i n carbon t e t r a c h l o r i d e v s . o p tic a l d e n s ity a t 1±.69 m icro n s. (C o n c e n tra tio n o f hydrocarbon = U*l6 Optical D en sity 0 .2 0 0 .1 0 0.05 0 2 6 P e rc e n t Deuterium 8 88 TABLE XI COMPETITION BETWEEN CUMENE AND sec-BUTYLBENZENE^ (0 .1 0 g . p o tassiu m m e ta l, l£ 0 , 1.200 m3., sto ck s o lu tio n '' p e r ampoule) Sample Time ( h r s .) Potassium W eight ( g .) P ercen t Deuterium Exchanged Cumene sec-B utylbenzene 1 2 0 . 10U 0 .7 1 .1 2 h 0.103 5 .3 2.2 3 6 0.0 96 1 0 .1 U*9 k 8 0.102 11.0 . U.6 5 10 O.lOii 1U.2 6.3 ■ft S tock s o lu tio n * I . 8I4.O ml. e th y lb en zen e-d a ^ 2.100 m l. cumene 2 .3I4.O m3.. se c -b u ty lb e n z e n e . 89 TABLE X II COMPETITION BETWEEN sec-BUTYLBENZENE AND 3 - PHENYLgENTANE (0 .2 0 g. potassiu m m e ta l, 1$0 , l.I|0 0 m l. sto ck s o lu t i o n ' p er ampoule) Sample Time ( h r s .) Potassium W eight '( g . ) 1 2 0.209 2 .1 0 .7 2 h 0.199 3 .7 0.9 3 b 0 .2 0 $ b .l 0.9 b 6 0 .2 0 k 6.0 1-5 $ 6 0.20U 5 .6 l.k 6 8 0.20$ 6 .6 1 .7 7 8 0.207 6.7 1 .7 8 10 0.199 8 .6 2.0 9 10 0.207 8.3 2 .1 P e rc e n t Deuterium Exchanged s ec-B utylb enz ene 3-P henylpentane "Stock s o lu tio n : $ .0 0 m l. eth y lb en zen e-d c , U.U70 m l. s e c -b u ty l­ ben zen e, )+.9$0 m l. 3 -p h e n y lp e n ta n e . 90 TABLE X III COMPETITION BETWEEN sec-BUTXLBENZENE AND 2-PHENYLPENTANE ( 0 ,2 0 g. po tassiu m m e ta l, l £0 , 1 .L.00 ml. sto c k s o lu t io n ' p er ampoule) Sample Time ( h r s .) Potassium W eight ( g .) P e rc e n t Deuterium Exchanged &*Butylb enz ene 2-Phenylpentane 1 2 0 .2 0 6 3 ,0 2 .6 2 2 0.208 1 ,9 1 .8 3 h 0.203 1*,0 3 . It h k 0.2 0 1 U.3 3 .7 £ 6 0.201 6 ,£ 6 .1 6 6 0.200 6,2 £ .6 7 8 0.206 8 ,0 6.8 8 8 0.202 8.3 7-0 9 10 0.203 8,7 7 .1 10 10 0.206 7 .8 — 6.7 — • ^S tock s o lu tio n ; £.000 m l. eth y lb e n z e n e -d a , It.£70 m l. s e c -b u ty l­ b enzene, k ' 9 60 m l. 2 -p h e n y lp e n ta n e . 91 TABLE XIV COMPETITION BETWEEN sec-BUmBENZENE AND 2-METEYL-3-PgENYLBUTJ\NE (0 .2 0 g. p o tassiu m m e ta l, 150 , 1 -ljli.0 m l. s to c k s o lu tio n '' p e r ampoule) Sample Time ( h rs .) 1 2 0.201; 2.2 0 .8 2 3 0.203 3-5 0 .6 3 k 0.203 3.9 0 .9 It 6 0.201 6.2 1 .5 5 6 0.205 6 .0 1*7 6 8 0.201; 7.2 1*9 7 10 0.205 9*7 2.1* 8 10 0.207 8 .5 1 .9 9 15 0.200 1 2 .1 3-0 10 20 0 .2 0 5 15*2 3 .7 Potassium W eight ( g .) P e rc e n t D euterium Exchanged sec-vBb.tylbenz ene 2-M ethyl~3-phenylbu ta n e "’'S to ck s o lu tio n : 5*500 m l. e th y lb e n z e n e -d ^ 1;.917 m l. s e c b u ty lb en ze n e j 5*390 m l. 2 -m e th y l-3 "p h en y lb u tan e. 92 TABLE X7 COMPETITION BETWEEN sec-BIJTTLBENZENE AND 2 ,2 -DIMETHYL-3- PHENYLBUTANE ( 0 .2 0 g. potassiu m m e ta l, 1 5 0 ° , 1 .^ 0 0 ml. sto c k s o lu ti o n ' p er ampoule) Sample Time ( h r s .) P otassium W eight ( g .) P e rc e n t D euterium Exchanged se c - Buty lb enz ene 2.,2-D im ethyl-3~phenylb u tan e ]. 2 0.299 3 .0 o.h 2 2 0.300 2 .6 0 .3 3 k 0.298 U.7 0 .6 k h 0.302 J4.8 0 .7 5 6 0.303 6 .6 0 .8 6 6 0.301 6 .6 0 .8 7 8 0.306 7.8 0 .9 8 8 0 .3 0 1 7.8 0 .9 9 10 0.303 9 .1 1.0 10 10 0.302 7.8 1.3 "Stock s o lu tio n ; 6.000 m l. e th y lb e n z e n e -c ^ ; I4,.^470 ml. s e c b u ty lb en ze n e ; 3 .1 8 0 m l. 2 , 2 -d im e th y l- 3 -p h e n y lb u ta n e . 93 TABLE XVI FIRST ORDER. RATE CONSTANTS FOR DEUTERIUM TRANSFER TO CUMENE IN COMPETITION WITH sec-BUTYLBENZENE (D ata c a lc u la te d from Table X I.) Sample Time ( s e c .) P erce n t . D 0 Log (100/100-^D) e ki _i (x io " ) {s e c . ) — — 1 0 2 7200 0.7 0.00303 0.97 3 1UI4OO £.3 0.02366 3.78 h 21600 10.1 0 .0i|622 b'93 5 28800 11.0 0.05061 U.05 6 36000 1U.2 0.06651 I4.26 . Average L e a st Squares Slope 3.60 ± 1.05 1*011 9k TABLE XVII FIRST ORDER RATE CONSTANTS FOR DEUTERIUM TRANSFER TO sec-BUTYLBENZENE IN COMPETITION WITH CUMENE (D ata c a lc u la te d from Table XI) Sample Time ( s e c .) P e rc e n t D Log (100/100-gD) 0 ----- (xlO 6) ( s e c . _1 ) ----- 1 0 2 7200 1 .1 0.001+79 1.53 3 ll+Uoo 2.2 0.00966 1 .5 5 k 21600 k-9 0.02181 2.33 5 28800 1+.6 0 .0201+1+ 1.63 6 36000 6.3 0.02825 1 .8 1 Average L e a s t S quares Slope 1 .7 7 ± 0.21+ 1.82, 95 TABLE XVIII FIRST ORDER RATE CONSTANTS FOR DEUTERIUM TRANSFER TO sec-BUTXLBENZENE IN COMPETITION WITH 3 - PHENYLPENTANE (D ata c a lc u la te d from Table X II) Sample Time ( s e c .) P e rc en t D Log (100/100-#D) ki -1 (xlO 6 ) ( s e c . ) 0 ----- ----- 1 0 2 7200 2 .1 0.0092U 2.96 3 1)|)|00 3 .7 0.01636 2.62 k HUiOO I4. I 0.01820 2.91 5 21600 6 .0 0.02686 2.86 6 21600 5 .6 0.02502 2.67 7 28800 6 .6 0.02967 2.37 8 28800 6.7 0.03011 2 .l a 9 36000 8 .6 0.03906 2.50 10 36000 8.3 0.03763 2.U1 Average L e a st Squares Slope 2.5U ± 0.20 2 -S l 96 TABLE XIX FIRST ORDER RATE CONSTANTS FOR DEUTERIUM TRANSFER TO 3-PHENXLPENTANE IN COMPETITION WITH sec-BUTYLBENZENE (D ata c a lc u la te d from TABLE X II) Time (sec-) P e rc e n t D Log (100/100-^D) 1 0 0 ---- 2 7200 0 .7 0.00303 0.969 3 lUUoo 0 .9 0.00393 0.629 k U |)|00 0 .9 0.00393 0 .6 29 5 21600 1 .5 0-00655 O.698 6 21600 l.U 0.00612 0.653 7 28800 1 .7 0 . 007U5 0.596 8 28800 1 .7 0.007U5 0.596 9 36000 2.0 0.00877 0.5 6 1 10 36000 2 .1 0 .0092U 0.591 Sample ■ (xlO e ki .1 ) (sec. ) — Average L e a s t Squares Slope 0.658 ± 0.078 0.6*7 97 TABLE XX FIRST ORDER RATE CONSTANTS FOR DEUTERIUM TRANSFER TO sec-BUTYLBEN2ENE IN . COMPETITION WITH 2-FHENYLPENTANE (D ata c a lc u la te d from Table X I I I ) Sample Time ( s e c ,) P erc en t D Log (100/100- %D) (xlO 6) ( s e c . ) ---- ---- 1 0 2 7200 3.0 . 0.01322. U.23 3 7200 1.9 0.00877 2.81 k lUUoo U-0 0.0177U 2 ,8U 5 lUUoo J4.3 0.01907 3.05 6 21600 6.5 0.02818 3.01 7 21600 6.2 0.02780 2.96 8 28800 8.0 0.03623 2.90 9 28800 8.3 0.03763 3.01 10 36000 8.7 0.039^3 2.^3 13. 36000 7.8 0.03£27 2.26 0 -1 Average L e a st Squares Slope 2.96 ± 0.29 2 .J 1 98 TABLE XXI FIRST ORDER RATE' CONSTANTS FOR DEUTERIUM TRANSFER TO 2 - PHENYLPENTANE IN COMPETITION WITH sec-BUTYLBENZENE (D ata c a lc u la te d from T able X III) Sample Time ( s e c .) P e rcen t D Log (100/100*#D) (xlO 6) ( s e c . ) ----- ----- 1 0 2 7200 2 .6 0 . 011HU 3 -66 3 7200 1 .8 0.00788 2.52 h liUiOO 3.h 0.01502 2 .J4O 5 lUHoo 3 .7 0.01636 2.61 6 21600 5 .6 0.02502 2.67 7 21600 6 .1 0.02735 2.92 8 28800 6.8 0.03060 2.U5 9 28800 7 .0 0.03153 2.52 10 36000 6.7 0.02911 1 .86 11 36000 7 .1 0.03197 2.05 0 „i Average L e a st Squares Slope 2,57 ± 0 .32 2.91 99 TABLE XXII FIRST ORDER RATE CONSTANTS FOR DEUTERIUM TRANSFER TO sec-BUTYLBEN?,ENE JN COMPETITION WITH 2-METHYL-3- PHENXLBUTANE (D ata c a lc u la te d from Table XIV) Sample Time ( s e c .) P erc en t D Leg (100/ 100- ^D) ki «i (xlO 6) ( s e c . ) ----- ----- 1 0 2 7200 2.2 0.00966 3-09 3 10800 3-5 0.015U9 3.30 h ihkOO 3 .9 0.01728 2.76 5 21600 6 .2 0.02780 2.96 6 21600 6 .0 0,02686 2.86 7 28800 7.2 0.032L.6 2.60 8 36000 9-7 0.05530 2.83 9 36000 8 .5 0.03858 2.57 10 514000 1 2 .1 0.05603 2.39 11 72000 15-2 0.07159 2.29 0 Average CM L e a st Squares Slope 2.76 ± 0 .2 5 100 TABLE XXIII FIRST ORDER RATE CONSTANTS FOR DEUTERIUM TRANSFER TO 2-METHYL-3- PHENILBUTANE IN COMPETITION WITH sec-BUTYLBENZENE (D ata C a lc u la te d from Table XIV) Sample Time ( s e c .) P erc en t D Bog (100/100-^D) kx (xlO 6) ( s e c . — ----- 1 0 2 7200 0 .8 0.00350 1.120 3 10800 0 .6 0.00260 0.551+ 1+ DillOO 0 ,9 0.00393 0.629 5 21600 1 .5 0.00655 0.698 6 21600 1 .7 0 .0071+5 0.791+ 7 28800 ■1.9 0 .0083I+ 0,667 8 36000 2.1+ 0.01055 0.675 9 36000 1.9 0 .0083U 0.531+ 10 51+000 3 .0 0.01322 0.561+ 11, 72000 3 .7 0.01636 0.523 0 Average L e a s t Squares Slope ) 0.676 ± 0 . H 8 o .S tf 101 TABLE' IX17 FIRST ORDER RATE CONSTANTS FOR DEDTERHJM TRANSFER TO sec-BUTYLBENZENE IN COMPETITION WITH 2 , 2-DIMETHYL-3“ PHENYLBUTANE ( Data c a lc u la te d from Table XV) Sample Time ( s e c .) P ercen t D LoS (100/100-^D) ki _i (xlO 6) ( s e c . ) ---- ----- 1 0 2 7200 2 .6 o.onJjJi 3.6 6 3 7200 3.0 0.01322 U.23 h 1UU00 U.7 0.02090 3.3U 5 1UU00 lw8 0.02135 3.U2 6 21600 6 .6 0.02967 3 .1 6 7 21600 6 .6 0.02967 3 .1 6 8 28800 7.8 0.03527 2.82 9 28800 7-8 0.03527 2.82 10 36000 9 .1 0 .0lpJi3 2.65 11 36000 7.8 0.0352-7 2.26 0 ' Average L e a st S quares Slope 3 .1 5 ± 0.U3 102 'BIBLE XXV FIRST ORDER RATE CONSTANTS FOR DEUTERIUM TRANSFER TO 2,2-DIMETHYL-3-PHENYLBUTA.NE IN COMPETITION WITH sec-BUTYLBENZENE (Data c a lc u la te d from Table XV) Sample Time (sec.) Percent D Log (i o o /i q o -$d ) _i (xlO6) (sec. ------ 1 0 2 7200 0.1* 0 .00171* 0.557 3 7200 0 .3 0.00131 0.1*17 1* 114*00 0 .6 0.00262 0.1*18 5 114*00 0 .7 0.0030£ 0.1*88 6 21600 0 .8 0.0031*9 0-372 7 21600 0 .8 0.0031*9 0.372 8 28800 0 .9 0.00393 0.3H* 9 28800 0 .9 0.00393 0.311* 10 36000 1 .0 0.001*3 6 0.279 11 36000 1.3 0.00568 0.361* 0 ) — Average Least Squares Slope 0.390 ± 0P65 0 .3 & ) 100 Figure 1$. Infrared Spectrum £o CO o H d © © I CO o O uoTscxuistreui q-Tieojad CM c o (in Carbon On of Ethylbenzene-da T e tr a c h lo r id e ) . 103 100 Figure 16. Infrared to uo o CO $M d(D H CO I o U O T SST U ISirejJj q .U 9 0 J 8 J of E th y lb en zen e-d a, a (pure l i q u i d ) . 0\ Spectrum io U CM 100 Figure 1?. Infrared Spectrum Os ao CO O Q uoxss'oustreaj, qAieoued O (in Carbon T e tr a c h lo r id e ) . O of Diphenylmethane-da 105 100 Figure 18. Infrared Spectrum CO o CO o U O T S S T U I S tfB J l, TJ 3 0 J 8 d oCM o C\i a (in On to 6 o Sh O -P bO £u < t— a>I I of Diphenylmethane-do Carbon T e tr a c h lo r id e ) . 106 100 Figure 19* Infrared CO MD CO O O UOTBSTUISTTBJCJ, q.U 8O J0J O ■S A tL § rH (in Carbon Os of 3 - Phenylpentane T e tr a c h lo r id e ) . 110 100 Figure 23. Infrared Spectrum OO oo Q. u o x s s t u is u b jx q .u 9 o a 9 j o CM (in Carbon o\ m 0 £ ou ■S g H d> 1 of 3-Phenylpentane-da T e tr a c h lo r id e ) . 111 CM 100 Figure 21*.. Infrared o A ■£) S cH rH CD 1 of 2-Phenylpentane-da «0 u Spectrum (in Carbon On Infrared T e tr a c h lo r id e ) . 113 <\j 100 Figure 26. Spectrum to OO S3 1A CO o oCM uoiss'cuisirej^ ^iraojsj e x! -P UD rH £ % of 2-M ethyl-3-phenylbutane fl o in O •H Infrared (in Carbon T e tr a c h lo r id e ) . 111* 100 Figure 2?. Infrared Spectrum On o CO CO o o uoTssxiusTraij, q-uaoaod O CM o CNJ m a u o a to S Xi rH CD I of 2-M ethyl-3-phenylbutane-da (in Carbon T e tr a c h lo r id e ) . n5 116 CD X! •rl O rH Xi O E l -P fc-l ii XJ f-t cd c_> o •5 cu § -p 2 XI CTs £CD to £ CO o fH o ■R I CO t $-P CD si ■&> s I— I <1) I •H ft I CM -s CM «H o e e •p o CD ft co XI (D S-. 1A n CO CM CD u 3 bu cH ix O Q CO v.-> cm uoxssmsireaj, q.u.0OJ3 j 100 Figure 29- Infrared Spectrum Carbon CO o 0O o tioxss'pustreajj cpiaojad CM o o ,cv T e tr a c h lo r id e ) . C\i co 6o Jh O ■6 Xl H g (& I of 2,2-B iinethyl-3-phenylbutane-do, (in 117